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ABSTRACT

In this doctoral thesis, we investigate charged lepton flavour violating processes in effective field
theory, in which possible new physics effects can be parametrized by higher dimensional gauge
invariant operators built from Standard Model fields. The discovery of neutrino oscillations is
a clear evidence that lepton flavour violation can occur and that neutrinos are massive. In the
Standard Model extended with massive neutrinos, charged lepton flavour violating processes
are strongly suppressed, and the discovery of such processes would be a clear signal of physics
beyond the Standard Model.

After a general introduction on the Standard Model of particle physics and beyond, this
manuscript contains two introductory chapters.
The first one introduce the theoretical and experimental context for the searches of charged
lepton flavour violating processes, and their huge potential to constrain new physics model. We
make a review of many processes and the current experiments, then we discuss the prospects for
the upcoming experiments.
The second chapter describe the formalism of the effective field theory approach. We discuss the
principles of renormalization and loop integrals calculations with dimensional regularization. We
also discuss the renormalization group equations that describe the running and the mixing of the
coefficients with the energy scale. Finally, we discuss two different approaches in effective field
theories.

After introducing the experimental context and the effective field theory formalism, we study
the μ → e conversion on nuclei in a top-down approach and charged lepton flavour violating
two and three body decays of pseudoscalar mesons in a bottom-up approach. We first list all
the operators and their associated coefficients that contribute to the processes. In our work, we
mostly focus on dimension six operators. We compute the branching ratios for each processes as a
function of the operator coefficients at the experimental scale, and use the experimental upper
limit to constrain the coefficients.

We also use the renormalization group equations to compute the running and the mixing of
the coefficients with energy scale in both top-down and bottom-up approaches.

The results discussed in this thesis are based on two publications [1, 2].
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RÉSUMÉ

Dans cette thèse de doctorat, nous étudions les processus de violation de la saveur des leptons
chargés dans le cadre de la théorie des champs effective, dans laquelle les effets de nouvelle
physique peuvent être paramétrés par des opérateurs invariants de jauge et de dimension plus
élevées, construits avec les champs du modèle standard. La découverte de l'oscillation des neu-
trinos est une preuve claire que la violation de la saveur leptonique peut se produire et que les
neutrinos ont une masse. Dans le modèle standard avec des neutrinos massifs, les processus de
violation de la saveur des leptons chargés sont fortement supprimés, et la découverte de tels
processus serait un signal clair de physique au-delà du modèle standard.

Après une introduction générale sur le modèle standard de la physique des particules et
au-delà, ce manuscrit contient deux chapitres d’introduction.

Le premier chapitre présente le contexte théorique et expérimental pour les recherches de
processus de violation de la saveur des leptons chargés, et leur potentiel pour contraindre les
modèles de nouvelle physique. Nous faisons une revue de nombreux processus et des expériences
actuelles, puis nous discutons des perspectives pour les expériences à venir.

Le deuxième chapitre décrit le formalisme de l'approche de la théorie des champs effective.
Nous discutons des principes de la renormalisation et du calcul des boucles avec la régularisa-
tion dimensionnelle. Nous discutons également des équations du groupe de renormalisation qui
décrivent l’évolution et le mélange des coefficients avec l'échelle d'énergie. Enfin, nous abordons
deux approches différentes dans la théorie des champs effective.

Après avoir introduit le contexte expérimental et le formalisme de la théorie des champs
effective, nous étudions la conversion d’un muon en électron dans les noyaux dans une approche
top-down, et la violation de la saveur des leptons chargés dans les désintégrations à deux et trois
corps de mésons pseudo-scalaires dans une approche bottom-up.

Nous listons d'abord les opérateurs et les coefficients associés qui contribuent aux processus.
Dans notre travail, nous nous concentrerons principalement sur les opérateurs de dimension six.
Nous calculons les rapports de branchement pour chaque processus en fonction des coefficients
des opérateurs à l 'échelle expérimentale et utilisons les bornes expérimentales pour contraindre
les coefficients.

Nous utilisons également les équations du groupe de renormalisation pour calculer l’évolution
et le mélange des coefficients avec l'échelle d'énergie dans les approches top-down et bottom-up.

Les résultats présentés dans cette thèse sont basés sur deux publications [1, 2].

v





ACKNOWLEDGEMENTS

First, I would like to thank my thesis advisor Sacha Davidson, for her endless support during
the three years of my PhD, especially in the difficult moments I have been through. We met in
unusual circumstances, and despite the fact that I had not a strong background in quantum field
theory, you gave me the chance to work with you on physics beyond the standard model.

I also would like to thank my co advisor Giacomo Cacciapaglia, for the help when I was stuck
on calculations, for the very interesting discussions on BSM physics and for the Cosmic rays
project.

I also would like to thank Ana Teixeira and Christopher Smith for accepting to be review-
ers of my thesis, and Jules Gascon and Jean-Loic Kneur for accepting to be examiners of my thesis.

I want to thank all the PhD students for the great moments we had at work and outside!!
Thanks for the great lunches and coffee breaks, for the useful and useless debates about math,
physics, life and other absurd topics ;) and for the great support in the difficult moments of the
thesis. The list is very long and I will not give the names but you know who you are.

Finally, I want to thank all my friends who where present in every moments and gave me the
confidence I needed to become who I am today. Thank you for your faith, your support and your
love. You know who you are.

vii





TABLE OF CONTENTS

Page

List of Tables xiii

List of Figures xv

1 Introduction 1

2 The standard model of particle physics and beyond 3
2.1 Physics Beyond the Standard Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Evidence of New Physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.2 BSM models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Charged Lepton Flavour Violation 13
3.1 Charged Lepton Flavour Violation in the SM extended with massive neutrinos . . 14

3.2 Experimental status of CLFV processes . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2.1 Muon channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2.2 Tau channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2.3 Meson channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3 Future directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4 Effective Field Theory 25
4.1 Effective Lagrangian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.1.1 Contact interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.2 Renormalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2.1 Dimensional regularization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2.2 Renormalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.3 Running of the QED and QCD coupling constants . . . . . . . . . . . . . . . . . . . . 32

4.3.1 Running of the QED coupling constant . . . . . . . . . . . . . . . . . . . . . . 32

4.3.2 Running of the QCD coupling constant . . . . . . . . . . . . . . . . . . . . . . 33

4.4 Running of the Wilson coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.4.1 Renormalization Group evolution of the Wilson coefficients . . . . . . . . . 35

4.4.2 Why do we need EFT? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

ix



TABLE OF CONTENTS

4.5 Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.6 Bottom-up vs top-down approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.6.1 Top-down EFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.6.2 Bottom-up EFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5 Spin-dependent μ→ e conversion on light nuclei 41
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.2 Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.3 Estimating the SD and SI rate in light nuclei . . . . . . . . . . . . . . . . . . . . . . 46

5.3.1 Estimating the SD and SI rate in Aluminium . . . . . . . . . . . . . . . . . . 47

5.3.2 Spin-dependent conversion in other light nuclei . . . . . . . . . . . . . . . . 54

5.4 Parametric expansions and uncertainties . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.5 Implications of including the SD rate . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.5.1 Leptoquarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.5.2 Bounds on arbitrary coefficients of four operators . . . . . . . . . . . . . . . 62

5.5.3 Reconstructing nucleon coefficients . . . . . . . . . . . . . . . . . . . . . . . . 64

5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6 Constraints on 2l2q operators from μ↔ e flavour-changing meson decays 71
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.2 A basis of μ− e interactions at low energy . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.3 Leptonic and semileptonic pseudoscalar meson decays . . . . . . . . . . . . . . . . . 74

6.3.1 Leptonic decay branching ratio . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.3.2 Semileptonic decay branching ratio . . . . . . . . . . . . . . . . . . . . . . . . 75

6.4 Covariance matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.4.1 Bounds on the coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.5 Renormalization Group Equations (RGEs) . . . . . . . . . . . . . . . . . . . . . . . . 78

6.5.1 Anomalous dimensions for meson decays . . . . . . . . . . . . . . . . . . . . 79

6.5.2 RGEs of operator coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.5.3 Evolution of the bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.5.4 Single operator approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.5.5 Updating the bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

7 Conclusions and prospects 87

A GN,q
O 91

B The tensor contribution to the SD and SI rates 93

x



TABLE OF CONTENTS

C RG Evolution 95

D Constants 99

E Kinematics and form factors for semileptonic decays 101

F RGEs 103

G Covariance matrix 105

H Covariance matrices at Λexp and ΛW 107

Bibliography 111

xi





LIST OF TABLES

TABLE Page

3.1 Historical progress for the upper limit on B(μ+ → e+γ). ∗ (expected) . . . . . . . . . . . 17

3.2 Historical progress for the upper limit on B(μ+ → e+e+e−) . . . . . . . . . . . . . . . . . 17

3.3 Historical progress for the upper limit on B(μ−N → e−N) . . . . . . . . . . . . . . . . . 18

3.4 Historical progress for the upper limit on B(μ−N → e+N) . . . . . . . . . . . . . . . . . 19

3.5 Example of current upper limits on selected CLFV leptonic and radiative decays in

the tau channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.6 Example of current upper limits on selected CLFV semileptonic decays in the tau

channel, involving pseudoscalar and vector mesons . . . . . . . . . . . . . . . . . . . . . 21

3.7 Example of future expected upper limit on CLFV processes in the tau channel from

the Belle II experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.8 Example of upper limits on some CLFV processes in the meson channel. Top left pannel

: two body decay of vector meson. Top right panel : two body decay of pseudoscalar

meson. Bottom panel : three body decay of pseudoscalar meson. . . . . . . . . . . . . . 23

5.1 Lepton flavour-changing operators induced in the leptoquark scenarios of equations

(5.39 -5.41). The coefficients are given at the leptoquark mass scale M, in the basis of

section 5.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.1 Experimental bounds on leptonic and semileptonic decays. . . . . . . . . . . . . . . . . 78

6.2 Constraints on the dimensionless four-fermion coefficients ε
l1l2qi q j
P,X and ε

l1l2qi q j

S,X at the

experimental (Λexp for K and D mesons decay and Λmb for B meson decays) and weak

(ΛW ) scale after the RGEs evolution. The last two columns are the sensitivities, or

Single Operator (SO) at a time bounds, see subsection 6.5.4. All bounds apply under

permutation of the lepton and/or quark indices. . . . . . . . . . . . . . . . . . . . . . . . 82

6.3 Constraints on the dimensionless four-fermion coefficients ε
l1l2qi q j

A,X and ε
l1l2qi q j
V ,X at the

experimental (Λexp for K and D mesons decay and Λmb for B meson decays) and weak

(ΛW ) scale after the RGEs evolution. The last two columns are the sensitivities, or

Single Operator (SO) at a time bounds, see subsection 6.5.4. All bounds apply under

permutation of the lepton and/or quark indices. . . . . . . . . . . . . . . . . . . . . . . . 82

xiii



LIST OF TABLES

6.4 Constraints on the dimensionless four-fermion coefficients ε
l1l2qi q j
TX

at the experimental

(Λexp for K and D mesons decay and Λmb for B meson decays) and weak (ΛW ) scale

after the RGEs evolution. The last two columns are the sensitivities, or Single Operator

(SO) at a time bounds, see subsection 6.5.4. All bounds apply under permutation of

the lepton and/or quark indices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

xiv



LIST OF FIGURES

FIGURE Page

2.1 Rotation curve of a spiral Galaxy (from Mon. Not. Roy. Astron. Soc., 249:523). For

ordinary baryonic matter, the circular velocity is expected to decrease far away from

the galactic center (dashed line). However, the measurements show that the velocity

stays flat at large distances, which favors the hypothesis of the presence of invisible

matter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.1 Example of one-loop diagram for the decay μ→ eγ in the SM extended with massive

neutrinos. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.1 Decay of the muon. Left : decay via a W boson. Right : decay described by a four

fermion contact interaction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2 Evolution of the strong coupling αs with the energy scale Q (from Phys. Rev., D98(3):030001,

2018). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.1 Diagrams contributing to μ→ e conversion in the presence of axial and pseudoscalar

CLFV operators (represented by the grey blob) . . . . . . . . . . . . . . . . . . . . . . . 46

5.2 This plot illustrates the prospects for distinguishing SI operators involving up quarks,

from those involving down quarks, and vector operators from scalars. The continuous

green [dashed red] line is the ratio, given in eqn (5.45) [eqn (5.46)], of μ→ e conversion

rates induced by O uu
V ,X and O dd

V ,X [ O uu
S,X and O dd

S,X ], assuming equal coefficients. The

stars on the green line are an analytic approximation. The dotted blue line is the

ratio, given in eqn (5.47), of μ→ e conversion rates induced by O uu
V ,X and O uu

S,X , with

coefficients selected to give the same rate on Niobium (Z=41). . . . . . . . . . . . . . . 61

5.3 A representation of the discriminating power of a target (labelled by Z), with respect

to Aluminium. On the vertical axis is the invariant measure, given in eqn (5.55), of

the misalignment in coefficient space of the target with respect to Aluminium. . . . . 66

5.4 An operator-dependent measure of the discriminating power of a targets (labelled

by Z). On the vertical axis is the measure given in of eqn (5.56), of the relative

sensitivity(normalised to Aluminium) of a target to the operators O = C̃pp
S,X (continuous

black), O = C̃nn
S,X (dotted green), C̃pp

V ,X (dashed red) and O = C̃nn
V ,X (dot-dashed blue). . 67

xv



LIST OF FIGURES

6.1 Examples of one-loop gauge vertex corrections to 4-fermion operators. The wave-

function renormalization diagrams are missing. . . . . . . . . . . . . . . . . . . . . . . . 80

C.1 Examples of one-loop gauge vertex corrections to 4-fermion operators. The first two

diagrams are the penguins. The last six diagrams contribute to operator mixing and

running, but can only change the Lorentz or gauge structure of the operators, not the

flavour structure. Missing are the wave-function renormalisation diagrams; for V ± A

Lorentz structure in the grey blob, this cancels diagrams 3 and 4. . . . . . . . . . . . . 96

xvi



C
H

A
P

T
E

R

1
INTRODUCTION

The Standard Model (SM) [3–5] of elementary particle physics describes the properties of the

fundamental constituents of matter and their possible interactions via the electroweak and the

strong interactions. The SM describes accurately most of the observed physical phenomena, and

is one of the most successful theory, as many predictions have been verified by a very large

number of measurements.

The discovery of the Higgs boson [6, 7] in 2012 by the ATLAS and CMS collaborations at the Large

Hadron Collider (LHC) is one of the greatest success of the SM. The experimental data collected

show that the Higgs boson properties are in excellent agreement with the SM predictions, and

many experiments are pursuing the study of the Higgs properties.

However, even with the tremendous success of the SM, there are many clear signs that it is not

a complete theory and in fact cannot be a theory of everything because it fails to explain many

experimental observations.

For example, the SM does not include gravitational interactions, cannot provide candidates

for dark matter or explain the observed baryon asymmetry of the Universe. These unsolved

issues, along with the hierarchy problem or the strong CP problem are a clear signal that there

is physics Beyond the Standard Model (BSM). In the last years, the birth of BSM physics has

lead to the development of many theoretical models, predicting the existence of new particles

and interactions, and new structures, as an extension to the SM. The quest for new physics has

also lead to the creation of many experiments, performing searches of signatures that could be

either the manifestation of a new particle or a new process among known particles. Precision

measurements are also a great place to look for new physics effects, that could manifest them-

selves through very small deviations of processes involving SM particles.
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CHAPTER 1. INTRODUCTION

Another striking example is the discovery of neutrino oscillations that established non zero

neutrino masses and mixing angles. As the neutrinos are taken massless in the SM, new physics

is required to explain the oscillation data or any processes involving Lepton Flavour Violation

(LFV). Another possibility to search for new physics signatures is to look for Charged Lepton

Flavour Violation (CLFV) processes [8, 9], that changes the flavour of charged leptons. The

discovery of such processes, forbidden in the SM, or strongly suppressed in the SM extended with

massive neutrinos, would be a clear signal of BSM physics. Many experiments are searching for

CLFV processes, for example μ↔ e flavour changes can be probed in the decays μ→ eγ [10] and

μ→ 3e [11, 12], in μ→ e conversion on nuclei [13–15] or in various meson decays such as K → μ̄e

[16–19]. Also, the sensitivity to CLFV processes will improve by several orders of magnitude in

the coming years, as many experiments are under construction. These huge improvements in the

experimental sensitivity in the next years are the reason for our interest in CLFV processes and

their huge potential to constrain BSM models.

In this thesis, we focus on CLFV processes involving muons and electrons. The results

discussed in chapters 5 and 6 of this manuscript are based on two publications [1, 2]. The outline

of the PhD is organized as follows :

• In chapter 2, we first review many signs of BSM physics and then give a short list of BSM

scenarios.

• In chapter 3, we make a review of the CLFV processes and their potential to constrain BSM

models.

• In chapter 4, we discuss Effective Field Theory, the mathematical framework used to

perform calculations and to constrain BSM models.

• In chapter 5, we discuss the CLFV process called μ→ e conversion on nuclei in a top-down

Effective Field Theory.

• In chapter 6 we discuss CLFV pseudoscalar meson decays in a bottom-up Effective Field

Theory.

• Finally, we conclude in chapter 7.

2
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2
THE STANDARD MODEL OF PARTICLE PHYSICS AND BEYOND

The Standard Model (SM) of particle physics is a renormalizable Quantum Field Theory that

describes the properties of elementary particles and their possible interactions via the electroweak

and the strong interactions. The SM is one of the most successful theory nowadays, as it has been

tested from the eV scale (atomic structure) to the TeV scale. The SM predictions are in excellent

agreement with the experimental data in most of the cases, especially the electroweak precision

tests. Despite the tremendous success of the SM, there are clear signs that this is not a complete

theory, as there are still several issues that cannot be explained with the SM. This has lead to the

birth of physics Beyond the Standard Model (BSM), that aims at extending the SM to address

the unsolved issues.

2.1 Physics Beyond the Standard Model

In this chapter, we give in a first part an overview of signs of New Physics (NP). In a second part,

we give a short list of theoretical extensions to the SM.

2.1.1 Evidence of New Physics

In this section, we give some examples of unsolved issues that are a clear sign of BSM physics.

2.1.1.1 Gravitational interactions

One of the most striking issue that shows the SM cannot be a theory of everything is the fact it

describes only three of the four fundamental interactions between elementary particles. Indeed,

gravitational interactions are not included in the SM as until today, it is still not clear to find

how gravity could be quantized and added as an extension to the SM.

3



CHAPTER 2. THE STANDARD MODEL OF PARTICLE PHYSICS AND BEYOND

2.1.1.2 Hierarchy problem

A interesting issue is the fact that the fermion masses span a very large range, from MeV to 174

GeV, and the SM cannot provide any explanation for the large hierarchy of fermion masses.

Another well known issue is the hierarchy problem. Here, the question is why the electroweak

interactions are much stronger than the gravitational interactions at the microscopic level.

Another formulation of the hierarchy problem is to ask why the Higgs boson is much lighter

than the Planck mass (or the grand unification energy). Indeed, one would expect that the

large quantum contributions to the square of the Higgs boson mass would make the mass

huge, comparable to the scale at which new physics appears, as the Higgs potential is highly

sensitive to new physics that couples to the Higgs field. If we consider the existence of new heavy

fermions, the self energy diagrams involving the Higgs boson and the additional particles give

large contributions to the square of the Higgs mass, proportional to the ultraviolet cut-off used

to regularize the divergences of the loops. The cut-off is of the order of the new physics scale, at

which the new heavy fermions appear. A major issue is the fact that if the new physics scale is

the Planck scale, the mass of the Higgs boson should be much larger than the measured value.

Another way to compute the loop integrals would be the use of dimensional regularization, in

order to ignore the cut-off, but even in this case, the Higgs mass still receives contributions

proportional to the squared mass of the additional particles that couples to the Higgs field.

That is the hierarchy problem : if there are additional particles at high energy, it is not clear how

to explain why the Higgs mass is so small.

2.1.1.3 The baryon asymmetry

A very puzzling issue is the fact that the Universe is mostly made of matter. As ordinary matter is

baryonic, this excess of matter over anti-matter implies a baryon asymmetry, that can be defined

as :

(2.1) YB = nB − n̄B

s
�= 0

where nB and n̄B are the number densities of baryons and anti-baryons, s is the entropy.

As the value of YB is ∼ 10−10, baryon number must be violated. Independent measurements of

the baryon density have been made with the estimation of the Big Bang Nucleosynthesis (BBN)

[20–22] relic densities and from the measurements of the temperature fluctuation spectrum of

the Cosmic Microwave Background (CMB). The baryon asymmetry has been measured very

precisely by the WMAP and Planck collaborations [23–25].

In the past few decades, particle-physics experiments have shown that the laws of nature

do not apply equally to matter and antimatter. A famous hypothesis to explain the imbalance of

matter and antimatter in the observed universe is the so called baryogenesis [26–29], a process

that took place during the early universe that produced baryonic asymmetry. In 1967, Andrei
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2.1. PHYSICS BEYOND THE STANDARD MODEL

Sakharov proposed a set of three conditions that must be satisfied in order to have a baryogenesis

[30] :

• Baryon number B violation.

• C and CP violation, so that matter and antimatter have a different behavior

• Interactions out of thermal equilibrium, as particles and antiparticles have the same

abundance in equilibrium

However, in the SM, CP violation (included in the CKM matrix) and the out of equilibrium

dynamics at the electroweak phase transition are not strong enough to explain the observed

asymmetry. This means that BSM physics is required to produce baryogenesis.

2.1.1.4 Dark matter

Numerous observations suggest that most of the mass in the Universe is made of some dark

matter of unknown composition. This dark matter is not sensitive to the electromagnetic and

strong interactions and interact very weakly with ordinary matter. Evidences for dark matter

are provided at different scales. A first hint for dark matter came at galactic scales from the

observation that various luminous objects such as stars, gas clouds, globular clusters, and

especially entire galaxies, move faster than predicted by the Newtonian theory of gravitation.

A very important result is the measurements of the velocities of stars in the Milky Way by J.H.

Oort in 1932 [31]. Indeed, some stars were found to move with velocities larger than the escape

velocity of the gravitational potential of luminous matter. This was one of the first indication for

the existence of a new type of invisible matter in the Milky Way.

In 1933, F. Zwicky studied the velocity distribution of several galaxies in the Coma galaxy

cluster [32]. He obtained an approximate value of the mass of the cluster using the Virial theorem

and compared it to the mass distribution (obtained with the observation of the luminosity of

nebulae in the cluster). He found a discrepancy between the mass of luminous matter and the

mass calculated via the Newtonian law of gravity. This discrepancy suggested the existence of

some non-luminous matter in the cluster, and was another evidence for the existence of dark

matter.

Another very important evidence for the existence of dark matter is the measurement of

rotation curves of spiral galaxies, that is to say the measurement of the circular velocities of

stars and gas as a function of their distance from the galactic centre. Vera Rubin studied the

rotation curves in 1970 [33, 34]. Most of the resulting rotation curves have a flat behavior at

large distances, outside the edge of the visible disk. This was not expected and showed that the

visible matter was only a fraction of the gravitational matter, as only additional invisible matter

could explain the observed rotation curves. An example is given in fig. 2.1 (from [35]).
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Figure 2.1: Rotation curve of a spiral Galaxy (from Mon. Not. Roy. Astron. Soc., 249:523). For
ordinary baryonic matter, the circular velocity is expected to decrease far away from the galactic
center (dashed line). However, the measurements show that the velocity stays flat at large
distances, which favors the hypothesis of the presence of invisible matter.

At the cosmological scale, various measurements, such as the anisotropy of the CMB, combined

with data from Baryon Acoustic Oscillations and Type Ia Supernovae, give a value of the dark

matter density. The PLANCK collaboration obtain the following value [24] :

(2.2) Ωch2 = 0.1188±0.0010

The PLANCK collaboration also obtained the following baryon density Ωbh2 = 0.02230±
0.00014 [24]. It is clear that the baryon density is not large enough to account for all the dark

matter in the Universe. This means that the candidates for dark matter are non-baryonic.

The nature of dark matter is still unknown, but the observations lead to a specific profile for

non-baryonic dark matter candidates :

• They must have a lifetime near the age of the Universe, otherwise they would have decayed

by now
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• They must be very weakly interacting with ordinary matter, and cannot have electromag-

netic or strong interactions

• They must have the right relic abundance

• They must be cold (non relativistic) during structure formation, as the hot dark matter

scenario is almost completely excluded by CMB precision measurements

There are no candidates with such properties in the SM, which means that BSM physics is

required to provide non-baryonic cold dark matter. There are many dark matter candidates, such

as neutrinos or axions. However, the most famous candidate is the weakly interacting massive

particle (WIMP) and is proposed in many extensions of the SM. A large number of experiments

are currently searching for WIMPs or other dark matter candidates.

2.1.1.5 Neutrino oscillations

In the SM, there are three flavours of left handed neutrinos (νe,νμ and ντ), that are massless and

only sensitive to the weak interaction. They do not mix which means that there are no flavour

changes in the SM. However, many evidences of neutrino oscillations come from experiments

measuring fluxes of neutrinos produced in the Sun, in the atmosphere, in accelerators and in

nuclear reactors. The discovery of neutrino oscillations [36, 37] established non zero neutrino

masses and mixing angles [38], and was a striking example of processes involving flavour changes

in the lepton sector. A way to introduce lepton flavour changes in the SM is to add a neutrino

mass term which can be done via a neutrino mass matrix that is not diagonalized in the charged

lepton mass basis. This matrix would give rise to flavour changes and neutrino oscillations (see

subsection 3.1). Indeed, the probability for an oscillation between two flavours can be written

[38] :

(2.3) P(νl → νl′)=
∑

j
|Ul′ j|2|Ul j|2 +2

∑
j>k

|Ul′ jU∗
l jUlkU∗

l′k|cos(
Δm2

jkL

2p
−φll′; jk)

(2.4) P(ν̄l → ν̄l′)=
∑

j
|Ul′ j|2|Ul j|2 +2

∑
j>k

|Ul′ jU∗
l jUlkU∗

l′k|cos(
Δm2

jkL

2p
+φll′; jk)

where l, l′ ∈ e,μ,τ, φl′l; jk = arg(Ul′ jU∗
l jUlkU∗

l′k), L is the neutrino oscillation length associated

with Δm2
jk = m2

j −m2
k, p = p j+pk

2 (p j,k and m j,k are the neutrino momentum and mass). U is the

PMNS neutrino mixing matrix [39–42] which can be written :

7
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U =

⎛⎜⎜⎝
c12c13 s12c13 s13e−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13

s12s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13

⎞⎟⎟⎠

×

⎛⎜⎜⎝
1 0 0

0 eiα2/2 0

0 0 eiα3/2

⎞⎟⎟⎠
(2.5)

where ci j = cosθi j, si j = sinθi j, θi j = [0, π2 ] the mixing angle, δ = [0,2π] is the Dirac CP

violation phase and α2 and α3 are two Majorana CP violation phases [43–46].

In the case the neutrinos are Dirac particles, the parameters are the three mixing angles and the

phase δ. If the neutrinos are Majorana particles, that is to say their own antiparticle, then the

phases α2 and α3 must be added to the lepton mixing matrix.

Thus, with the three angles θ12, θ13, θ23, the masses m1, m2, m3 and, depending on the nature

of neutrinos, one or three CP violation phases, this makes seven or nine additional parameters in

the SM extended with massive neutrinos.

The Dirac phase δ can be studied in neutrino oscillations, as it implies a difference between anti

neutrinos and neutrinos oscillation probabilities. Some experiments, sensitive to lepton number

violation, like the HEIDELBERG-MOSCOW neutrinoless double beta decays [47] experiment

could measure the α2 and α3 Majorana phases. Notice that only differences of neutrino masses

can be probed in neutrino oscillation experiments. The KATRIN experiment [48] is working on

determining the absolute mass scale of neutrinos.

The discovery of flavour changes between neutral leptons is a strong motivation to search for

processes involving charged lepton flavour changes. In chapter three, we will discuss processes

that involve flavour violation in the charged lepton sector.

2.1.1.6 B physics

Many anomalies have been observed in semileptonic B-decays, that exhibit deviations from the

SM predictions in the following ratios :

R(K (∗))= BR[B → K (∗)μ+μ−]/BR[B → K (∗)e+e−]

R(D(∗))= BR[B → D(∗)τν]/BR[B → D(∗)lν]

R(J/ψ)= BR[B+
c → J/ψτ+ν]/BR[B+

c → J/ψμ+ν](2.6)
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In R(K) and R(K∗), the deviations from the SM are at the 2,6σ and 2,2−2,4σ level [49, 50],

and in R(D) and R(D∗), the deviations from the SM expectation are at the 4σ level [51]. Notice

that a deviation of about 2σ was measured in R(J/ψ) [52]. The anomalies observed in R(K) [49],

R(K (∗)) [50] and in R(D(∗)) [53–55] also suggest lepton flavour universality violation (LFUV)

[51, 56–61]. Thus, semileptonic B-decays and the observed anomalies provide powerful probes for

testing the SM and for searching for the effects of BSM physics.

2.1.2 BSM models

In this section we make a short review of some BSM models that have been proposed in order to

solve the issues mentioned above.

2.1.2.1 Supersymmetry

Supersymmetry or SUSY was developed from various studies [62–65] and is a theory that

introduce a new symmetry between fermions and bosons. SUSY predicts that for every bosonic

(fermionic) degree of freedom, there is a corresponding fermionic (bosonic) degree of freedom.

However, SUSY implicates the existence of undiscovered particles, called the superpartners of

the particles already known. These superpartners should have a much larger mass than their

partners, otherwise they would have already been detected.

Also, the proton could decay much faster compared to the actual observed lifetime of the

proton (> 1029 years), into a pion and a positron via a quark superpartner called squark. To

solve this issue, a new concept called R-parity was proposed. By introducing R-parity, that can be

written [66] :

(2.7) PR = (−1)3(B−L)+2s

where s is the spin, B the baryon number, and L the lepton number. PR = 1 for the particles

and PR =−1 for the superpartners. When R-parity is conserved, the proton becomes stable, and

the predicted lifetime is in agreement with current data.

