
HAL Id: tel-02320156
https://theses.hal.science/tel-02320156v3

Submitted on 7 Sep 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the Deterministic Gathering of Mobile Agents
Sébastien Bouchard

To cite this version:
Sébastien Bouchard. On the Deterministic Gathering of Mobile Agents. Distributed, Parallel, and
Cluster Computing [cs.DC]. Sorbonne Université, 2019. English. �NNT : 2019SORUS175�. �tel-
02320156v3�

https://theses.hal.science/tel-02320156v3
https://hal.archives-ouvertes.fr

Thèse présentée pour obtenir le grade de docteur
Sorbonne Université

§

Laboratoire d’Informatique de Paris 6
École Doctorale Informatique, Télécommunications et Électronique (Paris)

Discipline : Informatique

On the Deterministic Gathering of Mobile Agents
À propos du rassemblement déterministe d’agents mobiles

Sébastien Bouchard

Rapporteurs :
Paola Flocchini, Full Professor, University of Ottawa
Pierre Fraigniaud, Directeur de Recherche CNRS, Université Paris Diderot

Examinateurs :
Shantanu Das, Maître de Conférences, Aix Marseille Université
David Ilcinkas, Chargé de Recherche (HDR), Université de Bordeaux
Maria Potop-Butucaru, Professeure des Universités, Sorbonne Université

Encadrants de thèse :
Yoann Dieudonné, Maître de Conférences, Université de Picardie Jules Verne
Swan Dubois, Maître de Conférences, Sorbonne Université

Directeur de thèse :
Franck Petit, Professeur des Universités, Sorbonne Université

Date de soutenance : 26 septembre 2019

Résumé

Les systèmes distribués sont un modèle théorique capable de représenter une multitude de
systèmes bâtis autour de la coopération d’entités autonomes dans le but d’accomplir une tâche
commune. Leur champ applicatif est immense, et s’étend de l’informatique ou de la robotique, en
modélisant des processus partageant la mémoire d’un ordinateur, des ordinateurs communiquant
par envois de messages, ou encore des cohortes de robots, à la compréhension du comportement
des animaux sociaux.

Les agents mobiles font partie des entités étudiées dans ce domaine. Ils se distinguent des
autres notamment par leur capacité à se déplacer spontanément. L’une des tâches les plus
étudiées les mettant en scène est celle du rassemblement. Les agents mobiles sont dispersés dans
un environnement inconnu. Aucun d’eux n’a d’informations à propos des autres, ou la capacité
de communiquer avec eux, à moins de se trouver au même endroit. Chacun d’eux découvre peu
à peu les environs, rencontre d’autres agents et se coordonne avec eux jusqu’à ce que tous soient
rassemblés et le détectent. Une fois tous les agents rassemblés, ils peuvent communiquer et se
coordonner pour une autre tâche.

Cette thèse s’intéresse à la faisabilité et à l’efficience du rassemblement, en particulier face à
deux difficultés majeures: l’asynchronie et l’occurrence de fautes Byzantines. Dans un contexte
asynchrone, les agents n’ont aucun contrôle sur leur vitesse, qui peut varier arbitrairement et
indépendamment des autres. Se coordonner est alors un défi. Quand une partie des agents
subit des fautes Byzantines, on peut considérer ces agents comme malicieux, se fondant parmi
les autres (bons) agents pour les induire en erreur et empêcher que le rassemblement ait lieu.

Abstract

Distributed systems are a theoretical model with a huge application field. It can represent
a multitude of systems in which several autonomous entities cooperate to achieve a common
task. The applications range from computer science related ones like processes sharing memory
inside a computer, computers exchanging messages, and cohorts of robots to understanding
social animals behavior.

When the entities involved are able to move spontaneously, they are called mobile agents,
and one of the most studied problems regarding mobile agents is gathering. The mobile agents
are spread in an unknown environment, with no a priori information about the others and
without the ability to communicate with other agents, unless colocated. Each of them gradually
discovers its surroundings, meets some other agents, coordinates with them, until all agents are
gathered and detect it. Once all agents gathered, they can communicate and coordinate for
some future task.

This thesis addresses the feasibility and complexity of gathering, in particular when facing
two major difficulties: asynchrony and occurrence of Byzantine faults. When tackling the former,
the agents have no control over their speed, which can vary arbitrarily and independently from
each other. This makes coordination more challenging. When facing the latter, some of the
agents are Byzantine, they can be viewed as malicious and using the difficulty to distinguish
them from other (good) agents to try to prevent the gathering.

Contents

1 Introduction 1
1.1 Context and State of the Art . 1

1.1.1 Distributed Systems . 1
1.1.2 Related Research Fields . 2
1.1.3 The Tasks and Model Considered throughout this Thesis 2
1.1.4 Another Model: Look-Compute-Move Robots 8

1.2 Contributions . 9

2 Model 11
2.1 The Environment of the Mobile Agents . 12

2.1.1 Modeling Time . 12
2.1.2 Modeling Space . 12
2.1.3 Defining the Whole Environment . 15

2.2 Execution of an Algorithm by a Distributed System of Mobile Agents 16
2.2.1 Initialization . 17
2.2.2 Progress of the Execution: Abilities of the Mobile Agents 17

2.3 Tasks Specifications and Efficiency of an Algorithm 19
2.4 Notations . 19

3 Strong Rendezvous in Finite Graphs 21
3.1 Introduction . 21

3.1.1 Related Work . 22
3.1.2 Contribution . 22
3.1.3 Roadmap . 22

3.2 Preliminaries . 22
3.3 The Algorithm and its Analysis . 23
3.4 Discussion of Alternative Scenarios . 26
3.5 Conclusion . 27

4 Asynchronous Approach in the Plane 29
4.1 Introduction . 29

4.1.1 Related Work . 29
4.1.2 Model and Reduction from Asynchronous Approach in the Plane to Weak

Rendezvous in the Infinite Grid . 30
4.1.3 Contribution . 32
4.1.4 Roadmap . 32

4.2 Preliminaries . 33
4.3 Idea of the Algorithm . 33

4.3.1 Informal Description in a Nutshell . 33
4.3.2 Under the Hood . 34

4.4 Basic Patterns . 36
4.4.1 Pattern Seed . 36
4.4.2 Pattern RepeatSeed . 37
4.4.3 Pattern Berry . 37
4.4.4 Pattern CloudBerry . 38

4.5 Main Algorithm . 39

v

CONTENTS

4.6 Proof of Correctness and Cost Analysis . 43
4.6.1 Properties of the Basic Patterns . 43
4.6.2 Agents Synchronizations . 47
4.6.3 Correctness of Procedure AsyncGridRV . 51
4.6.4 Cost Analysis . 53

4.7 Conclusion . 55

5 Byzantine Gathering in Finite Graphs 57
5.1 Introduction . 57

5.1.1 Introduction and Related Work . 57
5.1.2 Model . 58
5.1.3 Contribution . 59
5.1.4 Roadmap . 60

5.2 Preliminaries . 60
5.3 Building Blocks . 61

5.3.1 Procedure Group . 61
5.3.2 Procedure Merge . 71

5.4 The Positive Result . 75
5.4.1 Intuition . 75
5.4.2 Formal Description . 77
5.4.3 Proof and Analysis . 79

5.5 The Negative Result . 85
5.6 Conclusion . 87

6 Treasure Hunt in the Plane with Angular Hints 89
6.1 Introduction . 89

6.1.1 Model and Task Formulation . 89
6.1.2 Contribution . 90

6.2 Preliminaries . 91
6.3 Angles at most π . 92

6.3.1 High Level Idea of the Algorithm . 93
6.3.2 Algorithm and Analysis . 95

6.4 Angles Bounded by β < 2π . 103
6.4.1 High Level Idea . 104
6.4.2 Algorithm and Analysis . 105

6.5 Arbitrary Angles . 112
6.6 Conclusion . 112

7 Conclusion of the Thesis 113
7.1 Sum up of the Main Parts . 113
7.2 Perspectives of the Thesis . 113

Bibliography 117

vi

Chapter 1

Introduction

Contents
1.1 Context and State of the Art . 1

1.1.1 Distributed Systems . 1
1.1.2 Related Research Fields . 2
1.1.3 The Tasks and Model Considered throughout this Thesis 2
1.1.4 Another Model: Look-Compute-Move Robots 8

1.2 Contributions . 9

1.1 Context and State of the Art

1.1.1 Distributed Systems

This thesis studies systems composed of multiple autonomous computing entities. A same
algorithm is executed locally by each entity of the system. Locality refers to the knowledge of
the system each agent has a priori: it is partial and only related to what is close (either just
spatially or according to other metrics) to the entity itself. Such systems are called distributed.

The area of computer science dedicated to their study is called distributed systems. The
challenge in the latter lies in the cooperation between the entities in constrained environments.
The motivation for studying such systems is twofold.

First, assigning some tasks to a team of entities instead of only one entity may result in
several improvements, even if the replacements are weaker, in terms of complexity and fault
tolerance. The time required to achieve the task may be reduced once the latter is split between
the entities. Moreover, the more entities there are in the team, the less impact the crash of one
entity may have on the success of the task. In particular, a task assigned to only one entity may
fail as early as it is subject to any fault.

Furthermore, there are several practical scenarios involving multiple entities for which distri-
buted systems may provide good models. There are instances related to computer science such
as processes sharing memory on a same computer, or computers linked by a communication
network. Other instances involve robots spread in some area to explore it, or to form successive
patterns for entertainment purposes. But such scenarios do not necessarily involve technology.
Animals exhibiting social behavior from ants to humans have been cooperating for centuries.

This variety of applications explains the variety of model variants found in the distributed
systems literature. One variant differs from another in particular by the nature of the environment
(e.g., discrete or continuous) and the abilities of the entities (e.g., communication and perception).
A simple change from one variant to another may result in deep modifications of the approaches
and results. This motivates research for reductions between model variants [10, 34].

Among this variety of distributed systems, this thesis studies those made of mobile entities
i.e., able to spontaneously move in their environment. These systems are sometimes called mobile
distributed systems. They mainly model both teams of mobile robots, and software agents, that
are mobile pieces of software that travel in a communication network to perform maintenance of
its components or to collect data distributed in nodes of the network [75]. The most studied tasks
involving mobile entities are pattern formation (i.e., reaching positions which draw some input

1

Part , Chapter 1 – Introduction

pattern) [36, 58, 100], exploration (i.e., visiting every location of the environment or finding
some target) [74, 92], gathering (i.e., from distant locations, gathering at a same location), and
scattering (i.e., from a same location, spreading in the environment) [15].

1.1.2 Related Research Fields

Before giving more details about the distributed systems of mobile entities and the tasks
considered in this thesis, it is worth noticing that other fields address the interactions of several
autonomous entities and taking a look at the relationship between them, computer science and
distributed systems.

The entities considered in game theory [95] are rational decision makers involved as players
in mathematical models called games. The most notorious applications of this field concern
economics, but game theory also influences computer science and distributed systems [68].
Interestingly enough, the first mention of the gathering is attributed to a book authored by
Thomas Schelling [97]. This book mostly addresses game theory but the author illustrates his
point with the task of gathering which appears under the name of rendezvous and praises it as
a candidate for epitomizing tacit coordination i.e., without means of communication.

In particular, Thomas Schelling makes use of the following instance. A couple lost each
other, without any prior understanding on where to meet if they get separated. They are very
likely to think of an “obvious” focal point, where they will meet. The author emphasizes the
need not only to predict where the other will go, since the other will go where he predicts the
first to go, but answer the following question. “What would I do if I were she wondering what
she would do if she were I wondering what I would do if I were she . . . ?” According to the
author, “they must mutually recognize some unique signal that coordinates their expectations
of each other”.

The latter explanations by Schelling highlight the importance of knowledge and of its sharing.
This makes the study of knowledge, epistemology another area related to game theory and
distributed systems.

In particular, the requirement from the above instance, for the couple to find each other
could be formulated using the notions and model introduced by Fagin and his coauthors in their
book [57]. The main of these notions is called “common knowledge”.

The authors explain: “When Alice tells Bob “Let us meet tomorrow as usual”, the meeting
place and hour have to be common knowledge. This means that not only do Alice and Bob have
to know the meeting place and hour, but Alice must know that Bob knows to be sure he will
give a reasonable answer, and Bob must know that Alice knows that Bob knows for him to be
sure that she will correctly understand his answer, and so on ad infinitum.”

The focus of Fagin and his coauthors is on understanding the process of reasoning about
knowledge in a group and using this knowledge to analyze complicated systems. They introduce
a formal semantic model for knowledge, and a language for reasoning about knowledge. The
basic idea underlying the model is that of possible worlds. The intuition is that if an entity
does not have complete knowledge about the world, it will consider a number of worlds possible.
These are its candidates for the way the world actually is.

1.1.3 The Tasks and Model Considered throughout this Thesis

The rest of this introduction focuses on the mobile distributed systems. More precisely, the
current section addresses the task considered in this thesis: gathering (described in Section 1.1.3.1).
The main features of the model in which the latter is investigated are discussed in Section 1.1.3.2.
Section 1.1.3.3 gives some insight about this task by presenting reductions to related tasks whose
state of art is presented in Sections 1.1.3.4 to 1.1.3.7.

2

1.1. Context and State of the Art

1.1.3.1 Studied Task: Gathering

Among the aforementioned tasks involving mobile entities, hereafter called mobile agents,
this thesis addresses the one known as gathering. It is studied as a good candidate for epitomizing
coordination without prior agreement in spite of locality. When considering this task, locality
refers in particular to the different (initial) positions of the agents, and their limited range of
vision and communication. The mobile agents are spread in an unknown environment, with no a
priori information about the others (neither their number, nor their positions . . .), and without
the ability to communicate which other agents, unless collocated. Each of them can see what
is close to it, and has to move to gradually discover its surroundings. Little by little, it meets
some other agents, coordinates with them, until all agents are gathered and detect it.

The second requirement, the detection of termination, is not trivial to meet. In some cases,
the agents may be unable to declare that the gathering is achieved, the first time this occurs.
Some other agents may still be somewhere else, looking for their peers. It is necessary that the
algorithm the agents execute ensures that, at some point, this cannot be the case anymore. The
mobile agents may have to spread once gathered, if they are not sure that it is the case, and
gathering may be achieved several times, before the agents are able to detect it.

1.1.3.2 Key Features of the Model

As mentioned in Section 1.1.1, distributed systems have a wide application field. This
explains the great variety of ways gathering is addressed in the literature. Indeed, there are
a lot of different model variants generated by the combinations possible to make e.g., by playing
on the environment in which the agents are supposed to evolve, or the ability to perceive their
environment, communicate with their peers, or leave some traces in the visited locations.

In spite of this variety of assumptions, most approaches share several features. First of all,
Alpern [7] explains that they differ from the illustration of Schelling (refer to Section 1.1.2) in
that the task is not seen as a one shot tacit attempt to agree on some focal point, which may
either fail or succeed. On the contrary, the solutions presented are dynamic: the players keep
trying to meet until succeeding, and the region in which the agents evolve is assumed to be
symmetric which prevents common focal points to be determined. Formalizing this symmetry
assumption is the aim of some articles [6]. In other words, if some focal point exists, gathering
is reducible to exploration: it is enough that each agent visits the whole environment to find a
focal point which will be unambiguously recognized by its peers.

This symmetry however has a major drawback. If all agents are anonymous i.e., without any
kind of identifier, then they may be unable to meet deterministically due to symmetry. This
occurs for instance between two agents in a ring shaped network. Since they execute the same
deterministic algorithm with the same input, they make the same choices, move to same looking
places concurrently, the distance between them does not change, and so on. For this reason, it
is often assumed that each agent is given a positive integer called label, which can be viewed as
an identifier, an input for the algorithm, allowing the behaviors of any two agents to eventually
differ.

Another feature of the model needs to be explained to understand the state of art about the
gathering. Indeed, even when all agents move at the same constant speed i.e., in synchronous
settings, all agents are not assumed to start executing the algorithm at the same time. They are
all assumed to be initially dormant, idle, unaware of their environment and to wake up at some
point to start executing the algorithm. In some articles, the event which triggers this waking
up is completely external. In others, some agents are woken up by some external signal, but the
others can be woken up when some non-dormant agent is close enough to them.

Two kinds of environments are assumed throughout the literature: a continuous one, the
plane and a discrete one, the graphs. In the literature, the discrete environment is the most
studied one. Sections 1.1.3.5 and 1.1.3.6 focus on the state of the art in graphs while Section 1.1.3.7

3

Part , Chapter 1 – Introduction

addresses the state of art in the plane.

1.1.3.3 Reductions to Rendezvous and Treasure Hunt

Once all agents gathered, they can communicate and coordinate for some future task. For
this reason, the task of gathering can be viewed as a building block allowing to perform more
complex tasks. However, gathering algorithms are themselves often built upon other building
blocks, thanks to reductions to simpler versions of this task.

The particular case of the gathering in which there are precisely two agents is often referred
to as rendezvous, although this name designates gathering in some articles and books. When
considering this task, detecting an occurrence of the meeting, and declaring that the rendezvous
is achieved is not a real issue. Indeed, it is enough for each agent to notice the other one: since
their algorithm is designed for rendezvous, there is no other agent they have to wait or look for
together.

It is known [77] that a rendezvous algorithm can be built upon to gather an arbitrary number
of agents. The strategy to do so consists in “sticking the agents together” whenever they meet.
After some agents meet, they can communicate and choose one of them as a leader, and all
continue the rendezvous algorithm of this leader, as if there had been no rendezvous. However, it
is worth noticing that although this strategy ensures gathering, detecting its occurrence requires
some other tool.

In a similar manner, the treasure hunt task can be viewed as a variant of the rendezvous
studied to derive results for the latter. The treasure hunt involves one agent and one treasure.
It is achieved when the agent discovers the treasure i.e., when it is close enough to it. The
treasure can be viewed as a second mobile agent, either waiting or made somehow very slow.
Thus, the strategy known as “wait for mummy” [7, 98] builds upon a treasure hunt algorithm to
solve the rendezvous as follows. Among the two agents, one waits while the other one executes
the treasure hunt algorithm. Unfortunately, it is not that easy for two agents too far away
from each other to communicate, without prior agreement, to coordinate and choose which will
act as the treasure hunter (or mummy) and which will act as the treasure (or child). Hence,
the rendezvous algorithms [48] are often built as a sequence of attempts, such that during each
attempt, each agent chooses one of the two roles. Most attempts fail because the two agents
choose the same role, but the algorithms ensure some eventual attempt during which the agents
play different roles.

Besides the aforementioned lack regarding the detection of an occurrence of the gathering,
it should be highlighted that these two reductions are not valid in every model considered in the
literature. For instance, if the agents were unable to communicate, it is unlikely that they could
use the “stick together” strategy. Moreover, if the two agents performed the attempts mentioned
in the previous paragraph at different or even varying speeds, ensuring some eventual attempt
performed concurrently, during which they play different roles requires more involved techniques.

The next sections focus on the state of the art for these three tasks, starting with the simplest
of them: treasure hunt (Section 1.1.3.4).

1.1.3.4 State of the Art for Treasure Hunt

When designing a treasure hunt algorithm, the goal is often to propose a solution which is
not only asymptotically optimal but whose competitive ratio is optimal. The competitive ratio
of an algorithm is the ratio of the distance which would be traveled by an optimal algorithm
if the agent knew the position of the treasure from the beginning, over the distance which is
traveled in the worst case by the algorithm (when the agent does not know this position). It
can be thought of as a measurement of the detour implied by the absence of knowledge of the
position of the treasure.

4

1.1. Context and State of the Art

An early paper [17] shows that the best competitive ratio for deterministic treasure hunt on
a line is 9. This is often referred to as the cow path. The optimal competitive ratio is obtained
by a doubling zigzag strategy: go left at distance 1, then right at distance 2, left at distance 4,
and so on. In [47] the authors generalized it, considering a model where, in addition to travel
length, the cost includes a payment for every turn of the agent. Searching on a line has been
generalized to searching from the center of a star [71].

When generalizing to treasure hunt in the plane, it is not asked that the agent reaches the
exact position of the treasure (as it is the case on the line), but that it reaches a position whose
distance to the treasure is at most some constant, which can be viewed as a range of detection
of the agent. It can be proved that treasure hunt in the plane requires to travel a distance
belonging to Θ(∆2), where ∆ denotes the initial distance between the agent and the treasure.
Indeed, by following a spiral from its original location, the mobile agent can search the disc
containing every point at distance at most ∆ (without knowing this value). Moreover, unless it
searches this disc, there are points it does not see, and in which the treasure can lie. In order to
circumvent this bound, some additional information can be initially provided to the agent. In
particular, it is shown that a priori knowing a line on which the treasure lies enables to reach a
lower complexity than a priori knowing the distance to it [11]. This leads to the idea of searching
for a line in the plane [81], or in an arrangement of lines (partition of the plane formed by a
collection of lines) [30]. Furthermore, when the target is a point, some work is dedicated to
the scenario when finding the treasure means reaching a point p such that the treasure lies on
the segment between the initial position of the agent o and p (instead of reaching a point from
which the treasure is within some range). For this scenario, the optimal competitive ratio of
approximately 17.289 is obtained by following the logarithmic spiral [70, 80].

A possible generalization of treasure hunt consists in considering several pursuers either
competing [99] or cooperating to find the target [65]. In the latter settings, spiral search is still
at the root of the approaches, except if the memory of the agents is bounded, in which case
other approaches are needed [56, 82].

The scenario in which the target is mobile and tries to escape from its pursuers has also been
investigated. The tasks consisting in finding it are often referred to as pursuit-evasion games [18,
35] which can be viewed as opposing two players the pursuers and the target. One of the most
basic ones is known as the cops and robbers game. The cops win the game if they can move
onto the robbers vertex. Cops and robbers move along the graph edges in turns. In Parson’s
game, the evader is considered as arbitrarily faster than the pursuers. They have to surround
it in order to catch it. In these games two main questions are investigated. Given a graph, how
many pursuers are needed to catch the evaders regardless of the initial positions? What is the
class of graphs with a given number as answer to the previous question?

1.1.3.5 State of the Art for Deterministic Rendezvous in Networks Modeled as
Finite Graphs

For deterministic rendezvous in networks modeled as graphs [94], attention concentrates on
the study of the feasibility of rendezvous, and on the time required to achieve this task, when
feasible. This task has been considered in the literature under two alternative scenarios: weak
and strong. Under the weak scenario [43, 52, 86], agents may meet either at a node or inside an
edge. Under the strong scenario [48, 77, 98], they have to meet at a node, and they do not even
notice meetings inside an edge. Each of these scenarios is appropriate in different applications.
The weak scenario is suitable for physical robots in a network of corridors, while the strong
scenario is needed for software agents in computer networks.

Rendezvous algorithms under the strong scenario are known for synchronous agents, where
time is slotted in rounds, and in each round each agent can either wait at a node or move to
an adjacent node. Thus, in synchronous settings, the strong scenario is implicitly considered.
One of earliest algorithms for rendezvous in synchronous settings [48] guarantees a meeting of

5

Part , Chapter 1 – Introduction

the two involved agents after a number of rounds that is polynomial in the size n of the graph,
the length |`min| of the shortest of the two labels and the time interval θ between their wake-up
times. As an open problem, the authors asked whether it was possible to obtain a polynomial
algorithm to this task which would be independent of θ. A positive answer to this question was
given independently in two articles [77, 98]. To do so, one of them [98] explicitly builds upon a
treasure hunt algorithm.

While these algorithms ensure rendezvous in polynomial duration (i.e., a polynomial number
of rounds), they also ensure it at polynomial cost because the cost of a rendezvous protocol in a
graph is the number of edges traversed by the agents until they meet and each agent can make
at most one edge traversal per round. Note that despite the fact a polynomial duration implies
a polynomial cost in this context, the reciprocal is not always true as the agents can have very
long waiting periods, sometimes interrupted by a movement. Thus these parameters of cost and
time are not always linked to each other. This was highlighted in [89] where the authors studied
the trade-offs between cost and time for the deterministic rendezvous task.

More recently, some efforts have been dedicated to analyze the impact on time complexity of
rendezvous when in every round the agents are provided some pieces of information by making
a query to some device or some oracle [45, 88]. Along with the work aiming at optimizing the
parameters of duration and/or cost of rendezvous, some other work have examined the amount
of memory required to achieve the task in trees [63, 64] and arbitrary finite graphs [42]. The
task has been approached in a fault-prone framework [33], in which the adversary can delay
an agent for a finite number of rounds, each time it wants to traverse an edge of the network.
Furthermore, some articles assume that the agents are equipped with tokens used to mark nodes
[16, 79].

Apart from the synchronous scenario, the academic literature also contains several studies
focusing on a scenario in which the agents move at constant speed, which are different from
each other, or even move asynchronously. In asynchronous settings, each agent decides to which
neighbor it wants to move but the adversary totally controls the walk of each agent and can
arbitrarily vary its speed.

The scenario of possibly different fixed speeds of the agents is considered in several articles
[78] and in this scenario, only weak rendezvous is ensured. However, it is not known whether
strong rendezvous is possible in these settings.

Several authors investigated asynchronous rendezvous in network environments [43, 52, 86].
Under this assumption, rendezvous under the strong scenario cannot be guaranteed even in very
simple graphs, and hence the rendezvous requirement is weakened by considering the scenario
called weak in the present thesis. In the earliest study of this task [86], the authors investigated
the cost of rendezvous for both infinite and finite graphs. In the former case, the graph is
reduced to the (infinite) line and bounds are given depending on whether the agents know the
initial distance between them or not. In the latter case (finite graphs), similar bounds are
given for ring shaped networks. They also proposed a rendezvous algorithm for arbitrary graphs
provided the agents initially know an upper bound on the size of the graph. This assumption was
subsequently removed [43]. However, in these studies, the cost of rendezvous was exponential in
the size of the graph. A third article [52] presented the first rendezvous algorithm working for
arbitrary finite connected graphs at cost polynomial in the size of the graph and in the length
of the shortest label.

1.1.3.6 State of the Art for Gathering in Networks Modeled as Graphs

Rendezvous is much more studied than gathering. This is partly due to the fact that
gathering can be obtained thanks to a rendezvous algorithm by applying the “stick together”
strategy as described in Section 1.1.3.3. However, the task of gathering has been studied when
sticking together is not that easy.

This is the case when the agents are anonymous [50]. However, in this case, as explained in

6

1.1. Context and State of the Art

Section 1.1.3.2, there are initial positions of the agents which are not gatherable i.e., from which
no deterministic algorithm can achieve gathering due to symmetry. The authors characterize
the gatherable positions and provided two gathering algorithms for every gatherable position.

More precisely, the characterization of gatherable positions relies on the notion of view of a
node v in the graph G. Intuitively, this is the view that an agent at v would have if it looked
at the whole graph from v. More formally, it is a infinite tree rooted at v and such that the
children of any node u in the tree are all its neighbors in G but its father in the tree. This
notion well captures symmetry in graphs since two nodes having different views can be thought
as not symmetrical.

Apart from this interesting characterization, the two algorithms show an interesting trade-
off. The first algorithm relies on the knowledge by every agent of a polynomial upper bound on
the number of nodes in the graph and ensures detection of termination. On the contrary, the
authors show that no algorithm can ensure gathering with detection of termination without this
information and their second algorithm does not require any additional information but does
not detect termination. The agents eventually stop but do not know whether there are other
agents.

Another case in which the “stick together” strategy cannot be easily applied occurs when
some of the agents are Byzantine i.e., prone to Byzantine faults. First introduced at the
beginning of the 80s [93], a Byzantine fault is an arbitrary fault occurring in an unpredictable
way during the execution of a protocol. Due to its arbitrary nature, such a fault is considered
as the worst fault that can occur. Byzantine faults have been extensively studied for “classical”
networks i.e., in which the agents are fixed nodes of the graph [14, 85].

When some agents are Byzantine, gathering all agents, including the Byzantine ones, can
not be ensured because the Byzantine agents may never be with the other agents, called good,
or may declare that the gathering is achieved at any time. Thus, the task known as Byzantine
gathering is considered instead. It consists in gathering all good agents, and having them all
declare that the gathering is achieved, in the presence of f Byzantine agents.

The latter task is introduced [51] via the following question: what is the minimum numberM
of good agents that guarantees Byzantine gathering in all graphs of size n? The authors provided
several answers to this problem by firstly considering a relaxed variant, in which the Byzantine
agents cannot lie about their labels, and then by considering a harsher form in which Byzantine
agents can lie about their identities. For the relaxed variant, it is proved that the minimum
number M of good agents that guarantees Byzantine gathering is precisely 1 when the each
agent knows both n and f and f + 2 when each agent knows f only. The proof that both these
values are enough, relies on polynomial algorithms using a mechanism of blacklists that are,
informally speaking, lists of labels corresponding to agents having exhibited an “inconsistent”
behavior. Of course, such blacklists cannot be used when the Byzantine agents can change their
labels and in particular steal the identities of good agents. The authors also give, for the harsher
form of byzantine gathering, a lower bound of f + 1 (resp. f + 2) on M and a deterministic
gathering algorithm requiring at least 2f +1 (resp. 4f +2) good agents, when each agent knows
both n and f (resp. when it knows f only). Both these algorithms have a huge complexity as
they are exponential in n and `max, where `max is the largest label of a good agent evolving in
the graph.

Some advances are subsequently made [23], via the design of two algorithms, one for each
case, that work with a number of good agents that perfectly matches the lower bounds of f + 1
and f + 2 shown in the first article. However, these algorithms also suffer from a complexity
that is exponential in n and `max.

1.1.3.7 State of the Art for Rendezvous and Gathering in the Plane

A good starting point for presenting the state of art of rendezvous and gathering in the
plane is paradoxically the article [43] which shows that asynchronous rendezvous (bringing two

7

Part , Chapter 1 – Introduction

asynchronous agents at the exact same point) in the plane is impossible. This leads the authors
to introducing the task of approximate rendezvous (also known as approach), which considers
two agents with some constant range of vision and consists in bringing them not to the same
position but within each other’s range. This article also provides the first algorithm ensuring
asynchronous approach of two agents in the plane. To provide the latter, the authors discretize
the plane into an infinite graph: the task of approach is reduced to that of rendezvous in an
infinite graph. Unfortunately, the cost of their algorithm is super-exponential.

The rest of the state of art in the plane can be viewed as successive attempts to improve on
this result. The same reduction to asynchronous rendezvous in infinite graphs such as the infinite
grid i.e., the infinite graph in which each node has degree 4, is used. However, no algorithm
achieving approach, with a cost polynomial in the initial distance ∆ between the agents and the
length of the smallest label, in asynchronous settings, without providing additional information
to the agents, has been proposed yet.

A first article restricts asynchrony to a model in which each agent is given a constant speed at
which it travels during the whole execution [49]. It is also worth mentioning an algorithm whose
cost is polynomial in ∆ but which relies on the assumption that the agents are location aware [13,
40]: each agent knows the coordinates of its initial position in some common coordinate system.
This hypothesis enables the authors not only to reach polynomiality but also a fine-grained
complexity since their cost belongs to O(∆2 log(∆)).

1.1.4 Another Model: Look-Compute-Move Robots

The previous section focuses on the literature which, because it addresses the gathering task
in a similar model, is the closest to this thesis. However, mobile distributed systems have been
considered in other models and other tasks have been studied. A comprehensive book about
mobile distributed systems, the various model variants in which they are considered, the results
in gathering and several other tasks appeared shortly before the writing of this thesis [59]. The
authors are among the leading figures of this area of research. The model which is the most
investigated both in the latter book, and in literature is called Look-Compute-Move robots [58,
100].

In this model, the execution of its algorithm by each robot can be viewed as a cycle of
three phases namely Look, Compute and Move. During the first one, the robot observes its
environment, taking a snapshot. Then, it executes its algorithm to compute its next position.
Lastly, it moves to the chosen location. Even though this three phases cycle does not really
differ from the model described in this thesis and can be viewed as a low level description of the
execution of their algorithm by the mobile agents assumed in this thesis, it is often associated
with a set of abilities different from the one considered in this thesis. More precisely, these
Look-Compute-Move robots are often assumed to be anonymous i.e., have no kind of identifier
and oblivious i.e., forget previous observations and computations, but to take snapshots of the
whole environment, including the positions of the others. In such a context locality refers to the
possibly different coordinate systems the robots have. Some agreement is often reached thanks
to geometric properties of the set of positions, independent from the local coordinate systems
such as the smallest enclosing circle [31].

Since the introduction of this model [100], pattern formation in the plane has been the most
studied task in these settings [36, 58, 103]. The input for this task is common to all robots: the
pattern to draw. The task is considered completed whenever the robots have reached positions
whose relative positions are the same as those of the points in the input pattern, regardless of
enlargements, rotations. . .

Failing to give as much insight about the literature on Look-Compute-Move robots as the
recent book [59], this section aims at giving pointers to some of the reasearch directions of
the state of the art related to the gathering of Look-Compute-Move robots. The synchronous
gathering of robots has been addressed assuming the occurrence of several kinds of faults

8

1.2. Contributions

(crash, Byzantine faults, and self-stabilization) [2, 46, 53]. Asynchronous rendezvous and
gathering of robots have been considered both in graphs [44, 67] and in the plane [37]. Another
article [69] studies the impact of the differences between the coordinate systems of the robots
(somehow the impact of locality) on the feasibility of gathering in synchronous and asynchronous
settings. Several other studies of the latter case investigate different sets of assumptions including
inaccuracy in perception and movement [39], restricted visibility [60], occurrence of faults [2,
41, 46], or pay attention to avoiding collisions [91]. In the Look-Compute-Move model, since
robots take snapshots of the whole system, the set of positions of the agents can be viewed as
a memory in which they write by moving and read with these snapshots. This in particular
permits to establish an equivalence between gathering in a variant of the Look-Compute-Move
model, and consensus between processes sharing memory [4]. The latter task is the most studied
in distributed systems. Each process is given a binary input and they have to agree in finite
time on one of the inputs.

1.2 Contributions

This section presents the contributions of this thesis, lists the publications in which they
resulted, and mentions some results obtained when the author was a Master student.

Strong rendezvous in finite graphs. As explained in Section 1.1.3.5, rendezvous algorithms
under the strong scenario are known for synchronous agents in finite graphs [48, 77, 98]. For
asynchronous agents, rendezvous under the strong scenario is impossible even in the two-node
graph, and hence only algorithms under the weak scenario were constructed [52]. Chapter 3
shows that rendezvous under the strong scenario is possible in finite graphs for agents with
asynchrony restricted in the following way: agents have the same measure of time but the
adversary can impose, for each agent and each edge, the speed of traversing this edge by this
agent. The speeds may be different for different edges and different agents but all traversals of a
given edge by a given agent have to be at the same imposed speed. A deterministic rendezvous
algorithm is presented for such agents, working in time polynomial in the size of the graph, in
the length of the smaller label, and in the largest edge traversal duration.

Asynchronous approach in the plane. The literature considering the problem of asynchro-
nous approach [13, 40, 43, 49] has left open the following question. Let ∆ and |`min| be the
initial distance separating the agents and the length of (the binary representation of) the shortest
label, respectively. Assuming that ∆ and |`min| are unknown to the agents, does there exist a
deterministic approach algorithm always working at a cost that is polynomial in ∆ and |`min|?
Chapter 4 provides a positive answer to this question. More precisely, it shows an asynchronous
weak rendezvous algorithm in the infinite grid whose cost is polynomial in the initial Manhattan
distance D between the agents and in |`min|. The existence of the latter, thanks to a reduction
from asynchronous approach to asynchronous weak rendezvous in the infinite grid, implies the
existence of the desired algorithm.

Byzantine gathering in finite graphs. Chapter 5 addresses Byzantine gathering in finite
graphs, and in synchronous settings. In literature, the existing algorithms for this problem
all have an exponential time complexity in the number n of nodes and the labels of the good
agents. The contributions presented in Chapter 5 include a deterministic algorithm of polynomial
complexity in n and |`min|, provided the number of good agents is at least some prescribed value
quadratic in the number of Byzantine agents. This requires that all good agents are initially
given a same advice that can be coded in O(log log logn) bits: this size is shown to be of optimal
order of magnitude to obtain the aforementioned result.

9

Part , Chapter 1 – Introduction

Treasure hunt in the plane with angular hints. Chapter 6 addresses the problem of
treasure hunt in the plane. More precisely, since it is well known that without any hint the
optimal (worst case) cost belongs to Θ(∆2), with ∆ the initial distance between the agent and
the treasure, Chapter 6 investigates the question of how some additional information about the
position of the agent can permit to lower the cost of finding the treasure, using a deterministic
algorithm. This additional information takes the form of hints obtained in the beginning and
after each move. Each hint consists of a positive angle smaller than 2π whose vertex is at the
current position of the agent and within which the treasure is contained.

Three cases are studied depending on the measures of the angles given as hints. If all angles
are at most π, then the cost can be lowered to O(∆), which is optimal. If all angles are at most
β, where β < 2π is a constant unknown to the agent, then the cost is at most O(∆2−ε), for some
ε > 0. For both these positive results, Chapter 6 presents deterministic algorithms achieving
the above costs. Finally, if angles given as hints can be arbitrary, smaller than 2π, then it is
proved that cost Θ(∆2) cannot be beaten.

Publications. The contributions of Chapters 4, 5, and 6 have been published in the
proceedings of International Symposium on Distributed Computing 2017 [19], International
Colloquium on Automata, Languages, and Programming 2018 [25], and International Symposium
on Algorithms and Computation 2018 [26] respectively. The strong rendezvous algorithm of
Chapter 3 has been published in Information Processing Letters [27].

A complete version of the results regarding asynchronous approach of Chapter 4 has been
published in Distributed Computing [21].

Lastly, the results of chapters 4 and 6 have also given rise to publications in the proceedings
of rencontres francophones sur les Aspects Algorithmiques des Telecommunications, in 2018 and
2019 respectively [20, 28]. The latter was nominated for the Best Student Paper Award.

Preliminary results. Regarding Byzantine gathering in finite graphs, an article [23]
mentioned in the state of the art presents results obtained while the author was a Master
student. This contribution completes the partial answer brought by the article which introduced
Byzantine gathering [51] to the question it asks and leaves partially open: what is the minimum
number M of good agents that guarantees Byzantine gathering in all graphs of size n? Thus,
Chapter 5 is a continuation of this work, trying to improve on its lacks.

These results have been published in the proceedings of the International Colloquium on
Structural Information and Communication Complexity 2015 [22], and in Distributed Computing
[23], and earned the Best Student Paper Award of rencontres francophones sur les Aspects
Algorithmiques des Télécommunications 2018 [24].

10

Chapter 2

Model

Contents
2.1 The Environment of the Mobile Agents 12

2.1.1 Modeling Time . 12
2.1.2 Modeling Space . 12
2.1.3 Defining the Whole Environment . 15

2.2 Execution of an Algorithm by a Distributed System of Mobile Agents 16
2.2.1 Initialization . 17
2.2.2 Progress of the Execution: Abilities of the Mobile Agents 17

2.3 Tasks Specifications and Efficiency of an Algorithm 19
2.4 Notations . 19

Although mobile agents are considered throughout this thesis, each contribution considers
a specific model variant by playing in particular on the speeds of the agents and the space in
which they move.

Chapters 3, 4 and 5 in particular differ by the speeds at which the agents move. In the
latter chapter, the agents are synchronous i.e., time is slotted in rounds, and in each round each
mobile agent executing the algorithm either makes one move or waits. In Chapter 3, for each
agent A, and for each edge e, there is a duration t such that crossing e always takes t rounds
to A. Lastly, in Chapter 4, the agents are assumed to move asynchronously. This in particular
means that a given agent can spend different amounts of time to cross a same edge at different
times.

Regarding the space in which the agents move, Chapters 3 and 5 consider arbitrary finite
graphs, while Chapters 4 and 6 assume that the agents move in the Euclidean plane.

Furthermore, Chapter 5 addresses a fault-tolerant variant of the gathering, in which some
agents are subject to Byzantine faults. Lastly, Chapters 5 and 6 assume that the agents are
provided some additional information, in two different forms.

This chapter tries to state the features shared by all contributions in a generic way, while
permitting each chapter to easily derive the precise model variant it considers. However,
although rather generic, these definitions are not claimed to be suitable for all studies of mobile
entities e.g., the Look-Compute-Move robots. They are written with the only goal to define the
model shared by all contributions of this thesis. The statement of this shared model starts with
the following definitions of mobile agent and mobile agent algorithm.

Definition 2.1 (Mobile agent). A mobile agent is a computing entity with unbounded memory
able to spontaneously wait, move, observe its environment and communicate with its peers.

Definition 2.2 (Mobile agent algorithm). A mobile agent algorithm is a sequence of instructions
which can be either classical computing ones, or instructions making use of the abilities of a
mobile agent i.e., waiting some prescribed amount of time, moving in some prescribed direction,
or assigning some information obtained through environment observation or communication to
some variable. It requires one positive integer input called label.

For simplicity, since it focuses on mobile agents algorithms, in this thesis, mobile agent
algorithms are often referred to as algorithms. Definition 2.2 does not specify the input and

11

Part , Chapter 2 – Model

effects of the instructions which can compose a mobile agent algorithm. These explanations are
given in Section 2.2, which explains how the execution of an algorithm by a distributed system
of mobile agents occurs. To this end, it relies on the definitions of Section 2.1 related to the
environment in which the agents move. Section 2.3 builds on the two previous ones to state the
task of gathering and explain how the efficiency of a mobile agent algorithm is measured. Lastly,
Section 2.4 describes some notations used throughout the rest of the thesis. Among them, one
is needed in the definitions of the following sections. Throughout this chapter, the cardinality
of any set S is denoted by |S|.

2.1 The Environment of the Mobile Agents

This section is dedicated to defining the elements which compose any environment in which
the mobile agents move and interact, and stating some of the environments considered in this
thesis. The main definitions of this section are those of environment and model variant, in
Section 2.1.3. They rely on the definitions of timeline and space defined in Sections 2.1.1
and 2.1.2, respectively.

2.1.1 Modeling Time

In synchronous settings, time is regarded as discrete while in asynchronous ones, it is regarded
as continuous. To define the flow of time independently of this, the following definition of a
timeline is needed.

Definition 2.3 (Timeline and time). A timeline is a linearly bi-ordered group (T,+). Every
element of T is called time.

Two different timelines are defined: the discrete and continuous ones, on which rely in
particular the synchronous and asynchronous settings, respectively.

Definition 2.4 (Discrete timeline). The discrete timeline consists of the set Z of the integers,
together with its addition.

Definition 2.5 (Continuous timeline). The continuous timeline consists of the set R of the real
numbers, together with its addition.

In synchronous settings, the timeline which is used is the discrete one. In these settings,
instead of time, the terms round or number of rounds are used to designate the elements of the
timeline.

2.1.2 Modeling Space

Besides the timeline, defining the environment of the mobile agents requires to state the set
of positions between which they move, the destinations available from each of them, etc. This
is the subject of the following definition.

Definition 2.6 (Space, position, direction, destination and range). A space s is defined by
a 6-tuple (P,Z,Q, d, c, r). Its three first components P , Z, and Q ⊆ P × Z are sets. The
last component, r, is a reflexive and symmetric relation over P . Moreover, d and c are two
applications from Q, to the sets P and R, respectively. The elements of P and Z are called
positions and directions, respectively. For every position p1, the sets {p2 ∈ P |p1rp2} and {z ∈
Z|(p1, z) ∈ Q} are called the range of p1 and the directions available at this position. Lastly, if
d(p1, b1) = p2, then p2 is called the destination of the move from p1 with direction b1.

12

2.1. The Environment of the Mobile Agents

The previous definition relies on several elements whose utility has not been explained yet.
Each of them is needed to explain how each mobile agent interacts with any space. In particular,
they represent, given a current position, the set of positions to which it is possible to move, the
set of positions such that it is possible to communicate which other agents in them, the cost
(may model some fuel, and allows to compare the efficiency of two algorithms) of a move. This
is further explained in Section 2.2, in particular by Definitions 2.20 and 2.23.

The following definitions describe the spaces considered in this thesis. The first presented
ones are discrete: the graphs.

Definition 2.7 (Port labeled graph). A port labeled graph is a space (P,Z,Q, d, c, r) verifying
the following properties. Denote by E the set {(p1, p2)|(p1 ∈ P) ∩ (∃z ∈ Z, d(p1, z) = p2)}. The
couple (P,E) is a simple, loopless, undirected, and connected graph (classical meaning). The
relation r is defined by the set {(u, u)|u ∈ V }. For every (u, z) ∈ Q, c(u, z) = 1.

In other words, a port labeled graph is a space verifying notably: its positions are the nodes
of a simple, undirected, and connected graph and it is possible to move from a position to
another if and only there is an edge between the corresponding nodes. When considering a port
labeled graph, the vocabulary related to classical graphs (e.g., nodes, edges, degree) is used to
ease various statements. For instance, every position is also called node or vertex. Every pair of
positions {u, v} such that there exists z ∈ Z such that d(u, z) = v is called edge, and for every
position u, the number of elements z of Z such that (u, z) ∈ Q is called the degree of u.

Furthermore, if there exist u, v, and z1 such that d(u, z1) = v, then z1 is called the port
label of edge {u, v} at u, and the set of all z2 ∈ Z such that (u, z2) ∈ Q, is called the set of port
labels at u.

Definition 2.8 (Finite graph). Every finite graph is a port labeled graph whose set of vertices
is finite and whose set of directions is N. Moreover, the set of the port labels at every node v
with degree d is {0, . . . , d− 1}.

Finite graphs are just a subset of the port labeled graphs, whose set of vertices is finite, and
such that each edge incident to a node is given a distinct port label, also called port number,
between 0 and d− 1 with d the degree of the node. Figure 2.1 depicts an example of one finite
graph.

Figure 2.1: Representation of one finite graph. Circles, lines and integers represent the vertices,
the edges, and the port numbers, respectively.

13

Part , Chapter 2 – Model

Definition 2.9 (Infinite grid). The infinite grid is the port labeled graph meeting the following
conditions. Its set of positions is infinite, every node has degree 4, and the set of labels at every
node is {N,E, S,W}. For every edge {u, v}, if its port label at u is N , E, S, or W , then its port
label at v is S, W , N , or E, respectively. Furthermore, for every vertex u, every z1 ∈ {W,E},
and every z2 ∈ {N,S}, d(d(u, z1), z2) = d(d(u, z2), z1).

In other words, the infinite grid is one of the port labeled graphs with an infinite number of
nodes such that each node has four neighbors, one per cardinal point. Figure 2.2 depicts one
part of an infinite grid. The infinite grid is symmetric i.e., for each of its nodes, its neighborhood
is as represented by Figure 2.2.

Figure 2.2: Representation of a part of the infinite grid. Circles, lines and letters represent the
vertices, the edges, and the port labels, respectively.

The Euclidean plane is the other kind of space considered in this thesis. The main difference
between the Euclidean plane and the graphs is related to the set of destinations available at a
given position. While in graphs, this set is restricted to the neighbors of the current position,
in the Euclidean plane, all positions are possible destinations. This space is defined by the
following definition and the latter is illustrated by Figure 2.3.

Definition 2.10 (Euclidean plane). The Euclidean plane is the space (P,Z,Q, d, c, r) defined as
follows. Its sets of positions and directions are the set of points in the classical Euclidean plane
i.e., R2 and R × (−π, π], respectively. Let p1 and p2 be two elements of R2. Let (ρ, θ) be the
polar coordinates of p2 in the system centered at p1. The set Q is equal to P × Z and p1rp2 if
and only if the Euclidean distance between them is at most 1. The image by d and c of (p1, ρ, θ)
are p2 and ρ, respectively.

14

2.1. The Environment of the Mobile Agents

Figure 2.3: Illustration of Definition 2.10. The gray area represents the closed disc centered at
p3 with radius 1 which is the set of positions p such that p3rp. The positions p1 and p2 depicted
are such that d(p1, ρ, θ1) = p2, d(p2, ρ, θ2) = p1, c(p1, ρ, θ1) = ρ, and c(p2, ρ, θ2) = ρ.

2.1.3 Defining the Whole Environment

In many studies of distributed systems, the abstract notion of an adversary is used to define
a part of the environment. It encompasses all elements that the algorithm cannot control. The
adversary it said to “choose” some features among sets of candidates. For instance, among a
set of spaces, it chooses the one in which the agents move and interact, among all the positions
of this space, it chooses their initial positions, and for every move, it chooses how much time is
needed to complete it. Thus, an algorithm achieves a task if and only if whichever the choices
of the adversary, the execution of the algorithm in the environment resulting of these choices
indeed verifies the specifications of the task. The adversary is seen as trying to prevent (by its
choices) the task or at least to minimize the efficiency of the algorithm. Often, some constraints
are placed on the sets among which it chooses, it order to consider weaker adversaries and thus
environments in which achieving the desired task is easier.

Although several studies formally define this adversary, and this could be done in this
thesis too, another approach is preferred. The goal is to avoid this idea of choice left to an
abstract entity. Instead, the environment is defined as a tuple including the timeline and space
considered, a set of distinct identifiers called labels for the agents, their initial positions, another
element related to the time at which each agent starts executing the algorithm, and a last
element representing the duration of each move. A model variant is a set of environments, and
an algorithm achieves a given task in a model variant if for every environment of the model
variant, the execution of the algorithm in this environment verifies the specifications of the task.
Somehow, a model variant is the set of environments among which the adversary chooses. Hence,
when viewing the model this way, instead of studying a given adversary or given settings, one
considers a given model variant. For instance, synchronous settings are presented as the model
variant composed of all environments in which the timeline is discrete and the duration of each
move is 1. However, this is just a matter of presentation.

The derivation of this model into the models considered in each contribution consists in

15

Part , Chapter 2 – Model

adding some elements to the environment, and stating the model variant studied.
The following definitions introduce several elements whose role can only be explained when

linking the environment with the mobile agents. Since the mobile agents are at the heart of
this model, all features of the environment only make sense when associated with them. Thus,
further explanations about these elements are given in Section 2.2.

Definition 2.11 (Environment). An environment is a 6-tuple (s, T, L, i, w, g) such that:

• s = (P,Z,Q, d, c, r) is a space.

• T is a timeline.

• L is a set of positive integers.

• i is an application from L to P .

• w is an application from L to T .

• g is an application from T ×Q× L to the set T>0 of the positive elements of T .

Based on the previous definition, it is possible to propose a formal definition for a model
variant, as a set of environments.

Definition 2.12 (Model variant). A model variant is a set of environments.

2.2 Execution of an Algorithm by a Distributed System of Mobile
Agents

Two kinds of elements are needed to define the execution of an algorithm by mobile agents.
On one hand, there are the theatre stage, the actors, and the play i.e., the environment, the
mobile agents, and the algorithm they execute. On the other hand, there are the deterministic
rules governing the effects of the instructions of the algorithm on the environment and the mobile
agents. Given the environment, the algorithm, and these rules, it is possible to determine the
state of the system at any time.

This section starts with the formal definition of the execution of an algorithm by mobile
agents. However, this definition only includes the elements of the first kinds.

The set of rules depends in particular on the environment considered. Sections 2.2.1 and 2.2.2
describe the rules which apply in the environment described by Definition 2.11. Even though
other chapters derive the present model, and change some of these rules, the environments
considered are always based on those of Definition 2.11, and most of the rules keep applying in
the other chapters. The nature of the changes is specified in the corresponding chapters.

Precisely, Section 2.2.1 focuses on the rules determining the initial state of the mobile agents.
Section 2.2.2 lists the abilities of the mobile agents and states the rules which apply whenever
an agent is instructed to use them (e.g., input and effects).

