In this doctoral thesis, we investigate charged lepton flavour violating processes in effective field theory, in which possible new physics effects can be parametrized by higher dimensional gauge invariant operators built from Standard Model fields. The discovery of neutrino oscillations is a clear evidence that lepton flavour violation can occur and that neutrinos are massive. In the Standard Model extended with massive neutrinos, charged lepton flavour violating processes are strongly suppressed, and the discovery of such processes would be a clear signal of physics beyond the Standard Model.

After a general introduction on the Standard Model of particle physics and beyond, this manuscript contains two introductory chapters. The first one introduce the theoretical and experimental context for the searches of charged lepton flavour violating processes, and their huge potential to constrain new physics model. We make a review of many processes and the current experiments, then we discuss the prospects for the upcoming experiments. The second chapter describe the formalism of the effective field theory approach. We discuss the principles of renormalization and loop integrals calculations with dimensional regularization. We also discuss the renormalization group equations that describe the running and the mixing of the coefficients with the energy scale. Finally, we discuss two different approaches in effective field theories.

After introducing the experimental context and the effective field theory formalism, we study the μ → e conversion on nuclei in a top-down approach and charged lepton flavour violating two and three body decays of pseudoscalar mesons in a bottom-up approach. We first list all the operators and their associated coefficients that contribute to the processes. In our work, we mostly focus on dimension six operators. We compute the branching ratios for each processes as a function of the operator coefficients at the experimental scale, and use the experimental upper limit to constrain the coefficients.

We also use the renormalization group equations to compute the running and the mixing of the coefficients with energy scale in both top-down and bottom-up approaches. The results discussed in this thesis are based on two publications [1, 2]. iii 4.2 Evolution of the strong coupling α s with the energy scale Q (from Phys. Rev., D98(3):030001, 2018). .

RÉSUMÉ

Dans cette thèse de doctorat, nous étudions les processus de violation de la saveur des leptons chargés dans le cadre de la théorie des champs effective, dans laquelle les effets de nouvelle physique peuvent être paramétrés par des opérateurs invariants de jauge et de dimension plus élevées, construits avec les champs du modèle standard. La découverte de l'oscillation des neutrinos est une preuve claire que la violation de la saveur leptonique peut se produire et que les neutrinos ont une masse. Dans le modèle standard avec des neutrinos massifs, les processus de violation de la saveur des leptons chargés sont fortement supprimés, et la découverte de tels processus serait un signal clair de physique au-delà du modèle standard.

Après une introduction générale sur le modèle standard de la physique des particules et au-delà, ce manuscrit contient deux chapitres d'introduction.

Le premier chapitre présente le contexte théorique et expérimental pour les recherches de processus de violation de la saveur des leptons chargés, et leur potentiel pour contraindre les modèles de nouvelle physique. Nous faisons une revue de nombreux processus et des expériences actuelles, puis nous discutons des perspectives pour les expériences à venir.

Le deuxième chapitre décrit le formalisme de l'approche de la théorie des champs effective. Nous discutons des principes de la renormalisation et du calcul des boucles avec la régularisation dimensionnelle. Nous discutons également des équations du groupe de renormalisation qui décrivent l'évolution et le mélange des coefficients avec l'échelle d'énergie. Enfin, nous abordons deux approches différentes dans la théorie des champs effective.

Après avoir introduit le contexte expérimental et le formalisme de la théorie des champs effective, nous étudions la conversion d'un muon en électron dans les noyaux dans une approche top-down, et la violation de la saveur des leptons chargés dans les désintégrations à deux et trois corps de mésons pseudo-scalaires dans une approche bottom-up.

Nous listons d'abord les opérateurs et les coefficients associés qui contribuent aux processus. Dans notre travail, nous nous concentrerons principalement sur les opérateurs de dimension six. Nous calculons les rapports de branchement pour chaque processus en fonction des coefficients des opérateurs à l 'échelle expérimentale et utilisons les bornes expérimentales pour contraindre les coefficients.

Nous utilisons également les équations du groupe de renormalisation pour calculer l'évolution et le mélange des coefficients avec l'échelle d'énergie dans les approches top-down et bottom-up.

Les résultats présentés dans cette thèse sont basés sur deux publications [START_REF] Davidson | Spin-dependent μ → e conversion on light nuclei[END_REF][START_REF] Davidson | Constraints on 2 2q operators from μ -e flavour-changing meson decays[END_REF]. 3.1 Historical progress for the upper limit on B(μ + → e + γ). * (expected) . . . . . . . . . . . 17
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INTRODUCTION

The Standard Model (SM) [START_REF] Glashow | Partial Symmetries of Weak Interactions[END_REF][START_REF] Weinberg | A Model of Leptons[END_REF][START_REF] Salam | Weak and Electromagnetic Interactions[END_REF] of elementary particle physics describes the properties of the fundamental constituents of matter and their possible interactions via the electroweak and the strong interactions. The SM describes accurately most of the observed physical phenomena, and is one of the most successful theory, as many predictions have been verified by a very large number of measurements.

The discovery of the Higgs boson [START_REF] Aad | Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC[END_REF][START_REF] Chatrchyan | Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC[END_REF] in 2012 by the ATLAS and CMS collaborations at the Large Hadron Collider (LHC) is one of the greatest success of the SM. The experimental data collected show that the Higgs boson properties are in excellent agreement with the SM predictions, and many experiments are pursuing the study of the Higgs properties.

However, even with the tremendous success of the SM, there are many clear signs that it is not a complete theory and in fact cannot be a theory of everything because it fails to explain many experimental observations.

For example, the SM does not include gravitational interactions, cannot provide candidates for dark matter or explain the observed baryon asymmetry of the Universe. These unsolved issues, along with the hierarchy problem or the strong CP problem are a clear signal that there is physics Beyond the Standard Model (BSM). In the last years, the birth of BSM physics has lead to the development of many theoretical models, predicting the existence of new particles and interactions, and new structures, as an extension to the SM. The quest for new physics has also lead to the creation of many experiments, performing searches of signatures that could be either the manifestation of a new particle or a new process among known particles. Precision measurements are also a great place to look for new physics effects, that could manifest themselves through very small deviations of processes involving SM particles. Another striking example is the discovery of neutrino oscillations that established non zero neutrino masses and mixing angles. As the neutrinos are taken massless in the SM, new physics is required to explain the oscillation data or any processes involving Lepton Flavour Violation (LFV). Another possibility to search for new physics signatures is to look for Charged Lepton Flavour Violation (CLFV) processes [START_REF] Kuno | Muon decay and physics beyond the standard model[END_REF][START_REF] Calibbi | Charged Lepton Flavour Violation: An Experimental and Theoretical Introduction[END_REF], that changes the flavour of charged leptons. The discovery of such processes, forbidden in the SM, or strongly suppressed in the SM extended with massive neutrinos, would be a clear signal of BSM physics. Many experiments are searching for CLFV processes, for example μ ↔ e flavour changes can be probed in the decays μ → eγ [START_REF] Baldini | Search for the lepton flavour violating decay μ + → e + γ with the full dataset of the MEG experiment[END_REF] and μ → 3e [START_REF] Wilhelm | Search for the Decay μ + → e + e + e[END_REF][START_REF] Perrevoort | Status of the Mu3e Experiment at PSI[END_REF], in μ → e conversion on nuclei [START_REF] Wilhelm | A Search for muon to electron conversion in muonic gold[END_REF][START_REF] Kuno | A search for muon-to-electron conversion at J-PARC: The COMET experiment[END_REF][START_REF] Carey | Proposal to search for μ -N → e -N with a single event sensitivity below[END_REF] or in various meson decays such as K → μe [START_REF] Appel | Search for lepton flavor violation in K+ decays[END_REF][START_REF] Aaij | Search for the lepton-flavour violating decay D 0 → e ± μ ∓[END_REF][START_REF] Lees | Searches for Rare or Forbidden Semileptonic Charm Decays[END_REF][START_REF] Aubert | Search for the rare decay B → πl + l[END_REF]. Also, the sensitivity to CLFV processes will improve by several orders of magnitude in the coming years, as many experiments are under construction. These huge improvements in the experimental sensitivity in the next years are the reason for our interest in CLFV processes and their huge potential to constrain BSM models.

In this thesis, we focus on CLFV processes involving muons and electrons. The results discussed in chapters 5 and 6 of this manuscript are based on two publications [START_REF] Davidson | Spin-dependent μ → e conversion on light nuclei[END_REF][START_REF] Davidson | Constraints on 2 2q operators from μ -e flavour-changing meson decays[END_REF]. The outline of the PhD is organized as follows :

• In chapter 2, we first review many signs of BSM physics and then give a short list of BSM scenarios.

• In chapter 3, we make a review of the CLFV processes and their potential to constrain BSM models.

• In chapter 4, we discuss Effective Field Theory, the mathematical framework used to perform calculations and to constrain BSM models.

• In chapter 5, we discuss the CLFV process called μ → e conversion on nuclei in a top-down Effective Field Theory.

• In chapter 6 we discuss CLFV pseudoscalar meson decays in a bottom-up Effective Field Theory.

• Finally, we conclude in chapter 7.

C H A P T E R

THE STANDARD MODEL OF PARTICLE PHYSICS AND BEYOND

The Standard Model (SM) of particle physics is a renormalizable Quantum Field Theory that describes the properties of elementary particles and their possible interactions via the electroweak and the strong interactions. The SM is one of the most successful theory nowadays, as it has been tested from the eV scale (atomic structure) to the TeV scale. The SM predictions are in excellent agreement with the experimental data in most of the cases, especially the electroweak precision tests. Despite the tremendous success of the SM, there are clear signs that this is not a complete theory, as there are still several issues that cannot be explained with the SM. This has lead to the birth of physics Beyond the Standard Model (BSM), that aims at extending the SM to address the unsolved issues.

Physics Beyond the Standard Model

In this chapter, we give in a first part an overview of signs of New Physics (NP). In a second part, we give a short list of theoretical extensions to the SM.

Evidence of New Physics

In this section, we give some examples of unsolved issues that are a clear sign of BSM physics.

Gravitational interactions

One of the most striking issue that shows the SM cannot be a theory of everything is the fact it describes only three of the four fundamental interactions between elementary particles. Indeed, gravitational interactions are not included in the SM as until today, it is still not clear to find how gravity could be quantized and added as an extension to the SM.

Hierarchy problem

A interesting issue is the fact that the fermion masses span a very large range, from MeV to 174

GeV, and the SM cannot provide any explanation for the large hierarchy of fermion masses.

Another well known issue is the hierarchy problem. Here, the question is why the electroweak interactions are much stronger than the gravitational interactions at the microscopic level.

Another formulation of the hierarchy problem is to ask why the Higgs boson is much lighter than the Planck mass (or the grand unification energy). Indeed, one would expect that the large quantum contributions to the square of the Higgs boson mass would make the mass huge, comparable to the scale at which new physics appears, as the Higgs potential is highly sensitive to new physics that couples to the Higgs field. If we consider the existence of new heavy fermions, the self energy diagrams involving the Higgs boson and the additional particles give large contributions to the square of the Higgs mass, proportional to the ultraviolet cut-off used to regularize the divergences of the loops. The cut-off is of the order of the new physics scale, at which the new heavy fermions appear. A major issue is the fact that if the new physics scale is the Planck scale, the mass of the Higgs boson should be much larger than the measured value.

Another way to compute the loop integrals would be the use of dimensional regularization, in order to ignore the cut-off, but even in this case, the Higgs mass still receives contributions proportional to the squared mass of the additional particles that couples to the Higgs field.

That is the hierarchy problem : if there are additional particles at high energy, it is not clear how to explain why the Higgs mass is so small.

The baryon asymmetry

A very puzzling issue is the fact that the Universe is mostly made of matter. As ordinary matter is baryonic, this excess of matter over anti-matter implies a baryon asymmetry, that can be defined as :

(2.1)

Y B = n B -nB s = 0
where n B and nB are the number densities of baryons and anti-baryons, s is the entropy.

As the value of Y B is ∼ 10 -10 , baryon number must be violated. Independent measurements of the baryon density have been made with the estimation of the Big Bang Nucleosynthesis (BBN) [START_REF] Steigman | Primordial Nucleosynthesis in the Precision Cosmology Era[END_REF][START_REF] Cyburt | New BBN limits on physics beyond the standard model from 4 He[END_REF][START_REF] Steigman | Primordial nucleosynthesis: successes and challenges[END_REF] relic densities and from the measurements of the temperature fluctuation spectrum of the Cosmic Microwave Background (CMB). The baryon asymmetry has been measured very precisely by the WMAP and Planck collaborations [START_REF] Hinshaw | Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Parameter Results[END_REF][START_REF] Ade | Planck 2015 results. XIII. Cosmological parameters[END_REF][START_REF] Aghanim | Planck 2018 results. VI. Cosmological parameters[END_REF].

In the past few decades, particle-physics experiments have shown that the laws of nature do not apply equally to matter and antimatter. A famous hypothesis to explain the imbalance of matter and antimatter in the observed universe is the so called baryogenesis [START_REF] Yoshimura | Unified Gauge Theories and the Baryon Number of the Universe[END_REF][START_REF] Riotto | Recent progress in baryogenesis[END_REF][START_REF] Affleck | A New Mechanism for Baryogenesis[END_REF][START_REF] Yu | Universal CP Noninvariant Superweak Interaction and Baryon Asymmetry of the Universe[END_REF], a process that took place during the early universe that produced baryonic asymmetry. In 1967, Andrei
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Sakharov proposed a set of three conditions that must be satisfied in order to have a baryogenesis [START_REF] Sakharov | Violation of CP Invariance, C asymmetry, and baryon asymmetry of the universe[END_REF] :

• Baryon number B violation.

• C and CP violation, so that matter and antimatter have a different behavior

• Interactions out of thermal equilibrium, as particles and antiparticles have the same abundance in equilibrium However, in the SM, CP violation (included in the CKM matrix) and the out of equilibrium dynamics at the electroweak phase transition are not strong enough to explain the observed asymmetry. This means that BSM physics is required to produce baryogenesis.

Dark matter

Numerous observations suggest that most of the mass in the Universe is made of some dark matter of unknown composition. This dark matter is not sensitive to the electromagnetic and strong interactions and interact very weakly with ordinary matter. Evidences for dark matter are provided at different scales. A first hint for dark matter came at galactic scales from the observation that various luminous objects such as stars, gas clouds, globular clusters, and especially entire galaxies, move faster than predicted by the Newtonian theory of gravitation.

A very important result is the measurements of the velocities of stars in the Milky Way by J.H.

Oort in 1932 [START_REF] Oort | The force exerted by the stellar system in the direction perpendicular to the galactic plane and some related problems[END_REF]. Indeed, some stars were found to move with velocities larger than the escape velocity of the gravitational potential of luminous matter. This was one of the first indication for the existence of a new type of invisible matter in the Milky Way.

In 1933, F. Zwicky studied the velocity distribution of several galaxies in the Coma galaxy cluster [START_REF] Zwicky | Die Rotverschiebung von extragalaktischen Nebeln[END_REF]. He obtained an approximate value of the mass of the cluster using the Virial theorem and compared it to the mass distribution (obtained with the observation of the luminosity of nebulae in the cluster). He found a discrepancy between the mass of luminous matter and the mass calculated via the Newtonian law of gravity. This discrepancy suggested the existence of some non-luminous matter in the cluster, and was another evidence for the existence of dark matter.

Another very important evidence for the existence of dark matter is the measurement of rotation curves of spiral galaxies, that is to say the measurement of the circular velocities of stars and gas as a function of their distance from the galactic centre. Vera Rubin studied the rotation curves in 1970 [START_REF] Sofue | Rotation curves of spiral galaxies[END_REF][START_REF] Vera | Rotation of the Andromeda Nebula from a Spectroscopic Survey of Emission Regions[END_REF]. Most of the resulting rotation curves have a flat behavior at large distances, outside the edge of the visible disk. This was not expected and showed that the visible matter was only a fraction of the gravitational matter, as only additional invisible matter could explain the observed rotation curves. An example is given in fig. 2.1 (from [START_REF] Begeman | Extended rotation curves of spiral galaxies: Dark haloes and modified dynamics[END_REF]). For ordinary baryonic matter, the circular velocity is expected to decrease far away from the galactic center (dashed line). However, the measurements show that the velocity stays flat at large distances, which favors the hypothesis of the presence of invisible matter.

At the cosmological scale, various measurements, such as the anisotropy of the CMB, combined with data from Baryon Acoustic Oscillations and Type Ia Supernovae, give a value of the dark matter density. The PLANCK collaboration obtain the following value [START_REF] Ade | Planck 2015 results. XIII. Cosmological parameters[END_REF] :

(2.2) Ω c h 2 = 0.1188 ± 0.0010
The PLANCK collaboration also obtained the following baryon density Ω b h 2 = 0.02230 ± 0.00014 [START_REF] Ade | Planck 2015 results. XIII. Cosmological parameters[END_REF]. It is clear that the baryon density is not large enough to account for all the dark matter in the Universe. This means that the candidates for dark matter are non-baryonic.

The nature of dark matter is still unknown, but the observations lead to a specific profile for non-baryonic dark matter candidates :

• They must have a lifetime near the age of the Universe, otherwise they would have decayed by now 

Neutrino oscillations

In the SM, there are three flavours of left handed neutrinos (ν e ,ν μ and ν τ ), that are massless and only sensitive to the weak interaction. They do not mix which means that there are no flavour changes in the SM. However, many evidences of neutrino oscillations come from experiments measuring fluxes of neutrinos produced in the Sun, in the atmosphere, in accelerators and in nuclear reactors. The discovery of neutrino oscillations [START_REF] Ahmad | Direct evidence for neutrino flavor transformation from neutral current interactions in the Sudbury Neutrino Observatory[END_REF][START_REF] Fukuda | Evidence for oscillation of atmospheric neutrinos[END_REF] established non zero neutrino masses and mixing angles [START_REF] Tanabashi | Review of Particle Physics[END_REF], and was a striking example of processes involving flavour changes in the lepton sector. A way to introduce lepton flavour changes in the SM is to add a neutrino mass term which can be done via a neutrino mass matrix that is not diagonalized in the charged lepton mass basis. This matrix would give rise to flavour changes and neutrino oscillations (see subsection 3.1). Indeed, the probability for an oscillation between two flavours can be written [START_REF] Tanabashi | Review of Particle Physics[END_REF] :

(2.3) P(ν l → ν l ) = j |U l j | 2 |U l j | 2 + 2 j>k |U l j U * l j U lk U * l k | cos( Δm 2 jk L 2p -φ ll ; jk ) (2.4) P( νl → νl ) = j |U l j | 2 |U l j | 2 + 2 j>k |U l j U * l j U lk U * l k | cos( Δm 2 jk L 2p + φ ll ; jk )
where l, l ∈ e, μ, τ, φ l l; jk = ar g(U l j U * l j U lk U * l k ), L is the neutrino oscillation length associated with Δm

2 jk = m 2 j -m 2 k , p = p j +p k 2
(p j,k and m j,k are the neutrino momentum and mass). U is the PMNS neutrino mixing matrix [START_REF] Pontecorvo | Mesonium and anti-mesonium[END_REF][START_REF] Maki | Remarks on the unified model of elementary particles[END_REF][START_REF] Pontecorvo | Inverse beta processes and nonconservation of lepton charge[END_REF][START_REF] Pontecorvo | Neutrino Experiments and the Problem of Conservation of Leptonic Charge[END_REF] which can be written : 

⎞ ⎟ ⎟ ⎠ × ⎛ ⎜ ⎜ ⎝ 1 0 0 0 e iα 2 /2 0 0 0 e iα 3 /2 ⎞ ⎟ ⎟ ⎠ (2.5)
where c i j = cos θ i j , s i j = sin θ i j , θ i j = [0, π 2 ] the mixing angle, δ = [0, 2π] is the Dirac CP violation phase and α 2 and α 3 are two Majorana CP violation phases [START_REF] Samoil | On Oscillations of Neutrinos with Dirac and Majorana Masses[END_REF][START_REF] Schechter | Neutrino Masses in SU(2) x U(1) Theories[END_REF][START_REF] Doi | CP Violation in Majorana Neutrinos[END_REF][START_REF] Samoil | Massive Neutrinos and Neutrino Oscillations[END_REF].

In the case the neutrinos are Dirac particles, the parameters are the three mixing angles and the phase δ. If the neutrinos are Majorana particles, that is to say their own antiparticle, then the phases α 2 and α 3 must be added to the lepton mixing matrix. Thus, with the three angles θ 12 , θ 13 , θ 23 , the masses m 1 , m 2 , m 3 and, depending on the nature of neutrinos, one or three CP violation phases, this makes seven or nine additional parameters in the SM extended with massive neutrinos.

The Dirac phase δ can be studied in neutrino oscillations, as it implies a difference between anti neutrinos and neutrinos oscillation probabilities. Some experiments, sensitive to lepton number violation, like the HEIDELBERG-MOSCOW neutrinoless double beta decays [START_REF] Klapdor-Kleingrothaus | Latest results from the Heidelberg-Moscow double beta decay experiment[END_REF] experiment could measure the α 2 and α 3 Majorana phases. Notice that only differences of neutrino masses can be probed in neutrino oscillation experiments. The KATRIN experiment [START_REF] Franklin | The KATRIN Neutrino Mass Measurement: Experiment, Status, and Outlook[END_REF] is working on determining the absolute mass scale of neutrinos.

The discovery of flavour changes between neutral leptons is a strong motivation to search for processes involving charged lepton flavour changes. In chapter three, we will discuss processes that involve flavour violation in the charged lepton sector.

B physics

Many anomalies have been observed in semileptonic B-decays, that exhibit deviations from the SM predictions in the following ratios :

R(K ( * ) ) = BR[B → K ( * ) μ + μ -]/BR[B → K ( * ) e + e -] R(D ( * ) ) = BR[B → D ( * ) τν]/BR[B → D ( * ) lν] R(J/ψ) = BR[B + c → J/ψτ + ν]/BR[B + c → J/ψμ + ν] (2.6)
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In R(K) and R(K * ), the deviations from the SM are at the 2, 6σ and 2, 2 -2, 4σ level [START_REF] Aaij | Test of lepton universality using B + → K + +decays[END_REF][START_REF] Aaij | Test of lepton universality with B 0 → K * 0 +decays[END_REF], and in R(D) and R(D * ), the deviations from the SM expectation are at the 4σ level [START_REF] Amhis | Averages of b-hadron, c-hadron, and τ-lepton properties as of summer 2016[END_REF]. Notice that a deviation of about 2σ was measured in R(J/ψ) [START_REF] Aaij | Measurement of the ratio of branching fractions B(B + c → J/ψτ + ν τ )/B(B + c → J/ψμ + ν μ )[END_REF]. The anomalies observed in R(K) [START_REF] Aaij | Test of lepton universality using B + → K + +decays[END_REF], R(K ( * ) ) [START_REF] Aaij | Test of lepton universality with B 0 → K * 0 +decays[END_REF] and in R(D ( * ) ) [START_REF] Lees | Evidence for an excess of B → D ( * ) τντ decays[END_REF][START_REF] Huschle | Measurement of the branching ratio of B → D ( * ) τντ relative to B → D ( * )ν decays with hadronic tagging at Belle[END_REF][START_REF] Aaij | Measurement of the ratio of branching fractions B( B0 → D * + τντ )/B( B0 → D * + μνμ )[END_REF] also suggest lepton flavour universality violation (LFUV) [START_REF] Amhis | Averages of b-hadron, c-hadron, and τ-lepton properties as of summer 2016[END_REF][START_REF] Altmannshofer | Interpreting Hints for Lepton Flavor Universality Violation[END_REF][START_REF] Guido | Flavour anomalies after the R K * measurement[END_REF][START_REF] Hiller | beyond the standard model[END_REF][START_REF] Geng | Towards the discovery of new physics with lepton-universality ratios of b → s decays[END_REF][START_REF] Hurth | Lepton nonuniversality in exclusive b→s decays[END_REF][START_REF] Ciuchini | On Flavourful Easter eggs for New Physics hunger and Lepton Flavour Universality violation[END_REF]. Thus, semileptonic B-decays and the observed anomalies provide powerful probes for testing the SM and for searching for the effects of BSM physics.

BSM models

In this section we make a short review of some BSM models that have been proposed in order to solve the issues mentioned above.

Supersymmetry

Supersymmetry or SUSY was developed from various studies [START_REF] Volkov | Is the Neutrino a Goldstone Particle?[END_REF][START_REF] Wess | Supergauge Transformations in Four-Dimensions[END_REF][START_REF] Yu | Extension of the Algebra of Poincare Group Generators and Violation of p Invariance[END_REF][START_REF] Gervais | Field Theory Interpretation of Supergauges in Dual Models[END_REF] and is a theory that introduce a new symmetry between fermions and bosons. SUSY predicts that for every bosonic (fermionic) degree of freedom, there is a corresponding fermionic (bosonic) degree of freedom.

However, SUSY implicates the existence of undiscovered particles, called the superpartners of the particles already known. These superpartners should have a much larger mass than their partners, otherwise they would have already been detected. Also, the proton could decay much faster compared to the actual observed lifetime of the proton (> 10 29 years), into a pion and a positron via a quark superpartner called squark. To solve this issue, a new concept called R-parity was proposed. By introducing R-parity, that can be written [START_REF] Glennys | Phenomenology of the Production, Decay, and Detection of New Hadronic States Associated with Supersymmetry[END_REF] :

(2.7) P R = (-1) 3(B-L)+2s
where s is the spin, B the baryon number, and L the lepton number. P R = 1 for the particles and P R = -1 for the superpartners. When R-parity is conserved, the proton becomes stable, and the predicted lifetime is in agreement with current data.

Another very appealing aspect of R-parity conservation, is that it naturally provides a good dark matter candidate, as in this case, the lightest supersymmetric particle is stable (and has to be neutral of electric and color charge and interacts weakly with baryonic matter).

SUSY also provides a solution to the hierarchy problem, as the new bosonic and fermionic degrees of freedom contributions to the Higgs mass cancel exactly if their couplings and masses are related to each other.

Right handed neutrinos

As we saw in subsubsection 2.1.1.5, neutrino oscillations proved that neutrinos are massive.

Giving to the neutrinos a Yukawa coupling to the Higgs field generates neutrino masses after the CHAPTER 2. THE STANDARD MODEL OF PARTICLE PHYSICS AND BEYOND electroweak symmetry breaking. A way to generate the neutrino masses is to add right handed neutrinos to the SM. However, as the neutrino masses are extremely small, the correponding Yukawa couplings must be unnaturally small. A famous example in which this problem is solved is the seesaw mechanism [START_REF] Minkowski | μ → eγ at a Rate of One Out of 10 9 Muon Decays?[END_REF][START_REF] Rabindra | Neutrino Mass and Spontaneous Parity Nonconservation[END_REF][START_REF] Gell-Mann | Complex Spinors and Unified Theories[END_REF][START_REF] Yanagida | Horizontal Symmetry and Masses of Neutrinos[END_REF], as a large Majorana mass term is given to the right handed neutrino, which would push the masses of the active neutrinos down and provide a simple explanation for the small neutrino masses.

Right handed neutrinos can also address many other unsolved issues, as light right-handed neutrinos could also be dark matter candidates. There are also leptogenesis models in which the baryon asymmetry of the Universe is produced from a lepton asymmetry, as in the case of heavy right-handed neutrinos, a new source of CP violating couplings is provided. The phenomenology of right handed neutrinos is reviewed in deeper details in [START_REF] Drewes | The Phenomenology of Right Handed Neutrinos[END_REF].

Extra dimensions

It is also possible to add additional dimensions the four dimensional space-time. As an example, adding compact extra dimensions that only affect physics at high energy scales, it is possible to define the Planck mass on the extra dimensional space, which would be much smaller than the Planck mass observed in the regular four dimensional space. This could address the hierarchy problem. Also, one can consider the case of universal extra dimensions [START_REF] Appelquist | Bounds on universal extra dimensions[END_REF], in which all SM particles propagate. For example, the fifth dimensional Kaluza-Klein [START_REF] Kaluza | Zum Unitätsproblem der Physik[END_REF][START_REF] Klein | Quantentheorie und fünfdimensionale relativitätstheorie[END_REF] model provides, in the form of stable Kaluza-Klein partners, good dark matter candidates, as they are stable and may have the desired relic density [START_REF] Servant | Is the lightest Kaluza-Klein particle a viable dark matter candidate?[END_REF][START_REF] Saito | Relics From the Early Kaluza-Klein Universe[END_REF][START_REF] Kolb | Dimensional Reduction in the Early Universe: Where Have the Massive Particles Gone?[END_REF].

Leptoquark models

Leptoquarks (LQs) [START_REF] Hewett | Much ado about leptoquarks: A Comprehensive analysis[END_REF] are hypothetical particles (of scalar or vector nature) that carry both a baryon number (B) and a lepton number (L), and that can turn quarks into leptons and vice versa.

They appear in many extensions of the SM, such as the Pati and Salam SU(4) model [START_REF] Jogesh | Lepton Number as the Fourth Color[END_REF][START_REF] Jogesh | Is Baryon Number Conserved?[END_REF][START_REF] Jogesh | Unified Lepton-Hadron Symmetry and a Gauge Theory of the Basic Interactions[END_REF],

Grand Unified Theories [82][START_REF] Buchmuller | Constraints on SU(5) Type Leptoquarks[END_REF][START_REF] Senjanovic | Light Leptoquarks in SO(10)[END_REF][START_REF] Paul | SU(15) GRAND UNIFICATION[END_REF][START_REF] Paul | Higgs sector and proton decay in su(15) grand unification[END_REF][START_REF] Paul | Light leptoquarks as possible signature of strong electroweak unification[END_REF][START_REF] Murayama | A viable SU(5) GUT with light leptoquark bosons[END_REF][START_REF] Hewett | Don ' t stop thinking about leptoquarks: Constructing new models[END_REF][START_REF] Gershtein | TeV-scale leptoquarks from GUTs/string/M-theory unification[END_REF][START_REF] Dorsner | Unification without supersymmetry: Neutrino mass, proton decay and light leptoquarks[END_REF], technicolour theories [92][START_REF] Eichten | Super Collider Physics[END_REF][START_REF] Dimopoulos | Mass Without Scalars[END_REF][START_REF] Dimopoulos | Technicolored Signatures[END_REF][START_REF] Georgi | Unextended hypercolor and unification[END_REF], as well as in various composite models [START_REF] Buchmuller | Composite Quarks and Leptons[END_REF][START_REF] Schrempp | A Confining SU(2)-l X SU(2)-r Gauge Model of the Weak Interactions[END_REF][START_REF] Abbott | Are the Weak Interactions Strong?[END_REF][100][101][102][103].

LQs are proposed in many new physics scenarios. For example, LQs provide a solution to the deviations from the SM predictions observed in the ratios of semi-leptonic B decays R(K * ) and 

PHYSICS BEYOND THE STANDARD MODEL

A review of LQs models along with the issue they address and with the current status of LQs searches at collider is given in [START_REF] Dorner | Physics of leptoquarks in precision experiments and at particle colliders[END_REF].

C H A P T E R 3

CHARGED LEPTON FLAVOUR VIOLATION

As we saw in subsubsection 2.1.1.5, the discovery and the confirmation of neutrino oscillations [START_REF] Ahmad | Direct evidence for neutrino flavor transformation from neutral current interactions in the Sudbury Neutrino Observatory[END_REF][START_REF] Fukuda | Evidence for oscillation of atmospheric neutrinos[END_REF] established non zero neutrino masses and mixing angles [START_REF] Tanabashi | Review of Particle Physics[END_REF] and was a clear observation of processes involving flavour violation in the lepton sector. However, the SM cannot explain neutrino oscillations or flavour violation in the lepton sector, as the neutrinos are taken massless and there is no mixing between lepton families. It is thus clear that BSM physics is required to address these issues, and must be in agreement with the current constraints on lepton flavour violating processes. The discovery of neutrino oscillations is also a strong motivation to look for flavour violation in the charged lepton sector, the so called Charged Lepton Flavour Violation (CLFV) processes [START_REF] Kuno | Muon decay and physics beyond the standard model[END_REF][START_REF] Calibbi | Charged Lepton Flavour Violation: An Experimental and Theoretical Introduction[END_REF]. In fact, once neutrino masses are introduced in the SM, they contribute to CLFV processes via loop diagrams. However, the CLFV rates are GIM suppressed by a factor ∝ (m ν /M W ) 4 ∼ 10 -48 [START_REF] Petcov | The Processes mu -> e Gamma, mu -> e e anti-e, Neutrino' -> Neutrino gamma in the Weinberg-Salam Model with Neutrino Mixing[END_REF], leading to unobservably small branching ratios in current experiments, of the order ∼ 10 -54 . In the case of Majorana neutrinos, for example in models of seesaw type, the GIM suppression may not occur anymore, but the CLFV branching ratios could still be unobservably small. Thus, the discovery of a CLFV process would be a clear signal of BSM physics, and many extensions to the SM predict large CLFV effects. Many experiments are currently searching for CLFV processes, and many are currently under construction and plan to improve their sensitivity to flavour violation by several orders of magnitude. These exceptional improvements in the experimental sensitivity are the reason for our interest in specific CLFV processes and their huge potential for constraining and discriminating BSM models.

