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Thèse de doctorat de l’Université Paris-Saclay
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Chargé de recherche, CNRS, LPP Directeur de thèse
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Abstract

Magnetic reconnection is a fundamental energy conversion process occurring in space
and laboratory plasmas. Reconnection takes place in thin current sheets leading to
the reconfiguration of magnetic field topology and to conversion of magnetic energy
into acceleration and heating of particles. Today reconnection is recognized to play a
key role in the Earth-solar environment, from the solar corona to the solar wind, to
magnetosheath, at the Earth’s magnetopause, and in the magnetotail. Reconnection
is initiated in the Electron Diffusion Region (EDR), where electrons decouple from
the magnetic field and are energized by electric fields. Despite the very significant
advances that have been made in the understanding of the magnetic reconnection
process by means of in-situ measurements (notably provided by the Cluster mission)
and by numerical simulations, the small electron scale physics of the dissipation region
remains basically unsolved. It is only the last years, with the launch of the Magneto-
spheric MultiScale mission (MMS) together with the recent impressive increasing of
computational capabilities of supercomputers, that the dynamics of the Electron Dif-
fusion Region has started to be enlightened. One of the key, yet still open questions,
is whether the EDR has a preferred homogeneous or inhomogeneous structure at elec-
tron scales and below. The purpose of this Thesis is to advance in the understanding
of the structure of the Electron Diffusion Region using two different approaches, no-
tably MMS spacecraft observations and kinetic full Vlasov simulations. The first part
presents MMS observations of an EDR encounter at the subsolar magnetopause when
the four MMS probes were located at the smallest interspacecraft separation of ∼ 6
km, which is comparable to a few electron inertial length (de ∼ 2 km). We find that
the EDR is rather inhomogeneous and that the pattern of the energy conversion is
patchy, showing that the structure of the EDR at the magnetopause can be much
more complex than it has been found in other MMS events and than it is usually
depicted by kinetic PIC simulations. Our MMS data analysis has pointed out the
need of simulations with better spatial resolution and low noise on the electron scales,
in particular on the electric field, in order to better understand the kinetic physics
at play. Following this motivation, the second part of the Thesis aims at studying
the EDR by using a novel fully-kinetic Eulerian Vlasov-Darwin model which we have
implemented in the numerical ViDA code. The ViDA code is specifically designed to
improve our understanding of the kinetic dynamics of collisionless plasmas at electron
scales by giving access to the fine phase space details of the electron distribution func-
tion. A first part is devoted to the testing of the code by performing 2D symmetric
magnetic reconnection simulations. Then, low-noise simulation data have been used
to investigate the contribution of the different terms in the Ohm’s law in the EDR,
focusing on the contribution of the electron inertia term which is responsible for the
decoupling of the electron dynamics from the magnetic field.
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Résumé

La reconnexion magnétique est un processus fondamental de conversion d’énergie qui
se produit dans les plasmas spatiaux ainsi que dans les plasmas de laboratoire. La
reconnexion a lieu dans des couches de courant très fines et a comme conséquence
la reconfiguration de la topologie magnétique et la conversion d’énergie magnétique
dans l’accélération et le réchauffement des particules. Actuellement, le rôle de la
reconnexion est reconnue comme un processus majeur dans l’environnement Soleil-
Terre, depuis la couronne solaire jusque dans le vent solaire, dans la magnétogaine
ainsi qu’à la magnétopause et dans la queue magnétique. La reconnexion se déclenche
dans la région de diffusion électronique (EDR). Dans cette région, les électrons se
démagnétisent et sont accélérés par les champs électriques de reconnexion. Malgré les
progrès déterminants dans la compréhension du processus de la reconnexion qui ont
été accomplis grâce à l’utilisation des mesures in-situ en synergie avec les simulations
numériques, la physique de la région de diffusion aux échelles électroniques est encore
largement inconnue. Ce n’est que dans les dernières années, avec le lancement de
la mission Magnetospheric MultiScale (MMS) et l’impressionnant augmentation des
capacités de calcul des super-ordinateurs, que la dynamique de l’EDR a commencée à
être comprise. Une des questions fondamentales – qui reste encore sans réponse – est
de comprendre si la structure de l’EDR est homogène ou hétérogène aux échelles élec-
troniques et même au-dessous de ces échelles. La finalité de ma recherche est d’avancer
dans la compréhension de la structure de l’EDR avec deux approches différent : les
observations par satellites et simulations numériques complètement cinétique de type
Vlasov. La première partie de ce mémoire présente les observations issus des satel-
lites MMS en traversant la magnétopause en proximité du point sub-solaire et avec
une séparation très petite entre les satellites (∼ 6 km) i.e. comparable à la longueur
d’inertie des électrons de ∼ 2 km. L’analyse des donnée montre que l’EDR n’est pas
homogène en terme de courant électrique et de champ électrique aux échelles élec-
troniques et que la distribution spatiale de la conversion d’énergie est irrégulière. Ces
observations indiquent que la structure de l’EDR peut être bien plus compliquée que
ce qu’indiquent des études expérimentales antérieures et les simulations numériques de
type PIC. La présente analyse des données MMS a souligné la nécessité de réaliser des
simulations avec une résolution spatiale plus élevée et un bruit numérique négligeable
– en particulier pour le champ électrique – pour progresser dans la compréhension
des processus cinétiques qui interviennent aux échelles électroniques. En poursuivant
cette motivation, la deuxième partie du mémoire est consacrée à l’étude de l’EDR
en utilisant un nouveaux modèle Eulérien Vlasov-Darwin complètement cinétique qui
nous avons implémenté dans le code numérique ViDA. Le code ViDA a été spécifique-
ment conçu pour perfectionner notre compréhension de la dynamique des plasmas
non collisionnels aux échelles cinétiques en donnant accés aux détails de la fonction
de distribution électronique dans l’espace de phase. Une première partie est consacrée
aux tests du code avec une simulation 2D de la reconnexion magnétique symétrique.
Les données de simulation avec bruit négligeable ont été utilisées par la suite pour
étudier la contribution des différents termes qui forment la loi d’Ohm dans l’EDR.
Nous avons traité en particulier la contribution du terme d’inertie électronique qui est
responsable de la démagnétisation des électrons.



iii

Riassunto

La riconnessione magnetica è un processo fondamentale di conversione di energia nel
plasmi spaziali e di laboratorio. La riconnessione avviene in sottili strati di corrente e
determina la riconfigurazione della topologia del campo magnetico e la conversione di
energia magnetica in accelerazione e riscaldamento delle particelle. È riconosciuto che
la riconnessione svolga un ruolo fondamentale nell’ambiente Terra-Sole, dalla corona
solare al vento solare, nella magnetosheath, alla magnetopausa terrestre e nella coda
magnetica. La riconnessione si innesca nella Regione di Diffusione Elettronica (EDR),
dove gli elettroni sono demagnetizzati e vengono accelerati dai campi elettrici. Nonos-
tante i progressi significativi che sono stati fatti nella compresione della riconnessione
sia tramite misure in situ (in particolare dei satelliti Cluster) che tramite simulazioni
numeriche, i processi alle scale elettroniche nella regione di diffusione sono ancora
largamente sconosciuti. È solo negli ultimi anni, con il lancio della missione Magneto-
spheric MultiScale mission (MMS) e l’impressionante sviluppo del potere di calcolo
dei supercalcolatori, che la dinamica della EDR ha cominciato a essere esplorata.
Una delle domande fondamentali ma ancora prive di risposta è se la EDR abbia una
struttura omogenea o inomogenea alle scale elettroniche. Lo scopo di questa Tesi è
avanzare nella comprensione della struttura della EDR usando due approcci differenti:
le osservazioni della missione MMS e simulazioni cinetiche di tipo Vlasov. La prima
parte presenta osservazioni di un attraversamento di EDR misurato da MMS alla
magnetopausa vicino al punto sub-solare quando la separazione tra i quattro satelliti
era al minimo raggiungibile da MMS, ossia era comparabile con la lunghezza inerziale
elettronica (de ∼ 2 km). Le osservazioni indicano che l’EDR è piuttosto disomogenea
e che la struttura della conversione di energia è irregolare. Questo mostra che la strut-
tura della EDR alla magnetopausa può essere più complessa rispetto a quello che è
stato mostrato in altre osservazioni o da simulazioni cinetiche PIC. La presente anal-
isi ha sottolineato la necessità di simulazioni numeriche con una risoluzione elevata e
prive di rumore alle scale elettroniche, soprattutto relativamente al campo elettrico, in
modo di comprendere gli effetti cinetici presenti. Per questa ragione, la seconda parte
della Tesi è finalizzata allo studio della EDR con un nuovo modello Vlasov-Darwin
Euleriano completamente cinetico che abbiamo implementato nel codice ViDA. ViDA
è creato specificatamente per studiare la dinamica dei plasmi non collisionali alle scale
cinetiche elettroniche e da accesso ai dettagli delle funzioni di distribuzione elettron-
iche. Una prima parte è dedicata alla verifica del codice tramite simulazioni 2D della
riconnessione. Successivamente, i dati delle simulazioni sono usati per analizzare il
contributo dei vari termini della legge di Ohm nella EDR, concentrandosi in particolare
sul contributo del termine di inerzia elettronico, responsabile della demagnetizzazione
degli elettroni.
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Chapter 1

Introduction

A plasma is defined as a gas composed of charged particles, globally neutral and
dominated by electromagnetic forces.

Plasma state is usually referred to as the fourth state of matter since a plasma can
be thought to be produced by heating an ordinary gas to such temperature that the
amount of charged particles drastically affects the system dynamics. Being composed
by charged particles, a plasma is characterized by two competing tendencies that
neutral gases do not display. The action of the electromagnetic forces leads to a
tendency to cohesion while the chaotic movement of the particles provokes a tendency
to dis-aggregate. The interaction of charged particles affects the particles motion,
providing the coherent and collective behavior of the plasma.

Studying a plasma system means dealing with a self-consistent problem: the par-
ticles of the plasma react collectively to forces exerted by electric and magnetic fields;
the fields are modified by the charge densities and current densities of the plasma.
The dynamics of the system is modeled, in general, using a kinetic description based
on the Boltzmann equation coupled to Maxwell equations. However, depending on
the typical wavelength and time scale of the specific process that has to be analyzed,
different approaches can be adopted. The fluid or Magneto-Hydro-Dynamic (MHD)
approach has proved valuable in studying the global aspects of the system. Of course,
such an approach based on a macroscopic view of the plasma ceases to be valid as
soon as the system develops fluctuations comparable to the ion gyroradius.

Plasma may not be the dominant state of matter that is found in nature on
Earth, but more than 99% of all known matter in the Universe is in the plasma state
[Baumjohann and Treumann, 1996]. For this reason, it is crucial to study astrophysical
and space plasmas, which include plasma in the Earth’s magnetosphere and the solar
wind. These plasmas are usually highly magnetized and collisionless so that the kinetic
description is based on the Vlasov equation coupled to the Maxwell equations.

One of the fundamental processes that is ubiquitous in plasmas is magnetic recon-
nection, a major cause of energy conversion and transport in plasma. Reconnection
is recognized to play a key role in the Earth-solar environment – from the solar wind
[Phan et al., 2006], to magnetosheath [Retinò et al., 2007, Phan et al., 2018], at the
Earth’s magnetopause [Mozer et al., 2002, Burch et al., 2016a], and in the magneto-
tail [Øieroset et al., 2001, Torbert et al., 2018] – but also in the solar corona [Cargill,
2015], in magnetized accretion disks arounds black holes [de Gouveia Dal Pino and
Lazarian, 2000] and in magnetars [Lyutikov, 2003].

Magnetic reconnection was firstly suggested by R. Giovanelli as a mechanism that
could explain the intense energy release observed during solar flares. Giovanelli re-
alized that solar flares are associated with sunspots [Giovanelli, 1939] and that the
magnetic field near a sunspot is characterized by a “neutral point” where the magnetic
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field goes to zero. The presence of the neutral point is suggested as the necessary con-
dition for allowing the particles of the plasma to be accelerated by the electric field
and to reach the high energies observed during solar flares [Giovanelli, 1947].

Figure 1.1: Active region on the Sun. The sunspots are the darker
areas. Image credit: NASA/SDO/AIA/HMI/Goddard Space Flight

Center.

This idea was applied also to the magnetosphere providing a potential mechanism
to explain the accelerated particles giving rise to aurora [Hoyle, 1950]. In this context,
J. Dungey described the topological rearrangement of field lines that takes place when
a neutral point is present and that causes particle acceleration [Dungey, 1953]. This
concept was then applied specifically to the magnetosphere and the outcome was the
conception of the Dungey cycle [Dungey, 1961] (see Section 3.1).

The first model aiming to explain the origin of this process was proposed by Sweet
[1958]. He suggested the Ohmic dissipation to be responsible for reconnection of
current sheets. Parker [1957] formulated the model of magnetic reconnection using
the scaling relations in the pre-reconnecting and after-reconnecting regions. However,
it was soon realized that the reconnection rate obtained with this model was too small
compared to solar flares observations [Parker, 1963]. Another model was developed by
Petschek [1964] who proposed that besides the mechanism of magnetic field diffusion in
the reconnection region, the energy can be converted at shock waves. In the framework
of Petschek model, the finite conductivity is assumed to be localized within a diffusion
region which is much smaller that the whole current sheet and that leads to the
formation of a pair of shock waves separating the inflow and outflow regions. The
reconnection process in this model has a rate which is faster and closer to observations
(see also [Vasyliunas, 1975], a review unifying the reconnection models). However,
the underlying kinetic mechanisms which lead to the enhanced localized resistivity
featured in Petschek model are still unknown and the localized resistivity has not yet
been verified experimentally.

In 1963, reconnection was proven to play a role also in fusion devices [Furth et
al., 1963]. Furth et al. [1963] showed by analytical calculations that reconnection can
operate via the tearing instability which in turn leads the current sheet to break into
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a series of magnetic islands or plasmoids [Priest and Forbes, 2000, Ji and Daughton,
2011].

The first observational evidences of reconnection operating at the Earth’s magne-
tosphere were indirect evidences. For instance, it was shown that the interplanetary
magnetic field direction is related to auroral and geomagnetic activity [Fairfield and
Cahill Jr, 1966]; that a southward interplanetary magnetic field causes the magne-
topause to shift inward (the so-called magnetospheric erosion [Aubry et al., 1970]);
that energetic particles from the sun reach the magnetic field lines anchored at the
polar cap first [Fennell, 1973].

Then, the first strong direct proofs for reconnection were produced by means of
observations of the ISEE spacecraft [Paschmann et al., 1979, Sonnerup et al., 1981].

It has become clear that the terrestrial magnetosphere is the perfect natural labo-
ratory to study the magnetic reconnection process. Indeed, after the first observations
provided by the ISEE spacecraft, very significant advances have been made in the de-
tailed understanding of the magnetic reconnection process by means of high quality
in situ measurements, notably with data from Polar, Cluster, THEMIS/ARTEMIS
and TWINS [Yamada et al., 2010]. Finally, the launch of the Magnetospheric Mul-
tiScale (MMS) mission has given a new impulse to the investigation of the magnetic
reconnection process by providing particles data with the adequate high resolution to
analyze the electron scales [Burch et al., 2016b].

In addition, the Earth’s magnetosphere is an environment with an extremely large
variety of conditions in terms of density, temperature, value of the β parameter (which
corresponds to the ratio between the thermal and the magnetic pressure). For this
reason, the progress made in the understanding magnetic reconnection at the Earth’s
magnetosphere can be exported to investigate magnetic reconnection occurring in
other environments [Vaivads et al., 2009] (see Figure 1.2).

Magnetic reconnection has been also largely studied by means of laboratory exper-
iments, notably the MRX experiment [Yamada et al., 1997, Ji et al., 2008]. Laboratory
experiments have the virtue to be repeatable and to have controlled boundary con-
ditions while in situ observations have to rely on encounters of the sought process
which are to some extent fortuitous. However, investigating magnetic reconnection
with in situ measurements has some advantages which include the fact that there are
no artificial boundaries, the electrons and ions distribution functions can be measured
directly and the spatial resolution of the fields measurements can be below the Debye
length [Vaivads et al., 2009].

Understanding magnetic reconnection is crucial because it is far to be a topic
of interest only in the field of space plasmas. In particular, magnetic reconnection
is found to be a limiting factor in achieving and maintaining electron temperatures
high enough to initiate fusion in magnetic-confinement fusion devices [Yamada et al.,
1994]. Furthermore, magnetic reconnection plays a substantial role also in the context
of the space weather, eventually affecting the interior of the magnetosphere and even
the surface of the Earth. The magnetosphere acts as a protective shield against the
energetic particles of solar flares and cosmic rays. However, this barrier is not impen-
etrable. Reconnection at the dayside magnetosphere is responsible for the coupling of
the solar sourced plasma of the solar wind and the magnetospheric plasma allowing the
penetration of energetic particles in the magnetospheric environment. This coupling
is especially strong when the Sun is active, producing flares associated with Coronal
Mass Ejections (CME) that interact with the terrestrial magnetic environment. The
effects can be registered in space (damaged spacecraft, communication failures, radia-
tion risk for astronauts), in the atmosphere (radio communication problems, diversion
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Figure 1.2: Different kind of plasmas are located in a parameter
space composed by the plasma β and the ratio between the electron
plasma frequency ωp,e and the electron cyclotron frequency Ωc,e. β
mainly describes ion physics while ωp,e/Ωc,e characterizes electron pro-
cesses. Once plotted in a dimensionless parameters space, different
plasmas appear to be close to each other. Also, the parameter range
that is covered by the conditions that are found at the magnetosphere
(colored area) is especially large. Adapted from [Johlander, 2019].

of transpolar flights) and even on ground (interference with power grids).
Despite the significant advances that have been done in about 80 years of research

from the first ideas of Giovanelli [1939], some fundamental aspects of magnetic re-
connection in collisionless plasmas are still poorly understood. As it will be widely
discussed in the following, magnetic reconnection is a multiscale process which involves
several characteristic lengths and time scales. Its multiscale nature makes it difficult
to describe the process analytically but also to investigate it with computational and
observational approaches. The topological rearrangement and the consequent energy
release – which are the main characteristics of reconnection – are thought to take place
in the so-called electron diffusion region which has a characteristic length comparable
to the electron inertial length. The electron scale physics of the process has become
accessible only recently both in numerical simulations and observations.

The main goal of my Thesis, in its broadest sense, is to advance in the understand-
ing of the electron scale process in the diffusion region of magnetic reconnection. In
order to do that, two different approaches will be used, namely the analysis of high
resolution spacecraft data from the MMS mission at the Earth’s magnetopause and
low-noise simulation data issued from a new code based on a fully-kinetic Eulerian
Vlasov-Darwin model.

As discussed in Chapter 6 and 7, several numerical and observational studies
has been focused on the electron diffusion region. However, it is not fully understood
whether the EDR has a preferred homogeneous or inhomogeneous structure at electron
scales and below in terms of current densities and electric fields. Throughout this
Thesis, I will try to answer to this long standing question. A non laminar structure
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would affect the energy conversion in the diffusion region and it could influence the
magnetic reconnection process globally.

This Thesis is organized as follows. Chapter 2 provides a description of magnetic
reconnection at large scale, adopting the traditional MHD theoretical framework.
Despite the fact that the MHD model overlooks the kinetic effects, it is useful to
understand large scale properties of the process.

The physical context where magnetic reconnection is investigated in this Thesis
is the Earth’s magnetosphere and the magnetopause in particular. An overview of
reconnection at the Earth’s magnetosphere is provided in Chapter 3.

Before discussing the properties of the electron diffusion region, two Chapters
(Chapter 4 and 5) are devoted to the discussion of the methodology for both space-
craft data and numerical simulations. In particular, Chapter 4 describes the Mag-
netospheric MultiScale (MMS) mission providing information about the spacecraft,
the instrumentation on board, the orbit and data products and it presents the data
analysis techniques that are used for the data analysis reported in Chapter 7. Chapter
5 gives a rapid overview of the numerical models which are commonly used to study
magnetic reconnection focusing in particular on the state of the art of full kinetic
Vlasov simulations.

Chapter 6 summarizes the main observational and numerical studies about the
electron diffusion region and it focuses in particular on the operational criteria of
identification of the electron diffusion region by means of spacecraft data.

The following Chapters present the results of my research. Chapter 7 covers MMS
observations of a structured electron diffusion region at electron scales at the mag-
netopause that are presented in [Cozzani et al., 2019]. Chapter 8 describes a new
numerical code – called ViDA – based on fully-kinetic Eulerian Vlasov-Darwin model
[Pezzi et al., 2019]. Such code allows to perform low noise and high resolution sim-
ulations and it is specifically designed to improve our understanding of the kinetic
dynamics of collisionless plasma at electron scales by giving access to the fine phase
space details of the electron distribution function. I have taken part in the testing
of the ViDA code simulating in particular symmetric magnetic reconnection in two
dimensions.

The next step has been to use the ViDA code to investigate another long standing
topic in the context of reconnection, namely the contribution of the different terms
of Ohm’s law in sustaining the reconnection electric field. Results of this analysis are
shown in Chapter 9. Conclusions are provided in Chapter 10 together with perspec-
tives for possible future observational and numerical work.

Concerning the units used in this Thesis, I would like to warn the reader that I
have maintained the unit system that is typically used for each specific approach.
In particular, MMS data are provided in MKS units while models used in numerical
codes are written using the cgs system. However, I assume that the readers are
already familiar with this situation when reading papers about numerical simulations
and spacecraft data.

Throughout this Thesis I will extensively make use of the words ion and proton. In
the context of my research, there is no real distinction between these two terms since
the plasma that are taken into account in this Thesis are composed by protons and
electrons. However, while this is strictly true for simulation data since I set the atomic
number of ions to 1 in the equations of the model, the Fast Plasma Investigation (FPI)
particle instrument on board of MMS measures the distribution functions of electrons
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and ions but it does not provide information about the composition. Since ion flows
into the magnetosphere can often be assumed to have solar wind-like composition of
∼ 96% protons and > 3.9% alpha particles we will use the terms ion and proton
indistinctly.
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Chapter 2

Fundamental concepts associated
with magnetic reconnection

Contents
2.1 Frozen-in concept . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Overview of the magnetic reconnection process . . . . . . 8

2.2.1 Reconnection rate . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Generalized Ohm’s law . . . . . . . . . . . . . . . . . . . . . 13
2.4 Hall’s quadrupole . . . . . . . . . . . . . . . . . . . . . . . . 15
2.5 Finite Larmor radius effects: meandering orbits . . . . . . 17
2.6 Standard picture of 2D magnetic reconnection . . . . . . . 19

This Chapter presents some of the main concepts that are associated to magnetic
reconnection and that are extensively used thought the Thesis. Firstly, the definition
of the frozen-in concept is given, in order to introduce the concept of magnetic re-
connection in the Magneto-Hydro-Dynamics (MHD) theoretical framework (Section
2.1). Then, the Ohm’s law is derived in Section 2.3 and the relative importance of
the terms at different scale is discussed. Section 2.4 discusses the origin of the Hall
magnetic field. Finite Larmor radius effects focusing on the meandering orbits and the
corresponding distribution functions are discussed in Section 2.5. These Sections are
meant to provide all the fundamental notions about the magnetic reconnection process
that are necessary to understand the results presented in the following Chapters.

2.1 Frozen-in concept

Even though the MHD approach neglects the kinetic processes at play in the plasma,
it still represents an useful theory to understand large scale properties of a plasma,
e.g. the frozen-in concept and the magnetic reconnection process at its largest scale.

We consider plasmas that are magnetized, collisionless and fully ionized, com-
posed by protons and electrons. Within the ideal MHD framework, the equation that
describes the evolution of the magnetic field reads

∂B

∂t
= ∇× (u×B) (2.1)

where u = (mpup +meue)/(mi +me) is the bulk velocity of the single fluid plasma.
Equation (2.1) is obtained combining the Faraday equation with the ideal Ohm’s law

E +
u×B

c
= 0 (2.2)
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In this condition, the plasma is frozen to the magnetic field, meaning that if the
infinitesimal distance between two fluid element of the plasma δr is tangential to a
field line at time t0 this will still be the case at any further time, i.e.

d

dt
(δr×B) = 0.

The frozen-in condition implies that the magnetic field line cannot break and so it
introduces crucial constraints regarding the magnetic field topology of the system.

Eq.(2.1) implies that the plasma described as a single fluid is frozen-in. However, a
similar condition can be obtained for a single species and even for a specific population
of a species which is globally frozen-in. This situation takes place, for instance, in the
ion diffusion region, where electrons are still coupled to the magnetic field while ions
are demagnetized (see Section 5.2.1).

Also, when ideal MHD is valid, the magnetic flux ΦB through a surface S(t) is
conserved

dΦB

dt
=

d

dt

(∫
S(t)

dS ·B

)
= 0.

The integration is performed over the surface S(t) bounded by the closed curve γ(t)
which moves with the same velocity field as the plasma. Equation (2.1) can be easily
derived considering that the variation dS can be written as dS = udt × dl where dl
is tangential to γ(t), and including the ideal Ohm’s law and Eq.(2.1). Hence, this
property can be seen as equivalent to the frozen-in concept.

When the plasma is frozen to the magnetic field, the motion of the field lines is
linked to the motion of the plasma fluid element so that they are both characterized by
the same velocity. This characteristic velocity uE×B, also called the drift velocity, can
be obtained by performing the cross product of B and Eq.(2.2) so that uE×B = cE×B

B2 .

2.2 Overview of the magnetic reconnection process

This Section in meant to provide a short review of some fundamental concepts asso-
ciated with reconnection that will be useful to understand the next Chapters which
are focused on the microphysics of the process.

The ideal MHD, with its properties discussed in the previous Section, is a theoreti-
cal framework that can be used to model the large-scale collisionless plasma dynamics
where the fluctuations are characterized by typical scale length L and time scale T
such that kinetic effects can be neglected. However, there are some situations in which
the characteristic scale is locally decreased down to the scales of the particles scales.
This leads to the formations of regions in which ideal MHD is locally violated so
that the system can modify its magnetic topology and adjust to a lower energy state,
usually by converting energy explosively. The formation of such regions is usually
promoted by the presence of current sheets which are regions of strong gradients in
the magnetic field. Magnetic reconnection is the process responsible for such energy
release and magnetic field topology change.

This prefatory description of the reconnection process already underlines the in-
trinsic multi-scale nature of magnetic reconnection.

The large scale system, which may be modeled by the ideal MHD theory, is affected
by the particle-scale processes that take place in regions where the ideal MHD is locally
violated. These local and small scale processes eventually lead to the reconfiguration
of the global topology and connectivity of field lines, which allows the mixing of regions
of plasma that were initially “disconnetted” and which affects the paths of fast particles
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Figure 2.1: Schematic picture of magnetic field merging. Black lines
represent magnetic field lines.

and heat conduction. For example, the mixing between the solar sourced plasma and
the Earth’s magnetosphere driven by magnetic reconnection in the near-Earth space
has crucial consequences on the terrestrial magnetosphere, as discussed in Section 3.1.

In order to introduce the process of magnetic reconnection we consider the simplest
2D configuration and we describe the evolution of the system adopting a MHD (large-
scale) point of view [Priest and Forbes, 2000, e.g.]. Let us consider two adjoining
regions characterized by oppositely oriented magnetic field lines (see Figure 2.1(a)).
Consistently with the changing in the direction of the magnetic field, a current sheet
boundary is present. Under enhanced gradients across the boundary driven by the
system dynamics, the current sheet becomes thinner and the configuration becomes
unstable. Because of the enhanced gradients, a non-ideal region is formed associated
to a neutral X-point where the magnetic field vanishes (at least in this simplified
picture shown in Figure 2.1(b). Within this non-ideal region Eq.(2.1) is no longer
valid. This region has been referred to as the diffusion region since the magnetic field
can finally slip with respect to the plasma. We also recall that Eq.(2.1) can be seen as
the limit for η → 0 of the equation for the evolution of the magnetic field in a resistive
plasma

∂B

∂t
= ∇× (u×B) +

c2

4π
η∇2B

where η is the resistive diffusion coefficient. Resistivity provides an example of dissi-
pation and the necessary irreversible dissipation for reconnection to occur.

The processes taking place in the diffusion region lead to the breaking and recon-
nection of magnetic field lines together with the release of magnetic energy that is
converted in kinetic energy of the plasma. In particular, the plasma is accelerated
and heated in the outflow region (Figure 2.1(c)).

The current MHD description of magnetic reconnection can not provide any detail
about the kinetic processes in the diffusion region, but it allows to understand several
crucial properties of this process at large scale. In particular,

1. Magnetic reconnection is driven by the presence of strong gradients and thin
current sheets;

2. Magnetic reconnection is a multi-scale process; the local non-ideality of the
plasma induces global variations in the topology and in the energy partition
between fields and the plasma;
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Figure 2.2: Schematic representation of the change in connectivity
operated by the reconnection process. At time t, prior to reconnection,
the fluid element A and B (C and D) are frozen to the same field line
(left panel). After reconnection (right panel), the connectivity has

changed and now A and C (B and D) are connected.

3. During reconnection magnetic energy is converted into heat, and kinetic plasma
energy;

4. As a consequence of the topology reorganisation, plasma of different regions and
source that were initially apart can mix (see Figure 2.2).

Note that the name reconnection is issued by the MHD theory. From the MHD
perspective the field lines do break and re-connect, but the MHD model is not describ-
ing the processes within the diffusion region where the “breaking” and “reconnecting”
take place. In addition, the notion of field lines itself has to be taken with care once
we consider non-ideal regions where the frozen-in condition does not hold since it is
no longer possible to prove that there is a well defined equation for the evolution of
the “field lines” there.

2.2.1 Reconnection rate

The reconnection rate is defined as the amount of the reconnected magnetic flux
flowing into or away from the reconnection site (in 2D, this is usually the X-point).
It is one of the main parameters that characterise the reconnection process. If the
system can be described by ideal MHD the magnetic flux remains constant

∂ΦB

∂t
= 0 (2.3)

consistently with the frozen-in condition. During reconnection this condition is no
longer valid in the diffusion region and the reconnected magnetic flux across the
region changes in time. This variation quantifies the speed at which reconnection
is proceeding. It can be shown that the reconnection rate R can be expressed (using
Faraday’s law and the Stokes theorem) in terms of the electric field in the reconnection
site

R ≡ ∂ΦB

∂t
=

∂

∂t

(∫
S
dS ·B

)
= −c

∮
γ
dl ·E (2.4)

where S is surface bounded by the closed curve γ.
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Figure 2.3: The integration loop is represented by the solid green
line. The diffusion region is represented with the light blue rectangle.
Reconnection electric field, magnetic field, and in/outflow velocities,

are shown in orange, black, and red/blue respectively.

Now, let us consider a simplified 2D geometry as the one previously adopted
(see Figure 2.1). There is an invariant direction which corresponds to the out of
reconnection plane direction (z direction in Figure 2.3). Also, let us assume that the
system is in steady state. Here, the reconnection rate is a measure of the rate at which
magnetic flux is transported across the X-point.

We consider the curve γ bounding the surface S defined above has one side passing
across the X-point and one side far enough from the reconnection site to be considered
as not affected by reconnection (side a and c of the rectangle in Figure 2.3). We
compute the contour integral in Eq.(2.4) by decomposing it along the four segment
of γ. The contribution of segment c is zero since the electric field is supposed to be
zero there; the joint contribution of segments b and d is zero since the electric field is
the same on the two segments (invariance along z). The only contribution is given by
segment a so that

R2D = −cEz,X a (2.5)

where Ez,X is the out of reconnection plane component of the electric field at the
X-point, c is the speed of light and a is the length of the side of the curve γ. Hence,
Ez,X can be used to estimate the reconnection rate and it is commonly referred to as
the reconnection electric field.

Following the approach by Sweet and Parker, we can write the reconnection electric
field Ez,X in terms of the Alfvén velocity computed in the inflow region. Assuming
mass conservation across the X-point we can write

ρinuin∆ ∼ ρoutuoutδ (2.6)

where ∆ and δ are the characteristic length and width of the non-ideal region (see
Figure 2.3), ρ is the density and u the plasma velocity. The in and out subscripts
correspond to region upstream and downstream of the diffusion region where ideal
MHD is valid. For equal density in the inflow and outflow region and considering
that the total energy is dominated by magnetic energy in the inflow region and by the



Chapter 2. Fundamental concepts associated with magnetic reconnection 12

plasma kinetic energy in the outflow region, we get

∆
B2
in

8π
uin ∼ δ

1

2
ρoutu

2
outuout (2.7)

Hence, using Eq.(2.6) we obtain

uout ∼

√
B2
in

4πρ
≡ VA,in (2.8)

which corresponds to the Alfvén velocity in the inflow region VA,in. In the inflow
region, the electric field is still described by the ideal Ohm’s law Eq.(2.2) so that

Ez =
uyBx
c

=
uinBin
c

∼ δ

∆

VA,inBin
c

. (2.9)

In conclusion, the reconnection rate depends upon the aspect ratio δ/∆ of the diffusion
region which in turn depends on the microphysics at play in the non-ideal region.

The reconnection rate is often presented in an adimensional fashion by dividing it
by BinVA,in/c. In this way, we obtain that the adimensional reconnection rate Ez is

Ez =
cEz

BinVA,in
=
uinBin
c

c

BinVA,in
=

uin
VA,in

. (2.10)

Moreover, since the magnetic flux into and out of the dissipation region is the same,
Binuin = Boutuout (Bin is directed along x and Bout along y)

Ez =
cEz

BinVA,in
=
uoutBout

c

c

BinVA,in
=
Bout
Bin

=
By
Bx

. (2.11)

This formulation is important to experimentally compute the reconnection rate. In-
deed, spacecraft trajectories do not provide enough information to compute the recon-
nection rate using Eq.(2.4) and the out-of-reconnection-plane electric field is usually
a small quantity affected by large errors. In contrast, the inflow velocity, together
with the Alfvén speed and the components of the magnetic field By and Bx is usu-
ally available, allowing for an estimation of the reconnection rate. However, these
measurements need to be handled with care since By is usually close to zero in ob-
servations (as compared to Bx) especially for asymmetric reconnection. Furthermore,
the motion of the X-point has to be determined in order to evaluate uin.

In addition, the ratio By/Bx can be written in terms of an opening angle θ, which
is the angle between the two separatrices

Ez =
By
Bx

= tan θ. (2.12)

When talking about the reconnection rate, it is impossible not to mention the so-
called “0.1 problem”. Indeed, it has been shown that the reconnection rate takes the 0.1
value in myriad of numerical simulations performed in a wide range of conditions, see
e.g. [Comisso and Bhattacharjee, 2016, Cassak et al., 2017b, and references therein].

However, it is still not clear why the reconnection rate should take this specific
value. The discussion and the investigation of the “0.1 problem” lie beyond the scope
of this Thesis. The reader is referred to publications that approach this long last-
ing problem [Comisso and Bhattacharjee, 2016, Priest and Forbes, 2000, Dorelli and
Bhattacharjee, 2008, Cassak et al., 2017b].
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2.3 Generalized Ohm’s law

The electric field in the non-ideal region is referred to as the reconnection electric
field. As shown in the previous Section, it is proportional to the reconnection rate so
that it is also linked to the energy conversion from the magnetic field to the plasma.

The overall MHD viewpoint presented in the previous Section is not suitable to
provide details about the microphysics sustaining the reconnection electric field. In
the diffusion region, where the ideal Ohm’s law is no longer valid, the electric field is
given by

E +
u×B

c
= R (2.13)

where R represents the non-ideal terms.
In a collisional and resistive plasma, the right hand side R corresponds to a term

of the type ηj, describing Ohmic dissipation. In a collisionless plasma, the resistivity
is included only for the sake of mathematical simplicity but it does not correspond
to the correct physics at small scales. Indeed, as soon as the system generates strong
gradients in the reconnecting layer, other terms come into play in the Ohm’s law well
before resistive effects would be efficient.

In order to write the right hand side of Eq.(2.13) more explicitly, we consider the
Euler equation for both electrons and ions

∂

∂t
(nue) +∇ · (nueue) = − 1

me
∇ ·Pe −

ne

me

(
E +

ue ×B

c

)
(2.14)

∂

∂t
(nui) +∇ · (nuiui) = − 1

mi
∇ ·Pi +

ne

mi

(
E +

ui ×B

c

)
(2.15)

where we have assumed quasi-neutrality ne ' ni ' n. Since j = ne(ui − ue), the left
hand side of Eq.(2.14) can be written as

∂

∂t
(nue)+∇·(nueue) =

∂

∂t

(
nui −

j

e

)
+∇·(nuiui)−

1

e
∇·(uij)−

1

e
∇·(jui)+

1

ne2
∇·(jj).

(2.16)
Then, we subtract Eq.(2.14) from Eq.(2.15) and we finally obtain

E

(
1 +

me

mi

)
+

ue ×B

c
+
me

mi

ui ×B

c
=

1

ne
∇ ·
(
me

mi
Pi −Pe

)
+

+
me

ne2
∇ ·
(
jui + uij−

jj

ne

)
+
me

ne2

∂j

∂t
. (2.17)

No approximations have been used yet, but we can simplify the above equation by
considering that 1 + me/mi ≈ 1 and that usually (me/mi)|ui| � |ue|. Hence, we
obtain the generalised Ohm’s law

E +
ue ×B

c
=

1

ne
∇ ·
(
me

mi
Pi −Pe

)
+
me

ne2
∇ ·
(
jui + uij−

jj

ne

)
+
me

ne2

∂j

∂t
. (2.18)

The left hand side can be also written in terms of the ion velocity and we obtain

E +
ui ×B

c
=

j×B

nec
+

1

ne
∇ ·
(
me

mi
Pi −Pe

)
+
me

ne2
∇ ·
(
jui + uij−

jj

ne

)
+
me

ne2

∂j

∂t
.

(2.19)

In this formulation, the so-called Hall term ∝ j×B is explicitly present. In addition,
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the term depending on the species pressure is called the pressure term while the term
depending upon ui and j, as well as on the temporal derivative of j, and proportional
to me is called the electron inertial term. In general, me

mi
|∇ · Pi| � |∇ · Pe| so that

the ion pressure tensor contribution may be neglected.
We compare the different terms in order to understand at which scale each of them

is actually playing a role. This comparison underlines the multi-scale nature of the
reconnection process. It is straightforward to see that the two term on the left hand
side of Eq.(2.19) are of the same order while the following ordering is valid for the
other terms ∣∣∣∣ j×B/nec

ui ×B/c

∣∣∣∣ ∼ d2
i

L2
(2.20)∣∣∣∣∇ ·Pe/ne

ui ×B/c

∣∣∣∣ ∼ β d2
i

L2
(2.21)∣∣∣∣∣ me

ne2
∂j
∂t

ui ×B/c

∣∣∣∣∣ ∼
∣∣∣∣∣∣
me
ne2
∇ ·
(
jui + uij− jj

ne

)
ui ×B/c

∣∣∣∣∣∣ ∼ d2
e

L2
(2.22)

(2.23)

where L corresponds to the characteristic scale of interest. The Hall term plays a role
at the ion scales di while the inertia term becomes crucial at the electron scale de.
The relative importance of the pressure term depends also on the β parameter, the
ratio of kinetic to magnetic pressure.

