Ru- and Rh-catalyzed [$2+2+2]$ cycloadditions: an access to fluorenone, 2 -aminopyridine, and 1,3-dihydroisobenzofuran derivatives

Fei Ye

- To cite this version:

Fei Ye. Ru- and Rh-catalyzed $[2+2+2]$ cycloadditions: an access to fluorenone, 2-aminopyridine, and 1,3-dihydroisobenzofuran derivatives. Organic chemistry. Université Pierre et Marie Curie - Paris VI, 2017. English. NNT : 2017PA066347 . tel-02320655v1

HAL Id: tel-02320655
 https://theses.hal.science/tel-02320655v1

Submitted on 19 Oct 2019 (v1), last revised 29 Nov 2019 (v2)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Université Pierre et Marie Curie

Ecole Doctorale de Chimie Moléculaire de Paris-Centre
Institut de Recherche de Chimie Paris / Equipe CSB2D

$\mathbf{R u}$ - and Rh-catalyzed [2+2+2] cycloadditions: an access to fluorenone, 2-aminopyridine, and 1,3dihydroisobenzofuran derivatives

Par Fei YE
Thèse de doctorat de Chimie Organique

Dirigée par les Drs. Véronique MICHELET et Virginie VIDAL

Présentée et soutenue publiquement le 17 Octobre 2017

Devant un jury composé de :

GOSMINI Corinne - Directrice de Recherche CNRS, Ecole Polytechnique - Rapporteur RODRIGUEZ Jean - Professeur, Université Aix Marseille - Rapporteur MALACRIA Max - Professeur, Université Pierre et Marie Curie - Examinateur MICHELET Véronique - Professeur, Université Nice Sophia Antipolis - Directrice de thèse VIDAL Virginie - Directrice de Recherche CNRS, Chimie ParisTech - Directrice de thèse
«If we knew what we were doing, it wouldn't be called research, would it?»

Albert Einstein

Acknowledgments

This thesis was conducted under the direction of Doctor Virginie Vidal, Professor Véronique Michelet and Doctor Mansour Haddad (co-advisor) at Chimie ParisTech in the "Catalysis, Synthesis of Biomolecules and Sustainable Development" team (CSB2D team) at the Institut de Recherche de Chimie Paris (IRCP laboratory).

I have been working in Paris since October 2014, I have thoroughly enjoyed the wonderful three years in this beautiful city. I am deeply touched by the people who support me warmly to complete this thesis, and I would like to thank them sincerely.

I would like to express my sincere gratitude to Doctor Corinne Gosmini, Professor Jean Rodriguez and Professor Max Malacria for accepting to read and review my thesis and to be part of my defense committee.

First and foremost, I wish to thank my PhD advisors, Virginie and Véronique. I want to say they are the lucky stars in my life since they gave me the opportunity to start my PhD program in their wonderful team, my life has become more bright since then. They take care very much of me and were always thoughtful in my life, my work and my future. They always give me a power to move forward. I remember they used to say something like "you have done a very good job", "excellent", "super" to encourage me, even if I didn't make the things perfect. I am very grateful that they can be so patient with me. Although they are very busy, they never hesitate to spend plenty of time to guide me to make things better. In such circumstances, over these three years, my personal and professional abilities have been greatly improved. In chemistry, we have many full discussions in each project, I have enjoyed so much working with them. We have done three papers together. It makes me more confident in this area. Thanks to them with all my heart!

I am also grateful to Mansour. He is like a teacher and a friend all in one. He taught me a lot of professional experience and good habits in chemistry. He is always willing to help me and never said no to me. Thanks for his good humor and optimistic attitude, it makes me so comfortable working in his lab over these three years. I will never forget it. I wish him will be very happy and good health in his retired life, although there are some years to work yet.

I also want thank the other permanents in CSB2D team. Phannarath Phansavath, called Pocki, who was enthusiastic to me. I thank her for the responsiblility of each commercial order (forgive me for all the mistakes I have made with the "commandes" ©). Sylvain Darses, for his good spirit, and also for his jokes. He had fun with everyone. Thanks to Tahar Ayad and Patrick Toullec, for few chemistry discussions and good humors. Big thanks also to Maxime Vitale, who combines not only chemical skills, but also computing skills as well.

I would like to give a special thanks to our dear Chachaaaaaa, Charlène. As she said, she is everywhere. A special thanks to her for the responsibility of the lab's security, allowing us to work in a safer environment, that's very important for a chemist. Thanks also for giving me a special right to take all the staffs (needles, syringe, vials, caps, septum...) in any day of the week. I will miss this period.

Next, it's time to give my thanks to all the former and present ATER, Postdoc and PhD students.

Let's start from the ATER. Aurélie, her positive and optimistic attitude towards all the things makes me admiring. Congratulations for her permanent position in ICSN. Fatma, thanks for her work on the $[2+2+2]$ project. I hope she will enjoy her next ATER position in Versailles.

The former postdoc, Adrien, thank him for showing me the first Chinese restaurant Bambou in Paris, I am the VIP of the restaurant now ©. Amandine, I still remember her sweet smile and beautiful window's painting, it's one of my seldom updated image in my Facebook. Eder, to me he is like a master (师父 Shi Fu in Chinese), thank him for teaching me the professional experience on crystallization, that's amazing. I wish him to have a good future in academic research, and I hope to see him again. Sudipta, he is an awesome guy, he is always the first one in and the last one out working in the lab, I believe that the hardest work he did will one day bring him the biggest benefits. Clément, he is always doing a big column when I saw him. Thanks for his kindness.

The former PhD students. Pierre-George, PG, he is my "idol". He always makes everything to be the best :))))). Gaëtan, we haven't had much time to get to know each other, in my mind, he is very optimistic and kind, I liked to chat with him. Marc, he helped me a lot when I started my work in the lab, he was always available and patient to explain me everything. Fabien, thanks for his good humour and jokes especially with the montage pictures, he made a
lot of fun in the lab. Next one is our Miss Panda, dear Charlotte, I've never seen a girl who loves so much panda. It is sure that wherever I see a panda, I will think about her. And thank her for taking me running in Luxembourg Park. However, it is a pity that we have never run again since she left to Germany. I hope her to have good life in the future.

A special acknowledgement goes to the best other three graduating PhD students, Benjamin, Maxime and Quentin. Thanks to the king of battery, BenBen. It was my honor to work with him in the same lab. Thanks to him for teaching me a lot of interesting French words and jokes. I also thank him for organizing wonderful outdoor activities, picnic in Fontainebleau, barbecues in his warmly house, accro-branches afternoon, etc. I wish him a bright future in his carrier. Big thanks to Maxime \mathbf{L}, he is definitively a nice guy in the lab. I don't remember how many administrative works he helped me to do, registration files, comité de suivi, application of defense. Wish him to enjoy his future research in pharmaceutical company, congratulations! Thanks to sunshine Quentin, he was also warm-hearted and enthusiastic. I am envious of his ability to carry out recreational activities and chemistry at the same time. I wonder if he can play the trumpet in his defense day, that will be awesome. I also thank him for inviting me for the Raclette Party in his house. I enjoyed the typical French tradition very much. Hope him to enjoy the oncoming work in fine chemical company.

I next want to thank the present PhD students. Longsheng, my brother, I can't thank him enough. He takes care of me so much since we met six years ago. We have so many things worth remembering, all the things converge into a word "no brother no game, no brother no chemistry". Yue, he is an artist, chemist and scholar. I always call him Dr. Tang, because he knows everything in heaven above and the earth underneath. I also thank him for giving me the first defense gift. Aymane, I enjoyed the cooperation with him for the passeur NMR, thanks to him for not complaining to Marie-Noëlle for my all the times absent. And also I believe that his hard work can provide him a good return, sooner or later, Bon courage! Johanne, congratulations for her success to get a grant and being a doctoral student in this laboratory. And thank to her for bring the homemade Lemon Tarte in her ending internship pot, I could eat the whole of it.

I next want to thank all the staffs working in Chimie ParisTech for support me to finish my PhD thesis. Particularly, I would like to thank Marie-Noëlle for her hard work and careful explanation in NMR spectrometry. Thanks to Céline and Claudine for their incredible work in mass spectrometry. Thanks to Frédéric for some measurement of melting points. Thanks to

Franck for bringing all the experimental consumables from upstairs to downstairs every day. I also thank Suzanne and Marjorie for the administrative work.

I would like also to thank Lise-Marie Chamoreau and Geoffrey Gontard for the Xray analysis (IPMC, UPMC).

I also want to thank my two tutors of "Comité de suivi de thèse", Doctor Muriel Amatore and Doctor Christophe Meyer, for their comments on my work during my PhD study.

I would like also to thank all my friends in France and China who helped and supported me, I would like to name those who were closer to me over these three years: Lu, Jie, Tao, Tongwei, Sen, Wenbin, Shaoyi, Dandan, Kunyun, Jingwen, Jun, Xiaohan, Conghui.

Last, my thanks would go to my beloved family, my parents and my sister, for their thorough concern and great confidence in me all through these years. Particularly, I want to thank my lover for accompanying me during these lovely and memorable three years.

Finally, I would like to give a special acknowledgement to China Scholarship Council for giving me a three years's fellowship in Paris. I also thank all the support of various platforms and institutions for CSB2D team.

Table of contents

Abbreviations 5
Résumé 9
General introduction 33
Chapter I: Bibliography 39

1. Intermolecular reactions 39
1.1. Cyclotrimerization of one alkyne 40
1.2. Cycloaddition between two different alkynes. 43
1.3. Cycloaddition of three different alkynes 45
1.4. Cyclotrimerization of two alkynes with another unsaturated substrate 47
2. Partially intramolecular reactions 48
2.1. Cobalt-catalyzed partially intramolecular $[2+2+2]$ cycloadditions 48
2.2. Rhodium-catalyzed partially intramolecular $[2+2+2]$ cycloadditions 50
2.3. Nickel-catalyzed partially intramolecular $[2+2+2]$ cycloadditions 54
2.4. Iridium-catalyzed partially intramolecular [$2+2+2]$ cycloadditions 56
2.5. Ruthenium-catalyzed partially intramolecular $[2+2+2]$ cycloadditions 60
3. Totally intramolecular reactions. 65
Chapter II: Access toward fluorenone derivatives through solvent-free ruthenium trichloride mediated $[2+2+2]$ cycloadditions 69
4. Interest of fluorenones 69
5. Preparation methods in the literature 71
2.1 Traditional methods for the preparation of fluorenones 71
2.2 Transition-metal-catalyzed synthesis of fluorenones 72
2.2.1 Palladium-catalyzed synthesis of fluorenones 72
2.2.1.1 C-H functionalization of 2-haloarylketones 72
2.2.1.2 Directing-group-assisted C-H activation. 73
2.2.1.3 Dehydrogenative cyclization 79
2.2.1.4 Cyclocarbonylation 81
2.2.1.5 Decarboxylative cyclization 83
2.2.1.6 Other methods for the preparation of fluorenones 83
2.2.2 Rhodium-catalyzed synthesis of fluorenones 86
2.2.2.1 Conversion of benzoic anhydrides into fluorenones 86
2.2.2.2 Partially intramolecular [$2+2+2$] cycloadditions. 86
2.2.2.3 Intramolecular acylation 87
2.2.3 Silver-catalyzed synthesis of fluorenones 88
2.2.3.1 Intramolecular radical cyclization 88
2.2.3.2 Decarboxylative radical cyclization 88
2.2.4 Copper-catalyzed synthesis of fluorenones 89
6. Objectives 90
7. Results and discussion 91
4.1 Synthesis of starting materials: arylcarbamoyl bridged α, ω-diynes and internal alkynes 91
4.1.1. Synthesis of benzoyl bridged α, ω-diynes 91
4.1.2. Synthesis of heteroaromatic bridged α, ω-diynes 95
4.1.3. Synthesis of internal alkynes 97
4.2 Interest of $\mathrm{RuCl}_{3} \cdot n \mathrm{H}_{2} \mathrm{O}$ complex 98
$4.3 \mathrm{RuCl}_{3} \cdot n \mathrm{H}_{2} \mathrm{O}$-mediated $[2+2+2]$ cycloaddition of benzoyl bridged α, ω-diynes with symmetrical internal alkynes 101
$4.4 \mathrm{RuCl}_{3} \cdot n \mathrm{H}_{2} \mathrm{O}$-mediated $[2+2+2]$ cycloaddition of heteroaromatic carbonyl bridged $\alpha, \omega-$ diynes with internal alkynes 106
4.5 Regioselective $\mathrm{RuCl}_{3} \cdot n \mathrm{H}_{2} \mathrm{O}$-mediated [2+2+2] cycloaddition of benzoyl bridged α, ω - diynes with unsymmetrical terminal and internal alkynes 108
4.6 Post-functionalization of fluorenone derivatives 109
8. Conclusion 112
Chapter III: Ruthenium-catalyzed [2+2+2] cycloaddition of diynes with electron-rich cyanamides: an easy access to 2-aminopyridine derivatives 113
9. Interest of 2-Aminopyridines 113
10. Synthetic methods for the preparation of 2-aminopyridines 116
2.1 Traditional methods 116
2.2 Transition-metal-catalyzed $[2+2+2]$ cycloadditions of alkynes with cyanamides 117
2.2.1. Cobalt-catalyzed $[2+2+2]$ cycloadditions 118
2.2.2. Rhodium-catalyzed $[2+2+2]$ cycloadditions 123
2.2.3. Nickel-catalyzed [$2+2+2$] cycloadditions 124
2.2.4. Iron-catalyzed $[2+2+2]$ cycloadditions 126
2.2.5. Iridium-catalyzed $[2+2+2]$ cycloadditions 128
2.2.6. Ruthenium-catalyzed $[2+2+2]$ cycloadditions 130
11. Objectives 130
12. Results and discussion 131
4.1 Synthesis of starting materials: diynes and cyanamides 131
4.1.1. Synthesis of symmetrical diynes 131
4.1.2. Synthesis of unsymmetrical diynes 135
4.1.3. Synthesis of benzoyl bridged α, ω-diynes 138
4.1.4. Synthesis of cyanamides 139
$4.2 \mathrm{RuCl}_{3} \cdot n \mathrm{H}_{2} \mathrm{O}$-mediated [2+2+2] cycloaddition of α, ω-diynes with cyanamides 141
4.3 $\mathrm{Cp} * \mathrm{Ru}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{3} \mathrm{PF}_{6}$-catalyzed $[2+2+2]$ cycloaddition of α, ω-diynes with cyanamides147
4.4 $\mathrm{Cp} * \mathrm{Ru}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{3} \mathrm{PF}_{6}$-catalyzed $[2+2+2]$ cycloadditions to access aza-fluorenols and aza-fluorenones156
13. Conclusion 158
Chapter IV: Rhodium-catalyzed asymmetric synthesis of 1,1-disubstituted 1,3-
dihydroisobenzofurans from prochiral triynes and internal alkynes 161
14. Enantioselective $[2+2+2]$ cycloaddition reactions 162
1.1. Construction of central chirality 162
1.2. Construction of axial chirality 164
1.3. Construction of planar chirality 166
1.4. Construction of helical chirality 167
15. Desymmetric transition-metal-catalyzed [2+2+2] cycloaddition reactions 168
16. Interest and synthesis of $\mathbf{1 , 3}$-dihydroisobenzofurans 174
17. Objectives 176
18. Results and discussion 177
5.1 Synthesis of starting materials: prochiral triynes and internal alkynes 177
5.1.1. Synthesis of prochiral triynes 177
5.1.2. Synthesis of internal monoalkynes 179
5.2 Rhodium-catalyzed desymmetric [$2+2+2$] cycloaddition of prochiral triynes with internal alkynes 180
19. Conclusion. 187
General conclusion 189
Experimental part 191
20. General informations 191
1.1. Analysis 191
1.2. Chromatography 191
1.3. Purification of solvents and reagents 192
21. Formation of fluorenone and related derivatives 192
2.1. Synthesis of benzoyl bridged α, ω-diynes 192
2.2. Preparation of internal alkynes 225
2.3. $\mathrm{RuCl}_{3} \cdot n \mathrm{H}_{2} \mathrm{O}$-catalyzed [2+2+2] cycloadditions for the formation of fluoreone and related derivatives 227
2.4. Post-functionalization of $[2+2+2]$ cycloadducts 246
22. Formation of 2 -aminopyridine and related derivatives 251
3.1. Synthesis of symmetrical diynes 251
3.2. Synthesis of unsymmetrical diynes 260
3.3. Synthesis of benzoyl or benzyl bridged α, ω-diynes 271
3.4. Synthesis of cyanamides 275
3.5. Ruthenium-catalyzed $[2+2+2]$ cycloaddition of α, ω-diynes with cyanamides 281
23. Formation of enantioenriched 1,3-dihydroisobenzofuran derivatives 325
4.1. Synthesis of prochiral triynes 325
4.2. Synthesis of internal alkynes 333
4.3. Rhodium-catalyzed $[2+2+2]$ cycloaddition of triynes and alkynes 336

Abbreviations

A	Ac	Acetyl
	Ar	Aryl
	atm	Atmosphere
B	Boc	tert-Butyloxycarbonyl
	BINAP	2,2'-Bis(diphenylphosphino)-1,1'-binaphthyl
	Bn	Benzyl
	Bu	Butyl
C	cat.	Catalyst
	${ }^{\circ} \mathrm{C}$	Degree Celsius
	cod	1,5-Cyclooctadiene
	Conv.	Conversion
	cot	Cyclooctatetraene
	Cp	Cyclopentadienyl
	Cp*	Pentamethylcyclopentadienyl
	CsPiv	Cesium pivalate
D	dba	Dibenzylideneacetone
	DCM	Dichloromethane
	DCE	Dichloroethane
	DFT	Density functional theory
	DMA	Dimethylacetamide
	DMAP	4-Dimethylaminopyridine
	DMF	Dimethylformamide
	dmfu	Dimethyl fumarate
	DMSO	Dimethyl sulfoxide
	dmpe	1,2-Bis(dimethylphosphino)ethane
	dppe	1,2-Bis(diphenylphosphino)ethane
	dppf	1,1'-Bis(diphenylphosphino)ferrocene
	dppp	1,3-Bis(diphenylphosphino)propane
	DRX	Diffraction des rayons X
	δ	Chemical shift (units: ppm)
E	ee	Enantiomeric excess
	Eq.	Equation
	equiv	Equivalent
	équiv	Équivalent

Et
Ethyl
F FDA
fdppe

G
g
H $\quad \mathrm{h}$
Het
HFIP
HIV
HRMS

I
$i \operatorname{Pr}$

L LEDs
L*

M
M
Me
min
$\mu \mathrm{W}$
mL
mol
MS
m.p.

MRS
m/z

N
NBS
$n \mathrm{Bu}$
nd
NIS
NHCs
NMI
NMP
NMR
NOESY
nr

0

o -

oct
Gramme

Methyl
Minute(s)

Milliliter
Mole
n-Butyl
ortho-
Octyl

Food and Drug Administration
1,2-Bis(dipentafluorophenylphosphino)ethane

Hour(s) or heure
Heterocycle
Hexafluoroisopropanol
Human immunodeficiency virus
High Resolution Mass Spectrometry
iso-Propyl

Light-emitting diodes
Chiral ligand

Mole/Liter

Microwave

Mass Spectrometry
Melting point
Methicillin-resistant staphylococci
Mass to charge ratio

N -bromosuccinimide

Not detected
N -iodosuccinimide
N -heterocyclic carbenes
N -methylimidazole
N -methyl-2-pyrrolidone
Nuclear magnetic resonance
Nuclear Overhauser effect spectroscopy
No reaction

	OLEDs	Organic light-emitting diodes
P	$p-$	para-
	p-cymene	4-Isopropyltoluene
	pbq	1,4-Benzoquinone
	pent	Pentyl
Q	quant.	Quantitative
\mathbf{R}	rac	Racemic
	Rdt	Rendement
	ref	Reference
	R_{f}	Retention factor
	RMN	Résonance magnétique nucléaire
	rt	Room temperature
S	SFC	Supercritical fluid chromatography
T	T	Temperature
	t	Time
	t.a.	Température ambiante
	TBAF	Tetrabutylammonium fluoride
	TBDPS	tert-Butyldiphenylsilyl
	$t \mathrm{Bu}$	tert-Butyl
	TFA	Trifluoroacetic acid
	THF	Tetrahydrofuran
	TMS	Trimethylsilyl
	Ts	Tosyl
V	v	Volume

Abbreviations

Résumé

Résumé

Ce manuscrit présente le développement de nouveaux systèmes catalytiques à base de ruthénium et de rhodium pour des réactions de cyclisation [2+2+2].

Chapitre 1. Réactions de cycloaddition [2+2+2]: bibliographie

Au cours de ce chapitre nous examinerons les différents types de cycloaddition en fonction de la nature des fonctions alcynes impliquées dans la cycloaddition (Schéma R1).
(1) Intermoléculaire:

(2) Partiellement intramoléculaire:

\qquad

(3)Totalement intramoléculaire:

Schéma R1

Pour chaque cas, des exemples seront donnés afin d'illustrer les résultats de la littérature.

Dans une seconde partie, nous détaillerons les différents métaux de transition utilisés pour mettre en œuvre les réactions. Parmi les complexes de métaux de transition, on verra que ceux qui sont le plus couramment utilisés sont des complexes au cobalt avec le complexe $\mathrm{CpCo}(\mathrm{CO})_{2}$; au rhodium (par exemple le complexe de Wilkinson $\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}$ ou encore au rhodium sous forme cationique tel $\mathrm{Rh}(\operatorname{cod})_{2} \mathrm{BF}_{4}$ associé à un ligand phosphine type BINAP); le nickel a aussi été utilisé sous forme $\mathrm{Ni}(\mathrm{dppe}) \mathrm{Br}_{2}$ par exemple ou bien $\mathrm{Ni}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}$; ensuite on peut citer l'iridium dont le complexe dimère $[\mathrm{Ir}(\mathrm{cod}) \mathrm{Cl}]_{2}$ a été souvent employé; pour finir nous citerons le ruthénium, dont le complexe le plus connu est le catalyseur de Grubbs de 1ère génération.

Chapitre 2. Vers un nouvel accès aux dérivés fluorénones via une cycloaddition [2+2+2] catalysée par le trichlorure de ruthenium hydraté.

Au cours de notre étude sur la synthèse de carbocycles et d'hétérocycles, catalysée par les métaux de transition, nous avons mis en évidence la possibilité d'accéder relativement facilement à des fluorénones substituées ainsi qu'à des analogues, à partir de diynes-1,6 pontés et d'alcynes, en présence de $\mathrm{RuCl}_{3} \cdot n \mathrm{H}_{2} \mathrm{O}$ comme catalyseur. Nous avons étudié la cycloaddition $[2+2+2]$ catalysée par le complexe $\mathrm{RuCl}_{3} \cdot n \mathrm{H}_{2} \mathrm{O}$, en utilisant le diyne 17, qui contient un pont benzoyle, avec le 1,4-diméthoxy-but-2-yne $\mathbf{5 1}$ comme substrat modèle. Nous avons examiné différents paramètres en vue d'optimiser les conditions de la réaction. Nous avons ainsi fait varier la température, le nombre d'équivalents d'alcyne, le pourcentage de $\mathrm{RuCl}_{3} \cdot n \mathrm{H}_{2} \mathrm{O}$ et enfin le temps de réaction. Nous avons ainsi pu établir que les meilleures conditions étaient d'opérer avec 2 équivalents d'alcyne, 5% molaire de $\mathrm{RuCl}_{3} \cdot n \mathrm{H}_{2} \mathrm{O}$, à $50^{\circ} \mathrm{C}$ pour une durée de deux heures. Dans ces conditions réactionnelles, le dérivé $\mathbf{6 5}$ a été isolé avec 72% de rendement.

Table R1. Optimisation des conditions de la réaction

 17					
Entrée	17/51	$T\left({ }^{\circ} \mathrm{C}\right)$	t (h)	Conv. (\%) ${ }^{\text {b }}$	$\mathrm{Rdt}(\%)^{c}$
1	1:6	110	18	> 99	86
2	1:4	80	18	> 99	74
3	1:3	80	18	> 99	73
$4^{\text {a }}$	1:3	80	18	60	40
5	1:3	50	18	> 99	75
6	1:2	50	18	> 99	72
7	1:2	50	4	> 99	73
8	1:2	50	2	> 99	72
$9^{\text {b }}$	1:2	50	18	40	nd

${ }^{\mathrm{a}} 2 \% \mathrm{~mol} \mathrm{RuCl} 3 \cdot n \mathrm{H}_{2} \mathrm{O}(0.007 \mathrm{mmol})$ utilisés. ${ }^{\mathrm{b}}$ Sous atmosphère d'air.

Ayant établi les conditions optimales de la réaction, nous nous sommes intéressés à la généralisation, en particulier l'effet du substituant en position C7. Il ressort ainsi qu'un phényle
augmente la réactivité par rapport à un groupe alkyle (n-butyle). L'introduction de groupements donneur ou accepteur conduit à peu de changement, les rendements restant du même ordre. Un groupement silyle à la place du groupe phényle apporte peu de modifications, et conduit aussi au produit attendu (Schéma R2). Ce résultat est intéressant car il permet d'envisager une postfonctionnalisation. Le groupement protecteur des alcools a aussi été examiné et les groupes benzyle ou tert-butyle sont compatibles avec les conditions reactionnelles, et conduisent ainsi aux produits 76 et 77 (80 et 81%). La structure de la fluorénone 77 a pu être établie sans ambiguïté par une analyse de diffraction des rayons X (Schéma R3).

Schéma R2

Schéma R3

Le pont reliant les deux fonctions diynes a ensuite été modifié: le groupe phenyle a ainsi été remplacé par un hétérocycle (furanyle, thiényle, cycle azoté); la cycloaddition se fait également pour conduire à des hétéro-fluorénones variées 83-87, 89 et $\mathbf{9 0}$ avec des rendements allant de 30 à 78 \% (Schéma R4).

87
$60^{\circ} \mathrm{C}, 14 \mathrm{~h}, 30 \%$

89
$80^{\circ} \mathrm{C}, 2 \mathrm{~h}, 6 \%$

90
$80^{\circ} \mathrm{C}, 2 \mathrm{~h}, 60 \%$

Schéma R4

Cette réaction de cycloaddition ne se limite pas aux diynes symétriques internes, puisqu'une série de diynes terminaux a éte utilisée. La réaction de ces derniers avec le diyne $\mathbf{1 7}$
est détaillée dans le Schéma R 5 . La faible régiosélectivité peut s'expliquer par un encombrement stérique proche des substituants présents.

Schéma R5

Pour valider l'intérêt synthétique de cette méthode catalytique, la réaction a été conduite sur une échelle d'un gramme dans les conditions pré-établies. La fluorénone 65 a pu être isolée avec un rendement de 71% (Schéma R6).

Schéma R6

Après avoir synthétisé une gamme de dérivés fluorénones, nous nous sommes tournés vers l'étude de la post-fonctionnalisation des composés 65, 69 et 76. En utilisant des protocoles décrits dans la littérature, nous avons pu accéder aux composés dihydrobenzo[b]furan 94, au diol 95, et au polycycle dibromé $\mathbf{9 6}$ avec de bons rendements (Schéma R7).

Schéma R7

La fluorénone silylée 69 s'est également avérée un bon intermédiaire pour accéder, après iodation au composé 97 , lui même précurseur de dérivés fonctionnalisés par un alcyne ou un ester boronique par des réactions de couplage de Sonogashira ou Suzuki-Miyaura (Schéma R8).

Schéma R8

La fluorénone bromée $\mathbf{7 3}$ s'est également révélée un bon adduit, puisque après couplage de Suzuki-Miyaura, elle a été transformée en ester boronique $\mathbf{1 0 0}$ avec un rendement de 85% (Schéma R9).

Schéma R9

Une nouvelle approche directe et éco-compatible vers la synthèse de fluorénones hautement substituées ainsi que des analogues a été mise au point. Cette méthode fait intervenir une cycloaddition $[2+2+2]$ semi-intramoléculaire de cétones possédant un motif 1,6-diyne avec un alcyne, initié par le complexe $\mathrm{RuCl}_{3} \cdot n \mathrm{H}_{2} \mathrm{O}$. Ce procédé économique est conduit sans solvant, ni aucun ligand ou additif, et ce dans des conditions douces. Cette réaction a permis l'obtention de fluorénones polycycliques complexes, d'aza-fluorénones, des benzo[b]furanones et également des thiophénones polycycliques, avec de bons rendements. Des études ultérieures ont montré que les fluorénones ainsi obtenues pouvaient être converties en molécules plus complexes.

Chapitre 3. Utilisation de la catalyse au ruthénium pour des cycloadditions [2+2+2] de diynes avec des cyanamides électroniquement enrichis: un accès facile aux dérivés 2aminopyridines

Dans la continuité de notre précédent travail relatif aux cycloadditions [2+2+2] catalysées par un métal de transition, nous avons décidé d'explorer, la réaction de cycloaddition [$2+2+2$] de α, ω-diynes et cyanamides dans le but de synthétiser des dérivés 2 -aminopyridines.

a. Cycloaddition $[2+2+2]$ d' α, ω-diynes avec des cyanamides catalysée par $\mathrm{RuCl}_{3} \cdot \boldsymbol{n} \mathbf{H}_{2} \mathrm{O}$

Différent diynes et cyanamides ont été efficacement préparés. La diyne $\mathbf{1 0 1}$ et le diméthyl cyanamide $\mathbf{1 5 4}$ ont été choisis comme substrats modèles pour optimiser les conditions
réactionnelles. Nous avons commencé l'étude avec 5% molaire de $\mathrm{RuCl}_{3} \cdot n \mathrm{H}_{2} \mathrm{O}$, dans des conditions sans solvant. Un examen plus approfondi a montré qu'il fallait opérer à $110^{\circ} \mathrm{C}$ pour une durée de 18 heures.

Table R2. Optimisation des conditions de la réaction

Entrée	$\mathbf{1 0 1 / 1 5 4}$	$T\left({ }^{\circ} \mathrm{C}\right)$	Conv. $(\%)^{\mathrm{b}}$	Rdt $(\%)^{\mathrm{c}}$
1	$1: 6$	110	>99	75
2	$1: 3$	110	>99	76
$3^{\text {a,b }}$	$1: 3$	110	50	nd
4	$1: 3$	80	90	72
5	$1: 3$	50	nr	nd
6	$1: 2$	80	30	nd
7^{b}	$1: 2$	90	70	nd
8^{b}	$1: 2$	100	93	70
9	$1: 2$	110	>99	74

${ }^{\mathrm{a}} 0.02 \mathrm{mmol}$ of $\mathrm{RuCl}_{3} \cdot n \mathrm{H}_{2} \mathrm{O}(2 \% \mathrm{~mol})$ utilisés. ${ }^{\mathrm{b}} 24$ heures de réaction.

Après avoir mis au point les conditions pour réactionnelles, nous avons évalué la réactivité de divers diynes et cyanamides. Les résultats sont regroupés dans le Schéma R10. Une série de cyanamides obtenus à partir d'amines secondaires ont été soumis à la réaction de cycloaddition pour conduire aux 2-aminopyridines correspondantes avec de bons rendements. Par exemple, des diynes symétriques portant diverses fonctions telles que des esters, cétones ou amides sont compatibles.

101-108
155-159
169-173, 181-187

170
$80^{\circ} \mathrm{C}, 86 \%$

171
$110^{\circ} \mathrm{C}, 78 \%$

172
$80^{\circ} \mathrm{C}, 81 \%$

182
$80^{\circ} \mathrm{C}, 74 \%$
(conv. 92\%)

183
$80^{\circ} \mathrm{C}, 10 \%$

Schéma R10

La régiosélectivité de la réaction de cycloaddition de diynes-1,6 non symétriques a aussi été étudiée, comme indiqué dans le Schéma R11. Les diynes-1,6 portant un substituant méthyle ou phényle ont été mis en réaction avec la 4 -carbonitrile morpholine et ont conduit à 2 régioisomères avec une sélectivité réduite et un rendement global plus faible. Le ratio des deux régioisomères a été déterminé par analyse $\mathrm{RMN}{ }^{1} \mathrm{H}$ du brut réactionnel.

Schéma R11

Un exemple de nitrile électro-déficient a également été considéré, plus précisement le malononitrile qui a été soumis à la cycloaddition avec le diyne $\mathbf{1 0 8}$ comportant un pont azoté, dans les conditions usuelles de $110{ }^{\circ} \mathrm{C}$ en présence de $\mathrm{RuCl}_{3} \cdot n \mathrm{H}_{2} \mathrm{O}$. Dans ce cas, le cycloadduit 195 est obtenu avec une conversion de 22%, malgré un taux de catalyseur de 10% molaire (Schéma R12). Ce résultat est nettement inférieur à ceux obtenus avec des nitriles enrichis.

Schéma R12

b. Cycloadditions $[2+2+2] d^{\prime} \alpha, \omega$-diynes avec des cyanamides catalysés par le complexe $\mathbf{C p} * \mathbf{R u}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{3} \mathbf{P F}_{6}$

Au cours du travail précédent faisant intervenir le ruthénium sous forme neutre $\left(\mathrm{RuCl}_{3} \cdot n \mathrm{H}_{2} \mathrm{O}\right)$ pour la mise en œuvre de cycloaddition [2+2+2] d' α, ω-diynes et cyanamides, nous avions démontré que le ruthénium sous forme cationique était également très efficace pour cette réaction. Les essais initiaux ont porté sur l'utilisation du diyne 101 et du cyanamide $\mathbf{1 5 5}$, dans des conditions sans solvant à température ambiante. La réaction a été optimisée en faisant varier différents paramètres. Nous avons ainsi montré que la réaction pouvait être conduite
efficacement avec 2% molaire du complexe pentaméthylcyclopentadiényle (Cp^{*}) $\mathrm{Cp} * \mathrm{Ru}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{3} \mathrm{PF}_{6}$ pour fournir la 2-aminopyridine $\mathbf{1 6 9}$ avec un excellent rendement et un temps de réaction de 5 min . Par ailleurs, nous avons également découvert que lorsque la réaction était réalisée avec un petit volume de dichlorométhane, avec le diyne $\mathbf{1 0 9}$ comme modèle, il était possible de réduire à la fois le taux catalytique à 1% molaire et le nombre d'équivalents de cyanamide à 1.2 équivalents (entrée 8). L'utilité de cette méthode a été démontrée en conduisant la réaction sur une échelle d'un gramme, avec le diyne 109 comme modèle. La 2-aminopyridine 188 a ainsi été obtenue avec 82% de rendement (entrée 10).

Table R3. Optimisation des conditions de la réaction

Entrée	Diyne	Catalyst ($x \% \mathrm{~mol}$)	t	Produit	Conv. (\%)	Rdt (\%)
1	101	$\mathrm{Ru}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{Cl}_{2}(5)$	8 h	169	nr	nd
2	101	[$\mathrm{Ru}\left(\text { p-cymene) } \mathrm{Cl}_{2}\right]_{2}$ (2.5)	8 h	169	nr	nd
3	101	$\mathrm{Cp} * \mathrm{Ru}(\mathrm{cod}) \mathrm{Cl}$ (2)	5 min	169	>99	85
4	101	$\mathrm{Cp} * \mathrm{Ru}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{3} \mathrm{PF}_{6}$ (5)	5 min	169	>99	93
5	101	$\mathrm{Cp} * \mathrm{Ru}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{3} \mathrm{PF}_{6}(2)$	5 min	169	>99	91
6	101	$\mathrm{Cp} * \mathrm{Ru}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{3} \mathrm{PF}_{6}$ (1)	60 min	169	80	nd
7	109	$\mathrm{Cp} * \mathrm{Ru}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{3} \mathrm{PF}_{6}(2)$	3 min	188	>99	94
$8^{\text {a }}$	109	$\mathrm{Cp} * \mathrm{Ru}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{3} \mathrm{PF}_{6}$ (1)	2 min	188	>99	95
$9^{\text {a }}$	109	$\mathrm{Cp} * \mathrm{Ru}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{3} \mathrm{PF}_{6}(0.5)$	18 h	188	90	82
$10^{\text {b }}$	109	$\mathrm{Cp} * \mathrm{Ru}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{3} \mathrm{PF}_{6}(2)$	5 min	188	>99	82

${ }^{a} 0.6 \mathrm{mmol}$ de cyanamide $\mathbf{1 5 5}$ et 0.5 mL de dichlorométhane utilisés. ${ }^{\text {b }}$ échelle d'un gramme

Dans un second temps et comme précédemment, ayant établi les conditions optimales de la réaction, nous nous sommes intéressés à la généralisation de cette reaction en faisant intervenir divers diynes substitués et le cyanamide $\mathbf{1 5 5}$ comme partenaire (Schéma R13). Une grande variété de diynes symétriques, pontés avec un carbone quaternaire, un oxygène ou encore un azote protégé ont été soumis au cyanamide $\mathbf{1 5 5}$ pour donner les 2-aminopyridines correspondantes. L'introduction de groupements volumineux tels que le groupe tert-butyle ou iso-propyle conduit également à d'excellents rendements. De même, des groupes fonctionnels portés par le carbone quaternaire, tels que des diols, des nitriles, des diones ont également été
utilisés avec succès. La formation des composés $\mathbf{1 8 6}$ et $\mathbf{1 8 7}$ montre aussi que la réaction est compatible avec des diynes internes (Schéma R13).

186, 187, 196-205

196, 98\%
(A, 2\% mol, 5 min)

199, 87\%
(A, 2\% mol, 40 min)

202, 87\%
(A, 2\% mol, 5 min)

205, 99\%
(B, 2\% mol, 5 min)

197, 81\%
(B, 1\% mol, 5 min)

200, 50\%
(B, 2\% mol, 2 min)

203, 87%
(A, 2\% mol, 10 min)

(A, 2\% mol, 10 min)

198, 91\% (B, 2\% mol, 5 min)

201, 97\%
(B, 1\% mol, 5 min)

204, 97\%
(B, 2\% mol, 5 min)

Schéma R13

Par la suite, dans le but d'examiner les limites de la réaction, un certain nombre d'amines secondaires portées sur le cyanamide a été testé. Comme indiqué dans le Schéma R14, les résultats se sont avérés très probants avec l'obtention d'un grand nombre de 2 -aminopyridines.

$101,108,109$ 156, 158-162, 164

170, 207-214

170, 81\%
(A, 2\% mol, 15 min)

209, $86 \%^{b}$
(B, 5\% mol, 10 min)

212, $90 \%{ }^{c}$
(B, 2\% mol, 10 min)

207, 90\%
(B, 2\% mol, 2 min)

210, 84\%
(B, 5\% mol, 5 min)

213, 95\%
(B, 1\% mol, 2 min)

208, 76\%
(B, 5\% mol, 10 min)

211, 81\%
(B, $5 \% \mathrm{~mol}, 5 \mathrm{~min}$)

(B, 2\% mol, 5 min)

Schéma R14

Comme dans le cas du ruthénium neutre $\left(\mathrm{RuCl}_{3} \cdot n \mathrm{H}_{2} \mathrm{O}\right)$, la régiosélectivité a été examinée. Dans ce cas, il a été observé que la régiosélectivité ainsi que le rendement étaient plus élevés. Notamment, le régioisomère ortho était formé majoritairement (Schéma R15). De plus la réaction tolère un grand nombre de fonctions avec l'obtention des halopyridines, diaminopyridines, et vinylpyridines avec des rendements allant de 65 à 93%. La structure du produit $\mathbf{2 2 0}$ a été confirmée sans ambiguïté par une étude de diffraction des rayons X (Schéma R15).

Schéma R15

Une étude ultérieure a par ailleurs montré que la réaction était possible avec les diynes$1,7 \mathbf{1 3 8}$ (lien oxygéné) et $\mathbf{1 3 9}$ (lien azoté). En présence de 5% molaire de $\mathrm{Cp} * \mathrm{Ru}_{(}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{3} \mathrm{PF}_{6}$, ils conduisent aux pyridines bicycliques à 6 chaînons $\mathbf{2 3 0} \mathbf{- 2 3 3}$ avec des rendements de 34 à 86% et une excellente régiosélectivité (Schéma R16).

Schéma R16

Le composé spirocyclique 237 a été isolé à partir d'un dérivé du mestranol avec 58% de rendement et une haute régiosélectivité. La structure de ce dernier a été précisément établie par diffraction des rayons X (Schéma R17).

Schéma R17

c. Obtention d'aza-fluorénols et aza-fluorénones par cycloaddition [2+2+2] catalysée par le complexe $\mathbf{C p} * \mathbf{R u}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{3} \mathrm{PF}_{6}$

En utilisant cette méthode catalytique et éco-compatible, une famille d'aza-fluorénols et aza-fluorénones a été préparée. Le choix de la position du substituant sur le diyne permet de contrôler la régiosélectivité du substituant sur le cycle pyridine. La structure de l'azafluorénone 248 a été formellement établie par diffraction des rayons X (Schéma R18).

t.a., $5-30 \mathrm{~min}$

28, 29, 150, 155-158 152, 153

2-azafluorénone/ol 240-245

3-azafluorénone/ol 246-248

240, 92\% (>99/1)
(A, 2\% mol, 10 min)

244, 84\% (>99/1)
(A, 2\% mol, 5 min)

241, 87\% (>99/1) (A, 2\% mol, 10 min)

245, 81\% (>99/1)
(B, 5\% mol, 1 min)

248, 89\% (94/6)
(B, 5\% mol, 10 min)

242, 80\% (>99/1) (B, 5\% mol, 30 min)

246, 71\% (99/1)
(B, 5\% mol, 5 min)

DRX de 248

243, 78\% (>99/1)
(B, 5\% mol, 5 min)

247, 78\% (99/1)
(B, 5\% mol, 3 min)

Schéma R18

En se basant sur les résultats obtenus, ainsi que sur ceux décrits dans la littérature, nous proposons le mécanisme ci-dessous afin d'expliquer la régiosélectivité observée (Schéma R19). La réaction passerait par un intermédiaire ruthénacyclopentadiène Ru-II, dont la formation serait suivie par l'insertion du cyanamide et l'élimination de l'espèce ruthénium, conduisant majoritairement à la pyridine ortho-substituée la moins encombrée.

Schéma R19

La synthèse de composés à motif 2-aminopyridine hautement substitués par cycloaddition $[2+2+2]$ de α, ω-diynes avec des cyanamides via une catalyse en présence de complexes de ruthénium aussi bien sous forme neutre ($\mathrm{RuCl}_{3} \cdot n \mathrm{H}_{2} \mathrm{O}$) que cationique $\left(\mathrm{Cp} * \mathrm{Ru}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{3} \mathrm{PF}_{6}\right)$, a donc été réalisée. Le complexe $\mathrm{RuCl}_{3} \cdot n \mathrm{H}_{2} \mathrm{O}$ peu onéreux s'est révélé très efficace en tant que catalyseur pour la préparation de 2-aminopyridines substituées. La réaction se déroule en présence de 5% molaire de $\mathrm{RuCl}_{3} \cdot n \mathrm{H}_{2} \mathrm{O}$ sans l'ajout de ligand ou autre additif, et en l'absence de solvant. Le ruthénium complexe cationique $\left(\mathrm{Cp} * \mathrm{Ru}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{3} \mathrm{PF}_{6}\right)$ s'est avéré très efficace pour ce type de cycloaddition aussi bien dans le cas des diynes-1,6 ou $-1,7$, en présence de cyanamides et dans des dans des conditions douces. Diverses diynes, terminaux ou internes possédant des groupes fonctionnels variés se sont révélés compatibles avec ce système catalytique. Une excellente régiosélectivité a été obtenue dans le cas de diynes dissymétriques. L'utilité de ce protocole a ensuite été démontrée avec la synthèse de molécules à haute valeur ajoutée telles que des halopyridines, des diaminopyridines ou encore des vinylpyridines en une seule étape. Cette réaction a pu conduire à des pyridines polycycliques incluant des hétéroatomes, à partir de diynes-1,7 et cyanamides. La fonctionnalisation du mestranol, molécule biologiquement active, a pu aussi valider le potentiel de cette méthodologie. Une famille d'aza-fluorénones et aza-fluorénols a également été préparée efficacement selon cette méthode éco-compatible et directe.

Chapitre 4. Synthèse asymétrique de 1,3-dihydroisobenzofuranes 1,1-disubstitués à partir de triynes prochiraux et des alcynes internes catalysée par des complexes de rhodium

Les 1,3-dihydroisobenzofuranes sont une classe de composés hétérocycliques oxygénés très présents dans les composés naturels biologiquement actifs ${ }^{172}$ ainsi que dans un certain nombre de médicaments. ${ }^{173}$ Plusieurs méthodes permettent d'accèder à ces structures, parmi lesquelles on peut citer la cyclotrimérisation $[2+2+2]$ d'alcynes, ${ }^{7}$ les réactions de DielsAlder, ${ }^{175}$ ou encore la transformation de phtalides ${ }^{176}$. Parmi ces méthodes, la cycloaddition $[2+2+2]$ catalysée par les métaux de transition constitue l'une des plus efficaces comme indiqué dans le chapitre I.

Concernant la préparation de 1,3- dihydroisobenzofuranes contenant un centre chiral en position α, peu d'exemples ont été rapportés, c'est pourquoi leur accès constitue un défi. ${ }^{177}$

La réaction de désymétrisation de composés prochiraux constitue un moyen efficace pour accéder à des molécules complexes possédant un centre stéréogène. C'est pourquoi nous avons envisagé que la construction de 1,3-dihydroisobenzofuranes optiquement actifs pouvait être accomplie via une cycloaddition [2+2+2] de triynes oxygénés avec un alcyne interne catalysée par un métal de transition comme indiqué dans le Schéma R20.

Schéma R20

Les triynes de départs peuvent être facilement obtenus à partir de produits commerciaux selon la rétrosynthèse décrite dans le schéma R21.

Schéma R21

Dans un premier temps, nous nous sommes intéressés à la préparation des produits de départ. Les triynes ont été préparés en deux étapes. Une condensation d'un acétylure sur un chlorure d'acide conduit à un alcool quaternaire, qui peut ensuite être condensé sur le bromure de propargyle ou le 1-bromo-but-2-yne pour conduire au triyne. Les alcynes internes ont été obtenus à partir du 2-butyl-1,4-diol dont les fonctions alcools ont été protégées par différents groupements (OAc, OMe, ...).

a. Optimisation des conditions de la réaction

L'étude de la réaction de cycloaddition $[2+2+2]$ a pu ainsi être menée, en utilisant le triyne $\mathbf{2 5 5}$ et le 1,4-diacétoxy-but-2-yne $\mathbf{2 6 2}$ comme modèles pour conduire au 1,3dihydroisobenzofurane 266. Différents catalyseurs de rhodium ont été évalués, en opérant dans le dichlorométhane à une température de $40^{\circ} \mathrm{C}$, en présence de (R)-BINAP comme ligand. Les résultats sont regroupés dans le tableau R 4 , et montrent que la combinaison du catalyseur $\mathrm{Rh}(\operatorname{cod})_{2} \mathrm{BF}_{4}$ et du (R)-BINAP est la plus efficace pour mener la cycloaddition. Il est à noter que la réaction n'a pas lieu en absence de phosphine.

Table R4. Optimisation des conditions de la réaction

Entrée	$[\mathrm{Rh}]$ catalyseur	Additif $(x \% \mathrm{~mol})$	Rendement $(\%)$	$e e(\%)$
$\mathbf{1}$	$\mathbf{R h}(\mathbf{c o d})_{2} \mathbf{B F} 4$	$/$	$\mathbf{5 0}$	$\mathbf{5 0}$
2	$\left[\mathrm{Rh}(\right.$ hexadiene $) \mathrm{Cl}_{2}$	$\mathrm{AgSbF}_{6}(5)$	74	20
3^{a}	$[\mathrm{Rh}(\text { ethylene }) \mathrm{Cl}]_{2}$	$\mathrm{NaBAr}_{4}(10)$	72	49
4^{b}	$\mathrm{Rh}(\operatorname{cod})_{2} \mathrm{BF}_{4}$	$/$	50	50
5^{c}	$\mathrm{Rh}(\operatorname{cod})_{2} \mathrm{BF}_{4}$	$/$	nr	$/$
6^{d}	$\operatorname{Rh}(\operatorname{cod})_{2} \mathrm{BF}_{4}$	$/$	66	43
7^{e}	$\operatorname{Rh}(\operatorname{cod})_{2} \mathrm{BF}_{4}$	$/$	50	50

${ }^{\mathrm{a}} \mathrm{Ar}^{\mathrm{F}}=3,5-\left(\mathrm{CF}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3} .{ }^{\mathrm{b}} 10 \%$ molaire de (R)-BINAP ont été utilisés. ${ }^{\mathrm{c}}$ Pas de ligand. ${ }^{\mathrm{d}}$ $[\mathrm{Rh}] /(R)$-BINAP complexe hydrogéné au préalable $\left(\mathrm{H}_{2}, 1 \mathrm{~atm}, \mathrm{rt}, 1 \mathrm{~h}\right)$. ${ }^{\mathrm{e}}$ Addition lente du triyne $\mathbf{2 5 5}$ en 3 heures à l'aide d'une seringue munie d'une pompe.

b. Influence de la phosphine chirale et du solvant

Ayant établi les conditions optimales pour mener la réaction de cycloaddition, nous avons examiné l'influence de différentes phosphines, comme le (R)-Xylyl-BINAP, le (R) Difluorphos ou encore le (R)-MeOBiphep. Nous n'avons pas noté d'amélioration significative. De même, plusieurs solvants ont été testés, parmi lesquels le THF, le dichloroéthane, ou le xylène. Le toluène s'est avéré un bon candidat puisque il a donné un ee identique à celui obtenu avec le DCM , et avec un rendement supérieur (70%); toutefois cela nécessite d'opérer à une température de $100^{\circ} \mathrm{C}$.

c. Influence de l'alcyne interne symétrique

Par la suite, nous avons examiné l'influence de différents groupes protecteurs sur les fonctions alcools en utilisant les conditions mises au point, à savoir des groupements donneurs ou électroattracteurs. De même, les fonctions alcools ont été remplacées par des groupes alkyles ou esters. Il est à noter qu'aucune réaction n'a lieu avec deux groupements phényles (composé 272 voir Schéma R22). Les rendements varient entre 20% et 79%, tandis que les ee restent modérés à faibles (21-50\%).

Schéma R22

d. Influence du substituant porté par le carbone quaternaire du triyne

Pour compléter cette étude, nous nous sommes intéressés à l'influence stérique engendrée sur les triynes, en remplaçant le groupe méthyle par un groupement plus volumineux, comme le n-propyle ou tert-butyle ou encore un phényle. L'augmentation de l'encombrement stérique en position R ' ne conduit pas à une amélioration du rendement ni de l'excès énantiomérique (Schéma R23).

254, $R^{1}=\mathrm{Me}, \mathrm{R}^{2}=\mathrm{Ph}, \mathrm{R}^{3}=\mathrm{H} \quad$ 258, $R^{1}=\mathrm{Ph}, R^{2}=\mathrm{Ph}, \mathrm{R}^{3}=\mathrm{Me}$
256, $R^{1}=n P r, R^{2}=P h, R^{3}=M e \quad 259, R^{1}=P h, R^{2}=n B u, R^{3}=M e$
257, $R^{1}=t B u, R^{2}=P h, R^{3}=M e$
260, $R^{1}=M e, R^{2}=P h, R^{3}=\mathrm{SiMe}_{3}$

274
Rdt 46\%, 51\% ee

Rdt 54\%, 24\% ee

275
Rdt 51\%, 38\% ee

278
Rdt 26\%, 52\% ee

279, non observe (decomposition du diyne 254)

Schéma R23

e. Mécanisme proposé

Afin de rendre compte de la stéréosélectivité observée, nous nous sommes intéressés au cycle catalytique de la réaction. Un des mécanismes possible est développé dans le Schéma R24.

La réaction pourrait débuter par le couplage oxydatif de deux fonctions alcynes issues du triyne et de l'alcyne avec l'espèce rhodium pour conduire à l'intermédiaire rhodacyclopentadiène Rh-I. Une coordination intramoléculaire ultérieure avec l'une des fonctions alcynes portée par le carbone quaternaire fournirait l'intermédiaire Rh-II. Ceci pourrait être considéré comme l'étape stéréo déterminante pour expliquer l'énantiosélectivité observée en raison de la gêne stérique entre le groupe alcyne et le ligand chiral. L’insertion intramoléculaire de l'alcyne sur le rhodium de Rh-II délivrerait alors l'intermédiaire à 7 chainons Rh-III, qui subirait une élimination réductrice pour donner le 1,3dihydroisobenzofurane avec un excès énantiomérique (Schéma R24).

Schéma R24

Dans ce chapitre, nous avons donc démontré que la cycloaddition $[2+2+2]$ conduite en présence d'un catalyseur au rhodium $\mathrm{Rh}(\operatorname{cod})_{2} \mathrm{BF}_{4}$, en présence d'une phosphine chirale, était un moyen d'accès rapide vers les 1,3-dihydroisobenzofuranes énantiomériquement enrichis. Bien que les rendements et l'énantiosélectivité restent à améliorer, cette méthode est prometteuse.

General introduction

General introduction

Heterocycles represent by far the largest of classical divisions in organic chemistry and are of great importance biologically and industrially. The majority of pharmaceuticals and biologically active agrochemicals are heterocyclic while several additives and modifiers used in industrial applications in the field of cosmetics, reprography, information storage and plastics are heterocyclic in nature. Over the past century, heterocycles have constituted one of the largest areas of research in organic chemistry. They have contributed to the development of humanity from a biological and industrial point of view as well as to the understanding of life processes and to the improvement of the quality of life.

In this context in the field of chemistry, efficient clean methods to access functionalized heterocycles are highly suitable. One of the key principles of "Green Chemistry" (Figure 1) is to limit the use of organic solvents in industrial processes. Indeed, these solvents are often toxic, expensive and generate difficulties in disposal and reprocessing. A major research effort in recent years is to develop new more environmentally friendly synthetic methods. Even if water seems to be the best choice because of its abundance and non-toxicity, ${ }^{2}$ the development of solvent-free processes during the reaction and purification, is undeniably the ideal solution. ${ }^{3} \mathrm{~A}$ solvent-free system is not only environmentally friendly but also provides effective, safer and more economical solutions for industrial partners (temperature and reaction time decreased, reducing the size of the reactors, process intensification, no extra costs incurred relating to the purchase and processing of solvents).

[^0]

Figure 1

Functionalization of aromatic or heteroaromatic compounds has been a major topic of study among organic chemists, and has been used both in industrial ${ }^{4}$ and academic laboratories. One of the best known and traditional methods to functionalize aromatic rings involves the stepwise addition of electrophilic substituents, using Friedel-Crafts alkylation ${ }^{5}$ or acylation ${ }^{6}$. This method is very useful for the synthesis of polysubstituted benzene derivatives, but may cause problems in terms of regioselectivity (and therefore yield), which requires special attention in the choice of reagents and synthesis plan of the target compound (Scheme 1). Another method, transition-metal-catalyzed $[2+2+2]$ cycloaddition reactions, ${ }^{7}$ involves the

[^1]construction of aromatic rings in a single step, thereby obtaining highly functionalized aromatic rings in a one pot reaction (Scheme 1).

Friedel-Crafts alkylation or acylation

Scheme 1

Since Berthelot's pioneering thermal cyclization of three acetylene leading to benzene formation discovered in $1866,{ }^{8}$ many advances have been reported in this field. The first metalcatalyzed $[2+2+2]$ cycloaddition reaction was reported in 1948 by Reppe and Schweckendiek and involved $\mathrm{Ni}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ complex. This cyclotrimerization of monoalkynes occurred at $60-$ $70^{\circ} \mathrm{C}$ to provide $1,3,4$ - and 1,3,5-trisubstituted benzene derivatives in quantitative yield with no regioselectivity (Scheme 2). ${ }^{9}$ After this pioneering work, extensive studies have been conducted using cobalt, rhodium, nickel, ruthenium, and iridium.

First thermal [2+2+2] cyclotrimerization:

First metal-catalyzed $[2+2+2]$ cyclotrimerization:

Scheme 2

[^2]In 1973, Yamazaki and Wakatsuki discovered that the substituted pyridines can be stepwise assembled from two acetylenes and one nitrile by using a catalytic amount of π cyclopentadienyl(triphenylphosphine)cobalt complex (Scheme 3). ${ }^{10,11}$

Scheme 3

Apart from the synthesis of benzenes and pyridines via cyclotrimerization of three alkynes or two alkynes with one nitrile, other unsaturated carbocyclic and heterocyclic compounds such as 1,3-cyclohexadienes, 1,2-dihydropyridines, thioxothiopyranes, 2-pyrones, 2-pyridones, and thiopyridones were also synthesized reacting two alkynes with the corresponding unsaturated alkenes, allenes, carbonyl compounds, imines, carbon disulfide, carbon dioxide, isocyanates, and thiocyanates (Scheme 4). The most commonly studied work is the synthesis of multiple substituted benzene and pyridine derivatives, which is the topic of this work.

[^3]

Scheme 4

General introduction

Chapter I: Bibliography

Chapter I: Bibliography

The first chapter will present selected literature data concerning the formation of benzene via transition-metal-catalyzed $[2+2+2]$ cycloaddition reactions. In each section, we will deliver the works based on three types of cycloaddition reactions (intermolecular, partially intramolecular, and totally intramolecular, Scheme 5). Practical and general catalyst, construction of novel scaffolds, recent advances in mechanistic insight, regioselectivity and chemoselectivity issues will also be described.
(1) Intermolecular:

(2) Partially intramolecular:

\qquad

(3) Totally intramolecular:

Scheme 5

1. Intermolecular reactions

The intermolecular $[2+2+2]$ alkyne cyclotrimerization is considered as one of the most efficient synthetic method to access benzene skeleton. Various types of transition metal complexes have been used for this transformation. However, the reaction is limited because of the low chemo- and regioselectivity. For example, as shown in Scheme 6, the homocyclotrimerization of a single symmetrical alkyne gives hexa-substituted benzenes (Eq. 1), the cycloaddition of unsymmetrical alkynes produces two regioisomers (Eq. 2), and the combination of two or three different alkynes leads to the formation of complex mixtures (Eq. $3)$.

Chapter I

Scheme 6

1.1. Cyclotrimerization of one alkyne

In 1993, Rothwell and co-workers reported the first regioselective transition-metalcatalyzed $[2+2+2]$ cycloaddition reactions, which selectively produced the symmetrical 1,3,5and unsymmetrical 1,2,4-substituted benzene derivatives using a catalytic amount of titanium complex. ${ }^{12}$ It was demonstrated that the steric effects controlled the regioselectivity. For instance, in the presence of $0.004 \mathrm{~mol} \%$ titanium catalyst, cyclotrimerization of phenylacetylene led to trisubstituted benzenes in quantitative yield, with $1,2,4$-substituted regioisomer as the major product (ratio $=7: 93$). The more sterically hindered alkynes, such as trimethylsilyl acetylene and tert-butyl acetylene, afforded the 1,3,5-substituted products in high yields (ratio > 95:5), albeit with higher catalyst loading and prolonged reaction time (Scheme 7).

[^4]

Scheme 7

After this pioneering work, many late transition metals have been used for the regioselective synthesis of benzene derivatives. The most common employed metals were cobalt, rhodium, ruthenium, iridium, nickel, and iron. An interesting example was reported by Hess and co-workers, who described a solvent-dependent regioselective [2+2+2] cyclotrimerization of phenylacetylene using a cobalt complex catalyst containing a disulfide ligand (Scheme 8). ${ }^{13}$ Optimization of different disulfide ligands in various solvents was also studied in this reaction. The result indicates that the coordination ability of the solvent greatly influenced the regioselectivity of the cyclotrimerizations.

Scheme 8

Sivasankar and co-workers reported a series of highly efficient pincer ligands stabilized $\mathrm{Ni}($ II $)$ complexes as catalyst to promote the regioselective $[2+2+2]$ cyclotrimerization of various alkynes. The complex bearing di-tert-butyl groups on the phosphine ligand acts as the best catalyst in this reaction. ${ }^{14}$ They observed that the selectivity correlated well with the electronic feature of the alkynes, the electron-rich alkynes were trimerized to give 1,3,5-

[^5]
Chapter I

substituted benzenes as the major products, whereas the electron-deficient alkynes afforded the $1,2,4$-substituted benzenes as the major products (Scheme 9).

Scheme 9

Transition-metal-catalyzed $[2+2+2]$ cyclotrimerization of disubstituted acetylene is considered as an elegant and efficient method to access hexa-substituted benzene derivatives in a single synthetic operation. Many groups have reported such reactions, including Fréchet and co-workers for the convergent synthesis of dendrimers using a cobalt-catalyzed $[2+2+2]$ cyclotrimerization of bisdendritic alkynes, affording the corresponding benzene-cored dendrimers in $36-83 \%$ yields (Scheme 10). ${ }^{15}$

Scheme 10

Zhao and co-workers reported a facile and efficient method for the regioselective synthesis of polysubstituted benzenes via nickel-catalyzed $[2+2+2]$ cyclotrimerization of simple unactivated alkyl(aryl)acetylenes and diarylacetylenes (Scheme 11). ${ }^{16}$ They found that the combination of $\mathrm{Ni}(\mathrm{acac})_{2}$, imidazonium salt $(\mathrm{IBz} \cdot \mathrm{HBr})$ and Grignard reagent $(n \mathrm{BuMgCl})$ at

[^6]$60^{\circ} \mathrm{C}$ led exclusively to the formation of $1,2,4$-substituted isomer in up to 98% yield. This method was also utilized to access hexa-substituted benzenes by using $\mathrm{IBz} \cdot \mathrm{HCl}$ as the imidazolium salt partner providing a convenient synthetic route to various π-conjugated systems.

(Ar $=3-\mathrm{F}-\mathrm{C}_{6} \mathrm{H}_{4}$)

99\%

93\%

94\%

Scheme 11

1.2. Cycloaddition between two different alkynes.

Takeuchi and Nakaya ${ }^{17}$ described the chemoselective iridium-catalyzed $[2+2+2]$ cyclotrimerization of electron-deficient alkynes with electron-rich internal alkynes (Scheme 12). It was demonstrated that the chemoselectivity was controlled by the nature of the phosphine ligands. When 1,2-bis(diphenylphosphino)ethane (dppe) was used as a ligand, the electron-rich iridium/dppe complex coordinates with two electron-deficient alkynes to form iridacyclopentadiene Ir-I which undergoes coordination and insertion of another electron-rich alkyne to furnish the dicarbomethoxyl-substituted product as a major product. On the other hand, when electron-deficient 1,2-bis(dipentafluorophenylphosphino)ethane (fdppe) was employed, the reaction proceeded via iridacyclopentadiene Ir-II as the intermediate, affording the tetracarbomethoxyl-substituted compound as a major product. This reaction provided a useful and practical method for the synthesis of polycyclic substituted benzene derivatives.

[^7]
Chapter I

Scheme 12

The same group also described in 2008 an iridium-catalyzed chemo- and regioselective synthesis of $1,3,5$-substituted benzene derivatives via $[2+2+2]$ cyclotrimerization of two different terminal alkynes. ${ }^{18}$ In the presence of Ir/fdppe catalyst system, a variety of 1,3,5substituted benzenes was obtained as a single regioisomer in $58-96 \%$ yields. However, this strategy required the combination of one strong electron-deficient alkyne and one electron-rich alkyne (Scheme 13).

Scheme 13

[^8]
1.3. Cycloaddition of three different alkynes

The intermolecular $[2+2+2]$ cyclotrimerization of three different alkynes is difficult to control. Early transition metals such as zirconium ${ }^{19}$ and titanium ${ }^{20}$ were used for such transformation. However, the use of stoichiometric catalyst and harsh reaction conditions were required in some cases.

In 2004, Yamamoto and co-workers developed a chemo- and regioselective intermolecular cyclotrimerization of three different unsymmetrical alkynes using $\mathrm{Cp} * \mathrm{Ru}(\operatorname{cod}) \mathrm{Cl}$ as the catalyst. ${ }^{21}$ The reaction is initiated by the oxidative cyclization of an alkynylboronate and a propagyl alcohol to form the key ruthenacycle intermediate Ru-I, which undergoes insertion of the third alkyne to afford the intermediate arylboronate. The subsequent one-pot functionalization of these arylboronates could further be converted into several substituted aromatic compounds such as biaryls, boraphthalides, phthalides, and imidates (Scheme 14).

Scheme 14

[^9]
Chapter I

In 2005, Mitsudo and co-workers developed a ruthenium-catalyzed chemoselective $[2+2+2]$ cycloaddition to form polysubstituted o-phthalates (Scheme 15). ${ }^{22}$ It was demonstrated that a high chemoselectivity and regioselectivity could be attained by controlling the molar ratio of the three substrates. The reaction is also influenced by the bulkiness of the two substituents on the internal and terminal alkynes. Mitsudo's group proposed a plausible mechanism for the $[2+2+2]$ cycloaddition. At the first step, the internal alkyne and DMAD react with the ruthenium to form the ruthenacyclopentadiene Ru-I intermediate, followed by an insertion of the terminal alkyne into the formed ruthenacycle. A subsequent reductive elimination would afford the final regioisomers and regenerate the ruthenium catalytic species. However, a large excess of internal alkyne was required to avoid the formation of side-products.

Ru-I

Scheme 15

[^10]
1.4. Cyclotrimerization of two alkynes with another unsaturated substrate

Tanaka and co-workers described a cationic rhodium-catalyzed intermolecular [2+2+2] cycloaddition reaction of a terminal alkyne, a dialkyl acetylenedicarboxylate, and an enol ester. ${ }^{23}$ A variety of tri- and tetra-substituted benzenes was obtained in $35-80 \%$ yields with complete regioselectivity. The proposed mechanism features the regioselective formation of the rhodacyclopentadiene Rh-I followed by the regioselective insertion of an enol acetate leading to the intermediate Rh-II, which is stabilized by the coordination of the carbonyl group with the cationic rhodium through a five-membered chelation. Finally, a subsequent reductive elimination affords the corresponding substituted benzenes and one equivalent of acetic acid (Scheme 16).

Scheme 16

Cheng and co-workers described a new and efficient $\mathrm{Ni}(\mathrm{dppe}) \mathrm{Br}_{2} / \mathrm{Zn}$ catalytic system for the cross intermolecular $[2+2+2]$ cyclotrimerization of two alkynes with an allene. ${ }^{24} \mathrm{~A}$

[^11]
Chapter I

variety of polysubstituted benzene derivatives was obtained in complete regioselectivity and high chemoselectivity. According to the proposed mechanism, at the first step, two molecules of propiolate are consumed in the presence of the catalytic $\mathrm{Ni}(0)$ species to form the nickellacyclopentadiene intermediate Ni-I, coordination and subsequent insertion of allene into a Ni (II)-carbon bond gives nickellacyclopentadiene intermediate $\mathrm{Ni}-\mathrm{II}$. Subsequent reductive elimination and isomerization provide the aromatic product and regenerate the $\mathrm{Ni}(0)$ catalyst. Notably, the results indicated that the presence of a strong electron-withdrawing ester group in the alkyne moiety was necessary to ensure the success of the reactions. (Scheme 17)

$\mathrm{R}^{1}=\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{3}$, cyclohexyl, cyclopentyl, Ph
14 examples
$R^{2}=\mathrm{CO}_{2} \mathrm{Me}, \mathrm{Me},\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{3},\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}_{3},\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CH}_{3}$,
71-86\%

Scheme 17

2. Partially intramolecular reactions

2.1. Cobalt-catalyzed partially intramolecular [2+2+2] cycloadditions

In 2006, Okamoto and co-workers reported the first partially intramolecular cobaltcatalyzed $[2+2+2]$ cycloaddition reaction of α, ω-diynes with alkynes by using a catalytic
system based on the combination of 2-(2,6-diisopropylphenyl)iminomethylpyridine (dipimp), $\mathrm{CoCl}_{2} \bullet 6 \mathrm{H}_{2} \mathrm{O}$, and Zn powder. ${ }^{25}$ This method is efficient with a variety of functional terminal or internal alkynes, such as alcohols, esters, alkenes and silyl-substituted alkynes (Scheme 18). The use of Zn powder was required to promote the catalytic cycles, and the reaction was incompatible with aryl bromides, iodides, and nitro compounds because of the interaction with zinc and/or cobalt. Okamoto's team also demonstrated that the addition of a silver salt, such as silver triflate (AgOTf) or silver hexafluoroantimonate $\left(\mathrm{AgSbF}_{6}\right)$, could accelerate the reaction to furnish sterically demanding benzene derivatives starting from unactivated simple internal alkynes. ${ }^{26}$

Scheme 18

Doszczak and Tacke accomplished a one-step synthesis of hydroxyalkyl-substituted 1,3-disilaindanes, 1,4-disilatetralines, and 1,3-disila-1,3-dihydroisobenzofuranes via $\mathrm{Co} / \mathrm{Zn}$ catalyzed $[2+2+2]$ cycloaddition of silicon-containing diynes and unprotected propargyl alcohols under mild conditions (Scheme 19). ${ }^{27}$

[^12]

Scheme 19

In 2011, Aubert, Gandon, and Malacria engaged a series of halogenated diynes with alkynes in the presence of $\mathrm{CpCo}(\mathrm{CO})($ dimethylfumarate) and $\mathrm{Cp} * \mathrm{Ru}(\operatorname{cod}) \mathrm{Cl}$ catalyst via $[2+2+2]$ cycloaddition reactions. ${ }^{28}$ The studies confirmed that the ruthenium complex remains the best choice for the cycloaddition of all kind of alkynyl halides. The air-stable $\mathrm{CpCo}(\mathrm{CO})(\mathrm{dmfu})$ complex proved to be efficient with alkynyl bromides (Scheme 20).

Scheme 20

2.2. Rhodium-catalyzed partially intramolecular [2+2+2] cycloadditions

Since the first examples of partially intramolecular [2+2+2] cycloadditions of $\alpha, \omega-$ diynes and alkynes using a stoichiometric amount of Wilkinson's catalyst $\left(\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}\right)$

[^13]reported by Müller in 1974, ${ }^{29}$ the rhodium-catalyzed [2+2+2] cycloaddition of diynes and alkynes has been well studied over the past few decades. The most efficient and widely used rhodium catalysts were neutral $\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}$ complex and cationic rhodium(I)/biaryl bisphosphine complex catalysts.

Wilkinson's catalyst:

Grigg and co-workers described the first catalytic [2+2+2] cycloaddition of 1,6-diynes with alkynes under mild conditions in the presence of a catalytic amount of $\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}$ catalyst. ${ }^{30}$ Various tethered diynes and monoalkynes could be employed under these reaction conditions to afford the cycloadducts in 3-99\% yields (Scheme 21). ${ }^{31}$

Scheme 21

The Wilkinson's catalyst could also be used in the regioselective cycloaddition of unsymmetrical diynes with alkynes. In 1995, McDonald and co-workers reported the $\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}$-catalyzed [2+2+2] cycloaddition of different substituted diynes with simple monosubstituted alkynes to afford functionalized dihydroisobenzofuran products in 35-61\% yields. ${ }^{32}$ In most cases, the meta-substituted aromatic products were formed as major products because of the steric hindrance of the alkyne substituents (Scheme 22).

[^14]

Scheme 22

In contrast to the formation of five or six-membered bicyclic benzene derivatives, the $[2+2+2]$ cycloadditions to form medium-sized ring systems remain a challenge. Wu and coworkers developed a Rh-catalyzed $[2+2+2]$ cycloaddition reaction for the preparation of trifluoromethylated benzo-fused eight-membered rings. The Wilkinson's catalyst was chosen for the reaction to deliver the expected products in 46-90\% yields with good functional group tolerance (Scheme 23). ${ }^{33}$

Scheme 23

Cationic Rh(I)-biaryl bisphosphine complexes:

The cationic rhodium/biaryl bisphosphine catalysts are the most efficient catalysts and have been widely studied in partially intramolecular [2+2+2] cycloaddition reactions. In 2006, Tanaka and co-workers successfully employed a $\mathrm{Rh}(\operatorname{cod})_{2} \mathrm{BF}_{4} /(S)$-Xylyl-BINAP complex for the enantioselective $[2+2+2]$ cycloaddition of α, ω-diynes with trimethylsilylynamides to furnish axially chiral anilides. ${ }^{34}$ The authors demonstrated that the substituted groups on the ynamides greatly influenced the yield of anilides. Indeed, the phenyl- and methoxycarbonylsubstituted trimethylsilylynamides showed high reactivity. According to the mechanism, the high enantioselectivity of the anilides could be explained by the formation of the key

[^15]intermediate Rh-I, in which the rhodium center is coordinated to the carbonyl group of trimethylsilylynamide and the bulky PAr_{2} group of (S)-Xylyl-BINAP which sterically interacts with the R^{3} of the trimethylsilylynamide (Scheme 24).

Scheme 24

The same group applied the cationic rhodium(I)/H8-BINAP catalyst for the synthesis of substituted benzopicenes via $[2+2+2]$ cycloaddition of binaphthyl-linked diynes with alkynes (Scheme 25). ${ }^{35}$ This method was further applied for the benzopicene-based long ladder and helical molecules synthesis.

Scheme 25

[^16]
Chapter I

2.3. Nickel-catalyzed partially intramolecular [2+2+2] cycloadditions

Since the first examples of cyclotrimerization of alkynes to form benzene derivatives reported by Reppe, ${ }^{9}$ the nickel-catalyzed $[2+2+2]$ cycloaddition reactions have been well studied because of several advantages such as a high reactivity, a broad functional groups tolerance, relatively cheaper price compared to other late transition metals.

Cheng and co-workers developed an efficient protocol for the synthesis of polysubstituted arylalkynes based on the nickel-catalyzed $[2+2+2]$ cycloaddition of nonconjugated diynes with 1,3-diynes in a single transformation (Scheme 26). ${ }^{36}$ The results showed that the electron-withdrawing ester groups substituted diynes are more reactive compared to the terminal diynes.

Scheme 26

Under the optimized conditions, the reaction of unsymmetrical 1,6-diynes with symmetrical 1,3-diynes afforded the products in $58-79 \%$ yields with excellent chemo- and regioselectivity. Phenyl-, n-butyl-, and trimethylsilyl-substituted 1,3-diynes reacted with 1,6diynes to afford highly functionalized arylalkynes. Interestingly, unsymmetrical 1,3-diynes reacted with di-ester-substituted symmetrical diynes at room temperature to give the cycloadduct with high regioselectivity (ratio $=19: 1$). The cycloaddition mainly occurred with the triple bond adjacent to the n-butyl group of the 1,3-diyne (Scheme 27).

[^17]

Scheme 27

Kotora and co-workers reported a nickel-catalyzed $[2+2+2]$ cycloaddition of 6alkynylpurines with α, ω-diynes to access biologically active 6 -arylpurines. ${ }^{37}$ A variety of terminal diynes and substituted 6-alkynylpurines was examined to afford various functionalized 6 -arylpurines. Several catalysts have been evaluated in this reaction, such as $\operatorname{CoBr}\left(\mathrm{PPh}_{3}\right)_{3}$, $\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}, \mathrm{NiBr}_{2}(\mathrm{dppe}) / \mathrm{Zn}, \mathrm{NiI}_{2}\left(\mathrm{PPh}_{3}\right) / \mathrm{Zn}$, and $\mathrm{Ni}(\operatorname{cod})_{2} / \mathrm{PPh}_{3}$. The results showed that $\mathrm{Ni} /$ phosphine complexes were the best catalysts for the cyclotrimerization of alkynes. For example, in the presence of $20 \mathrm{~mol} \%$ of $\mathrm{Ni}(\operatorname{cod})_{2} / 2 \mathrm{PPh}_{3}$, different 1,6 -diynes smoothly reacted with 6-alkynylpurine nucleosides at $20^{\circ} \mathrm{C}$ to deliver the 6-arylpurine nucleosides in 48-81\% yields (Scheme 28). ${ }^{38}$

Scheme 28

[^18]
Chapter I

Deiters and co-workers described the microwave irradiation assisted nickel-catalyzed [2+2+2] cyclotrimerization reactions to quickly access highly substituted aromatic compounds. ${ }^{39}$ The application of microwave irradiation highly enhanced the reactivity of $\mathrm{Ni}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ catalyst, and enabled the reaction to produce highly substituted benzene derivatives in a short reaction time. A variety of diynes and alkynes were tolerated to afford various substituted indanes, isoindolines, and tetraline core structures in $50-98 \%$ yields. Notably, the developed protocols were used as a key step for the total synthesis of natural product Illudinine (Scheme 29).

Scheme 29

2.4. Iridium-catalyzed partially intramolecular [2+2+2] cycloadditions

In 2001, Takeuchi and co-workers described a simple and convenient protocol for the synthesis of polysubstituted benzene derivatives by using $[\operatorname{Ir}(\operatorname{cod}) \mathrm{Cl}]_{2} / \mathrm{dppe}$ complex as a catalyst. ${ }^{40} \mathrm{~A}$ broad range of functional groups such as alcohols, amines, alkenes, ethers, halogens, and nitriles were tolerated to give various functionalized benzene derivatives. ${ }^{41}$ It was proposed that the reaction formed an iridacyclopentadiene intermediate Ir-I by the oxidative cyclization of α, ω-diynes. The coordination of a monoyne would facilitate a Diels-Alder type

[^19]process to form an intermediate Ir-II, followed by reductive elimination to deliver the cycloadduct (Scheme 30).

Scheme 30

The authors also studied the regioselective cycloaddition of unsymmetrical diynes with terminal alkynes. The regioselectivity was controlled by the ligands. A plausible mechanism was shown in Scheme 31. When dppe is employed as the ligand, the reaction goes through a [4+2] Diels-Alder type mechanism forming intermediate Ir-III, and affords meta selective product as the major product. When dppf is used as ligand, the reaction proceeds via an insertion mechanism forming intermediate Ir-IV and provides selectively the ortho product as the major product.

Chapter I

Scheme 31

In 2014, Takeuchi's group expanded the scope of this reaction to the synthesis of carbonyl group functionalized benzene derivatives. Upon screening several iridium complexes and ligands, they found that the $[\operatorname{Ir}(\operatorname{cod}) \mathrm{Cl}]_{2} /(\mathrm{rac})$-BINAP was the best catalytic system for the reaction. ${ }^{42} \mathrm{~A}$ broad range of 2,7-diynes reacted with alkynyl ketones and alkynyl esters in the presence of $[\operatorname{Ir}(\operatorname{cod}) \mathrm{Cl}]_{2} /(\mathrm{rac})$-BINAP catalyst to provide the corresponding functionalized benzenes in $22-91 \%$ yields (Scheme 32).

Scheme 32

[^20]Taking advantage of the triply iodo-bridged iridium(III) complexes, [\{ $\operatorname{Ir}(\mathrm{H})[\mathrm{rac}-$ binap $\left.]\}_{2}(\mu-\mathrm{I})_{3}\right] \mathrm{I},{ }^{43}$ our group developed in 2012 a convenient and efficient protocol for the preparation of fused arenes. Isoindolines, indanes, and dihydroisobenzofurans bearing a wide range of substitution groups could be achieved through an iridium(III)-catalyzed [2+2+2] cycloaddition of α, ω-diynes with alkynes. The reaction proceeds with symmetrical and unsymmetrical diynes, which affords highly substituted benzene derivatives in up to 97% yields. This methodology can be applied to alkynylboronates, which is a convenient means to generate the challenging, highly functionalized borylated fused arenes that present great potential for further elaboration. Notably, these processes are extremely robust and simple to perform. The catalyst system is compatible with commercial grade non-degassed solvents, whereas the alkynes herein do not necessitate purification before use (Scheme 33). ${ }^{44}$

Scheme 33

[^21]In 2003, this atom-economical process has also been successfully performed under solvent-free conditions to access various fused arenes in 43-85\% yields (Scheme 34). ${ }^{45}$

Scheme 34

2.5. Ruthenium-catalyzed partially intramolecular [2+2+2] cycloadditions

$\mathbf{C p} * \mathbf{R u}(\operatorname{cod}) \mathrm{Cl}$ catalyst:

In 2000, Itoh and Yamamoto described the first example of ruthenium-catalyzed [2+2+2] cycloaddition of α, ω-diynes with monoalkynes using $\mathrm{Cp} * \mathrm{Ru}(\mathrm{cod}) \mathrm{Cl}$ catalyst. ${ }^{46}$ Later, they extended the scope of this reaction, and found that a variety of tethered diynes including heteroatom tethered diynes, such as nitrogen, oxygen, sulfur, was compatible with these reaction conditions leading to the formation of the corresponding benzene derivatives in 64$96 \%$ yields. A self-dimerization or trimerization of diynes product have been detected in some cases as a competitive process (Scheme 35). ${ }^{47}$

Scheme 35

[^22]The regioselectivity of the ruthenium-catalyzed cycloadditions was also studied by using unsymmetrical monosubstituted diynes. Treatment of the unsymmetrical diynes, bearing methyl, phenyl, and trimethylsilyl terminal substituents, with the $\mathrm{Cp} * \mathrm{Ru}(\mathrm{cod}) \mathrm{Cl}$ catalyst, gave the corresponding cycloadducts in high yields with high regioselectivities, the meta selective product being formed as the major product. According to the mechanism, the coordination and oxidative coupling of diyne with ruthenium complex led to the ruthenacyclopentadiene intermediate Ru-I, followed by the selective insertion of the monoalkyne into the less substituted $\mathrm{Ru}-\mathrm{C}$ single bond leading to the formation of the ruthenacycloheptatriene intermediates Ru-II or Ru-II'. The reductive elimination from Ru-II afforded meta-selective product, whereas Ru-II' furnished ortho-selective isomer (Scheme 36).

Scheme 36

In 2004, Yamamoto's group described the cycloaddition of unsymmetrical terminal diynes bearing amide, ester and ketone carbonyl tethered groups with terminal alkynes to afford the corresponding cycloadducts with unexpected regioselectivities. ${ }^{48}$ The observed results showed that the regioselectivity was directed by the electron effects of the internal conjugated carbonyl groups, and increased in the order of amide tether $(\mathrm{X}=\mathrm{NBn}) \approx$ ester tether $(\mathrm{X}=\mathrm{O})$

[^23]
Chapter I

< ketone $\left(\mathrm{X}=\mathrm{CH}_{2}\right)$. The stronger electron-withdrawing ability of the carbonyl group allowed the highest regioselectivity (Scheme 37).

Scheme 37

During the investigation of partially intramolecular $[2+2+2]$ cycloaddition reactions, a bicyclic ruthenacyclopentatriene complex Ru-I was isolated by Yamamoto's group. ${ }^{47}$ The internal diyne bearing two phenyl substituents slowly reacts with $\mathrm{Cp} * \mathrm{Ru}(\operatorname{cod}) \mathrm{Cl}$ complex in CDCl_{3} at room temperature to give the bis-carbene ruthenium complex in 51% yield, which could react in a stoichiometric way with acetylene to afford $[2+2+2]$ cycloadduct. Another example of naphthoquinone-fused ruthenacyclopentatriene complex Ru-II was prepared from 1,2-bis(phenylpropiolyl)benzene and $\mathrm{Cp} * \mathrm{Ru}(\operatorname{cod}) \mathrm{Cl}$ complex by the same group. ${ }^{49}$ The Ru -II complex could be isomerized to form cyclobutadiene complex Ru-III at room temperature in solution (Scheme 38).

Scheme 38

[^24]Based on the observed results and DFT calculations, Yamamoto's group proposed a mechanism for the cycloaddition of acetylene to form benzene on a CpRuCl fragment, as shown in Scheme 39. The coordination of two alkynes to the ruthenium center exchanges with the diene ligand to form species Ru-I, which undergoes oxidative cycloaddition to give ruthenacyclopentatriene Ru-II. Coordination of a third alkyne to the ruthenium center followed by a subsequent $[2+2]$ cycloaddition between the Ru-C double bond with alkyne produces metallobicyclo[3.2.0]heptatriene Ru-IV, this intermediate rapidly undergoes ring-opening process resulting in the formation of ruthenacycloheptatetraene Ru-V. Finally, a ring-closing step occurs with the seven-membered ruthenacycle $\mathrm{Ru}-\mathbf{V}$ via a carbene-carbene coupling delivering an η^{2}-arene complex Ru-VI. A rapid exchange between arene and acetylene produces the cycloadduct and regenerates the starting ruthenium complex Ru-I.

Scheme 39

Taking advantage of this efficient catalyst, Nicolaou's group accomplished the total synthesis of the highly oxygenated, marine-derived, natural product Sporolide B. The key intermediate indene structural motif was prepared by the partially intramolecular [2+2+2] cycloaddition of chloroacetylenic cyclopentenyne and propargylic alcohol in the presence of 7 $\mathrm{mol} \% \mathrm{Cp} * \mathrm{Ru}(\mathrm{cod}) \mathrm{Cl}$ in dichloroethane at room temperature. The reaction provided the key

Chapter I

building block as a single regioisomer in 87% yield, which was finally converted to Sporolide B over 13 steps (Scheme 40). ${ }^{50}$

Scheme 40

Grubbs catalyst:

Grubbs catalyst has also been used in partially intramolecular [2+2+2] cycloaddition reactions. In 2000, Witulski and co-workers employed Grubbs $\mathbf{I}\left(\left[\mathrm{RuCl}_{2}(\mathrm{NCHPh})\left(\mathrm{PCy}_{3}\right)_{2}\right]\right)$ for the regioselective synthesis of 4,6-substituted indolines. ${ }^{51}$ The reaction probably proceeds via a cascade metathesis mechanism to give the high regioselective formation of 2,4-substituted product. The catalytic cycle was shown in Scheme 41. The Grubbs I complex initially adds to the least substituted alkyne moiety of the 1,6-diyne leading to the formation of vinyl carbene complex Ru-I, which undergoes an intramolecular metathesis reaction to give the fivemembered carbo- or heterocycle Ru-II. The coordination of another monoalkyne followed by an intermolecular metathesis insertion affords the highly conjugated carbene complex Ru-III, which undergoes the final ring-closing olefin metathesis step resulting in the regeneration of the ruthenium benzylidene catalyst and in the preferred formation of the corresponding metaisomer (Scheme 41).

[^25]

Scheme 41

3. Totally intramolecular reactions

Totally intramolecular cycloaddition reactions are considered as the most efficient method to solve the problem of the control of the chemo- and regioselectivity to access highly substituted benzenes. Three alkynes linked with two or three carbo- or hetero-tethers form a triyne which can be assembled via a cyclotrimerization to give a polycyclic aromatic compound with complete selectivity.

Malacria and Aubert reported in 2004 the first totally chemo- and regioselective formal intermolecular $[2+2+2]$ cycloaddition of three different alkynes by using the $\mathrm{CpCo}(\mathrm{CO})_{2}$ catalyst. ${ }^{52}$ A series of easily prepared silicon-tethered triynes ${ }^{53}$ successfully reacted with cobalt catalyst to furnish various benzene derivatives. Selective deprotection of the silylated group,

[^26]
Chapter I

resulted in the formation of functionalized arenes. This synthetically useful method avoided the formation of unexpected regioisomers in such cycloaddition reactions (Scheme 42).

Scheme 42

In 2009, Aubert, Gandon, and Malacria applied the new designed and synthesized $\mathrm{CpCo}(\mathrm{CO}) \mathrm{dmfu}$ catalyst for totally intramolecular $[2+2+2]$ cycloaddition reactions. ${ }^{54}$ The airstable cobalt catalyst efficiently catalyzed the cyclotrimerization of carbo- and hetero-tethered triynes, forming a variety of fused tricycle benzenes in 69-92\% yields (Scheme 43). Notably, these reactions can be performed under both conventional heating and microwave irradiation heating conditions.

$\mathrm{X}=\mathrm{C}\left(\mathrm{CO}_{2} \mathrm{Me}\right)_{2}, \mathrm{NTs}, \mathrm{O}$
Selected examples:

[^27]
Scheme 43

In contrast to the linear triynes, the macrocyclic triynes can also be employed in [2+2+2] cycloaddition reactions. In 2004, Roglans and co-workers reported a totally intramolecular rhodium-catalyzed $[2+2+2]$ cycloaddition reaction of nitrogen-containing 15 -membered triacetylenic macrocycles. ${ }^{55}$ The nitrogen-tethered macrocyclic triynes smoothly reacted with $1-5 \mathrm{~mol} \%$ of $\mathrm{RhCl}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}$ in toluene to afford various multiple ring compounds in $80-96 \%$ yields (Scheme 44). Notably, this was the first example of [2+2+2] cycloaddition reactions of macrocyclic triynes.

Scheme 44

Taking advantage of this strategy, Witulski and co-workers reported the first total synthesis of the sesquiterpenoid alcyopterosin E from simple starting materials. In this multistep synthesis, the formation of the key precursor indeno[4,5-c]furan was achieved through a totally intramolecular cycloaddition of an enantiomerically pure triyne by using Wilkinson's catalyst in dichloromethane at $40^{\circ} \mathrm{C}$. Subsequent transformation of the tosylate into a nitrate group completed the total synthesis (Scheme 45). ${ }^{56}$

[^28]Chapter I

Scheme 45

Chapter II: Access toward fluorenone derivatives through solvent-free ruthenium trichloride mediated [$2+2+2$] cycloadditions

Chapter II: Access toward fluorenone derivatives through solvent-free ruthenium trichloride mediated [2+2+2] cycloadditions

1. Interest of fluorenones

Over the past few years, fluoren-9-one and its derivatives have attracted much attention from academia and industry regarding their frequent application in various fields. ${ }^{57}$

The fluorenone scaffolds and related chemicals are important structural moiety that constitute the central core of a variety of compounds, which are found in many natural products and bioactive molecules encompassing a wide range of biological properties (Scheme 46). ${ }^{58}$ For example, Dengibsin A and Dengibsinin B were the first natural fluorenone derivatives isolated from the Indian orchid Dendrobium gibsonii Lindl, ${ }^{58 a}$ 2,7-disubstituted amidofluorenone derivatives \mathbf{D} exhibited a range of human telomerase inhibitory activities, ${ }^{58 \mathrm{~d}}$ tilorone dihydrochloride \mathbf{E} has great potential for inducing interferon against pathogenic infection, ${ }^{58 \mathrm{e}}$ indenone \mathbf{F} showed anti-HIV-1 activity, ${ }^{58 \mathrm{f}}$ dicationic 2-fluorenonylcarbapenems \mathbf{G} were potent anti-MRS agents. ${ }^{58 \mathrm{~g}}$

[^29]
Chapter II

B
Dengibsinin (natural product)

C
Dendroflorin (natural product)

Scheme 46

Additionally, because of their attractive luminescent properties, fluorenones could also be employed as organic and polymer light-emitting diodes, bulk heterojunction solar cells and photochemical sensitizers (Scheme 47). ${ }^{59}$ For examples, bisindenofluorene \mathbf{H} represented a novel building block class for n-type electronic materials, ${ }^{59 \mathrm{a}}$ compounds I formed ferroelectric liquid crystals, ${ }^{59 b}$ 2,7-poly(9-fluorenone) \mathbf{J} was a suitable candidate as an electron-injection material in multilayer LEDs, ${ }^{59 i}$ and compound \mathbf{K} was a stable fluorenone-based sensitizer dye for solar cell. ${ }^{59}{ }^{j}$

[^30]

Electronic materials

Scheme 47

2. Preparation methods in the literature

2.1 Traditional methods for the preparation of fluorenones

Numerous synthetic methods have been developed for the synthesis of fluorenones. Traditional synthetic methods include Friedel-Crafts acylation, ${ }^{60}$ remote metalation, ${ }^{61}$ DielsAlder reaction, ${ }^{62}$ and oxidation of fluorenes or fluorenols. ${ }^{63}$ (Scheme 48)

[^31]

Scheme 48

2.2 Transition-metal-catalyzed synthesis of fluorenones

Over recent years, transition-metal-catalyzed functionalization has been recognized as a novel and efficient method to synthesize complex fluorenone derivatives that are not accessible by conventional methods. Palladium, rhodium, silver and copper complexes have been reported as catalysts to access fluorenones and derivatives. Synthetic methods for the preparation of fluorenone derivatives are summarized below and classified according to the metal.