Definition 2.13 (Execution of an algorithm by mobile agents). An execution is a couple (e,A)
such that:

• e is an environment.

• A is a mobile agent algorithm.

Remark that “execution” is thus used to designate both the local execution by one mobile
agent of the sequence of instructions which compose the algorithm, and a more global view of
the system composed of mobile agents all locally executing the algorithm). When using this
word, it is made clear from the context which meaning it is given.

16

2.2. Execution of an Algorithm by a Distributed System of Mobile Agents

2.2.1 Initialization

The first definition explains which elements of an environment determine the initial positions
of the mobile agents, and the positive integers which are used as their labels i.e., input of the
algorithm.

Definition 2.14 (Link between environment and mobile agents: initial positions and labels).
Let ((s, T, L, i, w, g),A) be any execution with s = (P,Z,Q, d, c, r). There are |L| mobile agents
spread in s. Each of them is assigned a distinct label ` of L, and executes A with its label as
input parameter. For each mobile agent with label `, the first position it occupies is i(`) ∈ P and
is called its initial position.

The mobile agents are not assumed to start executing the algorithm all at the same time.
This is even assumed to be partly controlled by the adversary. This contributes to the difficulty
to coordinate the agents. More precisely, the agents are said to be initially dormant and to wake
up at the time when they start executing the algorithm. The waking up is determined both by
the adversary and the progress of the execution. This is formally explained by the two following
definitions.

Definition 2.15 (Dormant mobile agent). Let ((s, T, L, i, w, g),A) be any execution with s =
(P,Z,Q, d, c, r). For every ` ∈ L, the mobile agent with label ` is initially dormant. While
dormant it does nothing and in particular does not execute A i.e., it learns nothing, can neither
communicate, nor wait, nor move.

Definition 2.16 (Waking up). Let ((s, T, L, i, w, g),A) be any execution with s = (P,Z,Q, d, c, r),
and A be any non-dormant mobile agent whose label is denoted by `. The time when A stops
being dormant is called its waking up and is determined as follows.

If there is no time t < w(`) at which some non-dormant mobile agent is at some position
p ∈ P within range of the initial position i(`) ∈ P of A (i.e., i(`)rp), then the waking up of the
latter agent is w(`) ∈ T . In this case, A is said to be woken up by the adversary at time w(`).
Otherwise, the waking up of A is the earliest time t at which some non-dormant mobile agent
B is at some position p within range of i(`). In this second case, A is said to be woken up at t
by B.

2.2.2 Progress of the Execution: Abilities of the Mobile Agents

After waking up, each mobile agent is able in particular to wait and move. The inputs,
progress and consequences of these two actions are developed by Definitions 2.19 and 2.20.
However, the two next definitions are related to more basic rules: the flow of time between the
executions of two instructions by a mobile agent, and the abilities of computing and learning.

Definition 2.17 (Sequence of instructions). Let e be any execution. The local execution of each
instruction by any mobile agent is assumed to have a starting and a completion time, the latter
being at least the former. Moreover, the starting time of every instruction is the same as the
completion time of the previous instruction, if any. Otherwise, it is the waking up time.

Definition 2.18 (Computing and learning). Every mobile agent is equipped with an unbounded
memory, and remembers at any time, every instruction executed as well as every information
learnt since its waking up.

The assumptions that the computing instructions take no time, and the agents are equipped
with an unbounded memory in Definition 2.18 stress the will to focus on the moves of the agents,
their durations and costs. This is stated in Section 2.3.

17

Part , Chapter 2 – Model

Definition 2.19 (Waiting). Let ((s, T, L, i, w, g),A) be any execution with s = (P,Z,Q, d, c, r),
and A be any mobile agent which is at time t at position p. Unless it is dormant, moving or
already waiting, A can be instructed by A to wait. This action requires an input x ∈ T>0: the
amount of time to wait. The execution of this action ends up at time t + x. At every time in
the interval [t, t+ x], A is at p, and at every time of [t, t+ x), A is waiting.

The two next definitions state the rules governing the moves of every mobile agent. However,
a part of these rules changes in the specific environments considered in the different contributions
of this thesis. Hence, Definition 2.20 states the rules which apply in all chapters of the thesis while
Definition 2.21 states some others only applied in Chapters 3 and 5 (this is further explained in
the introduction of each chapter).

Definition 2.20 (General rules regarding moving). Let ((s, T, L, i, w, g),A) be any execution
with s = (P,Z,Q, d, c, r), and A be any mobile agent with label ` ∈ L which at time t, is at
position p. Unless it is dormant, waiting or already moving, A can be instructed by A to move
at t. This requires as input one of the directions available at p. Moving from p with direction
z ∈ Z allows to reach the destination d(p, z), and is said to have cost c(p, z).

Definition 2.21 (Specific rules regarding moving). Let ((s, T, L, i, w, g),A) be any execution
with s = (P,Z,Q, d, c, r), and A be any mobile agent with label ` which at time t, is at position
p and starts to move with direction z ∈ Z. The completion time of the move is t+ g(t, (p, z), `).
More precisely, at every time of [t, t + g(t, (p, z), `)), A is moving, and at t + g(t, (p, z), `) it is
at position d(p, z).

The notion of cost of the move presented in the previous definitions is introduced for the
sake of Section 2.3. In order to move, every mobile agent needs to know at least a subset of the
directions available at its current position. This is the subject of the following definition.

Definition 2.22 (Learning the directions available). When waking up, every mobile agent is
at its initial position and learns the set of directions available at this position. Moreover, at the
completion time of every move, every mobile agent learns the set of directions available at the
destination. Hence, at every time when it can be instructed to move, each mobile agent knows
the directions available at its current position.

Lastly, each mobile agent can communicate with its peers. Explaining when this is possible,
and how this occurs is the purpose of the next definitions.

Definition 2.23 (Communicating with its peers). Communicating with its peers involves two
actions: updating the information to be transmitted, and actually communicating i.e., transmitting
and receiving.

Definition 2.24 (Updating the information to be transmitted). This action can be performed
only once per time by every mobile agent, if it is neither dormant, nor waiting nor moving.

Definition 2.25 (Transmitting and receiving information previously set to be transmitted).
Unlike updating the information to be transmitted, this action is not an instruction of a mobile
agent algorithm. It is automatically performed by any mobile agent whenever it is neither
dormant nor moving. Let ((s, T, L, i, w, g),A) be any execution with s = (P,Z,Q, d, c, r), and A
be any mobile agent which at time t1, is at position p1, neither dormant nor moving. Let t2 ≤ t1
be the latest time at which A updated the information to be transmited and x be the information
assigned by doing so, if any. Otherwise, let x denote some special marker meaning that it has
no information to transmit. At t, agent A transmits x, and for every peer with label ` which at
t transmits information y at a position p2 such that (p1rp2), A receives and learns the couple
(`, y).

18

2.3. Tasks Specifications and Efficiency of an Algorithm

Remark that the previous definition in particular means that no mobile agent can communi-
cate while moving. For instance, two mobile agents crossing the same edge of some port labeled
graph in opposite directions would not communicate, and not notice this event. Moreover, since
r is a symmetric relation, there is no couple of agents (A,B) such that at some time, A transmits
to B but does not receive from B.

2.3 Tasks Specifications and Efficiency of an Algorithm
Several tasks are considered in this thesis: gathering, rendezvous and treasure hunt under

different scenarios. Apart from gathering which is defined in this section, each of these tasks is
specified at the beginning of the chapter which addresses it.

Definition 2.26 (Gathering). Let M be any model variant, and A be any mobile agent
algorithm. Algorithm A achieves gathering in model variant M if and only if for every
environment (s, T, L, i, w, g) of M , in the execution ((s, T, L, i, w, g),A), there exists a time
t ∈ T at which, all mobile agents are gathered at a same position and declare that the gathering
is achieved.

The difficulty of achieving gathering and the other tasks presented in the subsequent chapters
depends on the cardinality of the model variant considered. Considering a model variant in
which some feature (e.g., space, set of labels, initial positions) is fixed makes achieving the
task simpler. Moreover, imposing no constraint, for instance, on the sets of labels, allows to
intuitively refer to the uncertainty on this feature as if some adversary chose it. One approach
in distributed systems is thus to look for some universal algorithm i.e., achieving the desired
task in an unrestricted model variant (i.e., containing all possible environments).

Throughout this thesis, two measures of the efficiency of the mobile agent algorithms are
used: its cost and its duration. Their definitions are based on the notion of completion of the
execution by a mobile agent of an algorithm, that is the earliest moment when the mobile agent
has no more instruction of the algorithm to execute i.e., when it has executed all its instructions.
These measures can be viewed as summaries of the global execution.

Definition 2.27 (Cost of the execution of a mobile agent algorithm). Let ((s, T, L, i, w, g),A)
be any execution. Let t ∈ T be the latest time at which one mobile agent completes its execution
of A. The cost of ((s, T, L, i, w, g),A) is defined as the maximum over the set of mobile agents
of the sum of the costs of its moves achieved at t at the latest.

Definition 2.28 (Duration of the execution of a mobile agent algorithm). Let ((s, T, L, i, w, g),A)
be any execution. Let t1 ∈ T be the earliest time at which one mobile agent is non-dormant, and
t2 ∈ T be the latest time at which one mobile agent completes its execution of A. The duration
(also called time complexity) of ((s, T, L, i, w, g),A) is defined as t2 − t1.

2.4 Notations
The notation introduced at the beginning of this chapter to designate the cardinality of a

set is used troughout this thesis. For every set S, |S| is used to denote its cardinality.
The thesis also considers several sequences, among which binary strings. For every sequence

s, |s| denotes the length of s, its elements are indexed from 1 to |s|, and s[i] with 1 ≤ i ≤ |s|
denotes the element with index i in s. In particular, the labels of the mobile agents, which are
positive integers, are regarded as binary strings: their binary representations. Hence, for every
label `, |`| denotes its length and `[i] its i-th bit (1 ≤ i ≤ |`|).

Lastly, for every environment (s, T, L, i, w, g), `min denotes the smallest label i.e., the smallest
element of L.

19

Chapter 3

Strong Rendezvous in Finite Graphs

Contents
3.1 Introduction . 21

3.1.1 Related Work . 22
3.1.2 Contribution . 22
3.1.3 Roadmap . 22

3.2 Preliminaries . 22

3.3 The Algorithm and its Analysis . 23

3.4 Discussion of Alternative Scenarios . 26

3.5 Conclusion . 27

3.1 Introduction

The task of rendezvous in finite graphs has been considered in the literature under two
alternative scenarios: weak and strong. Under the weak scenario, agents may meet either at
a node or inside an edge. Under the strong scenario, they have to meet at a node, and they
do not even notice meetings inside an edge. Each of these scenarios is appropriate in different
applications. The weak scenario is suitable for physical robots in a network of corridors, while
the strong scenario is needed for software agents in computer networks. Definitions 3.1, and 3.2
formally specify these two tasks.

Definition 3.1 (Strong rendezvous). Let M be any model variant (cf. Definition 2.12), and
A be any mobile agent algorithm. Algorithm A achieves strong rendezvous in M if and only if
for every environment (s, T, L, i, w, g) of M such that |L| = 2, the execution ((s, T, L, i, w, g),A)
(cf. Definition 2.13) meets the following condition. There exists a time at which the two mobile
agents are gathered at a same position.

Definition 3.2 (Weak rendezvous). Let M be any model variant (cf. Definition 2.12), and
A be any mobile agent algorithm. Algorithm A achieves weak rendezvous in model variant M
if and only if for every environment (s, T, L, i, w, g) of M such that |L| = 2, the execution
((s, T, L, i, w, g),A) (cf. Definition 2.13) verifies at least one of the three following propositions:

• there is a time at which the two mobile agents are at the same position.

• there are two positions p1 and p2, and a time at which one of the two mobile agents is
moving from p1 to p2 while the other one is moving from p2 to p1.

• there are two positions p1 and p2, and four times t1 < t2 < t3 < t4 such that a first mobile
agent starts moving from p1 to p2 at t1 and finishes at t4, and the second mobile agent
starts moving from p1 to p2 too but at t2 and finishes at t3.

21

Part , Chapter 3 – Strong Rendezvous in Finite Graphs

3.1.1 Related Work

As explained in Section 1.1.3.5, rendezvous algorithms under the strong scenario are known
for synchronous settings [48, 77, 98]. Several authors investigated asynchronous rendezvous [43,
52, 86]. Under this assumption, rendezvous under the strong scenario cannot be guaranteed even
in very simple graphs, and hence the rendezvous requirement was weakened by considering the
scenario called weak in the present thesis. In particular, the main result of [52] is an asynchronous
weak rendezvous algorithm working in an arbitrary finite graph at cost polynomial in the size
of the graph and in the logarithm of the smaller label.

3.1.2 Contribution

However, due to the fact that the strong scenario is appropriate for software agents in
computer networks, and that such agents are rarely synchronous, it is important to design
rendezvous algorithms under the strong scenario, restricting the asynchrony of the agents as
little as possible. This is the aim of this chapter.

The scenario of possibly different fixed speeds of the agents is considered in several articles
[49, 78] and in this scenario, a polynomial approach algorithm and a polynomial weak rendezvous
algorithm in finite graphs are known. In this chapter, the model variant DF , formally stated in
Definition 3.3, which is closer to asynchrony, is considered. Agents have the same measure of
time but the adversary can impose, for each agent and each edge, the speed of traversing this
edge by this agent. The speeds may be different for different edges and different agents but all
traversals of a given edge by a given agent have to be at the same imposed speed.

Definition 3.3 (Model variant DF). This model variant (cf. Definition 2.12) is the set of
all environments (s, T, L, i, w, g) (cf. Definition 2.11) such that s = (P,Z,Q, d, c, r) is a finite
graph (cf. Definition 2.8), T is the continuous timeline (cf. Definition 2.5), and g verifies the
following property. Let q and ` be any elements of Q and L, respectively. There exists y ∈ T
such that for every t ∈ T , the image by g of (t, q, `) is y.

This chapter presents a deterministic strong rendezvous algorithm for model variant DF ,
whose duration is polynomial in the number n of nodes of the graph, the length |`min| of the
smaller label, and the maximum τmax of all traversal durations assigned by the adversary over
all agent-edge couples. In other words, given an environment (s, T, L, i, w, g) of DF with s =
(P,Z,Q, d, c, r), τmax = max{y|∃x ∈ T ×Q× L, g(x) = y}.

3.1.3 Roadmap

The next section is dedicated to the presentation of some basic definitions and routines
needed in the rest of this chapter. Section 3.3 gives the strong rendezvous algorithm and its
proof. The existence of algorithms in alternative scenarios in terms of model or complexity
parameters is discussed in Section 3.4. Lastly, Section 3.5 concludes this chapter.

3.2 Preliminaries

Universal eXploration Sequences. The Universal eXploration Sequences (UXS) [76], derived
from the Universal Traversal Sequences (UTS) [5], are the root of several gathering or rendezvous
procedure from the literature, and of several contributions presented in this thesis. An eXplo-
ration Sequence (XS) is a sequence of integers any mobile agent may follow in order to move in
some graph. More precisely, it requires an integer input and can be used to compute a sequence
of exit port numbers. Consider a mobile agent following some XS s from node v with input i.
After performing j edge traversals by following s, in node u, A computes its (j+ 1)-th exit port

22

3.3. The Algorithm and its Analysis

number. It is (e + s[j + 1]) mod d(u) with e being equal to i if j = 0 and to the entry port
number of A in u after its j-th edge traversal following s otherwise.

An XS is said to be Universal for some set of graphs S, if for any graph G of S, any node
v of G, and any integer input i, it allows any mobile agent following it from v in G with input
i to visit every node of G. A set of graphs which is usually considered is, given some positive
integer n, the set of the graphs with at most n nodes.

The existence of UXS for the set of graphs with at most n nodes (for any n) whose length is
polynomial in n has been proved [76]. Two algorithms are known to build them. The first one
requires a huge computation time but allows to build short UXS. It consists in testing successively
every string with the desired length in every graph with at most n nodes, and with every possible
initial conditions. The second one [96] only requires a polynomial in n number of computation
operations, and a logarithmic in n space, but although the length of the UXS it produces is
polynomial in n, it is suspected to be larger than the length of the UXS produced by the first
algorithm.

Still regarding UXS, it is worth mentioning that after following some XS s from some node u,
it is easy for any mobile agent to come back to u by “backtracking” s, that is to say by taking
the same edges but in reverse order and opposite direction.

These sequences are used in this chapter as a procedure enabling every agent, given an
upper bound N on the number n of nodes in the graph, to visit every node starting from any
of them, and come back to it, using a polynomial in N number of edge traversals. We denote
this procedure by Explo(N), and by C(Explo(N)) the number of edge traversals it requires.

Label transformation. Another tool inspired by the literature [48] is used in this chapter.
It is a transformation on binary strings. Consider a label `A of an agent A, with binary
representation (b1 . . . b|`A|). Define the transformed label of A to be the binary string M(`A) =
(b1 b1 b2 b2 . . . b|`A| b|`A| 0 1). This transformation is made to ensure the following property
that is used in the proof of correctness of our algorithm in Section 3.3.

Proposition 3.1. Let `A and `B be two labels such that `A < `B. There exists one positive
integer i ≤ |M(`A)| such that M(`A)[i] 6= M(`B)[i].

Terminology. The agent woken up earlier by the adversary is called the earlier agent and the
other agent is called the later agent. If agents are woken up simultaneously, these appellations
are given arbitrarily.

Consider executions EA and EB, respectively of procedures PA and PB by agents A and B.
Executions EA and EB are called concurrent, if the time segments that they occupy are not
disjoint.

3.3 The Algorithm and its Analysis

The strong rendezvous procedure is called StrongRV (shown in Algorithm 3.1) and its
execution requires to call procedure Phase(h) that is described in Algorithm 3.2. At a high
level, Phase(h) consists of executions of Explo(h) and carefully scheduled waiting periods of
various lengths, designed according to the bits of the transformed label of the agent. The aim
is to guarantee a period in which one agent stays still at a node and the other visits all nodes
of the graph.

23

Part , Chapter 3 – Strong Rendezvous in Finite Graphs

Algorithm 3.1 Algorithm StrongRV

1: h← 1
2: while agents have not met do
3: execute Phase(h)
4: h← 2h
5: end while
6: declare that the rendezvous is achieved

Algorithm 3.2 Phase(h)
1: /* Initialization */
2: execute Explo(h)
3: wait for time 4h2(∑log(h)

j=0 (C(Explo(2j))))
4: /* Core */
5: i← 1
6: while i ≤ h do
7: if M(`A)[(i mod |M(`A)|) + 1] = 0 then
8: wait for time 2hC(Explo(h))
9: execute twice Explo(h)

10: else
11: execute twice Explo(h)
12: wait for time 2hC(Explo(h))
13: end if
14: i← i+ 1
15: end while
16: /* End */
17: wait for time hC(Explo(2h))
18: execute Explo(h)

The correctness and time complexity of Algorithm StrongRV are now analyzed. In the
following statements and proofs, α denotes the smallest power of two which upper bounds the
following three numbers: the size n ≥ 2 of the graph G, the length of the smaller transformed
label 2|`min| + 2, and the parameter τmax the maximum of all traversal durations assigned by
the adversary over all edges of G.

The following proposition directly follows from the definitions of α and UXS.

Proposition 3.2. For any positive integers x and y such that x ≥ α, xC(Explo(y)) upper bounds
the time required by any agent to execute Explo(y) in G.

Proposition 3.3. For any positive integer x and any power of two y such that x ≥ α and
x ≥ y, Tx,y = 4xy∑log(y)

z=0 C(Explo(2z)) upper bounds the time required by any agent to execute
the sequence Sy = Phase(1), Phase(2), . . . , Phase(y4), Phase(y2), Explo(y) in graph G.

Proof. Let an arbitrary positive integer at least α be assigned to x. The proof is made by
induction on y. Consider the case where y = 1. In this case, the sequence Sy consists only of
Explo(1). In view of Proposition 3.2, Tx,1, which is equal to 4xC(Explo(1)), upper bounds the
time required by any agent to execute Explo(1), which proves the first step of the induction.
Now, assume that there exists a power of two 1 ≤ z ≤ x, such that the statement of the
proposition holds for y = z. The next paragraph proves that if 2z ≤ x, then the statement of
the lemma holds also for 2z.

Denote by Suffix(z) the sequence of instructions of Phase(z) deprived from the first call
to Explo(z). The sequence S2z is successively made of Sz, Suffix(z) and Explo(2z). By

24

3.3. The Algorithm and its Analysis

the inductive hypothesis, the time required to execute Sz is upper bounded by Tx,z. By
Proposition 3.2, the time required to execute Explo(2z) is upper bounded by xC(Explo(2z)).
In view of Algorithm 3.2 and Proposition 3.2, the time required to execute Suffix(z) is upper
bounded by Tx,z + 2z(x+ z)C(Explo(z)) + zC(Explo(2z)) + xC(Explo(z)). Hence, the maximal
duration of S2z is upper bounded by 2Tx,z + (x+ z)C(Explo(2z)) + C(Explo(z))(2z(x+ z) + x),
which is at most 2Tx,z + (2z(x + z) + 2x + z)C(Explo(2z)) as C(Explo(2z)) ≥ C(Explo(z)).
Moreover, 2Tx,z + (2z(x + z) + 2x + z)C(Explo(2z)) ≤ 2Tx,z + 4x(2z)C(Explo(2z)) = Tx,2z.
This shows that the statement of the proposition also holds when y = 2z, which proves the
proposition.

The following theorem proves the correctness of Algorithm StrongRV.

Theorem 3.1. Algorithm StrongRV guarantees rendezvous in G by the time the first of the
agents completes the execution of Phase(2α).

Proof. Assume by contradiction that the statement of the theorem is false. Note that when any
agent finishes the first execution of Explo(α) of Phase(α) (line 2 of Algorithm 3.2) it has visited
every node of G, and thus the other agent has been woken up before the end of this execution,
or else the agents would have met.

The core of Phase(α) (lines 5-15 of Algorithm 3.2) can be viewed as a sequence of α blocks,
where the x-th block (for 1 ≤ x ≤ α) corresponds to processing bit M(`A)[(x mod |M(`A)|) + 1]
of the transformed label (with A the executing agent). Each of these blocks in turn can be viewed
as a sequence of 4 sub-blocks, each of which corresponds either to a waiting period of length
αC(Explo(α))), or to a single execution of Explo(α). Let I1, I2, . . . , I4α (resp. J1, J2, . . . , J4α) be
the sequence of the 4α sub-blocks executed by agent A (resp. agent B) in the core of Phase(α).
The proof of this theorem relies on the following claim.

Claim 3.1. For every 1 ≤ y ≤ 4α, Iy and Jy are concurrent.

Proof of the claim: Assume by contradiction that y = x is the smallest integer for which
it does not hold. Without loss of generality, suppose that the first agent to complete its x-th
sub-block is A. If x = 1, then in view of Proposition 3.3, when A starts and finishes I1, A2 is
executing the first waiting period of Phase(α). Since I1 corresponds to Explo(α), as the first bit
of a transformed label is always 1, a meeting occurs by the end of the execution of I1 because
α ≥ n, which is a contradiction. So, x > 1 and since x is minimal, Ix−1 and Jx−1 are concurrent.
So, when A starts Ix, B is executing Jx−1 and when A completes Ix, the execution of Jx−1
has not yet been completed. This implies that the time required by A to execute Ix is shorter
than the time required by B to execute Jx−1. Hence, Ix cannot be a sub-block corresponding
to a waiting period, as each of these periods has length αC(Explo(α)), which upper bounds the
duration of every sub-block corresponding to Explo(α) (in view of Proposition 3.2). Thus Ix
corresponds to an execution of Explo(α), and so does Jx−1, as otherwise rendezvous would occur
by the time Ix is completed, which would be a contradiction.

Consider the time lag between executions of Ix and Jx. Let θ1 = tB−tA, where tA (resp. tB)
is the time when A (resp. B) starts Ix (resp. Jx). The time required by A (resp. B) to execute
Explo(α) never changes because it is always executed from the initial node of A (resp. B), and
is at most θ1 (resp. at least θ1). Moreover, in each block there are always four sub-blocks: either
two waiting periods of αC(Explo(α)) followed by two Explo(α), or vice versa. Consider each of
the four positions that can be occupied by Ix in its corresponding block. If it is the first, second,
or fourth sub-block of its block, then since Ix and Jx−1 correspond to Explo(α), the number of
whole sub-blocks corresponding to Explo(α) (resp. the waiting period of αC(Explo(α))) that
remain to be executed by A from tA is the same as the number of those that remain to be
executed by B from tA. If Ix is the third sub-block of its block, then Jx and Jx+1 correspond to
the waiting period while Ix and Ix+1 correspond to the execution of Explo(α). In this case, the
number of whole blocks that remain to be executed by A from tA is the same as the number of

25

Part , Chapter 3 – Strong Rendezvous in Finite Graphs

those that remain to be executed by B from tA. Moreover, in view of Proposition 3.2, the time
needed by B to execute Jx and Jx+1 is at least the time needed by A to execute Ix and Ix+1.

As a result, whichever the position of Ix in its block, A is the first agent to finish the core
of Phase(α) and there exists a difference of θ2 ≥ θ1 between the times when A and B complete
this core. To conclude the proof of the claim, two cases are considered: either θ2 is longer than
the time A needs to execute Explo(2α), or not.

In the first case, since A executes Explo(α) faster than B, it necessarily completes the end
of Phase(α) at least time θ2 ahead of B. As a consequence, it starts executing Phase(2α), and
in particular its first instruction Explo(2α), at least time θ2 ahead of B. This implies that
A completes the execution of the first instruction Explo(2α) of Phase(2α) before B starts it.
Hence, A starts the execution of the first waiting period of Phase(2α) by the time B starts the
first execution of Explo(2α) in Phase(2α). In view of Proposition 3.3, this leads to a meeting
before any agent starts the core of Phase(2α), which is a contradiction. In the second case, A
completes the last waiting period of Phase(α) at a time θ2 ahead of B. Moreover, θ2 is at most
the duration of this waiting period and at least the time required by A to execute Explo(α).
Hence, while A executes entirely the last instruction Explo(α) of Phase(α), B is waiting (it
executes the last waiting period of Phase(α)). This leads to a meeting before any agent starts
Phase(2α), and hence the second case also results in a contradiction, which proves the claim. ?

Moreover, in view of Proposition 3.1 and the claim, and since the length of the smaller
transformed label is at most α, there exists a period during which an agent is waiting in Phase(α)
while the other entirely executes Explo(α). Hence a meeting occurs before any agent starts
Phase(2α), which is a contradiction and proves the theorem.

According to Theorem 3.1, rendezvous occurs by the time the first of the two agents completes
Phase(2α), which occurs, by Proposition 3.3, before this agent has spent at most a time T4α,4α
since its wake up. However, in view of the definition of α and of the transformed labels, T4α,4α
is polynomial in α and, thus, in n, |`min| and τmax. This proves the following theorem.

Theorem 3.2. The execution time of Algorithm StrongRV is polynomial in n, |`min| and τmax.

3.4 Discussion of Alternative Scenarios

Algorithm StrongRV shows that the duration of rendezvous can be polynomial in n, |`min|
and τmax, where n is the number of nodes of the graph, |`min| is the length of the smaller label,
and τmax is the maximum of all traversal durations assigned by the adversary, over all edges of
the graph, when time is counted since the wake-up of the earlier agent.

It is natural to ask if it is possible to construct a rendezvous algorithm whose time depends
on n, |`min| and τmin, where τmin is the minimum of all traversal durations assigned by the
adversary, over all edges of the graph. The answer is trivially negative, if time is counted, as in
the previous section, since the wake-up of the earlier agent. Indeed, suppose that there exists
such an algorithm working in some time F (n, |`min|, τmin). The adversary assigns t(A, e) >
F (n, |`min|, τmin), for the first edge e taken by agent A, starts A at some time t0 and delays the
wake-up of agent B until time t0 + t(A, e). Rendezvous cannot happen before time t0 + t(A, e),
which is a contradiction.

It turns out that the answer is also negative in the easier scenario, when time is counted
since the wake-up of the agent that is woken up later. Consider even a simplified situation,
where t(A) = t(A, e) is the same for all edges e, and t(B) = t(B, e) is the same for all edges
e. In other words, each of the agents has a constant speed. Thus τmax = max(t(A), t(B)) and
τmin = min(t(A), t(B)). Assume that t(A) ≤ t(B). Call A the slower agent, and B – the faster
agent.

First notice that, if it is shown that any rendezvous algorithm must take time at least τmax
since the wake-up of the later agent, the negative result follows, as the adversary can assign

26

3.5. Conclusion

τmax > F (n, |`min|, τmin). It is now shown that, indeed, for any rendezvous algorithm, there
exists a behavior of the adversary for which this algorithm takes time at least τmax since the
wake-up of the later agent.

Denote by β (resp. by γ) the waiting time between the wake-up of the faster (resp. slower)
agent and the time when it starts its first edge traversal. Let d = |β − γ|.

If β ≥ γ, the adversary wakes up the faster agent at some time t0 and wakes up the slower
agent at time t0 + d. Both agents start traversing their first edge at the same time t0 + β and
cannot meet before time t0 + β + τmax. Since both agents were awake at time t0 + β, the claim
follows.

If β < γ, the adversary wakes up the slower agent at some time t0 and wakes up the faster
agent at time t0 + d. Both agents start traversing their first edge at the same time t0 + γ and
cannot meet before time t0 + γ + τmax. Since both agents were awake at time t0 + γ, the claim
follows. This concludes the justification that it is impossible to guarantee rendezvous in time
depending on n, |`min| and τmin, even when time is counted since the wake-up of the later agent.

The above remark holds under the strong scenario considered in this chapter. By contrast,
the answer to the same question turns out to be positive in the weak scenario. This can be
justified as follows. In [52] the authors showed a rendezvous algorithm with cost (measured by
the total number of edge traversals) polynomial in n and |`min| under the weak scenario, assuming
that agents are totally asynchronous. Let A be this algorithm and let its cost be K(n, |`min|),
where K is some polynomial. Consider algorithm A in the simplified model mentioned above,
where each of the agents has a constant speed, the speeds being possibly different, still under
the weak scenario. Consider the part of the cost of the algorithm counted since the wake-up of
the later agent. This cost is K ′(n, |`min|), where K ′ is some polynomial. Of course, the behavior
of the agents in which an agent never waits at a node and crosses each edge at its constant
speed is a possible behavior imposed by a totally asynchronous adversary, and hence the result
of [52] still holds (under the weak scenario). Hence, if time is counted from the wake-up of the
later agent, the time of the algorithm from [52] is at most τminK

′(n, |`min|), and therefore it is
polynomial in n, |`min| and τmin.

Hence, the following observation shows a provable difference between the time of rendezvous
under the strong and the weak scenarios, even in the situation when rendezvous is possible under
both of these scenarios. If time is counted from the wake-up of the later agent, and agents have
constant, possibly different velocities, then rendezvous in time depending on n, |`min| and τmin
cannot be guaranteed under the strong scenario, but there is a rendezvous algorithm working in
time polynomial in n, |`min| and τmin under the weak scenario.

3.5 Conclusion
The main contribution of this chapter is a strong rendezvous algorithm in finite graphs when

an adversarial traversal duration is assigned to each couple made of an edge and an agent (model
variant formally stated in Definition 3.3). Its duration is polynomial in n, |`min| and τmax, where
n is the number of nodes of the graph, |`min| is the length of the smaller label, and τmax is the
maximum of all traversal durations assigned by the adversary.

The chapter is concluded by stating the following problem. What is the strongest adversary
under which strong rendezvous in arbitrary finite graphs is possible? This is the case under an
adversary that imposes possibly different speeds for different agents and different edges, but the
speed must be the same for all traversals of a given edge by a given agent. On the other hand,
it is easy to see that if the adversary can impose a different speed for each traversal of each edge
by each agent (thus the speeds may vary for different traversals of the same edge by the same
agent) then strong rendezvous is impossible even in the two-node graph.

27

Chapter 4

Asynchronous Approach in the Plane

Contents
4.1 Introduction . 29

4.1.1 Related Work . 29
4.1.2 Model and Reduction from Asynchronous Approach in the Plane to

Weak Rendezvous in the Infinite Grid 30
4.1.3 Contribution . 32
4.1.4 Roadmap . 32

4.2 Preliminaries . 33
4.3 Idea of the Algorithm . 33

4.3.1 Informal Description in a Nutshell . 33
4.3.2 Under the Hood . 34

4.4 Basic Patterns . 36
4.4.1 Pattern Seed . 36
4.4.2 Pattern RepeatSeed . 37
4.4.3 Pattern Berry . 37
4.4.4 Pattern CloudBerry . 38

4.5 Main Algorithm . 39
4.6 Proof of Correctness and Cost Analysis 43

4.6.1 Properties of the Basic Patterns . 43
4.6.2 Agents Synchronizations . 47
4.6.3 Correctness of Procedure AsyncGridRV 51
4.6.4 Cost Analysis . 53

4.7 Conclusion . 55

4.1 Introduction

4.1.1 Related Work

As explained by Section 1.1.3.7, although several articles investigate approach in the plane
[13, 40, 43, 49], they discretize the environment thanks to a reduction to weak rendezvous in
infinite graphs such as the infinite grid.

The recent work on rendezvous in graphs includes successive improvements aiming at provi-
ding polynomial (in the respective appropriate parameters) algorithms both in synchronous and
asynchronous settings, and both in finite graphs and in the infinite grid.

For the simplest case of finite graphs, such solutions are known for both synchronous [77,
98] and asynchronous [52] settings.

In the infinite grid, a rendezvous algorithm exists for the case when each agent is given a
constant speed [49]. Its time complexity is polynomial in the initial Manhattan distance D
separating the agents, the length |`min| of the smallest label, and τmin the minimum among the
inverses of the speeds, and its cost is polynomial in the two first parameters and does not depend
on the third. This algorithm implies the existence of an algorithm for synchronous settings.

29

Part , Chapter 4 – Asynchronous Approach in the Plane

However, no algorithm for asynchronous settings whose cost is polynomial in D and |`min|
is known, there is only an algorithm whose cost is super-exponential in these two parameters
[43]. It is worth mentioning an algorithm whose cost is polynomial in D but which relies on
the assumption that the agents are location aware [13, 40]: each agent knows the coordinates
of its initial position in some common coordinate system. This hypothesis enables the authors
not only to reach polynomiality but also a fine-grained complexity since their cost belongs to
O(D2 log(D)).

To close this section, it is worth mentioning that it is unlikely that the existing asynchronous
rendezvous algorithm for arbitrary finite graph [52] could be used to obtain an asynchronous
rendezvous algorithm for the infinite grid. First, this algorithm has not a cost polynomial in D
and |`min|. Actually, ensuring rendezvous at this cost is even impossible in an arbitrary finite
graph, as witnessed by the case of the clique with two agents labeled 0 and 1: the adversary can
hold one agent at a node and make the other agent traverse Θ(n) edges before rendezvous, in
spite of the initial distance 1. Moreover, the validity of the algorithm for finite graphs closely
relies on the fact that both agents must evolve in the same finite graph, which is clearly not
the case in the infinite grid. In particular, even the natural attempt consisting in making each
agent apply this algorithm within bounded grids of increasing size and centered in its initial
position, does not permit to claim that rendezvous ends up occurring. Indeed, the bounded grid
considered by an agent is never exactly the same as the bounded grid considered by the other
one (although they may partly overlap), and thus the agents never evolve in the same finite
graph. In some sense, traveling in the same finite graph allows the agents to circumvent a part
of the differences caused by locality: there is agreement on the finite graph in which they are.
However, this is not the case in the infinite grid.

4.1.2 Model and Reduction from Asynchronous Approach in the Plane to
Weak Rendezvous in the Infinite Grid

This section formally describes two model variants: a first one for approach in the plane, and
a second one for weak rendezvous in the infinite grid. Moreover, for completeness, the reduction
mentioned in the previous section is stated.

4.1.2.1 Asynchronous Approach in the Plane

Before stating the model variant considered and the specifications of the task of approach,
it is necessary to derive the model considered in the plane from the one which is presented in
Chapter 2. Indeed, in the plane, when moving from one position to another, each mobile agent
passes by several others. In particular, approach may be achieved while the agents are moving.
This does not appear in the model of Chapter 2 since this feature would not make sense in the
general settings which encompass the graphs: There is no other position a mobile agent visits
when going from one node to an adjacent one in a graph. The next definitions introduce a new
environment (cf. Definition 2.11) called plane environment and specify another rule applying
instead of Definition 2.21 when studying the plane.

Definition 4.1 (Plane environment). A plane environment is an environment (s, T, L, i, w, g)
(cf. Definition 2.11) with T the continuous timeline (cf. Definition 2.5), and s the Euclidean
plane (P,Z,Q, d, c, r) (cf. Definition 2.10), extended by the addition of an application f from
T ×Q×L to the set of the applications from T to P . More precisely, let t, (p1, z), and ` be any
elements of T , Q, and L, respectively. Denote by x the image by g of (t, (p1, z), `). The image
by f of (t, (p1, z), `) is an application j such that j(t) = p1, j(t+ x) = d(p1, z), j is continuous
on [t, t+ x], and the image by j of [t, t+ x] is [p1, d(p1, z)].

Definition 4.2 (Moving in a plane environment). Let (e,A) be any execution (cf. Definition 2.13)
with e = (s, T, L, i, w, g, f) a plane environment such that s = (P,Z,Q, d, c, r). Let A be any

30

4.1. Introduction

mobile agent with label ` which at time t, is at position p and starts to move with direction
z ∈ Z. Let x (resp. j) be the image by g (resp. f) of (t, (p, z), `). The completion time of the
move is t + x. More precisely, at every time of [t, t + x), A is moving, and at every time y of
[t, t+ x], agent A is at position j(y).

In other words, when moving from a position to another in the plane, each mobile agent
passes by each position on the line segment between the origin and the destination. Besides
deciding how much time every mobile agent spends in each of its move, the adversary can be
viewed as able to move each mobile agent back and forth along the latter segment during the
move.

With the two previous definitions, it is possible to state the model variant in which asynchro-
nous approach is investigated, and to formally define the latter.

Definition 4.3 (Model variant AP). This model variant (cf. Definition 2.12) is the set of all
plane environments.

Definition 4.4 (Approach). Let M be any model variant (cf. Definition 2.12), and A be any
mobile agent algorithm (cf. Definition 2.2). Algorithm A achieves approach in model variant M
if and only if for every environment e of M in which there are only two labels, in the execution
(e,A), there exists a time t at which, the positions p1 and p2 of the agents are within each other’s
range.

Hence, approach is achieved whenever the positions of the two mobile agents are within each
other’s range (cf. Definition 2.6 for the statement of range). When the space considered is the
Euclidean plane (cf. Definition 2.10), this means that they are at distance at most 1 from each
other.

4.1.2.2 Asynchronous Weak Rendezvous in the Infinite Grid

This section focuses on the task of weak rendezvous and the model variant M such that
achieving asynchronous approach in the plane, as described by the previous section, reduces to
achieving weak rendezvous inM . This is rather straightforward since it does not require to derive
the model of Chapter 2 but only to define the model variant. In particular, the specifications of
the task of weak rendezvous also appear in Chapter 3, and are only recalled below.

Definition 4.5 (Weak rendezvous). Let M be any model variant (cf. Definition 2.12), and
A be any mobile agent algorithm. Algorithm A achieves weak rendezvous in model variant M
if and only if for every environment (s, T, L, i, w, g) of M such that |L| = 2, the execution
((s, T, L, i, w, g),A) (cf. Definition 2.13) verifies at least one of the three following propositions:

• there is a time at which the two mobile agents are at the same position.

• there are two positions p1 and p2, and a time at which one of the two mobile agents is
moving from p1 to p2 while the other one is moving from p2 to p1.

• there are two positions p1 and p2, and four times t1 < t2 < t3 < t4 such that a first mobile
agent starts moving from p1 to p2 at t1 and finishes at t4, and the second mobile agent
starts moving from p1 to p2 too but at t2 and finishes at t3.

Definition 4.6 (Model variant AG). This model variant (cf. Definition 2.12) is the set of all
environments (s, T, L, i, w, g) such that T is the continuous timeline (cf. Definition 2.5) and s
is the infinite grid (cf. Definition 2.9).

31

Part , Chapter 4 – Asynchronous Approach in the Plane

4.1.2.3 Reduction from Approach in AP to Weak Rendezvous in AG

Theorem 4.1 ([49]). If there exists a deterministic algorithm achieving weak rendezvous in
model variant AG, whose cost is polynomial in the Manhattan distance between the two starting
nodes of the agents D and the length of the binary representation of the shortest of their labels
|`min|, then there exists a deterministic algorithm achieving approach in model variant AP,
whose cost is polynomial in the Euclidean distance between the two initial positions of the agents
∆ and |`min|.

Proof. First of all, the plane is discretized. A partial bijection from some points of the plane
to the nodes of the infinite grid is defined. More precisely, for any point v of the plane, it is
possible to define Mv, such that v has an image Mv(v) by Mv, and for every point u mapped
by Mv, the points located North, East, South, and West at Euclidean distance 1 from u are
mapped to the neighbours of Mv(u) reachable by port N , E, S and W , respectively.

Let e1 = (s1, T, L, i1, w, g1, f) be any element of AP. Assume that |L| = 2. Denote by `1
and `2 its two elements, by A and B the agents with these labels, and by v and w the positions
i1(`1) and i1(`2), respectively. Among the set of points which have an image by Mv, let X be
the set of the points which are the closest to w. Let x be a node in X, arbitrarily chosen. Notice
that the points of X are at distance at most

√
2

2 < 1 from w. Let α be the vector ~xw.
Let e2 = (s2, T, L, i2, w, g2) be an environment constructed from e1 as follows. Space s2 is

the infinite grid. Moreover, i2(`1) = Mv(v) and i2(`2) = Mv(x). For every t ∈ T , every position
p of the Euclidean plane with an image by Mv, and every label ` of L, if g1(t, (p, (1, z1)), `) = x
with z1 = −π

2 , 0, π
2 , or π, then g2(t, (Mv(p), z2), `) = x with z2 = S, E, N or W , respectively.

Environment e2 belongs to AG.
Let R be any weak rendezvous algorithm in AG whose cost is polynomial in D and |`min|.

In the execution (e2, R), there is a time t at which the agents meet. Let u1 and u2 be the two
nodes such that at t, the latest node of A is u1, and the next would be u2 (if it did not meet
B on the way). The transformed algorithm R∗ for approach in AP works as follows: Execute
algorithm R replacing each instruction “take port N (resp. E, S, or W)” by “go North (resp.
East, South, or West) at distance 1”.

In view of the construction of e2, at t, agent A starting at v, is at some point p, traveling
from the point whose image by Mv is u1, to that whose image is u2. In the same way, agent
B, starting at w, at time t, is at some point q such that q = p + α. Hence both agents are at
distance at most 1 from each other at time t, which means that approach is achieved.

4.1.3 Contribution

This chapter presents an algorithm for asynchronous rendezvous in the infinite grid whose
cost is polynomial in D and |`min|.

In view of the reduction from approach to rendezvous in the infinite grid presented in the
previous section, the algorithm presented in this chapter implies the existence of an asynchronous
approach algorithm whose cost is polynomial in D and |`min|.

4.1.4 Roadmap

The next section is dedicated to basic definitions. The solution, procedure AsyncGridRV,
is sketched in Section 4.3, formally described in Sections 4.4 and 4.5. Section 4.6 presents the
correctness proof and cost analysis of the procedure. Finally, some concluding remarks are made
in Section 4.7.

32

4.2. Preliminaries

4.2 Preliminaries

First of all, this chapter, like Chapter 3, makes use of the transformed label described in
Section 3.2.

For any integer k, the reverse path of the path e1, . . . , ek is defined as the path
ek, ek−1, . . . , e1 = e1, . . . , ek−1, ek. The number of edge traversals performed by an agent during
the execution of any procedure p is denoted by C(p).

Moreover, consider two distinct nodes u and v. A specific path from u to v, denoted P (u, v),
is defined as follows. If there exists a unique shortest path from u to v, this shortest path
is P (u, v). Otherwise, consider the smallest rectangle R(u,v) such that u and v are two of its
corners. P (u, v) is the unique path among the shortest paths from u to v that traverses all the
edges on the northern side of R(u,v). Note that P (u, v) = P (v, u).

An illustration of P (u, v) is given in Figure 4.1.

Figure 4.1: Some different cases for P (u, v)

4.3 Idea of the Algorithm

4.3.1 Informal Description in a Nutshell

This chapter aims at achieving rendezvous of two asynchronous mobile agents in the infinite
grid and in a deterministic way. It is well known that solving rendezvous deterministically
is impossible in some symmetric graphs (like the infinite grid) unless both agents are given
distinct identifiers called labels. They are used to break the symmetry, i.e., when addressing
asynchronous rendezvous, to make the agents follow different routes. The idea is to make
each agent “read” its label binary representation, one bit at a time from the most to the least
significant bits, and for each bit it reads, follow a route depending on the read bit. Procedure
AsyncGridRV ensures rendezvous during some of the periods when they follow different routes
i.e., when the two agents process two different bits.

Furthermore, to design the routes that both agents will follow, an upper bound on two
parameters would be necessary: namely the initial distance between the agents and the length
(of the binary representation) of the shortest label. As it is supposed that the agents have no
knowledge of these parameters, they both perform successive “assumptions”, in the sequel called
phases, in order to find out such an upper bound. Roughly speaking, each agent attempts to
estimate such an upper bound by successive tests, and for each of these tests, acts as if the

33

Part , Chapter 4 – Asynchronous Approach in the Plane

upper bound estimation was correct. Both agents first perform Phase 0. When Phase i does
not lead to rendezvous, they perform Phase i + 1, and so on. More precisely, within Phase i,
the route of each agent is built in such a way that it ensures rendezvous if 2i is a good upper
bound on the parameters of the problem. Hence, this approach has two requirements: both
agents are assumed (1) to process two different bits (i.e., 0 and 1) almost concurrently and (2)
to perform Phase i = α almost at the same time—where α is the smallest integer such that the
two aforementioned parameters are upper bounded by 2α.

However, to meet these requirements, two major issues have to be faced. First, since the
adversary can vary both agent speeds, the idea described above does not prevent the adversary
from making the agents always process the same type of bit at the same time. Moreover, the
route cost depends on the phase number, and thus, if an agent were performing some Phase i with
i exponential in the initial distance and in the length of the binary representation of the smallest
label, then the resulting procedure would not be polynomial. To tackle these two issues, the idea
is to use a mechanism that prevents the adversary from making an agent execute the algorithm
arbitrarily faster than the other without meeting. Each of these two issues is circumvented
via a specific “synchronization mechanism”. Roughly speaking, the first one makes the agents
read and process the bits of the binary representation of their labels at nearly the same speed,
while the second ensures that they start Phase α at almost the same time. This is particularly
where the feat of strength is: orchestrating in a subtle manner these synchronizations in a fully
asynchronous context while ensuring a polynomial cost. This completes the very high level idea
of procedure AsyncGridRV. The next section gives more details.

4.3.2 Under the Hood

The approach described above allows to solve rendezvous when there exists an index for which
the binary representations of both labels differ. However, this is not always the case especially
when a binary representation is a prefix of the other one (e.g., 100 and 1000). Hence, instead
of considering its own label, each agent will consider a transformed label: The transformation
described in Section 3.2 guarantees the existence of the desired difference over the new labels.
In the rest of this description, assume for convenience that the initial Manhattan distance
D separating the agents is at least the length of the shortest binary representation of the
two transformed labels (the complementary case adds an unnecessary level of complexity to
understand the intuition).

As mentioned previously, procedure AsyncGridRV (refer to Algorithm 4.5 in Section 4.5)
works in phases numbered 0, 1, 2, 3, 4, . . . During Phase i refer to procedure Assumption called
at line 3 in Algorithm 4.5), the agent supposes that the initial distance D is at most 2i and
processes one by one the first 2i bits of its transformed label: In the case where 2i is greater
than the binary representation of its transformed label, the agent will consider that each of the
last “missing” bits is 0. When processing a bit, the agent executes a particular route which
depends on the bit value and the phase number. The route related to bit 0 (relying in particular
on procedure Berry called at line 9 in Algorithm 4.6) and the route related to bit 1 (relying in
particular on procedure CloudBerry called at line 11 in Algorithm 4.6) are obviously different
and designed in such a way that if both these routes are executed almost simultaneously by two
agents within a phase corresponding to a correct upper bound, then rendezvous occurs by the
time any of them has been completed.

In the light of this, it turns out that an ideal situation would be that the agents concurrently
start phase α and process the bits at quite the same rate within this phase where α denotes
the smallest integer such that 2α ≥ D. Indeed, rendezvous would occur by the time the agents
complete the process of the λ-th bit of their transformed label in phase α, where λ is the
smallest index for which the binary representations of their transformed labels differ. However,
getting such an ideal situation in presence of a fully asynchronous adversary appears to be really
challenging. This is where the two synchronization mechanisms briefly mentioned above come

34

4.3. Idea of the Algorithm

into the picture.

If the agents start Phase α approximately at the same time, the first synchronization
mechanism (refer to procedure RepeatSeed called at line 15 in Algorithm 4.6) permits to force
the adversary to make the agents process their respective bits at similar speed within Phase α,
as otherwise rendezvous would occur prematurely during this phase before the process by any
agent of the λth bit. This constraint is imposed on the adversary by dividing each bit process
into some predefined steps and by ensuring that after each step s of the k-th bit process, for
any k ≤ 2α, an agent follows a specific route that forces the other agent to complete the step
s of its k-th bit process. This route, on which the first synchronization is based, is constructed
by relying on a simple principle that enables an agent to “push” the other. The principle is as
follows: if an agent performs a given route X included in a given area S of the infinite grid,
then the other agent can force it to finish route X by covering S as many times as there are
edge traversals in X. More precisely, each covering of S allows to traverse all the edges of
X at least once: so, in each covering the agent executing X must complete at least one edge
traversal or rendezvous occurs. Hence, one of the major difficulties lies in the setting up of the
second synchronization mechanism guaranteeing that the agents start Phase α around the same
time. At first glance, it might be tempting to use an analogous principle to the one used for
dealing with the first synchronization. Indeed, if an agent a1 follows a route covering r times
an area Y of the grid, such that Y is where the first α − 1 phases of an agent a2 take place
and r is the maximal number of edge traversals an agent can make during these phases, then
agent a1 pushes agent a2 to complete its first α− 1 phases and to start Phase α. Nevertheless,
a strict application of this principle to the case of the second synchronization directly leads to
an algorithm having a cost that is super-polynomial in D and the length of the smallest label,
due to a cumulative effect that does not appear for the case of the first synchronization. As a
consequence, to force an agent to start its Phase α, the second synchronization mechanism does
not depend on the kind of route described above, but on a much more complicated route that
permits an agent to “push” the second one. This works by considering the “pattern" that is
drawn on the grid by the second agent rather than just the number of edges that are traversed
(refer to procedure Harvest called at line 1 in Algorithm 4.6). This is the most tricky part of
procedure AsyncGridRV, one of the main idea of which relies in particular on the fact that some
routes made of an arbitrarily large sequence of edge traversals can be pushed at a relative low
cost by some other routes that are of comparatively small length, provided they are judiciously
chosen. The following example illustrates this point. Consider an agent a1 following from a
node v1 an arbitrarily large sequence of Xi, in which each Xi corresponds either to AA or BB
where A and B are any routes (A and B corresponding to their respective backtrack i.e., the
sequence of edge traversals followed in the reverse order). An agent a2 starting from an initial
node v2 located at a distance at most d from v1 can force agent a1 to finish its sequence of Xi (or
otherwise rendezvous occurs), regardless of the number of Xi, simply by executing AABB from
each node at distance at most d from v2. To support this claim, suppose by contradiction that
it does not hold. At some point, agent a2 necessarily follows AABB from v1. However, note
that if either agent starts following AA (resp. BB) from node v1 while the other is following AA
(resp. BB) from node v1, then the agents meet. Indeed, this implies that the more ahead agent
eventually follows A (resp. B) from a node v3 to v1 while the other is following A (resp. B) from
v1 to v3, which leads to rendezvous. Hence, when agent a2 starts following BB from node v1,
agent a1 is following AA, and is not in v1, so that it has at least started the first edge traversal
of AA. This means that when agent a2 finishes following AA from v1, a1 is following AA, which
implies, using the same arguments as before, that they meet before either of them completes this
route. Hence, in this example, agent a2 can force a1 to complete an arbitrarily large sequence of
edge traversals with a single and simple route. Actually, the second synchronization mechanism
implements this idea (this point is refined in Section 4.5). This was the most complicated thing
to set up, as each part of route in every phase had to be orchestrated very carefully to permit,

35

Part , Chapter 4 – Asynchronous Approach in the Plane

in the end, this low cost synchronization while still ensuring rendezvous. However, it is through
this original and novel way of moving that the polynomial cost is reached.

