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Abstract

This thesis proposes theoretical and numerical contributions to use
Entropy-regularized Optimal Transport (EOT) for machine learning.
We introduce Sinkhorn Divergences (SD), a class of discrepancies be-
tween probability measures based on EOT which interpolates between
two other well-known discrepancies: Optimal Transport (OT) and
Maximum Mean Discrepancies (MMD). We develop an efficient nu-
merical method to use SD for density fitting tasks, showing that a
suitable choice of regularization can improve performance over exist-
ing methods. We derive a sample complexity theorem for SD which
proves that choosing a large enough regularization parameter allows
to break the curse of dimensionality from OT, and recover asymptotic
rates similar to MMD. We propose and analyze stochastic optimization
solvers for EOT, which yield online methods that can cope with arbi-
trary measures and are well suited to large scale problems, contrarily
to existing discrete batch solvers.

Résumé

Le Transport Optimal régularisé par l’Entropie (TOE) permet de
définir les Divergences de Sinkhorn (DS), une nouvelle classe de dis-
tance entre mesures de probabilités basées sur le TOE. Celles-ci per-
mettent d’interpoler entre deux autres distances connues: le Transport
Optimal (TO) et l’Ecart Moyen Maximal (EMM). Les DS peuvent être
utilisées pour apprendre des modèles probabilistes avec de meilleures
performances que les algorithmes existants pour une régularisation
adéquate. Ceci est justifié par un théorème sur l’approximation des
SD par des échantillons, prouvant qu’une régularisation suffisante per-
met de se débarrasser de la malédiction de la dimension du TO, et
l’on retrouve à l’infini le taux de convergence des EMM. Enfin, nous
présentons de nouveaux algorithmes de résolution pour le TOE basés
sur l’optimisation stochastique ‘en-ligne’ qui, contrairement à l’état de
l’art, ne se restreignent pas aux mesures discrètes et s’adaptent bien
aux problèmes de grande dimension.
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Outline of the Thesis

Comparing probability distributions is a fundamental component of many machine
learning problems, both supercontractvised and unsupervised. The main matter of this
thesis is to study the behavior of a class of discrepancies between probability distri-
butions, called Sinkhorn Divergences, which are based on entropy-regularized Optimal
Transport. We provide both theoretical contributions, regarding their statistical prop-
erties, and numerical ones, including solvers to compute Sinkhorn Divergences and use
them in machine learning tasks.

Supervised Machine Learning. In supervised machine learning, we are provided
with a labeled dataset e.g (xi, yi)i=1...n where xi is the observation in some input space
X (e.g. pixel intensities of an image) and yi is the associated label (e.g. the fact that
this image represents an apple). A recurrent issue in supervised learning is to learn a
classification rule from the data, that takes a new observation x as an input and predicts
the associated label y as the output. For instance in nearest-neighbor classification,
when provided with a new observation x, one looks for the closest observation xi∗ in the
dataset and sets y = yi∗ . This classification rule assumes that if observations are close,
they should have the same label. Defining a meaningful notion of distance on the data
space X is thus crucial. In practice, a lot of data can be represented as histograms on
some other space X ′: a data point x ∈ X is identified to a histogram α

def.=
∑n
i=1 αiδai ,

where (ai)i ∈ X ′ and
∑n
i=1 αi = 1. Since normalized histograms are no more than finite

discrete probability distributions, a distance on probability distributions serves as a
relevant distance on these data spaces. As a set of representative examples, let us quote:
bag-of-visual-words comparison in computer vision (Rubner et al., 2000), color and
shape processing in computer graphics (Solomon et al., 2015), bag-of-words for natural
language processing (Kusner et al., 2015). Another use of histograms in supervised
learning is to associate labels to histograms in multi-label classification (Frogner et al.,
2015).

Unsupervised Machine Learning. On the other hand, in unsupervised machine-
learning, the dataset only consists in observations (xi)i=1...n in the data space X . One
way to extract information from the data in an unsupervised setting is to perform
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2 OUTLINE OF THE THESIS

density fitting. The goal is to fit the unknown distribution induced by the dataset with
a parametric distribution. This amounts to finding the parameters that minimize some
notion of distance between these two distributions (the unknown one from the dataset,
and the one from the parametric model). Choosing the right notion of discrepancy
between measures here is one of the key issues of the problem. A popular research area
in unsupervised learning which emerged in recent years is learning generative models
(Goodfellow et al., 2014) which can generate new samples resembling the ones in the
dataset. The distributions induced by generative models are often assumed to have
intrinsic low dimension, and thus do not have a density with respect to a reference
measure. The usual Maximum Likelihood Estimation framework can therefore not be
used for such models. However, these models are easy to sample from, and thus resorting
to a discrepancy on measures which can be robustly computed from samples (from the
generative model and the dataset) is essential.

Discrepancies on measures. The most popular frameworks that are used to com-
pare probability distributions are ϕ−divergences (Csiszár, 1975), Maximum Mean Dis-
crepancies (MMD) (Gretton et al., 2006) and Optimal Transport (OT) (Kantorovich,
1942). The former are appreciated for their computational simplicity, but they suffer
from the major shortcoming of not metrizing weak-convergence. Both MMD and OT
have the ability to metrize weak-convergence, but they enjoy different characteristics.
MMD can be efficiently estimated from samples of the measures, both statistically since
the estimates are robust with a small number or samples (we say it has a good sam-
ple complexity) and also numerically, as they are computed in closed form. OT on the
other hand, presents none of these advantages, but has the ability to lift a ground metric
from the dataspace X to the set of probability measures on this space and thus take
into account the underlying geometry of the data. Its good geometric properties can
be strengthened by enforcing structure constraints (Alvarez-Melis et al., 2017) which
allows for instance to take into account the class labels in supervised learning. Besides,
solving OT also gives a mapping from one measure to the other, which has been suc-
cessfully used in domain adaptation (Courty et al., 2014). As a unifying alternative to
these discrepancies, we introduce Sinkhorn Divergences, based on entropy-regularized
Optimal Transport. We prove they interpolate between MMD (with infinitely strong
regularization) and OT (with no regularization). In particular, Sinkhorn Divergences
preserve the good geometric properties of OT, and also provide a mapping from one
measure to the other. However unlike OT – but similarly to MMD – they benefit from
good statistical properties and efficient computation.

We now get into more details regarding the technical aspects of our work, formalizing
key concepts and outlining the main contributions of this thesis.
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Chapter 1: Entropy-regularized Optimal Transport

This introductory chapter is both a review of existing tools commonly used in ma-
chine learning to compare probability distributions, and a presentation of key properties
of regularized optimal transport (containing both new results and existing ones from the
literature), which serves as a basis for the work presented in subsequent chapters.

Previous Works. In machine learning, the first discrepancies that were introduced to
compare two probability distributions are ϕ-divergences (Csiszár, 1975), which can be
seen as a weighted average (by ϕ) of the odds-ratio between the two measures. Consider
ϕ a convex, lower semi-continuous function such that ϕ(1) = 0, the ϕ-divergence Dϕ

between two probability measures α and β is defined by:

Dϕ(α|β) def.=
∫
X
ϕ
(dα(x)

dβ(x)
)
dβ(x).

up to a corrective (possibly infinite) term if α is not absolutely continuous with respect
to β. The computational simplicity of ϕ−divergences made them quite popular – the
most widely used being the Kullback-Leibler divergence for ϕ(x) = x log(x). However,
they suffer from the major drawback of not metrizing weak-convergence (or conver-
gence in law). A measure αn weakly converges to α (denoted αn ⇀ α) if and only
if
∫
f(x)dαn(x) →

∫
f(x)dα(x) for all continuous bounded functions f ; and a loss L

metrizes weak-convergence if and only if L(αn, α) → 0 ⇔ αn ⇀ α. The metrization
of weak-convergence is instrumental for discrepancies on measure, as it ensures that
the losses remain stable under small perturbations of the support of the measures. As
an example, consider the case on R where α = δ0 a Dirac mass in 0 and αn = δ1/n a
Dirac mass in 1/n. Then Dϕ(αn|α) is a constant for all n, although it seems natural
to say that when n goes to infinity, αn gets closer to α. This failure case in R becomes
very problematic in higher dimension, when comparing probability distributions that
are supported on low-dimensional manifolds for instance.

The two main classes of discrepancies that satisfy this requirement are Maximum
Mean Discrepancies (MMD)(Gretton et al., 2006) and Optimal Transport (OT)
(Santambrogio, 2015) based losses. MMD are a special instance of Integral Probability
Metrics (Müller, 1997). Given a Reproducing Kernel Hilbert Space (RKHS) H with
kernel k; MMD between two probability measures α and β are defined as follows:

MMD2
k(α, β) def.=

(
sup

{f |||f ||H61}
|Eα(f(X))− Eβ(f(Y ))|

)2

= Eα⊗α[k(X,X ′)] + Eβ⊗β[k(Y, Y ′)]− 2Eα⊗β[k(X,Y )]. (0.1)

If the kernel k is universal (i.e. its RKHS is dense in the space of continuous func-
tions), they are positive definite, and under some further technical assumptions, they
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metrize weak-convergence (Sriperumbudur et al., 2010). This family of losses presents
the advantage of being efficiently computed from samples – both in a computational
and statistical sense (Gretton et al., 2006). OT-based losses on the other hand behave
particularly well in problems that are intrinsically geometric (e.g. shapes or image pro-
cessing). They rely on the choice of a ground cost c which reflects the geometry of the
input space in the following way:

Wc(α, β) def.= min
π∈Π(α,β)

∫
X×X

c(x, y)dπ(x, y), (P)

where the feasible set is composed of joint probability distributions with fixed marginals
α, β. A typical choice is c = dp, where d is the natural distance on X , for which Wc

metrizes weak-convergence when p > 1 (Santambrogio, 2015). However, these losses
suffer from a computational burden – solving OT requires solving a linear program in
the discrete case – and a curse of dimensionality, meaning their approximation from
sampled measures degrades quickly in high dimension (Weed and Bach, 2017).

Entropy-regularized OT has recently emerged as a solution to the computational
issue of OT (Cuturi, 2013). The regularized problem reads:

Wc,ε(α, β) def.= min
π∈Π(α,β)

∫
X×X

c(x, y)dπ(x, y) + εH(π|α⊗ β), (Pε)

where
H(π|α⊗ β) def.=

∫
X×X

log
( dπ(x, y)

dα(x)dβ(y)

)
dπ(x, y). (0.2)

is the relative entropy of the transport plan π with respect to the product measure α⊗β.
It has an equivalent dual formulation, which is unconstrained (contrarily to standard
OT):

Wc,ε(α, β) = max
u∈C(X )
v∈C(X )

∫
X
u(x)dα(x) +

∫
X
v(y)dβ(y)

− ε
∫
X×X

e
u(x)+v(y)−c(x,y)

ε dα(x)dβ(y) + ε. (Dε)

In the case of finite discrete measures, iteratively optimizing over each dual variables
yields a fast converging algorithm, called Sinkhorn’s algorithm (Sinkhorn, 1967). Be-
sides, the resulting distance happens to perform well in various machine learning tasks
as proved in the seminal paper by Cuturi (2013), which opened the way to the use of
entropy-regularized OT in the community.

Contributions. The main objective of this thesis is to prove theoretically and numer-
ically that the benefits of entropy-regularized OT extend far beyond this fast algorithm
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for finite discrete measures, and in this chapter we review the bases that will be required
for our main contributions presented in subsequent chapters. However, this collection
of results also includes some original contributions on regularized OT which consist in

(i) Regularization of OT using relative entropy with respect to the product
measure of the marginals: The seminal paper by Cuturi (2013) deals with
the discrete case and uses entropy H(π) def.=

∑
i,j log (πij)πij as a regularizer. We

suggest instead to use the entropy with respect to the product of marginals defined
in equation (0.2), as it allows to formulate the dual problem as the maximization
of an expectation :

Wc,ε(α, β) = max
u∈C(X )
v∈C(X )

Eα⊗β
[
fXYε (u, v)

]
+ ε,

where fxyε (u, v) def.= u(x)+v(y)−εe
u(x)+v(y)−c(x,y)

ε and X,Y are distributed according
to α and β respectively. This formulation is key to deriving statistical properties
of entropy-regularized OT in Chapter 3 and new solvers in Chapter 4.

(ii) Semi-Dual formulation: When one of the measures is a weighted sum of n dirac
masses, the associated dual variable is a n dimensional vector. Assume (without
loss of generality, since the problem is symmetric) that it is the case of the second
measure: β def.=

∑n
i=1 βiδxi . We exploit the joint convexity of the dual problem,

by using the optimality condition over the first dual variable to derive a so-called
Semi-Dual formulation of entropy-regularized OT:

Wc,ε(α, β) = max
v∈Rn

∫
X
−ε log

(
n∑
i=1

e
vi−c(x,yi)

ε βi

)
dα(x) +

n∑
i=1

viβi. (Sε)

This problem is an optimization problem over Rd, which can also be rewritten as
the maximum of an expectation. We make use of this formulation in Chapter 4,
resorting to stochastic optimization to solve this problem.

(iii) Generalization of previous proofs of existence of solutions to the dual
problem (Dε): A proof of existence of dual potentials already exist in the discrete
case (Franklin and Lorenz, 1989), and for Schrödinger’s problem (Chen et al.,
2016) which shares strong links with regularized OT. Relying on the same proof
technique, i.e. proving that dual potentials are fixed point of contractions for the
Hilbert metric, we extend the proof to any arbitrary probability measures, and a
bounded cost function.

(iv) Extension of entropy-regularized OT: This thorough introduction to entropy-
regularized OT is also an opportunity to generalize some of our results to regu-
larizers other than entropy, replacing H(π|α ⊗ β) by Dϕ(π|α ⊗ β) in (Pε), where
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Dϕ is any ϕ−divergence. Besides, we also extend these formulations to unbal-
anced transport, which extends the notion of OT to positive Radon measures with
arbitrary mass (Liero et al., 2018),(Chizat et al., 2018) whenever possible (e.g.
regularization, formulation as an expectation).

Chapter 2: Learning with Sinkhorn Divergences

This chapter is based on (Genevay et al., 2018).
Unsupervised machine learning often boils down to fitting a parametric model to

a dataset, i.e. estimating the parameters of a chosen model that fits observed data in
some meaningful way. Formally, given a dataset of samples with unknown distribution
β, we want to learn a parametric measure αθ∗ such that

θ∗ ∈ argmin
θ

L(αθ, β)

where L is some loss on measures. Note that β is unknown, and can only be accessed via
a finite number of samples (y1, . . . , yN ) ∈ XN constituting the dataset. The standard
approach for models with a density is Maximum Likelihood Estimation (MLE), setting
L(αθ, β) = −

∑
j log dαθ

dx (yj), where dα
dx is the density of αθ with respect to a fixed

reference measure. However this approach does not work for generative models, obtained
as the mapping of a low dimensional reference measure ζ through a non-linear parametric
pushforward function gθ with values in a high dimensional space (e.g. a neural network).
These models are easy to sample from: a sample x from αθ is obtained by drawing a
sample z from ζ and taking x = gθ(x). However, their density is singular in the sense
that it is typically supported on a low-dimensional “manifold" of the data space X , thus
making the MLE unusable.

Previous Works. To fit generative models, several likelihood-free alternatives ex-
ist. Pioneer approaches include variational autoencoders (VAE) (Kingma and Welling,
2013) and generative adversarial networks (GAN) (Goodfellow et al., 2014) which lead
to numerous variations including combinations of both ideas (Larsen et al., 2016). The
adversarial GAN approach can be viewed as a two-player game where player one opti-
mizes its parameter θ to fool player two whose goal is to discriminate between samples
from the model measure αθ and samples from the true measure β by optimizing a para-
metric discriminator Dw. Formally, this is equivalent to minimizing the dual of the
Jensen-Shannon divergence (expressed as the maximum over a class of parametric func-
tions Dw) between αθ and β. This min-max approach can be extended to any given
ϕ−divergences (Nowozin et al., 2016). Another approach is to minimize the MMD be-
tween the distribution of the data and the model. It was shown in relevant work (Li
et al., 2015; Dziugaite et al., 2015) that the effectiveness of the MMD in that setting
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hinges on the ability to find a relevant kernel function, which is nontrivial. The Wasser-
stein distance, long known to be a powerful tool to compare probability distributions
with non-overlapping supports, a has recently emerged as a serious contender. Although
the use of Wasserstein metrics for inference in generative models was considered over ten
years ago in (Bassetti et al., 2006), that development remained exclusively theoretical
until a recent wave of papers managed to implement that idea more or less faithfully us-
ing several workarounds: entropic regularization over a discrete space (Montavon et al.,
2016), approximate Bayesian computations (Bernton et al., 2017) and a neural network
parameterization of the dual potential arising from the dual OT problem when consid-
ering the 1-Wasserstein distance (Arjovsky et al., 2017). As opposed to this dual way
to compute gradients of the fitting energy, we advocate for the use of a primal formula-
tion, which is numerically stable, because it does not involve differentiating the (dual)
solution of an OT sub-problem, as also pointed out in (Bousquet et al., 2017).

Contributions. The main contributions of this chapter include a theoretical contri-
bution regarding a new OT-based loss for generative models, and a simple numerical
scheme to learn under this loss.

(i) Sinkhorn Divergence: We introduce the Sinkhorn Divergence, based on regu-
larized optimal transport with an entropy penalty:

SDc,ε(α, β) def.= Wc,ε(α, β)− 1
2Wc,ε(α, α)− 1

2Wc,ε(β, β), (0.3)

where Wc,ε is the loss induced by entropy-regularized OT. This corrects the bias
introduced by entropy to ensure that SDε(α, α) = 0. We conjectured in the
early stages of our work on Sinkhorn Divergence, based on empirical evidence,
this normalization of regularized OT enforces positive-definiteness. It was recently
proved in subsequent work by Feydy et al. (2019) along with the fact that Sinkhorn
Divergences metrize the weak-convergence of measures under some assumptions on
the cost.

(ii) Interpolation property: We prove that when the smoothing parameter ε = 0
we recover pure OT loss whereas letting ε = +∞ leads to MMD with kernel −c
(i.e. minus the ground cost of OT):

Theorem 1. Consider the Sinkhorn Divergence defined in (0.3), then it has the
following asymptotic behavior in ε:

as ε→ 0, SDc,ε(α, β)→Wc(α, β), (0.4)

as ε→ +∞, SDc,ε(α, β)→ 1
2MMD2

−c(α, β). (0.5)
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Note that to define a proper MMD, −c needs to induce a positive definite kernel.
This is the case when c = || · ||p2 for 0 < p < 2, and the associated MMD yields the
Energy Distance (Sejdinovic et al., 2013). This interpolation property is further
studied in Chapter 3, where we prove that the sample complexity of Sinkhorn
Divergences also interpolates between that of OT and MMD, alleviating the curse
of dimensionality brought by OT when ε is sufficiently large. It is also supported
by empirical evidence in this chapter.

(iii) Learning generative models under a Sinkhorn Divergence: We consider
the density fitting problem with a Sinkhorn Divergence as a loss:

θ∗ ∈ argmin
θ

SDc,ε(αθ, β).

We solve the inference problem by making two key simplifications: (i) approximate
SDε(αθ, β) by a size-m mini-batch sampling SDε(α̂θm, β̂m) to make it amenable
to stochastic gradient descent ; (ii) approximate SDε(α̂θm, β̂m) by L-steps of the
Sinkhorn algorithm (Cuturi, 2013) to obtain an algorithmic loss SD(L)

ε (α̂θm, β̂m)
which is amenable to automatic differentiation. Numerical experiments, both on
simulated and real data, show that Sinkhorn Divergences are able to capture the
geometry of the data in a more powerful way than the Energy Distance, which
tends to ignore extreme points.

(iv) Adversarially learning the cost function: Similarly to what is done for ker-
nel functions in (Dziugaite et al., 2015), we propose to learn the cost function c

adversarially. This is crucial for applications in which there is no natural distance
between samples, like in computer vision where there is no universal meaningful
metric between images. We parametrize the cost function in the following way:

cϕ(x, y) def.= ||fϕ(x)− fϕ(y)||p where fϕ : X → Rd
′
,

where fϕ can be seen as a feature extractor that reduces the dimensionality of X
through a mapping onto Rd

′ . This cost function should make the discrepancy large,
to be able to discriminate well between the model αθ and the true distribution β,
we then solve the min-max problem:

min
θ

max
ϕ

SDcϕ,ε(αθ, β).

Shortly after the submission of this work, we came across the recent work by (Salimans
et al., 2018) which shares several ideas with our method. One distinction lies in the fact
that they do not back-propagate errors across the Sinkhorn iterations, but rather use an
estimate of the optimal transport matrix to compute an upper-bound on the Sinkhorn
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Divergence, as was done for instance in (Cuturi and Doucet, 2014).

Chapter 3: Sample Complexity of Sinkhorn Divergences

This chapter is based on (Genevay et al., 2019).
The numerical experiments in Chapter 2 further support what was first observed in

(Cuturi, 2013): entropy-regularized OT breaks the curse-of-dimensionality from which
OT suffers when the regularization parameter is large enough. The goal of this chapter
is to make this more formal through a sample complexity theorem. We also provide a
convergence rate of entropy-regularized transport to standard transport, proving that
there is a tradeoff between a faithful estimation of OT and good sample complexity.

Previous Works. The central theoretical contribution of Chapter 2 (see Theorem 1)
states that Sinkhorn Divergences, based on regularized OT, interpolate between OT and
MMD. These two metrics, which emerged as popular candidates to compare probability
measures, differ on a fundamental aspect: their sample complexity. The definition of
sample complexity of a loss function that we choose here is the convergence rate of the
loss evaluated on empirical measures to the loss evaluated on the “true" measures, as
a function of the number of samples. This notion is crucial in machine learning, as
bad sample complexity induces overfitting and high gradient variance when using these
divergences for parameter estimation. In that context, it is well known that the sample
complexity of MMD is independent of the dimension, scaling as 1√

n
(Gretton et al.,

2006) where n is the number of samples. In contrast, it is well known that standard
OT suffers from the curse of dimensionality (Dudley, 1969): considering a probability
measure α ∈M(Rd) and its empirical estimation α̂n, we have E[Wp(α, α̂n)] = O(n−1/d).
Its sample complexity is thus exponential in the dimension of the ambient space d.
Although it was recently proved that this result can be refined to d being the intrinsic
dimension of data (Weed and Bach, 2017), the sample complexity of OT is now the
major bottleneck for the use of OT in high-dimensional machine learning problems.

A solution to this shortcoming comes, once again, from entropic-regularization.
Sinkhorn Divergences (0.3), have been empirically observed to be less prone to over-
fitting, as a certain amount of regularization can improve performance in simple learning
tasks (Cuturi, 2013). The interpolation property in Theorem 1 also suggests that for
large regularizations, Sinkhorn Divergences should behave similarly to MMD. However,
aside from a recent central limit theorem in the case of measures supported on finite
discrete spaces (Bigot et al., 2017), the convergence of empirical Sinkhorn Divergences,
and more generally their sample complexity, remains an open question.

Contributions. This chapter contains the main theoretical contributions of this the-
sis, in the form of three theorems exhibiting theoretical properties of Sinkhorn Diver-
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gences.

(i) Bound on the speed of convergence of regularized OT to standard OT:
On a bounded domain of Rd and with a Lipschitz cost-function c, Theorem 2 quan-
tifies the speed of convergence of the value of regularized OT to that of standard
OT with respect to the regularization parameter ε

Theorem 2. Let α and β be probability measures on X and Y bounded subsets of
Rd such that |X | and |Y| 6 D and assume that c is L-Lipschitz w.r.t. x and y. It
holds

0 6Wε(α, β)−W (α, β) 6 2εd log
(
e2·L·D√

d·ε

)
(0.6)

∼
ε→0

2εd log(1/ε). (0.7)

(ii) The dual potentials lie in a Sobolev (RKHS) ball We then prove that
optimizers of the dual regularized optimal transport problem (Dε) lie in a Sobolev
ball which is independent of the measures:

Theorem 3. When X and Y are two bounded sets of Rd and the cost c is C∞,
then optimal Sinkhorn potentials (u, v) (i.e. a pair of maximizers of (Dε)) are
uniformly bounded in the Sobolev space Hs(Rd) and their norms satisfy

||u||Hs = O

(
1 + 1

εs−1

)
and ||v||Hs = O

(
1 + 1

εs−1

)
,

with constants that only depend on |X | (or |Y| for v), d, and
∥∥∥c(k)

∥∥∥
∞

for k =
0, . . . , s. In particular, we get the following asymptotic behavior in ε: ||u||Hs = O(1)
as ε→ +∞ and ||u||Hs = O( 1

εs−1 ) as ε→ 0.

This allows us to rewrite the Sinkhorn Divergence as an expectation maximization
problem in a RKHS ball and thus justify the use of kernel-SGD for regularized OT
as advocated in Chapter 4 (see contribution (iii)).

(iii) Sample complexity of Sinkhorn Divergences: As a consequence of this refor-
mulation (maximization over a RKHS ball), we derive a sample complexity result.
We focus on the influence of the sample size and the regularization parameter on
the convergence rate of the empirical Sinkhorn Divergence (i.e., computed from
samples of two continuous measures) to the continuous Sinkhorn Divergence. We
show that the Sinkhorn Divergence benefits from the same sample complexity as
MMD, scaling in 1√

n
but with a constant that depends on the inverse of the regu-

larization parameter:

Theorem 4. Consider the Sinkhorn Divergence between two measures α and β on
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X and Y two bounded subsets of Rd, with a C∞, L-Lipschitz cost c. One has

E|Wε(α, β)−Wε(α̂n, β̂n)| = O

(
e
κ
ε

√
n

(
1 + 1

εbd/2c

))
,

where κ = 2L|X | + ‖c‖∞ and constants only depend on |X |, |Y|, d, and
∥∥∥c(k)

∥∥∥
∞

for k = 0 . . . bd/2c. In particular, we get the following asymptotic behavior in ε:

E|Wε(α, β)−Wε(α̂n, β̂n)| = O

(
e
κ
ε

εbd/2c
√
n

)
as ε→ 0

E|Wε(α, β)−Wε(α̂n, β̂n)| = O

( 1√
n

)
as ε→ +∞.

Sample complexity worsens when getting closer to standard OT and there is there-
fore a tradeoff between a good approximation of OT (small regularization parame-
ter) and fast convergence in terms of sample size (larger regularization parameter).

Chapter 4: Stochastic Optimization for Large-Scale Opti-
mal Transport

This chapter is based on(Genevay et al., 2016).
Taking advantage of the formulation of dual regularized OT as the maximization

of an expectation presented in Chapter 1 (see (i) in contributions), we propose a class
of provably convergent stochastic optimization solvers. Contrarily to existing methods,
which only apply to discrete measures, ours can handle both discrete and continuous
distributions, with the sole requirement that one can sample from them.

Previous Works. The prevalent way to compute OT distances is by solving the so-
called Kantorovitch problem (Kantorovich, 1942) (introduced in Chapter 1) which boils
down to a large-scale linear program when dealing with discrete distributions (i.e., fi-
nite weighted sums of Dirac masses). This linear program can be solved using network
flow solvers with (n3 log(n)) computational complexity (n being the number of points
in the measure), which can be further refined to assignment problems when comparing
measures of the same size with uniform weights (Burkard et al., 2009). Regularized ap-
proaches that solve the OT with an entropic penalization, as introduced in Chapter 1,
have been shown to be efficient to approximate OT solutions at a low computational cost
by applying Sinkhorn’s algorithm (Sinkhorn, 1964). Its main computational advantage
over competing solvers is that each iteration boils down to matrix-vector multiplica-
tions, which results in a O(n2) complexity. These operations can be easily parallelized,
stream extremely well on GPU, and enjoy linear-time implementation on regular grids
or triangulated domains (Solomon et al., 2015). It can also be easily extended to solve
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other problems involving optimal-transport, such as the computation of Wasserstein
barycenters or multimarginal optimal transport (Benamou et al., 2015).

This method is however purely discrete and cannot cope with continuous densities.
The only known class of methods that overcome this limitation are so-called semi-discrete
solvers (Aurenhammer et al., 1998), that can be implemented efficiently using computa-
tional geometry primitives (Mérigot, 2011). They compute distance between a discrete
distribution and a continuous density, but are restricted to the Euclidean squared cost,
and can only be implemented in low dimensions. Lastly, let us point out that there is
currently no method that can compute OT distances between two continuous densities,
which is thus an open problem we tackle in this chapter.

Contributions. This chapter introduces a new class of online stochastic optimization
algorithms to deal with large-scale (discrete measures with a very large number of points)
and/or high dimensional OT problems. They can handle arbitrary distributions (discrete
or continuous) as long as one is able to draw samples from them. This alleviates the
need to discretize these densities, which introduces an important bias in high dimension,
while giving access to provably convergent methods. These algorithms rely on one key
idea which is that the dual (Dε) and semi-dual (Sε) OT problems can be re-cast as
the maximization of an expectation. When β =

∑m
j=1 βjδyj is a discrete measure, the

semi-dual problem (Sε) in expectation form is

Wε(α, β) = max
v∈Rm

Eα
[
gXε (v)

]
, (0.8)

where X ∼ α and

gxε (v) =
m∑
j=1

vjβj +

−ε log(
∑m
j=1 exp(vj−c(x,yj)

ε )βj) if ε > 0,

minj (c(x, yj)− vj) if ε = 0.

We exploit this formulation in the discrete-discrete and semi-discrete setups, and rely
on the standard dual (Dε) when neither measures are discrete:

(i) Comparing two finite discrete measures: When α =
∑n
i=1 αiδxj and β =∑m

j=1 βjδyj , the semi-dual regularized OT problem (Sε) becomes the maximiza-
tion of a sum of n functions. This can be efficiently solved thanks to stochastic
gradient methods with variance reduction – we use Stochastic Averaged Gra-
dients (SAG) in our experiments. The iterates of SAG can be summarized by the
following formula

v(k+1) = v(k) + C

n

n∑
i=1

z
(k)
i ,
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where an index i(k) is selected at random in {1 . . . n} and

z
(k)
i =

∇g
xi
ε (v(k)) if i = i(k)

z
(k−1)
i otherwise.

At each iteration an index i(k) is selected at random in {1 . . . n} to compute
∇g

x
i(k)
ε (v(k)), the gradient corresponding to the sample xi(k) at the current es-

timate v(k). SAG keeps in memory a copy of that gradient and computes an
average of all gradients stored so far which provides a better proxy of full gradient
∇Ēα[gXε ]. Compared to Sinkhorn, which can be viewed as a batch method, SAG is
an online algorithm which reduces the complexity of each iteration to O(m), with
a O(1/k) convergence rate (since our objective is not strongly convex). There is
thus a tradeoff in iteration complexity vs. convergence rate to consider when using
Sinkhorn or SAG. The latter is thus more efficient for problems with a very large
m – i.e. discrete measures with a very large number of points.

(ii) Comparing a finite discrete measure to an arbitrary probability mea-
sure: We solve the semi-dual problem (Sε) in expectation form defined in (0.8)
thanks to the Stochastic Gradient Descent (SGD) algorithm. The idea of SGD
is fairly intuitive : at each iteration, a sample xk is drawn from α and its gradient
∇gxkε is computed at the current iterate v(k) to serve as a proxy for the full gradient
∇Ḡε. The iterations are given by:

v(k+1) = v(k) + C√
k
∇vgxkε (v(k)) where xk ∼ α.

Since samples from α are drawn online, i.e. without prior discretization, this
method avoids the discretization bias introduced when using a discrete solvers. It
has a O(1/

√
k) convergence rate along with a O(m) complexity per iteration. This

online semi-discrete algorithm has been successfully applied to texture synthesis
in image processing (Galerne et al., 2018), and to the computation of Wasserstein
Barycenters (Staib et al., 2017).

(iii) Comparing two arbitrary probability measures: When neither measures are
finite discrete ones, we resort to the dual formulation

Wε(α, β) = max
u∈C(X )
v∈C(Y)

Eα⊗β
[
fXYε (u, v)

]
+ ε,

where fxyε (u, v) def.= u(x) + v(y)− εe
u(x)+v(y)−c(x,y)

ε . We propose a stochastic gradi-
ent descent over a Reproducing Kernel Hilbert Space (RKHS), by using
the fundamental property of a RKHSH with kernel k: u ∈ H ⇔ u(x) = 〈u, k(x, ·)〉.
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Theorem 3 from Chapter 3, stating that the dual potentials are in a RKHS ball,
allows to prove the convergence of this method. We also introduce an approximate
feature approach (via incomplete Cholesky decomposition (Wu et al., 2006) or
Random Fourier features (Rahimi and Recht, 2007)) to significantly reduce com-
putational time, going from quadratic to linear in the number of iterations. This
is currently the only known method to solve entropy-regularized OT between ar-
bitrary measures.
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Notations

Ambient space. For a metric space X , we denote by :

• C(X ) the space of continuous functions on X ,

• Cb(X ) the space of continuous bounded functions on X ,

• C∞(X ) the space of continuous functions, infinitely differentiable with continuous
derivatives on X ,

• M+(X ) the set of positive Radon measures on X ,

• M1
+(X ) the set of positive Radon probability measures (i.e. of mass 1) on X .