In this chapter, we review the theory of lepton flavour violation in the SM extended with massive neutrinos and discuss the current and future experimental status of various CLFV processes. 

L = i l i / Dl i + e R j / De j R Kinetic terms -Y i j l i e j R H + h.c Yukawa coupling
where

l i ∈ ν e e L , ν μ μ L , ν τ τ L and e j R ∈ e R , μ R , τ R .
H is the Higgs field, / D = D μ γ μ is the covariant derivative and Y i j is a 3 × 3 Yukawa coupling matrix for the charged leptons. The SM fermions are grouped into generations and differ by a quantum number called flavour. In the lepton sector, a lepton flavour can be assigned to each generation : L e = 1 (-1) for e -, ν e (e + , ν e ), L μ = 1 (-1) for μ -, ν μ (μ + , ν μ ) and L τ = 1 (-1) for τ -, ν τ (τ + , ν τ ). Substituting the vacuum expectation value (VEV) for the Higgs field in the Yukawa part of eqn. 3.1 gives the charged lepton mass terms that can be written :

(3.2) L mass = -M i j e i L e j R , M i j = v 2 Y i j
where M i j is the charged lepton mass matrix, which can be a general complex 3 × 3 matrix and v is the VEV. Such matrices can be diagonalized by two unitary transformations, one for left-handed leptons and one for right-handed leptons that have the same charge. Indeed, the charged lepton mass matrix of eqn 3.2 is diagonalized by the unitary transformations on l i and e j R . This means that in the mass diagonalized basis, the charged weak current interactions for leptons are diagonal and can be written :

(3.3) L Wνe = g 2 ν iL γ μ e iL W + μ + e iL γ μ ν iL W - μ
where g is the SU(2) coupling constant and W μ a SU(2) gauge boson. Thus, if neutrinos are taken massless, lepton flavour is conserved and neutrino oscillations or CLFV processes can not be explained in the SM.

However, as we saw in subsubsection 2.1.1.5, the observation of neutrino oscillations indicate that neutrinos have a mass and that there are mixing angles. In the SM extended with massive neutrinos, these masses, that can be introduced via a neutrino mass matrix, can contribute to However, due to the GIM mechanism, the rates of the CLFV processes are strongly suppressed as the neutrinos masses are much smaller than the W boson mass. Let us consider the branching ratio of the radiative CLFV muon decay μ → eγ that can be written [START_REF] Petcov | The Processes mu -> e Gamma, mu -> e e anti-e, Neutrino' -> Neutrino gamma in the Weinberg-Salam Model with Neutrino Mixing[END_REF][START_REF] Samoil | Lepton Mixing, mu -> e + gamma Decay and Neutrino Oscillations[END_REF] :

(3.4) BR(μ → eγ) = 3α 32π 3 i=1 U * ei U μi m 2 νi M 2 W 2 GIM suppression factor ∼ (2.5 -3.9) × 10 -55
where U is the PMNS matrix defined in eqn. 2.5 and α the fine structure constant.

Similar calculation of branching ratios of processes involving taus as well as other processes such as l 1 → l 2 l 3 l 4 lead to extremely small results. This means that in the SM extended with neutrino masses, CLFV rates are way too small to be observed in current or future experiments.

However, in the case of Majorana neutrinos, the GIM suppression in CLFV rates may not occur anymore. A simple example is provided by the seesaw mechanism (see 2.1.2.2), in which the SM is extended by adding right-handed neutrinos with Majorana mass terms M R . The spontaneous breaking of the electroweak symmetry induces Dirac mass terms, as well as mixing among left-handed and right-handed neutrinos. Once the neutrino mass matrix is diagonalized, the resulting eigenstates are Majorana fields. Moreover, the PMNS matrix of eqn. 2.5 does not coincide anymore with the matrix U that appears in the charged current. The matrix U is not unitary and can be written in terms of M R and the neutrino Yukawa couplings Y ν [START_REF] Abada | Low energy effects of neutrino masses[END_REF][START_REF] Antusch | Unitarity of the Leptonic Mixing Matrix[END_REF] :

(3.5) U = (1 - ν 2 2 Y † ν M -2 R Y ν )U CHAPTER 3. CHARGED LEPTON FLAVOUR VIOLATION
In this case, the matrix U' appears in diagrams of the form of figure 3.1 and there is no GIM suppression. In fact, in model of seesaw type, the suppression factor

m 2 νi M 2 W is replaced by a factor ∝ m νi
M R , which means that the CLFV rates may still be suppressed. For example, for m ν = 1eV and M R = 10 10 GeV , CLFV branching ratios are at the level ∼ 10 -40 or less. This issue is reviewed in [START_REF] Kuno | Muon decay and physics beyond the standard model[END_REF][START_REF] Calibbi | Charged Lepton Flavour Violation: An Experimental and Theoretical Introduction[END_REF].

The discovery of a CLFV process would thus be a clear and striking signal of BSM physics. In fact, many BSM models predict measurable CLFV rates and many experiments are currently searching for CLFV processes.

Experimental status of CLFV processes

In this section, we list various CLFV processes, in the muon, tau and meson channels and discuss the experimental status.

Muon channel

We list four of the major CLFV processes in the muon channel (the Muonium to anti-muonium conversion is detailed in [START_REF] Kuno | Muon decay and physics beyond the standard model[END_REF]).

μ + → e + γ decay

The experimental signature of the μ + → e + γ decay at rest is a positron and a photon in coincidence, moving back-to-back and with their energies equal to half of the muon mass. It is interesting to notice that negative muon cannot be used, since it would be captured by a nucleus when stopped in a material. More detail on the detector resolution and on the sensitivity limitation from the backgrounds of various experiments can be found in [START_REF] Kuno | Muon decay and physics beyond the standard model[END_REF][START_REF] Calibbi | Charged Lepton Flavour Violation: An Experimental and Theoretical Introduction[END_REF][START_REF] Bernstein | Charged Lepton Flavor Violation: An Experimenter's Guide[END_REF].

The search for μ + → e + γ have been actively promoted by intense muon beams available at the meson factories. Experiments have been working on improving the detection resolution of the positron energy, the photon energy, the timing between the positron and photon, and the angle between the positron and photon. These improvements, combined with intense muon beams, have lead to huge improvements of the sensitivity to the μ + → e + γ decay. As this decay has not been observed yet, experiments can set an upper limit or the branching ratio, that can be written

(3.6) B(μ + → e + γ) = Γ(μ + → e + γ) Γ(μ + → e + ν ν)
In table 3.1, we give a list of upper limits on B(μ + → e + γ) obtained in the past experiments.

It is amazing to see how much the experimental sensitivity has improved over the years.

The MEG collaboration [START_REF] Baldini | Search for the lepton flavour violating decay μ + → e + γ with the full dataset of the MEG experiment[END_REF] at PSI have reach a sensitivity at a 10 -13 level, and completed data taking in 2013. Important upgrades are planned in order to increase the sensitivity of the experiment by an order of magnitude. These changes to the experiment, known as MEG II, are detailed in [START_REF] Baldini | The design of the MEG II experiment[END_REF].

μ

+ → e + e + e -
The signature of the μ + → e + e + e -decay consists of two positrons and one electron coming from a common vertex and with a total energy equal to the muon mass. However, the energy distribution of each daughter particle depends on the dynamics of the underlying unknown physics. This issue has been reviewed in [START_REF] Kuno | Muon decay and physics beyond the standard model[END_REF]. Momentum conservation imply that the momentum of the three particles have to lie in a plane. The maximum energy that can be carried away by a positron / electron is half of the muon mass energy. [START_REF] Blondel | BIBLIOGRAPHY Research Proposal for an Experiment to Search for the Decay μ → eee[END_REF].

μ

-N → e -N
Muon to electron conversion is the spontaneous decay of a muon to an electron without the emission of neutrinos. When a negative muon is stopped in a material, it is captured by an atom, and forms a muonic atom. Once captured, the muon cascades down in energy levels to the 1s state, in the muonic atom. In the SM, two processes can occur : the muon can decay in orbit (μ -→ e -ν μ νe ), or can be captured by a nucleus of mass number A and atomic number

Z (μ -+ (A, Z) → ν μ + (A, Z -1)
). Considering new physics, a third process is also expected :

neutrinoless muon capture (μ -+ (A, Z) → e + + (A, Z)), which is called muon to electron conversion in a muonic atom. Notice that in the final state, the nucleus can be in the ground state or in an excited state. However, most often, the nucleus is in the ground state, in this case, the conversion process is said to be coherent. Notice that experiments do not observe captures on the nucleus, but instead see the signature of a stopped muon : X-rays that are emitted when the muon tumbles down to the 1s state of some target nucleus. The characteristic X-rays spectrum is the signal of a stopped muon. The signature of the coherent conversion in a muonic atom is a monoenergetic single electron emitted from muon capture, whose energy is :

(3.7) E = m μ -B μ -E rec
where m μ is the mas of the muon, B μ the binding energy of the 1s state of the muonic atom [START_REF] Dohmen | Test of lepton-flavour conservation in μ → econversion on titanium[END_REF] Ti SINDRUM II (1996) 4.6 × 10 -11 [START_REF] Honecker | Improved limit on the branching ratio of μ → e conversion on lead[END_REF] Pb SINDRUM II (2006) 7.0 × 10 -13 [START_REF] Wilhelm | A Search for muon to electron conversion in muonic gold[END_REF] Au Table 3.3: Historical progress for the upper limit on B(μ

-N → e -N)
Also, as the signature of the conversion process is a monoenergetic electron, no coincidence measurement is required. It is also very important to notice that contrary to the μ → eγ and μ → e + e + e -decays, it is possible to improve the sensitivity to the conversion process by using a high muon rate, but without suffering from accidental background.

As the conversion process has not been observed, experiments set upper limit on the branching ratio, that can be written :

3.2. EXPERIMENTAL STATUS OF CLFV PROCESSES (3.8) B(μ -N → e -N) = Γ(μ -+ (A, Z) → e -+ (A, Z)) Γ(μ -+ (A, Z) → capture)
The normalization to captures simplify the computations since many details of the nuclear wavefunction cancel in the ratio. In table 3.3, results from various experiments searching for the μ → e conversion process are shown. Several experiments currently under construction will improve the sensitivity to μ → e conversion by several orders of magnitude : the COMET experiment [START_REF] Kuno | A search for muon-to-electron conversion at J-PARC: The COMET experiment[END_REF] at J-parc and the Mu2e experiment [START_REF] Carey | Proposal to search for μ -N → e -N with a single event sensitivity below[END_REF] at FNAL aim to reach a sensitivity ∼ 10 -16 . The PRISM/PRIME proposal [START_REF] Kuno | An Experimental Search for a μ-N → e -N Conversion at Sensitivity of the Order of 10 -18 with a Highly Intense Muon Source[END_REF] aims to reach a sensitivity ∼ 10 -18 and has the advantage to allow the use of heavy target nuclei with shorter lifetimes of their muonic atoms, because of its designed pure muon beam with no pion contamination. There is also the DeeMe experiment [START_REF] Truong | Search for μ → e conversion with DeeMe experiment at J-PARC MLF[END_REF] at J-parc, that have a simpler setup but allow an early start of the experiment with a moderate sensitivity, between 10 -13 and 5 × 10 -15 .

μ

-N → e + N
Another neutrinoless muon capture process exist and is a charge-changing reaction :

μ -+(A, Z) → e + + (A, Z -2) * .
The final state of the nucleus can be a ground state or an exited state. Contrary to μ -→ e -conversion, here there is no coherent enhancement, as the initial and final nuclei are not the same. The energy of the positron coming from the μ -→ e + conversion is :

(3.9) E = m μ -B μ -E rec -Δ Z-2
where Δ Z-2 is the difference in the nuclear binding energy between the initial and final nuclei.

The branching ratio can be written : [START_REF] Schechter | Neutrinoless Double beta Decay in SU(2) x U(1) Theories[END_REF]. Also, the μ -→ e + conversion process has another similarity with the neutrinoless double beta decay, as both processes require a mechanism involving two nucleons.

(3.10) B(μ -N → e + N) = Γ(μ -+ (A, Z) → e + + (A, Z -2) * ) Γ(μ -+ (A, Z) → capture) Experiment (

Tau channel

In this section, we make a review of some CLFV tau decays and the current upper limits and discuss the prospects.

Current experiments and upper limits

The tau lepton is a powerful probe to search for BSM physics, as the mechanisms that govern its production and decay in electroweak interactions are well understood. It is also the only lepton that can decay into hadrons, which allow to study QCD effects in the 1 GeV energy region.

However, as explained previously, even if we include neutrino masses only, the SM predicts that the CLFV tau decay branching ratios are too small to be observed with the current experiments.

Moreover, many difficulties arise, the tau lepton has a very short lifetime (2.9 × 10 -13 s) and is not produced as much as muons are. Taus must be obtained at proton or electron accelerators, and their decay must be measured with detectors that have good particle identification and tracking capabilities, and that are able to constrain the kinematics very well, which require good calorimetry and hermeticity. Even if the large mass of the tau enhance the sensitivity, the number of taus that can be produced and observed is reduced because CLFV tau decay searches have not been performed with dedicated experiments, but with beams and detectors that are used for a broader physics program.

Many experiments have been searching for CLFV tau decays, such as the CLEO experiment at CESR [START_REF] Ahmed | Update of the search for the neutrinoless decay → τ μγ[END_REF]. Nowadays, B factories, using e + e -colliders, such as the BaBar experiment at PEP-II collider at SLAC [START_REF] Aubert | The BaBar detector[END_REF], or the Belle experiment at KEKB in Tsukuba [START_REF] Abashian | The Belle Detector[END_REF], that were built to measure the CP-violating parameters in the B-meson systems, are also tau factories.

Indeed, at the center-of-mass energy of s = 10.58 GeV (Υ(4s) resonance), the cross section to produce a τ + τ -pair is 90% of the cross section to produce a b b pair. The LHCb [START_REF] Aaij | Search for the lepton flavour violating decay τ -→ μμ + μ[END_REF][START_REF] Aaij | Searches for violation of lepton flavour and baryon number in tau lepton decays at LHCb[END_REF] and the ATLAS [START_REF] Aad | Probing lepton flavour violation via neutrinoless τ -→ 3μ decays with the ATLAS detector[END_REF] collaborations have also been searching for CLFV tau decays.

Leptonic and radiative CLFV tau decays

In table 3.5, we list some upper limits on various leptonic and radiative CLFV tau decays.

More details on the backgrounds and other experimental issued are given in [START_REF] Aubert | Searches for Lepton Flavor Violation in the Decays tau+--> e+-gamma and tau+--> mu+-gamma[END_REF][START_REF] Hayasaka | Search for Lepton Flavor Violating Tau Decays into Three Leptons with 719 Million Produced Tau+Tau-Pairs[END_REF][START_REF] Hayasaka | BIBLIOGRAPHY New Search for tau -> mu gamma and tau -> e gamma Decays at Belle[END_REF][START_REF] Lees | Limits on tau Lepton-Flavor Violating Decays in three charged leptons[END_REF]. [START_REF] Hayasaka | Search for Lepton Flavor Violating Tau Decays into Three Leptons with 719 Million Produced Tau+Tau-Pairs[END_REF] τ -→ e + μ -μ -1.7 × 10 -8 [START_REF] Hayasaka | Search for Lepton Flavor Violating Tau Decays into Three Leptons with 719 Million Produced Tau+Tau-Pairs[END_REF] τ -→ e + μ -e -1.8 × 10 -8 [START_REF] Hayasaka | Search for Lepton Flavor Violating Tau Decays into Three Leptons with 719 Million Produced Tau+Tau-Pairs[END_REF] τ -→ e -μ + e -1.5 × 10 -8 [START_REF] Hayasaka | Search for Lepton Flavor Violating Tau Decays into Three Leptons with 719 Million Produced Tau+Tau-Pairs[END_REF] τ -→ μμ + μ -2.1 × 10 -8 [START_REF] Hayasaka | Search for Lepton Flavor Violating Tau Decays into Three Leptons with 719 Million Produced Tau+Tau-Pairs[END_REF] Table 3.5: Example of current upper limits on selected CLFV leptonic and radiative decays in the tau channel

Semileptonic CLFV tau decays

The tau channel is very promising, as the tau is also the only lepton that can decay into hadrons, which lead to many new modes to study, and allow to study QCD effects in the 1 GeV energy region. In table 3.6, we list some upper limits on various semileptonic CLFV tau decays with pseudoscalar and vector mesons in the final state.

Decay mode

Upper limit [START_REF] Miyazaki | Search for Lepton-Flavor-Violating tau Decays into a Lepton and a Vector Meson[END_REF] τ -→ μ -K * (892) 0 5.9 × 10 -8 [START_REF] Nishio | Search for lepton-flavor-violating tau -> l V0 decays at Belle[END_REF] Table 3.6: Example of current upper limits on selected CLFV semileptonic decays in the tau channel, involving pseudoscalar and vector mesons

τ -→ e -π 0 8.0 × 10 -8 [154] τ -→ μ -π 0 1.1 × 10 -7 [155] τ -→ e -η 9.2 × 10 -8 [154] τ -→ μ -η 6.5 × 10 -8 [154] τ -→ e -K 0 S 2.6 × 10 -8 [156] τ -→ μ -K 0 S 2.3 × 10 -8 [156] τ -→ e -ρ 0 1.8 × 10 -8 [157] τ -→ μ -ρ 0 1.2 × 10 -8 [157] τ -→ e -φ 3.1 × 10 -8 [157] τ -→ μ -φ 8.4 × 10 -8 [157] τ -→ e -K * (892) 0 3.2 × 10 -8
The signature of the processes with a neutral pseudoscalar meson in the final state (τ → lP 0 ) is the presence of an lP 0 pair (with l = e, μ and P 0 = π 0 , η, K 0 S ) with an invariant mass consistent with m τ = 1, 777 GeV, a total energy of s /2 in the center of mass frame, as well as other particles coming from a tau decay, from the event e + e -→ τ + τ -. P 0 candidates are reconstructed in specific mass windows from events such as π 0 , η → γγ, η → π 0 π + π -or K 0 S → π + π -. More experimental details are given in [START_REF] Miyazaki | Search for lepton flavor violating tau-decays into l-eta, l-eta-prime and l-pi0[END_REF][START_REF] Aubert | Search for Lepton Flavor Violating Decays τ ± → ± π 0 , ± η, ± η[END_REF][START_REF] Miyazaki | Search for Lepton Flavor Violating tau-Decays into l-K0s and l-K0sK0s[END_REF][START_REF] Aubert | Search for Lepton Flavor Violating Decays tau -> l-K0(s) with the BABAR Experiment[END_REF].

For processes with a neutral vector meson in the final state (τ → lV 0 , with l = e, μ and CHAPTER 3. CHARGED LEPTON FLAVOUR VIOLATION V 0 = ρ 0 , φ, K * 0 ), V 0 candidates are reconstructed from events such as

ρ 0 → π + π -, φ → K + K -, K * 0 → π -K + .
The signature experiments are looking for is thus three charged particles (from the event τ → lV 0 → lh + 1 h - 2 where h 1 and h 2 are charged hadrons) that are identified as the appropriate lepton or hadron and have an invariant mass close to the tau lepton mass. Experimental details are discussed in [START_REF] Miyazaki | Search for Lepton-Flavor-Violating tau Decays into a Lepton and a Vector Meson[END_REF][START_REF] Aubert | Improved limits on lepton flavor violating tau decays to l phi, l rho, l K* and l anti-K*[END_REF].

Future experiments

Decay mode

Expected limit

τ → eγ 5 × 10 -9 [161] τ → μγ 10 -9 [161] τ → eee 5 × 10 -10 [161] τ → μμμ 5 × 10 -10 [161] τ → e + hadron 3 × 10 -10 [161] τ → μ + hadron 3 × 10 -10 [161]
Table 3.7: Example of future expected upper limit on CLFV processes in the tau channel from the Belle II experiment The Belle II experiment at Super KEKB [162] aims to reach a sensitivity ∼ 1 -5 × 10 -9 for radiative decays and ∼ 5 × 10 -10 for three body decays [START_REF] Aushev | Physics at Super B Factory[END_REF]. Despite the improvements, the two body decay still suffers from the backgrounds detailed in [START_REF] Aushev | Physics at Super B Factory[END_REF], while the three body decay are still background free. The Belle II experiment also expect to reach a sensitivity ∼ 3 × 10 -10 for the semileptonic decays. The expected sensitivities are summaraized in table 3.7.

From tables 3.5, 3.6 and 3.7, it is clear that the experimental sensitivity to the various tau decay modes is lower than the sensitivity to CLFV processes in the muon channel. However, the tau channel is a very promising place to probe CLFV effects as there are a large number of processes, and it also allows to study QCD effects in the 1 GeV energy region via the CLFV semileptonic decays.

Meson channel

In this section, we make a review of some CLFV leptonic and semileptonic meson decays, discuss the current upper limits on these processes and discuss the prospects. The meson channel offers many possibilities to study CLFV effects, due to the large number of possible CLFV meson decays.

Experiments such as the BES experiment [START_REF] Bai | The BES detector[END_REF][START_REF] Bai | The BES upgrade[END_REF] at BEPC and now the BESIII detector at the BEPCII e + e -collider [START_REF] Ablikim | Design and Construction of the BESIII Detector[END_REF], the SND detector at VEPP-2M e + e -collider [START_REF] Achasov | Spherical neutral detector for VEPP-2M collider[END_REF], the CLEO III detector, at CESR [START_REF] Viehhauser | CLEO III operation[END_REF] have been searching for CLFV vector meson decays. Experiments such as E871 at BNL [START_REF] Lang | A Straw drift chamber spectrometer for studies of rare kaon decays[END_REF], LHCb [START_REF] Alves | The LHCb Detector at the LHC[END_REF], BaBar [START_REF] Aubert | The BaBar detector[END_REF] or Belle [START_REF] Abashian | The Belle Detector[END_REF] have been searching for leptonic 3.3. FUTURE DIRECTIONS and semileptonic pseudoscalar meson decays. In table 3.8, we list upper limits on some CLFV vector and pseudoscalar meson decays.

Decay mode

Upper limit

φ → e + μ - 2 × 10 -6 [170] J/ψ → e + μ -1.6 × 10 -7 [171] J/ψ → e + τ -8.3 × 10 -6 [172] J/ψ → μ + τ -2.0 × 10 -6 [172] Υ → μ + τ - 6.0 × 10 -6 [173]
Decay mode Upper limit

K 0 L → e ± μ ∓ 4.7 × 10 -12 [174] D 0 → e ± μ ∓ 1.3 × 10 -8 [17] B 0 S → e ± μ ∓ 1.1 × 10 -8 [175] B 0 → e ± τ ∓ 2.8 × 10 -5 [176] B 0 → μ ± τ ∓ 2.2 × 10 -5 [176]
Decay mode Upper limit More details on the experimental issues can be found in the references of table 3.8. As there is a large number of experiments searching for these processes, and improving their sensitivity to CLFV mesons decays, the meson channel is another very promising place to look for BSM physics. Indeed, there are many possible processes, and for some of them, the experimental sensitivity is high, especially the leptonic and semileptonic Kaon decays (see table 3.8).

K + → π + μe 1.3 × 10 -11 [16] D + S → K + μe 9.7 × 10 -6 [18] B + → K + e ± μ ∓ 9.1 × 10 -8 [177] B + → K + e ± τ ∓ 3.0 × 10 -5 [178] B + → K + μ ± τ ∓ 4.8 × 10 -5 [178]

Future directions

As we have seen in the previous sections, many experiments are searching for various CLFV processes, in the muon channel, in the tau channel, in hadron decays as well as in other channels we did not discuss, such as in Z or H 0 decays. Many significant improvements on the experimental sensitivity are expected for various CLFV processes, such as τ → lll, μγ, eγ, μ → eee, eγ, μN → eN, Z or H 0 → eμ, eτ [START_REF] Abreu | Search for lepton flavor number violating Z0 decays[END_REF][START_REF] Banerjee | The Lepton Flavour Violating Higgs Decays at the HL-LHC and the ILC[END_REF], μτ, K L → eμ and so on.

The large number of possible CLFV processes and associated experiments, as well as the exceptional and promising improvements in experimental sensitivity, strongly motivate our interest in CLFV processes, and their potential to constrain BSM physics.

In chapter 5, we will study the μ → e conversion on nuclei, and use the available and expected upper limit on the branching ratio to constrain a BSM model involving scalar Leptoquarks. We will also study the prospects for discriminating among BSM scenarios once the conversion process is observed.

CHAPTER 3. CHARGED LEPTON FLAVOUR VIOLATION

In chapter 6, we will use the upper limits on various leptonic and semileptonic CLFV pseudoscalar meson decays to constrain coefficients.

C H A P T E R 4

EFFECTIVE FIELD THEORY

As we have seen in chapters 1 and 2, even if the SM has been tested successfully at many scales, it is clear that it cannot be a complete theory of everything. The SM can be considered as an effective theory, valid up to a given energy scale Λ, at which a more fundamental theory could enter. The effects of new physics at the electroweak scale can be parametrized by non renormalizable operators, built with the known fields from the SM. In this chapter, we discuss the principles of the Effective Field Theory (EFT) approach [START_REF] Weinberg | Phenomenological lagrangians[END_REF][START_REF] Buchmuller | Effective Lagrangian Analysis of New Interactions and Flavor Conservation[END_REF][START_REF] Ngoc Leung | Low-Energy Manifestations of a New Interaction Scale: Operator Analysis[END_REF], the framework in which new physics from a given energy scale Λ, can be parametrized at lower scales with effective operators and their associated coefficients. As the notion of EFT is large, we focus on the specific approach we will use in this work

Effective Lagrangian

In most of the BSM models that have been created, the SM is recovered in the low energy scale via the decoupling of the heavy particles that have a mass much larger than the weak scale :

Λ >> Λ W where Λ W ∼ M W ∼ 80
GeV is the weak scale. If new physics particles are too heavy to be produced at LHC, they could be considered in the decoupling limit [START_REF] Appelquist | Infrared Singularities and Massive Fields[END_REF], by inducing new interactions between SM particles. For example, if a BSM scenario predicts the existence of a new heavy particle, that has not been observed, the EFT formalism allows to describe the indirect effects of that new physics particle between SM particles as corrections to SM observables. The corrections are added in an expansion in inverse power of the new physics scale Λ NP , once the new heavy particles have been integrated out from the theory. There are many benefits in the use of an EFT approach :

• It allows to choose the relevant degrees of freedom to describe the dynamic of a specific 

L EFT = L (4) SM + 1 Λ NP i C (5) i O (5) i + 1 Λ 2 NP i C (6) i O (6) i + O 1 Λ 3

NP

where L EFT is the effective Lagrangian, L (4) SM is the SM Lagrangian that contains renormalizable four dimensional operators, O (d) i are the effective operators of dimension d > 4 and C (d) i are the dimensionless coupling constants associated to the operators, that are also called the Wilson coefficients. Notice that the set of operators that appear at each order is finite.

Contact interactions

When the heavy degrees of freedom have been integrated out from the theory, the usual interactions described in terms of exchange of bosons are replaced by contact interactions in the low energy EFT. Contact interactions are generated by the effective operators and Wilson coefficients.

A famous example is the muon decay via the exchange of a W boson. In figure 4.1, we can see the decay of the muon via the usual W boson. However, at the time where the W boson was not discovered yet, the decay of the muon was described in the form of a four-fermion contact interaction in which there is no more the propagation of a W boson, as can be seen in figure 4.1.

Thus a contact interaction is an approximation, but this approximation is widely used in the EFT approach. For example, we can imagine a BSM model that predicts the existence of a new boson, that would mediate new interactions among SM particles. If the boson has not been observed yet, one can assume that the boson is too heavy to be produced at LHC. However, considering contact interactions allow to describe the indirect effects of that new boson, that would induce new interactions between SM particles. 

Renormalization

A very important feature of quantum field theories, is that all the parameters of the Lagrangian evolve with the energy scale Λ. As a consequence, in the SM, the coupling constant of QED and QCD as well as the Wilson coefficients in the EFT evolve with energy scale, but with a different behavior. The tool used to compute the evolution of the parameters of the Lagrangian with the energy scale is a set of differential equations called renormalization group equations [185][START_REF] Ovsyannikov | General solution to the renormalization group equations[END_REF][START_REF] Symanzik | Small distance behavior in field theory and power counting[END_REF][START_REF] Callan | Broken scale invariance in scalar field theory[END_REF][189][START_REF] Weinberg | New approach to the renormalization group[END_REF][START_REF] Petermann | La normalisation des constantes dans la théorie des quantaNormalization of constants in the quanta theory[END_REF].

As it is necessary to compute loop diagrams in order to calculate the evolution of a parameter with the scale Λ, we have to treat the divergences that appear in loop calculations. The theory has to be regularized in order to have a parametrization of the singularities, and renormalized to eliminate the divergences. In this work, we will use a regulator called dimensional regularization [START_REF] Ashmore | A Method of Gauge Invariant Regularization[END_REF][START_REF] Cicuta | Analytic renormalization via continuous space dimension[END_REF][START_REF] Bollini | Lowest order divergent graphs in nu-dimensional space[END_REF][START_REF] Bollini | BIBLIOGRAPHY Dimensional Renormalization: The Number of Dimensions as a Regularizing Parameter[END_REF][196][197] and a renormalization scheme called modified minimal subtraction scheme (MS scheme) [START_REF] Bardeen | Deep Inelastic Scattering Beyond the Leading Order in Asymptotically Free Gauge Theories[END_REF] to subtract divergences.

Dimensional regularization

The idea of dimensional regularization [START_REF] Ashmore | A Method of Gauge Invariant Regularization[END_REF][START_REF] Cicuta | Analytic renormalization via continuous space dimension[END_REF][START_REF] Bollini | Lowest order divergent graphs in nu-dimensional space[END_REF][START_REF] Bollini | BIBLIOGRAPHY Dimensional Renormalization: The Number of Dimensions as a Regularizing Parameter[END_REF][196][197] is to treat the divergences of loop integrals by continuation to D = 4 -2 space-time dimensions. The goal is to compute the loop diagrams as an analytic function of the space time dimension D. The loop integrals will converge for small D, and the final result should be finite and have a well defined limit as D → 4. The integrals encountered in L-loop calculated in D dimensions are of the form :

(4.2) Λ 2 L l=1 d D k l (2π) D N A m 1 1 ...A m n n
where the numerator N is a product of contractions that involve at least one loop momentum, the A i in the denominator are propagators of the form (q 2 -m 2 ) where q is a combination of momenta and m a mass and

m i ∈ N + (in most cases, m 1 = m N = 1)
. Λ is an arbitrary mass scale that is introduced in dimensional regularization in order to keep the dimension of the integrals

( d 4 k (2π) 4 → Λ 2 d D k (2π) D )
. Thus, we compute the integral for D = 4 -2 , and express the result as a Laurent series in , that we can analytically continue to complex . Notice that the poles in the Laurent series have two origins :

• Ultraviolet (UV) poles, that come from divergences when the loop momentum goes to infinity.

• Infrared (IR) poles, that come from divergences that can appear when a propagator in the loop integral goes to zero for a finite value of the loop momentum.

The results of a one-loop and a two-loop calculation have the following form

One -loop : a + b Two -loop : c 2 + d + e (4.3)
where a,b,c,d and e are finite. Singularities are extracted as poles for → 0. Observables and other quantities are made free of the UV divergences in the limit → 0 via the process of renormalization. Notice that even after renormalization, quantities such as amplitudes can still contains IR divergences, as they can not be absorbed by redefining the parameters. However, IR divergences cancel against the singularities that appear in the phase space integration when considering IR-safe observables [START_REF] Kinoshita | Mass singularities of Feynman amplitudes[END_REF][START_REF] Lee | Degenerate Systems and Mass Singularities[END_REF].

Feynman parameters

Before using dimensional regularization to compute integrals of the form of eqn 4.2, it is necessary to introduce the method of Feynman parameters, that allows to squeeze the denominators factors in eqn 4.2 into a quadratic polynomial in k. Then the momenta k can be shifted by a constant to complete the square in the polynomial. However, this method require to introduce additional parameters that have to be integrated over : the Feynman parameters.