2.2.1 Palladium-catalyzed synthesis of fluorenones

2.2.1.1 C-H functionalization of 2-haloarylketones

In 1984, Ames and Opalko disclosed a novel palladium-catalyzed dehydrohalogenation of 2-iodobenzophenone to provide fluorenone (Scheme 49). ${ }^{64}$ Various bases and solvents employed with $\mathrm{Pd}(\mathrm{OAc})_{2}$ have been used in this reaction. When 2-iodobenzophenone was heated in N -methylimidazole in the presence of $\mathrm{Pd}(\mathrm{OAc})_{2}$ at $190{ }^{\circ} \mathrm{C}$, fluorenone product was obtained in 100% yield.

[^32]

Scheme 49

Based on the previous results reported by Ames and Opalko, Jones and co-workers further optimized the reaction conditions, involving high-temperature with $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ and sodium acetate in dimethylacetamide (DMA) under microwave irradiation (Scheme 50). ${ }^{65}$ They successfully synthesized benzo[b]fluorenone in 53% yield, this derivative being considered as a key intermediate to access the natural products stealthin C^{66} and prekinamycin ${ }^{67}$.

Scheme 50

2.2.1.2 Directing-group-assisted C-H activation

In 2007, Larock's research group reported an efficient synthesis of fluorenones using a Pd-catalyzed intramolecular C-H activation strategy involving an aryl to imidoyl palladium migration process (Scheme 51). ${ }^{68}$ Treatment of imines with $5 \mathrm{~mol} \%$ of $\mathrm{Pd}(\mathrm{OAc})_{2}, 5 \mathrm{~mol} \%$ of bis(diphenylphosphino)methane (dppm), and 2 equivalents of $\mathrm{CsO}_{2} \mathrm{CCMe}_{3}$ (CsPiv) in DMF at $100{ }^{\circ} \mathrm{C}$, followed by hydrolysis using aqueous HCl , afforded the desired fluorenones in 56$100 \%$ yields. Subsequent deuterium labeling experiments showed that the reaction involved both a palladium migration and a C-H activation process through an unprecedented organopalladium hydride intermediate $\mathrm{Pd}-\mathbf{I}$.

[^33]
Chapter II

Scheme 51

In 2008, Daugulis and co-workers reported a one-pot synthetic method for orthobenzonitriles and fluorenone derivatives formation by the palladium-catalyzed $\mathrm{C}-\mathrm{H}$ bond functionalization of simple benzamide and aryl halides (Scheme 52). ${ }^{69}$ Notably, the reaction could afford various desired products by tuning the alkyl substituent on the amide group. N cyclohexyl benzamides led to the formation of benzonitrile derivatives, whereas N-propyl benzamides can be converted to fluorenones.

Scheme 52

Beside imines, oximes can be also considered as directing groups in Pd-catalyzed C-H activation to synthesize fluorenone derivatives. In 2008, Cheng and co-workers reported a Pdcatalyzed synthesis of fluorenones from substituted aromatic aldoxime ethers and aryl iodides through a dual C-H activation and oxidative Heck cyclization (Scheme 53). ${ }^{70}$ A series of control

[^34]experiments suggested that both palladium acetate and silver oxide are required for this transformation, allowing the facile synthesis of the desired fluorenones in $63-90 \%$ yields.

Scheme 53

Shi and co-workers described in 2010 a one-pot Pd-catalyzed ortho-directed C-H arylation of aromatic aldoxime ether and arylboronic acids for the synthesis of fluorenone derivatives (Scheme 54). ${ }^{71}$

Scheme 54

In 2011, the continuous work in Cheng's group demonstrated that a Pd-catalyzed orthodirected multiple $\mathrm{C}-\mathrm{H}$ activation of aromatic aldoxime ether with arenes could proceed smoothly to give the corresponding substituted fluorenone derivatives in $42-91 \%$ yields (Scheme 55). ${ }^{72}$ Notably, this synthetic method for the preparation of fluorenones showed a significant improvement since it avoided the use of aryl halides, aryl boronic acids, and expensive metal oxidants.

[^35]
Chapter II

Scheme 55

Hsieh and co-workers developed in 2013 a method for the preparation of polysubstituted fluorenones via a Pd-catalyzed nitrile directed remote C-H and dual C-H bond activation with intramolecular 1,2-insertion of nitrile (Scheme 56). ${ }^{73} \mathrm{~A}$ wide range of functional groups were tolerated under the reaction conditions, providing various fluorenones in 17-91\% yields.

Scheme 56

In addition, a Pd-catalyzed ortho C-H activation of benzylamines with iodo arenes to provide fluoreonone derivatives has been explored. Satyanarayana and co-workers reported a one-pot domino Pd-catalyzed reaction proceeding through the formation of a five-membered Pd(II)-cycle and subsequent ortho C-H activation with iodoarenes to give fluorenones in 42$88 \%$ yields with high regioselectivities (Scheme 57). ${ }^{74}$ Notably, the reaction could further activate $\mathrm{C}\left(\mathrm{sp}^{3}\right)-\mathrm{H}$ and $\mathrm{C}\left(\mathrm{sp}^{2}\right)$ - H bonds to afford the fused fluorenone derivatives.

[^36]

Scheme 57

In 2014, Wang's group described a Pd-catalyzed intramolecular C-C coupling reaction through a dual C-H bond activation directed by a removable carboxylate group. ${ }^{75}$ The reaction proceeds in the presence of $\mathrm{Pd}(\mathrm{OAc})_{2}$ and $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot n \mathrm{H}_{2} \mathrm{O}$ under air atmosphere, to provide various substituted fluorenones in $31-91 \%$ yields. According to the proposed mechanism, the intramolecular carboxylate-directed dual C-H activation generates a 9H-fluorene-9-carboxylic acid (I) intermediate, a subsequent oxidative decarboxylation by the oxygen from the air in the presence of $\mathrm{Pd}(\mathrm{OAc})_{2}$ and $\mathrm{Cu}(\mathrm{OAc})_{2}$ and furnishes the cyclized product along with eliminating carbon dioxide and water (Scheme 58).

[^37]
Chapter II

Scheme 58

Another interesting example involving Pd-catalyzed carboxylic acid directed orthoselective oxidative C-H/C-H cross-coupling of aromatic carboxylic acids with arenes followed by subsequent intramolecular Friedel-Crafts acylation for the construction of poly-substituted fluorenones was reported by You and co-workers. (Scheme 59). ${ }^{76}$ By following this strategy, a variety of commercially available aromatic carboxylic acids and arenes were successfully converted to substituted fluorenones in 53-82\% yields.

[^38]

Scheme 59

Sorensen's group reported in 2017 Pd -catalyzed $\mathrm{C}\left(\mathrm{sp}^{2}\right)-\mathrm{H}$ functionalization cascade reactions for the preparation of fluorenones from readily available benzaldehydes and aryl iodides using anthranilic acid as transient directing group. ${ }^{77}$ It is worthy to mention that the antiviral drug Tilorone was synthesized in 40% yield over three steps (Scheme 60).

Scheme 60

2.2.1.3 Dehydrogenative cyclization

In 2012, Cheng's group disclosed a novel synthetic method involving a dual C-H activation of diarylketones to form fluorenones by Pd-catalyzed oxidative dehydrogenative

[^39]
Chapter II

cyclization of benzophenones. ${ }^{78}$ This process provided a wide range of fluorenones in 36-94\% yields (Scheme 61). A mechanistic study demonstrated that the first step was the coordination between the ketone group and $\mathrm{Pd}(\mathrm{II})$ followed by the consecutive ortho-C-H activation to form a palladacycle $\mathrm{Pd}-\mathbf{I}$, which was expected to be in equilibrium with its palladium aryl σ-complex Pd-II. Then the palladium complex Pd-II underwent the second C-H activation, lead to the sixmembered palladium complex Pd-III and subsequent reductive elimination to produce the fluorenone product and $\operatorname{Pd}(0)$ species. Independently, Shi's group reported similar conditions to access fluorenone derivatives through palladium-catalyzed dehydrogenative cyclization reactions. ${ }^{79}$

Scheme 61

Kantam and co-workers reported in 2015 an efficient method for the synthesis of fluorenones by dehydrogenative cyclization of benzophenones using a palladium(II)/magnesium-lanthanum mixed oxide catalyst in $\mathrm{TFA} / \mathrm{H}_{2} \mathrm{O}$ solution system

[^40](Scheme 62). ${ }^{80}$ Fluorenones were formed in $50-85 \%$ yields in the presence of reusable $\mathrm{Pd}(\mathrm{II}) / \mathrm{Mg}$-La catalyst under heterogeneous reaction conditions.

Scheme 62

2.2.1.4 Cyclocarbonylation

The first practical method for the Pd-catalyzed cyclocarbonylation of ortho-halobiaryls to substituted fluorenone derivatives was developed by Larock's group in 2000. ${ }^{81}$ Treatment of the ortho-halobiaryls with $5 \mathrm{~mol} \%$ of $\mathrm{Pd}\left(\mathrm{PCy}_{3}\right)_{2}$ and 2 equivalents of anhydrous cesium pivalate in DMF solution under 1 atm of carbon monoxide atmosphere provided the expected fluorenones in $67-100 \%$ yield. This method has been successfully employed for the preparation of polycyclic and heterocyclic fluorenones (Scheme 63).

Scheme 63

A related study published in 2015 by Xie and co-workers ${ }^{82}$ demonstrated that the Pdcatalyzed carbonylative cross-coupling of aryl dihalides with arylboronic acids proceeded

[^41]
Chapter II

smoothly under a carbon monoxide atmosphere, leading to the substituted fluorenones in 22$94 \%$ yields (Scheme 64). Notably, a series of more challenging fluorenones containing various substituents and π-conjugated extended systems was achieved.

Selected examples:

35%

Scheme 64

Kakiuchi's group described in 2016 a Pd-catalyzed cyclocarbonylation of 2bromobiphenyls with formaldehyde through the cleavage of a C-H bond to afford the desired fluorenones in $45-75 \%$ yields (Scheme 65). ${ }^{83}$ The use of paraformaldehyde as a carbonyl surrogate resulted in a practical synthetic method and can be widely used.

Scheme 65

[^42]
2.2.1.5 Decarboxylative cyclization

With respect to carbonyl sources, several methods involving different carbonyl sources, such as carboxylic acids, nitriles, aldoximes, aldehydes, have been reported for the preparation of fluorenones. Jin and co-workers reported in 2016 a one-pot palladium-catalyzed decarboxylative cyclization of 2-phenylbenzoic acid to synthesize fluorenones by using tertbutyl isocyanide as a new carbonyl source (Scheme 66). ${ }^{84}$ Subsequent C-H activation and decarboxylation insertion of the isocyanide into 2-phenylbenzoic acid provided a six-membered intermediate that underwent elimination and hydrolysis to generate the cyclized product.

Scheme 66

2.2.1.6 Other methods for the preparation of fluorenones

In 2005, Larock's group reported the synthesis of fluorenone derivatives via a palladium-catalyzed annulation of arynes with o-halobenzaldehydes. ${ }^{85}$ Later, they extended the scope of functionalized o-halobenzaldehydes and arynes. ${ }^{86}$ A variety of o-halobenzaldehydes and arynes has been examined, affording the substituted fluorenones in $33-82 \%$ yields (Scheme 67).

[^43]
Chapter II

Scheme 67

A rapid approach to access fluorenone derivatives via domino reactions using microwave as heating source has been reported by Lautens and co-workers. ${ }^{87}$ The arylpalladium intermediate generated by a sequence of norbornene mediated $\mathrm{C}-\mathrm{H}$ activation and subsequent ortho-arylation, underwent ester addition providing the corresponding fluorenone in 46-93\% yields (Scheme 68). Several aldehydes were also subjected to this method affording the 9 H -fluoren- 9 -one products in good yields. In the case of aldehydes, the reaction proceeded with triphenylphosphine as ligand under conventional heating at $90^{\circ} \mathrm{C}$ for 24 h .

Scheme 68

[^44]In 2010, Ray and co-workers disclosed an efficient method for the preparation of fluorenones through a palladium-catalyzed one-pot Suzuki-Miyaura coupling reaction followed by an intramolecular arylpalladation of 2-bromophenyl boronic acid with 2bromocarboxaldehyde (Scheme 69). ${ }^{88}$ Various fluorenones and condensed fluorenone derivatives have been synthesized in 51-80\% yields from readily available starting materials.

Scheme 69

The Dharmaraj's group described in 2016 an efficient palladium-catalyzed domino reaction of benzoyl chloride with arylboronic acid to synthesize substituted fluorenones (Scheme 70). ${ }^{89}$ A newly synthesized ONO pincer-type $\mathrm{Pd}^{\mathrm{II}}$ complex has been used in this reaction and exhibited high catalytic efficiency ($0.1 \mathrm{~mol} \%$ catalyst-loading). Compared to other systems the catalyst could be reused over six consecutive runs.

Scheme 70

[^45]
Chapter II

2.2.2 Rhodium-catalyzed synthesis of fluorenones

2.2.2.1 Conversion of benzoic anhydrides into fluorenones

Blum and co-workers reported in 1969 the first example of Rh-catalyzed transformation of benzoic anhydrides to fluorenones. Treatment of benzoic anhydride derivatives with chlorotris(triphenylphosphine)rhodium at high temperature led to the corresponding fluorenones in $5-72 \%$ yields. (Scheme 71). ${ }^{90}$

Scheme 71

2.2.2.2 Partially intramolecular [2+2+2] cycloadditions

Considering the potential applications of optical and electronic functional materials, Tanaka and co-workers developed an efficient rhodium-catalyzed partially intramolecular double $[2+2+2]$ cycloaddition to synthesize enantioenriched fluorenone-containing [9]-helicene-like derivatives and $1,1^{\prime}$-bistriphenylenes (Scheme 72). ${ }^{91,92}$

[^46]

Scheme 72

2.2.2.3 Intramolecular acylation

Ryu and co-workers disclosed in 2014 the first catalytic preparation of fluorenone derivatives through Rh-catalyzed intramolecular acylation of biarylcarboxylic acids (Scheme 73). ${ }^{93}$ Screening of several reaction conditions led to the selection of $[\mathrm{Rh}(\operatorname{cod}) \mathrm{Cl}]_{2} / \mathrm{dppe}$ system and potassium iodide/pivalic anhydride as catalyst and additives. Notably, the microwave irradiation promoted the reaction in a shorter reaction time.

Scheme 73

[^47]
Chapter II

2.2.3 Silver-catalyzed synthesis of fluorenones

2.2.3.1 Intramolecular radical cyclization

In 2011, Baran and co-workers developed a silver-catalyzed intramolecular radical cyclization of arylboronic acids and potassium aryltrifluoroborates, in the presence of silver nitrate and potassium persulfate, to access fluorenones through a 'borono-Pschorr' process (Scheme 74). ${ }^{94}$ The reaction was carried out under mild conditions and tolerated various functional groups, such as $\mathrm{CO}_{2} \mathrm{Me}, \mathrm{CN}, \mathrm{CF}_{3}$. The aza-fluorenones were synthesized as a mixture with moderate regioselectivity.

$R^{2}=\mathrm{H}, 4-\mathrm{Me}, 4-\mathrm{CO}_{2} \mathrm{Me}, 4-\mathrm{CN}, 4-\mathrm{CF}_{3}$,
9 examples
4-F, 2,4-diF, 3,4,5-triF 30-77\%

Selected examples:

64%, ratio $=1.4: 1$

Scheme 74

2.2.3.2 Decarboxylative radical cyclization

Greaney and co-workers reported in 2012 a similar study which involved Ag-catalyzed decarboxylative radical cyclization of arylbenzoic acids to afford fluorenones (Scheme 75). ${ }^{95}$ Notably, $\mathrm{CD}_{3} \mathrm{CN}$ was unconventionally chosen as solvent, because of the stronger C-D bond that decreased hydrogen atom abstraction from the solvent. In addition, deuterated decarboxylation product was obtained as a side product which confirmed that the solvent was acting as a hydrogen atom donor.

[^48]

Scheme 75

2.2.4 Copper-catalyzed synthesis of fluorenones

A Cu-catalyzed simple construction of methoxy-substituted fluorenones from substituted 2-iodobenzophenones was reported by Haggam (Scheme 76). ${ }^{96}$ This study demonstrated that the intramolecular Cu -catalyzed cyclization of 2-iodobenzophenones afforded the corresponding fluorenones in 71-92\% yields under conventional heating or under microwave conditions in a shorter reaction time.

Scheme 76

[^49]
Chapter II

3. Objectives

As we detailed above, various fluorenones have been synthesized through transition-metal-catalyzed reactions. However, there are still important challenges to solve considering current limitations of these methods. Because of special structural features, the construction of the three single C-C bonds between the two six-membered rings has been generally privileged (Scheme 77). In contrast, only few examples focused on the construction of one of the two sixmembered rings.

Scheme 77

Considering the results described in the literature, we envisioned that highly substituted fluorenones and related derivatives, such as azafluorenones, indenothiophenones, and benzo[b]furanones, could be successfully accessed using [2+2+2] cycloaddition of suitably substituted arylcarbamoyl bridged α, ω-diynes and monoalkynes. The retrosynthetic analysis is shown in Scheme 78.

Scheme 78

4. Results and discussion

4.1 Synthesis of starting materials: arylcarbamoyl bridged α, ω-diynes and internal alkynes

4.1.1. Synthesis of benzoyl bridged α, ω-diynes

The synthesis of benzoyl bridged diynes could be accessed from the commercially available 2-bromobenzaldehydes via Sonogashira cross-coupling followed by condensation of the corresponding alkyl or phenyl substituted terminal alkyne to the carbonyl group, and final oxidation of the resulting secondary alcohol to ketone.

First, the substituted monoalkyne benzaldehyde derivatives 1-7 were prepared by a Sonogashira cross-coupling reaction. Under classical conditions, the reactions were conducted with 1.2 to 1.5 equivalents of the corresponding terminal alkynes and 2-bromobenzaldehyde in the presence of $5 \mathrm{~mol} \% \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ and $2.5 \mathrm{~mol} \% \mathrm{CuI}$ in a mixture of triethylamine and tetrahydrofuran $(5.0 \mathrm{M}, v / v=1 / 1)$ at $50^{\circ} \mathrm{C}$. As shown in Scheme 79, various commercial substituted acetylenes were used, such as phenylacetylene, 1-hexyne, and trimethylsilylacetylene. In order to study the influence of the substituents on the phenyl ring at C7 position, electron-donating groups such as methyl (4) or tert-butyl (5) were introduced by using 4-ethynyltoluene or 4-(tert-butyl)phenylacetylene. In order to evaluate the effect on the tethered phenyl ring, the 2-bromoarylaldehydes having both electron-donating and electronwithdrawing substituents, such as methylenedioxy (6) and fluoride (7), were used for the crosscoupling reaction. All the desired compounds 1-7 were obtained in 70-87\% yields (Scheme 79).

Chapter II

Scheme 79

In the second step, derivatives 8-16 were synthesized by a lithium mediated nucleophilic addition of terminal alkynes with benzaldehyde derivatives 1-7, as shown in Scheme 80. The anion of terminal alkynes was formed by reacting n-butyl lithium with terminal alkyne at low temperature and was followed by the addition of the previously synthesized alkynyl benzaldehyde derivatives 1-7 in THF, allowing the preparation of substituted diynes 8-16 in $50-96 \%$ yields. To maximize the yield of the reaction, 1.2 equivalents of n-butyllithium and 1.5 equivalents of terminal alkynes were used. Different functionalities at C8 position, such as n butyl, cyclopropyl and phenyl, were introduced to study the influence of the substituents.

$$
\begin{array}{ll}
\text { 1, } R^{1}=\mathrm{Ph}, \mathrm{R}^{2}=\mathrm{H} & \text { 5, } \mathrm{R}^{1}=4-t \mathrm{Bu}-\mathrm{C}_{6} \mathrm{H}_{4}, \mathrm{R}^{2}=\mathrm{H} \\
\text { 2, } \mathrm{R}^{1}=n B u, R^{2}=H & \text { 6, R }{ }^{1}=\mathrm{Ph}, \mathrm{R}^{2}=4,5 \text {-methylenedioxy } \\
\text { 3, } \mathrm{R}^{1}=\mathrm{SiMe}_{3}, \mathrm{R}^{2}=H & \text { 7, } \mathrm{R}^{1}=\mathrm{Ph}, \mathrm{R}^{2}=5-\mathrm{F} \\
\text { 4, } \mathrm{R}^{1}=4-M e-\mathrm{C}_{6} \mathrm{H}_{4}, \mathrm{R}^{2}=\mathrm{H} &
\end{array}
$$

9, 50\%

12, 80%

15, 96%

10, 81%

13, 87\%

16, 92\%

Scheme 80

Compounds 8-16 were next converted to the corresponding benzoyl bridged α, ω-diynes 17-25 via oxidation reaction using Dess-Martin periodinane reagent (1.3 equivalents) (Scheme 81). After transformation of the secondary alcohols into ketones, symmetrically and unsymmetrically benzoyl bridged α, ω-diynes $\mathbf{1 7 - 2 5}$ were isolated in $74-94 \%$ yields.

Chapter II

17, 94\%

20, 75\%

23. 89%

18, 76\%

21, 74\%

24, 77\%

19, 84\%

22, 91\%

25, 87\%

Scheme 81

Having in hand diyne 12, a standard deprotection with TBAF and oxidation reaction with Dess-Martin periodinane afforded substituted terminal phenylacetylene 29. The Sonogashira cross-coupling reaction was next envisaged for the preparation of electronwithdrawing group substituted diynes 26 and $\mathbf{2 7}$. Compound 29 reacted with a 1.5 equivalents of 4-iodobenzotrifluoride or 1-bromo-4-iodobenzene in the presence of $5 \mathrm{~mol} \%$ of $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ and $2.5 \mathrm{~mol} \%$ of CuI in tetrahydrofuran/triethylamine at $50{ }^{\circ} \mathrm{C}$. The reaction provided the desired products 26 and 27 in 65\% and 48% yields, respectively (Scheme 82).

Scheme 82

4.1.2. Synthesis of heteroaromatic bridged α, ω-diynes

Heteroaromatic compounds $\mathbf{3 0 - 3 6}$ were prepared following the same strategy by Sonogashira cross-coupling of the corresponding 2-bromo-heteroarylaldehydes with phenylacetylene. As shown in scheme 83, the coupling products 30-36 were obtained in 50-88\% yields under the same conditions.

$\mathrm{R}^{1}=\mathrm{Ph}, 4-\mathrm{tBu}-\mathrm{C}_{6} \mathrm{H}_{4}$
30-36

34, 80\%

35, 88\%

36, 54\%

Scheme 83

Next, aldehydes 30-36 reacted with terminal alkynes in the presence of $n \mathrm{BuLi}$ to provide the corresponding diynes 37-43 in yields ranging from 71% to 90% (Scheme 84).

30, Het = furanyl, $\mathrm{R}^{1}=\mathrm{Ph}$
34, Het = pyridinyl, $\mathrm{R}^{1}=\mathrm{Ph}$
31, Het = thienyl, $\mathrm{R}^{1}=\mathrm{Ph}$
35, Het = pyridinyl, $\mathrm{R}^{1}=4-\mathrm{tBu}-\mathrm{C}_{6} \mathrm{H}_{4}$
32, Het = benzothienyl, $\mathrm{R}^{1}=\mathrm{Ph}$
36, Het $=2$-Cl-pyridinyl, $\mathrm{R}^{1}=\mathrm{Ph}$
33, Het = benzofuranyl, R1 $=\mathrm{Ph}$
$\mathrm{R}^{2}=n \mathrm{Bu}$, cyclopropyl

38, 89\%

39, 89\%

40, 90\%

41, 80\%

42, 80\%

43, 71\%

Scheme 84

Finally, oxidation of diynes 37-43 with Dess-Martin periodinane furnished the heteroaromatic carbonyl bridged diynes $\mathbf{4 4 - 5 0}$ in 40-94\% yields. (Scheme 85).

37, Het = furanyl, $\mathrm{R}^{1}=\mathrm{Ph}, \mathrm{R}^{2}=n \mathrm{Bu}$
38, Het $=$ thienyl, $\mathrm{R}^{1}=\mathrm{Ph}, \mathrm{R}^{2}=n \mathrm{Bu}$
39, Het = benzothienyl, $\mathrm{R}^{1}=\mathrm{Ph}, \mathrm{R}^{2}=n \mathrm{Bu}$
40, Het = benzofuranyl, $\mathrm{R}^{1}=\mathrm{Ph}, \mathrm{R}^{2}=n \mathrm{Bu}$

41, Het = pyridinyl, $\mathrm{R}^{1}=\mathrm{Ph}, \mathrm{R}^{2}=$ cyclopropyl
42, Het $=$ pyridinyl, $\mathrm{R}^{1}=4-t \mathrm{Bu}-\mathrm{C}_{6} \mathrm{H}_{4}, \mathrm{R}^{2}=n \mathrm{Bu}$
43, Het $=2$-Cl-pyridinyl, $\mathrm{R}^{1}=\mathrm{Ph}, \mathrm{R}^{2}=n \mathrm{Bu}$

44, 40\%

45, 55\%

46, 74\%

47, 72\%

48, 84\%

49, 94\%

50, 70\%

Scheme 85

4.1.3. Synthesis of internal alkynes

Alkynes 51-64 that were used in this chapter are shown in Scheme 86. Symmetrical alkynes 51-54 and unsymmetrical alkynes 58-64 were purchased, while ether-substituted monoalkynes $\mathbf{5 5},{ }^{97} \mathbf{5 6},{ }^{98}$ and $\mathbf{5 7}{ }^{99}$ were synthesized in agreement with the methods described in the literature.

Scheme 86

Alkyne $\mathbf{5 5}$ was prepared by reacting 2-butyne-1,4-diol $\mathbf{5 2}$ with a large excess of tertbutyl methyl ether (as solvent). The reaction was performed in the presence of two equivalents of sulfuric acid and molecular sieves at room temperature, providing 1,4-di-tert-butoxy-2butyne 55 in 43% yield (Scheme 87).

Scheme 87

[^50]
Chapter II

The nucleophilic substitution of 2-butyne-1,4-diol $\mathbf{5 2}$ with 2.2 equivalents of benzyl bromide in the presence of sodium hydride, afforded 1,4-dibenzyloxy-2-butyne $\mathbf{5 6}$ in $\mathbf{7 5 \%}$ isolated yield (Scheme 88).

Scheme 88

Internal alkyne 57 was synthesized through the nucleophilic substitution of 2-butyne-1,4-diol $\mathbf{5 2}$ with 2.4 equivalents of tert-butyldimethylsilyl chloride at room temperature, using 2.4 equivalents of imidazole and a catalytic amount of DMAP, leading to 1,4-bis-tert-butyldimethylsilyloxy-2-butyne 57 in 80% yield (Scheme 89).

Scheme 89

4.2 Interest of $\mathrm{RuCl}_{3} \cdot \boldsymbol{n} \mathbf{H}_{\mathbf{2}} \mathrm{O}$ complex

Since we synthesized a series of benzoyl bridged α, ω-diynes and internal alkynes, we therefore attempted to find a suitable catalytic system for the $[2+2+2]$ cycloaddition reactions.

In this context, ruthenium trichloride is a stable salt which can be easily oxidized or reduced, and most commonly used in hydrated form $\left(\mathrm{RuCl}_{3} \cdot n \mathrm{H}_{2} \mathrm{O}\right)$. As shown in Scheme 90 , anhydrous ruthenium(III) chloride is usually prepared by heating powdered ruthenium metal with chlorine. ${ }^{100}$

$$
\mathrm{Ru}(\mathrm{~s})+3 / 2 \mathrm{Cl}_{2}(\mathrm{~g}) \xrightarrow{700^{\circ} \mathrm{C}} \mathrm{RuCl}_{3}(\mathrm{~g})
$$

Scheme 90

[^51]As the most commonly available ruthenium source, ruthenium trichloride was reported to be the best starting material for the synthesis of various ruthenium complexes (Scheme 91), ${ }^{101}$ with a wide range of oxidation states present in these complexes (Ru VIII to Ru II).

Scheme 91

Ruthenium trichloride was also reported as an efficient catalyst to promote $\mathrm{C}-\mathrm{C}, \mathrm{C}-\mathrm{H}$, $\mathrm{C}-\mathrm{O}$ and $\mathrm{C}-\mathrm{N}$ bond formations. ${ }^{102}$ Notable examples include many types of cyclization

[^52]
Chapter II

reactions. For example, as shown in Scheme 92, Sames and co-workers demonstrated that $\mathrm{RuCl}_{3} / \mathrm{AgOTf}$ was a mild and efficient catalyst for the intramolecular hydroarylation cyclization of a range of arene-ene substrates (Eq. a). ${ }^{102 c}$ Liu and co-workers reported that the thermal cyclization of various 3,5 -dien-1-ynes can be greatly enhanced by using RuCl_{3} as catalyst (Eq. b). ${ }^{102 \mathrm{~d}}$ The group of Jia developed a series of RuCl_{3}-catalyzed intramolecular C-H amination reactions of organic azides, affording the corresponding indoles (Eq. c). ${ }^{1021}$ Rostamnia and co-workers described a RuCl_{3}-catalyzed solvent-free Ugi-type GroebkeBlackburn condensations of aldehydes and 2-aminopyridines with isocyanides in the presence of $5 \mathrm{~mol} \% \mathrm{RuCl}_{3} \cdot n \mathrm{H}_{2} \mathrm{O}$ without any ligand or additive leading to the formation of aminoimidazole heterocycles (Eq. d). ${ }^{102 t}$

Scheme 92

In the context of RuCl_{3}-catalyzed cycloaddition reactions, our group previously reported the first $\mathrm{RuCl}_{3} \cdot n \mathrm{H}_{2} \mathrm{O}$-promoted $[2+2+2]$ cycloaddition reaction of α, ω-diynes and alkynes to
access highly substituted benzene derivatives (Scheme 93). ${ }^{103}$ We demonstrated that the costeffectively available $\mathrm{RuCl}_{3} \cdot n \mathrm{H}_{2} \mathrm{O}$ was an efficient catalyst to promote the cycloaddition reaction under solvent-free conditions affording fused functionalized arenes including dihydrobenzofurans, isoindolines, and indanes in 48-97\% yields. Notably, this practical method used neither additional ligand nor additive.

Scheme 93

Encouraged by these results, we assumed that the $\mathrm{RuCl}_{3} \cdot n \mathrm{H}_{2} \mathrm{O}$ complex might also be an efficient catalyst for solvent-free [2+2+2] cycloaddition of arylcarbamoyl bridged α, ω diynes and monoalkynes to access fluorenone derivatives.

4.3 $\mathrm{RuCl}_{3} \cdot \boldsymbol{n} \mathbf{H}_{\mathbf{2}} \mathrm{O}$-mediated [2+2+2] cycloaddition of benzoyl bridged α, ω diynes with symmetrical internal alkynes

With a series of diynes and alkynes in hand, we began our study by investigating the reaction of arylcarbamoyl bridged diyne $\mathbf{1 7}$ with 1,4-dimethoxy-2-butyne $\mathbf{5 1}$ which has often been reported as a good partner in transition-metal-catalyzed [2+2+2] cycloaddition reactions. The reaction was therefore initially performed in the presence of $5 \mathrm{~mol} \% \mathrm{RuCl}_{3} \cdot n \mathrm{H}_{2} \mathrm{O}$ at 110 ${ }^{\circ} \mathrm{C}$ under previously described solvent-free conditions. ${ }^{103}$ Fortunately, the reaction gave the corresponding fluorenone $\mathbf{6 5}$ in complete conversion and isolated yield up to 86\% (Entry 1, Table 1). It is noteworthy that the desired product could be isolated on silica column chromatography without any treatment after complete conversion (determined by TLC and crude ${ }^{1} \mathrm{H}$ NMR). This result confirmed that $\mathrm{RuCl}_{3} \cdot n \mathrm{H}_{2} \mathrm{O}$ is an efficient catalyst in $[2+2+2]$ cycloaddition of α, ω-diynes with alkynes under solvent-free conditions. Based on such

[^53]
Chapter II

encouraging result, we further optimized the reaction conditions. First, we studied the consumption of the monoalkyne $\mathbf{5 1}$, we were pleased to observe that when the amount of alkyne 51 was decreased from 6 to 2 equivalents, the reaction still provided the desired product $\mathbf{6 5}$ in satisfactory yields (Entries 2-6). In addition, decreasing the reaction temperature to $50{ }^{\circ} \mathrm{C}$ provided the cycloadduct in a similar yield (Entry 3, 73% and Entry 5, 75\%, respectively). Lowering the catalyst loading from 5 to $2 \mathrm{~mol} \%$, led to a decrease of the conversion and isolated yield was observed in 18 hours at $80^{\circ} \mathrm{C}$ (Entry 4, 60% conv. and 40% yield, respectively). Furthermore, we found that the reaction could be accomplished in 2 hours at $50^{\circ} \mathrm{C}$ affording the desired cycloadduct $\mathbf{6 5}$ in satisfactory yield of 72% (Entries 6-8). When the reaction was placed under open-air condition, the conversion decreased significantly (Entry 9).

Table 1 Optimization of the reaction conditions

Entry $^{\mathrm{a}}$	$\mathbf{1 7 / 5 1}$	$T\left({ }^{\circ} \mathrm{C}\right)$	$t(\mathrm{~h})$	Conv. $(\%)^{b}$	Yield $(\%)^{c}$
1	$1: 6$	110	18	>99	86
2	$1: 4$	80	18	>99	74
3	$1: 3$	80	18	>99	73
$4^{\text {d }}$	$1: 3$	80	18	60	40
5	$1: 3$	50	18	>99	75
6	$1: 2$	50	18	>99	72
7	$1: 2$	50	4	>99	73
$\mathbf{8}$	$\mathbf{1 : 2}$	$\mathbf{5 0}$	$\mathbf{2}$	>99	$\mathbf{7 2}$
$9^{\text {e }}$	$1: 2$	50	18	40	nd

${ }^{a}$ Reaction conditions: $\mathrm{RuCl}_{3} \cdot n \mathrm{H}_{2} \mathrm{O}$ (0.0175 mmol$)$, diyne $\mathbf{1 7}$ (0.35 mmol), alkyne 51 (0.7 mmol) were heated in a screw-capped tube under free-solvent conditions and argon atmosphere. ${ }^{b}$ Determined by ${ }^{1} \mathrm{H}$ NMR. ${ }^{c}$ Isolated yields. ${ }^{d} 2 \mathrm{~mol} \% \mathrm{RuCl}_{3} \cdot n \mathrm{H}_{2} \mathrm{O}$ $(0.007 \mathrm{mmol})$ was used. ${ }^{e}$ Under air atmosphere.

To investigate the synthetic utility of this catalytic method, the reaction was performed on one gram-scale under optimized conditions. Fluorenone $\mathbf{6 5}$ was efficiently isolated in $\mathbf{7 1 \%}$ yield (Scheme 94).

Scheme 94

Having established a set of optimal conditions, we examined the scope and limitations of the solvent-free $\mathrm{RuCl}_{3} \cdot n \mathrm{H}_{2} \mathrm{O}$-catalyzed [2+2+2] cycloaddition between diynes 18-27 and alkyne 51, as shown in Scheme 95. Initially, we observed that diyne $\mathbf{1 8}$ having two identical alkyl substituents at the C 1 and C 7 positions was less reactive compared to the unsymmetrical substituted diynes having a phenyl group at C7 position, the corresponding product 66 was obtained in 38% yield. The use of diyne 19 gave the desired product 67 in 43% yield. This result suggested that the unsymmetrical substituted diynes having a phenyl group at C7 positions was necessary. On the other hand, the reaction of diyne $\mathbf{2 0}$ with a cyclopropyl moiety delivered the cyclic product $\mathbf{6 8}$ in 63% yield. Interestingly, the cyclization of silyl-substituted diyne 21 with alkyne 51 provided the desired compounds 69 with 58% yield, which was used for further functionalization. Further experiments showed that diynes 22, 23, 26 and 27, having electron-donating or electron-withdrawing substituent on para position of phenyl ring at C7 could be successfully used in this reaction, leading to the targeted products 70-73 in 56-71\% yields. To evaluate the influence of the tethered phenyl group, cycloaddition using diynes $\mathbf{2 4}$ and $\mathbf{2 5}$, bearing electron-donating or electron-withdrawing group, were accomplished smoothly to yield the desired products 74 and $\mathbf{7 5}$ in similar yields (68% and 65%, respectively). It is worth mentioning that these reactions were based on complete conversion even at elevated temperatures or prolonged reaction times.

Chapter II

> 18, $\mathrm{R}^{1}=n \mathrm{Bu}, \mathrm{R}^{2}=\mathrm{H}, \mathrm{R}^{3}=n \mathrm{Bu}$
> 23, $\mathrm{R}^{1}=4-\mathrm{tBu}-\mathrm{C}_{6} \mathrm{H}_{4}, \mathrm{R}^{2}=\mathrm{H}, \mathrm{R}^{3}=n \mathrm{Bu}$
> 19, $\mathrm{R}^{1}=\mathrm{nBu}, \mathrm{R}^{2}=\mathrm{H}, \mathrm{R}^{3}=\mathrm{Ph}$
> 24, $\mathrm{R}^{1}=\mathrm{Ph}, \mathrm{R}^{2}=4,5$-methylenedioxy, $\mathrm{R}^{3}=n \mathrm{Bu}$
> 20, $R^{1}=P h, R^{2}=H, R^{3}=$ cyclopropyl
> 21, $\mathrm{R}^{1}=\mathrm{SiMe}_{3}, \mathrm{R}^{2}=\mathrm{H}, \mathrm{R}^{3}=n \mathrm{Bu}$
> 25, $\mathrm{R}^{1}=\mathrm{Ph}, \mathrm{R}^{2}=5-\mathrm{F}, \mathrm{R}^{3}=n \mathrm{Bu}$
> 26, $\mathrm{R}^{1}=4-\mathrm{CF}_{3}-\mathrm{C}_{6} \mathrm{H}_{4}, \mathrm{R}^{2}=\mathrm{H}, \mathrm{R}^{3}=n \mathrm{Bu}$
> 22, $\mathrm{R}^{1}=4-\mathrm{Me}-\mathrm{C}_{6} \mathrm{H}_{4}, \mathrm{R}^{2}=\mathrm{H}, \mathrm{R}^{3}=n \mathrm{Bu}$
> 27, $\mathrm{R}^{1}=4-\mathrm{Br}_{-} \mathrm{C}_{6} \mathrm{H}_{4}, \mathrm{R}^{2}=\mathrm{H}, \mathrm{R}^{3}=n \mathrm{Bu}$

66
$80^{\circ} \mathrm{C}, 14 \mathrm{~h}, 38 \%$

$50^{\circ} \mathrm{C}, 2 \mathrm{~h}, 71 \%$

67
$50^{\circ} \mathrm{C}, 14 \mathrm{~h}, 43 \%$

71 $60^{\circ} \mathrm{C}, 14 \mathrm{~h},+80^{\circ} \mathrm{C}, 4 \mathrm{~h}, 56 \%$

68
$80^{\circ} \mathrm{C}, 14 \mathrm{~h}, 63 \%$

72
$50^{\circ} \mathrm{C}, 14 \mathrm{~h}, 65 \%$

69
$50^{\circ} \mathrm{C}, 14 \mathrm{~h}, 58 \%$

73
$50^{\circ} \mathrm{C}, 14 \mathrm{~h}, 56 \%$

74
$50^{\circ} \mathrm{C}, 6 \mathrm{~h}, 68 \%$

75
$50^{\circ} \mathrm{C}, 6 \mathrm{~h}, 65 \%$

Scheme 95

To further investigate the generality of the $[2+2+2]$ cyclization, the reactivity of various alkynes was examined (Scheme 96). Switching the methyl group to a bulkier group, such as tert-butyl and benzyl, allowed to access the corresponding functionalized fluorenones 76 and 77 in 80% and 81% yields, respectively. The structure of fluorenone 77 was unambiguously confirmed by single crystal X-ray diffraction as shown in Scheme 96. Furthermore, when the cycloaddition of diyne $\mathbf{1 7}$ with 3 -hexyne $\mathbf{5 3}$ was carried out under the same conditions, cycloadduct $\mathbf{7 8}$ was obtained in 11% isolated yield. However, we did not observe the cyclized products $\mathbf{7 9}$ and $\mathbf{8 0}$ when the alkynes $\mathbf{5 4}$ and $\mathbf{5 7}$ were used in the reactions, these results could be explained by the steric effects and poor reactivity of these alkynes.

Scheme 96

During our ongoing investigation on the scope of different substituted diynes and alkynes, we found that the reaction of diyne $\mathbf{8}$ with alkyne $\mathbf{5 1}$ did not afford cyclic product 81, most of starting material being decomposed under the reaction conditions (Eq. a, Scheme 97). To further evaluate the influence of free hydroxyl substituent, the reaction of diyne $\mathbf{1 7}$ with 2-butyne-1,4-diol 51 was studied. Unfortunately, we did not observe any desired product 82 (Eq. b, Scheme 97). This result suggested that free hydroxyl groups from both diyne or monoalkyne would greatly influence the formation of cycloadduct in this reaction.

Scheme 97

4.4 $\mathrm{RuCl}_{3} \cdot \boldsymbol{n H}_{2} \mathrm{O}$-mediated $[2+2+2]$ cycloaddition of heteroaromatic carbonyl bridged α, ω-diynes with internal alkynes

Once the heteroaromatic carbonyl bridged diynes $\mathbf{4 4 - 5 0}$ were obtained, we examined their partially intramolecular $[2+2+2]$ cycloaddition to provide the corresponding hetero-based fluorenones. A series of hetero-aromatic tethered diynes has been studied.

First, the cycloaddition of furan-bridged diyne 44 with alkyne 51 in the presence of $\mathrm{RuCl}_{3} \cdot n \mathrm{H}_{2} \mathrm{O}$ under the optimal conditions delivered the corresponding benzo[b]furanones $\mathbf{8 3}$ in 55% yield. Then, the thienyl-based fluorenones $\mathbf{8 4}$ and $\mathbf{8 5}$ were obtained in 71% and 62% isolated yields, respectively. Moreover, the cyclization of diyne 46, having a benzo[b]thiophene moiety as tether, produced the expected fused fluorenone $\mathbf{8 6}$ in $\mathbf{7 8 \%}$ yield. When diyne $\mathbf{4 7}$ was used in the cycloaddition, the corresponding cyclic product $\mathbf{8 7}$ was obtained in 30% yield (Scheme 98).

Scheme 98

On the other hand, it was found that the use of diyne 49 only gave the corresponding cycloadduct 89 in 6% yield, while cyclization of diyne $\mathbf{4 8}$ with alkyne $\mathbf{5 1}$ did not provide cyclized product 88. To explain these results, we speculate that the position of the nitrogen atom in pyridine would influence the course of the reaction toward the formation of an unactivated intermediate where the ruthenium is coordinated to the nitrogen atom. This could be confirmed by the preparation of aza-fluorenone $\mathbf{9 0}$, starting from the pyridine tethered diynes $\mathbf{5 0}$ and alkyne 51, 60% yield was obtained and a chlorine atom was compatible with this reaction. (Scheme 99).

51 (2 equiv)

Scheme 99

4.5 Regioselective $\mathrm{RuCl}_{3} \cdot \boldsymbol{n} \mathbf{H}_{\mathbf{2}} \mathrm{O}$-mediated [2+2+2] cycloaddition of benzoyl bridged α, ω-diynes with unsymmetrical terminal and internal alkynes

The cycloaddition reaction was not limited to symmetrical internal alkynes, since a series of unsymmetrical terminal alkynes, such as cyclopropylacetylene 58, phenylacetylene 59, and 5-chloro-1-pentyne $\mathbf{6 0}$, were successfully reacted with phenylcarbamoyl bridged diyne $\mathbf{1 7}$ under optimized reaction conditions. The $[2+2+2]$ cycloaddition reactions led to unseparable mixtures of regioisomers $\mathbf{9 1}, \mathbf{9 2}$, and $\mathbf{9 3}$ in 61-84\% yields with regioselectivities from 55:45 to 73:27 ratio (Scheme 100).

91
84\%, 67:33

92
70\%, 73:27

93
61\%, 55:45

Scheme 100

Next, we turned our attention to the examination of unsymmetrical internal alkynes. Unfortunately, cycloaddition of methyl 3-phenylpropiolate 61, methyl 2-butynoate 62, phenylpropargyl aldehyde diethyl acetal 63, and 4-(3-phenylprop-2-yn-1-yl)-morpholine 64 failed to afford the desired fluorenone products (Scheme 101). Only degradation of starting diynes was observed. The control of the regioselectivity is therefore still a challenge for $\mathrm{RuCl}_{3} \cdot n \mathrm{H}_{2} \mathrm{O}$-catalyzed [2+2+2] cycloaddition of diynes with unsymmetrical alkynes.

61

62

63

64

Scheme 101

4.6 Post-functionalization of fluorenone derivatives

With a set of substituted fluorenone derivatives in hand, we then turned our attention toward the investigation of post-functionalization reactions of fluorenone derivatives, including compounds $\mathbf{6 5}$ and 76, silylated derivative 69 and bromo-functionalized adduct 73 .

First, we focused on the functionalization of cycloadducts $\mathbf{6 5}$ and 76, as shown in Scheme 102. When the dimethyl ether substituted fluorenone $\mathbf{6 5}$ was refluxed in the presence of concentrated trifluoroacetic acid, the reaction did not lead to the expected deprotected diol

Chapter II

95: the substituted cyclized product dihydrobenzo[b]furan $\mathbf{9 4}$ was isolated as the main product in 85% yield. To achieve the deprotection of di-tert-butyl ether substituted fluorenone 76, the latter was subjected to classical deprotection conditions, yielding 75% of diol $\mathbf{9 5}$. On the other hand, the direct dibromination of compound $\mathbf{7 6}$ in the presence of refluxing mixture of HBr and $\mathrm{Bu}_{4} \mathrm{NBr}$ in chloroform provided the dibrominated 96 in 90% yield. The diol and dibrominated products were reported as key building blocks for the synthesis of OLEDs materials. ${ }^{59 \mathrm{~d}}$

Scheme 102

The silyl-based fluorenone adduct $\mathbf{6 9}$ has been considered as a suitable substrate, since the reactivity of the substituted silyl group is expected to enable functionalization reactions, such as iodination reaction. ${ }^{104}$ The iodinated product could further allow the introduction of a variety of substituents using metal-catalyzed cross-coupling reactions. ${ }^{105}$ Starting from compound 69 , the iodination by means of iodine monochloride afforded the iodinated product 97 in 84% yield. Consequently, a single Sonogashira cross-coupling reaction of compound 97 with phenylacetylene led to the desired alkyne 98 in 98% yield. Additionally, adduct 97 was

[^54]subjected to Suzuki-Miyaura cross-coupling reaction, leading to boronic ester 99 in 65% yield (scheme 103).

Scheme 103

To extend the applications of the functionalized fluorenones, additional Suzuki-Miyaura cross-coupling reaction was performed with bromo-substituted fluorenone 73. Boronic ester derivative $\mathbf{1 0 0}$ was obtained in 85% yield (Scheme 104).

Scheme 104

Chapter II

5. Conclusion

In summary, we have developed a novel and eco-friendly straightforward access to highly substituted fluorenones and related analogues using $\mathrm{RuCl}_{3} \cdot n \mathrm{H}_{2} \mathrm{O}$-promoted partially intramolecular $[2+2+2]$ cycloaddition of carbonyl bridged α, ω-diynes with alkynes. This economical process was performed without solvent, additional ligands or additives, and allowed the construction of complex polycyclic fluorenones, aza-fluorenones, benzo[b]furanones and indenothiophenones. This protocol offers several advantages: i) the stability and cost-effective $\mathrm{RuCl}_{3} \cdot n \mathrm{H}_{2} \mathrm{O}$ used as catalyst, ii) prevention of pollution with no elimination of toxic or volatile solvents, iii) practical protocol without work up to access the targeted products.

A wide range of carbonyl bridged α, ω-diynes and alkynes containing different substituents was evaluated in this reaction. Unsymmetrical diynes bearing alkyl and phenyl substituents proved to be more active in the ruthenium-catalyzed $[2+2+2]$ cycloaddition reaction. Both electron-donating and electron-withdrawing substituents on the phenyl ring and tether phenyl ring were tolerated in this reaction. Furthemore, heteroarene tethered carbonyl diynes, such as furanyl-, thienyl- and aza-based moieties, have been shown to be active in this cyclization and their cycloaddition proceeded efficiently to give the expected cycloadducts in $30-78 \%$ yields. With regards to the scope of the alkynes, a wide range of substituted alkynes has been used for the $[2+2+2]$ cycloaddition. It was found that symmetrical dialkoxy-substituted alkynes, such as methoxy, benzyloxy and tert-butoxy, could be engaged in the cyclization to deliver the desired product in 6-81\% yields. Unsymmetrical terminal alkynes also converted well to the expected cycloadducts, although 55:45 to $73: 27$ regioselectivities were obtained.

Chapter III: Ruthenium-catalyzed $[2+2+2]$ cycloaddition of diynes with electron-rich cyanamides: an easy access to 2-aminopyridine derivatives

Chapter III: Ruthenium-catalyzed $[2+2+2]$ cycloaddition of diynes with electron-rich cyanamides: an easy access to 2aminopyridine derivatives

1. Interest of 2-Aminopyridines

A recent report demonstrated that pyridine is the second most commonly used nitrogen heterocycle among all U.S. FDA approved pharmaceuticals (Figure 2). ${ }^{106}$ As analogues of pyridines, 2-aminopyridines represent one of the most important skeleton motifs which are widely present in many biologically active molecules as well as pharmaceuticals.

Figure 2^{106}

[^55]Compounds containing 2-aminopyridine ring scaffold exhibit an array of pharmacological properties such as antimicrobial, ${ }^{107}$ anti-inflammatory, ${ }^{108}$ anti-prion, ${ }^{109}$ antiHBV, ${ }^{110}$ antithrombotic, ${ }^{111}$ antineoplastic, ${ }^{112}$ and antitumoral. ${ }^{113}$ Particularly, morpholine derived pyranopyridines (MBX2319) A is active against Gram-negative bacteria; ${ }^{107}$ piperazine derived pyranopyridine \mathbf{B} is used as IDH1 mutants inhibitor for the treatment of cancer; ${ }^{113 \mathrm{~d}}$ ethyl 6-aminonicotinate acyl sulfonamide \mathbf{C} is potent antagonist of the $\mathrm{P} 2 \mathrm{Y}_{12}$ receptor, ${ }^{111}$ heterocycle \mathbf{D} which exhibits potent γ-secretase modulator activity is expected for the treatment of Alzheimer's disease; ${ }^{114}$ Crizotinib \mathbf{E} is a commercially available anti-cancer drug, which has been approved for the treatment of lung cancer; ${ }^{113 a-113 c} \alpha$-carboline derivative (TAK-901) \mathbf{F} is potent Aurora B kinase inhibitor with antineoplastic activity ${ }^{112 a}$ (Scheme 105).

In addition to bioactive compounds, 2-aminopyridines are also synthetically useful compounds present in organometallic and material chemistry. The L-amino acid containing a 2-aminopyridine moiety \mathbf{G} was used as highly efficient bidentate ligand for direct asymmetric

[^56]aldol reaction. ${ }^{115}$ Pyrido[2,3-b]azepine \mathbf{H}, a pH sensitive fluorescence dye, can be an ideal candidate for fluorescence label ${ }^{116}$ (Scheme 105).

Antibacterial agent (A)

P2Y 12 receptor antanognist (C)

Bidentate ligand (G)

γ-Secretase modulator (D) Treatment of Alzheimer's disease

Aurora B Kinase inhibitor (F)

Fluorescence dye (H)

Scheme 105

Amino-aza-fluorenones, containing 2-aminopyridine structural motif, have received increasing interest in recent years. Many of the synthetic and natural amino-aza-fluorenones displayed interesting properties and are present in a variety of pharmacophores ${ }^{117}$ and chromophores. ${ }^{118}$ As depicted in Scheme 106, 2-azafluorenone I is an antagonist of the

[^57]
Chapter III

Adenosine A2a receptor; ${ }^{117 a}$ piperazinyl derived compound \mathbf{J} which exhibits inhibitory effect on topoisomerase I would be a potent anti-breast cancer candidate; ${ }^{117 b}$ 2-azafluorenone \mathbf{K} with typical aggregation-induced emission (AIE) properties can be used for lipid droplet-specific live cell imaging. ${ }^{118 b}$

Scheme 106

2. Synthetic methods for the preparation of 2aminopyridines

2.1 Traditional methods

The preparation of 2-aminopyridines has been reported with numerous strategies. For example, Chichibabin reactions start from pyridine and sodium amide, ${ }^{119}$ Buchwald-Hartwig amination ${ }^{120}$ and Ullmann coupling reactions ${ }^{121}$ of halopyridines with primary or secondary amines, one-pot three-component cascade reaction ${ }^{116}$ using N-tosyl propargyl amines, aryl halides, and N, S-ketene acetals, formal $[2+2+1+1]$ cycloaddition reaction ${ }^{122}$ of aldehydes with ketones, and malononitrile (Scheme 107). However, these methods were efficient to access simple 2-aminopyridines, but for more complex substitution patterns, additional synthetic

[^58]manipulations were required. In addition, these reactions suffered more or less from some shortcomings such as harsh reaction conditions, multistep procedures, limited functionalities tolerance, etc.

Scheme 107

2.2 Transition-metal-catalyzed [2+2+2] cycloadditions of alkynes with cyanamides

Cyanamide derivatives moiety are widely present in pharmaceutical molecules and bioactive compounds. ${ }^{123}$ Owing to the high reactivity of the electron-rich nitrile triple bonds, bearing an amine group at the α-position of nitrile ($\mathrm{R}_{2} \mathrm{~N}-\mathrm{CN}$), these privileged structures serve as versatile building blocks and have been widely used for the synthesis of various nitrogencontaining heterocycles, ${ }^{124}$ as shown in Scheme 108.

[^59]
Chapter III

Scheme 108

Particularly, cyanamides also proved to be good partners for the transition-metalcatalyzed $[2+2+2]$ cycloaddition which has been reported as a powerful and atom-economical method for the construction of highly substituted 2 -aminopyridines. The following discussion will focus on the $[2+2+2]$ cycloaddition reactions involving the most common used cobalt, rhodium, nickel, iron, iridium and ruthenium complexes.

2.2.1. Cobalt-catalyzed $[2+2+2]$ cycloadditions

In 1984, Bönnemann and co-workers disclosed the first cobalt-catalyzed [2+2+2] cycloaddition of acetylene and cyanamide to form 2-aminopyridine containing a free amino group using (η^{6}-boranato)cobalt as catalyst. The reaction was successfully performed at $130^{\circ} \mathrm{C}$ under 40 bar to afford 2-aminopyridine in 54% yield (Scheme 109). ${ }^{125}$

Scheme 109

[^60]After the pioneer work reported by Bönnemann, Heller and co-workers described the co-trimerization of acetylene with dimethyl-, pyrrolidinyl-, piperidinyl-substituted cyanamides in the presence of CpCo (cod) catalyst under photo-irradiation conditions at room temperature (Scheme 110). ${ }^{126}$ The reaction afforded the corresponding 2-aminopyridines respectively in $46 \%, 68 \%$, and 75% yields. Notably, in this case, the acetylene gas was delivered at constant normal pressure.

Scheme 110

In 2000, Eaton and co-workers reported one example of cyclotrimerization of 2-butyne-1,4-diol with N-cyanopyrrolidine to afford a highly functionalized pyridine in 71% yield. ${ }^{127}$ This reaction presented many advantages including the use of a water-soluble cobalt(I) complex as catalyst, without the need of photochemical activation, only a stoichiometric amount of nitrile (alkyne:nitrile $=2: 1$) was required (Scheme 111).

Scheme 111

In 2004, Maryanoff's group described the preparation of bicyclic 2-aminopyridine derivatives starting from α, ω-diynes and cyanamides. ${ }^{128} \mathrm{~A}$ variety of diynes and N-substituted cyanamides underwent cycloadditions in the presence of $15 \mathrm{~mol} \%$ of $\mathrm{CpCo}(\mathrm{CO})_{2}$ catalyst in

[^61]
Chapter III

refluxing dioxane, providing the corresponding bicyclic 2-aminopyridines in a range of 16% to 88% yield. Cyanamides disubstituted with alkyl, allyl, and aryl groups furnished the annulated compounds in $19-88 \%$ yields. The cyanamides possessing a large dibenzazepinyl group showed lower reactivity, and gave the cycloadduct in 19% yield. The cycloaddition of a bulky adamantyl-substituted cyanamide led to the corresponding 2-aminopyridine with a secondary amine group in 32% yield (Scheme 112).

Scheme 112

The same group also investigated in 2005 the formation of macrocycles from long-chain diynes and cyanamides in cobalt-mediated $[2+2+2]$ cycloaddition reactions. ${ }^{129}$ The reaction of 1,15-diynes with cyanamides provided mainly the corresponding 16 -membered parapyridinophanes in $32-80 \%$ yields, whereas the reaction of 1,17-diyne furnished a mixture of both 17 -membered meta- and 18 -membered para-pyridinophanes in 64% yield. These results indicated that the regioselectivity of the reactions was affected by the length and the type of linker unit between the alkyne groups (Scheme 113).

[^62]

$32 \%(<1: 50)$

$50 \%(<1: 50)$

54\% (<1:50)

64\% (1:1)

Scheme 113

In 2007, Maryanoff and co-workers applied this method employing $\mathrm{CpCo}(\mathrm{CO})_{2}$ catalyst system for the synthesis of macrocyclic (17-20 members) bis(indolyl)maleimide pyridinophanes, although lower isolated yields (9-15\%) were observed (Scheme 114). The biological results indicated that these macrocyclic heterophanes were potent and selective inhibitors of glycogen synthase kinase- $3 \beta .{ }^{130}$

$R^{1}=R^{2}=\mathrm{Me}, 9 \%$
$R^{1}, R^{2}=\left(\mathrm{CH}_{2}\right)_{4}, 10 \%$

$R^{1}=R^{2}=M e, 12 \%$
$R^{1}, R^{2}=\left(\mathrm{CH}_{2}\right)_{4}, 15 \%$

10%

Scheme 114

[^63]
Chapter III

One example of the synthesis of axially chiral biaryl containing 2-aminopyridine moiety was achieved. ${ }^{131}$ The use of chiral cobalt(I) catalyst for the enantioselective $[2+2+2]$ cycloaddition of naphthyl-substituted 1,7-diyne with N-cyanopiperidine gave the expected biaryl cycloadduct in 89% yield with 87% enantioselectivity (Scheme 115).

Scheme 115

A quick access to allocolchicine analogues was developed by Schmalz and Nicolaus. ${ }^{132}$ In the presence of $20 \mathrm{~mol} \% \mathrm{CpCo}(\mathrm{CO})_{2}$ under microwave conditions at $150{ }^{\circ} \mathrm{C}$, the $3,4,5-$ trimethoxybenzaldehyde and 3,4,5-trimethoxyacetophenone derived diynes reacted with morpholine-4-carbonitrile to generate the desired products in a short reaction time with 27% and 35% yields, and regioselectivities up to >99:1 were obtained (Scheme 116).

Scheme 116

Malacria, Aubert, Gandon and co-workers reported the $\mathrm{CpCo}(\mathrm{CO})(\mathrm{dmfu})$ complexcatalyzed $[2+2+2]$ cycloaddition of yne-ynamides with cyanamides to provide $2,5-$

[^64]diaminopyridine derivatives. ${ }^{133}$ Five-, six-, and seven-membered bicyclic compounds were synthesized in 20-85\% yields with perfect regioselectivities (Scheme 117).

Scheme 117

2.2.2. Rhodium-catalyzed $[2+2+2]$ cycloadditions

As described in the first chapter, the cationic rhodium/bisphosphine complex is an efficient catalyst for $[2+2+2]$ cycloaddition reactions (Schemes 24 and 25). However, only a single example was described for the synthesis of annulated 2 -aminopyridine via a $\mathrm{Rh}(\mathrm{I}) / \mathrm{H}_{8}$ -BINAP-catalyzed $[2+2+2]$ cycloaddition of malonate-tethered diyne with morpholine-4carbonitrile. The corresponding cycloadduct was obtained in 47% yield (Scheme 118). ${ }^{134}$

Scheme 118

[^65]
Chapter III

2.2.3. Nickel-catalyzed [2+2+2] cycloadditions

Louie and co-workers reported the nickel-catalyzed $[2+2+2]$ cycloaddition of α, ω diynes with cyanamides to form 2-aminopyridines. ${ }^{135}$ A variety of diynes reacted with different substituted cyanamides in the presence of $\mathrm{Ni}(\operatorname{cod})_{2}$ catalyst in combination with a N heterocyclic carbene (NHC) at room temperature. Various 2-aminopyridines were successfully obtained in 76-99\% yields (Scheme 119). However, the nickel catalyst and NHC ligands required a pre-treatment in a glove box for at least 4 hours before introducing the two reactants.

Scheme 119

This Ni/NHC catalytic system was also applied for the totally intermolecular cyclotrimerization of two alkynes with cyanamides. ${ }^{136}$ Treatment of terminal alkynes and cyanamides with $\mathrm{Ni}(\operatorname{cod})_{2} / \mathrm{SIPr}(1: 2)$ complex catalyst in toluene at room temperature for 4 h , provided the 3,5 -disubstituted-2-aminopyridines as the major products (Scheme 120). However, this protocol was limited to the use of alkyl-alkynes, whereas the reaction of aryl-, ester-, or chloride-substituted alkynes failed to afford the desired 2-aminopyridines.

[^66]

Scheme 120

The same group also disclosed in 2011 the Ni /Xantphos-mediated cycloaddition of 1,6and 2,7-diynes with N-cyanopyrrolidine, N-cyanomorpholine, N, N-diallylcyanamide at room temperature to access 6,6-fused cycloadducts in $>99 \%, 75 \%$, and 76% yields. ${ }^{137}$ Interestingly, unsymmetrical 1,6 -diynes reacted with N, N-dimethylcyanamide leading to the formation of meta-substituted product as a single regioisomer. This result could be explained as follow: the reaction proceeded via the initial regioselective oxidative coupling to form azametallacycle followed by the intramolecular insertion of the less-sterically demanding terminal alkyne (Scheme 121).

Me
$R^{1}=H, M e$ and/or $R^{2}=H, M e$

Scheme 121

[^67]
Chapter III

Liu and co-workers successfully developed in 2017 the synthesis of α-carbolines via nickel-catalyzed $[2+2+2]$ cycloaddition of functionalized alkyne-cyanamides with alkynes. ${ }^{138}$ Both internal and terminal alkynes successfully reacted with aryl- or alkyl substituted alkynecyanamides in the presence of NiCl_{2} (DME)/dppp/Zn catalytic system to provide α-carboline derivatives in $67-81 \%$ yields with moderate regioselectivities (Scheme 122). Interestingly, when phenyl- and TMS-substituted acetylenes were employed as the alkyne partners, the reaction resulted in the opposite regioselective formation of the cycloadduct, probably because of the difference of electronic effects between the two terminal alkynes.

Scheme 122

2.2.4. Iron-catalyzed [2+2+2] cycloadditions

Iron, the earth abundant and low cost metal, has rarely been used for the pyridines synthesis via $[2+2+2]$ cycloadditions. ${ }^{139}$ Louie's group described in 2012 the iron-catalyzed [$2+2+2$] cycloaddition of diynes with electron-rich cyanamides to form highly substituted 2aminopyridines. ${ }^{140}$ The reaction proceeded in the presence of $5 \mathrm{~mol} \% \mathrm{FeCl}_{2}$ in combination with $10 \mathrm{~mol} \%{ }^{\text {Mes }}$ PDAI and Zn dust in benzene at $70^{\circ} \mathrm{C}$, various 2-aminopyridines were synthesized in $35-97 \%$ yields. The group of Wan reported in 2013 a similar work by using $\mathrm{FeI}_{2} / \mathrm{dppp} / \mathrm{Zn}$ catalytic system. ${ }^{141}$ Several examples have been described in $40-99 \%$ yields.

[^68]When comparing these works, Wan's group used less toxic THF as solvent instead of benzene, and lower reaction temperature (Scheme 123). However, both conditions suffered from the moisture-sensitive iron salts as well as a slow-addition technique which was required in Louie's work.

Scheme 123

With regard to the regioselectivity, the two reactions gave rise to an opposite selectivity of the regioisomers. In the case of Louie's conditions, the reaction provided the sterically less demanding compound as the major product whereas the small substituent was placed in ortho to the nitrile substituent. In the case of Wan's conditions, the regioselectivity trends led to the 2-aminopyridines with the small substituent placed in ortho to the nitrogen atom in the pyridine ring (Scheme 124). These two iron systems suggested that the regioselectivity may be controlled by the choice of the ligand.

Chapter III

Louie's work:

72\% (85:15)

80\% (86:14)

67\% (88:12)

Wan's work:

67\% (94:6)

59\% (100:0)

71% (90:10)

Scheme 124

Furthermore, Louie and co-workers also reported the totally intermolecular ironcatalyzed $[2+2+2]$ cycloaddition of two alkynes with cyanamides. ${ }^{142}$ In contrast to the $\mathrm{Ni}(\mathrm{cod})_{2} / \mathrm{SIPr}$ system (Scheme 120), in this case, the 2,4-disubstituted-2-aminopyridines were formed as major products with complete regioselectivity (Scheme 125).

Scheme 125

2.2.5. Iridium-catalyzed [2+2+2] cycloadditions

In 2015, Takeuchi and co-workers developed an efficient $[\mathrm{Ir}(\operatorname{cod}) \mathrm{Cl}]_{2} / \mathrm{dppf}$ or BINAP catalyst system that was able to promote the $[2+2+2]$ cycloaddition of α, ω-diynes and cyanamides in refluxing benzene. ${ }^{143} \mathrm{~A}$ wide range of secondary amines derived cyanamides was tolerated under these reaction conditions. Several examples have been studied by using

[^69]symmetrical diynes with cyanamides to provide various 2-aminopyridines in 31-99\% yields (Scheme 126). However, toxic and refluxing benzene was used as solvent.

Scheme 126

For the regioselectivity, as shown in Scheme 127, the methyl-/phenyl- or methyl-/2-pyridyl-substituted diynes reacted with N-cyanomorpholine, leading to the formation of less hindered product as a single product in which the phenyl and pyridyl groups were substituted at the α-position. Interestingly, the methyl/TMS-substituted diyne underwent cycloaddition reaction and gave exclusively the more sterically hindered product in which the TMS group was substituted at the β-position. The authors therefore demonstrated that the regioselectivity was mainly controlled by the electronic effect of the substituent on the terminus of alkynes.

Scheme 127

Chapter III

2.2.6. Ruthenium-catalyzed [2+2+2] cycloadditions

During the publication process of our work, Goswami's group reported a rutheniumcatalyzed $[2+2+2]$ cycloaddition of N-cyanoindoles with α, ω-diynes to provide 1-(2pyridyl)indole derivatives. ${ }^{144}$ In this work, the reaction was performed under solvent-free or with small amount of EtOH conditions with $\mathrm{Cp} * \mathrm{Ru}(\operatorname{cod}) \mathrm{Cl}$ catalyst for a short reaction time, providing the desired product in $86-93 \%$ yields. Three examples have been studied using monosubstituted unsymmetrical oxygen tethered diynes to evaluate the regioselectivity. The less sterically hindered products were obtained as a single regioisomer in $86-89 \%$ yields (Scheme 128). However, the scope of diynes and cyanamides were limited to eight diynes and three 3-carbonyl indoles derived cyanamides.

Scheme 128

3. Objectives

Ruthenium complexes have been reported as highly efficient catalysts for the cycloaddition of α, ω-diynes with activated nitriles, ${ }^{7 \mathrm{u}, 7 \mathrm{w}}$ such as electron-deficient nitriles, dicyanides, and α-halogen nitriles. However, there was no ruthenium-catalyzed synthesis of

[^70]functionalized pyridines with electron-rich nitriles such as cyanamides that have been reported when we started this project (Scheme 129).

Scheme 129

Considering the rare reports on the transition-metal-catalyzed $[2+2+2]$ cycloadditions of alkynes with cyanamides to access 2 -aminopyridines, as well as the limitations of current methodologies, we decided to investigate the ruthenium-catalyzed $[2+2+2]$ cycloaddition reaction to access highly substituted 2-aminopyridines and its derivatives.

4. Results and discussion

4.1 Synthesis of starting materials: diynes and cyanamides

We first decided to study the partially intramolecular $[2+2+2]$ cycloadditions to access 2 -aminopyridine derivatives using α, ω-diynes and cyanamides. Most of the starting diynes and cyanamides were not commercially available and were synthesized.

4.1.1. Synthesis of symmetrical diynes

Firstly, a series of symmetrical internal and terminal α, ω-diynes were prepared, as shown in Scheme 130. The diynes 101-110 and 121-124 were synthesized in accordance with the literature. ${ }^{145}$ Diynes 111-120 were produced based on laboratory's work.

[^71]
Chapter III

Scheme 130

Diynes 101-103, 107, 109 and 123 were prepared through the nucleophilic substitution reaction of commercially available dimethyl malonate, 1,3-dimethylbarbituric acid, 2-butyne-1-ol, indene dione, and N-Boc-protected propargyl amine with 1.2-2.4 equivalents of propargyl bromide or 1-bromo-2-butyne in THF. The reaction used 1.5-2.4 equivalents of sodium hydride as base to afford the desired diynes in a range of 62-96\% yields (Scheme 131). Notably, 1,3dimethylbarbituric acid derived diyne $\mathbf{1 0 2}$ was a new substrate.

[^72]

Scheme 131

Treatment of diyne $\mathbf{1 0 1}$ with 6 equivalents of LiAlH_{4} in THF solution afforded the dioldiyne $\mathbf{1 0 4}$ in 95% yield. The two hydroxyl groups of diyne $\mathbf{1 0 4}$ could be easily protected with acetyl and benzyl groups under basic conditions. In the presence of 4.4 equivalents of diisopropylethylamine in DCM, diyne $\mathbf{1 0 4}$ reacted with acetic anhydride to afford diacetylfunctionalized diyne 105 in 92% yield. The nucleophilic substitution of diol $\mathbf{1 0 5}$ with benzyl bromide using 2.5 equivalents of sodium hydride as base with $25 \mathrm{~mol} \% n$-tetrabutylammonium iodide as additive, gave dibenzyl protected diyne 106 in quantitative yield (Scheme 132).

Scheme 132

The reaction of diol 120, in the presence of 2 equivalents of phosphorus pentoxide in dry acetone at room temperature, allowed a rapid access to diyne $\mathbf{1 2 1}$ in 80% isolated yield (Scheme 133).

Chapter III

Scheme 133

The synthesis of nitrogen-tethered diynes $\mathbf{1 0 8}$ and $\mathbf{1 2 2}$ was based on the nucleophilic substitution of p-toluenesulfonamide with 1-bromo-2-butyne or propargyl bromide using 5 equivalents of potassium carbonate as base. The desired products could be easily synthesized in 70% and 91% yields, respectively (Scheme 134).

Scheme 134

The malonate derived diynes 110 and 124, bearing two functional groups on the terminal position of α, ω-diyne, have been synthesized (Scheme 135). Diyne $\mathbf{1 0 9}$ was treated with 2.2 equivalents of lithium bis(trimethylsilyl)amide in anhydrous THF at $-78^{\circ} \mathrm{C}$, followed by the addition of an excess of trimethylsilyl chloride at the same temperature. After stirring for additional 1 h at room temperature, the reaction provided the disubstituted internal alkyne $\mathbf{1 1 0}$ in 45% yield (Eq. a). The low yield could be explained by the low reactivity of the terminal position of the alkyne as well as the formation of the monosubstituted side product. Dibromosubstituted diyne 124 was prepared through a classical bromination reaction using diyne 109 and NBS, in 98\% yield (Eq. b).

Scheme 135

4.1.2. Synthesis of unsymmetrical diynes

To study the regioselective $[2+2+2]$ cycloaddition reactions, we synthesized several unsymmetrical 1,6-, 1,7- and 1,8-diynes, as depicted in Scheme 136.

125

129

133

126

127

128

137

141

138

142

135

136

139

140

Scheme 136

The preparation of monosubstituted unsymmetrical diyne $\mathbf{1 2 5}$ started from malonate by stepwise alkylation reactions to introduce the internal and terminal alkyne motifs. Finally, the desired product was successfully isolated in 50% yield over two steps (Scheme 137).

Scheme 137

Compounds 138, 142, and 143 were prepared via nucleophilic substitution reactions. Starting from commercially available alcohols 3-butyn-1-ol, 4-pentyn-1-ol and Mestranol, the

Chapter III

oxygen tethered 1,6-143, 1,7-138 and 1,8-diynes $\mathbf{1 4 2}$ were respectively synthesized in $\mathbf{3 6 \%}$, 75%, and 79% yields (Scheme 138).

Scheme 138

To prepare the unsymmetrical oxygen tethered diynes $\mathbf{1 2 7}, \mathbf{1 3 1}$ and $\mathbf{1 4 0}$ containing a propargyl motif, the nucleophilic substitution reaction was performed using potassium hydroxide as the base in a mixed solution of water and DMSO, affording 127, 131 and 140 in respectively $79 \%, 50 \%$, and 84% yields (Scheme 139).

Scheme 139

Upon treatment with N -bromosuccinimide (NBS) in the presence of $10 \mathrm{~mol} \% \mathrm{AgNO}_{3}$ in dry acetone at room temperature, the corresponding terminal alkynes were converted to bromo-substituted diynes $\mathbf{1 2 9}, \mathbf{1 3 0}, 132$ and 141 in $65-98 \%$ yields. The iodo-substituted diyne 133 was prepared via the silver-catalyzed $\mathrm{C} s p$ - H halogenation reaction using $10 \mathrm{~mol} \% \mathrm{AgNO}_{3}$ in N, N-dimethylformamide (DMF), with 98% yield. In addition, starting from propargyl alcohol, the useful intermediate bromo-substituted propargyl alcohol $\mathbf{1 4 5}$ was prepared in 65% yield (Scheme 140).

Scheme 140

The diyne $\mathbf{1 3 4}$ containing an ynamide moiety was obtained using a copper-catalyzed aerobic oxidative coupling reaction ${ }^{146}$ of terminal alkyne 127 with 2-oxazolidinone. The reaction proceeded efficiently in the presence of $20 \mathrm{~mol} \% \mathrm{CuCl}_{2}$ and 2 equivalents of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and pyridine under 1 atm of O_{2}, providing the corresponding ynamide in 60% yield (Scheme 141).

Scheme 141

To study the tolerance ability of the $[2+2+2]$ cycloaddition reactions, other examples were evaluated. For this purpose, the synthesis of diyne $\mathbf{1 3 5}$ containing a vinyl group was envisaged. Starting from dimethyl malonate, a mono-alkylation with 0.85 equivalents of propargyl bromide followed by a Sonogashira cross-coupling reaction with 1.2 equivalents vinyl bromide provided the malonate-derived enyne 147. Subsequent nucleophilic substitution of the latter with 1.2 equivalents propargyl bromide in the presence of sodium hydride afforded the desired diyne 135 (Scheme 142).

[^73]Chapter III

Scheme 142

The unsymmetrical diyne 137 was prepared through a Sonogashira reaction of diyne 125 with 1.2 equivalents of 2-bromopyridine using $2 \mathrm{~mol} \% \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ and $1 \mathrm{~mol} \% \mathrm{CuI}$, and was obtained in 60% yield (Scheme 143).

Scheme 143

4.1.3. Synthesis of benzoyl bridged α, ω-diynes

With the aim to synthesize amino-aza-fluorenones, the preparation of benzoyl or benzyl bridged α, ω-diynes 17, 28, 29, 149, 152, and 153 were envisaged, as shown in Scheme 144. The synthesis of diynes 17, 28, and 29 has been described in chapter II. Diynes 149, 152, and 153 were synthesized in accordance with the previously described protocols for diyne 29.

17

149

28

152

29

Scheme 144

The preparation of diyne $\mathbf{1 4 9}$ followed a two-steps procedure. The previously prepared monoalkyne 2 was treated with a lithium TMS-acetylide, which was prepared in situ from trimethylsilylacetylene and n-butyllithium, affording the product 148 in 78% yield. The resulting silylated alcohol $\mathbf{1 4 8}$ was subjected to deprotection using 1 equivalent of TBAF. The desired compound 149 was isolated in 81% yield (Scheme 145).

Scheme 145

The synthetic methods for preparation of $\mathbf{2}, \mathbf{1 4 8}$, and $\mathbf{1 4 9}$ were used for the preparation of compounds 150-152, as shown in Scheme 146. Finally, treatment of the resulting diyne 152 with 1.2 equivalents of Dess-martin periodinane in dichloromethane solution, furnished the terminal diyne 153 in 82% yield.

Scheme 146

4.1.4. Synthesis of cyanamides

Cyanamides 154-167 that were used in this chapter are depicted in Scheme 147. The cyanamides $\mathbf{1 5 4 - 1 5 6}$ and $\mathbf{1 6 0}$ were commercially available. The other different N-substituted

Chapter III

cyanamides 157-159 and 161-167 were prepared according previously reported procedures, ${ }^{147}$ most commonly via the electrophilic N-cyanation of amines using cyanogen bromide.

Scheme 147

The synthesis of cyanamides $\mathbf{1 5 7}, 158$, and 161-163 was achieved by the N-cyanation of piperidine, N-methylbenzylamine, N-methylaniline, and n-butylamine with cyanogen bromide in a mixture solution of diethyl ether and THF (1:1) at $0^{\circ} \mathrm{C}$. Two equivalents of amines were required to promote the reaction furnishing the desired compounds in $82-96 \%$ yields. In the case of n-butylamine, pure diethyl ether was used as solvent, the reaction was complete in 1 hour (Scheme 148).

(2 equiv) 157, 158, 161-163

157, 82\%

158, 86\%

161, 90%

162, 91\%

163, 96% (pure $\mathrm{Et}_{2} \mathrm{O}$)

Scheme 148

Another similar protocol was used for the preparation of cyanamides $\mathbf{1 5 9}, \mathbf{1 6 4}, \mathbf{1 6 6}$, and 167. Dibenzylamine, diallylamine, N-methylpiperazine and N-methylbutylamine were treated with cyanogen bromide in a mixture solution of water and dichloromethane (1:1) at $0{ }^{\circ} \mathrm{C}$. In this case, 2 equivalents of sodium bicarbonate were used as the base, with 1.05 equivalents of

[^74]cyanogen bromide. After 3 hours stirring at room temperature, the reaction afforded the desired products in 86-99\% yields. (Scheme 149).

Scheme 149

The cyanamide 164 containing a secondary amine group could easily undergo the acetylation by using 1.2 equivalents of sodium hydride and acetyl chloride to give the acetylprotected cyanamide 165 in 80% yield (Scheme 150).

Scheme 150

4.2 $\mathrm{RuCl}_{3} \cdot{ }^{n} \mathrm{H}_{2} \mathrm{O}$-mediated $[2+2+2]$ cycloaddition of α, ω-diynes with cyanamides

With a series of α, ω-diynes and cyanamides in hand, we evaluated the $\mathrm{RuCl}_{3} \cdot n \mathrm{H}_{2} \mathrm{O}-$ mediated $[2+2+2]$ cycloaddition reactions. Based on the previous work, we used $5 \mathrm{~mol} \%$ $\mathrm{RuCl}_{3} \cdot n \mathrm{H}_{2} \mathrm{O}$ as catalyst to conduct the reaction under solvent-free conditions. Diyne 101 and dimethyl cyanamide $\mathbf{1 5 4}$ were chosen as model substrates to optimize the reaction conditions.

Firstly, we examined the reaction of diyne 101 with a large excess of cyanamide 154 (6 equivalents) in the presence of $5 \mathrm{~mol} \% \mathrm{RuCl}_{3} \cdot n \mathrm{H}_{2} \mathrm{O}$ at $110^{\circ} \mathrm{C}$ affording the highly substituted 2-aminopyridine 168 in 75% yield (Entry 1, Table 2). Subsequently, we decreased the amount of cyanamide from 6 to 3 equivalents. To our delight, the reaction gave almost the same isolated yield of product 168 (Entry 2). Attempt to decrease the catalyst loading to $2 \mathrm{~mol} \%$ caused a significant decrease of the conversion (50\%, Entry 3). We also evaluated the temperature effect

Chapter III

on the reaction. Incomplete conversion of the benzannulation was observed when the reaction was carried out at $80^{\circ} \mathrm{C}, 50^{\circ} \mathrm{C}, 90^{\circ} \mathrm{C}, 100^{\circ} \mathrm{C}$ (Entries 4-8). Finally, we found that the diyne 101 was fully converted to pyridine $\mathbf{1 6 8}$ in 74% yield when the amount of cyanamide 154 was further reduced to 2 equivalents (Entry 9).

Table 2 Optimization of reaction conditions

Entry	101/154	$T\left({ }^{\circ} \mathrm{C}\right)$	Conv. (\%) ${ }^{\text {b }}$	Yield (\%) ${ }^{\text {c }}$
1	1:6	110	>99	75
2	1:3	110	>99	76
$3^{\text {d,e }}$	1:3	110	50	nd
4	1:3	80	90	72
5	1:3	50	nr	nd
6	1:2	80	30	nd
$7{ }^{\text {e }}$	1:2	90	70	nd
$8{ }^{\text {e }}$	1:2	100	93	70
9	1:2	110	>99	74

[^75]With a set of optimized reaction conditions in hand, we next evaluated the reactivity of various secondary or primary amines derived cyanamides 155-163 and 165-167 with diyne 101, as shown in Table 3. We found that the $[2+2+2]$ cycloaddition of diyne $\mathbf{1 0 1}$ with morpholinefunctionalized cyanamide $\mathbf{1 5 5}$ furnished the desired pyridine $\mathbf{1 6 9}$ in excellent 95% yield, the reaction being carried out at $80^{\circ} \mathrm{C}$ under solvent-free conditions (Entry 1). However, attempts to further decrease the reaction temperature to $70^{\circ} \mathrm{C}$ and $60^{\circ} \mathrm{C}$, led to a decreased conversion or no reaction (Entries 2 and 3). Cyclic cyanamides N-cyanopyrrolidine 156 and N cyanopiperidine $\mathbf{1 5 7}$ successfully reacted with diyne $\mathbf{1 0 1}$ to give the targeted heterocycles 170 and 171 in 86% and 78% yields, respectively (Entries 4 and 5). The N-methylbenzylcyanamide $\mathbf{1 5 8}$ reacted with diyne $\mathbf{1 0 1}$ at $80^{\circ} \mathrm{C}$ to provide 2-aminopyridine $\mathbf{1 7 2}$ in 81% yield (Entry 6),
whereas the dibenzyl-substituted cyanamides 159 showed less reactivity than cyanamide $\mathbf{1 5 8}$, despite higher temperature, furnishing the corresponding product 173 in 90% conversion and 75% isolated yield (Entry 7).

Table 3 Scope of different substituted cyanamides

Entry	Cyanamides	$T\left({ }^{\circ} \mathrm{C}\right)$	Product	Conv. (\%) ${ }^{\text {b }}$	Yield (\%) ${ }^{\text {c }}$
1		80	169	>99	95
2	$155 \mathrm{~N}=\mathrm{N}$	70	169	95	88
3		60	169	nr	nd
4	$156 N \equiv N^{\prime}$	80	170	96	86
5	$157 \mathrm{~N} \equiv N$	110	171	>99	78
6	$158 N \equiv N_{M e}^{N}$	80	172	>99	81
7	159	110	173	90	75
8	$160 N \equiv N$	80	174	26	nd
9	161	110	175	20	nd
10	$162 \mathrm{~N} \equiv \mathrm{~N}_{\mathrm{Me}}^{\mathrm{Ph}}$	80	176	22	nd
11	$163 \mathrm{~N} \equiv \mathrm{~N}_{\mathrm{H}}$	110	177	nr	nd
12	165	110	178	nr	nd
13	166	110	179	decomposed	nd
14	$167 \mathrm{~N} \equiv N$	110	180	nr	nd

[^76]
Chapter III

The cyanamides $\mathbf{1 6 0 - 1 6 3}$ and $\mathbf{1 6 5 - 1 6 7}$ seemed incompatible with the $\mathrm{RuCl}_{3} \cdot n \mathrm{H}_{2} \mathrm{O}-$ mediated $[2+2+2]$ cycloaddition reaction, despite a higher temperature in some cases. Low conversion of cycloadducts was observed in the case of N, N-diethylcyanamide 160, N, N dipropylcyanamide 161, and N-methyl- N-phenylcyanamide 162, because of the lower reactivity of the alkyl substituted cyanamides (Entries 8-10, Table 3). The reaction did not occur with both unprotected N-butylcyanamide 163 and acetyl-protected N-butyl- N-cyanoacetamide 165 (Entries 11 and 12). N, N-diallylcyanamide 166, containing two alkenes, was also evaluated and gave decomposed reaction mixtures (Entry 13), which could be explained by the competitive reaction between the activated alkenes and alkynes. N-methylpiperazine-derived cyanamide 167 was also employed but no reaction took place in these conditions (Entry 14).

Having evaluated the reactivity of several cyanamides, we then turned our attention to explore the scope and limitations of the reaction conditions by using the prepared symmetrical diynes 102-113 (Scheme 151), the highest reactive morpholine-4-carbonitrile $\mathbf{1 5 5}$ was chosen as the nitrile partner. The 1,3-dimethylbarbituric acid-derived diyne $\mathbf{1 0 2}$ and indene-1,3-dionederived diyne $\mathbf{1 0 3}$ were successfully reacted with cyanamide $\mathbf{1 5 5}$ to access functionalized 2aminopyridines $\mathbf{1 8 1}$ and $\mathbf{1 8 2}$ in good yields. The diyne $\mathbf{1 0 4}$ containing two hydroxyl groups was employed in the reaction, however, only 10% of the expected product $\mathbf{1 8 3}$ was isolated from the crude reaction mixture. Interestingly, the reaction of acetyl- (105) and benzylfunctionalized diynes 106 with cyanamide 155 furnished at $80{ }^{\circ} \mathrm{C}$ the corresponding 2aminopyridines $\mathbf{1 8 4}$ and $\mathbf{1 8 5}$ in respectively 68% and 83% yields. The reaction was not limited to a quaternary-carbon tethered diyne since both oxygen- and nitrogen-tethered diynes were successfully used. The oxygen-tethered diyne $\mathbf{1 0 7}$ was converted to the corresponding oxygen fused bicyclic pyridines $\mathbf{1 8 6}$ in 64% yield. The cycloaddition of N-tosyl-tethered diyne $\mathbf{1 0 8}$ performed at $110{ }^{\circ} \mathrm{C}$ provided the heterocycle 187 in 72% yield. Meanwhile, we observed that the reaction was not feasible with terminal or TMS- and phenyl-substituted diynes 109-111, despite a higher reaction temperature. The diynes $\mathbf{1 1 2}$ and $\mathbf{1 1 3}$ bearing electron-donating or electron-withdrawing aryl moieties were also unreactive under these reaction conditions, afforded only traces of 191 and 192.

Scheme 151

Next, the regioselective of the $\mathrm{RuCl}_{3} \cdot n \mathrm{H}_{2} \mathrm{O}$-mediated [2+2+2] cycloaddition using unsymmetrical 1,6-diynes was examined. As shown in Scheme 152, the reaction of methylsubstituted unsymmetrical 1,6-diyne 125 proceeded to give 193 (major, 43\%) and $\mathbf{1 9 3}^{\prime}$ (minor, 5%) in 48% combined yield with 87:13 regioselectivity. The reaction of phenyl-substituted unsymmetrical 1,6-diyne 126 with cyanamide $\mathbf{1 5 5}$ also proceeded under the same conditions. However, only the major isomer 194 was isolated in 16% yield, despite a 90:10 ratio of the two regioisomers detected by crude ${ }^{1} \mathrm{H}$ NMR.

Chapter III

Scheme 152

Compared to electron-rich cyanamides, the reaction of symmetrical diyne $\mathbf{1 0 8}$ with electron-deficient nitrile such as malononitrile was also performed in the presence of $\mathrm{RuCl}_{3} \cdot n \mathrm{H}_{2} \mathrm{O}$ catalyst at $110^{\circ} \mathrm{C}$ to afford cycloadduct 195 with 22% conversion, although with increased catalyst loading and prolonged reaction time (Scheme 153). This result indicated that the electron-rich nitriles are more suitable with the $\mathrm{RuCl}_{3} \cdot n \mathrm{H}_{2} \mathrm{O}$ complex catalytic system.

Scheme 153

The neutral $\mathrm{RuCl}_{3} \cdot \mathrm{nH}_{2} \mathrm{O}$ has therefore been successfully used for the synthesis of highly substituted 2-aminopyridine derivatives via $[2+2+2]$ cycloaddition of α, ω-diynes with electron-rich cyanamides. A range of 2-aminopyridines has been successfully synthesized in 10-95\% yields. However, the regioselective synthesis of 2-aminopyridines still remains a challenge. To address this issue, encouraged by our results with $\mathrm{RuCl}_{3} \cdot \mathrm{nH}_{2} \mathrm{O}$, we decided to investigate the ruthenium-catalyzed $[2+2+2]$ cycloadditions by using cationic ruthenium complex as catalyst.

4.3 $\mathbf{C p} * \mathrm{Ru}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{3} \mathbf{P F}_{6}$-catalyzed $[2+2+2]$ cycloaddition of α, ω-diynes with cyanamides

Encouraged by the results obtained using the neutral $\mathrm{RuCl}_{3} \cdot n \mathrm{H}_{2} \mathrm{O}$ complex for the $[2+2+2]$ cycloaddition reaction of α, ω-diynes with cyanamides, and since the cationic ruthenium complex is known to be an efficient catalyst for $[2+2+2]$ cycloaddition reactions, ${ }^{46-}$ ${ }^{50}$ we anticipated that the cationic ruthenium complex would be a good alternative for conducting this reaction.