When X is a bounded subset of Rd, we denote by |X | its diameter, defined by |X | def.=
maxx,x′∈X ||x− x′||.

Measures. We use upper-cases to denote random variables (e.g. X). We denote by
X ∼ α the fact that a random variable X follows a distribution α ∈ M1

+(X ). We
write Eα(f(X)) def.=

∫
X f(x)dα(x), the expectation of the random variable f(X), for any

measurable function f on X . The Dirac measure at point x is δx. We denote by α̂n the
empirical measure obtained from n i.i.d. samples (x1, . . . xn) of α, i.e. α̂n

def.= 1
n

∑n
i=1 δxi .

Let α ∈M1
+(X ), β ∈M1

+(Y), we define

Π(α, β) def.= {π ∈M1
+(X × Y) | ∀(A,B) ⊂ X × Y, π(A× Y) = α(A), π(X ×B) = β(B)},

the set of joint probability measures on X × Y with marginals α and β. For some
continuous map g : Z → X , we denote g] : M1

+(Z) → M1
+(X ) the associated push-

forward operator, which is a linear map between distributions. This corresponds to
defining, for ζ ∈ M1

+(Z) and B ⊂ X , (g]ζ)(B) = ζ(g−1(B)) ; or equivalently, that∫
X ϕd(g]ζ) =

∫
Z ϕ ◦ gdζ for continuous functions ϕ on X . A random sample x from g]ζ

can be obtained as x = g(z) where z is a random sample from ζ, i.e. g]ζ is the law of
g(Z), where Z ∼ ζ.

Vectors and matrices. We use bold lower-case for vectors (e.g. a) and bold upper-
case for matrices (e.g. A). For a matrix A, A> denotes its transpose. Element-wise
multiplication of vectors is denoted by�. For two vectors (or matrices) 〈u, v〉 def.=

∑
i uivi

is the canonical inner product (the Frobenius dot-product for matrices). We denote
1n = (1, . . . , 1)> ∈ Rn and 0n = (0, . . . , 0)> ∈ Rn. The probability simplex of n bins is
Σn =

{
α ∈ Rn+ ;

∑
i αi = 1

}
.

Others. We use the notation ϕ(x) = O(1 + xk) to say that ϕ : R 7→ R is bounded by
a polynomial of order k in x with positive coefficients.
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Chapter 1

Entropy-regularized Optimal
Transport

This chapter is a collection of fundamental results on discrepancies between probability mea-
sures, with a focus on entropy-regularized optimal transport. Many problems in machine learning
boil down to comparing probability measures, thus the question of the right notion of discrepancy
between these measures is itself a crucial matter.

We start by a review of three popular candidates: ϕ-divergences, Maximum Mean Discrepan-
cies (MMD) and Optimal Transport (OT). While ϕ-divergences are appreciated for their simplic-
ity, they do not metrize weak convergence. This shortcoming is overcome by MMDs, defined as
Integral Probability Metrics on the ball of Reproducing Kernel Hilbert Spaces (RKHS), which can
also be efficiently estimated through samples. As for OT, its ability to capture the geometry of the
data makes it an interesting candidate but the fact that it suffers from a curse of dimensionality
and its computational burden make it impractical.

The recent introduction of Entropy-regularized OT (EOT) has alleviated both shortcomings of
OT (statistical and computational). We detail here the three formulations of EOT: primal, dual
and semi-dual along with basic results which are the common base to the remainder of this thesis.
Our thorough introduction, both theoretical and algorithmic, includes original contributions:

(i) the regularization of OT using relative entropy with respect to the product measure of the
marginals, which allows to have a dual formulation as an expectation useful to derive
statistical properties in Chapter 3 and new solvers in Chapter 4,

(ii) the semi-dual formulation and some key properties, which are exploited in Chapter 4,

(iii) a generalization of the proof of existence of solutions to the dual problem,

(iv) an extension of our results to regularizers other than entropy and unbalanced OT.

17
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1 Introduction

Comparing probability distributions is a fundamental issue arising in many machine
learning problems, both supervised and unsupervised. In unsupervised machine-learning,
one of the most popular research areas which emerged in recent years is learning genera-
tive models (Goodfellow et al., 2014). The goal is to fit the distribution of a parametric
generative model to the unknown distribution induced by the dataset, to then be able to
generate new samples which resemble the ones in the dataset. Choosing the right loss to
be minimized between these two distributions is one of the key issues of the problem. On
the supervised side of things, when one wants to learn a classifier for instance, choosing a
meaningful distance on the data space is crucial. Many types of data can be represented
as histograms, for instance: bag-of-visual-words comparison in computer vision (Rubner
et al., 2000), color and shape processing in computer graphics (Solomon et al., 2015),
bag-of-words for natural language processing (Kusner et al., 2015) and multi-label clas-
sification (Frogner et al., 2015). Normalized histograms are no more than finite discrete
probability distributions, thus a good distance to compare histograms requires a good
distance on measures.

Previous Works. In machine learning, the first candidates were ϕ-divergences, which
can be seen as a weighted average (by ϕ) of the odds-ratio between the two mea-
sures (Csiszár, 1975). Their computational simplicity made them very popular, although
they suffer from the major drawback of being oblivious to geometry, and they do not
metrize weak-convergence. The latter is solved by Integral Probability Metrics (IPMs)
(Müller, 1997), of which Maximum Mean Discrepancies (Gretton et al., 2006) are the
most popular instance in machine learning applications as they can be computed ef-
ficiently in closed form with samples of the two measures. Another class of losses are
Optimal Transport (OT) based losses – of which the Wasserstein Distance is a particular
case. They behave particularly well in problems that are intrinsically geometric (e.g.
shapes or image processing). However, they are expensive to compute and suffer from a
curse of dimensionality, meaning their approximation from sampled measures degrades
quickly in high dimension. A solution to the computational issue was introduced in
Cuturi (2013), thanks to the regularization of the original OT problem with entropy. It
allows to derive an efficient solver for finite discrete measures, and the resulting distance
happens to perform well in various machine learning tasks as proved in this seminal
paper.

Contributions. The object of this thesis is to showcase that the benefits of entropy-
regularized OT extend far beyond fast algorithms for finite discrete measures. Before
giving both theoretical and empirical evidence that it solves both the computational
(Chapters 2 and 4) and statistical (Chapter 3) burdens of OT, we exhibit in this re-
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view chapter the basics of regularized OT which are exploited in the remainder of this
thesis: primal, dual, semi-dual formulations, existence of solutions, convergence of the
regularized problem. We also provide a detailed account on Sinkhorn’s algorithm, the
state-of-the-art solver for discrete entropy-regularized OT. This chapter is different from
the subsequent ones, as it is a collection of existing results, including some original con-
tributions on regularized OT. They consist in (i) the regularization of OT using relative
entropy with respect to the product measure of the marginal (instead of entropy with
respect to the uniform measure in (Cuturi, 2013)), which allows us to formulate the
dual problem as the maximization of an expectation – useful to derive statistical prop-
erties in Chapter 3 and new solvers in Chapter 4, (ii) the semi-dual formulation and its
key properties, which are exploited in Chapter 4, (iii) and to a lesser extent a proof of
existence of solutions to the dual problem for arbitrary measures, building on Franklin
and Lorenz (1989), which provides a proof in the discrete setting and Chen et al. (2016)
which provides a proof in the continuous case for Schrödinger’s problem, which shares
strong links with OT. These contributions were originally given in (Genevay et al., 2016)
and (Genevay et al., 2019) (on which Chapters 4 and 3 are respectively based), but it
seems more natural to add them to the collection of the results used in subsequent
chapters, to provide a unified and thorough introduction to regularized OT. Eventually,
another contribution of this chapter is (iv) the extension of our results for regularizers
other than entropy, and links with unbalanced transport (Chizat et al., 2018) whenever
possible, which was not previously done in published work.

2 Distances Between Probability Measures
and Weak-Convergence

This section introduces three types of discrepancies between measures, which are
not all distances strictly-speaking, but they all define some sort of closeness between
probability measures. We review ϕ−divergences, Maximum Mean Discrepancy(MMD)
(which comes from the larger class of Integral Probability Metrics) and Optimal Trans-
port (OT) distances of which the Wasserstein Distance is a special instance, as these
are all popular losses in machine learning problems.

2.1 ϕ-divergences

The simplest tool to compare two measures are ϕ-divergences. Roughly speaking,
they compare dα

dβ (x) to 1 trough the following formulation:

Definition 1. (ϕ-divergence)(Csiszár, 1975) Let ϕ be a convex, lower semi-continuous
function such that ϕ(1) = 0.
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Table 1.1 – Examples of ϕ-divergences

Kullback-Leibler DKL(α|β) =
∫
X log(dα

dβ (x))dβ(x) ↔ ϕ(x) = x log(x)

Jensen-Shannon DJS(α|β) = DKL(α|12(α+ β)) ↔ ϕ(x) = x log(x)
+DKL(β|12(α+ β))) −(1 + x) log 1+x

2

Hellinger DH2(α|β) =
∫
X (
√
dα−

√
dβ)2 ↔ ϕ(x) = (

√
x− 1)2

Total Variation DTV (α|β) = supA∈B(X ) |α(A)− β(A)| ↔ ϕ(x) = 1
2 |x− 1|

The ϕ-divergence Dϕ between two probability measures α and β ∈M1
+ is defined by:

Dϕ(α|β) def.=
∫
X
ϕ

(dα
dβ (x)

)
dβ(x) + ϕ∞α

⊥(X ),

where and ϕ∞
def.= limx→+∞

ϕ(x)
x and α⊥(X ) denotes the mass of the part of α that is

not absolutely continuous with respect to β in the Radon-Nikodym decomposition of α,
i.e. α = dα

dβ (x)β + α⊥.
Besides, Dϕ is jointly convex in both variables and if ϕ is strictly convex at 1 then Dϕ

is non-negative i.e.

Dϕ(α|β) > 0 and Dϕ(α|β) = 0⇔ α = β.

The best-known ϕ-divergence is the so-called Kullback-Leibler divergence (see Ta-
ble 1.1 for examples), which is widely used in machine learning problems (see Chapter 2
for an overview of learning with ϕ-divergences). However, it is equal to +∞ if both mea-
sures do not share the same support, which causes discontinuity issues. For instance,
consider the case on R where α = δ0 a Dirac mass in 0 and αn = δ1/n a Dirac mass in
1/n. Then DKL(αn|α) = +∞ for all n, although it would seem natural to say that when
n goes to infinity, αn gets closer to α. As for DTV (which is a norm) and DH2 (which
is the square of a distance), they are both finite constants for all n, when considering
this same case. This issue is simply an illustration of the fact that ϕ-divergences do not
metrize weak-convergence.

Definition 2. (Weak-convergence) We say that a sequence of measures (αn)n weakly
converges to α (or converges in law) if∫

X
f(x)dαn(x)→

∫
X
f(x)dα(x) ∀f ∈ Cb(X ), (2.1)

where Cb(X ) denotes the set of continuous bounded functions on X .
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We say that a discrepancy d metrizes the weak-convergence of measures if

d(αn, α)→ 0⇔ αn ⇀ α,

where ⇀ denotes weak-convergence (or convergence in law, for Xn ⇀ X where Xn ∼ αn
and X ∼ α).

Remark 1. As pointed out in Sec. 5.1 of (Ambrosio et al., 2006), it is sufficient to check
(2.1) on any subset Ω of bounded continuous functions whose linear envelope span(Ω)
is uniformly dense (i.e. dense in the uniform topology induced by the infinity norm) in
Cb(X ).

The fact that ϕ−divergences do not metrize weak convergence is a major issue and
makes them poor candidates for learning problems, in spite of their appreciated com-
putational simplicity. We discuss this in details in Chapter 2, where focus on finding a
good notion of distance between measures to fit a (generative) parametric model to a
dataset. For now, let us introduce another class of distances between measures which
can metrize weak convergence under some assumptions.

2.2 Integral Probability Metrics and Maximum Mean discrepancy

The notion of Integral Probability Metrics (IPMs) was introduced by (Müller, 1997)
as a class of maximization problems on certain sets of functions, regrouping some well
known distances:

Definition 3. (Integral probability metrics) (Müller, 1997) Consider two probability
distributions α and β on a space X . Given a set of measurable functions F , the integral
probability metric dF is defined as

dF (α, β) def.= sup
f∈F
|Eα(f(X))− Eβ(f(Y ))|. (2.2)

Let us now give a sufficient condition on F so that the associated IPM metrizes weak
convergence:

Proposition 1. If span(F) is uniformly dense in Cb(X ), then dF metrizes weak con-
vergence.

Proof. dF metrize weak convergence if and only if dF (αn, α)→ 0⇔ αn ⇀ α. Using the
definition of dF (2.2) and the definition of weak convergence (2.1) we can rewrite this
as:

sup
f∈F

∣∣∣ ∫
X
f(x)dαn(x)−

∫
X
f(x)dα(x)

∣∣∣→ 0

⇔
∣∣∣ ∫
X
f(x)dαn(x)−

∫
X
f(x)dα(x)

∣∣∣→ 0 ∀f ∈ Cb(X ).
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Table 1.2 – Examples of Integral Probability Metrics

Total Variation F = {f |||f ||∞ 6 1} functions upper-bounded by 1

Maximum Mean discrepancy F = {f |||f ||H 6 1} unit ball of the RKHS H

Wasserstein-1 F = {f |||f ||Lip 6 1} functions with Lipschitz
constant smaller than 1

Besides,
sup
f∈F

∣∣∣ ∫
X
f(x)dαn(x)−

∫
X
f(x)dα(x)

∣∣∣→ 0

⇔
∣∣∣ ∫
X
f(x)dαn(x)−

∫
X
f(x)dα(x)

∣∣∣→ 0 ∀f ∈ F .

Remark 1 yields the desired conclusion.

We give some examples of well-known IPMs in Table 1.2. The Wasserstein-1 dis-
tance, which is the IPM for the set of 1-Lipschitz functions can be reformulated using
Kantorovich-Rubinstein duality as:

W1(α, β) def.= min
π∈Π(α,β)

∫
X×X

||x− y||2dπ(x, y),

where Π(α, β) is the set of probability distributions over the product set X × X with
marginals α and β. This formulation is known as an optimal transport problem between
α and β with cost function c(x, y) = ||x− y||2. It is well known that W1 metrizes weak
convergence of measures. We will get back to a more general definition of Wasserstein
distance with other cost functions in the following section, since it extends beyond the
frame of IPMs. As for TV , which is both a ϕ−divergence and an IPM, it does not metrize
weak convergence: convergence in TV implies weak-convergence but not the other way
around. We now focus on Maximum Mean Discrepancy for a while. Maximum Mean
Discrepancies are IPMs on the unit ball of a Reproducing Kernel Hilbert Space (RKHS),
where the norm is the one induced by its kernel function k. The fact that MMDs metrize
weak convergence requires some conditions on the kernel k. Let us start by introducing
these concepts in more detail:

Definition 4. (Reproducing Kernel Hilbert Space) Consider a Hilbert space H
of real-valued functions on a space X . Let Lx be the evaluation operator, such that
Lx(f) def.= f(x). Then H is a Reproducing Kernel Hilbert Space if and only if Lx is
continuous.

From this definition, the role of the reproducing kernel in the reproducing kernel
Hilbert space is not obvious. We first give the definition of a reproducing kernel.
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Definition 5. (Reproducing Kernel) Consider a Hilbert space H of real-valued func-
tions on a space X . A function k : X × X → R is a reproducing kernel of H if it
verifies:

1. ∀x ∈ X , k(x, ·) ∈ H,

2. ∀f ∈ H, f(x) = 〈f, k(x, ·)〉H.

Proposition 2. A function k : X × X → R is a reproducing kernel if and only if it is
positive definite, i.e for all (x1, . . . , xn) ∈ X n, (a1, . . . , an) ∈ Rn,

n∑
i=1

n∑
j=1

aiajK(xi, xj) > 0.

We can now state a theorem giving an equivalent definition for RKHS.

Theorem 5. A Hilbert space H of real-valued functions on a space X is a Reproducing
Kernel Hilbert Space if and only if it has a reproducing kernel. Besides, this reproducing
kernel is unique.

Thanks to this theorem, it is possible to define the RKHS associated to any positive
definite kernel k.

Remark 2. The proof of any RKHS having a reproducing kernel is made thanks to
Riesz representer theorem. Since the evaluation function is linear and continuous, there
exists a function kx ∈ H such that f(x) = 〈f, kx〉H. Defining the bilinear function
k : X × X → R by k(x, y) = kx(y) we clearly have that k is a reproducing kernel of H.

The reproducing property of RKHS allows to derive a much simpler expression for
their associated IPM, which becomes a closed form formula.

Proposition 3. (Maximum Mean discrepancy) (Gretton et al., 2006) Consider
two probability measures α and β ∈M1

+(X ). Then, denoting by MMDk the Maximum
Mean Discrepancy on the Reproducing Kernel Hilbert Space H with kernel k, we have
that

MMD2
k(α, β) def.=

(
sup

{f |||f ||H61}
|Eα(f(X))− Eβ(f(Y ))|

)2

= Eα⊗α[k(X,X ′)] + Eβ⊗β[k(Y, Y ′)]− 2Eα⊗β[k(X,Y )]. (2.3)

Proof. Using the fact that any function f in the RKHS satisfies f(x) = 〈f, k(x, ·)〉H, we
can rewrite MMD as follows:

sup
f |||f ||H61

|Eα(f(X))− Eβ(f(Y ))| = sup
f |||f ||H61

|Eα(〈f, k(X, ·)〉H)− Eβ(〈f, k(Y, ·)〉H)|

= sup
f |||f ||H61

|〈f,Eαk(X, ·)− Eβk(Y, ·)〉H|

6 ||Eαk(X, ·)− Eβk(Y, ·)||H,
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and this upper bound is reached for f = Eαk(X, ·)− Eβk(Y, ·).

When α and β are finite discrete measures, i.e. α def.=
∑n
i=1 αiδxi and β

def.=
∑n
i=1 βiδyi ,

(2.3) becomes

n∑
i,j=1

k(xi, xj)αiαj +
n∑

i,j=1
k(yi, yj)βiβj − 2

n∑
i,j=1

k(xi, yj)αiβj .

Thus, MMD can be efficiently estimated with samples from α and β. We discuss this
in Chapter 3 when we compare sample complexity for MMD, Wasserstein distance, and
entropy-regularized optimal transport.

We now give some conditions on k to ensure thatMMDk metrizes weak convergence

Theorem 6. (MMD and weak convergence) (Sriperumbudur et al., 2010) Consider
Maximum Mean Discrepancy with kernel k between two measures α and β on some space
X , as defined in (2.3).

(i) Let X be a compact space. If the kernel k is universal (i.e. its associated RKHS is
dense in the space of continuous functions), then MMDk metrizes weak conver-
gence onM1

+(X ).

(ii) Let X = Rd and k(x, y) = κ(x − y) where κ is a bounded strictly positive-definite
function. If ∃l ∈ N such that:∫

Rd

1
κ̂(ω)(1 + ||ω||2)ldω <∞,

then MMDk metrizes weak convergence onM1
+(X ) .

The most widely used kernel is the Gaussian kernel k(x, y) = exp(−||x−y||
2

σ2 ), which is a
universal kernel. According to Theorem 6 it metrizes weak convergence on a compact set,
but it does not verify the required hypotheses on Rd. They are however characteristic,
meaning that MMDk(α, β) = 0 ↔ α = β. An example of kernels that verify the
hypotheses of Theorem 6 on Rd are the so-called Matern kernels, whose associated
RKHS are Sobolev spaces. We further discuss the use of various kernels for learning
problems in Chapter 2 and for function estimation in Chapters 3 and 4.

2.3 Optimal Transport

We consider two probability measures α ∈ M1
+(X ) and β on M1

+(Y). The Kan-
torovich formulation (Kantorovich, 1942) of Optimal Transport (OT) between α and β
is defined by:

Wc(α, β) def.= min
π∈Π(α,β)

∫
X×Y

c(x, y)dπ(x, y), (P)
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Figure 1.1 – Illustration of optimal transport between two measures α and β in the
continuous case (left) and discrete case (right). In the continuous case, the transport
plan is a probability distribution on X ×Y while in the discrete case it is a matrix. For
the latter, each entry πij corresponds to how much mass is moved from i to j.

where the feasible set is composed of probability distributions over the product space
X × Y with fixed marginals α, β:

Π(α, β) def.=
{
π ∈M1

+(X × Y) ; P1]π = α, P2]π = β
}
,

where P1]π (resp. P2]π) is the marginal distribution of π for the first (resp. second)
variable, using the projection maps P1(x, y) = x;P2(x, y) = y along with the push-
forward operator ].

An optimizer π is called the transport plan between α and β, and quantifies how
mass is optimally moved from α to β, see Figure 1.1. The cost function c represents
the cost to move a unit of mass from x to y, and Wc(α, β) represents the total cost of
moving all mass from α to β.

Remark 3 (p-Wasserstein distance). When X = Y is endowed with a distance dX ,
choosing c(x, y) = dX (x, y)p where p > 1 yields the p-th power of the p-Wasserstein
distance. It defines an actual distance between probability measures, which metrizes the
weak-convergence.

For other cost functions c, Wc(α, β) is not necessarily a distance, since it does not
always satisfy the triangle inequality but it still symmetric and positive under natural
assumptions on the cost function (e.g. c(x, y) = 0⇔ x = y, c(x, y) > 0).

Optimal transport is a powerful tool to capture the underlying geometry of the
measures, by relying on the cost function c which encodes the geometry of the space X ,
and they have the ability to make meaningful comparisons even when the supports of
the measures do not overlap (which is not the case for Kullback-Leibler divergence for
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instance). Besides, the transport plan π gives a mapping between measures which can
be used for instance in domain adaptation (Courty et al., 2014). More structure can
be enforced with extensions of OT (Alvarez-Melis et al., 2017), which can for instance
take into account labels of the data in supervised learning. However, OT suffers from a
computational and statistical burden:

• Computing OT is costly: Solving OT when dealing with discrete distributions
(i.e., finite weighted sums of Dirac masses) amounts to solving a large-scale linear
program. This can be done using network flow solvers, which can be further refined
to assignment problems when comparing measures of the same size with uniform
weights (Burkard et al., 2009). The computational complexity is O(n3log(n))
where n is the number of points in the discrete measure (see also the monograph
on Computational OT by Peyré et al. (2017) for a detailed review of OT solvers).

• OT suffers from a curse of dimensionality: considering a probability measure
α ∈ M1

+(Rd) and its empirical estimation α̂n, we have E[Wp(α, α̂n)] = O(n−1/d)
(see (Weed and Bach, 2017) for refined convergence rates depending on the support
of α). Thus the error made when approximating the Wasserstein distance from
samples grows exponentially fast with the dimension of the ambient space.

These two issues have caused OT to be neglected in machine learning applications for a
long time in favor of simpler ϕ−divergences or MMD.

Let us conclude this section on OT with a recent extension introduced in (Chizat
et al., 2018), (Liero et al., 2018). While OT is restricted to positive measures of mass 1,
Unbalanced Optimal Transport can compare any two arbitrary positive measures. The
marginal constraints are relaxed, as they are replaced with ϕ-divergences:

Definition 6. (Unbalanced Optimal Transport) Consider two positive measures
α ∈M+(X ) and β ∈M+(Y). Unbalanced Optimal Transport is defined as the following
minimization problem

min
π∈M+(X×Y)

∫
X×Y

c(x, y)dπ(x, y) +Dψ1(P1]π|α) +Dψ2(P2]π|β), (2.4)

where ψ1 and ψ2 are positive, lower-semi-continuous functions such that ψ1(1) = 0 and
ψ2(1) = 0.

Note that there is no constraint on the transport plan besides positivity: it is not
required to have marginals equal to α and β nor to have mass 1. For specific choices
of c, ψ1, ψ2, unbalanced OT defines a distance onM+(X ). This extension is popular in
several applications due to the fact that it can compare any arbitrary positive measures.
Whenever possible, we extend our results on regularized OT to the unbalanced case.
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3 Regularized Optimal Transport

We introduce regularized optimal transport, which consists in regularizing the orig-
inal problem by penalizing it with the ϕ-divergence of the transport plan with respect
to the product measure:

Wϕ
c,ε(α, β) def.= min

π∈Π(α,β)

∫
X×Y

c(x, y)dπ(x, y) + ε

∫
X×Y

ϕ

( dπ(x, y)
dα(x)dβ(y)

)
dα(x)dβ(y),

(Pε,ϕ)

where ϕ is a convex function with domain R+.
Entropic regularization, which is the main focus of this thesis, corresponds to the

case ϕ(w) = w log(w) − w + 1 (or alternatively ϕ(w) = w log(w)) but one may choose
the squared penalty ϕ(w) = w2

2 + ιR+(w), where ι denotes the convex indicator func-
tion. However, most of the properties we derive for regularized optimal transport – in
particular fast numerical solvers and improved sample complexity – are specific to the
entropic regularization.

3.1 Dual Formulation

An advantage to consider regularized OT is to get an unconstrained dual problem.
The dual of standard OT reads:

Wc(α, β) = sup
(u,v)∈U(c)

∫
X
u(x)dα(x) +

∫
Y
v(x)dβ(y), (D)

where the constraint set U(c) is defined by

U(c) def.= {(u, v) ∈ C(X )× C(Y)|u(x) + v(y) 6 c(x, y), ∀(x, y) ∈ X × Y}.

while the dual of regularized OT is given by an unconstrained maximization problem:

Proposition 4. Consider OT between two probability measures α and β with a convex
regularizer ϕ with domain R+. Then strong duality holds and (Pε,ϕ) is equivalent to the
following dual formulation:

Wϕ
c,ε(α, β) = sup

u,v∈C(X )×C(Y)

∫
X
u(x)dα(x) +

∫
Y
v(x)dβ(y)

−ε
∫
X×Y

ϕ∗(u(x) + v(y)− c(x, y)
ε

)dα(x)dβ(y), (Dε,ϕ)

where ϕ∗ is the Legendre transform of ϕ defined by ϕ∗(p) def.= supw wp− ϕ(w).

Remark 4. (Strong Duality) Before getting into details on the derivation of the dual prob-
lem, note that strong duality holds, thanks to the application of Fenchel-Rockafellar the-
orem to the dual problem, which also guarantees existence of a primal solution to (Pε,ϕ)
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(see (Chizat, 2017), Prop. 3.5.6 for technical details). The existence of maximizers for
the dual problem (Dε,ϕ) is not guaranteed in general, and we give a proof of existence
in the case of entropic regularization in Sec. 4.1 of this Chapter.

Proof. The primal problem reads

min
π

∫
X×Y

c(x, y)dπ(x, y) + ε

∫
X×Y

ϕ

( dπ(x, y)
dα(x)dβ(y)

)
dα(x)dβ(y))

under the constraint that P1]π = α, P2]π = β Introducing the Lagrange multipliers u
and v associated to these constraints, the Lagrangian reads

L(π, u, v) =
∫
X×Y

c(x, y)dπ(x, y) + ε

∫
X×Y

ϕ

( dπ(x, y)
dα(x)dβ(y)

)
dα(x)dβ(y)

+
∫
X
u(x)

(
dα(x)−

∫
Y

dπ(x, y)
)

+
∫
Y
v(y)

(
dβ(y)−

∫
X

dπ(x, y)
)

The dual Lagrange function is given by g(u, v) = minπ L(π, u, v) and thus rearranging
terms we get

g(u, v) =
∫
X
u(x)dα(x) +

∫
Y
v(x)dβ(y)

+εmin
π

(∫
X×Y

(
ϕ

( dπ(x, y)
dα(x)dβ(y)

)
− u(x) + v(y)− c(x, y)

ε

dπ(x, y)
dα(x)dβ(y)

)
dα(x)dβ(y)

)
=
∫
X
u(x)dα(x) +

∫
Y
v(x)dβ(y)− ε

∫
X×Y

ϕ∗
(
u(x) + v(y)− c(x, y)

ε

)
dα(x)dβ(y),

where ϕ∗ the Legendre transform of ϕ is given by

ϕ∗(p) = sup
w
wp− ϕ(w) = − inf

w
ϕ(w)− wp.

Remark 5. (Primal-Dual Relationship) The primal-dual relationship is given by

π = argminπ ϕ
( dπ(x, y)
dα(x)dβ(y)

)
− u(x) + v(y)− c(x, y)

ε

dπ(x, y)
dα(x)dβ(y)

⇔ dπ(x, y) = (ϕ′)−1(u(x) + v(y)− c(x, y)
ε

)dα(x)dβ(y),

when (ϕ′) is invertible.

The smoothing effect of regularization is clear when looking at the dual of standard
OT , since the constraint on the dual problem is replaced by a smooth penalization. The
term

∫
X×Y ϕ

∗(u(x)+v(y)−c(x,y)
ε )dα(x)dβ(y) penalizes large positive values of u(x)+v(y)−

c(x, y). Ideally, to get a regularized problem that stays true to standard OT, we want ϕ∗

to go quickly to large positive values when u(x)+v(y)−c(x, y) grows. A good choice for
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such a function is ϕ∗(w) = ew, which actually corresponds to the entropic regularization
(see section 4 for more details). A weaker penalization can also be considered using
ϕ∗(w) = max(w, 0)2/2, which corresponds to the quadratic regularization.

3.2 The Case of Unbalanced OT

Unbalanced OT can also be regularized with a ϕ−divergence, which gives the fol-
lowing problem:

min
π∈M+(X×Y)

∫
X×Y

c(x, y)dπ(x, y) +Dψ1(P1]π|α) +Dψ2(P2]π|β)

+ ε

∫
X×Y

ϕ

( dπ(x, y)
dα(x)dβ(y)

)
dα(x)dβ(y).

As previously done with balanced OT, we can compute the dual of this problem:

Proposition 5. The dual of regularized unbalanced OT with a convex regularizer ϕ with
domain R+ is given by

sup
u∈C(X ),v∈C(Y)

−
∫
X
ψ∗1(−u(x))dα(x)−

∫
Y
ψ∗2(−v(y))dβ(y)

− ε
∫
X×Y

ϕ∗
(
u(x) + v(y)− c(x, y)

ε

)
dα(x)dβ(y).

Proof. The proof is essentially similar to the derivation of the regularized dual in Propo-
sition 4 except the problem is unconstrained. The primal problem reads

min
π∈M+(X×Y)

∫
X×Y

c(x, y)dπ(x, y) +
∫
X
ψ1

(
P1]π(x)
dα(x)

)
dα(x) +

∫
Y
ψ2

(
P2]π(y)
dβ(y)

)
dβ(y)

+ ε

∫
X×Y

ϕ

( dπ(x, y)
dα(x)dβ(y)

)
dα(x)dβ(y)).

We introduce slack variables a and b such that a = P1]π and b = P2]π. This gives the
following constrained problem:

min
π∈M+(X×Y)

(a,b)∈M+(X )×M+(Y)

∫
X×Y

c(x, y)dπ(x, y) +
∫
X
ψ1

( da(x)
dα(x)

)
dα(x) +

∫
Y
ψ2

( db(y)
dβ(y)

)
dβ(y)

+ ε

∫
X×Y

ϕ

( dπ(x, y)
dα(x)dβ(y)

)
dα(x)dβ(y)),

subject to a = P1]π and b = P2]π. Introducing the Lagrange multipliers u and v
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associated to the constraints, the Lagrangian reads

L(π, a, b, u, v) =
∫
X×Y

c(x, y)dπ(x, y) +
∫
X
ψ1

( da(x)
dα(x)

)
dα(x) +

∫
Y
ψ2

( db(y)
dβ(y)

)
dβ(y)

+
∫
X
u(x)

(
da(x)−

∫
Y

dπ(x, y)
)

+
∫
Y
v(y)

(
db(y)−

∫
X

dπ(x, y)
)

+ ε

∫
X×Y

ϕ

( dπ(x, y)
dα(x)dβ(y)

)
dα(x)dβ(y)).