A simple example is a one-loop integral involving only two propagators in the denominator. In this case, the denominator can be rewritten :

(4.4) 1 A 1 A 2 = 1 0 dx 1 [xA 1 + (1 -x)A 2 ] 2 = 1 0 dxd yδ(x + y -1) 1 [xA 1 + yA 2 ] 2
where x and y are Feynman parameters. As an example, we can take

A 1 = (k 2 -m 2 )
and 2 and the denominator depends only on l 2 .

A 2 = (k + q) 2 -m 2 , using eqn 4.4 lead to (4.5) 1 0 dx 1 k 2 + 2xk.q + xq 2 -m 2 2 = 1 0 dx 1 l 2 + x(1 -x)q 2 -m 2 2 = 1 0 dx 1 l 2 -Δ 2 where we shifted k by l = k + xq, Δ = m 2 -x(1 -x)q
In this case, integrating over d D k is much easier as d D k = d D l, and the integrand is spherically symmetric with respect to l. One has also to replace the momenta k in the numerator by the shifted momenta l. Thus, after this shift, the denominator in a one-loop integral have the form

(l 2 -Δ) n .
In the case of very complicated integrals with denominators of the form of eqn 4.2, one can use the general formula :

(4.6) 1 A m 1 1 ...A m n n = 1 0 dx 1 ...dx n δ( x i -1) x m i -1 i [ x i A i ] m i Γ(m 1 + ... + m n ) Γ(m 1 )...Γ(m n )
where the A i in the denominator are propagators of the form (q 2 -m 2 ) where q is a combination of momenta and m a mass, and

m i ∈ N + .
Using identities such as eqn 4.4 or 4.6, loop integrals of the form of eqn 4.2 are turned into integrals of the form :

(4.7) Λ 2 d D l (2π) D N (l 2 -Δ) n
where l is the shifted momenta, D = 4 -2 , Δ is a function of Feynman parameters and of masses and momentum that appear in the loop and the numerator N is a function of l and Feynman parameters. In the calculation of an integral of the form of eqn 4.7, for example with N=1 and n=2, the following term appears :

(4.8) B 4πΛ 2 Δ Γ(2 -D/2)
where B is just a constant. Here, we need the expansion of Γ(x) near its poles :

(4.9) Γ(x) = 1 x -γ + O (x)
where γ ∼ 0, 5772 is the Euler-Mascheroni constant that appears in loop integrals and is also subtracted in MS. Thus, in eqn 4.8, for a simple case where n=2, the Γ function is the numerator becomes :

(4.10) Γ(2 -D/2) = Γ( ) = 1 -γ + O ( )
The term in equation 4.8 becomes :

(4.11) B 1 -γ + log 4πΛ 2 Δ
Notice that in MS, the terms -γ + log(4π) are subtracted as well. Thus, a singularity in loop integrals can be extracted as a 1 pole (see eqn 4.3 and 4.11).

Renormalization

It is a well known fact that renormalization is necessary in quantum field theory, in order to treat the divergences that arise in loop diagrams computations. Thus, to eliminate the divergences that come from the loop integrals, it is necessary to renormalize the fields and the parameters of the Lagrangian. In general, this is done by rescaling the parameters with a renormalization constant. For example, in the QED Lagrangian, a fermion ψ of mass m and the coupling constant e are renormalized as follow:

(4.12)

m 0 = Z m m, ψ 0 = Z 1/2 2 ψ, e 0 Z 2 Z 1/2 3 = eZ 1
where the index 0 indicates non renormalized or "bare" quantities and the factors Z m , Z 1 , Z 2 and Z 3 are renormalization constants. Notice that in order to have a renormalized coupling g independent of the number of dimensions, we have to compensate the dimension of the bare coupling g 0 with an external scale Λ that appears in dimensional regularization :

4.2. RENORMALIZATION (4.13) g 0 = Λ gZ g
where Z g is the renormalization constant. The bare parameters g 0 and m 0 are independent of the scale Λ. This implies that the renormalized coupling g must be Λ dependent.

A way to implement renormalization is the counter terms method, in which the bare parameters of a Lagrangian are reexpressed via renormalization constants (see eqn 4.12). For example, a mass term of the form m 0 ψ 0 ψ0 would become (Z 2 Z m -1)mψ ψ + mψ ψ. Then, only renormalized quantities are present in the Lagrangian, and the counter term δ is of the form δ i ∼ Z i -1. The counter term δ can be considered as an interaction term, and in the case of the mass counter term, the Feynman rule would be i(Z 2 Z m -1)m. The factors Z have to be determined in order to cancel the divergences coming from the loop integrals.

In the case of the EFT approach, the Wilson coefficients C (d) i are renormalized in a similar way :

(4.14) C (d),0 i = Z i j C (d) j
where Z i j is a renormalization matrix which can also mix operators during renormalization. The idea of renormalization group, renormalization schemes and EFT are closely related, and it is important to choose a specific renormalization scheme when performing an EFT analysis. Many schemes exists :

• A first one is a physical renormalization scheme, such as the momentum space subtraction, that use the Appelquist-Carazzone theorem [START_REF] Appelquist | Infrared Singularities and Massive Fields[END_REF]. In this case, there is no dependence on unphysical parameters. However, physical renormalization schemes are mass dependent, which means that quantities such as the beta function of eqn 4.16 depends on Λ/m. The main issue is that physical renormalization schemes are difficult to use beyond one-loop in theories in which very disparate scales are present. This is due to the fact that the quantities depend on the renormalization scale Λ and on the physical parameters.

• It is thus easier to use a renormalization scheme in which quantities are independent of the scale Λ, but depends only on the physical parameters. These type of schemes are called mass independent subtraction schemes. Famous mass independent schemes are minimal subtraction scheme (MS) [189] and modified minimal subtraction scheme MS [START_REF] Bardeen | Deep Inelastic Scattering Beyond the Leading Order in Asymptotically Free Gauge Theories[END_REF]. There are many advantages to use the MS scheme, as calculations are easier, the subtraction is automatic and moreover, dimensional analysis works.

CHAPTER 4. EFFECTIVE FIELD THEORY

In the MS scheme, a renormalization constant Z is chosen to absorb the pure pole divergences 1 k (see eqn 4.3 and 4.11). Thus, Z can be expanded in inverse powers of :

(4.15) Z = 1 + ∞ k=1 1 k Z k
The dependent renormalization constants, such as in eqn 4.12 and 4.14, are determined as an expansion in the renormalized coupling constant by imposing that all the transitions amplitudes, once expressed in terms of the renormalized coupling, are free of the UV divergences when → 0. As we saw, the renormalization constants depend on the renormalization scheme, that is to say on the way the divergences are absorbed.

In the EFT approach we will use in the rest of the manuscript, and especially in chapters 5

and 6, we will use dimensional regularization as a regulator and use the MS scheme to subtract the divergences.

Running of the QED and QCD coupling constants

In this section we discuss the evolution of the QED and QCD coupling with energy scale Λ via the renormalization group equations.

In the process of renormalization (see eqn 4.12 and 4.13), we have introduced an arbitrary scale Λ. The running of a coupling constant with the scale Λ is given by the renormalization group beta function [START_REF] Gross | Applications of the Renormalization Group to High-Energy Physics[END_REF], that can be written :

(4.16) β(g, ) = d g(Λ) d log Λ
where g is a coupling constant and Λ is the energy scale (see eqn 4.12 and 4.13). The beta function is calculated as :

(4.17) β(g, ) = -g + β(g), β(g) = -g 1 Z g dZ g d log Λ
where Z g is the renormalization constant associated to the coupling constant g. This means that the beta function can be directly obtained from the 1 pole parts of the renormalization constant Z g . Notice that in four dimensions, β(g, ) reduces to β(g).

Running of the QED coupling constant

In the case of the QED coupling constant, the leading term of the beta function for N f Dirac fields of charge Q i e is positive : 

β(e) = e 3 N f i=1 Q 2 i 12π 2
The fact that the beta function of QED (eqn 4.18) is positive means that the coupling constant α e = e 2 /4π increases with the energy scale Λ. However, the running of the coupling constant in QED is small, as the value of α e varies from ∼ 1/137 at low energy to ∼ 1/128 at high energy.

Running of the QCD coupling constant

The leading term of the QCD beta function is given by :

(4.19) β(g s ) = -β 0 g 3 s 16π 2 , β 0 = 11N c -2N f 3
where N c is the number of colors and N f the number of quark flavours.

Using eqn 4.16, eqn 4.19 and α s = g 2 s /4π, the running of the strong coupling constant at one-loop can be written :

(4.20) α s (Λ) = 4π β 0 log(Λ 2 /Λ 2 ∞ )
where β 0 is defined in eqn 4.19 and Λ ∞ is the scale where α s → ∞. The fact that the beta function of QCD (eqn 4. [START_REF] Aubert | Search for the rare decay B → πl + l[END_REF]) is negative means that the coupling constant α s decreases with the energy scale Λ. In figure 4.2 [START_REF] Tanabashi | Review of Particle Physics[END_REF], we can see the that running of the strong coupling constant is very large, as α s evolve a lot from low to high energies. We also see that QCD becomes non perturbative below one GeV. This is a striking result of QCD, as the running of α s is large, which lead to very different behavior at low and high energies. Indeed, at high energy, α s is small, leading to an important feature of QCD, called asymptotic freedom. It means that at high energies or short distances (large momentum transfers), quarks behave like free particles, as observed in deep inelastic scattering experiments.

However, at low energies, QCD has a very different behavior due to a phenomenon called confinement, which means that quarks and gluons are confined into colorless bound states called hadrons. However, as α s becomes very large at low energies, the perturbativity is lost. Thus describing the behavior of hadrons is a very difficult task. A current and powerful approach is lattice QCD, which attempts to evaluate the path integral by discretizing space time.

Running of the Wilson coefficients

In this section, we describe the evolution of the Wilson coefficients associated to the operators with the energy scale Λ via the renormalization group equations, that require to compute a function called anomalous dimension. As a first example, let us consider the anomalous dimension of a mass term. Indeed, as the renormalization constants have a perturbative expansion in the renormalized coupling constant (see 4.12 and 4.13), they must depend on Λ, which means that the renormalized mass is also Λ dependent. The running is given by :

(4.21) dm(Λ) d log(Λ) = -γ m m(Λ)
where γ m is the anomalous dimension of a mass that can be written

(4.22) γ m = 1 Z m dZ m d log(Λ)
where Z m is defined in eqn 4.12.

RUNNING OF THE WILSON COEFFICIENTS

Similarly, the anomalous dimension of a Wilson coefficient can be written :

(4.23) γ = 1 Z dZ d log(Λ)
Thus, as for the beta function, the anomalous dimension of a mass or a Wilson coefficient can be obtained from the 1 poles of the associated renormalization constant. However, from eqn 4.14, we see that the running of Wilson coefficients is more complicated, as the coefficients of the operators can also mix during renormalization.

Renormalization Group evolution of the Wilson coefficients

We have now to discuss the computation of the running of the Wilson coefficients with the energy scale Λ, via the appropriate renormalization group equations. We saw that the running of a coupling constant is govern by a quantity called the beta function (eqn 4.16). The renormalization group function describing the evolution of the Wilson coefficients is called an anomalous dimension (see eqn 4.23). We saw in eqn 4.14 that Wilson coefficients can mix under renormalization, which means that the anomalous dimensions will be organized in a matrix. As for the running of a coupling constant, it is also necessary to compute loop diagrams that diverge in order to solve the renormalization group equations for the Wilson coefficients. As explained, we will use the MS scheme and dimensional regularization to treat the divergences that appear in loop diagrams involved in the evolution of the Wilson coefficients with the energy scale.

When considering a specific basis of operators, the Wilson coefficients associated to the operators of the basis can be organized in a row vector -→ C . In the case of one-loop corrections that are included in the MS scheme, the running of the Wilson coefficients with the scale Λ is given by

(4.24) Λ ∂ ∂Λ (C I ,...C J ,...) = α e 4π - → C Γ e + α s 4π - → C Γ s
where I, J represent the super-and subscripts which label operator coefficients, Γ e and Γ s are the QED and QCD anomalous dimension matrices that contribute to the running and the mixing of the Wilson coefficients.

In chapters 5 and 6, we will study the effects of the running and the mixing of Wilson coefficients, which are also reviewed in appendix C and F.

Why do we need EFT?

In chapters 5 and 6, we will study two CLFV processes in an EFT approach. As no CLFV processes have been observed, experiments have set upper limits on observables, such as branching ratios for CLFV decays, as we saw in chapter 3. In this case, the goal of an EFT approach is to compute an observable, such as a cross section or a branching ratio, as a function of the Wilson coefficients.

Then, we will use the available experimental upper limits on the observables we computed in order to constrain the Wilson coefficients. This will allow us to constrain the parameter space of BSM scenarios that aim at explaining CLFV processes.

As we have seen, the running of the strong coupling constant is large, and QCD has a very different behavior at low and high energies. Indeed, we saw that at high energies, quarks behaves like free particles, whereas at low energies quarks and gluons are confined into hadrons. This is of great importance in the use of an EFT approach, as the question we 

Matching

It is also important to notice that when we compute the evolution of the coefficients between the new physics scale Λ NP ∼ T eV and the experimental scale Λ exp ∼ GeV , we have to consider the intermediate scales, each time a particle mass is encountered, such as the top and bottom quark mass. For simplicity, we will consider only the intermediate weak scale Λ W ∼ m W . In this case, the evolution is in two steps : first we compute the evolution between Λ NP and Λ W , then between Λ W and Λ exp , or vice versa. Indeed, between Λ exp and Λ W , the W, the Z and Higgs boson do not participate to the loop diagrams, but they will between Λ W and Λ NP . As long as no particle masses are encountered, the evolution of the coefficients is described by the renormalization group equations (eqn. 4.24). However, when the scale Λ reaches the mass M of a particle, we have to change the effective theory to a new theory without the particle of mass M.

Let us consider the following example. First, we start at a very high scale, with new heavy particles of mass M (for example M∼ T eV ). When Λ goes below the mass M, the parameters of the theory change and new non renormalizable interactions are introduced. At the scale Λ = M, the particles of mass M are integrated out. These changes in the parameters and the coefficients that describe the new interactions have to be computed by "matching" (for Λ = M) the physics just below the boundary Λ = M in both theories. The matching condition of the two theories at the boundary Λ = M is that S-matrix elements for light particle scattering in the low energy theory without the heavy particle must match those in the high-energy theory with the heavy particle(s) of mass M. Then, we have to compute the running of the coefficients of the new effective theory from the scale M down to a smaller scale until another particle mass is encountered, which is

Λ W ∼ 80
GeV in this example. The renormalization group also introduces additional factors into the coefficients, including the mass of the heavy particle.

This means that a heavy particle mass appears in the coefficients in two ways :

• From matching conditions, in the form of a power dependence

• From the renormalization group running in the form of a logarithmic dependence (eqn.

4.24)

Then, we have to repeat this procedure each time a mass is encountered. Thus, the calculation is done by using a sequence of effective field theories with fewer and fewer particles. For example, at the scale Λ W , we first have to compute the matching so that the physics of the light particles is the same in the two theories, at the boundary Λ = Λ W . Then, we have to use the renormalization group to compute the running of the coefficients from Λ W to the scale of interest, in our case, Λ exp ∼ GeV .

Bottom-up vs top-down approach

In this section, we discuss two approaches that we will use in our EFT analyses.

Top-down EFT

In the top-down approach, the aim is to start directly from a BSM Lagrangian of a specific model, that would for example predict the existence of a new heavy boson, that, for the purpose of this manuscript could mediate CLFV processes.

As explained in the previous sections, the assumption is that the new boson has not been observed yet, as it is too heavy to be produced. We have to compute the effective operators ans their associated coefficients in order to describe the indirect effects of the boson among SM particles. The goal is then to compute an observable that can be measured, as a function of the coefficients, and use experimental data to constrain the coefficients. The steps of the top-down approach are :

• Compute the effective operators from the BSM Lagrangian L BSM at the new physics scale

Λ NP (in general Λ NP ∼ TeV).
• Compute the Wilson coefficients associated to the operators, at Λ NP . Notice that the Wilson coefficients are proportional to the parameters of L BSM , like coupling constants or masses.

• As the Wilson coefficients are at the new physics scale Λ NP , they do not describe the physics experiments can observe, which is bound states of quarks rather than free quarks exchanging gluons. Thus, we have to run the coefficients down to the experimental scale Λ exp ∼ GeV , via eqn 4.24.

• Compute an observable proportional to the Wilson coefficients once they are evolved to the experimental scale Λ exp .

• Finally, as we are interested in CLFV processes, that have not been observed, we use the experimental upper limits on the observable to constrain the coefficients at Λ exp .

Notice that as the coefficients are proportional to the parameters of L BSM , the top-down approach is model dependent.

In chapter 5, we will apply the top-down approach to the μ → e conversion on nuclei, in a BSM scenario involving scalar Leptoquarks.

Bottom-up EFT

In the bottom-up approach, the aim is to start directly from the experimental scale Λ exp ∼ GeV .

In this case, we make absolutely no assumption of the new physics and on the scale Λ NP . We have thus to write the most general operators describing the contact interactions, in our case, for CLFV 4.6. BOTTOM-UP VS TOP-DOWN APPROACH processes. We can then compute an observable proportional to the coefficients at Λ exp , using the experimental upper limits on the observable to constrain the coefficients at Λ exp . Finally, the aim is to evolve the bounds on the coefficients to an arbitrary new physics scale Λ NP ∼ T eV . The steps of the bottom-up approach are :

• Write the most general operators at Λ exp ∼ GeV , that describe the process of interest, with no assumption on the new physics at high energy.

• The coefficients associated to the operators at Λ exp do not depend on any parameters of a BSM Lagrangian.

• Compute an observable proportional to the coefficients, as they are already at Λ exp .

• Constrain the coefficients at Λ exp using experimental upper limits on the observables.

• Evolve the bounds on the coefficients from Λ exp to a scale Λ NP , at which new physics could enter.

• The final step is to reconstruct the fundamental Lagrangian of the new physics from the operator coefficients.

Notice that as we made no assumption on the high energy theory, the coefficients do not depends on the parameters of a BSM Lagrangian. This means the bottom-up approach is model independent, and will allow to test several BSM scenarios.

In chapter 6, we will apply the bottom-up approach to CLFV leptonic and semileptonic pseudoscalar meson decays.

It is important to notice that the running of the Wilson coefficients via the renormalization group equations of eqn 4.24 will be always model dependent. Indeed, we saw that in order to solve the renormalization group equations, we have to compute loop diagrams. In this manuscript, we will assume that only SM particles are involved in the loop diagrams when we compute the evolution of the coefficients between the experimental scale and the new physics scale. The experimental sensitivity to μ → e conversion will improve by four or more orders of magnitude in coming years. It is thus interesting to consider the "spin-dependent" (SD) contribution to the rate. This process does not benefit from the atomic-number-squared enhancement of the spin-independent (SI) contribution, but probes different operators. We give details of our recent estimate of the spin dependent rate, expressed as a function of operator coefficients at the experimental scale. Then we explore the prospects for distinguishing coefficients or models by using different targets, both in an EFT perspective, where a geometric representation of different targets as vectors in coefficient space is introduced, and also in three leptoquark models.

It is found that comparing the rate on isotopes with and without spin could allow to detect spin dependent coefficients that are at least a factor of few larger than the spin independent ones.

Distinguishing among the axial, tensor and pseudoscalar operators that induce the SD rate would require calculating the nuclear matrix elements for the second two. Comparing the SD rate on nuclei with an odd proton vs odd neutron could allow to distinguish operators involving u quarks from those involving d quarks; this is interesting because the distinction is difficult to make for SI operators.

Introduction

Charged Lepton Flavour Violation (CLFV) is New Physics that must exist; only the rates are unknown. In this paper, we consider μ ↔ e flavour change, and assume that it can be parametrised by contact interactions involving Standard Model particles. Flavour change μ ↔ e can be probed in the decays μ → eγ [START_REF] Baldini | Search for the lepton flavour violating decay μ + → e + γ with the full dataset of the MEG experiment[END_REF] and μ → ee ē [START_REF] Bellgardt | Search for the decay μ + → e + e + e[END_REF], in μ → e conversion [START_REF] Wilhelm | A Search for muon to electron conversion in muonic gold[END_REF][START_REF] Honecker | Improved limit on the branching ratio of μ → e conversion on lead[END_REF][START_REF] Dohmen | Test of lepton flavor conservation in mu -> e conversion on titanium[END_REF] and in various meson decays such as K → μe [START_REF] Tanabashi | Review of Particle Physics[END_REF]. In μ → e conversion, a beam of μ -impinges on a target, where the μ is captured by a nucleus, and can convert to an electron while in orbit. The COMET [START_REF] Kuno | A search for muon-to-electron conversion at J-PARC: The COMET experiment[END_REF] and Mu2e [START_REF] Carey | Proposal to search for μ -N → e -N with a single event sensitivity below[END_REF] experiments, currently under construction, plan to improve the sensitivity by four orders of magnitude, reaching a branching ratio ∼ 10 -16 . The PRISM/PRIME proposal [START_REF] Kuno | An Experimental Search for a μ-N → e -N Conversion at Sensitivity of the Order of 10 -18 with a Highly Intense Muon Source[END_REF] aims to probe ∼ 10 -18 . These exceptional improvements in experimental sensitivity motivate our interest in subdominant contributions to μ → e conversion. Initial analytic estimates of the μ → e conversion rate were performed by Feinberg and Weinberg [START_REF] Weinberg | Electromagnetic Transitions Between mu Meson and Electron[END_REF], for promising operators and nuclei. A wider range of nuclei were studied numerically by Shanker [START_REF] Oruganti | Z Dependence of Coherent μe Conversion Rate in Anomalous Neutrinoless Muon Capture[END_REF], and estimates for many operators and nuclei can be found in the review [START_REF] Kuno | Muon decay and physics beyond the standard model[END_REF]. Relativistic effects relevant in heavier nuclei were included in [START_REF] Czarnecki | Coherent muon electron conversion in muonic atoms[END_REF]. The matching of CLFV operators constructed with quarks and gluons, onto operators constructed with nucleons, was performed in [START_REF] Cirigliano | On the model discriminating power of mu -> e conversion in nuclei[END_REF]. The current state of the art is the detailed numerical calculations of Kitano, Koike and Okada (KKO) [START_REF] Kitano | Detailed calculation of lepton flavor violating muon electron conversion rate for various nuclei[END_REF],

who studied all the CLFV nucleon operators that contribute coherently to μ → e conversion, for nuclei from Helium to Uranium. In such processes, the amplitude for μ → e conversion on each nucleon is coherently summed over the whole nucleus. Like "spin-independent"(SI) dark matter scattering, the final rate therefore is enhanced by a factor ∼ A 2 , where A is the atomic number of the nucleus. However, other conversion processes are possible. For instance, incoherent

μ → e conversion, where the final-state nucleus is in an excited state, has been discussed by various people [START_REF] Oruganti | Z Dependence of Coherent μe Conversion Rate in Anomalous Neutrinoless Muon Capture[END_REF][START_REF] Kosmas | Lepton flavor nonconservation[END_REF][START_REF] Chiang | Coherent and incoherent (mu-, e-) conversion in nuclei[END_REF], and is expected to be subdominant with respect to the coherent process. In a previous letter [START_REF] Cirigliano | Spin-dependent μ → e conversion[END_REF], some of us noted that "spin-dependent"(SD) μ → e conversion can also occur, if the target nuclei have spin (as is the case for Aluminium, the target of the upcoming COMET and Mu2e experiments). Although this process does not benefit from the ∼ A 2 enhancement associated to SI rates, it has the interest of being mediated by different CLFV operators from the coherent process.

The aim of this manuscript is to give details of our calculation, and explore whether the SD process could help distinguish models or operators, should μ → e conversion be observed. The operators which could induce SD μ → e conversion are listed in section 5.2. The conversion rate in Aluminium is estimated in section 5.3, and the extrapolation to other nuclei is discussed in subsection 5.3.2. The theoretical uncertainties in our estimates are briefly discussed in section 5.4.

Section 5.5 explores the consequences of including the SD contribution to the μ → e conversion rate, both in the perspective of obtaining constraints on operator coefficients from an upper bound on the branching ratio, and for discriminating models when μ → e conversion is observed.

This section comes in three parts: we study three leptoquark models which induce SD and 5.2. OPERATORS SI conversion, then consider the same operators but with arbitrary coefficients, and calculate a covariance matrix. Finally, we allow all possible operators with arbitrary coefficients. We summarise in section 5.6.

In our previous letter [START_REF] Cirigliano | Spin-dependent μ → e conversion[END_REF], we showed that the SI and SD operator coefficients mix under Renormalisation Group(RG) evolution between the experimental and weak scales. The effects of this mixing are significant: the largest contribution to the μ → e conversion rate from an "SD" coefficient at the weak scale, would be via the RG mixing to an SI coefficient (for example, a tensor coefficient at the weak scale induces a SI contribution to the rate which is ∼ A 2 larger than the SD contribution). In this paper, we focus on operator coefficients at the experimental scale, only including the RG evolution in the leptoquark models of section 5.5.1. The RG evolution of the operator coefficients is summarised in Appendix C.

Operators

We are interested in contact interactions that can mediate μ → e conversion on nuclei, at a scale

Λ exp ∼ 2
GeV. The focus of this manuscript is the subset of "spin-dependent" interactions, but for completeness, all QED×QCD invariant operators that mediate μ → e conversion on nuclei are included. The relevant operators in the quark-level Lagrangian are [START_REF] Cirigliano | On the model discriminating power of mu -> e conversion in nuclei[END_REF][START_REF] Kitano | Detailed calculation of lepton flavor violating muon electron conversion rate for various nuclei[END_REF]:

(5.1) δL = -2 2 G F Y ∈L,R C D,Y O D,Y + 1 m t C GG,Y O GG,Y + q=u,d,s O C qq O ,Y O qq O ,Y + h.c.
where the two-lepton operators are

(5.2) O D,Y = m μ (eσ αβ P Y μ)F αβ O GG,Y = (eP Y μ)G αβ G αβ
and O ∈ {V , A, S, P, T} labels 2-lepton 2-quark operators in a basis where only the lepton currents are chiral:

(5.3) O qq V ,Y = (eγ α P Y μ)(qγ α q) O qq A,Y = (eγ α P Y μ)(qγ α γ 5 q) O qq S,Y = (eP Y μ)(qq) , O qq P,Y = (eP Y μ)(qγ 5 q) O qq T,Y = (eσ αβ P Y μ)(qσ αβ q) with σ αβ = i 2 [γ α , γ β
] and P L = (1-γ 5 )/2. This choice of non-chiral quark currents is convenient for matching onto nucleons. However, often an operator basis with chiral quark currents is added [START_REF] Kuno | Muon decay and physics beyond the standard model[END_REF]211,[START_REF] Crivellin | Renormalisation-group improved analysis of μ → e processes in a systematic effective-fieldtheory approach[END_REF], where for instance, O qq V ,Y X ≡ (eγ α P Y μ)(qγ α P X q). In this case, the coefficients are related as (recall that O qq T,LR vanishes-see appendix C of [211]) :

to the Lagrangian as δL = -2 2 G F C O,Y X O qq O,Y X
(5.4)

C qq V ,Y = 1 2 (C qq V ,Y R + C qq V ,Y L ) C qq A,Y = 1 2 (C qq V ,Y R -C qq V ,Y L ) C qq S,Y = 1 2 (C qq S,Y R + C qq S,Y L ) C qq P,Y = 1 2 (C qq S,Y R -C qq S,Y L ) C qq T,Y = C qq T,Y Y .
In eqn (5.1), the coefficients and operators are evaluated close to the experimental scale, at Λ exp 2 GeV. The scale is relevant, because Renormalisation Group running mixes the tensor and axial vector operators (that induce SD μ → e conversion) into the scalar and vector operators (who mediate the SI process) [START_REF] Cirigliano | Spin-dependent μ → e conversion[END_REF] 2 . This is reviewed in Appendix C. Throughout the paper, coefficients without an explicit scale are assumed to be at Λ exp .

To compute the rate for μ → e conversion, the operators containing quarks should be matched at the scale Λ exp onto CLFV operators involving nucleons and mesons. The relevant nucleon operators are the four-fermion operators of eqn (5.3) with q → N and N ∈ {n, p}. As discussed below, rather than include mesons in the Lagrangian, we approximate their effects by form factors for some nucleon operators and two additional operators given in eqn (5.10). So the nucleon-level Lagrangian will be

(5.5) δL = -2 2 G F Y ∈L,R C D,Y O D,Y + N=p,n O C N N O ,Y O N N O ,Y + h.c.
where O ∈ {V , A, S, P, T, Der}.

At zero momentum transfer ( P f -P i → 0), we match onto operators with nucleon currents, by replacing

(5.6) q(x)Γ O q(x) → G N,q O N(x)Γ O N(x) such that 〈N| q(x)Γ O q(x)|N〉 = G N,q O 〈N| N(x)Γ O N(x)|N〉=G N,q O u N (P f )Γ O u N (P i )e -i(P f -P i )x , with Γ O ∈ {I, γ 5 , γ α , γ β γ 5 , σ αβ }. The constants G N,q O
obtained at zero-recoil are given in appendix A, and we will assume that they are an acceptable approximation at the momentum-transfer of μ → e conversion, which is

| P f -P i | 2 = m 2
μ . Various mesons are present in the low energy theory at Λ exp , so in principle the quark operators of eqn (5.1) should be also matched onto meson operators. χPT [START_REF] Pich | Effective field theory: Course. BIBLIOGRAPHY In Probing the standard model of particle interactions[END_REF] involving nucleons (see e.g. the review [START_REF] Machleidt | Chiral effective field theory and nuclear forces[END_REF]) would be the appropriate formalism for this calculation, and has been used to calculate WIMP scattering on nuclei [START_REF] Klos | Large-scale nuclear structure calculations for spin-dependent WIMP scattering with chiral effective field theory currents[END_REF][START_REF] Cirigliano | WIMP-nucleus scattering in chiral effective theory[END_REF][START_REF] Hoferichter | Chiral power counting of one-and two-body currents in direct detection of dark matter[END_REF][START_REF] Crivellin | Accurate evaluation of hadronic uncertainties in spin-independent WIMP-nucleon scattering: Disentangling two-and three-flavor effects[END_REF], neutrinoless-double-beta-decay [START_REF] Cirigliano | Neutrinoless double-decay in effective field theory: The light-Majorana neutrino-exchange mechanism[END_REF],

and SI μ → e conversion [START_REF] Bartolotta | Coherent μ -e conversion at next-to-leading order[END_REF]. However, to avoid more notation, here we just give results for the simple diagrams of interest. We only consider the CLFV decays of pions, because the effects of heavier mesons would be suppressed by their masses, and diagrams where a pion is exchanged 5.2. OPERATORS between two nucleons are suppressed by more propagators, and would require two nucleons in the initial and final states3 . Pion decay can contribute to μ → e conversion via the second diagram of figure 5.1, in the presence of a pseudoscalar or axial vector quark current. We follow the notation of [START_REF] Pich | Effective field theory: Course. BIBLIOGRAPHY In Probing the standard model of particle interactions[END_REF][START_REF] Machleidt | Chiral effective field theory and nuclear forces[END_REF] in matching the axial vector and pseudoscalar quark currents onto the pion, at P 2 = m 2 π , as

(5.7) q(x)τ b γ α γ 5 q(x) → f π i∂ α π b (x) , 2m q q(x)τ 3 γ 5 q(x) → f π m 2 π π 0 in order to obtain the usual expectation values 〈0| ū(x)γ α γ 5 d(x)|π -(P)〉 = 2 P α f π e -iP•x , 〈0| ū(x)γ α γ 5 u(x)|π 0 (P)〉 = P α f π e -iP•
x , and 〈0| ū(x)γ 5 u(x)|π(P)〉 = f π m 2 π e -i•P x /2m u , where f π 92.4 MeV. Later in the manuscript, the matrix element for μ → e conversion on a nucleon, M (μ + N(P i ) → e(k) + N(P f )) will be required. In the case of vector, scalar or tensor interactions, it is is straightforward because conversion proceeds via a 2-nucleon-2-lepton contact interaction.

In the case of axial vector and pseudoscalar interactions, there is a pion exchange contribution, as illustrated in figure 5.1, so we give the matrix elements here. The pion-nucleon interaction term in the Lagrangian is taken as i g πN N Nγ 5 τ • πN, and the Goldberger-Treiman relation gives

g πpp (G pu A -G pd A )m p / f π .
In the following two equations, u N = (u p , u n ) represents a vector of spinors in isospin space.

