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Thesis summary  
 

Caveolae are small cup-shaped plasma membrane invaginations. These 

multifunctional organelles play a key role in cell mechanoprotection and cell 

signaling. Indeed our laboratory reported that caveolae have the ability to flatten out 

upon membrane tension increase, protecting cells from mechanical strains (Sinha et 

al., 2011). Since caveolae play a key role in cell signaling we hypothesized that the 

mechano-dependent cycle of caveolae disassembly/reassembly may constitute a 

mechanical switch for signaling pathways (Nassoy and Lamaze, 2012). In this 

project, we elucidated the molecular mechanism underlying the control of JAK-STAT 

signaling by caveolae mechanics. The fate of caveolar components upon caveolae 

disassembly remains elusive. We showed that caveolin-1 (Cav1), the essential 

structural component of caveolae, is released and become highly mobile at the 

plasma membrane under mechanical stress. Considering that caveolae are important 

signaling hubs at the plasma membrane, we addressed the effects of the mechanical 

release of Cav1 on cell signaling. Using high throughput screening, we identified the 

JAK-STAT signaling pathway as a candidate. To further dissect the molecular 

mechanism underlying the control of JAK-STAT signaling by caveolae mechanics, 

we addressed the role of Cav1 in the control of JAK-STAT signaling stimulated by 

IFN-α. We found that Cav1 was a specific negative regulator of the JAK1 dependent 

STAT3 phosphorylation. Furthermore, the level of Cav1 interaction with JAK1 

depended on mechanical stress. We could show that Cav1-JAK1 interaction was 

mediated by the Caveolin Scaffolding domain (CSD), abolishing JAK1 kinase activity, 

hence, interfering with STAT3 activation upon IFN-α stimulation. Interestingly, STAT1 

activation by IFN-α was not affected by caveolae mechanics. Altogether our results 

show that caveolae are mechano-signaling organelles that disassemble under 

mechanical stress, releasing non-caveolar Cav1, which binds to the JAK1 tyrosine 

kinase and inhibits its catalytic activity, preventing thereby JAK-STAT signal 

transduction.  
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Résumé de la thèse 
 

Les cavéoles sont des invaginations en forme de coupelle à la membrane 

plasmique. Ces organelles multifonctionnelles jouent entre autres, un rôle clé dans la 

mécanoprotection et la signalisation cellulaire. En effet, notre laboratoire a démontré 

que les cavéoles ont la faculté de s’aplanir en réponse à l’augmentation de la tension 

membranaire, afin de protéger la cellule des contraintes mécaniques (Sinha et al., 

2011). Les cavéoles jouant un rôle clé dans la signalisation cellulaire, nous avions 

émis l’hypothèse que le cycle mécano-dépendent de désassemblage/réassemblage 

des cavéoles constitue un interrupteur mécanique de certaines voies de 

signalisation. Ce projet consiste à élucider le mécanisme moléculaire responsable du 

contrôle de la voie de signalisation JAK-STAT par la mécanique des cavéoles. Le 

devenir des constituants cavéolaires lors du désassemblage des cavéoles, reste à ce 

jour inconnu. Dans ces travaux, nous avons pu démontré que la cavéoline-1 (Cav1), 

un constituant essentiel des cavéoles, est libérée et devient hautement mobile au 

niveau de la membrane plasmique. Considérant les propriétés de signalisation de 

Cav1, nous avons testé l’effet du désassemblage des cavéoles sur la signalisation 

cellulaire. En effectuant un criblage à haut débit, nous avons identifié la voie de 

signalisation JAK-STAT stimulée par l’IFN-α comme voie modèle pour cette étude. 

En effet, la transduction du signal JAK-STAT induit par l’IFN-α est modulée par la 

mécanique des cavéoles. Afin de disséquer le mécanisme moléculaire responsable 

du control de la signalisation JAK-STAT par la mécanique des cavéoles, nous avons 

déterminé le rôle de Cav1 dans le contrôle de la signalisation JAK-STAT stimulée par 

l’IFN-α. Nous avons observé que Cav1 est un régulateur négatif de la 

phosphorylation de STAT3 dépendante de la kinase JAK1. De plus, nous avons 

démontré que Cav1 interagit avec JAK1 en fonction de la tension membranaire. 

Nous avons également démontré que cette interaction Cav1-JAK1 fait intervenir le 

« scaffolding domain » de Cav1 (CSD), et que celui-ci est responsable de l’abolition 

de l’activité kinase de JAK1. Par conséquent, l’interaction de Cav1 avec JAK1 

empêche l’activation de STAT3 par la kinase JAK1. De manière surprenante, STAT1 

échappe à cette régulation. En effet, l’activation de STAT1 par l’IFN-α n’est pas 

affectée par la mécanique des cavéoles. Ces résultats démontrent que les cavéoles 

sont des organelles de mécanosignalisation, qui, lors d’un stress mécanique,  
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libèrent de la Cav1 non cavéolaire capable d’inactiver la kinase JAK1, empêchant 

ainsi, la transduction du signal JAK-STAT induite par une stimulation à l’IFN-α.  
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- INTRODUCTION -  



      

 

Figure 1. Mechanical forces and mechanoreciprocity  
(a) Tension stress is applied perpendicular to the cell and leads to expansion. Compression stress is 
applied perpendicular to the cell and leads to compaction. Shear stress is applied parallel to the 
surface of the cell (adapted from Butcher et al., 2009). (b) The cell senses soft matrix and deforms the 
ECM by contracting. The cell has only few focal adhesions (purple sticks) and actin fibers (black 
arrows). It can also loosen the matrix by secreting metalloproteinases that digest the ECM (red dots) 
(left). The same cell on stiff matrix that cannot be deformed, the number of focal adhesions increases. 
The secretion of crosslinking factors (green dots) can mediate ECM stiffening. Substrate stiffening 
results in more and thicker actin stress fibers (black arrows) leadind to cell spreading and stiffening 
(right). (c) The basic machinery that senses and responds to ECM-generated mechanical signal. The 
cell surveys its mechanical environment with periodic contractions of stress fibers, which are attached 
to integrins that pull against matrix. Immature focal adhesions cannot sense matrix stiffness or exert 
strong mechanical forces on the ECM (left). While mature focal adhesions recruits myosin that allows 
force generation in response to matrix stiffening and recruits vinculin and actinin that increase F-actin 
number and crosslink the filaments to enlarge and strengthen focal adhesions and generates more 
contraction force (right) (based on Janmey et al., 2011). 
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Introduction  

1 Cell mechanics and mechanotransduction 

1.1 Cell and tissue mechanics 

 Of course, as every element of our universe, cells are subjected to the laws of 

physics and the renewal of the study of mechanics applied to the cell with the 

emergence of a mechanobiology field has already changed our understanding of 

most of fundamental biological processes.  

1.1.1 Force generation (may the force be with you) 

Cells are continuously subjected to mechanical forces including tensile force, 

compression, shear stress or hydrostatic pressure. Cells accommodate them by 

modifying their behavior and remodeling their microenvironment (Fig. 1). The 

interplay between cells and their microenvironment contribute through the resulting 

mechanical strains to fundamental biological processes but also to the development 

of pathologies (Egeblad et al., 2010; Kai et al., 2016). Tissues are composed of 

multiple constituents, among those; one can find different cell types and the extra 

cellular matrix (ECM). Each of these components can be characterized by several 

mechanical properties such as elasticity, viscosity, plasticity and stiffness (Janmey 

and Miller, 2011). All these physical properties govern how a tissue senses, transmits 

and responds to mechanical cues. For example, ECM stiffness can modulate 

essential biological processes at the level of individual cell such as differentiation, 

motility and morphology (Weaver et al., 1997; Engler et al., 2006; Vogel and Sheetz, 

2009). Pelman and Wang, who used collagen-coated beads embedded in substrate 

with different stiffness, demonstrated that increasing substrate stiffness leads to the 

modulation of the size and dynamics of focal adhesion and therefore cell locomotion 

(Pelham and Wang, 1998). On the other hand, cells can generate mechanical strains 



      

 

Figure 2. Biochemical versus mechanical signal 
Biochemical signal diffuses and form a gradient from a point of source and can be re released into the 
circulation (upper left). The strength of the signal decreases with the distance from its origin at a rate 
of 1/r2 (bottom left). Mechanical signals are transmitted through forces directionally applied to a target 
cell, directly or indirectly (through cell-cell contacts or matrix deformation) (upper right). Mechanical 
signals do not significantly decrease with the distance (bottom right, black). How ever signal intensity 
might be altered by the physical properties of the transmitting substance (cell or ECM) such as 
elasticity. Therefore the full force of the initial deformation might not be transmitted (red) (adapted from 
Janmey et al., 2011).  
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on the ECM and surrounding cells (Fig. 1b, c). Indeed, cells could wrinkle a soft 

rubber sheet on which they were cultured (Harris et al., 2008). This phenomenon 

occurs through active processes including actin assembly and ROCK dependent 

actomyosin contraction. The cytoskeleton appears to play a central role in the 

mechanobiology of the cell. It allows the cells to exert forces in the nanoNewton 

range on their surrounding environment and sense the mechanics of cells or 

substrate around them (du Roure et al., 2005). The overall cytoskeletal organization 

of cells, including actin filaments, intermediate filaments and microtubules, in 

interplay with the ECM components dictate the viscoelastic property of a tissue and 

the resulting forces. ECM is highly dynamic since cells constantly remodel their 

microenvironment with the secretion of either metalloproteinases leading to ECM 

degradation (Mrkonjic et al., 2017), or in contrast, of ECM components (Lu et al., 

2011) and crosslinking enzymes such as lysyl oxidases and transglutaminases that 

stiffen the ECM (Lee et al., 2015). By using inner active processes such as 

cytoskeletal reorganization together with the secretion of ECM degrading/crosslinking 

enzymes, cells are able to adapt to their physical microenvironment to reach the 

mechanical equilibrium. Thus, all cells respond to mechanical forces by a mechanism 

called “mechanoreciprocity” (Fig. 1) (Ding et al., 2013).  

1.1.2 Biochemical versus mechanical signal  

The major difference between these two types of signal is their way of 

spreading. Indeed, chemical messengers passively diffuse from the source of 

production to the target receptor (Fig. 2). This implies that the signal is not directed 

and equally irradiates to all directions from the production site. However, in the 

context of chemotaxis, the interpretation of the signal by the target is directed but 

limited in terms of distances. The diffusion of first messengers upon paracrine and 

autocrine signaling occurs through the microenvironment, therefore, it is subjected to 

environmental forces such as flow. Thus, it rapidly decays over time (at the rate of 

1/radius2) and depends on the rate of production over the rate of neutralization (Fig. 

2). Moreover, chemical molecules can only signal across few tens of micrometers. 

On the contrary, mechanical forces can be directed in a specific direction through 

fibers within the cells or the ECM (Janmey and Miller, 2011). A meshwork of 
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filaments such as those composing the ECM or the cytoskeleton can align in the 

direction of the stress to convert filament bending into filament stretching (Onck et al., 

2005). Unlike chemical signals, mechanical signals decay linearly and therefore can 

rapidly propagate up to hundreds of micrometers away from its point of generation 

(Winer et al., 2009). Transduction of mechanical signals is a rapid process generated 

from the perturbation of the mechanical equilibrium between cells and their 

microenvironment. While biochemical signaling is generally a slower process with 

timescales of seconds or minutes, (except for processes such as synaptic 

transduction), mechanotransduction is believed to be a fast process. For example, 

Sarcoma kinase (Src) activation by mechanical cues occurs in less than 0.3s while 

chemokine mediated activation of Src requires more than 12s (Na et al., 2008). 

1.1.3 The dark side of the force 

As discussed above, the cell microenvironment and its mechanical properties 

govern a wide range of biological processes. For example, substrate stiffness can 

control cell fate (Fig. 3a). Mesenchymal stem cells (MsCs) can differentiate into three 

cell types depending on their substrate stiffness. MsCs cultured on substrates 

mimicking brain (0.15-0.30 kPa), muscle (8-14 kPa) or bone stiffness (25-45 kPa) 

respectively differentiate into neuronal, muscle-like or bone cells (Engler et al., 2006). 

Therefore, any abnormality in the ECM that could modify its mechanical properties 

such as stiffness can perturb essential biological events by generating abnormal 

mechanical signal. These processes may trigger non-physiological conditions where 

tissue mechanics alter programmed cell functions leading to pathologies. Indeed, 

mechanical stress is involved in a myriad of diseases such as liver, renal, muscular 

diseases and cancer. The relationship between mechanical deregulation and 

pathological behavior in the context of cardiovascular, muscular pathologies and 

cancer are described below. 

1.1.3.1 Cardiovascular/and/muscular/pathologies/

Myocytes, by their function of contraction – relaxation are constantly subjected 

to mechanical stress. Any mechanical dysfunction of the cell itself or its 



      

 

 
Figure 3. Tissue rheology and pathological development  
(a) All cells are exposed to mechanical forces that are generated by cell-cell or cell-ECM interactions. 
These mechanical forces influence cell function. Each cell type is specifically tuned to the specific 
tissue in which it resides. Following transformation, breast tissue becomes progressively stiffer and 
tumor cells become significantly more contractile and hyper-responsive to mechanical cues. (b) 
Transformation (blue cells) resulting from accumulation of genetic and epigenetic alterations in the 
epithelium along with an altered stromal matrix leads to unchecked proliferation and enhanced survival 
of luminal epithelial cells, which compromises normal ductal structure. The abnormal pre-neoplastic 
luminal mammary epithelial cells eventually expand to fill the breast ducts exerting outwards projecting 
compression forces on the basement membrane and adjacent myoepithelium. The damaged pre-
neoplastic tissue produces soluble factors that stimulate cell infiltration and activation of fibroblast to 
induce a dramatic reorganization and stiffening of the ECM over time. The rigid parenchyma exerts a 
progressively greater inward projecting resistance force on the expanding pre-neoplastic duct. Over 
time, the number of myoepithelial cells surrounding the pre-neoplastic mass decreases and the 
basement membrane thins, probably owing to increased matrix metalloproteinases (from Butcher et 
al., 2009). 
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microenvironment preventing the myocyte normal functions is highly deleterious. For 

example, myocardial infarct leads to fibrotic stiffening that impairs cardiac output 

(Cecelja and Chowienczyk, 2009). Indeed, embryogenic myocytes grown on a heart-

like substrate stiffness of approximately 11 kPa normally beat, while those grown on 

a myocardial scar-like substrate stiffness (35-70 kPa) exhibit a drastic decrease of 

beat frequency (Engler et al., 2008).  

 

 An increased stiffness of muscle fibers most likely due to ECM stiffening by 

collagen crosslinking, is responsible for diastole in the context of congenital heart 

disease (Chaturvedi et al., 2010).  Similarly, aortic stiffness increases the risk of heart 

failure and strokes (DeLoach and Townsend, 2008). 

 

 More recently our lab discovered that caveolin-3 mutations involved in 

muscular dystrophies prevent caveolae formation at the plasma membrane. Hence 

myotubes carrying these mutations are more prone to plasma membrane disruption 

under mechanical stress due to a defect of caveolae mechanoprotection (developed 

in 2.3.3). It also exhibits a defect of IL6/STAT3 mechanosignaling (Dewulf et al., 2018 

under revision, see annex 3). 

1.1.3.2 Cancer/

1.1.3.2.1 Mechanical-forces-in-the-context-of-tumor-progression-

Some cancer clinical diagnoses rely on the detection of abnormal mechanical 

properties of the tissue. Indeed, detection of stiffen tissues is proceeded by palpation, 

X-ray, and ultrasound techniques. Most of the solid tumors are stiffer than 

surrounding healthy tissues. For example, normal breast tissue stiffness is around 

0.2 kPa while breast tumors stiffness is increased by approximately 20 folds 

(Levental et al., 2007; Baker et al., 2009). Similar stiffness increase is found for 

pancreatic and colorectal cancer (Butcher et al., 2009; Kai et al., 2016). Abnormal 

tissue stiffness most likely originates from the imbalance between ECM deposition 

and its degradation increasing the total ECM quantity. Tissue stiffening is not only the 

result of pathological processes; it also promotes their establishment (Fig. 3b). 

Collagen crosslinking and stiffening induce the invasiveness of oncogene activated 
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epithelial cells by generating larger focal adhesion sites (Levental et al., 2009). 

Secretion of several metalloproteinases at the level of the invadosome such as MT1-

MMP loosen and reduce matrix stiffness to counteract this crosslinking process 

(Willis et al., 2013) in response to mechanical cues (Mrkonjic et al., 2017). Stromal 

cells also exert considerable forces on the ECM. Cancer associated fibroblasts 

(CAFs) deform the extracellular matrix via strong actomyosin contractions, 

contributing to ECM stiffening (Laklai et al., 2016). The increase of cell density also 

promotes tissue stiffening. Cancer cells are usually stiffer than healthy cells (Fabry et 

al., 2001). Moreover “jamming” of cancer cells prevents their spatial reorganization to 

adapt to mechanical strains therefore contributing to tissue stiffening. Ultimately, in 

the context of metastasis, tumor cells have to squeeze through matrix fibers, travel 

through the organism and establish in a new tissue with different mechanical 

properties, which are as many processes that subject the cells to different 

mechanical stresses with a variety of biological consequences on tumor cells.  

 

1.1.3.2.2 Tumor-physical-microenvironment-influences-cancer-progression-

Tissue stiffening is not only symptomatic of cancer development; it also 

actively drives tumor progression. As discussed above mechanical forces influence a 

wide range of biological processes. Hence, throughout evolution, devices named 

mechanotransducers have been conserved to convert mechanical cues into 

interpretable biochemical information (detailed in 1.2). Most of pathological situations 

emerge from altered signal transduction such as irrelevant pathway activation or 

inactivation. Similarly to aberrant biochemical signaling such as growth hormone 

signaling, aberrant mechanical signaling also promotes tumor progression. For 

example abnormally stiff ECM drives epithelial to mesenchymal transition (EMT) and 

metastasis through the TWIST1-G3BP2 mechanotransduction pathway (Wei et al., 

2015a). The most well-known mechanosignaling hubs are focal adhesions. The 

direct anchorage to the ECM and their link with the cytoskeleton, place these 

structures at the perfect place to integrate mechanical cues provided by ECM 

deformation. Several focal adhesion components such as integrins, talin, paxillin and 

Cas are sensitive to mechanical strains. Focal adhesions regulate a myriad of 

signaling molecules of major cancer pathways such as Src, FAK, Rho, ERK, PTEN 

(Kandoth et al., 2013; Mouw et al., 2014). Together with filamentous actin, integrins 
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also control the mechanical activation of the YAP/TAZ oncogenes (Dupont et al., 

2011; Lamar et al., 2012). In three dimensional situation, studies have emphasized 

the role of integrins clustering in the transduction of mechanical cues (Harunaga and 

Yamada, 2011). Tumor cells are subjected to mechanical stretch at the periphery of 

the tumor but cells in the deep interior of the tumor are subjected to compressive 

forces (Fig. 3b). Mechanical forces are known to control cell cycle and apoptosis 

therefore promoting growth heterogeneity within the tumor (Chang et al., 2008; Lien 

et al., 2013). Cells sense and adapt to the microenvironment physical strains through 

the reorganization of their cytoskeleton, however such a process also implies plasma 

membrane topological reorganization to achieve mechanoadaptation and 

mechanosensation. Indeed, some mechanoreceptors engaged in cancer evolution 

reside inside the lipid bilayer. For example, stretch sensitive channel Piezo 1 and 2 

that triggers calcium signaling and other TRP ion channels are involved in tumor 

pogression (Li et al., 2015; Wu et al., 2017; Pardo-Pastor et al., 2018).  

1.2 Signal mechanotransduction 

Cells can generate precise three-dimensional structure through morphogenic 

movements and ensure the cell/organism structural stability. As gravity and muscle 

contraction shape bones, shear stress from flowing blood influences the heart 

vasculature and many other examples show that the ability of cells to convert 

mechanical cues into biochemical signal is essential. Failure of these mechanisms 

contributes to a wide breadth of pathologies (Janmey and Miller, 2011) as discussed 

in 1.1.3. Therefore, considerable efforts are currently directed toward determining 

how a variety of mechanical stimuli lead to the regulation of gene expression. 

 
Mechanotransduction is achieved through a rich set of mechanisms. In this 

introduction, only a few of them will be presented as examples. One of the best-

studied mechanisms of signal mechanotransduction is the conversion of physical 

forces into biochemical signal through protein structural refolding. In general, proteins 

adopt the conformation that favors the lowest free energy. Therefore, changes in the 

energy landscape induced by physical strains lead to the reshaping of the protein 

(Orr et al., 2006). This process is comparable to other post-translational modifications 



      

 

Figure 4. Mechanosensitive channels  
(a) Mechanism of activation of mechanosensitive channels (MSCs). The channel occupies a restricted 
area in resting, while proceeding to rearrangement into open conformation to decrease energy cost 
due to membrane tension and exposition of its hydrophobic part induced by membrane thinning. (b) 
Schematic structure of Piezo1 viewed from above, showing the three “propeller blades” surrounding a 
centrale pore (left). Side view of the structure of Piezo1 (center). When the cell is not submitted to to 
pressure, Piezo1 bends to make a dome-like structure pointing inside the cell, and the channel is 
closed. When the membrane is stretched the complex flattens, openning the channel (Chesler et al., 
2018).
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such as phosphorylation. Phosphorylation introduces a negatively charged 

phosphate group, inducing protein refolding due to charge repulsion in the inner 

structure of the protein. These modifications will then induce structural changes that 

will modulate the catalytic activity or the interaction ability to transduce a signal. 

1.2.1 Mechanosignaling at the plasma membrane 

The best example of plasma membrane mechanotransducers are 

mechanosensitive channels (MSCs) such as voltage gating mechanochannels 

(Martinac, 2004). These channels can sense membrane stretch and curvature. 

Pressure sensitive channels such as Piezo 1 and 2 are also an emerging important 

category of MSCs (Coste et al., 2011). Increasing the membrane tension, increases 

the probability to open the channel (Martinac and Hamill, 2002). In this context, 

MSCs opened conformation occupies a greater space in the stretched lipid bilayer, 

favoring lower free energy. Hence the opening of this gate induces membrane 

permeability to ions (Fig. 4). The inner leaflet of the plasma membrane is negatively 

charged therefore the arrival of positively charged ions into the cytoplasm leads to 

membrane depolarization and generates an electrical signal. Moreover Ca2+ entry 

through MSCs also leads to the activation of Ca2+ sensitive molecules such as 

calmodulin domain-containing proteins. Piezo and the other MSCs are involved in 

many biological processes such as hearing, touch, nociception and proprioception.

1.2.2 Mechanosignaling in the cytosol 

On the other hand, direct application of a stalling force against a molecular 

motor or an enzyme inhibits its catalytic activity, most likely by unfolding its catalytic 

domain (Finer et al., 1994; Yin et al., 1995; Ingber, 2006).  Similarly, some proteins 

unfold in a stepwise manner when they are mechanically extended. This unfolding 

may lead to the exposure of cryptic binding or phosphorylation sites for potential 

signaling downstream effectors (Ingber, 2006) (Fig. 5a). In addition, mechanical 

strains can also influence signal transduction by strengthening or weakening protein-

protein interaction (Evans and Calderwood, 2007). 

 



      

 

 
Figure 5. Mechanotransduction at the level of the protein and protein complex 
(a) Stress on mechanosensors can induce conformational changes generating a biochemical signal 
(based on Ding et al., 2013). (b) Cas molecule with unextended configuration of substrate domain and 
with moderate extension of substrate domain at the cell-matrix contact site of spread cells, 
respectively (left). Extension-dependent phosphorylation of Cas substrate domain by SFK and 
enhancement of its downstream signaling. SH3 and SB represent the SH3 and Src-binding domain of 
Cas, respectively (right) (Sawada et al., 2006). 
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Focal adhesion sites (FA) are probably the most studied mechanosignaling 

platforms. Its direct link with the cell cytoskeleton and the ECM put this structure in 

perfect position to transduce mechanical signals. Mechanical forces directly control 

the shape, size and dynamics of FA (Galbraith et al., 2002). Indeed, clusters of 

integrins (focal adhesion) can generate forces on the overall cell through the 

cytoskeleton. Nevertheless, focal adhesion can sense mechanical forces (Grashoff et 

al., 2011). For example shear stress-induced cytoskeletal reorganization is controlled 

by integrins activation balance (Macek Jilkova et al., 2014). Integrins are connected 

to the cytoskeleton through several adaptor proteins such as talin, vinculin, zyxin, 

Cas etc., which are as many components susceptible to transduce mechanical cues. 

 

For example, talin directly links integrins to the actin filaments. Upon ECM 

deformation or actomyosin contractions, talin rods are stretched and deformed by the 

mechanical strain. The unfolding of talin unveils cryptic binding sites for vinculin 

interaction (Fig 5a). Hence, talin unfolding leads to the recruitment of vinculin that 

strengthen the link with filamentous actin and cluster the integrins into focal adhesion 

sites (del Rio et al., 2009). 

 

Similarly, p130Cas (Crk associated substrate) binds to the focal adhesion 

kinase (FAK) and the Src family of protein kinase (SFK). Upon cell stretch, Cas 

substrate domain unfolds exposing phosphorylation sites (Fig. 5b). Their 

phosphorylation by the SFK kinase triggers the recruitment of signaling partners and 

the activation of the p38/MAPK pathway through Ras associated protein 1 (Rap1) 

activation (Sawada et al., 2006). 

 

Another example of cytosolic mechanotransduction is the yes associated 

protein/taffazin (YAP/TAZ) pathway that controls processes such as proliferation and 

differenciation (Dupont et al., 2011; Mosqueira et al., 2014). YAP/TAZ is an emerging 

mechanotransduction pathway. It transduces mechanical signals from the 

cytoskeleton to the nucleus. YAP/TAZ are transcriptional co-factors that are well 

studied in the context of the Hippo signaling, where upstream large tumor suppressor 

kinases (LATS) phosphorylate YAP and TAZ leading to their cytosolic retention (Low 

et al., 2014). There are clear evidences linking YAP/TAZ regulation to cell 

mechanics. Indeed, the subcellular distribution of YAP/TAZ is highly dependent on 



      

 

Figure 6. Schematic representations of mechanical stimuli influencing YAP and 
TAZ subcellular localization and activity 
When YAP and TAZ are mechanically activated (red), they translocate to the nucleus, where they 
interact with TEA domain family factors (TEAD) to regulate gene expression (top). Schematics 
illustrating how different matrix, geometry and physical conditions influence YAP and TAZ localization 
and activity: the left panels show conditions in which YAP and TAZ are inhibited and localized to the 
cytoplasm, whereas the right panels show conditions that promote YAP and TAZ nuclear localization 
(indicated by red coloring of cell nuclei) (Panciera et al., 2017).  
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cell mechanics and matrix physical properties (Fig. 6). For example cells cultured on 

soft substrate exhibit a cytosolic YAP/TAZ distribution, while those grown on stiff 

microenvironment exhibit a nuclear YAP/TAZ localization and those residing in an 

“in-between” microenvironment stiffness possess an evenly distributed YAP/TAZ 

localization. Therefore, substrate stiffness but also cell shape controls YAP/TAZ 

distribution (Dupont et al., 2011). Yet, how mechanical cues regulate YAP/TAZ 

localization and activity is still unknown, however it is tightly dependent on the F-actin 

organization, contraction and cytoskeletal mechanics (Dupont et al., 2011; Aragona 

et al., 2013). Propagation of tensile forces through the cytoskeleton induced by 

actomyosin network contraction or ECM deformation pulling on cytoskeleton-linked 

integrins leads to YAP and TAZ activation (Taniguchi et al., 2015; Hu et al., 2017). 

The cytoskeleton is also connected to the nucleus; therefore, force propagation 

through the cytoskeleton may also reach the nucleus thereby directly affecting 

nuclear mechanics and the regulation of YAP/TAZ nuclear translocation as detailed 

in the next chapter.  

1.2.3 Nuclear mechanotransduction  

Mechanotransduction is not a process only restricted to “surface” receptors. 

An array of biological processes such as cell migration, programmed necrosis or 

infection trigger nucleus deformation (swelling, squeezing and stretching). For 

example, a transient decrease of extracellular osmotic pressure promotes nuclear 

swelling (Irianto et al., 2013). External mechanical strains can also exert direct 

mechanical forces on the nucleus since it is connected to the cell surface through the 

cytoskeleton via the linker of nucleoskeleton and cytoskeleton (LINK) complex. In a 

metastatic context, tumor cells have to squeeze through the extracellular matrix 

fibers subjecting their nucleus to deformations. Interestingly, the nucleus appears to 

be a good mechanotransduction organelle. Indeed, the nuclear envelope participate 

less to cell trafficking, therefore its overall area fluctuates less. Moreover its 

membrane is more loose and easy to stretch, thus it is more prone to detect external 

strains (Bigay and Antonny, 2012). The nuclear envelope possesses a dynamic 

structure that can rapidly adapt to tensile force by adjusting its stiffness via the 

phosphorylation of proteins of the nuclear envelope such as emerin (Guilluy et al., 



      

 

Figure 7. Mechanosensitive calcium signaling in the nucleus 
 

Figure 8. Proposed model of mechanosensitive nucleoplasmic shuttling 
(Elosegui-Artola et al., 2017)   
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2014). The nuclear envelope serves as scaffold for the activation of important 

peripheral proteins. Hence, nuclear expansion induced by cell swelling leads to the 

recruitment of the phospholipase enzyme cPLA2 and the 5-lipoxygenase (LOX) at the 

inner face of the nuclear membrane. This promotes LOX-dependent generation of 

pro-inflammatory eicosanoids such as leukotrienes, which are key factors in 

inflammatory diseases such as asthma (Peters-Golden and Brock, 2001). Nuclear 

mechanics can also directly control gene expression. Indeed, some MSCs are found 

in the nuclear envelope and mediate Ca2+ release in response to nuclear and 

endoplasmic reticulum stretch induced by cell spreading. For example, the nuclear 

mechanical release of Ca2+ regulates gene expression through the cAMP responsive 

element binding (CREB) and myocyte enhancer factor 2 (MEF2) transcription factor 

phosphorylation by the calmodulin dependent kinase IV (Itano et al., 2003) (Fig. 7). 

Nucleus deformation also alters the integrity of the nuclear pores. Indeed, the 

crossing of molecules through the nuclear envelope via these nuclear pores is a key 

and tightly regulated step of many signaling cascades to achieve the regulation of 

gene expression and by extension the cellular responses. The nucleus deformation 

stretches the nuclear pores thereby decreasing the energy requirement for molecular 

transport through these structures. Nuclear deformation and the consecutive nuclear 

pores stretch have been shown to trigger YAP nuclear translocation and might be a 

more general mechanism for other signaling molecules (Elosegui-Artola et al., 2017) 

(Fig. 8). Finally, harsh nuclear deformation induced by nuclear squeezing during cell 

migration, can result in nuclear membrane damages releasing DNA in the cytoplasm. 

This situation promotes the activation of damage-sensing pathways including cyclic 

GMP-AMP synthase and stimulator of interferon genes (cGAS-STING) pathway and 

triggers the expression of immunomodulatory genes such as interferons (Raab et al., 

2016). 

 

To summarize, mechanical forces generated by external strains can modify 

protein folding and larger complex organization inside the cell, thereby changing their 

biochemical properties and therefore transforming mechanical cues into biochemical 

signals. Nevertheless, studies demonstrated that larger structure such as plasma 

membrane nanodomains called caveolae can also respond to mechanical strains 

applied to the plasma membrane (Sinha et al., 2011).  



      

 

Figure 9. Visualization of the caveolar coat at the plasma membrane of 
myotubes  
Survey view of the cytoplasmic surface of an unroofed myotube presenting caveolae at the plasma 
membrane. Different types of caveolae structures are apparent, ranging from flat (1), circular (2), to 
fully budded (3). Scale 500 nm. Scale bar in insets: 50 nm (from Lamaze et al., 2017) 
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2 The caveolae: specialized plasma membrane structures 

More than sixty years ago, fine plasma membrane structures identified by 

electron microscopy as “caves” or “cave-like indentation of the plasma membrane” 

thereby named caveolae, were first visualized in blood capillaries and mouse gall 

bladder by George E. Palade and Eichi Yamada (Palade, 1953; Yamada, 1955). 

These plasma membrane invaginations are smaller than clathrin coated pits since 

their diameter varies between 50 and 80 nm and they present a striated coat 

(Rothberg et al., 1992) (Fig. 9). Caveolae are also found as interconnected caveolar 

structures named “rosette” (Pelkmans and Zerial, 2005).  Adipocytes, endothelial and 

muscle cells are particularly enriched in caveolae, yet almost all mammalian cell 

types possess caveolae except neurons and lymphocytes despite their expression of 

caveolin-1.  

2.1 Structure and composition 

The first step to fully understand the function of these “cave-like” plasma 

membrane structures was to elucidate their molecular composition. Therefore, since 

the discovery of caveolae, a lot of effort has been put toward the identification of their 

molecular composition and organization. 