Another very appealing aspect of R-parity conservation, is that it naturally provides a good dark

matter candidate, as in this case, the lightest supersymmetric particle is stable (and has to be

neutral of electric and color charge and interacts weakly with baryonic matter).

SUSY also provides a solution to the hierarchy problem, as the new bosonic and fermionic degrees

of freedom contributions to the Higgs mass cancel exactly if their couplings and masses are

related to each other.

2.1.2.2 Right handed neutrinos

As we saw in subsubsection 2.1.1.5, neutrino oscillations proved that neutrinos are massive.

Giving to the neutrinos a Yukawa coupling to the Higgs field generates neutrino masses after the
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electroweak symmetry breaking. A way to generate the neutrino masses is to add right handed

neutrinos to the SM. However, as the neutrino masses are extremely small, the correponding

Yukawa couplings must be unnaturally small. A famous example in which this problem is solved

is the seesaw mechanism [67–70], as a large Majorana mass term is given to the right handed

neutrino, which would push the masses of the active neutrinos down and provide a simple

explanation for the small neutrino masses.

Right handed neutrinos can also address many other unsolved issues, as light right-handed

neutrinos could also be dark matter candidates. There are also leptogenesis models in which the

baryon asymmetry of the Universe is produced from a lepton asymmetry, as in the case of heavy

right-handed neutrinos, a new source of CP violating couplings is provided. The phenomenology

of right handed neutrinos is reviewed in deeper details in [71].

2.1.2.3 Extra dimensions

It is also possible to add additional dimensions the four dimensional space-time. As an example,

adding compact extra dimensions that only affect physics at high energy scales, it is possible to

define the Planck mass on the extra dimensional space, which would be much smaller than the

Planck mass observed in the regular four dimensional space. This could address the hierarchy

problem. Also, one can consider the case of universal extra dimensions [72], in which all SM

particles propagate. For example, the fifth dimensional Kaluza-Klein [73, 74] model provides, in

the form of stable Kaluza-Klein partners, good dark matter candidates, as they are stable and

may have the desired relic density [75–77].

2.1.2.4 Leptoquark models

Leptoquarks (LQs) [78] are hypothetical particles (of scalar or vector nature) that carry both a

baryon number (B) and a lepton number (L), and that can turn quarks into leptons and vice versa.

They appear in many extensions of the SM, such as the Pati and Salam SU(4) model [79–81],

Grand Unified Theories [82–91], technicolour theories [92–96], as well as in various composite

models [97–103].

LQs are proposed in many new physics scenarios. For example, LQs provide a solution to the

deviations from the SM predictions observed in the ratios of semi-leptonic B decays R(K∗) and

R(D∗) [104, 105]. LQ states can also contribute to rare charged lepton processes. There are many

examples of these processes, that provide constraints on LQ interactions, such as charged lepton

flavour violating decays of the form l → l′γ or l → l′l′l′′, μ− e conversion in nuclei, as well as

meson decays or anomalous magnetic moments. For example, scalar leptoquarks may contribute

to the muon anomalous magnetic moment [106, 107]. Implications of LQs models for charged

lepton flavour violation observables are discussed in [108–111].

10
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A review of LQs models along with the issue they address and with the current status of LQs

searches at collider is given in [112].
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CHARGED LEPTON FLAVOUR VIOLATION

As we saw in subsubsection 2.1.1.5, the discovery and the confirmation of neutrino oscillations

[36, 37] established non zero neutrino masses and mixing angles [38] and was a clear observation

of processes involving flavour violation in the lepton sector. However, the SM cannot explain

neutrino oscillations or flavour violation in the lepton sector, as the neutrinos are taken massless

and there is no mixing between lepton families. It is thus clear that BSM physics is required to

address these issues, and must be in agreement with the current constraints on lepton flavour

violating processes. The discovery of neutrino oscillations is also a strong motivation to look for

flavour violation in the charged lepton sector, the so called Charged Lepton Flavour Violation

(CLFV) processes [8, 9]. In fact, once neutrino masses are introduced in the SM, they contribute

to CLFV processes via loop diagrams. However, the CLFV rates are GIM suppressed by a

factor ∝ (mν/MW )4 ∼ 10−48 [113], leading to unobservably small branching ratios in current

experiments, of the order ∼ 10−54. In the case of Majorana neutrinos, for example in models of

seesaw type, the GIM suppression may not occur anymore, but the CLFV branching ratios could

still be unobservably small. Thus, the discovery of a CLFV process would be a clear signal of

BSM physics, and many extensions to the SM predict large CLFV effects. Many experiments are

currently searching for CLFV processes, and many are currently under construction and plan to

improve their sensitivity to flavour violation by several orders of magnitude. These exceptional

improvements in the experimental sensitivity are the reason for our interest in specific CLFV

processes and their huge potential for constraining and discriminating BSM models.

In this chapter, we review the theory of lepton flavour violation in the SM extended with massive

neutrinos and discuss the current and future experimental status of various CLFV processes.
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CHAPTER 3. CHARGED LEPTON FLAVOUR VIOLATION

3.1 Charged Lepton Flavour Violation in the SM extended with
massive neutrinos

In the minimal SM with massless neutrinos, we do not expect flavour violation in the lepton

sector. The fermion masses and the mixing among different generations arise from the Yukawa

couplings of the fermion fields with the Higgs field. The Lagrangian for the SM leptons can be

written

(3.1) L = i
(
l

i
/Dli + eR

j /De j
R

)
︸ ︷︷ ︸

Kinetic terms

−Yi j l
i
e j

RH+h.c︸ ︷︷ ︸
Yukawa coupling

where l i ∈
(
νe

e

)
L

,

(
νμ

μ

)
L

,

(
ντ

τ

)
L

and e j
R ∈ eR ,μR ,τR . H is the Higgs field, /D = Dμγ

μ is the

covariant derivative and Yi j is a 3×3 Yukawa coupling matrix for the charged leptons. The

SM fermions are grouped into generations and differ by a quantum number called flavour. In

the lepton sector, a lepton flavour can be assigned to each generation : Le = 1 (−1) for e−,νe

(e+,νe), Lμ = 1 (−1) for μ−,νμ (μ+,νμ) and Lτ = 1 (−1) for τ−,ντ (τ+,ντ). Substituting the vacuum

expectation value (VEV) for the Higgs field in the Yukawa part of eqn. 3.1 gives the charged

lepton mass terms that can be written :

(3.2) Lmass =−Mi j ei
Le j

R , Mi j = v

2

Yi j

where Mi j is the charged lepton mass matrix, which can be a general complex 3×3 matrix

and v is the VEV. Such matrices can be diagonalized by two unitary transformations, one for

left-handed leptons and one for right-handed leptons that have the same charge. Indeed, the

charged lepton mass matrix of eqn 3.2 is diagonalized by the unitary transformations on l i and

e j
R . This means that in the mass diagonalized basis, the charged weak current interactions for

leptons are diagonal and can be written :

(3.3) LWνe =
g

2

(
νiLγ

μeiLW+
μ + eiLγ

μνiLW−
μ

)
where g is the SU(2) coupling constant and Wμ a SU(2) gauge boson. Thus, if neutrinos are

taken massless, lepton flavour is conserved and neutrino oscillations or CLFV processes can not

be explained in the SM.

However, as we saw in subsubsection 2.1.1.5, the observation of neutrino oscillations indicate

that neutrinos have a mass and that there are mixing angles. In the SM extended with massive

neutrinos, these masses, that can be introduced via a neutrino mass matrix, can contribute to
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NEUTRINOS

Figure 3.1: Example of one-loop diagram for the decay μ→ eγ in the SM extended with massive
neutrinos.

CLFV processes at the loop level. In fig 3.1, we give an example of a one-loop diagram that would

contribute to the CLFV muon decay μ→ eγ.

However, due to the GIM mechanism, the rates of the CLFV processes are strongly suppressed

as the neutrinos masses are much smaller than the W boson mass. Let us consider the branching

ratio of the radiative CLFV muon decay μ→ eγ that can be written [113, 114] :

(3.4) BR(μ→ eγ)= 3α
32π

∣∣∣∣∣ 3∑
i=1

U∗
eiUμi

m2
νi

M2
W

∣∣∣∣∣
2

︸ ︷︷ ︸
GIM suppression factor

∼ (2.5−3.9)×10−55

where U is the PMNS matrix defined in eqn. 2.5 and α the fine structure constant.

Similar calculation of branching ratios of processes involving taus as well as other processes

such as l1 → l2l3l4 lead to extremely small results. This means that in the SM extended with

neutrino masses, CLFV rates are way too small to be observed in current or future experiments.

However, in the case of Majorana neutrinos, the GIM suppression in CLFV rates may not

occur anymore. A simple example is provided by the seesaw mechanism (see 2.1.2.2), in which

the SM is extended by adding right-handed neutrinos with Majorana mass terms MR . The

spontaneous breaking of the electroweak symmetry induces Dirac mass terms, as well as mixing

among left-handed and right-handed neutrinos. Once the neutrino mass matrix is diagonalized,

the resulting eigenstates are Majorana fields. Moreover, the PMNS matrix of eqn. 2.5 does not

coincide anymore with the matrix U ′ that appears in the charged current. The matrix U ′ is not

unitary and can be written in terms of MR and the neutrino Yukawa couplings Yν [115, 116] :

(3.5) U ′ = (1− ν2

2
Y†
νM−2

R Yν)U
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In this case, the matrix U’ appears in diagrams of the form of figure 3.1 and there is no GIM

suppression. In fact, in model of seesaw type, the suppression factor
m2

νi
M2

W
is replaced by a factor

∝ mνi
MR

, which means that the CLFV rates may still be suppressed. For example, for mν = 1eV and

MR = 1010GeV , CLFV branching ratios are at the level ∼ 10−40 or less. This issue is reviewed in

[8, 9].

The discovery of a CLFV process would thus be a clear and striking signal of BSM physics. In

fact, many BSM models predict measurable CLFV rates and many experiments are currently

searching for CLFV processes.

3.2 Experimental status of CLFV processes

In this section, we list various CLFV processes, in the muon, tau and meson channels and discuss

the experimental status.

3.2.1 Muon channel

We list four of the major CLFV processes in the muon channel (the Muonium to anti-muonium

conversion is detailed in [8]).

3.2.1.1 μ+ → e+γ decay

The experimental signature of the μ+ → e+γ decay at rest is a positron and a photon in coincidence,

moving back-to-back and with their energies equal to half of the muon mass. It is interesting to

notice that negative muon cannot be used, since it would be captured by a nucleus when stopped

in a material. More detail on the detector resolution and on the sensitivity limitation from the

backgrounds of various experiments can be found in [8, 9, 117].

The search for μ+ → e+γ have been actively promoted by intense muon beams available at

the meson factories. Experiments have been working on improving the detection resolution of the

positron energy, the photon energy, the timing between the positron and photon, and the angle

between the positron and photon. These improvements, combined with intense muon beams,

have lead to huge improvements of the sensitivity to the μ+ → e+γ decay. As this decay has not

been observed yet, experiments can set an upper limit or the branching ratio, that can be written

(3.6) B(μ+ → e+γ)= Γ(μ+ → e+γ)
Γ(μ+ → e+νν̄)

In table 3.1, we give a list of upper limits on B(μ+ → e+γ) obtained in the past experiments.

It is amazing to see how much the experimental sensitivity has improved over the years.

The MEG collaboration [123] at PSI have reach a sensitivity at a 10−13 level, and completed

data taking in 2013. Important upgrades are planned in order to increase the sensitivity of the
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Experiment (year) Upper limit
TRIUMF (1977) 3,6×10−9 [118]
SIN (1980) 1×10−9 [119]
E328 (1982) 1,7×10−10 [120]
Crystal Box (1988) 4,9×10−11 [121]
MEGA (1999) 1,2×10−11 [122]
MEG (2013) 4,2×10−13 [123]
MEG II (2016) 5×10−14∗ [124]

Table 3.1: Historical progress for the upper limit on B(μ+ → e+γ). ∗ (expected)

experiment by an order of magnitude. These changes to the experiment, known as MEG II, are

detailed in [125].

3.2.1.2 μ+ → e+e+e−

The signature of the μ+ → e+e+e− decay consists of two positrons and one electron coming from a

common vertex and with a total energy equal to the muon mass. However, the energy distribution

of each daughter particle depends on the dynamics of the underlying unknown physics. This

issue has been reviewed in [8]. Momentum conservation imply that the momentum of the three

particles have to lie in a plane. The maximum energy that can be carried away by a positron /

electron is half of the muon mass energy.

Collaboration/Lab (year) Upper limit
Dubna (1976) 1.9×10−9 [126]
LAMPF/Crystal Box (1984) 1.3×10−10 [127]
SIN/SINDRUM (1984) 1.6×10−10 [128]
SIN/SINDRUM (1985) 2.4×10−12 [11]
LAMPF/Crystal Box (1988) 3.5×10−11 [121]
SIN/SINDRUM (1988) 1.0×10−12 [129]
JINR (1991) 3.6×10−11 [130]

Table 3.2: Historical progress for the upper limit on B(μ+ → e+e+e−)

As for the μ+ → e+γ decay, the μ+ → e+e+e− decay has not been observed yet, experiments

can set an upper limit or the branching ratio B(μ+ → e+e+e−). In table 3.2, results from various

experiments searching for the decay μ+ → e+e+e− are shown. As for the μ+ → e+γ decay, high

intensity muon beam line will lead to huge improvements of the sensitivity to the μ+ → e+e+e−

decay. The Mu3e experiment at PSI was proposed in 2013 and aims to reach a sensitivity at the

level 10−16 [131].
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3.2.1.3 μ−N → e−N

Muon to electron conversion is the spontaneous decay of a muon to an electron without the

emission of neutrinos. When a negative muon is stopped in a material, it is captured by an

atom, and forms a muonic atom. Once captured, the muon cascades down in energy levels to

the 1s state, in the muonic atom. In the SM, two processes can occur : the muon can decay in

orbit (μ− → e−νμν̄e), or can be captured by a nucleus of mass number A and atomic number

Z (μ− + (A, Z) → νμ + (A, Z − 1)). Considering new physics, a third process is also expected :

neutrinoless muon capture (μ−+ (A, Z)→ e++ (A, Z)), which is called muon to electron conversion

in a muonic atom. Notice that in the final state, the nucleus can be in the ground state or in an

excited state. However, most often, the nucleus is in the ground state, in this case, the conversion

process is said to be coherent. Notice that experiments do not observe captures on the nucleus,

but instead see the signature of a stopped muon : X-rays that are emitted when the muon tumbles

down to the 1s state of some target nucleus. The characteristic X-rays spectrum is the signal of a

stopped muon. The signature of the coherent conversion in a muonic atom is a monoenergetic

single electron emitted from muon capture, whose energy is :

(3.7) E = mμ−Bμ−Erec

where mμ is the mas of the muon, Bμ the binding energy of the 1s state of the muonic atom

and Erec the nuclear recoil energy. It is important to notice that the peak energy of the conversion

signal changes for different nuclei, as Bμ depends on the nucleus.

Experiment (year) Upper limit Material
SREL (1972) 1.6×10−8 [132] Cu
SIN (1977) 4.0×10−10 [133] S
SIN (1982) 7.0×10−11 [134] S
TRIUMF (1988) 4.6×10−12 [135] Ti
SINDRUM II (1993) 4.3×10−12 [136] Ti
SINDRUM II (1996) 4.6×10−11 [137] Pb
SINDRUM II (2006) 7.0×10−13 [13] Au

Table 3.3: Historical progress for the upper limit on B(μ−N → e−N)

Also, as the signature of the conversion process is a monoenergetic electron, no coincidence

measurement is required. It is also very important to notice that contrary to the μ→ eγ and

μ→ e+e+e− decays, it is possible to improve the sensitivity to the conversion process by using a

high muon rate, but without suffering from accidental background.

As the conversion process has not been observed, experiments set upper limit on the branching

ratio, that can be written :
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(3.8) B(μ−N → e−N)= Γ(μ−+ (A, Z)→ e−+ (A, Z))
Γ(μ−+ (A, Z)→ capture)

The normalization to captures simplify the computations since many details of the nuclear

wavefunction cancel in the ratio. In table 3.3, results from various experiments searching for

the μ → e conversion process are shown. Several experiments currently under construction

will improve the sensitivity to μ→ e conversion by several orders of magnitude : the COMET

experiment [14] at J-parc and the Mu2e experiment [15] at FNAL aim to reach a sensitivity

∼ 10−16. The PRISM/PRIME proposal [138] aims to reach a sensitivity ∼ 10−18 and has the

advantage to allow the use of heavy target nuclei with shorter lifetimes of their muonic atoms,

because of its designed pure muon beam with no pion contamination. There is also the DeeMe

experiment [139] at J-parc, that have a simpler setup but allow an early start of the experiment

with a moderate sensitivity, between 10−13 and 5×10−15.

3.2.1.4 μ−N → e+N

Another neutrinoless muon capture process exist and is a charge-changing reaction : μ−+(A, Z)→
e++ (A, Z−2)∗. The final state of the nucleus can be a ground state or an exited state. Contrary

to μ− → e− conversion, here there is no coherent enhancement, as the initial and final nuclei are

not the same. The energy of the positron coming from the μ− → e+ conversion is :

(3.9) E = mμ−Bμ−Erec −ΔZ−2

where ΔZ−2 is the difference in the nuclear binding energy between the initial and final nuclei.

The branching ratio can be written :

(3.10) B(μ−N → e+N)= Γ(μ−+ (A, Z)→ e++ (A, Z−2)∗)
Γ(μ−+ (A, Z)→ capture)

Experiment (year) Upper limit Material
SREL (1972) 2.6×10−8 [132] Cu
SIN (1978) 1.5×10−9 [140] S
SIN (1980) 9.0×10−10 [141] S
TRIUMF/TPC (1988) 1.7×10−10 [135] Ti
SINDRUM II (1993) 8.9×10−11 [136] Ti
SINDRUM II (1993) 4.3×10−12 [136] Ti
SINDRUM II (1998) 3.6×10−11 [142] Ti
SINDRUM II (1998) 1.7×10−12 [142] Ti

Table 3.4: Historical progress for the upper limit on B(μ−N → e+N)
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In table 3.4, results from various experiments searching for the μ− → e+ conversion process

are shown. The μ− → e+ conversion process also provide complementary informations regarding

the Majorana nature of neutrinos. Indeed, this transition violates both lepton number and lepton

flavour, and can only proceed if neutrinos are of Majorana nature, as for the neutrinoless double

beta decay (ββ)0ν [143]. Also, the μ− → e+ conversion process has another similarity with the

neutrinoless double beta decay, as both processes require a mechanism involving two nucleons.

3.2.2 Tau channel

In this section, we make a review of some CLFV tau decays and the current upper limits and

discuss the prospects.

3.2.2.1 Current experiments and upper limits

The tau lepton is a powerful probe to search for BSM physics, as the mechanisms that govern

its production and decay in electroweak interactions are well understood. It is also the only

lepton that can decay into hadrons, which allow to study QCD effects in the 1 GeV energy region.

However, as explained previously, even if we include neutrino masses only, the SM predicts that

the CLFV tau decay branching ratios are too small to be observed with the current experiments.

Moreover, many difficulties arise, the tau lepton has a very short lifetime (2.9×10−13s) and is

not produced as much as muons are. Taus must be obtained at proton or electron accelerators,

and their decay must be measured with detectors that have good particle identification and

tracking capabilities, and that are able to constrain the kinematics very well, which require

good calorimetry and hermeticity. Even if the large mass of the tau enhance the sensitivity, the

number of taus that can be produced and observed is reduced because CLFV tau decay searches

have not been performed with dedicated experiments, but with beams and detectors that are

used for a broader physics program.

Many experiments have been searching for CLFV tau decays, such as the CLEO experiment

at CESR [144]. Nowadays, B factories, using e+e− colliders, such as the BaBar experiment at

PEP-II collider at SLAC [145], or the Belle experiment at KEKB in Tsukuba [146], that were

built to measure the CP-violating parameters in the B-meson systems, are also tau factories.

Indeed, at the center-of-mass energy of



s = 10.58 GeV (Υ(4s) resonance), the cross section to

produce a τ+τ−pair is 90% of the cross section to produce a bb̄ pair. The LHCb [147, 148] and the

ATLAS [149] collaborations have also been searching for CLFV tau decays.

Leptonic and radiative CLFV tau decays

In table 3.5, we list some upper limits on various leptonic and radiative CLFV tau decays.

More details on the backgrounds and other experimental issued are given in [150–153].
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Decay mode Upper limit
τ− → e−γ 3.3×10−8 [150]
τ− →μ−γ 4.4×10−8 [150]
τ− → e−e−e+ 2.7×10−8 [151]
τ− → e−μ−μ+ 2.7×10−8 [151]
τ− → e+μ−μ− 1.7×10−8 [151]
τ− → e+μ−e− 1.8×10−8 [151]
τ− → e−μ+e− 1.5×10−8 [151]
τ− →μ−μ+μ− 2.1×10−8 [151]

Table 3.5: Example of current upper limits on selected CLFV leptonic and radiative decays in the
tau channel

Semileptonic CLFV tau decays

The tau channel is very promising, as the tau is also the only lepton that can decay into

hadrons, which lead to many new modes to study, and allow to study QCD effects in the 1 GeV

energy region. In table 3.6, we list some upper limits on various semileptonic CLFV tau decays

with pseudoscalar and vector mesons in the final state.

Decay mode Upper limit
τ− → e−π0 8.0×10−8 [154]
τ− →μ−π0 1.1×10−7 [155]
τ− → e−η 9.2×10−8 [154]
τ− →μ−η 6.5×10−8 [154]
τ− → e−K0

S 2.6×10−8 [156]
τ− →μ−K0

S 2.3×10−8 [156]
τ− → e−ρ0 1.8×10−8 [157]
τ− →μ−ρ0 1.2×10−8 [157]
τ− → e−φ 3.1×10−8 [157]
τ− →μ−φ 8.4×10−8 [157]
τ− → e−K∗(892)0 3.2×10−8 [157]
τ− →μ−K∗(892)0 5.9×10−8 [158]

Table 3.6: Example of current upper limits on selected CLFV semileptonic decays in the tau
channel, involving pseudoscalar and vector mesons

The signature of the processes with a neutral pseudoscalar meson in the final state (τ→ lP0)

is the presence of an lP0 pair (with l = e,μ and P0 =π0,η,K0
S) with an invariant mass consistent

with mτ = 1,777 GeV, a total energy of



s /2 in the center of mass frame, as well as other particles

coming from a tau decay, from the event e+e− → τ+τ−. P0 candidates are reconstructed in specific

mass windows from events such as π0,η→ γγ, η→ π0π+π− or K0
S → π+π−. More experimental

details are given in [154–156, 159].

For processes with a neutral vector meson in the final state (τ → lV 0, with l = e,μ and
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V 0 = ρ0,φ,K∗0 ), V 0 candidates are reconstructed from events such as ρ0 → π+π−, φ→ K+K−,

K∗0 →π−K+. The signature experiments are looking for is thus three charged particles (from the

event τ→ lV 0 → lh+
1 h−

2 where h1 and h2 are charged hadrons) that are identified as the appro-

priate lepton or hadron and have an invariant mass close to the tau lepton mass. Experimental

details are discussed in [157, 160].

Future experiments

Decay mode Expected limit
τ→ eγ 5×10−9 [161]
τ→μγ 10−9 [161]
τ→ eee 5×10−10 [161]
τ→μμμ 5×10−10 [161]
τ→ e+hadron 3×10−10 [161]
τ→μ+hadron 3×10−10 [161]

Table 3.7: Example of future expected upper limit on CLFV processes in the tau channel from the
Belle II experiment

The Belle II experiment at Super KEKB [162] aims to reach a sensitivity ∼ 1−5×10−9 for

radiative decays and ∼ 5×10−10 for three body decays [161]. Despite the improvements, the two

body decay still suffers from the backgrounds detailed in [161], while the three body decay are

still background free. The Belle II experiment also expect to reach a sensitivity ∼ 3×10−10 for

the semileptonic decays. The expected sensitivities are summaraized in table 3.7.

From tables 3.5, 3.6 and 3.7, it is clear that the experimental sensitivity to the various tau decay

modes is lower than the sensitivity to CLFV processes in the muon channel. However, the tau

channel is a very promising place to probe CLFV effects as there are a large number of processes,

and it also allows to study QCD effects in the 1 GeV energy region via the CLFV semileptonic

decays.

3.2.3 Meson channel

In this section, we make a review of some CLFV leptonic and semileptonic meson decays, discuss

the current upper limits on these processes and discuss the prospects. The meson channel offers

many possibilities to study CLFV effects, due to the large number of possible CLFV meson decays.

Experiments such as the BES experiment [163, 164] at BEPC and now the BESIII detector at

the BEPCII e+e− collider [165], the SND detector at VEPP-2M e+e− collider [166], the CLEO III

detector, at CESR [167] have been searching for CLFV vector meson decays. Experiments such

as E871 at BNL [168], LHCb [169], BaBar [145] or Belle [146] have been searching for leptonic
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and semileptonic pseudoscalar meson decays. In table 3.8, we list upper limits on some CLFV

vector and pseudoscalar meson decays.

Decay mode Upper limit
φ→ e+μ− 2×10−6 [170]
J/ψ→ e+μ− 1.6×10−7 [171]
J/ψ→ e+τ− 8.3×10−6 [172]
J/ψ→μ+τ− 2.0×10−6 [172]
Υ→μ+τ− 6.0×10−6 [173]

Decay mode Upper limit
K0

L → e±μ∓ 4.7×10−12 [174]
D0 → e±μ∓ 1.3×10−8 [17]
B0

S → e±μ∓ 1.1×10−8 [175]
B0 → e±τ∓ 2.8×10−5 [176]
B0 →μ±τ∓ 2.2×10−5 [176]

Decay mode Upper limit
K+ →π+μ̄e 1.3×10−11 [16]
D+

S → K+μ̄e 9.7×10−6 [18]
B+ → K+e±μ∓ 9.1×10−8 [177]
B+ → K+e±τ∓ 3.0×10−5 [178]
B+ → K+μ±τ∓ 4.8×10−5 [178]

Table 3.8: Example of upper limits on some CLFV processes in the meson channel. Top left pannel
: two body decay of vector meson. Top right panel : two body decay of pseudoscalar meson. Bottom
panel : three body decay of pseudoscalar meson.

More details on the experimental issues can be found in the references of table 3.8. As there

is a large number of experiments searching for these processes, and improving their sensitivity to

CLFV mesons decays, the meson channel is another very promising place to look for BSM physics.

Indeed, there are many possible processes, and for some of them, the experimental sensitivity is

high, especially the leptonic and semileptonic Kaon decays (see table 3.8).

3.3 Future directions

As we have seen in the previous sections, many experiments are searching for various CLFV

processes, in the muon channel, in the tau channel, in hadron decays as well as in other channels

we did not discuss, such as in Z or H0 decays. Many significant improvements on the experi-

mental sensitivity are expected for various CLFV processes, such as τ→ lll, μγ, eγ, μ→ eee, eγ,

μN → eN, Z or H0 → eμ, eτ [179, 180], μτ, KL → eμ and so on.

The large number of possible CLFV processes and associated experiments, as well as the

exceptional and promising improvements in experimental sensitivity, strongly motivate our

interest in CLFV processes, and their potential to constrain BSM physics.

In chapter 5, we will study the μ→ e conversion on nuclei, and use the available and expected

upper limit on the branching ratio to constrain a BSM model involving scalar Leptoquarks. We

will also study the prospects for discriminating among BSM scenarios once the conversion process

is observed.
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In chapter 6, we will use the upper limits on various leptonic and semileptonic CLFV pseu-

doscalar meson decays to constrain coefficients.
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EFFECTIVE FIELD THEORY

As we have seen in chapters 1 and 2, even if the SM has been tested successfully at many

scales, it is clear that it cannot be a complete theory of everything. The SM can be considered

as an effective theory, valid up to a given energy scale Λ, at which a more fundamental theory

could enter. The effects of new physics at the electroweak scale can be parametrized by non

renormalizable operators, built with the known fields from the SM. In this chapter, we discuss the

principles of the Effective Field Theory (EFT) approach [181–183], the framework in which new

physics from a given energy scale Λ, can be parametrized at lower scales with effective operators

and their associated coefficients. As the notion of EFT is large, we focus on the specific approach

we will use in this work

4.1 Effective Lagrangian

In most of the BSM models that have been created, the SM is recovered in the low energy scale

via the decoupling of the heavy particles that have a mass much larger than the weak scale :

Λ>>ΛW where ΛW ∼ MW ∼ 80 GeV is the weak scale. If new physics particles are too heavy to

be produced at LHC, they could be considered in the decoupling limit [184], by inducing new

interactions between SM particles. For example, if a BSM scenario predicts the existence of a new

heavy particle, that has not been observed, the EFT formalism allows to describe the indirect

effects of that new physics particle between SM particles as corrections to SM observables. The

corrections are added in an expansion in inverse power of the new physics scale ΛNP , once the

new heavy particles have been integrated out from the theory. There are many benefits in the use

of an EFT approach :

• It allows to choose the relevant degrees of freedom to describe the dynamic of a specific
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process

• Observables can be parametrized with effective operators and their associated (Wilson)

coefficients at a given energy scale

• It allows to describe indirect effects of heavy new physics on interactions between SM

particles

• Integrating out the new heavy particles from the theory lead to contact interactions that

can be described by an effective Lagrangian that contains effective operators and their

coefficients

The higher dimensional operators, suppressed by powers of the new physics scale ΛNP , are

added to the SM Lagrangian as follow :

(4.1) LEFT =L (4)
SM + 1

ΛNP

∑
i

C(5)
i O (5)

i + 1
Λ2

NP

∑
i

C(6)
i O (6)

i +O

(
1

Λ3
NP

)

where LEFT is the effective Lagrangian, L (4)
SM is the SM Lagrangian that contains renormal-

izable four dimensional operators, O (d)
i are the effective operators of dimension d > 4 and C(d)

i are

the dimensionless coupling constants associated to the operators, that are also called the Wilson

coefficients. Notice that the set of operators that appear at each order is finite.