The matrix element M (μ + N(P i ) → e X (k) + N(P f )) mediated by the axial up quark current, can be written [START_REF] Klos | Large-scale nuclear structure calculations for spin-dependent WIMP scattering with chiral effective field theory currents[END_REF][START_REF] Engel | Nuclear physics of dark matter detection[END_REF] :

(5.8) u N (P f ) [a 0 I + a 1 τ 3 ] 2 γ α γ 5 u N (P i ) + C uu A,X g πN N f π q α | q 2 | + m 2 π u N (P f )[τ 3 ]γ 5 u N (P i ) u e γ α P X u μ
where q = (0, -q) = P f -P i , the first term is written in terms of iso-scalar and iso-vector

contributions (a 0 + a 1 )/2 = C uu A,X G p,u A , (a 0 -a 1 )/2 = C uu A,X G n,u
A , whereas the pion contribution is only isovector.

In the case of the pseudoscalar operator O uu P,Y , the pion exchange diagram is non-vanishing at | q| 2 = 0, so at finite momentum transfer, only the additional contribution

∝ 1/(| q| 2 + m 2 π ) -1/m 2
π should be included. This gives :

(5.9)

C uu P,Y u N (P f ) G p,u P 0 0 G n,u P γ 5 u N (P i ) - m N (G p,u A -G n,u A )| q| 2 2m u (| q| 2 + m 2 π ) u N (P f )[τ 3 ]γ 5 u N (P i ) u e P Y u μ
In summary, the axial vector and and pseudoscalar quark operators could equivalently have been matched at Λ exp to an EFT without pions, but with a q 2 -dependent "form factor" for the pseudoscalar nucleon operator, and an additional dimension seven derivative operator (5.10)

O N N Der,Y = i(eγ α P Y μ)(N ↔ ∂ α γ 5 N) such that i〈N(P f , s )| N(x) ↔ ∂ α γ 5 N(x)|N(P i , s)〉 = ūs N (P f )q α γ 5 u s N (P i )e -i(P f -P i )•x .
In this extended basis, the nucleon coefficients are :

(5.11)

C N N A,Y = G N,u A C uu A,Y + G N,d A C dd A,Y + G N,s A C ss A,Y C N N Der,Y = m μ m N (m 2 μ +m 2 π ) G N,u A -G N,d A C uu A,Y -C dd A,Y C N N P,Y = G N,u P C uu P,Y + G N,d P C dd P,Y + G N,s P C ss P,Y - C uu P,Y 2m u - C dd P,Y 2m d m N (G Nu A -G Nd A )m 2 μ (m 2 μ +m 2 π ) C N N T,Y = G N,u T C uu T,Y + G N,d T C dd T,Y + G N,s T C ss T,Y C N N V ,Y = G N,u V C uu V ,Y + G N,d V C dd V ,Y
C N N Der,Y was evaluated at q 2 = -m 2 μ , and the scalar nucleon coefficients, to which contribute also gluon operator of eqn (5.2), are given in [START_REF] Cirigliano | On the model discriminating power of mu -> e conversion in nuclei[END_REF].

To obtain the μ → e conversion rate, the expectation values of the nucleon operators in the nucleus are required. This is discussed in the next section. We were unable to find nuclear expectation values of the tensor and pseudoscalar operator, so O N N P,Y will be neglected, and the tensor included in the scalar and axial operators, as described in eqn (5.19). 

Estimating the SD and SI rate in light nuclei

In our previous paper [START_REF] Cirigliano | Spin-dependent μ → e conversion[END_REF], we gave analytic estimates of the SI and SD conversion rates on Aluminium. The aim of section 5.3.1 is to give details of the calculation in the notation of

ESTIMATING THE SD AND SI RATE IN LIGHT NUCLEI

relativistic, second-quantised Field Theory. The results can then be matched onto the nuclear physics calculations of [START_REF] Kitano | Detailed calculation of lepton flavor violating muon electron conversion rate for various nuclei[END_REF] (for SI conversion), and SD WIMP scattering [START_REF] Klos | Large-scale nuclear structure calculations for spin-dependent WIMP scattering with chiral effective field theory currents[END_REF][START_REF] Engel | Nuclear physics of dark matter detection[END_REF][START_REF] Fitzpatrick | The Effective Field Theory of Dark Matter Direct Detection[END_REF][START_REF] Engel | Response of mica to weakly interacting massive particles[END_REF] (for SD conversion). In subsection 5.3.1.3, the estimates are mapped onto the numerical results of KKO [START_REF] Kitano | Detailed calculation of lepton flavor violating muon electron conversion rate for various nuclei[END_REF], and SD conversion in heavier targets is discussed in section 5.3.2.

Estimating the SD and SI rate in Aluminium

We define the bound state of momentum P i composed of an Aluminium nucleus and a muon in the 1S orbital as ≡ |Alμ(P i )〉 . We are interested in the S-matrix element for Alμ(P i ) → Al(P f )+ e - X (q) induced either by the dipole operator (which we discuss later), or by a four-fermion operator (e X Γ l μ)(NΓ n N). To be concrete, we consider the S-matrix element where the nucleon N is a proton:

(5.12) i2 2 G F C pp Γ 〈Al(P f ), e(q, s)| d 4 y[ ê X (y)Γ l μ(y)][ p(y)Γ n p(y)]|Alμ(P i )〉
where s is the spin of the electron selected by the chiral projector P X , field operators wear hats, and

Γ n ∈ {I, γ 5 , γ α , γ β γ 5 , σ αβ }, Γ l ∈ {I, γ α , σ αβ }.

four-fermion operators

A first step is to write the motionless bound state |Alμ(0)〉 as (5.13)

|Alμ( P i = 0)〉 = 2(M Al + m μ ) 4M Al m μ w d 3 k (2π) 3 ψ μ ( k) |Al(-k)〉 ⊗ |μ( k, w)〉
where w is the spin of the muon, the square-root prefactor accounts for one vs two-body normalisation of states in Lorentz-covariant field theory conventions where states are normalised ∝ 2E [START_REF] Peskin | An Introduction to quantum field theory[END_REF], and

ψ μ ( l) = d 3 ze -i l• z ψ μ ( z)
is the fourier transform of the Schrodinger wavefunction ψ μ ( z) for a muon in a central potential of charge Z.

For Zα << 1, the unit-normalised wavefunction, for either spin state, can be approximated [START_REF] Bjorken | Relativistic quantum fields[END_REF][START_REF] Rose | Relativistic electron theory[END_REF][START_REF] Itzykson | Quantum Field Theory. International Series In Pure and Applied Physics[END_REF] as

(5.14) ψ μ (r, θ, φ) [mαZ] 3/2 π e -Zαmr .
We approximate the outgoing electron as a free particle (plane wave), which should be acceptable for an Aluminium target. For heavy nuclei, the Dirac equation for the electrons outgoing in the field of the nucleus should be solved [START_REF] Czarnecki | Coherent muon electron conversion in muonic atoms[END_REF], allowing to express the electron as a superposition of free states. This approach was followed in KKO [START_REF] Kitano | Detailed calculation of lepton flavor violating muon electron conversion rate for various nuclei[END_REF].

In the same non-relativistic bound state formalism (see e.g., Appendix B of [START_REF] Fitzpatrick | The Effective Field Theory of Dark Matter Direct Detection[END_REF] for more details), the Aluminium nucleus, of spin J A , can be written as a bound state composed of a proton of spin t, with another state M 1 of mass M 1 and spin J M containing Z -1 protons and A -Z neutrons:

(5.15) 〈Al(P f ),

J A | = 2M Al 4M 1 m p t,J M d 3 l (2π) 3 f * p ( l, t, J M , J A )〈M 1 (-l + M 1 v f ), J M |×〈p( l + m p v f ), t|
where f p ( l, t, J M , J A ) is the fourier transform of the (unknown) wavefunction of the proton in the potential of M 1 , and

P f = (M Al , M Al v f ).
The fermion operators can be expanded as [START_REF] Peskin | An Introduction to quantum field theory[END_REF] (5.16) μ(y)

= w d 3 p (2π) 3 1 2E âw p u w p e -i p•y + bw † p v w p e i p•y
and act on states as μ(y)| k, w〉 = u w k e -ik•y |0〉, where the spinors are normalised as u † k u k = 2k 0 . The S-matrix element of eqn (5.12) can then be evaluated as (5.17)

i(2π) 4 δ 4 (P i -P f -q)2 2 G F C pp Γ M Al m p 2m μ p∈Al spins d 3 xψ μ ( x)| f p ( x, J A , J M , t)| 2 e -i q• x (u s e Γu w μ )(u o p Γu t p )
where the spinors subscripts are particle names rather than momenta, and P i (M Al +m μ , P i ),

P f (M Al , P f ). To obtain this approximation, the states were taken to be non-relativistic, the wavefunctions expressed in position space, the proton wavefunction was assumed independent of the proton spin, and the dependence of spinors on three-momenta was neglected in many integrals. Notice the M Al /m p enhancement factor that arises automatically for both spin-dependent and spin-independent interactions, and that the usual (2π) 4 δ 4 (P i -P f -q), which accounts for four-momentum conservation, appears despite that there is a spatial integral over the nucleus.

In the following, we drop the spin indices in the nucleon distribution in the nucleus

| f N | 2 .
The leptonic spinor contraction is independent of x and can be factored out of the spatial integral in eqn (5.17). In light nuclei such as Aluminium, the muon wavefunction can also be factored out [START_REF] Weinberg | Electromagnetic Transitions Between mu Meson and Electron[END_REF], because the muon wavefunction decreases on the scale ∼ 1/(Zαm μ ), which is larger than the radius of the Aluminium nucleus, given in [START_REF] Vries | Nuclear charge and magnetization density distribution parameters from elastic electron scattering[END_REF] as ≤ 6 fm. On the other hand, the first zero of the electron plane wave (the e -i q• x of eqn (5.17)) would occur at r ∼ π/(m μ ) ∼ 6 fm.

The nucleon spinor contractions, in the non-relativistic limit, can be written (see eqn [START_REF] Klapdor-Kleingrothaus | Latest results from the Heidelberg-Moscow double beta decay experiment[END_REF] of [START_REF] Cirelli | Tools for model-independent bounds in direct dark matter searches[END_REF]): 

u o N (P f )u t N (P i ) → 2m N δ ot u o N (P f )γ 5 u t N (P i ) → 2 q • S N u o N (P f )γ α u t N (P i ) → 2m N δ ot δ α0 u o N (P f )γ j γ 5 u t N (P i ) → 4m N S j N u o N (P f )σ ik u t N (P i ) → 4m N ik j S j N u o N (P f )σ 0k u t N (P i ) → iq k
where the spin vector of the nucleon is defined as 2 S N = u † N Σu N /2E N , and the rotation generator

S i j = i 4 [γ i , γ j ] = 1 2 i jk Σ k .
The momentum transfer q = P i -P f has been neglected, except in the case of the pseudoscalar, where the leading term is O ( q • S N ), and in the case of the tensor, where the there is a "spin-independent" contribution ∝ q.

These spinor identities allow the tensor interaction involving nucleons to be absorbed into the scalar and axial vector coefficients. Following [START_REF] Cirigliano | Spin-dependent μ → e conversion[END_REF], we define

(5.19) C N N S,Y = C N N S,Y + 2 m μ m N C N N T,Y , C N N A,Y = C N N A,Y + 2 C N N T,X
where in both cases the 2 arises from the two antisymmetric contributions of the tensor, the unprimed Cs are defined in eqn (5.11), X , Y ∈ {L, R}, and X = Y because only operators with electrons of the same chirality can interfere. Notice that there is an error in [START_REF] Cirigliano | Spin-dependent μ → e conversion[END_REF], where is

written C N N A,Y = C N N A,Y + 2 C N N T,Y .
It remains to evaluate the expectation value of the nucleon currents in the nucleus.

• In the case of the scalar or vector operators, the matrix element of eqn (5.17) becomes (5.20) 

M = 2 2 G F C pp S,V 2M Al 2m μ ψ μ (0) p∈A d 3 x| f p (r)| 2 sin(qr) qr s,r (u s e u r μ ) scalar (u s e γ 0 u r μ ) vector
where the sum over protons in the nucleus will give a factor Z, we drop the spin indices because the sum and average give one, and assume a spherically symmetric nucleon distribution | f p (r)| 2 in the nucleus, which allows to replace 4 e -i q• x → sin(qr) qr . The "form factors"

(5.21)

F N (m μ ) = d 3 x| f N (r)| 2 sin(m μ r) m μ r
are defined in eqns ( 29) and ( 30) of [START_REF] Kitano | Detailed calculation of lepton flavor violating muon electron conversion rate for various nuclei[END_REF]: F p (m μ ) ∼ .53 for Al, and ∼ .35 for Ti. 4 Recall that a plane wave can be expanded on spherical harmonics as e iqz = ∞ =0 i (4π)(2 + 1) j (qr)Y 0 (θ), and Y 0 0 (θ) = 1/ 4π .

• The expectation value of the axial current in Aluminium (A = 27, Z = 13, J Al = 5/2) was calculated by Engel et.al [START_REF] Engel | Response of mica to weakly interacting massive particles[END_REF] and Klos et.al [START_REF] Klos | Large-scale nuclear structure calculations for spin-dependent WIMP scattering with chiral effective field theory currents[END_REF] using the shell model. In the zeromomentum transfer limit, where the spin expectation values S A N are defined by:

(5.22

) N∈A d 3 x| f N ( x)| 2 (u N γ k γ 5 u N ) = 4m N S A N J k A |J A | ,
they obtain S Al n = 0.0296, S Al p = 0.3430. (J k A is a quantum mechanical operator, to be evaluated in the ground state of the nucleus A). At finite momentum transfer, references [START_REF] Klos | Large-scale nuclear structure calculations for spin-dependent WIMP scattering with chiral effective field theory currents[END_REF][START_REF] Engel | Response of mica to weakly interacting massive particles[END_REF] • At zero momentum transfer, the nuclear expectation value of tensor operators O N N T,X is proportional to that of axial vector operators, as accounted for in eqn (5.19). However, at finite momentum transfer, there is no pion exchange contribution for the tensor operator (while pion exchange induces O N N Der,X in the presence of the axial vector quark operators), so the redefinition of eqn (5. [START_REF] Aubert | Search for the rare decay B → πl + l[END_REF]) is not valid. Indeed, the tensor and axial vector operators are distinct at finite momentum transfer. However, we did not find nuclear calculations of SD scattering on Aluminium mediated by the tensor operator. We can try to estimate the error from using the axial results for the tensor: at q 2 = -m 2 μ , the pion exchange contribution to the matrix element in eqn (5.8) is comparable to the four-fermion contact interaction. Also, the finite-momentum-transfer suppressions of the axial and scalar rates on Aluminium are comparable (S Al (m μ )/S Al (0) 2 ), despite that one might expect the oscillations of the electron wavefunction to suppress the SD rate more than the SI rate, because spin-carrying nucleons are likely to be at large radii. So we interpret that axial matrix element is amplified by a factor ∼ 2 at q 2 = -m 2 μ (due to the pion), and suppressed by an extra factor ∼ 1/2 (as compared to the scalar matrix element) due to the oscillations of the electron wavefunction, and estimate that the identification of eqn (5.19) could overestimate the tensor contribution to the branching ratio by a factor ∼ 2 → 4 (depending on whether the pseudoscalar and axial matrix elements interfere).

|F N (m μ )|
• The pseudoscalar operator O N N P,X is proportional to the nucleon spin, is only present at finite momentum transfer, and at q 2 = -m 2 μ , is enhanced by a pion exchange contribution of comparable magnitude. Since the magnitude of the pseudoscalar spinor contraction in eqn (5.18) is suppressed with respect to the axial vector by ∼ m μ /2m N , its contribution to the SD branching ratio could be ∼ m 2 μ /4m 2 N × the axial vector contribution. However, the identification

C N N A,Y = C N N A,Y + m μ
2m N C N N P,X does not work, because the spin sums suppress the axial-pseudoscalar interference term. A dedicated nuclear calculation would seem required for both the pseudoscalar and tensor operators.

To obtain the matrix-element-squared, the lepton spinor part can be evaluated by Dirac traces.

Then to perform the nuclear spin sums in the SD case, the identity

(5.24) 1 (2J μ + 1)(2J A + 1) spins k,i 〈J μ | Ĵk |J e 〉〈J e | Ĵ i |J μ 〉〈J A | Ĵk A |J A 〉〈J A | Ĵ i A |J A 〉 = 1 3 J μ (J μ + 1)J A (J A + 1)
can be used.

Finally, the conversion rate is obtained as

Γ = 1 2M Al dΠ|M | 2 = m μ 8M 2 Al π |M | 2
where |M | 2 is averaged over the incident spins, and dΠ gives the integration over the final state phase space of the nucleus and electron.

These steps give an analytic estimate for the four-fermion contributions to the SI conversion rate on a nucleus of atomic number A and charge Z:

(5.25)

Γ SI Γ capt = 2B 0 |Z( C pp S,L + C pp V ,R + 2eC D,L )F p (m μ ) + (A -Z)( C nn S,L + C nn V ,R )F n (m μ )| 2 + {L ↔ R} .
where the F N are defined in eqn (5.21) and related to the overlap integrals of KKO in (5.34), the contribution of the dipole operator (estimated in subsection 5.3.1.2) was also included, and

B 0 = G 2 F m 5 μ Γ capt π 2 (Zα) 3 0.310 Al (Z = 13) 0.438 T i (Z = 22) ,
where Γ capt is the rate for the Standard Model process of muon capture [START_REF] Kitano | Detailed calculation of lepton flavor violating muon electron conversion rate for various nuclei[END_REF][START_REF] Suzuki | Total Nuclear Capture Rates for Negative Muons[END_REF]. Similarly, the SD conversion rate on a nucleus of atomic number A, charge Z and spin J A is (5.26)

Γ SD Γ capt = 8B 0 J A + 1 J A S A p C pp A,L + S A n C nn A,L 2 S A (m μ ) S A (0) + {L ↔ R} .
where the spin expectation values S A N and the finite momentum tranfer correction S A (k) are given for Aluminium at eqn (5.23).

the dipole

In the case of the dipole operator of eqn (5.2), the S-matrix element can be written

(5.27) i 2 2 G F 2m μ C D,Y m μ 〈e(q, s)| d 4 y2( ê X (y)σ 0i • E i (y)P Y μ(y))|μ(q)〉 (5.28) = i 2 2 G F 2m μ C D,Y m μ 2πδ(E e -m μ ) d 3 ye -i q• y ψ μ ( y)2(u e σ 0i • E i (y)P Y u μ (y)) (5.29) ≡ i2πδ(E e -m μ ) M , M = 2 2 G F 2m μ 2C D,Y m μ dΩr 2 dr sin m μ r m μ r ψ μ (r)(u e σ 0i P Y u μ )E i (r)
where the 2 under the integral is to account for E i = F 0i = F i0 , and the magnitude of the radial electric field induced by the nucleus is [START_REF] Kitano | Detailed calculation of lepton flavor violating muon electron conversion rate for various nuclei[END_REF] (5.30)

E(r) = Ze r 2 r 0 r 2 | f p (r )| 2 dr .
To estimate the dipole matrix element analytically, we suppose that the electric field only contributes at radii within the first zero of the electron wavefunction r e , because outside the rapid oscillation of the electron wavefunction gives an approximate cancellation in M . The muon wavefunction is approximately constant at such radii. The radius of the Aluminium nucleus is comparable to r e , but if we nonetheless approximate the nucleon distribution | f p (r)| 2 as a constant for r < r e , we obtain (5.31)

E(r) Zer 3 | f p (r)| 2 , M 2 2 G F 2m μ 2C D,Y m μ ψ μ (0) dΩ r 3 dr 3 | f p (r)| 2 sin m μ r m μ r (u e σ 0i P Y u μ )Ze ri
where r is a radial unit vector.

The "matrix element" M neglects recoil of the nucleus, so the final state phase space in the rate is only one-body, and we reproduce the analytic estimate of [START_REF] Kitano | Detailed calculation of lepton flavor violating muon electron conversion rate for various nuclei[END_REF] for light nuclei (D ∼ 8eS p given above eqn (29) of [START_REF] Kitano | Detailed calculation of lepton flavor violating muon electron conversion rate for various nuclei[END_REF]):

(5.32)

BR SI = | M | 2 m μ 2π = 8G 2 F m 5 μ π 2 Γ capt (αZ) 3 |ZeC D,Y F p (m μ )| 2
This estimate uses r 3 dr/3 r 2 dr, and applies in the absence of other contributions; the dipole coefficient sums with the scalar and vector coefficients in the amplitude, as given in eqn (5.25).

ESTIMATING THE SD AND SI RATE IN LIGHT NUCLEI

Comparing to KKO

This section compares our estimates to the more exact formulae of [START_REF] Kitano | Detailed calculation of lepton flavor violating muon electron conversion rate for various nuclei[END_REF] (KKO). Our estimates use a solution of the Schrodinger equation for the muon, a plane wave for the electron, and chiral γ-matrices. KKO solve the Dirac equation in the potential of the nucleus, both for the electron and muon, use Bjorken and Drell γ-matrix conventions, and give the branching ratio as:

(5.33)

BR(Aμ → Ae) = 32G 2 F m 5 μ Γ cap C pp V ,R V (p) + C pp S,L S (p) + C nn V ,R V (n) + C nn S,L S (n) + C D,L D 4 2 + {L ↔ R}
where Γ cap is the rate for the muon to transform to a neutrino by capture on the nucleus (see [207, 232]), and the nucleus-and nucleon-dependent "overlap integrals" V (N) X , S (N) X , D (N) correspond to the integral over the nucleus of the lepton wavefunctions and the appropriate nucleon density (vector, scalar, electric field for the dipole operator; the definitions and numerical values are given in KKO [START_REF] Kitano | Detailed calculation of lepton flavor violating muon electron conversion rate for various nuclei[END_REF]). The numerical coefficient in eqn (5.33) differs from the result given in KKO, because 4 C| here = g| K KO .

Our unit-normalised nuclear density | f N (r)| 2 can be identified with the similarly normalised density ρ N (r) of KKO [START_REF] Kitano | Detailed calculation of lepton flavor violating muon electron conversion rate for various nuclei[END_REF]. Our Schrodinger approximation for the muon wavefunction can be identified to the upper component (in Bjorken and Drell γ conventions) of the Dirac wavefunction obtained by [START_REF] Kitano | Detailed calculation of lepton flavor violating muon electron conversion rate for various nuclei[END_REF]. Then the normalisation conventions of eqn ( 5) and ( 7) of [START_REF] Kitano | Detailed calculation of lepton flavor violating muon electron conversion rate for various nuclei[END_REF] identify

ψ μ (r, θ, φ) ↔ g μ (r) 4π .
In the limit of massless electron, the upper (g e ) and lower components (i f e ) of the electron wave function of [START_REF] Kitano | Detailed calculation of lepton flavor violating muon electron conversion rate for various nuclei[END_REF] are comparable. The electron normalisation condition given in eqn (8) of [START_REF] Kitano | Detailed calculation of lepton flavor violating muon electron conversion rate for various nuclei[END_REF] then implies that we can identify our electron plane wave as

i f e = g e (r) ↔ 2 sin m μ r r ↔ 2 m μ e -i k• r .
In the approximation where the muon wavefunction is constant in the nucleus, the overlap integrals of [START_REF] Kitano | Detailed calculation of lepton flavor violating muon electron conversion rate for various nuclei[END_REF] can be identified to our approximations as

S (p) , V (p) → m μ |ψ μ (0)| 4 π Z d 3 xe -i k• x | f p | 2 (5.34) S (n) , V (n) → m 5/2 μ (Zα) 3/2 4π (A -Z) d 3 xe -i k• x | f n | 2 ,
as given in eqns ( 29) -(31) of KKO.

Spin-dependent conversion in other light nuclei

In this section we consider how the estimates of the previous section could be applied to other nuclei. Recall that light nuclei are interesting for SD detection, because the SD rate is relatively suppressed by 1/A 2 compared to the SI rate: the ratio Γ SD /Γ SI is largest for light nuclei.

The matrix element given in eqn (5.17) for SD μ → e conversion contains the integral of the axial current over the nucleus, weighted by the lepton wavefunctions. In the case of light nuclei (Z ≤ 20), as discussed in the previous section, the muon wavefunction can be taken constant in the nucleus, and the electron can be treated as a plane wave. This allows to use the results of nuclear calculations [START_REF] Engel | Nuclear physics of dark matter detection[END_REF] of matrix elements for spin-dependent WIMP scattering at finitemomentum-transfer. The zero-momentum-transfer matrix elements (spin expectation values; see eqn (5.22)), have been calculated for a wide variety of nuclei [START_REF] Bednyakov | Nuclear spin structure in dark matter search: The Zero momentum transfer limit[END_REF], and finite momentum transfer results also been obtained for some nuclei [START_REF] Bednyakov | Nuclear spin structure in dark matter search: The Finite momentum transfer limit[END_REF]. For μ → e conversion in heavier nuclei, a dedicated nuclear calculation would be required to obtain the expectation values of the SD operators weighted by the lepton wavefunctions.

An interesting light nucleus for SD μ → e conversion could be Titanium (Z=22) 5 , because it has isotopes with and without spin, so targets of different isotopic abundances could allow to distinguish SD from SI operators. Titanium has a spin-zero isotope with A = 48 and 74% natural abundance [235], an isotope with A = 47, J = 5/2, 7.5% abundance, and another isotope with A = 49, J = 7/2, 5.4 % abundance. These natural abundances of more than 5 % are large enough to make sufficiently-enriched sample targets.

In the Odd Group Model, Engel and Vogel [236] (5.35)

p∈A d 3 x| f p ( x)| 2 e -i q• x (u p γ k γ 5 u p ) ≈ p∈A d 3 y| f p ( y)| 2 (u p γ k γ 5 u p ) × d 3 z| f p ( z)| 2 e -i q• z .
So we apply this approximation to Titanium, and estimate S T i (m μ )/S T i (0) ≈ 0.12.

PARAMETRIC EXPANSIONS AND UNCERTAINTIES

Parametric expansions and uncertainties

Once μ → e conversion is observed, the aim will be to determine (or constrain) as many operator coefficients as possible. This would require at least as many "independent" observations as operators, where observations are independent if, in spite of uncertainties, they depend on a different combination of coefficients. So the purpose of this section, is to estimate the uncertainties in relating the conversion rate to operator coefficients.

The inputs for this calculation, (equivalently, the theoretical parameters to be extracted from data) are the coefficients of either the quark operators (see eqn 5.1), or of the nucleon operators (see eqns 5.11,5.19), in both cases at the experimental scale Λ exp . So uncertainties associated to the Renormalisation Group evolution from the New Physics scale to the experimental scale are not considered. In the remainder of this paper, we will sometimes use the quark operator basis, and sometimes the nucleon basis. As discussed below, there are significant uncertainties in some of the {G N,q O }, which are required to extract the coefficients of the quark operators, but can be avoided by using the nucleon operators.

• There are uncertainties in some of the matching coefficients that relate quark to hadron operators (see eqn (5.6) and appendix A). The G N,q V are from charge conservation, so should be exact. For the axial and scalar coefficients, the determinations from data (see eqn (A.6)) and from the lattice (A.7,A.9) are quoted with smaller uncertainties than their differences (this is especially flagrant for the G N,q S , whose lattice and data values differ by 30-50%, and are both quoted with ≤ 10% uncertainties). First, it can be hoped that these discrepancies will be reduced in the future. Secondly, in some models (or equivalently, for some choices of coefficients), these factors can be cancelled by taking ratios. Finally, if we are only interested in discriminating SD from SI contributions to the rate, this distinction exists at the nucleon level, so the matching to quark operators is not required.

• The lepton interactions with nucleons are calculated at Leading Order (LO) in χPT. At NLO, arise pion loops as well as processes with two nucleons in the initial and final states which exchange a pion that interacts with the leptons. For the case of WIMP scattering, such NLO contributions for the scalar quark operator have been discussed [START_REF] Cirigliano | WIMP-nucleus scattering in chiral effective theory[END_REF][START_REF] Hoferichter | Chiral power counting of one-and two-body currents in direct detection of dark matter[END_REF][START_REF] Prezeau | New contribution to wimp-nucleus scattering[END_REF] and reference [START_REF] Cirigliano | WIMP-nucleus scattering in chiral effective theory[END_REF] estimates them to be a higher order effect (≤ 10%), provided there are no cancellations among the LO contributions. The two-nucleon contributions were also calculated to be unexpectedly small for WIMP scattering on few-nucleon nuclei [START_REF] Körber | First-principle calculations of Dark Matter scattering off light nuclei[END_REF]. However, after this manuscript was completed, appeared a study of the μ → e conversion rate mediated by the scalar and vector interactions [START_REF] Bartolotta | Coherent μ -e conversion at next-to-leading order[END_REF], where the authors estimate that the NLO effects associated to pion exchange between two nucleons can reduce the scalar matrix element by 20→ 30% (NLO corrections vanish for the vector). We will account for these nucleon/χPT uncertainties by including them in the uncertainties in the overlap integrals.

• The μ → e conversion matrix element, expressed as a function of nucleon operator coefficients, relies on many perturbative expansions, among which an expansion in the finite-momentum-transfer | q| 2 = m 2 μ . Naively such corrections are O (m 2 μ /m 2 N ) (so negligible), however in practise there are various effects which are not so suppressed. First, the finite momentum transfer gives a significant suppression of the matrix element. In our analytic approximations, where the muon is at rest and the electron momentum k = q, this is encoded in the form factors F N (see eqn (5.21)), which are ∼ .2 → 0.7. KKO include this effect more accurately, by solving the Dirac equation for the leptons. Secondly, finite momentum transfer effects can change the nucleon and lepton spinor algebra. This is discussed for Dark Matter in [START_REF] Fitzpatrick | The Effective Field Theory of Dark Matter Direct Detection[END_REF][START_REF] Cirelli | Tools for model-independent bounds in direct dark matter searches[END_REF], and gives the O (m μ /m N ) contribution of the tensor to the scalar coefficient given in eqn (5.19). We include this correction, because the tensor operator at zero momentum transfer contributes to the SD matrix element (suppressed by 1/A), whereas this (m μ /m N )-suppressed contribution gains a relative factor A because it contributes to the SI matrix element. The ratio of these contributions to the conversion rate is estimated in appendix B. Finally, pion exchange becomes relevant at | q| 2 = m 2 μ for the axial vector and pseudoscalar operators (see eqns (5.8,5.9)), and is included in the nuclear matrix elements of [START_REF] Engel | Response of mica to weakly interacting massive particles[END_REF] that we use for the axial vector in Aluminium. Pion contributions at | q| = 0 to the SI rate are discussed above. We hope that these are the dominant finite-momentum-transfer corrections, such that any other effects are negligible (< 10%) corrections.

• In our calculation of the SD matrix element, the velocity of the initial muon was neglected. This may seem doubtful, by analogy with the extended basis of WIMP scattering operators constructed in [START_REF] Fitzpatrick | The Effective Field Theory of Dark Matter Direct Detection[END_REF], because these authors expand in both the momentum transfer between the WIMP and nucleon, and the incoming velocity difference. However, in our case, the muon velocity is parametrically smaller: writing the binding energy of the 1s state as πZαm μ ∼ m v 2 , gives | v| ∼ Zα . We neglect any effects related to this velocity.

• There could be nuclear uncertainties in the SI overlap integrals S N , V N , D, in addition to the effects discussed above. These were estimated by [START_REF] Kitano | Detailed calculation of lepton flavor violating muon electron conversion rate for various nuclei[END_REF] to be ∼ a few % in most cases, ≤ 10% in the case of some heavier nuclei Consider first the uncertainty on the SI rate, because, when μ → e conversion is observed in a nucleus with spin, the SD conversion rate can only be observed, if it is larger than the uncertainty in the ubiquitous A 2 -enhanced SI rate. The uncertainty in Γ SI , written as a function of the quark operator coefficients C qq O,X , would arise from the G N,q O , from the overlap integrals S N , V N , D of [START_REF] Kitano | Detailed calculation of lepton flavor violating muon electron conversion rate for various nuclei[END_REF], and from NLO contributions in χPT: (5.36) δΓ SI

Γ SI (C qq O,X ) 2 X =L,R |F X | |F L | 2 + |F R | 2 C qq S,X S N δG N,q S + C N N S,X [δS N ] NLO + δI A I A
where

F L = C N N V ,L V (N) + C N N S,R S (N) + C D,
R D, sums on N ∈ {n, p} and q ∈ {u, d, s} are implicit, the gluon contribution to the scalar [START_REF] Cirigliano | On the model discriminating power of mu -> e conversion in nuclei[END_REF] was neglected, for simplicity a common uncertainty δI A I A was assigned to the overlap integrals in nucleus A, except for the effect of neglecting pion exchange between two nucleons [START_REF] Cirigliano | WIMP-nucleus scattering in chiral effective theory[END_REF][START_REF] Bartolotta | Coherent μ -e conversion at next-to-leading order[END_REF] uncertainties can be avoided by expressing the rate in terms of the coefficients of the nucleon Lagrangian; if in addition, [δS N ] NLO /S N < 10%, then the uncertainty in the SI rate comes from the overlap integrals. From the KKO discussion, 2 δI A I A ≤ 10% in most cases, < 20% in all cases. In order to be concrete, we assume in the remainder of this paper, that the uncertainty on the SI rate expressed in terms of coefficients on nucleons, is ≤ 10%. This suggests that the SD rate would need to be ≥ 10 -20% of the SI rate, to be observed.