2.1.1 Caveolar proteins 

2.1.1.1 Caveolins/

Almost forty years after the first visualization of caveolae, structural studies of 

the caveolae inner face (facing the cytoplasm) revealed a striated coat composed of 

“filaments”. These filaments have been first identified as a 22 kDa substrate for v-src 

tyrosine kinase in virus-transformed chick embryo fibroblasts and therefore called 

caveolin (Rothberg et al., 1992). The same year, a vesicular integral-membrane 

protein of 21 kDa (VIP21) was also found by another team to be an important 

component of the caveolar coat (Kurzchalia et al., 1992). Actually, these two newly 



      

 

Figure 10. Caveolins domains and insertion in the plasma membrane 
(a) Conserved domains of the caveolin protein family. An oligmerization domain encompassing an 8 
amino acids stretch signature motif (FEDVIAEP) and the caveolin scaffolding domain followed by the 
transmembrane domain. Length variability of caveolins -1β, -2 and -3 is the consequence of truncated 
N-terminal part. (b) Proposed model of caveolin-1 (Cav1) topology within the lipid bilayer. Cav1 is 
inserted in the plasma membrane inner leaflet via its TMD conferring a hairpin-shaped topology. Both 
N- and C-termini are facing the cytoplasm (based on Parton and del Pozo, 2013). (c) Computational 
analysis of Cav1 insertion within the plasma membrane. Snapshot of the insertion of Cav182-136

 is 
shown in the illustration with the CRAC motif in cyan and putative TMD in magenta as well as the N-
terminus in green. The Cαatoms of G108-P110 are shown in spheres. W98, W115 and W128 are 
shown in sticks. Cholesterol molecules and, ions and water are hidden for clarity (Liu et al., 2016). 
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discovered caveolar proteins appeared to be the same (Glenney and Soppet, 1992). 

Hence, it has been decided that both v-src substrate in Rous sarcoma virus-

transformed fibroblasts and VIP21 would be renamed as caveolin. This is how the 

first member of the caveolin family has been identified thus named as caveolin-1 

(Cav1), shortly followed, by the identification of two homologues: caveolin-2 (Cav2) 

and the muscle restricted isoform: caveolin-3 (Cav3) (Way and Parton, 1995). 

 

Cav1 molecules (and Cav3 in muscle cells) are essential components of 

caveolae. Indeed, these two proteins are required for caveolae biogenesis. Lack of 

Cav1 or Cav3 leads to mis-invagination of the caveolae. Caveolins can form 

structures of higher complexity by homo and hetero-oligomerization into 300 kDa 

complexes (Sargiacomo et al., 1995). All the caveolin isoforms share a signature 

motif of eight amino acids 68FEDVIAEP75 localized in their oligomerization domain 

(Fig. 10a).  

 

Cav1 is the most studied member of the caveolin family. Cav1 is an integral 

plasma membrane protein of 178 amino acids with both N- and C-termini facing the 

cytoplasm (Monier et al., 1995; Aoki et al., 2010) (Fig. 10b). Its structure remains 

debated and mainly relies on predictions based on circular dichroism (CD), nuclear 

magnetic resonance (NMR) and computational analysis. From these studies, we 

know that Cav1 crosses only the inner leaflet of the plasma membrane through a 

putative hairpin-shaped transmembrane domain (TMD) predicted to be from L102 to 

I134 (Razani et al., 2002a). The TMD adopts a helix-break-helix topology (Lee and 

Glover, 2012) (Fig. 10c). Indeed the two α-helices are separated by three residues 

linker regions containing a proline 110 that induces a 50° angle between those two 

helices (Root et al., 2015). The TMD adopts a U-shaped conformation (Aoki et al., 

2010) and plays a key role in the oligomerization ability of Cav1 and Cav2 (Das et al., 

1999). The insertion of the TMD within the inner leaflet of the plasma membrane 

thereby displacing lipids of the inner layer has been proposed to induce membrane 

curvature (McMahon and Gallop, 2005). The Cav1 C-terminal end (K135-I178) is 

involved in plasma membrane attachment, trans-Golgi localization and oligomer-

oligomer interaction (Song et al., 1997; Schlegel and Lisanti, 2000) . Moreover, it 

presents three palmitoylation sites on C133, C153 and C156, which are not required 
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for Cav1 anchorage to the plasma membrane but may influence Cav1 

oligomerization (Dietzen et al., 1995; Monier et al., 1996).  

 

The most prominent domain of Cav1 is the caveolin scaffolding domain (CSD) (Fig. 

10a). Indeed this domain is involved in Cav1 oligomerization, protein-protein 

interaction, and cholesterol recognition/binding (Li et al., 1996; Couet et al., 1997; 

Schlegel et al., 1999). However, the role of the CSD in the control of biological 

processes such as signaling remains somehow controversial (developed in 2.3.4.4 

and discussion)(Collins et al., 2012). The CSD topology is not clear, and was first 

proposed to be a fully amphipathic α-helix that partially lies inside the plasma 

membrane inner leaflet (Le Lan et al., 2006), then later appeared to be a mixture of β 

and α structures (Hoop et al., 2012). More recently, the CSD was proposed to adopt 

a dynamic structure that can be either fully helical or partially unstructured (Liu et al., 

2016). Interestingly, Cav1 also exhibits a high affinity for cholesterol (Murata et al., 

1995). Cholesterol recognition is achieved through the cholesterol 

recognition/interaction amino acid consensus (CRAC) motif within the CSD. Since 

Cav1 has been first discovered as a tyrosine kinase substrate, it was later shown that 

Cav1 can be phosphorylated on its tyrosine 14. More recently, serine 80 has been 

found to be phosphorylated. Yet, the precise function of these two post-translational 

modifications is not well understood. Tyr14 phosphorylation has been recently 

proposed to mediate signaling (Joshi et al., 2012) and Cav1 conformation changes 

(further developed in the discussion) to regulate the CSD accessibility (Shajahan et 

al., 2012; Meng et al., 2017). The Ser80 phosphorylation is required for proper 

caveolae formation (Ariotti et al., 2015) and triggers its binding to the endoplasmic 

reticulum (ER) membrane in the context of regulated secretion of pancreatic cells 

(Schlegel et al., 2001). Finally, Cav1 can be ubiquitinated, a process that mediates 

Cav1 lysosomal degradation (Hayer et al., 2010a).  

 

Cav1 encompasses two isoforms: a full-length α isoform (α-Cav1) and a 

truncated β-isoform (β-Cav1). The β-isoform lack the first thirty-three amino acids, 

hence it cannot be phosphorylated on Tyr14.  

 

Few years after the identification of Cav1, a homologue of α-Cav1 was 

discovered by nucleotide sequence alignment. Cav3 shares common features with 
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Cav1 such as the caveolin signature motif, an oligomerization domain, an 

hydrophobic 102-134 TMD, a CSD and palmitoylation sites (Way and Parton, 1995; 

Tang et al., 1996) (Fig. 10a). Moreover, Cav1 and Cav3 can form hetero-oligomeric 

complexes with Cav1 in cardiac myocytes (Volonte et al., 2008). Cav3 also lacks the 

first twenty-seven aa, hence, neither Cav3 undergoes Tyr14 phosphorylation.  

 

The purification of membrane fractions enriched in caveolae revealed the 

existence of a last member of the caveolin family: caveolin-2 (Cav2). Indeed, this 

isoform shares the common signature motif in its N-terminal part. It has been first 

described to differ from Cav1 from its inability to interact with the heterotrimeric G 

protein (Scherer et al., 1996). Moreover, Cav2 colocalizes with Cav1 indicating that 

Cav2 is a component of the caveolar coat (Scherer et al., 1996; Tang et al., 1996). 

There are two Cav2 isoforms: α-Cav2 and β-Cav2 that are respectively shortened by 

16 and 29 aa compared to α-Cav1 (Fig. 10a). Likewise, Cav2 is not phosphorylated 

on its Tyr14. Unlike the other members of the caveolin family, Cav2 cannot homo-

oligomerize, but it can dimerize and hetero-oligomerize with other caveolins (Scherer 

et al., 1996, 1997). α-Cav2 can be tyrosine phosphorylated on its residues 19 and 27 

and serine phosphorylated on its residues 23 and 36. In addition Cav2 can be fatty 

acylated. However, the function of these post-translational modifications remains 

poorly understood. Cav2 serine phosphorylation participates to caveolae 

morphogenesis (Sowa et al., 2003). On another hand both Cav2 fatty acylation and 

phosphorylation have been reported to play a role in insulin signaling (Kwon et al., 

2009; Kwon and Pak, 2010; Kwon et al., 2015). For example Cav2 phosphorylation 

prevent the interaction between the insulin receptor and a signal terminator (Kwon 

and Pak, 2010).  

 

To conclude, caveolins are integral plasma membrane proteins possessing a 

characteristic hairpin shaped topology with both N- and C-termini facing the 

cytoplasm. They all share a common signature motif in their N-terminal part and an 

oligomerization domain allowing the formation of complex oligomerized structures 

that compose an essential part of the caveolar coat.  



      

 

 

Figure 11. Cavins structure and caveolae morphogenesis 
(a) General structural organization of cavins. Three disordered regions (DR) are separated by two 
coiled coil (ordered) regions (HR) (adapted from Kovtun et al., 2014). (b) Cavins domains. PEST 
domain mediates cavins degradation and Leu-rich domain mediates protein-protein interaction (based 
on Bastiani et al., 2009). Cavin sizes are heterogenous. Cavin-1 is the only member possessing 
nuclear localization sequences. 
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2.1.1.2 Cavins/

Cavins are a family of cytosolic proteins which comprises four members: 

PTRF, SDPR, SRBC and MURC. Their caveolar localization and function pushed the 

scientists to gather these proteins under the name of “cavins” and rename them from 

cavin-1 to cavin-4 (Vinten et al., 2005; Bastiani et al., 2009; McMahon et al., 2009). 

As the caveolin family, the last member of the cavin family (cavin-4) is restricted to 

muscle cells (Ogata et al., 2008). Initially, polymerase 1 and transcript release factor 

(PTRF) was first identified as a regulator of RNA polymerase 1 (Jansa et al., 2001). 

Vinten and colleagues identified a 60 kDa protein associated with the caveolar coat 

in adipocytes. The protein was therefore called cavP60 (Vinten et al., 2001). Three 

years later PTRF has been reported to be enriched at the caveolar coat (Aboulaich et 

al., 2004), shortly after, PTRF and cavP60 appeared to be the same protein and thus 

were renamed cavin (Vinten et al., 2005). 

 

SDPR was first described as a phosphatidylserine binding protein thus named 

PS-p68 (Burgener et al., 1990). When it was involved in serum deprivation response, 

it was renamed serum deprivation-response protein (SDPR) (Gustincich and 

Schneider, 1993). SDPR was shown to associate together with the protein kinase C 

α (PKCα) to the caveolar coat (Mineo et al., 1998). The SDPR-related gene product 

that binds to c-kinase (SRBC) was also involved in the serum deprivation response 

and first identified as a binding partner of PKCδ and thus named protein kinase C 

delta-binding protein (PRKCDBP) (Izumi et al., 1997). Both SRBC and SDPR were 

found in the mass spectrometry analysis that identified cavin-1 (Aboulaich et al., 

2004). 
 

Cavin-1 is required for caveolae formation (Hill et al., 2008; Liu et al., 2008). 

Cavins are proteins from 31 to 47 kDa with 261 to 425 amino acids. The four proteins 

share the same topology (Hansen et al., 2009). In silico analysis revealed that cavins 

possess two conserved α helical regions (HR) that are basic and positively charged. 

These HR regions are separated by acidic and negatively charged disordered 

regions (DR) (Fig. 11a). The HR1 region mediates cavin trimeric oligomerization 

(Kovtun et al., 2014). Indeed, cavin-1 can form trimers with either two cavin-1 or with 

cavin-1 and cavin-2 or with cavin-1 and cavin-3 (Fig. 14). All members of the cavin 
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family except cavin-4 carry a leucine zipper motif in the HR1 region that mediates 

protein-protein interaction (Fig. 11b). These leucine zipper domains are required for 

cavin recruitment at the plasma membrane (Wei et al., 2015b). Moreover all four 

cavins exhibit a short half-life due to the presence of PEST motifs that mediate 

proteasomal degradation (Fig 11b). Cavins have a basic C-terminal domain that 

participates to their membrane anchorage (Parton and del Pozo, 2013). Finally cavin-

1 possesses two nuclear localization signals (Hansen and Nichols, 2010). 

 

All cavins exhibit multiple phosphorylation sites. For example cavin-1 

possesses more than twenty tyrosine and serine phosphorylation sites (Kovtun et al., 

2014). Cavin-1 phosphorylation has been linked to Cav1 phosphorylation in the 

context of insulin signaling (Kruger et al., 2008) and have been suggested to 

participate to the control of cavin-1 fragmentation at the caveolar coat (Aboulaich et 

al., 2004). Cavins binds to phosphatidylserine (Ptdser) (Burgener et al., 1990). In 

addition cavin-1 and cavin-2 exhibit a high affinity for phosphatidyl 4,5 bisphosphate 

(PiP2) (Kovtun et al., 2014). 

 

In summary, cavins are cytosolic proteins associated to the caveolar coat. All 

four cavins present a similar strucuture with a first coiled coil helical region that 

mediates trimeric association and a second coiled coil helical region that mediates 

hetero-association of cavin trimers.   

2.1.1.3 Accessory/proteins/

Several non-essential caveolar components have been also identified since 

then. The F-BAR protein PACSIN2 (Protein Kinase C and Casein Substrate In 

Neurons) also called syndapin 2, which regulates and senses membrane curvature 

and participates to caveolae morphogenesis (Hansen et al., 2011; Senju et al., 

2011). The dynamin2 GTPase and the dynamin-like ATPase Eps15 homology-

domain containing protein 2 (EHD2) oligomers localize at the caveolar neck (Oh et 

al., 1998; Stoeber et al., 2012; Ludwig et al., 2013). While dynamin2 is involved in 

caveolae internalization, EHD2 controls caveolar dynamics and stability at the 

plasma membrane (Morén et al., 2012). In addition EHD2 and other EHDs (1 and 4) 
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are responsible for caveolae clustering into membrane ultrastructure during 

mechanical stress (Yeow et al., 2017). More recently, our laboratory also 

demonstrated that EHD2 links caveolar dynamics to gene transcription, since 

mechanical release of EHD2 in the cytosol leads to its nuclear translocation and 

initiation of transcriptional programs (Torrino et al., 2018, submitted).  

2.1.2 Lipid composition  

Very early, it was shown that caveolae are plasma membrane nanodomains 

enriched in sphingolipids (Tran et al., 1987) and cholesterol (Rothberg et al., 1990). 

Moreover their resistance to detergent treatment (Sargiacomo et al., 1993) primarily 

led the scientists to classify caveolae as “lipid raft” and later as caveolin-enriched 

nanodomains (Simons and Ikonen, 1997; Simons and Sampaio, 2011). The lipid 

composition of caveolae may be explained by the affinity of the caveolar components 

such as Cav1 or cavin-1 for specific lipids. As mentioned in the chapter 2.1.1.1 Cav1 

exhibit a high affinity for cholesterol mediated by its CRAC motif (Murata et al., 1995; 

Thiele et al., 2000; Epand et al., 2005). Cholesterol is an essential caveolar 

component required for bona fide caveolae biogenesis. Indeed, drugs removing 

cholesterol lead to caveolae flattening and disassembly (Rothberg et al., 1992). 

Likewise, cavins binds to Ptdser with high affinity and specificity (Burgener et al., 

1990; Hill et al., 2008), which is a key element of the plasma membrane that 

influences caveolae assembly and dynamics. Indeed, decreased Ptdser induced by 

cavin-1 loss impairs caveolae stability/formation (Hirama et al., 2017). In addition 

Cav1 has been shown to bind in vitro to Ptdser and phosphatidylinositol 4,5 

bisphosphate (PiP2) through its scaffolding domain (Arbuzova et al., 2000; Wanaski 

et al., 2003) which most likely constitute a common binding site for cholesterol, 

Ptdser and PiP2. In addition, caveolae lipid composition not only consists of Ptdser 

and PiP2 but also of sphingolmyelin, glycerophopholipids, and gangliosids such as 

GM1 (Iwabuchi et al., 1998; Ortegren et al., 2004; Sonnino and Prinetti, 2009).  



      

 

Figure 12. Putative model of caveolar coat assembly and organization 
(a) Schematic model of Cav1 topology. Cav1 is inserted into the plasma membrane through the 
caveolin scaffolding domain (CSD; red), an amphipathic helix part of the oligomerization domain 
(diffuse red), and through a second amphipathic helix, the intra-membrane domain (orange). Based on 
Cav3 ternary structure, Cav1 monomers may assemble as a disk-shaped oligomer with the C-terminal 
part oriented toward the center. (b) Cavin monomers exhibit two helical rich domains, HR1 and HR2, 
that may form coil-coiled structures. Cavins, through interaction with the HR1 domain, can form trimers 
consisting of either three cavin-1 or two cavin-1 associated with one cavin-2 or one cavin-3 protein. 
The cavin-1 isoform could be responsible for a more complex assembly through the coiled-coil domain 
2 (cc2) sequence in the HR2 domain. (c) At the plasma membrane, Cav1 oligomers cluster specific 
lipids such as cholesterol, PI(4,5)P2 and phosphatidyl serine involved in the recruitment of cavin 
trimers. This is followed by caveola invagination, a process not completely understood. It has been 
recently suggested that the overall architecture of the caveolar coat made of caveolins and cavins 
would best fit with a polyhedron structure. In this model, Cav1 oligomers position on each pentagonal 
face and cavin complexes align with the vertices and cover the Cav1 oligomers. (from Lamaze et al., 
2017)  
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2.1.3 Caveolar ultrastructure 

For many years not much was known on caveolae ultrastucture. Only very 

recent data allowed the scientists to glimpse the caveolar coat structure. 

Approximately 150 to 200 Cav1 monomers associate with 15-20 cavins trimers to 

form a caveola. It was proposed that the caveolins oligomerize and organize as 

“discs” where N-ter ends are at the periphery of the discs, mediating oligomerization 

and C-ter at the center of the discs. Each disc constitutes a pentagonal face of the 

caveolar dodecahedron. The net of cavins stabilizes the caveolin discs within the 

caveolae (Pelkmans and Zerial, 2005; Ludwig et al., 2013; Gambin et al., 2014; 

Ludwig et al., 2016; Stoeber et al., 2016; Lamaze et al., 2017) (Fig. 12). But still, this 

hypothesis does not perfectly match the organization of the caveolar coat when 

observed with deep-etch EM. 

2.2 Caveolae biogenesis: from protein synthesis to the caveolar bulb 

Caveolae biogenesis requires the recruitment of several essential elements 

(Fig. 12). Cav1 and Cav3 are essential for caveolae biogenesis since their depletion 

causes a complete loss of caveolae in their respective tissues (Drab et al., 2001; 

Galbiati et al., 2001). In contrast Cav2 is not essential for caveolae formation (Razani 

et al., 2002b), however it may participate to caveolae formation in some cell types 

(Lahtinen et al., 2003; Sowa et al., 2003). For several years, Cav1 was believed to be 

sufficient for caveolae biogenesis since exogenous expression of Cav1 generated 

caveolae-like structures at the plasma membrane of lymphocyte and bacteria (Fra et 

al., 1995; Walser et al., 2012).  Nevertheless, cavin-1 identification brought to light a 

new essential component for bona fide caveolae formation. Indeed cavin-1 ablation 

leads also to a loss of caveolae. Yet, due to transcriptional co-regulation of cavin-1 

and all three caveolins, cavin-1 knocked out mice exhibit a markedly decreased 

caveolins expression (Liu et al., 2008). Therefore it was not clear whether this 

phenotype was attributable to cavin-1 loss. By using prostate cancer cells (PC3) and 

notochord cells of zebrafish that have the particularity to express caveolins despite 

the lack of cavin-1 expression, Hill and colleagues observed in the absence of cavin-

1, caveolins! remaining in “flat” caveolae (Hill et al., 2008). From these studies, it 



      

 

 

Figure13. Model of caveolae assembly and biosynthetic trafficking of Cav1 

(Hayer et al., 2010b) 
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clearly appeared that both Cav1/3 and cavin-1 are necessary for de novo caveolae 

formation. Evolutionary studies revealed that caveolins are conserved among 

vertebrates and invertebrates. Nevertheless there are no evidences supporting the 

ability of CeCav1 to form caveolae in C.elegans (Kirkham et al., 2008). In addition the 

absence of orthologues of cavin gene family in invertebrate suggests that this family 

is restricted to vertebrate and that caveolae morphogenesis appeared with cavins 

evolution (Hansen and Nichols, 2010). Furthermore it suggests that caveolins may 

have biological functions independently from caveolae. 

2.2.1 Caveolin-1: Tale of a journey from the ER to the plasma membrane 

During Cav1 mRNA traduction, the signal recognition motif of the newly 

synthetized N-ter protein is recognized by SRP (Signal Recognition Particle), 

allowing Cav1 concomitant ribosomal synthesis and integration into the ER 

membrane (Monier et al., 1995). After its synthesis, Cav1 undergoes a first stage of 

homo-oligomerization of 7-14 Cav1 into 8S complexes in the ER (Monier et al., 1996; 

Hayer et al., 2010b). Caveolins are then transported through COPII vesicles to the 

cis-Golgi apparatus, a process requiring the specific DXE export motif. In the median 

Golgi apparatus, Cav1 further oligomerizes into 140-160 Cav1 complexes of 70S and 

associates with cholesterol and specific lipids generating higher ordered 

nanodomains (Epand et al., 2005; Pelkmans and Zerial, 2005; Pol et al., 2005; Hayer 

et al., 2010b) (Fig. 13). The Cav1-dependent clustering of specific lipids will 

contribute to the recruitment of other caveolar coat components such as cytosolic 

cavins which have high affinity for Ptdser (Kovtun et al., 2014). 

2.2.2 Cavin recruitment and caveolae morphogenesis 

As mentioned above, cavins are cytosolic proteins identified as components of 

the caveolar coat. The striated structure observed in the caveolae cytosolic face has 

been recently proposed to be due to the presence of cavins rather than caveolin 

oligomers (Gambin et al., 2014; Kovtun et al., 2014; Ludwig et al., 2016; Stoeber et 

al., 2016). Cavins are recruited at the very last steps of caveolae morphogenesis; 

only after preassembled Cav1 oligomers are exported to the plasma membrane. 



      

 

 

 

 

 

 

 

 

 

 

Figure 14. Model for the assembly of the cavin coat (Kovtun et al., 2014) 
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Cavins were first believed to be recruited through interaction with Cav1 (Bastiani et 

al., 2009). However recent studies suggest that cavins are rather recruited by Ptdser 

and PiP2 at the caveolar nanodomains at the plasma membrane through 

electrostatic-based interactions between the negatively charged headgroups and the 

HR1 and HR2 cavin domains (Burgener et al., 1990; Hill et al., 2008; McMahon et al., 

2009; Hirama et al., 2017) (Fig. 12 and 14). Cavin-1 is necessary for the recruitment 

of other cavins and plays a key role for caveolae morphogenesis. Recently, cavin-1 

recruitment at caveolae have been suggested to play the role of a “net” that traps 

caveolin discs together and further invaginates the plasma membrane (Stoeber et al., 

2016) (Fig. 12). Cavin-2 is essential for caveolae biogenesis in specific tissues such 

as lung and adipose (Hansen et al., 2013). Cavin-2 recruits cavin-1 and regulates 

membrane curvature as cavin-2 overexpression generates membrane tubulations 

(Hansen et al., 2009). Together with cavin-3; it controls the budding and dynamics of 

caveolae (Nabi, 2009; Mohan et al., 2015). However, cavin-3 is not essential for 

caveolae biogenesis as cavin-3 knock out does not impair caveolae formation in 

mouse model (Liu et al., 2014). In contrast the role of cavin-4 in caveolae 

morphogenesis remains elusive (Bastiani et al., 2009; Hansen and Nichols, 2010). 

2.2.3 Recruitment of accessory proteins 

In addition to essential proteins, a set of accessory proteins is recruited to the 

caveolar coat to control caveolae dynamics. The dynamin-like ATPase EHD2 is 

recruited at the level of the caveolar neck in an ATP binding dependent manner and 

requires its homo-oligomerization. EHD2 is involved in caveolae dynamics since it is 

associated to the static population of caveolae. Indeed, EHD2 depletion leads to an 

increase of caveolar dynamics while EHD2 overexpression induces caveolar 

retention at the plasma membrane (Morén et al., 2012; Stoeber et al., 2012). 

Moreover dynamin 2 is also localized at the caveolar neck and mediates caveolae 

budding and fission (Pelkmans et al., 2002). Caveolar retention by EHD2 is mediated 

by preventing dynamin2 recruitment by both EHD2 and PACSIN2 (Senju and 

Suetsugu, 2015). PACSIN (Syndapin) family members PACSIN2 and the muscle-

restricted isoform PACSIN3 are also localized at the caveolar structures. Their 

mechanism of recruitment remains unknown. However, PACSIN2 phosphorylation 
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modulates its binding to the plasma membrane. Moreover PACSIN2 depletion 

decreases caveolae population and increases caveolins and cavins complexes at the 

plasma membrane (Hansen et al., 2011; Senju et al., 2015).  

2.3 Caveolae functions  

Caveolar accessory proteins participate to the tight regulation of caveolae 

dynamics and mechanics. Moreover, caveolae constitute a large fraction of the 

plasma membrane. Therefore it is not surprising that caveolae play critical roles in 

highly regulated cellular processes. Indeed, as it has been emphasized in the 

literature, many functions have been ascribed to caveolae (Cheng and Nichols, 

2016). New caveolar functions are regularly unveiled and many others remain to be 

discovered.  

2.3.1 Caveolae mediated endocytosis and trafficking 

Due to their resemblance with other vesicular shaped endocytic structures, the 

role of caveolae in cargo internalization has been questioned early (Montesano et al., 

1982). However, studies on caveolae-mediated endocytosis are curbed by the lack of 

caveolae specific cargo and the inaccessibility from the outside of standard reagents 

such as antibodies to caveolar proteins. The simian virus 40 (SV40) has been 

described to enter the host cell through caveolae dependent endocytosis (Pelkmans 

et al., 2001). Nevertheless the specificity of this process has been later challenged as 

new studies suggesting that overexpressed exogenous Cav1 is degraded in the late 

endosome earlier misidentified as “caveosome” and SV40 would rather use another 

clathrin-independent endocytic pathway to enter the host cell (Engel et al., 2011; 

Hayer et al., 2010a). Cholera toxin subunit B (CTxB) and the autocrine motility factor 

receptor (AMFR) can be internalized through caveolae mediated endocytosis 

(Benlimame et al., 1998; Orlandi and Fishman, 1998). However both CTxB and 

AMFR are also internalized through other endocytic pathways therefore complicating 

the studies on their internalization through caveolae (Torgersen et al., 2001; Nichols, 

2002). Moreover, lipids such as lactoceramide and cholesterol can also trigger 

caveolae endocytosis (Pagano, 2003; Sharma et al., 2003; Le Lay et al., 2006). A 
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subpopulation of caveolae also undergoes a “kiss and run” process of cyclic rapid 

appearance/disappearance at the plasma membrane (Pelkmans and Zerial, 2005). In 

addition, like clathrin-coated pits, some caveolae can scission from the plasma 

membrane, a process depending most likely from the dynamin 2 GTPase, which is 

present at the neck of some caveolae (Oh et al., 1998). In contrast to clathrin-coated 

pits, caveolae are less dynamic and their budding frequency is more variable 

(Thomsen et al., 2002; Pelkmans and Zerial, 2005). After caveolae scission from the 

plasma membrane, caveolin enriched vesicles fuse with the early endosome or 

multivesicular bodies (MVBs) (Shvets et al., 2015). The presence of Cav1 in MVBs 

may generate extracellular vesicules (EVs) containing Cav1. Indeed, Cav1 has been 

found in EVs produced by prostate cancer cells (Llorente et al., 2004) and in the 

plasma of melanoma patients (Logozzi et al., 2009). Nevertheless, the role of 

caveolin secretion remains unknown. In addition, a crosstalk between caveolae and 

other endocytic pathways exists: caveolar component such as Cav1, Cav3 and 

cavin-1 can impact clathrin independent carriers (CLIC) and GPI-AP enriched 

compartment (GEEC), independently from the caveolae structure. The inhibition of 

CLIC/GEEC pathway by Cav1 and Cav3 is mediated by their CSD (Chaudhary et al., 

2014). Finally, caveolae have been found to mediate the transcytosis of several 

molecules such as low-density lipoprotein (LDL), albumin and insulin (Vasile et al., 

1983; Ghitescu et al., 1986; Bendayan and Rasio, 1996).  

2.3.2 Lipid homeostasis 

Caveolae sense and regulate plasma membrane composition. Indeed the 

affinity of caveolar components for certain lipid species contributes to the spatial 

organization of lipids within the plasma membrane. For example, the loss of caveolae 

impairs the distribution of Ptdser within the lipid bilayer therefore perturbing Ras 

spatial nano-organization (Ariotti et al., 2014). Moreover caveolae also regulate the 

plasma membrane lipid composition through internalization of lipids such as 

sphingolipids (Shvets et al., 2015). Cav1 has been shown to be essential for fatty 

acids flip-flop (Meshulam et al., 2006). Fatty acids have been proposed to be 

transformed into triacylglycerol, another lipid of caveolae in adipocytes (Ost et al., 

2005). In addition, the loss of caveolae leads to less abundant glycosphingolipids 



      

 

Figure 15. Caveolae mechanical disassembly 
At steady state, caveolae remain invaginated and the integrity of the caveolar coat is intact (left). In 
contrast, upon membrane tension increase induced by a mechanical stress, the caveolar coat 
disassembles. Caveolins are released, cavins are released in the cytoplasm and EHD2 is translocated 
in the nucleus to form a complex with KLF-7 and MOKA cofactors to induce transcriptional programs 
(middle). In recovery, the caveolar coat reform, EHD2 is exported from the nucleus. (from Torrino et 
al., 2018, submitted) 
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(GSL) GM3 and phospholipids such as Ptdser, phosphatidylcholine and 

phophatidylethanolamine due to marked decreased expression of their synthetic 

enzymes (Ariotti et al., 2014). Cav1 has been involved in cholesterol trafficking from 

the lysosome (Mundy et al., 2012). Finally, Cav1 and Cav2 can be associated with 

lipid droplets in adipocytes and other cell types, (Fujimoto et al., 2001; Ostermeyer et 

al., 2001; Pol et al., 2001; Blouin et al., 2008). 

2.3.3 Mechanoprotection  

More than forty years ago Dulhunty and Franzini-Armstrong proposed that 

caveolae might function as a membrane reservoir which functions as a safety valve 

to prevent membrane rupture in muscle cells subjected to mechanical stress. Using 

muscle cells of Rana Pipiens frogs, which are constantly subjected to 

contraction/stretch cycles, the authors observed the opening of the caveolar neck 

upon cell stretch up to non-physiological levels thereby increasing the surface area of 

the cell (Dulhunty and Franzini-Armstrong, 1975; Prescott and Brightman, 1976). 

Thirty-six years later, using “home-made” tools combined with advanced physics and 

biochemical techniques to study caveolae dynamics and mechanics, our laboratory 

definitely established the mechanoprotective role of caveolae and its underlying 

mechanism. Indeed, we demonstrated that upon membrane tension increase 

induced by mechanical stresses such as osmotic cell swelling or cell stretching, 

caveolae rapidly flatten out and disassemble to release the additional excess of 

membrane stored in their invagination thereby “buffering” the membrane tension 

increase (Fig. 15). This process is passive, i.e. it is ATP and actin independent. In 

contrast, caveolae reassembly is reversible and requires both ATP and actin (Sinha 

et al., 2011). Taking this newly discovered caveolar function into account, it is not 

surprising that most of cells within tissue subjected to mechanical stress generated 

by forces such as blood flow, muscular contraction/relaxation, bladder/lung swelling 

etc., have a large amount of caveolae. Interestingly, the mechanoprotective function 

of caveolae has been confirmed in vitro and in vivo as the lack of caveolae induced 

susceptibility to plasma membrane damages, impaired function of muscle cells in 

zebrafish and impaired notochord integrity during zebrafish development and 

endothelial cells integrity during increased cardiac output (Lo et al., 2015; Cheng et 
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al., 2015; Garcia et al., 2017; Lim et al., 2017). Considering the wide breadth of 

biological processes controlled by caveolae, the rapid disappearance of those 

structures and the release of caveolar components in the cell may have critical 

consequences by associating these processes to mechanosensing. Based on this 

observation our laboratory hypothesized that caveolae may constitute 

mechanosignaling hubs as these scaffolding structures have been involved in cellular 

signaling (detailed below) (Nassoy and Lamaze, 2012). The first observed 

consequence of the stretch-induced caveolae disassembly was a redistribution of 

Cav1 and a spatial reorganization of GSLs within the lipid bilayer together with c-Src 

activation (Gervasio et al., 2011). More recently, we could show that upon caveolae 

disassembly, the caveolar accessory protein EHD2 accumulates in the nucleus 

where it acts as transcription cofactor (Torrino et al., 2018, submitted) (Fig. 15). 