The dual Lagrange function is given by g(u, v) = minπ,a,b L(π, a, b, u, v), and since the
problem is separable we get three distinct minimization problems for each variable:

g(u, v) = min
a

[ ∫
X
u(x)da(x) + ψ1

( da(x)
dα(x)

)
dα(x)

]
+ min

b

[ ∫
Y
v(y)db(y) + ψ2

( db(x)
dβ(y)

)
dβ(x)

]
+ min

π

[ ∫
X×Y

(c(x, y)− u(x)−v(y))dπ(x, y)

+ ε

∫
X×Y

ϕ

( dπ(x, y)
dα(x)dβ(y)

)
dα(x)dβ(y))

]
.

The three minimization problems are actually the expression of the Legendre transform
for ψ1,ψ2, and ϕ and so the dual function can be rewritten as:

g(u, v) = −
∫
X
ψ∗1(−u(x))dα(x)−

∫
Y
ψ∗2(−v(y))dβ(y)

− ε
∫
X×Y

ϕ∗
(
u(x) + v(y)− c(x, y)

ε

)
dα(x)dβ(y),

where f∗ is the Legendre transform of f defined by f∗(p) = supw wp− f(w).

3.3 Dual Expectation Formulation

Another benefit of the regularization introduced above is the fact that is can be
rewritten as the maximization of an expectation with respect to the product measure
α⊗ β

Proposition 6. The dual of regularized OT (Dε,ϕ) has the following equivalent formu-
lation:

Wϕ
c,ε(α, β) = sup

u,v∈C(X )×C(Y)
Eα⊗β[fXYε (u, v)],

where fxyε
def.= u(x) + v(y)− ϕ∗(u(x)+v(y)−c(x,y)

ε ).

Since many machine learning problems (e.g. risk minimization) are formulated as the
maximization of an expectation, this formulation of the dual of regularized OT allows
us to apply well-known techniques from machine learning to study statistical properties
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of regularized OT in Chapter 3 and use stochastic optimization to solve it in Chapter 4.
Note that the formulation as an expectation of the dual problem is only available for

ε > 0. Indeed, the dual of standard OT has a constraint (u+ v− c 6 0) whose indicator
function cannot be put inside the expectation.

Remark 6. (Generalization to Unbalanced OT) Recall the dual of regularized unbalanced
OT with regularizer ϕ:

sup
u,v
−
∫
X
ψ∗1(−u(x))dα(x)−

∫
Y
ψ∗2(−v(y))dβ(y)

−ε
∫
X×Y

ϕ∗(u(x) + v(y)− c(x, y)
ε

)dα(x)dβ(y).

Thus, it can also be cast as the maximization of an expectation with respect to the
product measure α⊗ β

sup
u∈C(X ),v∈C(Y)

Eα⊗β

[
ψ∗1(−u(X))− ψ∗2(−v(Y )) + ϕ∗(u(X) + v(Y )− c(X,Y )

ε
)
]
.

4 Entropy-Regularized Optimal Transport

Entropic regularization is the main focus of this thesis, as it presents several specific
properties:

• closed-form primal-dual relationship, allowing to recover the transport plan π after
solving the simpler (unconstrained) dual problem,

• a fast numerical solver for finite discrete measures, Sinkhorn’s algorithm (see
Sec. 4.2),

• a discrepancy between measures interpolating between standard OT and MMD
(see Chapter 2),

• an improved sample complexity compared to OT, breaking the curse of dimen-
sionality for a regularization parameter large enough (see Chapter 3),

• reformulation of the dual as the maximization of an expectation in a Reproducing
Kernel Hilbert Space (RKHS) ball of finite radius, allowing to solve the dual
problem with a kernel version of stochastic gradient descent (see Chapter 3 and
Chapter 4),

• semi-dual formulation (Sε), allowing to solve semi-discrete OT with online descent
algorithms (see Chapter 4).

Let us rewrite the primal and dual problems (Pε,ϕ) and (Dε,ϕ) derived in Proposi-
tion 4 with the entropic regularization:
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Proposition 7. Consider OT between two probability measures α and β with entropic
regularization:

Wc,ε(α, β) def.= min
π∈Π(α,β)

∫
X×Y

c(x, y)dπ(x, y) + εH(π|α⊗ β), (Pε)

where
H(π|α⊗ β) def.=

∫
X×Y

(
log

( dπ(x, y)
dα(x)dβ(y)

)
− 1

)
dπ(x, y) + 1 (4.1)

is the relative entropy of the transport plan π with respect to the product measure α⊗β.
It is equivalent to this dual formulation:

Wc,ε(α, β) = max
u∈C(X ),v∈C(Y)

∫
X
u(x)dα(x) +

∫
Y
v(y)dβ(y)

− ε
∫
X×Y

e
u(x)+v(y)−c(x,y)

ε dα(x)dβ(y) + ε (Dε)

= max
u∈C(X),v∈C(Y )

Eα⊗β
[
fXYε (u, v)

]
+ ε (4.2)

where fxyε (u, v) = u(x) + v(y)− εe
u(x)+v(y)−c(x,y)

ε .

Besides, the primal-dual relationship is given by

dπ(x, y) = exp
(
u(x) + v(y)− c(x, y)

ε

)
dα(x)dβ(y).

Proof. This is a direct application of Proposition 4, using ϕ(w) = w logw − w + 1, in
which case ϕ∗(p) def.= supw wp− ϕ(w) = ep + 1. Note that the sup is a max is this case,
and we prove the existence of optimizers in Sec. 4.1 below.

Remark 7. (Equivalent formulation of (Pε)) The transport plan π is constrained to be a
probability measure which imposes

∫
X×Y dπ(x, y) = 1, so the primal problem (Pε) can

be simplified to:

min
π∈Π(α,β)

∫
X×Y

c(x, y)dπ(x, y) + ε

∫
X×Y

log
( dπ(x, y)

dα(x)dβ(y)

)
. (Pε)

However when computing the dual directly from this formulation, we get a primal-dual
relationship that is less elegant:

dπ(x, y) = e
u(x)+v(y)−c(x,y)−1

ε dα(x)dβ(y),

which is why we prefer to formally state Proposition 7 with H defined in (4.1).

Remark 8. (Dual Potentials and Exponential Scalings) As commonly done in the litera-
ture on OT, we refer to the variables of the dual problem (u, v) as the dual (Kantorovitch)
potentials. We will also often use the so-called exponential scalings of the dual variables
(a, b) defined by a def.= e

u
ε and b def.= e

v
ε .
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Entropic regularization of optimal transport was first introduced with the follow-
ing formulation of entropy: H(π) def.=

∫
X×Y log

(
dπ(x,y)
dxdy

)
dπ(x, y) (Cuturi, 2013). The

resulting dual problem is slightly different:

max
u∈C(X ),v∈C(Y)

∫
X
u(x)dα(x) +

∫
Y
v(y)dβ(y)− ε

∫
X×Y

e
u(x)+v(y)−c(x,y)

ε dxdy + ε.

Here, the third term in the dual is an integral with respect to the Lebesgue measure,
while with relative entropy, the integral is taken with respect to the product measure
α⊗β. The formulation with simple entropy yields an unconstrained dual problem which
can be solved efficiently (see Proposition. 10 for details) but it can not be formulated as
the maximization of an expectation which, as already mentioned, is crucial for the results
presented in Chapters 3 and 4. Thus we only use relative-entropy as a regularizer, as it
keeps all the benefits brought by simple entropy with the added benefit of the expectation
formulation.

4.1 Solving the Regularized Dual Problem

As most of the methods we develop in this thesis rely on the dual formulation of
entropy-regularized OT, we give a proof of existence of a solution to this problem, for
a general setting. We discuss further the regularity of the dual potentials in Chapter 3.
This section is dedicated to proving the following existence theorem:

Theorem 7. (Existence of a dual solution) Consider the dual of entropy-regularized
OT, with marginals α, β ∈M1

+(X )×M1
+(Y) supported on two subsets of Rd, and with a

cost function c bounded on X × Y. Let L∞(α) def.= {f : X → R|∃C > 0 such that f(x) 6
C α-a.e.}. Then the dual problem has solutions (u∗, v∗) ∈ L∞(α) × L∞(β) which are
unique α− and β−a.e. up to an additive constant.

It is straightforward to see that for any solution (u∗, v∗) to the dual problem, the
pair (u∗+ k, v∗− k) for k ∈ R is also a solution to the dual problem. Besides, modifying
the values of u∗ and v∗ outside of the support of the measures does not have any effect
on the value of the problem.

The proof of existence of a solution to the dual problem essentially amounts to
rewriting the optimality condition as a fixed point equation, and proving that a fixed
point exists. To do so, we show that the operator in the fixed point equation is a
contraction for a certain metric, called the Hilbert metric. This proof is based on the
same idea from that of the existence of a solution to Schrodinger’s system (which shares
strong links with regularized OT) in (Chen et al., 2016), inspired from the original proof
of (Franklin and Lorenz, 1989) which deals with discrete regularized OT. We prove the
existence of potentials in a general framework, as we consider arbitrary measures α and
β and any bounded regular cost function c.
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The dual problem is unconstrained, and it is jointly concave in both variables. Thus,
we can fix one and optimize over the other, and the first order condition for u gives:

u(x) = −ε log
(∫
Y
e
v(y)−c(x,y)

ε dβ(y)
)

for a.e. x ∈ X , (4.3)

and similarly for v:

v(y) = −ε log
(∫
X
e
u(x)−c(x,y)

ε dα(x)
)

for a.e. y ∈ Y. (4.4)

Remark 9. Although the optimality conditions (4.3) and (4.4) only fix the value of
the optimal potentials (u∗, v∗) on the supports of α and β respectively, they allow to
extrapolate the values of the potentials outside of this support.

4.1.1 Hilbert Metric

We start with a few definitions and properties of the Hilbert metric, which will be
useful later on. Proof of these results can be found in (Bushell, 1973).

Definition 7. (Hilbert metric) Consider K a closed solid cone on a real Banach space
B i.e. K satisfies the 4 following properties:

1. the interior of K is not empty,

2. K +K ⊆ K,

3. αK ⊆ K∀α > 0,

4. K ∩−K = {0}.

We use the partial order induced by the cone, meaning x 6 y ⇔ y − x ∈ K, and define
the following quantities

M(a, b) def.= inf{λ|a 6 λb} and m(a, b) def.= sup{λ|a 6 λb} for a, b ∈ K+ def.= K \ {0}.

Then the Hilbert metric dH on K is given by

dH(a, b) def.= log M(a, b)
m(a, b) . (4.5)

Note that the Hilbert metric is projective, meaning that it is invariant by multipli-
cation by a positive factor: dH(a, b) = dH(αa, b) = dH(a, αb), ∀ α > 0.

The Hilbert metric is a pseudo-metric on the interior of the cone K̊, and a metric on
the restriction of K̊ to the unit sphere:

Theorem 8. (K̊, dH) is a pseudo-metric space and (K̊ ∩ S(0, 1), dH) is a metric space,
where S(0, 1) is the unit sphere in B
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To use Banach’s fixed point theorem on (K̊ ∩B(0, 1), dH), we need to introduce the
notion of contraction ratio:

Definition 8. We say that an operator E is a positive map in the cone if E(K+) ⊂ K+.
For a positive map E, we denote its projective diameter by

∆(E) def.= sup{dH(E(a), E(b)) | a, b ∈ K+},

and its contraction ratio

κ(E) def.= inf{λ | dH(E(a), E(b)) 6 λdH(x, y)∀x, y ∈ K+}.

In the case where the mapping is linear, we have a relation between the contraction
ratio and the projective diameter.

Proposition 8. Consider a linear positive map E on K, then

κ(E) 6 tanh
(1

4∆(E)
)
,

and ∆(E) 6 2 supa{dH(E(a), 1)) | a ∈ K+}.

Since | tanh(x)| < 1 for |x| < +∞, this means that if the projective diameter of a
positive mapping is finite, then it is a contraction. The proof of the first inequality is
given in (Bushell, 1973) while the second is a direct application of the triangle inequality.

4.1.2 Fixed Point Theorem

Now let us rewrite the optimality condition as a fixed point equation. We consider
the exponential scalings (a, b) of the dual variables (u, v). At optimality we have that

a(x) =
(∫
Y
b(y)e

−c(x,y)
ε dβ(y)

)−1
and b(y) =

(∫
X
a(x)e

−c(x,y)
ε dα(x)

)−1
. (4.6)

We define the operators ϕε,α and ϕε,β such that

ϕε,α(f) def.=
∫
X
f(x)e

−c(x,y)
ε dα(x) and ϕε,β(f) def.=

∫
Y
f(y)e

−c(x,y)
ε dβ(y), (4.7)

and we denote by E the operator such that E(a) def.= 1/a.

Proposition 9. The optimal exponential scalings (a∗, v∗) satisfy the following fixed-
point equations:

a∗ = Φ(a∗) where Φ def.= E ◦ ϕε,β ◦ E ◦ ϕε,α, (4.8)

and
b∗ = Φ̃(b∗) where Φ̃ def.= E ◦ ϕε,α ◦ E ◦ ϕε,β. (4.9)
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To prove the existence of solutions to (4.6) we first need to prove the following lemma

Lemma 1. Consider the operators Φ defined in (4.8) and Φ̃ defined in (4.9), and let
L∞+ (X ) def.= {a ∈ L∞(X ) | a(x) > 0, ∀x ∈ X}. Then Φ and Φ̃ are contractions on L∞+ (X )

with contraction ratio ∆(Φ) 6 tanh
(

1
4 log(e

2‖c‖∞
ε )

)
< 1.

Proof. (Lemma 1) We consider the space of positive bounded functions L∞+ (α) def.= {f ∈
L∞(α)|f(x) > 0∀x ∈ X} and L∞+ (β). It is easy to check that it is a cone with non-
empty interior and we can thus endow L∞+ (α) and L∞(β) with Hilbert’s metric. We also
have that E , ϕε,α and ϕε,β are positive maps mapping L∞+ to itself, L∞+ (α) to L∞+ (β)
and L∞+ (β) to L∞+ (α) respectively. To be able to use Banach’s fixed point theorem, we
restrict L∞+ (α) and L∞+ (β) to the unit sphere, which is not a restriction per se as for any
function a that verifies the fixed point equation, a/ ‖a‖∞ also verifies it.

To compute the contraction ratio of the composition Φ, we can simply compute the
contraction ratio of each of the composing functions and multiply them to get the whole
contraction ratio.

The inversion operator E is an isometry for Hilbert’s metric:

dH(E(a), E(b)) = inf{λ|1/a 6 λ1/b}
sup{λ|1/a 6 λ1/b} = inf{λ|a 6 λb}

sup{λ|b 6 λa}
= dH(b, a) = dH(a, b).

We are left with computing the contraction ratio of ϕε,α and ϕε,β. Since they are both
linear maps, we can instead consider the quantity supa{dH(ϕε(a), 1) | a ∈ K+} thanks to
proposition 8. We focus on ϕε,α as ϕε,β behaves the same way. We have that ∀a ∈ L∞(α)

e
−‖c‖∞

ε

∫
X
a(x)e

−c(x,y)
ε dα(x) 6

∫
X
a(x)e

−c(x,y)
ε dα(x) 6 e

‖c‖∞
ε

∫
X
f(x)dα(x),

and thus
∆(ϕε,α) 6 2 sup

a

(
log supϕε,α(a)

inf ϕε,α(a)

)
6 2 log

(
e

2‖c‖∞
ε

)
<∞.

Combining all contraction ratios, we get ∆(Φ) 6 tanh
(

1
4 log

(
e

2‖c‖∞
ε

))
< 1 and

thus Φ is a contraction for the Hilbert metric.

Proof. (Theorem 7) Thanks to Lemma 1 and Proposition 9, we can conclude with Ba-
nach’s fixed point theorem that Φ and Φ̃ admit a unique fixed point in (L∞+ (X )∩S(0, 1))
and complete the proof of Theorem 7. This implies the existence of unique exponential
scalings (a∗, b∗) on the unit sphere, but any other pair (ka∗, b∗/k) for k ∈ R∗ satisfies the
optimality conditions. Since dual potentials are essentially the log of these exponential
scalings, we therefore have unicity of the potential scalings, up to an additive constant,
instead of a multiplicative constant for the exponential scalings.

The optimal dual potentials can be constructed as fixed points of a contractive map,
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Figure 1.2 – Influence of the regularization parameter ε on the transport plan π computed
with Sinkhorn’s algorithm. Regularization tends to spread the transport plan, leading
to a smoother solution.

which yields an algorithm to compute the potentials along with a speed of convergence
for the iterates.

Corollary 1. Let (a(`), b(`)) = (Φ(`)(1), Φ̃(`)(1)) where Φ(`) is the `-fold composition of
Φ defined in (4.8). Then

dH(a(`), a∗) = O

(
tanh

(1
4 log(e

2‖c‖∞
ε

)2`
)
.

Proof. This is a direct corollary of Banach’s fixed point theorem, with the contracting

ratio of the operator Φ being tanh
(

1
4 log(e

2‖c‖∞
ε

)2
.

4.2 Sinkhorn’s Algorithm

Since the dual problem is concave in each variable, a natural way to solve it is to
iteratively optimize over each variable. In the discrete case, the first order conditions
for each of the variables read:

ui = −ε log

 m∑
j=1

e
vj−c(xi,yj)

ε βj

 and vj = −ε log
(

n∑
i=1

e
ui−c(xi,yj)

ε αi

)
, (4.10)

or, using the exponential scalings of the dual variables a def.= e
u
ε and b def.= e

v
ε :

ai = 1∑m
j=1 bje

−c(xi,yj)
ε βj

and bj = 1∑n
i=1 aie

−c(xi,yj)
ε αi.

(4.11)

The algorithm corresponding to these alternating maximizations is usually called
Sinkhorn’s algorithm in the literature, although the denomination IPFP (Iterative Pro-
jection Fitting Procedure) can also be found. The latter can be understood as a primal
resolution of the problem, consisting in iteratively projecting over each marginal con-
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straint for the Kullback-Leibler divergence, but both approaches correspond to the same
algorithm. Introducing the exponential scaling of the dual variables a def.= e

u
ε and b def.= e

v
ε

as well as the exponential scaling of the cost matrix K such that Kij = e−
c(xi,yj)

ε we can
write the iterations with matrix-vector multiplications:

Proposition 10. (Sinkhorn Iterations) Consider optimal transport between two fi-
nite discrete measures α def.=

∑n
i=1 αiδxi and β

def.=
∑m
j=1 βjδyj with cost function c. Let

Kij = e−
c(xi,yj)

ε . Then iterations given by

a(`+1) = 1
K(b(`) � β)

and b(`+1) = 1
KT (a(`+1) �α)

(4.12)

converge to (a∗,b∗) the exponential scaling of a solution of the dual problem Dε.
The optimal transport plan is recovered via the following formula

π∗ = diag(a∗ �α)K diag(b∗ � β),

where diag(a) is the diagonal matrix with vector a on the diagonal and 0 elsewhere.

The complexity of each iteration is O(n2) if both marginals have the same number
of points n. This is a major improvement compared to O(n3log(n)) needed to solve the
linear program induced by standard discrete OT.

Proposition 11. (Convergence rate of Sinkhorn Iterations)(Franklin and Lorenz,
1989) Let a(`) the `-th iterate of Sinkhorn’s algorithm, a∗ the optimal exponential scaling,
and π(`) def.= diag(a(`))K diag(b(`)). Then

dH(a(`),a∗) = O(λ(K)2`) and dH(a(`),a∗) 6 dH(π(`)1,α)
1− λ(K) , (4.13)

where
λ(K) =

√
η(K)− 1√
η(K)− 1

< 1 ; η(K) = max
i,j,k,l

KikKjl

KjkKil
,

and the same rates hold for the other iterate b(`).

Proof of convergence of the algorithm is a special case of the proof of existence of
the dual potentials, using the Hilbert metric dH on Rn. Inequality (4.13) gives a useful
insight on how to monitor convergence of the algorithm in practice, as the marginal
constraint violation is an upper bound on the convergence of the exponential scalings.
The convergence rate of this algorithm is illustrated in this manner in Figure 1.4. The
negative influence of ε on the convergence rate is quite clear in the figure, although the
asymptotic rate given in (4.13) is not often sharp in practice.

Remark 10. (Stabilizing Sinkhorn) The algorithm suffers from numerical instability
when ε gets too small as some coefficients of the matrix K explode. This issue can
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Figure 1.3 – Evolution of the transport plan with the number of iterations for Sinkhorn’s
algorithm. The algorithm is initialized with b = 1n which corresponds to the initial
transport plan π(0) being the product of marginals.

Figure 1.4 – Influence of the regularization parameter ε on the speed of convergence
of Sinkhorn’s algorithm. Convergence of the algorithm is monitored by looking at the
constraint violation on the first marginal ||π(`)1 − α||1. The convergence rate worsens
dramatically when descreasing ε, and there is thus a tradeoff between getting a fast
approximation of OT, or an accurate one.
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be solved by writing iterations in the log domain, i.e. on the dual variables (u, v) in-
stead of the exponential scalings (a, b), and by replacing the matrix K at each iteration
using K̃(`)

ij
def.= exp(u(`)

i + v(`)
j − Cij) which is numerically more stable. Besides, we can

seen in figure 1.4 that convergence becomes slower for small ε. For some applications,
getting close to standard optimal transport is important, and thus one might resort to
ε-scaling. This heuristic consists in starting with a large regularization parameter ε and
then rerunning the algorithm with slowly decreasing the value of the parameter with a
warm start, reusing the values of a and b obtained with a larger regularization. More
details can be found in (Schmitzer, 2016) (sec.3).

4.3 Semi-Dual Formulation

The equations (4.3) and (4.4) giving u a a function of v and conversely can be seen
as smoothed versions of the c-transform which links the dual potentials in standard OT.
The c-transform of a function v is given by

vc(x) def.= min
y∈Y

c(x, y)− v(y). (4.14)

In the regularized case, we introduce the c, ε-transform:

vc,ε(x) def.= −ε log
(∫
Y
e
v(y)−c(x,y)

ε dβ(y)
)
. (4.15)

Note that these smoothed c−transforms actually depend on β but we omit it in the
notation. We can now derive a semi-dual formulation, which is a maximization problem
over v only:

Proposition 12. Consider OT between two probability measures α and β with entropic
regularization. Then (Pε) is equivalent to the following semi-dual formulation:

Wc,ε(α, β) = max
v∈C(Y)

∫
X
vc,ε(x)dα(x) +

∫
Y
v(y)dβ(y), (Sε)

where vc,ε is the c, ε-transform of v defined in (4.15).

Proof. Replacing u by vc,ε in the dual, we get

Wc,ε(α, β) =
∫
X
vc,ε(x)dα(x) +

∫
Y
v(y)dβ(y)− ε

∫
X×Y

e
vc,ε(x)+v(y)−c(x,y)

ε dα(x)dβ(y) + ε.

Let us focus on the third term, which corresponds to the smooth constraint. We have

that e
vc,ε

ε =
(∫
Y e

v(y)−c(x,y)
ε dβ(y)

)−1
by definition of the c, ε-transform. And thus the

terms inside the integral cancel out, leaving just
∫
X dα(x) which il equal to 1 since α is

a measure of mass 1.
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Figure 1.5 – Plot of vc,ε, the c, ε-transform of a discrete vector v for various values of
ε for Euclidean (left) and squared Euclidean (right) cost function c. The blue markers
are plotted at (yi,vi) and their diameter is proportional to βi.

4.3.1 Case of a Discrete Measure

The semi-dual formulation is mostly interesting in the case where one of the mea-
sures is discrete. For instance, if β is a discrete measure β def.=

∑n
i=1 βiδyi , the asso-

ciated dual potential v is a vector in Rn and its c, ε-transform is given by vc,ε(x) =
−ε log

(∑n
i=1 e

vi−c(x,yi)
ε βi

)
. Thus the semi-dual problem becomes

Wc,ε(α, β) = max
v∈Rn

∫
X
−ε log

(
n∑
i=1

e
vi−c(x,yi)

ε βi

)
dα(x) +

n∑
i=1

viβi. (Sε)

A modified version of the well-known log-sum-exp appears in the smooth c, ε-transform
in lieu of the max in the c-transform. Here we have a dependence on β, while the log-
sum-exp is usually defined by LSE(w1, . . . , wn) def.= log (

∑n
i=1 e

wi) while the LSE appears
for instance in logistic-regression and is known to be a smooth, convex approximation
of the max function. The approximation gets better as the deviations in the wi get
larger. Thus when ε gets small, the values of vi−c(x,yi)

ε get larger and their deviations
increase as well, making the c, ε-transform a sharper approximation of the c-transform.
This is illustrated by figure 1.5 which displays the c, ε-transform of a discrete vector v
for various values of ε for a cost function c that is the Euclidean or squared Euclidean
norm .

4.3.2 Semi-Dual Expectation Formulation

The semi-dual problem can also be formulated as the maximization of an expectation,
with respect to one of the marginals:

Wc,ε(α, β) = max
v∈Rn

Eα[gXε (v)], (Sε)

where
gxε (v) def.= −ε log

(
n∑
i=1

e
vi−c(x,yi)

ε βi

)
+

n∑
i=1

viβi. (4.16)
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Note that the semi-dual expectation formulation is still valid at the limit when ε = 0,
contrarily to the dual expectation formulation (4.2). Indeed, using the c-transform from
standard OT, we have that

Wc(α, β) = max
v∈Rn

Eα[gX0 (v)],

where gx0 (v) def.= maxj∈1...n vj − c(x, yj) +
∑n
i=1 viβi.

4.3.3 Some Analytic Properties of the Semi-Dual Functional

Since the potential v is a n-dimensional vector when β is a discrete measure with
n diracs, and we can compute the gradient and Hessian of gε, deriving some useful
properties of the semi-dual function.

Proposition 13. Consider the semi-dual functional gε defined in (4.16). When ε > 0
its gradient is defined by

∇vg
x
ε (v) = β − χε(x),

and the hessian is given by

∂2
vg

x
ε (v) = 1

ε

(
χε(x)χε(x)T − diag(χε(x))

)
,

where

χε(x)i =
exp(vi−c(x,yi)

ε )∑J
j=1 exp(vj−c(x,yj)

ε )
.

Besides,
0 � ∂2

vg
x
ε (v) � 1

ε
,

and thus gxε is a convex function with a Lipschitz gradient.
When ε = 0 (standard OT) g0 is not smooth and a subgradient is given by

∇vg0(v, x) = β − χ(x),

where
χ(x)i = 1i=j?(x) with j?(x) ∈ argmini∈{1...n} c(x, yi)− vi.

Note that since the lower bound on the eigenvalues of the Hessian is 0 the semi-
dual functional is convex but not strongly convex as strong convexity requires a strictly
positive lower-bound on eigenvalues of the Hessian.
Remark 11. (Laguerre Diagrams) Laguerre diagrams are extensions of Voronoi diagrams
where each cell j with center yj has a specific weight vj . They partition the space X
with n cells (Lj(v))j=1,...,n in the following way:

Lj(v) def.= {x ∈ X | ∀i′ 6= i, c(x, yi)− vi 6 c(x, y′i)− v′i}.
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Figure 1.6 – Illustration taken from (Peyré et al., 2017) of the Laguerre cells and their
smooth counterpart in 2D, with quadratic cost. The colors indicate the (smoothed)
indicator function of the Laguerre cells χε. The red marks are at locations yi and their
size is proportional to vj . The black lines are the level sets of the c, ε−transform of v.

The function χ appearing in the gradient of the semi-dual is an indicator function
corresponding to the Laguerre diagram of the space. More specifically, χ(x)i = 1 if and
only if x belongs to cell i of the Laguerre diagram with distance c and weights v. Its
regularized counterpart χε is a smoothed version of the indicator function. Both are
represented in Figure 1.6 taken from (Peyré et al., 2017). . The connection between
Laguerre cells and semi-discrete OT is presented in (Mérigot, 2011), and we refer to
Chapter 4, Sec. 4 for more details.

4.4 Convergence of Entropy-Regularized OT to Standard OT

When using regularized OT as a proxy for OT in various applications, the question
of convergence when ε→ 0 naturally arises. For some applications, we are interested in
the value of OT, and we thus want to understand howWc,ε(α, β) approximatesWc(α, β).
For others however, we are interested in the transport plan, and we are thus interested
in the convergence of the optimizer πε (or the optimizers (uε, vε) for the dual problem,
to recover πε with the primal-dual relationship.

The convergence of Wc,ε(α, β) to Wc(α, β) is well known, for instance see Chapter 3,
Sec. 3 where we derive convergence rates. However convergence of the optimizers is a
more delicate issue. For the primal problem (Pε), we have the following theorem from
(Carlier et al., 2017) which proves Γ−convergence of the regularized problem to the
unregularized one in the case of a euclidean cost in Rd. Γ−convergence is a powerful
property implying both convergence of the value of the problem and convergence of the
minimizers.

Theorem 9. (Convergence of Entropy-Regularized OT) (Carlier et al., 2017)
Consider the primal problem of entropy-regularized optimal transport (Pε) on Rd with



44 CHAPTER 1. ENTROPY-REGULARIZED OPTIMAL TRANSPORT

cost function c(x, y) = ||x− y||p, and denote by πε its unique minimizer. We have

lim
ε→0

Wc,ε(α, β) = Wc(α, β) and πε ⇀ π,

where π is the minimizer of the unregularized primal (P) and ⇀ denotes convergence
with respect to the weak topology.

For the dual problem (Dε), proof of convergence of the regularized minimizers is
given in (Cominetti and Martin, 1994) in the case of discrete measures.

For the semi-dual problem (Sε), we proposed in (Genevay et al., 2016) a proof of
convergence of the minimizer vε in the case where one measure is discrete which is
precisely the case where the semi-dual formulation presents an interest.

Proposition 14. (Convergence of the semi-dual regularized problem) We as-
sume that ∀y ∈ Y, c(·, y) ∈ L1(α), that β =

∑m
j=1 βjδyj , and we fix x0 ∈ X . For all

ε > 0, let vε be the unique solution of (Sε) such that vε(x0) = 0. Then (vε)ε is bounded
and all its converging sub-sequences for ε→ 0 are solutions of (S0).

We first prove a useful lemma.

Lemma 2. If ∀y, x 7→ c(x, y) ∈ L1(α) then gε converges pointwise to g0.

Proof. Let wj(x) def.= vj − c(x, yj) and j∗ def.= argmaxj wj(x).
On the one hand, since ∀j, wj(x) 6 wj∗(x) we get

ε log

 m∑
j=1

e
wj(x)
ε βj

 = ε log

ewj∗ (x)
ε

m∑
j=1

e
wj(x)−wj∗ (x)

ε βj

 6 wj∗(x)+ε log

 m∑
j=1

βj

 = wj∗(x).

On the other hand, since log is increasing and all terms in the sum are non negative
we have

ε log

 m∑
j=1

e
wj(x)
ε βj

 > ε log
(
e
wj∗ (x)

ε βj∗

)
= wj∗(x) + ε log(βj∗)

ε→0−→ wj∗(x).

Hence ε log
(∑m

j=1 e
wj(x)
ε βj

)
ε→0−→ wj∗(x) and ε log

(∑m
j=1 e

wj(x)
ε βj

)
6 wj∗(x).

Since we assumed x 7→ c(x, yj) ∈ L1(α), then wj∗ ∈ L1(α) and by dominated conver-
gence we get that gε(v) ε→0−→ g0(v).

Proof. (Proof of Proposition 14) First, let us prove that (vε)ε has a converging sub-
sequence, where vε

def.= (vε(y1), . . . , vε(yn)). The dual optimal condition gives that
vε(yi) = −ε log

(∫
X e

uε(x)−c(x,yi)
ε dα(x)

)
. We denote by ṽε the c-transform of uε such

that ṽε(yi) = minx∈X c(x, yi) − uε(x). From standard results on optimal transport
(see (Santambrogio, 2015), p.11) we know that |ṽε(yi) − ṽε(yj)| 6 ω(||yi − yj ||), where
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ω is the modulus of continuity of the cost c. Besides, using once again the soft-max
argument we can bound |vε(y)− ṽε(y)| by some constant C. Thus we get that:

|vε(yi)− vε(yj)| 6 |vε(yi)− ṽε(yi)|+ |ṽε(yi)− ṽε(yj)|+ |ṽε(yj)− vε(yj)|

6 C + ω(||yi − yj ||) + C.

Besides, the regularized potentials are unique up to an additive constant. Hence we can
set without loss of generality vε(y0) = 0. So from the previous inequality yields:

vε(yi) 6 2C + ω(||yi − y0||).