Initial studies were focused on the ruthenium-catalyzed $[2+2+2]$ cycloaddition reactions between dimethyl substituted internal diyne 101 and cyanamide $\mathbf{1 5 5}$ using ruthenium complex catalyst under solvent-free conditions at room temperature. The reaction was optimized with respect to the different type of ruthenium complexes and catalyst loading, as shown in Table 4. Several ruthenium complexes were evaluated. When $\mathrm{Ru}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{Cl}_{2}$ and $\left[\mathrm{Ru}(p \text {-cymene }) \mathrm{Cl}_{2}\right]_{2}$ were used as catalyst, no desired products were observed (Entries 1 and 2). We found that the presence of both pentamethylcyclopentadienyl (Cp^{*}) complexes $\mathrm{Cp} * \mathrm{Ru}(\mathrm{cod}) \mathrm{Cl}$ and $\mathrm{Cp} * \mathrm{Ru}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{3} \mathrm{PF}_{6}$, allowed to access the desired 2-aminopyridine 169 in respectively 85% and 93% yields in a short reaction time of 5 min (Entries 3 and 4). The catalyst loading could be efficiently reduced to $2 \mathrm{~mol} \%$ when using $\mathrm{Cp} * \mathrm{Ru}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{3} \mathrm{PF}_{6}$ as catalyst. The reaction effectively provided the cycloadduct in 91% yield within 5 min (Entry 5). We showed that the conversion of the benzannulation was significantly diminished by lowering the catalyst loading to $1 \mathrm{~mol} \%$ (Entry 6). In addition to the internal diyne, terminal 1,6-diyne 109 was examined under these reaction conditions. Treatment of diyne 109 with cyanamide 155 in the presence of $2 \mathrm{~mol} \% \mathrm{Cp} * \mathrm{Ru}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{3} \mathrm{PF}_{6}$ under solvent-free conditions at room temperature provided the cycloadduct 188 in 94% yield (Entry 7). Interestingly, we found that when the reaction was conducted with a small amount of dichloromethane as solvent, the catalyst loading ($1 \mathrm{~mol} \%$) and consumption of cyanamide (1.2 equivalents) were further reduced (Entries 7 and 8). However, lowering the catalyst loading to $0.5 \mathrm{~mol} \%$ led to lower conversion and yield, despite longer reaction time (Entry 9). Finally, to demonstrate the applicability of our method, we performed the Ru-catalyzed cycloaddition on one-gram of 1,6-diyne 109 (Entry 10). Under the optimized solvent-free conditions in the presence of $2 \mathrm{~mol} \%$ of $\mathrm{Cp} * \mathrm{Ru}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{3} \mathrm{PF}_{6}$ catalyst, the corresponding 2-aminopyridine $\mathbf{1 8 8}$ was isolated in 82% yield.

Chapter III

Table 4 Optimization of reaction conditions

Entry	Diyne	Catalyst (x mol \%)	t	Product	Conv. $(\%)^{\text {b }}$	Yield (\%) ${ }^{\text {c }}$
1	101	$\mathrm{Ru}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{Cl}_{2}(5)$	8 h	169	nr	nd
2	101	$\left[\mathrm{Ru}\left(\text { p-cymene) } \mathrm{Cl}_{2}\right]_{2}\right.$ (2.5)	8 h	169	nr	nd
3	101	$\mathrm{Cp} * \mathrm{Ru}(\mathrm{cod}) \mathrm{Cl}$ (2)	5 min	169	>99	85
4	101	$\mathrm{Cp} * \mathrm{Ru}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{3} \mathrm{PF}_{6}$ (5)	5 min	169	>99	93
5	101	$\mathrm{Cp} * \mathrm{Ru}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{3} \mathrm{PF}_{6}(2)$	5 min	169	>99	91
6	101	$\mathrm{Cp} * \mathrm{Ru}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{3} \mathrm{PF}_{6}$ (1)	60 min	169	80	nd
7	109	$\mathrm{Cp*}$ *u($\left.\mathrm{CH}_{3} \mathrm{CN}\right)_{3} \mathrm{PF}_{6}$ (2)	3 min	188	>99	94
$8^{\text {d }}$	109	$\mathrm{Cp} * \mathrm{Ru}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{3} \mathrm{PF}_{6}$ (1)	2 min	188	>99	95
$9{ }^{\text {d }}$	109	$\mathrm{Cp} * \mathrm{Ru}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{3} \mathrm{PF}_{6}(0.5)$	18 h	188	90	82
$10^{\text {e }}$	109	$\mathrm{Cp} * \mathrm{Ru}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{3} \mathrm{PF}_{6}(2)$	5 min	188	>99	82

${ }^{\text {a }}$ Reaction conditions: Ru complex ($0.5-5 \mathrm{~mol} \%$), diyne $\mathbf{1 0 1}$ or $\mathbf{1 0 9}$ (0.5 mmol), cyanamides 155 $(1.0 \mathrm{mmol})$ were stirred in a screw-capped tube under solvent-free conditions and an argon atmosphere. ${ }^{\mathrm{b}}$ Determined by crude ${ }^{1} \mathrm{H}$ NMR, $\mathrm{nr}=$ no reaction. ${ }^{\mathrm{c}}$ Isolated yields, nd = not detected. ${ }^{\mathrm{d}}$ With 0.6 mmol of cyanamide $\mathbf{1 5 5}$ was used and 0.5 mL of dichloromethane as solvent. ${ }^{\mathrm{e}}$ One gramscale.

With a set of optimal conditions in hand, we investigated the scope and limitations of the cycloaddition using different substituted diynes and cyanamide $\mathbf{1 5 5}$ as partner (Scheme 154). A variety of symmetrical diynes with a quaternary-carbon tether reacted with cyanamide $\mathbf{1 5 5}$ to give various 2 -aminopyridines in high yields. The 2-aminopyridine cycloadducts 196199 bearing bulkier tert-butyl, isopropyl, and methyl ester moieties were obtained in 81-98\% yields from the corresponding diynes. Notably, a nitrile group substituted on the quaternarycarbon of diyne 117 was compatible with the reaction conditions. However, the malononitrilederived diyne $\mathbf{1 1 8}$ provided the desired product $\mathbf{2 0 0}$ in relatively lower yield (50\%), because the competitive reaction of the activated nitrile substituents. The spirocyclic derivative $\mathbf{2 0 1}$ was synthesized in 97% yield, starting from the indene-1,3-dione-derived diyne 119. Interestingly, diyne $\mathbf{1 2 0}$ possessing two hydroxyl groups reacted nicely with cyanamide $\mathbf{1 5 5}$ under solventfree conditions at room temperature to give the diol-derived 2-aminopyridine $\mathbf{2 0 2}$ in 87% yield. The diyne $\mathbf{1 2 1}$ containing a ketal moiety was also reactive to afford the corresponding product $\mathbf{2 0 3}$ in 87% yield. The reaction was not limited to a quaternary-carbon tethered diyne since the heteroatom-tethered diynes were successfully used, leading to the formation of various
pyridine-based fused heterocycles (186, 187, 204, and 205) within a range of $80-99 \%$ yields. The formation of compounds 186 and 187 demonstrated that the cycloaddition was not limited to terminal diynes but also worked well with internal diynes. However, more sterically hindered internal diynes, such as di-TMS, diaryl, and dibromo-substituted diynes (110, 113 and 124) did not afford the desired cycloadducts, despite increased reaction temperature (Scheme 154).

Scheme 154

Next, an evaluation of the reactivity of the cyanamide substrates was examined. As shown in Scheme 155, various secondary amine derived cyanamides smoothly underwent the cycloaddition reactions to produce the corresponding 2-aminopyridines in 76-97\% yields. The

Chapter III

reaction of N-cyanopyrrolidine $\mathbf{1 5 6}$ with diynes $\mathbf{1 0 1}$ and $\mathbf{1 0 9}$ delivered the cycloadducts $\mathbf{1 7 0}$ and 207 in 81% and 90% yields, respectively. The cyanamides $\mathbf{1 5 9 - 1 6 1}$ and $\mathbf{1 6 4}$, bearing dibenzyl, diethyl, di- n-propyl, and methyl $/ n$-butyl groups, were engaged in the cycloaddition to provide the 2-aminopyridines $\mathbf{2 0 8}-211$ in $76 \%-86 \%$ yields, albeit with increased catalyst loading. High yields $(90-97 \%)$ were obtained for 2 -aminopyridines bearing a phenyl group (212) and a monobenzyl group (213 and 214) in the presence of 1-2 $\mathrm{mol} \%$ ruthenium catalyst. Similarly, as previously observed, no desired products 215 and 216 were obtained by using N -butyl- N-cyanoacetamide 165 and N, N-diallylcyanamide 166.

Scheme 155

With respect to the regioselectivity, we previously studied the reaction of unsymmetrical diynes $\mathbf{1 2 5}$ with cyanamides $\mathbf{1 5 5}$ in the presence of neutral $\mathrm{RuCl}_{3} \cdot n \mathrm{H}_{2} \mathrm{O}$ catalyst. However, moderate yield and regioselectivity $(48 \%, 88: 12)$ were obtained. In contrast, when the reaction
was run using the cationic ruthenium complex, $\mathrm{Cp}^{*} \mathrm{Ru}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{3} \mathrm{PF}_{6}$, the yield and regioselectivity were significantly increased $(91 \%, 98: 2)$ and the ortho-substituted regioisomer 193 was formed as the major product (Scheme 156). In addition, other unsymmetrical diynes were employed to explore the regioselectivity of the cycloaddition reactions. The reaction of phenyl-substituted diyne 126 exclusively furnished the biaryl compound 194 in excellent 96% yield. Unsymmetrical 1,6-diynes tethered by either oxygen or nitrogen atom, possessing a terminal alkyne and a methyl internal alkyne moieties, were compatible with the cycloadditions and afforded the corresponding bicyclic compounds 217 and 218 as a single regioisomer, in 86% and 90% yields. However, the methyl/2-pyridyl-substituted diyne 137 did not undergo the cycloaddition to give the bipyridine $\mathbf{2 1 9}$, although the reaction was heated at $50^{\circ} \mathrm{C}$ for 2 hours.

125-128, 137
$+$

155

(major)
193, 194, 217-219

125, $X=C\left(\mathrm{CO}_{2} \mathrm{Me}\right)_{2}, R^{S}=H, R^{L}=M e$
126, $X=C\left(\mathrm{CO}_{2} \mathrm{Me}\right)_{2}, R^{S}=H, R^{L}=P h$

218, 90% (>99/1)
(B, $5 \mathrm{~mol} \%, \mathrm{rt}, 5 \mathrm{~min})$

Scheme 156

Encouraged by these promising results, we extended this study to develop a feasible synthetic route for the preparation of pyridine derivatives possessing various functional groups. To our delight, the challenging halogen-substituted diynes were all tolerated to deliver the synthetic useful halopyridines in 65-85\% yields with up to $99: 1$ regioselectivities (Scheme 157). Treatment of malonate-derived bromodiyne $\mathbf{1 2 9}$ and cyanamide $\mathbf{1 5 5}$ under the standard solventfree conditions at room temperature, generated the less sterically hindered ortho-bromopyridine

Chapter III

as the major product, in 80% yield and high regioselectivity ($96: 4$). The structure of the product 220 was unambiguously determined by the basis of 2D-NMR analysis and X-ray crystallographic analysis. Bromodiynes 130-132 reacted nicely with cyanamide $\mathbf{1 5 5}$ to provide the corresponding bromopyridines 221-223 in 65-85\% yields with 98:2 regioselectivities. The iodo-substituted 2-amimopyridine $\mathbf{2 2 4}$ was isolated as a single regioisomer in 83% yield.

222, 65\% (98/2)
(conv = 74\%)
(B, $5 \mathrm{~mol} \%, \mathrm{rt}, 2 \mathrm{~h}$)

226, 93\% (>99/1) (A, $50^{\circ} \mathrm{C}, 2 \mathrm{~h}$)

223, 75\% (98/2)
(B, $5 \mathrm{~mol} \%, 50^{\circ} \mathrm{C}, 2 \mathrm{~h}$)

224, 83\% (>99/1)
(B, $5 \mathrm{~mol} \%, 50^{\circ} \mathrm{C}, 30 \mathrm{~min}$)

228, 92\% (>99/1)
(B, rt, 30 min)

225, 79\% (>99/1)
(B, $\left.50^{\circ} \mathrm{C}, 16 \mathrm{~h}\right)$

229, 75% (>99/1)
(A, rt, 3 min)

Scheme 157

Inspired by the success of halogen substituted diynes to yield the halopyridines, we next examined whether the ynamide and enyne, could be suitable for the synthesis of the corresponding functionalized pyridines under the same conditions (Scheme 157). Gratifyingly, the cycloaddition of ynamide 134 with cyclic cyanamides $\mathbf{1 5 5}$ and $\mathbf{1 5 6}$ gave rise to pyridines 225 and 226 with excellent regioselectivities, in 79% and 93% yields, respectively.

Additionally, the regioselectivity was still controlled by the steric effect of the substituents, affording less sterically hindered ortho-substituted pyridines as the major product. More interestingly, we successfully employed enyne $\mathbf{1 3 5}$ with 1.2 equivalents of cyanamides $\mathbf{1 5 5}$ and 158 in the presence of $5 \mathrm{~mol} \% \mathrm{Cp} * \mathrm{Ru}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{3} \mathrm{PF}_{6}$ combined with dichloromethane as solvent to afford the malonate-derived vinylpyridines 227 and 228 in 90% and 92% yields with complete regioselectivities. The N-tosyl-tethered enyne $\mathbf{1 3 6}$ was also subjected to standard solvent-free conditions, the corresponding vinylpyridine 229 was obtained as a single regioisomer in 75% yield. It is worthwhile to mention that the cycloaddition exclusively took place at the triple bond to form pyridines, no side-product from the double bond reactivity was detected.

To further demonstrate the synthetic utility of this method, the reaction of the challenging linear 1,7-diynes and 1,8-diynes was examined (Scheme 158). Oxygen-tethered 1,7-diyne 138 and cyanamide 155 were treated with $5 \mathrm{~mol} \% \mathrm{Cp} * \mathrm{Ru}^{\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{3} \mathrm{PF}_{6} \text { in }}$ dichloromethane at $50^{\circ} \mathrm{C}$, affording the six-membered bicyclic pyridine $\mathbf{2 3 0}$ in 81% yield with excellent regioselectivity. Cyanamides $\mathbf{1 5 6}$ and 158, containing pyrrolidyl and methyl/benzyl moieties, provided 2-aminopyridines 231 and 232 in diminished yields (46% and 34%, respectively), despite with a total regioselectivity. Replacing the oxygen tether by a N-tosyl tether, the diyne $\mathbf{1 3 9}$ allowed rapidly an access to nitrogen-fused pyridine 233 in 86% yield with complete regioselectivity. Notably, compounds containing the pyrano-pyridine and piperidine-pyridine moieties are known to exhibit interesting pharmacological properties such as antibacterial and anticancer activities. ${ }^{107,113 \mathrm{~d}}$ Moreover, further studies showed that diynes 140-142 were not compatible with the reaction conditions. Diyne $\mathbf{1 4 0}$ having a propargyl motif failed to deliver the desired product. No reaction took place with both bromo-substituted 1,7diyne 141 and terminal 1,8-diyne 142, probably because of the lack of a Thorpe-Ingold effect ${ }^{148}$.

[^77]
Chapter III

138-142

230, 81\%, (>99/1)

230-236
$R^{1}=H, R^{2}=M e$
$X=N T s, Y=C_{2}, R^{1}=H, R^{2}=M e$
140, $X=O, Y=C H_{2}, R^{1}=M e, R^{2}=H$
141, $X=O, Y=C H_{2}, R^{1}=M e, R^{2}=B r$
142, $X=O, Y=\mathrm{CH}_{2} \mathrm{CH}_{2}, R^{1}=\mathrm{H}, \mathrm{R}^{2}=M e$

231, 46\%, (>99/1)

232, 34\%, (>99/1)

233, 86\%, (>99/1) (rt, 2 min)

(From diyne 141)

236, no reaction
(From diyne 142)

Scheme 158

Finally, we consider the feasibility of the late-stage functionalization of potential drug or bioactive compounds. As an example, the diyne 143, derived from biologically active compounds mestranol ${ }^{149}$ was employed to deliver the spirocyclic framework having a 2 aminopyridine moiety $\mathbf{2 3 7}$ in 51% isolated yield with $10: 1$ regioselectivity. The structure of the polycyclic product 237 was unambiguously confirmed by single crystal X-ray diffraction (Scheme 159).

[^78]

Scheme 159

Mechanistically, the metal-catalyzed $[2+2+2]$ cycloaddition has been thoroughly studied in the presence of several metals. ${ }^{7}$ Nevertheless, as described in Scheme 160, one important feature concerns the regioselectivity of the ruthenium-catalyzed process, e.g., the formation of the major isomer versus the minor isomer. Following in situ ligand decoordination and coordination of 1,6-diyne, the oxidative coupling of the two alkyne units leads to a ruthenacyclopentadiene Ru-II in equilibrium with the bis-carbenic intermediate RuI. ${ }^{47,49,150}$ The next elemental step determines the regioselectivity of the reaction. Indeed, coordination of cyanamide gives intermediates Ru-III or Ru-III'. The origin of the observed regiochemistry can be reasonably explained by the steric hindrance of the amino part of the cyanamide leading to the favourable formation of Ru-III. Insertion of cyanamide gives rise to azaruthenacyclopentadiene intermediate Ru-IV, which upon reductive elimination subsequently affords the ortho-substituted product. When the 1,6-diyne is substituted by two very hindered groups (diynes $\mathbf{1 1 0}$ and 124), no reaction is observed. A hydrogen atom and/or methyl group as substituent of the alkynes are fully compatible with the cycloaddition process and favor the formation of the major intermediate Ru-III. This mechanism is therefore in agreement with the experimental data.

[^79]

Scheme 160

$4.4 \mathbf{C p} * \mathrm{Ru}\left(\mathrm{CH}_{3} \mathrm{CN}_{3}\right)_{3} \mathrm{PF}_{6}$-catalyzed $[2+2+2]$ cycloadditions to access azafluorenols and aza-fluorenones

Aza-fluorenones represent a privileged scaffold in material and medicinal chemistry. We hypothesized that by using benzoyl bridged α, ω-diynes and cyanamides, it should be possible to access amino-aza-fluorenones via the regioselective ruthenium-catalyzed [2+2+2] cycloaddition reaction. A retrosynthesis was proposed in Scheme 161.

Scheme 161

Therefore, the benzoyl bridged internal diyne 17 was reacted with dimethylcyanamide 154 under the optimized conditions using $5 \mathrm{~mol} \% \mathrm{RuCl}_{3} \cdot n \mathrm{H}_{2} \mathrm{O}$ under solvent-free conditions at $80^{\circ} \mathrm{C}$. Unfortunately, no desired product $\mathbf{2 3 8}$ was obtained and only decomposition of diyne 17 was detected (Eq. a, Scheme 162). The same result was also observed by using
$\mathrm{Cp} * \mathrm{Ru}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{3} \mathrm{PF}_{6}$ as catalyst for the cycloaddition of diyne 17 and cyanamide 155 (Eq. b, Scheme 162). The results could be explained by the lower reactivity of the diyne which bears both phenyl and n-butyl groups on the terminal positions.

(a)
(b)

Scheme 162

To address this issue, we reasoned that a less sterically demanding diynes possessing a terminal alkyne moiety would be more reactive in the presence of $\mathrm{Cp} * \mathrm{Ru}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{3} \mathrm{PF}_{6}$ catalytic system. Indeed, as shown in Scheme 163, when the benzoyl bridged diyne 29 was reacted with morpholine-4-carbonitrile $\mathbf{1 5 5}$ in the presence of $2 \mathrm{~mol} \% \mathrm{Cp} * \mathrm{Ru}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{3} \mathrm{PF}_{6}$ at room temperature under solvent-free conditions, the 2-azafluorenone $\mathbf{2 4 0}$ was formed as a single regioisomer in 92% yield. Different cyanamides were next screened, such as N cyanopyrrolidine 156, N-cyanopiperidine 157 and N, N-methylbenzyl cyanamide 158, and the desired 2-azafluorenones 241-243 were synthesized as a single isomer in $78-87 \%$ yields. In addition, the reaction of benzyl-bridged diyne $\mathbf{2 8}$ bearing an unprotected hydroxyl group could also be performed smoothly and exclusively to give rise to 2-azafluorenols $\mathbf{2 4 4}$ and $\mathbf{2 4 5}$ in 84% and 81% yields, respectively. Interestingly, in parallel to the synthesis of 2-azafluorenol 245, exchanging the terminal position of the starting diyne, allowed the formation of the 3azafluorenol 247 in 71% yield with 99:1 regioselectivity. Moreover, switching to a cyclopropyl group instead of n-butyl group promoted the formation of 3-azafluorenol 247 in 78% yield with the same regioselectivity. The cycloaddition of benzoyl bridged diyne $\mathbf{1 5 3}$ was performed under the optimized reaction conditions, 3-azafluorenone $\mathbf{2 4 8}$ was formed as the major product in 89% isolated yield, with a decreased regioselectivity (94:6). The structure of 248 was unambiguously confirmed by single crystal X-ray diffraction (Scheme 163). These results illustrated that the regioselectivity allows the formation of less sterically hindered regioisomer.

Chapter III

It is important to highlight that all the reactions occurred in a short reaction time using traces of dichloromethane or solvent-free conditions.

240, 92\% (>99/1)
(A, $2 \mathrm{~mol} \%, 10 \mathrm{~min}$)

244, 84\% (>99/1)
(A, $2 \mathrm{~mol} \%, 5 \mathrm{~min}$)

241, 87\% (>99/1)
(A, $2 \mathrm{~mol} \%, 10 \mathrm{~min}$)

245, 81\% (>99/1)
(B, $5 \mathrm{~mol} \%, 1 \mathrm{~min}$)

242, 80\% (>99/1)
(B, $5 \mathrm{~mol} \%, 30 \mathrm{~min})$

246, 71\% (99/1)
(B, $5 \mathrm{~mol} \%, 5 \mathrm{~min}$)

243, 78\% (>99/1)
(B, $5 \mathrm{~mol} \%, 5 \mathrm{~min})$

247, 78\% (99/1)
(B, $5 \mathrm{~mol} \%, 3 \mathrm{~min}$)

Scheme 163

5. Conclusion

To conclude, we have demonstrated that highly substituted 2-aminopyridine derivatives can be efficiently synthesized by ruthenium-catalyzed [$2+2+2$] cycloaddition of 1,6 -diynes and 1,7-diynes with cyanamides using both neutral $\mathrm{RuCl}_{3} \cdot n \mathrm{H}_{2} \mathrm{O}$ and cationic $\mathrm{Cp} * \mathrm{Ru}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{3} \mathrm{PF}_{6}$ complex as catalyst.

Firstly, the easy to handle and cost-effective $\mathrm{RuCl}_{3} \cdot n \mathrm{H}_{2} \mathrm{O}$ complex has been successfully employed for the synthesis of highly substituted 2-aminopyridines. The reaction proceeded in the presence of $5 \mathrm{~mol} \% \mathrm{RuCl}_{3} \cdot n \mathrm{H}_{2} \mathrm{O}$, with neither additional ligands nor additives under solvent-free conditions, affording a range of different 2 -aminopyridines in 10-95\% yields.

Secondly, we established that a cationic $\mathrm{Cp} * \mathrm{Ru}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{3} \mathrm{PF}_{6}$ complex is a highly efficient catalyst for the cycloaddition of both 1,6- and 1,7-diynes with cyanamides under mild conditions. Various symmetrical terminal or internal diynes possessing different functional groups were compatible with the catalytic system. High regioselectivity was obtained when unsymmetrical diynes were employed. The practicability and utility of this protocol were demonstrated with the preparation of high valuable halopyridines, diaminopyridines, and vinylpyridines in one-step synthesis. The reaction also provided synthetic useful six-membered heteroatom-fused pyridines starting from unsymmetrical 1,7-diynes and cyanamides. The latestage functionalization of biologically active mestranol further improved the facile and usefulness of the present method.

Finally, a family of aza-fluorenones and aza-fluorenols were synthesized via ecofriendly and straightforward approaches. Controlling the terminal position of the benzoyl- or benzyl-bridged diyne allowed the synthesis of 2- or 3-azafluorenone(ol) with high regioselectivities.

Chapter III

Chapter IV: Rhodium-catalyzed asymmetric synthesis of 1,1disubstituted 1,3-dihydroisobenzofurans from prochiral triynes and internal alkynes

Chapter IV: Rhodium-catalyzed asymmetric synthesis of

1,1-disubstituted 1,3-dihydroisobenzofurans from prochiral triynes and internal alkynes

The transition-metal-catalyzed enantioselective $[2+2+2]$ cycloaddition reactions are extremely important tools in modern synthetic organic chemistry, because they serve as a powerful and atom-economical straightforward approach for the rapid construction of chiral polycyclic carbocycles and heterocycles in a single step. ${ }^{7 \mathrm{~h}, 7 \mathrm{j}, 7 \mathrm{x}}$ Since the first example of enantioselective $[2+2+2]$ cycloaddition discovered in 1994 with the work of Sato, Mori, and Nishimata, ${ }^{151}$ catalytic asymmetric $[2+2+2]$ cycloaddition reactions using a transition metal catalyst, such as rhodium, cobalt, nickel, and iridium, in the presence of a chiral ligand have been widely reported for the construction of various chiral molecules associated with central, axial, planar, helical chirality (Figure 3).

Figure 3

[^80]
Chapter IV

1. Enantioselective $[2+2+2]$ cycloaddition reactions

1.1. Construction of central chirality

The transition-metal-catalyzed $[2+2+2]$ cycloadditions of alkynes with unsaturated partners, such as olefins, imines, aldehydes, are of great interest given that they allow the construction of a six-membered ring containing one or more chiral carbon center. These processes proceed via a widely known reactive metallacyclopentene or metallacyclopentadiene intermediate, which is generated from the oxidative coupling of two unsaturated carbon-carbon bonds to the chiral metal catalytic species. The insertion and reductive elimination steps then provide the cyclic compound with chiral carbon center(s) on the six-membered ring (Scheme 164).

Scheme 164

In 2006, Shibata reported the first rhodium-catalyzed enantioselective $[2+2+2]$ cycloaddition of diynes and alkenes. ${ }^{152}$ In the presence of a preliminary isolated chiral rhodium(I) complex, various exo-methylene cyclic lactones and ketones could undergo the cycloaddition with 1,6-diynes to give a family of chiral spirocyclic compounds possessing a quaternary carbon stereocenter, with $62-94 \%$ yields and $80-99 \%$ enantioselectivities (Scheme 165).

[^81]

Scheme 165

The enantioselective $[2+2+2]$ cycloaddition involving two alkene units allowed to introduce two new stereogenic centers in a single step in the resulting cycloadduct. The first report was described by Tanaka and co-workers in 2012. ${ }^{153}$ They demonstrated that the successful construction of annulated cyclohexene relies on the use of reactive acrylamides as alkene partners (Scheme 166). The high regioselective and diastereoselective formation of the cycloadduct could be explained by the regioselective insertion of the acrylamide into a rhodacyclopentene intermediate.

Scheme 166

The unsaturated imine was also a good partner for these cycloadditions. The first asymmetric transition-metal-catalyzed [2+2+2] cycloaddition of diynes with sulfonimines was reported by Aubert, Gandon, Malacria and co-workers, ${ }^{154}$ and provided a new and efficient

[^82]method for the synthesis of enantioenriched 1,2-dihydropyridines. The combination of $\left[\mathrm{Rh}(\right.$ hexadiene $) \mathrm{Cl}_{2} / \mathrm{AgSbF}_{6} /(R)$-dit $\mathrm{Bu}-\mathrm{MeOBiphep}$ (or (R)-Tol-BINAP) was found to be the best catalytic system to promote the access to various heterocycles with good enantioselectivities (Scheme 167).

Scheme 167

1.2. Construction of axial chirality

Axially chiral biaryl compounds are widely found as a key structural motif in many chiral ligands, catalysts as well as biologically active compounds. ${ }^{155}$ The catalytic enantioselective synthesis of axially chiral biaryls via transition-metal-catalyzed [2+2+2] cycloadditions have been proved to be a straightforward and efficient method. The sterically demanding prochiral substrates and a chiral catalyst were commonly used for the formation of chiral biaryl compounds (Scheme 168).

Scheme 168

[^83]In 2004, Gutnov, Heller and co-workers reported the first example of direct synthesis of enantioenriched axially biaryls via a chiral cobalt(I) complex-catalyzed [$2+2+2]$ cycloaddition of alkynes with nitriles. ${ }^{156}$ The reaction was performed under mild conditions using visible light or sunlight as the energy source (Scheme 169).

Scheme 169

Shibata and co-workers reported the first example of iridium-catalyzed $[2+2+2]$ cycloaddition of α, ω-diynes with alkynes. ${ }^{157}$ The combination of $[\operatorname{Ir}(\operatorname{cod}) \mathrm{Cl}]_{2}$ and (S, S)-MeDuphos promoted the high enantio- and diastereoselective synthesis of axially chiral 1,4teraryls (Scheme 170).

Scheme 170

Tanaka and co-workers also employed the cationic rhodium(I)/bisphosphine catalytic system to the asymmetric synthesis of axially chiral biaryls. ${ }^{158}$ In the presence of cationic rhodium $(\mathrm{I}) /(S)$ - H_{8}-BINAP complex, various unsymmetrical diynes and internal alkynes were

[^84]converted to axially chiral phthalides. Functional groups, such as trifluoromethyl and chloride were tolerated using these conditions (Scheme 171).

Scheme 171

1.3. Construction of planar chirality

The transition-metal-catalyzed intramolecular $[2+2+2]$ cycloaddition of triynes, possessing a short ansa chain, could be possible to form a planar chirality cyclophanes in which the ansa chain cannot flip around the benzene ring (Scheme 172).

Scheme 172

In 2007, the group of Tanaka first reported that the planar-chiral metacyclophanes could be synthesized by transition-metal-catalyzed [2+2+2] cycloaddition reactions. ${ }^{159}$ The intramolecular cyclotrimerization of linear triynes, bearing ester or ether-linked 1,6-diyne moieties, proceeded in the presence of rhodium(I)/(R)- H_{8}-BINAP complex furnishing the [7][10]metacyclophanes with high enantioselectivities (Scheme 173). This method opened a new way to synthesize these compounds.

[^85]

Scheme 173

1.4. Construction of helical chirality

The combination of transition metals with chiral ligands to catalyze [2+2+2] cyclotrimerization of alkynes is considered as one of the most efficient method for the synthesis of helically chiral π-electron systems, although most examples are diastereoselective cycloadditions (Scheme 174).

Scheme 174

Stará, Starý and co-workers reported a rapid approach for the synthesis of dibenzohelicenes based on a nickel-catalyzed cycloaddition reaction. ${ }^{160}$ A series of ortho-phenylene-tethered triynes were employed under the $\mathrm{Ni}(\operatorname{cod})_{2} /(R)$-Quinap catalytic system and

[^86]gave rise to various dibenzo[5]-, dibenzo[6]-, and dibenzo[7]helicenes. Notably, a high catalyst loading ($20 \mathrm{~mol} \%$) was required to give a higher enantioselectivity (Scheme 175).

Scheme 175

2. Desymmetric transition-metal-catalyzed
 cycloaddition reactions

Although many methods have been developed on enantioselective transition-metalcatalyzed $[2+2+2]$ cycloadditions for the synthesis of useful chiral compounds, new strategies to access challenging targets are still desirable.

The construction of all-carbon quaternary stereogenic centers via catalytic enantioselective desymmetrization ${ }^{161}$ of prochiral substrate is an ideal method which exhibits many advantages over conventional strategies (Figure 4). For example, the quaternary carbon stereocenter is formed, no matter what kind of reaction occurred at one of the two identical functional groups attached to the quaternary carbon; the functional groups could previously be introduced to the quaternary carbon; the theoretical yield of the desymmetrization reaction is 100%, while the yield of the kinetic resolution reaction cannot exceed 50%.

[^87]

Figure 4

Taking advantage of the powerful and practical transition-metal-catalyzed [2+2+2] cycloadditions, and based on the principles of desymmetrization reactions, the synthesis of chiral compounds in term of desymmetric enantioselective $[2+2+2]$ cycloaddition reactions were designed but scarely reported (Scheme 176).

Scheme 176

The first example was reported by Sato, Mori and Nishimata using a nickel(0)-catalyzed enantioselective $[2+2+2]$ cycloaddition of prochiral triynes with gaseous acetylene in the presence of chiral phosphine ligands under mild conditions (Scheme 177). ${ }^{151,162}$ The combination of $\mathrm{Ni}(\operatorname{cod})_{2}$ and (R, S)-BPPFA promoted the reaction of prochiral triynes with acetylene affording the isoindoline derivatives in 52% yield and 73% enantioselectivity,

[^88]whereas the cycloaddition of 1,7-diynes and acetylene by using (S)-MOP as ligand led to isoquinoline in 62% yield and 54% enantioselectivity. Notably, this new method opened a novel route for the construction of benzylic chiral carbon centers, although the enantioselectivities were moderate.

Scheme 177

Since this pioneering work, the desymmetric $[2+2+2]$ cycloadditions of prochiral substrates received more attention. Taking advantage of cationic rhodium(I)/phosphine catalytic systems, the group of Tanaka reported several examples by using these strategies. In 2006, they described two examples of enantioselective desymmetrization of substituted malononitriles. ${ }^{163}$ Using cationic $\left[\mathrm{Rh}(\operatorname{cod})_{2}\right] \mathrm{BF}_{4} /(R)$-Xylyl-Solphos (or (R)-BINAP) complex catalyst, the reaction afforded enantioenriched bicyclic pyridines in $75-91 \%$ yields with moderate enantioselectivities (33% and 64%, respectively, Scheme 178).

Scheme 178

[^89]In 2007, the same group described the synthesis of enantioenriched tricyclic 3,3disubstituted phthalides involving a cationic rhodium-catalyzed desymmetric $[2+2+2]$ cycloaddition reaction. ${ }^{164}$ The reaction proceeded via an initial oxidative coupling of 1,6-diyne bearing a carbomethoxy group and simultaneously a transesterification with a symmetrical bispropargylic alcohol to form the rhodacyclopentadiene reactive species, followed by desymmetric insertion of one of the two alkynes to give the phthalide derivatives, which bear a chiral quaternary carbon center at the benzylic position (Scheme 179). The high regio- and enantioselectivity strongly relied on the presence of both methoxycarbonyl group and propargylic hydroxyl group.

Scheme 179

The C_{2}-symmetric spirobipyridine structures were also prepared via the rhodium/bisphosphine-catalyzed enantioselective intramolecular double [2+2+2] cycloadditions of bis-diynenitriles. ${ }^{165}$ A wide range of substrates were examined to produce various C_{2}-symmetric spirobipyridine ligands in $70-99 \%$ yields with $18-71 \%$ enantioselectivities (Scheme 180).

[^90]
Chapter IV

Scheme 180

The aromatics containing a chiral center at β-position are more challenging to synthesize. Thus, Shibata and co-workers recently developed a rhodium-catalyzed intramolecular enantioselective $[2+2+2]$ cycloaddition of amino-acid-tethered triynes for the preparation of the chiral center of tethered Aic derivatives (Scheme 181). ${ }^{166}$

Scheme 181

[^91]Not only quaternary-carbon-stereogenic centers but also other hetero-stereogenic centers, such as phosphorus and silicon, can be constructed through desymmetric enantioselective $[2+2+2]$ cycloaddition reactions.

In 2008, Tanaka and co-workers successfully synthesized a family of phosphorusstereogenic alkynylphosphine oxides by using cationic rhodium(I)/bisphosphine complexcatalyzed $[2+2+2]$ cycloadditions of symmetrical dialkynylphosphine oxides with 1,6diynes. ${ }^{167}$ The desymmetric formation of a phosphorus-stereogenic center could be explained by the steric effect between the coordinated dialkynylphosphine oxide and the chiral phosphine ligand in the formed rhodium intermediate (Scheme 182).

Scheme 182

Nozaki and co-workers reported in 2015 a facile and efficient method for the preparation of silicon-stereogenic dibenzosiloles through enantioselective rhodium-catalyzed $[2+2+2]$ cycloaddition of silicon-containing prochiral triynes with internal alkynes. ${ }^{168}$ In the presence of $\left[\mathrm{RhCl}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right]_{2} /$ monophosphine catalytic system, by exchange of the different tethers and unsaturated partners, enantioenriched germanium-stereogenic dibenzogermoles, siliconstereogenic silicon-bridged arylpyridinones ${ }^{169}$ and arylpyridines ${ }^{170}$ were successfully obtained with good to high chemo-, regio- and enantioselectivities (Scheme 183). A drawback of this method was the difficult multiple-step synthesis of starting prochiral triynes.

[^92]

Scheme 183

3. Interest and synthesis of 1,3-dihydroisobenzofurans

1,3-dihydroisobenzofurans (phthalanes) ${ }^{171}$ constitute an important class of oxygenated heterocycles, which are widely present in many bioactive natural products ${ }^{172}$ and pharmaceuticals ${ }^{173}$. For examples, as shown in Scheme 184, Flavimycin A (A) was isolated as inhibitor of peptide deformylase from cultures of Aspergillus flavipes. ${ }^{172 \mathrm{~b}}$ Citalopram (B) is a widely used antidepressant drug for the treatment of major depressive and general anxiety disorders in adults. ${ }^{173 a-c}$ Further investigation indicated that the pharmaceutical activity of citalopram almost resided in the (S)-enantiomer, Escitalopram (C). ${ }^{173 \mathrm{~d}}$ Pestacin (D) isolated from microorganism Pestalotiopsis microspora exhibits antifungal, antimycotic, and potent

[^93]antioxidant activities. ${ }^{173 e}$ Conformationally constrained miconazole analogues (E) containing a 1,3-dihydroisobenzofuran motif have improved antifungal potency compared to miconazole. ${ }^{173 f}$ 3-Deoxyisoochracinic acid (F), the most abundant polyketide-derived metabolites of Cladosporium sp, showed antibacterial activity and inhibits the growth of B. subtilis. ${ }^{173 g}$

A
Flavimycin A (natural product)

Pestacin

B
Citalopram

Miconazole analogues

C
Escitalopram

F
3-Deoxyisoochracinic acid

Scheme 184

Many synthetic approaches have been reported in the literature for the synthesis of these structurally diverse 1,3 -dihydroisobenzofurans including cycloetherification of the orthosubstituted aromatics, ${ }^{174}[2+2+2]$ cyclotrimerization of alkynes, ${ }^{7}$ Diels-Alder reaction, ${ }^{175}$ and transformation of phthalides ${ }^{176}$ (Scheme 185). Among them, the preparation of this scaffold by transition-metal-catalyzed $[2+2+2]$ cycloaddition reaction may be considered as one of the most efficient method, as described in chapter I.

[^94]
Chapter IV

Scheme 185

4. Objectives

Considering the literature, the enantioselective synthesis of 1,3-dihydroisobenzofurans containing a stereogenic center at the α-position has rarely been reported and remains a challenge. ${ }^{177}$

Desymmetrization of prochiral compounds serves as an efficient method to prepare complex molecules with a stereogenic chiral center. Therefore, we anticipated that the construction of 1,3-dihydroisobenzofurans could be achieved via the transition-metal-catalyzed $[2+2+2]$ cycloaddition of prochiral oxygen-tethered triynes with internal alkynes. The proposed synthetic route is shown in Scheme 186

Scheme 186

[^95]
5. Results and discussion

5.1 Synthesis of starting materials: prochiral triynes and internal alkynes

5.1.1. Synthesis of prochiral triynes

The prochiral oxygen-tethered triynes having an α, ω-diyne motif could be prepared from commercially available reagents, the retrosynthesic route is depicted in Scheme 187.

Scheme 187

The symmetrical bispropargylic alcohols 249-253 were prepared through the lithium mediated nucleophilic addition of terminal alkynes with acyl chlorides. As shown in Scheme 188, a series of acyl chlorides reacted with 2 equivalents of lithium acetylide, prepared in situ from the corresponding alkynes and n-butyllithium, affording the bispropargylic alcohols 249253 in $70-99 \%$ yields. Both aryl and alkyl groups could be introduced to the quaternary carbon atom by using different acyl chlorides.

Scheme 188

The oxygen-tethered triynes $\mathbf{2 5 4 - 2 5 9}$ were successfully synthesized via the nucleophilic substitution of the alcohols 249-253 with 1.3 equivalents of propargyl bromide or 1-bromo-but2 -yne. The reaction was performed in the presence 1.3 equivalents of sodium hydride in THF, and afforded the desired triynes 254-259 in 70-90\% yields (Scheme 189).

Scheme 189

Treatment of terminal triyne $\mathbf{2 5 4}$ with 1.1 equivalents of n butyllithium in THF at -70 ${ }^{\circ} \mathrm{C}$, followed by subsequent silylation with 1.1 equivalents of trimethlylsilyl chloride, delivered the TMS-substituted triyne 260 in 93\% yield (Scheme 190).

Scheme 190

5.1.2. Synthesis of internal monoalkynes

To study the steric influence of the alkynes, different internal alkynes were prepared (Scheme 191). Diynes 51, 53, 54 and 261 were purchased from commercial sources, diynes 262-265 were prepared in the laboratory following the procedures described in the literature. ${ }^{178}$

Scheme 191

The reaction of 2-butyl-1,4-diol $\mathbf{5 2}$ with 3 equivalents of acyl chlorides, such as acetyl chloride and benzoyl chloride, in the presence of 2.5 equivalents of pyridine provided the corresponding alkynes 262 and 264 in 96% and 95% yields, respectively (Scheme 192).

Scheme 192

Alkyne 263 could be prepared by the reaction of 2-butyl-1,4-diol $\mathbf{5 2}$ with 3 equivalents of pivaloyl chloride using $5 \mathrm{~mol} \%$ DMAP as catalyst and 4 equivalents of ethyldiisopropylamine as base, 98% of the desired product was obtained (Scheme 193).

Scheme 193

[^96]Treatment of the 2-butyl-1,4-diol $\mathbf{5 2}$ with 3.5 equivalents of sodium hydroxide in a mixture solution of water and THF at $0{ }^{\circ} \mathrm{C}$ with 2.2 equivalents of tosyl chloride furnished the tosyl protected internal alkyne 265 in 83% yield (Scheme 194).

Scheme 194

5.2 Rhodium-catalyzed desymmetric $[2+2+2]$ cycloaddition of prochiral triynes with internal alkynes

With a series of alkynes in hand, we then attempted to synthesize 1,3dihydroisobenzofuran 266 from prochiral triyne 255 and 1,4-diacetoxy-2-butyne $\mathbf{2 6 2}$ through an enantioselective rhodium-catalyzed $[2+2+2]$ cycloaddition reaction. As shown in Table 5, we began our studies by investigating the reactivity of different cationic rhodium catalysts, such as $\mathrm{Rh}(\operatorname{cod})_{2} \mathrm{BF}_{4},{ }^{163-167}\left[\mathrm{Rh}\right.$ (hexadiene) $\mathrm{Cl}_{2} / \mathrm{AgSbF}_{6},{ }^{154}\left[\mathrm{Rh}\right.$ (ethylene) $\mathrm{Cl}_{2} / \mathrm{NaBAr}_{4},{ }^{168-170}$ which proved to be efficient catalysts in related enantioselective $[2+2+2]$ cycloadditions (Entries 13). The results showed that the use of $\mathrm{Rh}(\operatorname{cod})_{2} \mathrm{BF}_{4}$ in combination with (R)-BINAP was the best choice for the transformation. Using $5 \mathrm{~mol} \%$ of cationic $\mathrm{Rh}(\operatorname{cod})_{2} \mathrm{BF}_{4} /(R)$-BINAP complex in dichloromethane at $40^{\circ} \mathrm{C}$ lead to 50% yield and 50% ee of the desired product 266 by using 1:2 ratio of triyne $\mathbf{2 5 5}$ and alkyne $\mathbf{2 6 2}$ (Entry 1). Further evaluation of the ratio of [Rh]/ligand showed that an increase of the amount of (R)-BINAP ($10 \mathrm{~mol} \%$, Entry 4) gave no improvement (yield and enantioselectivity). The reaction did not take place in the absence of phosphine ligand (Entry 5). Hydrogenation of the rhodium complex under $1 \mathrm{~atm} \mathrm{H}_{2}$ for 1 hour to remove the cod ligand allowed the formation of cycloadduct 266 in 66% isolated yield, but with a lower enantiomeric excess of 43% (Entry 6). Moreover, slow-addition technique was used to introduce triyne 255 in 3 h to a DCM solution of alkyne 262 and $\mathrm{Rh}(\operatorname{cod})_{2} \mathrm{BF}_{4} /(R)$-BINAP complex using a syringe pump (Entry 7). However, the formation of unclear side products was observed, due to the homo-cyclization of triyne and totally intramolecular cycloaddition of triyne with alkyne.

Table 5 Optimization of reaction conditions

		[Rh] 5 mol\% (R)-BINAP $5 \mathrm{~mol} \%$ additive $5-10 \mathrm{~mol} \%$ DCM, $40^{\circ} \mathrm{C}, 18-24 \mathrm{~h}$		
	255		266	
Entry ${ }^{\text {a }}$	[Rh] catalyst	Additive (mol \%)	Yield (\%) ${ }^{\text {b }}$	$e e(\%)^{\text {c }}$
1	$\mathbf{R h}(\mathbf{c o d})_{2} \mathbf{B F}_{4}$	/	50	50
2	$[\mathrm{Rh} \text { (hexadiene) } \mathrm{Cl}]_{2}$	AgSbF_{6} (5)	74	20
$3{ }^{\text {d }}$	$[\mathrm{Rh} \text { (ethylene) } \mathrm{Cl}]_{2}$	$\mathrm{NaBAr}^{\text {F }}$ (10)	72	49
$4{ }^{\text {e }}$	$\mathrm{Rh}(\mathrm{cod}){ }_{2} \mathrm{BF}_{4}$	/	50	50
$5^{\text {f }}$	$\mathrm{Rh}(\mathrm{cod}){ }_{2} \mathrm{BF}_{4}$	1	nr	1
$6^{\text {g }}$	$\mathrm{Rh}(\mathrm{cod}){ }_{2} \mathrm{BF}_{4}$	1	66	43
$7^{\text {h }}$	$\mathrm{Rh}(\mathrm{cod}){ }_{2} \mathrm{BF}_{4}$	/	50	50

${ }^{\text {a }}$ Reaction conditions: $[\mathrm{Rh}]$ catalyst ($5 \mathrm{~mol} \%$), (R)-BINAP ($5 \mathrm{~mol} \%$), triyne 255 (0.3 mmol), alkyne $262(0.6 \mathrm{mmol})$ were heated at $40^{\circ} \mathrm{C}$ in a sealed Schlenk tube in DCM (3 mL) under an argon atmosphere for $20-24 \mathrm{~h} .{ }^{\mathrm{b}}$ Isolated yield, $\mathrm{nr}=$ no reaction. ${ }^{\mathrm{c}}$ Determined by SFC analysis. ${ }^{\mathrm{d}} \mathrm{Ar}^{\mathrm{F}}=3,5-\left(\mathrm{CF}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3} .{ }^{\mathrm{e}} 10 \mathrm{~mol} \%$ of (R)-BINAP was used. ${ }^{\mathrm{f}}$ No ligand. ${ }^{\mathrm{g}}[\mathrm{Rh}] /(R)$-BINAP complex with previous hydrogenation $\left(\mathrm{H}_{2}, 1 \mathrm{~atm}\right.$, $\mathrm{rt}, 1 \mathrm{~h}) .{ }^{\mathrm{h}}$ Slow addition of triyne 255 in 3 hours using a syringe pump.

To further optimize the reaction conditions, a variety of bisphosphine and monophosphine ligands has been examined (Table 6). The influence of the chiral ligand was explored, (S)-Tol-BINAP, (R)-Xylyl-BINAP and (R) - H_{8}-BINAP gave slight decreased enantiomeric excesses. The combination of $\mathrm{Rh}(\operatorname{cod})_{2} \mathrm{BF}_{4}$ with axially chiral monophosphine (R)-MOP, which previously demonstrated high reactivity and selectivity for the desymmetrization of silicon-containing prochiral triynes with internal alkynes, ${ }^{168-170}$ afforded the cycloadduct in 70% yield with $7 \% e e$. Oxygen fused electron-rich and electron-poor bidentate ligands, such as (R)-SegPhos, (R)-DifluorPhos, (R)-SynPhos and $(R)-\left(4-\mathrm{CF}_{3}\right)$ SynPhos, showed higher reactivity to access compound 266 ($60-81 \%$ yields), but lower enantioselectivities were obtained ($16-30 \% e e$). Phosphine ligands bearing sterically hindered PAr_{2} moiety, such as (R)-dtbm-SegPhos and (R)-dtbm-MeOBiphep, did not provide the desired product. In contrast to the axially chiral phosphine ligands, (S)-Tol-BDP, (S)-PHANEPHOS, (R, S)-JosiPhos and (R, R)-Me-DuPhos, showed poor enantioselectivities and low reactivities under these reaction conditions.

Chapter IV

Table 6 Screening of chiral phosphine ligands

${ }^{a}$ Toluene was used as solvent.

We also evaluated a series of monodentate phosphoramidite ligands. ${ }^{179}$ However, no improvement of enantioselectivity of compound 267 was obtained (5-40\%, Scheme 195).

Scheme 195

These results demonstrated that the chiral phosphine ligands play an important role to promote the desymmetric $[2+2+2]$ cycloadditions, although moderate enantioselectivities were obtained. In this context, the $\mathrm{Rh}(\operatorname{cod})_{2} \mathrm{BF}_{4} /(R)$-BINAP complex was selected for the $[2+2+2]$ cycloaddition reactions.

To improve the yield and enantiomeric excess, we next screened different organic solvents (Table 7). First, polar solvents were examined. The reaction was carried out in dichloroethane and tetrahydrofuran at $40{ }^{\circ} \mathrm{C}$, in the presence of $5 \mathrm{~mol} \% \mathrm{Rh}(\operatorname{cod})_{2} \mathrm{BF}_{4} /(R)$ BINAP complex to deliver the desired 1,3-dihydroisobenzofuran $\mathbf{2 6 6}$ in 61% and 72% yields, respectively, with 37% and $47 \% e e$, respectively (Entries 2 and 3). The non-polar solvents such as toluene, xylene, chlorobenzene have also been evaluated (Entries 4-6). Slight increased yields of cycloadducts were observed, with moderate enantioselectivity. Performing the cycloaddition in toluene at $100^{\circ} \mathrm{C}$ did not significantly improve the course of the cycloaddition (70% yield, $50 \% e e$, Entry 4). The reaction was performed in the presence of $5 \mathrm{~mol} \%$ $\mathrm{Rh}(\operatorname{cod})_{2} \mathrm{BF}_{4} /(R)$-BINAP complex in 3 mL dichloromethane at $40^{\circ} \mathrm{C}$ to evaluate the scope of the $[2+2+2]$ cycloaddition.

[^97]
Chapter IV

Table 7 The effect of solvent

Entry	Solvent	$T\left({ }^{\circ} \mathrm{C}\right)$	Yield (\%) ${ }^{\text {b }}$	$e e(\%)^{\text {c }}$
1	DCM	40	50	50
2	DCE	40	61	37
3	THF	40	72	47
4	Toluene	100	70	50
5	Xylene	100	60	46
6	Chlorobenzene	100	54	42

${ }^{a}$ Reaction conditions: $\operatorname{Rh}(\operatorname{cod})_{2} \mathrm{BF}_{4}(5 \mathrm{~mol} \%),(R)$-BINAP (5 mol \%), triyne 255 $(0.3 \mathrm{mmol})$, alkyne $262(0.6 \mathrm{mmol})$ were heated at $40^{\circ} \mathrm{C}$ or $100^{\circ} \mathrm{C}$ in a sealed Schlenk tube under an argon atmosphere for 20 h . ${ }^{\mathrm{b}}$ Isolated yield. ${ }^{\text {c }}$ Determined by SFC analysis.

With the optimized reaction conditions in hand, we then investigated the generality and limitations of the synthetic protocol. A series of symmetrical internal alkynes with different substituents were engaged with triyne 255 under the optimized reaction conditions (Scheme 196). Switching to the more sterically hindered 2,2-dimethylpropanoate 263 and benzoate 264 allowed to promote the reaction to form cycloadducts 267 and 268 in respective 20% and 28% yields, and 36% and $46 \% e e$. The use of 3-hexyne $\mathbf{5 3}$ gave the desired product $\mathbf{2 6 9}$ in 79\% yield and $21 \% e e$. The reaction of more electron-rich alkyne such as 1,4-dimethoxy-2-butyne $\mathbf{5 1}$ with triyne $\mathbf{2 5 5}$ afforded the cycloadduct $\mathbf{2 7 0}$ in 63% yield with $32 \% e e$. In addition, the electrondeficient alkyne dimethyl acetylenedicarboxylate $\mathbf{2 6 1}$ can also be employed to provide the corresponding cyclized product 271 in 51% yield and $47 \% e e$. On the other hand, we observed that the reaction was not compatible with diphenylacetylene 54, probably because of the steric effect of the two phenyl groups. It was also found that no reaction occurred with the tosyl group protected 2-butyne 265.

$$
\begin{array}{ll}
\text { 51, } \mathrm{R}=\mathrm{CH}_{2} \mathrm{OMe} & \text { 262, } \mathrm{R}=\mathrm{CH}_{2} \mathrm{OAc} \\
\text { 53, } \mathrm{R}=\mathrm{Et} & \text { 263, } \mathrm{R}=\mathrm{CH}_{2} \mathrm{OCOtBu} \\
\text { 54, } \mathrm{R}=\mathrm{Ph} & \text { 264, } \mathrm{R}=\mathrm{CH}_{2} \mathrm{OCOPh} \\
\text { 261, } \mathrm{R}=\mathrm{CO}_{2} \mathrm{Me} & \text { 265, } \mathrm{R}=\mathrm{CH}_{2} \mathrm{OTs}
\end{array}
$$

50\% yield, 50% ee

269
79% yield, 21% ee

20\% yield, 36% ee

270
63% yield, 32% ee

28\% yield, 46% ee

271
51\% yield, 47\% ee

272, not observed

273, not observed

Scheme 196

With respect to the prochiral triynes, different substituents on the triynes were evaluated (Scheme 197). Replacement of methyl group on the quaternary carbon atom by n-propyl group provided the corresponding product 274 with similar 46% yield and 51% enantiomeric excess. The reaction of sterically demanding tert-butyl- and phenyl-substituted triynes $\mathbf{2 5 7}$ and $\mathbf{2 5 8}$ with internal alkyne 262 were inefficient for the enhancement of the enantioselectivity, leading to cycloadducts $\mathbf{2 7 5}$ and $\mathbf{2 7 6}$ with slightly lower 38% and $41 \% e e$. The reaction also proceeded smoothly with the prochiral triyne 259 affording the cycloadduct 277 in 54% yield with 24% $e e$. The reaction was also applicable to the trimethylsilyl-substituted triyne 260, which successfully reacted with alkyne 262 to deliver the corresponding product 278 with 52% enantioselectivity in 26% yield. Finally, the reactivity of the triyne $\mathbf{2 5 4}$ having a terminal alkyne moiety was examined. However, no desired product 279 was formed under these reaction conditions, only the decomposition of the starting triyne was observed.

254, $R^{1}=M e, R^{2}=P h, R^{3}=H \quad$ 258, $R^{1}=P h, R^{2}=P h, R^{3}=M e$
256, $\mathrm{R}^{1}=n \mathrm{Pr}, \mathrm{R}^{2}=\mathrm{Ph}, \mathrm{R}^{3}=\mathrm{Me} \quad 259, \mathrm{R}^{1}=\mathrm{Ph}, \mathrm{R}^{2}=n \mathrm{Bu}, \mathrm{R}^{3}=\mathrm{Me}$
257, $R^{1}=t B u, R^{2}=P h, R^{3}=M e \quad$ 260, $R^{1}=M e, R^{2}=P h, R^{3}=S i M e_{3}$

274
46\% yield, 51\% ee

54\% yield, 24% ee

275
51\% yield, 38\% ee

278
26% yield, 52% ee

276
48\% yield, 41\% ee

279, not observed
(decomposition of diyne 254)

Scheme 197

To rationalize the moderate enantioselectivities, two plausible reaction pathways for the formation of chiral 1,3-dihydroisobenzofurans could be considered, A and B (Scheme 198). Reaction pathway A would comply a catalytic cycle starting from the intermolecular oxidative coupling of two alkyne motifs from both triyne and alkyne with rhodium species to afford the rhodacyclopentadiene intermediate Rh-I. Subsequent intramolecular selective coordination of one of the two alkynes substituted on the quaternary carbon atom to rhodium would lead to the intermediate Rh-II. This step could be considered as the enantioselective determining step affording higher enantioselective excess because of the steric interaction between the uncoordinated alkynyl group and the chiral ligand. The intramolecular insertion of the alkyne to the rhodium-carbon bond of Rh -II would deliver the seven-membered rhodacycle intermediate Rh-III, and the final reductive elimination would provide the 1,3dihydroisobenzofuran with high $e e$.

On the other hand, pathway B would involve the rhodacyclopentadiene intermediate Rh-I' initially formed by the fast intramolecular oxidative coupling of the triyne with rhodium species. The low enantioselectivities would be explained by the position of the quaternary center located "far" from the metal center. Coordination and insertion of the monoalkyne would
also lead to the rhodacycle intermediate Rh-III. Reductive elimination would regenerate the rhodium species, and deliver the cycloadduct with lower ee. Considering the moderate enantioselectivities observed, we hypothesized that these two reaction pathways would occur at the same time.

Scheme 198

6. Conclusion

In summary, we have developed a new route for the synthesis of enantioenriched 1,3dihydroisobenzofuran derivatives via an enantioselective rhodium-catalyzed [2+2+2] cycloaddition of prochiral triynes and monoalkynes. The reaction proceeded in the presence of a cationic $\mathrm{Rh}(\operatorname{cod})_{2} \mathrm{BF}_{4} /(R)$-BINAP complex in DCM. This desymmetrization strategy allowed the formation of 1,1-disubstituted 1,3-dihydroisobenzofurans containing a quaternary carbon stereocenter in up to 79% yield and up to $52 \% e e$. Two plausible reaction pathways were proposed to rationalize the moderate enantioselectivities.

Chapter IV

General conclusion

General conclusion

With the aim of the PhD project to develop environmentally friendly and atomeconomical processes to access biologically interesting polycyclic and heterocyclic aromatic compounds via transition-metal-catalyzed $[2+2+2]$ cycloaddition reactions, we successfully accessed relevant building blocks including fluorenones, 2-aminopyridines and enantioenriched 1,3-dihydroisobenzofurans.

This work was first dedicated to the development of an efficient and practical route for the preparation of highly substituted fluorenones and analogues via solvent-free $\mathrm{RuCl}_{3} \cdot n \mathrm{H}_{2} \mathrm{O}-$ mediated $[2+2+2]$ cycloaddition of α, ω-diynes and alkynes. ${ }^{180}$ This green approach involves a solvent-free and atom-economical catalytic process to generate densely functionalized fluorenones and related derivatives of high synthetic utility (Scheme 199).

Scheme 199

We also developed a convenient access to functionalized 2-aminopyridines via a solvent-free $\mathrm{RuCl}_{3} \cdot n \mathrm{H}_{2} \mathrm{O}$-promoted $[2+2+2]$ cycloaddition reaction of α, ω-diynes and cyanamides. ${ }^{181}$ This transformation efficiently proceeds in the presence of a stable, easy to handle, and cost-effective $\mathrm{RuCl}_{3} \cdot n \mathrm{H}_{2} \mathrm{O}$ complex, leading to various 2-aminopyridines in moderate to high yields following an eco-friendly straightforward approach. During the course of the studies, we found that the cationic ruthenium complex, $\mathrm{Cp} * \mathrm{Ru}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{3} \mathrm{PF}_{6}$, could also be an efficient catalyst to promote the [2+2+2] cycloadditions of 1,6- and 1,7-diynes with cyanamides to prepare 2-aminopyridines. ${ }^{182}$ Mild reaction conditions were developed for this transformation. Notably, this atom-economical catalytic process demonstrated remarkable

[^98]regioselectivities to access highly substituted pyridine derivatives of high synthetic utility (Scheme 200).

Scheme 200

Taking advantage of the cationic $\mathrm{Cp} * \mathrm{Ru}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{3} \mathrm{PF}_{6}$ catalytic system, we also synthesized a family of aza-fluorenones and aza-fluorenols with high regioselectivities (Scheme 201).

Scheme 201

Finally, we focused on the enantioselective synthesis of substituted 1,3dihydroisobenzofurans, containing a quaternary carbon stereogenic center, through a $[2+2+2]$ cycloaddition of prochiral triynes with internal alkynes using a cationic rhodium complex incorporating BINAP ligand. Moderate yields and enantioselectivities were obtained (Scheme 202). Further investigations of this method are underway in the laboratory.

$30-79 \%$ yields, $21-52 \%$ ees

Scheme 202

Experimental part

Experimental part

1. General informations

1.1. Analysis

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR were recorded on Bruker AV300 or AV400 instruments. All signals are expressed as $\mathrm{ppm}(\delta)$ and are referenced to the non-deuterated solvent peak CHCl_{3} (7.26 ppm for ${ }^{1} \mathrm{H}$ and 77.16 ppm for ${ }^{13} \mathrm{C}$) or Methanol- D_{4} (3.31 ppm for ${ }^{1} \mathrm{H}$ and 49.00 ppm for $\left.{ }^{13} \mathrm{C}\right)$. Coupling constants (J) are given in Hz and refer to apparent peak multiplicities. The following abbreviations are used: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broad.

Melting points were determined with a Kofler Heizbank 7841 apparatus and are uncorrected.

Enantiomeric excesses were determined by SFC using stationary phase columns: Daicel Chiralpak OD-H.

Mass spectrometry analyses (direct introduction by chemical ionization with ammoniac or electrospray) were performed at the Ecole Nationale Supérieure de Chimie de Paris (ENSCP). High resolution mass spectra were performed at the University Pierre and Marie Curie (Paris).

X-ray diffraction was made at Pierre et Marie Curie University (UPMC).

1.2. Chromatography

Sigma-Aldrich Silica gel (high-purity grade, pore size $60 \AA$, 230-400 mesh particle size, 40-63 $\mu \mathrm{m}$ particle size) was employed for flash column chromatography. Analytical thin layer chromatography (TLC) was carried out using commercial silica-gel plates (Merck 60 F254), spots were detected with UV light (254 nm) and revealed with a KMnO_{4} or para-anisaldehyde stain solution.

1.3. Purification of solvents and reagents

All reactions were performed under an atmosphere of argon. Toluene, THF, $\mathrm{CH}_{2} \mathrm{H}_{2}$, DMF, $\mathrm{Et}_{2} \mathrm{O}$ were dried over alumina columns in an Innovative Technologies apparatus. Acetone was distilled over $\mathrm{K}_{2} \mathrm{CO}_{3}$, and water was distilled. All the solvents for catalysis were degassed prior to use.

All reagents were used as received from commercial sources, unless specified otherwise, or prepared as described in the literature. Every reagent was either purified following the methods described in the literature or used without further purification.

2. Formation of fluorenone and related derivatives

2.1. Synthesis of benzoyl bridged α, ω-diynes

General procedure A:

$\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(2-5 \mathrm{~mol} \%)$ and $\mathrm{CuI}(1-2.5 \mathrm{~mol} \%)$ were added to a $\mathrm{NEt}_{3} / \mathrm{THF}(1: 1,5.0$ M) solution containing aryl halide (1.0 equiv), alkyne (1.2-1.5 equiv). The mixture was stirred at $50^{\circ} \mathrm{C}$ for 3-5 h . When the reaction was complete (TLC monitoring), the mixture was cooled to room temperature. A saturated aqueous solution of ammonium chloride was added and the mixture was stirred for 5 minutes. The organic layer was extracted with ethyl acetate ($\times 3$), washed with brine, dried over MgSO_{4}, filtered and concentrated under reduced pressure. The residue was purified by flash chromatography to afford the desire compound.

General procedure B:

To a THF solution of alkyne (1.2 equiv, 5.0 M) was added $n \mathrm{BuLi}$ (1.3 equiv) at $-70^{\circ} \mathrm{C}$. The mixture was warmed to $0{ }^{\circ} \mathrm{C}$ and stirred for 1 h . The resulting mixture was then cooled to
$-70^{\circ} \mathrm{C}$ again and a solution of aldehyde (1.0 equiv) in THF was added over 10 min . Then the mixture was warmed to room temperature and stirred for 2-3 h before addition of a saturated aqueous ammonium chloride solution. The organic layer was extracted with ethyl acetate ($\times 3$), washed with water and brine, dried over MgSO_{4}, filtered and concentrated under reduced pressure. The residue was purified by flash chromatography to afford the desired compound.

General procedure C:

Dess-Martin periodinane (1.3 equiv) was added to a solution of corresponding alcohol (1 equiv) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{M})$ at $0{ }^{\circ} \mathrm{C}$ and the resulting mixture was stirred at room temperature for $4-12 \mathrm{~h}$. When the reaction was complete (TLC monitoring), the reaction mixture was filtered through a pad of celite. A saturated aqueous solution of NaHCO_{3} was added to the organic layer and stirred for 20 minutes. The organic layer was washed with water and brine, dried over MgSO_{4}, filtered and concentrated under reduced pressure. The residue was purified by flash chromatography to afford the desired compound.

General procedure D:

$$
\mathrm{R}=-\operatorname{SiMe}_{3} \quad \underset{\mathrm{THF}, 0^{\circ} \mathrm{C} \text { to } \mathrm{rt}, 1 \mathrm{~h}}{\text { TBAF } 1.0 \text { equiv }} \quad \mathrm{R}=\mathrm{H}
$$

TBAF (1 M in THF, 1.0 equiv) was added to a solution of TMS-protected product (1 equiv) in THF $(5 \mathrm{M})$ at $0^{\circ} \mathrm{C}$ and the resulting mixture was stirred at room temperature for 1 h . The reaction was quenched with water and the product was extracted with DCM ($\times 3$). The organic layer washed with saturated aqueous solution of NaHCO_{3}, water and brine, dried over anhydrous MgSO_{4}, filtered and concentrated under reduced pressure. The residue was purified by column chromatography to afford the desired product.

2-(Phenylethynyl)benzaldehyde (1)

Experimental part

This compound was prepared using procedure A. Starting from 2-bromobenzaldehyde (1.0 g , $5.4 \mathrm{mmol})$ and phenylacetylene ($0.71 \mathrm{~mL}, 6.5 \mathrm{mmol}, 1.2$ equiv). Purification on silica gel (Petroleum ether/Ethyl acetate gradient from $100 / 0$ to $98 / 2$) afforded $1(0.85 \mathrm{~g}, 76 \%)$ as an orange oil. The analytical data were identical to the literature. ${ }^{183}$
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 6}$ (Cyclohexane/Ethyl acetate; 95/5, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta 10.66(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.97-7.94(\mathrm{~m}, 1 \mathrm{H}), 7.66-7.54(\mathrm{~m}$, 4H), $7.47-7.37$ (m, 4H).
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta 191.8,135.9,133.9,133.3,131.8,129.2,128.7,128.6,127.4$, 127.0, 122.4, 96.4, 85.0.

2-(Hex-1-yn-1-yl)-benzaldehyde (2)

This compound was prepared using procedure A. Starting from 2-bromobenzaldehyde (2.5 g , 13.5 mmol) and 1-hexyne ($2.0 \mathrm{~mL}, 17.5 \mathrm{mmol}, 1.3$ equiv). Purification on silica gel (Cyclohexane/Ethyl acetate gradient from $99 / 1$ to $95 / 5$) afforded $2(1.95 \mathrm{~g}, 79 \%$) as a brown oil. The analytical data were identical to the literature. ${ }^{183}$
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 8}$ (Cyclohexane/Ethyl acetate; 90/10, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.53(\mathrm{~d}, J=0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{dd}, J=4.8,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-$ $7.47(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.30(\mathrm{~m}, 1 \mathrm{H}), 2.48(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.68-1.55(\mathrm{~m}, 2 \mathrm{H}), 1.55-1.40$ $(\mathrm{m}, 2 \mathrm{H}), 0.95(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.

[^99]${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 192.3,136.2,133.8,133.4,128.1,128.0,127.0,98.3,76.5,30.7$, 22.2, 19.4, 13.7.

MS (CI, NH_{3}): $\mathrm{m} / \mathrm{z}=187[\mathrm{M}+\mathrm{H}]^{+}$.

2-((Trimethylsilyl)ethynyl)benzaldehyde (3)

Exact Mass: 202.0814

This compound was prepared using procedure A. Starting from 2-bromobenzaldehyde (3.68 g , 20.0 mmol) and trimethysilylacetylene ($3.3 \mathrm{~mL}, 24.0 \mathrm{mmol}, 1.2$ equiv). Purification on silica gel (Cyclohexane/Ethyl acetate gradient from $98 / 2$ to $90 / 10$) afforded $\mathbf{3}(3.5 \mathrm{~g}, 87 \%)$ as a white solid. m.p. $56-58^{\circ} \mathrm{C}$.
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 6 2}\left(\right.$ Cyclohexane/Ethyl acetate; $\left.95 / 5, \mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.37(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.74-7.68(\mathrm{~m}, 1 \mathrm{H}), 7.41-7.29(\mathrm{~m}$, $2 \mathrm{H}), 7.26-7.19(\mathrm{~m}, 1 \mathrm{H}), 0.10(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 191.8,136.3,133.7,133.6,128.9,127.0,126.9,102.5,100.2,-$ 0.1.

MS (CI, NH_{3}): $\mathrm{m} / \mathrm{z}=203[\mathrm{M}+\mathrm{H}]^{+}$.

2-(p-Tolylethynyl)benzaldehyde (4)

Chemical Formula: $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{O}$ Exact Mass: 220.0888

This compound was prepared using procedure A. Starting from 2-bromobenzaldehyde (2.5 g , $13.5 \mathrm{mmol})$ and 4-ethynyltoluene ($1.88 \mathrm{~mL}, 16.2 \mathrm{mmol}, 1.2$ equiv). Purification on silica gel
(Cyclohexane/Ethyl acetate gradient from 99/1 to 98/2) afforded $4(2.3 \mathrm{~g}, 80 \%$) as a white solid. m.p. $32-34^{\circ} \mathrm{C}$. The analytical data were identical to the literature. ${ }^{184}$
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 6 2}\left(\right.$ Cyclohexane/Ethyl acetate; $\left.95 / 5, \mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta 10.66(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.97-7.92(\mathrm{~m}, 1 \mathrm{H}), 7.68-7.53(\mathrm{~m}$, 2H), $7.49-7.41$ (m, 3H), 7.23-7.16 (m, 2H), 2.39 (s, 3H).
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 191.9,139.5,136.0,133.9,133.3,131.7,129.4,128.5,127.4$, 119.4, 96.8, 84.5, 21.7.

MS (CI, NH_{3}): $\mathrm{m} / \mathrm{z}=221[\mathrm{M}+\mathrm{H}]^{+}$.

2-((4-(tert-Butyl)phenyl)-ethynyl)-benzaldehyde (5)

Chemical Formula: $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{O}$ Exact Mass: 262.1358

This compound was prepared using procedure A. Starting from 2-bromobenzaldehyde (2.5 g , 13.5 mmol) and 4-(tert-butyl)phenylacetylene ($2.56 \mathrm{~g}, 16.2 \mathrm{mmol}, 1.2$ equiv). Purification on silica gel (Cyclohexane/Ethyl acetate gradient from $99 / 1$ to $98 / 2$) afforded $5(2.4 \mathrm{~g}, 70 \%)$ as a brown solid. m.p. $50-52^{\circ} \mathrm{C}$. The analytical data were identical to the literature. ${ }^{185}$
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 7}$ (Cyclohexane/Ethyl acetate; 90/10, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.66(\mathrm{~s}, 1 \mathrm{H}), 7.95(\mathrm{dd}, J=7.8,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.68-7.54(\mathrm{~m}$, $2 \mathrm{H}), 7.54-7.35(\mathrm{~m}, 5 \mathrm{H}), 1.34(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 192.0,152.7,136.0,133.9,133.3,131.6,130.2,128.6,127.3$, 125.7, 119.5, 96.8, 84.5, 35.1, 31.3.

6-(Phenylethynyl)benzo[d][1,3]dioxole-5-carbaldehyde (6)

[^100]

This compound was prepared using procedure A. Starting from 2-bromo-4,5methylenedioxybenzaldehyde ($2.3 \mathrm{~g}, 10.0 \mathrm{mmol}$) and phenylacetylene ($1.2 \mathrm{~mL}, 11.2 \mathrm{mmol}, 1.1$ equiv). Purification on silica gel (Cyclohexane/Ethyl acetate gradient from 99/1 to 98/2) afforded $\mathbf{6}(1.8 \mathrm{~g}, 72 \%)$ as a white solid. m.p. $118-120^{\circ} \mathrm{C}$. The analytical data were identical to the literature. ${ }^{186}$
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 6}$ (Cyclohexane/Ethyl acetate; 95/5, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.49(\mathrm{~s}, 1 \mathrm{H}), 7.58-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.34(\mathrm{~m}, 4 \mathrm{H}), 7.03(\mathrm{~s}$, $1 \mathrm{H}), 6.09(\mathrm{~s}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 190.1,152.5,148.9,132.3,131.7,129.1,128.7,123.8,122.5$, 112.2, 106.3, 102.5, 95.3, 84.9.

MS (CI, NH_{3}): m/z=251[M+H]+.

5-Fluoro-2-(phenylethynyl)benzaldehyde (7)

This compound was prepared using procedure A. Starting from 2-bromo-5-fluorobenzaldehyde $(2.0 \mathrm{~g}, 10.0 \mathrm{mmol})$ and phenylacetylene ($1.23 \mathrm{~g}, 12.0 \mathrm{mmol}, 1.2$ equiv). Purification on silica gel (Cyclohexane/Ethyl acetate gradient from 98/2 to $95 / 5$) afforded $7(1.55 \mathrm{~g}, 70 \%)$ as a pale yellow solid. m.p. $54-56^{\circ} \mathrm{C}$. The analytical data were identical to the literature. ${ }^{187}$

[^101]Experimental part
$\mathbf{R f}_{\mathbf{f}} \mathbf{0 . 6 2}$ (Cyclohexane/Ethyl acetate; 95/5, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.60(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.68-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.58-7.52(\mathrm{~m}, 2 \mathrm{H})$, 7.43-7.36 (m, 3H), 7.34-7.26 (m, 1H).
${ }^{13}$ C NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 190.5,162.6(\mathrm{~d}, J=215.6 \mathrm{~Hz}), 138.0(\mathrm{~d}, J=6.6 \mathrm{~Hz}), 135.4(\mathrm{~d}$, $J=7.7 \mathrm{~Hz}), 131.8,129.3,128.7,123.1(\mathrm{~d}, J=3.3 \mathrm{~Hz}), 122.3,121.5(\mathrm{~d}, J=22.6 \mathrm{~Hz}), 113.9(\mathrm{~d}$, $J=22.6 \mathrm{~Hz}), 96.2,84.0$.
${ }^{19} \mathbf{F}$ NMR ($282 \mathrm{MHz},\left(\mathrm{CDCl}_{3}\right):-109.94(\mathrm{t}, J=2.8 \mathrm{~Hz})$.

MS $\left(\mathrm{CI}, \mathrm{NH}_{3}\right): \mathrm{m} / \mathrm{z}=242\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$.

1-(2-(Phenylethynyl)phenyl)hept-2-yn-1-ol (8)

This compound was prepared using procedure B. Starting from 2-(phenylethynyl)benzaldehyde $\mathbf{1}(2.6 \mathrm{~g}, 12.6 \mathrm{mmol})$ and 1-hexyne ($2.16 \mathrm{~mL}, 18.0 \mathrm{mmol}, 1.5$ equiv). Purification on silica gel (Petroleum ether/Ethyl acetate gradient from $95 / 5$ to $90 / 10$) afforded $\mathbf{8}(3.3 \mathrm{~g}, 92 \%)$ as a pale orange oil. The analytical data were identical to the literature. ${ }^{188}$
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 3 4}$ (Cyclohexane/Ethyl acetate; 90/10, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta 7.74(\mathrm{dd}, J=7.7,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.58-7.54(\mathrm{~m}, 3 \mathrm{H}), 7.42-7.28$ $(\mathrm{m}, 5 \mathrm{H}), 5.96(\mathrm{~s}, 1 \mathrm{H}), 2.70(\mathrm{~s}, 1 \mathrm{H}), 2.30-2.25(\mathrm{~m}, 2 \mathrm{H}), 1.51-1.39(\mathrm{~m}, 4 \mathrm{H}), 0.88(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta 143.0,132.5,131.7,128.9,128.7,128.5,128.2,126.7,123.0$, $121.4,94.9,87.7,86.8,79.4,63.5,30.7,22.1,18.7,13.7$.

1-(2-(Hex-1-yn-1-yl)-phenyl)hept-2-yn-1-ol (9)

[^102]

Chemical Formula: $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{O}$ Exact Mass: 268.1827

This compound was prepared using procedure B. Starting from 2-(hex-1-yn-1-yl)benzaldehyde $2(0.91 \mathrm{~g}, 4.9 \mathrm{mmol})$ and 1-hexyne ($0.73 \mathrm{~mL}, 6.4 \mathrm{mmol}, 1.3$ equiv). Purification on silica gel (Petroleum ether/Ethyl acetate 95/5) afforded $9(0.68 \mathrm{~g}, 50 \%)$ as a pale orange oil.
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 3 8}$ (Cyclohexane/Ethyl acetate; 90/10, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.66(\mathrm{dd}, J=7.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{dd}, J=7.5,1.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.34-7.20(\mathrm{~m}, 2 \mathrm{H}), 5.88-5.79(\mathrm{~m}, 1 \mathrm{H}), 2.64(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H})$, $2.28(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.65-1.52(\mathrm{~m}, 4 \mathrm{H}), 1.49-1.37(\mathrm{~m}, 4 \mathrm{H}), 0.96(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.91$ (t, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.9,132.6,128.2,128.1,126.7,122.3,96.3,87.6,79.4,78.1$, 63.7, 30.9, 30.8, 22.2, 22.1, 19.4, 18.7, 13.7.

MS $\left(\mathrm{CI}, \mathrm{NH}_{3}\right): \mathrm{m} / \mathrm{z}=251\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right]^{+}$.

1-(2-(Hex-1-yn-1-yl)phenyl)-3-phenylprop-2-yn-1-ol (10)

This compound was prepared using procedure B. Starting from 2-(hex-1-yn-1-yl)benzaldehyde 2 ($1 \mathrm{~g}, 5.4 \mathrm{mmol}$) and phenylacetylene ($0.77 \mathrm{~mL}, 7.0 \mathrm{mmol}, 1.3$ equiv). Purification on silica gel (Petroleum ether/Ethyl acetate gradient from 95/5 to 90/10) afforded $\mathbf{1 0}(1.25 \mathrm{~g}, 81 \%)$ as a pale yellow oil.
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 4}$ (Cyclohexane/Ethyl acetate; 90/10, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.73(\mathrm{dd}, J=7.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.52-7.41(\mathrm{~m}, 3 \mathrm{H}), 7.37-7.23$ (m, 5H), $6.06(\mathrm{~s}, 1 \mathrm{H}), 2.80(\mathrm{br}, 1 \mathrm{H}), 2.49(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.69-1.56(\mathrm{~m}, 2 \mathrm{H}), 1.56-1.44$ (m, 2H), $0.94(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.3,132.7,131.9,128.6,128.4,128.3,128.3,126.8,122.8$, 122.4, 96.7, 88.5, 86.6, 78.1, 64.1, 30.9, 22.2, 19.5, 13.8.

MS (CI, $\left.\mathrm{NH}_{3}\right): \mathrm{m} / \mathrm{z}=271\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right]^{+}$.

3-Cyclopropyl-1-(2-(phenylethynyl)phenyl)prop-2-yn-1-ol (11)

Chemical Formula: $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{O}$ Exact Mass: 272.1201

This compound was prepared using procedure B. Starting from 2-(phenylethynyl)benzaldehyde $\mathbf{1}(1.1 \mathrm{~g}, 5.3 \mathrm{mmol})$ and cyclopropylacetylene ($0.58 \mathrm{~mL}, 7.0 \mathrm{mmol}, 1.3$ equiv). Purification on silica gel (Petroleum ether/Ethyl acetate gradient from 95/5 to 90/10) afforded $\mathbf{1 1}(1.2 \mathrm{~g}, 92 \%)$ as a pale yellow oil. The analytical data were identical to the literature. ${ }^{188}$
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 3 8}$ (Cyclohexane/Ethyl acetate; 90/10, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.70(\mathrm{dd}, J=7.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.60-7.51(\mathrm{~m}, 3 \mathrm{H}), 7.42-7.34$ (m, 4H), $7.34-7.30(\mathrm{~m}, 1 \mathrm{H}), 5.90(\mathrm{dd}, J=5.5,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.62(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.38-$ $1.23(\mathrm{~m}, 1 \mathrm{H}), 0.79-0.69(\mathrm{~m}, 4 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.9,132.5,131.7,129.0,128.7,128.5,128.2,126.8,123.0$, $121.4,94.9,90.7,86.8,74.7,63.6,8.4,-0.3$.

MS (CI, $\left.\mathrm{NH}_{3}\right): \mathrm{m} / \mathrm{z}=255\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right]^{+}$.

Chemical Formula: $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{OSi}$ Exact Mass: 284.1596

This compound was prepared using procedure B. Starting from 2((trimethylsilyl)ethynyl)benzaldehyde 3 ($1.5 \mathrm{~g}, 7.4 \mathrm{mmol}$) and 1-hexyne ($1.1 \mathrm{~mL}, 9.6 \mathrm{mmol}$, 1.3 equiv). Purification on silica gel (Cyclohexane/Ethyl acetate gradient from 95/5 to 90/10) afforded $\mathbf{1 2}(1.7 \mathrm{~g}, 80 \%)$ as a colorless oil. The analytical data were identical to the literature. ${ }^{189}$
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 4 4}$ (Cyclohexane/Ethyl acetate; 90/10, $\mathrm{KMnO}_{4}, \mathrm{UV}$).
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.71-7.63(\mathrm{~m}, 1 \mathrm{H}), 7.47(\mathrm{dd}, J=7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{td}, J$ $=7.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.21(\mathrm{~m}, 1 \mathrm{H}), 5.87-5.80(\mathrm{~m}, 1 \mathrm{H}), 2.77(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.27(\mathrm{td}$, $J=7.0,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.59-1.35(\mathrm{~m}, 4 \mathrm{H}), 0.91(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.28(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13}$ C NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.7,132.9,129.2,128.1,126.7,121.3,102.6,100.5,87.8$, 79.2, 63.6, 30.8, 22.1, 18.7, 13.7, -0.02.

MS (CI, $\left.\mathrm{NH}_{3}\right): \mathrm{m} / \mathrm{z}=267\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right]^{+}$.

1-(2-(p-Tolylethynyl)phenyl)hept-2-yn-1-ol (13)

Chemical Formula: $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{O}$ Exact Mass: 302.1671

This compound was prepared using procedure B. Starting from 2-(p-tolylethynyl)benzaldehyde $4(1.0 \mathrm{~g}, 4.6 \mathrm{mmol})$ and 1-hexyne ($0.68 \mathrm{~mL}, 5.9 \mathrm{mmol}, 1.3$ equiv). Purification on silica gel (Cyclohexane/Ethyl acetate gradient from 95/5 to 90/10) afforded 13 ($1.19 \mathrm{~g}, 87 \%$) as a pale oil. The analytical data were identical to the literature. ${ }^{190}$

[^103]Experimental part
$\mathbf{R e}_{\mathbf{f}} \mathbf{0 . 4 3}$ (Cyclohexane/Ethyl acetate; 90/10, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.78-7.70(\mathrm{~m}, 1 \mathrm{H}), 7.58-7.51(\mathrm{~m}, 1 \mathrm{H}), 7.51-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.41-$ $7.27(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.14(\mathrm{~m}, 2 \mathrm{H}), 5.96(\mathrm{~s}, 1 \mathrm{H}), 2.81(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 2.33-2.24$ (m, 2H), 1.59-1.35 (m, 4H), $0.90(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.0,138.8,132.3,131.5,129.2,128.7,128.1,126.6,121.6$, $119.9,95.1,87.5,86.2,79.5,63.5,30.7,22.0,21.6,18.6,13.6$.

MS (CI, $\left.\mathrm{NH}_{3}\right): \mathrm{m} / \mathrm{z}=285\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right]^{+}$.

1-(2-((4-(tert-Butyl)phenyl)-ethynyl)-phenyl)-hept-2-yn-1-ol (14)

Chemical Formula: $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{O}$ Exact Mass: 344.2140

This compound was prepared using procedure B. Starting from 2-((4-(tert-butyl)-phenyl)-ethynyl)-benzaldehyde $5(0.92 \mathrm{~g}, 3.5 \mathrm{mmol})$ and 1-hexyne ($0.52 \mathrm{~mL}, 4.5 \mathrm{mmol}, 1.3$ equiv). Purification on silica gel (Cyclohexane/Ethyl acetate gradient from 95/5 to 90/10) afforded 14 $(1.0 \mathrm{~g}, 83 \%)$ as a pale oil.
$\mathbf{R f}_{\mathbf{f}} \mathbf{0 . 4 2}$ (Cyclohexane/Ethyl acetate; 90/10, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.72(\mathrm{dd}, J=7.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{dd}, J=7.5,1.3 \mathrm{~Hz}, 1 \mathrm{H})$, $7.52-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.34(\mathrm{~m}, 3 \mathrm{H}), 7.30(\mathrm{td}, J=7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.91-5.96(\mathrm{~m}, 1 \mathrm{H})$, $2.48(\mathrm{br}, 1 \mathrm{H}), 2.28(\mathrm{td}, J=7.0,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.56-1.35(\mathrm{~m}, 4 \mathrm{H}), 1.33(\mathrm{~s}, 9 \mathrm{H}), 0.88(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 152.1,143.0,132.5,131.5,128.8,128.2,126.8,125.6,121.8$, $120.0,95.2,87.8,86.2,79.5,63.7,35.0,31.3,30.8,22.1,18.7,13.7$.

MS $\left(\mathrm{CI}, \mathrm{NH}_{3}\right): \mathrm{m} / \mathrm{z}=327\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right]^{+}$.

1-(6-(Phenylethynyl)benzo[d][1,3]dioxol-5-yl)hept-2-yn-1-ol (15)

Chemical Formula: $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{O}_{3}$ Exact Mass: 332.1412

This compound was prepared using procedure B. Starting from 6(phenylethynyl)benzo $[d][1,3]$ dioxole-5-carbaldehyde $6(1.0 \mathrm{~g}, 4.0 \mathrm{mmol})$ and 1-hexyne (0.6 $\mathrm{mL}, 5.2 \mathrm{mmol}, 1.3$ equiv). Purification on silica gel (Cyclohexane/Ethyl acetate gradient from $95 / 5$ to $90 / 10$) afforded $\mathbf{1 5}(1.27 \mathrm{~g}, 96 \%)$ as a colorless oil.
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 2 7}$ (Cyclohexane/Ethyl acetate; 90/10, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.58-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.29(\mathrm{~m}, 3 \mathrm{H}), 7.24(\mathrm{~s}, 1 \mathrm{H}), 6.96(\mathrm{~s}$, $1 \mathrm{H}), 6.01(\mathrm{~s}, 2 \mathrm{H}), 5.92(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.27(\mathrm{td}, J=7.0,2.0 \mathrm{~Hz}$, $2 \mathrm{H}), 1.55-1.33$ (m, 4H), 0.89 (t, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 148.5,147.4,138.6,131.6,128.5,123.2,114.9,111.7,107.6$, $101.8,93.4,87.7,86.8,79.5,63.2,30.8,22.1,18.7,13.7$.

MS (CI, $\left.\mathrm{NH}_{3}\right): \mathrm{m} / \mathrm{z}=315\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right]^{+}$.

1-(5-Fluoro-2-(phenylethynyl)phenyl)hept-2-yn-1-ol (16)

This compound was prepared using procedure B. Starting from 5-fluoro-2(phenylethynyl)benzaldehyde $7(0.9 \mathrm{~g}, 4.1 \mathrm{mmol})$ and 1-hexyne ($0.6 \mathrm{~mL}, 5.2 \mathrm{mmol}, 1.3$ equiv). Purification on silica gel (Cyclohexane/Ethyl acetate gradient from 95/5 to 90/10) afforded 16 $(1.16 \mathrm{~g}, 92 \%)$ as a colorless oil.
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 3 5}$ (Cyclohexane/Ethyl acetate; 90/10, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.58-7.49(\mathrm{~m}, 3 \mathrm{H}), 7.46(\mathrm{dd}, J=9.5,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.32$ (m, 3H), $7.01(\mathrm{td}, J=8.3,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.91(\mathrm{~s}, 1 \mathrm{H}), 2.56(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.27(\mathrm{td}, J=7.0$, $1.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.54-1.34(\mathrm{~m}, 4 \mathrm{H}), 0.88(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.8(\mathrm{~d}, J=247.5 \mathrm{~Hz}), 145.8(\mathrm{~d}, J=7.1 \mathrm{~Hz}), 134.4(\mathrm{~d}, J=8.2$ $\mathrm{Hz}), 131.7,128.8,128.6,123.0,117.5(\mathrm{~d}, J=3.3 \mathrm{~Hz}), 115.4(\mathrm{~d}, J=22.0 \mathrm{~Hz}), 114.2(\mathrm{~d}, J=23.6$ $\mathrm{Hz}), 94.6,88.2,85.9,79.0,63.1,30.7,22.1,18.7,13.7$.
${ }^{19}$ F NMR (282 MHz, $\left(\mathrm{CDCl}_{3}\right) \delta-110.5(\mathrm{dd}, J=14.1,8.5 \mathrm{~Hz})$.

MS (CI, $\left.\mathrm{NH}_{3}\right): \mathrm{m} / \mathrm{z}=289\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right]^{+}$.

1-(2-(phenylethynyl)phenyl)hept-2-yn-1-one (17)

This compound was prepared using procedure C. Starting from 1-(2-(phenylethynyl)phenyl)hept-2-yn-1-ol $\mathbf{8}(1.7 \mathrm{~g}, 5.9 \mathrm{mmol})$ and Dess-Martin periodinane (3.25 g, $7.6 \mathrm{mmol}, 1.3$ equiv). Purification on silica gel (Petroleum ether/Ethyl acetate gradient from $100 / 0$ to $98 / 2$) afforded $\mathbf{1 7}(1.6 \mathrm{~g}, 94 \%)$ as a pale yellow oil. The analytical data were identical to the literature. ${ }^{191}$
$\mathbf{R f}_{\mathbf{f}}=\mathbf{0 . 4 2}$ (Cyclohexane/Ethyl acetate; 95/5, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta 8.11(\mathrm{dd}, J=7.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.65-7.59(\mathrm{~m}, 3 \mathrm{H}), 7.51(\mathrm{td}, J$ $=7.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{td}, J=7.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.32(\mathrm{~m}, 3 \mathrm{H}), 2.43(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H})$, $1.61-1.56(\mathrm{~m}, 2 \mathrm{H}), 1.47-1.42(\mathrm{~m}, 2 \mathrm{H}), 0.90(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta 177.8,138.4,134.3,132.4,132.0,131.8,128.7,128.4,127.9$, 123.4, 122.9, 97.2, 95.2, 88.4, 80.8, 29.9, 22.2, 19.1, 13.6 .