4.4 Basic Patterns

This section defines some sequences of moving instructions, i.e., patterns of moves, that will
serve in turn as building blocks in the construction of the rendezvous algorithm. The main roles
of these patterns are given in the next section when presenting the general solution.

4.4.1 Pattern Seed

Figure 4.2: An illustration of the movements executed by an agent during the first period of
Seed(3) from a node u0. An arrow from a node x to a node y represents an edge traversal
from x to y. Depending on the shape of the arrow, the represented movement is performed in
a different phase.

Pattern Seed is involved as a sub-pattern in the design of all the other patterns presented
in this section.

The description of pattern Seed is given in Algorithm 4.1. It is made of two periods. For a
given non-negative integer x, the first period of pattern Seed(x) corresponds to the execution of
x phases, while the second period is a complete backtrack of the path traveled during the first
period. Pattern Seed is designed in such a way that it offers some properties that are shown
in Section 4.6.1.2 and that are necessary to conduct the proof of correctness. One of the main
purpose of this pattern is the following: starting from a node v, pattern Seed(x) allows to visit
all nodes of the grid at distance at most x from v and to traverse all edges of the grid linking
two nodes at distance at most x from v (informally, the procedure permits to cover an area of
radius x). An illustration of pattern Seed is given in Figure 4.2.

36

4.4. Basic Patterns

Algorithm 4.1 Pattern Seed(x)
1: /* First period */
2: for i← 1; i ≤ x; i← i+ 1 do
3: /* Phase i */
4: perform (N(SE)i(WS)i(NW)i(EN)i)
5: end for
6: /* Second period */
7: L← the path followed by the agent during the first period
8: backtrack by following the reverse path L

4.4.2 Pattern RepeatSeed

Following the high level description of procedure AsyncGridRV (Section 4.3), RepeatSeed
is the basic primitive procedure that implements the first synchronization mechanism (between
two consecutive steps of a bit process). An agent a1 executing pattern RepeatSeed(x, n) from
a node u processes n times pattern Seed(x) from node u. All along this execution, a1 stays at
distance at most x from u. Moreover, once the execution is over, the agent is back at u.

The description of pattern RepeatSeed is given in Algorithm 4.2.

Algorithm 4.2 Pattern RepeatSeed(x, n)
execute n times pattern Seed(x)

4.4.3 Pattern Berry

According to Section 4.3, pattern Berry is used in particular to design the specific route
that an agent follows when processing bit 0. The description of pattern Berry is given in
Algorithm 4.3. It is made of two periods, the second of which is a backtrack of the first one.
Pattern Berry offers several properties that are proved in Section 4.6.1.4 and used in the proof
of correctness. Note that, Pattern Berry(x, y) executed from a node u for any two integers x
and y allows, in particular, an agent to perform Pattern Seed(x) from each node at distance at
most y from u. An illustration of pattern Berry is given in Figure 4.3.

Algorithm 4.3 Pattern Berry(x, y)
1: /* First period */
2: let u be the current node
3: for i← 1; i ≤ x+ y; i← i+ 1 do
4: for j ← 0; j ≤ i; j ← j + 1 do
5: for each node v at distance j from u ordered in the clockwise direction from the

North do
6: follow P (u, v)
7: execute Seed(i− j)
8: follow P (v, u)
9: end for

10: end for
11: end for
12: /* Second period */
13: L← the path followed by the agent during the first period
14: backtrack by following the reverse path L

37

Part , Chapter 4 – Asynchronous Approach in the Plane

Figure 4.3: Illustration of a part of the route followed by an agent executing pattern Berry(2, 3)
from a node u0. When executing this pattern the agent has to execute many patterns Seed
interleaved with executions of paths P from all nodes at distance at most 3 from u0. Some of
these patterns and paths are depicted in the figure. It is particularly the case of the dotted
square centered at u1 (resp. u2 and u3) that delimits the set of nodes that are visited when
executing a pattern Seed(2) from node u1 (resp. u2 and u3). Before executing Seed(2) from
node u1 (resp. u2 or u3), the agent follows P (u0, u1) (resp. P (u0, u2) or P (u0, u3)), and after
executing Seed(2) from node u1 (resp. u2 or u3), the agent follows the path P (u1, u0) (resp.
P (u2, u0) or P (u3, u0)). These different paths P are represented by arrows.

4.4.4 Pattern CloudBerry

According to Section 4.3, pattern CloudBerry is used in particular to design the specific route
that an agent follows when processing bit 1. The description of pattern CloudBerry is given in
Algorithm 4.4. As for patterns Seed and Berry, the pattern is made of two periods, the second
of which corresponds to a backtrack of the first one. Properties related to this pattern are given
in Section 4.6.1.4. Note that, Pattern CloudBerry(x, y, z, h) executed from a node u for any
integers x, y, z and h allows an agent to perform Patterns Berry(x, y) and Seed(x) from each
node at distance at most z from u. Parameter h is an integer input that indicates in which order
the agent has to visit each node at distance at most z from u (to execute Patterns Berry(x, y)
and Seed(x) from each of these nodes). Playing on this order is used for technical reasons that
are detailed in the proof of Theorem 4.2. An illustration of pattern CloudBerry is given in
Figure 4.4.

38

4.5. Main Algorithm

Algorithm 4.4 Pattern CloudBerry(x, y, z, h)
1: /* First period */
2: let u be the current node
3: let U be the list of nodes at distance at most z from u ordered in the order of the first visit

when applying Seed(z) from node u
4: for i← 0; i ≤ 2z(z + 1); i← i+ 1 do
5: let v be the node with index h+ i (mod 2z(z + 1) + 1) in U
6: follow P (u, v)
7: execute Seed(x)
8: execute Berry(x, y)
9: follow P (v, u)

10: end for
11: /* Second period */
12: L← the path followed by the agent during the first period
13: backtrack by following the reverse path L

Figure 4.4: Illustration of a part of the route followed by an agent executing Pattern
CloudBerry(1, 2, 3, 0) from a node u0. When executing this pattern the agent has to execute
paths P as well as patterns Seed and Berry from all nodes at distance at most 3 from u0 and
in particular from nodes u1, u2 and u3. To go to these nodes from u0, the agent respectively
follows P (u0, u1), P (u0, u2) and P (u0, u3). Once in node u1 (resp. u2 and u3) the agent executes
Seed(1), which is represented by the smallest dotted square centered at u1 (resp. u2 and u3)
and then executes Berry(1, 2), which is represented by the largest dotted square centered at
u1 (resp. u2 and u3), followed by P (u1, u0) (resp. P (u2, u0) and P (u3, u0)). All paths P are
represented by arrows.

4.5 Main Algorithm

The asynchronous rendezvous in the infinite grid is provided by procedure AsyncGridRV
whose formal description is provided by this section. For each subroutine involved, a description

39

Part , Chapter 4 – Asynchronous Approach in the Plane

of its main objectives and a high level explanation of how its works are also explained. The
main algorithm that solves the rendezvous in the infinite grid is procedure AsyncGridRV (whose
pseudo-code is given by Algorithm 4.5).

Algorithm 4.5 Procedure AsyncGridRV

1: d← 1
2: while agents have not met yet do
3: execute Assumption(d)
4: d← 2d
5: end while

Procedure AsyncGridRV makes use of a subroutine, i.e., procedure Assumption. When
an agent executes this procedure with a parameter α that is a “good” assumption i.e., that
upper-bounds the initial distance D and the value λ of the smallest bit position for which both
transformed labels differ, rendezvous is guaranteed to occur by the end of this execution. In the
rest of this section, α denotes the smallest assumption which upper-bounds D and λ.

The code of procedure Assumption is given in Algorithm 4.6. It can be divided into two
parts. The first part consists of the execution of procedure Harvest (line 1 of Algorithm 4.6)
and corresponds to the second synchronization mechanism mentioned in Section 4.3. The
main feature of this procedure is the following: when the earlier agent finishes the execution
of Harvest(α) within the execution of Assumption(α), the later agent is guaranteed to have
at least started to execute Assumption with parameter α (actually, as explained below, it is
even guaranteed that most of Harvest(α) has been executed by the later agent). Procedure
Harvest is presented below. The second part of procedure Assumption (refer to lines 2 − 19
of Algorithm 4.6) consists in processing the bits of the transformed label one by one. More
precisely when processing a given bit in a call to procedure Assumption(d), the agent acts in
steps 0, 1, . . . , 2d(d+1): After each of these steps, the agent executes Pattern RepeatSeed whose
role is described below. In each of these steps, the agent executes Berry (resp. CloudBerry)
if the bit it is processing is 0 (resp. 1). These patterns of moves (refer to Algorithms 4.3
and 4.4 in Section 4.4) are made in such a way that rendezvous occurs by the time any agent
finishes the process of its λ-th bit in Assumption(α) if the following synchronization property is
verified. Each time any of the agents starts executing a step j during the process of its i-th bit
in Assumption(α), the other agent has finished the execution of either step j − 1 in the i-th bit
process of Assumption(α) if j > 0, or the last step of the (i−1)-th bit process of Assumption(α)
if j = 0 and i > 0. To obtain such a synchronization, an agent executes what is called the first
synchronization mechanism in the previous section (refer to line 15 in Algorithm 4.6) after each
step of a bit process. Actually, this mechanism relies on procedure RepeatSeed, the code of
which is given in Algorithm 4.1. Note that the total number of steps, and thus of executions of
RepeatSeed, in Assumption(α) is 2α2(α + 1) + α. For every 0 ≤ k ≤ 2α2(α + 1) + α, the k-th
execution of RepeatSeed in Assumption(α) by an agent permits to force the other agent to finish
the execution of its k-th step in Assumption(α) by repeating a pattern Seed (its main purpose
is described just above its code given by Algorithm 4.2): with the appropriate parameters, this
pattern Seed covers any pattern (Berry or CloudBerry) made in the k-th step of Assumption(α)
and the number of times it is repeated is at least the maximum number of edge traversals made
in the k-th step of Assumption(α).

Algorithm 4.7 gives the code of procedure Harvest. Procedure Harvest is made of two parts:
the executions of procedure PushPattern (lines 1 − 3 of Algorithm 4.7), and the calls to the
patterns CloudBerry and RepeatSeed (lines 4−5 of Algorithm 4.7). When Harvest is executed
with parameter α (which is a good assumption), the first part ensures that the later agent has
at least completed every execution of Assumption with a parameter that is smaller than α,
while the second part ensures that the later agent has completed almost the entire execution

40

4.5. Main Algorithm

of Harvest(α) (more precisely, when the earlier agent finishes the second part, it is guaranteed
that it remains for the later agent to execute at most the last line before completing its own
execution of Harvest(α)).

Algorithm 4.6 Procedure Assumption(d)
1: execute Harvest(d)
2: radius← 2d4 + 3d
3: i← 1
4: while i ≤ d do
5: j ← 0
6: while j ≤ 2d(d+ 1) do
7: // Begin of step j
8: if the length of the transformed label is strictly greater than i, or its i-th bit is 0

then
9: execute Berry(radius, d)

10: else
11: execute CloudBerry(radius, d, d, j)
12: end if
13: // End of step j
14: radius← radius+ 3d
15: execute RepeatSeed(radius, C(CloudBerry(radius− 3d, d, d, j)))
16: j ← j + 1
17: end while
18: i← i+ 1
19: end while

To give further details on Harvest, let us first describe procedure PushPattern (its code is
given in Algorithm 4.8). When the earlier agent completes the execution of PushPattern(2i, d)
with i some power of two, assuming that the later agent had already completed Assumption(i),
the later agent is guaranteed to have completed its execution of Assumption(2i). To ensure this,
the execution of Assumption(2i) is regarded as a sequence of calls to basic patterns (namely
RepeatSeed, Berry and CloudBerry), which is formally defined in Definition 4.7. This sequence
is what lies behind “the pattern drawn on the grid” mentioned in Subsection 4.3.2. The sequence
of calls to basic patterns of the earlier agent in Assumption(2i) is quite similar to the one of the
later agent: they have the same length and the s-th pattern of one sequence is RepeatSeed if
and only if the s-th pattern of the other sequence is RepeatSeed. In fact, the only difference,
due to distinct transformed labels, is that if the s-th pattern of one sequence is Berry (resp.
CloudBerry), the s-th pattern of the other sequence may be either Berry or CloudBerry.

For each basic pattern ps in its sequence, the earlier agent executes another pattern p′s at
the end of which the later agent is ensured to have completed the execution of the s-th basic
pattern of its own sequence. Whether ps is Berry or CloudBerry, p′s is the same so that the
earlier agent does not need to know the type of the s-th basic pattern in the sequence of the
later agent in order to push it (and by extension, does not require the knowledge of the label of
the later agent). More precisely, p′s is chosen as follows.

If ps is either pattern Berry or pattern CloudBerry, then p′s is pattern RepeatSeed: the same
idea as for the first synchronization mechanism it used once more. If ps is pattern RepeatSeed,
then p′s is pattern Berry, relying on a property of the route XX (with X any non-empty route)
introduced in the last paragraph of Subsection 4.3.2: if both agents follow this route concurrently
from the same node, then they meet. Pattern Seed can be seen as such a route, and procedure
Berry (whose code is shown in Algorithm 4.3) consists in executing pattern Seed from each
node at distance at most α. Hence, unless they meet, the later agent completes its execution

41

Part , Chapter 4 – Asynchronous Approach in the Plane

of pattern RepeatSeed before the earlier one starts executing Seed from the same node. Note
that PushPattern uses as many patterns as the number of basic patterns in the sequence it is
supposed to push: this and the fact of doubling the value of the input parameter of procedure
Assumption in Algorithm 4.5 contribute in particular to keep the polynomiality of procedure
AsyncGridRV.

Thus, once the earlier agent completes the first part of Harvest(α), the later one has at
least started the execution of Assumption(α) (and thus of the first part of Harvest(α)). At
this point, at first glance, it might seem that the problem has just been shifted. Indeed, the
number of edge traversals that has to be made to complete all the executions of Assumption
prior to Assumption(α) is quite the same, if not higher, than the number of edge traversals
that has to be made when executing the first part of Harvest(α). Hence the difference between
both agents in terms of edge traversals has not been improved here. However, a crucial and
decisive progress has nonetheless been done: contrary a priori to the series of Assumption
executed before Assumption(α), the first part of Harvest(α) can be pushed at low cost via the
execution of pattern CloudBerry (line 4 of Algorithm 4.7) by the earlier agent. Actually this
pattern corresponds to the kind of route, described at the end of Subsection 4.3.2 for the second
synchronization mechanism, which is of small length compared to the sequence of patterns it
can push. Indeed, the first part of Harvest(α) can be viewed as a “large” sequence of patterns
Seed and Berry: however Seed and Berry can be seen (by analogy with Subsection 4.3.2) as
routes of the form AA and BB respectively, while pattern CloudBerry executes Seed and Berry
(i.e., AABB) once from at least each node at distance at most α.

Note that when the earlier agent has completed the execution of CloudBerry in Harvest(α),
the later agent has at least started the execution of pattern CloudBerry in Harvest(α). Hence,
there is still a difference between both agents, but it has been considerably reduced: it is now
relatively small so that it can be handled pretty easily afterwards.

Algorithm 4.7 Procedure Harvest(d)
1: for i← 1; i < d; i← 2i do
2: execute PushPattern(i, d)
3: end for
4: execute CloudBerry(2d4, d, d, 0)
5: execute RepeatSeed(2d4 + 3d,C(CloudBerry(2d4, d, d, 0)))

Definition 4.7 (Basic and Perfect Decomposition). Given a call P to an algorithm, the
basic decomposition of P , denoted by BD(P), is P itself if P corresponds to a basic pattern,
the type of which belongs to {RepeatSeed, Berry, CloudBerry}. Otherwise, if P contains no
call or contains a moving instruction outside of every call then BD(P) =⊥, else BD(P) =
BD(x1),BD(x2), . . . ,BD(xn) where x1, x2, . . . , xn is the sequence (in the order of execution) of
all the calls in P that are children of P . Moreover, BD(P) is a perfect decomposition if it does
not contain any ⊥.

Remark 4.1. The basic decomposition of every call to procedure Assumption is perfect.

42

4.6. Proof of Correctness and Cost Analysis

Algorithm 4.8 Procedure PushPattern(i, d)
1: for each p in BD(Assumption(i)) do
2: if p is a call to pattern RepeatSeed with value x as first parameter then
3: Execute Berry(x, d)
4: else
5: /* pattern p is either a call to pattern Berry or a call to pattern CloudBerry (in view

of the above remark) and has at least two parameters */
6: Let x (resp. y) be the first (resp. the second) parameter of p
7: execute RepeatSeed(d+ x+ 2y, C(CloudBerry(x, y, y, 0)))
8: end if
9: end for

4.6 Proof of Correctness and Cost Analysis

The purpose of this section is to prove that procedure AsyncGridRV ensures asynchronous
rendezvous in the infinite grid at cost ∈ O((D + l)33) with D the initial distance between the
agents and l, the length of the shortest label. To this end, the section is made of four subsections.
The first two subsections are dedicated to technical results about the basic patterns presented
in Section 4.4 and synchronization properties of procedure AsyncGridRV, which are used in turn
to carry out the proof of correctness and the cost analysis of AsyncGridRV that are presented in
the last two subsections.

4.6.1 Properties of the Basic Patterns

This subsection is dedicated to the presentation of some technical results about the basic
patterns described in Section 4.4. They are used in the following subsections to prove the
correctness of Algorithm 4.5.

4.6.1.1 Vocabulary

Before going any further, some extra vocabulary is introduced in order to facilitate the
presentation of the next properties and lemmas.

Definition 4.8. A pattern execution A precedes another pattern execution B iff the beginning
of A occurs by the beginning of B.

Definition 4.9. Two pattern executions A and B are concurrent iff:

• pattern execution A does not finish before pattern execution B starts

• pattern execution B does not finish before pattern execution A starts

By misuse of language, in the rest of this chapter, “a pattern execution” is sometimes referred
to as “a pattern”.

Hereafter a pattern A is said to concurrently precede a pattern B, iff A and B are concurrent,
and A precedes B.

Definition 4.10. A pattern A pushes a pattern B if for every execution in which B precedes
A, agents meet before the end of the execution of A or B finishes before A.

In the sequel, given two sequences of moving instructions X and Y , X is said to be a prefix
of Y if Y can be viewed as the execution of the sequence X followed by another (possibly empty)
sequence.

43

Part , Chapter 4 – Asynchronous Approach in the Plane

4.6.1.2 Pattern Seed

This section shows some properties related to pattern Seed. Proposition 4.1 follows by
induction on the input parameter of pattern Seed and Proposition 4.2 follows from Algorithm 4.1.

Proposition 4.1. Let x be any positive integer. Starting from a node v, pattern Seed(x)
guarantees the following properties:

1. it allows to visit all nodes of the grid at distance at most x from v

2. it allows to traverse all edges of the grid linking two nodes at distance at most x from v

Proposition 4.2. Given two integers x1 ≤ x2, the first period of pattern Seed(x1) is a prefix
of the first period of pattern Seed(x2).

Lemma 4.1. Let x1 and x2 be two positive integers such that x1 ≤ x2. Let a1 and a2 be two
agents executing respectively patterns Seed(x1) and Seed(x2) both from the same node such that
the execution of pattern Seed(x1) concurrently precedes the execution of pattern Seed(x2). Let
t1 (resp. t2) be the time when agent a1 (resp. a2) completes the execution of pattern Seed(x1)
(resp. Seed(x2)). Agents a1 and a2 meet by time min(t1, t2).

Proof. In view of Proposition 4.2, the first period of Seed(x1) is a prefix of the first period
of pattern Seed(x2). If the path followed by agent a1 during its execution of Seed(x1) is
e1, e2, . . . , en,
e1, e2, . . . , en (the over-lined part of the path corresponds to the backtrack), then the path
followed by agent a2 during the execution of pattern Seed(x2) is e1, e2, . . . , en, s, e1, e2, . . . , en, s
where s corresponds to the edges traversed at a distance ∈ {x1 + 1; . . . ;x2}.

There are two cases to consider. If agent a2 completes e1, e2, . . . , en by the time a1 completes
e1, e2, . . . , en, then agents a1 and a2 meet while they are following e1, e2, . . . , en as agent a1 is the
first agent that starts following e1, e2, . . . , en. Otherwise, agent a1 starts following e1, e2, . . . , en
while a2 is still following e1, e2, . . . , en: this implies that the agents meet by the time a1 (resp. a2)
finishes e1, e2, . . . , en (resp. e1, e2, . . . , en). So, in both cases the agents meet by time min(t1, t2),
which concludes the proof of this lemma.

4.6.1.3 Pattern RepeatSeed

This section is dedicated to some properties of pattern RepeatSeed. Informally speaking,
Lemmas 4.2 and 4.3 describe the fact that pattern RepeatSeed pushes respectively pattern
Berry and CloudBerry when it is given appropriate parameters.

Lemma 4.2. Consider two nodes v1 and v2 separated by a distance δ. Let Berry(x1, y) and
RepeatSeed(x2, n) be two patterns respectively executed from v1 and v2 with x1, x2, y and n
positive integers. If x2 ≥ x1 + y + δ and n ≥ C(Berry(x1, y)) then pattern RepeatSeed(x2, n)
pushes pattern Berry(x1, y).

Proof. Denote by a1 and a2 the agents executing respectively Berry(x1, y) and RepeatSeed(x2, n).
Suppose by contradiction that RepeatSeed(x2, n) does not push Berry(x1, y), which means, by
Definition 4.10 that there exists an execution in which pattern Berry(x1, y) precedes pattern
RepeatSeed(x2, n) such that a1 neither meets a2 nor completes Berry(x1, y) before a2 completes
RepeatSeed(x2, n). Remark that this implies in particular that these patterns are concurrent.

When executing its Berry(x1, y) agent a1 cannot be at a distance greater than x1 + y from
its initial position v1 and thus cannot be at a distance greater than δ + x1 + y from node v2.
Also, in view of Proposition 4.1, each pattern Seed(x2) executed from node v2 which composes
pattern RepeatSeed(x2, n) allows to visit all nodes and to traverse all edges at distance at most
x2 from node v2. Thus, each pattern Seed(x2) executed from node v2 allows to visit all nodes

44

4.6. Proof of Correctness and Cost Analysis

and to traverse all edges (although not necessarily in the same order) that are traversed during
the execution of pattern Berry(x1, y) from node v1.

Consider the number of edge traversals completed by agent a1 between the moment when a2
starts executing any of the Seed(x2) which compose RepeatSeed(x2, n) and the moment when
a2 completes this Seed(x2). If a1 has not completed a single edge traversal, then whether it was
in a node or traversing an edge, it has met a2 which traverses every edge a1 traverses during its
execution of Berry(x1, y). This is a contradiction, which implies that each time a2 completes one
of its executions of pattern Seed(x2), a1 has completed at least one edge traversal. Since agent
a2 executes n ≥ C(Berry(x1, y)) times pattern Seed(x2), a1 traverses at least C(Berry(x1, y))
edges before a2 finishes executing its RepeatSeed(x2, n). As C(Berry(x1, y)) is the number of
edge traversals in Berry(x1, y), when a2 finishes executing pattern RepeatSeed(x2, n), a1 has
finished executing its pattern Berry(x1, y), which is a contradiction and proves the lemma.

The following lemma can be proved using similar arguments to those used in the proof of
Lemma 4.2.

Lemma 4.3. Consider two nodes v1 and v2 separated by a distance δ. Let CloudBerry(x1, y, z, h)
and RepeatSeed(x2, n) be two patterns respectively executed from v1 and v2 with x1, x2, y, z, h
and n positive integers. If x2 ≥ x1 + y + z + δ and n ≥ C(CloudBerry(x1, y, z, h)) then pattern
RepeatSeed(x2, n) pushes pattern CloudBerry(x1, y, z, h).

4.6.1.4 Pattern Berry

This section is dedicated to the properties of pattern Berry. Informally speaking, Lemma 4.4
describes the fact that pattern Berry permits to push pattern RepeatSeed when it is given
appropriate parameters. Proposition 4.3 and Lemma 4.5 are respectively analogous to Propo-
sition 4.2 and Lemma 4.1.

The following proposition follows from Algorithm 4.3.

Proposition 4.3. Given four positive integers x1 +y1 ≤ x2 +y2, the first period of Berry(x1, y1)
is a prefix of the first period of Berry(x2, y2).

Lemma 4.4. Consider two nodes v1 and v2 separated by a distance δ. Let RepeatSeed(x1, n)
and Berry(x2, y) be two patterns respectively executed from v1 and v2 with x1, x2, y and n positive
integers. If y ≥ δ and x1 ≤ x2 then pattern Berry(x2, y) pushes pattern RepeatSeed(x1, n).

Proof. Denote by a1 and a2 the agents executing respectively RepeatSeed(x1, n) and Berry(x2, y).
Suppose by contradiction that Berry(x2, y) does not push RepeatSeed(x1, n) which means by
Definition 4.10 that there exists an execution in which pattern RepeatSeed(x1, n) precedes
pattern Berry(x2, y) such that a1 neither meets a2 nor completes RepeatSeed(x1, n) before a2
completes Berry(x2, y). When executing Berry(x2, y), agent a2 performs Seed(x2) from each
node at distance at most y from v2 with y ≥ δ. Thus, at some point, a2 executes Seed(x2) from
node v1. In view of Lemma 4.1, since x2 ≥ x1 and since by assumption, a1 has not finished
executing its RepeatSeed(x1, n) when a2 starts executing pattern Seed(x2) from v1, agents meet
by the end of the latter and thus before the end of Berry(x2, y) which is a contradiction and
proves the lemma.

Lemma 4.5. Consider two agents a1 and a2 executing respectively patterns Berry(x1, y1) and
Berry(x2, y2) both from node v with x1, x2, y1 and y2 positive integers such that x2 + y2 ≥
x1 +y1. Suppose that the execution of Berry(x1, y1) by a1 concurrently precedes the execution of
Berry(x2, y2) by a2. Let t1 (resp. t2) be the time when agent a1 (resp. a2) completes its execution
of pattern Berry(x1, y1) (resp. Berry(x2, y2)). Agents a1 and a2 meet by time min(t1, t2).

45

Part , Chapter 4 – Asynchronous Approach in the Plane

Proof. This proof is similar to the proof of Lemma 4.1. In view of Proposition 4.3, if the path
followed by agent a1 during its execution of Berry(x1, y1) is e1, e2, . . . , en, e1, e2, . . . , en (the over-
lined part of the path corresponds to the backtrack), then the path followed by agent a2 during
the execution of pattern Berry(x2, y2) is e1, e2, . . . , en, s, e1, e2, . . . , en, s where s corresponds to
the edges traversed from the (x1 + y1 + 1)-th iteration of the main loop of pattern Berry to its
(x2 + y2)-th iteration.

There are two cases to consider. If agent a2 completes e1, e2, . . . , en by the time a1 completes
e1, e2, . . . , en, then agents a1 and a2 meet while they are following e1, e2, . . . , en as agent a1 is the
first agent that starts following e1, e2, . . . , en. Otherwise, agent a1 starts following e1, e2, . . . , en
while a2 is still following e1, e2, . . . , en: this implies that the agents meet by the time a1 (resp. a2)
finishes e1, e2, . . . , en (resp. e1, e2, . . . , en). So, in both cases the agents meet by time min(t1, t2),
which concludes the proof of this lemma.

4.6.1.5 Pattern CloudBerry

Informally speaking, the following lemma highlights the fact that pattern CloudBerry can
push “a lot of basic patterns” under some conditions. In other words, an agent can be obliged
to make a lot of edge traversals “at relative low cost”.

Lemma 4.6. Consider two nodes v1 and v2 separated by a distance δ. Assume that pattern
CloudBerry(x1, y1, z, h) is executed from v2 with x1, y1, z and h four positive integers. Also
assume that S is a sequence of patterns RepeatSeed and Berry executed from v1. If z ≥ δ and
for each pattern RepeatSeed R and pattern Berry B belonging to S, x1 + y1 is greater than or
equal to the sum of the parameters of B, and x1 is greater than or equal to the first parameter
of R, then pattern CloudBerry(x1, y1, z, h) pushes S.

Proof. Denote by a1 and a2 the agents executing respectively S and CloudBerry(x1, y1, z, h). In
order to prove that the execution of pattern CloudBerry(x1, y1, z, h) by a2 pushes the sequence
of patterns S, suppose by contradiction that there exists an execution in which S precedes
pattern CloudBerry(x1, y1, z, h) such that a1 neither meets a2 nor completes its whole sequence
of patterns before a2 completes CloudBerry(x1, y1, z, h).

In view of Algorithm 4.4, when executing CloudBerry(x1, y1, z, h), a2 executes pattern
Seed(x1) followed by pattern Berry(x1, y1) on each node at distance at most z from v2. Since
z ≥ δ, during its execution of CloudBerry(x1, y1, z, h), a2 follows P (v2, v1), executes pattern
Seed(x1) (denoted by p1) and then pattern Berry(x1, y1) (denoted by p2) both from node v1.
The proof that the execution of CloudBerry(x1, y1, z, h) by a2 pushes the execution of S by a1
consists in showing that the agents meet by the time a2 completes its executions of p1 and p2.

By assumption, a1 has not finished executing S when a2 arrives on v1 to execute p1 and
p2. Consider what it can be executing at this moment. If it is executing pattern Seed(x2)
with x2 ≤ x1 a positive integer, then in view of Lemma 4.1, the agents meet by the end of
the execution of p1, which contradicts the assumption that the agents do not meet before the
end of CloudBerry(x1, y1, z, h). This means that when a2 starts executing p1, a1 is executing
pattern Berry(x2, y2) for some positive integers x2 and y2 such that x2 + y2 ≤ x1 + y1. After p1,
a2 executes p2. By Lemma 4.5, if a1 is still executing pattern Berry(x2, y2) for some positive
integers x2 and y2 such that x2 + y2 ≤ x1 + y1 (the same as above, or another) then the agents
meet by the end of the execution of p2 which is once again a contradiction. As a consequence,
when a2 starts executing p2, a1 is executing pattern Seed(x3) for some positive integer x3 ≤ x1.
Denote by p3 this pattern, and remember that a1 starts it after a2 starts p1. Moreover, when a2
starts executing p2, a1 can not be in v1 as it is the node where a2 starts p2, thus it has at least
started the first edge traversal of p3. Hence, p1 concurrently precedes p3, and a2 completes the
execution of p1 before a1 completes the execution of p3.

In view of Algorithm 4.1, like in the proof of Lemma 4.1, the route followed by a1 when
executing p3 can be denoted by e1, . . . , en, e1, . . . , en and the route followed by a2 when executing

46

4.6. Proof of Correctness and Cost Analysis

p1 can be denoted by e1, . . . , en, s, e1, . . . , en, s where s corresponds to edges traversed at a
distance belonging to {x3 + 1; . . . ;x1}. Remark that in view of the definition of a backtrack,
e1, . . . , en, s = s, e1, . . . , en. Consider the moment t1 when a1 completes the first period of p3 and
begins the second one. It has just traversed e1, . . . , en, and is about to follow e1, . . . , en. At this
moment, a2 can not have started the edge traversals e1, . . . , en, or else agents have met by t1,
which would be a contradiction. However, as p1 is completed before p3, a2 must finish executing
some non-empty part of ss followed by e1, . . . , en before a1 finishes executing e1, . . . , en which
implies that the agents meet by the end of the execution of p1 and contradicts once again the
hypothesis that they do not meet by the end of p2.

So, in every case, the assumption that a1 neither meets a2 nor finishes executing S before the
end of the execution of CloudBerry(x1, y1, z, h), is contradicted. Hence, the execution of pattern
CloudBerry(x1, y1, z, h) by a2 pushes the execution of S by a1, and the lemma holds.

4.6.2 Agents Synchronizations

This subsection aims at introducing and proving several synchronization properties offered
by procedure AsyncGridRV (refer to Lemmas 4.10 and 4.11). The following statements and
proofs make use of the notation D which denotes the initial distance separating the two agents
in the infinite grid. The expression “synchronization" means that if one agent has completed
some part of its rendezvous algorithm, then either it must have met the other agent or this other
agent has also completed some part (not necessarily the same one) of its algorithm i.e., it must
have made progress.

To prove Lemmas 4.10 and 4.11, some more technical results are necessary—Lemmas 4.7, 4.8,
and 4.9.

Lemma 4.7. Let v1 and v2 be the two nodes separated by a distance D that are initially
occupied by the agents a1 and a2 respectively. Let c1 and d1 be two non-negative integers
such that d1 ≥ D. Assume the prefix of the execution of agent a1 is the sequence S1 =
Assumption(1), . . . , Assumption(2c1). Assume that a part of the execution of agent a2 is the
sequence S2 = PushPattern(1, d1), . . . , PushPattern(2c1 , d1). Either the agents meet before the
end of the execution of S2 or S1 finishes before S2.

Proof. Assume by contradiction that there exists some scenario E1 in which neither the agents
meet before the end of the execution of S2 by agent a2 nor the execution of S1 by a1 finishes
before the execution of S2 by a2.

In view of Algorithm 4.8, and since there are as many occurrences of procedure Assumption
in S1 as of procedure PushPattern in S2, there are as many basic patterns (among RepeatSeed,
Berry, and CloudBerry) in BD(S1) as in BD(S2). Each basic pattern inside BD(S1) and BD(S2)
is given an index between 1 and n according to its order of appearance. In view of Remark 4.1,
for any integer d2, BD(Assumption(d2)) is perfect, which implies that BD(S1) is perfect too.
This has the following consequences. When agent a1 starts the execution of S1, this agent starts
the execution of the first basic pattern in BD(S1). Moreover, when agent a1 completes the
execution of S1, it completes the execution of the n-th basic pattern in BD(S1). Lastly, for any
integer i between 1 and n− 1, agent a1 does not make any edge traversal between the i-th and
the (i + 1)-th basic pattern in BD(S1). In other words, every edge traversal agent a1 makes
during the execution of S1 is performed during one of the basic patterns inside BD(S1). Remark
that BD(S2) is perfect too.

The next step of this proof consists in showing by induction on i that for every integer i
between 1 and n, a1 either meets a2 or completes the execution of the i-th pattern inside BD(S1)
before a2 completes the execution of the i-th pattern inside BD(S2). If i = 1, two cases are
distinguished. In the first case, the first pattern of BD(S2) starts before the first pattern of
BD(S1), while in the second case it does not i.e.,, in view of Definition 4.8, the first pattern of
BD(S1) precedes the first pattern of BD(S2).

47

Part , Chapter 4 – Asynchronous Approach in the Plane

In the first case, since it does not make any edge traversal before the moment t1 when it
starts executing the first pattern of BD(S1), a1 is assumed to be in v1 from the moment t2 when
a2 starts executing the first pattern in BD(S2) to t1. Another scenario E2 can be built in which
a1 (resp. a2) executes S1 (resp. S2) from v1 (resp. v2) as in E1, at every moment of E2 both a1
and a2 are at the exact same place as in E1, but in which the first pattern of BD(S1) precedes
the first pattern of BD(S2). This is achieved by designing the behavior of the adversary in E2
as follows. The adversary handles a2 in the same way in E2 as in E1. From the moment t3 at
which a1 starts executing S1 in E2 to the moment t2 at which a2 starts executing S2 (both in E1
and E2), as well as from t2 to the moment t1 at which a1 starts executing S1 in E1, in E2, the
adversary prevents a1 from moving from v1. Moreover, from t1 on, in E2, the adversary handles
a1 as in E1. Since at every moment both a1 and a2 are at the same place in E1 and E2, it is
enough to prove, in E2, that a1 either meets a2 or completes the execution of the first pattern
inside BD(S1) before a2 completes the execution of the first pattern inside BD(S2), to show
that this also holds in E1. Also, in E2, the first pattern of BD(S1) precedes the first pattern
of BD(S2), this is the second of the two cases. Hence, when i = 1 it is enough to consider the
second case only.

If the first pattern of BD(S1) precedes the first pattern of BD(S2), then in view of Lemmas 4.2,
4.3 and 4.4, Algorithm 4.8 and the fact that d1 ≥ D, whatever the type of the first pattern inside
BD(S1) (Berry, CloudBerry or RepeatSeed), a1 either meets a2 or completes the first pattern
inside BD(S1) before a2 completes the first pattern inside BD(S2).

Assume that there exists an integer j in {1, . . . , (n − 1)} such that a1 either meets a2 or
completes the j-th pattern inside BD(S1) before a2 completes the j-th pattern inside BD(S2).
This paragraph aims at showing that a1 either meets a2 or completes the (j + 1)-th pattern
inside BD(S1) before a2 completes the (j + 1)-th pattern inside BD(S2). In order to achieve
this, suppose that the agents do not meet before the end of the execution of the (j+1)-th pattern
inside BD(S2) and show that the execution of the (j+1)-th pattern inside BD(S1) finishes before
the execution of the (j + 1)-th pattern inside BD(S2). In view of the induction hypothesis, and
the assumption that the agents do not meet before the end of the execution of the (j + 1)-th
pattern inside BD(S2), the j-th pattern inside BD(S1) finishes before the j-th pattern inside
BD(S2) which means that the (j + 1)-th pattern inside BD(S1) precedes the (j + 1)-th pattern
inside BD(S2). Again, in view of Lemmas 4.2, 4.3 and 4.4, Algorithm 4.8 and the fact that
d1 ≥ D, whatever the type of the (j+ 1)-th pattern inside BD(S1), it finishes before the (j+ 1)-
th pattern inside BD(S2). In particular, if the (j + 1)-th pattern inside BD(S1) is a Berry or a
CloudBerry called after the test at line 8, at line 9 or 11, (refer to Algorithm 4.6), regardless of
which of the two patterns it is, a1 completes its execution before the end of the (j+1)-th pattern
inside BD(S2). Indeed, for any positive integers x, y, z and h, CloudBerry(x, y, z, h) can be
viewed as composed of several Berry(x, y) so that C(CloudBerry(x, y, z, h)) ≥ C(Berry(x, y)).

This means in particular that before the end of the n-th pattern inside BD(S2) and thus
before the end of S2, a1 either meets a2 or completes the n-th pattern inside BD(S1) and thus
S1 itself, which completes the proof.

Lemma 4.8. Let d1 and x1 be some integers such that the first parameter of each basic pattern
inside BD(Assumption(d1)) is assigned a value which is at most x1. For every integer d2 ≥ d1,
the first parameter of each basic pattern inside BD(PushPattern(d1, d2)) is less than or equal
to x1 + 3d2.

Proof. In view of Algorithm 4.8, each basic pattern inside the basic decompositions
BD(Assumption(d1)) and BD(PushPattern(d1, d2)) (with d2 ≥ d1 some integer) is given an
index from 1 to n according to its order of appearance, with n the number of basic patterns in
either of these decompositions. Thus, for any integer i from 1 to n, there is a pair of patterns
(p1, p2) such that p1 is the i-th basic pattern inside BD(Assumption(d1)), and p2 is the i-th
pattern inside BD(PushPattern(d1, d2)). Thus, this proof consists in showing that there is no

48

4.6. Proof of Correctness and Cost Analysis

such pair (p1, p2) such that the first parameter of p2 is given a value greater than x1 + 3d2. To
this end, three cases depending on the type of pattern p1 are analyzed.

First consider the case in which p1 is pattern RepeatSeed(x2, n1) with x2 ≤ x1 and n1
two positive integers. In view of Algorithm 4.8, since p1 is pattern RepeatSeed(x2, n1), p2 is
Berry(x2, d2), which means that its first parameter is at most x1 and thus at most x1 + 3d2.

Consider the cases in which p1 is either pattern Berry or pattern CloudBerry. First
remark the following. In BD(Assumption(d1)), whether it is called directly by procedure
Assumption(d1), or inside its call to Harvest(d1), or inside the call of the latter to
PushPattern(d3, d1) with some integer d3 < d1, the second parameter of pattern Berry is
always d1, and the second and third parameters of pattern CloudBerry are always d1 as well.

In view of Algorithm 4.8, whether p1 is pattern Berry(x2, d1) or pattern
CloudBerry(x2, d1, d1, h) with two positive integers h and x2 ≤ x1, p2 is RepeatSeed(d2 + x2 +
2d1, C(CloudBerry(x2, d1, d1, h))). Its first parameter is d2 +x2 + 2d1 which is at most x1 + 3d2.

Hence, within BD(PushPattern(d1, d2)), there cannot be any call to a basic pattern in which
the first parameter is assigned a value greater than x1 + 3d2, which proves the lemma.

Lemma 4.9. The first parameter of each basic pattern inside BD(Assumption(d1)) (with d1
any power of two) is at most 32d4

1 − 6d1.

Proof. This lemma is proved by induction on d1.
First consider that d1 = 1. The basic patterns inside BD(Assumption(1)) are enumerated

and for each of them the first parameter is proved to be given a value which is less than or
equal to 32d4

1− 6d1 = 26. Procedure Assumption(1) begins with Harvest(1) which is composed
of calls to CloudBerry(2, 1, 1, 0) and RepeatSeed(5, C(CloudBerry(2, 1, 1, 0))), with both first
parameters lower than 26. After Harvest(1) too, the first parameter that is given to the patterns
called in procedure Assumption(1) is always at most 26. Indeed, the first parameter is assigned
its maximum value when j = 2d1(d1 + 1) = 4 and i = d1 = 1 i.e., when 3d1 = 3 has been added
i(j + 1) = 5 times to the initial value of radius i.e., 5, which gives a maxiuml value equal to
5 + 15 = 20 < 26. This concludes the analysis of the case when d1 = 1.

Assume that there exists a power of two d2 such that for each power of two d3 ≤ d2,
the first parameter of each basic pattern inside BD(Assumption(d3)) is at most 32d4

2 − 6d2.
The same method is used. The basic patterns inside BD(Assumption(2d2)) are enumerated
and each of them is proved to be given a value for the first parameter which is at
most 512d4

2 − 12d2. Procedure Assumption(2d2) begins with Harvest(2d2) which in turn,
begins with PushPattern(1, 2d2), . . . , PushPattern(d2, 2d2). By induction hypothesis, inside
BD(Assumption(1)), . . . , BD(Assumption(d2)), the first parameter of each basic pattern
is at most 32d4

2 − 6d2. In view of Lemma 4.8, inside BD(PushPattern(1, 2d2)), . . . ,
BD(PushPattern(d2, 2d2)), the first parameter of each basic pattern is at most 32d4

2−6d2+6d2 =
32d4

2 < 512d4
2−12d2. Moreover, after PushPattern(1, 2d2), . . . , PushPattern(d2, 2d2), procedure

Harvest(2d2) calls pattern CloudBerry(32d4
2, 2d2, 2d2, 0) followed by pattern RepeatSeed(32d4

2+
6d2, C(CloudBerry(32d4

2, 2d2, 2d2, 0))). Inside these calls, the first parameter is respectively
given the values 32d4

2 and 32d4
2 + 6d2 which are both lower than 512d4

2 − 12d2. Moreover,
after Harvest(2d2), in the same way as when d1 = 1, the first parameter can be proved to
keep increasing and reach a maximum value equal to 32d4

2 + 6d2 + 12d2
2(4d2(2d2 + 1) + 1) =

128d4
2 + 48d3

2 + 12d2
2 + 6d2 < 512d4

2 − 12d2 which completes the proof of the lemma.

Before presenting the next lemma, it is necessary to introduce the following notions. The
first four lines of procedure Harvest are referred to as its first part and the last line is referred
to as the second one. Procedure Assumption begins with a call to procedure Harvest: the
first part of procedure Assumption is considered to be the first part of this call, and that
the second part of procedure Assumption is the second part of this call. After these two
parts, there is a third part in procedure Assumption which consists of calls to basic patterns.

49

Part , Chapter 4 – Asynchronous Approach in the Plane

Moreover, note that the execution of procedure AsyncGridRV can be viewed as a sequence of
consecutive calls to procedure Assumption with an increasing parameter. The (i + 1)-th call
to procedure Assumption (i.e., the call to procedure Assumption(2i)) by an agent executing
procedure AsyncGridRV is referred to as Phase i.

Lemma 4.10. Consider two agents a1 and a2 executing procedure AsyncGridRV. Let i1 and d1
be two integers such that 2i1 = d1 ≥ D. Agent a1 either meets a2 or completes the execution of
the first part of Phase i1 before agent a2 completes the execution of the second part of Phase i.

Proof. Assume by contradiction that the lemma is false. This implies in particular that when
a2 finishes executing the second part of Phase i1, a1 is either executing Phase i2 for an integer
i2 < i1, or the first part of Phase i1.

First of all, in view of Lemma 4.7 and since d1 ≥ D, a1 either meets a2 or finishes
executing the sequence Assumption(1), . . . , Assumption(2i1−1) before a2 completes the sequence
PushPattern(1, d1), . . . , PushPattern(2i1−1, d1) (i.e., the loop at the beginning of procedure
Harvest(d1)). Given that by assumption, agents do not meet before a2 completes its execution
of the second part of Phase i1, a1 starts executing the first part of Phase i1 before a2
finishes executing the loop at the beginning of procedure Harvest(d1), which means that the
execution of the loop at the beginning of procedure Harvest(d1) by a1 precedes the execution
of CloudBerry(2d4

1, d1, d1, 0) by a2.
This is at the root of the proof that when a2 finishes executing CloudBerry(2d4

1, d1, d1, 0),
a1 has finished executing the loop at the beginning of procedure Harvest(d1). In view of
Lemmas 4.8 and 4.9, while executing this loop, a1 executes a sequence of patterns RepeatSeed
and Berry called by procedure PushPattern whose the first parameter is at most 2d4

1. Since
d1 ≥ D, in view of Lemma 4.6 and the assumption that the agents do not meet before
the end of the execution of the second part of Phase i1 by a2, when a2 finishes executing
CloudBerry(2d4

1, d1, d1, 0), a1 has finished executing the loop.
After executing pattern CloudBerry(2d4

1, d1, d1, 0) but before completing procedure
Harvest(d1), a2 performs RepeatSeed(2d4

1 + 3d1, C(CloudBerry(2d4
1, d1, d1, 0))). In view

of the previous paragraph, the execution of this pattern by a2 is preceded by the
execution of CloudBerry(2d4

1, d1, d1, 0) by a1. When a2 finishes executing RepeatSeed(2d4
1 +

3d1, C(CloudBerry(2d4
1, d1, d1, 0))), in view of Lemma 4.3 and since by assumption the agents

have not met, a1 has finished executing pattern CloudBerry(2d4
1, d1, d1, 0). This means that

when a2 finishes executing Harvest(d1) and thus the second part of Phase i1, a1 has completed
the execution of the first part of Phase i1, which proves the lemma.

The following lemma addresses the calls to pattern RepeatSeed in the second and in the
third part of procedure Assumption(d1) for any power of two d1. In the statement and proof of
this lemma, they are called “synchronization RepeatSeed”, and indexed from 1 to (d1(2d1(d1 +
1) + 1) + 1) in their ascending execution order in these two parts of the procedure. During any
execution of procedure Assumption(d1) for any power of two d1, the call to RepeatSeed in the
second part of procedure Assumption is the first (indexed by 1) synchronization RepeatSeed of
this procedure.

Lemma 4.11. Let a1 and a2 be two agents executing procedure AsyncGridRV. Let v1 and v2
be their respective initial nodes separated by a distance D. For any power of two d1 ≥ D and
any positive integer i ≤ d1(2d1(d1 + 1) + 1) + 1, if the agents have not met yet, then when any
of them completes the execution of the i-th synchronization RepeatSeed of Assumption(d1), the
other agent has at least started it.

Proof. Suppose that agent a2 has just finished executing the i-th synchronization RepeatSeed
inside procedure Assumption(d1) for any power of two d1 ≥ D and any positive integer i ≤

50

4.6. Proof of Correctness and Cost Analysis

d1(2d1(d1 + 1) + 1) + 1. This proof consists in showing by induction on i that if rendezvous has
not occurred yet then a1 has at least started executing this i-th synchronization RepeatSeed.

First consider the case in which i = 1. The synchronization RepeatSeed a2 has just finished
executing is called at the end of the execution of procedure Harvest(d1) called at line 1 of
procedure Assumption(d1). Since d1 ≥ D, in view of Lemma 4.10, when a2 completes the
execution of the first synchronization RepeatSeed and thus the execution of Harvest(d1),
either the agents have met or a1 has completed the execution of the first part of procedure
Assumption(d1) i.e., begun the execution of the first synchronization RepeatSeed.

Make the assumption that for any power of two d1 ≥ D, during any execution of procedure
Assumption(d1), there exists an integer j from 1 to d1(2d1(d1+1)+1)+1 such that when agent a2
completes the execution of the j-th synchronization RepeatSeed, either the agents have met or a1
has at least started the execution of the j-th synchronization RepeatSeed, and prove that when
a2 completes the execution of the (j+ 1)-th synchronization RepeatSeed, either the agents have
met or a1 has at least started the execution of the same synchronization RepeatSeed. Assume
by contradiction that when a2 finishes executing the (j + 1)-th synchronization RepeatSeed, a1
has neither met a2 nor started executing the (j + 1)-th synchronization RepeatSeed.

After executing the j-th synchronization RepeatSeed, a2 executes line 9 or line 11 of Algorithm
Assumption(d1) and thus either pattern Berry or pattern CloudBerry, depending on the bits
of its transformed label. The induction hypothesis implies that the execution of the j-th
synchronization RepeatSeed by a1 precedes the execution by a2 of either Berry or CloudBerry
between the j-th and the (j+1)-th synchronization RepeatSeed. In view of Lemmas 4.4 and 4.6,
as d1 ≥ D, whichever pattern a2 executes, it pushes the execution of the j-th synchronization
RepeatSeed by a1. By assumption, when a2 finishes executing line 9 or line 11 of Algorithm
Assumption(d1) after the j-th synchronization RepeatSeed, the agents have not met which
implies that a1 has finished executing the j-th synchronization RepeatSeed.

