
HAL Id: tel-02320655
https://theses.hal.science/tel-02320655v2

Submitted on 29 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Ru- and Rh-catalyzed [2+2+2] cycloadditions : an access
to fluorenone, 2-aminopyridine, and
1,3-dihydroisobenzofuran derivatives

Fei Ye

To cite this version:
Fei Ye. Ru- and Rh-catalyzed [2+2+2] cycloadditions : an access to fluorenone, 2-aminopyridine, and
1,3-dihydroisobenzofuran derivatives. Organic chemistry. Université Pierre et Marie Curie - Paris VI,
2017. English. �NNT : 2017PA066347�. �tel-02320655v2�

https://theses.hal.science/tel-02320655v2
https://hal.archives-ouvertes.fr


  

Université Pierre et Marie Curie 

Ecole Doctorale de Chimie Moléculaire de Paris-Centre 

Institut de Recherche de Chimie Paris / Equipe CSB2D 

 

Ru- and Rh-catalyzed [2+2+2] cycloadditions: an access to 

fluorenone, 2-aminopyridine, and 1,3-

dihydroisobenzofuran derivatives  

Par Fei YE 

Thèse de doctorat de Chimie Organique 

Dirigée par les Drs. Véronique MICHELET et Virginie VIDAL 

Présentée et soutenue publiquement le 17 Octobre 2017 

 

 

 

Devant un jury composé de :  

 

GOSMINI Corinne – Directrice de Recherche CNRS, Ecole Polytechnique – Rapporteur  

RODRIGUEZ Jean – Professeur, Université Aix Marseille – Rapporteur  

MALACRIA Max – Professeur, Université Pierre et Marie Curie – Examinateur  

MICHELET Véronique – Professeur, Université Nice Sophia Antipolis – Directrice de thèse 

VIDAL Virginie – Directrice de Recherche CNRS, Chimie ParisTech – Directrice de thèse 

 



 

 



 

 

 

 

 

« If we knew what we were doing, it wouldn’t be called research, would it? » 

Albert Einstein 

 

 

  



 

 

 

  



 

 

Acknowledgments 

This thesis was conducted under the direction of Doctor Virginie Vidal, Professor 

Véronique Michelet and Doctor Mansour Haddad (co-advisor) at Chimie ParisTech in the 

“Catalysis, Synthesis of Biomolecules and Sustainable Development” team (CSB2D team) at 

the Institut de Recherche de Chimie Paris (IRCP laboratory).  

I have been working in Paris since October 2014, I have thoroughly enjoyed the 

wonderful three years in this beautiful city. I am deeply touched by the people who support me 

warmly to complete this thesis, and I would like to thank them sincerely.  

I would like to express my sincere gratitude to Doctor Corinne Gosmini, Professor 

Jean Rodriguez and Professor Max Malacria for accepting to read and review my thesis and 

to be part of my defense committee.  

First and foremost, I wish to thank my PhD advisors, Virginie and Véronique. I want 

to say they are the lucky stars in my life since they gave me the opportunity to start my PhD 

program in their wonderful team, my life has become more bright since then. They take care 

very much of me and were always thoughtful in my life, my work and my future. They always 

give me a power to move forward. I remember they used to say something like “you have done 

a very good job”, “excellent”, “super” to encourage me, even if I didn’t make the things perfect. 

I am very grateful that they can be so patient with me. Although they are very busy, they never 

hesitate to spend plenty of time to guide me to make things better. In such circumstances, over 

these three years, my personal and professional abilities have been greatly improved. In 

chemistry, we have many full discussions in each project, I have enjoyed so much working with 

them. We have done three papers together. It makes me more confident in this area. Thanks to 

them with all my heart! 

I am also grateful to Mansour. He is like a teacher and a friend all in one. He taught me 

a lot of professional experience and good habits in chemistry. He is always willing to help me 

and never said no to me. Thanks for his good humor and optimistic attitude, it makes me so 

comfortable working in his lab over these three years. I will never forget it. I wish him will be 

very happy and good health in his retired life, although there are some years to work yet.  



 

 

I also want thank the other permanents in CSB2D team. Phannarath Phansavath, called 

Pocki, who was enthusiastic to me. I thank her for the responsiblility of each commercial order 

(forgive me for all the mistakes I have made with the “commandes” ). Sylvain Darses, for 

his good spirit, and also for his jokes. He had fun with everyone. Thanks to Tahar Ayad and 

Patrick Toullec, for few chemistry discussions and good humors. Big thanks also to Maxime 

Vitale, who combines not only chemical skills, but also computing skills as well.  

I would like to give a special thanks to our dear Chachaaaaaa, Charlène. As she said, 

she is everywhere. A special thanks to her for the responsibility of the lab’s security, allowing 

us to work in a safer environment, that’s very important for a chemist. Thanks also for giving 

me a special right to take all the staffs (needles, syringe, vials, caps, septum…) in any day of 

the week. I will miss this period.  

Next, it’s time to give my thanks to all the former and present ATER, Postdoc and PhD 

students.  

Let’s start from the ATER. Aurélie, her positive and optimistic attitude towards all the 

things makes me admiring. Congratulations for her permanent position in ICSN. Fatma, thanks 

for her work on the [2+2+2] project. I hope she will enjoy her next ATER position in Versailles.  

The former postdoc, Adrien, thank him for showing me the first Chinese restaurant 

Bambou in Paris, I am the VIP of the restaurant now . Amandine, I still remember her sweet 

smile and beautiful window’s painting, it’s one of my seldom updated image in my Facebook. 

Eder, to me he is like a master (师父 Shi Fu in Chinese), thank him for teaching me the 

professional experience on crystallization, that’s amazing. I wish him to have a good future in 

academic research, and I hope to see him again. Sudipta, he is an awesome guy, he is always 

the first one in and the last one out working in the lab, I believe that the hardest work he did 

will one day bring him the biggest benefits. Clément, he is always doing a big column when I 

saw him. Thanks for his kindness. 

The former PhD students. Pierre-George, PG, he is my “idol”. He always makes 

everything to be the best :))))). Gaëtan, we haven’t had much time to get to know each other, 

in my mind, he is very optimistic and kind, I liked to chat with him. Marc, he helped me a lot 

when I started my work in the lab, he was always available and patient to explain me everything. 

Fabien, thanks for his good humour and jokes especially with the montage pictures, he made a 



 

 

lot of fun in the lab. Next one is our Miss Panda, dear Charlotte, I've never seen a girl who 

loves so much panda. It is sure that wherever I see a panda, I will think about her. And thank 

her for taking me running in Luxembourg Park. However, it is a pity that we have never run 

again since she left to Germany. I hope her to have good life in the future.  

A special acknowledgement goes to the best other three graduating PhD students, 

Benjamin, Maxime and Quentin. Thanks to the king of battery, BenBen. It was my honor to 

work with him in the same lab. Thanks to him for teaching me a lot of interesting French words 

and jokes. I also thank him for organizing wonderful outdoor activities, picnic in Fontainebleau, 

barbecues in his warmly house, accro-branches afternoon, etc. I wish him a bright future in his 

carrier. Big thanks to Maxime L, he is definitively a nice guy in the lab. I don’t remember how 

many administrative works he helped me to do, registration files, comité de suivi, application 

of defense. Wish him to enjoy his future research in pharmaceutical company, congratulations! 

Thanks to sunshine Quentin, he was also warm-hearted and enthusiastic. I am envious of his 

ability to carry out recreational activities and chemistry at the same time. I wonder if he can 

play the trumpet in his defense day, that will be awesome. I also thank him for inviting me for 

the Raclette Party in his house. I enjoyed the typical French tradition very much. Hope him to 

enjoy the oncoming work in fine chemical company.  

I next want to thank the present PhD students. Longsheng, my brother, I can’t thank 

him enough. He takes care of me so much since we met six years ago. We have so many things 

worth remembering, all the things converge into a word “no brother no game, no brother no 

chemistry”. Yue, he is an artist, chemist and scholar. I always call him Dr. Tang, because he 

knows everything in heaven above and the earth underneath. I also thank him for giving me the 

first defense gift. Aymane, I enjoyed the cooperation with him for the passeur NMR, thanks to 

him for not complaining to Marie-Noëlle for my all the times absent. And also I believe that his 

hard work can provide him a good return, sooner or later, Bon courage! Johanne, 

congratulations for her success to get a grant and being a doctoral student in this laboratory. 

And thank to her for bring the homemade Lemon Tarte in her ending internship pot, I could eat 

the whole of it.  

I next want to thank all the staffs working in Chimie ParisTech for support me to finish 

my PhD thesis. Particularly, I would like to thank Marie-Noëlle for her hard work and careful 

explanation in NMR spectrometry. Thanks to Céline and Claudine for their incredible work in 

mass spectrometry. Thanks to Frédéric for some measurement of melting points. Thanks to 



 

 

Franck for bringing all the experimental consumables from upstairs to downstairs every day. I 

also thank Suzanne and Marjorie for the administrative work.  

I would like also to thank Lise-Marie Chamoreau and Geoffrey Gontard for the X-

ray analysis (IPMC, UPMC).  

I also want to thank my two tutors of “Comité de suivi de thèse", Doctor Muriel 

Amatore and Doctor Christophe Meyer, for their comments on my work during my PhD study.  

I would like also to thank all my friends in France and China who helped and supported 

me, I would like to name those who were closer to me over these three years: Lu, Jie, Tao, 

Tongwei, Sen, Wenbin, Shaoyi, Dandan, Kunyun, Jingwen, Jun, Xiaohan, Conghui.  

Last, my thanks would go to my beloved family, my parents and my sister, for their 

thorough concern and great confidence in me all through these years. Particularly, I want to 

thank my lover for accompanying me during these lovely and memorable three years.  

Finally, I would like to give a special acknowledgement to China Scholarship Council 

for giving me a three years’s fellowship in Paris. I also thank all the support of various platforms 

and institutions for CSB2D team.  

 

 

 

 



 

 1 

Table of contents 

 
Abbreviations ............................................................................................................................ 5 

Résumé ...................................................................................................................................... 9 

General introduction .............................................................................................................. 33 

Chapter I: Bibliography ........................................................................................................ 39 

1. Intermolecular reactions.................................................................................................... 39 

1.1. Cyclotrimerization of one alkyne .................................................................................. 40 

1.2. Cycloaddition between two different alkynes. .............................................................. 43 

1.3. Cycloaddition of three different alkynes ....................................................................... 45 

1.4. Cyclotrimerization of two alkynes with another unsaturated substrate ........................ 47 

2. Partially intramolecular reactions .................................................................................... 48 

2.1. Cobalt-catalyzed partially intramolecular [2+2+2] cycloadditions ............................... 48 

2.2. Rhodium-catalyzed partially intramolecular [2+2+2] cycloadditions .......................... 50 

2.3. Nickel-catalyzed partially intramolecular [2+2+2] cycloadditions ............................... 54 

2.4. Iridium-catalyzed partially intramolecular [2+2+2] cycloadditions ............................. 56 

2.5. Ruthenium-catalyzed partially intramolecular [2+2+2] cycloadditions........................ 60 

3. Totally intramolecular reactions ....................................................................................... 65 

Chapter II: Access toward fluorenone derivatives through solvent-free ruthenium 

trichloride mediated [2+2+2] cycloadditions ....................................................................... 69 

1. Interest of fluorenones ....................................................................................................... 69 

2. Preparation methods in the literature .............................................................................. 71 

2.1 Traditional methods for the preparation of fluorenones ................................................. 71 

2.2 Transition-metal-catalyzed synthesis of fluorenones ..................................................... 72 

2.2.1 Palladium-catalyzed synthesis of fluorenones ........................................................ 72 
2.2.1.1 C-H functionalization of 2-haloarylketones ......................................... 72 
2.2.1.2 Directing-group-assisted C-H activation .............................................. 73 
2.2.1.3 Dehydrogenative cyclization ................................................................ 79 
2.2.1.4 Cyclocarbonylation .............................................................................. 81 
2.2.1.5 Decarboxylative cyclization ................................................................. 83 
2.2.1.6 Other methods for the preparation of fluorenones ............................... 83 

2.2.2 Rhodium-catalyzed synthesis of fluorenones .......................................................... 86 
2.2.2.1 Conversion of benzoic anhydrides into fluorenones ............................ 86 
2.2.2.2 Partially intramolecular [2+2+2] cycloadditions.................................. 86 
2.2.2.3 Intramolecular acylation ....................................................................... 87 

2.2.3 Silver-catalyzed synthesis of fluorenones ............................................................... 88 
2.2.3.1 Intramolecular radical cyclization ........................................................ 88 
2.2.3.2 Decarboxylative radical cyclization ..................................................... 88 

2.2.4 Copper-catalyzed synthesis of fluorenones ............................................................. 89 



 

 2 

3. Objectives ............................................................................................................................ 90 

4. Results and discussion ........................................................................................................ 91 

4.1 Synthesis of starting materials: arylcarbamoyl bridged -diynes and internal alkynes

 .............................................................................................................................................. 91 

4.1.1. Synthesis of benzoyl bridged -diynes .............................................................. 91 
4.1.2. Synthesis of heteroaromatic bridged -diynes ................................................... 95 
4.1.3. Synthesis of internal alkynes .................................................................................. 97 

4.2 Interest of RuCl3·nH2O complex.................................................................................... 98 

4.3 RuCl3·nH2O-mediated [2+2+2] cycloaddition of benzoyl bridged -diynes with 

symmetrical internal alkynes .............................................................................................. 101 

4.4 RuCl3·nH2O-mediated [2+2+2] cycloaddition of heteroaromatic carbonyl bridged -

diynes with internal alkynes ............................................................................................... 106 

4.5 Regioselective RuCl3·nH2O-mediated [2+2+2] cycloaddition of benzoyl bridged-

diynes with unsymmetrical terminal and internal alkynes ................................................. 108 

4.6 Post-functionalization of fluorenone derivatives ......................................................... 109 

5. Conclusion ......................................................................................................................... 112 

Chapter III: Ruthenium-catalyzed [2+2+2] cycloaddition of diynes with electron-rich 

cyanamides: an easy access to 2-aminopyridine derivatives ............................................ 113 

1. Interest of 2-Aminopyridines .......................................................................................... 113 

2. Synthetic methods for the preparation of 2-aminopyridines ....................................... 116 

2.1 Traditional methods ...................................................................................................... 116 

2.2 Transition-metal-catalyzed [2+2+2] cycloadditions of alkynes with cyanamides ....... 117 

2.2.1. Cobalt-catalyzed [2+2+2] cycloadditions ............................................................ 118 
2.2.2. Rhodium-catalyzed [2+2+2] cycloadditions ........................................................ 123 
2.2.3. Nickel-catalyzed [2+2+2] cycloadditions ............................................................ 124 
2.2.4. Iron-catalyzed [2+2+2] cycloadditions ................................................................ 126 
2.2.5. Iridium-catalyzed [2+2+2] cycloadditions ........................................................... 128 
2.2.6. Ruthenium-catalyzed [2+2+2] cycloadditions ..................................................... 130 

3. Objectives .......................................................................................................................... 130 

4. Results and discussion ...................................................................................................... 131 

4.1 Synthesis of starting materials: diynes and cyanamides .............................................. 131 

4.1.1. Synthesis of symmetrical diynes .......................................................................... 131 
4.1.2. Synthesis of unsymmetrical diynes ...................................................................... 135 
4.1.3. Synthesis of benzoyl bridged -diynes ............................................................ 138 
4.1.4. Synthesis of cyanamides ...................................................................................... 139 

4.2 RuCl3·nH2O-mediated [2+2+2] cycloaddition of -diynes with cyanamides ......... 141 



 

 3 

4.3 Cp*Ru(CH3CN)3PF6-catalyzed [2+2+2] cycloaddition of -diynes with cyanamides

 ............................................................................................................................................ 147 

4.4 Cp*Ru(CH3CN)3PF6-catalyzed [2+2+2] cycloadditions to access aza-fluorenols and aza-

fluorenones ......................................................................................................................... 156 

5. Conclusion ......................................................................................................................... 158 

Chapter IV: Rhodium-catalyzed asymmetric synthesis of 1,1-disubstituted 1,3-

dihydroisobenzofurans from prochiral triynes and internal alkynes ............................. 161 

1. Enantioselective [2+2+2] cycloaddition reactions ......................................................... 162 

1.1. Construction of central chirality .................................................................................. 162 

1.2. Construction of axial chirality ..................................................................................... 164 

1.3. Construction of planar chirality ................................................................................... 166 

1.4. Construction of helical chirality .................................................................................. 167 

2. Desymmetric transition-metal-catalyzed [2+2+2] cycloaddition reactions ................. 168 

3. Interest and synthesis of 1,3-dihydroisobenzofurans .................................................... 174 

4. Objectives .......................................................................................................................... 176 

5. Results and discussion ...................................................................................................... 177 

5.1 Synthesis of starting materials: prochiral triynes and internal alkynes ........................ 177 

5.1.1. Synthesis of prochiral triynes ............................................................................... 177 
5.1.2. Synthesis of internal monoalkynes ....................................................................... 179 

5.2 Rhodium-catalyzed desymmetric [2+2+2] cycloaddition of prochiral triynes with internal 

alkynes ................................................................................................................................ 180 

6. Conclusion ......................................................................................................................... 187 

General conclusion ............................................................................................................... 189 

Experimental part ................................................................................................................ 191 

1. General informations ...................................................................................................... 191 

1.1. Analysis ................................................................................................................... 191 
1.2. Chromatography ...................................................................................................... 191 
1.3. Purification of solvents and reagents ...................................................................... 192 

2. Formation of fluorenone and related derivatives ........................................................... 192 

2.1. Synthesis of benzoyl bridged -diynes ............................................................... 192 
2.2. Preparation of internal alkynes ................................................................................ 225 
2.3. RuCl3·nH2O-catalyzed [2+2+2] cycloadditions for the formation of fluoreone and 

related derivatives .......................................................................................................... 227 
2.4. Post-functionalization of [2+2+2] cycloadducts ..................................................... 246 

3. Formation of 2-aminopyridine and related derivatives .................................................. 251 

3.1. Synthesis of symmetrical diynes ............................................................................. 251 
3.2. Synthesis of unsymmetrical diynes ......................................................................... 260 
3.3. Synthesis of benzoyl or benzyl bridged -diynes ............................................... 271 



 

 4 

3.4. Synthesis of cyanamides ......................................................................................... 275 
3.5. Ruthenium-catalyzed [2+2+2] cycloaddition of-diynes with cyanamides ...... 281 

4. Formation of enantioenriched 1,3-dihydroisobenzofuran derivatives ........................... 325 

4.1. Synthesis of prochiral triynes .................................................................................. 325 
4.2. Synthesis of internal alkynes ................................................................................... 333 
4.3. Rhodium-catalyzed [2+2+2] cycloaddition of triynes and alkynes ........................ 336 

 

 



Abbreviations 

 5 
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Résumé 

Ce manuscrit présente le développement de nouveaux systèmes catalytiques à base de 

ruthénium et de rhodium pour des réactions de cyclisation [2+2+2].  

Chapitre 1. Réactions de cycloaddition [2+2+2]: bibliographie 

Au cours de ce chapitre nous examinerons les différents types de cycloaddition en 

fonction de la nature des fonctions alcynes impliquées dans la cycloaddition (Schéma R1).  

 

Schéma R1 

Pour chaque cas, des exemples seront donnés afin d’illustrer les résultats de la littérature. 

Dans une seconde partie, nous détaillerons les différents métaux de transition utilisés 

pour mettre en œuvre les réactions. Parmi les complexes de métaux de transition, on verra que 

ceux qui sont le plus couramment utilisés sont des complexes au cobalt avec le complexe 

CpCo(CO)2; au rhodium (par exemple le complexe de Wilkinson RhCl(PPh3)3 ou encore au 

rhodium sous forme cationique tel Rh(cod)2BF4 associé à un ligand phosphine type BINAP); le 

nickel a aussi été utilisé sous forme Ni(dppe)Br2 par exemple ou bien Ni(CO)2(PPh3)2; ensuite 

on peut citer l’iridium dont le complexe dimère [Ir(cod)Cl]2 a été souvent employé; pour finir 

nous citerons le ruthénium, dont le complexe le plus connu est le catalyseur de Grubbs de 1ère 

génération.  

 

+(1) Intermoléculaire:

(2) Partiellement intramoléculaire: +

(3)Totalement intramoléculaire:

M[   ]

M[   ]

M[   ]
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Chapitre 2. Vers un nouvel accès aux dérivés fluorénones via une cycloaddition [2+2+2] 

catalysée par le trichlorure de ruthenium hydraté. 

Au cours de notre étude sur la synthèse de carbocycles et d’hétérocycles, catalysée par 

les métaux de transition, nous avons mis en évidence la possibilité d’accéder relativement 

facilement à des fluorénones substituées ainsi qu’à des analogues, à partir de diynes-1,6 pontés 

et d’alcynes, en présence de RuCl3·nH2O comme catalyseur. Nous avons étudié la 

cycloaddition [2+2+2] catalysée par le complexe RuCl3·nH2O, en utilisant le diyne 17, qui 

contient un pont benzoyle, avec le 1,4-diméthoxy-but-2-yne 51 comme substrat modèle. Nous 

avons examiné différents paramètres en vue d’optimiser les conditions de la réaction. Nous 

avons ainsi fait varier la température, le nombre d’équivalents d’alcyne, le pourcentage de 

RuCl3·nH2O et enfin le temps de réaction. Nous avons ainsi pu établir que les meilleures 

conditions étaient d’opérer avec 2 équivalents d’alcyne, 5% molaire de RuCl3·nH2O, à 50 °C 

pour une durée de deux heures. Dans ces conditions réactionnelles, le dérivé 65 a été isolé avec 

72% de rendement. 

Table R1. Optimisation des conditions de la réaction 

 

Entrée 17/51 T (°C) t (h) Conv. (%)b Rdt (%)c 

1 1:6 110 18 > 99 86 

2 1:4 80 18 > 99 74 

3 1:3 80 18 > 99 73 

4a 1:3 80 18 60 40 

5 1:3 50 18 > 99 75 

6 1:2 50 18 > 99 72 

7 1:2 50 4 > 99 73 

8 1:2 50 2 > 99 72 

9b 1:2 50 18 40 nd 

a 2% mol RuCl3·nH2O (0.007 mmol) utilisés. b Sous atmosphère d’air. 

Ayant établi les conditions optimales de la réaction, nous nous sommes intéressés à la 

généralisation, en particulier l’effet du substituant en position C7. Il ressort ainsi qu’un phényle 

nBu

O

RuCl3·nH2O 5% mol

conditions sans-solvant
T, t

nBu
O

OMe

OMe

OMe

OMe

17 51 65

+
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augmente la réactivité par rapport à un groupe alkyle (n-butyle). L’introduction de groupements 

donneur ou accepteur conduit à peu de changement, les rendements restant du même ordre. Un 

groupement silyle à la place du groupe phényle apporte peu de modifications, et conduit aussi 

au produit attendu (Schéma R2). Ce résultat est intéressant car il permet d’envisager une post-

fonctionnalisation. Le groupement protecteur des alcools a aussi été examiné et les groupes 

benzyle ou tert-butyle sont compatibles avec les conditions reactionnelles, et conduisent ainsi 

aux produits 76 et 77 (80 et 81%). La structure de la fluorénone 77 a pu être établie sans 

ambiguïté par une analyse de diffraction des rayons X (Schéma R3).  

 

Schéma R2 

nBu

nBu
O

OMe

OMe

66
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Schéma R3 

Le pont reliant les deux fonctions diynes a ensuite été modifié: le groupe phenyle a ainsi 

été remplacé par un hétérocycle (furanyle, thiényle, cycle azoté); la cycloaddition se fait 

également pour conduire à des hétéro-fluorénones variées 83-87, 89 et 90 avec des rendements 

allant de 30 à 78 % (Schéma R4).  

 

Schéma R4 

Cette réaction de cycloaddition ne se limite pas aux diynes symétriques internes, 

puisqu’une série de diynes terminaux a éte utilisée. La réaction de ces derniers avec le diyne 17 

O

O

77

O
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est détaillée dans le Schéma R5. La faible régiosélectivité peut s’expliquer par un 

encombrement stérique proche des substituants présents. 

 

Schéma R5 

Pour valider l’intérêt synthétique de cette méthode catalytique, la réaction a été conduite 

sur une échelle d’un gramme dans les conditions pré-établies. La fluorénone 65 a pu être isolée 

avec un rendement de 71% (Schéma R6).  

 

Schéma R6 

Après avoir synthétisé une gamme de dérivés fluorénones, nous nous sommes tournés 

vers l’étude de la post-fonctionnalisation des composés 65, 69 et 76. En utilisant des protocoles 

décrits dans la littérature, nous avons pu accéder aux composés dihydrobenzo[b]furan 94, au 

diol 95, et au polycycle dibromé 96 avec de bons rendements (Schéma R7).  

nBu

O

RuCl3·nH2O 5% mol

conditions sans-solvant
80 °C, 20 h

nBu
O

OMe

OMe

OMe

OMe

17, 1.0 g 51 (2 équiv) 65, 71%

+
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Schéma R7 

La fluorénone silylée 69 s’est également avérée un bon intermédiaire pour accéder, 

après iodation au composé 97, lui même précurseur de dérivés fonctionnalisés par un alcyne ou 

un ester boronique par des réactions de couplage de Sonogashira ou Suzuki-Miyaura (Schéma 

R8).  

 

Schéma R8 
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La fluorénone bromée 73 s’est également révélée un bon adduit, puisque après couplage 

de Suzuki-Miyaura, elle a été transformée en ester boronique 100 avec un rendement de 85% 

(Schéma R9). 

 

Schéma R9 

Une nouvelle approche directe et éco-compatible vers la synthèse de fluorénones 

hautement substituées ainsi que des analogues a été mise au point. Cette méthode fait intervenir 

une cycloaddition [2+2+2] semi-intramoléculaire de cétones possédant un motif 1,6-diyne avec 

un alcyne, initié par le complexe RuCl3·nH2O. Ce procédé économique est conduit sans solvant, 

ni aucun ligand ou additif, et ce dans des conditions douces. Cette réaction a permis l’obtention 

de fluorénones polycycliques complexes, d’aza-fluorénones, des benzo[b]furanones et 

également des thiophénones polycycliques, avec de bons rendements. Des études ultérieures 

ont montré que les fluorénones ainsi obtenues pouvaient être converties en molécules plus 

complexes.  

Chapitre 3. Utilisation de la catalyse au ruthénium pour des cycloadditions [2+2+2] de 

diynes avec des cyanamides électroniquement enrichis: un accès facile aux dérivés 2-

aminopyridines 

Dans la continuité de notre précédent travail relatif aux cycloadditions [2+2+2] 

catalysées par un métal de transition, nous avons décidé d’explorer, la réaction de cycloaddition 

[2+2+2] de -diynes et cyanamides dans le but de synthétiser des dérivés 2-aminopyridines. 

a. Cycloaddition [2+2+2] d’-diynes avec des cyanamides catalysée par RuCl3·nH2O 

Différent diynes et cyanamides ont été efficacement préparés. La diyne 101 et le 

diméthyl cyanamide 154 ont été choisis comme substrats modèles pour optimiser les conditions 
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réactionnelles. Nous avons commencé l’étude avec 5% molaire de RuCl3·nH2O, dans des 

conditions sans solvant. Un examen plus approfondi a montré qu’il fallait opérer à 110 °C pour 

une durée de 18 heures. 

Table R2. Optimisation des conditions de la réaction  

 

Entrée 101/154 T (°C) Conv. (%)b Rdt (%)c 

1 1:6 110 >99 75 

2 1:3 110 >99 76 

3a,b 1:3 110 50 nd 

4 1:3 80 90 72 

5 1:3 50 nr nd 

6 1:2 80 30 nd 

7b 1:2 90 70 nd 

8b 1:2 100 93 70 

9 1:2 110 >99 74 
a 0.02 mmol of RuCl3·nH2O (2% mol) utilisés. b 24 heures de réaction. 

Après avoir mis au point les conditions pour réactionnelles, nous avons évalué la 

réactivité de divers diynes et cyanamides. Les résultats sont regroupés dans le Schéma R10. 

Une série de cyanamides obtenus à partir d’amines secondaires ont été soumis à la réaction de 

cycloaddition pour conduire aux 2-aminopyridines correspondantes avec de bons rendements. 

Par exemple, des diynes symétriques portant diverses fonctions telles que des esters, cétones 

ou amides sont compatibles.  
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Schéma R10 

La régiosélectivité de la réaction de cycloaddition de diynes-1,6 non symétriques a aussi 

été étudiée, comme indiqué dans le Schéma R11. Les diynes-1,6 portant un substituant méthyle 

ou phényle ont été mis en réaction avec la 4-carbonitrile morpholine et ont conduit à 2 

régioisomères avec une sélectivité réduite et un rendement global plus faible. Le ratio des deux 

régioisomères a été déterminé par analyse RMN 1H du brut réactionnel.  



Résumé 

 18 

 

Schéma R11 

Un exemple de nitrile électro-déficient a également été considéré, plus précisement le 

malononitrile qui a été soumis à la cycloaddition avec le diyne 108 comportant un pont azoté, 

dans les conditions usuelles de 110 °C en présence de RuCl3·nH2O.  Dans ce cas, le cycloadduit 

195 est obtenu avec une conversion de 22%, malgré un taux de catalyseur de 10% molaire 

(Schéma R12). Ce résultat est nettement inférieur à ceux obtenus avec des nitriles enrichis.  

 

Schéma R12 

b. Cycloadditions [2+2+2] d’-diynes avec des cyanamides catalysés par le complexe 

Cp*Ru(CH3CN)3PF6  

Au cours du travail précédent faisant intervenir le ruthénium sous forme neutre 

(RuCl3·nH2O) pour la mise en œuvre de cycloaddition [2+2+2] d’-diynes et cyanamides, 

nous avions démontré que le ruthénium sous forme cationique était également très efficace pour 

cette réaction. Les essais initiaux ont porté sur l’utilisation du diyne 101 et du cyanamide 155, 

dans des conditions sans solvant à température ambiante. La réaction a été optimisée en faisant 

varier différents paramètres. Nous avons ainsi montré que la réaction pouvait être conduite 
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efficacement avec 2% molaire du complexe pentaméthylcyclopentadiényle (Cp*) 

Cp*Ru(CH3CN)3PF6 pour fournir la 2-aminopyridine 169 avec un excellent rendement et un 

temps de réaction de 5 min. Par ailleurs, nous avons également découvert que lorsque la réaction 

était réalisée avec un petit volume de dichlorométhane, avec le diyne 109 comme modèle, il 

était possible de réduire à la fois le taux catalytique à 1% molaire et le nombre d’équivalents de 

cyanamide à 1.2 équivalents (entrée 8). L’utilité de cette méthode a été démontrée en conduisant 

la réaction sur une échelle d’un gramme, avec le diyne 109 comme modèle. La 2-aminopyridine 

188 a ainsi été obtenue avec 82% de rendement (entrée 10). 

Table R3. Optimisation des conditions de la réaction  

 

Entrée Diyne Catalyst (x% mol) t Produit Conv. (%) Rdt (%) 

1 101 Ru(PPh3)3Cl2 (5) 8 h 169 nr nd 

2 101 [Ru(p-cymene)Cl2]2 (2.5) 8 h 169 nr nd 

3 101 Cp*Ru(cod)Cl (2) 5 min 169 >99 85 

4 101 Cp*Ru(CH3CN)3PF6 (5) 5 min 169 >99 93 

5 101 Cp*Ru(CH3CN)3PF6 (2) 5 min 169 >99 91 

6 101 Cp*Ru(CH3CN)3PF6 (1) 60 min 169 80 nd 

7 109 Cp*Ru(CH3CN)3PF6 (2) 3 min 188 >99 94 

8a 109 Cp*Ru(CH3CN)3PF6 (1) 2 min 188 >99 95 

9a 109 Cp*Ru(CH3CN)3PF6 (0.5) 18 h 188 90 82 

10b 109 Cp*Ru(CH3CN)3PF6 (2) 5 min 188 >99 82 

a 0.6 mmol de cyanamide 155 et 0.5 mL de dichlorométhane utilisés. b échelle d’un gramme 

Dans un second temps et comme précédemment, ayant établi les conditions optimales 

de la réaction, nous nous sommes intéressés à la généralisation de cette reaction en faisant 

intervenir divers diynes substitués et le cyanamide 155 comme partenaire (Schéma R13). Une 

grande variété de diynes symétriques, pontés avec un carbone quaternaire, un oxygène ou 

encore un azote protégé ont été soumis au cyanamide 155 pour donner les 2-aminopyridines 

correspondantes. L’introduction de groupements volumineux tels que le groupe tert-butyle ou 

iso-propyle conduit également à d’excellents rendements. De même, des groupes fonctionnels 

portés par le carbone quaternaire, tels que des diols, des nitriles, des diones ont également été 

Cp*Ru(CH3CN)3PF6 
x% mol

CN

N N

NR

R

R

R

conditions sans-solvant
t.a., t

155101, R  = Me

109, R = H

169 or 188

MeO2C

MeO2C

O
O

MeO2C

MeO2C
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utilisés avec succès. La formation des composés 186 et 187 montre aussi que la réaction est 

compatible avec des diynes internes (Schéma R13).  

 

Schéma R13 

Par la suite, dans le but d’examiner les limites de la réaction, un certain nombre d’amines 

secondaires portées sur le cyanamide a été testé. Comme indiqué dans le Schéma R14, les 

résultats se sont avérés très probants avec l’obtention d’un grand nombre de 2-aminopyridines.  
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Schéma R14 

Comme dans le cas du ruthénium neutre (RuCl3·nH2O), la régiosélectivité a été 

examinée. Dans ce cas, il a été observé que la régiosélectivité ainsi que le rendement étaient 

plus élevés. Notamment, le régioisomère ortho était formé majoritairement (Schéma R15). De 

plus la réaction tolère un grand nombre de fonctions avec l’obtention des halopyridines, 

diaminopyridines, et vinylpyridines avec des rendements allant de 65 à 93%. La structure du 

produit 220 a été confirmée sans ambiguïté par une étude de diffraction des rayons X (Schéma 

R15). 
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Schéma R15 

Une étude ultérieure a par ailleurs montré que la réaction était possible avec les diynes-

1,7 138 (lien oxygéné) et 139 (lien azoté). En présence de 5% molaire de Cp*Ru(CH3CN)3PF6, 

ils conduisent aux pyridines bicycliques à 6 chaînons 230-233 avec des rendements de 34 à 

86% et une excellente régiosélectivité (Schéma R16).  
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Schéma R16 

Le composé spirocyclique 237 a été isolé à partir d’un dérivé du mestranol avec 58% de 

rendement et une haute régiosélectivité. La structure de ce dernier a été précisément établie par 

diffraction des rayons X (Schéma R17).  

 

Schéma R17 

c. Obtention d’aza-fluorénols et aza-fluorénones par cycloaddition [2+2+2] catalysée par 

le complexe Cp*Ru(CH3CN)3PF6  

En utilisant cette méthode catalytique et éco-compatible, une famille d’aza-fluorénols 

et aza-fluorénones a été préparée. Le choix de la position du substituant sur le diyne permet de 

contrôler la régiosélectivité du substituant sur le cycle pyridine. La structure de l’azafluorénone 

248 a été formellement établie par diffraction des rayons X (Schéma R18).  
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Schéma R18 

En se basant sur les résultats obtenus, ainsi que sur ceux décrits dans la littérature, nous 

proposons le mécanisme ci-dessous afin d’expliquer la régiosélectivité observée (Schéma R19). 

La réaction passerait par un intermédiaire ruthénacyclopentadiène Ru-II, dont la formation 

serait suivie par l’insertion du cyanamide et l’élimination de l’espèce ruthénium, conduisant 

majoritairement à la pyridine ortho-substituée la moins encombrée. 
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Schéma R19 

La synthèse de composés à motif 2-aminopyridine hautement substitués par 

cycloaddition [2+2+2] de -diynes avec des cyanamides via une catalyse en présence de 

complexes de ruthénium aussi bien sous forme neutre (RuCl3·nH2O) que cationique 

(Cp*Ru(CH3CN)3PF6), a donc été réalisée. Le complexe RuCl3·nH2O peu onéreux s’est révélé 

très efficace en tant que catalyseur pour la préparation de 2-aminopyridines substituées. La 

réaction se déroule en présence de 5% molaire de RuCl3·nH2O sans l’ajout de ligand ou autre 

additif, et en l’absence de solvant. Le ruthénium complexe cationique (Cp*Ru(CH3CN)3PF6) 

s’est avéré très efficace pour ce type de cycloaddition aussi bien dans le cas des diynes-1,6 ou 

-1,7, en présence de cyanamides et dans des dans des conditions douces. Diverses diynes, 

terminaux ou internes possédant des groupes fonctionnels variés se sont révélés compatibles 

avec ce système catalytique. Une excellente régiosélectivité a été obtenue dans le cas de diynes 

dissymétriques. L’utilité de ce protocole a ensuite été démontrée avec la synthèse de molécules 

à haute valeur ajoutée telles que des halopyridines, des diaminopyridines ou encore des 

vinylpyridines en une seule étape. Cette réaction a pu conduire à des pyridines polycycliques 

incluant des hétéroatomes, à partir de diynes-1,7 et cyanamides. La fonctionnalisation du 

mestranol, molécule biologiquement active, a pu aussi valider le potentiel de cette 

méthodologie. Une famille d’aza-fluorénones et aza-fluorénols a également été préparée 

efficacement selon cette méthode éco-compatible et directe.  
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Chapitre 4. Synthèse asymétrique de 1,3-dihydroisobenzofuranes 1,1-disubstitués à partir 

de triynes prochiraux et des alcynes internes catalysée par des complexes de rhodium 

Les 1,3-dihydroisobenzofuranes sont une classe de composés hétérocycliques oxygénés 

très présents dans les composés naturels biologiquement actifs172 ainsi que dans un certain 

nombre de médicaments.173 Plusieurs méthodes permettent d’accèder à ces structures, parmi 

lesquelles on peut citer la cyclotrimérisation [2+2+2] d’alcynes,7 les réactions de Diels-

Alder,175 ou encore la transformation de phtalides176. Parmi ces méthodes, la cycloaddition 

[2+2+2] catalysée par les métaux de transition constitue l’une des plus efficaces comme indiqué 

dans le chapitre I.  

Concernant la préparation de 1,3- dihydroisobenzofuranes contenant un centre chiral en 

position , peu d’exemples ont été rapportés, c’est pourquoi leur accès constitue un défi.177 

La réaction de désymétrisation de composés prochiraux constitue un moyen efficace 

pour accéder à des molécules complexes possédant un centre stéréogène. C’est pourquoi nous 

avons envisagé que la construction de 1,3-dihydroisobenzofuranes optiquement actifs pouvait 

être accomplie via une cycloaddition [2+2+2] de triynes oxygénés avec un alcyne interne 

catalysée par un métal de transition comme indiqué dans le Schéma R20. 

 

Schéma R20 

Les triynes de départs peuvent être facilement obtenus à partir de produits commerciaux 

selon la rétrosynthèse décrite dans le schéma R21. 

 

Schéma R21 
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Dans un premier temps, nous nous sommes intéressés à la préparation des produits de 

départ. Les triynes ont été préparés en deux étapes. Une condensation d’un acétylure sur un 

chlorure d’acide conduit à un alcool quaternaire, qui peut ensuite être condensé sur le bromure 

de propargyle ou le 1-bromo-but-2-yne pour conduire au triyne. Les alcynes internes ont été 

obtenus à partir du 2-butyl-1,4-diol dont les fonctions alcools ont été protégées par différents 

groupements (OAc, OMe, …).  

a. Optimisation des conditions de la réaction 

L’étude de la réaction de cycloaddition [2+2+2] a pu ainsi être menée, en utilisant le 

triyne 255 et le 1,4-diacétoxy-but-2-yne 262 comme modèles pour conduire au 1,3-

dihydroisobenzofurane 266. Différents catalyseurs de rhodium ont été évalués, en opérant dans 

le dichlorométhane à une température de 40°C, en présence de (R)-BINAP comme ligand. Les 

résultats sont regroupés dans le tableau R4, et montrent que la combinaison du catalyseur 

Rh(cod)2BF4 et du (R)-BINAP est la plus efficace pour mener la cycloaddition. Il est à noter 

que la réaction n’a pas lieu en absence de phosphine. 

Table R4. Optimisation des conditions de la réaction  

 

Entrée [Rh] catalyseur Additif (x% mol) Rendement (%)b ee (%) 

1 Rh(cod)2BF4 / 50 50 

2 [Rh(hexadiene)Cl]2 AgSbF6 (5) 74 20 

3a [Rh(ethylene)Cl]2 NaBArF
4 (10) 72 49 

4b Rh(cod)2BF4 / 50 50 

5c Rh(cod)2BF4 / nr / 

6d Rh(cod)2BF4 / 66 43 

7e Rh(cod)2BF4 / 50 50 

a ArF = 3,5-(CF3)2C6H3. b 10 % molaire de (R)-BINAP ont été utilisés. c Pas de ligand. d 

[Rh]/(R)-BINAP complexe hydrogéné au préalable (H2, 1 atm, rt, 1 h). e Addition lente 

du triyne 255 en 3 heures à l’aide d’une seringue munie d’une pompe.  

b. Influence de la phosphine chirale et du solvant 
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Ayant établi les conditions optimales pour mener la réaction de cycloaddition, nous 

avons examiné l’influence de différentes phosphines, comme le (R)-Xylyl-BINAP, le (R)-

Difluorphos ou encore le (R)-MeOBiphep. Nous n’avons pas noté d’amélioration significative. 

De même, plusieurs solvants ont été testés, parmi lesquels le THF, le dichloroéthane, ou le 

xylène. Le toluène s’est avéré un bon candidat puisque il a donné un ee identique à celui obtenu 

avec le DCM, et avec un rendement supérieur (70%); toutefois cela nécessite d’opérer à une 

température de 100 °C. 

c. Influence de l’alcyne interne symétrique 

Par la suite, nous avons examiné l’influence de différents groupes protecteurs sur les 

fonctions alcools en utilisant les conditions mises au point, à savoir des groupements donneurs 

ou électroattracteurs. De même, les fonctions alcools ont été remplacées par des groupes alkyles 

ou esters. Il est à noter qu’aucune réaction n’a lieu avec deux groupements phényles (composé 

272 voir Schéma R22). Les rendements varient entre 20% et 79%, tandis que les ee restent 

modérés à faibles (21-50%). 
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Schéma R22 

d. Influence du substituant porté par le carbone quaternaire du triyne 

Pour compléter cette étude, nous nous sommes intéressés à l’influence stérique 

engendrée sur les triynes, en remplaçant le groupe méthyle par un groupement plus volumineux, 

comme le n-propyle ou tert-butyle ou encore un phényle. L’augmentation de l’encombrement 

stérique en position R’ ne conduit pas à une amélioration du rendement ni de l’excès 

énantiomérique (Schéma R23). 
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Schéma R23 

e. Mécanisme proposé 

Afin de rendre compte de la stéréosélectivité observée, nous nous sommes intéressés au 

cycle catalytique de la réaction. Un des mécanismes possible est développé dans le Schéma 

R24.  

La réaction pourrait débuter par le couplage oxydatif de deux fonctions alcynes issues 

du triyne et de l’alcyne avec l’espèce rhodium pour conduire à l’intermédiaire 

rhodacyclopentadiène Rh-I. Une coordination intramoléculaire ultérieure avec l’une des 

fonctions alcynes portée par le carbone quaternaire fournirait l’intermédiaire Rh-II. Ceci 

pourrait être considéré comme l’étape stéréo déterminante pour expliquer l’énantiosélectivité 

observée en raison de la gêne stérique entre le groupe alcyne et le ligand chiral. L’insertion 

intramoléculaire de l’alcyne sur le rhodium de Rh-II délivrerait alors l’intermédiaire à 7 

chainons Rh-III, qui subirait une élimination réductrice pour donner le 1,3-

dihydroisobenzofurane avec un excès énantiomérique (Schéma R24). 
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Schéma R24 

Dans ce chapitre, nous avons donc démontré que la cycloaddition [2+2+2] conduite en 

présence d’un catalyseur au rhodium Rh(cod)2BF4, en présence d’une phosphine chirale, était 

un moyen d’accès rapide vers les 1,3-dihydroisobenzofuranes énantiomériquement enrichis. 

Bien que les rendements et l’énantiosélectivité restent à améliorer, cette méthode est 

prometteuse.  
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General introduction 

Heterocycles represent by far the largest of classical divisions in organic chemistry and 

are of great importance biologically and industrially. The majority of pharmaceuticals and 

biologically active agrochemicals are heterocyclic while several additives and modifiers used 

in industrial applications in the field of cosmetics, reprography, information storage and plastics 

are heterocyclic in nature. Over the past century, heterocycles have constituted one of the largest 

areas of research in organic chemistry. They have contributed to the development of humanity 

from a biological and industrial point of view as well as to the understanding of life processes 

and to the improvement of the quality of life. 

In this context in the field of chemistry, efficient clean methods to access functionalized 

heterocycles are highly suitable. One of the key principles of “Green Chemistry”1 (Figure 1) is 

to limit the use of organic solvents in industrial processes. Indeed, these solvents are often toxic, 

expensive and generate difficulties in disposal and reprocessing. A major research effort in 

recent years is to develop new more environmentally friendly synthetic methods. Even if water 

seems to be the best choice because of its abundance and non-toxicity,2 the development of 

solvent-free processes during the reaction and purification, is undeniably the ideal solution.3 A 

solvent-free system is not only environmentally friendly but also provides effective, safer and 

more economical solutions for industrial partners (temperature and reaction time decreased, 

reducing the size of the reactors, process intensification, no extra costs incurred relating to the 

purchase and processing of solvents). 

                                                 
1 Anastas, P.T.; Warner, J. C. Green chemistry: Theory and Practice, Oxford University Press, New York, 1998, 

30.  
2 Reviews: (a) Li, C. J. Chem. Rev. 2005, 105, 3095. (b) Pinault, N.; Bruce, D.W. Coord. Chem. Rev. 2003, 241, 

1. (c) Lindström, U, M. Chem. Rev. 2002, 102, 2751. (d) Li, C. J. Chem. Rev. 1993, 93, 2023. (e) Li, C.-J.; Chan, 

T.H. Tetrahedron 1999, 55, 11149. 
3 a) Tanaka, K. Solvent-Free Organic Synthesis, Wiley-VCH, Weinheim, Germany, 2003. (b) Tanaka, K.; Toda, 

F. Chem. Rev. 2000, 100, 1025. (c) Metzger, J. O. Angew. Chem., Int. Ed. 1998, 37, 2975. (d) Cave, G. W. V.; 

Raston, C. L.; Scott, J. L. Chem. Comm. 2001, 2159. (e) Walsh, P. J.; Li H.; de Parrodi, C. A. Chem. Rev. 2007, 

107, 2503. (f) Marvaniya, H. M.; Modi, K. N.; Sen, D. J. Greener reactions under solvent free conditions, Int J. 

Drug Dev. & Res. April-June 2011, 3, 34. (g) Varma, R. S. Green Chem. 1999, 1, 43. (h) Capello, C.; Fischer, U.; 

Hungerbühler, K. Green Chem. 2007, 9, 927. (h) Keith, L. H.; Gron, L. U.; Young, J. L.; Chem. Rev. 2007, 107, 

2695.  
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Figure 1 

Functionalization of aromatic or heteroaromatic compounds has been a major topic of 

study among organic chemists, and has been used both in industrial4 and academic laboratories. 

One of the best known and traditional methods to functionalize aromatic rings involves the 

stepwise addition of electrophilic substituents, using Friedel-Crafts alkylation5 or acylation6. 

This method is very useful for the synthesis of polysubstituted benzene derivatives, but may 

cause problems in terms of regioselectivity (and therefore yield), which requires special 

attention in the choice of reagents and synthesis plan of the target compound (Scheme 1). 

Another method, transition-metal-catalyzed [2+2+2] cycloaddition reactions,7  involves the 

                                                 
4  Elango, V.; Murhpy, M. A.; Smith, B. L.; Davenport, K. G.; Mott, G. N.; Moss, G. L. US Patent 4981995, 

1991.  
5  Groves, J. K. Chem. Soc. Rev. 1972, 1, 73.  
6  Price, C. C. Org. React. 1946, 3, 1. 
7 For selected recent reviews and chapters, see: (a) Peter. K.; Vollhardt, C. Angew. Chem. Int. Ed. 1984, 23, 539. 

(b) Varela, J. A.; Saá, C. Chem. Rev. 2003, 103, 3787. (c) Kotha, S.; Brahmachary, E.; Lahiri, K. Eur. J. Org. 

Chem. 2005, 2005, 4741. (d) Gandon, V.; Aubert, C.; Malacria, M. Curr. Org. Chem. 2005, 9, 1699. (e) Gandon, 

V.; Aubert, C.; Malacria, M. Chem. Commun. 2006, 21, 2209. (f) Chopade, P. R.; Louie, J. Adv. Synth. Catal. 

2006, 348, 2307. (g) Heller, B.; Hapke, M. Chem. Soc. Rev. 2007, 36, 1085. (h) Tanaka, K. Synlett 2007, 1977. (i) 

Varela, J. A.; Saa, C. Synlett 2008, 2571. (j) Tanaka, K. Chem. - Asian J. 2009, 4, 508. (k) Leboeuf, D.; Gandon, 

V.; Malacria, M. in: Handbook of Cyclization Reactions, Vol. 1, (Ed.: S. Ma), Wiley-VCH, Weinheim, 2009, pp 

367. (l) Domínguez, G.; Pérez-Castells, J. Chem. Soc. Rev. 2011, 40, 3430. (m) Hua, R.; Abrenica, V. A.; Wang, 

P.; others. Curr. Org. Chem. 2011, 15, 712. (n) Shaaban, M. R.; El-Sayed, R.; Elwahy, A. H. M. Tetrahedron 

2011, 67, 6095. (o) Weding, N.; Hapke, M. Chem. Soc. Rev. 2011, 40, 4525. (p) Broere, D. L.; Ruijter, E. Synthesis 

2012, 44, 2639. (q) Okamoto, S. Heterocycles 2012, 85, 1579. (r) Tanaka, K. Heterocycles 2012, 85, 1017. (s) 

Wang, C.; Wan, B. Chin. Sci. Bull. 2012, 57, 2338. (t) Okamoto, S.; Sugiyama, Y. Synlett 2013, 24, 1044. (u) 
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construction of aromatic rings in a single step, thereby obtaining highly functionalized aromatic 

rings in a one pot reaction (Scheme 1).  

 

Scheme 1 

Since Berthelot’s pioneering thermal cyclization of three acetylene leading to benzene 

formation discovered in 1866,8 many advances have been reported in this field. The first metal-

catalyzed [2+2+2] cycloaddition reaction was reported in 1948 by Reppe and Schweckendiek 

and involved Ni(CO)2(PPh3)2 complex. This cyclotrimerization of monoalkynes occurred at 60-

70 °C to provide 1,3,4- and 1,3,5-trisubstituted benzene derivatives in quantitative yield with 

no regioselectivity (Scheme 2). 9  After this pioneering work, extensive studies have been 

conducted using cobalt, rhodium, nickel, ruthenium, and iridium.  

 

Scheme 2 

                                                 
Yamamoto, Y. Heterocycles 2013, 87, 2459. (v) Kumar, P.; Louie, J. Nickel-Mediated [2 + 2 + 2] Cycloaddition, 

In Transition-Metal-Mediated Aromatic Ring Construction; Tanaka, K., Ed.; John Wiley & Sons, Inc.: Hoboken, 

NJ, 2013. (w) Yamamoto, Y. Ruthenium-Mediated [2 + 2 + 2] Cycloaddition, In Transition-Metal-Mediated 

Aromatic Ring Construction; Tanaka, K., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, 2013. (x) Amatore, M.; 

Aubert, C. Eur. J. Org. Chem. 2015, 265. (y) Satoh, Y.; Obora, Y. Eur. J. Org. Chem. 2015, 2015, 5041. (z) Jungk, 

P.; Täufer, T.; Thiel, I.; Hapke, M. Synthesis 2016, 48, 2026.  
8 Berthelot, M. Ann. Chim. 1866, 9, 445.  
9 Reppe, W.; Schweckendiek, W. J. Justus Liebigs Ann. Chem. 1948, 560, 104. 
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In 1973, Yamazaki and Wakatsuki discovered that the substituted pyridines can be 

stepwise assembled from two acetylenes and one nitrile by using a catalytic amount of π-

cyclopentadienyl(triphenylphosphine)cobalt complex (Scheme 3).10,11  

 

Scheme 3 

Apart from the synthesis of benzenes and pyridines via cyclotrimerization of three 

alkynes or two alkynes with one nitrile, other unsaturated carbocyclic and heterocyclic 

compounds such as 1,3-cyclohexadienes, 1,2-dihydropyridines, thioxothiopyranes, 2-pyrones, 

2-pyridones, and thiopyridones were also synthesized reacting two alkynes with the 

corresponding unsaturated alkenes, allenes, carbonyl compounds, imines, carbon disulfide, 

carbon dioxide, isocyanates, and thiocyanates (Scheme 4). The most commonly studied work 

is the synthesis of multiple substituted benzene and pyridine derivatives, which is the topic of 

this work.  

                                                 
10 Wakatsuki, Y.; Yamazaki, H. J. Chem. Soc. Chem. Commun. 1973, 280.  
11 Wakatsuki, Y.; Yamazaki, H. Tetrahedron. Lett. 1973, 3383. 
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Scheme 4 

 

  

R R

R R

+

R' R"

O

S C S

O C O

N

C

O

R'

NR'

·
R'

R"

R'

N

C

S

R'

R' R"

R'

N

R" R

R

R'

R"

R

R

R

R

R

R

R"

R'

N

R

R

R'

R

R

O
R

R

R"
R

R
R'

N
R

R

R

R R'

R"

S
R

R

R

R S

O
R

R

R

R O

N
R

R

R

R O

R'
N

R

R

R

R S

R'

R

R

R

R

R'



General introduction 

 38 

 



 

 

 

 

 

 

 

 

 

 

Chapter I: Bibliography  
  



 

 

 



Chapter I 

 39 

Chapter I: Bibliography 

The first chapter will present selected literature data concerning the formation of 

benzene via transition-metal-catalyzed [2+2+2] cycloaddition reactions. In each section, we 

will deliver the works based on three types of cycloaddition reactions (intermolecular, partially 

intramolecular, and totally intramolecular, Scheme 5). Practical and general catalyst, 

construction of novel scaffolds, recent advances in mechanistic insight, regioselectivity and 

chemoselectivity issues will also be described.  

 

Scheme 5 

1. Intermolecular reactions 

The intermolecular [2+2+2] alkyne cyclotrimerization is considered as one of the most 

efficient synthetic method to access benzene skeleton. Various types of transition metal 

complexes have been used for this transformation. However, the reaction is limited because of 

the low chemo- and regioselectivity. For example, as shown in Scheme 6, the homo-

cyclotrimerization of a single symmetrical alkyne gives hexa-substituted benzenes (Eq. 1), the 

cycloaddition of unsymmetrical alkynes produces two regioisomers (Eq. 2), and the 

combination of two or three different alkynes leads to the formation of complex mixtures (Eq. 

3). 

+(1) Intermolecular:

(2) Partially intramolecular: +

(3) Totally intramolecular:

M[   ]

M[   ]

M[   ]
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Scheme 6 

1.1. Cyclotrimerization of one alkyne 

In 1993, Rothwell and co-workers reported the first regioselective transition-metal-

catalyzed [2+2+2] cycloaddition reactions, which selectively produced the symmetrical 1,3,5- 

and unsymmetrical 1,2,4-substituted benzene derivatives using a catalytic amount of titanium 

complex. 12  It was demonstrated that the steric effects controlled the regioselectivity. For 

instance, in the presence of 0.004 mol % titanium catalyst, cyclotrimerization of 

phenylacetylene led to trisubstituted benzenes in quantitative yield, with 1,2,4-substituted 

regioisomer as the major product (ratio = 7:93). The more sterically hindered alkynes, such as 

trimethylsilyl acetylene and tert-butyl acetylene, afforded the 1,3,5-substituted products in high 

yields (ratio > 95:5), albeit with higher catalyst loading and prolonged reaction time (Scheme 

7).  

                                                 
12 Hill, J. E.; Balaich, G.; Fanwick, P. E.; Rothwell, I. P. Organometallics 1993, 12, 2911. 
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Scheme 7 

After this pioneering work, many late transition metals have been used for the 

regioselective synthesis of benzene derivatives. The most common employed metals were 

cobalt, rhodium, ruthenium, iridium, nickel, and iron. An interesting example was reported by 

Hess and co-workers, who described a solvent-dependent regioselective [2+2+2] 

cyclotrimerization of phenylacetylene using a cobalt complex catalyst containing a disulfide 

ligand (Scheme 8).13 Optimization of different disulfide ligands in various solvents was also 

studied in this reaction. The result indicates that the coordination ability of the solvent greatly 

influenced the regioselectivity of the cyclotrimerizations. 

 

Scheme 8 

Sivasankar and co-workers reported a series of highly efficient pincer ligands stabilized 

Ni(II) complexes as catalyst to promote the regioselective [2+2+2] cyclotrimerization of 

various alkynes. The complex bearing di-tert-butyl groups on the phosphine ligand acts as the 

best catalyst in this reaction.14 They observed that the selectivity correlated well with the 

electronic feature of the alkynes, the electron-rich alkynes were trimerized to give 1,3,5-

                                                 
13 Hilt, G.; Hengst, C.; Hess, W. Eur. J. Org. Chem. 2008, 2293.  
14 Tamizmani, M.; Sivasankar, C. J. Organomet. Chem. 2017, DOI: 10.1016/j.jorganchem.2017.02.039.  
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substituted benzenes as the major products, whereas the electron-deficient alkynes afforded the 

1,2,4-substituted benzenes as the major products (Scheme 9). 

 

Scheme 9 

Transition-metal-catalyzed [2+2+2] cyclotrimerization of disubstituted acetylene is 

considered as an elegant and efficient method to access hexa-substituted benzene derivatives in 

a single synthetic operation. Many groups have reported such reactions, including Fréchet and 

co-workers for the convergent synthesis of dendrimers using a cobalt-catalyzed [2+2+2] 

cyclotrimerization of bisdendritic alkynes, affording the corresponding benzene-cored 

dendrimers in 36-83% yields (Scheme 10).15  

 

Scheme 10 

Zhao and co-workers reported a facile and efficient method for the regioselective 

synthesis of polysubstituted benzenes via nickel-catalyzed [2+2+2] cyclotrimerization of 

simple unactivated alkyl(aryl)acetylenes and diarylacetylenes (Scheme 11).16 They found that 

the combination of Ni(acac)2, imidazonium salt (IBz·HBr) and Grignard reagent (nBuMgCl) at 

                                                 
15 Hecht, S.; Fréchet, J. M. J. Am. Chem. Soc. 1999, 121, 4084. 
16 Xue, F.; Loh, Y. K.; Song, X.; Teo, W. J.; Chua, J. Y. D. Zhao, J.; Hor, T. S. A. Chem. Asian J. 2017, 12, 168.  
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60 °C led exclusively to the formation of 1,2,4-substituted isomer in up to 98% yield. This 

method was also utilized to access hexa-substituted benzenes by using IBz·HCl as the 

imidazolium salt partner providing a convenient synthetic route to various -conjugated 

systems. 

 

Scheme 11 

1.2. Cycloaddition between two different alkynes. 

Takeuchi and Nakaya 17  described the chemoselective iridium-catalyzed [2+2+2] 

cyclotrimerization of electron-deficient alkynes with electron-rich internal alkynes (Scheme 

12). It was demonstrated that the chemoselectivity was controlled by the nature of the phosphine 

ligands. When 1,2-bis(diphenylphosphino)ethane (dppe) was used as a ligand, the electron-rich 

iridium/dppe complex coordinates with two electron-deficient alkynes to form 

iridacyclopentadiene Ir-I which undergoes coordination and insertion of another electron-rich 

alkyne to furnish the dicarbomethoxyl-substituted product as a major product. On the other 

hand, when electron-deficient 1,2-bis(dipentafluorophenylphosphino)ethane (fdppe) was 

employed, the reaction proceeded via iridacyclopentadiene Ir-II as the intermediate, affording 

the tetracarbomethoxyl-substituted compound as a major product. This reaction provided a 

useful and practical method for the synthesis of polycyclic substituted benzene derivatives. 

                                                 
17 Takeuchi, R.; Nakaya, Y. Org. Lett. 2003, 5, 3659.  
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Scheme 12 

The same group also described in 2008 an iridium-catalyzed chemo- and regioselective 

synthesis of 1,3,5-substituted benzene derivatives via [2+2+2] cyclotrimerization of two 

different terminal alkynes.18 In the presence of Ir/fdppe catalyst system, a variety of 1,3,5-

substituted benzenes was obtained as a single regioisomer in 58-96% yields. However, this 

strategy required the combination of one strong electron-deficient alkyne and one electron-rich 

alkyne (Scheme 13). 

 

Scheme 13 

                                                 
18 Onodera, G.; Matsuzawa, M.; Aizawa, T.; Kitahara, T.; Shimizu, Y.; Kezuka, S.; Takeuchi, R. Synlett 2008, 

755. 
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1.3. Cycloaddition of three different alkynes 

The intermolecular [2+2+2] cyclotrimerization of three different alkynes is difficult to 

control. Early transition metals such as zirconium 19  and titanium 20  were used for such 

transformation. However, the use of stoichiometric catalyst and harsh reaction conditions were 

required in some cases.  

In 2004, Yamamoto and co-workers developed a chemo- and regioselective 

intermolecular cyclotrimerization of three different unsymmetrical alkynes using 

Cp*Ru(cod)Cl as the catalyst.21 The reaction is initiated by the oxidative cyclization of an 

alkynylboronate and a propagyl alcohol to form the key ruthenacycle intermediate Ru-I, which 

undergoes insertion of the third alkyne to afford the intermediate arylboronate. The subsequent 

one-pot functionalization of these arylboronates could further be converted into several 

substituted aromatic compounds such as biaryls, boraphthalides, phthalides, and imidates 

(Scheme 14).  

 

Scheme 14 

                                                 
19 (a) Takahashi, T.; Kotora, M.; Xi, Z. J. Chem. Soc. Chem. Commun. 1995, 361. (b) Takahashi, T.; Tsai, F.-Y.; 

Li, Y.; Nakajima, K.; Kotora, M. J. Am. Chem. Soc. 1999, 121, 11093. 
20 (a) Suzuki, D.; Urabe, H.; Sato, F. J. Am. Chem. Soc. 2001, 123, 7925. (b) Tanaka, R.; Nakano, Y.; Suzuki, D.; 

Urabe, H.; Sato, F. J. Am. Chem. Soc. 2002, 124, 9682. 
21 (a) Yamamoto, Y.; Ishii, J.; Nishiyama, H.; Itoh, K. J. Am. Chem. Soc. 2004, 126, 3712. (b) Yamamoto, Y.; 

Ishii, J.; Nishiyama, H.; Itoh, K. J. Am. Chem. Soc. 2005, 127, 9625.  
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In 2005, Mitsudo and co-workers developed a ruthenium-catalyzed chemoselective 

[2+2+2] cycloaddition to form polysubstituted o-phthalates (Scheme 15).22 It was demonstrated 

that a high chemoselectivity and regioselectivity could be attained by controlling the molar ratio 

of the three substrates. The reaction is also influenced by the bulkiness of the two substituents 

on the internal and terminal alkynes. Mitsudo’s group proposed a plausible mechanism for the 

[2+2+2] cycloaddition. At the first step, the internal alkyne and DMAD react with the 

ruthenium to form the ruthenacyclopentadiene Ru-I intermediate, followed by an insertion of 

the terminal alkyne into the formed ruthenacycle. A subsequent reductive elimination would 

afford the final regioisomers and regenerate the ruthenium catalytic species. However, a large 

excess of internal alkyne was required to avoid the formation of side-products.  

 

Scheme 15 

                                                 
22 Ura, Y.; Sato, Y.; Tsujita, H.; Kondo, T.; Imachi, M.; Mitsudo, T. J. Mol. Catal. Chem. 2005, 239, 166. 
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1.4. Cyclotrimerization of two alkynes with another unsaturated substrate 

Tanaka and co-workers described a cationic rhodium-catalyzed intermolecular [2+2+2] 

cycloaddition reaction of a terminal alkyne, a dialkyl acetylenedicarboxylate, and an enol 

ester.23 A variety of tri- and tetra-substituted benzenes was obtained in 35-80% yields with 

complete regioselectivity. The proposed mechanism features the regioselective formation of the 

rhodacyclopentadiene Rh-I followed by the regioselective insertion of an enol acetate leading 

to the intermediate Rh-II, which is stabilized by the coordination of the carbonyl group with 

the cationic rhodium through a five-membered chelation. Finally, a subsequent reductive 

elimination affords the corresponding substituted benzenes and one equivalent of acetic acid 

(Scheme 16).  

 

Scheme 16 

Cheng and co-workers described a new and efficient Ni(dppe)Br2/Zn catalytic system 

for the cross intermolecular [2+2+2] cyclotrimerization of two alkynes with an allene.24 A 

                                                 
23 (a) Hara, H.; Hirano, M.; Tanaka, K. Org. Lett. 2008, 10, 2537. (b) Hara, H.; Hirano, M.; Tanaka, K. Tetrahedron 

2009, 65, 5093.  
24 Shanmugasundaram, M.; Wu, M.-S.; Cheng, C.-H. Org. Lett. 2001, 3, 4233.  
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variety of polysubstituted benzene derivatives was obtained in complete regioselectivity and 

high chemoselectivity. According to the proposed mechanism, at the first step, two molecules 

of propiolate are consumed in the presence of the catalytic Ni(0) species to form the 

nickellacyclopentadiene intermediate Ni-I, coordination and subsequent insertion of allene into 

a Ni(II)-carbon bond gives nickellacyclopentadiene intermediate Ni-II. Subsequent reductive 

elimination and isomerization provide the aromatic product and regenerate the Ni(0) catalyst. 

Notably, the results indicated that the presence of a strong electron-withdrawing ester group in 

the alkyne moiety was necessary to ensure the success of the reactions. (Scheme 17)  

 

Scheme 17 

2. Partially intramolecular reactions 

2.1. Cobalt-catalyzed partially intramolecular [2+2+2] cycloadditions 

In 2006, Okamoto and co-workers reported the first partially intramolecular cobalt-

catalyzed [2+2+2] cycloaddition reaction of -diynes with alkynes by using a catalytic 
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system based on the combination of 2-(2,6-diisopropylphenyl)iminomethylpyridine (dipimp), 

CoCl2•6H2O, and Zn powder. 25 This method is efficient with a variety of functional terminal 

or internal alkynes, such as alcohols, esters, alkenes and silyl-substituted alkynes (Scheme 18). 

The use of Zn powder was required to promote the catalytic cycles, and the reaction was 

incompatible with aryl bromides, iodides, and nitro compounds because of the interaction with 

zinc and/or cobalt. Okamoto’s team also demonstrated that the addition of a silver salt, such as 

silver triflate (AgOTf) or silver hexafluoroantimonate (AgSbF6), could accelerate the reaction 

to furnish sterically demanding benzene derivatives starting from unactivated simple internal 

alkynes.26  

 

Scheme 18 

Doszczak and Tacke accomplished a one-step synthesis of hydroxyalkyl-substituted 

1,3-disilaindanes, 1,4-disilatetralines, and 1,3-disila-1,3-dihydroisobenzofuranes via Co/Zn-

catalyzed [2+2+2] cycloaddition of silicon-containing diynes and unprotected propargyl 

alcohols under mild conditions (Scheme 19).27  

                                                 
25 Saino, N.; Amemiya, F.; Tanabe, E.; Kase, K.; Okamoto, S. Org. Lett. 2006, 8, 1439. 
26 Goswami, A.; Ito, T.; Okamoto, S. Adv. Synth. Catal. 2007, 349, 2368.  
27 Doszczak, L.; Tacke, R. Organometallics 2007, 26, 5722.  

X +

CoCl2·H2O 5 mol %
dipimp 6 mol %

Zn powder 10 mol %

THF, rt to 40 °C, 2-24 h
X

R3

R4

R3

R4

X = C(CO2Et)2, O, NBn

R1 = H, nBu, SiMe3, Ph

R2 = H, nBu, SiMe3, Ph

R3 = CH2OH, CH2OMe, CO2Et, CH2CCSiMe3, CCnBu

R4 = CH2OH, nBu, SiMe3, CH2CH=CH2, Ph, 4-MeOC6H4

R1

R2

R1

R2

EtO2C

EtO2C

83% 
meta/ortho: 85/15

SiMe3

O

74% 
meta/ortho: 71/29

nBu

O

48% 
meta/ortho: 1/99

nBu

NN

iPr

iPr
dipimp

OMe

OH OH

20 examples
52-99%

ratio = 1:1 to 1:99

Selected examples:



Chapter I 

 50 

 

Scheme 19 

In 2011, Aubert, Gandon, and Malacria engaged a series of halogenated diynes with 

alkynes in the presence of CpCo(CO)(dimethylfumarate) and Cp*Ru(cod)Cl catalyst via 

[2+2+2] cycloaddition reactions.28 The studies confirmed that the ruthenium complex remains 

the best choice for the cycloaddition of all kind of alkynyl halides. The air-stable 

CpCo(CO)(dmfu) complex proved to be efficient with alkynyl bromides (Scheme 20).  

 

Scheme 20 

2.2. Rhodium-catalyzed partially intramolecular [2+2+2] cycloadditions 

Since the first examples of partially intramolecular [2+2+2] cycloadditions of -

diynes and alkynes using a stoichiometric amount of Wilkinson's catalyst (RhCl(PPh3)3) 

                                                 
28 Iannazzo, L.; Kotera, N.; Malacria, M.; Aubert, C.; Gandon, V. J. Organomet. Chem. 2011, 696, 3906.  
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reported by Müller in 1974,29 the rhodium-catalyzed [2+2+2] cycloaddition of diynes and 

alkynes has been well studied over the past few decades. The most efficient and widely used 

rhodium catalysts were neutral RhCl(PPh3)3 complex and cationic rhodium(I)/biaryl 

bisphosphine complex catalysts.  

Wilkinson’s catalyst: 

Grigg and co-workers described the first catalytic [2+2+2] cycloaddition of 1,6-diynes 

with alkynes under mild conditions in the presence of a catalytic amount of RhCl(PPh3)3 

catalyst.30 Various tethered diynes and monoalkynes could be employed under these reaction 

conditions to afford the cycloadducts in 3-99% yields (Scheme 21).31 

 

Scheme 21 

The Wilkinson's catalyst could also be used in the regioselective cycloaddition of 

unsymmetrical diynes with alkynes. In 1995, McDonald and co-workers reported the 

RhCl(PPh3)3-catalyzed [2+2+2] cycloaddition of different substituted diynes with simple 

monosubstituted alkynes to afford functionalized dihydroisobenzofuran products in 35-61% 

yields.32 In most cases, the meta-substituted aromatic products were formed as major products 

because of the steric hindrance of the alkyne substituents (Scheme 22).  

                                                 
29 Müller, E. Synthesis 1974, 761.  
30 Grigg, R.; Scott, R.; Stevenson, P. Tetrahedron Lett. 1982, 23, 2691.  
31 Grigg, R.; Scott, R.; Stevenson, P. J. Chem. Soc. Perkin 1 1988, 1357. 
32 McDonald, F. E.; Zhu, H. Y.; Holmquist, C. R. J. Am. Chem. Soc. 1995, 117, 6605.  
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Scheme 22 

In contrast to the formation of five or six-membered bicyclic benzene derivatives, the 

[2+2+2] cycloadditions to form medium-sized ring systems remain a challenge. Wu and co-

workers developed a Rh-catalyzed [2+2+2] cycloaddition reaction for the preparation of 

trifluoromethylated benzo-fused eight-membered rings. The Wilkinson’s catalyst was chosen 

for the reaction to deliver the expected products in 46-90% yields with good functional group 

tolerance (Scheme 23).33 

 

Scheme 23 

Cationic Rh(I)-biaryl bisphosphine complexes: 

The cationic rhodium/biaryl bisphosphine catalysts are the most efficient catalysts and 

have been widely studied in partially intramolecular [2+2+2] cycloaddition reactions. In 2006, 

Tanaka and co-workers successfully employed a Rh(cod)2BF4/(S)-Xylyl-BINAP complex for 

the enantioselective [2+2+2] cycloaddition of -diynes with trimethylsilylynamides to 

furnish axially chiral anilides.34 The authors demonstrated that the substituted groups on the 

ynamides greatly influenced the yield of anilides. Indeed, the phenyl- and methoxycarbonyl-

substituted trimethylsilylynamides showed high reactivity. According to the mechanism, the 

high enantioselectivity of the anilides could be explained by the formation of the key 

                                                 
33 Zhang, L.; Li, Y.; Zhang, L.; Wu, Y. Org. Biomol. Chem. 2014, 12, 1040.  
34 Tanaka, K.; Takeishi, K.; Noguchi, K. J. Am. Chem. Soc. 2006, 128, 4586. 
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intermediate Rh-I, in which the rhodium center is coordinated to the carbonyl group of 

trimethylsilylynamide and the bulky PAr2 group of (S)-Xylyl-BINAP which sterically interacts 

with the R3 of the trimethylsilylynamide (Scheme 24).  

 

Scheme 24 

The same group applied the cationic rhodium(I)/H8-BINAP catalyst for the synthesis of 

substituted benzopicenes via [2+2+2] cycloaddition of binaphthyl-linked diynes with alkynes 

(Scheme 25).35 This method was further applied for the benzopicene-based long ladder and 

helical molecules synthesis.  

 

Scheme 25 

                                                 
35 Murayama, K.; Shibata, Y.; Sugiyama, H.; Uekusa, H.; Tanaka, K. J. Org. Chem. 2017, 82, 1136.  
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2.3. Nickel-catalyzed partially intramolecular [2+2+2] cycloadditions 

Since the first examples of cyclotrimerization of alkynes to form benzene derivatives 

reported by Reppe,9 the nickel-catalyzed [2+2+2] cycloaddition reactions have been well 

studied because of several advantages such as a high reactivity, a broad functional groups 

tolerance, relatively cheaper price compared to other late transition metals.  

Cheng and co-workers developed an efficient protocol for the synthesis of 

polysubstituted arylalkynes based on the nickel-catalyzed [2+2+2] cycloaddition of non-

conjugated diynes with 1,3-diynes in a single transformation (Scheme 26).36 The results showed 

that the electron-withdrawing ester groups substituted diynes are more reactive compared to the 

terminal diynes.  

 

Scheme 26 

Under the optimized conditions, the reaction of unsymmetrical 1,6-diynes with 

symmetrical 1,3-diynes afforded the products in 58-79% yields with excellent chemo- and 

regioselectivity. Phenyl-, n-butyl-, and trimethylsilyl-substituted 1,3-diynes reacted with 1,6-

diynes to afford highly functionalized arylalkynes. Interestingly, unsymmetrical 1,3-diynes 

reacted with di-ester-substituted symmetrical diynes at room temperature to give the 

cycloadduct with high regioselectivity (ratio = 19:1). The cycloaddition mainly occurred with 

the triple bond adjacent to the n-butyl group of the 1,3-diyne (Scheme 27).  

                                                 
36 Jeevanandam, A.; Korivi, R. P.; Huang, I.; Cheng, C.-H. Org. Lett. 2002, 4, 807. 
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Scheme 27 

Kotora and co-workers reported a nickel-catalyzed [2+2+2] cycloaddition of 6-

alkynylpurines with -diynes to access biologically active 6-arylpurines.37  A variety of 

terminal diynes and substituted 6-alkynylpurines was examined to afford various functionalized 

6-arylpurines. Several catalysts have been evaluated in this reaction, such as CoBr(PPh3)3, 

RhCl(PPh3)3, NiBr2(dppe)/Zn, NiI2(PPh3)/Zn, and Ni(cod)2/PPh3.
 The results showed that 

Ni/phosphine complexes were the best catalysts for the cyclotrimerization of alkynes. For 

example, in the presence of 20 mol % of Ni(cod)2/2PPh3, different 1,6-diynes smoothly reacted 

with 6-alkynylpurine nucleosides at 20 °C to deliver the 6-arylpurine nucleosides in 48-81% 

yields (Scheme 28).38  

 

Scheme 28 

                                                 
37 Turek, P.; Kotora, M.; Hocek, M.; Císařová, I. Tetrahedron lett. 2003, 44, 785 
38 (a) Turek, P.; Kotora, M.; Tišlerová, I.; Hocek, M.; Votruba, I.; Císařová, I. J. Org. Chem. 2004, 69, 9224. (b) 

Turek, P.; Novak, P.; Pohl, R.; Hocek, M.; Kotora, M. J. Org. Chem. 2006, 71, 8978. 
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Deiters and co-workers described the microwave irradiation assisted nickel-catalyzed 

[2+2+2] cyclotrimerization reactions to quickly access highly substituted aromatic 

compounds. 39  The application of microwave irradiation highly enhanced the reactivity of 

Ni(CO)2(PPh3)2 catalyst, and enabled the reaction to produce highly substituted benzene 

derivatives in a short reaction time. A variety of diynes and alkynes were tolerated to afford 

various substituted indanes, isoindolines, and tetraline core structures in 50-98% yields. 