[^104]
1-(2-(hex-1-yn-1-yl)phenyl)-hept-2-yn-1-one (18)

This compound was prepared using procedure C. Starting from 1-(2-(hex-1-yn-1-yl)phenyl)-hept-2-yn-1-ol 9 ($0.68 \mathrm{~g}, 2.5 \mathrm{mmol}$) and Dess-Martin periodinane ($1.39 \mathrm{~g}, 3.3 \mathrm{mmol}, 1.3$ equiv). Purification on silica gel (Petroleum ether/ Ethyl acetate gradient from 100/0 to 98/2) afforded $18(0.52 \mathrm{~g}, 76 \%)$ as a pale oil.
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 4}$ (Cyclohexane/Ethyl acetate; 95/5, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.04(\mathrm{dd}, J=7.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.54-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.35(\mathrm{td}, J$ $=7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.54-2.40(\mathrm{~m}, 4 \mathrm{H}), 1.70-1.56(\mathrm{~m}, 4 \mathrm{H}), 1.56-1.40(\mathrm{~m}, 4 \mathrm{H}), 0.95(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.94(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 178.1,138.6,134.7,132.2,131.7,127.2,123.8,97.0,96.7,81.0$, $79.3,30.8,30.0,22.2,19.8,19.1,13.8,13.7$.

MS (ESI, NH_{3}): $\mathrm{m} / \mathrm{z}=267[\mathrm{M}+\mathrm{H}]^{+}$.

1-(2-(Hex-1-yn-1-yl)phenyl)-3-phenylprop-2-yn-1-one (19)

Chemical Formula: $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{O}$
Exact Mass: 286.1358

This compound was prepared using procedure C. Starting from 1-(2-(hex-1-yn-1-yl)phenyl)-3-phenylprop-2-yn-1-ol $11(1.25 \mathrm{~g}, 4.37 \mathrm{mmol})$ and Dess-Martin periodinane ($2.4 \mathrm{~g}, 5.7 \mathrm{mmol}$, 1.3 equiv). Purification on silica gel (Petroleum ether/Ethyl acetate gradient from 98/2 to 95/5) afforded 19 ($1.05 \mathrm{~g}, 84 \%$) as an orange oil.
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 6 2}\left(\right.$ Cyclohexane/Ethyl acetate; $\left.90 / 10, \mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.14-8.03(\mathrm{~m}, 1 \mathrm{H}), 7.65(\mathrm{dd}, J=8.1,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.57-7.34$ $(\mathrm{m}, 6 \mathrm{H}), 2.43(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.65-1.52(\mathrm{~m}, 2 \mathrm{H}), 1.52-1.40(\mathrm{~m}, 2 \mathrm{H}), 0.90(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 178.0,138.7,134.7,133.2,132.4,131.3,130.8,128.7,127.3$, 124.1, 120.6, 97.6, 93.2, 88.4, 79.2, 30.8, 22.2, 19.8, 13.7.

3-cyclopropyl-1-(2-(phenylethynyl)phenyl)prop-2-yn-1-one (20)

Chemical Formula: $\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{O}$ Exact Mass: 270.1045

This compound was prepared using procedure C. Starting from 3-cyclopropyl-1-(2-(phenylethynyl)phenyl)prop-2-yn-1-ol $1 \mathbf{1 1}(1.1 \mathrm{~g}, 4.0 \mathrm{mmol})$ and Dess-Martin periodinane (2.2 g, $5.2 \mathrm{mmol}, 1.3$ equiv). Purification on silica gel (Petroleum ether/Ethyl acetate gradient from 99/1 to 98/2) afforded 20 ($0.82 \mathrm{~g}, 75 \%$) as a pale yellow oil.
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 5 5}$ (Cyclohexane/Ethyl acetate; 90/10, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta 8.07-8.02(\mathrm{~m}, 1 \mathrm{H}), 7.66-7.58(\mathrm{~m}, 3 \mathrm{H}), 7.51(\mathrm{td}, J=7.5,1.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.41(\mathrm{td}, J=7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-7.33(\mathrm{~m}, 3 \mathrm{H}), 1.49-1.41(\mathrm{~m}, 1 \mathrm{H}), 0.99-0.93$ (m, 4H).
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta 177.6,138.8,134.3,132.2,132.0,131.5,128.7,128.4,128.0$, 123.5, 122.9, 101.6, 95.3, 88.4, 10.0, 0.3.

MS (ESI, $\left.\mathrm{NH}_{3}\right): \mathrm{m} / \mathrm{z}=271[\mathrm{M}+\mathrm{H}]^{+}$.

1-(2-((Trimethylsilyl)ethynyl)phenyl)hept-2-yn-1-one (21)

Chemical Formula: $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{OSi}$
Exact Mass: 282.1440

This compound was prepared using procedure C. Starting from 1-(2-((trimethylsilyl)ethynyl)phenyl)hept-2-yn-1-ol $12(2.06 \mathrm{~g}, 10.0 \mathrm{mmol})$ and Dess-Martin periodinane ($5.1 \mathrm{~g}, 12.0 \mathrm{mmol}, 1.2$ equiv). Purification on silica gel (Petroleum ether/Ethyl acetate gradient from $98 / 2$ to $95 / 5$) afforded $21(2.06 \mathrm{~g}, 74 \%)$ as a pale yellow oil.
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 5 8}$ (Cyclohexane/Ethyl acetate; 90/10, KMnO4, UV).
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.10-7.96(\mathrm{~m}, 1 \mathrm{H}), 7.61-7.51(\mathrm{~m}, 1 \mathrm{H}), 7.48-7.41(\mathrm{~m}, 1 \mathrm{H})$, $7.41-7.35(\mathrm{~m}, 1 \mathrm{H}), 2.45(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.68-1.54(\mathrm{~m}, 2 \mathrm{H}), 1.38-1.52(\mathrm{~m}, 2 \mathrm{H}), 0.93(\mathrm{t}$, $J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.27(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 177.5,139.0,135.1,132.1,131.7,128.2,122.6,103.3,100.9$, 96.8, 80.7, 29.9, 22.2, 19.1, 13.6, -0.1.

MS (ESI, $\left.\mathrm{NH}_{3}\right): \mathrm{m} / \mathrm{z}=283[\mathrm{M}+\mathrm{H}]^{+}$.

1-(2-(p-Tolylethynyl)phenyl)hept-2-yn-1-one (22)

Chemical Formula: $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{O}$ Exact Mass: 300.1514

This compound was prepared using procedure C. Starting from 1-(2-(p-tolylethynyl)phenyl)hept-2-yn-1-ol $13(1.1 \mathrm{~g}, 3.64 \mathrm{mmol})$ and Dess-Martin periodinane (2.0 g , $4.73 \mathrm{mmol}, 1.3$ equiv). Purification on silica gel (Petroleum ether/Ethyl acetate gradient from $98 / 2$ to $95 / 5$) afforded $22(1.0 \mathrm{~g}, 91 \%)$ as a pale yellow solid. m.p. $35-37^{\circ} \mathrm{C}$.
$\mathbf{R f}_{\mathbf{f}}=\mathbf{0 . 6}\left(\right.$ Cyclohexane/Ethyl acetate; 90/10, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.14-8.06(\mathrm{~m}, 1 \mathrm{H}), 7.68-7.58(\mathrm{~m}, 1 \mathrm{H}), 7.56-7.46(\mathrm{~m}, 3 \mathrm{H})$, $7.45-7.37(\mathrm{~m}, 1 \mathrm{H}), 7.20-7.13(\mathrm{~m}, 2 \mathrm{H}), 2.43(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 1.62-1.52(\mathrm{~m}$, $2 \mathrm{H}), 1.50-1.38(\mathrm{~m}, 2 \mathrm{H}), 0.91(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.9,138.9,138.5,134.3,132.3,132.0,131.8,129.2,127.8$, $123.3,120.4,97.2,95.6,87.9,81.0,29.9,22.2,21.7,19.2,13.6$.

Experimental part

MS $\left(E S I, N H_{3}\right): ~ m / z=301[M+H]^{+}$.

1-(2-((4-(tert-Butyl)phenyl)ethynyl)-phenyl)-hept-2-yn-1-one (23)

Chemical Formula: $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{O}$ Exact Mass: 342.1984

This compound was prepared using procedure C. Starting from 1-(2-((4-(tert-butyl)phenyl)-ethynyl)-phenyl)--hept-2-yn-1-ol ($0.36 \mathrm{~g}, 1.05 \mathrm{mmol}$) 14 and Dess-Martin periodinane (0.53 g , $1.25 \mathrm{mmol}, 1.2$ equiv). Purification on silica gel (Petroleum ether/ Ethyl acetate gradient from 99/1 to 98/2) afforded $23(0.32 \mathrm{~g}, 89 \%)$ as a pale yellow oil.
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 5 5}$ (Cyclohexane/Ethyl acetate; 90/10, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.16-8.06(\mathrm{~m}, 1 \mathrm{H}), 7.65-7.58(\mathrm{~m}, 1 \mathrm{H}), 7.59-7.52(\mathrm{~m}, 2 \mathrm{H})$, $7.47(\mathrm{td}, J=7.5,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.36(\mathrm{~m}, 3 \mathrm{H}), 2.41(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.61-1.50(\mathrm{~m}$, $2 \mathrm{H}), 1.46-1.38(\mathrm{~m}, 2 \mathrm{H}), 1.31(\mathrm{~s}, 9 \mathrm{H}), 0.88(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 177.5,151.9,138.3,134.1,132.2,131.6,131.6,127.6,125.3$, $123.1,120.3,96.9,95.5,87.8,80.8,34.8,31.1,29.8,22.0,19.0,13.5$.

MS (ESI, NH3): m/z = $343[\mathrm{M}+\mathrm{H}]^{+}$.

1-(6-(Phenylethynyl)benzo[d][1,3]dioxol-5-yl)hept-2-yn-1-one (24)

Chemical Formula: $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{O}_{3}$ Exact Mass: 330.1256

This compound was prepared using procedure C. Starting from 1-(6-(phenylethynyl)benzo[d][1,3]dioxol-5-yl)hept-2-yn-1-ol 15 ($1.25 \mathrm{~g}, 3.8 \mathrm{mmol}$) and Dess-

Martin periodinane ($2.07 \mathrm{~g}, 4.9 \mathrm{mmol}, 1.3$ equiv). Purification on silica gel (Petroleum ether/Ethyl acetate gradient from 95/5 to 90/10) afforded 24 ($0.9 \mathrm{~g}, 77 \%$) as a pale yellow oil.
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 3 1}$ (Cyclohexane/Ethyl acetate; 90/10, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.61-7.56(\mathrm{~m}, 3 \mathrm{H}), 7.36-7.31(\mathrm{~m}, 3 \mathrm{H}), 7.05(\mathrm{~s}, 1 \mathrm{H}), 6.09(\mathrm{~s}$, $2 \mathrm{H}), 2.43(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.63-1.53(\mathrm{~m}, 2 \mathrm{H}), 1.46-1.37(\mathrm{~m}, 2 \mathrm{H}), 0.92(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.0,151.1,147.8,133.9,132.0,128.6,128.4,123.6,119.0$, 113.6, 111.4, 102.5, 96.8, 94.3, 88.6, 80.8, 30.0, 22.2, 19.2, 13.6.

MS (ESI, NH_{3}): $\mathrm{m} / \mathrm{z}=331[\mathrm{M}+\mathrm{H}]^{+}$.

1-(5-Fluoro-2-(phenylethynyl)phenyl)hept-2-yn-1-one (25)

Exact Mass: 304.1263

This compound was prepared using procedure C. Starting from 1-(5-fluoro-2-(phenylethynyl)phenyl)hept-2-yn-1-ol $16(1.1 \mathrm{~g}, 3.6 \mathrm{mmol})$ and Dess-Martin periodinane (1.98 $\mathrm{g}, 4.7 \mathrm{mmol}, 1.3$ equiv). Purification on silica gel (Petroleum ether/Ethyl acetate gradient from $98 / 2$ to $95 / 5$) afforded $25(0.95 \mathrm{~g}, 87 \%)$ as an orange oil.
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 6 2}$ (Cyclohexane/Ethyl acetate; $\left.90 / 10, \mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.79(\mathrm{dd}, J=9.1,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.66-7.54(\mathrm{~m}, 3 \mathrm{H}), 7.39-7.32$ $(\mathrm{m}, 3 \mathrm{H}), 7.27-7.19(\mathrm{~m}, 1 \mathrm{H}), 2.44(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.66-1.51(\mathrm{~m}, 2 \mathrm{H}), 1.50-1.36(\mathrm{~m}$, $2 \mathrm{H}), 0.90(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.4,161.8(\mathrm{~d}, J=249.8 \mathrm{~Hz}), 140.4(\mathrm{~d}, J=6.8 \mathrm{~Hz}), 136.2(\mathrm{~d}$, $J=7.5 \mathrm{~Hz}), 132.0,128.8,128.5,123.3,119.8(\mathrm{~d}, J=21.8 \mathrm{~Hz}), 119.1,118.4(\mathrm{~d}, J=23.3 \mathrm{~Hz})$, 98.2, 95.0, 87.4, 80.6, 29.9, 22.2, 19.2, 13.6.
${ }^{19}$ F NMR $\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-111.4(\mathrm{dd}, J=14.1,8.5 \mathrm{~Hz})$.

Experimental part

MS (ESI, $\left.\mathrm{NH}_{3}\right): \mathrm{m} / \mathrm{z}=305[\mathrm{M}+\mathrm{H}]^{+}$.

1-(2-((4-(Trifluoromethyl)phenyl)ethynyl)phenyl)hept-2-yn-1-one (26)

Chemical Formula: $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{O}$ Exact Mass: 354.1231

This compound was prepared using procedure A. Starting from 1-(2-ethynylphenyl)hept-2-yn-1-one $29(0.5 \mathrm{~g}, 2.38 \mathrm{mmol})$ and 4-iodobenzotrifluoride ($0.71 \mathrm{~g}, 2.62 \mathrm{mmol}, 1.1$ equiv). Purification on silica gel (Petroleum ether/Ethyl acetate gradient from 99/1 to 98/2) afforded $26(0.55 \mathrm{~g}, 65 \%)$ as a brown solid. m.p. $35-37^{\circ} \mathrm{C}$.
$\mathbf{R f}_{\mathbf{f}} \mathbf{= 0 . 6}$ (Cyclohexane/Ethyl acetate; 90/10, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.21-8.11(\mathrm{~m}, 1 \mathrm{H}), 7.75-7.68(\mathrm{~m}, 2 \mathrm{H}), 7.68-7.58(\mathrm{~m}, 3 \mathrm{H})$, $7.58-7.52(\mathrm{~m}, 1 \mathrm{H}), 7.51-7.44(\mathrm{~m}, 1 \mathrm{H}), 2.46(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.67-1.55(\mathrm{~m}, 2 \mathrm{H}), 1.52-$ $1.38(\mathrm{~m}, 2 \mathrm{H}), 0.92(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 177.5,138.7,134.5,132.5,132.2,132.2,150.33\left(\mathrm{~d}, J_{C-F}=32.3\right.$ $\mathrm{Hz})$, 128.6, 127.3, 125.9, 125.4, 125.4, 122.3, 122.2, 97.3 , 93.3, 90.8, 80.7, 29.9, 22.2, 19.1, 13.6.
${ }^{19} \mathbf{F}$ NMR $\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-63.8(\mathrm{~s})$.

MS $\left(E S I, \mathrm{NH}_{3}\right): \mathrm{m} / \mathrm{z}=355[\mathrm{M}+\mathrm{H}]^{+}$.

1-(2-((4-Bromophenyl)-ethynyl)-phenyl)-hept-2-yn-1-one (27)

Chemical Formula: $\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{BrO}$ Exact Mass: 364.0463

This compound was prepared using procedure \mathbf{A}. Starting from 1-(2-ethynylphenyl)-hept-2-yn-1-one $29(0.3 \mathrm{~g}, 1.42 \mathrm{mmol})$ and 1-Bromo-4-iodobenzene ($0.48 \mathrm{~g}, 1.7 \mathrm{mmol}, 1.2$ equiv). Purification on silica gel (Petroleum ether/Ethyl acetate gradient from 98/2 to 95/5) afforded $27(0.25 \mathrm{~g}, 48 \%)$ as a brown oil.
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 4}$ (Cyclohexane/Ethyl acetate; 95/5, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.14(\mathrm{dd}, J=7.7,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.65-7.60(\mathrm{~m}, 1 \mathrm{H}), 7.56-7.41$ $(\mathrm{m}, 6 \mathrm{H}), 2.45(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.65-1.55(\mathrm{~m}, 2 \mathrm{H}), 1.52-1.38(\mathrm{~m}, 2 \mathrm{H}), 0.92(\mathrm{t}, J=7.3 \mathrm{~Hz}$, 3 H).
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 177.6,138.5,134.3,133.5,132.4,132.1,131.8,128.2,123.1$, $122.6,122.5,97.2,93.9,89.6,80.8,29.9,22.2,19.1,13.6$.

MS (CI, NH_{3}): m/z = $365[\mathrm{M}+\mathrm{H}]^{+}$.

1-(2-Ethynylphenyl)hept-2-yn-1-ol (28)

Chemical Formula: $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}$
Exact Mass: 212.1201

This compound was prepared using procedure D. Starting from 1-(2-((trimethylsilyl)ethynyl)phenyl)-hept-2-yn-1-ol $\mathbf{1 2}(1.7 \mathrm{~g}, 6 \mathrm{mmol})$ and TBAF ($6 \mathrm{~mL}, 1.0 \mathrm{M}$ in THF). Purification on silica gel (Cyclohexane/Ethyl acetate gradient from $95 / 5$ to $90 / 10$) afforded $28(1.13 \mathrm{~g}, 89 \%)$ as a pale yellow oil.
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 2}$ (Cyclohexane/Ethyl acetate; 90/10, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H} \mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.72(\mathrm{dd}, J=7.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{dd}, J=7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.40(\mathrm{td}, J=7.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{dt}, J=7.5,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.92-5.80(\mathrm{~m}, 1 \mathrm{H}), 3.37(\mathrm{~s}, 1 \mathrm{H})$, $2.50(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.27(\mathrm{td}, J=7.0,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.61-1.37(\mathrm{~m}, 4 \mathrm{H}), 0.91(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.7,133.3,129.5,128.2,126.9,120.5,88.0,82.6,81.3,79.3$, 63.3, 30.8, 22.1, 18.7, 13.7.

Experimental part
$\mathbf{M S}\left(\mathrm{CI}, \mathrm{NH}_{3}\right): \mathrm{m} / \mathrm{z}=212\left[\mathrm{M}+\mathrm{NH}_{4}-\mathrm{H}_{2} \mathrm{O}\right]^{+}$.

1-(2-ethynylphenyl)hept-2-yn-1-one (29)

Chemical Formula: $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}$
Exact Mass: 210.1045

This compound was prepared using procedure C. Starting from 1-(2-ethynylphenyl)hept-2-yn-1-ol 28 ($1.0 \mathrm{~g}, 4.7 \mathrm{mmol}$) and Dess-Martin periodinane ($2.59 \mathrm{~g}, 6.1 \mathrm{mmol}, 1.3$ equiv). Purification on silica gel (Petroleum ether/Ethyl acetate gradient from 95/5 to 90/10) afforded $29(0.82 \mathrm{~g}, 83 \%)$ as a colorless oil.
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 6 5}$ (Cyclohexane/Ethyl acetate; 90/10, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.15-8.06(\mathrm{~m}, 1 \mathrm{H}), 7.66-7.56(\mathrm{~m}, 1 \mathrm{H}), 7.54-7.41(\mathrm{~m}, 2 \mathrm{H})$, $3.39(\mathrm{~s}, 1 \mathrm{H}), 2.47(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.68-1.58(\mathrm{~m}, 2 \mathrm{H}), 1.48(\mathrm{~m}, 2 \mathrm{H}), 0.95(\mathrm{t}, J=7.3 \mathrm{~Hz}$, $3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.5,139.2,135.5,132.3,131.8,128.6,121.7,97.4,82.9,82.1$, 80.8, 29.9, 22.2, 19.1, 13.6.

MS $\left(\mathrm{CI}, \mathrm{NH}_{3}\right): \mathrm{m} / \mathrm{z}=211[\mathrm{M}+\mathrm{H}]^{+}$.

3-(Phenylethynyl)furan-2-carbaldehyde (30)

Chemical Formula: $\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{O}_{2}$
Exact Mass: 196.0524

This compound was prepared using procedure A. Starting from 3-bromofuran-2-carbaldehyde $(0.59 \mathrm{~g}, 3.4 \mathrm{mmol})$ and phenylacetylene ($0.41 \mathrm{~g}, 4 \mathrm{mmol}, 1.2$ equiv). Purification on silica gel
(Cyclohexane/Ethyl acetate gradient from $98 / 2$ to $95 / 5$) afforded $30(0.4 \mathrm{~g}, 50 \%)$ as an orange oil. The analytical data were identical to the literature. ${ }^{192}$
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 6}$ (Cyclohexane/Ethyl acetate; 95/5, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.87(\mathrm{~s}, 1 \mathrm{H}), 7.65(\mathrm{dd}, J=1.7,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.60-7.47(\mathrm{~m}, 2 \mathrm{H})$, $7.45-7.33(\mathrm{~m}, 3 \mathrm{H}), 6.68(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.3,152.9,147.7,131.9,129.6,128.7,122.0,119.8,115.3$, 97.6, 78.4 .

MS $\left(E S I, N H_{3}\right): m / z=197[M+H]^{+}$.

3-(Phenylethynyl)thiophene-2-carbaldehyde (31)

Chemical Formula: $\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{OS}$
Exact Mass: 212.0296

This compound was prepared using procedure A. Starting from 3-bromothiophene-2carbaldehyde ($1.0 \mathrm{~g}, 5.23 \mathrm{mmol}$) and phenylacetylene ($0.64 \mathrm{~g}, 6.28 \mathrm{mmol}, 1.2$ equiv). Purification on silica gel (Cyclohexane/Ethyl acetate gradient from 98/2 to 95/5) afforded 31 $(0.92 \mathrm{~g}, 83 \%)$ as a brown oil. The analytical data were identical to the literature. ${ }^{193}$
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 4}$ (Cyclohexane/Ethyl acetate; 95/5, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H} \mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.24(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{dd}, J=5.0,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.58$ $7.53(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.30(\mathrm{~m}, 3 \mathrm{H}), 7.27-7.23(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 183.1,143.7,134.0,131.9,131.7,131.1,129.4,128.7$, 122.2, 96.2, 81.7.

MS (CI, NH_{3}): $\mathrm{m} / \mathrm{z}=213[\mathrm{M}+\mathrm{H}]^{+}$.

[^105]
3-(Phenylethynyl)benzo[b]-thiophene-2-carbaldehyde (32)

Chemical Formula: $\mathrm{C}_{17} \mathrm{H}_{10} \mathrm{OS}$
Exact Mass: 262.0452

This compound was prepared using procedure A. Starting from 3-bromobenzo[b]thiophene-2carbaldehyde ($0.72 \mathrm{~g}, 3.0 \mathrm{mmol}$) and phenylacetylene ($0.37 \mathrm{~g}, 3.6 \mathrm{mmol}, 1.2$ equiv). Purification on silica gel (Cyclohexane/Ethyl acetate gradient from 99/1 to 98/2) afforded 32 $(0.4 \mathrm{~g}, 50 \%)$ as a yellow solid. m.p. $114-116{ }^{\circ} \mathrm{C}$. The analytical data were identical to the literature. ${ }^{194}$
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 4}$ (Cyclohexane/Ethyl acetate; 90/10, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.48(\mathrm{~s}, 1 \mathrm{H}), 8.16(\mathrm{dd}, J=7.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.93-7.82(\mathrm{~m}$, $1 \mathrm{H}), 7.70-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.60-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.47-7.38(\mathrm{~m}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 184.6,143.6,141.3,139.6,132.1,129.7,129.0,128.8,127.9$, $125.8,125.2,123.5,122.1,99.2,80.7$.

MS $\left(E S I, N H_{3}\right): m / z=263[M+H]^{+}$.

2-(Phenylethynyl)benzofuran-3-carbaldehyde (33)

This compound was prepared using procedure A. Starting from 2-chlorobenzofuran-3carbaldehyde ($0.9 \mathrm{~g}, 5 \mathrm{mmol}$), phenylacetylene ($0.61 \mathrm{~g}, 6 \mathrm{mmol}, 1.2$ equiv), $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{3}(140$ $\mathrm{mg}, 0.2 \mathrm{mmol}, 4 \mathrm{~mol} \%)$ and $\mathrm{CuI}(19 \mathrm{mg}, 0.1 \mathrm{mmol}, 2 \mathrm{~mol} \%)$. Purification on silica gel

[^106](Cyclohexane/Ethyl acetate gradient from 98/2 to $95 / 5$) afforded $33(1.3 \mathrm{~g}, 82 \%$) as a yellow solid. The analytical data were identical to the literature. ${ }^{195}$
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 4}$ (Cyclohexane/Ethyl acetate; 90/10, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.37(\mathrm{~s}, 1 \mathrm{H}), 8.24-8.16(\mathrm{~m}, 1 \mathrm{H}), 7.70-7.61(\mathrm{~m}, 2 \mathrm{H}), 7.55-$ 7.38 (m, 6H).
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 185.7,154.8,148.2,132.3,130.5,128.9,127.3,125.4,124.0$, 123.5, 122.6, 120.6, 111.4, 101.1.

MS (ESI, $\left.\mathrm{NH}_{3}\right): \mathrm{m} / \mathrm{z}=247[\mathrm{M}+\mathrm{H}]^{+}$.

2-(Phenylethynyl)nicotinaldehyde (34)

Chemical Formula: $\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{NO}$
Exact Mass: 207.0684

This compound was prepared using procedure A. Starting from 2-bromonicotinaldehyde (2 g , $10.8 \mathrm{mmol})$ and phenylacetylene ($1.15 \mathrm{~g}, 11.2 \mathrm{mmol}, 1.05$ equiv). Purification on silica gel (Cyclohexane/Ethyl acetate gradient from 90/10 to 80/20) afforded $\mathbf{3 4}(1.8 \mathrm{~g}, 80 \%$) as a yellow solid. The analytical data were identical to the literature. ${ }^{196}$
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 2 6}$ (Cyclohexane/Ethyl acetate; 80/20, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.66(\mathrm{~d}, J=0.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.81(\mathrm{dd}, J=1.8,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.20$ (dd, $J=1.8,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.66-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.37(\mathrm{~m}, 4 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 190.9,154.6,146.1,134.9,132.3,131.9,130.0,128.7,123.3$, 121.3, 96.2, 84.7.

MS (CI, NH_{3}): $\mathrm{m} / \mathrm{z}=208[\mathrm{M}+\mathrm{H}]^{+}$.

[^107]
2-((4-(tert-Butyl)phenyl)ethynyl)nicotinaldehyde (35)

Chemical Formula: $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{NO}$
Exact Mass: 263.1310

This compound was prepared using procedure A. Starting from 2-bromonicotinaldehyde (2 g , 10.8 mmol) and 4-tert-Butylphenylacetylene ($1.8 \mathrm{~g}, 11.2 \mathrm{mmol}, 1.05$ equiv). Purification on silica gel (Cyclohexane/Ethyl acetate gradient from 90/10 to 80/20) afforded 35 ($2.5 \mathrm{~g}, 88 \%$) as a white solid.
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 3 2}$ (Cyclohexane/Ethyl acetate; 80/20, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.66(\mathrm{~d}, J=0.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.80(\mathrm{dd}, J=1.8,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.19$ (dd, $J=1.8,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.58-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.35(\mathrm{~m}, 3 \mathrm{H}), 1.32(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 191.0,154.6,153.5,146.4,134.9,132.1,131.8,125.7,123.1$, 118.3, 96.7, 84.3, 35.1, 31.2.

2-Chloro-5-(phenylethynyl)isonicotinaldehyde (36)

Chemical Formula: $\mathrm{C}_{14} \mathrm{H}_{8} \mathrm{CINO}$ Exact Mass: 241.0294

This compound was prepared using procedure A. Starting from 5-bromo-2chloroisonicotinaldehyde ($0.44 \mathrm{~g}, 2.0 \mathrm{mmol}$) and phenylacetylene ($0.21 \mathrm{~g}, 2.1 \mathrm{mmol}, 1.05$ equiv). Purification on silica gel (Cyclohexane/Ethyl acetate gradient from 98/2 to 95/5) afforded $36(0.26 \mathrm{~g}, 54 \%)$ as a yellow solid. m.p. $69-71^{\circ} \mathrm{C}$.
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 4}$ (Cyclohexane/Ethyl acetate; 90/10, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.55(\mathrm{~s}, 1 \mathrm{H}), 8.74(\mathrm{~s}, 1 \mathrm{H}), 7.75(\mathrm{~s}, 1 \mathrm{H}), 7.63-7.52(\mathrm{~m}, 2 \mathrm{H})$, 7.47 - 7.36 (m, 3H).
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 189.4,154.6,151.6,142.8,132.0,130.0,128.8,121.5,120.8$, 120.4, 100.1, 81.1.

MS (CI, NH_{3}): $\mathrm{m} / \mathrm{z}=242[\mathrm{M}+\mathrm{H}]^{+}$.

1-(3-(Phenylethynyl)furan-2-yl)hept-2-yn-1-ol (37)

This compound was prepared using procedure B. Starting from 3-(phenylethynyl)furan-2carbaldehyde $\mathbf{3 0}(0.43 \mathrm{~g}, 2.2 \mathrm{mmol})$ and 1-hexyne ($0.37 \mathrm{~mL}, 3.3 \mathrm{mmol}, 1.5$ equiv). Purification on silica gel (Cyclohexane/Ethyl acetate gradient from $95 / 5$ to $90 / 10$) afforded 37 ($0.45 \mathrm{~g}, 74 \%$) as a yellow oil.
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 2 8}$ (Cyclohexane/Ethyl acetate; 90/10, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.50(\mathrm{dd}, J=6.6,3.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-$ $7.29(\mathrm{~m}, 3 \mathrm{H}), 6.48(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.72-5.65(\mathrm{~m}, 1 \mathrm{H}), 2.38(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.25(\mathrm{td}$, $J=7.0,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.56-1.44(\mathrm{~m}, 2 \mathrm{H}), 1.44-1.32(\mathrm{~m}, 2 \mathrm{H}), 0.88(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.3,142.3,131.6,128.5,123.2,113.4,105.0,93.6,87.9,79.9$, 57.2, 30.6, 22.1, 18.7, 13.7.

MS (ESI, NH_{3}): $\mathrm{m} / \mathrm{z}=261\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right]^{+}$.

1-(3-(Phenylethynyl)thiophen-2-yl)hept-2-yn-1-ol (38)

This compound was prepared using procedure B. Starting from 3-(phenylethynyl)thiophene-2carbaldehyde 31 ($0.92 \mathrm{~g}, 4.33 \mathrm{mmol}$) and 1-Hexyne ($0.65 \mathrm{~mL}, 5.6 \mathrm{mmol}, 1.3$ equiv). Purification on silica gel (Cyclohexane/Ethyl acetate gradient from 95/5 to 90/10) afforded 38 $(1.13 \mathrm{~g}, 89 \%)$ as a yellow oil.
$\mathbf{R f}_{\mathbf{f}} \mathbf{0 . 2 8}$ (Cyclohexane/Ethyl acetate; 90/10, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.59-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.35(\mathrm{dd}, J=6.5,2.7 \mathrm{~Hz}, 3 \mathrm{H}), 7.23(\mathrm{~d}, J=$ $5.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.05-5.88(\mathrm{~m}, 1 \mathrm{H}), 2.48(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.28(\mathrm{td}, J$ $=6.9,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.47(\mathrm{~m}, 4 \mathrm{H}), 0.90(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 148.4,131.7,130.1,128.6,128.5,124.7,123.1,120.2,93.5$, 87.6, 82.8, 79.2, 59.4, 30.6, 22.1, 18.6, 13.7.

MS (CI, $\left.\mathrm{NH}_{3}\right): \mathrm{m} / \mathrm{z}=277\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right]^{+}$.

1-(3-(Phenylethynyl)benzo[b]thiophen-2-yl)hept-2-yn-1-ol (39)

Chemical Formula: $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{OS}$ Exact Mass: 344.1235

This compound was prepared using procedure B. Starting from 3-(phenylethynyl)benzo[b]thiophene-2-carbaldehyde $32(0.4 \mathrm{~g}, 1.5 \mathrm{mmol})$ and 1-hexyne (0.26 $\mathrm{mL}, 2.25 \mathrm{mmol}, 1.5$ equiv). Purification on silica gel (Cyclohexane/Ethyl acetate gradient from $95 / 5$ to $90 / 10$) afforded $39(0.46 \mathrm{~g}, 89 \%)$ as a yellow oil.
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 3}$ (Cyclohexane/Ethyl acetate; 90/10, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.02-7.91(\mathrm{~m}, 1 \mathrm{H}), 7.87-7.79(\mathrm{~m}, 1 \mathrm{H}), 7.65-7.55(\mathrm{~m}, 2 \mathrm{H})$, $7.49-7.33(\mathrm{~m}, 5 \mathrm{H}), 6.25-6.14(\mathrm{~m}, 1 \mathrm{H}), 2.54(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{td}, J=7.0,2.0 \mathrm{~Hz}$, $2 \mathrm{H}), 1.52-1.36(\mathrm{~m}, 4 \mathrm{H}), 0.90(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.3,139.6,138.1,131.8,128.8,128.6,125.6,125.0,123.4$, $123.0,122.8,115.9,96.4,88.3,81.4,78.8,60.1,30.6,22.1,18.7,13.7$.

MS (ESI, NH_{3}): $\mathrm{m} / \mathrm{z}=327\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right]^{+}$.

1-(2-(Phenylethynyl)benzofuran-3-yl)hept-2-yn-1-ol (40)

Chemical Formula: $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{O}_{2}$ Exact Mass: 328.1463

This compound was prepared using procedure B. Starting from 2-(phenylethynyl)benzofuran-3-carbaldehyde 33 ($0.52 \mathrm{~g}, 2.1 \mathrm{mmol}$) and 1-hexyne ($0.37 \mathrm{~mL}, 3.2 \mathrm{mmol}, 1.5$ equiv). Purification on silica gel (Cyclohexane/Ethyl acetate gradient from 95/5 to 90/10) afforded 40 $(0.62 \mathrm{~g}, 90 \%)$ as a yellow solid.
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 3 5}$ (Cyclohexane/Ethyl acetate; 90/10, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.98-7.88(\mathrm{~m}, 1 \mathrm{H}), 7.64-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.50-7.43(\mathrm{~m}, 1 \mathrm{H})$, $7.43-7.34(\mathrm{~m}, 4 \mathrm{H}), 7.34-7.25(\mathrm{~m}, 1 \mathrm{H}), 5.92-5.80(\mathrm{~m}, 1 \mathrm{H}), 2.31-2.20(\mathrm{~m}, 3 \mathrm{H}), 1.59-1.31$ (m, 4H), 0.88 (t, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.0,136.2,131.9,129.5,128.7,126.2,125.7,124.8,123.4$, $121.7,121.3,111.5,98.7,87.6,78.6,78.1,57.5,30.6,22.1,18.7,13.7$.

MS (ESI, NH_{3}): $\mathrm{m} / \mathrm{z}=311\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right]^{+}$.

3-Cyclopropyl-1-(2-(phenylethynyl)pyridin-3-yl)prop-2-yn-1-ol (41)

Chemical Formula: $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{NO}$
Exact Mass: 273.1154

This compound was prepared using procedure B. Starting from 2(phenylethynyl)nicotinaldehyde $34(1.8 \mathrm{~g}, 8.7 \mathrm{mmol})$ and cyclopropylacetylene ($0.95 \mathrm{~mL}, 11.3$
mmol, 1.3 equiv). Purification on silica gel (Cyclohexane/Ethyl acetate gradient from 80/20 to $60 / 40)$ afforded $41(1.9 \mathrm{~g}, 80 \%)$ as a gray oil.
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 1 2}$ (Cyclohexane/Ethyl acetate; 80/20, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.49(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.03(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.59-7.55(\mathrm{~m}$, 2 H), 7.38-7.29 (m, 3H), 7.25-7.20 (m, 1H), 5.92 (d, $J=0.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.61 (br, 1H), 1.28-1.20 $(\mathrm{m}, 1 \mathrm{H}), 0.74-0.71(\mathrm{~m}, 2 \mathrm{H}), 0.66-0.63(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 149.2,141.2,139.6,134.5,132.1,129.3,128.5,123.3,122.1$, 94.7, 90.8, 86.2, 74.3, 62.0, 8.6, 8.4, -0.4.

1-(2-((4-(tert-Butyl)phenyl)ethynyl)pyridin-3-yl)hept-2-yn-1-ol (42)

Chemical Formula: $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{NO}$ Exact Mass: 345.2093

This compound was prepared using procedure B. Starting from 2-((4-(tertbutyl)phenyl)ethynyl)nicotinaldehyde $35(2.13 \mathrm{~g}, 8.09 \mathrm{mmol})$ and 1-hexyne ($1.21 \mathrm{~mL}, 10.5$ mmol, 1.3 equiv). Purification on silica gel (Cyclohexane/Ethyl acetate gradient from 90/10 to $70 / 30$) afforded $42(2.23 \mathrm{~g}, 80 \%)$ as a pale yellow oil.
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 2 3}$ (Cyclohexane/Ethyl acetate; 90/10, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.55(\mathrm{dd}, J=1.7,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.07(\mathrm{dd}, J=1.6,7.9 \mathrm{~Hz}, 1 \mathrm{H})$, 7.58-7.54 (m, 2H), 7.41-7.38 (m, 2H), 7.30-7.26 (m, 1H), 5.98 (t, $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.20$ (br, $1 \mathrm{H}), 2.26(\mathrm{td}, J=2.0,7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.49-1.37(\mathrm{~m}, 4 \mathrm{H}), 1.34(\mathrm{~s}, 9 \mathrm{H}), 0.86(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.8,149.3,141.5,139.4,134.5,131.9,125.5,123.1,119.0$, $95.0,88.1,85.7,78.9,62.2,35.0,31.2,30.6,22.1,18.6,13.7$.

1-(2-Chloro-5-(phenylethynyl)pyridin-4-yl)hept-2-yn-1-ol (43)

emical Formula: $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{ClNO}$ Exact Mass: 323.1077

This compound was prepared using procedure B. Starting from 2-chloro-5(phenylethynyl)isonicotinaldehyde $36(0.25 \mathrm{~g}, 1.04 \mathrm{mmol})$ and 1-hexyne ($0.15 \mathrm{~mL}, 1.3 \mathrm{mmol}$, 1.3 equiv). Purification on silica gel (Cyclohexane/Ethyl acetate gradient from 95/5 to 90/10) afforded $43(0.24 \mathrm{~g}, 71 \%)$ as a yellow oil.
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 2}\left(\right.$ Cyclohexane/Ethyl acetate; 90/10, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.51(\mathrm{~s}, 1 \mathrm{H}), 7.67(\mathrm{~s}, 1 \mathrm{H}), 7.59-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.44-7.33(\mathrm{~m}$, 3H), $5.82-5.75(\mathrm{~m}, 1 \mathrm{H}), 2.66(\mathrm{~d}, ~ J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.36-2.18(\mathrm{~m}, 2 \mathrm{H}), 1.53-1.32(\mathrm{~m}, 4 \mathrm{H})$, $0.85(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.8,152.5,151.3,131.8,129.4,128.7,122.3,121.3,117.4$, 98.9, 89.0, 82.7, 62.2, 30.5, 22.1, 18.6, 13.6.

MS (CI, NH_{3}): m/z = $324[\mathrm{M}+\mathrm{H}]^{+}$.

1-(3-(Phenylethynyl)furan-2-yl)hept-2-yn-1-one (44)

Chemical Formula: $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{O}_{2}$
Exact Mass: 276.1150

This compound was prepared using procedure \mathbf{C}. Starting from 1-(3-(phenylethynyl)furan-2-yl)hept-2-yn-1-ol $37(0.45 \mathrm{~g}, 1.6 \mathrm{mmol})$ and Dess-Martin periodinane $(0.89 \mathrm{~g}, 2.1 \mathrm{mmol}, 1.3$ equiv). Purification on silica gel (Petroleum ether/Ethyl acetate gradient 98/2 to 95/5) afforded $44(0.18 \mathrm{~g}, 40 \%)$ as an orange oil.
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 4}$ (Cyclohexane/Ethyl acetate; 90/10, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.

Experimental part
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.62-7.50(\mathrm{~m}, 3 \mathrm{H}), 7.41-7.31(\mathrm{~m}, 3 \mathrm{H}), 6.67(\mathrm{~d}, J=1.6 \mathrm{~Hz}$, $1 \mathrm{H}), 2.37(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.59-1.42(\mathrm{~m}, 2 \mathrm{H}), 1.40-1.26(\mathrm{~m}, 2 \mathrm{H}), 0.83(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.1,152.7,146.4,131.9,129.2,128.6,122.7,116.4,116.3$, 98.0, $97.8,80.8,79.7,29.8,22.2,19.2,13.6$.

MS $\left(E S I, \mathrm{NH}_{3}\right): \mathrm{m} / \mathrm{z}=277[\mathrm{M}+\mathrm{H}]^{+}$.

1-(3-(Phenylethynyl)thiophen-2-yl)hept-2-yn-1-one (45)

Chemical Formula: $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{OS}$ Exact Mass: 292.0922

This compound was prepared using procedure C. Starting from 1-(3-(phenylethynyl)thiophen-2-yl)hept-2-yn-1-ol 38 ($1.12 \mathrm{~g}, 3.8 \mathrm{mmol}$) and Dess-Martin periodinane ($2.1 \mathrm{~g}, 4.9 \mathrm{mmol}, 1.3$ equiv). Purification on silica gel (Petroleum ether/Ethyl acetate gradient 99/1 to 98/2) afforded $45(0.6 \mathrm{~g}, 55 \%)$ as a yellow solid. m.p. $33-35^{\circ} \mathrm{C}$.
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 3 3}$ (Cyclohexane/Ethyl acetate; 95/5, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.63-7.52(\mathrm{~m}, 3 \mathrm{H}), 7.42-7.31(\mathrm{~m}, 3 \mathrm{H}), 7.28-7.19(\mathrm{~m}, 1 \mathrm{H})$, $2.36(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.52-1.45(\mathrm{~m}, 2 \mathrm{H}), 1.41-1.28(\mathrm{~m}, 2 \mathrm{H}), 0.85(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.0,144.3,133.3,132.5,131.9,129.1,128.6,126.9,123.0$, 97.5, 96.3, 84.4, 80.3, 29.9, 22.2, 19.2, 13.6.

MS (CI, NH_{3}): $\mathrm{m} / \mathrm{z}=293[\mathrm{M}+\mathrm{H}]^{+}$.

1-(3-(Phenylethynyl)benzo[b]thiophen-2-yl)hept-2-yn-1-one (46)

This compound was prepared using procedure C. Starting from 1-(3-(phenylethynyl)benzo[b]thiophen-2-yl)hept-2-yn-1-ol 39 ($0.46 \mathrm{~g}, 1.34 \mathrm{mmol}$) and Dess-Martin periodinane ($0.74 \mathrm{~g}, 1.7 \mathrm{mmol}, 1.3$ equiv). Purification on silica gel (Petroleum ether/Ethyl acetate gradient $98 / 2$ to $95 / 5)$ afforded $46(0.34 \mathrm{~g}, 74 \%)$ as a yellow solid. m.p. $90-92^{\circ} \mathrm{C}$.
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 6 2}$ (Cyclohexane/Ethyl acetate; 90/10, KMnO4, UV).
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.19-8.09(\mathrm{~m}, 1 \mathrm{H}), 7.88-7.62(\mathrm{~m}, 1 \mathrm{H}), 7.72-7.62(\mathrm{~m}, 2 \mathrm{H})$, $7.58-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.34(\mathrm{~m}, 3 \mathrm{H}), 2.41(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.62-1.48(\mathrm{~m}, 2 \mathrm{H}), 1.45-$ $1.29(\mathrm{~m}, 2 \mathrm{H}), 0.85(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.5,144.3,140.7,140.5,132.0,129.3,128.7,128.6,125.6$, 123.3, 122.9, 99.7, 98.8, 83.1, 80.6, 77.5, 77.2, 76.8, 29.9, 22.2, 19.4, 13.6.

MS (ESI, NH_{3}): m/z = $343[\mathrm{M}+\mathrm{H}]^{+}$.

1-(2-(Phenylethynyl)benzofuran-3-yl)hept-2-yn-1-one (47)

Chemical Formula: $\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{O}_{2}$ Exact Mass: 326.1307

This compound was prepared using procedure C. Starting from 1-(2-(phenylethynyl)benzofuran-3-yl)hept-2-yn-1-ol $40(0.62 \mathrm{~g}, 1.9 \mathrm{mmol})$ and Dess-Martin periodinane ($1.04 \mathrm{~g}, 2.4 \mathrm{mmol}, 1.3$ equiv). Purification on silica gel (Petroleum ether/Ethyl acetate gradient $98 / 2$ to $95 / 5$) afforded $47(0.45 \mathrm{~g}, 72 \%)$ as a yellow solid.
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 5}\left(\right.$ Cyclohexane/Ethyl acetate; $\left.90 / 10, \mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.35-8.22(\mathrm{~m}, 1 \mathrm{H}), 7.71-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.55-7.32(\mathrm{~m}, 6 \mathrm{H})$, $2.39(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.61-1.46(\mathrm{~m}, 2 \mathrm{H}), 1.44-1.28(\mathrm{~m}, 2 \mathrm{H}), 0.83(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.7,154.3,144.3,132.2,130.2,128.8,127.0,125.0,124.9$, 124.0, 123.1, 121.4, 111.2, 101.2, 96.4, 81.1, 79.6, 30.0, 22.2, 19.2, 13.6.

Experimental part

MS (ESI, $\left.\mathrm{NH}_{3}\right): \mathrm{m} / \mathrm{z}=327[\mathrm{M}+\mathrm{H}]^{+}$.

3-Cyclopropyl-1-(2-(phenylethynyl)pyridin-3-yl)prop-2-yn-1-one (48)

Chemical Formula: $\mathrm{C}_{19} \mathrm{H}_{13} \mathrm{NO}$ Exact Mass: 271.0997

This compound was prepared using procedure C. Starting from 3-cyclopropyl-1-(2-(phenylethynyl)pyridin-3-yl)prop-2-yn-1-ol 41 ($1.9 \mathrm{~g}, 7 \mathrm{mmol}$) and Dess-Martin periodinane ($3.83 \mathrm{~g}, 9 \mathrm{mmol}, 1.3$ equiv). Purification on silica gel (Petroleum ether/Ethyl acetate gradient $80 / 20$ to $70 / 30$) afforded $48(1.6 \mathrm{~g}, 84 \%)$ as a brown oil.
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 5 7}$ (Cyclohexane/Ethyl acetate; 70/30, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}^{\text {NMR }}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.72(\mathrm{dd}, J=1.7,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.26(\mathrm{dd}, J=1.8,8.0 \mathrm{~Hz}, 1 \mathrm{H})$, 7.70-7.64 (m, 2H), 7.38-7.32 (m, 4H), 1.48-1.29 (m, 1H), 0.97-0.92 (m, 4H).
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 175.4,151.7,140.8,137.5,134.0,131.5,128.5,127.4,121.3$, 102.4, 94.2, 87.0, 9.2, -0.73.

1-(2-((4-(tert-Butyl)phenyl)ethynyl)pyridin-3-yl)hept-2-yn-1-one (49)

Chemical Formula: $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{NO}$ Exact Mass: 343.1936

This compound was prepared using procedure C. Starting from 1-(2-((4-(tert-butyl)phenyl)ethynyl)pyridin-3-yl)hept-2-yn-1-ol 42 ($2.3 \mathrm{~g}, 6.7 \mathrm{mmol}$) and Dess-Martin periodinane ($3.67 \mathrm{~g}, 8.7 \mathrm{mmol}, 1.3$ equiv). Purification on silica gel (Petroleum ether/Ethyl acetate gradient $95 / 5$ to $80 / 20$) afforded $49(2.14 \mathrm{~g}, 94 \%)$ as a brown oil.
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 3 5}$ (Cyclohexane/Ethyl acetate; 85/15, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.73(\mathrm{dd}, J=1.7,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.31(\mathrm{dd}, J=1.8,8.0 \mathrm{~Hz}, 1 \mathrm{H})$, 7.63-7.59 (m, 2H), 7.40-7.32 (m, 3H), $2.42(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.58-1.53(\mathrm{~m}, 2 \mathrm{H}), 1.40-1.38$ $(\mathrm{m}, 2 \mathrm{H}), 1.31(\mathrm{~s}, 9 \mathrm{H}), 0.87(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.8,138.4,134.3,132.4,132.0,131.8,128.7,128.4,127.9$, $123.4,122.9,97.2,95.2,88.4,80.8,29.8,22.2,19.1,13.6$.

1-(2-chloro-5-(phenylethynyl)pyridin-4-yl)hept-2-yn-1-one (50)

Chemical Formula: $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{CINO}$ Exact Mass: 321.0920

This compound was prepared using procedure C. Starting from 1-(2-chloro-5-(phenylethynyl)pyridin-4-yl)hept-2-yn-1-ol 43 ($0.23 \mathrm{~g}, 0.71 \mathrm{mmol}$) and Dess-Martin periodinane ($0.39 \mathrm{~g}, 0.92 \mathrm{mmol}, 1.3$ equiv). Purification on silica gel (Petroleum ether/Ethyl acetate gradient $98 / 2$) afforded $\mathbf{5 0}(0.16 \mathrm{~g}, 70 \%)$ as a yellow solid. m.p. $34-36^{\circ} \mathrm{C}$.
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 5}\left(\right.$ Cyclohexane/Ethyl acetate; 90/10, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1}$ H NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.66(\mathrm{~d}, J=0.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{~d}, J=0.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.63-7.55$ (m, 2H), $7.42-7.33(\mathrm{~m}, 3 \mathrm{H}), 2.46(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.63-1.54(\mathrm{~m}, 2 \mathrm{H}), 1.50-1.35(\mathrm{~m}, 2 \mathrm{H})$, $0.91(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 175.2,154.7,150.8,146.4,132.1,129.5,128.6,124.3,122.5$, $117.2,100.5,98.9,84.1,80.2,29.7,22.2,19.3,13.6$.

MS (CI, NH_{3}): $\mathrm{m} / \mathrm{z}=322[\mathrm{M}+\mathrm{H}]^{+}$.

2.2. Preparation of internal alkynes

1,4-Di-tert-butoxybut-2-yne (55)

Experimental part

1,4-Diol-2-butyne $52(1.72 \mathrm{~g}, 20 \mathrm{mmol}), 4 \AA ̊$ molecular sieves (4 g) and MTBE (20 mL) were introduced in a 50 mL round bottom flask fitted with septum and cooled to $25^{\circ} \mathrm{C}$. To this solution sulfuric acid ($3.7 \mathrm{~mL}, 40 \mathrm{mmo}$, 2 equiv) was added dropwise using a syringe. The reaction was carried out at $25^{\circ} \mathrm{C}$ for 10 h . The resulting mixture was slowly quenched into a saturated aqueous sodium bicarbonate solution (20 mL). The organic layer was separated and washed with water and brine, dried over anhydrous MgSO_{4}, filtered and concentrated under reduced pressure. The residue was purified by flash chromatography (Cyclohexane/Ethyl acetate gradient from 95/5 to 90/10) to afford compound $\mathbf{5 5}$ ($1.7 \mathrm{~g}, 43 \%$) as a colorless oil. The analytical data were identical to the literature. ${ }^{97}$
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 4 5}$ (Cyclohexane/Ethyl acetate; 90/10, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.06(\mathrm{~s}, 4 \mathrm{H}), 1.18(\mathrm{~s}, 18 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 82.5,74.2,50.8,27.5$.

MS (CI, $\left.\mathrm{NH}_{3}\right): \mathrm{m} / \mathrm{z}=216\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$.

1,4-Bis(benzyloxy)but-2-yne (56)

In an oven-dried argon-filled round bottom flask, sodium hydride ($0.88 \mathrm{~g}, 22 \mathrm{mmol}, 2.2$ equiv) was dissolved in dry THF (20 mL). A THF solution (10 mL) of 2-butyne-1,4-diol 52 ($0.86 \mathrm{~g}, 1.0$ equiv) was added dropwise at $0^{\circ} \mathrm{C}$. The mixture was stirred at room temperature for 1 h . The solution was cooled to $0{ }^{\circ} \mathrm{C}$ and benzyl bromide ($2.6 \mathrm{~mL}, 2.2$ equiv) was added. The resulting mixture was allowed to warm to room temperature for 48 h . When the reaction was complete (TLC monitoring), water (20 mL) was added and the residue was extracted with diethyl ether $(2 \times 40 \mathrm{~mL})$. The organic layer was separated and washed with water and brine, dried over anhydrous MgSO_{4}, filtered and concentrated under reduced pressure. The residue
was purified by flash chromatography (Cyclohexane/Ethyl acetate gradient from 98/2 to 95/5) to afford compound $56(2.0 \mathrm{~g}, 75 \%)$ as a colorless oil. The analytical data were identical to the literature. ${ }^{98}$
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 5 2}$ (Cyclohexane/Ethyl acetate; 90/10, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.49-7.24(\mathrm{~m}, 10 \mathrm{H}), 4.62(\mathrm{~s}, 4 \mathrm{H}), 4.26(\mathrm{~s}, 4 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 137.6,128.6,128.2,128.0,82.7,71.8,57.6$.

2,2,3,3,10,10,11,11-Octamethyl-4,9-dioxa-3,10-disiladodec-6-yne (57)

2-Butyn-1,4-diol 52 ($2.0 \mathrm{~g}, 23.2 \mathrm{mmol}$), imidazole ($3.8 \mathrm{~g}, 55.8 \mathrm{mmol}$), and $\mathrm{N}, \mathrm{N}-4-$ dimethylaminopyridine $(0.28 \mathrm{~g}, 2.32 \mathrm{mmol})$ were introduced in an oven-dried 250 mL roundbottom flask with a stir bar containing dichloromethane (200 mL). Recrystallized chloro-tertbutyldimethylsilane ($8.4 \mathrm{~g}, 55.8 \mathrm{mmol}$) was added. The resulting solution was stirred at room temperature for 3 h . Then the reaction mixture was poured into $40 \mathrm{~mL} 10 \%$ aqueous potassium carbonate. The resulting aqueous fraction was extracted with diethyl ether ($2 \times 40 \mathrm{~mL}$). The combined organic fractions were washed with water and brine, dried over anhydrous MgSO_{4}, filtered and concentrated under reduced pressure. The residue was purified by flash chromatography (Cyclohexane/Ethyl acetate gradient from 98/2 to 95/5) to afford compound $57(5.85 \mathrm{~g}, 80 \%)$ as a colorless oil. The analytical data were identical to the literature. ${ }^{99}$
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 5}$ (Cyclohexane/Ethyl acetate; 95/5, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.34(\mathrm{~s}, 4 \mathrm{H}), 0.90(\mathrm{~s}, 18 \mathrm{H}), 0.11(\mathrm{~s}, 12 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 83.5,52.0,26.0,18.5,-5.0$.

2.3. $\mathrm{RuCl}_{3} \cdot \boldsymbol{n} \mathrm{H}_{2} \mathrm{O}$-catalyzed $[2+2+2]$ cycloadditions for the formation of fluoreone and related derivatives

General procedure \mathbf{E} :

Experimental part

A sealed tube was equipped with $\mathrm{RuCl}_{3} \cdot n \mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mol} \%)$ and diyne (1 equiv), followed by the addition of alkyne (2 equiv) under argon atmosphere. The tube was sealed and the reaction mixture was stirred for the required time at $50-80^{\circ} \mathrm{C}$. When the reaction was complete (TLC monitoring), the crude reaction mixture was directly purified by flash chromatography over silica gel to afforded cycloadducts.

1-Butyl-2,3-bis(methoxymethyl)-4-phenyl-9H-fluoren-9-one (65)

Chemical Formula: $\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{O}_{3}$ Exact Mass: 400.2038

This compound was obtained following the general procedure E. Starting from diyne $\mathbf{1 7}$ (100 $\mathrm{mg}, 0.35 \mathrm{mmol}$), 1,4-dimethoxy-2-butyne $\mathbf{5 1}\left(80 \mathrm{mg}, 0.7 \mathrm{mmol}, 2\right.$ equiv) and $\mathrm{RuCl}_{3} \cdot n \mathrm{H}_{2} \mathrm{O}(3.6$ $\mathrm{mg}, 0.0175 \mathrm{mmol})$. The reaction mixture was stirred at $50^{\circ} \mathrm{C}$ for 2 h . Purification on silica gel (Cyclohexane/Ethyl acetate gradient from 98/2 to 95/5) afforded $\mathbf{6 5}$ ($101 \mathrm{mg}, 72 \%$) as a yellow solid. m.p. $88-90^{\circ} \mathrm{C}$.
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 3 4}$ (Cyclohexane/Ethyl acetate; 95/5, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.60-7.57(\mathrm{~m}, 1 \mathrm{H}), 7.54-7.46(\mathrm{~m}, 3 \mathrm{H}), 7.36-7.28(\mathrm{~m}, 2 \mathrm{H})$, 7.13 (td, $J=7.5,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{td}, J=7.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.94(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{~s}$, $2 \mathrm{H}), 4.19$ ($\mathrm{s}, 2 \mathrm{H}$), $3.51(\mathrm{~s}, 3 \mathrm{H}), 3.29-3.20(\mathrm{~m}, 2 \mathrm{H}), 3.18(\mathrm{~s}, 3 \mathrm{H}), 1.67-1.49(\mathrm{~m}, 4 \mathrm{H}), 1.02(\mathrm{t}$, $J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 194.6,144.8,143.6,142.9,142.4,138.3,137.6,137.0,135.2$, $134.1,130.8,129.6,128.9,128.5,128.1,123.6,123.2,68.5,67.4,58.9,58.6,33.6,27.3,23.5$, 14.1.

HRMS (ESI ${ }^{+}$): calcd. for $\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 423.1931$, found 423.1928 .

1,4-Dibutyl-2,3-bis(methoxymethyl)-9H-fluoren-9-one (66)

Chemical Formula: $\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{O}_{3}$
Exact Mass: 380.2351

This compound was obtained following the general procedure E. Starting from diyne $\mathbf{1 8}$ (93 $\mathrm{mg}, 0.35 \mathrm{mmol}$), 1,4-dimethoxy-2-butyne $51\left(80 \mathrm{mg}, 0.7 \mathrm{mmol}, 2.0\right.$ equiv) and $\mathrm{RuCl}_{3} \cdot n \mathrm{H}_{2} \mathrm{O}$ $(3.6 \mathrm{mg}, 0.0175 \mathrm{mmol})$. The reaction mixture was stirred at $80^{\circ} \mathrm{C}$ for 14 h . Purification on silica gel (Petroleum ether/Ethyl acetate gradient from 98/2 to $95 / 5$) afforded $\mathbf{6 6}$ ($50 \mathrm{mg}, 38 \%$) as a yellow solid. m.p. $76-78{ }^{\circ} \mathrm{C}$.
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 3 3}$ (Cyclohexane/Ethyl acetate; 95/5, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.68-7.62(\mathrm{~m}, 1 \mathrm{H}), 7.62-7.56(\mathrm{~m}, 1 \mathrm{H}), 7.47(\mathrm{td}, J=7.5,1.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.27(\mathrm{td}, J=7.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{~s}, 2 \mathrm{H}), 4.48(\mathrm{~s}, 2 \mathrm{H}), 3.51(\mathrm{~s}, 3 \mathrm{H}), 3.49(\mathrm{~s}, 3 \mathrm{H})$, $3.22-3.12(\mathrm{~m}, 2 \mathrm{H}), 3.01-2.91(\mathrm{~m}, 2 \mathrm{H}), 1.68-1.56(\mathrm{~m}, 4 \mathrm{H}), 1.55-1.46(\mathrm{~m}, 4 \mathrm{H}), 1.03(\mathrm{t}, J=$ $6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.98(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 194.9,144.0,143.1,142.9,142.8,137.8,137.5,135.4,134.6$, $131.3,128.4,124.0,123.5,68.1,67.5,59.0,58.8,33.6,32.3,29.2,27.2,23.4,14.1$.

MS (CI, $\left.\mathrm{NH}_{3}\right): \mathrm{m} / \mathrm{z}=349[\mathrm{M}+\mathrm{H}-\mathrm{MeOH}]^{+}$.

4-Butyl-2,3-bis(methoxymethyl)-1-phenyl-9H-fluoren-9-one (67)

Chemical Formula: $\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{O}_{3}$
Exact Mass: 400.2038

This compound was obtained following the general procedure E. Starting from diyne $\mathbf{1 9}$ (100 $\mathrm{mg}, 0.35 \mathrm{mmol}$), 1,4-dimethoxy-2-butyne $51\left(80 \mathrm{mg}, 0.7 \mathrm{mmol}, 2.0\right.$ equiv) and $\mathrm{RuCl}_{3} \cdot n \mathrm{H}_{2} \mathrm{O}$
($3.6 \mathrm{mg}, 0.0175 \mathrm{mmol}$). The reaction mixture was stirred at $50^{\circ} \mathrm{C}$ for 14 h . Purification on silica gel (Petroleum ether/Ethyl acetate gradient from $99 / 1$ to $98 / 2$) afforded 67 ($60 \mathrm{mg}, 43 \%$) as a yellow oil.
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 3 8}$ (Cyclohexane/Ethyl acetate; 95/5, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.67(\mathrm{dt}, J=7.7,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.59-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.49-7.42$ $(\mathrm{m}, 3 \mathrm{H}), 7.32-7.24(\mathrm{~m}, 3 \mathrm{H}), 4.64(\mathrm{~s}, 2 \mathrm{H}), 4.18(\mathrm{~s}, 2 \mathrm{H}), 3.55(\mathrm{~s}, 3 \mathrm{H}), 3.22(\mathrm{~s}, 3 \mathrm{H}), 3.13-3.02$ $(\mathrm{m}, 2 \mathrm{H}), 1.80-1.57(\mathrm{~m}, 4 \mathrm{H}), 1.09(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 192.9, 143.9, 142.9, 142.8, 140.6, 139.4, 137.6, 136.9, 135.2, $134.6,131.3,129.2,128.6,127.8,127.6,124.1,123.6,68.2,68.1,59.1,58.4,32.2,29.3,23.5$, 14.1.

MS (CI, NH3): m/z=401[M+H].

1-Cyclopropyl-2,3-bis(methoxymethyl)-4-phenyl-9H-fluoren-9-one (68)

Chemical Formula: $\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{O}_{3}$
Exact Mass: 384.1725

This compound was obtained following the general procedure E. Starting from diyne 20 (100 $\mathrm{mg}, 0.37 \mathrm{mmol}$), 1,4-dimethoxy-2-butyne $51\left(85 \mathrm{mg}, 0.74 \mathrm{mmol}, 2.0\right.$ equiv) and $\mathrm{RuCl}_{3} \cdot n \mathrm{H}_{2} \mathrm{O}$ ($3.8 \mathrm{mg}, 0.0185 \mathrm{mmol}$). The reaction mixture was stirred at $80^{\circ} \mathrm{C}$ for 14 h . Purification on silica gel (Petroleum ether/Ethyl acetate gradient from $98 / 2$ to $95 / 5$) afforded $\mathbf{6 8}(90 \mathrm{mg}, 63 \%)$ as a yellow solid. m.p. $166-168{ }^{\circ} \mathrm{C}$.
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 3 1}\left(\right.$ Cyclohexane/Ethyl acetate; $\left.95 / 5, \mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.61-7.55(\mathrm{~m}, 1 \mathrm{H}), 7.53-7.46(\mathrm{~m}, 3 \mathrm{H}), 7.35-7.29(\mathrm{~m}, 2 \mathrm{H})$, $7.13(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{td}, J=7.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.92(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.81(\mathrm{~s}, 2 \mathrm{H})$, 4.20 (s, 2H, CH), 3.51 (s, 3H), 3.17 (s, 3H), 2.11-1.99 (m, 1H), $1.26-1.17$ (m, 2H), $0.71-$ 0.68 ($\mathrm{m}, 2 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 193.4,143.8,143.4,142.9,142.6,139.5,138.1,137.8,135.1$, 134.0, 133.2, 129.5, 128.8, 128.5, 128.1, 123.6, 123.1, 68.4, 68.2, 59.0, 58.7, 10.9, 8.4.

HRMS (ESI ${ }^{+}$): calcd. for $\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 407.1618$, found 407.1623.

1-Butyl-2,3-bis(methoxymethyl)-4-(trimethylsilyl)-9H-fluoren-9-one (69)

Chemical Formula: $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{O}_{3} \mathrm{Si}$
Exact Mass: 396.2121

This compound was obtained following the general procedure E. Starting from diyne 21 (99.0 $\mathrm{mg}, 0.35 \mathrm{mmol}$), 1,4-dimethoxy-2-butyne $51\left(80 \mathrm{mg}, 0.7 \mathrm{mmol}, 2.0\right.$ equiv) and $\mathrm{RuCl}_{3} \cdot n \mathrm{H}_{2} \mathrm{O}$ ($3.6 \mathrm{mg}, 0.0175 \mathrm{mmol}$). The reaction mixture was stirred at $50^{\circ} \mathrm{C}$ for 14 h . Purification on silica gel (Petroleum ether/Ethyl acetate gradient from $98 / 2$ to $95 / 5$) afforded $\mathbf{6 9}$ ($81 \mathrm{mg}, 58 \%$) as a yellow oil.
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 4 6}$ (Cyclohexane/Ethyl acetate; 90/10, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.62(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{td}, J=7.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-$ $7.20(\mathrm{~m}, 1 \mathrm{H}), 4.59(\mathrm{~s}, 2 \mathrm{H}), 4.47(\mathrm{~s}, 2 \mathrm{H}), 3.44(\mathrm{~s}, 3 \mathrm{H}), 3.34(\mathrm{~s}, 3 \mathrm{H}), 3.26-3.15(\mathrm{~m}, 2 \mathrm{H}), 1.58-$ $1.44(\mathrm{~m}, 4 \mathrm{H}), 0.98(\mathrm{t}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.46(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 195.0,152.9,151.9,145.5,144.6,135.4,135.3,133.2,130.7$, $128.5,125.9,123.5,71.9,67.3,58.5,57.7,33.5,27.0,23.4,14.1,2.8$.

HRMS (ESI ${ }^{+}$): calcd. for $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{O}_{3} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}: 419.2013$, found 419.2008.

1-Butyl-2,3-bis(methoxymethyl)-4-(p-tolyl)-9H-fluoren-9-one (70)

Chemical Formula: $\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{O}_{3}$ Exact Mass: 414.2195

This compound was obtained following the general procedure E. Starting from diyne 22 (102 $\mathrm{mg}, 0.35 \mathrm{mmol}$), 1,4-dimethoxy-2-butyne $51\left(80 \mathrm{mg}, 0.7 \mathrm{mmol}, 2.0\right.$ equiv) and $\mathrm{RuCl}_{3} \cdot n \mathrm{H}_{2} \mathrm{O}$ ($3.6 \mathrm{mg}, 0.0175 \mathrm{mmol}$). The reaction mixture was stirred at $50^{\circ} \mathrm{C}$ for 2 h . Purification on silica gel (Petroleum ether/Ethyl acetate gradient from 98/2 to $95 / 5$) afforded 70 ($101 \mathrm{mg}, 71 \%$) as a yellow solid. m.p. $86-88^{\circ} \mathrm{C}$.
$\mathbf{R f}_{\mathbf{f}}=\mathbf{0 . 4}$ (Cyclohexane/Ethyl acetate; 90/10, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.56(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.17(\mathrm{~m}$, $2 \mathrm{H}), 7.17-7.02(\mathrm{~m}, 2 \mathrm{H}), 6.02(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{~s}, 2 \mathrm{H}), 4.19(\mathrm{~s}, 2 \mathrm{H}), 3.51(\mathrm{~s}, 3 \mathrm{H}), 3.28$ $-3.18(\mathrm{~m}, 2 \mathrm{H}), 3.20(\mathrm{~s}, 3 \mathrm{H}), 2.49(\mathrm{~s}, 3 \mathrm{H}), 1.66-1.51(\mathrm{~m}, 4 \mathrm{H}), 1.02(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 194.7,144.6,143.8,143.0, 142.6, 137.8, 137.6, 137.1, 135.1, 134.1, 130.7, 129.6, 129.4, 128.4, 123.6, 123.3, 68.5, 67.4, 58.9, 58.5, 33.6, 27.3, 23.5, 21.5, 14.1.

HRMS (ESI ${ }^{+}$): calcd. for $\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 437.2087$, found 437.2087.

1-Butyl-4-(4-(tert-butyl)-phenyl)-2,3-bis(methoxymethyl)-9H-fluoren-9-one (71)

Chemical Formula: $\mathrm{C}_{31} \mathrm{H}_{36} \mathrm{O}_{3}$
Exact Mass: 456.2664

This compound was obtained following the general procedure E. Starting from diyne 23 (120 $\mathrm{mg}, 0.35 \mathrm{mmol}$), 1,4-dimethoxy-2-butyne $51\left(80 \mathrm{mg}, 0.7 \mathrm{mmol}, 2.0\right.$ equiv) and $\mathrm{RuCl}_{3} \cdot n \mathrm{H}_{2} \mathrm{O}$ ($3.6 \mathrm{mg}, 0.0175 \mathrm{mmol}$). The reaction mixture was stirred at $60^{\circ} \mathrm{C}$ for 14 h , then at $80^{\circ} \mathrm{C}$ for 4 h. Purification on silica gel (Petroleum ether/Ethyl acetate gradient from 98/2 to 95/5) afforded $71(90 \mathrm{mg}, 56 \%)$ as a yellow oil.
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 5 2}$ (Cyclohexane/Ethyl acetate; 90/10, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.60-7.48(\mathrm{~m}, 3 \mathrm{H}), 7.25-7.20(\mathrm{~m}, 2 \mathrm{H}), 7.12(\mathrm{td}, J=7.5,0.9$ $\mathrm{Hz}, 1 \mathrm{H}), 7.03(\mathrm{td}, J=7.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.91(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{~s}, 2 \mathrm{H}), 4.20(\mathrm{~s}, 2 \mathrm{H}), 3.51$
$(\mathrm{s}, 3 \mathrm{H}), 3.29-3.21(\mathrm{~m}, 2 \mathrm{H}), 3.19(\mathrm{~s}, 3 \mathrm{H}), 1.64-1.52(\mathrm{~m}, 4 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H}), 1.02(\mathrm{t}, J=6.9 \mathrm{~Hz}$, $3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 194.7, 151.3, 144.7, 143.8, 143.1, 142.6, 137.6, 137.1, 135.2, 134.1, 130.7, 129.2, 128.4, 125.7, 123.6, 123.2, 68.6, 67.5, 58.9, 58.6 34.9, 33.7, 31.6, 27.3, 23.5, 14.1.

HRMS (ESI ${ }^{+}$): calcd. for $\mathrm{C}_{31} \mathrm{H}_{36} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 479.2557$, found 479.2557.

1-Butyl-2,3-bis(methoxymethyl)-4-(4-(trifluoromethyl)-phenyl)-9H-fluoren-9-one (72)

Chemical Formula: $\mathrm{C}_{28} \mathrm{H}_{27} \mathrm{~F}_{3} \mathrm{O}_{3}$
Exact Mass: 468.1912

This compound was obtained following the general procedure E. Starting from diyne $\mathbf{2 6}$ (100.0 $\mathrm{mg}, 0.28 \mathrm{mmol}$), 1,4-dimethoxy-2-butyne $\mathbf{5 1}\left(80 \mathrm{mg}, 0.56 \mathrm{mmol}, 2.0\right.$ equiv) and $\mathrm{RuCl}_{3} \cdot n \mathrm{H}_{2} \mathrm{O}$ $(2.9 \mathrm{mg}, 0.014 \mathrm{mmol})$. The reaction mixture was stirred at $50^{\circ} \mathrm{C}$ for 14 h . Purification on silica gel (Cyclohexane/Ethyl acetate gradient from $98 / 2$ to $95 / 5$) afforded $72(85 \mathrm{mg}, 65 \%)$ as a brown solid. m.p. $113-115{ }^{\circ} \mathrm{C}$.
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 5 3}$ (Cyclohexane/Ethyl acetate; 95/5, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.79(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.59(\mathrm{dd}, J=7.3,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{~d}$, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.17(\mathrm{td}, J=7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{td}, J=7.6,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.91(\mathrm{~d}, J=7.5$ $\mathrm{Hz}, 1 \mathrm{H}), 4.55(\mathrm{~s}, 2 \mathrm{H}), 4.11(\mathrm{~s}, 2 \mathrm{H}), 3.51(\mathrm{~s}, 3 \mathrm{H}), 3.30-3.20(\mathrm{~m}, 2 \mathrm{H}), 3.17(\mathrm{~s}, 3 \mathrm{H}), 1.64-1.50$ (m, 4H), $1.02(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 194.3,145.4,143.2,142.7,142.3,142.1,137.9,135.5,135.2$, $134.3,130.9,130.3,128.9,125.8,125.8,124.0,122.9,68.4,67.3,59.0,58.7,33.7,27.4,23.5$, 14.1.
${ }^{19} \mathbf{F}$ NMR $\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-63.4(\mathrm{~s})$.

HRMS (ESI ${ }^{+}$): calcd. for $\mathrm{C}_{28} \mathrm{H}_{27} \mathrm{~F}_{3} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 491.1805$, found 491.1803.

4-(4-Bromophenyl)-1-butyl-2,3-bis(methoxymethyl)-9H-fluoren-9-one (73)

Chemical Formula: $\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{BrO}_{3}$ Exact Mass: 478.1144

This compound was obtained following the general procedure E. Starting from diyne 27 (127.0 $\mathrm{mg}, 0.35 \mathrm{mmol}$), 1,4-dimethoxy-2-butyne $51\left(80 \mathrm{mg}, 0.7 \mathrm{mmol}, 2.0\right.$ equiv) and $\mathrm{RuCl}_{3} \cdot n \mathrm{H}_{2} \mathrm{O}$ $(3.6 \mathrm{mg}, 0.0175 \mathrm{mmol})$. The reaction mixture was stirred at $50^{\circ} \mathrm{C}$ for 14 h . Purification on silica gel (Petroleum ether/ Ethyl acetate gradient from 98/2 to $95 / 5$) afforded 73 ($94 \mathrm{mg}, 56 \%$) as a yellow oil.
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 4 3}$ (Cyclohexane/Ethyl acetate; 90/10, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.71-7.61(\mathrm{~m}, 2 \mathrm{H}), 7.61-7.54(\mathrm{~m}, 1 \mathrm{H}), 7.25-7.20(\mathrm{~m}, 2 \mathrm{H})$, $7.20-7.07(\mathrm{~m}, 2 \mathrm{H}), 6.04(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{~s}, 2 \mathrm{H}), 4.13(\mathrm{~s}, 2 \mathrm{H}), 3.50(\mathrm{~s}, 3 \mathrm{H}), 3.28-$ $3.18(\mathrm{~m}, 2 \mathrm{H}), 3.20(\mathrm{~s}, 3 \mathrm{H}), 1.64-1.51(\mathrm{~m}, 4 \mathrm{H}), 1.01(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 194.4,145.2,143.3,142.8,142.3,137.8,137.2,135.6,135.1$, $134.3,132.1,131.5,130.9,128.8,123.9,123.1,122.4,68.5,67.4,59.0,58.7,33.7,27.3,23.5$, 14.1.

HRMS (ESI ${ }^{+}$): calcd. for $\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{BrO}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 501.1036$, found 501.1036.

8-Butyl-6,7-bis(methoxymethyl)-5-phenyl-9H-fluoreno[2,3-d][1,3]dioxol-9-one (74)

Chemical Formula: $\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{O}_{5}$
Exact Mass: 444.1937

This compound was obtained following the general procedure E. Starting from diyne 24 (115.5 $\mathrm{mg}, 0.35 \mathrm{mmol}$), 1,4-dimethoxy-2-butyne $51\left(80 \mathrm{mg}, 0.7 \mathrm{mmol}, 2.0\right.$ equiv) and $\mathrm{RuCl}_{3} \cdot n \mathrm{H}_{2} \mathrm{O}$ ($3.6 \mathrm{mg}, 0.0175 \mathrm{mmol}$). The reaction mixture was stirred at $50^{\circ} \mathrm{C}$ for 6 h . Purification on silica gel (Petroleum ether/Ethyl acetate gradient from $98 / 2$ to $95 / 5$) afforded 74 ($105 \mathrm{mg}, 68 \%$) as a yellow oil.
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 2 5}$ (Cyclohexane/Ethyl acetate; 90/10, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.52-7.46(\mathrm{~m}, 3 \mathrm{H}), 7.33-7.27(\mathrm{~m}, 2 \mathrm{H}), 6.99(\mathrm{~s}, 1 \mathrm{H}), 5.88(\mathrm{~s}$, $2 \mathrm{H}), 5.32(\mathrm{~s}, 1 \mathrm{H}), 4.53(\mathrm{~s}, 2 \mathrm{H}), 4.14(\mathrm{~s}, 2 \mathrm{H}), 3.49(\mathrm{~s}, 3 \mathrm{H}), 3.22-3.15(\mathrm{~m}, 2 \mathrm{H}), 3.16(\mathrm{~s}, 3 \mathrm{H})$, $1.61-1.49(\mathrm{~m}, 4 \mathrm{H}), 1.00(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 193.0,152.4,147.9,144.2,142.0,140.6,138.0,137.0,136.0$, $131.2,130.1,129.6,128.9,128.2,104.6,104.5,101.9,68.5,67.4,58.9,58.6,33.7,27.2,23.5$, 14.1.

HRMS (ESI ${ }^{+}$): calcd. for $\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{O}_{5} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 467.1829$, found 467.1830.

1-Butyl-7-fluoro-2,3-bis(methoxymethyl)-4-phenyl-9H-fluoren-9-one (75)

Chemical Formula: $\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{FO}_{3}$ Exact Mass: 418.1944

This compound was obtained following the general procedure E. Starting from diyne $\mathbf{2 5}$ (106 $\mathrm{mg}, 0.35 \mathrm{mmol}$), 1,4-dimethoxy-2-butyne $51\left(80 \mathrm{mg}, 0.7 \mathrm{mmol}, 2.0\right.$ equiv) and $\mathrm{RuCl}_{3} \cdot n \mathrm{H}_{2} \mathrm{O}$ $(3.6 \mathrm{mg}, 0.0175 \mathrm{mmol})$. The reaction mixture was stirred at $50^{\circ} \mathrm{C}$ for 6 h . Purification on silica gel (Petroleum ether/Ethyl acetate gradient from $98 / 2$ to $95 / 5$) afforded 75 ($98 \mathrm{mg}, 65 \%$) as a yellow oil.
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 3 6}\left(\right.$ Cyclohexane/Ethyl acetate; 95/5, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.54-7.47(\mathrm{~m}, 3 \mathrm{H}), 7.35-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.22(\mathrm{dd}, J=7.2,2.4$ $\mathrm{Hz}, 1 \mathrm{H}), 6.72(\mathrm{td}, J=8.7,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.86(\mathrm{dd}, J=8.1,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{~s}, 2 \mathrm{H}), 4.17(\mathrm{~s}, 2 \mathrm{H})$, $3.50(\mathrm{~s}, 3 \mathrm{H}), 3.26-3.18(\mathrm{~m}, 2 \mathrm{H}), 3.18(\mathrm{~s}, 3 \mathrm{H}), 1.66-1.51(\mathrm{~m}, 4 \mathrm{H}), 1.01(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 193.1,163.2(\mathrm{~d}, J=247.5 \mathrm{~Hz}), 145.2,142.8,142.4,139.4(\mathrm{~d}, J$ $=2.8 \mathrm{~Hz}), 138.1,137.5,137.4,136.7,131.0(\mathrm{~d}, J=1.6 \mathrm{~Hz}), 129.5,129.0,128.3,124.6(\mathrm{~d}, J=$ $7.7 \mathrm{~Hz}), 120.2(\mathrm{~d}, J=22.5 \mathrm{~Hz}), 111.1(\mathrm{~d}, J=23.6 \mathrm{~Hz}), 68.5,67.4,59.0,58.6,33.6,27.4,23.5$, 14.1.
${ }^{19}$ F NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-113.6(\mathrm{dd}, J=11.3,8.5 \mathrm{~Hz})$.

HRMS (ESI ${ }^{+}$): calcd. for $\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{FO}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 441.1836$, found 441.1837.

2,3-Bis(tert-butoxymethyl)-1-butyl-4-phenyl-9H-fluoren-9-one (76)

Chemical Formula: $\mathrm{C}_{33} \mathrm{H}_{40} \mathrm{O}_{3}$ Exact Mass: 484.2977

This compound was obtained following the general procedure E. Starting from diyne $\mathbf{1 7}$ (100 $\mathrm{mg}, 0.35 \mathrm{mmol}$), 1,4-di-tert-butoxybut-2-yne $\mathbf{5 5}$ ($139 \mathrm{mg}, 0.7 \mathrm{mmol}, 2.0$ equiv) and $\mathrm{RuCl}_{3} \cdot n \mathrm{H}_{2} \mathrm{O}(3.6 \mathrm{mg}, 0.0175 \mathrm{mmol})$. The reaction mixture was stirred at $60^{\circ} \mathrm{C}$ for 14 h , then at $80^{\circ} \mathrm{C}$ for 4 h . Purification on silica gel (Petroleum ether/Ethyl acetate gradient from 99/1 to $98 / 2$) afforded $76(140 \mathrm{mg}, 83 \%)$ as a yellow solid. m.p. $158-160{ }^{\circ} \mathrm{C}$.
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 4 6}$ (Cyclohexane/Ethyl acetate; $\left.90 / 10, \mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta 7.58-7.52(\mathrm{~m}, 1 \mathrm{H}), 7.56-7.44(\mathrm{~m}, 3 \mathrm{H}), 7.39-7.29(\mathrm{~m}, 2 \mathrm{H})$, $7.11(\mathrm{td}, J=7.5,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{td}, J=7.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.89(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{~s}$, $2 \mathrm{H}), 4.19(\mathrm{~s}, 2 \mathrm{H}), 3.28-3.15(\mathrm{~m}, 2 \mathrm{H}), 1.72-1.51(\mathrm{~m}, 4 \mathrm{H}), 1.36(\mathrm{~s}, 9 \mathrm{H}), 1.03(\mathrm{t}, J=6.9 \mathrm{~Hz}$, $3 \mathrm{H}), 1.01(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta 194.8,145.1,143.9,143.3,142.8,138.4,138.3,137.3,135.2$, 134.0, 130.7, 129.9, 128.7, 128.3, 128.0, 123.5, 123.1, 73.7, 73.6, 57.9, 56.8, 33.7, 27.9, 27.6, 27.5, 23.7, 14.1.

HRMS (ESI^{+}): calculated for $\mathrm{C}_{39} \mathrm{H}_{36} \mathrm{O}_{3} \mathrm{Na}^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$: 575.2557, found 575.2551.

2,3-Bis((benzyloxy)-methyl)-1-butyl-4-phenyl-9H-fluoren-9-one (77)

Chemical Formula: $\mathrm{C}_{39} \mathrm{H}_{36} \mathrm{O}_{3}$ Exact Mass: 552.2664

This compound was obtained following the general procedure E. Starting from diyne 17 (100 $\mathrm{mg}, 0.35 \mathrm{mmol}$), 1,4-bis(benzyloxy)but-2-yne 56 ($186 \mathrm{mg}, 0.7 \mathrm{mmol}, 2.0$ equiv) and $\mathrm{RuCl}_{3} \cdot n \mathrm{H}_{2} \mathrm{O}(3.6 \mathrm{mg}, 0.0175 \mathrm{mmol})$. The reaction mixture was stirred at $50{ }^{\circ} \mathrm{C}$ for 14 h . The excess of alkyne was removed by bulb to bulb distillation (condition: $3.0 \times 10^{-3} \mathrm{mbar}, 175^{\circ} \mathrm{C}$ for 20 minutes). Purification on silica gel (Petroleum ether/Ethyl acetate gradient from $98 / 2$ to $95 / 5$) afforded $77(156 \mathrm{mg}, 81 \%)$ as a yellow solid. m.p. $145-147{ }^{\circ} \mathrm{C}$.
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 2 5}\left(\right.$ Cyclohexane/Ethyl acetate; $\left.95 / 5, \mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta 7.58-7.53(\mathrm{~m}, 1 \mathrm{H}), 7.53-7.46(\mathrm{~m}, 3 \mathrm{H}), 7.40-7.27(\mathrm{~m}, 10 \mathrm{H})$, $7.22-7.17(\mathrm{~m}, 2 \mathrm{H}), 7.13(\mathrm{td}, J=7.5,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{td}, J=7.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.93(\mathrm{~d}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{~s}, 2 \mathrm{H}), 4.50(\mathrm{~s}, 2 \mathrm{H}), 4.16(\mathrm{~s}, 2 \mathrm{H}), 4.15(\mathrm{~s}, 2 \mathrm{H}), 3.23-3.12(\mathrm{~m}, 2 \mathrm{H}), 1.57-$ $1.41(\mathrm{~m}, 4 \mathrm{H}), 0.97(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta 194.7,144.9,143.7,143.0,142.6,138.2,138.0,137.7,137.1$, $135.2,134.1,130.8,129.7,128.9,128.7,128.6,128.5,128.3,128.1,127.9,123.7,123.2,73.6$, $73.3,66.2,64.7,33.7,27.4,23.5,14.1$

HRMS (ESI^{+}): calculated for $\mathrm{C}_{33} \mathrm{H}_{40} \mathrm{O}_{3} \mathrm{Na}^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$: 507.2870, found 507.2867.

1-Butyl-2,3-diethyl-4-phenyl-9H-fluoren-9-one (78)

Experimental part

Chemical Formula: $\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{O}$
Exact Mass: 368.2140

This compound was obtained following the general procedure E. Starting from diyne $\mathbf{1 7}$ (100 $\mathrm{mg}, 0.35 \mathrm{mmol}$), 3-hexyne 53 ($86.3 \mathrm{mg}, 1.05 \mathrm{mmol}, 3.0$ equiv) and $\mathrm{RuCl}_{3} \cdot n \mathrm{H}_{2} \mathrm{O}$ (3.6 mg , $0.0175 \mathrm{mmol})$. The reaction mixture was stirred at $80^{\circ} \mathrm{C}$ for 16 h . Purification on silica gel (Petroleum ether/Ethyl acetate gradient from 100/0 to 99/1) afforded 78 (pure, $14 \mathrm{mg}, 11 \%$) as a sticky oil.
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 8}\left(\right.$ Cyclohexane/Ethyl acetate; 90/10, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.57-7.41(\mathrm{~m}, 4 \mathrm{H}), 7.38-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.12-7.03(\mathrm{~m}, 1 \mathrm{H})$, $7.03-6.92(\mathrm{~m}, 1 \mathrm{H}), 5.73(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.23-3.05(\mathrm{~m}, 2 \mathrm{H}), 2.73(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$, $2.48(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.66-1.49(\mathrm{~m}, 4 \mathrm{H}), 1.23(\mathrm{t}, J=7.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.10-0.89(\mathrm{~m}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 195.1, 147.8, 144.2, 143.2, 142.8, 140.8, 139.6, 136.0, 135.3, $133.8,129.5,129.0,128.9,127.9,127.8,123.4,122.6,33.6,27.6,23.7,23.6,21.5,15.8,15.5$, 14.1.

7-Butyl-5,6-bis(methoxymethyl)-4-phenyl-8H-indeno[2,1-b]furan-8-one (83)

Chemical Formula: $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{O}_{4}$ Exact Mass: 390.1831

This compound was obtained following the general procedure E. Starting from diyne 44 (97 $\mathrm{mg}, 0.35 \mathrm{mmol}$), 1,4-dimethoxy-2-butyne $51\left(80 \mathrm{mg}, 0.7 \mathrm{mmol}, 2.0\right.$ equiv) and $\mathrm{RuCl}_{3} \cdot n \mathrm{H}_{2} \mathrm{O}$ ($3.6 \mathrm{mg}, 0.0175 \mathrm{mmol}$). The reaction mixture was stirred at $60^{\circ} \mathrm{C}$ for 14 h , then at $80^{\circ} \mathrm{C}$ for 4 h. Purification on silica gel (Petroleum ether/Ethyl acetate gradient from 98/2 to 95/5) afforded 83 ($75 \mathrm{mg}, 55 \%$) as a yellow oil.
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 3 2}$ (Cyclohexane/Ethyl acetate; 90/10, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.52-7.38(\mathrm{~m}, 3 \mathrm{H}), 7.35-7.27(\mathrm{~m}, 3 \mathrm{H}), 5.40(\mathrm{~d}, J=1.7 \mathrm{~Hz}$, $1 \mathrm{H}), 4.49(\mathrm{~s}, 2 \mathrm{H}), 4.16(\mathrm{~s}, 2 \mathrm{H}), 3.48(\mathrm{~s}, 3 \mathrm{H}), 3.23(\mathrm{~s}, 3 \mathrm{H}), 3.13-3.02(\mathrm{~m}, 2 \mathrm{H}), 1.60-1.46(\mathrm{~m}$, $4 \mathrm{H}), 0.99(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 179.6,154.6,151.3,145.0,144.6,140.9,138.2,137.7,135.1$, $134.8,131.6,129.7,128.4,128.0,108.0,68.8,67.4,58.9,58.5,33.7,26.7,23.4,14.1$.

HRMS (ESI ${ }^{+}$): calculated for $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{O}_{4} \mathrm{Na}^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 413.1723$, found 413.1723.

7-Butyl-5,6-bis(methoxymethyl)-4-phenyl-8H-indeno[2,1-b]thiophen-8-one (84)

This compound was obtained following the general procedure E. Starting from diyne $\mathbf{4 5}$ (102 $\mathrm{mg}, 0.35 \mathrm{mmol}$), 1,4-dimethoxy-2-butyne $51\left(80 \mathrm{mg}, 0.7 \mathrm{mmol}, 2.0\right.$ equiv) and $\mathrm{RuCl}_{3} \cdot n \mathrm{H}_{2} \mathrm{O}$ ($3.6 \mathrm{mg}, 0.0175 \mathrm{mmol}$). The reaction mixture was stirred at $50^{\circ} \mathrm{C}$ for 14 h . Purification on silica gel (Petroleum ether/Ethyl acetate gradient from $98 / 2$ to $95 / 5$) afforded $\mathbf{8 4}$ ($101 \mathrm{mg}, 71 \%$) as a yellow oil.
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 4}$ (Cyclohexane/Ethyl acetate; 90/10, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta 7.49-7.43(\mathrm{~m}, 3 \mathrm{H}), 7.34(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.27(\mathrm{~m}$, $2 \mathrm{H}), 5.62(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{~s}, 2 \mathrm{H}), 4.16(\mathrm{~s}, 2 \mathrm{H}), 3.49(\mathrm{~s}, 3 \mathrm{H}), 3.19(\mathrm{~s}, 3 \mathrm{H}), 3.17-3.07$ (m, 2H), $1.62-1.47(\mathrm{~m}, 4 \mathrm{H}), 1.00(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 186.6,157.2,144.6,141.2,139.3,138.5,138.1,137.3,134.8$, 133.7, 129.8, 128.5, 128.0, 122.3, 68.8, 67.4, 58.9, 58.5, 33.7, 26.9, 23.5, 14.1.