4.1.1 Contact interactions

When the heavy degrees of freedom have been integrated out from the theory, the usual interac-

tions described in terms of exchange of bosons are replaced by contact interactions in the low

energy EFT. Contact interactions are generated by the effective operators and Wilson coefficients.

A famous example is the muon decay via the exchange of a W boson. In figure 4.1, we can see

the decay of the muon via the usual W boson. However, at the time where the W boson was

not discovered yet, the decay of the muon was described in the form of a four-fermion contact

interaction in which there is no more the propagation of a W boson, as can be seen in figure 4.1.

Thus a contact interaction is an approximation, but this approximation is widely used in

the EFT approach. For example, we can imagine a BSM model that predicts the existence of

a new boson, that would mediate new interactions among SM particles. If the boson has not

been observed yet, one can assume that the boson is too heavy to be produced at LHC. However,

considering contact interactions allow to describe the indirect effects of that new boson, that

would induce new interactions between SM particles.
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Figure 4.1: Decay of the muon. Left : decay via a W boson. Right : decay described by a four
fermion contact interaction.

4.2 Renormalization

A very important feature of quantum field theories, is that all the parameters of the Lagrangian

evolve with the energy scale Λ. As a consequence, in the SM, the coupling constant of QED and

QCD as well as the Wilson coefficients in the EFT evolve with energy scale, but with a different

behavior. The tool used to compute the evolution of the parameters of the Lagrangian with the

energy scale is a set of differential equations called renormalization group equations [185–191].

As it is necessary to compute loop diagrams in order to calculate the evolution of a parameter

with the scale Λ, we have to treat the divergences that appear in loop calculations. The theory

has to be regularized in order to have a parametrization of the singularities, and renormalized to

eliminate the divergences. In this work, we will use a regulator called dimensional regularization

[192–197] and a renormalization scheme called modified minimal subtraction scheme (MS

scheme) [198] to subtract divergences.
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4.2.1 Dimensional regularization

The idea of dimensional regularization [192–197] is to treat the divergences of loop integrals by

continuation to D = 4−2ε space-time dimensions. The goal is to compute the loop diagrams as an

analytic function of the space time dimension D. The loop integrals will converge for small D, and

the final result should be finite and have a well defined limit as D → 4. The integrals encountered

in L-loop calculated in D dimensions are of the form :

(4.2) Λ2ε
∫ L∏

l=1

dD kl

(2π)D
N

Am1
1 ...Amn

n

where the numerator N is a product of contractions that involve at least one loop momentum,

the Ai in the denominator are propagators of the form (q2 −m2) where q is a combination of

momenta and m a mass and mi ∈ N+ (in most cases, m1 = mN = 1). Λ is an arbitrary mass scale

that is introduced in dimensional regularization in order to keep the dimension of the integrals

( d4k
(2π)4 →Λ2ε dD k

(2π)D ).

Thus, we compute the integral for D = 4−2ε, and express the result as a Laurent series in ε,

that we can analytically continue to complex ε. Notice that the poles in the Laurent series have

two origins :

• Ultraviolet (UV) poles, that come from divergences when the loop momentum goes to

infinity.

• Infrared (IR) poles, that come from divergences that can appear when a propagator in the

loop integral goes to zero for a finite value of the loop momentum.

The results of a one-loop and a two-loop calculation have the following form

One− loop :
a
ε
+b

Two− loop :
c
ε2 + d

ε
+ e(4.3)

where a,b,c,d and e are finite. Singularities are extracted as poles for ε→ 0. Observables

and other quantities are made free of the UV divergences in the limit ε→ 0 via the process of

renormalization. Notice that even after renormalization, quantities such as amplitudes can still

contains IR divergences, as they can not be absorbed by redefining the parameters. However, IR

divergences cancel against the singularities that appear in the phase space integration when

considering IR-safe observables [199, 200].
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4.2.1.1 Feynman parameters

Before using dimensional regularization to compute integrals of the form of eqn 4.2, it is necessary

to introduce the method of Feynman parameters, that allows to squeeze the denominators factors

in eqn 4.2 into a quadratic polynomial in k. Then the momenta k can be shifted by a constant

to complete the square in the polynomial. However, this method require to introduce additional

parameters that have to be integrated over : the Feynman parameters.

A simple example is a one-loop integral involving only two propagators in the denominator. In

this case, the denominator can be rewritten :

(4.4)
1

A1 A2
=
∫1

0
dx

1

[xA1 + (1− x)A2]2 =
∫1

0
dxd yδ(x+ y−1)

1

[xA1 + yA2]2

where x and y are Feynman parameters. As an example, we can take A1 = (k2 −m2) and

A2 = (k+ q)2 −m2, using eqn 4.4 lead to

(4.5)
∫1

0
dx

1[
k2 +2xk.q+ xq2 −m2

]2 =
∫1

0
dx

1[
l2 + x(1− x)q2 −m2

]2 =
∫1

0
dx

1[
l2 −Δ

]2
where we shifted k by l = k+ xq, Δ= m2 − x(1− x)q2 and the denominator depends only on l2.

In this case, integrating over dD k is much easier as dD k = dD l, and the integrand is spherically

symmetric with respect to l. One has also to replace the momenta k in the numerator by the

shifted momenta l. Thus, after this shift, the denominator in a one-loop integral have the form

(l2 −Δ)n.

In the case of very complicated integrals with denominators of the form of eqn 4.2, one can use

the general formula :

(4.6)
1

Am1
1 ...Amn

n
=
∫1

0
dx1...dxnδ(

∑
xi −1)

∏
xmi−1

i

[
∑

xi Ai]
∑

mi

Γ(m1 + ...+mn)
Γ(m1)...Γ(mn)

where the Ai in the denominator are propagators of the form (q2 −m2) where q is a combina-

tion of momenta and m a mass, and mi ∈ N+.

Using identities such as eqn 4.4 or 4.6, loop integrals of the form of eqn 4.2 are turned into

integrals of the form :

(4.7) Λ2ε
∫

dD l
(2π)D

N
(l2 −Δ)n

where l is the shifted momenta, D = 4−2ε, Δ is a function of Feynman parameters and of

masses and momentum that appear in the loop and the numerator N is a function of l and
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Feynman parameters. In the calculation of an integral of the form of eqn 4.7, for example with

N=1 and n=2, the following term appears :

(4.8) B
(

4πΛ2

Δ

)ε
Γ(2−D/2)

where B is just a constant. Here, we need the expansion of Γ(x) near its poles :

(4.9) Γ(x)= 1
x
−γ+O (x)

where γ∼ 0,5772 is the Euler-Mascheroni constant that appears in loop integrals and is also

subtracted in MS. Thus, in eqn 4.8, for a simple case where n=2, the Γ function is the numerator

becomes :

(4.10) Γ(2−D/2)=Γ(ε)= 1
ε
−γ+O (ε)

The term in equation 4.8 becomes :

(4.11) B
(

1
ε
−γ+ log

(
4πΛ2

Δ

))
Notice that in MS, the terms −γ+ log(4π) are subtracted as well. Thus, a singularity in loop

integrals can be extracted as a 1
ε

pole (see eqn 4.3 and 4.11).

4.2.2 Renormalization

It is a well known fact that renormalization is necessary in quantum field theory, in order to treat

the divergences that arise in loop diagrams computations. Thus, to eliminate the divergences

that come from the loop integrals, it is necessary to renormalize the fields and the parameters

of the Lagrangian. In general, this is done by rescaling the parameters with a renormalization

constant. For example, in the QED Lagrangian, a fermion ψ of mass m and the coupling constant

e are renormalized as follow:

(4.12) m0 = Zmm, ψ0 = Z1/2
2 ψ, e0Z2Z1/2

3 = eZ1

where the index 0 indicates non renormalized or "bare" quantities and the factors Zm, Z1,

Z2 and Z3 are renormalization constants. Notice that in order to have a renormalized coupling

g independent of the number of dimensions, we have to compensate the dimension of the bare

coupling g0 with an external scale Λ that appears in dimensional regularization :
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(4.13) g0 =ΛεgZg

where Zg is the renormalization constant. The bare parameters g0 and m0 are independent

of the scale Λ. This implies that the renormalized coupling g must be Λ dependent.

A way to implement renormalization is the counter terms method, in which the bare parame-

ters of a Lagrangian are reexpressed via renormalization constants (see eqn 4.12). For example, a

mass term of the form m0ψ
0ψ̄0 would become (Z2Zm −1)mψψ̄+mψψ̄. Then, only renormalized

quantities are present in the Lagrangian, and the counter term δ is of the form δi ∼ Zi −1. The

counter term δ can be considered as an interaction term, and in the case of the mass counter

term, the Feynman rule would be i(Z2Zm −1)m. The factors Z have to be determined in order to

cancel the divergences coming from the loop integrals.

In the case of the EFT approach, the Wilson coefficients C(d)
i are renormalized in a similar

way :

(4.14) C(d),0
i = Zi jC(d)

j

where Zi j is a renormalization matrix which can also mix operators during renormalization. The

idea of renormalization group, renormalization schemes and EFT are closely related, and it is

important to choose a specific renormalization scheme when performing an EFT analysis. Many

schemes exists :

• A first one is a physical renormalization scheme, such as the momentum space subtraction,

that use the Appelquist-Carazzone theorem [184]. In this case, there is no dependence on

unphysical parameters. However, physical renormalization schemes are mass dependent,

which means that quantities such as the beta function of eqn 4.16 depends on Λ/m. The

main issue is that physical renormalization schemes are difficult to use beyond one-loop

in theories in which very disparate scales are present. This is due to the fact that the

quantities depend on the renormalization scale Λ and on the physical parameters.

• It is thus easier to use a renormalization scheme in which quantities are independent of

the scale Λ, but depends only on the physical parameters. These type of schemes are called

mass independent subtraction schemes. Famous mass independent schemes are minimal

subtraction scheme (MS) [189] and modified minimal subtraction scheme MS [198]. There

are many advantages to use the MS scheme, as calculations are easier, the subtraction is

automatic and moreover, dimensional analysis works.
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In the MS scheme, a renormalization constant Z is chosen to absorb the pure pole divergences
1
εk (see eqn 4.3 and 4.11). Thus, Z can be expanded in inverse powers of ε :

(4.15) Z = 1+
∞∑

k=1

1
εk Zk

The ε dependent renormalization constants, such as in eqn 4.12 and 4.14, are determined

as an expansion in the renormalized coupling constant by imposing that all the transitions

amplitudes, once expressed in terms of the renormalized coupling, are free of the UV divergences

when ε→ 0. As we saw, the renormalization constants depend on the renormalization scheme,

that is to say on the way the divergences are absorbed.

In the EFT approach we will use in the rest of the manuscript, and especially in chapters 5

and 6, we will use dimensional regularization as a regulator and use the MS scheme to subtract

the divergences.

4.3 Running of the QED and QCD coupling constants

In this section we discuss the evolution of the QED and QCD coupling with energy scale Λ via

the renormalization group equations.

In the process of renormalization (see eqn 4.12 and 4.13), we have introduced an arbitrary

scale Λ. The running of a coupling constant with the scale Λ is given by the renormalization

group beta function [201], that can be written :

(4.16) β(g,ε)= dg(Λ)
d logΛ

where g is a coupling constant and Λ is the energy scale (see eqn 4.12 and 4.13). The beta

function is calculated as :

(4.17) β(g,ε)=−gε+β(g), β(g)=−g
1

Zg

dZg

d logΛ

where Zg is the renormalization constant associated to the coupling constant g. This means

that the beta function can be directly obtained from the 1
ε

pole parts of the renormalization

constant Zg. Notice that in four dimensions, β(g,ε) reduces to β(g).

4.3.1 Running of the QED coupling constant

In the case of the QED coupling constant, the leading term of the beta function for Nf Dirac

fields of charge Qi e is positive :
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(4.18) β(e)= e3∑Nf
i=1 Q2

i

12π2

The fact that the beta function of QED (eqn 4.18) is positive means that the coupling constant

αe = e2/4π increases with the energy scale Λ. However, the running of the coupling constant in

QED is small, as the value of αe varies from ∼ 1/137 at low energy to ∼ 1/128 at high energy.

4.3.2 Running of the QCD coupling constant

The leading term of the QCD beta function is given by :

(4.19) β(gs)=−β0
g3

s

16π2 , β0 =
11Nc −2Nf

3

where Nc is the number of colors and Nf the number of quark flavours.

Using eqn 4.16, eqn 4.19 and αs = g2
s /4π, the running of the strong coupling constant at

one-loop can be written :

(4.20) αs(Λ)= 4π
β0 log(Λ2/Λ2∞)

where β0 is defined in eqn 4.19 and Λ∞ is the scale where αs →∞. The fact that the beta

function of QCD (eqn 4.19) is negative means that the coupling constant αs decreases with the

energy scale Λ. In figure 4.2 [38], we can see the that running of the strong coupling constant

is very large, as αs evolve a lot from low to high energies. We also see that QCD becomes non

perturbative below one GeV.

This is a striking result of QCD, as the running of αs is large, which lead to very different behavior

at low and high energies. Indeed, at high energy, αs is small, leading to an important feature

of QCD, called asymptotic freedom. It means that at high energies or short distances (large

momentum transfers), quarks behave like free particles, as observed in deep inelastic scattering

experiments.

However, at low energies, QCD has a very different behavior due to a phenomenon called

confinement, which means that quarks and gluons are confined into colorless bound states called

hadrons. However, as αs becomes very large at low energies, the perturbativity is lost. Thus

describing the behavior of hadrons is a very difficult task. A current and powerful approach is

lattice QCD, which attempts to evaluate the path integral by discretizing space time.

4.4 Running of the Wilson coefficients

In this section, we describe the evolution of the Wilson coefficients associated to the operators with

the energy scale Λ via the renormalization group equations, that require to compute a function
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QCD αs(Mz) = 0.1181 ± 0.0011
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Figure 4.2: Evolution of the strong coupling αs with the energy scale Q (from Phys. Rev.,
D98(3):030001, 2018).

called anomalous dimension. As a first example, let us consider the anomalous dimension of

a mass term. Indeed, as the renormalization constants have a perturbative expansion in the

renormalized coupling constant (see 4.12 and 4.13), they must depend on Λ, which means that

the renormalized mass is also Λ dependent. The running is given by :

(4.21)
dm(Λ)
d log(Λ)

=−γmm(Λ)

where γm is the anomalous dimension of a mass that can be written

(4.22) γm = 1
Zm

dZm

d log(Λ)

where Zm is defined in eqn 4.12.
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Similarly, the anomalous dimension of a Wilson coefficient can be written :

(4.23) γ= 1
Z

dZ
d log(Λ)

Thus, as for the beta function, the anomalous dimension of a mass or a Wilson coefficient

can be obtained from the 1
ε

poles of the associated renormalization constant. However, from eqn

4.14, we see that the running of Wilson coefficients is more complicated, as the coefficients of the

operators can also mix during renormalization.

4.4.1 Renormalization Group evolution of the Wilson coefficients

We have now to discuss the computation of the running of the Wilson coefficients with the energy

scale Λ, via the appropriate renormalization group equations. We saw that the running of a

coupling constant is govern by a quantity called the beta function (eqn 4.16). The renormalization

group function describing the evolution of the Wilson coefficients is called an anomalous dimen-

sion (see eqn 4.23). We saw in eqn 4.14 that Wilson coefficients can mix under renormalization,

which means that the anomalous dimensions will be organized in a matrix. As for the running of

a coupling constant, it is also necessary to compute loop diagrams that diverge in order to solve

the renormalization group equations for the Wilson coefficients. As explained, we will use the MS

scheme and dimensional regularization to treat the divergences that appear in loop diagrams

involved in the evolution of the Wilson coefficients with the energy scale.

When considering a specific basis of operators, the Wilson coefficients associated to the

operators of the basis can be organized in a row vector
−→
C . In the case of one-loop corrections that

are included in the MS scheme, the running of the Wilson coefficients with the scale Λ is given by

(4.24) Λ
∂

∂Λ
(CI , ...CJ , ...)= αe

4π
−→
CΓe + αs

4π
−→
CΓs

where I, J represent the super- and subscripts which label operator coefficients, Γe and Γs

are the QED and QCD anomalous dimension matrices that contribute to the running and the

mixing of the Wilson coefficients.

In chapters 5 and 6, we will study the effects of the running and the mixing of Wilson coefficients,

which are also reviewed in appendix C and F.

4.4.2 Why do we need EFT?

In chapters 5 and 6, we will study two CLFV processes in an EFT approach. As no CLFV processes

have been observed, experiments have set upper limits on observables, such as branching ratios

for CLFV decays, as we saw in chapter 3. In this case, the goal of an EFT approach is to compute
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an observable, such as a cross section or a branching ratio, as a function of the Wilson coefficients.

Then, we will use the available experimental upper limits on the observables we computed in

order to constrain the Wilson coefficients. This will allow us to constrain the parameter space of

BSM scenarios that aim at explaining CLFV processes.

As we have seen, the running of the strong coupling constant is large, and QCD has a very

different behavior at low and high energies. Indeed, we saw that at high energies, quarks behaves

like free particles, whereas at low energies quarks and gluons are confined into hadrons. This is

of great importance in the use of an EFT approach, as the question we ask is "what is the scale of

the physics we are interested in?", or equivalently, "what can experiments observe?" : free quarks

exchanging gluons? or bound states of quarks?

For example, experiments searching for the μ→ e conversion on nuclei are not sensitive to

free quarks exchanging gluons, but rather to the nucleons. Another similar example would be

experiments searching for the CLFV decays of meson.

Consider again a BSM scenario that predicts the existence of a new boson, that would mediate

new interactions among SM particles. The boson has not been observed yet, thus, we assume that

the boson is too heavy to be produced at LHC. The next step is to consider contact interactions

in order to describe the indirect effects of that new boson, that would induce new interactions

between SM particles. This means that we have to compute the effective operators and their

associated Wilson coefficients to describe the contact interactions induced by the new boson.

Assuming that the scale of that BSM scenario, or equivalently the mass of the new boson is at

the TeV, it means that the Wilson coefficients we computed are also at the TeV scale.

As we saw in figure 4.2, at the TeV scale, quarks behave like free particle as αs is small. But

in the case of CLFV mesons decays or μ→ e conversion on nuclei, we know that experiments are

not sensitive to free quarks, but to bound state of quarks. This means that we need to evolve

the Wilson coefficients from the TeV scale down to the GeV scale in order to correctly describe

the physics experiments can observe. Indeed, the GeV scale is the scale at which QCD becomes

strongly coupled, as αs becomes very large (see figure 4.2); which means that quarks are confined

into hadrons.

Once the Wilson coefficients are evolved to the experimental scale (Λexp ∼GeV ) and describe

the physics experiments can observe, that is to say hadrons, we can compute an observable (as a

function of the Wilson coefficients) that can be measured by experiments. Again, in the case of

unobserved processes, such as CLFV processes, experiments set upper limits on observables, that

we will use in order to constrain the Wilson coefficients.
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4.5 Matching

It is also important to notice that when we compute the evolution of the coefficients between

the new physics scale ΛNP ∼ TeV and the experimental scale Λexp ∼GeV , we have to consider

the intermediate scales, each time a particle mass is encountered, such as the top and bottom

quark mass. For simplicity, we will consider only the intermediate weak scale ΛW ∼ mW . In

this case, the evolution is in two steps : first we compute the evolution between ΛNP and ΛW ,

then between ΛW and Λexp, or vice versa. Indeed, between Λexp and ΛW , the W, the Z and

Higgs boson do not participate to the loop diagrams, but they will between ΛW and ΛNP . As

long as no particle masses are encountered, the evolution of the coefficients is described by the

renormalization group equations (eqn. 4.24). However, when the scale Λ reaches the mass M

of a particle, we have to change the effective theory to a new theory without the particle of mass M.

Let us consider the following example. First, we start at a very high scale, with new heavy

particles of mass M (for example M∼ TeV ). When Λ goes below the mass M, the parameters of

the theory change and new non renormalizable interactions are introduced. At the scale Λ= M,

the particles of mass M are integrated out. These changes in the parameters and the coefficients

that describe the new interactions have to be computed by "matching" (for Λ= M) the physics

just below the boundary Λ= M in both theories. The matching condition of the two theories at the

boundary Λ= M is that S-matrix elements for light particle scattering in the low energy theory

without the heavy particle must match those in the high-energy theory with the heavy particle(s)

of mass M. Then, we have to compute the running of the coefficients of the new effective theory

from the scale M down to a smaller scale until another particle mass is encountered, which is

ΛW ∼ 80 GeV in this example. The renormalization group also introduces additional factors into

the coefficients, including the mass of the heavy particle.

This means that a heavy particle mass appears in the coefficients in two ways :

• From matching conditions, in the form of a power dependence

• From the renormalization group running in the form of a logarithmic dependence (eqn.

4.24)

Then, we have to repeat this procedure each time a mass is encountered. Thus, the calculation

is done by using a sequence of effective field theories with fewer and fewer particles. For example,

at the scale ΛW , we first have to compute the matching so that the physics of the light particles is

the same in the two theories, at the boundary Λ=ΛW . Then, we have to use the renormalization

group to compute the running of the coefficients from ΛW to the scale of interest, in our case,

Λexp ∼GeV .
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4.6 Bottom-up vs top-down approach

In this section, we discuss two approaches that we will use in our EFT analyses.

4.6.1 Top-down EFT

In the top-down approach, the aim is to start directly from a BSM Lagrangian of a specific model,

that would for example predict the existence of a new heavy boson, that, for the purpose of this

manuscript could mediate CLFV processes.

As explained in the previous sections, the assumption is that the new boson has not been

observed yet, as it is too heavy to be produced. We have to compute the effective operators ans

their associated coefficients in order to describe the indirect effects of the boson among SM

particles. The goal is then to compute an observable that can be measured, as a function of the

coefficients, and use experimental data to constrain the coefficients. The steps of the top-down

approach are :

• Compute the effective operators from the BSM Lagrangian LBSM at the new physics scale

ΛNP (in general ΛNP ∼ TeV).

• Compute the Wilson coefficients associated to the operators, at ΛNP . Notice that the Wilson

coefficients are proportional to the parameters of LBSM , like coupling constants or masses.

• As the Wilson coefficients are at the new physics scale ΛNP , they do not describe the

physics experiments can observe, which is bound states of quarks rather than free quarks

exchanging gluons. Thus, we have to run the coefficients down to the experimental scale

Λexp ∼GeV , via eqn 4.24.

• Compute an observable proportional to the Wilson coefficients once they are evolved to the

experimental scale Λexp.

• Finally, as we are interested in CLFV processes, that have not been observed, we use the

experimental upper limits on the observable to constrain the coefficients at Λexp.

Notice that as the coefficients are proportional to the parameters of LBSM , the top-down

approach is model dependent.

In chapter 5, we will apply the top-down approach to the μ→ e conversion on nuclei, in a

BSM scenario involving scalar Leptoquarks.

4.6.2 Bottom-up EFT

In the bottom-up approach, the aim is to start directly from the experimental scale Λexp ∼GeV .

In this case, we make absolutely no assumption of the new physics and on the scale ΛNP . We have

thus to write the most general operators describing the contact interactions, in our case, for CLFV
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processes. We can then compute an observable proportional to the coefficients at Λexp, using the

experimental upper limits on the observable to constrain the coefficients at Λexp. Finally, the

aim is to evolve the bounds on the coefficients to an arbitrary new physics scale ΛNP ∼ TeV . The

steps of the bottom-up approach are :

• Write the most general operators at Λexp ∼GeV , that describe the process of interest, with

no assumption on the new physics at high energy.

• The coefficients associated to the operators at Λexp do not depend on any parameters of a

BSM Lagrangian.

• Compute an observable proportional to the coefficients, as they are already at Λexp.

• Constrain the coefficients at Λexp using experimental upper limits on the observables.

• Evolve the bounds on the coefficients from Λexp to a scale ΛNP , at which new physics could

enter.

• The final step is to reconstruct the fundamental Lagrangian of the new physics from the

operator coefficients.

Notice that as we made no assumption on the high energy theory, the coefficients do not

depends on the parameters of a BSM Lagrangian. This means the bottom-up approach is model

independent, and will allow to test several BSM scenarios.

In chapter 6, we will apply the bottom-up approach to CLFV leptonic and semileptonic pseu-

doscalar meson decays.

It is important to notice that the running of the Wilson coefficients via the renormalization

group equations of eqn 4.24 will be always model dependent. Indeed, we saw that in order to solve

the renormalization group equations, we have to compute loop diagrams. In this manuscript,

we will assume that only SM particles are involved in the loop diagrams when we compute the

evolution of the coefficients between the experimental scale and the new physics scale.
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SPIN-DEPENDENT μ→ e CONVERSION ON LIGHT NUCLEI
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PUBLISHED IN : The European Physical Journal C 1

The experimental sensitivity to μ → e conversion will improve by four or more orders of

magnitude in coming years. It is thus interesting to consider the “spin-dependent” (SD) contri-

bution to the rate. This process does not benefit from the atomic-number-squared enhancement

of the spin-independent (SI) contribution, but probes different operators. We give details of our

recent estimate of the spin dependent rate, expressed as a function of operator coefficients at

the experimental scale. Then we explore the prospects for distinguishing coefficients or models

by using different targets, both in an EFT perspective, where a geometric representation of

different targets as vectors in coefficient space is introduced, and also in three leptoquark models.

It is found that comparing the rate on isotopes with and without spin could allow to detect spin

dependent coefficients that are at least a factor of few larger than the spin independent ones.

Distinguishing among the axial, tensor and pseudoscalar operators that induce the SD rate would

require calculating the nuclear matrix elements for the second two. Comparing the SD rate on

nuclei with an odd proton vs odd neutron could allow to distinguish operators involving u quarks

from those involving d quarks; this is interesting because the distinction is difficult to make for

SI operators.

1https://doi.org/10.1140/epjc/s10052-018-5584-8

41



CHAPTER 5. SPIN-DEPENDENT μ→ e CONVERSION ON LIGHT NUCLEI

5.1 Introduction

Charged Lepton Flavour Violation (CLFV) is New Physics that must exist; only the rates are

unknown. In this paper, we consider μ↔ e flavour change, and assume that it can be parametrised

by contact interactions involving Standard Model particles. Flavour change μ↔ e can be probed

in the decays μ→ eγ [123] and μ→ eeē [129], in μ→ e conversion [13, 137, 202] and in various

meson decays such as K → μ̄e [38]. In μ→ e conversion, a beam of μ− impinges on a target, where

the μ is captured by a nucleus, and can convert to an electron while in orbit. The COMET [14]

and Mu2e [15] experiments, currently under construction, plan to improve the sensitivity by

four orders of magnitude, reaching a branching ratio ∼ 10−16. The PRISM/PRIME proposal [138]

aims to probe ∼ 10−18. These exceptional improvements in experimental sensitivity motivate

our interest in subdominant contributions to μ→ e conversion. Initial analytic estimates of the

μ→ e conversion rate were performed by Feinberg and Weinberg [203], for promising operators

and nuclei. A wider range of nuclei were studied numerically by Shanker [204], and estimates

for many operators and nuclei can be found in the review [8]. Relativistic effects relevant in

heavier nuclei were included in [205]. The matching of CLFV operators constructed with quarks

and gluons, onto operators constructed with nucleons, was performed in [206]. The current

state of the art is the detailed numerical calculations of Kitano, Koike and Okada (KKO) [207],

who studied all the CLFV nucleon operators that contribute coherently to μ → e conversion,

for nuclei from Helium to Uranium. In such processes, the amplitude for μ→ e conversion on

each nucleon is coherently summed over the whole nucleus. Like “spin-independent”(SI) dark

matter scattering, the final rate therefore is enhanced by a factor ∼ A2, where A is the atomic

number of the nucleus. However, other conversion processes are possible. For instance, incoherent

μ→ e conversion, where the final-state nucleus is in an excited state, has been discussed by

various people [204, 208, 209], and is expected to be subdominant with respect to the coherent

process. In a previous letter [210], some of us noted that “spin-dependent”(SD) μ→ e conversion

can also occur, if the target nuclei have spin (as is the case for Aluminium, the target of the

upcoming COMET and Mu2e experiments). Although this process does not benefit from the ∼ A2

enhancement associated to SI rates, it has the interest of being mediated by different CLFV

operators from the coherent process.

The aim of this manuscript is to give details of our calculation, and explore whether the SD

process could help distinguish models or operators, should μ→ e conversion be observed. The

operators which could induce SD μ→ e conversion are listed in section 5.2. The conversion rate

in Aluminium is estimated in section 5.3, and the extrapolation to other nuclei is discussed in

subsection 5.3.2. The theoretical uncertainties in our estimates are briefly discussed in section 5.4.

Section 5.5 explores the consequences of including the SD contribution to the μ→ e conversion

rate, both in the perspective of obtaining constraints on operator coefficients from an upper

bound on the branching ratio, and for discriminating models when μ→ e conversion is observed.

This section comes in three parts: we study three leptoquark models which induce SD and
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SI conversion, then consider the same operators but with arbitrary coefficients, and calculate

a covariance matrix. Finally, we allow all possible operators with arbitrary coefficients. We

summarise in section 5.6.

In our previous letter [210], we showed that the SI and SD operator coefficients mix under

Renormalisation Group(RG) evolution between the experimental and weak scales. The effects of

this mixing are significant: the largest contribution to the μ→ e conversion rate from an “SD”

coefficient at the weak scale, would be via the RG mixing to an SI coefficient (for example, a

tensor coefficient at the weak scale induces a SI contribution to the rate which is ∼ A2 larger

than the SD contribution). In this paper, we focus on operator coefficients at the experimental

scale, only including the RG evolution in the leptoquark models of section 5.5.1. The RG evolution

of the operator coefficients is summarised in Appendix C.