All terms on the right hand side of Eq.(2.19) (and Eq.(2.18)) contribute to the non-
ideal R term on the right hand side of Eq.(2.13). However, not all of them guarantee
the demagnetization of both species as required by the reconnection process to occur.
In particular, the Hall term is sufficient to demagnetize the ions but not the electrons.
Indeed, the Ohm’s law with the Hall term as the only non-ideal contribution reads

E = −ui ×B

c
+

j×B

nec
= −ue ×B

c
(2.24)

which corresponds to an ideal Ohm’s law for electrons.
If we take into account the pressure term we obtain the following Ohm’s law

E = −ue ×B

c
− 1

ne
∇ ·Pe (2.25)

which in principle allows for the electrons to be demagnetized. However, by taking
the curl of Eq.(2.25) and using Faraday’s law we get

∂B

∂t
= ∇× (ue ×B) +

c

e
∇×

(
∇ ·Pe

n

)
. (2.26)

If the pressure is a scalar or a diagonal tensor and the plasma is incompressible, the
“diffusive” term is zero the electrons cannot be demagnetized.

Finally, the electron inertia term is sufficient to break the frozen-in condition and
it is in general considered to play a major role at electron scales.
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2.4 Hall’s quadrupole

The previous Section shows that at the ion scales the Hall term becomes non-negligible
and it allows for the decoupling of electron and ion flows. The fact that charge
carriers of different sign now move differently allows for an out-of-plane component
of the magnetic field to develop. This out-of-reconnection-plane magnetic field has
a quadrupolar structure and it represents one of the most simple to observe and
unambiguous signatures of ongoing reconnection [Sonnerup, 1979]. The quadrupolar
magnetic field has been routinely observed in numerical simulations [Biskamp et al.,
1997, Shay et al., 2006, Shay and Drake, 1998, Wang et al., 2000, Shay et al., 2001,
Pritchett, 2001], near-Earth space [Mozer et al., 2002, Eastwood et al., 2010] and
laboratory experiments [Ren et al., 2005].

Figure 2.4: The quadrupolar magnetic field (panel (d)) observed at
the magnetopause as reported by Mozer et al. [2002]. The data are
from the Polar satellite and the spacecraft trajectory across the Hall

region is sketched on the left.

In order to explain the origin of the quadrupolar pattern, we report the explanation
given by Uzdensky and Kulsrud [2006]. We consider a 2D reconnecting current layer in
the Hall-MHD regime with slab geometry. The xy plane is the so-called reconnection
plane and the system is invariant along the direction z. In particular, we consider
the ion diffusion region where the ions are demagnetized from the magnetic field and
they can be consider as a motionless neutralizing background. We assume that the
ion density is uniform across the current layer. Since quasi-neutrality is assumed, the
electron density is also uniform. We also assume that the reconnection layer is in a
quasi-steady state and that there is no guide magnetic field (i.e. no initial magnetic
field along the z direction).

We consider a flux tube that is moving towards the X-point, as shown in Figure
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Figure 2.5: (left) The quadrupolar magnetic field during 2D PIC
simulations of magnetic reconnection. Adapted from [Pritchett, 2001].
(right) The quandrupolar magnetic field detected in the MRX (Mag-
netic Reconnection Experiment). Adapted from [Ren et al., 2005].

2.6(a). The magnetic field strength decreases going towards the center of the recon-
necting layer and the volume of the tube needs to increase in order to guarantee flux
conservation. Since the electron are still frozen-in, this leads to a drop in the electron
density. However, the ions are not influenced by this dynamics and their density stays
uniform. This induces an electric field which accelerates electron from the sides of
the flux tube towards the center in order to re-establish quasi neutrality (see Figure
2.6(b)).

In the outflow region, the direction of the electron flow reverses. The magnetic
flux tube is ejected from the X-point along the x direction and the magnetic strength
increases in the center of the flux tube so that the electrons move outward in order
to maintain quasi-neutrality. The final pattern of the electron flow is shown in Figure
2.6(c). Therefore, the electron-carried current density determines the presence of a
quadrupolar magnetic field concentrated along the separatrices as shown in Figure
2.6(d). Note that the sign pattern is independent of the direction of the magnetic
field in the xy plane since the quadrupolar structure is determined by the electron
flow only. Also, in this scenario, the electrons are always magnetized and that the
electron diffusion region is not taken into account.

Another explanation for the quadrupolar magnetic field has been given by Mandt
et al. [1994]. This explanation invokes the differential drag of the magnetic field lines
by a non uniform out-of-plane electron velocity ve,z. Being ve,z larger at the neutral
line (where B = 0 before reconnection), the magnetic field lines are stretched out in
the z direction determining the quadrupolar pattern.

Uzdensky and Kulsrud [2006] investigate the origin of the out-of-plane velocity and
they argue that ve,z in the Hall region corresponds to the drift velocity E×B which
has to be associated with a bipolar electric field Ey directed towards the center of the
current sheet. This electric field is routinely observed in simulations and spacecraft
observations and it plays a role in the ion dynamics in the current sheet, namely
accelerating the ions towards the neutral line. In addition, it has been shown that,
at least in the analytic X-line model adopted by Uzdensky and Kulsrud [2006], the
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Figure 2.6: Schematic rapresentation of the explanation for the out-
of-plane quadrupolar magnetic field.

bipolar Ey is sensibly larger that the out-of-plane electric field (or reconnection electric
field) and this behaviour is recovered in spacecraft observations [Mozer et al., 2002,
Burch et al., 2016a].

Figure 2.7: A schematic representation of the stretching of the re-
connected magnetic field lines in the z direction caused by the non
uniform ve,z across the current sheet. The loop represents the mag-
netic field line initially lying the xy plane. The arrows directed along
z represent the electron velocity which is larger in the center of the

current sheet. Adapted from Mandt et al. [1994].

2.5 Finite Larmor radius effects: meandering orbits

One of the first model of particle dynamics within a current sheet where the sheared
magnetic field changes direction is the Speiser analytic model [Speiser, 1965]. Speiser
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[1965] developed a single particle model that is valid in a current sheet where the
magnetic field is approximated by the linear function −(x/δ)ŷ, where δ is the half
thickness of the current sheet, while the electric field is constant and directed along x
(Figure 2.8). In these conditions the Larmor radii of the particles have to be considered
as finite.

Once the charged particles enter the current sheet, they start to execute meander-
ing orbits performing oscillations within the sheet and they are accelerated along the
sheet before being finally ejected (Figure 2.8). It is seen in [Speiser, 1965] that the
number of oscillations in the current sheet is proportional to the square root of the
mass and so electrons will execute about 1/40 of the number of proton oscillations
before being ejected. Moreover, as indicated in Figure 2.8, the magnetic field has a

Figure 2.8: Ion and electron orbit within the current sheet. The
magnetic field is B = bx̂ − x/δŷ and the electric field is E = −aẑ.

Adapted from Speiser [1965].

small component perpendicular to the sheet which is the main driver for the ejection
process of the particles.

The Speiser meandering orbits have recently gained popularity since they provide
the explanation for the generation of the so-called crescent-shaped distribution func-
tions observed by the MMS spacecraft in proximity of the electron diffusion region at
both magnetopause and magnetotail [Burch et al., 2016a, Torbert et al., 2018]. This
type of distribution has been observed also for ions [Dargent et al., 2019], one of the
first example has been reported by [Frank et al., 1994] in the magnetotail.

Electron crescent-shaped distributions close to the reconnection site were predicted
by Hesse et al. [2014] before the MMS mission was launched. Bessho et al. [2016]
developed a one-dimensional models for crescent distributions at the magnetopause
in which the magnetic field is varying linearly across the boundary and the electric
field is zero on one side and varies linearly on the other. This asymmetry reflects the
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asymmetric reconnection at the magnetopause which will be discussed in Section 3.2.
Another one-dimensional model was independently developed by Shay et al. [2016].
In this case both electric and magnetic field are asymmetric and they are zero on one
side of the boundary and linearly increasing on the other. Both models recover the
crescent-shape distributions. Note that in the model proposed by Shay et al. [2016]
the position of the crescent depends on the free parameter VEB = cE/B which is
proportional to the absolute value of the drift velocity. The same free parameter is
found by Bessho et al. [2016] (see Figure 2.9).

z

Bx 
Ez 

Bx = bz
Ez = -kz (z>0); 0 (z<0)

Figure 2.9: Schematic representation of the crescent-shaped distri-
bution function in the velocity space and the corresponding orbit in
the xz plane. The reconnection plane is the xz plane and the z direc-
tion is normal to the current sheet. The parameter −ck/b corresponds

to VEB . Adapted from Bessho et al. [2016].

Despite these models, the origin of the crescent-shaped distribution functions in
still debated. In particular, Lapenta et al. [2017] showed that the electric field is not
necessary to obtain the meandering orbits. In contrast, the only necessary condition is
a steep reversal of the magnetic field. Since the electric field is not taken into account,
the parameter VEB does not appear.

The model developed by Lapenta et al. [2017] is based on the adiabatic Hamilto-
nian method. It allows both magnetic and electric fields to vary linearly and asym-
metry is not necessary. Since both asymmetric and symmetric configurations provide
crescent-shape distribution functions, the model predicts the presence of the mean-
dering orbits also in a magnetotail-like (symmetric) configuration. Indeed, crescent-
shaped distribution functions are observed by MMS in the magnetotail [Torbert et
al., 2018].

In addition, this model underlines the fact that electron crescent-shaped distribu-
tion functions easily develop near the Electron Diffusion Region because of the extreme
thinning of the current sheet near the X-point but they can be observed in any other
region in which the magnetic field gradient is strong enough to induce meandering
orbits. This point has been confirmed by observations. For instance, crescent-shaped
distribution functions are observed at flank magnetopause where they are generated
by electron gyromotion at thin electron-scale magnetic boundaries [Tang et al., 2019].

2.6 Standard picture of 2D magnetic reconnection

This Section is meant to summarize the previous Sections providing a complete picture
of the region which is affected by the reconnection process, i.e. the region including
the diffusion region, outflows and inflows. The approach of this Section is relatively
qualitative since the main purpose is to provide elements to better understand the
spacecraft data analysis presented in Chapter 7 and the simulations presented in
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Chapter 8. The properties that are discussed in this Section correspond to specific
signatures in the observations which allow to identify ongoing reconnection and the
ion diffusion region.

This description is limited by the fact that we consider a 2D system which is
invariant over translation along the out-of-reconnection-plane direction. This approx-
imation is adopted throughout the Thesis since the spacecraft observations suggest
that the analyzed system is rather 2D (as discussed in Chapter 7) and the simulations
presented in Chapter 8 are 2D simulations.

As discussed in the previous Sections, magnetic reconnection is a multi-scale pro-
cess. In general, we can distinguish three regions: an external region in which the
plasma is frozen to the magnetic field, an Ion Diffusion Region (IDR) where electrons
are still frozen-in and an Electron Diffusion Region (EDR), embedded into the IDR,
where both electron and ions are demagnetized and the breaking of the field lines takes
place (see Fig 2.10). The typical dimension of each region depends on the terms of
the Ohm’s law which determines the demagnetization of the species. More precisely,
the characteristic scale of the IDR is the ion inertial length di (the characteristic scale
length of the Hall term) while the characteristic scale of the EDR is the electron
inertial length de.

In the inflow (upstream) region, the ideal MHD is approximately valid. During
reconnection, a flow is directed towards the current sheet, convecting the magnetic
field inward. Since Eq.(2.2) holds, an out-of-plane electric field Ez = uyBx is present.

Once the inflowing field lines enter into the IDR, they decouple from the ions
while the electrons stay frozen-in. This behaviour is marked by the presence of the
so-called Hall currents (see red paths in Figure 2.10) which sustain the out-of-plane
quadrupolar Hall magnetic field. As discussed in Section 2.4, a Hall electric field is
also present. It is directed along the y direction pointing towards the center of the
current sheet. In the ion diffusion region, the ions have very little bulk motion and
they perform Speiser orbits. However, the magnetized electrons continue to inflow,
so that there is still an out-of-plane electric field, mainly sustained by the Hall term
∝ j×B (see Eq.(2.19)).

At wavelengths comparable to de the electrons also become demagnetized. It has
been proposed that the out-of-plane electric field is associated with the divergence
of the off-diagonal elements of the electron pressure tensor [Hesse et al., 1999, 2018].
Nevertheless, the role of the electron inertia term is still under debate. The EDR
will be discussed in Chapter 6, this Section provides only a qualitative picture of the
diffusion region. In particular, the only characteristic of the EDR that is taken into
consideration at this stage is that the X-point, where the magnetic field lines change
topology, is supposedly located at the middle of the EDR. In symmetric reconnection,
the stagnation point, the location where the inflow velocity goes to zero, is also at the
center of the dissipation region. As discussed in Section 3.2, this picture is modified for
asymmetric reconnection and one of the consequences is that X-point and stagnation
point are not co-located.

In the diffusion region the electrons are accelerated out of the reconnection plane
by the reconnection electric field Ez and they gyrate around the reconnected magnetic
field By. This leads to the formation of the outflow directed along the x direction.
In particular, the electrons are ejected from the EDR at the electron Alfvén speed
forming the electron reconnection jet. The ions undergo a similar dynamics and they
exit the ion diffusion region at the ion Alfvén speed. The electron outflow is mainly
concentrated along the separatrices, i.e. the lines forming the boundary between
the upstream plasma and the downstream plasma which intersects at the X-line (see
Figure 2.10). Outside of the EDR (but still in the IDR), the electrons are decelerated
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Figure 2.10: Schematic diagram of the diffusion region. Ions are
decoupled from the electrons and from the magnetic field in the ion
diffusion region. The Hall magnetic and electric field patterns are
present in the IDR. Electrons are demagnetized in the electron diffu-

sion region. Adapted from [Yamada et al., 2015].
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so that the two species exit the IDR at the same speed, entering the downstream
region where they are frozen to the reconnected field lines.

Where and how this “re-magnetization” takes place is still under debate and it is
strongly connected to the determination of the extent of the dissipation regions in the
outflow direction. The reconnection rate is found to be 0.1 in a myriad of different
conditions (see Section 2.2.1) and since the reconnection rate is proportional to the
aspect ratio of the diffusion region, the extent of EDR in the outflow region is expected
to be ∼ 10 de (being the width of the order of ∼ 1 de).

However, simulations [Shay et al., 2007, Karimabadi et al., 2007, Nakamura et
al., 2016] revealed the existence of an extended electron diffusion region capable to
maintain fast reconnection. In particular, these simulations show that the inner EDR
is connected to a super-Alfvénic electron jet where electrons are demagnetized that
extends at least for 15 di from the X-line in the outflow direction. These results were
confirmed and even exceeded by the observation of a super-Alfvénic electron outflow
jet at a distance of at least 60 di downstream of an active X-line [Phan et al., 2007].
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Chapter 3

Magnetic reconnection at the
Earth’s magnetosphere
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This Chapter provides information about the physical context in which the mag-
netic reconnection process is studied in this Thesis, namely the near-Earth space,
and in particular the magnetopause current sheet. The satellite observations that are
discussed in Chapter 7 are focused on an Electron Diffusion Region encounter during
magnetic reconnection at the subsolar magnetopause while the simulations analyzed
in Chapter 9 presents a case of 2D symmetric magnetic reconnection that corresponds
to the magnetotail configuration. The magnetopause and the magnetotail reconnec-
tion processes are different in many ways. For instance, magnetopause reconnection
directly mediates the interaction between the terrestrial and the interplanetary envi-
ronment while magnetotail reconnection takes place between field lines of the same
source (the Earth magnetic field). This difference implies that magnetopause re-
connection is asymmetric (in terms of magnetic field strength, number density and
temperature) while magnetotail reconnection is largely symmetric. The asymmetry
strongly affects the geometry and the dynamics of the reconnection site. In addition,
the continuous interaction with the interplanetary magnetic field and the solar wind
implies that the global reconnection rate and the total reconnected flux are influenced
by external conditions.

For all these reasons, this Chapter provides an overview of the Earth’s magneto-
sphere before focusing on the properties of magnetopause reconnection.

3.1 Overview of the Earth’s magnetosphere

The Earth’s magnetosphere is the terrestrial magnetic environment. The unperturbed
terrestrial magnetic field would be approximately a magnetic dipole. In reality, the
magnetosphere is constantly interacting with the interplanetary magnetic field and,
in particular, with the solar wind plasma which modify the standard dipole. Indeed,
particles escaping from the surface of the Sun give rise to the solar wind, a highly
ionized and magnetized plasma mainly formed by ions and electrons which convects
the interplanetary magnetic field (IMF) into the interplanetary space.

As the solar wind expands and arrives in proximity of the terrestrial magnetic en-
vironment, it is deflected by the magnetospheric magnetic field. Since the solar wind
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propagates faster than both the magnetosonic and the Alfvén speeds, a collisionless
shock – the so-called bow shock – self-consistently forms upstream of the magneto-
sphere. At the shock, the plasma flow strongly decreases while the plasma density
and temperature are increased, together with the magnetic field strength (in general,
since the solar wind is an ultrasonic and ultralfvénic plasma, the physical quantities
are increased or decreased by a factor of 4). The characteristic width of the bow shock
is usually comparable to the local ion gyroradius.

The region between the bow shock and the magnetosphere is composed by the
shocked solar wind downstream of the shock and it is called magnetosheath.

The magnetopause is the boundary between the magnetosheath and the Earth’s
magnetosphere and it is the site where reconnection between field lines advected by the
solar wind and and those of the magnetosphere can occur. The magnetopause layer is
characterized by strong currents due to the spatial variation of the magnetic field from
the magnetosheath to the magnetosphere. The magnetic field of the magnetosphere
is directed northward while the direction of the IMF may change depending on the
global dynamics of the solar wind. The direction of the IMF strongly affects the shape
of the whole magnetosphere, as it can be seen in Figure 3.1.

When the IMF is directed southward, the conditions enabling magnetic reconnec-
tion (namely the presence of a thin current sheet) are fulfilled at the subsolar point and
magnetic reconnection takes place at low latitude. The reconnection site is marked by
the blue oval on the right side of Figure 3.1(a). The reconnected field lines are then
advected tailward by the solar wind. The solar wind stretches the magnetosphere on
the night side so that a current sheet is present. At this site, the conditions for mag-
netic reconnection are fulfilled again leading to magnetotail reconnection (occurring in
the blue oval on the left side of Figure 3.1(a)). The open field lines are reconnected so
that there are newly closed terrestrial fields lines moving towards the Earth and new
solar wind lines moving away from Earth. This reconnection mediated mechanism
that couples the solar wind and the magnetosphere sets up a global plasma dynamics
which is usually called the Dungey cycle [Dungey, 1961].

The situation is different when the IMF is directed northward. At the subsolar
magnetopause the magnetic field maintains the same direction across the boundary
while a magnetic field inversion is usually observed at the cusps (the regions of the
magnetosphere where the Earth’s magnetic field fans out from the magnetic poles, see
Figure 3.1(b)). In this case, magnetotail reconnection is strongly inhibited because
the dynamics on the dayside does not allow for the formation of a thin current sheet
on the nightside.

This overview of the Dungey cycle gives an idea of the fact that the solar wind-
Earth’s magnetosphere is a highly complex coupled system. The position of the mag-
netopause changes depending on the solar wind pressure that compresses it and the
physical parameters at the magnetopause depend on the solar wind conditions. In
addition, the solar wind pressure variations determine a inward and outward motion
of the magnetopause. For these reasons, the reconnection site at the magnetopause is
not stable and it is not trivial to predict its location. The next Section is focused on
the properties of magnetopause reconnection at the dayside magnetosphere.

3.2 Properties of dayside magnetopause reconnection

Magnetopause reconnection can be seen as a driven process since it is induced and
maintained because the solar wind is compressing the subsolar magnetosphere. In
addition, since the solar wind is constantly flowing and its parameters are rapidly
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Figure 3.1: The Earth’s magnetosphere with (a) southward IMF
and (b) and northward IMF obtained with simulations with no dipole
tilt. The white lines are the magnetic field lines. Earth is the white
sphere at the origin and the Sun is to the right. The background color
represents the out-of-plane current density (blue out of the page and

red into the page). Adapted from Komar [2015].
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changing, one can say that reconnection is always taking place somewhere at the
magnetopause. However, it is difficult to predict the exact location of the reconnec-
tion site. As discussed in the previous Section, the location at which magnetopause
reconnection is taking place depends on the orientation of the IMF. In particular, it
may occurs in proximity of the subsolar point or at the cusps. The real picture is
more complicated that the one presented in Figure 3.1 notably because the dipole tilt
has to be taken into account, as well as the possible presence of a BIMF,y 6= 0, namely
a non-zero component of the IMF magnetic field along the dawn-dusk direction. If re-
connection takes place with BIMF,y 6= 0 it is called component reconnection since only
one component of the magnetic field is actually reconnecting. The non-reconnecting
component is called the guide field Bg. The guide field is defined by the shear angle
θshear, i.e. the angle between the magnetosheath and magnetospheric magnetic fields

tan

(
θshear

2

)
=
B0,sh

Bg
(3.1)

where B0,sh is the reconnecting magnetic field component on the magnetosheath side.
In the limit of a shear angle of 180◦, the reconnection is anti-parallel, meaning that
Bg = 0. Observations show that magnetopause reconnection takes place with a large
range of shear angles [Trenchi et al., 2008, and references therein].

The characteristics of magnetic reconnection at the magnetopause are deeply af-
fected by the asymmetries across the boundary. The main asymmetries concern
the magnetic field and the density across the boundary so that typical values are
Bsh/Bsp ∼ 0.5 and nsh/nsp ∼ 10 where the subscript sh and sp indicates the mag-
netosheath and the magnetosphere, respectively. Typical values of the main physical
quantities are summarized in the tables of Figure 3.2 for both the magnetospheric and
magnetosheath side of the magnetopause boundary. The tables have been adapted
from Gonzalez and Parker [2016]. The conditions on the magnetospheric side are quite
stable while the parameters on the magnetosheath side are determined by the solar
wind conditions that can change rapidly.

The asymmetry is responsible for the modification of the standard 2D picture of
reconnection that is presented in Section 2.6 in the following ways

1. the inflows are asymmetric. In particular, the inflow region is more narrow on
the magnetospheric side where the magnetic field is larger [Cassak and Shay,
2007];

2. the X-point and the stagnation point are not co-located most of the time. In
particular, the X-point moves towards the magnetosheath while the stagnation
point moves towards the region with the smaller mass flux into the diffusion re-
gion. Since the mass flux can be written in terms of n/B the displacement of the
stagnation point depends on both magnetic field and density asymmetry. The
difference in location of the X-point and the stagnation point implies that there
is a net bulk flow of plasma across the X-line during asymmetric reconnection
[Cassak and Shay, 2007];

3. the quadrupolar pattern of the Hall magnetic field is distorted. In particular,
the extension of the lobe is reduced on the magnetospheric side. Depending
on the intensity of the asymmetry, the Hall magnetic field can degenerate in a
almost bipolar pattern. Correspondingly, the pattern of the Hall currents is also
modified and the Hall electric field is also asymmetric, being stronger on the
magnetospheric side of magnetopause. The change of sign of the Hall electric
field is displaced towards the magnetosphere;
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Figure 3.2: Typical plasma parameters at the magnetospheric side
(top) and at the magnetosheath side (bottom) of the Earth’s subsolar
magnetopause. Density n, magnetic field strength B, ion temperature
Ti, ion Alfvén speed cA, and plasma beta β are reported. The parame-
ters on the magnetosheath side are computed from observations in the
solar wind with the assumptions that across the bow shock the density
and magnetic field strength increase by a factor of 4, the solar wind
ion temperature increases by a factor of 10 across the bow shock and
that there is no further change in the shocked solar wind plasma as
it convects from downstream of the bow shock to the subsolar magne-
topause. aThe Alfvén speeds in parenthesis are derived assuming anti-
correlation between the solar wind density and interplanetary magnetic

field strength. Adapted from [Gonzalez and Parker, 2016].
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4. The peak of the out-of-plane current density together with the ion and electron
jet reversal are biased towards the magnetosphere;

5. the gradients (e.g. the temperature gradient) across the boundary are displaced
towards the magnetosphere [Egedal et al., 2011].

Figure 3.3 and 3.4 give a typical example of asymmetric reconnection. In par-
ticular, Figure 3.3 shows the evolution of several quantities during a magnetopause
crossing during a reconnection event reported by Lavraud et al. [2016]. Before dis-
cussing in detail, note that the physical quantities in both Figure 3.3 and 3.4 are
presented in the local magnetopause coordinate system LMN. Details about this co-
ordinate system can be found in Appendix A. Qualitatively, the reconnecting magnetic
field is expected to be directed along L – as well as the ion and electron jets – while
the Hall magnetic field is directed along M . The LMN system used in Figure 3.3 is
the same that has been adopted in Lavraud et al. [2016]. Figure 3.3(a) shows the
magnetic field. The magnetic field component BL is changing from positive to nega-
tive values, meaning that the spacecraft is crossing the magnetopause going from the
magnetosphere side to the magnetosheath side of the boundary. This scenario is also
supported by the evolution of the density shown in Figure 3.3(c). The vertical dashed
lines indicates the magnetic field minimum. The M component of the magnetic field
presents a dipolar signature that indicates that MMS is crossing two of the lobes of
the quadrupolar Hall field, Figure 3.3(a). However, the dipolar signature is distorted
because of the asymmetry. An ion (and electron) jet reversal is also observed and the
inversion point is shifted towards the magnetosphere (Figure 3.3(d) and (e)). This
is the case also for the peak of ve,M , as expected from the previous discussion. The
enhancement of EN (the Hall electric field) is not so clear for this event but one can
see that the electric field activity is biased towards the magnetosphere (Figure 3.3(a)).

Simulations results provide a picture which in consistent with observations, as
shown in Figure 3.4. Figure 3.4 has been adapted from Shay et al. [2016] showing an
almost bipolar Hall magnetic field across the current sheet (panel (k)); the electric
field (panel (l)) and velocity (panel (o)–(p)) peaks are located in the magnetospheric
side as well as the temperature gradient.

Together with the asymmetry, the intensity of the guide field plays a role in mod-
ifying the symmetric picture presented in Section 2.6. It has been shown that when
both the guide field and asymmetry increase, the symmetric Hall magnetic field pat-
tern gradually degenerates into an asymmetric (bipolar) pattern [Tanaka et al., 2010,
Eastwood et al., 2013, Pritchett and Mozer, 2009]. However, an asymmetry charac-
terized by nsp ∼ 0.5 nsh and Bsp ∼ Bsh combined with a guide field Bg = 0.4 B0 is
not able to completely dismiss the quadrupolar pattern of Hall reconnection [Peng et
al., 2017]. A similar result is obtained with a larger asymmetry (nsp ∼ 0.1 nsh and
Bsp ∼ 2 Bsh) and smaller guide field (Bg = 0.2 B0) [Chen et al., 2017].
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Figure 3.3: (a) Three components of the magnetic field and the
magnetic field strength; (b) three components of the electric field; (c)
electron and ion number density; (d) parallel and perpendicular (to
the magnetic field) electron temperature; (e) three components of the
electron velocity; (f) three components of the ion velocity. All data are
shown in the LMN coordinate system obtained as in [Lavraud et al.,
2016]. The vertical dashed lines indicates the magnetic field minimum.
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Figure 3.4: (a) Contour plot of the Hall electric field EN . The red
solid lines indicates where the cuts shown in the other panels were
taken (L = 6.35 di). (k) Three components of the magnetic field; (l)
three components of the electric field; (m) ion and electron number
density; (n) parallel and perpendicular (to the magnetic field) electron
temperature; (o) three components of the electron velocity; (p) three

components of the ion velocity. Adapted from Shay et al. [2016]
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Chapter 4

Methods of spacecraft data
analysis
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This Chapter is divided into two parts. The first Section is devoted to the presen-
tation of the Magnetospheric MultiScale (MMS) mission, a NASA mission which has
been launched in 2015 and whose data are used throughout the Thesis. Information
about the spacecraft, the instrumentation on board, the orbit and data products are
provided. Three Sections are focused on the description of the instruments that are
widely used in this Thesis, namely the FluxGate Magnetometer providing magnetic
field measurements, the Spin-Plane Double Probe and the Axial Double Probe provid-
ing electric field measurements and the Fast Plasma Investigation, providing electrons
and ions distribution functions and their momenta.

The second part of the Chapter presents the data analysis techniques that are used
for the observational study reported in Chapter 7. These methods are both single and
multi spacecraft methods and and they provide information about the orientation,
velocity, dimensionality of the structure sampled by the spacecraft. A method to infer
the magnetic field topology is also presented.

4.1 Magnetospheric MultiScale (MMS) mission

Overview and objectives

The NASA’s Magnetospheric MultiScale (MMS) mission is composed by four iden-
tically equipped satellites flying in a tetrahedral formation in near-Earth space. It
has been launched in March 2015. The main scientific goal, as stated in Burch et al.
[2016b] is to

understand the microphysics of magnetic reconnection by determining the kinetic
processes occurring in the electron diffusion region that are responsible for
collisionless magnetic reconnection, especially how reconnection is initiated.

Therefore, the spacecraft instruments and the tetrahedral configuration have been
designed to reach time and spatial resolutions that allow the study of electron-scale
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physics. MMS is not the first mission to sample the magnethosphere and the adiacent
space to be composed by four spacecraft. Indeed, ESA’s Cluster mission [Escoubet et
al., 1997] (launched in 2000) has also four probes and it has lead to critical advance
in the understanding of magnetic reconnection process. The presence of four probes
in formation is fundamental since it allows to discriminate the temporal from the
spatial variations and to compute the spatial gradients, as detailed in Section 4.2.2.
The novelty of MMS lies specifically in the orbit (equatorial, while Cluster orbit is
polar), in the inter-spacecraft separation’s range, in the particles data resolutions and
in the electric field measurements. Being the electron-scale physics the main target,
the minimum inter-spacecraft is less than 10 km which is comparable to the electron
inertial length de at the magnetopause and larger than de at the magnetotail. The
maximum inter-spacecraft separation is of the order of 400 km. Then, a new approach
for particle measurements has been devised for MMS in order to achieve unprecedented
time resolution for particle data. While previous magnetospheric missions have often
used the rotation of the spacecraft to acquire 3D particle distributions, MMS Fast
Plasma Investigation instrument (FPI, see Section 4.1 for further details) is composed
by multiple sensors that cover 4π steradians in 30 ms for electron and 150 ms for ions.
On Cluster, the particle measurement are acquired every 2 s (electrons) and 4 s (ions).
The MMS spacecraft rotation period of MMS is 20 s.

The required time resolutions derive from the fact that the electron and ion inertial
lengths are the spatial scales that have to be resolved by MMS. Moreover, reconnec-
tion layers and the associated diffusion regions are usually moving. This motion is
oscillatory at the dayside magnetopause and it is usually tailward in the magnetotail
and typical velocities range from tens of km/s to 100 km/s. An electron diffusion
region of width dEDR ∼ 5 km moving at 50 km/s would be observed by only one of
the MMS spacecraft for a time interval of 0.1 s. In order to have at least 3 measures
within the EDR a time resolution of 0.03 s is required. Another novelty of MMS as
compared to previous missions is the presence of an axial probe that allows for 3D
electric field measurements. Further details about the electric field data are provided
in Section 4.1.

The spacecraft

The MMS constellation consists of four identically instrumented spacecraft. Each
satellite has an octagonal shape and it is approximately 3.5 m wide and 1.2 m high
and at launch, with a full load of propellant, it weighs approximately 1360 kg. The
instruments onboard each spacecraft are listed below. The FIELDS suite (Figure 4.1)
consists of the instruments measuring the magnetic and electric field. In particular,

• the FluxGate Magnetometer (FGM) measures the magnetic field at a sampling
frequency of 128 s−1. The accuracy of the instrument is ∼ 0.1 nT for the DC
field. It is composed by the Analog Flux-Gate (AFG) and the Digital Flux-Gate
(DFG);

• the Search Coil Magnetometer (SCM) measures the magnetic field fluctuations
in the 1 Hz–6 kHz nominal frequency range;

• the Electric field Double Probe (EDP) is composed by the Spin-plane Double
Probes (SDP) and the Axial Double Probes (ADP) and it measures the 3D
electric field in the frequency range DC–100 kHz.

• the Electron Drift Instrument (EDI) measures the magnetic and electric field.
The cadence is smaller compared to other instruments (10 samples/s).
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Figure 4.1: FIELDS sensors on a MMS spacecraft. Adapted from
Torbert et al. [2016b].

The instruments measuring particles are:

• the Fast Plasma Investigation (FPI) instrument, composed by four Dual Elec-
tron Spectrometers (DES) and four Dual Ion Spectrometers (DIS) per space-
craft. FPI combines the data from DES and DIS providing the velocity-space
distribution functions of electrons and ions with a time resolution of 30 ms and
150 ms respectively, in the energy range [10 eV, 30 keV];

• the Hot Plasma Composition Analyzer (HPCA), providing the composition-
resolved 3D ion energy distributions of H+, He++, He+, and O+ in the energy
range [1 eV, 40 keV];

• the Energetic Particle Detector (EPD), including an Energetic Ion Spectrometer
(EIS) and an all-sky particle sampler called the Fly’s Eye Energetic Particle
Sensor (FEEPS). They measure the energy-angle distribution and composition
of ions in the energy range [20 keV ,500 keV] with a sampling frequency of < 30
seconds, the energy-angle distribution of the total ions in the energy range [45
keV, 500 keV] at a sampling frequency of < 10 seconds, and the energy-angle
distribution of energetic electrons in the energy range [25 keV, 500 keV] with a
sampling frequency <10 seconds.

The Active Spacecraft Potential Control (ASPOC) generates beams of indium ions
to limit positive spacecraft potentials within +4V.

Since data from FGM, EDP and FPI instruments are extensively used in this
Thesis a detailed description of these instruments is given in Section 4.1.

Orbit and mission phases

MMS orbit is a low-inclination (28 degrees) elliptical orbit with a perigee of 1.2 RE
(Earth radii). The prime mission (September 2015–September 2017) is composed by
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MMS mission phases
Phase Period of time Apogee (RE)
Phase 0 (Commissioning) 15/03/2015 – 30/08/2015 12
Phase 1 (Prime) 01/09/2015 – 30/01/2017 12
Phase 2 (Prime) 31/01/2017 – 01/09/2017 12 → 25
Phase 3 (Extended) 02/09/2017 – 27/09/2018 25
Phase 4 (Extended) 08/09/2018 – Present 25 → 29

Table 4.1: MMS mission phases during the prime and extended mis-
sion.

Figure 4.2: MMS orbit during (left) Phase 0 and 1, (center) the
transition from Phase 1 (apogee of 12 RE) to Phase 2 (apogee of 25
RE), (right) Phase 3. The orbits are shown in the x–y plane (GSE

coordinates).

two phases during which MMS have sampled the regions in near-Earth space where
the probability of encountering the diffusion region is highest i.e. the dayside magne-
topause (Phase 1) and the magnetotail (Phase 2). The apogee increases accordingly,
in particular it is 12 RE during Phase 1 and it is increased to reach 25 RE during Phase
2 (Figure 4.2). The orbital segment in which the probability to observe the magnetic
reconnection process (the magnetopause boundary and the magnetotail neutral sheet)
are the so-called Regions of Interest (ROI). At the dayside, the ROI is the portion
for which MMS is further than 9 RE from Earth. In the magnetotail, MMS has a
high probability to cross the diffusion region when the distance from Earth ranges
from 15RE and 25 RE . In addition, the nominal region of interest is allowed to shift
almost weekly according to expected magnetospheric conditions in order to optimize
science data collection. As it will be detailed in the following (see Section 4.1), the
highest resolution data are acquired only within the ROI. The portions of the orbit
that are not considered of scientific interest are used for calibration, health/safety,
and maintenance activities.
Phase 2 officially ended on September,1 2017. During the following Phase 3, MMS
orbit has maintained the same apogee and perigee but is has started sampling the day-
side again. For this reason, MMS is also currently acquiring data in the solar wind.
To provide better observations in the solar wind, the apogee has been increased to
29 RE during Phase 4 of the extended mission. The mission phases and their duration
are summarized in Table 4.1.
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Figure 4.3: Ecliptic-plane scheme of MMS orbit (red dashed). The
ROI is the blue orbital segment while the burst segments are in yellow.

The constellation

Throughout the regions of interest the four MMS spacecraft are kept in a tetrahedral
configuration. The inter-spacecraft separation changes depending on the region to
investigate. A lower range (10–160 km) will be used on the dayside (de ∼ 1 km)
while a higher range (30–400 km) will be used on the night side (de ∼ 30 km). The
optimal configuration is a regular tetrahedron with separation appropriate to the
region of interest crossed by the spacecraft. A quality factor QC has been already
defined for the Cluster mission QC = Vact/Vreg, where Vact is the volume of the
actual tetrahedron while Vreg is the volume of the regular tetrahedron with the side
equal to the average of the inter-spacecraft separations of the actual constellation.
Since the spacecraft separation in function of the position along the orbit are also
crucial for MMS measurements, the new quality factor QMMS is defined as QMMS =
QC · Qs where Qs takes into account the inter-spacecraft separation. Details about
Qs definition and computation are given in [Fuselier et al., 2016].

Mission operations and data products

There are two basic instrument science operation modes (slow survey and fast survey)
and three data acquisition rates: slow, fast and burst [Baker et al., 2016]. Within the
regions of interest the fast survey mode is used. The data are acquired in both the
fast and burst rates and they are stored onboard at the highest resolution. The time
resolution of the fast mode data is comparable to that of previous magnetospheric
mission. The data acquired at fast rates are all transmitted to the ground. The same
treatment is not possible for the burst data since their volume exceeds the capability
of the MMS telemetry transmission system.