HRMS (ESI ${ }^{+}$): calcd. for $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{O}_{3} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+}: 429.1495$, found 429.1494 .

Experimental part

This compound was obtained following the general procedure E. Starting from diyne 45 (102 $\mathrm{mg}, 0.35 \mathrm{mmol}$), 1,4-bis(benzyloxy)-but-2-yne 56 ($186 \mathrm{mg}, 0.7 \mathrm{mmol}, 2.0$ equiv) and $\mathrm{RuCl}_{3} \cdot n \mathrm{H}_{2} \mathrm{O}(3.6 \mathrm{mg}, 0.0175 \mathrm{mmol})$. The reaction mixture was stirred at $80^{\circ} \mathrm{C}$ for 14 h . The excess of alkyne was removed by bulb to bulb distillation (condition: $3.0 \times 10^{-3} \mathrm{mbar}, 175^{\circ} \mathrm{C}$ for 20 minutes). Purification on silica gel (Petroleum ether/Ethyl acetate gradient from 98/2 to 95/5) afforded $\mathbf{8 5}(121 \mathrm{mg}, 62 \%)$ as a yellow solid. m.p. $124-126^{\circ} \mathrm{C}$.
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 3 4}$ (Cyclohexane/Ethyl acetate; 95/5, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta 7.48-7.42(\mathrm{~m}, 3 \mathrm{H}), 7.38-7.27(\mathrm{~m}, 11 \mathrm{H}), 7.22-7.17(\mathrm{~m}, 2 \mathrm{H})$, $5.62(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{~s}, 2 \mathrm{H}), 4.48(\mathrm{~s}, 2 \mathrm{H}), 4.17(\mathrm{~s}, 2 \mathrm{H}), 4.15(\mathrm{~s}, 2 \mathrm{H}), 3.13-3.03(\mathrm{~m}$, $2 \mathrm{H}), 1.52-1.38(\mathrm{~m}, 4 \mathrm{H}), 0.95(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta 186.6,157.2,144.6,141.5,139.3,138.5,138.0,137.4,137.3$, $134.9,133.7,129.8,128.6,128.6,128.5,128.3,128.1,128.0,127.9,122.3,73.5,73.2,66.4$, 64.7, 33.7, 26.9, 23.4, 14.0.

HRMS (ESI^{+}): calculated for $\mathrm{C}_{37} \mathrm{H}_{34} \mathrm{O}_{3} \mathrm{SNa}^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$: 581.2121, found 581.2115.

7-Butyl-8,9-bis(methoxymethyl)-10-phenyl-6H-benzo[b]indeno[1,2-d]thiophen-6-one (86)

This compound was obtained following the general procedure E. Starting from diyne $\mathbf{4 6}$ (120 $\mathrm{mg}, 0.35 \mathrm{mmol}$), 1,4-dimethoxy-2-butyne $51\left(80 \mathrm{mg}, 0.7 \mathrm{mmol}, 2.0\right.$ equiv) and $\mathrm{RuCl}_{3} \cdot n \mathrm{H}_{2} \mathrm{O}$ ($3.6 \mathrm{mg}, 0.0175 \mathrm{mmol}$). The reaction mixture was stirred at $60^{\circ} \mathrm{C}$ for 14 h . Purification on silica gel (Petroleum ether/Ethyl acetate gradient from $98 / 2$ to $95 / 5$) afforded $\mathbf{8 6}(124 \mathrm{mg}, 78 \%)$ as a red solid. m.p. $135-137^{\circ} \mathrm{C}$.
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 3 2}$ (Cyclohexane/Ethyl acetate; 90/10, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.68(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.51-7.40(\mathrm{~m}, 5 \mathrm{H}), 7.20-7.10(\mathrm{~m}$, $1 \mathrm{H}), 6.83-6.72(\mathrm{~m}, 1 \mathrm{H}), 5.19(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{~s}, 2 \mathrm{H}), 4.10(\mathrm{~s}, 2 \mathrm{H}), 3.51(\mathrm{~s}, 3 \mathrm{H}), 3.24$ - $3.11(\mathrm{~m}, 2 \mathrm{H}), 3.19(\mathrm{~s}, 3 \mathrm{H}), 1.69-1.52(\mathrm{~m}, 4 \mathrm{H}), 1.03(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 188.4,151.6,147.4,144.6,142.1,141.3,140.2,139.9,137.4$, $135.0,133.2,132.6,131.2,128.7,128.4,126.6,126.3,125.1,124.0,68.9,67.4,59.0,58.6,33.6$, 27.0, 23.5, 14.0.

HRMS (ESI ${ }^{+}$): calcd. for $\mathrm{C}_{29} \mathrm{H}_{28} \mathrm{O}_{3} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+}: 479.1651$, found 479.1650.

1-Butyl-2,3-bis(methoxymethyl)-4-phenyl-10H-indeno[1,2-b]benzofuran-10-one (87)

This compound was obtained following the general procedure E. Starting from diyne 47 (114.1 $\mathrm{mg}, 0.35 \mathrm{mmol}$), 1,4-dimethoxy-2-butyne $51\left(80 \mathrm{mg}, 0.7 \mathrm{mmol}, 2.0\right.$ equiv) and $\mathrm{RuCl}_{3} \cdot n \mathrm{H}_{2} \mathrm{O}$ ($3.6 \mathrm{mg}, 0.0175 \mathrm{mmol}$). The reaction mixture was stirred at $60^{\circ} \mathrm{C}$ for 14 h . Purification on silica gel (Petroleum ether/Ethyl acetate gradient from 98/2 to $95 / 5$) afforded $\mathbf{8 7}(42 \mathrm{mg}, 30 \%)$ as a yellow oil.
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 3 2}$ (Cyclohexane/Ethyl acetate; 90/10, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.71-7.63(\mathrm{~m}, 1 \mathrm{H}), 7.55-7.46(\mathrm{~m}, 3 \mathrm{H}), 7.46-7.37(\mathrm{~m}, 2 \mathrm{H})$, $7.26-7.11(\mathrm{~m}, 3 \mathrm{H}), 4.54(\mathrm{~s}, 2 \mathrm{H}), 4.18(\mathrm{~s}, 2 \mathrm{H}), 3.51(\mathrm{~s}, 3 \mathrm{H}), 3.26(\mathrm{~s}, 3 \mathrm{H}), 3.17(\mathrm{t}, J=7.8 \mathrm{~Hz}$, $2 \mathrm{H}), 1.68-1.51(\mathrm{~m}, 4 \mathrm{H}), 1.02(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 186.3,177.5,160.7,144.3,140.8,140.3,136.7,134.2,133.0$, $129.8,128.2,128.1,125.1,124.8,122.2,120.7,119.6,112.7,68.5,67.4,59.0,58.5,33.7,27.0$, 23.5, 14.1.

6-Butyl-9-(4-(tert-butyl)phenyl)-7,8-bis(methoxymethyl)-5H-indeno[1,2-b]pyridin-5-one (89)

Chemical Formula: $\mathrm{C}_{30} \mathrm{H}_{35} \mathrm{NO}_{3}$
Exact Mass: 457.2617

This compound was obtained following the general procedure E. Starting from diyne 49 (100 $\mathrm{mg}, 0.29 \mathrm{mmol}$), 1,4-dimethoxy-2-butyne $51\left(200 \mathrm{mg}, 1.75 \mathrm{mmol}\right.$, 6.0 equiv) and $\mathrm{RuCl}_{3} \cdot n \mathrm{H}_{2} \mathrm{O}$ $(3.0 \mathrm{mg}, 0.0146 \mathrm{mmol})$. The reaction mixture was stirred at $80^{\circ} \mathrm{C}$ for 18 h . Purification on silica gel (Petroleum ether/Ethyl acetate gradient from $98 / 2$ to $95 / 5$) afforded $\mathbf{8 9}(8 \mathrm{mg}, 6 \%)$ as a brown oil.
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 6 5}\left(\right.$ Cyclohexane/Ethyl acetate; 95/5, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.23(\mathrm{dd}, J=5.0,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{dd}, J=7.4,1.7 \mathrm{~Hz}, 1 \mathrm{H})$, 7.45 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.99(\mathrm{dd}, J=7.5,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{~s}, 2 \mathrm{H})$, $4.18(\mathrm{~s}, 2 \mathrm{H}), 3.51(\mathrm{~s}, 3 \mathrm{H}), 3.27-3.18(\mathrm{~m}, 2 \mathrm{H}), 3.20(\mathrm{~s}, 3 \mathrm{H}), 1.62-1.54(\mathrm{~m}, 2 \mathrm{H}), 1.41(\mathrm{~s}, 9 \mathrm{H})$, $1.37-1.32(\mathrm{~m}, 2 \mathrm{H}), 1.01(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$.

This compound was obtained following the general procedure E. Starting from diyne $\mathbf{5 0}$ (112 $\mathrm{mg}, 0.35 \mathrm{mmol}$), 1,4-dimethoxy-2-butyne $51\left(80 \mathrm{mg}, 0.7 \mathrm{mmol}, 2.0\right.$ equiv) and $\mathrm{RuCl}_{3} \cdot n \mathrm{H}_{2} \mathrm{O}$ $(3.6 \mathrm{mg}, 0.0175 \mathrm{mmol})$. The reaction mixture was stirred at $80^{\circ} \mathrm{C}$ for 2 h . Purification on silica gel (Petroleum ether/Ethyl acetate gradient from $98 / 2$ to $95 / 5$) afforded $90(91 \mathrm{mg}, 60 \%)$ as a yellow solid. m.p. $94-96^{\circ} \mathrm{C}$.
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 3 1}\left(\right.$ Cyclohexane/Ethyl acetate; $\left.90 / 10, \mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.55-7.48(\mathrm{~m}, 3 \mathrm{H}), 7.40(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.27(\mathrm{~m}$, $2 \mathrm{H}), 6.90(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{~s}, 2 \mathrm{H}), 4.22(\mathrm{~s}, 2 \mathrm{H}), 3.51(\mathrm{~s}, 3 \mathrm{H}), 3.24-3.15(\mathrm{~m}, 2 \mathrm{H}), 3.20$ $(\mathrm{s}, 3 \mathrm{H}), 1.60-1.52(\mathrm{~m}, 4 \mathrm{H}), 1.01(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 191.9,151.7,146.4,144.2,143.7,141.5,138.8,137.8,137.6$, $136.0,130.3,129.4,129.1,128.9,128.8,118.1,67.3,59.1,58.7,33.5,27.6,23.5,14.0$.

HRMS (ESI ${ }^{+}$): calcd. for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{ClNO}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 458.1493$, found 458.1494 .

1-Butyl-3-cyclopropyl-4-phenyl-9H-fluoren-9-one and 1-butyl-3-cyclopropyl-4-phenyl 9 H -fluoren-9-one (91)

Thess compounds were obtained following the general procedure E. Starting from diyne $\mathbf{1 7}$ ($200 \mathrm{mg}, 0.7 \mathrm{mmol}$), cyclopropyl acetylene 58 ($93 \mathrm{mg}, 1.4 \mathrm{mmol}$, 2.0 equiv) and $\mathrm{RuCl}_{3} \cdot n \mathrm{H}_{2} \mathrm{O}$ $(7.2 \mathrm{mg}, 0.035 \mathrm{mmol})$. The reaction mixture was stirred at $80^{\circ} \mathrm{C}$ for 14 h . Purification on silica

Experimental part

gel (Petroleum ether/Ethyl acetate 99/1) afforded the title regioisomers 91 ($208 \mathrm{mg}, 84 \%$) in the ratio of $67 / 33$ as an orange oil.
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 6}$ (Cyclohexane/Ethyl acetate; 95/5, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.

Major product: ${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.60-7.45$ (m, 4H), $7.39-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.15$ - $7.08(\mathrm{~m}, 2 \mathrm{H}), 6.56(\mathrm{~s}, 1 \mathrm{H}), 6.04-5.98(\mathrm{~m}, 1 \mathrm{H}), 3.05(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.68-1.55(\mathrm{~m}, 3 \mathrm{H})$, $1.51-1.40(\mathrm{~m}, 2 \mathrm{H}), 0.98(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.86-0.74(\mathrm{~m}, 2 \mathrm{H}), 0.75-0.64(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 194.5, 149.6, 144.2, 144.1, 142.6, 138.9, 136.0, 133.8, 129.7, 129.1, 128.3, 127.9, 125.3, 123.5, 123.1, 33.1, 31.5, 22.9, 14.1, 12.5, 10.2.

Minor product: ${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.60-7.45(\mathrm{~m}, 4 \mathrm{H}), 7.43-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.04$ (td, $J=7.5,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{~s}, 1 \mathrm{H}), 6.64-6.60(\mathrm{~m}, 1 \mathrm{H}), 3.35(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.05-1.97$ (m, 1H), $1.68-1.50(\mathrm{~m}, 4 \mathrm{H}), 1.02(\mathrm{t}, J=7.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.86-0.74(\mathrm{~m}, 2 \mathrm{H}), 0.75-0.64(\mathrm{~m}$, $2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 195.2, 143.9, 143.4, 140.2, 139.4, 135.8, 135.2, 134.0, 133.3, 131.1, 129.1 128.8, 128.6, 128.2, 128.0, 123.7, 122.7, 32.6, 27.0, 23.5, 14.0, 12.5, 7.8.

HRMS (ESI ${ }^{+}$): calculated for $\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{OH}^{+}\left[\mathrm{M}+\mathrm{H}^{+}\right]: 353.1900$, found 353.1900.

1-Butyl-3,4-diphenyl-9H-fluoren-9-one and 1-butyl-2,4-diphenyl-9H-fluoren-9-one (92)

Chemical Formula: $\mathrm{C}_{29} \mathrm{H}_{24} \mathrm{O}$ Exact Mass: 388.1827

Thess compounds were obtained following the general procedure \mathbf{E}. Starting from diyne $\mathbf{1 7}$ ($200 \mathrm{mg}, 0.7 \mathrm{mmol}$), phenyl acetylene 59 (93 mg , 1.4 mmol , 2.0 equiv) and $\mathrm{RuCl}_{3} \cdot n \mathrm{H}_{2} \mathrm{O}(7.2$ $\mathrm{mg}, 0.035 \mathrm{mmol})$. The reaction mixture was stirred at $80^{\circ} \mathrm{C}$ for 14 h . Purification on silica gel (Petroleum ether/Ethyl acetate 99/1) afforded the title regioisomers 92 (191 mg, 70\%) in the ratio of $73 / 27$ as an orange solid.
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 4 5}$ (Cyclohexane/Ethyl acetate; 95/5, KMnO4, UV).

Major product: ${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.66-7.58(\mathrm{~m}, 1 \mathrm{H}), 7.34-7.30(\mathrm{~m}, 3 \mathrm{H}), 7.20-7.05$ $(\mathrm{m}, 10 \mathrm{H}), 6.22-6.13(\mathrm{~m}, 1 \mathrm{H}), 3.15(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.75-1.65(\mathrm{~m}, 2 \mathrm{H}), 1.55-1.46(\mathrm{~m}, 2 \mathrm{H})$, $0.99(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 194.7, 148.0, 144.1, 143.8, 143.1, 140.4, 138.3, 135.3, 134.6, $134.1,132.8,130.4,130.0,129.6,128.6,128.5,127.8,127.7,127.1,123.6,123.3,33.1,31.2$, 23.0, 14.1.

Minor product: ${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta 7.66-7.58(\mathrm{~m}, 1 \mathrm{H}), 7.50-7.33(\mathrm{~m}, 10 \mathrm{H}), 7.22-$ $7.05(\mathrm{~m}, 3 \mathrm{H}), 6.77-6.72(\mathrm{~m}, 1 \mathrm{H}), 3.08-3.03(\mathrm{~m}, 1 \mathrm{H}), 1.55-1.46(\mathrm{~m}, 2 \mathrm{H}), 1.37-1.30(\mathrm{~m}, 2 \mathrm{H}), 0.82$ $(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta 194.9,144.2,143.7,142.2,141.2,140.4,139.7,137.9,135.7$, 135.1, 134.1, 131.4, 129.4, 129.1, 129.0 128.8, 128.3, 128.1, 127.4, 123.8, 123.0, 33.3, 27.7, 23.1,13.8.

HRMS (ESI ${ }^{+}$): calculated for $\mathrm{C}_{29} \mathrm{H}_{24} \mathrm{ONa}^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 411.1719$, found 411.1722.

1-Butyl-3-(3-chloropropyl)-4-phenyl-9H-fluoren-9-one and 1-butyl-2-(3-chloropropyl)-4-phenyl-9H-fluoren-9-one (93)

Chemical Formula: $\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{ClO}$
Exact Mass: 388.1594

This compound was obtained following the general procedure E. Starting from diyne $\mathbf{1 7}$ (200 $\mathrm{mg}, 0.7 \mathrm{mmol}$), 5-chloro-1-pentyne $\mathbf{6 0}$ ($143 \mathrm{mg}, 1.4 \mathrm{mmol}, 2.0$ equiv) and $\mathrm{RuCl}_{3} \cdot n \mathrm{H}_{2} \mathrm{O}(7.2$ $\mathrm{mg}, 0.035 \mathrm{mmol})$. The reaction mixture was stirred at $80^{\circ} \mathrm{C}$ for 14 h . Purification on silica gel (Petroleum ether/Ethyl acetate 99/1) afforded the title regioisomers 93 ($165 \mathrm{mg}, 61 \%$) in the ratio of 55/45 as an orange oil.
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 5}$ (Cyclohexane/Ethyl acetate; 95/5, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.

Major product: ${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.57-7.50(\mathrm{~m}, 4 \mathrm{H}), 7.30-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.19$ $7.11(\mathrm{~m}, 1 \mathrm{H}), 7.05(\mathrm{dd}, J=7.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{~s}, 1 \mathrm{H}), 5.95-5.92(\mathrm{~m}, 1 \mathrm{H}), 3.40(\mathrm{t}, J=6.6$ $\mathrm{Hz}, 2 \mathrm{H}), 3.08(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.57-2.52(\mathrm{~m}, 2 \mathrm{H}), 1.91-1.86(\mathrm{~m}, 2 \mathrm{H}), 1.68-1.64(\mathrm{~m}, 2 \mathrm{H})$, $1.52-1.46(\mathrm{~m}, 2 \mathrm{H}), 0.99(\mathrm{t}, J=7.7 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 194.7,146.3,144.1,144.0,143.1,138.2,135.4,135.2,134.0$, $131.6,129.4,129.3,129.0,128.4,128.2,123.6,123.0,44.4,33.6,33.1,31.2,30.6,22.9,14.1$.

Minor product ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.59-7.57(\mathrm{~m}, 1 \mathrm{H}), 7.49-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.40$ $(\mathrm{m}, 3 \mathrm{H}), 7.16-7.11(\mathrm{~m}, 3 \mathrm{H}), 6.67-6.63(\mathrm{~m}, 1 \mathrm{H}), 3.62(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.20-3.12(\mathrm{~m}, 2 \mathrm{H})$, 2.88-2.78 (m, 2H), 2.12-2.04 (m, 2H), 1.59-1.53 (m, 4H), $1.09(\mathrm{t}, J=7.7 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 195.0,143.8,142.6,140.9,140.3,139.9,137.2,136.0,135.0$, $134.7,134.1,131.5,129.1,128.8,128.1,123.8,122.8,44.6,34.0,33.3,29.1,26.9,23.5,14.1$.

HRMS (ESI ${ }^{+}$): calculated for $\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{ClONa}^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 411.1486$, found 411.1490.

2.4. Post-functionalization of $[2+2+2]$ cycloadducts

10-Butyl-4-phenyl-1H-fluoreno[2,3-c]furan-9(3H)-one (94)

A solution of $\mathbf{6 5}(400 \mathrm{mg}, 1.0 \mathrm{mmol})$ in trifluoroacetic acid (3 mL) was refluxed for 36 h. Evaporation of the excess of trifluoroacetic acid under reduced pressure gave a residue which was purified by column chromatography on silica gel (Petroleum ether/Ethyl acetate gradient from $98 / 2$ to $95 / 5$) to afford compound $\mathbf{9 4}(300 \mathrm{mg}, 85 \%)$ as a yellow solid. m.p. $109-111^{\circ} \mathrm{C}$.
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 2 8}$ (Cyclohexane/Ethyl acetate; 90/10, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta 7.60-7.55(\mathrm{~m}, 1 \mathrm{H}), 7.53-7.47(\mathrm{~m}, 3 \mathrm{H}), 7.37-7.32(\mathrm{~m}, 2 \mathrm{H})$, $7.18-7.05(\mathrm{~m}, 2 \mathrm{H}), 6.38(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{~s}, 1 \mathrm{H}), 4.86(\mathrm{~s}, 1 \mathrm{H}), 2.97(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $2 \mathrm{H}), 1.68-1.54(\mathrm{~m}, 2 \mathrm{H}), 1.52-1.40(\mathrm{~m}, 2 \mathrm{H}), 0.97(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta 194.3,145.4,143.6,142.7,139.9,137.8,137.5,135.4,134.1$, $131.2,129.8,129.3,128.5,123.8,122.8,73.9,73.3,32.2,29.0,23.2,14.1$.

HRMS (ESI^{+}): calculated for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{O}_{2} \mathrm{Na}^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$: 377.1512 , found 377.1515.

1-Butyl-2,3-bis(hydroxymethyl)-4-phenyl-9H-fluoren-9-one (95).

To a solution of $\mathbf{7 6}(100 \mathrm{mg}, 0.21 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was added trifluoroacetic acid (1 mL , large excess amount). The reacton mixture was stirred at room temperature for 36 h. When the reaction was complete (TLC monitoring), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the excess of trifluoroacetic acid were evaporated under reduced pressure. The residue was purified by flash chromatography on silica gel (Petroleum ether/Ethyl acetate gradient from $98 / 2$ to $95 / 5$) to afford compound 95 ($60 \mathrm{mg}, 75 \%$) as a yellow solid. m.p. $166-168^{\circ} \mathrm{C}$.
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 2 8}$ (Cyclohexane/Ethyl acetate; 90/10, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta 7.66-7.60(\mathrm{~m}, 1 \mathrm{H}), 7.58-7.51(\mathrm{~m}, 3 \mathrm{H}), 7.34-7.27(\mathrm{~m}, 2 \mathrm{H})$, $7.22(\mathrm{td}, J=7.5,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{td}, J=7.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.96(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.57(\mathrm{~s}$, $2 \mathrm{H}), 5.22(\mathrm{~s}, 2 \mathrm{H}), 3.33-3.22(\mathrm{~m}, 2 \mathrm{H}), 1.63-1.52(\mathrm{~m}, 4 \mathrm{H}), 1.01(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 193.7,145.4,144.9,142.7,138.2,138.0,136.5,134.9,134.7$, 133.1, 132.1, 129.6, 129.6, 129.2, 124.2, 123.6, 63.7, 62.7, 33.8, 27.4, 23.4, 13.9.

HRMS (ESI ${ }^{+}$): calculated for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{O}_{3} \mathrm{Na}^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$: 395.1618, found 395.1619.

2,3-Bis(bromomethyl)-1-butyl-4-phenyl-9H-fluoren-9-one (96)

To a solution of $76(480 \mathrm{mg}, 1.0 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(10 \mathrm{~mL})$ were added $n \mathrm{Bu} \mathrm{H}_{4} \mathrm{NBr}(0.16$ g, 0.5 mmol), aq. $\mathrm{HBr}\left(48 \%\right.$ in water, 3 mL) and conc. $\mathrm{H}_{2} \mathrm{SO}_{4}(0.3 \mathrm{~mL})$. The resulting mixture was heated at $60^{\circ} \mathrm{C}$ for 24 h . At the end of the reaction (TLC monitoring), the reaction mixture was poured into water $(50 \mathrm{~mL})$. The product was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$ and the combined organic layers were dried over MgSO_{4}, filtered and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel (Petroleum ether/Dichloromethane $=2 / 1$) to afford compound $96(444 \mathrm{mg}, 90 \%)$ as a yellow solid. m.p. $132-133{ }^{\circ} \mathrm{C}$.
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 5 2}$ (Cyclohexane/Ethyl acetate; 90/10, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.62-7.50(\mathrm{~m}, 4 \mathrm{H}), 7.48-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.17(\mathrm{td}, J=7.5,0.9$ $\mathrm{Hz}, 1 \mathrm{H}), 7.07(\mathrm{td}, J=7.6,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.88(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.79(\mathrm{~s}, 2 \mathrm{H}), 4.42(\mathrm{~s}, 2 \mathrm{H}), 3.37$ - 3.13 (m, 2H), $1.75-1.50(\mathrm{~m}, 4 \mathrm{H}), 1.04(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 194.0,144.5,143.8,143.1,142.1,137.0,136.9,136.8,135.0$, $134.4,131.2,129.4,129.3,129.1,128.9,123.9,123.4,33.3,27.5,27.3,26.3,23.5,14.0$.

HRMS (ESI ${ }^{+}$): calcd. for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{Br}_{2} \mathrm{OH}[\mathrm{M}+\mathrm{H}]^{+}: 497.0110$, found 497.0109.

1-Butyl-4-iodo-2,3-bis(methoxymethyl)-9H-fluoren-9-one (97)

To a solution of $\mathbf{6 9}(0.56 \mathrm{~g}, 1.41 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added a solution of iodine monochloride ($240 \mathrm{mg}, 1.5 \mathrm{mmol}$) in $\mathrm{DCM}(2 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ and the mixture was allowed to warm to room temperature and stirred for additional 30 minutes. The reaction was quenched with aqueous saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$. The organic layer was washed with brine and dried over MgSO_{4}, filtered and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel (Petroleum ether/Ethyl acetate gradient from $98 / 2$ to $95 / 5$) to afford compound $97(0.53 \mathrm{~g}, 84 \%)$ as a yellow solid. m.p. 93 $95^{\circ} \mathrm{C}$.
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 3}$ (Cyclohexane/Ethyl acetate; 90/10, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.98-8.87(\mathrm{~m}, 1 \mathrm{H}), 7.67(\mathrm{dd}, J=7.3,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{td}, J$ $=7.7,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{td}, J=7.4,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.74(\mathrm{~s}, 2 \mathrm{H}), 4.55(\mathrm{~s}, 2 \mathrm{H}), 3.54(\mathrm{~s}, 3 \mathrm{H}), 3.48$ ($\mathrm{s}, 3 \mathrm{H}$), $3.18(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.55-1.44(\mathrm{~m}, 4 \mathrm{H}), 0.98(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 193.3,147.8,146.5,145.3,144.2,138.9,135.1,133.8,133.1$, 129.6, 124.1, 122.9, 95.8, 75.2, 67.8, 59.0, 58.9, 33.5, 27.0, 23.4, 14.0.

HRMS (ESI ${ }^{+}$): calcd. for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{IO}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 473.0584$, found 473.0580 .

1-Butyl-2,3-bis(methoxymethyl)-4-(phenylethynyl)-9H-fluoren-9-one (98)

$\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(5 \mathrm{~mol} \%, 19.6 \mathrm{mg})$ and $\mathrm{CuI}(5 \mathrm{~mol} \%, 2.7 \mathrm{mg})$ were added to a $\mathrm{NEt}_{3} / \mathrm{THF}$ ($1: 1,2 \mathrm{~mL}$) solution containing iodo-substituted fluorenone 97 ($250 \mathrm{mg}, 0.56 \mathrm{mmol}$), phenylacetylene ($86 \mathrm{mg}, 0.84 \mathrm{mmol}, 1.5$ equiv). The mixture was stirred at $40^{\circ} \mathrm{C}$ for 4 h under argon. When the reaction was complete (TLC monitoring), a saturated aqueous solution of ammonium chloride was added and the mixture was stirred for 5 minutes. The organic layer was extracted with ethyl acetate ($3 \times 20 \mathrm{~mL}$), washed with brine, dried over MgSO_{4}, filtered and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel (Petroleum ether/Ethyl acetate gradient from 98/2 to 95/5) to afford compound 98 ($232 \mathrm{mg}, 98 \%$) as a yellow solid. m.p. $124-126^{\circ} \mathrm{C}$.
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 2 8}$ (Cyclohexane/Ethyl acetate; 90/10, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.43(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.72-7.57(\mathrm{~m}, 3 \mathrm{H}), 7.55-7.39(\mathrm{~m}$, $4 \mathrm{H}), 7.36-7.29(\mathrm{~m}, 1 \mathrm{H}), 4.86(\mathrm{~s}, 2 \mathrm{H}), 4.57(\mathrm{~s}, 2 \mathrm{H}), 3.52(\mathrm{~s}, 3 \mathrm{H}), 3.48(\mathrm{~s}, 3 \mathrm{H}), 3.21(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 2 \mathrm{H}), 1.68-1.40(\mathrm{~m}, 4 \mathrm{H}), 0.99(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 193.9,145.9,145.3,143.3,138.1,134.9,134.7,131.6,131.0$, $129.4,129.1,128.8,123.9,123.2,123.1,116.9,97.8,86.2,69.5,67.1,59.0,58.8,33.6,27.4$, 23.5, 14.1.

HRMS (ESI ${ }^{+}$): calcd. for $\mathrm{C}_{29} \mathrm{H}_{28} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 447.1931$, found 447.1930.

1-Butyl-2,3-bis(methoxymethyl)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-9H-fluoren-9-one (99)

To a dry DMF solution (1 mL) of $97(135 \mathrm{mg}, 0.3 \mathrm{mmol})$ were added bis(pinacolato)diboron ($114 \mathrm{mg}, 0.45 \mathrm{mmol}$), $\mathrm{PdCl}_{2}(\mathrm{dppf}) \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}(11 \mathrm{mg}, 0.015 \mathrm{mmol})$, and KOAc ($60 \mathrm{mg}, 0.6 \mathrm{mmol}$). The mixture was stirred at $80^{\circ} \mathrm{C}$ for 18 h . After cooling, the DMF was removed under vacuum, and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and water were added. The resulting mixture was extracted with dichloromethane $(2 \times 30 \mathrm{~mL})$, and the organic layer was washed with water and brine, dried over anhydrous MgSO_{4}. The organic solvent was concentrated in vacuo to yield a dark-black oil. The excess bis(pinacolato)diboron was removed under reduced pressure with heating. The residue was purified by flash chromatography on silica gel (Petroleum ether/Ethyl acetate gradient from $95 / 5$ to $90 / 10$) afforded 99 ($88 \mathrm{mg}, 65 \%$) as a yellow oil.
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 2 3}$ (Cyclohexane/Ethyl acetate; 90/10, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.07(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{td}, J=$ $7.6,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.19(\mathrm{~m}, 1 \mathrm{H}), 4.70(\mathrm{~s}, 2 \mathrm{H}), 4.42(\mathrm{~s}, 2 \mathrm{H}), 3.39(\mathrm{~s}, 3 \mathrm{H}), 3.27(\mathrm{~s}, 3 \mathrm{H}), 3.24$ - $3.13(\mathrm{~m}, 2 \mathrm{H}), 1.47(\mathrm{~s}, 16 \mathrm{H}), 1.01-0.90(\mathrm{~m}, 3 \mathrm{H})$.
${ }^{13}$ C NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 194.9,150.5,148.7,145.2,144.9,135.2,135.0,134.0,129.8$, $128.8,123.7,122.7,84.1,71.2,66.7,58.3,57.5,33.6,27.0,25.9,23.3,14.1$.

1-Butyl-2,3-bis(methoxymethyl)-4-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) phenyl)-9H-fluoren-9-one (100)

To a dry DMF solution (1 mL) of $73(150 \mathrm{mg}, 0.313 \mathrm{mmol})$ were added bis(pinacolato)diboron ($120 \mathrm{mg}, 0.47 \mathrm{mmol}$), $\mathrm{PdCl}_{2}(\mathrm{dppf}) \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}(11.4 \mathrm{mg}, 0.0156 \mathrm{mmol})$, and KOAc ($61 \mathrm{mg}, 0.626 \mathrm{mmol}$). The mixture was stirred at $80^{\circ} \mathrm{C}$ for 18 h . After the solution was cooled, the DMF was removed under vacuum, and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and water were added. The resulting mixture was extracted with dichloromethane ($2 \times 30 \mathrm{~mL}$), and the organic layer was washed with water and brine, dried over anhydrous MgSO_{4}. The solvent was concentrated in vacuo to yield a dark-black oil. The excess bis(pinacolato)diboron was removed under reduced pressure with heating. The residue was purified by flash chromatography on silica gel (Petroleum ether/Ethyl acetate gradient from 95/5 to 90/10) afforded $\mathbf{1 0 0}$ ($140 \mathrm{mg}, 85 \%$) as a yellow oil.
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 2}$ (Cyclohexane/Ethyl acetate; 90/10, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.93(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=$ $7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.09(\mathrm{dt}, J=23.8,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.00(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{~s}, 2 \mathrm{H}), 4.14(\mathrm{~s}, 2 \mathrm{H})$, $3.49(\mathrm{~s}, 3 \mathrm{H}), 3.31-3.18(\mathrm{~m}, 2 \mathrm{H}), 3.17(\mathrm{~s}, 3 \mathrm{H}), 1.66-1.45(\mathrm{~m}, 4 \mathrm{H}), 1.42(\mathrm{~s}, 12 \mathrm{H}), 1.01(\mathrm{t}, J=$ $6.6 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 194.6,144.9,143.5,142.7,142.2,141.3,137.7,136.9,135.2$, $135.1,134.3,130.8,129.0,128.5,123.6,123.4,84.2,68.5,67.4,58.9,58.6,33.6,27.3,25.1$, 23.5, 14.1.

MS (ESI, NH_{3}): $\mathrm{m} / \mathrm{z}=549[\mathrm{M}+\mathrm{Na}]^{+}$.

3. Formation of 2-aminopyridine and related derivatives

3.1. Synthesis of symmetrical diynes

General procedure F:

Experimental part

To a suspension of NaH (60% in mineral oil, 1.1-2.4 equiv) in THF was added dropwise a solution of nucleophile (1.0 equiv) at $0^{\circ} \mathrm{C}$, and the reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 min. A solution of 1-bromo-2-butyne or propargyl bromide (1.2 or 2.4 equiv) in THF was added to the mixture. The reaction was allowed to warm up to room temperature and stirred until completion. The mixture was finally quenched with saturated ammonium chloride and extracted with diethyl ether $(\times 3)$. The combined organic layers were washed with brine, dried over MgSO_{4}, filtered and concentrated under reduced pressure. The residue was purified by column chromatography or distillation under vacuum to afford the desired product.

General procedure G:

To a round bottom flask p-toluenesulfonamide (1 equiv), 1-bromo-2-butyne or propargyl bromide (3.0 equiv), potassium carbonate (5 equiv) and acetonitrile (5 M) were employed. The resulting mixture was stirred at $80^{\circ} \mathrm{C}$ for 14 h . When the reaction was complete (TLC monitoring), the reaction mixture was filtered, and the organic layer was concentrated under reduced pressure. The residue was purified by column chromatography to afford the desired product.

General procedure H:

$$
\mathrm{R}=+\mathrm{NXS} \underset{(\mathrm{X}=\mathrm{Br} \text { or I) }}{=} \underset{\begin{array}{c}
\text { dry Acetone or DMF } \\
\mathrm{rt}, 3 \mathrm{~h}
\end{array}}{+\mathrm{AgNO} 10 \mathrm{~mol} \%}=\mathrm{R}
$$

Silver nitrate (10 mol\%) and N -bromosuccinimide (NBS) or N -iodosuccinimide (NIS) (1.2-2 equiv) were added to a solution of terminal alkyne (1 equiv) in dry acetone or DMF, and the reaction mixture was stirred at room temperature for 3 h . The reaction mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}$ and washed with water. The aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(\times 3)$, the combined organic fractions were washed with water, saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ aqueous solution and
brine. The solvent was dried over MgSO_{4}, filtered and concentrated under reduced pressure. The residue was purified by flash chromatography to afford the desired compound.

Dimethyl 2,2-di(but-2-yn-1-yl)malonate (101)

Chemical Formula: $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{4}$ Exact Mass: 236.1049

This compound was obtained following the general procedure F. Starting from dimethyl malonate ($4.01 \mathrm{~g}, 30 \mathrm{mmol}$), 1-bromo-2-butyne ($5.84 \mathrm{~mL}, 66 \mathrm{mmol}, 2.2$ equiv) and NaH (2.64 $\mathrm{g}, 66 \mathrm{mmol})$. The reaction mixture was stirred at room temperature for 14 h . Purification on silica gel (Petroleum ether/Ethyl acetate gradient from 95/5 to 90/10) afforded 101 ($6.15 \mathrm{~g}, 87$ $\%)$ as a white solid. The analytical data were identical to the literature. ${ }^{154}$
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 5 1}$ (Cyclohexane/Ethyl acetate; 90/10, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.73(\mathrm{~s}, 6 \mathrm{H}), 2.88(\mathrm{q}, J=2.7 \mathrm{~Hz}, 4 \mathrm{H}), 2.05(\mathrm{t}, J=2.7 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.8,79.1,73.2,57.1,53.0,23.1,3.6$.

5,5-Di(but-2-yn-1-yl)-1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-trione (102)

Chemical Formula: $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{3}$
Exact Mass: 260.1161

This compound was obtained following the general procedure F. Starting from 1,3dimethylbarbituric acid ($0.94 \mathrm{~g}, 6 \mathrm{mmol}$), 1-bromo-2-butyne ($1.26 \mathrm{~mL}, 14.4 \mathrm{mmol}, 2.4$ equiv) and $\mathrm{NaH}(0.58 \mathrm{~g}, 14.4 \mathrm{mmol}, 2.4$ equiv). The reaction mixture was stirred at room temperature for 12 h . Purification on silica gel (Petroleum ether/Ethyl acetate gradient from 95/5 to 85/15) afforded $102(0.96 \mathrm{~g}, 62 \%)$ as a white solid. m.p. $118-120^{\circ} \mathrm{C}$.
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 6 2}$ (Cyclohexane/Ethyl acetate; 80/20, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.40-3.24(\mathrm{~m}, 6 \mathrm{H}), 2.78-2.51(\mathrm{~m}, 4 \mathrm{H}), 1.75-1.50(\mathrm{~m}, 6 \mathrm{H})$.

Experimental part
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.3,151.4,80.0,72.4,56.6,28.8,28.3,3.4$.

MS (CI, NH_{3}): $\mathrm{m} / \mathrm{z}=261[\mathrm{M}+\mathrm{H}]^{+}$.

2,2-Di(but-2-yn-1-yl)-1H-indene-1,3(2H)-dione (103)

Chemical Formula: $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{O}_{2}$ Exact Mass: 250.0994

This compound was obtained following the general procedure \mathbf{F}. Starting from indene dione ($0.84 \mathrm{~g}, 6 \mathrm{mmol}$), 1-bromo-2-butyne ($1.26 \mathrm{~mL}, 14.4 \mathrm{mmol}, 2.4$ equiv) and $\mathrm{NaH}(0.58 \mathrm{~g}, 14.4$ $\mathrm{mmol}, 2.4$ equiv). The reaction mixture was stirred at room temperature for 3 h . Purification on silica gel (Petroleum ether/Ethyl acetate gradient from 95/5 to 90/10) afforded $\mathbf{1 0 3}$ ($1.15 \mathrm{~g}, 77$ $\%)$ as a yellow solid. m.p. $97-99^{\circ} \mathrm{C}$. The analytical data were identical to the literature. ${ }^{145 \mathrm{e}}$
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 2 8}$ (Cyclohexane/Ethyl acetate; 90/10, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.06-7.93(\mathrm{~m}, 2 \mathrm{H}), 7.92-7.76(\mathrm{~m}, 2 \mathrm{H}), 2.63-2.46(\mathrm{~m}, 4 \mathrm{H})$, 1.39 (s, 6H).
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 201.9,142.8,135.6,123.2,79.5,73.1,56.6,23.5,3.2$.

2,2-Di(but-2-yn-1-yl)propane-1,3-diol (104)

To a stirred mixture of $\mathrm{LiAlH}_{4}(2.89 \mathrm{~g}, 76.2 \mathrm{mmol}, 6$ equiv) in dry THF (50 mL) at 0 ${ }^{\circ} \mathrm{C}$ was added dropwise a solution of dimethyl 2,2-di(but-2-ynyl)malonate $\mathbf{1 0 1}(3.0 \mathrm{~g}, 12.7$ mmol, 1 equiv) in THF (20 mL). The resulting mixture was stirred at room temperature for 1 h. The reaction was quenched carefully with water (2.9 mL), followed by stirring at $0^{\circ} \mathrm{C}$ for 10 min. Then a solution of $\mathrm{NaOH}(15 \%, 2.9 \mathrm{~mL})$ was added and stirred for additional 10 min , followed by addition of water (8.7 mL) and stirred for additional 1 h . The resulting solution was dried over MgSO_{4}, filtered through Celite, and concentrated to give the diol $\mathbf{1 0 4}$ (2.05 g , $95 \%)$ as a white solid. m.p. $85-87^{\circ} \mathrm{C}$. The analytical data were identical to the literature. ${ }^{34}$
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 1}$ (Cyclohexane/Ethyl acetate; 90/10, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.68(\mathrm{~s}, 4 \mathrm{H}), 2.46(\mathrm{br}, 2 \mathrm{H}), 2.24(\mathrm{q}, J=2.4 \mathrm{~Hz}, 4 \mathrm{H}), 1.78(\mathrm{~s}$, 6 H).
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 78.5,75.2,67.1,42.5,22.5,3.6$.

2,2-Di(but-2-yn-1-yl)propane-1,3-diyl diacetate (105)

To a solution of diol $\mathbf{1 0 4}(0.72 \mathrm{~g}, 4 \mathrm{mmol})$ in DCM $(20 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added dropwise acetic anhydride ($1.63 \mathrm{~g}, 16 \mathrm{mmol}, 4$ equiv) and diisopropylethylamine ($2.27 \mathrm{~g}, 17.6 \mathrm{mmol}, 4.4$ equiv). The reaction mixture was stirred at room temperature for 24 h and then quenched with water. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 50 \mathrm{~mL})$, and the combined organic layers were washed with brine, dried with MgSO_{4}, filtered and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel (Petroleum ether/Ethyl acetate gradient from $95 / 5$ to $90 / 10$) afforded $\mathbf{1 0 5}(0.98 \mathrm{~g}, 92 \%)$ as a colorless oil. The analytical data were identical to the literature. ${ }^{145 \mathrm{~b}}$
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 4 8}$ (Cyclohexane/Ethyl acetate; 90/10, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.07(\mathrm{~s}, 4 \mathrm{H}), 2.30(\mathrm{q}, J=2.6 \mathrm{~Hz}, 4 \mathrm{H}), 2.05(\mathrm{~s}, 6 \mathrm{H}), 1.76(\mathrm{t}, J=$ $2.6 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.9,78.8,73.8,65.6,40.4,22.6,21.0,3.7$.
(((2,2-Di(but-2-yn-1-yl)propane-1,3-diyl)bis(oxy))bis(methylene))dibenzene (106)

To a suspension of NaH (60% in mineral oil, 2.5 equiv, 2.14 g) in THF (20 mL) was added dropwise diol $104(0.9 \mathrm{~g}, 5 \mathrm{mmol})$ in THF (5 mL). The reaction mixture was stirred at 0 ${ }^{\circ} \mathrm{C}$ for 30 minutes before a solution of benzyl bromide ($2.14 \mathrm{~g}, 12.5 \mathrm{mmol}, 2.5$ equiv) was added
dropwise. The reaction mixture was stirred at room temperature for 12 h and then quenched with water. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 50 \mathrm{~mL})$, and the combined organic layers were washed with brine, dried with MgSO_{4}, filtered and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel (Petroleum ether/Ethyl acetate gradient from 95/5 to 90/10) afforded $\mathbf{1 0 6}(1.8 \mathrm{~g}, 99 \%)$ as a colorless oil. The analytical data were identical to the literature. ${ }^{145 b}$
$\mathbf{R}_{\mathbf{f}}=0.45$ (Cyclohexane/Ethyl acetate; 90/10, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.41-7.22(\mathrm{~m}, 10 \mathrm{H}), 4.53(\mathrm{~s}, 4 \mathrm{H}), 3.47(\mathrm{~s}, 4 \mathrm{H}), 2.41-2.23(\mathrm{~m}$, $4 \mathrm{H}), 1.75$ ($\mathrm{s}, 6 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 139.0,128.3,127.5,127.4,75.6,73.4,71.7,42.6,22.5,3.7$.

1-(But-2-yn-1-yloxy)but-2-yne (107)

Chemical Formula: $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{O}$ Exact Mass: 122.0732

This compound was obtained following the general procedure F. Starting from 2-butyne-1-ol ($1.05 \mathrm{~g}, 15 \mathrm{mmol}$), 1-bromo-2-butyne ($1.6 \mathrm{~mL}, 18 \mathrm{mmol}, 1.2$ equiv) and $\mathrm{NaH}(1.32 \mathrm{~g}, 33 \mathrm{mmol}$, 2.2 equiv). The reaction mixture was stirred at room temperature for 4 h . Purification on silica gel (Petroleum ether/Ethyl acetate gradient from 99/1 to 80/20) afforded $\mathbf{1 0 7}$ ($1.75 \mathrm{~g}, 96 \%$) as a colorless oil. The analytical data were identical to the literature. ${ }^{154}$
$\mathbf{R}_{\mathbf{f}}=0.5\left(\right.$ Cyclohexane/Ethyl acetate; $\left.95 / 5, \mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.18(\mathrm{q}, J=2.3 \mathrm{~Hz}, 4 \mathrm{H}), 1.85(\mathrm{t}, J=2.3 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 83.0, $74.7,57.1,3.7$.

N, N-di(but-2-yn-1-yl)-4-methylbenzenesulfonamide (108)

Chemical Formula: $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}_{2} \mathrm{~S}$
Exact Mass: 275.0980

This compound was obtained following the general procedure G. Starting from p toluenesulfonamide ($2 \mathrm{~g}, 11.7 \mathrm{mmol}$), 1-bromo-2-butyne ($4.66 \mathrm{~g}, 35.1 \mathrm{mmol}, 3$ equiv) and $\mathrm{K}_{2} \mathrm{CO}_{3}\left(8 \mathrm{~g}, 58.5 \mathrm{mmol}, 5\right.$ equiv). The reaction mixture was stirred at $80{ }^{\circ} \mathrm{C}$ for 14 h . Purification on silica gel (Petroleum ether/Ethyl acetate; 90/10) afforded $\mathbf{1 0 8}(2.8 \mathrm{~g}, 70 \%)$ as a white solid. The analytical data were identical to the literature. ${ }^{145 \mathrm{~d}}$
$\mathbf{R}_{\mathbf{f}}=0.76$ (Cyclohexane/Ethyl acetate; 70/30, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.71(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.32-7.20(\mathrm{~m}, 2 \mathrm{H}), 4.07(\mathrm{q}, J=2.2$ $\mathrm{Hz}, 4 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 1.64(\mathrm{t}, \mathrm{J}=2.2 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 150.4,143.3,129.2,128.0,81.7,71.8,36.8,21.6,3.5$.

Dimethyl 2,2-di(prop-2-yn-1-yl)malonate (109)

This compound was obtained following the general procedure F. Starting from dimethyl malonate ($4.01 \mathrm{~g}, 30 \mathrm{mmol}$), propargyl bromide ($7.12 \mathrm{~mL}, 67.5 \mathrm{mmol}, 2.2$ equiv) and NaH $(2.64 \mathrm{~g}, 66 \mathrm{mmol})$. The reaction mixture was stirred at room temperature for 14 h . Purification on silica gel (Petroleum ether/Ethyl acetate gradient from 95/5 to 90/10) afforded $\mathbf{1 0 9}$ (5.7 g , $91 \%)$ as a white solid. The analytical data were identical to the literature. ${ }^{41}$
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 3}$ (Cyclohexane/Ethyl acetate; 85/15, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.75(\mathrm{~s}, 6 \mathrm{H}), 2.98(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 4 \mathrm{H}), 2.03(\mathrm{t}, J=2.6 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.0,78.3,71.8,56.4,53.2,22.6$.

Dimethyl 2,2-bis(3-(trimethylsilyl)prop-2-yn-1-yl)malonate (110)

To a solution of dimethyl 2,2-di(prop-2-yn-1-yl)malonate $\mathbf{1 0 9}$ ($1.04 \mathrm{~g}, 5 \mathrm{mmol}$) in THF $(40 \mathrm{~mL})$ was slowly added lithium hexamethyldisilazide ($11 \mathrm{mmol}, 11 \mathrm{~mL}, 1 \mathrm{M}$ in THF) at -78 ${ }^{\circ} \mathrm{C}$, and the solution was stirred at the same temperature for 1 h . To the resulting mixture was added at chlorotrimethylsilane ($1.08 \mathrm{~mL}, 12.5 \mathrm{mmol}, 2.5$ equiv) at $-78^{\circ} \mathrm{C}$, and the reaction mixture was allowed to warm to room temperature and stirred for additional 1 h . The reaction was quenched with water $(10 \mathrm{~mL})$. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 30 \mathrm{~mL})$, and the combined organic layer was washed with brine, dried with MgSO_{4}, filtered and concentrated under reduced pressure. The residues was purified by flash chromatography on silica gel (Petroleum ether/Ethyl acetate gradient from 98/2 to 95/5) afforded $\mathbf{1 1 0}$ ($0.8 \mathrm{~g}, 45 \%$) as a colorless sticky oil. The analytical data were identical to the literature. ${ }^{145 \mathrm{a}}$
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 6 5}$ (Cyclohexane/Ethyl acetate; 95/5, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.74(\mathrm{~s}, 6 \mathrm{H}), 2.97(\mathrm{~s}, 4 \mathrm{H}), 0.12(\mathrm{~s}, 18 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.2,101.1,88.5,57.4,53.0,24.2,0.1$.

2,2-Dimethyl-5,5-di(prop-2-yn-1-yl)-1,3-dioxane (121)

To a solution of diol $120(0.6 \mathrm{~g}, 4.0 \mathrm{mmol})$ in dry acetone (20 mL) was added phosphorus pentoxide ($1.14 \mathrm{~g}, 8.0 \mathrm{mmol}$, 2 equiv) by one portion and the reaction mixture was stirred at room temperature for 20 mins . Then the resulting mixture was poured into a mixture of $\mathrm{NaOH}(2 \mathrm{~g})$ and ice $(30 \mathrm{~g})$, and extracted with diethyl ether $(3 \times 30 \mathrm{~mL})$. The combined organic fractions were washed with saturated aqueous NaHCO_{3} and brine, dried with MgSO_{4}, filtered and concentrated under reduced pressure. The residues was purified by flash chromatography on silica gel (Petroleum ether/Ethyl acetate gradient from 95/5 to 90/10) afforded $121(0.61 \mathrm{~g}, 80 \%)$ as a slight yellow oil. The analytical data were identical to the literature. ${ }^{145 \mathrm{i}}$
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 6 5}$ (Cyclohexane/Ethyl acetate; 80/20, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H} \mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.77(\mathrm{~s}, 4 \mathrm{H}), 2.43(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 4 \mathrm{H}), 2.05(\mathrm{t}, J=2.7 \mathrm{~Hz}, 2 \mathrm{H})$, 1.42 (s, 6H).

```
'13}\mathbf{C NMR (75 MHz, CDCl}3) \delta 98.4, 79.9, 71.5, 66.0, 35.2, 23.9, 22.8.
```


4-Methyl-N,N-di(prop-2-yn-1-yl)benzenesulfonamide (122)

Chemical Formula: $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{NO}_{2} \mathrm{~S}$ Exact Mass: 247.0667

This compound was obtained following the general procedure G. Starting from p toluenesulfonamide ($6.84 \mathrm{~g}, 40 \mathrm{mmol}$), propargyl bromide ($11.4 \mathrm{~mL}, 120 \mathrm{mmol}, 3$ equiv) and $\mathrm{K}_{2} \mathrm{CO}_{3}$ (27.2 g, 200 mmol , 5 equiv). The reaction mixture was stirred at $80^{\circ} \mathrm{C}$ for 14 h . Purification on silica gel (Petroleum ether/Ethyl acetate; 85/15) afforded 122 ($9.2 \mathrm{~g}, 91 \%$) as a white solid. The analytical data were identical to the literature. ${ }^{145 \mathrm{j}}$
$\mathbf{R}_{\mathbf{f}}=0.3\left(\right.$ Cyclohexane/Ethyl acetate; $\left.85 / 15, \mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.71(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.16(\mathrm{~d}, J=$ $2.7 \mathrm{~Hz}, 4 \mathrm{H}$), 2.42 ($\mathrm{s}, 3 \mathrm{H}$), 2.14 (t, J = $2.7 \mathrm{~Hz}, 2 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta 144.2,136.9,129.2,128.2,76.2,74.4,36.2,21.6$.
tert-Butyl di(prop-2-yn-1-yl)carbamate (123)

Chemical Formula: $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NO}_{2}$ Exact Mass: 193.1103

This compound was obtained following the general procedure \mathbf{F}. Starting from Boc-protected propargylamine ($3.45 \mathrm{~g}, 22.3 \mathrm{mmol}$), propargyl bromide ($3.5 \mathrm{~mL}, 33.4 \mathrm{mmol}, 1.5$ equiv) and $\mathrm{NaH}(1.34 \mathrm{~g}, 33.4 \mathrm{mmol}, 1.5$ equiv). The reaction mixture was stirred at room temperature for 14 h . Purification on silica gel (Petroleum ether/Ethyl acetate; 90/10) afforded 123 (3.13 g , 73%) as pale yellow oil. The analytical data were identical to the literature. ${ }^{145 \mathrm{k}}$
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 5 7}$ (Cyclohexane/Ethyl acetate; 90/10, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.16(\mathrm{br}, 4 \mathrm{H}), 2.22(\mathrm{t}, J=2.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.47(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta 154.4,81.3,79.0,72.0,35.3,28.4$.

Dimethyl 2,2-bis(3-bromoprop-2-yn-1-yl)malonate (124)

Chemical Formula: $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{Br}_{2} \mathrm{O}_{4}$ Exact Mass: 363.8946

This compound was obtained following the general procedure \mathbf{H}. Starting from dimethyl 2,2-di(prop-2-yn-1-yl)malonate $\mathbf{1 0 9}$ ($1.04 \mathrm{~g}, 5 \mathrm{mmol}$), NBS ($1.78 \mathrm{~g}, 10 \mathrm{mmol}, 2$ equiv) and silver nitrate ($85 \mathrm{mg}, 0.5 \mathrm{mmol}$). The reaction mixture was stirred at room temperature for 3 h . Purification on silica gel (Petroleum ether/Ethyl acetate gradient from 95/5 to 90/10) afforded $\mathbf{1 2 4}(5.7 \mathrm{~g}, 98 \%)$ as a slight yellow solid. m.p. $60-62^{\circ} \mathrm{C}$. The analytical data were identical to the literature. ${ }^{1451}$
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 3 8}$ (Cyclohexane/Ethyl acetate; 90/10, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.76(\mathrm{~s}, 6 \mathrm{H}), 2.99(\mathrm{~s}, 4 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.0,74.4,56.5,53.4,42.3,24.2$.
$\mathbf{M S}\left(\mathrm{CI}, \mathrm{NH}_{3}\right): \mathrm{m} / \mathrm{z}=384\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$.

3.2. Synthesis of unsymmetrical diynes

General procedure I:

To a solution of alcohol (1.0 equiv) in DMSO (1 M) was slowly added an aqueous solution of potassium hydroxide ($1 \mathrm{M}, 1.3$ equiv) at $0{ }^{\circ} \mathrm{C}$. After 10 mins , a solution of propargyl bromide (1.0 equiv) was added dorpwise. The reaction mixture was stirred at room temperature for 4 h . The reaction was quenched with water, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(\times 3)$. The combined organic layers were washed with water and brine, dried over MgSO_{4}, filtered and concentrated under reduced pressure. The residue was purified by flash chromatography to afford the desired compound.

This compound was obtained following the general procedure F. Starting from dimethyl 2-(but-2-yn-1-yl)malonate 144 ($3.3 \mathrm{~g}, 18 \mathrm{mmol}$), propargyl bromide ($2.4 \mathrm{~mL}, 21.6 \mathrm{mmol}, 1.2$ equiv) and $\mathrm{NaH}(1.08 \mathrm{~g}, 27 \mathrm{mmol}, 1.5$ equiv). The reaction mixture was stirred at room temperature for 4 h . Purification on silica gel (Petroleum ether/Ethyl acetate gradient from 98/2 to 95/5) afforded $\mathbf{1 2 5}$ ($3.2 \mathrm{~g}, 80 \%$) as a pale yellow solid. The analytical data were identical to the literature. ${ }^{1451}$
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 3 5}$ (Cyclohexane/Ethyl acetate; 90/10, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.75(\mathrm{~s}, 6 \mathrm{H}), 2.97(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.93(\mathrm{q}, J=2.5 \mathrm{~Hz}, 2 \mathrm{H})$, $2.02(\mathrm{t}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.75(\mathrm{t}, J=2.6 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.5,79.4,78.8,73.0,71.6,57.0,53.1,23.2,22.9,3.6$.

1-(Prop-2-yn-1-yloxy)but-2-yne (127)

Chemical Formula: $\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{O}$
Exact Mass: 108.0575

This compound was obtained following the general procedure I. Starting from 2-butyne-1-ol $(2.8 \mathrm{~g}, 40 \mathrm{mmol})$, propargyl bromide ($4.3 \mathrm{~mL}, 40 \mathrm{mmol}, 1$ equiv) and $\mathrm{KOH}(2.92 \mathrm{~g}, 52 \mathrm{mmol}$, 1.3 equiv). The reaction mixture was stirred at room temperature for 4 h . Purification on silica gel (Petroleum ether/Ethyl acetate gradient from 95/5 to 90/10) afforded $\mathbf{1 2 7}(3.4 \mathrm{~g}, 79 \%)$ as a pale yellow oil. The analytical data were identical to the literature. ${ }^{197}$
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 5}$ (Cyclohexane/Ethyl acetate; 95/5, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.23(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.20(\mathrm{q}, J=2.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.46-2.38$ (m, 1H), $1.85(\mathrm{t}, J=2.4 \mathrm{~Hz}, 3 \mathrm{H})$.

[^108]Experimental part
${ }^{13} \mathbf{C}$ NMR (75 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 83.3,79.3,74.8,74.3,57.3,56.4,3.7$.

Dimethyl 2-(3-bromoprop-2-yn-1-yl)-2-(but-2-yn-1-yl)malonate (129)

Chemical Formula: $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{BrO}_{4}$
Exact Mass: 299.9997

This compound was obtained following the general procedure H. Starting from dimethyl 2-(but-2-yn-1-yl)-2-(prop-2-yn-1-yl)malonate 125 ($0.89 \mathrm{~g}, 4 \mathrm{mmol}$), NBS ($1 \mathrm{~g}, 5.5 \mathrm{mmol}, 1.4$ equiv) and silver nitrate ($0.1 \mathrm{~g}, 0.6 \mathrm{mmol}$). The reaction mixture was stirred at room temperature for 3 h . Purification on silica gel (Petroleum ether/Ethyl acetate gradient from 95/5 to 90/10) afforded $\mathbf{1 2 9}(1.17 \mathrm{~g}, 98 \%)$ as a white solid. m.p. $65-67^{\circ} \mathrm{C}$. The analytical data were identical to the literature. ${ }^{1451}$
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 4 4}$ (Cyclohexane/Ethyl acetate; 90/10, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.74(\mathrm{~s}, 6 \mathrm{H}), 2.98(\mathrm{~s}, 2 \mathrm{H}), 2.89(\mathrm{q}, J=2.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.74(\mathrm{t}, J=$ $2.6 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.4,79.5,74.8,72.9,56.9,53.2,41.7,24.1,23.3,3.6$.

1-((3-Bromoprop-2-yn-1-yl)oxy)but-2-yne (130)

Chemical Formula: $\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{BrO}$ Exact Mass: 185.9680

This compound was obtained following the general procedure \mathbf{H}. Starting from 1-(prop-2-yn-1-yloxy)but-2-yne 127 ($1.08 \mathrm{~g}, 10 \mathrm{mmol}$), NBS ($1.96 \mathrm{~g}, 11 \mathrm{mmol}, 1.1$ equiv) and silver nitrate $(0.17 \mathrm{~g}, 1 \mathrm{mmol})$. The reaction mixture was stirred at room temperature for 3 h . Purification on silica gel (Petroleum ether/Ethyl acetate gradient from 98/2 to 95/5) afforded $\mathbf{1 3 0}$ ($1.8 \mathrm{~g}, 97 \%$) as a pale yellow oil. The analytical data were identical to the literature. ${ }^{1451}$
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 4}$ (Cyclohexane/Ethyl acetate; 95/5, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.26(\mathrm{~s}, 2 \mathrm{H}), 4.20(\mathrm{q}, J=2.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.86(\mathrm{t}, J=2.3 \mathrm{~Hz}, 3 \mathrm{H})$.

```
\({ }^{13} \mathbf{C}\) NMR ( \(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) \(\delta 83.5,75.9,74.3,57.5,57.4,46.4,3.7\).
```


1-Bromo-3-(prop-2-yn-1-yloxy)prop-1-yne (131)

This compound was obtained following the general procedure I. Starting from 3-bromoprop-2-yn-1-ol 145 ($1.6 \mathrm{~g}, 12 \mathrm{mmol}$), propargyl bromide ($1.55 \mathrm{~mL}, 14.4 \mathrm{mmol}, 1.2$ equiv) and KOH $(0.87 \mathrm{~g}, 15.6 \mathrm{mmol}, 1.3$ equiv). The reaction mixture was stirred at room temperature for 4 h . Purification on silica gel (Petroleum ether/Ethyl acetate gradient from 95/5 to 90/10) afforded $\mathbf{1 3 1}(1 \mathrm{~g}, 50 \%)$ as a pale yellow oil. The analytical data were identical to the literature. ${ }^{1451}$
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 6 6}$ (Cyclohexane/Ethyl acetate; 80/20, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.29(\mathrm{~s}, 2 \mathrm{H}), 4.25(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.46(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 78.8,75.5,75.3,57.6,56.8,46.9$.

N-(3-bromoprop-2-yn-1-yl)- N-(but-2-yn-1-yl)-4-methylbenzenesulfonamide (132)

Chemical Formula: $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{BrNO}_{2} \mathrm{~S}$
Exact Mass: 338.9929

This compound was obtained following the general procedure \mathbf{H}. Starting from N-(but-2-yn-1-yl)-4-methyl- N-(prop-2-yn-1-yl)benzenesulfonamide 128 ($0.51 \mathrm{~g}, 2 \mathrm{mmol}$), NBS ($0.43 \mathrm{~g}, 2.4$ $\mathrm{mmol}, 1.2$ equiv) and silver nitrate ($0.034 \mathrm{~g}, 0.2 \mathrm{mmol}$). The reaction mixture was stirred at room temperature for 3 h . Purification on silica gel (Petroleum ether/Ethyl acetate gradient from $90 / 10$ to $80 / 20$) afforded $132(0.65 \mathrm{~g}, 96 \%)$ as a white solid. m.p. $86-88^{\circ} \mathrm{C}$.
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 5}$ (Cyclohexane/Ethyl acetate; 80/20, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.73-7.68(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.30(\mathrm{~m}, 2 \mathrm{H}), 4.16(\mathrm{~s}, 2 \mathrm{H}), 4.10-$ $4.00(\mathrm{~m}, 2 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 1.72-1.59(\mathrm{~m}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.9,135.3,129.6,128.1,82.3,73.0,71.5,45.2,37.4,37.2$, 21.7, 3.5.

MS (CI, NH_{3}): $\mathrm{m} / \mathrm{z}=339[\mathrm{M}+\mathrm{H}]^{+}$.

Dimethyl 2-(but-2-yn-1-yl)-2-(3-iodoprop-2-yn-1-yl)malonate (133)

This compound was obtained following the general procedure \mathbf{H}. Starting from dimethyl 2-(but-2-yn-1-yl)-2-(prop-2-yn-1-yl)malonate 125 ($0.67 \mathrm{~g}, 3 \mathrm{mmol}$), NIS ($0.87 \mathrm{~g}, 3.6 \mathrm{mmol}, 1.2$ equiv) and silver nitrate $(0.05 \mathrm{~g}, 0.3 \mathrm{mmol})$. The reaction mixture was stirred at room temperature for 3 h . Purification on silica gel (Petroleum ether/Ethyl acetate gradient from $90 / 10$ to $80 / 20$) afforded $\mathbf{1 3 3}(1.02 \mathrm{~g}, 99 \%)$ as a yellow solid. m.p. $68-70^{\circ} \mathrm{C}$. The analytical data were identical to the literature. ${ }^{1451}$
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 3 4}$ (Cyclohexane/Ethyl acetate; 90/10, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.75(\mathrm{~s}, 6 \mathrm{H}), 3.13(\mathrm{~s}, 2 \mathrm{H}), 2.90(\mathrm{q}, J=2.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.75(\mathrm{t}, J=$ $2.5 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.4,88.9,79.5,77.4,72.9,57.2,53.2,25.1,23.3,3.6$.

3-(3-(But-2-yn-1-yloxy)prop-1-yn-1-yl)oxazolidin-2-one (134)

$\mathrm{CuCl}_{2} 20 \mathrm{~mol} \%$

127

Pyridine 2 equiv

Toluene, $75{ }^{\circ} \mathrm{C}, 20 \mathrm{~h}$
60\%

134

To a 250 mL flask were added $\mathrm{CuCl}_{2}(0.26 \mathrm{~g}, 2 \mathrm{mmol}, 0.2$ equiv), 2-Oxazolidone (4.35 $\mathrm{g}, 50.0 \mathrm{mmol}, 5$ equiv) and sodium carbonate ($2.12 \mathrm{~g}, 20 \mathrm{mmol}, 2.0$ equiv). The reaction flask was purged with oxygen for 15 min . A solution of pyridine ($1.58 \mathrm{~g}, 20.0 \mathrm{mmol}, 2.0$ equiv) in dry toluene (40 mL) was added. A balloon filled with oxygen was connected to the reaction flask via a needle. The flask was placed in an oil-bath and heated at $70{ }^{\circ} \mathrm{C}$. After 15 min , a solution of 1-(prop-2-yn-1-yloxy)but-2-yne 127 ($1.08 \mathrm{~g}, 10.0 \mathrm{mmol}$, 1 equiv) in dry toluene (40
mL) was added over 4 h using syringe pump. After this addition, the mixture was allowed to stir at $70^{\circ} \mathrm{C}$ for additional 16 h and was then cooled to room temperature. The reaction mixture was concentrated under reduced pressure. The residue was purified by flash chromatography (Cyclohexane/Ethyl acetate gradient from 60/40 to 50/50) to afford $\mathbf{1 3 4}(1.15 \mathrm{~g}, 60 \%$) as a slight yellow solid. m.p. $63-65^{\circ} \mathrm{C}$.
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 1 1}$ (Cyclohexane/Ethyl acetate; 70/30, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.49-4.38(\mathrm{~m}, 2 \mathrm{H}), 4.36(\mathrm{~s}, 2 \mathrm{H}), 4.16(\mathrm{q}, J=2.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.95$ $-3.85(\mathrm{~m}, 2 \mathrm{H}), 1.84(\mathrm{t}, J=2.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 156.2,83.2,76.5,74.4,67.6,63.2,57.2,56.8,46.8,3.7$.

MS (CI, NH_{3}): $\mathrm{m} / \mathrm{z}=194[\mathrm{M}+\mathrm{H}]^{+}$.

Dimethyl 2-(pent-4-en-2-yn-1-yl)-2-(prop-2-yn-1-yl)malonate (135)

Chemical Formula: $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}$
Exact Mass: 234.0892

This compound was obtained following the general procedure F. Starting from dimethyl 2-(pent-4-en-2-yn-1-yl)malonate $147(0.35 \mathrm{~g}, 1.8 \mathrm{mmol})$, propargyl bromide $(0.32 \mathrm{~g}, 2.1 \mathrm{mmol}$, 1.2 equiv) and $\mathrm{NaH}(0.84 \mathrm{~g}, 2.1 \mathrm{mmol}, 1.2$ equiv). The reaction mixture was stirred at room temperature for 2 h . Purification on silica gel (Petroleum ether/Ethyl acetate gradient from 98/2 to $95 / 5$) afforded $135(0.36 \mathrm{~g}, 85 \%)$ as a colorless oil.
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 2 7}$ (Cyclohexane/Ethyl acetate; 90/10, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.78-5.65(\mathrm{~m}, 1 \mathrm{H}), 5.60-5.50(\mathrm{~m}, 1 \mathrm{H}), 5.45-5.37(\mathrm{~m}, 1 \mathrm{H})$, $3.75(\mathrm{~s}, 6 \mathrm{H}), 3.12-3.07(\mathrm{~m}, 2 \mathrm{H}), 2.99-2.94(\mathrm{~m}, 2 \mathrm{H}), 2.03(\mathrm{t}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.3,127.1,117.0,84.3,82.6,78.6,71.8,56.9,53.2,23.7,22.9$.

MS (CI, NH_{3}): m/z $=235[\mathrm{M}+\mathrm{H}]^{+}$.

Dimethyl 2-(but-2-yn-1-yl)-2-(3-(pyridin-2-yl)prop-2-yn-1-yl)malonate (137)

Experimental part

Chemical Formula: $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NO}_{4}$ Exact Mass: 299.1158

This compound was obtained following the general procedure A. Starting from dimethyl 2-(but-2-yn-1-yl)-2-(prop-2-yn-1-yl)malonate $\mathbf{1 2 5}(1.1 \mathrm{~g}, 5 \mathrm{mmol}$), 2-bromo pyridine (0.57 mL , $6 \mathrm{mmol}, 1.2$ equiv $), \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(70 \mathrm{mg}, 2 \mathrm{~mol} \%)$ and $\mathrm{CuI}(9.5 \mathrm{mg}, 1 \mathrm{~mol} \%)$. Purification on silica gel (Cyclohexane/Ethyl acetate gradient from 90/10 to 70/30) afforded $137(0.9 \mathrm{~g}$, 60%) as a pale yellow oil. The analytical data were identical to the literature. ${ }^{198}$
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 2}$ (Cyclohexane/Ethyl acetate; 90/10, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.53(\mathrm{ddd}, J=4.9,1.8,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{td}, J=7.7,1.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.34(\mathrm{dt}, J=7.8,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.19$ (ddd, $J=7.6,4.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 6 \mathrm{H}), 3.23(\mathrm{~s}$, $2 \mathrm{H}), 3.04-2.94(\mathrm{~m}, 2 \mathrm{H}), 1.75(\mathrm{t}, J=2.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.6,150.0,136.1,127.4,122.8,84.8,83.3,79.6,73.0,57.1$, 53.2, 23.7, 23.5, 3.6.

4-(But-2-yn-1-yloxy)but-1-yne (138)

This compound was obtained following the general procedure F. Starting from 3-butyn-1-ol ($0.84 \mathrm{~g}, 12 \mathrm{mmol}, 1.2$ equiv), 1-brom-2-butyne ($1.33 \mathrm{~g}, 10 \mathrm{mmol}, 1.0$ equiv) and $\mathrm{NaH}(0.48 \mathrm{~g}$, $12 \mathrm{mmol}, 1.2$ equiv). The reaction mixture was stirred at room temperature for 1 h . Purification on silica gel (pure dichloromethane) afforded $\mathbf{1 3 8}(0.92 \mathrm{~g}, 75 \%)$ as a pale yellow oil.
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 5 2}$ (Cyclohexane/Ethyl acetate; 95/5, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.17-4.09(\mathrm{~m}, 2 \mathrm{H}), 3.63(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.49(\mathrm{td}, J=7.0$, $2.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.99(\mathrm{t}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.85(\mathrm{t}, J=2.4 \mathrm{~Hz}, 3 \mathrm{H})$.

[^109]${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 82.8,81.2,74.9,69.5,67.8,58.9,19.8,3.7$.

MS (CI, NH_{3}): $\mathrm{m} / \mathrm{z}=140\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$.

5-(Prop-2-yn-1-yloxy)pent-2-yne (140)

Chemical Formula: $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{O}$
Exact Mass: 122.0732

This compound was obtained following the general procedure I. Starting from pent-3-yn-1-ol $(1.68 \mathrm{~g}, 20 \mathrm{mmol})$, propargyl bromide ($2.2 \mathrm{~mL}, 20 \mathrm{mmol}, 1$ equiv) and $\mathrm{KOH}(2.26 \mathrm{~g}, 40 \mathrm{mmol}$, 2 equiv). The reaction mixture was stirred at room temperature for 4 h . Purification on silica gel (Petroleum ether/Ethyl acetate gradient from 98/2 to $95 / 5$) afforded $\mathbf{1 4 0}(2.05 \mathrm{~g}, 84 \%)$ as a pale yellow oil. The analytical data were identical to the literature. ${ }^{199}$
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 6 7}$ (Cyclohexane/Ethyl acetate; 90/10, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.18(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.61(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.50-2.38$ $(\mathrm{m}, 3 \mathrm{H}), 1.78(\mathrm{t}, J=2.6 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 79.7,77.0,75.7,74.6,68.7,58.3,20.1,3.6$.

5-((3-Bromoprop-2-yn-1-yl)oxy)pent-2-yne (141)

Chemical Formula: $\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{BrO}$
Exact Mass: 199.9837

This compound was obtained following the general procedure \mathbf{H}. Starting from 5-(prop-2-yn-1-yloxy)pent-2-yne 140 ($0.61 \mathrm{~g}, 5 \mathrm{mmol}$), NBS ($1.06 \mathrm{~g}, 6 \mathrm{mmol}, 1.2$ equiv) and silver nitrate ($0.085 \mathrm{~g}, 0.5 \mathrm{mmol}$). The reaction mixture was stirred at room temperature for 3 h . Purification

[^110]Experimental part
on silica gel (Petroleum ether/Ethyl acetate gradient from 98/2 to 95/5) afforded $\mathbf{1 4 1}$ (0.75 g , 75%) as a pale yellow oil.
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 4 4}$ (Cyclohexane/Ethyl acetate; 95/5, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.19(\mathrm{~s}, 2 \mathrm{H}), 3.57(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.41(\mathrm{ddt}, J=6.9,4.4,2.5$ $\mathrm{Hz}, 2 \mathrm{H}), 1.76(\mathrm{t}, J=2.6 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 77.0,76.2,75.6,68.8,59.2,46.2,20.0,3.6$.

5-(But-2-yn-1-yloxy)pent-1-yne (142)

This compound was obtained following the general procedure \mathbf{F}. Starting from 4-pentyn-1-ol ($0.84 \mathrm{~g}, 10 \mathrm{mmol}$), 1-bromo-2-butyne ($1.6 \mathrm{~g}, 12 \mathrm{mmol}, 1.2$ equiv) and $\mathrm{NaH}(0.48 \mathrm{~g}, 12 \mathrm{mmol}$, 1.2 equiv). The reaction mixture was stirred at room temperature for 5 h . Purification on silica gel (Pentane/diethyl ether; 95/5) afforded $142(1.07 \mathrm{~g}, 79 \%)$ as a colorless oil.
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 5 1}$ (Cyclohexane/Ethyl acetate; 85/15, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.10-4.02(\mathrm{~m}, 2 \mathrm{H}), 3.55(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.27(\mathrm{td}, J=7.1$, $2.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.95-1.89(\mathrm{~m}, 1 \mathrm{H}), 1.83(\mathrm{t}, \mathrm{J}=2.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.82-1.74(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 84.0,82.4,75.3,68.5,68.4,58.8,28.6,15.4,3.7$.
($8 R, 9 S, 13 S, 14 S, 17 R$)-17-(But-2-yn-1-yloxy)-17-ethynyl-3-methoxy-13-methyl-7,8,9,11,12, $13,14,15,16,17$-decahydro- $6 H$-cyclopenta $[a]$ phenanthrene (143)

Chemical Formula: $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{O}_{2}$ Exact Mass: 362.2246

This compound was obtained following the general procedure F. Starting from Mestranol (0.31 $\mathrm{g}, 1 \mathrm{mmol}$), 1-bromo-2-butyne ($0.16 \mathrm{~g}, 1.2 \mathrm{mmol}, 1.2$ equiv) and $\mathrm{NaH}(48 \mathrm{mg}, 1.2 \mathrm{mmol}, 1.2$ equiv). The reaction mixture was stirred at $60^{\circ} \mathrm{C}$ for 20 h . Purification on silica gel (Petroleum ether/Ethyl acetate gradient from 95/5 to 90/10) afforded $\mathbf{1 4 3}$ ($0.13 \mathrm{~g}, 36 \%$) as a white solid. m.p. $138-140{ }^{\circ} \mathrm{C}$.
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 4}$ (Cyclohexane/Ethyl acetate; 90/10, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.20(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{dd}, J=8.6,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{~d}$, $J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.33-4.20(\mathrm{~m}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 2.90-2.76(\mathrm{~m}, 2 \mathrm{H}), 2.65(\mathrm{~s}, 1 \mathrm{H}), 2.39-$ $1.92(\mathrm{~m}, 5 \mathrm{H}), 1.91-1.66(\mathrm{~m}, 7 \mathrm{H}), 1.53-1.27(\mathrm{~m}, 4 \mathrm{H}), 0.92(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ C NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.6,138.1,132.7,126.5,113.9,111.6,85.9,84.35,81.76$, $76.6,76.1,55.4,54.5,49.7,47.8,43.6,39.4,37.4,34.3,30.0,27.4,26.7,22.9,13.0,3.9$.
$\mathbf{M S}\left(\mathrm{CI}, \mathrm{NH}_{3}\right): \mathrm{m} / \mathrm{z}=380\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$.

Dimethyl 2-(but-2-yn-1-yl)malonate (144)

Chemical Formula: $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{O}_{4}$
Exact Mass: 184.0736

This compound was obtained following the general procedure F. Starting from dimethyl malonate ($11.6 \mathrm{~g}, 87.5 \mathrm{mmol}$, 2.3 equiv), 1-bromo-2-butyne ($3.3 \mathrm{~mL}, 37.5 \mathrm{mmol}$, 1 equiv) and $\mathrm{NaH}(1.65 \mathrm{~g}, 41.3 \mathrm{mmol}, 1.1$ equiv). The reaction mixture was stirred at room temperature for 5 h . The residue was purified by distillation under vacuum ($80^{\circ} \mathrm{C}, 1.5$ torr) to afford $\mathbf{1 4 4}$ (4.3 $\mathrm{g}, 62 \%$) as a colorless oil. The analytical data were identical to the literature. ${ }^{200}$
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 2 9}$ (Cyclohexane/Ethyl acetate; 90/10, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.76(\mathrm{~s}, 6 \mathrm{H}), 3.55(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.76-2.70(\mathrm{~m}, 2 \mathrm{H}), 1.74$ (t, $J=2.5 \mathrm{~Hz}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.7,78.1,74.7,52.8,51.6,19.0,3.6$.

[^111]
3-Bromoprop-2-yn-1-ol (145)

Chemical Formula: $\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{BrO}$ Exact Mass: 133.9367

This compound was obtained following the general procedure \mathbf{H}. Starting from propargyl alcohol ($2.8 \mathrm{~g}, 50 \mathrm{mmol}$), NBS ($10 \mathrm{~g}, 55 \mathrm{mmol}, 1.1$ equiv) and silver nitrate ($0.43 \mathrm{~g}, 5 \mathrm{mmol}$). The reaction mixture was stirred at room temperature for 3 h . Purification on silica gel (Petroleum ether/Ethyl acetate gradient from 90/10 to 80/20) afforded $\mathbf{1 4 5}$ (4.35 g, 65%) as a colorless oil. The analytical data were identical to the literature. ${ }^{201}$
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 3 8}$ (Cyclohexane/Ethyl acetate; 80/20, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.28(\mathrm{~s}, 2 \mathrm{H}), 3.40(\mathrm{br}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 78.4,52.1,46.1$.

Dimethyl 2-(prop-2-yn-1-yl)malonate (146)

In a round bottom flask, dimethyl malonate ($4.76 \mathrm{~g}, 36 \mathrm{mmol}, 1.2$ equiv), propargyl bromide ($3.34 \mathrm{~mL}, 30 \mathrm{mmol}, 1$ equiv), potassium carbonate ($9.95 \mathrm{~g}, 72 \mathrm{mmol}, 2.4$ equiv) and acetone (60 mL) were placed. The resulting mixture was stirred at $50^{\circ} \mathrm{C}$ for 24 h . After the reaction was complete, the reaction mixture was filtered, and the organic layers were concentrated under reduced pressure. The residue was purified by distillation under vacuum $\left(70^{\circ} \mathrm{C}, 1.5\right.$ torr) to afford $\mathbf{1 4 6}(3.1 \mathrm{~g}, 60 \%)$ as a colorless oil. The analytical data were identical to the literature. ${ }^{202}$
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 2 5}$ (Cyclohexane/Ethyl acetate; 90/10, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.

[^112]${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.77(\mathrm{~s}, 6 \mathrm{H}), 3.61(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.79(\mathrm{dd}, J=7.7,2.7 \mathrm{~Hz}$, $2 \mathrm{H}), 2.02(\mathrm{t}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C} \mathbf{N M R}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.6,80.1,70.8,53.2,51.2,18.8$.

Dimethyl 2-(pent-4-en-2-yn-1-yl)malonate (147)

This compound was obtained following the general procedure A. Starting from dimethyl 2-(prop-2-yn-1-yl)malonate ($1.02 \mathrm{~g}, 6 \mathrm{mmol}$), vinyl bromide ($7.2 \mathrm{~mL}, 7.2 \mathrm{mmol}, 1.2$ equiv), $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(84 \mathrm{mg}, 2 \mathrm{~mol} \%)$ and $\mathrm{CuI}(11 \mathrm{mg}, 1 \mathrm{~mol} \%)$. Purification on silica gel (Cyclohexane/Ethyl acetate gradient from 90/10 to 80/20) afforded 147 ($0.5 \mathrm{~g}, 43 \%$) as a colorless oil.
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 2}$ (Cyclohexane/Ethyl acetate; 90/10, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.79-5.65(\mathrm{~m}, 1 \mathrm{H}), 5.62-5.50(\mathrm{~m}, 1 \mathrm{H}), 5.48-5.38(\mathrm{~m}, 1 \mathrm{H})$, $3.77(\mathrm{~s}, 6 \mathrm{H}), 3.61(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.95-2.84(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.5,126.8,117.1,86.0,81.3,52.9,51.2,19.5$.
MS (CI, NH_{3}): $\mathrm{m} / \mathrm{z}=214\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$.

3.3. Synthesis of benzoyl or benzyl bridged α, ω-diynes

1-(2-(Hex-1-yn-1-yl)phenyl)-3-(trimethylsilyl)prop-2-yn-1-ol (148)

Chemical Formula: $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{OSi}$
Exact Mass: 284.1596

This compound was obtained following the general procedure B. Starting from 2-(hex-1-yn-1yl)benzaldehyde $2(1.0 \mathrm{~g}, 5.4 \mathrm{mmol})$, trimethylsilylacetylene ($1.14 \mathrm{~mL}, 8 \mathrm{mmol}, 1.5$ equiv) and $n-\mathrm{BuLi}$ ($3.5 \mathrm{~mL}, 1.85 \mathrm{M}$ in hexane, $6.5 \mathrm{mmol}, 1.2$ equiv). Purification on silica gel (Petroleum ether/Ethyl acetate gradient from $95 / 5$ to $90 / 10$) afforded $\mathbf{1 4 8}(1.2 \mathrm{~g}, 78 \%)$ as a pale yellow oil.

Experimental part
$\mathbf{R f}_{\mathbf{f}} \mathbf{0 . 3 3}$ (Cyclohexane/Ethyl acetate; 95/5, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.70-7.63(\mathrm{~m}, 1 \mathrm{H}), 7.44-7.38(\mathrm{~m}, 1 \mathrm{H}), 7.36-7.21(\mathrm{~m}, 2 \mathrm{H})$, $5.84(\mathrm{~d}, \mathrm{~J}=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.69(\mathrm{dd}, \mathrm{J}=5.7,0.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.68-1.56$ $(\mathrm{m}, 2 \mathrm{H}), 1.54-1.43(\mathrm{~m}, 2 \mathrm{H}), 0.96(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.20(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 141.9,132.6,128.3,128.2,126.8,122.6,104.5,96.5,91.5$, 78.0, 63.9, 30.9, 22.2, 19.4, 13.8, 0.0.

MS (CI, $\left.\mathrm{NH}_{3}\right): \mathrm{m} / \mathrm{z}=267\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right]^{+}$.

1-(2-(Hex-1-yn-1-yl)phenyl)prop-2-yn-1-ol (149).

Chemical Formula: $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}$
Exact Mass: 212.1201

This compound was obtained following the general procedure D. Starting from 1-(2-(Hex-1-yn-1-yl)phenyl)-3-(trimethylsilyl)prop-2-yn-1-ol $\mathbf{1 4 8}$ ($1.2 \mathrm{~g}, 4.2 \mathrm{mmol}$) and TBAF ($4.2 \mathrm{~mL}, 1.0$ M in THF). Purification on silica gel (Cyclohexane/Ethyl acetate gradient from $95 / 5$ to $85 / 15$) afforded $149(0.72 \mathrm{~g}, 81 \%)$ as a pale yellow oil.
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 4}$ (Cyclohexane/Ethyl acetate; 90/10, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.67(\mathrm{dd}, J=7.5,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{dd}, J=7.1,1.9 \mathrm{~Hz}, 1 \mathrm{H})$, $7.45-7.30(\mathrm{~m}, 2 \mathrm{H}), 5.85(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.64(\mathrm{~s}, 1 \mathrm{H}), 2.64(\mathrm{~s}, 1 \mathrm{H}), 2.48(\mathrm{t}, J=7.0 \mathrm{~Hz}$, $2 \mathrm{H}), 1.70-1.57(\mathrm{~m}, 2 \mathrm{H}), 1.57-1.41(\mathrm{~m}, 2 \mathrm{H}), 0.96(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 141.6,132.7,128.4,128.3,126.6,122.4,96.7,83.1,77.9$, 74.6, 63.3, 30.9, 22.2, 19.4, 13.7.

MS (CI, $\left.\mathrm{NH}_{3}\right): \mathrm{m} / \mathrm{z}=212\left[\mathrm{M}+\mathrm{NH}_{4}-\mathrm{H}_{2} \mathrm{O}\right]^{+}$.

2-(Cyclopropylethynyl)benzaldehyde (150)

This compound was obtained following the general procedure A. Starting from 2bromobenzoaldehyde ($4.0 \mathrm{~g}, 21.7 \mathrm{mmol}$), cyclopropylacetylene ($1.7 \mathrm{~g}, 26 \mathrm{mmol}, 1.2$ equiv), $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(0.75 \mathrm{mg}, 1.09 \mathrm{mmol}, 5 \mathrm{~mol} \%)$ and $\mathrm{CuI}(0.1 \mathrm{~g}, 0.55 \mathrm{mmol}, 2.5 \mathrm{~mol} \%)$. Purification on silica gel (Cyclohexane/Ethyl acetate gradient from 98/2 to 95/5) afforded 150 $(2.1 \mathrm{~g}, 57 \%)$ as an orange oil.
${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.48(\mathrm{~d}, J=0.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.89-7.82(\mathrm{~m}, 1 \mathrm{H}), 7.53-7.43(\mathrm{~m}$, $2 H), 7.39-7.30(m, 1 H), 1.57-1.45(\mathrm{~m}, 1 \mathrm{H}), 0.98-0.85(\mathrm{~m}, 4 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 192.2,136.2,133.8,133.4,128.0,127.9,127.1,101.4,71.6$, 9.0, 0.5.

1-(2-(Cyclopropylethynyl)phenyl)-3-(trimethylsilyl)prop-2-yn-1-ol (151).

This compound was obtained following the general procedure B. Starting from 2(cyclopropylethynyl)benzaldehyde $\mathbf{1 5 0}(2.0 \mathrm{~g}, 11.8 \mathrm{mmol})$, trimethylsilylacetylene (3.25 mL , 23.5 mmol , 2 equiv) and $n-\mathrm{BuLi}(8.8 \mathrm{~mL}, 2.0 \mathrm{M}$ in hexane, $17.6 \mathrm{mmol}, 1.5$ equiv). Purification on silica gel (Cyclohexane/Ethyl acetate gradient from $95 / 5$ to $90 / 10$) afforded $\mathbf{1 5 1}(2.5 \mathrm{~g}, 80 \%)$ as a pale yellow oil.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.70-7.55(\mathrm{~m}, 1 \mathrm{H}), 7.43-7.35(\mathrm{~m}, 1 \mathrm{H}), 7.35-7.18(\mathrm{~m}, 2 \mathrm{H})$, $5.79(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.54-1.40(\mathrm{~m}, 1 \mathrm{H}), 0.94-0.76(\mathrm{~m}, 4 \mathrm{H})$, 0.20 ($\mathrm{s}, 9 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.1,132.6,128.3,128.2,126.8,122.4,104.5,99.6,91.4$, 73.1, 63.9, 9.0, 8.9, 0.5, -0.01.

Experimental part

MS (CI, NH3): m/z = $267\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right]^{+}$.

1-(2-(Cyclopropylethynyl)phenyl)prop-2-yn-1-ol (152)

Chemical Formula: $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}$ Exact Mass: 196.0888

This compound was obtained following the general procedure D. Starting from 1-(2-(cyclopropylethynyl)phenyl)-3-(trimethylsilyl)prop-2-yn-1-ol 151 ($2.5 \mathrm{~g}, 9.3 \mathrm{mmol}$) and TBAF ($9.3 \mathrm{~mL}, 1.0 \mathrm{M}$ in THF). Purification on silica gel (Cyclohexane/Ethyl acetate gradient from $90 / 10$ to $80 / 20$) afforded $152(1.5 \mathrm{~g}, 82 \%)$ as a pale yellow solid. m.p. $45-48{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.71-7.56(\mathrm{~m}, 1 \mathrm{H}), 7.44-7.36(\mathrm{~m}, 1 \mathrm{H}), 7.36-7.20(\mathrm{~m}, 2 \mathrm{H})$, $5.80(\mathrm{~s}, 1 \mathrm{H}), 2.72(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 2.63(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.56-1.42(\mathrm{~m}, 1 \mathrm{H}), 0.98-0.80(\mathrm{~m}$, $4 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 141.8,132.7,128.4,128.2,126.6,122.2,99.8,83.1,74.6,73.0$, 63.3, 9.0, 0.5 .