2.3.4 Cell signaling 

Numerous studies have long associated caveolae to the regulation of cellular 

signaling. Indeed, Cav1 was primarily described as a substrate of the Src kinase and 

heterotrimeric G protein found in Cav1 rich domains. It has been therefore proposed 

early that caveolae might be involved in cell signaling (Lisanti et al., 1994). It is now 

clear that caveolae function as signaling scaffolds for a wide range of signaling 

proteins which are found associated with the caveolar coat or to directly interact with 

caveolar components (Cheng and Nichols, 2016; Lamaze et al., 2017 see annex 2). 

The role of Cav1 in the regulation of intracellular signaling remains however poorly 

understood. 

2.3.4.1 Indirect/regulation/of/signaling/

As mentioned earlier, caveolae play a key role in lipid sorting and 

GSL/cholesterol organization at the plasma membrane. Lipid nanoscale organization 

is a prominent parameter for the dynamics and structural integrity of transmembrane 

proteins such as plasma membrane receptors activation (Rao and Mayor, 2014; 

Blouin et al., 2016). Caveolae dynamics and mechanics could therefore actively 

modulate the activation of some plasma membrane signaling proteins (Nassoy and 



      

 37 

Lamaze, 2012) (Fig. 17). For example, Cav1 depletion induces a redistribution of 

Ptdser and lipid composition changes within the plasma membrane resulting in the 

spatial reorganization of the lipid anchored Ras GTPase that control cell growth, 

proliferation and differentiation (Ariotti et al., 2014). In addition, stretch-induced 

caveolae disassembly leads to the redistribution of sphingolipids and Cav1 together 

with c-Src activation (Gervasio et al., 2011). On another hand, calcium pumps have 

been localized in caveolae (Fujimoto, 1993), and the mechanical disassembly of 

caveolae led to reduced Ca2+ through changes in Gαq/Cav1 association (Guo et al., 

2015). Since caveolae also mediate endocytosis and cell trafficking, they might also 

modulate the endosomal control of signaling by delivering signaling proteins to this 

compartment (Gonnord et al., 2012). 

2.3.4.2 Cavins=mediated/signaling/

The recently identified cavins such as cavin-1 may also play a role in caveolar 

signaling, as it is required for proper caveolae morphogenesis and functions. Indeed 

cavin-1 control the number of functional caveolae and therefore is a key element for 

the proper targeting of receptors in these structures (Moon et al., 2013; Li et al., 

2014). For example, cavin-3 mediates ERK and Akt signaling by anchoring the 

caveolae at the plasma membrane through the myosin-1c (Hernandez et al., 2013) 

and regulates their dynamics (Mohan et al., 2015). 

2.3.4.3 Signaling/through/Cav2/

Cav2 remains the least studied caveolar component; hence its functions are 

poorly understood. However, Cav2 has been reported to play important roles in 

signaling pathways. Indeed Cav2 is required for proper estrogen receptor α (ER-α) 

activation by 17β estradiol (Totta et al., 2016). Moreover, Cav2 phosphorylation and 

fatty acylation seem to regulate insulin signaling. These two post-translational 

modifications prevent the interaction of the signal terminator SOCS3 with the insulin 

receptor thereby allowing the activation of IRS-1 and STAT3 (Kwon and Pak, 2010; 

Kwon et al., 2009, 2015). Surprisingly, Cav2 has been reported to control the nuclear 



      

 

Figure 16. Cav1 signaling hypothesis 
(a) Schematic of the caveolin signaling as originally proposed by Okamoto and colleagues (Okamoto 
et al., 1998) (based on Collins et al., 2012; Okamoto et al., 1998). (b) Two models of the association 
of Cav1 with the plasma membrane. A first model where the CSD is embedded inside the membrane 
inner leaflet thus poorly accessible as proposed by Kirkham and colleagues (Kirkham et al., 2008) 
(left). A second model where the N-terminus of Cav1 is extended thereby exposing the CSD (right). 
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targeting of signaling proteins such as phosphoERK whose nuclear translocation 

relies on Cav2 motif 154SSV156 (Kwon et al., 2011). 

 

 

2.3.4.4 Remaining/controversies/on/Cav1/signaling//

Cav1 has been extensively reported to interact with signaling proteins 

including endothelial nitric oxide synthase (eNOS), P2X purinoreceptor 7 (P2X7), 

epidermal growth factor receptor (EGFR), transforming growth factor β receptor type 

1 (TGFBR1), heme oxygenase (HO) and many others, (reviewed in Lamaze et al., 

2017). The interaction of Cav1 with these molecules and the modulation of their 

signaling have been suggested to occur through a specific Cav1 domain named 

caveolin scaffolding domain (CSD) (further detailed in 2.1.1.1) (Fig. 16a).  

This domain has been first identified for the interaction and regulation of 

heterotrimeric G proteins, H-Ras and Src (Li et al., 1995, 1996). The role of this 

domain for Cav1 interaction has been confirmed for eNOS, H-Ras and HO (Garcia-

Cardena, 1997; Song et al., 1997; Taira et al., 2011). Furthermore, a caveolin binding 

motif (CBM) has been identified by phage display and found in several Cav1 binding 

partners (Couet et al., 1997a; Garcia-Cardena, 1997; Song et al., 1997; Taira et al., 

2011; Bernatchez et al., 2005; Kirkham et al., 2008) (Fig. 16a). Extensive studies on 

eNOS regulation by Cav1 brought deeper insight on the underlying molecular 

mechanism. These studies revealed that upon eNOS interaction with the Cav1 CSD, 

the lateral chain of phenylalanine 92 (F92) located in the CSD, reaches eNOS 

hydrophobic pocket resulting in an inhibition of its catalytic activity (Bernatchez et al., 

2005; Trane et al., 2014). More recently a similar regulatory mechanism by CBM-

CSD interaction resulting in catalytic inhibition of the target effector has been 

unveiled for HO regulation (Taira et al., 2011). Moreover, the CSD might directly 

mediate the Cav1 inhibitory effect, as peptides that mimic the CSD are sufficient to 

exert a negative effect on the effectors. In contrast, mutated CSD peptides release 

this inhibition most likely by competing with endogenous Cav1 (Bernatchez et al., 

2011). Interestingly, only Cav1-mediated inhibitory effects have been reported across 

the literature, suggesting that Cav1 represses the effector catalytic activities. 
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However the only exception is the positive stimulation of insulin receptor kinase 

activity by Cav1 and Cav3 CSD (Yamamoto et al., 1998). It is possible however that 

this positive effect of the CSD on insulin signaling might be mediated by the inhibition 

of a regulatory intermediate.  

 

Recent studies have questioned this regulatory model. The debate arised from 

Cav1 structural features (further detailed in the discussion). As mentioned in 2.1.1.1, 

the CSD is located from residue 82 to 101, next to the Cav1 TMD thus in close 

proximity with the plasma membrane. In addition, the CSD has been first predicted 

as an amphipathic helix that is partially embedded inside the plasma membrane 

thereby accessible with difficulty to potential binding partners (Kirkham et al., 2008) 

(Fig. 16b). However recent studies suggest that the CSD possesses a dynamic 

topology which is either partially unstructured or fully helical (Liu et al., 2016). 

Considering that the CSD undergoes structural transitions one could assume that 

CSD conformational changes may regulate its accessibility (Fig. 16b). FRAP 

experiments suggest that Cav1 is released from the caveolae upon mechanical 

disassembly (Sinha et al., 2011). It is therefore likely that the CSD conformation and 

thereby its accessibility within non-caveolar Cav1 may also differ from caveolar Cav1. 

In addition, alternative mechanisms may influence the dynamics of CSD accessibility 

to promote interactions with the CSD and their reversibility. Indeed Cav1 undergoes 

several post-translational modifications. Ser80 phosphorylation may results to the 

spreading of the N-ter part of Cav1 away from the plasma membrane due to charge 

repulsion thereby further exposing the CSD (Fig. 16b) (Ariotti et al., 2015; Jung et al., 

2018). Similarly Tyr14 phosphorylation would facilitate CSD binding (Shajahan et al., 

2012; Jung et al., 2018).   

 

Likewise, the functional role of the CBM is also a subject of controversy as 

structural analysis of Cav1 binding partners revealed that this motif is buried in the 

deep interior of their ternary structure, and thus would not be available for protein 

interaction. Moreover the CBM encompasses three putative motifs that only consist 

in (ΦXΦXXXXΦ, ΦXXXXΦXXΦ, or ΦXΦXXXXΦXXΦ; Φ=aromatic residue  (Trp, 

Phe, or Tyr); X=any residue) (Couet et al., 1997a) and therefore poorly discriminative 

and largely found across organism proteomes, including those devoid of caveolins. 



      

 

Figure 17. Molecular and cellular consequences of caveolar flattening induced 
by mechanical stress 
Upon acute mechanical stress (hypo-osmotic swelling or stretching), caveolae flatten out in the 
plasma membrane to provide additional membrane and buffer membrane tension. Caveolar flattening 
releases Cav1 and Cavin-1 from the caveolar structure, increasing the amount of freely diffusing Cav1 
and Cavin-1 at the plasma membrane. On the removal of the force, Cavin-1 and Cav1 rapidly 
reassemble into caveolae in an ATP-dependent process. This cycle represents the primary cell 
response to acute mechanical stress. Non-caveolar Cav1 is likely to be internalized by a clathrin-
independent pathway that remains to be characterized. Endocytosed Cav1 becomes detectable in late 
endosomes (LE) and lysosomes, where it is degraded. It can also accumulate in the recycling 
endosome. Whether Cav1 and Cavin-1 follow identical intracellular routes after their release from 
caveolae by mechanical stress is unknown. It is possible that the endosomal (black arrows) and Golgi 
(orange arrow) pools of Cav1 are solicited during prolonged shear stress when the caveolar density is 
increased several-fold at the plasma membrane. Another possibility is that the released Cavins (green 
arrow) activate cellular processes to induce caveolar biogenesis, thereby increasing membrane 
reservoir size. Caveolar flattening can modulate mechanosignaling by several non-mutually exclusive 
mechanisms (lightning arrows). Released Cav1 and Cavins may interfere with the organization and 
dynamics of membrane microdomains and associated signaling molecules at the plasma membrane 
and endosomes. Gene transcription may be activated as a result of the nuclear translocation of 
released cavins. Magnification shows insertion of Cav1 and the Cav1 scaffolding domain (CSD) into 
the caveolar structure. The Cav1 CSD would form an in-plane amphipathic helix buried within the 
membrane in assembled caveolae. Many signaling molecules including several receptors and non-
receptor tyrosine kinases and their downstream effectors, have been shown to interact with the Cav1 
CSD in vitro (from Nassoy and Lamaze, 2012).  
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Moreover no particular CBM-containing protein enrichment has been found in Cav1 

interactome (Byrne et al., 2012; Collins et al., 2012).  

 

To conclude, considering the mechanoprotective role of caveolae. Our 

laboratory hypothesized that signaling through the multiple caveolar components 

could be coupled to caveolae mechanics. Therefore, the mechanical cycle of 

caveolae disassembly/reassembly would constitute a mechanical switch for several 

signaling pathways (Fig. 17).   

2.4 Caveolae pathophysiology  

Considering the multiple functions of caveolae, it is not surprising that any 

physical, biochemical and genetic perturbations impairing caveolar integrity, 

mechanics or dynamics would result in pathological situations. Indeed, there is a 

large literature on the pleiotropic phenotypes induced by deficient caveolar 

components. In the context of this work, it is interesting that the alteration of caveolae 

integrity mostly affects cell types chronically subjected to mechanical stress such as 

adipocytes, endothelial cells and myocytes. Deletion or mutation of caveolar 

components have been associated with multiple caveolinopathies such as 

lipodystrophy, vascular dysfunction, musculopathies (Ariotti and Parton, 2013) and 

cancer (Goetz et al., 2008). 

2.4.1 Lipodystrophy 

Cav1 or cavin-1 deficiency results in a lipodystrophic phenotype. Caveolae 

loss induced by cavin-1 deletion results in glucose intolerance and markedly 

decreased fat mass. Cavin-1 null mice have normal weight but exhibit 

hypertriglyceridemia and hyperinsulinemia which are characteristic of the 

lipodystrophic phenotype (Liu et al., 2008). Similarly Cav1 null mice have problems 

with lipid metabolism and adipocytes functions. These mice are small and lean. They 

show a resistance to diet-induced obesity with elevated triglycerides and free fatty 

acid levels. Moreover, these mice are insulin resistant which is consistent with the 

role of Cav1 and Cav3 as activators of insulin signaling (Yamamoto et al., 1998). In 
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agreement with Yamamoto and colleagues, Cav2 deletion in mice did not impair 

insulin signaling (Cohen et al., 2003). In addition Cav1 is found at the plasma 

membrane of key lipid storage organelles: adipocytes and lipid droplets (Blouin et al., 

2008). Since insulin stimulation induces lipid uptake within the adipocytes, it is not 

surprising that Cav1 null mice have adipose atrophy (Londos et al., 1999). In 

humans, a rare case of homozygous nonsense mutation of Cav1 (p.Glu38X) results 

in Berardinelli-Seip-Congenital Lipodistrophy (BSCL) (Kim et al., 2008). Likewise, a 

homozygous frame shift mutation (c.696_697insC) of cavin-1 has been identified in 

another human lipodystrophy example (Hayashi et al., 2009). Other heterozygous 

frame shift mutations of Cav1 have been later found in patients with lipodystrophy 

c.88delC and p.l134fsdel1-X137 (Cao et al., 2008) and p.Phe160X (Schrauwen et al., 

2015). Similarly, another heterozygous cavin-1 frame shift mutation consisting in a 

deletion in cavin-1 gene c.947delA in a child with myopathy results in congenital 

lipodistrophy (Ardissone et al., 2013). Altogether these studies emphasize the 

prominent role of caveolae in lipid homeostasis and the maintenance of physiological 

processes (Lamaze et al., 2017). 

2.4.2 Vascular dysfunction 

As caveolae are important structures for the control of NO and calcium 

signaling (Isshiki and Anderson, 2003) (2.3.4) it is not unexpected that Cav1 

disruption in mice leads to impaired NO and Ca2+ signaling in the cardiovascular 

system. This impairment results in altered contraction/relaxation and maintenance of 

the myogenic tone of the endothelium (Drab et al., 2001). Accordingly, eNOS activity 

is upregulated in Cav1 null mice, consistent with the inhibitory role of Cav1. In 

addition, loss of Cav1 caused endothelial cell proliferation and fibrosis (Razani et al., 

2001). Cav1 ablation in mice also results in decreased angiogenic response to basic 

fibroblast growth factor (bFGF) (Woodman et al., 2003). In vivo treatment with CSD 

mimicking peptides decreased acetylcholine-induced vasodilatation and NO 

production. CSD peptides treatment also markedly decreases inflammation and 

vascular leak at the same extent as glucocorticoids. These results emphasize the 

prominent role of this Cav1 domain in the control of cell signaling and its potential 

therapeutic targeting (Bucci et al., 2000). Moreover high level of Cav1 expression has 
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been involved in atherosclerosis development (Fernandez-Hernando et al., 2010). 

Endothelial cells experience shear stress within the vessels due to blood flow. Loss 

of Cav1 in mice vascular endothelial cells induces susceptibility to acute rupture 

under high cardiac output (Cheng et al., 2015). Caveolae are mechanosensitive 

organelles that regulate vascular functions, therefore with a key role in vessels 

remodeling induced by shear stress (Yu et al., 2006). 

2.4.3 Muscular dystrophies and cardiomyopathies 

Mutations of Cav3, cavin-1 and cavin-4 have been associated with multiple 

musculopathies from dystrophies to cardiomyopathies (Hayashi et al., 2009). Thirty 

Cav3 mutations have been identified. These mutations lead to skeletal muscle 

dysfunction resulting in several musculopathies: limb-girdle muscular dystrophy, 

rippling muscle disease, distal myopathy and hyperCKemia. Cav3 mutations have 

been associated with sarcolemmal membrane alterations, disorganization of T-tubule 

network and cell signaling deregulation (Galbiati et al., 2001; Gazzerro et al., 2010). 

Since caveolae play a key role in membrane protection and lipid homeostasis, lack of 

caveolae would directly impair the cell response to mechanical stress (Cheng et al., 

2015; Lo et al., 2015; Sinha et al., 2011). More recently our lab discovered that two 

mutations of Cav3 P28L and R26Q lead to Cav3 Golgi retention preventing caveolae 

formation at the plasma membrane. Hence myotubes with these Cav3 mutations are 

more prone to membrane rupture under mechanical strains. In addition, the central 

muscle signaling pathway IL-6/STAT3 is impaired in this context (Dewulf et al., 2018 

under revision, see annex 3). Other muscle related signaling pathways such as those 

involving Ca2+, p38MAPK and Akt might be affected by the absence of caveolae 

(Capanni et al., 2003; Weiss et al., 2008; Stoppani et al., 2011). Finally, Cav3 

mutations alter the expression and trafficking of proteins participating to membrane 

integrity or membrane repair such as dysferlin and the Tri-partite motif (TRIM) protein 

mitsugumin 53 (MG53) (Capanni et al., 2003; Hernandez-Deviez et al., 2006; Cai et 

al., 2009). 
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2.4.4 Cancer 

Caveolae have pleiotropic functions that have been implicated in multiple 

essential cancer processes such as cell migration, cell cycle progression, cell 

death/survival, cell transformation, angiogenesis and multidrug resistance (MDR). 

Hence, several studies have involved caveolae and caveolar processes in tumor 

development. In particular, Cav1 have received a lot of attention as it plays an 

important but complex role in tumor progression. Indeed, no consensus has been 

reached so far on the role of Cav1 in cancer. Dual and contradictory roles have been 

ascribed to Cav1 as it acts both as oncogene and tumor suppressor depending on 

the pathological context (Goetz et al., 2008; Lamaze and Torrino, 2015). The ability 

of Cav1 to control cell signaling (as described in 2.3.4.4) may play an important role 

in the regulation of oncogenic processes. The first evidence of the tumor suppressor 

effect came from the inhibition of anchorage-independent cell growth of transformed 

cells by recombinant Cav1 expression (Engelman et al., 1997). The tumor 

suppressor effect was then further confirmed by the ability of fibroblasts depleted for 

Cav1 to form tumors in mouse model through p42/44MAPK hyper activation (Galbiati 

et al., 1998). Similarly, pancreatic carcinoma cells overexpressing Cav1 had reduced 

tumor formation due to MAPK inhibition and decreased anchorage-independent 

growth (Han et al., 2009). Moreover, consistently with the tumor suppressor role of 

Cav1, decreased Cav1 levels have been reported in breast, lung, ovary, thyroid and 

mesenchymal cancers. Nevertheless, Cav1 can also play an opposite role depending 

on cancer types. Indeed, Cav1 has oncogenic effects as it promotes tumor 

progression in prostate cancer in mouse models (Williams et al., 2005). In addition, 

clinicopathological analysis of human bladder, breast, renal, brain, lung and prostate 

cancers revealed that Cav1 upregulation is correlated with reduced survival 

(reviewed in Williams and Lisanti, 2005; Goetz et al., 2008)).  Therefore, Cav1 

expression has been proposed as reliable prognosis and diagnosis marker. On 

another hand, as Cav3 mutation P104L leading to musculopathies, Cav1 mutation 

P132L has been identified in some human breast cancers. This mutation is involved 

in cell transformation and MAPK activation, promoting cell invasion (Hayashi et al., 

2001). Six other Cav1 mutations have been identified and associated with ER-α 

positive breast cancers (Li et al., 2006). Cav1 play also a key role in the tumor 

microenvironment. Indeed loss of Cav1 expression in stromal cells has been 



      

 

 

Figure 18. Potential role of caveolae in tumor progression  
Potential role of caveolae in tumor progression. Tumors are often characterized by enhanced rigidity 
and stiffness and recent evidence shows that tumor progression is associated with alterations in tissue 
and cell mechanics. Caveolin-1 (Cav1), the main constituent of caveolae, is clearly involved in tumor 
progression. A biphasic expression pattern could be correlated with distinct Cav1 functions. It was 
shown that Cav1 expression is low during the first stage of tumor progression. However, Cav1 is 
overexpressed during the advanced cancer phases, including metastatic process. Thus, Cav1 would 
act as a tumor suppressor at early stage of transformation and tumor progression while it would play 
an oncogenic role inducing migration and metastasis at later stages. Our hypothesis is that the dual 
role of Cav1 in tumor progression may be explained by their recently discovered new function as 
mechanosensors that adapt the cell response to mechanical forces. Thus, in in situ carcinoma, when 
proliferative tumor cells become confined by the basal membrane, functional caveolae respond as 
mechanosensors with cycles of caveolae disassembly/reassembly induced by external forces. In 
invasive carcinoma, tumor cells break down the basal membrane and invade the extracellular matrix. 
Tumor cells are thus exposed to mechanical forces generated by the extracellular matrix and tissue 
stiffness. Increased mechanical environment may overwhelm and alter the functional cycle of 
caveolae disassembly/reassembly. This in turn may impair the caveolae mechanical response and 
Cav1 dependent mechanosignaling thereby promoting migration and metastasis formation. (Lamaze 
and Torrino, 2015)  
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associated with poor prognosis in breast cancer and correlates with the upregulation 

of ECM components in the tumor microenvironment (Witkiewicz et al., 2009; Trimmer 

et al., 2011). In addition, stromal expression of Cav1 contributes to the remodeling of 

the microenvironment, which facilitates tumor invasion and metastasis (Goetz et al., 

2011). However, the mechanism underlying the role of Cav1 in tumor development 

might be more complex than a matter of level and pattern of expression. Indeed, 

recent studies emphasize the prominent role of mechanical strains generated by the 

microenvironment of the tumor (Kai et al., 2016). Therefore, considering the essential 

role of caveolae in cell mechanoresponse, how caveolae dynamics and mechanics 

are affected by these mechanical strains should be investigated as well as the 

biological processes they mediate in the context of tumor progression, such as 

signaling (Fig. 18) (Lamaze and Torrino, 2015). 

3 Type I interferon-induced JAK-STAT signaling 

JAK-STAT is one of the most studied signaling cascades of the cell. This 

pathway is used by a wide array of cytokines and growth factors to transduce a 

multitude of signals and generate accurate gene responses. JAK-STAT signaling is 

involved in a wide breadth of biological processes such as hematopoiesis, innate and 

adaptive immunity, cell proliferation, differentiation, migration and apoptosis (Igaz et 

al., 2001; O’Shea et al., 2002; Villarino et al., 2017).  

3.1 Interferons 

Among the different cytokines that activate the JAK-STAT cascade, interferons 

(IFNs) are among the most studied. They represent the prototypical example of JAK-

STAT signaling. Most cell types bind IFNs with a large variability in binding affinity 

and numbers of binding sites (200-103/cell) (Langer and Pestka, 1988). IFNs are 

secreted cytokines with a broad range of biological activities such as antiviral, 

antibacterial, cytotoxic and antiproliferative effects. Hence, these molecules 

constitute an essential element of the line of defense against viral infections and of 
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the immunosurveillance for cancer cells (Gresser and Belardelli, 2002; Santini et al., 

2002). Thus, over the last three decades, recombinant IFNs have been used for 

clinical applications. Indeed, IFN-α2 used to be administrated in treatment of hepatitis 

C virus infection (Pfeffer et al., 1998) and IFN-β has been shown to be effective in 

multiple sclerosis (Paty and Li, 1993; Prosperini et al., 2014). Recombinant human 

IFNs have shown effectiveness for cancer treatment for the first time with hairy cell 

leukemia and for Kaposi’s sarcoma. Since then, human IFNs have been approved for 

the treatment of a wide breadth of cancers such as metastatic malignant melanoma 

(Di Trolio et al., 2015).  

3.1.1 Classification  

More than 60 years ago, Isaac and Lindenmann discovered a secreted factor 

that prevents viral replication in chicken embryonic cells (Isaac and Lindenmann, 

1957). Indeed, this factor was described as a “product of influenza viral interference” 

therefore named interferon, giving rise to the first member of the interferon family. On 

the basis of their structural, biological properties and their cognate receptors, IFNs 

are divided into three subfamilies: IFNs type I (IFN-α/-β), type II (IFN-γ) and type III 

(IFN-λ) (Platanias, 2005; Davidson et al., 2016). Indeed, IFNs type I share a common 

receptor named interferon alpha receptor (IFNAR), type II binds to interferon gamma 

receptor (IFNGR) and type III to IL28RA/IL-10Rβ. The first family of IFNs 

encompasses sixteen members: twelve IFN-α subtypes and IFN-β, -ε -κ, -ω. IFN-δ 

and IFN-τ have been described only in pigs and cattle and do not have human 

homologues (Pestka et al., 2004). 

3.1.2 Specificity 

 IFNs type I perfectly illustrate the paradox of signaling, as they all possess 

similar structures and bind to the same receptor, yet result in distinct biological 

outcomes (Brierley and Fish, 2002). In addition to cellular mechanisms such as 

clathrin-dependent endocytosis that mediates signal specificity between type I and 

type II IFNs (Marchetti et al., 2006), signal specificity can also be achieved within the 

type I subfamily through the binding strength of the cytokine to one of the IFNAR 
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chains (Lamken et al., 2004). Indeed, an engineered IFN-α2 mutant with 30 fold 

higher affinity for IFNAR1 (in the range of IFN-β affinity) induces an IFN-β-like cellular 

response (Jaitin et al., 2006). In addition, this specificity can be also mediated 

through IFNAR endosomal sorting (Ng et al., 2015; Chmiest et al., 2016; Zanin et al., 

2018).  

3.2 Interferons receptors 

IFNAR belongs to the family of helical cytokine receptors (hCR) class II, which 

thereby includes IFNGR and IL-10Rβ. IFNAR is a non-tyrosine kinase receptor. 

Indeed IFNAR1 and IFNAR2 do not possess intrinsic kinase activity and must be 

associated with cytosolic kinases to transduce signals.  

3.2.1 IFNAR1, IFNAR2 and their isoforms 

The IFNAR chains were first discovered in 1990 with the emergence of cloning 

techniques. Indeed, Uzé and colleagues identified one of the IFNAR chains as the 

receptor of human IFN-α8 (Uze et al., 1990). Four years later, another IFNAR chain 

(IFNAR2), that physically associates with a tyrosine kinase and later identified as 

IFNAR2c was described as a universal ligand-binding receptor to human IFN-α/-β 

(Novick et al., 1994). Finally, two truncated isoforms of IFNAR2 generated by 

alternative splicing, exon skipping or different polyadenylation sites were 

characterized: IFNAR2a and a secreted, thus soluble isoform IFNAR2b (Lutfalla et 

al., 1995). Due to the truncation of the cytosolic part, thereby isolating the receptor 

from downstream effectors, both isoforms do not process signal transduction (de 

Weerd et al., 2007). These non-functional IFNAR2 isoforms may serve to negatively 

regulate the signaling pathway (Gazziola et al., 2005). Another IFNAR1 isoform has 

been reported in cancer cells, however, it results most likely from an artifact or 

aberrant mRNA (Abramovich et al., 1994).   
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Figure 19. Structure and dynamics of IFN-IFNAR ternary complex formation 
(a) Ligand-induced conformational changes in IFNAR (based on a comparison of unbound and bound 
structures). The bound conformation is in blue. (Piehler et al., 2012) (b) Two-step assembly of the 
ternary IFN-receptor complex in the plasma membrane (orange, IFN; blue, IFNAR2; green, IFNAR1): 
rapid and high-affinity binding of IFN to IFNAR2 is followed by recruitment of IFNAR1 into the ternary 
complex. (Piehler et al., 2012) 
  

a
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3.2.2 Structure and mechanism of activation 

IFNAR is composed of two transmembrane proteins IFNAR1 and IFNAR2 with 

a structure similar to the immunoglobulin constant domain (Bazan, 1990). Both 

chains are heavily glycosylated resulting in a high molecular weight (120-130 kDa) 

despite their relatively short amino acid sequence length:  IFNAR1 (557 aa) and 

IFNAR2c (515 aa) (Ling et al., 1995). Under no stimulation, IFNAR1 and IFNAR2 

remain separated at the plasma membrane. IFNAR1 and IFNAR2 clustering requires 

binding of IFN (Cohen et al., 1995). The binding affinity of IFNs to IFNAR1 differs 

from IFNAR2. Indeed, Scatchard analysis revealed that IFNAR possess two binding 

sites: a low affinity site (of micromolar range) corresponding to IFNAR1 and a high 

affinity site (nanomolar range) corresponding to IFNAR2. The IFNAR1 extracellular 

domain (ECD) of 409 aa is subdivided into four domains named SD1 to SD4, each 

one harboring a fibronectin type III (FNIII)-like domain. SD1 contains residues 

responsible for plasma membrane glycosphingolipid binding (Ghislain et al., 1994). 

SD1-3 are essential for the cytokine binding and SD4 is essential for the ternary 

complex (IFNAR1-ligand-IFNAR2) formation (Lamken et al., 2005). According to a 

proposed model, upon IFN binding the N-terminal SD1 folds to form a lid above the 

bound IFN (Cajean-Feroldi et al., 2004; de Weerd et al., 2007; Piehler et al., 2012; 

Schreiber, 2017) (Fig. 19a). On the other hand, IFNAR2 ECD is composed of only 

two FNIII-like domains referred as D1 and D2 that are both involved in IFN binding. 

Finally, a two step assembly mechanism has been proposed for the formation of the 

ternary complex (Lamken et al., 2004; Gavutis et al., 2005; Piehler et al., 2012): A 

first step of ligand binding to IFNAR2 chain and a consecutive association of IFNAR1 

chain to the preformed IFNAR2-ligand complex (Fig. 19b). Since IFNAR1 and 

IFNAR2 bind on the opposite sides of IFN, the newly formed ternary complex adopts 

a unique orthogonal shape (Piehler et al., 2012) (Fig. 19a). For type 1 IFN, studies 

suggest that the initiation of the signal transduction is rather induced by IFNAR 

dimerization than IFN-binding-induced rearrangement of ECD propagating to the 

cytosolic tail (Wilmes et al., 2015). 

 

As mentioned earlier, IFNARs lack intrinsic kinase activity and thus their 

cytosolic tails need to be constitutively associated with cytosolic kinases to transduce 

the signal subsequently to formation of the ternary complex.  



      

 

 

Figure 20. JAKs general structure and regulation 
(a) JAK1 domains organization (based on Haan et al., 2006). (b) The two prevailing models for 
regulation of JAK kinase domain catalytic activity by the pseudokinase domain: (top) in cis; (bottom) in 
trans. In the in cis inhibition model (top), the pseudokinase domain binds the kinase domain within the 
same JAK monomer, leading to a suppression in catalytic activity. The in trans model for inhibition 
(bottom) involves the binding of the pseudokinase domain from one JAK to the kinase domain of 
another within a receptor-assembled JAK dimer to suppress the kinase domain's catalytic activity. 
Activation of JAK in either model involves reorientation of the JAKs to facilitate mutual trans- 
phosphorylation and thus activation of the JAK kinase domains. (from Babon et al., 2014) 
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3.3 JAK: Just another kinase... 

JAK kinases are members of the large family of protein tyrosine kinases (PTK). 

The first two members of the JAK family (JAK1 and JAK2) were first discovered by 

Andrew Wilks from a PCR-based screen, aiming at identifying new PTKs. Therefore, 

these two proteins were initially termed “Just Another Kinase” (Wilks, 1989). These 

kinases have the particularity to carry both a functional kinase domain and a non-

functional (pseudo) kinase domain, defining a new class of PTKs (Wilks et al., 1991). 

This singularity, prompted A. Wilks to rename this family “Janus Kinase” referring to 

the two-faced roman god of Gates (Wilks, 2008). In the meantime another member of 

the JAK family: TYK2 was identified (Krolewski et al., 1990; Firmbach-Kraft et al., 

1990; David et al., 1995). JAK3 was later identified due to its restriction to 

hematopoietic cells (Kawamura et al., 1994).  

3.3.1 Structural features  

JAK kinases exhibit a high molecular weight (130-140 kDa). All four members 

share seven characteristic domains (Wilks et al., 1991), which are named JAK 

homology (JH) domains (Haan et al., 2006). In addition, the N-terminal part (JH3-

JH7) comprises a Src homology domain-2 (SH2), and a 4.1, Ezrin, Radixin, Moesin 

(FERM) domain that targets JAKs to the membrane-proximal region of cytokine 

receptors (Fig. 20a). Both mediate their non-covalent association with the cytosolic 

tail of the receptor (Wallweber et al., 2014). Indeed, JAKs have been reported to be 

predominantly found at the plasma membrane, pre-associated to different cytokine 

receptors (Behrmann et al., 2004; Haan et al., 2006), which are required for JAK 

targeting at the plasma membrane.  