The next pattern that a2 executes is the (j + 1)-th synchronization RepeatSeed. Given the
above assumptions and statements, when a2 starts executing this synchronization RepeatSeed,
a1 has finished executing the j-th synchronization RepeatSeed and has started executing line 9
or line 11 of Algorithm Assumption(d1). In view of Lemmas 4.2 and 4.3, since d1 ≥ D, whichever
pattern a1 executes, it is pushed by the execution of the (j + 1)-th synchronization RepeatSeed
by a2. Given that, still by assumption, the agents do not meet before a2 completes the execution
of the (j+ 1)-th synchronization RepeatSeed, when this occurs, a1 has completed the execution
of line 9 or 11 of Algorithm Assumption(d1), just after the j-th, and just before the (j + 1)-
th synchronization RepeatSeed. Hence, when a2 completes the execution of the (j + 1)-th
synchronization RepeatSeed, a1 has at least started executing the (j + 1)-th synchronization
RepeatSeed, which contradicts the hypothesis that when a2 completes the execution of the
(j+ 1)-th synchronization RepeatSeed, a1 has neither met a2 nor started executing the (j+ 1)-
th synchronization RepeatSeed, and proves the lemma.

4.6.3 Correctness of Procedure AsyncGridRV

Theorem 4.2. Procedure AsyncGridRV solves the problem of asynchronous rendezvous in the
infinite grid.

Proof. To prove this theorem, it is enough to prove the following claim.

Claim 4.1. Let d1 be the smallest power of two such that d1 ≥ max(D, l) with l the index of the
first bit which differs in the transformed labels of the agents. Algorithm AsyncGridRV ensures
rendezvous by the time any agent completes an execution of procedure Assumption(d1).

Proof of the claim: First, in view of Proposition 3.1, l exists. Respectively denote by v1 and
v2, the initial nodes of two agents denoted by a1 and a2. This proof is made by contradiction.
Suppose that the agents a1 and a2 execute procedure AsyncGridRV but do not meet by the time

51

Part , Chapter 4 – Asynchronous Approach in the Plane

any agent completes an execution of procedure Assumption(d1) where d1 is the smallest power
of two such that d1 ≥ max(D, l).

This in particular means that one of the agents eventually starts executing Assumption(d1).
Since d1 ≥ D, in view of Lemma 4.10, as soon as this agent completes the execution of procedure
Harvest(d1), both agents have started executing Assumption(d1). Otherwise, agents have met
which is a contradiction. Without loss of generality, suppose that the bits in the transformed
labels of agents a1 and a2 with the index l are respectively 1 and 0.

In order to prove this claim, the first step consists in showing that there exists an iteration
of the loop at line 6 of Algorithm 4.6 during which the two following properties are satisfied:

1. the value of variable i is equal to l

2. the value of variable j is such that when executing pattern CloudBerry at line 11, the first
pair of patterns Seed and Berry executed inside this CloudBerry by a1 starts from v2

The first property follows from the fact that d1 ≥ l.
This paragraph aims at showing that the second property is verified too. Let U be a list

of all the nodes at distance at most d1 from v1 and ordered in the order of the first visit
when executing Seed(d1) from node v1. The same list is considered in the algorithm of pattern
CloudBerry(x, d1, d1, h) for any positive integers x and h. First of all, there are 2d1(d1 + 1) + 1
nodes at distance at most d1 from v1, and thus in U . Since the distance between v1 and v2 is
D ≤ d1, v2 belongs to U . Denote by j1 its index (between 0 and 2d1(d1 + 1)) in U . According
to procedure Assumption, the value of variable j is incremented at each iteration of the loop at
line 6 and takes one after another each integer value between 0 and 2d1(d1 + 1). Consider the
iteration when it is equal to j1. According to Algorithm 4.4, the first node from which a1 executes
Seed and Berry is the node which has index j1 + 0 (mod 2d1(d1 + 1) + 1) = j1. This node is v2,
which proves that there exists an iteration of the loop at line 6 during which the second property
is verified too. Denote it by I. It is the iteration after the (1 + (l− 1)(2d1(d1 + 1) + 1) + j1)-th
synchronization RepeatSeed inside Phase d1.

In view of Lemma 4.11, when an agent completes its execution of the i-th synchronization
RepeatSeed inside the second and the third part of any execution of procedure Assumption(d1)
(for any positive integer i less than or equal to (d1(2d1(d1 + 1) + 1) + 1), the other agent has at
least begun the execution of this synchronization RepeatSeed. Thus, when an agent is the first
one which starts executing I, it has just finished executing the (1+(l−1)(2d1(d1 +1)+1)+j1)-th
synchronization RepeatSeed and the other agent is executing (or finishing executing) the same
RepeatSeed. What follows proves that rendezvous occurs before any of the agents starts the
next synchronization RepeatSeed.

Consider the patterns the agents execute between the beginning of the (1+(l−1)(2d1(d1+1)+
1) + j1)-th synchronization RepeatSeed, and the beginning of the next one. Agent a1 executes
pattern RepeatSeed(x, n) with x and n two positive integers (call this pattern p1) and pattern
CloudBerry(x, d1, d1, j1) from node v1 while a2 executes RepeatSeed(x, n) (call it p2) and
Berry(x, d1) (this is p3) from node v2. During its execution of pattern CloudBerry(x, d1, d1, j1)
from node v1, a1 first follows P (v1, v2), and then executes pattern Seed(x) followed by pattern
Berry(x, d1) both from node v2 (call them respectively p4 and p5). Recall that during any
execution of pattern Berry(x, d1) from node v2, there are two periods, the second one consisting
in backtracking every edge traversal made during the first one. During the first period, in
particular, an agent executes a pattern Seed(x) from every node at distance at most d1, among
which there are node v1 and node v2. Since backtracking Seed(x) allows to perform exactly the
same edge traversals as Seed(x), during the second period of pattern Berry(x, d1), there is also
an execution of pattern Seed(x) from node v1 and another from v2.

Consider two different cases. In the first one, when a1 starts executing p4 from v2, inside p3,
a2 has not yet started following P (v2, v1) to go executing Seed(x) from v1. In the second one,

52

4.6. Proof of Correctness and Cost Analysis

when a1 starts executing p4 from v2, a2 has at least started following P (v2, v1) to go executing
Seed(x) from v1. In the following, these two cases are analyzed.

In the first case, consider what a2 can be executing when a1 starts executing p4 from node
v2 after following P (v1, v2). First, it can still be executing the synchronization RepeatSeed p2
from node v2. Then, in view of Lemma 4.1, rendezvous occurs. The only other pattern that a2
can be executing at this moment is p3. However, in this case, a2 will have finished its execution
of p3 before a1 starts p5, just after p4. Otherwise, in view of Lemma 4.5, rendezvous occurs.

The reader has just been reminded that during any execution of pattern Berry(x, d1) from
v2, agent a2 performs, among the patterns Seed(x) from every node at distance at most d1 from
v2, pattern Seed(x) from v2. If it executes one of these patterns Seed(x) while a1 is executing
its p4 from node v2 after following P (v1, v2), in view of Lemma 4.1, rendezvous occurs. This
implies that before a1 finishes following P (v1, v2), a2 has completed each execution of pattern
Seed(x) from v2 inside its execution of Berry(x, d1).

This means that, each execution of pattern Seed(x) from node v2 during the second period
of p3 has already been completed by a2 when a1 starts executing its own Seed(x) from v2.
Since inside the second period of p3, a2 executes pattern Seed(x) from node v2, a2 has already
executed the whole first period of p3 when a1 starts executing p4 from v2 including pattern
Seed(x) performed from node v1, since v1 is at distance at most d1 from v2. This contradicts
the definition of this first case: according to this definition, when a1 starts executing p4 from
v2, inside p3, a2 has not followed P (v2, v1) yet, and thus has not executed Seed(x) from v1.

In the second case, rendezvous is also proved to occur, which is a contradiction. Recall that
in this case, when a1 starts executing p4 from v2, a2 has at least started following P (v2, v1) to
go executing Seed(x) from v1. If a2 has not finished following P (v2, v1) when a1 starts following
P (v1, v2), then agents meet by time min(t1, t2) since P (v1, v2) = P (v2, v1), where t1 (resp. t2)
denotes the time when a1 (resp. a2) finishes following P (v1, v2) (resp. P (v2, v1)). If a2 has
finished following P (v2, v1) before a1 starts executing P (v1, v2), then it has started executing
Seed(x) from v1 before a1 finishes executing p1 (before it executes CloudBerry(x, d1, d1, j1)),
which means in view of Lemma 4.1 that the agents achieve rendezvous.

So, whatever the execution chosen by the adversary, rendezvous occurs in the worst case by
the time any agent completes Assumption(d1), which proves the claim, and by extension the
theorem. ?

4.6.4 Cost Analysis

Theorem 4.3. The cost of procedure AsyncGridRV belongs to O((D + |`min|)33).

Proof. In order to prove this theorem, the following two claims are required.

Claim 4.2. The cost of each basic pattern inside BD(Assumption(d1)) (with d1 any power of
two) is in O(d30

1).

Proof of the claim: To prove this claim, the most costly basic pattern which could belong to
BD(Assumption(d1)) is exhibited and its cost is shown to belong to O(d30

1).
Examining their algorithms permits to state the following upper bounds on the costs

of the basic patterns: C(Seed(x)) ∈ O(x2), C(RepeatSeed(x, n)) ∈ O(n × C(Seed(x))),
C(Berry(x, y)) ∈ O((x + y)5), and C(CloudBerry(x, y, z, h)) ∈ O(z2 × (z + C(Seed(x)) +
C(Berry(x, y)))). Remark that the higher the values of their parameters are, the higher the
costs of the patterns are (except for the fourth parameter of CloudBerry which does not impact
its cost).

Also notice that pattern Seed does not belong to BD(Assumption(d1)). It is called when
executing the other basic patterns. Moreover, if they are given the same values for their two first
parameters, pattern CloudBerry is more costly than Berry, which makes it a good candidate
for being the most costly pattern. But, when called with a second parameter which is the cost of

53

Part , Chapter 4 – Asynchronous Approach in the Plane

CloudBerry, pattern RepeatSeed is much more costly than the latter which makes it the most
costly pattern inside BD(Assumption(d1)). Remark that in procedure AsyncGridRV, the second
parameter of pattern RepeatSeed is the cost of either Berry or CloudBerry. In particular, it
cannot be the cost of another RepeatSeed.

In view of Lemma 4.9, for any power of two d1, inside BD(Assumption(d1)), the value of the
first parameter given to the patterns is at most 32d4

1 − 6d1. In addition, for each basic pattern
Berry or CloudBerry inside BD(Assumption(d1)), the value given to its second parameter is
always d1. This gives upper bounds on the values of the parameters the most costly pattern
can be given. Hence, the cost of each pattern called inside BD(Assumption(d1)) is at most
C(RepeatSeed(32d4

1 − 6d1, C(CloudBerry(32d4
1 − 6d1, d1, d1, h)))) with h any positive integer.

This cost belongs to O(C(RepeatSeed(d4
1, d

2
1(d1 + (d4

1)2 + (d4
1)5)))) and thus to O((d4

1)2d22
1) i.e.,

to O(d30
1). ?

Claim 4.3. The cost of procedure Assumption(d1) (with d1 any power of two) belongs to O(d33
1).

Proof of the claim: In view of Definition 4.7 and Remark 4.1, for any power of two d1, the cost
of procedure Assumption(d1) is the same as the sum of the costs of all the basic patterns inside
BD(Assumption(d1)). In view of Claim 4.2, for any power of two d1, inside BD(Assumption(d1)),
the cost of each basic pattern is in O(d30

1). Thus, to prove this claim it is enough to show that
BD(Assumption(d1)) contains a number of basic patterns which is in O(d3

1).
For any power of two d1, procedure Assumption(d1) is composed of a call to Harvest(d1)

and the nested loops. These loops consist in 2d1(2d1(d1 + 1) + 1) calls to basic patterns.
Half of them are made to RepeatSeed and the others either to Berry or to CloudBerry.
In its turn, Harvest(d1) is composed of two parts: a loop calling procedure PushPattern
and two basic patterns. For any power of two d2, in view of Algorithm 4.8, and since
they are both perfect, the number of basic patterns inside BD(PushPattern(d2, d1)) or
BD(Assumption(d2)) is the same. As a consequence, if d1 ≥ 2, BD(PushPattern(1, d1)),
. . . , BD(PushPattern(d1

2 , d1)) is composed of as many basic patterns as there are in
BD(Assumption(1)), . . . , BD(Assumption(d1

2)).
For any power of two i, denote by L1(i) (resp. L2(i)) the number of calls to basic patterns

inside BD(Assumption(i)) (resp. BD(Harvest(i))). These numbers verify the following equations:

L1(i) = L2(i) + 2i(2i(i+ 1) + 1)

L2(i) =
log2(i)−1∑
j=0

(L1(2j)) + 2

They imply the following:

L2(1) = 2 and

if i ≥ 2 then L2(i) = L2(i2) + L1(i2) = 2L2(i2) + i(i(i2 + 1) + 1)

which can also be written

L2(i) = 2i+
log2(i)∑
j=1

(2log2(i)−j · 2j(2j(2j−1 + 1) + 1))

L2(i) = 2i+ i

log2(i)∑
j=1

(2j(2j−1 + 1) + 1)

L2(i) = 2i+ i

log2(i)∑
j=1

(22j−1 + 2j + 1)

L2(i) = 2i+ i(log2(i) + 2(i2 − 1)
3 + 2(i− 1))

54

4.7. Conclusion

Hence, both L2(i) and L1(i) belong to O(i3). This means that for any power of two d1,
BD(Assumption(d1)) is composed of a number of basic patterns which is in O(d3

1). Hence,
in view of Claim 4.2, the cost of Assumption(d1) indeed belongs to O(d33

1), which proves the
claim. ?

Now, it remains to conclude the proof of the theorem. In view of Claim 4.1, rendezvous
is achieved by the end of the execution of Assumption(δ) by any of the agents, where δ is the
smallest power of two such that δ ≥ max(D, l) and l is the index of the first bit which differs
in the transformed labels of the agents. Moreover, in view of Claim 4.3, the cost of each call
to Assumption(d1) for some power of two d1 ≤ δ belongs to O(d33

1). Since ∑log δ
i=0 (2i33) ≤ 2δ33,

the sum of the costs of these calls to procedure Assumption and thus the cost of procedure
AsyncGridRV until rendezvous is achieved belongs to O(δ33). Moreover, by construction, l ≤
2|`min|+ 2. This means that the cost of AsyncGridRV belongs to O((D + |`min|)33).

4.7 Conclusion
From Theorems 4.1, 4.2 and 4.3, we obtain the following result concerning the task of

approach in the plane.

Theorem 4.4. The task of approach can be solved at cost polynomial in the unknown initial
distance ∆ separating the agents and in the length of (the binary representation) of the shortest
of their labels.

Throughout the paper, we made no attempt at optimizing the cost. Actually, as the attentive
reader will have noticed, our main concern was only to prove the polynomiality. Hence, a natural
open problem is to find out the optimal cost to solve the task of approach. This would be all
the more important as in turn we could compare this optimal cost with the cost of solving the
same task with agents that can position themselves in a global system of coordinates (the almost
optimal cost for this case is given in [40]) in order to determine whether the use of such a system
(e.g., GPS) is finally relevant to minimize the traveled distance.

55

Chapter 5

Byzantine Gathering in Finite
Graphs

Contents
5.1 Introduction . 57

5.1.1 Introduction and Related Work . 57
5.1.2 Model . 58
5.1.3 Contribution . 59
5.1.4 Roadmap . 60

5.2 Preliminaries . 60
5.3 Building Blocks . 61

5.3.1 Procedure Group . 61
5.3.2 Procedure Merge . 71

5.4 The Positive Result . 75
5.4.1 Intuition . 75
5.4.2 Formal Description . 77
5.4.3 Proof and Analysis . 79

5.5 The Negative Result . 85
5.6 Conclusion . 87

5.1 Introduction

5.1.1 Introduction and Related Work

The scale-up when considering numerous agents is inevitably tied to the occurrence of faults
among them, the most emblematic of which is the Byzantine one. Byzantine faults are very
interesting under multiple aspects, especially because the Byzantine case is the most general
one, as it subsumes all the other kinds of faults. In the field of fault tolerance they are considered
as the worst faults that can occur. This chapter investigates the problem of gathering in the
presence of agents subject to Byzantine faults called Byzantine agents.

As explained in Section 1.1.3.6, the behavior of the Byzantine agents is arbitrary and unpre-
dictable. They can be viewed as malicious, controlled by some adversary trying to make the
task fail, or at least to decrease the efficiency of its achievement. In particular, the gathering
of all mobile agents as stated by Definition 2.26 cannot be ensured since the Byzantine agents
may refuse to stay with the other (good) agents, or declare that the gathering is achieved at
any time. This motivates the introduction of the task called Byzantine gathering or Byzantine
gathering. It is very similar to gathering. It consists in gathering all good agents and having
them all declare that the gathering is achieved. Nothing is expected from the Byzantine agents.

Gathering in finite graphs in presence of many Byzantine agents is considered in a similar
model in earlier articles [23, 51] detailed in Section 1.1.3.6. They address the question of the
number of good agents which is necessary and sufficient to achieve Byzantine gathering. To
answer it, their authors propose deterministic algorithms having two requirements. First of all,

57

Part , Chapter 5 – Byzantine Gathering in Finite Graphs

each of these algorithms requires that all good agents know the values of the some parameters
of the problem namely the number of nodes of the graph n, and the number of Byzantine agents
f . Then, these algorithms suffer from a time complexity which is super-exponential in n and
the labels of the agents. Despite the requirements of their algorithms, the authors provide
the number of good agents which is necessary and sufficient to achieve Byzantine gathering, in
several cases.

This chapter is a continuation of the existing articles related to Byzantine gathering in finite
graphs. Attention is in particular paid to the two aforementioned requirements, by aiming at
presenting an algorithm for Byzantine gathering which is polynomial in n and |`min|, with |`min|
the length of the shortest label among those of the good agents.

The assumption that the mobile agents a priori know some information about the environment
or their initial positions does not only appear in these articles about Byzantine gathering [11].
The following question naturally arises: Does assuming that they know this information makes
the task easier than if they had that other information? Under the paradigm of algorithms
with advice [1, 38, 61, 62, 72, 90, 101], all entities are given a same binary string as input. A
particular attention is paid to the length of this string. It allows to compare the amount of
information required by two algorithms. An algorithm requires more information than another
one if the input string it requires is longer. This idea can also be used to compare the amount
of information required by the task, and thus somehow their difficulty. However, it is worth
noticing than not every pair of lengths can be compared: they may depend on different and
independent parameters of the task. This is the second aim of this chapter, using this paradigm
of algorithms with advice, and present an algorithm which requires an advice (called global
knowledge in this chapter) of asymptotically optimal length.

5.1.2 Model

The introduction of Byzantine agents, and information initially provided to the good agents
requires to derive the model presented in Chapter 2. The definitions presented below are only
used in this chapter.

This section starts by introducing the Byzantine agents, and introducing a new kind of
environment to take them into account.

Definition 5.1 (Byzantine and good agents). There are two kinds of mobile agents (cf. Defini-
tion 2.1): the Byzantine ones and the good ones.

Definition 5.2 (Byzantine environment). Each Byzantine environment is an environment
(s, T, L, i, w, g) (cf. Definition 2.11) extended by the addition of two elements:

• a subset F of L.

• an application b from F to the set of the mobile agent algorithms (cf. Definition 2.2).

The next definitions introduce the global knowledge initially provided to the good agents.
The idea behind them is to represent the information by a binary string computed from a part
of the Byzantine environment by some oracle which, along with the mobile agent algorithm, is
part of an algorithm with advice.

Definition 5.3 (Algorithm with advice). Every algorithm with advice is a mobile agent
algorithm (cf. Definition 2.2) extended by the addition of an oracle. The latter is an
application whose domain is the set of 6-tuples (s, T, L, i, w, g, F) such that there exists b such
that (s, T, L, i, w, g, F, b) is a Byzantine environment. Its codomain is the set of the binary
strings.

Definition 5.4 (Global knowledge initially learnt from the oracle). Let (e,A) be any execution
(cf. Definition 2.13) with e = (s, T, L, i, w, g, F, b) a Byzantine environment and A an algorithm

58

5.1. Introduction

with advice. Denote by o the oracle of A. Upon waking up, every mobile agent learns
o((s, T, L, i, w, g, F)). This information is called global knowledge.

In order to complete the derivation of the model from Chapter 2, it is necessary to describe
what instructions the Byzantine agents execute. This is explained by Definition 5.5 which is a
rewriting of Definition 2.14 for Byzantine environments.

Definition 5.5 (Algorithms executed by the mobile agents, labels and initial positions). Let
(e,A) be any execution (cf. Definition 2.13) with e = (s, T, L, i, w, g, F, b) a Byzantine envi-
ronment. There are |L| mobile agents spread in s. Each of them is assigned a distinct label `
of L. If ` ∈ F , the corresponding mobile agent is Byzantine. It executes b(`) with ` as input.
Otherwise, it executes A, also with ` as input. For each mobile agent with label `, the first
position (cf. Definition 2.6) it occupies is i(`) and is called its initial position.

Definition 5.1 distinguishes two kinds of mobile agents: the good ones and the Byzantine
ones. The former all execute the same mobile agent algorithm while the others are assumed
to be controlled by the adversary, each with a specific algorithm. Remark that the Byzantine
agents have the same abilities as the good ones, and that the good agents have no mean to
distinguish Byzantine agents from good ones a priori. The cardinality of F i.e., the number of
Byzantine agents is often denoted by f .

To fully understand the interactions between good and Byzantines agents, it is particularly
relevant to take a look at Definitions 2.23, 2.24, and 2.25 (kept unchanged in this chapter). At
any time t, any mobile agent (and thus Byzantine agent) can update the information it sends
at most once. Moreover, it cannot choose to transmit its message to just a subset of the mobile
agents within the range of its current position. Hence, at any time t, all good agents at a same
position receive the same set of transmissions.

Remark that the global knowledge is the same for all good agents. It is a binary string which
encodes some information about the whole environment but the behavior of the Byzantine
agents. The latter is not included in the input of the oracle, which leaves it arbitrary and
unpredictable by the good agents. In this chapter, an algorithm refers to a couple of an actual
algorithm (sequence of instructions) and the oracle which computes the global knowledge. When
describing the algorithm, it is necessary to explain what is the global knowledge.

This chapter addresses the task called Byzantine gathering more formally stated by Defini-
tion 5.6. The formal definition of the model variant studied is delayed to the next section.

Definition 5.6 (Byzantine gathering). Let M be any model variant (cf. Definition 2.12), A be
any algorithm with advice. Algorithm A achieves Byzantine gathering in model variant M , if
for every Byzantine environment e of M , in the execution (e,A), there exists a time at which,
all good agents are gathered at a same position and declare that the gathering is achieved.

5.1.3 Contribution

As mentioned above, the existing deterministic algorithms dedicated to Byzantine gathering
in finite graphs all have the major disadvantage of having a time complexity that is super-
exponential in the number of nodes and the labels. Actually, these solutions are all based
on a common strategy that consists in enumerating the possible initial configurations, and
successively testing them one by one. Once the testing reaches the correct initial configuration,
the gathering can be achieved. However, in order to get a significantly more efficient algorithm,
such a costly strategy must be abandoned in favor of a completely new one.

This chapter addresses the design a deterministic solution for Byzantine gathering that makes
a concession on the proportion of Byzantine agents within the team, but that offers a significantly
lower duration. Another concern is using a global knowledge of short length. In this respect,
assuming that the agents are in a strong team i.e., a team in which the number of good agents is

59

Part , Chapter 5 – Byzantine Gathering in Finite Graphs

at least the quadratic value 5f2 +6f+2, positive and negative results are given. On the positive
side, an algorithm that solves Byzantine gathering with all strong teams in all graphs of size at
most n, for any integers n and f , in a time polynomial in n and |`min| is shown. The algorithm
works using a global knowledge of size O(log log logn), which is of optimal order of magnitude
in this context to reach a time complexity that is polynomial in n and |`min|. Indeed, on the
negative side, a proof that there is no deterministic algorithm solving Byzantine gathering with
all strong teams in all graphs of size at most n, for any integers n and f , in a time polynomial
in n and |`min| and using a global knowledge of size o(log log logn) is provided.

The next definition states the model variant studied, in finite graphs, with synchronous
settings, and in which the good agents are numerous enough to be a strong team.

Definition 5.7 (Model variant BF). This model variant (cf. Definition 2.12) is the set of all
Byzantine environments (s, T, L, i, w, g, F, b) such that s = (P,Z,Q, d, c, r) is a finite graph (cf.
Definition 2.8), T is the discrete timeline (cf. Definition 2.4), |L| − |F | ≥ 5|F |2 + 6|F |+ 2, and
g verifies the following property. Let t, q, and ` be any elements of T , Q, and L, respectively.
The image by g of (t, q, `) is 1.

5.1.4 Roadmap

The next section is dedicated to the presentation of some basic definitions and routines
needed in the rest of this chapter. Section 5.3 describes two building blocks that are used in
turn in Section 5.4 to establish the positive result. In Section 5.5, the negative result is proved.
Finally, some concluding remarks are made in Section 5.6.

5.2 Preliminaries
This chapter relies on several tools similar to those used in Chapter 3 and introduced in

Section 3.2.
First of all, procedure Explo(i) is used in this chapter as well. Its time complexity is denoted

Xi.
Besides this exploration procedure, a label transformation similar to that of Chapter 3

is used. Let `A be the label of an agent A and (b1 . . . b|`A|) its binary representation
with c its length. The binary representation of the corresponding doubled label D(`A) is
(1 0 b1 b1 . . . b|`A| b|`A| 0 1 1 0 b1 b1 . . . b|`A| b|`A| 0 1). This transformation is made to ensure
the following property that is used in the proof of correctness the algorithm in Section 5.4.

Proposition 5.1. Let `A and `B be two labels such that `A < `B. There exist two positive
integers i ≤ |D(`A)|

2 and |D(`A)|
2 < j ≤ |D(`A)| such that D(`A)[i] 6= D(`B)[i] and D(`A)[j] 6=

D(`B)[j].

Proof. There are two cases to consider: either |`A| = |`B| or |`A| < |`B|. In the first case, since
`A 6= `B, there exists a positive integer i ≤ |`A| such that `A[i] 6= `B[j]. This implies in particular
that D(`A)[2i + 1] 6= D(`B)[2i + 1] and D(`A)[2|`A| + 2i + 5] 6= D(`B)[2|`A| + 2i + 5]. In the
second case, either D(`A)[2|`A| + 3] 6= D(`B)[2|`A| + 3] or D(`A)[2|`A| + 4] 6= D(`B)[2|`A| + 4],
and if D(`A)[2|`A|+ 5] = D(`B)[2|`A|+ 5] then D(`A)[2|`A|+ 6] 6= D(`B)[2|`A|+ 6]. Hence, in
each case the proposition holds.

Throughout the chapter, some routines are designed in the form of a description of several
states, where an agent has to apply specific rules, along with how to transit among them. In each
round spent executing such a routine, each good agent tells its current state to the other agents
sharing the same node. Sometimes, an agent is also required to tell extra information other
than only its state: when such a situation arises, this point is obviously precised. Moreover, in
the description of the states, the following expressions are used. The expression “agent A enters

60

5.3. Building Blocks

state W” precisely means that at the previous round, agent A was in some state U 6= W and at
the current round, it is in state W. The expression “agent A exits state X” means that agent A
remains in state X until the end of the current round and is in some state V 6= X at the following
round. Lastly, the expression “agent A transits from state Y to state Z” means that agent A
exits state Y at the current round and enters state Z at the following one. Thus, in each round,
agent A is always exactly in at most one state.

5.3 Building Blocks

To design the solution that is given in Section 5.4, the description of two prior subroutines
which will be used as building blocks is required.

In the rest of this section, for each of the two building blocks, its high level idea, its detailed
description, as well as its proof of correctness and cost analysis are given.

5.3.1 Procedure Group

The first building block called Group takes as input three integers T , n and bin such
that bin ∈ {0; 1}. Let x be an integer that is at least f + 2. Roughly speaking,
subroutine Group(T , n, bin) ensures that (x − f) good agents finish the execution of the
subroutine at the same round and in the same node in a graph of size at most n provided
the following two conditions are verified: the number of agents is at least (x − 1)(f + 1) + 1,
and all good agents start executing the subroutine in some interval lasting at most T rounds,
with the same parameters except for the last one that has to be 0 (resp. 1) for at least one good
agent. The time complexity of the procedure is polynomial in the first two parameters T and n.

5.3.1.1 High level idea

As mentioned previously, subroutine Group aims at ensuring that x − f good agents finish
the execution of the subroutine at the same round and in the same node. To achieve this, several
difficulties have to be faced, especially the fact that the agents know neither x nor f , and also
the fact that agents have a priori no mean to detect whether an agent is good or not. Indeed,
instructions like “If there are at least x− f good agents in my current node, then . . . ” cannot
be used. Neither can “If there are at least x or f agents in my current node, then . . . ” no
matter whether there are some Byzantine agents or not in the current node. So, to circumvent
these problems, procedure Group is made of two phases. The first phase aims at ensuring that
at least x agents executing the first phase meet in the same node (even though the involved
agents do not detect this event). This phase lasts exactly the same time for each good agent and
when it finishes it, a good agent is at the node from which it started executing it. The second
phase consists, for a good agent, in replaying in the same order the same edge traversals and
waiting periods made during the first i rounds of its first phase started at round t, such that
t + i is the round when the agent was with the maximum number of agents executing the first
phase (if there are several such rounds, the latest one is chosen). Once this is done, the agent
stops executing Group. By doing so, it is guaranteed that x − f good agents (those involved
in the last maximal meeting of the first phase) will stop executing the second phase (and thus
procedure Group) in the same node and at the same round, as all the meetings involving the
maximal number of agents in the first phase, necessarily involve at least x agents. Hence, the
key of the procedure is to make x agents meet in the first phase.

During the execution of the first phase, the agents are partitioned into two distinct groups,
namely followers and searchers. The first group corresponds to agents executing the subroutine
with bin = 0 and the second group corresponds to those executing it with bin = 1.

The first phase works in steps 1, 2, . . . ,S where S is some polynomial in T and n. At a
very high level, in each step, the main role of followers is to remain idle in their initial starting

61

Part , Chapter 5 – Byzantine Gathering in Finite Graphs

nodes in order to “mark" possible positions on which x agents could meet, while the main role of
searchers is to look for these positions. To this end, each searcher will make use of a kind of map
that it initially computes during the first step by making an entire traversal of the graph, using
procedure Explo(n). Actually, this map corresponds to a sequence P of objects symbolizing
every visited node v along with the list of labels of the agents that are (or pretend to be)
followers present in node v at the time of the visit by the searcher. More precisely, the length
of P is equal to the number of visited nodes in Explo(n), and the i-th object of P contains,
among other information, the set of all followers’ labels present in the i-th visited node of the
traversal. Note that such a map will be called imperfect map as some nodes can be represented
several times in the sequence P . Indeed Explo(n) guarantees that each node is visited at least
once but some nodes may be visited more than once. The use of the qualifying term “imperfect”
also stems from the fact that the list of followers’ labels that are stored in P may be plagued by
artificial ones created by Byzantine agents. In all the other steps, the searchers never recompute
a new imperfect map, but always use the one computed in the first step, along with some possible
updates on the lists of labels. How and when these updates are applied is explained below: they
are obviously related to “bad behaviors” coming from Byzantine agents.

For the convenience of the explanation, let us first consider an ideal situation in which there
is a unique follower among the good agents. If there is no Byzantine agent, during the first
step, by moving to the node that hosts the unique follower, all searchers meet in the same node:
using their maps, they are all able to determine a path to this follower. Thus, if the number
of good agents is at least x, there is necessarily a round in which x agents meet in the same
node. However, when Byzantine agents come into the picture, the problem becomes a tricky
one, as these malicious agents can also pretend to have the status of followers (with the same
label or not). Hence, all the searchers may not necessarily choose to move towards the same
follower, which may prevent in fine the meeting of x agents. To deal with this issue and limit the
confusion caused by Byzantine agents, in each step every good searcher A proceeds as follows.
Let ` be the smallest label in sequence P (corresponding to the imperfect map of A) and let i be
the first object of P in which ` appears. Agent A moves to the node u of the graph corresponding
to the i-th object of P in order to meet again the follower with label ` and waits some prescribed
amount of rounds with it at node u. If A does not see a follower with label ` when reaching
u, or at some point during its waiting period at u it does not see anymore any follower with
label `, then agent A updates its imperfect map by removing ` from the list of the i-th object.
Then, in all cases, the agent will end up starting the following step (if any) with its possibly
updated map. The total number S of steps has been carefully chosen so that it is larger than
the total number of map updates that can be made by all good agents in the network. Hence,
the existence of a step in which there is no map update can be ensured: in such a step it can
be proved that the number of different locations that are reached by searchers is at most f + 1.
Thus, if the number of good agents is at least (x− 1)(f + 1) + 1, using arguments relying on the
pigeonhole principle, the meeting of x agents can be proved. Keep in mind that all the above
explanations are made under the assumption there is a single good follower in the team. When
there are more than one good follower, things get more complicated. For instance, observe in
this case that even though the number of good agents is at least (x−1)(f+1)+1, our approach,
without additional precautions, may fail to make at least x agents meet on the same node as the
number of good searchers may not be enough to ensure the meeting. Indeed, for a given number
of agents, the more followers, the less searchers to distribute. However, through extra technical
actions requiring sometimes some followers to end up behaving as a searcher, it is possible to
overcome this issue and still ensure the meeting of x agents provided the cardinality of the set
of good agents is at least (x− 1)(f + 1) + 1.

62

5.3. Building Blocks

5.3.1.2 Detailed description

To describe subroutine Group, a function called IM is used. It takes as input two integers n
and q ∈ {0, 1}, and returns an ordered sequence P of lists of labels: P =< L1, . . . , LXn >. The
returned sequence P is called an imperfect map. When a given agent A performs IM(q, n), it
actually executes Explo(n) with some additional actions. At each step of Explo(n), depending
on the value of q, A checks the presence of a given agent or a group of agents to compute P .
During the first step, the agent is at the node from which it starts IM(q, n). Let us consider
the jth step of Explo(n) (j ∈ {1, . . . , Xn}) and let u be the node on which A is at this step. If
q = 0, Lj is a list of pairwise distinct labels such that `B ∈ Lj if and only if there is on u an
agent B with label `B being or pretending to be a follower. If q = 1, Lj is a list of pairwise
distinct labels such that `B ∈ Lj if and only if there is on u an agent B with label `B being
or pretending to be a follower in state Wait-for-attendees. State Wait-for-attendees is
defined in the description of the algorithm. When `B is added to a list of P by A, A is said to
record B. At the end of Explo(n), the agent traverses all the edges traversed in Explo(n) in the
reverse order, and then it exits IM(q, n).

To facilitate the presentation of the formal description of procedure Group, the following two
definitions are needed.

Definition 5.8 (Useful map). An imperfect map P is said to be useful if and only if P contains
a non-empty list.

Definition 5.9 (Index of a map). Let P =< L1, . . . , LXn > be a useful map. Let S be the set
of every label that appears in at least one list of P . Let j be the smallest integer such that Lj
contains the smallest label of S: j is the index of P .

All requirements to give the formal description of the subroutine are met. This is the goal of
the next paragraphs. Subroutine Group(T , n, bin) comprises two phases: Process and Build-
up. Let us consider a given agent A executing Group(T , n, bin) from an initial node v. When
bin = 0, the agent is said to be a follower. Otherwise, it is said to be a searcher. The description
is in the form of several states along with rules to transit among them. At the beginning of each
state, the agent is in its initial node v.

• Phase Process. Agent A proceeds in steps 1, 2, . . . ,S where S = n2.T .Xn + 1. Assume
without loss of generality that A is at step s ∈ {1, . . . ,S}. Unless stated explicitly, all the
transitions between states which are presented below are performed within the same step.
In all what follows H = (n+1)[T +4Xn+(Xn.n)(T n+n)(2Xn+T)]+3. in the following,
A’s behavior is described depending on the value of bin.

– bin = 0 (A is a follower). In this case, A can be in one of the following states: Invite,
Wait-for-attendees, Search-for-a-group and Follow-Up. At the beginning of
each step s, agent A is in state Invite. The actions to be performed in each state
are presented in what follows.

State Invite Agent A waits 2T + 3Xn rounds. At the end of this waiting time, if A
is on the same node as at least one searcher, A transits to state Wait-for-attendees.
Otherwise, it transits to state Search-for-a-group.

State Wait-for-attendees Agent A waits 2T + Xn +H rounds. If at each round
of this waiting period, there is at least one searcher at node v, then at the end of the
waiting period agent A transits to state Follow-Up. Otherwise, as soon as there is a
round of the waiting period when there is no searcher at node v, agent A transits to
state Search-for-a-group (hence the waiting period may be prematurely stopped).

63

Part , Chapter 5 – Byzantine Gathering in Finite Graphs

State Search-for-a-group Let k be the number of rounds spent by agent A in state
Wait-for-attendees of step s.
Note that k = 0 if A transited directly to state Search-for-a-group from state
Invite in step s. Let w be a counter, the initial value of which is 0. The way this
counter is incremented and decremented is explained below.
While agent A does not reach round t + 2T + Xn + H − k where t is the round
when it entered this state in step s, it proceeds as follows (thus, what follows is then
interrupted when reaching round t+ 2T +Xn+H−k). Agent A first waits T rounds
and then executes IM(1, n). Once this is done, the agent has a map P . Each time P
is useful (refer to Definition 5.8) and w = 0, the agent performs the first i − 1 edge
traversals of Explo(n) from its initial node v where i is the index of P : just before
each edge traversal, counter w is incremented by one. Let us refer to the node reached
at the end of these i−1 edge traversals by u. As long as there is a follower B in state
Wait-for-attendees on u such that `B is the smallest label in the i-th list Li of P ,
A remains idle. By contrast, if there is no such follower on u in some round, agent A
updates P by removing from Li its smallest element and then goes back to its initial
node v by performing the (i− 1) edge traversals executed above in the reverse order:
just before each edge traversal of this backtrack, counter w is decremented by one.
As soon as agent reaches round t+ 2T +Xn +H− k, the agents proceeds as follows:
if w = 0, it transits to state Follow-Up. Otherwise, if w > 0, A goes back to its
initial node v by traversing in the reverse order the sequence of w edges e1, e2, . . . , ek
corresponding to the w first edge traversals of Explo(n) from node v: once this is
done, it transits to state Follow-Up.

State Follow-Up Let x be the number of rounds elapsed from the beginning of the
current step. Agent A waits 5T + 5Xn +H − x rounds. At the end of the waiting
time, if s < S, A transits to state Invite of step s+1. Otherwise, A transits to state
Restart of phase Build-up.

– bin = 1 (A is a searcher). Agent A can be in one of the following states: Search-
for-an-invitation, Accept-an-invitation and Follow-Up.
At the beginning of each step s, agent A is in state Search-for-an-invitation.
What follows presents the set of actions to be performed for each state.

State Search-for-an-invitation Agent A first waits T rounds. Next, if s = 1 (first
step of phase Process), A executes IM(0, n) and then transits to state Accept-an-
invitation. The output of the execution of IM(0, n) is stored in variable Z. This
variable may be updated in the current step as well as the following ones: each time
this variable is mentioned, consider its up-to-date value. If s > 1, A waits 2Xn rounds
and then transits to state Accept-an-invitation.

State Accept-an-invitation In the case where Z is not a useful map, A transits
to state Follow-Up. Otherwise, let j and ` be the index of Z and the smallest label
in the j-th list of Z respectively. Agent A performs the first j − 1 edge traversals of
Explo(n). Let t be the round when agent A finishes these first j − 1 edge traversals,
and let u be the node reached by A in round t. As soon as there is a round in
{t + 1, t + 2, . . . , t + 2T + Xn +H} for which there is no follower B at node u such
that label `B = `, agent A updates P by removing ` from Lj and goes back to its
initial node v by performing the (j− 1) edge traversals executed above in the reverse
order. Once this backtrack is done, agent A transits to state Follow-Up.

64

5.3. Building Blocks

If agent A is still in state Accept-an-invitation in round t+ 2T +Xn +H, it goes
back to its initial node v by performing the (j − 1) edge traversals executed above
in the reverse order, and then it transits to state Follow-Up (note that in this latter
case, Z remains unchanged).

State Follow-Up Let x be the number of rounds elapsed from the beginning of the
current step. Agent A waits 5T + 5Xn +H − x rounds. At the end of the waiting
time, if s < S, then A transits to state Search-for-an-invitation of step s + 1.
Otherwise, it transits to state Restart of phase Build-up.

• Phase Build-up. Agent A can only be in state Restart. //At the beginning of this
phase, the agent is at the node from which it started procedure Group i.e., node v
State Restart Let r be the round in which A initiated Group and let r+ i be the round in
phase Process in which A is on a node containing the largest number of agents (including
A itself) that are not in state Restart. If there are several such rounds, it chooses the
one with the largest value i. Denote by r′ the round in which the agent enters this state.
From round r′ to r′ + i − 1, agent A replays exactly the same waiting periods and edges
traversals from round r to r + i− 1. More precisely, for each integer y in {0, 1, . . . , i− 1},
if agent A remains idle (resp. leaves the current node via a port o) from round r + y to
round r+ y+ 1, then agent A remains idle (resp. leaves the current node via port o) from
round r′ + y to r′ + y + 1. In round r′ + i, the agent stops the execution of Group.

5.3.1.3 Correctness and complexity analysis

Let E and ∆ be respectively the set of all good agents in the network and the first round in
which an agent of E starts executing Group(T , n, bin). Let x be an integer that is at least f + 2.
To conduct the proof of correctness as well as the complexity analysis, several assumptions are
made in the rest of this subsection: |E| ≥ (x − 1)(f + 1) + 1, every agent of E starts executing
Group(T , n, bin) at round ∆ + T − 1 at the latest, and at least one agent of A starts executing
the procedure with bin = 0 (resp. bin = 1).

The following lemma is related to the duration of each step and the duration of phase Process.
Recall that S and H are polynomials in n and T given in the detailed description of procedure
Group.

Lemma 5.1. Let A be an agent of E. The following two properties are verified.

1. Each step of phase Process executed by A lasts exactly 5T + 5Xn +H rounds.

2. The execution of phase Process by agent A lasts exactly S(5T + 5Xn +H) rounds.

Proof. According to the algorithm, S corresponds to the number of steps in phase Process. So,
if the first property holds, the second one also holds. Hence, to prove the lemma, it is enough
to prove that the first property is true: this will be the purpose of the rest of this proof.

Let s be a step of phase Process executed by agent A. Let us first prove that A transits to
state Follow-Up of step s after having spent at most 4T +5Xn+H rounds in this step. Depending
on the value of bin, A can be either a searcher or a follower. Two cases are considered.

• A is a follower. The state of A in the first round of every step s of phase Process during
the execution of Group is Invite. Agent A spends 2T +3Xn rounds in state Invite before
transiting to either state Wait-for-attendees or state Search-for-a-group depending
on whether there is a searcher on the same node as A at the end of this waiting time.
Agent A remains in either state Wait-for-attendees or Search-for-a-group at most
2T + 2Xn + H rounds before transiting to state Follow-Up. Hence, agent A spends at
most 4T + 5Xn +H in step s before transiting to state Follow-Up.

65

Part , Chapter 5 – Byzantine Gathering in Finite Graphs

• A is a searcher. The state of A in the first round of Group is Search-for-an-invitation.
First, agent A waits T rounds. Next, if s = 1, A executes IM(0, n) that lasts 2Xn

rounds before transiting to state Accept-an-invitation. Otherwise s > 1 and A waits
2Xn rounds before transiting to state Accept-an-invitation. That is, in both cases,
A spends T + 2Xn in total before transiting to state Accept-an-invitation. Once A
transits to state Accept-an-invitation, if Z, the output of IM(0, n) performed while in
state Search-for-an-invitation in the first step of phase Process, is not a useful map,
A transits to state Follow-Up and the lemma holds. If by contrast, Z is useful then A
performs the first (j − 1) edge traversals of Explo(n) where j is the index of Z. Agent A
waits at most 2T +Xn +H rounds (with a follower) and then performs less than Xn edge
traversals to retrieve its initial position before transiting to state Follow-Up. So, agent A
spends at most 3T + 5Xn +H in step s before transiting to state Follow-Up.

Hence, whether A is a follower or not, it spends at most x ≤ 4T + 5Xn +H rounds in step
s before transiting to state Follow-Up of step s. However, according to state Follow-Up, the
agent waits exactly 5T +5Xn+H−x rounds before leaving step s. Hence, the lemma holds.

The following statement is a corollary of the previous lemma.

Corollary 5.1. Let A and B be any two good agents of E such that tA− tB ≥ 0, where tA (resp.
tB) is the round when A (resp. B) starts executing Group. For every step s of phase Process,
agent A finishes executing s, exactly tA − tB rounds after B finishes executing it.

In the following, "initial node" refers to the node from which the agent starts executing
procedure Group. Note that the statement of Lemma 5.2 calls for the notion of “recording” that
is introduced in the description of function IM .

Lemma 5.2. Let A be a good searcher of E. For every follower B in E, agent A records B
during its execution of IM(0, n) when B is on its initial node.

Proof. According to the algorithm, agent A executes IM(0, n) while in state Search-for-an-
invitation of step 1. More precisely, when starting step 1, agent A first waits T rounds and
then executes IM(0, n) that lasts 2Xn rounds. On the other hand, agent B waits 2T + 3Xn

rounds in its initial node at the beginning of step 1. Hence, in view of the initial delay T , the
lemma follows.

To continue, the definition of target node is introduced. A node u is said to be a target node
of a good searcher A in a step s > 1, if u is the node that is reached after performing the first
(j− 1) edge traversals of Explo(n) from the initial node of A and j is the index of the imperfect
map of A at the beginning of its execution of step s.

Lemma 5.3. Let A be a searcher of set E starting a step s with a useful map P , the index of
which is j. Let ` be the smallest label in the j-th list of P . If the target node of A in step s is
the initial node of a good follower B such that `B = `, then A does not update P in any step
s′ ≥ s.

Proof. The proof of this lemma consists in proving by induction on i ≥ 0 that A does not update
P in step s + i. First consider the initial step in which i = 0. Assume by contradiction that
the target node of A in step s is the initial node u of a good follower B such that `B = `, but
A updates P in step s. According to procedure Group, agent A reaches node u while in state
Accept-an-invitation. Then, agent A updates P in step s only if agent A does not meet
agent B when reaching target node u or A notices the absence of B on u within 2T +Xn +H
rounds after its meeting with B. However, when agent B starts step s, it first waits 2T + 3Xn

in state Invite. Hence in view of Corollary 5.1 and the definition of T , agent A meets B when
reaching target node u while B is in state Invite: indeed agent A spends T + 2Xn rounds

66

5.3. Building Blocks

in state Search-for-an-invitation and at most Xn rounds in state Accept-an-invitation
before reaching its target node u at some round t. Moreover, since agent A and B are good,
according to states Wait-for-attendees and Accept-an-invitation agent A remains with B
at node u at least 2T + Xn + H rounds after round t. As a result, agent A does not update
P in step s, which is a contradiction and proves the first step of the induction. Now consider
there exits a positive integer i′ such that the property holds for all i ≤ i′. If the last step of
procedure Group is step s+ i′, the lemma directly follows. Otherwise, note that agent A begins
step s+ i′+ 1 with the exact same map as in step s+ i′. Hence using the same arguments as in
step s+ i′, agent A does not update P in step s+ i′ + 1. This closes the induction and proves
the lemma.

Note that in view of Lemmas 5.2 and 5.3, the imperfect map of every searcher of E remains
always useful. In other terms, each of them always have a target node in every step of procedure
Group. This is stated in the following proposition.

Proposition 5.2. The map of every searcher of E is always useful.

In order to prove the main result of this section, i.e., Theorem 5.1, the next three lemmas
are necessary.

Lemma 5.4. If f < n, then there exists an integer s in {1, . . . ,S} such that no searcher in set
E updates its imperfect map P during its execution of step s.

Proof. Assume for the sake of a contradiction that for each s in {1, . . . ,S} there is at least one
searcher of E that updates the output of its imperfect map P during its execution of step s.
According to procedure Group, every searcher A in E executes IM(0, n) to compute P . When
A performs IM(0, n), A records all the followers it meets during the execution of Explo(n) in
IM(0, n). In particular, for each visited node A can record at most f Byzantine agents. This
leads to at most f “wrong” labels in each list of P . Since f < n, in view of Lemma 5.3, each
searcher of E performs at most n.Xn updates of P . Note that, two distinct searchers of E which
start executing procedure Group from the same node and at the same round act exactly in the
same manner: in particular, they traverse the same edges synchronously, compute the same
imperfect map and make the same updates at the same time. Hence, taking into account the
maximum delay T , the number of rounds in which there is a searcher of E making an update
of its imperfect map is upper-bounded by U = T n2Xn. However, according to the algorithm
S = U + 1. This is a contradiction, which proves the lemma.

In view of Lemma 5.4, smin is defined as being the first step for which there is no updates
made by a searcher of E .

Lemma 5.5. If f < n, then there exist a round α and a node v such that x agents meet on
node v at round α, and a searcher of E is in state Accept-an-invitation at round α.

Proof. In order to prove the lemma, a series of 4 claims are proved first. The following notations
will facilitate the conduct of this proof.

Let Q be the set of nodes verifying the following condition: a node u is in Q if u is a target
node of a searcher of E in step smin. In view of Proposition 5.2, Q 6= ∅. Let FQ be the set
of followers of E being on a node of Q at the beginning of their execution of step smin. Let
ρ be the last round in which a follower of E is in state Invite before entering either state
Search-for-a-group or state Wait-for-attendees (at round ρ + 1) during its execution of
step smin.

Claim 5.1. At round ρ, every searcher A of E is on its target node. Moreover, A remains on
its target node for at least H rounds after round ρ.

67

Part , Chapter 5 – Byzantine Gathering in Finite Graphs

Proof of the claim: According to procedure Group and the maximal delay T , at round ρ
every searcher has spent in step smin at least T + 3Xn rounds and at most 3T + 3Xn rounds.
Moreover, in view of the definition of step smin and Proposition 5.2, every searcher remains in
its target node at least 2T +Xn+H rounds while in state Accept-an-invitation of step smin.
However, before entering state Accept-an-invitation of step smin, each searcher spends at
least T + 2Xn rounds and at most T + 3Xn in step smin. Hence the claim follows. ?

Claim 5.2. Let B be a follower of FQ. Agent B remains idle in state Wait-for-attendees on
its initial node from round ρ+ 1 to round ρ+H.

Proof of the claim: Let u be the initial node of B and ρ′ the last round in which it is in
state Invite of step smin. Since u is a target node of a searcher A of E , agent A reaches u after
having spent at least T + 2Xn rounds and at most T + 3Xn rounds in step smin. Since B waits
2T + 3Xn in state Invite at the beginning of step smin, in view of the maximum delay between
any pair of agents of E , A reaches node u while B is still in state Invite. Moreover, by definition
of step smin, A remains on u during 2T + Xn + H rounds (in state Accept-an-invitation).
Hence according to procedure Group, at round ρ′ agent B has shared its initial node with agent
A for at most 2T + Xn rounds and it enters state Wait-for-attendees at round ρ′ + 1. So,
after ρ′, agent A stays idle with B for at least H rounds. This means in particular that B is in
state Wait-for-attendees from round ρ′ + 1 to ρ′ +H.