5.2 Operators

We are interested in contact interactions that can mediate μ→ e conversion on nuclei, at a scale

Λexp ∼ 2 GeV. The focus of this manuscript is the subset of “spin-dependent” interactions, but for

completeness, all QED×QCD invariant operators that mediate μ→ e conversion on nuclei are

included. The relevant operators in the quark-level Lagrangian are [206, 207]:

(5.1) δL =−2



2GF
∑

Y∈L,R

[
CD,Y OD,Y + 1

mt
CGG,Y OGG,Y + ∑

q=u,d,s

∑
O′

Cqq
O′,Y O

qq
O′,Y

]
+h.c.

where the two-lepton operators are

(5.2) OD,Y = mμ(eσαβPYμ)Fαβ OGG,Y = (ePYμ)GαβGαβ

and O′ ∈ {V , A,S,P,T} labels 2-lepton 2-quark operators in a basis where only the lepton

currents are chiral:

(5.3)

O
qq
V ,Y = (eγαPYμ)(qγαq) O

qq
A,Y = (eγαPYμ)(qγαγ5q)

O
qq
S,Y = (ePYμ)(qq) , O

qq
P,Y = (ePYμ)(qγ5q)

O
qq
T,Y = (eσαβPYμ)(qσαβq)

with σαβ = i
2 [γα,γβ] and PL = (1−γ5)/2. This choice of non-chiral quark currents is convenient

for matching onto nucleons. However, often an operator basis with chiral quark currents is added

to the Lagrangian as δL =−2



2GF
∑

CO,Y X O
qq
O,Y X [8, 211, 212], where for instance, O

qq
V ,Y X ≡

(eγαPYμ)(qγαPX q). In this case, the coefficients are related as (recall that O
qq
T,LR vanishes—see

appendix C of [211]) :
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(5.4)

Cqq
V ,Y = 1

2 (Cqq
V ,Y R +Cqq

V ,Y L) Cqq
A,Y = 1

2 (Cqq
V ,Y R −Cqq

V ,Y L)

Cqq
S,Y = 1

2 (Cqq
S,Y R +Cqq

S,Y L) Cqq
P,Y = 1

2 (Cqq
S,Y R −Cqq

S,Y L)

Cqq
T,Y = Cqq

T,Y Y .

In eqn (5.1), the coefficients and operators are evaluated close to the experimental scale, at

Λexp � 2 GeV. The scale is relevant, because Renormalisation Group running mixes the tensor

and axial vector operators (that induce SD μ→ e conversion) into the scalar and vector operators

(who mediate the SI process)[210]2. This is reviewed in Appendix C. Throughout the paper,

coefficients without an explicit scale are assumed to be at Λexp.

To compute the rate for μ→ e conversion, the operators containing quarks should be matched

at the scale Λexp onto CLFV operators involving nucleons and mesons. The relevant nucleon

operators are the four-fermion operators of eqn (5.3) with q → N and N ∈ {n, p}. As discussed

below, rather than include mesons in the Lagrangian, we approximate their effects by form factors

for some nucleon operators and two additional operators given in eqn (5.10). So the nucleon-level

Lagrangian will be

(5.5) δL =−2



2GF
∑

Y∈L,R

[
CD,Y OD,Y + ∑

N=p,n

∑
O′′

C̃NN
O′′,Y O NN

O′′,Y

]
+h.c.

where O′′ ∈ {V , A,S,P,T,Der}.

At zero momentum transfer (�Pf −�Pi → 0), we match onto operators with nucleon currents, by

replacing

(5.6) q̄(x)ΓO q(x)→GN,q
O N̄(x)ΓON(x)

such that 〈N|q̄(x)ΓO q(x)|N〉 = GN,q
O 〈N|N̄(x)ΓON(x)|N〉=GN,q

O uN (Pf )ΓOuN (Pi)e−i(Pf −Pi)x, with

ΓO ∈ {I,γ5,γα, γβγ5,σαβ}. The constants GN,q
O obtained at zero-recoil are given in appendix A,

and we will assume that they are an acceptable approximation at the momentum-transfer of

μ→ e conversion, which is |�Pf −�Pi|2 = m2
μ.

Various mesons are present in the low energy theory at Λexp, so in principle the quark

operators of eqn (5.1) should be also matched onto meson operators. χPT [215] involving nucleons

(see e.g. the review [216]) would be the appropriate formalism for this calculation, and has been

used to calculate WIMP scattering on nuclei [217–220], neutrinoless-double-beta-decay [221],

and SI μ→ e conversion [222]. However, to avoid more notation, here we just give results for the

simple diagrams of interest. We only consider the CLFV decays of pions, because the effects of

heavier mesons would be suppressed by their masses, and diagrams where a pion is exchanged

2The analogous mixing of SD WIMP scattering operators into SI operators was discussed in [213, 214].
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between two nucleons are suppressed by more propagators, and would require two nucleons

in the initial and final states3. Pion decay can contribute to μ→ e conversion via the second

diagram of figure 5.1, in the presence of a pseudoscalar or axial vector quark current. We follow

the notation of [215, 216] in matching the axial vector and pseudoscalar quark currents onto the

pion, at P2 = m2
π, as

(5.7) q̄(x)τbγαγ5q(x)→ fπ i∂απb(x) , 2mqq̄(x)τ3γ5q(x)→ fπm2
ππ

0

in order to obtain the usual expectation values 〈0|ū(x)γαγ5d(x)|π−(P)〉 =



2 Pα fπe−iP·x,

〈0|ū(x)γαγ5u(x)|π0(P)〉 = Pα fπe−iP·x, and 〈0|ū(x)γ5u(x)|π(P)〉 = fπm2
πe−i·Px/2mu, where fπ �

92.4 MeV. Later in the manuscript, the matrix element for μ → e conversion on a nucleon,

M (μ+N(Pi)→ e(k)+N(Pf )) will be required. In the case of vector, scalar or tensor interactions,

it is is straightforward because conversion proceeds via a 2-nucleon-2-lepton contact interaction.

In the case of axial vector and pseudoscalar interactions, there is a pion exchange contribution,

as illustrated in figure 5.1, so we give the matrix elements here. The pion-nucleon interaction

term in the Lagrangian is taken as igπNN Nγ5�τ ·�πN, and the Goldberger-Treiman relation gives

gπpp � (Gpu
A −Gpd

A )mp/ fπ.

In the following two equations, uN = (up,un) represents a vector of spinors in isospin space.

The matrix element M (μ+N(Pi)→ eX (k)+N(Pf )) mediated by the axial up quark current, can

be written [217, 223] :

(5.8)
(
uN (Pf )

[a0I +a1τ3]
2

γαγ5uN (Pi)+Cuu
A,X

gπNN fπqα

|�q2|+m2
π

uN (Pf )[τ3]γ5uN (Pi)
)
ueγαPX uμ

where q = (0,−�q) = Pf −Pi, the first term is written in terms of iso-scalar and iso-vector

contributions (a0 + a1)/2 = Cuu
A,X Gp,u

A , (a0 − a1)/2 = Cuu
A,X Gn,u

A , whereas the pion contribution is

only isovector.

In the case of the pseudoscalar operator O uu
P,Y , the pion exchange diagram is non-vanishing at

|�q|2 = 0, so at finite momentum transfer, only the additional contribution ∝ 1/(|�q|2 +m2
π)−1/m2

π

should be included. This gives :

(5.9)

Cuu
P,Y

(
uN (Pf )

[
Gp,u

P 0

0 Gn,u
P

]
γ5uN (Pi)−

mN (Gp,u
A −Gn,u

A )|�q|2
2mu(|�q|2 +m2

π)
uN (Pf )[τ3]γ5uN (Pi)

)
uePY uμ

In summary, the axial vector and and pseudoscalar quark operators could equivalently have

been matched at Λexp to an EFT without pions, but with a q2-dependent “form factor” for the

pseudoscalar nucleon operator, and an additional dimension seven derivative operator

3Such two-nucleon contributions, which arise at NLO, have been studied in WIMP scattering [217–219], and
recently considered for coherent μ→ e conversion in [222].
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(5.10) O NN
Der,Y = i(eγαPYμ)(N

↔
∂α γ5N)

such that i〈N(Pf , s′)|N̄(x)
↔
∂α γ5N(x)|N(Pi, s)〉 = ūs′

N (Pf )qαγ5us
N (Pi)e−i(Pf −Pi)·x. In this ex-

tended basis, the nucleon coefficients are :

(5.11)

C̃NN
A,Y =GN,u

A Cuu
A,Y +GN,d

A Cdd
A,Y +GN,s

A Css
A,Y

C̃NN
Der,Y = mμmN

(m2
μ+m2

π)

(
GN,u

A −GN,d
A

)(
Cuu

A,Y −Cdd
A,Y

)
C̃NN

P,Y =GN,u
P Cuu

P,Y +GN,d
P Cdd

P,Y +GN,s
P Css

P,Y −
(

Cuu
P,Y

2mu
− Cdd

P,Y
2md

)
mN (GNu

A −GNd
A )m2

μ

(m2
μ+m2

π)

C̃NN
T,Y =GN,u

T Cuu
T,Y +GN,d

T Cdd
T,Y +GN,s

T Css
T,Y

C̃NN
V ,Y =GN,u

V Cuu
V ,Y +GN,d

V Cdd
V ,Y

C̃NN
Der,Y was evaluated at q2 =−m2

μ, and the scalar nucleon coefficients, to which contribute also

gluon operator of eqn (5.2), are given in [206].

To obtain the μ→ e conversion rate, the expectation values of the nucleon operators in the

nucleus are required. This is discussed in the next section. We were unable to find nuclear

expectation values of the tensor and pseudoscalar operator, so O NN
P,Y will be neglected, and the

tensor included in the scalar and axial operators, as described in eqn (5.19).

Figure 5.1: Diagrams contributing to μ→ e conversion in the presence of axial and pseudoscalar
CLFV operators (represented by the grey blob)

5.3 Estimating the SD and SI rate in light nuclei

In our previous paper [210], we gave analytic estimates of the SI and SD conversion rates

on Aluminium. The aim of section 5.3.1 is to give details of the calculation in the notation of
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relativistic, second-quantised Field Theory. The results can then be matched onto the nuclear

physics calculations of [207] (for SI conversion), and SD WIMP scattering [217, 223–225] (for SD

conversion). In subsection 5.3.1.3, the estimates are mapped onto the numerical results of KKO

[207], and SD conversion in heavier targets is discussed in section 5.3.2.

5.3.1 Estimating the SD and SI rate in Aluminium

We define the bound state of momentum Pi composed of an Aluminium nucleus and a muon in the

1S orbital as ≡ |Alμ(Pi)〉 . We are interested in the S-matrix element for Alμ(Pi)→ Al(Pf )+e−X (q)

induced either by the dipole operator (which we discuss later), or by a four-fermion operator

(eXΓlμ)(NΓnN). To be concrete, we consider the S-matrix element where the nucleon N is a

proton:

(5.12) i2



2GFC̃pp
Γ 〈Al(Pf ), e(q, s)|

∫
d4 y[ ˆeX (y)Γlμ̂(y)][p̂(y)Γn p̂(y)]|Alμ(Pi)〉

where s is the spin of the electron selected by the chiral projector PX , field operators wear

hats, and Γn ∈ {I,γ5,γα,γβγ5, σαβ}, Γl ∈ {I,γα,σαβ}.

5.3.1.1 four-fermion operators

A first step is to write the motionless bound state |Alμ(0)〉 as

(5.13) |Alμ(�Pi = 0)〉 =
√

2(MAl +mμ)
4MAl mμ

∑
w

∫
d3k

(2π)3 ψ̃μ(�k) |Al(−�k)〉⊗ |μ(�k,w)〉

where w is the spin of the muon, the square-root prefactor accounts for one vs two-body

normalisation of states in Lorentz-covariant field theory conventions where states are normalised

∝

2E [226], and ψ̃μ(�l)=∫d3ze−i�l·�zψμ(�z) is the fourier transform of the Schrodinger wavefunc-

tion ψμ(�z) for a muon in a central potential of charge Z.

For Zα<< 1, the unit-normalised wavefunction, for either spin state, can be approximated

[227–229] as

(5.14) ψμ(r,θ,φ)� [mαZ]3/2


π

e−Zαmr .

We approximate the outgoing electron as a free particle (plane wave), which should be accept-

able for an Aluminium target. For heavy nuclei, the Dirac equation for the electrons outgoing in

the field of the nucleus should be solved [205], allowing to express the electron as a superposition

of free states. This approach was followed in KKO [207].
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In the same non-relativistic bound state formalism (see e.g., Appendix B of [224] for more

details), the Aluminium nucleus, of spin JA , can be written as a bound state composed of a proton

of spin t, with another state M1 of mass M1 and spin JM containing Z −1 protons and A−Z

neutrons:

(5.15) 〈Al(Pf ), JA| =
√

2MAl

4M1mp

∑
t,JM

∫
d3l

(2π)3 f̃ ∗p (�l, t, JM , JA)〈M1(−�l+M1�vf ), JM |×〈p(�l+mp�vf ), t|

where f̃ p(�l, t, JM , JA) is the fourier transform of the (unknown) wavefunction of the proton in

the potential of M1, and Pf = (MAl , MAl�vf ).

The fermion operators can be expanded as [226]

(5.16) μ̂(y)=∑
w

∫
d3 p
(2π)3

1

2E

(
âw

p uw
p e−ip·y + b̂w†

p vw
p eip·y

)
and act on states as μ̂(y)|�k,w〉 = uw

k e−ik·y|0〉, where the spinors are normalised as u†
kuk = 2k0.

The S-matrix element of eqn (5.12) can then be evaluated as

(5.17)

i(2π)4δ4(Pi−Pf −q)2



2GFC̃pp
Γ

MAl

mp
√

2mμ

∑
p∈Al

∑
spins

∫
d3xψμ(�x)| f p(�x, JA, JM , t)|2e−i�q·�x(us

eΓuw
μ )(uo

pΓut
p)

where the spinors subscripts are particle names rather than momenta, and Pi � (MAl+mμ, �Pi),

Pf � (MAl , �Pf ). To obtain this approximation, the states were taken to be non-relativistic, the

wavefunctions expressed in position space, the proton wavefunction was assumed independent

of the proton spin, and the dependence of spinors on three-momenta was neglected in many inte-

grals. Notice the MAl /mp enhancement factor that arises automatically for both spin-dependent

and spin-independent interactions, and that the usual (2π)4δ4(Pi −Pf − q), which accounts for

four-momentum conservation, appears despite that there is a spatial integral over the nucleus.

In the following, we drop the spin indices in the nucleon distribution in the nucleus | fN |2.

The leptonic spinor contraction is independent of �x and can be factored out of the spatial

integral in eqn (5.17). In light nuclei such as Aluminium, the muon wavefunction can also be

factored out [203], because the muon wavefunction decreases on the scale ∼ 1/(Zαmμ), which is

larger than the radius of the Aluminium nucleus, given in [230] as ≤ 6 fm. On the other hand,

the first zero of the electron plane wave (the e−i�q·�x of eqn (5.17)) would occur at r ∼π/(mμ)∼ 6 fm.

The nucleon spinor contractions, in the non-relativistic limit, can be written (see eqn (47) of

[231]):
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(5.18)

uo
N (Pf )ut

N (Pi) → 2mNδot

uo
N (Pf )γ5ut

N (Pi) → 2�q ·�SN

uo
N (Pf )γαut

N (Pi) → 2mNδotδα0

uo
N (Pf )γ jγ5ut

N (Pi) → 4mN S j
N

uo
N (Pf )σikut

N (Pi) → 4mNεik jS
j
N

uo
N (Pf )σ0kut

N (Pi) → iqk

where the spin vector of the nucleon is defined as 2�SN = u†
N
�ΣuN /2EN , and the rotation

generator Si j = i
4 [γi,γ j] = 1

2ε
i jkΣk. The momentum transfer q = Pi −Pf has been neglected,

except in the case of the pseudoscalar, where the leading term is O (�q ·�SN ), and in the case of the

tensor, where the there is a “spin-independent” contribution ∝ �q.

These spinor identities allow the tensor interaction involving nucleons to be absorbed into

the scalar and axial vector coefficients. Following [210], we define

(5.19) C̃
′NN
S,Y = C̃NN

S,Y +2
mμ

mN
C̃NN

T,Y , C̃
′NN
A,Y = C̃NN

A,Y +2C̃NN
T,X

where in both cases the 2 arises from the two antisymmetric contributions of the tensor, the

unprimed C̃s are defined in eqn (5.11), X ,Y ∈ {L,R}, and X �= Y because only operators with

electrons of the same chirality can interfere. Notice that there is an error in [210], where is

written C̃NN ′
A,Y = C̃NN

A,Y +2C̃NN
T,Y .

It remains to evaluate the expectation value of the nucleon currents in the nucleus.

• In the case of the scalar or vector operators, the matrix element of eqn (5.17) becomes

(5.20) M = 2



2GFC̃pp′

S,V
2MAl√

2mμ

ψμ(0)
∑
p∈A

∫
d3x| f p(r)|2 sin(qr)

qr

∑
s,r

{
(us

eur
μ) scalar

(us
eγ

0ur
μ) vector

where the sum over protons in the nucleus will give a factor Z, we drop the spin indices

because the sum and average give one, and assume a spherically symmetric nucleon

distribution | f p(r)|2 in the nucleus, which allows to replace4 e−i�q·�x → sin(qr)
qr . The “form

factors”

(5.21) FN (mμ)=
∫

d3x| fN (r)|2 sin(mμr)
mμr

are defined in eqns (29) and (30) of [207]: Fp(mμ)∼ .53 for Al, and ∼ .35 for Ti.
4Recall that a plane wave can be expanded on spherical harmonics as eiqz =∑∞

�=0 i�



(4π)(2�+1) j�(qr)Y 0
�

(θ),
and Y 0

0 (θ)= 1/



4π .
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• The expectation value of the axial current in Aluminium (A = 27, Z = 13,�JAl = 5/2) was

calculated by Engel et.al [225] and Klos et.al [217] using the shell model. In the zero-

momentum transfer limit, where the spin expectation values SA
N are defined by:

(5.22)
∑

N∈A

∫
d3x| fN (�x)|2(uNγkγ5uN )= 4mN SA

N
Jk

A
|JA|

,

they obtain SAl
n = 0.0296, SAl

p = 0.3430. (Jk
A is a quantum mechanical operator, to be

evaluated in the ground state of the nucleus A). At finite momentum transfer, references

[217, 225] include the nucleon axial vector operators O NN
A,X and the pion exchange operator

O NN
Der,X , in the combination induced by axial vector quark operators. The various terms in

the matrix-element-squared have different spin sums, so the finite momentum transfer

correction depends on C̃pp′

A,X and C̃nn′
A,X , and is quoted as a multiplicative factor SA(mμ)/SA(0)

in the rate (see eqn (5.26)). Neglecting SAl
n � SAl

p , the results of Engel et. al for Aluminium

give [225]

(5.23) SAl(k)∝ (0.31500480−1.857857y+4.86816y2 −5.422770y3)

where y= (mμb/2)2 and b =1.73 fm. This gives SAl(mμ)/SAl(0)= 0.29.

• At zero momentum transfer, the nuclear expectation value of tensor operators O NN
T,X is

proportional to that of axial vector operators, as accounted for in eqn (5.19). However, at

finite momentum transfer, there is no pion exchange contribution for the tensor operator

(while pion exchange induces O NN
Der,X in the presence of the axial vector quark operators), so

the redefinition of eqn (5.19) is not valid. Indeed, the tensor and axial vector operators are

distinct at finite momentum transfer.

However, we did not find nuclear calculations of SD scattering on Aluminium mediated by

the tensor operator. We can try to estimate the error from using the axial results for the

tensor: at q2 =−m2
μ, the pion exchange contribution to the matrix element in eqn (5.8) is

comparable to the four-fermion contact interaction. Also, the finite-momentum-transfer

suppressions of the axial and scalar rates on Aluminium are comparable (SAl(mμ)/SAl(0)�
|FN (mμ)|2), despite that one might expect the oscillations of the electron wavefunction to

suppress the SD rate more than the SI rate, because spin-carrying nucleons are likely

to be at large radii. So we interpret that axial matrix element is amplified by a factor ∼
2 at q2 = −m2

μ (due to the pion), and suppressed by an extra factor ∼ 1/2 (as compared

to the scalar matrix element) due to the oscillations of the electron wavefunction, and

estimate that the identification of eqn (5.19) could overestimate the tensor contribution to

the branching ratio by a factor ∼ 2→ 4 (depending on whether the pseudoscalar and axial

matrix elements interfere).
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• The pseudoscalar operator O NN
P,X is proportional to the nucleon spin, is only present at

finite momentum transfer, and at q2 =−m2
μ, is enhanced by a pion exchange contribution

of comparable magnitude. Since the magnitude of the pseudoscalar spinor contraction in

eqn (5.18) is suppressed with respect to the axial vector by ∼ mμ/2mN , its contribution to

the SD branching ratio could be ∼ m2
μ/4m2

N× the axial vector contribution. However, the

identification C̃
′′NN
A,Y = C̃

′NN
A,Y + mμ

2mN
C̃NN

P,X does not work, because the spin sums suppress the

axial-pseudoscalar interference term. A dedicated nuclear calculation would seem required

for both the pseudoscalar and tensor operators.

To obtain the matrix-element-squared, the lepton spinor part can be evaluated by Dirac traces.

Then to perform the nuclear spin sums in the SD case, the identity

(5.24)
1

(2Jμ+1)(2JA +1)

∑
spins

∑
k,i

〈Jμ|Ĵk
� |J′

e〉〈J′
e|Ĵ i

�|Jμ〉〈J′
A|Ĵk

A|JA〉〈JA|Ĵ i
A|J′

A〉 =
1
3

Jμ(Jμ+1)JA(JA +1)

can be used.

Finally, the conversion rate is obtained as

Γ= 1
2MAl

∫
dΠ|M |2 = mμ

8M2
Alπ

|M |2

where |M |2 is averaged over the incident spins, and dΠ gives the integration over the final

state phase space of the nucleus and electron.

These steps give an analytic estimate for the four-fermion contributions to the SI conversion

rate on a nucleus of atomic number A and charge Z:

(5.25)
ΓSI

Γcapt
= 2B0|Z(C̃

′pp
S,L + C̃pp

V ,R +2eCD,L)Fp(mμ)+ (A−Z)(C̃
′nn
S,L + C̃nn

V ,R)Fn(mμ)|2 + {L ↔ R} .

where the FN are defined in eqn (5.21) and related to the overlap integrals of KKO in (5.34),

the contribution of the dipole operator (estimated in subsection 5.3.1.2) was also included, and

B0 =
G2

F m5
μ

Γcaptπ2 (Zα)3 �
{

0.310 Al (Z = 13)

0.438 Ti (Z = 22)
,

where Γcapt is the rate for the Standard Model process of muon capture [207, 232]. Similarly,

the SD conversion rate on a nucleus of atomic number A, charge Z and spin JA is

(5.26)
ΓSD

Γcapt
= 8B0

JA +1
JA

∣∣∣SA
p C̃

′pp
A,L +SA

n C̃
′nn
A,L

∣∣∣2 SA(mμ)
SA(0)

+ {L ↔ R} .

where the spin expectation values SA
N and the finite momentum tranfer correction SA(k) are

given for Aluminium at eqn (5.23).
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5.3.1.2 the dipole

In the case of the dipole operator of eqn (5.2), the S-matrix element can be written

(5.27) i
2



2GF√
2mμ

CD,Y mμ〈e(q, s)|
∫

d4 y2( ˆeX (y)σ0i ·Ei(y)PY μ̂(y))|μ(q)〉

(5.28) = i
2



2GF√
2mμ

CD,Y mμ2πδ(Ee −mμ)
∫

d3 ye−i�q·�yψμ(�y)2(ueσ
0i ·Ei(y)PY uμ(y))

(5.29) ≡ i2πδ(Ee −mμ)M̃ , M̃ = 2



2GF√
2mμ

2CD,Y mμ

∫
dΩr2dr

sinmμr
mμr

ψμ(r)(ueσ
0iPY uμ)Ei(r)

where the 2 under the integral is to account for Ei = F0i = Fi0, and the magnitude of the

radial electric field induced by the nucleus is [207]

(5.30) E(r)= Ze
r2

∫r

0
r
′2| f p(r′)|2dr′ .

To estimate the dipole matrix element analytically, we suppose that the electric field only

contributes at radii within the first zero of the electron wavefunction re, because outside the

rapid oscillation of the electron wavefunction gives an approximate cancellation in M . The muon

wavefunction is approximately constant at such radii. The radius of the Aluminium nucleus

is comparable to re, but if we nonetheless approximate the nucleon distribution | f p(r)|2 as a

constant for r < re, we obtain

(5.31)

E(r)� Zer
3

| f p(r)|2 , M̃ � 2



2GF√
2mμ

2CD,Y mμψμ(0)
∫

dΩ
r3dr

3
| f p(r)|2 sinmμr

mμr
(ueσ

0iPY uμ)Zer̂i

where r̂ is a radial unit vector.

The “matrix element” M̃ neglects recoil of the nucleus, so the final state phase space in the

rate is only one-body, and we reproduce the analytic estimate of [207] for light nuclei (D ∼ 8eSp

given above eqn (29) of [207]):

(5.32) BRSI = |M̃ |
2 mμ

2π
=

8G2
F m5

μ

π2Γcapt
(αZ)3|ZeCD,Y Fp(mμ)|2

This estimate uses
∫

r3dr/3�∫r2dr, and applies in the absence of other contributions; the

dipole coefficient sums with the scalar and vector coefficients in the amplitude, as given in eqn

(5.25).
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5.3.1.3 Comparing to KKO

This section compares our estimates to the more exact formulae of [207] (KKO). Our estimates

use a solution of the Schrodinger equation for the muon, a plane wave for the electron, and chiral

γ-matrices. KKO solve the Dirac equation in the potential of the nucleus, both for the electron

and muon, use Bjorken and Drell γ-matrix conventions, and give the branching ratio as:

(5.33)

BR(Aμ→ Ae)=
32G2

F m5
μ

Γcap

[∣∣C̃pp
V ,RV (p) + C̃

′pp
S,LS(p) + C̃nn

V ,RV (n) + C̃
′nn
S,LS(n) +CD,L

D
4

∣∣2 + {L ↔ R}
]

where Γcap is the rate for the muon to transform to a neutrino by capture on the nucleus

(see [207, 232]), and the nucleus- and nucleon-dependent “overlap integrals” V (N)
X , S(N)

X , D(N)

correspond to the integral over the nucleus of the lepton wavefunctions and the appropriate

nucleon density (vector, scalar, electric field for the dipole operator; the definitions and numerical

values are given in KKO [207]). The numerical coefficient in eqn (5.33) differs from the result

given in KKO, because 4C̃|here = g̃|KKO.

Our unit-normalised nuclear density | fN (r)|2 can be identified with the similarly normalised

density ρN (r) of KKO [207]. Our Schrodinger approximation for the muon wavefunction can be

identified to the upper component (in Bjorken and Drell γ conventions) of the Dirac wavefunction

obtained by [207]. Then the normalisation conventions of eqn (5) and (7) of [207] identify

ψμ(r,θ,φ)↔ gμ(r)

4π

.

In the limit of massless electron, the upper (ge) and lower components (i fe) of the electron

wave function of [207] are comparable. The electron normalisation condition given in eqn (8) of

[207] then implies that we can identify our electron plane wave as

i fe = ge(r)↔



2
sinmμr

r
↔



2 mμe−i�k·�r .

In the approximation where the muon wavefunction is constant in the nucleus, the overlap

integrals of [207] can be identified to our approximations as

S(p),V (p) → mμ|ψμ(0)|
4


π

Z
∫

d3xe−i�k·�x| f p|2

(5.34) S(n),V (n) →
m5/2

μ (Zα)3/2

4π
(A−Z)

∫
d3xe−i�k·�x| fn|2 ,

as given in eqns (29) - (31) of KKO.
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5.3.2 Spin-dependent conversion in other light nuclei

In this section we consider how the estimates of the previous section could be applied to other

nuclei. Recall that light nuclei are interesting for SD detection, because the SD rate is relatively

suppressed by 1/A2 compared to the SI rate: the ratio ΓSD /ΓSI is largest for light nuclei.

The matrix element given in eqn (5.17) for SD μ→ e conversion contains the integral of the

axial current over the nucleus, weighted by the lepton wavefunctions. In the case of light nuclei

(Z ≤ 20), as discussed in the previous section, the muon wavefunction can be taken constant

in the nucleus, and the electron can be treated as a plane wave. This allows to use the results

of nuclear calculations [223] of matrix elements for spin-dependent WIMP scattering at finite-

momentum-transfer. The zero-momentum-transfer matrix elements (spin expectation values;

see eqn (5.22)), have been calculated for a wide variety of nuclei [233], and finite momentum

transfer results also been obtained for some nuclei [234]. For μ→ e conversion in heavier nuclei,

a dedicated nuclear calculation would be required to obtain the expectation values of the SD

operators weighted by the lepton wavefunctions.

An interesting light nucleus for SD μ→ e conversion could be Titanium (Z=22)5, because it

has isotopes with and without spin, so targets of different isotopic abundances could allow to

distinguish SD from SI operators. Titanium has a spin-zero isotope with A = 48 and 74% natural

abundance [235], an isotope with A = 47, J = 5/2, 7.5% abundance, and another isotope with

A = 49, J = 7/2, 5.4 % abundance. These natural abundances of more than 5 % are large enough

to make sufficiently-enriched sample targets.

In the Odd Group Model, Engel and Vogel [236] obtained spin expectation values STi,47
n =

0.21,STi,47
p = 0, and STi,49

n = 0.29,STi,49
p = 0. Unfortunately, we were unable to find finite-

momentum-transfer corrections to the spin expectation values in Titanium. However, we

observe that in Aluminium, the SI and SD form factors are comparable: 0.28 = |Fp(mμ)|2 ≈
SAl(mμ)/SAl(0)= 0.29. A similar relation appears to hold [207, 234] for Florine, where |Fn(mμ)|2 ≈
SFl(mμ)/SFl(0)≈ .36. This suggests that for light nuclei, the spin-expectation-squared at |�q|2 �= 0

(that is, SA(mμ)), is similar to the square of the spin-expectation-value at zero momentum

transfer, multiplied by the square of the SI |�q|2 �= 0 form-factor. Or taking the square root:

(5.35)
∑
p∈A

∫
d3x| f p(�x)|2e−i�q·�x(upγ

kγ5up)≈ ∑
p∈A

∫
d3 y| f p(�y)|2(upγ

kγ5up) ×
∫

d3z| f p(�z)|2e−i�q·�z .