 

The non-functional kinase domain JH2 is critical for the modulation of the 

catalytic domain (JH1) and are both positioned at the C-terminal part of the protein. 

The pseudokinase domain presents high structural similarities with the tyrosine 

kinase domain JH1 (Toms et al., 2013), yet it lacks essential residues involved in 

catalytic activity and substrate binding (Wilks et al., 1991; Saharinen et al., 2000). 

Hence, it has been hypothesized that the pseudokinase domain has a regulatory role 



      

 

Figure 21. JAK-STAT signal transduction 
At steady state IFNAR1 and IFNAR2 remain separated within the plasma membrane. Upon cytokine 
binding to IFNAR2, IFNAR1 is recruited to form the ternary complex resulting in JAK1 and TYK2 
juxtaposition, which leads to their reciprocal transphosphorylation inducing their full activation. Fully 
activated JAKs phosphorylate IFNARs that become a docking platform for latent cytosolic STATs. 
IFNAR-docked STATs are thereby phosphorylated by JAKs and released in the cytosol where they 
dimerize to be imported into the nucleus and initiate specific transcriptional programs.  
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within the JAKs. Indeed, JH2 deletion from TYK2 impaired IFN signaling (Velazquez 

et al., 1995). Multiple studies support the regulatory role of the pseudokinase domain, 

showing that JH2-deleted JAK2 and JAK3 exhibit an increased basal activity 

(Saharinen and Silvennoinen, 2002).  

3.3.2 Mechanism of activation 

The precise molecular mechanism of JAKs activation remains unclear. 

However it is clear that the pseudokinase domain acts as a protein interaction 

module that inhibits the tyrosine kinase activity of the JH1 domain. Two models have 

been proposed where autoinhibition occurs either in cis (within the same JAK protein) 

or in trans where both JAKs mutually inhibit their JH1 domain with their JH2 domain 

(Babon et al., 2014) (Fig. 20b). Nevertheless, considering that IFNAR chains remain 

separated in absence of ligand, it is unlikely that trans inhibition occurs in this 

context. Moreover, crystal structure analysis of the pseudokinase-kinase tandem of 

TYK2 support the model of cis inhibition (Lupardus et al., 2014).  

 

The mechanism triggering the dissociation between JH2 and JH1 (JAK 

activation) is unknown and may result from conformational changes induced by JAKs 

juxtaposition and/or transphosphorylation on their kinase domain activation loop 

(Yamaoka et al., 2004). On the other hand, autoinhibition of JAK2 slightly differs from 

the other JAKs. Indeed, the JAK2 pseudokinase domain possesses a weak catalytic 

activity that autophosphorylates itself on two autoinhibitory residues (Ser523 and 

Tyr570) (Ungureanu et al., 2011). These two autoinhibitory residues are not 

conserved among the other JAKs. 

 

Upon ligand binding to IFNAR, both chains associate within the ternary complex and 

undergo conformational changes that propagate to their respective cytosolic tail. 

These events lead to JAKs juxtaposition and repositioning of their respective 

pseudokinase domain, relieving autoinhibition (Babon et al., 2014). This repositioning 

may be triggered by reciprocal transphosphorylation on both kinase domain 

activation loop (Feng et al., 1997). These last steps drastically enhance the kinase 

catalytic activity leading to IFNAR tyrosine phosphorylation (IFNAR1 Y466 and 



      

 

Figure 22. STAT domains structure and protein binding sites 
(a) The core structure (amino acids ~130–712) shows binding of a STAT1 dimer to DNA and the 
location of binding sites of various proteins in various domains. The amino-terminal structure, the 
placement of which in the intact structure is undefined, also interacts with various partners, as does 
the carboxy-terminal transactivation domain, the structure of which is unknown. CBP, CREB binding 
protein; IRF, interferon regulatory factor; Mcm, minichromosome maintenance; Nmi, N-Myc interactor; 
PIAS, protein inhibitor of activated STAT. (b) STAT structure. STAT, signal transducer and activator of 
transcription. SH2, Src- homology-2 domain ( from Levy and Darnell, 2002). 
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IFNAR2 Y337/542) (Abramovich et al., 1994; Constantinescu et al., 1994; Platanias 

et al., 1994). Therefore, the new motifs constituted by phosphorylated tyrosines 

harbored by IFNAR become docking sites for the latent cytosolic signal transducers 

and activators of transcription (STATs) (Zhong et al., 1994) (Fig. 21).  

3.4 Signal Transducers and Activators of Transcription 

The family of cytosolic STAT proteins encompasses seven members: STAT1, 

2, 3, 4, 5a, 5b and 6. The STATs have been characterized based on their sequence 

homology and their functional ability to activate distinct sets of genes in response to 

growth factor and cytokine stimulation (Leaman et al., 1996). The STAT family 

shares conserved domains: a N-terminal part which is involved in the regulation of 

STAT activity, a coiled coil domain involved in receptor and regulatory proteins 

interaction, an SH2 domain that mediates STATs interaction with the tyrosine 

phosphorylated receptor, a DNA binding domain and a variable C-ter transactivation 

domain involved in the modulation of gene transcription (Kisseleva et al., 2002) (Fig. 

22). In addition, STATs are substrates of JAKs and undergo phosphorylation on a 

conserved tyrosine residue. This tyrosine phosphorylation triggers STAT homo or 

heterodimerization (through reciprocal SH2-phosphotyrosine interactions) and their 

subsequent nuclear translocation relying on the importin-α5 and the Ran import 

pathway (Kisseleva et al., 2002). STAT phosphorylation promotes their nuclear 

retention. Inside the nucleus, depending on the composition of STAT dimers, it 

eventually form complexes with other co-trancritption factors such as the IFN 

regulatory factor 9 (IRF9) and binds to DNA consensus sequences such as the IFN 

response elements (ISREs) or IFN-γ activated sequence (GAS) elements in the 

promoter of IFN-stimulated genes (ISGs) to initiate transcriptional programs (Darnell 

et al., 1994; Schreiber and Piehler, 2015). Signal termination is mediated by STAT 

dephosphorylation and their subsequent nuclear export (Mertens and Darnell, 2007). 

DNA bound STATs are protected from phosphatases and thereby remain in the 

nucleus to process the transcriptional program (Meyer et al., 2003) (Fig. 22). 



      

 

Figure 23. Negative regulation of JAK-STAT signaling 
(a) Schematic diagram of cytokine-induced JAK-STAT signaling. SOCS proteins are targets for STAT-
induced up-regulation, whereupon they inhibit signaling, forming a negative-feedback loop. The two 
most potent members of the SOCS family, SOCS1 and SOCS3, act by directly inhibiting the catalytic 
domain (JH1 domain) of JAK2 (left). SOCS3 (green, cartoon representation) docks on to the GQM 
motif of JAK (electrostatic surface representation) and places its KIR in the substrate-binding groove. 
The numbering indicates the exact fragments present in the crystal structure of PDB code 4GL9 (left). 
Close-up of the JAK–KIR interaction with a substrate peptide (white) modeled. The asterisk (*) 
indicates that ATP and substrate are modeled on the basis of the IRK–substrate–ATP structure (PDB 
code 1IR3). The KIR of SOCS3 (green) blocks substrate binding, the first residue of the KIR, Leu22, is 
located where the P+1 residue would reside; this is indicated schematically in (boxed) (adapted from 
Kershaw et al., 2013b). (b) Negative regulators of IFN-induced JAK-STAT signaling (from Arimoto et 
al., 2018) 
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3.5 JAK-STAT regulation 

As mentioned above, JAK-STAT is a key signaling pathway that allows the 

control of major cellular processes in response to extracellular stimuli. Therefore, a 

tight regulation is essential to avoid any undesirable responses that would give rise to 

dramatic consequences at the whole organism scale. Hence, a multitude of 

regulatory mechanisms have been setup at each milestone of the signaling pathway 

to ensure correct activation, signal termination and desensitization.  

3.5.1 Upstream regulation 

JAK-STAT can be regulated at the level of the cytokine receptors. Indeed, 

serine phosphorylation on IFNAR1 residue 535 by different sets of kinases such as 

protein kinase D2 (PDK2) or casein kinase α (CKα) induces the recruitment of F-box 

protein E3 ubiquitin ligase subunit β transducing repeats-containing protein 2 (β-

Trcp2) resulting in IFNAR1 ubiquitination and its subsequent degradation 

(Marijanovic et al., 2006; Bhattacharya et al., 2010; Zheng et al., 2011). Similarly, 

ubiquitin-specific peptidase 18 (USP18) interacts with IFNAR2 displacing the 

associated JAK1 (Malakhova et al., 2006). This interaction results in a destabilization 

of IFN-α binding to IFNAR2 (Francois-Newton et al., 2011, 2012). 

3.5.2 Downstream regulation 

JAK kinases are key effectors of the JAK-STAT signal transduction. Therefore, 

JAKs catalytic activity or activation (i.e. phosphorylation) is naturally targeted by 

regulatory mechanisms. Hence, the JAK-STAT regulatory toolbox includes a wide 

range of inhibitory proteins including phosphatases (Arimoto et al., 2018).  

  

One of the most well known families of JAK-STAT regulatory proteins is the 

SOCS family. They were identified on the basis of their ability to bind JAKs and 

inhibit cytokine signaling. SOCS are part of a negative feedback loop induced by 

JAK-STAT signaling (Endo et al., 1997; Naka et al., 1997; Starr et al., 1997).  There 

are eight members of the SOCS family. They all contain an SH2 domain and a SOCS 



      

 

 

Figure 24. JAKs and STATs with associated cytokines and phenotypes (O’Shea 

et al., 2015) 
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box domain. They function as E3 ubiquitin ligase that promotes cytokine receptors 

and their associated JAKs ubiquitination and their subsequent degradation. However 

SOCS1 and SOC3 mechanism differ from other SOCS as they directly inhibit JAKs 

catalytic activity (Yasukawa et al., 1999). Indeed SOCS1 and SOCS3 carry a kinase 

inhibitory region (KIR) that sits on and occludes JAK substrate-binding sites upon 

receptor-SOCS1/3-JAK interaction (Kershaw et al., 2013a) (Fig. 23a). 

 

 Protein tyrosine phosphatases are also important regulators of JAK-STAT. For 

example, PTP1B is an SH3 and phosphatase containing protein that 

dephosphorylates both JAK2 and TYK2 (Myers et al., 2001). PTP1B inhibits IFN-α 

and IFN-γ signaling by dephosphorylating the activation loop of JAK2 and TYK2. A 

similar protein named T-cell protein phosphatase (TCPTP) has been reported to 

dephosphorylate JAK1 and JAK3 (Simoncic et al., 2002). In addition Src homology 

region 2 domain-containing phosphatase 1 and 2 (SHP1 and SHP2) are 

phosphatases that directly bind to and dephosphorylate JAK1, JAK2 and TYK2 

(David et al., 1995; Yetter et al., 1995; Jiao et al., 1996). Their SH2 domain allows to 

specifically target activated JAKs by binding to the phophotyrosine of their activation 

loop. 

 

Finally, STAT-induced transcription can be inhibited by the interaction with a 

protein inhibitor of activated STAT (PIAS) (Fig. 22a). PIAS are composed of four 

members: PIAS1, 3, x and y. For example, PIAS1 inhibits STAT1 binding to DNA, 

thus it prevents STAT1-induced gene transcription (Liu et al., 2004). In addition, the 

IFN-regulatory factor 2 competes with other IRFs such as IRF9 for ISRE binding 

thereby preventing ISRE-mediated genes induction (Taki, 2002). 

3.6 JAK-STAT in tumor progression 

Due to the wide array of physiological processes mediated by JAK-STAT, gain 

or loss of function mutations in genes encoding for JAKs, STATs and their regulatory 

proteins are associated with a broad range of human diseases (reviewed in O’Shea 

et al., 2015) (Fig. 24). For example inactivating mutations of JAK kinases have been 

reported in patients with immunodeficiencies (Casanova et al., 2012). On the other 
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hand, mutations resulting in constitutively active JAKs were early involved in 

myeloproliferative diseases and tumor development such as leukemia/lymphoma and 

solid tumor development including breast cancer (Leonard and O’Shea, 1998). In this 

chapter, I will further develop how non-functional JAK-STAT signaling may drive 

breast cancer development. 

 

All members of the STAT family have important role in mammary gland 

development. For example, STAT3 is a prominent factor for self-renewal of 

pluripotent stem cells (Niwa et al., 1998). Moreover, STAT3 mediates inflammatory 

signaling, tissue remodeling and triggers apoptosis by regulating the expression of 

phosphoinositide-3 kinase (PI(3)K) regulatory subunits during mammary gland 

development. STAT6 induces expression of cytokines and important factors for the 

maintenance of luminal alveolar cells. STAT5 mediates lactation and STAT1 has 

been reported to be phosphorylated during tissue remodeling of the gland (Abell et 

al., 2005; Hughes and Watson, 2012). As JAKs and STATs regulate cell proliferation 

and survival in the mammary gland, it is not surprising that those proteins are 

involved in breast tumor progression, with either oncogenic or tumor suppressor 

roles. Somatic mutations of JAK1, JAK2 and JAK3 have been reported in patients 

with breast cancer (Jeong et al., 2008; Caffarel et al., 2012). Moreover STAT3 and 

STAT5 are well-known oncogenic factors of the mammary gland that are found to be 

hyperactivated in a high proportion of breast tumors (Cotarla et al., 2004; Diaz et al., 

2006). Indeed, gain of function V617F mutation of JAK2 leads to constitutive STAT5 

activation and increased survival and cell proliferation (Caffarel et al., 2012). 

However, unlike many other oncogenes, mutations in JAKs or STATs are very rare 

and the mechanisms leading to JAK-STAT subversion are not well understood. In 

most cancers, STAT1 has paradoxical activities as it is either considered as a tumor 

suppressor or oncogene depending on the context. For example, in postmenopausal 

breast cancer, STAT1 acts as a tumor suppressor while it promotes malignancy in 

premenopausal breast tumors (Haricharan and Li, 2014). Indeed, STAT1 is 

repressed during breast cancer progression, while highly expressed in surrounding 

tissues of benign breast tumors (Chan et al., 2012). In addition, STAT1 expression in 

ER-/human epidermal growth factor receptor 2-positive (HER2+) and HER2- breast 

cancer is correlated with better prognosis (Desmedt et al., 2008). In contrast, in some 

cases, high STAT1 expression is associated with metastasis and drug resistance 



      

 

Figure 25. Therapeutic inhibitors of JAKs and STATs (O’Shea et al., 2015) 
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(Weichselbaum et al., 2008). On the other hand, STAT3 is an oncogene that is 

constitutively activated in a wide array of cancers. Indeed, STAT3 hyperactivation is 

often reported in primary breast cancers and is associated with poor prognosis 

(Charpin et al., 2009). Aberrant STAT3 activation leads to tumor formation as 

phosphoSTAT3 transactivates a large numbers of oncogenes such as c-Myc, Cyclin 

D1, prosurvival factors Bcl-xL and survivin together with angiogenesis and invasion 

factors v-EGF and klf-8 (Bromberg et al., 1999; Diaz et al., 2006). Therefore, 

transcriptional program initiated by STAT3 results in highly metastatic tumors. Mice 

with constitutively activated STAT3 exhibit significantly more aggressive tumors 

(Barbieri et al., 2010). In addition STAT3 also regulates miR-21 and miR-181-b1 

transcription via PTEN generating inflammatory signaling, which results in cell 

transformation through epigenetic mechanisms (Iliopoulos et al., 2010). STAT3 

activation also induces stem-cell like phenotype by activating Sox2 expression or 

CCL2 production that in turn activates NOTCH1 signaling in tumor cells (Tsuyada et 

al., 2012; Yang et al., 2013). Moreover, STAT3 activation affects the tumor 

microenvironment by stimulating the secretion of various cytokines that recruits T-

helper and tumor associated macrophages promoting growth and differentiation of 

tumor cells and inhibition of antitumor immunity (Hynes and Watson, 2010). 

 

The clear role of JAK-STAT signaling in tumor progression makes this pathway 

an attractive therapeutic target for antitumor treatment. Indeed clinical targeting of 

JAK-STAT has been proven to be efficient in clinical trials in patients with solid 

tumors. For example, Ruxolitinib, developed by Novartis, which targets JAK1 and 

JAK2 is used for a wide range of solid tumors. Other JAKs inhibitors such as 

INCB39110 and INCB047986 (InCyte corp.) that blocks JAK1 phosphorylation are 

currently in advanced clinical trials (Buchert et al., 2016) (Fig. 25). Similarly STATs 

inhibitors are being developed, yet STATs blockade is much more challenging than 

blocking kinases and may not be as efficient due to STATs redundancy (O’Shea et 

al., 2015). However small-molecules and oligonucleotide based inhibitor targeting 

STAT3 and STAT5 are promising (Furqan et al., 2013).  

  



      

 55 

 
 
 
 
 
 
 

- RESULTS -   



      

 56 

Results  

4 Caveolae Mechanics Control JAK-STAT signaling 

4.1 Objectives and summary 

 

Mechanoprotection is the last function ascribed to cavolae. Indeed, our 

laboratory demonstrated that caveolae have the ability to flatten out upon membrane 

tension increase induced by a mechanical stress, thereby providing additional 

plasma membrane surface in order to prevent cell damages. On another hand it has 

been established that caveolae are key signaling organelles. Therefore our lab 

hypothesized that the mechano-dependent cycle of caveolae 

disassembly/reassembly constitutes a mechanical switch for signaling pathways 

(Nassoy & Lamaze 2012). In the present work, we hypothesized that the caveolae 

mechanical disassembly leads to the release of non-caveolar Cav1 in the plasma 

membrane. Considering the ability of Cav1 to modulate the activity of signaling 

molecules, we further hypothesized that the mechanical release of non-caveolar 

Cav1 modulates major signaling pathways. Indeed, using high throughput screening 

we identified JAK-STAT as a signaling pathway that is modulated by caveolae 

mechanics. Hence, the aim of this work is to identify the molecular mechanisms 

underlying the control of JAK-STAT signaling by caveolae mechanics.  

 

Single molecule localization revealed that “free” Cav1 is released in the lipid 

bilayer upon membrane tension increase induced by osmotic cell swelling. Moreover, 

consistently with high throughput screening results, biochemical assay and cell 

imaging confirmed that IFN-α-induced STAT3 activation is decreased upon cell 

stretch. Study of STAT3 activation profile in mouse endothelial cells WT (WT MLEC) 

and knock out for Cav1 (Cav1-/- MLEC), revealed that caveolae/Cav1 are negative 

regulators of STAT3 activation. Using mouse embryonic fibroblast (MEF) lacking 

cavin-1 expression (cavin-1-/- MEF) we could demonstrate that non-caveolar Cav1 
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negatively regulates JAK-STAT signaling. Immunoprecipitation and pulldown 

experiments revealed that Cav1 interacts with JAK1, which is a key effector of the 

JAK-STAT signaling pathway. In addition, Cav1-JAK1 interaction depended on 

membrane tension. It has been proposed that Cav1 modulates signaling events via 

direct binding and inhibition of signaling molecules through its caveolin scaffolding 

domain (CSD). Nevertheless, this model remains debated. In the present work, we 

definitely show that Cav1 CSD has a prominent role in the Cav1-mediated JAK-STAT 

control. Indeed, mutation of this domain on amino acids F92 and V94 prevents Cav1 

interaction with JAK1 resulting in the abolishment of Cav1 negative effect on JAK-

STAT. Furthermore, the CSD is sufficient to mimic Cav1 negative effect on STAT3 

activation and directly impairs JAK1 catalytic activity as JAK1-mediated ATP 

conversion in-vitro could be decreased by CSD mimicking peptide.  

 

The detailed results of this work are presented below, under the form of an 

article in preparation for submission.  
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Abstract   
Caveolae are small invaginations of the plasma membrane that have been classically 

involved in membrane trafficking and signaling. These multifunctional organelles 

were recently shown to play a key role as mechanosensors that adapt the cell 

response to mechanical stress. Here, we investigated the role of caveolae mechanics 

in the control of the JAK-STAT signaling pathway. Single molecule imaging 

experiments revealed that caveolae disassembly induced by mechanical stress led to 

a drastic increase of caveolin-1 diffusion at the plasma membrane. This promoted the 

direct interaction of the caveolin-1 scaffolding domain with the tyrosine kinase JAK1, 

inhibiting its catalytic activity and thereby the activation by IFN-α of the JAK1 

downstream effector STAT3. These results therefore establish caveolae as 

mechanosignaling hubs that couple the sensing of mechanical stress to the 
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regulation of intracellular signaling through the release of free caveolin-1 at the 

plasma membrane. 

 

 
Introduction 
Since their first visualization by electron microscopy more than 60 years ago (Palade, 

1953; Yamada, 1955) the small cup-shaped plasma membrane invaginations named 

caveolae have been extensively investigated. Caveolae are shaped by a protein 

complex composed of caveolin and cavin proteins. Among the three mammalian 

caveolins, caveolin-1 (Cav1) is the only isoform required for the assembly of 

caveolae in non-muscle cells. (Parton et al., 2006; Rothberg et al., 1992; Scherer et 

al., 1996). The second group of caveolae proteins is represented by a family of four 

cytosolic proteins named cavins (cavin-1 to -4) (Aboulaich et al., 2004). Cavin-1 is 

essential for caveolae morphogenesis in all cell types whereas Cav3 and cavin-4 are 

strictly restricted to muscle cells (Bastiani et al., 2009; Way and Parton, 1995). 

Recent electron microscopy and X-ray crystallography studies gave a further insight 

into the stoichiometric organization of the characteristic striated coat observed on the 

outer cytoplasmic side of caveolae. It has been calculated that 150-200 Cav1 

monomers associate with 50-60 cavins organized as trimers to form a caveola 

(Gambin et al., 2014; Ludwig et al., 2013; Stoeber et al., 2016). Several proteins, 

albeit less well characterized, have also been localized at the neck of caveolae, 

including dynamin 2, PACSIN2 (syndapin 2) and the ATPase EHD2 (Hansen et al., 

2011; Morén et al., 2012).  

Caveolae, which are particularly abundant in adipocytes, endothelial cells and 

muscle cells, are multifunctional organelles that have been classically involved in 

membrane trafficking and cell signaling (Cheng and Nichols, 2016; Lamaze et al., 

2017). Mutations or impaired expression of caveolins and cavins have been 

associated with several human diseases including lipodystrophy, vascular 

dysfunction, cancer and muscle dystrophies (Lamaze et al., 2017). If caveolae have 

long been associated with the control of intracellular signaling, the mechanisms 

underlying this control remain poorly understood and often debated (Collins et al., 

2012). Caveolae are likely to regulate the activation of signaling effectors by several 

non-mutually exclusive means (Lamaze et al., 2017). Owing to the strong affinity of 

Cav1 for cholesterol and sphingolipids, caveolae can locally modulate the lipid 
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composition and thereby the nanoscale organization of the plasma membrane, a key 

parameter for the activation of transmembrane receptors and associated signaling 

molecules (Blouin et al., 2016). This process was recently illustrated for the control of 

Ras signaling (Ariotti et al., 2014). Caveolae can also function as nanodomains 

themselves to confine signaling effectors locally at the plasma membrane as shown 

for the regulation of calcium signaling through the localization of the Ca2+ pump into 

caveolae (Fujimoto, 1993). Finally, caveolae can regulate cell signaling through direct 

interaction of Cav1 with its signaling partners. In this context, it was shown that Cav1 

carries a specific caveolin scaffolding domain (CSD), which is able to interact with 

and regulate the activity of several signaling molecules bearing a corresponding 

caveolin binding motif (CBM), a consensus signature motif found in several Cav1 

binding proteins (Couet et al., 1997a; Lisanti et al., 1995; Okamoto et al., 1998). If 

this interaction has been described in several studies, more recent structure- and 

sequence-based data on Cav1-CSD and CBMs have questioned the direct regulation 

of cell signaling by caveolae through protein-protein interaction with Cav1 (Byrne et 

al., 2012; Collins et al., 2012) 

We established a new function of caveolae as mechanosensing organelles 

that protect cells from rupture of the plasma membrane under mechanical stress 

(Sinha et al., 2011). Under various conditions where membrane tension is increased, 

caveolae immediately flatten out and disassemble to release the membrane stored in 

their invagination and buffer membrane tension variations. The essential role of 

caveolae in cell mechanoprotection was confirmed in several cell types in vitro and in 

vivo (Cheng et al., 2015; Lim et al., 2017; Lo et al., 2015). It has been proposed that 

the classical functions of caveolae should be reconsidered through their new function 

in cell mechanics (Cheng and Nichols, 2016; Nassoy and Lamaze, 2012). Here we 

revisited the role of caveolae on intracellular signaling by investigating the effects of 

the mechano-dependent cycle of caveolae disassembly/reassembly on cell signaling. 

We identified the Janus kinase/signal transducers and activators of transcription 

(JAK-STAT) signaling pathway to be directly regulated by caveolae mechanics. Upon 

mechanical stress, we found that Cav1 was rapidly released from caveolae into the 

plasma membrane. The pool of released Cav1 was able to directly interact via its 

CSD with the JAK1 tyrosine kinase, leading to the inhibition of its catalytic activity 

and preventing thereby the activation of JAK-STAT signaling by interferon-α (IFN-α). 



      

 61 

Our study unveils a new mechanism by which caveolae couple mechanosensing with 

the control of cell signaling under mechanical stress. 

 

Results  
 
Mechanical stress drastically increases the diffusion of Cav1 at the plasma 
membrane. 
We previously demonstrated that caveolae have the ability to flatten out and 

disassemble in response to increased membrane tension (Sinha et al., 2011). Yet, 

the fate of the caveolar components following the disassembly of caveolae under 

mechanical stress remains unclear. Single-molecule fluorescence analysis revealed 

that changes in membrane tension led to the release of the cavin coat from flattened 

caveolae as two distinct cavin-1/cavin-2 and cavin-1/cavin-3 cytosolic subcomplexes  

(Gambin et al., 2014). Less is known about the topology of Cav1 oligomers after 

caveolae flattening. Caveolins could remain organized as a flat caveolar structure, as 

observed by deep-etch electron microscopy (Sinha et al., 2011), or released as non-

caveolar Cav1 oligomers. Indeed, FRAP experiments showed that the mobile fraction 

of Cav1 was increased upon mechanical stress, suggesting a higher number of Cav1 

molecules freely diffusing outside of caveolae (Sinha et al., 2011). We performed 

high-resolution single particle tracking (sptPALM) together with total internal 

reflection fluorescence microscopy (TIRF) to monitor with higher spatiotemporal 

resolution the fate of Cav1 molecules that are released from disassembled caveolae. 

This allowed us to measure the diffusion coefficient (D) of Cav1 fused to phospho-

switchable mEOS3.2 after photoactivation in mouse lung endothelial cells (MLEC). At 

steady state, the Cav1-mEos trajectories remain confined around static Cav1-mEOS 

objects, whose characteristics indicate that they are most likely confined within 

caveolae. Under membrane tension increase induced by hypo-osmolarity, we 

observed dramatic changes in the diffusion parameters of Cav1-mEOS with Cav1-

mEOS trajectories increasing in length and exploring a wider area (Fig. 1a). The D 

coefficient of Cav1-mEOS is redistributed as well, and translated a faster diffusion of 

Cav1-mEOS (Fig. 1b). Importantly, the logarithmic value of the diffusion coefficient 

increased with the time of exposure to hypo-osmolarity (Fig. 1c). In contrast, the D 

coefficient of Cav1-mEOS3.2 returns to a iso-osmotic-like distribution in shocked 

cells back to iso-osmolarity, which translate a return to a confined state for Cav1-



      

 62 

mEOS (Fig. 1d).  Altogether, these results clearly indicate that after caveolae 

disassembly by mechanical stress, Cav1 molecules are released from the caveolar 

coat and freely diffuse at the plasma membrane. This process is dynamic and 

reversible. 

 

Caveolae can control several signaling pathways under mechanical stress 
We have hypothesized that the mechano-dependent cycle of caveolae 

disassembly/reassembly may constitute a mechanical switch by which caveolae and 

/or caveolins could control intracellular signaling (Nassoy and Lamaze, 2012). We 

therefore investigated whether the pool of freely diffusing Cav1 released under 

mechanical stress could impact the activation of some signaling pathways. To 

identify some of these signaling pathways, we ran a screening experiment based on 

the reverse phase protein assay (RPPA), a miniaturized high throughput dot-blot 

technology for proteomic analysis allowing the analysis of protein expression, post-

translational modifications and identification of activated or altered signaling 

pathways. The RPPA was performed on MLEC cells having (WT) or not caveolae 

(Cav1-/-), in resting condition or under uniaxial stretching. We also stimulated the cells 

by IFN-α so as to analyze the JAK/STAT signaling pathway. Results from the RPPA 

screening revealed several signaling pathways that were affected by cell uniaxial 

stretching as exemplified by the stretch dependent activation of MAPK and Akt 

pathways. As expected, IFN-α stimulation led to the tyrosine phosphorylation of 

STAT3 and STAT1 (Fig. 2a). Interestingly, the level of STAT3 phosphorylation was 

strongly decreased upon cell stretching, in a Cav1 dependent manner, whereas 

STAT1 activation was not affected. Other signaling pathways such as MAPK are 

activated by stretch independently from caveolae (Fig. 2a). 

 

Mechanical stress impairs the JAK/STAT signaling pathway  
We further investigated the role of caveolae mechanics on the JAK/STAT signaling 

pathway activated by IFN-α. JAK-STAT signaling represents one of the major 

signaling pathways of the cell. It is used by a wide array of cytokines and growth 

factors to transduce signal and generate accurate gene responses. It governs 

multiple biological processes as diverse as hematopoiesis, innate and adaptive 

immune function, cell proliferation, differentiation, migration and apoptosis (Villarino 

et al., 2017). The activation of JAK-STAT signaling by IFN-α relies on the ubiquitous 
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IFNAR receptor composed of two non-tyrosine kinase receptor subunits IFNAR1 and 

IFNAR2. IFN-α binding to IFNAR2 allows the formation of a ternary complex with 

IFNAR1, where the two IFNAR-associated JAK1 and TYK2 tyrosine kinases are 

mutually activated by trans-phosphorylation. These conformational changes trigger 

the full activation of JAK1 and TYK2, which in turn create tyrosine phosphorylated 

docking sites on IFNAR1 and IFNAR2 subunits where cytosolic STAT molecules 

(STAT1, STAT2 or STAT3) are recruited. The tyrosine phosphorylation by JAK1 and 

TYK2 allows the release of STATs in the cytosol and their dimerization before their 

translocation to the nucleus where they induce a transcriptional program specific to 

IFN-α (Schreiber and Piehler, 2015). 

We confirmed the data obtained through RPPA screening by monitoring 

STAT3 activation by IFN-α that is, phosphorylation at tyrosine 705, a key step 

required for the formation of active transcriptional complexes (Kaptein et al., 1996). 

We measured by immunoblotting the level of STAT3 phosphorylation and its 

consecutive nuclear translocation in WT MLEC or Cav1-/- MLEC cells stimulated with 

IFN-α under 25% uniaxial stretching. We found that the level of STAT3 tyrosine 

phosphorylation was decreased by about 43% in stretched WT MLEC cells (Fig. 3a). 

The decrease of STAT3 activation translated into a defect of STAT3 nuclear 

translocation in stretched cells (Fig. 3b). As observed above in the RRPA screening, 

the level of STAT3 tyrosine phosphorylation remained unchanged when Cav1-/- 

MLEC cells were stretched, indicating that this regulation requires functional 

caveolae (Fig. 3a). Again, we found that STAT1 activation by IFN-α was insensitive 

to mechanical stress since pSTAT1 nuclear translocation occurred normally in 

stretched cells (Fig. 3b). 

 

Non-caveolar Cav1 mediates STAT3 inhibition 
Our data indicate that caveolae and mechanical stress can control the activation of 

STAT3 by IFN-α. We next asked whether this control could occur in unstimulated 

cells. As expected, in the absence of stimulation by IFN-α, no activation of STAT1 

and STAT3 were detected in WT MLEC (Fig. 4a, b). In contrast, we observed a 

strong activation of STAT3 in unstimulated Cav1-/- MLECs. The absence of caveolae 

had no effect on the level of phosphorylated STAT1 at steady state in agreement with 

the RPPA and nuclear translocation data (Fig. 4b). The constitutive activation of 

STAT3 was dependent on the activity of the JAK1 tyrosine kinase since siRNA-
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mediated JAK1 depletion completely abolished STAT3 activation in stimulated and 

unstimulated Cav1-/- MLEC cells (Fig. 4c, d). These data indicate that caveolae 

and/or caveolins are negative regulators of STAT3 activation at steady state.  

 A key question in the field of caveolae is to distinguish the role of caveolae 

from the role of caveolins (Lamaze et al., 2017). Since we showed that mechanical 

stress released a pool of freely diffusing Cav1 at the plasma membrane (Fig. 1), we 

sought to investigate the role of non-caveolar Cav1 on STAT3 activation. To do so, 

we took advantage of mouse embryonic fibroblasts (MEF) knocked out for cavin-1. 