Let diff = ρ − ρ′. Note that 0 ≤ diff ≤ T . According to the description of state Wait-
for-attendees, from round ρ′+H to ρ′+H+diff , agent B leaves state Wait-for-attendees
only if A leaves u at some round in {ρ′ + H, . . . , ρ′ + H + diff}. However, this is impossible
according to Claim 1 and the fact that ρ′ ∈ {ρ−T + 1; ρ−T + 2, . . . , ρ}: indeed ρ′+H > ρ+ 1
and ρ′ +H+ diff = ρ+H. Hence agent B remains in Wait-for-attendees from round ρ′ + 1
to round ρ′ +H+ diff , which proves the claim. ?

Claim 5.3. Among the nodes of Q, at least |Q| − 1 of them host a Byzantine agent in every
round from round ρ+ 1 to round ρ+H.

Proof of the claim: Let I be the time interval between round ρ + 1 and round ρ +H. This
proof consists in showing that during I, at least |Q| − 1 nodes of Q host a Byzantine agent.
Let B be the first follower of E that starts the execution of Group: if there are several agents
satisfying the condition, the one with the smallest label is chosen. Let us denote by ∆B the
round in which B starts the execution of Group. From Claim 1, during time interval I, every
searcher is on its target node. That is, there are |Q| distinct target nodes for the searchers of E .
Hence, from procedure Group and Lemmas 5.2 and 5.3, it follows that on each node of Q there
is at least one agent B′ being (or pretending to be) a follower such that its label is at most `B.
According to the definition of B, and in particular its unicity, at least |Q| − 1 target nodes host
a Byzantine agent from round ρ+ 1 to ρ+H. Hence the claim holds. ?

Let X = T + 4Xn + (nXn)(T n+ n)(2Xn + T). Note that H = (n+ 1)X+3.

Claim 5.4. Let ρ+ 1 ≤ ν ≤ ρ + H − X be a round, if any, such that no good follower of E
enters state Search-for-a-group from round ν to round ν + X − 1. At least x agents meet at
some round in {ν + 1, . . . , ν + X}.

Proof of the claim: Let FQ′ be the set of followers of E that do not belong to FQ and do not
enter state Search-for-a-group of step smin by round v− 1. Let FQ′′ be the set of followers of
E that do not belong to FQ and enter state Search-for-a-group of step smin by round v − 1.
Let Q′ be the set of initial nodes of agents in FQ′ . Note that every good follower belongs to
FQ ∪ FQ′ ∪ FQ′′ .

Let B be a follower of FQ′′ . The first step of this proof consists in showing that the map
of B, when it is computed, is always useful in step smin till round ρ +H included. Note that
in view of Claim 1, it is enough to prove that agent B starts and finishes the execution of
IM(1, n) in {ρ+ 1, . . . , ρ+H}. In view of the definition of ρ and Corollary 5.1, B enters state

68

5.3. Building Blocks

Search-for-a-group at some round in {ρ−T + 1, . . . , ν−1}. Moreover, when a follower enters
this state, it first waits T before executing IM(1, n) that lasts 2Xn rounds. Hence B starts and
finishes IM(1, n) in {ρ + 1, . . . , ν + T + 2Xn}. However, ν + T + 2Xn ≤ ρ +H, which proves
that the map of B, when it is computed, remains always useful in {ρ+ 1, . . . , ρ+H}.

As mentioned above, at round ν+T +2Xn, every follower of FQ′′ has completed its execution
of IM(1, n). Observe that when a good follower B transits to state Search-for-a-group from
state Wait-for-attendees on a node u at some given round w between round ρ+ 1 and round
ρ+H, every good follower on u also transits to state Search-for-a-group from state Wait-for-
attendees at round w: moreover, these good followers behave in a same synchronous manner
i.e., they execute the same actions in each round between w to round ρ+H. That is, the total
number of distinct maps of the agents of FQ′′ at round ν + T + 2Xn is at most (T .n + n):
there are at most T n distinct maps of the good followers that transit to state Search-for-a-
group from either state Invite or state Wait-for-attendees before round ρ+ 1 and at most n
additional distinct maps of the good followers that transit from state Wait-for-attendees to
state Search-for-a-group after round ρ.

Next, assume that there exists a round α′ such that ν+T +2Xn ≤ α′ ≤ ν + X − 2Xn and no
good follower of FQ′′ updates its imperfect map from round α′ to round α′ + 2Xn. In this case,
the aim is to show that x agents meet in the same node at some round in {α′, . . . , α′ + 2Xn}.
Let B, P and j be respectively a follower of FQ′′ , the imperfect map of B and its index from
round α′ to round α′ + 2Xn. The target node of B is the node that is reached after performing
the first (j − 1) edge traversals of Explo(n) from the initial node of B. Agent B updates its
imperfect map P only if on its target node, there is no follower B′ such that `B′ is the smallest
label in Lj of P . Since there are no updates from round α′ to round α′+2Xn, at round α′+2Xn,
every follower B of FQ′′ is on its target node u.

In the case where u is neither in Q nor Q′, the aim is to show that u hosts at least one
Byzantine agent. From procedure Group, at round α′+2Xn, node u hosts a follower B′ such that
`B′ is the smallest label in Lj of P . If B′ is a good follower, B′ is in state Wait-for-attendees
with a searcher A (recall that no good follower transits to state Search-for-a-group from round
ν to round ν+X − 1). However, A cannot be a good searcher of E since u is not in Q. Hence, u
hosts indeed a Byzantine agent at round α′ + 2Xn. Note that in view of the definition of ν and
the algorithm, each agent of FQ′ is on its initial node with a Byzantine agent pretending to be
a searcher from round ρ+ 1 to ν +X − 1 (as all the good searchers are in nodes /∈ Q′ according
to Claim 1). Let Q′′ be the target nodes which do not belong to Q ∪ Q′, of the good followers
of FQ′′ at round α′ + 2Xn. Then, by Claim 3, |Q| + |Q′| + |Q′′| ≤ f + 1. Moreover, at round
α′ + 2Xn, every good agent is in a node of Q ∪Q′ ∪ Q′′. Hence by the Pigeonhole principle, it
follows that x agents share the same node at round α′+ 2Xn. If round α′ exists, then the claim
holds. So to conclude the proof of this claim, it remains to show the existence of round α′. Recall
that each follower of FQ′′ performs at most Xn.n updates of its imperfect map P (since it can
record at most f Byzantine agents that pretend to be followers in state Wait-for-attendees
on each node during the execution of IM(1, n)). Besides, as argued earlier, the total number
of distinct maps of the agents of FQ′′ at round ν + T + 2Xn is at most (T .n+ n). So, after at
most (T .n + n).(Xn.n)(T + 2Xn = X − T − 4Xn rounds from ν + T + 2Xn, no good follower
of FQ′′ updates its imperfect map. Moreover, every good follower of FQ′′ spends at most 2Xn

rounds before reaching its target node. This proves the existence of round α′ and by extension
the claim. ?

What follows builds on the claims to prove the lemma. Assume by contradiction that the
lemma does not hold. This means either there is no round when x agents meet, or in every round
z when x agent meet, no searcher of E is in state Accept-an-invitation at round z. Let us first
consider the former case. Let F ′ be the set of good followers that enter state Search-for-a-
group from state Wait-for-attendees at some round in {ρ+1, . . . , ρ+H}. From Claim 4, there
is no consecutive X rounds in {ρ+ 1, . . . , ρ+H−X} in which no good follower of E transits to

69

Part , Chapter 5 – Byzantine Gathering in Finite Graphs

state Search-for-a-group (otherwise, round α, which is defined in the statement of this lemma,
exits). From round ρ+2 to ρ+H, only the followers of F ′ may enter state Search-for-a-group.
From round ρ+ 2 all the agents of F ′ have already entered state Wait-for-attendees in view
of the definition of ρ. Note that |QF ′ | ≤ n where |QF ′ | is the set of initial nodes of at least one
follower of F ′. Moreover, let C be an agent of F ′ that enters state Search-for-a-group from
state Wait-for-attendees at a round t ∈ {ρ+ 2, . . . , ρ+H}: before round t, agent C does not
move in step smin, and all the agents of F ′ that are in state Wait-for-attendees and share the
same node as C in round t− 1 also enter state Search-for-a-group at round t. Hence, after at
most nX rounds from round ρ+ 2, there is no agent that can enter state Search-for-a-group
till round ρ+H included. However round ρ+ 3 + nX ≤ ρ+H−X . Hence there exists a round
v satisfying the statement of Claim 4 and there is a meeting of at least x agents at some round
in {ν + 1, . . . , ν + X}: this is a contradiction with the fact that α does not exist. Concerning
the latter case, note that there is a round α in {ν + 1, . . . , ν + X} in which x agents meet. In
view of Claim 1 and procedure Group, every searcher of E is in state Accept-an-invitation in
every round belonging to {ν + 1, . . . , ν + X} : this contradicts the fact that no searcher of E is
in state Accept-an-invitation at round α.

Lemma 5.6. If there exists a round r at which at least x ≥ f + 2 agents meet on the same node
and among them all the good ones are executing phase Process at round r, then at least (x− f)
good agents exit their execution of Group at the same round and on the same node.

Proof. Assume there exists such a round. Let us show that (x − f) good agents exit their
execution of Group at the same round and on the same node. Let x′ be the largest number of
agents executing Group but not in state Restart which met in the same node u in some round
∆ +w. If there are several such rounds, consider the one with the largest value of w. The good
agents executing Group but in another state than Restart are precisely those executing phase
Process, which implies that x′ ≥ x. Let Y be the set of good agents executing phase Process on
u at round ∆ + w. Remark that at round ∆ + w on u there are at most f Byzantine agents.
Hence, |Y| ≥ x′ − f .

When in state Restart, every agent A of Y repeats exactly the same waiting periods and
edge traversals as in its execution phase Process in order to reconstruct the group of agents
that was at node u in round ∆ +w. More precisely, let r and r′ be the round when A initiated
Group and the round when A enters state Restart respectively. Let i be an integer such that
r + i = ∆ + w. From round r′ to r′ + i − 1, agent A replays exactly the same waiting periods
and edges traversals from round r to r + i− 1: for each integer y in {0, 1, . . . , i− 1}, if agent A
remains idle (resp. leaves the current node via a port o) from round r+y to round r+y+1, then
agent A remains idle (resp. leaves the current node via port o) from round r′ + y to r′ + y + 1.
In round r′ + i, agent A is in node u and stops the execution of Group. Besides, in view of
Lemma 5.1, every good agent spends the same number of rounds executing phase Process: let
us denote this number by W. So, r′ + i = r +W + i = ∆ + w +W. Hence, every agent of Y is
in node u and stops the execution of Group at round ∆ + w +W.

The next statement is the main theorem related to procedure Group which ends this subsection.
In order to use the theorem outside of this subsection, the assumptions made in the beginning
of this subsection are recalled in the statement.

Theorem 5.1. Consider a team made of at least (x − 1)(f + 1) + 1 good agents in a graph of
size at most n, where x ≥ f + 2. Let ∆ be the first round when a good agent starts executing
Group(T , n, bin). If all good agents start executing Group(T , n, bin) by round ∆ + T − 1, and
parameter bin is 0 (resp. 1) for at least one good agent, then the following property is verified.
After at most a time polynomial in n and T from ∆, at least (x − f) good agents finish the
execution of Group at the same round and in the same node.

70

5.3. Building Blocks

Proof. When in state Restart, an agent only replays all or part of the waiting periods and edge
traversals made in phase Process. Hence, according to Lemma 5.1 and the initial delay that is
at most T , every good agent finishes the execution of Group after at most a time polynomial in
n and T from ∆.

So to prove the theorem it remains just to show that there is a group of at least (x − f)
good agents that exit Group on the same node and at the same time. This follows directly from
Lemma 5.6 and the claim that is proven below.
Claim 1. At least x agents meet on the same node at some round t, and among them all the
good ones are executing phase Process of procedure Group at round t.
Proof of Claim 1. If f ≥ n, there are always x agents sharing the same node as the number of
good agent is at least (f + 1)x. Moreover, at round ∆ + T every good agent is executing phase
process of procedure Group. Hence, the claim holds if f ≥ n.

So let us focus on the case where f < n. From Lemma 5.5, there is a round α when x agents
meet in some node v and there is a good searcher A in state Accept-an-invitation of some
step s in round α. At round α, it remains for agent A at least T rounds to spend in step s.
Indeed, in state Follow-Up of step s, an agent has to wait 5T + 5Xn +H − x rounds and x is
upper-bounded by 4T + 5Xn +H (this is shown in the proof of Lemma 5.1). Hence, in view of
Corollary 5.1, no good agent has finished step s of phase Process at round α. Moreover, agent
A has necessarily spent more than T rounds in step s when in round α. So, every good agent
is executing phase Process of procedure Group at round α, which proves the claim.

5.3.2 Procedure Merge

The second building block called Merge takes as input two integers n and T .
Subroutine Merge(T , n) allows all the good agents to finish their executions of the subroutine
in the same node and at the same round, provided the following two conditions are satisfied.
The first condition is that all good agents are in a graph of size at most n and start executing
Merge(T , n) in an interval lasting at most T rounds. The second condition is that at least 4f+2
good agents start executing Merge(T , n) at the same round and in the same node. The time
complexity of the procedure is polynomial in T and n.

5.3.2.1 High level idea

For the sake of convenience, consider in this section that a group of agents is a set of all agents,
at least one of which is good, that start executing procedure Merge in the same node and at the
same round. In the sequel, assume there is a group of at least 4f + 2 good agents. The reasons
why such an assumption is necessary will appear at the end of the explanations. Let Gmax and
vmax be respectively the group with the largest initial number of agents and its starting node. In
case there are several possible groups Gmax, the one having the largest lexicographically ordered
list of pairwise distinct labels denoted by Lmax is chosen: this guarantees the unicity of Gmax
as it contains at least 4f + 2 good agents. The cardinality of a list L will be denoted by |L|.

The idea underlying procedure Merge is to make all good agents elect the same node, and
then gather in it (if this is ensured, then it can be guaranteed that all good agents finish the
execution of Merge at a same round using some technicalities). Each node is a candidate,
and each good agent supports the node in which it started executing the procedure. Besides
supporting its candidate, each good agent is also a voter. When acting as a supporter, a good
agent stays idle to promote its candidate and when acting as a voter, it makes a traversal of
the graph in order to visit all nodes of the graph (using procedure Explo(n)), and then elects
one of the nodes using the information provided by the supporters. In order to establish such a
strategy, note that all good agents must not act as voters at the same time. Otherwise, there
would be no supporter left in its candidate node to promote it. Hence, the election process is
divided into two parts, and each group is divided into two subgroups of nearly equal size using

71

Part , Chapter 5 – Byzantine Gathering in Finite Graphs

the labels of the agents. During the first (resp. second) part of the election, the first (resp.
second) subgroup of each group acts as voters while the second (resp. first) subgroup of each
group acts as supporters.

When visiting a node during its traversal of the graph, a voter gets from each supporter of
this node a promotional information: for a good supporter, it is simply the lexicographically
ordered list of all pairwise distinct labels of the agents that were initially in its group. Once
its traversal is done, the voter considers each node v satisfying the property that at least d |L|4 e
distinct agents in v have transmitted a lexicographically ordered list L. Among these nodes, the
voter elects the one for which the property is true with the list L having the largest cardinality:
in case of a tie, the lexicographical order on the labels is used as done to ensure the unicity of
Gmax. By doing so, all good agents elect node vmax and then gather in it: the purpose of the
last paragraph is to explain why vmax is unanimously elected.

By definition, the number of good agents that is initially in Gmax, and thus |Lmax| is at least
4f + 2. Moreover, the number of Byzantine agents is initially at most f in Gmax. Hence, it
can be shown than this strategy permits to always have at least d |Lmax|4 e distinct agents in vmax
that transmit list Lmax to all voters. Note that each good supporter transmits a list L such
that |L| < |Lmax|, or |L| = |Lmax| and L is not lexicographically larger than Lmax. So, the only
way the Byzantine agents could prevent the good agents to elect vmax would be that at least
d |L
′|

4 e Byzantine agents transmit a list L′ such that |L′| > |Lmax|, or |L′| = |Lmax| and L′ is
lexicographically larger than Lmax. However this situation is impossible because the Byzantine
agents are not numerous enough: indeed d |L

′|
4 e ≥ f + 1.

5.3.2.2 Formal description of the algorithm

When an agent A executes Merge(T , n), it can transit to different states that are Census,
Election and Synchronization. When agent A starts the execution of Merge, it is in state
Census. In the algorithm, the cardinality of a list L will be denoted by |L|.

State Census Agent A spends a single round in this state. Besides its state, it transmits its
label to the agents sharing the same node. Agent A assigns to variable H, the lexicographically
ordered list of all pairwise distinct labels of agents that are currently in its node and in state
Census. Then A transits to state Election.

State Election When it enters this state, agent A initializes two variables: it assigns an
empty list to variable I, and 0 to variable pi. This state is made of five different periods: the first,
third and fifth (resp. the second and fourth) ones are waiting periods (resp. moving periods).
In each round of the two first waiting periods, agent A transmits the list H built when in state
Census. If ellA belongs to the first b |H|2 c labels of H, then the durations of the two first waiting
periods are respectively T − 1 and T + 2Xn − 1. Otherwise, they respectively last T + 2Xn − 1
and T − 1 rounds. The duration of the third waiting period is given after describing the second
moving period.

During the first moving period, agent A executes Explo(n) followed by a backtrack in which
the agent traverses all edges traversed in Explo(n) in the reverse order. Once this backtrack is
done, the agent assigns to variable I the largest list I1, if any, having the following property:
there is a round during the execution of Explo(n) at which agent A is in a node where at least
d |I1|

4 e distinct agents in state Election transmit I1. (A list I2 is larger than another list I3 if
and only if I2 contains more elements, or I2 and I3 contain the same number of elements and
I2 is lexicographically larger than I3). If such a list I1 exists, the agent also assigns to variable
pi, the smallest number of edge traversals made by A during the execution of Explo(n) to reach
a node satisfying the above property with I1. Otherwise, the agent leaves variables I and pi
unchanged.

During the second moving period, agent A performs the first pi edge traversals of Explo(n).
Once this is done, agent A checks whether H = I or not. If H = I, then the third waiting period

72

5.3. Building Blocks

lasts T +Xn−1 rounds, and at its expiration, A transits to state Synchronization. Otherwise,
the third waiting period lasts 2T +Xn− 1 but can be interrupted when agent A notices at least
d3|I|

4 e agents in state Synchronization in its node: as soon as such an event occurs, agent A
exits the execution of Merge(T , n). In case such an interruption does not occur, the agent exits
the execution of Merge(T , n) at the end of the waiting period.

State Synchronization Agent A spends one round in this state and then exits the execution
of Merge(T , n).

5.3.2.3 Correctness and complexity analysis

The proof of correctness and cost analysis of procedure Merge only consist of the following
theorem.

Theorem 5.2. Consider a team of agents in a graph of size at most n. Let r0 be the first round
when a good agent starts executing Merge(T , n). If every good agent starts executing Merge(T , n)
by round r0 + T − 1 and among them at least 4f + 2 start the execution in the same node and
at the same round, then all good agents finish their executions of procedure Merge in the same
node and at the same round r < r0 + 4T + 6Xn − 1.

Proof. Note that according to procedure Merge, every good agent spends at most 4T + 6Xn− 1
rounds in any execution of procedure Merge(T , n). Hence, to prove the theorem it is enough to
prove that all good agents finish their executions of procedure Merge in the same node and at
the same round.

Let us denote by H1 the largest list H built by any good agent in state Census, and by
A one of the good agents that builds it. By assumption, they are at least 4f + 2 good agents
that start the execution in the same node and at the same round. As a result, in view of the
description of state Census, H1 contains at least 4f + 2 elements, and agent A belongs to the
group of at least 3f + 2 good agents in state Census that compute the same list H1 at a round
r1 in a node v1. Let us call T1 the group of all the good agents in state Census in node v1 at
round r1. This proof relies on the following two claims.

Claim 5.5. The agents of T1 are the only good agents that build list H1 while in state Census.

Proof of the claim: Let us assume by contradiction that the claim is false. Hence, there is a
good agent B in state Census which also builds H1 in a node v2 at a round r2 such that v2 6= v1
or r2 6= r1. In view of the description of state Census, there are all the labels of the agents of T1
in H1. Thus, for each good agent of T1, there is an agent in state Census with the same label
in node v2 at round r2. However, there are at least 3f + 2 agents in T1, and since they only
spend round r1 in state Census in node v1, none of them is in this state in node v2 at round r2.
Besides, all the good agents have different labels and the Byzantine agents are not numerous
enough to be these 3f + 2 agents in state Census in node v2 at round r2. This contradicts the
existence of these 3f + 2 agents and the assumption that B builds H1 in node v2 at round r2.
Hence, the claim is proven. ?

Claim 5.6. Each good agent starts its third waiting period in node v1.

Proof of the claim: This proof starts with showing the following two facts. The first fact
is that in each of the rounds belonging to {r1 + 1, . . . , r1 + 2T + 4Xn − 2}, there are at least
d |H1|

4 e good agents in state Election that transmit the list H1 in node v1. The second fact is
that each good agent performs entirely its first moving period between round r1 + 1 and round
r1 + 2T + 4Xn − 2.

Let us focus on the first fact. In view of the description of state Census, the list H1 contains
at least 3f+2 elements corresponding to the labels of the agents of T1, all of which are good, and
at most |T1| + f elements, with |T1| the number of agents in T1. This means that f < d |H1|

4 e,
|T1| > d3|H1|

4 e, b
|H1|

2 c − f ≥ d |H1|
4 e and d |H1|

2 e − f ≥ d |H1|
4 e i.e., in each half of H1 there

73

Part , Chapter 5 – Byzantine Gathering in Finite Graphs

are at least d |H1|
4 e labels of agents of T1. This implies that in each of the rounds belonging

to {r1 + T , . . . , r1 + T + 4Xn − 1}, there are at least d |H1|
4 e good agents in state Election

transmitting the list H1 in node v1. Moreover, in view of the description of state Election, all
the agents of T1 wait in v1 and transmit H1 in each round from round r1 +1 to round r1 +T −1,
and from round r1 + T + 4Xn to round r1 + 2T + 4Xn − 2. Hence, the first fact is true.

Let us go further by considering the second fact. Each good agent starts the execution of
procedure Merge between rounds r0 and r0 + T − 1. Then, it spends a single round in state
Census, and enters state Election between round r0 + 1 and round r0 + T . Actually, the good
agents of T1 are in state Census at round r1. This means that r1 belongs to {r0; . . . ; r0 +T −1}.
Since every good agent spends at least T − 1 rounds and at most T + 2Xn − 1 rounds in the
first waiting period, every good agent starts its first moving period between round r0 + T and
round r0 + 2T + 2Xn − 1 i.e., between round r1 + 1 and round r1 + 2T + 2Xn − 1. Since the
first moving period lasts 2Xn rounds, the second fact is true.

Hence, from the two facts, during its first moving period each good agent visits v1 and notices
at least d |H1|

4 e agents in state Election transmitting the same list H1. As a result, in view of
the description of state Election each good agent finishes the second moving period at round
v1 except if the following event occurs: there is a list H2 strictly larger than or identical to H1
such that at a round r3, in a node v3 6= v1, at least d |H2|

4 e agents in state Election transmit H2
to a good agent while it is performing the Explo(n) of its first moving period. However, such an
event cannot occur. Let us assume by contradiction it can. Since |H2| ≥ |H1| ≥ 4f + 2, among
d |H2|

4 e > f agents in state Election transmitting H2, there must be at least one good agent
which builds H2 in state Census. Note that either H2 is identical to H1 or it is larger than H1.
If H2 is identical to H1 Claim 1 is contradicted. If H2 is larger than H1, it is the maximality of
H1 which is contradicted. This concludes the proof of the claim. ?

In view of Claim 2 and the description of states Census and Election, every good agent
finishes its execution in the same node. Hence, to conclude the proof of the theorem, it is enough
to prove now that all good agents finish the execution at the same time. To do this, in view of
the fact that |T1| ≥ d3|H1|

4 e and the fact that each good agent assigns to variable I the same list
H1 at the end of its first moving period, it is enough to show that there is a round in which the
good agents of T1 are in state Synchronization and all the others good agents are performing
their third waiting period. It is the purpose of the following lines.

First assume that no good agent prematurely interrupts its third waiting period before round
r1 + 3T + 5Xn − 2. Since each good agent assigns to variable I the same list H1, each agent of
T1 performs no edge traversal in the second moving period and enters state Synchronization
at round r1 + 3T + 5Xn − 2. Each good agent starts its first waiting period between round
r1−T + 2 and round r1 + T . Moreover, it can spend from 0 to Xn rounds in its second moving
period. This implies that each good agent completes it between round r1 + T + 4Xn − 1 and
round r1 + 3T + 5Xn − 3 and starts the third waiting period between round r1 + T + 4Xn and
round r1 + 3T + 5Xn − 2. Furthermore, each good agent that does not belong to T1 assigns to
variable I a list that is different from the list it has built when in state Census, and thus its
third waiting period lasts 2T + Xn − 1 rounds. This means that each good agent which does
not belong to T1 completes its third waiting period between round r1 + 3T + 5Xn−2 and round
r1 + 5T + 6Xn − 4. Hence, each good agent that does not belong to T1 is performing its third
waiting period at round r1 + 3T + 5Xn− 2 when the agents of T1 enter state Synchronization.
As a result, the theorem is true if no good agent prematurely interrupts its third waiting period
before round r1 +3T +5Xn−2. However, no good agent can interrupt its third waiting period at
a round r < r1 +3T +5Xn−2. Indeed, if it was the case, that would imply that there are at least
d3|H1|

4 e agents in state Synchronization at round r and among them there is necessarily one
good agent of T1: this contradicts the fact that the agents of T1 enter state Synchronization
at round r1 + 3T + 5Xn − 2. This ends the proof of the theorem.

74

5.4. The Positive Result

5.4 The Positive Result
This section shows a procedure, called Gather, that solves Byzantine gathering with strong

teams in all graphs of size at most n, assuming that the global knowledge is the binary represen-
tation of dlog logne. Note that the length of such a global knowledge belongs to O(log log logn)
bits. In this section, the value of dlog logne is denoted by GK. The procedure works in a time
polynomial in n and |`min|, and it makes use of the building blocks introduced in the previous
section.

In the sequel, Gn denotes the maximal time complexity of procedure Group(Xn, n, ρ) with
ρ ∈ {0; 1} in all graphs of size at most n. Moreover, Mn denotes the maximal time complexity of
procedure Merge(Xn+Gn, n) in all graphs of size at most n. Note that according to Theorems 5.1
and 5.2, Gn and Mn exist and are polynomials in n.

5.4.1 Intuition

In order to better describe the high level idea of Gather, first consider a situation that would
be ideal to solve Byzantine gathering with a strong team and that would be as follows. Instead
of assigning distinct labels to all agents, the adversary assigns to each of them just one bit
ρ ∈ {0; 1}, so that there are at least one good agent for which ρ = 0 and at least one good agent
for which ρ = 1. Such a situation would clearly constitute an infringement of the model, but
would allow the simple protocol described in Algorithm 5.1 to achieve the task in a time that is
polynomial in n when GK = dlog logne.

Algorithm 5.1 Algorithm executed by every good agent in the ideal situation.
1: let ρ be the bit assigned to me by the adversary
2: execute G(ρ)
3: declare that gathering is achieved

Algorithm 5.2 G(ρ) executed by a good agent.
1: N ← 2(2GK)

2: execute Explo(N)
3: execute Group(XN , N, ρ)
4: execute Merge(XN +GN , N)

Algorithm 5.1 consists mainly of a call to G(ρ) that is given by Algorithm 5.2. Since GK =
dlog logne, at line 1 of Algorithm 5.2, N is a polynomial upper-bound on n, and the execution
of Explo(N) in a call to G(ρ) by the first woken-up good agent permits to visit every node of
the graph and to wake up all dormant agents. As a result, the delay between the starting times
of Group(XN , N, ρ) by any two good agents of the strong team is at most XN . According to
the properties of procedure Group (refer to Theorem 5.1) and the fact that the number of good
agents is at least 5f2 + 6f + 2 = ((5f + 2)− 1)(f + 1) + 1, this guarantees in turn that the delay
between the starting times of Merge(XN +GN , N) by any two good agents is at most XN +GN ,
and at least 4f + 2 good agents start this procedure at the same time in the same node. Hence,
in view of the properties of procedure Merge (refer to Theorem 5.2), all good agents declare
gathering is achieved at the same time in the same node after a polynomial number of rounds
(in n) since the wake-up time of the earliest good agent.

Unfortunately, such an ideal situation is not assumed. At first glance, one might argue
that it is not really a problem because all agents are assigned distinct labels that are, after
all, distinct binary strings. Thus, by ensuring that each good agent applies on its label the
transformation given in Section 3.2 (or some extension like the transformation described in
Section 5.2, and then processes one by one each bit bi of its doubled label by executing G(bi), it
can be guaranteed (with some minor technical adjustments) that the gathering of all good agents

75

Part , Chapter 5 – Byzantine Gathering in Finite Graphs

is done in time polynomial in n and |`min|. Indeed, in view of Proposition 3.1 the conditions of
the ideal situation are recreated when the agents process their j-th bits for some j at most linear
in |`min|. Unfortunately, this is not enough. In fact, in the ideal situation, there is just one bit
to process: thus, de facto every good agent knows that every good agent knows that gathering
will be done at the end of this single process. However, it is no longer the case when the agents
have to deal with sequences of bit processes: the good agents have a priori no mean to detect
collectively and simultaneously when they are gathered. It should be noted that if the agents
knew f , an existing algorithmic component (refer to [51]) allowing to solve Byzantine gathering
if at some point some good agents detect the presence of a group of at least 2f + 1 agents in
the network could be used. Such a group is necessarily constructed during the sequence of bit
processes given above, but again, it cannot be a priori detected as the agents do not know f or
an upper-bound on it. Hence, to optimize the amount of global knowledge, a new strategy is
required to allow the good agents to declare gathering achieved jointly and simultaneously. It
is the purpose of the rest of this subsection.

To get all good agents declare simultaneously the gathering achieved, it is necessary to reach
a round in which every good agent knows that every good agent knows that gathering is done.
The introduction by Section 5.2 of a transformation different from that of Section 3.2 is not
fortuitous: the doubled label offers a stronger property (refer to Proposition 5.1). When a good
agent has finished to read the first half of its doubled label – call such an agent experienced –
it has the guarantee that the gathering of all good agents has been done at least once. Hence,
when an experienced agent starts to process the second half of its doubled label, it actually
knows an approximation of the number of good agents with a margin of error of f at the most.
For the sake of convenience, consider that an experienced agent knows the exact number |A| of
good agents: the general case adds a slight level of complexity that is unnecessary to understand
the intuition. So, each time an experienced agent completes the process of a bit in the second
half of its doubled label, it is in a node containing less than |A| agents or at least |A| agents.
In the first case, the experienced agent is sure that the gathering is not achieved. In the second
case, the experienced agent is in doubt. Procedure Gather builds on this doubt. How can it be
done? So far, each bit process was just made of one call to procedure G: now at the end of each
bit process, a waiting period of some prescribed length is added, followed by an extra step that
consists in applying G again, but this time according to the following rule. If during the waiting
period it has just done, an agent A was in a node containing, for a sufficiently long period, an
agent pretending to be experienced and in doubt (this agent may be A itself), then agent A is
said to be optimistic and the second step corresponds to the execution of G(0). Otherwise, agent
A is said to be pessimistic and the second step corresponds to the execution of G(1).

If at least one good agent is optimistic within a given second step, then the gathering of
all good agents is done at the end of this step. Indeed, through similar arguments of partition
to those used for the ideal situation, it can be shown that it is the case when at least another
agent is pessimistic. However, it is also, more curiously, the case when there is no pessimistic
agents at all. This is due in part to the fact that two good experienced agents cannot have been
in doubt in two distinct nodes during the previous waiting period (otherwise, the definition of
|A| would be contradicted). Thus, all good agents start G(0) from at most f + 1 distinct nodes
(as the Byzantine agents can mislead the good agents in at most f distinct nodes during the
waiting period), which implies by the pigeonhole principle that at least 4f + 2 good agents start
it from the same node. Combined with some other technical arguments, one can show that
the conditions of Theorem 5.2 are fulfilled when the agents execute Merge at the end of G(0),
thereby guaranteeing again gathering of all good agents.

As a result, the addition of an extra step to each bit process gives the following interesting
property: when a good agent is optimistic at the beginning of a second step, at its end the
gathering is done and, more importantly, the optimistic agent knows it because its existence
ensures it. Note that, it is a great progress, but unfortunately it is not yet sufficient, particularly

76

5.4. The Positive Result

because the pessimistic agents do not have the same kind of guarantee. The way of remedying
this is to repeat once more the same kind of algorithmic ingredient as above. More precisely, at
the end of each second step, a waiting period of some prescribed length is added again, followed
by a third step that consists in applying G in the following manner. If during the waiting period
it has just done, an agent X was in a node containing, for a sufficiently long period, an agent
pretending to be optimistic, then the third step of agent X corresponds to the execution of G(0)
and it becomes optimistic if it was not. Otherwise, the third step of agent X corresponds to the
execution of G(1) and the agent stays pessimistic.

By doing so, a significant move forward is made. To understand why, the reader is invited
to reconsider the case when there is at least one good agent that is optimistic at the beginning
of a second step. As seen earlier, at the end of this second step, all good agents are necessarily
gathered and every optimistic agent knows it. In view of the last changes made to the solution,
when starting the third step, every good agent is then optimistic. As explained above the absence
of pessimistic good agent is very helpful, and using here the same arguments, it is certain that
when finishing the third step, all good agents are gathered and every good agent knows it because
all of them are optimistic. Actually, it is even a little more subtle: the optimistic agents of the
first generation (i.e., those that were already optimistic when starting the second step) know
that the gathering is done and know that every good agent knows it. Concerning the optimistic
agents of the second generation (i.e., those that became optimistic only when starting the third
step), they just know that the gathering is done, but do not know whether the other agents
know it or not. Recall that to get all good agents declare simultaneously the gathering achieved,
the requirement consists in reaching a round in which every good agent knows that every good
agent knows that gathering is done. Such a consensus is close. To reach it, at the end of a third
step, the optimistic agents of the first generation make themselves known to all agents. Note
that if there were at least f + 1 agents declaring to be optimistic agents of the first generation
and if f was part of GK, the consensus would be reached. Indeed, among the agents declaring to
be optimistic of the first generation, at least one is necessarily good and every agent can notice
it: at this point it can be shown that every good agent knows that every good agent knows that
gathering is done.

However, the agents do not know f . That being said, at the end of a third step, note
that an optimistic agent knowing that the gathering is done can compute an approximation
f̃ of the number of Byzantine agents. More precisely, if the number of agents gathered in
its node is p, the optimistic agent knows that the number of Byzantine agents cannot exceed
f̃ = max{y|(5y + 1)(y + 1) + 1 ≤ p} according to the definition of a strong team. Based on this
fact, the solution is complete. Indeed, the algorithm is designed in such a way that all good
agents correctly declare the gathering is achieved in the same round after having computed
the same approximation f̃ and noticed at least f̃ + 1 agents that claim being optimistic of
the first generation during a third step. Such an event necessarily occurs before any agent
finishes the (4|`min|+8)-th bit process of its doubled label, which permits to obtain the promised
polynomial complexity. This is where the feat of strength of procedure Gather is: obtaining such
a complexity with a small amount of global knowledge, while ensuring that the Byzantine agents
cannot confuse the good agents in any way. Actually, the algorithm is judiciously orchestrated
so that the only thing Byzantine agents can really do is just to accelerate the resolution of the
problem.

5.4.2 Formal Description

Algorithm 5.3 gives the formal description of procedure Gather. As mentioned at the
beginning of this section, GK = dlog logne. Procedure Gather uses the two building blocks
Group and Merge described in the previous section. It also uses two small subroutines, Learn
and CheckGathering, which are described after Algorithm 5.3. Both these subroutines do not
have any input parameters, but when executing them, the agent can access to the current value

77

Part , Chapter 5 – Byzantine Gathering in Finite Graphs

of every variable defined in Algorithm 5.3. Hence the variables defined in Algorithm 5.3 can be
viewed as variables of global scope.

Algorithm 5.3 Procedure Gather executed by an agent A with label `A.
1: N ← 2(2GK)

2: // recall that D(`A) is the doubled label of agent A (refer to Section 5.2)
3: γ ← 1
4: i← 1
5: execute Explo(N)
6: while i ≤ 3|D(`A)| do
7: if i mod 3 = 1 then
8: ω ← 0
9: ρ← D(`A)[(i div 3) + 1]
10: end if
11: execute Group(XN , N, ρ)
12: execute Merge(XN +GN , N)
13: execute Learn
14: let (ρ, γ) be the value returned by Learn
15: if ρ = 0 then
16: ω = ω + 1
17: end if
18: if i mod 3 = 0 then
19: execute CheckGathering
20: let flag be the boolean value returned by CheckGathering
21: if flag =true then
22: declare that gathering is achieved
23: end if
24: end if
25: let r be the time elapsed since the beginning of the execution of this procedure
26: wait XN + i(3XN + 4(GN +MN) + 2)− r rounds
27: i← i+ 1
28: end while

In the presentation of the high level idea of procedure Gather in the previous subsection, some
qualifiers like “experienced and in doubt”, “optimistic of the second generation” or “optimistic
of the first generation” are used only to ease the understanding but do not appear explicitly in
the formal description. However note that these qualifiers are reflected in the values 1, 2 or 3 of
variable ω. For example, an optimistic agent of the first generation corresponds to an agent for
which ω = 3.

The following paragraphs formally describe the subroutines Learn and CheckGathering,
starting with Learn.

Subroutine Learn
When executing this subroutine, an agent A can transit to different states that are Learning,
Optimist and Pessimist. The initial state is Learning. During an execution of this procedure,
A never moves. Denote by v the node occupied by the agent while executing this subroutine
and by TN the value XN +GN +MN .

State Learning Agent A spends one round in this state. Let x be the maximum number
of agents in state Learning (including itself) that A notices at this round in node v. Let z be
max(γ, x). The agent A transits either to state Optimist or to state Pessimist. It transits
to state Optimist if ω 6= 0, or 2i > 3|D(`A)| and x ≥ z − max{y|(5y + 1)(y + 1) + 1 ≤ z}.
Otherwise, it transits to state Pessimist.

State Optimist Agent A waits 3TN rounds in this state. At the end of this waiting period,
the agent exits the execution of Learn: the returned value of the subroutine is then the couple
(0, z).

State Pessimist Agent A waits 3TN rounds in this state. At the end of the waiting period,
the agent exits the execution of Learn and returns a couple, the value of which is as follows.
If during the waiting period, agent A notices 2TN consecutive rounds such that in each of

78

5.4. The Positive Result

them there is at least one agent in state Optimist in node v, then the returned value is (0, z).
Otherwise the returned value is (1, z).

The next paragraph describes the second subroutine CheckGathering.
Subroutine CheckGathering

Agent A waits a single round and then exists the execution of CheckGathering. During this
round, agent A transmits the value of its variable ω, and the word “Check-gathering” in order
to indicate that it is executing the same named subroutine. Denote by p the number of agents
in its current node during the single round of the execution. If the value of the variable ω of
A belongs to {2; 3}, and there are more than max{y|(5y + 1)(y + 1) + 1 ≤ p} distinct agents
transmitting 3 and “Check-gathering”, the subroutine returns true. Otherwise, the subroutine
returns false.

5.4.3 Proof and Analysis

This subsection proves the correctness and the polynomiality of procedure Gather to solve
Byzantine gathering with strong teams in all graphs of size at most n, assuming that GK =
dlog logne.

Proposition 5.3. Let p be a positive integer. If within a team of p agents, there are g ≥ (5f +
1)(f + 1) + 1 good agents and at most f Byzantine agents, then f ≤ max{y|(5y+ 1)(y+ 1) + 1 ≤
p} < g.

Proof. First of all, f ≤ max{y|(5y + 1)(y + 1) + 1 ≤ p} follows from the fact that p ≥ (5f +
1)(f + 1) + 1. Then, assume by contradiction that max{y|(5y + 1)(y + 1) + 1 ≤ p} ≥ g. This
implies that (5g+ 1)(g+ 1) + 1 ≤ p. However, 2g < (5g+ 1)(g+ 1) + 1 and p ≤ g+ f < 2g. By
transitivity, 2g < 2g. This is a contradiction, which completes the proof.

The executions of all the subroutines and building blocks that are mentioned in the following
statements and their proofs always occur during an execution of procedure Gather with GK =
dlog logne by an agent in a graph of size at most n. Hence, for ease of reading, this is omitted.
The following notations are used in the statement of the next lemma and its proof. For any good
agent A, denote by rA,i the round (if any) at which A starts its i-th execution of procedure Group.
Also denote by ti the first round (if any) at which there is at least one good agent that starts its
i-th execution of procedure Group. Finally, according to line 1 of Algorithm 5.3, N is the value
2(2GK).

Lemma 5.7. Let A be a good agent. For any positive integer i, rA,i+1 = rA,i + 3XN + 4GN +
4MN +2, and every good agent that starts its i-th execution of Group does it at round ti+XN−1
at the latest.

Proof. Since Explo(N) allows to visit every node of the graph, once the first awoken good agent
has completed its first execution of Explo(N) at the beginning of procedure Gather, each good
agent is awoken and has at least started its first execution of Explo(N). Every good agent
spends exactly XN rounds executing it, and then starts its first execution of procedure Group.
Hence, every good agent starts its first execution of procedure Group in some interval of XN

rounds, between rounds t1 and t1 +XN − 1.
Now consider the routines a good agent executes between the beginnings of any two consecu-

tive executions of Group. To conclude this proof, it is enough to show that their execution lasts
at most 3XN + 4GN + 4MN + 2 rounds. Any good agent spends at most GN rounds executing
Group(XN , N, bin) for any bin ∈ {0; 1}, at most MN rounds executing Merge(XN + GN , N),
exactly 3TN + 1 rounds executing Learn, and exactly 1 round executing CheckGathering. The
sum of these amounts of rounds is 2 + 3TN +MN +GN .

In view of line 26 of Algorithm 5.3 and since each agent spends exactly XN rounds executing
the initial Explo(N), for any positive integer i and any good agentA, the above sum is exactly the

79

Part , Chapter 5 – Byzantine Gathering in Finite Graphs

amount of rounds between rA,i and rA,i+1. Hence, any good agent spends exactly 4MN +4GN +
3XN + 2 rounds between the beginnings of any two consecutive executions of procedure Group,
which completes the proof.

Proposition 5.4. Consider a round r at which two good agents A and B execute the same
routine R from the set {Group, Learn, Merge, CheckGathering}. If A is executing its i-th execu-
tion of R at round r, then B is also executing its i-th execution of R at round r.

Proof. Assume by contradiction that there exists some round r1 at which two good agents A
and B are respectively executing their i-th and j-th execution of a same routine R from the
set {Group, Learn, Merge, CheckGathering} with i < j. In view of Lemma 5.7, (rB,j − rB,i) ≥
3XN + 4GN + 4MN + 2. Thus (r1 − rB,i) ≥ 3XN + 4GN + 4MN + 2. However, if R is Group or
Merge, then (r1 − rA,i) ≤ GN +MN . Hence, (rA,i − rB,i) > XN , which contradicts Lemma 5.7.

Hence, R must be Learn or CheckGathering. In either case, in view of Algorithm 5.3,
between rB,j and r1, B must have executed Group and Merge. Executing these routines requires
a minimal number a rounds which is strictly larger than XN . This means that, (r1 − rB,i) ≥
4XN +4GN +4MN +3. On the other hand, (r1−rA,i) ≤ 3XN +4GN +4MN +2 rounds. Hence,
(rA,i − rB,i) > XN , which contradicts again Lemma 5.7.

By Lemma 5.7 and lines 11-12 of Algorithm 5.3, all good agents that start their i-th execution
of Merge(XN + GN , N) for a given positive integer i, do it in an interval lasting at most
the number of rounds given as first parameter of Merge. Hence, the following corollary is a
consequence of Theorem 5.1, Theorem 5.2, and Lemma 5.7.

Corollary 5.2. Assume that for a given positive integer i, there is a group of at least (5f +
1)(f + 1) + 1 good agents that start (at possibly different nodes or rounds) their i-th executions
of Group(XN , N, ρ) with ρ = 0 for at least one good agent and ρ = 1 for at least one other
good agent. There exist a node v1 and a round r1 such that each good agent in the graph that
completes its i-th execution of Merge does it at round r1 in node v1.

Before proving Theorem 5.3 that is the main result of this section, it is necessary to prove
the following series of four lemmas.

Lemma 5.8. Assume that for a given positive integer i, there are at least 5f+2 good agents that
start (at possibly different rounds) their i-th executions of Group(XN , N, ρ) in the same node v1
with ρ = 0. There exist a round r2 and a node v2 such that each good agent in the graph that
completes its i-th execution of procedure Merge does it at round r2 in node v2.

Proof. Assume that there exist an integer i and a node v1 such that a group T1 of at least 5f+2
good agents all start their i-th executions of Group(XN , N, ρ) in the same node v1 with ρ = 0.
In view of Lemma 5.7, every good agent that starts its i-th execution of Group, does it between
rounds ti and ti +XN − 1. In view of the description of Group, at the beginning of its execution
of Group(XN , N, 0), every good agent, which is called a follower, first enters state Invite and
spends strictly more than XN rounds waiting in this state. Hence, there is at least one round
at which each good agent of T1 is waiting in state Invite in node v1 during the first phase of
its i-th execution of Group. Thus, by Lemma 5.6, at least 4f + 2 good agents exit their i-th
execution of Group at the same round and in the same node. This means that at least 4f + 2
good agents start their i-th execution of Merge(XN +GN , N) at the same round and in the same
node. Besides, each good agent spends at most GN rounds in any execution of Group which
means that each good agent that completes its i-th execution of Group does it between round ti
and round ti +GN +XN − 1. Hence, in view of Theorem 5.2, there exist a round r2 and a node
v2 such that each good agent that completes its i-th execution of Merge(XN + GN , N) does it
at r2 in v2.

80

5.4. The Positive Result

Lemma 5.9. Assume that g ≥ (5f + 1)(f + 1) + 1 good agents start (at possibly different nodes
or rounds) their (3j + 1)-th execution of subroutine Group, for a given integer j. Let k ≤ 3 be
the smallest positive integer, if any, such that the (3j+ k)-th execution of procedure Learn by at
least one good agent returns a couple whose the first element is 0. There exists a node v1 such
that each good agent that enters state Optimist during its (3j + k)-th execution of Learn, does
it in v1.

Proof. Assume by contradiction that two good agents A and B both enter state Optimist during
their (3j+k)-th executions of Learn but from different nodes, respectively vA and vB. To conduct
this proof, it is necessary to explain what the entrance of these good agents in state Optimist
implies. Note that during their (3j + k)-th executions of Learn, both agents have the same
value for variable i i.e., (3j+ k). In view of lines 7-8 of Algorithm 5.3, when a good agent starts
its (3j + 1)-th execution of Group, the value of its variable ω is 0. Since ω is only incremented
on line 16, when the first element of the pair returned by Learn is 0, by definition of k, at the
beginning of their (3j+k)-th executions of Learn, the value of ω for both A and B is still 0. Thus,
in view of the description of procedure Learn, 2(3j+k) > 3|D(`A)| (resp. 2(3j+k) > 3|D(`B)|)
and while in state Learning, A (resp. B) notices at least zA−max{yA|(5yA+1)(yA+1)+1 ≤ zA}
(resp. zB −max{yB|(5yB + 1)(yB + 1) + 1 ≤ zB}) agents in state Learning in its node, where
|D(`A)| (resp. |D(`B)|) denotes the length of the doubled label of A (resp. B) as defined in
Algorithm 5.3 and zA (resp. zB) denotes the value of z that is used in state Learning by agent
A (resp. B).

The following step of the proof consists in explaining what 2(3j + k) > 3|D(`A)| and 2(3j +
k) > 3|D(`B)| imply. By Proposition 5.1, it means that there exists a positive integer s ≤ j such
that the s-th bits in the doubled labels of A and B are different. In view of Algorithm 5.3, this
means that for their (3s−2)-th executions of Group, one of them executes Group(XN , N, 0) while
the other one executes Group(XN , N, 1). Hence, in view of Corollary 5.2, there exist a node v3
and a round r3 such that each good agent that completes its (3s−2)-th execution of Merge, does
it in v3 at round r3. This means that each good agent that starts its (3s − 2)-th execution of
Learn, and thus enters state Learning, does it in v3 at round r3 +1. By assumption, these good
agents are at least g ≥ (5f + 1)(f + 1) + 1 and among them, there are A and B. This means
that the number of agents in state Learning that A (resp. B) notices during its (3s − 2)-th
execution of Learn, and thus zA (resp. zB) is at least g.

The next part of this proof is built on the consequences of the fact that A (resp. B) notices
at least zA−max{yA|(5yA+1)(yA+1)+1 ≤ zA} (resp. zB−max{yB|(5yB+1)(yB+1)+1 ≤ zB})
agents in state Learning while in the same state during its (3j+k)-th execution of Learn. In view
of Proposition 5.3, both max{yA|(5yA+1)(yA+1)+1 ≤ zA} and max{yB|(5yB+1)(yB+1)+1 ≤
zB} are at least f . Assume without loss of generality that zB−max{yB|(5yB+1)(yB+1)+1 ≤ zB}
is at least zA − max{yA|(5yA + 1)(yA + 1) + 1 ≤ zA}. Hence, the sum of the numbers of
agents in state Learning noticed by A or B while in the same state during their (3j + k)-
th execution of Learn is at least 2(zA − max{yA|(5yA + 1)(yA + 1) + 1 ≤ zA}) i.e., at least
g+zA−2 max{yA|(5yA+1)(yA+1)+1 ≤ zA}. Besides, zA−2 max{yA|(5yA+1)(yA+1)+1 ≤ zA}
is greater than 2 max{yA|(5yA + 1)(yA + 1) + 1 ≤ zA} ≥ 2f . This means that the total number
q of agents in state Learning noticed by A or B while in the same state during their (3j+k)-th
executions of Learn is greater than g+ 2f . However, this is impossible as explained in the next
paragraph.

In view of Proposition 5.4, when A or B starts its (3j+ k)-th execution of Learn, each good
agent in state Learning is also starting its (3j + k)-th execution of Learn. No good agent can
be in state Learning during its (3j + k)-th execution of Learn both in vA and in vB, which
means that among the q > g + 2f agents noticed by A or B, at most g are good. However, in
every round, there are at most f Byzantine agents in vA or vB. Hence, q cannot be greater than
g + 2f : this leads to a contradiction that proves the theorem.

81

Part , Chapter 5 – Byzantine Gathering in Finite Graphs

Lemma 5.10. Let i and j two integers such that j ∈ {1; 2}. Assume that at least (5f + 1)(f +
1) + 1 good agents start (at possibly different nodes or rounds) their (3i + 1)-th executions of
subroutine Group. If the (3i + j)-th execution of subroutine Learn by at least one good agent
returns a couple whose the first element is 0, then for every integer j < k ≤ 3, there exist a
round r and a node v such that every (3i+ k)-th execution of Learn by any good agent finishes
at round r in node v and returns a pair whose first element is 0.