So we apply this approximation to Titanium, and estimate STi(mμ)/STi(0)≈ 0.12.

5Titanium was used as a target by SINDRUMII [13, 137, 202], who set an upper bound BR(μTi → eTi) <
4.3×10−12.
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5.4 Parametric expansions and uncertainties

Once μ→ e conversion is observed, the aim will be to determine (or constrain) as many operator

coefficients as possible. This would require at least as many “independent” observations as

operators, where observations are independent if, in spite of uncertainties, they depend on a

different combination of coefficients. So the purpose of this section, is to estimate the uncertainties

in relating the conversion rate to operator coefficients.

The inputs for this calculation, (equivalently, the theoretical parameters to be extracted from

data) are the coefficients of either the quark operators (see eqn 5.1), or of the nucleon operators

(see eqns 5.11,5.19), in both cases at the experimental scale Λexp. So uncertainties associated to

the Renormalisation Group evolution from the New Physics scale to the experimental scale are

not considered. In the remainder of this paper, we will sometimes use the quark operator basis,

and sometimes the nucleon basis. As discussed below, there are significant uncertainties in some

of the {GN,q
O }, which are required to extract the coefficients of the quark operators, but can be

avoided by using the nucleon operators.

• There are uncertainties in some of the matching coefficients that relate quark to hadron

operators (see eqn (5.6) and appendix A). The GN,q
V are from charge conservation, so should

be exact. For the axial and scalar coefficients, the determinations from data (see eqn (A.6))

and from the lattice (A.7,A.9) are quoted with smaller uncertainties than their differences

(this is especially flagrant for the GN,q
S , whose lattice and data values differ by 30-50%, and

are both quoted with ≤ 10% uncertainties). First, it can be hoped that these discrepancies

will be reduced in the future. Secondly, in some models (or equivalently, for some choices of

coefficients), these factors can be cancelled by taking ratios. Finally, if we are only interested

in discriminating SD from SI contributions to the rate, this distinction exists at the nucleon

level, so the matching to quark operators is not required.

• The lepton interactions with nucleons are calculated at Leading Order (LO) in χPT. At

NLO, arise pion loops as well as processes with two nucleons in the initial and final states

which exchange a pion that interacts with the leptons. For the case of WIMP scattering,

such NLO contributions for the scalar quark operator have been discussed [218, 219, 237]

and reference [218] estimates them to be a higher order effect (≤ 10%), provided there

are no cancellations among the LO contributions. The two-nucleon contributions were

also calculated to be unexpectedly small for WIMP scattering on few-nucleon nuclei [238].

However, after this manuscript was completed, appeared a study of the μ→ e conversion

rate mediated by the scalar and vector interactions [222], where the authors estimate that

the NLO effects associated to pion exchange between two nucleons can reduce the scalar

matrix element by 20→ 30% (NLO corrections vanish for the vector). We will account for

these nucleon/χPT uncertainties by including them in the uncertainties in the overlap

integrals.
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• The μ → e conversion matrix element, expressed as a function of nucleon operator co-

efficients, relies on many perturbative expansions, among which an expansion in the

finite-momentum-transfer |�q|2 = m2
μ. Naively such corrections are O (m2

μ/m2
N ) (so negligi-

ble), however in practise there are various effects which are not so suppressed. First, the

finite momentum transfer gives a significant suppression of the matrix element. In our

analytic approximations, where the muon is at rest and the electron momentum �k = �q,

this is encoded in the form factors FN (see eqn (5.21)), which are ∼ .2→ 0.7. KKO include

this effect more accurately, by solving the Dirac equation for the leptons. Secondly, finite

momentum transfer effects can change the nucleon and lepton spinor algebra. This is

discussed for Dark Matter in [224, 231], and gives the O (mμ/mN ) contribution of the tensor

to the scalar coefficient given in eqn (5.19). We include this correction, because the tensor

operator at zero momentum transfer contributes to the SD matrix element (suppressed by

1/A), whereas this (mμ/mN )-suppressed contribution gains a relative factor A because it

contributes to the SI matrix element. The ratio of these contributions to the conversion

rate is estimated in appendix B. Finally, pion exchange becomes relevant at |�q|2 = m2
μ

for the axial vector and pseudoscalar operators (see eqns (5.8,5.9)), and is included in

the nuclear matrix elements of [225] that we use for the axial vector in Aluminium. Pion

contributions at |�q| �= 0 to the SI rate are discussed above. We hope that these are the

dominant finite-momentum-transfer corrections, such that any other effects are negligible

(< 10%) corrections.

• In our calculation of the SD matrix element, the velocity of the initial muon was neglected.

This may seem doubtful, by analogy with the extended basis of WIMP scattering operators

constructed in [224], because these authors expand in both the momentum transfer between

the WIMP and nucleon, and the incoming velocity difference. However, in our case, the

muon velocity is parametrically smaller: writing the binding energy of the 1s state as

πZαmμ ∼ m�v2, gives |�v| ∼

Zα . We neglect any effects related to this velocity.

• There could be nuclear uncertainties in the SI overlap integrals SN ,V N ,D, in addition to

the effects discussed above. These were estimated by [207] to be ∼ a few % in most cases,

≤ 10% in the case of some heavier nuclei

Consider first the uncertainty on the SI rate, because, when μ→ e conversion is observed in a

nucleus with spin, the SD conversion rate can only be observed, if it is larger than the uncertainty

in the ubiquitous A2-enhanced SI rate. The uncertainty in ΓSI , written as a function of the quark

operator coefficients Cqq
O,X , would arise from the GN,q

O , from the overlap integrals SN ,V N ,D of

[207], and from NLO contributions in χPT:

(5.36)
δΓSI

ΓSI
(Cqq

O,X )� 2

( ∑
X=L,R

|FX |
|FL|2 +|FR |2

(
Cqq

S,X SNδGN,q
S + C̃NN

S,X [δSN ]NLO

)
+ δIA

IA

)
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where FL = C̃NN
V ,LV (N)+C̃

′NN
S,R S(N)+C̃D,RD, sums on N ∈ {n, p} and q ∈ {u,d, s} are implicit, the

gluon contribution to the scalar [206] was neglected, for simplicity a common uncertainty δIA
IA

was

assigned to the overlap integrals in nucleus A, except for the effect of neglecting pion exchange

between two nucleons [218, 222] (discussed above), which is parametrised as an uncertainty

[δSN ]NLO in the scalar overlap integrals. Expressed this way, the uncertainty depends on the

quark coefficients present: for Cqq
S,X � Cqq

V ,X ,CD,X , the current discrepancies in the determination

of the GN,q
S and [δSN ]NLO give an O (1) uncertainty on the conversion rate, whereas if only the

Cqq
V ,X and CD,X were present, the rate uncertainty would come from the overlap integrals. The

GN,q
S uncertainties can be avoided by expressing the rate in terms of the coefficients of the nucleon

Lagrangian; if in addition, [δSN ]NLO/SN < 10%, then the uncertainty in the SI rate comes from

the overlap integrals. From the KKO discussion, 2δIA
IA

≤ 10% in most cases, < 20% in all cases.

In order to be concrete, we assume in the remainder of this paper, that the uncertainty on the

SI rate expressed in terms of coefficients on nucleons, is ≤ 10%. This suggests that the SD rate

would need to be ≥ 10−20% of the SI rate, to be observed.

A better sensitivity to the SD rate could be obtained by using isotopes with and without spin

as targets: consider for instance, 48Titanium (without spin), and 47Titanium (with spin), whose

SI matrix elements differ by one neutron. Using the analytic approximation of eqn (5.25), the

ratio of the SI conversion rates, for real coefficients and left-handed electrons, is

(5.37)
ΓSI (47Ti)
ΓSI (48Ti)

� 1−2

∣∣∣(C̃′nn
S,L + C̃nn

V ,R)Fn(mμ)
∣∣∣

|Z(C̃
′pp
S,L + C̃pp

V ,R +2eCD,L)Fp(mμ)+ (A−Z)(C̃′nn
S,L + C̃nn

V ,R)Fn(mμ)|
+ ...

where the second term6 is O (1/A). The theoretical uncertainty in this ratio will arise from the

overlap integrals (equivalently, form factors FN ), so should be of order 1
A

δITi
ITi

≤ 0.002. This greatly

improves the sensitivity to the SD rate, although it is unlikely to allow as good a sensitivity to

SD as SI coefficients, because the SD rate is parametrically suppressed as 1/A2 which is ≤ 1
A

δITi
ITi

.

Some prospects for distinguishing among SI operators by using different targets will be

discussed in section 5.5.3. For this, the various targets need to probe different combinations of

operator coefficients, and this difference needs to be larger than the theoretical uncertainty. In

section 5.5.3, targets are parametrised as vectors in coefficient space, whose components are

the overlap integrals (see eqn (5.54)), and targets are assumed to probe different combinations

of operator coefficients if the angle between the vectors is ≥ 10% ≥ δIA
IA

. This estimate can be

obtained in the 2-dimensional plane of the vectors, where the uncertainty on the angle θ of a

point (I1 ±δI1, I2 ±δI2) is

(5.38) δθ � δIi

I i
× I1I2

I2
1 + I2

2
6Since 47Ti and 48Ti only differ by one neutron, there would be no O (1/A) term if the CLFV operators only

involved protons or the dipole.
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5.5 Implications of including the SD rate

The aim of this section is to explore the implications of including the SD contribution to μ→ e

conversion. At first sight, it appears to be of limited interest: the ratio of SD to SI rates is

ΓSD

ΓSI
∼ |CSD |2

A2|CSI |2
so for a SI operator coefficient CSI comparable to CSD , the SD contribution to the branching

ratio is much smaller than the ∼ 10% theory uncertainty of the SI contribution, estimated in the

previous section. Furthermore, as discussed in [210], renormalisation group running between

the New Physics scale and low energy mixes the tensor and axial vector (“SD”) operators to

the scalars and vectors, so even in a New Physics model that only induces SD operators, their

dominant contribution to μ→ e conversion is via the SI operators that arise due to RG running.

This perspective that SD conversion can be ignored is illustrated in section 5.5.1, where we

consider three leptoquark models. They give negligeable SD branching ratios, but we explore the

prospects of distinguishing them by comparing the SI rates in various nuclei.

The SD conversion rate is nonetheless interesting, because it is an independent observable,

that can be observed by comparing targets with and without spin. As in the case of dark matter,

it is sensitive to different operator coefficients (evaluated at the experimental scale) from the SI

process, so provides complementary information. In section 5.5.2 we allow CSD � CSI such that

the SD rate can be observable, and discuss the constraints that could be obtained from upper

bounds on μ→ e conversion. Finally in section 5.5.3, we allow arbitrary coefficients to all the

operators of the nucleon-level Lagrangian, and explore the prospects for identifying coefficients

should μ→ e conversion be observed.

5.5.1 Leptoquarks

We consider three possible leptoquark scenarios, each containing an SU(2) singlet leptoquark,

whose mass M ≥ few TeV respects direct search constraints [239–241], and which has only one

coupling to electrons and one to muons. The scenarios are represented by adding to the Standard

Model the following Lagrangians

(5.39) L1 = DμS†DμS+M2S†S+ [λ∗
R]eueucS+ [λ∗

R]μuμucS+h.c. ,

(5.40) L2 = DμS†DμS+M2S†S+ [λ∗
L]μd�μ iτ2qc

L,uS+ [λ∗
R]eueucS+h.c. ,

(5.41) L3 = DμS̃†DμS̃+ M̃2S̃†S̃+ [λ̃∗]ed edcS̃+ [λ̃∗]μdμdcS̃+h.c. .
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where Dμ is the appropriate covariant derivative of QCD and QED. At the leptoquark mass

scale, we match these scenarios onto the SM extended by QED*QCD invariant operators, which

mediate μ→ e conversion. The coefficients and operators are given in table 5.1.

operators coefficients at M

L1 - [λR ]∗eu[λR ]μu

M2 (eRuc)(ucμR) = [λR ]∗eu[λR ]μu

2M2 (eRγ
αμR)(uγαPRu) Cuu

V ,R = Cuu
A,R = [λR ]∗eu[λR ]μu

4M2

L2 - [λR ]∗eu[λL]μu

M2 (eRuc)(ucμL) = [λR ]∗eu[λL]μu

2M2

(
(eRPLμ)(uPLu)+ 1

4 (eRσPLμ)(uσPLu)
)

Cuu
S,L = 2Cuu

T,L = [λR ]∗eu[λL]μu

4M2

L3 -
[λ̃]∗ed[λ̃]μd

M̃2 (eRdc)(dcμR) =
[λ̃]∗ed[λ̃]μd

2M̃2 (eRγ
αμR)(dγαPRd) Cdd

V ,R = Cdd
A,R = [λ̃]∗ed[λ̃]μd

4M̃2

Table 5.1: Lepton flavour-changing operators induced in the leptoquark scenarios of equations
(5.39 -5.41). The coefficients are given at the leptoquark mass scale M, in the basis of section 5.2.

In each scenario, we translate the coefficients down to the experimental scale Λexp =2 GeV

via an approximate analytic solution to the one-loop RGEs of QED and QCD [211, 212]:

(5.42) CI (Λexp)� CJ(M)λaJ

(
δJI −

αeΓ̃
e
JI

4π
log

M
Λexp

)

where λ = αs(M)
αs(Λexp) � 1/3 for M = TeV, and I, J represent the super- and subscripts which

label operator coefficients. The aI describe the QCD running and are only non-zero for scalars

and tensors. We suppose five quark flavours for the running, which gives aI = Γs
I I

2β0
= {−12

23 , 4
23 }

for I = S,T. Γe is the one-loop QED anomalous dimension matrix, Γ̃e is this matrix with an

additional factor multiplying the TS and ST entries [242, 243] in order to account for the QCD

running:

(5.43) Γ̃e
JI =Γe

JI fJI , fJI = 1
1+aJ −aI

λaI−aJ −λ

1−λ
=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

23
7

λ16/23−λ
1−λ JI = ST

23
39

λ−16/23−λ
1−λ JI = TS

1 otherwise

We neglect the RG mixing out of our operator basis, because it is small: tensor mixing to

the dipole is suppressed by light quark masses, and the mixing via the penguin diagram to

vector operators O
f f
V ,X is a few %, and does not generate operators interesting to us here. The RG

evolution is described in more detail in appendix C.

This formalism allows to predict the ratio of SD to SI contributions to the branching ratio for

μ→ e conversion. In Aluminium, we find for the three scenarios, taking M = 1 TeV:
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(5.44)

f or L1 : BRSD
BRSI

∼ 1.5×10−4

f or L2 : BRSD
BRSI

∼ 4.4×10−6

f or L3 : BRSD
BRSI

∼ 3.2×10−5

so we see that the SD rate is smaller than the current ∼10% uncertainties on the SI rate, so

cannot be observed in these models. This is as expected, because the leptoquark model imposes

that the tensor/axial coefficients are comparable to the scalar/vector coefficients, so the SD rate is

relatively suppressed with respect to the SI rate by 1/(AGN,q
S )2 for tensor coefficients, and 1/A2

for axial vector coefficients.

It is interesting to explore whether the three leptoquark scenarios could be distinguished by

comparing the SI rates in various nuclei. We imagine that μ→ e conversion has been observed

in Aluminium (ZAl=13, AAl = 27), the target of the upcoming COMET and Mu2e experiments.

We wish to identify alternative target materials, which could allow to distinguish our leptoquark

scenarios.

A simple distinction between the leptoquarks S and S̃, is that the former couples to u quarks,

and the latter to d quarks. To identify an appropriate target (A, Z), where the μ→ e conversion

rates induced by S and S̃ would be significantly different (subject to the constraint that both

reproduced the Aluminium observations), we consider the double ratio:

(5.45)

Γ(Alμ→Ale)
Γ((A,Z)μ→(A,Z)e)

∣∣∣
S

Γ(Alμ→Ale)
Γ((A,Z)μ→(A,Z)e)

∣∣∣
S̃

�
(

2AAl −ZAl

AAl +ZAl

)2 ( A+Z
2A−Z

)2
=
(

2V (p)
Al +V (n)

Al

V (p)
Al +2V (n)

Al

)2 (
V (p)

A +2V (n)
A

2V (p)
A +V (n)

A

)2

where the operator coefficients cancel because we compare two models that each induce a

single SI operator. This ratio should differ from 1 by ≥ 20%, in order to unambiguously distinguish

the S from S̃, given the ∼ 10% uncertainties on the theory calculation. The first approximate

equality in eqn (5.45), applies for light nuclei, where the conversion rate can be written as eqn

(5.25). The second equality uses the KKO conversion rate given in eqn (5.33) in terms of the

overlap integrals V (N), and applies for all nuclei.

The continuous green line (with stars) of figure 5.2 is the ratio of μ→ e conversion rates

mediated by S and S̃, assuming equal operator coefficients. It corresponds to the second fraction

in the products appearing in eqn (5.45), so the double ratio of eqn (5.45) is simply obtained by

dividing by the ratio for Aluminium. The stars are the light nucleus approximation, the green

continous line is the ratio of overlap integrals. This shows that the approximation is very similar

to the numerical results of KKO, and that a target with Z ≥ 40 could allow to distinguish the

first and third leptoquark scenarios. In the following, we take Niobium (Nb,Z=41,A=93) as a Z ≥
40 target.
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Figure 5.2: This plot illustrates the prospects for distinguishing SI operators involving up quarks,
from those involving down quarks, and vector operators from scalars. The continuous green
[dashed red] line is the ratio, given in eqn (5.45) [eqn (5.46)], of μ→ e conversion rates induced by
O uu

V ,X and O dd
V ,X [ O uu

S,X and O dd
S,X ], assuming equal coefficients. The stars on the green line are an

analytic approximation. The dotted blue line is the ratio, given in eqn (5.47), of μ→ e conversion
rates induced by O uu

V ,X and O uu
S,X , with coefficients selected to give the same rate on Niobium

(Z=41).

It is also interesting to explore the prospects of distinguishing scalar operators involving u vs

d quarks. So we also plot in figure 5.2, as a dashed red line, the ratio of μ→ e conversion rates

mediated upstairs by O uu
S,X and downstairs by O dd

S,X :

(5.46)
Γ((A, Z)μ→ (A, Z)e)

∣∣∣
O uu

S,X

Γ((A, Z)μ→ (A, Z)e)
∣∣∣
O dd

S,X

=
(

Gp,d
S S(p)

A +Gn,d
S S(n)

A

Gp,u
S S(p)

A +Gn,u
S S(n)

A

)2

.

For the GN,q
S values given in appendix A, the scalar ratio is close to one (because Gp,q

S �Gn,q
S ),

suggesting that changing the target in μ→ e conversion does not help distinguish O uu
S,X from

O dd
S,X .
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The first and second leptoquark scenarios respectively induce scalar and vector operators. As

discussed in [206, 207], these can be distinguished by comparing the conversion rates in light

and heavy targets. This is illustrated in figure 5.2, by the blue dotted line, which gives the double

ratio normalised to Niobium

(5.47)

Γ(Nbμ→Nbe)
Γ((A,Z)μ→(A,Z)e)

∣∣∣
scalar

Γ(Nbμ→Nbe)
Γ((A,Z)μ→(A,Z)e)

∣∣∣
vector

=
(

Gp,u
S S(p)

Nb +Gn,u
S S(n)

Nb

Gp,u
S S(p)

A +Gn,u
S S(n)

A

)2 (
2V (p)

A +V (n)
A

2V (p)
Nb +V (n)

Nb

)2

.

We see that measuring the μ→ e conversion rate on Aluminium, some intermediate target

around Z ∼ 40 and on a heavy nucleus like lead or gold (Z = 79), could distinguish the three

leptoquark scenarios, that is a vector operator involving ds, vs vector operator involving us, vs a

scalar operator involving us.

5.5.2 Bounds on arbitrary coefficients of four operators

This section considers the operators induced by the second and third leptoquark models (see equa-

tions (5.40),(5.41)) which are added simultaneously to the Lagrangian with arbitrary coefficients:

(5.48) LEFT = Cuu
S,LO uu

S,L +Cuu
T,LO uu

T,L +Cdd
V ,RO dd

V ,R +Cdd
A,RO dd

A,R +h.c.

This is clearly an incomplete basis (the complete basis of dimension six operators at Λexp

is given in eqns (5.1,5.3)); however, it is sufficient for our purpose7, which is to explore which

constraints can be obtained on quark-level operators from the non-observation of μ→ e conversion

in targets with and without spin.

We suppose that μ→ e conversion has not been observed on Aluminium, Titanium (enriched

in isotopes with spin) and Lead targets. These targets are chosen because heavy and light targets

have different sensitivities to vector and scalar coefficients, and because the spin of Titanium

and Aluminium is respectively associated to an odd neutron and an odd proton. In order to check

that upper bounds on these branching ratios can constrain all the operator coefficients which we

consider, we set the branching ratios to zero, and check that this forces the coefficients to vanish.

Setting the SD conversion rates in Titanium and Aluminium to zero gives two equations:

(5.49) 0� Cdd
A,R

(
Gp,d

A + SAl
n

SAl
p

Gn,d
A

)
+2Cuu

T,L

(
Gp,u

T + SAl
n

SAl
p

Gn,u
T

)

(5.50) 0� Cdd
A,RGn,d

A +2Cuu
T,LGn,u

T

7In a later publication, we may try to constrain operator coefficients and count “flat directions”, for which a
complete basis would be required.
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where SAl
n

SAl
p

� 0.1 is the ratio of spin expectation values in Aluminium. These equations have

solutions

2Cdd
A,R � Cuu

T,L , Cdd
A,R � 2Cuu

T,L

so even allowing for a 10% theory uncertainty on the coefficients, it is clear that the only

solution is for both coefficients to vanish. This is because the spin of Titanium isotopes arises

from the odd number of neutrons, whereas in Aluminium the spin is from the odd proton, so

these two conversion rates probe the SD coefficients C̃
′NN
A,X for both neutrons and protons. Then,

since the matching coefficients GNu
A,X and GNd

A,X (equivalently GNu
T,X and GNd

T,X ) are of opposite sign

and different magnitude, Cuu
A,X +2Cuu

T,X and Cdd
A,X +2Cdd

T,X can be distinguished.

It is straightforward to check that setting the SI rates on Al, Ti and Pb to zero, forces

Cdd
V ,R ,Cuu

S,L → 0.

A more informative way to present the constraints on coefficients arising from the experi-

mental bounds is to give the covariance matrix. We suppose an upper bound of BR (for instance,

10−14) on the SI branching ratios on Pb and Al, and on the SD branching ratios on Al and Ti. The

tensor operator gives comparable contributions to both SI and SD processes (see Appendix B), so

the 4×4 covariance matrix does not split into 2×2 subblocks. Nonetheless, it is interesting to

give the covariance matrices for different cases, in order to see the variation of the bounds, when

different theoretical information is included.

First, the tensor contribution to the SI rates is neglected, in which case the covariance

matrices for (Cdd
V ,R ,Cuu

S,L) and (Cuu
T,L,Cdd

A,R) are:

(5.51) BR

⎡⎢⎢⎣ 0.012 −.0028

−.0028 .0007

⎤⎥⎥⎦ , BR

⎡⎢⎢⎣ 9.1 20

20 73.6

⎤⎥⎥⎦ .

So, for instance, |Cuu
S,L| is excluded above



0.0007×BR , and |Cdd

A,R | <



73.6×BR .

If now the SD rates are neglected, but the tensor contribution to SI is included, then the

covariance matrix for (Cdd
V ,R ,Cuu

S,L,Cuu
T,L) is

(5.52) BR

⎡⎢⎢⎢⎢⎢⎢⎣
0.47 −.24 23

−.24 .13 −14

23 −14 1400

⎤⎥⎥⎥⎥⎥⎥⎦ ,

which shows that the exclusions become weaker due to potential cancellations between a

large Cuu
T,L and the vector or scalar coefficients. Finally the full covariance matrix arising from

imposing BRSI (μPb → ePb)≤ 10−14, BRSI (μTi → eTi)≤ 10−14, BRSD(μ 47Ti → e 47Ti)≤ 10−14,
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BRSI (μAl → eAl)≤ 10−14, and BRSD(μAl → eAl)≤ 10−14, for the coefficients (Cdd
V ,R ,Cuu

S,L,Cuu
T,L,Cdd

A,R),

is

BR

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.010 −0.0029 0.12 0.26

−0.0029 0.0011 −0.078 −0.17

0.12 −0.078 9.0 19.6

0.26 −0.17 19.6 73

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.(5.53)

Comparing to the bounds of eqn (5.51), shows that the tensor contribution to the SI rate is of

little importance, provided the SD bounds are included. However, if the SD bounds are neglected,

including the tensor in the SI rate significantly weakens the constraints, as can be seen in eqn

(5.52). We also checked that including BRSI (μAu → eAu)≤ 10−14 only changes a few entries by

about 25%, as expected, because Al, Ti and Pb were chosen as targets for their discriminating

power.

5.5.3 Reconstructing nucleon coefficients

We now suppose that μ→ e conversion is observed in Aluminium, where there can be SI and SD

contributions to the rate, and that the New Physics is described by the nucleon-level Lagrangian

of eqn (5.5) with arbitrary operator coefficients. It is interesting to consider which subsequent

targets, in what order, would be required to distinguish the SD and SI contributions, and then to

discriminate among the SI operators?

We first introduce a geometric representation of models and targets, which allows to visualize

the ability of various targets to discriminate among models. A New Physics scenario can be

represented as a two 5-dimensional vectors, each composed of SI coefficients which interfere �CX ≡
(CD,X , C̃

′pp
S,X , C̃pp

V ,Y ,C̃
′nn
S,X ,C̃nn

V ,Y ), and two two-component vectors of SD coefficients (C̃
′nn
A,X ,C̃

′pp
A,X ).

For simplicity, we focus on X = L, and drop this electron chirality subscript. Then we focus

on discriminating among SI operators, because the spin of target nuclei is usually associated

to either an unpaired n or p, giving an order of magnitude better sensitivity to the coefficient

corresponding to the unpaired nucleon (see, e.g. the spin expectation values given after eqn (5.22)).

This means that discriminating C̃
′nn
A,X vs C̃

′pp
A,X should be a straightforward matter of using targets

with an unpaired p and n.

For the spin independent process, a target nucleus (Z, A) can be envisaged as a vector

(5.54) �v(Z,A) = (D(Z,A),S
(p)
(Z,A),V

(p)
(Z,A),S

(n)
(Z,A),V

(p)
(Z,A))

in the five-dimensional coefficient space, whose components are the appropriate overlap

integrals. (In the following, the vectors and components are indiscriminately labelled by A or
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Z because we use the overlap integrals of KKO, obtained for a single abundant isotope.) The

matrix element for μ→ e conversion on target A, mediated by a combination of coefficients �C,

is proportional to �C ·�vA, and target nucleus A allows to probe coefficients in the direction �vA.

If we define the unit-normalised êA =�vA/|�vA|, then target A probes the same combination of

coefficients as Aluminium if êA is parrallel to êAl , and the difference

(5.55) 1− êA · êAl ≈
θ2

2

gives an invariant measure of whether the target A has sensitivity to an orthogonal direction

in coefficient space. In eqn (5.55), θ is the angle between êA and êAl . Figure 5.3 gives êA · êAl as

a function of Z. From eqn (5.38), the uncertainty in the direction of êA is ≤ 10%, so target A is

indistinguishable from Aluminium for êA · êAl ≥ 0.995, or Z ≤ 25−30.

Perhaps a more transparent measure of the change of direction of êA in coefficient space, is

given in figure 5.4 by the ratio

(5.56)
eO

A

eO
Al

where O = C̃pp
S,X (continuous black), O = C̃nn

S,X (dotted green), C̃pp
V ,X (dashed red) and O =

C̃nn
V ,X (dot-dashed blue). Recall that eO

A parametrises the fraction of the sensitivity of target A

to operator O. So figure 5.4 shows that heavier targets have greater sensitivity to O nn
V and less

to O
pp
S . (Unfortunately, this figure also suggests that O nn

V and O
pp
S with comparable coefficients

could be difficult to distinguish from O
pp
V .) This normalised ratio of overlap integrals is interesting,

because the normalisation “factors out” the growth with Z shared by all the overlap integrals,

so this ratio parametrises the difference in direction in coefficient space, which allows different

targets to discriminate amoung coefficients. This ratio also indicates that targets of Z ≤ 25

cannot distinguish operators, if one admits a theory uncertainty of ∼10% in the calculation of the

components eO
A.

Assisted by the measures of discriminating power given in eqns (5.55) and (5.56), we now

speculate on a possible series of targets. A light nucleus without spin could be an interesting sec-

ond target, because it would allow to distinguish whether the rate in Aluminium was dominantly

SD or SI. In particular, the SI rate in Aluminium could be approximately predicted from the the

rate observed in another spinless light nucleus. This is because the SI rate in all targets with

Z ≤ 20 is sensitive to a similar linear combination of operator coefficients, as illustrated in figures

5.3 and 5.4.

An interesting choice for the second target could be Titanium (Z=22, A = 48). As illustrated

in figures 5.3 and 5.4, it of sufficiently low Z that the SI rate probes the same combination of

operator coefficients as the SI rate in Aluminium. So measuring the SI rate in Titanium-48 would
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allow to determine whether there was a significant SD contribution to the μ→ e conversion rate

observed on Aluminium.

Figure 5.3: A representation of the discriminating power of a target (labelled by Z), with
respect to Aluminium. On the vertical axis is the invariant measure, given in eqn (5.55), of the
misalignment in coefficient space of the target with respect to Aluminium.