Notably, the developed protocols were used as a key step for the total synthesis of natural 

product Illudinine (Scheme 29).  

 

Scheme 29 

2.4. Iridium-catalyzed partially intramolecular [2+2+2] cycloadditions 

In 2001, Takeuchi and co-workers described a simple and convenient protocol for the 

synthesis of polysubstituted benzene derivatives by using [Ir(cod)Cl]2/dppe complex as a 

catalyst. 40  A broad range of functional groups such as alcohols, amines, alkenes, ethers, 

halogens, and nitriles were tolerated to give various functionalized benzene derivatives.41 It was 

proposed that the reaction formed an iridacyclopentadiene intermediate Ir-I by the oxidative 

cyclization of -diynes. The coordination of a monoyne would facilitate a Diels-Alder type 

                                                 
39 Teske, J. A.; Deiters, A. J. Org. Chem. 2008, 73, 342. 
40 Takeuchi, R.; Tanaka, S.; Nakaya, Y. Tetrahedron Lett. 2001, 42, 2991.  
41 Kezuka, S.; Tanaka, S.; Ohe, T.; Nakaya, Y.; Takeuchi, R. J. Org. Chem. 2006, 71, 543. 
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process to form an intermediate Ir-II, followed by reductive elimination to deliver the 

cycloadduct (Scheme 30).  

 

Scheme 30 

The authors also studied the regioselective cycloaddition of unsymmetrical diynes with 

terminal alkynes. The regioselectivity was controlled by the ligands. A plausible mechanism 

was shown in Scheme 31. When dppe is employed as the ligand, the reaction goes through a 

[4+2] Diels-Alder type mechanism forming intermediate Ir-III, and affords meta selective 

product as the major product. When dppf is used as ligand, the reaction proceeds via an insertion 

mechanism forming intermediate Ir-IV and provides selectively the ortho product as the major 

product.  
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Scheme 31 

In 2014, Takeuchi’s group expanded the scope of this reaction to the synthesis of 

carbonyl group functionalized benzene derivatives. Upon screening several iridium complexes 

and ligands, they found that the [Ir(cod)Cl]2/(rac)-BINAP was the best catalytic system for the 

reaction.42 A broad range of 2,7-diynes reacted with alkynyl ketones and alkynyl esters in the 

presence of [Ir(cod)Cl]2/(rac)-BINAP catalyst to provide the corresponding functionalized 

benzenes in 22-91% yields (Scheme 32). 

 

Scheme 32 

                                                 
42 Hashimoto, T.; Okabe, A.; Mizuno, T.; Izawa, M.; Takeuchi, R. Tetrahedron 2014, 70, 8681. 
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Taking advantage of the triply iodo-bridged iridium(III) complexes, [{Ir(H)[rac-

binap]}2(-I)3]I,
43 our group developed in 2012 a convenient and efficient protocol for the 

preparation of fused arenes. Isoindolines, indanes, and dihydroisobenzofurans bearing a wide 

range of substitution groups could be achieved through an iridium(III)-catalyzed [2+2+2] 

cycloaddition of -diynes with alkynes. The reaction proceeds with symmetrical and 

unsymmetrical diynes, which affords highly substituted benzene derivatives in up to 97% 

yields. This methodology can be applied to alkynylboronates, which is a convenient means to 

generate the challenging, highly functionalized borylated fused arenes that present great 

potential for further elaboration. Notably, these processes are extremely robust and simple to 

perform. The catalyst system is compatible with commercial grade non-degassed solvents, 

whereas the alkynes herein do not necessitate purification before use (Scheme 33).44  

 

Scheme 33 

                                                 
43 Yamagata, T.; Tadaoka, H.; Nagata, M.; Hirao, Y.; Kataoka, Y.; Ratovelomanana-Vidal, V.; Genet, J.-P.; 

Mashima, K. Organometallics 2006, 25, 2505. 
44 (a) Auvinet, A.-L.; Ez-Zoubir, M.; Vitale, M. R.; Brown, J. A.; Michelet, V.; Ratovelomanana-Vidal, V. 

ChemSusChem 2012, 5, 1888. (b) Auvinet, A.-L.; Ez-Zoubir, M.; Bompard, S.; Vitale, M. R.; Brown, J. A.; 

Michelet, V.; Ratovelomanana-Vidal, V. ChemCatChem 2013, 5, 2389.  
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In 2003, this atom-economical process has also been successfully performed under 

solvent-free conditions to access various fused arenes in 43-85% yields (Scheme 34).45  

 

Scheme 34 

2.5. Ruthenium-catalyzed partially intramolecular [2+2+2] cycloadditions 

Cp*Ru(cod)Cl catalyst:  

In 2000, Itoh and Yamamoto described the first example of ruthenium-catalyzed [2+2+2] 

cycloaddition of -diynes with monoalkynes using Cp*Ru(cod)Cl catalyst.46 Later, they 

extended the scope of this reaction, and found that a variety of tethered diynes including 

heteroatom tethered diynes, such as nitrogen, oxygen, sulfur, was compatible with these 

reaction conditions leading to the formation of the corresponding benzene derivatives in 64-

96% yields. A self-dimerization or trimerization of diynes product have been detected in some 

cases as a competitive process (Scheme 35).47  

 

Scheme 35 

                                                 
45 Auvinet, A.-L.; Michelet, V.; Ratovelomanana-Vidal, V. Synthesis 2013, 45, 2003.  
46 Yamamoto, Y.; Ogawa, R.; Itoh, K. Chem. Commun. 2000, 549. 
47 Yamamoto, Y.; Arakawa, T.; Ogawa, R.; Itoh, K. J. Am. Chem. Soc. 2003, 125, 12143. 
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The regioselectivity of the ruthenium-catalyzed cycloadditions was also studied by 

using unsymmetrical monosubstituted diynes. Treatment of the unsymmetrical diynes, bearing 

methyl, phenyl, and trimethylsilyl terminal substituents, with the Cp*Ru(cod)Cl catalyst, gave 

the corresponding cycloadducts in high yields with high regioselectivities, the meta selective 

product being formed as the major product. According to the mechanism, the coordination and 

oxidative coupling of diyne with ruthenium complex led to the ruthenacyclopentadiene 

intermediate Ru-I, followed by the selective insertion of the monoalkyne into the less 

substituted Ru–C single bond leading to the formation of the ruthenacycloheptatriene 

intermediates Ru-II or Ru-II’. The reductive elimination from Ru-II afforded meta-selective 

product, whereas Ru-II’ furnished ortho-selective isomer (Scheme 36).  

 

Scheme 36 

In 2004, Yamamoto’s group described the cycloaddition of unsymmetrical terminal 

diynes bearing amide, ester and ketone carbonyl tethered groups with terminal alkynes to afford 

the corresponding cycloadducts with unexpected regioselectivities. 48  The observed results 

showed that the regioselectivity was directed by the electron effects of the internal conjugated 

carbonyl groups, and increased in the order of amide tether (X = NBn) ≈ ester tether (X = O) 

                                                 
48 Yamamoto, Y.; Kinpara, K.; Saigoku, T.; Nishiyama H.; Itoh, K. Org. Biomol. Chem. 2004, 2, 1287.  
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< ketone (X = CH2). The stronger electron-withdrawing ability of the carbonyl group allowed 

the highest regioselectivity (Scheme 37). 

 

Scheme 37 

During the investigation of partially intramolecular [2+2+2] cycloaddition reactions, a 

bicyclic ruthenacyclopentatriene complex Ru-I was isolated by Yamamoto’s group.47 The 

internal diyne bearing two phenyl substituents slowly reacts with Cp*Ru(cod)Cl complex in 

CDCl3 at room temperature to give the bis-carbene ruthenium complex in 51% yield, which 

could react in a stoichiometric way with acetylene to afford [2+2+2] cycloadduct. Another 

example of naphthoquinone-fused ruthenacyclopentatriene complex Ru-II was prepared from 

1,2-bis(phenylpropiolyl)benzene and Cp*Ru(cod)Cl complex by the same group.49 The Ru-II 

complex could be isomerized to form cyclobutadiene complex Ru-III at room temperature in 

solution (Scheme 38).  

 

Scheme 38 

                                                 
49 (a) Yamamoto, Y.; Hata, K.; Arakawa, T.; Itoh, K. Chem. Commun. 2003, 1290. (b) Yamamoto, Y.; Arakawa, 

T.; Itoh, K. Organometallics 2004, 23, 3610.  
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Based on the observed results and DFT calculations, Yamamoto’s group proposed a 

mechanism for the cycloaddition of acetylene to form benzene on a CpRuCl fragment, as shown 

in Scheme 39. The coordination of two alkynes to the ruthenium center exchanges with the 

diene ligand to form species Ru-I, which undergoes oxidative cycloaddition to give 

ruthenacyclopentatriene Ru-II. Coordination of a third alkyne to the ruthenium center followed 

by a subsequent [2+2] cycloaddition between the Ru-C double bond with alkyne produces 

metallobicyclo[3.2.0]heptatriene Ru-IV, this intermediate rapidly undergoes ring-opening 

process resulting in the formation of ruthenacycloheptatetraene Ru-V. Finally, a ring-closing 

step occurs with the seven-membered ruthenacycle Ru-V via a carbene-carbene coupling 

delivering an-arene complex Ru-VI. A rapid exchange between arene and acetylene 

produces the cycloadduct and regenerates the starting ruthenium complex Ru-I.  

 

Scheme 39 

Taking advantage of this efficient catalyst, Nicolaou’s group accomplished the total 

synthesis of the highly oxygenated, marine-derived, natural product Sporolide B. The key 

intermediate indene structural motif was prepared by the partially intramolecular [2+2+2] 

cycloaddition of chloroacetylenic cyclopentenyne and propargylic alcohol in the presence of 7 

mol % Cp*Ru(cod)Cl in dichloroethane at room temperature. The reaction provided the key 
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building block as a single regioisomer in 87% yield, which was finally converted to Sporolide 

B over 13 steps (Scheme 40).50  

 

Scheme 40 

Grubbs catalyst: 

Grubbs catalyst has also been used in partially intramolecular [2+2+2] cycloaddition 

reactions. In 2000, Witulski and co-workers employed Grubbs I ([RuCl2(NCHPh)(PCy3)2]) for 

the regioselective synthesis of 4,6-substituted indolines.51 The reaction probably proceeds via 

a cascade metathesis mechanism to give the high regioselective formation of 2,4-substituted 

product. The catalytic cycle was shown in Scheme 41. The Grubbs I complex initially adds to 

the least substituted alkyne moiety of the 1,6-diyne leading to the formation of vinyl carbene 

complex Ru-I, which undergoes an intramolecular metathesis reaction to give the five-

membered carbo- or heterocycle Ru-II. The coordination of another monoalkyne followed by 

an intermolecular metathesis insertion affords the highly conjugated carbene complex Ru-III, 

which undergoes the final ring-closing olefin metathesis step resulting in the regeneration of 

the ruthenium benzylidene catalyst and in the preferred formation of the corresponding meta-

isomer (Scheme 41). 

                                                 
50 Nicolaou, K. C.; Tang, Y.; Wang, J. Angew. Chem. Int. Ed. 2009, 48, 3449. 
51 Witulski, B.; Stengel, T.; Fernández-Hernández, J. M. Chem. Commun. 2000, 1965. 
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Scheme 41 

3. Totally intramolecular reactions 

Totally intramolecular cycloaddition reactions are considered as the most efficient 

method to solve the problem of the control of the chemo- and regioselectivity to access highly 

substituted benzenes. Three alkynes linked with two or three carbo- or hetero-tethers form a 

triyne which can be assembled via a cyclotrimerization to give a polycyclic aromatic compound 

with complete selectivity.  

Malacria and Aubert reported in 2004 the first totally chemo- and regioselective formal 

intermolecular [2+2+2] cycloaddition of three different alkynes by using the CpCo(CO)2 

catalyst.52 A series of easily prepared silicon-tethered triynes53 successfully reacted with cobalt 

catalyst to furnish various benzene derivatives. Selective deprotection of the silylated group, 

                                                 
52 Chouraqui, G.; Petit, M.; Aubert, C.; Malacria, M. Org. Lett. 2004, 6, 1519. 
53 Petit, M.; Chouraqui, G.; Aubert, C.; Malacria, M. Org. Lett. 2003, 5, 2037. 
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resulted in the formation of functionalized arenes. This synthetically useful method avoided the 

formation of unexpected regioisomers in such cycloaddition reactions (Scheme 42).  

 

Scheme 42 

In 2009, Aubert, Gandon, and Malacria applied the new designed and synthesized 

CpCo(CO)dmfu catalyst for totally intramolecular [2+2+2] cycloaddition reactions.54 The air-

stable cobalt catalyst efficiently catalyzed the cyclotrimerization of carbo- and hetero-tethered 

triynes, forming a variety of fused tricycle benzenes in 69-92% yields (Scheme 43). Notably, 

these reactions can be performed under both conventional heating and microwave irradiation 

heating conditions.  

 

                                                 
54 Geny, A.; Agenet, N.; Iannazzo, L.; Malacria, M.; Aubert, C.; Gandon, V. Angew. Chem. Int. Ed. 2009, 48, 

1810.  
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Scheme 43 

In contrast to the linear triynes, the macrocyclic triynes can also be employed in [2+2+2] 

cycloaddition reactions. In 2004, Roglans and co-workers reported a totally intramolecular 

rhodium-catalyzed [2+2+2] cycloaddition reaction of nitrogen-containing 15-membered 

triacetylenic macrocycles.55 The nitrogen-tethered macrocyclic triynes smoothly reacted with 

1-5 mol % of RhCl(CO)(PPh3)2 in toluene to afford various multiple ring compounds in 80-96% 

yields (Scheme 44). Notably, this was the first example of [2+2+2] cycloaddition reactions of 

macrocyclic triynes.  

 

Scheme 44 

Taking advantage of this strategy, Witulski and co-workers reported the first total 

synthesis of the sesquiterpenoid alcyopterosin E from simple starting materials. In this multi-

step synthesis, the formation of the key precursor indeno[4,5-c]furan was achieved through a 

totally intramolecular cycloaddition of an enantiomerically pure triyne by using Wilkinson’s 

catalyst in dichloromethane at 40 °C. Subsequent transformation of the tosylate into a nitrate 

group completed the total synthesis (Scheme 45).56 

 

                                                 
55 Torrent, A.; González, I.; Pla-Quintana, A.; Roglans, A.; Moreno-Mañas, M.; Parella, T.; Benet-Buchholz, J. J. 

Org. Chem. 2005, 70, 2033.  
56 Witulski, B.; Zimmermann, A.; Gowans, N. D. Chem. Commun. 2002, 2984. 
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Scheme 45 
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Chapter II: Access toward fluorenone derivatives through 

solvent-free ruthenium trichloride mediated [2+2+2] 

cycloadditions 

1. Interest of fluorenones 

Over the past few years, fluoren-9-one and its derivatives have attracted much attention 

from academia and industry regarding their frequent application in various fields.57  

The fluorenone scaffolds and related chemicals are important structural moiety that 

constitute the central core of a variety of compounds, which are found in many natural products 

and bioactive molecules encompassing a wide range of biological properties (Scheme 46).58 

For example, Dengibsin A and Dengibsinin B were the first natural fluorenone derivatives 

isolated from the Indian orchid Dendrobium gibsonii Lindl,58a 2,7-disubstituted 

amidofluorenone derivatives D exhibited a range of human telomerase inhibitory activities,58d 

tilorone dihydrochloride E has great potential for inducing interferon against pathogenic 

infection,58e indenone F showed anti-HIV-1 activity,58f dicationic 2-fluorenonylcarbapenems G 

were potent anti-MRS agents.58g  

                                                 
57 For selected reviews, see: (a) Prostakov, N. S.; Soldatenkov, A. T.; Kolyadina, N. M.; Obynochnyi, A. A. Russ. 

Chem. Rev. 1997, 66, 121. (b) Zhou, A.-H.; Pan, F.; Zhu, C.-Y; Ye, L.-W. Chem. Eur. J. 2015, 21, 10278. (c) Shi, 

Y.-B.; Gao, S.-H. Tetrahedron 2016, 72, 1717. 
58 For selected examples, see: (a) Talapatra, S. K.; Bose, S.; Malik, A. K.; Talapatra, B. Tetrahedron 1985, 41, 

2765. (b) Sargent, M. V. J. Chem. Soc., Perkin Trans. 1 1987, 2553. (c) Jones Jr., W. D.; Ciske, F. L. J. Org. 

Chem. 1996, 61, 3920. (d Perry, P. J.; Read, M. A.; Davies, R. T.; Gowan, S. M.; Reszka, A. P.; Wood, A. A.; 

Kelland, L. R.; Neidle, S. J. Med. Chem. 1999, 42, 2679. (e) Zhang, J.-R.; Yao, Q.-Z.; Liu, Z.-L. Molecules 2015, 

20, 21458. (f) Hu, Q.-F.; Zhou, B.; Huang, J.-M.; Gao, X.-M.; Shu, L.-D.; Yang, G.-Y.; Che, C.-T. J. Nat. Prod. 

2013, 76, 292. (g) Greenlee, M. L.; Laub, J. B.; Rouen, G. P.; DiNinno, F.; Hammond, M. L.; Huber, J. L.; 

Sundelof, J. G.; Hammond, G. G. Bioorg. Med. Chem. Lett. 1999, 9, 3225. (h) Niu, D.-Y.; Han, J.-M.; Kong, W.-

S.; Cui, Z.-W.; Hu, Q.-F.; Gao, X.-M. Asian J. Chem. 2013, 25, 9514. 
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Scheme 46 

Additionally, because of their attractive luminescent properties, fluorenones could also 

be employed as organic and polymer light-emitting diodes, bulk heterojunction solar cells and 

photochemical sensitizers (Scheme 47).59 For examples, bisindenofluorene H represented a 

novel building block class for n-type electronic materials,59a compounds I formed ferroelectric 

liquid crystals,59b 2,7-poly(9-fluorenone) J was a suitable candidate as an electron-injection 

material in multilayer LEDs,59i and compound K was a stable fluorenone-based sensitizer dye 

for solar cell.59j 

                                                 
59 For selected examples, see: (a) Usta, H.; Facchetti, A.; Marks, T. J. Org. Lett. 2008, 10, 1385. (b) McCubbin, J. 

A.; Tong, X.; Wang, R.-Y.; Zhao, Y.; Snieckus, V.; Lemieux, R. P. J. Am. Chem. Soc. 2004, 126, 1161. (c) Estrada, 

L. A.; Yarnell, J. E.; Neckers, D. C. J. Phys. Chem. A 2011, 115, 6366. (d) Yao, W.; Liu, Q.-C.; Shi, Y.-B.; Tang, 

J. Heterocycles 2012, 85, 1077. (e) Xia, J.-B.; Zhu, C.; Chen, C. J. Am. Chem. Soc. 2013, 135, 17494. (f) Li, C.; 

Mao, Z.-P.; Chen, H.-J.; Zheng, L.-P.; Huang, J.-Y.; Zhao, B.; Tan, S.-T.; Yu, G. Macromolecules 2015, 48, 2444. 

(g) Capodilupo, A. L.; Vergaro, V.; Fabiano, E.; Giorgi, M. D.; Baldassarre, F.; Cardone, A.; Maggiore, A.; 

Maiorano, V.; Sanvitto, D.; Gigli, G.; Ciccarella, G. J. Mater. Chem. B, 2015, 3, 3315; (h) Gong, X.; Moses, D.; 

Heeger, A. J. J. Phys. Chem. B, 2004, 108, 8601. (i) Uckert, F.; Tak, Y.-H.; Müllen, K.; Bässler, H. Adv. Mater. 

2000, 12, 905. (j) Qin, C. Islam, A. Han, L. J. Mater. Chem. 2012, 22, 19236.  
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Scheme 47 

2. Preparation methods in the literature 

2.1 Traditional methods for the preparation of fluorenones 

Numerous synthetic methods have been developed for the synthesis of fluorenones. 

Traditional synthetic methods include Friedel-Crafts acylation,60 remote metalation,61 Diels-

Alder reaction,62 and oxidation of fluorenes or fluorenols.63 (Scheme 48) 

                                                 
60 (a) Barluenga, J.; Trincado, M.; Rubio, E.; González, J. M. Angew. Chem. Int. Ed. 2006, 45, 3140. (b) Reim, S.; 

Lau, M.; Langer, P. Tetrahedron Lett. 2006, 47, 6903. (c) Chinnagolla, R. K.; Jeganmohan, M. Org. Lett. 2012, 

14, 5246. (d) Tilly, D.; Samanta, S. S.; Faigl, F.; Mortier, J. Tetrahedron Lett. 2002, 43, 8347. (e) F. Pünner, J. 

Schieven, G. Hilt, Org. Lett. 2013, 15, 4888. (f) Olah, G. A.; Mathew, T.; Farnia, M.; Prakash, G. K. S. Synlett 

1999, 7, 1067.  
61 (a) Tilly, D.; Samanta, S. S.; De, A.; Castanet, A.-S.; Mortier, J. Org. Lett. 2005, 7, 827. (b) Tilly, D.; Samanta, 

S. S.; Castanet, A.-S.; De, A.; Mortier, J. Eur. J. Org. Chem. 2006, 174. (c) Alessi, M.; Larkin, A. L.; Ogilvie, K. 

A.; Green, L. A.; Lai, S.; Lopez, S.; Snieckus, V. J. Org. Chem. 2007, 72, 1588. (d) Tilly, D.; Fu, J.-M.; Zhao, B.-

P.; Alessi, M.; Castanet, A.-S.; Snieckus, V.; Mortier, J. Org. Lett. 2010, 12, 68. (e) Ciske, F. L.; W. D. Jones, 

Synthesis 1998, 1195.  
62 (a) Rodríguez, D.; Navarro, A.; Castedo, L.; Domínguez, D.; Saá, C. Org. Lett. 2000, 2, 1497. (b) C. Atienza, 

C. Mateo, O. de Frutos, A. M. Echavarren, Org. Lett. 2001, 3, 153. (c) D. Rodríguez, M. F. M. Esperon, V. A. 

Navarro, L. Castedo, D. Domínguez, C. Saá, J. Org. Chem. 2004, 69, 3842. 
63 (a) Bei, X.; Hagemeyer, A.; Volpe, A.; Saxton, R.; Turner, H.; Guram, A. S. J. Org. Chem. 2004, 69, 8626. (b) 

Yang, G.; Zhang, Q.; Miao, H.; Tong, X.; Xu, J. Org. Lett. 2005, 7, 263. (c) Catino, A. J.; Nichols, J. M.; Choi, 

H.; Gottipamula, S.; Doyle, M. P. Org. Lett. 2005, 7, 5167. (d) Kaiser, R. P.; Hessler, F.; Mosinger, J.; Císařová, 

I.; Kotora, M. Chem. - Eur. J. 2015, 21, 13577.  
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Scheme 48 

2.2 Transition-metal-catalyzed synthesis of fluorenones 

Over recent years, transition-metal-catalyzed functionalization has been recognized as 

a novel and efficient method to synthesize complex fluorenone derivatives that are not 

accessible by conventional methods. Palladium, rhodium, silver and copper complexes have 

been reported as catalysts to access fluorenones and derivatives. Synthetic methods for the 

preparation of fluorenone derivatives are summarized below and classified according to the 

metal.  

2.2.1 Palladium-catalyzed synthesis of fluorenones 

2.2.1.1 C-H functionalization of 2-haloarylketones 

In 1984, Ames and Opalko disclosed a novel palladium-catalyzed dehydrohalogenation 

of 2-iodobenzophenone to provide fluorenone (Scheme 49). 64  Various bases and solvents 

employed with Pd(OAc)2 have been used in this reaction. When 2-iodobenzophenone was 

heated in N-methylimidazole in the presence of Pd(OAc)2 at 190 °C, fluorenone product was 

obtained in 100% yield.  

                                                 
64 Ames, D. E.; Opalko, A. Tetrahedron 1984, 40, 1919. 
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Scheme 49 

Based on the previous results reported by Ames and Opalko, Jones and co-workers 

further optimized the reaction conditions, involving high-temperature with PdCl2(PPh3)2 and 

sodium acetate in dimethylacetamide (DMA) under microwave irradiation (Scheme 50).65 They 

successfully synthesized benzo[b]fluorenone in 53% yield, this derivative being considered as 

a key intermediate to access the natural products stealthin C66 and prekinamycin67.  

 

Scheme 50 

2.2.1.2 Directing-group-assisted C-H activation  

In 2007, Larock’s research group reported an efficient synthesis of fluorenones using a 

Pd-catalyzed intramolecular C-H activation strategy involving an aryl to imidoyl palladium 

migration process (Scheme 51).68 Treatment of imines with 5 mol % of Pd(OAc)2, 5 mol % of 

bis(diphenylphosphino)methane (dppm), and 2 equivalents of CsO2CCMe3 (CsPiv) in DMF at 

100 °C, followed by hydrolysis using aqueous HCl, afforded the desired fluorenones in 56-

100% yields. Subsequent deuterium labeling experiments showed that the reaction involved 

both a palladium migration and a C-H activation process through an unprecedented 

organopalladium hydride intermediate Pd-I.  

                                                 
65 Qabaja, G.; Jones, G. B. J. Org. Chem. 2000, 65, 7187. 
66 Koyama, H.; Kamikawa, T. Tetrahedron. Lett. 1997, 38, 3973. 
67 Gore, M. P.; Gould, S. J.; Weller, D. D. J. Org. Chem.1992, 57, 2774. 
68 Zhao, J.; Yue, D.-W.; Campo, M. A.; Larock, R. C. J. Am. Chem. Soc. 2007, 129, 5288. 
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Scheme 51 

In 2008, Daugulis and co-workers reported a one-pot synthetic method for ortho-

benzonitriles and fluorenone derivatives formation by the palladium-catalyzed C-H bond 

functionalization of simple benzamide and aryl halides (Scheme 52).69 Notably, the reaction 

could afford various desired products by tuning the alkyl substituent on the amide group. N-

cyclohexyl benzamides led to the formation of benzonitrile derivatives, whereas N-propyl 

benzamides can be converted to fluorenones.  

 

Scheme 52 

Beside imines, oximes can be also considered as directing groups in Pd-catalyzed C-H 

activation to synthesize fluorenone derivatives. In 2008, Cheng and co-workers reported a Pd-

catalyzed synthesis of fluorenones from substituted aromatic aldoxime ethers and aryl iodides 

through a dual C-H activation and oxidative Heck cyclization (Scheme 53).70 A series of control 

                                                 
69 Shabashov, D.; Maldonado, J. R. M.; Daugulis, O. J. Org. Chem. 2008, 73, 7818.  
70 Thirunavukkarasu, V. S.; Parthasarathy, K.; Cheng, C.-H. Angew. Chem. Int. Ed. 2008, 47, 9462. 
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experiments suggested that both palladium acetate and silver oxide are required for this 

transformation, allowing the facile synthesis of the desired fluorenones in 63-90% yields.  

 

Scheme 53 

Shi and co-workers described in 2010 a one-pot Pd-catalyzed ortho-directed C-H 

arylation of aromatic aldoxime ether and arylboronic acids for the synthesis of fluorenone 

derivatives (Scheme 54).71  

 

Scheme 54 

In 2011, the continuous work in Cheng’s group demonstrated that a Pd-catalyzed ortho-

directed multiple C-H activation of aromatic aldoxime ether with arenes could proceed 

smoothly to give the corresponding substituted fluorenone derivatives in 42-91% yields 

(Scheme 55).72 Notably, this synthetic method for the preparation of fluorenones showed a 

significant improvement since it avoided the use of aryl halides, aryl boronic acids, and 

expensive metal oxidants.  

                                                 
71 Sun, C.-L.; Liu, N.; Li, B.-J.; Yu, D.-G.; Wang, Y.; Shi, Z.-J. Org. Lett. 2010, 12, 184.  
72 Thirunavukkarasu, V. S.; Cheng, C.-H. Chem. Eur. J. 2011, 17, 14723. 
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Scheme 55 

Hsieh and co-workers developed in 2013 a method for the preparation of polysubstituted 

fluorenones via a Pd-catalyzed nitrile directed remote C-H and dual C-H bond activation with 

intramolecular 1,2-insertion of nitrile (Scheme 56).73 A wide range of functional groups were 

tolerated under the reaction conditions, providing various fluorenones in 17-91% yields.  

 

Scheme 56 

In addition, a Pd-catalyzed ortho C-H activation of benzylamines with iodo arenes to 

provide fluoreonone derivatives has been explored. Satyanarayana and co-workers reported a 

one-pot domino Pd-catalyzed reaction proceeding through the formation of a five-membered 

Pd(II)-cycle and subsequent ortho C-H activation with iodoarenes to give fluorenones in 42-

88% yields with high regioselectivities (Scheme 57).74 Notably, the reaction could further 

activate C(sp3)-H and C(sp2)-H bonds to afford the fused fluorenone derivatives.  

                                                 
73 Wan, J.-C.; Huang, J.-M.; Jhan, Y.-H.; Hsieh, J.-C. Org. Lett. 2013, 15, 2742. 
74 Kumar, D. R.; Satyanarayana, G. Org. Lett. 2015, 17, 5894. 
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Scheme 57 

In 2014, Wang’s group described a Pd-catalyzed intramolecular C-C coupling reaction 

through a dual C-H bond activation directed by a removable carboxylate group.75 The reaction 

proceeds in the presence of Pd(OAc)2 and Cu(OAc)2·nH2O under air atmosphere, to provide 

various substituted fluorenones in 31-91% yields. According to the proposed mechanism, the 

intramolecular carboxylate-directed dual C-H activation generates a 9H-fluorene-9-carboxylic 

acid (I) intermediate, a subsequent oxidative decarboxylation by the oxygen from the air in the 

presence of Pd(OAc)2 and Cu(OAc)2 and furnishes the cyclized product along with eliminating 

carbon dioxide and water (Scheme 58).  

                                                 
75 Liu, L.; Wang, F.; Li, Z.-H.; Wang, J.-H. Asian J. Org. Chem. 2014, 3, 695. 
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Scheme 58 

Another interesting example involving Pd-catalyzed carboxylic acid directed ortho-

selective oxidative C-H/C-H cross-coupling of aromatic carboxylic acids with arenes followed 

by subsequent intramolecular Friedel-Crafts acylation for the construction of poly-substituted 

fluorenones was reported by You and co-workers. (Scheme 59).76 By following this strategy, a 

variety of commercially available aromatic carboxylic acids and arenes were successfully 

converted to substituted fluorenones in 53-82% yields.  

                                                 
76 Sun, D.-N.; Li, B.-J.; Lan, J.-B.; Huang, Q.; You, J.-S. Chem. Commun. 2016, 52, 3635. 
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Scheme 59 

Sorensen’s group reported in 2017 Pd-catalyzed C(sp2)−H functionalization cascade 

reactions for the preparation of fluorenones from readily available benzaldehydes and aryl 

iodides using anthranilic acid as transient directing group.77 It is worthy to mention that the 

antiviral drug Tilorone was synthesized in 40% yield over three steps (Scheme 60).  

 

Scheme 60 

2.2.1.3 Dehydrogenative cyclization 

In 2012, Cheng’s group disclosed a novel synthetic method involving a dual C-H 

activation of diarylketones to form fluorenones by Pd-catalyzed oxidative dehydrogenative 

                                                 
77 Chen, X.-Y.; Ozturk, S.; Sorensen, E. J. Org. Lett. 2017, 19, 1140. 
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cyclization of benzophenones.78 This process provided a wide range of fluorenones in 36-94% 

yields (Scheme 61). A mechanistic study demonstrated that the first step was the coordination 

between the ketone group and Pd(II) followed by the consecutive ortho-C-H activation to form 

a palladacycle Pd-I, which was expected to be in equilibrium with its palladium aryl -complex 

Pd-II. Then the palladium complex Pd-II underwent the second C-H activation, lead to the six-

membered palladium complex Pd-III and subsequent reductive elimination to produce the 

fluorenone product and Pd(0) species. Independently, Shi’s group reported similar conditions 

to access fluorenone derivatives through palladium-catalyzed dehydrogenative cyclization 

reactions.79  

 

Scheme 61 

Kantam and co-workers reported in 2015 an efficient method for the synthesis of 

fluorenones by dehydrogenative cyclization of benzophenones using a 

palladium(II)/magnesium-lanthanum mixed oxide catalyst in TFA/H2O solution system 

                                                 
78 Gandeepan, P.; Hung, C.-H.; Cheng, C.-H. Chem. Commun. 2012, 48, 9379. 
79 Li, H.; Zhu, R.-Y.; Shi, W.-J.; He, K.-H.; Shi, Z.-J. Org. Lett. 2012, 14, 4850. 
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(Scheme 62). 80  Fluorenones were formed in 50-85% yields in the presence of reusable 

Pd(II)/Mg-La catalyst under heterogeneous reaction conditions.  

 

Scheme 62 

2.2.1.4 Cyclocarbonylation 

The first practical method for the Pd-catalyzed cyclocarbonylation of ortho-halobiaryls 

to substituted fluorenone derivatives was developed by Larock’s group in 2000.81 Treatment of 

the ortho-halobiaryls with 5 mol % of Pd(PCy3)2 and 2 equivalents of anhydrous cesium 

pivalate in DMF solution under 1 atm of carbon monoxide atmosphere provided the expected 

fluorenones in 67-100% yield. This method has been successfully employed for the preparation 

of polycyclic and heterocyclic fluorenones (Scheme 63).  

 

Scheme 63 

A related study published in 2015 by Xie and co-workers82 demonstrated that the Pd-

catalyzed carbonylative cross-coupling of aryl dihalides with arylboronic acids proceeded 

                                                 
80 Kishore, R.; Priya, S. S.; Sudhakar, M.; Venu, B.; Venugopal, A.; Yadav, J.; Kantam, M. L. Catal. Sci. Technol. 

2015, 5, 3363.  
81 Campo, M. A.; Larock, R. C. Org. Lett. 2000, 2, 3675. 
82 Song, J.; Wei, F.-L.; Sun, W.; Li, K.; Tian, Y.-N; Liu, C.; Li, Y.-L; Xie, L.-H. Org. Lett. 2015, 17, 2106. 
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smoothly under a carbon monoxide atmosphere, leading to the substituted fluorenones in 22-

94% yields (Scheme 64). Notably, a series of more challenging fluorenones containing various 

substituents and -conjugated extended systems was achieved.  

 

Scheme 64 

Kakiuchi’s group described in 2016 a Pd-catalyzed cyclocarbonylation of 2-

bromobiphenyls with formaldehyde through the cleavage of a C-H bond to afford the desired 

fluorenones in 45-75% yields (Scheme 65).83  The use of paraformaldehyde as a carbonyl 

surrogate resulted in a practical synthetic method and can be widely used.  

 

Scheme 65 

                                                 
83 Furusawa, T.; Morimoto, T.; Oka, N.; Tanimoto, H.; Nishiyama, Y.; Kakiuchi, K. Chem. Lett. 2016, 45, 406. 
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2.2.1.5 Decarboxylative cyclization 

With respect to carbonyl sources, several methods involving different carbonyl sources, 

such as carboxylic acids, nitriles, aldoximes, aldehydes, have been reported for the preparation 

of fluorenones. Jin and co-workers reported in 2016 a one-pot palladium-catalyzed 

decarboxylative cyclization of 2-phenylbenzoic acid to synthesize fluorenones by using tert-

butyl isocyanide as a new carbonyl source (Scheme 66).84 Subsequent C-H activation and 

decarboxylation insertion of the isocyanide into 2-phenylbenzoic acid provided a six-membered 

intermediate that underwent elimination and hydrolysis to generate the cyclized product. 

 

Scheme 66 

2.2.1.6 Other methods for the preparation of fluorenones 

In 2005, Larock’s group reported the synthesis of fluorenone derivatives via a 

palladium-catalyzed annulation of arynes with o-halobenzaldehydes.85 Later, they extended the 

scope of functionalized o-halobenzaldehydes and arynes.86 A variety of o-halobenzaldehydes 

and arynes has been examined, affording the substituted fluorenones in 33-82% yields (Scheme 

67).  

                                                 
84 Cai, Z.-Q.; Hou, X.; Hou, L.; Hu, Z.-Q.; Zhang, B.; Jin, Z.-S. Synlett 2016, 27, 395. 
85 Zhang, X.-X.; Larock, R. C. Org. Lett. 2005, 7, 3973. 
86 Waldo, J. P.; Zhang, X.-X.; Shi, F.; Larock, R. C. J. Org. Chem. 2008, 73, 6679. 
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Scheme 67 

A rapid approach to access fluorenone derivatives via domino reactions using 

microwave as heating source has been reported by Lautens and co-workers. 87  The aryl-

palladium intermediate generated by a sequence of norbornene mediated C-H activation and 

subsequent ortho-arylation, underwent ester addition providing the corresponding fluorenone 

in 46-93% yields (Scheme 68). Several aldehydes were also subjected to this method affording 

the 9H-fluoren-9-one products in good yields. In the case of aldehydes, the reaction proceeded 

with triphenylphosphine as ligand under conventional heating at 90 °C for 24 h.  

 

Scheme 68 

                                                 
87 Zhao, Y.-B.; Mariampillai, B.; Candito, D. A.; Laleu, B.; Li, M.; Lautens, M. Angew. Chem. Int. Ed. 2009, 48, 
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In 2010, Ray and co-workers disclosed an efficient method for the preparation of 

fluorenones through a palladium-catalyzed one-pot Suzuki-Miyaura coupling reaction followed 

by an intramolecular arylpalladation of 2-bromophenyl boronic acid with 2-

bromocarboxaldehyde (Scheme 69). 88  Various fluorenones and condensed fluorenone 

derivatives have been synthesized in 51-80% yields from readily available starting materials.  

 

Scheme 69 

The Dharmaraj’s group described in 2016 an efficient palladium-catalyzed domino 

reaction of benzoyl chloride with arylboronic acid to synthesize substituted fluorenones 

(Scheme 70).89 A newly synthesized ONO pincer-type PdII complex has been used in this 

reaction and exhibited high catalytic efficiency (0.1 mol % catalyst-loading). Compared to other 

systems the catalyst could be reused over six consecutive runs.  

 

Scheme 70 

                                                 
88 Paul, S.; Samanta, S.; Ray, J. K. Tetrahedron Lett. 2010, 51, 5604. 
89 Vignesh, A.; Kaminsky, W.; Dharmaraj, N. ChemCatChem 2016, 8, 3207.  
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2.2.2 Rhodium-catalyzed synthesis of fluorenones 

2.2.2.1 Conversion of benzoic anhydrides into fluorenones 

Blum and co-workers reported in 1969 the first example of Rh-catalyzed transformation 

of benzoic anhydrides to fluorenones. Treatment of benzoic anhydride derivatives with 

chlorotris(triphenylphosphine)rhodium at high temperature led to the corresponding 

fluorenones in 5-72% yields. (Scheme 71).90  

 

Scheme 71 

2.2.2.2 Partially intramolecular [2+2+2] cycloadditions 

Considering the potential applications of optical and electronic functional materials, 

Tanaka and co-workers developed an efficient rhodium-catalyzed partially intramolecular 

double [2+2+2] cycloaddition to synthesize enantioenriched fluorenone-containing [9]-

helicene-like derivatives and 1,1’-bistriphenylenes (Scheme 72).91,92  

                                                 
90 (a) Blum, J.; Lipshes, Z. J. Org. Chem. 1969, 34, 3076. (b) Blum, J.; Milstein, D.; Sasson, Y. J. Org. Chem. 

1970, 35, 3233. 
91 Tanaka, K.; Fukawa, N.; Suda, T.; Noguchi, K. Angew. Chem. Int. Ed. 2009, 48, 5470. 
92 Sawada, Y.; Furumi, S.; Takai, A.; Takeuchi, M.; Noguchi, K.; Tanaka, K. J. Am. Chem. Soc. 2012, 134, 4080. 
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Scheme 72 

2.2.2.3 Intramolecular acylation 

Ryu and co-workers disclosed in 2014 the first catalytic preparation of fluorenone 

derivatives through Rh-catalyzed intramolecular acylation of biarylcarboxylic acids (Scheme 

73).93 Screening of several reaction conditions led to the selection of [Rh(cod)Cl]2/dppe system 

and potassium iodide/pivalic anhydride as catalyst and additives. Notably, the microwave 

irradiation promoted the reaction in a shorter reaction time. 

 

Scheme 73 

                                                 
93 Fukuyama, T.; Maetani, S.; Miyagawa, K. Ryu, I. Org. Lett. 2014, 16, 3216. 
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2.2.3 Silver-catalyzed synthesis of fluorenones 

2.2.3.1 Intramolecular radical cyclization 

In 2011, Baran and co-workers developed a silver-catalyzed intramolecular radical 

cyclization of arylboronic acids and potassium aryltrifluoroborates, in the presence of silver 

nitrate and potassium persulfate, to access fluorenones through a ‘borono-Pschorr’ process 

(Scheme 74). 94  The reaction was carried out under mild conditions and tolerated various 

functional groups, such as CO2Me, CN, CF3. The aza-fluorenones were synthesized as a 

mixture with moderate regioselectivity.  

 

Scheme 74 

2.2.3.2 Decarboxylative radical cyclization 

Greaney and co-workers reported in 2012 a similar study which involved Ag-catalyzed 

decarboxylative radical cyclization of arylbenzoic acids to afford fluorenones (Scheme 75).95 

Notably, CD3CN was unconventionally chosen as solvent, because of the stronger C-D bond 

that decreased hydrogen atom abstraction from the solvent. In addition, deuterated 

decarboxylation product was obtained as a side product which confirmed that the solvent was 

acting as a hydrogen atom donor. 

                                                 
94 Lockner, J. W.; Dixon, D. D.; Risgaard, R.; Baran, P. S. Org. Lett. 2011, 13, 5628. 
95 Seo, S.; Slater, M.; Greaney, M. F. Org. Lett. 2012, 14, 2650. 
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Scheme 75 

2.2.4 Copper-catalyzed synthesis of fluorenones 

A Cu-catalyzed simple construction of methoxy-substituted fluorenones from 

substituted 2-iodobenzophenones was reported by Haggam (Scheme 76). 96  This study 

demonstrated that the intramolecular Cu-catalyzed cyclization of 2-iodobenzophenones 

afforded the corresponding fluorenones in 71-92% yields under conventional heating or under 

microwave conditions in a shorter reaction time. 

 

Scheme 76 

  

                                                 
96 Haggam, R. A. Tetrahedron 2013, 69, 6488. 
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3. Objectives 

As we detailed above, various fluorenones have been synthesized through transition-

metal-catalyzed reactions. However, there are still important challenges to solve considering 

current limitations of these methods. Because of special structural features, the construction of 

the three single C-C bonds between the two six-membered rings has been generally privileged 

(Scheme 77). In contrast, only few examples focused on the construction of one of the two six-

membered rings.  

 

Scheme 77 

Considering the results described in the literature, we envisioned that highly substituted 

fluorenones and related derivatives, such as azafluorenones, indenothiophenones, and 

benzo[b]furanones, could be successfully accessed using [2+2+2] cycloaddition of suitably 

substituted arylcarbamoyl bridged -diynes and monoalkynes. The retrosynthetic analysis is 

shown in Scheme 78.  
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4. Results and discussion 

4.1 Synthesis of starting materials: arylcarbamoyl bridged -diynes and 

internal alkynes 

4.1.1. Synthesis of benzoyl bridged -diynes 

The synthesis of benzoyl bridged diynes could be accessed from the commercially 

available 2-bromobenzaldehydes via Sonogashira cross-coupling followed by condensation of 

the corresponding alkyl or phenyl substituted terminal alkyne to the carbonyl group, and final 

oxidation of the resulting secondary alcohol to ketone.  

First, the substituted monoalkyne benzaldehyde derivatives 1-7 were prepared by a 

Sonogashira cross-coupling reaction. Under classical conditions, the reactions were conducted 

with 1.2 to 1.5 equivalents of the corresponding terminal alkynes and 2-bromobenzaldehyde in 

the presence of 5 mol % PdCl2(PPh3)2 and 2.5 mol % CuI in a mixture of triethylamine and 

tetrahydrofuran (5.0 M, v/v = 1/1) at 50 °C. As shown in Scheme 79, various commercial 

substituted acetylenes were used, such as phenylacetylene, 1-hexyne, and 

trimethylsilylacetylene. In order to study the influence of the substituents on the phenyl ring at 

C7 position, electron-donating groups such as methyl (4) or tert-butyl (5) were introduced by 

using 4-ethynyltoluene or 4-(tert-butyl)phenylacetylene. In order to evaluate the effect on the 

tethered phenyl ring, the 2-bromoarylaldehydes having both electron-donating and electron-

withdrawing substituents, such as methylenedioxy (6) and fluoride (7), were used for the cross-

coupling reaction. All the desired compounds 1-7 were obtained in 70-87% yields (Scheme 79). 
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Scheme 79 

In the second step, derivatives 8-16 were synthesized by a lithium mediated nucleophilic 

addition of terminal alkynes with benzaldehyde derivatives 1-7, as shown in Scheme 80. The 

anion of terminal alkynes was formed by reacting n-butyl lithium with terminal alkyne at low 

temperature and was followed by the addition of the previously synthesized alkynyl 

benzaldehyde derivatives 1-7 in THF, allowing the preparation of substituted diynes 8-16 in 

50-96% yields. To maximize the yield of the reaction, 1.2 equivalents of n-butyllithium and 1.5 

equivalents of terminal alkynes were used. Different functionalities at C8 position, such as n-

butyl, cyclopropyl and phenyl, were introduced to study the influence of the substituents.  
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Scheme 80 

Compounds 8-16 were next converted to the corresponding benzoyl bridged -diynes 

17-25 via oxidation reaction using Dess-Martin periodinane reagent (1.3 equivalents) (Scheme 

81). After transformation of the secondary alcohols into ketones, symmetrically and 

unsymmetrically benzoyl bridged -diynes 17-25 were isolated in 74-94% yields.  
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Scheme 81 

Having in hand diyne 12, a standard deprotection with TBAF and oxidation reaction 

with Dess-Martin periodinane afforded substituted terminal phenylacetylene 29. The 

Sonogashira cross-coupling reaction was next envisaged for the preparation of electron-

withdrawing group substituted diynes 26 and 27. Compound 29 reacted with a 1.5 equivalents 

of 4-iodobenzotrifluoride or 1-bromo-4-iodobenzene in the presence of 5 mol % of 

PdCl2(PPh3)2 and 2.5 mol % of CuI in tetrahydrofuran/triethylamine at 50 °C. The reaction 

provided the desired products 26 and 27 in 65% and 48% yields, respectively (Scheme 82).  
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Scheme 82 

4.1.2. Synthesis of heteroaromatic bridged -diynes 

Heteroaromatic compounds 30-36 were prepared following the same strategy by 

Sonogashira cross-coupling of the corresponding 2-bromo-heteroarylaldehydes with 

phenylacetylene. As shown in scheme 83, the coupling products 30-36 were obtained in 50-88% 

yields under the same conditions.  

 

Scheme 83 

Next, aldehydes 30-36 reacted with terminal alkynes in the presence of nBuLi to provide 

the corresponding diynes 37-43 in yields ranging from 71% to 90% (Scheme 84).  
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Scheme 84 

Finally, oxidation of diynes 37-43 with Dess-Martin periodinane furnished the hetero-

aromatic carbonyl bridged diynes 44-50 in 40-94% yields. (Scheme 85).  

 

Scheme 85 
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4.1.3. Synthesis of internal alkynes 

Alkynes 51-64 that were used in this chapter are shown in Scheme 86. Symmetrical 

alkynes 51-54 and unsymmetrical alkynes 58-64 were purchased, while ether-substituted 

monoalkynes 55,97 56,98 and 5799 were synthesized in agreement with the methods described in 

the literature.  

 

Scheme 86 

Alkyne 55 was prepared by reacting 2-butyne-1,4-diol 52 with a large excess of tert-

butyl methyl ether (as solvent). The reaction was performed in the presence of two equivalents 

of sulfuric acid and molecular sieves at room temperature, providing 1,4-di-tert-butoxy-2-

butyne 55 in 43% yield (Scheme 87).  

 

Scheme 87 

                                                 
97 Mallesha, N.; Prahlada Rao, S.; Suhas, R.; Channe Gowda, D. Tetrahedron Lett. 2012, 53, 641.  
98 Arai, A.; Irchikizaki, I. Bull. Chem. Soc. Jpn. 1961, 34, 1571.  
99 Schlama, T.; Baati, R.; Gouverneur, V.; Valleix, A.; Falck, J. R.; Mioskowski C. Angew. Chem. Int. Ed. 1998, 

37, 2085.  
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The nucleophilic substitution of 2-butyne-1,4-diol 52 with 2.2 equivalents of benzyl 

bromide in the presence of sodium hydride, afforded 1,4-dibenzyloxy-2-butyne 56 in 75% 

isolated yield (Scheme 88).  

 

Scheme 88 

Internal alkyne 57 was synthesized through the nucleophilic substitution of 2-butyne-

1,4-diol 52 with 2.4 equivalents of tert-butyldimethylsilyl chloride at room temperature, using 

2.4 equivalents of imidazole and a catalytic amount of DMAP, leading to 1,4-bis-tert-

butyldimethylsilyloxy-2-butyne 57 in 80% yield (Scheme 89).  

 

Scheme 89 

4.2 Interest of RuCl3·nH2O complex 

Since we synthesized a series of benzoyl bridged -diynes and internal alkynes, we 

therefore attempted to find a suitable catalytic system for the [2+2+2] cycloaddition reactions.  

In this context, ruthenium trichloride is a stable salt which can be easily oxidized or 

reduced, and most commonly used in hydrated form (RuCl3·nH2O). As shown in Scheme 90, 

anhydrous ruthenium(III) chloride is usually prepared by heating powdered ruthenium metal 

with chlorine.100 

 

Scheme 90 

                                                 
100 Fletcher, J. M.; Gardner, W. E.; Fox, A. C.; Topping, G. J. Chem. Soc. (A) 1967, 1038.  

Ru(s) + 3/2 Cl2 (g) RuCl3 (g)
700 °C
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As the most commonly available ruthenium source, ruthenium trichloride was reported 

to be the best starting material for the synthesis of various ruthenium complexes (Scheme 91),101 

with a wide range of oxidation states present in these complexes (Ru VIII to Ru II).  

 

Scheme 91 

Ruthenium trichloride was also reported as an efficient catalyst to promote C-C, C-H, 

C-O and C-N bond formations. 102  Notable examples include many types of cyclization 

                                                 
101 (a) Caputo, J. A.; Fuchs, R. Tetrahedron Lett. 1967, 47, 4729. (b) Ley, S. M.; Norman. J.; Griffith, W. P.; 

Marsden, S. P. Synthesis 1994, 639. (c) Teulon, P.; Roziere, J. J. Organomet. Chem. 1981, 214, 391. (d) 

Humphries, A. P.; Knox, S. A. R. J. Chem. Soc. Dalton, 1975, 1710. (e) Cobbledick, R. E.; Einstein, F. W. B.; 

Pomeroy, R. K.; Spetch, E. R. J. Organomet. Chem. 1980, 195, 77. (f) Hallman, P. S.; Stephenson, T. A.; 

Wilkinson, G. Inorg. Synth. 1970, 12, 237. (g) Munk, M. E.; Nelson, D. B.; Antosz, F. J.; Herald, Jr. D. L.; Haskell, 

T. H. J. Am. Chem. Soc. 1968, 90, 1089. (h) Schwab, P.; Grubbs, R. H.; Ziller, J. W. J. Am. Chem. Soc. 1996, 118, 

100. (i) Ahmad, N.; Levison, J. J.; Robinson, S. D.; Uttley, M. F.; Wonchoba, E. R.; Parshall, G. W. Inorg. Synth. 

1974, 15, 45. (j) Pertici, P. Vitulli, G. J. Chem. Soc. Dalton, 1980, 1961. (k) Chaudret, B.; Commenges, G.; 

Poilblanc, R. J. Chem. Soc. Chem. Comm. 1982, 1388. (l) Bennett, M. A.; Smith, A. K. J. Chem. Soc. Dalton, 

1974, 233. (m) Oshima, N.; Suzuki, H.; Moro-oka, Y. Chem. Lett. 1984, 1161. (n) Suzuki, H.; Omori, H.; Lee, D. 

H.; Yoshlda, Y.; Moro-oka, Y. Organometallics 1988, 7, 2243. (o) Oshima, N.; Suzuki, H.; Moro-oka, Y. J. 

Organomet. Chem. 1986, 314, C46. (p) Mbaye, M. D.; Demerseman, B.; Renaud, J.-L.; Toupet, L.;  Bruneau, C. 

Adv. Synth. Catal. 2004, 346, 835.  
102 (a) Madec, J.; Pfister, X.; Phansavath, P.; Ratovelomanana-Vidal, V.; Genêt, J.-P. Tetrahedron 2001, 57, 2563. 

(b) Li, C.-J.; Wei, C. Chem. Commun. 2002, 38, 268. (c) Youn, S. W.; Pastine, S. J.; Sames, D. Org. Lett. 2004, 

6, 581. (d) Lian, J.-J.; Lin, C.-C.; Chang, H.-K.; Chen, P.-C.; Liu, R.-S. J. Am. Chem. Soc. 2006, 128, 9661. (e) 

Bonfield, E. R.; Li, C.-J. Org. Biomol. Chem. 2007, 5, 435. (f) Labeeuw, O.; Roche, C.; Phansavath, P.; Genêt, J.-

P. Org. Lett. 2007, 9, 105. (g) Ackermann, L.; Althammer, A.; Born, R. Synlett 2007, 2833. (h) Cheng, K.; Yao, 

B.; Zhao, J.; Zhang, Y. Org. Lett. 2008, 10, 5309. (i) Goossen, L. J.; Arndt, M.; Blanchot, M.; Rudolphi, F.; 

Menges, F.; Niedner-Schatteburg, G. Adv. Synth. Catal. 2008, 350, 2701. (j) Ackermann, L.; Althammer, A.; Born, 

R. Tetrahedron 2008, 64, 6115. (k) Denmark, S.; Nguyen, S. T. Org. Lett. 2009, 11, 781. (l) Shou, G. E.; Li, J.; 

Guo, T.; Lin, Z.; Jia, G. Organometallics 2009, 28, 6847. (m) Simon, M.-O.; Genêt, J.-P.; Darses, S. Org. Lett. 

2010, 12, 3038; (n) Luo, N.; Yu, Z. Chem. Eur. J. 2010, 16, 787. (o) Simon, M.-O.; Ung, G.; Darses, S. Adv. Synth. 
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reactions. For example, as shown in Scheme 92, Sames and co-workers demonstrated that 

RuCl3/AgOTf was a mild and efficient catalyst for the intramolecular hydroarylation 

cyclization of a range of arene-ene substrates (Eq. a).102c Liu and co-workers reported that the 

thermal cyclization of various 3,5-dien-1-ynes can be greatly enhanced by using RuCl3 as 

catalyst (Eq. b).102d The group of Jia developed a series of RuCl3-catalyzed intramolecular C-H 

amination reactions of organic azides, affording the corresponding indoles (Eq. c).102l 

Rostamnia and co-workers described a RuCl3-catalyzed solvent-free Ugi-type Groebke–

Blackburn condensations of aldehydes and 2-aminopyridines with isocyanides in the presence 

of 5 mol % RuCl3·nH2O without any ligand or additive leading to the formation of 

aminoimidazole heterocycles (Eq. d).102t 

 

Scheme 92 

In the context of RuCl3-catalyzed cycloaddition reactions, our group previously reported 

the first RuCl3·nH2O-promoted [2+2+2] cycloaddition reaction of-diynes and alkynes to 

                                                 
Catal. 2011, 353, 1045. (p) Kawatsura, M.; Uchida, K.; Terasaki, S.; Tsuji, H.; Minakawa, M.; Itoh, T. Org. Lett. 

2014, 16, 1470. (q) Seki, M. ACS Catal. 2011, 1, 607. (r) Thirunavukkarasu V. S.; Ackermann, L. Org. Lett. 2012, 

14, 6206. (s) Adrio, L. A.; Gimeno, J.; Vicent, C. Chem. Commun. 2013, 49, 8320. (t) Rostamnia, S.; Hassankhani, 

A. RSC Adv. 2013, 3, 18626. (u) Singh, M. K.; Akula, H. K.; Satishkumar, S.; Stahl, L.; Lakshman, M. K. ACS 

Catal. 2016, 6, 1921. (v) Tan, D.-W.; Li, H.-X.; Young, D. J.; Lang, J.-P. Tetrahedron 2016, 72, 4169. (w) Baruah, 

P. K.; Deb, M. L.; Borpatra, P. J.; Saikia, P. J. Org. Biomol. Chem. 2017, 15, 1435.  
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access highly substituted benzene derivatives (Scheme 93).103 We demonstrated that the cost-

effectively available RuCl3·nH2O was an efficient catalyst to promote the cycloaddition 

reaction under solvent-free conditions affording fused functionalized arenes including 

dihydrobenzofurans, isoindolines, and indanes in 48-97% yields. Notably, this practical method 

used neither additional ligand nor additive.  

 

Scheme 93 

Encouraged by these results, we assumed that the RuCl3·nH2O complex might also be 

an efficient catalyst for solvent-free [2+2+2] cycloaddition of arylcarbamoyl bridged -

diynes and monoalkynes to access fluorenone derivatives. 

4.3 RuCl3·nH2O-mediated [2+2+2] cycloaddition of benzoyl bridged -

diynes with symmetrical internal alkynes 

With a series of diynes and alkynes in hand, we began our study by investigating the 

reaction of arylcarbamoyl bridged diyne 17 with 1,4-dimethoxy-2-butyne 51 which has often 

been reported as a good partner in transition-metal-catalyzed [2+2+2] cycloaddition reactions. 

The reaction was therefore initially performed in the presence of 5 mol % RuCl3·nH2O at 110 

°C under previously described solvent-free conditions.103 Fortunately, the reaction gave the 

corresponding fluorenone 65 in complete conversion and isolated yield up to 86% (Entry 1, 

Table 1). It is noteworthy that the desired product could be isolated on silica column 

chromatography without any treatment after complete conversion (determined by TLC and 

crude 1H NMR). This result confirmed that RuCl3·nH2O is an efficient catalyst in [2+2+2] 

cycloaddition of -diynes with alkynes under solvent-free conditions. Based on such 

                                                 
103 Jacquet, J.; Auvinet, A.-L.; Mandadapu, A. K.; Haddad, M.; Ratovelomanana-Vidal, V.; Michelet, V. Adv. 

Synth. Catal. 2015, 357, 1387.  
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encouraging result, we further optimized the reaction conditions. First, we studied the 

consumption of the monoalkyne 51, we were pleased to observe that when the amount of alkyne 

51 was decreased from 6 to 2 equivalents, the reaction still provided the desired product 65 in 

satisfactory yields (Entries 2-6). In addition, decreasing the reaction temperature to 50 °C 

provided the cycloadduct in a similar yield (Entry 3, 73% and Entry 5, 75%, respectively). 

Lowering the catalyst loading from 5 to 2 mol %, led to a decrease of the conversion and isolated 

yield was observed in 18 hours at 80 °C (Entry 4, 60% conv. and 40% yield, respectively). 

Furthermore, we found that the reaction could be accomplished in 2 hours at 50 °C affording 

the desired cycloadduct 65 in satisfactory yield of 72% (Entries 6-8). When the reaction was 

placed under open-air condition, the conversion decreased significantly (Entry 9).  

Table 1 Optimization of the reaction conditions 

 

Entrya 17/51 T (°C) t (h) Conv. (%)b Yield (%)c 

1 1:6 110 18 > 99 86 

2 1:4 80 18 > 99 74 

3 1:3 80 18 > 99 73 

4d 1:3 80 18 60 40 

5 1:3 50 18 > 99 75 

6 1:2 50 18 > 99 72 

7 1:2 50 4 > 99 73 

8 1:2 50 2 > 99 72 

9e 1:2 50 18 40 nd 
a Reaction conditions: RuCl3·nH2O (0.0175 mmol), diyne 17 (0.35 mmol), alkyne 51 

(0.7 mmol) were heated in a screw-capped tube under free-solvent conditions and 

argon atmosphere. b Determined by 1H NMR. c Isolated yields. d 2 mol % RuCl3·nH2O 

(0.007 mmol) was used. e Under air atmosphere. 

To investigate the synthetic utility of this catalytic method, the reaction was performed 

on one gram-scale under optimized conditions. Fluorenone 65 was efficiently isolated in 71% 

yield (Scheme 94).  

nBu

O

RuCl3·nH2O
5 mol %
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Scheme 94 

Having established a set of optimal conditions, we examined the scope and limitations 

of the solvent-free RuCl3·nH2O-catalyzed [2+2+2] cycloaddition between diynes 18-27 and 

alkyne 51, as shown in Scheme 95. Initially, we observed that diyne 18 having two identical 

alkyl substituents at the C1 and C7 positions was less reactive compared to the unsymmetrical 

substituted diynes having a phenyl group at C7 position, the corresponding product 66 was 

obtained in 38% yield. The use of diyne 19 gave the desired product 67 in 43% yield. This 

result suggested that the unsymmetrical substituted diynes having a phenyl group at C7 

positions was necessary. On the other hand, the reaction of diyne 20 with a cyclopropyl moiety 

delivered the cyclic product 68 in 63% yield. Interestingly, the cyclization of silyl-substituted 

diyne 21 with alkyne 51 provided the desired compounds 69 with 58% yield, which was used 

for further functionalization. Further experiments showed that diynes 22, 23, 26 and 27, having 

electron-donating or electron-withdrawing substituent on para position of phenyl ring at C7 

could be successfully used in this reaction, leading to the targeted products 70-73 in 56-71% 

yields. To evaluate the influence of the tethered phenyl group, cycloaddition using diynes 24 

and 25, bearing electron-donating or electron-withdrawing group, were accomplished smoothly 

to yield the desired products 74 and 75 in similar yields (68% and 65%, respectively). It is worth 

mentioning that these reactions were based on complete conversion even at elevated 

temperatures or prolonged reaction times.  

nBu

O

RuCl3·nH2O 5 mol %

solvent-free conditions
80 °C, 20 h

71%

nBu
O

OMe

OMe

OMe

OMe

17, 1.0 g 51 (2 equiv) 65



Chapter II 

 104 

 

Scheme 95 

To further investigate the generality of the [2+2+2] cyclization, the reactivity of various 

alkynes was examined (Scheme 96). Switching the methyl group to a bulkier group, such as 

tert-butyl and benzyl, allowed to access the corresponding functionalized fluorenones 76 and 

77 in 80% and 81% yields, respectively. The structure of fluorenone 77 was unambiguously 

confirmed by single crystal X-ray diffraction as shown in Scheme 96. Furthermore, when the 

cycloaddition of diyne 17 with 3-hexyne 53 was carried out under the same conditions, 

cycloadduct 78 was obtained in 11% isolated yield. However, we did not observe the cyclized 

products 79 and 80 when the alkynes 54 and 57 were used in the reactions, these results could 

be explained by the steric effects and poor reactivity of these alkynes.  
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Scheme 96 

During our ongoing investigation on the scope of different substituted diynes and 

alkynes, we found that the reaction of diyne 8 with alkyne 51 did not afford cyclic product 81, 

most of starting material being decomposed under the reaction conditions (Eq. a, Scheme 97). 

To further evaluate the influence of free hydroxyl substituent, the reaction of diyne 17 with 2-

butyne-1,4-diol 51 was studied. Unfortunately, we did not observe any desired product 82 (Eq. 

b, Scheme 97). This result suggested that free hydroxyl groups from both diyne or monoalkyne 

would greatly influence the formation of cycloadduct in this reaction.  
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Scheme 97 

4.4 RuCl3·nH2O-mediated [2+2+2] cycloaddition of heteroaromatic carbonyl 

bridged -diynes with internal alkynes 

Once the heteroaromatic carbonyl bridged diynes 44-50 were obtained, we examined 

their partially intramolecular [2+2+2] cycloaddition to provide the corresponding hetero-based 

fluorenones. A series of hetero-aromatic tethered diynes has been studied.  

First, the cycloaddition of furan-bridged diyne 44 with alkyne 51 in the presence of 

RuCl3·nH2O under the optimal conditions delivered the corresponding benzo[b]furanones 83 

in 55% yield. Then, the thienyl-based fluorenones 84 and 85 were obtained in 71% and 62% 

isolated yields, respectively. Moreover, the cyclization of diyne 46, having a benzo[b]thiophene 

moiety as tether, produced the expected fused fluorenone 86 in 78% yield. When diyne 47 was 

used in the cycloaddition, the corresponding cyclic product 87 was obtained in 30% yield 

(Scheme 98).  
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Scheme 98 

On the other hand, it was found that the use of diyne 49 only gave the corresponding 

cycloadduct 89 in 6% yield, while cyclization of diyne 48 with alkyne 51 did not provide 

cyclized product 88. To explain these results, we speculate that the position of the nitrogen atom 

in pyridine would influence the course of the reaction toward the formation of an unactivated 

intermediate where the ruthenium is coordinated to the nitrogen atom. This could be confirmed 

by the preparation of aza-fluorenone 90, starting from the pyridine tethered diynes 50 and 

alkyne 51, 60% yield was obtained and a chlorine atom was compatible with this reaction. 

(Scheme 99).  
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Scheme 99 

4.5 Regioselective RuCl3·nH2O-mediated [2+2+2] cycloaddition of benzoyl 

bridged-diynes with unsymmetrical terminal and internal alkynes  

The cycloaddition reaction was not limited to symmetrical internal alkynes, since a 

series of unsymmetrical terminal alkynes, such as cyclopropylacetylene 58, phenylacetylene 59, 

and 5-chloro-1-pentyne 60, were successfully reacted with phenylcarbamoyl bridged diyne 17 

under optimized reaction conditions. The [2+2+2] cycloaddition reactions led to unseparable 

mixtures of regioisomers 91, 92, and 93 in 61−84% yields with regioselectivities from 55:45 to 

73:27 ratio (Scheme 100).  
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Scheme 100 

Next, we turned our attention to the examination of unsymmetrical internal alkynes. 

Unfortunately, cycloaddition of methyl 3-phenylpropiolate 61, methyl 2-butynoate 62, 

phenylpropargyl aldehyde diethyl acetal 63, and 4-(3-phenylprop-2-yn-1-yl)-morpholine 64 

failed to afford the desired fluorenone products (Scheme 101). Only degradation of starting 

diynes was observed. The control of the regioselectivity is therefore still a challenge for 

RuCl3·nH2O-catalyzed [2+2+2] cycloaddition of diynes with unsymmetrical alkynes.  

 

Scheme 101 

4.6 Post-functionalization of fluorenone derivatives 

With a set of substituted fluorenone derivatives in hand, we then turned our attention 

toward the investigation of post-functionalization reactions of fluorenone derivatives, including 

compounds 65 and 76, silylated derivative 69 and bromo-functionalized adduct 73.  

First, we focused on the functionalization of cycloadducts 65 and 76, as shown in 

Scheme 102. When the dimethyl ether substituted fluorenone 65 was refluxed in the presence 

of concentrated trifluoroacetic acid, the reaction did not lead to the expected deprotected diol 
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95: the substituted cyclized product dihydrobenzo[b]furan 94 was isolated as the main product 

in 85% yield. To achieve the deprotection of di-tert-butyl ether substituted fluorenone 76, the 

latter was subjected to classical deprotection conditions, yielding 75% of diol 95. On the other 

hand, the direct dibromination of compound 76 in the presence of refluxing mixture of HBr and 

Bu4NBr in chloroform provided the dibrominated 96 in 90% yield. The diol and dibrominated 

products were reported as key building blocks for the synthesis of OLEDs materials.59d 

 

Scheme 102 

The silyl-based fluorenone adduct 69 has been considered as a suitable substrate, since 

the reactivity of the substituted silyl group is expected to enable functionalization reactions, 

such as iodination reaction.104 The iodinated product could further allow the introduction of a 

variety of substituents using metal-catalyzed cross-coupling reactions. 105  Starting from 

compound 69, the iodination by means of iodine monochloride afforded the iodinated product 

97 in 84% yield. Consequently, a single Sonogashira cross-coupling reaction of compound 97 

with phenylacetylene led to the desired alkyne 98 in 98% yield. Additionally, adduct 97 was 

                                                 
104 Durka, K.; Górka, J.; Kurach, P.; Luliński, S.; Serwatowski, J. J. Organomet. Chem. 2010, 695, 2635.  
105 (a) Chinchilla, R.; Najera, C. Chem. Rev. 2007, 107, 874. (b) Doucet, H.; Hierso, J.-C. Angew. Chem. Int. Ed. 

2007, 46, 834. (c) Johansson Seechurn, C. C. C.; Kitching, M. O.; Colacot, T. J.; Snieckus, V. Angew. Chem. Int. 

Ed. 2012, 51, 5062. (d) Palladium-Catalyzed Coupling Reactions: Practical Aspects and Future Developments, 

(Ed.: A. Molnar), Wiley-VCH, Weinheim, 2013. 
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subjected to Suzuki-Miyaura cross-coupling reaction, leading to boronic ester 99 in 65% yield 

(scheme 103).  

 

Scheme 103 

To extend the applications of the functionalized fluorenones, additional Suzuki-Miyaura 

cross-coupling reaction was performed with bromo-substituted fluorenone 73. Boronic ester 

derivative 100 was obtained in 85% yield (Scheme 104).  

 

Scheme 104 
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5. Conclusion 

In summary, we have developed a novel and eco-friendly straightforward access to 

highly substituted fluorenones and related analogues using RuCl3·nH2O-promoted partially 

intramolecular [2+2+2] cycloaddition of carbonyl bridged -diynes with alkynes. This 

economical process was performed without solvent, additional ligands or additives, and allowed 

the construction of complex polycyclic fluorenones, aza-fluorenones, benzo[b]furanones and 

indenothiophenones. This protocol offers several advantages: i) the stability and cost-effective 

RuCl3·nH2O used as catalyst, ii) prevention of pollution with no elimination of toxic or volatile 

solvents, iii) practical protocol without work up to access the targeted products.  

A wide range of carbonyl bridged -diynes and alkynes containing different 

substituents was evaluated in this reaction. Unsymmetrical diynes bearing alkyl and phenyl 

substituents proved to be more active in the ruthenium-catalyzed [2+2+2] cycloaddition 

reaction. Both electron-donating and electron-withdrawing substituents on the phenyl ring and 

tether phenyl ring were tolerated in this reaction. Furthemore, heteroarene tethered carbonyl 

diynes, such as furanyl-, thienyl- and aza-based moieties, have been shown to be active in this 

cyclization and their cycloaddition proceeded efficiently to give the expected cycloadducts in 

30-78% yields. With regards to the scope of the alkynes, a wide range of substituted alkynes 

has been used for the [2+2+2] cycloaddition. It was found that symmetrical dialkoxy-substituted 

alkynes, such as methoxy, benzyloxy and tert-butoxy, could be engaged in the cyclization to 

deliver the desired product in 6-81% yields. Unsymmetrical terminal alkynes also converted 

well to the expected cycloadducts, although 55:45 to73:27 regioselectivities were obtained.  
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Chapter III: Ruthenium-catalyzed [2+2+2] cycloaddition of 

diynes with electron-rich cyanamides: an easy access to 2-

aminopyridine derivatives 

1. Interest of 2-Aminopyridines 

A recent report demonstrated that pyridine is the second most commonly used nitrogen 

heterocycle among all U.S. FDA approved pharmaceuticals (Figure 2).106 As analogues of 

pyridines, 2-aminopyridines represent one of the most important skeleton motifs which are 

widely present in many biologically active molecules as well as pharmaceuticals.  

 

Figure 2106 

                                                 
106 Vitaku, E.; Smith, D. T.; Njardarson, J. T. J. Med. Chem. 2014, 57, 10257. 
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Compounds containing 2-aminopyridine ring scaffold exhibit an array of 

pharmacological properties such as antimicrobial,107 anti-inflammatory,108 anti-prion, 109 anti-

HBV, 110  antithrombotic, 111  antineoplastic, 112  and antitumoral. 113  Particularly, morpholine 

derived pyranopyridines (MBX2319) A is active against Gram-negative bacteria;107 piperazine 

derived pyranopyridine B is used as IDH1 mutants inhibitor for the treatment of cancer;113d 

ethyl 6-aminonicotinate acyl sulfonamide C is potent antagonist of the P2Y12 receptor;111 

heterocycle D which exhibits potent γ-secretase modulator activity is expected for the treatment 

of Alzheimer’s disease;114 Crizotinib E is a commercially available anti-cancer drug, which has 

been approved for the treatment of lung cancer;113a-113c α-carboline derivative (TAK-901) F is 

potent Aurora B kinase inhibitor with antineoplastic activity112a (Scheme 105).  

In addition to bioactive compounds, 2-aminopyridines are also synthetically useful 

compounds present in organometallic and material chemistry. The L-amino acid containing a 

2-aminopyridine moiety G was used as highly efficient bidentate ligand for direct asymmetric 

                                                 
107 (a) Opperman, T. J.; Kwasny, S. M.; Kim, H. S.; Nguyen, S. T.; Houseweart, C.; D’Souza, S.; Walker, G. C.; 

Peet, N. P.; Nikaido, H.; Bowlin, T. L. Antimicrob. Agents Chemother. 2014, 58, 722. (b) Nguyen, S. T.; Kwasny, 

S. M.; Ding, X.; Cardinale, S. C.; McCarthy, C. T.; Kim, H. S.; Nikaido, H.; Peet, N. P.; Williams, J. D.; Bowlin, 

T. L.; Opperman, T. J. Bioorganic Med. Chem. 2015, 23, 2024.  
108 Mannal, F.; Chimentil, F.; Bolascol, A.; Palla, A.; Filippelli, W.; Lampa, E.; Mercantini, R.; Filippell, A. Eur. 

J. Med. Chem. 1992, 27, 627. 
109 (a) Reddy, T. R. K.; Mutter, R.; Heal, W.; Guo, K.; Gillet, V. J.; Pratt, S.; Chen, B. J. Med. Chem. 2006, 49, 

607. (b)  May, B. C. H.; Zorn, J. A.; Witkop, J.; Sherrill, J.; Wallace, A. C.; Legname, G.; Prusiner, S. B.; Cohen, 

F. E. J. Med. Chem. 2007, 50, 65. 
110 Chen, H.; Zhang, W.; Tam, R.; Raney, A. K. PCT Int. Appl. WO 2005058315 A1 20050630, 2005.  
111 Bach, P.; Antonsson, T.; Bylund, R.; Björkman, J. A.; Österlund, K.; Giordanetto, F.; Van Giezen, J. J. J.; 

Andersen, S. M.; Zachrisson, H.; Zetterberg, F. J. Med. Chem. 2013, 56, 7015. 
112 (a) Farrell, P.; Shi, L.; Matuszkiewicz, J.; Balakrishna, D.; Hoshino, T.; Zhang, L.; Elliott, S.; Fabrey, R.; Lee, 

B.; Halkowycz, P.; Sang, B.; Ishino, S.; Nomura, T.; Teratani, M.; Ohta, Y.; Grimshaw, C.; Paraselli, B.; Satou, 

T.; de Jong, R. Mol. Cancer Ther. 2013, 12, 460. (b) Mineno, M.; Sera, M.; Ueda, T.; Mizufune, H.; Zanka, A.; 

Obryan, C.; Brown, J.; Scorah, N. J. Org. Chem. 2015, 80, 1564.  
113 (a) Christensen, J. G.; Zou, H. Y.; Arango, M. E.; Li, Q.; Lee, J. H.; McDonnell, S. R.; Yamazaki, S.; Alton, 

G. R.; Mroczkowski, B.; Los, G. Mol. Cancer Ther. 2007, 6, 3314. (b) Zou, H. Y.; Li, Q.; Lee, J. H.; Arango, M. 

E.; McDonnell, S. R.; Yamazaki, S.; Koudriakova, T. B.; Alton, G.; Cui, J. J.; Kung, P. P.; Nambu, M. D.; Los, 

G.; Bender, S. L.; Mroczkowski, B.; Christensen, J. G. Cancer Res. 2007, 67, 4408. (c) Cui, J. J.; Tran-Dubé, M.; 

Shen, H.; Nambu, M.; Kung, P.; Pairish, M.; Jia, L.; Meng, J.; Funk, L.; Botrous, I.; McTigue, M.; Grodsky, N.; 

Ryan, K.; Padrique, E.; Alton, G.; Timofeevski, S.; Yamazaki, S.; Li, Q.; Zou, H.; Christensen, J.; Mroczkowski, 

B.; Bender, S.; Kania, R. S.; Edwards, M. P. J. Med. Chem. 2011, 54, 6342. (d) Cao, S.; Popovici-Muller, J.; 

Salituro, F. G.; Saunders, J.; Tan, X.; Travins, J. Yan, S.; Ye, Z. PCT Int. Appl. WO 2012171506 A1 20121220, 

2012. (e) Cocco, M. T.; Congiu, C.; Lilliu, V.; Onnis, V. Eur. J. Med. Chem. 2005, 40, 1365.  
114 Bischoff, F.; Berthelot, D.; De Cleyn, M.; Macdonald, G.; Minne, G.; Oehlrich, D.; Pieters, S.; Surkyn, M.; 

Trabanco, A. A.; Tresadern, G.; Van Brandt, S.; Velter, I.; Zaja, M.; Borghys, H.; Masungi, C.; Mercken, M.; 

Gijsen, H. J. M. J. Med. Chem. 2012, 55, 9089. 
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aldol reaction.115 Pyrido[2,3-b]azepine H, a pH sensitive fluorescence dye, can be an ideal 

candidate for fluorescence label116 (Scheme 105).  