So vε is bounded on Rm and thus we can extract a subsequence which converges to a
certain limit that we denote by v̄.

Let v∗ ∈ argmaxv g0. To prove that v̄ is optimal, it suffices to prove that g0(v∗) 6

g0(v̄).
By optimality of vε, we have

gε(v∗) 6 gε(vε).

The term on the left-hand side of the inequality converges to g0(v∗) since gε converges
pointwise to g0. We still need to prove that the right-hand term converges to g0(v̄).

By the Mean Value Theorem, there exists ṽε
def.= (1− tε)vε + tεv̄ for some tε ∈ [0, 1]

such that
|gε(vε)− gε(v̄)| 6 ||∇gε(ṽε)||||vε − v̄||

The gradient of gε reads
∇vgε(v) = β − π(v),

where πi(v) =
∫
X e

vi−c(x,yi)
ε βidα(x)∫

X

∑m

j=1 e
vj−c(x,yj)

ε βjdα(x)
.

It is the difference of two elements in the simplex thus it is bounded by a constant
C independently of ε.

Using this bound in (4.4) yields

gε(v̄)− C||vε − v̄|| 6 gε(vε) 6 gε(v̄) + C||vε − v̄||.

By pointwise convergence of gε we know that gε(v̄) → g0(v̄), and since v̄ is a limit
point of vε we can conclude that the left and right-hand terms of the inequality converge
to g0(v̄). Thus we get gε(vε)→ g0(v̄).
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Chapter 2

Learning with Sinkhorn
Divergences

Optimal Transport (OT) metrics and their ability to handle measures with non-overlapping
supports have emerged as a promising tool to learn a parametric distribution – for instance a
generative model – from a dataset. Yet, training generative models using OT raises formidable
computational and statistical challenges, because of (i) the computational burden of evaluating
OT losses, (ii) their instability and lack of smoothness, (iii) the difficulty to estimate them, as
well as their gradients, in high dimension because of the curse of dimensionality from which they
suffer.

In this chapter we introduce Sinkhorn Divergences, based on entropy-regularized OT, which
generates a family of losses interpolating between Wasserstein (OT) (when the regularization
parameter ε = 0) and Maximum Mean Discrepancy (MMD) losses (when ε = ∞). Aside from
the interpolation in terms of cost, which we demonstrate, we also observe empirically that they
allow to find a sweet spot leveraging the geometry of OT on the one hand, and the favorable high-
dimensional sample complexity of MMD on the other hand (this is formally proved in Chapter 3,
Theorem 14).

We use this new discrepancy between measures to train large scale generative models, with an
OT-based loss which does not suffer from its usual computational and statistical shortcomings.
This is achieved thanks to: (a) entropic-regularization, which turns the original OT loss into
the differentiable and more robust Sinkhorn Divergence, that can be computed efficiently using
Sinkhorn fixed point iterations; (b) algorithmic (automatic) differentiation, allowing to get stable
gradients of these iterations with seamless GPU execution. We further propose an algorithm to
learn a cost function on the data space in an adversarial way, similar to what has been done for
kernels with MMD.

This chapter is based on (Genevay et al., 2018), with the addition of some background on
the training of generative models, more details on the adversarial learning of the cost functions,
and an extensive comparison of various losses on simple models.

47
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1 Introduction

Several important statistical problems boil down to fitting a parametric model to a
dataset, i.e. estimating the parameters of a chosen model that fits observed data in some
meaningful way. While the standard approach for models with a density is Maximum
Likelihood Estimation (MLE), this approach is often flawed in machine learning tasks
where the sought after distribution is obtained in a generative fashion. These generative
models are obtained as the mapping of a low dimensional reference measure through
a non-linear function with values in a high dimensional space (e.g. a neural network).
These models are easy to sample from, but their density is singular in the sense that it
only has positive probability on a low-dimensional “manifold" of the observation space
and is zero elsewhere, thus making the usual MLE unusable.

Previous works. For purely generative models, several likelihood-free workarounds
exist. Major approaches include variational autoencoders (VAE) (Kingma and Welling,
2013), generative adversarial networks (GAN) (Goodfellow et al., 2014) and numerous
variations around these two ideas (Larsen et al., 2016). The adversarial GAN approach
computes the best achievable classification accuracy (in which the training and gener-
ated datapoints have opposite labels) for a given class of classifiers as a proxy for the
distance between two distributions: If accuracy is high distributions are well separated,
if accuracy is low they are difficult to tell apart and lie thus at a very close distance. An-
other approach consists in minimizing a metric between distributions: the maximal mean
discrepancy (Gretton et al., 2006), parametrized by a positive-definite kernel function.
It was shown in ensuing works that the effectiveness of the MMD to learn generative
models (Li et al., 2015; Dziugaite et al., 2015) hinges on the ability to find a relevant
kernel, which is a highly nontrivial choice. The Wasserstein or earth mover’s distance,
which also allows to compare distributions with non-overlapping supports, has recently
emerged as a serious contender to train generative models. While it was long disre-
garded because of its computational burden—in its original form solving OT amounts
to solving an expensive network flow problem when comparing discrete measures in met-
ric spaces—recent works have shown that this cost can be largely mitigated by settling
for cheaper approximations obtained through strongly convex regularizers, in particular
entropy, as detailed in Chapter 1 of this thesis. The benefits of this regularization has
opened the path to many applications of the Wasserstein distance in supervised learn-
ing problems (Courty et al., 2014; Frogner et al., 2015; Huang et al., 2016; Rolet et al.,
2016). Although the use of Wasserstein metrics for inference in generative models was
considered over ten years ago in (Bassetti et al., 2006), that development remained ex-
clusively theoretical until a recent wave of papers managed to implement that idea more
or less faithfully: using entropic regularization over a discrete space (Montavon et al.,
2016), with approximate Bayesian computations (Bernton et al., 2017), and considering
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a neural network parameterization of the dual potential in the dual OT problem defining
1-Wasserstein distance (Arjovsky et al., 2017). As opposed to this dual way to compute
gradients of the fitting energy, we advocate for the use of a primal formulation, which is
numerically stable, because it does not involve differentiating the (dual) solution of an
OT sub-problem, as also pointed out in (Bousquet et al., 2017). Additionally, introduc-
ing entropic regularization in the formulation of optimal transport allows to interpolate
between a pure OT loss and a Maximum Mean Discrepancy loss, thus bridging the gap
between these two approaches often presented as opposed points of view. Shortly after
the submission of this work, we came across the recent work by (Salimans et al., 2018)
which shares several ideas with our method. One distinction lies in the fact that they do
not back-propagate errors across the Sinkhorn iterations, but rather use an estimate of
the optimal transport matrix to compute an upper-bound on the Sinkhorn divergence,
as was done for instance in (Cuturi and Doucet, 2014).

Contributions. The main contributions of this chapter are twofold : (i) a theoretical
contribution regarding a new OT-based loss on measures, (ii) a simple numerical scheme
to learn generative models under this loss. (i) We introduce the Sinkhorn Divergence,
based on regularized optimal transport with an entropy penalty, and we prove that
when the smoothing parameter ε = 0 we recover pure OT loss whereas letting ε = +∞
leads to MMD. The addition of entropy is important to reduce sample complexity and
gradient bias, and thus allows us to take advantage of the good geometrical properties
of OT without its drawbacks in high-dimensions. (ii) We propose a computationally
tractable and stable approach to learn with that Sinkhorn Divergence, which enables
inference for any differentiable generative model. It operates by approximating Sinkhorn
Divergences with minibatches and L iterations of Sinkhorn’s algorithm. As routinely
done in standard deep-learning architecture frameworks, the training is then achieved
using stochastic gradient descent and automatic differentiation. This provides accurate
and stable approximation of the loss and its gradient, at a reasonable extra computa-
tional cost, and streams nicely on GPU hardware. When dealing with complex data,
we propose to learn the cost function for OT in an adversarial way, similarly to what is
done for kernels with MMD in (Li et al., 2017).

Subsequent to this work, Sinkhorn Divergences have successfully been used in a
deterministic setting for shape registration (Feydy and Trouvé, 2018), which consists in
finding a diffeomorphism matching a deformed image to a target. Sinkhorn Divergences
perform better than MMD for this task, as they take the global geometry of the problem
into account where MMD is more local and has trouble dealing with parts of the shape
that are further away.

The GAN rush. This work was carried out in the early stages of what can be called
the GAN rush. The interest on GANs has kept growing since the seminal work by
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(Goodfellow et al., 2014), and it has clearly exploded in the past couple of years, with a
large part of the machine learning community now studying generative models. There
are various motivations behind the interest in generative models, but the one that is the
most popular is realistic image generation. Thus, although it is a crucial issue, evaluation
and comparison of generative models has long been neglected by the community, where
most papers simply relied on the quality of generated images to assess their performance
with little to no insight on how well they fit the underlying distribution of the data.
This resulted in a multitude of papers proposing network architectures, regularization
techniques, new losses and other heuristics whose superiority over existing methods is
difficult to evaluate. These methods all generate nice images, so their efficiency in terms
of computer graphics is clear, but from a statistical point of view, quantifying how
well a model fits the unknown distribution of the data remains an open question.The
choice of an evaluation metric for GANs is indeed a complex matter, which we quickly
discuss in Sec. 4, and a recent survey on GANs (Lucic et al., 2018) suggests a few
metrics which should be used for this purpose, with a focus on image-generation tasks.
Conducting a large-scale empirical study to compare several state-of-the art GANmodels
(not including regularized OT- and MMD-based GANs) with their metrics, the authors
found out that “most models can reach similar scores with enough hyperparameter
optimization and random restarts”. Thus in practice, a good network architecture was
enough for their assessed models to perform well in terms of image generation, and the
loss function itself did not have much effect on the performance. In the GAN rush, we
adopted a different position on the subject, distancing ourselves from image generation
and rather trying to answer the following question : what is a robust loss to learn a
(possibly high-dimensional) singular distribution from samples? It is this question that
should be kept in mind through this chapter and the following – which gives statistical
properties of Sinkhorn Divergences, reinforcing the interpolation theorem presented here.
Thus, we consider images generation merely as an application of our density fitting
scheme, not a the main goal. For a better overview of the performance of Sinkhorn
Divergences in image generation, the reader should refer to (Salimans et al., 2018).

2 Density Fitting

We consider a data set of n (usually very large) observations (y1, . . . , yn) ∈ X n

generated from an unknown distribution β and we want to learn a generative model
that produces samples that are similar to that dataset. Samples x = gθ(z) from the
generative model are defined by taking as input a sample z ∈ Z from some reference
measure ζ (typically a uniform or a Gaussian measure in a low-dimensional space Z)
and mapping it through a differentiable function gθ : Z → X . Formally, this corresponds
to defining the generative model measure αθ from which x is drawn as αθ = gθ#ζ. The
goal is to find θ which minimizes a certain loss L between the model measure αθ and



2. DENSITY FITTING 51

the unknown measure of the data β:

θ ∈ argmin
θ

L(αθ, β). (2.1)

Maximum likelihood estimation (MLE) is obtained with L(αθ, β) = −
∑
j log dαθ

dx (yj),
where dα

dx is the density of αθ with respect to a fixed reference measure (a typical choice is
dx being the Lebesgue measure in X = Rd). This MLE loss can be seen as a discretized
version of the relative entropy (a.k.a. the Kullback-Leibler divergence) as it converges to
DKL(α|β) when N →∞. A major issue with this approach is that in general generative
models defined this way (when Z has a much smaller dimensionality than X ) have
singular distributions (i.e. supported on a low-dimensional manifold), without density
with respect to a fixed measure, and therefore MLE cannot be considered.

2.1 Learning with ϕ-divergences

The first idea that emerged in the literature of Generative Adversarial Networks
(Goodfellow et al., 2014) was to use the Jensen-Shannon divergence, a special instance
of the class of ϕ−divergences (see Chapter 1, sec. 2.1 for a thorough introduction), to
solve the density fitting problem. Subsequent work by (Nowozin et al., 2016) considers
a more general framework to learn a generative model with ϕ−divergences, which we
describe in this section. The density fitting problem they consider is

min
θ
Dϕ(αθ | β) def.=

∫
X
ϕ

(dαθ(x)
dβ(x)

)
dβ(x), (2.2)

where αθ and β are absolutely continuous with respect to a reference measure dx and
dαθ, dβ are their respective densities (see Chapter 1, sec. 2.1 for a more general definition
in the case of measure that are not absolutely continuous); and is ϕ a convex, lower-
semicontinuous function on R+ satisfying ϕ(1) = 0. However, ϕ-divergences are hard
to estimate through samples, in particular because of the fact that they do not metrize
weak convergence (again, see Chapter 1, sec. 2.1 for more details).

To alleviate this shortcoming, (Nguyen et al., 2010) suggests using the following
lower bound leveraging the dual definition of ϕ-divergences:

Proposition 15. (Lower bound on ϕ-divergences)

Dϕ(α | β) = sup
T :X→R

Eα(T (X))− Eβ(ϕ∗T (Y )) > sup
T∈T

Eα(T (X))− Eβ(ϕ∗T (Y )),

where ϕ∗(t) = supu tu − ϕ(u) is the Legendre transform of ϕ, the set {T : X → R} is
the set of measurable functions from X to R and T is an arbitrary class of measurable
functions.

Parametrizing T by a variable w, i.e. setting T def.= {Tw | w ∈ W} and using the
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previous lower bound (2.2) yields the following saddle point problem:

min
θ

max
w

Eβ(Tw(X))− Eαθ(ϕ
∗(Tw(X)). (2.3)

The formulation of the original GANs is derived from the above, using f(u) = u log u+
(u + 1) log(u + 1) (a slight modification of the Jensen-Shannon divergence given in
Table 1.1, Chapter 1) and Tw = logDw, where Dw is a neural network called the
discriminator. Then (2.3) becomes

min
θ

max
w

Eβ[logDw(X)]− Eαθ [log(1−Dw(X))]

⇔min
θ

max
w

Eβ[logDw(X)]− Eζ [log(1−Dw(gθ(Z)))],

using the definition of αθ as the pushforward of ζ through gθ. From a game-theory
point of view, the general GAN formulation can be seen as finding the equilibrium in
a two-player game where player one optimizes its parameter θ to fool the discriminator
Dw, whose parameter w is optimized by the player two whose goal is to distinguish
between samples from the model measure αθ and samples from the true measure β.

2.2 Maximum Mean Discrepancy and Optimal Transport

A more robust way to compare measures with disjoint support, is to consider losses
which metrize the weak convergence of measures (see Chapter 1, Sec. 2.1 for a precise
definition). Intuitively, these losses enables the comparison of singular measures by
taking into account spatial displacement of the measures. For instance, they avoid the
typical failure case of ϕ-divergences by satisfying L(δx, δx′) → 0 as x → x′ where ϕ-
divergences would be equal to a constant. A classical framework for such a loss function
L are Integral Probability Metrics (IPMs) which are thoroughly described in Chapter 1,
Sec. 2.2. Given a set of measurable functions F , the IPM dF is defined as

dF (α, β) def.= sup
f∈F
|Eα(f(X))− Eβ(f(Y ))|.

Popular IPMs include the 1-Wasserstein distance (with F = {f ; ||∇f ||∞ 6 1} the set
of 1-Lipschitz functions) and Maximum Mean Discrepancies (with F = {f ; ||f ||H 6 1}
where H is a Reproducing Kernel Hilbert Space). Recall from Chapter 1, Proposition 3
that on a RKHS with kernel k, MMD can be rewritten as follows (Gretton et al., 2006):

MMD2
k(α, β) = Eα⊗α[k(X,X ′)] + Eβ⊗β[k(Y, Y ′)]− 2Eα⊗β[k(X,Y )]. (2.4)

A different approach, for which we advocate, is to consider Optimal Transport (OT)
metrics. The OT metric between two probability distributions (α, β) ∈ M1

+(X ) ×
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M1
+(X ) is defined as the solution of the (possibly infinite dimensional) linear program:

Wc(α, β) def.= min
π∈Π(α,β)

∫
X×X

c(x, y)dπ(x, y), (2.5)

where the set of admissible couplings Π(α, β) is composed of joint probability distri-
butions over the product space X × X with imposed marginals (α, β). Formula (2.5)
corresponds to the celebrated Kantorovitch formulation (Kantorovich, 1942) of OT (see
Chapter 1, sec.2.3 for more details). Here c(x, y) is the “ground cost” to move a unit of
mass from x to y, and we shall make no assumptions (except for regularity) on its form.
When X is equipped with a distance dX , a typical choice is to set c(x, y) = dX (x, y)p

where p > 0 is some exponent, in which case for p > 1 W
1/p
c is the so-called p-

Wasserstein distance between probability measures. Two majors obstacles to the use
of the Wasserstein-distance for inference, as for many machine learning applications, are
its high computational complexity and the curse of dimensionality from which it suffers.

2.3 Regularized OT and Variants of the Regularized OT Loss

As detailed in Chapter 1, Sec. 3 one can resort to regularized optimal transport to
alleviate the computational burden of OT. Its primal formulation is given by:

min
π∈Π(α,β)

∫
c(x, y)dπ(x, y) + ε

∫
log

( dπ(x, y)
dα(x)dβ(y)

)
dπ(x, y). (Pε)

The primal problem (Pε) has a equivalent dual formulation (see Chapter 1, Proposi-
tion 7) which consists in solving

max
(u,v)∈C(X )×C(Y)

∫
X
u(x)dα(x) +

∫
Y
v(y)dβ(y)− ε

∫
X×Y

e
u(x)+v(y)−c(x,y)

ε dα(x)dβ(y) + ε.

(Dε)
The optimizer πε of the primal formulation can be recovered from optimizers of the dual
problem (uε, vε) via the following formula: dπε(x, y) = e

uε(x)+vε(y)−c(x,y)
ε dα(x)dβ(y). In

practice, state-of-the-art algorithms (including Sinkhorn, the one we use here, already
detailed in Chapter 1, Sec. 4.2) solve the dual problem and use the primal-dual rela-
tionship to recover the solution of the primal.

Note that introducing this regularization also breaks the curse of dimensionality for
ε large enough, making the estimation of regularized OT more robust to sampling noise,
and this is the main matter of Chapter 3.

These problems yield four different costs, which all converge to the value of unregu-
larized OT when ε→ 0 :

• Primal cost with entropy:

L(α, β) def.=
∫
X×Y

c(x, y)dπε(x, y) + ε

∫
log

( dπε(x, y)
dα(x)dβ(y)

)
dπε(x, y).
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This loss is the value of the primal of the regularized problem. Theoretical results
are known for this cost, which is extensively studied in Chapter 3. In particular,
we have a convergence rate for its approximation from samples, based on the
regularization parameter ε.

• Dual cost with entropy:

L(α, β) =
∫
X
uε(x)dα(x) +

∫
Y
vε(y)dβ(y)− ε

∫
X×Y

e
uε(x)+vε(y)−c(x,y)

ε dα(x)dβ(y) + ε.

Since strong duality holds for regularized OT, this loss is equal to the primal
with entropy. This is actually this formulation that is used to prove the sample-
complexity results from Chapter 3. However in practice, when one uses an algo-
rithm to approximate (uε, vε), the primal and dual problems with entropy yield
different values.

• Primal cost without entropy:

L(α, β) def.=
∫
X×Y

c(x, y)dπε(x, y).

This loss is arguably the most widely used in practice. It is this version that is used
in (Cuturi, 2013), which first showed the benefits of regularized OT for machine
learning. It has recently been studied in (Luise et al., 2018) under the name Sharp
Sinkhorn – to avoid confusion with the primal loss with entropy. This paper gives
an algorithm to compute the gradient of this loss, which can further be used in
supervised learning problems.

• Dual cost without entropy:

L(α, β) =
∫
X
uε(x)dα(x) +

∫
Y
vε(y)dβ(y).

The primal-dual relationship is dπε = e
uε(x)+vε(y)−c(x,y)

ε dα(x)dβ(y). The probabil-
ity constraint on πε thus implies

∫
X×Y e

uε(x)+vε(y)−c(x,y)
ε dα(x)dβ(y) = 1. So the

dual cost without entropy is equal to the dual cost with entropy, which once again
might not be the case when considering approximations of (uε, vε).

2.4 Sinkhorn Divergences : an Interpolation Between OT and MMD

We denote by Wc,ε the primal without entropy variant of the regularized OT loss:

Wc,ε(α, β) def.=
∫
c(x, y)dπε(x, y), (2.6)
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where πε is the optimal coupling for the regularized OT problem (Pε), and by Hε the
additional term that comes from the entropic regularization:

Hε(α, β) def.= ε

∫
log( dπε(x, y)

dα(x)dβ(y))dπε(x, y), (2.7)

so that the primal loss with entropy is

WH
c,ε(α, β) def.= Wc,ε(α, β) +Hε(α, β). (2.8)

To correct for the fact thatWc,ε(α, α) 6= 0 andWH
c,ε(α, α) 6= 0, we introduce the following

normalization, which we call Sinkhorn Divergence:

Definition 9. (Sinkhorn Divergence) The Sinkhorn Divergence between two proba-
bility measures α, β is defined as:

SDc,ε(α, β) def.= Wc,ε(α, β)− 1
2Wc,ε(α, α)− 1

2Wc,ε(β, β), (2.9)

where Wc,ε is the primal cost without entropy defined in (2.6). Alternatively, we define:

SDH
c,ε(α, β) def.= WH

c,ε(α, β)− 1
2W

H
c,ε(α, α)− 1

2W
H
c,ε(β, β), (2.10)

where WH
c,ε is the primal cost with entropy defined in (2.8)

Far from simply correcting the bias of Wc,ε(α, α), the Sinkhorn Divergence also
appears as an interpolating discrepancy between OT and MMD.

Theorem 10. (Asymptotics of Sinkhorn Divergence with Respect to ε) The
Sinkhorn Divergence has the following asymptotic behavior in ε:

(i) as ε→ 0, SDc,ε(α, β)→Wc(α, β),

(ii) as ε→ +∞, SDc,ε(α, β)→ 1
2MMD2

−c(α, β).

When −c is a positive definite kernel, MMD−c is the MMD with the kernel that is
minus the cost used in the optimal transport problem.

Besides, if c ∈ C1(X ×Y) and X and Y are bounded domains of Rd, the asymptotics
also hold for SDH

c,ε.

Remark 12. This theorem is a generalization of (Ramdas et al., 2017, §3.3) for continuous
measures, and to the cost with entropy.

Proof. Let us start by proving the property for SDc,ε.

(i) The first part of the assumption comes from the fact that πε ⇀ π (see Chapter 1,
Sec. 4.4 or (Carlier et al., 2017)).
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(ii) Letting ε go to infinity in the regularized OT problem amounts to finding the
coupling with minimum entropy in the constraint set. The problem becomes

min
π∈Π(α,β)

∫
log

( dπ(x, y)
dα(x)dβ(y)

)
dπ(x, y),

where Π(α, β) is the set of couplings with marginals α and β. Introducing Lagrange
multipliers u and v for these constraints, the dual problem becomes maxu,v

∫
u(x)dα(x)+∫

v(y)dβ(y)−
∫

exp(u(x) + v(y))dα(x)dβ(y) and the primal-dual relation is given
by dπ(x, y) = exp(u(x) + v(y))dα(x)dβ(y). Solving the dual gives u = v = 0 and
thus the optimal coupling is simply the product of the marginals i.e. π = α ⊗ β.
This gives

Wc,+∞(α, β) =
∫
X×Y

c(x, y)dα(x)dβ(y).

The proof of this assumption for SDH
c,ε requires some more assumptions to control

the entropy, and is based on results from Chapter 3.

(i) The asympotics for ε → 0 are a direct consequence of Theorem 12 which proves
that

WH
c,ε(α, β)−Wc(α, β) ∼

ε→0
2εd log(1/ε).

(ii) We want to prove that WH
c,ε(α, β) →

ε→+∞

∫
X×Y c(x, y)dα(x)dβ(y). Since strong

duality holds for regularized OT, we have

WH
c,ε(α, β) =

∫
X
uε(x)dα(x)+

∫
Y
vε(y)dβ(y)−ε

∫
X×Y
e
uε(x)+vε(y)−c(x,y)

ε dα(x)dβ(y)+ε,

where uε and vε are the dual potentials solving (Dε). We know from Chapter 3,
Proposition 17 that if the cost function c is C1 and X and Y are bounded, then uε
and vε are Lipschitz with the same constant as c, and thus they are bounded in L∞

norm on X and Y independently of ε. This implies that uε(x) + vε(y)− c(x, y) =
O(1) when ε→ +∞. Using the Taylor expansion of the exponential when ε→ +∞
we get:

WH
c,ε(α, β) =

∫
X
uε(x)dα(x) +

∫
Y
vε(y)dβ(y)

− ε
∫
X×Y

(
1 + uε(x) + vε(y)− c(x, y)

ε
+O

( 1
ε2

))
dα(x)dβ(y) + ε,

which simplifies to

WH
c,ε(α, β) =

∫
X×Y

(
c(x, y) +O

(1
ε

))
dα(x)dβ(y).

Since we have
∫
X×Y O

(
1
ε

)
dα(x)dβ(y) → 0 when ε → +∞, we get the desired
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conclusion.

We proved that SDc,ε →MMD−c when ε→ +∞. However, by definition of MMD,
−c has to be a positive definite kernel for MMD−c to be well defined. The following
proposition proves that some powers of the Euclidean distance yield a valid cost, and
define as special instance of MMD also known as Energy Distance.

Proposition 16. (Energy Distance)(Sejdinovic et al., 2013) Consider the Euclidean
distance ||.||2 on Rd. Then,

kp(x, y) def.= ||x||p2 + ||y||p2 − ||x− y||
p
2

is a positive definite kernel for 0 < p < 1. And it induces the following MMD, called
Energy Distance :

EDp(α, β) def.= MMD2
kp(α, β) = 2Eα⊗β[||X − Y ||p2]− Eα⊗α[||X −X ′||p2]− Eβ⊗β[||Y − Y ′||p2].

Recent work by (Feydy et al., 2019) also proves that this normalization of regularized
OT enforces positive-definiteness for SDH

c,ε, which we conjectured in the early stages
of our work on Sinkhorn Divergence, based on empirical evidence, and that Sinkhorn
divergences metrize the weak-convergence of measures.

Theorem 11. (Positivity of Sinkhorn Divergence)(Feydy et al., 2019) Let X be
a compact metric space with a Lipschitz cost function c, that induces, for ε > 0, a
positive universal kernel kε(x, y) def.= exp(−c(x, y)/ε). Then, SDH

c,ε defines a symmetric
positive definite, smooth loss function that is convex in each of its input variables. It also
metrizes the convergence in law (or weak-convergence of measures): for all probability
Radon measures α and β ∈M+

1 (X ),

0 = SDH
c,ε(β, β) 6 SDc,ε(α, β),

α = β ⇔ SDH
c,ε(α, β) = 0,

αn ⇀ α⇔ SDH
c,ε(αn, α)→ 0.

Remark 13. In particular, these results hold for measures with bounded support on
a Euclidean space X = Rd endowed with ground cost functions c(x, y) = ||x − y||2 or
c(x, y) = ||x− y||22 which induce Laplacian and Gaussian kernels respectively. Note that
their proof only holds for Sinkhorn Divergence based on the primal cost with entropy
SDH

ε , positive-definiteness of SDε remains an open problem.
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Discussion on OT vs. MMD. As proved in Theorem 1, the Sinkhorn Divergence
interpolates between a pure OT loss for ε = 0 and MMD losses for ε = +∞. As such,
when ε→ +∞, our loss takes advantage of the good properties of MMD losses, and in
particular a favorable sample complexity of O(1/

√
n) (decay rate of the approximation

of the true loss with a mini-batch of size n) which is the object of Chapter 3 of this
thesis. In contrast, the unregularized OT loss suffers from a sample complexity of
O(1/n1/d), see (Weed and Bach, 2017) for a recent account on this point. Using MMD
to train generative models has been shown to be successful in (Dziugaite et al., 2015;
Li et al., 2015). The improved Wasserstein GAN approach (Gulrajani et al., 2017)
(which penalizes the squared norm of the gradient of the dual potential) is similar to
an MMD in the sense that both are IPMs. By tuning the ε parameter, our method is
able to take the best of both worlds, to blend the non-flat geometry of OT with the
high-dimensional rigidity of MMD losses. Additionally, the Sinkhorn Divergence, as is
the case for the original OT problem, can be defined with any cost c, whereas MMD
losses are only meaningful when used with positive definite kernels k. We discuss the
geometric properties of these losses further in Section 4, where we compare them on
various fitting tasks.

3 Sinkhorn AutoDiff Algorithm

We now consider density fitting with Sinkhorn Divergence as a loss:

min
θ

Eε(θ) where Eε(θ)
def.= SDc,ε(αθ, β).

Computing an approximation of ∇θSDc,ε(αθ, β) is itself a difficult problem. When
ε = 0, and when c = ||x − y|| (the case of the 1-Wasserstein distance) a workaround is
to use, instead of differentiating the “primal” formula (2.5), the optimum of the “dual”
formula, resulting in ∇SD0(αθ, β) =

∫
Z ∇[h ◦ gθ](z)dζ(z), where h is an optimal dual

continuous potential for α = αθ. This is the problem tackled in (Arjovsky et al., 2017)
which uses a deep-network expansion to approximate the continuous dual potential h.
While the dual formalism is appealing (in particular because it involves only integration
over Z and not the product space Z × X ), the resulting gradient formula requires
differentiating the dual potential, which tends to be difficult to compute and unstable.
A very similar conclusion is reached by (Bousquet et al., 2017) (see in particular their
Proposition 3).

We propose a different route, by making two key simplifications: (i) approximate
SDc,ε(αθ, β) by a size-m mini-batch sampling SDc,ε(α̂θm, β̂m) to make it amenable
to stochastic gradient descent ; (ii) approximate SDc,ε(α̂θm, β̂m) by L-steps of the
Sinkhorn algorithm (Cuturi, 2013) to obtain an algorithmic loss SD(L)

c,ε (α̂θm, β̂m) which
is amenable to automatic differentiation.
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Figure 2.1 – Flow diagram for the computation of the proxy of the Sinkhorn Divergence
estimated from samples SD(L)

c,ε (α̂θm, β̂m). Samples from the generative model αθ are ob-
tained by applying the push-forward function gθ to samples of the initial low-dimensional
measure ζ (blue block). These samples are combined with real data (red block) to com-
pute a pairwise distance matrix C, which is in turn used in the Sinkhorn iterations.
The resulting loss is the one on which automatic differentiation is applied to perform
parameter learning. The display shows a simple 2-layer neural network gθ : z 7→ x, but
this applies to any generative model.

3.1 Mini-batch Sampling Loss

We approximate SDc,ε(αθ, β) by an estimation with empirical measures SDc,ε(α̂θm, β̂m)
which leads to consider:

min
θ

SDc,ε(α̂θm, β̂m) (3.1)

and
{
α̂θm

def.= 1
m

∑m
i=1 δxi ,

β̂m
def.= 1

m

∑m
i=1 δyj ,

 (zi)mi=1
i.i.d∼ ζ,

∀ i, xi
def.= gθ(zi).

Asm increases, E(SDc,ε(α̂θm, β̂m)) approaches SDc,ε(αθ, β), and convergence of min-
imizers is studied in (Bernton et al., 2017).

At a given iterate of this stochastic gradient descent scheme (see pseudo-code 2),
one draws a mini-batch (zi)mi=1

i.i.d∼ ζ and a subset of m observations from the dataset,
and aims at computing the gradient of SDc,ε(α̂θm, β̂m). In the case where both input
measures are discrete (sums of Dirac masses), couplings π can be treated as matrices
π ∈ Rm×n, namely π =

∑
i,j πi,jδ(xi,yj) ∈M1

+(X × X ).
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3.2 Sinkhorn Iterates

One major advantage of regularizing the optimal transport problem is that it be-
comes solvable efficiently using Sinkhorn’s algorithm (Sinkhorn, 1964) (when dealing
with discrete measures) and leads to a differentiable loss function (as first noticed in (Cu-
turi, 2013; Cuturi and Doucet, 2014)). Sinkhorn’s algorithm is presented in details in
Chapter 1, Sec. 4.2 but we give a quick reminder here in the specific case of empirical
measures. Recall that the entropic regularization is equivalent to restricting the search
space in (Pε) to couplings having the so-called scaling form

πi,j = aiKi,jbj where Ki,j
def.= e−Ci,j/ε where C def.=

(
c(gθ(zi), yj)

)
ij
.