MS (CI, $\left.\mathrm{NH}_{3}\right): \mathrm{m} / \mathrm{z}=196\left[\mathrm{M}+\mathrm{NH}_{4}-\mathrm{H}_{2} \mathrm{O}\right]^{+}$.

1-(2-(Cyclopropylethynyl)phenyl)prop-2-yn-1-one (153).

This compound was obtained following the general procedure C. Starting from 1-(2-(cyclopropylethynyl)phenyl)prop-2-yn-1-ol $152(0.92 \mathrm{~g}, 4.7 \mathrm{mmol})$ and Dess-Martin periodinane ($2.4 \mathrm{~g}, 5.6 \mathrm{mmol}$, 1.2 equiv). Purification on silica gel (Cyclohexane/Ethyl acetate gradient from $95 / 5$ to $90 / 10$) afforded $153(0.75 \mathrm{~g}, 82 \%)$ as yellow solid. m.p. $181-183{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.20-8.05(\mathrm{~m}, 1 \mathrm{H}), 7.52-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.30(\mathrm{~m}, 1 \mathrm{H})$, $3.41(\mathrm{~d}, J=0.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.58-1.42(\mathrm{~m}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 0.91(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 4 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 175.7,136.3,133.6,131.9,131.2,126.2,123.2,99.9,80.3$, 79.6, 73.6, 8.0, -0.1.

MS (CI, NH_{3}): m/z=195[M+H]..

3.4. Synthesis of cyanamides

General procedure J:

N-substituted amine (2 equiv) was added to a solution of cyanogen bromide (1 equiv) in $\mathrm{Et}_{2} \mathrm{O} / \mathrm{THF}(1: 1,5 \mathrm{M})$ at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred at room temperature for 3 h . Hexane (5 mL) was added, and the mixture was stirred for an additional 10 min . It was then filtered through a pad of Celite, and the filtrate was washed with water $(\times 3)$ and brine $(\times 3)$. The solution was dried over MgSO_{4}, filtered and concentrated under reduced pressure. The residue was purified by flash chromatography to afford the desired product.

General procedure K:

A solution of sodium hydrogen carbonate (2 equiv) in $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{M})$ was slowly added to a solution of N-substituted amine (1 equiv) in $\operatorname{DCM}(1 \mathrm{M})$ at $0^{\circ} \mathrm{C}$. Then, a solution of cyanogen bromide (1.05 equiv) in $\mathrm{DCM}(1 \mathrm{M})$ was added to the reaction mixture at $0^{\circ} \mathrm{C}$. The mixture was stirred at the same temperature for 30 min , and then allowed to warm to room temperature for an additional 2 h . The organic layers were separated and washed with saturated sodium hydrogen carbonate solution $(\times 3)$ and brine $(\times 3)$, dried over MgSO_{4} and concentrated under reduced pressure. The residue was purified by flash chromatography to afford the desired product.

Chemical Formula: $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{~N}_{2}$
Exact Mass: 110.0844

This compound was obtained following the general procedure \mathbf{J}. Starting from piperidine (1.83 $\mathrm{mL}, 20.0 \mathrm{mmol}, 2$ equiv) and cyanogen bromide ($1.06 \mathrm{~g}, 10 \mathrm{mmol}, 1$ equiv). Purification on silica gel (Petroleum ether/Ethyl acetate from 90/10 to $85 / 15$) afforded $157(0.9 \mathrm{~g}, 82 \%)$ as a colorless oil. The analytical data were identical to the literature. ${ }^{203}$
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 3 5}$ (Cyclohexane/Ethyl acetate; 90/10, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.23-3.01(\mathrm{~m}, 4 \mathrm{H}), 1.72-1.49(\mathrm{~m}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 118.7,50.3,24.7,23.1$.

N-Benzyl- N -methylcyanamide (158)

This compound was obtained following the general procedure \mathbf{J}. Starting from N methybenzylamine ($1.45 \mathrm{~g}, 12 \mathrm{mmol}, 2$ equiv) and cyanogen bromide ($0.64 \mathrm{~g}, 6 \mathrm{mmol}, 1$ equiv). Purification on silica gel (Cyclohexane/Ethyl acetate gradient from 80/20 to 70/30) afforded compound $\mathbf{1 5 8}(0.75 \mathrm{~g}, 86 \%)$ as a colorless oil. The analytical data were identical to the literature. ${ }^{204}$
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 5 2}$ (Cyclohexane/Ethyl acetate; 80/20, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.30-7.47(\mathrm{~m}, 5 \mathrm{H}), 4.15(\mathrm{~s}, 2 \mathrm{H}),, 2.77(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 134.5,129.1,128.8,128.5,119.0,57.3,37.9$.

[^113]
N, N-Dibenzylcyanamide (159)

 Exact Mass: 222.1157

This compound was obtained following the general procedure \mathbf{K}. Starting from dibenzylamine $(2.96 \mathrm{~g}, 15 \mathrm{mmol}, 1$ equiv), cyanogen bromide ($1.69 \mathrm{~g}, 16 \mathrm{mmol}, 1.05$ equiv) and sodium hydrogen carbonate ($2.5 \mathrm{~g}, 30 \mathrm{mmol}$, 2 equiv). Purification on silica gel (Cyclohexane/Ethyl acetate gradient from 90/10 to 80/20) afforded compound 159 ($3.2 \mathrm{~g}, 96 \%$) as a white solid. The analytical data were identical to the literature. ${ }^{147 b}$
$\mathbf{R f}_{\mathbf{f}} \mathbf{= 0 . 3 1}$ (Cyclohexane/Ethyl acetate; 85/15, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.48-7.27(\mathrm{~m}, 10 \mathrm{H}), 4.12(\mathrm{~s}, 4 \mathrm{H}$) $)$.
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 134.5,129.0,128.8,128.7,118.4,54.4$.

N, N-Dipropylcyanamide (161)

Chemical Formula: $\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{~N}_{2}$ Exact Mass: 126.1157

This compound was obtained following the general procedure \mathbf{J}. Starting from dipropylamine ($3 \mathrm{~mL}, 20 \mathrm{mmol}, 2$ equiv) and cyanogen bromide ($1.06 \mathrm{~g}, 10 \mathrm{mmol}, 1$ equiv). The reaction provided the compound $161(1.13 \mathrm{~g}, 90 \%)$ as a colorless oil, pure enough to be used without purification. The analytical data were identical to the literature. ${ }^{135 \mathrm{a}}$
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 6}\left(\right.$ Cyclohexane/Ethyl acetate; 80/20, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.91(\mathrm{t}, J=7.2 \mathrm{~Hz}, 4 \mathrm{H}), 1.69-1.53(\mathrm{~m}, 4 \mathrm{H}), 0.93(\mathrm{t}, J=7.4$ Hz, 6H).
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 117.9,53.3,21.1,11.1$.

Experimental part

$$
\begin{gathered}
\mathrm{Me}_{-N_{N}}-\mathrm{Ph} \\
\text { CN } \\
\text { Chemical Formula: } \mathrm{C}_{8} \mathrm{H}_{8} \mathrm{~N}_{2} \\
\text { Exact Mass: } 132.0687
\end{gathered}
$$

This compound was obtained following the general procedure \mathbf{J}. Starting from N-methylaniline ($2.16 \mathrm{~mL}, 20.0 \mathrm{mmol}, 2$ equiv) and cyanogen bromide ($1.06 \mathrm{~g}, 10 \mathrm{mmol}, 1$ equiv). Purification on silica gel (Petroleum ether/Ethyl acetate gradient from 80/20 to 50/50) afforded compound $\mathbf{1 6 2}(1.2 \mathrm{~g}, 91 \%)$ as a white solid. The analytical data were identical to the literature. ${ }^{135 \mathrm{a}}$
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 4 5}$ (Cyclohexane/Ethyl acetate; 90/10, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.47-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.16-7.01(\mathrm{~m}, 3 \mathrm{H}), 3.34(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 140.5,129.7,123.5,115.0,114.2,36.9$.

N-Butylcyanamide (163)

This compound was obtained following the general procedure \mathbf{J}. Starting from N-butylamine ($2.93 \mathrm{~g}, 40.0 \mathrm{mmol}, 2$ equiv) and cyanogen bromide ($2.12 \mathrm{~g}, 20 \mathrm{mmol}, 1$ equiv). The reaction provided the compound $163(1.9 \mathrm{~g}, 96 \%)$ as a colorless oil, pure enough to be used without purification. The analytical data were identical to the literature. ${ }^{205}$
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 2}$ (Cyclohexane/Ethyl acetate; 80/20, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.36(\mathrm{br}, 1 \mathrm{H}), 3.07(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.67-1.50(\mathrm{~m}, 2 \mathrm{H}), 1.47$ $-1.25(\mathrm{~m}, 2 \mathrm{H}), 0.93(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (75 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 116.4,46.1,31.8,19.6,13.7$.

[^114]
N -butyl- N -methylcyanamide (164)

Chemical Formula: $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{~N}_{2}$ Exact Mass: 112.1000

This compound was obtained following the general procedure K. Starting from N methylbutylamine ($1.74 \mathrm{~g}, 20 \mathrm{mmol}, 1$ equiv), cyanogen bromide ($2.22 \mathrm{~g}, 21 \mathrm{mmol}, 1.05$ equiv) and sodium hydrogen carbonate ($3.3 \mathrm{~g}, 40 \mathrm{mmol}, 2$ equiv). The reaction provided the compound $\mathbf{1 6 4}(2.23 \mathrm{~g}, 99 \%)$ as a pale yellow oil, pure enough to be used without purification.
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 3}$ (Cyclohexane/Ethyl acetate; 80/20, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.96(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.84(\mathrm{~s}, 3 \mathrm{H}), 1.67-1.57(\mathrm{~m}, 2 \mathrm{H}), 1.45$ $-1.33(\mathrm{~m}, 2 \mathrm{H}), 0.94(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 118.8,52.8,38.9,29.4,19.8,13.7$.

N-butyl- N-cyanoacetamide (165)

To a suspension of $\mathrm{NaH}(0.77 \mathrm{~g}, 19.2 \mathrm{mmol}, 1.2$ equiv) in THF (30 mL) was added N butylcyanamide $(1.6 \mathrm{~g}, 16 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The mixture was warmed to room temperature, and acetyl chloride ($1.36 \mathrm{~mL}, 19.2 \mathrm{mmol}, 1.2$ equiv) was added. The reaction mixture was stirred at room temperature for 1 h , and quenched with $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$. The crude reaction mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 15 \mathrm{~mL})$, washed with water and brine, dried over MgSO_{4} and concentrated under reduced pressure. The residue was purified by flash chromatography (Petroleum ether/Ethyl acetate gradient from 90/10 to 80/20) to afford compound $165(1.8 \mathrm{~g}, 80 \%)$ as a colorless oil. The analytical data were identical to the literature. ${ }^{135 a}$
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 4 5}$ (Cyclohexane/Ethyl acetate; 80/20, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.

Experimental part
${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.60-3.50(\mathrm{~m}, 2 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 1.77-1.53(\mathrm{~m}, 2 \mathrm{H}), 1.45-$ $1.29(\mathrm{~m}, 2 \mathrm{H}), 0.95(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.4,111.1,46.1,29.7,22.3,19.6,13.6$.

N, N-diallylcyanamide (166)

Exact Mass: 122.0844

This compound was obtained following the general procedure K. Starting from diallylamine ($1.46 \mathrm{~g}, 15 \mathrm{mmol}, 1$ equiv), cyanogen bromide ($1.69 \mathrm{~g}, 16 \mathrm{mmol}, 1.05$ equiv) and sodium hydrogen carbonate ($2.5 \mathrm{~g}, 30 \mathrm{mmol}$, 2 equiv). Purification on silica gel (Petroleum ether/Ethyl acetate gradient from 80/20 to 70/30) afforded compound $\mathbf{1 6 6}(1.7 \mathrm{~g}, 93 \%$) as a pale yellow oil. The analytical data were identical to the literature. ${ }^{203}$
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 3 6}$ (Cyclohexane/Ethyl acetate; 80/20, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.90-5.75(\mathrm{~m}, 2 \mathrm{H}), 5.41-5.32(\mathrm{~m}, 2 \mathrm{H}), 5.32-5.24(\mathrm{~m}, 2 \mathrm{H})$, $3,65-3,54(m, 4 H)$.
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 131.1,120.6,117.7,53.5$.

4-Methylpiperazine-1-carbonitrile (167)

Chemical Formula: $\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{~N}_{3}$ Exact Mass: 125.0953

This compound was obtained following the general procedure K. Starting from N-methyl piperazine ($2 \mathrm{~g}, 20 \mathrm{mmol}$, 1 equiv), cyanogen bromide ($2.22 \mathrm{~g}, 21 \mathrm{mmol}, 1.05$ equiv) and sodium hydrogen carbonate ($3.3 \mathrm{~g}, 4 \mathrm{mmol}, 2$ equiv). The reaction provided the compound 167 $(1.45 \mathrm{~g}, 58 \%)$ as a pale yellow oil, pure enough to be used without purification.
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 2 4}\left(\mathrm{EA}, \mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.29-3.19(\mathrm{~m}, 4 \mathrm{H}), 2.50-2.39(\mathrm{~m}, 4 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 117.9,53.7,49.2,46.4$.

3.5. Ruthenium-catalyzed $[2+2+2]$ cycloaddition of α, ω-diynes with cyanamides

General procedure L:

A sealed tube was equipped with $\mathrm{RuCl}_{3} \cdot n \mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mol} \%)$ and α, ω-diyne ($1 \mathrm{mmol}, 1$ equiv), followed by the addition of cyanamide ($2.0 \mathrm{mmol}, 2.0$ equiv) under argon atmosphere. The tube was sealed and the reaction mixture was stirred vigorously at $80^{\circ} \mathrm{C}$ or $110^{\circ} \mathrm{C}$. When the reaction was complete (TLC monitoring), the crude reaction mixture was directly purified by flash chromatography over silica gel to afford cycloadduct. In some cases, the excess of cyanamide was removed by bulb to bulb distillation.

General procedure M:

A sealed tube was equipped with $\left.\mathrm{Cp} * \mathrm{Ru}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{3}\right] \mathrm{PF}_{6}(1-5 \mathrm{~mol} \%)$ and diyne (1 equiv), followed by the addition of cyanamide (2 equiv) under argon atmosphere. The reaction mixture was stirred vigorously at room temperature or $50{ }^{\circ} \mathrm{C}$. When the reaction was complete (TLC monitoring), the crude mixture was directly purified by flash chromatography over silica gel to afford cycloadduct. In some cases, the excess of cyanamide was removed by bulb to bulb distillation.

General procedure N:

Experimental part

A sealed tube was equipped with $\left.\mathrm{Cp} * \mathrm{Ru}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{3}\right] \mathrm{PF}_{6}(1-5 \mathrm{~mol} \%)$ and cyanamide (1.2 or 2.0 equiv), a solution of diyne (1 equiv) in DCM (1 or 2 M) was added under argon atmosphere. The reaction mixture was stirred vigorously at room temperature or $50^{\circ} \mathrm{C}$. When the reaction was complete (TLC monitoring), the solvent was evaporated under reduced pressure. The residue was purified by flash chromatography over silica gel to afford cycloadduct. In some cases, the excess of cyanamide was removed by bulb to bulb distillation.

Dimethyl 3-(dimethylamino)-1,4-dimethyl-5,7-dihydro-6H-cyclopenta[c]pyridine-6,6dicarboxylate (168)

Chemical Formula: $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{4}$ Exact Mass: 306.1580

This compound was obtained following the general procedure \mathbf{L}. Starting from diyne 101 (236 $\mathrm{mg}, 1.0 \mathrm{mmol}), N, N$-dimethylcyanamide $154\left(140 \mathrm{mg}, 2.0 \mathrm{mmol}, 2.0\right.$ equiv) and $\mathrm{RuCl}_{3} \cdot n \mathrm{H}_{2} \mathrm{O}$ $(10.4 \mathrm{mg}, 0.05 \mathrm{mmol})$. The reaction mixture was stirred at $110^{\circ} \mathrm{C}$ for 18 h . Purification on silica gel (Cyclohexane/Ethyl acetate gradient from 80/20 to 70/30) afforded 168 ($225 \mathrm{mg}, 74 \%$) as a white solid. The excess of cyanamide was removed by bulb to bulb distillation (conditions: $1.0 \times 10^{-3} \mathrm{mbar}, 70^{\circ} \mathrm{C}$ for 10 minutes). The analytical data were identical to the literature. ${ }^{135 \mathrm{a}}$
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 3 4}$ (Petroleum ether/Ethyl acetate; 80/20, $\mathrm{KMnO}_{4}, \mathrm{UV}$).
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.74(\mathrm{~s}, 6 \mathrm{H}), 3.48(\mathrm{~s}, 2 \mathrm{H}), 3.47(\mathrm{~s}, 2 \mathrm{H}), 2.75(\mathrm{~s}, 6 \mathrm{H}), 2.31(\mathrm{~s}$, $3 \mathrm{H}), 2.14$ (s, 3H).
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.2,161.6,150.3,147.9,127.2,117.1,59.9,53.2,42.5,40.1$, 38.7, 21.8, 14.9.

MS (CI, NH_{3}): $\mathrm{m} / \mathrm{z}=307[\mathrm{M}+\mathrm{H}]^{+}$.

Dimethyl 1,4-dimethyl-3-morpholino-5,7-dihydro-6H-cyclopenta[c]pyridine-6,6dicarboxylate (169)

Chemical Formula: $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{5}$
Exact Mass: 348.1685
a) This compound was obtained following the general procedure \mathbf{L}. Starting from diyne $\mathbf{1 0 1}$ ($236 \mathrm{mg}, 1.0 \mathrm{mmol}$), 4-cyanomorpholine 155 ($224 \mathrm{mg}, 2.0 \mathrm{mmol}, 2.0$ equiv) and $\mathrm{RuCl}_{3} \cdot n \mathrm{H}_{2} \mathrm{O}$ ($10.4 \mathrm{mg}, 0.05 \mathrm{mmol}$). The reaction mixture was stirred at $80^{\circ} \mathrm{C}$ for 18 h . Purification on silica gel (Cyclohexane/Ethyl acetate gradient from 90/10 to $80 / 20$) afforded 169 ($330 \mathrm{mg}, 95 \%$) as a white solid. The excess of cyanamide was removed by bulb to bulb distillation (conditions: $1.0 \times 10^{-3} \mathrm{mbar}, 90^{\circ} \mathrm{C}$ for 10 minutes). The analytical data were identical to the literature. ${ }^{135 \mathrm{a}}$
b) This compound was obtained following the general procedure \mathbf{M}. Starting from diyne $\mathbf{1 0 1}$ ($118 \mathrm{mg}, 0.5 \mathrm{mmol}$), 4-cyanomorpholine 155 ($112 \mathrm{mg}, 1.0 \mathrm{mmol}, 2.0$ equiv) and $\mathrm{Cp} * \mathrm{Ru}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{3} \mathrm{PF}_{6}(5.0 \mathrm{mg}, 0.01 \mathrm{mmol})$. The reaction mixture was stirred at room temperature for 2 min . Purification on silica gel (Cyclohexane/Ethyl acetate gradient from $90 / 10$ to $80 / 20$) afforded 169 ($158 \mathrm{mg}, 91 \%$) as a white solid. The excess of cyanamide was removed by bulb to bulb distillation (conditions: $1.0 \times 10^{-3} \mathrm{mbar}, 9{ }^{\circ} \mathrm{C}$ for 10 minutes).
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 2 4}$ (Petroleum ether/Ethyl acetate; 80/20, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.86-3.78(\mathrm{~m}, 4 \mathrm{H}), 3.76(\mathrm{~s}, 6 \mathrm{H}), 3.50(\mathrm{~s}, 2 \mathrm{H}), 3.48(\mathrm{~s}, 2 \mathrm{H})$, 3.12 - 2.99 (m, 4H), 2.33 (s, 3H), 2.14 (s, 3H).
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.1,160.2,150.5,148.5,128.3,117.9,67.4,59.9,53.2,50.8$, 40.0, 38.7, 21.7, 14.4.

MS (CI, NH3): m/z = $349[\mathrm{M}+\mathrm{H}]^{+}$.

Dimethyl 1,4-dimethyl-3-(pyrrolidin-1-yl)-5,7-dihydro-6H-cyclopenta[c]pyridine-6,6dicarboxylate (170)

Experimental part

Chemical Formula: $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{4}$ Exact Mass: 332.1736
a) This compound was obtained following the general procedure \mathbf{L}. Starting from diyne $\mathbf{1 0 1}$ ($236 \mathrm{mg}, 1.0 \mathrm{mmol}$), pyrrolidine-1-carbonitrile $156(192 \mathrm{mg}, 2.0 \mathrm{mmol}, 2.0$ equiv) and $\mathrm{RuCl}_{3} \cdot n \mathrm{H}_{2} \mathrm{O}$ ($10.4 \mathrm{mg}, 0.05 \mathrm{mmol}$). The reaction mixture was stirred at $80{ }^{\circ} \mathrm{C}$ for 18 h . Purification on silica gel (Cyclohexane/Ethyl acetate gradient from 90/10 to 70/30) afforded $170(285 \mathrm{mg}, 86 \%)$ as a pale yellow solid. The excess of cyanamide was removed by bulb to bulb distillation (conditions: $1.0 \times 10^{-3} \mathrm{mbar}, 80^{\circ} \mathrm{C}$ for 10 minutes).
b) This compound was obtained following the general procedure \mathbf{M}. Starting from diyne $\mathbf{1 0 1}$ ($118 \mathrm{mg}, 0.5 \mathrm{mmol}$), pyrrolidine-1-carbonitrile 156 ($96 \mathrm{mg}, 1.0 \mathrm{mmol}, 2.0$ equiv) and $\mathrm{Cp} * \mathrm{Ru}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{3} \mathrm{PF}_{6}(5.0 \mathrm{mg}, 0.01 \mathrm{mmol})$. The reaction mixture was stirred at room temperature for 15 min . Purification on silica gel (Cyclohexane/Ethyl acetate gradient from $90 / 10$ to $70 / 30$) afforded $\mathbf{1 7 0}(134 \mathrm{mg}, 81 \%)$ as a pale yellow solid. The excess of cyanamide was removed by bulb to bulb distillation (conditions: $1.0 \times 10^{-3} \mathrm{mbar}, 80^{\circ} \mathrm{C}$ for 10 minutes).

The analytical data were identical to the literature. ${ }^{135 \mathrm{a}}$
$\mathbf{R f}_{\mathbf{f}} \mathbf{0 . 3 5}$ (Petroleum ether/Ethyl acetate; 80/20, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.75(\mathrm{~s}, 6 \mathrm{H}), 3.44(\mathrm{~m}, 8 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}), 1.87(\mathrm{~m}$, $4 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.3,158.9,150.3,147.4,124.6,113.5,60.0,53.1,50.3,40.1$, 38.6, 25.6, 21.7, 15.8.

MS (CI, NH_{3}): m/z $=333[\mathrm{M}+\mathrm{H}]^{+}$.

This compound was obtained following the general procedure \mathbf{L}. Starting from diyne 101 (236 $\mathrm{mg}, 1.0 \mathrm{mmol}$), piperidine-1-carbonitrile 157 ($220 \mathrm{mg}, 2.0 \mathrm{mmol}$, 2.0 equiv) and $\mathrm{RuCl}_{3} \cdot n \mathrm{H}_{2} \mathrm{O}$ $(10.4 \mathrm{mg}, 0.05 \mathrm{mmol})$. The reaction mixture was stirred at $110^{\circ} \mathrm{C}$ for 18 h . Purification on silica gel (Cyclohexane/Ethyl acetate gradient from $95 / 5$ to $90 / 10$) afforded 171 ($251 \mathrm{mg}, 73 \%$) as a colorless oil. The excess of cyanamide was removed by bulb to bulb distillation (conditions: $1.0 \times 10^{-3} \mathrm{mbar}, 80^{\circ} \mathrm{C}$ for 10 minutes). The analytical data were identical to the literature. ${ }^{143}$
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 3 3}$ (Petroleum ether/Ethyl acetate; 90/10, $\mathrm{KMnO}_{4}, \mathrm{UV}$).
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.75(\mathrm{~s}, 6 \mathrm{H}), 3.49(\mathrm{~s}, 2 \mathrm{H}), 3.47(\mathrm{~s}, 2 \mathrm{H}), 3.06-2.91(\mathrm{~m}, 4 \mathrm{H})$, $2.32(\mathrm{~s}, 3 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H}), 1.73-1.61(\mathrm{~m}, 4 \mathrm{H}), 1.61-1.50(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.2,161.7,150.1,148.1,127.5,118.1,59.8,53.2,51.6,40.01$, 38.7, 26.5, 24.8, 21.7, 14.4.

MS (CI, NH3): m/z = $347[\mathrm{M}+\mathrm{H}]^{+}$.

Dimethyl 3-(benzyl(methyl)amino)-1,4-dimethyl-5,7-dihydro-6H-cyclopenta[c]pyridine-6,6-dicarboxylate (172)

Chemical Formula: $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{4}$ Exact Mass: 382.1893

This compound was obtained following the general procedure L. Starting from diyne 101 (236 $\mathrm{mg}, 1.0 \mathrm{mmol}$), N-benzyl- N-methylcyanamide 158 ($292 \mathrm{mg}, 2.0 \mathrm{mmol}, 2.0$ equiv) and $\mathrm{RuCl}_{3} \cdot n \mathrm{H}_{2} \mathrm{O}$ ($10.4 \mathrm{mg}, 0.05 \mathrm{mmol}$). The reaction mixture was stirred at $80{ }^{\circ} \mathrm{C}$ for 18 h . Purification on silica gel (Cyclohexane/Ethyl acetate gradient from 95/5 to 85/15) afforded 172 ($306 \mathrm{mg}, 81 \%$) as a colorless oil. The excess of cyanamide was removed by bulb to bulb distillation (conditions: $1.0 \times 10^{-3} \mathrm{mbar}, 120^{\circ} \mathrm{C}$ for 10 minutes).
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 2 6}$ (Petroleum ether/Ethyl acetate; 90/10, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.45-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.32(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.28-7.16(\mathrm{~m}$, $1 \mathrm{H}), 4.26(\mathrm{~s}, 2 \mathrm{H}), 3.77(\mathrm{~s}, 6 \mathrm{H}), 3.55-3.45(\mathrm{~m}, 4 \mathrm{H}), 2.67(\mathrm{~s}, 3 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.2,161.4,150.4,148.1,140.0,128.4,128.2,127.7,126.8$, 117.8, 59.9, 58.4, 53.2, 40.1, 39.8, 38.8, 21.7, 14.8 .

MS (CI, NH_{3}): $\mathrm{m} / \mathrm{z}=383[\mathrm{M}+\mathrm{H}]^{+}$.

Dimethyl 3-(dibenzylamino)-1,4-dimethyl-5,7-dihydro-6H-cyclopenta[c]pyridine-6,6dicarboxylate (173)

Chemical Formula: $\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{4}$ Exact Mass: 458.2206

This compound was obtained following the general procedure \mathbf{L}. Starting from diyne 101 (236 $\mathrm{mg}, 1.0 \mathrm{mmol}$), dibenzylcyanamide 159 (444 mg , 2.0 mmol , 2.0 equiv) and $\mathrm{RuCl}_{3} \cdot n \mathrm{H}_{2} \mathrm{O}$ (10.4 $\mathrm{mg}, 0.05 \mathrm{mmol})$. The reaction mixture was stirred at $110^{\circ} \mathrm{C}$ for 18 h . Purification on silica gel (Cyclohexane/Ethyl acetate gradient from 95/5 to 90/10) afforded 173 ($344 \mathrm{mg}, 75 \%$) as a sticky yellow oil. The excess of cyanamide was removed by bulb to bulb distillation (conditions: $1.0 \times 10^{-3} \mathrm{mbar}, 180^{\circ} \mathrm{C}$ for 20 minutes).
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 1 7}$ (Petroleum ether/Ethyl acetate; 80/20, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.39-7.13(\mathrm{~m}, 10 \mathrm{H}), 4.25(\mathrm{~s}, 4 \mathrm{H}), 3.76(\mathrm{~s}, 6 \mathrm{H}), 3.49(\mathrm{~s}, 4 \mathrm{H})$, 2.29 (s, 3H), 2.24 (s, 3H).
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.2,159.9,150.4,148.2,139.9,128.6,128.3,128.2,126.7$, 118.9, 59.7, 55.4, 53.2, 40.1, 38.8, 21.6, 14.5.

MS (CI, NH3): m/z = $459[\mathrm{M}+\mathrm{H}]^{+}$.

1,1',3',4-Tetramethyl-3-morpholino-5,7-dihydro-2'H-spiro[cyclopenta[c]pyridine-6,5'-pyrimidine]-2', $\mathbf{4}^{\prime}, \mathbf{6}^{\prime}\left(\mathbf{1}^{\prime} H, \mathbf{3}^{\prime} H\right)$-trione (181)

This compound was obtained following the general procedure \mathbf{L}. Starting from diyne $\mathbf{1 0 2}$ (260 $\mathrm{mg}, 1.0 \mathrm{mmol})$, 4-cyanomorpholine $155(224 \mathrm{mg}, 2.0 \mathrm{mmol}, 2.0$ equiv $)$ and $\mathrm{RuCl}_{3} \cdot n \mathrm{H}_{2} \mathrm{O}(10.4$ $\mathrm{mg}, 0.05 \mathrm{mmol})$. The reaction mixture was stirred at $110^{\circ} \mathrm{C}$ for 18 h . Purification on silica gel (Cyclohexane/Ethyl acetate gradient from 80/20 to 50/50) afforded 181 ($275 \mathrm{mg}, 74 \%$) as a white solid. The excess of cyanamide was removed by bulb to bulb distillation (conditions: $1.0 \times 10^{-3} \mathrm{mbar}, 90^{\circ} \mathrm{C}$ for 10 minutes). m.p. $175-178{ }^{\circ} \mathrm{C}$.
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 1 2}$ (Petroleum ether/Ethyl acetate; 80/20, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.90-3.76(\mathrm{~m}, 4 \mathrm{H}), 3.49(\mathrm{~s}, 2 \mathrm{H}), 3.45(\mathrm{~s}, 2 \mathrm{H}), 3.34(\mathrm{~s}, 6 \mathrm{H})$, $3.17-2.94(\mathrm{~m}, 4 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.2,160.7,151.4,150.6,148.3,127.3,117.8,67.4,55.8,50.8$, 44.0, 42.6, 29.3, 21.8, 14.5.

MS (CI, NH3): m/z = $373[\mathrm{M}+\mathrm{H}]^{+}$.

1,4-Dimethyl-3-morpholino-5,7-dihydrospiro[cyclopenta[c]pyridine-6,2'-indene]-1',3'dione (182)

This compound was obtained following the general procedure L. Starting from diyne $\mathbf{1 0 3}$ (250 $\mathrm{mg}, 1.0 \mathrm{mmol})$, 4-cyanomorpholine $\mathbf{1 5 5}(224 \mathrm{mg}, 2.0 \mathrm{mmol}, 2.0$ equiv $)$ and $\mathrm{RuCl}_{3} \cdot n \mathrm{H}_{2} \mathrm{O}(10.4$ $\mathrm{mg}, 0.05 \mathrm{mmol})$. The reaction mixture was stirred at $80^{\circ} \mathrm{C}$ for 18 h . Purification on silica gel (Cyclohexane/Ethyl acetate gradient from 90/10 to 80/20) afforded 182 ($268 \mathrm{mg}, 74 \%$) as a yellow solid. The excess of cyanamide was removed by bulb to bulb distillation (conditions: $1.0 \times 10^{-3} \mathrm{mbar}, 9{ }^{\circ} \mathrm{C}$ for 10 minutes). m.p. $206-209^{\circ} \mathrm{C}$.

Experimental part
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 2 1}$ (Petroleum ether/Ethyl acetate; 80/20, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.08-7.98(\mathrm{~m}, 2 \mathrm{H}), 7.93-7.85(\mathrm{~m}, 2 \mathrm{H}), 3.89-3.73(\mathrm{~m}, 4 \mathrm{H})$, $3.23(\mathrm{~s}, 2 \mathrm{H}), 3.22(\mathrm{~s}, 2 \mathrm{H}), 3.14-3.01(\mathrm{~m}, 4 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 202.9,160.6,151.3,148.4,141.7,136.2,128.9,123.9,118.0$, $67.4,58.5,50.8,39.6,21.8,14.5$.

MS (CI, NH_{3}): $\mathrm{m} / \mathrm{z}=363[\mathrm{M}+\mathrm{H}]^{+}$.

(1,4-Dimethyl-3-morpholino-6,7-dihydro-5H-cyclopenta[c]pyridine-6,6-diyl)dimethanol

 (183)

Chemical Formula: $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{3}$ Exact Mass: 292.1787

This compound was obtained following the general procedure L. Starting from diyne $\mathbf{1 0 4}$ (180 $\mathrm{mg}, 1.0 \mathrm{mmol})$, 4-cyanomorpholine 155 ($224 \mathrm{mg}, 2.0 \mathrm{mmol}$, 2.0 equiv) and $\mathrm{RuCl}_{3} \cdot n \mathrm{H}_{2} \mathrm{O}$ (10.4 $\mathrm{mg}, 0.05 \mathrm{mmol})$. The reaction mixture was stirred at $80^{\circ} \mathrm{C}$ for 18 h . Purification on silica gel (Cyclohexane/Ethyl acetate 80/20) afforded $\mathbf{1 8 3}$ ($30 \mathrm{mg}, 10 \%$) as a pale yellow solid. The excess of cyanamide was removed by bulb to bulb distillation (conditions: $1.0 \times 10^{-3} \mathrm{mbar}, 90$ ${ }^{\circ} \mathrm{C}$ for 10 minutes). The analytical data were identical to the literature. ${ }^{143}$
$\mathbf{R f}_{\mathbf{f}}=\mathbf{0 . 2}$ (Petroleum ether/Ethyl acetate; 2/1, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.86-3.81(\mathrm{~m}, 4 \mathrm{H}), 3.81-3.67(\mathrm{~m}, 4 \mathrm{H}), 3.13-2.99(\mathrm{~m}, 4 \mathrm{H})$, $2.72-2.60(\mathrm{~m}, 4 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.8,152.4,149.1,130.0,118.6,69.5,67.4,50.8,48.7,37.9$, 36.6, 21.7, 14.4 .

MS (CI, NH3): m/z = $293[\mathrm{M}+\mathrm{H}]^{+}$.

(1,4-Dimethyl-3-morpholino-6,7-dihydro-5H-cyclopenta[c]pyridine-6,6-diyl)bis (methylene) diacetate (184)

This compound was obtained following the general procedure \mathbf{L}. Starting from diyne $\mathbf{1 0 5}$ (264 $\mathrm{mg}, 1.0 \mathrm{mmol})$, 4-cyanomorpholine 155 ($224 \mathrm{mg}, 2.0 \mathrm{mmol}$, 2.0 equiv) and $\mathrm{RuCl}_{3} \cdot n \mathrm{H}_{2} \mathrm{O}(10.4$ $\mathrm{mg}, 0.05 \mathrm{mmol})$. The reaction mixture was stirred at $80^{\circ} \mathrm{C}$ for 18 h . Purification on silica gel (Cyclohexane/Ethyl acetate gradient from 90/10 to 80/20) afforded 184 ($255 \mathrm{mg}, 68 \%$) as a white solid. The excess of cyanamide was removed by bulb to bulb distillation (conditions: $1.0 \times 10^{-3} \mathrm{mbar}, 9{ }^{\circ} \mathrm{C}$ for 10 minutes). m.p. $102-104{ }^{\circ} \mathrm{C}$.
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 3}$ (Cyclohexane/Ethyl acetate; 80/20, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.08(\mathrm{~s}, 4 \mathrm{H}), 3.89-3.73(\mathrm{~m}, 4 \mathrm{H}), 3.16-2.92(\mathrm{~m}, 4 \mathrm{H}), 2.78-$ 2.70 (m, 4H), 2.31 ($\mathrm{s}, 3 \mathrm{H}$), 2.12 ($\mathrm{s}, 3 \mathrm{H}$), 2.07 ($\mathrm{s}, 6 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.1,160.1,151.4,149.1,129.2,118.4,67.4,66.9,50.8,46.2$, 38.1, 36.8, 21.7, 21.0, 14.4.

MS (CI, NH3): m/z = $377[\mathrm{M}+\mathrm{H}]^{+}$.

4-(6,6-Bis((benzyloxy)methyl)-1,4-dimethyl-6,7-dihydro-5H-cyclopenta[c]pyridin-3yl)morpholine (185)

Chemical Formula: $\mathrm{C}_{30} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{3}$
Exact Mass: 472.2726

This compound was obtained following the general procedure L. Starting from diyne $\mathbf{1 0 6}$ (360 $\mathrm{mg}, 1.0 \mathrm{mmol}$), 4-cyanomorpholine 155 ($224 \mathrm{mg}, 2.0 \mathrm{mmol}, 2.0$ equiv) and $\mathrm{RuCl}_{3} \cdot n \mathrm{H}_{2} \mathrm{O}$ (10.4 $\mathrm{mg}, 0.05 \mathrm{mmol})$. The reaction mixture was stirred at $80^{\circ} \mathrm{C}$ for 18 h . Purification on silica gel (Cyclohexane/Ethyl acetate 80/20) afforded $\mathbf{1 8 5}$ ($390 \mathrm{mg}, \mathbf{8 3 \%}$) as a pale yellow oil. The excess of cyanamide was removed by bulb to bulb distillation (conditions: $1.0 \times 10^{-3} \mathrm{mbar}, 9{ }^{\circ} \mathrm{C}$ for 10 minutes).

Experimental part
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 3 8}$ (Petroleum ether/Ethyl acetate; 90/10, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.40-7.18(\mathrm{~m}, 10 \mathrm{H}), 4.53(\mathrm{~s}, 4 \mathrm{H}), 3.96-3.72(\mathrm{~m}, 4 \mathrm{H}), 3.50(\mathrm{~s}$, $4 \mathrm{H}), 3.16-2.94(\mathrm{~m}, 4 \mathrm{H}), 2.79-2.70(\mathrm{~m}, 4 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.7,152.9,148.9,138.8,130.7,128.5,127.6,118.5,73.7$, 73.4, 67.5, 50.9, 48.1, 38.5, 37.1, 21.7, 14.4.

MS (CI, NH_{3}): $\mathrm{m} / \mathrm{z}=473[\mathrm{M}+\mathrm{H}]^{+}$.

4,7-Dimethyl-6-morpholino-1,3-dihydrofuro[3,4-c]pyridine (186)

Exact Mass: 234.1368
a) This compound was obtained following the general procedure \mathbf{L}. Starting from diyne $\mathbf{1 0 7}$ ($122 \mathrm{mg}, 1.0 \mathrm{mmol}$), 4-cyanomorpholine $\mathbf{1 5 5}$ ($224 \mathrm{mg}, 2.0 \mathrm{mmol}, 2.0$ equiv) and $\mathrm{RuCl}_{3} \cdot n \mathrm{H}_{2} \mathrm{O}$ $(10.4 \mathrm{mg}, 0.05 \mathrm{mmol})$. The reaction mixture was stirred at $80^{\circ} \mathrm{C}$ for 18 h . Purification on silica gel (Cyclohexane/Ethyl acetate gradient from 90/10 to $80 / 20$) afforded $\mathbf{1 8 6}$ ($150 \mathrm{mg}, 64 \%$) as a white solid. The excess of cyanamide was removed by bulb to bulb distillation (conditions: $1.0 \times 10^{-3} \mathrm{mbar}, 9{ }^{\circ} \mathrm{C}$ for 10 minutes).
b) This compound was obtained following the general procedure \mathbf{M}. Starting from diyne $\mathbf{1 0 7}$ ($61 \mathrm{mg}, 0.5 \mathrm{mmol}$), 4-cyanomorpholine 155 ($112 \mathrm{mg}, 1.0 \mathrm{mmol}, 2.0$ equiv) and $\mathrm{Cp} * \mathrm{Ru}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{3} \mathrm{PF}_{6}(5.0 \mathrm{mg}, 0.01 \mathrm{mmol})$. Purification on silica gel (Cyclohexane/Ethyl acetate gradient from 90/10 to $80 / 20$) afforded $\mathbf{1 8 6}(94 \mathrm{mg}, 80 \%)$ as a white solid. The excess of cyanamide was removed by bulb to bulb distillation (conditions: $1.0 \times 10^{-3} \mathrm{mbar}, 9{ }^{\circ} \mathrm{C}$ for 10 minutes).

The analytical data were identical to the literature. ${ }^{143}$
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 1 3}$ (Petroleum ether/Ethyl acetate; 90/10, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.05(\mathrm{~s}, 2 \mathrm{H}), 5.00(\mathrm{~s}, 2 \mathrm{H}), 3.86-3.81(\mathrm{~m}, 4 \mathrm{H}), 3.12-3.07(\mathrm{~m}$, $4 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.5,150.1,146.2,127.6,115.1,73.2,72.7,67.3,50.7,21.9$, 14.6.

MS (CI, NH_{3}): $\mathrm{m} / \mathrm{z}=235[\mathrm{M}+\mathrm{H}]^{+}$.

4-(4,7-Dimethyl-2-tosyl-2,3-dihydro-1H-pyrrolo[3,4-c]pyridin-6-yl)morpholine (187)

Chemical Formula: $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}$
Exact Mass: 387.1617
a) This compound was obtained following the general procedure \mathbf{L}. Starting from diyne $\mathbf{1 0 8}$ ($275 \mathrm{mg}, 1.0 \mathrm{mmol}$), 4-cyanomorpholine $\mathbf{1 5 5}\left(224 \mathrm{mg}, 2.0 \mathrm{mmol}, 2.0\right.$ equiv) and $\mathrm{RuCl}_{3} \cdot n \mathrm{H}_{2} \mathrm{O}$ $(10.4 \mathrm{mg}, 0.05 \mathrm{mmol})$. The reaction mixture was stirred at $110^{\circ} \mathrm{C}$ for 18 h . Purification on silica gel (Cyclohexane/Ethyl acetate gradient from 90/10 to $80 / 20$) afforded 187 ($280 \mathrm{mg}, 72 \%$) as a white solid. The excess of cyanamide was removed by bulb to bulb distillation (conditions: $1.0 \times 10^{-3} \mathrm{mbar}, 9{ }^{\circ} \mathrm{C}$ for 10 minutes).
b) This compound was obtained following the general procedure \mathbf{N}. Starting from diyne $\mathbf{1 0 8}$ ($137.5 \mathrm{mg}, 0.5 \mathrm{mmol}$), 4-cyanomorpholine $155(67 \mathrm{mg}, 0.6 \mathrm{mmol}, 1.2$ equiv) and $\mathrm{Cp} * \mathrm{Ru}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{3} \mathrm{PF}_{6}(5.0 \mathrm{mg}, 0.01 \mathrm{mmol})$. The reaction mixture was stirred at room temperature for 5 min . Purification on silica gel (Cyclohexane/Ethyl acetate gradient from $90 / 10$ to $80 / 20$) afforded $\mathbf{1 8 7}(180 \mathrm{mg}, 93 \%)$ as a white solid. The excess of cyanamide was removed by bulb to bulb distillation (conditions: $1.0 \times 10^{-3} \mathrm{mbar}, 9{ }^{\circ} \mathrm{C}$ for 10 minutes).

The analytical data were identical to the literature. ${ }^{143}$
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 1 5}$ (Petroleum ether/Ethyl acetate; 80/20, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.78(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.52-4.40$ $(\mathrm{m}, 4 \mathrm{H}), 3.85-3.75(\mathrm{~m}, 4 \mathrm{H}), 3.10-3.00(\mathrm{~m}, 4 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 160.8,147.7,146.8,144.0,134.1,130.1,127.8,124.8,116.4$, $67.3,53.5,52.6,50.69,21.7,14.5$.

MS (CI, NH_{3}): $\mathrm{m} / \mathrm{z}=388[\mathrm{M}+\mathrm{H}]^{+}$.

Dimethyl 3-morpholino-5,7-dihydro-6H-cyclopenta[c]pyridine-6,6-dicarboxylate (188)

Chemical Formula: $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{5}$
Exact Mass: 320.1372

This compound was obtained following the general procedure \mathbf{N}. Starting from diyne $\mathbf{1 0 9}$ (104 $\mathrm{mg}, 0.5 \mathrm{mmol}$), 4-cyanomorpholine 155 ($67 \mathrm{mg}, 0.6 \mathrm{mmol}, 1.2$ equiv) and $\mathrm{Cp} * \mathrm{Ru}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{3} \mathrm{PF}_{6}$ ($2.5 \mathrm{mg}, 0.005 \mathrm{mmol}$). The reaction mixture was stirred at room temperature for 2 min . Purification on silica gel (Cyclohexane/Ethyl acetate gradient from 80/20 to 60/40) afforded $\mathbf{1 8 8}$ ($152 \mathrm{mg}, 95 \%$) as a white solid. The excess of cyanamide was removed by bulb to bulb distillation (conditions: $1.0 \times 10^{-3} \mathrm{mbar}, 90^{\circ} \mathrm{C}$ for 10 minutes). The analytical data were identical to the literature. ${ }^{128}$
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 1}\left(\right.$ Petroleum ether/Ethyl acetate; 80/20, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.02(\mathrm{~s}, 1 \mathrm{H}), 6.52(\mathrm{~s}, 1 \mathrm{H}), 3.88-3.77(\mathrm{~m}, 4 \mathrm{H}), 3.74(\mathrm{~s}, 6 \mathrm{H})$, 3.50 (s, 4H), $3.47-3.37$ (m, 4H).
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.8,159.4,151.7,143.1,126.3,102.8,66.9,60.7,53.2,46.3$, 40.6, 37.6.

MS $\left(\mathrm{CI}, \mathrm{NH}_{3}\right): \mathrm{m} / \mathrm{z}=321[\mathrm{M}+\mathrm{H}]^{+}$.

Dimethyl 1-methyl-3-morpholino-5,7-dihydro-6H-cyclopenta[c]pyridine-6,6dicarboxylate (193)

a) This compound was obtained following the general procedure \mathbf{L}. Starting from diyne $\mathbf{1 2 5}$ ($222 \mathrm{mg}, 1.0 \mathrm{mmol}$), 4-cyanomorpholine 155 ($224 \mathrm{mg}, 2.0 \mathrm{mmol}$, 2.0 equiv) and $\mathrm{RuCl}_{3} \cdot n \mathrm{H}_{2} \mathrm{O}$ $(10.4 \mathrm{mg}, 0.05 \mathrm{mmol})$. The reaction mixture was stirred at $100^{\circ} \mathrm{C}$ for 18 h . Purification on silica gel (Cyclohexane/Ethyl acetate gradient from 95/5 to 90/10) afforded 193 ($71 \mathrm{mg}, 43 \%$, ratio
$=87: 13)$ as a white solid. The excess of cyanamide was removed by bulb to bulb distillation (conditions: $1.0 \times 10^{-3} \mathrm{mbar}, 9{ }^{\circ} \mathrm{C}$ for 10 minutes).
b) This compound was obtained following the general procedure \mathbf{M}. Starting from diyne $\mathbf{1 2 5}$ ($111 \mathrm{mg}, 0.5 \mathrm{mmol}$), 4-cyanomorpholine 155 ($112 \mathrm{mg}, 1.0 \mathrm{mmol}, 2.0$ equiv) and $\mathrm{Cp} * \mathrm{Ru}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{3} \mathrm{PF}_{6}(5.0 \mathrm{mg}, 0.01 \mathrm{mmol})$. The reaction mixture was stirred at room temperature for 10 min . Purification on silica gel (Cyclohexane/Ethyl acetate gradient from $95 / 5$ to $90 / 10$) afforded $193(148 \mathrm{mg}, 89 \%$, ratio $=98: 2)$ as a slight yellow solid. The excess of cyanamide was removed by bulb to bulb distillation (conditions: $1.0 \times 10^{-3} \mathrm{mbar}, 9{ }^{\circ} \mathrm{C}$ for 10 minutes). m.p. $110-112{ }^{\circ} \mathrm{C}$.
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 1 7}$ (Cyclohexane/Ethyl acetate; 85/15, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.33\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{8}\right), 3.83-3.78\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}_{13}\right), 3.75\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{H}_{1}\right), 3.49$ (s, 2H, H4), $3.47-3.41\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{H}_{5,12}\right), 2.32\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{11}\right)$
${ }^{13} \mathbf{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.0\left(\mathrm{C}_{2}\right), 159.3\left(\mathrm{C}_{7}\right), 151.7\left(\mathrm{C}_{9}\right), 151.5\left(\mathrm{C}_{10}\right), 124.3\left(\mathrm{C}_{6}\right)$, $100.1\left(\mathrm{C}_{8}\right), 67.0\left(\mathrm{C}_{13}\right), 60.0\left(\mathrm{C}_{3}\right), 53.2\left(\mathrm{C}_{1}\right), 46.4\left(\mathrm{C}_{12}\right), 40.8\left(\mathrm{C}_{4}\right), 38.0\left(\mathrm{C}_{5}\right), 22.2\left(\mathrm{C}_{11}\right)$.

NOESY ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\mathrm{H}_{8}(6.33 \mathrm{ppm})$ correlates to $\mathrm{H}_{12}(3.47-3.41 \mathrm{ppm}), \mathrm{H}_{5}(3.47-3.41$ ppm) correlates to $\mathrm{H}_{11}(2.32 \mathrm{ppm})$.

HRMS (ESI ${ }^{+}$): calcd. for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 335.1601$, found 335.1603.

Dimethyl 3-morpholino-1-phenyl-5,7-dihydro-6H-cyclopenta[c]pyridine-6,6dicarboxylate (194)

Chemical Formula: $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{5}$ Exact Mass: 396.1685
a) This compound was obtained following the general procedure \mathbf{L}. Starting from diyne $\mathbf{1 2 6}$ ($142 \mathrm{mg}, 0.5 \mathrm{mmol}$), 4-cyanomorpholine $\mathbf{1 5 5}$ ($112 \mathrm{mg}, 1.0 \mathrm{mmol}, 2.0$ equiv) and $\mathrm{RuCl}_{3} \cdot n \mathrm{H}_{2} \mathrm{O}$ $(5.2 \mathrm{mg}, 0.025 \mathrm{mmol})$. The reaction mixture was stirred at $100^{\circ} \mathrm{C}$ for 18 h . Purification on silica
gel (Cyclohexane/Ethyl acetate gradient from 95/5 to 90/10) afforded 194 ($32 \mathrm{mg}, 16 \%$, ratio $=90: 10)$ as a white solid. The excess of cyanamide was removed by bulb to bulb distillation (conditions: $1.0 \times 10^{-3} \mathrm{mbar}, 9{ }^{\circ} \mathrm{C}$ for 10 minutes).
b) This compound was obtained following the general procedure \mathbf{M}. Starting from diyne $\mathbf{1 2 6}$ ($142 \mathrm{mg}, 0.5 \mathrm{mmol}$), 4-cyanomorpholine $155(112 \mathrm{mg}, 1.0 \mathrm{mmol}, 2.0$ equiv) and $\mathrm{Cp} * \mathrm{Ru}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{3} \mathrm{PF}_{6}(12.5 \mathrm{mg}, 0.025 \mathrm{mmol})$. The reaction mixture was stirred at $50^{\circ} \mathrm{C}$ for 15 min. Purification on silica gel (Cyclohexane/Ethyl acetate gradient from 80/20 to 70/30) afforded 194 ($190 \mathrm{mg}, 96 \%$, ratio > 99:1) as a white solid. The excess of cyanamide was removed by bulb to bulb distillation (conditions: $1.0 \times 10^{-3} \mathrm{mbar}, 90^{\circ} \mathrm{C}$ for 10 minutes). m.p. $166-168^{\circ} \mathrm{C}$.
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 2}\left(\right.$ Petroleum ether/Ethyl acetate; $\left.85 / 15, \mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.81-7.78\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{12}\right), 7.47-7.41\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{13}\right), 7.39-7.35$ $\left(\mathrm{m}, 1 \mathrm{H}, \mathrm{H}_{14}\right), 6.52\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{8}\right), 3.86-3.80\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}_{16}\right), 3.73\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{H}_{11}\right), 3.72\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}_{5}\right), 3.60$ $-3.41\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}_{15}\right), 3.54\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}_{4}\right)$.
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.8\left(\mathrm{C}_{2}\right), 159.0\left(\mathrm{C}_{9}\right), 153.1\left(\mathrm{C}_{6}\right), 151.2\left(\mathrm{C}_{10}\right), 139.9\left(\mathrm{C}_{11}\right), 128.4$ $\left(\mathrm{C}_{12}\right), 128.3\left(\mathrm{C}_{13}\right), 128.3\left(\mathrm{C}_{14}\right), 123.2\left(\mathrm{C}_{7}\right), 101.5\left(\mathrm{C}_{8}\right), 67.0\left(\mathrm{C}_{16}\right), 60.5\left(\mathrm{C}_{3}\right), 53.2\left(\mathrm{C}_{1}\right), 46.0$ $\left(\mathrm{C}_{15}\right), 40.5\left(\mathrm{C}_{4}\right), 39.6\left(\mathrm{C}_{5}\right)$.

NOESY ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\mathrm{H}_{12}(7.81-7.78 \mathrm{ppm})$ correlates to $\mathrm{H}_{5}(3.72 \mathrm{ppm}), \mathrm{H}_{8}(6.52 \mathrm{ppm})$ correlate to $\mathrm{H}_{15}(3.60-3.41 \mathrm{ppm})$ and $\mathrm{H}_{4}(3.54 \mathrm{ppm})$.

HRMS (ESI ${ }^{+}$): calcd. for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 397.1758$, found 397.1756.

Di-tert-butyl 3-morpholino-5,7-dihydro-6 H-cyclopenta[c]pyridine-6,6-dicarboxylate (196)

Chemical Formula: $\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{5}$
Exact Mass: 404.2311

This compound was obtained following the general procedure M. Starting from diyne 114 (146 $\mathrm{mg}, \quad 0.5 \mathrm{mmol})$, 4-cyanomorpholine $\mathbf{1 5 5}(112 \mathrm{mg}, 1.0 \mathrm{mmol}, 2.0$ equiv) and
$\mathrm{Cp} * \mathrm{Ru}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{3} \mathrm{PF}_{6}(5.0 \mathrm{mg}, 0.01 \mathrm{mmol})$. The reaction mixture was stirred at room temperature for 5 min . Purification on silica gel (Cyclohexane/Ethyl acetate 80/20) afforded 196 ($198 \mathrm{mg}, 98 \%$) as a white solid. The excess of cyanamide was removed by bulb to bulb distillation (conditions: $1.0 \times 10^{-3} \mathrm{mbar}, 90^{\circ} \mathrm{C}$ for 10 minutes). m.p. $135-137^{\circ} \mathrm{C}$.
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 2 3}$ (Petroleum ether/Ethyl acetate; 85/15, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.00(\mathrm{~s}, 1 \mathrm{H}), 6.51(\mathrm{~s}, 1 \mathrm{H}), 3.89-3.72(\mathrm{~m}, 4 \mathrm{H}), 3.50-3.40(\mathrm{~m}$, $4 \mathrm{H}), 3.38(\mathrm{~s}, 4 \mathrm{H}), 1.44(\mathrm{~s}, 18 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.7,159.4,152.3,143.0,127.0,102.8,81.8,67.0,61.8,46.4$, 40.3, 37.3, 28.0.

HRMS (ESI ${ }^{+}$): calcd. for $\mathrm{C}_{22} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 405.2384$, found 405.2385.

Diisopropyl 3-morpholino-5,7-dihydro-6H-cyclopenta[c]pyridine-6,6-dicarboxylate (197)

Chemical Formula: $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{5}$
Exact Mass: 376.1998

This compound was obtained following the general procedure \mathbf{N}. Starting from diyne $\mathbf{1 1 5}$ (132 $\mathrm{mg}, 0.5 \mathrm{mmol}$), 4-cyanomorpholine 155 ($67 \mathrm{mg}, 0.6 \mathrm{mmol}, 1.2$ equiv) and $\mathrm{Cp} * \mathrm{Ru}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{3} \mathrm{PF}_{6}$ $(2.5 \mathrm{mg}, 0.005 \mathrm{mmol})$. The reaction mixture was stirred at room temperature for 5 min . Purification on silica gel (Cyclohexane/Ethyl acetate gradient from 80/20 to 70/30) afforded 197 ($152 \mathrm{mg}, 81 \%$) as a white solid. The excess of cyanamide was removed by bulb to bulb distillation (conditions: $1.0 \times 10^{-3} \mathrm{mbar}, 90^{\circ} \mathrm{C}$ for 10 minutes). m.p. $115-117^{\circ} \mathrm{C}$.
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 1 1}$ (Petroleum ether/Ethyl acetate; $\left.85 / 15, \mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.01(\mathrm{~s}, 1 \mathrm{H}), 6.51(\mathrm{~s}, 1 \mathrm{H}), 5.03(\mathrm{dt}, J=12.5,6.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.86$ $-3.74(\mathrm{~m}, 4 \mathrm{H}), 3.50-3.38(\mathrm{~m}, 8 \mathrm{H}), 1.23(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 12 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.9,159.4,152.0,143.1,126.7,102.8,69.4,67.0,60.8,46.3$, 40.4, 37.4, 21.6.

HRMS (ESI ${ }^{+}$): calcd. for $\mathrm{C}_{20} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 377.2071$, found 377.2071.

Methyl 3-morpholino-6-phenyl-6,7-dihydro-5H-cyclopenta[c]pyridine-6-carboxylate (198)

Chemical Formula: $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3}$
Exact Mass: 338.1630

This compound was obtained following the general procedure \mathbf{N}. Starting from diyne 116 (113 $\mathrm{mg}, 0.5 \mathrm{mmol}$), 4-cyanomorpholine 155 ($67 \mathrm{mg}, 0.6 \mathrm{mmol}, 1.2$ equiv) and $\mathrm{Cp} * \mathrm{Ru}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{3} \mathrm{PF}_{6}$ $(5.0 \mathrm{mg}, 0.01 \mathrm{mmol})$. The reaction mixture was stirred at room temperature for 5 min . Purification on silica gel (Cyclohexane/Ethyl acetate gradient from 80/20 to 70/30) afforded 198 ($154 \mathrm{mg}, 91 \%$) as a white solid. The excess of cyanamide was removed by bulb to bulb distillation (conditions: $1.0 \times 10^{-3} \mathrm{mbar}, 90^{\circ} \mathrm{C}$ for 10 minutes). m.p. $178-180^{\circ} \mathrm{C}$.
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 1}\left(\right.$ Petroleum ether/Ethyl acetate; 80/20, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.07(\mathrm{~s}, 1 \mathrm{H}), 7.45-7.22(\mathrm{~m}, 5 \mathrm{H}), 6.59(\mathrm{~s}, 1 \mathrm{H}), 4.00-3.74(\mathrm{~m}$, $6 \mathrm{H}), 3.60(\mathrm{~s}, 3 \mathrm{H}), 3.50-3.33(\mathrm{~m}, 4 \mathrm{H}), 3.23(\mathrm{dd}, J=19.8,15.7 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 175.6,159.4,152.9,142.9,142.2,128.7,127.6,127.4,126.7$, 103.1, 67.0, 60.0, 52.9, 46.3, 42.9, 39.5.

HRMS (ESI ${ }^{+}$): calcd. for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 339.1703$, found 339.1704.

Methyl 6-cyano-3-morpholino-6,7-dihydro-5H-cyclopenta[c]pyridine-6-carboxylate (199)

Chemical Formula: $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{3}$
Exact Mass: 287.1270

This compound was obtained following the general procedure M. Starting from diyne 117 (87.5 $\mathrm{mg}, \quad 0.5 \mathrm{mmol})$, 4-cyanomorpholine $155(112 \mathrm{mg}, \quad 1.0 \mathrm{mmol}, 2.0$ equiv) and $\mathrm{Cp} * \mathrm{Ru}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{3} \mathrm{PF}_{6}(5.0 \mathrm{mg}, 0.01 \mathrm{mmol})$. The reaction mixture was stirred at room temperature for 40 min . Purification on silica gel (Cyclohexane/Ethyl acetate 80/20) afforded $199(125 \mathrm{mg}, 87 \%)$ as a pale yellow oil.
$\mathbf{R f}_{\mathbf{f}}=\mathbf{0 . 1}$ (Petroleum ether/Ethyl acetate; $\left.85 / 15, \mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.05(\mathrm{~s}, 1 \mathrm{H}), 6.53(\mathrm{~s}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.83-3.74(\mathrm{~m}, 4 \mathrm{H})$, $3.65-3.39(\mathrm{~m}, 8 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.7,159.7,149.9,143.5,124.0,120.1,102.6,66.8,54.1,47.6$, 46.0, 42.9, 40.6.

HRMS (ESI ${ }^{+}$): calcd. for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}:$288.1343, found 288.1343.

3-Morpholino-5,7-dihydro-6H-cyclopenta[c]pyridine-6,6-dicarbonitrile (200)

Chemical Formula: $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}$
Exact Mass: 254.1168

This compound was obtained following the general procedure N. Starting from diyne $\mathbf{1 1 8}$ (71 $\mathrm{mg}, 0.5 \mathrm{mmol}$), morpholine-4-carbonitrile $155(67 \mathrm{mg}, 0.6 \mathrm{mmol}, 1.2$ equiv) and $\mathrm{Cp} * \mathrm{Ru}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{3} \mathrm{PF}_{6}(5 \mathrm{mg}, 0.01 \mathrm{mmol})$. The reaction mixture was stirred at room temperature for 2 min . Purification on silica gel (Cyclohexane/Ethyl acetate gradient from 80/20 to 50/50) afforded $200(64 \mathrm{mg}, 50 \%)$ as a white solid. m.p. $176-178^{\circ} \mathrm{C}$.
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 4}$ (Petroleum ether/Ethyl acetate; 50/50, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}^{\text {NMR }}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.12(\mathrm{~s}, 1 \mathrm{H}), 6.56(\mathrm{~s}, 1 \mathrm{H}), 3.85-3.76(\mathrm{~m}, 4 \mathrm{H}), 3.65(\mathrm{~s}, 2 \mathrm{H})$, 3.61 (s, 2H), $3.55-3.40(\mathrm{~m}, 4 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.9,147.7,144.0,121.8,116.0,102.6,66.7,45.9,44.6,42.0$, 34.0.

MS (CI, NH_{3}): $\mathrm{m} / \mathrm{z}=255[\mathrm{M}+\mathrm{H}]^{+}$.

Experimental part

Chemical Formula: $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{3}$ Exact Mass: 334.1317

This compound was obtained following the general procedure \mathbf{N}. Starting from diyne $\mathbf{1 1 9}$ (111 $\mathrm{mg}, 0.5 \mathrm{mmol}$), 4-cyanomorpholine 155 ($67 \mathrm{mg}, 0.6 \mathrm{mmol}$, 1.2 equiv) and $\mathrm{Cp} * \mathrm{Ru}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{3} \mathrm{PF}_{6}$ ($2.5 \mathrm{mg}, 0.005 \mathrm{mmol}$). The reaction mixture was stirred at room temperature for 5 min . Purification on silica gel (Cyclohexane/Ethyl acetate gradient from 80/20 to 50/50) afforded 201 ($162 \mathrm{mg}, 97 \%$) as a pale yellow solid. The excess of cyanamide was removed by bulb to bulb distillation (conditions: $1.0 \times 10^{-3} \mathrm{mbar}, 90^{\circ} \mathrm{C}$ for 10 minutes). m.p. $194-196^{\circ} \mathrm{C}$.
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 1}$ (Petroleum ether/Ethyl acetate; 80/20, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.08-7.95(\mathrm{~m}, 3 \mathrm{H}), 7.93-7.81(\mathrm{~m}, 2 \mathrm{H}), 6.54(\mathrm{~s}, 1 \mathrm{H}), 3.89-$ 3.72 (m, 4H), $3.54-3.37$ (m, 4H), 3.24 (s, 2H), 3.23 (s, 2H).
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 202.5,159.6,152.5,143.0,141.5,136.1,126.7,123.8$, 102.7, 66.9, 59.1, 46.3, 39.7, 38.4 .

HRMS (ESI ${ }^{+}$): calcd. for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 335.1390$, found 335.1392.

(3-Morpholino-6,7-dihydro-5H-cyclopenta[c]pyridine-6,6-diyl)dimethanol (202)

Chemical Formula: $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3}$ Exact Mass: 264.1474

This compound was obtained following the general procedure M. Starting from diyne $\mathbf{1 2 0}$ (76 $\mathrm{mg}, \quad 0.5 \mathrm{mmol})$, 4-cyanomorpholine $155(112 \mathrm{mg}, 1.0 \mathrm{mmol}, 2.0$ equiv) and $\mathrm{Cp} * \mathrm{Ru}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{3} \mathrm{PF}_{6}(5.0 \mathrm{mg}, 0.01 \mathrm{mmol})$. The reaction mixture was stirred at room temperature for 5 min . Purification on silica gel (Pure ethyl acetate followed by DCM/MeOH 9/1) afforded 202 ($115 \mathrm{mg}, 87 \%$) as a white solid. m.p. $158-160^{\circ} \mathrm{C}$.
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 2}$ (Pure ethyl acetate, $\mathrm{KMnO}_{4}, \mathrm{UV}$).
${ }^{1} \mathbf{H}$ NMR $(300 \mathrm{MHz}, \mathrm{MeOD}) \delta 7.89(\mathrm{~s}, 1 \mathrm{H}), 6.71(\mathrm{~s}, 1 \mathrm{H}), 4.89(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OH}), 3.83-3.74(\mathrm{~m}$, $4 \mathrm{H}), 3.54(\mathrm{~s}, 4 \mathrm{H}), 3.41-3.33(\mathrm{~m}, 4 \mathrm{H}), 2.77$ (s, 2H), 2.71 ($\mathrm{s}, 2 \mathrm{H}$).
${ }^{13}$ C NMR (75 MHz , MeOD) $\delta 160.7,156.5,143.8,130.6,105.7,67.8,66.2,51.6,47.9,38.8$, 35.3.

HRMS (ESI ${ }^{+}$): calcd. for $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}:$265.1547, found 265.1546.

```
2',2'-Dimethyl-3-morpholino-5,7-dihydrospiro[cyclopenta[c]pyridine-6,5'-[1,3]dioxane] (203)
```


Chemical Formula: $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{3}$ Exact Mass: 304.1787

This compound was obtained following the general procedure M. Starting from diyne 121 (96 $\mathrm{mg}, \quad 0.5 \mathrm{mmol})$, 4-cyanomorpholine $156(112 \mathrm{mg}, 1.0 \mathrm{mmol}, 2.0$ equiv) and $\mathrm{Cp} * \mathrm{Ru}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{3} \mathrm{PF}_{6}(5.0 \mathrm{mg}, 0.01 \mathrm{mmol})$. The reaction mixture was stirred at room temperature for 10 min . Purification on silica gel (Cyclohexane/Ethyl acetate gradient from $80 / 20$ to $60 / 40$) afforded $\mathbf{2 0 3}$ ($132 \mathrm{mg}, 87 \%$) as a white solid. The excess of cyanamide was removed by bulb to bulb distillation (conditions: $1.0 \times 10^{-3} \mathrm{mbar}, 90^{\circ} \mathrm{C}$ for 10 minutes). m.p. $125-127^{\circ} \mathrm{C}$.
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 1}\left(\right.$ Petroleum ether/Ethyl acetate; 80/20, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.00(\mathrm{~s}, 1 \mathrm{H}), 6.51(\mathrm{~s}, 1 \mathrm{H}), 3.84-3.77(\mathrm{~m}, 4 \mathrm{H}), 3.70(\mathrm{tt}, J=11.3$, $5.8 \mathrm{~Hz}, 4 \mathrm{H}), 3.46-3.35(\mathrm{~m}, 4 \mathrm{H}), 2.83(\mathrm{~s}, 2 \mathrm{H}), 2.72(\mathrm{~s}, 2 \mathrm{H}), 1.45(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.3,153.3,143.8,127.8,103.7,98.2,68.7,66.9,46.4,42.8$, 40.2, 36.4, 24.7, 23.2.

HRMS (ESI ${ }^{+}$): calcd. for $\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 305.1860$, found 305.1861.

4-(2-Tosyl-2,3-dihydro-1H-pyrrolo[3,4-c]pyridin-6-yl)morpholine (204)

Experimental part

Chemical Formula: $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}$
Exact Mass: 359.1304

This compound was obtained following the general procedure N. Starting from diyne 122 ($123.5 \mathrm{mg}, 0.5 \mathrm{mmol}$), 4-cyanomorpholine $155(67 \mathrm{mg}, 0.6 \mathrm{mmol}, 1.2$ equiv) and $\mathrm{Cp} * \mathrm{Ru}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{3} \mathrm{PF}_{6}(5.0 \mathrm{mg}, 0.01 \mathrm{mmol})$. The reaction mixture was stirred at room temperature for 5 min . Purification on silica gel (Cyclohexane/Ethyl acetate gradient from 2/1 to $0 / 1$) afforded $204(174 \mathrm{mg}, 97 \%)$ as a white solid. The excess of cyanamide was removed by bulb to bulb distillation (conditions: 1.0×10^{-3} mbar, $90{ }^{\circ} \mathrm{C}$ for 10 minutes). m.p. $202-204^{\circ} \mathrm{C}$ $\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 1}\left(\right.$ Petroleum ether/Ethyl acetate; $\left.70 / 30, \mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.01(\mathrm{~s}, 1 \mathrm{H}), 7.75(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $6.43(\mathrm{~s}, 1 \mathrm{H}), 4.52(\mathrm{~s}, 4 \mathrm{H}), 3.87-3.67(\mathrm{~m}, 4 \mathrm{H}), 3.50-3.30(\mathrm{~m}, 4 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.5,147.8,144.0,142.1,133.8,130.0,127.7,122.5,100.5$, 66.8, 53.5, 51.4, 46.0, 21.7.

HRMS (ESI ${ }^{+}$): calcd. for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 360.1376$, found 360.1378 .

tert-Butyl 6-morpholino-1,3-dihydro-2H-pyrrolo[3,4-c]pyridine-2-carboxylate (205)

Chemical Formula: $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{3}$ Exact Mass: 305.1739

This compound was obtained following the general procedure \mathbf{N}. Starting from diyne $\mathbf{1 2 3}$ (96.5 $\mathrm{mg}, 0.5 \mathrm{mmol}$), 4-cyanomorpholine 155 ($67 \mathrm{mg}, 0.6 \mathrm{mmol}, 1.2$ equiv) and $\mathrm{Cp} * \mathrm{Ru}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{3} \mathrm{PF}_{6}$ $(5.0 \mathrm{mg}, 0.01 \mathrm{mmol})$. The reaction mixture was stirred at room temperature for 5 min . Purification on silica gel (Cyclohexane/Ethyl acetate gradient from 7/3 to 0/1) afforded 205 ($151 \mathrm{mg}, 99 \%$) as a white solid. m.p. $195-197^{\circ} \mathrm{C}$.
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 1}$ (Cyclohexane/Ethyl acetate; 80/20, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 55{ }^{\circ} \mathrm{C}\right) \delta 8.09(\mathrm{~s}, 1 \mathrm{H}), 6.51(\mathrm{~s}, 1 \mathrm{H}), 4.57(\mathrm{~s}, 4 \mathrm{H}), 3.89-3.68(\mathrm{~m}$, 4H), $3.53-3.35$ (m, 4H), 1.51 (s, 9H).
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}, 55{ }^{\circ} \mathrm{C}$) $\delta 159.6,154.6,148.7,142.2,124.1,100.8,80.1,66.9$, 52.0, 49.8, 46.4, 28.7.

HRMS (ESI ${ }^{+}$): calcd. for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 306.1812$, found 306.1814.

Dimethyl 3-(pyrrolidin-1-yl)-5,7-dihydro-6H-cyclopenta[c]pyridine-6,6-dicarboxylate (207)

Chemical Formula: $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{4}$
Exact Mass: 304.1423

This compound was obtained following the general procedure N. Starting from diyne $\mathbf{1 0 9}$ (104 $\mathrm{mg}, 0.5 \mathrm{mmol})$, pyrrolidine-1-carbonitrile $156(57 \mathrm{mg}, 0.6 \mathrm{mmol}, 1.2$ equiv) and $\mathrm{Cp} * \mathrm{Ru}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{3} \mathrm{PF}_{6}(5.0 \mathrm{mg}, 0.01 \mathrm{mmol})$. The reaction mixture was stirred at room temperature for 2 min . Purification on silica gel (Cyclohexane/Ethyl acetate gradient from $80 / 20$ to $70 / 30$) afforded $207(144 \mathrm{mg}, 90 \%)$ as a white solid. The excess of cyanamide was removed by bulb to bulb distillation (conditions: $3.0 \times 10^{-3} \mathrm{mbar}, 80^{\circ} \mathrm{C}$ for 10 minutes). The analytical data were identical to the literature. ${ }^{128}$
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 4 2}$ (Petroleum ether/Ethyl acetate; 80/20, $\mathrm{KMnO}_{4}, \mathrm{UV}$).
${ }^{1} \mathbf{H} \mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.96(\mathrm{~s}, 1 \mathrm{H}), 6.22(\mathrm{~s}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 6 \mathrm{H}), 3.47(\mathrm{~s}, 4 \mathrm{H}), 3.44-3.30$ (m, 4H), $2.07-1.87(\mathrm{~m}, 4 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.0,157.1,151.0,143.3,123.3,101.8,60.8,53.1,47.0,40.5$, 37.6, 25.7.

MS (CI, NH_{3}): $\mathrm{m} / \mathrm{z}=305[\mathrm{M}+\mathrm{H}]^{+}$.

Experimental part

Chemical Formula: $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{4}$
Exact Mass: 430.1893

This compound was obtained following the general procedure \mathbf{N}. Starting from diyne $\mathbf{1 0 9}$ (104 $\mathrm{mg}, ~ 0.5 \mathrm{mmol}$), N, N-dibenzylcyanamide $159(133 \mathrm{mg}, 0.6 \mathrm{mmol}, 1.2$ equiv) and $\mathrm{Cp} * \mathrm{Ru}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{3} \mathrm{PF}_{6}(12.5 \mathrm{mg}, 0.025 \mathrm{mmol})$. The reaction mixture was stirred at room temperature for 10 min . Purification on silica gel (Cyclohexane/Ethyl acetate gradient from 90/10 to 80/20) afforded $\mathbf{2 0 8}$ ($163 \mathrm{mg}, 76 \%$) as a pale yellow oil. The excess of cyanamide was removed by bulb to bulb distillation (conditions: $5 \times 10^{-3} \mathrm{mbar}, 150^{\circ} \mathrm{C}$ for 30 minutes).
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 3 7}$ (Petroleum ether/Ethyl acetate; 85/15, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.02(\mathrm{~s}, 1 \mathrm{H}), 7.35-7.14(\mathrm{~m}, 10 \mathrm{H}), 6.33(\mathrm{~s}, 1 \mathrm{H}), 4.76(\mathrm{~s}, 4 \mathrm{H})$, 3.74 (s, 6H), 3.50 ($\mathrm{s}, 2 \mathrm{H}$), 3.42 ($\mathrm{s}, 2 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.0,158.4,151.6,143.1,138.7,128.7,127.2,127.0,124.6$, 101.2, 60.6, 53.1, 51.3, 40.6, 37.6.

Dimethyl 3-(diethylamino)-5,7-dihydro-6H-cyclopenta[c]pyridine-6,6-dicarboxylate (209)

This compound was obtained following the general procedure \mathbf{N}. Starting from diyne $\mathbf{1 0 9}$ (104 $\mathrm{mg}, \quad 0.5 \mathrm{mmol}), N, N$-diethylcyanamide $\mathbf{1 6 0}(59 \mathrm{mg}, 0.6 \mathrm{mmol}, 1.2$ equiv) and $\mathrm{Cp} * \mathrm{Ru}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{3} \mathrm{PF}_{6}(12.5 \mathrm{mg}, 0.025 \mathrm{mmol})$. The reaction mixture was stirred at room temperature for 10 min . Purification on silica gel (Cyclohexane/Ethyl acetate gradient from $90 / 10$ to $80 / 20$) afforded 209 ($132 \mathrm{mg}, 86 \%$) as a white solid. The excess of cyanamide was removed by bulb to bulb distillation (conditions: $1.0 \times 10^{-3} \mathrm{mbar}, 8{ }^{\circ} \mathrm{C}$ for 10 minutes). The analytical data were identical to the literature. ${ }^{128}$
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 2 2}$ (Petroleum ether/Ethyl acetate; 80/20, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.95(\mathrm{~s}, 1 \mathrm{H}), 6.32(\mathrm{~s}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 6 \mathrm{H}), 3.54-3.40(\mathrm{~m}, 8 \mathrm{H})$, $1.15(\mathrm{t}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.1,157.3,151.1,143.2,123.0,100.8,60.7,53.1,42.8,40.6$, 37.6, 13.1.

MS (CI, NH3): m/z = $307[\mathrm{M}+\mathrm{H}]^{+}$

Dimethyl 3-(dipropylamino)-5,7-dihydro-6H-cyclopenta[c]pyridine-6,6-dicarboxylate (210)

Chemical Formula: $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{4}$
Exact Mass: 334.1893

This compound was obtained following the general procedure \mathbf{N}. Starting from diyne $\mathbf{1 0 9}$ (104 $\mathrm{mg}, 0.5 \mathrm{mmol}), N, N$-dipropylcyanamide $161(76 \mathrm{mg}, 0.6 \mathrm{mmol}, 1.2$ equiv) and $\mathrm{Cp} * \mathrm{Ru}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{3} \mathrm{PF}_{6}(12.5 \mathrm{mg}, 0.025 \mathrm{mmol})$. The reaction mixture was stirred at room temperature for 5 min . Purification on silica gel (Cyclohexane/Ethyl acetate gradient from $90 / 10$ to $80 / 20$) afforded $\mathbf{2 1 0}(140 \mathrm{mg}, 84 \%)$ as a pale yellow oil. The excess of cyanamide was removed by bulb to bulb distillation (conditions: $5 \times 10^{-3} \mathrm{mbar}, 100^{\circ} \mathrm{C}$ for 10 minutes).
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 2 3}$ (Petroleum ether/Ethyl acetate; 80/20, $\mathrm{KMnO}_{4}, \mathrm{UV}$).
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.94(\mathrm{~s}, 1 \mathrm{H}), 6.27(\mathrm{~s}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 6 \mathrm{H}), 3.51-3.40(\mathrm{~m}, 4 \mathrm{H})$, $3.40-3.28(\mathrm{~m}, 4 \mathrm{H}), 1.68-1.47(\mathrm{~m}, 4 \mathrm{H}), 0.91(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.1,157.8,151.0,143.1,122.9,100.8,60.7,53.1,51.0,40.6$, 37.6, 20.9, 11.6.

HRMS (ESI ${ }^{+}$): calcd. for $\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 335.1965$, found 335.1967.

Dimethyl 3-(butyl(methyl)amino)-5,7-dihydro-6H-cyclopenta[c]pyridine-6,6dicarboxylate (211)

Experimental part

Exact Mass: 320.1736 Exact Mass: 320.1736

This compound was obtained following the general procedure N. Starting from diyne $\mathbf{1 0 9}$ (104 $\mathrm{mg}, 0.5 \mathrm{mmol}$), N-butyl- N-methylcyanamide 164 ($67 \mathrm{mg}, 0.6 \mathrm{mmol}, 1.2$ equiv) and $\mathrm{Cp} * \mathrm{Ru}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{3} \mathrm{PF}_{6}(12.5 \mathrm{mg}, 0.025 \mathrm{mmol})$. The reaction mixture was stirred at room temperature for 5 min . Purification on silica gel (Cyclohexane/Ethyl acetate gradient from $90 / 10$ to $70 / 30$) afforded $211(130 \mathrm{mg}, 81 \%)$ as a colorless oil. The excess of cyanamide was removed by bulb to bulb distillation (conditions: $1.0 \times 10^{-3} \mathrm{mbar}, 9{ }^{\circ} \mathrm{C}$ for 10 minutes).
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 2 4}$ (Petroleum ether/Ethyl acetate; 80/20, $\mathrm{KMnO}_{4}, \mathrm{UV}$).
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.96(\mathrm{~s}, 1 \mathrm{H}), 6.33(\mathrm{~s}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 6 \mathrm{H}), 3.52-3.38(\mathrm{~m}, 6 \mathrm{H})$, $3.00(\mathrm{~s}, 3 \mathrm{H}), 1.59-1.48(\mathrm{~m}, 2 \mathrm{H}), 1.42-1.30(\mathrm{~m}, 2 \mathrm{H}), 0.93(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.0,158.4,151.2,143.0,123.3,101.0,60.8,53.1,50.4,40.6$, 37.5, 36.7, 29.6, 20.4, 14.2.

HRMS (ESI ${ }^{+}$): calcd. for $\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}:$321.1809, found 321.1810.

Dimethyl 3-(methyl(phenyl)amino)-5,7-dihydro-6H-cyclopenta[c]pyridine-6,6dicarboxylate (212)

Chemical Formula: $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{4}$ Exact Mass: 340.1423

This compound was obtained following the general procedure \mathbf{N}. Starting from diyne $\mathbf{1 0 9}$ (104 $\mathrm{mg}, 0.5 \mathrm{mmol}$), N-methyl- N-phenylcyanamide 162 ($79 \mathrm{mg}, 0.6 \mathrm{mmol}, 1.2$ equiv) and $\mathrm{Cp} * \mathrm{Ru}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{3} \mathrm{PF}_{6}(5.0 \mathrm{mg}, 0.01 \mathrm{mmol})$. The reaction mixture was stirred at room temperature for 10 min . Purification on silica gel (Cyclohexane/Ethyl acetate gradient from $90 / 10$ to $80 / 20$) afforded $212(153 \mathrm{mg}, 90 \%)$ as a pale yellow solid. The analytical data were identical to the literature. ${ }^{135 \mathrm{a}}$
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 2 4}$ (Petroleum ether/Ethyl acetate; 80/20, $\mathrm{KMnO}_{4}, \mathrm{UV}$).
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.04(\mathrm{~s}, 1 \mathrm{H}), 7.51-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.13(\mathrm{~m}, 3 \mathrm{H}), 6.40(\mathrm{~s}$, 1 H), 3.73 (s, 6H), 3.49 ($\mathrm{s}, 2 \mathrm{H}$), 3.44 (s, 3H), 3.37 ($\mathrm{s}, 2 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.9,158.5,150.8,147.3,142.8,129.8,126.3,125.7,125.3$, 104.8, 60.7, 53.1, 40.4, 38.9, 37.6.

MS (CI, NH_{3}): $\mathrm{m} / \mathrm{z}=341[\mathrm{M}+\mathrm{H}]^{+}$

Dimethyl 3-(benzyl(methyl)amino)-5,7-dihydro-6H-cyclopenta[c]pyridine-6,6dicarboxylate (213)

This compound was obtained following the general procedure \mathbf{N}. Starting from diyne $\mathbf{1 0 9}$ (104 $\mathrm{mg}, 0.5 \mathrm{mmol}$), N-benzyl- N-methylcyanamide 158 ($88 \mathrm{mg}, 0.6 \mathrm{mmol}, 1.2$ equiv) and $\mathrm{Cp} * \mathrm{Ru}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{3} \mathrm{PF}_{6}(2.5 \mathrm{mg}, 0.005 \mathrm{mmol})$. The reaction mixture was stirred at room temperature for 2 min . Purification on silica gel (Cyclohexane/Ethyl acetate gradient from 80/20 to 70/30) afforded 213 ($168 \mathrm{mg}, 95 \%$) as a white solid. The excess of cyanamide was removed by bulb to bulb distillation (conditions: $1.0 \times 10^{-3} \mathrm{mbar}, 120^{\circ} \mathrm{C}$ for 20 minutes). m.p. $136-138^{\circ} \mathrm{C}$.
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 1 7}$ (Petroleum ether/Ethyl acetate; 80/20, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1}{ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.00(\mathrm{~s}, 1 \mathrm{H}), 7.36-7.15(\mathrm{~m}, 5 \mathrm{H}), 6.38(\mathrm{~s}, 1 \mathrm{H}), 4.78(\mathrm{~s}, 2 \mathrm{H})$, 3.75 (s, 6H), 3.49 (s, 2H), 3.47 ($\mathrm{s}, 2 \mathrm{H}$), 3.03 ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.0,158.7,151.5,143.1,139.1,128.6,127.2,126.9,124.1$, 101.1, 60.7, 53.7, 53.1, 40.6, 37.6, 36.5.

HRMS (ESI ${ }^{+}$): calcd. for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 355.1652$, found 355.1654.

Experimental part

Chemical Formula: $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}$
Exact Mass: 421.1824

This compound was obtained following the general procedure \mathbf{N}. Starting from diyne 108 ($137.5 \mathrm{mg}, 0.5 \mathrm{mmol}$), N-benzyl- N-methylcyanamide 158 ($88 \mathrm{mg}, 0.6 \mathrm{mmol}, 1.2$ equiv) and $\mathrm{Cp} * \mathrm{Ru}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{3} \mathrm{PF}_{6}(5.0 \mathrm{mg}, 0.01 \mathrm{mmol})$. The reaction mixture was stirred at room temperature for 5 min . Purification on silica gel (Cyclohexane/Ethyl acetate gradient from 90/10 to $80 / 20$) afforded 214 ($203 \mathrm{mg}, 97 \%$) as a pale brown solid. The excess of cyanamide was removed by bulb to bulb distillation (conditions: $1.0 \times 10^{-3} \mathrm{mbar}, 120^{\circ} \mathrm{C}$ for 20 minutes). m.p. $132-134{ }^{\circ} \mathrm{C}$.
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 3}$ (Petroleum ether/Ethyl acetate; 80/20, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.81-7.70(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.27(\mathrm{~m}, 6 \mathrm{H}), 7.26-7.19(\mathrm{~m}, 1 \mathrm{H})$, $4.53-4.90(\mathrm{~m}, 4 \mathrm{H}), 4.26(\mathrm{~s}, 2 \mathrm{H}), 2.68(\mathrm{~s}, 3 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 161.7,147.2,146.7,143.9,139.6,134.0,130.0,128.4,128.1$, $127.7,127.0,124.0,116.0,58.1,53.4,52.5,39.8,21.7,14.8$.

HRMS (ESI ${ }^{+}$): calcd. for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 422.1897$, found 422.1890.

4-Methyl-6-morpholino-1,3-dihydrofuro[3,4-c]pyridine (217)

Chemical Formula: $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}$
Exact Mass: 220.1212

This compound was obtained following the general procedure \mathbf{N}. Starting from diyne 127 (54 $\mathrm{mg}, 0.5 \mathrm{mmol}$), 4-cyanomorpholine 155 ($67 \mathrm{mg}, 0.6 \mathrm{mmol}, 1.2$ equiv) and $\mathrm{Cp} * \mathrm{Ru}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{3} \mathrm{PF}_{6}$ $(12.5 \mathrm{mg}, 0.025 \mathrm{mmol})$. The reaction mixture was stirred at room temperature for 5 min . Purification on silica gel (Cyclohexane/Ethyl acetate gradient from 80/20 to 60/40) afforded 217 ($95 \mathrm{mg}, 86 \%$, ratio > 99:1) as a pale yellow solid. The excess of cyanamide was removed by bulb to bulb distillation (conditions: $1.0 \times 10^{-3} \mathrm{mbar}, 90^{\circ} \mathrm{C}$ for 10 minutes). m.p. $90-92^{\circ} \mathrm{C}$.
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 1 7}$ (Petroleum ether/Ethyl acetate; 80/20, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}^{\text {NMR }}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.33\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{1}\right), 5.02-4.97\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}_{3,4}\right), 3.87-3.77(\mathrm{~m}, 4 \mathrm{H}$, H_{10}), $3.49-3.42\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}_{9}\right), 2.31\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{7}\right)$.
${ }^{13} \mathbf{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.6\left(\mathrm{C}_{8}\right), 151.0\left(\mathrm{C}_{2}\right), 149.4\left(\mathrm{C}_{6}\right), 123.8\left(\mathrm{C}_{5}\right), 96.5\left(\mathrm{C}_{1}\right), 73.5$ $\left(\mathrm{C}_{3}\right), 71.8\left(\mathrm{C}_{4}\right), 66.9\left(\mathrm{C}_{10}\right), 46.4\left(\mathrm{C}_{9}\right), 22.4\left(\mathrm{C}_{7}\right)$.

NOESY ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\mathrm{H}_{1}(6.33 \mathrm{ppm})$ correlate to $\mathrm{H}_{3}(5.02-4.97 \mathrm{ppm})$ and $\mathrm{H}_{9}(3.49-$ $3.42 \mathrm{ppm}), \mathrm{H}_{4}(5.02-4.97 \mathrm{ppm})$ correlates to $\mathrm{H}_{7}(2.31 \mathrm{ppm}), \mathrm{H}_{7}(6.33 \mathrm{ppm})$ does not correlates to H_{9} (3.49-3.42 ppm).

HRMS (ESI ${ }^{+}$): calcd. for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}:$221.1285, found 221.1285.

4-(4-Methyl-2-tosyl-2,3-dihydro-1H-pyrrolo[3,4-c]pyridin-6-yl)morpholine (218)

Chemical Formula: $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}$
Exact Mass: 373.1460

This compound was obtained following the general procedure \mathbf{N}. Starting from diyne 128 ($130.5 \mathrm{mg}, 0.5 \mathrm{mmol}$), 4-cyanomorpholine 155 ($67 \mathrm{mg}, 0.6 \mathrm{mmol}, 1.2$ equiv) and $\mathrm{Cp} * \mathrm{Ru}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{3} \mathrm{PF}_{6}(12.5 \mathrm{mg}, 0.025 \mathrm{mmol})$. The reaction mixture was stirred at room temperature for 5 min . Purification on silica gel (Cyclohexane/Ethyl acetate gradient from $90 / 10$ to $70 / 30$) afforded $218(168 \mathrm{mg}, 90 \%$, ratio > 99:1) as a white solid. The excess of cyanamide was removed by bulb to bulb distillation (conditions: $1.0 \times 10^{-3} \mathrm{mbar}, 9{ }^{\circ} \mathrm{C}$ for 10 minutes). m.p. $169-172{ }^{\circ} \mathrm{C}$.
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 1 3}$ (Petroleum ether/Ethyl acetate; 80/20, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1}{ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.78-7.72\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{4}\right), 7.34-7.28\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{3}\right), 6.24(\mathrm{~s}, 1 \mathrm{H}$, H_{13}), $4.51\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}_{6}\right), 4.45\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}_{7}\right), 3.81-3.75\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}_{15}\right), 3.45-3.39\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}_{14}\right), 2.41$ $\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{H}_{1}\right), 2.26\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{11}\right)$.
${ }^{13}$ C NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.5\left(\mathrm{C}_{12}\right), 150.9\left(\mathrm{C}_{10}\right), 147.5\left(\mathrm{C}_{8}\right), 143.9\left(\mathrm{C}_{2}\right), 133.8\left(\mathrm{C}_{5}\right)$, $130.0\left(\mathrm{C}_{3}\right), 127.6\left(\mathrm{C}_{4}\right), 120.6\left(\mathrm{C}_{9}\right), 97.7\left(\mathrm{C}_{13}\right), 66.8\left(\mathrm{C}_{15}\right), 53.8\left(\mathrm{C}_{6}\right), 51.8\left(\mathrm{C}_{7}\right), 46.1\left(\mathrm{C}_{14}\right), 22.1$ $\left(\mathrm{C}_{11}\right), 21.7\left(\mathrm{C}_{1}\right)$.