 

Scheme 105 

Amino-aza-fluorenones, containing 2-aminopyridine structural motif, have received 

increasing interest in recent years. Many of the synthetic and natural amino-aza-fluorenones 

displayed interesting properties and are present in a variety of pharmacophores 117  and 

chromophores. 118  As depicted in Scheme 106, 2-azafluorenone I is an antagonist of the 

                                                 
115 Daka, P.; Xu, Z.; Alexa, A.; Wang, H. Chem. Commun. 2011, 47, 224.  
116 Schramm, O. G.; Dediu, N.; Oeser, T.; Müller, T. J. J. J. Org. Chem. 2006, 71, 3494. 
117 (a) Heintzelman, G. R.; Bullington, J. L.; Rupert, K. C. PCT Int. Appl. WO 2005042500 A1 20050512, 2005. 

(b) Chen, T.-C.; Yu, D.-S.; Chen, S.-J.; Chen, C.-L.; Lee, C.-C.; Hsieh, Y.-Y.; Chang, L.-C.; Guh, J.-H.; Lin, J.-

J.; Huang, H.-S. Arab. J. Chem. 2016. DOI: 10.1016/j.arabjc.2016.06.014. 
118 (a) Landmesser, T.; Linden, A.; Hansen, H.-J. Helv. Chim. Acta 2008, 91, 265. (b) Gao, M.; Su, H.; Lin, Y.; 

Ling, X.; Li, S.; Qin, A.; Tang, B. Z. Chem. Sci. 2017, 8, 1763.  
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Adenosine A2a receptor;117a piperazinyl derived compound J which exhibits inhibitory effect 

on topoisomerase I would be a potent anti-breast cancer candidate;117b 2-azafluorenone K with 

typical aggregation-induced emission (AIE) properties can be used for lipid droplet-specific 

live cell imaging.118b  

 

Scheme 106 

2. Synthetic methods for the preparation of 2-

aminopyridines 

2.1 Traditional methods 

The preparation of 2-aminopyridines has been reported with numerous strategies. For 

example, Chichibabin reactions start from pyridine and sodium amide,119 Buchwald-Hartwig 

amination120 and Ullmann coupling reactions121 of halopyridines with primary or secondary 

amines, one-pot three-component cascade reaction116 using N-tosyl propargyl amines, aryl 

halides, and N,S-ketene acetals, formal [2+2+1+1] cycloaddition reaction122 of aldehydes with 

ketones, and malononitrile (Scheme 107). However, these methods were efficient to access 

simple 2-aminopyridines, but for more complex substitution patterns, additional synthetic 

                                                 
119 (a) Chichibabin, A. E.; Zeide, O. A. J. Russ. Phys. Chem. Soc. 1914, 46, 1216. (b) Chichibabin, A. E.; Zeide, 

O. A. Ber. Dtsch. Chem. Ges. 1923, 56B, 1879.  
120 (a) Wagaw, S.; Buchwald, S. L. J. Org. Chem. 1996, 61, 7240. (b) Patriciu, O. I.; Fînaru, A. L.; Massip, S.; 

Léger, J. M.; Jarry, C.; Guillaumet, G. Eur. J. Org. Chem. 2009, 22, 3753. (c) Shen, Q.; Hartwig, J. F. Org. Lett. 

2008, 10, 4109. (d) Lorimer, A. V.; O’Connor, P. D.; Brimble, M. A. Synthesis 2008, 2764.  
121 (a) Shafir, A.; Buchwald, S. L. J. Am. Chem. Soc. 2006, 128, 8742. (b) Liu, Z.; Vors, J.; Gesing, E. R. F.; Bolm, 

C. Adv. Synth. Catal. 2010, 352, 3158.  
122 (a) Teague, S. J. J. Org. Chem. 2008, 73, 9765. (b) Ranu, B. C.; Jana, R.; Sowmiah, S. J. Org. Chem. 2007, 72, 

3152.  
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manipulations were required. In addition, these reactions suffered more or less from some 

shortcomings such as harsh reaction conditions, multistep procedures, limited functionalities 

tolerance, etc.  

 

Scheme 107 

2.2 Transition-metal-catalyzed [2+2+2] cycloadditions of alkynes with 

cyanamides 

Cyanamide derivatives moiety are widely present in pharmaceutical molecules and 

bioactive compounds.123 Owing to the high reactivity of the electron-rich nitrile triple bonds, 

bearing an amine group at the-position of nitrile (R2N-CN), these privileged structures serve 

as versatile building blocks and have been widely used for the synthesis of various nitrogen-

containing heterocycles,124 as shown in Scheme 108.  

                                                 
123 (a) Kumar, R.; Rai, D.; Sharma, S. K.; Saffran, H. A.; Blush, R.; Tyrrell, D. L. J. J. Med. Chem. 2001, 44, 3531. 

(b) Larraufie, M.-H.; Maestri, G.; Malacria, M.; Ollivier, C.; Fensterbank, L.; Lacôte, E. Synthesis 2012, 44, 1279. 

(c) Carta, F.; Akdemir, A.; Scozzafava, A.; Masini, E.; Supuran, C. T. J. Med. Chem. 2013, 56, 4691. (d) Yu, J.-

T.; Teng, F.; Cheng, J. Adv. Synth. Catal. 2017, 359, 26.  
124 (a) Pawlas, J.; Begtrup, M. Org. Lett. 2002, 4, 2687. (b) Köhn, U.; Klopfleisch, M.; Görls, H.; Anders, E. 

Tetrahedron Asymmetry 2006, 17, 811. (c) Jenkinson, S. F.; Jones, N. A.; Moussa, A.; Stewart, A. J.; Heinz, T.; 

Fleet, G. W. J. Tetrahedron Lett. 2007, 48, 4441. (d) Dornan, P.; Rowley, C. N.; Priem, J.; Barry, S. T.; Burchell, 

T. J.; Woo, T. K.; Richeson, D. S. Chem. Commun. 2008, 31, 3645. (e) Nasrollahzadeh, M.; Habibi, D.; 

Shahkarami, Z.; Bayat, Y. Tetrahedron 2009, 65, 10715. (f) Giles, R. L.; Nkansah, R. A.; Looper, R. E. J. Org. 

Chem. 2010, 75, 261. (g) Larraufie, M.-H.; Courillon, C.; Ollivier, C.; Lacôte, E.; Malacria, M.; Fensterbank, L. 

J. Am. Chem. Soc. 2010, 132, 4381. (h) Zhou, L.; Chen, J.; Zhou, J.; Yeung, Y.-Y. Org. Lett. 2011, 13, 5804.  
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Scheme 108 

Particularly, cyanamides also proved to be good partners for the transition-metal-

catalyzed [2+2+2] cycloaddition which has been reported as a powerful and atom-economical 

method for the construction of highly substituted 2-aminopyridines. The following discussion 

will focus on the [2+2+2] cycloaddition reactions involving the most common used cobalt, 

rhodium, nickel, iron, iridium and ruthenium complexes. 

2.2.1. Cobalt-catalyzed [2+2+2] cycloadditions 

In 1984, Bönnemann and co-workers disclosed the first cobalt-catalyzed [2+2+2] 

cycloaddition of acetylene and cyanamide to form 2-aminopyridine containing a free amino 

group using (6-boranato)cobalt as catalyst. The reaction was successfully performed at 130 °C 

under 40 bar to afford 2-aminopyridine in 54% yield (Scheme 109).125  

 

Scheme 109 
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After the pioneer work reported by Bönnemann, Heller and co-workers described the 

co-trimerization of acetylene with dimethyl-, pyrrolidinyl-, piperidinyl-substituted cyanamides 

in the presence of CpCo(cod) catalyst under photo-irradiation conditions at room temperature 

(Scheme 110).126 The reaction afforded the corresponding 2-aminopyridines respectively in 

46%, 68%, and 75% yields. Notably, in this case, the acetylene gas was delivered at constant 

normal pressure.  

 

Scheme 110 

In 2000, Eaton and co-workers reported one example of cyclotrimerization of 2-butyne-

1,4-diol with N-cyanopyrrolidine to afford a highly functionalized pyridine in 71% yield. 127 

This reaction presented many advantages including the use of a water-soluble cobalt(I) complex 

as catalyst, without the need of photochemical activation, only a stoichiometric amount of 

nitrile (alkyne:nitrile = 2:1) was required (Scheme 111).  

 

Scheme 111 

In 2004, Maryanoff’s group described the preparation of bicyclic 2-aminopyridine 

derivatives starting from -diynes and cyanamides.128 A variety of diynes and N-substituted 

cyanamides underwent cycloadditions in the presence of 15 mol % of CpCo(CO)2 catalyst in 

                                                 
126 (a) Heller, B.; Reihsig, J.; Schulz, W.; Oehme, G. Appl. Organomet. Chem. 1993, 7, 641. (b) Heller, B.; 

Sundermann, B.; Buschmann, H.; Drexler, H.-J.; You, J.; Holzgrabe, U.; Heller, E.; Oehme, G. J. Org. Chem. 

2002, 67, 4414. 
127 Fatland, A. W.; Eaton, B. E. Org. Lett. 2000, 2, 3131.  
128 Boñaga, L. V. R.; Zhang, H.-C.; Maryanoff, B. E. Chem. Commun. 2004, 2394. 
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refluxing dioxane, providing the corresponding bicyclic 2-aminopyridines in a range of 16% to 

88% yield. Cyanamides disubstituted with alkyl, allyl, and aryl groups furnished the annulated 

compounds in 19-88% yields. The cyanamides possessing a large dibenzazepinyl group showed 

lower reactivity, and gave the cycloadduct in 19% yield. The cycloaddition of a bulky 

adamantyl-substituted cyanamide led to the corresponding 2-aminopyridine with a secondary 

amine group in 32% yield (Scheme 112). 

 

Scheme 112 

The same group also investigated in 2005 the formation of macrocycles from long-chain 

diynes and cyanamides in cobalt-mediated [2+2+2] cycloaddition reactions.129 The reaction of 

1,15-diynes with cyanamides provided mainly the corresponding 16-membered para-

pyridinophanes in 32-80% yields, whereas the reaction of 1,17-diyne furnished a mixture of 

both 17-membered meta- and 18-membered para-pyridinophanes in 64% yield. These results 

indicated that the regioselectivity of the reactions was affected by the length and the type of 

linker unit between the alkyne groups (Scheme 113).  

                                                 
129 Boñaga, L. V. R.; Zhang, H.-C.; Moretto, A. F.; Ye, H.; Gauthier, D. A.; Li, J.; Leo, G. C.; Maryanoff, B. E. J. 

Am. Chem. Soc. 2005, 127, 3473.  
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Scheme 113 

In 2007, Maryanoff and co-workers applied this method employing CpCo(CO)2 catalyst 

system for the synthesis of macrocyclic (17-20 members) bis(indolyl)maleimide 

pyridinophanes, although lower isolated yields (9-15%) were observed (Scheme 114). The 

biological results indicated that these macrocyclic heterophanes were potent and selective 

inhibitors of glycogen synthase kinase-3.130 

 

Scheme 114 

                                                 
130 Zhang, H.-C.; Boñaga, L. V. R.; Ye, H.; Derian, C. K.; Damiano, B. P.; Maryanoff, B. E. Bioorg. Med. Chem. 

Lett. 2007, 17, 2863. 
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One example of the synthesis of axially chiral biaryl containing 2-aminopyridine moiety 

was achieved. 131  The use of chiral cobalt(I) catalyst for the enantioselective [2+2+2] 

cycloaddition of naphthyl-substituted 1,7-diyne with N-cyanopiperidine gave the expected 

biaryl cycloadduct in 89% yield with 87% enantioselectivity (Scheme 115). 

 

Scheme 115 

A quick access to allocolchicine analogues was developed by Schmalz and Nicolaus.132 

In the presence of 20 mol % CpCo(CO)2 under microwave conditions at 150 °C, the 3,4,5-

trimethoxybenzaldehyde and 3,4,5-trimethoxyacetophenone derived diynes reacted with 

morpholine-4-carbonitrile to generate the desired products in a short reaction time with 27% 

and 35% yields, and regioselectivities up to >99:1 were obtained (Scheme 116). 

 

Scheme 116 

Malacria, Aubert, Gandon and co-workers reported the CpCo(CO)(dmfu) complex-

catalyzed [2+2+2] cycloaddition of yne-ynamides with cyanamides to provide 2,5-

                                                 
131 Hapke, M.; Kral, K.; Fischer, C.; Spannenberg, A.; Gutnov, A.; Redkin, D.; Heller, B. J. Org. Chem. 2010, 75, 
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132 Nicolaus, N.; Schmalz, H.-G. Synlett 2010, 2071. 
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diaminopyridine derivatives.133 Five-, six-, and seven-membered bicyclic compounds were 

synthesized in 20-85% yields with perfect regioselectivities (Scheme 117).  

 

Scheme 117 

2.2.2. Rhodium-catalyzed [2+2+2] cycloadditions 

As described in the first chapter, the cationic rhodium/bisphosphine complex is an 

efficient catalyst for [2+2+2] cycloaddition reactions (Schemes 24 and 25). However, only a 

single example was described for the synthesis of annulated 2-aminopyridine via a Rh(I)/H8-

BINAP-catalyzed [2+2+2] cycloaddition of malonate-tethered diyne with morpholine-4-

carbonitrile. The corresponding cycloadduct was obtained in 47% yield (Scheme 118).134  

 

Scheme 118 

                                                 
133 (a) Garcia, P.; Evanno, Y.; George, P.; Sevrin, M.; Ricci, G.; Malacria, M.; Aubert, C.; Gandon, V. Org. Lett. 

2011, 13, 2030. (b) Garcia, P.; Evanno, Y.; George, P.; Sevrin, M.; Ricci, G.; Malacria, M.; Aubert, C.; Gandon, 

V. Chem. - Eur. J. 2012, 18, 4337.  
134 Tanaka, K.; Suzuki, N.; Nishida, G. Eur. J. Org. Chem. 2006, 3917. 
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2.2.3. Nickel-catalyzed [2+2+2] cycloadditions 

Louie and co-workers reported the nickel-catalyzed [2+2+2] cycloaddition of -

diynes with cyanamides to form 2-aminopyridines.135 A variety of diynes reacted with different 

substituted cyanamides in the presence of Ni(cod)2 catalyst in combination with a N-

heterocyclic carbene (NHC) at room temperature. Various 2-aminopyridines were successfully 

obtained in 76-99% yields (Scheme 119). However, the nickel catalyst and NHC ligands 

required a pre-treatment in a glove box for at least 4 hours before introducing the two reactants.  

 

Scheme 119 

This Ni/NHC catalytic system was also applied for the totally intermolecular 

cyclotrimerization of two alkynes with cyanamides. 136  Treatment of terminal alkynes and 

cyanamides with Ni(cod)2/SIPr (1:2) complex catalyst in toluene at room temperature for 4 h, 

provided the 3,5-disubstituted-2-aminopyridines as the major products (Scheme 120). However, 

this protocol was limited to the use of alkyl-alkynes, whereas the reaction of aryl-, ester-, or 

chloride-substituted alkynes failed to afford the desired 2-aminopyridines. 

                                                 
135 (a) Stolley, R. M.; Maczka, M. T.; Louie, J. Eur. J. Org. Chem. 2011,  3815. (b) Stolley, R. M.; Duong, H. A.; 

Louie, J. Organometallics 2013, 32, 4952. 
136 Zhong, Y.; Spahn, N. A.; Stolley, R. M.; Nguyen, M. H.; Louie, J. Synlett 2015, 26, 307. 
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Scheme 120 

The same group also disclosed in 2011 the Ni/Xantphos-mediated cycloaddition of 1,6- 

and 2,7-diynes with N-cyanopyrrolidine, N-cyanomorpholine, N,N-diallylcyanamide at room 

temperature to access 6,6-fused cycloadducts in >99%, 75%, and 76% yields. 137 Interestingly, 

unsymmetrical 1,6-diynes reacted with N,N-dimethylcyanamide leading to the formation of 

meta-substituted product as a single regioisomer. This result could be explained as follow: the 

reaction proceeded via the initial regioselective oxidative coupling to form azametallacycle 

followed by the intramolecular insertion of the less-sterically demanding terminal alkyne 

(Scheme 121).  

 

Scheme 121 
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Liu and co-workers successfully developed in 2017 the synthesis of -carbolines via 

nickel-catalyzed [2+2+2] cycloaddition of functionalized alkyne-cyanamides with alkynes.138 

Both internal and terminal alkynes successfully reacted with aryl- or alkyl substituted alkyne-

cyanamides in the presence of NiCl2(DME)/dppp/Zn catalytic system to provide -carboline 

derivatives in 67-81% yields with moderate regioselectivities (Scheme 122). Interestingly, 

when phenyl- and TMS-substituted acetylenes were employed as the alkyne partners, the 

reaction resulted in the opposite regioselective formation of the cycloadduct, probably because 

of the difference of electronic effects between the two terminal alkynes. 

 

Scheme 122 

2.2.4. Iron-catalyzed [2+2+2] cycloadditions 

Iron, the earth abundant and low cost metal, has rarely been used for the pyridines 

synthesis via [2+2+2] cycloadditions.139 Louie’s group described in 2012 the iron-catalyzed 

[2+2+2] cycloaddition of diynes with electron-rich cyanamides to form highly substituted 2-

aminopyridines.140 The reaction proceeded in the presence of 5 mol % FeCl2 in combination 

with 10 mol % MesPDAI and Zn dust in benzene at 70 °C, various 2-aminopyridines were 

synthesized in 35-97% yields. The group of Wan reported in 2013 a similar work by using 

FeI2/dppp/Zn catalytic system.141 Several examples have been described in 40-99% yields. 

                                                 
138 Wang, G.; You, X.; Gan, Y.; Liu, Y. Org. Lett. 2017, 19, 110.  

139 (a) D’Souza, B. R.; Lane, T. K.; Louie, J. Org. Lett. 2011, 13, 2936. (b) Wang, C.; Li, X.; Wu, F.; Wan, B. 

Angew. Chem. Int. Ed. 2011, 50, 7162. (c) Richard, V.; Ipouck, M.; Mérel, D. S.; Gaillard, S.; Whitby, R. J.; 

Witulski, B.; Renaud, J.-L. Chem. Commun 2014, 50, 593. (d) Casitas, A.; Krause, H.; Goddard, R.; Fürstner, A. 

Angew. Chem. Int. Ed. 2015, 54, 1521. 
140 Lane, T. K.; D’Souza, B. R.; Louie, J. J. Org. Chem. 2012, 77, 7555. 
141 Wang, C.; Wang, D.; Xu, F.; Pan, B.; Wan, B. J. Org. Chem. 2013, 78, 3065. 
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When comparing these works, Wan’s group used less toxic THF as solvent instead of benzene, 

and lower reaction temperature (Scheme 123). However, both conditions suffered from the 

moisture-sensitive iron salts as well as a slow-addition technique which was required in Louie’s 

work.  

 

Scheme 123 

With regard to the regioselectivity, the two reactions gave rise to an opposite selectivity 

of the regioisomers. In the case of Louie’s conditions, the reaction provided the sterically less 

demanding compound as the major product whereas the small substituent was placed in ortho 

to the nitrile substituent. In the case of Wan’s conditions, the regioselectivity trends led to the 

2-aminopyridines with the small substituent placed in ortho to the nitrogen atom in the pyridine 

ring (Scheme 124). These two iron systems suggested that the regioselectivity may be 

controlled by the choice of the ligand. 
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Scheme 124 

Furthermore, Louie and co-workers also reported the totally intermolecular iron-

catalyzed [2+2+2] cycloaddition of two alkynes with cyanamides. 142  In contrast to the 

Ni(cod)2/SIPr system (Scheme 120), in this case, the 2,4-disubstituted-2-aminopyridines were 

formed as major products with complete regioselectivity (Scheme 125).  

 

Scheme 125 

2.2.5. Iridium-catalyzed [2+2+2] cycloadditions 

In 2015, Takeuchi and co-workers developed an efficient [Ir(cod)Cl]2/dppf or BINAP 

catalyst system that was able to promote the [2+2+2] cycloaddition of -diynes and 

cyanamides in refluxing benzene.143 A wide range of secondary amines derived cyanamides 

was tolerated under these reaction conditions. Several examples have been studied by using 

                                                 
142 Spahn, N. A.; Nguyen, M. H.; Renner, J.; Lane, T. K.; Louie, J. J. Org. Chem. 2017, 82, 234. 
143 Hashimoto, T.; Ishii, S.; Yano, R.; Miura, H.; Sakata, K.; Takeuchi, R. Adv. Synth. Catal. 2015, 357, 3901.  
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symmetrical diynes with cyanamides to provide various 2-aminopyridines in 31-99% yields 

(Scheme 126). However, toxic and refluxing benzene was used as solvent.  

 

Scheme 126 

For the regioselectivity, as shown in Scheme 127, the methyl-/phenyl- or methyl-/2-

pyridyl-substituted diynes reacted with N-cyanomorpholine, leading to the formation of less 

hindered product as a single product in which the phenyl and pyridyl groups were substituted 

at the-position. Interestingly, the methyl/TMS-substituted diyne underwent cycloaddition 

reaction and gave exclusively the more sterically hindered product in which the TMS group 

was substituted at the -position. The authors therefore demonstrated that the regioselectivity 

was mainly controlled by the electronic effect of the substituent on the terminus of alkynes.  

 

Scheme 127 
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2.2.6. Ruthenium-catalyzed [2+2+2] cycloadditions 

During the publication process of our work, Goswami’s group reported a ruthenium-

catalyzed [2+2+2] cycloaddition of N-cyanoindoles with -diynes to provide 1-(2-

pyridyl)indole derivatives.144 In this work, the reaction was performed under solvent-free or 

with small amount of EtOH conditions with Cp*Ru(cod)Cl catalyst for a short reaction time, 

providing the desired product in 86-93% yields. Three examples have been studied using 

monosubstituted unsymmetrical oxygen tethered diynes to evaluate the regioselectivity. The 

less sterically hindered products were obtained as a single regioisomer in 86-89% yields 

(Scheme 128). However, the scope of diynes and cyanamides were limited to eight diynes and 

three 3-carbonyl indoles derived cyanamides.  

 

Scheme 128 

3. Objectives  

Ruthenium complexes have been reported as highly efficient catalysts for the 

cycloaddition of -diynes with activated nitriles,7u,7w such as electron-deficient nitriles, 

dicyanides, and -halogen nitriles. However, there was no ruthenium-catalyzed synthesis of 

                                                 
144 Chowdhury, H.; Goswami, A. Adv. Synth. Catal. 2017, 359, 314.  
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functionalized pyridines with electron-rich nitriles such as cyanamides that have been reported 

when we started this project (Scheme 129).  

 

Scheme 129 

Considering the rare reports on the transition-metal-catalyzed [2+2+2] cycloadditions 

of alkynes with cyanamides to access 2-aminopyridines, as well as the limitations of current 

methodologies, we decided to investigate the ruthenium-catalyzed [2+2+2] cycloaddition 

reaction to access highly substituted 2-aminopyridines and its derivatives. 

4. Results and discussion 

4.1 Synthesis of starting materials: diynes and cyanamides 

We first decided to study the partially intramolecular [2+2+2] cycloadditions to access 

2-aminopyridine derivatives using -diynes and cyanamides. Most of the starting diynes and 

cyanamides were not commercially available and were synthesized.  

4.1.1. Synthesis of symmetrical diynes 

Firstly, a series of symmetrical internal and terminal -diynes were prepared, as 

shown in Scheme 130. The diynes 101-110 and 121-124 were synthesized in accordance with 

the literature.145 Diynes 111-120 were produced based on laboratory’s work.  

                                                 
145 (a) For diyne 110, see: Ishizaki, M.; Hoshino, O. Tetrahedron 2000, 56, 8813. (b) For diynes 105 and 106, see: 

Liu, C.; Widenhoefer, R. A. Organometallics 2002, 21, 5666. (c) For diyne 102, see: Genin, E.; Toullec, P. Y.; 

Marie, P.; Antoniotti, S.; Brancour, C.; Genêt, J.-P.; Michelet, V. Arkivoc 2007, 67. (d) For diyne 108, see: 

Sylvester, K. T.; Chirik, P. J. J. Am. Chem. Soc. 2009, 131, 8772. (e) For diyne 103, see: Kumar, P.; Zhang, K.; 

Louie, J. Angew. Chem. Int. Ed. 2012, 51, 8602. (f) For diyne 101, 107 and 109, see ref 154. (g) For diyne 121, 
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Scheme 130 

Diynes 101-103, 107, 109 and 123 were prepared through the nucleophilic substitution 

reaction of commercially available dimethyl malonate, 1,3-dimethylbarbituric acid, 2-butyne-

1-ol, indene dione, and N-Boc-protected propargyl amine with 1.2-2.4 equivalents of propargyl 

bromide or 1-bromo-2-butyne in THF. The reaction used 1.5-2.4 equivalents of sodium hydride 

as base to afford the desired diynes in a range of 62-96% yields (Scheme 131). Notably, 1,3-

dimethylbarbituric acid derived diyne 102 was a new substrate. 

                                                 
see: Wilking, M.; Mück-Lichtenfeld, C.; Daniliuc C. G.; Hennecke, U. J. Am. Chem. Soc. 2013, 135, 8133. (h) For 

diyne 104, see ref 34. (i) For diyne 121, see: Llerena, D.; Buisine, O.; Aubert, C.; Malacria, M. Tetrahedron 1998, 

54, 9373. (j) For diyne 122, see: Oppolzer, W.; Pimm, A.; Stammen, B.; Hume, W. E. Helv. Chim. Acta 1997, 80, 

623. (k) For diyne 123, see: Boger, D. L.; Lee, J. K.; Goldberg, J.; Jin, Q. J. Org. Chem. 2000, 65, 1467. (l) For 

diyne 124, see: Bednářová, E.; Colacino, E.; Lamaty, F.; Kotora, M. Adv. Synth. Catal. 2016, 358, 1916.  
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Scheme 131 

Treatment of diyne 101 with 6 equivalents of LiAlH4 in THF solution afforded the diol-

diyne 104 in 95% yield. The two hydroxyl groups of diyne 104 could be easily protected with 

acetyl and benzyl groups under basic conditions. In the presence of 4.4 equivalents of 

diisopropylethylamine in DCM, diyne 104 reacted with acetic anhydride to afford diacetyl-

functionalized diyne 105 in 92% yield. The nucleophilic substitution of diol 105 with benzyl 

bromide using 2.5 equivalents of sodium hydride as base with 25 mol % n-tetrabutylammonium 

iodide as additive, gave dibenzyl protected diyne 106 in quantitative yield (Scheme 132).  

 

Scheme 132 

The reaction of diol 120, in the presence of 2 equivalents of phosphorus pentoxide in 

dry acetone at room temperature, allowed a rapid access to diyne 121 in 80% isolated yield 

(Scheme 133).  
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Scheme 133 

The synthesis of nitrogen-tethered diynes 108 and 122 was based on the nucleophilic 

substitution of p-toluenesulfonamide with 1-bromo-2-butyne or propargyl bromide using 5 

equivalents of potassium carbonate as base. The desired products could be easily synthesized 

in 70% and 91% yields, respectively (Scheme 134).  

 

Scheme 134 

The malonate derived diynes 110 and 124, bearing two functional groups on the terminal 

position of -diyne, have been synthesized (Scheme 135). Diyne 109 was treated with 2.2 

equivalents of lithium bis(trimethylsilyl)amide in anhydrous THF at -78 °C, followed by the 

addition of an excess of trimethylsilyl chloride at the same temperature. After stirring for 

additional 1 h at room temperature, the reaction provided the disubstituted internal alkyne 110 

in 45% yield (Eq. a). The low yield could be explained by the low reactivity of the terminal 

position of the alkyne as well as the formation of the monosubstituted side product. Dibromo-

substituted diyne 124 was prepared through a classical bromination reaction using diyne 109 

and NBS, in 98% yield (Eq. b).  

 

Scheme 135 
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4.1.2. Synthesis of unsymmetrical diynes 

To study the regioselective [2+2+2] cycloaddition reactions, we synthesized several 

unsymmetrical 1,6-, 1,7- and 1,8-diynes, as depicted in Scheme 136.  

 

Scheme 136 

The preparation of monosubstituted unsymmetrical diyne 125 started from malonate by 

stepwise alkylation reactions to introduce the internal and terminal alkyne motifs. Finally, the 

desired product was successfully isolated in 50% yield over two steps (Scheme 137).  

 

Scheme 137 

Compounds 138, 142, and 143 were prepared via nucleophilic substitution reactions. 

Starting from commercially available alcohols 3-butyn-1-ol, 4-pentyn-1-ol and Mestranol, the 
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oxygen tethered 1,6- 143, 1,7- 138 and 1,8-diynes 142 were respectively synthesized in 36%, 

75%, and 79% yields (Scheme 138).  

 

Scheme 138 

To prepare the unsymmetrical oxygen tethered diynes 127, 131 and 140 containing a 

propargyl motif, the nucleophilic substitution reaction was performed using potassium 

hydroxide as the base in a mixed solution of water and DMSO, affording 127, 131 and 140 in 

respectively 79%, 50%, and 84% yields (Scheme 139).  

 

Scheme 139 

Upon treatment with N-bromosuccinimide (NBS) in the presence of 10 mol % AgNO3 

in dry acetone at room temperature, the corresponding terminal alkynes were converted to 

bromo-substituted diynes 129, 130, 132 and 141 in 65-98% yields. The iodo-substituted diyne 

133 was prepared via the silver-catalyzed Csp-H halogenation reaction using 10 mol % AgNO3 

in N,N-dimethylformamide (DMF), with 98% yield. In addition, starting from propargyl 

alcohol, the useful intermediate bromo-substituted propargyl alcohol 145 was prepared in 65% 

yield (Scheme 140).  
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Scheme 140 

The diyne 134 containing an ynamide moiety was obtained using a copper-catalyzed 

aerobic oxidative coupling reaction 146  of terminal alkyne 127 with 2-oxazolidinone. The 

reaction proceeded efficiently in the presence of 20 mol % CuCl2 and 2 equivalents of Na2CO3 

and pyridine under 1 atm of O2, providing the corresponding ynamide in 60% yield (Scheme 

141).  

 

Scheme 141 

To study the tolerance ability of the [2+2+2] cycloaddition reactions, other examples 

were evaluated. For this purpose, the synthesis of diyne 135 containing a vinyl group was 

envisaged. Starting from dimethyl malonate, a mono-alkylation with 0.85 equivalents of 

propargyl bromide followed by a Sonogashira cross-coupling reaction with 1.2 equivalents 

vinyl bromide provided the malonate-derived enyne 147. Subsequent nucleophilic substitution 

of the latter with 1.2 equivalents propargyl bromide in the presence of sodium hydride afforded 

the desired diyne 135 (Scheme 142).  

                                                 
146 Hamada, T.; Ye, X.; Stahl, S. S. J. Am. Chem. Soc. 2008, 130, 833.  
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Scheme 142 

The unsymmetrical diyne 137 was prepared through a Sonogashira reaction of diyne 

125 with 1.2 equivalents of 2-bromopyridine using 2 mol % PdCl2(PPh3)2 and 1 mol % CuI, 

and was obtained in 60% yield (Scheme 143).  

 

Scheme 143 

4.1.3. Synthesis of benzoyl bridged -diynes 

With the aim to synthesize amino-aza-fluorenones, the preparation of benzoyl or benzyl 

bridged -diynes 17, 28, 29, 149, 152, and 153 were envisaged, as shown in Scheme 144. 

The synthesis of diynes 17, 28, and 29 has been described in chapter II. Diynes 149, 152, and 

153 were synthesized in accordance with the previously described protocols for diyne 29.  

 

Scheme 144 
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The preparation of diyne 149 followed a two-steps procedure. The previously prepared 

monoalkyne 2 was treated with a lithium TMS-acetylide, which was prepared in situ from 

trimethylsilylacetylene and n-butyllithium, affording the product 148 in 78% yield. The 

resulting silylated alcohol 148 was subjected to deprotection using 1 equivalent of TBAF. The 

desired compound 149 was isolated in 81% yield (Scheme 145).  

 

Scheme 145 

The synthetic methods for preparation of 2, 148, and 149 were used for the preparation 

of compounds 150-152, as shown in Scheme 146. Finally, treatment of the resulting diyne 152 

with 1.2 equivalents of Dess-martin periodinane in dichloromethane solution, furnished the 

terminal diyne 153 in 82% yield.  

 

Scheme 146 

4.1.4. Synthesis of cyanamides 

Cyanamides 154-167 that were used in this chapter are depicted in Scheme 147. The 

cyanamides 154-156 and 160 were commercially available. The other different N-substituted 
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cyanamides 157-159 and 161-167 were prepared according previously reported procedures,147 

most commonly via the electrophilic N-cyanation of amines using cyanogen bromide.  

 

Scheme 147 

The synthesis of cyanamides 157, 158, and 161-163 was achieved by the N-cyanation 

of piperidine, N-methylbenzylamine, N-methylaniline, and n-butylamine with cyanogen 

bromide in a mixture solution of diethyl ether and THF (1:1) at 0 °C. Two equivalents of amines 

were required to promote the reaction furnishing the desired compounds in 82-96% yields. In 

the case of n-butylamine, pure diethyl ether was used as solvent, the reaction was complete in 

1 hour (Scheme 148). 

 

Scheme 148 

Another similar protocol was used for the preparation of cyanamides 159, 164, 166, and 

167. Dibenzylamine, diallylamine, N-methylpiperazine and N-methylbutylamine were treated 

with cyanogen bromide in a mixture solution of water and dichloromethane (1:1) at 0 °C. In 

this case, 2 equivalents of sodium bicarbonate were used as the base, with 1.05 equivalents of 

                                                 
147 (a) For cyanamide 161-165, see: ref 130a. (b) For cyanamide 159, see: Goldberg, K.; Clarke, D. S.; Scott, J. S. 

Tetrahedron Lett. 2014, 55, 4433.  
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cyanogen bromide. After 3 hours stirring at room temperature, the reaction afforded the desired 

products in 86-99% yields. (Scheme 149). 

 

Scheme 149 

The cyanamide 164 containing a secondary amine group could easily undergo the 

acetylation by using 1.2 equivalents of sodium hydride and acetyl chloride to give the acetyl-

protected cyanamide 165 in 80% yield (Scheme 150).  

 

Scheme 150 

4.2 RuCl3·nH2O-mediated [2+2+2] cycloaddition of -diynes with 

cyanamides 

With a series of -diynes and cyanamides in hand, we evaluated the RuCl3·nH2O-

mediated [2+2+2] cycloaddition reactions. Based on the previous work, we used 5 mol % 

RuCl3·nH2O as catalyst to conduct the reaction under solvent-free conditions. Diyne 101 and 

dimethyl cyanamide 154 were chosen as model substrates to optimize the reaction conditions.  

Firstly, we examined the reaction of diyne 101 with a large excess of cyanamide 154 (6 

equivalents) in the presence of 5 mol % RuCl3·nH2O at 110 °C affording the highly substituted 

2-aminopyridine 168 in 75% yield (Entry 1, Table 2). Subsequently, we decreased the amount 

of cyanamide from 6 to 3 equivalents. To our delight, the reaction gave almost the same isolated 

yield of product 168 (Entry 2). Attempt to decrease the catalyst loading to 2 mol % caused a 

significant decrease of the conversion (50%, Entry 3). We also evaluated the temperature effect 
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on the reaction. Incomplete conversion of the benzannulation was observed when the reaction 

was carried out at 80 °C, 50 °C, 90 °C, 100 °C (Entries 4-8). Finally, we found that the diyne 

101 was fully converted to pyridine 168 in 74% yield when the amount of cyanamide 154 was 

further reduced to 2 equivalents (Entry 9).  

Table 2 Optimization of reaction conditions  

 

Entry 101/154 T (°C) Conv. (%)b Yield (%)c 

1 1:6 110 >99 75 

2 1:3 110 >99 76 

3d,e 1:3 110 50 nd 

4 1:3 80 90 72 

5 1:3 50 nr nd 

6 1:2 80 30 nd 

7e 1:2 90 70 nd 

8e 1:2 100 93 70 

9 1:2 110 >99 74 

a Reaction conditions: RuCl3·nH2O (0.05 mmol), diyne 101 (1.0 mmol), cyanamides 

154 (2.0 mmol) were heated in a screw-capped tube under free-solvent conditions and 

an argon atmosphere. b Determined by crude 1H NMR, nr = no reaction. c Isolated 

yields, nd = not detected. d 0.02 mmol of RuCl3·nH2O (2 mol %) was used. e The 

reaction was stirred for 24 hours. 

With a set of optimized reaction conditions in hand, we next evaluated the reactivity of 

various secondary or primary amines derived cyanamides 155-163 and 165-167 with diyne 101, 

as shown in Table 3. We found that the [2+2+2] cycloaddition of diyne 101 with morpholine-

functionalized cyanamide 155 furnished the desired pyridine 169 in excellent 95% yield, the 

reaction being carried out at 80 °C under solvent-free conditions (Entry 1). However, attempts 

to further decrease the reaction temperature to 70 °C and 60 °C, led to a decreased conversion 

or no reaction (Entries 2 and 3). Cyclic cyanamides N-cyanopyrrolidine 156 and N-

cyanopiperidine 157 successfully reacted with diyne 101 to give the targeted heterocycles 170 

and 171 in 86% and 78% yields, respectively (Entries 4 and 5). The N-methylbenzylcyanamide 

158 reacted with diyne 101 at 80 °C to provide 2-aminopyridine 172 in 81% yield (Entry 6), 
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whereas the dibenzyl-substituted cyanamides 159 showed less reactivity than cyanamide 158, 

despite higher temperature, furnishing the corresponding product 173 in 90% conversion and 

75% isolated yield (Entry 7).  

Table 3 Scope of different substituted cyanamides  

 

Entry Cyanamides T (°C) Product Conv. (%)b Yield (%)c 

1 

155 
 

80 169 >99 95 

2 70 169 95 88 

3 60 169 nr nd 

4 156 
 

80 170 96 86 

5 157 
 

110 171 >99 78 

6 158 
 

80 172 >99 81 

7 159 
 

110 173 90 75 

8 160 
 

80 174 26 nd 

9 161 
 

110 175 20 nd 

10 162 
 

80 176 22 nd 

11 163 

 

110 177 nr nd 

12 165 

 

110 178 nr nd 

13 166 
 

110 179 decomposed nd 

14 167 
 
110 180 nr nd 

a Reaction conditions: RuCl3·nH2O (0.05 mmol), diyne 101 (1.0 mmol), cyanamides 

155-163 and 165-167 (2.0 mmol) were heated in a screw-capped tube under free-

solvent conditions and an argon atmosphere. b Determined by crude 1H NMR, nr = 

no reaction. c Isolated yields, nd = not detected. 

N N O

N N

N N

N N

N N

N N
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The cyanamides 160-163 and 165-167 seemed incompatible with the RuCl3·nH2O-

mediated [2+2+2] cycloaddition reaction, despite a higher temperature in some cases. Low 

conversion of cycloadducts was observed in the case of N,N-diethylcyanamide 160, N,N- 

dipropylcyanamide 161, and N-methyl-N-phenylcyanamide 162, because of the lower reactivity 

of the alkyl substituted cyanamides (Entries 8-10, Table 3). The reaction did not occur with 

both unprotected N-butylcyanamide 163 and acetyl-protected N-butyl-N-cyanoacetamide 165 

(Entries 11 and 12). N,N-diallylcyanamide 166, containing two alkenes, was also evaluated and 

gave decomposed reaction mixtures (Entry 13), which could be explained by the competitive 

reaction between the activated alkenes and alkynes. N-methylpiperazine-derived cyanamide 

167 was also employed but no reaction took place in these conditions (Entry 14).  

Having evaluated the reactivity of several cyanamides, we then turned our attention to 

explore the scope and limitations of the reaction conditions by using the prepared symmetrical 

diynes 102-113 (Scheme 151), the highest reactive morpholine-4-carbonitrile 155 was chosen 

as the nitrile partner. The 1,3-dimethylbarbituric acid-derived diyne 102 and indene-1,3-dione-

derived diyne 103 were successfully reacted with cyanamide 155 to access functionalized 2-

aminopyridines 181 and 182 in good yields. The diyne 104 containing two hydroxyl groups 

was employed in the reaction, however, only 10% of the expected product 183 was isolated 

from the crude reaction mixture. Interestingly, the reaction of acetyl- (105) and benzyl-

functionalized diynes 106 with cyanamide 155 furnished at 80 °C the corresponding 2-

aminopyridines 184 and 185 in respectively 68% and 83% yields. The reaction was not limited 

to a quaternary-carbon tethered diyne since both oxygen- and nitrogen-tethered diynes were 

successfully used. The oxygen-tethered diyne 107 was converted to the corresponding oxygen 

fused bicyclic pyridines 186 in 64% yield. The cycloaddition of N-tosyl-tethered diyne 108 

performed at 110 °C provided the heterocycle 187 in 72% yield. Meanwhile, we observed that 

the reaction was not feasible with terminal or TMS- and phenyl-substituted diynes 109-111, 

despite a higher reaction temperature. The diynes 112 and 113 bearing electron-donating or 

electron-withdrawing aryl moieties were also unreactive under these reaction conditions, 

afforded only traces of 191 and 192.  
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Scheme 151 

Next, the regioselective of the RuCl3·nH2O-mediated [2+2+2] cycloaddition using 

unsymmetrical 1,6-diynes was examined. As shown in Scheme 152, the reaction of methyl-

substituted unsymmetrical 1,6-diyne 125 proceeded to give 193 (major, 43%) and 193’ (minor, 

5%) in 48% combined yield with 87:13 regioselectivity. The reaction of phenyl-substituted 

unsymmetrical 1,6-diyne 126 with cyanamide 155 also proceeded under the same conditions. 

However, only the major isomer 194 was isolated in 16% yield, despite a 90:10 ratio of the two 

regioisomers detected by crude 1H NMR.  
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Scheme 152 

Compared to electron-rich cyanamides, the reaction of symmetrical diyne 108 with 

electron-deficient nitrile such as malononitrile was also performed in the presence of 

RuCl3·nH2O catalyst at 110 °C to afford cycloadduct 195 with 22% conversion, although with 

increased catalyst loading and prolonged reaction time (Scheme 153). This result indicated that 

the electron-rich nitriles are more suitable with the RuCl3·nH2O complex catalytic system.  

 

Scheme 153 

The neutral RuCl3·nH2O has therefore been successfully used for the synthesis of highly 

substituted 2-aminopyridine derivatives via [2+2+2] cycloaddition of ,-diynes with 

electron-rich cyanamides. A range of 2-aminopyridines has been successfully synthesized in 

10-95% yields. However, the regioselective synthesis of 2-aminopyridines still remains a 

challenge. To address this issue, encouraged by our results with RuCl3·nH2O, we decided to 

investigate the ruthenium-catalyzed [2+2+2] cycloadditions by using cationic ruthenium 

complex as catalyst.  
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4.3 Cp*Ru(CH3CN)3PF6-catalyzed [2+2+2] cycloaddition of -diynes with 

cyanamides 

Encouraged by the results obtained using the neutral RuCl3·nH2O complex for the 

[2+2+2] cycloaddition reaction of -diynes with cyanamides, and since the cationic 

ruthenium complex is known to be an efficient catalyst for [2+2+2] cycloaddition reactions,46-

50 we anticipated that the cationic ruthenium complex would be a good alternative for 

conducting this reaction.  

Initial studies were focused on the ruthenium-catalyzed [2+2+2] cycloaddition reactions 

between dimethyl substituted internal diyne 101 and cyanamide 155 using ruthenium complex 

catalyst under solvent-free conditions at room temperature. The reaction was optimized with 

respect to the different type of ruthenium complexes and catalyst loading, as shown in Table 4. 

Several ruthenium complexes were evaluated. When Ru(PPh3)3Cl2 and [Ru(p-cymene)Cl2]2 

were used as catalyst, no desired products were observed (Entries 1 and 2). We found that the 

presence of both pentamethylcyclopentadienyl (Cp*) complexes Cp*Ru(cod)Cl and 

Cp*Ru(CH3CN)3PF6, allowed to access the desired 2-aminopyridine 169 in respectively 85% 

and 93% yields in a short reaction time of 5 min (Entries 3 and 4). The catalyst loading could 

be efficiently reduced to 2 mol % when using Cp*Ru(CH3CN)3PF6 as catalyst. The reaction 

effectively provided the cycloadduct in 91% yield within 5 min (Entry 5). We showed that the 

conversion of the benzannulation was significantly diminished by lowering the catalyst loading 

to 1 mol % (Entry 6). In addition to the internal diyne, terminal 1,6-diyne 109 was examined 

under these reaction conditions. Treatment of diyne 109 with cyanamide 155 in the presence of 

2 mol % Cp*Ru(CH3CN)3PF6 under solvent-free conditions at room temperature provided the 

cycloadduct 188 in 94% yield (Entry 7). Interestingly, we found that when the reaction was 

conducted with a small amount of dichloromethane as solvent, the catalyst loading (1 mol %) 

and consumption of cyanamide (1.2 equivalents) were further reduced (Entries 7 and 8). 

However, lowering the catalyst loading to 0.5 mol % led to lower conversion and yield, despite 

longer reaction time (Entry 9). Finally, to demonstrate the applicability of our method, we 

performed the Ru-catalyzed cycloaddition on one-gram of 1,6-diyne 109 (Entry 10). Under the 

optimized solvent-free conditions in the presence of 2 mol % of Cp*Ru(CH3CN)3PF6 catalyst, 

the corresponding 2-aminopyridine 188 was isolated in 82% yield.  
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Table 4 Optimization of reaction conditions 

 

Entry Diyne Catalyst (x mol %) t Product 
Conv. 

(%)b 

Yield  

(%)c 

1 101 Ru(PPh3)3Cl2 (5) 8 h 169 nr nd 

2 101 [Ru(p-cymene)Cl2]2 (2.5) 8 h 169 nr nd 

3 101 Cp*Ru(cod)Cl (2) 5 min 169 >99 85 

4 101 Cp*Ru(CH3CN)3PF6 (5) 5 min 169 >99 93 

5 101 Cp*Ru(CH3CN)3PF6 (2) 5 min 169 >99 91 

6 101 Cp*Ru(CH3CN)3PF6 (1) 60 min 169 80 nd 

7 109 Cp*Ru(CH3CN)3PF6 (2) 3 min 188 >99 94 

8d 109 Cp*Ru(CH3CN)3PF6 (1) 2 min 188 >99 95 

9d 109 Cp*Ru(CH3CN)3PF6 (0.5) 18 h 188 90 82 

10e 109 Cp*Ru(CH3CN)3PF6 (2) 5 min 188 >99 82 
a Reaction conditions: Ru complex (0.5-5 mol %), diyne 101 or 109 (0.5 mmol), cyanamides 155 

(1.0 mmol) were stirred in a screw-capped tube under solvent-free conditions and an argon 

atmosphere. b Determined by crude 1H NMR, nr = no reaction. c Isolated yields, nd = not detected. d 

With 0.6 mmol of cyanamide 155 was used and 0.5 mL of dichloromethane as solvent. e One gram-

scale. 

With a set of optimal conditions in hand, we investigated the scope and limitations of 

the cycloaddition using different substituted diynes and cyanamide 155 as partner (Scheme 

154). A variety of symmetrical diynes with a quaternary-carbon tether reacted with cyanamide 

155 to give various 2-aminopyridines in high yields. The 2-aminopyridine cycloadducts 196-

199 bearing bulkier tert-butyl, isopropyl, and methyl ester moieties were obtained in 81-98% 

yields from the corresponding diynes. Notably, a nitrile group substituted on the quaternary-

carbon of diyne 117 was compatible with the reaction conditions. However, the malononitrile-

derived diyne 118 provided the desired product 200 in relatively lower yield (50%), because 

the competitive reaction of the activated nitrile substituents. The spirocyclic derivative 201 was 

synthesized in 97% yield, starting from the indene-1,3-dione-derived diyne 119. Interestingly, 

diyne 120 possessing two hydroxyl groups reacted nicely with cyanamide 155 under solvent-

free conditions at room temperature to give the diol-derived 2-aminopyridine 202 in 87% yield. 

The diyne 121 containing a ketal moiety was also reactive to afford the corresponding product 

203 in 87% yield. The reaction was not limited to a quaternary-carbon tethered diyne since the 

heteroatom-tethered diynes were successfully used, leading to the formation of various 



Chapter III 

 149 

pyridine-based fused heterocycles (186, 187, 204, and 205) within a range of 80-99% yields. 

The formation of compounds 186 and 187 demonstrated that the cycloaddition was not limited 

to terminal diynes but also worked well with internal diynes. However, more sterically hindered 

internal diynes, such as di-TMS, diaryl, and dibromo-substituted diynes (110, 113 and 124) did 

not afford the desired cycloadducts, despite increased reaction temperature (Scheme 154).  

 

Scheme 154 

Next, an evaluation of the reactivity of the cyanamide substrates was examined. As 

shown in Scheme 155, various secondary amine derived cyanamides smoothly underwent the 

cycloaddition reactions to produce the corresponding 2-aminopyridines in 76-97% yields. The 
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reaction of N-cyanopyrrolidine 156 with diynes 101 and 109 delivered the cycloadducts 170 

and 207 in 81% and 90% yields, respectively. The cyanamides 159-161 and 164, bearing 

dibenzyl, diethyl, di-n-propyl, and methyl/n-butyl groups, were engaged in the cycloaddition to 

provide the 2-aminopyridines 208-211 in 76%-86% yields, albeit with increased catalyst 

loading. High yields (90-97%) were obtained for 2-aminopyridines bearing a phenyl group 

(212) and a monobenzyl group (213 and 214) in the presence of 1-2 mol % ruthenium catalyst. 

Similarly, as previously observed, no desired products 215 and 216 were obtained by using N-

butyl-N-cyanoacetamide 165 and N,N-diallylcyanamide 166.  

 

Scheme 155 

With respect to the regioselectivity, we previously studied the reaction of unsymmetrical 

diynes 125 with cyanamides 155 in the presence of neutral RuCl3·nH2O catalyst. However, 

moderate yield and regioselectivity (48%, 88:12) were obtained. In contrast, when the reaction 
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was run using the cationic ruthenium complex, Cp*Ru(CH3CN)3PF6, the yield and 

regioselectivity were significantly increased (91%, 98:2) and the ortho-substituted regioisomer 

193 was formed as the major product (Scheme 156). In addition, other unsymmetrical diynes 

were employed to explore the regioselectivity of the cycloaddition reactions. The reaction of 

phenyl-substituted diyne 126 exclusively furnished the biaryl compound 194 in excellent 96% 

yield. Unsymmetrical 1,6-diynes tethered by either oxygen or nitrogen atom, possessing a 

terminal alkyne and a methyl internal alkyne moieties, were compatible with the cycloadditions 

and afforded the corresponding bicyclic compounds 217 and 218 as a single regioisomer, in 

86% and 90% yields. However, the methyl/2-pyridyl-substituted diyne 137 did not undergo the 

cycloaddition to give the bipyridine 219, although the reaction was heated at 50 °C for 2 hours.  

 

Scheme 156 

Encouraged by these promising results, we extended this study to develop a feasible 

synthetic route for the preparation of pyridine derivatives possessing various functional groups. 

To our delight, the challenging halogen-substituted diynes were all tolerated to deliver the 

synthetic useful halopyridines in 65-85% yields with up to 99:1 regioselectivities (Scheme 157). 

Treatment of malonate-derived bromodiyne 129 and cyanamide 155 under the standard solvent-

free conditions at room temperature, generated the less sterically hindered ortho-bromopyridine 
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as the major product, in 80% yield and high regioselectivity (96:4). The structure of the product 

220 was unambiguously determined by the basis of 2D-NMR analysis and X-ray 

crystallographic analysis. Bromodiynes 130-132 reacted nicely with cyanamide 155 to provide 

the corresponding bromopyridines 221-223 in 65-85% yields with 98:2 regioselectivities. The 

iodo-substituted 2-amimopyridine 224 was isolated as a single regioisomer in 83% yield.  

 

Scheme 157 

Inspired by the success of halogen substituted diynes to yield the halopyridines, we next 

examined whether the ynamide and enyne, could be suitable for the synthesis of the 

corresponding functionalized pyridines under the same conditions (Scheme 157). Gratifyingly, 

the cycloaddition of ynamide 134 with cyclic cyanamides 155 and 156 gave rise to pyridines 

225 and 226 with excellent regioselectivities, in 79% and 93% yields, respectively. 
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Additionally, the regioselectivity was still controlled by the steric effect of the substituents, 

affording less sterically hindered ortho-substituted pyridines as the major product. More 

interestingly, we successfully employed enyne 135 with 1.2 equivalents of cyanamides 155 and 

158 in the presence of 5 mol % Cp*Ru(CH3CN)3PF6 combined with dichloromethane as solvent 

to afford the malonate-derived vinylpyridines 227 and 228 in 90% and 92% yields with 

complete regioselectivities. The N-tosyl-tethered enyne 136 was also subjected to standard 

solvent-free conditions, the corresponding vinylpyridine 229 was obtained as a single 

regioisomer in 75% yield. It is worthwhile to mention that the cycloaddition exclusively took 

place at the triple bond to form pyridines, no side-product from the double bond reactivity was 

detected.  

To further demonstrate the synthetic utility of this method, the reaction of the 

challenging linear 1,7-diynes and 1,8-diynes was examined (Scheme 158). Oxygen-tethered 

1,7-diyne 138 and cyanamide 155 were treated with 5 mol % Cp*Ru(CH3CN)3PF6 in 

dichloromethane at 50 °C, affording the six-membered bicyclic pyridine 230 in 81% yield with 

excellent regioselectivity. Cyanamides 156 and 158, containing pyrrolidyl and methyl/benzyl 

moieties, provided 2-aminopyridines 231 and 232 in diminished yields (46% and 34%, 

respectively), despite with a total regioselectivity. Replacing the oxygen tether by a N-tosyl 

tether, the diyne 139 allowed rapidly an access to nitrogen-fused pyridine 233 in 86% yield 

with complete regioselectivity. Notably, compounds containing the pyrano-pyridine and 

piperidine-pyridine moieties are known to exhibit interesting pharmacological properties such 

as antibacterial and anticancer activities.107,113d Moreover, further studies showed that diynes 

140-142 were not compatible with the reaction conditions. Diyne 140 having a propargyl motif 

failed to deliver the desired product. No reaction took place with both bromo-substituted 1,7-

diyne 141 and terminal 1,8-diyne 142, probably because of the lack of a Thorpe-Ingold effect148.  

                                                 
148 Jung, M. J.; Piizi, G. Chem. Rev. 2005, 105, 1735.  
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Scheme 158 

Finally, we consider the feasibility of the late-stage functionalization of potential drug 

or bioactive compounds. As an example, the diyne 143, derived from biologically active 

compounds mestranol 149  was employed to deliver the spirocyclic framework having a 2-

aminopyridine moiety 237 in 51% isolated yield with 10:1 regioselectivity. The structure of the 

polycyclic product 237 was unambiguously confirmed by single crystal X-ray diffraction 

(Scheme 159).  

                                                 
149 (a) Sierra, M. A.; Torres, M. R.; De Torre, C.; Elsa, A. J. Org. Chem. 2007, 72, 4213. (b) Hanson, J. R. Nat. 

Prod. Rep 2010, 27, 887. (c) Sedlák, D.; Novák, P.; Kotora, M.; Bartunék, P. J. Med. Chem. 2010, 53, 4290. (d) 

Kotora, M.; Hessler, F.; Eignerová, B. Eur. J. Org. Chem. 2012, 29. 
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Scheme 159 

Mechanistically, the metal-catalyzed [2+2+2] cycloaddition has been thoroughly 

studied in the presence of several metals.7 Nevertheless, as described in Scheme 160, one 

important feature concerns the regioselectivity of the ruthenium-catalyzed process, e.g., the 

formation of the major isomer versus the minor isomer. Following in situ ligand de-

coordination and coordination of -diyne, the oxidative coupling of the two alkyne units leads 

to a ruthenacyclopentadiene Ru-II in equilibrium with the bis-carbenic intermediate Ru-

I.47,49, 150  The next elemental step determines the regioselectivity of the reaction. Indeed, 

coordination of cyanamide gives intermediates Ru-III or Ru-III’. The origin of the observed 

regiochemistry can be reasonably explained by the steric hindrance of the amino part of the 

cyanamide leading to the favourable formation of Ru-III. Insertion of cyanamide gives rise to 

azaruthenacyclopentadiene intermediate Ru-IV, which upon reductive elimination 

subsequently affords the ortho-substituted product. When the -diyne is substituted by two 

very hindered groups (diynes 110 and 124), no reaction is observed. A hydrogen atom and/or 

methyl group as substituent of the alkynes are fully compatible with the cycloaddition process 

and favor the formation of the major intermediate Ru-III. This mechanism is therefore in 

agreement with the experimental data. 

                                                 
150 (a) Albers, M. O.; De Waal, D. J. A.; Liles, D. C.; Robinson, D. J.; Singleton, E.; Wiege, M. B. J. Chem. Soc. 

Chem. Commun. 1986, 1680. (b) J. Le Paih, F. Monnier, S. Dérien, P. H. Dixneuf, E. Clot, O. Eisenstein, J. Am. 

Chem. Soc. 2003, 125, 11964.  
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Scheme 160 

4.4 Cp*Ru(CH3CN)3PF6-catalyzed [2+2+2] cycloadditions to access aza-

fluorenols and aza-fluorenones  

Aza-fluorenones represent a privileged scaffold in material and medicinal chemistry. 

We hypothesized that by using benzoyl bridged -diynes and cyanamides, it should be 

possible to access amino-aza-fluorenones via the regioselective ruthenium-catalyzed [2+2+2] 

cycloaddition reaction. A retrosynthesis was proposed in Scheme 161.  

 

Scheme 161 

Therefore, the benzoyl bridged internal diyne 17 was reacted with dimethylcyanamide 

154 under the optimized conditions using 5 mol % RuCl3·nH2O under solvent-free conditions 

at 80 °C. Unfortunately, no desired product 238 was obtained and only decomposition of diyne 

17 was detected (Eq. a, Scheme 162). The same result was also observed by using 
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Cp*Ru(CH3CN)3PF6 as catalyst for the cycloaddition of diyne 17 and cyanamide 155 (Eq. b, 

Scheme 162). The results could be explained by the lower reactivity of the diyne which bears 

both phenyl and n-butyl groups on the terminal positions.  

 

Scheme 162 

To address this issue, we reasoned that a less sterically demanding diynes possessing a 

terminal alkyne moiety would be more reactive in the presence of Cp*Ru(CH3CN)3PF6 

catalytic system. Indeed, as shown in Scheme 163, when the benzoyl bridged diyne 29 was 

reacted with morpholine-4-carbonitrile 155 in the presence of 2 mol % Cp*Ru(CH3CN)3PF6 at 

room temperature under solvent-free conditions, the 2-azafluorenone 240 was formed as a 

single regioisomer in 92% yield. Different cyanamides were next screened, such as N-

cyanopyrrolidine 156, N-cyanopiperidine 157 and N,N-methylbenzyl cyanamide 158, and the 

desired 2-azafluorenones 241-243 were synthesized as a single isomer in 78-87% yields. In 

addition, the reaction of benzyl-bridged diyne 28 bearing an unprotected hydroxyl group could 

also be performed smoothly and exclusively to give rise to 2-azafluorenols 244 and 245 in 84% 

and 81% yields, respectively. Interestingly, in parallel to the synthesis of 2-azafluorenol 245, 

exchanging the terminal position of the starting diyne, allowed the formation of the 3-

azafluorenol 247 in 71% yield with 99:1 regioselectivity. Moreover, switching to a cyclopropyl 

group instead of n-butyl group promoted the formation of 3-azafluorenol 247 in 78% yield with 

the same regioselectivity. The cycloaddition of benzoyl bridged diyne 153 was performed under 

the optimized reaction conditions, 3-azafluorenone 248 was formed as the major product in 

89% isolated yield, with a decreased regioselectivity (94:6). The structure of 248 was 

unambiguously confirmed by single crystal X-ray diffraction (Scheme 163). These results 

illustrated that the regioselectivity allows the formation of less sterically hindered regioisomer. 
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It is important to highlight that all the reactions occurred in a short reaction time using traces 

of dichloromethane or solvent-free conditions.  

 

Scheme 163 

5. Conclusion 

To conclude, we have demonstrated that highly substituted 2-aminopyridine derivatives 

can be efficiently synthesized by ruthenium-catalyzed [2+2+2] cycloaddition of 6-diynes and 

1,7-diynes with cyanamides using both neutral RuCl3·nH2O and cationic Cp*Ru(CH3CN)3PF6 

complex as catalyst.  
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Firstly, the easy to handle and cost-effective RuCl3·nH2O complex has been 

successfully employed for the synthesis of highly substituted 2-aminopyridines. The reaction 

proceeded in the presence of 5 mol % RuCl3·nH2O, with neither additional ligands nor additives 

under solvent-free conditions, affording a range of different 2-aminopyridines in 10-95% 

yields.  

Secondly, we established that a cationic Cp*Ru(CH3CN)3PF6 complex is a highly 

efficient catalyst for the cycloaddition of both 1,6- and 1,7-diynes with cyanamides under mild 

conditions. Various symmetrical terminal or internal diynes possessing different functional 

groups were compatible with the catalytic system. High regioselectivity was obtained when 

unsymmetrical diynes were employed. The practicability and utility of this protocol were 

demonstrated with the preparation of high valuable halopyridines, diaminopyridines, and 

vinylpyridines in one-step synthesis. The reaction also provided synthetic useful six-membered 

heteroatom-fused pyridines starting from unsymmetrical 1,7-diynes and cyanamides. The late-

stage functionalization of biologically active mestranol further improved the facile and 

usefulness of the present method.  

Finally, a family of aza-fluorenones and aza-fluorenols were synthesized via eco-

friendly and straightforward approaches. Controlling the terminal position of the benzoyl- or 

benzyl-bridged diyne allowed the synthesis of 2- or 3-azafluorenone(ol) with high 

regioselectivities.  
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Chapter IV: Rhodium-catalyzed asymmetric synthesis of 

1,1-disubstituted 1,3-dihydroisobenzofurans from prochiral 

triynes and internal alkynes  

The transition-metal-catalyzed enantioselective [2+2+2] cycloaddition reactions are 

extremely important tools in modern synthetic organic chemistry, because they serve as a 

powerful and atom-economical straightforward approach for the rapid construction of chiral 

polycyclic carbocycles and heterocycles in a single step.7h,7j,7x Since the first example of 

enantioselective [2+2+2] cycloaddition discovered in 1994 with the work of Sato, Mori, and 

Nishimata,151 catalytic asymmetric [2+2+2] cycloaddition reactions using a transition metal 

catalyst, such as rhodium, cobalt, nickel, and iridium, in the presence of a chiral ligand have 

been widely reported for the construction of various chiral molecules associated with central, 

axial, planar, helical chirality (Figure 3).  

 

Figure 3 

                                                 
151 Sato, Y.; Nishimata, T.; Mori, M. J. Org. Chem. 1994, 59, 6133.  
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1. Enantioselective [2+2+2] cycloaddition reactions 

1.1. Construction of central chirality 

The transition-metal-catalyzed [2+2+2] cycloadditions of alkynes with unsaturated 

partners, such as olefins, imines, aldehydes, are of great interest given that they allow the 

construction of a six-membered ring containing one or more chiral carbon center. These 

processes proceed via a widely known reactive metallacyclopentene or metallacyclopentadiene 

intermediate, which is generated from the oxidative coupling of two unsaturated carbon-carbon 

bonds to the chiral metal catalytic species. The insertion and reductive elimination steps then 

provide the cyclic compound with chiral carbon center(s) on the six-membered ring (Scheme 

164).  

 

Scheme 164 

In 2006, Shibata reported the first rhodium-catalyzed enantioselective [2+2+2] 

cycloaddition of diynes and alkenes. 152  In the presence of a preliminary isolated chiral 

rhodium(I) complex, various exo-methylene cyclic lactones and ketones could undergo the 

cycloaddition with 1,6-diynes to give a family of chiral spirocyclic compounds possessing a 

quaternary carbon stereocenter, with 62-94% yields and 80-99% enantioselectivities (Scheme 

165).  

                                                 
152 Tsuchikama, K.; Kuwata, Y.; Shibata, T. J. Am. Chem. Soc. 2006, 128, 13686. 
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Scheme 165 

The enantioselective [2+2+2] cycloaddition involving two alkene units allowed to 

introduce two new stereogenic centers in a single step in the resulting cycloadduct. The first 

report was described by Tanaka and co-workers in 2012. 153  They demonstrated that the 

successful construction of annulated cyclohexene relies on the use of reactive acrylamides as 

alkene partners (Scheme 166). The high regioselective and diastereoselective formation of the 

cycloadduct could be explained by the regioselective insertion of the acrylamide into a 

rhodacyclopentene intermediate. 

 

Scheme 166 

The unsaturated imine was also a good partner for these cycloadditions. The first 

asymmetric transition-metal-catalyzed [2+2+2] cycloaddition of diynes with sulfonimines was 

reported by Aubert, Gandon, Malacria and co-workers,154 and provided a new and efficient 

                                                 
153 Masutomi, K.; Sakiyama, N.; Noguchi, K.; Tanaka, K. Angew. Chem. Int. Ed. 2012, 51 (52), 13031.  
154 Amatore, M.; Lebœuf, D.; Malacria, M.; Gandon, V.; Aubert, C. J. Am. Chem. Soc. 2013, 135, 4576.  
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method for the synthesis of enantioenriched 1,2-dihydropyridines. The combination of 

[Rh(hexadiene)Cl]2/AgSbF6/(R)-ditBu-MeOBiphep (or (R)-Tol-BINAP) was found to be the 

best catalytic system to promote the access to various heterocycles with good 

enantioselectivities (Scheme 167).  

 

Scheme 167 

1.2. Construction of axial chirality 

Axially chiral biaryl compounds are widely found as a key structural motif in many 

chiral ligands, catalysts as well as biologically active compounds. 155  The catalytic 

enantioselective synthesis of axially chiral biaryls via transition-metal-catalyzed [2+2+2] 

cycloadditions have been proved to be a straightforward and efficient method. The sterically 

demanding prochiral substrates and a chiral catalyst were commonly used for the formation of 

chiral biaryl compounds (Scheme 168).  

 

Scheme 168 

                                                 
155 (a) Bringmann, G.; Mortimer, A. J. P.; Keller, P. A.; Gresser, M. J.; Garner, J.; Breuning, M. Angew. Chem. 

Int. Ed. 2005, 44, 5384. (b) Bringmann, G.; Gulder, T.; Gulder, T. A. M.; Breuning, M. Chem. Rev. 2011, 111, 
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In 2004, Gutnov, Heller and co-workers reported the first example of direct synthesis of 

enantioenriched axially biaryls via a chiral cobalt(I) complex-catalyzed [2+2+2] cycloaddition 

of alkynes with nitriles.156 The reaction was performed under mild conditions using visible light 

or sunlight as the energy source (Scheme 169).  

 

Scheme 169 

Shibata and co-workers reported the first example of iridium-catalyzed [2+2+2] 

cycloaddition of -diynes with alkynes.157 The combination of [Ir(cod)Cl]2 and (S,S)-Me-

Duphos promoted the high enantio- and diastereoselective synthesis of axially chiral 1,4-

teraryls (Scheme 170).  

 

Scheme 170 

Tanaka and co-workers also employed the cationic rhodium(I)/bisphosphine catalytic 

system to the asymmetric synthesis of axially chiral biaryls.158 In the presence of cationic 

rhodium(I)/(S)-H8-BINAP complex, various unsymmetrical diynes and internal alkynes were 

                                                 
156 Gutnov, A.; Heller, B.; Fischer, C.; Drexler, H. J.; Spannenberg, A.; Sundermann, B.; Sundermann, C. Angew. 

Chem. Int. Ed. 2004, 43, 3795.  
157 Shibata, T.; Fujimoto, T.; Yokota, K.; Takagi, K. J. Am. Chem. Soc. 2004, 126, 8382. 
158 Tanaka, K.; Nishida, G.; Wada, A.; Noguchi, K. Angew. Chem. Int. Ed. 2004, 43, 6510. 
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converted to axially chiral phthalides. Functional groups, such as trifluoromethyl and chloride 

were tolerated using these conditions (Scheme 171).  

 

Scheme 171 

1.3. Construction of planar chirality 

The transition-metal-catalyzed intramolecular [2+2+2] cycloaddition of triynes, 

possessing a short ansa chain, could be possible to form a planar chirality cyclophanes in which 

the ansa chain cannot flip around the benzene ring (Scheme 172). 

 

Scheme 172 

In 2007, the group of Tanaka first reported that the planar-chiral metacyclophanes could 

be synthesized by transition-metal-catalyzed [2+2+2] cycloaddition reactions. 159  The 

intramolecular cyclotrimerization of linear triynes, bearing ester or ether-linked 1,6-diyne 

moieties, proceeded in the presence of rhodium(I)/(R)-H8-BINAP complex furnishing the [7]-

[10]metacyclophanes with high enantioselectivities (Scheme 173). This method opened a new 

way to synthesize these compounds.  
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Scheme 173 

1.4. Construction of helical chirality 

The combination of transition metals with chiral ligands to catalyze [2+2+2] 

cyclotrimerization of alkynes is considered as one of the most efficient method for the synthesis 

of helically chiral -electron systems, although most examples are diastereoselective 

cycloadditions (Scheme 174). 

 

Scheme 174 

Stará, Starý and co-workers reported a rapid approach for the synthesis of 

dibenzohelicenes based on a nickel-catalyzed cycloaddition reaction.160  A series of ortho-

phenylene-tethered triynes were employed under the Ni(cod)2/(R)-Quinap catalytic system and 

                                                 
160 Jančařík, A.; Rybáček, J.; Cocq, K.; Chocholoušová, J. V.; Vacek, J.; Pohl, R.; Bednárová, L.; Fiedler, P.; 

Císařová, I.; Stará, I. G.; Starý, I. Angew. Chem. Int. Ed. 2013, 52, 9970.  
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gave rise to various dibenzo[5]-, dibenzo[6]-, and dibenzo[7]helicenes. Notably, a high catalyst 

loading (20 mol %) was required to give a higher enantioselectivity (Scheme 175).  

 

Scheme 175 

2. Desymmetric transition-metal-catalyzed [2+2+2] 

cycloaddition reactions 

Although many methods have been developed on enantioselective transition-metal-

catalyzed [2+2+2] cycloadditions for the synthesis of useful chiral compounds, new strategies 

to access challenging targets are still desirable.  

The construction of all-carbon quaternary stereogenic centers via catalytic 

enantioselective desymmetrization161 of prochiral substrate is an ideal method which exhibits 

many advantages over conventional strategies (Figure 4). For example, the quaternary carbon 

stereocenter is formed, no matter what kind of reaction occurred at one of the two identical 

functional groups attached to the quaternary carbon; the functional groups could previously be 

introduced to the quaternary carbon; the theoretical yield of the desymmetrization reaction is 

100%, while the yield of the kinetic resolution reaction cannot exceed 50%.  

                                                 
161 Zeng, X. P.; Cao, Z. Y.; Wang, Y. H.; Zhou, F.; Zhou, J. Chem. Rev. 2016, 116, 7330. 
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Figure 4 

Taking advantage of the powerful and practical transition-metal-catalyzed [2+2+2] 

cycloadditions, and based on the principles of desymmetrization reactions, the synthesis of 

chiral compounds in term of desymmetric enantioselective [2+2+2] cycloaddition reactions 

were designed but scarely reported (Scheme 176).  

 

Scheme 176 

The first example was reported by Sato, Mori and Nishimata using a nickel(0)-catalyzed 

enantioselective [2+2+2] cycloaddition of prochiral triynes with gaseous acetylene in the 

presence of chiral phosphine ligands under mild conditions (Scheme 177).151, 162  The 

combination of Ni(cod)2 and (R,S)-BPPFA promoted the reaction of prochiral triynes with 

acetylene affording the isoindoline derivatives in 52% yield and 73% enantioselectivity, 

                                                 
162 Sato, Y.; Nishimata, T.; Mori, M. Heterocycles 1997, 44, 443. 
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whereas the cycloaddition of 1,7-diynes and acetylene by using (S)-MOP as ligand led to 

isoquinoline in 62% yield and 54% enantioselectivity. Notably, this new method opened a novel 

route for the construction of benzylic chiral carbon centers, although the enantioselectivities 

were moderate.  

 

Scheme 177 

Since this pioneering work, the desymmetric [2+2+2] cycloadditions of prochiral 

substrates received more attention. Taking advantage of cationic rhodium(I)/phosphine 

catalytic systems, the group of Tanaka reported several examples by using these strategies. In 

2006, they described two examples of enantioselective desymmetrization of substituted 

malononitriles.163 Using cationic [Rh(cod)2]BF4/(R)-Xylyl-Solphos (or (R)-BINAP) complex 

catalyst, the reaction afforded enantioenriched bicyclic pyridines in 75-91% yields with 

moderate enantioselectivities (33% and 64%, respectively, Scheme 178).  

 

Scheme 178 

                                                 
163 Tanaka, K.; Suzuki, N.; Nishida, G. Eur. J. Org. Chem. 2006, 3917.  
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In 2007, the same group described the synthesis of enantioenriched tricyclic 3,3-

disubstituted phthalides involving a cationic rhodium-catalyzed desymmetric [2+2+2] 

cycloaddition reaction.164 The reaction proceeded via an initial oxidative coupling of 1,6-diyne 

bearing a carbomethoxy group and simultaneously a transesterification with a symmetrical 

bispropargylic alcohol to form the rhodacyclopentadiene reactive species, followed by 

desymmetric insertion of one of the two alkynes to give the phthalide derivatives, which bear a 

chiral quaternary carbon center at the benzylic position (Scheme 179). The high regio- and 

enantioselectivity strongly relied on the presence of both methoxycarbonyl group and 

propargylic hydroxyl group.  

 

Scheme 179 

The C2-symmetric spirobipyridine structures were also prepared via the 

rhodium/bisphosphine-catalyzed enantioselective intramolecular double [2+2+2] 

cycloadditions of bis-diynenitriles.165 A wide range of substrates were examined to produce 

various C2-symmetric spirobipyridine ligands in 70-99% yields with 18-71% 

enantioselectivities (Scheme 180).  

                                                 
164 Tanaka, K.; Osaka, T.; Noguchi, K.; Hirano, M. Org. Lett. 2007, 9, 1307. 
165 Wada, A.; Noguchi, K.; Hirano, M.; Tanaka, K. Org. Lett. 2007, 9, 1295. 
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Scheme 180 

The aromatics containing a chiral center at -position are more challenging to synthesize. 

Thus, Shibata and co-workers recently developed a rhodium-catalyzed intramolecular 

enantioselective [2+2+2] cycloaddition of amino-acid-tethered triynes for the preparation of the 

chiral center of tethered Aic derivatives (Scheme 181).166 

 

Scheme 181 
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Not only quaternary-carbon-stereogenic centers but also other hetero-stereogenic 

centers, such as phosphorus and silicon, can be constructed through desymmetric 

enantioselective [2+2+2] cycloaddition reactions.  

In 2008, Tanaka and co-workers successfully synthesized a family of phosphorus-

stereogenic alkynylphosphine oxides by using cationic rhodium(I)/bisphosphine complex-

catalyzed [2+2+2] cycloadditions of symmetrical dialkynylphosphine oxides with 1,6-

diynes.167 The desymmetric formation of a phosphorus-stereogenic center could be explained 

by the steric effect between the coordinated dialkynylphosphine oxide and the chiral phosphine 

ligand in the formed rhodium intermediate (Scheme 182).  

 

Scheme 182 

Nozaki and co-workers reported in 2015 a facile and efficient method for the preparation 

of silicon-stereogenic dibenzosiloles through enantioselective rhodium-catalyzed [2+2+2] 

cycloaddition of silicon-containing prochiral triynes with internal alkynes.168 In the presence of 

[RhCl(C2H4)2]2/monophosphine catalytic system, by exchange of the different tethers and 

unsaturated partners, enantioenriched germanium-stereogenic dibenzogermoles, silicon-

stereogenic silicon-bridged arylpyridinones169 and arylpyridines170 were successfully obtained 

with good to high chemo-, regio- and enantioselectivities (Scheme 183). A drawback of this 

method was the difficult multiple-step synthesis of starting prochiral triynes.  