A better sensitivity to the SD rate could be obtained by using isotopes with and without spin as targets: consider for instance, 48 Titanium (without spin), and 47 Titanium (with spin), whose SI matrix elements differ by one neutron. Using the analytic approximation of eqn (5.25), the ratio of the SI conversion rates, for real coefficients and left-handed electrons, is (5.37)

Γ SI ( 47 T i) Γ SI ( 48 T i) 1 -2 ( C nn S,L + C nn V ,R )F n (m μ ) |Z( C pp S,L + C pp V ,R + 2eC D,L )F p (m μ ) + (A -Z)( C nn S,L + C nn V ,R )F n (m μ )| + ...
where the second term 6 is O (1/A). The theoretical uncertainty in this ratio will arise from the overlap integrals (equivalently, form factors F N ), so should be of order 1 A δI T i I T i ≤ 0.002. This greatly improves the sensitivity to the SD rate, although it is unlikely to allow as good a sensitivity to SD as SI coefficients, because the SD rate is parametrically suppressed as 1/A 2 which is ≤ 1 A δI T i I T i . Some prospects for distinguishing among SI operators by using different targets will be discussed in section 5.5.3. For this, the various targets need to probe different combinations of operator coefficients, and this difference needs to be larger than the theoretical uncertainty. In section 5.5.3, targets are parametrised as vectors in coefficient space, whose components are the overlap integrals (see eqn (5.54)), and targets are assumed to probe different combinations of operator coefficients if the angle between the vectors is ≥ 10% ≥ δI A I A . This estimate can be obtained in the 2-dimensional plane of the vectors, where the uncertainty on the angle θ of a point (I 1 ± δI 1 ,

I 2 ± δI 2 ) is (5.38) δθ δI i I i × I 1 I 2 I 2 1 + I 2 2 6
Since 47 T i and 48 T i only differ by one neutron, there would be no O (1/A) term if the CLFV operators only involved protons or the dipole.

Implications of including the SD rate

The aim of this section is to explore the implications of including the SD contribution to μ → e conversion. At first sight, it appears to be of limited interest: the ratio of SD to SI rates is

Γ SD Γ SI ∼ |C SD | 2 A 2 |C SI | 2
so for a SI operator coefficient C SI comparable to C SD , the SD contribution to the branching ratio is much smaller than the ∼ 10% theory uncertainty of the SI contribution, estimated in the previous section. Furthermore, as discussed in [START_REF] Cirigliano | Spin-dependent μ → e conversion[END_REF], renormalisation group running between the New Physics scale and low energy mixes the tensor and axial vector ("SD") operators to the scalars and vectors, so even in a New Physics model that only induces SD operators, their dominant contribution to μ → e conversion is via the SI operators that arise due to RG running.

This perspective that SD conversion can be ignored is illustrated in section 5.5.1, where we consider three leptoquark models. They give negligeable SD branching ratios, but we explore the prospects of distinguishing them by comparing the SI rates in various nuclei.

The SD conversion rate is nonetheless interesting, because it is an independent observable, that can be observed by comparing targets with and without spin. As in the case of dark matter, it is sensitive to different operator coefficients (evaluated at the experimental scale) from the SI process, so provides complementary information. In section 5.5.2 we allow C SD C SI such that the SD rate can be observable, and discuss the constraints that could be obtained from upper bounds on μ → e conversion. Finally in section 5.5.3, we allow arbitrary coefficients to all the operators of the nucleon-level Lagrangian, and explore the prospects for identifying coefficients should μ → e conversion be observed.

Leptoquarks

We consider three possible leptoquark scenarios, each containing an SU( 2 

L 1 = D μ S † D μ S + M 2 S † S + [λ * R ] eu eu c S + [λ * R ] μu μu c S + h.c. , (5.40) L 2 = D μ S † D μ S + M 2 S † S + [λ * L ] μd μ iτ 2 q c L,u S + [λ * R ] eu eu c S + h.c. , (5.41 
)

L 3 = D μ S † D μ S + M 2 S † S + [ λ * ] ed ed c S + [ λ * ] μd μd c S + h.c. .
where D μ is the appropriate covariant derivative of QCD and QED. At the leptoquark mass scale, we match these scenarios onto the SM extended by QED*QCD invariant operators, which mediate μ → e conversion. The coefficients and operators are given in table 5.1.

operators coefficients at M L 1 - [λ R ] * eu [λ R ] μu M 2 (e R u c )(u c μ R ) = [λ R ] * eu [λ R ] μu 2M 2 (e R γ α μ R )(uγ α P R u) C uu V ,R = C uu A,R = [λ R ] * eu [λ R ] μu 4M 2 L 2 - [λ R ] * eu [λ L ] μu M 2 (e R u c )(u c μ L ) = [λ R ] * eu [λ L ] μu 2M 2 (e R P L μ)(uP L u) + 1 4 (e R σP L μ)(uσP L u) C uu S,L = 2C uu T,L = [λ R ] * eu [λ L ] μu 4M 2 L 3 - [ λ] * ed [ λ] μd M 2 (e R d c )(d c μ R ) = [ λ] * ed [ λ] μd 2 M 2 (e R γ α μ R )(dγ α P R d) C dd V ,R = C dd A,R = [ λ] * ed [ λ] μd 4 M 2
Table 5.1: Lepton flavour-changing operators induced in the leptoquark scenarios of equations (5.39 -5.41). The coefficients are given at the leptoquark mass scale M, in the basis of section 5.2.

In each scenario, we translate the coefficients down to the experimental scale Λ exp =2 GeV via an approximate analytic solution to the one-loop RGEs of QED and QCD [211, 212]:

(5.42) 2β 0 = {- 12 23 , 4 23 } for I = S, T. Γ e is the one-loop QED anomalous dimension matrix, Γ e is this matrix with an additional factor multiplying the TS and ST entries [START_REF] Bellucci | Leading Logarithmic Corrections to the Weak Leptonic and Semileptonic Low-energy Hamiltonian[END_REF][START_REF] Buchalla | The Anatomy of Epsilon-prime / Epsilon in the Standard Model[END_REF] in order to account for the QCD running:

C I (Λ exp ) C J (M)λ a J δ JI - α e Γ e
(5. [START_REF] Samoil | On Oscillations of Neutrinos with Dirac and Majorana Masses[END_REF])

Γ e JI = Γ e JI f JI , f JI = 1 1 + a J -a I λ a I -a J -λ 1 -λ = ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 23 7 λ 16/23 -λ 1-λ J I = ST 23 39 
λ -16/23 -λ 1-λ J I = TS 1 otherwise
We neglect the RG mixing out of our operator basis, because it is small: tensor mixing to the dipole is suppressed by light quark masses, and the mixing via the penguin diagram to

vector operators O f f
V ,X is a few %, and does not generate operators interesting to us here. The RG evolution is described in more detail in appendix C. This formalism allows to predict the ratio of SD to SI contributions to the branching ratio for μ → e conversion. In Aluminium, we find for the three scenarios, taking M = 1 TeV:

(5.44) f or L 1 :

BR SD BR SI ∼ 1.5 × 10 -4 f or L 2 : BR SD BR SI ∼ 4.4 × 10 -6
f or L 3 :

BR SD BR SI ∼ 3.2 × 10 -5
so we see that the SD rate is smaller than the current ∼10% uncertainties on the SI rate, so cannot be observed in these models. This is as expected, because the leptoquark model imposes that the tensor/axial coefficients are comparable to the scalar/vector coefficients, so the SD rate is relatively suppressed with respect to the SI rate by 1/(AG N,q S ) 2 for tensor coefficients, and 1/A 2 for axial vector coefficients.

It is interesting to explore whether the three leptoquark scenarios could be distinguished by comparing the SI rates in various nuclei. We imagine that μ → e conversion has been observed in Aluminium (Z Al =13, A Al = 27), the target of the upcoming COMET and Mu2e experiments.

We wish to identify alternative target materials, which could allow to distinguish our leptoquark scenarios.

A simple distinction between the leptoquarks S and S, is that the former couples to u quarks, and the latter to d quarks. To identify an appropriate target (A, Z), where the μ → e conversion rates induced by S and S would be significantly different (subject to the constraint that both reproduced the Aluminium observations), we consider the double ratio:

(5.45)

Γ(Alμ→Ale) Γ((A,Z)μ→(A,Z)e) S Γ(Alμ→Ale) Γ((A,Z)μ→(A,Z)e) S 2A Al -Z Al A Al + Z Al 2 A + Z 2A -Z 2 = 2V (p) Al + V (n) Al V (p) Al + 2V (n) Al 2 V (p) A + 2V (n) A 2V (p) A + V (n) A 2
where the operator coefficients cancel because we compare two models that each induce a single SI operator. This ratio should differ from 1 by ≥ 20%, in order to unambiguously distinguish the S from S, given the ∼ 10% uncertainties on the theory calculation. The first approximate equality in eqn (5.45), applies for light nuclei, where the conversion rate can be written as eqn (5.25). The second equality uses the KKO conversion rate given in eqn (5.33) in terms of the overlap integrals V (N) , and applies for all nuclei.

The continuous green line (with stars) of figure 5.2 is the ratio of μ → e conversion rates mediated by S and S, assuming equal operator coefficients. It corresponds to the second fraction in the products appearing in eqn (5.45), so the double ratio of eqn (5.45) is simply obtained by dividing by the ratio for Aluminium. The stars are the light nucleus approximation, the green continous line is the ratio of overlap integrals. This shows that the approximation is very similar to the numerical results of KKO, and that a target with Z ≥ 40 could allow to distinguish the first and third leptoquark scenarios. In the following, we take Niobium (Nb,Z=41,A=93) as a Z ≥ 40 target. It is also interesting to explore the prospects of distinguishing scalar operators involving u vs d quarks. So we also plot in figure 5.2, as a dashed red line, the ratio of μ → e conversion rates mediated upstairs by O uu S,X and downstairs by O dd S,X :

(5.46)

Γ((A, Z)μ → (A, Z)e) O uu S,X Γ((A, Z)μ → (A, Z)e) O dd S,X = G p,d S S (p) A + G n,d S S (n) A G p,u S S (p) A + G n,u S S (n) A 2 .
For the G N,q S values given in appendix A, the scalar ratio is close to one (because G p,q S G n,q S ), suggesting that changing the target in μ → e conversion does not help distinguish O uu S,X from O dd S,X . The first and second leptoquark scenarios respectively induce scalar and vector operators. As discussed in [START_REF] Cirigliano | On the model discriminating power of mu -> e conversion in nuclei[END_REF][START_REF] Kitano | Detailed calculation of lepton flavor violating muon electron conversion rate for various nuclei[END_REF], these can be distinguished by comparing the conversion rates in light and heavy targets. This is illustrated in figure 5.2, by the blue dotted line, which gives the double ratio normalised to Niobium (5.47)

Γ(Nbμ→Nbe) Γ((A,Z)μ→(A,Z)e) scalar Γ(Nbμ→Nbe) Γ((A,Z)μ→(A,Z)e) vector = G p,u S S (p) Nb + G n,u S S (n) Nb G p,u S S (p) A + G n,u S S (n) A 2 2V (p) A + V (n) A 2V (p) Nb + V (n) Nb 2 .
We see that measuring the μ → e conversion rate on Aluminium, some intermediate target around Z ∼ 40 and on a heavy nucleus like lead or gold (Z = 79), could distinguish the three leptoquark scenarios, that is a vector operator involving ds, vs vector operator involving us, vs a scalar operator involving us.

Bounds on arbitrary coefficients of four operators

This section considers the operators induced by the second and third leptoquark models (see equations (5.40),(5.41)) which are added simultaneously to the Lagrangian with arbitrary coefficients:

(5.48)

L EFT = C uu S,L O uu S,L + C uu T,L O uu T,L + C dd V ,R O dd V ,R + C dd A,R O dd A,R + h.c.
This is clearly an incomplete basis (the complete basis of dimension six operators at Λ exp is given in eqns (5.1,5.3)); however, it is sufficient for our purpose 7 , which is to explore which constraints can be obtained on quark-level operators from the non-observation of μ → e conversion in targets with and without spin.

We suppose that μ → e conversion has not been observed on Aluminium, Titanium (enriched in isotopes with spin) and Lead targets. These targets are chosen because heavy and light targets have different sensitivities to vector and scalar coefficients, and because the spin of Titanium and Aluminium is respectively associated to an odd neutron and an odd proton. In order to check that upper bounds on these branching ratios can constrain all the operator coefficients which we consider, we set the branching ratios to zero, and check that this forces the coefficients to vanish.

Setting the SD conversion rates in Titanium and Aluminium to zero gives two equations: so even allowing for a 10% theory uncertainty on the coefficients, it is clear that the only solution is for both coefficients to vanish. This is because the spin of Titanium isotopes arises from the odd number of neutrons, whereas in Aluminium the spin is from the odd proton, so these two conversion rates probe the SD coefficients C N N A,X for both neutrons and protons. Then, since the matching coefficients G Nu A,X and G Nd A,X (equivalently G Nu T,X and G Nd T,X ) are of opposite sign and different magnitude, C uu A,X + 2C uu T,X and C dd A,X + 2C dd T,X can be distinguished. It is straightforward to check that setting the SI rates on Al, Ti and Pb to zero, forces

(5.49) 0 C dd A,R G p,d A + S Al n S Al p G n,d A + 2C uu T,L G p,u T + S Al n S Al p G n,u T (5.50) 0 C dd A,R G n,d A + 2C uu T,L G n,u T
C dd V ,R , C uu S,L → 0.
A more informative way to present the constraints on coefficients arising from the experimental bounds is to give the covariance matrix. We suppose an upper bound of BR (for instance, 10 -14 ) on the SI branching ratios on Pb and Al, and on the SD branching ratios on Al and Ti. The tensor operator gives comparable contributions to both SI and SD processes (see Appendix B), so the 4 × 4 covariance matrix does not split into 2 × 2 subblocks. Nonetheless, it is interesting to give the covariance matrices for different cases, in order to see the variation of the bounds, when different theoretical information is included.

First, the tensor contribution to the SI rates is neglected, in which case the covariance matrices for (C dd V ,R , C uu S,L ) and (C uu T,L , C dd A,R ) are:

( 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦
, which shows that the exclusions become weaker due to potential cancellations between a large C uu T,L and the vector or scalar coefficients. Finally the full covariance matrix arising from imposing BR SI (μPb → eP b) ≤ 10 -14 , BR SI (μT i → eT i) ≤ 10 -14 , BR SD (μ 47 T i → e 47 T i) ≤ 10 -14 , BR SI (μAl → eAl) ≤ 10 -14 , and BR SD (μAl → eAl) ≤ 10 -14 , for the coefficients 

(C dd V ,R , C uu S,L , C uu T,L , C dd A,R ), is BR ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 0.
⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ . (5.53)
Comparing to the bounds of eqn (5.51), shows that the tensor contribution to the SI rate is of little importance, provided the SD bounds are included. However, if the SD bounds are neglected, including the tensor in the SI rate significantly weakens the constraints, as can be seen in eqn (5.52). We also checked that including BR SI (μAu → eAu) ≤ 10 -14 only changes a few entries by about 25%, as expected, because Al, Ti and Pb were chosen as targets for their discriminating power.

Reconstructing nucleon coefficients

We now suppose that μ → e conversion is observed in Aluminium, where there can be SI and SD contributions to the rate, and that the New Physics is described by the nucleon-level Lagrangian of eqn (5.5) with arbitrary operator coefficients. It is interesting to consider which subsequent targets, in what order, would be required to distinguish the SD and SI contributions, and then to discriminate among the SI operators?

We first introduce a geometric representation of models and targets, which allows to visualize the ability of various targets to discriminate among models. A New Physics scenario can be represented as a two 5-dimensional vectors, each composed of SI coefficients which interfere

C X ≡ (C D,X , C pp S,X , C pp V ,Y , C nn S,X , C nn V ,Y )
, and two two-component vectors of SD coefficients ( C nn A,X , C pp A,X ). For simplicity, we focus on X = L, and drop this electron chirality subscript. Then we focus on discriminating among SI operators, because the spin of target nuclei is usually associated to either an unpaired n or p, giving an order of magnitude better sensitivity to the coefficient corresponding to the unpaired nucleon (see, e.g. the spin expectation values given after eqn (5.22)).

This means that discriminating C nn

A,X vs C pp A,X should be a straightforward matter of using targets with an unpaired p and n.

For the spin independent process, a target nucleus (Z, A) can be envisaged as a vector

(5.54) v (Z,A) = (D (Z,A) , S (p) (Z,A) , V (p) (Z,A) , S (n) (Z,A) , V (p) (Z,A) )
in the five-dimensional coefficient space, whose components are the appropriate overlap integrals. (In the following, the vectors and components are indiscriminately labelled by A or

IMPLICATIONS OF INCLUDING THE SD RATE

Z because we use the overlap integrals of KKO, obtained for a single abundant isotope.) The matrix element for μ → e conversion on target A, mediated by a combination of coefficients C, is proportional to C • v A , and target nucleus A allows to probe coefficients in the direction v A .

If we define the unit-normalised ê A = v A /| v A |, then target A probes the same combination of coefficients as Aluminium if ê A is parrallel to ê Al , and the difference

(5.55) 1 -ê A • ê Al ≈ θ 2 2
gives an invariant measure of whether the target A has sensitivity to an orthogonal direction in coefficient space. In eqn (5.55), θ is the angle between ê A and ê Al . ) This normalised ratio of overlap integrals is interesting, because the normalisation "factors out" the growth with Z shared by all the overlap integrals, so this ratio parametrises the difference in direction in coefficient space, which allows different targets to discriminate amoung coefficients. This ratio also indicates that targets of Z ≤ 25 cannot distinguish operators, if one admits a theory uncertainty of ∼10% in the calculation of the components e O A . Assisted by the measures of discriminating power given in eqns (5.55) and (5.56), we now speculate on a possible series of targets. A light nucleus without spin could be an interesting second target, because it would allow to distinguish whether the rate in Aluminium was dominantly SD or SI. In particular, the SI rate in Aluminium could be approximately predicted from the the rate observed in another spinless light nucleus. This is because the SI rate in all targets with Z ≤ 20 is sensitive to a similar linear combination of operator coefficients, as illustrated in figures 5.3 and 5.4.

An interesting choice for the second target could be Titanium (Z=22, A = 48). As illustrated in figures 5.3 and 5.4, it of sufficiently low Z that the SI rate probes the same combination of operator coefficients as the SI rate in Aluminium. So measuring the SI rate in Titanium-48 would allow to determine whether there was a significant SD contribution to the μ → e conversion rate observed on Aluminium. If there is indication for an SD contribution in Aluminium, then it could be interesting to measure the rate on a Titanium target enriched with the spin-carrying isotopes 47 and 49. This would give complementary information on the quark flavour of the tensor and/or axial vector operators, because the spin of Aluminium is largely due to the odd proton, whereas for Titanium, there is an odd neutron. So the SD rate in Aluminium is mostly sensitive to C pp A,X , whereas the SD rate in Titanium depends on C nn A,X . Finally, if there is no evidence of an SD rate in Aluminium, a heavy target such as lead could be interesting to discriminate the scalar vs vector coefficients in the SI rate. 

Summary

This paper gives some details of the calculation of the Spin Dependent (SD) μ → e conversion rate in light nuclei, previously outlined in [START_REF] Cirigliano | Spin-dependent μ → e conversion[END_REF]. Section 5.2 reviews the operators involving quarks and gluons that contribute [START_REF] Cirigliano | On the model discriminating power of mu -> e conversion in nuclei[END_REF][START_REF] Kitano | Detailed calculation of lepton flavor violating muon electron conversion rate for various nuclei[END_REF] at the experimental scale (Λ exp = 2 GeV), and matches them onto the nucleon operators which enter the nuclear physics calculation. Some attempt is made to include pion exchange in this matching (it is relevant because the momentum-transfer is m 2 μ ). Section 5.3 calculates as much as possible of the conversion rate in the notation of relativistic, second-quantised, QFT [START_REF] Peskin | An Introduction to quantum field theory[END_REF]; in the last steps, the results of nuclear calculations are included.

The final rate is given in equation (5.26). This section is not original; its purpose is to make the result accessible to affictionados of QFT. We recall the SD μ → e conversion is incoherent, like SD WIMP scattering, so it is best searched for in light nuclei, where the 1/A 2 suppression with respect to the coherent Spin Independent (SI) ratše (given in eqns (5.25,5.33)) is less significant.

Our SD rate estimate relies on nuclear physics calculations of the expectation value of nucleon axial currents in the nucleus. The results we use were obtained for SD WIMP scattering, which are often at zero momentum transfer. As discussed in section 5.3.1, additional nuclear calculations seem required to include tensor and pseudoscalar operators at finite momentum transfer, in light targets such as Aluminium and Titanium. In this paper, we did not discuss SD conversion on heavy nuclei; however, one can speculate that the nuclear expectation values could be of interest, because heavy nuclei could be sensitive to a different combination of tensor and axial operators from light nuclei. This is because the anti-lepton wavefunction contributes with opposite sign to the tensor vs axial operators, and is more relevant in heavy nuclei (this sign difference allows to discriminate scalar and vector operators in SI conversion on light and heavy nuclei [START_REF] Kitano | Detailed calculation of lepton flavor violating muon electron conversion rate for various nuclei[END_REF]). Of course, the SD rate might be unobservably small (due to the 1/A 2 suppression), but heavy nuclei could nonetheless give an independent constraint on the many operator coefficients.

Both the SD and SI conversion rates depend on the modulus-squared of a sum of coefficients, weighted by nucleus-dependent numbers-see equations (5.25,5.26,5.33). This allows for cancellations, making it difficult to constrain individual coefficients, or identify the operators responsable for μ → e conversion when it is observed. In the SI case, Kitano Koike and Okada (KKO) [START_REF] Kitano | Detailed calculation of lepton flavor violating muon electron conversion rate for various nuclei[END_REF] pointed out that scalar vs dipole vs vector operators could be distinguished by changing the nuclear target. Section 5.5 explores, from various approaches, the prospects of distinguishing a wider variety of operators, including SD vs SI, and u-vs d-quark operators.

The prospects for discriminating vector or scalar operators involving either u or d quarks are illustrated in figure 5.2: vector operators involving u or d quarks could be distinguished by comparing the μ → e conversion rate in light (Z ≤ 20) and intermediate (Z ∼ 40) targets, but distinguishing scalar u versus d operators seems difficult. Curiously, the u vs d distinction is more transparent in the SD rates, as discussed after eqn (5.50). So if both SD and SI conversion are observed, possibly the quark flavour could be extracted from the SD rates8 .

SUMMARY

The SD and SI contributions to the conversion rate could be distinguished (if the SD rate is large enough) by comparing the conversion rate in nuclei with and without spin. Section 5.4 reviews the theoretical uncertainties in the calculation of the μ → e conversion rate, in order to estimate the sensitivity to the subdominant SD process. Comparing μ → e conversion on isotopes with and without spin would cancel the leading theory uncertainties, giving a sensitivity (see the discussion after eqn 5.37) to Γ SD /Γ SI ≥ 0.1 A , assuming a 10% uncertainty on Γ SI . Among the SD operators, it is not currently possible to distinguish pseudoscalar, axial and tensor coefficients, because only the nuclear expectation value of the axial operator has been calculated. However, as mentioned in the previous paragraph, it could be possible to discriminate SD operators involving u vs d quarks, because they contribute differently in nuclei where the odd nucleon is a proton or neutron.

The upcoming COMET and Mu2e experiments will initially search for μ → e conversion on Aluminium, a target which has spin -so if they observe a signal, it could be mediated by the SD or SI operators. So in section 5.5.3, we considered what series of subsequent targets could give information about the dominant coefficients. To this purpose, we represent a target material as a vector in the space of nucleon-level operators, whose components are numbers which multiply the operator coefficient in the rate (overlap integrals, in the SI case). Different targets can discriminate between operators, if they point in different directions of operator space.

We plot in figures 5.3 and 5.4 two different measures of the misalignment between target vectors.

If μ → e conversion is observed on Aluminium, the following sequence of targets could be interesting: as second target, a light nucleus without spin, such as Titanium-48, would discriminate whether the dominant contribution was from the SD rate, because the SI rate in Titanium is comparable to Aluminium (see figures 5.3 and 5.4). If there is an SD contribution to the rate in Aluminium, then Titanium isotopes with spin, could be an interesting target: the spin of Titanium is related to the odd neutron (whereas in Aluminium there is an odd proton), so this could discriminate whether the SD operators involved u or d quarks. Finally, a heavy target such as gold or lead could allow to discriminate scalar vs vector operators, as pointed out in [START_REF] Kitano | Detailed calculation of lepton flavor violating muon electron conversion rate for various nuclei[END_REF]. We study lepton flavour violating two-and three-body decays of pseudoscalar mesons in Effective Field Theory (EFT). We give analytic formulae for the decay rates in the presence of a complete basis of QED×QCD-invariant operators. The constraints are obtained at the experimental scale, then translated to the weak scale via one-loop RGEs. The large RG-mixing between tensor and (pseudo)scalar operators weakens the constraints on scalar and pseudoscalar operators at the weak scale.

Introduction

As we have seen in chapter 2 and 3, the discovery of neutrino oscillations [START_REF] Ahmad | Direct evidence for neutrino flavor transformation from neutral current interactions in the Sudbury Neutrino Observatory[END_REF][START_REF] Fukuda | Evidence for oscillation of atmospheric neutrinos[END_REF] established non zero neutrino masses and mixing angles [START_REF] Tanabashi | Review of Particle Physics[END_REF]. If neutrinos are taken massless in the Standard Model (SM), then New Physics (NP) is required to explain the oscillation data. There are several possibilities to search for NP signatures, such as looking for new particles at the LHC [START_REF] Vardan Khachatryan | Search for heavy Majorana neutrinos in e ± e ± + jets and e ± μ ± + jets events in proton-proton collisions at s = 8 TeV[END_REF][START_REF] Aad | Search for heavy Majorana neutrinos with the ATLAS detector in pp collisions at s = 8 TeV[END_REF].

Another possibility is to look for new processes among known SM particles, such as Charged Lepton Flavour Violation (CLFV) [START_REF] Kuno | Muon decay and physics beyond the standard model[END_REF][START_REF] Calibbi | Charged Lepton Flavour Violation: An Experimental and Theoretical Introduction[END_REF], which we define to be a contact interaction that changes the flavour of charged leptons. If neutrinos have renormalizable masses via the Higgs mechanism, CHAPTER 6. CONSTRAINTS ON 2l2q OPERATORS FROM μ ↔ e FLAVOUR-CHANGING MESON DECAYS then their contribution to CLFV rates is GIM suppressed by a factor ∝ (m ν /M W ) 4 ∼ 10 -48 . However, various extensions of the Standard Model that contain heavy new particles (see e.g. [START_REF] Kuno | Muon decay and physics beyond the standard model[END_REF][START_REF] Calibbi | Charged Lepton Flavour Violation: An Experimental and Theoretical Introduction[END_REF][START_REF] Arganda | Lepton flavor violating Higgs boson decays from massive seesaw neutrinos[END_REF][START_REF]Flavour physics of leptons and dipole moments[END_REF] and references therein), can predict CLFV rates comparable to the current experimental sensitivities. Indeed, low energy precision experiments searching for forbidden SM modes, are sensitive to NP scales TeV [START_REF] Kuno | Muon decay and physics beyond the standard model[END_REF]. Many experiments search for CLFV processes; for example, μ ↔ e flavour change can be probed in the decays μ → eγ [START_REF] Baldini | Search for the lepton flavour violating decay μ + → e + γ with the full dataset of the MEG experiment[END_REF] and μ → 3e [START_REF] Perrevoort | Status of the Mu3e Experiment at PSI[END_REF][START_REF] Bellgardt | Search for the decay μ + → e + e + e[END_REF], in μ → e conversion on nuclei [START_REF] Wilhelm | A Search for muon to electron conversion in muonic gold[END_REF][START_REF] Kuno | A search for muon-to-electron conversion at J-PARC: The COMET experiment[END_REF][START_REF] Carey | Proposal to search for μ -N → e -N with a single event sensitivity below[END_REF] and also in meson decays such as K, D, B → μe [START_REF] Aubert | Search for the rare decay B → πl + l[END_REF][START_REF] Tanabashi | Review of Particle Physics[END_REF][START_REF] Ambrose | New Limit on Muon and Electron Lepton Number Violation from K 0 L → μ ± e ∓ Decay[END_REF][START_REF] Aaij | Search for the lepton-flavor-violating decays B 0 s → e ± μ ∓ and B 0 → e ± μ ∓[END_REF][START_REF] Aubert | Measurements of branching fractions, rate asymmetries, and angular distributions in the rare decays B → K +and B → K * +[END_REF][START_REF] Aaij | Search for the lepton-flavour violating decay D 0 → e ± μ ∓[END_REF][START_REF] Appel | Search for lepton flavor violation in K+ decays[END_REF][START_REF] Lees | Searches for Rare or Forbidden Semileptonic Charm Decays[END_REF].

In this paper, we focus on leptonic and semileptonic pseudoscalar meson decays with a μ ± e ∓ in the final state [START_REF] Tanabashi | Review of Particle Physics[END_REF]. We assume that these decays could be mediated by two-lepton, two-quark contact interactions, induced by heavy New Particles at the scale Λ NP > m W . The contact interactions are included in a bottom-up Effective Field Theory (EFT) [START_REF] Georgi | Effective field theory[END_REF][START_REF] Aneesh | Introduction to Effective Field Theories[END_REF][START_REF] Pich | Effective Field Theory with Nambu-Goldstone Modes[END_REF] approach, as a complete set of dimension six, QED×QCD-invariant operators [START_REF] Kuno | Muon decay and physics beyond the standard model[END_REF], containing a muon, an electron and one of the quark-flavour-changing combinations ds, bs, bd or cu.