Even though almost 75 % of the telemetry bandwidth is allocated to burst data,
this allows the transmission of only ∼ 2 % of the totality of the burst data. However,
it is possible to store on board several orbits of data and a portion of data with
the highest scientific interest is transmitted daily. But how are the most scientifically
valuable data selected? The data selection process is partly automated. While MMS is
in the ROI, each instrument automatically scans its measurements and assigns quality
factors to each 10 seconds segment. High quality factors are given to data that show
strong magnetic field variations, large electric field and electron current density, the
presence of ion and electron beams. All these signatures may indicate that magnetic
reconnection is ongoing. Then, the quality factors of the different instruments are
combined to provide a Figure Of Merit (FOM) for the data segment.
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The selection is then checked by a Scientist-in-the-Loop (SITL) that examines the
automatically assigned FOM. The SITL can validate the selection, add or delete data
segments or change their downlink priorities. Furthermore, the SITL fills in a re-
port in which each selection is commented with the physical phenomenon observed in
each selected time segment. The SITL operates following the FOM guidelines which
depends on the mission phase. For example, during Phase 1 (dayside reconnection
being the main scientific goal) the highest FOM (150–199) is supposed to be assigned
to complete high-shear magnetopause crossings (Category 1 data). Partial magne-
topause crossings usually have a lower FOM (100-129, Category 2) but if diffusion
region’s signatures are present they are considered Category 1. Magnetosheath cur-
rent sheets with reconnection signatures and Flux Transfer Events (FTEs) with jets
signatures are Category 1 data as well.

Multiple categories of data are produced and they are characterised by different
levels of refinement and calibration. The level 1 data are raw data at full resolu-
tion; the QuickLook data are scientific data products that are rapidly generated using
simplified processing algorithms. These data provide basic scientific insight but cali-
brations are still provisional at this stage. Their generation occurs after some hours
from the reception. Level 2 are the calibrated version of level 1 data, they have the
same time resolution but Level 2 data have higher scientific value. Level 3 or mission-
level data are produced on an event basis and they have the highest sophistication in
terms of calibration and treatment.

Throughout this Thesis, level 2 burst data will be used. The MMS mission has
an open data system with no proprietary data periods. All data can be found in the
MMS Science Data Center (SDC) (https://lasp.colorado.edu/mms/sdc/public/).

Magnetic field measurement: the FluxGate Magnetometer

The magnetic field measurements are acquired using two triaxial fluxgate magnetome-
ters on each spacecraft. Each magnetometers is mounted on the end of a boom 5 m
long. The difference among the two instruments lies in the electronic unit to which
they are connected. One is connected to the Digital FluxGate (DFG) provided by
the Space Research Institute of the Austrian Academy of Sciences, the other to the
Analog FluxGate (AFG), provided by the University of California, Los Angeles. The
technical details about DFG and AFG can be found in [Russell et al., 2016] and lie
beyond the scope of this Thesis. The FluxGate Magnetometer (FGM) measures the
magnetic field at a sampling frequency of 16 s−1 in survey mode and 128 s−1 in burst
mode. The accuracy of the instrument is ∼ 0.1 nT for the DC field.

Fluxgate sensors are ferromagnetic cores around which are wrapped two coil wind-
ings: the drive winding and the sense winding. When an alternating current is present
in the drive winding an induced current is present in the sense winding. If there is
no external magnetic field, the two currents cancel out. In presence of an external
magnetic field, an offset between the drive current and the sense current is produced
yielding to a net magnetic flux in the sense winding that can be measured as a voltage
using Faraday’s law.

Electric field measurements: the Spin-Plane Double Probe

The Spin-plane Double Probe (SDP) instrument [Lindqvist et al., 2016] measures the
electric field in the spacecraft spin plane. Together with the ADP instrument (see
Section 4.1), SDP measures the 3-D electric field over the frequency range DC–100
kHz. The SDP instrument is the result of the cooperative effort among the University

https://lasp.colorado.edu/mms/sdc/public/
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of New Hampshire, the Royal Institute of Technology (KTH), Swedish Institute of
Space Physics (IRFU), the University of Oulu, and the Laboratory for Atmospheric
and Space Physics (LASP) of the University of Colorado. The electric field along
two perpendicular directions is computed from the difference of potential between
two spherical titanium-nitride electrodes, each of diameter 8 cm at the end of wire
booms with a length of 60 m, as represented in Figure 4.4. The potential difference
between two opposed probes yields a measurement of the electric field in the direction
along the axis defined by the two probes and the boom. Since two pairs of probes are
present, two orthogonal components of the electric field in the plane of the spacecraft
spin are measured. In general, a larger distance between the probes results in a larger
potential difference, which is easier to measure. Furthermore, a longer boom allows for
a smaller error in the electric field measurement since it permits to partially overcome
the effects of the Debye shielding as well as the effects of the photoelectrons.

One of the main issues concerning electric field measurements is that a conductive
sphere into a sunlit plasma does not sit at the same potential as the ambient plasma.
This is due to the interaction among the probe, the photons coming from the Sun that
cause photoelectron emission and the ions and electrons which compose the plasma.
The production of photoelectrons leads the sphere to be charged positively while
the colliding particles determine a negative or positive charge. These effects can be
summarized as

Ie + Ii + Iph = 0 (4.1)

where Ie is the current of electrons coming to the probe (Ie < 0), Ii is the current of
ion coming to the probe (Ii > 0) and Iph is the current of photoelectron escaping from
the probe (Iph > 0). Usually this reduces to Ie + Iph = 0 since the ion contribution
is negligible, especially in the sunlight and in the low-density magnetosphere. The
relation Ie + Iph = 0 provides the probe potential which can be many volts positive
in a low-density plasma.

In order to have a probe potential which is closer to zero, a negative bias current
Ib is added. In this way, the potential measurement is less sensitive to fluctuations
in the plasma electron current. The nominal value range of the bias current in the
sunlight is [-200, -100] nA while Ib is set to zero during eclipse. The value of the
bias current is mainly determined by the photocurrent, which depends on the solar
photons flux as well as on the properties of emission of the probe surfaces. For this
reason, the bias current is changed along the mission depending on the solar photons
flux.

The SDP instrument runs in several modes. The sampling frequencies are 8 Hz in
slow survey mode, 32 Hz in fast survey mode, and 1024, 8192, or 65536 Hz in burst
mode. After reception on the ground, SDP data are combined with ADP data to
provide the full electric field vector.

Electric field measurements: the Axial Double Probe

The Axial Double Probe (ADP) instrument [Ergun et al., 2016] measures the electric
field along the spin axis of the spacecraft. Together with the SDP instrument (see Sec-
tion 4.1), ADP measures the 3-D electric field over the frequency range DC–100 kHz.
ADP has been developed in collaboration among the Laboratory for Atmospheric and
Space Physics (LASP) of the University of Colorado, the University of New Hamp-
shire and the Royal Institute of Technology (KTH). The presence of an axial probe
allowing for the measurement of the complete 3D electric field vector is a novel fea-
ture of MMS compared to Cluster, where the axial component is computed using the
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MMS 60 m

Figure 4.4: SDP booms and probes in the x–y plane (spacecraft
coordinates).

relation E ·B = 0. The physical background behind the ADP instrument operation is
analogous to SDP, the electric field is computed from the difference of the potential
between two probes. In this case, the two probes are positioned on top of antennas
directed along the z axis of the spacecraft, namely the spin axis. The antenna lengths
are constrained by mechanical limitations, which include deployment of stiff booms
while preserving spacecraft stability. For this reason, the ADP antennas are smaller
than the SDP ones. Their length is 30 m tip-to-tip. The ADP booms and probes
are designed to have cylindrical symmetry, primarily to eliminate modulation of the
photo-electron current as the spacecraft rotates. The design also optimizes symmetry
between the +z and -z sensors so that opposing sensors experience nearly the same
potential and they have nearly identical photo-electron environments.

The sampling frequencies are the same of SDP.

Particle measurements: the Fast Plasma Investigation

The Fast Plasma Investigation (FPI) instrument [Pollock et al., 2016] provides 3D
phase space distributions of electrons and ions in the energy range [10 eV, 30 keV]
with the unprecedented time resolutions of 30 ms and 150 ms for electrons and ions
respectively. The FPI was collaboratively developed by institutions in Japan, France
and USA with Goddard Space Flight Center (GSFC) as the Lead Co-Investigator
institution.

The FPI consists of eight electron spectrometers and eight ion spectrometers
mounted on each spacecraft. These are organised in pairs of Dual Electron Spectrome-
ter (DES) and Dual Ion Spectrometer (DIS) in back-to-back configuration around the
spacecraft as shown in Figure 4.6. This configuration allows to reach a time resolution
that does not depend on the spacecraft spin, as has been common for magnetospheric
missions (e.g. Cluster).

The DES and DIS composing the FPI instruments are top hat electrostatic ana-
lyzers (ESA). The top hat ESA geometry has been extensively used in the past and
it has been presented by Carlson et al. [2001] within the description of the ion and
electron plasma experiment on the FAST (Fast Auroral Snapshot) satellite. The top
hat ESA is able to select and count the particles with a specific velocity direction and
an energy/charge ε within the interval [ε∗−∆ε, ε∗+ ∆ε]. It usually allows simultane-
ous observations over an angular range of 360◦ but FPI only uses half of the top hat
Field Of View (FOV), namely 180◦. The FOV is divided in 16 pixel with a width of
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Figure 4.5: Schematic description of the Field Of View (FOV) of the
top hat electrostatic analyzers (ESA) used in the FPI instrument.

11.25◦ each (Figure 4.5). We refer to the angular direction describing the FOV as the
polar angle θ, it corresponds to the angle opening from the spacecraft z-axis. Another
angular direction – used in the following – is φ, the azimuth angle which is defined in
the spacecraft plane x–y and opens from the spacecraft +x axis with a positive right
hand rotation about the spacecraft +z axis (0◦ < φ < 360◦).

For each DES (and DIS) the two undeflected FOV are separated by 45◦ along
φ (see Figure 4.6). Then, in order to reach a full sky view, a FOV deflection with
a maximum angle of ±16.875◦ along φ is implemented. This is accomplished by
applying positive voltage to curved electrodes located just inside of the sensor entrance
apertures. The azimuth coverage is shown in Figure 4.6. More details about the design
and functioning of FPI and DES/DIS can be found in [Pollock et al., 2016].

The particles that are passed by the ESA are then detected with Micro Channel
Plates (MCP) which amplify each incoming electron or ion into a pulse of outgoing
electrons. The number of particles per pulse is characterized with a histogram. The
fundamental data products are the so-called skymaps that contain the raw counts
from DES and DIS. These are count rate arrays (32ε× 32φ× 16θ) accumulated every
30 ms for DES and 150 ms for DIS. The final product is a distribution function in
the coordinates (ε, φ, θ, t) for ions and electrons. Finally, the distribution function is
properly integrated in order to obtain the momenta.

The fact that the sensors are distributed all around the spacecraft allows to have
a full azimuthal sampling without depending on the spin of the spacecraft leading
to the unprecedented time resolution of the FPI instrument. On the other hand,
an unavoidable consequence of this approach is that the 3D phase space density for
either species must be gathered together from the measurements of eight different
spectrometers. This represents a complex challenge in terms of inter-calibration that
has been handled both during the development of the instrument and during the
mission phases [Pollock et al., 2016].
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Figure 4.6: Azimuth coverage of the the eight DES (or DIS). The
DES (or DIS) locations are indicated with the numbers from 1 to 8
on the spacecraft. Each spectrometer exercises four deflected fields of

view with a maximum deflection of ∼ 17◦.

4.2 Data analysis techniques

This Section summarizes the techniques that are used to perform the MMS data
analysis reported in Chapter 7. One of the main problems to overcome when analysing
spacecraft measurements is the definition of a proper coordinate frame. Indeed, it is
desirable to analysed the examined structures – such as current sheets or flux ropes –
in their proper co-moving frame. There are several methods that have been developed
in order to determine the coordinate system relative to the structure to analyse. Other
information that are needed are the estimation of the velocity of the structure, of its
characteristic dimension and dimensionality (1D, 2D or 3D structure). The methods
providing such information can be single or multi spacecraft. In this Section I describe
a single spacecraft method (the Minimum Variance Analysis [Sonnerup and Scheible,
1998]) and two multi-spacecraft methods (the Minimum Directional Derivative (or
Difference) analysis [Shi et al., 2005] and the timing analysis [Paschmann and Daly,
1998]).

Since the data analysis presented in Chapter 7 is focused on the diffusion region
at the magnetopause, the structure that is going to be crossed by the spacecraft is
the magnetopause current sheet. Hence, the Minimum Variance Analysis and the
Minimum Directional Derivative are applied to the magnetic field in order to provide
the direction normal to the boundary; the timing analysis is applied to the magnetic
field in order to estimate the direction normal to the boundary and the boundary
velocity along that direction.

After that, the computation of spatial gradients by means of measurement in four
points in space are discussed. The determination of all three components of a spatial
gradient requires at least four spacecraft in a tetrahedral constellation. In particular,
the curlometer method is presented. The curlometer is a multi-spacecraft technique
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which provides an estimation of the current density averaged over the spacecraft tetra-
hedron. It represents a fundamental tool for the current density estimation when the
particle data have a much smaller time resolution compared to the magnetic field
data (e.g. for Cluster mission). With MMS data, the current density can be com-
puted using the particle data directly. However, the comparison between the current
density computed with the curlometer and the particles current density is still useful
to identify small scales structures. The curlometer is designed to give an estimation
of the curl of the magnetic field but it provides as well the gradient of the considered
quantity.

The last part of the Section is devoted to the description of two methods provid-
ing information about the magnetic field topology around the spacecraft tetrahedron:
the Poincaré method [Greene, 1992] and the First-Order Taylor Expansion (FOTE)
method [Fu et al., 2015]. We will focus in particular on the latter one. These two
methods allow to identify the position of a magnetic null, a location where the mag-
netic field magnitude vanishes. Since many scenarios of magnetic reconnection are
attributed to the magnetic nulls, knowing the magnetic field topology in proximity of
the reconnection site is useful to investigate the structure of the diffusion region and
to understand the particle dynamics.

4.2.1 Single spacecraft methods

Minimum Variance Analysis

The Minimum Variance Analysis (MVA) allows to determine the normal direction to
a transition layer (in our case, a current sheet) in the hypothesis of a one dimensional,
stationary layer which crosses the spacecraft. In principle, magnetic field time series
from a single spacecraft is sufficient to obtain the normal direction to the layer n. On
the other hand, if more than one spacecraft measure the transition across the layer we
can check the consistency of the results issued from the different probes. In addition,
we can have information about the stationarity of the layer. The main assumptions
imposed by this method are the one-dimensionality and the stationarity of the layer
during the crossing. If these hypothesis were strictly fulfilled, the magnetic field along
n would be constant. Since this is hardly obtained in observations, n is computed by
minimizing the following expression

σ2 =
1

M

m=1∑
M

|(Bm − 〈B〉) · n|2 (4.2)

where Bm is the mth element of the magnetic field time series composed of M
measurements while 〈B〉 is the average value. The minimization of σ2 is done with
the constraint |n2| = 1,

∂

∂j
(σ2 − λ(n2 − 1)) = 0 (4.3)

where j = x, y, z and λ is the Lagrangian multiplier. After calculations, the
problem reduces to an eigenvalue problem

Mn = λn where Mij = 〈BiBj〉 − 〈Bi〉〈Bj〉 (4.4)

where i, j = x, y, z.
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To solve the problem, we have to find the eigenvalues λ1, λ2, λ3 and the correspond-
ing eigenvectors v1,v2,v3 of the matrixM. SinceM is symmetric all the eigenvalues
are real. In the following, the relation λ3 < λ2 < λ1 holds, so that λ2 is always the
intermediate eigenvalue.

The eigenvector v3, corresponding to the smallest eigenvalue λ3, is used as the
estimator for the normal to the layer n since λ3 itself represents the variance of the
magnetic field along the normal direction (minimum variance). Indeed, the diagonal
elements ofM areMii = 〈B2

i 〉 − 〈Bi〉2 which is the definition of the variance of the
component i = x, y, z of the magnetic field. All eigenvalues are therefore non-negative
as expected. Accordingly, the eigenvectors v1, v2 correspond to maximum and inter-
mediate variance and they are tangential to the transition layer. The orthogonal set
(v1,v2,v3) provides a suitable set for the local coordinate system describing the layer
(e.g. the current sheet).

If λ3 � λ2 � λ1 we are able to easily identify a direction of maximal, intermediate
and minimal variance and the matrixM is said to be non-degenerate. The matrix is
said to be degenerated when two of the eigenvalues are of the same order. If λ3 � λ2 '
λ1 it is still possible to identify the minimum variance direction while if λ3 ' λ2 � λ1

we can only infer that the eigenvector corresponding to λ1 is tangential to the current
sheet. Lastly, if λ3 ' λ2 ' λ1 we have no information about the orientation of the
current sheet. Empirically, for a relatively small set of data (M < 50), the normal
direction is considered to be well defined for λ2

λ3
> 10.

Nested Minimum Variance Analysis

The Nested Minimum Variance Analysis allows to check the result obtained with
MVA by validating the stationarity of the normal direction. In addition, this method
allows to individuate the optimal time interval to perform the MVA. During a nested
analysis, a set of concentric segment of data are centered in the event (e.g. at the
center of a current sheet). The first interval that we consider is the shortest one and it
idealistically contains only three measurement points: one on one side of the layer, one
on the opposite side and one point in the middle. The MVA is applied to this interval.
Then, in the following steps, the time segment is enlarged by adding a measure on each
side, and the MVA is applied again. For an ideal current sheet, at each step the normal
direction is the same and the process could in principle continue indefinitely and it
will always provide the same result. In reality, a group of the shortest and longest
segments often gives results that are significantly different from those obtained for
"medium" segments. For the shortest segments, these differences can be caused by
low scale structures that the current layer may present. For the longest segments, this
is normally due to the presence of magnetic structures, different from the event we
are focusing on, that begin to be included in the considered time interval.

Within the intermediate range, the normal direction should be the same, or nearly
the same, regardless of segment duration. If this is not the case, the layer stationarity
hypothesis is probably not satisfied.

Solar wind – magnetosphere data propagation

Solar wind measurements are usually taken at large distances away from Earth, for ex-
ample by the Advanced Composition Explorer (ACE) spacecraft or the WIND space-
craft. In order to be representative for the Earth’s upstream magnetopause, the ACE
or WIND measurements have to be time shifted. Several methods have been devel-
oped to provide an estimation of the propagation delay [Mailyan et al., 2008]. The
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simplest model is the so-called flat delay model. It assumes that structures in the
solar wind moves with constant convective motion along the Sun-Earth line (x-axis of
the GSE coordinate system). The estimated time delay is

τ =
∆x

VSW,x

where ∆x is the distance between the starting point in the solar wind and the target
point in the upstream magnetopause and VSW,x is the x component of the solar wind
velocity. Indeed, the solar wind velocity is usually mainly aligned with the Sun-Earth
line VSW ≈ VSW,x.

As a reference, the typical time shift to the Earth from ACE is of the order of
one hour, depending on the solar wind speed. More sophisticated methods have been
developed [Mailyan et al., 2008, and references therein] but the flat delay model is
adopted in Chapter 7 since (i) the only need is to establish whether the IMF is directed
southward or northward during the interval of interest for the Electron Diffusion
Region analysis; (ii) it has been shown that statistically there is little difference among
delays computed with different methods [Mailyan et al., 2008, Case and Wild, 2012].
Indeed, the flat propagation model provides a delay estimation in agreement with
methods of higher sophistication. However, it suffers from larger uncertainties.

4.2.2 Multi-spacecraft methods

The presence of a constellation of spacecraft can provide a consistency check for sin-
gle spacecraft results and gives also the possibility to have a deeper insight in the
spacecraft data.

As for single spacecraft techniques, also in the case of multi-spacecraft analysis
some general assumptions are made. Some of them as been already pointed out in
the previous Sections but they are summarized here for clarity. The first assumptions
are the planarity and the stationarity of the boundary that crosses the spacecraft
tetrahedron. Stationarity can be verified by means of a nested analysis (see Section
4.2.1) or using the timing method. As a third assumption, the boundary is generally
consider as moving with constant velocity. Another important hypothesis is about
the characteristic scale: it is assumed that the characteristic scale of the observed
structure is larger than the spacecraft inter-separation.

In some cases, when applying MVA on different spacecraft, non-colinear normal
directions are obtained. This usually results from the combined effect of non-constant
motion and curvature of the layer.

Spatial gradients estimation

In order to compute the spatial gradients of a quantity B(r) we use the linear inter-
polation of B(r) between the discrete values Bα, α = 1, . . . , 4 which are measured at
each vertex of the tetrahedron, located at rα. A linear interpolation of the quantity
B(r), L(B(r)) can be written as

L(B(r)) =
4∑

α=1

Bαµα(r) (4.5)

where µα = να + kα · r. Under the constraint µα(rβ) = δαβ we obtain µα = 1 + kα ·
(r− rα) and

kα · (rβ − rγ) = δαβ − δαγ . (4.6)
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This implies that the direction of kα is normal to the face of the tetrahedron opposite
to its corresponding vertex Sα. Hence, we can write kα as

kα =
rβγ × rβδ

rβα · (rβγ × rβδ)
(4.7)

where α, β, γ, δ = 1 . . . 4 and rαβ = rα − rβ . The other vectors are obtained through
cyclic permutation of the indices. The vectors kα are the reciprocal vectors. They are
proportional to the area of the face of the tetrahedron opposite to their corresponding
vertex Sα and inversely proportional to the volume of the tetrahedron.

Now, if G[B](r) is the tensor of rank two describing the gradient of a vector field
B(r) and G[u](r) is the vector describing the gradient of a scalar u(r), we have

kα = G[µα] (4.8)

In order to compute the gradient of a linearized vector field B(r) we combine Eq.4.5
and Eq.4.8 and we use that the linear interpolation operator L is a linear operator
(G[L(u)] = L(G[u]) and G[L(B)] = L(G[B])). We obtain

Gij [L(Bi(r))] = Gij

(
4∑

α=1

Bi,αµα(r)

)
=

4∑
α=1

Bi,αkα. (4.9)

Hence, the linear estimators of the divergence and the curl of the field B are

L(∇ ·B(r)) =

4∑
α=1

kα ·Bα and L(∇×B(r)) =

4∑
α=1

kα ×Bα (4.10)

The divergence and the curl of the field B are a combination of the diagonal element
and out-of-diagonal element of G[L(B(r))] respectively.

Magnetic field curvature computation The gradient estimation based on
the reciprocal vectors can be used to compute the magnetic tension and the magnetic
curvature starting from the gradient matrix of the magnetic field ∇B. The magnetic
tension T = B · ∇B can be written as

T = B · ∇B = B2 b · ∇b + b(B · ∇B) = T⊥ + T|| (4.11)

where b = B/|B|. The term T⊥ is proportional to the magnetic field curvature.

Current density estimation: the Curlometer technique

The Curlometer is a multi-spacecraft technique that combines measurements at the
four vertexes of the tetrahedron and provides the estimation of the current density j by
means of Ampère law ∇×B = µ0j [Dunlop et al., 2002, Paschmann and Daly, 1998].
The displacement current is neglected since non relativistic plasma are considered. In
order to apply this method, all the hypothesis listed at the beginning of the Section
are supposed to hold. Hence, the magnetic field is supposed to vary linearly within the
tetrahedron volume and, as a result, the current density has to be constant there. The
current density can be computed using the barycentric coordinates method described
in Section 4.2.2 which allows to extract estimates of ∇×B and ∇·B. In this Section,
however, we report the approach that has been presented in [Dunlop et al., 2002].
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Figure 4.7: Schematic representation of the current densities com-
puted with the Curlometer method.

The integral definition of ∇×B is given by Stokes theorem∫
Σ
j · ds =

1

µ0

∮
∂Σ

B · dl (4.12)

from which an estimation of the current density averaged over the tetrahedron jav can
be obtained

jβγα,av · (rβα × rγα) =
1

µ0
(Bβα · rγα −Bγα · rβα) (4.13)

where rβα = rβ − rα, Bβα = Bβ − Bα and α, β, γ = 1 . . . 4 and correspond to
the four vertexes of the tetrahedron. In Eq.(4.13) the spacecraft at location α is
used as reference but we can apply the same formula to three independent faces of
the tetrahedron cycling the indexes α, β, γ. In the end, we obtain the expressions for
three components of the current density jβγα,av along three directions, each direction is
perpendicular to a tetrahedron face. Note that the fourth face, not involving spacecraft
α, represents a redundant estimate but it can be used for consistency check. Since the
vector defining the face is known by rβα and rγα the currents normal to three faces
can easily be projected into a Cartesian coordinate system.

Uncertainty estimation of the Curlometer technique A standard way to
establish the measurement performance of the Curlometer technique over a set of data
is to estimate ∇ · B. Since the magnetic field is solenoidal field, ∇ · B 6= 0 implies
the presence on non-negligible nonlinear contribution to B that are not taken into
account by the Curlometer. The divergence of the magnetic field can be computed as
follows

〈∇ ·B〉av|rβα · (rγα × rδα)| =

∣∣∣∣∣∣
∑
cyclic

Bβα · (rγα × rδα)

∣∣∣∣∣∣ (4.14)

where 〈∇ ·B〉av is the differential estimate of ∇ ·B for the tetrahedron.
Usually, when 〈∇ · B〉av/|jav| � 1 we conclude that the estimation of j is good.
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More than providing a quantitative value to the uncertainty of the current density, the
field divergence acts as an estimator and it can only indicate whether the estimated
current is not reliable. Other sources of error, beyond the non-linearity of the magnetic
field, are the current density relative measurement error δj/|jav| due to uncertainties
of the magnetic field and spacecraft positions and the geometrical error which takes
into account the sensitivity to the spacecraft formation. Timing errors are usually
relatively unimportant.

Timing method

A planar discontinuity is assumed to move with a constant velocity VCS along the
direction normal to the discontinuity n. Each spacecraft encounters the layer at a
different time tα. The spacecraft locations are indicated with rα where α = 1 . . . 4
for MMS (or Cluster). For convenience, and without loss of generality, we choose the
origin of our coordinate system to be the barycentre of the spacecraft constellation,
so that

∑
α rα = 0.

Since we assumed a uniform motion we can write

(rα − r4) · n = VCS(tα − t4) (4.15)

where spacecraft 4 has been arbitrary chosen as the reference and α = 1, 2, 3. We
define m = n/VCS . Then, the linear system to be solved isr1 − r4

r2 − r4

r3 − r4

m =

t1 − t4t2 − t4
t3 − t4
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Figure 4.8: Schematic representation of MMS tetrahedron encoun-
tering a planar discontinuity moving with a constant velocity VCS .

In order to solve this system the matrix containing the positions has to be non-
singular. This condition is satisfied if and only if the four spacecraft are not co-planar.
To determine the normal direction we minimize the quantity S:

S =
4∑

α=1

4∑
β=1

[(rα − rβ) ·m− (tα − tβ)]2. (4.16)
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Taking into account
∑

α rα = 0 and defining t0 = 1
4

∑
α tα, S becomes

S =
4∑

α=1

[rα ·m− (tα − t0)]2. (4.17)

Therefore, we minimize S by putting ∂S/∂mk = 0 and we obtain

4∑
α=1

[rα,jmj − (tα − t0)]rα,k = 0. (4.18)

Hence,

mjRjk =
1

4

4∑
α=1

tαrα,k where Rjk =
1

4

4∑
α=1

rα,jrα,k. (4.19)

The tensor Rjk has to be inverted to determine m. The inverse tensor (Rjk)−1 can
be written as

(Rjk)−1 = 4

(
4∑

α=1

rα,jrα,k

)−1

= 4
4∑

α=1

kα,jkα,k (4.20)

where kα are the reciprocal vectors of the tetrahedron (see Section 4.2.2). After
calculations, we find that the soughtm vector can be written in terms of the reciprocal
vectors

m =
∑
α

tαkα (4.21)

In this Section, I followed the unconstrained homogeneous least squares method
[Paschmann and Daly, 1998, Chapter 12, pp. 307-322] to provide an expression form,
as well as for VCS = 1/|m| and n = m/|m|. However, this method is equivalent to the
linear barycentric method described in [Paschmann and Daly, 1998, Chapter 14, pp.
349-369; Chapter 15, pp. 371-393]. The equivalence is demonstrated in [Paschmann
and Daly, 1998, Chapter 15, pp. 372-373].

Crossing times estimation The accuracy of the results produced by timing
methods depends critically on the determination of the times tα corresponding to the
center of the crossing of each spacecraft. The approach that has been used throughout
this Thesis is to determine the time lag between the spacecraft traversals of the dis-
continuity by cross correlation of corresponding time series. An alternative approach,
used e.g. by Haaland et al. [2004] is to fit a hyperbolic tangent curve to the time se-
ries of the measured magnetic field component along the maximum variance direction
obtained with MVA by a least-squares procedure and then to use the center time and
the duration of the fitted curve.

Minimum Directional Derivative (or Difference, MDD) method

A multi spacecraft method that allows to compute a coordinate frame local to a
discontinuity is the Minimum Directional Derivative (or Difference, MDD) method
[Shi et al., 2005]. It is also able to provide information about the dimensionality of the
structure. The MDD technique is based on the analysis of the matrix L = (∇B)(∇B)T

which gives the maximum, intermediate and minimum eigenvalues λ1, λ2, λ3 and the
associated eigenvectors v1,v2,v3. It can be demonstrated that the three eigenvalues
represent the maximum, intermediate and minimum values of (n · ∇B)2 (n is the
direction normal to the boundary). Hence, the three eigenvalues can be used as
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indicators of the dimensionality of the structure, since they identify directions along
which (n · ∇B)2 has its minimum, intermediate and maximum value.

The main difference between the MVA and the MDD method is that with the
MDD method the local frame is computed at every point of the time series allowing
to estimate the temporal variation of the directions. Furthermore, the MDD method
can directly determine the invariant axis for a quasi-2D structure and find the normal
direction to a quasi-1D structure, as demonstrated using Cluster observations and
simulations [Shi et al., 2005].

In particular, if λ1 ' λ2 ' λ3 we can infer that the analyzed structure is a 3D
structure. If λ1, λ2 � λ3 we are observing a quasi-2D structure with the invariant
direction along v3. Finally, if λ1 � λ2, λ3 the structure is quasi-1D and the invariant
plane is defined by the directions (v2,v3).

Magnetic field topology analysis: the Poincaré and the FOTE method

In this Section I describe an analytic method that allows to find magnetic nulls using
magnetic field measurements from the four MMS spacecraft. A standard method to
look for magnetic nulls is the Poincaré Index (PI) method [Greene, 1992]. The PI
method assumes odd value when an odd number of magnetic nulls in enclosed in the
considered volume (the tetrahedron volume in our case) and an even value when an
even number of null points is enclosed. Since the length of the tetrahedron side is
usually small compared to the analyzed structures, it is extremely unlikely than more
than one null is enclosed inside the volume defined by the spacecraft constellation.
Therefore, PI assumes either the value 1 (a null is found), either the value 0 (no null
is present). The PI method has been extensively applied to Cluster data [Eriksson et
al., 2015].

A second method to identify a magnetic null is the First Order Taylor Expansion
(FOTE) method [Fu et al., 2015], [Fu et al., 2016]. The FOTE method is able to
find a null even if it is located outside the spacecraft tetrahedron. This is particularly
suitable for MMS data since the minimum spacecraft separation is 10 times smaller
than the minimum separation of Cluster tetrahedron. For this reason, the FOTE
method is applied to MMS data in Chapter 7. Indeed, since the inter-spacecraft
separation is really small in that case (∼ 6km), the magnetic null is located outside
the tetrahedron. Hence, the PI method would not find a null.

The FOTE method lays on the hypothesis that the magnetic field can be linearized
near the position of the null:

B ≈ B(rnull) +∇B · (r− rnull). (4.22)

Then, since B(rnull) ≈ 0, B ≈ ∇B · (r− rnull) and dr = r− rnull may be derived as
follows

dr ≈ (∇B)−1B. (4.23)

It is worth to note that in this way a null is always found. Depending on the case
of study, a threshold on dr has to be imposed in order to eliminate the non-physical
nulls. [Fu et al., 2015] suggest not to trust nulls that are more than 1 di away from
the spacecraft. [Fu et al., 2015] show that the FOTE method reproduces the results
of the PI method. In other words, once a proper threshold is imposed, the results
from the two methods agree. Since the case study discussed in Chapter 7 involves
electron rather than ion scales, the threshold is strengthened and a null is considered
as physically meaningful only if the null-spacecraft distance is < 1

4 di.



Chapter 4. Methods of spacecraft data analysis 49

Figure 4.9: Schematic representation of a A-type radial magnetic
null (left) and of a As-type spiral magnetic null (right).

In principle, the FOTE method is also able to identify the null type which is
imposed by the characteristics of the matrix (∇B)−1 [Greene, 1988], [Parnell et al.,
1996]. In particular, as demonstrated in [Parnell et al., 1996], each field line r(k) may
be written in terms of the eigenvalues λ1, λ2, λ3 and eigenvectors x1, x2, x3 of the
matrix (∇B)−1:

r(k) = A exp (λ1k)x1 +B exp (λ2k)x2 + C exp (λ3k)x3 (4.24)

where k is an arbitrary parameter and A, B and C are constant along a field line.
Note that the constraint ∇ ·B = 0 implies that the trace of (∇B)−1 has to be zero.

Hence, if all the eigenvalues of (∇B)−1 are real, there is one of opposite sign to
the other two. If we take λ1 < 0, λ2 < 0 and λ3 > 0 it implies that for k → +∞

r(k) = C exp (λ3k)x3 (4.25)

while for k → −∞

r(k) = A exp (λ1k)x1 +B exp (λ2k)x2. (4.26)

Hence, the field lines directed towards the null lie in the plane defined by the span
of (x1,x2) while the field lines are directed away from the null along x3 . The (x1,x2)
plane is usually called the fan and the x3 direction is the spine of the null (Figure
4.9(left)). A null as the one shown in Figure 4.9(left) is called a A-type null (or A
radial null), while a null with λ1 > 0, λ2 > 0 and λ3 < 0 is a B-type null.

Another configuration presents two complex and one real eigenvalues. To preserve
the solenoidality of the magnetic field, the eigenvalues will be of the type λ1 = α+ iβ,
λ2 = α− iβ, λ3 = −2α. In this case, field lines in the fan plane (x1,x2) will be spirals
while the spine lies in the direction of the eigenvector x3. If α is positive, the null
type is As (A spiral, Figure 4.9(right)), if α < 0 the null type is Bs.

These nulls have a 3D structure that can degenerate in a 2D structure in some
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conditions. In particular, an A or B type null with an eigenvalue which is zero de-
generates to an X type null; an As or Bs type null degenerates to an O type null.
Observational data do not provide eigenvalues that are exactly zero. Hence, a null
can be considered as 2D when e.g. λ1 � λ2, λ3 (A and B type) and α � β (As and
Bs type).

As an example, the "empirical" criteria provided in [Fu et al., 2015] to establish
whether a null can be considered as 2D is reported. In particular, an A or B type null
can be simplified to an X type if min(|λ|) < 1

4 max(|λ|) and an As or Bs type null can
be considered as an O type 2D null if min(|<(λ)|) < 1

4 max(|=(λ)|). These thresholds
need to be adapted to the specific case.

It is not straightforward to associate an uncertainty to the results obtained with
the FOTE method. As mentioned above, the first fundamental hypothesis is that
the magnetic field changes linearly in the region crossed by the spacecraft. Usually,
it is reasonable to suppose that this is the case when the region is relatively small
compared to observed structure. For this reason, as mention above, a "distance of
validity" (from the spacecraft) is introduced (∼ 1di or less). Furthermore, Fu et
al. [2015] proposes two quantities to estimate the uncertainty of the method. Since
∇·B = λ1+λ2+λ3 = 0, η = |∇·B|/|∇×B| (already used for the curlometer technique
[Dunlop et al., 2002]) and ξ = |λ1 + λ2 + λ3|/|λ|max can give an estimation of the
error. The two quantities follow the same trend but ξ results to be more sensitive to
changes in the (∇B)−1 matrix.

Furthermore, Eriksson et al. [2015] presented a method to estimate the reliability
of the null type identification by comparing the observed local fluctuations of the mag-
netic field for the particular analysed event with the minimum theoretical disturbances
required to alter the null type. A null type can be altered so that it changes type
between a A-type null and a B-type or between a spiral and a radial null. Eriksson
et al. [2015] performed a statistical study in the Earth’s magnetotail and found that
relatively small fluctuations in the magnetic field are sufficient to alter the null type.
However, for at least 70% of the magnetic nulls in the data set used by Eriksson et
al. [2015] the type identification is reliable.
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Chapter 5

Numerical models for astrophysical
plasmas
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This Chapter is meant to briefly present the different numerical models that are
commonly used to study astrophysical plasmas. Section 5.1 recalls the kinetic descrip-
tion of a plasma eventually deriving the Vlasov equation which describes the evolution
of the distribution function in the collisionless limit. Section 5.2 discusses the different
approaches that can be used to model plasma processes. The fluid (Magneto-Hydro-
Dynamics, MHD) model is detailed and the role of the Hall term of Ohm’s law in
promoting fast reconnection is discussed in Section 5.2.1. Then, the hybrid model is
discussed (Section 5.2.2), focusing in particular on the hybrid-Vlasov-Maxwell (HVM)
model presented in Valentini et al. [2007]. This code is especially significant in the
frame of this Thesis since the fully kinetic Vlasov-Darwin code (the ViDA code) that
will be extensively described in Chapter 8 has been developed starting from this hy-
brid code. The last part of the Chapter, Section 5.2.3, is devoted to kinetic codes.
A brief description of Particle-In-Cell (PIC) codes is followed by a subsection about
the state of the art of full-kinetic Vlasov codes aiming to provide the context for the
ViDA code presented in Chapter 8.

5.1 Kinetic description

The most complete description of a plasma would include the knowledge of the position
and momentum for each particle of the plasma at each time. Since the number of
particles of the plasma is too large to allow for a single particle description, a statistical
approach is usually used. The statistical description is theoretically achieved through
the distribution function FN

FN (r1 . . . rN ,v1 . . .vN , t) (5.1)

where N is the number of particles and FN is the density of probability that the
system is found in a point of the 6N -dimensional phase space at time t. Usually,∫
FN dr1dv1 . . . drNdvN = 1 is imposed. The evolution of FN can be obtained with
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the following hypothesis: the total number of particles in the system is constant,
particles of the same species are not distinguishable and the dynamics of the particle
is Hamiltonian. The first hypothesis leads to a continuity equation for FN . Note that
in this way the ionization process is not taken into account. Indeed, ionization is
usually negligible in the conditions that we are going to analyse.
The third hypothesis is equivalent to say that the Hamiltonian dynamics preserves
the volumes in the phase space (Liouville’s theorem). With these two premises we
obtain that the equation describing the evolution of the distribution function FN is

dFN
dt

=
∂FN
∂t

+
∑

i=1...N

(
vi ·

∂FN
∂ri

+ ai ·
∂FN
∂vi

)
= 0 (5.2)

where ai contains both the acceleration due to interactions with other particles and
the one due to external fields.