                                                 
167 Nishida, G.; Noguchi, K.; Hirano, M.; Tanaka, K. Angew. Chem. Int. Ed. 2008, 47, 3410. 
168 Shintani, R.; Takagi, C.; Ito, T.; Naito, M.; Nozaki, K. Angew. Chem. Int. Ed. 2015, 54, 1616. 
169 Shintani, R.; Takano, R.; Nozaki, K. Chem. Sci. 2016, 7, 1205. 
170 Shintani, R.; Misawa, N.; Takano, R.; Nozaki, K. Chem. Eur. J. 2017, 23, 2660.  
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Scheme 183 

3. Interest and synthesis of 1,3-dihydroisobenzofurans 

1,3-dihydroisobenzofurans (phthalanes)171 constitute an important class of oxygenated 

heterocycles, which are widely present in many bioactive natural products 172  and 

pharmaceuticals173. For examples, as shown in Scheme 184, Flavimycin A (A) was isolated as 

inhibitor of peptide deformylase from cultures of Aspergillus flavipes.172b Citalopram (B) is a 

widely used antidepressant drug for the treatment of major depressive and general anxiety 

disorders in adults.173a-c Further investigation indicated that the pharmaceutical activity of 

citalopram almost resided in the (S)-enantiomer, Escitalopram (C).173d Pestacin (D) isolated 

from microorganism Pestalotiopsis microspora exhibits antifungal, antimycotic, and potent 

                                                 
171 Karmakar, R.; Pahari, P.; Mal, D. Chem. Rev. 2014, 114, 6213. 
172 (a) Xu, X.; Song, F.; Wang, S.; Li, S.; Xiao, F.; Zhao, J.; Yang, Y.; Shang, S.; Yang, L.; Shi, J. J. Nat. Prod. 

2004, 67, 1661. (b) Kwon, Y. J.; Sohn, M. J.; Kim, C. J.; Koshino, H.; Kim, W. G. J. Nat. Prod. 2012, 75, 271. 
173 (a) Eildal, J. N. N.; Andersen, J.; Kristensen, A. S.; Jørgensen, A. M.; Bang-Andersen, B.; Jørgensen, M.; 

Strømgaard, K. J. Med. Chem. 2008, 51, 3045. (b) Andersen, J.; Stuhr-Hansen, N.; Zachariassen, L.; Toubro, S.; 

Hansen, S. M. R.; Eildal, J. N. N.; Bond, A. D.; Bøgesø, K. P.; Bang-Andersen, B.; Kristensen, A. S.; Strømgaard, 

K. Proc. Natl. Acad. Sci. U. S. A. 2011, 108, 12137. (c) Tu, H. M.; Wang, Q.; Zhu, J. Chem. Commun. 2016, 4, 

11100. (d) Hyttel, J.; Bøgesø, K. P.; Perregaard, J.; Sanchez, C. J. Neural Transm. 1992, 88, 157. (e) Harper, J. 

K.; Arif, A. M.; Ford, E. J.; Strobel, G. A.; Porco, J. A.; Tomer, D. P.; Oneill, K. L.; Heider, E. M.; Grant, D. M. 

Tetrahedron 2003, 59, 2471. (f) Lovey, R. G.; Elliott, A. J.; Kaminski, J. J.; Loebenberg, D.; Parmegiani, R. M.; 

Rane, D. F.; Girijavallabhan, V. M.; Pike, Guzik, R. E.; Antonacci, H.; B.; Tomaine, T. Y. J. Med. Chem. 1992, 

35, 4221. (g) Höller, U.; Gloer, J. B.; Wicklow, D. T. J. Nat. Prod. 2002, 65, 876. (h) Ewing, D. F.; Len, C.; 

Mackenzie, G.; Ronco, G.; Villa, P. Tetrahedron Asymmetry 2000, 11, 4995. (i) Egron, D.; Périgaud, C.; Gosselin, 

G.; Aubertin, A. M.; Faraj, A.; Sélouane, M.; Postel, D.; Len, C. Bioorganic Med. Chem. Lett. 2003, 13, 4473. (j) 

Goezler, B.; Goezler, T.; Shamma, M. Tetrahedron 1983, 39, 577. (b) Jing, L.; Wenzao, L.; Guoshi, T. Planta 

Med. 1994, 60, 486.  
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antioxidant activities.173e Conformationally constrained miconazole analogues (E) containing a 

1,3-dihydroisobenzofuran motif have improved antifungal potency compared to miconazole.173f 

3-Deoxyisoochracinic acid (F), the most abundant polyketide-derived metabolites of 

Cladosporium sp, showed antibacterial activity and inhibits the growth of B. subtilis.173g 

 

Scheme 184 

Many synthetic approaches have been reported in the literature for the synthesis of these 

structurally diverse 1,3-dihydroisobenzofurans including cycloetherification of the ortho-

substituted aromatics,174 [2+2+2] cyclotrimerization of alkynes,7 Diels−Alder reaction,175 and 

transformation of phthalides176 (Scheme 185). Among them, the preparation of this scaffold by 

transition-metal-catalyzed [2+2+2] cycloaddition reaction may be considered as one of the most 

efficient method, as described in chapter I.  

                                                 
174 (a) Yus, M.; Foubelo, F.; Ferrandez, J. V. Tetrahedron 2003, 59, 2083. (b) Kobayashi, K.; Shikata, K.; 

Fukamachi, S.; Konishi, H. Heterocycles 2008, 75, 599. (c) Capriati, V.; Florio, S.; Luisi, R.; Perna, F. M.; 

Salomone, A. J. Org. Chem. 2006, 71, 3984. (d) Dem’yanovich, V. M.; Shishkina, I. N.; Kuznetsova, A. A.; 

Potekhin, K. A.; Chesnova, A. V. Russ. J. Org. Chem. 2006, 42, 986.  
175 (a) Wu, H.-J.; Yen, C.-H.; Chuang, C. T. J. Org. Chem. 1998, 63, 5064. (b) Martín-Matute, B.; Nevado, C.; 

Cárdenas, D. J.; Echavarren, A. M. J. Am. Chem. Soc. 2003, 125, 5757. (c) Subrahmanyam, A. V.; Palanichamy, 

K.; Kaliappan, K. P. Chem. Eur. J. 2010, 16, 8545.  
176 (a) Meegalla, S. K.; Rodrigo, R. Synthesis 1989, 12, 942. (b) Verdaguer, X.; Berk, S. C.; Buchwald, S. L. J. 

Am. Chem. Soc. 1995, 117, 12641. (c) Aggarwal, S.; Ghosh, N. N.; Aneja, R.; Joshi, H.; Chandra, R. Helv. Chim. 

Acta. 2002, 85, 2458. (d) Cox, C.; Danishefsky, S. J. Org. Lett. 2000, 2, 3493.  
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Scheme 185 

4. Objectives 

Considering the literature, the enantioselective synthesis of 1,3-dihydroisobenzofurans 

containing a stereogenic centerat the -position has rarely been reported and remains a 

challenge.177  

Desymmetrization of prochiral compounds serves as an efficient method to prepare 

complex molecules with a stereogenic chiral center. Therefore, we anticipated that the 

construction of 1,3-dihydroisobenzofurans could be achieved via the transition-metal-catalyzed 

[2+2+2] cycloaddition of prochiral oxygen-tethered triynes with internal alkynes. The proposed 

synthetic route is shown in Scheme 186.  

 

Scheme 186 

                                                 
177 Tomooka, K.; Wang, L.-F.; Okazaki, F.; Nakai, T. Tetrahedron Lett. 2000, 41, 6121. (b) Solares, L. F.; Brieva, 

R.; Quirós, M.; Llorente, I.; Bayodb, M.; Gotor, V. Tetrahedron: Asymmetry 2004, 15, 341. (c) Yuen, T.-Y.; Yang, 

S.-H.; Brimble, M. A. Angew. Chem., Int. Ed. 2011, 50, 8350. (d) Chai, Z.; Xie, Z.-F.; Liu, X.-Y.; Zhao, G.; Wang, 

J.-D. J. Org. Chem. 2008, 73, 2947.  
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5. Results and discussion 

5.1 Synthesis of starting materials: prochiral triynes and internal alkynes 

5.1.1. Synthesis of prochiral triynes 

The prochiral oxygen-tethered triynes having an -diyne motif could be prepared 

from commercially available reagents, the retrosynthesic route is depicted in Scheme 187.  

 

Scheme 187 

The symmetrical bispropargylic alcohols 249-253 were prepared through the lithium 

mediated nucleophilic addition of terminal alkynes with acyl chlorides. As shown in Scheme 

188, a series of acyl chlorides reacted with 2 equivalents of lithium acetylide, prepared in situ 

from the corresponding alkynes and n-butyllithium, affording the bispropargylic alcohols 249-

253 in 70-99% yields. Both aryl and alkyl groups could be introduced to the quaternary carbon 

atom by using different acyl chlorides.  

 

Scheme 188 
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The oxygen-tethered triynes 254-259 were successfully synthesized via the nucleophilic 

substitution of the alcohols 249-253 with 1.3 equivalents of propargyl bromide or 1-bromo-but-

2-yne. The reaction was performed in the presence 1.3 equivalents of sodium hydride in THF, 

and afforded the desired triynes 254-259 in 70-90% yields (Scheme 189).  

 

Scheme 189 

Treatment of terminal triyne 254 with 1.1 equivalents of nbutyllithium in THF at -70 

°C, followed by subsequent silylation with 1.1 equivalents of trimethlylsilyl chloride, delivered 

the TMS-substituted triyne 260 in 93% yield (Scheme 190). 

 

Scheme 190 
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5.1.2. Synthesis of internal monoalkynes 

To study the steric influence of the alkynes, different internal alkynes were prepared 

(Scheme 191). Diynes 51, 53, 54 and 261 were purchased from commercial sources, diynes 

262-265 were prepared in the laboratory following the procedures described in the literature.178  

 

Scheme 191 

The reaction of 2-butyl-1,4-diol 52 with 3 equivalents of acyl chlorides, such as acetyl 

chloride and benzoyl chloride, in the presence of 2.5 equivalents of pyridine provided the 

corresponding alkynes 262 and 264 in 96% and 95% yields, respectively (Scheme 192).  

 

Scheme 192 

Alkyne 263 could be prepared by the reaction of 2-butyl-1,4-diol 52 with 3 equivalents 

of pivaloyl chloride using 5 mol % DMAP as catalyst and 4 equivalents of 

ethyldiisopropylamine as base, 98% of the desired product was obtained (Scheme 193).  

 

Scheme 193 

                                                 
178 (a) Muchow, G.; Brunel, J. M.; Maffei, M.; Buono, G. J. Org. Chem. 1995, 60, 852. (b) Hudiono, Y. C.; Miller, 

A. L.; Gibson, P. W.; LaFrate, A. L.; Noble, R. D.; Gin, D. L. Ind. Eng. Chem. Res. 2012, 51, 7453.  
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Treatment of the 2-butyl-1,4-diol 52 with 3.5 equivalents of sodium hydroxide in a 

mixture solution of water and THF at 0 °C with 2.2 equivalents of tosyl chloride furnished the 

tosyl protected internal alkyne 265 in 83% yield (Scheme 194). 

 

Scheme 194 

5.2 Rhodium-catalyzed desymmetric [2+2+2] cycloaddition of prochiral 

triynes with internal alkynes 

With a series of alkynes in hand, we then attempted to synthesize 1,3-

dihydroisobenzofuran 266 from prochiral triyne 255 and 1,4-diacetoxy-2-butyne 262 through 

an enantioselective rhodium-catalyzed [2+2+2] cycloaddition reaction. As shown in Table 5, 

we began our studies by investigating the reactivity of different cationic rhodium catalysts, such 

as Rh(cod)2BF4,
163-167 [Rh(hexadiene)Cl]2/AgSbF6,

154 [Rh(ethylene)Cl]2/NaBArF
4,

168-170 which 

proved to be efficient catalysts in related enantioselective [2+2+2] cycloadditions (Entries 1-

3). The results showed that the use of Rh(cod)2BF4 in combination with (R)-BINAP was the 

best choice for the transformation. Using 5 mol % of cationic Rh(cod)2BF4/(R)-BINAP complex 

in dichloromethane at 40 °C lead to 50% yield and 50% ee of the desired product 266 by using 

1:2 ratio of triyne 255 and alkyne 262 (Entry 1). Further evaluation of the ratio of [Rh]/ligand 

showed that an increase of the amount of (R)-BINAP (10 mol %, Entry 4) gave no improvement 

(yield and enantioselectivity). The reaction did not take place in the absence of phosphine ligand 

(Entry 5). Hydrogenation of the rhodium complex under 1 atm H2 for 1 hour to remove the cod 

ligand allowed the formation of cycloadduct 266 in 66% isolated yield, but with a lower 

enantiomeric excess of 43% (Entry 6). Moreover, slow-addition technique was used to 

introduce triyne 255 in 3 h to a DCM solution of alkyne 262 and Rh(cod)2BF4/(R)-BINAP 

complex using a syringe pump (Entry 7). However, the formation of unclear side products was 

observed, due to the homo-cyclization of triyne and totally intramolecular cycloaddition of 

triyne with alkyne.  
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Table 5 Optimization of reaction conditions  

 

Entrya [Rh] catalyst Additive (mol %) Yield (%)b ee (%)c 

1 Rh(cod)2BF4 / 50 50 

2 [Rh(hexadiene)Cl]2 AgSbF6 (5) 74 20 

3d [Rh(ethylene)Cl]2 NaBArF
4 (10) 72 49 

4e Rh(cod)2BF4 / 50 50 

5f Rh(cod)2BF4 / nr / 

6g Rh(cod)2BF4 / 66 43 

7h Rh(cod)2BF4 / 50 50 

a Reaction conditions: [Rh] catalyst (5 mol %), (R)-BINAP (5 mol %), triyne 255 (0.3 

mmol), alkyne 262 (0.6 mmol) were heated at 40 °C in a sealed Schlenk tube in DCM 

(3 mL) under an argon atmosphere for 20-24 h. b Isolated yield, nr = no reaction. c 

Determined by SFC analysis. d ArF = 3,5-(CF3)2C6H3. e 10 mol % of (R)-BINAP was 

used. f No ligand. g [Rh]/(R)-BINAP complex with previous hydrogenation (H2, 1 atm, 

rt, 1 h). h Slow addition of triyne 255 in 3 hours using a syringe pump.  

To further optimize the reaction conditions, a variety of bisphosphine and 

monophosphine ligands has been examined (Table 6). The influence of the chiral ligand was 

explored, (S)-Tol-BINAP, (R)-Xylyl-BINAP and (R)-H8-BINAP gave slight decreased 

enantiomeric excesses. The combination of Rh(cod)2BF4 with axially chiral monophosphine 

(R)-MOP, which previously demonstrated high reactivity and selectivity for the 

desymmetrization of silicon-containing prochiral triynes with internal alkynes,168-170 afforded 

the cycloadduct in 70% yield with 7% ee. Oxygen fused electron-rich and electron-poor 

bidentate ligands, such as (R)-SegPhos, (R)-DifluorPhos, (R)-SynPhos and (R)-(4-CF3)-

SynPhos, showed higher reactivity to access compound 266 (60-81% yields), but lower 

enantioselectivities were obtained (16-30% ee). Phosphine ligands bearing sterically hindered 

PAr2 moiety, such as (R)-dtbm-SegPhos and (R)-dtbm-MeOBiphep, did not provide the desired 

product. In contrast to the axially chiral phosphine ligands, (S)-Tol-BDP, (S)-PHANEPHOS, 

(R,S)-JosiPhos and (R,R)-Me-DuPhos, showed poor enantioselectivities and low reactivities 

under these reaction conditions.  
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Table 6 Screening of chiral phosphine ligands  

 

a Toluene was used as solvent.  
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We also evaluated a series of monodentate phosphoramidite ligands.179 However, no 

improvement of enantioselectivity of compound 267 was obtained (5-40%, Scheme 195). 

 

Scheme 195 

These results demonstrated that the chiral phosphine ligands play an important role to 

promote the desymmetric [2+2+2] cycloadditions, although moderate enantioselectivities were 

obtained. In this context, the Rh(cod)2BF4/(R)-BINAP complex was selected for the [2+2+2] 

cycloaddition reactions.  

To improve the yield and enantiomeric excess, we next screened different organic 

solvents (Table 7). First, polar solvents were examined. The reaction was carried out in 

dichloroethane and tetrahydrofuran at 40 °C, in the presence of 5 mol % Rh(cod)2BF4/(R)-

BINAP complex to deliver the desired 1,3-dihydroisobenzofuran 266 in 61% and 72% yields, 

respectively, with 37% and 47% ee, respectively (Entries 2 and 3). The non-polar solvents such 

as toluene, xylene, chlorobenzene have also been evaluated (Entries 4-6). Slight increased 

yields of cycloadducts were observed, with moderate enantioselectivity. Performing the 

cycloaddition in toluene at 100 °C did not significantly improve the course of the cycloaddition 

(70% yield, 50% ee, Entry 4). The reaction was performed in the presence of 5 mol % 

Rh(cod)2BF4/(R)-BINAP complex in 3 mL dichloromethane at 40 °C to evaluate the scope of 

the [2+2+2] cycloaddition.  

 

 

 

                                                 
179 Grandclaudon C. (2016) Réactions d'halocarbocyclisation par activation électrophile de fonctions carbonées 

insaturées (alcènes, alcynes, allènes). Etude des versions racémiques et chirales catalysées par des bases de Lewis 

(Doctoral dissertation). Retrieved from https://www.theses.fr/en/2016PA066228  
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Table 7 The effect of solvent 

 

Entry Solvent T (°C) Yield (%)b ee (%)c 

1 DCM 40 50 50 

2 DCE 40 61 37 

3 THF 40 72 47 

4 Toluene 100 70 50 

5 Xylene 100 60 46 

6 Chlorobenzene 100 54 42 

a Reaction conditions: Rh(cod)2BF4 (5 mol %), (R)-BINAP (5 mol %), triyne 255 

(0.3 mmol), alkyne 262 (0.6 mmol) were heated at 40 °C or 100 °C in a sealed 

Schlenk tube under an argon atmosphere for 20 h. b Isolated yield. c Determined by 

SFC analysis. 

With the optimized reaction conditions in hand, we then investigated the generality and 

limitations of the synthetic protocol. A series of symmetrical internal alkynes with different 

substituents were engaged with triyne 255 under the optimized reaction conditions (Scheme 

196). Switching to the more sterically hindered 2,2-dimethylpropanoate 263 and benzoate 264 

allowed to promote the reaction to form cycloadducts 267 and 268 in respective 20% and 28% 

yields, and 36% and 46% ee. The use of 3-hexyne 53 gave the desired product 269 in 79% yield 

and 21% ee. The reaction of more electron-rich alkyne such as 1,4-dimethoxy-2-butyne 51 with 

triyne 255 afforded the cycloadduct 270 in 63% yield with 32% ee. In addition, the electron-

deficient alkyne dimethyl acetylenedicarboxylate 261 can also be employed to provide the 

corresponding cyclized product 271 in 51% yield and 47% ee. On the other hand, we observed 

that the reaction was not compatible with diphenylacetylene 54, probably because of the steric 

effect of the two phenyl groups. It was also found that no reaction occurred with the tosyl group 

protected 2-butyne 265.  
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Scheme 196 

With respect to the prochiral triynes, different substituents on the triynes were evaluated 

(Scheme 197). Replacement of methyl group on the quaternary carbon atom by n-propyl group 

provided the corresponding product 274 with similar 46% yield and 51% enantiomeric excess. 

The reaction of sterically demanding tert-butyl- and phenyl-substituted triynes 257 and 258 

with internal alkyne 262 were inefficient for the enhancement of the enantioselectivity, leading 

to cycloadducts 275 and 276 with slightly lower 38% and 41% ee. The reaction also proceeded 

smoothly with the prochiral triyne 259 affording the cycloadduct 277 in 54% yield with 24% 

ee. The reaction was also applicable to the trimethylsilyl-substituted triyne 260, which 

successfully reacted with alkyne 262 to deliver the corresponding product 278 with 52% 

enantioselectivity in 26% yield. Finally, the reactivity of the triyne 254 having a terminal alkyne 

moiety was examined. However, no desired product 279 was formed under these reaction 

conditions, only the decomposition of the starting triyne was observed.  
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Scheme 197 

To rationalize the moderate enantioselectivities, two plausible reaction pathways for the 

formation of chiral 1,3-dihydroisobenzofurans could be considered, A and B (Scheme 198). 

Reaction pathway A would comply a catalytic cycle starting from the intermolecular oxidative 

coupling of two alkyne motifs from both triyne and alkyne with rhodium species to afford the 

rhodacyclopentadiene intermediate Rh-I. Subsequent intramolecular selective coordination of 

one of the two alkynes substituted on the quaternary carbon atom to rhodium would lead to the 

intermediate Rh-II. This step could be considered as the enantioselective determining step 

affording higher enantioselective excess because of the steric interaction between the 

uncoordinated alkynyl group and the chiral ligand. The intramolecular insertion of the alkyne 

to the rhodium-carbon bond of Rh-II would deliver the seven-membered rhodacycle 

intermediate Rh-III, and the final reductive elimination would provide the 1,3-

dihydroisobenzofuran with high ee.  

On the other hand, pathway B would involve the rhodacyclopentadiene intermediate 

Rh-I’ initially formed by the fast intramolecular oxidative coupling of the triyne with rhodium 

species. The low enantioselectivities would be explained by the position of the quaternary 

center located “far” from the metal center. Coordination and insertion of the monoalkyne would 
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also lead to the rhodacycle intermediate Rh-III. Reductive elimination would regenerate the 

rhodium species, and deliver the cycloadduct with lower ee. Considering the moderate 

enantioselectivities observed, we hypothesized that these two reaction pathways would occur 

at the same time.  

 

Scheme 198 

6. Conclusion 

In summary, we have developed a new route for the synthesis of enantioenriched 1,3-

dihydroisobenzofuran derivatives via an enantioselective rhodium-catalyzed [2+2+2] 

cycloaddition of prochiral triynes and monoalkynes. The reaction proceeded in the presence of 

a cationic Rh(cod)2BF4/(R)-BINAP complex in DCM. This desymmetrization strategy allowed 

the formation of 1,1-disubstituted 1,3-dihydroisobenzofurans containing a quaternary carbon 

stereocenter in up to 79% yield and up to 52% ee. Two plausible reaction pathways were 

proposed to rationalize the moderate enantioselectivities.  
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General conclusion 

With the aim of the PhD project to develop environmentally friendly and atom-

economical processes to access biologically interesting polycyclic and heterocyclic aromatic 

compounds via transition-metal-catalyzed [2+2+2] cycloaddition reactions, we successfully 

accessed relevant building blocks including fluorenones, 2-aminopyridines and 

enantioenriched 1,3-dihydroisobenzofurans.  

This work was first dedicated to the development of an efficient and practical route for 

the preparation of highly substituted fluorenones and analogues via solvent-free RuCl3·nH2O-

mediated [2+2+2] cycloaddition of -diynes and alkynes.180 This green approach involves a 

solvent-free and atom-economical catalytic process to generate densely functionalized 

fluorenones and related derivatives of high synthetic utility (Scheme 199).  

 

Scheme 199 

We also developed a convenient access to functionalized 2-aminopyridines via a 

solvent-free RuCl3·nH2O-promoted [2+2+2] cycloaddition reaction of -diynes and 

cyanamides.181 This transformation efficiently proceeds in the presence of a stable, easy to 

handle, and cost-effective RuCl3·nH2O complex, leading to various 2-aminopyridines in 

moderate to high yields following an eco-friendly straightforward approach. During the course 

of the studies, we found that the cationic ruthenium complex, Cp*Ru(CH3CN)3PF6, could also 

be an efficient catalyst to promote the [2+2+2] cycloadditions of 1,6- and 1,7-diynes with 

cyanamides to prepare 2-aminopyridines.182 Mild reaction conditions were developed for this 

transformation. Notably, this atom-economical catalytic process demonstrated remarkable 

                                                 
180 Ye, F.; Haddad, M.; Michelet, V.; Ratovelomanana-Vidal, V. Org. Lett. 2016, 18, 5612.  
181 Ye, F.; Haddad, M.; Michelet, V.; Ratovelomanana-Vidal, V. Org Chem Front 2017, 4, 1063.  
182 Ye, F.; Haddad, M.; Ratovelomanana-Vidal, V.; Michelet, V. Org. Lett. 2017, 19, 1104.  
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regioselectivities to access highly substituted pyridine derivatives of high synthetic utility 

(Scheme 200).  

 

Scheme 200 

Taking advantage of the cationic Cp*Ru(CH3CN)3PF6 catalytic system, we also 

synthesized a family of aza-fluorenones and aza-fluorenols with high regioselectivities 

(Scheme 201).  

 

Scheme 201 

Finally, we focused on the enantioselective synthesis of substituted 1,3-

dihydroisobenzofurans, containing a quaternary carbon stereogenic center, through a [2+2+2] 

cycloaddition of prochiral triynes with internal alkynes using a cationic rhodium complex 

incorporating BINAP ligand. Moderate yields and enantioselectivities were obtained (Scheme 

202). Further investigations of this method are underway in the laboratory.  

 

Scheme 202 
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Experimental part 

1. General informations 

1.1. Analysis 

1H NMR and 13C NMR were recorded on Bruker AV300 or AV400 instruments. All 

signals are expressed as ppm (δ) and are referenced to the non-deuterated solvent peak CHCl3 

(7.26 ppm for 1H and 77.16 ppm for 13C) or Methanol-D4 (3.31 ppm for 1H and 49.00 ppm for 

13C). Coupling constants (J) are given in Hz and refer to apparent peak multiplicities. The 

following abbreviations are used: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, 

br = broad.  

Melting points were determined with a Kofler Heizbank 7841 apparatus and are 

uncorrected.  

Enantiomeric excesses were determined by SFC using stationary phase columns: Daicel 

Chiralpak OD-H. 

Mass spectrometry analyses (direct introduction by chemical ionization with ammoniac 

or electrospray) were performed at the Ecole Nationale Supérieure de Chimie de Paris 

(ENSCP). High resolution mass spectra were performed at the University Pierre and Marie 

Curie (Paris).  

X-ray diffraction was made at Pierre et Marie Curie University (UPMC). 

1.2. Chromatography 

Sigma-Aldrich Silica gel (high-purity grade, pore size 60 Å, 230-400 mesh particle size, 

40-63 μm particle size) was employed for flash column chromatography. Analytical thin layer 

chromatography (TLC) was carried out using commercial silica-gel plates (Merck 60 F254), 

spots were detected with UV light (254 nm) and revealed with a KMnO4 or para-anisaldehyde 

stain solution.  
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1.3. Purification of solvents and reagents 

All reactions were performed under an atmosphere of argon. Toluene, THF, CH2H2, 

DMF, Et2O were dried over alumina columns in an Innovative Technologies apparatus. 

Acetone was distilled over K2CO3, and water was distilled. All the solvents for catalysis were 

degassed prior to use. 

All reagents were used as received from commercial sources, unless specified otherwise, 

or prepared as described in the literature. Every reagent was either purified following the 

methods described in the literature or used without further purification.  

2. Formation of fluorenone and related derivatives 

2.1. Synthesis of benzoyl bridged -diynes 

General procedure A: 

 

PdCl2(PPh3)2 (2-5 mol %) and CuI (1-2.5 mol %) were added to a NEt3/THF (1:1, 5.0 

M) solution containing aryl halide (1.0 equiv), alkyne (1.2-1.5 equiv). The mixture was stirred 

at 50 °C for 3-5 h. When the reaction was complete (TLC monitoring), the mixture was cooled 

to room temperature. A saturated aqueous solution of ammonium chloride was added and the 

mixture was stirred for 5 minutes. The organic layer was extracted with ethyl acetate (×3), 

washed with brine, dried over MgSO4, filtered and concentrated under reduced pressure. The 

residue was purified by flash chromatography to afford the desire compound.  

General procedure B: 

 

To a THF solution of alkyne (1.2 equiv, 5.0 M) was added nBuLi (1.3 equiv) at -70 °C. 

The mixture was warmed to 0 °C and stirred for 1 h. The resulting mixture was then cooled to 
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-70 °C again and a solution of aldehyde (1.0 equiv) in THF was added over 10 min. Then the 

mixture was warmed to room temperature and stirred for 2-3 h before addition of a saturated 

aqueous ammonium chloride solution. The organic layer was extracted with ethyl acetate (×3), 

washed with water and brine, dried over MgSO4, filtered and concentrated under reduced 

pressure. The residue was purified by flash chromatography to afford the desired compound. 

General procedure C: 

 

Dess-Martin periodinane (1.3 equiv) was added to a solution of corresponding alcohol 

(1 equiv) in anhydrous CH2Cl2 (5 M) at 0 °C and the resulting mixture was stirred at room 

temperature for 4-12 h. When the reaction was complete (TLC monitoring), the reaction 

mixture was filtered through a pad of celite. A saturated aqueous solution of NaHCO3 was 

added to the organic layer and stirred for 20 minutes. The organic layer was washed with water 

and brine, dried over MgSO4, filtered and concentrated under reduced pressure. The residue 

was purified by flash chromatography to afford the desired compound.  

General procedure D: 

 

TBAF (1 M in THF, 1.0 equiv) was added to a solution of TMS-protected product (1 

equiv) in THF (5 M) at 0 °C and the resulting mixture was stirred at room temperature for 1 h. 

The reaction was quenched with water and the product was extracted with DCM (×3). The 

organic layer washed with saturated aqueous solution of NaHCO3, water and brine, dried over 

anhydrous MgSO4, filtered and concentrated under reduced pressure. The residue was purified 

by column chromatography to afford the desired product.  

2-(Phenylethynyl)benzaldehyde (1) 
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This compound was prepared using procedure A. Starting from 2-bromobenzaldehyde (1.0 g, 

5.4 mmol) and phenylacetylene (0.71 mL, 6.5 mmol, 1.2 equiv). Purification on silica gel 

(Petroleum ether/Ethyl acetate gradient from 100/0 to 98/2) afforded 1 (0.85 g, 76%) as an 

orange oil. The analytical data were identical to the literature.183 

Rf = 0.6 (Cyclohexane/Ethyl acetate; 95/5, KMnO4, UV). 

1H NMR (300 MHz, CDCl3), δ 10.66 (d, J = 0.8 Hz, 1H), 7.97 – 7.94 (m, 1H), 7.66 – 7.54 (m, 

4H), 7.47 – 7.37 (m, 4H).  

13C NMR (75 MHz, CDCl3), δ 191.8, 135.9, 133.9, 133.3, 131.8, 129.2, 128.7, 128.6, 127.4, 

127.0, 122.4, 96.4, 85.0.  

2-(Hex-1-yn-1-yl)-benzaldehyde (2) 

 

This compound was prepared using procedure A. Starting from 2-bromobenzaldehyde (2.5 g, 

13.5 mmol) and 1-hexyne (2.0 mL, 17.5 mmol, 1.3 equiv). Purification on silica gel 

(Cyclohexane/Ethyl acetate gradient from 99/1 to 95/5) afforded 2 (1.95 g, 79%) as a brown 

oil. The analytical data were identical to the literature.183 

Rf = 0.8 (Cyclohexane/Ethyl acetate; 90/10, KMnO4, UV). 

1H NMR (300 MHz, CDCl3) δ 10.53 (d, J = 0.7 Hz, 1H), 7.87 (dd, J = 4.8, 4.0 Hz, 1H), 7.53 – 

7.47 (m, 2H), 7.41 – 7.30 (m, 1H), 2.48 (t, J = 7.0 Hz, 2H), 1.68 – 1.55 (m, 2H), 1.55 – 1.40 

(m, 2H), 0.95 (t, J = 7.2 Hz, 3H).  

                                                 
183 Sakamoto, T.; Kondo, Y.; Miura, N.; Hayashi, K.; Yamanaka, H. Heterocycles 1986, 24, 2311. 
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13C NMR (75 MHz, CDCl3) δ 192.3, 136.2, 133.8, 133.4, 128.1, 128.0, 127.0, 98.3, 76.5, 30.7, 

22.2, 19.4, 13.7.  

MS (CI, NH3): m/z = 187 [M + H] +.  

2-((Trimethylsilyl)ethynyl)benzaldehyde (3) 

 

This compound was prepared using procedure A. Starting from 2-bromobenzaldehyde (3.68 g, 

20.0 mmol) and trimethysilylacetylene (3.3 mL, 24.0 mmol, 1.2 equiv). Purification on silica 

gel (Cyclohexane/Ethyl acetate gradient from 98/2 to 90/10) afforded 3 (3.5 g, 87%) as a white 

solid. m.p. 56 – 58 °C. 

Rf = 0.62 (Cyclohexane/Ethyl acetate; 95/5, KMnO4, UV). 

1H NMR (300 MHz, CDCl3) δ 10.37 (d, J = 0.8 Hz, 1H), 7.74 – 7.68 (m, 1H), 7.41 – 7.29 (m, 

2H), 7.26-7.19 (m, 1H), 0.10 (s, 9H). 

13C NMR (75 MHz, CDCl3) δ 191.8, 136.3, 133.7, 133.6, 128.9, 127.0, 126.9, 102.5, 100.2, -

0.1. 

MS (CI, NH3): m/z = 203 [M + H] +.  

2-(p-Tolylethynyl)benzaldehyde (4) 

 

This compound was prepared using procedure A. Starting from 2-bromobenzaldehyde (2.5 g, 

13.5 mmol) and 4-ethynyltoluene (1.88 mL, 16.2 mmol, 1.2 equiv). Purification on silica gel 
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(Cyclohexane/Ethyl acetate gradient from 99/1 to 98/2) afforded 4 (2.3 g, 80%) as a white solid. 

m.p. 32 –34 °C. The analytical data were identical to the literature.184 

Rf = 0.62 (Cyclohexane/Ethyl acetate; 95/5, KMnO4, UV). 

1H NMR (300 MHz, CDCl3), δ 10.66 (d, J = 0.9 Hz, 1H), 7.97 – 7.92 (m, 1H), 7.68 – 7.53 (m, 

2H), 7.49 – 7.41 (m, 3H), 7.23– 7.16 (m, 2H), 2.39 (s, 3H).  

13C NMR (75 MHz, CDCl3), δ 191.9, 139.5, 136.0, 133.9, 133.3, 131.7, 129.4, 128.5, 127.4, 

119.4, 96.8, 84.5, 21.7.  

MS (CI, NH3): m/z = 221 [M + H] +.  

2-((4-(tert-Butyl)phenyl)-ethynyl)-benzaldehyde (5) 

 

This compound was prepared using procedure A. Starting from 2-bromobenzaldehyde (2.5 g, 

13.5 mmol) and 4-(tert-butyl)phenylacetylene (2.56 g, 16.2 mmol, 1.2 equiv). Purification on 

silica gel (Cyclohexane/Ethyl acetate gradient from 99/1 to 98/2) afforded 5 (2.4 g, 70%) as a 

brown solid. m.p. 50 – 52 °C. The analytical data were identical to the literature.185 

Rf = 0.7 (Cyclohexane/Ethyl acetate; 90/10, KMnO4, UV). 

1H NMR (300 MHz, CDCl3) δ 10.66 (s, 1H), 7.95 (dd, J = 7.8, 0.8 Hz, 1H), 7.68 – 7.54 (m, 

2H), 7.54 – 7.35 (m, 5H), 1.34 (s, 9H).  

13C NMR (75 MHz, CDCl3) δ 192.0, 152.7, 136.0, 133.9, 133.3, 131.6, 130.2, 128.6, 127.3, 

125.7, 119.5, 96.8, 84.5, 35.1, 31.3.  

6-(Phenylethynyl)benzo[d][1,3]dioxole-5-carbaldehyde (6) 

                                                 
184 Alfonsi, M.; Dell’Acqua, M.; Facoetti, D.; Arcadi, A.; Abbiati G.; Rossi, E. Eur. J. Org. Chem. 2009, 2852.  
185 K. K. Wang, H.-R. Zhang and J. L. Petersen, J. Org. Chem., 1999, 64, 1650.  
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This compound was prepared using procedure A. Starting from 2-bromo-4,5-

methylenedioxybenzaldehyde (2.3 g, 10.0 mmol) and phenylacetylene (1.2 mL, 11.2 mmol, 1.1 

equiv). Purification on silica gel (Cyclohexane/Ethyl acetate gradient from 99/1 to 98/2) 

afforded 6 (1.8 g, 72%) as a white solid. m.p. 118 – 120 °C. The analytical data were identical 

to the literature.186 

Rf = 0.6 (Cyclohexane/Ethyl acetate; 95/5, KMnO4, UV). 

1H NMR (300 MHz, CDCl3) δ 10.49 (s, 1H), 7.58-7.49 (m, 2H), 7.41-7.34 (m, 4H), 7.03 (s, 

1H), 6.09 (s, 2H).  

13C NMR (75 MHz, CDCl3) δ 190.1, 152.5, 148.9, 132.3, 131.7, 129.1, 128.7, 123.8, 122.5, 

112.2, 106.3, 102.5, 95.3, 84.9.  

MS (CI, NH3): m/z = 251 [M + H] +.  

5-Fluoro-2-(phenylethynyl)benzaldehyde (7) 

 

This compound was prepared using procedure A. Starting from 2-bromo-5-fluorobenzaldehyde 

(2.0 g, 10.0 mmol) and phenylacetylene (1.23 g, 12.0 mmol, 1.2 equiv). Purification on silica 

gel (Cyclohexane/Ethyl acetate gradient from 98/2 to 95/5) afforded 7 (1.55 g, 70%) as a pale 

yellow solid. m.p. 54 – 56 °C. The analytical data were identical to the literature.187 

                                                 
186 Huang, Q.-H.; Hunter, J. A.; Larock, R. C. J. Org. Chem. 2002, 67, 3437.  
187 Obika,S.; Kono, H.; Yasui, Y.; Yanada, R.; Takemoto, Y. J. Org. Chem. 2007, 72, 4462.  
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Rf = 0.62 (Cyclohexane/Ethyl acetate; 95/5, KMnO4, UV). 

1H NMR (300 MHz, CDCl3) δ 10.60 (d, J = 3.0 Hz, 1H), 7.68-7.59 (m, 2H), 7.58-7.52 (m, 2H), 

7.43-7.36 (m, 3H), 7.34-7.26 (m, 1H).  

13C NMR (75 MHz, CDCl3) δ 190.5, 162.6 (d, J = 215.6 Hz), 138.0 (d, J = 6.6 Hz), 135.4 (d, 

J = 7.7 Hz), 131.8, 129.3, 128.7, 123.1 (d, J = 3.3 Hz), 122.3, 121.5 (d, J = 22.6 Hz), 113.9 (d, 

J = 22.6 Hz), 96.2, 84.0.  

19F NMR (282 MHz, (CDCl3): -109.94 (t, J = 2.8 Hz).  

MS (CI, NH3): m/z = 242 [M + NH4]
 +.  

1-(2-(Phenylethynyl)phenyl)hept-2-yn-1-ol (8) 

 

This compound was prepared using procedure B. Starting from 2-(phenylethynyl)benzaldehyde 

1 (2.6 g, 12.6 mmol) and 1-hexyne (2.16 mL, 18.0 mmol, 1.5 equiv). Purification on silica gel 

(Petroleum ether/Ethyl acetate gradient from 95/5 to 90/10) afforded 8 (3.3 g, 92%) as a pale 

orange oil. The analytical data were identical to the literature.188 

Rf = 0.34 (Cyclohexane/Ethyl acetate; 90/10, KMnO4, UV). 

1H NMR (300 MHz, CDCl3), δ 7.74 (dd, J = 7.7, 1.3 Hz, 1H), 7.58 – 7.54 (m, 3H), 7.42 – 7.28 

(m, 5H), 5.96 (s, 1H), 2.70 (s, 1H), 2.30 – 2.25 (m, 2H), 1.51 – 1.39 (m, 4H), 0.88 (t, J = 7.2 

Hz, 3H).  

13C NMR (75 MHz, CDCl3), δ 143.0, 132.5, 131.7, 128.9, 128.7, 128.5, 128.2, 126.7, 123.0, 

121.4, 94.9, 87.7, 86.8, 79.4, 63.5, 30.7, 22.1, 18.7, 13.7. 

1-(2-(Hex-1-yn-1-yl)-phenyl)hept-2-yn-1-ol (9) 

                                                 
188 Chen, Y.-F.; Chen, M.; Liu, Y.-H. Angew. Chem. Int. Ed. 2012, 51, 6181.  
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This compound was prepared using procedure B. Starting from 2-(hex-1-yn-1-yl)benzaldehyde 

2 (0.91 g, 4.9 mmol) and 1-hexyne (0.73 mL, 6.4 mmol, 1.3 equiv). Purification on silica gel 

(Petroleum ether/Ethyl acetate 95/5) afforded 9 (0.68 g, 50%) as a pale orange oil.  

Rf = 0.38 (Cyclohexane/Ethyl acetate; 90/10, KMnO4, UV). 

1H NMR (300 MHz, CDCl3) δ 7.66 (dd, J = 7.6, 1.4 Hz, 1H), 7.41 (dd, J = 7.5, 1.4 Hz, 1H), 

7.34 – 7.20 (m, 2H), 5.88 – 5.79 (m, 1H), 2.64 (d, J = 5.5 Hz, 1H), 2.46 (t, J = 7.0 Hz, 2H), 

2.28 (t, J = 7.0 Hz, 2H), 1.65 – 1.52 (m, 4H), 1.49 – 1.37 (m, 4H), 0.96 (t, J = 7.1 Hz, 3H), 0.91 

(t, J = 7.1 Hz, 3H). 

13C NMR (75 MHz, CDCl3) δ 142.9, 132.6, 128.2, 128.1, 126.7, 122.3, 96.3, 87.6, 79.4, 78.1, 

63.7, 30.9, 30.8, 22.2, 22.1, 19.4, 18.7, 13.7. 

MS (CI, NH3): m/z = 251 [M + H - H2O] +.  

1-(2-(Hex-1-yn-1-yl)phenyl)-3-phenylprop-2-yn-1-ol (10) 

 

This compound was prepared using procedure B. Starting from 2-(hex-1-yn-1-yl)-

benzaldehyde 2 (1 g, 5.4 mmol) and phenylacetylene (0.77 mL, 7.0 mmol, 1.3 equiv). 

Purification on silica gel (Petroleum ether/Ethyl acetate gradient from 95/5 to 90/10) afforded 

10 (1.25 g, 81%) as a pale yellow oil.  

Rf = 0.4 (Cyclohexane/Ethyl acetate; 90/10, KMnO4, UV). 
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1H NMR (300 MHz, CDCl3) δ 7.73 (dd, J = 7.6, 1.6 Hz, 1H), 7.52 – 7.41 (m, 3H), 7.37 – 7.23 

(m, 5H), 6.06 (s, 1H), 2.80 (br, 1H), 2.49 (t, J = 7.0 Hz, 2H), 1.69 – 1.56 (m, 2H), 1.56 – 1.44 

(m, 2H), 0.94 (t, J = 7.3 Hz, 3H). 

13C NMR (75 MHz, CDCl3) δ 142.3, 132.7, 131.9, 128.6, 128.4, 128.3, 128.3, 126.8, 122.8, 

122.4, 96.7, 88.5, 86.6, 78.1, 64.1, 30.9, 22.2, 19.5, 13.8.  

MS (CI, NH3): m/z = 271 [M + H - H2O] +. 

3-Cyclopropyl-1-(2-(phenylethynyl)phenyl)prop-2-yn-1-ol (11) 

 

This compound was prepared using procedure B. Starting from 2-(phenylethynyl)benzaldehyde 

1 (1.1 g, 5.3 mmol) and cyclopropylacetylene (0.58 mL, 7.0 mmol, 1.3 equiv). Purification on 

silica gel (Petroleum ether/Ethyl acetate gradient from 95/5 to 90/10) afforded 11 (1.2 g, 92%) 

as a pale yellow oil. The analytical data were identical to the literature.188 

Rf = 0.38 (Cyclohexane/Ethyl acetate; 90/10, KMnO4, UV). 

1H NMR (300 MHz, CDCl3) δ 7.70 (dd, J = 7.6, 1.4 Hz, 1H), 7.60 – 7.51 (m, 3H), 7.42 – 7.34 

(m, 4H), 7.34 – 7.30 (m, 1H), 5.90 (dd, J = 5.5, 1.6 Hz, 1H), 2.62 (d, J = 5.6 Hz, 1H), 1.38 – 

1.23 (m, 1H), 0.79 – 0.69 (m, 4H). 

13C NMR (75 MHz, CDCl3) δ 142.9, 132.5, 131.7, 129.0, 128.7, 128.5, 128.2, 126.8, 123.0, 

121.4, 94.9, 90.7, 86.8, 74.7, 63.6, 8.4, -0.3. 

MS (CI, NH3): m/z = 255 [M + H - H2O] +.  

1-(2-((Trimethylsilyl)ethynyl)phenyl)hept-2-yn-1-ol (12) 
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This compound was prepared using procedure B. Starting from 2-

((trimethylsilyl)ethynyl)benzaldehyde 3 (1.5 g, 7.4 mmol) and 1-hexyne (1.1 mL, 9.6 mmol, 

1.3 equiv). Purification on silica gel (Cyclohexane/Ethyl acetate gradient from 95/5 to 90/10) 

afforded 12 (1.7 g, 80%) as a colorless oil. The analytical data were identical to the literature.189 

Rf = 0.44 (Cyclohexane/Ethyl acetate; 90/10, KMnO4, UV). 

1H NMR (300 MHz, CDCl3) δ 7.71 – 7.63 (m, 1H), 7.47 (dd, J = 7.6, 1.2 Hz, 1H), 7.35 (td, J 

= 7.6, 1.4 Hz, 1H), 7.28 – 7.21 (m, 1H), 5.87 – 5.80 (m, 1H), 2.77 (d, J = 5.4 Hz, 1H), 2.27 (td, 

J = 7.0, 2.0 Hz, 2H), 1.59 – 1.35 (m, 4H), 0.91 (t, J = 7.2 Hz, 3H), 0.28 (s, 9H). 

13C NMR (75 MHz, CDCl3) δ 143.7, 132.9, 129.2, 128.1, 126.7, 121.3, 102.6, 100.5, 87.8, 

79.2, 63.6, 30.8, 22.1, 18.7, 13.7, -0.02. 

MS (CI, NH3): m/z = 267 [M + H - H2O] +.  

1-(2-(p-Tolylethynyl)phenyl)hept-2-yn-1-ol (13) 

 

This compound was prepared using procedure B. Starting from 2-(p-tolylethynyl)benzaldehyde 

4 (1.0 g, 4.6 mmol) and 1-hexyne (0.68 mL, 5.9 mmol, 1.3 equiv). Purification on silica gel 

(Cyclohexane/Ethyl acetate gradient from 95/5 to 90/10) afforded 13 (1.19 g, 87%) as a pale 

oil. The analytical data were identical to the literature.190 

                                                 
189 Schmittel, M.; Strittmatter, M.; Mahajan, A. A.; Vavilala, C.; Cinar, M. E.; Maywald, M. Arkivoc 2007, 66.  
190 Schmittel, M.; Keller, M.; Kiau, S.; Strittmatter, M. Chem. Eur. J. 1997, 3, 807.  
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Rf = 0.43 (Cyclohexane/Ethyl acetate; 90/10, KMnO4, UV). 

1H NMR (300 MHz, CDCl3) δ 7.78-7.70 (m, 1H), 7.58-7.51 (m, 1H), 7.51-7.43 (m, 2H), 7.41-

7.27 (m, 2H), 7.22-7.14 (m, 2H), 5.96 (s, 1H), 2.81 (d, J = 4.8 Hz, 1H), 2.38 (s, 3H), 2.33-2.24 

(m, 2H), 1.59-1.35 (m, 4H), 0.90 (t, J = 7.2 Hz, 3H).  

13C NMR (75 MHz, CDCl3) δ 143.0, 138.8, 132.3, 131.5, 129.2, 128.7, 128.1, 126.6, 121.6, 

119.9, 95.1, 87.5, 86.2, 79.5, 63.5, 30.7, 22.0, 21.6, 18.6, 13.6.  

MS (CI, NH3): m/z = 285 [M + H - H2O] +.  

1-(2-((4-(tert-Butyl)phenyl)-ethynyl)-phenyl)-hept-2-yn-1-ol (14) 

 

This compound was prepared using procedure B. Starting from 2-((4-(tert-butyl)-phenyl)-

ethynyl)-benzaldehyde 5 (0.92 g, 3.5 mmol) and 1-hexyne (0.52 mL, 4.5 mmol, 1.3 equiv). 

Purification on silica gel (Cyclohexane/Ethyl acetate gradient from 95/5 to 90/10) afforded 14 

(1.0 g, 83%) as a pale oil. 

Rf = 0.42 (Cyclohexane/Ethyl acetate; 90/10, KMnO4, UV). 

1H NMR (300 MHz, CDCl3) δ 7.72 (dd, J = 7.6, 1.4 Hz, 1H), 7.54 (dd, J = 7.5, 1.3 Hz, 1H), 

7.52 – 7.45 (m, 2H), 7.43 – 7.34 (m, 3H), 7.30 (td, J = 7.5, 1.5 Hz, 1H), 5.91 – 5.96 (m, 1H), 

2.48 (br, 1H), 2.28 (td, J = 7.0, 2.0 Hz, 2H), 1.56 – 1.35 (m, 4H), 1.33 (s, 9H), 0.88 (t, J = 7.2 

Hz, 3H).  

13C NMR (75 MHz, CDCl3) δ 152.1, 143.0, 132.5, 131.5, 128.8, 128.2, 126.8, 125.6, 121.8, 

120.0, 95.2, 87.8, 86.2, 79.5, 63.7, 35.0, 31.3, 30.8, 22.1, 18.7, 13.7. 

MS (CI, NH3): m/z = 327 [M + H - H2O] +. 

1-(6-(Phenylethynyl)benzo[d][1,3]dioxol-5-yl)hept-2-yn-1-ol (15) 
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This compound was prepared using procedure B. Starting from 6-

(phenylethynyl)benzo[d][1,3]dioxole-5-carbaldehyde 6 (1.0 g, 4.0 mmol) and 1-hexyne (0.6 

mL, 5.2 mmol, 1.3 equiv).  Purification on silica gel (Cyclohexane/Ethyl acetate gradient from 

95/5 to 90/10) afforded 15 (1.27 g, 96%) as a colorless oil.  

Rf = 0.27 (Cyclohexane/Ethyl acetate; 90/10, KMnO4, UV). 

1H NMR (300 MHz, CDCl3) δ 7.58 – 7.47 (m, 2H), 7.40 – 7.29 (m, 3H), 7.24 (s, 1H), 6.96 (s, 

1H), 6.01 (s, 2H), 5.92 (d, J = 2.0 Hz, 1H), 2.46 (d, J = 4.6 Hz, 1H), 2.27 (td, J = 7.0, 2.0 Hz, 

2H), 1.55 – 1.33 (m, 4H), 0.89 (t, J = 7.2 Hz, 3H). 

13C NMR (75 MHz, CDCl3) δ 148.5, 147.4, 138.6, 131.6, 128.5, 123.2, 114.9, 111.7, 107.6, 

101.8, 93.4, 87.7, 86.8, 79.5, 63.2, 30.8, 22.1, 18.7, 13.7. 

MS (CI, NH3): m/z = 315 [M + H - H2O] +. 

1-(5-Fluoro-2-(phenylethynyl)phenyl)hept-2-yn-1-ol (16) 

 

This compound was prepared using procedure B. Starting from 5-fluoro-2-

(phenylethynyl)benzaldehyde 7 (0.9 g, 4.1 mmol) and 1-hexyne (0.6 mL, 5.2 mmol, 1.3 equiv). 

Purification on silica gel (Cyclohexane/Ethyl acetate gradient from 95/5 to 90/10) afforded 16 

(1.16 g, 92%) as a colorless oil. 

Rf = 0.35 (Cyclohexane/Ethyl acetate; 90/10, KMnO4, UV). 
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1H NMR (300 MHz, CDCl3) δ 7.58 – 7.49 (m, 3H), 7.46 (dd, J = 9.5, 2.6 Hz, 1H), 7.40 – 7.32 

(m, 3H), 7.01 (td, J = 8.3, 2.7 Hz, 1H), 5.91 (s, 1H), 2.56 (d, J = 4.9 Hz, 1H), 2.27 (td, J = 7.0, 

1.9 Hz, 2H), 1.54 – 1.34 (m, 4H), 0.88 (t, J = 7.2 Hz, 3H). 

13C NMR (75 MHz, CDCl3) δ 162.8 (d, J = 247.5 Hz), 145.8 (d, J = 7.1 Hz), 134.4 (d, J = 8.2 

Hz), 131.7, 128.8, 128.6, 123.0, 117.5 (d, J = 3.3 Hz), 115.4 (d, J = 22.0 Hz), 114.2 (d, J = 23.6 

Hz), 94.6, 88.2, 85.9, 79.0, 63.1, 30.7, 22.1, 18.7, 13.7.  

19F NMR (282 MHz, (CDCl3) δ -110.5 (dd, J = 14.1, 8.5 Hz).  

MS (CI, NH3): m/z = 289 [M + H - H2O] +.  

1-(2-(phenylethynyl)phenyl)hept-2-yn-1-one (17) 

 

This compound was prepared using procedure C. Starting from 1-(2-

(phenylethynyl)phenyl)hept-2-yn-1-ol 8 (1.7 g, 5.9 mmol) and Dess-Martin periodinane (3.25 

g, 7.6 mmol, 1.3 equiv). Purification on silica gel (Petroleum ether/Ethyl acetate gradient from 

100/0 to 98/2) afforded 17 (1.6 g, 94%) as a pale yellow oil. The analytical data were identical 

to the literature.191 

Rf = 0.42 (Cyclohexane/Ethyl acetate; 95/5, KMnO4, UV).  

1H NMR (300 MHz, CDCl3),  8.11 (dd, J = 7.8, 1.3 Hz, 1H), 7.65 – 7.59 (m, 3H), 7.51 (td, J 

= 7.5, 1.4 Hz, 1H), 7.42 (td, J = 7.6, 1.4 Hz, 1H), 7.37 – 7.32 (m, 3H), 2.43 (t, J = 7.1 Hz, 2H), 

1.61 – 1.56 (m, 2H), 1.47 – 1.42 (m, 2H), 0.90 (t, J = 7.3 Hz, 3H).  

13C NMR (75 MHz, CDCl3),  177.8, 138.4, 134.3, 132.4, 132.0, 131.8, 128.7, 128.4, 127.9, 

123.4, 122.9, 97.2, 95.2, 88.4, 80.8, 29.9, 22.2, 19.1, 13.6. 

                                                 
191 Tang, J.-M.; Liu, T.-A.; Liu, R.-S. J. Org. Chem. 2008, 73, 8479.  
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1-(2-(hex-1-yn-1-yl)phenyl)-hept-2-yn-1-one (18) 

 

This compound was prepared using procedure C. Starting from 1-(2-(hex-1-yn-1-yl)phenyl)-

hept-2-yn-1-ol 9 (0.68 g, 2.5 mmol) and Dess-Martin periodinane (1.39 g, 3.3 mmol, 1.3 equiv). 

Purification on silica gel (Petroleum ether/ Ethyl acetate gradient from 100/0 to 98/2) afforded 

18 (0.52 g, 76%) as a pale oil.  

Rf = 0.4 (Cyclohexane/Ethyl acetate; 95/5, KMnO4, UV).  

1H NMR (300 MHz, CDCl3) δ 8.04 (dd, J = 7.8, 1.3 Hz, 1H), 7.54 – 7.40 (m, 2H), 7.35 (td, J 

= 7.5, 1.5 Hz, 1H), 2.54 – 2.40 (m, 4H), 1.70 – 1.56 (m, 4H), 1.56 – 1.40 (m, 4H), 0.95 (t, J = 

7.2 Hz, 3H), 0.94 (t, J = 7.2 Hz, 3H). 

13C NMR (75 MHz, CDCl3) δ 178.1, 138.6, 134.7, 132.2, 131.7, 127.2, 123.8, 97.0, 96.7, 81.0, 

79.3, 30.8, 30.0, 22.2, 19.8, 19.1, 13.8, 13.7.  

MS (ESI, NH3): m/z = 267 [M + H] +.  

1-(2-(Hex-1-yn-1-yl)phenyl)-3-phenylprop-2-yn-1-one (19) 

 

This compound was prepared using procedure C. Starting from 1-(2-(hex-1-yn-1-yl)phenyl)-3-

phenylprop-2-yn-1-ol 11 (1.25 g, 4.37 mmol) and Dess-Martin periodinane (2.4 g, 5.7 mmol, 

1.3 equiv). Purification on silica gel (Petroleum ether/Ethyl acetate gradient from 98/2 to 95/5) 

afforded 19 (1.05 g, 84%) as an orange oil.  

Rf = 0.62 (Cyclohexane/Ethyl acetate; 90/10, KMnO4, UV).  
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1H NMR (300 MHz, CDCl3) δ 8.14 – 8.03 (m, 1H), 7.65 (dd, J = 8.1, 1.4 Hz, 2H), 7.57 – 7.34 

(m, 6H), 2.43 (t, J = 7.0 Hz, 2H), 1.65 – 1.52 (m, 2H), 1.52 – 1.40 (m, 2H), 0.90 (t, J = 7.2 Hz, 

3H).  

13C NMR (75 MHz, CDCl3) δ 178.0, 138.7, 134.7, 133.2, 132.4, 131.3, 130.8, 128.7, 127.3, 

124.1, 120.6, 97.6, 93.2, 88.4, 79.2, 30.8, 22.2, 19.8, 13.7.  

3-cyclopropyl-1-(2-(phenylethynyl)phenyl)prop-2-yn-1-one (20) 

 

This compound was prepared using procedure C. Starting from 3-cyclopropyl-1-(2-

(phenylethynyl)phenyl)prop-2-yn-1-ol 11 (1.1 g, 4.0 mmol) and Dess-Martin periodinane (2.2 

g, 5.2 mmol, 1.3 equiv). Purification on silica gel (Petroleum ether/Ethyl acetate gradient from 

99/1 to 98/2) afforded 20 (0.82 g, 75%) as a pale yellow oil.  

Rf = 0.55 (Cyclohexane/Ethyl acetate; 90/10, KMnO4, UV).  

1H NMR (300 MHz, CDCl3),  8.07 – 8.02 (m, 1H), 7.66 – 7.58 (m, 3H), 7.51 (td, J = 7.5, 1.5 

Hz, 1H), 7.41 (td, J = 7.5, 1.5 Hz, 1H), 7.38 – 7.33 (m, 3H), 1.49 – 1.41 (m, 1H), 0.99 – 0.93 

(m, 4H).  

13C NMR (75 MHz, CDCl3),  177.6, 138.8, 134.3, 132.2, 132.0, 131.5, 128.7, 128.4, 128.0, 

123.5, 122.9, 101.6, 95.3, 88.4, 10.0, 0.3.  

MS (ESI, NH3): m/z = 271 [M + H] +.  

1-(2-((Trimethylsilyl)ethynyl)phenyl)hept-2-yn-1-one (21) 
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This compound was prepared using procedure C. Starting from 1-(2-

((trimethylsilyl)ethynyl)phenyl)hept-2-yn-1-ol 12 (2.06 g, 10.0 mmol) and Dess-Martin 

periodinane (5.1 g, 12.0 mmol, 1.2 equiv). Purification on silica gel (Petroleum ether/Ethyl 

acetate gradient from 98/2 to 95/5) afforded 21 (2.06 g, 74%) as a pale yellow oil.  

Rf = 0.58 (Cyclohexane/Ethyl acetate; 90/10, KMnO4, UV).  

1H NMR (300 MHz, CDCl3) δ 8.10 – 7.96 (m, 1H), 7.61 – 7.51 (m, 1H), 7.48 – 7.41 (m, 1H), 

7.41 – 7.35 (m, 1H), 2.45 (t, J = 7.1 Hz, 2H), 1.68 – 1.54 (m, 2H), 1.38 – 1.52 (m, 2H), 0.93 (t, 

J = 7.3 Hz, 3H), 0.27 (s, 9H). 

13C NMR (75 MHz, CDCl3) δ 177.5, 139.0, 135.1, 132.1, 131.7, 128.2, 122.6, 103.3, 100.9, 

96.8, 80.7, 29.9, 22.2, 19.1, 13.6, -0.1.  

MS (ESI, NH3): m/z = 283 [M + H] +.  

1-(2-(p-Tolylethynyl)phenyl)hept-2-yn-1-one (22) 

 

This compound was prepared using procedure C. Starting from 1-(2-(p-

tolylethynyl)phenyl)hept-2-yn-1-ol 13 (1.1 g, 3.64 mmol) and Dess-Martin periodinane (2.0 g, 

4.73 mmol, 1.3 equiv). Purification on silica gel (Petroleum ether/Ethyl acetate gradient from 

98/2 to 95/5) afforded 22 (1.0 g, 91%) as a pale yellow solid. m.p. 35 – 37 °C. 

Rf = 0.6 (Cyclohexane/Ethyl acetate; 90/10, KMnO4, UV).  

1H NMR (300 MHz, CDCl3) δ 8.14 – 8.06 (m, 1H), 7.68 – 7.58 (m, 1H), 7.56 – 7.46 (m, 3H), 

7.45 – 7.37 (m, 1H), 7.20 – 7.13 (m, 2H), 2.43 (t, J = 7.2 Hz, 2H), 2.37 (s, 3H), 1.62 – 1.52 (m, 

2H), 1.50 – 1.38 (m, 2H), 0.91 (t, J = 7.2 Hz, 3H). 

13C NMR (75 MHz, CDCl3) δ 177.9, 138.9, 138.5, 134.3, 132.3, 132.0, 131.8, 129.2, 127.8, 

123.3, 120.4, 97.2, 95.6, 87.9, 81.0, 29.9, 22.2, 21.7, 19.2, 13.6. 
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MS (ESI, NH3): m/z = 301 [M + H] +.  

1-(2-((4-(tert-Butyl)phenyl)ethynyl)-phenyl)-hept-2-yn-1-one (23) 

 

This compound was prepared using procedure C. Starting from 1-(2-((4-(tert-butyl)phenyl)-

ethynyl)-phenyl)--hept-2-yn-1-ol (0.36 g, 1.05 mmol) 14 and Dess-Martin periodinane (0.53 g, 

1.25 mmol, 1.2 equiv). Purification on silica gel (Petroleum ether/ Ethyl acetate gradient from 

99/1 to 98/2) afforded 23 (0.32 g, 89%) as a pale yellow oil.  

Rf = 0.55 (Cyclohexane/Ethyl acetate; 90/10, KMnO4, UV).  

1H NMR (300 MHz, CDCl3) δ 8.16 – 8.06 (m, 1H), 7.65 – 7.58 (m, 1H), 7.59 – 7.52 (m, 2H), 

7.47 (td, J = 7.5, 0.8 Hz, 1H), 7.42 – 7.36 (m, 3H), 2.41 (t, J = 7.1 Hz, 2H), 1.61 – 1.50 (m, 

2H), 1.46 – 1.38 (m, 2H), 1.31 (s, 9H), 0.88 (t, J = 7.3 Hz, 3H).  

13C NMR (75 MHz, CDCl3) δ 177.5, 151.9, 138.3, 134.1, 132.2, 131.6, 131.6, 127.6, 125.3, 

123.1, 120.3, 96.9, 95.5, 87.8, 80.8, 34.8, 31.1, 29.8, 22.0, 19.0, 13.5. 

MS (ESI, NH3): m/z = 343 [M + H] +.  

1-(6-(Phenylethynyl)benzo[d][1,3]dioxol-5-yl)hept-2-yn-1-one (24) 

 

This compound was prepared using procedure C. Starting from 1-(6-

(phenylethynyl)benzo[d][1,3]dioxol-5-yl)hept-2-yn-1-ol 15 (1.25 g, 3.8 mmol) and Dess-
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Martin periodinane (2.07 g, 4.9 mmol, 1.3 equiv). Purification on silica gel (Petroleum 

ether/Ethyl acetate gradient from 95/5 to 90/10) afforded 24 (0.9 g, 77%) as a pale yellow oil.  

Rf = 0.31 (Cyclohexane/Ethyl acetate; 90/10, KMnO4, UV).  

1H NMR (300 MHz, CDCl3) δ 7.61 – 7.56 (m, 3H), 7.36 – 7.31 (m, 3H), 7.05 (s, 1H), 6.09 (s, 

2H), 2.43 (t, J = 7.1 Hz, 2H), 1.63 – 1.53 (m, 2H), 1.46 – 1.37 (m, 2H), 0.92 (t, J = 7.2 Hz, 3H).  

13C NMR (75 MHz, CDCl3) δ 176.0, 151.1, 147.8, 133.9, 132.0, 128.6, 128.4, 123.6, 119.0, 

113.6, 111.4, 102.5, 96.8, 94.3, 88.6, 80.8, 30.0, 22.2, 19.2, 13.6. 

MS (ESI, NH3): m/z = 331 [M + H] +.  

1-(5-Fluoro-2-(phenylethynyl)phenyl)hept-2-yn-1-one (25) 

 

This compound was prepared using procedure C. Starting from 1-(5-fluoro-2-

(phenylethynyl)phenyl)hept-2-yn-1-ol 16 (1.1 g, 3.6 mmol) and Dess-Martin periodinane (1.98 

g, 4.7 mmol, 1.3 equiv). Purification on silica gel (Petroleum ether/Ethyl acetate gradient from 

98/2 to 95/5) afforded 25 (0.95 g, 87%) as an orange oil.  

Rf = 0.62 (Cyclohexane/Ethyl acetate; 90/10, KMnO4, UV).  

1H NMR (300 MHz, CDCl3) δ 7.79 (dd, J = 9.1, 2.7 Hz, 1H), 7.66 – 7.54 (m, 3H), 7.39 – 7.32 

(m, 3H), 7.27 – 7.19 (m, 1H), 2.44 (t, J = 7.1 Hz, 2H), 1.66 – 1.51 (m, 2H), 1.50 – 1.36 (m, 

2H), 0.90 (t, J = 7.3 Hz, 3H). 

13C NMR (75 MHz, CDCl3) δ 176.4, 161.8 (d, J = 249.8 Hz), 140.4 (d, J = 6.8 Hz), 136.2 (d, 

J = 7.5 Hz), 132.0, 128.8, 128.5, 123.3, 119.8 (d, J = 21.8 Hz), 119.1, 118.4 (d, J = 23.3 Hz),, 

98.2, 95.0, 87.4, 80.6, 29.9, 22.2, 19.2, 13.6.  

19F NMR (282 MHz, CDCl3) δ -111.4 (dd, J = 14.1, 8.5 Hz). 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MS (ESI, NH3): m/z = 305 [M + H] +.  

1-(2-((4-(Trifluoromethyl)phenyl)ethynyl)phenyl)hept-2-yn-1-one (26) 

 

This compound was prepared using procedure A. Starting from 1-(2-ethynylphenyl)hept-2-yn-

1-one 29 (0.5 g, 2.38 mmol) and 4-iodobenzotrifluoride (0.71 g, 2.62 mmol, 1.1 equiv). 

Purification on silica gel (Petroleum ether/Ethyl acetate gradient from 99/1 to 98/2) afforded 

26 (0.55 g, 65%) as a brown solid. m.p. 35 – 37 °C. 

Rf = 0.6 (Cyclohexane/Ethyl acetate; 90/10, KMnO4, UV).  

1H NMR (300 MHz, CDCl3) δ 8.21 – 8.11 (m, 1H), 7.75 – 7.68 (m, 2H), 7.68 – 7.58 (m, 3H), 

7.58 – 7.52 (m, 1H), 7.51 – 7.44 (m, 1H), 2.46 (t, J = 7.1 Hz, 2H), 1.67 – 1.55 (m, 2H), 1.52 – 

1.38 (m, 2H), 0.92 (t, J = 7.3 Hz, 3H). 

13C NMR (75 MHz, CDCl3) δ 177.5, 138.7, 134.5, 132.5, 132.2, 132.2, 150.33 (d, JC – F = 32.3 

Hz), 128.6, 127.3, 125.9, 125.4, 125.4, 122.3, 122.2, 97.3, 93.3, 90.8, 80.7, 29.9, 22.2, 19.1, 

13.6. 

19F NMR (282 MHz, CDCl3) δ -63.8 (s). 

MS (ESI, NH3): m/z = 355 [M + H] +.  

1-(2-((4-Bromophenyl)-ethynyl)-phenyl)-hept-2-yn-1-one (27) 
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This compound was prepared using procedure A. Starting from 1-(2-ethynylphenyl)-hept-2-yn-

1-one 29 (0.3 g, 1.42 mmol) and 1-Bromo-4-iodobenzene (0.48 g, 1.7 mmol, 1.2 equiv). 

Purification on silica gel (Petroleum ether/Ethyl acetate gradient from 98/2 to 95/5) afforded 

27 (0.25g, 48%) as a brown oil.  

Rf = 0.4 (Cyclohexane/Ethyl acetate; 95/5, KMnO4, UV).  

1H NMR (300 MHz, CDCl3) δ 8.14 (dd, J = 7.7, 1.1 Hz, 1H), 7.65 – 7.60 (m, 1H), 7.56 – 7.41 

(m, 6H), 2.45 (t, J = 7.0 Hz, 2H), 1.65 – 1.55 (m, 2H), 1.52 – 1.38 (m, 2H), 0.92 (t, J = 7.3 Hz, 

3H).  

13C NMR (75 MHz, CDCl3) δ 177.6, 138.5, 134.3, 133.5, 132.4, 132.1, 131.8, 128.2, 123.1, 

122.6, 122.5, 97.2, 93.9, 89.6, 80.8, 29.9, 22.2, 19.1, 13.6.  

MS (CI, NH3): m/z = 365 [M + H] +.  

1-(2-Ethynylphenyl)hept-2-yn-1-ol (28) 

 

This compound was prepared using procedure D. Starting from 1-(2-

((trimethylsilyl)ethynyl)phenyl)-hept-2-yn-1-ol 12 (1.7 g, 6 mmol) and TBAF (6 mL, 1.0 M in 

THF). Purification on silica gel (Cyclohexane/Ethyl acetate gradient from 95/5 to 90/10) 

afforded 28 (1.13 g, 89%) as a pale yellow oil.  

Rf = 0.2 (Cyclohexane/Ethyl acetate; 90/10, KMnO4, UV).  

1H NMR (300 MHz, CDCl3) δ 7.72 (dd, J = 7.8, 1.2 Hz, 1H), 7.51 (dd, J = 7.6, 1.2 Hz, 1H), 

7.40 (td, J = 7.6, 1.4 Hz, 1H), 7.28 (dt, J = 7.5, 1.3 Hz, 1H), 5.92 – 5.80 (m, 1H), 3.37 (s, 1H), 

2.50 (d, J = 4.5 Hz, 1H), 2.27 (td, J = 7.0, 2.0 Hz, 2H), 1.61 – 1.37 (m, 4H), 0.91 (t, J = 7.2 Hz, 

3H). 

13C NMR (75 MHz, CDCl3) δ 143.7, 133.3, 129.5, 128.2, 126.9, 120.5, 88.0, 82.6, 81.3, 79.3, 

63.3, 30.8, 22.1, 18.7, 13.7.  
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MS (CI, NH3): m/z = 212 [M + NH4 - H2O] +.  

1-(2-ethynylphenyl)hept-2-yn-1-one (29) 

 

This compound was prepared using procedure C. Starting from 1-(2-ethynylphenyl)hept-2-yn-

1-ol 28 (1.0 g, 4.7 mmol) and Dess-Martin periodinane (2.59 g, 6.1 mmol, 1.3 equiv). 

Purification on silica gel (Petroleum ether/Ethyl acetate gradient from 95/5 to 90/10) afforded 

29 (0.82 g, 83%) as a colorless oil.  

Rf = 0.65 (Cyclohexane/Ethyl acetate; 90/10, KMnO4, UV).  

1H NMR (300 MHz, CDCl3) δ 8.15 – 8.06 (m, 1H), 7.66 – 7.56 (m, 1H), 7.54 – 7.41 (m, 2H), 

3.39 (s, 1H), 2.47 (t, J = 7.0 Hz, 2H), 1.68 – 1.58 (m, 2H), 1.48 (m, 2H), 0.95 (t, J = 7.3 Hz, 

3H). 

13C NMR (75 MHz, CDCl3) δ 177.5, 139.2, 135.5, 132.3, 131.8, 128.6, 121.7, 97.4, 82.9, 82.1, 

80.8, 29.9, 22.2, 19.1, 13.6. 

MS (CI, NH3): m/z = 211 [M + H] +.  

3-(Phenylethynyl)furan-2-carbaldehyde (30) 

 

This compound was prepared using procedure A. Starting from 3-bromofuran-2-carbaldehyde 

(0.59 g, 3.4 mmol) and phenylacetylene (0.41 g, 4 mmol, 1.2 equiv). Purification on silica gel 



Experimental part 

 213 

(Cyclohexane/Ethyl acetate gradient from 98/2 to 95/5) afforded 30 (0.4 g, 50%) as an orange 

oil. The analytical data were identical to the literature.192 

Rf = 0.6 (Cyclohexane/Ethyl acetate; 95/5, KMnO4, UV). 

1H NMR (300 MHz, CDCl3) δ 9.87 (s, 1H), 7.65 (dd, J = 1.7, 0.8 Hz, 1H), 7.60 – 7.47 (m, 2H), 

7.45 – 7.33 (m, 3H), 6.68 (d, J = 1.8 Hz, 1H).  

13C NMR (101 MHz, CDCl3) δ 176.3, 152.9, 147.7, 131.9, 129.6, 128.7, 122.0, 119.8, 115.3, 

97.6, 78.4.  

MS (ESI, NH3): m/z = 197 [M + H] +.  

3-(Phenylethynyl)thiophene-2-carbaldehyde (31) 

 

This compound was prepared using procedure A. Starting from 3-bromothiophene-2-

carbaldehyde (1.0 g, 5.23 mmol) and phenylacetylene (0.64 g, 6.28 mmol, 1.2 equiv). 

Purification on silica gel (Cyclohexane/Ethyl acetate gradient from 98/2 to 95/5) afforded 31 

(0.92 g, 83%) as a brown oil. The analytical data were identical to the literature.193 

Rf = 0.4 (Cyclohexane/Ethyl acetate; 95/5, KMnO4, UV).  

1H NMR (300 MHz, CDCl3) δ 10.24 (d, J = 1.3 Hz, 1H), 7.70 (dd, J = 5.0, 1.3 Hz, 1H), 7.58 – 

7.53 (m, 2H), 7.45 – 7.30 (m, 3H), 7.27 – 7.23 (m, 1H). 

13C NMR (75 MHz, CDCl3) δ 183.1, 143.7, 134.0, 131.9, 131.7, 131.1, 129.4, 128.7, 122.2, 

96.2, 81.7.  

MS (CI, NH3): m/z = 213 [M + H] +.  

                                                 
192 Sagar, P.; Fröhlich, R.; Würthwein, E.-U. Angew. Chem. Int. Ed. 2004, 43, 5694.  
193 Okamoto, N.; Sakurai, K.; Ishikura, M.; Takeda, K.; Yanada, R. Tetrahedron Lett. 2009, 50, 4167.  
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3-(Phenylethynyl)benzo[b]-thiophene-2-carbaldehyde (32) 

 

This compound was prepared using procedure A. Starting from 3-bromobenzo[b]thiophene-2-

carbaldehyde (0.72 g, 3.0 mmol) and phenylacetylene (0.37 g, 3.6 mmol, 1.2 equiv). 

Purification on silica gel (Cyclohexane/Ethyl acetate gradient from 99/1 to 98/2) afforded 32 

(0.4 g, 50%) as a yellow solid. m.p. 114 – 116 °C. The analytical data were identical to the 

literature.194 

Rf = 0.4 (Cyclohexane/Ethyl acetate; 90/10, KMnO4, UV). 

1H NMR (300 MHz, CDCl3) δ 10.48 (s, 1H), 8.16 (dd, J = 7.8, 1.5 Hz, 1H), 7.93 – 7.82 (m, 

1H), 7.70 – 7.60 (m, 2H), 7.60 – 7.48 (m, 2H), 7.47 – 7.38 (m, 3H). 

13C NMR (75 MHz, CDCl3) δ 184.6, 143.6, 141.3, 139.6, 132.1, 129.7, 129.0, 128.8, 127.9, 

125.8, 125.2, 123.5, 122.1, 99.2, 80.7.  

MS (ESI, NH3): m/z = 263 [M + H] +.  

2-(Phenylethynyl)benzofuran-3-carbaldehyde (33) 

 

This compound was prepared using procedure A. Starting from 2-chlorobenzofuran-3-

carbaldehyde (0.9 g, 5 mmol), phenylacetylene (0.61 g, 6 mmol, 1.2 equiv), PdCl2(PPh3)3 (140 

mg, 0.2 mmol, 4 mol %) and CuI (19 mg, 0.1 mmol, 2 mol %). Purification on silica gel 

                                                 
194 Lyaskovskyy, V.; Fröhlich R.; Würthwein, E.-U. Synthesis 2007, 14, 2135.  
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(Cyclohexane/Ethyl acetate gradient from 98/2 to 95/5) afforded 33 (1.3 g, 82%) as a yellow 

solid. The analytical data were identical to the literature.195 

Rf = 0.4 (Cyclohexane/Ethyl acetate; 90/10, KMnO4, UV). 