Many studies on related topics can be found in the literature. The experimental sensitivity to the coefficients of four-fermion operators (sometimes refered to as one-operator-at-a-time bounds), evaluated at the experimental scale, has been compiled by various authors [START_REF] Davidson | BIBLIOGRAPHY Model independent constraints on leptoquarks from rare processes[END_REF][START_REF] Black | tau -mu flavor violation as a probe of the scale of new physics[END_REF][START_REF] Carpentier | Constraints on two-lepton, two quark operators[END_REF]. Reference [START_REF] Cai | A Case Study of the Sensitivity to LFV Operators with Precision Measurements and the LHC[END_REF] compared the sensitivities of the LHC vs low-energy processes, to quark flavour-diagonal scalar operators. The constraints on combinations of lepton-flavour-changing operator coefficients, which can be obtained from the decays of same-flavour mesons, were studied in [START_REF] Hazard | Lepton flavor violating quarkonium decays[END_REF], and the radiative decays of B, D and K mesons were discussed in [START_REF] Hazard | Radiative lepton flavor violating B, D, and K decays[END_REF]. Lepton flavour-conserving, but quark flavour-changing meson decays (which occur in the Standard Model), are widely studied [262]. In particular, B decays attract much current interest, due to the observed anomalies [START_REF] Aaij | Test of lepton universality using B + → K + +decays[END_REF][START_REF] Aaij | Test of lepton universality with B 0 → K * 0 +decays[END_REF][START_REF] Aaij | Measurement of the ratio of branching fractions B( B0 → D * + τντ )/B( B0 → D * + μνμ )[END_REF][START_REF] Sato | Measurement of the branching ratio of B0 → D * + τντ relative to B0 → D * +ν decays with a semileptonic tagging method[END_REF][START_REF] Lees | Measurement of an Excess of B → D ( * ) τντ Decays and Implications for Charged Higgs Bosons[END_REF] which suggest lepton universality violation [START_REF] Geng | Towards the discovery of new physics with lepton-universality ratios of b → s decays[END_REF][START_REF] Descotes-Genon | Global analysis of b → s anomalies[END_REF][START_REF] Ciuchini | B → K * +decays at large recoil in the Standard Model: a theoretical reappraisal[END_REF][START_REF] Jäger | Reassessing the discovery potential of the B → K * +decays in the large-recoil region: SM challenges and BSM opportunities[END_REF][START_REF] Hiller | R K and future b → s physics beyond the standard model opportunities[END_REF][START_REF] Bobeth | General analysis of B → K( * ) +decays at low recoil[END_REF][START_REF] Altmannshofer | Model-Independent Constraints on New Physics in b → s Transitions[END_REF]. Lepton flavour change has been widely studied in various models (see e.g. references of [START_REF] Kuno | Muon decay and physics beyond the standard model[END_REF][START_REF] Calibbi | Charged Lepton Flavour Violation: An Experimental and Theoretical Introduction[END_REF][START_REF] Davidson | Lepton Flavour Violating top decays at the LHC[END_REF]). More modelindependent studies, that take into account loop corrections (or equivalently, renormalization group running) have also been performed for μ ↔ e flavour change [211,[START_REF] Crivellin | Renormalisation-group improved analysis of μ → e processes in a systematic effective-fieldtheory approach[END_REF]. Finally, with respect to the calculations in this manuscript, the leptonic branching ratio of pseudoscalar mesons is well-known, and can be found in [START_REF] Davidson | BIBLIOGRAPHY Model independent constraints on leptoquarks from rare processes[END_REF][START_REF] Carpentier | Constraints on two-lepton, two quark operators[END_REF][START_REF] Shanker | Flavour violation, scalar particles and leptoquarks[END_REF][START_REF] Herz | Bounds on leptoquark and supersymmetric, R parity violating interactions from meson decays[END_REF] and semi-leptonic branching ratios in various scenarios can be found in [274][START_REF] Gupta | Calculations of hadronic matrix elements using lattice QCD[END_REF][START_REF] Daping Du | Phenomenology of semileptonic B-meson decays with form factors from lattice QCD[END_REF][START_REF] Bailey | ub | from B → π ν decays and (2+1)-flavor lattice QCD[END_REF][START_REF] Bailey | B → K l + l -Decay Form Factors from Three-Flavor Lattice QCD[END_REF][279][START_REF] Guo | Looking for New Physics via Semi-leptonic and Leptonic rare decays of D and D s[END_REF][START_REF] Crivellin | Lepton-flavour violating B decays in generic Z models[END_REF][START_REF] Crivellin | Violation of lepton flavor and lepton flavor universality in rare kaon decays[END_REF].

The aim of this paper is to obtain constraints on the operator coefficients describing meson decays at the experimental scale, and then transport the bounds to the weak scale 2 . The four fermion operators that could induce the meson decays are listed in section 6.2. Section 6.3 gives the branching ratios for the leptonic and semileptonic decays as a function of the operator coefficients. In section 6.4, we then use the available bounds to constrain the coefficients at the experimental scale (Λ exp ∼ 2 GeV) by computing a covariance matrix, which allow us to take into account the interferences among the operators. The bounds are then evolved from the 6.2. A BASIS OF μ -e INTERACTIONS AT LOW ENERGY experimental scale to the weak scale (Λ W ∼ m W ) in section 6.5, using the Renormalization Group Equations (RGEs) of QED and QCD for four-fermion operators [211,[START_REF] Crivellin | Renormalisation-group improved analysis of μ → e processes in a systematic effective-fieldtheory approach[END_REF]. As discussed in the final section, these equations give a significant mixing of tensor operators into the (pseudo)scalars between Λ exp and Λ W , which significantly weakens the bounds on (pseudo)scalar coefficients at Λ W .

A basis of μ -e interactions at low energy

We are interested in four-fermion operators involving an electron, a muon and two quark of different flavours, which are constructed with chiral fermions, because the lepton masses are frequently neglected, and it simplifies the matching at the weak scale onto SU(2)-invariant operators. The operators are added to the Lagrangian as

(6.1) δL = +2 2 G F O ζ C ζ O O ζ O + h.c.
where the subscript O identifies the Lorentz structure, the superscript ζ = l 1 l 2 q i q j gives the flavour indices, and both run over the possibilities in the lists below, extrapolated from [START_REF] Kuno | Muon decay and physics beyond the standard model[END_REF][START_REF] Kitano | Detailed calculation of lepton flavor violating muon electron conversion rate for various nuclei[END_REF]:

(6.2) O eμuc V ,Y Y = (eγ α P Y μ)(uγ α P Y c), O eμuc V ,Y X = (eγ α P Y μ)(uγ α P X c) O eμcu V ,Y Y = (eγ α P Y μ)(cγ α P Y u), O eμcu V ,Y X = (eγ α P Y μ)(cγ α P X e) O eμuc S,Y Y = (eP Y μ)(uP Y c), O eμuc S,Y X = (eP Y μ)(uP X c) O eμcu S,Y Y = (eP Y μ)(cP Y u), O eμcu S,Y X = (eP Y μ)(cP X u) O eμuc T,Y Y = (eσP Y μ)(uσP Y c) O eμcu T,Y Y = (eσP Y μ)(cσP Y u) (6.3) O eμds V ,Y Y = (eγ α P Y μ)(dγ α P Y s), O eμds V ,Y X = (eγ α P Y μ)(dγ α P X s) O eμsd V ,Y Y = (eγ α P Y μ)(sγ α P Y d), O eμsd V ,Y X = (eγ α P Y μ)(sγ α P X d) O eμds S,Y Y = (eP Y μ)(dP Y s), O eμds S,Y X = (eP Y μ)(dP X s) O eμsd S,Y Y = (eP Y μ)(sP Y d), O eμds S,Y X = (eP Y μ)(dP X s) O eμds T,Y Y = (eσP Y μ)(dσP Y s) O eμsd T,Y Y = (eσP Y μ)(sσP Y d)
where Y Y ∈ {LL, RR}, and X Y ∈ {LR, RL}, and the list is given explicitly for the Kaon and D-meson operators. The lists for the B d and B s are obtained from eqn. (6.3) by replacing ds → db, sb. The operators are normalised such that the Feynman rule will be +iC/Λ 2 . The operators in the lists (6.2) and ( 6.3) transform a muon into an electron; the e → μ operators arise in the +h.c. of eqn (6.1). So in these conventions, the lepton flavour indices are always eμ, and do not need to be given. In the following sections, we give the decay rates of pseudoscalar mesons, composed of constituent quarks qi and q j , into e + μ -or e -μ + . Then we obtain constraints on the operator coefficients by comparing to the experimental upper bounds on the branching ratios, e.g.

BR(P 1 → e ± μ ∓ ) = BR(P 1 → e + μ -)+BR(P 1 → e -μ + ) < .
.. which we suppose to apply independently to both decays. This gives independent and identical bounds on eμq i q j and eμq j q i .

In this work, we choose an operator basis with non-chiral quark currents, which is convenient for the non-chiral hadronic matrix elements involved in meson decays. Thus, the operators describing the contact interactions that can mediate leptonic (q i q j → μe) and semileptonic (q i → q j μe) CLFV pseudoscalar meson decays at a scale Λ exp ∼ 2 GeV (Λ exp ∼ m b 4.2 GeV for bs and bd) are written:

O eμq i q j S,X = eP X μ q i q j , O eμq i q j P,X = eP X μ q i γ 5 q j O eμq i q j V ,X = eγ α P X μ q i γ α q j , O eμq i q j A,X = eγ α P X μ q i γ α γ 5 q j O eμq i q j T X = eσ αβ P X μ q i σ αβ P X q j ( 6.4) 
where q i, j ∈ {u, d, s, c, b} , P X = P R,L = 1±γ 5 2 and

σ μν = i 2 [γ μ , γ ν ].
In this case, the coefficients of the operators in eqn. (6.4) are :

eμq i q j S,X = 1 2 (C eμq i q j S,X R + C eμq i q j
S,X L ),

eμq i q j P,X = 1 2 (C eμq i q j S,X R -C eμq i q j S,X L ) eμq i q j V ,X = 1 2 (C eμq i q j V ,X R + C eμq i q j V ,X L ), eμq i q j A,X = 1 2 (C eμq i q j V ,X R -C eμq i q j V ,X L ) eμq i q j T,X = C eμq i q j T,X X (6.5) 
In the next section, we compute the branching ratio for the (semi)leptonic decays as a function of the coefficients of eqn. (6.5).

Leptonic and semileptonic pseudoscalar meson decays

There are a multitude of bounds on rare meson decays coming from precision experiments [START_REF] Tanabashi | Review of Particle Physics[END_REF][START_REF] Carpentier | Constraints on two-lepton, two quark operators[END_REF]. The aim of this paper is to use these bounds to constrain the coefficients of eqn.

(6.5). Thus, in this section, we compute the leptonic and semileptonic pseudoscalar meson decay branching ratio as a function of these coefficients.

LEPTONIC AND SEMILEPTONIC PSEUDOSCALAR MESON DECAYS

Leptonic decay branching ratio

We are interested in decays such as : P 1 → l 1 l2 where {l 1 , l 2 } are leptons of mass m 1 , m 2 and P 1 is a pseudoscalar meson of mass M (P 1 ∈ K 0 L ( ds+ sd 2 ), D 0 ( ūc), B 0 ( bd) ). In the presence of New Physics, the leptonic decay branching ratio of a pseudoscalar meson P 1 of mass M is written [START_REF] Davidson | BIBLIOGRAPHY Model independent constraints on leptoquarks from rare processes[END_REF][START_REF] Carpentier | Constraints on two-lepton, two quark operators[END_REF][START_REF] Herz | Bounds on leptoquark and supersymmetric, R parity violating interactions from meson decays[END_REF]:

BR(P 1 → l 1 l2 ) C 2body = (| P,L | 2 + | P,R | 2 ) P 2 (M 2 -m 2 1 -m 2 2 ) + (| A,L | 2 + | A,R | 2 ) Ã 2 [(M 2 -m 2 1 -m 2 2 )(m 2 1 + m 2 2 ) + 4m 2 1 m 2 2 ] -2( P,L A,R + P,R A,L ) P Ã m 2 (M 2 + m 2 1 -m 2 2 ) + 2( P,L A,L + P,R A,R ) P Ã m 1 (M 2 + m 2 2 -m 2 1 ) -4 P,L P,R P 2 m 1 m 2 -4 A,L A,R Ã 2 M 2 m 1 m 2 (6.6)
where

C 2body = τr * G 2 F πM 2 , r * = 1 2M (M 2 -(m 1 + m 2 ) 2 )(M 2 -(m 1 -m 2 )
2 ) , m 1,2 are the masses of the leptons and τ is the lifetime of P 1 . For simplicity, we dropped the flavour superscript (ζ = l 1 l 2 q i q j ) of the coefficients.

The expectation values of the quark current for a pseudoscalar meson are written [START_REF] Carpentier | Constraints on two-lepton, two quark operators[END_REF][START_REF] Herz | Bounds on leptoquark and supersymmetric, R parity violating interactions from meson decays[END_REF] :

(6.7) P = 1 2 〈0| qi γ 5 q j |P 1 〉 = f P 1 M 2 2(m i + m j ) , Ã k μ = 1 2 〈0| qi γ μ γ 5 q j |P 1 〉 = f P 1 k μ 2
where m i, j are the masses of the quarks, f P 1 is the decay constant of the meson and k μ the momentum of the meson. These formulae are used for pions, Kaons, D and B mesons. The values of the constants are given in appendix D. Note that tensor operators do not contribute to the leptonic decay, because the trace of product of the Dirac matrices contained in the tensor operator vanishes in this case.

Semileptonic decay branching ratio

We are interested in decays such as : P 1 → l 1 l2 P 2 where {l 1 , l 2 } are leptons of mass m 1 , m 2 and {P 1 , P 2 } are pseudoscalar mesons of mass M, m 3 (

P 1 ∈ K + (u s), D + (c d), B + (u b), B + s (s b) and P 2 ∈ π + (u d), K + (u s) ).
The semileptonic decay branching ratio is written [283]:

BR(P 1 → l 1 l2 P 2 ) = τ 512π 3 M 3 1 2J + 1 (M-m 3 ) 2 (m 1 +m 2 ) 2 dq 2 1 -1 d cos θ |M | 2 λ(M 2 , m 2 3 , q 2 ) λ(q 2 , m 2 1 , m 2 2 ) q 2 (6.8) CHAPTER 6. CONSTRAINTS ON 2l2q OPERATORS FROM μ ↔ e FLAVOUR-CHANGING MESON DECAYS
where q = (p 1 + p 2 ) is the transferred momentum, θ the angle between the direction of propagation of the lighter meson (P 2 ) and the antilepton (l 2 ) in the leptons reference frame, τ and J the lifetime and the spin of P 1 and |M | 2 the matrix element of the semileptonic decay. The Kallen function is defined as λ(x, y, z) = (xyz) 2 -4yz. In the presence of New Physics, the matrix element in the semileptonic decay branching ratio of eqn. (6.8) is written :

|M | 2 8G 2 F = 2(| S,L | 2 + | S,R | 2 ) S2 (p 1 .p 2 ) + 1 4 (| V ,L | 2 + | V ,R | 2 )[ f 2 + 4(p 1 .P)(p 2 .P) -2P 2 (p 1 .p 2 ) + f 2 -4(p 1 .q)(p 2 .q) -2q 2 (p 1 .p 2 ) + 4 f + f -((p 1 .q)(p 2 .P) + (p 1 .P)(p 2 .q) -(p 1 .p 2 )(P.q))] + 4(| T R | 2 + | T L | 2 )
T 2 [4(p 1 .q)(p 2 .P)(P.q) + 4(p 1 .P)(p 2 .q)(P.q) -2(p 1 .p 2 )(P.q) 2 + 2P 2 q 2 (p 1 .p 2 ) -4P 2 (p 1 .q)(p 2 .q) -4q 2 (p 1 .P)(p 2 .P)]

-2( S,L V ,R + S,R V ,L ) Sm 2 [( f + (p 1 .P) + f -(p 1 .q))] + 2( S,L V ,L + S,R V ,R ) Sm 1 [( f + (p 2 .P) + f -(p 2 .q))] + 8( S,R T R + S,L T L ) S T [((p 1 .P)(p 2 .q) -(p 1 .q)(p 2 .P))] -4 S,L S,R S2 m 1 m 2 -V ,L V ,R m 1 m 2 [ f 2 -q 2 + f 2 + P 2 + 2 f + f -(P.q)] + 4( V ,L T R + V ,R T L ) T m 2 [ f + ((p 1 .
q)p 2 -(P.p 1 )(P.q)) + f -((p 1 .q)(P.q) -(p 1 .P)q 2 )]

+ 4( V ,R T R + V ,L T L ) T m 1 [ f + ((P 2
)(p 2 .q) -(p 2 .P)(P.q)) + f -((p 2 .q)(P.q) -q 2 (p 2 .P)) ]

+ 16 T R T L T 2 m 1 m 2 [(P.q) 2 -P 2 q 2 ]
(6.9)

where p 1 , p 2 , k, p 3 are respectively the 4-momentum of the leptons 1 and 2, and the 4-momenta 6.4. COVARIANCE MATRIX of P 1 and P 2 , P = k + p 3 and the hadronic matrix elements are written [START_REF] Carpentier | Constraints on two-lepton, two quark operators[END_REF][START_REF] Herz | Bounds on leptoquark and supersymmetric, R parity violating interactions from meson decays[END_REF][274][START_REF] Gupta | Calculations of hadronic matrix elements using lattice QCD[END_REF][START_REF] Daping Du | Phenomenology of semileptonic B-meson decays with form factors from lattice QCD[END_REF] :

Ṽ μ = 1 2 〈P 2 | qi γ μ q j |P 1 〉 = 1 2 (P μ f P 1 P 2 + (q 2 ) + q μ f P 1 P 2 - (q 2 )) S = 1 2 〈P 2 | qi q j |P 1 〉 = 1 2 (M 2 -m 2 3 ) (m q i -m q j ) f P 1 P 2 0 (q 2 ) Tμν = 1 2 〈P 2 | qi σ μν q j |P 1 〉 = - i 2 ( f P 1 P 2 + (q 2 ) -f P 1 P 2 - (q 2 )) M * (P μ q ν -P ν q μ ) T = 1 2 ( f P 1 P 2 + (q 2 ) -f P 1 P 2 - (q 2 )) M * (6.10)
For simplicity, we suppressed the q 2 dependence of the form factors f +,-,0 in eqn. (6.9), and the flavour superscript (ζ = l 1 l 2 q i q j ) of the coefficients. Notice there is no interference between S,L ( S,R ) and T R ( T L ) because the trace of the product of Dirac matrices involved in tensor and scalar operators of different chirality vanishes. The form factors and the scalar product in eqn. (6.9) are given in appendix E.

For simplicity, we do not give the analytic expression of the integrated semileptonic decay branching ratio, but only perform the integrals numerically.

Covariance matrix

In this section, we use the Branching Ratios (BRs) of eqns (6.6) and (6.8) to compute a covariance matrix, that will give constraints on the coefficients that account for possible interferences. We note BR exp 2

[BR exp 3 ] the experimental upper limit on the leptonic decay P 1 → l1 l 2 [semileptonic decay P 1 → P 2 l1 l 2 ] branching ratio and M 2 [M 3 ] the associated covariance matrix.

We can write the decay branching ratio of eqn. (6.6) and (6.8) 

Bounds on the coefficients

In this section, we give constraints on the coefficients for Kaon, D and B meson leptonic and semileptonic decays. As explained in section 6.3, tensor operators do not contribute to the leptonic decays of mesons. Thus, the available upper limits on leptonic [semileptonic] pseudoscalar meson branching ratios will give constrains on the P,X and A,X [ S,X , V ,X and T,X ] coefficients.

Indeed, hadronic matrix elements with scalar, vector or tensor quark current structure vanish in the leptonic case, while hadronic matrix elements with pseudoscalar or axial struture vanish in the semileptonic case. We consider the CLFV decays with the associated experimental upper limits given in table 6.1 [START_REF] Tanabashi | Review of Particle Physics[END_REF].

The bounds in table 6.1 will be used to constrain the coefficients at Λ exp and the at Λ W after the RGEs evolution of the coefficients (see section 6.5). The covariance matrices at Λ exp for the (semi)leptonic meson decays are given in appendix H, and the bounds on coefficients are summarized in table 6.2, 6.3 and 6.4.

Renormalization Group Equations (RGEs)

In this section, we review the evolution of operator coefficients from the experimental scale (Λ exp ∼ 2 GeV) up to the weak scale (Λ W ∼ 80 GeV) via the one-loop RGEs of QED and QCD [211,[START_REF] Crivellin | Renormalisation-group improved analysis of μ → e processes in a systematic effective-fieldtheory approach[END_REF]. We only consider the QED×QCD invariant operators of eqn. (6.4). The matching onto the SMEFT basis [START_REF] Grzadkowski | Dimension-Six Terms in the Standard Model Lagrangian[END_REF] and the running above m W [START_REF] Alonso | Renormalization Group Evolution of the Standard Model Dimension Six Operators III: Gauge Coupling Dependence and Phenomenology[END_REF] will be studied at a later date.

Anomalous dimensions for meson decays

Figure 6.1 illustrates some of the one-loop diagrams that renormalize our operators below the weak scale. Operator mixing is induced by photon loops, whereas the QCD corrections only rescale the S,P and T operator coefficients. After including one-loop corrections in the MS scheme, the operator coefficients will run with scale Λ according to [211] : (6.12)

Λ ∂ ∂Λ = α e 4π Γ e + α s 4π Γ s
where Γ e and Γ s are the QED and QCD anomalous dimension matrices and is a row vector that contains the operator coefficients of eqn. (6.5). In this work, we use the approximate analytic solution [START_REF] Cirigliano | Spin-dependent μ → e conversion[END_REF] of eqn. (6.12) to compute the running and mixing of the coefficients between Λ exp and Λ W : (6.13)

I (Λ exp ) = J (Λ W )λ a J δ JI - α e Γ e JI 4π log Λ W Λ exp
where I,J represent the super-and sub-scripts which label operator coefficients, λ encodes the QCD corrections, and Γ e JI is the "QCD-corrected" one-loop, anomalous dimension matrix for QED [286,287] . The elements of Γ e JI are defined as:

(6.14) Γ e JI = Γ e JI f JI , f JI = 1 1 + a J -a I λ a I -a J -λ 1 -λ , Γ e = ⎡ ⎢ ⎢ ⎣ Γ SPT 0 0 Γ V A ⎤ ⎥ ⎥ ⎦ .
where there is no sum on I, J, λ = α s (Λ W ) α s (Λ exp ) , and a J = Γ s J J 2β 0 = - 12 23 , - 12 23 , 4 23 for J ∈ {S, P, T}. The QED anomalous dimensions are

Γ SPT = ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ γ l 1 l 2 q i q j PP 0 γ l 1 l 2 q i q j PT 0 γ l 1 l 2 q i q j SS γ l 1 l 2 q i q j ST γ l 1 l 2 q i q j TP γ l 1 l 2 q i q j TS γ l 1 l 2 q i q j TT ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ , Γ V A = ⎡ ⎢ ⎢ ⎣ γ l 1 l 2 q i q j A A γ l 1 l 2 q i q j AV γ l 1 l 2 q i q j V A γ l 1 l 2 q i q j V V ⎤ ⎥ ⎥ ⎦ (6.15)
where the matrix elements in Γ SPT and Γ V A are defined in section 6.5. For the scalars and pseudoscalars, the wavefunction, first and second diagrams of figure 6.1 renormalize the coefficients, while the last four diagrams mix the tensors into the scalars and pseudoscalars: (6. [START_REF] Appel | Search for lepton flavor violation in K+ decays[END_REF])

γ q,q SS = qq S,L qq S,R qq S,L -6(1 + Q 2 q ) 0 qq S,R 0 -6(1 + Q 2 q ) γ q,q TS = qq S,L qq S,R qq T,L 48Q q 0 qq T,R 0 48Q q (6.17) γ q,q PP = qq P,L qq P,R qq P,L -6(1 + Q 2 q ) 0 qq P,R 0 -6(1 + Q 2 q ) γ q,q TP = qq P,L qq P,R qq T,L -48Q q 0 qq T,R 0 48Q q .
Similarly, the last four diagrams mix the (pseudo)scalars to the tensors. Only the wavefunction diagrams renormalize the tensors, because for the the first and second diagrams γ μ σγ μ = 0. We obtain :

6.5. RENORMALIZATION GROUP EQUATIONS (RGES) (6.18)

γ q,q TT = qq T,L qq T,R qq T,L 2(1 + Q 2 q ) 0 qq T,R 0 2(1 + Q 2 q ) γ q,q S(P)T = qq T,L qq T,R qq S(P),L (-)2Q q 0 qq S(P),R 0 2Q q
Finally, for the vectors and axial vectors, there is no running, but the last four diagrams contribute to the mixing of vector and axial coefficients :

(6.19) γ q,q AV = qq V ,L qq V ,R qq A,L 12Q q 0 qq A,R 0 -12Q q γ q,q V A = qq A,L qq A,R qq V ,L 12Q q 0 qq V ,R 0 -12Q q 6.

RGEs of operator coefficients

In this section we compute the evolution of the bounds from Λ exp to Λ W . In the previous section, we found a mixing between pseudoscalar and tensor coefficients, and between vector and axial coefficients. Thus, the coefficients that contributed only to the leptonic [semileptonic] decays at Λ exp will also contribute to the semileptonic [leptonic] decays at Λ W via the mixing.

The matrices describing the evolution of the coefficients from Λ exp to Λ W for all the decays were obtained with eqn. (6.13) and are given in appendix F.

Evolution of the bounds

In order to constrain the coefficients at Λ W , the constraints needs to be expressed in terms of coefficients at Λ W . However, the mixing of the pseudoscalar (axial) into the tensor (vector), and vice versa, implies that leptonic and semi-leptonic branching ratios can both depend on any of the ten coefficients, which we arrange in a vector as

= P,L , A,L , P,R , A,R , S,L , V ,L , T L , S,R , V ,R , T R Λ W .
The 10 × 10 matrix we need to invert to compute the bounds at Λ W is now written :

(6.20) (M ) -1 = R T ⎛ ⎜ ⎜ ⎝ M -1 2 0 4×6 0 6×4 M -1 3 ⎞ ⎟ ⎟ ⎠ R
where M -1 2 and M -1 3 are the 4 × 4 and 6 × 6 matrices defined in appendix G we inverted to obtain the bounds at Λ exp (see section 6.4) and R has the form of the matrices defined in eqn. (F.1), (F.2) and (F.3). Finally, eqn. (6.11) is written in the new basis as : CHAPTER 6. CONSTRAINTS ON 2l2q OPERATORS FROM μ ↔ e FLAVOUR-CHANGING MESON DECAYS (6.21) T (M ) -1 = 1

where is the vector of coefficients at Λ W , (M ) -1 the matrix in eqn. (6.20) and the superscript T means matrix transposition. All the covariance matrices at Λ W can be found in appendix H. In table 6.2, 6.3 and 6.4 we summarize all the bounds on the coefficients at Λ exp and Λ W . Table 6.2: Constraints on the dimensionless four-fermion coefficients l 1 l 2 q i q j P,X and l 1 l 2 q i q j S,X at the experimental (Λ exp for K and D mesons decay and Λ m b for B meson decays) and weak (Λ W ) scale after the RGEs evolution. The last two columns are the sensitivities, or Single Operator (SO) at a time bounds, see subsection 6.5.4. All bounds apply under permutation of the lepton and/or quark indices. Table 6.3: Constraints on the dimensionless four-fermion coefficients l 1 l 2 q i q j A,X and l 1 l 2 q i q j V ,X at the experimental (Λ exp for K and D mesons decay and Λ m b for B meson decays) and weak (Λ W ) scale after the RGEs evolution. The last two columns are the sensitivities, or Single Operator (SO) at a time bounds, see subsection 6.5.4. All bounds apply under permutation of the lepton and/or quark indices.

l 1 l 2 q i q j P,X Λ exp Λ W S.
l 1 l 2 q i q j A,X Λ exp Λ W S.
In the leptonic decays, the evolution of the bounds on the pseudoscalar coefficients between Λ exp and Λ W is the most important effect of the RGEs as shown in the first two columns 6.5. RENORMALIZATION GROUP EQUATIONS (RGES) Table 6.4: Constraints on the dimensionless four-fermion coefficients l 1 l 2 q i q j T X at the experimental (Λ exp for K and D mesons decay and Λ m b for B meson decays) and weak (Λ W ) scale after the RGEs evolution. The last two columns are the sensitivities, or Single Operator (SO) at a time bounds, see subsection 6.5.4. All bounds apply under permutation of the lepton and/or quark indices.

l 1 l 2 q i q j T X Λ exp Λ W S.
of the left panel of table 6.2. As can be seen in eqn. (F.1), (F.2) or (F.3), the running of the (pseudo)scalar coefficients is ∼ 1.6 (1.4), which means that if we neglect the mixing of the tensor into (pseudo)scalar coefficients, the bounds on S and P will be better at Λ W for all the decays we considered. However, the large mixing of the tensor coefficients into the (pseudo)scalar ones (see eqn. (6.16), (6.17) and eqn. (F.1) to (F.3)) weaken the bounds on pseudoscalar coefficients at Λ W for the Kaon decay. This is due to the fact that the bounds on eμds T (see the first two columns of table 6.4) are much weaker than the bounds on eμds P at Λ exp (see the first two columns of the left panel of table 6.2). Thus, the mixing of T into P will leads to weaker bounds on P at Λ W for the Kaon decay.

For the D,B and B s meson decays, the bounds on P are a bit closer to the bound on T at Λ exp .

Even with the large mixing of the tensor into the pseudoscalar coefficients, the bounds on eμcu P , eμbd P and eμbs P will be slightly better at Λ W because the running will be larger than the mixing.

In the semileptonic decays, there is also a mixing between scalar and tensor coefficients, but the bounds on scalar coefficients at Λ W increases a bit because, similarly to , the bounds on all the scalar coefficients (first two columns of the right panel of table 6.2) are close to the bounds on the tensor coefficients at Λ exp . The running of the scalars will be stronger than the mixing of the tensors into the scalars, thus, the bounds on S are better at Λ W for all the decays. For the axial and vector coefficients, there is no running and the mixing is small. The bounds on eμds A and eμds V at Λ exp are very close (see table 6.3), this explains why there is no evolution of these bounds at Λ W . However, for the D, B and B s decays, the bounds on A are much weaker than the bounds on V at Λ exp , especially for the B and B s decay. Thus, the bounds on Finally, the running of tensor coefficients is tiny, and the mixing of the (pseudo)scalar coefficients into the tensor ones is small. Thus, the evolution of the bounds is small for the tensor coefficients (first two columns of table 6.4) as for the bounds on vector and axial coefficients in the Kaon decay (first two columns of table 6.3). Finally, the matching at Λ W along with the evolution of the bounds between Λ W and Λ NP will be given in a future publication [288].

Single operator approximation

We also computed the sensitivities of the various decays to the coefficients at Λ exp , and these are given in the third column of tables 6.2 to 6.4. The sensitivity is the value of the coefficient below which it could not have been observed, and is calculated as a "Single Operator" (SO) at a time bound, that is by allowing only one non-zero coefficient at a time in the branching ratio (see eqn (6.6) and (6.9)). This is different from setting bounds on coefficients (first two columns of table 6.2 to 6.4), which are obtained with all coefficients non-zero, and exclude the parameter space outside the allowed range. It is clear that the sensitivities are sometimes an excellent approximation to the bounds, and sometimes differ by orders of magnitude.

To compute the evolution of the sensitivities of the decays to the coefficients at Λ W (given in the last column of table 6.2 to 6.4), we still kept only one non-zero coefficients at Λ exp and considered only the running of the coefficients (the diagonal terms in eqn. (F.1) to (F.3)). For example, computing the sensitivity of the leptonic Kaon decay to a pseudoscalar coefficient at Λ W in the SO approximation requires to multiply the first term in eqn. (G.3) by the first (or third) diagonal term squared in eqn. (F.1). Then, inverting the product and taking the square root will give the sensitivity of the decay to the coefficient at Λ W .

Updating the bounds

In future years, the experimental data on LFV meson decays could improve, so in this section, we consider how to update our bounds, without inverting large matrices.

The bounds on coefficients at Λ exp obtained in this work are of the form | | < BR exp × constant. Thus, all the bounds at Λ exp given in tables 6.2 to 6.4 can be updated by rescaling by (BR exp new )/(BR exp old ) when the data improves. However, in principle, the 10×10 matrix of eqn (6.20) must then be inverted to obtain the bounds at Λ W . So we now describe approximations that allow to obtain the bounds at Λ W with manageable matrices.

For the semileptonic decay, the bounds at Λ exp can be obtained by neglecting all the interference terms between the scalar, vector and tensor coefficients of either chirality (see eqn. (6.9)).

The 6 × 6 matrix in eqn. (G.2) then becomes diagonal and easy to invert. This approximation will give bounds at Λ exp on S,X , V ,X and T,X close to those obtained in the first column of tables CHAPTER 6. CONSTRAINTS ON 2l2q OPERATORS FROM μ ↔ e FLAVOUR-CHANGING MESON DECAYS pseudoscalars. As a result, the pseudoscalar bounds are weaker at Λ W , compared to the bounds at Λ exp . The bounds on scalar coefficients at Λ W are slightly stronger than at Λ exp . There is no running for the vector and axial coefficients, due to the fact we consider quark-flavor changing operators, and the mixing is small, but the bounds on axial coefficients are much weaker than the bounds on vector coefficients for the D, B and B s decays, this leads to much weaker bounds on vector coefficients at Λ W . Similarly, the running and mixing of tensor coefficients are small. As a result, the bounds on the axial and tensor coefficients do not evolve significantly between the experimental and weak scales.

We conclude by noting the importance of including interferences among operators in computing the bounds on their coefficients. As shown in subsection 6.5.4, the sensitivities of the decays to P and A obtained at Λ exp and to P , A and V at Λ W in the single operator approximation are better by several orders of magnitude compared to the bounds obtained by keeping the interferences among operators. We found that the Renormalization Group running between the experimental and weak scales has an important effect on the evolution of the bounds, especially the large mixing of the tensor (axial) into the pseudoscalar (vector), which lead to weaker bounds on pseudoscalar (vector) coefficients at Λ W for the Kaon (D, B and B s ) decay.