Indeed, in the absence of cavin-1, Cav1 is unable to assemble into morphologically 

distinguishable caveolae and remains as a pool of non-caveolar Cav1 with increased 

lateral mobility at the plasma membrane (Hill et al., 2008).  We therefore measured 

the level of STAT3 phosphorylation in unstimulated and IFN-α-stimulated cavin-1-/- 

MEF cells. As expected, STAT3 was not activated in unstimulated cavin-1-/- MEF 

cells (Fig. 5a). However, the stimulation of cavin-1-/- MEF cells by IFN-α failed to 

activate STAT3. The rescue of cavin-1 expression in cavin-1-/- cells (cavin-1-/- + 

cavin-1) allowed again the activation of STAT3 by IFN-α (Fig. 5b). These results 

suggest that the pool of non-caveolar Cav1 is responsible for the lack of STAT3 

activation by IFN-α. Indeed, the treatment of WT MLEC cells with methyl-β-

cyclodextrin, which disrupts caveolae by removing cholesterol at the plasma 

membrane, led also to a significant decrease of the level of STAT3 activation by IFN-

α (Supplementary fig. 1).  Finally, we measured the level of STAT3 activation in 

cavin-1-/- MEF expressing increasing amounts of non-caveolar Cav1 and found a 

dose dependent inhibition of IFN-α-induced STAT3 activation (Fig. 5c). Altogether 

these data indicate that an excess of non-caveolar Cav1 inhibits the activation of 

STAT3 by IFN-α. 

 

The level of Cav1 and JAK1 interaction is tuned by mechanical stress 
STAT3 is the direct downstream effector of JAK1 and TYK2 kinases that are 

associated to the IFNAR complex (Platanias, 2005). It is therefore likely that the 

inhibition of IFN-α-induced STAT3 tyrosine phosphorylation by non-caveolar Cav1 

occurs through interaction with the JAK kinases. We found indeed that Cav1 could 

interact with JAK1 in pull-down experiments performed in Cav1-/- MLECs cells 

expressing Cav1-RFP  (Fig. 6a). Our data showing on one hand that mechanical 

stress both releases non-caveolar Cav1 from caveolae and prevents the activation of 
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STAT3 by IFN-α, and on the other hand that non-caveolar Cav1 prevents the 

activation of STAT3 by IFN-α, led us to postulate that mechanical stress could 

regulate the interaction between Cav1 and JAK1. We thus applied a 30 mOsm hypo-

osomotic shock for 5 min so as to disassemble caveolae and promote the release of 

non-caveolar Cav1 at the plasma membrane. Under this condition, we observed an 

increase by about 65% of the amount of JAK1 co-immunoprecipitated with Cav1 (Fig. 

6b). Furthermore, the increase of Cav1 and JAK1 interaction under mechanical 

stress, was correlated with a concomitant 80% decrease of STAT3 activation by IFN-

α (Fig. 6c). Importantly, upon return to iso-osmotic conditions, when caveolae have 

been reassembled to initial numbers (recovery) (Sinha et al., 2011), both the levels of 

Cav1 interaction with JAK1 and STAT3 activation by IFN-α resumed to the levels 

measured before hypo-osmotic shock. These data indicate that the level of Cav1-

JAK1 interaction is tuned by the amount of Cav1 released from caveolae that are 

disassembled to buffer the increase of membrane tension induced by hypo-osmotic 

shock. Moreover, it shows that the inhibition of STAT3 activation by IFN-α is 

correlated with the level of Cav1 interaction with JAK1 suggesting that JAK1 

inhibition is tuned by the amount of Cav1 that binds to JAK1.  

 

JAK1 inhibition is mediated by the caveolin scaffolding domain 
Early studies have identified a so-called caveolin scaffolding domain that was 

involved in the direct regulation, mostly inhibitory, of several signaling molecules by 

Cav1 including eNOS or heterotrimeric G proteins and lastly heme oxygenase (Couet 

et al., 1997b; Garcia-Cardena, 1997; Taira et al., 2011). Interestingly, we found that 

the tyrosine kinase JAK1 carries several CBMs, the caveolin binding motifs that may 

be involved in the recognition by the Cav1 CSD. One is localized in the pseudokinase 

domain, one putative CBM is in the kinase domain (Jasmin et al., 2006) and another 

CBM can be found in the FERM domain of JAK1. The phenylalanine 92 and valine 

94 residues play a key role in the CSD/CBM interaction (Nystrom et al., 1999; Trane 

et al., 2014). To test whether the interaction between Cav1 and JAK1 was mediated 

by the Cav1 CSD, we expressed a Cav1 CSD construct mutated for the F92 and V94 

residues (F92A/V94A Cav1) in Cav1-/- MLEC cells. In agreement with previous 

experiments, we found JAK1 in pulled-down lysates from WT Cav1 expressing cells. 

In contrast, no JAK1 could be detected in pulled-down fraction from lysates of 

F92A/V94A Cav1 expressing cells (Fig. 7a), which indicates that the interaction 
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between Cav1 and JAK1 requires the CSD phenylalanine 92 and valine 94 residues. 

In addition the CSD shares primary sequence similarities with the pseudosubstrate 

domain of SOCS1 and SOCS3, which is the domain that mediates JAKs inhibition by 

SOCS1 and SOCS3 (Jasmin et al., 2006; Kershaw et al., 2013). 

 To test whether the inhibitory role of Cav1 on JAK1 activity was mediated by 

the CSD, we examined the level of pSTAT3 nuclear translocation induced by IFN-α 

stimulation in Cav1-/- MLEC cells expressing either WT or F92A/V94A Cav1 

(Bernatchez et al., 2011; Meng et al., 2017; Nystrom et al., 1999). While the nuclear 

translocation of pSTAT3 occurred normally in non-transfected cells, cells 

overexpressing Cav1 WT showed a defect of pSTAT3 nuclear translocation in 

agreement with the inhibitory role of Cav1 on JAK1 activity. It was reported indeed 

that the overexpression of Cav1 generates a pool of non-caveolar Cav1 at the 

plasma membrane, which is likely due to a stoichiometric imbalance between the 

number of Cav1 molecules and the other caveolar components required for caveolae 

assembly (Hayer et al., 2010; Moon et al., 2013). On the contrary, in cells expressing 

the F92A/V94A mutated Cav1 CSD, we observed a normal nuclear translocation of 

pSTAT3 induced by IFN-α stimulation, indicating that F92A/V94A Cav1 lost the ability 

to negatively regulate STAT3 activation, most likely through its inability to interact 

with JAK1 (Fig. 7b). In agreement with the lack of regulation of STAT1 activation by 

mechanical stress and caveolae, the nuclear translocation of pSTAT1 induced by 

IFN-α was not affected whether cells express WT Cav1, F92A/V94A Cav1 or none 

(Supplementary fig. 2).  

We further established the role of the Cav1 CSD using two CSD mimicking 

peptides, a peptide named CavTratin corresponding to the Cav1 CSD (Cav1 
82DGIWKASFTTFTVTKYWFYR101) and a dominant negative peptide named 

CavNoxin (Cav1 82DGIWKASFAAATVTKYWFYR101) where key amino acids have 

been replaced by alanines thereby abolishing its inhibitory effect (Bernatchez et al., 

2011). WT MLEC cells treated with CavTratin showed a significant decrease of 

STAT3 tyrosine phosphorylation upon IFN-α stimulation, indicating that the caveolin 

domain CSD is sufficient to mimic the negative regulation of STAT3 activation by 

Cav1. Conversely, cells treated with CavNoxin showed a significant increase of 

STAT3 tyrosine phosphorylation upon IFN-α stimulation (Fig. 7c). These data confirm 

that increasing the amount of Cav1 that is able to interact with the JAK1 kinase inhibit 

STAT3 activation whereas the mutated Cav1 CSD peptide relieves the JAK1 
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inhibition, most likely by competing with endogenous Cav1. We could definitely 

establish the direct role of the Cav1 CSD on JAK1 catalytic activity by assessing in a 

cell free assay, the effect of CSD binding on the ability of JAK1 to catalyze ATP 

hydrolysis. We measured in vitro the catalytic activity of a human recombinant JAK1 

by measuring the conversion of ATP to ADP. We found that increasing 

concentrations of a control peptide did not affect the catalytic activity of JAK1 as ADP 

production was maintained. In contrast, JAK1 dependent ADP production 

significantly decreased in a dose dependent manner when CavTratin was added to 

the reactional mix (Fig. 7d). These data therefore demonstrate that the negative 

regulation of STAT3 activation by Cav1 results from direct binding of the Cav1 CSD 

to JAK1, which inhibits JAK1 catalytic activity.  

 

Discussion 
Over the past decades, many functions have been ascribed to caveolae (other 

reviewed here: Lamaze et al., 2017). The discovery of the role of caveolae in cell 

mechanics in 2011 (Sinha et al., 2011) led the field to revisit the classical functions of 

caveolae in this new context (Cheng and Nichols, 2016). In this study, we 

investigated the fate of Cav1 upon caveolae mechanical disassembly and its impact 

on caveolae dependent signaling. Upon membrane tension increase, we could 

visualize by single molecule microscopy the appearance of a highly mobile pool of 

non-caveolar Cav1 at the plasma membrane. Considering the established role of 

caveolae in signaling (Parton and Simons, 2007; Patel et al., 2008), we exanimated 

the effect of non-caveolar Cav1 release on cell signaling pathways. High throughput 

screening revealed that the JAK-STAT signaling pathway was modulated by cell 

stretching in a caveolae dependent manner. We could demonstrate that non-caveolar 

Cav1 generated by caveolae mechanical disassembly, binds directly to the JAK1 

tyrosine kinase and inhibits its catalytic activity in a CSD-dependent manner. Cav1 

binding to JAK1 results in impaired activation of STAT3 by IFN-α. Importantly, we 

further show that the level of Cav1-JAK1 interaction and thereby the downregulation 

of IFNα-induced STAT3 activation, is modulated by mechanical stress. Finally, based 

on CSD mimicking peptides and CSD-mutated Cav1, we could demonstrate that the 

Cav1 CSD domain is required for the interaction of Cav1 with JAK1 and directly 

mediates the inhibitory effect of Cav1 on JAK1 catalytic activity.  
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Numerous studies have involved Cav1 as an essential component of the 

signal transduction function of caveolae, based on its ability to interact with many 

signaling proteins (Couet et al., 1997b; Gangadharan et al., 2015; Garcia-Cardena, 

1997; Li et al., 1996; Nystrom et al., 1999; Taira et al., 2011). The mechanisms by 

which caveolae control signaling remains poorly understood and some aspects are 

still debated (Lamaze et al., 2017). Early work has involved the Cav1 CSD domain in 

the control of Cav1 interaction with signaling effectors (Li et al., 1995; Li et al., 1996). 

The corresponding CBM domains have been found in many downstream signaling 

effectors that bind to Cav1 (Couet et al., 1997a). Indeed, sequence analysis showed 

that JAK1 displays three domains that could correspond to putative CBMs: one in the 

FERM domain (157YLFAQGQY164), one in the pseudokinase domain 

(777WSFGTTLW784) and a last one in the kinase domain (1065WSFGVTLH1072) 

(Supplementary fig. 3). While the role of these motifs has not been investigated in 

this work, our data involve most likely the CBM2 or CBM3 since it is the only CBMs 

present in the recombinant JAK1 kinase used in the cell free assay. Although the 

CSD-CBM interaction has been extensively investigated for the interaction of Cav1 

with signaling proteins such as insulin and trimeric G protein receptors, eNOS or 

Heme Oxygenase (Bernatchez et al., 2005; Nystrom et al., 1999; Taira et al., 2011; 

Trane et al., 2014), its role in signaling has been regularly questioned. The debate on 

the CSD-CBM interaction has been fueled by the recent structural features of Cav1 

(Lamaze et al., 2017). The CSD consists in an amphipathic helix that is partially 

embedded in the inner leaflet of the plasma membrane, which would make it not 

suitable to mediate interaction (Byrne et al., 2012; Collins et al., 2012; Kirkham et al., 

2008).  

In this study, we show nevertheless that the Cav1-JAK1 interaction is directly 

mediated by the CSD and that this interaction is tuned by mechanical stress. One 

could therefore hypothesize that the mechanical release of Cav1 from caveolae 

triggers the exposition of the CSD by Cav1 conformation changes induced by the 

mechanical release of Cav1. In this context, it is interesting that previous studies 

reported that the CSD is not static and presents instead a dynamic structure, that is 

either fully helical or partially unstructured and could determine CSD accessibility (Liu 

et al., 2016). In addition, one or the other conformation would be favored by the lipid 

environment (Hoop et al., 2012; Le Lan et al., 2006). It is therefore possible that non-

caveolar Cav1 may experience a different lipid environment, hence its increased 
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mobility, resulting in a different CSD conformation. Finally, it cannot be excluded that 

Cav1 and/or JAK1 post-translational modifications induced by the mechanical 

release of Cav1 could mediate this interaction. Indeed, Cav1 is phosphorylated on 

Tyr 14 and Ser 80 by different sets of kinases. The introduction of negative charges 

in the N-terminal part of Cav1, may induce a kink in Cav1 structure by further pushing 

away the N-ter end from the plasma membrane due to charge repulsion (Ariotti et al., 

2015; Meng et al., 2017; Shajahan et al., 2012).  

An unresolved question in the field is the role of caveolae versus non-caveolar 

Cav1 in signaling (Cheng and Nichols, 2016; Lamaze et al., 2017). Our study unveils 

a regulatory role of caveolae in JAK-STAT signaling based on the mechanical control 

of the balance between non-caveolar Cav1 (high stress) and caveolar Cav1 (low 

stress). This process allows the fine mechanical tuning of JAK-STAT signaling as the 

level of non-caveolar Cav1 is below detection under resting conditions (Hill et al., 

2008; Sinha et al., 2011). We have identified here and elucidated the molecular 

mechanism underlying the selective control of JAK-STAT signal transduction by 

caveolae mechanics. Interestingly, this mechanism selectively targets JAK1 

dependent STAT3 activation, while at steady state, IFN-α indifferently induces both 

STAT1 and STAT3 activation (Platanias, 2005). The molecular basis driving this 

signal specificity needs to be further investigated. Our data showing that STAT3 was 

activated in Cav1 knocked out cells in the absence of IFN-α and that the Cav1 CSD 

interacted directly with JAK1 and inhibited its catalytic in the absence of IFN-α 

indicate that this control is not restricted to IFN-α and could be extended to other 

cytokines activating JAK1. Williams and colleagues, recently revealed that proper 

JAK-STAT signal suppression through SOCS3 requires bona fide caveolae and 

stable cavin-1 (Williams et al., 2018). Hence one could hypothesize that mechanical 

disassembly of caveolae and the destabilization of cavin complexes, would result in 

impaired SOCS3 mediated JAK-STAT signal termination. Therefore, under 

mechanical stress, the release of free Cav1 might lock the JAK-STAT signaling 

pathway to prevent aberrant JAK-STAT signaling.  

The physiological role of JAK-STAT signaling control by caveolae mechanics 

remains unclear. The deregulation of STAT3 activation has been involved in many 

human pathologies including Crohn’s disease, psoriasis, Hyerglobulin E syndrome 

and cancer (O’Shea et al., 2015). This process could be involved in tumor 

development and may partially explain the ambivalent role that Cav1 plays in tumor 
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growth (Goetz et al., 2008; Lamaze and Torrino, 2015). On one hand, STAT3 is a 

well-known oncogene targeted by many anti-cancer therapies (Beebe et al., 2018). 

On the other hand, STAT1 is a tumor suppressor (Koromilas and Sexl, 2013). This 

new aspect of caveolae functioning as mechanosignaling hubs may play a critical 

role during tumor growth. Indeed the mechanical forces encountered by cancer cells 

during tumor progression (Kai et al., 2016), may perturb caveolar dynamics that in 

turn would impair the fine tuning of the STAT3/STAT1 activation balance through 

caveolae mechanics.  
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Figure 1. High resolution analysis of Cav1 diffusion under mechanical stress  
(a) Left panel, wide field images of Cav1-GFP under iso-osmolarity (300 mOsm) and 

hypo-osmolarity (30 mOsm) in MLEC cells. Right panel, Cav1-mEOS3.2 trajectories 

(green) and Cav1-mEOS3.2 objects (red) acquired using TIRF-sptPALM. (b) 
Distribution of log(D) for Cav1-mEOS3.2 in iso-osmotic condition (blue) and hypo-

osmotic condition (orange). (c) Distribution of log(D) for Cav1-mEOS3.2 in hypo-

osmotic from 0 minute (deep blue) to 30 minutes (light blue). (d) Distribution of log(D) 

for Cav1-mEOS3.2 in hypo-osmotic condition (orange) and recovery condition 

(green). 
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Figure 2. High throughput screening of signaling pathways modulated by 
caveolae mechanics 
(a) Heat map of signaling effectors activation in WT and Cav1-/- MLEC cells under 

resting condition or uniaxial stretch and with type I IFN stimulation or not. (b) STAT1 

and STAT3 activation under type I IFN stimulation (left). STAT1, STAT3, p42/44 

MAPK and Akt phosphorylation level under uniaxial stretch.  
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Figure 3. Uniaxial stretching controls IFN-α induced STAT3 activation 
(a) STAT3 phosphorylation level induced by IFNα stimulation in Cav1-/- MLEC cells 

submitted or not to stretch. Representative immunoblot. Immunoblot quantification of 

signal ratio relative to “No stretch” condition. Mean value ± SEM. Statistic were 

processed using two tailored unpaired t test. *P<0,05.  (b) Analysis of the nuclear 

translocation of pSTAT1 (green) and pSTAT3 (red). WT MLEC were stretched or not 

and prior to stimulation with IFNα for 20min. After fixation the nuclear distribution of 

pSTAT1 and pSTAT3 was detected by immunofluorescence. 
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Figure 4. Cav1 negatively regulates the JAK1-dependent STAT3 activation 
(a) STAT3 basal phosphorylation level in WT MLEC compared to Cav1-/- MLEC. 

Representative immunoblot. (b) STAT1 basal phosphorylation level in WT MLEC 

compared to Cav1-/- MLEC. Representative immunoblot. (c) STAT3 basal 

phosphorylation level in Cav1-/- MLEC upon control (CTRL) or JAK1 siRNA 

treatment. Reprensentative immunoblot. (d) IFNα induced STAT3 phosphorylation 

level in Cav1-/- MLEC upon CTRL or JAK1 siRNA treatment. Representative 

immunoblot. Immunoblot quantification of (pSTAT/Tubulin)/(STAT/Tubulin) signal 

ratio relative to control condition. Mean value ± SEM. Statistics was performed using 

two tailored unpaired t test. *P<0,05; **P<0,01. 
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Figure 5. Non-caveolar Cav1 inhibits IFN-α-induced STAT3 phosphorylation in 
a concentration dependent manner 
(a) STAT3 basal level of activation of cavin-1-/- MEF cells and cavin-1-/- MEF cells 

transfected with cavin-1 (+ cavin-1). Quantification of signal ratio relative to “cavin-1-/-

” condition. Representative immunoblot. (b) IFN-α-induced STAT3 level of activation 

in cavin-1-/- MEF cells and cavin-1-/- MEF cells + cavin-1. Representative immunoblot. 

Quantification signal ratio relative to “cavin-1-/-“ condition. (c) IFN-α-induced STAT3 

phosphorylation level in cavin-1-/- MEF cells with either low, medium or high Cav1 

expression. Representative immunoblot. Quantification of signal ratio relative to “low” 

condition. (a, b, c) mean values ± SEM. Statistics were processed using unpaired t 

test (a, b) and multi-comparison one-way ANOVA (c). *P<0,05; **P<0,01 
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Figure 6. Mechanical stress determines Cav1 interaction with JAK1  
(a) RFP-trap pull down experiment in Cav1-RFP expressing Cav1-/- MLEC cells. 

Representative immunoblot. (b) Immunoprecipitation experiment of endogenous 

Cav1 in iso-osmotic (Iso), hypo-osmotic (Hypo) and successive hypo-osmotic shock 

and iso-osmotic condition (Rec). Representative immunoblot. Quantification of 

(JAK1/Cav1) signal ratio relative to “Iso” condition. (c) STAT3 phosphorylation level 

in WT MLEC upon IFNα stimulation under iso-osmotic (Iso), hypo-osmotic (Hypo) 

and successive iso and hypo-osmotic shock (Rec). Representative immunoblot. 

Quantification of immuno-staining upon Iso-, Hypo- and Recovery osmotic shock. (b, 

c) mean value ± SEM, statistics were processed using multi-comparison one-way 

ANOVA. *P<0,05; **P<0,01.  
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Figure 7. The caveolin scaffolding domain is required for Cav1-JAK1 
interaction and Cav1 negative effect 
(a) immunoblot of RFP-trap pulldown experiment performed on Cav1-/- MLEC cells 

expressing either WT Cav1-RFP or F92A/V94A Cav1-RFP or RFP (left). 

Quantification of JAK1/Cav1 signal ratio relative to “WT Cav1-RFP” condition (right). 

(b) Analysis of nuclear translocation of pSTAT3 (green) of IFN-α stimulated Cav1-/- 

MLEC expressing either exogenous WT Cav1-RFP or F92A/V94A Cav1-RFP (red) 

(left). Quantification of nuclear/cytosol pSTAT3 signal ratio in CTRL, WT Cav1 and 

F92A/V94A Cav1 (right). After fixation, the nuclear distribution of pSTAT3 was 

detected by immunofluorescence. (c) IFN-α-induced STAT3 phosphorylation level of 

WT MLEC cells upon either control peptide and CavTratin treatment (left) or control 

peptide and CavNoxin treatment (right). Representative immunoblots. (d) Graph 

representing in vitro JAK1 ADP production relative to peptide log concentration (µM), 

control peptide (black curve) or CavTratin (red curve). (a, b, c) mean values ± SEM. 

Statical analysis were processed using one-way ANOVA (a, b) and two tailored 

unpaired t test (c). *P<0,05; **P<0,01; ***P<0,001; ****P<0,0001. 
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Figure 8. Molecular model of the control of JAK-STAT signaling by caveolae 
mechanics 

Left panel: At steady state, Cav1 is entirely caveolar and its localization is restricted 

to invaginated caveolae. Upon IFN-α stimulation, signal transduction occurs through 

the JAK-STAT pathway, activating STAT3 phosphorylation and its consecutive 

nuclear translocation. Right panel: Upon mechanical stress, membrane tension 

increases, which leads to rapid caveolae flattening and disassembly. Caveolae 

disassembly dramatically increases the diffusion of non-caveolar Cav1 oligomers that 

are able to bind to JAK1 via its CSD.  This results in the direct inhibition of the 

tyrosine kinase catalytic activity. JAK1 inhibition mediated by Cav1 interaction 

prevents signal transduction of JAK-STAT pathway when stimulated by IFN-α. 
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Supplementary figure 1. Caveolae disruption by cyclodextrin treatment 
decreased IFN-α-induced STAT3 phosphorylation 
STAT3 phosphorylation level of WT MLEC stimulated by IFN-α upon mβCD 

treatment. Representative immunoblot. Quantification of (PSTAT3/Tub)/(STAT3/Tub) 

signal ratio relative to control condition. Mean values ± SEM. Statical analysis were 

processed using two tailored unpaired t test, ***P<0,001. 

 

 

 
Supplementary figure 2. IFN-α induced STAT1 nuclear translocation.  
Analysis of the nuclear translocation of pSTAT1 (green) of IFN-α stimulated Cav1-/- 

MLEC expressing either exogenous WT Cav1-RFP or F92A/V94A Cav1-RFP (red). 

After fixation the nuclear distribution of pSTAT1 (green) was detected by 

immunofluorescence. Quantification of nuclear/cytosol pSTAT3 signal ratio in CTRL, 

WT Cav1 and F92A/V94A Cav1. Statistics were processed using standard one-way 

ANOVA. 
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Supplementary figure 3. CBM localization on JAK1 structure 

(a) Putative CBM localization in JAK1 primary structure. (b) CBM1 (highlighted lateral 

chains, red arrow) localization in the tridimensional structure of the FERM domain of 

JAK1 (PDB 5IXI). (c) CBM2 (highlighted lateral chains, red arrow) localization in 

JAK1 pseudokinase tridimensional structure (PDB 4L00). Pseudokinase and kinase 

domains are structurally identical. The putative CBM3 has a localization similar to the 

CBM2 but within the kinase domain. 
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Materials & Methods 
 
Cell lines.  
WT MLEC and Cav1-/- cell lines were characterized by Sessa’s team (Murata et al., 

2007) and kindly provided by Radu V.Stan (Darthmouth Mediac School, NH, USA). 

These mice lung endothelial cells were immortalized using polyomavirus T antigen 

and selected according to CD31, VE-Cadherin and PV1 expression.  

 

Cell culture.  
All cells were grown at 37°C under 5% of CO2. WT MLEC and Cav1-/- MLEC cell 

lines were cultured in Enothelial Balal Medium (EBM2) from Lonza supplemented 

with 15% Hyclone FCS, 4mM glutamine, 5mM sodium pyruvate, 0,01 % penicillin 

streptomycin (v/v), 0.04% hydrocortisone (v/v), 0.4% hEGF-B (v/v), 0.1% VEGF (v/v), 

0.1% R3-IGF-1 (v/v), 0.1% ascorbic acid (v/v), 0.1% hEGF (v/v), 0.1% GA-1000 (v/v), 

0.1% heparin (v/v) (EGM2 singlequote, Lonza). MEF cells were cultured in DMEM 

high-glucose glutamax (Gibco, Life Technologies), supplemented with 10% SVF 

(v/v), 0.01% penicillin streptomycin (v/v) and 5mM sodium pyruvate.  

 

Antibodies and reagents.  
Mouse anti-αTubulin (Sigma-Aldrich, clone B512, T5168, 1/1000 for WB); mouse 

anti-chlatrin heavy chain (BD Transduction, 610500, 1/5000 for WB) rabbit anti-

caveolin-1 (Cell Signaling 3238S, 1/1000 for WB); mouse anti-caveolin-1 (BD 

Transduction, 610407, 10µg/condition for IP); mouse anti-PTRF (BD Biosciendes 

611258, 1/1000 for WB); mouse anti-STAT3 (Cell signaling, clone 124H6, 9139, 

1/1000 for WB); rabbit anti-pSTAT3 (Cell signaling, clone D3A7 9145, 1/1000 for WB, 

1/100 for IF); rabbit anti-STAT1 (Cell signaling, 9172, 1/1000 for WB); mouse anti-

pSTAT1 (Cell Signaling, 9167, 1/1000 for WB, 1/100 for IF); rabbit anti-JAK1 (Cell 

Signaling, 3332S, 1/1000 for WB); Secondary antibodies conjugated to Alexa 488, 

Cy3 or horse radish peroxidase (Beckman Coulter or Invitrogen). 

 

RNA interference-mediated silencing.  
WT MLEC cells were transfected with small interfering RNAs (siRNAs) using using 

HiPerFect (Qiagen) according to manufacturer’s protocol. Experiments were 

performed 24 hours after transfection, on validation of silencing efficiency by 
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immunoclot analysis using specific antibodies and normalizing to the total level of α-

tubulin used as loading control. 20 nM SMART pool siRNA targeting JAK1 mRNA 

(GE healthcare/Dharmacon, L-040117-00-0005) was used for JAK1 knock down. 

Control siRNA (QIAGEN, 1022076) was used at the same concentration and served 

as reference point. 

 

Immunoblotting.  
Cells were lysed in sample buffer (62.5 mM Tris/HCl ph 6.0, 2% SDS (v/v), 10% 

glycerol (v/v), 40 mM dithiothreitol and 0.03% phenol red (w/v)). Lysates were 

analyzed by SDS-PAGE and Western blot analysis and immunoblotted with the 

indicated primary antibodies and horseradish peroxydase-conjugated secondary 

antibodies. Chemiluminescence signal was revealed using PierceTM ECL Western 

Blotting Substrate, SuperSignal West Dura Extended Duration Substrate or 

SuperSignal West Femto Substrate (Thermo Scientific Life Technologies). 

Acquisitions were performed with the ChemiDoc MP Imaging System (BioRad). 

Samples for the detection of phospho and non-phospho proteins were loaded on two 

different gels. The ratio of the signal detection for targeted protein/loading control 

was determined for each membrane. The overall ratio of (phosphoprotein/loading 

control)/(protein/loading control) was determined.  

 
Immunofluorescence.  
Transfected Cav1-/- MLEC cells were seeded on 12 mm coverslips 24h before the 

pSTAT nuclear translocation assay. After IFNα stimulation, cells are fixed and 

permeabilized with cold methanol for 15 min at -20°C. Cells are washed with PBS 

0.2% BSA (v/v) then sequentially incubated with idicated promary antibody and 

fluorescence-conjugated secondary antibody in PBS 0.2% BSA (v/v) for 1h at room 

temperature. Coverslips are mounted in Fluoromount-G mounting medium 

(eBioscience) supplemented with 2 µg/mL DAPI (Sigma-Aldrich). Pictures were 

acquired on a Leica DM 6000B inverted epifluoresence microscope equipped with a 

HCX PL Apo 63X NA 1.40 oil immersion objective and an EMCCD camera 

(Photometrics CoolSMAP HQ); Camera: CCD 1392x1040; objective 40x or 63x. 

Quantification of pSTATs nuclear translocation by calculating the nucleocytoplasmic 
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ratio of phospho-STAT1-3 signal (nuclei masks were realized with the DAPI staining) 

with image J software 1.49a (NIH) and plugins bundle proposed by the McMaster 

Biophotonics Faclity (http://www.macbiohotonics.ca). 
 

 
 
Single particle tracking. 
WT MLEC cells were transfected using the AMAXA electroporation setup with Cav1-

mEOS3.2 and Cav1-GFP 24h prior experiment. Cells were grown in Ringer media 

and 30mOsm hypo-osmotic shock was applied during acquisition. Images were 

acquired using sensitive EMCCD and Nikon CFI Apo TIRF 100x oil, NA 

1.49 objective.  

 
Transfection.  
For single particle tracking experiment WT MLEC and Cav1-/- were transfected using 

Lonza AMAXA. Adapted settings for mice cells (MEF) were provided in the AMAXA 

setup. Lonza provided specific reagent for AMAXA mice cells transfection. Double 

transfection of 5ug of Cav1 mEOS3.2 and 1ug of Cav1 GFP on 1 million cells was 

performed 24h prior experiment. For pSTATs nuclear translocation upon Cav1 

expression, cells were electroporated using a pulse of 220 V and 975 µF with a Gene 

Pulser® the BioRad setup. 

 
IFN-α stimulation.   
Cells were treated with or without 1000 U/ml IFNα at 37°C for the indicated times. 

For biochemical analysis, cells were washed with PBS and lysed in SDS Sample 

Buffer 1X. Total lysates were analyzed by SDS-PAGE and Western blot analysis and 

immunoblotted with the indicated antibodies. Chemiluminescence detection was 

performed with SuperSignal West Dura Extended Duration Substrate or with 

SuperSignal West Femto Substrate (Thermo Scientific Life Technologies). 

Phosphorylated and total forms of the proteins are quantified and normalized to 

clathrin heavy chain or tubulin levels in the same lysate. Phosphorylated protein over 

total ratio is determined for each condition. 
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High throughput screening.  
25 µg/mL fibronectine diluted in NaOH 100 mM pH 8.6  is incubated on a PDMS 

layer at 37°C. 70k WT MLEC or Cav1-/- MLEC cells were seeded and incubated for 4 

hours at 37°C in complete MLEC media. Cells were stretched by 25% for 2 minutes 

then while stretch is maintained, cells media is replaced by stimulation media (EBM-2 

no SVF with IFNα 1000 U/ml) for 20min at 37°C. Cells were washed with PBS and 

lysed with hot laemmli 1X sample buffer (50 mM Tris pH=6.8, 2% SDS, 5% glycerol, 

2mM DTT, 2,5 mM EDTA, 2.5mM/EGTA, 2.5mM/EGTA, 2x Phosphatase inhibitors 

(Halt Phosphatase inhibitor cocktail 100x, Perbio, Ref. 78420), Protease inhibitors 

(Protease inhibitor cocktail, complete MINI EDTA-free, Roche, Ref. 1836170), 1 

tablet/5mL (or by RR : 1/1000 PIC), 4 mM Sodium Orthovanadate, 20 mM Sodium 

Fluoride). 

 

Co-immunoprecipitations.  
Cells were lysed in 1% NP-40 in TNE (10 mM Tris/HCl pH 7.5, 150 mM NaCl, 0.5 

mM EDTA) with protease inhibitors cocktail (Roche) for 30 min at 4°C. Cleared 

lysates (16,000g, 10 min, 4°C) were incubated overnight at 4°C under rotation with 1 

µg/ml of the indicated antibody followed by incubation for 1 hour with 25 µl of protein 

A/G magnetic beads (Thermo Scientific) in the case of endogenous proteins. In the 

case of tagged proteins, 25 µl GFP-Trap or RFP-Trap beads (Chromotek) were used. 