1H NMR (300 MHz, CDCl3) δ 10.37 (s, 1H), 8.24 – 8.16 (m, 1H), 7.70 – 7.61 (m, 2H), 7.55 – 

7.38 (m, 6H). 

13C NMR (101 MHz, CDCl3) δ 185.7, 154.8, 148.2, 132.3, 130.5, 128.9, 127.3, 125.4, 124.0, 

123.5, 122.6, 120.6, 111.4, 101.1. 

MS (ESI, NH3): m/z = 247 [M + H] +.  

2-(Phenylethynyl)nicotinaldehyde (34) 

 

This compound was prepared using procedure A. Starting from 2-bromonicotinaldehyde (2 g, 

10.8 mmol) and phenylacetylene (1.15 g, 11.2 mmol, 1.05 equiv). Purification on silica gel 

(Cyclohexane/Ethyl acetate gradient from 90/10 to 80/20) afforded 34 (1.8 g, 80%) as a yellow 

solid. The analytical data were identical to the literature.196 

Rf = 0.26 (Cyclohexane/Ethyl acetate; 80/20, KMnO4, UV).  

1H NMR (300 MHz, CDCl3)  10.66 (d, J = 0.6 Hz, 1H), 8.81 (dd, J = 1.8, 4.8 Hz, 1H), 8.20 

(dd, J = 1.8, 7.9 Hz, 1H), 7.66-7.59 (m, 2H), 7.43-7.37 (m, 4H).  

13C NMR (75 MHz, CDCl3)  190.9, 154.6, 146.1, 134.9, 132.3, 131.9, 130.0, 128.7, 123.3, 

121.3, 96.2, 84.7.  

MS (CI, NH3): m/z = 208 [M + H] +.  

                                                 
195 Tiano, M.; Belmont, P. J. Org. Chem. 2008, 73, 4101. 
196 Verma, A. K.; Rustagi, V.; Aggarwal, T.; Singh, A. P. J. Org. Chem. 2010, 75, 7691.  
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2-((4-(tert-Butyl)phenyl)ethynyl)nicotinaldehyde (35) 

 

This compound was prepared using procedure A. Starting from 2-bromonicotinaldehyde (2 g, 

10.8 mmol) and 4-tert-Butylphenylacetylene (1.8 g, 11.2 mmol, 1.05 equiv). Purification on 

silica gel (Cyclohexane/Ethyl acetate gradient from 90/10 to 80/20) afforded 35 (2.5 g, 88%) 

as a white solid.  

Rf = 0.32 (Cyclohexane/Ethyl acetate; 80/20, KMnO4, UV).  

1H NMR (300 MHz, CDCl3)  10.66 (d, J = 0.4 Hz, 1H), 8.80 (dd, J = 1.8, 4.8 Hz, 1H), 8.19 

(dd, J = 1.8, 7.9 Hz, 1H), 7.58-7.56 (m, 2H), 7.42-7.35 (m, 3H), 1.32 (s, 9H).  

13C NMR (75 MHz, CDCl3)  191.0, 154.6, 153.5, 146.4, 134.9, 132.1, 131.8, 125.7, 123.1, 

118.3, 96.7, 84.3, 35.1, 31.2. 

2-Chloro-5-(phenylethynyl)isonicotinaldehyde (36) 

 

This compound was prepared using procedure A. Starting from 5-bromo-2-

chloroisonicotinaldehyde (0.44 g, 2.0 mmol) and phenylacetylene (0.21 g, 2.1 mmol, 1.05 

equiv). Purification on silica gel (Cyclohexane/Ethyl acetate gradient from 98/2 to 95/5) 

afforded 36 (0.26 g, 54%) as a yellow solid. m.p. 69 – 71 °C.  

Rf = 0.4 (Cyclohexane/Ethyl acetate; 90/10, KMnO4, UV). 

1H NMR (300 MHz, CDCl3) δ 10.55 (s, 1H), 8.74 (s, 1H), 7.75 (s, 1H), 7.63 – 7.52 (m, 2H), 

7.47 – 7.36 (m, 3H). 
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13C NMR (75 MHz, CDCl3) δ 189.4, 154.6, 151.6, 142.8, 132.0, 130.0, 128.8, 121.5, 120.8, 

120.4, 100.1, 81.1.  

MS (CI, NH3): m/z = 242 [M + H] +.  

1-(3-(Phenylethynyl)furan-2-yl)hept-2-yn-1-ol (37) 

 

This compound was prepared using procedure B. Starting from 3-(phenylethynyl)furan-2-

carbaldehyde 30 (0.43 g, 2.2 mmol) and 1-hexyne (0.37 mL, 3.3 mmol, 1.5 equiv). Purification 

on silica gel (Cyclohexane/Ethyl acetate gradient from 95/5 to 90/10) afforded 37 (0.45 g, 74%) 

as a yellow oil.  

Rf = 0.28 (Cyclohexane/Ethyl acetate; 90/10, KMnO4, UV). 

1H NMR (300 MHz, CDCl3) δ 7.50 (dd, J = 6.6, 3.0 Hz, 2H), 7.37 (d, J = 1.8 Hz, 1H), 7.37 – 

7.29 (m, 3H), 6.48 (d, J = 1.8 Hz, 1H), 5.72 – 5.65 (m, 1H), 2.38 (d, J = 6.9 Hz, 1H), 2.25 (td, 

J = 7.0, 2.0 Hz, 2H), 1.56 – 1.44 (m, 2H), 1.44 – 1.32 (m, 2H), 0.88 (t, J = 7.2 Hz, 3H). 

13C NMR (75 MHz, CDCl3) δ 155.3, 142.3, 131.6, 128.5, 123.2, 113.4, 105.0, 93.6, 87.9, 79.9, 

57.2, 30.6, 22.1, 18.7, 13.7.  

MS (ESI, NH3): m/z = 261 [M + H - H2O] +. 

1-(3-(Phenylethynyl)thiophen-2-yl)hept-2-yn-1-ol (38) 
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This compound was prepared using procedure B. Starting from 3-(phenylethynyl)thiophene-2-

carbaldehyde 31 (0.92 g, 4.33 mmol) and 1-Hexyne (0.65 mL, 5.6 mmol, 1.3 equiv). 

Purification on silica gel (Cyclohexane/Ethyl acetate gradient from 95/5 to 90/10) afforded 38 

(1.13 g, 89%) as a yellow oil.  

Rf = 0.28 (Cyclohexane/Ethyl acetate; 90/10, KMnO4, UV).  

1H NMR (300 MHz, CDCl3) δ 7.59 – 7.46 (m, 2H), 7.35 (dd, J = 6.5, 2.7 Hz, 3H), 7.23 (d, J = 

5.2 Hz, 1H), 7.08 (d, J = 5.2 Hz, 1H), 6.05 – 5.88 (m, 1H), 2.48 (d, J = 5.1 Hz, 1H), 2.28 (td, J 

= 6.9, 2.0 Hz, 2H), 1.47 (m, 4H), 0.90 (t, J = 7.2 Hz, 3H).  

13C NMR (75 MHz, CDCl3) δ 148.4, 131.7, 130.1, 128.6, 128.5, 124.7, 123.1, 120.2, 93.5, 

87.6, 82.8, 79.2, 59.4, 30.6, 22.1, 18.6, 13.7.  

MS (CI, NH3): m/z = 277 [M + H - H2O] +.  

1-(3-(Phenylethynyl)benzo[b]thiophen-2-yl)hept-2-yn-1-ol (39) 

 

This compound was prepared using procedure B. Starting from 3-

(phenylethynyl)benzo[b]thiophene-2-carbaldehyde 32 (0.4 g, 1.5 mmol) and 1-hexyne (0.26 

mL, 2.25 mmol, 1.5 equiv). Purification on silica gel (Cyclohexane/Ethyl acetate gradient from 

95/5 to 90/10) afforded 39 (0.46 g, 89%) as a yellow oil.  

Rf = 0.3 (Cyclohexane/Ethyl acetate; 90/10, KMnO4, UV).  

1H NMR (300 MHz, CDCl3) δ 8.02 – 7.91 (m, 1H), 7.87 – 7.79 (m, 1H), 7.65 – 7.55 (m, 2H), 

7.49 – 7.33 (m, 5H), 6.25 – 6.14 (m, 1H), 2.54 (d, J = 5.1 Hz, 1H), 2.29 (td, J = 7.0, 2.0 Hz, 

2H), 1.52 – 1.36 (m, 4H), 0.90 (t, J = 7.2 Hz, 3H).  

13C NMR (101 MHz, CDCl3) δ 149.3, 139.6, 138.1, 131.8, 128.8, 128.6, 125.6, 125.0, 123.4, 

123.0, 122.8, 115.9, 96.4, 88.3, 81.4, 78.8, 60.1, 30.6, 22.1, 18.7, 13.7.  
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MS (ESI, NH3): m/z = 327 [M + H - H2O] +. 

1-(2-(Phenylethynyl)benzofuran-3-yl)hept-2-yn-1-ol (40) 

 

This compound was prepared using procedure B. Starting from 2-(phenylethynyl)benzofuran-

3-carbaldehyde 33 (0.52 g, 2.1 mmol) and 1-hexyne (0.37 mL, 3.2 mmol, 1.5 equiv). 

Purification on silica gel (Cyclohexane/Ethyl acetate gradient from 95/5 to 90/10) afforded 40 

(0.62 g, 90%) as a yellow solid.  

Rf = 0.35 (Cyclohexane/Ethyl acetate; 90/10, KMnO4, UV).  

1H NMR (300 MHz, CDCl3) δ 7.98 – 7.88 (m, 1H), 7.64 – 7.52 (m, 2H), 7.50 – 7.43 (m, 1H), 

7.43 – 7.34 (m, 4H), 7.34 – 7.25 (m, 1H), 5.92 – 5.80 (m, 1H), 2.31 – 2.20 (m, 3H), 1.59 – 1.31 

(m, 4H), 0.88 (t, J = 7.2 Hz, 3H).  

13C NMR (101 MHz, CDCl3) δ 155.0, 136.2, 131.9, 129.5, 128.7, 126.2, 125.7, 124.8, 123.4, 

121.7, 121.3, 111.5, 98.7, 87.6, 78.6, 78.1, 57.5, 30.6, 22.1, 18.7, 13.7.  

MS (ESI, NH3): m/z = 311 [M + H - H2O] +.  

3-Cyclopropyl-1-(2-(phenylethynyl)pyridin-3-yl)prop-2-yn-1-ol (41) 

 

This compound was prepared using procedure B. Starting from 2-

(phenylethynyl)nicotinaldehyde 34 (1.8 g, 8.7 mmol) and cyclopropylacetylene (0.95 mL, 11.3 
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mmol, 1.3 equiv). Purification on silica gel (Cyclohexane/Ethyl acetate gradient from 80/20 to 

60/40) afforded 41 (1.9 g, 80%) as a gray oil.  

Rf = 0.12 (Cyclohexane/Ethyl acetate; 80/20, KMnO4, UV).  

1H NMR (300 MHz, CDCl3)  8.49 (d, J = 3.0 Hz, 1H), 8.03 (d, J = 7.8 Hz, 1H), 7.59-7.55 (m, 

2H), 7.38-7.29 (m, 3H), 7.25-7.20 (m, 1H), 5.92 (d, J = 0.8 Hz, 1H), 3.61 (br, 1H), 1.28-1.20 

(m, 1H), 0.74-0.71 (m, 2H), 0.66-0.63 (m, 2H).  

13C NMR (75 MHz, CDCl3)  149.2, 141.2, 139.6, 134.5, 132.1, 129.3, 128.5, 123.3, 122.1, 

94.7, 90.8, 86.2, 74.3, 62.0, 8.6, 8.4, -0.4. 

1-(2-((4-(tert-Butyl)phenyl)ethynyl)pyridin-3-yl)hept-2-yn-1-ol (42) 

 

This compound was prepared using procedure B. Starting from 2-((4-(tert-

butyl)phenyl)ethynyl)nicotinaldehyde 35 (2.13 g, 8.09 mmol) and 1-hexyne (1.21 mL, 10.5 

mmol, 1.3 equiv). Purification on silica gel (Cyclohexane/Ethyl acetate gradient from 90/10 to 

70/30) afforded 42 (2.23 g, 80%) as a pale yellow oil.  

Rf = 0.23 (Cyclohexane/Ethyl acetate; 90/10, KMnO4, UV).  

1H NMR (300 MHz, CDCl3)  8.55 (dd, J = 1.7, 4.8 Hz, 1H), 8.07 (dd, J = 1.6, 7.9 Hz, 1H), 

7.58-7.54 (m, 2H), 7.41-7.38 (m, 2H), 7.30-7.26 (m, 1H), 5.98 (t, J = 2.0 Hz, 1H), 3.20 (br, 

1H), 2.26 (td, J = 2.0, 7.0 Hz, 2H), 1.49-1.37 (m, 4H), 1.34 (s, 9H), 0.86 (t, J = 7.2 Hz, 3H). 

13C NMR (75 MHz, CDCl3)  152.8, 149.3, 141.5, 139.4, 134.5, 131.9, 125.5, 123.1, 119.0, 

95.0, 88.1, 85.7, 78.9, 62.2, 35.0, 31.2, 30.6, 22.1, 18.6, 13.7.  

1-(2-Chloro-5-(phenylethynyl)pyridin-4-yl)hept-2-yn-1-ol (43) 
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This compound was prepared using procedure B. Starting from 2-chloro-5-

(phenylethynyl)isonicotinaldehyde 36 (0.25 g, 1.04 mmol) and 1-hexyne (0.15 mL, 1.3 mmol, 

1.3 equiv). Purification on silica gel (Cyclohexane/Ethyl acetate gradient from 95/5 to 90/10) 

afforded 43 (0.24 g, 71%) as a yellow oil.  

Rf = 0.2 (Cyclohexane/Ethyl acetate; 90/10, KMnO4, UV).  

1H NMR (300 MHz, CDCl3) δ 8.51 (s, 1H), 7.67 (s, 1H), 7.59 – 7.49 (m, 2H), 7.44 – 7.33 (m, 

3H), 5.82 – 5.75 (m, 1H), 2.66 (d, J = 5.1 Hz, 1H), 2.36 – 2.18 (m, 2H), 1.53 – 1.32 (m, 4H), 

0.85 (t, J = 7.2 Hz, 3H). 

13C NMR (75 MHz, CDCl3) δ 153.8, 152.5, 151.3, 131.8, 129.4, 128.7, 122.3, 121.3, 117.4, 

98.9, 89.0, 82.7, 62.2, 30.5, 22.1, 18.6, 13.6.  

MS (CI, NH3): m/z = 324 [M + H] +.  

1-(3-(Phenylethynyl)furan-2-yl)hept-2-yn-1-one (44) 

 

This compound was prepared using procedure C. Starting from 1-(3-(phenylethynyl)furan-2-

yl)hept-2-yn-1-ol 37 (0.45 g, 1.6 mmol) and Dess-Martin periodinane (0.89 g, 2.1 mmol, 1.3 

equiv). Purification on silica gel (Petroleum ether/Ethyl acetate gradient 98/2 to 95/5) afforded 

44 (0.18 g, 40%) as an orange oil.  

Rf = 0.4 (Cyclohexane/Ethyl acetate; 90/10, KMnO4, UV).  
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1H NMR (300 MHz, CDCl3) δ 7.62 – 7.50 (m, 3H), 7.41 – 7.31 (m, 3H), 6.67 (d, J = 1.6 Hz, 

1H), 2.37 (t, J = 7.2 Hz, 2H), 1.59 – 1.42 (m, 2H), 1.40 – 1.26 (m, 2H), 0.83 (t, J = 7.3 Hz, 3H).  

13C NMR (101 MHz, CDCl3) δ 164.1, 152.7, 146.4, 131.9, 129.2, 128.6, 122.7, 116.4, 116.3, 

98.0, 97.8, 80.8, 79.7, 29.8, 22.2, 19.2, 13.6.  

MS (ESI, NH3): m/z = 277 [M + H] +.  

1-(3-(Phenylethynyl)thiophen-2-yl)hept-2-yn-1-one (45) 

 

This compound was prepared using procedure C. Starting from 1-(3-(phenylethynyl)thiophen-

2-yl)hept-2-yn-1-ol 38 (1.12 g, 3.8 mmol) and Dess-Martin periodinane (2.1 g, 4.9 mmol, 1.3 

equiv). Purification on silica gel (Petroleum ether/Ethyl acetate gradient 99/1 to 98/2) afforded 

45 (0.6 g, 55%) as a yellow solid. m.p. 33 – 35 °C. 

Rf = 0.33 (Cyclohexane/Ethyl acetate; 95/5, KMnO4, UV).  

1H NMR (300 MHz, CDCl3) δ 7.63 – 7.52 (m, 3H), 7.42 – 7.31 (m, 3H), 7.28 – 7.19 (m, 1H), 

2.36 (t, J = 7.1 Hz, 2H), 1.52 – 1.45 (m, 2H), 1.41 – 1.28 (m, 2H), 0.85 (t, J = 7.3 Hz, 3H). 

13C NMR (75 MHz, CDCl3) δ 169.0, 144.3, 133.3, 132.5, 131.9, 129.1, 128.6, 126.9, 123.0, 

97.5, 96.3, 84.4, 80.3, 29.9, 22.2, 19.2, 13.6. 

MS (CI, NH3): m/z = 293 [M + H] +.  

1-(3-(Phenylethynyl)benzo[b]thiophen-2-yl)hept-2-yn-1-one (46) 
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This compound was prepared using procedure C. Starting from 1-(3-

(phenylethynyl)benzo[b]thiophen-2-yl)hept-2-yn-1-ol 39 (0.46 g, 1.34 mmol) and Dess-Martin 

periodinane (0.74 g, 1.7 mmol, 1.3 equiv). Purification on silica gel (Petroleum ether/Ethyl 

acetate gradient 98/2 to 95/5) afforded 46 (0.34 g, 74%) as a yellow solid. m.p. 90 – 92 °C. 

Rf = 0.62 (Cyclohexane/Ethyl acetate; 90/10, KMnO4, UV).  

1H NMR (300 MHz, CDCl3) δ 8.19 – 8.09 (m, 1H), 7.88 – 7.62 (m, 1H), 7.72 – 7.62 (m, 2H), 

7.58 – 7.45 (m, 2H), 7.45 – 7.34 (m, 3H), 2.41 (t, J = 7.2 Hz, 2H), 1.62 – 1.48 (m, 2H), 1.45 – 

1.29 (m, 2H), 0.85 (t, J = 7.3 Hz, 3H). 

13C NMR (101 MHz, CDCl3) δ 170.5, 144.3, 140.7, 140.5, 132.0, 129.3, 128.7, 128.6, 125.6, 

123.3, 122.9, 99.7, 98.8, 83.1, 80.6, 77.5, 77.2, 76.8, 29.9, 22.2, 19.4, 13.6.  

MS (ESI, NH3): m/z = 343 [M + H] +. 

1-(2-(Phenylethynyl)benzofuran-3-yl)hept-2-yn-1-one (47) 

 

This compound was prepared using procedure C. Starting from 1-(2-

(phenylethynyl)benzofuran-3-yl)hept-2-yn-1-ol 40 (0.62 g, 1.9 mmol) and Dess-Martin 

periodinane (1.04 g, 2.4 mmol, 1.3 equiv). Purification on silica gel (Petroleum ether/Ethyl 

acetate gradient 98/2 to 95/5) afforded 47 (0.45 g, 72%) as a yellow solid.  

Rf = 0.5 (Cyclohexane/Ethyl acetate; 90/10, KMnO4, UV).  

1H NMR (300 MHz, CDCl3) δ 8.35 – 8.22 (m, 1H), 7.71 – 7.60 (m, 2H), 7.55 – 7.32 (m, 6H), 

2.39 (t, J = 7.2 Hz, 2H), 1.61 – 1.46 (m, 2H), 1.44 – 1.28 (m, 2H), 0.83 (t, J = 7.3 Hz, 3H). 

13C NMR (75 MHz, CDCl3) δ 171.7, 154.3, 144.3, 132.2, 130.2, 128.8, 127.0, 125.0, 124.9, 

124.0, 123.1, 121.4, 111.2, 101.2, 96.4, 81.1, 79.6, 30.0, 22.2, 19.2, 13.6.  
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MS (ESI, NH3): m/z = 327 [M + H] +. 

3-Cyclopropyl-1-(2-(phenylethynyl)pyridin-3-yl)prop-2-yn-1-one (48) 

 

This compound was prepared using procedure C. Starting from 3-cyclopropyl-1-(2-

(phenylethynyl)pyridin-3-yl)prop-2-yn-1-ol 41 (1.9 g, 7 mmol) and Dess-Martin periodinane 

(3.83 g, 9 mmol, 1.3 equiv). Purification on silica gel (Petroleum ether/Ethyl acetate gradient 

80/20 to 70/30) afforded 48 (1.6 g, 84%) as a brown oil.  

Rf = 0.57 (Cyclohexane/Ethyl acetate; 70/30, KMnO4, UV).  

1H NMR (300 MHz, CDCl3)  8.72 (dd, J = 1.7, 4.7 Hz, 1H), 8.26 (dd, J = 1.8, 8.0 Hz, 1H), 

7.70-7.64 (m, 2H), 7.38-7.32 (m, 4H), 1.48-1.29 (m, 1H), 0.97-0.92 (m, 4H).  

13C NMR (75 MHz, CDCl3)  175.4, 151.7, 140.8, 137.5, 134.0, 131.5, 128.5, 127.4, 121.3, 

102.4, 94.2, 87.0, 9.2, -0.73.  

1-(2-((4-(tert-Butyl)phenyl)ethynyl)pyridin-3-yl)hept-2-yn-1-one (49) 

 

This compound was prepared using procedure C. Starting from 1-(2-((4-(tert-

butyl)phenyl)ethynyl)pyridin-3-yl)hept-2-yn-1-ol 42 (2.3 g, 6.7 mmol) and Dess-Martin 

periodinane (3.67 g, 8.7 mmol, 1.3 equiv). Purification on silica gel (Petroleum ether/Ethyl 

acetate gradient 95/5 to 80/20) afforded 49 (2.14 g, 94%) as a brown oil.  

Rf = 0.35 (Cyclohexane/Ethyl acetate; 85/15, KMnO4, UV).  
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1H NMR (300 MHz, CDCl3)  8.73 (dd, J = 1.7, 4.8 Hz, 1H), 8.31 (dd, J = 1.8, 8.0 Hz, 1H), 

7.63-7.59 (m, 2H), 7.40-7.32 (m, 3H), 2.42 (t, J = 7.1 Hz, 2H), 1.58-1.53 (m, 2H), 1.40-1.38 

(m, 2H), 1.31 (s, 9H), 0.87 (t, J = 7.3 Hz, 3H).  

13C NMR (75 MHz, CDCl3)  177.8, 138.4, 134.3, 132.4, 132.0, 131.8, 128.7, 128.4, 127.9, 

123.4, 122.9, 97.2, 95.2, 88.4, 80.8, 29.8, 22.2, 19.1, 13.6. 

1-(2-chloro-5-(phenylethynyl)pyridin-4-yl)hept-2-yn-1-one (50) 

 

This compound was prepared using procedure C. Starting from 1-(2-chloro-5-

(phenylethynyl)pyridin-4-yl)hept-2-yn-1-ol 43 (0.23 g, 0.71 mmol) and Dess-Martin 

periodinane (0.39 g, 0.92 mmol, 1.3 equiv). Purification on silica gel (Petroleum ether/Ethyl 

acetate gradient 98/2) afforded 50 (0.16 g, 70%) as a yellow solid. m.p. 34 – 36 °C. 

Rf = 0.5 (Cyclohexane/Ethyl acetate; 90/10, KMnO4, UV).  

1H NMR (300 MHz, CDCl3) δ 8.66 (d, J = 0.6 Hz, 1H), 7.85 (d, J = 0.6 Hz, 1H), 7.63 – 7.55 

(m, 2H), 7.42 –7.33 (m, 3H), 2.46 (t, J = 7.1 Hz, 2H), 1.63 – 1.54 (m, 2H), 1.50 – 1.35 (m, 2H), 

0.91 (t, J = 7.3 Hz, 3H). 

13C NMR (75 MHz, CDCl3) δ 175.2, 154.7, 150.8, 146.4, 132.1, 129.5, 128.6, 124.3, 122.5, 

117.2, 100.5, 98.9, 84.1, 80.2, 29.7, 22.2, 19.3, 13.6.  

MS (CI, NH3): m/z = 322 [M + H] +.  

2.2. Preparation of internal alkynes 

1,4-Di-tert-butoxybut-2-yne (55) 
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1,4-Diol-2-butyne 52 (1.72 g, 20 mmol), 4Å molecular sieves (4 g) and MTBE (20 mL) 

were introduced in a 50 mL round bottom flask fitted with septum and cooled to 25 °C. To this 

solution sulfuric acid (3.7 mL, 40 mmo, 2 equiv) was added dropwise using a syringe. The 

reaction was carried out at 25 °C for 10 h. The resulting mixture was slowly quenched into a 

saturated aqueous sodium bicarbonate solution (20 mL). The organic layer was separated and 

washed with water and brine, dried over anhydrous MgSO4, filtered and concentrated under 

reduced pressure. The residue was purified by flash chromatography (Cyclohexane/Ethyl 

acetate gradient from 95/5 to 90/10) to afford compound 55 (1.7 g, 43%) as a colorless oil. The 

analytical data were identical to the literature.97 

Rf = 0.45 (Cyclohexane/Ethyl acetate; 90/10, KMnO4, UV) 

1H NMR (300 MHz, CDCl3) δ 4.06 (s, 4H), 1.18 (s, 18H). 

13C NMR (75 MHz, CDCl3) δ 82.5, 74.2, 50.8, 27.5.  

MS (CI, NH3): m/z = 216 [M + NH4]
 +.  

1,4-Bis(benzyloxy)but-2-yne (56) 

 

In an oven-dried argon-filled round bottom flask, sodium hydride (0.88 g, 22 mmol, 2.2 

equiv) was dissolved in dry THF (20 mL). A THF solution (10 mL) of 2-butyne-1,4-diol 52 

(0.86 g, 1.0 equiv) was added dropwise at 0 °C. The mixture was stirred at room temperature 

for 1 h. The solution was cooled to 0 °C and benzyl bromide (2.6 mL, 2.2 equiv) was added. 

The resulting mixture was allowed to warm to room temperature for 48 h. When the reaction 

was complete (TLC monitoring), water (20 mL) was added and the residue was extracted with 

diethyl ether (2×40 mL). The organic layer was separated and washed with water and brine, 

dried over anhydrous MgSO4, filtered and concentrated under reduced pressure. The residue 
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was purified by flash chromatography (Cyclohexane/Ethyl acetate gradient from 98/2 to 95/5) 

to afford compound 56 (2.0 g, 75%) as a colorless oil. The analytical data were identical to the 

literature.98 

Rf = 0.52 (Cyclohexane/Ethyl acetate; 90/10, KMnO4, UV) 

1H NMR (300 MHz, CDCl3) δ 7.49 – 7.24 (m, 10H), 4.62 (s, 4H), 4.26 (s, 4H). 

13C NMR (75 MHz, CDCl3) δ 137.6, 128.6, 128.2, 128.0, 82.7, 71.8, 57.6.  

2,2,3,3,10,10,11,11-Octamethyl-4,9-dioxa-3,10-disiladodec-6-yne (57) 

 

2-Butyn-1,4-diol 52 (2.0 g, 23.2 mmol), imidazole (3.8 g, 55.8 mmol), and N,N-4-

dimethylaminopyridine (0.28 g, 2.32 mmol) were introduced in an oven-dried 250 mL round-

bottom flask with a stir bar containing dichloromethane (200 mL). Recrystallized chloro-tert-

butyldimethylsilane (8.4 g, 55.8 mmol) was added. The resulting solution was stirred at room 

temperature for 3 h. Then the reaction mixture was poured into 40 mL 10% aqueous potassium 

carbonate. The resulting aqueous fraction was extracted with diethyl ether (2×40 mL). The 

combined organic fractions were washed with water and brine, dried over anhydrous MgSO4, 

filtered and concentrated under reduced pressure. The residue was purified by flash 

chromatography (Cyclohexane/Ethyl acetate gradient from 98/2 to 95/5) to afford compound 

57 (5.85 g, 80%) as a colorless oil. The analytical data were identical to the literature.99 

Rf = 0.5(Cyclohexane/Ethyl acetate; 95/5, KMnO4, UV). 

1H NMR (300 MHz, CDCl3) δ 4.34 (s, 4H), 0.90 (s, 18H), 0.11 (s, 12H). 

13C NMR (75 MHz, CDCl3) δ 83.5, 52.0, 26.0, 18.5, -5.0. 

2.3. RuCl3·nH2O-catalyzed [2+2+2] cycloadditions for the formation of fluoreone and 

related derivatives 

General procedure E:  
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A sealed tube was equipped with RuCl3·nH2O (5 mol%) and diyne (1 equiv), followed 

by the addition of alkyne (2 equiv) under argon atmosphere. The tube was sealed and the 

reaction mixture was stirred for the required time at 50-80 °C. When the reaction was complete 

(TLC monitoring), the crude reaction mixture was directly purified by flash chromatography 

over silica gel to afforded cycloadducts.  

1-Butyl-2,3-bis(methoxymethyl)-4-phenyl-9H-fluoren-9-one (65) 

 

This compound was obtained following the general procedure E. Starting from diyne 17 (100 

mg, 0.35 mmol), 1,4-dimethoxy-2-butyne 51 (80 mg, 0.7 mmol, 2 equiv) and RuCl3·nH2O (3.6 

mg, 0.0175 mmol). The reaction mixture was stirred at 50 °C for 2 h. Purification on silica gel 

(Cyclohexane/Ethyl acetate gradient from 98/2 to 95/5) afforded 65 (101 mg, 72%) as a yellow 

solid. m.p. 88 – 90 °C.  

Rf = 0.34 (Cyclohexane/Ethyl acetate; 95/5, KMnO4, UV).  

1H NMR (300 MHz, CDCl3) δ 7.60 – 7.57 (m, 1H), 7.54 – 7.46 (m, 3H), 7.36 – 7.28 (m, 2H), 

7.13 (td, J = 7.5, 0.9 Hz, 1H), 7.04 (td, J = 7.5, 1.2 Hz, 1H), 5.94 (d, J = 7.5 Hz, 1H), 4.57 (s, 

2H), 4.19 (s, 2H), 3.51 (s, 3H), 3.29 – 3.20 (m, 2H), 3.18 (s, 3H), 1.67 – 1.49 (m, 4H), 1.02 (t, 

J = 6.9 Hz, 3H).  

13C NMR (75 MHz, CDCl3) δ 194.6, 144.8, 143.6, 142.9, 142.4, 138.3, 137.6, 137.0, 135.2, 

134.1, 130.8, 129.6, 128.9, 128.5, 128.1, 123.6, 123.2, 68.5, 67.4, 58.9, 58.6, 33.6, 27.3, 23.5, 

14.1. 

nBu
O

OMe

OMe

Chemical Formula: C27H28O3

Exact Mass: 400.2038
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HRMS (ESI+): calcd. for C27H28O3Na [M+Na]+: 423.1931, found 423.1928. 

1,4-Dibutyl-2,3-bis(methoxymethyl)-9H-fluoren-9-one (66) 

 

This compound was obtained following the general procedure E. Starting from diyne 18 (93 

mg, 0.35 mmol), 1,4-dimethoxy-2-butyne 51 (80 mg, 0.7 mmol, 2.0 equiv) and RuCl3·nH2O 

(3.6 mg, 0.0175 mmol). The reaction mixture was stirred at 80 °C for 14 h. Purification on silica 

gel (Petroleum ether/Ethyl acetate gradient from 98/2 to 95/5) afforded 66 (50 mg, 38%) as a 

yellow solid. m.p. 76 – 78 °C. 

Rf = 0.33 (Cyclohexane/Ethyl acetate; 95/5, KMnO4, UV).  

1H NMR (300 MHz, CDCl3) δ 7.68 – 7.62 (m, 1H), 7.62 – 7.56 (m, 1H), 7.47 (td, J = 7.5, 1.2 

Hz, 1H), 7.27 (td, J = 7.5, 1.2 Hz, 1H), 4.52 (s, 2H), 4.48 (s, 2H), 3.51 (s, 3H), 3.49 (s, 3H), 

3.22 – 3.12 (m, 2H), 3.01 – 2.91 (m, 2H), 1.68 – 1.56 (m, 4H), 1.55 – 1.46 (m, 4H), 1.03 (t, J = 

6.9 Hz, 3H), 0.98 (t, J = 6.9 Hz, 3H).  

13C NMR (75 MHz, CDCl3) δ 194.9, 144.0, 143.1, 142.9, 142.8, 137.8, 137.5, 135.4, 134.6, 

131.3, 128.4, 124.0, 123.5, 68.1, 67.5, 59.0, 58.8, 33.6, 32.3, 29.2, 27.2, 23.4, 14.1. 

MS (CI, NH3): m/z = 349 [M + H - MeOH] +.  

4-Butyl-2,3-bis(methoxymethyl)-1-phenyl-9H-fluoren-9-one (67) 

 

This compound was obtained following the general procedure E. Starting from diyne 19 (100 

mg, 0.35 mmol), 1,4-dimethoxy-2-butyne 51 (80 mg, 0.7 mmol, 2.0 equiv) and RuCl3·nH2O 

nBu

nBu
O

OMe

OMe

Chemical Formula: C25H32O3

Exact Mass: 380.2351

nBu

O

OMe

OMe

Chemical Formula: C27H28O3

Exact Mass: 400.2038
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(3.6 mg, 0.0175 mmol). The reaction mixture was stirred at 50 °C for 14 h. Purification on silica 

gel (Petroleum ether/Ethyl acetate gradient from 99/1 to 98/2) afforded 67 (60 mg, 43%) as a 

yellow oil.  

Rf = 0.38 (Cyclohexane/Ethyl acetate; 95/5, KMnO4, UV).  

1H NMR (300 MHz, CDCl3) δ 7.67 (dt, J = 7.7, 0.9 Hz, 1H), 7.59 – 7.48 (m, 2H), 7.49 – 7.42 

(m, 3H), 7.32 – 7.24 (m, 3H), 4.64 (s, 2H), 4.18 (s, 2H), 3.55 (s, 3H), 3.22 (s, 3H), 3.13 – 3.02 

(m, 2H), 1.80 – 1.57 (m, 4H), 1.09 (t, J = 7.1 Hz, 3H). 

13C NMR (75 MHz, CDCl3) δ 192.9, 143.9, 142.9, 142.8, 140.6, 139.4, 137.6, 136.9, 135.2, 

134.6, 131.3, 129.2, 128.6, 127.8, 127.6, 124.1, 123.6, 68.2, 68.1, 59.1, 58.4, 32.2, 29.3, 23.5, 

14.1. 

MS (CI, NH3): m/z = 401 [M + H] +.  

1-Cyclopropyl-2,3-bis(methoxymethyl)-4-phenyl-9H-fluoren-9-one (68) 

 

This compound was obtained following the general procedure E. Starting from diyne 20 (100 

mg, 0.37 mmol), 1,4-dimethoxy-2-butyne 51 (85 mg, 0.74 mmol, 2.0 equiv) and RuCl3·nH2O 

(3.8 mg, 0.0185 mmol). The reaction mixture was stirred at 80 °C for 14 h. Purification on silica 

gel (Petroleum ether/Ethyl acetate gradient from 98/2 to 95/5) afforded 68 (90 mg, 63%) as a 

yellow solid. m.p. 166 – 168 °C. 

Rf = 0.31 (Cyclohexane/Ethyl acetate; 95/5, KMnO4, UV).  

1H NMR (300 MHz, CDCl3) δ 7.61 – 7.55 (m, 1H), 7.53 – 7.46 (m, 3H), 7.35 – 7.29 (m, 2H), 

7.13 (t, J = 7.2 Hz, 1H), 7.04 (td, J = 7.5, 1.2 Hz, 1H), 5.92 (d, J = 7.5 Hz, 1H), 4.81 (s, 2H), 

4.20 (s, 2H, CH), 3.51 (s, 3H), 3.17 (s, 3H), 2.11 – 1.99 (m, 1H), 1.26 – 1.17 (m, 2H), 0.71 – 

0.68 (m, 2H).  

O

OMe

OMe

Chemical Formula: C26H24O3

Exact Mass: 384.1725
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13C NMR (75 MHz, CDCl3) δ 193.4, 143.8, 143.4, 142.9, 142.6, 139.5, 138.1, 137.8, 135.1, 

134.0, 133.2, 129.5, 128.8, 128.5, 128.1, 123.6, 123.1, 68.4, 68.2, 59.0, 58.7, 10.9, 8.4.  

HRMS (ESI+): calcd. for C26H24O3Na [M+Na]+: 407.1618, found 407.1623. 

1-Butyl-2,3-bis(methoxymethyl)-4-(trimethylsilyl)-9H-fluoren-9-one (69) 

 

This compound was obtained following the general procedure E. Starting from diyne 21 (99.0 

mg, 0.35 mmol), 1,4-dimethoxy-2-butyne 51 (80 mg, 0.7 mmol, 2.0 equiv) and RuCl3·nH2O 

(3.6 mg, 0.0175 mmol). The reaction mixture was stirred at 50 °C for 14 h. Purification on silica 

gel (Petroleum ether/Ethyl acetate gradient from 98/2 to 95/5) afforded 69 (81 mg, 58%) as a 

yellow oil.  

Rf = 0.46 (Cyclohexane/Ethyl acetate; 90/10, KMnO4, UV).  

1H NMR (300 MHz, CDCl3) δ 7.62 (t, J = 7.5 Hz, 2H), 7.42 (td, J = 7.5, 1.2 Hz, 1H), 7.30 – 

7.20 (m, 1H), 4.59 (s, 2H), 4.47 (s, 2H), 3.44 (s, 3H), 3.34 (s, 3H), 3.26 – 3.15 (m, 2H), 1.58 – 

1.44 (m, 4H), 0.98 (t, J = 6.6 Hz, 3H), 0.46 (s, 9H).  

13C NMR (75 MHz, CDCl3) δ 195.0, 152.9, 151.9, 145.5, 144.6, 135.4, 135.3, 133.2, 130.7, 

128.5, 125.9, 123.5, 71.9, 67.3, 58.5, 57.7, 33.5, 27.0, 23.4, 14.1, 2.8.  

HRMS (ESI+): calcd. for C24H32O3SiNa [M+Na]+: 419.2013, found 419.2008. 

1-Butyl-2,3-bis(methoxymethyl)-4-(p-tolyl)-9H-fluoren-9-one (70) 

 

O
nBu

OMe

OMe
Me3Si

Chemical Formula: C24H32O3Si

Exact Mass: 396.2121

nBu
O

OMe

OMe

Me

Chemical Formula: C28H30O3

Exact Mass: 414.2195
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This compound was obtained following the general procedure E. Starting from diyne 22 (102 

mg, 0.35 mmol), 1,4-dimethoxy-2-butyne 51 (80 mg, 0.7 mmol, 2.0 equiv) and RuCl3·nH2O 

(3.6 mg, 0.0175 mmol). The reaction mixture was stirred at 50 °C for 2 h. Purification on silica 

gel (Petroleum ether/Ethyl acetate gradient from 98/2 to 95/5) afforded 70 (101 mg, 71%) as a 

yellow solid. m.p. 86 – 88 °C.  

Rf = 0.4 (Cyclohexane/Ethyl acetate; 90/10, KMnO4, UV).  

1H NMR (300 MHz, CDCl3) δ 7.56 (d, J = 7.5 Hz, 1H), 7.35 – 7.27 (m, 2H), 7.24 – 7.17 (m, 

2H), 7.17 – 7.02 (m, 2H), 6.02 (d, J = 7.5 Hz, 1H), 4.57 (s, 2H), 4.19 (s, 2H), 3.51 (s, 3H), 3.28 

– 3.18 (m, 2H), 3.20 (s, 3H), 2.49 (s, 3H), 1.66 – 1.51 (m, 4H), 1.02 (t, J = 7.2 Hz, 3H).  

13C NMR (75 MHz, CDCl3) δ 194.7,144.6,143.8,143.0, 142.6, 137.8, 137.6, 137.1, 135.1, 

134.1, 130.7, 129.6, 129.4, 128.4, 123.6, 123.3, 68.5, 67.4, 58.9, 58.5, 33.6, 27.3, 23.5, 21.5, 

14.1.  

HRMS (ESI+): calcd. for C28H30O3Na [M+Na]+: 437.2087, found 437.2087. 

1-Butyl-4-(4-(tert-butyl)-phenyl)-2,3-bis(methoxymethyl)-9H-fluoren-9-one (71) 

 

This compound was obtained following the general procedure E. Starting from diyne 23 (120 

mg, 0.35 mmol), 1,4-dimethoxy-2-butyne 51 (80 mg, 0.7 mmol, 2.0 equiv) and RuCl3·nH2O 

(3.6 mg, 0.0175 mmol). The reaction mixture was stirred at 60 °C for 14 h, then at 80 °C for 4 

h. Purification on silica gel (Petroleum ether/Ethyl acetate gradient from 98/2 to 95/5) afforded 

71 (90 mg, 56%) as a yellow oil. 

Rf = 0.52 (Cyclohexane/Ethyl acetate; 90/10, KMnO4, UV).  

1H NMR (300 MHz, CDCl3) δ 7.60 – 7.48 (m, 3H), 7.25 – 7.20 (m, 2H), 7.12 (td, J = 7.5, 0.9 

Hz, 1H), 7.03 (td, J = 7.5, 1.2 Hz, 1H), 5.91 (d, J = 7.5 Hz, 1H), 4.57 (s, 2H), 4.20 (s, 2H), 3.51 

nBu
O

OMe

OMe

tBu

Chemical Formula: C31H36O3

Exact Mass: 456.2664
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(s, 3H), 3.29 – 3.21 (m, 2H), 3.19 (s, 3H), 1.64 – 1.52 (m, 4H), 1.43 (s, 9H), 1.02 (t, J = 6.9 Hz, 

3H).  

13C NMR (75 MHz, CDCl3) δ 194.7, 151.3, 144.7, 143.8, 143.1, 142.6, 137.6, 137.1, 135.2, 

134.1, 130.7, 129.2, 128.4, 125.7, 123.6, 123.2, 68.6, 67.5, 58.9, 58.6 34.9, 33.7, 31.6, 27.3, 

23.5, 14.1. 

HRMS (ESI+): calcd. for C31H36O3Na [M+Na]+: 479.2557, found 479.2557. 

1-Butyl-2,3-bis(methoxymethyl)-4-(4-(trifluoromethyl)-phenyl)-9H-fluoren-9-one (72) 

 

This compound was obtained following the general procedure E. Starting from diyne 26 (100.0 

mg, 0.28 mmol), 1,4-dimethoxy-2-butyne 51 (80 mg, 0.56 mmol, 2.0 equiv) and RuCl3·nH2O 

(2.9 mg, 0.014 mmol). The reaction mixture was stirred at 50 °C for 14 h. Purification on silica 

gel (Cyclohexane/Ethyl acetate gradient from 98/2 to 95/5) afforded 72 (85 mg, 65%) as a 

brown solid. m.p. 113 – 115 °C.  

Rf = 0.53 (Cyclohexane/Ethyl acetate; 95/5, KMnO4, UV).  

1H NMR (300 MHz, CDCl3) δ 7.79 (d, J = 8.0 Hz, 2H), 7.59 (dd, J = 7.3, 0.6 Hz, 1H), 7.49 (d, 

J = 7.9 Hz, 2H), 7.17 (td, J = 7.5, 1.0 Hz, 1H), 7.08 (td, J = 7.6, 1.3 Hz, 1H), 5.91 (d, J = 7.5 

Hz, 1H), 4.55 (s, 2H), 4.11 (s, 2H), 3.51 (s, 3H), 3.30 – 3.20 (m, 2H), 3.17 (s, 3H), 1.64 – 1.50 

(m, 4H), 1.02 (t, J = 7.0 Hz, 3H). 

13C NMR (75 MHz, CDCl3) δ 194.3, 145.4, 143.2, 142.7, 142.3, 142.1, 137.9, 135.5, 135.2, 

134.3, 130.9, 130.3, 128.9, 125.8, 125.8, 124.0, 122.9, 68.4, 67.3, 59.0, 58.7, 33.7, 27.4, 23.5, 

14.1. 

19F NMR (282 MHz, CDCl3) δ -63.4 (s).   

nBu
O

OMe

OMe

F3C

Chemical Formula: C28H27F3O3

Exact Mass: 468.1912



Experimental part 

 234 

HRMS (ESI+): calcd. for C28H27F3O3Na [M+Na]+: 491.1805, found 491.1803. 

4-(4-Bromophenyl)-1-butyl-2,3-bis(methoxymethyl)-9H-fluoren-9-one (73) 

 

This compound was obtained following the general procedure E. Starting from diyne 27 (127.0 

mg, 0.35 mmol), 1,4-dimethoxy-2-butyne 51 (80 mg, 0.7 mmol, 2.0 equiv) and RuCl3·nH2O 

(3.6 mg, 0.0175 mmol). The reaction mixture was stirred at 50 °C for 14 h. Purification on silica 

gel (Petroleum ether/ Ethyl acetate gradient from 98/2 to 95/5) afforded 73 (94 mg, 56%) as a 

yellow oil.  

Rf = 0.43 (Cyclohexane/Ethyl acetate; 90/10, KMnO4, UV).  

1H NMR (300 MHz, CDCl3) δ 7.71 – 7.61 (m, 2H), 7.61 – 7.54 (m, 1H), 7.25 – 7.20 (m, 2H), 

7.20 – 7.07 (m, 2H), 6.04 (d, J = 7.5 Hz, 1H), 4.54 (s, 2H), 4.13 (s, 2H), 3.50 (s, 3H), 3.28 – 

3.18 (m, 2H), 3.20 (s, 3H), 1.64 – 1.51 (m, 4H), 1.01 (t, J = 6.9 Hz, 3H).  

13C NMR (75 MHz, CDCl3) δ 194.4, 145.2, 143.3, 142.8, 142.3, 137.8, 137.2, 135.6, 135.1, 

134.3, 132.1, 131.5, 130.9, 128.8, 123.9, 123.1, 122.4, 68.5, 67.4, 59.0, 58.7, 33.7, 27.3, 23.5, 

14.1. 

HRMS (ESI+): calcd. for C27H27BrO3Na [M+Na]+: 501.1036, found 501.1036. 

8-Butyl-6,7-bis(methoxymethyl)-5-phenyl-9H-fluoreno[2,3-d][1,3]dioxol-9-one (74) 

 

nBu
O

OMe

OMe

Br

Chemical Formula: C27H27BrO3

Exact Mass: 478.1144

nBu
O

OMe

OMe

O

O

Chemical Formula: C28H28O5

Exact Mass: 444.1937
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This compound was obtained following the general procedure E. Starting from diyne 24 (115.5 

mg, 0.35 mmol), 1,4-dimethoxy-2-butyne 51 (80 mg, 0.7 mmol, 2.0 equiv) and RuCl3·nH2O 

(3.6 mg, 0.0175 mmol). The reaction mixture was stirred at 50 °C for 6 h. Purification on silica 

gel (Petroleum ether/Ethyl acetate gradient from 98/2 to 95/5) afforded 74 (105 mg, 68%) as a 

yellow oil.  

Rf = 0.25 (Cyclohexane/Ethyl acetate; 90/10, KMnO4, UV).  

1H NMR (300 MHz, CDCl3) δ 7.52 – 7.46 (m, 3H), 7.33 – 7.27 (m, 2H), 6.99 (s, 1H), 5.88 (s, 

2H), 5.32 (s, 1H), 4.53 (s, 2H), 4.14 (s, 2H), 3.49 (s, 3H), 3.22 – 3.15 (m, 2H), 3.16 (s, 3H), 

1.61 – 1.49 (m, 4H), 1.00 (t, J = 6.9 Hz, 3H).  

13C NMR (75 MHz, CDCl3) δ 193.0, 152.4, 147.9, 144.2, 142.0, 140.6, 138.0, 137.0, 136.0, 

131.2, 130.1, 129.6, 128.9, 128.2, 104.6, 104.5, 101.9, 68.5, 67.4, 58.9, 58.6, 33.7, 27.2, 23.5, 

14.1. 

HRMS (ESI+): calcd. for C28H28O5Na [M+Na]+: 467.1829, found 467.1830. 

1-Butyl-7-fluoro-2,3-bis(methoxymethyl)-4-phenyl-9H-fluoren-9-one (75) 

 

This compound was obtained following the general procedure E. Starting from diyne 25 (106 

mg, 0.35 mmol), 1,4-dimethoxy-2-butyne 51 (80 mg, 0.7 mmol, 2.0 equiv) and RuCl3·nH2O 

(3.6 mg, 0.0175 mmol). The reaction mixture was stirred at 50 °C for 6 h. Purification on silica 

gel (Petroleum ether/Ethyl acetate gradient from 98/2 to 95/5) afforded 75 (98 mg, 65%) as a 

yellow oil.  

Rf = 0.36 (Cyclohexane/Ethyl acetate; 95/5, KMnO4, UV).  

nBu
O

OMe

OMe

F

Chemical Formula: C27H27FO3

Exact Mass: 418.1944
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1H NMR (300 MHz, CDCl3) δ 7.54 – 7.47 (m, 3H), 7.35 – 7.27 (m, 2H), 7.22 (dd, J = 7.2, 2.4 

Hz, 1H), 6.72 (td, J = 8.7, 2.4 Hz, 1H), 5.86 (dd, J = 8.1, 4.5 Hz, 1H), 4.56 (s, 2H), 4.17 (s, 2H), 

3.50 (s, 3H), 3.26 – 3.18 (m, 2H), 3.18 (s, 3H), 1.66 – 1.51 (m, 4H), 1.01 (t, J = 6.9 Hz, 3H).  

13C NMR (75 MHz, CDCl3) δ 193.1, 163.2 (d, J = 247.5 Hz), 145.2, 142.8, 142.4, 139.4 (d, J 

= 2.8 Hz), 138.1, 137.5, 137.4, 136.7, 131.0 (d, J = 1.6 Hz), 129.5, 129.0, 128.3, 124.6 (d, J = 

7.7 Hz), 120.2 (d, J = 22.5 Hz), 111.1 (d, J = 23.6 Hz), 68.5, 67.4, 59.0, 58.6, 33.6, 27.4, 23.5, 

14.1. 

19F NMR (282 MHz, CDCl3) δ -113.6 (dd, J = 11.3, 8.5 Hz).   

HRMS (ESI+): calcd. for C27H27FO3Na [M+Na]+: 441.1836, found 441.1837. 

2,3-Bis(tert-butoxymethyl)-1-butyl-4-phenyl-9H-fluoren-9-one (76) 

 

This compound was obtained following the general procedure E. Starting from diyne 17 (100 

mg, 0.35 mmol), 1,4-di-tert-butoxybut-2-yne 55 (139 mg, 0.7 mmol, 2.0 equiv) and 

RuCl3·nH2O (3.6 mg, 0.0175 mmol). The reaction mixture was stirred at 60 °C for 14 h, then 

at 80 °C for 4 h. Purification on silica gel (Petroleum ether/Ethyl acetate gradient from 99/1 to 

98/2) afforded 76 (140 mg, 83%) as a yellow solid. m.p. 158 – 160 °C.  

Rf = 0.46 (Cyclohexane/Ethyl acetate; 90/10, KMnO4, UV).  

1H NMR (300 MHz, CDCl3), δ 7.58 – 7.52 (m, 1H), 7.56 – 7.44 (m, 3H), 7.39 – 7.29 (m, 2H), 

7.11 (td, J = 7.5, 0.9 Hz, 1H), 7.02 (td, J = 7.5, 1.2 Hz, 1H), 5.89 (d, J = 7.5 Hz, 1H), 4.55 (s, 

2H), 4.19 (s, 2H), 3.28 – 3.15 (m, 2H), 1.72 – 1.51 (m, 4H), 1.36 (s, 9H), 1.03 (t, J = 6.9 Hz, 

3H), 1.01 (s, 9H). 
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13C NMR (75 MHz, CDCl3), δ 194.8, 145.1, 143.9, 143.3, 142.8, 138.4, 138.3, 137.3, 135.2, 

134.0, 130.7, 129.9, 128.7, 128.3, 128.0, 123.5, 123.1, 73.7, 73.6, 57.9, 56.8, 33.7, 27.9, 27.6, 

27.5, 23.7, 14.1. 

HRMS (ESI+): calculated for C39H36O3Na+ [M+Na+]: 575.2557, found 575.2551. 

2,3-Bis((benzyloxy)-methyl)-1-butyl-4-phenyl-9H-fluoren-9-one (77) 

 

This compound was obtained following the general procedure E. Starting from diyne 17 (100 

mg, 0.35 mmol), 1,4-bis(benzyloxy)but-2-yne 56 (186 mg, 0.7 mmol, 2.0 equiv) and 

RuCl3·nH2O (3.6 mg, 0.0175 mmol). The reaction mixture was stirred at 50 °C for 14 h. The 

excess of alkyne was removed by bulb to bulb distillation (condition: 3.0x10-3 mbar, 175℃ for 

20 minutes). Purification on silica gel (Petroleum ether/Ethyl acetate gradient from 98/2 to 95/5) 

afforded 77 (156 mg, 81%) as a yellow solid. m.p. 145 – 147 °C. 

Rf = 0.25 (Cyclohexane/Ethyl acetate; 95/5, KMnO4, UV).  

1H NMR (300 MHz, CDCl3), δ 7.58 – 7.53 (m, 1H), 7.53 – 7.46 (m, 3H), 7.40 – 7.27 (m, 10H), 

7.22 – 7.17 (m, 2H), 7.13 (td, J = 7.5, 0.9 Hz, 1H), 7.04 (td, J = 7.5, 1.2 Hz, 1H), 5.93 (d, J = 

7.5 Hz, 1H), 4.53 (s, 2H), 4.50 (s, 2H), 4.16 (s, 2H), 4.15 (s, 2H), 3.23 – 3.12 (m, 2H), 1.57 – 

1.41 (m, 4H), 0.97 (t, J = 6.9 Hz, 3H). 

13C NMR (75 MHz, CDCl3), δ 194.7, 144.9, 143.7, 143.0, 142.6, 138.2, 138.0, 137.7, 137.1, 

135.2, 134.1, 130.8, 129.7, 128.9, 128.7, 128.6, 128.5, 128.3, 128.1, 127.9, 123.7, 123.2, 73.6, 

73.3, 66.2, 64.7, 33.7, 27.4, 23.5, 14.1 

HRMS (ESI+): calculated for C33H40O3Na+ [M+Na+]: 507.2870, found 507.2867. 

1-Butyl-2,3-diethyl-4-phenyl-9H-fluoren-9-one (78) 
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This compound was obtained following the general procedure E. Starting from diyne 17 (100 

mg, 0.35 mmol), 3-hexyne 53 (86.3 mg, 1.05 mmol, 3.0 equiv) and RuCl3·nH2O (3.6 mg, 

0.0175 mmol). The reaction mixture was stirred at 80 °C for 16 h. Purification on silica gel 

(Petroleum ether/Ethyl acetate gradient from 100/0 to 99/1) afforded 78 (pure, 14 mg, 11%) as 

a sticky oil.  

Rf = 0.8 (Cyclohexane/Ethyl acetate; 90/10, KMnO4, UV).  

1H NMR (300 MHz, CDCl3) δ 7.57 – 7.41 (m, 4H), 7.38 – 7.27 (m, 2H), 7.12 – 7.03 (m, 1H), 

7.03 – 6.92 (m, 1H), 5.73 (d, J = 7.5 Hz, 1H), 3.23 – 3.05 (m, 2H), 2.73 (q, J = 7.5 Hz, 2H), 

2.48 (q, J = 7.5 Hz, 2H), 1.66 – 1.49 (m, 4H), 1.23 (t, J = 7.7 Hz, 3H), 1.10 – 0.89 (m, 6H). 

13C NMR (75 MHz, CDCl3) δ 195.1, 147.8, 144.2, 143.2, 142.8, 140.8, 139.6, 136.0, 135.3, 

133.8, 129.5, 129.0, 128.9, 127.9, 127.8, 123.4, 122.6, 33.6, 27.6, 23.7, 23.6, 21.5, 15.8, 15.5, 

14.1. 

7-Butyl-5,6-bis(methoxymethyl)-4-phenyl-8H-indeno[2,1-b]furan-8-one (83) 

 

This compound was obtained following the general procedure E. Starting from diyne 44 (97 

mg, 0.35 mmol), 1,4-dimethoxy-2-butyne 51 (80 mg, 0.7 mmol, 2.0 equiv) and RuCl3·nH2O 

(3.6 mg, 0.0175 mmol). The reaction mixture was stirred at 60 °C for 14 h, then at 80 °C for 4 

h. Purification on silica gel (Petroleum ether/Ethyl acetate gradient from 98/2 to 95/5) afforded 

83 (75 mg, 55 %) as a yellow oil.  

nBu
O

OMe

OMe

O

Chemical Formula: C25H26O4

Exact Mass: 390.1831
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Rf = 0.32 (Cyclohexane/Ethyl acetate; 90/10, KMnO4, UV).  

1H NMR (300 MHz, CDCl3) δ 7.52 – 7.38 (m, 3H), 7.35 – 7.27 (m, 3H), 5.40 (d, J = 1.7 Hz, 

1H), 4.49 (s, 2H), 4.16 (s, 2H), 3.48 (s, 3H), 3.23 (s, 3H), 3.13 – 3.02 (m, 2H), 1.60 – 1.46 (m, 

4H), 0.99 (t, J = 7.0 Hz, 3H).  

13C NMR (75 MHz, CDCl3) δ 179.6, 154.6, 151.3, 145.0, 144.6, 140.9, 138.2, 137.7, 135.1, 

134.8, 131.6, 129.7, 128.4, 128.0, 108.0, 68.8, 67.4, 58.9, 58.5, 33.7, 26.7, 23.4, 14.1.  

HRMS (ESI+): calculated for C25H26O4Na+ [M+Na+]: 413.1723, found 413.1723. 

7-Butyl-5,6-bis(methoxymethyl)-4-phenyl-8H-indeno[2,1-b]thiophen-8-one (84) 

 

This compound was obtained following the general procedure E. Starting from diyne 45 (102 

mg, 0.35 mmol), 1,4-dimethoxy-2-butyne 51 (80 mg, 0.7 mmol, 2.0 equiv) and RuCl3·nH2O 

(3.6 mg, 0.0175 mmol). The reaction mixture was stirred at 50 °C for 14 h. Purification on silica 

gel (Petroleum ether/Ethyl acetate gradient from 98/2 to 95/5) afforded 84 (101 mg, 71%) as a 

yellow oil.  

Rf = 0.4 (Cyclohexane/Ethyl acetate; 90/10, KMnO4, UV).  

1H NMR (300 MHz, CDCl3), δ 7.49 – 7.43 (m, 3H), 7.34 (d, J = 4.5 Hz, 1H), 7.33 – 7.27 (m, 

2H), 5.62 (d, J = 4.8 Hz, 1H), 4.51 (s, 2H), 4.16 (s, 2H), 3.49 (s, 3H), 3.19 (s, 3H), 3.17 – 3.07 

(m, 2H), 1.62 – 1.47 (m, 4H), 1.00 (t, J = 7.2 Hz, 3H).  

13C NMR (75 MHz, CDCl3), δ 186.6, 157.2, 144.6, 141.2, 139.3, 138.5, 138.1, 137.3, 134.8, 

133.7, 129.8, 128.5, 128.0, 122.3, 68.8, 67.4, 58.9, 58.5, 33.7, 26.9, 23.5, 14.1. 

HRMS (ESI+): calcd. for C25H26O3SNa [M+Na]+: 429.1495, found 429.1494. 

5,6-Bis((benzyloxy)-methyl)-7-butyl-4-phenyl-8H-indeno[2,1-b]thiophen-8-one (85) 

S

O
nBu

OMe

OMe

Chemical Formula: C25H26O3S

Exact Mass: 406.1603
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This compound was obtained following the general procedure E. Starting from diyne 45 (102 

mg, 0.35 mmol), 1,4-bis(benzyloxy)-but-2-yne 56 (186 mg, 0.7 mmol, 2.0 equiv) and 

RuCl3·nH2O (3.6 mg, 0.0175 mmol). The reaction mixture was stirred at 80 °C for 14 h. The 

excess of alkyne was removed by bulb to bulb distillation (condition: 3.0x10-3 mbar, 175 ℃ for 

20 minutes). Purification on silica gel (Petroleum ether/Ethyl acetate gradient from 98/2 to 95/5) 

afforded 85 (121 mg, 62%) as a yellow solid. m.p. 124 – 126 °C.  

Rf = 0.34 (Cyclohexane/Ethyl acetate; 95/5, KMnO4, UV).  

1H NMR (300 MHz, CDCl3), δ 7.48 – 7.42 (m, 3H), 7.38 – 7.27 (m, 11H), 7.22 – 7.17 (m, 2H), 

5.62 (d, J = 4.8 Hz, 1H), 4.49 (s, 2H), 4.48 (s, 2H), 4.17 (s, 2H), 4.15 (s, 2H), 3.13 – 3.03 (m, 

2H), 1.52 – 1.38 (m, 4H), 0.95 (t, J = 6.9 Hz, 3H).  

13C NMR (75 MHz, CDCl3), δ 186.6, 157.2, 144.6, 141.5, 139.3, 138.5, 138.0, 137.4, 137.3, 

134.9, 133.7, 129.8, 128.6, 128.6, 128.5, 128.3, 128.1, 128.0, 127.9, 122.3, 73.5, 73.2, 66.4, 

64.7, 33.7, 26.9, 23.4, 14.0.  

HRMS (ESI+): calculated for C37H34O3SNa+ [M+Na+]: 581.2121, found 581.2115.  

7-Butyl-8,9-bis(methoxymethyl)-10-phenyl-6H-benzo[b]indeno[1,2-d]thiophen-6-one 

(86) 
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Chemical Formula: C37H34O3S

Exact Mass: 558.2229
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This compound was obtained following the general procedure E. Starting from diyne 46 (120 

mg, 0.35 mmol), 1,4-dimethoxy-2-butyne 51 (80 mg, 0.7 mmol, 2.0 equiv) and RuCl3·nH2O 

(3.6 mg, 0.0175 mmol). The reaction mixture was stirred at 60 °C for 14 h. Purification on silica 

gel (Petroleum ether/Ethyl acetate gradient from 98/2 to 95/5) afforded 86 (124 mg, 78 %) as a 

red solid. m.p. 135 – 137 °C.  

Rf = 0.32 (Cyclohexane/Ethyl acetate; 90/10, KMnO4, UV).  

1H NMR (300 MHz, CDCl3) δ 7.68 (d, J = 8.2 Hz, 1H), 7.51 – 7.40 (m, 5H), 7.20 – 7.10 (m, 

1H), 6.83 – 6.72 (m, 1H), 5.19 (d, J = 8.6 Hz, 1H), 4.52 (s, 2H), 4.10 (s, 2H), 3.51 (s, 3H), 3.24 

– 3.11 (m, 2H), 3.19 (s, 3H), 1.69 – 1.52 (m, 4H), 1.03 (t, J = 7.0 Hz, 3H).  

13C NMR (75 MHz, CDCl3) δ 188.4, 151.6, 147.4, 144.6, 142.1, 141.3, 140.2, 139.9, 137.4, 

135.0, 133.2, 132.6, 131.2, 128.7, 128.4, 126.6, 126.3, 125.1, 124.0, 68.9, 67.4, 59.0, 58.6, 33.6, 

27.0, 23.5, 14.0. 

HRMS (ESI+): calcd. for C29H28O3SNa [M+Na]+: 479.1651, found 479.1650. 

1-Butyl-2,3-bis(methoxymethyl)-4-phenyl-10H-indeno[1,2-b]benzofuran-10-one (87) 

 

This compound was obtained following the general procedure E. Starting from diyne 47 (114.1 

mg, 0.35 mmol), 1,4-dimethoxy-2-butyne 51 (80 mg, 0.7 mmol, 2.0 equiv) and RuCl3·nH2O 

(3.6 mg, 0.0175 mmol). The reaction mixture was stirred at 60 °C for 14 h. Purification on silica 

gel (Petroleum ether/Ethyl acetate gradient from 98/2 to 95/5) afforded 87 (42 mg, 30 %) as a 

yellow oil.  

Rf = 0.32 (Cyclohexane/Ethyl acetate; 90/10, KMnO4, UV).  

O

O
nBu

OMe

OMe

Chemical Formula: C29H28O4

Exact Mass: 440.1988
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1H NMR (300 MHz, CDCl3) δ 7.71 – 7.63 (m, 1H), 7.55 – 7.46 (m, 3H), 7.46 – 7.37 (m, 2H), 

7.26 – 7.11 (m, 3H), 4.54 (s, 2H), 4.18 (s, 2H), 3.51 (s, 3H), 3.26 (s, 3H), 3.17 (t, J = 7.8 Hz, 

2H), 1.68 – 1.51 (m, 4H), 1.02 (t, J = 6.9 Hz, 3H). 

13C NMR (75 MHz, CDCl3) δ 186.3, 177.5, 160.7, 144.3, 140.8, 140.3, 136.7, 134.2, 133.0, 

129.8, 128.2, 128.1, 125.1, 124.8, 122.2, 120.7, 119.6, 112.7, 68.5, 67.4, 59.0, 58.5, 33.7, 27.0, 

23.5, 14.1.  

6-Butyl-9-(4-(tert-butyl)phenyl)-7,8-bis(methoxymethyl)-5H-indeno[1,2-b]pyridin-5-one 

(89) 

 

This compound was obtained following the general procedure E. Starting from diyne 49 (100 

mg, 0.29 mmol), 1,4-dimethoxy-2-butyne 51 (200 mg, 1.75 mmol, 6.0 equiv) and RuCl3·nH2O 

(3.0 mg, 0.0146 mmol). The reaction mixture was stirred at 80 °C for 18 h. Purification on silica 

gel (Petroleum ether/Ethyl acetate gradient from 98/2 to 95/5) afforded 89 (8 mg, 6%) as a 

brown oil.  

Rf = 0.65(Cyclohexane/Ethyl acetate; 95/5, KMnO4, UV).  

1H NMR (300 MHz, CDCl3) δ 8.23 (dd, J = 5.0, 1.7 Hz, 1H), 7.76 (dd, J = 7.4, 1.7 Hz, 1H), 

7.45 (d, J = 8.4 Hz, 2H), 7.23 (d, J = 8.3 Hz, 2H), 6.99 (dd, J = 7.5, 5.1 Hz, 1H), 4.59 (s, 2H), 

4.18 (s, 2H), 3.51 (s, 3H), 3.27 – 3.18 (m, 2H), 3.20 (s, 3H), 1.62 – 1.54 (m, 2H), 1.41 (s, 9H), 

1.37 – 1.32 (m, 2H), 1.01 (t, J = 6.9 Hz, 3H).  

6-Butyl-3-chloro-7,8-bis(methoxymethyl)-9-phenyl-5H-indeno[1,2-c]pyridin-5-one (90) 

N

nBu
O

OMe

OMe

tBu

Chemical Formula: C30H35NO3

Exact Mass: 457.2617
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This compound was obtained following the general procedure E. Starting from diyne 50 (112 

mg, 0.35 mmol), 1,4-dimethoxy-2-butyne 51 (80 mg, 0.7 mmol, 2.0 equiv) and RuCl3·nH2O 

(3.6 mg, 0.0175 mmol). The reaction mixture was stirred at 80 °C for 2 h. Purification on silica 

gel (Petroleum ether/Ethyl acetate gradient from 98/2 to 95/5) afforded 90 (91 mg, 60%) as a 

yellow solid. m.p. 94 – 96 °C.  

Rf = 0.31 (Cyclohexane/Ethyl acetate; 90/10, KMnO4, UV).  

1H NMR (300 MHz, CDCl3) δ 7.55 – 7.48 (m, 3H), 7.40 (d, J = 0.9 Hz, 1H), 7.32 – 7.27 (m, 

2H), 6.90 (d, J = 1.2 Hz, 1H), 4.57 (s, 2H), 4.22 (s, 2H), 3.51 (s, 3H), 3.24 – 3.15 (m, 2H), 3.20 

(s, 3H), 1.60 – 1.52 (m, 4H), 1.01 (t, J = 6.9 Hz, 3H).  

13C NMR (75 MHz, CDCl3) δ 191.9, 151.7, 146.4, 144.2, 143.7, 141.5, 138.8, 137.8, 137.6, 

136.0, 130.3, 129.4, 129.1, 128.9, 128.8, 118.1, 67.3, 59.1, 58.7, 33.5, 27.6, 23.5, 14.0. 

HRMS (ESI+): calcd. for C26H26ClNO3Na [M+Na]+: 458.1493, found 458.1494. 

1-Butyl-3-cyclopropyl-4-phenyl-9H-fluoren-9-one and 1-butyl-3-cyclopropyl-4-phenyl -

9H-fluoren-9-one (91) 

 

Thess compounds were obtained following the general procedure E. Starting from diyne 17 

(200 mg, 0.7 mmol), cyclopropyl acetylene 58 (93 mg, 1.4 mmol, 2.0 equiv) and RuCl3·nH2O 

(7.2 mg, 0.035 mmol). The reaction mixture was stirred at 80 °C for 14 h. Purification on silica 

N

nBu
O

OMe

OMe

Cl

Chemical Formula: C26H26ClNO3

Exact Mass: 435.1601
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gel (Petroleum ether/Ethyl acetate 99/1) afforded the title regioisomers 91 (208 mg, 84%) in 

the ratio of 67/33 as an orange oil.  

Rf = 0.6 (Cyclohexane/Ethyl acetate; 95/5, KMnO4, UV).  

Major product: 1H NMR (300 MHz, CDCl3) δ 7.60 – 7.45 (m, 4H), 7.39 – 7.33 (m, 2H), 7.15 

– 7.08 (m, 2H), 6.56 (s, 1H), 6.04 – 5.98 (m, 1H), 3.05 (t, J = 7.8 Hz, 2H), 1.68 – 1.55 (m, 3H), 

1.51 – 1.40 (m, 2H), 0.98 (t, J = 7.2 Hz, 3H), 0.86 – 0.74 (m, 2H), 0.75 – 0.64 (m, 2H).  

13C NMR (75 MHz, CDCl3) δ 194.5, 149.6, 144.2, 144.1, 142.6, 138.9, 136.0, 133.8, 129.7, 

129.1, 128.3, 127.9, 125.3, 123.5, 123.1, 33.1, 31.5, 22.9, 14.1, 12.5, 10.2. 

Minor product: 1H NMR (300 MHz, CDCl3) δ 7.60 – 7.45 (m, 4H), 7.43 – 7.39 (m, 2H), 7.04 

(td, J = 7.5, 1.4 Hz, 2H), 6.88 (s, 1H), 6.64 – 6.60 (m, 1H), 3.35 (t, J = 7.8 Hz, 2H), 2.05 – 1.97 

(m, 1H), 1.68 – 1.50 (m, 4H), 1.02 (t, J = 7.8 Hz, 3H), 0.86 – 0.74 (m, 2H), 0.75 – 0.64 (m, 

2H). 

13C NMR (75 MHz, CDCl3) δ 195.2, 143.9, 143.4, 140.2, 139.4, 135.8, 135.2, 134.0, 133.3, 

131.1, 129.1 128.8, 128.6, 128.2, 128.0, 123.7, 122.7, 32.6, 27.0, 23.5, 14.0, 12.5, 7.8.  

HRMS (ESI+): calculated for C26H24OH+ [M+H+]: 353.1900, found 353.1900. 

1-Butyl-3,4-diphenyl-9H-fluoren-9-one and 1-butyl-2,4-diphenyl-9H-fluoren-9-one (92) 

 

Thess compounds were obtained following the general procedure E. Starting from diyne 17 

(200 mg, 0.7 mmol), phenyl acetylene 59 (93 mg, 1.4 mmol, 2.0 equiv) and RuCl3·nH2O (7.2 

mg, 0.035 mmol). The reaction mixture was stirred at 80 °C for 14 h. Purification on silica gel 

(Petroleum ether/Ethyl acetate 99/1) afforded the title regioisomers 92 (191 mg, 70%) in the 

ratio of 73/27 as an orange solid.  

Rf = 0.45 (Cyclohexane/Ethyl acetate; 95/5, KMnO4, UV).  
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Major product: 1H NMR (300 MHz, CDCl3)  7.66-7.58 (m, 1H), 7.34-7.30 (m, 3H), 7.20-7.05 

(m, 10H), 6.22 – 6.13 (m, 1H), 3.15 (t, J = 7.8 Hz, 2H), 1.75-1.65 (m, 2H), 1.55-1.46 (m, 2H), 

0.99 (t, J = 7.2 Hz, 3H).  

13C NMR (75 MHz, CDCl3)  194.7, 148.0, 144.1, 143.8, 143.1, 140.4, 138.3, 135.3, 134.6, 

134.1, 132.8, 130.4, 130.0, 129.6, 128.6, 128.5, 127.8, 127.7, 127.1, 123.6, 123.3, 33.1, 31.2, 

23.0, 14.1. 

Minor product: 1H NMR (300 MHz, CDCl3),  7.66-7.58 (m, 1H), 7.50-7.33 (m, 10H), 7.22-

7.05 (m, 3H), 6.77-6.72 (m, 1H), 3.08-3.03 (m, 1H), 1.55-1.46 (m, 2H), 1.37-1.30 (m, 2H), 0.82 

(t, J = 7.2 Hz, 3H).  

13C NMR (75 MHz, CDCl3),  194.9, 144.2, 143.7, 142.2, 141.2, 140.4, 139.7, 137.9, 135.7, 

135.1, 134.1, 131.4, 129.4, 129.1, 129.0 128.8, 128.3, 128.1, 127.4, 123.8, 123.0, 33.3, 27.7, 

23.1,13.8.  

HRMS (ESI+): calculated for C29H24ONa+ [M+Na+]: 411.1719, found 411.1722. 

1-Butyl-3-(3-chloropropyl)-4-phenyl-9H-fluoren-9-one and 1-butyl-2-(3-chloropropyl)-4-

phenyl-9H-fluoren-9-one (93) 

 

This compound was obtained following the general procedure E. Starting from diyne 17 (200 

mg, 0.7 mmol), 5-chloro-1-pentyne 60 (143 mg, 1.4 mmol, 2.0 equiv) and RuCl3·nH2O (7.2 

mg, 0.035 mmol). The reaction mixture was stirred at 80 °C for 14 h. Purification on silica gel 

(Petroleum ether/Ethyl acetate 99/1) afforded the title regioisomers 93 (165 mg, 61%) in the 

ratio of 55/45 as an orange oil.  

Rf = 0.5 (Cyclohexane/Ethyl acetate; 95/5, KMnO4, UV).  
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Major product: 1H NMR (300 MHz, CDCl3)  7.57-7.50 (m, 4H), 7.30-7.27 (m, 2H), 7.19 -

7.11 (m, 1H), 7.05 (dd, J = 7.5, 1.4 Hz, 1H), 7.01 (s, 1H), 5.95-5.92 (m, 1H), 3.40 (t, J = 6.6 

Hz, 2H), 3.08 (t, J = 7.7 Hz, 2H), 2.57-2.52 (m, 2H), 1.91-1.86 (m, 2H), 1.68-1.64 (m, 2H), 

1.52-1.46 (m, 2H), 0.99 (t, J = 7.7 Hz, 3H).  

13C NMR (75 MHz, CDCl3)  194.7, 146.3, 144.1, 144.0, 143.1, 138.2, 135.4, 135.2, 134.0, 

131.6, 129.4, 129.3, 129.0, 128.4, 128.2, 123.6, 123.0, 44.4, 33.6, 33.1, 31.2, 30.6, 22.9, 14.1. 

Minor product 1H NMR (300 MHz, CDCl3)  7.59-7.57 (m, 1H), 7.49-7.49 (m, 2H), 7.45-7.40 

(m, 3H), 7.16 -7.11 (m, 3H), 6.67-6.63 (m, 1H), 3.62 (t, J = 6.3 Hz, 2H), 3.20-3.12 (m, 2H), 

2.88-2.78 (m, 2H), 2.12-2.04 (m, 2H), 1.59-1.53 (m, 4H), 1.09 (t, J = 7.7 Hz, 3H). 

13C NMR (75 MHz, CDCl3)  195.0, 143.8, 142.6, 140.9, 140.3, 139.9, 137.2, 136.0, 135.0, 

134.7, 134.1, 131.5, 129.1, 128.8, 128.1, 123.8, 122.8, 44.6, 34.0, 33.3, 29.1, 26.9, 23.5, 14.1. 

HRMS (ESI+): calculated for C26H25ClONa+ [M+Na+]: 411.1486, found 411.1490. 

2.4. Post-functionalization of [2+2+2] cycloadducts 

10-Butyl-4-phenyl-1H-fluoreno[2,3-c]furan-9(3H)-one (94) 

 

A solution of 65 (400 mg, 1.0 mmol) in trifluoroacetic acid (3 mL) was refluxed for 36 

h. Evaporation of the excess of trifluoroacetic acid under reduced pressure gave a residue which 

was purified by column chromatography on silica gel (Petroleum ether/Ethyl acetate gradient 

from 98/2 to 95/5) to afford compound 94 (300 mg, 85%) as a yellow solid. m.p. 109 – 111 °C.  