If there is indication for an SD contribution in Aluminium, then it could be interesting to

measure the rate on a Titanium target enriched with the spin-carrying isotopes 47 and 49. This

would give complementary information on the quark flavour of the tensor and/or axial vector

operators, because the spin of Aluminium is largely due to the odd proton, whereas for Titanium,

there is an odd neutron. So the SD rate in Aluminium is mostly sensitive to C̃
′pp
A,X , whereas the

SD rate in Titanium depends on C̃
′nn
A,X .

Finally, if there is no evidence of an SD rate in Aluminium, a heavy target such as lead could

be interesting to discriminate the scalar vs vector coefficients in the SI rate.
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Z
0 20 40 60 80 100-0.6

-0.4

-0.2

0

0.2

0.4

Figure 5.4: An operator-dependent measure of the discriminating power of a targets (labelled by
Z). On the vertical axis is the measure given in of eqn (5.56), of the relative sensitivity(normalised
to Aluminium) of a target to the operators O = C̃pp

S,X (continuous black), O = C̃nn
S,X (dotted green),

C̃pp
V ,X (dashed red) and O = C̃nn

V ,X (dot-dashed blue).
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5.6 Summary

This paper gives some details of the calculation of the Spin Dependent (SD) μ→ e conversion rate

in light nuclei, previously outlined in [210]. Section 5.2 reviews the operators involving quarks

and gluons that contribute[206, 207] at the experimental scale (Λexp = 2 GeV), and matches them

onto the nucleon operators which enter the nuclear physics calculation. Some attempt is made to

include pion exchange in this matching (it is relevant because the momentum-transfer is m2
μ).

Section 5.3 calculates as much as possible of the conversion rate in the notation of relativistic,

second-quantised, QFT [226]; in the last steps, the results of nuclear calculations are included.

The final rate is given in equation (5.26). This section is not original; its purpose is to make the

result accessible to affictionados of QFT. We recall the SD μ→ e conversion is incoherent, like

SD WIMP scattering, so it is best searched for in light nuclei, where the 1/A2 suppression with

respect to the coherent Spin Independent (SI) ratše (given in eqns (5.25,5.33)) is less significant.

Our SD rate estimate relies on nuclear physics calculations of the expectation value of nucleon

axial currents in the nucleus. The results we use were obtained for SD WIMP scattering, which

are often at zero momentum transfer. As discussed in section 5.3.1, additional nuclear calculations

seem required to include tensor and pseudoscalar operators at finite momentum transfer, in light

targets such as Aluminium and Titanium. In this paper, we did not discuss SD conversion on

heavy nuclei; however, one can speculate that the nuclear expectation values could be of interest,

because heavy nuclei could be sensitive to a different combination of tensor and axial operators

from light nuclei. This is because the anti-lepton wavefunction contributes with opposite sign to

the tensor vs axial operators, and is more relevant in heavy nuclei (this sign difference allows to

discriminate scalar and vector operators in SI conversion on light and heavy nuclei [207]). Of

course, the SD rate might be unobservably small (due to the 1/A2 suppression), but heavy nuclei

could nonetheless give an independent constraint on the many operator coefficients.

Both the SD and SI conversion rates depend on the modulus-squared of a sum of coefficients,

weighted by nucleus-dependent numbers— see equations (5.25,5.26,5.33). This allows for cancella-

tions, making it difficult to constrain individual coefficients, or identify the operators responsable

for μ→ e conversion when it is observed. In the SI case, Kitano Koike and Okada (KKO)[207]

pointed out that scalar vs dipole vs vector operators could be distinguished by changing the

nuclear target. Section 5.5 explores, from various approaches, the prospects of distinguishing a

wider variety of operators, including SD vs SI, and u- vs d- quark operators.

The prospects for discriminating vector or scalar operators involving either u or d quarks

are illustrated in figure 5.2: vector operators involving u or d quarks could be distinguished

by comparing the μ→ e conversion rate in light (Z ≤ 20) and intermediate (Z ∼ 40) targets, but

distinguishing scalar u versus d operators seems difficult. Curiously, the u vs d distinction is

more transparent in the SD rates, as discussed after eqn (5.50). So if both SD and SI conversion

are observed, possibly the quark flavour could be extracted from the SD rates 8.

8Recall that SD and SI operators mix in the RG evolution, but without changing the quark flavour, as shown in
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The SD and SI contributions to the conversion rate could be distinguished (if the SD rate

is large enough) by comparing the conversion rate in nuclei with and without spin. Section 5.4

reviews the theoretical uncertainties in the calculation of the μ→ e conversion rate, in order to

estimate the sensitivity to the subdominant SD process. Comparing μ→ e conversion on isotopes

with and without spin would cancel the leading theory uncertainties, giving a sensitivity (see the

discussion after eqn 5.37) to ΓSD /ΓSI ≥ 0.1
A , assuming a 10% uncertainty on ΓSI . Among the SD

operators, it is not currently possible to distinguish pseudoscalar, axial and tensor coefficients,

because only the nuclear expectation value of the axial operator has been calculated. However, as

mentioned in the previous paragraph, it could be possible to discriminate SD operators involving

u vs d quarks, because they contribute differently in nuclei where the odd nucleon is a proton or

neutron.

The upcoming COMET and Mu2e experiments will initially search for μ → e conversion

on Aluminium, a target which has spin — so if they observe a signal, it could be mediated by

the SD or SI operators. So in section 5.5.3, we considered what series of subsequent targets

could give information about the dominant coefficients. To this purpose, we represent a target

material as a vector in the space of nucleon-level operators, whose components are numbers

which multiply the operator coefficient in the rate (overlap integrals, in the SI case). Different

targets can discriminate between operators, if they point in different directions of operator space.

We plot in figures 5.3 and 5.4 two different measures of the misalignment between target vectors.

If μ → e conversion is observed on Aluminium, the following sequence of targets could

be interesting: as second target, a light nucleus without spin, such as Titanium-48, would

discriminate whether the dominant contribution was from the SD rate, because the SI rate in

Titanium is comparable to Aluminium (see figures 5.3 and 5.4). If there is an SD contribution to

the rate in Aluminium, then Titanium isotopes with spin, could be an interesting target: the spin

of Titanium is related to the odd neutron (whereas in Aluminium there is an odd proton), so this

could discriminate whether the SD operators involved u or d quarks. Finally, a heavy target such

as gold or lead could allow to discriminate scalar vs vector operators, as pointed out in [207].
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appendix C. The only flavour change is via the first two “penguin” diagrams of figure C.1, which could change the
flavour of vector operators.
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CONSTRAINTS ON 2l2q OPERATORS FROM μ↔ e

FLAVOUR-CHANGING MESON DECAYS

AUTHORS : Sacha Davidson 1,and Albert Saporta2,

PUBLISHED IN : Physical Review D 1

We study lepton flavour violating two- and three-body decays of pseudoscalar mesons in

Effective Field Theory (EFT). We give analytic formulae for the decay rates in the presence

of a complete basis of QED×QCD-invariant operators. The constraints are obtained at the

experimental scale, then translated to the weak scale via one-loop RGEs. The large RG-mixing

between tensor and (pseudo)scalar operators weakens the constraints on scalar and pseudoscalar

operators at the weak scale.

6.1 Introduction

As we have seen in chapter 2 and 3, the discovery of neutrino oscillations [36, 37] established non

zero neutrino masses and mixing angles [38]. If neutrinos are taken massless in the Standard

Model (SM), then New Physics (NP) is required to explain the oscillation data. There are several

possibilities to search for NP signatures, such as looking for new particles at the LHC [244, 245].

Another possibility is to look for new processes among known SM particles, such as Charged

Lepton Flavour Violation (CLFV) [8, 9], which we define to be a contact interaction that changes

the flavour of charged leptons. If neutrinos have renormalizable masses via the Higgs mechanism,

1https://doi.org/10.1103/PhysRevD.99.015032
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then their contribution to CLFV rates is GIM suppressed by a factor ∝ (mν/MW )4 ∼ 10−48.

However, various extensions of the Standard Model that contain heavy new particles (see e.g.

[8, 9, 246, 247] and references therein), can predict CLFV rates comparable to the current

experimental sensitivities. Indeed, low energy precision experiments searching for forbidden

SM modes, are sensitive to NP scales TeV [8]. Many experiments search for CLFV processes;

for example, μ↔ e flavour change can be probed in the decays μ→ eγ [10] and μ→ 3e [12, 129],

in μ → e conversion on nuclei [13, 248, 249] and also in meson decays such as K ,D,B → μe

[19, 38, 174, 175, 177, 250–252].

In this paper, we focus on leptonic and semileptonic pseudoscalar meson decays with a μ±e∓ in the

final state [38]. We assume that these decays could be mediated by two-lepton, two-quark contact

interactions, induced by heavy New Particles at the scale ΛNP > mW . The contact interactions

are included in a bottom-up Effective Field Theory (EFT) [253–255] approach, as a complete set

of dimension six, QED×QCD-invariant operators [8], containing a muon, an electron and one of

the quark-flavour-changing combinations ds, bs, bd or cu.

Many studies on related topics can be found in the literature. The experimental sensitivity to the

coefficients of four-fermion operators (sometimes refered to as one-operator-at-a-time bounds),

evaluated at the experimental scale, has been compiled by various authors [256–258]. Reference

[259] compared the sensitivities of the LHC vs low-energy processes, to quark flavour-diagonal

scalar operators. The constraints on combinations of lepton-flavour-changing operator coefficients,

which can be obtained from the decays of same-flavour mesons, were studied in [260], and the

radiative decays of B,D and K mesons were discussed in [261]. Lepton flavour-conserving, but

quark flavour-changing meson decays (which occur in the Standard Model), are widely studied

[262]. In particular, B decays attract much current interest, due to the observed anomalies

[49, 50, 55, 263, 264] which suggest lepton universality violation [59, 265–270]. Lepton flavour

change has been widely studied in various models (see e.g. references of [8, 9, 271]). More model-

independent studies, that take into account loop corrections (or equivalently, renormalization

group running) have also been performed for μ↔ e flavour change [211, 212]. Finally, with respect

to the calculations in this manuscript, the leptonic branching ratio of pseudoscalar mesons is

well-known, and can be found in [256, 258, 272, 273] and semi-leptonic branching ratios in

various scenarios can be found in [274–282].

The aim of this paper is to obtain constraints on the operator coefficients describing meson

decays at the experimental scale, and then transport the bounds to the weak scale2. The four

fermion operators that could induce the meson decays are listed in section 6.2. Section 6.3

gives the branching ratios for the leptonic and semileptonic decays as a function of the operator

coefficients. In section 6.4, we then use the available bounds to constrain the coefficients at

the experimental scale (Λexp ∼ 2 GeV) by computing a covariance matrix, which allow us to

take into account the interferences among the operators. The bounds are then evolved from the

2In a future publication, we will give the evolution from the weak scale to the NP scale, and discuss the prospects
for reconstructing the fundamental Lagrangian of the New Physics from the operator coefficients.
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experimental scale to the weak scale (ΛW ∼ mW ) in section 6.5, using the Renormalization Group

Equations (RGEs) of QED and QCD for four-fermion operators [211, 212]. As discussed in the

final section, these equations give a significant mixing of tensor operators into the (pseudo)scalars

between Λexp and ΛW , which significantly weakens the bounds on (pseudo)scalar coefficients at

ΛW .

6.2 A basis of μ− e interactions at low energy

We are interested in four-fermion operators involving an electron, a muon and two quark of

different flavours, which are constructed with chiral fermions, because the lepton masses are

frequently neglected, and it simplifies the matching at the weak scale onto SU(2)-invariant

operators. The operators are added to the Lagrangian as

(6.1) δL =+2



2GF
∑
O

∑
ζ

Cζ

OO
ζ

O +h.c.

where the subscript O identifies the Lorentz structure, the superscript ζ = l1l2qi q j gives the

flavour indices, and both run over the possibilities in the lists below, extrapolated from [8, 207]:

(6.2)

O
eμuc
V ,Y Y = (eγαPYμ)(uγαPY c), O

eμuc
V ,Y X = (eγαPYμ)(uγαPX c)

O
eμcu
V ,Y Y = (eγαPYμ)(cγαPY u), O

eμcu
V ,Y X = (eγαPYμ)(cγαPX e)

O
eμuc
S,Y Y = (ePYμ)(uPY c), O

eμuc
S,Y X = (ePYμ)(uPX c)

O
eμcu
S,Y Y = (ePYμ)(cPY u), O

eμcu
S,Y X = (ePYμ)(cPX u)

O
eμuc
T,Y Y = (eσPYμ)(uσPY c)

O
eμcu
T,Y Y = (eσPYμ)(cσPY u)

(6.3)

O
eμds
V ,Y Y = (eγαPYμ)(dγαPY s), O

eμds
V ,Y X = (eγαPYμ)(dγαPX s)

O
eμsd
V ,Y Y = (eγαPYμ)(sγαPY d), O

eμsd
V ,Y X = (eγαPYμ)(sγαPX d)

O
eμds
S,Y Y = (ePYμ)(dPY s), O

eμds
S,Y X = (ePYμ)(dPX s)

O
eμsd
S,Y Y = (ePYμ)(sPY d), O

eμds
S,Y X = (ePYμ)(dPX s)

O
eμds
T,Y Y = (eσPYμ)(dσPY s)

O
eμsd
T,Y Y = (eσPYμ)(sσPY d)
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where Y Y ∈ {LL,RR}, and XY ∈ {LR,RL}, and the list is given explicitly for the Kaon and

D-meson operators. The lists for the Bd and Bs are obtained from eqn. (6.3) by replacing ds →
db, sb. The operators are normalised such that the Feynman rule will be +iC/Λ2. The operators

in the lists (6.2) and (6.3) transform a muon into an electron; the e → μ operators arise in the

+h.c. of eqn (6.1). So in these conventions, the lepton flavour indices are always eμ, and do

not need to be given. In the following sections, we give the decay rates of pseudoscalar mesons,

composed of constituent quarks q̄i and q j, into e+μ− or e−μ+. Then we obtain constraints on the

operator coefficients by comparing to the experimental upper bounds on the branching ratios, e.g.

BR(P1 → e±μ∓)= BR(P1 → e+μ−)+BR(P1 → e−μ+)< ... which we suppose to apply independently

to both decays. This gives independent and identical bounds on εeμqi q j and εeμq j qi .

In this work, we choose an operator basis with non-chiral quark currents, which is convenient for

the non-chiral hadronic matrix elements involved in meson decays. Thus, the operators describing

the contact interactions that can mediate leptonic (qi q j →μe) and semileptonic (qi → q jμe) CLFV

pseudoscalar meson decays at a scale Λexp ∼ 2 GeV (Λexp ∼ mb � 4.2 GeV for bs and bd) are

written:

O
eμqi q j

S,X = (ePXμ
)(

qi q j
)
, O

eμqi q j
P,X = (ePXμ

)(
qiγ

5q j
)

O
eμqi q j
V ,X = (eγαPXμ

)(
qiγαq j

)
, O

eμqi q j

A,X = (eγαPXμ
)(

qiγαγ
5q j

)
O

eμqi q j
TX

=
(
eσαβPXμ

)(
qiσαβPX q j

)(6.4)

where qi, j ∈ {u,d, s, c,b} , PX = PR,L = 1±γ5
2 and σμν = i

2 [γμ,γν].

In this case, the coefficients ε of the operators in eqn. (6.4) are :

ε
eμqi q j

S,X = 1
2

(Ceμqi q j

S,X R +Ceμqi q j

S,X L ), ε
eμqi q j
P,X = 1

2
(Ceμqi q j

S,X R −Ceμqi q j

S,X L )

ε
eμqi q j
V ,X = 1

2
(Ceμqi q j

V ,X R +Ceμqi q j
V ,X L ), ε

eμqi q j

A,X = 1
2

(Ceμqi q j
V ,X R −Ceμqi q j

V ,X L )

ε
eμqi q j
T,X = Ceμqi q j

T,X X

(6.5)

In the next section, we compute the branching ratio for the (semi)leptonic decays as a function of

the coefficients of eqn. (6.5).

6.3 Leptonic and semileptonic pseudoscalar meson decays

There are a multitude of bounds on rare meson decays coming from precision experiments

[38, 258]. The aim of this paper is to use these bounds to constrain the coefficients of eqn.

(6.5). Thus, in this section, we compute the leptonic and semileptonic pseudoscalar meson decay

branching ratio as a function of these coefficients.
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6.3.1 Leptonic decay branching ratio

We are interested in decays such as : P1 → l1 l̄2 where {l1, l2} are leptons of mass m1,m2 and P1

is a pseudoscalar meson of mass M (P1 ∈
{
K0

L( d̄s+s̄d

2

),D0(ūc),B0(b̄d)
}
). In the presence of New

Physics, the leptonic decay branching ratio of a pseudoscalar meson P1 of mass M is written

[256, 258, 273]:

BR(P1 → l1 l̄2)
C2body

= (|εP,L|2 +|εP,R |2)P̃ ′2(M2 −m2
1 −m2

2)

+ (|εA,L|2 +|εA,R |2)Ã′2[(M2 −m2
1 −m2

2)(m2
1 +m2

2)+4m2
1m2

2]

−2(εP,LεA,R +εP,RεA,L)P̃ ′ Ã′m2(M2 +m2
1 −m2

2)

+2(εP,LεA,L +εP,RεA,R)P̃ ′ Ã′m1(M2 +m2
2 −m2

1)

−4εP,LεP,RP̃ ′2m1m2

−4εA,LεA,R Ã′2M2m1m2

(6.6)

where C2body = τr∗G2
F

πM2 , r∗ = 1
2M

√
(M2 − (m1 +m2)2)(M2 − (m1 −m2)2) , m1,2 are the masses of the

leptons and τ is the lifetime of P1. For simplicity, we dropped the flavour superscript (ζ= l1l2qi q j)

of the coefficients.

The expectation values of the quark current for a pseudoscalar meson are written [258, 273] :

(6.7) P̃ ′ = 1
2
〈0|q̄iγ

5q j|P1〉 =
fP1 M2

2(mi +m j)
, ˜A′kμ = 1

2
〈0|q̄iγ

μγ5q j|P1〉 =
fP1 kμ

2

where mi, j are the masses of the quarks, fP1 is the decay constant of the meson and kμ the

momentum of the meson. These formulae are used for pions, Kaons, D and B mesons. The values

of the constants are given in appendix D. Note that tensor operators do not contribute to the

leptonic decay, because the trace of product of the Dirac matrices contained in the tensor operator

vanishes in this case.

6.3.2 Semileptonic decay branching ratio

We are interested in decays such as : P1 → l1 l̄2P2 where {l1, l2} are leptons of mass m1,m2

and {P1,P2} are pseudoscalar mesons of mass M,m3 (P1 ∈
{
K+(us̄),D+(cd̄),B+(ub̄),B+

s (sb̄)
}

and

P2 ∈
{
π+(ud̄),K+(us̄)

}
). The semileptonic decay branching ratio is written [283]:

BR(P1 → l1 l̄2P2)=

τ

512π3M3
1

2J+1

∫(M−m3)2

(m1+m2)2
dq2

∫1

−1
d cosθ

|M |2
√

λ(M2,m2
3, q2)

√
λ(q2,m2

1,m2
2)

q2

(6.8)
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where q = (p1 + p2) is the transferred momentum, θ the angle between the direction of

propagation of the lighter meson (P2) and the antilepton (l2) in the leptons reference frame, τ

and J the lifetime and the spin of P1 and |M |2 the matrix element of the semileptonic decay. The

Kallen function is defined as λ(x, y, z) = (x− y− z)2 −4yz. In the presence of New Physics, the

matrix element in the semileptonic decay branching ratio of eqn. (6.8) is written :

|M |2
8G2

F
= 2(|εS,L|2 +|εS,R |2)S̃2(p1.p2)

+ 1
4

(|εV ,L|2 +|εV ,R |2)[ f 2
+
(
4(p1.P)(p2.P)−2P2(p1.p2)

)+ f 2
−
(
4(p1.q)(p2.q)−2q2(p1.p2)

)
+4 f+ f− ((p1.q)(p2.P)+ (p1.P)(p2.q)− (p1.p2)(P.q))]

+4(|εTR |2 +|εTL |2)T̃ ′2[4(p1.q)(p2.P)(P.q)+4(p1.P)(p2.q)(P.q)−2(p1.p2)(P.q)2

+2P2q2(p1.p2)−4P2(p1.q)(p2.q)−4q2(p1.P)(p2.P)]

−2(εS,LεV ,R +εS,RεV ,L)S̃m2[( f+(p1.P)+ f−(p1.q))]

+2(εS,LεV ,L +εS,RεV ,R)S̃m1[( f+(p2.P)+ f−(p2.q))]

+8(εS,RεTR +εS,LεTL )S̃T̃ ′[((p1.P)(p2.q)− (p1.q)(p2.P))]

−4εS,LεS,RS̃2m1m2

−εV ,LεV ,Rm1m2[ f 2
−q2 + f 2

+P2 +2 f+ f−(P.q)]

+4(εV ,LεTR +εV ,RεTL )T̃ ′m2[ f+((p1.q)p2 − (P.p1)(P.q))+ f−((p1.q)(P.q)− (p1.P)q2)]

+4(εV ,RεTR +εV ,LεTL )T̃ ′m1[
(
f+((P2)(p2.q)− (p2.P)(P.q))+ f−((p2.q)(P.q)− q2(p2.P))

)
]

+16εTRεTL T̃ ′2m1m2[(P.q)2 −P2q2]

(6.9)

where p1, p2,k, p3 are respectively the 4-momentum of the leptons 1 and 2, and the 4-momenta
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of P1 and P2, P = k+ p3 and the hadronic matrix elements are written [258, 273–276] :

Ṽμ = 1
2
〈P2|q̄iγ

μq j|P1〉 = 1
2

(Pμ f P1P2+ (q2)+ qμ f P1P2− (q2))

S̃ = 1
2
〈P2|q̄i q j|P1〉 = 1

2
(M2 −m2

3)
(mqi −mq j )

f P1P2
0 (q2)

T̃μν = 1
2
〈P2|q̄iσ

μνq j|P1〉 =− i
2

( f P1P2+ (q2)− f P1P2− (q2))
M∗ (Pμqν−Pνqμ)

T̃ ′ = 1
2

( f P1P2+ (q2)− f P1P2− (q2))
M∗

(6.10)

For simplicity, we suppressed the q2 dependence of the form factors f+,−,0 in eqn. (6.9), and the

flavour superscript (ζ= l1l2qi q j) of the coefficients. Notice there is no interference between εS,L

(εS,R ) and εTR (εTL ) because the trace of the product of Dirac matrices involved in tensor and

scalar operators of different chirality vanishes. The form factors and the scalar product in eqn.

(6.9) are given in appendix E.

For simplicity, we do not give the analytic expression of the integrated semileptonic decay

branching ratio, but only perform the integrals numerically.

6.4 Covariance matrix

In this section, we use the Branching Ratios (BRs) of eqns (6.6) and (6.8) to compute a covariance

matrix, that will give constraints on the coefficients that account for possible interferences. We

note BRexp
2 [BRexp

3 ] the experimental upper limit on the leptonic decay P1 → l̄1l2 [semileptonic

decay P1 → P2 l̄1l2] branching ratio and M2 [M3] the associated covariance matrix.

We can write the decay branching ratio of eqn. (6.6) and (6.8) in the form

(6.11) �εT M−1�ε= 1

where�εT (�ε) is a row (column) vector of coefficients, and M−1 is the inverse of the covariance

matrix. The explicit form of the 4×4 and 6×6 matrices is given in appendix G. The diagonal

elements of the covariance matrix M represent the squared bounds on our coefficients, and the

off-diagonals elements represent the correlation between coefficients.
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Decay Leptonic Semileptonic

K BRexp
2 (K0

L →μ±e∓)< 4.7×10−12 [174] BRexp
3 (K+ →π+μ̄e)< 1.3×10−11

- BRexp
3 (K+ →π+ ēμ)< 5.2×10−10 [251]

D BRexp
2 (D0 →μ±e∓)< 1.3×10−8 [250] BRexp

3 (D+ →π+μ̄e)< 3.6×10−6

- BRexp
3 (D+ →π+ ēμ)< 2.9×10−6 [252]

Ds - BRexp
3 (D+

S → K+μ̄e)< 9.7×10−6

- BRexp
3 (D+

S → K+ ēμ)< 1.4×10−5 [252]

B BRexp
2 (B0 →μ±e∓)< 2.8×10−9 [175] BRexp

3 (B+ →π+μ±e∓)< 1.7×10−7 [19]

- BRexp
3 (B+ → K+μ±e∓)< 9.1×10−8 [177]

Bs BRexp
2 (B0

S →μ±e∓)< 1.1×10−8 [175] −

Table 6.1: Experimental bounds on leptonic and semileptonic decays.

6.4.1 Bounds on the coefficients

In this section, we give constraints on the coefficients for Kaon, D and B meson leptonic and

semileptonic decays. As explained in section 6.3, tensor operators do not contribute to the leptonic

decays of mesons. Thus, the available upper limits on leptonic [semileptonic] pseudoscalar meson

branching ratios will give constrains on the εP,X and εA,X [εS,X , εV ,X and εT,X ] coefficients.

Indeed, hadronic matrix elements with scalar, vector or tensor quark current structure vanish

in the leptonic case, while hadronic matrix elements with pseudoscalar or axial struture vanish

in the semileptonic case. We consider the CLFV decays with the associated experimental upper

limits given in table 6.1 [38].

The bounds in table 6.1 will be used to constrain the coefficients at Λexp and the at ΛW after

the RGEs evolution of the coefficients (see section 6.5). The covariance matrices at Λexp for

the (semi)leptonic meson decays are given in appendix H, and the bounds on coefficients are

summarized in table 6.2, 6.3 and 6.4.

6.5 Renormalization Group Equations (RGEs)

In this section, we review the evolution of operator coefficients from the experimental scale

(Λexp ∼ 2 GeV) up to the weak scale (ΛW ∼ 80 GeV) via the one-loop RGEs of QED and QCD

[211, 212]. We only consider the QED×QCD invariant operators of eqn. (6.4). The matching onto

the SMEFT basis [284] and the running above mW [285] will be studied at a later date.
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6.5.1 Anomalous dimensions for meson decays

Figure 6.1 illustrates some of the one-loop diagrams that renormalize our operators below the

weak scale. Operator mixing is induced by photon loops, whereas the QCD corrections only rescale

the S,P and T operator coefficients. After including one-loop corrections in the MS scheme, the

operator coefficients will run with scale Λ according to [211] :

(6.12) Λ
∂

∂Λ
�ε= αe

4π
�εΓe + αs

4π
�εΓs

where Γe and Γs are the QED and QCD anomalous dimension matrices and�ε is a row vector that

contains the operator coefficients of eqn. (6.5). In this work, we use the approximate analytic

solution [210] of eqn. (6.12) to compute the running and mixing of the coefficients between Λexp

and ΛW :

(6.13) εI (Λexp)= εJ(ΛW )λaJ

(
δJI −

αeΓ̃
e
JI

4π
log

ΛW

Λexp

)

where I,J represent the super- and sub-scripts which label operator coefficients, λ encodes the

QCD corrections, and Γ̃e
JI is the “QCD-corrected” one-loop, anomalous dimension matrix for QED

[286, 287] . The elements of Γ̃e
JI are defined as:

(6.14) Γ̃e
JI =Γe

JI fJI , fJI = 1
1+aJ −aI

λaI−aJ −λ

1−λ
, Γe =

⎡⎢⎢⎣ΓSPT 0

0 ΓV A

⎤⎥⎥⎦ .

where there is no sum on I, J, λ = αs(ΛW )
αs(Λexp) , and aJ = Γs

JJ
2β0

= {−12
23 ,−12

23 , 4
23
}

for J ∈ {S,P,T}. The

QED anomalous dimensions are

ΓSPT =

⎡⎢⎢⎢⎢⎢⎢⎣
γ

l1l2qi q j
PP 0 γ

l1l2qi q j
PT

0 γ
l1l2qi q j

SS γ
l1l2qi q j

ST

γ
l1l2qi q j
TP γ

l1l2qi q j

TS γ
l1l2qi q j
TT

⎤⎥⎥⎥⎥⎥⎥⎦ , ΓV A =

⎡⎢⎢⎣ γ
l1l2qi q j

AA γ
l1l2qi q j

AV

γ
l1l2qi q j

V A γ
l1l2qi q j
VV

⎤⎥⎥⎦(6.15)

where the matrix elements in ΓSPT and ΓV A are defined in section 6.5.
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Figure 6.1: Examples of one-loop gauge vertex corrections to 4-fermion operators. The wave-
function renormalization diagrams are missing.

For the scalars and pseudoscalars, the wavefunction, first and second diagrams of figure 6.1

renormalize the coefficients, while the last four diagrams mix the tensors into the scalars and

pseudoscalars:

(6.16) γ
q,q
SS =

ε
qq
S,L ε

qq
S,R

ε
qq
S,L −6(1+Q2

q) 0

ε
qq
S,R 0 −6(1+Q2

q)

γ
q,q
TS =

ε
qq
S,L ε

qq
S,R

ε
qq
T,L 48Qq 0

ε
qq
T,R 0 48Qq

(6.17) γ
q,q
PP =

ε
qq
P,L ε

qq
P,R

ε
qq
P,L −6(1+Q2

q) 0

ε
qq
P,R 0 −6(1+Q2

q)

γ
q,q
TP =

ε
qq
P,L ε

qq
P,R

ε
qq
T,L −48Qq 0

ε
qq
T,R 0 48Qq

.