Proof. To prove this lemma, it is enough to show that for all integers i and j such that j ∈ {1; 2},
if at least (5f + 1)(f + 1) + 1 good agents start (at possibly different nodes or rounds) their
(3i + 1)-th executions of Group, and the (3i + j)-th execution of subroutine Learn by at least
one good agent A returns a couple whose the first element is 0, then the following property is
verified: there exist a round r and a node v such every (3i+ j+ 1)-th execution of Learn by any
good agent finishes in node v at round r, and returns a couple whose the first element is 0.

Three cases are considered. In the first case, j = 1. In the second case, j = 2 and there is
no good agent whose (3i+ 1)-th execution of Learn returns a couple in which the first element
is 0. In the third case, j = 2 and there is at least one good agent B (not necessarily different
from A) whose (3i+ 1)-th execution of Learn returns a couple in which the first element is 0.

Consider the first case. This paragraph aims at proving that all the good agents which
complete their (3i + 2)-th execution of Merge do it at the same round, and in the same node.
In view Algorithm 5.3, during the (3i+ 2)-th execution of Group(XN , N, ρ) by agent A, ρ = 0.
So, if there exists a good agent that uses 1 for parameter ρ during its (3i + 2)-th execution of
Group(XN , N, ρ), then in view of Corollary 5.2, all the good agents that complete their (3i+ 2)-
th executions of Merge do it at the same round and in the same node. The situation, in which
each good agent that starts its (3i + 2)-th execution of Group(XN , N, ρ) uses ρ = 0, is a little
trickier to analyze. In this situation, in view of Algorithm 5.3, this means that every (3i+ 1)-th
execution of Learn by any good agent C returns a couple whose first element is 0. Thus, during
this execution agent C either enters state Optimist, or while in state Pessimist it notices at
least one agent in state Optimist for at least 2TN consecutive rounds. Moreover, in view of
Lemma 5.7 and the definitions of values GN andMN , every good agent that starts its (3i+1)-th
execution of Learn, does it between rounds t3i+j and t3i+j +GN +MN +XN −1 = t3i+j +TN −1
(TN is defined in the description of Learn). According to the description of state Learning (resp.
state Pessimist), every good agent that enters (resp. exits) state Pessimist, does it between
rounds t3i+j +1 and t3i+j +TN (resp. t3i+j +3TN and t3i+j +4TN −1). Hence, there are at most
4TN − 1 rounds at which at least one good agent is in state Pessimist during its (3i + 1)-th
execution of Learn. This implies there is at least one round r1 that overlaps all the intervals
of 2TN rounds noticed by the good agents in state Pessimist, and such that in round r1 each
good agent in state Pessimist is in the same node as at least one agent in state Optimist. By
Lemma 5.9, there is at most one node where good agents can enter state Optimist during their
(3i + 1)-th executions of Learn. This implies that there are at most f + 1 nodes in the graph
from which any good agent can exit state Learning during its (3i + 1)-th execution of Learn.
Since by assumption at least (5f + 1)(f + 1) + 1 good agents execute their (3i+ 1)-th executions
of Learn, there exists at least one node v1 such that at least 5f + 2 good agents are in v1 during
their (3i+ 1)-th executions of Learn as well as at the beginning of their (3i+ 2)-th executions of
Group(XN , N, ρ). Recall that these good agents all use 0 as value for parameter ρ during their
(3i + 2)-th executions of Group(XN , N, ρ). Hence, by Lemma 5.8 it follows that all the good
agents that complete their (3i + 2)-th executions of Merge do it at the same round and in the
same node.

So, in the first case, all the good agents that complete their (3i+2)-th executions of Merge do
it at the same round and in the same node. This paragraph aims at showing that these agents
all complete at the same round and in the same node their (3i + 2)-th executions of Learn
that returns a couple whose the first element is 0. In view of the description of Learn, these
good agents do not move and spend exactly 3TN + 1 rounds during their (3i+ 2)-th executions

82

5.4. The Positive Result

of Learn. Hence, they enter and exit state Learning at the same round, and complete their
(3i + 2)-th executions of Learn at the same round and in the same node. Moreover, since the
(3i + 1)-th execution of subroutine Learn by agent A returns a couple whose the first element
is 0, during its (3i + 2)-th of subroutine Learn, the value of its variable ω is different from 0
and it enters state Optimist. Hence, each good agent that enters state Pessimist during its
(3i+ 2)-th execution of Learn notices agent A in state Optimist during 3TN ≥ 2TN consecutive
rounds. As a result, there exist a round r and a node v such that every (3i + 2)-th execution
of Learn by any good agent finishes in node v at round r, and returns a couple whose the first
element is 0.

Using similar arguments to those used in the first case, it is possible to show in the second
case that there exist a round and a node in which every (3i + 3)-th execution of Learn by any
good agent finishes and returns a couple whose the first element is 0.

Consider the third case i.e., j = 2 and there is at least one good agent B whose (3i+ 1)-th
execution of Learn returns a couple in which the first element is 0. Using similar arguments to
those used in the first case, it is possible to show that, there exist a round and a node in which
every (3i+ 2)-th execution of Learn by any good agent finishes and returns a couple whose first
element is 0. All these good agents start their (3i + 3)-th executions of Group(XN , N, ρ) from
the same node with ρ = 0. In view of Lemma 5.8, this implies that there exist a round r2 and
a node v2 such that every (3i+ 3)-th executions of Merge by any good agent finishes in node v2
at round r2. Moreover, since every (3i+ 2)-th execution of Learn of any good agent C returns
a couple whose the first element is 0, during its (3i + 3)-th execution of Learn, agent C enters
state Optimist: this execution of Learn by agent C lasts exactly 3TN + 1 rounds during which
it does not move from v2. Hence, the (3i+ 3)-th execution of Learn of agent C returns a couple
whose the first element is 0 at round r2 + 3TN + 1, which completes the proof.

Lemma 5.11. Assume there is a group G of at least (5f + 1)(f + 1) + 1 good agents executing
procedure Gather at a round r1. If at least one agent of G declares that gathering is achieved at
round r1 in a node v1, then all agents of G declare that gathering is achieved at r1 in v1.

Proof. By assumption, there is at least one good agent A that declares that gathering is achieved
at r1. Let i1 be the value of the variable i of agent A at round r1. In view of Algorithm 5.3, it
declares that gathering is achieved after executing subroutine CheckGathering, and there exists
an integer i2 such that i1 = (3i2 + 3).

In view of subroutine CheckGathering, since A declares gathering achieved at round r1, the
value of its variable ω is either 2 or 3. In view of Algorithm 5.3, this means that there are
either two or three executions of Learn, out of the three since the beginning of the (3i2 + 1)-th
execution of Group by agent A, which have returned a couple whose the first element is 0. In
view of Lemma 5.10, this means that there exist a round r2 and a node v1 such that each agent
of G completes at r2 in v1 its (3i2 + 3)-th execution of Learn, the returned value of which is a
couple whose the first element is 0.

Consider the set of the values of variable ω of every good agent of G at the end of its (3i2+3)-
th execution of Learn, and denote by ω1 the maximum one. Since at the end of the (3i2 + 3)-th
execution of Learn by agent A, the variable ω of A is either 2 or 3, ω1 is also either 2 or 3.
Lemma 5.10 implies that at the end of the (3i2 + 3)-th execution of Learn by every good agent
B of G (including A), the variable ω of B is either ω1 or ω1 − 1.

Each agent of G starts its (i2 + 1)-th execution of subroutine CheckGathering at r2 + 1 in
v1. According to the description of this subroutine and Algorithm 5.3, agent A declares that
gathering is achieved at round r1 because at the previous round, while executing CheckGathering,
it notices strictly more than max{y|(5y + 1)(y + 1) + 1 ≤ p} distinct agents executing the
same procedure and transmitting 3. Thus, the round at which all the agents of G execute
CheckGathering in v1 is r1 − 1. Since at least (5f + 1)(f + 1) + 1 good agents are in the same
node, by Proposition 5.3, at least one good agent transmits 3 at round r1 − 1. In view of the

83

Part , Chapter 5 – Byzantine Gathering in Finite Graphs

fact that the integer transmitted by any good agent executing CheckGathering is the value of
its variable ω, ω1 is 3 and the value of variable ω of each agent of G is either 2 or 3. This means
the execution of CheckGathering of every good agent of G returns true at round r1 − 1 in v1,
and every good agent of G declares that gathering is achieved at round r1 with agent A, which
completes this proof.

The next result is the last of this section. Recall that a strong team is a team in which the
number of good agents is at least 5f2 + 6f + 2. As the reader would have noticed, a good agent
can execute several iterations of the while loop of Algorithm 5.3 (refer to lines 6 to 28): given a
good agent A, the i-th iteration of this while loop by agent A is said to be of order i.

Theorem 5.3. Assuming that GK = dlog logne, procedure Gather solves Byzantine gathering
with every strong team in all graph of size at most n, and has a time complexity that is polynomial
in n and |`min|.

Proof. Let r be the first round in which a good agent finishes the execution of procedure Gather.
Since, the adversary wakes up at least one good agent, round r exists. Since GK = dlog logne,
N = 2(2GK) is at least n, and thus according to line 5 of Algorithm 5.3, all the good agents are
executing procedure Gather at round r. As a result, in view of Lemma 5.11, it is enough to
prove the following two properties to state that the theorem holds. The first property is that
there exists at least one good agent that declares gathering is achieved at round r (note that
although it is proved impossible in the sequel, the possibility that an agent might finish the
execution of procedure Gather without declaring gathering is achieved cannot be ruled out for
now). The second property is that at round r, the first woken-up agent (or one of the first, if
there are several such agents) has spent a time that is at most polynomial in n and |`min| to
execute procedure Gather.

First focus on the first property and consider the good agent A with the smallest label `min.
Let α = 3|D(`min)|. In view of Algorithm 5.3, each good agent executes at least α iterations of
the while loop of Algorithm 5.3, unless it declares that gathering is achieved before. Two cases
are considered: either there is at least one good agent B that never starts executing its α-th
iteration of the while loop, or every good agent start executing at some point its α-th iteration
of the while loop.

Concerning the first case, assume without loss of generality that B is the first agent that
stops executing procedure Gather before starting its α-th iteration of the while loop. According
to Lemma 5.7, the time spent executing an iteration is the same regardless of the executing good
agent and the order of the iteration, and this time is greater than the difference between the
rounds at which any two good agents start iterations of the same order. Hence, when agent B
stops executing procedure Gather, no good agent has completed its α-th iteration of the while
loop. This implies that agent B finishes its execution of procedure Gather at round r. Moreover,
the fact that B stops executing procedure Gather before starting its α-th iteration of the while
loop, implies that B declares the gathering is achieved at round r: this proves that the first
property holds in the first case.

Now consider the second case. In view of Proposition 5.1, for any given good agent C
different from A, there exist two positive integers i and j such that 2i ≤ |D(`min)|, |D(`min)| <
2j ≤ 2|D(`min)| and the i-th (resp. j-th) bits in the doubled labels of A and C are different.
Hence, at round r, each good agent has at least started executing its α-th iteration of the while
loop, and thus has completed its (3i−2)-th iteration and at least started its (3j−2)-th iteration.

Moreover, in view of Algorithm 5.3, for its (3i − 2)-th (resp. (3j − 2)-th) execution of
Group(XN , N, ρ), agent A uses for parameter ρ a value belonging to {0; 1} that is different of
that used by agent C (which also belongs to {0; 1}) during its (3i − 2)-th (resp. (3j − 2)-th)
execution of Group(XN , N, ρ). By Corollary 5.2, there exist a round ri and a node vi (resp. rj
and vj) such that each good agent completes its (3i − 2)-th (resp. (3j − 2)-th) execution of
Merge at ri in vi (resp. at rj in vj). At round ri + 1, each good agent enters state Learning in

84

5.5. The Negative Result

node vi. Thus, at this point the value of variable γ of each good agent is at least the number of
good agents and at most the total number of agents. Since there are at least (5f + 1)(f + 1) + 1
good agents, in view of Proposition 5.3, max{y|(5y + 1)(y + 1) + 1 ≤ γ} is at least f , and
γ −max{y|(5y + 1)(y + 1) + 1 ≤ γ} is at most the number of good agents.

Furthermore, the length of the doubled label of A is |D(`min)|. This means that during
its (3j − 2)-th execution of Learn, at round rj + 2, while all good agents are in vj , agent A
enters state Optimist. At the same round, every other good agent is also in vj entering either
state Optimist or state Pessimist. Whichever the state, they spend 3TN rounds in it so that
all the good agents in state Pessimist notice agent A in state Optimist during at least 2TN
rounds. As a result, every good agent finishes its (3j − 2)-th execution of Learn that returns
a pair whose first element is 0. From Lemma 5.10, it follows that there exist a round r1 and
a node v1 such that each good agent completes its 3j-th execution of subroutine Learn at r1
in v1, and the value of variable ω of each good agent at round r1 is 3. From round r1 + 1 on,
each good agent starts its j-th execution of CheckGathering. When executing this procedure,
each of them transmits the word “Check-gathering” and the value 3 of its variable ω. In view of
Proposition 5.3, there are strictly more than max{y|(5y+1)(y+1)+1 ≤ p} good agents. Hence,
agent A as well as all good agents return true, and thus declare that gathering is achieved at
round r = r1 +2 in node v1 which proves that the first property holds in the second case as well.

This paragraph proves the second property. According to the two cases analyzed above,
the good agents declare that the gathering is achieved at round r before any of them starts its
iteration of the while loop of order α+1: the value α is polynomial in |`min| since α = 3|D(`min)|
and |D(`min)| = 4|`min|+ 8. Besides, the number of rounds required to execute any iteration of
the while loop is bounded by 4(XN +GN +MN + 1) in view of Lemma 5.7. Note that in view
of the definitions of XN , GN and MN , 4(XN +GN +MN + 1) is polynomial in N , and thus in n
as N = 2(2dlog logne) (refer to line 1 of Algorithm 5.3). Hence, the total number of rounds spent
by any good agent before round r is bounded by 12(4|`min|+ 8)(XN +GN +MN + 1), which is
polynomial in n and |`min|. This concludes the proof of the second property, and by extension,
of the theorem.

5.5 The Negative Result

Algorithm Gather introduced in the previous section uses the value dlog logne as global
knowledge, which can be coded with a binary string of size O(log log logn). This section shows
that, to solve Byzantine gathering with all strong teams, in all graphs of size at most n, in a time
polynomial in n and |`min|, the order of magnitude of the size of knowledge used by algorithm
Gather is optimal. More precisely, the following theorem is proved.

Theorem 5.4. There is no algorithm solving Byzantine gathering with all strong teams in all
graphs of size at most n, which is polynomial in n and |`min| and which uses a global knowledge
of size o(log log logn).

Proof. Suppose by contradiction that the theorem is false. Hence, there exists an algorithm Alg
that solves Byzantine gathering with all strong teams for all f in all graphs of size at most n,
which is polynomial in n and |`min| and which uses a global knowledge of size o(log log logn).
The proof relies on the construction of a family Fn (for any n ≥ 4) of initial instances with
strong teams such that for each of them the graph size is at most n. The goal is to prove that
there is an instance from Fn for which algorithm Alg needs a global knowledge whose size does
not belong to o(log log logn), which would be a contradiction with the definition of Alg.

An infinite sequence of instances I = I0, I1, I2, . . . , Ii, . . . is constructed by induction on i as
follows. Instance I0 consists of an oriented ring of 4 nodes (i.e., a ring in which at each node the
edge going clockwise has port number 0 and the edge going anti-clockwise has port 1). In this

85

Part , Chapter 5 – Byzantine Gathering in Finite Graphs

ring, there is no Byzantine agent but there are two good agents labeled 0 and 1 that are placed
in diametrically opposed nodes. All the agents in I0 wake up at the same time.

The construction of instance Ii with i ≥ 1 uses some features of instance Ii−1. Let c be the
smallest constant integer such that the time complexity of algorithm Alg is at most nc from
every instance made of a graph of size at most n with a strong team in which |`min| = 1. Let
µi−1 and ni−1 be respectively the total number of agents in Ii−1 and the number of nodes in
the graph of Ii−1. Instance Ii consists of an oriented ring of (ni−1)4c nodes. In this ring an
agent labeled 0 is placed on a node denoted by v0. In each of the nodes that are adjacent to
v0, (ni−1)c · µi−1 Byzantine agents are placed (which gives a total of 2(ni−1)c · µi−1 Byzantine
agents). On the node that is diametrically opposed to v0, enough good agents are placed in
order to have a strong team. The way of assigning labels to all agents that are not at v0 is
arbitrary but respects the condition that initially no two agents share the same label. Finally,
all the agents in Ii wake up at the same time. This closes the description of the construction of
I, about which the following claim is now proved.

Claim 5.7. For any two instances Ij and Ij′ of I, algorithm Alg requires a distinct global
knowledge.

Proof of the claim: Assume by contradiction that the claim does not hold for two instances Ij
and Ij′ such that j < j′. Consider any execution EXj of algorithm Alg from Ij . According to the
construction of I, every agent is woken up at the first round of EXj . Denote by r1, r2, . . . , rk the
sequence of consecutive rounds from the first round of EXj to the round when all good agents
declare that gathering is done. Also denote by Gi the group of agents (possibly empty) that
are with the good agent labeled 0 at round ri of EXj . Now, using execution EXj , a possible
execution EXj′ of algorithm Alg from Ij′ is designed in such a way that it will fool the good
agent labeled 0 and will induce it into premature termination. According to the construction
of I, all the agents of Ij′ are woken up in the first round of Ij′ and all the good ones are
executing algorithm Alg. In the first round of EXj′ the agent labeled 0 is alone (as in the first
round of EXj). Then, for each i ∈ 2, . . . , k, the good agent labeled 0 in EXj′ meets a group of
|Gi| Byzantine agents whose the multiset of labels is exactly the same as the multiset of labels
belonging to the agents of Gi in the i-th round of EXj . This is always possible in view of the
fact that for each i ∈ 1, . . . , k, |Gi| ≤ µj and the Byzantine agents of Ij′ can choose to move by
ensuring that in the i-th round of EXj′ it remains at least (k − i) · µj Byzantine agents in the
node adjacent to the one occupied by the agent labeled 0 in the clockwise direction (resp. anti-
clockwise direction): indeed according to the construction of Ij′ , in each of both nodes adjacent
to the starting node of the good agent labeled 0, there are initially (nj′−1)c · µj′−1 ≥ k · µj′−1
Byzantine agents, as k ≤ (nj)c ≤ (nj′−1)c. Finally, if algorithm Alg prescribes some message
exchange between agents during their meetings, then the Byzantine agents in execution EXj′

give exactly the same information to 0, as the agents with respective labels in execution EXj .
Hence, from the point of view of agent 0, the first k rounds of EXj look exactly identical to the
first k rounds of EXj′ . This is due to the actions of Byzantine agents, the fact that all nodes
in Ij and Ij′ look identical, and also because k ≤ (nj)c which implies that, regardless of the
algorithm Alg, the agent labeled 0 cannot meet any good agent in the first k rounds of EXj′

as the distance between agent 0 and any other good agent is initially at least (nj′−1)4c

2 ≥ (nj)4c

2 .
Therefore, in the k-th round of execution EXj′ , the good agent labeled 0 declares having met all
good agents and stops, which is incorrect, since it has not met any good agent. This contradicts
the definition of algorithm Alg and closes the proof of this claim. ?

Now, consider the largest x such that in each of the x + 1 first instances I0, I1, . . . , Ix of
I, the graph size is at most n: these x + 1 instances constitute family Fn. In view of the
construction of sequence I and the definition of x, 4((4c)x) ≤ n < 4((4c)x+1). Hence, x belongs to
Ω(log logn). However, according to Claim 5.7, the global knowledge given to distinct instances
in this family must be different. Hence, there is at least one instance of Fn for which algorithm

86

5.6. Conclusion

Alg uses a global knowledge of size Ω(log x): since x ∈ Ω(log logn), Ω(log x) ∈ Ω(log log logn).
This contradicts the fact that Alg uses a global knowledge of size o(log log logn) and proves the
theorem.

5.6 Conclusion
This chapter presents the first algorithm polynomial in n and |`min| allowing to gather all

good agents in presence of Byzantine ones that can act in an unpredictable way and lie about
their labels. This algorithm works under the assumption that the team evolving in the network is
strong i.e., the number of good agents is roughly at least quadratic in the number f of Byzantine
agents. The required global knowledge GK is of size O(log log logn), which is of optimal order of
magnitude to get a time complexity that is polynomial in n and |`min| even with strong teams.

A natural open question that immediately comes to mind is to ask if doing the same is possible
when the ratio between the good agents and the Byzantine agents is reduced. For instance,
could it be still possible to solve the problem in polynomial time with a global knowledge of
size O(log log logn) if the number of good agents is at most o(f2)? Note that the answer to this
question may be negative but then may become positive with a little bit more global knowledge.
Actually, it can even easily be shown that the answer is true if the agents are initially given a
complete map of the graph with all port numbers, and in which each node v is associated to the
list of all labels of the good agents initially occupying node v. However, the size of GK is then
huge as it belongs to Ω(n2). In fact, in this case what is really interesting is to find the optimal
size for GK. This observation allows to conclude with the following open problem that is more
general and appealing.

What are the trade-offs among the ratio good/Byzantine agents, the time complexity and the
amount of global knowledge to solve Byzantine gathering?

Bringing an exhaustive and complete answer to this question appears to be really challenging
but would turn out to be a major step in our understanding of the problem.

87

Chapter 6

Treasure Hunt in the Plane with
Angular Hints

Contents
6.1 Introduction . 89

6.1.1 Model and Task Formulation . 89
6.1.2 Contribution . 90

6.2 Preliminaries . 91
6.3 Angles at most π . 92

6.3.1 High Level Idea of the Algorithm . 93
6.3.2 Algorithm and Analysis . 95

6.4 Angles Bounded by β < 2π . 103
6.4.1 High Level Idea . 104
6.4.2 Algorithm and Analysis . 105

6.5 Arbitrary Angles . 112
6.6 Conclusion . 112

6.1 Introduction
A tourist visiting an unknown town wants to find her way to the train station or a skier

lost on a slope wants to get back to the hotel. Luckily, there are many people that can help.
However, often they are not sure of the exact direction: when asked about it, they make a vague
gesture with the arm swinging around the direction to the target, accompanying the hint with
the words “somewhere there”. In fact, they show an angle containing the target. Can such vague
hints help the lost traveler to find the way to the target?

In other words, there is only one agent in the Euclidean plane, which aims at finding an
inert treasure, modeled as a point, knowing neither the distance between them nor any bound
on it. Finding the treasure means reaching a position in which the treasure and the agent
are at distance at most 1 from each other. This problem is referred to as treasure hunt. In
applications, from such a distance the treasure can be seen. The agent makes a series of moves
with the following addition. In the beginning and after each move the agent gets a hint consisting
of a positive angle smaller than 2π whose vertex is at the current position of the agent and within
which the treasure is contained. This chapter investigates the question of how these hints permit
the agent to lower the cost of finding the treasure, using a deterministic algorithm.

6.1.1 Model and Task Formulation

In this chapter, some additions to the model described in Chapter 2 have to be made.
First of all, the mobile agent considered moves in the Euclidean plane, searching for an inert

treasure. When moving, just like in Chapter 4, the mobile agent passes by other points than its
origin and destination. This is particularly important in this chapter, as visiting these points
permits the agent to check from each of them whether it has found the target.

89

Part , Chapter 6 – Treasure Hunt in the Plane with Angular Hints

Besides the specificities of moving in the plane, in the present chapter, upon waking up and
after each move, the mobile agent obtains hints consisting of an angle containing the treasure.

Deriving the model from Chapter 2 to introduce these features consists of three steps:
extending Definition 2.11 to add the treasure and the angular hints to the environment, intro-
ducing a new rule to replace Definition 2.21 in the newly defined environment, and explaining
that the mobile agent learns hint containing the treasure upon waking up and at the completion
of each move.

Definition 6.1 (Treasure hunt environment). Each treasure hunt environment is a plane envi-
ronment (P,Z,Q, d, c, r), T, L, i, w, g, f) (cf. Definition 4.1) extended by the addition of a position
x ∈ P called treasure, and an application h from P × T × L to (−π, π]2 verifying the following.
For any position p, time t, and label `, the image (ρ, φ) by h of (p, t, `) is such that the angular
coordinate of x in the polar coordinate system centered at p belongs to [ρ− φ

2 , ρ+ phi
2].

Definition 6.2 (Moving in a treasure hunt environment). Let (e,A) be any execution with e
the treasure hunt environment (s, T, L, i, w, g, f, x, h). Definition 4.2 applies as if the execution
were ((s, T, L, i, w, g, f),A).

In other words, since a treasure hunt environment is an extension of a plane environment,
the latter is used to determine the progress of the moves following Definition 4.2. This means
that when moving from a position to another in the plane, each mobile agent visits each position
on the line segment between the origin and the destination. Besides deciding how much time
every mobile agent spends in each of its move, the adversary can be viewed as able to move each
mobile agent back and forth along the latter segment during the move.

Definition 6.3 (Learning angular hints). Let (e,A) be any execution with e the treasure hunt
environment (s, T, L, i, w, g, f, x, h). For every time t, and any label `, if, at t, the mobile agent
with label ` either wakes up (cf. Definition 2.16) or completes any move, in some position p,
then still at t, it learns h(p, t, `).

Definitions 6.4 and 6.5 complete this section by stating respectively the model variant H
considered in this chapter, and the task of treasure hunt.

Definition 6.4 (Model variant H). This model variant (cf. Definition 2.12) is the set of all
treasure hunt environments.

Definition 6.5 (Treasure hunt). Let M be any model variant (cf. Definition 2.12), and A be
any mobile agent algorithm. Algorithm A achieves treasure hunt in M if and only if for every
treasure hunt environment e = (s, T, L, i, w, g, f, x, h) of M with |L| = 1, the execution (e,A)
(cf. Definition 2.13) meets the following condition. There exists a time at which the position p
of the mobile agent and the treasure are within each other’s range (cf. Definitions 2.6 and 2.10).

Hence, treasure hunt is achieved whenever the treasure is found which occurs when the latter
is within the range of the current position of the mobile agent. This means that the treasure is
found when at distance at most 1 from the mobile agent.

6.1.2 Contribution

It is shown that if all angles given as hints are at most π, then the cost of treasure hunt can
be lowered to O(∆) (where ∆ denotes the initial distance to the treasure), which is optimal.
The real challenge here is in the fact that hints can be angles of size exactly π, in which case
the design of a trajectory always leading to the treasure, while being cost-efficient in terms of
traveled distance, is far from obvious.

If all angles are at most β, where β < 2π is a constant unknown to the agent, then the cost
is at most O(∆2−ε), for some ε > 0. Finally, arbitrary angles smaller than 2π given as hints
cannot be of significant help: using such hints the cost Θ(∆2) cannot be beaten.

90

6.2. Preliminaries

For both positive results, deterministic algorithms achieving the above costs are presented.
Both algorithms work in phases “assuming” that the treasure is contained in increasing squares
centered at the initial position of the agent. The common principle behind these algorithms is
to move the agent to strategically chosen points in the current square, depending on previously
obtained hints, and sometimes perform exhaustive search of small rectangles from these points,
in order to guarantee that the treasure is not there. This is done in such a way that, in a given
phase, obtained hints together with small rectangles exhaustively searched, eliminate a sufficient
area of the square assumed in the phase to eventually permit finding the treasure.

In both algorithms, the points to which the agent travels and where it gets hints are chosen
in a natural way, although very differently in each of the algorithms. The main difficulty is to
prove that the distance traveled by the agent is within the promised cost. In the case of the first
algorithm, it is possible to cheaply exclude large areas not containing the treasure, and thus find
the treasure asymptotically optimally. For the second algorithm, the agent eliminates smaller
areas at each time, due to less precise hints, and thus finding the treasure costs more.

6.2 Preliminaries
Since for ∆ ≤ 1 treasure hunt is solved immediately, in the sequel we assume ∆ > 1. Since

the agent has a compass, it can establish an orthogonal coordinate system with point O with
coordinates (0, 0) at its starting position, the x-axis going East-West and the y-axis going North-
South. Lines parallel to the x-axis will be called horizontal, and lines parallel to the y-axis will
be called vertical. When the agent at a current point a decides to go to a previously computed
point b (using a straight line), we describe this move simply as “Go to b”. A hint given to the
agent currently located at point a is formally described as an ordered pair (P1, P2) of half-lines
originating at a such that the angle clockwise from P1 to P2 (including P1 and P2) contains the
treasure.

The line containing points A and B is denoted by (AB). A segment with extremities A and
B is denoted by [AB] and its length is denoted |AB|. Throughout the paper, a polygon is defined
as a closed polygon (i.e., together with the boundary). For a polygon S, we will denote by B(S)
(resp. I(S)) the boundary of S (resp. the interior of S, i.e., the set S \ B(S)). A rectangle is
defined as a non-degenerate rectangle, i.e., with all sides of strictly positive length. A rectangle
with vertices A,B,C,D (in clockwise order) is denoted simply by ABCD. A rectangle is straight
if one of its sides is vertical.

In our algorithms we use the following procedure RectangleScan(R) whose aim is to traverse
a closed rectangle R (composed of the boundary and interior) with known coordinates, so that
the agent initially situated at some point of R gets at distance at most 1 from every point of
it and returns to the starting point. We describe the procedure for a straight rectangle whose
vertical side is not shorter than the horizontal side. The modification of the procedure for
arbitrarily positioned rectangles is straightforward. Let the vertices of the rectangle R be A, B,
C and D, where A is the North-West vertex and the others are listed clockwise. Let a be the
point at which the agent starts the procedure.

The idea of the procedure is to go to vertex A, then make a snake-like movement in which
consecutive vertical segments are separated by a distance 1, and then go back to point a. The
agent ignores all hints gotten during the execution of the procedure. Suppose that the horizontal
side of R has length m and the vertical side has length n, with n ≥ m. Let k = bmc. Let
a0, a1, . . . , ak be points on the North horizontal side of the rectangle, such that a0 = A and the
distance between consecutive points is 1. Let b0, b1, . . . , bk be points on the South horizontal
side of the rectangle, such that b0 = D and the distance between consecutive points is 1.

The pseudocode of procedure RectangleScan(R) is given in Algorithm 6.1.

Proposition 6.1. For every point p of the rectangle R, the agent is at distance at most 1 from
p at some time of the execution of procedure RectangleScan(R). The cost of the procedure is

91

Part , Chapter 6 – Treasure Hunt in the Plane with Angular Hints

Algorithm 6.1 Procedure RectangleScan(R)
1: if k is odd then
2: for i = 0 to k − 1 step 2 do
3: Go to ai; Go to bi;
4: Go to bi+1; Go to ai+1
5: end for
6: Go to a
7: else
8: for i = 0 to k − 2 step 2 do
9: Go to ai; Go to bi;
10: Go to bi+1; Go to ai+1
11: end for
12: Go to ak; Go to bk
13: Go to a
14: end if

at most 5n ·max(m, 2), where n ≥ m are the lengths of the sides of the rectangle.

Proof. During the execution of procedure RectangleScan(R) the agent traverses all segments
[ai, bi], for i = 0, 1, . . . , k. Every point of R is at distance at most 1 from some point of this
union. This proves the first assertion. The cost of vertical moves is upper bounded by (m+ 1)n,
the cost of horizontal moves is upper bounded by m, and the cost of getting from a to A and
of returning back to a after the scan is upper bounded by 2(m + n). Hence the total cost of
procedure RectangleScan(R) is at most (m+1)n+m+2(m+n) ≤ mn+6n ≤ 5n·max(m, 2).

6.3 Angles at most π

In this section we consider the case when all angles given as hints are at most π. Without
loss of generality we can assume that they are all equal to π, completing any smaller angle to
π in an arbitrary way: this makes the situation even harder for the agent, as hints become less
precise. For such hints we show Algorithm TreasureHunt1 that finds the treasure at cost O(∆).
This is of course optimal, as the treasure can be at any point at distance at most ∆ from the
starting point of the agent.

For angles of size π, every hint is in fact a half-plane whose boundary line L contains the
current location of the agent. For simplicity, we will code such a hint as (L, right) or (L, left),
whenever the line L is not horizontal, depending on whether the indicated half-plane is to
the right (i.e., East) or to the left (i.e., West) of L. For any non-horizontal line L this is
non-ambiguous. Likewise, when L is horizontal, we will code a hint as (L, up) or (L, down),
depending on whether the indicated half-plane is up (i.e., North) from L or down (i.e., South)
from L.

In view of the work on φ-self-approaching curves (refer to [3]) we first note that there is a big
difference of difficulty between obtaining our result in the case when angles given as hints are
bounded by some angle φ0 strictly smaller than π and when they are at most π, as we assume.
A φ-self-approaching curve is a planar oriented curve such that, for each point B on the curve,
the rest of the curve lies inside a wedge of angle φ with apex in B. In [3], the authors prove
the following property of these curves: for every φ < π there exists a constant c(φ) such that
the length of any φ-self-approaching curve is at most c(φ) times the distance ∆ between its
endpoints. Hence, for hints bounded by some angle φ0 strictly smaller than π, our result could
possibly be derived from the existing literature: roughly speaking, the agent should follow a
trajectory corresponding to any φ0-self-approaching curve to find the treasure at a cost linear in
∆. Even then, transforming the continuous scenario of self-approaching curves to our discrete
scenario presents some difficulties. However, the crucial problem is this: the constant c(φ) from
[3] diverges to infinity as φ approaches π, hence the result from [3] cannot be used when hints are

92

6.3. Angles at most π

arbitrary angles smaller than π. Moreover, the result of [3] holds only when φ < π (the authors
also emphasize that for each φ ≥ π, the property is false), and thus the above derivation is no
longer possible for our purpose when φ = π. Actually, this is the real difficulty of our problem:
handling angles equal to π, i.e., half-planes.

We further observe that a rather straightforward treasure hunt algorithm of cost O(∆ log ∆),
for hints being angles of size π, can be obtained using an immediate corollary of a theorem
proven in [66] by Grünbaum: each line passing through the centroid of a convex polygon cuts
the polygon into two convex polygons with areas differing by a factor of at most 5

4 . Suppose
for simplicity that ∆ is known. Starting from the square of side length 2∆, centered at the
initial position of the agent, this permits to reduce the search area from P to at most 5P

9 in a
single move. Hence, after O(log ∆) moves, the search area is small enough to be exhaustively
searched by procedure RectangleScan at cost O(∆). However, the cost of each move during
the reduction is not under control and can be only bounded by a constant multiple of ∆, thus
giving the total cost bound O(∆ log ∆). By contrast, our algorithm controls both the remaining
search area and the cost incurred in each move, yielding the optimal cost O(∆).

6.3.1 High Level Idea of the Algorithm

In Algorithm TreasureHunt1 the agent acts in phases j = 1, 2, 3, . . . where in each phase j
the agent “supposes” that the treasure is in a straight square Rj centered at the initial position
of the agent, and of side length 2j . When executing a phase j, the agent successively moves to
distinct points with the aim of using the hints at these points to narrow the search area that
initially corresponds to Rj . In our algorithm, this narrowing is made in such a way that the
remaining search area is always a straight rectangle. Often this straight rectangle is a strict
superset of the intersection of all hints that the agent was given previously. This would seem
to be a waste, as we are searching some areas that have been previously excluded. However,
this loss is compensated by the ease of searching description and subsequent analysis of the
algorithm, due to the fact that, at each stage, the search area is very regular.

During a phase, the agent proceeds to successive reductions of the search area by moving to
distinct locations, until it obtains a rectangular search area that is small enough to be searched
directly at low cost using procedure RectangleScan. In our algorithm, such a final execution of
RectangleScan in a phase is triggered as soon as the rectangle has a side smaller than 4. If the
treasure is not found by the end of this execution of procedure RectangleScan, the agent learns
that the treasure cannot be in the supposed straight square Rj and starts the next phase from
scratch by forgetting all previously received hints. This forgetting again simplifies subsequent
analysis. The algorithm terminates at the latest by the end of phase j0 = dlog2 ∆e+ 1, in which
the supposed straight square Rj0 is large enough to contain the treasure. Hence, if the cost of
a phase j is linear in 2j , then the cost of the overall solution is linear in the distance ∆.

In order to give the reader deeper insights in the reasons why our solution is valid and has
linear cost, we need to give more precise explanations on how the search area is reduced during a
given phase j ≥ 2 (when j = 1, the agent makes no reduction and directly scans the small search
area using procedure RectangleScan). Suppose that in phase j ≥ 2 the agent is at the center p
of a search area corresponding to a straight rectangle R, every side of which has length between
4 and 2j (note that this is the case at the beginning of the phase), and denote by A,B,C and
D the vertices of R starting from the top left corner and going clockwise. In order to reduce
rectangle R, the agent uses the hint at point p. The obtained hint denoted by (L1, x1) can be
of two types: either a good hint or a bad hint. A good hint is a hint whose line L1 divides one of
the sides of R into two segments such that the length y of the smaller one is at least 1. A bad
hint is a hint that is not good.

If the received hint (L1, x1) is good, then the agent narrows the search area to a rectangle
R′ ⊂ R having the following three properties:

93

Part , Chapter 6 – Treasure Hunt in the Plane with Angular Hints

1. R \R′ does not contain the treasure.

2. The difference between the perimeters of R and R′ is 2y ≥ 2.

3. The distance from p to the center of R′ is exactly y
2 .

and then moves to the center of R′.
An illustration of such a reduction is depicted in Figure 6.1(a). The reduced search area R′

is the rectangle ABde.

p

CD

A B

1

de

L

y y

(a) A good hint (L1, right)

L2

p k

e d

s

m

p’

s’

g g’

h’h

BA

CD

d’

L
1

(b) A bad hint (L1, right)

Figure 6.1: In Figure (a) the agent received a good hint (L1, right) at the point p of a rectangular
search area ABCD. In Figure (b) it received a bad hint (L1, right) at the point p and hence it
moved to point p′ and got a hint (L2, left). In both figures the excluded half-planes are shaded.

If the agent receives a bad hint, say (L1, right), at the center of a rectangular search area
R, we cannot apply the same method as the one used for a good hint: this is the reason for
the distinction between good and bad hints. If we applied the same method as before, we could
obtain a rectangular search area R′ such that the difference between the perimeters of R and
R′ is at least 2y. However, in the context of a bad hint, the difference 2y may be very small
(even null), and hence there is no significant reduction of the search area. In order to tackle
this problem, when getting a bad hint at the center p of R, the agent moves to another point p′
which is situated in the half-plane (L1, right) at distance 2 from p, perpendicularly to L1. This
point p′ is chosen in such a way that, regardless of what is the second hint, we can ensure that
two important properties described below are satisfied.

The first property is that by combining the two hints, the agent can decrease the search area
to a rectangle R′ ⊂ R whose perimeter is smaller by 2 compared to the perimeter of R, as it
is the case for a good hint, and such that R \ R′ does not contain the treasure. This decrease
follows either directly from the pair of hints, or indirectly after having scanned some relatively
small rectangles using procedure RectangleScan. In the example depicted in Fig. 6.1 (b),
after getting the second hint (L2, left), the agent executes procedure RectangleScan(ss′d′d)
followed by RectangleScan(gg′h′h) and moves to the center of the new search area R′ that is
the rectangle Agpm. Note that the part of R′ not excluded by the two hints and by the procedure
RectangleScan executed in rectangles ss′d′d and gg′h′h is only the small quadrilateral bounded
by line L2 and the segments [AB], [s′d′] and [gh]. However, in order to preserve the homogeneity

94

6.3. Angles at most π

of the process, we consider the entire new search area R′ which is a straight rectangle whose
perimeter is smaller by at least 2, compared to that from R. This follows from the fact that no
side of R has length smaller than 4. The agent finally moves to the center of R′.

The second property is that all of this (i.e., the move from p to p′, the possible scans of small
rectangles and finally the move to the center of R′) is done at a cost linear in the difference of
perimeters of R and R′, as shown in Lemma 6.1. The two properties together ensure that, even
with bad hints, the agent manages to reduce the search area in a significant way and at a small
cost. So, regardless of whether hints are good or not, we can show that the cost of phase j is
in O(2j) and the treasure is found during this phase if the initial square is large enough. The
difficulty of the solution is in showing that the moves prescribed by our algorithm in the case of
bad hints guarantee the two above properties, and thus ensure the correctness of the algorithm
and the cost linear in ∆.

6.3.2 Algorithm and Analysis

In this subsection we describe our algorithm in detail, prove its correctness and analyze its
complexity. Due to many possible positions of the line L from the hint (L, x) obtained by the
agent (the line L cutting horizontal or vertical sides of the current search area, the slope of L
being positive or negative, and x being right, left, up or down), there are many cases that
the algorithm should consider. However, many of these cases can be treated similarly to one
another, due to symmetry considerations. Hence, in order to reduce the number of cases, we
introduce some geometric transformations that enable us to consider only one representative
case in each class. This case will be called a basic configuration.

We define a configuration as a couple (R, (L, x)), where R is a straight rectangle, and (L, x)
is a hint, i.e., a half-plane such that the line L contains the center of R.

A configuration (R, (L, x)) is called lying iff the line L passes through a point that is in
the interior of a vertical side of R. A configuration that is not lying is called standing. A
configuration (R, (L, x)) is called perfect iff L is horizontal or vertical. A configuration that is
not perfect is called imperfect.

A perfect lying (resp. standing) configuration (R, (L, x)) can be of two types:

• Type 1. x = up (resp. x = left)

• Type 2. x = down (resp. x = right)

An imperfect configuration (R, (L, x)) can be of four types:

• Type 1. The slope of L is negative and x = right

• Type 2. The slope of L is negative and x = left

• Type 3. The slope of L is positive and x = right

• Type 4. The slope of L is positive and x = left

The following proposition follows immediately from the above definitions.

Proposition 6.2. For every configuration, there exists a unique positive integer i ≤ 4 such that
this configuration is a perfect or imperfect configuration of type i.

A configuration (R, (L, x)) is called critical iff the line L divides a side of R into two parts
such that the length of the smaller part is less than 1 (possibly 0).

We will denote by Rotv,α the rotation by the angle α with center v, and by SymP the axial
symmetry with axis P .

The set of all configurations is denoted by C. Given a configuration (R, (L, x)), we denote
by r and H, respectively, the center of R and the vertical line passing through r. For every i ∈

95

Part , Chapter 6 – Treasure Hunt in the Plane with Angular Hints

{0, 1, 2, 3}, we define the following functions that are intuitively rotations and axial symmetries
of configurations.

σi : C → C is defined by the formula σi((R, (L, x))) = (Rotr, iπ2 (R), Rotr, iπ2 ((L, x)))
ρ : C → C is defined by the formula ρ((R, (L, x))) = (SymH(R), SymH((L, x)))
Using the above functions, we now define the following eight elementary transformations

φi : C → C, for i ∈ {0, . . . , 7}.
For i ∈ {0, 1, 2, 3}, we have φi((R, (L, x))) = σi((R, (L, x))).

For i ∈ {4, 5, 6, 7}, we have φi((R, (L, x))) = ρ(σi−4((R, (L, x)))).
We say that a configuration is basic iff it is either a lying perfect configuration of type 1 or

a lying imperfect configuration of type 1.
The following proposition asserts that from every configuration we can obtain a basic configu-

ration by at least one of the elementary transformations. This follows directly from the definitions.

Proposition 6.3. For every configuration (R, (L, x)), there exists i ∈ {0, . . . , 7} and a basic
configuration (R′, (L′, x′)) such that (R′, (L′, x′)) = φi((R, (L, x)))

For every configuration, the elementary transformation with the smallest index i for which
the above proposition is true will be called the basic transformation of this configuration.

Note that, by applying to a configuration (R, (L, x)) its basic transformation φk in order to
obtain (R′, (L′, x′)) = φk((R, (L, x))) , each point s of (L, x) is rotated and possibly symmetrically
reflected to obtain a new point s′ in (L′, x′). By a slight abuse of notation we will write s′ = φk(s)
and s = φ−1

k (s′), and, more generally, for any set of points S, we will write S′ = φk(S) and
S = φ−1

k (S′).
Algorithm 6.2 gives a pseudo-code of our main algorithm. It uses function ReduceRectangle

described in Algorithm 6.3 that is the key technical tool permitting the agent to reduce its search
area. The agent interrupts the execution of Algorithm 6.2 as soon as it gets at distance 1 from
the treasure, at which point it can “see” it and thus treasure hunt stops.

h C

k

g

D

A

e d

L’’

a

m

B

L’
1

1

p

p’

k’m’

g’

h’

d’

s’

s
f

t

j’

j

1
L’

Figure 6.2: Illustration of the geometric objects used in Algorithm 6.3 and in the proof of Lemma
6.1. We show an example of a basic configuration (R′, (L′1, x′1)) that is critical, in which R′ is
the rectangle ABCD and x′1 = right. We also show projections and intersections points defined
in Algorithm 6.3. The excluded area is shaded.

96

6.3. Angles at most π

Algorithm 6.2 Procedure TreasureHunt1
1: O ← the initial position of the agent
2: i← 1
3: loop
4: Ri ← the straight square centered at O with sides of length 2i
5: while Ri has no side with length smaller than 4 do
6: Ri ← ReduceRectangle(Ri)
7: end while
8: execute RectangleScan(Ri)
9: go to O
10: i← i+ 1
11: end loop

We now proceed to the proof of correctness and the complexity analysis of our algorithm. In
the following lemma, for every rectangle R, the function Perimeter(R) returns the perimeter of
the rectangle R.

Lemma 6.1. Let R be a straight rectangle with no side of length less than 4. If the agent executes
ReduceRectangle(R) from the center of R, then at the end of this execution the following
properties are satisfied.

1. The function ReduceRectangle(R) returns a straight rectangle Rec, such that Rec ⊂ R,
and either R \Rec does not contain the treasure or the agent has seen the treasure.

2. Perimeter(R)− Perimeter(Rec) ≥ 2.

3. The agent is at the center of rectangle Rec.

4. The agent traveled a distance of at most 21(Perimeter(R)− Perimeter(Rec)) during the
execution of ReduceRectangle(R).

Proof. Most of the geometric objects used in the proof are explicitly defined in Algorithm 6.3:
in particular, this is the case of intersections or orthogonal projections (e.g., those in lines 10
to 21). All other necessary objects will be defined within the proof. For the notation, refer to
Fig. 6.2.

Consider the execution of function ReduceRectangle(R) starting at the center p of R, where
R is a straight rectangle with no sides of length less than 4. Denote by z the position of the
treasure in (L1, x1). We have (R′, (L′1, x′1)) = φk((R, (L1, x1))). In view of Proposition 6.3, it is
enough to prove that the following three properties hold when the agent executes the last line
of Algorithm 6.3.

• P1. The variable NewRectangle is set to a straight rectangle R′′ such that R′′ ⊂ R′, and
either R′ \R′′ does not contain φk(z) or the agent has seen the treasure.

• P2. The inequality Perimeter(R′)− Perimeter(R′′) ≥ 2 holds.

• P3. The agent traveled a distance of at most 21(Perimeter(R)−Perimeter(R′′)) during
the execution of function ReduceRectangle(R).

We first prove the above properties when (R′, (L′1, x′1)) is a non-critical configuration. In this
case, the variable NewRectangle is set to the straight rectangle ABde. Note that the points
defined in lines 4 to 6 (in particular the points A,B, d and e) exist and ABde is a straight
rectangle such that ABde ⊂ R′ in view of the fact that (R′, (L′1, x′1)) is a basic configuration.
Moreover, since z ∈ (L1, x1), we have φk(z) ∈ (L′1, x′1). However, edCD ∩ (L′1, x′1) ⊂ [de]
and R′ \ ABde = edCD \ [de]. So we have (R′ \ ABde) ∩ (L′1, x′1) = ∅ and Property P1 is
satisfied. Property P2 also holds because (R′, (L′1, x′1)) is a basic configuration that is not

97

Part , Chapter 6 – Treasure Hunt in the Plane with Angular Hints

Algorithm 6.3 Function ReduceRectangle(R)
1: p← the center of rectangle R
2: let (L1, x1) and φk be respectively the hint obtained at p and the basic transformation of (R, (L1, x1))
3: let (R′, (L′1, x′1)) be the configuration such that (R′, (L′1, x′1)) = φk((R, (L1, x1)))
4: let A,B,C and D be the vertices of R′ in clockwise order, starting from the top-left corner
5: let a (resp. d) be the intersection between L′1 and (AD) (resp. (BC))
6: let e be the orthogonal projection of d onto segment [AD]
7: if (R′, (L′1, x′1)) is not critical then
8: NewRectangle← rectangle ABde
9: else
10: let L′1 be the line that is perpendicular to L′1
11: let p′ be the point at distance 2 from p in L′1 ∩ (L′1, x′)
12: let L′′1 be the parallel line to L′1 passing through p′
13: let f (resp. j) be the intersection of L′′1 and segment [AB] (resp. segment [BC])
14: let j′ be the orthogonal projection of j onto segment [AD]
15: let t be the orthogonal projection of f onto segment [DC]
16: let m′ (resp. k′) be the orthogonal projection of p′ onto segment [AD] (resp. [BC])
17: let m (resp. k) be the orthogonal projection of p onto segment [AD] (resp. [BC])
18: let g′ (resp. h′) be the orthogonal projection of p′ onto segment [AB] (resp. [DC])
19: let g (resp. h) be the orthogonal projection of p onto segment [AB] (resp. [DC])
20: let s (resp. s′) be the orthogonal projection of A onto line L′1 (resp. L′′1)
21: let d′ be the orthogonal projection of d onto line L′′1
22: go to φ−1

k (p′)
23: let (L2, x2) be the hint obtained at φ−1

k (p′) and let (L′2, x′2) = φ−1
k ((L2, x2))

24: if x′2 = right and L′2 is clockwise between L′′1 (included) and (pp′) (excluded) then
25: NewRectangle← rectangle fBCt
26: end if
27: if x′2 = right and L′2 is clockwise between (pp′) (included) and (m′k′) (excluded) then
28: execute RectangleScan(φ−1

k (m′k′km))
29: NewRectangle← rectangle gBCh
30: end if
31: if x′2 ∈ {down, left} and L′2 is clockwise between (m′k′) (included) and L′′1 (excluded) then
32: execute RectangleScan(φ−1

k (ss′d′d))
33: execute RectangleScan(φ−1

k (m′k′km))
34: NewRectangle← rectangle pkCh
35: end if
36: if x′2 = left and L′2 is clockwise between L′′1 (included) and (g′h′) (excluded) then
37: execute RectangleScan(φ−1

k (ss′d′d))
38: execute RectangleScan(φ−1

k (gg′h′h))
39: NewRectangle← rectangle Agpm
40: end if
41: if (x′2 = left and L′2 is clockwise between (g′h′) (included) and (pp′) (excluded)) or (x′2 = left and L′2 is

clockwise between (pp′) (included) and (m′k′) (excluded)) or (x′2 ∈ {up, right} and L′2 is clockwise between
(m′k′) (included) and (p′k) (excluded)) then

42: execute RectangleScan(φ−1
k (gg′h′h))

43: NewRectangle← rectangle ABkm
44: end if
45: if x′2 = right and L′2 is clockwise between (p′k) (included) and L′′1 (excluded) then
46: NewRectangle← rectangle ABjj′
47: end if
48: end if
49: let o′ be the center of NewRectangle
50: go to φ−1

k (o′)
51: return φ−1

k (NewRectangle)

98

6.3. Angles at most π

critical. Indeed, in that case we know that the length |Bd| ≤ |BC| − 1, as |dC| ≥ 1. Hence,
|Ae| + |Bd| ≤ |AD| + |BC| − 2, and thus Perimeter(R′) − Perimeter(ABde) ≥ 2. It remains
to prove Property P3. If we denote by δ the difference |BC|− |Bd|, the distance from φk(p) = p
to the center o′ of rectangle ABde is exactly δ

2 . Moreover, the distance from p to φ−1
k (o′) is

also δ
2 , as φ

−1
k is a distance-preserving transformation. As a result, since the only movement of

the agent is from p to φ−1
k (o′) and δ = Perimeter(R′)−Perimeter(ABde)

2 , when the agent executes
the last line of Algorithm 6.3, it has traveled a distance of Perimeter(R′)−Perimeter(ABde)

4 during
the execution of function ReduceRectangle(R). Thus the lemma holds if (R′, (L′1, x′1)) is a
non-critical configuration.