Rf = 0.28 (Cyclohexane/Ethyl acetate; 90/10, KMnO4, UV).  

1H NMR (300 MHz, CDCl3), δ 7.60 – 7.55 (m, 1H), 7.53 – 7.47 (m, 3H), 7.37 – 7.32 (m, 2H), 

7.18 – 7.05 (m, 2H), 6.38 (d, J = 7.2 Hz, 1H), 5.17 (s, 1H), 4.86 (s, 1H), 2.97 (t, J = 7.5 Hz, 

2H), 1.68 – 1.54 (m, 2H), 1.52 – 1.40 (m, 2H), 0.97 (t, J = 7.2 Hz, 3H). 
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13C NMR (75 MHz, CDCl3), δ 194.3, 145.4, 143.6, 142.7, 139.9, 137.8, 137.5, 135.4, 134.1, 

131.2, 129.8, 129.3, 128.5, 123.8, 122.8, 73.9, 73.3, 32.2, 29.0, 23.2, 14.1.  

HRMS (ESI+): calculated for C25H22O2Na+ [M+Na+]: 377.1512, found 377.1515. 

1-Butyl-2,3-bis(hydroxymethyl)-4-phenyl-9H-fluoren-9-one (95). 

 

To a solution of 76 (100 mg, 0.21 mmol) in CH2Cl2 (1 mL) was added trifluoroacetic 

acid (1 mL, large excess amount). The reacton mixture was stirred at room temperature for 36 

h. When the reaction was complete (TLC monitoring), CH2Cl2 and the excess of trifluoroacetic 

acid were evaporated under reduced pressure. The residue was purified by flash 

chromatography on silica gel (Petroleum ether/Ethyl acetate gradient from 98/2 to 95/5) to 

afford compound 95 (60 mg, 75%) as a yellow solid. m.p. 166 – 168 °C. 

Rf = 0.28 (Cyclohexane/Ethyl acetate; 90/10, KMnO4, UV).  

1H NMR (300 MHz, CDCl3), δ 7.66 – 7.60 (m, 1H), 7.58 – 7.51 (m, 3H), 7.34 – 7.27 (m, 2H), 

7.22 (td, J = 7.5, 0.9 Hz, 1H), 7.11 (td, J = 7.5, 1.2 Hz, 1H), 5.96 (d, J = 7.5 Hz, 1H), 5.57 (s, 

2H), 5.22 (s, 2H), 3.33 – 3.22 (m, 2H), 1.63 – 1.52 (m, 4H), 1.01 (t, J = 6.9 Hz, 3H). 

13C NMR (75 MHz, CDCl3), δ 193.7, 145.4, 144.9, 142.7, 138.2, 138.0, 136.5, 134.9, 134.7, 

133.1, 132.1, 129.6, 129.6, 129.2, 124.2, 123.6, 63.7, 62.7, 33.8, 27.4, 23.4, 13.9.  

HRMS (ESI+): calculated for C25H24O3Na+ [M+Na+]: 395.1618, found 395.1619. 

2,3-Bis(bromomethyl)-1-butyl-4-phenyl-9H-fluoren-9-one (96) 
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To a solution of 76 (480 mg, 1.0 mmol) in CHCl3 (10 mL) were added nBu4NBr (0.16 

g, 0.5 mmol), aq. HBr (48% in water, 3 mL) and conc. H2SO4 (0.3 mL). The resulting mixture 

was heated at 60 °C for 24 h. At the end of the reaction (TLC monitoring), the reaction mixture 

was poured into water (50 mL). The product was extracted with CH2Cl2 (3×30 mL) and the 

combined organic layers were dried over MgSO4, filtered and concentrated under reduced 

pressure. The residue was purified by flash chromatography on silica gel (Petroleum 

ether/Dichloromethane = 2/1) to afford compound 96 (444 mg, 90%) as a yellow solid. m.p. 

132 – 133 °C. 

Rf = 0.52 (Cyclohexane/Ethyl acetate; 90/10, KMnO4, UV).  

1H NMR (300 MHz, CDCl3) δ 7.62 – 7.50 (m, 4H), 7.48 – 7.35 (m, 2H), 7.17 (td, J = 7.5, 0.9 

Hz, 1H), 7.07 (td, J = 7.6, 1.3 Hz, 1H), 5.88 (d, J = 7.5 Hz, 1H), 4.79 (s, 2H), 4.42 (s, 2H), 3.37 

– 3.13 (m, 2H), 1.75 – 1.50 (m, 4H), 1.04 (t, J = 7.0 Hz, 3H).  

13C NMR (75 MHz, CDCl3) δ 194.0, 144.5, 143.8, 143.1, 142.1, 137.0, 136.9, 136.8, 135.0, 

134.4, 131.2, 129.4, 129.3, 129.1, 128.9, 123.9, 123.4, 33.3, 27.5, 27.3, 26.3, 23.5, 14.0.  

HRMS (ESI+): calcd. for C25H22Br2OH [M+H]+: 497.0110, found 497.0109. 

1-Butyl-4-iodo-2,3-bis(methoxymethyl)-9H-fluoren-9-one (97) 

 

To a solution of 69 (0.56 g, 1.41 mmol) in CH2Cl2 (10 mL) was added a solution of 

iodine monochloride (240 mg, 1.5 mmol) in DCM (2 mL) at -78 °C and the mixture was allowed 

to warm to room temperature and stirred for additional 30 minutes. The reaction was quenched 

with aqueous saturated Na2S2O3 and extracted with CH2Cl2 (3×30 mL). The organic layer was 

washed with brine and dried over MgSO4, filtered and concentrated under reduced pressure. 

The residue was purified by flash chromatography on silica gel (Petroleum ether/Ethyl acetate 

gradient from 98/2 to 95/5) to afford compound 97 (0.53 g, 84%) as a yellow solid. m.p. 93 – 

95 °C.  

Rf = 0.3 (Cyclohexane/Ethyl acetate; 90/10, KMnO4, UV).  
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1H NMR (300 MHz, CDCl3) δ 8.98 – 8.87 (m, 1H), 7.67 (dd, J = 7.3, 0.6 Hz, 1H), 7.56 (td, J 

= 7.7, 1.3 Hz, 1H), 7.35 (td, J = 7.4, 0.8 Hz, 1H), 4.74 (s, 2H), 4.55 (s, 2H), 3.54 (s, 3H), 3.48 

(s, 3H), 3.18 (t, J = 7.5 Hz, 2H), 1.55 – 1.44 (m, 4H), 0.98 (t, J = 6.8 Hz, 3H).  

13C NMR (101 MHz, CDCl3) δ 193.3, 147.8, 146.5, 145.3, 144.2, 138.9, 135.1, 133.8, 133.1, 

129.6, 124.1, 122.9, 95.8, 75.2, 67.8, 59.0, 58.9, 33.5, 27.0, 23.4, 14.0.  

HRMS (ESI+): calcd. for C21H23IO3Na [M+Na]+: 473.0584, found 473.0580. 

1-Butyl-2,3-bis(methoxymethyl)-4-(phenylethynyl)-9H-fluoren-9-one (98) 

 

PdCl2(PPh3)2 (5 mol%, 19.6 mg) and CuI (5 mol%, 2.7 mg) were added to a NEt3/THF 

(1:1, 2 mL) solution containing iodo-substituted fluorenone 97 (250 mg, 0.56 mmol), 

phenylacetylene (86 mg, 0.84 mmol, 1.5 equiv). The mixture was stirred at 40 °C for 4 h under 

argon. When the reaction was complete (TLC monitoring), a saturated aqueous solution of 

ammonium chloride was added and the mixture was stirred for 5 minutes. The organic layer 

was extracted with ethyl acetate (3×20 mL), washed with brine, dried over MgSO4, filtered and 

concentrated under reduced pressure. The residue was purified by flash chromatography on 

silica gel (Petroleum ether/Ethyl acetate gradient from 98/2 to 95/5) to afford compound 98 

(232 mg, 98%) as a yellow solid. m.p. 124 – 126 °C.  

Rf = 0.28 (Cyclohexane/Ethyl acetate; 90/10, KMnO4, UV).  

1H NMR (300 MHz, CDCl3) δ 8.43 (d, J = 7.6 Hz, 1H), 7.72 – 7.57 (m, 3H), 7.55 – 7.39 (m, 

4H), 7.36 – 7.29 (m, 1H), 4.86 (s, 2H), 4.57 (s, 2H), 3.52 (s, 3H), 3.48 (s, 3H), 3.21 (t, J = 7.5 

Hz, 2H), 1.68 – 1.40 (m, 4H), 0.99 (t, J = 6.9 Hz, 3H).  

13C NMR (75 MHz, CDCl3) δ 193.9, 145.9, 145.3, 143.3, 138.1, 134.9, 134.7, 131.6, 131.0, 

129.4, 129.1, 128.8, 123.9, 123.2, 123.1, 116.9, 97.8, 86.2, 69.5, 67.1, 59.0, 58.8, 33.6, 27.4, 

23.5, 14.1. 
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HRMS (ESI+): calcd. for C29H28O3Na [M+Na]+: 447.1931, found 447.1930. 

1-Butyl-2,3-bis(methoxymethyl)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-9H-

fluoren-9-one (99) 

 

To a dry DMF solution (1 mL) of 97 (135 mg, 0.3 mmol) were added 

bis(pinacolato)diboron (114 mg, 0.45 mmol), PdCl2(dppf)·CH2Cl2 (11 mg, 0.015 mmol), and 

KOAc (60 mg, 0.6 mmol). The mixture was stirred at 80 °C for 18 h. After cooling, the DMF 

was removed under vacuum, and CH2Cl2 and water were added. The resulting mixture was 

extracted with dichloromethane (2×30 mL), and the organic layer was washed with water and 

brine, dried over anhydrous MgSO4. The organic solvent was concentrated in vacuo to yield a 

dark-black oil. The excess bis(pinacolato)diboron was removed under reduced pressure with 

heating. The residue was purified by flash chromatography on silica gel (Petroleum ether/Ethyl 

acetate gradient from 95/5 to 90/10) afforded 99 (88 mg, 65%) as a yellow oil.  

Rf = 0.23 (Cyclohexane/Ethyl acetate; 90/10, KMnO4, UV).  

1H NMR (300 MHz, CDCl3) δ 8.07 (d, J = 7.6 Hz, 1H), 7.60 (d, J = 7.2 Hz, 1H), 7.42 (td, J = 

7.6, 1.3 Hz, 1H), 7.30 – 7.19 (m, 1H), 4.70 (s, 2H), 4.42 (s, 2H), 3.39 (s, 3H), 3.27 (s, 3H), 3.24 

– 3.13 (m, 2H), 1.47 (s, 16H), 1.01 – 0.90 (m, 3H). 

13C NMR (75 MHz, CDCl3) δ 194.9, 150.5, 148.7, 145.2, 144.9, 135.2, 135.0, 134.0, 129.8, 

128.8, 123.7, 122.7, 84.1, 71.2, 66.7, 58.3, 57.5, 33.6, 27.0, 25.9, 23.3, 14.1.  

1-Butyl-2,3-bis(methoxymethyl)-4-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) 

phenyl)-9H-fluoren-9-one (100) 
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To a dry DMF solution (1 mL) of 73 (150 mg, 0.313 mmol) were added 

bis(pinacolato)diboron (120 mg, 0.47 mmol), PdCl2(dppf)·CH2Cl2 (11.4 mg, 0.0156 mmol), 

and KOAc (61 mg, 0.626 mmol). The mixture was stirred at 80 °C for 18 h. After the solution 

was cooled, the DMF was removed under vacuum, and CH2Cl2 and water were added. The 

resulting mixture was extracted with dichloromethane (2×30 mL), and the organic layer was 

washed with water and brine, dried over anhydrous MgSO4. The solvent was concentrated in 

vacuo to yield a dark-black oil. The excess bis(pinacolato)diboron was removed under reduced 

pressure with heating. The residue was purified by flash chromatography on silica gel 

(Petroleum ether/Ethyl acetate gradient from 95/5 to 90/10) afforded 100 (140 mg, 85%) as a 

yellow oil.  

Rf = 0.2 (Cyclohexane/Ethyl acetate; 90/10, KMnO4, UV).  

1H NMR (300 MHz, CDCl3) δ 7.93 (d, J = 7.7 Hz, 2H), 7.56 (d, J = 7.0 Hz, 1H), 7.34 (d, J = 

7.7 Hz, 2H), 7.09 (dt, J = 23.8, 7.2 Hz, 2H), 6.00 (d, J = 7.4 Hz, 1H), 4.55 (s, 2H), 4.14 (s, 2H), 

3.49 (s, 3H), 3.31 – 3.18 (m, 2H), 3.17 (s, 3H), 1.66 – 1.45 (m, 4H), 1.42 (s, 12H), 1.01 (t, J = 

6.6 Hz, 3H).  

13C NMR (75 MHz, CDCl3) δ 194.6, 144.9, 143.5, 142.7, 142.2, 141.3, 137.7, 136.9, 135.2, 

135.1, 134.3, 130.8, 129.0, 128.5, 123.6, 123.4, 84.2, 68.5, 67.4, 58.9, 58.6, 33.6, 27.3, 25.1, 

23.5, 14.1.  

MS (ESI, NH3): m/z = 549 [M + Na] +.  

3. Formation of 2-aminopyridine and related derivatives 

3.1. Synthesis of symmetrical diynes  

General procedure F:  
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To a suspension of NaH (60% in mineral oil, 1.1-2.4 equiv) in THF was added dropwise 

a solution of nucleophile (1.0 equiv) at 0 °C, and the reaction mixture was stirred at 0 °C for 30 

min. A solution of 1-bromo-2-butyne or propargyl bromide (1.2 or 2.4 equiv) in THF was added 

to the mixture. The reaction was allowed to warm up to room temperature and stirred until 

completion. The mixture was finally quenched with saturated ammonium chloride and 

extracted with diethyl ether (×3). The combined organic layers were washed with brine, dried 

over MgSO4, filtered and concentrated under reduced pressure. The residue was purified by 

column chromatography or distillation under vacuum to afford the desired product.  

General procedure G:  

 

To a round bottom flask p-toluenesulfonamide (1 equiv), 1-bromo-2-butyne or 

propargyl bromide (3.0 equiv), potassium carbonate (5 equiv) and acetonitrile (5 M) were 

employed. The resulting mixture was stirred at 80 °C for 14 h. When the reaction was complete 

(TLC monitoring), the reaction mixture was filtered, and the organic layer was concentrated 

under reduced pressure. The residue was purified by column chromatography to afford the 

desired product.  

General procedure H: 

 

Silver nitrate (10 mol%) and N-bromosuccinimide (NBS) or N-iodosuccinimide (NIS) 

(1.2-2 equiv) were added to a solution of terminal alkyne (1 equiv) in dry acetone or DMF, and 

the reaction mixture was stirred at room temperature for 3 h. The reaction mixture was diluted 

with Et2O and washed with water. The aqueous phase was extracted with Et2O (×3), the 

combined organic fractions were washed with water, saturated Na2S2O3 aqueous solution and 
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brine. The solvent was dried over MgSO4, filtered and concentrated under reduced pressure. 

The residue was purified by flash chromatography to afford the desired compound.  

Dimethyl 2,2-di(but-2-yn-1-yl)malonate (101) 

 

This compound was obtained following the general procedure F. Starting from dimethyl 

malonate (4.01 g, 30 mmol), 1-bromo-2-butyne (5.84 mL, 66 mmol, 2.2 equiv) and NaH (2.64 

g, 66 mmol). The reaction mixture was stirred at room temperature for 14 h. Purification on 

silica gel (Petroleum ether/Ethyl acetate gradient from 95/5 to 90/10) afforded 101 (6.15 g, 87 

%) as a white solid. The analytical data were identical to the literature.154  

Rf = 0.51 (Cyclohexane/Ethyl acetate; 90/10, KMnO4, UV).  

1H NMR (300 MHz, CDCl3) δ 3.73 (s, 6H), 2.88 (q, J = 2.7 Hz, 4H), 2.05 (t, J = 2.7 Hz, 6H).  

13C NMR (75 MHz, CDCl3) δ 169.8, 79.1, 73.2, 57.1, 53.0, 23.1, 3.6.  

5,5-Di(but-2-yn-1-yl)-1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-trione (102) 

 

This compound was obtained following the general procedure F. Starting from 1,3-

dimethylbarbituric acid (0.94 g, 6 mmol), 1-bromo-2-butyne (1.26 mL, 14.4 mmol, 2.4 equiv) 

and NaH (0.58 g, 14.4 mmol, 2.4 equiv). The reaction mixture was stirred at room temperature 

for 12 h. Purification on silica gel (Petroleum ether/Ethyl acetate gradient from 95/5 to 85/15) 

afforded 102 (0.96 g, 62 %) as a white solid. m.p. 118-120 °C.  

Rf = 0.62 (Cyclohexane/Ethyl acetate; 80/20, KMnO4, UV).  

1H NMR (300 MHz, CDCl3) δ 3.40 – 3.24 (m, 6H), 2.78 – 2.51 (m, 4H), 1.75 – 1.50 (m, 6H). 
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13C NMR (75 MHz, CDCl3) δ 170.3, 151.4, 80.0, 72.4, 56.6, 28.8, 28.3, 3.4.  

MS (CI, NH3): m/z = 261 [M + H]+.  

2,2-Di(but-2-yn-1-yl)-1H-indene-1,3(2H)-dione (103) 

 

This compound was obtained following the general procedure F. Starting from indene dione 

(0.84 g, 6 mmol), 1-bromo-2-butyne (1.26 mL, 14.4 mmol, 2.4 equiv) and NaH (0.58 g, 14.4 

mmol, 2.4 equiv). The reaction mixture was stirred at room temperature for 3 h. Purification on 

silica gel (Petroleum ether/Ethyl acetate gradient from 95/5 to 90/10) afforded 103 (1.15 g, 77 

%) as a yellow solid. m.p. 97-99 °C. The analytical data were identical to the literature.145e 

Rf = 0.28 (Cyclohexane/Ethyl acetate; 90/10, KMnO4, UV).  

1H NMR (300 MHz, CDCl3) δ 8.06 – 7.93 (m, 2H), 7.92 – 7.76 (m, 2H), 2.63 – 2.46 (m, 4H), 

1.39 (s, 6H). 

13C NMR (75 MHz, CDCl3) δ 201.9, 142.8, 135.6, 123.2, 79.5, 73.1, 56.6, 23.5, 3.2.  

2,2-Di(but-2-yn-1-yl)propane-1,3-diol (104) 

 

To a stirred mixture of LiAlH4 (2.89 g, 76.2 mmol, 6 equiv) in dry THF (50 mL) at 0 

°C was added dropwise a solution of dimethyl 2,2-di(but-2-ynyl)malonate 101 (3.0 g, 12.7 

mmol, 1 equiv) in THF (20 mL). The resulting mixture was stirred at room temperature for 1 

h. The reaction was quenched carefully with water (2.9 mL), followed by stirring at 0 °C for 10 

min. Then a solution of NaOH (15%, 2.9 mL) was added and stirred for additional 10 min, 

followed by addition of water (8.7 mL) and stirred for additional 1 h. The resulting solution 

was dried over MgSO4, filtered through Celite, and concentrated to give the diol 104 (2.05 g, 

95%) as a white solid. m.p. 85-87 °C. The analytical data were identical to the literature.34  
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Rf = 0.1 (Cyclohexane/Ethyl acetate; 90/10, KMnO4, UV).  

1H NMR (300 MHz, CDCl3) δ 3.68 (s, 4H), 2.46 (br, 2H), 2.24 (q, J = 2.4 Hz, 4H), 1.78 (s, 

6H).  

13C NMR (75 MHz, CDCl3) δ 78.5, 75.2, 67.1, 42.5, 22.5, 3.6.  

2,2-Di(but-2-yn-1-yl)propane-1,3-diyl diacetate (105) 

 

To a solution of diol 104 (0.72 g, 4 mmol) in DCM (20 mL) at 0 °C was added dropwise 

acetic anhydride (1.63 g, 16 mmol, 4 equiv) and diisopropylethylamine (2.27 g, 17.6 mmol, 4.4 

equiv). The reaction mixture was stirred at room temperature for 24 h and then quenched with 

water. The aqueous layer was extracted with Et2O (2×50 mL), and the combined organic layers 

were washed with brine, dried with MgSO4, filtered and concentrated under reduced pressure. 

The residue was purified by flash chromatography on silica gel (Petroleum ether/Ethyl acetate 

gradient from 95/5 to 90/10) afforded 105 (0.98 g, 92%) as a colorless oil. The analytical data 

were identical to the literature.145b 

Rf = 0.48 (Cyclohexane/Ethyl acetate; 90/10, KMnO4, UV).  

1H NMR (300 MHz, CDCl3) δ 4.07 (s, 4H), 2.30 (q, J = 2.6 Hz, 4H), 2.05 (s, 6H), 1.76 (t, J = 

2.6 Hz, 6H). 

13C NMR (75 MHz, CDCl3) δ 170.9, 78.8, 73.8, 65.6, 40.4, 22.6, 21.0, 3.7.  

(((2,2-Di(but-2-yn-1-yl)propane-1,3-diyl)bis(oxy))bis(methylene))dibenzene (106) 

 

To a suspension of NaH (60% in mineral oil, 2.5 equiv, 2.14 g) in THF (20 mL) was 

added dropwise diol 104 (0.9 g, 5 mmol) in THF (5 mL). The reaction mixture was stirred at 0 

°C for 30 minutes before a solution of benzyl bromide (2.14 g, 12.5 mmol, 2.5 equiv) was added 
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dropwise. The reaction mixture was stirred at room temperature for 12 h and then quenched 

with water. The aqueous layer was extracted with Et2O (2×50 mL), and the combined organic 

layers were washed with brine, dried with MgSO4, filtered and concentrated under reduced 

pressure. The residue was purified by flash chromatography on silica gel (Petroleum ether/Ethyl 

acetate gradient from 95/5 to 90/10) afforded 106 (1.8 g, 99%) as a colorless oil. The analytical 

data were identical to the literature.145b 

Rf = 0.45 (Cyclohexane/Ethyl acetate; 90/10, KMnO4, UV).  

1H NMR (300 MHz, CDCl3) δ 7.41 – 7.22 (m, 10H), 4.53 (s, 4H), 3.47 (s, 4H), 2.41 – 2.23 (m, 

4H), 1.75 (s, 6H). 

13C NMR (75 MHz, CDCl3) δ 139.0, 128.3, 127.5, 127.4, 75.6, 73.4, 71.7, 42.6, 22.5, 3.7.  

1-(But-2-yn-1-yloxy)but-2-yne (107) 

 

This compound was obtained following the general procedure F. Starting from 2-butyne-1-ol 

(1.05 g, 15 mmol), 1-bromo-2-butyne (1.6 mL, 18 mmol, 1.2 equiv) and NaH (1.32 g, 33 mmol, 

2.2 equiv). The reaction mixture was stirred at room temperature for 4 h. Purification on silica 

gel (Petroleum ether/Ethyl acetate gradient from 99/1 to 80/20) afforded 107 (1.75 g, 96 %) as 

a colorless oil. The analytical data were identical to the literature.154 

Rf = 0.5 (Cyclohexane/Ethyl acetate; 95/5, KMnO4, UV).  

1H NMR (300 MHz, CDCl3) δ 4.18 (q, J = 2.3 Hz, 4H), 1.85 (t, J = 2.3 Hz, 6H). 

13C NMR (75 MHz, CDCl3) δ 83.0, 74.7, 57.1, 3.7. 

N,N-di(but-2-yn-1-yl)-4-methylbenzenesulfonamide (108) 
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This compound was obtained following the general procedure G. Starting from p-

toluenesulfonamide (2 g, 11.7 mmol), 1-bromo-2-butyne (4.66 g, 35.1 mmol, 3 equiv) and 

K2CO3 (8 g, 58.5 mmol, 5 equiv). The reaction mixture was stirred at 80 °C for 14 h. 

Purification on silica gel (Petroleum ether/Ethyl acetate; 90/10) afforded 108 (2.8 g, 70 %) as a 

white solid. The analytical data were identical to the literature.145d 

Rf = 0.76 (Cyclohexane/Ethyl acetate; 70/30, KMnO4, UV).  

1H NMR (300 MHz, CDCl3) δ 7.71 (d, J = 8.4 Hz, 2H), 7.32 – 7.20 (m, 2H), 4.07 (q, J = 2.2 

Hz, 4H), 2.41 (s, 3H), 1.64 (t, J = 2.2 Hz, 6H).  

13C NMR (75 MHz, CDCl3) δ 150.4, 143.3, 129.2, 128.0, 81.7, 71.8, 36.8, 21.6, 3.5. 

Dimethyl 2,2-di(prop-2-yn-1-yl)malonate (109) 

 

This compound was obtained following the general procedure F. Starting from dimethyl 

malonate (4.01 g, 30 mmol), propargyl bromide (7.12 mL, 67.5 mmol, 2.2 equiv) and NaH 

(2.64 g, 66 mmol). The reaction mixture was stirred at room temperature for 14 h. Purification 

on silica gel (Petroleum ether/Ethyl acetate gradient from 95/5 to 90/10) afforded 109 (5.7 g, 

91 %) as a white solid. The analytical data were identical to the literature.41 

Rf = 0.3 (Cyclohexane/Ethyl acetate; 85/15, KMnO4, UV).  

1H NMR (300 MHz, CDCl3) δ 3.75 (s, 6H), 2.98 (d, J = 2.7 Hz, 4H), 2.03 (t, J = 2.6 Hz, 2H). 

13C NMR (75 MHz, CDCl3) δ 169.0, 78.3, 71.8, 56.4, 53.2, 22.6.  

Dimethyl 2,2-bis(3-(trimethylsilyl)prop-2-yn-1-yl)malonate (110) 
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To a solution of dimethyl 2,2-di(prop-2-yn-1-yl)malonate 109 (1.04 g, 5 mmol) in THF 

(40 mL) was slowly added lithium hexamethyldisilazide (11 mmol, 11 mL, 1 M in THF) at -78 

°C, and the solution was stirred at the same temperature for 1 h. To the resulting mixture was 

added at chlorotrimethylsilane (1.08 mL, 12.5 mmol, 2.5 equiv) at -78 °C, and the reaction 

mixture was allowed to warm to room temperature and stirred for additional 1 h. The reaction 

was quenched with water (10 mL). The aqueous layer was extracted with Et2O (2×30 mL), 

and the combined organic layer was washed with brine, dried with MgSO4, filtered and 

concentrated under reduced pressure. The residues was purified by flash chromatography on 

silica gel (Petroleum ether/Ethyl acetate gradient from 98/2 to 95/5) afforded 110 (0.8 g, 45%) 

as a colorless sticky oil. The analytical data were identical to the literature.145a 

Rf = 0.65 (Cyclohexane/Ethyl acetate; 95/5, KMnO4, UV).  

1H NMR (300 MHz, CDCl3) δ 3.74 (s, 6H), 2.97 (s, 4H), 0.12 (s, 18H). 

13C NMR (75 MHz, CDCl3) δ 169.2, 101.1, 88.5, 57.4, 53.0, 24.2, 0.1. 

2,2-Dimethyl-5,5-di(prop-2-yn-1-yl)-1,3-dioxane (121) 

 

To a solution of diol 120 (0.6 g, 4.0 mmol) in dry acetone (20 mL) was added 

phosphorus pentoxide (1.14 g, 8.0 mmol, 2 equiv) by one portion and the reaction mixture was 

stirred at room temperature for 20 mins. Then the resulting mixture was poured into a mixture 

of NaOH (2 g) and ice (30 g), and extracted with diethyl ether (3×30 mL). The combined 

organic fractions were washed with saturated aqueous NaHCO3 and brine, dried with MgSO4, 

filtered and concentrated under reduced pressure. The residues was purified by flash 

chromatography on silica gel (Petroleum ether/Ethyl acetate gradient from 95/5 to 90/10) 

afforded 121 (0.61 g, 80%) as a slight yellow oil. The analytical data were identical to the 

literature.145i 

Rf = 0.65 (Cyclohexane/Ethyl acetate; 80/20, KMnO4, UV).  

1H NMR (300 MHz, CDCl3) δ 3.77 (s, 4H), 2.43 (d, J = 2.7 Hz, 4H), 2.05 (t, J = 2.7 Hz, 2H), 

1.42 (s, 6H). 
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13C NMR (75 MHz, CDCl3) δ 98.4, 79.9, 71.5, 66.0, 35.2, 23.9, 22.8. 

4-Methyl-N,N-di(prop-2-yn-1-yl)benzenesulfonamide (122) 

 

This compound was obtained following the general procedure G. Starting from p-

toluenesulfonamide (6.84 g, 40 mmol), propargyl bromide (11.4 mL, 120 mmol, 3 equiv) and 

K2CO3 (27.2 g, 200 mmol, 5 equiv). The reaction mixture was stirred at 80 °C for 14 h. 

Purification on silica gel (Petroleum ether/Ethyl acetate; 85/15) afforded 122 (9.2 g, 91 %) as a 

white solid. The analytical data were identical to the literature.145j 

Rf = 0.3 (Cyclohexane/Ethyl acetate; 85/15, KMnO4, UV).  

1H NMR (300 MHz, CDCl3) δ 7.71 (d, J = 7.8 Hz, 2H), 7.30 (d, J = 7.8 Hz, 2H), 4.16 (d, J = 

2.7 Hz, 4H), 2.42 (s, 3H), 2.14 (t, J = 2.7 Hz, 2H).  

13C NMR (CDCl3, 75 MHz): δ 144.2, 136.9, 129.2, 128.2, 76.2, 74.4, 36.2, 21.6.  

tert-Butyl di(prop-2-yn-1-yl)carbamate (123) 

 

This compound was obtained following the general procedure F. Starting from Boc-protected 

propargylamine (3.45 g, 22.3 mmol), propargyl bromide (3.5 mL, 33.4 mmol, 1.5 equiv) and 

NaH (1.34 g, 33.4 mmol, 1.5 equiv). The reaction mixture was stirred at room temperature for 

14 h. Purification on silica gel (Petroleum ether/Ethyl acetate; 90/10) afforded 123 (3.13 g, 

73%) as pale yellow oil. The analytical data were identical to the literature.145k 

Rf = 0.57 (Cyclohexane/Ethyl acetate; 90/10, KMnO4, UV).  

1H NMR (300 MHz, CDCl3) δ 4.16 (br, 4H), 2.22 (t, J = 2.5 Hz, 2H), 1.47 (s, 9H). 

13C NMR (CDCl3, 75 MHz): δ 154.4, 81.3, 79.0, 72.0, 35.3, 28.4.  
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Dimethyl 2,2-bis(3-bromoprop-2-yn-1-yl)malonate (124) 

 

This compound was obtained following the general procedure H. Starting from dimethyl 2,2-

di(prop-2-yn-1-yl)malonate 109 (1.04 g, 5 mmol), NBS (1.78 g, 10 mmol, 2 equiv) and silver 

nitrate (85 mg, 0.5 mmol). The reaction mixture was stirred at room temperature for 3 h. 

Purification on silica gel (Petroleum ether/Ethyl acetate gradient from 95/5 to 90/10) afforded 

124 (5.7 g, 98 %) as a slight yellow solid. m.p. 60-62 °C. The analytical data were identical to 

the literature.145l 

Rf = 0.38 (Cyclohexane/Ethyl acetate; 90/10, KMnO4, UV).  

1H NMR (300 MHz, CDCl3) δ 3.76 (s, 6H), 2.99 (s, 4H). 

13C NMR (75 MHz, CDCl3) δ 169.0, 74.4, 56.5, 53.4, 42.3, 24.2. 

MS (CI, NH3): m/z = 384 [M + NH4]
 +.  

3.2. Synthesis of unsymmetrical diynes  

General procedure I:  

 

To a solution of alcohol (1.0 equiv) in DMSO (1 M) was slowly added an aqueous solution of 

potassium hydroxide (1 M, 1.3 equiv) at 0 °C. After 10 mins, a solution of propargyl bromide 

(1.0 equiv) was added dorpwise. The reaction mixture was stirred at room temperature for 4 h. 

The reaction was quenched with water, and the aqueous layer was extracted with Et2O (×3). 

The combined organic layers were washed with water and brine, dried over MgSO4, filtered 

and concentrated under reduced pressure. The residue was purified by flash chromatography to 

afford the desired compound.  

Dimethyl 2-(but-2-yn-1-yl)-2-(prop-2-yn-1-yl)malonate (125) 
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This compound was obtained following the general procedure F. Starting from dimethyl 2-(but-

2-yn-1-yl)malonate 144 (3.3 g, 18 mmol), propargyl bromide (2.4 mL, 21.6 mmol, 1.2 equiv) 

and NaH (1.08 g, 27 mmol, 1.5 equiv). The reaction mixture was stirred at room temperature 

for 4 h. Purification on silica gel (Petroleum ether/Ethyl acetate gradient from 98/2 to 95/5) 

afforded 125 (3.2 g, 80%) as a pale yellow solid. The analytical data were identical to the 

literature.145l 

Rf = 0.35 (Cyclohexane/Ethyl acetate; 90/10, KMnO4, UV).  

1H NMR (300 MHz, CDCl3) δ 3.75 (s, 6H), 2.97 (d, J = 2.6 Hz, 2H), 2.93 (q, J = 2.5 Hz, 2H), 

2.02 (t, J = 2.7 Hz, 1H), 1.75 (t, J = 2.6 Hz, 3H). 

13C NMR (75 MHz, CDCl3) δ 169.5, 79.4, 78.8, 73.0, 71.6, 57.0, 53.1, 23.2, 22.9, 3.6.  

1-(Prop-2-yn-1-yloxy)but-2-yne (127) 

 

This compound was obtained following the general procedure I. Starting from 2-butyne-1-ol 

(2.8 g, 40 mmol), propargyl bromide (4.3 mL, 40 mmol, 1 equiv) and KOH (2.92 g, 52 mmol, 

1.3 equiv). The reaction mixture was stirred at room temperature for 4 h. Purification on silica 

gel (Petroleum ether/Ethyl acetate gradient from 95/5 to 90/10) afforded 127 (3.4 g, 79%) as a 

pale yellow oil. The analytical data were identical to the literature.197 

Rf = 0.5 (Cyclohexane/Ethyl acetate; 95/5, KMnO4, UV).  

1H NMR (300 MHz, CDCl3) δ 4.23 (d, J = 2.4 Hz, 2H), 4.20 (q, J = 2.3 Hz, 2H), 2.46 – 2.38 

(m, 1H), 1.85 (t, J = 2.4 Hz, 3H). 

                                                 
197 For diyne 127, see: Trost, B. M.; Rudd, M. T. J. Am. Chem. Soc. 2005, 127, 4763. 
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13C NMR (75 MHz, CDCl3) δ 83.3, 79.3, 74.8, 74.3, 57.3, 56.4, 3.7.  

Dimethyl 2-(3-bromoprop-2-yn-1-yl)-2-(but-2-yn-1-yl)malonate (129) 

 

This compound was obtained following the general procedure H. Starting from dimethyl 2-

(but-2-yn-1-yl)-2-(prop-2-yn-1-yl)malonate 125 (0.89 g, 4 mmol), NBS (1 g, 5.5 mmol, 1.4 

equiv) and silver nitrate (0.1 g, 0.6 mmol). The reaction mixture was stirred at room temperature 

for 3 h. Purification on silica gel (Petroleum ether/Ethyl acetate gradient from 95/5 to 90/10) 

afforded 129 (1.17 g, 98 %) as a white solid. m.p. 65-67 °C. The analytical data were identical 

to the literature.145l 

Rf = 0.44 (Cyclohexane/Ethyl acetate; 90/10, KMnO4, UV).  

1H NMR (300 MHz, CDCl3) δ 3.74 (s, 6H), 2.98 (s, 2H), 2.89 (q, J = 2.5 Hz, 2H), 1.74 (t, J = 

2.6 Hz, 3H). 

13C NMR (75 MHz, CDCl3) δ 169.4, 79.5, 74.8, 72.9, 56.9, 53.2, 41.7, 24.1, 23.3, 3.6. 

1-((3-Bromoprop-2-yn-1-yl)oxy)but-2-yne (130) 

 

This compound was obtained following the general procedure H. Starting from 1-(prop-2-yn-

1-yloxy)but-2-yne 127 (1.08 g, 10 mmol), NBS (1.96 g, 11 mmol, 1.1 equiv) and silver nitrate 

(0.17 g, 1 mmol). The reaction mixture was stirred at room temperature for 3 h. Purification on 

silica gel (Petroleum ether/Ethyl acetate gradient from 98/2 to 95/5) afforded 130 (1.8 g, 97 %) 

as a pale yellow oil. The analytical data were identical to the literature.145l 

Rf = 0.4 (Cyclohexane/Ethyl acetate; 95/5, KMnO4, UV).  

1H NMR (300 MHz, CDCl3) δ 4.26 (s, 2H), 4.20 (q, J = 2.3 Hz, 2H), 1.86 (t, J = 2.3 Hz, 3H). 
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13C NMR (75 MHz, CDCl3) δ 83.5, 75.9, 74.3, 57.5, 57.4, 46.4, 3.7. 

1-Bromo-3-(prop-2-yn-1-yloxy)prop-1-yne (131) 

 

This compound was obtained following the general procedure I. Starting from 3-bromoprop-2-

yn-1-ol 145 (1.6 g, 12 mmol), propargyl bromide (1.55 mL, 14.4 mmol, 1.2 equiv) and KOH 

(0.87 g, 15.6 mmol, 1.3 equiv). The reaction mixture was stirred at room temperature for 4 h. 

Purification on silica gel (Petroleum ether/Ethyl acetate gradient from 95/5 to 90/10) afforded 

131 (1 g, 50%) as a pale yellow oil. The analytical data were identical to the literature.145l 

Rf = 0.66 (Cyclohexane/Ethyl acetate; 80/20, KMnO4, UV).  

1H NMR (300 MHz, CDCl3) δ 4.29 (s, 2H), 4.25 (d, J = 2.4 Hz, 2H), 2.46 (t, J = 2.4 Hz, 1H).  

13C NMR (75 MHz, CDCl3) δ 78.8, 75.5, 75.3, 57.6, 56.8, 46.9.  

N-(3-bromoprop-2-yn-1-yl)-N-(but-2-yn-1-yl)-4-methylbenzenesulfonamide (132) 

 

This compound was obtained following the general procedure H. Starting from N-(but-2-yn-1-

yl)-4-methyl-N-(prop-2-yn-1-yl)benzenesulfonamide 128 (0.51 g, 2 mmol), NBS (0.43 g, 2.4 

mmol, 1.2 equiv) and silver nitrate (0.034 g, 0.2 mmol). The reaction mixture was stirred at 

room temperature for 3 h. Purification on silica gel (Petroleum ether/Ethyl acetate gradient from 

90/10 to 80/20) afforded 132 (0.65 g, 96 %) as a white solid. m.p. 86 – 88°C.  

Rf = 0.5 (Cyclohexane/Ethyl acetate; 80/20, KMnO4, UV).  

1H NMR (300 MHz, CDCl3) δ 7.73 – 7.68 (m, 2H), 7.39 – 7.30 (m, 2H), 4.16 (s, 2H), 4.10 – 

4.00 (m, 2H), 2.41 (s, 3H), 1.72 – 1.59 (m, 3H). 
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13C NMR (75 MHz, CDCl3) δ 143.9, 135.3, 129.6, 128.1, 82.3, 73.0, 71.5, 45.2, 37.4, 37.2, 

21.7, 3.5.  

MS (CI, NH3): m/z = 339 [M + H] +.  

Dimethyl 2-(but-2-yn-1-yl)-2-(3-iodoprop-2-yn-1-yl)malonate (133) 

 

This compound was obtained following the general procedure H. Starting from dimethyl 2-

(but-2-yn-1-yl)-2-(prop-2-yn-1-yl)malonate 125 (0.67 g, 3 mmol), NIS (0.87 g, 3.6 mmol, 1.2 

equiv) and silver nitrate (0.05 g, 0.3 mmol). The reaction mixture was stirred at room 

temperature for 3 h. Purification on silica gel (Petroleum ether/Ethyl acetate gradient from 

90/10 to 80/20) afforded 133 (1.02 g, 99 %) as a yellow solid. m.p. 68-70 °C. The analytical 

data were identical to the literature.145l 

Rf = 0.34 (Cyclohexane/Ethyl acetate; 90/10, KMnO4, UV).  

1H NMR (300 MHz, CDCl3) δ 3.75 (s, 6H), 3.13 (s, 2H), 2.90 (q, J = 2.5 Hz, 2H), 1.75 (t, J = 

2.5 Hz, 3H).  

13C NMR (75 MHz, CDCl3) δ 169.4, 88.9, 79.5, 77.4, 72.9, 57.2, 53.2, 25.1, 23.3, 3.6.  

3-(3-(But-2-yn-1-yloxy)prop-1-yn-1-yl)oxazolidin-2-one (134) 

 

To a 250 mL flask were added CuCl2 (0.26 g, 2 mmol, 0.2 equiv), 2-Oxazolidone (4.35 

g, 50.0 mmol, 5 equiv) and sodium carbonate (2.12 g, 20 mmol, 2.0 equiv). The reaction flask 

was purged with oxygen for 15 min. A solution of pyridine (1.58 g, 20.0 mmol, 2.0 equiv) in 

dry toluene (40 mL) was added. A balloon filled with oxygen was connected to the reaction 

flask via a needle. The flask was placed in an oil-bath and heated at 70 °C. After 15 min, a 

solution of 1-(prop-2-yn-1-yloxy)but-2-yne 127 (1.08 g, 10.0 mmol, 1 equiv) in dry toluene (40 
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mL) was added over 4 h using syringe pump. After this addition, the mixture was allowed to 

stir at 70 °C for additional 16 h and was then cooled to room temperature. The reaction mixture 

was concentrated under reduced pressure. The residue was purified by flash chromatography 

(Cyclohexane/Ethyl acetate gradient from 60/40 to 50/50) to afford 134 (1.15 g, 60%) as a slight 

yellow solid. m.p. 63 – 65 °C. 

Rf = 0.11 (Cyclohexane/Ethyl acetate; 70/30, KMnO4, UV).  

1H NMR (300 MHz, CDCl3) δ 4.49 – 4.38 (m, 2H), 4.36 (s, 2H), 4.16 (q, J = 2.3 Hz, 2H), 3.95 

– 3.85 (m, 2H), 1.84 (t, J = 2.3 Hz, 3H).  

13C NMR (75 MHz, CDCl3) δ 156.2, 83.2, 76.5, 74.4, 67.6, 63.2, 57.2, 56.8, 46.8, 3.7.  

MS (CI, NH3): m/z = 194 [M + H] +.  

Dimethyl 2-(pent-4-en-2-yn-1-yl)-2-(prop-2-yn-1-yl)malonate (135) 

 

This compound was obtained following the general procedure F. Starting from dimethyl 2-

(pent-4-en-2-yn-1-yl)malonate 147 (0.35 g, 1.8 mmol), propargyl bromide (0.32 g, 2.1 mmol, 

1.2 equiv) and NaH (0.84 g, 2.1 mmol, 1.2 equiv). The reaction mixture was stirred at room 

temperature for 2 h. Purification on silica gel (Petroleum ether/Ethyl acetate gradient from 98/2 

to 95/5) afforded 135 (0.36 g, 85%) as a colorless oil.  

Rf = 0.27 (Cyclohexane/Ethyl acetate; 90/10, KMnO4, UV).  

1H NMR (300 MHz, CDCl3) δ 5.78 – 5.65 (m, 1H), 5.60 – 5.50 (m, 1H), 5.45 – 5.37 (m, 1H), 

3.75 (s, 6H), 3.12 – 3.07 (m, 2H), 2.99 – 2.94 (m, 2H), 2.03 (t, J = 2.7 Hz, 1H).  

13C NMR (75 MHz, CDCl3) δ 169.3, 127.1, 117.0, 84.3, 82.6, 78.6, 71.8, 56.9, 53.2, 23.7, 22.9.  

MS (CI, NH3): m/z = 235 [M + H] +.  

Dimethyl 2-(but-2-yn-1-yl)-2-(3-(pyridin-2-yl)prop-2-yn-1-yl)malonate (137) 
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This compound was obtained following the general procedure A. Starting from dimethyl 2-

(but-2-yn-1-yl)-2-(prop-2-yn-1-yl)malonate 125 (1.1 g, 5 mmol), 2-bromo pyridine (0.57 mL, 

6 mmol, 1.2 equiv), PdCl2(PPh3)2 (70 mg, 2 mol %) and CuI (9.5 mg, 1 mol %). Purification 

on silica gel (Cyclohexane/Ethyl acetate gradient from 90/10 to 70/30) afforded 137 (0.9 g, 

60%) as a pale yellow oil. The analytical data were identical to the literature.198 

Rf = 0.2 (Cyclohexane/Ethyl acetate; 90/10, KMnO4, UV).  

1H NMR (300 MHz, CDCl3) δ 8.53 (ddd, J = 4.9, 1.8, 1.0 Hz, 1H), 7.60 (td, J = 7.7, 1.8 Hz, 

1H), 7.34 (dt, J = 7.8, 1.1 Hz, 1H), 7.19 (ddd, J = 7.6, 4.9, 1.2 Hz, 1H), 3.77 (s, 6H), 3.23 (s, 

2H), 3.04 – 2.94 (m, 2H), 1.75 (t, J = 2.4 Hz, 3H). 

13C NMR (75 MHz, CDCl3) δ 169.6, 150.0, 136.1, 127.4, 122.8, 84.8, 83.3, 79.6, 73.0, 57.1, 

53.2, 23.7, 23.5, 3.6.  

4-(But-2-yn-1-yloxy)but-1-yne (138) 

 

This compound was obtained following the general procedure F. Starting from 3-butyn-1-ol 

(0.84 g, 12 mmol, 1.2 equiv), 1-brom-2-butyne (1.33 g, 10 mmol, 1.0 equiv) and NaH (0.48 g, 

12 mmol, 1.2 equiv). The reaction mixture was stirred at room temperature for 1 h. Purification 

on silica gel (pure dichloromethane) afforded 138 (0.92 g, 75%) as a pale yellow oil.  

Rf = 0.52 (Cyclohexane/Ethyl acetate; 95/5, KMnO4, UV).  

1H NMR (300 MHz, CDCl3) δ 4.17 – 4.09 (m, 2H), 3.63 (t, J = 7.0 Hz, 2H), 2.49 (td, J = 7.0, 

2.7 Hz, 2H), 1.99 (t, J = 2.7 Hz, 1H), 1.85 (t, J = 2.4 Hz, 3H). 

                                                 
198 Sperger, C.; Strand, L. H. S.; Fiksdahl, A. Tetrahedron 2010, 66, 7749.  
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13C NMR (75 MHz, CDCl3) δ 82.8, 81.2, 74.9, 69.5, 67.8, 58.9, 19.8, 3.7.  

MS (CI, NH3): m/z = 140 [M + NH4]
+.  

5-(Prop-2-yn-1-yloxy)pent-2-yne (140) 

 

This compound was obtained following the general procedure I. Starting from pent-3-yn-1-ol 

(1.68 g, 20 mmol), propargyl bromide (2.2 mL, 20 mmol, 1 equiv) and KOH (2.26 g, 40 mmol, 

2 equiv). The reaction mixture was stirred at room temperature for 4 h. Purification on silica 

gel (Petroleum ether/Ethyl acetate gradient from 98/2 to 95/5) afforded 140 (2.05 g, 84%) as a 

pale yellow oil. The analytical data were identical to the literature.199 

Rf = 0.67 (Cyclohexane/Ethyl acetate; 90/10, KMnO4, UV).  

1H NMR (300 MHz, CDCl3) δ 4.18 (d, J = 2.4 Hz, 2H), 3.61 (t, J = 7.0 Hz, 2H), 2.50 – 2.38 

(m, 3H), 1.78 (t, J = 2.6 Hz, 3H). 

13C NMR (75 MHz, CDCl3) δ 79.7, 77.0, 75.7, 74.6, 68.7, 58.3, 20.1, 3.6. 

5-((3-Bromoprop-2-yn-1-yl)oxy)pent-2-yne (141) 

 

This compound was obtained following the general procedure H. Starting from 5-(prop-2-yn-

1-yloxy)pent-2-yne 140 (0.61 g, 5 mmol), NBS (1.06 g, 6 mmol, 1.2 equiv) and silver nitrate 

(0.085 g, 0.5 mmol). The reaction mixture was stirred at room temperature for 3 h. Purification 

                                                 
199 Trost, B. M.; Xie, J. J. Am. Chem. Soc. 2006, 128, 6044.  
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on silica gel (Petroleum ether/Ethyl acetate gradient from 98/2 to 95/5) afforded 141 (0.75 g, 

75 %) as a pale yellow oil.  

Rf = 0.44 (Cyclohexane/Ethyl acetate; 95/5, KMnO4, UV).  

1H NMR (300 MHz, CDCl3) δ 4.19 (s, 2H), 3.57 (t, J = 6.9 Hz, 2H), 2.41 (ddt, J = 6.9, 4.4, 2.5 

Hz, 2H), 1.76 (t, J = 2.6 Hz, 3H).  

13C NMR (75 MHz, CDCl3) δ 77.0, 76.2, 75.6, 68.8, 59.2, 46.2, 20.0, 3.6. 

5-(But-2-yn-1-yloxy)pent-1-yne (142) 

 

This compound was obtained following the general procedure F. Starting from 4-pentyn-1-ol 

(0.84 g, 10 mmol), 1-bromo-2-butyne (1.6 g, 12 mmol, 1.2 equiv) and NaH (0.48 g, 12 mmol, 

1.2 equiv). The reaction mixture was stirred at room temperature for 5 h. Purification on silica 

gel (Pentane/diethyl ether; 95/5) afforded 142 (1.07 g, 79%) as a colorless oil.  

Rf = 0.51 (Cyclohexane/Ethyl acetate; 85/15, KMnO4, UV).  

1H NMR (300 MHz, CDCl3) δ 4.10 – 4.02 (m, 2H), 3.55 (t, J = 6.2 Hz, 2H), 2.27 (td, J = 7.1, 

2.7 Hz, 2H), 1.95 – 1.89 (m, 1H), 1.83 (t, J = 2.4 Hz, 3H), 1.82 – 1.74 (m, 2H). 

13C NMR (75 MHz, CDCl3) δ 84.0, 82.4, 75.3, 68.5, 68.4, 58.8, 28.6, 15.4, 3.7. 

(8R,9S,13S,14S,17R)-17-(But-2-yn-1-yloxy)-17-ethynyl-3-methoxy-13-methyl-7,8,9,11,12, 

13,14,15,16,17-decahydro-6H-cyclopenta[a]phenanthrene (143) 
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This compound was obtained following the general procedure F. Starting from Mestranol (0.31 

g, 1 mmol), 1-bromo-2-butyne (0.16 g, 1.2 mmol, 1.2 equiv) and NaH (48 mg, 1.2 mmol, 1.2 

equiv). The reaction mixture was stirred at 60 °C for 20 h. Purification on silica gel (Petroleum 

ether/Ethyl acetate gradient from 95/5 to 90/10) afforded 143 (0.13 g, 36%) as a white solid. 

m.p. 138-140 °C. 

Rf = 0.4 (Cyclohexane/Ethyl acetate; 90/10, KMnO4, UV).  

1H NMR (300 MHz, CDCl3) δ 7.20 (d, J = 8.6 Hz, 1H), 6.71 (dd, J = 8.6, 2.8 Hz, 1H), 6.63 (d, 

J = 2.7 Hz, 1H), 4.33 – 4.20 (m, 2H), 3.78 (s, 3H), 2.90 – 2.76 (m, 2H), 2.65 (s, 1H), 2.39 – 

1.92 (m, 5H), 1.91 – 1.66 (m, 7H), 1.53 – 1.27 (m, 4H), 0.92 (s, 3H). 

13C NMR (75 MHz, CDCl3) δ 157.6, 138.1, 132.7, 126.5, 113.9, 111.6, 85.9, 84.35, 81.76, 

76.6, 76.1, 55.4, 54.5, 49.7, 47.8, 43.6, 39.4, 37.4, 34.3, 30.0, 27.4, 26.7, 22.9, 13.0, 3.9.  

MS (CI, NH3): m/z = 380 [M + NH4]
+.  

Dimethyl 2-(but-2-yn-1-yl)malonate (144) 

 

This compound was obtained following the general procedure F. Starting from dimethyl 

malonate (11.6 g, 87.5 mmol, 2.3 equiv), 1-bromo-2-butyne (3.3 mL, 37.5 mmol, 1 equiv) and 

NaH (1.65 g, 41.3 mmol, 1.1 equiv). The reaction mixture was stirred at room temperature for 

5 h. The residue was purified by distillation under vacuum (80 °C, 1.5 torr) to afford 144 (4.3 

g, 62%) as a colorless oil. The analytical data were identical to the literature.200 

Rf = 0.29 (Cyclohexane/Ethyl acetate; 90/10, KMnO4, UV).  

1H NMR (300 MHz, CDCl3) δ 3.76 (s, 6H), 3.55 (t, J = 7.7 Hz, 1H), 2.76– 2.70 (m, 2H), 1.74 

(t, J = 2.5 Hz, 3H). 

13C NMR (75 MHz, CDCl3) δ 168.7, 78.1, 74.7, 52.8, 51.6, 19.0, 3.6. 

                                                 
200 Zhao, L.-G.; Lu. X.-Y.; Xu, W. J. Org. Chem. 2005, 70, 4059.  
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3-Bromoprop-2-yn-1-ol (145) 

 

This compound was obtained following the general procedure H. Starting from propargyl 

alcohol (2.8 g, 50 mmol), NBS (10 g, 55 mmol, 1.1 equiv) and silver nitrate (0.43 g, 5 mmol). 

The reaction mixture was stirred at room temperature for 3 h. Purification on silica gel 

(Petroleum ether/Ethyl acetate gradient from 90/10 to 80/20) afforded 145 (4.35 g, 65 %) as a 

colorless oil. The analytical data were identical to the literature.201 

Rf = 0.38 (Cyclohexane/Ethyl acetate; 80/20, KMnO4, UV).  

1H NMR (300 MHz, CDCl3) δ 4.28 (s, 2H), 3.40 (br, 1H). 

13C NMR (75 MHz, CDCl3) δ 78.4, 52.1, 46.1. 

Dimethyl 2-(prop-2-yn-1-yl)malonate (146) 

 

In a round bottom flask, dimethyl malonate (4.76 g, 36 mmol, 1.2 equiv), propargyl 

bromide (3.34 mL, 30 mmol, 1 equiv), potassium carbonate (9.95 g, 72 mmol, 2.4 equiv) and 

acetone (60 mL) were placed. The resulting mixture was stirred at 50 °C for 24 h. After the 

reaction was complete, the reaction mixture was filtered, and the organic layers were 

concentrated under reduced pressure. The residue was purified by distillation under vacuum 

(70 °C, 1.5 torr) to afford 146 (3.1 g, 60%) as a colorless oil. The analytical data were identical 

to the literature.202 

Rf = 0.25 (Cyclohexane/Ethyl acetate; 90/10, KMnO4, UV).  

                                                 
201 Karmakar, R.; Yun, S. Y.; Chen, J.; Xia, Y.; Lee, D. Angew. Chem. Int. Ed. 2015, 54, 6582. 

 
202 Iafe, R. G.; Kuo, J. L.; Hochstatter, D. G.; Saga, T.; Turner, J. W.; Merlic, C. A. Org. Lett. 2013, 15, 582.  
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1H NMR (300 MHz, CDCl3) δ 3.77 (s, 6H), 3.61 (t, J = 7.7 Hz, 1H), 2.79 (dd, J = 7.7, 2.7 Hz, 

2H), 2.02 (t, J = 2.7 Hz, 1H). 

13C NMR (75 MHz, CDCl3) δ 168.6, 80.1, 70.8, 53.2, 51.2, 18.8.  

Dimethyl 2-(pent-4-en-2-yn-1-yl)malonate (147) 

 

This compound was obtained following the general procedure A. Starting from dimethyl 2-

(prop-2-yn-1-yl)malonate (1.02 g, 6 mmol), vinyl bromide (7.2 mL, 7.2 mmol, 1.2 equiv), 

PdCl2(PPh3)2 (84 mg, 2 mol %) and CuI (11 mg, 1 mol %). Purification on silica gel 

(Cyclohexane/Ethyl acetate gradient from 90/10 to 80/20) afforded 147 (0.5 g, 43%) as a 

colorless oil.  

Rf = 0.2 (Cyclohexane/Ethyl acetate; 90/10, KMnO4, UV). 

1H NMR (300 MHz, CDCl3) δ 5.79 – 5.65 (m, 1H), 5.62 – 5.50 (m, 1H), 5.48 – 5.38 (m, 1H), 

3.77 (s, 6H), 3.61 (t, J = 7.7 Hz, 1H), 2.95 – 2.84 (m, 2H).  

13C NMR (75 MHz, CDCl3) δ 168.5, 126.8, 117.1, 86.0, 81.3, 52.9, 51.2, 19.5. 

MS (CI, NH3): m/z = 214 [M + NH4]
+. 

3.3. Synthesis of benzoyl or benzyl bridged -diynes  

1-(2-(Hex-1-yn-1-yl)phenyl)-3-(trimethylsilyl)prop-2-yn-1-ol (148) 

 

This compound was obtained following the general procedure B. Starting from 2-(hex-1-yn-1-

yl)benzaldehyde 2 (1.0 g, 5.4 mmol), trimethylsilylacetylene (1.14 mL, 8 mmol, 1.5 equiv) and 

n-BuLi (3.5 mL, 1.85 M in hexane, 6.5 mmol, 1.2 equiv). Purification on silica gel (Petroleum 

ether/Ethyl acetate gradient from 95/5 to 90/10) afforded 148 (1.2 g, 78%) as a pale yellow oil.  



Experimental part 

 272 

Rf = 0.33 (Cyclohexane/Ethyl acetate; 95/5, KMnO4, UV). 

1H NMR (300 MHz, CDCl3) δ 7.70 – 7.63 (m, 1H), 7.44 – 7.38 (m, 1H), 7.36 – 7.21 (m, 2H), 

5.84 (d, J = 5.7 Hz, 1H), 2.69 (dd, J = 5.7, 0.4 Hz, 1H), 2.46 (t, J = 7.0 Hz, 2H), 1.68 – 1.56 

(m, 2H), 1.54 – 1.43 (m, 2H), 0.96 (t, J = 7.2 Hz, 3H), 0.20 (s, 9H).  

13C NMR (75 MHz, CDCl3) δ 141.9, 132.6, 128.3, 128.2, 126.8, 122.6, 104.5, 96.5, 91.5, 

78.0, 63.9, 30.9, 22.2, 19.4, 13.8, 0.0.  

MS (CI, NH3): m/z = 267 [M + H – H2O] +. 

1-(2-(Hex-1-yn-1-yl)phenyl)prop-2-yn-1-ol (149). 

 

This compound was obtained following the general procedure D. Starting from 1-(2-(Hex-1-

yn-1-yl)phenyl)-3-(trimethylsilyl)prop-2-yn-1-ol 148 (1.2 g, 4.2 mmol) and TBAF (4.2 mL, 1.0 

M in THF). Purification on silica gel (Cyclohexane/Ethyl acetate gradient from 95/5 to 85/15) 

afforded 149 (0.72 g, 81%) as a pale yellow oil.  

Rf = 0.4 (Cyclohexane/Ethyl acetate; 90/10, KMnO4, UV).  

1H NMR (400 MHz, CDCl3) δ 7.67 (dd, J = 7.5, 1.6 Hz, 1H), 7.43 (dd, J = 7.1, 1.9 Hz, 1H), 

7.45 – 7.30 (m, 2H), 5.85 (d, J = 2.3 Hz, 1H), 2.64 (s, 1H), 2.64 (s, 1H), 2.48 (t, J = 7.0 Hz, 

2H), 1.70 – 1.57 (m, 2H), 1.57 – 1.41 (m, 2H), 0.96 (t, J = 7.2 Hz, 3H).  

13C NMR (101 MHz, CDCl3) δ 141.6, 132.7, 128.4, 128.3, 126.6, 122.4, 96.7, 83.1, 77.9, 

74.6, 63.3, 30.9, 22.2, 19.4, 13.7. 

MS (CI, NH3): m/z = 212 [M + NH4 – H2O] +. 

2-(Cyclopropylethynyl)benzaldehyde (150) 
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This compound was obtained following the general procedure A. Starting from 2-

bromobenzoaldehyde (4.0 g, 21.7 mmol), cyclopropylacetylene (1.7 g, 26 mmol, 1.2 equiv), 

PdCl2(PPh3)2 (0.75mg, 1.09 mmol, 5 mol %) and CuI (0.1 g, 0.55 mmol, 2.5 mol %). 

Purification on silica gel (Cyclohexane/Ethyl acetate gradient from 98/2 to 95/5) afforded 150 

(2.1 g, 57%) as an orange oil.  

1H NMR (300 MHz, CDCl3) δ 10.48 (d, J = 0.6 Hz, 1H), 7.89 – 7.82 (m, 1H), 7.53 – 7.43 (m, 

2H), 7.39 – 7.30 (m, 1H), 1.57 – 1.45 (m, 1H), 0.98 – 0.85 (m, 4H).  

13C NMR (75 MHz, CDCl3) δ 192.2, 136.2, 133.8, 133.4, 128.0, 127.9, 127.1, 101.4, 71.6, 

9.0, 0.5.  

1-(2-(Cyclopropylethynyl)phenyl)-3-(trimethylsilyl)prop-2-yn-1-ol (151). 

 

This compound was obtained following the general procedure B. Starting from 2-

(cyclopropylethynyl)benzaldehyde 150 (2.0 g, 11.8 mmol), trimethylsilylacetylene (3.25 mL, 

23.5 mmol, 2 equiv) and n-BuLi (8.8 mL, 2.0 M in hexane, 17.6 mmol, 1.5 equiv). Purification 

on silica gel (Cyclohexane/Ethyl acetate gradient from 95/5 to 90/10) afforded 151 (2.5 g, 80%) 

as a pale yellow oil.  

1H NMR (300 MHz, CDCl3) δ 7.70 – 7.55 (m, 1H), 7.43 – 7.35 (m, 1H), 7.35 – 7.18 (m, 2H), 

5.79 (d, J = 5.5 Hz, 1H), 2.70 (d, J = 5.7 Hz, 1H), 1.54 – 1.40 (m, 1H), 0.94 – 0.76 (m, 4H), 

0.20 (s, 9H). 

13C NMR (75 MHz, CDCl3) δ 142.1, 132.6, 128.3, 128.2, 126.8, 122.4, 104.5, 99.6, 91.4, 

73.1, 63.9, 9.0, 8.9, 0.5, -0.01.  

CHO

Chemical Formula: C12H10O

Exact Mass: 170.0732
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MS (CI, NH3): m/z = 267 [M + H – H2O] +.  

1-(2-(Cyclopropylethynyl)phenyl)prop-2-yn-1-ol (152) 

 

This compound was obtained following the general procedure D. Starting from 1-(2-

(cyclopropylethynyl)phenyl)-3-(trimethylsilyl)prop-2-yn-1-ol 151 (2.5 g, 9.3 mmol) and TBAF 

(9.3 mL, 1.0 M in THF). Purification on silica gel (Cyclohexane/Ethyl acetate gradient from 

90/10 to 80/20) afforded 152 (1.5 g, 82%) as a pale yellow solid. m.p. 45 – 48 °C.  

1H NMR (300 MHz, CDCl3) δ 7.71 – 7.56 (m, 1H), 7.44 – 7.36 (m, 1H), 7.36 – 7.20 (m, 2H), 

5.80 (s, 1H), 2.72 (s, 1H, OH), 2.63 (d, J = 2.3 Hz, 1H), 1.56 – 1.42 (m, 1H), 0.98 – 0.80 (m, 

4H).  

13C NMR (75 MHz, CDCl3) δ 141.8, 132.7, 128.4, 128.2, 126.6, 122.2, 99.8, 83.1, 74.6, 73.0, 

63.3, 9.0, 0.5.  

MS (CI, NH3): m/z = 196 [M + NH4 - H2O] +.  

1-(2-(Cyclopropylethynyl)phenyl)prop-2-yn-1-one (153). 

 

This compound was obtained following the general procedure C. Starting from 1-(2-

(cyclopropylethynyl)phenyl)prop-2-yn-1-ol 152 (0.92 g, 4.7 mmol) and Dess-Martin 

periodinane (2.4 g, 5.6 mmol, 1.2 equiv). Purification on silica gel (Cyclohexane/Ethyl acetate 

gradient from 95/5 to 90/10) afforded 153 (0.75 g, 82%) as yellow solid. m.p. 181 – 183 °C.  

OH

Chemical Formula: C14H12O

Exact Mass: 196.0888
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1H NMR (300 MHz, CDCl3) δ 8.20 – 8.05 (m, 1H), 7.52 – 7.42 (m, 2H), 7.41 – 7.30 (m, 1H), 

3.41 (d, J = 0.3 Hz, 1H), 1.58 – 1.42 (m, J = 6.6 Hz, 1H), 0.91 (d, J = 6.6 Hz, 4H). 

13C NMR (75 MHz, CDCl3) δ 175.7, 136.3, 133.6, 131.9, 131.2, 126.2, 123.2, 99.9, 80.3, 

79.6, 73.6, 8.0, -0.1.  

MS (CI, NH3): m/z = 195 [M + H] +.  

3.4. Synthesis of cyanamides  

General procedure J:  

 

N-substituted amine (2 equiv) was added to a solution of cyanogen bromide (1 equiv) 

in Et2O/THF (1:1, 5 M) at 0 °C. The reaction mixture was stirred at room temperature for 3 h. 

Hexane (5 mL) was added, and the mixture was stirred for an additional 10 min. It was then 

filtered through a pad of Celite, and the filtrate was washed with water (×3) and brine (×3). 

The solution was dried over MgSO4, filtered and concentrated under reduced pressure. The 

residue was purified by flash chromatography to afford the desired product.  

General procedure K:  

 

A solution of sodium hydrogen carbonate (2 equiv) in H2O (2 M) was slowly added to 

a solution of N-substituted amine (1 equiv) in DCM (1 M) at 0 °C. Then, a solution of cyanogen 

bromide (1.05 equiv) in DCM (1 M) was added to the reaction mixture at 0 °C. The mixture 

was stirred at the same temperature for 30 min, and then allowed to warm to room temperature 

for an additional 2 h. The organic layers were separated and washed with saturated sodium 

hydrogen carbonate solution (×3) and brine (×3), dried over MgSO4 and concentrated under 

reduced pressure. The residue was purified by flash chromatography to afford the desired 

product.  
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Piperidine-1-carbonitrile (157) 

 

This compound was obtained following the general procedure J. Starting from piperidine (1.83 

mL, 20.0 mmol, 2 equiv) and cyanogen bromide (1.06 g, 10 mmol, 1 equiv). Purification on 

silica gel (Petroleum ether/Ethyl acetate from 90/10 to 85/15) afforded 157 (0.9 g, 82%) as a 

colorless oil. The analytical data were identical to the literature.203 

Rf = 0.35 (Cyclohexane/Ethyl acetate; 90/10, KMnO4, UV).  

1H NMR (300 MHz, CDCl3) δ 3.23 – 3.01 (m, 4H), 1.72 – 1.49 (m, 6H). 

13C NMR (75 MHz, CDCl3) δ 118.7, 50.3, 24.7, 23.1.  

N-Benzyl-N-methylcyanamide (158) 

 

This compound was obtained following the general procedure J. Starting from N-

methybenzylamine (1.45 g, 12 mmol, 2 equiv) and cyanogen bromide (0.64 g, 6 mmol, 1 equiv). 

Purification on silica gel (Cyclohexane/Ethyl acetate gradient from 80/20 to 70/30) afforded 

compound 158 (0.75 g, 86 %) as a colorless oil. The analytical data were identical to the 

literature. 204 

Rf = 0.52 (Cyclohexane/Ethyl acetate; 80/20, KMnO4, UV).  

1H NMR (300 MHz, CDCl3) δ 7.30 – 7.47 (m, 5H), 4.15 (s, 2 H,), 2.77 (s, 3 H).  

13C NMR (75 MHz, CDCl3) δ 134.5, 129.1, 128.8, 128.5, 119.0, 57.3, 37.9.  

                                                 
203 Teng, F.; Yu, J.-T.; Jiang, Y.; Yang, H.; Cheng, J. Chem. Commun. 2014, 50, 8412.  
204 Bakunov, S. A.; Rukavishnikov, A. V.; Tkachev, A. V. Synthesis, 2000, 1148. 



Experimental part 

 277 

N,N-Dibenzylcyanamide (159) 

 

This compound was obtained following the general procedure K. Starting from dibenzylamine 

(2.96 g, 15 mmol, 1 equiv), cyanogen bromide (1.69 g, 16 mmol, 1.05 equiv) and sodium 

hydrogen carbonate (2.5 g, 30 mmol, 2 equiv). Purification on silica gel (Cyclohexane/Ethyl 

acetate gradient from 90/10 to 80/20) afforded compound 159 (3.2 g, 96 %) as a white solid. 

The analytical data were identical to the literature.147b 

Rf = 0.31 (Cyclohexane/Ethyl acetate; 85/15, KMnO4, UV).  

1H NMR (300 MHz, CDCl3) δ 7.48 – 7.27 (m, 10H), 4.12 (s, 4 H,).  

13C NMR (75 MHz, CDCl3) δ 134.5, 129.0, 128.8, 128.7, 118.4, 54.4. 

N,N-Dipropylcyanamide (161) 

 

This compound was obtained following the general procedure J. Starting from dipropylamine 

(3 mL, 20 mmol, 2 equiv) and cyanogen bromide (1.06 g, 10 mmol, 1 equiv). The reaction 

provided the compound 161 (1.13 g, 90 %) as a colorless oil, pure enough to be used without 

purification. The analytical data were identical to the literature.135a 

Rf = 0.6 (Cyclohexane/Ethyl acetate; 80/20, KMnO4, UV).  

1H NMR (300 MHz, CDCl3) δ 2.91 (t, J = 7.2 Hz, 4H), 1.69 – 1.53 (m, 4H), 0.93 (t, J = 7.4 

Hz, 6H). 

13C NMR (75 MHz, CDCl3) δ 117.9, 53.3, 21.1, 11.1. 

N-Methyl-N-phenylcyanamide (162) 
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This compound was obtained following the general procedure J. Starting from N-methylaniline 

(2.16 mL, 20.0 mmol, 2 equiv) and cyanogen bromide (1.06 g, 10 mmol, 1 equiv). Purification 

on silica gel (Petroleum ether/Ethyl acetate gradient from 80/20 to 50/50) afforded compound 

162 (1.2 g, 91 %) as a white solid. The analytical data were identical to the literature.135a 

Rf = 0.45 (Cyclohexane/Ethyl acetate; 90/10, KMnO4, UV).  

1H NMR (300 MHz, CDCl3) δ 7.47 – 7.32 (m, 2H), 7.16 – 7.01 (m, 3H), 3.34 (s, 3H). 

13C NMR (75 MHz, CDCl3) δ 140.5, 129.7, 123.5, 115.0, 114.2, 36.9.  

N-Butylcyanamide (163) 

 

This compound was obtained following the general procedure J. Starting from N-butylamine 

(2.93 g, 40.0 mmol, 2 equiv) and cyanogen bromide (2.12 g, 20 mmol, 1 equiv). The reaction 

provided the compound 163 (1.9 g, 96 %) as a colorless oil, pure enough to be used without 

purification. The analytical data were identical to the literature.205 

Rf = 0.2 (Cyclohexane/Ethyl acetate; 80/20, KMnO4, UV).  

1H NMR (300 MHz, CDCl3) δ 3.36 (br, 1H), 3.07 (t, J = 7.0 Hz, 2H), 1.67 – 1.50 (m, 2H), 1.47 

– 1.25 (m, 2H), 0.93 (t, J = 7.3 Hz, 3H).  

13C NMR (75 MHz, CDCl3) δ 116.4, 46.1, 31.8, 19.6, 13.7.  

                                                 
205 Ayres, J. N.; Ashford, M. W.; Stöckl, Y.; Prudhomme, V.; Ling, K. B.; Platts, J. A.; Morrill, L. C. Org. Lett. 

2017, 19, 3835. 
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N-butyl-N-methylcyanamide (164) 

 

This compound was obtained following the general procedure K. Starting from N-

methylbutylamine (1.74 g, 20 mmol, 1 equiv), cyanogen bromide (2.22 g, 21 mmol, 1.05 equiv) 

and sodium hydrogen carbonate (3.3 g, 40 mmol, 2 equiv). The reaction provided the compound 

164 (2.23 g, 99 %) as a pale yellow oil, pure enough to be used without purification.  

Rf = 0.3 (Cyclohexane/Ethyl acetate; 80/20, KMnO4, UV).  

1H NMR (300 MHz, CDCl3) δ 2.96 (t, J = 7.2 Hz, 2H), 2.84 (s, 3H), 1.67 – 1.57 (m, 2H), 1.45 

– 1.33 (m, 2H), 0.94 (t, J = 7.3 Hz, 3H). 

13C NMR (75 MHz, CDCl3) δ 118.8, 52.8, 38.9, 29.4, 19.8, 13.7.  

N-butyl-N-cyanoacetamide (165) 

 

To a suspension of NaH (0.77 g, 19.2 mmol, 1.2 equiv) in THF (30 mL) was added N-

butylcyanamide (1.6 g, 16 mmol) in Et2O (10 mL) at 0 °C. The mixture was warmed to room 

temperature, and acetyl chloride (1.36 mL, 19.2 mmol, 1.2 equiv) was added. The reaction 

mixture was stirred at room temperature for 1 h, and quenched with H2O (1 mL). The crude 

reaction mixture was extracted with Et2O (3×15 mL), washed with water and brine, dried over 

MgSO4 and concentrated under reduced pressure. The residue was purified by flash 

chromatography (Petroleum ether/Ethyl acetate gradient from 90/10 to 80/20) to afford 

compound 165 (1.8 g, 80 %) as a colorless oil. The analytical data were identical to the 

literature.135a 

Rf = 0.45 (Cyclohexane/Ethyl acetate; 80/20, KMnO4, UV).  
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1H NMR (300 MHz, CDCl3) δ 3.60 – 3.50 (m, 2H), 2.39 (s, 3H), 1.77 – 1.53 (m, 2H), 1.45 – 

1.29 (m, 2H), 0.95 (t, J = 7.3 Hz, 3H). 

13C NMR (75 MHz, CDCl3) δ 169.4, 111.1, 46.1, 29.7, 22.3, 19.6, 13.6.  

N,N-diallylcyanamide (166) 

 

This compound was obtained following the general procedure K. Starting from diallylamine 

(1.46 g, 15 mmol, 1 equiv), cyanogen bromide (1.69 g, 16 mmol, 1.05 equiv) and sodium 

hydrogen carbonate (2.5 g, 30 mmol, 2 equiv). Purification on silica gel (Petroleum ether/Ethyl 

acetate gradient from 80/20 to 70/30) afforded compound 166 (1.7 g, 93 %) as a pale yellow 

oil. The analytical data were identical to the literature.203 

Rf = 0.36 (Cyclohexane/Ethyl acetate; 80/20, KMnO4, UV).  

1H NMR (300 MHz, CDCl3) δ 5.90 – 5.75 (m, 2H), 5.41 – 5.32 (m, 2H), 5.32 – 5.24 (m, 2H), 

3,65 – 3,54 (m, 4H).  

13C NMR (75 MHz, CDCl3) δ 131.1, 120.6, 117.7, 53.5.  

4-Methylpiperazine-1-carbonitrile (167) 

 

This compound was obtained following the general procedure K. Starting from N-methyl 

piperazine (2 g, 20 mmol, 1 equiv), cyanogen bromide (2.22 g, 21 mmol, 1.05 equiv) and 

sodium hydrogen carbonate (3.3 g, 4 mmol, 2 equiv). The reaction provided the compound 167 

(1.45 g, 58 %) as a pale yellow oil, pure enough to be used without purification.  

Rf = 0.24 (EA, KMnO4, UV).  
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1H NMR (300 MHz, CDCl3) δ 3.29 – 3.19 (m, 4H), 2.50 – 2.39 (m, 4H), 2.30 (s, 3H). 

13C NMR (75 MHz, CDCl3) δ 117.9, 53.7, 49.2, 46.4. 

3.5. Ruthenium-catalyzed [2+2+2] cycloaddition of-diynes with cyanamides  

General procedure L: 

 

A sealed tube was equipped with RuCl3·nH2O (5 mol %) and -diyne (1 mmol, 1 

equiv), followed by the addition of cyanamide (2.0 mmol, 2.0 equiv) under argon atmosphere. 

The tube was sealed and the reaction mixture was stirred vigorously at 80 °C or 110 °C. When 

the reaction was complete (TLC monitoring), the crude reaction mixture was directly purified 

by flash chromatography over silica gel to afford cycloadduct. In some cases, the excess of 

cyanamide was removed by bulb to bulb distillation. 