NOESY (400 MHz, CDCl $_{3}$) $\mathrm{H}_{13}(6.24 \mathrm{ppm})$ correlate to $\mathrm{H}_{6}(4.51 \mathrm{ppm})$ and $\mathrm{H}_{14}(3.45-3.39$ ppm $), \mathrm{H}_{7}(4.45 \mathrm{ppm})$ correlates to $\mathrm{H}_{11}(2.26 \mathrm{ppm}), \mathrm{H}_{11}(2.26 \mathrm{ppm})$ does not correlates to H_{14} (3.45-3.39 ppm).

HRMS (ESI ${ }^{+}$): calcd. for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 374.1533$, found 374.1533.

Dimethyl 1-bromo-4-methyl-3-morpholino-5,7-dihydro-6H-cyclopenta[c]pyridine-6,6dicarboxylate (220)

Chemical Formula: $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{BrN}_{2} \mathrm{O}_{5}$
Exact Mass: 412.0634

This compound was obtained following the general procedure M. Starting from diyne $\mathbf{1 2 9}$ (150 $\mathrm{mg}, \quad 0.5 \mathrm{mmol})$, 4-cyanomorpholine $155(112 \mathrm{mg}, \quad 1.0 \mathrm{mmol}, 2.0$ equiv) and $\mathrm{Cp} * \mathrm{Ru}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{3} \mathrm{PF}_{6}(12.5 \mathrm{mg}, 0.025 \mathrm{mmol})$. The reaction mixture was stirred at room temperature for 60 min . Purification on silica gel (Cyclohexane/Ethyl acetate gradient from $95 / 5$ to $90 / 10$) afforded 220 ($161 \mathrm{mg}, 78 \%$, ratio $=96: 4$) as a white solid. The excess of cyanamide was removed by bulb to bulb distillation (condition: $1.0 \times 10^{-3} \mathrm{mbar}, 9{ }^{\circ} \mathrm{C}$ for 10 minutes). m.p. $118-120^{\circ} \mathrm{C}$.
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 3 6}$ (Petroleum ether/Ethyl acetate; 80/20, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.85-3.79\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}_{12}\right), 3.77\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{H}_{1}\right), 3.55\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}_{5}\right), 3.54$ ($\mathrm{s}, 2 \mathrm{H}, \mathrm{H}_{4}$), $3.11-3.06\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}_{11}\right), 2.12\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{13}\right)$.
${ }^{13}$ C NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.6\left(\mathrm{C}_{2}\right), 160.9\left(\mathrm{C}_{9}\right), 152.6\left(\mathrm{C}_{7}\right), 132.6\left(\mathrm{C}_{10}\right), 131.3\left(\mathrm{C}_{6}\right)$, $119.8\left(\mathrm{C}_{8}\right), 67.1\left(\mathrm{C}_{12}\right), 58.9\left(\mathrm{C}_{3}\right), 53.4\left(\mathrm{C}_{1}\right), 50.5\left(\mathrm{C}_{11}\right), 40.8\left(\mathrm{C}_{4}\right), 40.5\left(\mathrm{C}_{5}\right), 14.6\left(\mathrm{C}_{13}\right)$.

NOESY ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\mathrm{H}_{13}(2.12 \mathrm{ppm})$ correlate to $\mathrm{H}_{4}(3.54 \mathrm{ppm})$ and $\mathrm{H}_{11}(3.11-3.06$ ppm).

HRMS (ESI ${ }^{+}$): calcd. for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{BrN}_{2} \mathrm{O}_{5} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 435.0526, found 435.0526.

4-Bromo-7-methyl-6-morpholino-1,3-dihydrofuro[3,4-c]pyridine (221)

This compound was obtained following the general procedure \mathbf{N}. Starting from diyne $\mathbf{1 3 0}$ (93 $\mathrm{mg}, 0.5 \mathrm{mmol})$, 4-cyanomorpholine $155\left(67 \mathrm{mg}, 0.6 \mathrm{mmol}, 1.2\right.$ equiv) and $\mathrm{Cp} * \mathrm{Ru}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{3} \mathrm{PF}_{6}$ $(5.0 \mathrm{mg}, 0.01 \mathrm{mmol})$. The reaction mixture was stirred at $50^{\circ} \mathrm{C}$ for 2 h . Purification on silica gel (Cyclohexane/Ethyl acetate gradient from 90/10 to 80/20) afforded 221 ($124 \mathrm{mg}, 83 \%$, ratio $=98: 2$) as a pale yellow solid. The excess of cyanamide was removed by bulb to bulb distillation (condition: $1.0 \times 10^{-3} \mathrm{mbar}, 9{ }^{\circ} \mathrm{C}$ for 10 minutes). m.p. $108-110^{\circ} \mathrm{C}$.
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 1 9}$ (Petroleum ether/Ethyl acetate; 80/20, $\mathrm{KMnO}_{4}, \mathrm{UV}$).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.07\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}_{4}\right), 5.03-4.95\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{5}\right), 3.88-3.77(\mathrm{~m}, 4 \mathrm{H}$, H_{10}), 3.18-3.08(m, 4H, H9), $2.10\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{1}\right)$.
${ }^{13} \mathbf{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 161.2\left(\mathrm{C}_{8}\right), 152.4\left(\mathrm{C}_{3}\right), 130.5\left(\mathrm{C}_{6}\right), 129.0\left(\mathrm{C}_{7}\right), 117.1\left(\mathrm{C}_{2}\right), 73.9$ $\left(\mathrm{C}_{4}\right), 73.6\left(\mathrm{C}_{5}\right), 67.0\left(\mathrm{C}_{10}\right), 50.5\left(\mathrm{C}_{9}\right), 14.8\left(\mathrm{C}_{1}\right)$.

NOESY ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\mathrm{H}_{1}(2.10 \mathrm{ppm})$ correlate to $\mathrm{H}_{4}(5.07 \mathrm{ppm})$ and $\mathrm{H}_{9}(3.18-3.08$ ppm).

HRMS (ESI ${ }^{+}$): calcd. for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{BrN}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}:$299.0390, found 299.0393.

4-Bromo-6-morpholino-1,3-dihydrofuro[3,4-c]pyridine (222)

Chemical Formula: $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{BrN}_{2} \mathrm{O}_{2}$
Exact Mass: 284.0160

This compound was obtained following the general procedure \mathbf{N}. Starting from diyne 131 (89 $\mathrm{mg}, 0.5 \mathrm{mmol}$), 4-cyanomorpholine 155 ($67 \mathrm{mg}, 0.6 \mathrm{mmol}, 1.2$ equiv) and $\mathrm{Cp} * \mathrm{Ru}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{3} \mathrm{PF}_{6}$ $(12.5 \mathrm{mg}, 0.025 \mathrm{mmol})$. The reaction mixture was stirred at room temperature for 2 h . Purification on silica gel (Cyclohexane/Ethyl acetate gradient from 90/10 to 60/40) afforded $222(95 \mathrm{mg}, 65 \%$, ratio $=98: 2)$ as a pale yellow solid. The excess of cyanamide was removed by bulb to bulb distillation (condition: $1.0 \times 10^{-3} \mathrm{mbar}, 9{ }^{\circ} \mathrm{C}$ for 10 minutes). m.p. $122-124$ ${ }^{\circ} \mathrm{C}$.
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 1}\left(\right.$ Petroleum ether/Ethyl acetate; 80/20, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.40\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{1}\right), 5.06\left(\mathrm{dd}, J=2.7,1.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{3}\right), 4.94(\mathrm{t}, J=$ $\left.1.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{4}\right), 3.83-3.75\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}_{9}\right), 3.53-3.41\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}_{8}\right)$.
${ }^{13} \mathbf{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.6\left(\mathrm{C}_{7}\right), 153.1\left(\mathrm{C}_{2}\right), 132.7\left(\mathrm{C}_{6}\right), 126.0\left(\mathrm{C}_{5}\right), 97.7\left(\mathrm{C}_{1}\right), 74.1$ $\left(\mathrm{C}_{3}\right), 72.8\left(\mathrm{C}_{4}\right), 66.7\left(\mathrm{C}_{9}\right), 45.9\left(\mathrm{C}_{8}\right)$.

NOESY ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\mathrm{H}_{1}(6.40 \mathrm{ppm})$ correlate to $\mathrm{H}_{3}(5.06 \mathrm{ppm})$ and $\mathrm{H}_{8}(3.53-3.41$ ppm).

HRMS (ESI ${ }^{+}$): calcd. for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{BrN}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}:$285.0233, found 285.0235.
N-Benzyl-4-bromo-N,7-dimethyl-2-tosyl-2,3-dihydro-1H-pyrrolo[3,4-c]pyridin-6-amine (223)

Chemical Formula: $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{BrN}_{3} \mathrm{O}_{2} \mathrm{~S}$
Exact Mass: 485.0773

This compound was obtained following the general procedure N. Starting from diyne 132 ($169.5 \mathrm{mg}, 0.5 \mathrm{mmol}$), N-benzyl- N-methylcyanamide 158 ($88 \mathrm{mg}, 0.6 \mathrm{mmol}, 1.2$ equiv) and $\mathrm{Cp} * \mathrm{Ru}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{3} \mathrm{PF}_{6}(12.5 \mathrm{mg}, 0.025 \mathrm{mmol})$. The reaction mixture was stirred at $50^{\circ} \mathrm{C}$ for 2 h . Purification on silica gel (Cyclohexane/Ethyl acetate gradient from 90/10 to 85/15) afforded $223(182 \mathrm{mg}, 75 \%$, ratio $=98: 2)$ as a white solid. m.p. $138-140{ }^{\circ} \mathrm{C}$.
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 4 6}$ (Petroleum ether/Ethyl acetate; 80/20, $\mathrm{KMnO}_{4}, \mathrm{UV}$).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.80-7.72\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{4}\right), 7.40-7.35\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{3}\right), 7.35-7.29$ ($\mathrm{m}, 4 \mathrm{H}, \mathrm{H}_{17}, 18$), $7.29-7.22\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{19}\right), 4.51\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}_{6}\right), 4.53-4.49\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{7}\right), 4.29(\mathrm{~s}, 2 \mathrm{H}$, H_{15}), $2.72\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{14}\right), 2.43\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{1}\right), 2.09\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{13}\right)$.
${ }^{13} \mathbf{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 162.1\left(\mathrm{C}_{11}\right), 148.8\left(\mathrm{C}_{8}\right), 144.2\left(\mathrm{C}_{2}\right), 138.6\left(\mathrm{C}_{16}\right), 133.6\left(\mathrm{C}_{15}\right)$, $130.1\left(\mathrm{C}_{3}, 10\right), 128.5\left(\mathrm{C}_{18}\right), 128.0\left(\mathrm{C}_{17}\right), 127.7\left(\mathrm{C}_{4}\right), 127.2\left(\mathrm{C}_{19}\right), 126.5\left(\mathrm{C}_{9}\right), 117.4\left(\mathrm{C}_{12}\right), 57.8$ $\left(\mathrm{C}_{15}\right), 54.1\left(\mathrm{C}_{6}\right), 53.7\left(\mathrm{C}_{7}\right), 39.6\left(\mathrm{C}_{14}\right), 21.7\left(\mathrm{C}_{1}\right), 15.0\left(\mathrm{C}_{13}\right)$.

NOESY ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\mathrm{H}_{13}(2.09 \mathrm{ppm})$ correlate to $\mathrm{H}_{6}(4.51 \mathrm{ppm}), \mathrm{H}_{15}(4.29 \mathrm{ppm})$ and H_{14} (2.72 ppm).

Dimethyl 1-iodo-4-methyl-3-morpholino-5,7-dihydro-6H-cyclopenta[c]pyridine-6,6dicarboxylate (224)

This compound was obtained following the general procedure \mathbf{N}. Starting from diyne $\mathbf{1 3 3}$ (174 $\mathrm{mg}, 0.5 \mathrm{mmol}$), 4-cyanomorpholine 155 ($67 \mathrm{mg}, 0.6 \mathrm{mmol}, 1.2$ equiv) and $\mathrm{Cp} * \mathrm{Ru}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{3} \mathrm{PF}_{6}$ $(12.5 \mathrm{mg}, 0.025 \mathrm{mmol})$. The reaction mixture was stirred at $50^{\circ} \mathrm{C}$ for 30 min . Purification on silica gel (Cyclohexane/Ethyl acetate gradient from 90/10 to 80/20) afforded 224 ($190 \mathrm{mg}, 83 \%$, ratio >99:1) as a brown solid. The excess of cyanamide was removed by bulb to bulb distillation (condition: $1.0 \times 10^{-3} \mathrm{mbar}, 9{ }^{\circ} \mathrm{C}$ for 10 minutes). m.p. $126-128^{\circ} \mathrm{C}$.
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 1 4}$ (Petroleum ether/Ethyl acetate; 80/20, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.84-3.79\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}_{13}\right), 3.77\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{H}_{1}\right), 3.57\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}_{4}\right), 3.49$ $\left(\mathrm{s}, 2 \mathrm{H}, \mathrm{H}_{5}\right), 3.10-3.03\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}_{12}\right), 2.11\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{11}\right)$.
${ }^{13} \mathbf{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.6\left(\mathrm{C}_{2}\right), 160.9\left(\mathrm{C}_{9}\right), 150.6\left(\mathrm{C}_{6}\right), 136.4\left(\mathrm{C}_{7}\right), 120.1\left(\mathrm{C}_{10}\right)$, $109.8\left(\mathrm{C}_{8}\right), 67.1\left(\mathrm{C}_{13}\right), 58.3\left(\mathrm{C}_{3}\right), 53.4\left(\mathrm{C}_{1}\right), 50.5\left(\mathrm{C}_{12}\right), 43.3\left(\mathrm{C}_{5}\right), 41.0\left(\mathrm{C}_{4}\right), 14.6\left(\mathrm{C}_{11}\right)$.

NOESY ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\mathrm{H}_{11}(2.11 \mathrm{ppm})$ correlate to $\mathrm{H}_{4}(3.57 \mathrm{ppm})$ and $\mathrm{H}_{12}(3.10-3.03$ ppm).

HRMS (ESI ${ }^{+}$): calcd. for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{IN}_{2} \mathrm{O}_{5} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 483.0387$, found 483.0385.

3-(7-Methyl-6-morpholino-1,3-dihydrofuro[3,4-c]pyridin-4-yl)oxazolidin-2-o (225)

This compound was obtained following the general procedure \mathbf{N}. Starting from diyne $\mathbf{1 3 4}$ (96.5 $\mathrm{mg}, 0.5 \mathrm{mmol}$), morpholine-4-carbonitrile $155(67 \mathrm{mg}, 0.6 \mathrm{mmol}, 1.2$ equiv) and $\mathrm{Cp} * \mathrm{Ru}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{3} \mathrm{PF}_{6}(12.5 \mathrm{mg}, 0.025 \mathrm{mmol})$. The reaction mixture was stirred at $50^{\circ} \mathrm{C}$ for 16 h. Purification on silica gel (Cyclohexane/Ethyl acetate gradient from 60/40 to 50/50) afforded 225 ($120 \mathrm{mg}, 79 \%$, ratio > 99:1) as a white solid. m.p. $202-204{ }^{\circ} \mathrm{C}$.
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 2 1}$ (Petroleum ether/Ethyl acetate; 50/50, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}^{\text {NMR }}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.19(\mathrm{~s}, 2 \mathrm{H}), 4.96(\mathrm{~s}, 2 \mathrm{H}), 4.48(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.22(\mathrm{t}, J=$ $7.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.89-3.74(\mathrm{~m}, 4 \mathrm{H}), 3.15-3.01(\mathrm{~m}, 4 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.0,155.1,154.0,140.1,120.4,114.5,73.4,72.5,67.1,62.9$, 50.4, 44.9, 14.4.

MS (CI, NH_{3}): m/z=306[M+H].

3-(7-Methyl-6-(pyrrolidin-1-yl)-1,3-dihydrofuro[3,4-c]pyridin-4-yl)oxazolidin-2-one (226)

Exact Mass: 289.1426

This compound was obtained following the general procedure M. Starting from diyne $\mathbf{1 3 4}$ (96.5 $\mathrm{mg}, 0.5 \mathrm{mmol}$), pyrrolidine-1-carbonitrile $156(96.1 \mathrm{mg}, 1.0 \mathrm{mmol}, 2.0$ equiv) and
$\mathrm{Cp} * \mathrm{Ru}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{3} \mathrm{PF}_{6}(12.5 \mathrm{mg}, 0.025 \mathrm{mmol})$. The reaction mixture was stirred at $50^{\circ} \mathrm{C}$ for 2 h . Purification on silica gel (Cyclohexane/Ethyl acetate gradient from 60/40 to 50/50) afforded $226\left(135 \mathrm{mg}, 93 \%\right.$, ratio >99:1) as a white solid. m.p. $177-179{ }^{\circ} \mathrm{C}$.
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 6}\left(\right.$ Petroleum ether/Ethyl acetate; 50/50, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.16(\mathrm{~s}, 2 \mathrm{H}), 4.95(\mathrm{~s}, 2 \mathrm{H}), 4.45(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.21(\mathrm{t}, J=$ $7.9 \mathrm{~Hz}, 2 \mathrm{H}$), $3.52-3.40(\mathrm{~m}, 4 \mathrm{H}), 2.14$ (s, 3H), $1.93-1.84$ (m, 4H).
${ }^{13} \mathbf{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 157.4,155.2,153.6,139.2,115.8,109.3,73.4,72.6,62.8,50.1$, 44.9, 25.6, 15.8.

MS (CI, NH3): m/z=290[M+H] .

Elemental Analysis: Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{3}$ (289.14): C, $62.27 ; \mathrm{H}, 6.62 ; \mathrm{N}, 14.52$. Found: C,62.20; H, 6.63; N, 14.26.

Dimethyl 3-morpholino-1-vinyl-5,7-dihydro-6H-cyclopenta[c]pyridine-6,6-dicarboxylate

 (227)

Chemical Formula: $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{5}$ Exact Mass: 346.1529

This compound was obtained following the general procedure \mathbf{N}. Starting from diyne $\mathbf{1 3 5}$ (70 $\mathrm{mg}, 0.3 \mathrm{mmol}$), morpholine-4-carbonitrile $155(40 \mathrm{mg}, 0.36 \mathrm{mmol}, 1.2$ equiv) and $\mathrm{Cp} * \mathrm{Ru}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{3} \mathrm{PF}_{6}(7.6 \mathrm{mg}, 0.015 \mathrm{mmol})$. The reaction mixture was stirred at room temperature for 10 min . Purification on silica gel (Cyclohexane/Ethyl acetate gradient from $90 / 10$ to $80 / 20$) afforded $227\left(94 \mathrm{mg}, 90 \%\right.$, ratio > 99:1) as a white solid. m.p. $119-121^{\circ} \mathrm{C}$.
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 1 8}$ (Petroleum ether/Ethyl acetate; 80/20, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.70(\mathrm{dd}, J=17.1,10.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.45(\mathrm{~s}, 1 \mathrm{H}), 6.25(\mathrm{dd}, J=17.1$, $2.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.42(\mathrm{dd}, J=10.6,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.86-3.75(\mathrm{~m}, 4 \mathrm{H}), 3.74(\mathrm{~s}, 6 \mathrm{H}), 3.55(\mathrm{~s}, 2 \mathrm{H})$, $3.53-3.44$ (m, 6H).

Experimental part
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.8,158.8,152.3,147.9,134.0,124.1,118.6,102.3,67.0$, 60.3, 53.2, 46.1, 40.5, 37.7.

HRMS (ESI ${ }^{+}$): calcd. for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 347.1601$, found 347.1603.

Dimethyl 3-(benzyl(methyl)amino)-1-vinyl-5,7-dihydro-6H-cyclopenta[c]pyridine-6,6dicarboxylate (228)

Chemical Formula: $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{4}$ Exact Mass: 380.1736

This compound was obtained following the general procedure \mathbf{N}. Starting from diyne $\mathbf{1 3 5}$ (70 $\mathrm{mg}, 0.3 \mathrm{mmol}$), N-benzyl- N-methylcyanamide $158(53 \mathrm{mg}, 0.36 \mathrm{mmol}, 1.2$ equiv) and $\mathrm{Cp} * \mathrm{Ru}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{3} \mathrm{PF}_{6}(7.6 \mathrm{mg}, 0.015 \mathrm{mmol})$. The reaction mixture was stirred at room temperature for 30 min . Purification on silica gel (Cyclohexane/Ethyl acetate gradient from $90 / 10$ to $80 / 20$) afforded $228\left(105 \mathrm{mg}, 92 \%\right.$, ratio > 99:1) as a white solid. m.p. $146-148{ }^{\circ} \mathrm{C}$.
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 3 3}$ (Petroleum ether/Ethyl acetate; 80/20, $\mathrm{KMnO}_{4}, \mathrm{UV}$).
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.35-7.18(\mathrm{~m}, 5 \mathrm{H}), 6.72(\mathrm{dd}, J=17.1,10.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.33(\mathrm{~s}$, $1 \mathrm{H}), 6.27$ (dd, $J=17.1,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.39$ (dd, $J=10.6,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.83$ (s, 2H), 3.75 (s, 6H), $3.56(\mathrm{~s}, 2 \mathrm{H}), 3.47(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.05(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.0,158.1,152.1,147.7,139.4,134.2,128.6,127.4,126.9$, $122.1,118.2,100.9,60.3,53.5,53.2,40.5,37.6,36.3$.

MS (CI, NH3 $): m / z=381[M+H]^{+}$.

4-(2-Tosyl-4-vinyl-2,3-dihydro-1H-pyrrolo[3,4-c]pyridin-6-yl)morpholine (229)

This compound was obtained following the general procedure M. Starting from diyne 136 ($136.5 \mathrm{mg}, 0.5 \mathrm{mmol}$), morpholine-4-carbonitrile 155 ($112 \mathrm{mg}, 1.0 \mathrm{mmol}, 2.0$ equiv) and $\mathrm{Cp} * \mathrm{Ru}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{3} \mathrm{PF}_{6}(12.5 \mathrm{mg}, 0.025 \mathrm{mmol})$. The reaction mixture was stirred at room temperature for 3 min . Purification on silica gel (Cyclohexane/Ethyl acetate gradient from $80 / 20$ to $60 / 40)$ afforded $229\left(145 \mathrm{mg}, 75 \%\right.$, ratio > 99:1) as a white solid. m.p. $168-170{ }^{\circ} \mathrm{C}$.
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 1}\left(\right.$ Petroleum ether/Ethyl acetate; 80/20, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.75(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.52(\mathrm{dd}, J=$ $17.2,10.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.35(\mathrm{~s}, 1 \mathrm{H}), 6.18(\mathrm{dd}, J=17.2,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.46(\mathrm{dd}, J=10.6,1.9 \mathrm{~Hz}$, $1 \mathrm{H}), 4.56(\mathrm{~s}, 2 \mathrm{H}), 4.51(\mathrm{~s}, 2 \mathrm{H}), 3.85-3.70(\mathrm{~m}, 4 \mathrm{H}), 3.53-3.40(\mathrm{~m}, 4 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.0,148.3,147.3,144.0,133.8,133.6,130.0,127.6,120.1$, 119.7, 99.9, 66.8, 53.4, 51.5, 45.9, 21.6.

MS (CI, NH3): m/z = $386[\mathrm{M}+\mathrm{H}]^{+}$.

Elemental Analysis: Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}$ (385.15): C, $62.32 ; \mathrm{H}, 6.01 ; \mathrm{N}, 10.90$. Found: C,62.20; H, 6.04; N, 10.61.

8-Methyl-6-morpholino-3,4-dihydro-1H-pyrano[3,4-c]pyridine (230)

Chemical Formula: $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}$ Exact Mass: 234.1368

This compound was obtained following the general procedure \mathbf{N}. Starting from diyne $\mathbf{1 3 8}$ (61 $\mathrm{mg}, 0.5 \mathrm{mmol})$, morpholine-4-carbonitrile $155(112 \mathrm{mg}, 1.0 \mathrm{mmol}, 2.0$ equiv) and $\mathrm{Cp} * \mathrm{Ru}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{3} \mathrm{PF}_{6}(12.5 \mathrm{mg}, 0.025 \mathrm{mmol})$. The reaction mixture was stirred at $50^{\circ} \mathrm{C}$ for 2 h . Purification on silica gel (Cyclohexane/Ethyl acetate gradient from 90/10 to 70/30) afforded $230\left(95 \mathrm{mg}, 81 \%\right.$, ratio > 99:1) as a white solid. m.p. $140-142{ }^{\circ} \mathrm{C}$.
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 2}\left(\right.$ Petroleum ether/Ethyl acetate; 80/20, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.23(\mathrm{~s}, 1 \mathrm{H}), 4.63(\mathrm{~s}, 2 \mathrm{H}), 3.89(\mathrm{t}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.85-3.75$ (m, 4H), $3.48-3.35(\mathrm{~m}, 4 \mathrm{H}), 2.76(\mathrm{dt}, J=5.8,2.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H})$.

Experimental part
${ }^{13}$ C NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.0,152.0,144.1,119.1,104.0,67.0,65.8,64.6,46.2,28.9$, 21.1.

HRMS (ESI ${ }^{+}$): calcd. for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 235.1441, found 235.1440.

8-Methyl-6-(pyrrolidin-1-yl)-3,4-dihydro-1H-pyrano[3,4-c]pyridine (231)

Chemical Formula: $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}$ Exact Mass: 218.1419

This compound was obtained following the general procedure \mathbf{N}. Starting from diyne $\mathbf{1 3 8}$ (61 $\mathrm{mg}, 0.5 \mathrm{mmol}$), pyrrolidine-1-carbonitrile $156(96.1 \mathrm{mg}, 1.0 \mathrm{mmol}, 2.0$ equiv) and $\mathrm{Cp} * \mathrm{Ru}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{3} \mathrm{PF}_{6}(12.5 \mathrm{mg}, 0.025 \mathrm{mmol})$. The reaction mixture was stirred at $50^{\circ} \mathrm{C}$ for 4 h . Purification on silica gel (Cyclohexane/Ethyl acetate gradient from 90/10 to 80/20) afforded 231 ($50 \mathrm{mg}, 46 \%$, ratio > 99:1) as a white solid. m.p. $110-112{ }^{\circ} \mathrm{C}$.
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 2 8}$ (Petroleum ether/Ethyl acetate; 80/20, $\mathrm{KMnO}_{4}, \mathrm{UV}$).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.96(\mathrm{~s}, 1 \mathrm{H}), 4.64(\mathrm{~s}, 2 \mathrm{H}), 3.89(\mathrm{t}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.49-3.33$ (m, 4H), 2.75 (t, J=5.7 Hz, 2H), 2.22 (s, 3H), $2.03-1.91$ (m, 4H).
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 155.9,151.9,143.4,115.9,103.1,66.0,64.7,46.8,28.9,25.7$, 21.1.

MS $\left(\mathrm{CI}, \mathrm{NH}_{3}\right): \mathrm{m} / \mathrm{z}=219[\mathrm{M}+\mathrm{H}]^{+}$.

N-benzyl-N,8-dimethyl-3,4-dihydro-1H-pyrano[3,4-c]pyridin-6-amine (232)

Chemical Formula: $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}$ Exact Mass: 268.1576

This compound was obtained following the general procedure \mathbf{N}. Starting from diyne $\mathbf{1 3 8}$ (61 $\mathrm{mg}, 0.5 \mathrm{mmol}$), N-benzyl-N-methylcyanamide 158 ($146 \mathrm{mg}, 1.0 \mathrm{mmol}, 2.0$ equiv) and
$\mathrm{Cp} * \mathrm{Ru}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{3} \mathrm{PF}_{6}(12.5 \mathrm{mg}, 0.025 \mathrm{mmol})$. The reaction mixture was stirred at $50^{\circ} \mathrm{C}$ for 4 h . Purification on silica gel (Cyclohexane/Ethyl acetate gradient from 90/10 to 80/20) afforded 232 ($45 \mathrm{mg}, 34 \%$, ratio > 99:1) as a white solid m.p. $78-79^{\circ} \mathrm{C}$.
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 4 7}$ (Petroleum ether/Ethyl acetate; 75/25, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.37-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.15(\mathrm{~m}, 3 \mathrm{H}), 6.11(\mathrm{~s}, 1 \mathrm{H}), 4.81(\mathrm{~s}$, $2 \mathrm{H}), 4.65(\mathrm{~s}, 2 \mathrm{H}), 3.89(\mathrm{t}, \mathrm{J}=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.00(\mathrm{~s}, 3 \mathrm{H}), 2.85-2.62(\mathrm{~m}, 2 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 157.2,151.7,143.8,139.4,128.5,127.4,126.9,116.7,102.3$, 65.9, 64.7, 53.0, 36.0, 29.0, 21.2.

MS (CI, NH_{3}): $\mathrm{m} / \mathrm{z}=269[\mathrm{M}+\mathrm{H}]^{+}$.

4-(1-Methyl-7-tosyl-5,6,7,8-tetrahydro-2,7-naphthyridin-3-yl)morpholine (233)

Chemical Formula: $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}$
Exact Mass: 387.1617

This compound was obtained following the general procedure \mathbf{N}. Starting from diyne $\mathbf{1 3 9}$ (82.5 $\mathrm{mg}, 0.3 \mathrm{mmol})$, morpholine-4-carbonitrile $155(67 \mathrm{mg}, 0.6 \mathrm{mmol}, 2.0$ equiv) and $\mathrm{Cp} * \mathrm{Ru}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{3} \mathrm{PF}_{6}(7.6 \mathrm{mg}, 0.015 \mathrm{mmol})$. The reaction mixture was stirred at room temperature for 2 min . Purification on silica gel (Cyclohexane/Ethyl acetate gradient from $80 / 20$ to $60 / 40$) afforded $233\left(100 \mathrm{mg}, 86 \%\right.$, ratio > 99:1) as a white solid. m.p. $136-138{ }^{\circ} \mathrm{C}$.
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 2}\left(\right.$ Petroleum ether/Ethyl acetate; 80/20, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.72(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.17(\mathrm{~s}, 1 \mathrm{H})$, $4.06(\mathrm{~s}, 2 \mathrm{H}), 3.86-3.72(\mathrm{~m}, 4 \mathrm{H}), 3.48-3.35(\mathrm{~m}, 4 \mathrm{H}), 3.30(\mathrm{t}, \mathrm{J}=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.82(\mathrm{t}, \mathrm{J}=5.7$ $\mathrm{Hz}, 2 \mathrm{H}$), 2.42 ($\mathrm{s}, 3 \mathrm{H}), 2.27$ ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.9,153.4,143.9,143.8,133.6,129.9,127.8,116.1,103.7$, $66.9,46.0,45.0,43.0,29.5,21.7$.

MS (CI, NH_{3}): $\mathrm{m} / \mathrm{z}=388[\mathrm{M}+\mathrm{H}]^{+}$

This compound was obtained following the general procedure N. Starting from diyne 143 (72.4 $\mathrm{mg}, 0.2 \mathrm{mmol}$), morpholine-4-carbonitrile 155 ($27 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ equiv) and $\mathrm{Cp} * \mathrm{Ru}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{3} \mathrm{PF}_{6}(5.0 \mathrm{mg}, 0.01 \mathrm{mmol})$. The reaction mixture was stirred at $50^{\circ} \mathrm{C}$ for 2 h . Purification on silica gel (Cyclohexane/Ethyl acetate gradient from 90/10 to 80/20) afforded $237(48.5 \mathrm{mg}, 51 \%$, ratio $=10: 1)$ as a white solid. m.p. $208-210^{\circ} \mathrm{C}$.
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 1 4}$ (Petroleum ether/Ethyl acetate; 90/10, $\mathrm{KMnO}_{4}, \mathrm{UV}$).
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.12(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{dd}, J=8.6,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{~d}$, $J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.30(\mathrm{~s}, 1 \mathrm{H}), 4.93-4.78(\mathrm{~m}, 2 \mathrm{H}), 3.91-3.80(\mathrm{~m}, 4 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.61-$ $3.35(\mathrm{~m}, 4 \mathrm{H}), 2.98-2.78(\mathrm{~m}, 2 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 2.28-2.17(\mathrm{~m}, 1 \mathrm{H}), 2.15-1.94(\mathrm{~m}, 4 \mathrm{H}), 1.87$ $-1.78(\mathrm{~m}, 1 \mathrm{H}), 1.74-1.55(\mathrm{~m}, 3 \mathrm{H}), 1.46-1.26(\mathrm{~m}, 4 \mathrm{H}), 1.06(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.8,157.6,156.9,149.0,137.9,132.4,126.4,124.8,114.0$, $111.6,98.9,98.3,69.9,67.0,55.3,49.9,48.3,46.6,43.9,39.3,36.3,33.6,30.0,27.7,26.4,23.7$, 22.2, 15.5.

MS (CI, $\left.\mathrm{NH}_{3}\right): \mathrm{m} / \mathrm{z}=475[\mathrm{M}+\mathrm{H}]^{+}$.

1-Butyl-3-morpholino-9H-indeno[2,1-c]pyridin-9-one (240)

This compound was obtained following the general procedure M. Starting from diyne 29 (105 $\mathrm{mg}, \quad 0.5 \mathrm{mmol})$, 4-cyanomorpholine $155(112 \mathrm{mg}, \quad 1.0 \mathrm{mmol}, 2.0$ equiv) and $\mathrm{Cp} * \mathrm{Ru}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{3} \mathrm{PF}_{6}(5.0 \mathrm{mg}, 0.01 \mathrm{mmol})$. The reaction mixture was stirred at room temperature for 10 min . Purification on silica gel (Cyclohexane/Ethyl acetate gradient from $90 / 10$ to $80 / 20$) afforded $240(142 \mathrm{mg}, 92 \%$, ratio > 99:1) as a light yellow solid. m.p. 106 $108^{\circ} \mathrm{C}$.
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 1 2}$ (Petroleum ether/Ethyl acetate; 90/10, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.69-7.64\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{1}\right), 7.54\left(\mathrm{dd}, J=7.3,0.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{4}\right), 7.47$ $\left(\mathrm{td}, J=7.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{3}\right), 7.40\left(\mathrm{td}, J=7.4,1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{2}\right), 6.62\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{10}\right), 3.86-3.81$ $\left(\mathrm{m}, 4 \mathrm{H}, \mathrm{H}_{18}\right), 3.81-3.73\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}_{17}\right), 3.09-3.01\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{13}\right), 1.74-1.65\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{14}\right), 1.50$ $-1.36\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{15}\right), 0.95\left(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}_{16}\right)$.
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 191.3\left(\mathrm{C}_{7}\right), 163.0\left(\mathrm{C}_{12}\right), 161.0\left(\mathrm{C}_{11}\right), 154.1\left(\mathrm{C}_{9}\right), 140.8\left(\mathrm{C}_{5}\right)$, $136.9\left(\mathrm{C}_{6}\right), 133.3\left(\mathrm{C}_{3}\right), 130.8\left(\mathrm{C}_{2}\right), 123.6\left(\mathrm{C}_{1}\right), 120.7\left(\mathrm{C}_{4}\right), 116.1\left(\mathrm{C}_{8}\right), 95.5\left(\mathrm{C}_{10}\right), 66.8\left(\mathrm{C}_{18}\right)$, $45.3\left(\mathrm{C}_{17}\right), 34.1\left(\mathrm{C}_{13}\right), 30.9\left(\mathrm{C}_{14}\right), 22.8\left(\mathrm{C}_{15}\right), 14.2\left(\mathrm{C}_{16}\right)$.

NOESY ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\mathrm{H}_{10}(6.62 \mathrm{ppm})$ correlates to $\mathrm{H}_{17}(3.81-3.73 \mathrm{ppm})$.

HRMS (ESI ${ }^{+}$): calcd. for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 323.1754$, found 323.1755.

1-Butyl-3-(pyrrolidin-1-yl)-9H-indeno[2,1-c]pyridin-9-one (241)

Chemical Formula: $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}$
Exact Mass: 306.1732

This compound was obtained following the general procedure M. Starting from diyne 29 (105 $\mathrm{mg}, 0.5 \mathrm{mmol}$), pyrrolidine-1-carbonitrile 156 ($96.1 \mathrm{mg}, 1.0 \mathrm{mmol}, 2.0$ equiv) and $\mathrm{Cp} * \mathrm{Ru}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{3} \mathrm{PF}_{6}(5.0 \mathrm{mg}, 0.01 \mathrm{mmol})$. The reaction mixture was stirred at room temperature for 10 min . Purification on silica gel (Cyclohexane/Ethyl acetate gradient from $95 / 5$ to $90 / 10$) afforded $241(133 \mathrm{mg}, 87 \%$, ratio > 99:1) as a light yellow solid. m.p. $90-91$ ${ }^{\circ} \mathrm{C}$.

Experimental part
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 4}$ (Petroleum ether/Ethyl acetate; 80/20, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.70-7.61\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{1}\right), 7.58-7.52\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{4}\right), 7.49-7.43$ $\left(\mathrm{m}, 1 \mathrm{H}, \mathrm{H}_{3}\right), 7.42-7.35\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{2}\right), 6.37\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{10}\right), 3.62\left(\mathrm{br}, 4 \mathrm{H}, \mathrm{H}_{17}\right), 3.07(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $\left.2 \mathrm{H}, \mathrm{H}_{13}\right), 2.03\left(\mathrm{br}, 4 \mathrm{H}, \mathrm{H}_{18}\right), 1.78-1.65\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{14}\right), 1.52-1.36\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{15}\right), 0.95(\mathrm{t}, J=7.4$ $\mathrm{Hz}, 3 \mathrm{H}, \mathrm{H}_{16}$).
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 191.3\left(\mathrm{C}_{7}\right), 163.8\left(\mathrm{C}_{12}\right), 159.2\left(\mathrm{C}_{11}\right), 153.1\left(\mathrm{C}_{9}\right), 140.8\left(\mathrm{C}_{5}\right)$, $137.4\left(\mathrm{C}_{6}\right), 132.9\left(\mathrm{C}_{3}\right), 130.5\left(\mathrm{C}_{2}\right), 123.3\left(\mathrm{C}_{1}\right), 120.7\left(\mathrm{C}_{4}\right), 114.8\left(\mathrm{C}_{8}\right), 96.2\left(\mathrm{C}_{10}\right), 47.4\left(\mathrm{C}_{17}\right)$, $34.2\left(\mathrm{C}_{13}\right), 31.0\left(\mathrm{C}_{14}\right), 25.5\left(\mathrm{C}_{17}\right), 22.9\left(\mathrm{C}_{15}\right), 14.2\left(\mathrm{C}_{16}\right)$.

NOESY $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \mathrm{H}_{10}(6.37 \mathrm{ppm})$ correlates to $\mathrm{H}_{17}(3.62 \mathrm{ppm})$.

HRMS (ESI ${ }^{+}$): calcd. for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{1}[\mathrm{M}+\mathrm{H}]^{+}: 307.1805$, found 307.1805.

3-(Benzyl(methyl)amino)-1-butyl-9H-indeno[2,1-c]pyridin-9-one (242)

Chemical Formula: $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}$ Exact Mass: 356.1889

This compound was obtained following the general procedure N. Starting from diyne 29 (105 $\mathrm{mg}, 0.5 \mathrm{mmol}$), N-benzyl- N-methylcyanamide 158 ($88 \mathrm{mg}, 0.6 \mathrm{mmol}, 1.2$ equiv) and $\mathrm{Cp} * \mathrm{Ru}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{3} \mathrm{PF}_{6}(12.5 \mathrm{mg}, 0.025 \mathrm{mmol})$. The reaction mixture was stirred at room temperature for 30 min . Purification on silica gel (Cyclohexane/Ethyl acetate gradient from $98 / 2$ to $95 / 5$) afforded $242\left(142 \mathrm{mg}, 80 \%\right.$, ratio > 99:1) as a yellow solid. m.p. $106-108{ }^{\circ} \mathrm{C}$.
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 3 4}$ (Petroleum ether/Ethyl acetate; 90/10, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.67(\mathrm{dt}, J=7.1,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.58-7.50(\mathrm{~m}, 1 \mathrm{H}), 7.50-7.38$ (m, 2H), $7.38-7.24(\mathrm{~m}, 5 \mathrm{H}), 6.57(\mathrm{~s}, 1 \mathrm{H}), 4.99(\mathrm{~s}, 2 \mathrm{H}), 3.20(\mathrm{~s}, 3 \mathrm{H}), 3.15-3.04(\mathrm{~m}, 2 \mathrm{H}), 1.80$ -1.67 (m, 2H), $1.52-1.40(\mathrm{~m}, 2 \mathrm{H}), 0.93(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 191.2,163.2,161.1,154.0,140.9,138.1,137.2,133.0,130.6$, $128.8,127.5,127.4,123.5,120.7,115.6,95.1,53.5,36.5,34.1,30.8,22.8,14.2$.

HRMS (ESI ${ }^{+}$): calcd. for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{1}[\mathrm{M}+\mathrm{H}]^{+}: 357.1961$, found 357.1961.

1-Butyl-3-(piperidin-1-yl)-9H-indeno[2,1-c]pyridin-9-one (243)

Chemical Formula: $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}$
Exact Mass: 320.1889

This compound was obtained following the general procedure \mathbf{N}. Starting from diyne 29 (105 $\mathrm{mg}, 0.5 \mathrm{mmol}$), piperidine-1-carbonitrile $157(66 \mathrm{mg}, 0.6 \mathrm{mmol}, 1.2$ equiv) and $\mathrm{Cp} * \mathrm{Ru}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{3} \mathrm{PF}_{6}(12.5 \mathrm{mg}, 0.025 \mathrm{mmol})$. The reaction mixture was stirred at room temperature for 5 min . Purification on silica gel (Cyclohexane/Ethyl acetate gradient from 99/1 to $98 / 2$) afforded $243(125 \mathrm{mg}, 78 \%$, ratio $>99: 1)$ as a yellow solid. m.p. $100-102^{\circ} \mathrm{C}$.
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 4}\left(\right.$ Petroleum ether/Ethyl acetate; 90/10, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.65(\mathrm{dt}, J=7.1,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{dt}, J=7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H})$, 7.46 (td, $J=7.4,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{td}, J=7.3,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.64(\mathrm{~s}, 1 \mathrm{H}), 3.86-3.68(\mathrm{~m}, 4 \mathrm{H})$, $3.06(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.78-1.60(\mathrm{~m}, 8 \mathrm{H}), 1.52-1.31(\mathrm{~m}, 2 \mathrm{H}), 0.95(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 191.0,163.3,160.7,153.7,141.0,137.3,132.9,130.5,123.4$, $120.6,115.0,95.4,46.3,34.2,30.8,25.9,24.9,22.8,14.2$.

HRMS (ESI ${ }^{+}$): calcd. for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{1}[\mathrm{M}+\mathrm{H}]^{+}: 321.1961$, found 321.1962.

1-butyl-3-morpholino-9H-indeno[2,1-c]pyridin-9-ol (244)

This compound was obtained following the general procedure M. Starting from diyne 28 (106 $\mathrm{mg}, \quad 0.5 \mathrm{mmol}$), 4-cyanomorpholine $\mathbf{1 5 5}(112 \mathrm{mg}, \quad 1.0 \mathrm{mmol}, \quad 2.0$ equiv) and
$\mathrm{Cp} * \mathrm{Ru}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{3} \mathrm{PF}_{6}(5.0 \mathrm{mg}, 0.01 \mathrm{mmol})$. The reaction mixture was stirred at room temperature for 5 min . Purification on silica gel (Cyclohexane/Ethyl acetate gradient from $90 / 10$ to $80 / 20$) afforded 244 ($110 \mathrm{mg}, 68 \%$, ratio > 99:1) as a light yellow solid. m.p. $156-$ $158{ }^{\circ} \mathrm{C}$.
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 1 8}$ (Petroleum ether/Ethyl acetate; 80/20, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.67-7.52\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{1,4}\right), 7.46-7.32\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{2,3}\right), 6.58(\mathrm{~d}, J$ $\left.=1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{10}\right), 5.58\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{7}\right), 3.82-3.70\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}_{18}\right), 3.52-3.35\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}_{17}\right), 2.98-$ $2.75\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{13}\right), 2.37(\mathrm{br}, 1 \mathrm{H}, \mathrm{OH}), 1.80-1.65\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{14}\right), 1.50-1.35\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{15}\right), 0.96$ (t, $J=7.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}_{16}$).
${ }^{13}$ C NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 160.2\left(\mathrm{C}_{11}\right), 158.2\left(\mathrm{C}_{12}\right), 150.1\left(\mathrm{C}_{9}\right), 147.6\left(\mathrm{C}_{6}\right), 138.4\left(\mathrm{C}_{5}\right)$, $129.8\left(\mathrm{C}_{3}\right), 129.0\left(\mathrm{C}_{2}\right), 127.7\left(\mathrm{C}_{8}\right), 125.6\left(\mathrm{C}_{1}\right), 120.9\left(\mathrm{C}_{4}\right), 95.2\left(\mathrm{C}_{10}\right), 73.8\left(\mathrm{C}_{7}\right), 66.8\left(\mathrm{C}_{18}\right), 46.0$ $\left(\mathrm{C}_{17}\right), 34.5\left(\mathrm{C}_{13}\right), 31.1\left(\mathrm{C}_{14}\right), 22.9\left(\mathrm{C}_{15}\right), 14.3\left(\mathrm{C}_{6}\right)$.

NOESY ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\mathrm{H}_{10}(6.58 \mathrm{ppm})$ correlates to $\mathrm{H}_{17}(3.52-3.35 \mathrm{ppm})$.

HRMS (ESI ${ }^{+}$): calcd. for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 325.1911$, found 325.1912.

1-Butyl-3-(pyrrolidin-1-yl)-9H-indeno[2,1-c]pyridin-9-ol (245)

This compound was obtained following the general procedure \mathbf{N}. Starting from diyne 28 (106 $\mathrm{mg}, 0.5 \mathrm{mmol}$), pyrrolidine-1-carbonitrile $156(58 \mathrm{mg}, 0.6 \mathrm{mmol}, 1.2$ equiv) and $\mathrm{Cp} * \mathrm{Ru}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{3} \mathrm{PF}_{6}(12.5 \mathrm{mg}, 0.025 \mathrm{mmol})$. The reaction mixture was stirred at room temperature for 1 min . Purification on silica gel (Cyclohexane/Ethyl acetate gradient from $90 / 10$ to $80 / 20$) afforded $\mathbf{2 4 5}(124 \mathrm{mg}, 81 \%$, ratio $>99: 1)$ as a yellow solid. m.p. $170-171{ }^{\circ} \mathrm{C}$.
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 2 3}$ (Petroleum ether/Ethyl acetate; 80/20, $\mathrm{KMnO}_{4}, \mathrm{UV}$).
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.68-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.46-7.29(\mathrm{~m}, 2 \mathrm{H}), 6.26(\mathrm{~s}, 1 \mathrm{H}), 5.58(\mathrm{~s}$, $1 \mathrm{H}), 3.45-3.24(\mathrm{~m}, 4 \mathrm{H}), 3.11-2.63(\mathrm{~m}, 2 \mathrm{H}), 2.42(\mathrm{br}, 1 \mathrm{H}), 1.95-1.81(\mathrm{~m}, 4 \mathrm{H}), 1.80-1.67$ (m, 2H), $1.49-1.34(\mathrm{~m}, 2 \mathrm{H}), 0.95(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 158.6,158.0,149.4,147.9,138.8,129.4,128.7,125.5,124.7$, 120.8, 94.7, 73.9, 46.9, 34.6, 31.4, 25.5, 23.0, 14.3.

HRMS (ESI ${ }^{+}$): calcd. for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{1}[\mathrm{M}+\mathrm{H}]^{+}: 309.1961$, found 309.1962.

1-Butyl-3-(pyrrolidin-1-yl)-5H-indeno[1,2-c]pyridin-5-ol (246)

Chemical Formula: $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}$ Exact Mass: 308.1889

This compound was obtained following the general procedure N. Starting from diyne $\mathbf{1 4 9}$ (106 $\mathrm{mg}, 0.5 \mathrm{mmol}$), pyrrolidine-1-carbonitrile 156 ($58 \mathrm{mg}, 0.6 \mathrm{mmol}, 1.2$ equiv) and $\mathrm{Cp} * \mathrm{Ru}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{3} \mathrm{PF}_{6}(12.5 \mathrm{mg}, 0.025 \mathrm{mmol})$. The reaction mixture was stirred at room temperature for 5 min . Purification on silica gel (Cyclohexane/Ethyl acetate gradient from $90 / 10$ to $80 / 20)$ afforded $246(110 \mathrm{mg}, 71 \%$, ratio $=99: 1)$ as a slight pink solid. m.p. $140-142$ ${ }^{\circ} \mathrm{C}$.
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 2}$ (Petroleum ether/Ethyl acetate; 90/10, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.66-7.55(\mathrm{~m}, 1 \mathrm{H}), 7.44(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{td}, J=7.5$, $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{td}, J=7.4,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.20(\mathrm{~s}, 1 \mathrm{H}), 5.33(\mathrm{~s}, 1 \mathrm{H}), 3.78-3.50(\mathrm{br}, 1 \mathrm{H}), 3.37-$ $3.10(\mathrm{~m}, 4 \mathrm{H}), 2.91-2.61(\mathrm{~m}, 2 \mathrm{H}), 1.86-1.59(\mathrm{~m}, 6 \mathrm{H}), 1.53-1.37(\mathrm{~m}, 2 \mathrm{H}), 0.96(\mathrm{t}, J=7.3 \mathrm{~Hz}$, $3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.3,155.3,144.7,139.7,129.0,125.3,125.2,121.1,100.4$, 74.50, 46.7, 36.0, 30.4, 25.2, 22.9, 14.2.

MS $\left(\mathrm{CI}, \mathrm{NH}_{3}\right): \mathrm{m} / \mathrm{z}=309[\mathrm{M}+\mathrm{H}]^{+}$.

Experimental part

Chemical Formula: $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}$ Exact Mass: 292.1576

This compound was obtained following the general procedure \mathbf{N}. Starting from diyne 152 (56 $\mathrm{mg}, 0.3 \mathrm{mmol}$), pyrrolidine-1-carbonitrile 156 ($35 \mathrm{mg}, 0.36 \mathrm{mmol}, 1.2$ equiv) and $\mathrm{Cp} * \mathrm{Ru}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{3} \mathrm{PF}_{6}(7.5 \mathrm{mg}, 0.015 \mathrm{mmol})$. The reaction mixture was stirred at room temperature for 3 min . Purification on silica gel (Cyclohexane/Ethyl acetate gradient from $60 / 40$ to $50 / 50$) afforded $247\left(68 \mathrm{mg}, 78 \%\right.$, ratio > 99:1) as a white solid. m.p. $210-212{ }^{\circ} \mathrm{C}$.
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 2 3}$ (Petroleum ether/Ethyl acetate; 80/20, $\mathrm{KMnO}_{4}, \mathrm{UV}$).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta 7.82(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{t}, J$ $=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.46(\mathrm{~s}, 1 \mathrm{H}), 5.85(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.37(\mathrm{~d}, J=7.4$ $\mathrm{Hz}, 1 \mathrm{H}), 3.40(\mathrm{~s}, 4 \mathrm{H}), 2.50-2.41(\mathrm{~m}, 1 \mathrm{H}), 2.01-1.82(\mathrm{~m}, 4 \mathrm{H}), 1.19-1.01(\mathrm{~m}, 2 \mathrm{H}), 1.01-$ 0.87 ($\mathrm{m}, 2 \mathrm{H}$).
${ }^{13}$ C NMR (101 MHz, DMSO- d_{6}) δ 157.6, 155.6, 153.7, 145.3, 139.2, 128.4, 125.0, 124.9, 121.0, 120.7, 99.8, 73.0, 46.3, 25.0, 14.6, 8.4, 7.9.

HRMS (ESI ${ }^{+}$): calcd. for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{1}[\mathrm{M}+\mathrm{H}]^{+}:$293.1648, found 293.1649.

1-Cyclopropyl-3-(pyrrolidin-1-yl)-5H-indeno[1,2-c]pyridin-5-one (248)

Chemical Formula: $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}$ Exact Mass: 290.1419

This compound was obtained following the general procedure \mathbf{N}. Starting from diyne 153 (58.2 $\mathrm{mg}, 0.3 \mathrm{mmol}$), pyrrolidine-1-carbonitrile 156 ($58 \mathrm{mg}, 0.6 \mathrm{mmol}, 2.0$ equiv) and $\mathrm{Cp} * \mathrm{Ru}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{3} \mathrm{PF}_{6}(7.6 \mathrm{mg}, 0.015 \mathrm{mmol})$. The reaction mixture was stirred at room temperature for 10 min . Purification on silica gel (Cyclohexane/Ethyl acetate gradient from
$98 / 2$ to $90 / 10)$ afforded $\mathbf{2 4 8}(77 \mathrm{mg}, 89 \%$, ratio $=94: 6)$ as a dark purple solid. m.p. $162-163$ ${ }^{\circ} \mathrm{C}$.
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 6}\left(\right.$ Petroleum ether/Ethyl acetate; 90/10, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.73-7.58\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{4,1}\right), 7.49-7.37\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{3}\right), 7.17-7.02$ $\left(\mathrm{m}, 1 \mathrm{H}, \mathrm{H}_{2}\right), 6.50\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{14}\right), 3.56-3.36\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}_{15}\right), 2.35-2.19\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{11}\right), 2.04-1.88$ (m, 4H, H16), $1.24-1.15\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{12}\right), 1.02-0.91\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{12}\right)$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 194.8,157.2,155.5,147.0,143.3,135.5,133.8,126.0,124.9$, $121.82,121.6,99.2,47.0,25.5,15.0,8.4$.

NOESY ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\mathrm{H}_{4}(7.73-7.58 \mathrm{ppm})$ correlates to $\mathrm{H}_{11}(2.35-2.19 \mathrm{ppm}), \mathrm{H}_{14}(6,50$ $\mathrm{ppm})$ correlates to $\mathrm{H}_{15}(3.56-3.36 \mathrm{ppm})$.

HRMS (ESI ${ }^{+}$): calcd. for $\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{1}[\mathrm{M}+\mathrm{H}]^{+}: 291.1492$ found 291.1493.

4. Formation of enantioenriched 1,3-dihydroisobenzofuran derivatives

4.1. Synthesis of prochiral triynes

General procedure O:

In an oven-dried Argon-filled round bottom flask, n-butyl lithium (2 equiv) was added slowly to a solution of alkyne (2 equiv) in THF $(5 \mathrm{M})$ at $-50^{\circ} \mathrm{C}$, and the resulting mixture was stirred at $-50^{\circ} \mathrm{C}$ for 1 h . Acetyl chloride (1 equiv) was added at the same temperature, and the resulting mixture was allowed to warm to room temperature for $14-18 \mathrm{~h}$. The reaction was quenched with water and extracted with ethyl acetate $(\times 3)$. The combined organic layers were washed with water and brine, dried over MgSO_{4}, filtered and concentrated under reduced pressure. The residue was purified by flash chromatography to afford the desired compound.

General procedure \mathbf{P} :

Experimental part

To a stirred mixture of 2-butyn-1,4-diol 52 (1 equiv) and pyridine (2.5 equiv) in DCM $(0.5 \mathrm{M})$ was cooled at $0^{\circ} \mathrm{C}$ in an ice bath. Acyl chloride (3 equiv) was then added in DCM (0.5 M). The reaction mixture was stirred at room temperature for 18 h until completion (TLC monitoring). The organic layer was washed with water $(\times 3)$ and brine $(\times 3)$, dried over MgSO_{4}, filtered and concentrated under reduced pressure. The residue was purified by flash chromatography to afford the desired compound.

3-Methyl-1,5-diphenylpenta-1,4-diyn-3-ol (249)

This compound was obtained following the general procedure \mathbf{O}. Starting from acetyl chloride ($0.89 \mathrm{~mL}, 12.5 \mathrm{mmol}$), phenylacetylene ($2.75 \mathrm{~mL}, 25 \mathrm{mmol}, 2$ equiv) and $n \mathrm{BuLi}(25 \mathrm{mmol}, 2$ equiv). Purification on silica gel (Cyclohexane/Ethyl acetate; 90/10) afforded 249 ($2.2 \mathrm{~g}, 70 \%$) as a white solid. m.p. $110-112{ }^{\circ} \mathrm{C}$.
$\mathbf{R f}_{\mathbf{f}}=\mathbf{0 . 4}$ (Cyclohexane/Ethyl acetate; 90/10, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.54-7.44(\mathrm{~m}, 4 \mathrm{H}), 7.37-7.28(\mathrm{~m}, 6 \mathrm{H}), 2.80-2.73(\mathrm{~m}, 1 \mathrm{H})$, 1.97 (s, 3H).
${ }^{13} \mathbf{C}$ NMR ($\left.75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 132.0,128.8,128.4,122.2,90.2,82.8,61.0,32.1$.

MS (CI, $\left.\mathrm{NH}_{3}\right): \mathrm{m} / \mathrm{z}=229\left[\mathrm{M}-\mathrm{H}_{2} \mathrm{O}+\mathrm{H}\right]^{+}$.

1-Phenyl-3-(phenylethynyl)hex-1-yn-3-ol (250)

Chemical Formula: $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{O}$ Exact Mass: 274.1358

This compound was obtained following the general procedure \mathbf{O}. Starting from butyl chloride ($0.52 \mathrm{~mL}, 5 \mathrm{mmol}$), phenylacetylene ($1.09 \mathrm{~mL}, 10 \mathrm{mmol}, 2$ equiv) and $n \mathrm{BuLi}(10 \mathrm{mmol}, 2$ equiv). Purification on silica gel (Cyclohexane/Ethyl acetate gradient from $95 / 5$ to $90 / 10$) afforded $\mathbf{2 5 0}(1.17 \mathrm{~g}, 85 \%)$ as a white solid. m.p. $73-75^{\circ} \mathrm{C}$.
$\mathbf{R f}_{\mathbf{f}} \mathbf{0 . 4}$ (Cyclohexane/Ethyl acetate; 90/10, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.51-7.44(\mathrm{~m}, 4 \mathrm{H}), 7.36-7.28(\mathrm{~m}, 6 \mathrm{H}), 2.66(\mathrm{~s}, 1 \mathrm{H}), 2.12-$ $2.03(\mathrm{~m}, 2 \mathrm{H}), 1.82-1.69(\mathrm{~m}, 2 \mathrm{H}), 1.05(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 132.0,128.8,128.4,122.3,89.5,83.7,64.7,46.3,18.3,14.1$.

MS $\left(\mathrm{CI}, \mathrm{NH}_{3}\right): \mathrm{m} / \mathrm{z}=257\left[\mathrm{M}-\mathrm{H}_{2} \mathrm{O}+\mathrm{H}\right]^{+}$.

3-(tert-Butyl)-1,5-diphenylpenta-1,4-diyn-3-ol (251)

Chemical Formula: $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{O}$ Exact Mass: 288.1514

This compound was obtained following the general procedure O. Starting from pivaloyl chloride ($1.23 \mathrm{~mL}, 10 \mathrm{mmol}$), phenylacetylene ($2.2 \mathrm{~mL}, 20 \mathrm{mmol}, 2$ equiv) and $n \mathrm{BuLi}$ (20 mmol, 2 equiv). Purification on silica gel (Cyclohexane/Ethyl acetate; 95/5) afforded 251 (2.6 $\mathrm{g}, 90 \%)$ as a white solid. m.p. $83-85^{\circ} \mathrm{C}$.
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 5}$ (Cyclohexane/Ethyl acetate; 90/10, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.54-7.46(\mathrm{~m}, 4 \mathrm{H}), 7.36-7.30(\mathrm{~m}, 6 \mathrm{H}), 2.64-2.60(\mathrm{~m}, 1 \mathrm{H})$, 1.29 ($\mathrm{s}, 9 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 132.0,128.7,128.4,122.6,88.9,84.4,71.8,40.8,25.1$.

MS (CI, $\left.\mathrm{NH}_{3}\right): \mathrm{m} / \mathrm{z}=271\left[\mathrm{M}-\mathrm{H}_{2} \mathrm{O}+\mathrm{H}\right]^{+}$.

1,3,5-Triphenylpenta-1,4-diyn-3-ol (252)

Experimental part

This compound was obtained following the general procedure \mathbf{O}. Starting from benzoyl chloride ($1.16 \mathrm{~mL}, 10 \mathrm{mmol}$), phenylacetylene ($2.2 \mathrm{~mL}, 20 \mathrm{mmol}$, 2 equiv) and $n \mathrm{BuLi}$ (20 mmol, 2 equiv). Purification on silica gel (Cyclohexane/Ethyl acetate; 90/10) afforded 252 $(3.06 \mathrm{~g}, 99 \%)$ as a yellow oil. The analytical data were identical to the literature. ${ }^{206}$
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 3 3}$ (Cyclohexane/Ethyl acetate; 90/10, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.01-7.88(\mathrm{~m}, 2 \mathrm{H}), 7.60-7.27(\mathrm{~m}, 13 \mathrm{H}), 3.09(\mathrm{br}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.5,131.8,129.4,129.1,128.7,128.6,126.0,121.9,91.3$, 83.8, 64.7 .

MS (CI, $\left.\mathrm{NH}_{3}\right): \mathrm{m} / \mathrm{z}=291\left[\mathrm{M}-\mathrm{H}_{2} \mathrm{O}+\mathrm{H}\right]^{+}$.

7-Phenyltrideca-5,8-diyn-7-ol (253)

Chemical Formula: $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{O}$ Exact Mass: 268.1827

This compound was obtained following the general procedure \mathbf{O}. Starting from benzoyl chloride ($1.16 \mathrm{~mL}, 10 \mathrm{mmol}$), 1-hexyne ($2.3 \mathrm{~mL}, 20 \mathrm{mmol}, 2$ equiv) and $n \mathrm{BuLi}(20 \mathrm{mmol}, 2$ equiv). Purification on silica gel (Cyclohexane/Ethyl acetate gradient from $95 / 5$ to $90 / 10$) afforded $253(2.45 \mathrm{~g}, 91 \%)$ as a colorless oil.
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 3}$ (Cyclohexane/Ethyl acetate; 90/10, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.

[^115]${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.86-7.72(\mathrm{~m}, 2 \mathrm{H}), 7.46-7.27(\mathrm{~m}, 3 \mathrm{H}), 2.73(\mathrm{~s}, 1 \mathrm{H}), 2.29(\mathrm{t}$, $J=7.0 \mathrm{~Hz}, 4 \mathrm{H}), 1.59-1.33(\mathrm{~m}, 8 \mathrm{H}), 0.92(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 143.2,128.4,125.9,85.9,81.3,65.4,30.6,22.1,18.7,13.7$.

MS (CI, $\left.\mathrm{NH}_{3}\right): \mathrm{m} / \mathrm{z}=251\left[\mathrm{M}-\mathrm{H}_{2} \mathrm{O}+\mathrm{H}\right]^{+}$.

(3-Methyl-3-(prop-2-yn-1-yloxy)penta-1,4-diyne-1,5-diyl)dibenzene (254)

This compound was obtained following the general procedure F. Starting from 3-methyl-1,5-diphenylpenta-1,4-diyn-3-ol $\mathbf{2 4 9}(1 \mathrm{~g}, 4.1 \mathrm{mmol})$, propargyl bromide ($0.58 \mathrm{~mL}, 5.3 \mathrm{mmol}, 1.3$ equiv) and sodium hydride ($0.22 \mathrm{~g}, 5.3 \mathrm{mmol}, 1.3$ equiv). Purification on silica gel (Cyclohexane/Ethyl acetate gradient from 95/5 to 90/10) afforded 254 ($1 \mathrm{~g}, 87 \%$) as a white solid. m.p. $50-52^{\circ} \mathrm{C}$.
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 6}\left(\right.$ Cyclohexane/Ethyl acetate; 90/10, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.55-7.44(\mathrm{~m}, 4 \mathrm{H}), 7.39-7.28(\mathrm{~m}, 6 \mathrm{H}), 4.59-4.53(\mathrm{~m}, 2 \mathrm{H})$, $2.52-2.46(\mathrm{~m}, 1 \mathrm{H}), 1.99(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 132.0,128.9,128.4,122.1,87.3,85.0,80.3,74.3,67.3,54.3$, 31.1.

MS (CI, $\left.\mathrm{NH}_{3}\right): \mathrm{m} / \mathrm{z}=229\left[\mathrm{M}-\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{O}+\mathrm{H}\right]^{+}$.

(3-(But-2-yn-1-yloxy)-3-methylpenta-1,4-diyne-1,5-diyl)dibenzene (255)

Chemical Formula: $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{O}$ Exact Mass: 298.1358

This compound was obtained following the general procedure F. Starting from 3-methyl-1,5-diphenylpenta-1,4-diyn-3-ol 249 ($3.2 \mathrm{~g}, 13.1 \mathrm{mmol}$), 1-bromo-2-butyne ($1.4 \mathrm{~mL}, 16 \mathrm{mmol}, 1.2$ equiv) and sodium hydride ($0.64 \mathrm{~g}, 16 \mathrm{mmol}, 1.2$ equiv). Purification on silica gel (Cyclohexane/Ethyl acetate gradient from 95/5 to 90/10) afforded 255 ($3 \mathrm{~g}, 76 \%$) as a white solid. m.p. $110-112{ }^{\circ} \mathrm{C}$.
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 6}\left(\right.$ Cyclohexane/Ethyl acetate; 90/10, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.52-7.45(\mathrm{~m}, 4 \mathrm{H}), 7.37-7.30(\mathrm{~m}, 6 \mathrm{H}), 4.52(\mathrm{q}, J=2.4 \mathrm{~Hz}$, 2 H), 1.98 ($\mathrm{s}, 3 \mathrm{H}$), 1.88 (t, $J=2.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 132.0,128.9,128.4,122.2,87.5,84.8,82.6,75.4,66.9,54.9$, 31.2, 4.0.

MS (CI, NH_{3}): m/z $=229\left[\mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}+\mathrm{H}\right]^{+}$.

(3-(But-2-yn-1-yloxy)-3-propylpenta-1,4-diyne-1,5-diyl)dibenzene (256)

Chemical Formula: $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{O}$ Exact Mass: 326.1671

This compound was obtained following the general procedure F. Starting from 1-phenyl-3-(phenylethynyl)hex-1-yn-3-ol $250(0.27 \mathrm{~g}, 1 \mathrm{mmol}), 1$-bromo-2-butyne ($0.1 \mathrm{~mL}, 1.2 \mathrm{mmol}, 1.2$ equiv) and sodium hydride ($0.052 \mathrm{~g}, 1.3 \mathrm{mmol}, 1.3$ equiv). Purification on silica gel (Cyclohexane/Ethyl acetate gradient from 98/2 to 95/5) afforded 256 ($0.24 \mathrm{~g}, 74 \%$) as a pale yellow sticky oil. The melting point was difficult to determine.
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 6 5}$ (Cyclohexane/Ethyl acetate; 90/10, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.57-7.41(\mathrm{~m}, 4 \mathrm{H}), 7.38-7.28(\mathrm{~m}, 6 \mathrm{H}), 4.53(\mathrm{q}, J=2.4 \mathrm{~Hz}$, $2 \mathrm{H}), 2.18-2.06(\mathrm{~m}, 2 \mathrm{H}), 1.87(\mathrm{t}, J=2.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.83-1.71(\mathrm{~m}, 2 \mathrm{H}), 1.03(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 132.0,128.8,128.4,122.4,87.0,85.6,82.4,75.6,70.8,54.7$, 45.4, 18.2, 14.1, 4.0.

MS (CI, $\left.\mathrm{NH}_{3}\right): \mathrm{m} / \mathrm{z}=257\left[\mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}+\mathrm{H}\right]^{+}$.

(3-(But-2-yn-1-yloxy)-3-(tert-butyl)penta-1,4-diyne-1,5-diyl)dibenzene (257)

Chemical Formula: $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{O}$ Exact Mass: 340.1827

This compound was obtained following the general procedure F. Starting from 3-(tert-butyl)-1,5-diphenylpenta-1,4-diyn-3-ol 251 ($2.6 \mathrm{~g}, 9 \mathrm{mmol}$), 1-bromo-2-butyne ($0.95 \mathrm{~mL}, 11 \mathrm{mmol}$, 1.2 equiv) and sodium hydride ($0.44 \mathrm{~g}, 11 \mathrm{mmol}, 1.3$ equiv). Purification on silica gel (Cyclohexane/Ethyl acetate gradient from 98/2 to $95 / 5$) afforded $257(2.15 \mathrm{~g}, 70 \%)$ as a white solid. m.p. $82-84^{\circ} \mathrm{C}$.
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 5}$ (Cyclohexane/Ethyl acetate; $\left.95 / 5, \mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.45-7.35(\mathrm{~m}, 4 \mathrm{H}), 7.29-7.12(\mathrm{~m}, 6 \mathrm{H}), 4.45(\mathrm{q}, J=2.4 \mathrm{~Hz}$, $2 \mathrm{H}), 1.78(\mathrm{t}, J=2.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.18(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 132.0,128.7,128.4,122.6,86.5,86.2,81.8,78.0,76.1,55.1$, 41.0, 25.5, 4.0.

MS (CI, $\left.\mathrm{NH}_{3}\right): \mathrm{m} / \mathrm{z}=271\left[\mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}+\mathrm{H}\right]^{+}$.

(3-(But-2-yn-1-yloxy)penta-1,4-diyne-1,3,5-triyl)tribenzene (258)

Chemical Formula: $\mathrm{C}_{27} \mathrm{H}_{20} \mathrm{O}$ Exact Mass: 360.1514

This compound was obtained following the general procedure F. Starting from 1,3,5-triphenylpenta-1,4-diyn-3-ol $252(3.06 \mathrm{~g}, 10 \mathrm{mmol}), 1$-bromo-2-butyne ($1.05 \mathrm{~mL}, 12 \mathrm{mmol}, 1.2$ equiv) and sodium hydride ($0.52 \mathrm{~g}, 13 \mathrm{mmol}, 1.3$ equiv). Purification on silica gel (Cyclohexane/Ethyl acetate; 95/5) afforded 258 ($3.23 \mathrm{~g}, 90 \%$) as a pale yellow solid.

Experimental part
$\mathbf{R f}_{\mathbf{f}} \mathbf{0 . 5}$ (Cyclohexane/Ethyl acetate; 90/10, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.98-7.87(\mathrm{~m}, 2 \mathrm{H}), 7.58-7.47(\mathrm{~m}, 4 \mathrm{H}), 7.47-7.28(\mathrm{~m}, 9 \mathrm{H})$, $4.53(\mathrm{q}, J=2.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.85(\mathrm{t}, J=2.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 140.4,132.1,129.0,128.5,128.4,127.0,122.2,87.4,86.5,82.7$, 75.4, 72.2, 54.7, 4.0.
$\mathbf{M S}\left(\mathrm{CI}, \mathrm{NH}_{3}\right): \mathrm{m} / \mathrm{z}=291\left[\mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}+\mathrm{H}\right]^{+}$.

(7-(But-2-yn-1-yloxy)trideca-5,8-diyn-7-yl)benzene (259)

This compound was obtained following the general procedure F. Starting from 7-phenyltrideca-5,8-diyn-7-ol 253 ($1.34 \mathrm{~g}, 5 \mathrm{mmol}$), 1-bromo-2-butyne ($0.57 \mathrm{~mL}, 6.5 \mathrm{mmol}, 1.3$ equiv) and sodium hydride ($0.26 \mathrm{~g}, 6.5 \mathrm{mmol}, 1.3$ equiv). Purification on silica gel (Cyclohexane/Ethyl acetate gradient from $98 / 2$ to $95 / 5$) afforded $259(1.4 \mathrm{~g}, 88 \%)$ as a colorless oil.
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 5}$ (Cyclohexane/Ethyl acetate; 95/5, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.85-7.70(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.27(\mathrm{~m}, 3 \mathrm{H}), 4.32(\mathrm{q}, J=2.4 \mathrm{~Hz}$, $2 \mathrm{H}), 2.30(\mathrm{t}, J=7.0 \mathrm{~Hz}, 4 \mathrm{H}), 1.83(\mathrm{t}, J=2.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.61-1.48(\mathrm{~m}, 4 \mathrm{H}), 1.48-1.35(\mathrm{~m}, 4 \mathrm{H})$, $0.92(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 141.2,128.5,128.2,126.9,87.9,82.1,78.4,75.7,71.5,54.0$, 30.6, 22.1, 18.7, 13.7, 3.9.

MS (CI, $\left.\mathrm{NH}_{3}\right): \mathrm{m} / \mathrm{z}=251\left[\mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}+\mathrm{H}\right]^{+}$.

Trimethyl(3-((3-methyl-1,5-diphenylpenta-1,4-diyn-3-yl)oxy)prop-1-yn-1-yl)silane (260)

To a solution of (3-methyl-3-(prop-2-yn-1-yloxy)penta-1,4-diyne-1,5-diyl)dibenzene $254(0.43 \mathrm{~g}, 1.5 \mathrm{mmol})$ in anhydrous THF (4 mL) was slowly added $n \mathrm{BuLi}(2.3 \mathrm{M}$ in hexane, $0.72 \mathrm{~mL}, 1.65 \mathrm{mmol}, 1.1$ equiv) at $-70^{\circ} \mathrm{C}$. The solution was stirred at the same temperature for 30 min . To the resulting mixture was added chlorotrimethylsilane $(0.14 \mathrm{~mL}, 1.65 \mathrm{mmol}, 1.1$ equiv) at $-70^{\circ} \mathrm{C}$, and the reaction mixture was allowed to warm to room temperature and stirred for additional 1.5 h . The reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(1.0 \mathrm{~mL})$, The aqueous layer was extracted with diethyl ether $(3 \times 20 \mathrm{~mL})$, and the combined organic layers were washed with brine, dried with MgSO_{4}, filtered and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel (Cyclohexane/Ethyl acetate gradient from $98 / 2$ to $95 / 5$) to afford $\mathbf{2 6 0}(0.5 \mathrm{~g}, 93 \%)$ as a pale yellow solid. m.p. $70-72{ }^{\circ} \mathrm{C}$.
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 3}$ (Cyclohexane/Ethyl acetate; 95/5, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.55-7.41(\mathrm{~m}, 4 \mathrm{H}), 7.39-7.27(\mathrm{~m}, 6 \mathrm{H}), 4.59(\mathrm{~d}, J=0.8 \mathrm{~Hz}$, $2 \mathrm{H}), 1.99(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.18(\mathrm{~d}, J=0.7 \mathrm{~Hz}, 9 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 132.1,128.9,128.4,122.2,101.9,91.1,87.4,85.0,67.2,55.0$, 31.1, 0.0.

MS $\left(\mathrm{CI}, \mathrm{NH}_{3}\right): \mathrm{m} / \mathrm{z}=229\left[\mathrm{M}-\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{OSi}+\mathrm{H}\right]^{+}$.

4.2. Synthesis of internal alkynes

But-2-yne-1,4-diyl diacetate (262)

Chemical Formula: $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{O}_{4}$ Exact Mass: 170.0579

This compound was obtained following the general procedure \mathbf{P}. Starting from 2-butyne-1,4diol $52(1.72 \mathrm{~g}, 20 \mathrm{mmol})$, acetyl chloride ($4.3 \mathrm{~mL}, 60 \mathrm{mmol}, 3$ equiv) and pyridine ($4 \mathrm{~mL}, 50$ mmol, 2.5 equiv). Purification on silica gel (Cyclohexane/Ethyl acetate; 80/20) afforded 262 $(3.25 \mathrm{~g}, 96 \%)$ as a colorless oil. The analytical data were identical to the literature. ${ }^{207}$
$\mathbf{R f}_{\mathbf{f}}=\mathbf{0 . 4}$ (Cyclohexane/Ethyl acetate; 70/30, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR (300 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 4.69(\mathrm{~s}, 4 \mathrm{H}), 2.07(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.2,80.8,52.1,20.7$.

But-2-yne-1,4-diyl bis(2,2-dimethylpropanoate) (263)

To a stirred mixture of 2-butyn-1,4-diol $52\left(0.86 \mathrm{~g}, 10 \mathrm{mmol}, 1\right.$ equiv) and $i \operatorname{Pr}_{2} \mathrm{NEt}$ (6.7 $\mathrm{mL}, 40 \mathrm{mmol}, 4$ equiv) in DCM (20 mL) was cooled at $0^{\circ} \mathrm{C}$ in an ice bath. DMAP $(0.1 \mathrm{~g}, 0.5$ $\mathrm{mmol}, 5 \mathrm{~mol} \%$) and pivaloyl chloride ($3.69 \mathrm{~mL}, 30 \mathrm{mmol}, 3$ equiv) in DCM (20 mL) were then introduced. The reaction mixture was stirred at room temperature for 3 h until completion (TLC monitoring). The organic layer was washedwith water $(3 \times 30 \mathrm{~mL})$ and brine, dried over MgSO_{4}, filtered and concentrated under reduced pressure. The residue was purified by flash chromatography (Cyclohexane/Ethyl acetate; 80/20) to afford 263 ($2.5 \mathrm{~g}, 98 \%$) as a colorless oil.
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 3}$ (Cyclohexane/Ethyl acetate; 90/10, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.69(\mathrm{~s}, 4 \mathrm{H}), 1.21(\mathrm{~s}, 18 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 177.8,80.8,52.3,38.9,27.2$.

But-2-yne-1,4-diyl dibenzoate (264)

[^116]

Chemical Formula: $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{O}_{4}$ Exact Mass: 294.0892

This compound was obtained following the general procedure \mathbf{P}. Starting from 2-butyne-1,4diol $52(1.72 \mathrm{~g}, 20 \mathrm{mmol})$, benzoyl chloride ($5.8 \mathrm{~mL}, 50 \mathrm{mmol}, 2.5$ equiv) and pyridine (4 mL , $50 \mathrm{mmol}, 2.5$ equiv). Purification on silica gel (Cyclohexane/Ethyl acetate; 90/10) afforded 264 $(5.6 \mathrm{~g}, 95 \%)$ as a white solid. m.p. $80-82^{\circ} \mathrm{C}$.
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 3}$ (Cyclohexane/Ethyl acetate; 90/10, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.13-8.02(\mathrm{~m}, 4 \mathrm{H}), 7.63-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.51-7.39(\mathrm{~m}, 4 \mathrm{H})$, $5.00(\mathrm{~s}, 4 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.9,133.5,130.0,129.6,128.6,81.1,52.8$.
$\mathbf{M S}\left(\mathrm{CI}, \mathrm{NH}_{3}\right): \mathrm{m} / \mathrm{z}=312\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$.

But-2-yne-1,4-diyl bis(4-methylbenzenesulfonate) (265)

In a round bottom flask, 2-butyne-1,4-diol $52(2.15 \mathrm{~g}, 25.0 \mathrm{mmol})$ was dissolved in THF $(50 \mathrm{~mL})$ and combined with $\mathrm{NaOH}(3.5 \mathrm{~g}, 87 \mathrm{mmol}, 3.5$ equiv) in water (50 mL). The flask was cooled to $0^{\circ} \mathrm{C}$ (ice bath), and a solution of p-toluenesulfonyl chloride ($10.5 \mathrm{~g}, 55.0 \mathrm{mmol}, 2.2$ equiv) in THF (50 mL) was added dropwise. The resulting mixture was stirred at $0^{\circ} \mathrm{C}$ for 2 h until complete reaction. The product was then extracted with ethyl acetate $(2 \times 50 \mathrm{~mL})$ and washed with saturated $\mathrm{NaHCO}_{3}(3 \times 30 \mathrm{~mL})$, water $(2 \times 50 \mathrm{~mL})$, and brine $(50 \mathrm{~mL})$. The organic layer was dried over anhydrous MgSO_{4}, filtered and concentrated under reduced pressure to
give the product 265 as a grey solid ($8.2 \mathrm{~g}, 83 \%$). m.p. $98-100{ }^{\circ} \mathrm{C}$. The analytical data were identical to the literature. ${ }^{208}$
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 2 1}$ (Cyclohexane/Ethyl acetate; 80/20, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.81-7.71(\mathrm{~m}, 4 \mathrm{H}), 7.39-7.30(\mathrm{~m}, 4 \mathrm{H}), 4.58(\mathrm{~s}, 4 \mathrm{H}), 2.45(\mathrm{~s}$, $6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 145.5,133.0,130.0,128.2,81.1,57.2,21.8$.

4.3. Rhodium-catalyzed $[2+2+2]$ cycloaddition of triynes and alkynes

General procedure Q:

In a vacuum line, an oven-dried Schlenk tube was degassed and purged with argon three times. $\mathrm{Rh}(\operatorname{cod})_{2} \mathrm{BF}_{4}(5 \mathrm{~mol} \%)$ and (R)-BINAP ($5 \mathrm{~mol} \%$) were introduced under argon. The Schlenk flask was then degassed and purged with argon three additional times. Under argon, freshly distilled and degassed $\mathrm{DCM}(1.0 \mathrm{~mL})$ was added and the mixture was allowed to stir at room temperature for 30 min . A solution of the corresponding alkyne (2 equiv) in distilled DCM $(1.0 \mathrm{~mL})$ was then introduced under argon. The Schlenk flask was tightly sealed and allowed to stir at room temperature for additional 10 minutes. A solution of the corresponding triyne (1 equiv) in distilled $\operatorname{DCM}(1.0 \mathrm{~mL})$ was finally added dropwise at room temperature. The reaction mixture allowed to stir at $40{ }^{\circ} \mathrm{C}$ for $20-24 \mathrm{~h}$, concentrated under reduced pressure, and the residue was purified by flash chromatography to afford the desired product.

(1,4-Dimethyl-7-phenyl-1-(phenylethynyl)-1,3-dihydroisobenzofuran-5,6-diyl)bis (methylene) diacetate (266)

[^117]

This compound was obtained following the general procedure \mathbf{Q}. Starting from (3-(but-2-yn-1-yloxy)-3-methylpenta-1,4-diyne-1,5-diyl)dibenzene 255 ($119 \mathrm{mg}, 0.4 \mathrm{mmol}$), but-2-yne-1,4diyl diacetate 262 ($136 \mathrm{mg}, 0.8 \mathrm{mmol}$, 2 equiv), $\mathrm{Rh}(\operatorname{cod})_{2} \mathrm{BF}_{4}(8 \mathrm{mg}, 0.02 \mathrm{mmol}, 5 \mathrm{~mol} \%$), and (R)-BINAP ($12.4 \mathrm{mg}, 0.02 \mathrm{mmol}, 5 \mathrm{~mol} \%$). The reaction mixture was stirred at $40{ }^{\circ} \mathrm{C}$ for 20 h. Purification on silica gel (Cyclohexane/Ethyl acetate gradient from 95/5 to 80/20) afforded $266(95 \mathrm{mg}, 50 \%)$ as a white solid. m.p. $112-114^{\circ} \mathrm{C}$.
$\mathbf{R f}_{\mathbf{f}}=\mathbf{0 . 4}$ (Cyclohexane/Ethyl acetate; 80/20, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.42-7.20(\mathrm{~m}, 10 \mathrm{H}), 5.28(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.17\left(\mathrm{AB}_{\text {sys }}, J=\right.$ $9.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.93\left(\mathrm{AB}_{\text {sys }}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H}\right), 2.34(\mathrm{~s}, 3 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H}), 1.96(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ C NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 170.7, 170.2, 141.7, 139.9, 136.7, 136.0, 134.0, 133.9, 131.9, $131.4,130.7,130.1,128.3,128.2,127.9,127.7,127.6,122.7,90.8,85.2,82.1,70.5,61.0,60.3$, 28.2, 20.9, 20.8, 15.8.

SFC: $e e=50 \%$, Chiralpak OD-H, $\mathrm{scCO}_{2} / \mathrm{MeOH} 90 / 10, \mathrm{P}=150$ bar, flow $=4.0 \mathrm{~mL} / \mathrm{min}$, $215 \mathrm{~nm}, \mathrm{t}_{\text {major }}=2.82 \mathrm{~min}, \mathrm{t}_{\text {minor }}=3.57 \mathrm{~min}$.

MS (CI, NH3): m/z $=486\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$.

(1,4-Dimethyl-7-phenyl-1-(phenylethynyl)-1,3-dihydroisobenzofuran-5,6diyl)bis(methylene) bis(2,2-dimethylpropanoate) (267)

This compound was obtained following the general procedure \mathbf{Q}. Starting from (3-(but-2-yn-1-yloxy)-3-methylpenta-1,4-diyne-1,5-diyl)dibenzene 255 ($89 \mathrm{mg}, 0.3 \mathrm{mmol}$), but-2-yne-1,4-diyl
bis(2,2-dimethylpropanoate) 263 ($152 \mathrm{mg}, 0.6 \mathrm{mmol}, 2$ equiv), $\mathrm{Rh}(\operatorname{cod})_{2} \mathrm{BF}_{4}(6.1 \mathrm{mg}, 0.015$ mmol, $5 \mathrm{~mol} \%$), and (R)-BINAP ($9.3 \mathrm{mg}, 0.015 \mathrm{mmol}, 5 \mathrm{~mol} \%$). The reaction mixture was stirred at $40{ }^{\circ} \mathrm{C}$ for 20 h . Purification on silica gel (Cyclohexane/Ethyl acetate gradient from $99 / 1$ to $95 / 5$) afforded $267(35 \mathrm{mg}, 20 \%)$ as a colorless oil.
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 4}$ (Cyclohexane/Ethyl acetate; 95/5, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.50-7.40(\mathrm{~m}, 1 \mathrm{H}), 7.40-7.23(\mathrm{~m}, 8 \mathrm{H}), 7.23-7.13(\mathrm{~m}, 1 \mathrm{H})$, $5.21(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.17\left(\mathrm{AB}_{\text {sys }}, J=12.3 \mathrm{~Hz}, 2 \mathrm{H}\right), 4.85\left(\mathrm{AB}_{\text {sys }}, J=12.0 \mathrm{~Hz}, 2 \mathrm{H}\right), 2.31(\mathrm{~s}$, $3 \mathrm{H}), 1.39(\mathrm{~s}, 3 \mathrm{H}), 1.22(\mathrm{~s}, 9 \mathrm{H}), 1.14(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 178.5,177.9,141.4,139.8,136.7,136.3,134.7,134.2,131.9$, $131.6,130.9,130.4,128.3,128.0,127.8,127.6,122.9,91.2,85.3,82.3,70.7,61.2,60.6,39.1$, 38.7, 28.5, 27.4, 27.3, 16.0.

SFC: $e e=36 \%$, Chiralpak OD-H, $\mathrm{scCO}_{2} / \mathrm{MeOH} 90 / 10, \mathrm{P}=150$ bar, flow $=4.0 \mathrm{~mL} / \mathrm{min}$, $215 \mathrm{~nm}, \mathrm{t}_{\text {major }}=2.03 \mathrm{~min}, \mathrm{t}_{\text {minor }}=2.54 \mathrm{~min}$.

MS $\left(E S I, N H_{3}\right): m / z=570\left[M+\mathrm{NH}_{4}\right]^{+}$.

(1,4-Dimethyl-7-phenyl-1-(phenylethynyl)-1,3-dihydroisobenzofuran-5,6diyl)bis(methylene) dibenzoate (268)

Chemical Formula: $\mathrm{C}_{40} \mathrm{H}_{32} \mathrm{O}_{5}$ Exact Mass: 592.2250

This compound was obtained following the general procedure \mathbf{Q}. Starting from (3-(but-2-yn-1-yloxy)-3-methylpenta-1,4-diyne-1,5-diyl)dibenzene 255 ($89 \mathrm{mg}, 0.3 \mathrm{mmol}$), but-2-yne-1,4-diyl dibenzoate 264 ($176.4 \mathrm{mg}, 0.6 \mathrm{mmol}$, 2 equiv), $\mathrm{Rh}(\operatorname{cod})_{2} \mathrm{BF}_{4}(6.1 \mathrm{mg}, 0.015 \mathrm{mmol}, 5 \mathrm{~mol} \%)$, and (R)-BINAP ($9.3 \mathrm{mg}, 0.015 \mathrm{mmol}, 5 \mathrm{~mol} \%$). The reaction mixture was stirred at $40^{\circ} \mathrm{C}$ for 24 h . Purification on silica gel (Cyclohexane/Ethyl acetate gradient from 95/5 to 90/10) afforded 268 ($50 \mathrm{mg}, 28 \%$) as a colorless oil.
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 5}\left(\right.$ Cyclohexane/Ethyl acetate; 80/20, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.00-7.93(\mathrm{~m}, 2 \mathrm{H}), 7.93-7.84(\mathrm{~m}, 2 \mathrm{H}), 7.57-7.41(\mathrm{~m}, 3 \mathrm{H})$, $7.39-7.22(\mathrm{~m}, 13 \mathrm{H}), 5.60(\mathrm{~s}, 2 \mathrm{H}), 5.39-5.12(\mathrm{~m}, 4 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.4,166.0,141.8,140.0,136.9,136.2,134.5,134.5,133.1$, $132.9,132.2,131.6,130.9,130.4,130.0,129.9,129.8,129.7,128.4,128.3,128.1,127.9,127.8$, 122.9, 91.1, 85.4, 82.3, 70.8, 61.8, 61.1, 28.4, 16.1.

SFC: $e e=46 \%$, Chiralpak OD-H, $\mathrm{scCO}_{2} / \mathrm{MeOH} 90 / 10, \mathrm{P}=150$ bar, flow $=4.0 \mathrm{~mL} / \mathrm{min}$, $215 \mathrm{~nm}, \mathrm{t}_{\text {major }}=13.09 \mathrm{~min}, \mathrm{t}_{\text {minor }}=18.56 \mathrm{~min}$.

MS (CI, NH_{3}): $\mathrm{m} / \mathrm{z}=610\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$.

5,6-Diethyl-1,4-dimethyl-7-phenyl-1-(phenylethynyl)-1,3-dihydroisobenzofuran (269)

Chemical Formula: $\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{O}$
Exact Mass: 380.2140

This compound was obtained following the general procedure \mathbf{Q}. Starting from (3-(but-2-yn-1-yloxy)-3-methylpenta-1,4-diyne-1,5-diyl)dibenzene $\mathbf{2 5 5}$ ($89 \mathrm{mg}, 0.3 \mathrm{mmol}$), 3-hexyne 53 (50 $\mathrm{mg}, 0.6 \mathrm{mmol}, 2$ equiv), $\mathrm{Rh}(\operatorname{cod})_{2} \mathrm{BF}_{4}(6.1 \mathrm{mg}, 0.015 \mathrm{mmol}, 5 \mathrm{~mol} \%)$, and $(R)-\operatorname{BINAP}(9.3 \mathrm{mg}$, $0.015 \mathrm{mmol}, 5 \mathrm{~mol} \%)$. The reaction mixture was stirred at $40^{\circ} \mathrm{C}$ for 20 h . Purification on silica gel (Cyclohexane/Ethyl acetate; 99/1) afforded $\mathbf{2 6 9}(92 \mathrm{mg}, 79 \%)$ as a white solid. m.p. 114$118{ }^{\circ} \mathrm{C}$.
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 3 5}\left(\right.$ Cyclohexane/Ethyl acetate; 95/5, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.49-7.31(\mathrm{~m}, 6 \mathrm{H}), 7.31-7.19(\mathrm{~m}, 4 \mathrm{H}), 5.25-5.02(\mathrm{~m}, 2 \mathrm{H})$, $2.84-2.66(\mathrm{~m}, 2 \mathrm{H}), 2.54-2.34(\mathrm{~m}, 2 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}), 1.41-1.32(\mathrm{~m}, 3 \mathrm{H}), 1.20(\mathrm{td}, J=7.5$, $2.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{td}, J=7.6,2.5 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 140.9,140.6,138.4,138.2,136.2,134.6,131.6,131.4,130.6$, $128.9,128.2,128.1,127.6,127.4,127.2,123.4,92.0,84.6,82.3,70.9,28.8,23.0,22.5,16.0$, 14.8 .