It is worth to clarify that Eq.(5.1) and (5.2) are written for a single species in the
plasma. If the plasma is composed by electrons and protons there will be two FN,α,
α = e, p and the total phase space will be given by the cartesian product of the phase
space of the single species with a number of particle Nα. The dimension of the total
system will be 6N = 6Ne × 6Np. Then, in order to know the evolution of the whole
system, Eq.(5.2) needs to be solved for each species. In the following, in order to keep
the notation as simple as possible, a single FN will be considered.

Now, the microscopic density of particles in a point of the 6N dimensional phase
space ( i.e. the number of particle that are located at (r, r + dr) with velocity (v,
v + dv) divided by the volume drdv) is given by

nmicro(r,v) =
∑

i=1...N

δ(r− ri(t))δ(v − vi(t)). (5.3)

The macroscopic quantities corresponds to the statistical average of the corre-
sponding microscopic quantities and they are weighted with the density of probability
FN . Hence, the macroscopic density of particles in the phase space is

nmacro(r,v) = n(r,v) =

∫
nmicro(r,v) FN (r1 . . . rN ,v1 . . .vN , t) drdv = (5.4)∫ ∑

i=1...N

δ(r− ri(t))δ(v − vi(t)) FN (r1 . . . rN ,v1 . . .vN , t) drdv. (5.5)

Since the particles are indistinguishable we have

n(r,v) = N

∫
δ(r− r1(t))δ(v − v1(t)) dr1dv1

∫
FN dr2dv2 . . . drNdvN (5.6)

and then

n(r,v) = N

∫
FN (r . . . rN ,v . . .vN , t) dr2dv2 . . . drNdvN . (5.7)

The integral in Eq.(5.7) (for fixed t) depends upon r and v only and it corresponds
to the single particle distribution function f1(r,v)

f1(r,v, t) = V

∫
FN (r . . . rN ,v . . .vN , t) dr2dv2 . . . drNdvN (5.8)

so that
∫
f1(r,v, t) drdv = V . The single particle distribution function f1(r,v, t)
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allow to progress in the kinetic description of the plasma since it is more manageable
than FN which still depends upon the coordinates of N particles in the phase space.

The evolution of f1 is obtained via the integration of Eq.(5.2). When performing
the integration, we need to consider that FN (ri = ±∞) = 0 (which corresponds to say
that there are no particles at ±∞) and that in a Hamiltonian system the acceleration
does not depends upon the corresponding velocity component. This is the case, for
example, of the Lorentz force F = ev ×B. In the end, we obtain

∂f1

∂t
+ v · ∂f1

∂r
+ aext · ∂f1

∂v
=

N

m1V

∫
∂φ(r, r2)

∂r

∂f2

∂v
dr2dv2 (5.9)

where aext is the acceleration due to external fields (e.g. gravitational, electromagnetic
field . . . ) while ∂rφ(r, r2)/m1 is the acceleration due to the interaction with another
particles and that depends on the coordinates of both involved particles.

The two particle distribution function f2(ra, rb,va,vb) is the joint probability of
having a particle in the phase-space point (ra,va) and another in (rb,vb). In a general
way, it can be written as

f2(ra, rb,va,vb) = f1(ra,va)f1(rb,vb)[1 + g2(ra, rb,va,vb)] = (5.10)
= f1(ra,va)f1(rb,vb) +G2(ra, rb,va,vb) (5.11)

where g2 represents the correlation of the two distribution functions. If g2 = 0 (or
equivalently G2 = 0) the two particles are statistically independent. Using Eq.(5.11),
we can rewrite Eq.(5.9) as

∂f1

∂t
+ v · ∂f1

∂r
+ (aext + amean) · ∂f1

∂v
=

N

m1V

∫
∂φ(r, r2)

∂r

∂G2

∂v
dr2dv2 (5.12)

where amean is themean field acceleration due to the presence of the plasma. Eq.(5.12)
is the well known Boltzmann equation and the right hand side is the so-called colli-
sional term.

If the collisional term can be neglected, the plasma is non-collisional and the equa-
tion that describes the evolution of the distribution function is the Vlasov equation

∂f1

∂t
+ v · ∂f1

∂r
+ (aext + amean) · ∂f1

∂v
= 0. (5.13)

In general, a plasma can be considered as collisionless if the mean free path λ is
much larger than the characteristic scale of the system L and, analogously, the collision
frequency νcoll is much smaller than the characteristic frequency of the system T−1

and the other frequencies involved in the dynamics (e.g. the cyclotron frequency Ωc

or the plasma frequency ωp of each species). In this context, collisionless means that
Coulomb interactions between two particles do not significantly alter the dynamics
of the charged particles compared to the effect of the electromagnetic fields that are
collectively generated. This is often the case in astrophysical plasmas since they are
sufficiently dilute and warm.

The Vlasov equation can be interpreted in a intuitive way. The number of particles
within a volume in the phase space drdv changes when particles moving with a certain
velocity change their location in space and particles that undergo the action of a force
change their position in the velocity space. The force are composed by external forces
and the forces given by the mean field, as mentioned above. Note that the number of
particle in a volume can be also change via ionization/recombination processes. How-
ever, also these processes are negligible in the collisionless and fully ionized plasmas
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which are discussed in this Thesis. Within this context, the Vlasov equation for each
particle species, self-consistently coupled to Maxwell equations, provides a complete
description of the system dynamics.

5.2 Numerical models for astrophysical plasmas

It is extremely hard to deal with the Vlasov-Maxwell system of equations analytically,
even when we want to solve a simplified problem. For this reason, simulations are
presently the most used resource for modeling collisionless plasma.

However, when we want to simulate a collisionless plasma – and we have realistic
computational resources at our disposal – we need to perform some approximations.
Indeed, it is not possible to follow the dynamics of every particle that composes
the system that we want to model. For this reason, a number of approaches with a
different number of underlying hypothesis have been developed. This Section contains
an overview of the most used simulation approaches to model plasma processes in
space (fluid, hybrid and kinetic, both PIC and Vlasov). The aim of the Section is
summarizing the underlying hypothesis and the limitations of the different schemes,
together with an overview of the physical processes that can be studied with each
scheme. It is worth to underline that the kinetic codes are the only ones providing
details of electron dynamics. Hence, these approaches are crucial in the context of
this Thesis. In particular, Section 5.2.3 focuses on the Vlasov codes since part of
this Thesis is devoted to the testing and the use of the newly developed fully-kinetic
Eulerian Vlasov-DArwin algorithm (ViDA), as detailed in Chapter 8.

When modeling the near-Earth plasmas, there are some common hypothesis shared
by all the approaches. As already mentioned, the plasmas are collisionless and mag-
netized. Moreover, they can be considered as non-relativistic; the effects of gravity
are negligible and quasi-neutrality is fulfilled.

5.2.1 Fluid codes

In general, the larger is the modeled system, the fewer are the details that can be taken
into account with simulations. Hence, when we want to treat large scale phenomena
(e.g. involving the whole magnetopause) the most suited model would be a Magneto-
Hydro-Dynamics (MHD) or fluid code. Within these models, the plasma dynamics
is described with (single or multi) fluid equations which are theoretically obtained by
computing the moments of Eq.(5.13).

If the plasma is composed by electrons and protons (as it is often the case in
near-Earth space), the integration of Eq.(5.13) of each species leads to the two fluid
model. In this case, the motion of the single particle is completely neglected and
the processes that can be reproduced have characteristic spatial and temporal scales
which are much larger that the particles scales (L� ρp, dp, T � Ω−1

c,p , ω
−1
p,p).

In order to use these models, it is necessary to introduce a fluid closure which
generally corresponds to provide a description for the kinetic pressure. Solutions which
are often adopted are the adiabatic or the isothermal pressure which are described
by polytropic closure of the type Pn−γ = const (γ is the polytropic index which is
linked to the degrees of freedom ν of the particles γ = ν+2

ν ). When γ = 1 the pressure
is isothermal and the pressure tensor is reduced to a scalar P ∝ nT where n is the
density and T the temperature.

Combining the fluid equations for the two species the MHD model is obtained.
In this case, the plasma is seen as a single fluid and a fluid closure for the kinetic
pressure is still needed.
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Figure 5.1: The reconnected magnetic flux versus time from a variety
of simulation models as shown in Birn et al. [2001].

The simplest MHD model is the so-called ideal MHD for which the Ohm’s law is
written as follows

E = −u×B

c
(5.14)

which combined to the Maxwell-Faraday equation leads to

∂B

∂t
= ∇× (u×B) (5.15)

where u = (mpup +meue)/(mi +me) is the bulk velocity of the single fluid plasma.
This MHD model is ideal in the sense it does not include diffusion nor dissipation.
Also, Eq.(5.15) implies that the plasma is frozen to the magnetic field at all times (see
Chapter 2). An important consequence, in the context of this Thesis, is that the ideal
MHD model can not reproduce magnetic reconnection. For this reason, the so-called
resistive MHD and Hall MHD models have been used to perform magnetic recon-
nection simulations based on the MHD formalism ([Birn et al., 2001, and references
therein], [Lottermoser and Scholar, 1997]).

The resistive MHD model introduces a resistivity term ηj to the right hand side
of Ohm’s law which allows the magnetic reconnection instability to develop. The
resistivity η can be uniform in the simulation box or localized and current-dependent.
The Hall MHD model modifies the ideal Ohm’s law Eq.(5.14) introducing the Hall
term ∝ j ×B. The Hall MHD model is able to describe the demagnetization of ions
while the electrons stay frozen to the electric field. Indeed, assuming that at the large
MHD scales the dynamics is dominated by protons (u ≈ up) we obtain the following
Ohm’s law

E = −up ×B

c
+

j×B

nec
= −ue ×B

c
(5.16)

which indicates that the electrons are magnetized.
It has been shown by Birn et al. [2001] that the inclusion of the Hall term in

Ohm’s law is necessary to produce reconnection rates comparable to the one obtained
by hybrid and kinetic models (see also [Shay et al., 2001]). Figure 5.1 shows the
reconnected flux of a 2D magnetic reconnection simulation with the same parameters
performed by different type of codes. Note that the behaviour of the Hall MHD models
is similar to the kinetic codes (which include the Hall effect as well) while the resistive
MHD model (with uniform resistivity η) does not reproduce fast reconnection.

Since this comparison has been done on 2D simulations its outcome is not general
and it still need to be confirmed in a 3D scenario. However, an intuitive explanation
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of the fact that fast reconnection is possible only with the inclusion of the Hall term
can be provided. Indeed, the Hall terms begins to play a role at the ion scales di
while the terms that allows for reconnection become non negligible at smaller scales.
In particular, the pressure term plays a role at sub-ion scales, the electron inertia
term plays a role at the electron scale de and the relative importance of the resistive
term compared to the ideal term in Ohm’s law is ∝ R−1

m , the inverse of the magnetic
Reynolds number. This scaling determines the presence of different regions at different
scales. At ion scales only the ions are demagnetised while the terms that allows
reconnection intervene at smaller scales. Hence, in the Hall region the magnetic
field is convected by electrons. The electrons, being lighter than the ions, allow the
magnetic field to have a faster dynamics so that fast reconnection finally takes place.
If the Hall term is not present, both species are frozen to the magnetic field up to the
resistive scales and this leads to a slower reconnection process.

5.2.2 Hybrid codes

In order to include effects at the ion scales, the MHD (or multi-fluid) model can be
extended to hybrid models, in which e.g. the ions are treated kinetically and the
electrons are modeled as a fluid. The hybrid scheme is introduced to simplify the
description of electrons, in order to eliminate their fast and small scale dynamics.
Electrons are usually reduced to a isothermal, isotropic fluid and are often treated as
massless. In particular, the hybrid scheme allows to include the terms related to the
complete pressure tensor of the ions. On the other side a fluid closure is still needed
in order to model the electron pressure. There are several possibilities to define the
electron pressure but the most used are the isothermal and the adiabatic closures.
Some closures incorporate pressure anisotropy, e.g. the Chew-Goldberger-Low (CGL)
model [Chew et al., 1956].

There are several examples of hybrid codes that have been used to investigate
plasma processes (in particular at ion scales) in the field of astrophysical plasma.
In particular, hybrid-PIC codes has been used to perform global simulations of the
magnetosphere [Karimabadi et al., 2014, and reference therein], [Lin et al., 2014].
Nowadays, the available computational resources even allow to perform global hybrid-
Vlasov simulations of the magnetosphere [von Alfthan et al., 2014], giving a more
detailed picture compared to the global MHD or fluid codes.

The hybrid-Vlasov-Maxwell (HVM) code [Valentini et al., 2007] is especially inter-
esting in the frame of this Thesis since the full kinetic Vlasov-Darwin code (the ViDA
code) that will be extensively described in Chapter 8 has been developed starting from
this hybrid code.
The main assumptions of this formalism include that the characteristic length L and
T of the analyzed process are L� λD,e, T � ω−1

p,e ; the plasma is weakly magnetized
(Ωc,e � ωp,e) and the displacement current ∝ ∂E/∂t is neglected. Neutrality is also
assumed (ne = np = n) so that ∇·E = 0. With this hypothesis, Valentini et al. [2007]
provide the following generalized Ohm’s law

E− mec
2

4πne2
∇2E = −1

c
(up ×B) +

1

nec
(j×B)− 1

ne
∇Pe+

+
1

ne

me

mi
∇ ·Pp +

me

ne2

(
jup + upj−

jj

ne

)
(5.17)

When the system can be described with the MHD model (the typical wavelength
L present in the plasma is much larger than dp and the typical time scale T �
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Ω−1
c,p) Eq.(5.17) reduces to Eq.(5.14) as expected. When the typical wavelength and

frequency become comparable to the proton scales, also the Hall term and the electron
pressure term have to be taken into account, while the terms proportional to me in
both right and left hand side of Eq.(5.17) are still negligible. If the characteristic length
and time are intermediate between the proton and the electron scales (dp > L� de,
Ω−1
c,p > T � Ω−1

c,e , ω
−1
p,e) no term in Eq.(5.17) can be neglected so that Eq.(5.17)

becomes a Helmholtz partial differential equation. In these conditions, dynamics is
dominated by electrons [Bulanov et al., 1992].

Finally, the HVM scheme is composed by the following equations:

∂fp
∂t

+ v · ∂fp
∂r

+ (E + v ×B) · ∂fp
∂v

= 0; (5.18)

Pe = nkBTe if the closure is isothermal; (5.19)
∂B

∂t
= −c∇×E; (5.20)

∇×B =
c

4π
j; (5.21)

j = ne(up − ue); (5.22)

E− mec
2

4πne2
∇2E = −1

c
(up ×B) +

1

nec
(j×B)− 1

ne
∇Pe+ (5.23)

+
1

ne

me

mi
∇ ·Pp +

me

ne2

(
jup + upj−

jj

ne

)
;

where fp(r,v, t) is the proton distribution function. The integrations of fp provide
the proton moments (number density, current density, pressure . . . ).

To solve the HVM system of equations, the current advance method (CAM) is
coupled to the splitting method (see Section 3.1 and 3.2 of [Valentini et al., 2007]).
The CAM method provides the second order numerical solution for the advancement
of electric and magnetic fields, while the splitting method [Cheng and Knorr, 1976] is
a second order scheme in time for the advance of the particle distribution function in
phase space (see also [Mangeney et al., 2002]).

As it has already underlined above, Eq.(5.17) is a Helmholtz equation. For periodic
boundary conditions in the physical space it can be solved using standard Fast Fourier
Transform algorithms. Even though this computation is heavier compared to solving
an algebraic expression (e.g. as in the Hall MHD model), the computational cost is
negligible with respect to that needed to integrate the Vlasov equation.

5.2.3 Kinetic codes

The complexity of the description of collisionless magnetic reconnection is largely due
to the theoretically challenging parameter regime in the reconnecting current sheet
which is characterized by kinetic scales LCS ∼ ρe ∼ de � ρi ∼ di. The scales at play
are so small compared to the scales of the global system (especially to the mean free
path and the collision frequency) that the coulomb scattering and other collision are be
totally negligible within the current sheet. These conditions rule out the possibility
to use many of the previously reported descriptions. One of the reason is the fact
that previously reported algorithms have the need of a closure and the used ones are
usually not representative of the collisionless physics in the current sheet. Since both
species are eventually demagnetised in the Electron Diffusion Region, nothing short
of full integration of Vlasov equations for electrons and ions coupled to the electric
and magnetic field is appropriate for theoretical analysis. At present, there are two



Chapter 5. Numerical models for astrophysical plasmas 58

approaches that fulfill the need of a complete kinetic description of a plasma, namely
the Particle-In-Cell (PIC) approach and the Vlasov approach.

PIC codes

Nowadays, Particle-In-Cell (PIC) codes [Birdsall and Langdon, 1985] represent the
most adopted approach to numerical simulations of plasmas in the framework of the
kinetic theory. In particular, the PIC approach is Lagrangian. The PIC scheme is
based on the fact that the distribution function whose evolution is described by the
Vlasov equation Eq.(5.13) is conserved along the particles trajectories in the phase
space. Hence, the distribution function is treated as an ensemble of particles and the
system is divided among several macroparticles that sample the distribution function.
Each macroparticle is centered in point (r,v) of the phase space and it is provided
with a statistical weight. The macroparticles that are used to discretize the distribu-
tion function move along the characteristics of the Vlasov equation. Hence, the PIC
scheme integrates the Vlasov equations along the trajectories of the macroparticles
in a continuous phase-space. On the other side, the magnetic and electric field are
discretized on a spatial grid and have to be interpolated. The “cell” of the wording
Particle-In-Cell refers to the region among grid points where the electromagnetic field
is not defined.

In general, PIC codes are frequently adopted because they combine the kinetic
approach to relatively affordable computational expenses and to implementation sim-
plicity ([Pritchett, 2000, and references therein] [Markidis et al., 2010, Zeiler et al.,
2002, Ricci et al., 2002, Horiuchi and Sato, 1999, Hesse et al., 2001, Camporeale and
Burgess, 2017, Grošelj et al., 2017, González et al., 2019]). Tremendous advances in
the knowledge of the magnetic reconnection have been done thanks to the PIC ap-
proach. Nevertheless, because of the sampling of the distribution function (i.e. the
limited number of macroparticles), PIC codes are intrinsically affected by statistical
noise. The particle noise induces artificial dissipation and it limits description the
high energy tails of the distribution function and of fine resonances.

Vlasov codes, state of the art

Full Vlasov simulations, in which both electron and ion Vlasov equations are treated,
represent another kinetic approach to plasma physics investigation. This kind of
scheme, however, has not been extensively exploited in the past, as it the case for
PIC simulations, and even today the examples of full Vlasov collisionless magnetic
reconnection are relatively few. This situation is mainly due to the higher complex-
ity of Vlasov codes and to the amount of computational resources that are needed
for such schemes. Indeed, while PIC codes treat ordinary differential equations de-
scribing macroparticle motion, Vlasov codes directly solve the advection-type partial
differential Vlasov equation for each species. Moreover, the distribution function is a
6-dimensional object which depends on both regular space and velocity space which
needs to be computed and then stored. For these reasons, the required numerical
effort had usually prevented Vlasov codes to be used as much as PIC codes.

Nevertheless, in the last decades there have been examples of development and
applications of Vlasov codes [Wiegelmann and Büchner, 2001, Schmitz and Grauer,
2006a, Umeda et al., 2009, 2012, Delzanno, 2015, Roytershteyn and Delzanno, 2018].
Vlasov codes have been usually applied to problems with lower dimensionality (usually
2D system). Also, the computational capabilities of super-computers have increased
lately so that Vlasov codes became relatively spread.
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Vlasov codes have been used to investigate magnetic elicity [Wiegelmann and
Büchner, 2001, 2002], anomalous resistivity [Büchner and Elkina, 2005], dynamics of
thin magnetopause-like current sheets [Silin and Büchner, 2006], the role of the elec-
tron pressure tensor during magnetic reconnection Schmitz and Grauer [2006b], the
Kelvin-Helmholtz instability [Umeda et al., 2010a], the structure of diffusion region in
magnetic reconnection [Umeda et al., 2010b, Zenitani and Umeda, 2014], the devel-
opment secondary instabilities in the collisionless Rayleigh-Taylor instability [Umeda
and Wada, 2016].

Indeed, Vlasov schemes have the main advantage not to be affected by statistical
noise since the entire distribution function is retained. In particular, they allow to
treat resonance problems and phenomena which are related to the high energy tails of
the distribution function. Concerning collisionless magnetic reconnection specifically,
Vlasov scheme allows for the punctual investigation of the distribution functions (PIC
codes usually provide distribution functions averaged over a volume of the simulation
box) and precise evaluation of the reconnection electric field with the generalized
Ohm’s law including anomalous resistivity terms related to wave-particle interaction.

There are several schemes that have been implemented in order to solve the Vlasov
equation. Semi-Lagrange schemes were successfully developed for low-dimensional
problems [Cheng and Knorr, 1976]. Another option was also given by transform
methods. Then, the time splitting method was proposed by Cheng and Knorr [1976].
The time splitting method is widely described in Section 8.3 since it has been adopted
in the implementation of the ViDA code presented in Chapter 8. The description of
the other methods lies beyond the scope of this Thesis and further information can
be found in [Büchner, 2007] and references therein.

Together with the integration of the Vlasov equation, the Maxwell equations have
to be computed. Vlasov codes also differ depending on the treatment of Maxwell
equations which is chosen taking into account the constraint on time step ∆t imposed
by the Courant-Friedrichs-Lewy (CFL) condition, ∆t . ∆x/c [Courant et al., 1928,
Peyret and Taylor, 1986]. Such condition is due to the fact that Maxwell equations
also describe the propagation of waves at the light speed c.

In specific situations, i.e. when the self generated magnetic field can be neglected,
this constraint can be avoided using an electrostatic model. In general, the prob-
lem has been overcome by neglecting the displacement current in Ampère equation
[Wiegelmann and Büchner, 2001] or by adopting the Darwin approximation which
rules out the transverse light waves (i.e. the fastest waves in the system that prop-
agate at phase speed c) thus significantly relaxing the CFL condition [Schmitz and
Grauer, 2006a, Mangeney et al., 2002, Pezzi et al., 2019]. Since the Darwin approx-
imation has been used for the code ViDA, it will be extensively treated in Section
8.1. An alternative method to avoid the CFL condition for light is the use of an im-
plicit Finite Difference Time Domain (FDTD) method for solving Maxwell’s equations
[Umeda et al., 2009].

In conclusion, Vlasov codes represent a fundamental tool to investigate plasma
processes which should not be seen as a substitute of the PIC simulation but rather
as a complementary approach. In addition, the development of Vlasov schemes is also
crucial because they represent an alternative method that allows to validate the PIC
simulations results.

It has also been argued [Büchner, 2007] that PIC codes are not less expensive
numerically than Vlasov codes when the same level of noise and phase space resolution
is required for the two approaches. However, while PIC simulations have proven
to provide results in a broad range of problems even if affected by the statistical
unavoidable noise, Vlasov codes are inevitably limited by their computational cost.
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Chapter 6

The Electron Diffusion Region
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The previous Chapters are mainly focused on the MHD and two fluid descrip-
tion of magnetic reconnection. In these theoretical frameworks, the EDR is depicted
as a “black box” where magnetic field lines change their connectivity and energy is
converted from the fields to the plasma. The aim of this Chapter is to discuss how
the EDR is operationally defined and identified and then to discuss the processes at
electron scale that take place in the EDR including, in particular, the results from the
latest MMS observations in synergy with numerical PIC simulations.

6.1 Identification and characterization of the Electron Dif-
fusion Region

When investigating the EDR, it becomes clear that the definitions that have been pro-
posed within the fluid theoretical frameworks are usually incomplete and operationally
imprecise. Indeed, the EDR has been conventionally pictured as a region embedded in
the larger ion-scale IDR where electron are demagnetized. Using this definition, EDRs
were identified using Polar satellite data at the subsolar magnetopause [Mozer et al.,
2003]. However, as underlined by Pritchett and Mozer [2009], this EDR definition may
be misleading. It has been seen in PIC simulations that locations where electrons are
not frozen-in (i.e. where E + ue × B 6= 0) cover areas much larger than expected
and these areas are not embedded in the larger IDR. Moreover, even though regions
of electron demagnetization are expected to be very rare in astrophysical plasmas,
not all demagnetized layers are electron diffusion regions. A weaker demagnetization
(compared to the EDR) can also take place in other thin current layers, for instance
at the separatrix.

For these reasons, other EDR signatures has been proposed in order to guarantee
a correct EDR identification. Notably, a nonzero parallel (to the magnetic field) elec-
tric field, electron acceleration, electromagnetic energy conversion, a super-Alfvénic
electron outflow, enhanced electron agyrotropy, electron energization and a current
sheet thickness of the order of de [Pritchett and Mozer, 2009, Scudder et al., 2008]
were taken into account. The observation of most of these signatures was extremely
limited and challenging due to the severe constraint imposed by the temporal reso-
lution of particle instruments before the launch of the MMS mission. In addition,
electron demagnetization continued to represent a local, rare and necessary signature
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to unambiguously identify the EDR. Basically, the idea is not to rely on one single sig-
nature but to collect several evidences providing a secure way to identify the EDR. An
additional challenge is the need to have operational signatures that could be applied
to spacecraft in-situ data.

After the observations of electron demagnetisation reported by Mozer et al. [2003],
in situ evidence of an EDR was provided by Scudder et al. [2012] by means of Polar
data which showed in particular electron demagnetization and an unusually strong
agyrotropy (see Appendix B for the definition of agyrotropy). Then, THEMIS obser-
vations at the subsolar magnetopause and in the magnetotail identified the EDR as
the site of intense wave activity [Tang et al., 2013] and of electron energization [Oka
et al., 2016].

Several PIC simulations have enlightened the electron dynamics in the EDR [Hesse
et al., 2014, Bessho et al., 2016, Hesse et al., 2016, Shay et al., 2016] predicting in
particular the presence of electrons performing meandering orbits which result in
crescent-shaped distribution functions (see also Section 2.5). However, distribution
functions can have even more complicated shapes [Ng et al., 2012, Shuster et al.,
2015] which depends also on the distance from the X-line. Using PIC simulations,
Shuster et al. [2015] showed that the electron distribution functions have a triangular
shape in vicinity of the X-line while further from the X-line, in the outflow region,
the distribution functions exhibit an arc shape and become gradually gyrotropic. The
complex shape of the distributions is linked to the electron temperature which is
increased by both the action of the reconnection electric field and of the magnetic
field normal to the reconnection layer.

The launch of the MMS mission [Burch et al., 2016b] gave new impulse to the in-
vestigation of the EDR together with the possibility to confirm the simulation results.
Indeed, with the unprecedented resolution of the particle data, MMS allowed to lift
some of the constraint that had limited EDR observation in the past, in particular
concerning the physical quantities related to electrons (see Chapter 4).

The electron-scale physics in an EDR encounter near a reconnection X-line at
the magnetopause has been investigated for the first time with MMS data [Burch et
al., 2016a]. Since then, 33 EDR encounters have been reported at the magnetopause
[Fuselier et al., 2017, Webster et al., 2018, Genestreti et al., 2018]. Fuselier et al. [2017]
collected the first 12 EDR encounters showing that they took place in a wide variety
of conditions in terms of local time, magnetic shear angle between the magnetosheath
and magnetospheric magnetic fields and radial distance from the Earth. It is worth to
note that the 12 EDR events are selected from a set of 4500 magnetopause crossing,
both partial (from the magnetosphere or magnetosheath into the boundary layer) and
full (from the magnetosphere into the magnetosheath or vice versa).

The larger set of 33 EDR encounters has been gathered by Webster et al. [2018].
Even considering this larger set, the EDRs were encountered in a wide range of condi-
tions. This set of EDR observations, together with simulations of asymmetric recon-
nection [Hesse et al., 2016, Shay et al., 2016], have provided a list of signatures that
are needed to identify the EDR. In particular, the EDR is the site of

1. strong, electron-carried current densities of the order of 1000 nA/m2;

2. electron agyrotropy
√
Q with values up to 0.1;

3. parallel electron heating with Te,||/Te,⊥ up to ∼ 4;

4. minima of |B| ∼ 5 nT ;
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5. large energy conversion from the electromagnetic field to plasmas E′ · j ∼
10 nW/m3 where E′ = E + ue ×B [Zenitani et al., 2011];

6. non-negligible parallel (to the magnetic field) electric field;

7. meandering trajectories of electrons resulting in crescent-shaped distribution
functions.

Crescent-shaped electron distribution functions are observed in most cases, and they
are found on the magnetospheric side of the magnetopause boundary [Burch et al.,
2016a], in the electron outflow [Norgren et al., 2016], and in the magnetosheath inflow
[Chen et al., 2017].

These signatures, including the crescent-shaped distribution functions, have been
observed also during EDR encounters in the Earth’s magnetotail [Torbert et al., 2018,
Zhou et al., 2019]. The EDR has been also indicated as the site of production of
whistler waves [Cao et al., 2017].

Note that the parameter involving the minimum of the magnetic field strength is
biasing the EDR statistical ensemble towards small guide field configurations. How-
ever, the majority of the EDRs encounters that have been reported have relatively
small guide field. This might be due to the fact that some of EDR signatures (for
instance, the crescent-shaped distributions) are more easily observed when the guide
field is small. The only EDR with a strong guide field was reported in the frame of
Kelvin-Helmholtz related reconnection at duskside of the magnetopause [Eriksson et
al., 2016].

Another signature of the EDR that can be fruitfully used for detecting the EDR
in spacecraft data has been identified using PIC simulations by [Egedal et al., 2018].
Indeed, Egedal et al. [2018] analyse the electron distribution functions of the electrons
streaming towards the X-point in the electron diffusion region and they find that they
are characterized by strong oblique electron beams. Then, they demonstrate that
“because of the inertia of the beams, they do not follow the direction of the magnetic
field as it rotates sharply within the electron-diffusion region. The diffusion region
of antiparallel asymmetric reconnection is therefore characterized by electron beams
at oblique directions to the local magnetic field.” This behaviour can be seen in the
electron distributions observed by MMS.

Evaluation of the Generalized Ohm’s Law

A significant effort has been devoted to investigate the generalized Ohm’s law Eq.(2.18)
to understand which term is responsible for the reconnection electric field at electron
scale. This topic has been extensively studied by means of numerical simulations
[Hesse et al., 1999, 2016, Divin et al., 2016, and references therein] establishing the
role of nongyrotropy of the electron distribution function and of the electron pressure
term. However, the comparison between observations and simulations were lacking
because of technical limitations in spacecraft data so that only few Ohm’s law evalu-
ations were carried out with Cluster data [Vaivads et al., 2004]. MMS data provides
the full pressure tensor, high resolution particle data and, being a constellation of
four spacecraft, the possibility to compute the gradients of physical quantities (see
Section 4.2.2) which in principle allow to compute all the terms of the generalized
Ohm’s law. Observations [Torbert et al., 2016a] have shown that the contribution of
the pressure term is larger that the contribution provided by the electron inertia and
that the “residue" is comparable to the electric field itself. However, these results have
to be taken with care, since the measured electric field may be affected by large errors.
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This topic will be discussed in Chapter 7. The analysis of another EDR encounter
[Genestreti et al., 2018] confirms that the contribution of the pressure term is larger
that the contribution of the electron inertial term. In particular, it appears that both
the gyrotropic and agyrotropic pressure contribute to reconnection electric field.

However, the role and the relative importance of the terms of Ohm’s law is still
largely debated. For instance, for asymmetric reconnection, Hesse et al. [2016] finds
that at the X-point the inertia term is the largest contributor to the electric field and
Egedal et al. [2018] show that the magnitude of the pressure term and of the electron
inertia term are similar but the electron inertia is larger in a region of width ∼ 1 de
around the X-line.

In addition, the currently available simulations are PIC simulation that always
present a level of noise. In Chapter 9 I will make use of a noise free full-Vlasov
simulation in order to detail the contribution of the different terms to the Ohm’s law
in the context of symmetric magnetic reconnection.

Inner and Outer EDR

MMS observations and kinetic simulations focused on the EDR are devoted to resolve
the structure of the EDR. For instance, it has become clear that the EDR is actually
composed by an inner and an outer EDR. This distinction has been introduced by
[Karimabadi et al., 2007, Shay et al., 2007] and it accounts for the fact that electrons
can be demagnetized at large distances from the X-point, as it has been confirmed
by observations [Phan et al., 2007]. The inner EDR contains the X-point and a
strong current density along the out-of-reconnection-plane direction mainly carried
by electrons. Moreover, it is the region where energy is converted from the fields to
the plasma so that E′ · j > 0. On the other side, the outer region is characterized
by electron jets in which electrons are demagnetized. There, the energy is converted
back from the electron jets to the magnetic field (E′ · j < 0) since the electron jets
are gradually decelerated and thermalized. Observations of the outer EDR confirmed
this picture [Hwang et al., 2017]. In addition, crescent-shaped electron distribution
functions are observed also in the outer EDR [Hwang et al., 2017].

Energy Conversion

The energy conversion from the magnetic field to the particles of the plasma is one
of the main characteristics of the magnetic reconnection process. Investigating where
and how energy in converted is crucial to understand collisionless reconnection.

This energy exchange can be expressed with the quantity E · j. In order to better
quantify the energy conversion in the EDR and to identify regions which are physically
relevant for the electron energization, Zenitani et al. [2011] proposed an electron-frame
energy conversion measure, E′ · j, where E′ = E + ue ×B.

The classical picture of 2D reconnection presents a region of enhanced E′ · j in the
middle of the EDR and in correspondence of the X-point. Simulations and observa-
tions have shown that this is not the case when reconnection is asymmetric and when
the guide field is present. For enhanced asymmetry, the peak of the energy conversion
is located on the magnetospheric side of the boundary [Zenitani et al., 2011, Gen-
estreti et al., 2017] in between the X-point and the stagnation point. On the other
hand, if the guide field is higher the energy conversion occurs closer to the electron
stagnation point, as the X-point and the stagnation point become closer to each other
[Genestreti et al., 2017, Cassak et al., 2017a].
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Another crucial point to be explored is what is sustaining the energy conversion.
[Genestreti et al., 2018] shows that both gyrotropic and agyrotropic terms of the
pressure force are involved and that both pressure gradient in the reconnection plane
ant out of the reconnection plane are important.

These results compose a picture of the EDR which is extremely complex and rich
of processes. The large variety of conditions in terms of guide field asymmetry provide
a large set of examples that are still not unified [Webster et al., 2018, see e.g. Figure
5].

One of the questions that are still open is whether the EDR has a preferred ho-
mogeneous or inhomogeneous structure at electron scales and below. EDR has been
identified as the site of strong vorticity and of current filamentation [Matthaeus, 1982,
Che et al., 2011] but observational evidence concerning the structure of the EDR are
still lacking. The four MMS would allow to map the EDR and to enlighten its struc-
ture. However, to perform this kind of investigation it is necessary that the four
spacecraft are sampling the EDR at the same time and this requirement is not easy to
be met, especially at the magnetopause where the electron inertial length de ∼ 2 km.
In this Thesis, I present a research work that tries to reply to this long standing
question (see Chapter 7).
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In situ spacecraft observations of a
structured Electron Diffusion
Region during magnetopause
reconnection
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This Chapter presents observations providing evidence of a structured EDR at the
magnetopause. In particular, I present and discuss the results presented in [Cozzani
et al., 2019] and I include analysis that could not be fully detailed in the published
manuscript, namely (i) the detailed determination of the local current sheet coordinate
system, (ii) the application of the FOTE method (see Section 4.2.2) on the selected
data.

As discussed in Chapter 6, significant progress has been done in the characteriza-
tion of the EDR in terms of electron dynamics, energy conversion from the field to
the plasma and characterization of the origin of the reconnection electric field through
the evaluation of Ohm’s law, by means of MMS data and PIC simulations.

However, the structure of the EDR is still poorly understood and this is especially
due to the strict limitations that affected the particle observations in the past. In
particular, it is not fully understood whether the EDR has a preferred homogeneous
or inhomogeneous structure at electron scales and below. This open question arises
for different reasons. On one side, simulations have shown that the EDR is the site of
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strong vorticity [Matthaeus, 1982] and of current filamentation at electron scale that
can provide a source of anomalous resistivity, eventually leading to the violation of the
frozen-in condition [Che et al., 2011]. Then, both spacecraft observations and numeri-
cal simulations have shown that the presence of current filaments and of particle-scale
structures is occurring in the outflow [Phan et al., 2016, Osman et al., 2015, Lapenta
et al., 2015] of magnetic reconnection. Evidence of turbulence have been found in
the IDR [Eastwood et al., 2009, Graham et al., 2017, Ergun et al., 2017] where the
energy dissipation is not evenly distributed but rather spiky and concentrated in small
regions [Fu et al., 2017].

Considering all this, we could ask ourselves whether such complexity could be
found also in the EDR.

However, the first MMS observations of an EDR [Burch et al., 2016a] have been
compared to two-dimensional PIC simulations [Shay et al., 2016] and interpreted in
terms of a laminar region. Yet, these simulations are two-dimensional, have limited
spatial resolution and substantial averaging is commonly performed to reduce noise.

It is only from the last two years that this laminar picture of the EDR has been
questioned again. Indeed, three-dimensional PIC simulations [Daughton et al., 2011,
Price et al., 2016, 2017], two-dimensional PIC simulations with high spatial resolution
[Jara-Almonte et al., 2014], or with low computational noise and larger number of
macroparticles [Swisdak et al., 2018] indicate that the EDR can be rather inhomoge-
neous in electric fields, electron flows, current densities, and energy conversion, with
the formation of structures at electron-scale. In addition, recent observations have
shown that the presence of standing waves in the EDR leads to oscillatory energy
conversion in the EDR [Burch et al., 2018].

However, detailed observations supporting the structuring of the EDR are still
lacking. This Chapter, covering [Cozzani et al., 2019], shows MMS observations of an
EDR encounter at the subsolar magnetopause providing evidence EDR structuring at
electron scales.

7.1 MMS event selection

In order to study the structure of the EDR, I looked for an event1 in which all the
spacecraft encountered the EDR. The search for events has been carried on by selecting
the period in which MMS was in proximity of the subsolar magnetopause (where it
is most likely for reconnection to occur) and where the inter-separation among the
spacecraft was the smallest. We also made use of the SITL reports (see Section 4.1) in
order to focus on the time intervals that could potentially contain an EDR encounter.