Similarly, the last four diagrams mix the (pseudo)scalars to the tensors. Only the wavefunction

diagrams renormalize the tensors, because for the the first and second diagrams γμσγμ = 0. We

obtain :
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(6.18) γ
q,q
TT =

ε
qq
T,L ε

qq
T,R

ε
qq
T,L 2(1+Q2

q) 0

ε
qq
T,R 0 2(1+Q2

q)

γ
q,q
S(P)T =

ε
qq
T,L ε

qq
T,R

ε
qq
S(P),L (−)2Qq 0

ε
qq
S(P),R 0 2Qq

Finally, for the vectors and axial vectors, there is no running, but the last four diagrams

contribute to the mixing of vector and axial coefficients :

(6.19) γ
q,q
AV =

ε
qq
V ,L ε

qq
V ,R

ε
qq
A,L 12Qq 0

ε
qq
A,R 0 −12Qq

γ
q,q
V A =

ε
qq
A,L ε

qq
A,R

ε
qq
V ,L 12Qq 0

ε
qq
V ,R 0 −12Qq

6.5.2 RGEs of operator coefficients

In this section we compute the evolution of the bounds from Λexp to ΛW . In the previous section,

we found a mixing between pseudoscalar and tensor coefficients, and between vector and axial

coefficients. Thus, the coefficients that contributed only to the leptonic [semileptonic] decays at

Λexp will also contribute to the semileptonic [leptonic] decays at ΛW via the mixing.

The matrices describing the evolution of the coefficients from Λexp to ΛW for all the decays were

obtained with eqn. (6.13) and are given in appendix F.

6.5.3 Evolution of the bounds

In order to constrain the coefficients at ΛW , the constraints needs to be expressed in terms of co-

efficients at ΛW . However, the mixing of the pseudoscalar (axial) into the tensor (vector), and vice

versa, implies that leptonic and semi-leptonic branching ratios can both depend on any of the ten

coefficients, which we arrange in a vector as�ε′ =
(
εP,L,εA,L,εP,R ,εA,R ,εS,L,εV ,L,εTL ,εS,R ,εV ,R ,εTR

)
ΛW

.

The 10×10 matrix we need to invert to compute the bounds at ΛW is now written :

(6.20) (M′)−1 =RT

⎛⎜⎜⎝ M−1
2 04×6

06×4 M−1
3

⎞⎟⎟⎠R

where M−1
2 and M−1

3 are the 4×4 and 6×6 matrices defined in appendix G we inverted to obtain

the bounds at Λexp (see section 6.4) and R has the form of the matrices defined in eqn. (F.1), (F.2)

and (F.3). Finally, eqn. (6.11) is written in the new basis as :
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(6.21) �ε′
T

(M′)−1�ε′ = 1

where �ε′ is the vector of coefficients at ΛW , (M′)−1 the matrix in eqn. (6.20) and the superscript T

means matrix transposition. All the covariance matrices at ΛW can be found in appendix H. In

table 6.2, 6.3 and 6.4 we summarize all the bounds on the coefficients at Λexp and ΛW .

ε
l1 l2 qi q j
P,X Λexp ΛW S.O,Λexp S.O,ΛW

ε
eμds
P,X 2.32×10−7 4.06×10−7 1.28×10−8 7.82×10−9

ε
eμcu
P,X 1.75×10−3 1.08×10−3 7.92×10−5 4.84×10−5

ε
eμbd
P,X 2.35×10−4 1.66×10−4 5.13×10−6 3.61×10−6

ε
eμbs
P,X 1.75×10−4 1.23×10−4 8.27×10−6 5.83×10−6

ε
l1 l2 qi q j
S,X Λexp ΛW S.O,Λexp S.O,ΛW

ε
eμds
S,X 1.05×10−6 5.68×10−7 7.67×10−7 4.68×10−7

ε
eμcu
S,X 1.34×10−3 8.25×10−4 1.33×10−3 8.1×10−4

ε
eμbd
S,X 1.44×10−5 1.01×10−5 1.44×10−5 1.01×10−5

ε
eμbs
S,X 2.25×10−5 1.59×10−5 2.24×10−5 1.58×10−5

Table 6.2: Constraints on the dimensionless four-fermion coefficients ε
l1l2qi q j
P,X and ε

l1l2qi q j

S,X at the
experimental (Λexp for K and D mesons decay and Λmb for B meson decays) and weak (ΛW ) scale
after the RGEs evolution. The last two columns are the sensitivities, or Single Operator (SO) at
a time bounds, see subsection 6.5.4. All bounds apply under permutation of the lepton and/or
quark indices.

ε
l1 l2 qi q j
A,X Λexp ΛW S.O,Λexp S.O,ΛW

ε
eμds
A,X 5.45×10−6 5.45×10−6 3.01×10−7 3.01×10−7

ε
eμcu
A,X 4.51×10−2 4.52×10−2 2.04×10−3 2.04×10−3

ε
eμbd
A,X 1.48×10−2 1.48×10−2 3.23×10−4 3.23×10−4

ε
eμbs
A,X 1.11×10−2 1.11×10−2 5.27×10−4 5.27×10−4

ε
l1 l2 qi q j
V ,X Λexp ΛW S.O,Λexp S.O,ΛW

ε
eμds
V ,X 4.94×10−6 4.94×10−6 2.93×10−6 2.93×10−6

ε
eμcu
V ,X 1.45×10−3 1.64×10−3 1.39×10−3 1.39×10−3

ε
eμbd
V ,X 1.49×10−5 1.03×10−4 1.48×10−5 1.48×10−5

ε
eμbs
V ,X 2.56×10−5 8.05×10−5 2.54×10−5 2.54×10−5

Table 6.3: Constraints on the dimensionless four-fermion coefficients ε
l1l2qi q j

A,X and ε
l1l2qi q j
V ,X at the

experimental (Λexp for K and D mesons decay and Λmb for B meson decays) and weak (ΛW ) scale
after the RGEs evolution. The last two columns are the sensitivities, or Single Operator (SO) at
a time bounds, see subsection 6.5.4. All bounds apply under permutation of the lepton and/or
quark indices.

In the leptonic decays, the evolution of the bounds on the pseudoscalar coefficients between

Λexp and ΛW is the most important effect of the RGEs as shown in the first two columns
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ε
l1 l2 qi q j
TX

Λexp ΛW S.O,Λexp S.O,ΛW

ε
eμds
TX

1.23×10−5 1.45×10−5 8.76×10−6 1.03×10−5

ε
eμcu
TX

2.01×10−3 2.37×10−3 1.93×10−3 2.28×10−3

ε
eμbd
TX

2.01×10−5 2.26×10−5 2×10−5 2.25×10−5

ε
eμbs
TX

3.89×10−5 4.37×10−5 3.87×10−5 4.35×10−5

Table 6.4: Constraints on the dimensionless four-fermion coefficients ε
l1l2qi q j
TX

at the experimental
(Λexp for K and D mesons decay and Λmb for B meson decays) and weak (ΛW ) scale after the
RGEs evolution. The last two columns are the sensitivities, or Single Operator (SO) at a time
bounds, see subsection 6.5.4. All bounds apply under permutation of the lepton and/or quark
indices.

of the left panel of table 6.2. As can be seen in eqn. (F.1), (F.2) or (F.3), the running of the

(pseudo)scalar coefficients is ∼ 1.6(1.4), which means that if we neglect the mixing of the tensor

into (pseudo)scalar coefficients, the bounds on εS and εP will be better at ΛW for all the decays

we considered. However, the large mixing of the tensor coefficients into the (pseudo)scalar ones

(see eqn. (6.16), (6.17) and eqn. (F.1) to (F.3)) weaken the bounds on pseudoscalar coefficients at

ΛW for the Kaon decay. This is due to the fact that the bounds on ε
eμds
T (see the first two columns

of table 6.4) are much weaker than the bounds on ε
eμds
P at Λexp (see the first two columns of the

left panel of table 6.2). Thus, the mixing of εT into εP will leads to weaker bounds on εP at ΛW for

the Kaon decay.

For the D,B and Bs meson decays, the bounds on εP are a bit closer to the bound on εT at Λexp.

Even with the large mixing of the tensor into the pseudoscalar coefficients, the bounds on ε
eμcu
P ,

ε
eμbd
P and ε

eμbs
P will be slightly better at ΛW because the running will be larger than the mixing.

In the semileptonic decays, there is also a mixing between scalar and tensor coefficients, but the

bounds on scalar coefficients at ΛW increases a bit because, similarly to ε
eμcu
P , εeμbd

P and ε
eμbs
P , the

bounds on all the scalar coefficients (first two columns of the right panel of table 6.2) are close to

the bounds on the tensor coefficients at Λexp. The running of the scalars will be stronger than the

mixing of the tensors into the scalars, thus, the bounds on εS are better at ΛW for all the decays.

For the axial and vector coefficients, there is no running and the mixing is small. The bounds on

ε
eμds
A and ε

eμds
V at Λexp are very close (see table 6.3), this explains why there is no evolution of

these bounds at ΛW . However, for the D, B and Bs decays, the bounds on εA are much weaker

than the bounds on εV at Λexp, especially for the B and Bs decay. Thus, the bounds on ε
eμcu
A , εeμbd

A
and ε

eμbs
A do not evolve significantly at ΛW , but the mixing of the axial into vector coefficients

will lead to weaker bounds on ε
eμcu
V , εeμbd

V and ε
eμbs
V at ΛW as shown in the first two columns of

the two panels of table 6.3.
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Finally, the running of tensor coefficients is tiny, and the mixing of the (pseudo)scalar coefficients

into the tensor ones is small. Thus, the evolution of the bounds is small for the tensor coefficients

(first two columns of table 6.4) as for the bounds on vector and axial coefficients in the Kaon

decay (first two columns of table 6.3). Finally, the matching at ΛW along with the evolution of the

bounds between ΛW and ΛNP will be given in a future publication [288].

6.5.4 Single operator approximation

We also computed the sensitivities of the various decays to the coefficients at Λexp, and these are

given in the third column of tables 6.2 to 6.4. The sensitivity is the value of the coefficient below

which it could not have been observed, and is calculated as a “Single Operator” (SO) at a time

bound, that is by allowing only one non-zero coefficient at a time in the branching ratio (see eqn

(6.6) and (6.9)). This is different from setting bounds on coefficients (first two columns of table 6.2

to 6.4), which are obtained with all coefficients non-zero, and exclude the parameter space outside

the allowed range. It is clear that the sensitivities are sometimes an excellent approximation to

the bounds, and sometimes differ by orders of magnitude.

To compute the evolution of the sensitivities of the decays to the coefficients at ΛW (given in

the last column of table 6.2 to 6.4), we still kept only one non-zero coefficients at Λexp and

considered only the running of the coefficients (the diagonal terms in eqn. (F.1) to (F.3)). For

example, computing the sensitivity of the leptonic Kaon decay to a pseudoscalar coefficient at ΛW

in the SO approximation requires to multiply the first term in eqn. (G.3) by the first (or third)

diagonal term squared in eqn. (F.1). Then, inverting the product and taking the square root will

give the sensitivity of the decay to the coefficient at ΛW .

6.5.5 Updating the bounds

In future years, the experimental data on LFV meson decays could improve, so in this section, we

consider how to update our bounds, without inverting large matrices.

The bounds on coefficients at Λexp obtained in this work are of the form |ε| < 

BRexp × con-

stant. Thus, all the bounds at Λexp given in tables 6.2 to 6.4 can be updated by rescaling by√
(BRexp

new)/(BRexp
old ) when the data improves. However, in principle, the 10×10 matrix of eqn

(6.20) must then be inverted to obtain the bounds at ΛW . So we now describe approximations

that allow to obtain the bounds at ΛW with manageable matrices.

For the semileptonic decay, the bounds at Λexp can be obtained by neglecting all the inter-

ference terms between the scalar, vector and tensor coefficients of either chirality (see eqn. (6.9)).

The 6×6 matrix in eqn. (G.2) then becomes diagonal and easy to invert. This approximation will

give bounds at Λexp on εS,X , εV ,X and εT,X close to those obtained in the first column of tables
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6.2 to 6.4 (which include the interference terms).

In the leptonic decay (eqn. (6.6)), a reasonable approximation for the bounds at Λexp is to

keep the interference between axial and pseudoscalar coefficients of opposite chirality (with

m2 = mμ in eqn. (6.6)). The other interference terms, proportional to m1 = me, can be neglected.

Thus, bounds on εA and εP at Λexp, which are a reasonable approximation to the first column

of tables 6.2 and 6.3, can be obtained by inverting a 2×2 matrix in the basis
(
εP,X ,εA,Y

)
where

X ∈ L,R and Y ∈ R,L, instead of the 4×4 matrix in eqn. (G.1).

To obtain bounds at ΛW , it is necessary to keep the mixing between εS, εP , εT , and between εV

and εA. Then, the bounds on εS, εP , εT , εV and εA at ΛW can be obtained by considering M−1′

in eqn. (6.20) as a product of 5×5 matrices in the basis (εP,X , εS,X , εT,X ,εV ,Y ,εA,Y ) where X and

Y are the chirality. However, εS, εP and εT must have the same chirality, but different from the

chirality of εV and εA in order to take into account the mixing induced by the RGEs, that occurs

only for coefficients of the same chirality (see eqn. (6.13), and (F.1) to (F.3)). This is due to the

fact that it is necessary to keep the interference between axial and pseudoscalar coefficients of

different chiralities to compute the bounds on εP,X and εA,Y .

6.6 Conclusion

In this paper, we consider operators which simultaneously change lepton and quark flavour, and

obtain constraints on the coefficients using available data on (semi)leptonic pseudoscalar meson

decays. Section 6.2 lists the dimension six, two lepton two quark operators and their associated

coefficients at the experimental scale Λexp. Scalar, pseudoscalar, vector, axial and tensor operators

are included. The leptonic and semileptonic branching ratios of pseudoscalar mesons, as a function

of the operator coefficients, are given in section 6.3. We find tensor operators do not contribute

to the leptonic decays but only to the semileptonic decays, in which the interference between

εS,L (εS,R) and εTR (εTL ) vanishes. The constraints on operator coefficients, evaluated at the

experimental scale, are given in tables 6.2, 6.3 and 6.4 and discussed in section 6.4. The bounds

are obtained via the appropriate covariance matrices, which allows to take into account the

interferences among operators (see eqn. (6.6),(6.9),(G.1) and (G.2)). The matrices are given in

appendix B. Section 6.5 gives the Renormalization Group evolution of the coefficients from the

experimental to the weak scale ΛW , and the formalism used to compute the covariances matrices

at ΛW . The weak-scale constraints on the coefficients are given in tables 6.2, 6.3 and 6.4. The

large mixing of tensor coefficients into (pseudo)scalar coefficients has important consequences on

the evolution of the bounds on scalar and pseudoscalar coefficients. Indeed, in the case of the kaon

decay, the experimental-scale bounds on tensor coefficients are significantly weaker than those on

85



CHAPTER 6. CONSTRAINTS ON 2l2q OPERATORS FROM μ↔ e FLAVOUR-CHANGING
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pseudoscalars. As a result, the pseudoscalar bounds are weaker at ΛW , compared to the bounds

at Λexp. The bounds on scalar coefficients at ΛW are slightly stronger than at Λexp. There is no

running for the vector and axial coefficients, due to the fact we consider quark-flavor changing

operators, and the mixing is small, but the bounds on axial coefficients are much weaker than

the bounds on vector coefficients for the D, B and Bs decays, this leads to much weaker bounds

on vector coefficients at ΛW . Similarly, the running and mixing of tensor coefficients are small.

As a result, the bounds on the axial and tensor coefficients do not evolve significantly between

the experimental and weak scales.

We conclude by noting the importance of including interferences among operators in comput-

ing the bounds on their coefficients. As shown in subsection 6.5.4, the sensitivities of the decays

to εP and εA obtained at Λexp and to εP , εA and εV at ΛW in the single operator approximation

are better by several orders of magnitude compared to the bounds obtained by keeping the

interferences among operators. We found that the Renormalization Group running between the

experimental and weak scales has an important effect on the evolution of the bounds, especially

the large mixing of the tensor (axial) into the pseudoscalar (vector), which lead to weaker bounds

on pseudoscalar (vector) coefficients at ΛW for the Kaon (D, B and Bs) decay.
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CONCLUSIONS AND PROSPECTS

The Standard Model of particle physics proved to be a very successful theory, as most of its

predictions have been confirmed by various experiments. However, despite of its success, the

SM cannot be a complete theory as many unsolved issues remain. This is confirmed by many

observations that cannot be explained in the frame of the SM, such as the matter-antimatter

asymmetry in the Universe or the presence of dark matter and dark energy. Other issues, such

as the hierarchy problem or the fact that gravity is not included in the SM are additional reasons

to believe that the SM can be considered as an effective theory of a more fundamental theory.

This has lead to the birth of BSM physics that aim at extending the SM in order to address the

unsolved issues.

The discovery of neutrino oscillations proved that neutrinos are massive and was also another

striking manifestation of BSM physics, as lepton flavour violation is not explained in the SM.

Thus, flavour physics is a great place to search for BSM physics and could give insight on the

way to construct a more fundamental theory. In particular, the observation of processes involving

lepton flavour violation in the charged lepton sector would be a clear signal of BSM physics.

Indeed, even in the SM extended with massive neutrinos, the rates of CLFV processes are

strongly suppressed and cannot be observed by current or future experiments. Currently, various

experiments are searching for CLFV processes and many others are under construction, and plan

to improve the sensitivity to CLFV processes by several orders of magnitude.

In this thesis, we have presented the study of specific CLFV processes, and used an EFT

approach to constrain new physics models. The motivation for this work is the huge potential of

CLFV processes to constrain BSM models, in the context of the exceptional improvements in the
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sensitivity expected for the future experiments.

In chapter 2, we made a review of the unsolved issues in the SM, and gave a short list of BSM

models that aim at addressing these issues.

In chapter 3, we introduced the theoretical and experimental context for CLFV searches.

We first discussed the state of the art in the muon channel, in which the sensitivity of the

experiments to CLFV processes will greatly improve with the upcoming experiments. Then, we

presented various searches in the tau channel, we saw that the sensitivity is lower than in the

muon channel, but as for the muon channel, important improvements of the sensitivity in the

tau channel are expected for the future experiments. We also discussed CLFV processes searches

in the meson channel, which is also a very promising channel to constrain BSM models, due to

the very large number of processes and the various experiments searching for these processes.

In chapter 4, we introduced the formalism of the EFT approach. We saw how the SM can

be extended with the most general gauge invariant higher dimensional operators constructed

from SM fields. In this approach, new physics effects can be described in terms of the effective

operators and their associated coefficients. We also discussed the principles of renormalization

and dimensional regularization, that are necessary to treat the divergences that appear in loop

integrals. We presented the renormalization group equations, that govern the running and the

mixing of coefficients with the energy scale. Finally, we presented two approaches in the EFT

formalism : the top-down approach, and the bottom-up approach.

In chapter 5, we studied the conversion of a muon into an electron on nuclei in a top-down EFT.

We considered operators that can mediate the conversion process and obtained constraints on the

coefficients using available data. First, we listed the operators and their associated coefficients,

that contribute to the conversion process. We gave details of our estimation of the spin dependent

and independent rates and discussed the related uncertainties. Then, we considered three possible

Leptoquarks scenarios, each containing an SU(2) singlet Leptoquark, with a mass at the TeV

scale and with only one coupling to electrons and one to muons. We computed the running and

the mixing from the new physics scale (the Leptoquark mass) down to the experimental scale

via an approximate analytic solution to the one-loop RGEs of QED and QCD. With the spin

dependent and independent branching ratios expressed as a function of the coefficients at the

experimental scale, we used the current experimental upper limits on the μ → e conversion

process to constrain our coefficients, using a covariance matrix formalism. We then discussed the

prospects for distinguishing the spin dependent and independent contributions. Finally, discussed

the prospects for using different target nuclei in order to discriminate among the operators in the

case where μ→ e conversion on nuclei is observed.

In chapter 6, we studied CLFV two and three body decays of pseudoscalar mesons in a

bottom-up EFT. We considered operators that change lepton and quark flavour, and we obtained

constraints on the coefficients using available data on (semi)leptonic pseudoscalar meson decays.

We listed the operators and their associated coefficients at the experimental scale that contribute
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to the CLFV (semi)leptonic pseudoscalar meson decays. Then we computed the leptonic and

semileptonic branching ratios of CLFV pseudoscalar meson decays as a function of the coefficients

at the experimental scale. Using again a covariance matrix formalism allows us to take into

account the interferences between operators when computing bounds on the coefficients. We gave

the constraints on the coefficients at the experimental scale and then we used the RGEs to evolve

our coefficients to the weak scale, at which we computed the bounds again. Then, we computed

the sensitivities of the decays to the operators in the single operator approximation. We studied

the importance of including interferences among operators by comparing the sensitivities ob-

tained in the single operator approximation to the bounds obtained by keeping the interferences.

We concluded that it is critically important to keep the interferences among operators when

computing bounds on coefficients, and that the running between the experimental and weak

scales has an important effect on the evolution of the bounds.

With all the expected improvements in the experimental sensitivity to various CLFV processes

in the coming years, we have very exciting times ahead of us. We will be able to test BSM models

at an unprecedented level and we will have a beautiful opportunity to have a better understanding

of the structure of quantum field theories, toward the final theory of everything.
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When the quark Lagrangian of eqn (5.1) is matched onto the nucleon Lagrangian, the coefficients

of the nucleon operators can be computed as C̃NN
O,Y =∑q GN,q

O Cqq
O,Y , for O ∈ T, A,V ,P; for the scalar

operator there is an additional gluon contribution as described in [206]. We take the GN,q
O , defined

at zero-momentum-tranfer such that 〈N(P)|q̄(x)ΓO q(x)|N(P)〉 =GN,q
O uN (P)ΓOuN (P), to be

Gp,u
V =Gn,d

V = 2 , Gp,d
V =Gn,u

V = 1 , Gp,s
V =Gn,s

V = 0(A.1)

Gp,u
A =Gn,d

A = 0.84(1) , Gp,d
A =Gn,u

A =−0.43(1) , Gp,s
A =Gn,s

A =−.085(18)(A.2)

Gp,u
S = mp

mu
0.021(2)= 9.0 , Gp,d

S = mp

md
0.041(3)= 8.2 , Gp,s

S = mN

ms
0.043(11)= 0.42(A.3)

Gn,u
S = mn

mu
0.019(2)= 8.1 , Gn,d

S = mn

md
0.045(3)= 9.0 , Gn,s

S
mN

ms
0.043(11)= 0.42(A.4)

Gp,u
P = 144=Gn,d

P , Gp,d
P =−150=Gn,u

P , Gp,s
P =−4.9=Gn,s

P(A.5)

Gp,u
T =Gn,d

T = 0.77(7) , Gp,d
T =Gn,u

T =−0.23(3) , Gp,s
T =Gn,s

T = .008(9) .(A.6)

where the parenthese gives the uncertainty in the last figure(s). The axial GA are the results

inferred in Ref. [289] by using the HERMES measurements [290]. The scalar GS induced by

light quarks are from a dispersive determination [291], and an average of lattice results [292]

is used for the strange quark; in all cases, the MS quark masses at μ = 2 GeV are taken as

mu = 2.2 MeV, md = 4.7 MeV, and ms = 96 MeV [293]. The nucleon masses are mp = 938 MeV

and mn = 939.6 MeV . The pseudoscalar results were calculated from data in the large-Nc

approximation at q2 ≈ 0 [294], and here extrapolated to neutrons using isospin. The tensor

results for the neutron are the lattice results of Cirigliano etal [295], which are here extrapolated

to protons using isospin.

For comparaison, the GA have been obtained on the lattice; a recent determination [296] is
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Gp,u
A =Gn,d

A = 0.863(7)(14) , Gp,d
A =Gn,u

A =−0.345(6)(9)

Gp,s
A =Gn,s

A =−.0240(21)(11)(A.7)

The scalar GN,q
S have also recently been obtained on the lattice [297]:

Gp,u
S = mp

mu
0.0139(13)(12)= 5.9 , Gp,d

S = mp

md
0.0253(28)(24)= 5.0(A.8)

Gn,u
S = mn

mu
0.0116(13)(11)= 5.0 , Gn,d

S = mn

md
0.0302(3)= 6.0(A.9)

We observe that there is a 50% discrepancy with respect to the results of [291], obtained from

pionic atoms and π−N scattering [298]. Results similar to [291] were earlier obtained in [299],

also using an effective theory.
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THE TENSOR CONTRIBUTION TO THE SD AND SI RATES

We consider tensor operators

(B.1) Cuu
T,LO uu

T,L +Cdd
T,LO dd

T,L + {L ↔ R}

at the experimental scale μN , which contribute at finite-momentum-transfer to the SI conversion

process (see eqn (5.19)), and also to the SD processes:

ΓSI

Γcapt
=(B.2)

8B0
m2

μ

m2
N
|Z(Cuu

T,LGp,u
T +Cdd

T,LGp,d
T )Fp(mμ)+ (A−Z)(Cuu

T,LGn,u
T +Cdd

T,LGn,d
T )Fn(mμ)|2

+ {L ↔ R}

ΓSD

Γcapt
=(B.3)

32B0
JA +1

JA

∣∣∣SA
p (Cuu

T,LGp,u
T +Cdd

T,LGp,d
T )+SA

n (Cuu
T,LGn,u

T +Cdd
T,LGn,d

T )
∣∣∣2 SA(mμ)

SA(0)

+ {L ↔ R} .

The ratio of these contributions, for a single operator, is

(B.4)
ΓSD

ΓSI
� 4

JA +1
JA

m2
N

m2
μ

∣∣∣SA
p Gp,q

T +SA
n Gn,q

T

∣∣∣2
|ZGp,q

T + (A−Z)Gn,q
T |2 ∼

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0.7 q = u A = Al

0.06 q = d A = Al

0.03 q = u A = Ti

0.01 q = d A = Ti
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where we assumed that the form factors are comparable SA(mμ)
SA(0) � |Fp(mμ)|2 as is the case

in Aluminium. Recall that Gn,u
T ∼−1

2Gp,u
T , so there is a partial cancellation in the SI amplitude,

whereas the SD process arises mostly from an odd proton SA
p � SA

n , or mostly from an odd

neutron SA
p � SA

n .

The estimates of eqn (B.4) assume that only one tensor coefficient is non-zero, so they neglect

interferences, which can easily enhance the SI rate. For instance, RG running of the tensor

operator from the New Physics scale to the experimental scale generically generates a scalar

operator with comparable coefficient. The scalar-tensor interference contribution to the SI rate

would be relatively enhanced, with respect to the tensor-squared, by GN,q
S /GN,q

T ∼ 10, which would

suppress the ratio in eqn (B.4) by another factor 1/10.

94



A
P

P
E

N
D

I
X

C
RG EVOLUTION

In this appendix, we review the Renormalisation Group evolution of operator coefficients from

the leptoquark mass scale M (∼ TeV) down to the experimental scale Λexp (2 GeV), via the

one-loop RGEs of QCD and QED [211, 212]. We consider the QED× QCD invariant operator basis

discussed in section 5.2. We neglect matching onto the SMEFT basis [182, 284] and running with

the full SM RGEs [285, 300, 301], on the assumption that QED is a reasonable approximation if

M is not much larger than mW .

After including one-loop corrections in the MS scheme, the operator coefficients will run with

scale Λ according to[211]

(C.1) Λ
∂

∂Λ
(CI , ...CJ , ...)= αe

4π
−→
CΓe + αs

4π
−→
CΓs

where I, J represent the super- and subscripts which label operator coefficients, Γe and Γs

are the QED and QCD anomalous dimension matrices and
−→
C is a row vector that contains the

QCD ×QED invariant operators coefficients listed in section 2 of chapter 5.

In this work, we use the approximate analytic solution[210] given in eqn (5.42):

CI (Λexp)= CJ(M)λaJ

(
δJI −

αeΓ̃
e
JI

4π
log

M
Λexp

)

where the factors are given after eqn (5.42) and log M
Λexp

∼ 6.21.

Only QED loops contribute to operators mixing, while QCD loops only rescale scalar and

tensor operators. In figure C.1, we present the QED diagrams required to compute the anomalous

dimension γ of the four-fermion operators, where f1 ∈
{
e,μ

}
and f2 ∈

{
u,d, s, c,b, e,μ,τ

}
.

The operators coefficients below the scale M are organized in the vector
−→
C as following :
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Figure C.1: Examples of one-loop gauge vertex corrections to 4-fermion operators. The first two
diagrams are the penguins. The last six diagrams contribute to operator mixing and running,
but can only change the Lorentz or gauge structure of the operators, not the flavour structure.
Missing are the wave-function renormalisation diagrams; for V ± A Lorentz structure in the grey
blob, this cancels diagrams 3 and 4.

�C = (�Cu
V ,�Cd

V ,�Cu
A,�Cd

A,�Cu
S,�Cd

S,�Cu
T ,�Cd

T )(C.2)

�C f
V = (C f f

V L,C f f
V R) �C f

A = (C f f
AL,C f f

AR)(C.3)

�C f
S = (C f f

S,L,C f f
S,R) �C f

T = (C f f
T,L,C f f

T,R)(C.4)

(C.5)

In the basis of
−→
C , the QED anomalous dimension matrix can be written

Γe =
[
ΓV A 0

0 ΓST

]

where

ΓST =

⎡⎢⎢⎢⎢⎢⎣
γ

u,u
S,S 0 γ

u,u
S,T 0

0 γ
d,d
S,S 0 γ

d,d
S,T

γ
u,u
T,S 0 γ

u,u
T,T 0

0 γ
d,d
T,S 0 γ

d,d
T,T

⎤⎥⎥⎥⎥⎥⎦ and ΓV A =

⎡⎢⎢⎢⎢⎢⎣
0 0 γ

u,u
V ,A 0

0 0 0 γ
d,d
V ,A

γ
u,u
A,V 0 0 0

0 γ
d,d
A,V 0 0

⎤⎥⎥⎥⎥⎥⎦(C.6)

Vector and axial operators
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The first penguin diagram and the last four give the following matrices :

(C.7) γ
f , f
V ,A =

C f f
A,L C f f

A,R

C f f
V ,L −12Q f 0

C f f
V ,R 0 −12Q f

γ
f , f
A,V =

C f f
V ,L C f f

V ,R

C f f
A,L 12Q f 0

C f f
A,R 0 12Q f

Using these anomalous dimension matrices and the RGEs give :

Cqq
V ,R(Λexp)=−3Qq

αe

π
log

M
Λexp

Cqq
A,L(M)+Cqq

V ,R(M)(C.8)

Cqq
A,R(Λexp)= 3Qq

αe

π
log

M
Λexp

Cqq
V ,L(M)+Cqq

A,R(M)(C.9)

where q ∈ {u,d}. We see that axial operators mix to vector operators and vice versa, but there is

no rescaling for axial and vector operators.