Let us now consider the more difficult situation when (R′, (L′1, x′1)) is a critical configuration.
In Algorithm 6.3, this situation is handled by moving the agent to the point φ−1

k (p′) (refer to
line 22) where p′ is the point defined at line 11, in order to get a second hint (L2, x2) at φ−1

k (p′).
We have six cases to consider depending on the nature of (L2, x2). Similarly as for non-critical
configurations, we do not study the six cases directly on (L2, x2), but on (L′2, x′2) instead, where
(L′2, x′2) is such that (L′2, x′2) = φk((L2, x2)). Note that if the list of cases for (L′2, x′2) covers all
possible situations, and in each of those cases Properties P1 to P3 are satisfied, then the lemma
will be proven.

The six cases correspond to the six conditional statements that are in lines 24 to 45 of
Algorithm 6.3. The fact that these cases cover all possible situations follows from the fact that
(R′, (L′1, x′1)) is a basic configuration, by Proposition 6.3, and from the fact that the objects
defined in lines 10 to 21 of Algorithm 6.3 exist. In turn, the existence of these objects follows
from the definition of R′ and of (L′1, x′1) as well as from the following three claims (note that R′
has no side with length less than 4, as φk is a distance-preserving transformation and R has no
side with length less than 4).

Claim 6.1. (R′, (L′1, x′1)) is an imperfect lying configuration of type 1.

Proof of the claim: Since (R′, (L′1, x′1)) is basic, we just have to show that it is not a perfect
lying configuration of type 1. Suppose by contradiction that it is. So, x′1 = up and line L′1
divides the west vertical side [AD] (resp. the east vertical side [BC]) of rectangle R′ into two
parts of equal length. Since, (R′, (L′1, x′1)) is critical, each of these parts has length less than 1.
As a result, |AD| (resp. |BC|) is smaller than 2. This implies that R′ has a side with a length
smaller than 4, which is a contradiction and concludes the proof of the claim. ?

Claim 6.2. The point p′ belongs to I(R′).

Proof of the claim: Since p is the center of rectangle R′ that has no side of length less than
4, every point that is at distance at most 2 from p, and which is not one of the four orthogonal
projections of p on the sides of R′, necessarily belongs to I(R′). However, by Algorithm 6.3, point
p′ is at distance 2 from p on a line perpendicular to L′1 and that passes through p. Moreover,
by Claim 6.1, (R′, (L′1, x′1)) is an imperfect vertical configuration of type 1, and thus the slope
of L′1 is negative. Hence the claim holds. ?

Claim 6.3. The line L′′1 divides the northern side [AB] (resp. the east side [BC]) of R′ into
two parts of positive length.

Proof of the claim: In view of Claim 6.1 and the fact that L′′1 is a line parallel to L′1 passing
through p′ that is a point belonging to I(R′) (refer to Claim 6.2), it follows that L′′1 divides
the east side [BC] of R′ into two parts of positive length. It also follows that L′′1 intersects the
northern side [AB] or the west side [AD] of R′. So to prove the claim, it is enough to show that
L′′1 cannot intersect [AD] (i.e., cannot pass through any points of [AD] including the corners A
and D). Assume by contradiction that it does. Since L′′1 ⊂ (L′1, x′1) and the distance from any
point of L′1 to any point of L′′1 is at least |pp′|, then according to the definition of L′1 and L′′1,
we know that the segment [AD] ∩ (L′1, x′1) has a length that is at least |pp′| = 2. However, by

99

Part , Chapter 6 – Treasure Hunt in the Plane with Angular Hints

Claim 6.1 and the fact that (R′, (L′1, x′1)) is a critical configuration, the segment [AD]∩ (L′1, x′1)
has a length that is smaller than 1, which is a contradiction and proves the claim. ?

Hence, since we have a list of six cases covering all possible situations, it is enough to show
that Properties P1 to P3 are satisfied in each case, in order to conclude the proof of the lemma.
Before analyzing them, let us give another claim that will be useful in the sequel.

Claim 6.4. The length of segment [Af] (resp. [jC]) is at least 1.

Proof of the claim: As mentioned previously, the distance from any point of L′1 to any point
of L′′1 is at least |pp′| = 2. Hence, |af | ≥ 2 and |jd| ≥ 2. Since d ∈ [jC] and |aA| < 1 (because
the configuration is critical) and [af] is the hypotenuse of the right triangle Afa, the claim
follows. ?

The fact that each object that is assigned to variable NewRectangle or given as input
parameter to procedure RectangleScan is a rectangle, can be shown using the above claims.
Moreover, from the definitions of intersections and projections given in Algorithm 6.3, it follows
that each time procedure RectangleScan is called with an input parameter corresponding to
a rectangle X, the agent is in the rectangle X (this is necessary in order to obtain a correct
execution of the procedure). In the rest of the proof we will not mention this fact. Similarly, it
follows that a rectangle that is assigned to variable NewRectangle is always straight.

Now, we consider the six cases and we start with the first one in which x′2 = right and L′2 is
clockwise between L′′1 (included) and (pp′) (excluded). In this case, variable NewRectangle is
set to the straight rectangle fBCt ⊂ R′. Since z ∈ (L1, x1)∩(L2, x2), we have φk(z) ∈ (L′1, x′1)∩
(L′2, x′2). However, R′ \ fBCt = AftD \ [ft], and in view of the value of x′2 and the position of
L′2, we have AftD ∩ (L′1, x′1)∩ (L′2, x′2) ⊆ {f} (more precisely, AftD ∩ (L′1, x′1)∩ (L′2, x′2) = {f}
if L′2 = L′′1, and AftD ∩ (L′1, x′1) ∩ (L′2, x′2) = ∅ for all the other positions of L′2 within the
considered case). Hence, (R′ \ fBCt) ∩ (L′1, x′1) ∩ (L′2, x′2) = ∅ and Property P1 is satisfied.
Concerning Property P2, we know that |fB| = |AB| − |Af |, which implies |fB| ≤ |AB| − 1
because |Af | ≥ 1 according to Claim 6.4. So, Perimeter(R′) − Perimeter(fBCt) ≥ 2, and
thus Property P2 holds. Concerning Property P3, we need to evaluate the distance traveled by
the agent when it moves from p to φ−1

k (p′), and then from φ−1
k (p′) to φ−1

k (o′) (where o′ is the
center of rectangle fBCt). Note that the distance from p to φ−1

k (o′) is δ
2 where δ is the difference

|AB|−|fB|. Moreover, |pp′| = |pφ−1
k (p′)| = 2. Hence |pφ−1

k (p′)| ≤ 2δ because |AB|−|fB| = |Af |
and |Af | ≥ 1 according to Claim 6.4. Thus, moving from p to φ−1

k (p′) makes the agent travel a
distance of at most 2δ. Moving from φ−1

k (p′) to φ−1
k (o′) makes the agent travel a distance that

is upper-bounded by |φ−1
k (p′)p| + |pφ−1

k (o′)| ≤ 5δ
2 . As a result, the total distance traveled by

the agent is at most 9δ
2 = 9(Perimeter(R′)−Perimeter(fBCt))

4 , as δ = Perimeter(R′)−Perimeter(fBCt)
2 .

Hence Properties P1, P2 and P3 hold in this case.
Let us now consider the situation when x′2 = right and L′2 is clockwise between (pp′)

(included) and (m′k′) (excluded). The variable NewRectangle is then set to the straight
rectangle gBCh ⊂ R′. Note that R′ \ gBCh ⊂ AghD. In view of the value of x′2
and the position of L′2, AghD ∩ (L′1, x′1) ∩ (L′2, x′2) is included in the rectangle m′k′km.
Since φk(z) ∈ (L′1, x′1) ∩ (L′2, x′2), if the agent has not seen the treasure after having
executed RectangleScan(φ−1

k (m′k′km)), then in view of Proposition 6.1 and the definition of
transformation φk we know that φk(z) cannot be in the rectangle AghD. Thus, Property P1
is satisfied. Property P2 follows from the facts that |gB| = |AB|

2 (since g is the orthogonal
projection of the center p of R′ on the top side [AB] of R′) and that |AB| ≥ 4 (as R′ has
no side of length less than 4). So, it remains to check the validity of Property P3 in the
current case. The move of the agent is composed of three parts: the first part is when it moves
from p to φ−1

k (p′), the second part corresponds to the move made when executing procedure
RectangleScan(φ−1

k (m′k′km)), and the third part is when the agent moves to φ−1
k (o′) (where o′

is the center of the rectangle gBCh). Note that the execution of RectangleScan(φ−1
k (m′k′km))

starts and finishes at point φ−1
k (p′). This implies that the third part corresponds precisely to a

100

6.3. Angles at most π

move from point φ−1
k (p′) to point φ−1

k (o′). So, by similar arguments to those used in the previous
case, we can show that the distance traveled in the first part plus the distance traveled in the third
part gives a total of at most 9δ

2 where, in the current situation, δ is the difference |AB| − |gB|.
For the second part, corresponding to the execution of procedure RectangleScan(φ−1

k (m′k′km)),
note that since |pφ−1

k (p′)| = 2, we have |kk′| ≤ 2 because k (resp. k′) is the orthogonal projection
of p (resp. p′) onto [BC]. Moreover, |m′k′| = |AB|, and in view of the definition of R′, we have
|AB| ≥ 4. Hence, according to Proposition 6.1, we know that the agent travels a distance of
at most 10|AB| during the second part. So the total distance traveled by the agent is at most
9δ
2 + 10|AB|. As explained for Property P2, we know that |gB| = |AB|

2 . Hence, δ = |AB|
2 ,

Perimeter(R′)− Perimeter(gBCh) = |AB|, and thus the total distance traveled by the agent
is at most 49(Perimeter(R′)−Perimeter(gBCh))

4 . As a result, Properties P1, P2 and P3 hold in this
case.

We continue by analyzing the situation when x′2 ∈ {down, left} and L′2 is clockwise between
(m′k′) included and L′′1 (excluded). In this situation, variable NewRectangle is set to the
straight rectangle pkCh ⊂ R′. In view of the value of x′2 and the position of L′2, we have
(L′1, x′1) ∩ (L′2, x′2) ∩ (R′ \ pkCh) ⊂ (ss′d′d ∪ m′k′km). Since φk(z) ∈ (L′1, x′1) ∩ (L′2, x′2),
if the agent has not seen the treasure after having executed RectangleScan(φ−1

k (ss′d′d))
followed by RectangleScan(φ−1

k (m′k′km)), then in view of Proposition 6.1 and the definition of
transformation φk we know that φk(z) cannot be in R′ \ pkCh. Thus, Property P1 is satisfied.
We can show that Property P2 also holds by similar arguments to those used to show Property
P2 in the previous case. Concerning Property P3, note that the move of the agent can be divided
into four parts: the first part is when it moves from p to φ−1

k (p′), the second (resp. third) part
corresponds to the move made when executing procedure RectangleScan(φ−1

k (ss′d′d)) (resp.
RectangleScan(φ−1

k (m′k′km))), and the fourth part is when the agent moves to φ−1
k (o′) (where

o′ is here the center of rectangle pkCh). Note that the execution of RectangleScan(φ−1
k (ss′d′d))

(resp. RectangleScan(φ−1
k (m′k′km))) starts and finishes at point φ−1

k (p′). So, the fourth part
is actually a move from point φ−1

k (p′) to point φ−1
k (o′). It is worth mentioning that moving from

φ−1
k (p′) to point φ−1

k (o′) costs the same or less than first moving from φ−1
k (p′) to p, and then

moving from p to φ−1
k (o′). Moreover, moving from p to φ−1

k (o′) costs at most δ1+δ2
2 where δ1

(resp. δ2) is the difference |gh| − |pg| (resp. |mk| − |pm|). Hence during the fourth part, the
agent travels a distance of at most 2 + δ1+δ2

2 . During the first part, the agent travels a distance
2. What about the second and third parts? To evaluate these costs we need to evaluate the
lengths and widths of rectangles ss′d′d and m′k′km. In the analysis of the previous case, we
have shown that the length and width of rectangle m′k′km are respectively |AB| and at most
2. Concerning rectangle ss′d′d, we have the following claim.

Claim 6.5. |ss′| = 2 and 2 < |sd| < 1 + |AC|.

Proof of the claim: Note that |ss′| is exactly 2 because s (resp. s′) is the orthogonal projection
of the corner A onto line L′1 (resp. L′′1). Also note that |sd| = |sa| + |ad| where [sa] is a side
of the right triangle asA whose hypotenuse is [Aa]. However, by Claim 6.1 and the fact that
(R′, (L′1, x′1)) is critical, we know that |Aa| < 1. Moreover, [ad] ⊂ R′ and |ad| ≥ |AB| ≥ 4.
Hence, 2 < |sd| < 1 + |AC|, which concludes the proof of the claim. ?

As a result, according to Proposition 6.1, we know that the agent travels a distance of at
most 10(1 + |AC|) during the second part and a distance of at most 10|AB| during the third
part. Hence, the total distance traveled by the agent is at most 2 + δ1+δ2

2 + 10(|AB|+ |AC|+ 1).
Note that |gh|− |pg| = |AD|

2 , |mk|− |pm| = |AB|
2 and |AC| < |AB|+ |AD|. Furthermore, in view

of the fact that R′ has no side of length less than 4, we have |AD|2 ≥ 2 and |AB|2 ≥ 2. So, the total
distance traveled by the agent is at most |AD|2 + |AD|+|AB|

4 + 10(2|AB|+ |AD|+ 1). This in turn
gives us a traveled distance that is upper-bounded by 21(Perimeter(R′)−Perimeter(pkCh)) as
Perimeter(R′)− Perimeter(pkCh) = 2(|AD|2 + |AB|

2) = |AD|+ |AB|. Consequently, Properties
P1, P2 and P3 are valid in this case.

101

Part , Chapter 6 – Treasure Hunt in the Plane with Angular Hints

So far, we have analyzed the first three cases among the six cases that permit us to cover
entirely the situation when (R′, (L′1, x′1)) is a critical configuration. However, the arguments
we need to use in order to analyze the last three cases are similar to those already used to
analyze the first three cases. In particular, this is true for the fourth case when x′2 = left
and L′2 is clockwise between L′′1 (included) and (g′h′) (excluded): using a similar reasoning
to that for the third case we have analyzed just above, we can show that Properties P1, P2
and P3 are also valid here. For the fifth case, which corresponds to the boolean expression of
line 41, Properties P2 and P3 can be proven using a similar reasoning to that used above to
prove Properties P2 and P3 when x′2 = right and L′2 is clockwise between (pp′) (included) and
(m′k′) (excluded). Concerning Property P1, note that variable NewRectangle is set here to the
straight rectangle ABkm ⊂ R′. In view of the possible values of x′2 and the possible positions
of L′2, we have (L′1, x′1) ∩ (L′2, x′2) ∩ (R′ \ ABkm) ⊂ gg′h′h if x′2 = left and L′2 is clockwise
between (g′h′) (included) and (pp′) (excluded). Otherwise, we have (L′1, x′1) ∩ (L′2, x′2) ∩ (R′ \
ABkm) = ∅. Since φk(z) ∈ (L′1, x′1)∩(L′2, x′2), if the agent has not seen the treasure after having
executed RectangleScan(φ−1

k (gg′h′h)), then in view of Proposition 6.1 and the definition of
transformation φk we know that φk(z) cannot be in R′ \ABkm. Thus Property P1 is also true
in this case. Finally, the fact that Properties P1, P2 and P3 are true in the last of the six
cases i.e., when x′2 = right and L′2 is clockwise between (p′k) (included) and L′′1 (excluded) can
be proven using similar arguments to those used for the first case, i.e., when x′2 = right and
L′2 is clockwise between L′′1 (included) and (pp′) (excluded). This completes the proof of the
lemma.

Theorem 6.1. Consider an agent A and a treasure located at distance at most ∆ from the
initial position of A. By executing Algorithm TreasureHunt1, agent A finds the treasure after
having traveled a distance O(∆).

Proof. The execution of Algorithm 6.2 can be divided into phases 1, 2, 3, . . . where phase j ≥ 1
is the part of the execution in which variable i of Algorithm 6.2 is equal to j.

In view of the second and third properties of Lemma 6.1 and lines 4 to 7 of Algorithm 6.2,
the number of calls to function ReduceRectangle is bounded by the perimeter of a square with
side length 2j . Hence we have the following claim.

Claim 6.6. For every j ≥ 1, the number of calls to function ReduceRectangle, within phase
j, is bounded by 2j+2.

In order to conclude the proof of the theorem, it is enough to prove the following two
statements:

1. for all j ≥ 1, the following property Hj holds:
at the beginning of phase j the agent has traveled a distance of at most 2j+7.

2. the agent finds the treasure before starting phase dlog2 ∆e+ 2.

We start by proving the first statement by induction on j. Note that property H1 is true because
at the beginning of phase 1 the agent has traveled a distance 0. So, assume that, for a positive
integer λ, property Hλ is true. We prove that property Hλ+1 is also true. Within phase λ,
the move of the agent can be divided into two parts: the first part corresponds to the moves
made when executing lines 4 to 7 of Algorithm 6.2, while the second part corresponds to the
moves made when executing lines 8 and 9 of Algorithm 6.2. By Claim 6.6, we know that the
number τ of calls to function ReduceRectangle during phase λ is upper-bounded by 2λ+2. For
all 1 ≤ s ≤ τ , we denote by Qs (resp. Q′s) the rectangle that is the input parameter (resp. the
returned value) of the sth call to function ReduceRectangle during phase λ. Note that, for all
2 ≤ s ≤ τ , Qs = Q′s−1. So, by the fourth property of Lemma 6.1, the distance traveled by the
agent during the first part of phase λ is upper-bounded by

102

6.4. Angles Bounded by β < 2π

21
s=τ∑
s=1

(Perimeter(Qs)− Perimeter(Q′s)) (6.1)

≤ 21(Perimeter(Q1)− Perimeter(Q′τ) +
s=τ∑
s=2

(Perimeter(Qs)− Perimeter(Q′s−1))) (6.2)

≤ 21(Perimeter(Q1)− Perimeter(Q′τ)) (because for all 2 ≤ s ≤ τ , Qs = Q′s−1) (6.3)
≤ 21Perimeter(Q1) = 21 · 2λ+2 (6.4)

Concerning the second part of phase λ, it is worth mentioning that when the agent starts
executing line 8 of Algorithm 6.2, variable Ri is set to a straight rectangle whose at least one
side has length smaller than 4 (according to line 5), and no sides have length larger than 2λ:
indeed, using the first property of Lemma 6.1, it follows by induction on s that the straight
rectangle Q′s is included in the straight rectangle Q1, for all 1 ≤ s ≤ τ . Moreover, the distance
between any two points of Q1 (and thus the cost of line 9 of Algorithm 6.2) is at most 2λ+1.
Hence, in view of Proposition 6.1, we know that the distance traveled by the agent during the
second part of phase λ is upper-bounded by 22 · 2λ. From this and (6.4), we know that the total
distance traveled during phase λ is at most 2λ+7. Moreover, by the inductive hypothesis, Hλ is
true i.e., at the beginning of phase λ the agent has traveled a distance of at most 2λ+7. As a
result, when starting phase λ+ 1, the agent has traveled a total distance of at most 2λ+8. Thus,
property Hλ+1 is true, which concludes the inductive proof and thus proves the validity of the
first statement.

Now let us focus on the second statement: the agent finds the treasure before starting phase
dlog2 ∆e+ 2. Suppose by contradiction that this is not the case. By Claim 6.6 and Lemma 6.1,
at some point the agent starts executing phase dlog2 ∆e+ 1. In view of Algorithm 6.2, when the
agent finishes the execution of line 4 in phase dlog2 ∆e+ 1, the value of variable Ri is a square S
containing the treasure: indeed this square is centered at the initial position O of the agent and
it contains all points at distance at most ∆ from O because its side length is 2dlog2 ∆e+1 ≥ 2∆,
since ∆ > 1.

Denote by Qfinal the rectangle returned by the last call to function ReduceRectangle in
phase dlog2 ∆e + 1: since the side length of S is at least 2dlog2 ∆e+1 ≥ 22, this rectangle exists
because the agent executes at least once line 6 of Algorithm 6.2. By Claim 6.6 and Lemma 6.1,
at some point the agent executes line 8 of Algorithm 6.2 and when the agent starts executing this
line we know that it is at the center of Qfinal. Moreover, from Lemma 6.1, it follows by induction
on the number of calls to function ReduceRectangle within phase dlog2 ∆e+1, that the treasure
does not belong to S\Qfinal, as otherwise the agent would have found the treasure before starting
phase dlog2 ∆e + 2 which would be a contradiction. However, the treasure belongs to square
S. Hence, the treasure belongs to Qfinal, and by applying procedure RectangleScan(Qfinal)
(refer to line 8) from the center of Qfinal, the agent necessarily finds the treasure by the end
of the execution of this procedure, and thus by the end of phase dlog2 ∆e + 1. This gives a
contradiction that proves the second statement.

Hence the agent finds the treasure before starting the execution of phase dlog2 ∆e + 2. By
the first statement, the total distance traveled by the agent during the first dlog2 ∆e+ 1 phases
is at most 2(dlog2 ∆e+2)+7 ≤ 210∆. Hence, the theorem holds.

6.4 Angles Bounded by β < 2π
In this section we consider the case when all hints are angles upper-bounded by some constant

β < 2π, unknown to the agent. The main result of this section is procedure TreasureHunt2
whose cost is at most O(∆2−ε), for some ε > 0. For a hint (P1, P2) we denote by (P1, P2) the
complement of (P1, P2).

103

Part , Chapter 6 – Treasure Hunt in the Plane with Angular Hints

6.4.1 High Level Idea

In procedure TreasureHunt2, similarly as in the previous procedure, the agent acts in phases
j = 1, 2, 3, . . . , where in each phase j the agent “supposes” that the treasure is in the straight
square centered at its initial position and of side length 2j . The intended goal is to search each
supposed square at relatively low cost, and to ensure the discovery of the treasure by the time
the agent finishes the first phase for which the initial supposed square contains the treasure.
However, the similarity with the previous solution ends there: indeed, the hints that may now
be less precise do not allow us to use the same strategy within a given phase. Hence we adopt
a different approach that we outline below and that uses the following notion of tiling. Given a
square S with side of length x > 0, Tiling(i) of S, for any non-negative integer i, is the partition
of square S into 4i squares with side of length x

2i . Each of these squares, called tiles, is closed,
i.e., contains its border, and hence neighboring tiles overlap in the common border.

Let us consider a simpler situation in which the angle of every hint (P1, P2) is always equal
to the bound β: the general case, when the angles may vary while being at most β, adds a
level of technical complexity that is unnecessary to understand the intuition. In the considered
situation, the angle of each excluded zone (P1, P2) is always the same as well. The following
property holds in this case: there exists an integer iβ such that for every square S and every
hint (P1, P2) given at the center of S, at least one tile of Tiling(iβ) of S belongs to the excluded
zone (P1, P2).

In phase j, the agent performs k steps: we will indicate later how the value of k should be
chosen. At the beginning of the phase, the entire square S is white. In the first step, the agent
gets a hint (P1, P2) at the center of S. By the above property, we know that (P1, P2) contains
at least one tile of Tiling(iβ) of S, and we have the guarantee that such a tile cannot contain
the treasure. All points of all tiles included in (P1, P2) are painted black in the first step. This
operation does not require any move, as painting is performed in the memory of the agent. As
a result, at the end of the first step, each tile of Tiling(iβ) of S is either black or white, in the
following precise sense: a black tile is a tile all of whose points are black, and a white tile is a
tile all of whose interior points are white.

In the second step, the agent repeats the painting procedure at a finer level. More precisely,
the agent moves to the center of each white tile t of Tiling(iβ) of S. When it gets a hint at the
center of a white tile t, there is at least one tile of Tiling(iβ) of t that can be excluded. As in the
first step, all points of these excluded tiles are painted black. Note that a tile of Tiling(iβ) of t
is actually a tile of Tiling(2iβ) of S. Moreover, each tile of Tiling(iβ) of S is made of exactly
4iβ tiles of Tiling(2iβ) of S. Hence, as depicted in Figure 6.3, the property we obtain at the end
of the second step is as follows: each tile of Tiling(2iβ) of S is either black or white.

(a) At the end of a first step
for a hint (P1, P2)

(b) At the end of a second step

Figure 6.3: White and black tiles at the end of the first and the second step of a phase, for
square S = ABCD and iβ = 2.

In the next steps, the agent applies a similar process at increasingly finer levels of tiling. More

104

6.4. Angles Bounded by β < 2π

precisely, in step 2 < s ≤ k, the agent moves to the center of each white tile of Tiling((s− 1)iβ)
of S and gets a hint that allows it to paint black at least one tile of Tiling(s · iβ) of S. At the
end of step s, each tile of Tiling(s · iβ) of S is either black or white. We can show that at each
step s the agent paints black at least 1

4iβ
th of the area of S that is white at the beginning of

step s.
After step k, each tile of Tiling(k · iβ) of S is either black or white. These steps permit the

agent to exclude some area without having to search it directly, while keeping some regularity
of the shape of the black area. The agent paints black a smaller area than excluded by the hints
but a more regular one. This regularity enables in turn the next process in the area remaining
white. Indeed, the agent subsequently executes a brute-force searching that consists in moving
to each white tile of Tiling(k · iβ) of S in order to scan it using the procedure RectangleScan.
If, after having scanned all the remaining white tiles, it has not found the treasure, the agent
repaints white all the square S and enters the next phase. Thus we have the guarantee that
the agent finds the treasure by the end of phase dlog2 ∆e + 1, i.e., a phase in which the initial
supposed square is large enough to contain the treasure. The question is: how much do we have
to pay for all of this? In fact, the cost depends on the value that is assigned to k in each phase
j. The value of k must be large enough so that the distance traveled by the agent during the
brute-force searching is relatively small. At the same time, this value must be small enough
so that the the distance traveled during the k steps is not too large. A good trade-off can be
reached when k = dlog4iβ

√
2je. Indeed, as highlighted in the proof of correctness, it is due to

this carefully chosen value of k that we can beat the cost Θ(∆2) necessary without hints, and
get a complexity of O(∆2−ε), where ε is a positive real depending on iβ, and hence depending
on the angle β.

6.4.2 Algorithm and Analysis

In this subsection we describe our algorithm in detail, prove its correctness and analyze its
complexity. We will use the notion of a slicing of a square. Given a straight square S, the
Slicing(i) of S, for any integer i ≥ 3, is the partition of the square S into 2i triangles with a
common vertex at the center q of the square, resulting from partitioning the angle 2π into angles
2π
2i using lines containing the point q, one of which is horizontal.

Consider any Slicing(i) of a square S. Let Σ be the set of all side lengths of triangles into
which Slicing(i) partitions S. We define ρi to be the maximum of all integers da/be, where
a, b ∈ Σ. Note that ρi depends only on i and not on the side length of S. Moreover, ρi+1 ≥ ρi.

For every integer i ≥ 3, we define φ(i) = iρi.
In order to define some objects used by our algorithm, we need the following technical

proposition.

Proposition 6.4. The following properties hold.

1. For every angle 0 < α < 2π with vertex at the center of a square S, the angle α contains
some triangle of Slicing(max(3, dlog2(2π

α)e+ 1)) of S.

2. For every integer i ≥ 3 and for every triangle T of Slicing(i) of a square S, at least one
tile of Tiling(4φ(i)) of S is included in the interior of T .

Proof. We start by proving the first property. Let S be a square and let 0 < α < 2π be an angle
with the vertex in the center of S. Let i = max(3; dlog2(2π

α)e+ 1) ≥ 3. The angle at the center
of square S in each of the triangles of Slicing(i) of S is at most α

2 . Hence one of the triangles
formed by Slicing(i) is included in the angle α. This proves the first property.

In the proof of the second property, all tilings and slicings are for square S: for ease of reading
we omit mentioning it. In order to prove the second property, we first prove by induction on i
the following statement denoted by Hi:

105

Part , Chapter 6 – Treasure Hunt in the Plane with Angular Hints

For every integer i ≥ 3 and for every triangle T of Slicing(i), there is at least one tile t of
Tiling(4φ(i)− 2), such that t ⊂ T and one side of t is included in a side of S.

For the base case i = 3, note that each triangle of Slicing(3) contains at least one tile of
Tiling(2) with one side included in a side of S. Since φ(3) = 3ρ3 and ρ3 ≥ 1, we know that
4φ(3) − 2 ≥ 10. Moreover, each side of every tile t′ of Tiling(r) contains at least one side of a
tile of Tiling(r′), included in t′, for all integers r < r′. Hence H3 is true.

Assume that Hj is true for some integer j ≥ 3 and let us prove that Hj+1 is also true.
Suppose by contradiction that Hj+1 is false. This means that there exists a triangle T1 of
Slicing(j + 1) that contains no tile of Tiling(4φ(j + 1)− 2) with one side included in a side of
S. Denote by L the side of S that contains a side of T1. There exists a triangle T of Slicing(j)
and a triangle T2 of Slicing(j+1) such that T1∪T2 = T and T1∩T2 = l, where l is the common
segment of boundaries of T1 and T2. Note that triangle T2 also has a side included in L.

By the inductive hypothesis, there exists a tile t′ of Tiling(4φ(j) − 2) such that t′ ⊂ T
and one side of t′ is included in L. For any integers r < r′, every tile of Tiling(r) contains
exactly 4r′−r tiles of Tiling(r′) that are organized in 2r′−r rows of 2r′−r squares. So, tile t′
contains exactly 42φ(j+1)−2φ(j) rows that are parallel to L and such that each of them is made
of 42φ(j+1)−2φ(j) tiles of Tiling(4φ(j + 1) − 2). Among these rows consider the one that has a
common boundary with L and denote it by R. Note that R contains at least 42ρj+1 tiles of
Tiling(4φ(j+ 1)− 2) because 2φ(j+ 1)− 2φ(j) = 2(j+ 1)ρj+1− 2jρj and ρj+1 ≥ ρj . Denote by
R′ the row of Tiling(4φ(j+ 1)− 2) that contains R and by R′′ the part of R′ made of tiles t′′ of
Tiling(4φ(j + 1)− 2), such that t′′ ⊂ T . Note that R ⊆ R′′ and thus R′′ contains at least 42ρj+1

tiles of Tiling(4φ(j+ 1)−2). Moreover, note that the smaller of the two angles formed by l and
L cannot be smaller than π

4 or larger than π
2 . As a result, l can intersect at most 2 adjacent

tiles s1, s2 of R′′. We will show that l cannot intersect a tile that is at an end of row R′′. Let x
be the side length of a tile of Tiling(4φ(j+ 1)− 2). Suppose that l intersects a tile that is at an
end of row R′′. In view of the fact that R′′ contains all tiles of R that are included in T , a side
of T1 or of T2 included in L (say the side of T1 without loss of generality), has length at most
3x, while the side of T2 included in L has length at least (42ρj+1 − 2)x ≥ 14ρj+1x. However,
14ρj+1x

3x > ρj+1, which contradicts the definition of ρj+1. Hence l cannot intersect a tile that is
at an end of row R′′. This implies that one of the two tiles at the ends of R′′ belongs to T1: by
construction this tile belongs to Tiling(4φ(j + 1)− 2) with one side belonging to L. Hence we
get a contradiction. As a result, Hj+1 is true, which ends the proof by induction of Hi.

It remains to conclude the proof of the second property of our proposition. In view of
property Hi, we know that for every integer i ≥ 3 and for every triangle T of Slicing(i), at
least one tile of Tiling(4φ(i) − 2) is included in T . Moreover, each tile of Tiling(4φ(i) − 2)
contains 4 rows, each made of 4 tiles belonging to Tiling(4φ(i)). Hence, the interior of each
tile of Tiling(4φ(i) − 2) contains a tile of Tiling(4φ(i)). This proves the second property and
concludes the proof of the proposition.

For any angle 0 < α < 2π, the index of α, denoted index(α), is the integer
4φ(max(3, dlog2(2π

α)e+ 1)). Proposition 6.4 implies

Proposition 6.5. For every angle 0 < α < 2π, the following properties hold.

1. For every square S and for every hint (P1, P2) of size 2π − α obtained at the center of S,
there exists a tile of Tiling(index(α)) of S included in (P1, P2).

2. For every angle α′ < α, we have index(α) ≤ index(α′).

Algorithm 6.4 gives a pseudo-code of the main algorithm of this section. It uses the function
Mosaic described in Algorithm 6.5 that is the key technical tool permitting the agent to reduce
its search area. The agent interrupts the execution of Algorithm 6.4 as soon as it gets at distance
1 from the treasure, at which point it can “see” it and thus treasure hunt stops.

106

6.4. Angles Bounded by β < 2π

Algorithm 6.4 Procedure TreasureHunt2
1: IndexNew ← 1
2: i← 1
3: loop
4: repeat
5: IndexOld← IndexNew
6: IndexNew ← Mosaic(i, IndexOld)
7: until IndexNew = IndexOld
8: i← i+ 1
9: end loop

In the following, a square is called black if all its points are black. A square is called white if
all points of its interior are white. (In a white square, some points of its border may be black).

Algorithm 6.5 Function Mosaic(i, k)
1: O ← the initial position of the agent
2: S ← the straight square centered at O with sides of length 2i
3: paint white all points of S
4: IndexMax← k
5: for j ← 1 to dlog4k

√
2ie do

6: for all tiles t of T iling((j − 1)k) of S do
7: if t is white then
8: go to the center of t
9: let (P1, P2) be the obtained hint
10: k′ ← index of (P1, P2)
11: k′ ← index of (P1, P2)
12: if k′ > IndexMax then
13: IndexMax← k′

14: end if
15: if IndexMax = k then
16: for all tiles t′ of T iling(k) of t such that t′ ⊂ (P1, P2) do
17: paint black all points of t′
18: end for
19: end if
20: end if
21: end for
22: end for
23: if IndexMax = k then
24: for all tiles t of T iling(k(dlog4k

√
2ie)) of S do

25: if t is white then
26: go to the center of t
27: execute RectangleScan(t)
28: end if
29: end for
30: end if
31: go to O
32: return IndexMax

Lemma 6.2. For any positive integers i and k, consider an agent executing function Mosaic(i, k)
from its initial position O. Let S be the straight square centered at O with side of length 2i. For
every positive integer j ≤ dlog4k

√
2ie, at the end of the j-th execution of the first loop (lines 5

to 21) in Mosaic(i, k), each tile of Tiling(jk) of S is either black or white.

Proof. Assume by contradiction that there exists a positive integer j ≤ dlog4k
√

2ie such that at
the end of the j-th execution of the first loop, there exists at least one tile σ of Tiling(jk) of S
that is neither black nor white. Without loss of generality, we assume that j is the first integer
for which this occurs.

In view of the minimality of j, we know that just before starting the j-th execution of the first
loop, each tile of Tiling((j − 1)k) is either black or white. Moreover, for every positive integers

107

Part , Chapter 6 – Treasure Hunt in the Plane with Angular Hints

z′ ≤ z, every couple of points that belong to the same tile of Tiling(z) of S, also belong to the
same tile of the coarser tiling Tiling(z′) of S. Hence, just before starting the j-th execution of
the first loop, each tile of Tiling(jk) is either black or white.

During the execution of the first loop, the points that become black remain always black
thereafter. Since there exists a tile σ of Tiling(jk) of S that becomes neither black nor white
during the j-th execution of the first loop, at some point during this execution, the agent does
not paint black all points of σ when executing line 17 of Algorithm 6.5. However, each time
the agent executes line 17 of Algorithm 6.5 within the j-th execution of the first loop, when a
point of a tile t′ of Tiling(k) of any tile of Tiling((j− 1)k) of S is painted black, then all points
inside and on the boundary of tile t′ are painted black. By definition, t′ is a tile of Tiling(jk)
of S. Hence, at the end of the j-th execution of the first loop, each tile of Tiling(jk) of S is
either black or white. Hence, we get a contradiction with the existence of σ which proves the
lemma.

Lemma 6.3. For every positive integers i and k, a call to function Mosaic(i, k) has cost at

most 2i
3+log4k (4k−1)

2 +2k+8.
Proof. The walk made by the agent executing function Mosaic(i, k) can be divided into two
parts: the first part P1 is the walk made by executing lines 1 to 22 of Algorithm 6.5, while
the second part P2 is the walk made by executing lines 23 to 32 of Algorithm 6.5. The
distance traveled in P1 (resp. P2) will be denoted by |P1| (resp. |P2|). We first focus on
the distance traveled in part P1, in which the walk made by the agent is as follows: for each
j ∈ {1, . . . dlog4k

√
2ie}, starting from the center of S, the agent moves to the center of every

white tile of Tiling((j − 1)k) of S. By Algorithm 6.5, the side length of S is 2i, and thus
the distance between any two points of S is upper bounded by 2i+1. Moreover, if for every
non-negative integer s, we denote by Qs the number of tiles in Tiling(s) of S, then we have

|P1| ≤ 2i+1
dlog4k

√
2ie∑

j=1
Q(j−1)k (6.5)

In view of the definition of a tiling, for all j ∈ {1, . . . dlog4k
√

2ie} we have

Q(j−1)k =
Q(dlog4k

√
2ie−1)k

4(dlog4k
√

2ie−1)k−(j−1)k
(6.6)

=
Q(dlog4k

√
2ie−1)k

4(dlog4k
√

2ie−j)k
(6.7)

Hence, in view of (6.5) and (6.7), we have

|P1| ≤ 2i+1
dlog4k

√
2ie∑

j=1

Q(dlog4k
√

2ie−1)k

4(dlog4k
√

2ie−j)k
(6.8)

≤ 2i+2Q(dlog4k
√

2ie−1)k (6.9)

In view of the definition of a tiling, we have

Q(dlog4k
√

2ie−1)k = 4(dlog4k
√

2ie−1)k (6.10)

= (4k)dlog4k
√

2ie−1 (6.11)
≤
√

2i (6.12)

108

6.4. Angles Bounded by β < 2π

Hence from (6.9) and (6.12), we obtain

|P1| ≤ 2
3i
2 +2 (6.13)

We now consider the distance traveled in part P2. Here, there are two cases: either
IndexMax 6= k when the agent starts executing line 23 of Algorithm 6.5, or IndexMax = k
when the agent starts executing line 23 of Algorithm 6.5. In the first case, P2 corresponds only
to the move made when executing line 31 of Algorithm 6.5. However, during the entire execution
of Algorithm 6.5, the agent never leaves the straight square S, centered at O, whose sides have
length 2i. Hence in the first case, |P2| ≤ 2i+1.

The second case is trickier to analyze. Indeed, we have to take into account the distance
traveled when executing line 31 of Algorithm 6.5 (that is upper bounded by 2i+1 in this case as
well) but also the distance traveled when executing lines 24 to 29: note that since those lines
are executed, we necessarily have the following claim in the second case.

Claim 6.7. Once variable IndexMax is assigned the value k (cf. line 4 of Algorithm 6.5),
variable IndexMax does not change anymore thereafter.

The above claim is used in the proof of the following one that is crucial to determine the
traveled distance |P2|. As for Claim 6.7, Claim 6.8 holds in the second case that we currently
analyze.

Claim 6.8. At the end of part P1, the area of the white surface is at most 2i
3+log4k (4k−1)

2 .

Proof of the claim: To prove the claim, we first show by induction on j the following property
Kj :
For every integer j ∈ {1, . . . , dlog4k

√
2ie}, at the end of the j-th execution of the first loop of

Algorithm 6.5 the area of the part of the square S that is still white is at most (4k−1
4k)j22i.

During the first execution of the first loop of Algorithm 6.5, the agent is located at the center
of S. By Claim 6.7, the agent executes line 17 during this first execution, and by Proposition 6.5,
there is at least one tile t′ of Tiling(k) of S such that all points of t′ are black. Since there are 4k
tiles in Tiling(k) of S, it follows that property Kj is true for j = 1. Now suppose that property
Ks holds for a positive integer s. We show that Ks+1 is also true. It is enough to show that
at the end of the (s + 1)-th execution of the first loop of Algorithm 6.5 the part of the square
S that is still white has area at most (4k−1

4k)s+122i. In view of Claim 6.7 and Algorithm 6.5,
during this (s + 1)-th execution the agent goes to the center of every white tile of Tiling(sk)
of S from which it executes line 17 of Algorithm 6.5. Moreover, by Claim 6.7, we know that
the value of variable k′ is never larger than k. Hence, by Proposition 6.5, it follows that the
agent paints black at least (1

4k)-th of each white tile of Tiling(sk) of S during this (s + 1)-th
execution. However, at the beginning of the (s+ 1)-th execution of the first loop, we know from
the inductive hypothesis and from Lemma 6.2, that the sum of the areas of the white tiles of
Tiling(sk) is at most (4k−1

4k)s22i. Moreover, by painting black at least (1
4k)-th of each white tile

of Tiling(sk) of S, the agent paints black at least (1
4k)-th of the remaining surface that is white

at the beginning of the (s+1)-th execution of the first loop. This implies Ks+1, which concludes
the proof by induction of Kj .

From property Kj with j ∈ {1, . . . , dlog4k
√

2ie}, we know that at the end of part P1, the
area of the white surface is at most

22i(4k − 1
4k)dlog4k

√
2ie ≤ 22i(4k − 1

4k)log4k
√

2i (6.14)

However, we have

109

Part , Chapter 6 – Treasure Hunt in the Plane with Angular Hints

(4k − 1
4k)

log 4k−1
4k

√
2i

=
√

2i (6.15)

which implies

(4k − 1
4k)log4k

√
2i = 2

i
2 log4k (4k−1

4k
)
. (6.16)

It follows from (6.14) and (6.16) that the area of the white surface at the end of part P1 is
at most

22i+ i
2 log4k (4k−1

4k
) = 2i

3+log4k (4k−1)
2 , (6.17)

which concludes the proof of the claim. ?

Now, we are ready to compute |P2| in the case where the condition IndexMax = k holds
when the agent executes line 23 of Algorithm 6.5. The value of |P2| is the sum of the distance
traveled when executing line 31 (upper bounded by 2i+1) and of the distance traveled when
executing lines 24 to 29. When executing the latter block of lines, for each white tile t of
Tiling(k(dlog4k

√
2ie)) of S, the agent performs successively the two following actions:

1. The agent moves to the center of t, at a cost of at most 2i+1.

2. Once the center of t is reached, the agent executes procedure RectangleScan(t), at a cost
of at most 5l ·max(2, l) (cf. Proposition 6.1) with l equal to the side length of tile t.

Hence, if we denote by w the number of white tiles in Tiling(k(dlog4k
√

2ie)) of S, we have

|P2| ≤ 2i+1 + w(2i+1 + 5l ·max(2, l)) (6.18)
≤ 2i+1(w + 1) + 8w · l ·max(2, l) (6.19)
≤ 2i+1(w + 1) + 8w · l2 + 32w (6.20)

By the definition of tiling we have w ≤ 4k(dlog4k
√

2ie) ≤ 22k+ i
2 . Moreover, in view of Claim 6.8

and Lemma 6.2, we know that w · l2 ≤ 2i
3+log4k (4k−1)

2 . Thus, from (6.20) we have the following:

|P2| ≤ 22k+ 3i
2 +1 + 2i+1 + 2i

3+log4k (4k−1)
2 +3 + 22k+ i

2 +5 (6.21)

≤ 2i
3+log4k (4k−1)

2 +2k+7 (because k ≥ 1). (6.22)

So, whether IndexMax = k or not when the agent starts executing line 23 of Algorithm 6.5, we

have |P2| ≤ 2i
3+log4k (4k−1)

2 +2k+7. Hence, |P1|+|P2| ≤ 2 3i
2 +2+2i

3+log4k (4k−1)
2 +2k+7 ≤ 2i

3+log4k (4k−1)
2 +2k+8,

which concludes the proof of the lemma.

Let ψ be the index of 2π − β. The next proposition follows from Proposition 6.5.

Proposition 6.6. Let (P1, P2) be any hint. The index of (P1, P2) is at most ψ.

We are now ready to prove the final result of this section.

110

6.4. Angles Bounded by β < 2π

Theorem 6.2. Consider an agent A and a treasure located at distance at most ∆ from the
initial position of A. By executing procedure TreasureHunt2, agent A finds the treasure after
having traveled a distance in O(∆2−ε), for some ε > 0.

Proof. We will use the following two claims.

Claim 6.9. Let i ≥ 1 be an integer. The number of executions of the repeat loop in the i-th
execution of the external loop in Algorithm 6.4 is bounded by ψ.

Proof of the claim: Suppose by contradiction that the claim does not hold for some i ≥ 1.
So, the number of executions of the repeat loop in the i-th execution of the external loop in
Algorithm 6.4 is at least ψ + 1. In each of these executions of the repeat loop, the agent calls
function Mosaic(i, ∗) exactly once. For all 1 ≤ j ≤ ψ + 1 (ψ ≥ 1, by definition of an index),
denote by vj the returned value of function Mosaic(i, ∗) in the j-th execution of the repeat loop
in the i-th execution of the external loop. Note that v1 6= 1: indeed, if v1 = 1 the repeat loop
would be executed exactly once, which would be a contradiction because it is executed at least
ψ + 1 ≥ 2 times.

In view of Algorithm 6.4 and Proposition 6.6, the returned value of Mosaic(i, ∗) is a positive
integer that is at most ψ. Since v1 6= 1, this implies that ψ ≥ 2. Moreover, for all 2 ≤ j ≤ ψ, we
have vj ≥ vj−1 (refer to lines 5-6 of Algorithm 6.4 and lines 4, 12-13 of Algorithm 6.5). Hence,
there exists an integer k ≤ ψ such that vk = vk−1. However, according to Algorithm 6.4, this
implies that the number of executions of the repeat loop in the i-th execution of the external
loop is at most k ≤ ψ. This is a contradiction which concludes the proof of the claim. ?

Claim 6.10. The distance traveled by the agent before variable i becomes equal to dlog2 ∆e+ 2
in the execution of Algorithm 6.4 belongs to O(∆2−ε), where ε = 1

2(1− log4ψ(4ψ − 1)) > 0.

Proof of the claim: In view of the fact that the returned value of every call to function
Mosaic in the execution of Algorithm 6.4 is at most ψ, it follows that in each call to function
Mosaic(∗, k) the parameter k is always at most ψ. Hence, in view of Claim 6.9 and Lemma 6.3,
as long as variable i does not reach the value dlog2 ∆e+ 2, the agent traveled a distance at most

ψ ·
dlog2 ∆e+1∑

i=1
2i

3+log4ψ (4ψ−1)
2 +2ψ+8 (6.23)

≤ψ2(dlog2 ∆e+1)
3+log4ψ (4ψ−1)

2 +2ψ+9 (6.24)

≤ψ22ψ+12+log4ψ (4ψ−1)2(log2 ∆)
3+log4ψ (4ψ−1)

2 (6.25)

=ψ22ψ+12+log4ψ (4ψ−1)∆2− 1
2 (1−log4ψ (4ψ−1)) (6.26)

By (6.26), the total distance traveled by the agent executing Algorithm 6.4 belongs to
O(D2−ε) where ε = 1

2(1−log4ψ(4ψ−1)). Since ψ is a positive integer, we have 0 < log4ψ(4ψ−1) <
1 and hence ε > 0. This ends the proof of the claim. ?

Assume that the theorem is false. As long as variable i does not reach dlog2 ∆e+2, the agent
cannot find the treasure, as this would contradict Claim 6.10. Thus, in view of Claim 6.9, before
the time τ when variable i reaches dlog2 ∆e+2 the treasure is not found. By Algorithm 6.4, this
implies that during the last call to function Mosaic before time τ , the function returns a value
that is equal to its second input parameter. This implies that during this call, the agent has
executed lines 24 to 29 of Algorithm 6.5: more precisely, there is some integer x such that from
each white tile t of Tiling(x) of the straight square S that is centered at the initial position of the
agent and that has sides of length 2dlog2 ∆e+1, the agent has executed function RectangleScan(t).
Hence, at the end of the execution of lines 24 to 29, the agent has seen all points of each white
tile of Tiling(x) of S. Moreover, in view of Lemma 6.2, we know that the tiles that are not

111

Part , Chapter 6 – Treasure Hunt in the Plane with Angular Hints

white, in Tiling(x) of S, are necessarily black. Given a black tile σ of Tiling(x), each point of
σ is black, which, in view of lines 16 to 18 of Algorithm 6.5, implies that σ cannot contain the
treasure. Since square S necessarily contains the treasure, it follows that the agent must find the
treasure by the end of the last execution of function Mosaic before time τ . As a consequence,
the agent stops the execution of Algorithm 6.4 before assigning dlog2 ∆e + 2 to variable i and
thus, we get a contradiction with the definition of time τ , which proves the theorem.

6.5 Arbitrary Angles
In this section we observe that if hints can be arbitrary angles smaller than 2π then the

treasure hunt cost Θ(∆2) cannot be improved in the worst case. We prove the following
proposition.

Proposition 6.7. If hints can be arbitrary angles smaller than 2π then the optimal cost of
treasure hunt for a treasure at distance at most ∆ from the starting point of the agent is Ω(∆2).

Proof. Consider the disc D of radius ∆ centered at the initial position of the agent. Consider
any position of the agent and suppose that the angle given as hint has size γ > π. Call the
complement of the hint the forbidden angle. It has size α = 2π − γ < π. The forbidden angle
has the property that the treasure must be outside of it. The forbidden angle of size α can be
chosen in such a way that its intersection with D has area at most α

2ππ(2∆)2 = α2∆2. More
precisely, if the current position p of the agent is at the center c of D then the forbidden angle
can be chosen arbitrarily, otherwise it is chosen so that it does not contain c and its bisector is
line (cp).

Suppose that there exists a treasure hunt algorithm at cost at most ∆2/2. Let the sizes of
forbidden angles corresponding to consecutive hints be 1

2 ,
1
4 ,

1
8 , ... etc., each of size half of the

preceding, and such that the forbidden angle is chosen with respect to the above strategy. The
total area of the intersection of D with the forbidden angles is at most (∑∞i=1

1
2i)2∆2 = 2∆2.

This leaves out a part of the disc D whose area is at least (π − 2)∆2. During the walk of
length at most ∆2/2 of the agent, the set of points of D from which the agent is at distance
at most 1 at some point of the walk has area at most 2∆2

2 + π = ∆2 + π. For ∆ > 5 we have
(π−2)∆2 > ∆2 +π. Hence there exists a point of D not included in any of the forbidden angles,
from which the agent has never been at distance at most 1. Placing the treasure in this point
refutes the correctness of the treasure hunt algorithm. This implies that the trajectory of the
agent must have length larger than ∆2/2, for ∆ > 5, hence the optimal cost of treasure hunt
belongs to Ω(∆2).