Finally, I selected a magnetopause crossing taking place between 12:05:41.9 and
12:05:44.0 Coordinated Universal Time (UTC)2 on the 27th of January 2017. During
that day, MMS registered many full and partial MMS crossings with jets and jets
reversal, indicating the possibility of an EDR encounter. MMS stayed mostly in
the magnetosheath and in the solar wind and several bow shock crossings were also
observed.

At the time of the selected magnetopause crossing, the MMS constellation was
located in the subsolar magnetopause region, at (9.3, -1.2, 2.1) RE in Geocentric Solar
Ecliptic (GSE) coordinates (see Appendix A). The MMS location relatively to the
magnetopause at around 12:05:00 is shown in Figure 7.1(right). The mean spacecraft
separation was ∼ 6 km, which is the smallest possible for MMS and it corresponds to a

1The term event is commonly used in this context to indicate the chosen set of data.
2All the times are in UTC when not differently specified
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Inter-spacecraft separation ∼ 6 km ∼ 3 de

MMS at 12:00 UTC
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Figure 7.1: (left) MMS tetrahedral configuration at the time of the
EDR encounter; (right) MMS location relative to Earth and the aver-
age magnetopause boundary, shown in GSE, in units of Earth radii.
The orbit of MMS is in black and the Region Of Interest (ROI) of the
orbit is colored in yellow. The light blue diamond represents MMS at

the time of the EDR encounter.

few local electron inertial lengths at the magnetopause (de ∼ 2 km). The tetrahedron
configuration is shown in Figure 7.1(left). The quality factor Q = 0.843 (see Section
4.1) is close to 1. This means that the results of the multi spacecraft methods of data
analysis (see Section 4.2.2) are supposed to be rather reliable, being affected by the
not-regularity of the tetrahedron.

7.2 Instrumentation

Throughout the data analysis, the burst mode data are used. In particular, the data
that are used are the magnetic field data from the fluxgate magnetometer (FGM) at
128 samples/s, 3D electric field data from the axial and spin-plane probes at 8192
samples/s and particles data from the fast plasma investigation (FPI) with a time
resolution of 30 ms for electrons and 150 ms for ions (see Section 4.1). Current
densities are computed using single spacecraft data at the electron resolution of 30 ms
(ion measurements are interpolated to the same sampling frequency of electrons).

7.3 Event overview

This Section provides an overview of the EDR event describing the magnetic field,
density and velocity conditions at larger scale compared to the actual time scale of the
EDR encounter. Figure 7.2 shows a 5 minutes interval that includes the EDR crossing
marked by the yellow shaded region. Figure 7.2(b)–(d) show the MMS1 measurements
of the magnetic field components, ion density, and ion velocity components in the GSE
coordinate system. MMS stays mostly in the magnetospheric boundary layer, which
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corresponds to Bz > 0 and to the typical value of the density ∼ 10 cm−3 [Eastman
and Hones Jr., 1979]. Between 12:05:41.2 and 12:05:43.2, Bz becomes negative.
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Figure 7.2: (a) Magnetic field components as measured by WIND
and propagated to the magnetopause; (b) MMS1 magnetic field com-
ponents; (c) MMS1 ion density and (d) MMS1 ion velocity com-
ponents; (e) Zoom-in of the MMS1 magnetic field components and
strength; (f) Zoom-in of the electron velocity components. Data are
shown in GSE. The yellow shaded region in panels (a)–(d) indicates

the EDR crossing.

In order to understand whether the changing in sign of Bz corresponds to the
crossing from magnetosphere boundary layer to the magnetosheath boundary layer
we need to know the direction of the magnetic field in the magnetosheath adjacent
to the magnetopause. For this reason, the WIND spacecraft [Acuña et al., 1995] data



Chapter 7. In situ spacecraft observations of a structured EDR 69

are propagated to the magnetopause using the flat delay method (see Section 4.2.1).
WIND was located at (200, 100, 1) RE (in GSE, see Figure 7.3(top)). The solar
wind velocity was rather stable, mainly directed along x and the average velocity
is VSW ≈ VSW,x ∼ 500 km/s . It is found that the the solar wind propagation
delay is of 47 minutes. Figure 7.3(bottom) shows the magnetic field components
measured by the WIND spacecraft which have been shifted using this delay to take
into account propagation to the magnetopause. We can see that the magnetic field in
the magnetosheath adjacent to the magnetopause was stable and directed southward,
supporting the fact that when Bz < 0 MMS is on the magnetosheath side of the
magnetopause boundary.
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Figure 7.3: (top) Location of the WIND spacecraft during the day of
the EDR encounter (27/01/2017) in the xy and xz plane (in GSE co-
ordinates); (bottom) components of the solar wind velocity measured

by WIND on the day of the EDR encounter.

An ion and electron vz jets reversals are observed at the second Bz reversal, at
12:05:43.20. The ion velocity in the z direction changes from a value of +200 km/s
(12:05:41.0) to −150 km/s (12:05:48.0), see Figure 7.2(d). The jet reversal is observed
also in the electron velocity in Figure 7.2(f) and ve,z changes from ∼ +250 km/s to
∼ −450 km/s (the local ion Alfvén speed is ∼ 100 km/s). The high-speed ion and
electron flows, the corresponding ion and electron flow reversals, as well as the Bz
reversal and the low |B| ∼ 3 nT indicate that the spacecraft is in the vicinity of the
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reconnection region at 12:05:41.9-12:05:48.0 (yellow shaded region in Figures 7.2(a)–
(d)).

7.4 Determination of the local coordinate system

This Section is devoted to the determination of the local coordinated system of the
current sheet. Firstly, I performed a nested MVA analysis (see Section 4.2.1) on the
current sheet crossing centered at 12:05:43.20 using MMS4 data. The length of the
nested intervals on the magnetosheath side is constrained by the fact that another
current sheet crossing is present at 12:05:41.20 (see Figure 7.2(e)). The nested time
interval showing the largest eigenvalue ratios λL/λM ∼ 40 and λM/λN ∼ 10 was found
for the interval 12:05:41.9 - 12:05:46.9. The same interval 12:05:41.9 - 12:05:46.9 has
been chosen to compute the LMN system for the other three spacecraft.

The final frame obtained with MVA is LMVA = (0.05, 0.03, 0.99), MMVA =
(−0.30,−0.95, 0.04), NMVA = (0.95,−0.30,−0.04) is obtained by averaging the four
LMN systems obtained applying MVA on each of the four spacecraft data. The nested
analysis shows that the NMVA direction is stable within 10◦ with an eigenvalue ratio
λM/λN always > 3. Therefore, the performed MVA analysis can be considered as
quite reliable.

Then, the results from the MVA are compared with the normal direction obtained
from the timing analysis (see Section 4.2.2). The four Bz profiles are cross-correlated
by using different reference values of Bz in the interval 12:05:41.9 - 12:05:46.9 obtaining
a normal direction Ntiming = (0.95, 0.25, 0.08). The results of the timing analysis are
not sensitive to the chosen reference value. The normal directions obtained with
the two methods are both mainly directed along the xGSE direction and the angular
difference between the two directions is ∼ 30◦.

In order to further validate the choice of the coordinate system, I have also com-
puted the LMN system using the MDD method (see Section 4.2.2). I consider the in-
terval 12:05:41.9 - 12:05:44.9 which encloses the current sheet. This interval is shorter
than that used for the MVA and the timing analysis, but it is the longest interval
where direction of the normal is stable. The mean normal direction averaged over this
time interval is NMDD = (0.93, 0.16, 0.33). The mean values of the eigenvalue ratios
are λ1/λ2 ∼ 100 and λ2/λ3 ∼ 600. Since λ1 � λ2, λ3 the structure can be considered
as 1D (see Section 4.2.2). The angle between NMDD and NMVA is ∼ 30◦. A similar
analysis has been performed by Rezeau et al. [2018, see Table 1] on this set of data
and their findings are consistent with the the results presented here.

An additional rotation of 17◦ around the NMVA direction is added to guarantee
the consistency of BM (measured by FGM) and JL (measured by FPI) measurements
within the diffusion region with the Hall pattern.

Indeed, during the current sheet crossing the MMS spacecraft are initially within
the IDR (as it is discussed in Section 7.5) so the current densities and the magnetic
field signatures are expected to be consistent with the Hall pattern (see Section 2.4).
However, when using the LMN system obtained with MVA, there is not a full agree-
ment between JL and BM . Therefore, in order to obtain consistency between JL and
BM , I have rotated the coordinate system keeping the N direction fixed and rotating
the L and M direction of 17◦. Considering the previous analysis presented in this
Section, the angle of rotation falls within the uncertainty of the definition of the N
direction. Details about this rotation are presented in Appendix 7.A to this Chapter.

In conclusion, the adopted local coordinate system LMN is composed by, in GSE
coordinates, L = (−0.039,−0.252, 0.967), which is close to the south-north direction,
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M = (−0.301,−0.921, 0.252), which is approximately the east-west direction and N =
(0.954,−0.300,−0.040), which is approximately parallel to the Earth-Sun direction.
The LM plane represents the current sheet plane, where M is the direction parallel to
the current, and N is perpendicular to the current sheet. In the following, data are
shown in the local current sheet coordinate system LMN.

7.5 Electron Diffusion Region signatures

The approximate trajectory of the spacecraft through the reconnection region is shown
in Figure 7.4.

In the interval shown in Figure 7.4 (12:05:41.9 - 12:05:44.0), ions are not magne-
tized (see Figure 7.6(d)) and BM (Figure 7.4(b)) corresponds to the out-of-plane Hall
field with a distorted quadrupolar pattern, as expected for asymmetric reconnection
with a weak guide field (see Section 3.2), with BM > 0 (BM < 0) on the magne-
tosheath side of the boundary, northern (southern) of the reconnection site. These
observations indicate that the spacecraft is located in the ion diffusion region. The
guide field is estimated to be less than 10% of |B| according to the averaged value of
BM among the spacecraft in the center of the current sheet (BL inversion).

In interval AB (12:05:41.900 - 12:05:42.456, Figure 7.4), all four probes observe
roughly constant values of BL < 0 yet showing differences of several nT despite the
small inter-spacecraft separation, indicating that the current sheet is thin. A large
parallel current (JL < 0 in Figure 7.4(d) and Hall magnetic field BM > 0 (Figure
7.4(b)) indicate that MMS is close to the current sheet on the magnetosheath side
of the boundary, north of the reconnection site. The probes are rather close to the
center of the current sheet, as indicated by the large JM ∼ 500 nA/m2 and small BL.
According to the BL difference among the probes, MMS3 is the closest to the center of
the current sheet (see the tetrahedron close to location A in Figure 7.4(g)) while MMS4
and MMS1 are further away. In this interval, the trajectory of MMS3 is tangential to
the magnetopause, therefore differences among the spacecraft observations have to be
considered as spatial.

In interval BC (12:05:42.456 - 12:05:42.830), the peaks of JL > 0 indicate that
MMS moves closer to the magnetosheath separatrix. MMS1 and MMS4 make a brief
excursion in the inflow region around 12:05:42.6, where the BL gradient is smaller and
all probes except MMS3 observe a minimum in JM and BM ∼ 0.

At the same time MMS3, which is closer to the center of the current sheet, observes
BM ∼ 4 nT and large JM meaning that MMS3 is not observing the inflow region but.
Instead, given the rather large value of JM , MMS3 is still measuring the current sheet.
Accordingly, the location of the four spacecraft at this time is shown in Figure 7.4(g)
with the projection of the tetrahedron in the plane LN between the letters B and C
indicating the corresponding time interval. After that, MMS1 and MMS4 cross again
the magnetospheric separatrix and the constellation comes back in the Hall region
where BM ∼ 5 nT for all the spacecraft (at 12:05:42.830).

In interval CD (12:05:42.83 - 12:05:43.65), MMS crosses the current sheet north
of the reconnection site, as indicated by the fact that BN < 0. By applying the
timing method (see Section 4.2.2) to this current sheet crossing, I estimate the normal
velocity of the current sheet to be about ∼ 35 km/s and the normal direction to
be Ntiming = (0.95, 0.25, 0.08) (GSE). As previously noted, the normal direction

3Note that the speed of the spacecraft is negligible compared to the speed of the magnetopause.
The motion of the spacecraft is irrelevant and all of the perceived motion is due to the movement of
the magnetopause. However, since it is simpler to visualize, this kind of studies usually refer to the
motion of the spacecraft relative to the magnetopause.
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estimated with the timing method is in good agreement with the normal found with
the MVAmethod. According to the current sheet speed, MMS crosses an electron scale
current sheet with a thickness of ∼ 30 km ∼ 15 de. The current sheet corresponds to
a strong value of JM > 1000 nA/m2. The strong decrease in BN in the CD interval
corresponds to the reconnected magnetic field. The curvature radius of the magnetic
field lines Rc = b · ∇b (where b = B/|B|, Figure 7.4(f)) decreases as well reaching
its minimum of less than 10 km ∼ 5 de at the |B| minimum (∼ 3 nT ). This indicates
that the spacecraft is located close to the center of reconnection site at this time.

After the current sheet crossing (CD interval), MMS moves tangentially along the
southern magnetospheric separatrix region observing a southward ion and electron jet
vi,L, ve,L < 0 (corresponding to vi,z and ve,z in Figure 7.2(d) and Figure 7.2(f)).
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Figure 7.4: Four spacecraft measurements of (a) BL; (b) BM ; (c)
BN ; (d) JL; (e) JM . (f) Curvature radius of the magnetic field lines;
(g) cartoon of the encounter. The red line represent the trajectory of
the barycenter of MMS constellation. Since the velocity of the magne-
topause is much larger than the spacecraft velocities, the MMS path
shown is produced entirely by the motion of the magnetopause in the
LN plane. The three tetrahedra represent MMS location at different
times along the trajectory; (h) Projection of the MMS tetrahedron in

the LN and in the MN plane.

7.5.1 Computing the distance spacecraft-reconnection site with the
FOTE method

The four spacecraft analysis of the current sheet crossing revealed that MMS is close
to the reconnection site at the time of the BL reversal (at 12:05:43.20). In order to
quantify the distance between MMS and the reconnection site I apply the First Order
Taylor Expansion (FOTE) method to the current sheet crossing. Since the magnetic
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field strength reaches a minimum of 3 nT and the guide field is small for this event, I
expect that MMS is close to a magnetic null point.

The FOTE method has been discussed in Section 4.2.2. In this Section, I just
remind that the method lays on the hypothesis that the magnetic field can be linearized
near the position of the null so that the distance dr = r− rnull between the null point
and the spacecraft is given by

dr ≈ (∇B)−1B. (7.1)

In this way, a null is always found. Depending on the case of study, a threshold on dr
has to be imposed in order to eliminate the non-physical nulls. Since this is an event
which mainly involves the electron scale, I will consider a null as physical only if the
null-spacecraft distance is < 1

4 di ∼ 20 km.
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time interval of Figure 7.7.

Figure 7.5(a) shows the magnetic field strength of the four spacecraft in the same
time interval as Figure 7.2(e)–(f). We can see that there are two magnetic field
minima, corresponding to the two current sheet crossing discussed in Figure 7.2. The
distance between the magnetic null and the center of mass of the MMS tetrahedron
is shown in Figure 7.5(b). We can clearly see that MMS is approaching the magnetic
null and the minimum distance of 12 km ∼ 6 de is reached at the magnetic minimum
at 12:05:43.2, when MMS is encountering the EDR (yellow shaded area in Figure 7.5).

The η and ξ parameters – which indicate the accuracy of the results of the method
(see Section 4.2.2) – are both under the threshold of 40% in this interval Figure 7.5(c)–
(d). Results with η and ξ below this threshold has been considered as reliable [Fu et
al., 2015]. Note that ξ is less stable than η indicating that ξ is more sensitive to the
fluctuations of the magnetic field. However, ξ is also below the threshold of 40% in
the interval 12:05:43.12 - 12:05:43.26, where the minimum of dr is reached.
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As discussed in Section 4.2.2, the FOTE method is also able to identify the null
type and this allows to characterize the EDR in terms of a quasi-2D or 3D region.
However, magnetic field fluctuations can prevent the correct identification of the null
type. Following the analysis by Eriksson et al. [2015], I compute the maximum value
of magnetic field fluctuations δBMAX above which the null type is not well defined.
In this case of study, δBMAX ∼ 0.4 nT is comparable with the measured magnetic
field fluctuations δB ∼ 0.7 nT computed in the interval 12:05:43.20 and 12:05:43.25
meaning that the null type can not be identified.

The schematic trajectory of MMS (Figure 7.4(g)), together with the results of FOTE
method, indicates that the spacecraft crossed the magnetopause close to the recon-
nection site. Figure 7.6 shows further evidence of MMS crossing the EDR (see Section
6.1). During the magnetopause crossing identified by the BL reversal (Figure 7.6(a)),
a large enhancement of the electron velocity shifted toward the magnetosphere is
observed in M and N components, reaching 600 km/s and 1000 km/s respectively
(Figure 7.6(b)). These peaks are not observed in the ion velocity. Therefore, the
current densities presented in Figure 7.6(c) are carried by electrons and they peak
between 12:05:43.200 and 12:05:43.350 reaching ∼ 1000 nA/m2 in JM and JN . These
values of JM are expected for a current sheet at the electron scales and similar values
are reported in other EDR observations [Burch et al., 2016a, Webster et al., 2018]. A
further confirmation of the EDR encounter is given by the demagnetization of elec-
trons (Figure 7.6(d)), which are decoupled from the magnetic field (E 6= −ve × B)
between 12:05:43.150 and 12:05:43.350.

Consistently with the trajectory in Figure 7.4, a positive ve,L ∼ 400 km/s is ob-
served between 12:05:42.900 and 12:05:43.250 and ve,L � vA,e ∼ 4000 km/s, the
electron Alfvén speed. This indicates that MMS is crossing the inner EDR, where
the electron jet has not developed yet [Karimabadi et al., 2007]. Agyrotropy

√
Q (see

Appendix B) exhibits an enhancement in correspondence of the BL reversal (Figure
7.6(e)). The agyrotropy parameter

√
Q can have non negligible values also far from

the EDR, specifically along the magnetospheric separatrix [Lapenta et al., 2017][e.g.
Figure 3], [Shay et al., 2016]. Yet, in the present case, the agyrotropy increase is ob-
served by all four MMS probes between 12:05:42.6 and 12:05:43.5 and for the majority
of this interval (12:05:42.6 - 12:05:43.2) MMS is in the magnetosheath (BL < 0).

The electron temperature increase is shifted towards the magnetosphere and mainly
seen in the direction parallel to the magnetic field [Shay et al., 2016, Egedal et al.,
2011] (∆Te,|| ∼ 50 eV and ∆Te,⊥ ∼ 25 eV through the crossing) while at the |B|
minimum Te,|| ∼ Te,⊥ (Figure 7.6(f)). The same behavior is shown consistently by
the electron Pitch Angle Distribution (PAD) (Figure 7.6(g)). Furthermore, between
12:05:42.760 and 12:05:42.980 a low energy electron population parallel to B propa-
gates toward the |B| minimum. At the |B| minimum (12:05:42.980 - 12:05:43.150) this
beam is no longer observed and the PAD looks isotropic while the distribution func-
tions exhibit oblique beams (to the magnetic field). This signature has been recently
identified as the indication of electron demagnetization (see Section 6.1 and [Egedal
et al., 2018]). In addition, the strong fluctuations in the electric field data observed in
correspondence of the |B| minimum (Figure 7.7(e)–(f)) suggest that high frequency
waves may be present. All these EDR encounter signatures are shown using MMS1
data and they were observed overall by all probes, albeit with some differences which
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Figure 7.6: (a) Magnetic field components and strength; (b) electron
velocity components; (c) current density components; (d) M compo-
nent of electric field (30 ms resolution), (ve × B)M (30 ms resolu-
tion), (vi ×B)M (150 ms resolution); (e) agyrotropy parameter

√
Q;

(f) parallel and perpendicular electron temperature; (g) electron pitch
angle distribution in the energy range [20, 200] eV . The black vertical
dashed-line indicates the time of the |B| minimum. Data from MMS1.

are significant and will be discussed below.

7.6 Electron-scale structuring of the EDR

Figure 7.7 show the four-spacecraft analysis of the EDR encounter. Figure 7.7(a)
and 7.7(b) show respectively BL measured by each spacecraft and the shifted BL
obtained via the timing method (see Section 4.2.2). The time lag between BL compo-
nents measured by MMS1 and MMS2-3-4 respectively are ∆t = (∆t12,∆t13,∆t14) =
(0.024 s, 0.114 s,−0.113 s). In order to facilitate the comparison among observations
by different spacecraft, the same shift is applied to Figure 7.7(c) – (i).

All the probes observe a large JM consistent with the current sheet crossing.
However, while JM reaches 1200 nA/m2 for MMS3, its value is lower (∼ 800 nA/m2)
for the other probes. The difference in the current density observations by different
MMS probes is larger than the FPI measurement error, which is ∼ 20% [Pollock et al.,
2016]. Therefore, the current densities in the EDR are not homogeneous on the scale
of a few de, which corresponds to the spacecraft separation. To summarize, we may
say that at large ion scales the current densities are homogeneous, while by looking
at the electron scale we are able to observe fine structures that may be due to the
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filamentation of the current sheet. This idea is represented in the upper right frame
of Figure 7.7(k).

The electric field EM (Figure 7.7(e)) and EN (Figure 7.7(f)) maintain the same
sign during the EDR crossing. EM and EN are comparable and they both reach
10 mV/m. This differs from what is expected in the case of laminar and steady
two-dimensional reconnection, where close to the reconnection site EM represent the
reconnection electric field and it is typically much smaller than the Hall field EN .
Figure 7.7(d) shows that a large peak of JN ∼ −1000 nA/m2 is seen by all the
spacecraft. Such a large JN < 0 corresponds to a large ve,N directed toward the
magnetosheath. Note that this JN behavior is not typically observed close to the
reconnection site in two-dimensional PIC simulations [Pritchett, 2008, Shay et al.,
2016] and observations Burch et al. [2016a]. Since the ve,N > 0 region is observed
by all spacecraft, the minimal width of this ve,N > 0 channel has to be comparable
to the spacecraft separation. In particular, in the LN plane, the minimal width of
the ve,N > 0 region is 4 km ∼ 2 de in the L direction and of 8 km ∼ 4 de in the N
direction.

The strong JN deeply affects the energy conversion pattern since E′NJN (Figure
7.7(h)) becomes comparable to E′MJM (Figure 7.7(g)). If we consider the maximum
error associated to each quantity (with δE = 20%|E|, δB = 0.5 nT and an error of
∼ 10% for density and velocity) we find that E′MJM has a positive peak for MMS3
while for MMS4 E′MJM shows a bipolar signature that is beyond the errors (Figure
7.7(g)). In Figure 7.7(g)–(i) only data from MMS3 and MMS4 are shown since they
exhibit the clearest differences between spacecraft. All four probes quantities and
associated errors are shown in Appendix 7.A.

The energy conversion errors are comparable to the measured quantities for all the
spacecraft. However, on MMS4 errors are smaller so that an unambiguous value for
the total E′ · J ∼ E′MJM + E′NJN (E′LJL � E′MJM , E

′
NJN ) is obtained on MMS4.

In particular, on MMS4 E′ · J < 0 (Figure 7.7(i)), showing negative energy transfer
between fields and particles. This indicates that energy is locally converted from the
particles to the field, the opposite of the standard behavior during reconnection. The
local energy conversion is negative especially because of the contribution of E′NJN
which is non-negligible because JN is larger than usually observed. The correlation
between the channel with ve,N > 0 and the E′ · J < 0 is represented in the sketch in
the bottom right panel of Figure 7.7(k).

Since MMS4 is the only spacecraft that provides a value of the energy conversion
E′ · J beyond the errors, I have also computed the electric field using Ohm’s law

E′FPI = −∇P e
ne

+
me

e
ve · ∇ve +

me

e

∂

∂t
ve (7.2)

Here, Pe is the electron pressure tensor and the subscript FPI indicates that E′FPI is
obtained by using measurements from FPI instrument only. ∇Pe is calculated using
four spacecraft measurements and the full pressure tensor (see Section 4.2.2) so it is
an average over the spacecraft tetrahedron. Note that the errors on particles data
provided by FPI are smaller than the electric field errors.

It is found that, since the contribution of the inertia term is negligible (not shown,
the maximum value of the inertia term in the considered time interval is ∼ 0.1 mV/m),
a good proxy for the electric field is E′FPI = −∇Pe/ne. The quantities E′FPI,NJN
(Figure 7.7(h)) and E′FPI,MJM (Figure 7.7(g)), exhibit bipolar signatures, as the
total energy conversion E′FPI · J (Figure 7.7(j)). Yet, it should be noted that E′FPI
is a four-spacecraft measurement averaged over the tetrahedron and one should be
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Figure 7.7: Four spacecraft (a) BL; (b) Time-shifted BL. (c)
Time-shifted JM ; (d) Time-shifted JN ; (e) Time-shifted EM (8192
samples/s); (f) Time-shifted EN (8192 samples/s); (g) Time-shifted
E′MJM ; (h) Time-shifted E′NJN ; (i) Time-shifted E′ · J; (j) E′FPI · J,
E′FPI,MJM , E′FPI,NJN . The α, β and γ lines correspond to the times
of the α, β and γ distribution functions in panels (l)-(t) shifted ac-
cordingly to the timing method. (k) Cartoon of JM and of the energy
conversion and ve,N flow. (l)-(t) Electron distributions by MMS4 pro-
jected on (v⊥,1,v⊥,2), (v||,v⊥,2) and (v||,v⊥,1) planes at three dif-
ferent times tα = 12:05:43.269, tβ = 12:05:43.299, tγ = 12:05:43.389.
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careful when comparing it to single spacecraft observations especially if, as in this
case, significant differences are seen among probes observations. For consistency, J
is the current density which is also averaged over the tetrahedron in this case. After
a careful evaluation of all error sources, I conclude that the discrepancy between the
punctual (as given by MMS4) and the averaged energy conversion (given by E′FPI ·J)
is not an instrumental effect and indicates that energy conversion is not homogeneous
over the tetrahedron and that energy conversion is patchy over scales of the order of
few de.

The evolution of the electron distribution functions (DFs) measured by MMS4 in
the EDR is shown in Figure 7.7(l)–(t). The projection of the electron DFs are made
in the three perpendicular planes (v⊥,1,v⊥,2), (v||,v⊥,2) and (v||,v⊥,1) where v⊥,1 =
v× b, v⊥,2 = b× (v× b) and v|| = b (v = ve/|ve| and b = B/|B|) and at the three
times indicated by the vertical black lines in Figure 7.7(b)–(i). The times are shifted
according to the delays among spacecraft obtained with the timing method. These
times correspond to regions where E′MJM is positive (DFs indicated with α, Figure
7.7(l)–(n)), negative (DFs indicated with β, Figure 7.7(r)–(t)) and in the transition
from positive to negative (DFs indicated with γ, Figure 7.7(o)–(q)). Similar DFs are
observed by all spacecraft and they last for more than one FPI measurement (with
30ms resolution). The α DFs (Figure 7.7(l)–(n)) have a rather complicated shape with
several oblique beams. This pattern is observed around the magnetic field minimum,
from 12:05:43.179 to 12:05:43.269 for MMS4. When E′MJM changes sign, the DFs
change shape (Figure 7.7(o)–(q)) and clearly become crescent-shaped distributions in
the (v⊥,1,v⊥,2) plane when E′MJM < 0 (Figure 7.7(r)). The DFs observed during
this EDR encounter are rather complex. They are not always crescent-like and they
appear to be related to E′MJM . Further analysis and comparisons with simulations
are needed to fully understand the dynamics of electrons in such a complex EDR.

7.7 Discussion and conclusions

This Chapter presents observations of an Electron Diffusion Region (EDR) encoun-
tered at the magnetopause by the MMS spacecraft with the very low inter-spacecraft
separation of ∼ 3 de. During this electron-scale current sheet crossing the four MMS
spacecraft observe typical EDR signatures (see Section 6.1) suggesting that MMS
crossed the magnetopause in close proximity to a X-line. These signatures include a
large current density mainly carried by electrons (Figure 7.6(b)–(c)), a peak of electron
agyrotropy (Figure 7.6(e)), demagnetization of ions and electrons (Figure 7.6(d)–(g)),
increased electron temperature anisotropy with Te,|| > Te,⊥ (Figure 7.6(f)), crescent-
shaped electron distribution functions (Figure 7.7(o)–(r)). Furthermore, the electron
jet has not fully developed (vA,i < ve,L < vA,e) indicating that MMS is within the
inner EDR [Karimabadi et al., 2007].

Another observed inner EDR signature is the fact that low energy field-aligned
electron beams directed towards the X-line become oblique in close proximity to the
center of the EDR (Figure 7.6(g)). This behaviour indicates electron demagnetization
(see Section 6.1). Indeed, 2D kinetic simulations [Egedal et al., 2018] showed that
the transition from the field-aligned distribution to the one with oblique beams takes
place where the magnetic field is sharply changing direction and has the smallest
magnitude, leading to the electron decoupling from the magnetic field.

In the presented event, all four MMS probes observed the EDR signatures. The
multi-spacecraft analysis of the EDR revealed that the current density JM is spatially
inhomogeneous at electron scales (Figure 7.7(c) and (k)). Previously reported EDR
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encounters (see Section 6.1, e.g. [Burch et al., 2016a, Chen et al., 2017]) do not point
out differences among spacecraft in the current density observations. It might be
possible that the inter-spacecraft separation in these EDR encounters was not small
enough to have all the spacecraft within the EDR and to resolve the electron scale
inhomogeneities. However, it might be also possible that the EDR becomes structured
at electron scales under particular conditions, e.g. related to the guide field value or
the reconnection inflow conditions. Indeed, similar inhomogeneities have been seen in
high-resolution PIC simulations [Jara-Almonte et al., 2014] where the current density
is found to be structured at electron scale and below.

Strikingly, in the center of the reconnection site, the current density in the direc-
tion normal to the current sheet, JN , is observed to have almost the same magnitude
as the out-of-plane JM current density (Figure 7.7(c)–(d)). In addition, electrons are
observed to move from the magnetosphere to the magnetosheath side of the magne-
topause, corresponding to JN < 0. This behaviour differs from the typical observa-
tions of the electron motion close to the reconnection site [Burch et al., 2016a] as
well as predictions by 2D PIC simulations as e.g. [Pritchett, 2008, Shay et al., 2016].
However, the observations presented in this Chapter are consistent with recent PIC
simulations with low numerical noise [Swisdak et al., 2018, Egedal et al., 2018] in
which electrons move downstream along the magnetospheric separatrix performing
oscillations of decaying amplitude in the N direction. These oscillations are shown in
Figure 7.8 which are adapted from Swisdak et al. [2018] and Egedal et al. [2018]. The
velocity oscillations observed in simulations [Swisdak et al., 2018, Egedal et al., 2018]
are composed by alternating regions, or channels, of positive and negative ve,N that
can be seen in Figure 7.8(b)–(c). In the EDR encounter presented in this Chapter,
such oscillations are not observed (Figure 7.7(d)), which might indicate that all the
spacecraft were measuring the same channel with ve,N > 0. Accordingly, the channel’s
width has to be comparable to or larger than the inter-spacecraft separation of ∼ 3 de.

Another characteristic of the presented EDR is the similarity in magnitude of the
electric field EM and EN components. This has been identified as one of the signa-
tures of inhomogeneous current layer “disrupted” by turbulence in three-dimensional
simulations [Price et al., 2016]. Accordingly, our observations support the picture of
the EDR as the site of strong spatial gradients and inhomogeneities.

The energy conversion E′ · J (Figure 7.7(i)) is highly affected by the JN ∼ JM
and EM ∼ EN behavior since the two terms E′MJM and E′NJN become comparable
(Figure 7.7(g)–(h)). In other EDR encounters by MMS [Burch et al., 2016a, 2018],
E′ · J ∼ E′MJM since JN is usually negligible in comparison to JM . For the EDR
presented here, the multi-spacecraft analysis revealed that energy conversion E′ · J is
spatially inhomogeneous at electron scales. I have also shown that the quantitative
evaluation of energy conversion is affected by the experimental errors (Figure 7.7(g)–
(i)). However, the comparison of the single spacecraft measurements from different
spacecraft (Figure 7.7(g)–(i)) and the measurements averaged over the tetrahedron
(Figure 7.7(j)) both support the qualitative picture in which E′ · J is patchy and
changing sign in the vicinity of the reconnection site. This implies that the EDR
comprises of regions where energy is transferred from the field to the plasma and
regions with the opposite energy transition, which is unexpected during reconnection.
A negative energy conversion was also observed in the outer EDR [Hwang et al., 2017].

Electron-scale variations of E′ · J in the EDR have been recently observed [Burch
et al., 2018]. However, in [Burch et al., 2018] these variations are oscillations of E′ · J
which are the consequence of the oscillatory electric field pattern that shows signatures
of a standing wave. This differs from the E′ · J behavior reported in our study where
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(c)

Figure 7.8: (a) Contour plot of the energy conversion E · J ≈ E′ · J.
Adapted from Swisdak et al. [2018]; (b) Electron flow. The arrows
highlighted in red indicate the oscillations of ve,N . Adapted from Swis-
dak et al. [2018]; (c) Contours of fM/〈Erec〉 = (E + v ×B)M/〈Erec〉
where 〈Erec〉 is the is the time average of the reconnection electric field
for the period where reconnection is ongoing. The magenta lines are
electrons trajectories. The three white arrows show the direction of

the electron flow. Adapted from Egedal et al. [2018].

no such oscillatory behavior of the electric field is observed and the patchy energy
conversion is consistent to spatial inhomogeneities due to electron scale structuring.

The origin of the patchy energy conversion appears to be connected to the large
ve,N ∼ ve,M directed from the magnetosphere to magnetosheath that has never been
observed before. This behaviour is consistent with simulations results shown in Figure
7.8 where correlation has been found between the oscillations of the electron flow in
the N direction and the oscillatory and patchy behaviour of the energy conversion.

Further observational cases as well as 3D PIC simulations with higher resolution
and lower noise or full Vlasov simulations are required to understand which conditions
may lead to the structuring of the EDR and how this patchy structure may affect
the electron energization. These observations can be an indication of what might
be observed in the EDR in the magnetotail, where highly detailed observation are
available since the inter-spacecraft separation of MMS is of the order of 1 de.

7.8 Future work

Throughout this Chapter, I have reported MMS observations of an EDR which is
structured at electron scales. The encounter took place during the Phase 1 of the
MMS mission, when MMS was sampling the dayside magnetosphere. During Phase
2 (see Section 4.1) MMS sampled the magnetotail. Hence, one of the immediate
outlook of this observational study is to perform a similar analysis during an EDR
encounter at the magnetotail in order to understand if the EDR can be inhomogeneous
and exhibiting patchy energy conversion also in the magnetotail. In particular, the
question is whether the EDR can be inhomogeneous in different environment or the
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structuring is specific to the magnetopause. And if this is the case, why are these
inhomogeneities arising only at the magnetopause?

At the moment, the study of the EDR in the magnetotail is still preliminary.
In particular, I have devoted some time to the selection of an EDR encounter event.
Finally, I selected an EDR encounter taking place on the 10th of August 2017 at around
12:18:32 UTC. At that time, MMS was located at (−15.2, 4.6, 3.0) RE in Geocentric
Solar Magnetospheric (GSM) coordinates. The spacecraft separation, which is about
20 km, is at electron scales since it corresponds to ∼ 2 de.

Inter-spacecraft separation ∼ 20 km ∼ 2 de
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Figure 7.9: (left) MMS tetrahedral configuration at the time of the
EDR encounter; (right) MMS location relative to Earth, shown in
GSE, in units of Earth radii. The magenta lines represents the mag-
netic field lines. The orbit of MMS is in black and the Region Of
Interest (ROI) of the orbit is colored in yellow. The light blue dia-

mond represents MMS at the time of the EDR encounter.

This event has been reported by Zhou et al. [2019] as an example of EDR encounter
with a larger guide field (13% of the reconnecting field) than the one analyzed by
Torbert et al. [2018], where the guide field was ∼ 4% of the reconnecting magnetic
field. In this study, the EDR is identified by using the same criteria that has been
defined for EDR at the magnetopause (see Section 6.1). The main conclusion is that
a guide field, even weak, can modify the electron dynamics in the EDR. In particular,
even if a change in the electron energy has been observed from the upstream region
to the EDR, MMS does not observe energetic electrons during the encounter.

The current sheet crossing takes place between 12:18:29 and 12:18:37 UTC. As
shown in Figure 1 in Zhou et al. [2019], the reversal of Bz (in GSM) is taking place
in correspondence of the ion jet reversal in vi,x and of the Bx reversal, indicative
of reconnection. Then, the typical signatures of the EDR are observed including
strong out-of-reconnection plane current JM , enhanced electron agyrotropy and large
temperature anisotropy Te,|| > Te,⊥.

The analysis by Zhou et al. [2019] is mainly a single-spacecraft study. However,
by performing a preliminary four spacecraft analysis, one can see that this event may
be suitable to investigate the structure of the EDR with multi-point observations and
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that it shows some signatures that has been already discussed for the magnetopause
event.

In Figure 7.10 the data are shown in the local coordinate system LMN which as
been defined in Zhou et al. [2019]. The L axis is roughly directed along the xGSM di-
rection, theM component is directed along the dawn-dusk direction pointing towards
dusk and N is roughly directed along zGSM and it is normal to the current sheet.
Figure 7.10(a) shows the L component of the magnetic field of the four spacecraft
which changes sign at ∼12:18:32.8 indicating the middle of the current sheet. At the
time of the BL reversal, the out-of-reconnection-plane current density JM reaches its
maximum value of ∼ 200 nA/m2 for all the probes (Figure 7.10(b)). The behaviour
of JM is rather similar for all the probes. However, MMS1 seems to observe several
current peaks at 12:18:31.5 and 12:18:32.5 while the current profiles observed by the
other spacecraft appear to be smoother. We need to carefully establish the trajectory
across the current sheet before drawing any conclusion and this will be done in future
work.

One of the main observations of the EDR magnetopause crossing that has been
analyzed throughout this Chapter is the enhanced JN ∼ JM in close proximity of the
reconnection site. In this case, JN is negligible compared to JM (Figure 7.10(c)).