Note that K depends implicitly on θ (because matrix C does), and contains therefore
all of the geometric information related to the ability of θ to sample points near the
dataset. The main computational burden of the procedure, detailed in Algorithm 1 are
the matrix-vector multiplication, which stream extremely well on GPU architectures,
and therefore nicely add to a typical deep network architecture with L additional layer
of linear operations (K can be interpreted as a localized linear filtering) and entry-wise
non-linear operations (here divisions).

For a given budget L of iterations, the primal cost is then obtained by using π(L) def.=
diag(a(L))K diag(b(L)) as a proxy for the optimal transport coupling, and thus

W (L)
c,ε (α̂θm, β̂m) def.= 〈C, π(L)〉 =

m∑
i=1

m∑
j=1

Ci,ja(L)
i b(L)

j Ki,j (3.2)

where it is once again important to remind that K,C,a(L),b(L) depend on θ. As L→
+∞, one can show that the π(L) computed by Sinkhorn’s iterates approaches a solution
to (Pε), with linear convergence rate (deteriorating as ε → 0), so that W (L)

c,ε (α̂θm, β̂m)
is a smooth proxy for Wc,ε(αθ, β) which can be differentiated in a fast and stable way,
while converging to Wc,ε(αθ, β) when (m,L)→ +∞. It is important to realize that for
large scale and high dimensional learning applications, empirical considerations (Cuturi,
2013; Kusner et al., 2015; Frogner et al., 2015) suggest that, unlike relevant applications
of the same scheme in graphics (Solomon et al., 2015), a relatively strong regularization
– a large ε – leads to faster convergence, but also better generalization so that the value
for L can be set quite low. This is further backed-up by recent theoretical results –
detailed in Chapter 3 – showing that the curse of dimensionality of OT is broken by
using regularized OT with a large enough ε.



3. SINKHORN AUTODIFF ALGORITHM 61

Algorithm 1 Regularized Primal Loss without Entropy W (L)
cϕ,ε(xm1 , ym1 )

Input: ϕ, (xi)mi=1, (yj)mj=1, ε

Output: W
Ci,j

def.= ||fϕ(xi)− fϕ(yj)||p ∀ (i, j) (compute the cost matrix C)
Ki,j

def.= e−
Ci,j
ε

b← 1m,
for ` = 1, 2, . . . , L do (L steps of Sinkhorn’s algorithm)

a← 1m
Kb ; b← 1m

K>a
end for
π ← diag(a)K diag(b)
return Wcϕ,ε = 〈π,C〉 (see (3.2))

3.3 Learning the Cost Function Adversarially

Aside from the regularization parameter, a key element of the Sinkhorn Divergence
is the choice of the ground cost c on the data space. In some cases, using a simple
metric such as the `2 norm is sufficient to compare two data points, but when dealing
with high-dimensional objects, choosing c is more critical. In such cases, we propose to
learn the cost c with the following parametrization

cϕ(x, y) def.= ||fϕ(x)− fϕ(y)||p where fϕ : X → Rd
′
,

where fϕ can for instance be modeled by a neural network – see numerical experiments
below, and can be seen as a feature extractor that reduces the dimensionality of X
through a mapping onto Rd

′ .
The procedure to learn the cost function here is the same as learning a parametric

kernel in an MMD model, as done in (Li et al., 2017). The idea, as suggested in
(Fukumizu et al., 2009) for MMD, is to learn a cost function (or kernel in their case)
that will allow the Sinkhorn Divergence (or MMD in their case) to discriminate well
between samples generated by the model distribution αθ and samples from the data set.
In their setting, which is two-sample test, they want to set a threshold τ such that if the
MMD evaluated on samples verifies MMDk(α̂θ, β̂) < τ they accept the hypothesis that
αθ = β. Thus their kernel function should maximize the value of the discrepancy, so that
the equality hypothesis is not wrongfully accepted. Similarly in our case, we want the
parameter of the cost function ϕ to maximize the Sinkhorn Divergence in order to get
a strong signal when αθ 6= β. The optimization problem becomes a min-max problem
over (θ, ϕ) instead of a simple minimization problem over θ

min
θ

max
ϕ

SDcϕ,ε(αθ, β),
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where in practice SDcϕ,ε is approximated by minibatches and Sinkhorn, as mentioned
above. We will give details on the optimization algorithm used for this min-max problem
below.

3.4 The Optimization Procedure in Practice

Let us first describe the optimization procedure when the cost function c is fixed.
The original problem we want to solve is

min
θ
SDc,ε(αθ, β).

Since αθ and β are only available through finite samples, the idea is to use Stochastic
Gradient Descent (SGD). At each step we draw a minibatch (xi, yi)i=1...m ∼ αθ ⊗ β and
approximate ∇θSDc,ε(αθ, β) by ∇θSDc,ε(α̂θm, β̂m). In practice, ∇θSDc,ε(α̂θm, β̂m) is
further approximated by ∇θSD

(L)
ε (α̂θm, β̂m) where the latter is computed by backprop-

agation through the computational graph of SD(L)
ε (α̂θm, β̂m).

Our approximation scheme is summarized in Figure 2.1. Samples from the generative
model αθ are obtained by applying the push-forward function gθ to samples of the initial
low-dimensional measure ζ (blue block). These samples are combined with real data
(red block) to compute a pairwise distance matrix C. This matrix, as in MMD-GAN’s
approach (Li et al., 2015) is all we need to compute the loss. In the purple block of the
figure a finite number of Sinkhorn steps (consisting of matrix-vector multiplications) are
used to approximate the Sinkhorn Divergence. These Sinkhorn steps are used to evaluate
(forward pass) and compute the gradient (backward pass) of our proxy SD(L)

ε (α̂θm, β̂m).
Note that the procedure AutoDiffθ corresponds to classical reverse mode automatic

differentiation of L steps of the Sinkhorn iteration, and has therefore naturally the same
complexity as Sinkhorn, i.e. O(Lm2) operations, with an extra storage cost required to
run the backward iteration with no additional computational overhead.

When combining this with the adversarial learning of the cost function, the min-
max optimization procedure is the same as (Arjovsky et al., 2017),(Li et al., 2017) and
consists in alternating nc optimization steps to train the cost function fϕ (or the dual
network in (Arjovsky et al., 2017)) and an optimization step to train the generator gθ.
Following advice from these papers, we clip the weights ϕ to ensure a bounded gradient
in the maximization and use RMSProp as an optimizer.

A discussion on biased gradients. Convergence of SGD relies on unbiased estimates
of the gradient : when optimizing a function F , SGD approximates ∇F (θ(`)) with a
proxy ∇f`(θ(`)) at iteration (`), where E(∇f`(θ)) = ∇F (θ). In the case where the
gradient and the expectation can be inverted, a differentiable unbiased estimator of F
yields an unbiased gradient estimate. The question of biased gradient estimates for
MMD- and Wasserstein-GAN was first raised in (Bellemare et al., 2017). Subsequently,
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(Bińkowski et al., 2018) demonstrated that IPM gradients always have a downward bias.
Consider an IPM dF (α, β) def.= supf∈F |Eα(f(X)) − Eβ(f(Y ))|. For a fixed function f ,
1
n

∑n
i=1 f(xi) − 1

n

∑n
j=1 f(yj) is an unbiased estimator of Eα(f(X)) − Eβ(f(Y )) (where

(xi)i and (yj)j are sampled according to α and β respectively. But when the optimal
dual function f is unknown, and thus approximated by another function f̂ as in MMD-
of W-GAN, then 1

n

∑n
i=1 f̂(xi) − 1

n

∑n
j=1 f̂(yj) is a biased estimator of dF (α, β). Thus

the gradient estimates are also biased. Although Sinkhorn Divergence does not fall in
the framework of IPMs, it also suffers from biased gradients. The empirical Sinkhorn
Divergence, which consists in computing the Sinkhorn Divergence between the empirical
measures α̂m, β̂m, is a biased estimator of the Sinkhorn Divergence. Thus, our gradient
estimates are biased but the algorithm still does well in practice (see Section 4).

Algorithm 2 SGD with Auto-diff
Input: θ0, ϕ0, (yj)nj=1 (the real data), m (batch size), L (fixed number of Sinkhorn
iterations), ε (regularization parameter), τ (learning rate)

Output: θ (parameters of the generative model), ϕ (parameters of the cost function)
θ ← θ0, ϕ← ϕ0,
for k = 1, 2, . . . do

for t = 1, 2, . . . , nc do (inner loop to update cost function)
Sample (yj)mj=1 from the dataset
Sample (zi)mi=1

i.i.d∼ ζ, (xi)mi=1
def.= gθ(zm1 )

SD
(L)
ϕ,ε (xm1 , ym1 ) def.=

(
2W (L)

ϕ,ε (xm1 , ym1 )−W (L)
ϕ,ε (xm1 , xm1 )−W (L)

ϕ,ε (ym1 , ym1 )
)

(compute Sinkhorn Divergence with Algo. 1)
gradϕ ← AutoDiffϕ

(
SD

(L)
ϕ,ε (xm1 , ym1 )

)
(gradient evaluation with autodiff)

ϕ← ϕ+ τRMSProp(gradϕ). (gradient step with RMSprop)
ϕ← clip(ϕ,−c, c)

end for
Sample (yj)mj=1 from the dataset
Sample (zi)mi=1

i.i.d∼ ζ, (xi)mi=1
def.= gθ(zm1 )

SD
(L)
ϕ,ε (xm1 , ym1 ) def.=

(
2W (L)

ϕ,ε (xm1 , ym1 )−W (L)
ϕ,ε (xm1 , xm1 )−W (L)

ϕ,ε (ym1 , ym1 )
)

(compute Sinkhorn Divergence with Algo. 1)
gradθ ← AutoDiffθ

(
SD

(L)
ϕ,ε (xm1 , ym1 )

)
(gradient evaluation with autodiff)

θ ← θ − τRMSProp(gradθ). (gradient step with RMSprop)
θ ← clip(θ,−c, c)

end for

4 Applications

We start by comparing EDp (MMD induced by Euclidean cost, see (16)), Wε and
SDc,ε on a simple fitting task on synthetic data in 2D and 3D. We then consider two
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popular problems in machine learning to illustrate the versatility of our method. The
first one relies on fitting labeled data with uniform distributions supported on ellipses
(note that this could be any parametric shape but ellipses here were a good fit). The
second problem consists in tuning a neural network to generate images, first with a fixed
cost (on MNIST dataset) and then with a parametric cost (on CIFAR10 dataset). In
both cases, we used simple initializations (see details below) and the algorithm yielded
similar results when rerun, meaning that the results displayed are representative of the
performance of the algorithm and that the procedure is quite stable.

4.1 Benchmark on Synthetic Problems

Since evaluating the performance of generative models is a complicated issue on
real data (see discussion in Sec. 4.3), we construct a synthetic framework to get a
reliable comparison of different losses. Although our method is meant to be used in high
dimensions, we apply it here to two simple problems to be able to visualize the results:

• Deterministic setting : fitting a point cloud in 2D,

• Probabilistic setting: fitting an ellipse in 3D.

In the deterministic setting, we fit a finite discrete measure, to give us a better idea of
the geometry of the costs without the sampling noise. We then see how our observations
carry out in a probabilistic setting, with sampling and stochastic gradient descent as
described in Algorithm 2.

Both problems require the use of losses that are smooth for the weak convergence:
for the first one, the model measure is singular, as it is supported on points, while for
the second, the model measure measure has a bounded support which changes during
the optimization procedure.

Deterministic setting: Fitting a point cloud in 2D. Given a dataset (y1, . . . , yn)
of points in 2D, we want to fit the empirical measure β def.= 1

n

∑n
i=1 δyi . The parametric

measure that we consider is thus αθ
def.= 1

n

∑n
i=1 δθi , where the parameters θi are the

positions of the Dirac masses. To get rid of the sampling noise and better observe the
geometry of the losses, we use a full gradient descent to estimate θ (or, in other words,
we use minibatches of size m = n, to stick to the scheme of Algorithm 2). The results
are given in Figure 2.2. We use a cost c = || · ||1.52 to ensure fair comparison with EDp

which is well defined for p < 2 only. We use L = 5 iterations to to Sinkhorn’s algorithm.
We can see that Wc,ε successfully captures the extreme points, but yields parameters
that collapse to a mean values in the dense area. The Energy Distance, on the other
hand, fails to capture the extreme points but the points in the dense region are well
distributed. Sinkhorn Divergences get the best of both worlds by successfully capturing
both the extreme points and the dense area for ε = 1, but when ε gets larger, we recover
the behavior of Energy Distance and the extreme points are not recovered anymore.
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SDc," � " = 102, c = || · ||1.5
2SDc," � " = 1, c = || · ||1.5

2

Wc," � " = 1, c = || · ||1.5
2

EDp � p = 1.5Initial Setting

Figure 2.2 – Comparison of SDc,ε to Wc,ε and EDp on a deterministic task: fitting a
point cloud in 2D. The orange circles represent the target distribution β, and the blue
crosses the fitted distribution αθ∗ . The top left image represents the initial distribution
αθ0 .

Probabilistic setting: fitting an ellipse in 3D. We consider a parametric measure
αθ that generates points uniformly inside an ellipse. The ellipse parametrized by a
3 × 3 matrix A (the square root of its covariance matrix) and a center ω ∈ R3, so that
θ = (A,ω). The reference measure ζ is a uniform on the unit ball of dimension 3, and
a point is sampled from αθ thanks to gθ(z) = Az + ω. We generate n = 200 datapoints
from αθ0 , where θ0 = (A0, ω0), and thus the distribution of the data, denoted by β in the
previous sections, is known and equal to αθ0 . This allows us to evaluate the performance
of the loss by looking at the inferred parameters θ∗ for each loss and comparing them
to θ0.

To illustrate the effect of the normalization introduced by Sinkhorn Divergences, and
the interpolation property, we consider the following losses:

• Sinkhorn Divergences: SDc,ε for c = || · ||p2 and p ∈ {1.5, 2}

• Entropy-Regularized OT: Wc,ε (primal cost without entropy) for c = || · ||p2 and
p ∈ {1.5, 2}

• Energy Distance: EDp for p ∈ {1.5, 2}

The choice c = || · ||p2 with p = 2 is called the quadratic cost and is used “by default” for
OT, as the associated distance (the 2-Wasserstein distance) is well studied in literature
and known to have good properties (see (Santambrogio, 2015) for details). However, by
Proposition 16 it doesn’t induce a positive definite kernel, thus the associated Energy
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SDc," � " = 1, c = || · ||22Wc," � " = 1, c = || · ||22

Figure 2.3 – Comparison of SDc,ε to Wc,ε on a synthetic benchmark : fitting data
generated uniformly inside an ellipse. The blue dots represent the points generated
from the reference ellipse with covariance A0 and center ω0, while the green ellipse is
drawn with the inferred parameters A∗, ω∗ for each loss (see Table 2.1).

Distance is not positive definite. We thus resort to another cost function c = || · ||p2 with
p = 1.5.

The results of the fitting procedure are given in Figures 2.3 and 2.4. When comparing
SDc,ε to Wc,ε the benefits of the normalization are clear (Figure 2.3). While Wc,ε yields
good performance for small values of ε, when for larger values the fitted ellipse collapses
to the mean of the values along one axis, before collapsing to a centroid for even larger
values. On the other hand, the results obtained with SDc,ε are robust to the value of ε.
Since Sinkhorn’s algorithm converges much faster for larger values of ε (the convergence
rates can be found in Chapter 1, Sec. 4.2), using SDc,ε with larger ε allows a consequent
computational speedup in the inference procedure, which more than compensates for
the added time to compute the normalizing factors.

For p = 2, we observe that the Energy Distance yields a degenerate ellipse (Fig-
ure 2.4, top-left). As this is the limit case of SDc,ε for ε → +∞, we also observe this
behavior for the Sinkhorn Divergence with large values of ε (Figure 2.4, bottom-left).
However for smaller values, the fitting is correct (Figure 2.3, right). Now for p = 1.5,
we can fairly compare Sinkhorn Divergences (Figure 2.4, bottom-right) and the Energy
Distance (Figure 2.4, top-right), since the latter is positive definite. From a visual point
of view, both losses yield satisfactory results, as ellipses don’t collapse to a single point
when ε grows. To get a better insight, we consider the values of the inferred parame-
ters. We observe that the best results are for ε = 1. To ensure the robustness of this
observation, we run the inference procedure multiple times for each loss, and use the
same dataset Di for all losses in each trial run i.
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EDp � p = 1.5EDp � p = 2

SDc," � " = 103, c = || · ||22 SDc," � " = 103, c = || · ||1.5
2

Figure 2.4 – Comparison of SDc,ε and EDp on a synthetic benchmark (same setting as
Figure 2.3. In the case where the ellipse is not visible, it has collapses to its centroid
ω∗, with A∗ very close to 0 (see Table 2.1 for numerical values).

4.2 Data Clustering with Ellipses

As already mentioned a strength of the Wasserstein distance is its ability to fit a sin-
gular probability distribution to an empirical measure (data). That singular probability
may be supported on a subset of the space on a lower dimensional manifold, or simply
have a degenerate density that becomes null for some subsets of the original space. To
illustrate this principle, we consider in what follows a simple 3D example that can easily
be visualized.

We use the Iris dataset (3 classes, 50 observations each in 4 dimensions) projected
in 3D using PCA. This defines the dataset (y1, . . . , yn) in R3, with n = 150. If we
were to find a probability distribution αθ bound to be itself an empirical measure of K
atoms (in that case parameter θ would contain exactly the locations of those K points
in addition to their weight), then minimizing the 2-Wasserstein distance of αθ to β

would be strictly equivalent to the K-means problem (Canas and Rosasco, 2012). In
that sense, quantization can be regarded as the most elementary example of Wasserstein
loss minimization of families of singular probability distributions.

The model we consider is instead composed of K = 3 ellipses with uniform density.
As in the previous benchmark section, each ellipse is parametrized by a 3× 3 matrix Ak
(the square root of its covariance matrix) and a center ωk ∈ R3, so that θ = (Ak, ωk)k.
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loss EDp EDp SDc,ε

p, ε 2,- 1.5,- 2,103

A∗
−0.09 −0.04 0.05
0.06 0.03 0.05
−0.09 −0.17 −0.11

3.12 1.74 2.08
2.25 2.83 2.09
2.30 1.74 3.07

1.56 2.23 2.69
1.44 2.31 2.72
1.40 2.22 2.86

ω∗ (0.68, 1.78 , 2.72 ) ( 0.63 , 1.75 , 2.75) (0.74 , 1.81 , 2.76)
loss SDc,ε SDc,ε ground truth
p, ε 1.5,103 2, 1

A∗
2.95 2.08 2.05
2.05 3.17 1.95
2.12 2.15 3.00

2.90 1.96 2.13
2.02 3.03 2.10
2.06 1.95 3.03

3 2 2
2 3 2
2 2 3

ω∗ (0.73 ,1.83, 2.76) (0.94 , 1.96 , 2.90) (1,2,3)

Table 2.1 – Comparison of the inferred parameters A∗, ω∗ for the losses displayes in
Figures 2.3 and 2.4, the gound truth A0, ω0 (parameters used to generate the dataset)
is in bold, on the right.

Gaussian MMD - � = 10 Gaussian MMD - � = 1 Gaussian MMD - � = 10�2

Figure 2.5 – Ellipses after convergence of the stochastic gradient descent, with Gaussian
MMD.

Therefore, our results can not be directly compared to that of clustering algorithms, in
the sense that we do automatically recover, within such ellipses, entire areas of interest
(and not voronoi cells). We assume in this illustration that each ellipse has equal mass
1/K. To recover these ellipses through a push forward, we use a uniform ground density
ζ over 3 centered unit balls, translated and dilated for each ellipse using the push-forward
defined by gθ(z) = Akz+ωk if z is in the k-th ball. Note that the model can be adapted
otherwise (density decaying when moving away from the center, mass proportional to
the size of the ellipse) with simple modifications in either the ground density ζ or the
pushforward gθ, but we found this uniform model to be a good fit for this dataset.

4.2.0.1 Numerical Illustration. The ellipse matrices (Ak)k are all initialized with
the identity matrix (which corresponds to the unit ball) and centers (ωk)k are initialized
with the K-means algorithm. We fixed a maximal budget of Sinkhorn iterations L = 5
to be competitive with MMD time-wise, with a minibatch size m = 300 for both algo-
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EDp � p = 1 EDp � p = 1.5 EDp � p = 1.9

Figure 2.6 – Ellipses after convergence of the stochastic gradient descent, with Energy
Distance for varying p. Top row displays cases where the algorithm is stuck in a local
minimum which does not correspond to the classes, while the bottom row displays
successful cases. When p gets close to 2, the performance decays.

rithms. We display the results of the clustering algorithm for each losses, with varying
parameters: MMD with a Gaussian kernel with varying bandwidth σ in Figure 2.5, the
Energy Distance with varying distance || · ||p2 in Figure 2.6, and Sinkhorn Divergences
with varying ε and cost function c = || · ||p2 in Figure 2.7.

• The Gaussian kernel yields poor results for all tested σ. When the bandwidth is
large, the ellipses only fit a small number of points in the center of the classes,
while with a small bandwidth the ellipses get too big, trying to fit all the points.
In between, the algorithm gets stuck in local minima, and can not grasp the right
class structure even after several re-runs.

• The Energy Distance, on the other hand, performs much better for the right choice
of p (p ∈ 1, 1.5 in the plots). However, when getting close to p = 2 (p ∈ 1.9, 2 in
the plots), the ellipses just capture the centers of the clusters. This suggests that
c = || · ||p2 for p < 2 might be a good ground metric for this problem.

• Based on the performance of different distances from the Energy Distance, we
assess the performance of Sinkhorn Divergences for various values of p. When using
a medium regularization (ε = 1), the performance is robust to the cost function
used. However as seen in the benchmark, using a large ε entails a behavior close to
MMD and thus require using cost functions with p < 2. On the other hand, in the
interest of keeping a low computational budget (which depends on the number of
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SDc," � " = 1, c = || · ||22 SDc," � " = 1, c = || · ||1.5
2 SDc," � " = 100, c = || · ||1.5

2

Figure 2.7 – Ellipses after convergence of the stochastic gradient descent, with Sinkhorn
Divergence for varying ε and p. Top row displays cases where the algorithm is stuck in a
local minimum which does not correspond to the classes, while the bottom row displays
successful cases. We give a budget of L = 5 Sinkhorn Iterations to compute SDc,ε to
have a fast algorithm, which prevents from using small ε.

Sinkhorn iterations L), smaller regularizations should not be used as they require
a lot more Sinkhorn iterations to converge.

Both the Energy Distance and Sinkhorn Divergences can get stuck in local minima.
In this experiment, we observe that p = 1.5 yields the most reliable results, meaning
that the geometry of the dataset is correctly recovered 90% of the time with EDp and
SDc,ε when ε is large enough. We found that Sinkhorn Divergences with ε = 100
were less prone to fall in local minima than ε = 1 in our setting, and thus gave better
performance in average which might be due to the improved sample complexity (see
Chapter 3, Theorem 14 where we show how ε affects the sample complexity of Sinkhorn
Divergences).

Since the Iris data is labeled, we can asses the fit of the model by checking the class
repartition in each ellipse, as summarized in table 2.2. Each entry (i, j) corresponds to
the number of points from class j that are inside ellipse i (recall there are 50 points per
class). As the Energy Distance is the limit case of Sinkhorn Divergence for ε → +∞,
it can be used to chose the right exponent for the cost function c = || · ||p2, which here is
p = 1.5. Then the parameter ε gives one more degree of freedom, which can be chosen
via cross-validation. In this setting, the advantage of Sinkhorn Divergences over the
Energy Distance is not clear: the performance for the blue class is best for ε = 1, with a
high coverage and small variance, but it is unstable for the green and red classes, often
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loss EDp SDc,ε SDc,ε SDc,ε

p, ε 1.5,- 1.5,102 1.5,10 1.5,1

mean
29.4 0 0

0 30.8 4.7
0 4.3 33.6

29.9 0 0
0 30.1 3.8
0 3.1 34.0

30.7 0 0
0 31.6 4.4
0 3.5 34.9

36.2 0 0
0 29.5 27.9
0 18.5 31.5

sd
9.1 0 0
0 8.69 7.33
0 5.82 7.84

9.79 0 0
0 8.52 6.44
0 4.75 7.63

8.55 0 0
0 7.07 7.94
0 5.21 8.35

3.09 0 0
0 5.53 15.8
0 11 5.65

Table 2.2 – Evaluation of the fit after convergence of the algorithm : entry (i, j) corre-
sponds to the number of points from class j that are inside ellipse i (1= blue class, 2 =
red class, 3 = green class). We take the average for each loss over 100 runs and give the
standard deviation.

mixing up both classes. When ε = 100, the fit for the green and red classes improves
but it degrades for the blue class – the performance is not significantly different from
the Energy Distance.

4.3 Tuning a Generative Neural Network

Image generating models such as GAN (Goodfellow et al., 2014) or VAE (Kingma
and Welling, 2013) have become popular in recent years. The goal is to train a neural
network gθ which generates images gθ(z) that resemble a certain data set (yj)j , given
a random input z in a latent space Z. Both methods require a second network for
the training of the generative network (an adversarial network in the case of GANs, an
encoding network in the case of VAEs). Depending on the complexity of the data, our
method can rely on the generative network alone by directly comparing its output with
the data in Wasserstein distance.

4.3.1 With a Fixed Cost c.

This section fits a generative model where the pushforward gθ is a multilayer percep-
tron. We begin with experiments on the MNIST dataset, which is a standard benchmark
for this type of networks. Since the dataset is relatively simple, learning the cost is su-
perfluous here and we use the ground cost c(x, y) = ||x−y||2, which is sufficient for these
low resolution images and also the baseline in (Kingma and Welling, 2013). We use as
gθ a multilayer perceptron with 2 fully connected layers and the latent space is the unit
square Z = [0, 1]2 over which we put a uniform distribution. Learning is performed
in mini-batches over the MNIST dataset, with the Adam optimizer (Kingma and Ba,
2014).

Figure 2.8 displays the manifold of images gθ(z) generated by the optimized network
after the learning procedure for different values of the hyperparameters (ε,m,L). This
manifold is obtained by computing gθ(zi1, z

j
2) for equi-spaced (zi1, z

j
2) ∈ [0, 1]2, and then
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(a) ε = 1,m = 200,
L = 10

(b) ε = 10−1,m = 200,
L = 100

(c) ε = 10−1,m = 10,
L = 300

Figure 2.8 – Influence of the hyperparameters on the manifold of generated digits.

plotting the resulting digit at location (i, j) in the larger picture. This shows that the
regularization parameter ε can be chosen quite large, which in turn leads to a fast
convergence of Sinkhorn iterations. Indeed, using ε = 1 with only L = 10 Sinkhorn
iterations (image (a)) yields a result similar to using ε = 0.1 with L = 100 iterations
(image (b)). Regarding the sizem of the mini-batches, a too smallm value (e.g. m = 10)
leads to poor results, and we observe that m = 200 is sufficient to learn accurately the
manifold.

(a) MMD (b) ε = 100 (c) ε = 1

Figure 2.9 – Samples from the generator trained on CIFAR 10 for MMD and Sinkhorn
Divergence

4.3.2 Learning the Cost.

With higher-resolution datasets, such as classical benchmarks CIFAR10 or CelebA,
using the `2 metric between images yields very poor results. It tends to generate images
which are basically a blur of similar images. The alternative, already outlined in Algo-
rithm 1 relies on learning another network which encodes meaningful feature vectors for
the images, between which the Euclidean distance can be computed.

We compare our loss with different values for the regularization parameter ε to the
results obtained with an MMD loss with a Gaussian kernel, as this is the one used
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MMD (Gaussian) ε = 100 ε = 10 ε = 1

4.56± 0.07 4.81± 0.05 4.79± 0.13 4.43± 0.07

Table 2.3 – Inception Scores on CIFAR10. We use the experimental setting of (Li et al.,
2017), and use their optimized parameters for MMD, which is computed with a Gaussian
kernel.

in (Li et al., 2017). We based the experiments on their code, and thus used their
optimized parameters for MMD to carry out a fair comparison. Both the generator and
discriminator networks follow the DCGAN architecture (Radford et al., 2015). We use
small batches of 100 images.

Generative models are very hard to evaluate and there is no consensus on which
metric should be used to assess their quality. We use the inception score introduced
in (Salimans et al., 2016) as it is widespread, and also the reference in (Dziugaite et al.,
2015) against which we compare our approach. The inception score is based on two
key aspects of data generation: realism and diversity. Using a pre-trained classifier, the
algorithm computed the conditional class probability of the samples: this should have
high entropy, meaning the classifier recognizes the object in the generated image. On
the other hand, the distribution of the classes should have low entropy, so that all classes
are well represented. However, the inception score does not account for the failure cases
of mode collapse (generating only one image per class) or overfitting (generating only
copies of images from the dataset). The Frechet Inception Distance has since been
introduced as an alternative (Heusel et al., 2017), and seems to be preferred by the
community. It roughly consists in embedding the true data and the generated data to a
feature space (via a pre-trained network) and comparing the resulting distributions in
terms of mean and variance. It is robust to mode collapse, but not to overfitting. See
the recent survey paper by (Lucic et al., 2018) for a good insight on metrics to evaluate
GANs.

Table 2.3 summarizes the inception scores on CIFAR10 for MMD and Sinkhorn
Divergence with varying ε. The scores are evaluated on 20000 random images. Figure 2.9
displays a few of the associated samples (generated with the same seed). Although there
is no striking difference in visual quality, the model with a Sinkhorn Divergence and a
large regularization is the one with the best score. The decaying scores of models which
have a loss closer to the true OT loss can be explained by two main factors : (i) the
number of iterations required for the convergence of Sinkhorn with such ε might exceed
the total iteration budget that we give the algorithm to compute the loss (to ensure
reasonable training time of the model), (ii) it reflects the fact that sample complexity
worsens when we get closer to OT metrics, and increasing the batch size might be
beneficial in that case. We give theoretical grounds for the latter in Chapter 3.
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Chapter 3

Sample Complexity of Sinkhorn
Divergences

Optimal Transport (OT) and Maximum Mean Discrepancies (MMD) are now routinely used
in machine learning to compare probability measures. We focus in this chapter on Sinkhorn
Divergences (SDs), a regularized variant of OT distances which can interpolate, depending on
the regularization strength ε, between OT (ε = 0) and MMD (ε = ∞). Although the tradeoff
induced by the regularization is now well understood computationally (OT, SDs and MMD require
respectively O(n3 logn), O(n2) and O(n2) operations given a sample size n), much less is known
in terms of their sample complexity, namely the gap between these quantities, when evaluated
using finite samples vs. their respective densities. Indeed, while the sample complexity of OT
and MMD stand at two extremes, O(1/n1/d) for OT in dimension d and O(1/

√
n) for MMD,

that for SDs has only been studied empirically. In this chapter, we

(i) derive a bound on the approximation error made with SDs when approximating OT as a
function of the regularizer ε,

(ii) prove that the optimizers of regularized OT are bounded in a Sobolev (RKHS) ball indepen-
dent of the two measures,

(iii) provide the first sample complexity bound for SDs, obtained by reformulating SDs as a
maximization problem in a RKHS. We thus obtain a scaling in 1/

√
n (as in MMD), with

a constant that depends however on ε, making the bridge between OT and MMD complete.

This chapter is based on (Genevay et al., 2019).

75
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1 Introduction

OT has been long neglected in data sciences for two main reasons, which could
be loosely described as computational and statistical. Following the seminal work by
(Cuturi, 2013), we have showed in Chapters 1 and 2 how entropic regularization of OT
alleviates this computational burden. In Chapter 2, we further mentioned that entropy-
regularized OT seems to break the curse-of-dimensionality from which OT suffers based
on empirical evidence, and the goal of this chapter is to make it more formal through a
sample complexity result.

Previous Works. The central theoretical contribution of Chapter 2 (see Theorem 10)
states that Sinkhorn Divergences, based on regularized OT, interpolate between OT and
MMD. These two metrics, which emerged as popular candidates to compare probability
measures, differ on a fundamental aspect: their sample complexity. The definition of
sample complexity of a loss function that we choose here is the convergence rate of the
loss evaluated on empirical measures to the loss evaluated on the “true" measures, as
a function of the number of samples. This notion is crucial in machine learning, as
bad sample complexity implies overfitting and high gradient variance when using these
divergences for parameter estimation. In that context, it is well known that the sample
complexity of MMD is independent of the dimension, scaling as 1√

n
(Gretton et al.,

2006) where n is the number of samples. In contrast, it is well known that standard
OT suffers from the curse of dimensionality (Dudley, 1969): Its sample complexity is
exponential in the dimension of the ambient space. Although it was recently proved that
this result can be refined to consider the implicit dimension of data (Weed and Bach,
2017), the sample complexity of OT appears now to be the major bottleneck for the use
of OT in high-dimensional machine learning problems.