Scalar operators

Combining the third and fourth diagrams of figure C.1 with the wavefunction diagrams renor-

malize the scalars while the last four diagrams mix the tensors to the scalars :

(C.10) γ
f , f
S,S =

C f f
S,L C f f

S,R

C f f
S,L −6(1+Q2

f ) 0

C f f
S,R 0 −6(1+Q2

f )

γ
f , f
T,S =

C f f
S,L C f f

S,R

C f f
T,L +96Q f 0

C f f
T,R 0 +96Q f

The scalars coefficients at the experimental scale read :

(C.11) Cqq
S,L(Λexp)=−24λaT fTSQq

αe

π
log

M
Λexp

Cqq
T,L(M)+λaS

[
1+ 3

2
αe

π
log

M
Λexp

(1+Q2
q)
]

Cqq
S,L(M)

Tensor operators

Similarly, the last four diagrams mix the scalars to the tensors. Only the wavefunction diagrams

renormalize the tensors, because for the third and fourth diagrams γμσγμ = 0. We obtain the

following matrices :

(C.12) γ
f , f
T,T =

C f f
T,L C f f

T,R

C f f
T,L −2(1+Q2

f ) 0

C f f
T,R 0 −2(1+Q2

f )

γ
f , f
S,T =

C f f
T,L C f f

T,R

C f f
S,L 2Q f 0

C f f
S,R 0 2Q f

(C.13) Cqq
T,L(Λexp)=−λaS fSTQq

αe

2π
log

M
Λexp

Cqq
S,L(M)+λaT

[
1+ αe

2π
log

M
Λexp

(1+Q2
q)
]

Cqq
T,L(M)
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Finally, the coefficients at the experimental scale Λexp are obtain via the matching condition :

(C.14) C̃NN
O,Y (Λexp)= ∑

q=u,d,s
GN,q

O Cqq
O,Y (Λexp)
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In this section, we give all the constants used in our calculations in chapter 6 :

P1 K0
L K+ D0 D+ D+

S
fP1 (MeV ) 155.72 [302, 303] 155.6 [302, 303] 211.5 [302, 304] 212.6 [302, 304] 249.8 [304]

f P1π+ (0) 0.966 [303] 0.966 [303] 0.666 [303] 0.666 [303] 0.666 [303]

f P1K
+ (0) - - 0.747 [303] 0.747 [303] 0.747 [303]

λ+ 2.82×10−2 [38] 2.97×10−2 [38] - - -

λ0 1.8×10−2 [38] 1.95×10−2 [38] - - -

P1 B0 B0
S B+

fP1 (MeV ) 190.9 [302] 230.7[304] 187.1 [302]

f P1π+ (0) 0.25 [305] 0.25 [305] 0.25 [305]

f P1K
+ (0) 0.31 [305] 0.31 [305] 0.31 [305]

λ+ - - -

λ0 - - -

All the masses and lifetime can be found in [38].
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In this section, we give the form factor and the detailed scalar product of eqn. (6.9).

The q2 dependence of the form factors for the Kaon is given by [274] :

(E.1) f Kπ
+,0 (q2)= f Kπ

+ (0)
(
1+λ+,0

q2

M2
π

)
; f Kπ

− (q2)= f Kπ
+ (0)(λ0 −λ+)

M2
K+ −M2

π+

M2
π+

and for the D and B mesons, are given by [275, 276] :

(E.2) f+(q2)= f+(0)
1− q2/m2

1−
; f0(q2)= f0(0)

1− q2/m2
0+

; f−(q2)= ( f0(q2)− f+(q2))
M2 −m2

3

q2

where λ+,0 are constants, mJP is the mass of the lightest resonance with the right quantum

numbers to mediate the transition (D+
s and D∗+

s for example). We took q2 = q2
max = (M−m3)2 to

compute the form factors f+, f− and f0. All these values can be found in appendix D.

Finally, the scalar product in eqn. (6.9) can be written as functions of the two kinematical vari-

ables q2 and cosθ [38, 283] in the phase space integrals of eqn. (6.8).

(E.3) p1.p2 =
q2 −m2

1 −m2
2

2
, p1.q = q2 +m2

1 −m2
2

2
, p2.q = q2 +m2

2 −m2
1

2

p3.q = M2 −m2
3 − q2

2
, p1.p3 = p3.q− p2.p3(E.4)

p1.P = p1.q+2p1.p3, p2.P = p2.q+2p2.p3
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(E.5) p2.p3 = 1
4q2 (M2 −m2

3 − q2)(q2 +m2
2 −m2

1)+ 1
4q2

√
λ(M2,m2

3, q2)
√

λ(q2,m2
1,m2

2) cosθ

(E.6) k.p3 =
M2 +m2

3 − q2

2
, P.q = M2 −m2

3, P2 = 2M2 +2m3 − q2
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In this section, we give the 10×10 matrices obtained with eqn. (6.13) we used to obtained the

bounds at ΛW (with eqn. (6.20)).

For the decay of light quark (Kaon and D meson decays), the experimental scale is taken as 2

GeV because most of the time, it’s the renormalization scale chosen to obtain the lattice form

factors.

The evolution of the coefficients (εeμds) involved in the Kaon decays is given by :

(F.1)⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

εP,L

εA,L
εP,R

εA,R
εS,L
εV ,L

εTL

εS,R
εV ,R

εTR

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Λexp

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1.64 0 0 0 0 0 −0.0429 0 0 0
0 1 0 0 0 0.00857 0 0 0 0
0 0 1.64 0 0 0 0 0 0 0.0429
0 0 0 1 0 0 0 0 −0.00857 0
0 0 0 0 1.64 0 0.0429 0 0 0
0 0.00857 0 0 0 1 0 0 0 0

−0.00162 0 0 0 0.00162 0 0.849 0 0 0
0 0 0 0 0 0 0 1.64 0 0.0429
0 0 0 −0.00857 0 0 0 0 1 0
0 0 0.00162 0 0 0 0 0.00162 0 0.849

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

εP,L

εA,L
εP,R

εA,R
εS,L
εV ,L

εTL

εS,R
εV ,R

εTR

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
ΛW

For the D meson decays, the evolution of the coefficients (εeμcu) is given by :
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(F.2)⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

εP,L

εA,L
εP,R

εA,R
εS,L
εV ,L

εTL

εS,R
εV ,R

εTR

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Λexp

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1.64 0 0 0 0 0 0.0857 0 0 0
0 1 0 0 0 −0.0171 0 0 0 0
0 0 1.64 0 0 0 0 0 0 −0.0857
0 0 0 1 0 0 0 0 0.0171 0
0 0 0 0 1.64 0 −0.0857 0 0 0
0 −0.0171 0 0 0 1 0 0 0 0

0.00325 0 0 0 −0.00325 0 0.847 0 0 0
0 0 0 0 0 0 0 1.64 0 −0.0857
0 0 0 0.0171 0 0 0 0 1 0
0 0 −0.00325 0 0 0 0 −0.00325 0 0.847

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

εP,L

εA,L
εP,R

εA,R
εS,L
εV ,L

εTL

εS,R
εV ,R

εTR

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
ΛW

In the B and Bs meson decay, the reference scale is the b quark mass (Λmb ∼ 4.18 GeV). Thus, the

evolution of the coefficients (εeμbd and εeμbs) is slightly smaller.

In fact, in eqn. (6.13), the part with the anomalous dimension that gives the matrix element in

eqn. (F.1) is multiplied by a factor log( ΛW
Λmb

)/ log( ΛW
Λexp

)∼ 0.8. Moreover, the strong coupling constant

at Λmb will also be smaller (αs(Λmb ) ∼ 0.23 and αs(Λexp) ∼ 0.3). Thus, for the B and Bs meson

decays, the evolution of the coefficients (εeμbd and εeμbs ) is given by :

(F.3)⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

εP,L

εA,L
εP,R

εA,R
εS,L
εV ,L

εTL

εS,R
εV ,R

εTR

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Λexp

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1.42 0 0 0 0 0 −0.0317 0 0 0
0 1 0 0 0 0.00686 0 0 0 0
0 0 1.42 0 0 0 0 0 0 0.0317
0 0 0 1 0 0 0 0 −0.00686 0
0 0 0 0 1.42 0 0.0317 0 0 0
0 0.00686 0 0 0 1 0 0 0 0

−0.00126 0 0 0 0.00126 0 0.890 0 0 0
0 0 0 0 0 0 0 1.42 0 0.0317
0 0 0 −0.00686 0 0 0 0 1 0
0 0 0.00126 0 0 0 0 0.00126 0 0.890

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

εP,L

εA,L
εP,R

εA,R
εS,L
εV ,L

εTL

εS,R
εV ,R

εTR

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
ΛW
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In this section, we give details of the formalism introduced in section 6.4, eqn. (6.11). The matrices in the basis(
εP,L,εA,L,εP,R ,εA,R

)
and

(
εS,L,εV ,L, εTL , εS,R ,εV ,R , εTR

)
are written :

M−1
2 = 1

BRexp
2

⎡⎢⎢⎢⎢⎣
SP ′+ 1

2 SP+V A′+ 1
2 SP+SP ′− 1

2 SP+V A′−
1
2 SP+V A′+ V A′− 1

2 SP−V A′+ 1
2 V A+V A′−

1
2 SP+SP ′− 1

2 SP−V A′+ SP ′− 1
2 SP−V A′−

1
2 SP+V A′− 1

2 V A+V A′− 1
2 SP−V A′− V A′+

⎤⎥⎥⎥⎥⎦(G.1)

M−1
3 = 1

BRexp
3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

SP+ 1
2 SP+V A− 1

2 SP+T+ 1
2 SP+SP− 1

2 SP+V A+ 1
2 SP+T−

1
2 SP+V A− V A− 1

2 V A−T+ 1
2 SP−V A− 1

2 V A+V A− 1
2 V A−T−

1
2 SP+T+ 1

2 V A−T+ T+ 1
2 SP−T+ 1

2 V A+T+ 1
2 T+T−

1
2 SP+SP− 1

2 SP−V A− 1
2 SP−T+ SP− 1

2 SP−V A+ 1
2 SP−T−

1
2 SP+V A+ 1

2 V A+V A− 1
2 V A+T+ 1

2 SP−V A+ V A+ 1
2 V A+T−

1
2 SP+T− 1

2 V A−T− 1
2 T+T− 1

2 SP−T− 1
2 V A+T− T−

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(G.2)

Inverting M−1
2 [M−1

3 ] will give the bounds on the coefficients involved in the leptonic [semileptonic] decays. Finally,
note that for semileptonic Kaon and D meson decays, the experimental upper limit are not the same for μ+e− and
μ−e+ in the final state. In this case, we sum the M−1

3 for each bound and then invert it to obtain the covariance matrix
of section 6.4. The matrix elements of eqn. (G.1) are written :
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SP ′+ = SP ′− = C2bodyP̃ ′2(P2
1 −m2

i −m2
j )

V A′− =V A′+ = C2body Ã′2[(P2
1 −m2

i −m2
j )(m

2
i +m2

j )+4m2
i m2

j ]

SP+V A′− = SP−V A′+ =−2C2bodyP̃ ′ Ã′m j(P
2
1 +m2

i −m2
j )

SP+V A′+ = SP−V A′− = 2C2bodyP̃ ′ Ã′mi(P
2
1 +m2

j −m2
i )

SP+SP ′− =−4C2bodyP̃ ′2m jmi

V A+V A′− =−4C2body Ã′2P2
1 m jmi

C2body =
τP1 r∗G2

F
πP2

1

(G.3)

For simplicity we note dφ=∫(M−m3)2

(m1+m2)2
dq2∫1

−1 d cosθ

√
λ(M2,m2

3,q2)
√

λ(q2,m2
1,m2

2)

q2 and the matrix elements of eqn. (G.2)
are written :

SP+ = SP− = 2C3bodyS̃2(p1.p2)dφ

V A+ =V A− = 1
4

C3body[ f 2+
(
4(p1.P)(p2.P)−2P2(p1.p2)

)
+ f 2−

(
4(p1.q)(p2.q)−2q2(p1.p2)

)
+4 f+ f− ((p1.q)(p2.P)+ (p1.P)(p2.q)− (p1.p2)(P.q))]dφ

T+ = T− = 4C3bodyT̃′2[4(p1.q)(p2.P)(P.q)+4(p1.P)(p2.q)(P.q)−2(p1.p2)(P.q)2

+2P2q2(p1.p2)−4P2(p1.q)(p2.q)−4q2(p1.P)(p2.P)]dφ

SP+V A− = SP−V A+ =−2C3bodyS̃m2[( f+(p1.P)+ f−(p1.q))]dφ

SP+V A+ = SP−V A− = 2C3bodyS̃m1[( f+(p2.P)+ f−(p2.q))]dφ

SP+SP− =−4C3bodyS̃2m1m2dφ

V A+V A− =−C3bodym1m2[ f 2−q2 + f 2+P2 +2 f+ f−(P.q)]dφ

T+T− = 16C3bodyT̃′2m1m2[(P.q)2 −P2q2]dφ

SP+T+ = SP−T− = 8C3bodyS̃T̃[((p1.P)(p2.q)− (p1.q)(p2.P))]dφ

SP+T− = SP−T+ = 0

V A+T− =V A−T+ = 4C3bodyT̃′m2[ f+((p1.q)p2 − (P.p1)(P.q))+ f−((p1.q)(P.q)− (p1.P)q2)]dφ

V A+T+ =V A−T− = 4C3bodyT̃′m1[
(
f+((P2)(p2.q)− (p2.P)(P.q))+ f−((p2.q)(P.q)− (q2)(p2.P))

)
]dφ

C3body = τP1

π3

8G2
F

512M3

(G.4)
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In this section, we give the covariance matrix at Λexp and at ΛW , after the RGEs evolution.

Kaon decays

Using the upper limit of table 6.1, for the leptonic Kaon decay, we compute the associated covari-

ance matrix in the basis (εeμds
P,L ,εeμds

A,L ,εeμds
P,R ε

eμds
A,R ) :

⎛⎜⎜⎜⎜⎜⎝
5.38×10−14 −2.33×10−14 −1.25×10−15 1.26×10−12

−2.33×10−14 2.97×10−11 1.26×10−12 −4.03×10−13

−1.25×10−15 1.26×10−12 5.38×10−14 −2.33×10−14

1.26×10−12 −4.03×10−13 −2.33×10−14 2.97×10−11

⎞⎟⎟⎟⎟⎟⎠

Then we use the bounds on semileptonic Kaon decay to compute the covariance matrix for the

semileptonic decays in the basis (εeμds
S,L ,εeμds

V ,L ,εeμds
TL

,εeμds
S,R ,εeμds

V ,R ,εeμds
TR

) :

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1.09×10−12 3.51×10−12 6.11×10−12 1.39×10−14 1.96×10−13 7.49×10−13

3.51×10−12 2.44×10−11 4.26×10−11 1.96×10−13 2.10×10−12 6.50×10−12

6.11×10−12 4.26×10−11 1.51×10−10 7.49×10−13 6.50×10−12 1.58×10−11

1.39×10−14 1.96×10−13 7.49×10−13 1.09×10−12 3.51×10−12 6.11×10−12

1.96×10−13 2.10×10−12 6.50×10−12 3.51×10−12 2.44×10−11 4.26×10−11

7.49×10−13 6.50×10−12 1.58×10−11 6.11×10−12 4.26×10−11 1.51×10−10

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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The diagonal elements give the bounds on |ε|2. The bounds on the coefficients are the square root

of the diagonal elements. For instance, εeμds
S,L is excluded above



1.09×10−12 .

The covariance matrix in the basis
(
ε

eμds
P,L ,εeμds

A,L ,εeμds
P,R ,εeμds

A,R ,εeμds
S,L ,εeμds

V ,L ,εeμds
TL

,εeμds
S,R ,εeμds

V ,R ,εeμds
TR

)
ΛW

is :

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1.64×10−13 −2.55×10−14 −1.55×10−14 7.73×10−13 −2.91×10−14 1.31×10−12 5.51×10−12 −9.15×10−16 2.07×10−13 5.75×10−13

−2.55×10−14 2.97×10−11 7.73×10−13 −4.03×10−13 −7.10×10−15 −4.64×10−13 −4.30×10−13 7.35×10−16 −2.15×10−14 −6.72×10−14

−1.55×10−14 7.73×10−13 1.64×10−13 −2.55×10−14 9.15×10−16 −2.07×10−13 −5.75×10−13 2.91×10−14 −1.31×10−12 −5.51×10−12

7.73×10−13 −4.03×10−13 −2.55×10−14 2.97×10−11 −7.35×10−16 2.15×10−14 6.72×10−14 7.10×10−15 4.64×10−13 4.30×10−13

−2.91×10−14 −7.10×10−15 9.15×10−16 −7.35×10−16 3.22×10−13 8.29×10−13 −1.11×10−12 −8.03×10−15 −8.12×10−14 −3.49×10−14

1.31×10−12 −4.64×10−13 −2.07×10−13 2.15×10−14 8.29×10−13 2.44×10−11 5.02×10−11 −8.12×10−14 2.10×10−12 7.66×10−12

5.51×10−12 −4.30×10−13 −5.75×10−13 6.72×10−14 −1.11×10−12 5.02×10−11 2.10×10−10 −3.49×10−14 7.66×10−12 2.19×10−11

−9.15×10−16 7.35×10−16 2.91×10−14 7.10×10−15 −8.03×10−15 −8.12×10−14 −3.49×10−14 3.22×10−13 8.29×10−13 −1.11×10−12

2.07×10−13 −2.15×10−14 −1.31×10−12 4.64×10−13 −8.12×10−14 2.10×10−12 7.66×10−12 8.29×10−13 2.44×10−11 5.02×10−11

5.75×10−13 −6.72×10−14 −5.51×10−12 4.30×10−13 −3.49×10−14 7.66×10−12 2.19×10−11 −1.11×10−12 5.02×10−11 2.10×10−10

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

D meson meson decays

The bounds of table 6.1 on leptonic D meson decay give the following covariance matrix in the

basis (εeμcu
P,L ,εeμcu

A,L ,εeμcu
P,R ,εeμcu

A,R ) :

⎛⎜⎜⎜⎜⎜⎝
3.07×10−6 −3.55×10−7 −2.86×10−8 7.91×10−5

−3.55×10−7 2.04×10−3 7.91×10−5 7.30×10−7

−2.86×10−8 7.91×10−5 3.07×10−6 −3.55×10−7

7.91×10−5 7.30×10−7 −3.55×10−7 2.04×10−3

⎞⎟⎟⎟⎟⎟⎠

Using bounds on the semileptonic decay of D and Ds meson give

in the basis (εeμcu
S,L ,εeμcu

V ,L ,εeμcu
TL

,εeμcu
S,R ,εeμcu

V ,R ,εeμcu
TR

) :

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1.80×10−6 1.32×10−7 −3.19×10−8 −2.10×10−8 −1.61×10−7 1.79×10−8

1.32×10−7 2.10×10−6 3.65×10−7 −1.61×10−7 9.7×10−8 7.06×10−7

−3.19×10−8 3.65×10−7 4.03×10−6 1.79×10−8 7.06×10−7 2.30×10−7

−2.10×10−8 −1.61×10−7 1.79×10−8 1.80×10−6 1.32×10−7 −3.19×10−8

−1.61×10−7 9.7×10−8 7.06×10−7 1.32×10−7 2.10×10−6 3.65×10−7

1.79×10−8 7.06×10−7 2.30×10−7 −3.19×10−8 3.65×10−7 4.03×10−6

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
The covariance matrix in the basis

(
ε

eμcu
P,L ,εeμcu

A,L ,εeμcu
P,R ,εeμcu

A,R ,εeμcu
S,L ,εeμcu

V ,L ,εeμcu
TL

,εeμcu
S,R ,εeμcu

V ,R ,εeμcu
TR

)
ΛW

is :
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⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1.15×10−6 −2.16×10−7 −1.15×10−8 4.81×10−5 −1.45×10−8 −2.62×10−8 −2.97×10−7 −1.55×10−9 −8.69×10−7 −1.68×10−8

−2.16×10−7 2.04×10−3 4.81×10−5 7.31×10−7 1.81×10−9 3.50×10−5 8.22×10−9 8.70×10−9 −1.09×10−8 1.99×10−7

−1.15×10−8 4.81×10−5 1.15×10−6 −2.16×10−7 1.55×10−9 8.69×10−7 1.68×10−8 1.45×10−8 2.62×10−8 2.97×10−7

4.81×10−5 7.31×10−7 −2.16×10−7 2.04×10−3 −8.70×10−9 1.09×10−8 −1.99×10−7 −1.81×10−9 −3.50×10−5 −8.22×10−9

−1.45×10−8 1.81×10−9 1.55×10−9 −8.70×10−9 6.80×10−7 1.03×10−7 2.73×10−7 −5.58×10−9 −5.42×10−8 2.96×10−8

−2.62×10−8 3.50×10−5 8.69×10−7 1.09×10−8 1.03×10−7 2.70×10−6 4.31×10−7 −5.42×10−8 9.66×10−8 8.36×10−7

−2.97×10−7 8.22×10−9 1.68×10−8 −1.99×10−7 2.73×10−7 4.31×10−7 5.62×10−6 2.96×10−8 8.36×10−7 3.21×10−7

−1.55×10−9 8.70×10−9 1.45×10−8 −1.81×10−9 −5.58×10−9 −5.42×10−8 2.96×10−8 6.80×10−7 1.03×10−7 2.73×10−7

−8.69×10−7 −1.09×10−8 2.62×10−8 −3.50×10−5 −5.42×10−8 9.66×10−8 8.36×10−7 1.03×10−7 2.70×10−6 4.31×10−7

−1.68×10−8 1.99×10−7 2.97×10−7 −8.22×10−9 2.96×10−8 8.36×10−7 3.21×10−7 2.73×10−7 4.31×10−7 5.62×10−6

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

B meson decays

The bound on the leptonic decay of the B meson (see table 6.1) gives the following covariance

matrix in the basis (εeμbd
P,L ,εeμbd

A,L ,εeμbd
P,R ,εeμbd

A,R ) :

⎛⎜⎜⎜⎜⎜⎝
5.53×10−8 9.23×10−8 1.20×10−9 3.48×10−6

9.23×10−8 2.20×10−4 3.48×10−6 6.89×10−6

1.20×10−9 3.48×10−6 5.53×10−8 9.23×10−8

3.48×10−6 6.89×10−6 9.23×10−8 2.20×10−4

⎞⎟⎟⎟⎟⎟⎠

The covariance matrix in the basis (εeμbd
S,L ,εeμbd

V ,L ,εeμbd
TL

,εeμbd
S,R ,εeμbd

V ,R ,εeμbd
TR

) is :

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2.07×10−10 1.21×10−11 1.52×10−12 −3.90×10−15 −5.74×10−14 5.18×10−15

1.21×10−11 2.23×10−10 2.81×10−11 −5.74×10−14 2.87×10−14 2.32×10−13

1.52×10−12 2.81×10−11 4.03×10−10 5.18×10−15 2.32×10−13 3.50×10−14

−3.90×10−15 −5.74×10−14 5.18×10−15 2.07×10−10 1.21×10−11 1.52×10−12

−5.74×10−14 2.87×10−14 2.32×10−13 1.21×10−11 2.23×10−10 2.81×10−11

5.18×10−15 2.32×10−13 3.50×10−14 1.52×10−12 2.81×10−11 4.03×10−10

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
The covariance matrix in the basis

(
ε

eμbd
P,L ,εeμbd

A,L ,εeμbd
P,R ,εeμbd

A,R ,εeμbd
S,L ,εeμbd

V ,L ,εeμbd
TL

,εeμbd
S,R ,εeμbd

V ,R ,εeμbd
TR

)
ΛW

is :

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2.74×10−8 6.51×10−8 5.94×10−10 2.45×10−6 −1.10×10−12 −4.46×10−10 5.02×10−11 1.89×10−14 1.68×10−8 −8.41×10−13

6.51×10−8 2.20×10−4 2.45×10−6 6.89×10−6 −2.11×10−12 −1.51×10−6 9.19×10−11 7.76×10−11 4.73×10−8 −3.47×10−9

5.94×10−10 2.45×10−6 2.74×10−8 6.51×10−8 −1.89×10−14 −1.68×10−8 8.41×10−13 1.10×10−12 4.46×10−10 −5.02×10−11

2.45×10−6 6.89×10−6 6.51×10−8 2.20×10−4 −7.76×10−11 −4.73×10−8 3.47×10−9 2.11×10−12 1.51×10−6 −9.19×10−11

−1.10×10−12 −2.11×10−12 −1.89×10−14 −7.76×10−11 1.03×10−10 7.83×10−12 −1.03×10−11 −2.10×10−15 −5.78×10−13 3.15×10−15

−4.46×10−10 −1.51×10−6 −1.68×10−8 −4.73×10−8 7.83×10−12 1.06×10−8 3.09×10−11 −5.78×10−13 −3.24×10−10 2.41×10−11

5.02×10−11 9.19×10−11 8.41×10−13 3.47×10−9 −1.03×10−11 3.09×10−11 5.10×10−10 3.15×10−15 2.41×10−11 4.30×10−14

1.89×10−14 7.76×10−11 1.10×10−12 2.11×10−12 −2.10×10−15 −5.78×10−13 3.15×10−15 1.03×10−10 7.83×10−12 −1.03×10−11

1.68×10−8 4.73×10−8 4.46×10−10 1.51×10−6 −5.78×10−13 −3.24×10−10 2.41×10−11 7.83×10−12 1.06×10−8 3.09×10−11

−8.41×10−13 −3.47×10−9 −5.02×10−11 −9.19×10−11 3.15×10−15 2.41×10−11 4.30×10−14 −1.03×10−11 3.09×10−11 5.10×10−10

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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APPENDIX H. COVARIANCE MATRICES AT Λexp AND ΛW

Bs meson

The bound on the leptonic decay of the Bs meson gives in the basis (εeμbs
P,L ,εeμbs

A,L ,εeμbs
P,R ,εeμbs

A,R ) :

⎛⎜⎜⎜⎜⎜⎝
3.06×10−8 −1.22×10−8 −3.40×10−10 1.94×10−6

−1.22×10−8 1.24×10−4 1.94×10−6 −1.80×10−7

−3.40×10−10 1.94×10−6 3.06×10−8 −1.22×10−8

1.94×10−6 −1.80×10−7 −1.22×10−8 1.24×10−4

⎞⎟⎟⎟⎟⎟⎠

The bound on the Bs meson decaying into Kaon (table 6.1) gives

in the basis (εeμbs
S,L ,εeμbs

V ,L ,εeμbs
TL

,εeμbs
S,R ,εeμbs

V ,R ,εeμbs
TR

) :

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

5.05×10−10 3.47×10−11 5.07×10−12 −1.13×10−14 −1.65×10−13 1.73×10−14

3.47×10−11 6.53×10−10 9.54×10−11 −1.65×10−13 8.78×10−14 7.90×10−13

5.07×10−12 9.54×10−11 1.51×10−9 1.73×10−14 7.90×10−13 1.38×10−13

−1.13×10−14 −1.65×10−13 1.73×10−14 5.05×10−10 3.47×10−11 5.07×10−12

−1.65×10−13 8.78×10−14 7.90×10−13 3.47×10−11 6.53×10−10 9.54×10−11

1.73×10−14 7.90×10−13 1.38×10−13 5.07×10−12 9.54×10−11 1.51×10−9

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
The covariance matrix in the basis

(
ε

eμbs
P,L ,εeμbs

A,L ,εeμbs
P,R ,εeμbs

A,R ,εeμbs
S,L ,εeμbs

V ,L ,εeμbs
TL

,εeμbs
S,R ,εeμbs

V ,R ,εeμbs
TR

)
ΛW

is :

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1.52×10−8 −8.62×10−9 −1.69×10−10 1.37×10−6 −1.35×10−12 6.16×10−11 6.41×10−11 −5.11×10−15 9.39×10−9 2.42×10−13

−8.62×10−9 1.24×10−4 1.37×10−6 −1.80×10−7 1.21×10−13 −8.51×10−7 −1.29×10−11 4.33×10−11 −1.24×10−9 −1.94×10−9

−1.69×10−10 1.37×10−6 1.52×10−8 −8.62×10−9 5.11×10−15 −9.39×10−9 −2.42×10−13 1.35×10−12 −6.16×10−11 −6.41×10−11

1.37×10−6 −1.80×10−7 −8.62×10−9 1.24×10−4 −4.33×10−11 1.24×10−9 1.94×10−9 −1.21×10−13 8.51×10−7 1.29×10−11

−1.35×10−12 1.21×10−13 5.11×10−15 −4.33×10−11 2.51×10−10 2.21×10−11 −3.90×10−11 −6.11×10−15 −4.33×10−13 9.78×10−15

6.16×10−11 −8.51×10−7 −9.39×10−9 1.24×10−9 2.21×10−11 6.49×10−9 1.07×10−10 −4.33×10−13 8.57×10−12 1.42×10−11

6.41×10−11 −1.29×10−11 −2.42×10−13 1.94×10−9 −3.90×10−11 1.07×10−10 1.91×10−9 9.78×10−15 1.42×10−11 1.74×10−13

−5.11×10−15 4.33×10−11 1.35×10−12 −1.21×10−13 −6.11×10−15 −4.33×10−13 9.78×10−15 2.51×10−10 2.21×10−11 −3.90×10−11

9.39×10−9 −1.24×10−9 −6.16×10−11 8.51×10−7 −4.33×10−13 8.57×10−12 1.42×10−11 2.21×10−11 6.49×10−9 1.07×10−10

2.42×10−13 −1.94×10−9 −6.41×10−11 1.29×10−11 9.78×10−15 1.42×10−11 1.74×10−13 −3.90×10−11 1.07×10−10 1.91×10−9

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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