On the other hand, similarly to the EDR encounter at the magnetopause, the
electric field components EM and EN (and EL) are rather similar in magnitude (Figure
7.10(d)–(f)). Even though the spacecraft separation is ∼ 2 de the electric field signal
looks different on the four spacecraft. For instance, while EM is positive for MMS1
and MMS2 in the region of enhanced current (12:18:31 – 12:18:36), it exhibit a dipolar
signature on MMS3 and it is mostly negative on MMS4 (Figure 7.10(e)). Differences
are observed also on the other components and also on the largest component EN .
In particular, while EN becomes clearly negative (reaching 30 mV/m) for MMS2 and
MMS4 in the region with positive BL, it fluctuates around zero for MMS1 (Figure
7.10(f)). In addition, both EM and EN are changing sign during the crossing for
MMS3 and MMS4 but while this is expected for EN – it reflects the Hall dynamics
– this behavior has to be clarified for EM . Then, EL reaches 10 mV/m and it stays
mostly positive for MMS3 while is rather large (∼ 5 mV/m) and negative for MMS4
(Figure 7.10(d)).

These differences in the electric field observations affect the energy dissipation.
E′LJL is mostly positive for MMS1 and MMS3 while it is negative for MMS4 and
MMS2 (Figure 7.10(g)). The contribution of E′NJN (Figure 7.10(i)) is small compared
to the others in this case, since JN is negligible. The main contribution to energy
conversion is provided by E′MJM which – similarly to the magnetopause case – is
bipolar for MMS3 while it stays mostly positive for MMS1 and MMS2 (Figure 7.10(h)).
E′MJM behaviour is more complex for MMS4 but E′MJM is mainly negative and larger
that on the other probes.

The energy conversion E′ · J (Figure 7.10(j)) is also changing sign during the
crossing on MMS3 and MMS4 indicating that there are regions in which energy is
converted back from the particles to the magnetic field (Figure 7.10(j)) and that the
energy conversion may be patchy. This is particularly clear for MMS4 but I underline
that these measurements have to be taken with care. As discussed in Section 7.6,
the electric field measurement are sensitive and are usually affected by large errors
that have to be taken into account. For the moment, I have not performed the error
analysis.

In conclusion, in this Section I have discussed an EDR encounter in the Earth’s
magnetotail which present some signatures in common (but also come differences)
with the magnetopause event involving a structured EDR presented in this Chapter.
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Figure 7.10: Four spacecraft (a) |B|; (b) JM ; (c) JN ; (d) EM ;(e)
EN ;(f) E′MJM ;(g) E′NJN ;(h) E′ · J.
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The preliminary analysis of this event and the comparison with the magnetopause
EDR crossing brings on several question.

1. Is energy conversion patchy within the EDR at the magnetotail? What are the
processes underneath this non-uniform energy conversion?

2. Why E′MJM exhibit a dipolar signature across the current sheet? This behavior
seems rather general since it has been also observed at the magnetopause.

3. Are the differences among spacecraft observations in E′ · J physical or they will
not be meaningful once the uncertainties are also taken into account?

4. In this case JN is negligible compared to the out-of-reconnection plane current
JM . At the magnetopause, the enhanced JN has been interpreted as due to
electrons exiting the EDR and performing oscillatory trajectories (see Section
7.7 and in particular Figure 7.8). Should we expect to observe this behaviour
also in the magnetotail? Are this oscillation present in both asymmetric and
symmetric configurations or they arise only when an asymmetry is present?

All these question will not be answered in the context of this Thesis but for sure
it is worth to continue this kind of investigation. No clear conclusions can be drawn
before having determined the precise trajectory of MMS relatively to the EDR and
before having taken into account the relative errors of the different quantities involved
in the analysis.

7.A Supplemental material about the determination of
the local coordinate system

As already pointed out in Section 7.4, during the current sheet crossing the MMS
spacecraft are initially within the IDR (as discussed in Section 7.5) so the current
densities and the magnetic field signatures are expected to be consistent with the Hall
pattern (see Section 2.4). However, when using the LMN system obtained with the
MVA, there is not a full agreement between JL and BM . Here, this inconsistency is
discussed and it is shown that a rotation the system of 17◦ around NMVA is sufficient
to eliminate the inconsistency without affecting other signatures.

Figure 7.11 shows Bz, By and Jz in the GSE coordinate system, in the LMN
coordinate system obtained with MVA and in the LMN coordinate system further
rotated of 17◦ degrees around NMVA direction. Since the LMN systems are actually
rather similar to GSE, Figure 7.11 shows in the same panel the GSE components
and the LMN components that are closest between each other (z and L, y and −M).
Being the the z (L) direction the maximum variance direction, the z (L) component
of both magnetic field and current are almost not affected by the changing in the
coordinate system. On the other hand, without the rotation BM changes sign twice
in interval BC.

As discussed in Section 7.5, in interval AB MMS is located north of the reconnec-
tion site on the magnetosheath side and BM > 0 (−BM < 0) there. In interval BC,
BL is still negative so MMS is still on the magnetosheath side. The positive peaks
in JL in interval BC are consistent with MMS crossing the magnetosheath separatrix
north of the reconnection site. The fact that −BM becomes positive in interval BC
would imply that MMS move south of the reconnection site on the magnetosheath
side (BL is still negative) and that MMS would come back again north of the recon-
nection site, as shown by the green line in Figure 7.12. Indeed, the magnetosheath
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Figure 7.11: (a) Bz and BL magnetic field components in the GSE
(black), LMN (blue) and LMNrotated (red) coordinate systems; (b)
By and −BM magnetic field components in the GSE (black), LMN
(blue) and LMNrotated (red) coordinate systems; (c) Jz and JL current
density components in the GSE (black), LMN (blue) and LMNrotated

(red) coordinate systems;

separatrix is observed again (second peak in JL) and −BM becomes negative again
at the end of interval BC. In such scenario, we would expect MMS to observe also
the magnetosheath separatrix south of the reconnection site between the two positive
peaks of JL but the value of JL is not consistent with this scenario (see Figure 7.12).

Therefore, in order to obtain consistency between JL and BM I have rotated the
coordinate system keeping the N direction fixed and rotating the L and M direction
of 17◦.

7.A Supplemental material about E′ ·J and the associated
error for the four spacecraft

This Section 4 discusses the computation of the maximum errors on E′ · J, E′LJL,
E′MJM , E′NJN . The maximum error on E′iJi is computed as follows

δ(E′iJi) = Ji δE
′
i + E′i δJi (7.3)

in which all the quantities are supposed to be not correlated and i = L,M,N . The
error on the electric field is δEi = 20%|E| when |E| > 1 mV/m and δEi = 0.1 mV/m
otherwise, based on statistical analysis on E and δEi. The errors on the electron and

4which is covering the Supplemental Material of [Cozzani et al., 2019]
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Figure 7.12: Illustration of the magnetopause crossing as inferred
from the data shown in the LMN (green line) or in the LMNrotated
coordinate systems. The four diamonds represents the projection of

MMS constellation on the LN plane.

ions moments are ∼ 10% and the magnetic field error is δB = 0.5 nT . The error on
E′ ·J is δ(E′ ·J) =

∑
i=L,M,N δ(E

′
iJi). The behavior of the different dissipation term is

qualitatively the same for all the spacecraft, for example E′NJN and E′MJM is bipolar
for all the probes (see Figure 7.13). Nevertheless, the errors are comparable to the
measured quantities except for MMS4, the only satellite for which the negative and
positive peaks of the dissipation terms are beyond the errors.
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Figure 7.13: (Top left) E′LJL and its associated maximum error for
the four spacecraft; (Top right) E′MJM and its associated maximum
error for the four spacecraft; (Bottom left) E′NJN and its associated
maximum error for the four spacecraft; (Bottom right) E′ · J and its

associated maximum error for the four spacecraft.
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ViDA: a Vlasov-DArwin solver for
plasma physics at electron scales
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As discussed in previous Chapters and especially in Chapter 5, numerical sim-
ulations have provided significant insights on the plasma dynamics at proton and
sub-proton spatial scales, where proton kinetic effects are dominant, while electrons
can be approximated as an isothermal fluid (hybrid framework) [Valentini et al., 2007].
In this range of scales, both Particle-In-Cell (PIC) and Eulerian hybrid codes (see Sec-
tion 5.2) have been extensively employed to investigate in detail a variety of physical
phenomena. When it comes to investigating the electron scales it is found that only
few numerical algorithms retaining both proton and electron kinetic physics are avail-
able at the moment. Most of them are PIC codes [Pritchett, 2000, Markidis et al.,
2010, Zeiler et al., 2002, Ricci et al., 2002, Horiuchi and Sato, 1999, Hesse et al., 2001,
Camporeale and Burgess, 2017, Grošelj et al., 2017, González et al., 2019] which are
able to capture also electron dynamics. However, PIC codes fail in providing a clean
description of small-scale fluctuations, both in space, e.g. when computing the electric
field behavior around the X-point, and in velocity space, for instance when calculating
particle distribution functions, because of the intrinsic statistical noise (see Section
5.2). This problem can be overcome by using noise-free Eulerian algorithms, which, on
the other hand, generally require a computational cost significantly larger than PIC
codes [Büchner, 2007, and references therein]. The first attempts to describe plasma
dynamics with Eulerian fully-kinetic codes has been reported in Section 5.2. This
approach has recently become more affordable thanks to the improved supercomputer
capabilities.

The ViDA (Vlasov-DArwin) code is a fully-kinetic Eulerian code that has been
developed to advance in the understanding of electron scale processes in plasmas. In
order to reduce the computational cost, the so-called Darwin approximation [Kaufman
and Rostler, 1971, Birdsall and Langdon, 1985, Schmitz and Grauer, 2006a] is applied.
Within this approximation, all wave modes are retained except for light waves so
that the constraint over the time step can be significantly relaxed. The ViDA code
integrates numerically the kinetic equations for a non-relativistic, globally-neutral
plasma composed of ions and electrons. Equations are discretized on a fixed grid
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in phase space with periodic boundary conditions in the physical domain. ViDA
originates from the hybrid Vlasov-Maxwell (HVM) code [Valentini et al., 2007] and it
has been extended to include electron kinetic dynamics.

This Chapter is meant to revisit the Darwin approximation, to discuss in detail the
strategy of the numerical integration – namely the time splitting method for the dis-
tribution function of the two species and spectral method for the electromagnetic field
– and to describe the algorithm design. Parallelization strategies and performances
of the algorithm are also presented. As detailed in Pezzi et al. [2019], the code has
been widely tested and it correctly reproduces the propagation of electrostatic Lang-
muir waves, whistler waves and Alfvén waves. Another test describes the onset of the
electron Weibel instability, a plasma instability driven by the presence of a electron
temperature anisotropy [Weibel, 1959]. Then, a test of the Vlasov-Darwin algorithm
has been performed on a magnetic reconnection setup, including full ion and electron
dynamics. Since the Thesis is devoted to the study of magnetic reconnection, this test
in particular will be discussed in Section 8.4 while the reader is referred to [Pezzi et
al., 2019] for details about the other tests. A large part of this Chapter is presented
in [Pezzi et al., 2019]. However, (i) Section 8.1 contains an extended discussion on the
Darwin approximation, (ii) the splitting method is more largely discussed in Section
8.3 compared to the paper for sake of clarity in the context of the Thesis.

8.1 The Darwin approximation

Darwin approximated Lagrangian

According to the classical electromagnetic theory, the power P radiated by an electron
is P ∝ (e2/c3)d2v/dt2. This dissipation cannot be represented in a Lagrangian form.
It follows that if we want to approximate the Lagrangian of an electron which is
moving in the potential due to another charged particle, we must not expect to be
able to find a Lagrangian accurate beyond the terms of second order in the parameter
v/c.

The fully relativistic Lagrangian L of a single particle moving in an electromagnetic
field is

L = −m1c
2β1 − e1φ+

e1

c
(ṙ1,A) (8.1)

where φ is the scalar potential and A is the vector potential

E = −∇φ− 1

c

∂A

∂t
B = ∇×A. (8.2)

Here, e1 is the particle charge, m1 is the particle mass, r1 its position and β1 =√
1 + |ṙ1|/c2. Now, suppose that there is a second particle of charge e2 located at r2.

The potentials φ and A can be written as follows

φ =
e2

(r + (ṙ2, r2 − r1)/c)

∣∣∣∣∣
ret

(8.3)

A =
e2

c

ṙ2

(r + (ṙ2, r2 − r1)/c)

∣∣∣∣∣
ret

(8.4)

where r =
√

r2
1 + r2

2. These quantities must be evaluated at the retarded times. If
the delay of the reception by e1 of the signal departing from e2 is τ then we have
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[Darwin, 1920]

c2τ2 = r2 − r1 − ṙ2τ +
1

2
r̈2τ

2 − . . . (8.5)

and we get

τ =
r

c
− 2τ

(ṙ2, r2 − r1)

c2
+

r

2c3
[ṙ2

2 + (r̈2, r2 − r1) + (ṙ2, r2 − r1)2/r2]− . . . (8.6)

Hence, the approximated expression for the potentials is

φ =
e2

r
+

e2

2c2

[
ṙ2

2 + (r̈2, r2 − r1)

r
+

(ṙ2, r2 − r1)2

r3

]
(8.7)

A =
e2

c

ṙ2

r
. (8.8)

In order to obtain the above expression for A, we only used the first term of
Eq.(8.6) since A is already multiplied by a factor 1/c in Eq.(8.1). The approximation
of φ and A implies that the potentials are not evaluated at the retarded times i.e. the
delays are neglected. Substituting Eq.(8.7)–(8.8) in Eq.(8.1) we obtain

L = −m1c
2β1 −

e1e2

r
− e1e2

2c2

[
ṙ2

2 + (r̈2, r2 − r1)− 2(ṙ1, ṙ2)

r
+

(ṙ2, r2 − r1)2

r3

]
(8.9)

Adding−m2c
2β2 and the total derivative (e1e2/2c

2)[d((ṙ2, r2−r1)/r)/dt] to Eq.(8.9)
provides a Lagrangian which is symmetric to the exchange of e1 and e2. The two added
terms have no effect on the equations of motion derived from Eq.(8.9). In addition,
Eq.(8.9) describes also the motion of e2 in the fields produced by e1. Now, we rewrite
Eq.(8.9) as follows

L = −m1c
2β1 −m2c

2β2 −
e1e2

r
+
e1e2

2c2

[
(ṙ2, ṙ1)

r
+

(ṙ2, r2 − r1)(ṙ1, r2 − r1)

r3

]
(8.10)

and we expand also the term involving βi consistently to the other term, i.e. up to
v2/c2

−m1c
2β1 = −m1c

2 1√
1 +

ṙ21
c2

= −m1c
2 +

1

2
m1ṙ

2
1 +

1

8c2
m1ṙ

4
1 + . . . (8.11)

Substituting in Eq.(8.9) we get

L =
1

2
m1ṙ

2
1+

1

8c2
m1ṙ

4
1+

1

2
m2ṙ

2
2+

1

8c2
m2ṙ4

2−
e1e2

r
+
e1e2

2c2

[
(ṙ2, ṙ1)

r
+

(ṙ2, r2 − r1)(ṙ1, r2 − r1)

r3

]
(8.12)

that can be easily generalized for N charged particles as

L =

N∑
a=1

1

2
maṙ

2
a+

1

8c2
maṙ

4
a−
∑
b<a

eaeb
rab

+
∑
b<a

eaeb
2c2

[
(ṙb, ṙa)

rab
+

(ṙb, rb − ra)(ṙa, rb − ra)

r3
ab

]
.

(8.13)
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This is the approximated Lagrangian obtained by Darwin [1920]. The scalar and
vector potential read

φ =
∑
b<a

eb
rab

(8.14)

A =
∑
b<a

eb
2c

[
(ṙb, ṙa)

rab
+

(ṙb, rb − ra)(ṙa, rb − ra)

r3
ab

]
(8.15)

Following [Krause et al., 2007], we write the potentials as functions of a continuum
variable, the position x:

φ(x, t) =
∑
b

eb
|x− rb|

(8.16)

A(x, t) =
∑
b

eb
2c

ṙb + (ṙb, r̂b)r̂b
|x− rb|

(8.17)

Darwin approximation in plasma physics

The Darwin approximation has found application in the contest of magnetised plas-
mas. As already mentioned in Section 5.2.3, when we consider the system of the
Vlasov-Maxwell equations, the CFL (Courant-Friedrichs-Lewy) stability condition is
introduced by the time integration of the fields. The CFL condition imposes a con-
straint on the time step ∆t, since also the fast electromagnetic wave modes (the
vacuum mode) has to be resolved on the grid. However, by assuming v2 � c2, we
get a set of equations where the vacuum (transverse) modes are eliminated while all
other wave modes are retained. Hence, a condition for the Darwin’s approximation
to be used is that the system is non-relativistic.

Let us consider the Maxwell equations (in cgs units):

∇ ·E = 4πen (8.18)
∇ ·B = 0 (8.19)

∇×E = −1

c

∂B

∂t
(8.20)

∇×B =
4π

c
j +

1

c

∂E

∂t
(8.21)

According to the Helmholtz theorem [Griffiths, 1962], the electric field can be de-
composed into a longitudinal, irrotational component EL and a transverse, solenoidal
component ET . By definition, ∇×EL = 0 and ∇ ·ET = 0. Hence,

∇ ·EL = 4πen (8.22)
∇ ·B = 0 (8.23)

∇×ET = −1

c

∂B

∂t
(8.24)

∇×B =
4π

c
j +

1

c

∂EL
∂t

+
1

c

∂ET
∂t

(8.25)

The Darwin approximation consists in neglecting the

1

c

∂ET
∂t
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term in Eq.(8.25) [Schmitz and Grauer, 2006a, Pezzi et al., 2019] so that the final
Maxwell-Darwin system of equations is

∇ ·EL = 4πen (8.26)
∇ ·B = 0 (8.27)

∇×ET = −1

c

∂B

∂t
(8.28)

∇×B =
4π

c
j +

1

c

∂EL
∂t

(8.29)

An advantage of using Darwin approximation is that Eqs.(8.27)–(8.29) can be solved
without performing a time integration step and the fields are computed through the
moments of the distribution at a given time. This point will be clarified in Section
8.2.

It is not trivial to see the equivalence between the Darwin approximation as de-
scribed in Darwin [1920] and its formulation given in this Section. This correspondence
is clarified in the next Section.

A unified approach

Following Krause et al. [2007], we want to show that the Darwin approximation as
depicted by Darwin [1920] is equivalent to the formulation usually adopted in the
field of plasma physics (see Section 8.1). The approximation, as formulated in Darwin
[1920], basically consists in neglecting the delay in the evaluation of the retarded
potentials. This is translated in plasma physics in neglecting the term involving ET in
the Ampère equation, Eq.(8.25). Krause et al. [2007] have shown that from neglecting
the delay of the retarded potentials we can obtain the approximated Maxwell equations
that are commonly called Maxwell-Darwin equations. We report here the quasistatic
approach ([Krause et al., 2007], Section II.A).

The Maxwell equations for the potentials are:

∇2φ+
1

c

∂

∂t
(∇ ·A) = −4πen (8.30)

∇2A− 1

c2

∂2A

∂t2
−∇

(
∇ ·A +

1

c

∂φ

∂t

)
= −4π

c
j (8.31)

We use the Coulomb gauge (∇ ·A = 0) and we obtain

∇2φ = − 4πen = − 4πρ (8.32)

∇2A− 1

c2

∂2A

∂t2
=

1

c

∂∇φ
∂t
− 4π

c
j (8.33)

The solutions for these equations in the case of unbounded region are known [Jackson,
2002]:

φC(x, t) =

∫
d3x′

ρ(x′, t)

|x− x′|
(8.34)

AC(x, t) =
1

c

∫
d3x′

(j(x′, t′)− r̂[r̂ · j(x′, t′)])ret
|x− x′|

+

+ c

∫
d3x′

1

|x− x′|3

∫ r/c

0
dτ τ(3r̂[r̂ · j(x′, t− τ)]− j(x′, t− τ)) (8.35)
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where r = |x− x′| and ret indicates that the quantities are evaluated at the retarded
time t′ = t− r/c. In the quasistatic approach the delay is neglected so we remove ret
from the first part of the expression for AC and we compute the second integral with
the substitution t− τ → t. Therefore,

Aqs
C (x, t) =

1

2c

∫
d3x′

j(x′, t) + r̂(r̂ · j(x′, t))
|x− x′|

(8.36)

This is the continuum analog of the potential derived by Darwin [1920] in Eq.(8.17).
Now, the scalar potential φC satisfies the Poisson’s equation

∇2φC = −4πρ. (8.37)

Then, we want to compute the Ampère equation involving Aqs
C . Since ∇ × B =

∇ × (∇ × A) = −∇2A + ∇(∇ · A) that in the Coulomb gauge reduces to −∇2A,
Ampère equation becomes a Poisson equation for A. We compute −∇2Aqs

C from
Eq.(8.36)

∇2Aqs
C =

1

2c

∫
d3x′∇2

x

[
j(x′, t) + r̂(r̂ · j(x′, t))

|x− x′|

]
=

=
1

2c

∫
d3x′ [j(x′, t) + r̂(r̂ · j(x′, t))]∇2

x

1

|x− x′|
+

+
1

2c

∫
d3x′

1

|x− x′|
∇2

x[j(x′, t) + r̂(r̂ · j(x′, t))] =

= −4π

c
j +

1

c

∫
d3x′

1

r3
[j(x′, t)− 3r̂(r̂ · j(x′, t))] (8.38)

Now we decompose the vector j into its longitudinal and transverse component j =
jL + jT [Griffiths, 1962] that can be written in a general form as follows:

jT (x, t) =
1

4π
∇×∇×

∫
d3x′

j(x′, t)

r
(8.39)

(8.40)

jL(x′, t) = − 1

4π
∇
∫

d3x′
∇x′ · j(x′, t)

r
(8.41)

(8.42)

The longitudinal component may be expressed as

jL(x, t) =
1

4π

∫
d3x′

1

r3
[J(x′, t)− 3r̂(r̂ · J(x′, t))] (8.43)

If we substitute in Eq. (47) in the expression for ∇2Aqs
C we obtain:

∇2Aqs
C = −4π

c
j +

4π

c
jL = −4π

c
jT (8.44)

meaning that only the transverse currents participate to Ampère equation. Krause et
al. [2007] have called this formulation the quasistatic approach. They have shown that
this approach is equivalent to the so-called operator approximation approach where
the structure of Eqs.(8.32)–(8.33) is modified from the beginning by neglecting the
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term (1/c2)∂2A/∂t2, which is the one responsible for the retard

∇2φ+
1

c

∂

∂t
(∇ ·A) = − 4πρ (8.45)

∇2A−∇(∇ ·A)− 1

c

∂∇φ
∂t
− 4π

c
j (8.46)

With the ansatz ∇ ·A = 0 and after calculations (see [Krause et al., 2007], Section
II.B) it is found that also in this case the vector potential satisfies the same equation
as Aqs

C , Eq.(8.44). Hence, the two methods are not equivalent a priori but they lead to
the same result. Krause et al. [2007] have shown also that these approaches derive from
an action principle and they re-obtain the action principle found in Darwin [1920]. In
addition, if Eq.(8.37)–(8.44) are written in terms of the fields E andB using Eq.(8.32)–
(8.33) we obtain the Maxwell equations written in the Darwin approximation as in
Eq.(8.27)–(8.29).

8.2 The Vlasov-Darwin model of the ViDA code

In this Section we present the dimensionless equations that compose the Vlasov-
Darwin model implemented in the ViDA code [Pezzi et al., 2019]. We also show that
the Maxwell-Darwin equations can be written as Helmholtz-like equations so that
the only quantity that has to be evolved in time is the distribution function for each
species. The system of equations, composed by the Vlasov equations self-consistently
coupled to the Maxwell-Darwin equations, reads:

∂tfα + v · ∇fα +
Zαe

mα

(
E +

v

c
×B

)
· ∇vfα = 0 (8.47)

∇ ·EL = 4πen (8.48)
∇ ·B = 0 (8.49)

∇×ET = −1

c
∂tB (8.50)

∇×B =
1

c
∂tEL +

4π

c
j (8.51)

where fα(x,v, t) is the distribution function (DF) of the α = p, e species, and mα and
Zα the mass and charge number of the α species, respectively. The plasma number
density n(x, t) and the current density j(x, t) are defined through the first two velocity
moments of the particle DFs:

n =
∑
α

Zαnα =
∑
α

Zα

∫
dv fα (8.52)

j =
∑
α

jα = e
∑
α

ZαnαVα = e
∑
α

Zα

∫
dv v fα (8.53)

By normalizing these equations using a characteristic length L̄, time t̄, velocity Ū =
L̄/t̄, mass m̄ and distribution function fα,0 = n̄/Ū3 (being n̄ = L̄−3 the equilib-
rium density), it is straightforward to get the dimensionless Vlasov-Darwin system of
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equations:

∂tfα + (v · ∇) fα +
Zα
µα

(E + v ×B) · ∇vfα = 0 (8.54)

∇ ·EL = ζ2n (8.55)
∇ ·B = 0 (8.56)
∇×ET = −∂tB (8.57)
∇×B = ū2∂tEL + ū2ζ2j (8.58)

In Eqs.(8.54–8.58), the electric and magnetic fields are normalized to Ē = m̄Ū/et̄ and
B̄ = m̄c/et̄, respectively. Note also that we set kB = 1. Non-dimensional parameters
are µα = mα/m̄, ū = Ū/c and ζ = ω̄pt̄, being ω̄p =

√
4πe2n̄/m̄.

Equations (8.55–8.58) can be further simplified to obtain a set of Helmholtz-like
equations that do not contain explicit time derivatives (see Schmitz and Grauer [2006a]
for details). Hence, the system (8.54–8.58) can be re-written as follows

∂tfα + (v · ∇) fα +
Zα
µα

(E + v ×B) · ∇vfα = 0 (8.59)

∇2φ = −ζ2
∑

Zαnα EL = −∇φ (8.60)

∇2B = −ū2ζ2∇× j (8.61)

∇2ÊT − ū2ζ2
∑
α

Z2
αnα,0
µα

ÊT = ū2ζ2

[
−∇ ·

∑
α

Zα〈vv〉α+

+
∑
α

Z2
α

µα
(nαEL + 〈v〉α ×B)

]
(8.62)

∇2Θ = ∇ · ÊT ET = ÊT −∇Θ (8.63)
∇ ·B = 0 (8.64)

where 〈h〉α =
∫
dvfαh. Note that in Eq.(8.62) we have omitted a term ū2∇∂ttφ

which could generate, in principle, an irrotational component, and we have introduced
Eqs.(8.63) to preserve the solenoidality of ET [Schmitz and Grauer, 2006a]. The
spatial dependence of nα on the left-hand side of Eq.(8.62) has been neglected (nα '
nα,0) to let coefficients be constant [Valentini et al., 2007].

It is worth noticing that, since Darwin equations are a set of Helmholtz-like equa-
tions, initial perturbations have to be introduced through the particle DFs. This
represents a difference with respect to standard codes where also magnetic perturba-
tions can be introduced and it is important for the design of the initial condition, as
it will be addressed in Section 9.1.

At variance with previous models [Valentini et al., 2007], the Darwin model re-
tains the longitudinal component of the displacement current. In this viewpoint, the
Darwin system is closer to the full Maxwell system with respect to models where the
displacement current is completely neglected.

8.3 ViDA algorithm and code design

The Vlasov equation for each species is integrated numerically by employing the
time splitting method first proposed by Cheng and Knorr [1976] to solve the Vlasov-
Poisson system in the electrostatic limit and later extended to the full electromagnetic
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case [Mangeney et al., 2002]. Maxwell-Darwin equations are solved through standard
Fast Fourier Transform (FFT) algorithms.

The splitting scheme

As already mentioned, the ViDA code has been developed as the extension of the
hybrid Vlasov-Maxwell code presented in Valentini et al. [2007]. In particular, the
splitting algorithm used in the ViDA code for the distribution functions of the two
species is exactly the one implemented in the hybrid Vlasov-Maxwell code for the
ion distribution function. In this Section we revise the splitting scheme addressed in
[Valentini et al., 2007, Mangeney et al., 2002].

The Vlasov equation (8.59) is a multidimensional advection equation. The char-
acteristics of Eq.(8.59) correspond to the particle trajectories (we suppose µα = 1 and
Zα = −1 for simplicity)

dx

dt
= v,

dv

dt
= −(E + v ×B) (8.65)

and they describe a Hamiltonian flow T t in phase space so that a point in phase space
z = (x,v) evolves as follows

z(z0, t) = T tz0.

The Hamiltonian flow T t is reversible and preserves the volume in phase space.
Now, the evolution of the distribution function f(z, t) can be written in terms of

T t
f(z, t) = f0(T −tz) = T tf0(z)

where f0 is the distribution function at t = 0 and T is the operator that evolves
the distribution function. In order to provide an approximation for T t the splitting
method is used.

We consider the electrostatic case to introduce the splitting method. In that case,
the particle motion is described by the Hamiltonian

H =
v2

2
+ φ(x)

and the Vlasov equation can be written in terms of H

∂f

∂t
= −[H, f ] ≡ Λf

so that the evolution operator is T t = Λt. In this case, the Hamiltonian can be split
into two parts (H1 = v2/2 and H2 = φ(x)) so that

∂f

∂t
= −[H, f ] = −[H1 +H2, f ] = −[H1, f ]− [H2, f ] ≡ Λ1t+ Λ2t

The two operators eΛ1t and eΛ2t correspond to translations in regular space or velocity
space so that

eΛ1tf(x, v) = f(x− vt, v), eΛ2tf(x, v) = f(x, v+ (∂φ/∂x)t) = f(x, v−E(x)t).

It can be shown that

eΛt = lim
N→∞

[
exp

(
Λ2t

2N

)
exp

(
Λ1t

N

)
exp

(
Λ2t

2N

)]N
. (8.66)
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For a finite time step τ = 1/N the second order approximation of eΛt is

eΛτ = exp

(
Λ2τ

2

)
exp(Λ1τ) exp

(
Λ2τ

2

)
+O(τ3). (8.67)

The operator eΛτ corresponds to an approximation of the Hamiltonian flow T t to the
second order

xτ = T tx0 = x+ τv +
τ2

2
E
(
x+ v

τ

2

)
, vτ = T tv0 = v + τE

(
x+ v

τ

2

)
. (8.68)

This transformation is symplectic, i.e. it conserves the volume in the phase space
(dxdv = dxτdvτ ). If Λ1 and Λ2 commute we can further write

eΛτ = exp[(Λ1 + Λ2)τ ].

However, Eq.(8.67) is valid for every decomposition of the Hamiltonian.
The following step consists in generalizing this approach to a case with both electric

and magnetic field arbitrarily directed. Analogously to Eq.(8.67), the time advance
operator is actually formed by seven translation operators for the velocity space.
Following Mangeney et al. [2002], we define

Θx = (Ex+(v×B)x)
∂

∂vx
, Θy = (Ey +(v×B)y)

∂

∂vy
, Θz = (Ez +(v×B)z)

∂

∂vz

and
Ωz(τ) = exp

(
Θxτ

2

)
exp(Θyτ) exp

(
Θxτ

2

)
(8.69)

and
Λxyz = −

(
vx

∂

∂x
+ vy

∂

∂y
+ vz

∂

∂z

)
(8.70)

which is the operator of translation in the regular space.
Hence, the time advance of the distribution function is performed as follow

f(x,v, τ) = exp

(
Λxyzτ

2

)[
Ωz

(τ
2

)
exp(Θzτ)Ωz

(τ
2

)]
exp

(
Λxyzτ

2

)
f(x,v, 0) =

= exp

(
Λxτ

2

)
exp(Λvτ) exp

(
Λxτ

2

)
(8.71)

where Λx is the advection operator in regular space and Λv is the operator in ve-
locity space. To maintain second-order accuracy in τ , the electric and magnetic fields
which are used to calculate the force in Θi (i = x, y, z) are determined self consistently
by solving the Maxwell-Darwin equations using currents and charges calculated with
the translated distribution function exp

(
Λxτ

2

)
f (after the first half-time step).

Note that Eq.(8.69) has been defined as depending upon Θi and Θj with i = x,
j = y but this choice it arbitrary for any i, j = x, y, z.

Within the ViDA code, both spatial and velocity advections have been performed
through a third-order Van Leer scheme. The details of this scheme are not detailed
here but they are fully addressed in [Mangeney et al., 2002, Section 3.3.1 and Appendix
III]
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Structure of the algorithm of ViDA

The structure of ViDA for advancing the distribution functions from the time instant
tn to the time instant tn+1 is the following (see Mangeney et al. [2002] for the definition
of the advection operators in physical and velocity space, respectively Λx and Λv):

1. Performing the physical-space advection: f̃nα = Λxf
n
α , where fnα is the α-species

distribution function at the time instant tn;

2. Computing the moments of f̃nα : nα, 〈v〉α and 〈vv〉α and evaluating the electro-
magnetic fields EL, ET and B, solving Eqs. (8.60–8.64) through standard Fast
Fourier Transform (FFT) algorithms;

3. Performing the velocity-space advection fn+1 = Λvf̃
n
α .

A check on the solenoidality of B and ET is implemented at each time step.
The phase space domain is discretized as follows. The physical spaceDx = [0, Lx]×

[0, Ly]× [0, Lz] is discretized with Nx×Ny ×Nz gridpoints. Boundary conditions are
periodic in all directions. The velocity space Dv,α = [−vmaxα,x , v

max
α,x ] × [vmaxα,y , v

max
α,y ] ×

[−vmaxα,z , v
max
α,z ] is discretized by (2Nα,vx + 1)× (2Nα,vy + 1)× (2Nα,vz + 1) grid points.

Different grids in phase space for the distribution function of protons and electrons
are used. This is justified since the Vlasov-equations for protons and electrons are
only coupled by the electromagnetic field. Velocity-space boundary conditions impose
fα(|vi| > vmaxα,i ) = 0 (i = x, y, z). In order to ensure mass conservation, vmaxα,i is
typically set to be a large multiple of the thermal speed vth,α =

√
Tα/mα.

The ViDA algorithm has been designed in such a way that the user can select
(i) different normalizations of the model equations, (ii) the possibility of setting mo-
tionless protons and (iii) different dimensionalities of the physical-space domain (1D,
2D, or 3D), the velocity-space domain being always three-dimensional (3V ). Spatial
vectors always have three components but they can depend upon one, two or three
spatial variables, depending on the physical-space dimensionality.

Normalizations of the Vlasov-Darwin equations

In order to normalize Eqs.(8.59–8.64), three possible choices have been implemented
in ViDA:

1. Electrostatic normalization. Characteristic quantities are: length L̄ = λD,e,
time t̄ = ω−1

p,e , velocity Ū = vth,e and mass m̄ = me. Here λD,e =
√
Te/4πnee2,

ωp,e =
√

4πnee2/me, vth,e =
√
Te/me = λD,eωp,e and me are the electron

Debye length, the electron plasma frequency, the electron thermal speed and
the electron mass, respectively. This normalization is appropriate for describing
phenomena occurring at electron scales, such as the propagation of electrostatic
plasma waves.

2. Electromagnetic normalization. Characteristic quantities are: length L̄ = de,
time t̄ = ω−1

p,e , velocity Ū = c and mass m̄ = me, where de = c/ωp,e is the electron
skin depth. This normalization can be adopted for describing electromagnetic
phenomena, where both protons and electrons are involved, such as magnetic
reconnection and plasma turbulence at kinetic scales.

3. Hybrid normalization. Characteristic quantities are: length L̄ = dp, time t̄ =
Ω−1
c,p , velocity Ū = vA and mass m̄ = mp. In previous expressions Ωcp =

eB0/mpc, vA = B0/
√

4πnpmp, dp = vA/Ωcp and mp are the proton cyclotron
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frequency, the proton Alfvén speed, the proton skin depth and the proton mass,
respectively. This normalization is useful for investigating the turbulent cascade
in the sub-proton range, where electron physics starts to play a role.

Parallelization and computational cost

Since the computational effort needed to evolve the Vlasov-Darwin system of equa-
tions is significant, the ViDA code is massively parallelized. The standard paral-
lelization protocols are the Message Passing Interface (MPI) and the Open Multi-
Processing (openMP) interface that supports shared memory multiprocessing pro-
gramming. The parallelization of the ViDA code is based on the synergy between
the MPI and OpenMP paradigms. The MPI paradigm is adopted to parallelize the
computational domain of the regular space for particle distribution functions, their
moments and the electromagnetic field so that each MPI thread accesses a portion of
phase space (cubic cells in 3D and squared cells in 2D), composed by a sub-portion
of the regular space and by the whole velocity space. Within each MPI thread, the
OpenMP directives are adopted to parallelize the velocity-space cycles.

Preliminary performance tests of ViDA have been implemented on the Marconi-
KNL cluster at the CINECA supercomputing center (Casalecchio di Reno (BO), Italy)
and they are presented in [Pezzi et al., 2019]. The Marconi cluster is equipped with
3600 Lenovo Adam Pass nodes, interconnected through the Intel OmniPath network
and each one composed by 1KNL processor (68 cores, 1.40GHz), formally 96 GB of
RAM (effective 83 GB) and 16 GB of MCDRAM. The tests have been performed on a
simple equilibrium configuration (Maxwellian DFs with no perturbations). It is found
that, for 2D simulations and within the current parallelization, the best performance
is achieved with 32 MPI threads and 2 OpenMP tasks per node on a KNL system.
These preliminary tests show a reasonable parallel efficiency on KNL architecture, at
least up to some hundreds cores.

Concerning the computational costs, the ViDA code is about twice as computa-
tionally expensive as the HVM code [Valentini et al., 2007], which has been recently
used for 3D simulations of plasma turbulence (see for instance [Cerri et al., 2018]).
More specifically, the reconnection run presented in Section 8.4 – which is the most
expensive test peformed in Pezzi et al. [2019] in terms of required computational re-
sources – has a cost of slightly less than 0.1 Mh on Marconi supercomputer using 16
nodes and 512 MPI processes. On the other hand, being ViDA a code for a new piece
of physics, it is difficult to foresee for the exact cost of a 3D reconnection (or turbu-
lence) run because the numerical and physical parameters, as well as the duration of
the run, can vary significantly with respect to the standard ones used with the HVM
code. Based on the experience with the HVM code, it can be suggested that a high
resolution 3D run of magnetic reconnection focusing on the electron physics would
take from a few to a few tens of Mh.

8.4 Dynamics of magnetic reconnection

This Section presents results of a magnetic reconnection simulation. Vlasov simu-
lations of magnetic reconnection represent a strong numerical challenge because of
the huge memory and CPU time required by Eulerian algorithms. This approach, if
successful, would certainly provide a crucial contribution to the understanding of the
magnetic reconnection process especially at electron scales, thanks to the fact that
Eulerian algorithms allow for an almost noise-free description of fields and particle dis-
tribution functions. A noise-free description is crucial to properly understand which
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electromagnetic fluctuations contribute to the reconnection electric field in the form
of anomalous resistivity and how distribution functions are modified leading to elec-
tron heating. Indeed, the contribution of the terms of Ohm’s law to the reconnection
electric field is investigated in Chapter 9 by means of simulations performed with the
ViDA code.