A remedy to this problem may lie, again, in regularization. The discrepancies defined
through regularized OT, known as Sinkhorn Divergences, seem to be less prone to over-
fitting. Indeed, a certain amount of regularization tends to improve performance in
simple learning tasks (Cuturi, 2013). The interpolation theorem from Chapter 2 also
suggests that for large regularizations, Sinkhorn Divergences behave like MMD.

The asymptotic behavior of empirical estimates of the Wasserstein distance has been
widely studied, from convergence rates to distributional limits. In particular we refer
to (Del Barrio and Loubes, 2017), which recently proved a central limit theorem for
empirical OT in general dimension, for a thorough historical review of the subject.
However, aside from a recent central limit theorem in the case of measures supported
on finite discrete spaces (Bigot et al., 2017), the convergence of empirical Sinkhorn
Divergences, and more generally their sample complexity, remains an open question.
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Contributions. This chapter provides three main contributions, which all exhibit
theoretical properties of Sinkhorn Divergences. Our first result is a bound on the speed
of convergence of regularized OT to standard OT as a function of the regularization
parameter, in the case of continuous measures. The second theorem proves that the
optimizers of the regularized optimal transport problem lie in a Sobolev ball which is
independent of the measures. This allows us to rewrite the Sinkhorn Divergence as the
maximization of an expectation over a RKHS ball and thus justify the use of kernel-
SGD for regularized OT as advocated in Chapter 4, Sec. 5.1. As a consequence of this
reformulation, we provide as our third contribution a sample complexity result. We focus
on how the sample size and the regularization parameter affect the convergence of the
empirical Sinkhorn Divergence (i.e., computed from samples of two continuous measures)
to the continuous Sinkhorn Divergence. We show that the Sinkhorn Divergence benefits
from the same sample complexity as MMD, scaling in 1√

n
but with a constant that

depends on the inverse of the regularization parameter. Thus sample complexity worsens
when getting closer to standard OT, and there is therefore a tradeoff between a good
approximation of OT (small regularization parameter) and fast convergence in terms
of sample size (larger regularization parameter). We conclude this chapter with a few
numerical experiments to asses the dependence of the sample complexity on ε and d in
simple cases.

2 Reminders on Sinkhorn Divergences

We consider entropy-regularized optimal transport between two probability measures
α ∈ M1

+(X ) and β on M1
+(Y), as introduced in Chapter 1, Sec. 4, where X and Y

are two bounded subsets of Rd. The optimal transport problem is regularized with
the relative entropy of the transport plan with respect to the product measure α ⊗ β
following (Genevay et al., 2016):

Wε(α, β) def.= min
π∈Π(α,β)

∫
X×Y

c(x, y)dπ(x, y) + εH(π | α⊗ β), (Pε)

where H(π | α⊗ β) def.=
∫
X×Y

log
( dπ(x, y)

dα(x)dβ(y)

)
dπ(x, y), (2.1)

and the feasible set Π(α, β) is composed of probability distributions over the product
space X × Y with fixed marginals α, β. The cost function c, which represents the cost
to move a unit of mass from x to y is assumed to be C∞ through this chapter (more
specifically, we need it to be C

d
2 +1). Choosing the relative entropy as a regularizer allows

to express the dual formulation of regularized OT as the maximization of an expectation
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problem (Proposition 4 in Chapter 1):

Wε(α, β) = max
u∈C(X ),v∈C(Y)

∫
X
u(x)dα(x) +

∫
Y
v(y)dβ(y)

− ε
∫
X×Y

e
u(x)+v(y)−c(x,y)

ε dα(x)dβ(y) + ε

= max
u∈C(X),v∈C(Y )

Eα⊗β
[
fXYε (u, v)

]
+ ε,

where fxyε (u, v) = u(x) + v(y)− εe
u(x)+v(y)−c(x,y)

ε .

This reformulation as the maximum of an expectation is crucial to obtain sample
complexity results. The existence of optimal dual potentials (u, v) is proved in Chapter 1,
Sec. 4.1. They are unique α− and β−a.e. up to an additive constant.

To correct for the fact that Wε(α, α) 6= 0, we introduced Sinkhorn Divergences in
Chapter 2. They are a natural normalization of that quantity defined as

SDε(α, β) = Wε(α, β)− 1
2(Wε(α, α) +Wε(β, β)). (2.2)

This normalization ensures that SDε(α, α) = 0, but also has a noticeable asymptotic
behavior as proved in Theorem 10 of Chapter 2. Indeed, when ε → 0 one recovers
the original (unregularized) OT problem, while choosing ε → +∞ yields the squared
maximum mean discrepancy (see Chapter 1, Sec.2.2 for a detailed introduction on the
matter) associated to the kernel k = −c/2, where MMD is defined by:

MMD2
k(α, β) = Eα⊗α[k(X,X ′)] + Eβ⊗β[k(Y, Y ′)]− 2Eα⊗β[k(X,Y )].

Besides, under some assumptions on the cost function, Sinkhorn Divergences are positive
definite and metrize weak convergence of measures (Feydy et al., 2019). In the context
of this chapter, we study in detail the sample complexity ofWε(α, β), which immediately
extends to that of SDε(α, β) by linearity.

Remark 14. Sinkhorn Divergences can be defined with Wε being either the primal cost
of (Pε) or the primal cost without the entropic term (see Definition 9 in Chapter 2 for
more details). While the interpolation theorem in Chapter 2 holds for both definitions,
the sample complexity theorem that we prove here is only valid when Wε is the primal
cost of (Pε).

3 Approximating Optimal Transport with Sinkhorn Di-
vergences

In the present section, we are interested in bounding the error made when approxi-
mating W (α, β) with Wε(α, β).
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Theorem 12. Let α and β be probability measures on X and Y subsets of Rd such that
|X | and |Y| 6 D and assume that c is L-Lipschitz w.r.t. x and y. It holds

0 6Wε(α, β)−W (α, β) 6 2εd log
(
e2·L·D√

d·ε

)
(3.1)

∼ε→0 2εd log(1/ε). (3.2)

Proof. For a probability measure π on X ×Y, we denote by C(π) =
∫
cdπ the associated

transport cost and by H(π) its relative entropy with respect to the product measure
α ⊗ β as defined in (2.1). Choosing π0 a minimizer of minπ∈Π(α,β)C(π), we will build
our upper bounds using a family of transport plans with finite entropy that approximate
π0. The simplest approach consists in considering block approximation. In contrast to
the work of Carlier et al. (2017), who also considered this technique, our focus here is
on quantitative bounds.

Definition 10 (Block approximation). For a resolution ∆ > 0, we consider the block
partition of Rd in hypercubes of side ∆ defined as

{Q∆
k = [k1 ·∆, (k1 + 1) ·∆[× . . . [kd ·∆, (kd + 1) ·∆[ ; k = (k1, . . . , kd) ∈ Zd}.

To simplify notations, we introduce Q∆
ij

def.= Q∆
i ×Q∆

j , α∆
i

def.= α(Q∆
i ), β∆

j
def.= β(Q∆

j ).
The block approximation of π0 of resolution ∆ is the measure π∆ ∈ Π(α, β) characterized
by

π∆|Q∆
ij

=
π0(Q∆

ij)
α∆
i · β

∆
j

(α|Q∆
i
⊗ β|Q∆

j
)

for all (i, j) ∈ (Zd)2, with the convention 0/0 = 0.

π∆ is nonnegative by construction. Observe also that for any Borel set B ⊂ Rd, one
has

π∆(B × Rd) =
∑

(i,j)∈(Zd)2

π0(Q∆
ij)

α∆
i · β

∆
j

· α(B ∩Q∆
i ) · β∆

j =
∑
i∈Zd

α(B ∩Q∆
i ) = α(B),

which proves, using the symmetric result in β, that π∆ belongs to Π(α, β). As a con-
sequence, for any ε > 0 one has Wε(α, β) 6 C(π∆) + εH(π∆). Recalling also that
the relative entropy H is nonnegative over the set of probability measures, we have the
bound

0 6Wε(α, β)−W (α, β) 6 (C(π∆)− C(π0)) + εH(π∆).

We can now bound the terms in the right-hand side, and choose a value for ∆ that
minimizes these bounds.

The bound on C(π∆)−C(π0) relies on the Lipschitz regularity of the cost function.
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Using the fact that π∆(Q∆
ij) = π0(Q∆

ij) for all i, j, it holds

C(π∆)− C(π0) =
∑

(i,j)∈(Zd)2

π0(Q∆
ij)
(

sup
x,y∈Q∆

ij

c(x, y)− inf
x,y∈Q∆

ij

c(x, y)
)

6 2L∆
√
d,

where L is the Lipschitz constant of the cost (separately in x and y) and ∆
√
d is the

diameter of each set Q∆
i .

As for the bound on H(π∆), using the fact that π0(Q∆
ij) 6 1 we get

H(π∆) =
∑

(i,j)∈(Zd)2

log
(
π0(Q∆

ij)
α∆
i · β

∆
j

)
π0(Q∆

ij)

6
∑

(i,j)∈(Zd)2

(
log(1/α∆

i ) + log(1/β∆
j )
)
π0(Q∆

ij)

= −H∆(α)−H∆(β),

where we have defined H∆(α) =
∑
i∈Zd α∆

i log(α∆
i ) and similarly for β. Note that in

case α is a discrete measure with finite support, H∆(α) is equal to (minus) the discrete
entropy of α as long as ∆ is smaller than the minimum separation between atoms of
α. However, if α is not discrete then H∆(α) blows up to −∞ as ∆ goes to 0 and
we need to control how fast it does so. Considering α∆ the block approximation of
α with constant density α∆

i /∆d on each block Q∆
i and (minus) its differential entropy

HLd(α∆) =
∫

Rd α
∆(x) logα∆(x)dx, it holds H∆(α) = HLd(α∆)−d · log(1/∆). Moreover,

using the convexity of HLd , this can be compared with the differential entropy of the
uniform probability on a hypercube containing X of size 2D. Thus it holds HLd(α∆) >
−d log(2D) and thus H∆(α) > −d · log(2D/∆).

Summing up, we have for all ∆ > 0

Wε(α, β)−W (α, β) 6 2L∆
√
d+ 2εd · log(2D/∆).

The above bound is convex in ∆, minimized with ∆ = 2
√
d · ε/L. This yields

Wε(α, β)−W (α, β) 6 4εd+ 2εd log
(
L ·D√
d · ε

)
.

4 Properties of Sinkhorn Potentials

We prove in this section that Sinkhorn potentials are bounded in the Sobolev space
Hs(Rd) regardless of the marginals α and β. For s > d

2 , Hs(Rd) is a reproducing kernel
Hilbert space (RKHS): This property will be crucial to establish sample complexity
results later on, using standard tools from RKHS theory.
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Definition 11. The Sobolev space Hs(X ), for s ∈ N∗, is the space of functions ϕ : X ⊆
Rd → R such that for every multi-index k with |k| 6 s the mixed partial derivative ϕ(k)

exists and belongs to L2(X ). It is endowed with the following inner-product

〈ϕ,ψ〉Hs(X ) =
∑
|k|6s

∫
X
ϕ(k)(x)ψ(k)(x)dx. (4.1)

Theorem 13. When X and Y are two bounded sets of Rd and the cost c is C∞, then
the Sinkhorn potentials (u, v) are uniformly bounded in the Sobolev space Hs(Rd) and
their norms satisfy

||u||Hs = O

(
1 + 1

εs−1

)
and ||v||Hs = O

(
1 + 1

εs−1

)
,

with constants that only depend on |X | (or |Y| for v),d, and
∥∥∥c(k)

∥∥∥
∞

for k = 0, . . . , s.
In particular, we get the following asymptotic behavior in ε: ||u||Hs = O(1) as ε→ +∞
and ||u||Hs = O( 1

εs−1 ) as ε→ 0.

To prove this theorem, we first need to state some regularity properties of the
Sinkhorn potentials.

Proposition 17. If X and Y are two bounded sets of Rd and the cost c is C∞, then

• u(x) ∈ [miny v(y)− c(x, y),maxy v(y)− c(x, y)] for all x ∈ X

• u is L-Lipschitz, where L is the Lipschitz constant of c

• u ∈ C∞(X ) and
∥∥∥u(k)

∥∥∥
∞

= O(1 + 1
εk−1 )

and the same results also stand for v (inverting u and v in the first item, and replacing
X by Y).

Proof. The proofs of all three claims exploit the optimality condition of the dual prob-
lem:

exp
(−u(x)

ε

)
=
∫

exp
(
v(y)− c(x, y)

ε

)
β(y)dy. (4.2)

Since β is a probability measure, e
−u(x)
ε is a convex combination of ϕ : x 7→ e

v(x)−c(x,y)
ε

and thus e
−u(x)
ε ∈ [miny ϕ(y),maxy ϕ(y)]. We get the desired bounds by taking the

logarithm. The two other points use the following lemmas:

Lemma 3. The derivatives of the potentials are given by the following recurrence

u(n)(x) =
∫
gn(x, y)γε(x, y)β(y)dy, (4.3)

where
gn+1(x, y) = g′n(x, y) + u′(x)− c′(x, y)

ε
gn(x, y),
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g1(x, y) = c′(x, y) and γε(x, y) = exp(u(x)+v(y)−c(x,y)
ε ).

Lemma 4. The sequence of auxiliary functions (gk)k=0... verifies
∥∥∥u(k)

∥∥∥
∞

6 ‖gk‖∞.

Besides, for all j = 0, . . . , k, for all k = 0, . . . , n−2,
∥∥∥g(j)
n−k

∥∥∥
∞

is bounded by a polynomial
in 1

ε of order n− k + j − 1.

From the primal constraint, we have that
∫
Y γε(x, y)β(y)dy = 1. Thus thanks to

Lemma 3 we immediately get that
∥∥∥u(n)

∥∥∥
∞

6 ‖gn‖∞. For n = 1, since g1 = c′ we get
that ‖u′‖∞ = ‖c′‖∞ = L and this proves the second point of Proposition 17. The third
point is a direct application of Lemma 4, and we prove both lemmas below.

Proof. (Lemma 3) For better clarity, we carry out the computations in dimension 1
but all the arguments are valid in higher dimension and we will clarify delicate points
throughout the proof. Differentiating under the integral is justified with the usual
domination theorem, bounding the integrand thanks to the Lipschitz assumption on c,
and this bound is integrable thanks to the marginal constraint. Differentiating both
sides of the optimality condition (4.2) and rearranging yields

u′(x) =
∫
c′(x, y)γε(x, y)β(y)dy. (4.4)

Notice that γ′ε(x, y) = u′(x)−c′(x,y)
ε γε(x, y). Thus by immediate recurrence (differentiat-

ing both sides of the equality again) we get that

u(n)(x) =
∫
gn(x, y)γε(x, y)β(y)dy, (4.5)

where gn+1(x, y) = g′n(x, y) + u′(x)−c′(x,y)
ε gn(x, y) and g1(x, y) = c′(x, y)

To extend this first lemma to the d-dimensional case, we need to consider the se-
quence of indexes σ = (σ1, σ2, . . . ) ∈ {1, . . . , d}N which corresponds to the axis along
which we successively differentiate. Using the same reasoning as above, it is straightfor-
ward to check that

∂ku

∂xσ1 . . . ∂xσk
=
∫
gσ,kγεβ(y)dy,

where gσ,1 = ∂c
∂xσ1

and gσ,k+1 = ∂gσ,k+1
∂xσk+1

+ 1
ε

(
∂u

∂xσk+1
− ∂c

∂xσk+1

)
gσ,k+1.

Proof. (Lemma 4) The proof is made by recurrence on the following property :
Pn : For all j = 0, . . . , k, for all k = 0, . . . , n− 2,

∥∥∥g(j)
n−k

∥∥∥
∞

is bounded by a polynomial
in 1

ε of order n− k + j − 1.
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Let us initialize the recurrence with n = 2

g2 = g′1 + u′ − c′

ε
g1 (4.6)

‖g2‖∞ 6
∥∥g′1∥∥∞ + ‖u

′‖∞ + ‖c′‖∞
ε

‖g1‖∞ . (4.7)

Recall that ‖u′‖∞ = ‖g1‖∞ = ‖c′‖∞. Let C = maxk
∥∥∥c(k)

∥∥∥
∞
, we get that ‖g2‖∞ 6

C + C+C
ε C which is of the required form.

Now assume that Pn is true for some n > 2. This means we have bounds on g(i)
n−k, for

k = 0, . . . , n− 2 and i = 0, . . . , k. To prove the property at rank n+ 1 we want bounds
on g(i)

n+1−k, for k = 0, . . . , n− 1 and i = 0, . . . , k. The only new quantity that we need to
bound are g(k)

n+1−k, k = 0, . . . , n− 1. Let us start by bounding g(n−1)
2 which corresponds

to k = n− 1 and we will do a backward recurrence on k. By applying Leibniz formula
for the successive derivatives of a product of functions, we get

g2 = g′1 + u′ − c′

ε
g1, (4.8)

g
(n−1)
2 = g

(n)
1 +

n−1∑
p=0

(
n− 1
p

)
u(p+1) − c(p+1)

ε
g

(n−1−p)
1 , (4.9)

∥∥∥g(n−1)
2

∥∥∥
∞

6
∥∥∥g(n)

1

∥∥∥
∞

+
n−1∑
p=0

(
n− 1
p

)∥∥∥u(p+1)
∥∥∥
∞

+
∥∥∥c(p+1)

∥∥∥
∞

ε

∥∥∥g(n−1−p)
1

∥∥∥
∞
(4.10)

6 C +
n−1∑
p=0

(
n− 1
p

)
‖gp+1‖∞ + C

ε
C. (4.11)

Thanks to Pn we have that ‖gp‖∞ 6
∑p
i=0 ai,p

1
εi
, p = 1, . . . , n so the highest order term

in ε in the above inequality is 1
εn . Thus we get

∥∥∥g(n−1)
2

∥∥∥
∞

6
∑n+1
i=0 ai,2,n−1

1
εi

which is of
the expected order

Now assume g(j)
n+1−j are bounded with the appropriate polynomials for j < k 6 n−1.

Let us bound g(k)
n+1−k

∥∥∥g(k)
n+1−k

∥∥∥
∞

6
∥∥∥g(k+1)
n−k

∥∥∥
∞

+
k∑
p=0

(
k

p

)∥∥∥u(p+1)
∥∥∥
∞

+
∥∥∥c(p+1)

∥∥∥
∞

ε

∥∥∥g(k−p)
n−k

∥∥∥
∞

(4.12)

6
∥∥∥g(k+1)
n−k

∥∥∥
∞

+
k∑
p=0

(
k

p

)
‖gp+1‖∞ + C

ε

∥∥∥g(k−p)
n−k .

∥∥∥
∞

(4.13)

The first term
∥∥∥g(k+1)
n−k

∥∥∥
∞

is bounded with a polynomial of order 1
εn+1 by recurrence

assumption. Regarding the terms in the sum, they also have all been bounded and

‖gp+1‖∞
∥∥∥g(k−p)
n−k

∥∥∥
∞

6

( p∑
i=0

ai,p+1
1
εi

)(n−p∑
i=0

ai,n−k,k−p
1
εi

)
6

n∑
i=0

ãi
1
εi
,
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so
∥∥∥g(k)
n+1−k

∥∥∥
∞

6
∑n+1
i=0 ai,n+1−k,k

1
εi
. To extend the result in Rd, the recurrence is made

on the the following property

∥∥∥g(j)
σ,n−k

∥∥∥
∞

6
n−k+|j|−1∑

i=0
ai,n−k,j,σ

1
εi
, (4.14)

∀j | |j| = 0, . . . , k ∀k = 0, . . . , n − 2 ∀σ ∈ {1, . . . , d}N, where j is a multi-index
since we are dealing with multi-variate functions, and gσ,n−k is defined at the end of
the previous proof. The computations can be carried out in the same way as above,
using the multivariate version of Leibniz formula in (4.9) since we are now dealing with
multi-indexes.

Combining the bounds of the derivatives of the potentials with the definition of the
norm in Hs, is enough to complete the proof of Theorem 13.

Proof. (Theorem 13) The norm of u in Hs(X ) is

||u||Hs =

∑
|k|6s

∫
X

(u(k))2

 1
2

6 |X |

∑
|k|6s

∥∥∥u(k)
∥∥∥2

∞

 1
2

.

From Proposition 17 we have that ∀k,
∥∥∥u(k)

∥∥∥
∞

= O(1 + 1
εk−1 ) and thus we get that

||u||Hs = O(1 + 1
εs−1 ). We just proved the bound in Hs(X ) but we actually want to

have a bound on Hs(Rd). This is immediate thanks to the Sobolev extension theorem
(Calderón, 1961) which guarantees that ||u||Hs(Rd) 6 C||u||Hs(X ) under the assumption
that X is a bounded Lipschitz domain.

This result, aside from proving useful in the next section to obtain sample complexity
results on the Sinkhorn Divergence, also proves that kernel-SGD can be used to solve
continuous regularized OT. This idea, which we develop in Chapter 4, Sec. 5.1, consists
in assuming the potentials are in the ball of a certain RKHS, to write them as a linear
combination of kernel functions and then perform stochastic gradient descent on these
coefficients. Knowing the potentials are in a ball of a RKHS is enough to guarantee
convergence of kernel-SGD (see Theorem 23).

5 Approximating Sinkhorn Divergence from Samples

In practice, measures α and β are only known through a finite number of samples.
Thus, what can be actually computed is the Sinkhorn Divergence between the empirical
measures α̂n

def.= 1
n

∑n
i=1 δXi and β̂n

def.= 1
n

∑n
i=1 δYi , where (X1, . . . , Xn) and (Y1, . . . , Yn)

are i.i.d. random variables distributed according to α and β respectively. This yields
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the empirical Sinkhorn Divergence:

Wε(α̂n, β̂n) = max
u,v

1
n

n∑
i=1

u(Xi) + 1
n

n∑
i=1

v(Yi)− ε
1
n2

n∑
i=1

n∑
j=1

exp
(
u(Xi) + v(Yj)− c(Xi, Yj)

ε

)
+ ε

where (Xi, Yi)ni=1 are i.i.d random variables distributed according to α ⊗ β. On actual
samples, these quantities can be computed using Sinkhorn’s algorithm (Cuturi, 2013).

Our goal is to quantify the error that is made by approximating α, β by their em-
pirical counterparts α̂n, β̂n, that is bounding |Wε(α, β)−Wε(α̂n, β̂n)|.

Theorem 14. Consider the Sinkhorn Divergence between two measures α and β on X
and Y two bounded subsets of Rd, with a C∞, L-Lipschitz cost c. One has

Eα⊗β
∣∣Wε(α, β)−Wε(α̂n, β̂n)

∣∣ = O

(
e
κ
ε

√
n

(
1 + 1

εbd/2c

))
,

where κ = 2L|X | + ‖c‖∞ and constants only depend on |X |,|Y|,d, and
∥∥∥c(k)

∥∥∥
∞

for
k = 0 . . . bd/2c. In particular, we get the following asymptotic behavior in ε:

Eα⊗β
∣∣Wε(α, β)−Wε(α̂n, β̂n)

∣∣ = O

(
e
κ
ε

εbd/2c
√
n

)
as ε→ 0,

Eα⊗β
∣∣Wε(α, β)−Wε(α̂n, β̂n)

∣∣ = O

( 1√
n

)
as ε→ +∞.

An interesting feature from this theorem is the fact when ε is large enough, the
convergence rate does not depend on ε anymore. This means that at some point, in-
creasing ε will not substantially improve convergence. However, for small values of ε the
dependence is critical.

We prove this result in the rest of this section. The main idea is to exploit standard
results from PAC-learning in RKHS. Our theorem is an application of the following
result from Bartlett and Mendelson (2002) ( combining Theorem 12,4) and Lemma 22
in their paper):

Proposition 18. (Bartlett-Mendelson ’02) Consider α a probability distribution, ` a
B-Lipschitz loss and G a given class of functions. Then

Eα

[
sup
g∈G

Eα`(g,X)− 1
n

n∑
i=1

`(g,Xi)
]
6 2BEαR(G(Xn

1 )),

where R(G(Xn
1 )) is the Rademacher complexity of class G defined by R(G(Xn

1 )) =
supg∈G Eσ 1

n

∑n
i=1 σig(Xi) where (σi)i are iid Rademacher random variables. Besides,

when G is a ball of radius λ in a RKHS with kernel k the Rademacher complexity is
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bounded by

R(Gλ(Xn
1 )) 6 λ

n

√√√√ n∑
i=1

k(Xi, Xi).

Our problem falls in this framework thanks to the following lemma:

Lemma 5. Let Hsλ
def.= {u ∈ Hs(Rd) | ||u||Hs(Rd) 6 λ}, then there exists λ such that:

∣∣Wε(α, β)−Wε(α̂n, β̂n)
∣∣ 6 sup

(u,v)∈(Hs
λ

)2

∣∣∣EαFXε,β(u, v)− 1
n

n∑
i=1

FXiε,β(u, v)
∣∣∣

+ sup
(u,v)∈(Hs

λ
)2

∣∣∣EβGYε,α̂n(u, v)− 1
n

n∑
i=1

GYiε,α̂n(u, v)
∣∣∣

where F xε,β(u, v) def.= u(x) +
∫
Y
v(y)dβ(y)− ε

∫
Y
e
u(x)+v(y)−c(x,y)

ε dβ(y) =
∫
Y
fxyε (u, v)dβ(y),

and Gyε,α̂n(u, v) def.= 1
n

n∑
i=1

u(xi) + v(y)− ε 1
n

n∑
i=1

e
u(xi)+v(y)−c(xi,y)

ε = 1
n

n∑
i=1

fxiyε (u, v).

Proof. We start by breaking down the quantity by introducing the auxiliary term
Wε(α̂n, β):

|Wε(α, β)−Wε(α̂n, β̂n)| 6|Wε(α, β)−Wε(α̂n, β)|+ |Wε(α̂n, β)−Wε(α̂n, β̂n)| (5.1)

Let us denote (u∗, v∗) the maximizers of Wε(α, β) , (ū, v̄) the maximizers of Wε(α̂n, β)
and (û, v̂) the maximizers of Wε(α̂n, β̂n). Notice that

Wε(α, β) =EαF
X
ε,β(u∗, v∗),

Wε(α̂n, β) = 1
n

n∑
i=1

FXiε,β(ū, v̄) = EβG
Y
ε,α̂n(ū, v̄),

Wε(α̂n, β̂n) = 1
n

n∑
i=1

GYiε,α̂n(û, v̂)

By optimality of the maximizers, we have

Wε(α, β)−Wε(α̂n, β) 6EαF
X
ε,β(u∗, v∗)− 1

n

n∑
i=1

FXiε,β(u∗, v∗),

Wε(α, β)−Wε(α̂n, β) >EαF
X
ε,β(ū, v̄)− 1

n

n∑
i=1

FXiε,β(ū, v̄),

and so
|Wε(α, β)−Wε(α̂n, β)| 6 sup

u,v
|EαFXε,β(u, v)− 1

n

n∑
i=1

FXiε,β(u, v)|.
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Similarly, we get

|Wε(α̂n, β)−Wε(α̂n, β̂n)| 6 sup
u,v
|EβGYε,α̂n(u, v)− 1

n

n∑
i=1

GYiε,α̂n(u, v)|.

Besides, from Theorem 13, we know that the all the dual potentials are bounded in
Hs(Rd) by a constant λ which doesn’t depend on the measures, thus the sup(u,v) can be
restricted to sup(u,v)∈(Hs

λ
)2 .

To apply Proposition 18 to Sinkhorn Divergences we need to prove that (a) the
optimal potentials are in a RKHS and (b) our loss functions Fε,β and Gε,α̂n are Lipschitz
in the potentials.

The first point has already been proved in the previous section. The RKHS we are
considering is Hs(Rd) with s = bd2c + 1. It remains to prove that Fε,β and Gε,α̂n are
Lipschitz in (u, v) on a certain subspace that contains the optimal potentials. Since
F xε,β(u, v) =

∫
Y f

xy
ε (u, v)dβ(y) and Gyε,α̂n(u, v) = 1

n

∑n
i=1 f

xiy
ε (u, v), it suffices to prove

that fxyε (u, v) is Lipschitz.

Figure 3.1 – SDε(α̂n, α̂′n) as a function of n in log-log space : Influence of ε for fixed d
on two uniform distributions on the hypercube with quadratic cost.

Figure 3.2 – SDε(α̂n, α̂′n) as a function of n in log-log space : Influence of d for fixed ε
on two uniform distributions on the hypercube with quadratic cost.

Lemma 6. Let A = {(u, v) | u⊕ v 6 2L|X |+ ‖c‖∞}. We have:

(i) the pairs of optimal potentials (u∗, v∗) such that u∗(0) = 0 belong to A,

(ii) f ε is B-Lipschitz in (u, v) on A with B 6 1 + exp(2L|X |+‖c‖∞ε ).
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Proof. Let us prove that we can restrict ourselves to a subspace on which fε is Lipschitz
in (u, v),

fε(u, v, x, y) = u(x) + v(y)− ε exp
(
u(x) + v(y)− c(x, y)

ε

)
,

∇fε(u, v) = 1− exp
(
u+ v − c

ε

)
.

To ensure that f ε is Lipschitz, we simply need to ensure that the quantity inside the
exponential is upper bounded at optimality and then restrict the function to all (u, v)
that satisfy that bound.

Recall the bounds on the optimal potentials from Proposition 17. We have that
∀x ∈ X , y ∈ Y,

u(x) 6 L|x| and v(y) 6 max
x

u(x)− c(x, y).

Since we assumed X to be a bounded set, denoting by |X | the diameter of the space we
get that at optimality ∀x ∈ X , y ∈ Y

u(x) + v(y) 6 2L|X |+ ‖c‖∞ .

Let us denote A = {(u, v) ∈ (Hs(Rd))2 | u ⊕ v 6 2L|X | + ‖c‖∞}, we have that
∀(u, v) ∈ A,

|∇fε(u, v)| 6 1 + exp(2L|X |+ ‖c‖∞
ε

).

We now have all the required elements to prove our sample complexity result on the
Sinkhorn loss, by applying Proposition 18.

Proof. (Theorem 14) Since Fε,β and Gε,α̂n are Lipschitz and we are optimizing over
Hs(Rd) which is a RKHS, we can apply Proposition 18 to bound the right hand side
in Lemma 5. We start by applying the proposition to the second term, taking the
expectation over β. We get:

Eβ|Wε(α, β)−Wε(α̂n, β̂n)| 6 sup
(u,v)∈(Hs

λ
)2
|EαFXε,β(u, v)− 1

n

n∑
i=1

FXiε,β(u, v)|

+ 2Bλ
n

Eβ

√√√√ n∑
i=1

k(Yi, Yi),

where B 6 1 + exp(2L|X |+‖c‖∞ε ) (Lemma 6), λ = O(max(1, 1
εd/2

)) (Theorem 13).
We can further bound

√∑n
i=1 k(Yi, Yi) by

√
nmaxx∈X k(x, x) where k is the kernel

associated toHs(Rd) (usually called Matern or Sobolev kernel) and thus maxx∈X k(x, x) =
k(0, 0) def.= K which does not depend on n or ε.
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Applying Proposition 18 to the first term, taking the expectation over α. We get:

Eα⊗β|Wε(α, β)−Wε(α̂n, β̂n)| 6 22Bλ
√
K√

n
.

Thus we get the convergence rate in 1√
n
with different asymptotic behaviors in ε when

it is large or small.

Using similar arguments, we can also derive a concentration result:

Corollary 2. With probability at least 1− δ,

|Wε(α, β)−Wε(α̂n, β̂n)| 6 4BλK√
n

+ C

√
2 log 1

δ

n
,

where B, λ,K are defined in the proof above, and C = κ + ε exp(κε ) with κ = 2L|X | +
‖c‖∞.

Proof. We apply the bounded differences inequality (McDiarmid, 1989) to

g : (x1, . . . , xn) 7→ sup
u,v∈Hs

λ

(EfXYε − 1
n
fXi,Yiε ).

From Lemma 6 we get that ∀x, y, fxyε (u, v) 6 κ+ εeκ/ε
def.= C, and thus, changing one of

the variables in g changes the value of the function by at most 2C/n. Thus the bounded
differences inequality gives

P (|g(X1, . . . , Xn)− Eg(X1, . . . , Xn)| > t) 6 2 exp
(
t2n

2C2

)
.