After 3 washes in TNE, immunoprecipitated beads were eluted following the 

manufacturers’ instructions. 

 
Osmotic shock and uni-axial stretch. 
For osmotic shock, cells were seeded 24h before experiment, then complete media 

was replaced by 30 mOsm media (10% media and 90% H2O) for 5 minutes, cells 

were immediately lysed or hypo-osmmotic media was replaced by normal iso-

osmotic media (recovery) before lysis. For cell stretch, cells were seeded on a 100 

um thick PDM sheet (12x7 mm) coated with fibronectin 4 hours prior experiment. The 

PDMS sheet was linearly stretched using a homemade setup motorized (P1, 

Karlsruhe, Germany). Cells were pre-stretched by 25% for 2 minutes and stretch was 

maintained during IFNα stimulation.  
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CSD mimicking peptides  
CSD mimicking peptides were synthetized from biomatik. Control peptide HHHHHH-

RQIKIWFQNRRMKWKKWGIDKASFTTFTVTKYWFRY; CavTratin HHHHHH-

QIKIWFQNRRMKWKKDGIWKASFTTFTVTKY; CavNoxin HHHHHH-

RQIKIWFQNRRMKWKKDGIWKASFAAATVTKWYFYR. Cells were treated for 6 

hours with 1µM CSD mimicking peptide resuspended in endothelial basal medium 

0,2% PBS/BSA (v/v) 

 
Invitro Kinase activity measurement. 
Invitro kinase assay was performed using purified JAK1 (ProQinase 1480-0000-1 

JAK1 aa583-1154), RBER-IRStide (ProQinase 0863-0000-1). Kinase reaction was 

performed in Kinase reaction buffer ([ATP] 100 µM, RBER-IRStide 80 µg/ml, DMSO 

according to peptide concentration) at 30°C for 1h. Measurement of ADP production 

was performed using Promega ADP-Glo™ Kinase Assay. Luminescence 

measurement was performed using BMG Labtech FLUOstar Omega plate reader.  

 
Drug treatment  
WT MLEC cells were treated 1% with methyl β cyclodextrin (w/v) (sigma aldrich 

C4555) for 20 minutes and stimulated with 1000 U/ml IFNα at 37°C for 10 minutes. 
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Discussion  

5 Discussion and perspectives  

5.1 Caveolar Cav1 versus “free” Cav1 

My laboratory previously demonstrated that upon mechanical stress resulting in 

membrane tension increase, caveolae rapidly flatten out to “buffer” the membrane 

tension increase in order to conserve the plasma membrane integrity (Sinha et al., 

2011). However, the precise molecular aspect of the caveolar disassembly has 

remained unclear until now. In this study, super resolution imaging clearly shows that 

upon mechanical disassembly of caveolae, Cav1 diffusion drastically increases 

indicating the release of “free” i.e. non-caveolar Cav1 oligomers at the plasma 

membrane. We further demonstrate that upon caveolar mechanical disassembly, 

Cav1 interacts with JAK1 and thereby negatively regulates its catalytic activity. In the 

present work, based on the applied mechanical stress, cholesterol depletion, Cav1 

overexpression and cavin-1 knocked out cells, we hypothesized that the free Cav1 

released from the disassembling caveolae is the one that interacts with JAK1. 

However, caveolae may not totally disassemble and some Cav1 oligomers may 

remain within the flat Cav1-enriched nanodomain of the former curved caveolae (Hill 

et al., 2008; Tachikawa et al., 2017; Yang and Scarlata, 2017; Khater et al., 2018). 

One can hypothesize that among the many possible mechanisms that mediate CSD 

accessibility; caveolae flattening may be one possible mechanism to induce Cav1 

conformation changes and CSD exposure for protein-protein interaction (detailed 

below). Therefore, IFNAR2-JAK1 complexes would be recruited and immobilized into 

flat confined Cav1-enriched domains. To verify this hypothesis, we generated JAK1-

mEOS3.2 to assess the diffusion rate of JAK1 upon membrane tension increase. 

Confined JAK1 in Cav1-enriched plasma membrane domain would be a good 

indicator of JAK1 recruitment at the flat caveolae. On the contrary, high diffusion of 

JAK1 together with Cav1 or confinement outside the caveolae upon membrane 

tension increase would favor the hypothesis of JAK1 interacting with “free” Cav1.  



      

 

 

Figure 26. Proposed topology of free Cav1 
At steady state Cav1 oligomers within the caveolar coat: Cav1 topology as proposed by Kirkham and 
colleagues (Kirkham et al., 2008). The CSD is not available for protein interaction (left). Upon 
caveolae flattening, Cav1 oligomers are released in the plasma membrane and encounter different 
membrane curvatures, lipid environment; lipid X or Y and/or might undergo posttranslational 
modifications such Tyr14 and Ser80 phosphorylation leading to Cav1 conformational changes that 
trigger CSD exposure allowing interactions with Cav1 partners (right). 
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5.2 CSD dependent regulation of JAK1  

Cav1 CSD mutants, CSD mimicking peptides and in vitro kinase assay clearly 

demonstrate the prominent and direct role of the CSD in Cav1-JAK1 interaction and 

the resulting inhibitory effect by Cav1. These new results strengthen the line of 

evidences that support a regulatory mechanism exerted by Cav1 on some signaling 

molecules. As discussed in 2.3.4.4, the regulation of signal transduction through 

CSD-mediated direct Cav1 interaction with signaling proteins is controverted. The 

keystone of this controversy relies on the Cav1 predicted ternary structure. Indeed, 

the CSD has a predicted structure of α-helix that is amphipathic and therefore, it is 

partially embedded in the inner lipid layer of the plasma membrane. Thus, this 

configuration would not favor the CSD interaction with the Cav1 putative binding 

partners (Collins et al., 2012; Ariotti et al., 2015). Interestingly, the CSD should not be 

considered static within the Cav1 structure. Indeed recent computational analysis of 

Cav1 structure within the lipid bilayer, revealed that the CSD possesses a dynamic 

secondary structure either partially unstructured or fully helical (Liu et al., 2016). 

Hence, one could hypothesize that this dynamic secondary structure may control the 

relative position of the CSD to the plasma membrane. Whether parameters such as 

Cav1 lipid environment influence the structural dynamics of the CSD should be 

investigated. Indeed the CSD inserted in POPC/Cholesterol adopts a mixture of β-

stranded and α-helical structure while the CSD inserted in DPC micelles adopts a 

fully helical structure (Le Lan et al., 2006; Hoop et al., 2012). Therefore, the 

conformation of Cav1 within a flat caveolae or non-caveolar Cav1 oligomers diffusing 

in the lipid bilayer, thus experiencing different membrane curvatures and lipid 

environments, may differ from Cav1 within fully a budded caveola, where the CSD is 

poorly accessible (Fig. 26). Alternative mechanisms have also been proposed to 

mediate CSD exposure. Indeed, N-ter phosphorylation on Tyr14 and/or Ser80 may 

push away the whole N-ter end including the CSD from the plasma membrane 

because of charge repulsion within the inner leaflet of the lipid bilayer (Shajahan et 

al., 2012) (Fig. 26). This mechanism may also mediate Cav1-JAK1 interaction 

reversibility, which is a key parameter in cell signaling. However, variations of Cav1 

Tyr14 phosphorylation upon membrane tension increase could not be detected, 

suggesting that this Cav1 post-translational modification is not involved in this 

mechanism (Fig. 27). Nevertheless, our laboratory observed a similar control of 



      

 

 

Figure 27. Cav1 tyrosine phosphorylation upon hypo osmotic shock 
Western blot analysis of tyrosine phosphorylation of immunoprecipitated endogenous Cav1 in iso-
osmotic, hypo-osmotic and successive hypo-osmotic shock and iso-osmotic condition (Recovery) from 
WT MLEC cells lysate. 
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IL6/STAT3 pathway in muscle cells only expressing Cav3 (see annex 3). Considering 

that Cav3 cannot be phosphorylated on Tyr14, it is unlikely that Tyr14 

phosphorylation is involved in this mechanism. However, variations of Cav1 Ser80 

phosphorylation upon mechanical stress still need to be investigated. For example, 

immunoprecipitation of non-phosphorylable or phosphomimetic mutants of Cav1 

should be performed to assess whether S80 phosphorylation is involved in Cav1-

JAK1 interaction. 

 

On another hand, in the context of Cav1-JAK1 interaction triggering and 

reversibility, JAK1 post-translational modifications such as tyrosine S-nitrosylation 

should be investigated. Indeed, it has been reported that another member of the JAK 

family; JAK2 can be S-nitrosylated on two tyrosine residues. Nitrosylated JAK2 

interacts with Cav1 and eNOS (Elsasser et al., 2007). JAK2 nitrosylation is 

performed through NO generation by proteins such as eNOS. Interstingly, Cav1 

regulates eNOS activity. Similarly a regulatory mechanism of RhoA activation via S-

nitrosylation of its GTPase activating protein (GAP) mediated by the Cav1-regulated 

eNOS-dependent NO production has been described (Rizwan Siddiqui et al., 2011). 

It would be therefore important to assess JAK1 nitrosylation upon mechanical stress 

by western blot using anti-nitrosylated tyrosine antibodies. Moreover, the effect of 

mechanical stress on NO production using NO probes and whether NO treatment 

triggers or prevents Cav1-JAK1 interaction would be interesting questions to 

address. 

 

Finally, another aspect of the regulatory mechanism via the CSD-mediated 

Cav1 inhibition of signaling proteins largely contributed to the rise of the controversy. 

Indeed, the CBM, a putative CSD interaction motif has been early identified by phage 

screening (Couet et al., 1997a). However, structural analysis of Cav1 binding 

partners, revealed that most of them carry a CBM in their core thereby poorly 

available for interaction with the CSD (Collins et al., 2012). In addition, this motif 

encompasses three highly degenerated motifs. Hence, CBM containing proteins are 

largely found through the proteome of different organisms, even those devoid of 

caveolins. Therefore, the presence of CBMs in proteins primary structure might not 

be predictive of Cav1 interaction. Nevertheless, a CBM is found in most of Cav1 

binding partners and although being non-predictive, some of them may still mediate 



      

 

 
Figure 28: CBM localization on JAK1 structure 
(a) localization  of the putative CBMs in JAK1 primary structure. (b) CBM1 (highlighted lateral chains, 
red arrow) localization in the tridimensional structure of the FERM domain of JAK1 (PDB 5IXI). (c) 
CBM2 (highlighted lateral chains, red arrow) localization in JAK1 pseudokinase tridimensional 
structure (PDB 4L00). Pseudokinase and kinase domains are structurally identical. The putative CBM3 
has a localization similar to the CBM2 but within the kinase domain. 
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the interaction with Cav1. All JAKs carry several CBMs. JAK1 has three putative 

CBMs: a first one is located in the JH6 region corresponding to the FERM domain 

(157YLFAQGQY164), another in the JH2 pseudokinase domain (777WSFGTTLW784) 

and a last one in the JH1 kinase domain (1065WSFGVTLH1072) (Fig. 28a). JAK1 CBMs 

are located on three α-helices that are buried inside JAK1 ternary structure. Hence, 

all motifs seem to be poorly accessible (Fig. 28b, c). However, to address whether 

one of these CBMs are required for JAK1 interaction with Cav1, we generated three 

JAK1 mutants with alanine replacement of each CBM (JAK1-CBM1, JAK1-CBM2 and 

JAK1-CBM3). Preliminary pulldown experiments of JAK1-CBM1 in HeLa cells 

overexpressing Cav1 (to generate an excess of non-caveolar Cav1) revealed that 

mutations in the CBM located in the FERM domain did not affect its ability to interact 

with Cav1. These data suggest therefore that the first CBM is not required for Cav1-

JAK1 interaction (Fig. 29). In addition, in vitro kinase assay has been performed 

using recombinant JAK1 containing only the pseudokinase-kinase tandem, therefore 

it only contains the CBMs located in the pseudokinase and kinase domain (CBM2 

and CBM3). These two domains are sufficient to undergo inhibition of catalytic 

activity by the CSD mimicking peptide. Experiments to definitely establish the role of 

CBM2 and CBM3 in Cav1-JAK1 interaction are currently ongoing.  

 
 

To conclude, the precise molecular mechanism underlying the CSD-mediated 

inhibition of JAK1 remains unknown. However, our results emphasize the prominent 

role of Cav1 F92 and V94, since their Ala replacement relieves Cav1 inhibitory effect. 

Moreover the pulldown experiment clearly demonstrates that F92 and V94 are 

required for Cav1-JAK1 interaction. Whether F92 or V94 lateral chain sit  in an 

important domain of JAK1 such as the regulation model established for eNOS is 

unknown. However, Cav1 interaction with JAK1 may also results in the stabilization 

of JAK1 inactive conformation, by preventing JH1 (pseudokinase domain) extension. 

Structural studies of the Cav1-JAK1 complex or at least, CSD-JAK1 would bring 

deeper insight on the molecular mechanism mediating the resulting inhibition. 

Interestingly, it has been suggested that caveolins may have a SOCS role in JAK-

STAT signaling. Indeed sequence alignment revealed that the CSD shares a 

common motif with the KIR domain of SOCS1 and SOCS3 (Jasmin et al., 2006) (Fig. 

30).  Therefore, one could hypothesize that upon Cav1-JAK1 interaction the CSD 



      

 

Figure 29: CBM1-mutated JAK1 pulldown 
Immunoblot of JAK1-mCherry pulldown of HeLa cells expressing exogenous Cav1 and either WT-
JAK1 or CBM1-mutated JAK1 (JAK1-CBM1). 
 
 
 
 
 
 

Figure 30. Sequence alignment of SOCS1 and SOCS3 KIR domains with 
caveolins  
The Cav1 scaffolding domain shares primary sequence similarities with the SOCS-1 pseudosubstrate 
domain. The conserved domains are identified by the consensus sequence Φ xTFxxS/T(+) xxxY(+), 
where Φ is a hydrophobic or aromatic amino acid and (+) is a positively charged residue (from Jasmin 
et al., 2006). 
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would occlude the substrate binding site of JAK1, the same way SOCS inhibit JAK1 

(as detailed in 3.5.1) preventing thereby JAK1 catalytic activity. 

5.3 Signal specificity  

An intriguing aspect of this work is that caveolae disassembly induced by a 

mechanical stress results in the specific inhibition of IFN-α-induced STAT3 activation. 

Surprisingly STAT1 activation by IFN-α is not affected by the caveolar mechanics. 

The molecular mechanism driving this specificity still needs to be addressed. Indeed, 

IFN-α stimulation normally induces both STAT1 and STAT3 activation. IFN-α binding 

to IFNAR leads to JAK1 and TYK2 cross-activation, which result in both STAT1 and 

STAT3 activation.  A logical hypothesis would consist in the selective targeting of 

JAK1 by Cav1 that would result in STAT3 inhibition. In the meantime, TYK2 would 

remain activated and would mediate STAT1 activation. Nevertheless, there are no 

evidences of such JAK specificity for STAT activation. In addition, JAKs are activated 

by mutual transphophorylation, therefore, there is a reciprocal interdependency 

between JAK1 and TYK2. Thus, according to the consensus mechanism of JAKs 

activation, the targeting of one of the two kinases would inevitably prevents the 

activation of the other one. However, it has been reported that TYK2 plays a 

restricted role in IFN-α signaling. Moreover lack of TYK2 does not prevent JAK1 

activation (Shimoda et al., 2000).  
 

 

On another hand, caveolar mechanotransduction is not restricted to IFN-α 

induced JAK-STAT signal transduction. This process may constitute a general 

regulatory mechanism for JAK-STAT signaling, disregarding the receptors or the 

ligands. Indeed, basal STAT3 activation in Cav1-/- MLEC cells and in vitro kinase 

assay revealed that this mechanism directly targets JAK1 regardless of upstream 

signaling molecules. Hence, it is not unexpected that it can be extended to other 

cytokines and receptors that use JAK-STAT such as the IL6 pathway. My laboratory 

found that caveolae mechanics also control the IL6/STAT3 pathway through a similar 

Cav3 release in the context of muscle physiology (Dewulf et al., 2018 under revision 

see annex 3). It suggests that the muscle specific isoform of Cav3 that also carries a 



      

 

 

Figure 31. Specific inhibition of STAT3 by Cav1 in human breast cancer cells  
Immunoblot of kinetics of IFN-α-induced STAT3 and STAT1 activation in MCF10A cells upon siCTRL 
or siCav1 treatment (left). Immunoblot quatification (right). 
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CSD, may compensate the absence of Cav1 and play a similar signaling role in 

muscular tissues.  

5.4 Caveolae mechanotransduction: role in tumor progression  

Our results clearly demonstrate that caveolae mechanics exert a control over 

JAK-STAT signaling. As discussed above, only STAT3 activation is affected by 

caveolae mechanics. As described in the introduction, STAT3 has oncogenic 

activities while STAT1 has, in most of situations, tumor suppressor activities. 

Therefore, mechanical forces encountered by cancer cells during tumor progression 

may regulate signal interpretation and modulate STAT3/STAT1 activation balance 

through caveolae mechanics. This mechanism may partially explain the ambivalent 

role of Cav1 during tumor progression. Moreover, any perturbations affecting the 

integrity of caveolae mechanotransduction may result in STAT3/STAT1 activation 

imbalance. For example, Cav1 knock down in breast cancer cells also induces 

STAT3 activation in response to IFN-α most likely because of the lack of negative 

regulation of JAK1 by non-caveolar Cav1 (Fig. 31). In addition, tumor cells submitted 

to hypo-osmotic shock exhibit this characteristic pSTAT3 inhibition (Fig. 32). Non-

aggressive tumor cells HS578T grown as multicellular spheroids in agarose and 

submitted to tumor-like compressive forces by compressing them with an 

hyperosmotic solution also exhibit the characteristic decrease of IFN-α-induced 

STAT3 activation (Fig. 33). It would be tempting to propose that the caveolae-

dependent mechanical control of JAK-STAT constitutes a physiological regulatory 

mechanism of cell proliferation in response mechanical strains generated by situation 

such as space limitation found in the tumor mass. Hence, impaired caveolar 

mechano-response would result in cell growth and other caveolae-related processes. 

 
To conclude, considering the wide breadth of Cav1 binding partners, it is likely 

that caveolae mechanotransduction plays a key role during tumor progression by 

tuning several major cell signaling pathways. Moreover the release of non-caveolar 

Cav1 may modulate signaling cascades through other mechanism than CSD 

interaction. For example, non-caveolar Cav1 mechanically released from caveolae 

disassembly can regulate the lipid composition of receptors microenvironment, which 



      

 

 

Figure 32: IFN-α-induced STAT3 activation of breast cancer cells upon hypo-
osmotic shock  
Immunoblot of IFNα-induced STAT3 phosphorylation in breast cancer cell lines (MCF10A, HS578T 
and MDA-MB-231) upon either steady-state, hypo-osmotic shock or recovery. 
 

 
Figure 33: IFN-α-induced STAT3 activation of breast cancer cell under 
compression 
Immunoblot of IFNα-induced STAT3 phosphorylation of encapsulated breast tumor cells HS578T.  
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is a key parameter for their activation (Rao and Mayor, 2014; Blouin et al., 2016). 

Indeed, high throughput screening revealed that other signaling pathways seem to be 

modulated by caveolae mechanics. Therefore, defective caveolae such as those 

found in many tumor cell lines like prostate cancer cells PC3 that exhibit constitutive 

non-caveolar Cav1 due to a lack of cavin-1 expression may lead to impaired 

mechanoresponse and signaling. Nevertheless, the physiological role of such 

mechanisms remains elusive. Williams and colleagues, recently revealed that proper 

JAK-STAT signal suppression through SOCS3 requires bona fide caveolae and 

plasma membrane associated cavin-1 (Williams et al., 2018). Hence one could 

hypothesize that mechanical disassembly of caveolae and the destabilization of cavin 

complexes, would result in impaired SOCS3 mediated JAK-STAT signal termination. 

Therefore, under mechanical stress, the release of free Cav1 might lock the JAK-

STAT signaling pathway to avoid aberrant JAK-STAT signaling. On another hand, as 

presented in the introduction, wide breadths of biological processes are governed by 

the interplay between cell mechanics and the physical properties of the 

microenvironment. Mechanoreciprocity and establishment of mechanically regulated 

cell processes are achieved thanks to conserved tools such as mechanotransducers. 

Considering the multitude of Cav1 binding partners, caveolae mechanotransduction 

may therefore constitute a general mechanism. It may tunes the overall cell signaling 

upon mechanical stress induced by external physiological or pathological strains 

such as those experienced by cells within the tumor mass. Alternatively, it could 

locally regulate signaling events depending on local plasma membrane tension 

variations generated by membrane deformation during processes such as cell 

migration through the ECM. 
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Materials and methods of the discussion  
 
 
Cell culture 
All cells were grown at 37°C under 5% of CO2. HS578T, MDA-MB-231 cells were 

grown in DMEM GlutaMAX (Gibco, Life Technologies) supplemented with 10% FCS 

(Gibco, Life Technologies), 5 mM pyruvate (Gibco, Life Technologies) and 1% 

penicillin-streptomycin (Gibco, Life Technologies). MCF10A cells were grown in 

DMEM GlutaMAX (Gibco, Life Technologies) supplemented with 5% (v/v) horse 

serum; 20 ng/mL EGF; 100 ng/mL CTx; 0.01mg/mL human insulin; 500 ng/mL 

hydrochortisone. WT MLEC cells were cultured in Enothelial Balal Medium (EBM2) 

from Lonza supplemented with 15% Hyclone FCS, 4mM glutamine, 5mM sodium 

pyruvate, 0,01 % penicillin streptomycin (v/v), 0.04% hydrocortisone (v/v), 0.4% 

hEGF-B (v/v), 0.1% VEGF (v/v), 0.1% R3-IGF-1 (v/v), 0.1% ascorbic acid (v/v), 0.1% 

hEGF (v/v), 0.1% GA-1000 (v/v), 0.1% heparin (v/v) (EGM2 singlequote, Lonza). 

 

Antibodies and reagents.  
Mouse anti-αTubulin (Sigma-Aldrich, clone B512, T5168, 1/1000 for WB); mouse 

anti-chlatrin heavy chain (BD Transduction, 610500, 1/5000 for WB) rabbit anti-

caveolin-1 (Cell Signaling 3238S, 1/1000 for WB); mouse anti-caveolin-1 (BD 

Transduction, 610407, 10µg/condition for IP); mouse anti-STAT3 (Cell signaling, 

clone 124H6, 9139, 1/1000 for WB); rabbit anti-pSTAT3 (Cell signaling, clone D3A7 

9145, 1/1000 for WB); rabbit anti-STAT1 (Cell signaling, 9172, 1/1000 for WB); 

mouse anti-pSTAT1 (Cell Signaling, 9167, 1/1000 for WB); rabbit anti-JAK1 (Cell 

Signaling, 3332S, 1/1000 for WB); rabbit anti-phosphoTyrosine (Santa Cruz, sc-

7020, 1/1000 for WB). 

 

Immunoblotting.  
Cells were lysed in sample buffer (62.5 mM Tris/HCl ph 6.0, 2% SDS (v/v), 10% 

glycerol (v/v), 40 mM dithiothreitol and 0.03% phenol red (w/v)). Lysates were 

analyzed by SDS-PAGE and Western blot analysis and immunoblotted with the 

indicated primary antibodies and horseradish peroxydase-conjugated secondary 

antibodies. Chemiluminescence signal was revealed using PierceTM ECL Western 

Blotting Substrate, SuperSignal West Dura Extended Duration Substrate or 

SuperSignal West Femto Substrate (Thermo Scientific Life Technologies). 
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Acquisitions were performed with the ChemiDoc MP Imaging System (BioRad). 

Samples for the detection of phospho and non-phospho proteins were loaded on two 

different gels. The ratio of the signal detection for targeted protein/loading control 

was determined for each membrane. The overall ratio of (phosphoprotein/loading 

control)/(protein/loading control) was determined.  

 
Compression  

Multicellular spheroids are formed in 48-well plates using a classical agarose cushion 

protocol. When the MCS is formed, Dextran (molecular mass ¼ 100 kDa; Sigma-

Aldrich, St. Louis, MO) is added to the culture medium to exert mechanical stress, as 

previously described in Montel et al., 2011 at a concentration of 55 g/L to exert 5 

kPa, and 80 g/L to exert 10 kPa. 

 
RNA silencing 
Cav1 knock down in MCF10A cells was achieved using smart pool siRNA from 

Eurogentec: 5’-GCAAAUACGUAGACUCGGA55-3’; 5’-

GCAGUUGUACCAUGCAUUA55-3’; 5’-CUAAACACCUCAACGAUGA55-3’. Cells 

were transfected using OzBiosciences  SilenceMag MagnetofectionTM according to 

manufcturer’s protocol. Control siRNA (QIAGEN, 1022076) was used at the same 

concentration and served as reference point. 

 
Co-immunoprecipitations.  
Cells were lysed in 1% NP-40 in TNE (10 mM Tris/HCl pH 7.5, 150 mM NaCl, 0.5 

mM EDTA) with protease inhibitors cocktail (Roche) for 30 min at 4°C. Cleared 

lysates (16,000g, 10 min, 4°C) were incubated overnight at 4°C under rotation with 1 

µg/ml of the indicated antibody followed by incubation for 1 hour with 25 µl of protein 

A/G magnetic beads (Thermo Scientific) in the case of endogenous proteins. In the 

case of tagged proteins, 25 µl GFP-Trap or RFP-Trap beads (Chromotek) were used. 

After 3 washes in TNE, immunoprecipitated beads were eluted following the 

manufacturers’ instructions. 
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Osmotic shock 
For osmotic shock, cells were seeded 24h before experiment, then complete media 

was replaced by 30 mOsm media (10% media and 90% H2O), cells were 

immediately lysed or hypo-osmmotic media was replaced by normal iso-osmotic 

media (recovery) before lysis. 
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The caveolae dress code: structure and signaling
Christophe Lamaze1, Nicolas Tardif1, Melissa Dewulf1,
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Abstract

Over the past decade, interest in caveolae biology has peaked.

These small bulb-shaped plasma membrane invaginations of

50–80 nm diameter present in most cell types have been

upgraded from simple membrane structures to a more complex

bona fide organelle. However, although caveolae are involved

in several essential cellular functions and pathologies, the

underlying molecular mechanisms remain poorly defined.

Following the identification of caveolins and cavins as the main

caveolae constituents, recent studies have brought new insight

into their structural organization as a coat. In this review, we

discuss how these new data on caveolae can be integrated in

the context of their role in signaling and pathophysiology.
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The caveola robe
Caveolins
It took almost 40 years after caveolae were first visualized
by electron microscopy (EM) in the 1950s to identify the
caveolar protein components [1,2]. Caveolin-1 (Cav1) was
identified in 1992 [3,4] followed by the two others homo-
logues caveolin-2 (Cav2) [5] and the muscle specific
caveolin-3 (Cav3) [6,7]. The three caveolin isoforms
contain a family signature constituted by a single stretch
of eight amino acids 68FEDVIAEP75 localized in the N-
terminal cytosolic oligomerization domain (Figure 1a) [7].

Cavins
Although Cav1 and Cav3 were initially thought to be
necessary and sufficient for caveolae morphogenesis [8],

several studies in the past decade have uncovered addi-
tional constituents. Thus, the identification of the cavin
protein family brought precious insights into caveolae
ultrastructure and assembly opening new avenues for
better understanding the cellular functions of this intrigu-
ing organelle. The assembly of a bona fide caveola requires
both Cav1 and cavin-1 (also called PTRF) [9,10]. In
mammals, cavin-2 (SDPR), cavin-3 (SRBC) and the mus-
cle-restricted cavin-4 (MURC) complete this four-mem-
ber family, which has emerged as essential to caveolae
formation and functions (Figure 1b) [11–13].

Purified cavins when added on phosphatidylserine (PS)
enriched liposomes or when overexpressed in mammalian
cells induce membrane tubulation, leading to the
assumption that cavins may play a role in the initiation
of the caveola invagination [11,14,15!!]. Accordingly,
cavin-1 depletion results in loss of caveolae while caveo-
lae are not morphologically detectable in the prostate
cancer PC3 cell line and in the nematode Caenorhabditis
elegans, which both express Cav1 but not cavin-1 [9,16].
Nevertheless, it was reported that caveolae could be
assembled in Escherichia coli independently from cavin-
1 [17].

Accessory proteins
Several non-essential proteins have also been involved in
caveolae biogenesis. PACSIN-2, also called Syndapin2, is
the only F-BAR protein representative, proteins regulat-
ing membrane curvature, that has been involved in
caveolae morphology [18,19]. The dynamin-2 GTPase
and the dynamin-like ATPase EHD2 have been localized
at the neck of caveolae [20,21]. EHD2 has been shown to
stabilize caveolae by controlling their dynamics and asso-
ciation with the actin cytoskeleton [22]. Dynamin-2 how-
ever is not present in all caveolae and whether it plays a
role in caveolae scission similarly to its classical role in
clathrin-dependent endocytosis remains to be
established.

A tailored coat
Caveolins bind lipids and organize membrane
nanodomains
The assembly process is initiated by the export of caveo-
lin-enriched vesicles from the Golgi apparatus to the
plasma membrane [23]. Little is known about this first
step except for a critical role of lipids and particularly
cholesterol, which is essential for both caveolin oligomer-
ization at the Golgi apparatus and caveola invagination at
the plasma membrane [3]. Cav1 binds cholesterol with a
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1:1 stoichiometry [24,25], probably through a cholesterol
recognition/interaction amino acid consensus (CRAC)
motif (94VTKYWFYR101) located in the vicinity of the
plasma membrane [26]. Caveolin oligomers trigger the
clustering of specific lipids thereby constructing special-
ized lipid nanodomains at the plasma membrane [27].
They include sphingolipids (sphingomyelin, GD3 and
GM1 gangliosides), phospholipids such as PS and phos-
phoinositides such as phosphatidylinositol (4,5)-bispho-
phate (PI(4,5)P2).

Cavins are recruited to caveolin-induced lipid
nanodomains
Interestingly, PS and PI(4,5)P2 were recently involved in
caveola formation through electrostatic interactions
between the negatively charged headgroups and two
specific domains of cavins (HR1 & HR2)
[9,12,14,15!!,28]. Thus, cytosolic cavins form higher-
order heterotrimers consisting of either three cavin-1 or
two cavin-1 with one cavin-2 or one cavin-3, through their
HR1/cc1 coiled-coil domain, that further polymerize
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Putative model of caveolar coat assembly and organization.
(a) Schematic model of Cav1 topology. Cav1 is inserted into the plasma membrane through the caveolin scaffolding domain (CSD; red), an
amphipathic helix part of the oligomerization domain (diffuse red), and through a second amphipathic helix, the intra-membrane domain (orange).
Based on Cav3 ternary structure [108], Cav1 monomers may assemble as a disk-shaped oligomer with the C-terminal part oriented toward the
center. (b) Cavin monomers exhibit two helical rich domains, HR1 and HR2, that may form coil-coiled structures [14]. Cavins, through interaction
with the HR1 domain, can form trimers consisting of either three cavin-1 or two cavin-1 associated with one cavin-2 or one cavin-3 protein. The
cavin-1 isoform could be responsible for a more complex assembly through the coiled-coil domain 2 (cc2) sequence in the HR2 domain [15]. (c)
At the plasma membrane, Cav1 oligomers cluster specific lipids such as cholesterol, PI(4,5)P2 and phosphatidyl serine involved in the recruitment
of cavin trimers. This is followed by caveola invagination, a process not completely understood. It has been recently suggested that the overall
architecture of the caveolar coat made of caveolins and cavins would best fit with a polyhedron structure [15,30]. In this model, Cav1 oligomers
position on each pentagonal face and cavin complexes align with the vertices and cover the Cav1 oligomers.
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upon association with assembling caveolae (Figure 1c)
[14,21,29].

Flat versus curved: the interplay between caveolins and
cavins
At the plasma membrane cavins and caveolins invariably
form characteristic stripes surrounded by a proteinaceous
crescent made of globular proteins whose identity
remains elusive (Figure 2). To date, it is still unclear
whether caveolae assemble as flat structures that will then
bud inward and produce the typical stable cup-shaped
caveolae or if pre-formed caveolae emanating from intra-
cellular compartments most likely the trans-Golgi net-
work fuse with the plasma membrane.

Recent EM and X-Ray crystallography studies revealed
that the characteristic striated coat that is observed on the
outer cytoplasmic side of caveolae may be organized by
cavins rather than caveolin oligomers alone as originally
proposed [14,15!!,21,29,30!!]. These striations are
observable on deep etch electron micrographs of caveolae

presenting various degrees of invagination from flat to
fully budded (Figure 2).