6.6 Conclusion
For hints that are angles at most π we gave a treasure hunt algorithm with optimal cost

linear in ∆. For larger angles we showed a separation between the case where angles are bounded
away from 2π, when we designed an algorithm with cost strictly subquadratic in ∆, and the
case where angles have arbitrary values smaller than 2π, when we showed a quadratic lower
bound on the cost. The optimal cost of treasure hunt with large angles bounded away from 2π
remains open. In particular, the following questions seem intriguing. Is the optimal cost linear
in ∆ in this case, or is it possible to prove a super-linear lower bound on it? Does the order of
magnitude of this optimal cost depend on the bound π < β < 2π on the angles given as hints?

112

Chapter 7

Conclusion of the Thesis

7.1 Sum up of the Main Parts

The gathering task is studied as a representant of coordination without prior agreement in
spite of locality. Two major difficulties are tackled in this thesis: asynchrony and occurrence of
Byzantine faults.

Chapters 3 and 4 both address asynchrony for a simpler version of the gathering problem:
rendezvous in finite graphs and in the infinite grid respectively.

In the former chapter, a new variant of the model with traversal durations per agent-
edge couple is studied as an intermediary between synchrony and asynchrony in which strong
rendezvous is possible. More precisely, it is the known intermediary closest to asynchrony
in which strong rendezvous is shown to be possible. The main contribution of this chapter
is precisely a deterministic strong rendezvous algorithm whose duration is polynomial in the
number of nodes n of the graph, the length `min of the shortest label, and τmax the maximum
over all traversal durations assigned by the adversary.

In Chapter 4, the model variant considered is not an intermediary, but the asynchronous one.
In this harshest case, the first deterministic rendezvous algorithm working in the infinite grid at
cost polynomial in the initial Manhattan distance D between the agents and `min is presented.
This algorithm in particular allows to construct (by reduction to rendezvous in the infinite grid)
the first deterministic asynchronous approach algorithm working at cost polynomial in the initial
Euclidean distance ∆ between the agents and `min.

Chapter 5 addresses Byzantine gathering in finite graphs and presents the first deterministic
algorithm for this problem whose duration is polynomial in n and `min. In this chapter, attention
is also paid to the length of the some piece of advice given to all agents and called global
knowledge. The length of the global knowledge needed by the algorithm presented belongs
to O(log log logn). It is proved to be of optimal order of magnitude, since no deterministic
algorithm for this problem, polynomial n and `min can use a global knowledge belonging to
o(log log logn).

Lastly, Chapter 6 studies a simpler version of the rendezvous: treasure hunt, in the plane.
It introduces the scenario in which after each move, the mobile agent obtains an hint consisting
of an angle centered at its current position and in which lies the treasure. It is shown that in
some cases, these hints allow the agent to find the treasure at a lower than O(∆2) cost (which
is known to be optimal without hints), while in others, the cost still belongs to Ω(∆2) where ∆
denotes the initial distance between the mobile agent and the treasure. More precisely, when
each angle is at most π, an deterministic algorithm with cost belonging to O(∆) is provided.
Moreover, when there exists β < 2π such that each angle is at most β, then the hints are helpful
too: a deterministic algorithm whose cost belongs to O(∆2−ε) is shown. Finally, when angles
can be arbitrary close to 2π, it is shown that Θ(∆2) cannot be beaten.

7.2 Perspectives of the Thesis

The conclusions of Chapters 3 to 6 present questions left open by the contributions of the
corresponding chapter. This section broadens the focus.

113

Part , Chapter 7 – Conclusion of the Thesis

Study of the Universal eXploration Sequences. The algorithms for finite graphs (intro-
duced in Chapters 3 and 5) rely on the exploration procedure based on Universal eXploration
Sequences (UXS) [76] and denoted by Explo in this thesis. This is not surprising since most
algorithms from the literature of gathering in arbitrary finite graphs rely on similar combinatorial
tools. For this reason, the cost and duration of these algorithms depend on the length of these
tools.

However, the latter is mostly unknown. There exists a polynomial Q such that UXS for all
graphs with at most n nodes and whose length is Q(n) have been proved to exist [5, 76]. An
algorithm for constructing such sequences whose time and space complexities are respectively
polynomial and logarithmic in n can be derived from a celebrated result [96]. However, the
length of the built UXS, although polynomial in n, is believed to be high. Besides the lack of an
algorithm building short UXS, there is currently no non-trivial lower bound over the length of
such tools.

With an algorithm constructing short UXS, it would become possible to provide fine grained
analysis of the gathering algorithms in finite graphs. Moreover, lower bounds on the complexity
of such algorithms could possibly be derived from a lower bound on the length of these sequences.

Towards simpler algorithms with more reliable proofs. Most gathering algorithms and
in particular those which tackle asynchrony or faults (just like those presented in this thesis)
are complicated. Their descriptions are long and involve several subroutines. This increases the
effort needed to understand them as well as the likelihood that their handwritten proofs contain
errors.

In synchronous settings, some clarity is gained by designing algorithms in a modular way.
For instance, gathering can be reduced to rendezvous thanks to the “stick together” strategy
[77], and rendezvous can be reduced to treasure hunt thanks to the “wait for mummy” strategy
[7, 98]. Thus, presenting a treasure hunt algorithm for some settings is enough to introduce
a gathering algorithm for the same settings, provided that the two reductions are valid in the
latter.

When facing asynchrony and Byzantine agents, this is where the problem lies: these redu-
ctions are not valid. Hence, some new reductions or improvements of the existing synchronous
reductions, for asynchrony and fault tolerance, would be an important step forward in facing
these issues.

Designing such reductions is really challenging since they should combine the two following
properties. On one hand, they must significantly ease the proposal of new contributions by
including powerful techniques. On the other hand, they must be widely reusable and thus apply
in several settings, without depriving of the freedom of innovating required to address these
issues.

Formal verification can be another, complimentary, approach to improve the reliability of
the algorithms involving mobile entities. Recently, some efforts have been dedicated to verify
their proofs in particular thanks to the proof assistant called Coq using the framework Pactole
[12] or the Maude LTL model checker [54].

Considering dynamic environments. In this thesis, like in most articles regarding distri-
buted systems, the considered environments are static i.e., the ability of the entities to commu-
nicate, or move does not evolve with time. However, this is not the case of real life communication
networks (e.g., peer to peer or involving mobile devices), or of the road network.

For this reason, some studies model the environment with dynamic graphs [32, 73, 83] which
differ from the static ones by the appearance and disappearance of edges (and nodes).

In such structures, some graph theory notions such as path or diameter are reconsidered,
and new notions, taking time account, are proposed. For instance, a journey is a temporal path.
Since it is generally assumed that conveying information through some communication channel

114

7.2. Perspectives of the Thesis

or walking between two places requires time, the existence of a path between two vertices u and
v in the static graph obtained when taking a snapshot of a the dynamic graph i.e., looking at its
state at a given time, is not enough to ensure that some piece of information or mobile entity
manages to travel from u to v: Some of the edges which compose the path may disappear while
the message is transiting, and make v unreachable. On the contrary, a journey is a sequence of
neighboring edges in increasing order of presence. After crossing one of the edges of a journey,
it is possible (maybe after some waiting period) to cross the next one.

Families of graphs are also reconsidered, and classes of dynamic graphs are presented on the
basis of the properties verified in particular by the reappearance of the edges. For instance, one
may consider the class of all dynamic graphs whose edges reappear periodically often, the one
in which they reappear infinitely often, or the one in which, for every time t, the static graph
representing the state of the graph at t is connected.

In such settings, some authors have addressed in particular the task of gathering, but there
are still many open questions in the area [29, 84, 102].

Another approach to dynamic environments is appropriate when the topological changes
(appearance and disappearance of edges and nodes) occur rarely: when the time interval between
two topological changes is long enough for an algorithm to be executed integrally between them.
In such a context, the topological changes can be viewed as transient (i.e., rare with the above
sense and with finite duration) faults corrupting the memory of the computing entities involved
(e.g., lists of neighbors, spanning structures). Such faults are addressed by the paradigm of self-
stabilization [9, 55, 87]. Although just after the occurrence of such a fault, little can be ensured,
a self-stabilizing algorithm makes the system reach, in finite and bounded time, a configuration
in which it verifies the desired properties. By the way, some recent efforts are dedicated to
certify the validity of self-stabilizing algorithms thanks to the proof assistant Coq [8].

115

Bibliography

[1] Serge Abiteboul, Haim Kaplan, and Tova Milo. “Compact Labeling Schemes for Ancestor
Queries”. In: Proceedings of the Twelfth Annual Symposium on Discrete Algorithms,
January 7-9, 2001, Washington, DC, USA. Ed. by S. Rao Kosaraju. ACM/SIAM, 2001,
pp. 547–556. isbn: 978-0-89871-490-6. url: http://dl.acm.org/citation.cfm?id=
365411.365529 (visited on 04/11/2019).

[2] Noa Agmon and David Peleg. “Fault-Tolerant Gathering Algorithms for Autonomous
Mobile Robots”. In: SIAM J Comput 36.1 (2006), pp. 56–82. doi: 10.1137/050645221.

[3] Oswin Aichholzer, Franz Aurenhammer, Christian Icking, Rolf Klein, Elmar Langetepe,
and Günter Rote. “Generalized Self-Approaching Curves”. In: Discrete Appl. Math. 109.1-
2 (2001), pp. 3–24. doi: 10.1016/S0166-218X(00)00233-X.

[4] Manuel Alcantara, Armando Castañeda, David Flores-Peñaloza, and Sergio Rajsbaum.
“The Topology of Look-Compute-Move Robot Wait-Free Algorithms with Hard
Termination”. In: Distrib. Comput. 32.3 (2019), pp. 235–255. doi: 10.1007/s00446-
018-0345-3.

[5] Romas Aleliunas, Richard M. Karp, Richard J. Lipton, László Lovász, and Charles
Rackoff. “Random Walks, Universal Traversal Sequences, and the Complexity of Maze
Problems”. In: 20th Annual Symposium on Foundations of Computer Science, San Juan,
Puerto Rico, 29-31 October 1979. IEEE Computer Society, 1979, pp. 218–223. doi: 10.
1109/SFCS.1979.34.

[6] Steve Alpern. “The Rendezvous Search Problem”. In: SIAM J Control Optim 33.3 (May
1995), pp. 673–683. issn: 0363-0129. doi: 10.1137/S0363012993249195.

[7] Steve Alpern. “Rendezvous Search: A Personal Perspective”. In: Oper. Res. 50.5 (2002),
pp. 772–795. doi: 10.1287/opre.50.5.772.363.

[8] Karine Altisen, Pierre Corbineau, and Stéphane Devismes. “A Framework for Certified
Self-Stabilization”. In: Log. Methods Comput. Sci. 13.4 (2017). doi: 10.23638/LMCS-
13(4:14)2017.

[9] Karine Altisen, Stéphane Devismes, Swan Dubois, and Franck Petit. Introduction
to Distributed Self-Stabilizing Algorithms. Synthesis Lectures on Distributed
Computing Theory. Morgan & Claypool Publishers, 2019. doi: 10 . 2200 /
S00908ED1V01Y201903DCT015.

[10] Hagit Attiya, Amotz Bar-Noy, and Danny Dolev. “Sharing Memory Robustly in Message-
Passing Systems”. In: J ACM 42.1 (1995), pp. 124–142. doi: 10.1145/200836.200869.

[11] Ricardo A. Baeza-Yates, Joseph C. Culberson, and Gregory J. E. Rawlins. “Searching in
the Plane”. In: Inf Comput 106.2 (1993), pp. 234–252. doi: 10.1006/inco.1993.1054.

[12] Thibaut Balabonski, Amélie Delga, Lionel Rieg, Sébastien Tixeuil, and Xavier Urbain.
“Synchronous Gathering without Multiplicity Detection: A Certified Algorithm”. In:
Theory Comput Syst 63.2 (2019), pp. 200–218. doi: 10.1007/s00224-017-9828-z.

117

http://dl.acm.org/citation.cfm?id=365411.365529
http://dl.acm.org/citation.cfm?id=365411.365529
https://doi.org/10.1137/050645221
https://doi.org/10.1016/S0166-218X(00)00233-X
https://doi.org/10.1007/s00446-018-0345-3
https://doi.org/10.1007/s00446-018-0345-3
https://doi.org/10.1109/SFCS.1979.34
https://doi.org/10.1109/SFCS.1979.34
https://doi.org/10.1137/S0363012993249195
https://doi.org/10.1287/opre.50.5.772.363
https://doi.org/10.23638/LMCS-13(4:14)2017
https://doi.org/10.23638/LMCS-13(4:14)2017
https://doi.org/10.2200/S00908ED1V01Y201903DCT015
https://doi.org/10.2200/S00908ED1V01Y201903DCT015
https://doi.org/10.1145/200836.200869
https://doi.org/10.1006/inco.1993.1054
https://doi.org/10.1007/s00224-017-9828-z

[13] Evangelos Bampas, Jurek Czyzowicz, Leszek Gasieniec, David Ilcinkas, and Arnaud
Labourel. “Almost Optimal Asynchronous Rendezvous in Infinite Multidimensional
Grids”. In: Distributed Computing, 24th International Symposium, DISC 2010,
Cambridge, MA, USA, September 13-15, 2010. Proceedings. DISC. Ed. by Nancy A.
Lynch and Alexander A. Shvartsman. Vol. 6343. Lecture Notes in Computer Science.
Springer, 2010, pp. 297–311. isbn: 978-3-642-15762-2. doi: 10.1007/978-3-642-15763-
9_28.

[14] Michael Barborak and Miroslaw Malek. “The Consensus Problem in Fault-Tolerant
Computing”. In: ACM Comput Surv 25.2 (1993), pp. 171–220. doi: 10.1145/152610.
152612.

[15] Lali Barrière, Paola Flocchini, Eduardo Mesa Barrameda, and Nicola Santoro. “Uniform
Scattering of Autonomous Mobile Robots in a Grid”. In: Int J Found Comput Sci 22.3
(2011), pp. 679–697. doi: 10.1142/S0129054111008295.

[16] Vic Baston and Shmuel Gal. “Rendezvous Search When Marks Are Left at the Starting
Points”. In: Nav. Res. Logist. NRL 48.8 (2001), pp. 722–731. issn: 1520-6750. doi: 10.
1002/nav.1044.

[17] Anatole Beck and D. J. Newman. “Yet More on the Linear Search Problem”. In: Israel
J. Math. 8.4 (Dec. 1, 1970), pp. 419–429. issn: 1565-8511. doi: 10.1007/BF02798690.

[18] Anthony Bonato and Richard Nowakowski. The Game of Cops and Robbers on Graphs.
Vol. 61. The Student Mathematical Library. Providence, Rhode Island: American
Mathematical Society, Aug. 16, 2011. isbn: 978-0-8218-5347-4 978-1-4704-1656-0. doi:
10.1090/stml/061. url: http://www.ams.org/stml/061 (visited on 04/10/2019).

[19] Sébastien Bouchard, Marjorie Bournat, Yoann Dieudonné, Swan Dubois, and Franck
Petit. “Asynchronous Approach in the Plane: A Deterministic Polynomial Algorithm”.
In: 31st International Symposium on Distributed Computing, DISC 2017, October 16-
20, 2017, Vienna, Austria. DISC. Ed. by Andréa W. Richa. Vol. 91. LIPIcs. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2017, 8:1–8:16. isbn: 978-3-95977-053-8.
doi: 10.4230/LIPIcs.DISC.2017.8.

[20] Sébastien Bouchard, Marjorie Bournat, Yoann Dieudonné, Swan Dubois, and Franck
Petit. “Approche asynchrone dans le plan : un algorithme déterministe polynomial”.
In: ALGOTEL 2018 - 20èmes Rencontres Francophones sur les Aspects Algorithmiques
des Télécommunications. ALGOTEL. May 29, 2018. url: https://hal.archives-
ouvertes.fr/hal-01782388/document (visited on 04/24/2019).

[21] Sébastien Bouchard, Marjorie Bournat, Yoann Dieudonné, Swan Dubois, and Franck
Petit. “Asynchronous Approach in the Plane: A Deterministic Polynomial Algorithm”.
In: Distrib. Comput. 32.4 (2019), pp. 317–337. doi: 10.1007/s00446-018-0338-2.

[22] Sébastien Bouchard, Yoann Dieudonné, and Bertrand Ducourthial. “Byzantine Gathering
in Networks”. In: Structural Information and Communication Complexity - 22nd
International Colloquium, SIROCCO 2015, Montserrat, Spain, July 14-16, 2015, Post-
Proceedings. SIROCCO. Ed. by Christian Scheideler. Vol. 9439. Lecture Notes in
Computer Science. Springer, 2015, pp. 179–193. isbn: 978-3-319-25257-5. doi: 10.1007/
978-3-319-25258-2_13.

[23] Sébastien Bouchard, Yoann Dieudonné, and Bertrand Ducourthial. “Byzantine Gathering
in Networks”. In: Distrib. Comput. 29.6 (2016), pp. 435–457. doi: 10.1007/s00446-016-
0276-9.

[24] Sébastien Bouchard, Yoann Dieudonné, and Bertrand Ducourthial. “Rassemblement
byzantin dans les réseaux”. In: ALGOTEL. May 29, 2018. url: https://hal.archives-
ouvertes.fr/hal-01782387 (visited on 07/04/2019).

118

https://doi.org/10.1007/978-3-642-15763-9_28
https://doi.org/10.1007/978-3-642-15763-9_28
https://doi.org/10.1145/152610.152612
https://doi.org/10.1145/152610.152612
https://doi.org/10.1142/S0129054111008295
https://doi.org/10.1002/nav.1044
https://doi.org/10.1002/nav.1044
https://doi.org/10.1007/BF02798690
https://doi.org/10.1090/stml/061
http://www.ams.org/stml/061
https://doi.org/10.4230/LIPIcs.DISC.2017.8
https://hal.archives-ouvertes.fr/hal-01782388/document
https://hal.archives-ouvertes.fr/hal-01782388/document
https://doi.org/10.1007/s00446-018-0338-2
https://doi.org/10.1007/978-3-319-25258-2_13
https://doi.org/10.1007/978-3-319-25258-2_13
https://doi.org/10.1007/s00446-016-0276-9
https://doi.org/10.1007/s00446-016-0276-9
https://hal.archives-ouvertes.fr/hal-01782387
https://hal.archives-ouvertes.fr/hal-01782387

[25] Sébastien Bouchard, Yoann Dieudonné, and Anissa Lamani. “Byzantine Gathering in
Polynomial Time”. In: 45th International Colloquium on Automata, Languages, and
Programming, ICALP 2018, July 9-13, 2018, Prague, Czech Republic. ICALP. Ed.
by Ioannis Chatzigiannakis, Christos Kaklamanis, Dániel Marx, and Donald Sannella.
Vol. 107. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2018, 147:1–147:15.
isbn: 978-3-95977-076-7. doi: 10.4230/LIPIcs.ICALP.2018.147.

[26] Sébastien Bouchard, Yoann Dieudonné, Andrzej Pelc, and Franck Petit. “Deterministic
Treasure Hunt in the Plane with Angular Hints”. In: 29th International Symposium
on Algorithms and Computation, ISAAC 2018, December 16-19, 2018, Jiaoxi, Yilan,
Taiwan. ISAAC. Ed. by Wen-Lian Hsu, Der-Tsai Lee, and Chung-Shou Liao. Vol. 123.
LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2018, 48:1–48:13. isbn: 978-
3-95977-094-1. doi: 10.4230/LIPIcs.ISAAC.2018.48.

[27] Sébastien Bouchard, Yoann Dieudonné, Andrzej Pelc, and Franck Petit. “On
Deterministic Rendezvous at a Node of Agents with Arbitrary Velocities”. In: Inf Process
Lett 133 (2018), pp. 39–43. doi: 10.1016/j.ipl.2018.01.003.

[28] Sébastien Bouchard, Yoann Dieudonné, Andrzej Pelc, and Franck Petit. “Trouver un
trésor plus rapidement avec des conseils angulaires”. In: ALGOTEL. June 4, 2019. url:
https://hal.inria.fr/hal-02118362 (visited on 06/11/2019).

[29] Marjorie Bournat, Swan Dubois, and Franck Petit. “Gracefully Degrading Gathering in
Dynamic Rings”. In: Stabilization, Safety, and Security of Distributed Systems - 20th
International Symposium, SSS 2018, Tokyo, Japan, November 4-7, 2018, Proceedings.
SSS. Ed. by Taisuke Izumi and Petr Kuznetsov. Vol. 11201. Lecture Notes in Computer
Science. Springer, 2018, pp. 349–364. isbn: 978-3-030-03231-9. doi: 10.1007/978-3-
030-03232-6_23.

[30] Quirijn W. Bouts, Thom Castermans, Arthur van Goethem, Marc J. van Kreveld, and
Wouter Meulemans. “Competitive Searching for a Line on a Line Arrangement”. In: 29th
International Symposium on Algorithms and Computation, ISAAC 2018, December 16-
19, 2018, Jiaoxi, Yilan, Taiwan. Ed. by Wen-Lian Hsu, Der-Tsai Lee, and Chung-Shou
Liao. Vol. 123. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2018, 49:1–
49:12. isbn: 978-3-95977-094-1. doi: 10.4230/LIPIcs.ISAAC.2018.49.

[31] Quentin Bramas and Sébastien Tixeuil. “Brief Announcement: Probabilistic
Asynchronous Arbitrary Pattern Formation”. In: Proceedings of the 2016 ACM
Symposium on Principles of Distributed Computing, PODC 2016, Chicago, IL,
USA, July 25-28, 2016. Ed. by George Giakkoupis. ACM, 2016, pp. 443–445. isbn:
978-1-4503-3964-3. doi: 10.1145/2933057.2933074.

[32] Arnaud Casteigts, Paola Flocchini, Walter Quattrociocchi, and Nicola Santoro. “Time-
Varying Graphs and Dynamic Networks”. In: IJPEDS 27.5 (2012), pp. 387–408. doi:
10.1080/17445760.2012.668546.

[33] Jérémie Chalopin, Yoann Dieudonné, Arnaud Labourel, and Andrzej Pelc. “Rendezvous
in Networks in Spite of Delay Faults”. In: Distrib. Comput. 29.3 (2016), pp. 187–205.
doi: 10.1007/s00446-015-0259-2.

[34] Jérémie Chalopin, Emmanuel Godard, Yves Métivier, and Rodrigue Ossamy. “Mobile
Agent Algorithms Versus Message Passing Algorithms”. In: Principles of Distributed
Systems, 10th International Conference, OPODIS 2006, Bordeaux, France, December
12-15, 2006, Proceedings. Ed. by Alexander A. Shvartsman. Vol. 4305. Lecture Notes
in Computer Science. Springer, 2006, pp. 187–201. isbn: 978-3-540-49990-9. doi: 10.
1007/11945529_14.

119

https://doi.org/10.4230/LIPIcs.ICALP.2018.147
https://doi.org/10.4230/LIPIcs.ISAAC.2018.48
https://doi.org/10.1016/j.ipl.2018.01.003
https://hal.inria.fr/hal-02118362
https://doi.org/10.1007/978-3-030-03232-6_23
https://doi.org/10.1007/978-3-030-03232-6_23
https://doi.org/10.4230/LIPIcs.ISAAC.2018.49
https://doi.org/10.1145/2933057.2933074
https://doi.org/10.1080/17445760.2012.668546
https://doi.org/10.1007/s00446-015-0259-2
https://doi.org/10.1007/11945529_14
https://doi.org/10.1007/11945529_14

[35] Timothy H. Chung, Geoffrey A. Hollinger, and Volkan Isler. “Search and Pursuit-Evasion
in Mobile Robotics - A Survey”. In: Auton Robots 31.4 (2011), pp. 299–316. doi: 10.1007/
s10514-011-9241-4.

[36] Serafino Cicerone, Gabriele Di Stefano, and Alfredo Navarra. “Asynchronous Arbitrary
Pattern Formation: The Effects of a Rigorous Approach”. In: Distrib. Comput. 32.2
(2019), pp. 91–132. doi: 10.1007/s00446-018-0325-7.

[37] Mark Cieliebak, Paola Flocchini, Giuseppe Prencipe, and Nicola Santoro. “Distributed
Computing by Mobile Robots: Gathering”. In: SIAM J Comput 41.4 (2012), pp. 829–879.
doi: 10.1137/100796534.

[38] Reuven Cohen, Pierre Fraigniaud, David Ilcinkas, Amos Korman, and David Peleg.
“Label-Guided Graph Exploration by a Finite Automaton”. In: ACM Trans Algorithms
4.4 (2008), 42:1–42:18. doi: 10.1145/1383369.1383373.

[39] Reuven Cohen and David Peleg. “Convergence of Autonomous Mobile Robots with
Inaccurate Sensors and Movements”. In: SIAM J Comput 38.1 (2008), pp. 276–302. doi:
10.1137/060665257.

[40] Andrew Collins, Jurek Czyzowicz, Leszek Gasieniec, and Arnaud Labourel. “Tell Me
Where I Am So I Can Meet You Sooner”. In: Automata, Languages and Programming,
37th International Colloquium, ICALP 2010, Bordeaux, France, July 6-10, 2010,
Proceedings, Part II. Ed. by Samson Abramsky, Cyril Gavoille, Claude Kirchner,
Friedhelm Meyer auf der Heide, and Paul G. Spirakis. Vol. 6199. Lecture Notes in
Computer Science. Springer, 2010, pp. 502–514. isbn: 978-3-642-14161-4. doi: 10.1007/
978-3-642-14162-1_42.

[41] Jurek Czyzowicz, Konstantinos Georgiou, Evangelos Kranakis, Danny Krizanc, Lata
Narayanan, Jaroslav Opatrny, and Sunil M. Shende. “Search on a Line by Byzantine
Robots”. In: 27th International Symposium on Algorithms and Computation, ISAAC
2016, December 12-14, 2016, Sydney, Australia. Ed. by Seok-Hee Hong. Vol. 64. LIPIcs.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016, 27:1–27:12. isbn: 978-3-95977-
026-2. doi: 10.4230/LIPIcs.ISAAC.2016.27.

[42] Jurek Czyzowicz, Adrian Kosowski, and Andrzej Pelc. “How to Meet When You Forget:
Log-Space Rendezvous in Arbitrary Graphs”. In: Distrib. Comput. 25.2 (2012), pp. 165–
178. doi: 10.1007/s00446-011-0141-9.

[43] Jurek Czyzowicz, Andrzej Pelc, and Arnaud Labourel. “How to Meet Asynchronously
(Almost) Everywhere”. In: ACM Trans Algorithms 8.4 (2012), 37:1–37:14. doi: 10.1145/
2344422.2344427.

[44] Gianlorenzo D’Angelo, Gabriele Di Stefano, and Alfredo Navarra. “Gathering on Rings
under the Look-Compute-Move Model”. In: Distrib. Comput. 27.4 (2014), pp. 255–285.
doi: 10.1007/s00446-014-0212-9.

[45] Shantanu Das, Dariusz Dereniowski, Adrian Kosowski, and Przemyslaw Uznanski.
“Rendezvous of Distance-Aware Mobile Agents in Unknown Graphs”. In: Structural
Information and Communication Complexity - 21st International Colloquium, SIROCCO
2014, Takayama, Japan, July 23-25, 2014. Proceedings. Ed. by Magnús M. Halldórsson.
Vol. 8576. Lecture Notes in Computer Science. Springer, 2014, pp. 295–310. isbn: 978-3-
319-09619-3. doi: 10.1007/978-3-319-09620-9_23.

[46] Xavier Défago, Maria Gradinariu, Stéphane Messika, and Philippe Raipin Parvédy.
“Fault-Tolerant and Self-Stabilizing Mobile Robots Gathering”. In: Distributed
Computing, 20th International Symposium, DISC 2006, Stockholm, Sweden, September
18-20, 2006, Proceedings. Ed. by Shlomi Dolev. Vol. 4167. Lecture Notes in Computer
Science. Springer, 2006, pp. 46–60. isbn: 978-3-540-44624-8. doi: 10.1007/11864219_4.

120

https://doi.org/10.1007/s10514-011-9241-4
https://doi.org/10.1007/s10514-011-9241-4
https://doi.org/10.1007/s00446-018-0325-7
https://doi.org/10.1137/100796534
https://doi.org/10.1145/1383369.1383373
https://doi.org/10.1137/060665257
https://doi.org/10.1007/978-3-642-14162-1_42
https://doi.org/10.1007/978-3-642-14162-1_42
https://doi.org/10.4230/LIPIcs.ISAAC.2016.27
https://doi.org/10.1007/s00446-011-0141-9
https://doi.org/10.1145/2344422.2344427
https://doi.org/10.1145/2344422.2344427
https://doi.org/10.1007/s00446-014-0212-9
https://doi.org/10.1007/978-3-319-09620-9_23
https://doi.org/10.1007/11864219_4

[47] Erik D. Demaine, Sándor P. Fekete, and Shmuel Gal. “Online Searching with Turn Cost”.
In: Theor Comput Sci 361.2-3 (2006), pp. 342–355. doi: 10.1016/j.tcs.2006.05.018.

[48] Anders Dessmark, Pierre Fraigniaud, Dariusz R. Kowalski, and Andrzej Pelc.
“Deterministic Rendezvous in Graphs”. In: Algorithmica 46.1 (2006), pp. 69–96. doi:
10.1007/s00453-006-0074-2.

[49] Yoann Dieudonné and Andrzej Pelc. “Deterministic Polynomial Approach in the Plane”.
In: Distrib. Comput. 28.2 (2015), pp. 111–129. doi: 10.1007/s00446-014-0216-5.

[50] Yoann Dieudonné and Andrzej Pelc. “Anonymous Meeting in Networks”. In: Algorithmica
74.2 (2016), pp. 908–946. doi: 10.1007/s00453-015-9982-0.

[51] Yoann Dieudonné, Andrzej Pelc, and David Peleg. “Gathering Despite Mischief”. In:
ACM Trans Algorithms 11.1 (2014), 1:1–1:28. doi: 10.1145/2629656.

[52] Yoann Dieudonné, Andrzej Pelc, and Vincent Villain. “How to Meet Asynchronously
at Polynomial Cost”. In: SIAM J Comput 44.3 (2015), pp. 844–867. doi: 10.1137/
130931990.

[53] Yoann Dieudonné and Franck Petit. “Self-Stabilizing Gathering with Strong Multiplicity
Detection”. In: Theor Comput Sci 428 (2012), pp. 47–57. doi: 10.1016/j.tcs.2011.
12.010.

[54] Ha Thi Thu Doan, François Bonnet, and Kazuhiro Ogata. “Model Checking of Robot
Gathering”. In: 21st International Conference on Principles of Distributed Systems,
OPODIS 2017, Lisbon, Portugal, December 18-20, 2017. OPODIS. Ed. by James Aspnes,
Alysson Bessani, Pascal Felber, and João Leitão. Vol. 95. LIPIcs. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 2017, 12:1–12:16. isbn: 978-3-95977-061-3. doi: 10.
4230/LIPIcs.OPODIS.2017.12.

[55] Shlomi Dolev. Self-Stabilization. MIT Press, 2000. isbn: 978-0-262-04178-2.
[56] Yuval Emek, Tobias Langner, David Stolz, Jara Uitto, and Roger Wattenhofer. “How

Many Ants Does It Take to Find the Food?” In: Theor Comput Sci 608 (2015), pp. 255–
267. doi: 10.1016/j.tcs.2015.05.054.

[57] Ronald Fagin, Joseph Y. Halpern, Yoram Moses, and Moshe Vardi. Reasoning About
Knowledge. MIT Press, Jan. 9, 2004. 533 pp. isbn: 978-0-262-30782-6.

[58] Paola Flocchini, Giuseppe Prencipe, and Nicola Santoro. Distributed Computing by
Oblivious Mobile Robots. Synthesis Lectures on Distributed Computing Theory. Morgan
& Claypool Publishers, 2012. doi: 10.2200/S00440ED1V01Y201208DCT010.

[59] Paola Flocchini, Giuseppe Prencipe, and Nicola Santoro, eds. Distributed Computing by
Mobile Entities, Current Research in Moving and Computing. Vol. 11340. Lecture Notes
in Computer Science. Springer, 2019. isbn: 978-3-030-11071-0. doi: 10.1007/978-3-
030-11072-7.

[60] Paola Flocchini, Giuseppe Prencipe, Nicola Santoro, and Peter Widmayer. “Gathering
of Asynchronous Robots with Limited Visibility”. In: Theor Comput Sci 337.1-3 (2005),
pp. 147–168. doi: 10.1016/j.tcs.2005.01.001.

[61] Pierre Fraigniaud, Cyril Gavoille, David Ilcinkas, and Andrzej Pelc. “Distributed
Computing with Advice: Information Sensitivity of Graph Coloring”. In: Distrib. Comput.
21.6 (2009), pp. 395–403. doi: 10.1007/s00446-008-0076-y.

[62] Pierre Fraigniaud, David Ilcinkas, and Andrzej Pelc. “Tree Exploration with Advice”. In:
Inf Comput 206.11 (2008), pp. 1276–1287. doi: 10.1016/j.ic.2008.07.005.

121

https://doi.org/10.1016/j.tcs.2006.05.018
https://doi.org/10.1007/s00453-006-0074-2
https://doi.org/10.1007/s00446-014-0216-5
https://doi.org/10.1007/s00453-015-9982-0
https://doi.org/10.1145/2629656
https://doi.org/10.1137/130931990
https://doi.org/10.1137/130931990
https://doi.org/10.1016/j.tcs.2011.12.010
https://doi.org/10.1016/j.tcs.2011.12.010
https://doi.org/10.4230/LIPIcs.OPODIS.2017.12
https://doi.org/10.4230/LIPIcs.OPODIS.2017.12
https://doi.org/10.1016/j.tcs.2015.05.054
https://doi.org/10.2200/S00440ED1V01Y201208DCT010
https://doi.org/10.1007/978-3-030-11072-7
https://doi.org/10.1007/978-3-030-11072-7
https://doi.org/10.1016/j.tcs.2005.01.001
https://doi.org/10.1007/s00446-008-0076-y
https://doi.org/10.1016/j.ic.2008.07.005

[63] Pierre Fraigniaud and Andrzej Pelc. “Deterministic Rendezvous in Trees with Little
Memory”. In: Distributed Computing, 22nd International Symposium, DISC 2008,
Arcachon, France, September 22-24, 2008. Proceedings. Ed. by Gadi Taubenfeld.
Vol. 5218. Lecture Notes in Computer Science. Springer, 2008, pp. 242–256. isbn: 978-3-
540-87778-3. doi: 10.1007/978-3-540-87779-0_17.

[64] Pierre Fraigniaud and Andrzej Pelc. “Delays Induce an Exponential Memory Gap for
Rendezvous in Trees”. In: ACM Trans Algorithms 9.2 (2013), 17:1–17:24. doi: 10.1145/
2438645.2438649.

[65] G. Matthew Fricke, Joshua P. Hecker, Antonio D. Griego, Linh T. Tran, and Melanie
E. Moses. “A Distributed Deterministic Spiral Search Algorithm for Swarms”. In: 2016
IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2016,
Daejeon, South Korea, October 9-14, 2016. IEEE, 2016, pp. 4430–4436. isbn: 978-1-
5090-3762-9. doi: 10.1109/IROS.2016.7759652.

[66] B. Grünbaum. “Partitions of Mass-Distributions and of Convex Bodies by Hyperplanes.”
In: Pacific J. Math. 10.4 (1960), pp. 1257–1261. issn: 0030-8730. url: https : / /
projecteuclid.org/euclid.pjm/1103038065 (visited on 04/10/2019).

[67] Samuel Guilbault and Andrzej Pelc. “Gathering Asynchronous Oblivious Agents with
Local Vision in Regular Bipartite Graphs”. In: Theor Comput Sci 509 (2013), pp. 86–96.
doi: 10.1016/j.tcs.2012.07.004.

[68] Joseph Y. Halpern. “Computer Science and Game Theory: A Brief Survey”. In: CoRR
abs/cs/0703148 (2007). url: http : / / arxiv . org / abs / cs / 0703148 (visited on
05/31/2019).

[69] Taisuke Izumi, Samia Souissi, Yoshiaki Katayama, Nobuhiro Inuzuka, Xavier Défago,
Koichi Wada, and Masafumi Yamashita. “The Gathering Problem for Two Oblivious
Robots with Unreliable Compasses”. In: SIAM J Comput 41.1 (2012), pp. 26–46. doi:
10.1137/100797916.

[70] Artur Jez and Jakub Lopuszanski. “On the Two-Dimensional Cow Search Problem”. In:
Inf Process Lett 109.11 (2009), pp. 543–547. doi: 10.1016/j.ipl.2009.01.020.

[71] Ming-Yang Kao, John H. Reif, and Stephen R. Tate. “Searching in an Unknown
Environment: An Optimal Randomized Algorithm for the Cow-Path Problem”. In: Inf
Comput 131.1 (1996), pp. 63–79. doi: 10.1006/inco.1996.0092.

[72] Michal Katz, Nir A. Katz, Amos Korman, and David Peleg. “Labeling Schemes for
Flow and Connectivity”. In: SIAM J Comput 34.1 (2004), pp. 23–40. doi: 10.1137/
S0097539703433912.

[73] David Kempe, Jon M. Kleinberg, and Amit Kumar. “Connectivity and Inference
Problems for Temporal Networks”. In: J Comput Syst Sci 64.4 (2002), pp. 820–842.
doi: 10.1006/jcss.2002.1829.

[74] Adrian Kosowski and Alfredo Navarra. “Graph Decomposition for Memoryless Periodic
Exploration”. In: Algorithmica 63.1-2 (2012), pp. 26–38. doi: 10.1007/s00453-011-
9518-1.

[75] David Kotz and Robert S. Gray. “Mobile Agents and the Future of the Internet”. In:
Oper. Syst. Rev. 33.3 (1999), pp. 7–13. doi: 10.1145/311124.311130.

[76] Michal Koucký. “Universal Traversal Sequences with Backtracking”. In: J Comput Syst
Sci 65.4 (2002), pp. 717–726. doi: 10.1016/S0022-0000(02)00023-5.

[77] Dariusz R. Kowalski and Adam Malinowski. “How to Meet in Anonymous Network”. In:
Theoretical Computer Science. Structural Information and Communication Complexity
(SIROCCO 2006) 399.1 (June 3, 2008), pp. 141–156. issn: 0304-3975. doi: 10.1016/j.
tcs.2008.02.010.

122

https://doi.org/10.1007/978-3-540-87779-0_17
https://doi.org/10.1145/2438645.2438649
https://doi.org/10.1145/2438645.2438649
https://doi.org/10.1109/IROS.2016.7759652
https://projecteuclid.org/euclid.pjm/1103038065
https://projecteuclid.org/euclid.pjm/1103038065
https://doi.org/10.1016/j.tcs.2012.07.004
http://arxiv.org/abs/cs/0703148
https://doi.org/10.1137/100797916
https://doi.org/10.1016/j.ipl.2009.01.020
https://doi.org/10.1006/inco.1996.0092
https://doi.org/10.1137/S0097539703433912
https://doi.org/10.1137/S0097539703433912
https://doi.org/10.1006/jcss.2002.1829
https://doi.org/10.1007/s00453-011-9518-1
https://doi.org/10.1007/s00453-011-9518-1
https://doi.org/10.1145/311124.311130
https://doi.org/10.1016/S0022-0000(02)00023-5
https://doi.org/10.1016/j.tcs.2008.02.010
https://doi.org/10.1016/j.tcs.2008.02.010

[78] Evangelos Kranakis, Danny Krizanc, Euripides Markou, Aris Pagourtzis, and Felipe
Ramírez. “Different Speeds Suffice for Rendezvous of Two Agents on Arbitrary Graphs”.
In: SOFSEM 2017: Theory and Practice of Computer Science - 43rd International
Conference on Current Trends in Theory and Practice of Computer Science, Limerick,
Ireland, January 16-20, 2017, Proceedings. Ed. by Bernhard Steffen, Christel Baier, Mark
van den Brand, Johann Eder, Mike Hinchey, and Tiziana Margaria. Vol. 10139. Lecture
Notes in Computer Science. Springer, 2017, pp. 79–90. isbn: 978-3-319-51962-3. doi:
10.1007/978-3-319-51963-0_7.

[79] Evangelos Kranakis, Nicola Santoro, Cindy Sawchuk, and Danny Krizanc. “Mobile Agent
Rendezvous in a Ring”. In: 23rd International Conference on Distributed Computing
Systems (ICDCS 2003), 19-22 May 2003, Providence, RI, USA. IEEE Computer Society,
2003, pp. 592–599. isbn: 978-0-7695-1920-3. doi: 10.1109/ICDCS.2003.1203510.

[80] Elmar Langetepe. “On the Optimality of Spiral Search”. In: Proceedings of the Twenty-
First Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2010, Austin,
Texas, USA, January 17-19, 2010. Society for Industrial and Applied Mathematics,
Jan. 17, 2010, pp. 1–12. isbn: 978-0-89871-701-3 978-1-61197-307-5. doi: 10.1137/1.
9781611973075.1.

[81] Elmar Langetepe. “Searching for an Axis-Parallel Shoreline”. In: Theor Comput Sci 447
(2012), pp. 85–99. doi: 10.1016/j.tcs.2011.12.069.

[82] Tobias Langner, Barbara Keller, Jara Uitto, and Roger Wattenhofer. “Overcoming
Obstacles with Ants”. In: 19th International Conference on Principles of Distributed
Systems (OPODIS 2015). Ed. by Emmanuelle Anceaume, Christian Cachin, and Maria
Gradinariu Potop-Butucaru. Vol. 46. Leibniz International Proceedings in Informatics
(LIPIcs). Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016, 9:1–9:17. isbn: 978-
3-939897-98-9. doi: 10.4230/LIPIcs.OPODIS.2015.9.

[83] Matthieu Latapy, Tiphaine Viard, and Clémence Magnien. “Stream Graphs and Link
Streams for the Modeling of Interactions over Time”. In: Soc. Netw Anal. Min. 8.1 (2018),
61:1–61:29. doi: 10.1007/s13278-018-0537-7.

[84] Giuseppe Antonio Di Luna, Paola Flocchini, Linda Pagli, Giuseppe Prencipe, Nicola
Santoro, and Giovanni Viglietta. “Gathering in Dynamic Rings”. In: Structural
Information and Communication Complexity - 24th International Colloquium, SIROCCO
2017, Porquerolles, France, June 19-22, 2017, Revised Selected Papers. SIROCCO. Ed.
by Shantanu Das and Sébastien Tixeuil. Vol. 10641. Lecture Notes in Computer Science.
Springer, 2017, pp. 339–355. isbn: 978-3-319-72049-4. doi: 10.1007/978-3-319-72050-
0_20.

[85] Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996. isbn: 978-1-55860-
348-6.

[86] Gianluca De Marco, Luisa Gargano, Evangelos Kranakis, Danny Krizanc, Andrzej Pelc,
and Ugo Vaccaro. “Asynchronous Deterministic Rendezvous in Graphs”. In: Theor
Comput Sci 355.3 (2006), pp. 315–326. doi: 10.1016/j.tcs.2005.12.016.

[87] Toshimitsu Masuzawa and Hirotsugu Kakugawa. “Self-Stabilization in Spite of Frequent
Changes of Networks: Case Study of Mutual Exclusion on Dynamic Rings”. In: Self-
Stabilizing Systems, 7th International Symposium, SSS 2005, Barcelona, Spain, October
26-27, 2005, Proceedings. Ed. by Ted Herman and Sébastien Tixeuil. Vol. 3764. Lecture
Notes in Computer Science. Springer, 2005, pp. 183–197. isbn: 978-3-540-29814-4. doi:
10.1007/11577327_13.

[88] Avery Miller and Andrzej Pelc. “Fast Rendezvous with Advice”. In: Theor Comput Sci
608 (2015), pp. 190–198. doi: 10.1016/j.tcs.2015.09.025.

123

https://doi.org/10.1007/978-3-319-51963-0_7
https://doi.org/10.1109/ICDCS.2003.1203510
https://doi.org/10.1137/1.9781611973075.1
https://doi.org/10.1137/1.9781611973075.1
https://doi.org/10.1016/j.tcs.2011.12.069
https://doi.org/10.4230/LIPIcs.OPODIS.2015.9
https://doi.org/10.1007/s13278-018-0537-7
https://doi.org/10.1007/978-3-319-72050-0_20
https://doi.org/10.1007/978-3-319-72050-0_20
https://doi.org/10.1016/j.tcs.2005.12.016
https://doi.org/10.1007/11577327_13
https://doi.org/10.1016/j.tcs.2015.09.025

[89] Avery Miller and Andrzej Pelc. “Time versus Cost Tradeoffs for Deterministic Rendezvous
in Networks”. In: Distrib. Comput. 29.1 (2016), pp. 51–64. doi: 10.1007/s00446-015-
0253-8.

[90] Nicolas Nisse and David Soguet. “Graph Searching with Advice”. In: Theor Comput Sci
410.14 (2009), pp. 1307–1318. doi: 10.1016/j.tcs.2008.08.020.

[91] Linda Pagli, Giuseppe Prencipe, and Giovanni Viglietta. “Getting Close without
Touching: Near-Gathering for Autonomous Mobile Robots”. In: Distrib. Comput. 28.5
(2015), pp. 333–349. doi: 10.1007/s00446-015-0248-5.

[92] Petrisor Panaite and Andrzej Pelc. “Exploring Unknown Undirected Graphs”. In: J
Algorithms 33.2 (1999), pp. 281–295. doi: 10.1006/jagm.1999.1043.

[93] Marshall C. Pease, Robert E. Shostak, and Leslie Lamport. “Reaching Agreement in the
Presence of Faults”. In: J ACM 27.2 (1980), pp. 228–234. doi: 10.1145/322186.322188.

[94] Andrzej Pelc. “Deterministic Rendezvous in Networks: A Comprehensive Survey”. In:
Networks 59.3 (2012), pp. 331–347. doi: 10.1002/net.21453.

[95] Eric Rasmusen. Games and Information: An Introduction to Game Theory. Wiley,
Nov. 28, 2006. 559 pp. isbn: 978-1-4051-3666-2.

[96] Omer Reingold. “Undirected Connectivity in Log-Space”. In: J ACM 55.4 (2008), 17:1–
17:24. doi: 10.1145/1391289.1391291.

[97] Thomas C. Schelling. The Strategy of Conflict. Harvard University Press, 1980. 332 pp.
isbn: 978-0-674-84031-7.

[98] Amnon Ta-Shma and Uri Zwick. “Deterministic Rendezvous, Treasure Hunts, and
Strongly Universal Exploration Sequences”. In: ACM Trans Algorithms 10.3 (2014), 12:1–
12:15. doi: 10.1145/2601068.

[99] Kevin Spieser and Emilio Frazzoli. “The Cow-Path Game: A Competitive Vehicle Routing
Problem”. In: Proceedings of the 51th IEEE Conference on Decision and Control, CDC
2012, December 10-13, 2012, Maui, HI, USA. IEEE, 2012, pp. 6513–6520. isbn: 978-1-
4673-2065-8. doi: 10.1109/CDC.2012.6426279.

[100] Ichiro Suzuki and Masafumi Yamashita. “Distributed Anonymous Mobile Robots:
Formation of Geometric Patterns”. In: SIAM J Comput 28.4 (1999), pp. 1347–1363.
doi: 10.1137/S009753979628292X.

[101] Mikkel Thorup and Uri Zwick. “Approximate Distance Oracles”. In: J ACM 52.1 (2005),
pp. 1–24. doi: 10.1145/1044731.1044732.

[102] Yukiko Yamauchi, Tomoko Izumi, and Sayaka Kamei. “Mobile Agent Rendezvous on a
Probabilistic Edge Evolving Ring”. In: Third International Conference on Networking and
Computing, ICNC 2012, Okinawa, Japan, December 5-7, 2012. ICNC. IEEE Computer
Society, 2012, pp. 103–112. isbn: 978-1-4673-4624-5. doi: 10.1109/ICNC.2012.23.

[103] Yukiko Yamauchi, Taichi Uehara, Shuji Kijima, and Masafumi Yamashita. “Plane
Formation by Synchronous Mobile Robots in the Three-Dimensional Euclidean Space”.
In: J ACM 64.3 (2017), 16:1–16:43. doi: 10.1145/3060272.

124

https://doi.org/10.1007/s00446-015-0253-8
https://doi.org/10.1007/s00446-015-0253-8
https://doi.org/10.1016/j.tcs.2008.08.020
https://doi.org/10.1007/s00446-015-0248-5
https://doi.org/10.1006/jagm.1999.1043
https://doi.org/10.1145/322186.322188
https://doi.org/10.1002/net.21453
https://doi.org/10.1145/1391289.1391291
https://doi.org/10.1145/2601068
https://doi.org/10.1109/CDC.2012.6426279
https://doi.org/10.1137/S009753979628292X
https://doi.org/10.1145/1044731.1044732
https://doi.org/10.1109/ICNC.2012.23
https://doi.org/10.1145/3060272

	Introduction
	Context and State of the Art
	Distributed Systems
	Related Research Fields
	The Tasks and Model Considered throughout this Thesis
	Another Model: Look-Compute-Move Robots

	Contributions

	Model
	The Environment of the Mobile Agents
	Modeling Time
	Modeling Space
	Defining the Whole Environment

	Execution of an Algorithm by a Distributed System of Mobile Agents
	Initialization
	Progress of the Execution: Abilities of the Mobile Agents

	Tasks Specifications and Efficiency of an Algorithm
	Notations

	Strong Rendezvous in Finite Graphs
	Introduction
	Related Work
	Contribution
	Roadmap

	Preliminaries
	The Algorithm and its Analysis
	Discussion of Alternative Scenarios
	Conclusion

	Asynchronous Approach in the Plane
	Introduction
	Related Work
	Model and Reduction from Asynchronous Approach in the Plane to Weak Rendezvous in the Infinite Grid
	Contribution
	Roadmap

	Preliminaries
	Idea of the Algorithm
	Informal Description in a Nutshell
	Under the Hood

	Basic Patterns
	Pattern Seed
	Pattern RepeatSeed
	Pattern Berry
	Pattern CloudBerry

	Main Algorithm
	Proof of Correctness and Cost Analysis
	Properties of the Basic Patterns
	Agents Synchronizations
	Correctness of Procedure AsyncGridRV
	Cost Analysis

	Conclusion

	Byzantine Gathering in Finite Graphs
	Introduction
	Introduction and Related Work
	Model
	Contribution
	Roadmap

	Preliminaries
	Building Blocks
	Procedure Group
	Procedure Merge

	The Positive Result
	Intuition
	Formal Description
	Proof and Analysis

	The Negative Result
	Conclusion

	Treasure Hunt in the Plane with Angular Hints
	Introduction
	Model and Task Formulation
	Contribution

	Preliminaries
	Angles at most
	High Level Idea of the Algorithm
	Algorithm and Analysis

	Angles Bounded by <2
	High Level Idea
	Algorithm and Analysis

	Arbitrary Angles
	Conclusion

	Conclusion of the Thesis
	Sum up of the Main Parts
	Perspectives of the Thesis

	Bibliography