Choosing t = C

√
2 log 1

δ
n yields that with probability at least 1− δ

g(X1, . . . , Xn) 6 Eg(X1, . . . , Xn) + C

√
2 log 1

δ

n
,

and from Theorem 14 we already have

Eg(X1, . . . , Xn) = E sup
u,v∈Hs

λ

(EfXYε − 1
n
fXi,Yiε ) 6 2BλK√

n
.
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Figure 3.3 – SDε(α̂n, α̂′n) as a function of n in log-log space - cost c(x, y) = ||x − y||1
with uniform distributions (two leftmost figures) and quadratic cost c(x, y) = ||x − y||22
with standard normal distributions (right figure).

6 Experiments

We conclude with some numerical experiments on the sample complexity of Sinkhorn
Divergences. As there are no explicit formulas forWε in general, we consider SDε(α̂n, α̂′n)
where α̂n

def.= 1
n

∑n
i=1 δXi, α̂′n

def.= 1
n

∑n
i=1 δXi′ and (X1, . . . , Xn) and (X ′1, . . . , X ′n) are

two independent n-samples from α. Note that we use in this section the normalized
Sinkhorn Divergence as defined in (2.2), since we know that SDε(α, α) = 0 and thus
SDε(α̂n, α̂′n)→ 0 as n→ +∞ .

Each of the experiments is run 300 times, and we plot the average of SDε(α̂n, α̂′n)
as a function of n in log-log space, with shaded standard deviation bars.

First, we consider the uniform distribution over a hypercube with the standard
quadratic cost c(x, y) = ||x − y||22, which falls within our framework, as we are dealing
with a C∞ cost on a bounded domain. Figure 3.1 shows the influence of the dimension
d on the convergence, while Figure 3.2 shows the influence of the regularization ε on the
convergence for a given dimension. The influence of ε on the convergence rate increases
with the dimension: the curves are almost parallel for all values of ε in dimension 2 but
they get further apart as dimension increases. As expected from our bound, there is a
cutoff which happens here at ε = 1. All values of ε > 1 have similar convergence rates,
and the dependence on 1

ε becomes clear for smaller values. The same cutoff appears
when looking at the influence of the dimension on the convergence rate for a fixed ε.
The curves are parallel for all dimensions for ε > 1 but they have very different slopes
for smaller ε.

We relax next some of the assumptions needed in our theorem to see how the
Sinkhorn Divergence behaves empirically. First we relax the regularity assumption on
the cost, using c(x, y) = ||x − y||1. As seen on the two left images in figure 3.3 the
behavior is very similar to the quadratic cost but with a more pronounced influence of
ε, even for small dimensions. The fact that the convergence rate gets slower as ε gets
smaller is already very clear in dimension 2, which wasn’t the case for the quadratic
cost. The influence of the dimension for a given value of ε is not any different however.
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We also relax the bounded domain assumption, considering a standard normal dis-
tribution over Rd with a quadratic cost. While the influence of ε on the convergence
rate is still obvious, the influence of the dimension is less clear. There is also a higher
variance, which can be expected as the concentration bound from Corollary 2 depends
on the diameter of the domain.

For all curves, we observe that d and ε impact variance, with much smaller variance
for small values of ε and high dimensions. From the concentration bound, the depen-
dency on ε coming from the uniform bound on fε is of the form ε exp(κ/ε), suggesting
higher variance for small values of ε. This could indicate that our uniform bound on
fε is not tight, and we should consider other methods to get tighter bounds in further
work.
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Chapter 4

Stochastic Optimization for
Large-Scale Optimal Transport

Entropy-regularized Optimal Transport (OT) has alleviated the computational burden of OT,
for many applications. However, its state of the art solver, Sinkhorn’s algorithm, only copes with
discrete measures and its iteration complexity scales as O(n2) (where n is the number of points in
the discrete measures). We thus propose a new class of online stochastic optimization algorithms
to cope with large-scale OT problems. They can handle arbitrary distributions (discrete or con-
tinuous) as long as one is able to draw samples from them. This alleviates the need to discretize
these densities, while giving access to provably convergent methods without discretization error.
These algorithms rely on one key idea which is that the dual OT problem can be re-cast as the
maximization of an expectation.

We exploit this formulation in three different setups: (i) when comparing a discrete distribu-
tion to another, we show that incremental stochastic optimization schemes can beat Sinkhorn’s
algorithm, the current state-of-the-art finite dimensional OT solver; (ii) when comparing a dis-
crete distribution to a continuous density, a semi-discrete reformulation of the dual program
is amenable to averaged stochastic gradient descent (SGD), leading to better performance than
approximately solving the problem by discretization ; (iii) when dealing with two continuous den-
sities, we propose a stochastic gradient descent over a reproducing kernel Hilbert space (RKHS)
and introduce an approximate feature approach (via incomplete Cholesky decomposition or Ran-
dom Fourier Features) to significantly alleviate computational time. This is currently the only
known method to solve this problem, apart from computing OT on finite samples. We backup
these claims on a set of discrete, semi-discrete and continuous benchmark problems.

Most of the content in this chapter comes from (Genevay et al., 2016), but the section on
continuous transport is revised in the light of recent results from Genevay et al. (2019). Knowing
that dual potentials are uniformly bounded in a RKHS, we can state a stronger version of the
convergence theorem for kernel-SGD. The numerical experiments are also improved, in particular
thanks to the addition of the approximate features approach.

93
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1 Introduction

Throughout this thesis, we have already advocated that OT is the natural choice to
solve a large variety of problems which require comparing probability measures or data
in the form of histograms, in particular because it takes into account the underlying
geometry of the problem. However, this comes at the price of an enormous computa-
tional overhead, compared to geometrically-oblivious distances such as the Euclidean
or χ2 distances or the Kullback-Leibler divergence. This is especially true because cur-
rent OT solvers require to sample beforehand the distributions on a pre-defined set of
points, or on a grid. This is both inefficient (in term of storage and speed) and counter-
intuitive. Indeed, most high-dimensional computational scenarios naturally represent
distributions as objects from which one can sample, not as density functions to be dis-
cretized. Our goal is to alleviate these shortcomings. We propose a class of provably
convergent stochastic optimization schemes that can handle both discrete and continu-
ous distributions through sampling.

Previous works. The prevalent way to compute OT distances is by solving the so-
called Kantorovitch problem (Kantorovich, 1942) (see Chapter 1, Sec. 2.3 for a short
primer on the basics of OT formulations), which boils down to a large-scale linear
program when dealing with discrete distributions (i.e., finite weighted sums of Dirac
masses). This linear program can be solved using network flow solvers, which can be
further refined to assignment problems when comparing measures of the same size with
uniform weights (Burkard et al., 2009). Recently, regularized approaches that solve the
OT with an entropic penalization (Cuturi, 2013) have been shown to be extremely effi-
cient to approximate OT solutions at a very low computational cost. These regularized
approaches have supported recent applications of OT to computer graphics (Solomon
et al., 2015) and machine learning (Frogner et al., 2015). These methods apply the
celebrated Sinkhorn algorithm (Sinkhorn, 1964), and can be extended to solve a variety
of transportation-related problems such as the computation of barycenters for the opti-
mal transport metric or multimarginal optimal transport (Benamou et al., 2015). Their
chief computational advantage over competing solvers is that each iteration boils down
to matrix-vector multiplications, which can be easily parallelized, streams extremely
well on GPU, and enjoys linear-time implementation on regular grids or triangulated
domains (Solomon et al., 2015).

These methods are however purely discrete and cannot cope with continuous densi-
ties. The only known class of methods that can overcome this limitation are so-called
semi-discrete solvers (Aurenhammer et al., 1998), that can be implemented efficiently
using computational geometry primitives (Mérigot, 2011). They can compute distance
between a discrete distribution and a continuous density. Nonetheless, they are re-
stricted to the Euclidean squared cost, and can only be implemented in low dimensions
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(2-D and 3-D). Solving these semi-discrete problems efficiently could have a significant
impact for applications to density fitting with an OT loss (Bassetti et al., 2006) for
machine learning applications, see (Montavon et al., 2016). Lastly, let us point out that
there is currently no method that can compute OT distances between two continuous
densities, which is thus an open problem we tackle in this chapter.

Contributions. This chapter introduces stochastic optimization methods to compute
large-scale optimal transport in all three possible settings: discrete OT, to compare a
discrete vs. another discrete measure; semi-discrete OT, to compare a discrete vs. a con-
tinuous measure; and continuous OT, to compare a continuous vs. another continuous
measure. These methods can be used to solve classical OT problems, but they en-
joy faster convergence properties when considering their entropic-regularized versions.
We show that the discrete regularized OT problem can be tackled using incremen-
tal algorithms, and we consider in particular the stochastic averaged gradient (SAG)
method (Schmidt et al., 2016). Each iteration of that algorithm requires n operations
(n being the size of the supports of the input distributions), which makes it scale better
in large-scale problems than the state-of-the-art Sinkhorn algorithm, while still enjoy-
ing a convergence rate of O(1/k), k being the number of iterations. We show that
the semi-discrete OT problem can be solved using averaged stochastic gradient descent
(SGD), whose convergence rate is O(1/

√
k). This approach is numerically advantageous

over the brute force approach consisting in sampling first the continuous density to
solve next a discrete OT problem. Following the publication of this work, this online
semi-discrete algorithm has been successfully applied to texture synthesis in image pro-
cessing (Galerne et al., 2018), and to the computation of Wasserstein Barycenters (Staib
et al., 2017). Lastly, for continuous optimal transport, we propose a novel method which
makes use of an expansion of the dual variables in a reproducing kernel Hilbert space
(RKHS). This allows us for the first time to compute with a converging algorithm OT
distances between two arbitrary densities, thanks to the fact that the dual potentials
are known to be in a RKHS ball(see Chapter 3 for details). We also provide an ap-
proach using approximate features (via incomplete Cholesky decomposition (Wu et al.,
2006) or Random Fourier features (Rahimi and Recht, 2007)) to significantly alleviate
computational time (going from quadratic to linear in the number of iterations). More
recently, (Seguy et al., 2017) exploited our dual formulation as an expectation with a
neural network parametrization of the dual variables rather than a RKHS expansion.
This gives interesting results on the tasks they consider, although they do not derive
convergence rates for their approach.
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2 Optimal Transport: Primal, Dual and Semi-dual For-
mulations

We consider the optimal transport problem between two measures α ∈M1
+(X ) and

β ∈ M1
+(Y), defined on metric spaces X and Y. No particular assumption is made on

the form of α and β, we only assume that they both can be sampled from to be able to
apply our algorithms.

2.1 Primal, Dual and Semi-dual Formulations.

In this section, we recall the different formulations of entropy-regularized optimal
transport which will be exploited in the remainder of the chapter. We refer the reader
to Chapter 1 for more details on their derivation and specific properties.

As previously, we consider the Kantorovich formulation (Kantorovich, 1942) of OT
with entropic regularization (Cuturi, 2013) between two probability measures α ∈
M1

+(X ) and β ∈M1
+(Y) :

Wε(α, β) def.= min
π∈Π(α,β)

∫
X×Y

c(x, y)dπ(x, y) + ε

∫
X×Y

log
( dπ(x, y)

dα(x)dβ(y)

)
dπ(x, y), (Pε)

where the constraint set Π(α, β) is the set of couplings on X ×Y with marginals α and
β.

When ε > 0, problem (Pε) is strictly convex, so that the optimal π is unique, and
algebraic properties of the entropy H result in computations that can be tackled using
Sinkhorn’s algorithm which is extensively described in Chapter 1, Sec. 4.2.

Recall from Chapter 1, Proposition 7, that entropy-regularized OT between two
probability measures α and β has an equivalent dual formulation:

Wε(α, β) = max
u∈C(X ),v∈C(Y)

∫
X
u(x)dα(x) +

∫
Y
v(y)dβ(y)

− ε
∫
X×Y

e
u(x)+v(y)−c(x,y)

ε dα(x)dβ(y) + ε, (Dε)

and the primal-dual relationship is given by

dπ(x, y) = exp(u(x) + v(y)− c(x, y)
ε

)dα(x)dβ(y).

A nice feature of entropy-regularized OT, which we already highlighted, is the fact
that it yields an unconstrained dual problem, contrarily to standard OT. The third term
in the dual ε

∫
X×Y e

u(x)+v(y)−c(x,y)
ε dα(x)dβ(y) is a smooth approximation of the indicator

of the constraint set Uc set that appears in the dual of standard OT:

Uc
def.= {(u, v) ∈ C(X )× C(Y) ; ∀(x, y) ∈ X × Y, u(x) + v(y) 6 c(x, y)} .
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For any v ∈ C(Y), recall the definition of c-transform and its “smoothed” approxi-
mation, already introduced in Chapter 1, Sec. 4.3:

∀x ∈ X , vc,ε(x) def.=

 min
y∈Y

c(x, y)− v(y) if ε = 0,

−ε log
(∫
Y exp(v(y)−c(x,y)

ε )dβ(y)
)

if ε > 0.
(2.1)

This allows us to introduce another equivalent formulation for entropy-regularized OT,
as done in Proposition 12 in Chapter 1, which we call the semi-dual:

W c
ε (α, β) = max

v∈C(Y)

∫
X
vc,ε(x)dα(x) +

∫
Y
v(y)dβ(y). (Sε)

The other dual potential u solving (Dε) is recovered from an optimal v solving (Sε) as
u = vc,ε.

We refer to (Dε) as the “semi-dual” problem, because in the special case ε = 0, (Sε)
boils down to the so-called semi-discrete OT problem (Aurenhammer et al., 1998). Both
dual problems are concave maximization problems. The optimal dual variables (u, v) –
known as Kantorovitch potentials – are not unique, since for any solution (u, v) of (Dε),
(u + λ, v − λ) is also a solution for any λ ∈ R. When ε > 0, they can be shown to be
unique up to this scalar translation. The proof is given in Section 4.1 of Chapter 1. We
also refer to Chapter 1, Sec. 4.4 for a discussion (and proofs) of the convergence of the
solutions of (Pε), (Dε) and (Sε) towards those of (P0), (D0) and (S0) as ε→ 0.

A key advantage of (Sε) over (Dε) is that, when β is a discrete density (but not
necessarily α), then (Sε) is a finite-dimensional concave maximization problem, which
can thus be solved using stochastic programming techniques, as highlighted in Section 4.
By contrast, when both α and β are continuous densities, these dual problems are in-
trinsically infinite dimensional, and we propose in Section 5.1 more advanced techniques
based on RKHSs.

2.2 Stochastic Optimization Formulations

The fundamental property needed to apply stochastic programming is that both dual
problems (Dε) and (Sε) can be rephrased as maximizing expectations:

Proposition 19. The dual of entropy-regularized OT between two probability measures
α and β can be rewritten as the maximization of an expectation over α⊗ β:

W c
ε (α, β) = max

u,v∈C(X )×C(Y)
Eα⊗β[fXYε (u, v)] + ε,

where
fxyε

def.= u(x) + v(y)− ε exp
u(x)+v(y)−c(x,y)

ε for ε > 0. (2.2)

and when β
def.=
∑m
j=1 βjδyj is discrete, the potential v is a m-dimensional vector (vj)j



98 CHAPTER 4. STOCHASTIC OPTIMIZATION FOR LARGE SCALE OT

and the semi-dual is the maximization of an expectation over α:

W c
ε (α, β) = max

v∈Rm
Eα[gXε (v)],

where

gxε (v) =
m∑
j=1

vjβj +

−ε log(
∑m
j=1 exp(vj−c(x,yj)

ε )βj) if ε > 0,

minj (c(x, yj)− vj) if ε = 0,
(2.3)

This reformulation is at the heart of the methods detailed in the remainder of this
article. Note that the dual problem (Dε) cannot be cast as an unconstrained expectation
maximization problem when ε = 0, because of the constraint on the potentials which
arises in that case.

When β is discrete, since the potential v is a m-dimensional vector (vj)j={1...m} we
can compute the gradient and Hessian of gxε . This was already done in Proposition 13
in Chapter 1 but we rewrite their expressions here for convenience.

Proposition 20. Consider the semi-dual functional gxε defined in (2.3).
When ε > 0 its gradient is defined by

∇vgxε (v) = β − χε(x,v), (2.4)

and the Hessian is given by

∂2
vg
x
ε (v) = 1

ε

(
χε(x)χε(x)T − diag(χε(x; v))

)
, where χε(x,v)i =

exp(vi−c(x,yi)
ε )∑m

j=1 exp(vj−c(x,yj)
ε )

.

Besides, 0 � ∂2
vg
x
ε (v) � 1

ε and thus gxε is a convex function with a Lipschitz gradient.

When ε = 0 (standard OT) g0 is not smooth and a subgradient is given by

∇vgx0 (v) = β − χ(x,v), (2.5)

where χ(x,v)i = 1i=j∗(x) with j∗(x) = argmini∈{1...m} c(x, yi)− vi.

Note that since the lower bound on the eigenvalues of the Hessian is 0 the semi-
dual functional is convex but not strongly convex as strong convexity requires a strictly
positive lower-bound on eigenvalues of the Hessian. We insist on the lack of strong
convexity of the semi-dual problem, as it impacts the convergence properties of the
stochastic algorithms (stochastic averaged gradient and stochastic gradient descent) used
below.



3. DISCRETE OPTIMAL TRANSPORT 99

3 Discrete Optimal Transport

We assume in this section that both α and β are discrete measures, i.e. finite sums
of Diracs, of the form α =

∑n
i=1 αiδxi and β =

∑m
j=1 βjδyj , where (xi)i ⊂ X and

(yj)j ⊂ Y, and the histogram vector weights are α ∈ Σn and β ∈ Σm where Σn denotes
the simplex in Rn. These discrete measures may come from the evaluation of continuous
densities on a grid, counting features in a structured object, or be empirical measures
based on samples. This setting is relevant for several applications, including all known
applications of the earth mover’s distance. We show in this section that our stochastic
formulation can prove extremely efficient to compare measures with a large number of
points.

3.1 Discrete Optimization and Sinkhorn

In this setup, the primal (Pε), dual (Dε) and semi-dual (Sε) problems can be rewrit-
ten as finite-dimensional optimization problems involving the cost matrix c ∈ Rn×m+
defined by ci,j = c(xi, yj):

Wε(α, β)

= min
π∈Rn×m+

{∑
i,j ci,jπi,j + ε

∑
i,j

(
log πi,j

αiβj
− 1

)
πi,j | π1m = α,π>1n = β

}
, (P̄ε)

= max
u∈Rn,v∈Rm

∑n
i=1 uiαi +

∑m
j=1 vjβj − ε

∑
i,j exp

(
ui+vj−ci,j

ε

)
αiβj , (for ε > 0) (D̄ε)

= max
v∈Rm

Ḡε(v) where Ḡε(v) def.=
∑n
i=1 g

xi
ε (v)αi, (S̄ε)

and gxε is defined in (2.3).
The state-of-the-art method to solve the discrete regularized OT (i.e. when ε > 0) is

Sinkhorn’s algorithm (Cuturi, 2013, Alg.1), which has linear convergence rate (Franklin
and Lorenz, 1989). It corresponds to a block coordinate maximization, successively
optimizing (D̄ε) with respect to either u or v (see Sec. 4.2, Chapter 1 for a thorough
presentation). Each iteration of this algorithm is however costly, because it requires a
matrix-vector multiplication. Indeed, this corresponds to a “batch” method where all
the samples (xi)i and (yj)j are used at each iteration, which has thus complexity O(N2)
where N = max(n,m). The prohibitive cost of iterations is a common drawback of
batch methods, which thus scale poorly with the size of the problem. Online methods
are often preferred when provided with a large number of samples, which is why we
resort to stochastic optimization in this context.

3.2 Incremental Discrete Optimization with SAG when ε > 0.

Stochastic gradient descent (SGD) can be used to minimize the finite sum that
appears in in S̄ε. An index k is drawn from distribution α at each iteration, and the
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gradient of that term gxkε (·) can be used as a proxy for the full gradient in a standard
gradient ascent step to maximize Ḡε.

Algorithm 3 SAG for Discrete OT
Input: step size C ∈ R+

Output: dual potential v ∈ Rm

v← 0m (dual potential)
DG← 0m (proxy of the full gradient ∇Ḡε)
∀i, zi ← 0m (vector of partial gradients ∇gxkε )
for k = 1, 2, . . . do

Sample i ∈ {1, 2, . . . , n} uniform.
DG← DG− zi (remove contribution of sample xi from proxy of ∇Ḡε)
zi ← αi∇vgxiε (v) (update gradient of sample xi)
DG← d + zi (update proxy of ∇Ḡε with contribution of sample xi)
v← v + Cd (gradient ascent step)

end for

When ε > 0, the finite sum appearing in (S̄ε) suggests to use incremental gradient
methods – rather than purely stochastic ones – which are known to converge faster than
SGD. We propose to use the stochastic averaged gradient (SAG) (Schmidt et al., 2016).
The iterates of SAG can be summarized by the following formula

v(k+1) = v(k) + C

n

n∑
i=1

z
(k)
i ,

where an index i(k) is selected at random in {1 . . . n} and

z
(k)
i =

∇g
xi
ε (v(k)) if i = i(k),

z
(k−1)
i otherwise.

At each iteration an index ik is selected at random in {1 . . . n} to compute ∇gxikε (v(k)),
the gradient corresponding to the sample xi(k) at the current estimate v(k). However,
SAG doesn’t use this as a proxy for the full gradient ∇Ḡε, but rather keeps in memory
a copy of that gradient and computes an average of all gradients stored so far which
provides a better proxy of the gradient corresponding to the entire sum. Another dif-
ference is that SAG applies a fixed length update, which gives a better convergence rate
than SGD:

Proposition 21. Consider v∗ε a minimizer of Ḡε, and v(k) that k−th iterate of SAG
defined in (3.2). Then:

|Ḡε(v∗ε)− Ḡε(vk)| = O(1/k).
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Figure 4.1 – We compute all 595 pairwise word mover’s distances (Kusner et al., 2015)
between 35 very large corpora of text, each represented as a cloud of n = 20, 000
word embeddings. We compare the Sinkhorn algorithm with SAG, tuned with different
stepsizes. Each pass corresponds to a n×n matrix-vector product. We used minibatches
of size 200 for SAG. Left plot: convergence of the gradient `1 norm (average and ±
standard deviation error bars). A stepsize of 3/L achieves a substantial speed-up of
≈ 2.5, as illustrated in the boxplots in the center plot. Convergence to v∗ (the best dual
variable across all variables after 4, 000 passes) in `2 norm is given in the right plot, up
to 2, 000 ≈ 211 steps.

This proposition is a direct application of the convergence rate of SAG for non-
strongly convex functions. However, this improvement is made at the expense of storing
the gradient for each of the n points. This expense can be mitigated by considering
mini-batches instead of individual points. Note that the SAG algorithm is adaptive to
strong-convexity and will be linearly convergent around the optimum. The pseudo-code
for SAG is provided in Algorithm 3, and we defer more details on SGD for Section 4, in
which it will be shown to play a crucial role. Note that the choice of the step-size (C
in the algorithm) depends on the Lipschitz constant of all these terms, which is upper
bounded by L = maxi αi/ε. We discuss this in the following section.

3.3 Numerical Illustrations on Bags of Word-Embeddings.

Comparing texts using the Wasserstein distance on their representations as clouds
of word embeddings has been recently shown to yield state-of-the-art accuracy for text
classification (Kusner et al., 2015). The authors of the latter have however highlighted
that this accuracy comes at a large computational cost. We test our stochastic approach
to discrete OT in this scenario, using the complete works of 35 authors 1. We use
Glove word embeddings (Pennington et al., 2014) to represent words, namely X =
Y = R300. We discard all most frequent 1, 000 words that appear at the top of the

1The list of authors we consider is: Keats, Cervantes, Shelley, Woolf, Nietzsche, Plutarch, Franklin,
Coleridge, Maupassant, Napoleon, Austen, Bible, Lincoln, Paine, Delafontaine, Dante, Voltaire, Moore,
Hume, Burroughs, Jefferson, Dickens, Kant, Aristotle, Doyle, Hawthorne, Plato, Stevenson, Twain,
Irving, Emerson, Poe, Wilde, Milton, Shakespeare.
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Figure 4.2 – Comparisons between the Sinkhorn algorithm and SAG, tuned with differ-
ent stepsizes, using different regularization strengths. The setting is identical to that
used in Figure 1. Note that to prevent numerical overflow when using very small reg-
ularizations, the metric is thresholded such that rescaled costs c(x, yj)/ε are not bigger
than log(10200).

file glove.840B.300d provided on the authors’ website. We sample N = 20, 000 words
(found within the remaining huge dictionary of relatively rare words) from each authors’
complete work. Each author is thus represented as a cloud of 20, 000 points in R300.
The cost function c between the word embeddings is the squared-Euclidean distance, re-
scaled so that it has a unit empirical median on 2, 000 points sampled randomly among
all vector embeddings. We set ε to 0.01 (other values are considered in Figure 4.2). We
compute all (35×34/2 = 595) pairwise regularized Wasserstein distances using both the
Sinkhorn algorithm and SAG. Following the recommendations in (Schmidt et al., 2016),
SAG’s stepsize is tested for 3 different settings, 1/L, 3/L and 5/L. The convergence of
each algorithm is measured by computing the `1 norm of the gradient of the full sum
(which also corresponds to the marginal violation of the primal transport solution that
can be recovered with these dual variables(Cuturi, 2013)), as well as the `2 norm of the
deviation to the optimal scaling found after 4, 000 passes for any of the three methods.
Results are presented in Fig. 4.1 and suggest that SAG can be more than twice faster
than Sinkhorn on average for all tolerance thresholds. Note that SAG retains exactly
the same parallel properties as Sinkhorn: all of these computations can be streamlined
on GPUs. We used 4 Tesla K80 cards to compute both SAG and Sinkhorn results. For
each computation, all 4, 000 passes take less than 3 minutes (far less are needed if the
goal is only to approximate the Wasserstein distance itself, as proposed in (Kusner et al.,
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2015)).

4 Semi-Discrete Optimal Transport

In this section, we assume that α is an arbitrary measure (in particular, it needs not
to be discrete) and that β =

∑m
j=1 βjδyj is a discrete measure. This corresponds to the

semi-discrete OT problem (Aurenhammer et al., 1998; Mérigot, 2011). The semi-dual
problem (Sε) is then a finite-dimensional maximization problem, written in expectation
form as

Wε(α, β) = max
v∈Rm

Gε(v) where Gε(v) def.= Eα
[
gXε (v)

]
,

and gxε is defined in (2.3).

4.1 Stochastic Semi-discrete Optimization with SGD

Since the expectation is taken over an arbitrary measure, neither Sinkhorn algorithm
nor incremental algorithms such as SAG can be used directly. An alternative is to
approximate α by an empirical measure α̂N

def.= 1
N

∑N
i=1 δxi where (xi)i=1,...,N are i.i.d

samples from α, and computing Wε(α̂N , β) using the discrete methods (Sinkhorn or
SAG) detailed in Section 3. However this introduces a discretization noise in the solution
as the discrete problem is now different from the original one and thus has a different
solution. SGD on the other hand does not require α to be discrete and is thus perfectly
adapted to this semi-discrete setting. The idea of SGD is fairly intuitive : at each
iteration, a sample xk is drawn from α and the gradient ∇gxkε is computed at the
current iterate v(k) to serve as a proxy for the full gradient ∇Gε. The iterates are given
by:

v(k+1) = v(k) + C√
k
∇vgxkε (v(k+1)) where xk ∼ α. (4.1)

The convergence rate is given for the average of the iterates, as it is known to converge
faster (Polyak and Juditsky, 1992):

Proposition 22. Consider v∗ε a minimizer of Gε, and v(k) the iterates of SGD defined
in (4.1). Let v̄(k) def.= 1

k

∑k
i=1 v(k) the average of these iterates. Then

|Gε(v∗ε)−Gε(v̄(k))| = O(1/
√
k).

The algorithm, including the averaging step, is detailed in Algorithm 4.
Recall from Proposition 20 that the gradient of gxε (or subgradient, when ε = 0) is

given by

∇vgxε (v) = β − χε(x,v), where χε(x,v)i =


exp( vi−c(x,yi)

ε
)∑m

j=1 exp(
vj−c(x,yj)

ε
)

if ε > 0,

1i=j∗(x) if ε = 0,



104 CHAPTER 4. STOCHASTIC OPTIMIZATION FOR LARGE SCALE OT

and j∗(x) = argmini∈{1...n} c(x, yi) − vi. The function in the gradient, χε(x,v) is a
smoothed version of the indicator of Laguerre cells with weight vector v which naturally
appear in semi-discrete Optimal Transport (see rem. 11 in sec 4.3.3 of Chapter 1 for a
detailed explanation and some illustrations). In particular, (Mérigot, 2011) considers
the unregularized dual problem, maxv∈Rm G0(v), where

G0(v) def.=
m∑
j=1

vjβj+
∫
X

(min
k
c(x, yk)−vk)dα(x) =

m∑
j=1

(
vjβj+

∫
Lagj(v)

c(x, yj)− vjdα(x)
)
,

and Lagj(v) is the cell with center yj in the Laguerre diagram with weights v. The
problem is solved using gradient descent, where the gradient is given by

(∇G0(v))j = βj −
∫
Lagj(v)

dα(x).

In our stochastic gradient descent approach, for the unregularized case, we are thus
replacing the integral over the Laguerre cell, which is very costly to compute, by a
simple max search.

Algorithm 4 Averaged SGD for Semi-Discrete OT
Input: step size C ∈ R+

Output: dual potential v̄ ∈ Rm

v← 0m (iterates for SGD)
v̄← v (dual potential obtained by averaging)
for k = 1, 2, . . . do

Sample xk from α

v← v + C√
k
∇vgxkε (v) (gradient ascent step using v)

v̄← 1
kv + k−1

k v̄ (averaging step to get faster convergence of v)
end for

4.2 Numerical Illustrations on Synthetic Data

Simulations are performed in X = Y = R3. Here α is a Gaussian mixture (continuous
density) and β = 1

m

∑m
j=1 δyj with m = 10 and (xj)j are i.i.d. samples from another

Gaussian mixture. Each mixture is composed of three Gaussians whose means are drawn
randomly in [0, 1]3, and their correlation matrices are constructed as Σ = 0.01(RT +
R) + 3I3 where R is 3× 3 with random entries in [0, 1]. In the following, we denote v∗ε
a solution of (Sε), which is approximated by running SGD for 107 iterations, 100 times
more than those plotted, to ensure reliable convergence curves. Both plots are averaged
over 50 runs, lighter lines show the variability in a single run.

Figure 4.3 (a) shows the evolution of ||vk−v∗0||2/||v∗0||2 as a function of k. It highlights
the influence of the regularization parameters ε on the iterates of SGD. While the
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(a) SGD (b) SGD vs. SAG

Figure 4.3 – (a) Plot of ||vk−v∗0||2/||v∗0||2 as a function of k, for SGD and different values
of ε (ε = 0 being un-regularized). (b) Plot of ||vk − v∗ε||2/||v∗ε||2 as a function of k, for
SGD and SAG with different number N of samples, for regularized OT using ε = 10−2.

regularized iterates converge faster, they do not converge to the correct unregularized
solution. This figure also illustrates the convergence theorem of solution of (Sε) toward
those (S0) when ε → 0.. Figure 4.3 (b) shows the evolution of ||vk − v∗ε||2/||v∗ε||2 as a
function of k, for a fixed regularization parameter value ε = 10−2. It compares SGD to
SAG using different numbers N of samples for the empirical measures α̂N . While SGD
converges to the true solution of the semi-discrete problem, the solution computed by
SAG is biased because of the approximation error which comes from the discretization
of α. This error decreases when the sample size N is increased, as the approximation of
α by α̂N becomes more accurate.

5 Continuous Optimal Transport Using RKHS

In the case where neither α nor β are discrete, problem (Sε) is infinite-dimensional,
so it cannot be solved directly using SGD. We propose in this section to solve the ini-
tial dual problem (Dε), using expansions of the dual variables in a reproducing kernel
Hilbert spaces (RKHS). Comparing two probability distributions thanks to a maximiza-
tion problem over a RKHS reminds of the definition of Maximum Mean Discrepancy
(MMD)(Sriperumbudur et al., 2012), which is described in details in Chapter 1, Sec 2.2.
However, unlike the MMD, problem (Dε) involves two different dual functions u and
v, one for each measure. Contrarily to the semi-discrete setting, we can only solve the
regularized problem here (i.e. ε > 0), since (Dε) cannot be cast as an expectation
maximization problem when ε = 0.