It has been estimated that 150–200 Cav1 monomers
associate with 50–60 cavins ("15–20 trimers) to form a
caveola [15!!,21,29,31]. The overall architecture of caveo-
lae was recently proposed to fit with a polyhedron most
likely a dodecahedron structure formed by cavin com-
plexes aligned with the vertices but also covering the
caveolin oligomers positioned on each pentagonal face
(Figure 1c) [15!!,30!!]. It is however difficult to visualize a
dodecahedron organization when observing caveolae en
face on deep-etch electron micrographs, and further
efforts will be needed to validate this model with proteins
which have been purified from more physiological sys-
tems than insect cells and bacteria.

Signaling regulation through direct interaction
with Cav1
Over the years, caveolae have been associated with vari-
ous physiological and pathological contexts in relation
with their cellular functions in lipid homeostasis, signal
transduction, endocytosis and transcytosis. If some debate
still exists [32], early consensus suggested that caveolae
could regulate cellular signaling by organizing specific
signaling platforms at the plasma membrane [33].

Thus, a broad variety of growth factor and signaling
receptors, kinases, enzymes and other signaling mole-
cules have been localized into caveolae and/or co-immu-
noprecipitated with Cav1 including but not limited to
eNOS [34], the insulin [35], EGF [36], TGF-b [37!] and
P2X7 [38] receptors, Src tyrosine kinase [39], H-Ras and
K-Ras [40], the heme oxygenase [41]. Caveolae have also
been associated with bona fide mechanosignaling path-
ways including MAP kinase, Akt, Src kinases, Rho and
Rac small GTPases [42].

The central role of the caveolin scaffolding domain
A first study identified a domain responsible for the direct
regulation of heterotrimeric G proteins by Cav1 [43]. This
interaction was further confirmed for H-Ras, the Src and
Fyn tyrosine kinases, and the endothelial nitric oxide
synthase eNOS [35,40,41].

This specific feature of Cav1 resides in a particular
a-helical domain (residues 82–101) called the caveolin
scaffolding domain (CSD) so named because it is also
required for Cav1 oligomerization. The CSD is localized
on the N-terminal part but its relative position to the
plasma membrane remains unclear. The CSD would
exert an inhibitory role on signaling effectors by binding
directly to a putative corresponding caveolin binding
motif (CBM) identified in several of these effectors
[35,40,41,44,49]. Indeed, biochemical studies on eNOS
revealed the critical role of the CSD phenylalanine resi-
due 92, which, by extending its lateral chain, allows to

Undressing the caveolar coat Lamaze et al. 119

Figure 2

2

1

3

500  nm
50  nm

2

1

3

Current Opinion in Cell Biology

Visualization of the caveolar coat at the plasma membrane of
myotubes.
Survey view of the cytoplasmic surface of an unroofed mouse
myotube presenting caveolae at the plasma membrane. Different
types of caveolae structures are apparent, ranging from flat (1),
circular (2), to fully budded (3). Scale bar: 500 nm. Scale bar in insets:
50 nm.
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reach the hydrophobic pocket of eNOS to inhibit its
catalytic activity [44,45]. A similar example was provided
by the heme oxygenase 1 whose activity is inhibited
through direct binding between its CBM domain and
the CSD [41]. Furthermore, a small CSD-mimicking
peptide inhibits eNOS activity whereas the correspond-
ing mutated peptide increases eNOS activity most likely
by competing with endogenous Cav1, which suggests a
direct Cav1-CSD mediated inhibitory effect [46].

Controversy on CSD accessibility
However, new studies have recently undermined the
model of signaling regulation through direct CBM/CSD
interaction. The CBM motif was found to be poorly
discriminative as it is also found in species such as
Saccharomyces cerevisiae that do not express caveolins.
No particular enrichment in proteins with the CBM
sequence was found in the Cav1 interactome and the
structural analysis of different CBM domains revealed
that this domain was likely to be buried inside the
proteins and therefore not readily available for interacting
with the CSD [47,48]. Likewise, the CSD would also be
an amphipathic helix and thus partially embedded inside
the plasma membrane hence not accessible [49].

Alternative mechanisms could also be considered. Thus, a
new study proposed that the CSD is a dynamic structure
that can be either fully helical or partly unstructured,
which may change its accessibility [50!]. Furthermore,
the conformation of Cav1 could vary with the oligomeri-
zation state and the organization of the caveola compo-
nents (cavin isoforms or lipids). In this context, mechani-
cal stress by promoting the release of Cav1 from
disassembled caveolae [51] could not only control the
ratio of caveolar vs. free Cav1 but also the accessibility to
its CSD.

Yet the mechanisms controlling the reversibility of these
interactions, a key parameter in signaling, remain to be
explored. In this context, the post-translational modifica-
tions of Cav1 may be particularly relevant. Phosphoryla-
tion on Cav1 Ser 80 would result in a more versatile
topology exposing the CSD because of charge repulsion
between the inner leaflet of the plasma membrane and
the phosphorylated residue [52]. A similar mechanism
was proposed for Cav1 Tyr 14 phosphorylation that would
form a stable structure facilitating binding to the CSD
[53]. Cav1 Tyr 14 phosphorylation was also shown to
prevent the direct binding of Cav1 on Egr1 [54]. Whether
Cav1/Egr1 interaction occurs through the CSD is how-
ever unknown.

Indirect regulation of signaling by caveolae
Through caveolae
In addition to the direct inhibitory effect of Cav1 on
signaling effectors, caveolae can also indirectly modulate
intracellular signaling. Caveolae interact with the actin

cytoskeleton and contribute to lipid sorting and delivery
to the plasma membrane through their enrichment in
glycosphingolipids and cholesterol [55]. Caveolae can
thus modulate the nanoscale plasma membrane organiza-
tion, a key parameter in transmembrane receptor activa-
tion [56]. Once again this process could also be actively
controlled by caveolae dynamics in response to mechani-
cal strains [51,57]. In this regard, stretch-induced caveolae
disassembly led to the redistribution of Cav1 and sphin-
golipids at the plasma membrane together with c-Src
activation [58]. Furthermore, Cav1 depletion led to per-
turbations in Ras spatial nano-organization and signaling
through changes in lipid composition and PS distribution
[59!]. In agreement with the localization of calcium
pumps in caveolae [60], the mechanical disassembly of
caveolae led to reduced Ca2+ responses through changes
in Gaq/Cav1 association [58,61]. Finally, as for clathrin-
mediated endocytosis, caveolae endocytosis, while lim-
ited under resting conditions, might also contribute to the
endosomal control of signaling by delivering activated
receptors to this compartment [62].

Through Cav2
The role of Cav2, which is not required for caveolae
formation, remains enigmatic. Cav2 expression is
required for activating the estrogen receptor a by 17b-
oestradiol [63]. The insulin signaling pathway can be
regulated by Cav2 fatty acylation and phosphorylation,
two successive post-translational modifications that pre-
vent the interaction of the SOCS3 phosphatase with the
insulin receptor allowing the activation of IRS-1 (Insulin
Receptor Substrate-1) and the nuclear translocation of
activated STAT3 [64–66]. Cav2 was allegedly reported to
mediate signaling from the plasma membrane to the
nucleus, as phospho-ERK nuclear translocation induced
by insulin relied on Cav2 154SSV156 C-terminal sequence
[67].

Through cavins
Finally, the recently identified cavins may also contribute
to caveolae signaling. Cavin-1 being essential to caveolae
assembly, it controls the number of functional caveolae
and thereby the localization of activated receptors in
these structures [68,69]. Cavin-3 mediates ERK activa-
tion by anchoring caveolae to the plasma membrane via
myosin-1c [70] and regulates their dynamics [71!]. Like-
wise CAVIN-1/-2/-3 KO mice display a certain degree of
heterogeneity among endothelial caveolae depending on
tissues and cavin-2 expression [72].

Caveolinopathies
Because of the multiple functions of caveolae and their
impact on signaling, it is not unexpected that several
pathologies have been associated with caveolae dysfunc-
tion. With the notable exception of neurons and lympho-
cytes, caveolae are ubiquitously found in most cells and
are particularly enriched in adipocytes, endothelial and
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muscle cells. Accordingly, mutations or deregulation of
caveolae components expression have been associated
with lipodystrophy, vascular dysfunction, musculopathies
[73] or cancer [74]. It is certainly no coincidence that, all
chronically experience mechanical forces in their envi-
ronment [1,51,75,76]. Whether these diseases can be
related to defects in caveolae mechanosensing and
mechanotransduction remains however to be tested.

Lipodystrophy
In mice, Cav1 or cavin-1 deficiency leads to a similar
lipodystrophic phenotype consisting in important loss of
fat mass associated with hypertriglyceridemia [10,77]. A
p.Glu38X stop codon CAV1 homozygous mutation result-
ing in caveolae loss was first identified in a patient
suffering from Berardinelli-Seip congenital lipodystrophy
[78] followed by the identification in lipodystophic
patients of a homozygous frame shift mutation
(c.696_697insC) in the PTRF gene coding for cavin-1
[79]. Other human mutations are found in Cav1 and
cavin-1, including heterozygous frame shift mutations
in the CAV1 gene (88delC and p.I134fsdelA-X137 in
Ref. [80], p.Phe160X in Ref. [81!]) and a single deletion
in PTRF gene (c.947delA in Ref. [82]), leading again to a
similar phenotype. These studies and others emphasize
the central role of caveolae in lipid metabolism. Lipody-
strophy could be ascribed to the loss of caveolae-depen-
dent lipid storage capacities by adipocytes as mice lacking
Cav1 or cavin-1 remain lean under high fat diet [77,80,83].
Cav1 is found at the plasma membrane of adipocytes and
at the surface of lipid droplets, the key lipid storage
organelle [84]. Thus, the absence of Cav1 will affect both
lipid uptake and associated caveolae-dependent signaling
events together with lipid droplet composition [85,86].
Lipid uptake results also in rapid swelling of adipocytes, a
mechanical stress that may require functional caveolae for
efficient membrane mechanoprotection.

Vascular dysfunction
In addition to lipodystrophy, mice lacking Cav1 and
cavin-1 experience vascular dysfunction [87–89]. Defects
in stimulated contractility, myogenic tone and endothe-
lium-dependent relaxation of arteries have been observed
in CAV1 KO mice [87] that could be related to the control
of NO and calcium signaling by Cav1 [90,91]. The
phenotype of CAV2 KO mice, which still have caveolae,
is surprisingly restricted to lung dysfunction through
increased lung endothelial cell proliferation [92]. Again
shear stress is intrinsically associated with endothelial
cells in vessels and caveolae are likely to be involved
in several shear-related functions [93].

Muscular dystrophies and cardiomyopathies
Mutations of muscle-specific Cav3, cavin-1 and cavin-4
have been associated with several forms of muscular
dystrophies and cardiomyopathies [79,94]. The observed
symptoms could be ascribed to several defects in muscle

physiology. A lack of functional caveolae could lead to
defective formation of the excitation contraction coupling
machinery and disorganization of the T-tubule network
[94,95]. It could also result in lipid homeostasis and
mechanosensitivity defects upon muscle contraction,
which in turn would directly affect the response of the
sarcolemmal membrane to mechanical strains. Moreover,
non-mutually exclusive caveolae-dependent defects have
also been reported for signaling pathways important for
muscle physiology such as those mediated by calcium,
Akt or MAP kinases [96–98], or in the expression or
localization of key proteins involved in membrane integ-
rity or repair such as dysferlin [99], and also in mechan-
oprotection [51,100!].

Cancer
Several thousand studies have addressed the role of Cav1
in this broad-spectrum pathology that is cancer. Yet this
role remains complex with studies describing Cav1 as a
tumor suppressor and others as an oncogene. The nature
of this role may vary with the type and stage of cancer [74]
and is probably related to a deregulation of signaling
pathways involved in tumor progression. The other com-
ponents of caveolae have been less studied. In breast and
prostate cancers [101,102], Cav2 expression was increased
whereas cavins, with lower expression, were more likely
to be tumor suppressors [68,103,104]. The role of caveo-
lae in cancer should be reconsidered through their
mechanosensing function as recent data have shed light
on the key role of mechanical forces in tumor progression
[105].

Other pathologies including pulmonary arterial hyperten-
sion [106], fibrosis [87] or atherosclerosis [107] have also
been associated with caveolae deficiency or deregulated
Cav1 expression. These pathologies can also be analyzed
in the context of mechanical dysfunction [32].

Conclusion and unresolved questions
Obviously more than 60 years after the first description of
caveolae, many fundamental questions remain unan-
swered. It is intellectually challenging to reconcile the
diversity of their cellular functions with a unique organ-
elle that is mostly stable at the plasma membrane. The
absence or deregulation of this ubiquitous organelle
results likewise in a rather specific set of pathologies. A
major unresolved question concerns the mechanisms by
which caveolae can control so many signaling circuits.
The recent structural description of the caveolar coat has
been a major step forward that will allow to better
understand how signaling effectors can associate with
the different components of this compact structure.
The resolution of the ternary structure of Cav1, as
recently achieved for Cav3 [108], will bring new answers
as well.
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One could also speculate that the different Cav1 and
cavin isoforms may assemble subpopulations of caveolae
differing in their composition/structure thereby allowing
customized signaling and local reactivity to mechanosen-
sing in different cells and tissues. At the ultrastructural
level, various degrees of caveolar invaginations can be
observed (Figure 2). Whether these structures co-exist
independently or are in dynamic exchange is unknown. It
will be important to analyze the distribution of caveolin
and cavin isoforms in these structures. Live cell imaging
of caveolae with higher spatiotemporal resolution
approaches such as super-resolution microscopy should
also provide a better understanding of their significance
[109!!].

The rapid exchange of cavins and Cav1 from caveolae in
response to mechanical constrains is potentially a new
mechanism by which caveolae could control signaling in a
highly dynamic and integrated manner
[51,55,57,100,110!,111,112]. In this context, it is interest-
ing that in most caveolae-associated pathologies, cells and
tissues are subjected to increasing mechanical stress that
may induce aberrant cellular mechanosignaling [105,113].
Thus, the miscellaneous functions of caveolae could be
reunified through a central mechanoprotective role rely-
ing on mechanosensing and mechanosignaling. Thanks to
the new conceptual and technological advances applied to
caveolae biology during the past decade, we start to
understand how this multifunctional organelle is capable
of integrating and translating an array of various external
stimuli into the regulation of distinct cellular functions.
The next challenge is to translate this knowledge in vivo
in order to design tailored therapeutics for treating caveo-
lae-associated diseases.
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Abstract  

Caveolin-3 is the major structural protein of caveolae in muscle cells. Mutations in 

the CAV3 gene cause different types of myopathies that are characterized by several 

defects altering membrane integrity and repair, expression of muscle proteins, and 

regulation of muscle signaling pathways. We show here that myotubes derived from 

patients bearing the CAV3 P28L and R26Q mutations present a dramatic decrease 

of caveolae at the plasma membrane, which results in an abnormal response to 

mechanical stress. Mutant myotubes were unable to buffer the increase in 

membrane tension induced by mechanical stress. This resulted in impaired 

regulation of the IL6/STAT3 signaling pathway leading to IL6/STAT3 constitutive 

hyperactivation and increased expression of muscle related genes. These defects 

were fully reversed by reassembling a pool of functional caveolae through 

expression of wild type caveolin-3. Our study reveals that under mechanical stress 
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the regulation of mechanoprotection by caveolae is directly coupled with the 

regulation of IL6/STAT3 signaling in muscle cells and that this regulation is absent in 

muscle cells from Cav3-associated dystrophic patients. 

 

 

Introduction 

Caveolae are cup-shaped plasma membrane invaginations that were first observed 

in the 50’s by Palade and Yamada on electron micrographs from vascular and gall 

bladder tissues1,2. Caveolae present a specific protein signature involving two main 

families of proteins, caveolins (caveolin-1, -2 and -3), and cavins (cavin-1, -2, -3 and 

-4)3,4,5,6,7,8,9. Caveolins and cavins are expressed in almost every cell type, except for 

caveolin-3 (Cav3) and cavin-4, whose expression is restricted to smooth and striated 

muscle cells9,10. Cav3, like Cav1 in non muscle cells, is necessary for the formation 

of caveolae at the plasma membrane of muscle cells11. 

Caveolae have long been associated with several important cellular functions 

including endocytosis, lipid metabolism and cell signaling, albeit with several 

persistent controversies12,13. More recently, a new function of caveolae was 

established as mechanosensors that play an essential role in cell mechanoprotection 

both in vitro and in vivo14,15,16,17,18. Mutations or abnormal expression of caveolae 

components have been associated with lipodystrophy, vascular dysfunction, cancer 

and muscle disorders13,19. The molecular mechanisms underlying caveolin-

associated diseases are still poorly understood. 

In this study, we explored the mechanical role of caveolae in human muscle 

cells and their possible deregulation in caveolinopathies, a family of muscle genetic 

disorders involving mutations in the CAV3 gene. These diseases affect both cardiac 

and skeletal muscle tissues, and share common characteristics including mild 

muscle weakness, high levels of serum creatine kinase, variations in muscle fiber 

size and an increased number of central nuclei20,21,22,23. We focused our 

investigations on the human CAV3 P28L mutation responsible for hyperCKemia24, 

and CAV3 R26Q, which is responsible for ripple muscle disease, hyperCKemia and 

limb-girdle disease 1C25. Studies with transgenic mice and zebrafish or cells 

overexpressing the Cav3 mutants have linked the P28L and R26Q CAV3 mutations 

to deregulations in distinct signaling pathways25,26, defects in membrane repair27,28 

and mechanoprotection of the muscle tissue16. Nevertheless, the role of the 
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caveolae mechanoresponse in human myotubes and its possible deregulation in 

dystrophy-associated Cav3 mutations have not yet been addressed.  

We show here that the Cav3 P28L and Cav3 R26Q myotubes are unable to 

assemble sufficient amounts of functional caveolae at the plasma membrane, 

leading to a loss of membrane tension buffering and membrane integrity under 

mechanical stress. The absence of functional caveolae in mutant myotubes 

uncouples the regulation of IL6/STAT3 signaling with mechanical stress, which 

results in the constitutive hyperactivation of the IL6/STAT3 signaling pathway and 

the upregulation of several muscle related genes. Finally, the expression of WT 

Cav3 in mutant myotubes was sufficient to restore a functional pool of caveolae and 

to rescue the coupling of caveolae mechanosensing with IL6/STAT3 signaling. 

These results establish caveolae as central connecting devices that adapt 

intracellular signaling to mechanical cues in muscle cells. The loss of this function in 

Cav3-associated mutations may be responsible for some of the clinical symptoms 

described in human dystrophic patients. 

 

Results 

 

Drastic decrease in the number of caveolae at the plasma membrane of Cav3 

mutant myotubes. 

To address the impact of Cav3 mutations in human muscle disorders, we analyzed 

wild type (WT), Cav3 P28L and Cav3 R26Q myotubes derived from immortalized 

myoblasts, which were isolated from healthy or Cav3 mutant patients and 

differentiated for four days. The state of myotube differentiation was validated by the 

expression level of the differentiation marker MF-20 (myosin heavy chain) in all three 

cell lines (Supplementary Fig. 1a). We first analyzed the presence and the 

ultrastructure of caveolae at the plasma membrane of myotubes by electron 

microscopy. In WT myotubes, we observed numerous invaginated structures 

corresponding to bona fide caveolae i.e. characteristic 60-100 nm cup-shaped 

invaginations that were connected to the plasma membrane, or to larger vacuoles of 

variable size deeper inside the cell known as rosettes, and that could still be 

connected to the plasma membrane. In contrast, a lot less caveolae could be 

detected at the plasma membrane of mutant myotubes and very few, if any, large 

vacuolar structures were observed (Fig. 1a and 1b). While we could still visualize a 
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few caveolae in mutant myotubes, they were often grouped in the same area and 

large areas of plasma membrane were completely devoid of caveolae (not shown). 

Interestingly, we could observe, mainly in mutant myotubes, the presence of 

aberrant oversized caveolae (Fig. 1a). 

This drastic decrease in caveolae number led us to investigate the localization 

of Cav3, which is required for caveolae assembly at the plasma membrane11. 

Immunoblot analysis showed a reduced expression of mutant Cav3 (P28L: - 50%; 

R26Q: - 51%) as compared to WT (Fig. 1c and 1d), with a shifted band for the R26Q 

mutant corresponding to the Cav3 mutant form, as reported previously25. Cav3 

immunostaining revealed that WT Cav3 was mainly associated with the plasma 

membrane of myotubes and partially localized in the Golgi complex, defined by 

GM130 staining (Fig. 1e). In contrast, Cav3 strongly accumulated in the Golgi 

complex as shown by the colocalization with GM130 in the Cav3 P28L and R26Q 

myotubes, in agreement with earlier studies25,26. This indicates that the strong 

reduction in the number of caveolae present at the plasma membrane of the Cav3 

mutant myotubes is a consequence of the abnormal retention of mutant Cav3 in the 

Golgi complex. 

It was still possible that differentiated myotubes express Cav1, which could 

potentially participate to the formation of caveolae independently from Cav3. We 

therefore analyzed Cav1 expression in myotubes after four days of differentiation 

and found that Cav1 was indeed expressed to the same level in all three cell lines 

(Supplementary Fig. 1b). Cav1 colocalized perfectly with Cav3 at the plasma 

membrane and to a lesser extent at the Golgi complex in WT myotubes, whereas it 

was mainly present in the Golgi complex in Cav3 P28L and R26Q myotubes 

(Supplementary Fig. 1c). It indicates that Cav1 is likely to form hetero-oligomers with 

Cav3, and that the Cav3 P28L and R26Q mutants have a dominant effect on Cav1 

localization.  

 

Cav3 P28L and R26Q myotubes present major defects in membrane tension 

buffering and mechanoprotection. 

To know whether the almost total absence of caveolae at the plasma membrane of 

mutant myotubes could induce defects in cell mechanoprotection, we first 

determined if the Cav3 P28L and R26Q myotubes could buffer the increase of 

membrane tension induced by mechanical stress. We thus applied a 45 mOsm 
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hypo-osmotic shock to myotubes aligned by micropatterning and we measured the 

apparent membrane tension before and after 5 min of hypo-osmotic shock using 

membrane nanotube pulling with optical tweezers as described14. As expected, 

hypo-osmotic shock led to myotube swelling in WT and Cav3 mutant cells. While the 

mutant myotubes showed no significant changes in membrane tension in resting 

condition (Fig. 2a), they showed a significant increase of membrane tension (P28L: 

63% ± 7%; R26Q: 94% ± 11%) under 45 mOsm hypo-osmotic shock compared to 

WT myotubes (38% ± 9%) (Fig. 2b). These results clearly show that the Cav3 P28L 

and R26Q mutant myotubes have lost the ability to buffer membrane tension 

variations induced by mechanical stress. 

We next tested whether the lack of membrane tension buffering could result in 

insufficient mechanoprotection and increased membrane fragility in mechanically 

challenged mutant myotubes. We designed an assay to quantify the percentage of 

cells that rupture their membrane under mechanical stress. To monitor membrane 

bursting, micropatterned myotubes were incubated with calcein-AM, a permeant 

green fluorescent dye that only becomes fluorescent inside the cell, and with the 

nucleus specific blue dye DAPI to specifically visualize differentiated myotubes by 

nuclei staining (Supplementary Fig. 2b). Live imaging was performed on myotubes 

subjected to a 30 mOsm hypo-osmotic shock for 10 min in the presence of propidium 

iodide (PI), a non-permeant red fluorescent dye that cannot enter cells with intact 

plasma membrane. The concomitant decrease of calcein-AM fluorescence and the 

appearance of PI fluorescence in the nucleus indicate a loss of membrane integrity 

(Fig. 2c). In comparison to WT myotubes, Cav3 mutant myotubes not only showed a 

higher percentage of burst cells after a 10 min hypo-osmotic shock (WT: 53% ± 3%; 

P28L: 78% ± 2%; R26Q: 89% ± 2%) but also a shorter time of resistance to 

membrane bursting (WT: 4.5 min ± 0.2, P28L: 2.1 min ± 0.1, R26Q: 2.7 min ± 0.2) 

(Fig. 2d). When we apply a milder hypo-osmotic shock (150 mOsm), for which no 

increase in membrane tension could be measured, the plasma membrane of all 

three cell lines remained intact after 10 min of shock (Supplementary Fig. 2b and 

2c). We repeated these experiments in WT myotubes depleted for Cav3 and 

measured a percentage of burst cells that was similar to mutant myotubes (siCtl: 

23% ± 1%, siCav3: 89% ± 1%) (Fig. 2e and 2f; Supplementary Fig. 2d). Likewise, 

Cav3 depleted myotubes showed a significantly faster time of bursting as compared 

to control myotubes (siCtl: 3.1 min ± 0.2, siCav3: 2.4 min ± 0.1) (Fig. 2e and 2f). 
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Together, our results demonstrate that the Cav3 P28L and R26Q mutant myotubes 

are unable to provide the mechanoprotection that is required to maintain the integrity 

of the myotube plasma membrane under mechanical stress and behave similarly to 

myotubes depleted for Cav3. 

 

The IL6/STAT3 signaling pathway is constitutively hyperactivated in Cav3 P28L 

and R26Q mutant myotubes. 

Considering the key role of caveolae and caveolin in intracellular signaling12,13, we 

next investigated whether the loss of functional caveolae could impact some of the 

key signaling pathways in the muscle. We focused our analysis on the IL6/STAT3 

signaling pathway that has been associated with satellite cell exhaustion and muscle 

wasting29,30,31. Furthermore, the IL6 signal transducer glycoprotein gp130, which, 

together with the IL6 receptor subunit, assemble the IL6 receptor, has been localized 

in caveolae in a myeloma cell line32, suggesting a potential regulation of the IL6 

signaling pathway by caveolae. IL6 binding to the IL6 receptor is classically followed 

by the activation of receptor-bound JAK1 and JAK2 kinases, which in turn 

phosphorylate the signal transducer and activator of transcription 3 (STAT3) that is 

then translocated as a dimer to the nucleus where it activates the transcription of IL6 

sensitive genes33. 

We therefore monitored the level of STAT3 activation i.e. tyrosine (Tyr705) 

phosphorylation (pSTAT3) in myotubes stimulated for 5 and 15 min with 

physiological concentrations of IL6 (Figure 3). At steady state, in the absence of IL6 

stimulation, little tyrosine phosphorylation of STAT3, if any, could be detected in WT 

myotubes. In contrast, we found a substantially higher level of pSTAT3 in Cav3 P28L 

and R26Q mutant myotubes, even in the absence of IL6 stimulation. While IL6 

stimulation led to increased levels of pSTAT3 in WT myotubes, we still observed 

higher levels of pSTAT3 in Cav3 P28L and R26Q mutant myotubes for similar times 

of IL6 stimulation (Fig. 3a and 3b). To rule out the possible contribution of 

undifferentiated myotubes in IL6 signaling, we investigated the nuclear translocation 

of pSTAT3 by immunofluorescence since differentiated myotubes are characterized 

by the presence of multiple nuclei (Fig. 3c and 3d). Again, we detected a significantly 

higher level of pSTAT3 in the nuclei of mutant myotubes as compared to WT at 

steady state. After 15 min of IL6 stimulation, mutant myotubes exhibited higher 

pSTAT3 nuclear translocation, although it was less pronounced in P28L mutants. 
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Altogether, these data reveal that the IL6/STAT3 signaling pathway is constitutively 

hyperactivated in the Cav3 P28L and R26Q mutant myotubes.  

We next investigated whether the regulation of IL6/STAT3 signaling would 

require the presence of functional caveolae at the plasma membrane and thus the 

expression of Cav3. We therefore monitored the kinetics of STAT3 activation by IL6 

in WT myotubes depleted for Cav3. Immunoblot analysis showed a hyperactivation 

of the IL6 pathway in Cav3 depleted myotubes with an overall activation of STAT3 

(Fig. 3e and 3f). These results indicate that Cav3 is a negative regulator of the 

IL6/STAT3 pathway in healthy myotubes and that the depletion of Cav3 in WT 

myotubes reproduces the phenotype observed in the Cav3 mutants. It demonstrates 

that the absence of Cav3 and/or caveolae at the plasma membrane of mutant 

myotubes is responsible for the constitutive hyperactivation of the IL6/STAT3 

signaling pathway. 

STAT3 is a key transcription factor controlling the transcription of many 

downstream genes whose products mediate the pleiotropic effects of STAT3 in 

physiological and pathological contexts34. We therefore examined the consequences 

of the constitutive hyperactivation of the IL6/STAT3 pathway on gene expression. In 

the context of muscle disease, we investigated the transcription of muscle-related 

genes since STAT3 has been suggested to be involved in their regulation. We 

focused our analysis on the SOCS3, MYH8, ACTC1 and ACTN2 genes that are 

associated with muscle development and regeneration31. SOCS3 serves also as a 

positive control, as it is transcribed upon STAT3 activation and its gene product 

SOCS3 is a major actor in the negative regulation of this pathway33. Using 

quantitative PCR, we found an increased transcription of SOCS3, MYH8, ACTC1 

and ACTN2 genes (Fig. 3g). These data strongly suggest that the constitutive 

hyperactivation of STAT3 found in the Cav3 P28L and R26Q mutant myotubes is 

responsible for the deregulation of several genes involved in muscle 

pathophysiology. 

 

IL6/STAT3 mechanosignaling is impaired in Cav3 P28L and R26Q mutant 

myotubes. 

Although caveolae and caveolins have long been associated with signaling12,13, the 

integration of this function with their role in mechanosensing has not yet been 

reported. We have proposed the hypothesis that the mechano-dependent cycle of 
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caveolae disassembly and reassembly could impact some of the caveolae-

dependent signaling pathways13,35. We thus analyzed whether the regulation of the 

IL6/STAT3 pathway by caveolae could depend on mechanical stress. When 

myotubes were subjected to hypo-osmotic shock prior to IL6 stimulation, we 

observed a dramatic decrease of STAT3 activation (approx. 80%) in WT myotubes 

whereas no significant change was observed in Cav3 P28L and R26Q mutant 

myotubes (Fig. 4a and 4b). We also tested the effect of mechanical stretching on 

IL6/STAT3 signaling as this is more relevant to the nature of mechanical stress 

experienced by skeletal muscles during exercise. When we applied a 10% cyclic 

stretch at 0.5 Hz for 30 min to WT myotubes followed by IL6 stimulation, we also 

observed a drastic reduction of STAT3 activation, confirming that the IL6/STAT3 

pathway is tightly regulated by mechanical stress in muscle cells (Supplementary 

Fig. 3).  

We next determined whether the mechanical regulation of IL6 signaling 

required the presence of functional caveolae. We applied a hypo-osmotic shock to 

WT myotubes depleted of Cav3 and whereas no effect was observed at steady 

state, we found that STAT3 activation by IL6 was slightly decreased by mechanical 

stress (approx. 20%) in WT myotubes. More importantly no changes were observed 

in Cav3 depleted myotubes (Fig. 4c and 4d). The poor adhesion of Cav3 P28L and 

R26Q mutant myotubes on the stretching membrane did not allow us to confirm 

these data under cyclic stretching. Nevertheless, these results confirm that the 

IL6/STAT3 signaling pathway is negatively regulated by mechanical stress in 

myotubes and that this regulation is lost in the absence of functional caveolae as 

shown in Cav3 P28L and R26Q mutant myotubes and in WT myotubes depleted for 

Cav3.  

 

Expression of WT Cav3 is sufficient to rescue a normal phenotype in Cav3 

P28L myotubes. 

Our experiments showing that the depletion of Cav3 in WT myotubes faithfully 

reproduces the mechanoprotection and signaling defects observed in P28L and 

R26Q myotubes, implies that the absence of Cav3 at the plasma membrane, as a 

result of its abnormal retention in the Golgi complex, is responsible for the observed 

phenotype. To validate this hypothesis, we generated stable WT and P28L 

myoblasts transduced either by GFP alone or by WT Cav3 tagged with GFP (Cav3-
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GFP). Immunofluorescent microscopy confirmed that expressed Cav3-GFP was 

mainly localized at the plasma membrane and not retained at the Golgi complex in 

Cav3-GFP P28L myotubes (Fig. 5a and Supplementary Fig. 4a). We performed 

electron microscopy to see whether Cav3 WT expression would allow us to 

reconstitute a pool of structurally defined caveolae at the plasma membrane of Cav3 

P28L myotubes expressing GFP or Cav3-GFP. While the plasma membrane of 

control GFP myotubes presented few, often isolated, caveolae structures, Cav3-GFP 

rescued myotubes presented a significantly higher number of bona fide caveolae, 

including larger vacuolar structures with connected caveolae i.e. rosettes (Fig. 5b 

and 5c), as classically observed in WT myotubes (Fig. 1c). These observations 

confirm that the decrease in the number of caveolae in Cav3 P28L myotubes is a 

direct consequence of the retention of Cav3 P28L in the Golgi complex.  