C H A P T E R 7

CONCLUSIONS AND PROSPECTS

The Standard Model of particle physics proved to be a very successful theory, as most of its predictions have been confirmed by various experiments. However, despite of its success, the SM cannot be a complete theory as many unsolved issues remain. This is confirmed by many observations that cannot be explained in the frame of the SM, such as the matter-antimatter asymmetry in the Universe or the presence of dark matter and dark energy. Other issues, such as the hierarchy problem or the fact that gravity is not included in the SM are additional reasons to believe that the SM can be considered as an effective theory of a more fundamental theory. This has lead to the birth of BSM physics that aim at extending the SM in order to address the unsolved issues.

The discovery of neutrino oscillations proved that neutrinos are massive and was also another striking manifestation of BSM physics, as lepton flavour violation is not explained in the SM. Thus, flavour physics is a great place to search for BSM physics and could give insight on the way to construct a more fundamental theory. In particular, the observation of processes involving lepton flavour violation in the charged lepton sector would be a clear signal of BSM physics. Indeed, even in the SM extended with massive neutrinos, the rates of CLFV processes are strongly suppressed and cannot be observed by current or future experiments. Currently, various experiments are searching for CLFV processes and many others are under construction, and plan to improve the sensitivity to CLFV processes by several orders of magnitude.

In this thesis, we have presented the study of specific CLFV processes, and used an EFT approach to constrain new physics models. The motivation for this work is the huge potential of CLFV processes to constrain BSM models, in the context of the exceptional improvements in the CHAPTER 7. CONCLUSIONS AND PROSPECTS sensitivity expected for the future experiments.

In chapter 2, we made a review of the unsolved issues in the SM, and gave a short list of BSM models that aim at addressing these issues.

In chapter 3, we introduced the theoretical and experimental context for CLFV searches.

We first discussed the state of the art in the muon channel, in which the sensitivity of the experiments to CLFV processes will greatly improve with the upcoming experiments. Then, we presented various searches in the tau channel, we saw that the sensitivity is lower than in the muon channel, but as for the muon channel, important improvements of the sensitivity in the tau channel are expected for the future experiments. We also discussed CLFV processes searches in the meson channel, which is also a very promising channel to constrain BSM models, due to the very large number of processes and the various experiments searching for these processes.

In chapter 4, we introduced the formalism of the EFT approach. We saw how the SM can be extended with the most general gauge invariant higher dimensional operators constructed from SM fields. In this approach, new physics effects can be described in terms of the effective operators and their associated coefficients. We also discussed the principles of renormalization and dimensional regularization, that are necessary to treat the divergences that appear in loop integrals. We presented the renormalization group equations, that govern the running and the mixing of coefficients with the energy scale. Finally, we presented two approaches in the EFT formalism : the top-down approach, and the bottom-up approach.

In chapter 5, we studied the conversion of a muon into an electron on nuclei in a top-down EFT.

We considered operators that can mediate the conversion process and obtained constraints on the coefficients using available data. First, we listed the operators and their associated coefficients, that contribute to the conversion process. We gave details of our estimation of the spin dependent and independent rates and discussed the related uncertainties. Then, we considered three possible Leptoquarks scenarios, each containing an SU(2) singlet Leptoquark, with a mass at the TeV scale and with only one coupling to electrons and one to muons. We computed the running and the mixing from the new physics scale (the Leptoquark mass) down to the experimental scale via an approximate analytic solution to the one-loop RGEs of QED and QCD. With the spin dependent and independent branching ratios expressed as a function of the coefficients at the experimental scale, we used the current experimental upper limits on the μ → e conversion process to constrain our coefficients, using a covariance matrix formalism. We then discussed the prospects for distinguishing the spin dependent and independent contributions. Finally, discussed the prospects for using different target nuclei in order to discriminate among the operators in the case where μ → e conversion on nuclei is observed.

In chapter 6, we studied CLFV two and three body decays of pseudoscalar mesons in a bottom-up EFT. We considered operators that change lepton and quark flavour, and we obtained constraints on the coefficients using available data on (semi)leptonic pseudoscalar meson decays.

We listed the operators and their associated coefficients at the experimental scale that contribute to the CLFV (semi)leptonic pseudoscalar meson decays. Then we computed the leptonic and semileptonic branching ratios of CLFV pseudoscalar meson decays as a function of the coefficients at the experimental scale. Using again a covariance matrix formalism allows us to take into account the interferences between operators when computing bounds on the coefficients. We gave the constraints on the coefficients at the experimental scale and then we used the RGEs to evolve our coefficients to the weak scale, at which we computed the bounds again. Then, we computed the sensitivities of the decays to the operators in the single operator approximation. We studied the importance of including interferences among operators by comparing the sensitivities obtained in the single operator approximation to the bounds obtained by keeping the interferences.

We concluded that it is critically important to keep the interferences among operators when computing bounds on coefficients, and that the running between the experimental and weak scales has an important effect on the evolution of the bounds. With all the expected improvements in the experimental sensitivity to various CLFV processes in the coming years, we have very exciting times ahead of us. We will be able to test BSM models at an unprecedented level and we will have a beautiful opportunity to have a better understanding of the structure of quantum field theories, toward the final theory of everything.

A P P E N D I X A G N,q O
When the quark Lagrangian of eqn (5.1) is matched onto the nucleon Lagrangian, the coefficients of the nucleon operators can be computed as

C N N O,Y = q G N,q O C qq O,Y
, for O ∈ T, A, V , P; for the scalar operator there is an additional gluon contribution as described in [START_REF] Cirigliano | On the model discriminating power of mu -> e conversion in nuclei[END_REF]. We take the G N,q O , defined at zero-momentum-tranfer such that 〈N where the parenthese gives the uncertainty in the last figure(s). The axial G A are the results inferred in Ref. [START_REF] Belanger | Dark matter direct detection rate in a generic model with micrOMEGAs 2.2[END_REF] by using the HERMES measurements [START_REF] Airapetian | Precise determination of the spin structure function g(1) of the proton, deuteron and neutron[END_REF]. The scalar G S induced by light quarks are from a dispersive determination [START_REF] Hoferichter | High-Precision Determination of the Pion-Nucleon Term from Roy-Steiner Equations[END_REF], and an average of lattice results [292] is used for the strange quark; in all cases, the MS quark masses at μ = 2 GeV are taken as m u = 2.2 MeV, m d = 4.7 MeV, and m s = 96 MeV [START_REF] Olive | Review of Particle Physics[END_REF]. The nucleon masses are m p = 938 MeV and m n = 939.6 MeV . The pseudoscalar results were calculated from data in the large-N c approximation at q 2 ≈ 0 [START_REF] Cheng | Low-energy Interactions of Scalar and Pseudoscalar Higgs Bosons With Baryons[END_REF], and here extrapolated to neutrons using isospin. The tensor results for the neutron are the lattice results of Cirigliano etal [START_REF] Bhattacharya | Neutron Electric Dipole Moment and Tensor Charges from Lattice QCD[END_REF], which are here extrapolated to protons using isospin.

(P)| q(x)Γ O q(x)|N(P)〉 =G N,q O u N (P)Γ O u N (P), to be G p,u V = G n,d V = 2 , G p,d V = G n,u V = 1 , G p,s V = G n,s V = 0 (A.
For comparaison, the G A have been obtained on the lattice; a recent determination [START_REF] Green | Up, down, and strange nucleon axial form factors from lattice QCD[END_REF] )), and also to the SD processes:

Γ SI Γ capt = (B.2) 8B 0 m 2 μ m 2 N |Z(C uu T,L G p,u T + C dd T,L G p,d T )F p (m μ ) + (A -Z)(C uu T,L G n,u T + C dd T,L G n,d T )F n (m μ )| 2 + {L ↔ R} Γ SD Γ capt = (B.3) 32B 0 J A + 1 J A S A p (C uu T,L G p,u T + C dd T,L G p,d T ) + S A n (C uu T,L G n,u T + C dd T,L G n,d T ) 2 S A (m μ ) S A (0) + {L ↔ R} .
The ratio of these contributions, for a single operator, is

(B.4) Γ SD Γ SI 4 J A + 1 J A m 2 N m 2 μ S A p G p,q T + S A n G n,q T 2 |ZG p,q T + (A -Z)G n,q T | 2 ∼ ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 0.7 q = u A = Al 0.06 q = d A = Al 0.03 q = u A = T i 0.01 q = d A = T i A P P E N D I X C

RG EVOLUTION

In this appendix, we review the Renormalisation Group evolution of operator coefficients from the leptoquark mass scale M (∼ TeV) down to the experimental scale Λ exp (2 GeV), via the one-loop RGEs of QCD and QED [211,[START_REF] Crivellin | Renormalisation-group improved analysis of μ → e processes in a systematic effective-fieldtheory approach[END_REF]. We consider the QED× QCD invariant operator basis discussed in section 5.2. We neglect matching onto the SMEFT basis [START_REF] Buchmuller | Effective Lagrangian Analysis of New Interactions and Flavor Conservation[END_REF][START_REF] Grzadkowski | Dimension-Six Terms in the Standard Model Lagrangian[END_REF] and running with the full SM RGEs [START_REF] Alonso | Renormalization Group Evolution of the Standard Model Dimension Six Operators III: Gauge Coupling Dependence and Phenomenology[END_REF][START_REF] Marco | The μ → eγ decay in a systematic effective field theory approach with dimension 6 operators[END_REF][START_REF] Jenkins | Renormalization Group Evolution of the Standard Model Dimension Six Operators II: Yukawa Dependence[END_REF], on the assumption that QED is a reasonable approximation if M is not much larger than m W .

After including one-loop corrections in the MS scheme, the operator coefficients will run with scale Λ according to [211] (C.1)

Λ ∂ ∂Λ (C I ,...C J ,...) = α e 4π - → C Γ e + α s 4π - → C Γ s
where I, J represent the super-and subscripts which label operator coefficients, Γ e and Γ s are the QED and QCD anomalous dimension matrices and -→ C is a row vector that contains the QCD ×QED invariant operators coefficients listed in section 2 of chapter 5.

In this work, we use the approximate analytic solution [START_REF] Cirigliano | Spin-dependent μ → e conversion[END_REF] given in eqn (5.42): 

C I (Λ exp ) = C J (M)λ a J δ JI - α e Γ e
C = ( C u V , C d V , C u A , C d A , C u S , C d S , C u T , C d T ) (C.2) C f V = (C f f V L , C f f V R ) C f A = (C f f AL , C f f AR ) (C.3) C f S = (C f f S,L , C f f S,R ) C f T = (C f f T,L , C f f T,R ) (C.4) (C.5)
In the basis of -→ C , the QED anomalous dimension matrix can be written

Γ e = Γ V A 0 0 Γ ST where Γ ST = ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ γ u,u S,S 0 γ u,u S,T 0 0 γ d,d S,S 0 γ d,d S,T γ u,u T,S 0 γ u,u T,T 0 0 γ d,d T,S 0 γ d,d T,T ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ and Γ V A = ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 0 0 γ u,u V ,A 0 0 0 0 γ d,d V ,A γ u,u A,V 0 0 0 0 γ d,d A,V 0 0 ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ (C.6)

Vector and axial operators

The first penguin diagram and the last four give the following matrices :

(C.7) γ f , f V ,A = C f f A,L C f f A,R C f f V ,L -12Q f 0 C f f V ,R 0 -12Q f γ f , f A,V = C f f V ,L C f f V ,R C f f A,L 12Q f 0 C f f A,R 0 12Q f
Using these anomalous dimension matrices and the RGEs give :

C qq V ,R (Λ exp ) = -3Q q α e π log M Λ exp C qq A,L (M) + C qq V ,R (M) (C.8) C qq A,R (Λ exp ) = 3Q q α e π log M Λ exp C qq V ,L (M) + C qq A,R (M) (C.9)
where q ∈ {u, d}. We see that axial operators mix to vector operators and vice versa, but there is no rescaling for axial and vector operators.

Scalar operators

Combining the third and fourth diagrams of figure C.1 with the wavefunction diagrams renormalize the scalars while the last four diagrams mix the tensors to the scalars :

(C.10) γ f , f S,S = C f f S,L C f f S,R C f f S,L -6(1 + Q 2 f ) 0 C f f S,R 0 -6(1 + Q 2 f ) γ f , f T,S = C f f S,L C f f S,R C f f T,L +96Q f 0 C f f T,R 0 +96Q f
The scalars coefficients at the experimental scale read :

(C.11) C qq S,L (Λ exp ) = -24λ a T f TS Q q α e π log M Λ exp C qq T,L (M)+λ a S 1 + 3 2 α e π log M Λ exp (1 + Q 2 q ) C qq S,L (M)

Tensor operators

Similarly, the last four diagrams mix the scalars to the tensors. Only the wavefunction diagrams renormalize the tensors, because for the third and fourth diagrams γ μ σγ μ = 0. We obtain the following matrices :

(C.12) γ f , f T,T = C f f T,L C f f T,R C f f T,L -2(1 + Q 2 f ) 0 C f f T,R 0 -2(1 + Q 2 f ) γ f , f S,T = C f f T,L C f f T,R C f f S,L 2Q f 0 C f f S,R 0 2Q f (C.13) C qq T,L (Λ exp ) = -λ a S f ST Q q α e 2π log M Λ exp C qq S,L (M) + λ a T 1 + α e 2π log M Λ exp (1 + Q 2 q ) C qq T,L (M)
A P P E N D I X D

CONSTANTS

In this section, we give all the constants used in our calculations in chapter 6 : 

P 1 K 0 L K + D 0 D + D + S f P 1 (MeV )
λ + - - - λ 0 - - -
All the masses and lifetime can be found in [START_REF] Tanabashi | Review of Particle Physics[END_REF].

A P P E N D I X E

KINEMATICS AND FORM FACTORS FOR SEMILEPTONIC DECAYS

In this section, we give the form factor and the detailed scalar product of eqn. (6.9).

The q 2 dependence of the form factors for the Kaon is given by [274] :

(E.1) f Kπ +,0 (q 2 ) = f Kπ + (0) 1 + λ +,0 q 2 M 2 π ; f Kπ -(q 2 ) = f Kπ + (0)(λ 0 -λ + ) M 2 K + -M 2 π + M 2 π +
and for the D and B mesons, are given by [START_REF] Gupta | Calculations of hadronic matrix elements using lattice QCD[END_REF][START_REF] Daping Du | Phenomenology of semileptonic B-meson decays with form factors from lattice QCD[END_REF] :

(E.2) f + (q 2 ) = f + (0) 1 -q 2 /m 2 1 - ; f 0 (q 2 ) = f 0 (0) 1 -q 2 /m 2 0 + ; f -(q 2 ) = ( f 0 (q 2 ) -f + (q 2 )) M 2 -m 2 3 q 2
where λ +,0 are constants, m J P is the mass of the lightest resonance with the right quantum numbers to mediate the transition (D + s and D * + s for example). We took q 2 = q 2 max = (Mm 3 ) 2 to compute the form factors f + , f -and f 0 . All these values can be found in appendix D.

Finally, the scalar product in eqn. (6.9) can be written as functions of the two kinematical variables q 2 and cos θ [START_REF] Tanabashi | Review of Particle Physics[END_REF]283] in the phase space integrals of eqn. (6.8).

(E.3) p 1 .p 2 = q 2 -m 2 1 -m 2 2 2 , p 1 .q = q 2 + m 2 1 -m 2 2 2 , p 2 .q = q 2 + m 2 2 -m 2 1 2 p 3 .q = M 2 -m 2 3 -q 2 2
, p 1 .p 3 = p 3 .qp 2 .p 3 (E.4) p 1 .P = p 1 .q + 2p 1 .p 3 , p 2 .P = p 2 .q + 2p 2 .p 3 F

RGES

In this section, we give the 10 × 10 matrices obtained with eqn. (6.13) we used to obtained the bounds at Λ W (with eqn. (6.20)).

For the decay of light quark (Kaon and D meson decays), the experimental scale is taken as 2 GeV because most of the time, it's the renormalization scale chosen to obtain the lattice form factors.

The evolution of the coefficients ( eμds ) involved in the Kaon decays is given by : 

(F.1) ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ P,L A,L P,R A,R S,L V ,L T L S,R V ,R T R ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ Λ exp = ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝
⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ P,L A,L P,R A,R S,L V ,L T L S,R V ,R T R ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ Λ W
For the D meson decays, the evolution of the coefficients ( eμcu ) is given by : APPENDIX F. RGES 

(F.2) ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ P,L A,L P,R A,R S,L V ,L T L S,R V ,R T R ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ Λ exp = ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝
⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ P,L A,L P,R A,R S,L V ,L T L S,R V ,R T R ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ Λ W
In the B and B s meson decay, the reference scale is the b quark mass (Λ m b ∼ 4.18 GeV). Thus, the evolution of the coefficients ( eμbd and eμbs ) is slightly smaller.

In fact, in eqn. (6.13), the part with the anomalous dimension that gives the matrix element in )/ log( Λ W Λ exp ) ∼ 0.8. Moreover, the strong coupling constant at Λ m b will also be smaller (α s (Λ m b ) ∼ 0.23 and α s (Λ exp ) ∼ 0.3). Thus, for the B and B s meson decays, the evolution of the coefficients ( eμbd and eμbs ) is given by : + 4 f + f -((p 1 .q)(p 2 .P) + (p 1 .P)(p 2 .q) -(p 1 .p 2 )(P.q))]dφ

(F.3) ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ P,L A,L P,R A,R S,L V ,L T L S,R V ,R T R ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ Λ exp = ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝
⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ P,L A,L P,R A,R S,L V ,L T L S,R V ,R T R ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ Λ W APPENDIX G. COVARIANCE MATRIX SP + = SP -= C 2body P 2 (P 2 1 -m 2 i -m 2 j ) V A -= V A + = C 2body à 2 [(P 2 1 -m 2 i -m 2 j )(m 2 i + m 2 j ) + 4m 2 i m 2 j ] SP + V A -= SP -V A + = -
T + = T -= 4C 3body
T 2 [4(p 1 .q)(p 2 .P)(P.q) + 4(p 1 .P)(p 2 .q)(P.q) -2(p 1 .p 2 )(P.q) 2 + 2P 2 q 2 (p 1 .p 2 ) -4P 2 (p 1 .q)(p 2 .q) -4q 2 (p 1 .P)(p 2 .P)]dφ V A + V A -= -C 3body m 1 m 2 [ f 2 -q 2 + f 2 + P 2 + 2 f + f -(P.q)]dφ

SP + V A -= SP -V A + = -2C
T + T -= 16C 3body
T 2 m 1 m 2 [(P.q) 2 -P 2 q 2 ]dφ SP + T + = SP -T -= 8C 3body S T[((p 1 .P)(p 2 .q) -(p 1 .q)(p 2 .P))]dφ

SP + T -= SP -T + = 0 V A + T -= V A -T + = 4C 3body
T m 2 [ f + ((p 1 .q)p 2 -(P.p 1 )(P.q)) + f -((p 1 .q)(P.q) -(p 1 .P)q 2 )]dφ

V A + T + = V A -T -= 4C 3body
T m 1 [ f + ((P 2 )(p 2 .q) -(p 2 .P)(P.q)) + f -((p 2 .q)(P.q) -(q 2 )(p 2 .P)) ]dφ In this section, we give the covariance matrix at Λ exp and at Λ W , after the RGEs evolution.

C 3body = τ P 1

Kaon decays

Using the upper limit of table 6.1, for the leptonic Kaon decay, we compute the associated covariance matrix in the basis ( 

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠

D meson meson decays

The bounds of table 6.1 on leptonic D meson decay give the following covariance matrix in the basis ( ) : 

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 1.

B meson decays

The bound on the leptonic decay of the B meson (see table 6.1) gives the following covariance matrix in the basis ( ) is : 

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 2 
⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠

Bs meson

The bound on the leptonic decay of the B s meson gives in the basis ( 

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠
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Figure 2 . 1 :

 21 Figure 2.1: Rotation curve of a spiral Galaxy (from Mon. Not. Roy. Astron. Soc., 249:523).For ordinary baryonic matter, the circular velocity is expected to decrease far away from the galactic center (dashed line). However, the measurements show that the velocity stays flat at large distances, which favors the hypothesis of the presence of invisible matter.

R

  (D * ) [104, 105]. LQ states can also contribute to rare charged lepton processes. There are many examples of these processes, that provide constraints on LQ interactions, such as charged lepton flavour violating decays of the form l → l γ or l → l l l , μ -e conversion in nuclei, as well as meson decays or anomalous magnetic moments. For example, scalar leptoquarks may contribute to the muon anomalous magnetic moment [106, 107]. Implications of LQs models for charged lepton flavour violation observables are discussed in [108-111].

CHAPTER 3 .

 3 CHARGED LEPTON FLAVOUR VIOLATION3.1 Charged Lepton Flavour Violation in the SM extended with massive neutrinosIn the minimal SM with massless neutrinos, we do not expect flavour violation in the lepton sector. The fermion masses and the mixing among different generations arise from the Yukawa couplings of the fermion fields with the Higgs field. The Lagrangian for the SM leptons can be written(3.1) 

3. 1 .Figure 3 . 1 :

 131 Figure 3.1: Example of one-loop diagram for the decay μ → eγ in the SM extended with massive neutrinos.

CHAPTER 4 .

 4 EFFECTIVE FIELD THEORY process • Observables can be parametrized with effective operators and their associated (Wilson) coefficients at a given energy scale • It allows to describe indirect effects of heavy new physics on interactions between SM particles • Integrating out the new heavy particles from the theory lead to contact interactions that can be described by an effective Lagrangian that contains effective operators and their coefficients The higher dimensional operators, suppressed by powers of the new physics scale Λ NP , are added to the SM Lagrangian as follow : (4.1)

Figure 4 . 1 :

 41 Figure 4.1: Decay of the muon. Left : decay via a W boson. Right : decay described by a four fermion contact interaction.

4. 4 .

 4 RUNNING OF THE WILSON COEFFICIENTS(4.18) 

Figure 4 . 2 :

 42 Figure 4.2: Evolution of the strong coupling α s with the energy scale Q (from Phys. Rev., D98(3):030001, 2018).

  C H A P T E R 5 SPIN-DEPENDENT μ → e CONVERSION ON LIGHT NUCLEI AUTHORS : Sacha Davidson 1, Yoshitaka Kuno 2, and Albert Saporta 1, PUBLISHED IN : The European Physical Journal C 1

Figure 5 . 1 :

 51 Figure 5.1: Diagrams contributing to μ → e conversion in the presence of axial and pseudoscalar CLFV operators (represented by the grey blob)

5. 3 .

 3 ESTIMATING THE SD AND SI RATE IN LIGHT NUCLEI(5.18) 

  include the nucleon axial vector operators O N N A,X and the pion exchange operator O N N Der,X , in the combination induced by axial vector quark operators. The various terms in the matrix-element-squared have different spin sums, so the finite momentum transfer correction depends on C pp A,X and C nn A,X , and is quoted as a multiplicative factor S A (m μ )/S A (0) in the rate (see eqn (5.26)). Neglecting S Al n S Al p , the results of Engel et. al for Aluminium give [225] (5.23) S Al (k) ∝ (0.31500480 -1.857857y + 4.86816y 2 -5.422770y 3 ) where y = (m μ b/2) 2 and b =1.73 fm. This gives S Al (m μ )/S Al (0) = 0.29.

  Unfortunately, we were unable to find finitemomentum-transfer corrections to the spin expectation values in Titanium. However, we observe that in Aluminium, the SI and SD form factors are comparable: 0.28 = |F p (m μ )| 2 ≈ S Al (m μ )/S Al (0) = 0.29. A similar relation appears to hold[START_REF] Kitano | Detailed calculation of lepton flavor violating muon electron conversion rate for various nuclei[END_REF][START_REF] Bednyakov | Nuclear spin structure in dark matter search: The Finite momentum transfer limit[END_REF] for Florine, where |F n (m μ )| 2 ≈ S Fl (m μ )/S Fl (0) ≈ .36. This suggests that for light nuclei, the spin-expectation-squared at | q| 2 = 0 (that is, S A (m μ )), is similar to the square of the spin-expectation-value at zero momentum transfer, multiplied by the square of the SI | q| 2 = 0 form-factor. Or taking the square root:

  (discussed above), which is parametrised as an uncertainty [δS N ] NLO in the scalar overlap integrals. Expressed this way, the uncertainty depends on the quark coefficients present: for C qq S,X C qq V ,X , C D,X , the current discrepancies in the determination of the G N,q S and [δS N ] NLO give an O (1) uncertainty on the conversion rate, whereas if only the C qq V ,X and C D,X were present, the rate uncertainty would come from the overlap integrals. The G N,q S

  ) singlet leptoquark, whose mass M ≥ few TeV respects direct search constraints [239-241], and which has only one coupling to electrons and one to muons. The scenarios are represented by adding to the Standard Model the following Lagrangians (5.39)

  λ = α s (M) α s (Λ exp ) 1/3 for M = TeV, and I, J represent the super-and subscripts which label operator coefficients. The a I describe the QCD running and are only non-zero for scalars and tensors. We suppose five quark flavours for the running, which gives a I = Γ s I I

Figure 5 . 2 :

 52 Figure 5.2: This plot illustrates the prospects for distinguishing SI operators involving up quarks, from those involving down quarks, and vector operators from scalars. The continuous green [dashed red] line is the ratio, given in eqn (5.45) [eqn (5.46)], of μ → e conversion rates induced by O uu V ,X and O dd V ,X [ O uu S,X and O dd S,X ], assuming equal coefficients. The stars on the green line are an analytic approximation. The dotted blue line is the ratio, given in eqn (5.47), of μ → e conversion rates induced by O uu V ,X and O uu S,X , with coefficients selected to give the same rate on Niobium (Z=41).

CHAPTER 5 .

 5 SPIN-DEPENDENT μ → e CONVERSION ON LIGHT NUCLEI

Figure 5 . 5

 55 3 gives ê A • ê Al as a function of Z. From eqn (5.38), the uncertainty in the direction of ê A is ≤ 10%, so target A is indistinguishable from Aluminium for ê A • ê Al ≥ 0.995, or Z ≤ 25 -30. Perhaps a more transparent measure of the change of direction of ê A in coefficient space, is given in figure 5.4 by the ratio ((continuous black), O = C nn S,X (dotted green), C pp V ,X (dashed red) and O = C nn V ,X (dot-dashed blue). Recall that e O A parametrises the fraction of the sensitivity of target A to operator O. So figure 5.4 shows that heavier targets have greater sensitivity to O nn V and less to O pp S . (Unfortunately, this figure also suggests that O nn V and O pp S with comparable coefficients could be difficult to distinguish from O pp V .

Figure 5 . 3 :

 53 Figure 5.3: A representation of the discriminating power of a target (labelled by Z), with respect to Aluminium. On the vertical axis is the invariant measure, given in eqn (5.55), of the misalignment in coefficient space of the target with respect to Aluminium.

5. 5 .Figure 5 . 4 :

 554 Figure 5.4: An operator-dependent measure of the discriminating power of a targets (labelled by Z). On the vertical axis is the measure given in of eqn (5.56), of the relative sensitivity(normalised to Aluminium) of a target to the operators O = C pp S,X (continuous black), O = C nn S,X (dotted green), C pp V ,X (dashed red) and O = C nn V ,X (dot-dashed blue).
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 61 Figure 6.1: Examples of one-loop gauge vertex corrections to 4-fermion operators. The wavefunction renormalization diagrams are missing.

  do not evolve significantly at Λ W , but the mixing of the axial into vector coefficients will lead to weaker bounds on eμcu V , eμbd V and eμbs V at Λ W as shown in the first two columns of the two panels of table6.3. 

  is

A

  P P E N D I X B THE TENSOR CONTRIBUTION TO THE SD AND SI RATES We consider tensor operators (B.1)C uu T,L O uu T,L + C dd T,L O dd T,L + {L ↔ R}at the experimental scale μ N , which contribute at finite-momentum-transfer to the SI conversion process (see eqn(5.19

  are given after eqn (5.42) and log M Λ exp ∼ 6.21. Only QED loops contribute to operators mixing, while QCD loops only rescale scalar and tensor operators. In figure C.1, we present the QED diagrams required to compute the anomalous dimension γ of the four-fermion operators, where f 1 ∈ e, μ and f 2 ∈ u, d, s, c, b, e, μ, τ . The operators coefficients below the scale M are organized in the vector -→ C as following :

Figure C. 1 :

 1 Figure C.1: Examples of one-loop gauge vertex corrections to 4-fermion operators. The first two diagrams are the penguins. The last six diagrams contribute to operator mixing and running, but can only change the Lorentz or gauge structure of the operators, not the flavour structure. Missing are the wave-function renormalisation diagrams; for V ± A Lorentz structure in the grey blob, this cancels diagrams 3 and 4.

  eqn. (F.1) is multiplied by a factor log( Λ W Λ m b

  3body Sm 2 [( f + (p 1 .P) + f -(p 1 .q))]dφSP + V A + = SP -V A -= 2C 3body Sm 1 [( f + (p 2 .P) + f -(p 2 .q))]dφ SP + SP -= -4C 3body S2 m 1 m 2 dφ

  Λ exp AND Λ W

5 . 38 ×

 538 10 -14 -2.33 × 10 -14 -1.25× 10 -15 

5 - 3 . 55 × 7 - 2 . 86 × 7 7. 91 ×

 53557286791 × 10 -6 -3.55 × 10 -7 -2.86 × 10 -8 7.91 × 10 -10 -7 2.04 × 10 -3 7.91 × 10 -5 7.30 × 10 -10 -8 7.91 × 10 -5 3.07 × 10 -6 -3.55 × 10 -10 -5 7.30 × 10 -7 -3.55 × 10 -7 2.04 × 10 -3 Using bounds on the semileptonic decay of D and D s meson give in the basis (

6 1. 20 × 8 3. 48 ×

 620848 × 10 -8 9.23 × 10 -8 1.20 × 10 -9 3.48 × 10 -6 9.23 × 10 -8 2.20 × 10 -4 3.48 × 10 -6 6.89 × 10 -10 -9 3.48 × 10 -6 5.53 × 10 -8 9.23 × 10 -10 -6 6.89 × 10 -6 9.23 × 10 -8 2.20 × 10 -4

A

  leptoquark model to accommodate R exp K < R SM K and R exp K * < R SM K * . JHEP, 08:104, 2017. [110] Damir Beirevi, Nejc Konik, Olcyr Sumensari, and Renata Zukanovich Funchal. Palatable Leptoquark Scenarios for Lepton Flavor Violation in Exclusive b → s 1 2 modes. JHEP, 11:035, 2016.

•

  They must be very weakly interacting with ordinary matter, and cannot have electromag-

	netic or strong interactions
	• They must have the right relic abundance
	• They must be cold (non relativistic) during structure formation, as the hot dark matter
	scenario is almost completely excluded by CMB precision measurements
	There are no candidates with such properties in the SM, which means that BSM physics is
	required to provide non-baryonic cold dark matter. There are many dark matter candidates, such

as neutrinos or axions. However, the most famous candidate is the weakly interacting massive particle (WIMP) and is proposed in many extensions of the SM. A large number of experiments are currently searching for WIMPs or other dark matter candidates.
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Table 3 .

 3 1: Historical progress for the upper limit on B(μ + → e + γ).

	3.2. EXPERIMENTAL STATUS OF CLFV PROCESSES
	Experiment (year)	Upper limit
	TRIUMF (1977)	3, 6 × 10 -9 [118]
	SIN (1980)	1 × 10 -9 [119]
	E328 (1982)	1, 7 × 10 -10 [120]
	Crystal Box (1988) 4, 9 × 10 -11 [121]
	MEGA (1999)	1, 2 × 10 -11 [122]
	MEG (2013)	4, 2 × 10 -13 [123]
	MEG II (2016)	5 × 10 -14 * [124]

* (expected) 

Table 3 .

 3 2: Historical progress for the upper limit on B(μ + → e + e + e -) As for the μ + → e + γ decay, the μ + → e + e + e -decay has not been observed yet, experiments can set an upper limit or the branching ratio B(μ + → e + e + e -). In table 3.2, results from various experiments searching for the decay μ + → e + e + e -are shown. As for the μ + → e + γ decay, high intensity muon beam line will lead to huge improvements of the sensitivity to the μ + → e + e + e -

	Collaboration/Lab (year)	Upper limit
	Dubna (1976)	1.9 × 10 -9 [126]
	LAMPF/Crystal Box (1984) 1.3 × 10 -10 [127]
	SIN/SINDRUM (1984)	1.6 × 10 -10 [128]
	SIN/SINDRUM (1985)	2.4 × 10 -12 [11]
	LAMPF/Crystal Box (1988) 3.5 × 10 -11 [121]
	SIN/SINDRUM (1988)	1.0 × 10 -12 [129]
	JINR (1991)	3.6 × 10 -11 [130]
	decay. The Mu3e experiment at PSI was proposed in 2013 and aims to reach a sensitivity at the
	level 10 -16	

Table 3 .