General procedure M:  

 

A sealed tube was equipped with Cp*Ru(CH3CN)3]PF6 (1-5 mol %) and diyne (1 equiv), 

followed by the addition of cyanamide (2 equiv) under argon atmosphere. The reaction mixture 

was stirred vigorously at room temperature or 50 °C. When the reaction was complete (TLC 

monitoring), the crude mixture was directly purified by flash chromatography over silica gel to 

afford cycloadduct. In some cases, the excess of cyanamide was removed by bulb to bulb 

distillation.  

General procedure N:  

R1

X

R2
+

N

N
X

R1

R2

N

N

R4R3

R4

R3

RuCl3 ·nH2O 5 mol %

solvent-free conditions
T, 18 h
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A sealed tube was equipped with Cp*Ru(CH3CN)3]PF6 (1-5 mol %) and cyanamide (1.2 

or 2.0 equiv), a solution of diyne (1 equiv) in DCM (1 or 2 M) was added under argon 

atmosphere. The reaction mixture was stirred vigorously at room temperature or 50 °C. When 

the reaction was complete (TLC monitoring), the solvent was evaporated under reduced 

pressure. The residue was purified by flash chromatography over silica gel to afford 

cycloadduct. In some cases, the excess of cyanamide was removed by bulb to bulb distillation. 

Dimethyl 3-(dimethylamino)-1,4-dimethyl-5,7-dihydro-6H-cyclopenta[c]pyridine-6,6-

dicarboxylate (168) 

 

This compound was obtained following the general procedure L. Starting from diyne 101 (236 

mg, 1.0 mmol), N,N-dimethylcyanamide 154 (140 mg, 2.0 mmol, 2.0 equiv) and RuCl3·nH2O 

(10.4 mg, 0.05 mmol). The reaction mixture was stirred at 110 °C for 18 h. Purification on silica 

gel (Cyclohexane/Ethyl acetate gradient from 80/20 to 70/30) afforded 168 (225 mg, 74%) as 

a white solid. The excess of cyanamide was removed by bulb to bulb distillation (conditions: 

1.0x10-3 mbar, 70 °C for 10 minutes). The analytical data were identical to the literature.135a 

Rf = 0.34 (Petroleum ether/Ethyl acetate; 80/20, KMnO4, UV).  

1H NMR (300 MHz, CDCl3) δ 3.74 (s, 6H), 3.48 (s, 2H), 3.47 (s, 2H), 2.75 (s, 6H), 2.31 (s, 

3H), 2.14 (s, 3H). 

13C NMR (75 MHz, CDCl3) δ 172.2, 161.6, 150.3, 147.9, 127.2, 117.1, 59.9, 53.2, 42.5, 40.1, 

38.7, 21.8, 14.9. 

MS (CI, NH3): m/z = 307 [M + H]+. 
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Dimethyl 1,4-dimethyl-3-morpholino-5,7-dihydro-6H-cyclopenta[c]pyridine-6,6-

dicarboxylate (169) 

 

a) This compound was obtained following the general procedure L. Starting from diyne 101 

(236 mg, 1.0 mmol), 4-cyanomorpholine 155 (224 mg, 2.0 mmol, 2.0 equiv) and RuCl3·nH2O 

(10.4 mg, 0.05 mmol). The reaction mixture was stirred at 80 °C for 18 h. Purification on silica 

gel (Cyclohexane/Ethyl acetate gradient from 90/10 to 80/20) afforded 169 (330 mg, 95%) as 

a white solid. The excess of cyanamide was removed by bulb to bulb distillation (conditions: 

1.0x10-3 mbar, 90 °C for 10 minutes). The analytical data were identical to the literature.135a 

b) This compound was obtained following the general procedure M. Starting from diyne 101 

(118 mg, 0.5 mmol), 4-cyanomorpholine 155 (112 mg, 1.0 mmol, 2.0 equiv) and 

Cp*Ru(CH3CN)3PF6 (5.0 mg, 0.01 mmol). The reaction mixture was stirred at room 

temperature for 2 min. Purification on silica gel (Cyclohexane/Ethyl acetate gradient from 

90/10 to 80/20) afforded 169 (158 mg, 91%) as a white solid. The excess of cyanamide was 

removed by bulb to bulb distillation (conditions: 1.0x10-3 mbar, 90 °C for 10 minutes).  

Rf = 0.24 (Petroleum ether/Ethyl acetate; 80/20, KMnO4, UV).  

1H NMR (300 MHz, CDCl3) δ 3.86 – 3.78 (m, 4H), 3.76 (s, 6H), 3.50 (s, 2H), 3.48 (s, 2H), 

3.12 – 2.99 (m, 4H), 2.33 (s, 3H), 2.14 (s, 3H).  

13C NMR (75 MHz, CDCl3) δ 172.1, 160.2, 150.5, 148.5, 128.3, 117.9, 67.4, 59.9, 53.2, 50.8, 

40.0, 38.7, 21.7, 14.4.  

MS (CI, NH3): m/z = 349 [M + H]+.  

Dimethyl 1,4-dimethyl-3-(pyrrolidin-1-yl)-5,7-dihydro-6H-cyclopenta[c]pyridine-6,6-

dicarboxylate (170) 
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a) This compound was obtained following the general procedure L. Starting from diyne 101 

(236 mg, 1.0 mmol), pyrrolidine-1-carbonitrile 156 (192 mg, 2.0 mmol, 2.0 equiv) and 

RuCl3·nH2O (10.4 mg, 0.05 mmol). The reaction mixture was stirred at 80 °C for 18 h. 

Purification on silica gel (Cyclohexane/Ethyl acetate gradient from 90/10 to 70/30) afforded 

170 (285 mg, 86%) as a pale yellow solid. The excess of cyanamide was removed by bulb to 

bulb distillation (conditions: 1.0x10-3 mbar, 80 °C for 10 minutes).  

b) This compound was obtained following the general procedure M. Starting from diyne 101 

(118 mg, 0.5 mmol), pyrrolidine-1-carbonitrile 156 (96 mg, 1.0 mmol, 2.0 equiv) and 

Cp*Ru(CH3CN)3PF6 (5.0 mg, 0.01 mmol). The reaction mixture was stirred at room 

temperature for 15 min. Purification on silica gel (Cyclohexane/Ethyl acetate gradient from 

90/10 to 70/30) afforded 170 (134 mg, 81%) as a pale yellow solid. The excess of cyanamide 

was removed by bulb to bulb distillation (conditions: 1.0x10-3 mbar, 80 °C for 10 minutes).  

The analytical data were identical to the literature.135a 

Rf = 0.35 (Petroleum ether/Ethyl acetate; 80/20, KMnO4, UV).  

1H NMR (300 MHz, CDCl3) δ 3.75 (s, 6H), 3.44 (m, 8H), 2.29 (s, 3H), 2.15 (s, 3H), 1.87 (m, 

4H). 

13C NMR (75 MHz, CDCl3) δ 172.3, 158.9, 150.3, 147.4, 124.6, 113.5, 60.0, 53.1, 50.3, 40.1, 

38.6, 25.6, 21.7, 15.8.  

MS (CI, NH3): m/z = 333 [M + H]+.  

Dimethyl 1,4-dimethyl-3-(piperidin-1-yl)-5,7-dihydro-6H-cyclopenta[c]pyridine-6,6-

dicarboxylate (171) 
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This compound was obtained following the general procedure L. Starting from diyne 101 (236 

mg, 1.0 mmol), piperidine-1-carbonitrile 157 (220 mg, 2.0 mmol, 2.0 equiv) and RuCl3·nH2O 

(10.4 mg, 0.05 mmol). The reaction mixture was stirred at 110 °C for 18 h. Purification on silica 

gel (Cyclohexane/Ethyl acetate gradient from 95/5 to 90/10) afforded 171 (251 mg, 73%) as a 

colorless oil. The excess of cyanamide was removed by bulb to bulb distillation (conditions: 

1.0x10-3 mbar, 80 °C for 10 minutes). The analytical data were identical to the literature.143 

Rf = 0.33 (Petroleum ether/Ethyl acetate; 90/10, KMnO4, UV).  

1H NMR (300 MHz, CDCl3) δ 3.75 (s, 6H), 3.49 (s, 2H), 3.47 (s, 2H), 3.06 – 2.91 (m, 4H), 

2.32 (s, 3H), 2.13 (s, 3H), 1.73 – 1.61 (m, 4H), 1.61 – 1.50 (m, 2H).  

13C NMR (75 MHz, CDCl3) δ 172.2, 161.7, 150.1, 148.1, 127.5, 118.1, 59.8, 53.2, 51.6, 40.01, 

38.7, 26.5, 24.8, 21.7, 14.4.  

MS (CI, NH3): m/z = 347 [M + H]+.  

Dimethyl 3-(benzyl(methyl)amino)-1,4-dimethyl-5,7-dihydro-6H-cyclopenta[c]pyridine-

6,6-dicarboxylate (172) 

 

This compound was obtained following the general procedure L. Starting from diyne 101 (236 

mg, 1.0 mmol), N-benzyl-N-methylcyanamide 158 (292 mg, 2.0 mmol, 2.0 equiv) and 

RuCl3·nH2O (10.4 mg, 0.05 mmol). The reaction mixture was stirred at 80 °C for 18 h. 

Purification on silica gel (Cyclohexane/Ethyl acetate gradient from 95/5 to 85/15) afforded 172 

(306 mg, 81%) as a colorless oil. The excess of cyanamide was removed by bulb to bulb 

distillation (conditions: 1.0x10-3 mbar, 120 °C for 10 minutes).  
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Rf = 0.26 (Petroleum ether/Ethyl acetate; 90/10, KMnO4, UV).  

1H NMR (300 MHz, CDCl3) δ 7.45 – 7.38 (m, 2H), 7.32 (t, J = 7.3 Hz, 2H), 7.28 – 7.16 (m, 

1H), 4.26 (s, 2H), 3.77 (s, 6H), 3.55 – 3.45 (m, 4H), 2.67 (s, 3H), 2.35 (s, 3H), 2.20 (s, 3H).  

13C NMR (75 MHz, CDCl3) δ 172.2, 161.4, 150.4, 148.1, 140.0, 128.4, 128.2, 127.7, 126.8, 

117.8, 59.9, 58.4, 53.2, 40.1, 39.8, 38.8, 21.7, 14.8. 

MS (CI, NH3): m/z = 383 [M + H]+.  

Dimethyl 3-(dibenzylamino)-1,4-dimethyl-5,7-dihydro-6H-cyclopenta[c]pyridine-6,6-

dicarboxylate (173) 

 

This compound was obtained following the general procedure L. Starting from diyne 101 (236 

mg, 1.0 mmol), dibenzylcyanamide 159 (444 mg, 2.0 mmol, 2.0 equiv) and RuCl3·nH2O (10.4 

mg, 0.05 mmol). The reaction mixture was stirred at 110 °C for 18 h. Purification on silica gel 

(Cyclohexane/Ethyl acetate gradient from 95/5 to 90/10) afforded 173 (344 mg, 75%) as a 

sticky yellow oil. The excess of cyanamide was removed by bulb to bulb distillation 

(conditions: 1.0x10-3 mbar, 180 °C for 20 minutes).  

Rf = 0.17 (Petroleum ether/Ethyl acetate; 80/20, KMnO4, UV).  

1H NMR (300 MHz, CDCl3) δ 7.39 – 7.13 (m, 10H), 4.25 (s, 4H), 3.76 (s, 6H), 3.49 (s, 4H), 

2.29 (s, 3H), 2.24 (s, 3H). 

13C NMR (75 MHz, CDCl3) δ 172.2, 159.9, 150.4, 148.2, 139.9, 128.6, 128.3, 128.2, 126.7, 

118.9, 59.7, 55.4, 53.2, 40.1, 38.8, 21.6, 14.5. 

MS (CI, NH3): m/z = 459 [M + H]+.  

1,1',3',4-Tetramethyl-3-morpholino-5,7-dihydro-2'H-spiro[cyclopenta[c]pyridine-6,5'-

pyrimidine]-2',4',6'(1'H,3'H)-trione (181) 
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This compound was obtained following the general procedure L. Starting from diyne 102 (260 

mg, 1.0 mmol), 4-cyanomorpholine 155 (224 mg, 2.0 mmol, 2.0 equiv) and RuCl3·nH2O (10.4 

mg, 0.05 mmol). The reaction mixture was stirred at 110 °C for 18 h. Purification on silica gel 

(Cyclohexane/Ethyl acetate gradient from 80/20 to 50/50) afforded 181 (275 mg, 74%) as a 

white solid. The excess of cyanamide was removed by bulb to bulb distillation (conditions: 

1.0x10-3 mbar, 90 °C for 10 minutes). m.p. 175 – 178 °C.  

Rf = 0.12 (Petroleum ether/Ethyl acetate; 80/20, KMnO4, UV).  

1H NMR (300 MHz, CDCl3) δ 3.90 – 3.76 (m, 4H), 3.49 (s, 2H), 3.45 (s, 2H), 3.34 (s, 6H), 

3.17 – 2.94 (m, 4H), 2.30 (s, 3H), 2.15 (s, 3H). 

13C NMR (75 MHz, CDCl3) δ 172.2, 160.7, 151.4, 150.6, 148.3, 127.3, 117.8, 67.4, 55.8, 50.8, 

44.0, 42.6, 29.3, 21.8, 14.5.  

MS (CI, NH3): m/z = 373 [M + H]+.  

1,4-Dimethyl-3-morpholino-5,7-dihydrospiro[cyclopenta[c]pyridine-6,2'-indene]-1',3'-

dione (182) 

 

This compound was obtained following the general procedure L. Starting from diyne 103 (250 

mg, 1.0 mmol), 4-cyanomorpholine 155 (224 mg, 2.0 mmol, 2.0 equiv) and RuCl3·nH2O (10.4 

mg, 0.05 mmol). The reaction mixture was stirred at 80 °C for 18 h. Purification on silica gel 

(Cyclohexane/Ethyl acetate gradient from 90/10 to 80/20) afforded 182 (268 mg, 74%) as a 

yellow solid. The excess of cyanamide was removed by bulb to bulb distillation (conditions: 

1.0x10-3 mbar, 90 °C for 10 minutes). m.p. 206 – 209 °C.  
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Rf = 0.21 (Petroleum ether/Ethyl acetate; 80/20, KMnO4, UV).  

1H NMR (300 MHz, CDCl3) δ 8.08 – 7.98 (m, 2H), 7.93 – 7.85 (m, 2H), 3.89 – 3.73 (m, 4H), 

3.23 (s, 2H), 3.22 (s, 2H), 3.14 – 3.01 (m, 4H), 2.31 (s, 3H), 2.13 (s, 3H).  

13C NMR (75 MHz, CDCl3) δ 202.9, 160.6, 151.3, 148.4, 141.7, 136.2, 128.9, 123.9, 118.0, 

67.4, 58.5, 50.8, 39.6, 21.8, 14.5.  

MS (CI, NH3): m/z = 363 [M + H]+.  

(1,4-Dimethyl-3-morpholino-6,7-dihydro-5H-cyclopenta[c]pyridine-6,6-diyl)dimethanol 

(183) 

 

This compound was obtained following the general procedure L. Starting from diyne 104 (180 

mg, 1.0 mmol), 4-cyanomorpholine 155 (224 mg, 2.0 mmol, 2.0 equiv) and RuCl3·nH2O (10.4 

mg, 0.05 mmol). The reaction mixture was stirred at 80 °C for 18 h. Purification on silica gel 

(Cyclohexane/Ethyl acetate 80/20) afforded 183 (30 mg, 10%) as a pale yellow solid. The 

excess of cyanamide was removed by bulb to bulb distillation (conditions: 1.0x10-3 mbar, 90 

°C for 10 minutes). The analytical data were identical to the literature.143 

Rf = 0.2 (Petroleum ether/Ethyl acetate; 2/1, KMnO4, UV).  

1H NMR (300 MHz, CDCl3) δ 3.86– 3.81 (m, 4H), 3.81 – 3.67 (m, 4H), 3.13 – 2.99 (m, 4H), 

2.72 – 2.60 (m, 4H), 2.31 (s, 3H), 2.12 (s, 3H).  

13C NMR (75 MHz, CDCl3) δ 159.8, 152.4, 149.1, 130.0, 118.6, 69.5, 67.4, 50.8, 48.7, 37.9, 

36.6, 21.7, 14.4. 

MS (CI, NH3): m/z = 293 [M + H]+.  

(1,4-Dimethyl-3-morpholino-6,7-dihydro-5H-cyclopenta[c]pyridine-6,6-diyl)bis 

(methylene) diacetate (184) 
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This compound was obtained following the general procedure L. Starting from diyne 105 (264 

mg, 1.0 mmol), 4-cyanomorpholine 155 (224 mg, 2.0 mmol, 2.0 equiv) and RuCl3·nH2O (10.4 

mg, 0.05 mmol). The reaction mixture was stirred at 80 °C for 18 h. Purification on silica gel 

(Cyclohexane/Ethyl acetate gradient from 90/10 to 80/20) afforded 184 (255 mg, 68%) as a 

white solid. The excess of cyanamide was removed by bulb to bulb distillation (conditions: 

1.0x10-3 mbar, 90 °C for 10 minutes). m.p. 102 – 104 °C. 

Rf = 0.3 (Cyclohexane/Ethyl acetate; 80/20, KMnO4, UV).  

1H NMR (300 MHz, CDCl3) δ 4.08 (s, 4H), 3.89 – 3.73 (m, 4H), 3.16 – 2.92 (m, 4H), 2.78 – 

2.70 (m, 4H), 2.31 (s, 3H), 2.12 (s, 3H), 2.07 (s, 6H). 

13C NMR (75 MHz, CDCl3) δ 171.1, 160.1, 151.4, 149.1, 129.2, 118.4, 67.4, 66.9, 50.8, 46.2, 

38.1, 36.8, 21.7, 21.0, 14.4.  

MS (CI, NH3): m/z = 377 [M + H]+.  

4-(6,6-Bis((benzyloxy)methyl)-1,4-dimethyl-6,7-dihydro-5H-cyclopenta[c]pyridin-3-

yl)morpholine (185) 

 

This compound was obtained following the general procedure L. Starting from diyne 106 (360 

mg, 1.0 mmol), 4-cyanomorpholine 155 (224 mg, 2.0 mmol, 2.0 equiv) and RuCl3·nH2O (10.4 

mg, 0.05 mmol). The reaction mixture was stirred at 80 °C for 18 h. Purification on silica gel 

(Cyclohexane/Ethyl acetate 80/20) afforded 185 (390 mg, 83%) as a pale yellow oil. The excess 

of cyanamide was removed by bulb to bulb distillation (conditions: 1.0x10-3 mbar, 90 °C for 10 

minutes).  
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Rf = 0.38 (Petroleum ether/Ethyl acetate; 90/10, KMnO4, UV).  

1H NMR (300 MHz, CDCl3) δ 7.40 – 7.18 (m, 10H), 4.53 (s, 4H), 3.96 – 3.72 (m, 4H), 3.50 (s, 

4H), 3.16 – 2.94 (m, 4H), 2.79 – 2.70 (m, 4H), 2.31 (s, 3H), 2.11 (s, 3H).  

13C NMR (75 MHz, CDCl3) δ 159.7, 152.9, 148.9, 138.8, 130.7, 128.5, 127.6, 118.5, 73.7, 

73.4, 67.5, 50.9, 48.1, 38.5, 37.1, 21.7, 14.4. 

MS (CI, NH3): m/z = 473 [M + H]+.  

4,7-Dimethyl-6-morpholino-1,3-dihydrofuro[3,4-c]pyridine (186) 

 

a) This compound was obtained following the general procedure L. Starting from diyne 107 

(122 mg, 1.0 mmol), 4-cyanomorpholine 155 (224 mg, 2.0 mmol, 2.0 equiv) and RuCl3·nH2O 

(10.4 mg, 0.05 mmol). The reaction mixture was stirred at 80 °C for 18 h. Purification on silica 

gel (Cyclohexane/Ethyl acetate gradient from 90/10 to 80/20) afforded 186 (150 mg, 64%) as 

a white solid. The excess of cyanamide was removed by bulb to bulb distillation (conditions: 

1.0x10-3 mbar, 90 °C for 10 minutes).  

b) This compound was obtained following the general procedure M. Starting from diyne 107 

(61 mg, 0.5 mmol), 4-cyanomorpholine 155 (112 mg, 1.0 mmol, 2.0 equiv) and 

Cp*Ru(CH3CN)3PF6 (5.0 mg, 0.01 mmol). Purification on silica gel (Cyclohexane/Ethyl 

acetate gradient from 90/10 to 80/20) afforded 186 (94 mg, 80%) as a white solid. The excess 

of cyanamide was removed by bulb to bulb distillation (conditions: 1.0x10-3 mbar, 90 °C for 10 

minutes).  

The analytical data were identical to the literature.143 

Rf = 0.13 (Petroleum ether/Ethyl acetate; 90/10, KMnO4, UV).  

1H NMR (300 MHz, CDCl3) δ 5.05 (s, 2H), 5.00 (s, 2H), 3.86 – 3.81 (m, 4H), 3.12 – 3.07 (m, 

4H), 2.32 (s, 3H), 2.12 (s, 3H).  
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13C NMR (75 MHz, CDCl3) δ 160.5, 150.1, 146.2, 127.6, 115.1, 73.2, 72.7, 67.3, 50.7, 21.9, 

14.6.  

MS (CI, NH3): m/z = 235 [M + H]+.  

4-(4,7-Dimethyl-2-tosyl-2,3-dihydro-1H-pyrrolo[3,4-c]pyridin-6-yl)morpholine (187) 

 

a) This compound was obtained following the general procedure L. Starting from diyne 108 

(275 mg, 1.0 mmol), 4-cyanomorpholine 155 (224 mg, 2.0 mmol, 2.0 equiv) and RuCl3·nH2O 

(10.4 mg, 0.05 mmol). The reaction mixture was stirred at 110 °C for 18 h. Purification on silica 

gel (Cyclohexane/Ethyl acetate gradient from 90/10 to 80/20) afforded 187 (280 mg, 72%) as 

a white solid. The excess of cyanamide was removed by bulb to bulb distillation (conditions: 

1.0x10-3 mbar, 90 °C for 10 minutes).  

b) This compound was obtained following the general procedure N. Starting from diyne 108 

(137.5 mg, 0.5 mmol), 4-cyanomorpholine 155 (67 mg, 0.6 mmol, 1.2 equiv) and 

Cp*Ru(CH3CN)3PF6 (5.0 mg, 0.01 mmol). The reaction mixture was stirred at room 

temperature for 5 min. Purification on silica gel (Cyclohexane/Ethyl acetate gradient from 

90/10 to 80/20) afforded 187 (180 mg, 93%) as a white solid. The excess of cyanamide was 

removed by bulb to bulb distillation (conditions: 1.0x10-3 mbar, 90 °C for 10 minutes).  

The analytical data were identical to the literature.143 

Rf = 0.15 (Petroleum ether/Ethyl acetate; 80/20, KMnO4, UV).  

1H NMR (300 MHz, CDCl3) δ 7.78 (d, J = 8.3 Hz, 2H), 7.33 (d, J = 8.0 Hz, 2H), 4.52 – 4.40 

(m , 4H), 3.85 – 3.75 (m, 4H), 3.10 – 3.00 (m, 4H), 2.41 (s, 3H), 2.27 (s, 3H), 2.08 (s, 3H).  

13C NMR (75 MHz, CDCl3) δ 160.8, 147.7, 146.8, 144.0, 134.1, 130.1, 127.8, 124.8, 116.4, 

67.3, 53.5, 52.6, 50.69, 21.7, 14.5.  

MS (CI, NH3): m/z = 388 [M + H]+.  
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Dimethyl 3-morpholino-5,7-dihydro-6H-cyclopenta[c]pyridine-6,6-dicarboxylate (188) 

 

This compound was obtained following the general procedure N. Starting from diyne 109 (104 

mg, 0.5 mmol), 4-cyanomorpholine 155 (67 mg, 0.6 mmol, 1.2 equiv) and Cp*Ru(CH3CN)3PF6 

(2.5 mg, 0.005 mmol). The reaction mixture was stirred at room temperature for 2 min. 

Purification on silica gel (Cyclohexane/Ethyl acetate gradient from 80/20 to 60/40) afforded 

188 (152 mg, 95%) as a white solid. The excess of cyanamide was removed by bulb to bulb 

distillation (conditions: 1.0x10-3 mbar, 90 °C for 10 minutes). The analytical data were identical 

to the literature.128 

Rf = 0.1 (Petroleum ether/Ethyl acetate; 80/20, KMnO4, UV).  

1H NMR (300 MHz, CDCl3) δ 8.02 (s, 1H), 6.52 (s, 1H), 3.88 – 3.77 (m, 4H), 3.74 (s, 6H), 

3.50 (s, 4H), 3.47 – 3.37 (m, 4H).  

13C NMR (75 MHz, CDCl3) δ 171.8, 159.4, 151.7, 143.1, 126.3, 102.8, 66.9, 60.7, 53.2, 46.3, 

40.6, 37.6. 

MS (CI, NH3): m/z = 321 [M + H] +. 

Dimethyl 1-methyl-3-morpholino-5,7-dihydro-6H-cyclopenta[c]pyridine-6,6-

dicarboxylate (193) 

 

a) This compound was obtained following the general procedure L. Starting from diyne 125 

(222 mg, 1.0 mmol), 4-cyanomorpholine 155 (224 mg, 2.0 mmol, 2.0 equiv) and RuCl3·nH2O 

(10.4 mg, 0.05 mmol). The reaction mixture was stirred at 100 °C for 18 h. Purification on silica 

gel (Cyclohexane/Ethyl acetate gradient from 95/5 to 90/10) afforded 193 (71 mg, 43%, ratio 
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= 87:13) as a white solid. The excess of cyanamide was removed by bulb to bulb distillation 

(conditions: 1.0x10-3 mbar, 90 °C for 10 minutes). 

b) This compound was obtained following the general procedure M. Starting from diyne 125 

(111 mg, 0.5 mmol), 4-cyanomorpholine 155 (112 mg, 1.0 mmol, 2.0 equiv) and 

Cp*Ru(CH3CN)3PF6 (5.0 mg, 0.01 mmol). The reaction mixture was stirred at room 

temperature for 10 min. Purification on silica gel (Cyclohexane/Ethyl acetate gradient from 

95/5 to 90/10) afforded 193 (148 mg, 89%, ratio = 98:2) as a slight yellow solid. The excess of 

cyanamide was removed by bulb to bulb distillation (conditions: 1.0x10-3 mbar, 90 °C for 10 

minutes). m.p. 110 – 112 °C.  

Rf = 0.17 (Cyclohexane/Ethyl acetate; 85/15, KMnO4, UV).  

1H NMR (400 MHz, CDCl3) δ 6.33 (s, 1H, H8), 3.83 – 3.78 (m, 4H, H13), 3.75 (s, 6H, H1), 3.49 

(s, 2H, H4), 3.47 – 3.41 (m, 6H, H5,12), 2.32 (s, 3H, H11) 

13C NMR (101 MHz, CDCl3) δ 172.0 (C2), 159.3 (C7), 151.7 (C9), 151.5 (C10), 124.3 (C6), 

100.1 (C8), 67.0 (C13), 60.0 (C3), 53.2 (C1), 46.4 (C12), 40.8 (C4), 38.0 (C5), 22.2 (C11). 

NOESY (400 MHz, CDCl3) H8 (6.33 ppm) correlates to H12 (3.47 – 3.41 ppm), H5 (3.47 – 3.41 

ppm) correlates to H11 (2.32 ppm).  

HRMS (ESI+): calcd. for C17H23N2O5 [M+H]+: 335.1601, found 335.1603. 

Dimethyl 3-morpholino-1-phenyl-5,7-dihydro-6H-cyclopenta[c]pyridine-6,6-

dicarboxylate (194) 

 

a) This compound was obtained following the general procedure L. Starting from diyne 126 

(142 mg, 0.5 mmol), 4-cyanomorpholine 155 (112 mg, 1.0 mmol, 2.0 equiv) and RuCl3·nH2O 

(5.2 mg, 0.025 mmol). The reaction mixture was stirred at 100 °C for 18 h. Purification on silica 
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gel (Cyclohexane/Ethyl acetate gradient from 95/5 to 90/10) afforded 194 (32 mg, 16%, ratio 

= 90:10) as a white solid. The excess of cyanamide was removed by bulb to bulb distillation 

(conditions: 1.0x10-3 mbar, 90 °C for 10 minutes). 

b) This compound was obtained following the general procedure M. Starting from diyne 126 

(142 mg, 0.5 mmol), 4-cyanomorpholine 155 (112 mg, 1.0 mmol, 2.0 equiv) and 

Cp*Ru(CH3CN)3PF6 (12.5 mg, 0.025 mmol). The reaction mixture was stirred at 50 °C for 15 

min. Purification on silica gel (Cyclohexane/Ethyl acetate gradient from 80/20 to 70/30) 

afforded 194 (190mg, 96%, ratio > 99:1) as a white solid. The excess of cyanamide was 

removed by bulb to bulb distillation (conditions: 1.0x10-3 mbar, 90 °C for 10 minutes). m.p. 

166 – 168 °C.  

Rf = 0.2 (Petroleum ether/Ethyl acetate; 85/15, KMnO4, UV).  

1H NMR (400 MHz, CDCl3) δ 7.81 – 7.78 (m, 2H, H12), 7.47 – 7.41 (m, 2H, H13), 7.39 – 7.35 

(m, 1H, H14), 6.52 (s, 1H, H8), 3.86 – 3.80 (m, 4H, H16), 3.73 (s, 6H, H11), 3.72 (s, 2H, H5), 3.60 

– 3.41 (m, 4H, H15), 3.54 (s, 2H, H4).  

13C NMR (75 MHz, CDCl3) δ 171.8 (C2), 159.0 (C9), 153.1 (C6), 151.2 (C10), 139.9 (C11), 128.4 

(C12), 128.3 (C13), 128.3 (C14), 123.2 (C7), 101.5 (C8), 67.0 (C16), 60.5 (C3), 53.2 (C1), 46.0 

(C15), 40.5 (C4), 39.6 (C5).  

NOESY (400 MHz, CDCl3) H12 (7.81 – 7.78 ppm) correlates to H5 (3.72 ppm), H8 (6.52 ppm) 

correlate to H15 (3.60 – 3.41 ppm) and H4 (3.54 ppm). 

HRMS (ESI+): calcd. for C22H25N2O5 [M+H]+: 397.1758, found 397.1756. 

Di-tert-butyl 3-morpholino-5,7-dihydro-6H-cyclopenta[c]pyridine-6,6-dicarboxylate 

(196) 

 

This compound was obtained following the general procedure M. Starting from diyne 114 (146 

mg, 0.5 mmol), 4-cyanomorpholine 155 (112 mg, 1.0 mmol, 2.0 equiv) and 
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Cp*Ru(CH3CN)3PF6 (5.0 mg, 0.01 mmol). The reaction mixture was stirred at room 

temperature for 5 min. Purification on silica gel (Cyclohexane/Ethyl acetate 80/20) afforded 

196 (198 mg, 98%) as a white solid. The excess of cyanamide was removed by bulb to bulb 

distillation (conditions: 1.0x10-3 mbar, 90 °C for 10 minutes). m.p. 135 – 137 °C.  

Rf = 0.23 (Petroleum ether/Ethyl acetate; 85/15, KMnO4, UV).  

1H NMR (300 MHz, CDCl3) δ 8.00 (s, 1H), 6.51 (s, 1H), 3.89 – 3.72 (m, 4H), 3.50 – 3.40 (m, 

4H), 3.38 (s, 4H), 1.44 (s, 18H). 

13C NMR (75 MHz, CDCl3) δ 170.7, 159.4, 152.3, 143.0, 127.0, 102.8, 81.8, 67.0, 61.8, 46.4, 

40.3, 37.3, 28.0. 

HRMS (ESI+): calcd. for C22H33N2O5 [M+H]+:405.2384, found 405.2385. 

Diisopropyl 3-morpholino-5,7-dihydro-6H-cyclopenta[c]pyridine-6,6-dicarboxylate (197) 

 

This compound was obtained following the general procedure N. Starting from diyne 115 (132 

mg, 0.5 mmol), 4-cyanomorpholine 155 (67 mg, 0.6 mmol, 1.2 equiv) and Cp*Ru(CH3CN)3PF6 

(2.5 mg, 0.005 mmol). The reaction mixture was stirred at room temperature for 5 min. 

Purification on silica gel (Cyclohexane/Ethyl acetate gradient from 80/20 to 70/30) afforded 

197 (152 mg, 81%) as a white solid. The excess of cyanamide was removed by bulb to bulb 

distillation (conditions: 1.0x10-3 mbar, 90 °C for 10 minutes). m.p. 115 – 117 °C.  

Rf = 0.11 (Petroleum ether/Ethyl acetate; 85/15, KMnO4, UV).  

1H NMR (300 MHz, CDCl3) δ 8.01 (s, 1H), 6.51 (s, 1H), 5.03 (dt, J = 12.5, 6.3 Hz, 2H), 3.86 

– 3.74 (m, 4H), 3.50 – 3.38 (m, 8H), 1.23 (d, J = 6.3 Hz, 12H). 

13C NMR (75 MHz, CDCl3) δ 170.9, 159.4, 152.0, 143.1, 126.7, 102.8, 69.4, 67.0, 60.8, 46.3, 

40.4, 37.4, 21.6.  

HRMS (ESI+): calcd. for C20H29N2O5 [M+H]+: 377.2071, found 377.2071. 
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Methyl 3-morpholino-6-phenyl-6,7-dihydro-5H-cyclopenta[c]pyridine-6-carboxylate 

(198) 

 

This compound was obtained following the general procedure N. Starting from diyne 116 (113 

mg, 0.5 mmol), 4-cyanomorpholine 155 (67 mg, 0.6 mmol, 1.2 equiv) and Cp*Ru(CH3CN)3PF6 

(5.0 mg, 0.01 mmol). The reaction mixture was stirred at room temperature for 5 min. 

Purification on silica gel (Cyclohexane/Ethyl acetate gradient from 80/20 to 70/30) afforded 

198 (154 mg, 91%) as a white solid. The excess of cyanamide was removed by bulb to bulb 

distillation (conditions: 1.0x10-3 mbar, 90 °C for 10 minutes). m.p. 178 – 180 °C.  

Rf = 0.1 (Petroleum ether/Ethyl acetate; 80/20, KMnO4, UV).  

1H NMR (300 MHz, CDCl3) δ 8.07 (s, 1H), 7.45 – 7.22 (m, 5H), 6.59 (s, 1H), 4.00 – 3.74 (m, 

6H), 3.60 (s, 3H), 3.50 – 3.33 (m, 4H), 3.23 (dd, J = 19.8, 15.7 Hz, 2H).  

13C NMR (75 MHz, CDCl3) δ 175.6, 159.4, 152.9, 142.9, 142.2, 128.7, 127.6, 127.4, 126.7, 

103.1, 67.0, 60.0, 52.9, 46.3, 42.9, 39.5. 

HRMS (ESI+): calcd. for C20H23N2O3 [M+H]+: 339.1703, found 339.1704. 

Methyl 6-cyano-3-morpholino-6,7-dihydro-5H-cyclopenta[c]pyridine-6-carboxylate 

(199) 

 

This compound was obtained following the general procedure M. Starting from diyne 117 (87.5 

mg, 0.5 mmol), 4-cyanomorpholine 155 (112 mg, 1.0 mmol, 2.0 equiv) and 

Cp*Ru(CH3CN)3PF6 (5.0 mg, 0.01 mmol). The reaction mixture was stirred at room 

temperature for 40 min. Purification on silica gel (Cyclohexane/Ethyl acetate 80/20) afforded 

199 (125 mg, 87%) as a pale yellow oil.  
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Rf = 0.1 (Petroleum ether/Ethyl acetate; 85/15, KMnO4, UV).  

1H NMR (300 MHz, CDCl3) δ 8.05 (s, 1H), 6.53 (s, 1H), 3.85 (s, 3H), 3.83 – 3.74 (m, 4H), 

3.65 – 3.39 (m, 8H). 

13C NMR (75 MHz, CDCl3) δ 168.7, 159.7, 149.9, 143.5, 124.0, 120.1, 102.6, 66.8, 54.1, 47.6, 

46.0, 42.9, 40.6. 

HRMS (ESI+): calcd. for C15H18N3O3 [M+H]+: 288.1343, found 288.1343. 

3-Morpholino-5,7-dihydro-6H-cyclopenta[c]pyridine-6,6-dicarbonitrile (200) 

 

This compound was obtained following the general procedure N. Starting from diyne 118 (71 

mg, 0.5 mmol), morpholine-4-carbonitrile 155 (67 mg, 0.6 mmol, 1.2 equiv) and 

Cp*Ru(CH3CN)3PF6 (5 mg, 0.01 mmol). The reaction mixture was stirred at room temperature 

for 2 min. Purification on silica gel (Cyclohexane/Ethyl acetate gradient from 80/20 to 50/50) 

afforded 200 (64 mg, 50%) as a white solid. m.p. 176 – 178 °C.  

Rf = 0.4 (Petroleum ether/Ethyl acetate; 50/50, KMnO4, UV).  

1H NMR (400 MHz, CDCl3) δ 8.12 (s, 1H), 6.56 (s, 1H), 3.85 – 3.76 (m, 4H), 3.65 (s, 2H), 

3.61 (s, 2H), 3.55 – 3.40 (m, 4H).  

13C NMR (75 MHz, CDCl3) δ 159.9, 147.7, 144.0, 121.8, 116.0, 102.6, 66.7, 45.9, 44.6, 42.0, 

34.0.  

MS (CI, NH3): m/z = 255 [M + H] +.  

3-Morpholino-5,7-dihydrospiro[cyclopenta[c]pyridine-6,2'-indene]-1',3'-dione (201) 
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This compound was obtained following the general procedure N. Starting from diyne 119 (111 

mg, 0.5 mmol), 4-cyanomorpholine 155 (67 mg, 0.6 mmol, 1.2 equiv) and Cp*Ru(CH3CN)3PF6 

(2.5 mg, 0.005 mmol). The reaction mixture was stirred at room temperature for 5 min. 

Purification on silica gel (Cyclohexane/Ethyl acetate gradient from 80/20 to 50/50) afforded 

201 (162 mg, 97%) as a pale yellow solid. The excess of cyanamide was removed by bulb to 

bulb distillation (conditions: 1.0x10-3 mbar, 90 °C for 10 minutes). m.p. 194 – 196 °C.  

Rf = 0.1 (Petroleum ether/Ethyl acetate; 80/20, KMnO4, UV).  

1H NMR (300 MHz, CDCl3) δ 8.08 – 7.95 (m, 3H), 7.93 – 7.81 (m, 2H), 6.54 (s, 1H), 3.89 – 

3.72 (m, 4H), 3.54 – 3.37 (m, 4H), 3.24 (s, 2H) , 3.23 (s, 2H).  

13C NMR (75 MHz, CDCl3) δ 202.5, 159.6, 152.5, 143.0, 141.5, 136.1, 126.7, 123.8, 102.7, 

66.9, 59.1, 46.3, 39.7, 38.4. 

HRMS (ESI+): calcd. for C20H19N2O3 [M+H]+: 335.1390, found 335.1392. 

(3-Morpholino-6,7-dihydro-5H-cyclopenta[c]pyridine-6,6-diyl)dimethanol (202) 

 

This compound was obtained following the general procedure M. Starting from diyne 120 (76 

mg, 0.5 mmol), 4-cyanomorpholine 155 (112 mg, 1.0 mmol, 2.0 equiv) and 

Cp*Ru(CH3CN)3PF6 (5.0 mg, 0.01 mmol). The reaction mixture was stirred at room 

temperature for 5 min. Purification on silica gel (Pure ethyl acetate followed by DCM/MeOH 

9/1) afforded 202 (115 mg, 87%) as a white solid. m.p. 158 – 160 °C.  

Rf = 0.2 (Pure ethyl acetate, KMnO4, UV).  
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1H NMR (300 MHz, MeOD) δ 7.89 (s, 1H), 6.71 (s, 1H), 4.89 (s, 2H, OH), 3.83 – 3.74 (m, 

4H), 3.54 (s, 4H), 3.41 – 3.33 (m, 4H), 2.77 (s, 2H), 2.71 (s, 2H).  

13C NMR (75 MHz, MeOD) δ 160.7, 156.5, 143.8, 130.6, 105.7, 67.8, 66.2, 51.6, 47.9, 38.8, 

35.3.  

HRMS (ESI+): calcd. for C14H21N2O3 [M+H]+: 265.1547, found 265.1546.  

2',2'-Dimethyl-3-morpholino-5,7-dihydrospiro[cyclopenta[c]pyridine-6,5'-[1,3]dioxane] 

(203) 

 

This compound was obtained following the general procedure M. Starting from diyne 121 (96 

mg, 0.5 mmol), 4-cyanomorpholine 156 (112 mg, 1.0 mmol, 2.0 equiv) and 

Cp*Ru(CH3CN)3PF6 (5.0 mg, 0.01 mmol). The reaction mixture was stirred at room 

temperature for 10 min. Purification on silica gel (Cyclohexane/Ethyl acetate gradient from 

80/20 to 60/40) afforded 203 (132 mg, 87%) as a white solid. The excess of cyanamide was 

removed by bulb to bulb distillation (conditions: 1.0x10-3 mbar, 90 °C for 10 minutes). m.p. 

125 – 127 °C.  

Rf = 0.1 (Petroleum ether/Ethyl acetate; 80/20, KMnO4, UV).  

1H NMR (300 MHz, CDCl3) δ 8.00 (s, 1H), 6.51 (s, 1H), 3.84 – 3.77 (m, 4H), 3.70 (tt, J = 11.3, 

5.8 Hz, 4H), 3.46 – 3.35 (m, 4H), 2.83 (s, 2H), 2.72 (s, 2H), 1.45 (d, J = 2.8 Hz, 6H).  

13C NMR (75 MHz, CDCl3) δ 159.3, 153.3, 143.8, 127.8, 103.7, 98.2, 68.7, 66.9, 46.4, 42.8, 

40.2, 36.4, 24.7, 23.2.  

HRMS (ESI+): calcd. for C17H25N2O3 [M+H]+: 305.1860, found 305.1861.  

4-(2-Tosyl-2,3-dihydro-1H-pyrrolo[3,4-c]pyridin-6-yl)morpholine (204) 
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This compound was obtained following the general procedure N. Starting from diyne 122 

(123.5 mg, 0.5 mmol), 4-cyanomorpholine 155 (67 mg, 0.6 mmol, 1.2 equiv) and 

Cp*Ru(CH3CN)3PF6 (5.0 mg, 0.01 mmol). The reaction mixture was stirred at room 

temperature for 5 min. Purification on silica gel (Cyclohexane/Ethyl acetate gradient from 2/1 

to 0/1) afforded 204 (174 mg, 97%) as a white solid. The excess of cyanamide was removed by 

bulb to bulb distillation (conditions: 1.0x10-3 mbar, 90 °C for 10 minutes). m.p. 202 – 204 °C 

Rf = 0.1 (Petroleum ether/Ethyl acetate; 70/30, KMnO4, UV).  

1H NMR (300 MHz, CDCl3) δ 8.01 (s, 1H), 7.75 (d, J = 8.3 Hz, 2H), 7.31 (d, J = 8.0 Hz, 2H), 

6.43 (s, 1H), 4.52 (s, 4H), 3.87 – 3.67 (m, 4H), 3.50 – 3.30 (m, 4H), 2.41 (s, 3H). 

13C NMR (75 MHz, CDCl3) δ 159.5, 147.8, 144.0, 142.1, 133.8, 130.0, 127.7, 122.5, 100.5, 

66.8, 53.5, 51.4, 46.0, 21.7. 

HRMS (ESI+): calcd. for C18H22N3O3S [M+H]+: 360.1376, found 360.1378. 

tert-Butyl 6-morpholino-1,3-dihydro-2H-pyrrolo[3,4-c]pyridine-2-carboxylate (205) 

 

This compound was obtained following the general procedure N. Starting from diyne 123 (96.5 

mg, 0.5 mmol), 4-cyanomorpholine 155 (67 mg, 0.6 mmol, 1.2 equiv) and Cp*Ru(CH3CN)3PF6 

(5.0 mg, 0.01 mmol). The reaction mixture was stirred at room temperature for 5 min. 

Purification on silica gel (Cyclohexane/Ethyl acetate gradient from 7/3 to 0/1) afforded 205 

(151 mg, 99%) as a white solid. m.p. 195 – 197 °C.  

Rf = 0.1 (Cyclohexane/Ethyl acetate; 80/20, KMnO4, UV).  
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1H NMR (400 MHz, CDCl3, 55 °C) δ 8.09 (s, 1H), 6.51 (s, 1H), 4.57 (s, 4H), 3.89 – 3.68 (m, 

4H), 3.53 – 3.35 (m, 4H), 1.51 (s, 9H). 

13C NMR (101 MHz, CDCl3, 55 °C) δ 159.6, 154.6, 148.7, 142.2, 124.1, 100.8, 80.1, 66.9, 

52.0, 49.8, 46.4, 28.7. 

HRMS (ESI+): calcd. for C16H24N3O3 [M+H]+: 306.1812, found 306.1814.  

Dimethyl 3-(pyrrolidin-1-yl)-5,7-dihydro-6H-cyclopenta[c]pyridine-6,6-dicarboxylate 

(207) 

 

This compound was obtained following the general procedure N. Starting from diyne 109 (104 

mg, 0.5 mmol), pyrrolidine-1-carbonitrile 156 (57 mg, 0.6 mmol, 1.2 equiv) and 

Cp*Ru(CH3CN)3PF6 (5.0 mg, 0.01 mmol). The reaction mixture was stirred at room 

temperature for 2 min. Purification on silica gel (Cyclohexane/Ethyl acetate gradient from 

80/20 to 70/30) afforded 207 (144 mg, 90%) as a white solid. The excess of cyanamide was 

removed by bulb to bulb distillation (conditions: 3.0x10-3 mbar, 80 °C for 10 minutes). The 

analytical data were identical to the literature.128 

Rf = 0.42 (Petroleum ether/Ethyl acetate; 80/20, KMnO4, UV).  

1H NMR (300 MHz, CDCl3) δ 7.96 (s, 1H), 6.22 (s, 1H), 3.74 (s, 6H), 3.47 (s, 4H), 3.44 – 3.30 

(m , 4H), 2.07 – 1.87 (m, 4H). 

13C NMR (75 MHz, CDCl3) δ 172.0, 157.1, 151.0, 143.3, 123.3, 101.8, 60.8, 53.1, 47.0, 40.5, 

37.6, 25.7.  

MS (CI, NH3): m/z = 305 [M + H] +.  

Dimethyl 3-(dibenzylamino)-5,7-dihydro-6H-cyclopenta[c]pyridine-6,6-dicarboxylate 

(208) 
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This compound was obtained following the general procedure N. Starting from diyne 109 (104 

mg, 0.5 mmol), N,N-dibenzylcyanamide 159 (133 mg, 0.6 mmol, 1.2 equiv) and 

Cp*Ru(CH3CN)3PF6 (12.5 mg, 0.025 mmol). The reaction mixture was stirred at room 

temperature for 10 min. Purification on silica gel (Cyclohexane/Ethyl acetate gradient from 

90/10 to 80/20) afforded 208 (163 mg, 76%) as a pale yellow oil. The excess of cyanamide was 

removed by bulb to bulb distillation (conditions: 5x10-3 mbar, 150 °C for 30 minutes).  

Rf = 0.37 (Petroleum ether/Ethyl acetate; 85/15, KMnO4, UV).  

1H NMR (300 MHz, CDCl3) δ 8.02 (s, 1H), 7.35 – 7.14 (m, 10H), 6.33 (s, 1H), 4.76 (s, 4H), 

3.74 (s, 6H), 3.50 (s, 2H), 3.42 (s, 2H).  

13C NMR (75 MHz, CDCl3) δ 172.0, 158.4, 151.6, 143.1, 138.7, 128.7, 127.2, 127.0, 124.6, 

101.2, 60.6, 53.1, 51.3, 40.6, 37.6. 

Dimethyl 3-(diethylamino)-5,7-dihydro-6H-cyclopenta[c]pyridine-6,6-dicarboxylate 

(209) 

 

This compound was obtained following the general procedure N. Starting from diyne 109 (104 

mg, 0.5 mmol), N,N-diethylcyanamide 160 (59 mg, 0.6 mmol, 1.2 equiv) and 

Cp*Ru(CH3CN)3PF6 (12.5 mg, 0.025 mmol). The reaction mixture was stirred at room 

temperature for 10 min. Purification on silica gel (Cyclohexane/Ethyl acetate gradient from 

90/10 to 80/20) afforded 209 (132 mg, 86%) as a white solid. The excess of cyanamide was 

removed by bulb to bulb distillation (conditions: 1.0 x 10-3 mbar, 80 °C for 10 minutes). The 

analytical data were identical to the literature.128 

Rf = 0.22 (Petroleum ether/Ethyl acetate; 80/20, KMnO4, UV).  
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1H NMR (300 MHz, CDCl3) δ 7.95 (s, 1H), 6.32 (s, 1H), 3.74 (s, 6H), 3.54 – 3.40 (m, 8H), 

1.15 (t, J = 7.0 Hz, 6H).  

13C NMR (75 MHz, CDCl3) δ 172.1, 157.3, 151.1, 143.2, 123.0, 100.8, 60.7, 53.1, 42.8, 40.6, 

37.6, 13.1. 

MS (CI, NH3): m/z = 307 [M + H] + 

Dimethyl 3-(dipropylamino)-5,7-dihydro-6H-cyclopenta[c]pyridine-6,6-dicarboxylate 

(210) 

 

This compound was obtained following the general procedure N. Starting from diyne 109 (104 

mg, 0.5 mmol), N,N-dipropylcyanamide 161 (76 mg, 0.6 mmol, 1.2 equiv) and 

Cp*Ru(CH3CN)3PF6 (12.5 mg, 0.025 mmol). The reaction mixture was stirred at room 

temperature for 5 min. Purification on silica gel (Cyclohexane/Ethyl acetate gradient from 

90/10 to 80/20) afforded 210 (140 mg, 84%) as a pale yellow oil. The excess of cyanamide was 

removed by bulb to bulb distillation (conditions: 5x10-3 mbar, 100 °C for 10 minutes).  

Rf = 0.23 (Petroleum ether/Ethyl acetate; 80/20, KMnO4, UV).  

1H NMR (300 MHz, CDCl3) δ 7.94 (s, 1H), 6.27 (s, 1H), 3.74 (s, 6H), 3.51 – 3.40 (m, 4H), 

3.40 – 3.28 (m, 4H), 1.68 – 1.47 (m, 4H), 0.91 (t, J = 7.4 Hz, 6H). 

13C NMR (75 MHz, CDCl3) δ 172.1, 157.8, 151.0, 143.1, 122.9, 100.8, 60.7, 53.1, 51.0, 40.6, 

37.6, 20.9, 11.6. 

HRMS (ESI+): calcd. for C18H27N2O4 [M+H]+: 335.1965, found 335.1967. 

Dimethyl 3-(butyl(methyl)amino)-5,7-dihydro-6H-cyclopenta[c]pyridine-6,6-

dicarboxylate (211) 
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This compound was obtained following the general procedure N. Starting from diyne 109 (104 

mg, 0.5 mmol), N-butyl-N-methylcyanamide 164 (67 mg, 0.6 mmol, 1.2 equiv) and 

Cp*Ru(CH3CN)3PF6 (12.5 mg, 0.025 mmol). The reaction mixture was stirred at room 

temperature for 5 min. Purification on silica gel (Cyclohexane/Ethyl acetate gradient from 

90/10 to 70/30) afforded 211 (130 mg, 81%) as a colorless oil. The excess of cyanamide was 

removed by bulb to bulb distillation (conditions: 1.0x10-3 mbar, 90 °C for 10 minutes). 

Rf = 0.24 (Petroleum ether/Ethyl acetate; 80/20, KMnO4, UV).  

1H NMR (300 MHz, CDCl3) δ 7.96 (s, 1H), 6.33 (s, 1H), 3.74 (s, 6H), 3.52 – 3.38 (m, 6H), 

3.00 (s, 3H), 1.59 – 1.48 (m, 2H), 1.42 – 1.30 (m, 2H), 0.93 (t, J = 7.3 Hz, 3H).  

13C NMR (75 MHz, CDCl3) δ 172.0, 158.4, 151.2, 143.0, 123.3, 101.0, 60.8, 53.1, 50.4, 40.6, 

37.5, 36.7, 29.6, 20.4, 14.2.  

HRMS (ESI+): calcd. for C17H25N2O4 [M+H]+: 321.1809, found 321.1810. 

Dimethyl 3-(methyl(phenyl)amino)-5,7-dihydro-6H-cyclopenta[c]pyridine-6,6-

dicarboxylate (212) 

 

This compound was obtained following the general procedure N. Starting from diyne 109 (104 

mg, 0.5 mmol), N-methyl-N-phenylcyanamide 162 (79 mg, 0.6 mmol, 1.2 equiv) and 

Cp*Ru(CH3CN)3PF6 (5.0 mg, 0.01 mmol). The reaction mixture was stirred at room 

temperature for 10 min. Purification on silica gel (Cyclohexane/Ethyl acetate gradient from 

90/10 to 80/20) afforded 212 (153mg, 90%) as a pale yellow solid. The analytical data were 

identical to the literature.135a 

Rf = 0.24 (Petroleum ether/Ethyl acetate; 80/20, KMnO4, UV).  
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1H NMR (300 MHz, CDCl3) δ 8.04 (s, 1H), 7.51 – 7.32 (m, 2H), 7.31 – 7.13 (m, 3H), 6.40 (s, 

1H), 3.73 (s, 6H), 3.49 (s, 2H), 3.44 (s, 3H), 3.37 (s, 2H).  

13C NMR (75 MHz, CDCl3) δ 171.9, 158.5, 150.8, 147.3, 142.8, 129.8, 126.3, 125.7, 125.3, 

104.8, 60.7, 53.1, 40.4, 38.9, 37.6. 

MS (CI, NH3): m/z = 341 [M + H] + 

Dimethyl 3-(benzyl(methyl)amino)-5,7-dihydro-6H-cyclopenta[c]pyridine-6,6-

dicarboxylate (213) 

 

This compound was obtained following the general procedure N. Starting from diyne 109 (104 

mg, 0.5 mmol), N-benzyl-N-methylcyanamide 158 (88 mg, 0.6 mmol, 1.2 equiv) and 

Cp*Ru(CH3CN)3PF6 (2.5 mg, 0.005 mmol). The reaction mixture was stirred at room 

temperature for 2 min. Purification on silica gel (Cyclohexane/Ethyl acetate gradient from 

80/20 to 70/30) afforded 213 (168 mg, 95%) as a white solid. The excess of cyanamide was 

removed by bulb to bulb distillation (conditions: 1.0 x 10-3 mbar, 120 °C for 20 minutes). m.p. 

136 – 138 °C.  

Rf = 0.17 (Petroleum ether/Ethyl acetate; 80/20, KMnO4, UV).  

1H NMR (300 MHz, CDCl3) δ 8.00 (s, 1H), 7.36 – 7.15 (m, 5H), 6.38 (s, 1H), 4.78 (s, 2H), 

3.75 (s, 6H), 3.49 (s, 2H), 3.47 (s, 2H), 3.03 (s, 3H).  

13C NMR (75 MHz, CDCl3) δ 172.0, 158.7, 151.5, 143.1, 139.1, 128.6, 127.2, 126.9, 124.1, 

101.1, 60.7, 53.7, 53.1, 40.6, 37.6, 36.5.  

HRMS (ESI+): calcd. for C20H23N2O4 [M+H]+: 355.1652, found 355.1654. 

N-Benzyl-N,4,7-trimethyl-2-tosyl-2,3-dihydro-1H-pyrrolo[3,4-c]pyridin-6-amine (214) 
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This compound was obtained following the general procedure N. Starting from diyne 108 

(137.5 mg, 0.5 mmol), N-benzyl-N-methylcyanamide 158 (88 mg, 0.6 mmol, 1.2 equiv) and 

Cp*Ru(CH3CN)3PF6 (5.0 mg, 0.01 mmol). The reaction mixture was stirred at room 

temperature for 5 min. Purification on silica gel (Cyclohexane/Ethyl acetate gradient from 

90/10 to 80/20) afforded 214 (203 mg, 97%) as a pale brown solid. The excess of cyanamide 

was removed by bulb to bulb distillation (conditions: 1.0x10-3 mbar, 120 °C for 20 minutes). 

m.p. 132 – 134 °C.  

Rf = 0.3 (Petroleum ether/Ethyl acetate; 80/20, KMnO4, UV).  

1H NMR (300 MHz, CDCl3) δ 7.81 – 7.70 (m, 2H), 7.39 – 7.27 (m, 6H), 7.26 – 7.19 (m, 1H), 

4.53 – 4.90 (m, 4H), 4.26 (s, 2H), 2.68 (s, 3H), 2.42 (s, 3H), 2.28 (s, 3H), 2.13 (s, 3H).  

13C NMR (75 MHz, CDCl3) δ 161.7, 147.2, 146.7, 143.9, 139.6, 134.0, 130.0, 128.4, 128.1, 

127.7, 127.0, 124.0, 116.0, 58.1, 53.4, 52.5, 39.8, 21.7, 14.8.  

HRMS (ESI+): calcd. for C24H28N3O2S [M+H]+: 422.1897, found 422.1890.  

4-Methyl-6-morpholino-1,3-dihydrofuro[3,4-c]pyridine (217) 

 

This compound was obtained following the general procedure N. Starting from diyne 127 (54 

mg, 0.5 mmol), 4-cyanomorpholine 155 (67 mg, 0.6 mmol, 1.2 equiv) and Cp*Ru(CH3CN)3PF6 

(12.5 mg, 0.025 mmol). The reaction mixture was stirred at room temperature for 5 min. 

Purification on silica gel (Cyclohexane/Ethyl acetate gradient from 80/20 to 60/40) afforded 

217 (95 mg, 86%, ratio > 99:1) as a pale yellow solid. The excess of cyanamide was removed 

by bulb to bulb distillation (conditions: 1.0x10-3 mbar, 90 °C for 10 minutes). m.p. 90 – 92 °C.  



Experimental part 

 307 

Rf = 0.17 (Petroleum ether/Ethyl acetate; 80/20, KMnO4, UV).  

1H NMR (400 MHz, CDCl3) δ 6.33 (s, 1H, H1), 5.02 – 4.97 (m, 4H, H3,4), 3.87 – 3.77 (m, 4H, 

H10), 3.49 – 3.42 (m, 4H, H9), 2.31 (s, 3H, H7). 

13C NMR (101 MHz, CDCl3) δ 159.6 (C8), 151.0 (C2), 149.4 (C6), 123.8 (C5), 96.5 (C1), 73.5 

(C3), 71.8 (C4), 66.9 (C10), 46.4 (C9), 22.4 (C7). 

NOESY (400 MHz, CDCl3) H1 (6.33 ppm) correlate to H3 (5.02 – 4.97 ppm) and H9 (3.49 – 

3.42 ppm), H4 (5.02 – 4.97 ppm) correlates to H7 (2.31 ppm), H7 (6.33 ppm) does not correlates 

to H9 (3.49 – 3.42 ppm).  

HRMS (ESI+): calcd. for C12H17N2O2 [M+H]+: 221.1285, found 221.1285. 

4-(4-Methyl-2-tosyl-2,3-dihydro-1H-pyrrolo[3,4-c]pyridin-6-yl)morpholine (218) 

 

This compound was obtained following the general procedure N. Starting from diyne 128 

(130.5 mg, 0.5 mmol), 4-cyanomorpholine 155 (67 mg, 0.6 mmol, 1.2 equiv) and 

Cp*Ru(CH3CN)3PF6 (12.5 mg, 0.025 mmol). The reaction mixture was stirred at room 

temperature for 5 min. Purification on silica gel (Cyclohexane/Ethyl acetate gradient from 

90/10 to 70/30) afforded 218 (168 mg, 90%, ratio > 99:1) as a white solid. The excess of 

cyanamide was removed by bulb to bulb distillation (conditions: 1.0x10-3 mbar, 90 °C for 10 

minutes). m.p. 169 – 172 °C. 

Rf = 0.13 (Petroleum ether/Ethyl acetate; 80/20, KMnO4, UV).  

1H NMR (400 MHz, CDCl3) δ 7.78 – 7.72 (m, 2H, H4), 7.34 – 7.28 (m, 2H, H3), 6.24 (s, 1H, 

H13), 4.51 (s, 2H, H6), 4.45 (s, 2H, H7), 3.81 – 3.75 (m, 4H, H15), 3.45 – 3.39 (m, 4H, H14), 2.41 

(s, 3H, H1), 2.26 (s, 3H, H11).  
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13C NMR (101 MHz, CDCl3) δ 159.5 (C12), 150.9 (C10), 147.5 (C8), 143.9 (C2), 133.8 (C5), 

130.0 (C3), 127.6 (C4), 120.6 (C9), 97.7 (C13), 66.8 (C15), 53.8 (C6), 51.8 (C7), 46.1 (C14), 22.1 

(C11), 21.7 (C1).  

NOESY (400 MHz, CDCl3) H13 (6.24 ppm) correlate to H6 (4.51 ppm) and H14 (3.45 – 3.39 

ppm), H7 (4.45 ppm) correlates to H11 (2.26 ppm), H11 (2.26 ppm) does not correlates to H14 

(3.45 – 3.39 ppm).   

HRMS (ESI+): calcd. for C19H24N3O3S [M+H]+: 374.1533, found 374.1533. 

Dimethyl 1-bromo-4-methyl-3-morpholino-5,7-dihydro-6H-cyclopenta[c]pyridine-6,6-

dicarboxylate (220) 

 

This compound was obtained following the general procedure M. Starting from diyne 129 (150 

mg, 0.5 mmol), 4-cyanomorpholine 155 (112 mg, 1.0 mmol, 2.0 equiv) and 

Cp*Ru(CH3CN)3PF6 (12.5 mg, 0.025 mmol). The reaction mixture was stirred at room 

temperature for 60 min. Purification on silica gel (Cyclohexane/Ethyl acetate gradient from 

95/5 to 90/10) afforded 220 (161 mg, 78%, ratio = 96:4) as a white solid. The excess of 

cyanamide was removed by bulb to bulb distillation (condition: 1.0x10-3 mbar, 90 °C for 10 

minutes). m.p. 118 – 120 °C. 

Rf = 0.36 (Petroleum ether/Ethyl acetate; 80/20, KMnO4, UV).  

1H NMR (400 MHz, CDCl3) δ 3.85 – 3.79 (m, 4H, H12), 3.77 (s, 6H, H1), 3.55 (s, 2H, H5), 3.54 

(s, 2H, H4), 3.11 – 3.06 (m, 4H, H11), 2.12 (s, 3H, H13). 

13C NMR (101 MHz, CDCl3) δ 171.6 (C2), 160.9 (C9), 152.6 (C7), 132.6 (C10), 131.3 (C6), 

119.8 (C8), 67.1 (C12), 58.9 (C3), 53.4 (C1), 50.5 (C11), 40.8 (C4), 40.5 (C5), 14.6 (C13).  

NOESY (400 MHz, CDCl3) H13 (2.12 ppm) correlate to H4 (3.54 ppm) and H11 (3.11 – 3.06 

ppm).  
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HRMS (ESI+): calcd. for C17H21BrN2O5Na [M+Na]+: 435.0526, found 435.0526. 

4-Bromo-7-methyl-6-morpholino-1,3-dihydrofuro[3,4-c]pyridine (221) 

 

This compound was obtained following the general procedure N. Starting from diyne 130 (93 

mg, 0.5 mmol), 4-cyanomorpholine 155 (67 mg, 0.6 mmol, 1.2 equiv) and Cp*Ru(CH3CN)3PF6 

(5.0 mg, 0.01 mmol). The reaction mixture was stirred at 50 °C for 2 h. Purification on silica 

gel (Cyclohexane/Ethyl acetate gradient from 90/10 to 80/20) afforded 221 (124 mg, 83%, ratio 

= 98:2) as a pale yellow solid. The excess of cyanamide was removed by bulb to bulb distillation 

(condition: 1.0x10-3 mbar, 90 °C for 10 minutes). m.p. 108 – 110°C. 

Rf = 0.19 (Petroleum ether/Ethyl acetate; 80/20, KMnO4, UV).  

1H NMR (400 MHz, CDCl3) δ 5.07 (s, 2H, H4), 5.03 – 4.95 (m, 2H, H5), 3.88 – 3.77 (m, 4H, 

H10), 3.18 – 3.08 (m, 4H, H9), 2.10 (s, 3H, H1). 

13C NMR (101 MHz, CDCl3) δ 161.2 (C8), 152.4 (C3), 130.5 (C6), 129.0 (C7), 117.1 (C2), 73.9 

(C4), 73.6 (C5), 67.0 (C10), 50.5 (C9), 14.8 (C1). 

NOESY (400 MHz, CDCl3) H1 (2.10 ppm) correlate to H4 (5.07 ppm) and H9 (3.18 – 3.08 

ppm).  

HRMS (ESI+): calcd. for C12H16BrN2O2 [M+H]+: 299.0390, found 299.0393. 

4-Bromo-6-morpholino-1,3-dihydrofuro[3,4-c]pyridine (222) 
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This compound was obtained following the general procedure N. Starting from diyne 131 (89 

mg, 0.5 mmol), 4-cyanomorpholine 155 (67 mg, 0.6 mmol, 1.2 equiv) and Cp*Ru(CH3CN)3PF6 

(12.5 mg, 0.025 mmol). The reaction mixture was stirred at room temperature for 2 h. 

Purification on silica gel (Cyclohexane/Ethyl acetate gradient from 90/10 to 60/40) afforded 

222 (95 mg, 65%, ratio = 98:2) as a pale yellow solid. The excess of cyanamide was removed 

by bulb to bulb distillation (condition: 1.0x10-3 mbar, 90 °C for 10 minutes). m.p. 122 – 124 

°C.  

Rf = 0.1 (Petroleum ether/Ethyl acetate; 80/20, KMnO4, UV).  

1H NMR (400 MHz, CDCl3) δ 6.40 (s, 1H, H1), 5.06 (dd, J = 2.7, 1.8 Hz, 2H, H3), 4.94 (t, J = 

1.8 Hz, 2H, H4), 3.83 – 3.75 (m, 4H, H9), 3.53 – 3.41 (m, 4H, H8).  

13C NMR (101 MHz, CDCl3) δ 159.6 (C7), 153.1 (C2), 132.7 (C6), 126.0 (C5), 97.7 (C1), 74.1 

(C3), 72.8 (C4), 66.7 (C9), 45.9 (C8).  

NOESY (400 MHz, CDCl3) H1 (6.40 ppm) correlate to H3 (5.06 ppm) and H8 (3.53 – 3.41 

ppm). 

HRMS (ESI+): calcd. for C11H14BrN2O2 [M+H]+: 285.0233, found 285.0235. 

N-Benzyl-4-bromo-N,7-dimethyl-2-tosyl-2,3-dihydro-1H-pyrrolo[3,4-c]pyridin-6-amine 

(223) 

 

This compound was obtained following the general procedure N. Starting from diyne 132 

(169.5 mg, 0.5 mmol), N-benzyl-N-methylcyanamide 158 (88 mg, 0.6 mmol, 1.2 equiv) and 

Cp*Ru(CH3CN)3PF6 (12.5 mg, 0.025 mmol). The reaction mixture was stirred at 50 °C for 2 h. 

Purification on silica gel (Cyclohexane/Ethyl acetate gradient from 90/10 to 85/15) afforded 

223 (182 mg, 75%, ratio = 98:2) as a white solid. m.p. 138-140 °C. 

Rf = 0.46 (Petroleum ether/Ethyl acetate; 80/20, KMnO4, UV).  
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1H NMR (400 MHz, CDCl3) δ 7.80 – 7.72 (m, 2H, H4), 7.40 – 7.35 (m, 2H, H3), 7.35 – 7.29 

(m, 4H, H17, 18), 7.29 – 7.22 (m, 1H, H19), 4.51 (s, 2H, H6), 4.53 – 4.49 (m, 2H, H7), 4.29 (s, 2H, 

H15), 2.72 (s, 3H, H14), 2.43 (s, 3H, H1), 2.09 (s, 3H, H13).  

13C NMR (101 MHz, CDCl3) δ 162.1 (C11), 148.8 (C8), 144.2 (C2), 138.6 (C16), 133.6 (C15), 

130.1 (C3, 10), 128.5 (C18), 128.0 (C17), 127.7 (C4), 127.2 (C19), 126.5 (C9), 117.4 (C12), 57.8 

(C15), 54.1 (C6), 53.7 (C7), 39.6 (C14), 21.7 (C1), 15.0 (C13).  

NOESY (400 MHz, CDCl3) H13 (2.09 ppm) correlate to H6 (4.51 ppm), H15 (4.29 ppm) and H14 

(2.72 ppm).  

Dimethyl 1-iodo-4-methyl-3-morpholino-5,7-dihydro-6H-cyclopenta[c]pyridine-6,6-

dicarboxylate (224) 

 

This compound was obtained following the general procedure N. Starting from diyne 133 (174 

mg, 0.5 mmol), 4-cyanomorpholine 155 (67 mg, 0.6 mmol, 1.2 equiv) and Cp*Ru(CH3CN)3PF6 

(12.5 mg, 0.025 mmol). The reaction mixture was stirred at 50 °C for 30 min. Purification on 

silica gel (Cyclohexane/Ethyl acetate gradient from 90/10 to 80/20) afforded 224 (190 mg, 83%, 

ratio > 99:1) as a brown solid. The excess of cyanamide was removed by bulb to bulb distillation 

(condition: 1.0x10-3 mbar, 90 °C for 10 minutes). m.p. 126 – 128°C. 

Rf = 0.14 (Petroleum ether/Ethyl acetate; 80/20, KMnO4, UV).  

1H NMR (400 MHz, CDCl3) δ 3.84 – 3.79 (m, 4H, H13), 3.77 (s, 6H, H1), 3.57 (s, 2H, H4), 3.49 

(s, 2H, H5), 3.10 – 3.03 (m, 4H, H12), 2.11 (s, 3H, H11).  

13C NMR (101 MHz, CDCl3) δ 171.6 (C2), 160.9 (C9), 150.6 (C6), 136.4 (C7), 120.1 (C10), 

109.8 (C8), 67.1 (C13), 58.3 (C3), 53.4 (C1), 50.5 (C12), 43.3 (C5), 41.0 (C4), 14.6 (C11).  

NOESY (400 MHz, CDCl3) H11 (2.11 ppm) correlate to H4 (3.57 ppm) and H12 (3.10 – 3.03 

ppm).  
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HRMS (ESI+): calcd. for C17H21IN2O5Na [M+Na]+: 483.0387, found 483.0385. 

3-(7-Methyl-6-morpholino-1,3-dihydrofuro[3,4-c]pyridin-4-yl)oxazolidin-2-o (225) 

 

This compound was obtained following the general procedure N. Starting from diyne 134 (96.5 

mg, 0.5 mmol), morpholine-4-carbonitrile 155 (67 mg, 0.6 mmol, 1.2 equiv) and 

Cp*Ru(CH3CN)3PF6 (12.5 mg, 0.025 mmol). The reaction mixture was stirred at 50 °C for 16 

h. Purification on silica gel (Cyclohexane/Ethyl acetate gradient from 60/40 to 50/50) afforded 

225 (120 mg, 79%, ratio > 99:1) as a white solid. m.p. 202 – 204 °C.  

Rf = 0.21 (Petroleum ether/Ethyl acetate; 50/50, KMnO4, UV).  

1H NMR (300 MHz, CDCl3) δ 5.19 (s, 2H), 4.96 (s, 2H), 4.48 (t, J = 7.8 Hz, 2H), 4.22 (t, J = 

7.9 Hz, 2H), 3.89 – 3.74 (m, 4H), 3.15 – 3.01 (m, 4H), 2.12 (s, 3H).  

13C NMR (75 MHz, CDCl3) δ 159.0, 155.1, 154.0, 140.1, 120.4, 114.5, 73.4, 72.5, 67.1, 62.9, 

50.4, 44.9, 14.4.  

MS (CI, NH3): m/z = 306 [M + H] +.  

3-(7-Methyl-6-(pyrrolidin-1-yl)-1,3-dihydrofuro[3,4-c]pyridin-4-yl)oxazolidin-2-one 

(226) 

 

This compound was obtained following the general procedure M. Starting from diyne 134 (96.5 

mg, 0.5 mmol), pyrrolidine-1-carbonitrile 156 (96.1 mg, 1.0 mmol, 2.0 equiv) and 
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Cp*Ru(CH3CN)3PF6 (12.5 mg, 0.025 mmol). The reaction mixture was stirred at 50 °C for 2 h. 

Purification on silica gel (Cyclohexane/Ethyl acetate gradient from 60/40 to 50/50) afforded 

226 (135 mg, 93%, ratio > 99:1) as a white solid. m.p. 177 – 179 °C.  

Rf = 0.6 (Petroleum ether/Ethyl acetate; 50/50, KMnO4, UV).  

1H NMR (400 MHz, CDCl3) δ 5.16 (s, 2H), 4.95 (s, 2H), 4.45 (t, J = 7.9 Hz, 2H), 4.21 (t, J = 

7.9 Hz, 2H), 3.52 – 3.40 (m, 4H), 2.14 (s, 3H), 1.93 – 1.84 (m, 4H).  

13C NMR (101 MHz, CDCl3) δ 157.4, 155.2, 153.6, 139.2, 115.8, 109.3, 73.4, 72.6, 62.8, 50.1, 

44.9, 25.6, 15.8.  

MS (CI, NH3): m/z = 290 [M + H] +.  

Elemental Analysis: Anal. Calcd for C15H19N3O3 (289.14): C, 62.27; H, 6.62; N, 14.52. Found: 

C,62.20; H, 6.63; N, 14.26.  

Dimethyl 3-morpholino-1-vinyl-5,7-dihydro-6H-cyclopenta[c]pyridine-6,6-dicarboxylate 

(227) 

 

This compound was obtained following the general procedure N. Starting from diyne 135 (70 

mg, 0.3 mmol), morpholine-4-carbonitrile 155 (40 mg, 0.36 mmol, 1.2 equiv) and 

Cp*Ru(CH3CN)3PF6 (7.6 mg, 0.015 mmol). The reaction mixture was stirred at room 

temperature for 10 min. Purification on silica gel (Cyclohexane/Ethyl acetate gradient from 

90/10 to 80/20) afforded 227 (94 mg, 90%, ratio > 99:1) as a white solid. m.p. 119 – 121 °C.  

Rf = 0.18 (Petroleum ether/Ethyl acetate; 80/20, KMnO4, UV).  

1H NMR (300 MHz, CDCl3) δ 6.70 (dd, J = 17.1, 10.6 Hz, 1H), 6.45 (s, 1H), 6.25 (dd, J = 17.1, 

2.2 Hz, 1H), 5.42 (dd, J = 10.6, 2.2 Hz, 1H), 3.86 – 3.75 (m, 4H), 3.74 (s, 6H), 3.55 (s, 2H), 

3.53 – 3.44 (m, 6H).  
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13C NMR (75 MHz, CDCl3) δ 171.8, 158.8, 152.3, 147.9, 134.0, 124.1, 118.6, 102.3, 67.0, 

60.3, 53.2, 46.1, 40.5, 37.7.  

HRMS (ESI+): calcd. for C18H23N2O5 [M+H]+: 347.1601, found 347.1603.  

Dimethyl 3-(benzyl(methyl)amino)-1-vinyl-5,7-dihydro-6H-cyclopenta[c]pyridine-6,6-

dicarboxylate (228) 

 

This compound was obtained following the general procedure N. Starting from diyne 135 (70 

mg, 0.3 mmol), N-benzyl-N-methylcyanamide 158 (53 mg, 0.36 mmol, 1.2 equiv) and 

Cp*Ru(CH3CN)3PF6 (7.6 mg, 0.015 mmol). The reaction mixture was stirred at room 

temperature for 30 min. Purification on silica gel (Cyclohexane/Ethyl acetate gradient from 

90/10 to 80/20) afforded 228 (105 mg, 92%, ratio > 99:1) as a white solid. m.p. 146 – 148 °C.  

Rf = 0.33 (Petroleum ether/Ethyl acetate; 80/20, KMnO4, UV).  

1H NMR (300 MHz, CDCl3) δ 7.35 – 7.18 (m, 5H), 6.72 (dd, J = 17.1, 10.6 Hz, 1H), 6.33 (s, 

1H), 6.27 (dd, J = 17.1, 2.3 Hz, 1H), 5.39 (dd, J = 10.6, 2.3 Hz, 1H), 4.83 (s, 2H), 3.75 (s, 6H), 

3.56 (s, 2H), 3.47 (d, J = 1.1 Hz, 2H), 3.05 (s, 3H).  

13C NMR (75 MHz, CDCl3) δ 172.0, 158.1, 152.1, 147.7, 139.4, 134.2, 128.6, 127.4, 126.9, 

122.1, 118.2, 100.9, 60.3, 53.5, 53.2, 40.5, 37.6, 36.3.  