I have performed a 2D–3V (two dimensional in physical space and three dimen-
sional in velocity space) symmetric magnetic reconnection simulation. The initial
condition of our simulation is the one adopted in the Geospace Environmental Model-
ing (GEM) magnetic reconnection challenge [Birn et al., 2001], in order to allow for a
direct comparison to previous studies [Birn et al., 2001, Schmitz and Grauer, 2006b].
For this reason, I have also chosen the hybrid normalization so that the characteristic
length L̄ , time t̄, velocity Ū and mass m̄ are L̄ = dp, t̄ = Ω−1

c,p , Ū = vA and m̄ = mp

respectively.
The equilibrium is set by adapting the Harris equilibrium [Harris, 1962] to the

periodic boundary conditions in the spatial domain. In particular, the component of
the magnetic field Bx(y) corresponding to the double current sheet profile reads:

Bx(y) = B0

[
tanh

(
y − Ly/2

L1

)
− tanh

(
y

L2

)
− tanh

(
y − Ly
L2

)]
. (8.72)

This profile is characterized by the presence of two gradients (corresponding to the
current sheets) varying as an hyperbolic tangent and located at y = Ly/2 and y = 0
(and so at y = Ly) where Ly is the length of the spatial domain in the y direction. The
first hyperbolic tangent is the one defined in Harris [1962] and L1 is the corresponding
current sheet thickness. The second and third hyperbolic tangent in Eq.(8.72) have
been included to satisfy the spatial periodicity; the value of L2 is taken sufficiently
large compared to L1 to slow down the development of reconnection in the second
current sheet with respect to the main one. In this way, reconnection initially develops
only at the steeper current sheet while the less steep one stays basically inactive during
the time interval that is taken into account. Figure 8.1 shows the evolution of the
z component of the magnetic field in the whole domain of the simulation for four
different times. When Bz exhibits an enhanced quadrupolar pattern we can infer that
reconnection is ongoing. At the initial time, the GEM-like perturbation is imposed
on both the current sheet. During the time interval in which reconnection is ongoing
in the current sheet in the upper part of the reconnection box (panels (c) and (d)),
the lower current sheet is still not active and Bz there is negligible compared to the
Hall magnetic field of the steeper current sheet.

The electron and ion temperature are set uniform at the initial time and the
density n(y) is defined in order to satisfy pressure balance. Then, from Eq.(8.51)
and considering ∂tEL = 0 at the initial time, we get the initial current density j =
(0, 0, jz(y)).

Following the prescriptions of the Harris equilibrium we get, in normalized units,

n0(Te + Tp) =
B2

0

2
(8.73)

ue,0
Te

= −up,0
Tp

(8.74)

jz(y)

n(y)
≡ u0 = up,0 − ue,0 (8.75)

Eq. (8.74) corresponds to the no charge separation condition of the Harris equilibrium
so that quasi-neutrality is imposed, ne(y) = np(y) = n(y). In other words, the electric
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Figure 8.1: Contour plots of Bz at four different times (a) t∗ =
7.88 Ω−1c,p; (b) t∗ = 11.45 Ω−1c,p; (c) t∗ = 15.27 Ω−1c,p; (d) t∗ = 18.61 Ω−1c,p.
The domain has been shifted of 7.5 dp in the y direction in order to
better visualize both current sheets. The contour lines of the magnetic

flux ψ are superposed.

field is zero at the initial time. Moreover, from Eqs.(8.74)–(8.75) we have:

ue,0 = − u0

1 + Tp/Te
(8.76)

up,0 =
u0

1 + Te/Tp
(8.77)

More details about the design of the initial condition for the magnetic reconnection
run performed with the ViDA code are discussed in Section 9.1.

It is worth to point out that this is not an exact Vlasov kinetic equilibrium. In
particular, it differs from the equilibrium presented by Harris since in this simulation
the spatial domain is periodic in the varying y-direction. On the other hand, the
initial configuration is in force balance and I have checked that the initial equilibrium
is not significantly affected by, for example, ballistic effects within the time scale of
reconnection considered here.

As for the GEM challenge [Birn et al., 2001], fluctuations are superposed to the
initial magnetic field in order to obtain a single magnetic island at the center of the
space domain at the initial time. In particular, δB = ∇δψ × ẑ and

δψ(x, y) = ψ0 cos(2πx/Lx) cos(2πy/Ly) (8.78)

where, Lx and Ly are the lengths of the spatial domain in x and y direction respec-
tively. According to GEM challenge, in scaled units, ψ0 is set to 0.1.

By using the relation δB(x, y) = ∇δψ(x, y) × ẑ and Eq.(8.61), we derive the
expression for the current density fluctuations δj(x, y) consistent with δψ(x, y). In
particular, it is possible to define δj(x, y) = (0, 0, δjz(x, y)). Finally, the initial elec-
tron and proton distribution functions are shifted Maxwellian distributions with drift
velocities along the z direction and temperature Te and Tp. A uniform background
density n∞ is added for both electrons and protons. The background plasma does not
affect the pressure balance but it guarantees that the distribution functions are well
characterized in the whole simulation box.
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Figure 8.2: Time evolution of the reconnected magnetic flux ∆ψ.

The phase space has been discretized with Nx×Ny = 512× 512 gridpoints in the
spatial domain, Ne,vx ×Ne,vy ×Ne,vz = 41× 41× 81 gridpoints in the velocity domain
for electrons and Np,vx×Np,vy×Np,vz = 31×31×31 gridpoints in the velocity domain
for protons. Also vmaxe = 5 vth,e and vmaxp = 5 vth,p, where the normalized vth,p is
set to 1. Other simulation parameters are L1 = 0.5dp, L2 = 2.5dp, mp/me = 25,
n∞ = 0.2, Te/Tp = 0.2, Lx = Ly = 25.6dp, ∆y = ∆x = Lx/Nx = 0.05 dp = 0.25 de.
Also, I set B0 = 1 and n0 = 1 where B0 is the asymptotic magnetic field while n0 is
the value of the density at the peak in the center of the current sheet. All parameters
are chosen to be as close as possible to the simulation parameters listed in Birn et al.
[2001].

Figure 8.2 shows the evolution of the reconnected flux given by the difference ∆ψ
between the magnetic flux ψ evaluated at the X point and at the O point. Accordingly
to the initial perturbation, the X and the O point are initially located at (Lx/2, Ly/2)
and (0, Ly/2) and their location does not significantly change throughout the simu-
lation run. The behavior of ∆ψ is very similar to the evolution of the reconnected
flux in Ref. [Birn et al., 2001]. Reconnection evolves with a reconnected flux that
remains close to zero until t ∼ 15 Ω−1

c,p , when a sharp increase is observed. Then,
the reconnection rate stays relatively constant until the reconnected flux begins to
saturate at t ∼ 30 Ω−1

c,p .
Figure 8.3 shows the contour plots of the out of plane magnetic field Bz (a), of

the electron current density in the z-direction je,z (b), of the proton current density
in the z-direction jp,z (c) and of the electron number density ne (d). In each panel,
the contour lines of the magnetic flux ψ are superposed. Bz exhibits the typical Hall
quadrupolar pattern usually observed during symmetric magnetic reconnection. This
magnetic signature indicates that the protons are demagnetized while the electrons are
still frozen to the magnetic field. The difference in their dynamics produces the out-
of-plane Bz [Mandt et al., 1994, Uzdensky and Kulsrud, 2006] as detailed in Section
2.4. The quadrupolar structure that we find is analogous to the one obtained with
other kinetic codes, both Eulerian [Schmitz and Grauer, 2006b, see Figure 2] and
Lagrangian [Pritchett, 2001, see Plate 1(b)]. Note that the jp,z pattern closely follows
the density pattern (ne ' np) so that jp,z is depleted at the X point while it reaches
its maximum value within the magnetic island. On the other hand, je,z is enhanced
at the X point and the region of strong je,z is elongated along x. Away from the
X point, je,z splits into two branches that identify the separatrices, as it was also
observed by Shay et al. [2001] (see Figure 6(d)). The electron current at the X line
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has a thickness comparable to dp which corresponds to 5 de. The maximum value
of the normalized Bz is 0.09 while the maximum values of jp,z and je,z are 0.39 and
1.49, respectively. These values are overall slightly smaller than the values found in a
similar Vlasov-Darwin simulation described in Ref. [Schmitz and Grauer, 2006b].

Figure 8.3: Contour plots of Bz (a); out-of-plane electron current
density je,z (b); out-of-plane proton current density jp,z (c); and elec-
tron number density ne (d). The quantities are shown at the time
t∗ = 15.27 Ω−1c,p. At that time ∆ψ = 1.18. All the panels are zoomed
in y in the interval [6 dp, 19 dp]. The contour lines of the magnetic flux

ψ are superposed.

Figure 8.4 shows the reconnection outflow of protons and electrons at t∗ = 18.13 Ωc,p.
In particular, we note that at x = 3 dp (panel (a)), corresponding to a distance of
9.8 dp from the X-point located at Lx/2 = 12.8 dp, the electron velocity is charac-
terized by two peaks corresponding to the separatrices, while the proton velocity is
concentrated in the center of the outflow region and it reaches lower values, as ex-
pected. The presence of the two peaks is consistent with the je,z pattern shown in
Figure 8.3(b). Figure 8.4(b) shows the same quantities of Figure 8.4(a) at a distance
of 2.3 dp from the X-point where the outflow is still developing and we note that ue,x
is rather similar in shape and value to up,x.

Figure 8.4: (a) x component of the electron velocity ue (black line)
and of the proton velocity up (red line) at x∗ = 3.00 dp and (b) at
x∗ = 10.52 dp. The quantities are shown at the time t∗ = 18.13 Ω−1c,p.
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8.5 Conclusions

This Chapter presents a fully-kinetic code (ViDA) based on a Vlasov-Darwin algo-
rithm, where only light waves are excluded in order to relax the constraint on the
timestep advancement. This approach is particularly suited for the investigation of
the kinetic dynamics from sub-ion scales down to the electron kinetic scales de and
to the Debye length λD. As typically the case for space plasmas, but often also in
the laboratory, inter-particle collisions are not described, since collisional scales are
assumed to be smaller than other characteristics dynamical scales.

ViDA has been tested against several waves modes, in particular Alfvén, whistlers
and plasma waves. The development of the Weibel instability and reconnection, both
in a regime where the main dynamics is driven by the electrons, has been also re-
produced. These tests represent typical regimes of interest for studying the electron
scale kinetic dynamics representing at today a strong computational challenge and a
frontier problem for the understanding of the electron plasma physics. These tests
have been extensively detailed in [Pezzi et al., 2019].

Being this Thesis focused on the reconnection process, I reported results of a 2D
symmetric magnetic reconnection simulation in Section 8.4. The simulation parame-
ters have been chosen to be close to the parameters used in the GEM challenge [Birn
et al., 2001] in order to easily compare the obtained results with previous studies. The
typical signatures of ongoing reconnection are reproduced, in particular the quadrupo-
lar Hall magnetic field. This magnetic reconnection run has been designed to test the
new code, another run with higher resolution and with a normalization more suited to
study electron scales (the electronmagnetic normalization of Section 8.3) is discussed
in the next Chapter.

One of the main future objectives of ViDA will be the study of the structure and
dynamics of the electron diffusion region, including the role of anomalous resistivity
in the Ohm’s law and the mechanisms of electron heating, which are among the main
targets of satellite MMS data analysis [Torbert et al., 2016a, Genestreti et al., 2018].
Last but not least, the ViDA code will be used for the study of the plasma turbulent
dynamics focusing on the problem of the "dissipative" scale, of primary interest in
the context of the solar wind turbulent heating at kinetic scales [Vaivads et al., 2016].
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Fully kinetic Vlasov simulation of
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This Chapter presents preliminary results of a 2D antiparallel magnetic recon-
nection simulation performed with the ViDA code introduced in Chapter 8. The
observational study presented in Chapter 7 provides evidence of electron scale struc-
turing of the EDR. As it has been discussed in Chapter 7 and especially in Section 7.7,
there are only few recent PIC simulations suggesting that the electron diffusion layer
may be structured or turbulent [Jara-Almonte et al., 2014, Price et al., 2016, 2017,
Swisdak et al., 2018] while in several other studies the EDR appears as a laminar
region [Shay et al., 2016, Pritchett, 2008, Hesse et al., 2016].

Jara-Almonte et al. [2014] point out that one of the approximations that are used
but not critically examined in the framework of numerical simulations is the artificially
low ratio between the speed of light and the thermal electron speed c/vth,e which is
crucial because it corresponds to the scale separation between the electron skin depth
and the Debye length (c/vth,e = de/λD). In particular, they show that while a low
c/vth,e may not impact the study of ion scale dynamics, it affects the electron scale
dynamics because of electrostatic effects at the Debye scale. Indeed, they find that
once significant scale separation is introduced the laminar structure of the EDR is
broken. They have performed antiparallel 2D magnetic reconnection simulations using
a fully kinetic PIC code and report electrostatic structures at Debye scale in the EDR.
These structures are dynamic non-linear electron holes that interact with each other
producing turbulence in the electron layer. The instabilities that cause the turbulence
are in-plane instabilities and they are a combinatin of electron-electron and ion-ion
stream instabilities.
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The typical wavelength of the corresponding mode is found to be approximately
30 λD. This means that de/λD = c/vth,e has to be at least 30 for the instability
to develop. Figure 9.1 shows that this structuring is visible only when the electron
scale and the Debye scale are sufficiently separated. In particular, it develops once
c/vth,e exceeds 30, as expected. The quantity plotted in Figure 9.1 is the electrostatic
potential. A similar behaviour is observed in other quantities as the out-of-plane
current density and the electron pressure.

Figure 9.1: Comparison of the electrostatic potential φ obtained in
runs with different c/vth,e ratio. In this simulation, the z direction
is the outflow direction and the x direction is normal to the current

sheet. Adapted from Figure 5 of [Jara-Almonte et al., 2014].

These recent simulation results, together with the observational evidences of the
structured EDR presented in Chapter 7, have provided the motivation for performing a
simulation with parameters as close as possible to the runs presented in [Jara-Almonte
et al., 2014]. In particular, I have taken into account run 3 of that study, for which
de/λD = c/vth,e = 32. The whole simulation setup is discussed in Section 9.2. In this
Chapter, I present results of this 2D antiparallel magnetic reconnection simulation
performed with the ViDA code.

In the first part of the Chapter, the magnetic reconnection signatures are pre-
sented. I anticipate here that the structuring which has been shown by Jara-Almonte
et al. [2014] is not found. The reasons for this are still under analysis. Then, the
Chapter focuses on the evaluation of the contribution of the terms of Ohm’s law in
the EDR. As already discussed in Section 6.1, this topic is largely debated. It is found
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that the electron inertia term, and in particular the term which is proportional to the
temporal variation of the current density plays a role in sustaining the reconnection
electric field. This contribution is not limited to a region of width 1 de around the
X-point but it extends for ∼ 5dp in the outflow direction. Of course, this feature can
be due to the artificially low mass ratio adopted here.

9.1 Design of the initial condition

As it has been already mentioned in Section 8.2, the Vlasov-Darwin model imple-
mented in the ViDA code is composed by the Vlasov equation for both electrons and
protons and by the Maxwell-Darwin equations written in the form of Helmholtz-like
equations (see Eqs.(8.59)–(8.64)). As a consequence, the only quantity that has to
be evolved in time is the distribution function for each species. The fields are then
evaluated through standard Fast Fourier Transform (FFT) algorithms.

Because of the specific Hemholtz-like form of the electromagnetic set of equations,
the initial condition setup must be implemented into the distribution functions instead
of in the electromagnetic fields directly. The momenta of the distribution functions
are then used as “sources” of the equations of state that allow to compute the fields
at each time step.

This Section details the initial condition used for the magnetic reconnection runs.
As mentioned in Section 8.4, it is based on the Harris kinetic equilibrium [Harris, 1962]
which has been adapted for periodic boundary conditions. Furthermore, a uniform
background density is added for both species.

9.1.1 Harris kinetic equilibrium

In this subsection we resume the Harris equilibrium Harris [1962] which is an exact
solution of the system of equations

v · ∇fα +
Zαe

mα

(
E +

v

c
×B

)
· ∇vfα = 0 (9.1)

∇ ·E = 4πe
∑
α

Zα

∫
dv fα (9.2)

∇×B =
4π

c

∑
α

Zα

∫
dv vfα (9.3)

where α = p, e. Let us assume that all quantities vary in only one direction, namely
the y-axis and we take E = (0, Ey(y), 0) = (0,−∂yϕ, 0) and B = (Bx(y), 0, 0). In this
way, the vector potential A can be directed along z-axis, A = (0, 0, Az(y)).

A solution of Eq.(9.1) must be a function of the constants of motion. Here, the
energy W = (m/2)(v2

x + v2
y + v2

z) + eϕ(y) and the conjugate momenta to x and z,
px = mvx and pz = mvz + e

cAz(y) are the constants of motion. We assume that
the distribution functions solution of Eq.(9.1) are Maxwellians with a mean velocity
in the z direction named u0,α. By inserting Maxwellian distribution functions in
Eqs.(9.2)–(9.3) and by writing these expressions in terms of the potentials ϕ and A
we get

d2ϕ

dy2
= −4πn0e

[
exp

(
e

Tpc
u0,pAz −

e

Tp
ϕ

)
− exp

(
− e

Tec
u0,eAz +

e

Te
ϕ

)]
(9.4)

d2Az
dy2

= −4πn0e

c

[
u0,p exp

(
e

Tpc
u0,pAz −

e

Tp
ϕ

)
− u0,e exp

(
− e

Tec
u0,eAz +

e

Te
ϕ

)]
.
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By imposing
u0,p

Tp
= −u0,e

Te
(9.5)

we find that a solution of Eq.(9.4) is ϕ = 0 which implies that np = ne and E = 0 at
the initial time. Hence, in order to obtain an expression for Az(y) we need to solve
the following equation

d2Az
dy2

= −4πn0e

c
(u0,p − u0,e) exp

(
e

Tpc
u0,pAz

)
(9.6)

where we made use of the condition of Eq.(9.5). If we take the boundary conditions
so that Az(y = 0) = 0, the Az(y) obtained from Eq.(9.6) reads

Az(y) =
2cTp
eu0,p

log cosh

(
u0,p

Tp

√
Tp + Te

2

√
4πn0e2

c2
y

)
. (9.7)

Then, if also Bx(y = 0) = 0, we obtain the magnetic field profile using the relation
Bx(y) = ∂yAz(y):

Bx(y) =
√

8πn0(Tp + Te) tanh

(
u0,p

Tp

√
Tp + Te

2

√
4πn0e2

c2
y

)
. (9.8)

In the end, the Harris equilibrium provides the following magnetic field

Bx(y) = B0 tanh
( y
L

)
(9.9)

and the following density

np(y) = ne(y) = n(y) =
n0

cosh2
( y
L

) (9.10)

and it requires that pressure balance is fulfilled

B2
0

8π
= n0(Tp + Te). (9.11)

Note that B0 corresponds to the asymptotic absolute value of the magnetic field while
n0 corresponds to the peak of the density in the center of the layer. The magnetic
field and density profiles are shown in Figure 9.2. In addition,

L =
2c

eB0

Tp + Te
u0,p − u0,e

= − 2c

eB0

Te
u0,e

=
2c

eB0

Tp
u0,p

. (9.12)

where the condition of Eq.(9.5) has been used.

9.1.2 Initial condition: double Harris sheet with GEM-like pertur-
bation

The Harris equilibrium discussed in the previous Section is needed to present the
initial condition designed for a 2D magnetic reconnection simulation with periodic
boundary conditions in both x and y direction. In the following, the density profile
of Eq.(9.10) is named nH(y).
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Figure 9.2: Profiles of the magnetic field and density for the Harris
kinetic equilibrium. L = 1.

The unperturbed distribution functions for electrons fe and protons fp read

fe(y, vx, vy, vz) = nH,1 exp

[
− 1

v2
th,e

[v2
x + v2

y + (vz + u0,e,1)2]

]
+

+nH,2 exp

[
− 1

v2
th,e

[v2
x + v2

y + (vz − u0,e,2)2]

]
+ nb exp

[
− v2

v2
th,e

]
(9.13)

fp(y, vx, vy, vz) = nH,1 exp

[
− 1

v2
th,p

[v2
x + v2

y + (vz − u0,p,1)2]

]
+

+nH,2 exp

[
− 1

v2
th,p

[v2
x + v2

y + (vz − u0,p,2)2]

]
+ nb exp

[
− v2

v2
th,p

]
(9.14)

and they correspond to a double Harris sheet with a background density nb for both
species. The subscript 1 and 2 indicate two different current sheets with different
widths L1 and L2. The double current sheet configuration is needed because of the
periodic boundary conditions. Note that, once the temperature is set, the velocities
u0,e,1 and u0,p,1 (and u0,e,2 and u0,p,2) are fixed by the current sheet width and the
magnetic field asymptotic value (see Eq.(9.12)).
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The charge density and the current density are obtained integrating Eq.(9.13)–
(9.14) as follows

nα(y) = e
∑
α

Zα

∫
dv fα = eZα(nH,1 + nH,2 + nb)

jα,x = e
∑
α

Zα

∫
dv vα,x fα = 0

jα,y = e
∑
α

Zα

∫
dv vα,y fα = 0

jα,z = e
∑
α

Zα

∫
dv vα,z fα = eZα(nH,1u0,α,1 − nH,2u0,α,2)

Then, the magnetic field is consistently computed using Eq.(8.61). The initial profile
of the magnetic field Bx(y), density n(y) and current density jz(y) are shown in Figure
9.3. The value of B0, n0, L1 and L2 are the ones used for the simulation run detailed
in Section 9.2. The initial temperature profile of both species is uniform.
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Figure 9.3: Initial unperturbed profiles of (a) the magnetic field
Bx(y); (b) the density n(y) (ne = np = n); (c) the current density

jz(y).
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As already underlined in Section 8.4, this is not an exact Vlasov kinetic equilib-
rium. However, we take care that the initial unperturbed configuration is in force
balance and we have checked that it does not undergo significant modifications within
the time scale of reconnection considered here.

A perturbation similar to the one used in the so-called GEM challenge [Birn et
al., 2001] has been superposed to the initial condition. In particular, the perturbation
is meant to obtain an initial single magnetic island and it is assigned through the
perturbation on the magnetic flux

δψ(x, y) = ψ0 cos(2πx/Lx) cos(2πy/Ly) (9.15)

where, Lx and Ly are the lengths of the spatial domain in x and y direction respec-
tively. Hence, the fluctuations of the magnetic field δB are given by δB = ∇δψ × ẑ.
However, as previously discussed, all the information about the initial condition has
to be included in the distribution functions. For this reason, a density perturbation
δn(x, y)

δn(x, y) = −4π2

(
1

L2
x

+
1

L2
y

)
δψ(x, y)

1

u0,p,1 − u0,e,1
. (9.16)

consistent with δψ(x, y) is introduced. Finally, the distribution functions which in-
clude the GEM-like perturbations read

fe(y, vx, vy, vz) = (nH,1 + δn(x, y)) exp

[
− 1

v2
th,e

[v2
x + v2

y + (vz + u0,e,1)2]

]
+

+nH,2 exp

[
− 1

v2
th,e

[v2
x + v2

y + (vz − u0,e,2)2]

]
+ nb exp

[
− v2

v2
th,e

]
(9.17)

fp(y, vx, vy, vz) = (nH,1 + δn(x, y)) exp

[
− 1

v2
th,p

[v2
x + v2

y + (vz − u0,p,1)2]

]
+

+nH,2 exp

[
− 1

v2
th,p

[v2
x + v2

y + (vz − u0,p,2)2]

]
+ nb exp

[
− v2

v2
th,p

]
(9.18)

9.2 Simulation setup

This Section discusses on the parameters that have been used to perform a 2D–3V
magnetic reconnection simulation. Reconnection is symmetric and there in no guide
field. The electromagnetic normalization is adopted (see also Section 8.3). Lengths are
normalized to the electron inertial length de = c/ωp,e at the reference density n0. Time
is normalized to the inverse of electron plasma frequency ωp,e =

√
4πnee2/me. Speeds

are normalized to the light speed c. The coordinate system is a generic “simulation
coordinate system” where the reconnection outflows are directed along the x direction
and the inflows are directed along y. Magnetic field strengths and particle number
densities are normalized to values B0 and n0, respectively. The simulation parameters
are listed in Table 9.1.

As mentioned at the beginning of this Chapter, the simulation is designed in order
to be similar to one of the PIC simulation runs discussed by Jara-Almonte et al.
[2014]. In particular, I refer to run 3 in [Jara-Almonte et al., 2014, see Table II] where
the simulation box is 100 de × 50 de, the mass ratio mp/me = 25 and c/vth,e = 32.
The main feature of the simulations presented in that study is the introduction of
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2D–3V magnetic reconnection run
Lx/de 102.4

Ly/de 76.8

Nx 1024

Ny 768

∆x/de 0.1

∆y/de 0.1

mp/me 25

Tp/Te 1.0

nb/n0 0.2

c/vth,e 32

L1/de 2.5

L2/de 3.75

B0 0.0625

nb/n0 0.2

Te/Tp 1.0

ψ0/B0de 0.1

β 0.2

∆t ωp,e 0.1

Table 9.1: Simulation input parameters.

significant scale separation between the Debye length and the electron inertial length
(de/λD = c/vth,e = 32) with all physical scales well resolved, ∆x/λD = 0.8. For
the simulation presented in this Chapter it has not been possible to reach the same
resolution because of the huge memory and CPU time requirement of an Eulerian
code which would require significant computational resources as the one provided for
instance in the framework of an EU PRACE computational grant. Nevertheless, as a
first step we have performed a simulation using a simulation box 102.4 de × 76.8 de
wide discretized with Nx×Ny = 1024×768. Hence, the Debye length is not resolved,
∆x = 0.1 de = 3.2 λD. The other main difference lies in the boundary conditions
which are periodic in the two directions for the simulation presented here while [Jara-
Almonte et al., 2014] simulations have periodic boundary condition in the outflow
direction and conducting walls in the direction normal to the current sheet.

Finally, for the simulation presented here the velocity space has been discretized
with Ne,vx×Ne,vy×Ne,vz = 41×41×41 gridpoints in the velocity domain for electrons
and Np,vx×Np,vy ×Np,vz = 41×41×41 gridpoints in the velocity domain for protons.
Also, vmaxe = 6 vth,e and vmaxp = 8 vth,p. The time step is ∆t = 0.1 ω−1

p,e which is
similar to the time step of 0.14 ω−1

p,e adopted in [Jara-Almonte et al., 2014]. The width
L1 of the steeper current sheet is L1 = 2.5 de = 0.5 dp and it is consistent with the
observational case reported in Chapter 7 for which the current sheet thickness has
been measured to be ∼ 0.4 di.

9.3 Simulation results overview

In this Section some of the global properties of the simulation are discussed. Figure
9.4 shows the evolution of the reconnected flux (top panel) and the z component of
the electric field normalized to B0VA,p/c, which is proportional to the reconnection
rate (see Section 2.2.1). The reconnected flux is given by the difference ∆ψ between
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the magnetic flux ψ evaluated at the X-point and at the O-point. Accordingly to the
initial perturbation, the X and the O point are initially located at (Lx/2, Ly/4) and
(0, Ly/4) and their location does not significantly change throughout the simulation
run.

The absolute value of normalized reconnection electric field increases until it
reaches its maximum value in the interval t = [3650, 3800] ω−1

p,e (Ω−1
c,p = 400 ω−1

p,e).
In that interval, reconnection is ongoing and the reconnection rate is constant. Imme-
diately after, Ez (and the reconnection rate) starts to decrease. The vertical dotted
line indicates the time (t = 3852 ω−1

p,e) at which an island is formed where the X-point
was standing. The newly formed O-point does not move and there are two newly
formed X-point which are symmetric relatively to the O-point. In the following, the
analysis will be performed on the time period previous to the formation of the island
(t < 3852 ω−1

p,e) and in particular in the interval in which Ez is constant.

Figure 9.4: (top) Time evolution of the reconnected magnetic flux
∆ψ; (bottom) time evolution of the normalized reconnection electric

field cEz/B0VA,p at the X-point.

Note that the evolution of the reconnected flux and of Ez is affected on long times
by the periodic boundary conditions which do not allow the system to reach a steady
state condition for which Ez and the reconnected flux are stable for several tens of
characteristic proton times Ω−1

c,p . The period of time in which the reconnection rate
can be considered as constant is limited to the peak of the electric field and it lasts
for about 150 ω−1

p,e . The following analysis is performed within this time interval.
Figures 9.5 and 9.6 are meant to give an overview of the main characteristics of

magnetic reconnection. Figure 9.5(b) shows that the out-of-plane magnetic field ex-
hibits the typical quadrupolar pattern (see Section 2.4) while the reconnection electric
field Ez is concentrated around the X-point. The electron and ion outflow are shown
in Figure 9.6(a) and 9.6(b). The electron outflow turns out to be bifurcated along the
separatrices while the ion outflow is concentrated in the center of the outflow region.
The width of the out of plane current jz,e in the y direction is about 2.5 de, so the
current sheet has not become much thinner during the evolution with respect to the
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initial condition (Figure 9.6(c)). However, the current sheet is slightly thinner at the
X-point. Also, the density is depleted at the X-point while it increases within the
magnetic island (see Figure 9.6(d)).

Figure 9.5: Contour plot of (a) the reconnecting magnetic field com-
ponent Bx; (b) the out-of-plane magnetic field Bz; (c) the reconnection
electric field Ez. All quantities are shown at time t∗ = 3752 ω−1p,e and
zoomed in y in the interval [0, 35] de. The contour lines of the magnetic

flux ψ are superposed.

Figure 9.6: Contour plot of (a) the electron outflow velocity ve,x; (b)
the proton outflow velocity vp,x; (c) the out-of-plane electron current
density je,z; (d) the electron density ne. All quantities are shown at
time t∗ = 3752 ω−1p,e and zoomed in y in the interval [0, 35] de. The

contour lines of the magnetic flux ψ are superposed.

As mentioned at the beginning of the Chapter, the choice of parameters for this
simulation was motivated by the simulations performed by Jara-Almonte et al. [2014]
which, as already discussed, present results that are consistent with the observational
case reported in Chapter 7. Indeed, the simulations performed by Jara-Almonte et
al. [2014] show structures at and below the electron scale in the EDR.
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However, these structures are not present in the simulation run presented here.
We can see that the different quantities are rather laminar, in agreement with other
simulations where the Debye length is not resolved as well [Shay et al., 2007] but that
have a lower c/vth,e ratio of about 10. Figure 9.7 shows in particular a zoom of the out-
of-plane electron current density in an interval 2 de long in the x-direction (the X-point
is located at x = 51.2 de). We see that je,z is not exhibiting structures or signatures of
turbulence. The reasons for this discrepancy are currently unknown. As discussed in
Section 9.2, the simulation presented here as a lower resolution than the one discussed
in [Jara-Almonte et al., 2014]. However, being the typical wavelength of the expected
modes of the order of 30 λD ∼ 9.4 ∆x (∆x = 3.2 λD), the resolution of this run
should be high enough to show at least some deviations from laminarity, if these
deviations were present. Therefore, it is not possible to draw a definite conclusion.
The investigation of this discrepancy will be part of future work.

Figure 9.7: Contour plot of the out-of-plane electron current density
at time t∗ = 3752 ω−1p,e and zoomed in y in the interval [15.0, 23.4] de
and in x in the interval [50.2, 52.2] de. The contour lines of the mag-

netic flux ψ are superposed.

9.4 Electron dynamics in the current layer

The motion of the electrons in a plasma is described by the fluid momentum equation
for electrons

E = −ue ×B

c
− 1

nee
∇ ·Pe +

me

nee2

∂

∂t
(je)−

me

nee
∇ · (nueue) (9.19)

where je = −eneue. In this Section, we discuss the contribution of the different terms
on the right hand side of Eq.(9.19) in composing the reconnection electric field Ez.
Eq.(9.19) is also referred to as “Ohm’s law” since it is written is a Ohm’s law fashion

E = −ue ×B

c
+ R

where R contains all the non-ideal terms.
The analysis is performed at the time corresponding to the Ez peak, as previously
discussed.

Figure 9.8(top) shows the behavior of the terms in Eq.(9.19) along a cut through
the X line along the outflow direction. The cut corresponds to the black dashed
line in Figure 9.8(bottom). The sum of all terms (black dotted line) agrees with the
electric field Ez (black line). Concerning the relative role of the different terms, one
can see that while the ideal term (ue × B)z goes to zero close to the X-point (light
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green line), the term involving the divergence of Pe (red line) becomes larger and it
basically sustains the electric field in the inner diffusion region. The boundary of the
inner electron diffusion region can be identified with the point where the Lorentz force
(ue×B)z crosses the reconnection electric field Ez [Shay et al., 2007]. The inner EDR
can also be defined in terms of the energy dissipation E′ · j (Figure 9.8,(bottom)). In
particular, E′ ·j > 0 identifies the inner EDR and E′ ·j < 0 the outer EDR [Karimabadi
et al., 2007] (see also Section 6.1, E′ = E + ue ×B). Using both methods, the inner
diffusion region is found to extend in the outflow for 12.7 de (2.54 dp) from the X line,
which is consistent with previous studies with the same mass ratio [Shay et al., 2007].

Figure 9.8: (top) Cuts through the X line of the contributions to
Ohm’s law in the z direction at time t∗ = 3727 ω−1p,e; (bottom) contour
plot of the energy conversion E′ · j t∗ = 3727 ω−1p,e zoomed in y in
the interval [0, 35] de. The contour lines of the magnetic flux ψ are

superposed.

The electron inertia terms is composed by a term involving the divergence of the
velocity and another proportional to the temporal variation of the current (light blue
solid and dashed lines). It is found to be non negligible both in the inner and outer
EDR. In particular, the term ∝ ∂je/∂t appears to be larger than the∇·(neueue) term.
Furthermore, these terms are not only important in close proximity to the X-point
but they rather extends for several de along the outflow direction. Both contributions
to electron inertia become zero only at a distance of about 24 de (∼ 5 dp) from the
X-line. This is quite surprising since electron inertia is expected to have a role at
electron scales; however this behaviour could be an artifact of the artificially low
mass ratio of 25. The fact the the term ∝ ∂je/∂t needs to be taken into account
for Eq.(9.19) to be fulfilled indicates that the temporal variations may be important
even when the reconnection rate (Ez) is constant. We note that even if Figure 9.8
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is made at a specific time instant, t∗ = 3727 ω−1
p,e , the electric field and the terms on

the right hand side of Eq.(9.19) do not vary significantly during the whole interval
t = [3650, 3800] ω−1

p,e .

9.5 Discussion and conclusions

In this Chapter, a preliminary analysis of a 2D antiparallel magnetic reconnection
simulation performed with the full kinetic ViDA code is discussed. As detailed at the
beginning of the Chapter, the input parameters of the simulation were chosen to be
as close as possible to one of the runs discussed by Jara-Almonte et al. [2014] which
presents electron and Debye scale structuring of the current layer and the development
of turbulence that could be consistent with the magnetopause observations presented
in Chapter 7. However, in our simulation the electron diffusion region turns out to
be rather laminar. As underlined in Section 9.3, even though the resolution of the
run presented here is lower than the one adopted in the corresponding run in [Jara-
Almonte et al., 2014], it should be enough to at least hint possible deviations from
laminarity. At present, this discrepancy has not been further investigated but the
reasons behind it should be clarified in future work. Since the two main differences
between the two runs are the resolution and the boundary conditions (see Section
9.2) this investigation would benefit from reaching the same resolution of run 3 as in
[Jara-Almonte et al., 2014].

The Chapter is then devoted to the analysis of the different terms composing the
reconnection electric field. In particular, in agreement with previous studies [Shay et
al., 2007, Divin et al., 2012, 2016] it is found that in the inner diffusion region the
reconnection electric field is mainly sustained by the divergence of the electron pres-
sure tensor, in particular by the out-of-diagonal elements. However, differently from
previous studies of antiparallel magnetic reconnection, the inertia term is found to be
non negligible and to extend for several de in the outflow direction. The main contri-
bution to the inertia term is given by the temporal variation of the electron current
density. However, the fact that the inertia term is important for about 24 de in the
outflow direction can be due to the artificially low mass ratio (mp/me = 25) that has
been adopted for this run. Indeed, Shay et al. [2007] performed several antiparallel
magnetic reconnection runs with increasing mass ratio (mp/me = 25, 100, 400) show-
ing that the length of the electron current layer becomes significantly shorter as the
mass ratio is increased. Similar findings are presented by Le et al. [2013]. Hence, we
could expect that the region in which the electron inertia term is playing a role would
be actually reduced if a realistic much ratio is adopted.

The interesting finding is that the main contribution to the inertia term is given
by the temporal variation of the electron current density ∂je/∂t. This term is usually
not included in the evaluation of the Ohm’s law in other studies [Shay et al., 2007,
Divin et al., 2012, 2016, see e.g.] or it is found to be small compared to the other
terms everywhere [Hesse et al., 2014, 2016]. In addition, it is extremely difficult to
evaluate this term with spacecraft data and this result can be useful to interpret the
residue between the electric field and the right hand side of Ohm’s law which is often
found in observations [Torbert et al., 2016a], where ∂je/∂t is usually not computed.

However, in order to compare in a meaningful way our result with previous findings,
we need to take into account the specific time at which the analysis was performed
in terms of evolution of the magnetic reconnection process. For instance, the analysis
by Shay et al. [2007] on a run with mass ratio mp/me = 25 is performed when the
reconnection rate remains stable for several Ω−1

c,p , This condition is never achieved in
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the simulation presented here, as detailed in Section 9.3. This is probably due to the
periodic boundary conditions that limit the time interval in which the simulation data
are physically meaningful [Daughton et al., 2006] combined with the rather limited
size of the box. A larger simulation box is needed to let the system to reach a proper
steady state for a sufficiently long time interval.

In the end, we argue whether it is meaningful to make such a comparison and
we rather underline that the analysis presented here is performed in another phase
of the reconnection process, namely when the reconnection electric field reaches its
peak (together with the reconnection rate) but the reconnection process is not in a
“traditional” steady state. In this phase, in which reconnection is rather unsteady, the
current density variation in time appears to be a non negligible contribution which
is needed to fulfill Eq.(9.19). In summary, we think that in order to reach a definite
conclusion it is necessary to perform other runs (e.g. with a larger simulation box) in
order to clarify the role of the periodicity of the boundary conditions. On the other
side, quantifying the role of term proportional to ∂je/∂t in sustaining the reconnection
electric field in the unsteady phase can provide insights about the electron energization
in this phase of the reconnection process and it would allow to establish how much of
the energization is due to the time varying term of Ohm’s law which are not considered
in the steady state studies. Future work must include also the analysis of the electrons
distribution functions.