 3 4: Historical progress for the upper limit on B(μ -N → e + N)

	year)	Upper limit	Material
	SREL (1972)	2.6 × 10 -8 [132]	Cu
	SIN (1978)	1.5 × 10 -9 [140]	S
	SIN (1980)	9.0 × 10 -10 [141]	S
	TRIUMF/TPC (1988) 1.7 × 10 -10 [135]	Ti
	SINDRUM II (1993)	8.9 × 10 -11 [136]	Ti
	SINDRUM II (1993)	4.3 × 10 -12 [136]	Ti
	SINDRUM II (1998)	3.6 × 10 -11 [142]	Ti
	SINDRUM II (1998)	1.7 × 10 -12 [142]	Ti

Table 3 .

 3 8: Example of upper limits on some CLFV processes in the meson channel. Top left pannel : two body decay of vector meson. Top right panel : two body decay of pseudoscalar meson. Bottom panel : three body decay of pseudoscalar meson.

  If now the SD rates are neglected, but the tensor contribution to SI is included, then the

			⎡				⎤		⎡	⎤
	5.51)	BR	⎢ ⎢ ⎣	0.012 -.0028	⎥ ⎥ ⎦ , BR	⎢ ⎢ ⎣	9.1 20	⎥ ⎥ ⎦ .
				-.0028 .0007			20 73.6
	covariance matrix for (C dd V ,R , C uu S,L , C uu T,L ) is		
					⎡			
	(5.52)			BR	⎢ ⎢ ⎢ ⎢ ⎢ ⎣ ⎢	0.47 -.24 -.24 .13	23 -14
						23	-14 1400

So, for instance, |C uu S,L | is excluded above 0.0007 × BR , and |C dd A,R | < 73.6 × BR .

Table 6 .

 6 ( ) is a row (column) vector of coefficients, and M -1 is the inverse of the covariance matrix. The explicit form of the 4 × 4 and 6 × 6 matrices is given in appendix G. The diagonal elements of the covariance matrix M represent the squared bounds on our coefficients, and the off-diagonals elements represent the correlation between coefficients.+ → π + μ ± e ∓ ) < 1.7 × 10 -7 [19] + → K + μ ± e ∓ ) < 9.1 × 10 -8[START_REF] Aubert | Measurements of branching fractions, rate asymmetries, and angular distributions in the rare decays B → K +and B → K * +[END_REF] 1: Experimental bounds on leptonic and semileptonic decays.

	in the form

  10 -5 1.59 × 10 -5 2.24 × 10 -5 1.58 × 10 -5

		O, Λ exp	S.O, Λ W	l 1 l 2 q i q j S,X	Λ exp	Λ W	S.O, Λ exp	S.O, Λ W
	eμds P,X	2.32 × 10 -7 4.06 × 10 -7 1.28 × 10 -8 7.82 × 10 -9	eμds S,X	1.05 × 10 -6 5.68 × 10 -7 7.67 × 10 -7 4.68 × 10 -7
	eμcu P,X	1.75 × 10 -3 1.08 × 10 -3 7.92 × 10 -5 4.84 × 10 -5	eμcu S,X	1.34 × 10 -3 8.25 × 10 -4 1.33 × 10 -3	8.1 × 10 -4
	eμbd P,X	2.35 × 10 -4 1.66 × 10 -4 5.13 × 10 -6 3.61 × 10 -6	eμbd S,X	1.44 × 10 -5 1.01 × 10 -5 1.44 × 10 -5 1.01 × 10 -5
	eμbs P,X	1.75 × 10 -4 1.23 × 10 -4 8.27 × 10 -6 5.83 × 10 -6	eμbs S,X	2.25 ×		

  10 -5 8.05 × 10 -5 2.54 × 10 -5 2.54 × 10 -5

		O, Λ exp	S.O, Λ W	l 1 l 2 q i q j V ,X	Λ exp	Λ W	S.O, Λ exp	S.O, Λ W
	eμds A,X	5.45 × 10 -6 5.45 × 10 -6 3.01 × 10 -7 3.01 × 10 -7	eμds V ,X	4.94 × 10 -6 4.94 × 10 -6 2.93 × 10 -6 2.93 × 10 -6
	eμcu A,X	4.51 × 10 -2 4.52 × 10 -2 2.04 × 10 -3 2.04 × 10 -3	eμcu V ,X	1.45 × 10 -3 1.64 × 10 -3 1.39 × 10 -3 1.39 × 10 -3
	eμbd A,X	1.48 × 10 -2 1.48 × 10 -2 3.23 × 10 -4 3.23 × 10 -4	eμbd V ,X	1.49 × 10 -5 1.03 × 10 -4 1.48 × 10 -5 1.48 × 10 -5
	eμbs A,X	1.11 × 10 -2 1.11 × 10 -2 5.27 × 10 -4 5.27 × 10 -4	eμbs V ,X	2.56 ×		

  10 -5 4.37 × 10 -5 3.87 × 10 -5 4.35 × 10 -5

			O, Λ exp	S.O, Λ W
	eμds T X	1.23 × 10 -5 1.45 × 10 -5 8.76 × 10 -6 1.03 × 10 -5
	eμcu T X	2.01 × 10 -3 2.37 × 10 -3 1.93 × 10 -3 2.28 × 10 -3
	eμbd T X	2.01 × 10 -5 2.26 × 10 -5	2 × 10 -5	2.25 × 10 -5
	eμbs T X	3.89 ×		

  [START_REF] Aubert | Search for Lepton Flavor Violating Decays τ ± → ± π 0 , ± η, ± η[END_REF].72[START_REF] Rosner | Leptonic Decays of Charged Pseudoscalar Mesons -2015[END_REF][START_REF] Aoki | Review of lattice results concerning low-energy particle physics[END_REF] 155.6[START_REF] Rosner | Leptonic Decays of Charged Pseudoscalar Mesons -2015[END_REF][START_REF] Aoki | Review of lattice results concerning low-energy particle physics[END_REF] 211.5[START_REF] Rosner | Leptonic Decays of Charged Pseudoscalar Mesons -2015[END_REF][START_REF] Bazavov | B-and D-meson leptonic decay constants from four-flavor lattice QCD[END_REF] 212.6[START_REF] Rosner | Leptonic Decays of Charged Pseudoscalar Mesons -2015[END_REF][START_REF] Bazavov | B-and D-meson leptonic decay constants from four-flavor lattice QCD[END_REF] 249.8[START_REF] Bazavov | B-and D-meson leptonic decay constants from four-flavor lattice QCD[END_REF] 

	f	P 1 π + (0)	0.966 [303]		0.966 [303]	0.666 [303]	0.666 [303]	0.666 [303]
	f	P 1 K +	(0)	-			-	0.747 [303]	0.747 [303]	0.747 [303]
			λ +	2.82 × 10 -2 [38]	2.97 × 10 -2 [38]	-	-	-
			λ 0		1.8 × 10 -2 [38]	1.95 × 10 -2 [38]	-	-	-
			P 1	B 0		B 0 S	B +
	f P 1 (MeV ) 190.9 [302] 230.7[304] 187.1 [302]
	f	P 1 π + (0)	0.25 [305]	0.25 [305]	0.25 [305]
	f	P 1 K +	(0)	0.31 [305]	0.31 [305]	0.31 [305]

  2P 2 (p 1 .p 2 ) + f 2 -4(p 1 .q)(p 2 .q) -2q 2 (p 1 .p 2 )

					2C 2body	P Ã m j (P 2 1 + m 2 i -m 2 j )
	(G.3)				SP + V A + = SP -V A -= 2C 2body	P Ã m i (P 2 1 + m 2 j -m 2 i )
					SP + SP -= -4C 2body	P 2 m j m i
					V A + V A -= -4C 2body	à 2 P 2 1 m j m i
					C 2body =	τ P 1 r * G 2 F πP 2 1
	For simplicity we note dφ = are written :	(M-m 3 ) 2 (m 1 +m 2 ) 2 dq 2 1 -1 d cos θ	λ(M 2 ,m 2 3 ,q 2 ) λ(q 2 ,m 2 1 ,m 2 2 ) q 2	and the matrix elements of eqn. (G.2)
	SP + = SP -= 2C 3body	S2 (p 1 .p 2 )dφ
	V A + = V A -=	1 4	C 3body [ f 2

+ 4(p 1 .P)(p 2 .P) -

  1.26 × 10 -12 -2.33 × 10 -14 2.97 × 10 -11 1.26 × 10 -12 -4.03 × 10 -13 -1.25 × 10 -15 1.26 × 10 -12 5.38 × 10 -14 -2.33 × 10 -14 1.26 × 10 -12 -4.03 × 10 -13 -2.33 × 10 -14 2.97 × 10 -11Then we use the bounds on semileptonic Kaon decay to compute the covariance matrix for the semileptonic decays in the basis ( 10 -12 3.51 × 10 -12 6.11 × 10 -12 1.39 × 10 -14 1.96 × 10 -13 7.49 × 10 -13 3.51 × 10 -12 2.44 × 10 -11 4.26 × 10 -11 1.96 × 10 -13 2.10 × 10 -12 6.50 × 10 -12 6.11 × 10 -12 4.26 × 10 -11 1.51 × 10 -10 7.49 × 10 -13 6.50 × 10 -12 1.58 × 10 -11 1.39 × 10 -14 1.96 × 10 -13 7.49 × 10 -13 1.09 × 10 -12 3.51 × 10 -12 6.11 × 10 -12 1.96 × 10 -13 2.10 × 10 -12 6.50 × 10 -12 3.51 × 10 -12 2.44 × 10 -11 4.26 × 10 -11 7.49 × 10 -13 6.50 × 10 -12 1.58 × 10 -11 6.11 × 10 -12 4.26 × 10 -11 1.51 × 10 -10 The diagonal elements give the bounds on | | 2 . The bounds on the coefficients are the square root of the diagonal elements. For instance, eμds S,L is excluded above 1.09 × 10 -12 . The covariance matrix in the basis 10 -13 1.64 × 10 -13 -2.55 × 10 -14 9.15 × 10 -16 -2.07 × 10 -13 -5.75 × 10 -13 2.91 × 10 -14 -1.31 × 10 -12 -5.51 × 10 -12 7.73 × 10 -13 -4.03 × 10 -13 -2.55 × 10 -14 2.97 × 10 -11 -7.35 × 10 -16 2.15 × 10 -14 6.72 × 10 -14 7.10 × 10 -15 4.64 × 10 -13 4.30 × 10 -13 -2.91 × -14 -7.10 × 10 -15 9.15 × 10 -16 -7.35 × 10 -16 3.22 × 10 -13 8.29 × 10 -13 -1.11 × 10 -12 -8.03 × 10 -15 -8.12 × 10 -14 -3.49 × 10 -14 1.31 × 10 -12 -4.64 × 10 -13 -2.07 × 10 -13 2.15 × 10 -14 8.29 × 10 -13 2.44 × 10 -11 5.02 × 10 -11 -8.12 × 10 -14 2.10 × 10 -12 7.66 × 10 -12 5.51 × 10 -12 -4.30 × 10 -13 -5.75 × 10 -13 6.72 × 10 -14 -1.11 × 10 -12 5.02 × 10 -11 2.10 × 10 -10 -3.49 × 10 -14 7.66 × 10 -12 2.19 × 10 -11 -9.15 × -16 7.35 × 10 -16 2.91 × 10 -14 7.10 × 10 -15 -8.03 × 10 -15 -8.12 × 10 -14 -3.49 × 10 -14 3.22 × 10 -13 8.29 × 10 -13 -1.11 × 10 -12 2.07 × 10 -13 -2.15 × 10 -14 -1.31 × 10 -12 4.64 × 10 -13 -8.12 × 10 -14 2.10 × 10 -12 7.66 × 10 -12 8.29 × 10 -13 2.44 × 10 -11 5.02 × 10 -11 5.75 × 10 -13 -6.72 × 10 -14 -5.51 × 10 -12 4.30 × 10 -13 -3.49 × 10 -14 7.66 × 10 -12 2.19 × 10 -11 -1.11 × 10 -12 5.02 × 10 -11 2.10 × 10 -10

			is :				eμds P,L ,	eμds A,L ,	eμds P,R ,	eμds A,R ,	eμds S,L ,	eμds V ,L ,	eμds T L	,	eμds S,R ,	eμds V ,R ,	eμds T R	Λ W
	⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜	1.64 × 10 -13 -2.55 × -14 -1.55 × -14	-2.55 × 10 -14 2.97 × 10 -11 7.73 ×	-1.55 × 10 -14 7.73 × 10 -13	7.73 × 10 -13 -4.03 × 10 -13	-2.91 × 10 -14 -7.10 × 10 -15		1.31 × 10 -12 -4.64 × 10 -13	5.51 × 10 -12 -4.30 × 10 -13	-9.15 × 10 -16 7.35 × 10 -16	2.07 × 10 -13 -2.15 × 10 -14	5.75 × 10 -13 -6.72 × 10 -14
														⎞
														⎟ ⎟ ⎟ ⎟ ⎟ ⎠
						eμds S,L ,	eμds V ,L ,	eμds T L	,	eμds S,R ,	eμds V ,R ,	eμds T R	) :
		⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝	1.09 × ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠

  80 × 10 -6 1.32 × 10 -7 -3.19 × 10 -8 -2.10 × 10 -8 -1.61 × 10 -7 1.79 × 10 -8 1.32 × 10 -7 2.10 × 10 -6 3.65 × 10 -7 -1.61 × 10 -7 9.7 × 10 -8 7.06 × 10 -7 -3.19 × 10 -8 3.65 × 10 -7 4.03 × 10 -6 1.79 × 10 -8 7.06 × 10 -7 2.30 × 10 -7 -2.10 × 10 -8 -1.61 × 10 -7 1.79 × 10 -8 1.80 × 10 -6 1.32 × 10 -7 -3.19 × 10 -8

	⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝	1.15 × 10 -6 -2.16 × 10 -7 -1.15 × 10 -8 4.81 × 10 -5 -1.45 × 10 -8 -2.62 × 10 -8 -2.97 × 10 -7 -1.55 × 10 -9 -8.69 × 10 -7	-2.16 × 10 -7 2.04 × 10 -3 4.81 × 10 -5 7.31 × 10 -7 1.81 × 10 -9 3.50 × 10 -5 8.22 × 10 -9 8.70 × 10 -9 -1.09 × 10 -8	-1.15 × 10 -8 4.81 × 10 -5 1.15 × 10 -6 -2.16 × 10 -7 1.55 × 10 -9 8.69 × 10 -7 1.68 × 10 -8 1.45 × 10 -8 2.62 × 10 -8	4.81 × 10 -5 7.31 × 10 -7 -2.16 × 10 -7 2.04 × 10 -3 -8.70 × 10 -9 1.09 × 10 -8 -1.99 × 10 -7 -1.81 × 10 -9 -3.50 × 10 -5	-1.45 × 10 -8 1.81 × 10 -9 1.55 × 10 -9 -8.70 × 10 -9 6.80 × 10 -7 1.03 × 10 -7 2.73 × 10 -7 -5.58 × 10 -9 -5.42 × 10 -8	-2.62 × 10 -8 3.50 × 10 -5 8.69 × 10 -7 1.09 × 10 -8 1.03 × 10 -7 2.70 × 10 -6 4.31 × 10 -7 -5.42 × 10 -8 9.66 × 10 -8	-2.97 × 10 -7 8.22 × 10 -9 1.68 × 10 -8 -1.99 × 10 -7 2.73 × 10 -7 4.31 × 10 -7 5.62 × 10 -6 2.96 × 10 -8 8.36 × 10 -7	-1.55 × 10 -9 8.70 × 10 -9 1.45 × 10 -8 -1.81 × 10 -9 -5.58 × 10 -9 -5.42 × 10 -8 2.96 × 10 -8 6.80 × 10 -7 1.03 × 10 -7	-8.69 × 10 -7 -1.09 × 10 -8 2.62 × 10 -8 -3.50 × 10 -5 -5.42 × 10 -8 9.66 × 10 -8 8.36 × 10 -7 1.03 × 10 -7 2.70 × 10 -6	-1.68 × 10 -8 1.99 × 10 -7 2.97 × 10 -7 -8.22 × 10 -9 2.96 × 10 -8 8.36 × 10 -7 3.21 × 10 -7 2.73 × 10 -7 4.31 × 10 -7	⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠
		-1.68 × 10 -8	1.99 × 10 -7	2.97 × 10 -7	-8.22 × 10 -9	2.96 × 10 -8	8.36 × 10 -7	3.21 × 10 -7	2.73 × 10 -7	4.31 × 10 -7	5.62 × 10 -6
													⎞
			-1.61 × 10 -7	9.7 × 10 -8	7.06 × 10 -7	1.32 × 10 -7	2.10 × 10 -6	3.65 × 10 -7	⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠
			1.79 × 10 -8	7.06 × 10 -7	2.30 × 10 -7 -3.19 × 10 -8 3.65 × 10 -7	4.03 × 10 -6
			The covariance matrix in the basis is :	eμcu P,L ,				eμcu T L	,	eμcu S,R ,	eμcu V ,R ,	eμcu T R	Λ W

eμcu A,L , eμcu P,R , eμcu A,R , eμcu S,L , eμcu V ,L ,

  .07 × 10 -10 1.21 × 10 -11 1.52 × 10 -12 -3.90 × 10 -15 -5.74 × 10 -14 5.18 × 10 -151.21 × 10 -11 2.23 × 10 -10 2.81 × 10 -11 -5.74 × 10 -14 2.87 × 10 -14 2.32 × 10 -13 1.52 × 10 -12 2.81 × 10 -11 4.03 × 10 -10 5.18 × 10 -15 2.32 × 10 -13 3.50 × 10 -14 -3.90 × 10 -15 -5.74 × 10 -14 5.18 × 10 -15 2.07 × 10 -10 1.21 × 10 -11 1.52 × 10 -12 -5.74 × 10 -14 2.87 × 10 -14 2.32 × 10 -13 1.21 × 10 -11 2.23 × 10 -10 2.81 × 10 -11 5.18 × 10 -15 2.32 × 10 -13 3.50 × 10 -14 1.52 × 10 -12 2.81 × 10 -11 4.03 × 10 -10

														⎞
														⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠
	The covariance matrix in the basis is :	eμbd P,L ,	eμbd A,L ,	eμbd P,R ,	eμbd A,R ,	eμbd S,L ,	eμbd V ,L ,	eμbd T L	,	eμbd S,R ,	eμbd V ,R ,	eμbd T R	Λ W
	⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜	2.74 × 10 -8 6.51 × 10 -8 5.94 × 10 -10 2.45 × 10 -6 -1.10 × 10 -12	6.51 × 10 -8 2.20 × 10 -4 2.45 × 10 -6 6.89 × 10 -6 -2.11 × 10 -12	5.94 × 10 -10 2.45 × 10 -6 2.74 × 10 -8 6.51 × 10 -8 -1.89 × 10 -14	2.45 × 10 -6 6.89 × 10 -6 6.51 × 10 -8 2.20 × 10 -4 -7.76 × 10 -11	-1.10 × 10 -12 -2.11 × 10 -12 -1.89 × 10 -14 -7.76 × 10 -11 1.03 × 10 -10	-4.46 × 10 -10 -1.51 × 10 -6 -1.68 × 10 -8 -4.73 × 10 -8 7.83 × 10 -12	5.02 × 10 -11 9.19 × 10 -11 8.41 × 10 -13 3.47 × 10 -9 -1.03 × 10 -11		1.89 × 10 -14 7.76 × 10 -11 1.10 × 10 -12 2.11 × 10 -12 -2.10 × 10 -15	1.68 × 10 -8 4.73 × 10 -8 4.46 × 10 -10 1.51 × 10 -6 -5.78 × 10 -13	-8.41 × 10 -13 -3.47 × 10 -9 -5.02 × 10 -11 -9.19 × 10 -11 3.15 × 10 -15

-4.46 × 10 -10 -1.51 × 10 -6 -1.68 × 10 -8 -4.73 × 10 -8 7.83 × 10 -12 1.06 × 10 -8 3.09 × 10 -11 -5.78 × 10 -13 -3.24 × 10 -10 2.41 × 10 -11 5.02 × 10 -11 9.19 × 10 -11 8.41 × 10 -13 3.47 × 10 -9 -1.03 × 10 -11 3.09 × 10 -11 5.10 × 10 -10 3.15 × 10 -15 2.41 × 10 -11 4.30 × 10 -14 1.89 × 10 -14 7.76 × 10 -11 1.10 × 10 -12 2.11 × 10 -12 -2.10 × 10 -15 -5.78 × 10 -13 3.15 × 10 -15 1.03 × 10 -10 7.83 × 10 -12 -1.03 × 10 -11 1.68 × 10 -8 4.73 × 10 -8 4.46 × 10 -10 1.51 × 10 -6 -5.78 × 10 -13 -3.24 × 10 -10 2.41 × 10 -11 7.83 × 10 -12 1.06 × 10 -8 3.09 × 10 -11 -8.41 × 10 -13 -3.47 × 10 -9 -5.02 × 10 -11 -9.19 × 10 -11 3.15 × 10 -15 2.41 × 10 -11 4.30 × 10 -14 -1.03 × 10 -11 3.09 × 10 -11 5.10 × 10 -10

  The bound on the B s meson decaying into Kaon (table6.1) gives in the basis ( 10 -10 3.47 × 10 -11 5.07 × 10 -12 -1.13 × 10 -14 -1.65 × 10 -13 1.73 × 10 -14 3.47 × 10 -11 6.53 × 10 -10 9.54 × 10 -11 -1.65 × 10 -13 8.78 × 10 -14 7.90 × 10 -13 5.07 × 10 -12 9.54 × 10 -11 1.51 × 10 -9 1.73 × 10 -14 7.90 × 10 -13 1.38 × 10 -13 -1.13 × 10 -14 -1.65 × 10 -13 1.73 × 10 -14 5.05 × 10 -10 3.47 × 10 -11 5.07 × 10 -12 -1.65 × 10 -13 8.78 × 10 -14 7.90 × 10 -13 3.47 × 10 -11 6.53 × 10 -10 9.54 × 10 -11 1.73 × 10 -14 7.90 × 10 -13 1.38 × 10 -13 5.07 × 10 -12 9.54 × 10 -11 1.51 × 10 -9

														eμbs P,L ,	eμbs A,L ,	eμbs P,R ,	eμbs A,R ) :
				⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝	3.06 × 10 -8 -1.22 × 10 -8 -3.40 × 10 -10 1.94 × 10 -6 -1.22 × 10 -8 -3.40 × 10 -10 1.94 × 10 -6 1.24 × 10 -4 1.94 × 10 -6 -1.80 × 10 -7 3.06 × 10 -8 -1.22 × 10 -8	⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠
					1.94 × 10 -6	-1.80 × 10 -7 -1.22 × 10 -8	1.24 × 10 -4
				eμbs S,L ,	eμbs V ,L ,	eμbs T L	,	eμbs S,R ,	eμbs V ,R ,	eμbs T R	) :	
		⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝	5.05 × ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠
			The covariance matrix in the basis is :		eμbs P,L ,	eμbs A,L ,	eμbs P,R ,	eμbs A,R ,	eμbs S,L ,	eμbs V ,L ,	eμbs T L	,	eμbs S,R ,	eμbs V ,R ,	eμbs T R	Λ W
	⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝	1.52 × -8 -8.62 × 10 -9 -1.69 × -10 1.37 × -6 -1.35 × -12 6.16 × 10 -11 6.41 × 10 -11 -5.11 × -15 9.39 × -9	-8.62 × 10 -9 1.24 × 10 -4 1.37 × 10 -6 -1.80 × 10 -7 1.21 × 10 -13 -8.51 × 10 -7 -1.29 × 10 -11 4.33 × 10 -11 -1.24 × 10 -9	-1.69 × 10 -10 1.37 × 10 -6 1.52 × 10 -8 -8.62 × 10 -9 5.11 × 10 -15 -9.39 × 10 -9 -2.42 × 10 -13 1.35 × 10 -12 -6.16 × 10 -11	1.37 × 10 -6 -1.80 × 10 -7 -8.62 × 10 -9 1.24 × 10 -4 -4.33 × 10 -11 1.24 × 10 -9 1.94 × 10 -9 -1.21 × 10 -13 8.51 × 10 -7		-1.35 × 10 -12 1.21 × 10 -13 5.11 × 10 -15 -4.33 × 10 -11 2.51 × 10 -10 2.21 × 10 -11 -3.90 × 10 -11 -6.11 × 10 -15 -4.33 × 10 -13	6.16 × 10 -11 -8.51 × 10 -7 -9.39 × 10 -9 1.24 × 10 -9 2.21 × 10 -11 6.49 × 10 -9 1.07 × 10 -10 -4.33 × 10 -13 8.57 × 10 -12	6.41 × 10 -11 -1.29 × 10 -11 -2.42 × 10 -13 1.94 × 10 -9 -3.90 × 10 -11 1.07 × 10 -10 1.91 × 10 -9 9.78 × 10 -15 1.42 × 10 -11	-5.11 × 10 -15 4.33 × 10 -11 1.35 × 10 -12 -1.21 × 10 -13 -6.11 × 10 -15 -4.33 × 10 -13 9.78 × 10 -15 2.51 × 10 -10 2.21 × 10 -11	9.39 × 10 -9 -1.24 × 10 -9 -6.16 × 10 -11 8.51 × 10 -7 -4.33 × 10 -13 8.57 × 10 -12 1.42 × 10 -11 2.21 × 10 -11 6.49 × 10 -9	2.42 × 10 -13 -1.94 × 10 -9 -6.41 × 10 -11 1.29 × 10 -11 9.78 × 10 -15 1.42 × 10 -11 1.74 × 10 -13 -3.90 × 10 -11 1.07 × 10 -10
		2.42 × 10 -13	-1.94 × 10 -9	-6.41 × 10 -11	1.29 × 10 -11		9.78 × 10 -15	1.42 × 10 -11	1.74 × 10 -13	-3.90 × 10 -11	1.07 × 10 -10	1.91 × 10 -9

4.2. RENORMALIZATION

https://doi.org/10.1140/epjc/s10052-018-5584-8

The analogous mixing of SD WIMP scattering operators into SI operators was discussed in[START_REF] Crivellin | New Constraints on Dark Matter Effective Theories from Standard Model Loops[END_REF][START_REF] Haisch | On the importance of loop-induced spin-independent interactions for dark matter direct detection[END_REF].

Such two-nucleon contributions, which arise at NLO, have been studied in WIMP scattering[START_REF] Klos | Large-scale nuclear structure calculations for spin-dependent WIMP scattering with chiral effective field theory currents[END_REF][START_REF] Cirigliano | WIMP-nucleus scattering in chiral effective theory[END_REF][START_REF] Hoferichter | Chiral power counting of one-and two-body currents in direct detection of dark matter[END_REF], and recently considered for coherent μ → e conversion in[START_REF] Bartolotta | Coherent μ -e conversion at next-to-leading order[END_REF].

Titanium was used as a target by SINDRUMII[START_REF] Wilhelm | A Search for muon to electron conversion in muonic gold[END_REF][START_REF] Honecker | Improved limit on the branching ratio of μ → e conversion on lead[END_REF][START_REF] Dohmen | Test of lepton flavor conservation in mu -> e conversion on titanium[END_REF], who set an upper bound BR(μT i → eT i) < 4.3 × 10 -12 .

In a later publication, we may try to constrain operator coefficients and count "flat directions", for which a complete basis would be required.

Recall that SD and SI operators mix in the RG evolution, but without changing the quark flavour, as shown in

https://doi.org/10.1103/PhysRevD.99.015032

In a future publication, we will give the evolution from the weak scale to the NP scale, and discuss the prospects for reconstructing the fundamental Lagrangian of the New Physics from the operator coefficients.
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In the leptonic decay (eqn. (6.6)), a reasonable approximation for the bounds at Λ exp is to keep the interference between axial and pseudoscalar coefficients of opposite chirality (with m 2 = m μ in eqn. (6.6)). The other interference terms, proportional to m 1 = m e , can be neglected. Thus, bounds on A and P at Λ exp , which are a reasonable approximation to the first column of tables 6.2 and 6.3, can be obtained by inverting a 2 × 2 matrix in the basis P,X , A,Y where X ∈ L, R and Y ∈ R, L, instead of the 4 × 4 matrix in eqn. (G.1).

To obtain bounds at Λ W , it is necessary to keep the mixing between S , P , T , and between V and A . Then, the bounds on S , P , T , V and A at Λ W can be obtained by considering M -1 in eqn. (6.20) as a product of 5 × 5 matrices in the basis ( P,X , S,X , T,X , V ,Y , A,Y ) where X and Y are the chirality. However, S , P and T must have the same chirality, but different from the chirality of V and A in order to take into account the mixing induced by the RGEs, that occurs only for coefficients of the same chirality (see eqn. (6.13), and (F.1) to (F.3)). This is due to the fact that it is necessary to keep the interference between axial and pseudoscalar coefficients of different chiralities to compute the bounds on P,X and A,Y .

Conclusion

In this paper, we consider operators which simultaneously change lepton and quark flavour, and obtain constraints on the coefficients using available data on (semi)leptonic pseudoscalar meson decays. Section 6.2 lists the dimension six, two lepton two quark operators and their associated coefficients at the experimental scale Λ exp . Scalar, pseudoscalar, vector, axial and tensor operators are included. The leptonic and semileptonic branching ratios of pseudoscalar mesons, as a function of the operator coefficients, are given in section 6.3. We find tensor operators do not contribute to the leptonic decays but only to the semileptonic decays, in which the interference between S,L ( S,R ) and T R ( T L ) vanishes. The constraints on operator coefficients, evaluated at the experimental scale, are given in tables 6.2, 6.3 and 6.4 and discussed in section 6.4. The bounds are obtained via the appropriate covariance matrices, which allows to take into account the interferences among operators (see eqn. (6.6),(6.9),(G.1) and (G.2)). The matrices are given in appendix B. Section 6.5 gives the Renormalization Group evolution of the coefficients from the experimental to the weak scale Λ W , and the formalism used to compute the covariances matrices at Λ W . The weak-scale constraints on the coefficients are given in tables 6.2, 6.3 and 6.4. The large mixing of tensor coefficients into (pseudo)scalar coefficients has important consequences on the evolution of the bounds on scalar and pseudoscalar coefficients. Indeed, in the case of the kaon decay, the experimental-scale bounds on tensor coefficients are significantly weaker than those on

The scalar G N,q S have also recently been obtained on the lattice [START_REF] Durr | Lattice computation of the nucleon scalar quark contents at the physical point[END_REF]: We observe that there is a 50% discrepancy with respect to the results of [START_REF] Hoferichter | High-Precision Determination of the Pion-Nucleon Term from Roy-Steiner Equations[END_REF], obtained from pionic atoms and π -N scattering [START_REF] Ruiz De Elvira | Extracting the σ-term from low-energy pion-nucleon scattering[END_REF]. Results similar to [START_REF] Hoferichter | High-Precision Determination of the Pion-Nucleon Term from Roy-Steiner Equations[END_REF] were earlier obtained in [START_REF] Alarcon | The chiral representation of the πN scattering amplitude and the pion-nucleon sigma term[END_REF], also using an effective theory.

APPENDIX B. THE TENSOR CONTRIBUTION TO THE SD AND SI RATES

where we assumed that the form factors are comparable

T , so there is a partial cancellation in the SI amplitude, whereas the SD process arises mostly from an odd proton S A p S A n , or mostly from an odd neutron S A p S A n . The estimates of eqn (B.4) assume that only one tensor coefficient is non-zero, so they neglect interferences, which can easily enhance the SI rate. For instance, RG running of the tensor operator from the New Physics scale to the experimental scale generically generates a scalar operator with comparable coefficient. The scalar-tensor interference contribution to the SI rate would be relatively enhanced, with respect to the tensor-squared, by G N,q S /G N,q T ∼ 10, which would suppress the ratio in eqn (B.4) by another factor 1/10. Finally, the coefficients at the experimental scale Λ exp are obtain via the matching condition :

In this section, we give details of the formalism introduced in section 6.4, eqn. (6.11). The matrices in the basis P,L , A,L , P,R , A,R and S,L , V ,L , T L , S,R , V ,R , T R are written :

Inverting M -1 2 [M -1 3 ] will give the bounds on the coefficients involved in the leptonic [semileptonic] decays. Finally, note that for semileptonic Kaon and D meson decays, the experimental upper limit are not the same for μ + e -and μe + in the final state. In this case, we sum the M - 1 3 for each bound and then invert it to obtain the covariance matrix of section 6.4. The matrix elements of eqn. (G.1) are written :