SFC: $e e=21 \%$, Chiralpak OD-H, $\mathrm{scCO}_{2} / \mathrm{MeOH} 95 / 5, \mathrm{P}=150 \mathrm{bar}$, flow $=4.0 \mathrm{~mL} / \mathrm{min}, 215 \mathrm{~nm}$, $\mathrm{t}_{\text {major }}=4.15 \mathrm{~min}, \mathrm{t}_{\text {minor }}=5.51 \mathrm{~min}$.
$\mathbf{M S}\left(\mathrm{CI}, \mathrm{NH}_{3}\right): \mathrm{m} / \mathrm{z}=398\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$.

5,6-Bis(methoxymethyl)-1,4-dimethyl-7-phenyl-1-(phenylethynyl)-1,3dihydroisobenzofuran (270)

Chemical Formula: $\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{O}_{3}$ Exact Mass: 412.2038

This compound was obtained following the general procedure \mathbf{Q}. Starting from (3-(but-2-yn-1-yloxy)-3-methylpenta-1,4-diyne-1,5-diyl)dibenzene $\quad \mathbf{2 5 5}(89 \mathrm{mg}, \quad 0.3 \mathrm{mmol}), \quad 1,4-$ dimethoxybut-2-yne 51 ($68.4 \mathrm{mg}, 0.6 \mathrm{mmol}, 2$ equiv), $\mathrm{Rh}(\operatorname{cod})_{2} \mathrm{BF}_{4}(6.1 \mathrm{mg}, 0.015 \mathrm{mmol}, 5$ $\mathrm{mol} \%)$, and (R)-BINAP ($9.3 \mathrm{mg}, 0.015 \mathrm{mmol}, 5 \mathrm{~mol} \%$). The reaction mixture was stirred at $40{ }^{\circ} \mathrm{C}$ for 20 h . Purification on silica gel (Cyclohexane/Ethyl acetate gradient from 95/5 to $90 / 10$) afforded $270(78 \mathrm{mg}, 63 \%)$ as a colorless oil.
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 3 5}$ (Cyclohexane/Ethyl acetate; 90/10, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.52-7.45(\mathrm{~m}, 1 \mathrm{H}), 7.45-7.31(\mathrm{~m}, 5 \mathrm{H}), 7.31-7.24(\mathrm{~m}, 4 \mathrm{H})$, $5.15\left(\mathrm{AB}_{\mathrm{sys}}, J=12.3 \mathrm{~Hz}, 2 \mathrm{H}\right), 4.62(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.18\left(\mathrm{AB}_{\mathrm{sys}}, J=10.2 \mathrm{~Hz}, 2 \mathrm{H}\right), 3.50(\mathrm{~s}$, $3 \mathrm{H}), 3.17$ (s, 3H), 2.35 (s, 3H), 1.36 (d, 3H).
${ }^{13}$ C NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 140.7,139.1,137.2,136.1,135.7,131.5,131.0,130.5,128.2$, $128.1,127.5,127.3,123.0,91.4,85.0,82.1,70.6,68.7,68.3,58.9,58.3,28.3,15.7$.

SFC: $e e=32 \%$, Chiralpak OD-H, $\mathrm{scCO}_{2} / \mathrm{MeOH} 95 / 5, \mathrm{P}=150 \mathrm{bar}$, flow $=3.0 \mathrm{~mL} / \mathrm{min}, 215 \mathrm{~nm}$, $\mathrm{t}_{\text {major }} 5.78 \mathrm{~min}, \mathrm{t}_{\text {minor }}=6.78 \mathrm{~min}$.

MS (CI, NH_{3}): $\mathrm{m} / \mathrm{z}=430\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$.

This compound was obtained following the general procedure \mathbf{Q}. Starting from (3-(but-2-yn-1-yloxy)-3-methylpenta-1,4-diyne-1,5-diyl)dibenzene $\mathbf{2 5 5}$ ($89 \mathrm{mg}, 0.3 \mathrm{mmol}$), dimethyl but-2ynedioate 261 ($85 \mathrm{mg}, 0.6 \mathrm{mmol}$, 2 equiv), $\mathrm{Rh}(\operatorname{cod})_{2} \mathrm{BF}_{4}(6.1 \mathrm{mg}, 0.015 \mathrm{mmol}, 5 \mathrm{~mol} \%)$, and (R)-BINAP ($9.3 \mathrm{mg}, 0.015 \mathrm{mmol}, 5 \mathrm{~mol} \%$). The reaction mixture was stirred at $40{ }^{\circ} \mathrm{C}$ for 24 h. Purification on silica gel (Cyclohexane/Ethyl acetate gradient from 95/5 to 90/10) afforded 271 ($67 \mathrm{mg}, 51 \%$) as a colorless oil.
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 1 3}$ (Cyclohexane/Ethyl acetate; 80/20, $\mathrm{KMnO}_{4}, \mathrm{UV}$).
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.71-7.45(\mathrm{~m}, 1 \mathrm{H}), 7.45-7.23(\mathrm{~m}, 8 \mathrm{H}), 7.22-7.14(\mathrm{~m}, 1 \mathrm{H})$, $5.16\left(\mathrm{AB}_{\text {sys }}, J=12.9 \mathrm{~Hz}, 2 \mathrm{H}\right), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.44(\mathrm{~s}, 3 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 168.3, 168.1, 143.2, 141.3, 135.7, 134.6, 133.5, 131.7, 131.6, $130.6,130.3,129.7,128.5,128.3,128.1,127.6,122.7,90.5,85.9,82.1,70.4,52.6,52.1,28.0$, 16.7.

SFC: $e e=47 \%$, Chiralpak OD-H, $\mathrm{scCO}_{2} / \mathrm{MeOH} 90 / 10, \mathrm{P}=150$ bar, flow $=4.0 \mathrm{~mL} / \mathrm{min}$, $215 \mathrm{~nm}, \mathrm{t}_{\text {major }}=2.74 \mathrm{~min}, \mathrm{t}_{\text {minor }}=3.48 \mathrm{~min}$.

MS (CI, NH3): m/z $=458\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$.
(4-Methyl-7-phenyl-1-(phenylethynyl)-1-propyl-1,3-dihydroisobenzofuran-5,6diyl)bis(methylene) diacetate (274)

Chemical Formula: $\mathrm{C}_{32} \mathrm{H}_{32} \mathrm{O}_{5}$ Exact Mass: 496.2250

This compound was obtained following the general procedure \mathbf{Q}. Starting from (3-(but-2-yn-1-yloxy)-3-propylpenta-1,4-diyne-1,5-diyl)dibenzene $\mathbf{2 5 6}$ ($98 \mathrm{mg}, 0.3 \mathrm{mmol}$), but-2-yne-1,4-diyl
diacetate 262 ($102 \mathrm{mg}, 0.6 \mathrm{mmol}, 2$ equiv), $\mathrm{Rh}(\operatorname{cod})_{2} \mathrm{BF}_{4}(6.1 \mathrm{mg}, 0.015 \mathrm{mmol}, 5 \mathrm{~mol} \%)$, and (R)-BINAP ($9.3 \mathrm{mg}, 0.015 \mathrm{mmol}, 5 \mathrm{~mol} \%$). The reaction mixture was stirred at $40{ }^{\circ} \mathrm{C}$ for 20 h. Purification on silica gel (Cyclohexane/Ethyl acetate gradient from 95/5 to 80/20) afforded 274 ($68 \mathrm{mg}, 46 \%$) as a colorless oil.
$\mathbf{R f}_{\mathbf{f}} \mathbf{0 . 2}$ (Cyclohexane/Ethyl acetate; 85/15, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.51-7.22(\mathrm{~m}, 9 \mathrm{H}), 7.22-7.10(\mathrm{~m}, 1 \mathrm{H}), 5.26(\mathrm{~d}, J=3.6 \mathrm{~Hz}$, $2 \mathrm{H}), 5.16\left(\mathrm{AB}_{\text {sys }}, J=12.6 \mathrm{~Hz}, 2 \mathrm{H}\right), 4.91\left(\mathrm{AB}_{\text {sys }}, J=12.3 \mathrm{~Hz}, 2 \mathrm{H}\right), 2.33(\mathrm{~s}, 3 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H})$, $1.96(\mathrm{~s}, 3 \mathrm{H}), 1.76-1.60(\mathrm{~m}, 1 \mathrm{H}), 1.46-1.20(\mathrm{~m}, 2 \mathrm{H}), 1.20-1.01(\mathrm{~m}, 1 \mathrm{H}), 0.73(\mathrm{t}, J=7.0 \mathrm{~Hz}$, $3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.8,170.3,140.6,140.2,136.8,136.2,134.1,131.9,131.6$, $131.0,129.6,128.3,128.1,127.8,127.7,123.0,91.1,85.6,71.3,61.2,60.5,42.1,21.0,21.0$, 17.2, 16.0, 13.9.

SFC: $e e=51 \%$, Chiralpak OD-H, $\mathrm{scCO}_{2} / \mathrm{MeOH} 95 / 5, \mathrm{P}=150 \mathrm{bar}$, flow $=4.0 \mathrm{~mL} / \mathrm{min}, 215 \mathrm{~nm}$, $\mathrm{t}_{\text {major }}=4.91 \mathrm{~min}, \mathrm{t}_{\text {minor }}=5.78 \mathrm{~min}$.

MS (CI, $\left.\mathrm{NH}_{3}\right): \mathrm{m} / \mathrm{z}=514\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$.
(1-(tert-Butyl)-4-methyl-7-phenyl-1-(phenylethynyl)-1,3-dihydroisobenzofuran-5,6diyl)bis(methylene) diacetate (275)

Chemical Formula: $\mathrm{C}_{33} \mathrm{H}_{34} \mathrm{O}_{5}$ Exact Mass: 510.2406

This compound was obtained following the general procedure \mathbf{Q}. Starting from (3-(but-2-yn-1-yloxy)-3-(tert-butyl)penta-1,4-diyne-1,5-diyl)dibenzene 257 ($102 \mathrm{mg}, 0.3 \mathrm{mmol}$), but-2-yne-1,4-diyl diacetate 262 ($102 \mathrm{mg}, 0.6 \mathrm{mmol}, 2$ equiv), $\mathrm{Rh}(\operatorname{cod})_{2} \mathrm{BF}_{4}(6.1 \mathrm{mg}, 0.015 \mathrm{mmol}, 5 \mathrm{~mol}$ $\%)$, and (R)-BINAP ($9.3 \mathrm{mg}, 0.015 \mathrm{mmol}, 5 \mathrm{~mol} \%$). The reaction mixture was stirred at $40^{\circ} \mathrm{C}$ for 24 h . Purification on silica gel (Cyclohexane/Ethyl acetate gradient from 95/5 to 90/10) afforded $275(80 \mathrm{mg}, 51 \%)$ as a pale yellow oil.
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 1 6}$ (Cyclohexane/Ethyl acetate; 80/20, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.51(\mathrm{dt}, J=8.2,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.43-7.18(\mathrm{~m}, 8 \mathrm{H}), 7.18-7.06$ $(\mathrm{m}, 1 \mathrm{H}), 5.24\left(\mathrm{AB}_{\text {sys }}, J=12.3 \mathrm{~Hz}, 2 \mathrm{H}\right), 5.19(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.80\left(\mathrm{AB}_{\text {sys }}, J=12.0 \mathrm{~Hz}, 2 \mathrm{H}\right)$, $2.30(\mathrm{~s}, 3 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H}), 1.96(\mathrm{~s}, 3 \mathrm{H}), 0.79(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.9,170.3,142.0,139.3,138.5,137.7,134.7,134.5,132.0$, $131.6,128.3,127.9,127.3,127.2,123.2,93.3,91.2,87.7,72.4,61.7,60.5,42.6,26.6,21.0$, 15.8 .

SFC: $e e=38 \%$, Chiralpak OD-H, $\mathrm{scCO}_{2} / \mathrm{MeOH} 90 / 10, \mathrm{P}=150$ bar, flow $=4.0 \mathrm{~mL} / \mathrm{min}$, $215 \mathrm{~nm}, \mathrm{t}_{\text {major }}=2.59 \mathrm{~min}, \mathrm{t}_{\text {minor }}=3.03 \mathrm{~min}$.

MS (ESI, $\left.\mathrm{NH}_{3}\right): \mathrm{m} / \mathrm{z}=528\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$.

(4-Methyl-1,7-diphenyl-1-(phenylethynyl)-1,3-dihydroisobenzofuran-5,6-diyl)bis (methylene) diacetate (276)

Chemical Formula: $\mathrm{C}_{35} \mathrm{H}_{30} \mathrm{O}_{5}$ Exact Mass: 530.2093

This compound was obtained following the general procedure \mathbf{Q}. Starting from (3-(but-2-yn-1-yloxy)penta-1,4-diyne-1,3,5-triyl)tribenzene $\mathbf{2 5 8}$ ($108 \mathrm{mg}, 0.3 \mathrm{mmol}$), but-2-yne-1,4-diyl diacetate 262 ($102 \mathrm{mg}, 0.6 \mathrm{mmol}, 2$ equiv), $\mathrm{Rh}(\operatorname{cod})_{2} \mathrm{BF}_{4}(6.1 \mathrm{mg}, 0.015 \mathrm{mmol}, 5 \mathrm{~mol} \%)$, and (R)-BINAP ($9.3 \mathrm{mg}, 0.015 \mathrm{mmol}, 5 \mathrm{~mol} \%$). The reaction mixture was stirred at $40^{\circ} \mathrm{C}$ for 24 h. Purification on silica gel (Cyclohexane/Ethyl acetate gradient from 95/5 to 80/20) afforded $\mathbf{2 7 6}(75 \mathrm{mg}, 48 \%)$ as a pale yellow oil.
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 2 2}$ (Cyclohexane/Ethyl acetate; 80/20, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.51-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.20(\mathrm{~m}, 5 \mathrm{H}), 7.19-7.02(\mathrm{~m}, 6 \mathrm{H})$, $6.81-6.71(\mathrm{~m}, 1 \mathrm{H}), 6.09-6.00(\mathrm{~m}, 1 \mathrm{H}), 5.40(\mathrm{~s}, 2 \mathrm{H}), 5.34-5.22(\mathrm{~m}, 2 \mathrm{H}), 4.82\left(\mathrm{AB}_{\mathrm{sy}}, J=\right.$ $12.0 \mathrm{~Hz}, 2 \mathrm{H}$), 2.43 ($\mathrm{s}, 3 \mathrm{H}$), $2.11(\mathrm{~s}, 3 \mathrm{H}), 1.91(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.8,170.2,142.8,141.7,139.8,137.6,135.5,134.6,134.3$, $131.8,131.6,130.6,129.5,128.6,128.4,127.8,127.7,127.3,127.1,122.8,89.3,88.4,87.0$, $72.0,61.1,60.5,21.0,20.9,16.1$.

SFC: $e e=41 \%$, Chiralpak OD-H, $\mathrm{scCO}_{2} / \mathrm{MeOH} 90 / 10, \mathrm{P}=150$ bar, flow $=4.0 \mathrm{~mL} / \mathrm{min}$, $215 \mathrm{~nm}, \mathrm{t}_{\text {major }}=7.36 \mathrm{~min}, \mathrm{t}_{\text {minor }}=13.03 \mathrm{~min}$.

MS (ESI, $\left.\mathrm{NH}_{3}\right): \mathrm{m} / \mathrm{z}=548\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$.

(7-Butyl-1-(hex-1-yn-1-yl)-4-methyl-1-phenyl-1,3-dihydroisobenzofuran-5,6diyl)bis(methylene) diacetate (277)

This compound was obtained following the general procedure \mathbf{Q}. Starting from (7-(but-2-yn-1-yloxy)trideca-5,8-diyn-7-yl)benzene $\mathbf{2 5 9}$ ($96 \mathrm{mg}, 0.3 \mathrm{mmol}$), but-2-yne-1,4-diyl diacetate $\mathbf{2 6 2}$ $\left(102 \mathrm{mg}, 0.6 \mathrm{mmol}, 2\right.$ equiv), $\mathrm{Rh}(\operatorname{cod})_{2} \mathrm{BF}_{4}(6.1 \mathrm{mg}, 0.015 \mathrm{mmol}, 5 \mathrm{~mol} \%)$, and (R)-BINAP ($9.3 \mathrm{mg}, 0.015 \mathrm{mmol}, 5 \mathrm{~mol} \%$). The reaction mixture was stirred at $40^{\circ} \mathrm{C}$ for 20 h . Purification on silica gel (Cyclohexane/Ethyl acetate gradient from 95/5 to 90/10) afforded 277 (80 mg , 54%) as a pale yellow oil.
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 2 7}$ (Cyclohexane/Ethyl acetate; 80/20, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.63-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.26(\mathrm{~m}, 3 \mathrm{H}), 5.26-5.20(\mathrm{~m}, 4 \mathrm{H})$, $5.18(\mathrm{~s}, 2 \mathrm{H}), 2.53(\mathrm{td}, J=13.2,12.8,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.42-2.30(\mathrm{~m}, 3 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 2.09(\mathrm{~s}$, $3 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}), 1.65-1.52(\mathrm{~m}, 2 \mathrm{H}), 1.52-1.37(\mathrm{~m}, 2 \mathrm{H}), 1.19-0.97(\mathrm{~m}, 2 \mathrm{H}), 0.93(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.88-0.78(\mathrm{~m}, 1 \mathrm{H}), 0.66(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.55-0.33(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.9,170.8,142.8,140.1,136.2,134.9,134.4,130.0,128.4$, $128.3,127.4,90.5,86.9,79.1,72.1,60.6,60.2,32.8,30.7,29.2,23.3,22.2,21.0,19.0,15.9$, 13.7.

SFC: $e e=24 \%$, Chiralpak OD-H, $\mathrm{scCO}_{2} / \mathrm{MeOH} 90 / 10, \mathrm{P}=150$ bar, flow $=4.0 \mathrm{~mL} / \mathrm{min}$, $215 \mathrm{~nm}, \mathrm{t}_{\text {minor }}=3.21 \mathrm{~min}, \mathrm{t}_{\text {major }}=5.86 \mathrm{~min}$.

MS (ESI, $\left.\mathrm{NH}_{3}\right): \mathrm{m} / \mathrm{z}=508\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$.
(1-Methyl-7-phenyl-1-(phenylethynyl)-4-(trimethylsilyl)-1,3-dihydroisobenzofuran-5,6diyl)bis(methylene) diacetate (278)

Chemical Formula: $\mathrm{C}_{32} \mathrm{H}_{34} \mathrm{O}_{5} \mathrm{Si}$ Exact Mass: 526.2176

This compound was obtained following the general procedure Q. Starting from trimethyl(3-((3-methyl-1,5-diphenylpenta-1,4-diyn-3-yl)oxy)prop-1-yn-1-yl)silane 260 ($107 \mathrm{mg}, 0.3 \mathrm{mmol}$), but-2-yne-1,4-diyl diacetate 262 ($102 \mathrm{mg}, 0.6 \mathrm{mmol}, 2$ equiv), $\mathrm{Rh}(\mathrm{cod})_{2} \mathrm{BF}_{4}(6.1 \mathrm{mg}, 0.015$ mmol, $5 \mathrm{~mol} \%$), and (R)-BINAP ($9.3 \mathrm{mg}, 0.015 \mathrm{mmol}, 5 \mathrm{~mol} \%$). The reaction mixture was stirred at $40{ }^{\circ} \mathrm{C}$ for 24 h . Purification on silica gel (Cyclohexane/Ethyl acetate gradient from $95 / 5$ to $80 / 20$) afforded $278(42 \mathrm{mg}, 26 \%)$ as a pale yellow oil.
$\mathbf{R}_{\mathbf{f}}=\mathbf{0 . 2 1}$ (Cyclohexane/Ethyl acetate; 85/15, $\left.\mathrm{KMnO}_{4}, \mathrm{UV}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.48-7.17(\mathrm{~m}, 10 \mathrm{H}), 5.28(\mathrm{~s}, 2 \mathrm{H}), 5.21\left(\mathrm{AB}_{\mathrm{sys}}, J=12.6 \mathrm{~Hz}\right.$, $2 \mathrm{H}), 4.87\left(\mathrm{AB}_{\mathrm{sys}}, J=12.0 \mathrm{~Hz}, 2 \mathrm{H}\right), 2.09(\mathrm{~s}, 3 \mathrm{H}), 1.96(\mathrm{~s}, 3 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H}), 0.43(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.6,170.3,146.6,141.7,140.8,140.4,136.0,135.1,134.4$, $131.6,130.6,130.0,128.4,128.3,128.2,127.9,127.7,122.9,91.0,85.3,80.6,72.1,63.9,60.8$, 28.2, 21.1, 20.9, 2.3.

SFC: $e e=52 \%$, Chiralpak OD-H, $\mathrm{scCO}_{2} / \mathrm{MeOH} 90 / 10, \mathrm{P}=150$ bar, flow $=4.0 \mathrm{~mL} / \mathrm{min}$, $215 \mathrm{~nm}, \mathrm{t}_{\text {major }}=2.13 \mathrm{~min}, \mathrm{t}_{\text {minor }}=3.13 \mathrm{~min}$.

MS (ESI, $\left.\mathrm{NH}_{3}\right): \mathrm{m} / \mathrm{z}=544\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$.

Experimental part

Publications

Abstract

This manuscript focused on the development of eco-friendly and mild processes to access original carbocyclic and heterocyclic scaffolds of biological interest through transition-metal-catalyzed [2+2+2] cycloaddition reactions. Initially, an efficient and practical route for the preparation of highly substituted fluorenones and analogues via solventless $\mathrm{RuCl}_{3} \cdot n \mathrm{H}_{2} \mathrm{O}$-mediated [2+2+2] cycloaddition of benzoyl bridged α, ω-diynes and alkynes was developed. Secondly, various functionalized 2-aminopyridine derivatives were synthesized using both neutral $\mathrm{RuCl}_{3} \cdot n \mathrm{H}_{2} \mathrm{O}$ and cationic $\left.\mathrm{Cp} * \mathrm{Ru}^{\left(\mathrm{CH}_{3} \mathrm{CN}\right.}\right)_{3} \mathrm{PF}_{6}$ complexes to catalyze the $[2+2+2]$ cycloaddition of diynes and cyanamides under solvent-free conditions. With $\mathrm{Cp} * \mathrm{Ru}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{3} \mathrm{PF}_{6}$ as catalyst, excellent regioselectivities were achieved to provide a wide range of 2-aminopyridines of high synthetic utility involving halopyridines, vinyl pyridines and amino-aza-fluorenones. Finally, the enantioselective rhodium-catalyzed [2+2+2] cycloaddition of prochiral triynes and monoalkynes was carried out in the presence of cationic $\left[\mathrm{Rh}(\operatorname{cod})_{2}\right] \mathrm{BF}_{4} /(R)$-BINAP complex to provide enantioenriched 1,3-dihydroisobenzofuran derivatives containing a quaternary carbon stereogenic center.

Keywords: solvent-free reactions, ruthenium, rhodium, $[2+2+2]$ cycloadditions, fluorenones, 2aminopyridines, 1,3-dihydroisobenzofurans.

\section*{Résumé}

Ce manuscrit traite de la mise au point d'une méthode d'accès éco-compatible à des squelettes carbocycliques et hétérocycliques, présents dans de nombreux composés d'intérêt biologique. Cette méthode met en œuvre une réaction de cycloaddition $[2+2+2]$ catalysée par un métal de transition. Dans un premier temps, une voie d'accès à des fluorénones hautement substituées, ainsi qu'à des analogues a été développée. Cette voie utilise une réaction de cycloaddition $[2+2+2]$ de diynes- α, ω pontés par un groupe benzoyle, avec des alcynes, en présence de $\mathrm{RuCl}_{3} \cdot n \mathrm{H}_{2} \mathrm{O}$. Dans un deuxième temps, des dérivés 2-aminopyridines diversement fonctionnalisés ont été synthétisés via une catalyse au ruthénium neutre $\left(\mathrm{RuCl}_{3} \cdot n \mathrm{H}_{2} \mathrm{O}\right)$ ou cationique $\left(\mathrm{Cp} * \mathrm{Ru}\left(\mathrm{CH}_{3} \mathrm{CN}_{3}\right)_{3} \mathrm{PF}_{6}\right)$, et ce à partir de la cycloaddition [2+2+2] de diynes et de cyanamides. Dans le cas où $\mathrm{Cp}{ }^{*} \mathrm{Ru}\left(\mathrm{CH}_{3} \mathrm{CN}_{3}\right)_{3} \mathrm{PF}_{6}$ a été utilisé comme catalyseur, une excellente régiosélectivité a été observée, ce qui a permis d'isoler une grande variété de 2 -aminopyridines, dont des halopyridines, des vinylpyridines, ou des amino-aza-fluorénones. Dans une dernière partie, la cycloaddition $[2+2+2]$ énantiosélective de triynes prochiraux avec des mono alcynes a été examinée. Elle a été conduite en utilisant un catalyseur cationique au rhodium, le complexe $\left[\operatorname{Rh}(\operatorname{cod})_{2}\right] \mathrm{BF}_{4} /(R)$ BINAP, et a permis la préparation de dérivés de 1,3-dihydroisobenzofuranes énantiomériquement enrichis, contenant un carbone quaternaire stéréogène.

Mots-clés : réactions sans solvant, ruthénium, rhodium, cycloadditions [2+2+2], fluorénones, 2aminopyridines, 1,3-dihydroisobenzofuranes

[^0]: ${ }^{1}$ Anastas, P.T.; Warner, J. C. Green chemistry: Theory and Practice, Oxford University Press, New York, 1998, 30.
 ${ }^{2}$ Reviews: (a) Li, C. J. Chem. Rev. 2005, 105, 3095. (b) Pinault, N.; Bruce, D.W. Coord. Chem. Rev. 2003, 241, 1. (c) Lindström, U, M. Chem. Rev. 2002, 102, 2751. (d) Li, C. J. Chem. Rev. 1993, 93, 2023. (e) Li, C.-J.; Chan, T.H. Tetrahedron 1999, 55, 11149.
 ${ }^{3}$ a) Tanaka, K. Solvent-Free Organic Synthesis, Wiley-VCH, Weinheim, Germany, 2003. (b) Tanaka, K.; Toda, F. Chem. Rev. 2000, 100, 1025. (c) Metzger, J. O. Angew. Chem., Int. Ed. 1998, 37, 2975. (d) Cave, G. W. V.; Raston, C. L.; Scott, J. L. Chem. Comm. 2001, 2159. (e) Walsh, P. J.; Li H.; de Parrodi, C. A. Chem. Rev. 2007, 107, 2503. (f) Marvaniya, H. M.; Modi, K. N.; Sen, D. J. Greener reactions under solvent free conditions, Int J. Drug Dev. \& Res. April-June 2011, 3, 34. (g) Varma, R. S. Green Chem. 1999, 1, 43. (h) Capello, C.; Fischer, U.; Hungerbühler, K. Green Chem. 2007, 9, 927. (h) Keith, L. H.; Gron, L. U.; Young, J. L.; Chem. Rev. 2007, 107, 2695.

[^1]: ${ }^{4}$ Elango, V.; Murhpy, M. A.; Smith, B. L.; Davenport, K. G.; Mott, G. N.; Moss, G. L. US Patent 4981995, 1991.
 ${ }^{5}$ Groves, J. K. Chem. Soc. Rev. 1972, 1, 73.
 ${ }^{6}$ Price, C. C. Org. React. 1946, 3, 1.
 ${ }^{7}$ For selected recent reviews and chapters, see: (a) Peter. K.; Vollhardt, C. Angew. Chem. Int. Ed. 1984, 23, 539. (b) Varela, J. A.; Saá, C. Chem. Rev. 2003, 103, 3787. (c) Kotha, S.; Brahmachary, E.; Lahiri, K. Eur. J. Org. Chem. 2005, 2005, 4741. (d) Gandon, V.; Aubert, C.; Malacria, M. Curr. Org. Chem. 2005, 9, 1699. (e) Gandon, V.; Aubert, C.; Malacria, M. Chem. Commun. 2006, 21, 2209. (f) Chopade, P. R.; Louie, J. Adv. Synth. Catal. 2006, 348, 2307. (g) Heller, B.; Hapke, M. Chem. Soc. Rev. 2007, 36, 1085. (h) Tanaka, K. Synlett 2007, 1977. (i) Varela, J. A.; Saa, C. Synlett 2008, 2571. (j) Tanaka, K. Chem. - Asian J. 2009, 4, 508. (k) Leboeuf, D.; Gandon, V.; Malacria, M. in: Handbook of Cyclization Reactions, Vol. 1, (Ed.: S. Ma), Wiley-VCH, Weinheim, 2009, pp 367. (1) Domínguez, G.; Pérez-Castells, J. Chem. Soc. Rev. 2011, 40, 3430. (m) Hua, R.; Abrenica, V. A.; Wang, P.; others. Curr. Org. Chem. 2011, 15, 712. (n) Shaaban, M. R.; El-Sayed, R.; Elwahy, A. H. M. Tetrahedron 2011, 67, 6095. (o) Weding, N.; Hapke, M. Chem. Soc. Rev. 2011, 40, 4525. (p) Broere, D. L.; Ruijter, E. Synthesis 2012, 44, 2639. (q) Okamoto, S. Heterocycles 2012, 85, 1579. (r) Tanaka, K. Heterocycles 2012, 85, 1017. (s) Wang, C.; Wan, B. Chin. Sci. Bull. 2012, 57, 2338. (t) Okamoto, S.; Sugiyama, Y. Synlett 2013, 24, 1044. (u)

[^2]: Yamamoto, Y. Heterocycles 2013, 87, 2459. (v) Kumar, P.; Louie, J. Nickel-Mediated [2 + $2+2$] Cycloaddition, In Transition-Metal-Mediated Aromatic Ring Construction; Tanaka, K., Ed.; John Wiley \& Sons, Inc.: Hoboken, NJ, 2013. (w) Yamamoto, Y. Ruthenium-Mediated [2 +2 + 2] Cycloaddition, In Transition-Metal-Mediated Aromatic Ring Construction; Tanaka, K., Ed.; John Wiley \& Sons, Inc.: Hoboken, NJ, 2013. (x) Amatore, M.; Aubert, C. Eur. J. Org. Chem. 2015, 265. (y) Satoh, Y.; Obora, Y. Eur. J. Org. Chem. 2015, 2015, 5041. (z) Jungk, P.; Täufer, T.; Thiel, I.; Hapke, M. Synthesis 2016, 48, 2026.
 ${ }^{8}$ Berthelot, M. Ann. Chim. 1866, 9, 445.
 ${ }^{9}$ Reppe, W.; Schweckendiek, W. J. Justus Liebigs Ann. Chem. 1948, 560, 104.

[^3]: ${ }^{10}$ Wakatsuki, Y.; Yamazaki, H. J. Chem. Soc. Chem. Commun. 1973, 280.
 ${ }^{11}$ Wakatsuki, Y.; Yamazaki, H. Tetrahedron. Lett. 1973, 3383.

[^4]: ${ }^{12}$ Hill, J. E.; Balaich, G.; Fanwick, P. E.; Rothwell, I. P. Organometallics 1993, 12, 2911.

[^5]: ${ }^{13}$ Hilt, G.; Hengst, C.; Hess, W. Eur. J. Org. Chem. 2008, 2293.
 ${ }^{14}$ Tamizmani, M.; Sivasankar, C. J. Organomet. Chem. 2017, DOI: 10.1016/j.jorganchem.2017.02.039.

[^6]: ${ }^{15}$ Hecht, S.; Fréchet, J. M. J. Am. Chem. Soc. 1999, 121, 4084.
 ${ }^{16}$ Xue, F.; Loh, Y. K.; Song, X.; Teo, W. J.; Chua, J. Y. D. Zhao, J.; Hor, T. S. A. Chem. Asian J. 2017, 12, 168.

[^7]: ${ }^{17}$ Takeuchi, R.; Nakaya, Y. Org. Lett. 2003, 5, 3659.

[^8]: ${ }^{18}$ Onodera, G.; Matsuzawa, M.; Aizawa, T.; Kitahara, T.; Shimizu, Y.; Kezuka, S.; Takeuchi, R. Synlett 2008, 755.

[^9]: ${ }^{19}$ (a) Takahashi, T.; Kotora, M.; Xi, Z. J. Chem. Soc. Chem. Commun. 1995, 361. (b) Takahashi, T.; Tsai, F.-Y.; Li, Y.; Nakajima, K.; Kotora, M. J. Am. Chem. Soc. 1999, 121, 11093.
 ${ }^{20}$ (a) Suzuki, D.; Urabe, H.; Sato, F. J. Am. Chem. Soc. 2001, 123, 7925. (b) Tanaka, R.; Nakano, Y.; Suzuki, D.; Urabe, H.; Sato, F. J. Am. Chem. Soc. 2002, 124, 9682.
 ${ }^{21}$ (a) Yamamoto, Y.; Ishii, J.; Nishiyama, H.; Itoh, K. J. Am. Chem. Soc. 2004, 126, 3712. (b) Yamamoto, Y.; Ishii, J.; Nishiyama, H.; Itoh, K. J. Am. Chem. Soc. 2005, 127, 9625.

[^10]: ${ }^{22}$ Ura, Y.; Sato, Y.; Tsujita, H.; Kondo, T.; Imachi, M.; Mitsudo, T. J. Mol. Catal. Chem. 2005, 239, 166.

[^11]: ${ }^{23}$ (a) Hara, H.; Hirano, M.; Tanaka, K. Org. Lett. 2008, 10, 2537. (b) Hara, H.; Hirano, M.; Tanaka, K. Tetrahedron 2009, 65, 5093.
 ${ }^{24}$ Shanmugasundaram, M.; Wu, M.-S.; Cheng, C.-H. Org. Lett. 2001, 3, 4233.

[^12]: ${ }^{25}$ Saino, N.; Amemiya, F.; Tanabe, E.; Kase, K.; Okamoto, S. Org. Lett. 2006, 8, 1439.
 ${ }^{26}$ Goswami, A.; Ito, T.; Okamoto, S. Adv. Synth. Catal. 2007, 349, 2368.
 ${ }^{27}$ Doszczak, L.; Tacke, R. Organometallics 2007, 26, 5722.

[^13]: ${ }^{28}$ Iannazzo, L.; Kotera, N.; Malacria, M.; Aubert, C.; Gandon, V. J. Organomet. Chem. 2011, 696, 3906.

[^14]: ${ }^{29}$ Müller, E. Synthesis 1974, 761.
 ${ }^{30}$ Grigg, R.; Scott, R.; Stevenson, P. Tetrahedron Lett. 1982, 23, 2691.
 ${ }^{31}$ Grigg, R.; Scott, R.; Stevenson, P. J. Chem. Soc. Perkin 1 1988, 1357.
 ${ }^{32}$ McDonald, F. E.; Zhu, H. Y.; Holmquist, C. R. J. Am. Chem. Soc. 1995, 117, 6605.

[^15]: ${ }^{33}$ Zhang, L.; Li, Y.; Zhang, L.; Wu, Y. Org. Biomol. Chem. 2014, 12, 1040.
 ${ }^{34}$ Tanaka, K.; Takeishi, K.; Noguchi, K. J. Am. Chem. Soc. 2006, 128, 4586.

[^16]: ${ }^{35}$ Murayama, K.; Shibata, Y.; Sugiyama, H.; Uekusa, H.; Tanaka, K. J. Org. Chem. 2017, 82, 1136.

[^17]: ${ }^{36}$ Jeevanandam, A.; Korivi, R. P.; Huang, I.; Cheng, C.-H. Org. Lett. 2002, 4, 807.

[^18]: ${ }^{37}$ Turek, P.; Kotora, M.; Hocek, M.; Císařová, I. Tetrahedron lett. 2003, 44, 785
 ${ }^{38}$ (a) Turek, P.; Kotora, M.; Tišlerová, I.; Hocek, M.; Votruba, I.; Císařová, I. J. Org. Chem. 2004, 69, 9224. (b) Turek, P.; Novak, P.; Pohl, R.; Hocek, M.; Kotora, M. J. Org. Chem. 2006, 71, 8978.

[^19]: ${ }^{39}$ Teske, J. A.; Deiters, A. J. Org. Chem. 2008, 73, 342.
 ${ }^{40}$ Takeuchi, R.; Tanaka, S.; Nakaya, Y. Tetrahedron Lett. 2001, 42, 2991.
 ${ }^{41}$ Kezuka, S.; Tanaka, S.; Ohe, T.; Nakaya, Y.; Takeuchi, R. J. Org. Chem. 2006, 71, 543.

[^20]: ${ }^{42}$ Hashimoto, T.; Okabe, A.; Mizuno, T.; Izawa, M.; Takeuchi, R. Tetrahedron 2014, 70, 8681

[^21]: ${ }^{43}$ Yamagata, T.; Tadaoka, H.; Nagata, M.; Hirao, Y.; Kataoka, Y.; Ratovelomanana-Vidal, V.; Genet, J.-P.; Mashima, K. Organometallics 2006, 25, 2505.
 ${ }^{44}$ (a) Auvinet, A.-L.; Ez-Zoubir, M.; Vitale, M. R.; Brown, J. A.; Michelet, V.; Ratovelomanana-Vidal, V. ChemSusChem 2012, 5, 1888. (b) Auvinet, A.-L.; Ez-Zoubir, M.; Bompard, S.; Vitale, M. R.; Brown, J. A.; Michelet, V.; Ratovelomanana-Vidal, V. ChemCatChem 2013, 5, 2389.

[^22]: ${ }^{45}$ Auvinet, A.-L.; Michelet, V.; Ratovelomanana-Vidal, V. Synthesis 2013, 45, 2003.
 ${ }^{46}$ Yamamoto, Y.; Ogawa, R.; Itoh, K. Chem. Commun. 2000, 549.
 ${ }^{47}$ Yamamoto, Y.; Arakawa, T.; Ogawa, R.; Itoh, K. J. Am. Chem. Soc. 2003, 125, 12143.

[^23]: ${ }^{48}$ Yamamoto, Y.; Kinpara, K.; Saigoku, T.; Nishiyama H.; Itoh, K. Org. Biomol. Chem. 2004, 2, 1287.

[^24]: ${ }^{49}$ (a) Yamamoto, Y.; Hata, K.; Arakawa, T.; Itoh, K. Chem. Commun. 2003, 1290. (b) Yamamoto, Y.; Arakawa, T.; Itoh, K. Organometallics 2004, 23, 3610.

[^25]: ${ }^{50}$ Nicolaou, K. C.; Tang, Y.; Wang, J. Angew. Chem. Int. Ed. 2009, 48, 3449.
 ${ }^{51}$ Witulski, B.; Stengel, T.; Fernández-Hernández, J. M. Chem. Commun. 2000, 1965.

[^26]: ${ }^{52}$ Chouraqui, G.; Petit, M.; Aubert, C.; Malacria, M. Org. Lett. 2004, 6, 1519.
 ${ }^{53}$ Petit, M.; Chouraqui, G.; Aubert, C.; Malacria, M. Org. Lett. 2003, 5, 2037.

[^27]: ${ }^{54}$ Geny, A.; Agenet, N.; Iannazzo, L.; Malacria, M.; Aubert, C.; Gandon, V. Angew. Chem. Int. Ed. 2009, 48, 1810.

[^28]: ${ }^{55}$ Torrent, A.; González, I.; Pla-Quintana, A.; Roglans, A.; Moreno-Mañas, M.; Parella, T.; Benet-Buchholz, J. J. Org. Chem. 2005, 70, 2033.
 ${ }^{56}$ Witulski, B.; Zimmermann, A.; Gowans, N. D. Chem. Commun. 2002, 2984.

[^29]: ${ }^{57}$ For selected reviews, see: (a) Prostakov, N. S.; Soldatenkov, A. T.; Kolyadina, N. M.; Obynochnyi, A. A. Russ. Chem. Rev. 1997, 66, 121. (b) Zhou, A.-H.; Pan, F.; Zhu, C.-Y; Ye, L.-W. Chem. Eur. J. 2015, 21, 10278. (c) Shi, Y.-B.; Gao, S.-H. Tetrahedron 2016, 72, 1717.
 ${ }^{58}$ For selected examples, see: (a) Talapatra, S. K.; Bose, S.; Malik, A. K.; Talapatra, B. Tetrahedron 1985, 41, 2765. (b) Sargent, M. V. J. Chem. Soc., Perkin Trans. 1 1987, 2553. (c) Jones Jr., W. D.; Ciske, F. L. J. Org. Chem. 1996, 61, 3920. (d Perry, P. J.; Read, M. A.; Davies, R. T.; Gowan, S. M.; Reszka, A. P.; Wood, A. A.; Kelland, L. R.; Neidle, S. J. Med. Chem. 1999, 42, 2679. (e) Zhang, J.-R.; Yao, Q.-Z.; Liu, Z.-L. Molecules 2015, 20, 21458. (f) Hu, Q.-F.; Zhou, B.; Huang, J.-M.; Gao, X.-M.; Shu, L.-D.; Yang, G.-Y.; Che, C.-T. J. Nat. Prod. 2013, 76, 292. (g) Greenlee, M. L.; Laub, J. B.; Rouen, G. P.; DiNinno, F.; Hammond, M. L.; Huber, J. L.; Sundelof, J. G.; Hammond, G. G. Bioorg. Med. Chem. Lett. 1999, 9, 3225. (h) Niu, D.-Y.; Han, J.-M.; Kong, W.S.; Cui, Z.-W.; Hu, Q.-F.; Gao, X.-M. Asian J. Chem. 2013, 25, 9514.

[^30]: ${ }^{59}$ For selected examples, see: (a) Usta, H.; Facchetti, A.; Marks, T. J. Org. Lett. 2008, 10, 1385. (b) McCubbin, J. A.; Tong, X.; Wang, R.-Y.; Zhao, Y.; Snieckus, V.; Lemieux, R. P. J. Am. Chem. Soc. 2004, 126, 1161. (c) Estrada, L. A.; Yarnell, J. E.; Neckers, D. C. J. Phys. Chem. A 2011, 115, 6366. (d) Yao, W.; Liu, Q.-C.; Shi, Y.-B.; Tang, J. Heterocycles 2012, 85, 1077. (e) Xia, J.-B.; Zhu, C.; Chen, C. J. Am. Chem. Soc. 2013, 135, 17494. (f) Li, C.; Mao, Z.-P.; Chen, H.-J.; Zheng, L.-P.; Huang, J.-Y.; Zhao, B.; Tan, S.-T.; Yu, G. Macromolecules 2015, 48, 2444. (g) Capodilupo, A. L.; Vergaro, V.; Fabiano, E.; Giorgi, M. D.; Baldassarre, F.; Cardone, A.; Maggiore, A.; Maiorano, V.; Sanvitto, D.; Gigli, G.; Ciccarella, G. J. Mater. Chem. B, 2015, 3, 3315; (h) Gong, X.; Moses, D.; Heeger, A. J. J. Phys. Chem. B, 2004, 108, 8601. (i) Uckert, F.; Tak, Y.-H.; Müllen, K.; Bässler, H. Adv. Mater. 2000, 12, 905. (j) Qin, C. Islam, A. Han, L. J. Mater. Chem. 2012, 22, 19236.

[^31]: ${ }^{60}$ (a) Barluenga, J.; Trincado, M.; Rubio, E.; González, J. M. Angew. Chem. Int. Ed. 2006, 45, 3140. (b) Reim, S.; Lau, M.; Langer, P. Tetrahedron Lett. 2006, 47, 6903. (c) Chinnagolla, R. K.; Jeganmohan, M. Org. Lett. 2012, 14, 5246. (d) Tilly, D.; Samanta, S. S.; Faigl, F.; Mortier, J. Tetrahedron Lett. 2002, 43, 8347. (e) F. Pünner, J. Schieven, G. Hilt, Org. Lett. 2013, 15, 4888. (f) Olah, G. A.; Mathew, T.; Farnia, M.; Prakash, G. K. S. Synlett 1999, 7, 1067.
 ${ }^{61}$ (a) Tilly, D.; Samanta, S. S.; De, A.; Castanet, A.-S.; Mortier, J. Org. Lett. 2005, 7, 827. (b) Tilly, D.; Samanta, S. S.; Castanet, A.-S.; De, A.; Mortier, J. Eur. J. Org. Chem. 2006, 174. (c) Alessi, M.; Larkin, A. L.; Ogilvie, K. A.; Green, L. A.; Lai, S.; Lopez, S.; Snieckus, V. J. Org. Chem. 2007, 72, 1588. (d) Tilly, D.; Fu, J.-M.; Zhao, B.P.; Alessi, M.; Castanet, A.-S.; Snieckus, V.; Mortier, J. Org. Lett. 2010, 12, 68. (e) Ciske, F. L.; W. D. Jones, Synthesis 1998, 1195.
 ${ }^{62}$ (a) Rodríguez, D.; Navarro, A.; Castedo, L.; Domínguez, D.; Saá, C. Org. Lett. 2000, 2, 1497. (b) C. Atienza, C. Mateo, O. de Frutos, A. M. Echavarren, Org. Lett. 2001, 3, 153. (c) D. Rodríguez, M. F. M. Esperon, V. A. Navarro, L. Castedo, D. Domínguez, C. Saá, J. Org. Chem. 2004, 69, 3842.
 ${ }^{63}$ (a) Bei, X.; Hagemeyer, A.; Volpe, A.; Saxton, R.; Turner, H.; Guram, A. S. J. Org. Chem. 2004, 69, 8626. (b) Yang, G.; Zhang, Q.; Miao, H.; Tong, X.; Xu, J. Org. Lett. 2005, 7, 263. (c) Catino, A. J.; Nichols, J. M.; Choi, H.; Gottipamula, S.; Doyle, M. P. Org. Lett. 2005, 7, 5167. (d) Kaiser, R. P.; Hessler, F.; Mosinger, J.; Císařová, I.; Kotora, M. Chem. - Eur. J. 2015, 21, 13577.

[^32]: ${ }^{64}$ Ames, D. E.; Opalko, A. Tetrahedron 1984, 40, 1919.

[^33]: ${ }^{65}$ Qabaja, G.; Jones, G. B. J. Org. Chem. 2000, 65, 7187.
 ${ }^{66}$ Koyama, H.; Kamikawa, T. Tetrahedron. Lett. 1997, 38, 3973.
 ${ }^{67}$ Gore, M. P.; Gould, S. J.; Weller, D. D. J. Org. Chem.1992, 57, 2774.
 ${ }^{68}$ Zhao, J.; Yue, D.-W.; Campo, M. A.; Larock, R. C. J. Am. Chem. Soc. 2007, 129, 5288.

[^34]: ${ }^{69}$ Shabashov, D.; Maldonado, J. R. M.; Daugulis, O. J. Org. Chem. 2008, 73, 7818.
 ${ }^{70}$ Thirunavukkarasu, V. S.; Parthasarathy, K.; Cheng, C.-H. Angew. Chem. Int. Ed. 2008, 47, 9462.

[^35]: ${ }^{71}$ Sun, C.-L.; Liu, N.; Li, B.-J.; Yu, D.-G.; Wang, Y.; Shi, Z.-J. Org. Lett. 2010, 12, 184.
 ${ }^{72}$ Thirunavukkarasu, V. S.; Cheng, C.-H. Chem. Eur. J. 2011, 17, 14723.

[^36]: ${ }^{73}$ Wan, J.-C.; Huang, J.-M.; Jhan, Y.-H.; Hsieh, J.-C. Org. Lett. 2013, 15, 2742.
 ${ }^{74}$ Kumar, D. R.; Satyanarayana, G. Org. Lett. 2015, 17, 5894.

[^37]: ${ }^{75}$ Liu, L.; Wang, F.; Li, Z.-H.; Wang, J.-H. Asian J. Org. Chem. 2014, 3, 695.

[^38]: ${ }^{76}$ Sun, D.-N.; Li, B.-J.; Lan, J.-B.; Huang, Q.; You, J.-S. Chem. Commun. 2016, 52, 3635.

[^39]: ${ }^{77}$ Chen, X.-Y.; Ozturk, S.; Sorensen, E. J. Org. Lett. 2017, 19, 1140.

[^40]: ${ }^{78}$ Gandeepan, P.; Hung, C.-H.; Cheng, C.-H. Chem. Commun. 2012, 48, 9379.
 ${ }^{79}$ Li, H.; Zhu, R.-Y.; Shi, W.-J.; He, K.-H.; Shi, Z.-J. Org. Lett. 2012, 14, 4850.

[^41]: ${ }^{80}$ Kishore, R.; Priya, S. S.; Sudhakar, M.; Venu, B.; Venugopal, A.; Yadav, J.; Kantam, M. L. Catal. Sci. Technol. 2015, 5, 3363.
 ${ }^{81}$ Campo, M. A.; Larock, R. C. Org. Lett. 2000, 2, 3675.
 ${ }^{82}$ Song, J.; Wei, F.-L.; Sun, W.; Li, K.; Tian, Y.-N; Liu, C.; Li, Y.-L; Xie, L.-H. Org. Lett. 2015, 17, 2106.

[^42]: ${ }^{83}$ Furusawa, T.; Morimoto, T.; Oka, N.; Tanimoto, H.; Nishiyama, Y.; Kakiuchi, K. Chem. Lett. 2016, 45, 406.

[^43]: ${ }^{84}$ Cai, Z.-Q.; Hou, X.; Hou, L.; Hu, Z.-Q.; Zhang, B.; Jin, Z.-S. Synlett 2016, 27, 395.
 ${ }^{85}$ Zhang, X.-X.; Larock, R. C. Org. Lett. 2005, 7, 3973.
 ${ }^{86}$ Waldo, J. P.; Zhang, X.-X.; Shi, F.; Larock, R. C. J. Org. Chem. 2008, 73, 6679.

[^44]: ${ }^{87}$ Zhao, Y.-B.; Mariampillai, B.; Candito, D. A.; Laleu, B.; Li, M.; Lautens, M. Angew. Chem. Int. Ed. 2009, 48, 1849.

[^45]: ${ }^{88}$ Paul, S.; Samanta, S.; Ray, J. K. Tetrahedron Lett. 2010, 51, 5604.
 ${ }^{89}$ Vignesh, A.; Kaminsky, W.; Dharmaraj, N. ChemCatChem 2016, 8, 3207.

[^46]: ${ }^{90}$ (a) Blum, J.; Lipshes, Z. J. Org. Chem. 1969, 34, 3076. (b) Blum, J.; Milstein, D.; Sasson, Y. J. Org. Chem. 1970, 35, 3233.
 ${ }^{91}$ Tanaka, K.; Fukawa, N.; Suda, T.; Noguchi, K. Angew. Chem. Int. Ed. 2009, 48, 5470.
 ${ }^{92}$ Sawada, Y.; Furumi, S.; Takai, A.; Takeuchi, M.; Noguchi, K.; Tanaka, K. J. Am. Chem. Soc. 2012, 134, 4080.

[^47]: ${ }^{93}$ Fukuyama, T.; Maetani, S.; Miyagawa, K. Ryu, I. Org. Lett. 2014, 16, 3216.

[^48]: ${ }^{94}$ Lockner, J. W.; Dixon, D. D.; Risgaard, R.; Baran, P. S. Org. Lett. 2011, 13, 5628.
 ${ }^{95}$ Seo, S.; Slater, M.; Greaney, M. F. Org. Lett. 2012, 14, 2650.

[^49]: ${ }^{96}$ Haggam, R. A. Tetrahedron 2013, 69, 6488.

[^50]: ${ }^{97}$ Mallesha, N.; Prahlada Rao, S.; Suhas, R.; Channe Gowda, D. Tetrahedron Lett. 2012, 53, 641.
 ${ }^{98}$ Arai, A.; Irchikizaki, I. Bull. Chem. Soc. Jpn. 1961, 34, 1571.
 ${ }^{99}$ Schlama, T.; Baati, R.; Gouverneur, V.; Valleix, A.; Falck, J. R.; Mioskowski C. Angew. Chem. Int. Ed. 1998, 37, 2085.

[^51]: ${ }^{100}$ Fletcher, J. M.; Gardner, W. E.; Fox, A. C.; Topping, G. J. Chem. Soc. (A) 1967, 1038.

[^52]: ${ }^{101}$ (a) Caputo, J. A.; Fuchs, R. Tetrahedron Lett. 1967, 47, 4729. (b) Ley, S. M.; Norman. J.; Griffith, W. P.; Marsden, S. P. Synthesis 1994, 639. (c) Teulon, P.; Roziere, J. J. Organomet. Chem. 1981, 214, 391. (d) Humphries, A. P.; Knox, S. A. R. J. Chem. Soc. Dalton, 1975, 1710. (e) Cobbledick, R. E.; Einstein, F. W. B.; Pomeroy, R. K.; Spetch, E. R. J. Organomet. Chem. 1980, 195, 77. (f) Hallman, P. S.; Stephenson, T. A.; Wilkinson, G. Inorg. Synth. 1970, 12, 237. (g) Munk, M. E.; Nelson, D. B.; Antosz, F. J.; Herald, Jr. D. L.; Haskell, T. H. J. Am. Chem. Soc. 1968, 90, 1089. (h) Schwab, P.; Grubbs, R. H.; Ziller, J. W. J. Am. Chem. Soc. 1996, 118, 100. (i) Ahmad, N.; Levison, J. J.; Robinson, S. D.; Uttley, M. F.; Wonchoba, E. R.; Parshall, G. W. Inorg. Synth. 1974, 15, 45. (j) Pertici, P. Vitulli, G. J. Chem. Soc. Dalton, 1980, 1961. (k) Chaudret, B.; Commenges, G.; Poilblanc, R. J. Chem. Soc. Chem. Comm. 1982, 1388. (l) Bennett, M. A.; Smith, A. K. J. Chem. Soc. Dalton, 1974, 233. (m) Oshima, N.; Suzuki, H.; Moro-oka, Y. Chem. Lett. 1984, 1161. (n) Suzuki, H.; Omori, H.; Lee, D. H.; Yoshlda, Y.; Moro-oka, Y. Organometallics 1988, 7, 2243. (o) Oshima, N.; Suzuki, H.; Moro-oka, Y. J. Organomet. Chem. 1986, 314, C46. (p) Mbaye, M. D.; Demerseman, B.; Renaud, J.-L.; Toupet, L.; Bruneau, C. Adv. Synth. Catal. 2004, 346, 835.
 102 (a) Madec, J.; Pfister, X.; Phansavath, P.; Ratovelomanana-Vidal, V.; Genêt, J.-P. Tetrahedron 2001, 57, 2563. (b) Li, C.-J.; Wei, C. Chem. Commun. 2002, 38, 268. (c) Youn, S. W.; Pastine, S. J.; Sames, D. Org. Lett. 2004, 6, 581. (d) Lian, J.-J.; Lin, C.-C.; Chang, H.-K.; Chen, P.-C.; Liu, R.-S. J. Am. Chem. Soc. 2006, 128, 9661. (e) Bonfield, E. R.; Li, C.-J. Org. Biomol. Chem. 2007, 5, 435. (f) Labeeuw, O.; Roche, C.; Phansavath, P.; Genêt, J.P. Org. Lett. 2007, 9, 105. (g) Ackermann, L.; Althammer, A.; Born, R. Synlett 2007, 2833. (h) Cheng, K.; Yao, B.; Zhao, J.; Zhang, Y. Org. Lett. 2008, 10, 5309. (i) Goossen, L. J.; Arndt, M.; Blanchot, M.; Rudolphi, F.; Menges, F.; Niedner-Schatteburg, G. Adv. Synth. Catal. 2008, 350, 2701. (j) Ackermann, L.; Althammer, A.; Born, R. Tetrahedron 2008, 64, 6115. (k) Denmark, S.; Nguyen, S. T. Org. Lett. 2009, 11, 781. (1) Shou, G. E.; Li, J.; Guo, T.; Lin, Z.; Jia, G. Organometallics 2009, 28, 6847. (m) Simon, M.-O.; Genêt, J.-P.; Darses, S. Org. Lett. 2010, 12, 3038; (n) Luo, N.; Yu, Z. Chem. Eur. J. 2010, 16, 787. (o) Simon, M.-O.; Ung, G.; Darses, S. Adv. Synth.

[^53]: ${ }^{103}$ Jacquet, J.; Auvinet, A.-L.; Mandadapu, A. K.; Haddad, M.; Ratovelomanana-Vidal, V.; Michelet, V. Adv. Synth. Catal. 2015, 357, 1387.

[^54]: ${ }^{104}$ Durka, K.; Górka, J.; Kurach, P.; Lulínski, S.; Serwatowski, J. J. Organomet. Chem. 2010, 695, 2635.
 ${ }^{105}$ (a) Chinchilla, R.; Najera, C. Chem. Rev. 2007, 107, 874. (b) Doucet, H.; Hierso, J.-C. Angew. Chem. Int. Ed. 2007, 46, 834. (c) Johansson Seechurn, C. C. C.; Kitching, M. O.; Colacot, T. J.; Snieckus, V. Angew. Chem. Int. Ed. 2012, 51, 5062. (d) Palladium-Catalyzed Coupling Reactions: Practical Aspects and Future Developments, (Ed.: A. Molnar), Wiley-VCH, Weinheim, 2013.

[^55]: ${ }^{106}$ Vitaku, E.; Smith, D. T.; Njardarson, J. T. J. Med. Chem. 2014, 57, 10257.

[^56]: ${ }^{107}$ (a) Opperman, T. J.; Kwasny, S. M.; Kim, H. S.; Nguyen, S. T.; Houseweart, C.; D’Souza, S.; Walker, G. C.; Peet, N. P.; Nikaido, H.; Bowlin, T. L. Antimicrob. Agents Chemother. 2014, 58, 722. (b) Nguyen, S. T.; Kwasny, S. M.; Ding, X.; Cardinale, S. C.; McCarthy, C. T.; Kim, H. S.; Nikaido, H.; Peet, N. P.; Williams, J. D.; Bowlin, T. L.; Opperman, T. J. Bioorganic Med. Chem. 2015, 23, 2024.
 ${ }^{108}$ Mannal, F.; Chimentil, F.; Bolascol, A.; Palla, A.; Filippelli, W.; Lampa, E.; Mercantini, R.; Filippell, A. Eur. J. Med. Chem. 1992, 27, 627.
 ${ }^{109}$ (a) Reddy, T. R. K.; Mutter, R.; Heal, W.; Guo, K.; Gillet, V. J.; Pratt, S.; Chen, B. J. Med. Chem. 2006, 49, 607. (b) May, B. C. H.; Zorn, J. A.; Witkop, J.; Sherrill, J.; Wallace, A. C.; Legname, G.; Prusiner, S. B.; Cohen, F. E. J. Med. Chem. 2007, 50, 65.
 ${ }^{110}$ Chen, H.; Zhang, W.; Tam, R.; Raney, A. K. PCT Int. Appl. WO 2005058315 A1 $20050630,2005$.
 ${ }^{111}$ Bach, P.; Antonsson, T.; Bylund, R.; Björkman, J. A.; Österlund, K.; Giordanetto, F.; Van Giezen, J. J. J.; Andersen, S. M.; Zachrisson, H.; Zetterberg, F. J. Med. Chem. 2013, 56, 7015.
 ${ }^{112}$ (a) Farrell, P.; Shi, L.; Matuszkiewicz, J.; Balakrishna, D.; Hoshino, T.; Zhang, L.; Elliott, S.; Fabrey, R.; Lee, B.; Halkowycz, P.; Sang, B.; Ishino, S.; Nomura, T.; Teratani, M.; Ohta, Y.; Grimshaw, C.; Paraselli, B.; Satou, T.; de Jong, R. Mol. Cancer Ther. 2013, 12, 460. (b) Mineno, M.; Sera, M.; Ueda, T.; Mizufune, H.; Zanka, A.; Obryan, C.; Brown, J.; Scorah, N. J. Org. Chem. 2015, 80, 1564.
 ${ }^{113}$ (a) Christensen, J. G.; Zou, H. Y.; Arango, M. E.; Li, Q.; Lee, J. H.; McDonnell, S. R.; Yamazaki, S.; Alton, G. R.; Mroczkowski, B.; Los, G. Mol. Cancer Ther. 2007, 6, 3314. (b) Zou, H. Y.; Li, Q.; Lee, J. H.; Arango, M. E.; McDonnell, S. R.; Yamazaki, S.; Koudriakova, T. B.; Alton, G.; Cui, J. J.; Kung, P. P.; Nambu, M. D.; Los, G.; Bender, S. L.; Mroczkowski, B.; Christensen, J. G. Cancer Res. 2007, 67, 4408. (c) Cui, J. J.; Tran-Dubé, M.; Shen, H.; Nambu, M.; Kung, P.; Pairish, M.; Jia, L.; Meng, J.; Funk, L.; Botrous, I.; McTigue, M.; Grodsky, N.; Ryan, K.; Padrique, E.; Alton, G.; Timofeevski, S.; Yamazaki, S.; Li, Q.; Zou, H.; Christensen, J.; Mroczkowski, B.; Bender, S.; Kania, R. S.; Edwards, M. P. J. Med. Chem. 2011, 54, 6342. (d) Cao, S.; Popovici-Muller, J.; Salituro, F. G.; Saunders, J.; Tan, X.; Travins, J. Yan, S.; Ye, Z. PCT Int. Appl. WO 2012171506 A1 20121220, 2012. (e) Cocco, M. T.; Congiu, C.; Lilliu, V.; Onnis, V. Eur. J. Med. Chem. 2005, 40, 1365.
 ${ }^{114}$ Bischoff, F.; Berthelot, D.; De Cleyn, M.; Macdonald, G.; Minne, G.; Oehlrich, D.; Pieters, S.; Surkyn, M.; Trabanco, A. A.; Tresadern, G.; Van Brandt, S.; Velter, I.; Zaja, M.; Borghys, H.; Masungi, C.; Mercken, M.; Gijsen, H. J. M. J. Med. Chem. 2012, 55, 9089.

[^57]: ${ }^{115}$ Daka, P.; Xu, Z.; Alexa, A.; Wang, H. Chem. Commun. 2011, 47, 224.
 ${ }^{116}$ Schramm, O. G.; Dediu, N.; Oeser, T.; Müller, T. J. J. J. Org. Chem. 2006, 71, 3494.
 ${ }^{117}$ (a) Heintzelman, G. R.; Bullington, J. L.; Rupert, K. C. PCT Int. Appl. WO 2005042500 A1 20050512, 2005. (b) Chen, T.-C.; Yu, D.-S.; Chen, S.-J.; Chen, C.-L.; Lee, C.-C.; Hsieh, Y.-Y.; Chang, L.-C.; Guh, J.-H.; Lin, J.J.; Huang, H.-S. Arab. J. Chem. 2016. DOI: 10.1016/j.arabjc.2016.06.014.

 118 (a) Landmesser, T.; Linden, A.; Hansen, H.-J. Helv. Chim. Acta 2008, 91, 265. (b) Gao, M.; Su, H.; Lin, Y.; Ling, X.; Li, S.; Qin, A.; Tang, B. Z. Chem. Sci. 2017, 8, 1763.

[^58]: ${ }^{119}$ (a) Chichibabin, A. E.; Zeide, O. A. J. Russ. Phys. Chem. Soc. 1914, 46, 1216. (b) Chichibabin, A. E.; Zeide, O. A. Ber. Dtsch. Chem. Ges. 1923, 56B, 1879.
 ${ }^{120}$ (a) Wagaw, S.; Buchwald, S. L. J. Org. Chem. 1996, 61, 7240. (b) Patriciu, O. I.; Fînaru, A. L.; Massip, S.; Léger, J. M.; Jarry, C.; Guillaumet, G. Eur. J. Org. Chem. 2009, 22, 3753. (c) Shen, Q.; Hartwig, J. F. Org. Lett. 2008, 10, 4109. (d) Lorimer, A. V.; O’Connor, P. D.; Brimble, M. A. Synthesis 2008, 2764.
 ${ }^{121}$ (a) Shafir, A.; Buchwald, S. L. J. Am. Chem. Soc. 2006, 128, 8742. (b) Liu, Z.; Vors, J.; Gesing, E. R. F.; Bolm, C. Adv. Synth. Catal. 2010, 352, 3158.
 ${ }^{122}$ (a) Teague, S. J. J. Org. Chem. 2008, 73, 9765. (b) Ranu, B. C.; Jana, R.; Sowmiah, S. J. Org. Chem. 2007, 72, 3152.

[^59]: ${ }^{123}$ (a) Kumar, R.; Rai, D.; Sharma, S. K.; Saffran, H. A.; Blush, R.; Tyrrell, D. L. J. J. Med. Chem. 2001, 44, 3531. (b) Larraufie, M.-H.; Maestri, G.; Malacria, M.; Ollivier, C.; Fensterbank, L.; Lacôte, E. Synthesis 2012, 44, 1279. (c) Carta, F.; Akdemir, A.; Scozzafava, A.; Masini, E.; Supuran, C. T. J. Med. Chem. 2013, 56, 4691. (d) Yu, J.T.; Teng, F.; Cheng, J. Adv. Synth. Catal. 2017, $359,26$.
 ${ }^{124}$ (a) Pawlas, J.; Begtrup, M. Org. Lett. 2002, 4, 2687. (b) Köhn, U.; Klopfleisch, M.; Görls, H.; Anders, E. Tetrahedron Asymmetry 2006, 17, 811. (c) Jenkinson, S. F.; Jones, N. A.; Moussa, A.; Stewart, A. J.; Heinz, T.; Fleet, G. W. J. Tetrahedron Lett. 2007, 48, 4441. (d) Dornan, P.; Rowley, C. N.; Priem, J.; Barry, S. T.; Burchell, T. J.; Woo, T. K.; Richeson, D. S. Chem. Commun. 2008, 31, 3645. (e) Nasrollahzadeh, M.; Habibi, D.; Shahkarami, Z.; Bayat, Y. Tetrahedron 2009, 65, 10715. (f) Giles, R. L.; Nkansah, R. A.; Looper, R. E. J. Org. Chem. 2010, 75, 261. (g) Larraufie, M.-H.; Courillon, C.; Ollivier, C.; Lacôte, E.; Malacria, M.; Fensterbank, L. J. Am. Chem. Soc. 2010, 132, 4381. (h) Zhou, L.; Chen, J.; Zhou, J.; Yeung, Y.-Y. Org. Lett. 2011, 13, 5804.

[^60]: ${ }^{125}$ Bönnemann, H.; Brijoux, W.; Brinkmann, R.; Meurers, W. Helv. Chim. Acta 1984, 67, 1616.

[^61]: ${ }^{126}$ (a) Heller, B.; Reihsig, J.; Schulz, W.; Oehme, G. Appl. Organomet. Chem. 1993, 7, 641. (b) Heller, B.; Sundermann, B.; Buschmann, H.; Drexler, H.-J.; You, J.; Holzgrabe, U.; Heller, E.; Oehme, G. J. Org. Chem. 2002, 67, 4414.
 ${ }^{127}$ Fatland, A. W.; Eaton, B. E. Org. Lett. 2000, 2, 3131.
 ${ }^{128}$ Boñaga, L. V. R.; Zhang, H.-C.; Maryanoff, B. E. Chem. Commun. 2004, 2394.

[^62]: ${ }^{129}$ Boñaga, L. V. R.; Zhang, H.-C.; Moretto, A. F.; Ye, H.; Gauthier, D. A.; Li, J.; Leo, G. C.; Maryanoff, B. E. J. Am. Chem. Soc. 2005, 127, 3473.

[^63]: ${ }^{130}$ Zhang, H.-C.; Boñaga, L. V. R.; Ye, H.; Derian, C. K.; Damiano, B. P.; Maryanoff, B. E. Bioorg. Med. Chem. Lett. 2007, 17, 2863.

[^64]: ${ }^{131}$ Hapke, M.; Kral, K.; Fischer, C.; Spannenberg, A.; Gutnov, A.; Redkin, D.; Heller, B. J. Org. Chem. 2010, 75, 3993.
 ${ }^{132}$ Nicolaus, N.; Schmalz, H.-G. Synlett 2010, 2071.

[^65]: ${ }^{133}$ (a) Garcia, P.; Evanno, Y.; George, P.; Sevrin, M.; Ricci, G.; Malacria, M.; Aubert, C.; Gandon, V. Org. Lett. 2011, 13, 2030. (b) Garcia, P.; Evanno, Y.; George, P.; Sevrin, M.; Ricci, G.; Malacria, M.; Aubert, C.; Gandon, V. Chem. - Eur. J. 2012, 18, 4337.
 ${ }^{134}$ Tanaka, K.; Suzuki, N.; Nishida, G. Eur. J. Org. Chem. 2006, 3917.

[^66]: ${ }^{135}$ (a) Stolley, R. M.; Maczka, M. T.; Louie, J. Eur. J. Org. Chem. 2011, 3815. (b) Stolley, R. M.; Duong, H. A.; Louie, J. Organometallics 2013, 32, 4952.
 ${ }^{136}$ Zhong, Y.; Spahn, N. A.; Stolley, R. M.; Nguyen, M. H.; Louie, J. Synlett 2015, 26, 307.

[^67]: ${ }^{137}$ Kumar, P.; Prescher, S.; Louie, J. Angew. Chem. Int. Ed. 2011, 50, 10694.

[^68]: ${ }^{138}$ Wang, G.; You, X.; Gan, Y.; Liu, Y. Org. Lett. 2017, 19, 110.
 ${ }^{139}$ (a) D’ Souza, B. R.; Lane, T. K.; Louie, J. Org. Lett. 2011, 13, 2936. (b) Wang, C.; Li, X.; Wu, F.; Wan, B. Angew. Chem. Int. Ed. 2011, 50, 7162. (c) Richard, V.; Ipouck, M.; Mérel, D. S.; Gaillard, S.; Whitby, R. J.; Witulski, B.; Renaud, J.-L. Chem. Commun 2014, 50, 593. (d) Casitas, A.; Krause, H.; Goddard, R.; Fürstner, A. Angew. Chem. Int. Ed. 2015, 54, 1521.
 ${ }^{140}$ Lane, T. K.; D’Souza, B. R.; Louie, J. J. Org. Chem. 2012, 77, 7555.
 ${ }^{141}$ Wang, C.; Wang, D.; Xu, F.; Pan, B.; Wan, B. J. Org. Chem. 2013, 78, 3065.

[^69]: ${ }^{142}$ Spahn, N. A.; Nguyen, M. H.; Renner, J.; Lane, T. K.; Louie, J. J. Org. Chem. 2017, 82, 234.
 ${ }^{143}$ Hashimoto, T.; Ishii, S.; Yano, R.; Miura, H.; Sakata, K.; Takeuchi, R. Adv. Synth. Catal. 2015, 357, 3901.

[^70]: ${ }^{144}$ Chowdhury, H.; Goswami, A. Adv. Synth. Catal. 2017, 359, 314.

[^71]: ${ }^{145}$ (a) For diyne 110, see: Ishizaki, M.; Hoshino, O. Tetrahedron 2000, 56, 8813. (b) For diynes $\mathbf{1 0 5}$ and 106, see: Liu, C.; Widenhoefer, R. A. Organometallics 2002, 21, 5666. (c) For diyne 102, see: Genin, E.; Toullec, P. Y.; Marie, P.; Antoniotti, S.; Brancour, C.; Genêt, J.-P.; Michelet, V. Arkivoc 2007, 67. (d) For diyne 108, see: Sylvester, K. T.; Chirik, P. J. J. Am. Chem. Soc. 2009, 131, 8772. (e) For diyne 103, see: Kumar, P.; Zhang, K.; Louie, J. Angew. Chem. Int. Ed. 2012, 51, 8602. (f) For diyne 101, 107 and 109, see ref 154. (g) For diyne 121,

[^72]: see: Wilking, M.; Mück-Lichtenfeld, C.; Daniliuc C. G.; Hennecke, U. J. Am. Chem. Soc. 2013, 135, 8133. (h) For diyne 104, see ref 34. (i) For diyne 121, see: Llerena, D.; Buisine, O.; Aubert, C.; Malacria, M. Tetrahedron 1998, 54, 9373. (j) For diyne 122, see: Oppolzer, W.; Pimm, A.; Stammen, B.; Hume, W. E. Helv. Chim. Acta 1997, 80, 623. (k) For diyne 123, see: Boger, D. L.; Lee, J. K.; Goldberg, J.; Jin, Q. J. Org. Chem. 2000, 65, 1467. (1) For diyne 124, see: Bednářová, E.; Colacino, E.; Lamaty, F.; Kotora, M. Adv. Synth. Catal. 2016, 358, 1916.

[^73]: ${ }^{146}$ Hamada, T.; Ye, X.; Stahl, S. S. J. Am. Chem. Soc. 2008, 130, 833.

[^74]: ${ }^{147}$ (a) For cyanamide 161-165, see: ref 130a. (b) For cyanamide 159, see: Goldberg, K.; Clarke, D. S.; Scott, J. S. Tetrahedron Lett. 2014, 55, 4433.

[^75]: ${ }^{a}$ Reaction conditions: $\mathrm{RuCl}_{3} \cdot n \mathrm{H}_{2} \mathrm{O}(0.05 \mathrm{mmol})$, diyne $\mathbf{1 0 1}$ (1.0 mmol), cyanamides $\mathbf{1 5 4}(2.0 \mathrm{mmol})$ were heated in a screw-capped tube under free-solvent conditions and an argon atmosphere. ${ }^{\mathrm{b}}$ Determined by crude ${ }^{1} \mathrm{H}$ NMR, $\mathrm{nr}=$ no reaction. ${ }^{\mathrm{c}}$ Isolated yields, nd $=$ not detected. ${ }^{\mathrm{d}} 0.02 \mathrm{mmol}$ of $\mathrm{RuCl}_{3} \cdot n \mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mol} \%)$ was used. ${ }^{\mathrm{e}}$ The reaction was stirred for 24 hours.

[^76]: ${ }^{\text {a }}$ Reaction conditions: $\mathrm{RuCl}_{3} \cdot n \mathrm{H}_{2} \mathrm{O}(0.05 \mathrm{mmol})$, diyne $\mathbf{1 0 1}(1.0 \mathrm{mmol})$, cyanamides 155-163 and 165-167 (2.0 mmol) were heated in a screw-capped tube under freesolvent conditions and an argon atmosphere. ${ }^{b}$ Determined by crude ${ }^{1} \mathrm{H} N \mathrm{NR}, \mathrm{nr}=$ no reaction. ${ }^{\mathrm{c}}$ Isolated yields, nd $=$ not detected.

[^77]: ${ }^{148}$ Jung, M. J.; Piizi, G. Chem. Rev. 2005, 105, 1735.

[^78]: ${ }^{149}$ (a) Sierra, M. A.; Torres, M. R.; De Torre, C.; Elsa, A. J. Org. Chem. 2007, 72, 4213. (b) Hanson, J. R. Nat. Prod. Rep 2010, 27, 887. (c) Sedlák, D.; Novák, P.; Kotora, M.; Bartunék, P. J. Med. Chem. 2010, 53, 4290. (d) Kotora, M.; Hessler, F.; Eignerová, B. Eur. J. Org. Chem. 2012, 29.

[^79]: ${ }^{150}$ (a) Albers, M. O.; De Waal, D. J. A.; Liles, D. C.; Robinson, D. J.; Singleton, E.; Wiege, M. B. J. Chem. Soc. Chem. Commun. 1986, 1680. (b) J. Le Paih, F. Monnier, S. Dérien, P. H. Dixneuf, E. Clot, O. Eisenstein, J. Am. Chem. Soc. 2003, 125, 11964.

[^80]: ${ }^{151}$ Sato, Y.; Nishimata, T.; Mori, M. J. Org. Chem. 1994, 59, 6133.

[^81]: ${ }^{152}$ Tsuchikama, K.; Kuwata, Y.; Shibata, T. J. Am. Chem. Soc. 2006, 128, 13686.

[^82]: ${ }^{153}$ Masutomi, K.; Sakiyama, N.; Noguchi, K.; Tanaka, K. Angew. Chem. Int. Ed. 2012, 51 (52), 13031.
 ${ }^{154}$ Amatore, M.; Lebœuf, D.; Malacria, M.; Gandon, V.; Aubert, C. J. Am. Chem. Soc. 2013, 135, 4576.

[^83]: ${ }^{155}$ (a) Bringmann, G.; Mortimer, A. J. P.; Keller, P. A.; Gresser, M. J.; Garner, J.; Breuning, M. Angew. Chem. Int. Ed. 2005, 44, 5384. (b) Bringmann, G.; Gulder, T.; Gulder, T. A. M.; Breuning, M. Chem. Rev. 2011, 111, 563.

[^84]: ${ }^{156}$ Gutnov, A.; Heller, B.; Fischer, C.; Drexler, H. J.; Spannenberg, A.; Sundermann, B.; Sundermann, C. Angew. Chem. Int. Ed. 2004, 43, 3795.
 ${ }^{157}$ Shibata, T.; Fujimoto, T.; Yokota, K.; Takagi, K. J. Am. Chem. Soc. 2004, 126, 8382.
 ${ }^{158}$ Tanaka, K.; Nishida, G.; Wada, A.; Noguchi, K. Angew. Chem. Int. Ed. 2004, 43, 6510.

[^85]: ${ }^{159}$ Tanaka, K.; Sagae, H.; Toyoda, K.; Noguchi, K.; Hirano, M. J. Am. Chem. Soc. 2007, 129, 1522.

[^86]: ${ }^{160}$ Jančařík, A.; Rybáček, J.; Cocq, K.; Chocholoušová, J. V.; Vacek, J.; Pohl, R.; Bednárová, L.; Fiedler, P.; Císařová, I.; Stará, I. G.; Starý, I. Angew. Chem. Int. Ed. 2013, 52, 9970.

[^87]: ${ }^{161}$ Zeng, X. P.; Cao, Z. Y.; Wang, Y. H.; Zhou, F.; Zhou, J. Chem. Rev. 2016, 116, 7330.

[^88]: ${ }^{162}$ Sato, Y.; Nishimata, T.; Mori, M. Heterocycles 1997, 44, 443.

[^89]: ${ }^{163}$ Tanaka, K.; Suzuki, N.; Nishida, G. Eur. J. Org. Chem. 2006, 3917.

[^90]: ${ }^{164}$ Tanaka, K.; Osaka, T.; Noguchi, K.; Hirano, M. Org. Lett. 2007, 9, 1307.
 ${ }^{165}$ Wada, A.; Noguchi, K.; Hirano, M.; Tanaka, K. Org. Lett. 2007, 9, 1295.

[^91]: ${ }^{166}$ Tahara, Y. K.; Obinata, S.; Kanyiva, K. S.; Shibata, T.; Mándi, A.; Taniguchi, T.; Monde, K. Eur. J. Org. Chem. 2016, 1405.

[^92]: ${ }^{167}$ Nishida, G.; Noguchi, K.; Hirano, M.; Tanaka, K. Angew. Chem. Int. Ed. 2008, 47, 3410.
 ${ }^{168}$ Shintani, R.; Takagi, C.; Ito, T.; Naito, M.; Nozaki, K. Angew. Chem. Int. Ed. 2015, 54, 1616.
 ${ }^{169}$ Shintani, R.; Takano, R.; Nozaki, K. Chem. Sci. 2016, 7, 1205.
 ${ }^{170}$ Shintani, R.; Misawa, N.; Takano, R.; Nozaki, K. Chem. Eur. J. 2017, 23, 2660.

[^93]: ${ }^{171}$ Karmakar, R.; Pahari, P.; Mal, D. Chem. Rev. 2014, 114, 6213.
 ${ }^{172}$ (a) Xu, X.; Song, F.; Wang, S.; Li, S.; Xiao, F.; Zhao, J.; Yang, Y.; Shang, S.; Yang, L.; Shi, J. J. Nat. Prod. 2004, 67, 1661. (b) Kwon, Y. J.; Sohn, M. J.; Kim, C. J.; Koshino, H.; Kim, W. G. J. Nat. Prod. 2012, 75, 271.
 ${ }^{173}$ (a) Eildal, J. N. N.; Andersen, J.; Kristensen, A. S.; Jørgensen, A. M.; Bang-Andersen, B.; Jørgensen, M.; Strømgaard, K. J. Med. Chem. 2008, 51, 3045. (b) Andersen, J.; Stuhr-Hansen, N.; Zachariassen, L.; Toubro, S.; Hansen, S. M. R.; Eildal, J. N. N.; Bond, A. D.; Bøges \varnothing, K. P.; Bang-Andersen, B.; Kristensen, A. S.; Strømgaard, K. Proc. Natl. Acad. Sci. U. S. A. 2011, 108, 12137. (c) Tu, H. M.; Wang, Q.; Zhu, J. Chem. Commun. 2016, 4, 11100. (d) Hyttel, J.; Bøges \emptyset, K. P.; Perregaard, J.; Sanchez, C. J. Neural Transm. 1992, 88, 157. (e) Harper, J. K.; Arif, A. M.; Ford, E. J.; Strobel, G. A.; Porco, J. A.; Tomer, D. P.; Oneill, K. L.; Heider, E. M.; Grant, D. M. Tetrahedron 2003, 59, 2471. (f) Lovey, R. G.; Elliott, A. J.; Kaminski, J. J.; Loebenberg, D.; Parmegiani, R. M.; Rane, D. F.; Girijavallabhan, V. M.; Pike, Guzik, R. E.; Antonacci, H.; B.; Tomaine, T. Y. J. Med. Chem. 1992, 35, 4221. (g) Höller, U.; Gloer, J. B.; Wicklow, D. T. J. Nat. Prod. 2002, 65, 876. (h) Ewing, D. F.; Len, C.; Mackenzie, G.; Ronco, G.; Villa, P. Tetrahedron Asymmetry 2000, 11, 4995. (i) Egron, D.; Périgaud, C.; Gosselin, G.; Aubertin, A. M.; Faraj, A.; Sélouane, M.; Postel, D.; Len, C. Bioorganic Med. Chem. Lett. 2003, 13, 4473. (j) Goezler, B.; Goezler, T.; Shamma, M. Tetrahedron 1983, 39, 577. (b) Jing, L.; Wenzao, L.; Guoshi, T. Planta Med. 1994, 60, 486.

[^94]: 174 (a) Yus, M.; Foubelo, F.; Ferrandez, J. V. Tetrahedron 2003, 59, 2083. (b) Kobayashi, K.; Shikata, K.; Fukamachi, S.; Konishi, H. Heterocycles 2008, 75, 599. (c) Capriati, V.; Florio, S.; Luisi, R.; Perna, F. M.; Salomone, A. J. Org. Chem. 2006, 71, 3984. (d) Dem'yanovich, V. M.; Shishkina, I. N.; Kuznetsova, A. A.; Potekhin, K. A.; Chesnova, A. V. Russ. J. Org. Chem. 2006, 42, 986.
 ${ }^{175}$ (a) Wu, H.-J.; Yen, C.-H.; Chuang, C. T. J. Org. Chem. 1998, 63, 5064. (b) Martín-Matute, B.; Nevado, C.; Cárdenas, D. J.; Echavarren, A. M. J. Am. Chem. Soc. 2003, 125, 5757. (c) Subrahmanyam, A. V.; Palanichamy, K.; Kaliappan, K. P. Chem. Eur. J. 2010, 16, 8545.
 ${ }^{176}$ (a) Meegalla, S. K.; Rodrigo, R. Synthesis 1989, 12, 942. (b) Verdaguer, X.; Berk, S. C.; Buchwald, S. L. J. Am. Chem. Soc. 1995, 117, 12641. (c) Aggarwal, S.; Ghosh, N. N.; Aneja, R.; Joshi, H.; Chandra, R. Helv. Chim. Acta. 2002, 85, 2458. (d) Cox, C.; Danishefsky, S. J. Org. Lett. 2000, 2, 3493.

[^95]: ${ }^{177}$ Tomooka, K.; Wang, L.-F.; Okazaki, F.; Nakai, T. Tetrahedron Lett. 2000, 41, 6121. (b) Solares, L. F.; Brieva, R.; Quirós, M.; Llorente, I.; Bayodb, M.; Gotor, V. Tetrahedron: Asymmetry 2004, 15, 341. (c) Yuen, T.-Y.; Yang, S.-H.; Brimble, M. A. Angew. Chem., Int. Ed. 2011, 50, 8350. (d) Chai, Z.; Xie, Z.-F.; Liu, X.-Y.; Zhao, G.; Wang, J.-D. J. Org. Chem. 2008, 73, 2947.

[^96]: ${ }^{178}$ (a) Muchow, G.; Brunel, J. M.; Maffei, M.; Buono, G. J. Org. Chem. 1995, 60, 852. (b) Hudiono, Y. C.; Miller, A. L.; Gibson, P. W.; LaFrate, A. L.; Noble, R. D.; Gin, D. L. Ind. Eng. Chem. Res. 2012, 51, 7453.

[^97]: ${ }^{179}$ Grandclaudon C. (2016) Réactions d'halocarbocyclisation par activation électrophile de fonctions carbonées insaturées (alcènes, alcynes, allènes). Etude des versions racémiques et chirales catalysées par des bases de Lewis (Doctoral dissertation). Retrieved from https://www.theses.fr/en/2016PA066228

[^98]: ${ }^{180}$ Ye, F.; Haddad, M.; Michelet, V.; Ratovelomanana-Vidal, V. Org. Lett. 2016, 18, 5612.
 ${ }^{181}$ Ye, F.; Haddad, M.; Michelet, V.; Ratovelomanana-Vidal, V. Org Chem Front 2017, 4, 1063.
 ${ }^{182}$ Ye, F.; Haddad, M.; Ratovelomanana-Vidal, V.; Michelet, V. Org. Lett. 2017, 19, 1104.

[^99]: ${ }^{183}$ Sakamoto, T.; Kondo, Y.; Miura, N.; Hayashi, K.; Yamanaka, H. Heterocycles 1986, 24, 2311.

[^100]: ${ }^{184}$ Alfonsi, M.; Dell'Acqua, M.; Facoetti, D.; Arcadi, A.; Abbiati G.; Rossi, E. Eur. J. Org. Chem. 2009, 2852.
 ${ }^{185}$ K. K. Wang, H.-R. Zhang and J. L. Petersen, J. Org. Chem., 1999, 64, 1650.

[^101]: ${ }^{186}$ Huang, Q.-H.; Hunter, J. A.; Larock, R. C. J. Org. Chem. 2002, 67, 3437.
 ${ }^{187}$ Obika,S.; Kono, H.; Yasui, Y.; Yanada, R.; Takemoto, Y. J. Org. Chem. 2007, 72, 4462.

[^102]: ${ }^{188}$ Chen, Y.-F.; Chen, M.; Liu, Y.-H. Angew. Chem. Int. Ed. 2012, 51, 6181.

[^103]: ${ }^{189}$ Schmittel, M.; Strittmatter, M.; Mahajan, A. A.; Vavilala, C.; Cinar, M. E.; Maywald, M. Arkivoc 2007, 66. ${ }^{190}$ Schmittel, M.; Keller, M.; Kiau, S.; Strittmatter, M. Chem. Eur. J. 1997, 3, 807.

[^104]: ${ }^{191}$ Tang, J.-M.; Liu, T.-A.; Liu, R.-S. J. Org. Chem. 2008, 73, 8479.

[^105]: ${ }^{192}$ Sagar, P.; Fröhlich, R.; Würthwein, E.-U. Angew. Chem. Int. Ed. 2004, 43, 5694.
 ${ }^{193}$ Okamoto, N.; Sakurai, K.; Ishikura, M.; Takeda, K.; Yanada, R. Tetrahedron Lett. 2009, 50, 4167.

[^106]: ${ }^{194}$ Lyaskovskyy, V.; Fröhlich R.; Würthwein, E.-U. Synthesis 2007, 14, 2135.

[^107]: ${ }^{195}$ Tiano, M.; Belmont, P. J. Org. Chem. 2008, 73, 4101.
 ${ }^{196}$ Verma, A. K.; Rustagi, V.; Aggarwal, T.; Singh, A. P. J. Org. Chem. 2010, 75, 7691.

[^108]: ${ }^{197}$ For diyne 127, see: Trost, B. M.; Rudd, M. T. J. Am. Chem. Soc. 2005, 127, 4763.

[^109]: ${ }^{198}$ Sperger, C.; Strand, L. H. S.; Fiksdahl, A. Tetrahedron 2010, 66, 7749.

[^110]: ${ }^{199}$ Trost, B. M.; Xie, J. J. Am. Chem. Soc. 2006, 128, 6044.

[^111]: ${ }^{200}$ Zhao, L.-G.; Lu. X.-Y.; Xu, W. J. Org. Chem. 2005, 70, 4059.

[^112]: ${ }^{201}$ Karmakar, R.; Yun, S. Y.; Chen, J.; Xia, Y.; Lee, D. Angew. Chem. Int. Ed. 2015, 54, 6582.
 ${ }^{202}$ Iafe, R. G.; Kuo, J. L.; Hochstatter, D. G.; Saga, T.; Turner, J. W.; Merlic, C. A. Org. Lett. 2013, 15, 582.

[^113]: ${ }^{203}$ Teng, F.; Yu, J.-T.; Jiang, Y.; Yang, H.; Cheng, J. Chem. Commun. 2014, 50, 8412.
 ${ }^{204}$ Bakunov, S. A.; Rukavishnikov, A. V.; Tkachev, A. V. Synthesis, 2000, 1148.

[^114]: ${ }^{205}$ Ayres, J. N.; Ashford, M. W.; Stöckl, Y.; Prudhomme, V.; Ling, K. B.; Platts, J. A.; Morrill, L. C. Org. Lett. 2017, 19, 3835

[^115]: ${ }^{206}$ Ram, B.; Lee, H.; Kang, S.; Jung, K.; Hyeon, G.; Kim, J.; Lee, S.; Yoon, Y. Tetrahedron 2013, 69, 10331.

[^116]: ${ }^{207}$ Muchow, G.; Brunel, J. M.; Maffei, M.; Buono, G. J. Org. Chem. 1995, 60, 852.

[^117]: ${ }^{208}$ Maisonial, A.; Billaud, E. M. F.; Besse, S.; Rbah-Vidal, L.; Papon, J.; Audin, L.; Bayle, M.; Galmier, M. J.; Tarrit, S.; Borel, M.; Askienazy, S.; Madelmont, J. C.; Moins, N.; Auzeloux, P.; Miot-Noirault, E.; Chezal, J. M. Eur. J. Med. Chem. 2013, 63, 840.