9.6 Future work

This Section provides an outlook of possible follow-up studies of reconnection sim-
ulations performed with the full kinetic ViDA code. There are several future work
planned based on this new code – and they are discussed in Chapter 10 – but in this
Section I present a different initial perturbation for magnetic reconnection simulations
that represents an alternative to the GEM-like perturbation. Indeed, in most of the
recent numerical studies, magnetic reconnection is initiated by imposing a single X-
point in the current sheet [Shay et al., 2007, Divin et al., 2016, e.g.]. This can be done
either with a domain-large perturbation present in all the simulation box [Birn et al.,
2001] or with a perturbation which is localized around the location where reconnec-
tion should start and which has a initially imposed wavelength [Lapenta et al., 2010,
Divin et al., 2012]. This initial condition has been used in the context of the GEM
challenge to willingly put the system in the nonlinear phase of magnetic reconnection
from the beginning of the simulation. As a consequence, while these single X-point
perturbations allow to successfully study the steady state of reconnection, they do not
allow to investigate in a self-consistent way the growth of the tearing mode [Swift,
1986], the formation and the characteristics of plasmoid chains [Loureiro et al., 2007,
Markidis et al., 2012, 2013] or the long standing problem of the reconnection onset.

For this reason, this Section presents an initial condition for a 2D magnetic recon-
nection simulation composed by the double Harris sheet discussed in Section 9.1 to
which we add a small amplitude perturbation composed by fluctuations with multiple
in-plane wave vectors kx = 2πn/Lx and ky = 2πm/Ly (in this case n,m = 0, . . . , 9
and
√
n2 +m2 ≤ 9) with random phases. This Section is limited to the description

of the initial condition and to present preliminary results in which it can be seen that
reconnection is taking place. The analysis of the simulation data will be carried on in
the future, together with other runs with higher resolution. The final long term goal
is to study the mechanisms at play as the onset of the reconnection process and the
dynamics of plasmoid chains with the fully kinetic Vlasov code ViDA.
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9.6.1 Initial condition

Fluctuations are defined by means of the vector potential δA(x, y) in order to ensure
the solenoidality of the magnetic field perturbation δB(x, y).

δAx(x, y) =

= ε

N+1∑
r=1

N∑
n=0

M∑
m=1

1

ky,m
[cos(kx,nx+ ky,my + φx,r) + cos(kx,nx− ky,my + ψx,r)]

δAy(x, y) =

= ε
N+1∑
r=1

N∑
n=1

M∑
m=0

1

kx,n
[cos(kx,nx+ ky,my + φy,r) + cos(kx,nx− ky,my + ψy,r)]

δAz(x, y) =

= ε
N+1∑
r=1

N∑
n=0

M∑
m=0

1√
k2
x,n + k2

y,m

[cos(kx,nx+ ky,my + φz,r)+

+ cos(kx,nx− ky,my + ψz,r)]

(9.20)

where φi,r and ψi,r (i = x, y, z) are random phases and ε is the amplitude of the
fluctuations.

The magnetic field fluctuations δB(x, y) are obtained using δB(x, y) = ∇ ×
δA(x, y). Since all the information about the initial condition has to be included
in the distribution functions, as previously discussed in Section 9.1, the current den-
sity fluctuations are defined consistently as

δj(x, y) = ∇× δB(x, y)

together with the corresponding velocity fluctuations

δv(x, y) =
δj(x, y)

nb

where nb is a uniform background density. In the end, analogously to Section 9.1, the
distribution functions including the random fluctuations δv(x, y) read

fe(y, vx, vy, vz) = nH,1 exp

[
− 1

v2
th,e

[v2
x + v2

y + (vz + u0,e,1)2]

]
+

+nH,2 exp

[
− 1

v2
th,e

[v2
x + v2

y + (vz − u0,e,2)2]

]
+ nb exp

[
−(v + δv/2)2

v2
th,e

]
(9.21)

fp(y, vx, vy, vz) = nH,1 exp

[
− 1

v2
th,p

[v2
x + v2

y + (vz − u0,p,1)2]

]
+

+nH,2 exp

[
− 1

v2
th,p

[v2
x + v2

y + (vz − u0,p,2)2]

]
+ nb exp

[
−(v − δv/2)2

v2
th,p

]
(9.22)

Note that in this case the perturbation is present in all the simulation domain and
that both proton and electron distribution functions are perturbed. However, this can
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be modified, and the fluctuations could also be set to be localized only in the region
of the Harris sheet.

9.6.2 Simulation setup and overview

A 2D–3V magnetic reconnection simulation has been performed to test the initial
conditions with random fluctuations presented above. Reconnection is symmetric
and there in no guide field. The electromagnetic normalization is adopted (see also
Section 8.3). Lengths are normalized to the electron inertial length de = c/ωp,e
at the reference density n0. Time is normalized to the inverse of electron plasma
frequency ωp,e =

√
4πnee2/me. Speeds are normalized to the light speed c. Magnetic

field strengths and particle number densities are normalized to values B0 and n0,
respectively. The simulation parameters are listed in Table 9.2.

2D–3V magnetic reconnection run
Lx/de 102.4

Ly/de 76.8

Nx 512

Ny 384

∆x/de 0.2

∆y/de 0.2

mp/me 25

Tp/Te 1.0

nb/n0 0.2

c/vth,e 32

L1/de 2.5

L2/de 3.75

B0 0.0625

nb/n0 0.2

Te/Tp 1.0

β 0.2

∆t ωp,e 0.1

ε 0.001

Table 9.2: Simulation input parameters.

Finally, the velocity space has been discretized with Ne,vx ×Ne,vy ×Ne,vz = 41×
41 × 41 gridpoints in the velocity domain for electrons and Np,vx × Np,vy × Np,vz =
41× 41× 41 gridpoints in the velocity domain for protons. Also, vmaxe = 6 vth,e and
vmaxp = 8 vth,p. The time step is ∆t = 0.1 ω−1

p,e . The width L1 of the steeper current
sheet is L1 = 2.5 de = 0.5 dp while L2 = 3.75 de.

Figure 9.9 shows the evolution of the magnetic flux ψ for the steeper current sheet
with width L1. One can see (Figure 9.9(a)) that at the beginning the current sheet is
perturbed with small amplitude random fluctuations; then, multiple X and O points
are generated (Figure 9.9(b)). At later times the islands tend to merge and in the end
a single X point is left (Figure 9.9(d)).

Figure 9.10 shows the evolution of the out-of-plane magnetic field Bz and we
can see that the single X-point left presents a quadrupolar magnetic field pattern,
a clear signature of ongoing reconnection. In conclusion, magnetic reconnection is
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Figure 9.9: Contour plot of the magnetic flux ψ at different times (a)
t∗ = 0 ω−1p,e; (b) t∗ = 2550 ω−1p,e; (c) t∗ = 4050 ω−1p,e; (d) t∗ = 4550 ω−1p,e.

All quantities are zoomed in the interval y = [15, 23.4] de.

Figure 9.10: Contour plot of the out-of-plane magnetic field Bz at
different times (a) t∗ = 0 ω−1p,e; (b) t∗ = 2550 ω−1p,e; (c) t∗ = 4050 ω−1p,e;
(d) t∗ = 4550 ω−1p,e. All quantities are zoomed in y in the interval
[5, 35] de. The contour lines of the magnetic flux ψ are superposed.

successfully reproduced using an initial condition with random perturbations rather
then the single X-point GEM perturbation. At the best of my knowledge, this kind
of simulations is original for current sheets of characteristic width less then dp; it
could be used to investigate topics and phase of the reconnection process that can
not be study with a GEM-like perturbation of the current sheet, as discussed at the
beginning of this Section.
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Chapter 10

Conclusions and outlook

The work presented in this Thesis focus on the microphysics of magnetic reconnection
and in particular on the structure and the dynamics of the Electron Diffusion Region
(EDR). This topic has been investigated by using two different but complementary
approaches, namely in situ data observations from the MMS mission and Eulerian
kinetic Vlasov numerical simulations.

As discussed in Chapter 3, 5 and 6, magnetic reconnection in the Earth’s magneto-
sphere has been extensively studied for about 60 years now. Important steps towards
a complete understanding of the process from the largest to smallest scale has been
made by means of spacecraft observations of THEMIS, Cluster and MMS in synergy
with fluid, kinetic-hybrid (ion kinetic, fluid electrons) and fully kinetic simulations.
On the other hand, fundamental questions about the physics at the electron scale re-
main unsolved and only recently, thanks to high resolution particle measurements in
the magnetosphere and to the increasing computational power of supercomputers, the
electron scale processes at play in the diffusion region have started to be enlightened.

In this Thesis, I tried to reply to one of the key questions that are still open in
the context of the the EDR, which is whether the EDR has a preferred homogeneous
or inhomogeneous structure at electron scales and below in terms of current densities
and electric fields. A non laminar structure would affect the energy conversion in the
diffusion region and it could affect the magnetic reconnection process at large scales.

The observational part of the project started with an extended search of MMS
sets of data (events) suited for studying the structure of the EDR at the Earth’s mag-
netopause, both in terms of spacecraft orbit and inter-spacecraft separation. Then, I
selected one EDR event with the smallest inter-spacecraft separation (∼ 6 km) which
has allowed to perform a multi-spacecraft study highlighting the differences in field
and particle signatures at electron scales using data from the flux-gate magnetometer,
3D electric field data from the axial and spin-plane probes and particles data from
the fast plasma instrument. In particular, I have carefully analyzed MMS electric
field data and I have treated in detail the associated experimental errors. This error
analysis was crucial to quantitatively assess the energy conversion in the EDR, which
is typically small and associated to large errors. The results of this observational
study provided evidence that the structure of the EDR at the magnetopause can be
much more complex than it has been found in previous MMS events and than it is
usually depicted by PIC simulations. In particular, this study shows that EDR is
inhomogeneous and that the pattern of the energy conversion is patchy, suggesting a
possible turbulent evolution of the EDR structure during reconnection.

The MMS data analysis have pointed out the need of simulations with high spa-
tial resolution and low noise that could be used in synergy with observations in order
to understand the kinetic physics at play at electron scales. Following this motiva-
tion, the second part of research work has been tailored to study the EDR by using
a fully-kinetic Eulerian algorithm solving the Vlasov-Maxwell system of equations in
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the so-called Darwin approximation (the ViDA code, Chapter 8). The ViDA code is
specifically designed to improve our understanding of the kinetic dynamics of colli-
sionless plasma at electron scales by giving access to the fine phase space details of the
electron distribution function. This numerical tool is specifically suited for the study
of the physical processes in the EDR and other electron-scale reconnection regions
such as separatrices and jet fronts and, in particular, for the processes responsible for
the patchy structure of these regions, for turbulent anomalous resistivity, for intermit-
tent heating and electrons acceleration. The ViDA code has been developed in the last
year in the framework of a collaboration between Università di Pisa and Università
della Calabria. I have contributed to the testing of this new code for which I have
been responsible, in particular, for simulating magnetic reconnection in a parameter
range of interest for satellite observations. The results of the 2D symmetric magnetic
reconnection simulations have been presented in Chapter 8 where it is shown that the
code correctly reproduces the main properties of magnetic reconnection.

The next step has been to perform 2D symmetric magnetic reconnection simu-
lations with higher resolution compared to the one presented in Chapter 8 and to
investigate the contribution of the different terms composing the reconnection electric
field in the electrons equation of motion. This problem can be properly addressed by
the ViDA code due to the very low computational noise of electromagnetic fields and
particle distributions. The preliminary analysis reported in Chapter 9 suggests that
the electron inertia term, and in particular the portion including the temporal deriva-
tive of the current density, could actually play a role in sustaining the reconnection
electric field. However, as detailed in Section 9.5, the effects that may be played by
the presence of periodic boundary condition and a relatively small simulation box has
to be carefully taken into account before drawing conclusions. New simulation runs
performed with larger boxes will improve our understanding of the role of the inertia
term in the different phases of the reconnection process.

The research work presented here has tried to reply to few, but fundamental
questions but it has also brought out new questions to be answered and new paths of
investigation.

Although the observational MMS study presented here has been mainly devoted to
magnetic reconnection at the magnetopause, I have devoted some time to the analysis
of magnetotail MMS data. I have selected a magnetotail EDR events in order to
investigate the structure of the EDR, similarly to what has been done in Chapter 7
for the magnetopause EDR. The magnetotail event has been preliminary presented
in Section 7.8. Observations of energy conversion during this EDR encounter suggest
that the energy conversion can be patchy also at the magnetotail EDR. I would like
to continue this line of research trying to clarify whether and to which extent the
inhomogeneities in the EDR at the magnetotail are present and have the same origin
as the ones at the magnetopause.

A longer term outlook would be to study the the structure of the EDR statistically
and try to understand which conditions (local and large scale) induce the structuring
of the EDR or its laminarity.

As detailed in Chapter 9, the input parameters of the simulation presented there
were chosen to be as close as possible to one of the runs discussed by [Jara-Almonte et
al., 2014] which presents electron and Debye scale structuring of the current layer and
the development of turbulence that could be consistent with the magnetopause obser-
vations presented in Chapter 7. However, the electron diffusion region emerging from
the simulation discussed in Chapter 9 seems to be rather laminar. In order to clarify
which are the reasons behind this difference, I would like to perform high resolution
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simulations such as those run by [Jara-Almonte et al., 2014]. As already discussed in
Section 9.2, for the simulation presented in this Thesis, it has not been possible to
reach the same resolution because of the huge memory and CPU time requirement of
an Eulerian code which would require significant computational resources accessible
only in the framework of very large computational grants, such as those within the
PRACE EU programme.

Also, the ViDA code is a highly valuable tool to study electron scale physics in
the frame of magnetic reconnection but also the turbulence cascade below sub-proton
scales, which still has to be properly exploited. ViDA is a newborn code that I still
would like to use for several future work. In particular, future work could include

1. performing 3D simulations of magnetic reconnection. In this Thesis, only 2D
simulations are presented but the code has been designed to allow for 3D runs
which, of course, would provide data closer to reality.

2. performing magnetic reconnection simulations adopting initial conditions differ-
ent from the GEM-like perturbation [Birn et al., 2001]. As discussed in Section
9.6, the GEM-like initial condition does not allow to study the development of
the instability since a single X-point is imposed by the initial perturbation. A
different initial condition which could allow to study the early stage of magnetic
reconnection has been already designed and tested (see Setion 9.6.1). The future
work would include the investigation of the role of the electron physics in the
early stage of magnetic reconnection by means of this kind of approach.

3. adapting the symmetric initial condition to the asymmetric case in order to
study reconnection in a magnetopause-like configuration. Recently, [Allanson et
al., 2017] presented a new and exact equilibrium solutions of the Vlasov-Maxwell
system for an asymmetric current sheet. I would like to adapt this solution to
be consistent with periodic boundary conditions of the ViDA code.

4. improving the initial condition of the 2D magnetic reconnection simulations by
implementing the spatial variation of the temperature across the current sheet,
which is uniform at present. This modification is especially needed in the case
of simulations modeling asymmetric magnetic reconnection taking place at the
magnetopause.

In general, I would like to use the ViDA code to perform numerical simulations that
could closely mimic the observational events at the magnetopause and magnetotail
in terms of e.g. current sheet width, temperature and density variation across the
boundary, guide field. Indeed, both high resolution observations and recent numerical
simulations are revealing the complexity of the magnetic reconnection process at the
electron scale and only with a close synergy between numerical simulations and in situ
observations we could progress in the understanding of such a complex process.
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Appendix A

Coordinate systems

In order to facilitate the reading, we report here the coordinates system used in this
Thesis and we provide some terminology linked to the magnetosphere.

The terms northern and southern are relative to the Earth’s equator. Defining the
x axis as directed from the Earth to the Sun, the term noon indicates the magneto-
sphere facing the Sun while midnight indicates the region beyond the Earth moving
along −x direction (Figure A.1(a)). The terms dawn and dusk correspond to 6 a.m.
and 6 p.m., respectively. Earth rotates counterclockwise when looking down from the
north pole, so when looking from the Sun to Earth, dawn is on the left and dusk is
on the right.

Geocentric Solar Ecliptic system (GSE): The origin is at the center of Earth.
The x axis points from the Earth towards the Sun. The y axis and the x axis lie in
the ecliptic plane and the y axis points towards the dusk. The z axis is perpendicular
to the ecliptic plane and directed towards the Northern ecliptic pole.

Geocentric Solar Magnetospheric system (GSM): The origin is at the center
of Earth. The x axis points from the Earth towards the Sun. The xz plane contains
the Earth’s dipole axis, the µ axis in Figure A.1(a). The y axis is perpendicular to
Earth’s magnetic dipole and it points from dawn to dusk.

De-spun Body Spacecraft Coordinate System (DBCS): This coordinate
system is defined by the spacecraft. It is very close to Geocentric Solar Ecliptic
(GSE) coordinates (within 2◦−3◦) since the MMS spacecraft maintains an equatorial
orbit.

Local Boundary Normal Coordinate System: This coordinate system is
defined locally at the magnetopause or at any other magnetic (or current) structure
and it provides the local orientation of the layer. The three orthogonal axis are
indicated with the letters L, M, N. In the context of a reconnecting current sheet, the
N direction is directed normal to the current sheet while the L and M are tangential
to the layer, as it can be seen for the magnetopause current sheet in Figure A.1(b).



Appendix A. Coordinate systems 126

Figure A.1: (a) Schematic rapresentation of the Earth in the GSE
coordinate system. µ indicates the Earth’s dipole. (b) Schematic
representation of the reconnecting magnetopause current sheet in the
boundary local coordinate system. Adapted from Gonzalez and Parker

[2016]
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Appendix B

Definition of electron agyrotropy

The pressure tensor Pα of the species α is defined as

Pα = mα

∫
(vα − 〈vα〉)(vα − 〈vα〉)f(xα,vα)dvα (B.1)

where f(xα,vα) is the distribution function,mα is the mass and 〈vα〉 =
∫
vαf(xα,vα)dvα∫
f(xα,vα)dvα

is the mean velocity. From now, the subscript α is dropped for brevity. In general,
the pressure tensor has six independent elements

P =

P11 P12 P13

P21 P22 P23

P31 P32 P33

 . (B.2)

The presence of a magnetic field imposes a preferred direction and it can produce a
cylindrically symmetric, or gyrotropic, distribution which corresponds to a pressure
tensor of the type

P =

P|| 0 0

0 P⊥ 0
0 0 P⊥

 . (B.3)

Departures from gyrotropy are indicative of the fact that out-of-diagonal elements
of the pressure tensor become important. This is crucial in the frame of magnetic
reconnection because it indicates that the Ohm’s law term which contains the diver-
gence of the pressure tensor may sustain the electric field (see Eq.(2.18)), meaning
that electron kinetic processes are playing a role. For this reason, it is useful to find
a quantity, and possibly a scalar, that quantifies departures from gyrotropy.

An example is provided by Swisdak [2016] which defines agyrotropy
√
Q as

√
Q =

P 2
12 + P 2

13 + P 2
23

P 2
⊥ + P⊥P||

(B.4)

where P is the electron pressure tensor and P⊥ and P|| are the diagonal terms of
the tensor written using a set formed by a magnetic field-aligned unit vector and two
magnetic field-orthogonal vectors. For gyrotropic tensors

√
Q = 0, while for maximal

departures from gyrotropy
√
Q = 1. Other quantities with the same purpose have

been proposed by Aunai et al. [2013] and Scudder and Daughton [2008]. In particular,
Scudder and Daughton [2008] consider a pressure tensor of the type

P =

P|| 0 0

0 P⊥,1 0
0 0 P⊥,2

 (B.5)
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and define the agyrotropy A∅ as

A∅ =
2|P⊥,1 − P⊥,2|
P⊥,1 + P⊥,2

. (B.6)

The maximum and minimum value of A∅ are 0 (gyrotropy) and 2 (maximum departure
from gyrotropy).

Another measure of agyrotropy, called Dng was proposed by Aunai et al. [2013]
starting from a tensor written in the same way as Swisdak [2016]

Dng =

√
8(P 2

12 + P 2
13 + P 2

23)

2P 2
⊥ + P||

. (B.7)

It has been shown that
√
Q definition includes the largest variety of possible agy-

rotropy sources [Swisdak, 2016]. For this reason,
√
Q is adopted in order to quantify

agyrotropy throughout this Thesis.
It is worth to underline that these parameters should be used with care. Indeed,

out-of-diagonal elements of the pressure tensor usually increase when the plasma den-
sity is as low as the typical magnetospheric values and when the electron temperature
is anisotropic with Te,|| > Te,⊥. This conditions are commonly found in the outer
magnetosphere. This behavior of

√
Q has been reported by Argall et al. [2018].
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Appendix C

La microphysique de la
reconnexion magnétique dans
l’espace “near-Earth”: observations
par satellite et simulations
numériques – Résumé substantiel

La reconnexion magnétique est un processus fondamental de conversion d’énergie qui
se produit dans les plasmas spatiaux ainsi que dans les plasmas de laboratoire [Yamada
et al., 2010]. La reconnexion a lieu dans des couches de courant très fines et a comme
conséquence la reconfiguration de la topologie magnétique et la conversion d’énergie
magnétique dans l’accélération et le réchauffement des particules [Priest and Forbes,
2000].

Actuellement, le rôle de la reconnexion est reconnue comme un processus majeur
dans l’environnement Soleil-Terre, depuis la couronne solaire [Cargill, 2015] jusque
dans le vent solaire [Phan et al., 2006], dans la magnétogaine [Retinò et al., 2007,
Phan et al., 2018] ainsi qu’à la magnétopause [Mozer et al., 2002, Burch et al., 2016a]
et dans la queue magnétique [Øieroset et al., 2001, Torbert et al., 2018]. En partic-
ulier, la reconnexion explique les éruptions solaires qui se développent dans la couronne
solaire et qui sont souvent associées à des éjections de masse coronale (CME), des éjec-
tions rapides de plasma magnétisé qui partent de l’atmosphère du soleil et qui peuvent
atteindre la Terre et provoquer des orages magnétiques en interagissant avec le champ
magnétique terrestre. La reconnexion se produit à la magnétopause et elle couple de
manière critique le vent solaire à la magnétosphère terrestre. Ce couplage a un impact
sur l’environnement de la Terre et il peut entraîner des répercussions sur les activ-
ités humaines: perturbations des communications radio; création des fortes courants
électriques induites au sol (“Geomagnetically Induced Currents”) qui perturbent les
lignes électriques; augmentation du flux de particules énergétiques à haute latitudes
qui peut être dangereux pour les passagers des avions. La reconnexion magnétique est
aussi un mécanisme possible d’accélération des particules qui permet la pénétration
des particules énergétiques provenant du vent solaire dans l’environnement terrestre.

La reconnexion magnétique est observée dans l’espace autour de la Terre mais elle
est aussi souvent invoquée dans le cadre des observations d’accélération de particules à
énergie très élevée et des événements de dissipation d’énergie très rapides et intenses,
par exemple dans les disques d’accrétion autour des trous noirs [de Gouveia Dal Pino
and Lazarian, 2000] ou dans le magnetars [Lyutikov, 2003]. De plus, la reconnexion
magnétique se produit aussi dans les plasmas créés en laboratoire et en particulier dans
les tokamaks Yamada et al. [1994]. En fait, la reconnexion fait partie des instabilités
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qui peuvent empêcher de réaliser et maintenir les conditions nécessaires pour la fusion
nucléaire.

La reconnexion magnétique est un processus multi-échelle: la région de diffusion
(où le changement de topologie du champ magnétique se produit) est composée par
une région de diffusion ionique (IDR) qui a une échelle caractéristique comparable
au rayon de giration des ions et par une région de diffusion électronique (EDR) –
enchâssée dans la région de diffusion ionique – qui a une échelle caractéristique com-
parable au rayon de giration des électrons et qui est très petite par rapport à l’échelle
MagnétoHydroDynamique (MHD) du système. Cependant, la reconfiguration mag-
nétique locale affecte le système aux échelles MHD. Par exemple, la reconnexion à
la magnétopause se produit dans des petites régions de diffusion mais elle permet le
mélange des plasmas du vent solaire et de la magnétosphère qui seraient autrement
séparés.

En dépit de tous les progrès déterminants dans la compréhension du processus
de la reconnexion qui ont été accomplis grâce à l’utilisation des mesures in-situ en
synergie avec les simulations numériques depuis la première définition de la recon-
nexion par R. Giovanelli en 1947 [Giovanelli, 1947], certains aspects fondamentaux
demeurent encore obscurs surtout par rapport aux processus aux échelles électron-
iques. Plusieurs questions restent ouvertes en particulier lorsque nous essayons de
comprendre la physique à petites échelles qui se produit dans la région de diffusion et
qui est liée au déclenchement de la reconnexion, ainsi qu’à la structure de la région
de diffusion elle-même. Cela est dû au fait que les observations in-situ à petite échelle
et les simulations numériques à haute résolution – nécessaires pour reproduire les dé-
tailles des régions de diffusion – ne sont devenues disponibles que très récemment. En
fait, ce n’est que dans les dernières années, avec le lancement de la mission NASA
nommée Magnetospheric MultiScale (MMS) [Burch et al., 2016b] et l’impressionnant
augmentation des capacités de calcul des superordinateurs, que la dynamique de l’EDR
a commencé à être comprise.

Une des questions fondamentales – qui était encore sans réponse – est de savoir si
la structure de l’EDR est homogène ou hétérogène aux échelles électroniques et même
au-dessous de ces échelles.

La première partie de mon projet de thése visant à répondre à cette question, a été
consacrée aux observations issus des satellites MMS en traversant la magnetopause
à proximité du point sub-solaire. Lancée en 2015, MMS est composée de quatre
satellites identiques et est dédiée spécifiquement à l’étude de la reconnexion dans
l’espace autour de la Terre. Elle a comme objectif principal l’étude de la structure
et de la dynamique de la région de diffusion en mettant en évidence le phénomène
dans les trois dimensions aux échelles électroniques. MMS s’inspire de la stratégie de
mesures multipoints initiée par la mission Cluster de l’ESA [Escoubet et al., 1997]
mais a une orbite différente (équatoriale, tandis que Cluster a une orbite polaire), une
distance inter-satellite adaptée aux échelles Électroniques (∼ 10 km), et une résolution
temporelle des données des particules plus élevée (150 ms pour les ions et 30 ms pour
les électrons). Dans ce projet, j’ai utilisé les données de plusieurs instruments avec la
fréquence d’échantillonnage la plus élevée (données de type burst): les magnétomètres
pour le champ magnétique (instrument FGM), les instruments SDP at ADP pour
la mesure 3D du champ électrique et des spectromètres des électrons et des ions
(instrument FPI). Toutes les données sont calibrées et en libre accès sur le site du
MMS Science Data Center https://lasp.colorado.edu/mms/sdc/public/search/.

J’ai sélectionné une traversé de magnetopause en proximité du point sub-solaire
pendant laquelle la séparation entre les satellites MMS est la plus petite possible (∼ 6
km) i.e. comparable à la longueur d’inertie des électrons de ∼ 2 km. Le critère

https://lasp.colorado.edu/mms/sdc/public/search/
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principal de sélection de l’événement est d’avoir les quatre satellites à l’intérieur de
la région de diffusion électronique (EDR). Pendant la traversé de magnetopause tous
les satellites observent des signatures typiques de l’EDR: pic de courant électrique,
pic de l’agyrotropie électronique, démagnétisation des ions et des électrons, pic de
l’anisotropie de température électronique. De plus, les fonctions de distribution des
électrons présentent une signature en forme de croissant qui indique que les électrons
effectuent des orbites de Speiser en proximité du site de reconnexion.

Après avoir établi que tous les satellite observent l’EDR, j’ai analysé les signaux
des quatre satellites et j’ai comparé les mesures de courant, champ electrique et magne-
tique pour “cartographier” la structure de l’EDR à l’échelle de séparation des satellites.

L’analyse multi-satellite des donnée MMS montre que l’EDR n’est pas homogène
en terme de courant électrique et de champ électrique aux échelles électroniques et
que la distribution spatiale de la conversion d’énergie est irrégulière. En particulier,
j’ai pu montrer à partir des observations qu’ il y a de régions à l’échelle électronique
où l’énergie est convertie du plasma au champs, ce que n’est pas attendue dans la
théorie de la reconnexion magnétique à les echelles fluides [Cozzani et al., 2019].
Ces observations indiquent que la structure de l’EDR peut être bien plus compliquée
que ce qu’indiquent les études expérimentales [Burch et al., 2016a] et les simulations
numériques de type PIC (Particle-In-Cell) [Shay et al., 2016] antérieures. D’autres
études expérimentales [Burch et al., 2018] et des simulations numériques PIC [Jara-
Almonte et al., 2014, Swisdak et al., 2018, Price et al., 2016] sont actuellement en
cours pour réévaluer le modèle de la structure laminaire de l’EDR. Dans ces études,
la structure complexe de l’EDR devient évidente dans les données des simulations
caractérisées par une haute résolution ou un nombre de microparticles plus élevé par
rapport aux simulations antérieures.

La présente analyse des données MMS – ainsi que les résultats des études PIC
récents – a souligné la nécessité de réaliser des simulations avec une résolution spatiale
plus élevée et un bruit numérique négligeable – en particulier pour le champ électrique
– pour progresser dans la compréhension des processus cinétiques qui interviennent
aux échelles électroniques.

En poursuivant cette motivation, la deuxième partie du mémoire est consacrée a
l’etude de l’EDR en utilisant un nouveaux modèle Eulérien Vlasov-Darwin complète-
ment cinétique que nous avons implémenté dans le code numérique ViDA [Pezzi et al.,
2019]. Le code ViDA a été spécifiquement conçu pour perfectionner la compréhension
de la dynamique des plasmas non collisionnels aux échelles cinétiques en donnant ac-
cès aux détails de la fonction de distribution électronique dans l’espace de phase. Il a
été réalisé à partir du code Vlasov-Hybrid Maxwell (HVM) [Valentini et al., 2007] où
seuls les ions sont traités de façon cinétique.

Dans le modèle numérique, on intègre l’équation de Vlasov pour chaque espèce
(électrons et protons) dans l’espace 3D en espace et en vitesse. L’équation de Vlasov
est couplée avec les équations de Maxwell-Darwin. L’approximation de Darwin [Dar-
win, 1920] permet d’assouplir la condition CFL (Courant-Friedrichs-Lewy) [Peyret
and Taylor, 1986] et, par conséquent, d’augmenter sensiblement le pas temporel de
la simulation. Le code est parallélisé dans les trois axes spatiaux avec MPI (Message
Passing Interface) ou une procédure hybride avec MPI et OpenMP (Open Multipro-
cessing).

Une première partie de mon travail est consacrée à tester le code ViDA avec une
simulation 2D de la reconnexion magnétique symétrique avec paramètres similaires
aux simulations du Geospace Environmental Modeling (GEM) magnetic reconnection
challenge [Birn et al., 2001]. Le code reproduit les signatures typiques associées à la
reconnexion magnétique, e.g. la forme quadripolaire du champ magnétique de Hall.
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Ensuite, un run de simulation à résolution plus élevée est utilisé pour étudier la
dynamique des électrons dans la région de diffusion. En particulier, j’ai évalué les
termes qui composent le champ électrique de reconnexion dans la loi d’Ohm. Dans
l’EDR interne (“inner EDR” [Karimabadi et al., 2007]), le champ électrique de recon-
nexion est soutenu par le terme lié à la divergence du tenseur de pression électronique,
comme il a été déjà montré, e.g. par [Divin et al., 2016].

Les données de la simulation montrent aussi que le rôle du terme d’inertie élec-
tronique dû à la variation temporelle du courant électrique n’est pas négligeable dans
l’EDR. Ce résultat préliminaire est probablement très dépendant des conditions aux
limites de la simulation. En effet, les conditions aux limites périodiques dans les deux
dimensions du domain empêchent la réalisation d’un état stationnaire qui puisse durer
pour plusieur temps ioniques [Daughton et al., 2006]. Pour cette raison, il est très
difficile de comparer ces résultats avec autres études qui analysent la loi d’Ohm dans
l’état stationnaire [Shay et al., 2007]. En fait, cette simulation présente plutôt une
phase “unsteady” de la reconnexion. Cependant, la compréhension du rôle du terme
d’inertie électronique dû à la variation temporelle du courant électrique est important
pour quantifier l’énergisation des électrons dans les phase unsteady du processus ainsi
que pour améliorer la compréhension du résidu de la loi d’Ohm observé avec les don-
nées MMS [Torbert et al., 2016a]. En fait, le terme de variation temporelle est difficile
à évaluer avec les données in situ et les simulations peuvent fournir une indication
pour l’interprétation du résidu observé.
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Useful Symbols and Formulas

de electron inertial length km
di (dp) ion (proton) inertial length km
ρe electron gyroradius km
ρi (ρp) ion (proton) gyroradius km
λD Debye length km
vth,e electron thermal speed km/s
vth,i (vth,p) ion (proton) thermal speed km/s
VA,e electron Alfvén speed km/s
VA,i (VA,p) ion (proton) Alfvén speed km/s
ωp,e electron plasma frequency s−1

ωp,i (ωp,p) ion (proton) plasma frequency s−1

Ωc,e electron cyclotron frequency s−1

Ωc,i (Ωc,p) ion (proton) cyclotron frequency s−1

Te (Te,||, Te,⊥) electron temperature eV

(parallel and perpendicular to the magnetic field)
Ti (Ti,||, Ti,⊥) ion (proton)temperature eV

(parallel and perpendicular to the magnetic field)
η resistivity Ω m
β 8πnT/B2
√
Q electron agyrotropy

Rm magnetic Reynolds number

c light speed 3× 105 km/s
e electron charge 1.6× 10−19 C
me electron mass 9.1× 10−31 kg
mi (mp) ion (proton) mass 1.6× 10−27 kg
RE equatorial radius of Earth 6371 km

ωp,α = (4πnαe
2/mα)1/2 dα = c/ωp,α α = e, i, p

λD = vth,e/ωp,e

Ωc,α = eB/mαc ρα = vth,α/Ωc,α

VA,α = B/(4πnαmα)1/2
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B = bx̂−x/δŷ and the electric field is E = −aẑ. Adapted from Speiser
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Titre : La microphysique de la reconnexion magnétique dans l’espace “near-Earth”: observations par satellite
et simulations numériques

Mots clés : physique des plasmas, reconnexion magnétique, plasmas spatiaux

Résumé : La reconnexion magnétique est un pro-
cessus fondamental de conversion d’énergie dans les
plasmas. La reconnexion a lieu dans des couches de
courant très fines et a comme conséquence la recon-
figuration de la topologie magnétique et la conver-
sion d’énergie magnétique dans l’accélération et le
réchauffement du plasma. Actuellement, le rôle de
la reconnexion magnétique est reconnue comme
un processus majeur dans l’environnement Soleil-
Terre. La reconnexion se déclenche dans la région
de diffusion électronique (EDR) où les électrons se
démagnétisent et sont accélérés par les champs
électriques de reconnexion. La physique de la région
de diffusion aux échelles électroniques est encore lar-
gement inconnue. Ce n’est que récemment, avec le
lancement de la mission Magnetospheric MultiScale
(MMS) et l’augmentation des capacités de calcul des
super-ordinateurs, que la dynamique de l’EDR a com-
mencée à être comprise. Une des questions fonda-
mentales - qui reste encore sans réponse - est si
la structure de l’EDR est homogène ou hétérogène
aux échelles électroniques et même au-dessous.
La finalité de ma recherche est d’avancer dans la
compréhension de la structure de l’EDR avec deux

approches différent : les observations par satellites
et simulations numériques complètement cinétique de
type Vlasov.
L’analyse des donnée MMS à la magnétopause en
proximité du point sub-solaire montre que la structure
de l’EDR peut être bien plus compliquée (en terme de
courant électrique, de champ électrique et de conver-
sion d’énergie aux échelles électroniques) que ce
qu’indiquent les études expérimentales antérieures
et les simulations numériques de type PIC. La
deuxième partie du mémoire est consacrée à l’étude
de l’EDR en utilisant un nouveaux modèle Eulérien
Vlasov- Darwin complètement cinétique qui nous
avons implémenté dans le code ViDA. ViDA a
été spécifiquement conçu pour perfectionner notre
compréhension de la dynamique des plasmas non
collisionnels aux échelles cinétiques. Une première
partie est consacrée aux tests du code avec
une simulation 2D de la reconnexion magnétique
symétrique. Les données de simulation avec bruit
négligeable ont été utilisées par la suite pour étudier
la contribution des différents termes qui forment la loi
d’Ohm dans l’EDR.

Title : Microphysics of magnetic reconnection in near-Earth space: spacecraft observations and numerical
simulations

Keywords : plasma physics, magnetic reconnection, space plasmas

Abstract : Magnetic reconnection is a fundamental
energy conversion process in plasmas. Reconnection
takes place in thin current sheets leading to the recon-
figuration of magnetic field topology and to conversion
of magnetic energy into particle acceleration and hea-
ting. It is recognized to play a key role in the Earth-
solar environment. Reconnection is initiated in the
Electron Diffusion Region (EDR), where electrons de-
couple from the magnetic field and are energized by
electric fields. The small electron scale physics of the
dissipation region remains largely unexplored. Only
recently, with the launch of the Magnetospheric Mul-
tiScale mission (MMS) together with the increasing
of supercomputers computational capabilities, the dy-
namics of the EDR has started to be enlightened.
One of the key, yet still open questions, is whether
the EDR has a preferred homogeneous or inhomo-
geneous structure at electron scales and below. The
purpose of this Thesis is to advance in the understan-
ding of the structure of the EDR using two different ap-

proaches, notably MMS spacecraft observations and
fully-kinetic Vlasov simulations.
MMS observations of the EDR at the subsolar magne-
topause show that the EDR can be much more com-
plex (in terms of current densities, electric field and
energy conversion) than it has been found in other
MMS events and than it is usually depicted by kine-
tic PIC simulations.
The second part of the Thesis aims at studying the
EDR by using a novel fully-kinetic Eulerian Vlasov-
Darwin model which we have implemented in the code
ViDA. ViDA is specifically designed to improve the un-
derstanding of the kinetic dynamics of collisionless
plasmas at electron scales. A first part is devoted to
the testing of the code by performing 2D symmetric
magnetic reconnection simulations. Then, low-noise
simulation data have been used to investigate the
contribution of the different terms in the Ohm’s law in
the EDR.
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