MS (CI, NH3): m/z = 381 [M + H] +.  

4-(2-Tosyl-4-vinyl-2,3-dihydro-1H-pyrrolo[3,4-c]pyridin-6-yl)morpholine (229) 
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This compound was obtained following the general procedure M. Starting from diyne 136 

(136.5 mg, 0.5 mmol), morpholine-4-carbonitrile 155 (112 mg, 1.0 mmol, 2.0 equiv) and 

Cp*Ru(CH3CN)3PF6 (12.5 mg, 0.025 mmol). The reaction mixture was stirred at room 

temperature for 3 min. Purification on silica gel (Cyclohexane/Ethyl acetate gradient from 

80/20 to 60/40) afforded 229 (145 mg, 75%, ratio > 99:1) as a white solid. m.p. 168 – 170 °C.  

Rf = 0.1 (Petroleum ether/Ethyl acetate; 80/20, KMnO4, UV).  

1H NMR (300 MHz, CDCl3) δ 7.75 (d, J = 8.3 Hz, 2H), 7.31 (d, J = 7.9 Hz, 2H), 6.52 (dd, J = 

17.2, 10.7 Hz, 1H), 6.35 (s, 1H), 6.18 (dd, J = 17.2, 1.9 Hz, 1H), 5.46 (dd, J = 10.6, 1.9 Hz, 

1H), 4.56 (s, 2H), 4.51 (s, 2H), 3.85 – 3.70 (m, 4H), 3.53 – 3.40 (m, 4H), 2.40 (s, 3H).  

13C NMR (75 MHz, CDCl3) δ 159.0, 148.3, 147.3, 144.0, 133.8, 133.6, 130.0, 127.6, 120.1, 

119.7, 99.9, 66.8, 53.4, 51.5, 45.9, 21.6.  

MS (CI, NH3): m/z = 386 [M + H]+.  

Elemental Analysis: Anal. Calcd for C20H23N3O3S (385.15): C, 62.32; H, 6.01; N, 10.90. 

Found: C,62.20; H, 6.04; N, 10.61.  

8-Methyl-6-morpholino-3,4-dihydro-1H-pyrano[3,4-c]pyridine (230) 

 

This compound was obtained following the general procedure N. Starting from diyne 138 (61 

mg, 0.5 mmol), morpholine-4-carbonitrile 155 (112 mg, 1.0 mmol, 2.0 equiv) and 

Cp*Ru(CH3CN)3PF6 (12.5 mg, 0.025 mmol). The reaction mixture was stirred at 50 °C for 2 h. 

Purification on silica gel (Cyclohexane/Ethyl acetate gradient from 90/10 to 70/30) afforded 

230 (95 mg, 81%, ratio > 99:1) as a white solid. m.p. 140 – 142 °C.  

Rf = 0.2 (Petroleum ether/Ethyl acetate; 80/20, KMnO4, UV).  

1H NMR (300 MHz, CDCl3) δ 6.23 (s, 1H), 4.63 (s, 2H), 3.89 (t, J = 5.6 Hz, 2H), 3.85 – 3.75 

(m, 4H), 3.48 – 3.35 (m, 4H), 2.76 (dt, J = 5.8, 2.9 Hz, 2H), 2.22 (s, 3H).  
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13C NMR (75 MHz, CDCl3) δ 158.0, 152.0, 144.1, 119.1, 104.0, 67.0, 65.8, 64.6, 46.2, 28.9, 

21.1.  

HRMS (ESI+): calcd. for C13H19N2O2 [M+H]+: 235.1441, found 235.1440.  

8-Methyl-6-(pyrrolidin-1-yl)-3,4-dihydro-1H-pyrano[3,4-c]pyridine (231) 

 

This compound was obtained following the general procedure N. Starting from diyne 138 (61 

mg, 0.5 mmol), pyrrolidine-1-carbonitrile 156 (96.1 mg, 1.0 mmol, 2.0 equiv) and 

Cp*Ru(CH3CN)3PF6 (12.5 mg, 0.025 mmol). The reaction mixture was stirred at 50 °C for 4 h. 

Purification on silica gel (Cyclohexane/Ethyl acetate gradient from 90/10 to 80/20) afforded 

231 (50 mg, 46%, ratio > 99:1) as a white solid. m.p. 110 – 112 °C.  

Rf = 0.28 (Petroleum ether/Ethyl acetate; 80/20, KMnO4, UV).  

1H NMR (400 MHz, CDCl3) δ 5.96 (s, 1H), 4.64 (s, 2H), 3.89 (t, J = 5.7 Hz, 2H), 3.49 – 3.33 

(m, 4H), 2.75 (t, J = 5.7 Hz, 2H), 2.22 (s, 3H), 2.03 – 1.91 (m, 4H).  

13C NMR (101 MHz, CDCl3) δ 155.9, 151.9, 143.4, 115.9, 103.1, 66.0, 64.7, 46.8, 28.9, 25.7, 

21.1.  

MS (CI, NH3): m/z = 219 [M + H] +.  

N-benzyl-N,8-dimethyl-3,4-dihydro-1H-pyrano[3,4-c]pyridin-6-amine (232) 

 

This compound was obtained following the general procedure N. Starting from diyne 138 (61 

mg, 0.5 mmol), N-benzyl-N-methylcyanamide 158 (146 mg, 1.0 mmol, 2.0 equiv) and 
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Cp*Ru(CH3CN)3PF6 (12.5 mg, 0.025 mmol). The reaction mixture was stirred at 50 °C for 4 h. 

Purification on silica gel (Cyclohexane/Ethyl acetate gradient from 90/10 to 80/20) afforded 

232 (45 mg, 34%, ratio > 99:1) as a white solid m.p. 78 – 79 °C.  

Rf = 0.47 (Petroleum ether/Ethyl acetate; 75/25, KMnO4, UV).  

1H NMR (300 MHz, CDCl3) δ 7.37 – 7.26 (m, 2H), 7.27 – 7.15 (m, 3H), 6.11 (s, 1H), 4.81 (s, 

2H), 4.65 (s, 2H), 3.89 (t, J = 5.7 Hz, 2H), 3.00 (s, 3H), 2.85 – 2.62 (m, 2H), 2.23 (s, 3H).  

13C NMR (101 MHz, CDCl3) δ 157.2, 151.7, 143.8, 139.4, 128.5, 127.4, 126.9, 116.7, 102.3, 

65.9, 64.7, 53.0, 36.0, 29.0, 21.2.  

MS (CI, NH3): m/z = 269 [M + H] +.  

4-(1-Methyl-7-tosyl-5,6,7,8-tetrahydro-2,7-naphthyridin-3-yl)morpholine (233) 

 

This compound was obtained following the general procedure N. Starting from diyne 139 (82.5 

mg, 0.3 mmol), morpholine-4-carbonitrile 155 (67 mg, 0.6 mmol, 2.0 equiv) and 

Cp*Ru(CH3CN)3PF6 (7.6 mg, 0.015 mmol). The reaction mixture was stirred at room 

temperature for 2 min. Purification on silica gel (Cyclohexane/Ethyl acetate gradient from 

80/20 to 60/40) afforded 233 (100 mg, 86%, ratio > 99:1) as a white solid. m.p. 136 – 138 °C.  

Rf = 0.2 (Petroleum ether/Ethyl acetate; 80/20, KMnO4, UV).  

1H NMR (300 MHz, CDCl3) δ 7.72 (d, J = 8.2 Hz, 2H), 7.33 (d, J = 8.0 Hz, 2H), 6.17 (s, 1H), 

4.06 (s, 2H), 3.86 – 3.72 (m, 4H), 3.48 – 3.35 (m, 4H), 3.30 (t, J = 5.8 Hz, 2H), 2.82 (t, J = 5.7 

Hz, 2H), 2.42 (s, 3H), 2.27 (s, 3H).  

13C NMR (75 MHz, CDCl3) δ 157.9, 153.4, 143.9, 143.8, 133.6, 129.9, 127.8, 116.1, 103.7, 

66.9, 46.0, 45.0, 43.0, 29.5, 21.7.  

MS (CI, NH3): m/z = 388 [M + H] + 
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(8R,9S,13S,14S,17S)-3-Methoxy-4',13-dimethyl-6'-morpholino-6,7,8,9,11,12,13,14,15,16-

decahydro-3'H-spiro[cyclopenta[a]phenanthrene-17,1'-furo[3,4-c]pyridine (237) 

 

This compound was obtained following the general procedure N. Starting from diyne 143 (72.4 

mg, 0.2 mmol), morpholine-4-carbonitrile 155 (27 mg, 0.24 mmol, 1.2 equiv) and 

Cp*Ru(CH3CN)3PF6 (5.0 mg, 0.01 mmol). The reaction mixture was stirred at 50 °C for 2 h. 

Purification on silica gel (Cyclohexane/Ethyl acetate gradient from 90/10 to 80/20) afforded 

237 (48.5 mg, 51%, ratio = 10:1) as a white solid. m.p. 208 – 210 °C.  

Rf = 0.14 (Petroleum ether/Ethyl acetate; 90/10, KMnO4, UV).  

1H NMR (300 MHz, CDCl3) δ 7.12 (d, J = 8.6 Hz, 1H), 6.68 (dd, J = 8.6, 2.8 Hz, 1H), 6.62 (d, 

J = 2.8 Hz, 1H), 6.30 (s, 1H), 4.93 – 4.78 (m, 2H), 3.91 – 3.80 (m, 4H), 3.77 (s, 3H), 3.61 – 

3.35 (m, 4H), 2.98 – 2.78 (m, 2H), 2.31 (s, 3H), 2.28 – 2.17 (m, 1H), 2.15 – 1.94 (m, 4H), 1.87 

– 1.78 (m, 1H), 1.74 – 1.55 (m, 3H), 1.46 – 1.26 (m, 4H), 1.06 (s, 3H).  

13C NMR (75 MHz, CDCl3) δ 159.8, 157.6, 156.9, 149.0, 137.9, 132.4, 126.4, 124.8, 114.0, 

111.6, 98.9, 98.3, 69.9, 67.0, 55.3, 49.9, 48.3, 46.6, 43.9, 39.3, 36.3, 33.6, 30.0, 27.7, 26.4, 23.7, 

22.2, 15.5.  

MS (CI, NH3): m/z = 475 [M + H] +.  

1-Butyl-3-morpholino-9H-indeno[2,1-c]pyridin-9-one (240) 
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This compound was obtained following the general procedure M. Starting from diyne 29 (105 

mg, 0.5 mmol), 4-cyanomorpholine 155 (112 mg, 1.0 mmol, 2.0 equiv) and 

Cp*Ru(CH3CN)3PF6 (5.0 mg, 0.01 mmol). The reaction mixture was stirred at room 

temperature for 10 min. Purification on silica gel (Cyclohexane/Ethyl acetate gradient from 

90/10 to 80/20) afforded 240 (142 mg, 92%, ratio > 99:1) as a light yellow solid. m.p. 106 – 

108 °C.  

Rf = 0.12 (Petroleum ether/Ethyl acetate; 90/10, KMnO4, UV).  

1H NMR (400 MHz, CDCl3) δ 7.69 – 7.64 (m, 1H, H1), 7.54 (dd, J = 7.3, 0.9 Hz, 1H, H4), 7.47 

(td, J = 7.4, 1.2 Hz, 1H, H3), 7.40 (td, J = 7.4, 1.1 Hz, 1H, H2), 6.62 (s, 1H, H10), 3.86 – 3.81 

(m, 4H, H18), 3.81 – 3.73 (m , 4H, H17), 3.09 – 3.01 (m, 2H, H13), 1.74 – 1.65 (m, 2H, H14), 1.50 

– 1.36 (m, 2H, H15), 0.95 (t, J = 7.3 Hz, 3H, H16).  

13C NMR (101 MHz, CDCl3) δ 191.3 (C7), 163.0 (C12), 161.0 (C11), 154.1 (C9), 140.8 (C5), 

136.9 (C6), 133.3 (C3), 130.8 (C2), 123.6 (C1), 120.7 (C4), 116.1 (C8), 95.5 (C10), 66.8 (C18), 

45.3 (C17), 34.1 (C13), 30.9 (C14), 22.8 (C15), 14.2 (C16).  

NOESY (400 MHz, CDCl3) H10 (6.62 ppm) correlates to H17 (3.81 – 3.73 ppm).  

HRMS (ESI+): calcd. for C20H23N2O2 [M+H]+: 323.1754, found 323.1755.  

1-Butyl-3-(pyrrolidin-1-yl)-9H-indeno[2,1-c]pyridin-9-one (241) 

 

This compound was obtained following the general procedure M. Starting from diyne 29 (105 

mg, 0.5 mmol), pyrrolidine-1-carbonitrile 156 (96.1 mg, 1.0 mmol, 2.0 equiv) and 

Cp*Ru(CH3CN)3PF6 (5.0 mg, 0.01 mmol). The reaction mixture was stirred at room 

temperature for 10 min. Purification on silica gel (Cyclohexane/Ethyl acetate gradient from 

95/5 to 90/10) afforded 241 (133 mg, 87%, ratio > 99:1) as a light yellow solid. m.p. 90 – 91 

°C.  
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Rf = 0.4 (Petroleum ether/Ethyl acetate; 80/20, KMnO4, UV).  

1H NMR (400 MHz, CDCl3) δ 7.70 – 7.61 (m, 1H, H1), 7.58– 7.52 (m, 1H, H4), 7.49 – 7.43 

(m, 1H, H3), 7.42– 7.35 (m, 1H, H2), 6.37 (s, 1H, H10), 3.62 (br, 4H, H17), 3.07 (t, J = 7.6 Hz, 

2H, H13), 2.03 (br, 4H, H18), 1.78 – 1.65 (m, 2H, H14), 1.52 – 1.36 (m, 2H, H15), 0.95 (t, J = 7.4 

Hz, 3H, H16).  

13C NMR (101 MHz, CDCl3) δ 191.3 (C7), 163.8 (C12), 159.2 (C11), 153.1 (C9), 140.8 (C5), 

137.4 (C6), 132.9 (C3), 130.5 (C2), 123.3 (C1), 120.7 (C4), 114.8 (C8), 96.2 (C10), 47.4 (C17), 

34.2 (C13), 31.0 (C14), 25.5(C17), 22.9 (C15), 14.2 (C16).  

NOESY (400 MHz, CDCl3) H10 (6.37 ppm) correlates to H17 (3.62 ppm).  

HRMS (ESI+): calcd. for C20H23N2O1 [M+H]+: 307.1805, found 307.1805.  

3-(Benzyl(methyl)amino)-1-butyl-9H-indeno[2,1-c]pyridin-9-one (242) 

 

This compound was obtained following the general procedure N. Starting from diyne 29 (105 

mg, 0.5 mmol), N-benzyl-N-methylcyanamide 158 (88 mg, 0.6 mmol, 1.2 equiv) and 

Cp*Ru(CH3CN)3PF6 (12.5 mg, 0.025 mmol). The reaction mixture was stirred at room 

temperature for 30 min. Purification on silica gel (Cyclohexane/Ethyl acetate gradient from 

98/2 to 95/5) afforded 242 (142 mg, 80%, ratio > 99:1) as a yellow solid. m.p. 106 – 108 °C.  

Rf = 0.34 (Petroleum ether/Ethyl acetate; 90/10, KMnO4, UV).  

1H NMR (300 MHz, CDCl3) δ 7.67 (dt, J = 7.1, 1.1 Hz, 1H), 7.58 – 7.50 (m, 1H), 7.50 – 7.38 

(m, 2H), 7.38 – 7.24 (m, 5H), 6.57 (s, 1H), 4.99 (s, 2H), 3.20 (s, 3H), 3.15 – 3.04 (m, 2H), 1.80 

– 1.67 (m, 2H), 1.52 – 1.40 (m, 2H), 0.93 (t, J = 7.3 Hz, 3H). 

13C NMR (75 MHz, CDCl3) δ 191.2, 163.2, 161.1, 154.0, 140.9, 138.1, 137.2, 133.0, 130.6, 

128.8, 127.5, 127.4, 123.5, 120.7, 115.6, 95.1, 53.5, 36.5, 34.1, 30.8, 22.8, 14.2.  
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HRMS (ESI+): calcd. for C24H25N2O1 [M+H]+: 357.1961, found 357.1961.  

1-Butyl-3-(piperidin-1-yl)-9H-indeno[2,1-c]pyridin-9-one (243) 

 

This compound was obtained following the general procedure N. Starting from diyne 29 (105 

mg, 0.5 mmol), piperidine-1-carbonitrile 157 (66 mg, 0.6 mmol, 1.2 equiv) and 

Cp*Ru(CH3CN)3PF6 (12.5 mg, 0.025 mmol). The reaction mixture was stirred at room 

temperature for 5 min. Purification on silica gel (Cyclohexane/Ethyl acetate gradient from 99/1 

to 98/2) afforded 243 (125 mg, 78%, ratio > 99:1) as a yellow solid. m.p. 100 – 102 °C.  

Rf = 0.4 (Petroleum ether/Ethyl acetate; 90/10, KMnO4, UV).  

1H NMR (300 MHz, CDCl3) δ 7.65 (dt, J = 7.1, 1.0 Hz, 1H), 7.55 (dt, J = 7.5, 1.0 Hz, 1H), 

7.46 (td, J = 7.4, 1.3 Hz, 1H), 7.38 (td, J = 7.3, 1.2 Hz, 1H), 6.64 (s, 1H), 3.86 – 3.68 (m, 4H), 

3.06 (t, J = 7.5 Hz, 2H), 1.78 – 1.60 (m, 8H), 1.52 – 1.31 (m, 2H), 0.95 (t, J = 7.3 Hz, 3H).  

13C NMR (75 MHz, CDCl3) δ 191.0, 163.3, 160.7, 153.7, 141.0, 137.3, 132.9, 130.5, 123.4, 

120.6, 115.0, 95.4, 46.3, 34.2, 30.8, 25.9, 24.9, 22.8, 14.2.  

HRMS (ESI+): calcd. for C21H25N2O1 [M+H]+: 321.1961, found 321.1962.  

1-butyl-3-morpholino-9H-indeno[2,1-c]pyridin-9-ol (244) 

 

This compound was obtained following the general procedure M. Starting from diyne 28 (106 

mg, 0.5 mmol), 4-cyanomorpholine 155 (112 mg, 1.0 mmol, 2.0 equiv) and 
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Cp*Ru(CH3CN)3PF6 (5.0 mg, 0.01 mmol). The reaction mixture was stirred at room 

temperature for 5 min. Purification on silica gel (Cyclohexane/Ethyl acetate gradient from 

90/10 to 80/20) afforded 244 (110 mg, 68%, ratio > 99:1) as a light yellow solid. m.p. 156 – 

158 °C.  

Rf = 0.18 (Petroleum ether/Ethyl acetate; 80/20, KMnO4, UV).  

1H NMR (400 MHz, CDCl3) δ 7.67 – 7.52 (m, 2H, H1,4), 7.46 – 7.32 (m, 2H, H2,3), 6.58 (d, J 

= 1.5 Hz, 1H, H10), 5.58 (s, 1H, H7), 3.82 – 3.70 (m, 4H, H18), 3.52 – 3.35 (m, 4H, H17), 2.98 – 

2.75 (m, 2H, H13), 2.37 (br, 1H, OH), 1.80 – 1.65 (m, 2H, H14), 1.50 – 1.35 (m, 2H, H15), 0.96 

(t, J = 7.3 Hz, 3H, H16).  

13C NMR (101 MHz, CDCl3) δ 160.2 (C11), 158.2 (C12), 150. 1 (C9), 147.6 (C6), 138.4 (C5), 

129.8 (C3), 129.0 (C2), 127.7 (C8), 125.6 (C1), 120.9 (C4), 95.2 (C10), 73.8 (C7), 66.8 (C18), 46.0 

(C17), 34.5 (C13), 31.1 (C14), 22.9 (C15), 14.3 (C16).  

NOESY (400 MHz, CDCl3) H10 (6.58 ppm) correlates to H17 (3.52 – 3.35 ppm).  

HRMS (ESI+): calcd. for C20H25N2O2 [M+H]+: 325.1911, found 325.1912.  

1-Butyl-3-(pyrrolidin-1-yl)-9H-indeno[2,1-c]pyridin-9-ol (245) 

 

This compound was obtained following the general procedure N. Starting from diyne 28 (106 

mg, 0.5 mmol), pyrrolidine-1-carbonitrile 156 (58 mg, 0.6 mmol, 1.2 equiv) and 

Cp*Ru(CH3CN)3PF6 (12.5 mg, 0.025 mmol). The reaction mixture was stirred at room 

temperature for 1 min. Purification on silica gel (Cyclohexane/Ethyl acetate gradient from 

90/10 to 80/20) afforded 245 (124 mg, 81%, ratio > 99:1) as a yellow solid. m.p. 170 – 171 °C.  

Rf = 0.23 (Petroleum ether/Ethyl acetate; 80/20, KMnO4, UV).  
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1H NMR (300 MHz, CDCl3) δ 7.68 – 7.52 (m, 2H), 7.46 – 7.29 (m, 2H), 6.26 (s, 1H), 5.58 (s, 

1H), 3.45 – 3.24 (m, 4H), 3.11 – 2.63 (m, 2H), 2.42 (br, 1H), 1.95 – 1.81 (m, 4H), 1.80 – 1.67 

(m, 2H), 1.49 – 1.34 (m, 2H), 0.95 (t, J = 7.3 Hz, 3H).  

13C NMR (75 MHz, CDCl3) δ 158.6, 158.0, 149.4, 147.9, 138.8, 129.4, 128.7, 125.5, 124.7, 

120.8, 94.7, 73.9, 46.9, 34.6, 31.4, 25.5, 23.0, 14.3.  

HRMS (ESI+): calcd. for C20H25N2O1 [M+H]+: 309.1961, found 309.1962.  

1-Butyl-3-(pyrrolidin-1-yl)-5H-indeno[1,2-c]pyridin-5-ol (246) 

 

This compound was obtained following the general procedure N. Starting from diyne 149 (106 

mg, 0.5 mmol), pyrrolidine-1-carbonitrile 156 (58 mg, 0.6 mmol, 1.2 equiv) and 

Cp*Ru(CH3CN)3PF6 (12.5 mg, 0.025 mmol). The reaction mixture was stirred at room 

temperature for 5 min. Purification on silica gel (Cyclohexane/Ethyl acetate gradient from 

90/10 to 80/20) afforded 246 (110 mg, 71%, ratio = 99:1) as a slight pink solid. m.p. 140 – 142 

°C.  

Rf = 0.2 (Petroleum ether/Ethyl acetate; 90/10, KMnO4, UV).  

1H NMR (300 MHz, CDCl3) δ 7.66 – 7.55 (m, 1H), 7.44 (d, J = 7.7 Hz, 1H), 7.34 (td, J = 7.5, 

1.2 Hz, 1H), 7.19 (td, J = 7.4, 1.0 Hz, 1H), 6.20 (s, 1H), 5.33 (s, 1H), 3.78 – 3.50(br, 1H), 3.37– 

3.10 (m, 4H), 2.91 – 2.61 (m, 2H), 1.86 – 1.59 (m, 6H), 1.53 – 1.37(m, 2H), 0.96 (t, J = 7.3 Hz, 

3H).  

13C NMR (75 MHz, CDCl3) δ 156.3, 155.3, 144.7, 139.7, 129.0, 125.3, 125.2, 121.1, 100.4, 

74.50, 46.7, 36.0, 30.4, 25.2, 22.9, 14.2.  

MS (CI, NH3): m/z = 309 [M + H] +.  

1-Cyclopropyl-3-(pyrrolidin-1-yl)-5H-indeno[1,2-c]pyridin-5-ol (247) 
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This compound was obtained following the general procedure N. Starting from diyne 152 (56 

mg, 0.3 mmol), pyrrolidine-1-carbonitrile 156 (35 mg, 0.36 mmol, 1.2 equiv) and 

Cp*Ru(CH3CN)3PF6 (7.5 mg, 0.015 mmol). The reaction mixture was stirred at room 

temperature for 3 min. Purification on silica gel (Cyclohexane/Ethyl acetate gradient from 

60/40 to 50/50) afforded 247 (68 mg, 78%, ratio > 99:1) as a white solid. m.p. 210 – 212 °C.  

Rf = 0.23 (Petroleum ether/Ethyl acetate; 80/20, KMnO4, UV).  

1H NMR (400 MHz, DMSO-d6) δ 7.82 (d, J = 7.7 Hz, 1H), 7.52 (d, J = 7.3 Hz, 1H), 7.32 (t, J 

= 7.5 Hz, 1H), 7.18 (t, J = 7.4 Hz, 1H), 6.46 (s, 1H), 5.85 (d, J = 7.4 Hz, 1H), 5.37 (d, J = 7.4 

Hz, 1H), 3.40 (s, 4H), 2.50 – 2.41 (m, 1H), 2.01 – 1.82 (m, 4H), 1.19 – 1.01 (m, 2H), 1.01 – 

0.87 (m, 2H).  

13C NMR (101 MHz, DMSO-d6) δ 157.6, 155.6, 153.7, 145.3, 139.2, 128.4, 125.0, 124.9, 

121.0, 120.7, 99.8, 73.0, 46.3, 25.0, 14.6, 8.4, 7.9.  

HRMS (ESI+): calcd. for C19H21N2O1 [M+H]+: 293.1648, found 293.1649.  

1-Cyclopropyl-3-(pyrrolidin-1-yl)-5H-indeno[1,2-c]pyridin-5-one (248) 

 

This compound was obtained following the general procedure N. Starting from diyne 153 (58.2 

mg, 0.3 mmol), pyrrolidine-1-carbonitrile 156 (58 mg, 0.6 mmol, 2.0 equiv) and 

Cp*Ru(CH3CN)3PF6 (7.6 mg, 0.015 mmol). The reaction mixture was stirred at room 

temperature for 10 min. Purification on silica gel (Cyclohexane/Ethyl acetate gradient from 
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98/2 to 90/10) afforded 248 (77 mg, 89%, ratio = 94:6) as a dark purple solid. m.p. 162 – 163 

°C.  

Rf = 0.6 (Petroleum ether/Ethyl acetate; 90/10, KMnO4, UV).  

1H NMR (300 MHz, CDCl3) δ 7.73 – 7.58 (m, 2H, H4,1), 7.49 – 7.37 (m, 1H, H3), 7.17 – 7.02 

(m, 1H, H2), 6.50 (s, 1H, H14), 3.56 – 3.36 (m, 4H, H15), 2.35 – 2.19 (m, 1H, H11), 2.04 – 1.88 

(m, 4H, H16), 1.24 – 1.15 (m, 2H, H12), 1.02 – 0.91 (m, 2H, H12).  

13C NMR (75 MHz, CDCl3) δ 194.8, 157.2, 155.5, 147.0, 143.3, 135.5, 133.8, 126.0, 124.9, 

121.82, 121.6, 99.2, 47.0, 25.5, 15.0, 8.4.  

NOESY (400 MHz, CDCl3) H4 (7.73 – 7.58 ppm) correlates to H11 (2.35 – 2.19 ppm), H14 (6,50 

ppm) correlates to H15 (3.56 – 3.36 ppm).  

HRMS (ESI+): calcd. for C19H29N2O1 [M+H]+: 291.1492 found 291.1493.  

4. Formation of enantioenriched 1,3-dihydroisobenzofuran derivatives 

4.1. Synthesis of prochiral triynes 

General procedure O:  

 

In an oven-dried Argon-filled round bottom flask, n-butyl lithium (2 equiv) was added 

slowly to a solution of alkyne (2 equiv) in THF (5 M) at -50 °C, and the resulting mixture was 

stirred at -50 °C for 1 h. Acetyl chloride (1 equiv) was added at the same temperature, and the 

resulting mixture was allowed to warm to room temperature for 14-18 h. The reaction was 

quenched with water and extracted with ethyl acetate (×3). The combined organic layers were 

washed with water and brine, dried over MgSO4, filtered and concentrated under reduced 

pressure. The residue was purified by flash chromatography to afford the desired compound. 

General procedure P:  
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To a stirred mixture of 2-butyn-1,4-diol 52 (1 equiv) and pyridine (2.5 equiv) in DCM 

(0.5 M) was cooled at 0 °C in an ice bath. Acyl chloride (3 equiv) was then added in DCM (0.5 

M). The reaction mixture was stirred at room temperature for 18 h until completion (TLC 

monitoring). The organic layer was washed with water (×3) and brine (×3), dried over MgSO4, 

filtered and concentrated under reduced pressure. The residue was purified by flash 

chromatography to afford the desired compound. 

3-Methyl-1,5-diphenylpenta-1,4-diyn-3-ol (249) 

 

This compound was obtained following the general procedure O. Starting from acetyl chloride 

(0.89 mL, 12.5 mmol), phenylacetylene (2.75 mL, 25 mmol, 2 equiv) and nBuLi (25 mmol, 2 

equiv). Purification on silica gel (Cyclohexane/Ethyl acetate; 90/10) afforded 249 (2.2 g, 70%) 

as a white solid. m.p. 110 – 112 °C.  

Rf = 0.4 (Cyclohexane/Ethyl acetate; 90/10, KMnO4, UV).  

1H NMR (300 MHz, CDCl3) δ 7.54 – 7.44 (m, 4H), 7.37 – 7.28 (m, 6H), 2.80 – 2.73 (m, 1H), 

1.97 (s, 3H). 

13C NMR (75 MHz, CDCl3) δ 132.0, 128.8, 128.4, 122.2, 90.2, 82.8, 61.0, 32.1. 

MS (CI, NH3): m/z = 229 [M - H2O + H]+.  

1-Phenyl-3-(phenylethynyl)hex-1-yn-3-ol (250) 
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This compound was obtained following the general procedure O. Starting from butyl chloride 

(0.52 mL, 5 mmol), phenylacetylene (1.09 mL, 10 mmol, 2 equiv) and nBuLi (10 mmol, 2 

equiv). Purification on silica gel (Cyclohexane/Ethyl acetate gradient from 95/5 to 90/10) 

afforded 250 (1.17 g, 85%) as a white solid. m.p. 73 – 75 °C.  

Rf = 0.4 (Cyclohexane/Ethyl acetate; 90/10, KMnO4, UV).  

1H NMR (300 MHz, CDCl3) δ 7.51 – 7.44 (m, 4H), 7.36 – 7.28 (m, 6H), 2.66 (s, 1H), 2.12 – 

2.03 (m, 2H), 1.82 – 1.69 (m, 2H), 1.05 (t, J = 7.4 Hz, 3H). 

13C NMR (75 MHz, CDCl3) δ 132.0, 128.8, 128.4, 122.3, 89.5, 83.7, 64.7, 46.3, 18.3, 14.1. 

MS (CI, NH3): m/z = 257 [M - H2O + H]+.  

3-(tert-Butyl)-1,5-diphenylpenta-1,4-diyn-3-ol (251) 

 

This compound was obtained following the general procedure O. Starting from pivaloyl 

chloride (1.23 mL, 10 mmol), phenylacetylene (2.2 mL, 20 mmol, 2 equiv) and nBuLi (20 

mmol, 2 equiv). Purification on silica gel (Cyclohexane/Ethyl acetate; 95/5) afforded 251 (2.6 

g, 90%) as a white solid. m.p. 83 – 85 °C.  

Rf = 0.5 (Cyclohexane/Ethyl acetate; 90/10, KMnO4, UV).  

1H NMR (300 MHz, CDCl3) δ 7.54 – 7.46 (m, 4H), 7.36 – 7.30 (m, 6H), 2.64 – 2.60 (m, 1H), 

1.29 (s, 9H). 

13C NMR (75 MHz, CDCl3) δ 132.0, 128.7, 128.4, 122.6, 88.9, 84.4, 71.8, 40.8, 25.1. 

MS (CI, NH3): m/z = 271 [M - H2O + H]+.  

1,3,5-Triphenylpenta-1,4-diyn-3-ol (252) 
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This compound was obtained following the general procedure O. Starting from benzoyl 

chloride (1.16 mL, 10 mmol), phenylacetylene (2.2 mL, 20 mmol, 2 equiv) and nBuLi (20 

mmol, 2 equiv). Purification on silica gel (Cyclohexane/Ethyl acetate; 90/10) afforded 252 

(3.06 g, 99%) as a yellow oil. The analytical data were identical to the literature.206 

Rf = 0.33 (Cyclohexane/Ethyl acetate; 90/10, KMnO4, UV).  

1H NMR (300 MHz, CDCl3) δ 8.01 – 7.88 (m, 2H), 7.60 – 7.27 (m, 13H), 3.09 (br, 1H).  

13C NMR (75 MHz, CDCl3) δ 143.5, 131.8, 129.4, 129.1, 128.7, 128.6, 126.0, 121.9, 91.3, 

83.8, 64.7.  

MS (CI, NH3): m/z = 291 [M – H2O + H]+.  

7-Phenyltrideca-5,8-diyn-7-ol (253) 

 

This compound was obtained following the general procedure O. Starting from benzoyl 

chloride (1.16 mL, 10 mmol), 1-hexyne (2.3 mL, 20 mmol, 2 equiv) and nBuLi (20 mmol, 2 

equiv). Purification on silica gel (Cyclohexane/Ethyl acetate gradient from 95/5 to 90/10) 

afforded 253 (2.45 g, 91%) as a colorless oil.  

Rf = 0.3 (Cyclohexane/Ethyl acetate; 90/10, KMnO4, UV).  

                                                 
206 Ram, B.; Lee, H.; Kang, S.; Jung, K.; Hyeon, G.; Kim, J.; Lee, S.; Yoon, Y. Tetrahedron 2013, 69, 10331. 
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1H NMR (300 MHz, CDCl3) δ 7.86 – 7.72 (m, 2H), 7.46 – 7.27 (m, 3H), 2.73 (s, 1H), 2.29 (t, 

J = 7.0 Hz, 4H), 1.59 – 1.33 (m, 8H), 0.92 (t, J = 7.2 Hz, 6H). 

13C NMR (75 MHz, CDCl3) δ 143.2, 128.4, 125.9, 85.9, 81.3, 65.4, 30.6, 22.1, 18.7, 13.7. 

MS (CI, NH3): m/z = 251 [M - H2O + H]+.  

(3-Methyl-3-(prop-2-yn-1-yloxy)penta-1,4-diyne-1,5-diyl)dibenzene (254) 

 

This compound was obtained following the general procedure F. Starting from 3-methyl-1,5-

diphenylpenta-1,4-diyn-3-ol 249 (1 g, 4.1 mmol), propargyl bromide (0.58 mL, 5.3 mmol, 1.3 

equiv) and sodium hydride (0.22 g, 5.3 mmol, 1.3 equiv). Purification on silica gel 

(Cyclohexane/Ethyl acetate gradient from 95/5 to 90/10) afforded 254 (1 g, 87%) as a white 

solid. m.p. 50 – 52 °C.  

Rf = 0.6 (Cyclohexane/Ethyl acetate; 90/10, KMnO4, UV).  

1H NMR (300 MHz, CDCl3) δ 7.55 – 7.44 (m, 4H), 7.39 – 7.28 (m, 6H), 4.59 – 4.53 (m, 2H), 

2.52 – 2.46 (m, 1H), 1.99 (s, 3H).  

13C NMR (75 MHz, CDCl3) δ 132.0, 128.9, 128.4, 122.1, 87.3, 85.0, 80.3, 74.3, 67.3, 54.3, 

31.1. 

MS (CI, NH3): m/z = 229 [M – C3H4O + H]+.  

(3-(But-2-yn-1-yloxy)-3-methylpenta-1,4-diyne-1,5-diyl)dibenzene (255) 
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This compound was obtained following the general procedure F. Starting from 3-methyl-1,5-

diphenylpenta-1,4-diyn-3-ol 249 (3.2 g, 13.1 mmol), 1-bromo-2-butyne (1.4 mL, 16 mmol, 1.2 

equiv) and sodium hydride (0.64 g, 16 mmol, 1.2 equiv). Purification on silica gel 

(Cyclohexane/Ethyl acetate gradient from 95/5 to 90/10) afforded 255 (3 g, 76%) as a white 

solid. m.p. 110 – 112 °C.  

Rf = 0.6 (Cyclohexane/Ethyl acetate; 90/10, KMnO4, UV).  

1H NMR (300 MHz, CDCl3) δ 7.52 – 7.45 (m, 4H), 7.37 – 7.30 (m, 6H), 4.52 (q, J = 2.4 Hz, 

2H), 1.98 (s, 3H), 1.88 (t, J = 2.4 Hz, 3H). 

13C NMR (75 MHz, CDCl3) δ 132.0, 128.9, 128.4, 122.2, 87.5, 84.8, 82.6, 75.4, 66.9, 54.9, 

31.2, 4.0. 

MS (CI, NH3): m/z = 229 [M - C4H6O + H]+.  

(3-(But-2-yn-1-yloxy)-3-propylpenta-1,4-diyne-1,5-diyl)dibenzene (256) 

 

This compound was obtained following the general procedure F. Starting from 1-phenyl-3-

(phenylethynyl)hex-1-yn-3-ol 250 (0.27 g, 1 mmol), 1-bromo-2-butyne (0.1 mL, 1.2 mmol, 1.2 

equiv) and sodium hydride (0.052 g, 1.3 mmol, 1.3 equiv). Purification on silica gel 

(Cyclohexane/Ethyl acetate gradient from 98/2 to 95/5) afforded 256 (0.24 g, 74%) as a pale 

yellow sticky oil. The melting point was difficult to determine.  

Rf = 0.65 (Cyclohexane/Ethyl acetate; 90/10, KMnO4, UV).  

1H NMR (300 MHz, CDCl3) δ 7.57 – 7.41 (m, 4H), 7.38 – 7.28 (m, 6H), 4.53 (q, J = 2.4 Hz, 

2H), 2.18 – 2.06 (m, 2H), 1.87 (t, J = 2.4 Hz, 3H), 1.83 – 1.71 (m, 2H), 1.03 (t, J = 7.4 Hz, 3H). 

13C NMR (75 MHz, CDCl3) δ 132.0, 128.8, 128.4, 122.4, 87.0, 85.6, 82.4, 75.6, 70.8, 54.7, 

45.4, 18.2, 14.1, 4.0. 
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MS (CI, NH3): m/z = 257 [M - C4H6O + H]+.  

(3-(But-2-yn-1-yloxy)-3-(tert-butyl)penta-1,4-diyne-1,5-diyl)dibenzene (257) 

 

This compound was obtained following the general procedure F. Starting from 3-(tert-butyl)-

1,5-diphenylpenta-1,4-diyn-3-ol 251 (2.6 g, 9 mmol), 1-bromo-2-butyne (0.95 mL, 11 mmol, 

1.2 equiv) and sodium hydride (0.44 g, 11 mmol, 1.3 equiv). Purification on silica gel 

(Cyclohexane/Ethyl acetate gradient from 98/2 to 95/5) afforded 257 (2.15 g, 70%) as a white 

solid. m.p. 82 – 84 °C.  

Rf = 0.5 (Cyclohexane/Ethyl acetate; 95/5, KMnO4, UV).  

1H NMR (300 MHz, CDCl3) δ 7.45 – 7.35 (m, 4H), 7.29 – 7.12 (m, 6H), 4.45 (q, J = 2.4 Hz, 

2H), 1.78 (t, J = 2.4 Hz, 3H), 1.18 (s, 9H). 

13C NMR (75 MHz, CDCl3) δ 132.0, 128.7, 128.4, 122.6, 86.5, 86.2, 81.8, 78.0, 76.1, 55.1, 

41.0, 25.5, 4.0. 

MS (CI, NH3): m/z = 271 [M - C4H6O + H]+.  

(3-(But-2-yn-1-yloxy)penta-1,4-diyne-1,3,5-triyl)tribenzene (258) 

 

This compound was obtained following the general procedure F. Starting from 1,3,5-

triphenylpenta-1,4-diyn-3-ol 252 (3.06 g, 10 mmol), 1-bromo-2-butyne (1.05 mL, 12 mmol, 1.2 

equiv) and sodium hydride (0.52 g, 13 mmol, 1.3 equiv). Purification on silica gel 

(Cyclohexane/Ethyl acetate; 95/5) afforded 258 (3.23 g, 90%) as a pale yellow solid.  
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Rf = 0.5 (Cyclohexane/Ethyl acetate; 90/10, KMnO4, UV).  

1H NMR (300 MHz, CDCl3) δ 7.98 – 7.87 (m, 2H), 7.58 – 7.47 (m, 4H), 7.47 – 7.28 (m, 9H), 

4.53 (q, J = 2.4 Hz, 2H), 1.85 (t, J = 2.4 Hz, 3H).  

13C NMR (75 MHz, CDCl3) δ 140.4, 132.1, 129.0, 128.5, 128.4, 127.0, 122.2, 87.4, 86.5, 82.7, 

75.4, 72.2, 54.7, 4.0. 

MS (CI, NH3): m/z = 291 [M - C4H6O + H]+.  

(7-(But-2-yn-1-yloxy)trideca-5,8-diyn-7-yl)benzene (259) 

 

This compound was obtained following the general procedure F. Starting from 7-phenyltrideca-

5,8-diyn-7-ol 253 (1.34 g, 5 mmol), 1-bromo-2-butyne (0.57 mL, 6.5 mmol, 1.3 equiv) and 

sodium hydride (0.26 g, 6.5 mmol, 1.3 equiv). Purification on silica gel (Cyclohexane/Ethyl 

acetate gradient from 98/2 to 95/5) afforded 259 (1.4 g, 88%) as a colorless oil.  

Rf = 0.5 (Cyclohexane/Ethyl acetate; 95/5, KMnO4, UV).  

1H NMR (300 MHz, CDCl3) δ 7.85 – 7.70 (m, 2H), 7.42 – 7.27 (m, 3H), 4.32 (q, J = 2.4 Hz, 

2H), 2.30 (t, J = 7.0 Hz, 4H), 1.83 (t, J = 2.4 Hz, 3H), 1.61 – 1.48 (m, 4H), 1.48 – 1.35 (m, 4H), 

0.92 (t, J = 7.2 Hz, 6H). 

13C NMR (75 MHz, CDCl3) δ 141.2, 128.5, 128.2, 126.9, 87.9, 82.1, 78.4, 75.7, 71.5, 54.0, 

30.6, 22.1, 18.7, 13.7, 3.9. 

MS (CI, NH3): m/z = 251 [M - C4H6O + H]+.  

Trimethyl(3-((3-methyl-1,5-diphenylpenta-1,4-diyn-3-yl)oxy)prop-1-yn-1-yl)silane (260) 
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To a solution of (3-methyl-3-(prop-2-yn-1-yloxy)penta-1,4-diyne-1,5-diyl)dibenzene 

254 (0.43 g, 1.5 mmol) in anhydrous THF (4 mL) was slowly added nBuLi (2.3 M in hexane, 

0.72 mL, 1.65 mmol, 1.1 equiv) at -70 °C. The solution was stirred at the same temperature for 

30 min. To the resulting mixture was added chlorotrimethylsilane (0.14 mL, 1.65 mmol, 1.1 

equiv) at -70 °C, and the reaction mixture was allowed to warm to room temperature and stirred 

for additional 1.5 h. The reaction was quenched with saturated aqueous NH4Cl (1.0 mL), The 

aqueous layer was extracted with diethyl ether (3×20 mL), and the combined organic layers 

were washed with brine, dried with MgSO4, filtered and concentrated under reduced pressure. 

The residue was purified by flash chromatography on silica gel (Cyclohexane/Ethyl acetate 

gradient from 98/2 to 95/5) to afford 260 (0.5 g, 93%) as a pale yellow solid. m.p. 70 – 72 °C.  

Rf = 0.3 (Cyclohexane/Ethyl acetate; 95/5, KMnO4, UV).  

1H NMR (300 MHz, CDCl3) δ 7.55 – 7.41 (m, 4H), 7.39 – 7.27 (m, 6H), 4.59 (d, J = 0.8 Hz, 

2H), 1.99 (d, J = 0.8 Hz, 3H), 0.18 (d, J = 0.7 Hz, 9H). 

13C NMR (75 MHz, CDCl3) δ 132.1, 128.9, 128.4, 122.2, 101.9, 91.1, 87.4, 85.0, 67.2, 55.0, 

31.1, 0.0. 

MS (CI, NH3): m/z = 229 [M – C6H11OSi + H]+.  

4.2. Synthesis of internal alkynes 

But-2-yne-1,4-diyl diacetate (262) 
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This compound was obtained following the general procedure P. Starting from 2-butyne-1,4-

diol 52 (1.72 g, 20 mmol), acetyl chloride (4.3 mL, 60 mmol, 3 equiv) and pyridine (4 mL, 50 

mmol, 2.5 equiv). Purification on silica gel (Cyclohexane/Ethyl acetate; 80/20) afforded 262 

(3.25 g, 96%) as a colorless oil. The analytical data were identical to the literature.207 

Rf = 0.4 (Cyclohexane/Ethyl acetate; 70/30, KMnO4, UV).  

1H NMR (300 MHz, CDCl3) δ 4.69 (s, 4H), 2.07 (s, 6H). 

13C NMR (75 MHz, CDCl3) δ 170.2, 80.8, 52.1, 20.7. 

But-2-yne-1,4-diyl bis(2,2-dimethylpropanoate) (263) 

 

To a stirred mixture of 2-butyn-1,4-diol 52 (0.86 g, 10 mmol, 1 equiv) and iPr2NEt (6.7 

mL, 40 mmol, 4 equiv) in DCM (20 mL) was cooled at 0 °C in an ice bath. DMAP (0.1 g, 0.5 

mmol, 5 mol %) and pivaloyl chloride (3.69 mL, 30 mmol, 3 equiv) in DCM (20 mL) were then 

introduced. The reaction mixture was stirred at room temperature for 3 h until completion (TLC 

monitoring). The organic layer was washedwith water (3×30 mL) and brine, dried over MgSO4, 

filtered and concentrated under reduced pressure. The residue was purified by flash 

chromatography (Cyclohexane/Ethyl acetate; 80/20) to afford 263 (2.5 g, 98%) as a colorless 

oil.  

Rf = 0.3 (Cyclohexane/Ethyl acetate; 90/10, KMnO4, UV).  

1H NMR (300 MHz, CDCl3) δ 4.69 (s, 4H), 1.21 (s, 18H). 

13C NMR (75 MHz, CDCl3) δ 177.8, 80.8, 52.3, 38.9, 27.2. 

But-2-yne-1,4-diyl dibenzoate (264) 

                                                 
207 Muchow, G.; Brunel, J. M.; Maffei, M.; Buono, G. J. Org. Chem. 1995, 60, 852.  
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This compound was obtained following the general procedure P. Starting from 2-butyne-1,4-

diol 52 (1.72 g, 20 mmol), benzoyl chloride (5.8 mL, 50 mmol, 2.5 equiv) and pyridine (4 mL, 

50 mmol, 2.5 equiv). Purification on silica gel (Cyclohexane/Ethyl acetate; 90/10) afforded 264 

(5.6 g, 95%) as a white solid. m.p. 80 – 82 °C.  

Rf = 0.3 (Cyclohexane/Ethyl acetate; 90/10, KMnO4, UV).  

1H NMR (300 MHz, CDCl3) δ 8.13 – 8.02 (m, 4H), 7.63 – 7.51 (m, 2H), 7.51 – 7.39 (m, 4H), 

5.00 (s, 4H).  

13C NMR (75 MHz, CDCl3) δ 165.9, 133.5, 130.0, 129.6, 128.6, 81.1, 52.8.  

MS (CI, NH3): m/z = 312 [M + NH4]
+.  

But-2-yne-1,4-diyl bis(4-methylbenzenesulfonate) (265) 

 

In a round bottom flask, 2-butyne-1,4-diol 52 (2.15 g, 25.0 mmol) was dissolved in THF 

(50 mL) and combined with NaOH (3.5 g, 87 mmol, 3.5 equiv) in water (50 mL). The flask was 

cooled to 0 °C (ice bath), and a solution of p-toluenesulfonyl chloride (10.5 g, 55.0 mmol, 2.2 

equiv) in THF (50 mL) was added dropwise. The resulting mixture was stirred at 0 °C for 2 h 

until complete reaction. The product was then extracted with ethyl acetate (2×50 mL) and 

washed with saturated NaHCO3 (3×30 mL), water (2×50 mL), and brine (50 mL). The organic 

layer was dried over anhydrous MgSO4, filtered and concentrated under reduced pressure to 
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give the product 265 as a grey solid (8.2 g, 83%). m.p. 98-100 °C. The analytical data were 

identical to the literature.208 

Rf = 0.21 (Cyclohexane/Ethyl acetate; 80/20, KMnO4, UV).  

1H NMR (300 MHz, CDCl3) δ 7.81 – 7.71 (m, 4H), 7.39 – 7.30 (m, 4H), 4.58 (s, 4H), 2.45 (s, 

6H). 

13C NMR (75 MHz, CDCl3) δ 145.5, 133.0, 130.0, 128.2, 81.1, 57.2, 21.8. 

4.3. Rhodium-catalyzed [2+2+2] cycloaddition of triynes and alkynes 

General procedure Q: 

 

In a vacuum line, an oven-dried Schlenk tube was degassed and purged with argon three 

times. Rh(cod)2BF4 (5 mol %) and (R)-BINAP (5 mol%) were introduced under argon. The 

Schlenk flask was then degassed and purged with argon three additional times. Under argon, 

freshly distilled and degassed DCM (1.0 mL) was added and the mixture was allowed to stir at 

room temperature for 30 min. A solution of the corresponding alkyne (2 equiv) in distilled DCM 

(1.0 mL) was then introduced under argon. The Schlenk flask was tightly sealed and allowed 

to stir at room temperature for additional 10 minutes. A solution of the corresponding triyne (1 

equiv) in distilled DCM (1.0 mL) was finally added dropwise at room temperature. The reaction 

mixture allowed to stir at 40 °C for 20-24 h, concentrated under reduced pressure, and the 

residue was purified by flash chromatography to afford the desired product.  

(1,4-Dimethyl-7-phenyl-1-(phenylethynyl)-1,3-dihydroisobenzofuran-5,6-diyl)bis 

(methylene) diacetate (266) 

                                                 
208 Maisonial, A.; Billaud, E. M. F.; Besse, S.; Rbah-Vidal, L.; Papon, J.; Audin, L.; Bayle, M.; Galmier, M. J.; 

Tarrit, S.; Borel, M.; Askienazy, S.; Madelmont, J. C.; Moins, N.; Auzeloux, P.; Miot-Noirault, E.; Chezal, J. M. 

Eur. J. Med. Chem. 2013, 63, 840. 
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This compound was obtained following the general procedure Q. Starting from (3-(but-2-yn-1-

yloxy)-3-methylpenta-1,4-diyne-1,5-diyl)dibenzene 255 (119 mg, 0.4 mmol), but-2-yne-1,4-

diyl diacetate 262 (136 mg, 0.8 mmol, 2 equiv), Rh(cod)2BF4 (8 mg, 0.02 mmol, 5 mol %), and 

(R)-BINAP (12.4 mg, 0.02 mmol, 5 mol %). The reaction mixture was stirred at 40 °C for 20 

h. Purification on silica gel (Cyclohexane/Ethyl acetate gradient from 95/5 to 80/20) afforded 

266 (95 mg, 50%) as a white solid. m.p. 112 – 114 °C.  

Rf = 0.4 (Cyclohexane/Ethyl acetate; 80/20, KMnO4, UV).  

1H NMR (300 MHz, CDCl3) δ 7.42-7.20 (m, 10H), 5.28 (d, J = 1.8 Hz, 2H), 5.17 (ABsys, J = 

9.3 Hz, 2H), 4.93 (ABsys, J = 9.1 Hz, 2H), 2.34 (s, 3H), 2.09 (s, 3H), 1.96 (s, 3H), 1.38 (s, 3H).  

13C NMR (75 MHz, CDCl3) δ 170.7, 170.2, 141.7, 139.9, 136.7, 136.0, 134.0, 133.9, 131.9, 

131.4, 130.7, 130.1, 128.3, 128.2, 127.9, 127.7, 127.6, 122.7, 90.8, 85.2, 82.1, 70.5, 61.0, 60.3, 

28.2, 20.9, 20.8, 15.8.  

SFC: ee = 50%, Chiralpak OD-H, scCO2/MeOH 90/10, P = 150 bar, flow = 4.0 mL/min, 

215nm, tmajor = 2.82 min, tminor = 3.57 min.  

MS (CI, NH3): m/z = 486 [M + NH4]
+.  

(1,4-Dimethyl-7-phenyl-1-(phenylethynyl)-1,3-dihydroisobenzofuran-5,6-

diyl)bis(methylene) bis(2,2-dimethylpropanoate) (267) 

 

This compound was obtained following the general procedure Q. Starting from (3-(but-2-yn-1-

yloxy)-3-methylpenta-1,4-diyne-1,5-diyl)dibenzene 255 (89 mg, 0.3 mmol), but-2-yne-1,4-diyl 
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bis(2,2-dimethylpropanoate) 263 (152 mg, 0.6 mmol, 2 equiv), Rh(cod)2BF4 (6.1 mg, 0.015 

mmol, 5 mol %), and (R)-BINAP (9.3 mg, 0.015 mmol, 5 mol %). The reaction mixture was 

stirred at 40 °C for 20 h. Purification on silica gel (Cyclohexane/Ethyl acetate gradient from 

99/1 to 95/5) afforded 267 (35 mg, 20%) as a colorless oil.  

Rf = 0.4 (Cyclohexane/Ethyl acetate; 95/5, KMnO4, UV).  

1H NMR (300 MHz, CDCl3) δ 7.50 – 7.40 (m, 1H), 7.40 – 7.23 (m, 8H), 7.23 – 7.13 (m, 1H), 

5.21 (d, J = 1.2 Hz, 2H), 5.17 (ABsys, J = 12.3 Hz, 2H), 4.85 (ABsys, J = 12.0 Hz, 2H), 2.31 (s, 

3H), 1.39 (s, 3H), 1.22 (s, 9H), 1.14 (s, 9H).  

13C NMR (75 MHz, CDCl3) δ 178.5, 177.9, 141.4, 139.8, 136.7, 136.3, 134.7, 134.2, 131.9, 

131.6, 130.9, 130.4, 128.3, 128.0, 127.8, 127.6, 122.9, 91.2, 85.3, 82.3, 70.7, 61.2, 60.6, 39.1, 

38.7, 28.5, 27.4, 27.3, 16.0. 

SFC: ee = 36%, Chiralpak OD-H, scCO2/MeOH 90/10, P = 150 bar, flow = 4.0 mL/min, 

215nm, tmajor = 2.03 min, tminor = 2.54 min.  

MS (ESI, NH3): m/z = 570 [M + NH4]
+.  

(1,4-Dimethyl-7-phenyl-1-(phenylethynyl)-1,3-dihydroisobenzofuran-5,6-

diyl)bis(methylene) dibenzoate (268) 

 

This compound was obtained following the general procedure Q. Starting from (3-(but-2-yn-1-

yloxy)-3-methylpenta-1,4-diyne-1,5-diyl)dibenzene 255 (89 mg, 0.3 mmol), but-2-yne-1,4-diyl 

dibenzoate 264 (176.4 mg, 0.6 mmol, 2 equiv), Rh(cod)2BF4 (6.1 mg, 0.015 mmol, 5 mol %), 

and (R)-BINAP (9.3 mg, 0.015 mmol, 5 mol %). The reaction mixture was stirred at 40 °C for 

24 h. Purification on silica gel (Cyclohexane/Ethyl acetate gradient from 95/5 to 90/10) afforded 

268 (50 mg, 28%) as a colorless oil.  

Rf = 0.5 (Cyclohexane/Ethyl acetate; 80/20, KMnO4, UV).  



Experimental part 

 339 

1H NMR (300 MHz, CDCl3) δ 8.00 – 7.93 (m, 2H), 7.93 – 7.84 (m, 2H), 7.57 – 7.41 (m, 3H), 

7.39 – 7.22 (m, 13H), 5.60 (s, 2H), 5.39 – 5.12 (m, 4H), 2.44 (s, 3H), 1.42 (s, 3H).  

13C NMR (75 MHz, CDCl3) δ 166.4, 166.0, 141.8, 140.0, 136.9, 136.2, 134.5, 134.5, 133.1, 

132.9, 132.2, 131.6, 130.9, 130.4, 130.0, 129.9, 129.8, 129.7, 128.4, 128.3, 128.1, 127.9, 127.8, 

122.9, 91.1, 85.4, 82.3, 70.8, 61.8, 61.1, 28.4, 16.1. 

SFC: ee = 46%, Chiralpak OD-H, scCO2/MeOH 90/10, P = 150 bar, flow = 4.0 mL/min, 

215nm, tmajor = 13.09 min, tminor = 18.56 min.  

MS (CI, NH3): m/z = 610 [M + NH4]
+.  

5,6-Diethyl-1,4-dimethyl-7-phenyl-1-(phenylethynyl)-1,3-dihydroisobenzofuran (269) 

 

This compound was obtained following the general procedure Q. Starting from (3-(but-2-yn-1-

yloxy)-3-methylpenta-1,4-diyne-1,5-diyl)dibenzene 255 (89 mg, 0.3 mmol), 3-hexyne 53 (50 

mg, 0.6 mmol, 2 equiv), Rh(cod)2BF4 (6.1 mg, 0.015 mmol, 5 mol %), and (R)-BINAP (9.3 mg, 

0.015 mmol, 5 mol %). The reaction mixture was stirred at 40 °C for 20 h. Purification on silica 

gel (Cyclohexane/Ethyl acetate; 99/1) afforded 269 (92 mg, 79%) as a white solid. m.p. 114-

118 °C. 

Rf = 0.35 (Cyclohexane/Ethyl acetate; 95/5, KMnO4, UV).  

1H NMR (300 MHz, CDCl3) δ 7.49 – 7.31 (m, 6H), 7.31 – 7.19 (m, 4H), 5.25 – 5.02 (m, 2H), 

2.84 – 2.66 (m, 2H), 2.54 – 2.34 (m, 2H), 2.26 (s, 3H), 1.41 – 1.32 (m, 3H), 1.20 (td, J = 7.5, 

2.1 Hz, 3H), 0.95 (td, J = 7.6, 2.5 Hz, 3H). 

13C NMR (75 MHz, CDCl3) δ 140.9, 140.6, 138.4, 138.2, 136.2, 134.6, 131.6, 131.4, 130.6, 

128.9, 128.2, 128.1, 127.6, 127.4, 127.2, 123.4, 92.0, 84.6, 82.3, 70.9, 28.8, 23.0, 22.5, 16.0, 

14.8. 



Experimental part 

 340 

SFC: ee = 21%, Chiralpak OD-H, scCO2/MeOH 95/5, P = 150 bar, flow = 4.0 mL/min, 215nm, 

tmajor = 4.15 min, tminor = 5.51 min.  

MS (CI, NH3): m/z = 398 [M + NH4]
+.  

5,6-Bis(methoxymethyl)-1,4-dimethyl-7-phenyl-1-(phenylethynyl)-1,3-

dihydroisobenzofuran (270) 

 

This compound was obtained following the general procedure Q. Starting from (3-(but-2-yn-1-

yloxy)-3-methylpenta-1,4-diyne-1,5-diyl)dibenzene 255 (89 mg, 0.3 mmol), 1,4-

dimethoxybut-2-yne 51 (68.4 mg, 0.6 mmol, 2 equiv), Rh(cod)2BF4 (6.1 mg, 0.015 mmol, 5 

mol %), and (R)-BINAP (9.3 mg, 0.015 mmol, 5 mol %). The reaction mixture was stirred at 

40 °C for 20 h. Purification on silica gel (Cyclohexane/Ethyl acetate gradient from 95/5 to 

90/10) afforded 270 (78 mg, 63%) as a colorless oil.  

Rf = 0.35 (Cyclohexane/Ethyl acetate; 90/10, KMnO4, UV).  

1H NMR (300 MHz, CDCl3) δ 7.52 – 7.45 (m, 1H), 7.45 – 7.31 (m, 5H), 7.31 – 7.24 (m, 4H), 

5.15 (ABsys, J = 12.3 Hz, 2H), 4.62 (d, J = 3.0 Hz, 1H), 4.18 (ABsys, J = 10.2 Hz, 2H), 3.50 (s, 

3H), 3.17 (s, 3H), 2.35 (s, 3H), 1.36 (d, 3H).  

13C NMR (75 MHz, CDCl3) δ 140.7, 139.1, 137.2, 136.1, 135.7, 131.5, 131.0, 130.5, 128.2, 

128.1, 127.5, 127.3, 123.0, 91.4, 85.0, 82.1, 70.6, 68.7, 68.3, 58.9, 58.3, 28.3, 15.7.  

SFC: ee = 32%, Chiralpak OD-H, scCO2/MeOH 95/5, P = 150 bar, flow = 3.0 mL/min, 215nm, 

tmajor 5.78 min, tminor = 6.78 min.  

MS (CI, NH3): m/z = 430 [M + NH4]
+.  

Dimethyl 1,4-dimethyl-7-phenyl-1-(phenylethynyl)-1,3-dihydroisobenzofuran-5,6-

dicarboxylate (271) 
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This compound was obtained following the general procedure Q. Starting from (3-(but-2-yn-1-

yloxy)-3-methylpenta-1,4-diyne-1,5-diyl)dibenzene 255 (89 mg, 0.3 mmol), dimethyl but-2-

ynedioate 261 (85 mg, 0.6 mmol, 2 equiv), Rh(cod)2BF4 (6.1 mg, 0.015 mmol, 5 mol %), and 

(R)-BINAP (9.3 mg, 0.015 mmol, 5 mol %). The reaction mixture was stirred at 40 °C for 24 

h. Purification on silica gel (Cyclohexane/Ethyl acetate gradient from 95/5 to 90/10) afforded 

271 (67 mg, 51%) as a colorless oil.  

Rf = 0.13 (Cyclohexane/Ethyl acetate; 80/20, KMnO4, UV).  

1H NMR (300 MHz, CDCl3) δ 7.71 – 7.45 (m, 1H), 7.45 – 7.23 (m, 8H), 7.22 – 7.14 (m, 1H), 

5.16 (ABsys, J = 12.9 Hz, 2H), 3.88 (s, 3H), 3.44 (s, 3H), 2.36 (s, 3H), 1.38 (s, 3H). 

13C NMR (75 MHz, CDCl3) δ 168.3, 168.1, 143.2, 141.3, 135.7, 134.6, 133.5, 131.7, 131.6, 

130.6, 130.3, 129.7, 128.5, 128.3, 128.1, 127.6, 122.7, 90.5, 85.9, 82.1, 70.4, 52.6, 52.1, 28.0, 

16.7. 

SFC: ee = 47%, Chiralpak OD-H, scCO2/MeOH 90/10, P = 150 bar, flow = 4.0 mL/min, 

215nm, tmajor = 2.74 min, tminor = 3.48 min.  

MS (CI, NH3): m/z = 458 [M + NH4]
+.  

(4-Methyl-7-phenyl-1-(phenylethynyl)-1-propyl-1,3-dihydroisobenzofuran-5,6-

diyl)bis(methylene) diacetate (274) 

 

This compound was obtained following the general procedure Q. Starting from (3-(but-2-yn-1-

yloxy)-3-propylpenta-1,4-diyne-1,5-diyl)dibenzene 256 (98 mg, 0.3 mmol), but-2-yne-1,4-diyl 
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diacetate 262 (102 mg, 0.6 mmol, 2 equiv), Rh(cod)2BF4 (6.1 mg, 0.015 mmol, 5 mol %), and 

(R)-BINAP (9.3 mg, 0.015 mmol, 5 mol %). The reaction mixture was stirred at 40 °C for 20 

h. Purification on silica gel (Cyclohexane/Ethyl acetate gradient from 95/5 to 80/20) afforded 

274 (68 mg, 46%) as a colorless oil.  

Rf = 0.2 (Cyclohexane/Ethyl acetate; 85/15, KMnO4, UV).  

1H NMR (300 MHz, CDCl3) δ 7.51 – 7.22 (m, 9H), 7.22 – 7.10 (m, 1H), 5.26 (d, J = 3.6 Hz, 

2H), 5.16 (ABsys, J = 12.6 Hz, 2H), 4.91 (ABsys, J = 12.3 Hz, 2H),  2.33 (s, 3H), 2.09 (s, 3H), 

1.96 (s, 3H), 1.76 – 1.60 (m, 1H), 1.46 – 1.20 (m, 2H), 1.20 – 1.01 (m, 1H), 0.73 (t, J = 7.0 Hz, 

3H).  

13C NMR (75 MHz, CDCl3) δ 170.8, 170.3, 140.6, 140.2, 136.8, 136.2, 134.1, 131.9, 131.6, 

131.0, 129.6, 128.3, 128.1, 127.8, 127.7, 123.0, 91.1, 85.6, 71.3, 61.2, 60.5, 42.1, 21.0, 21.0, 

17.2, 16.0, 13.9.  

SFC: ee = 51%, Chiralpak OD-H, scCO2/MeOH 95/5, P = 150 bar, flow = 4.0 mL/min, 215nm, 

tmajor = 4.91 min, tminor = 5.78 min.  

MS (CI, NH3): m/z = 514 [M + NH4]
+.  

(1-(tert-Butyl)-4-methyl-7-phenyl-1-(phenylethynyl)-1,3-dihydroisobenzofuran-5,6-

diyl)bis(methylene) diacetate (275) 

 

This compound was obtained following the general procedure Q. Starting from (3-(but-2-yn-1-

yloxy)-3-(tert-butyl)penta-1,4-diyne-1,5-diyl)dibenzene 257 (102 mg, 0.3 mmol), but-2-yne-

1,4-diyl diacetate 262 (102 mg, 0.6 mmol, 2 equiv), Rh(cod)2BF4 (6.1 mg, 0.015 mmol, 5 mol 

%), and (R)-BINAP (9.3 mg, 0.015 mmol, 5 mol %). The reaction mixture was stirred at 40 °C 

for 24 h. Purification on silica gel (Cyclohexane/Ethyl acetate gradient from 95/5 to 90/10) 

afforded 275 (80 mg, 51%) as a pale yellow oil.  
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Rf = 0.16 (Cyclohexane/Ethyl acetate; 80/20, KMnO4, UV).  

1H NMR (300 MHz, CDCl3) δ 7.51 (dt, J = 8.2, 1.3 Hz, 1H), 7.43 – 7.18 (m, 8H), 7.18 – 7.06 

(m, 1H), 5.24 (ABsys, J = 12.3 Hz, 2H), 5.19 (d, J = 3.9 Hz, 2H), 4.80 (ABsys, J = 12.0 Hz, 2H), 

2.30 (s, 3H), 2.08 (s, 3H), 1.96 (s, 3H), 0.79 (s, 9H).  

13C NMR (75 MHz, CDCl3) δ 170.9, 170.3, 142.0, 139.3, 138.5, 137.7, 134.7, 134.5, 132.0, 

131.6, 128.3, 127.9, 127.3, 127.2, 123.2, 93.3, 91.2, 87.7, 72.4, 61.7, 60.5, 42.6, 26.6, 21.0, 

15.8.  

SFC: ee = 38%, Chiralpak OD-H, scCO2/MeOH 90/10, P = 150 bar, flow = 4.0 mL/min, 

215nm, tmajor = 2.59 min, tminor = 3.03 min.  

MS (ESI, NH3): m/z = 528 [M + NH4]
+.  

(4-Methyl-1,7-diphenyl-1-(phenylethynyl)-1,3-dihydroisobenzofuran-5,6-diyl)bis 

(methylene) diacetate (276) 

 

This compound was obtained following the general procedure Q. Starting from (3-(but-2-yn-1-

yloxy)penta-1,4-diyne-1,3,5-triyl)tribenzene 258 (108 mg, 0.3 mmol), but-2-yne-1,4-diyl 

diacetate 262 (102 mg, 0.6 mmol, 2 equiv), Rh(cod)2BF4 (6.1 mg, 0.015 mmol, 5 mol %), and 

(R)-BINAP (9.3 mg, 0.015 mmol, 5 mol %). The reaction mixture was stirred at 40 °C for 24 

h. Purification on silica gel (Cyclohexane/Ethyl acetate gradient from 95/5 to 80/20) afforded 

276 (75 mg, 48%) as a pale yellow oil.  

Rf = 0.22 (Cyclohexane/Ethyl acetate; 80/20, KMnO4, UV).  

1H NMR (300 MHz, CDCl3) δ 7.51 – 7.40 (m, 2H), 7.38 – 7.20 (m, 5H), 7.19 – 7.02 (m, 6H), 

6.81 – 6.71 (m, 1H), 6.09 – 6.00 (m, 1H), 5.40 (s, 2H), 5.34 – 5.22 (m, 2H), 4.82 (ABsys, J = 

12.0 Hz, 2H), 2.43 (s, 3H), 2.11 (s, 3H), 1.91 (s, 3H).  



Experimental part 

 344 

13C NMR (75 MHz, CDCl3) δ 170.8, 170.2, 142.8, 141.7, 139.8, 137.6, 135.5, 134.6, 134.3, 

131.8, 131.6, 130.6, 129.5, 128.6, 128.4, 127.8, 127.7, 127.3, 127.1, 122.8, 89.3, 88.4, 87.0, 

72.0, 61.1, 60.5, 21.0, 20.9, 16.1.  

SFC: ee = 41%, Chiralpak OD-H, scCO2/MeOH 90/10, P = 150 bar, flow = 4.0 mL/min, 

215nm, tmajor = 7.36 min, tminor = 13.03 min.  

MS (ESI, NH3): m/z = 548 [M + NH4]
+.  

(7-Butyl-1-(hex-1-yn-1-yl)-4-methyl-1-phenyl-1,3-dihydroisobenzofuran-5,6-

diyl)bis(methylene) diacetate (277) 

 

This compound was obtained following the general procedure Q. Starting from (7-(but-2-yn-1-

yloxy)trideca-5,8-diyn-7-yl)benzene 259 (96 mg, 0.3 mmol), but-2-yne-1,4-diyl diacetate 262 

(102 mg, 0.6 mmol, 2 equiv), Rh(cod)2BF4 (6.1 mg, 0.015 mmol, 5 mol %), and (R)-BINAP 

(9.3 mg, 0.015 mmol, 5 mol %). The reaction mixture was stirred at 40 °C for 20 h. Purification 

on silica gel (Cyclohexane/Ethyl acetate gradient from 95/5 to 90/10) afforded 277 (80 mg, 

54%) as a pale yellow oil.  

Rf = 0.27 (Cyclohexane/Ethyl acetate; 80/20, KMnO4, UV).  

1H NMR (300 MHz, CDCl3) δ 7.63 – 7.46 (m, 2H), 7.36 – 7.26 (m, 3H), 5.26 – 5.20 (m, 4H), 

5.18 (s, 2H), 2.53 (td, J = 13.2, 12.8, 4.7 Hz, 1H), 2.42 – 2.30 (m, 3H), 2.29 (s, 3H), 2.09 (s, 

3H), 2.03 (s, 3H), 1.65 – 1.52 (m, 2H), 1.52 – 1.37 (m, 2H), 1.19 – 0.97 (m, 2H), 0.93 (t, J = 

7.2 Hz, 3H), 0.88 – 0.78 (m, 1H), 0.66 (t, J = 7.3 Hz, 3H), 0.55 – 0.33 (m, 1H).  

13C NMR (75 MHz, CDCl3) δ 170.9, 170.8, 142.8, 140.1, 136.2, 134.9, 134.4, 130.0, 128.4, 

128.3, 127.4, 90.5, 86.9, 79.1, 72.1, 60.6, 60.2, 32.8, 30.7, 29.2, 23.3, 22.2, 21.0, 19.0, 15.9, 

13.7. 
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SFC: ee = 24%, Chiralpak OD-H, scCO2/MeOH 90/10, P = 150 bar, flow = 4.0 mL/min, 

215nm, tminor = 3.21 min, tmajor = 5.86 min.  

MS (ESI, NH3): m/z = 508 [M + NH4]
+.  

(1-Methyl-7-phenyl-1-(phenylethynyl)-4-(trimethylsilyl)-1,3-dihydroisobenzofuran-5,6-

diyl)bis(methylene) diacetate (278) 

 

This compound was obtained following the general procedure Q. Starting from trimethyl(3-((3-

methyl-1,5-diphenylpenta-1,4-diyn-3-yl)oxy)prop-1-yn-1-yl)silane 260 (107 mg, 0.3 mmol), 

but-2-yne-1,4-diyl diacetate 262 (102 mg, 0.6 mmol, 2 equiv), Rh(cod)2BF4 (6.1 mg, 0.015 

mmol, 5 mol %), and (R)-BINAP (9.3 mg, 0.015 mmol, 5 mol %). The reaction mixture was 

stirred at 40 °C for 24 h. Purification on silica gel (Cyclohexane/Ethyl acetate gradient from 

95/5 to 80/20) afforded 278 (42 mg, 26%) as a pale yellow oil.  

Rf = 0.21 (Cyclohexane/Ethyl acetate; 85/15, KMnO4, UV).  

1H NMR (300 MHz, CDCl3) δ 7.48 – 7.17 (m, 10H), 5.28 (s, 2H), 5.21 (ABsys, J = 12.6 Hz, 

2H), 4.87 (ABsys, J = 12.0 Hz, 2H), 2.09 (s, 3H), 1.96 (s, 3H), 1.35 (s, 3H), 0.43 (s, 9H).  

13C NMR (75 MHz, CDCl3) δ 170.6, 170.3, 146.6, 141.7, 140.8, 140.4, 136.0, 135.1, 134.4, 

131.6, 130.6, 130.0, 128.4, 128.3, 128.2, 127.9, 127.7, 122.9, 91.0, 85.3, 80.6, 72.1, 63.9, 60.8, 

28.2, 21.1, 20.9, 2.3.  

SFC: ee = 52%, Chiralpak OD-H, scCO2/MeOH 90/10, P = 150 bar, flow = 4.0 mL/min, 

215nm, tmajor = 2.13 min, tminor = 3.13 min.  

MS (ESI, NH3): m/z = 544 [M + NH4]
+.  
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Abstract 

This manuscript focused on the development of eco-friendly and mild processes to access original 

carbocyclic and heterocyclic scaffolds of biological interest through transition-metal-catalyzed [2+2+2] 

cycloaddition reactions. Initially, an efficient and practical route for the preparation of highly substituted 

fluorenones and analogues via solventless RuCl3·nH2O-mediated [2+2+2] cycloaddition of benzoyl 

bridged -diynes and alkynes was developed. Secondly, various functionalized 2-aminopyridine 

derivatives were synthesized using both neutral RuCl3·nH2O and cationic Cp*Ru(CH3CN)3PF6 

complexes to catalyze the [2+2+2] cycloaddition of diynes and cyanamides under solvent-free 

conditions. With Cp*Ru(CH3CN)3PF6 as catalyst, excellent regioselectivities were achieved to provide 

a wide range of 2-aminopyridines of high synthetic utility involving halopyridines, vinyl pyridines and 

amino-aza-fluorenones. Finally, the enantioselective rhodium-catalyzed [2+2+2] cycloaddition of 

prochiral triynes and monoalkynes was carried out in the presence of cationic [Rh(cod)2]BF4/(R)-BINAP 

complex to provide enantioenriched 1,3-dihydroisobenzofuran derivatives containing a quaternary 

carbon stereogenic center.  

Keywords: solvent-free reactions, ruthenium, rhodium, [2+2+2] cycloadditions, fluorenones, 2-

aminopyridines, 1,3-dihydroisobenzofurans.  

 

Résumé 

Ce manuscrit traite de la mise au point d’une méthode d’accès éco-compatible à des squelettes 

carbocycliques et hétérocycliques, présents dans de nombreux composés d’intérêt biologique. Cette 

méthode met en œuvre une réaction de cycloaddition [2+2+2] catalysée par un métal de transition. Dans 

un premier temps, une voie d’accès à des fluorénones hautement substituées, ainsi qu’à des analogues a 

été développée. Cette voie utilise une réaction de cycloaddition [2+2+2] de diynes- pontés par un 

groupe benzoyle, avec des alcynes, en présence de RuCl3·nH2O. Dans un deuxième temps, des dérivés 

2-aminopyridines diversement fonctionnalisés ont été synthétisés via une catalyse au ruthénium neutre 

(RuCl3·nH2O) ou cationique (Cp*Ru(CH3CN)3PF6), et ce à partir de la cycloaddition [2+2+2] de diynes 

et de cyanamides. Dans le cas où Cp*Ru(CH3CN)3PF6 a été utilisé comme catalyseur, une excellente 

régiosélectivité a été observée, ce qui a permis d’isoler une grande variété de 2-aminopyridines, dont 

des halopyridines, des vinylpyridines, ou des amino-aza-fluorénones. Dans une dernière partie, la 

cycloaddition [2+2+2] énantiosélective de triynes prochiraux avec des mono alcynes a été examinée. 

Elle a été conduite en utilisant un catalyseur cationique au rhodium, le complexe [Rh(cod)2]BF4/(R)-

BINAP, et a permis la préparation de dérivés de 1,3-dihydroisobenzofuranes énantiomériquement 

enrichis, contenant un carbone quaternaire stéréogène.  

Mots-clés : réactions sans solvant, ruthénium, rhodium, cycloadditions [2+2+2], fluorénones, 2-

aminopyridines, 1,3-dihydroisobenzofuranes 