5.1 Kernel SGD

We consider two RKHS H and G defined on X and on Y, with kernels κ associated
with norms ‖ ·‖H and ‖ ·‖G . Note that we could consider two distinct kernels κ and ` for
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each RKHS but since we know from Chapter 3, Sec. 4 that both potentials are in similar
RKHS (they might be defined on different spaces, but have the same regularity) it is
more natural to use the same kernel function κ. Recall the two fundamental properties
of RKHS:

(a) if u ∈ H, then u(x) = 〈u, κ(·, x)〉H,

(b) κ(x, x′) = 〈κ(·, x), κ(·, x′)〉H.

The dual problem (Dε) is conveniently re-written in Proposition (19) as the maximiza-
tion of the expectation of fXYε (u, v) with respect to the random variables (X,Y ) ∼ α⊗β,
where

fxyε (u, v) def.= u(x) + v(y)− ε exp
u(x)+v(y)−c(x,y)

ε . (5.1)

The SGD algorithm applied to this infinite-dimensional problem reads, starting with
u0 = 0 and v0 = 0, u

(k) def.= u(k−1) + C√
k
∇ufxk,ykε (u(k−1), v(k−1))

v(k) def.= v(k−1) + C√
k
∇vfxk,ykε (u(k−1), v(k−1)),

(5.2)

where (xk, yk) are i.i.d. samples from α ⊗ β and u and v are functions over X and
Y respectively. Following Kivinen et al. (2002), we solve this problem with stochastic
gradient descent over a RKHS. This amounts to restricting the minimization space to
functions that are expansions of kernel functions (property (b) of RKHS stated above).
We show that these (u(k), v(k)) iterates can be expressed as finite sums of kernel functions,
with a simple recursion formula.

Algorithm 5 Kernel SGD for continuous OT
Input: step size C, kernel κ
Output: (w(k), xk, yk)k=1,...

for k = 1, 2, . . . do
Sample xk from α

Sample yk from β

u(k−1)(xk)
def.=
∑k−1
i=1 w

(i)κ(xk, xi)
v(k−1)(yk)

def.=
∑k−1
i=1 w

(i)κ(yk, yi)
w(k) def.= C√

k

(
1− exp

(
u(k−1)(xk)+v(k−1)(yk)−c(xk,yk)

ε

) )
end for

Proposition 23. The iterates of kernel-SGD in a RKHS H with kernel κ are given byu
(k) def.=

∑k
i=1w

(i)κ(·, xi)

v(k) def.=
∑k
i=1w

(i)κ(·, yi)),
(5.3)
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where
w(i) def.= C√

i

(
1− exp

(
u(i−1)(xi) + v(i−1)(yi)− c(xi, yi)

ε

))
,

and (xi, yi)i=1...k are i.i.d samples from α⊗ β.

Proof. Replacing u(x) and v(y) by their scalar product formulation in their respective
RKHS, fxyε (u, v) can be rewritten

fxyε (u, v) = 〈u, κ(x, ·)〉H + 〈v, κ(y, ·)〉G − ε exp
(〈u, κ(x, ·)〉H + 〈v, κ(y, ·)〉G − c(x, y)

ε

)
.

The partial derivatives with respect to u and v are thus given by

∂fxyε
∂u

(u, v) = κ(x, ·)
(

1− exp
(〈u, κ(x, ·)〉+ 〈v, κ(y, ·)〉 − c(x, y)

ε

))
,

∂fxyε
∂v

(u, v) = κ(y, ·)
(

1− exp
(〈u, κ(x, ·)〉+ 〈v, κ(y, ·)〉 − c(x, y)

ε

))
.

Plugging this formula in the SGD iteration (5.2) yields : u(k) = u(k−1) +w(k)κ(·, xk) and
v(k) = v(k−1) + w(k)κ(·, yk), where w(k) def.=

(
1− exp(u

(k−1)(xk)+v(k−1)(yk)−c(xk,yk)
ε )

)
. As

we start from (u(0), v(0)) = (0, 0), the parameters (w(i))i<k are not updated at iteration
k, we get the announced formula.

Algorithm 5 describes our kernel SGD approach, in which both potentials u and v
are approximated by a linear combination of kernel functions. After nit iterations, the
algorithm returns the samples (xk, yk)k=1...nit and the iterates (w(k))k=1...nit which are
stored at each iteration. The dual potentials (u, v) can then be evaluated at any point
(x, y) ∈ X × Y with the following formula

u(x) =
nit∑
i=1

w(i)κ(x, xi) and v(y) =
nit∑
i=1

w(i)κ(y, yi).

The main cost at each iteration k lies in the computation of the terms u(k−1)(xk)
def.=∑k−1

i=1 w
(i)κ(xk, xi) and v(k−1)(yk)

def.=
∑k−1
i=1 w

(i)κ(yk, yi) which imply a quadratic com-
plexity O(k2). Thus the complexity of each iteration increases over time. Several meth-
ods exist to alleviate the running time complexity of kernel algorithms, e.g. random
Fourier features (Rahimi and Recht, 2007) or incremental incomplete Cholesky decom-
position (Wu et al., 2006) whose implementation we detail below.

Proposition 24. (Convergence of Kernel SGD) When α and β are supported on
bounded subspaces of Rd, then if κ is the Matern kernel, or any universal kernel, the
iterates (u(k), v(k)) defined in proposition 23 converge to a solution of (Dε).

Proof. To obtain convergence of kernel SGD, we need to make sure that the poten-



108 CHAPTER 4. STOCHASTIC OPTIMIZATION FOR LARGE SCALE OT

tials can be approximated by a linear combination of kernel functions. Theorem 13 in
Chapter 3 tells us that if the cost function is smooth enough, the dual variables are
also smooth and to belong to a ball with radius independent of α and β in the Sobolev
space Hs(Rd). Since Hs(Rd) is a RKHS for s > d/2, its functions can be expressed as a
linear combination of the associated kernel, which is called Matérn kernel. Otherwise,
universal kernels can by definition approximate any smooth function (Steinwart and
Christmann, 2008).

The choice of the kernel function is instrumental in kernel methods to obtain good
performance. Since the dual potentials (u, v) are in Hs(Rd) (under smoothness assump-
tions on the cost) which is a RKHS for s > d/2, its associated kernel - called Matérn
kernel - is a natural choice. However, their complex definition in dimension larger than
1 makes them impractical. We thus resort to universal kernels, which can by definition
approximate any smooth function. In Euclidean spaces X = Y = Rd, where d > 0, a
natural choice of universal kernel is the Gaussian kernel κ(x, x′) = exp(−||x− x′||2/σ2).
Tuning its bandwidth σ is crucial to obtain a good convergence of the algorithm, as we
will point out in the numerical experiments below.

Finally, let us note that, while entropic regularization of the primal problem (Pε)
was necessary to be able to apply semi-discrete methods in Sections 3 and 4, this is not
the case here. Indeed, since the kernel SGD algorithm is applied to the dual (Dε), it is
possible to replace KL(π|α⊗β) appearing in (Pε) by other regularizing divergences. An
example of another regularizer would be a χ2 divergence

∫
X×Y( dπ

dαdβ (x, y))2dα(x)dβ(y)
(with positivity constraints on π). See Chapter 1, Sec. 3 for details on regularizing OT
with ϕ-divergences. However, note that convergence of the iterates is only proved for
entropic regularization, as a result of the boundedness of the potentials in Sobolev norm
proved in Chapter 3.

5.2 Speeding up Iterations with Kernel Approximation

The main drawback of kernel-SGD is the fact that as the computational time grows
quadratically with the number of samples (or equivalently, the number of iterations). We
explore here approximate feature expansion methods, which replace the kernel function
by the scalar product between two approximate feature functions in low dimension.

5.2.1 Incomplete Cholesky Decomposition

An fundamental property of RKHS is the fact that the kernel function κ can be
rewritten as a scalar product of feature maps ϕ : X → F where F is the (possibly in-
finite dimensional) feature space. The idea behind incomplete Cholesky decomposition
is to introduce an approximate feature function ϕ̃ that maps data points to a finite
dimensional vector, through a kernel matrix computed on a small number of samples.
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Algorithm 6 Kernel SGD for continuous OT with incomplete Cholesky decomposition
Input: step size C, kernel κ, feature space dimension I
Output: (wu,wv)k=1,...

Sample (XI , YI)
def.= (xi, yi)i=1...I from α⊗ β

KX
def.= κ(XI , XI) ; KY

def.= κ(YI , YI)
Compute (KX)−

1
2

def.= pinv(Chol(KX)) (pseudo-inverse of Cholesky root of KX)
(KY )−

1
2

def.= pinv(Chol(KY )).
for k = 1, 2, . . . do

Sample (xk, yk) from α⊗ β
ϕ̃xk

def.= (KX)−
1
2κ(XI , xk) ; ψ̃yk

def.= (KY )−
1
2κ(YI , yk) (approximate features)

λ(k) def.= exp
(

(ϕ̃xk)TWu
k−1+(ψ̃y

k
)TW v

k−1−c(xk,yk)
ε

)
w(k)
u = w(k−1)

u + Cu√
k
(1− λ(k))ϕ̃xk ; w(k)

v = w(k−1)
v + Cv√

k
(1− λ(k))ψ̃yk

end for

Consider KI the kernel matrix computed on a sample I = (x1, . . . , xI) of i.i.d. realiza-
tions of α, such that (KI)ij = κ(xi, xj). Following (Bach, 2013), we use this sample to
compute the following approximate feature function:

ϕ̃(x) def.= K
− 1

2
I (κ(xi, x))i∈I ∈ RI , (5.4)

where K−
1
2

I is the inverse of the Cholesky decomposition of KI . One can easily check
that for any pair (xi, xj) in the dataset I, ϕ̃(xi)T ϕ̃(xj) = κ(xi, xj) Thus, for any pair of
points (x, x′) we can approximate the kernel by κ(x, x′) ' ϕ̃(x)T ϕ̃(x′). The functional
whose expectation has to be maximized over (u, v) reads

fxyε (u, v) = u(x) + v(y)− ε exp
(
u(x) + v(y)− c(x, y)

ε

)
.

In the RKHS, considering a sample (xi, yi)i=1...n, we can express u and v as linear
combinations of kernel functions u(x) =

∑n
i=1 aiκ(xi, x) and v(y) =

∑n
i=1 biκ(yi, y).

Replacing the kernel by the scalar product of approximate features, we can rewrite
u(x) =

∑n
i=1 aiϕ̃(xi)T ϕ̃(x) and v(y) =

∑n
i=1 biψ̃(yi)T ψ̃(y) where ϕ̃ (resp. ψ̃) is con-

structed from the kernel matrix of i.i.d. samples (x1, . . . , xn) (resp.(y1, . . . , yn)) from
distribution α (resp. β). Plugging these expressions back in fxyε (u, v), the problem boils
down to optimizing over (a,b) ∈ Rn

f̃xyε (a, b) =
n∑
i=1

aiϕ̃(xi)T ϕ̃(x) +
n∑
i=1

biψ̃(yi)T ψ̃(y)

− ε exp
(∑n

i=1 aiϕ̃(xi)Tϕ(x) +
∑n
i=1 biψ̃(yi)T ψ̃(y)− c(x, y)
ε

)
.
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We introduce a change of variables (wu,wv)
def.= (

∑n
i=1 aiϕ̃(xi),

∑n
i=1 biψ̃(yi)) which

yields

f̃xyε (wu,wv) = ϕ̃(x)Twu + ψ̃(y)Twv + exp
(
ϕ̃(x)Twu + ψ̃(y)Twv − c(x, y)

ε

)
.

SGD can now be used to compute iterates of (wu,wv) which are two vectors of size I,
whereas (a,b) were vectors of size n, the size of the sample growing with each iteration of
the algorithm. The algorithm for kernel SGD with incomplete Cholesky decomposition
is outlined below. The algorithm outputs the pair of vectors (wu,wv) from which we
recover the dual variables via

u(x) = wT
u ϕ̃(y) and u(x) = wT

v ψ̃(y).

5.2.2 Random Fourier Features

Random Fourier Features (RFF) are another popular approximation of the feature
map in the case where the kernel function is translation invariant i.e. κ(x, y) = κ(y−x).

Proposition 25. (Rahimi and Recht, 2007) Consider a translation invariant kernel
κ, and let p denote its Fourier transform. Let (ω1, . . . , ωD) a D−sample from p and
(b1, . . . , bD) a D−sample from U [0, 2π]. We define the approximate feature map z : X 7→
RD by

z(x) =
√

2
D

[cos(ωT1 x+ b1), . . . , cos(ωTDx+ bD)],

Then z(x)T z(y) is an good approximation of k(x− y) with high probability :

P[sup
x,y
|z(x)T z(y)− k(x− y)| > ε] = O(exp −Dε

4(d+ 2)).

Results from (Rahimi and Recht, 2009) imply that O(n) random features are needed
to obtain a O(1/

√
n) bound on the error when learning with RFF in a general setting.

However, these bounds are refined in (Rudi and Rosasco, 2017) and (Carratino et al.,
2018) to O(

√
n) random features for kernel ridge regression and supervised learning

with a squared loss, respectively. Contrarily to the incomplete Cholesky decomposition,
which could be used for any positive definite kernel κ, Random Fourier Features require
to have an explicit formula for the Fourier transform of κ which restricts the possibilities.
For a Gaussian kernel with bandwidth σ, its Fourier transform is a Gaussian with
bandwidth 1/σ2. Thus the frequencies ω are drawn according to a N (0, 1/σ2). The
details of the implementation of kernel SGD with RFF are given in algorithm 7. The
procedure is the same as the one used for kernel SGD with incomplete Cholesky, namely
using the kernel expansion for u and v and then making a change of variable to reduce
the dimensionality of the problem. The approximate feature functions ϕ̃ and ψ̃ from
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Algorithm 7 Kernel SGD for continuous OT with Random Fourier Features
Input: C, kernel κ, Fourier transform of the kernel p, dimension of feature space D
Output: (wu,wv)k=1,...
Sample (ω1, . . . , ωD) from p
Sample (b1, . . . , bD) from U [0, 2π]
Def z(x) :

return
√

2
D [cos(ωT1 x+ b1), . . . , cos(ωTDx+ bD)]

for k = 1, 2, . . . do
Sample (xk, yk) from α⊗ β
z

(k)
x = z(xk) ; z

(k)
y = z(yk)

λ(k) def.= exp
(

(z(k)
x )Tw(k−1)

u +(z(k)
y )Tw(k−1)

v −c(xk,yk)
ε

)
w(k)
u = w(k−1)

u + Cu√
k
(1− λ(k))z(k)

x ; w(k)
v = w(k−1)

v + Cv√
k
(1− λ(k))z(k)

y

end for

Cholesky decomposition are replaced by z, the feature map obtained with RFF (note
that contrarily to the Cholesky method, we use the same feature map for expansions of
u and v). The algorithm outputs the pair of vectors (wu,wv) from which we recover
the dual variables via

u(x) = wT
u z(x) and v(y) = wT

v z(y).

5.3 Comparison of the Three Algorithms on Synthetic Data

We consider optimal transport in 1D between a Gaussian α and a Gaussian mix-
ture β whose densities are represented in Figure 4.4 (a). Since there is no exist-
ing benchmark for continuous transport, we use as a proxy for β an empirical distri-
bution β̂N

def.= 1
N

∑N
i=1 δyi with N = 103 and we compute the solution of the semi-

discrete problem Wε(α, β̂N ) with SGD. SGD yields a N−dimensional vector v from
which we can compute u at any point of the space thanks to the optimality condition
u(x) = −ε(log 1

N

∑N
i=1 e

vi−c(x,yi)
ε ).

We first exhibit the convergence of the classic method (without speedup by approx-
imate features) by studying the convergence of the potential u. The iterates u(k) are
plotted on a grid for different values of k in Figure 4.4 (c), to emphasize the conver-
gence to the proxy û∗. We can see that the iterates computed with the RKHS converge
faster where α has more mass. This makes sense, since convergence estimates are for
E[fXYε (u(k), v(k))] and thus the value of u(k) has more influence where α has more mass.
Figure 4.4 (b) represents the plot of ||u(k) − û∗||2/||û∗||2 where u(k) (resp. û∗) is the
evaluation of u(k) (resp. û∗) on a sample (xi)i=1...N ′ drawn from α. This gives more
emphasis to the norm on points where α has more mass, for the reason given before.

We then compare the classic method to both speedup methods in terms of CPU time.
We choose a Gaussian kernel as it is simple to implement in all three cases although it is
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Figure 4.4 – Numerical illustration of the performance of classic kernel-SGD (without
features approximation) (a) Plot of dα

dx and dβ
dx . (b) Plot of ||u(k) − û∗||2/||û∗||2 as a

function of k with SGD in the RKHS, for regularized OT using ε = 10−1. (c) Plot of
the iterates u(k) for k = 103, 104, 105 and the proxy for the true potential û∗, evaluated
on a grid where α has non negligible mass.
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Figure 4.5 – Comparison of the three kernel-SGD algorithms (without speedup, with in-
complete Cholesky decomposition, and with Random Fourier Features) for the Gaussian
kernel. Computational time is quadratic in the number of iterations for classic kernel-
SGD, but becomes linear with an approximate features approach. Increasing the quality
of feature approximation (parameter I for Cholesky, D for RFF) does not significantly
impact computational time.
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Figure 4.6 – Comparison of convergence of kernel-SGD with different methods, to
solve regularized OT using ε = 10−1for different methods. The curves represent
||uk − û∗||2/||û∗||2 as a function of k. Random Fourier Features with D > 20 give similar
performance to the classic kernel-SGD method in under 3 minutes against over 6 hours
for the classic method (for 106 iterations).

fairly sensitive to the bandwidth parameter σ. The computation time as a function of the
iteration number is given in Figure 4.5, As mentioned previously, the main cost of classic
kernel-SGD lies in the computation of the iterates u(k−1)(xk)

def.=
∑k−1
i=1 w

(i)κ(xk, xi)
and v(k−1)(yk)

def.=
∑k−1
i=1 w

(i)κ(yk, yi). Thus, the iterations become more costly over
time, making this algorithm impractical for applications. On the other hand, for both
speedup methods, the computation time of u(k−1)(xk) is the same for each iteration.
The incomplete Cholesky decomposition requires some preprocessing to compute the
inverse of the Cholesky root of the kernel matrix on a sample denoted by (KX)−

1
2 , after

which the main cost of each iteration is computing the feature vector of xk, denoted
ϕ̃xk

def.= (KX)−
1
2κ(XI , xk) and then its scalar product with w(k−1)

u to get u(k−1)(xk). For
the Random Fourier Features, the preprocessing is minimal, as is simply consists in
drawing a D-sample from the probability distribution p corresponding to the Fourier
transform of the kernel, and another D-sample from the uniform on [0, 2π] to define the
approximate feature function z. Then the main cost of each iteration also resides in
the computation of the feature vector z(xk)

def.=
√

2
D [cos(ωT1 x+ b1), . . . , cos(ωTDx+ bD)],

before computing its scalar product with w(k−1)
u to get u(k−1)(xk). Thus, aside from pre-

processing, the difference in iteration time between Cholesky decomposition and RFF
lies in the computation of the feature vector. In our implementation, RFF are slightly
more efficient, even for larger feature size D.

We are now interested in how the major speedup gained with approximate features
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impacts the quality of the solution. The curves in Figure 4.6 plot the convergence of
u(k) to û∗ for each of the methods, with the same learning rate C and bandwidth σ. For
the Cholesky decomposition, the parameter I controls the quality of the approximation.
Note that numerically, we are limited to small values of I (no more than 15) because the
eigenvalues of the kernel matrix decay exponentially fast with its dimension and thus
its Cholesky root quickly become non-invertible. For the Random Fourier Features,
the quality of the approximation is controlled by D, for which we have no particular
restriction. From the CPU-time experiment, we see that taking larger values of I and D
doesn’t impact the computation time very much, but it clearly improves convergence up
to a certain point after which there is no more improvement. We can see that Random
Fourier Features yield a better approximation than incomplete Cholesky decomposition
even for small D. In terms of performance, RFF with feature vectors of size D =
20, 50, 100 give similar results, while D = 5 is too small to get a good approximation. In
terms of computational time, RFF with D = 20 takes less than 3 minutes to perform 106

iterations, while D = 100 takes around 5 minutes, without any significant improvement.
In comparison, to reach the same level of precision (which requires the same number of
iterations), classic kernel-SGD takes over 6 hours!



Conclusion

Entropy-regularized OT was historically introduced in (Cuturi, 2013) as a computa-
tional tool to solve discrete OT efficiently thanks to Sinkhorn’s algorithm, and it opened
the door to a rich line of research which aims at better understanding its computational
and theoretical scope. The contributions of this thesis to this topic can be organized
in two main axes. The first one consists in exploiting the properties of entropic regu-
larization to make OT-based losses efficient in machine-learning problems. The second
one concerns the interpolation property of entropy-regularized OT, bridging the gap
between standard OT and MMD.

Making OT-based Losses Tractable for Machine Learning. Using the entropic
regularization with respect to the product measure of the marginals (Genevay et al.,
2016) enables us to address both the computational and the statistical issues from which
standard OT suffers, by reformulating entropy-regularized OT as the maximization of
an expectation (Chapter 1, Sec. 3).

The Statistical Issue: We prove that the dual optimizers of entropy-regularized OT
lie in a ball of a Reproducing Kernel Hilbert Space (Chapter 3, Sec. 4). Combined
with the formulation as an expectation, this enables us to use techniques from error
bounding in learning theory to get a sample complexity result for entropy-regularized
OT. We prove that for a large enough regularization, entropy-regularized OT does not
suffer from a curse of dimensionality (Chapter 3, Sec. 5).

The Computational Issue: Sinkhorn’s algorithm was a major breakthrough for com-
putational OT, but it is limited to discrete measures, and does not scale well when these
measures have a very large number of points. The formulation as an expectation allows
us to use stochastic optimization solvers, which only require samples from the measures
and operate in an online manner (Chapter 4). These algorithms can tackle cases where
Sinkhorn is not a suitable choice to solve entropy-regularized OT: discrete problems with
a very large number of points, or problems involving continuous measures. For problems
involving two continuous measures, we can exploit the fact that the dual optimizers of
entropy-regularized OT lie in a ball of a Reproducing Kernel Hilbert Space to derive a
provably convergent kernel-SGD solver (Chapter 4, Sec. 5.1).

Minimizing OT-based Losses: We make use of the GPU-friendly structure of Sinkhorn’s
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algorithm to propose a minimization scheme for OT based-losses (Chapter 2, Sec. 3). We
use stochastic gradient over an approximate loss computed with Sinkhorn’s algorithm
and compute the gradient with automatic differentiation. We use this method to learn a
parametric distribution from samples, and prove that it scales well to high-dimensional
problems such as generative models of images (Chapter 2, Sec. 4.3) where it can improve
on state-of-the-art methods.

Interpolating Between OT and MMD with Sinkhorn Divergences. When
comparing one measure to itself, the loss induced by entropy-regularized OT is not
equal to zero. To solve this issue, we introduced Sinkhorn Divergences, which are based
on entropy-regularized OT with corrective terms. This new family of losses interpolates
between OT when the regularization parameter goes to zero and MMD when the regu-
larization parameter goes to infinity (Chapter 2, Sec. 2.4). The interpolation property
is also true in terms of sample complexity, which gives theoretical grounds to empirical
evidence suggesting that using a regularizer that is not too small is better in practice.
Indeed, when the regularization parameter is large enough we recover sample complexity
rates from MMD, thus breaking the curse of dimensionality from OT. However, when
taking a small regularization, sample complexity degrades quickly in high dimension
(Chapter 3, Sec. 5). This theoretical result further advocates for the use of Sinkhorn
Divergences with regularization parameters that are not too small. Aside from yielding
better performance for machine learning tasks, a large regularization parameter ensures
a faster convergence of Sinkhorn’s algorithm and is thus also beneficial in terms of com-
putational time. In practice, the regularization parameter in Sinkhorn Divergences gives
an additional degree of freedom to the loss function which can be cross-validated to get
the best of both OT and MMD in learning tasks (Chapter 2, Sec. 4).

Perspectives for Further Work.

Let us start by mentioning direct extensions of results from this thesis. The first idea
to explore is the extension of the sample complexity result from Chapter 3, Theorem 14,
to non-smooth cost functions and metric spaces that are not bounded subsets of Rd.
Another improvement would consist in tightening the upper-bound on the convergence
rate in this theorem to combine it with Theorem 12, which gives a convergence rate on
the approximation of OT with regularized OT. Thus we would get a heuristic on the
choice of the regularization parameter depending on the number of available samples
when one wants to approximate standard OT with regularized OT computed on samples.
Another issue linked to this chapter, but which extends beyond the techniques that we
used, is to derive convergence rates with respect to the number of samples for the
regularized transport plan, i.e. the optimizer of the primal problem, as it is a crucial
feature for some machine learning problems (e.g. domain adaptation (Courty et al.,
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2016)).
In Chapter 4, Sec. 5.1 we develop an algorithm to compute regularized OT between

any two arbitrary measures using kernel-SGD on the dual problem. We only apply
our algorithm to a simple 1D problem as a proof of concept, as we did not have any
baseline to assess convergence of entropy-regularized OT for continuous measures in
high dimension. However, following (Seguy et al., 2017) which uses our scheme with
a neural-network parametrization of the dual variables instead of a RKHS expansion,
we could use the results directly to perform learning tasks that involve OT between
continuous measures. The applications they consider are domain adaptation and image
generation. Besides, all stochastic algorithms presented in Chapter 4 could be extended
to the case of regularized unbalanced OT (Chizat et al., 2018), as it can also be cast as
the maximization of an expectation (see Chapter 1, Remark 6).

The introduction of Sinkhorn Divergences opens the door to several extensions or
generalizations. For instance, one might consider unbalanced Sinkhorn Divergences
defined with regularized unbalanced OT and see if the interpolation property, positive
definiteness and sample complexity results still hold. Another thing would be to extend
the sample complexity and positive definiteness results to Sinkhorn Divergences defined
without the added entropy in the cost function (see Definition 9 and Remarks 13 and 14),
and more generally to understand the potential benefits and drawbacks of using the
entropy or not when considering the cost in Sinkhorn Divergences. Eventually, using
regularizers other than the relative entropy as introduced in Chapter 1, Sec. 3 is a track
worth exploring, although the entropy is central to most of our analysis and only the
online algorithm from Chapter 4, Sec. 4 for continuous measures directly applies.

Wasserstein barycenters, which are used to represent the mean of a set of empirical
probability measures (Agueh and Carlier, 2011) represent a rich line of research in
OT although we did not explore it in this thesis. They can be computed efficiently
with entropic regularization (Cuturi and Doucet, 2014), and the online semi-discrete
solver developed in Chapter 4, Sec. 4 is well suited to aggregate streaming data (Staib
et al., 2017). Given the good numerical results obtained for the Wasserstein barycenter
problem with entropy, they could also benefit from the corrective terms in Sinkhorn
Divergences.

Taking a step back from entropy-regularized OT, an open issue which is central to
Chapter 2 is the evaluation of generative models (see Sec. 4.3). Comparing the outcomes
of learning procedures with various losses is a burning issue and the lack of good eval-
uation metrics makes it impossible to make a definitive ranking of the different losses
appearing in the literature. The recent paper by (Lucic et al., 2018) introduces some
evaluation metrics suggesting that losses are all equivalent for high dimensional problems
such as image generation, making the architecture of the network the most important
factor. It is then crucial to understand how the architecture influences smoothness,
generalization properties or interpolation in the latent space for instance. Besides,
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even though different losses yield similar results for the inference of generative mod-
els, entropy-regularized OT can still act as robust metrics to evaluate models after the
inference procedure.

Eventually, we conclude this thesis with a final question : are there ways to break the
curse of dimensionality for the Wasserstein distance? Sinkhorn Divergences provide a
robust loss for a large enough regularization as seen in Chapter 3, but they do not solve
the curse of dimensionality when one wants to compute standard OT from samples. The
existence of robust empirical estimators of the Wasserstein distance in high dimension
still remains an open question.
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Résumé

Le Transport Optimal régularisé par
l’Entropie (TOE) permet de définir
les Divergences de Sinkhorn (DS),
une nouvelle classe de distance en-
tre mesures de probabilités basées
sur le TOE. Celles-ci permettent
d’interpoler entre deux autres dis-
tances connues: le Transport Op-
timal (TO) et l’Ecart Moyen Maxi-
mal (EMM). Les DS peuvent être
utilisées pour apprendre des mod-
èles probabilistes avec de meilleures
performances que les algorithmes
existants pour une régularisation
adéquate. Ceci est justifié par
un théorème sur l’approximation des
SD par des échantillons, prouvant
qu’une régularisation suffisante per-
met de se débarrasser de la malé-
diction de la dimension du TO, et l’on
retrouve à l’infini le taux de conver-
gence des EMM. Enfin, nous présen-
tons de nouveaux algorithmes de
résolution pour le TOE basés sur
l’optimisation stochastique ‘en-ligne’
qui, contrairement à l’état de l’art, ne
se restreignent pas aux mesures dis-
crètes et s’adaptent bien aux prob-
lèmes de grande dimension.

Mots Clés

Apprentissage Statistique, Transport
Optimal

Abstract

This thesis proposes theoretical
and numerical contributions to use
Entropy-regularized Optimal Trans-
port (EOT) for machine learning.
We introduce Sinkhorn Divergences
(SD), a class of discrepancies be-
tween probability measures based
on EOT which interpolates between
two other well-known discrepancies:
Optimal Transport (OT) and Maxi-
mum Mean Discrepancies (MMD).
We develop an efficient numerical
method to use SD for density fitting
tasks, showing that a suitable choice
of regularization can improve perfor-
mance over existing methods. We
derive a sample complexity theorem
for SD which proves that choosing
a large enough regularization pa-
rameter allows to break the curse of
dimensionality from OT, and recover
asymptotic rates similar to MMD.
We propose and analyze stochastic
optimization solvers for EOT, which
yield online methods that can cope
with arbitrary measures and are
well suited to large scale problems,
contrarily to existing discrete batch
solvers.

Keywords

Machine Learning, Optimal Transport


	Outline of the Thesis
	Notations

	Entropy-regularized Optimal Transport
	Introduction
	Distances Between Probability Measures
	-divergences
	Integral Probability Metrics and Maximum Mean discrepancy
	Optimal Transport

	Regularized Optimal Transport
	Dual Formulation
	The Case of Unbalanced OT
	Dual Expectation Formulation

	Entropy-Regularized Optimal Transport 
	Solving the Regularized Dual Problem
	Hilbert Metric
	Fixed Point Theorem

	Sinkhorn's Algorithm
	Semi-Dual Formulation
	Case of a Discrete Measure
	Semi-Dual Expectation Formulation
	Some Analytic Properties of the Semi-Dual Functional

	Convergence of Entropy-Regularized OT to Standard OT


	Learning with Sinkhorn Divergences
	Introduction
	Density Fitting
	Learning with -divergences
	Maximum Mean Discrepancy and Optimal Transport
	Regularized OT and Variants of the Regularized OT Loss
	Sinkhorn Divergences : an Interpolation Between OT and MMD

	Sinkhorn AutoDiff Algorithm
	Mini-batch Sampling Loss
	Sinkhorn Iterates
	Learning the Cost Function Adversarially
	The Optimization Procedure in Practice

	Applications
	Benchmark on Synthetic Problems
	Data Clustering with Ellipses
	Tuning a Generative Neural Network
	With a Fixed Cost c.
	Learning the Cost.



	Sample Complexity of Sinkhorn Divergences
	Introduction
	Reminders on Sinkhorn Divergences
	Approximating Optimal Transport with Sinkhorn Divergences
	Properties of Sinkhorn Potentials
	Approximating Sinkhorn Divergence from Samples
	Experiments

	Stochastic Optimization for Large Scale OT
	Introduction
	Optimal Transport: Primal, Dual and Semi-dual Formulations
	Primal, Dual and Semi-dual Formulations.
	Stochastic Optimization Formulations

	Discrete Optimal Transport
	Discrete Optimization and Sinkhorn
	Incremental Discrete Optimization with SAG when >0.
	Numerical Illustrations on Bags of Word-Embeddings.

	Semi-Discrete Optimal Transport
	Stochastic Semi-discrete Optimization with SGD
	Numerical Illustrations on Synthetic Data

	Continuous Optimal Transport Using RKHS
	Kernel SGD
	Speeding up Iterations with Kernel Approximation
	Incomplete Cholesky Decomposition
	Random Fourier Features

	Comparison of the Three Algorithms on Synthetic Data


	Conclusion
	Bibliography