Next, we examined whether the reconstitution of the caveolae reservoir at the 

plasma membrane of Cav3 P28L myotubes was sufficient to rescue the regulatory 

role of caveolae in mechanoprotection and IL6/STAT3 signaling. We therefore 

monitored the resistance to membrane bursting of GFP- and WT Cav3-GFP 

expressing P28L myotubes as described above. Notably, Cav3-GFP P28L myotubes 

showed a strong increase in the resistance to membrane bursting under hypo-

osmotic shock as compared to GFP P28L myotubes (GFP: 49% ± 3%; Cav3-GFP: 

18% ± 2%). It also took a significantly longer time for Cav3-GFP P28L myotubes to 

burst as compared to GFP P28L myotubes (GFP: 1.6 min ± 0.1; Cav3-GFP: 2.3 min 

± 0.2) (Fig. 5d and 5e). Finally, we analyzed the regulation of the IL6/STAT3 

pathway by monitoring STAT3 phosphorylation and nuclear translocation in GFP and 

Cav3-GFP expressing P28L myotubes. At steady state, we observed a significant 

decrease of pSTAT3 activation and nuclear translocation in Cav3-GFP P28L 

myotubes as compared to GFP P28L myotubes, indicating that the expression of 

Cav3 was sufficient to reduce the hyperactivation of STAT3 observed at steady state 

in Cav3 P28L myotubes (Fig. 5f and 5g). Upon IL6 stimulation, we measured a 

slightly decreased but not significant pSTAT3 nuclear translocation in Cav3-GFP 

P28L myotubes, similarly to what we observed when comparing WT to non-

transduced Cav3 P28L myotubes (Fig. 3d and 5g). Interestingly, we also found that 

the expression of Cav3-GFP in WT myotubes led to a decrease of pSTAT3 

activation and nuclear translocation at steady state as compared to non transduced 

WT myotubes (Supplementary Fig. 4c). Altogether, these results show that the 
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expression and localization of Cav3 at the plasma membrane of P28L myotubes is 

sufficient to restore membrane mechanoprotection and the regulation of IL6/STAT3 

signaling by caveolae.  

 

Discussion 

In the present work, we investigated two aspects of caveolae that have been so far 

poorly characterized in human muscle cells. We first addressed the role of caveolae 

in mechanosensing and mechanoprotection, a new function of caveolae that has 

been recently established by several investigators in various cell types. When cells 

experience acute mechanical stress such as cell swelling or cell stretching, caveolae 

flatten out into the plasma membrane to provide extra membrane area and prevents 

membrane tension increase and membrane rupture14,15,16,17,36. In agreement with 

these studies, we found that the presence of functional caveolae was absolutely 

required to protect human myotubes against severe mechanical stress. Thus, the 

Cav3 P28L and R26Q mutant myotubes presented a major defect in 

mechanoprotection with a lack of membrane tension buffering and increased 

sensibility to membrane rupture. Whereas the mutant myotubes showed a dramatic 

decrease in the number of caveolae present at the plasma membrane, the 

expression of wild type Cav3 allowed to restore a number of caveolae sufficient to 

reinstall mechanoprotection. The depletion of Cav3 in healthy myotubes faithfully 

reproduced the phenotypes observed in Cav3 P28L and R26Q myotubes indicating 

that the retention of Cav3 in the Golgi complex is responsible for the absence of a 

functional reservoir of caveolae at the plasma membrane and thereby the lack of 

mechanoprotection in these mutants. Our finding that Cav3 P28L and R26Q 

myotubes still express caveolae at the plasma membrane, albeit to a much lesser 

extent, most likely indicates that this number is too low to assure an efficient 

mechanoprotection and/or that these caveolae are not fully functional as suggested 

by their aberrant size. It is tempting to speculate that the increased fragility of the 

mutant myotubes membrane could be related to the pathological phenotype reported 

in Cav3-related muscle dystrophies. We were however surprised that these defects 

were mainly observed when mutant myotubes were subjected to a severe hypo-

osmotic shock. Mild hypo-osmotic shocks did not allow to reveal mechanoprotection 

defects in mutant myotubes. This is indeed in agreement with early electron 

microscopy studies showing that Aplysia californica smooth muscle and frog skeletal 
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muscle fibers must be stretched up to nonphysiological levels such as three times 

the in situ length in order to visualize the presence of flattened caveolae37,38. This is 

also consistent with the mild-to-moderate clinical symptoms described in these 

patients39. 

This incited us to explore other functions of caveolae that could also be 

deregulated by caveolae dysfunction in Cav3 mutant myotubes. We investigated the 

regulation of muscle cells signaling as several signaling defects have been described 

in muscle dystrophies and caveolae have long been associated with the regulation of 

intracellular signaling. Indeed, Cav3 has been involved in the regulation of distinct 

signaling pathways important for muscle function such as calcium homeostasis40, the 

insulin/GLUT4/Akt pathway41 or TrkA and EGFR signaling26. We focused our 

analysis on the interleukin-6 (IL6)/STAT3 signaling pathway which has been shown 

to play an essential role in muscle tissue homeostasis42. In addition, the IL6 pathway 

is tightly associated to mechanical stress in muscle cells as IL6 is secreted mostly 

during physical exercise43. Our data show for the first time a major deregulation of 

the IL6/STAT3 signaling pathway in the Cav3 mutant myotubes with a constitutive 

hyperactivation of STAT3 at steady state. This defect translated into increased 

STAT3 nuclear translocation and expression of MYH8, SOCS3, ACTC1 and ACTN2, 

genes that are known to be regulated by STAT3 and that have been associated with 

muscle development and regeneration. As for the defects in mechanoprotection, the 

deregulation of the IL6/STAT3 signaling pathway could be reproduced by depleting 

healthy myotubes from Cav3, indicating that the absence of Cav-3 and/or caveolae 

was responsible for the hyperactivation of STAT3. More importantly, we observed 

that IL6/STAT3 signaling was regulated by mechanical stress in a Cav3-dependent 

manner in human myotubes. The regulation of IL6/STAT3 mechanosignaling by 

caveolae was lost in Cav3-mutant myotubes or when healthy myotubes were 

depleted of Cav3. Again, as observed for mechanoprotection, the regulation of IL6 

signaling could be rescued in P28L Cav3 myotubes transduced by the WT form of 

Cav3, supporting the role of bona fide caveolae in the regulation of these two 

processes.  

The first CAV3 mutation associated with muscle disorders was described 20 

years ago and today it has been extended to five distinct genetic disorders: rippling 

muscle disease (RMD), distal myopathies (DM), hyperCKemia (HCK), limb-girdle 

muscular dystrophy 1C (LGMD-1C), and familial hypertrophic cardiomyopathy 
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(HCM)20,39. Although many studies have addressed the role of these mutations in 

muscle damages, the underlying mechanisms remain poorly characterized. Cav3 

has been involved in several aspects of muscle physiology including myoblast 

fusion44 and T-tubules organization45. Moreover, Cav3 interacts with the dystrophin 

complex46 and regulates the trafficking of dysferlin47, two important muscle proteins 

whose expression and localization are deregulated in severe myopathies. It is 

therefore likely that the mechanisms by which Cav3 mutations are responsible for 

muscle dystrophies are multiple.  

In conclusion, we describe a new mechanism by which the Cav3 mutations 

can be deleterious in human myotubes. We uncovered a new regulation of 

IL6/STAT3 signaling by caveolae under mechanical stress. Our findings revealed a 

striking similarity between the regulation of mechanoprotection and the control of 

IL6/STAT3 signaling by caveolae under mechanical stress. Our data confirm that the 

retention of Cav3 P28L and R26Q in the Golgi complex is responsible for the 

absence of functional and morphologically defined caveolae at the plasma 

membrane, which in turn results in deficient mechanoprotection and IL6/STAT3 

mechanosignaling. The IL6/STAT3 pathway is tightly associated with the regulation 

of muscle mass and size31,42. It is likely that the alteration of mechanoprotection and 

muscle size, two critical parameters for general muscle homeostasis, are deleterious 

for muscle tissue integrity. It is therefore tempting to propose that the caveolae-

dependent mechano-regulation of the IL6/STAT3 pathway that we have unraveled 

here is critical to couple the activation of the IL6/STAT3 pathway with the intensity of 

mechanical stress that myotubes constantly experience during their lifetime thereby 

preventing a chronic hyperactivation of IL6/STAT3, through a negative feedback 

loop, that would be otherwise pathological to muscle cells. 

 

 

Methods 

 

Cell lines. P28L and R26Q human myoblasts were immortalized by the platform for 

immortalization of human cells of the Institute of Myology as described in 48. Briefly, 

myoblasts were transduced with lentiviral vectors encoding hTERT and cdk4 and 

containing puromycin (P28L) or puromycin and neomycin (R26Q) selection markers. 

Transduced cells were selected with puromycin (1 µg/ml) for 6 days (P28L) or with 
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puromycin (1 µg/ml) for 6 days and neomycin (1 mg/ml) for 10 days (R26Q). Cells 

were seeded at clonal density, and individual myogenic clones were isolated.  

For caveolin-3 expression, immortalized WT and P28L myoblasts were transduced 

with lentiviral vectors expressing WT caveolin-3 and a GFP reporter gene (MOI 5). A 

GFP lentiviral vector was used as control (MOI 5).  

  

Cell culture. All cells were grown at 37°C under 5% of CO2. All myoblasts cell lines 

were cultured in Skeletal Muscle Cell Growth Medium (Promocell) supplemented 

with 20% FCS (Gibco, Life technologies), 50 µg/mL of fetuine, 10 ng/mL of epidermal 

growth factor, 1 ng/mL basic fibroblast growth factor, 10 µg/mL of insulin and 0.4 

µ/mL of dexamethasone (Promocell). Prior to any cell seeding, surfaces (well, 

coverslip, patterned coverslips) are coated with 0.01% of matrigel (v/v) (Sigma) for 

15 min at 37°C. For myoblast differentiation, confluent cells (80-100% confluency) 

are put in DMEM high-glucose Glutamax (Gibco, Life Technologies), supplemented 

with 0.1% of insulin (v/v) (Sigma) for 4 days.  

 

Antibodies and reagents. Mouse anti-αTubulin (Sigma-Aldrich, clone B512, T5168, 

1/1000 for WB); mouse anti-caveolin-3 (Santa Cruz, clone A3, sc-5310, 1/1000 for 

WB, 1/250 for IF); rabbit anti-caveolin-1 (Cell Signaling, 3238, 1/1000 for WB, 1/500 

for IF); goat anti-GM130 (Santa Cruz, clone P-20, sc-16268, 1/50 for IF); mouse anti-

MF20 (kind gift of Vincent Mouly, 1/100 for WB, 1/20 for IF); mouse anti-STAT3 (Cell 

Signaling, clone 124H6, 9139, 1/1000 for WB); rabbit anti-pSTAT3 (Cell Signaling, 

clone D3A7, 9145, 1/1000 for WB, 1/75 for IF); Secondary antibodies conjugated to 

Alexa FITC, Cy3, Cy5 or horseradish peroxidase (Beckman Coulter or Invitrogen). 

DAPI (Sigma-Aldrich).  

 

RNA interference-mediated silencing. Myoblasts were transfected with small 

interfering RNAs (siRNAs) using HiPerFect (Qiagen) according to the manufacturer’s 

instructions at days 0 and 2 of differentiation and were cultured in differentiation 

medium for a total of 4 days. Experiments were performed on validation of silencing 

efficiency by immunoblot analysis using specific antibodies and normalizing to the 

total level of tubulin used as loading controls. 20 nM of a pool of four siRNA targeting 

Cav3 were used (SI03068730, SI02625665, SI02625658 and SI00146188, 
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QIAGEN), Control siRNA (1022076, QIAGEN) was used at the same concentration 

and served as reference point. 

 

Immunoblotting. Cells were lysed in sample buffer (62.5 mM Tris/HCl pH 6.0, 2% 

v/v SDS, 10% glycerol v/v, 40 mM dithiothreitol and 0.03% w/v phenol red). Lysates 

were analyzed by SDS–PAGE and Western blot analysis and immunoblotted with 

the indicated primary antibodies and horseradish peroxidase- conjugated secondary 

antibodies. Chemiluminescence signal was revealed using Pierce™ ECL Western 

Blotting Substrate, SuperSignal West Dura Extended Duration Substrate or 

SuperSignal West Femto Substrate (Thermo Scientific Life Technologies). 

Acquisition and quantification were performed with the ChemiDoc MP Imaging 

System (Bio-rad).  

 

Immunofluorescence. Myoblasts were grown and differentiated on coverslips for 4 

days. For Cav3, Cav1, MF-20, GM130 staining, cells are fixed with 4% PFA (v/v) 

(Sigma-Aldrich) for 10 min at RT, quenched in 50 mM NH4Cl and then permeabilized 

with 0.2% BSA (v/v) and 0.05% saponin (v/v) (Sigma-Aldrich) in PBS for 20 min. 

Cells are incubated sequentially with indicated primary and fluorescence-conjugated 

secondary antibody in permeabilization buffer for 1h at RT.  For pSTAT3 staining, 

cells are fixed and permeabilized with cold methanol for 15 min at -20°C. After 

washes with PBS 0.2% BSA (v/v), cells are incubated sequentially with indicated 

primary and fluorescence-conjugated secondary antibody in PBS 0.2% (v/v) for 1 h 

at RT. In both protocols, coverslips are mounted in Fluoromount-G mounting medium 

(eBioscience) supplemented with 2 µg/mL of DAPI (Sigma-Aldrich). Acquisition of 

images are done using a spinning disk microscope (inverted Spinning Disk Confocal 

Roper/Nikon; Camera: CCD 1392x1040 CoolSnap HQ2 ; objective : 60x CFI Plan 

Apo VC).  

 

Electron microscopy. Epon embedding was used to preserve the integrity of cell 

structures. Myotubes were fixed sequentially for 1 h at room temperature with 1.25% 

glutaraldehyde in 0.1 M Na-Cacodylate and then overnight at 4°C. 

Cells were washed extensively with 0.1 M Na-Cacodylate pH 7.2. Membrane fixation 

was performed for 1 h at room temperature with 1% OsO4 in 0.1 M Na-Cacodylate 

pH 7.2. Cells were dehydrated by incubation with aqueous solutions of ethanol at 
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increasing concentrations (50, 70, 90, then 100%, each for 10 min at RT). 

Embedding was finally performed in LX112 resin. Cells were infiltrated with a 1:1 

LX112:ethanol solution, washed with LX112, and embedded overnight at 60°C in 

LX112 resin. Ultrathin 65 nm sections were sliced using a Leica UCT ultramicrotome 

and mounted on nickel formvar/ carbon-coated grids for observations. Contrast was 

obtained by incubation of the sections for 10 min in 4% uranyl acetate followed by 1 

min in lead citrate.  

Electron micrographs were acquired on a Tecnai Spirit electron microscope (FEI, 

Eindhoven, The Netherlands) equipped with a 4k CCD camera (EMSIS GmbH, 

Münster, Germany) 

 

Micropatterning. 18 mm coverslips were micropatterned as described in (Carpi et 

al., 2011) using a photo-mask with lines of 10 µm of width, separated by 60 µm. In 

both force measurements and membrane bursting assay, myoblasts are plated at 

confluency on line micropatterns coverslips coated with 0.01% of matrigel (v/v) 

(Sigma) for 15 min at 37°C. Differentiation of myoblasts is achieved as described 

above in section Cell culture.  

 

Force Measurements. Plasma membrane tethers were extracted from cells by a 

concanavalin A (Sigma-Aldrich) coated bead (3 µm in diameter, Polysciences) 

trapped in optical tweezers. The optical tweezers are made of a 1064 nm laser beam 

(ytterbium fiber laser, λ = 1064 nm, TEM 00, 5 W, IPG Photonics, Oxford, MA) 

expanded and steered (optics by Elliot Scientific, Harpenden, UK) in the back focal 

plane of the microscope objective (Apo-TIRF 100× NA 1.45, Nikon). The whole setup 

was mounted on a Nikon Eclipse-Ti inverted microscope. The sample was 

illuminated by transmitted light, and movies were acquired at 10 Hz with an EM-

charge-coupled device camera (Andor iXon 897) driven by Micro-Manager. The fine 

movements and particularly the translational movement necessary to pull the 

membrane tether were performed using a custom-made stage mounted on a 

piezoelectric element (P753, Physik Instrumente, Karlsruhe, Germany) driven by a 

servo controller (E665, Physik Instrumente) and a function generator (Sony Tektronix 

AFG320). 

Calibration was performed using an oscillatory modulation driven by a function 

generator and measuring the response of the bead to an oscillatory motion of the 
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stage. We measured k = 159 pN/µm. This relationship is linear in the laser power 

range used for the experiments (0.4–1.2 W). 

The membrane tether was held at constant length to measure the static force. For 

measuring membrane tension changes due to hypo-osmotic shock, a first tether was 

first pulled at 300 mOsm (iso condition). A second tube was pulled on the same cell 

5 min after diluting the medium with milliQ water to obtain 45 mOsm. The position of 

the bead used to compute tether forces was detected from the images using a 

custom ImageJ macro.  

 

Membrane bursting assay. Line micropatterned myotubes are incubated in 5 

µg/mL of calcein-AM (Life techonologies) and 50 µg/mL of DAPI (Sigma-Aldrich) for 

15 min at 37°C in the dark. Medium was then switched back with differentiation 

medium to wash out the excess of calcein-AM. The medium is then switched again 

with a 30 mOsm hypo-osmotic shock medium obtained after a dilution of 10% 

medium and 90% H2O, supplemented with 2 mg/mL of PI (Sigma). Immediately after 

medium switching, pictures are taken every minute for 10 min using a 

videomicroscope (Inverted microscope Nikon Ti-E, Camera: CCD 1392x1040 

CoolSnap HQ2, objective: 10x CFI Fluor). 

 

IL6 stimulation. Myotubes were starved 4 h by switching the differentiation medium 

to DMEM medium. In resting conditions, cells are then stimulated by switching the 

medium with DMEM with 0.2% BSA (w/v), supplemented with 10 ng/mL of human 

recombinant IL6 (R&D) for 0, 5 or 15 min at 37°C. For hypo-osmotic conditions, 

medium was first switched to 75% hypo-osmotic shock (25% DMEM, 75% H2O) for 5 

min and then switched to the same medium supplemented with 10 ng/mL of IL6 for 5 

more minutes at 37°C. For stretching conditions, myoblasts were differentiated on 

fibronectin (Sigma-Aldrich) coated stretchable plates (Uniflex® culture plate, Flexcell 

International) and were then subjected or not to 30 min of cyclic stretch (10% 

elongation, 0.5 Hz), using the FX-4000T TM Tension Plus device (Flexcell 

International), followed or not by 5 min of 10 ng/mL IL6 stimulation. Cells are lysed 

and samples are analyzed by immunoblotting. For the analysis, pSTAT3 levels were 

quantified by calculating the ratio between pSTAT3 and STAT3, both normalized to 

Tubulin signal. For the analysis of pSTAT3 nuclear translocation, myotubes were 

differentiated on coverslips, stimulated with IL6 as described above for 0 min or 15 
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min and were then fixed for further immunofluorescence analysis. Quantification 

corresponds to the ratio between the mean pSTAT3 intensity in the nuclei on the one 

in the cytoplasm. 

 

Quantitative PCR. Cells were lysed and RNA extraction was performed using an 

extraction kit (RNeasy Plus, Qiagen). Reverse-transcription reaction was performed 

with 1 µg of RNA per reaction, using high capacity cDNA reverse-transcritpion kit 

(Applied biosystem).  qPCR was performed on 50 ng of cDNA for a reaction in a total 

volume of 20 µL, using Taqman Gene Expression Assays (GAPDH: 

Hs02786624_g1 ; ACTC1: Hs01109515_m1 ; MYH8: Hs00267293_m1 ; SOCS3: 

Hs02330328_s1, ACTN2: Hs00153809_m1, Applied biosystem) and a Lightcycler 

480 Probes Master kit (Roche). Relative expression levels were calculated using 

∆∆CT method with fold changes calculated as 2–∆∆CT. 
 
Statistical analyses 

All analyses were performed using GraphPad Prism version 6.0 and 7.0, GraphPad 

Software, La Jolla California USA, www.graphpad.com. Two-tailed (paired or 

unpaired) t-test was used if comparing only two conditions. For comparing more than 

two conditions, Kurskal-Wallis test was used with Dunn’s multiple comparison test (if 

comparing all conditions to the control condition). Significance of mean comparison 

is marked on the graphs by asterisks. Error bars denote SEM or SD. 
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Figure legends 
 

Figure 1 | Characterization of caveolae and Cav3 expression in WT, Cav3 P28L 

and Cav3 R26Q myotubes. (a) Electron micrographs of WT, Cav3 P28L and Cav3 

R26Q myotubes. Caveolae, interconnected caveolae and aberrant sized caveolae 

are indicated with black arrowheads, asterisks and white arrowheads, respectively. 

(b) Quantification of the number of caveolae / µm2 in (a). (c) Immunoblot analysis of 

total levels of Cav3 in WT, Cav3 P28L and Cav3 R26Q differentiated myotubes. 

Tubulin serves as a loading control. (d) Quantification of the expression of Cav3 in 

(c) by calculating the ratio between Cav3 and tubulin expression. (e) 

Immunofluorescent labeling of Cav3 and GM130 in WT, Cav3 P28L or Cav3 R26Q 

myotubes analyzed by confocal microscopy. Arrows in inset indicate the plasma 

membrane and arrowheads indicate the Golgi complex. (a) Scale bar = 200 nm. 

Representative cells quantified in (b) (number of regions analyzed: WT = 115, P28L 

= 154, R26Q = 146; Total area screened: WT = 1140 µm2, P28L = 1187 µm2, R26Q 

= 1216 µm2) (d) Quantification was done on 3 independent experiments (e) Scale 

bar = 10 µm. Reproducibility of experiments: (a) Representative cells. (b), (c) and (d) 

Representative data for 3 experiments. Mean value ± SEM. (b, d) Statistical analysis 

with a two-tailed unpaired t test, * P<0,05; *** P<0,0001. 

 

 

Figure 2 | Cav3 P28L and Cav3 R26Q myotubes present major defects in 

membrane tension buffering and membrane integrity. (a, b) Membrane tension 

measurement analysis using optical tweezers and nanotube pulling on 

micropatterned WT, Cav3 P28L or Cav3 R26Q myotubes. Membrane tethers were 

pulled in the perpendicular axis of aligned myotubes after micropatterning in resting 

conditions and 5 min after a 45 mOsm hypo-osmotic shock (a, b, left panels).  

Membrane tension was analyzed in resting condition (a, right panel) and the 

difference of membrane tension before and after hypo-osmotic shock was 

calculated, reflecting the percentage of increase of membrane tension upon 

mechanical stress (b, right panel). 
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(c, e) Micropatterned WT, Cav3 P28L or Cav3 R26Q myotubes (c) or WT ctl (siCtl) 

and Cav3-depleted (siCav3) myotubes (e) were loaded with calcein-AM (green). The 

medium was switched with a 30 mOsm medium supplemented with propidium iodide 

(PI, red). Representative pictures were taken at the indicated times during hypo-

osmotic shock. Arrows correspond to myotubes and asterisks correspond to burst 

myotubes. (d, f) Quantification of the percentage of burst myotubes (upper panel) 

and mean time of bursting in minutes (lower panel) in (c) and (e), respectively. (a, b) 

Scale bar = 5 µm. (c, e) Scale bar = 120 µm. Reproducibility of experiments: (a) 

Representative pictures and quantifications from 7 independent experiments (WT 

n=20, P28L n=23 and R26Q n=22) (b) Representative pictures and quantifications 

from 7 independent experiments (WT n=20, P28L n=27 and R26Q n=18). (c) 

Representative data of 3 independent experiments quantified in (d) (% burst cells: 

WT n=310, P28L n=299 and R26Q n=271; mean time of bursting: WT n=165, P28L 

n=233 and R26Q n=240). (e) Representative data of 3 independent experiments 

quantified in (f) (% burst cells: siCtl n=749 and siCav3 n=569; mean time of bursting: 

siCtl n=171 and siCav3 n=506). Mean value ± SD. (a, b) Statistical analyses were 

done using Kurskal-Wallis test. (d, f) Statistical analysis with two-tailed unpaired t 

test; * P<0,05; *** P<0,001. 

 

Figure 3 | Constitutive hyperactivation of IL6/STAT3 signaling in Cav3 P28L 

and Cav3 R26Q myotubes. (a) Immunoblot analysis of pSTAT3 and STAT3 levels 

in WT, Cav3 P28L and Cav3 R26Q myotubes stimulated for the indicated times with 

10 ng/mL IL6. Tubulin serves as a loading control. (b) Quantification of STAT3 

activation of (a), corresponding to the ratio pSTAT3 on STAT3 total levels after 

normalization to tubulin levels. (c) Confocal microscopy of immunofluorescent 

pSTAT3 in WT, Cav3 P28L and Cav3 R26Q myotubes stimulated or not for 15 min 

with 10 ng/mL IL6. White dashed lines outline nucleus boundaries (d) Quantification 

of pSTAT3 nuclear translocation in (c) corresponding to nuclei/cytoplasm mean 

intensity ratio of pSTAT3. (e) Immunoblot analysis of pSTAT3 levels in WT ctl (siCtl) 

and Cav3-depleted (siCav3) myotubes stimulated for the indicated times with 10 

ng/mL IL6. (f) Quantification of STAT3 activation in (e), corresponding to the ratio 

pSTAT3 on STAT3 total level after normalization with tubulin level. (g) Expression of 

STAT3 related genes: from left to right SOCS3, MYH8, ACTC1 and ACTN2 in WT, 

Cav3 P28L or Cav3 R26Q myotubes. (c) Scale bar = 10 µm. Reproducibility of 
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experiments: (a, c and e) Representative data. (b) Quantification was done on 4 

independent experiments. (d) Quantification was done on 3 independent 

experiments (0 min: WT n=41, P28L n=25, R26Q n=21; 15 min: WT n=22, P28L 

n=30, R26Q n=30). (f) Quantification was done on 4 experiments. (g) Quantification 

was done on 5 (SOCS3), 8 (MYH8), 3 (ACTC1) and 7 (ACTN2) independent 

experiments. Mean value ± SEM. (b, f) Statistical analysis with two-tailed paired t 

test. (d, g) Statistical analysis with two-tailed unpaired t test * P<0,05; ** P<0,01; *** 

P<0,001; ns, non significant. 

 

Figure 4 | IL6/STAT3 mechanosignaling is impaired in Cav3 P28L and R26Q 

myotubes. (a, c) Immunoblot analysis of pSTAT3 and STAT3 levels in WT, Cav3 

P28L and Cav3 R26Q myotubes. (a) WT ctl (siCtl) or Cav3-depleted (siCav3) 

myotubes (c) subjected or not to a 75 mOsm hypo-osmotic shock (Hypo-Osm) for 10 

min, followed by stimulation or not with 10 ng/mL IL6 for 5 min. Tubulin serves as 

loading control. (b, d) Quantification of STAT3 activation in (a) and (c) respectively, 

corresponding to the ratio pSTAT3 on STAT3 total level after normalization to tubulin 

level.  

Reproducibility of experiments: (a, c) Representative data. (b) Quantification was 

done on 5 and 3 independent experiments for WT and mutants respectively. (d) 

Quantification was done on 4 independent experiments. Mean value ± SEM. (b, d) 

Statistical analysis with two-tailed paired t test; * P<0,05; ** P<0,01; ns, non 

significant. 

 

Figure 5 | Expression of WT Cav3 rescues a normal phenotype in Cav3 P28L 

and R26Q myotubes. 

(a) Immunofluorescent labeling of Cav3 and Golgi marker GM130 in Cav3 P28L GFP 

and P28L Cav3-GFP transduced myotubes analyzed by confocal microscopy. 

Arrows in inset indicate the plasma membrane and arrowheads indicate the Golgi 

complex. (b) Electron micrographs of Cav3 P28L GFP and P28L Cav3-GFP 

transduced myotubes. Caveolae and interconnected caveolae are indicated with 

arrowheads and asterisks, respectively. (c) Quantification of the number of caveolae/ 

µm2 (left panel) and the total number of caveolae in (b) (right panel). (d) 

Micropatterned Cav3 P28L GFP and P28L Cav3-GFP transduced myotubes were 
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loaded with calcein-AM (green). The medium was switched with a 30 mOsm medium 

supplemented with propidium iodide (PI, red). Representative pictures were taken at 

the indicated times during hypo-osmotic shock. Arrows correspond to myotubes and 

asterisks correspond to burst myotubes. (e) Quantification of the percentage of burst 

myotubes (upper panel) and mean time of bursting in minutes (lower panel) in (d). (f) 
Confocal microscopy of immunofluorescent pSTAT3 in Cav3 P28L GFP or P28L 

Cav3-GFP transduced myotubes stimulated or not for 15 min with 10 ng/mL IL6. 

White dashed lines outline nucleus boundaries (g) Quantification of pSTAT3 nuclear 

translocation in (f) corresponding to nuclei/cytoplasm mean intensity ratio of 

pSTAT3. (a) Scale bar = 10 µm. (b) Scale bar = 200 nm. (d) Scale bar = 120 µm. (f) 
Scale bar = 10 µm. Reproducibility of experiments: (a) Representative pictures of 3 

experiments. (b) Representative pictures quantified in (c) (number of analyzed 

regions: P28L GFP = 169, P28L Cav3-GFP = 182; Total screened area: P28L GFP = 

1405 µm2, P28L Cav3-GFP = 1349 µm2) (d) Show representative data of 3 

experiments quantified in (e) (% burst cells: GFP n=353 and Cav3-GFP n=358; time 

of burst: GFP n=175 and Cav3-GFP n=65). (f) Show representative data of 3 

experiments quantified in (g) (control: GFP n=33 and Cav3-GFP n=42; 15 min: GFP 

n=14 and Cav3-GFP n=13). Mean value ± SEM. (c), (e) and (g) Statistical analysis 

with a two-tailed unpaired t test; ** P<0,01; *** P<0,0001; ns, non significant. 
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Supplementary figure legends 

 

Supplementary figure 1 | MF20 and Cav1 expression in WT, Cav3 P28L and 

R26Q myotubes. (a, b) Immunoblot analysis of total levels of MF20 (a) and Cav1 

(b) in WT, Cav3 P28L and Cav3 R26Q myotubes. Tubulin serves as a loading 

control. (c) Cav3, Cav1 and Golgi marker GM130 immunofluorescence were 

analyzed by confocal microscopy in WT, Cav3 P28L and Cav3 R26Q myotubes. (a), 

(b) and (c) Representative data for 3 experiments. (c) Scale bar = 10 µm. 

 

Supplementary figure 2 | Efficient membrane tension buffering and 

mechanoprotection in Cav3 P28L and Cav3 R26Q myotubes under mild hypo-

osmotic shock. (a) Calcein-AM and DAPI fluorescence of WT, Cav3 P28L and 

Cav3 R26Q myotubes prior to hypo-osmotic shock in the membrane bursting assay 

described in Figure 2c. Insets show DAPI in myotubes indicated with arrows in 

Figure 2c.  (b) Micropatterned WT, Cav3 P28L and Cav3 R26Q myotubes were 

loaded with calcein-AM (green). The medium was switched to a 150 mOsm medium 

supplemented with propidium iodide (PI, red). Representative pictures were taken at 

the indicated times during hypo-osmotic shock. Arrows correspond to myotubes and 

asterisks correspond to burst myotubes. (c) Membrane tension measurement 

analysis using optical tweezers and nanotube pulling on micropatterned WT, Cav3 

P28L and Cav3 R26Q myotubes. Membrane tethers were pulled in the perpendicular 

axis of myotubes after micropatterning in resting conditions and 5 min after a 150 

mOsm hypo-osmotic shock (upper panel).  Membrane tension was analyzed in 

resting condition (lower panel, left) and the difference of membrane tension before 

and after hypo-osmotic shock was calculated, reflecting the percentage of increase 

of membrane tension upon mechanical stress (lower panel, right) (d) Immunoblot 

analysis of Cav3 depletion in Figure 2e. (a, b) Scale bar = 120 µm. (c) Scale bar = 

5µm Reproducibility of experiments: (c) Quantifications were done on 5 independent 

experiments (WT n=17, P28L n=16, R26Q n=14). Mean value ± SD. Statistical 

analyses were done using Kruskal-Wallis test; ns, non significant. 

 

Supplementary figure 3 | IL6/STAT3 signaling in WT myotubes under cyclic 

stretch. (a) Immunoblot analysis of pSTAT3 and STAT3 levels in WT myotubes 

subjected or not to 30 min cyclic stretch. Myotubes were then stimulated or not with 
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10 ng/mL IL6 for 5 min. Tubulin serves as a loading control. (b) Quantification of 

STAT3 activation in (a) corresponding to the ratio pSTAT3 on STAT3 total levels 

after normalization to tubulin levels. Reproducibility of experiments: (b) Quantification 

was done on 3 experiments. Mean value ± SEM. Statistical analyses were done 

using two-tailed paired t test; * P<0,05. 

 

Supplementary figure 4 | Effect of Cav3 expression in mechanoprotection and 

IL6 signaling in WT myotubes. (a) Immunofluorescent labeling of Cav3 and Golgi 

marker GM130 in WT GFP and WT Cav3-GFP transduced myotubes analyzed by 

confocal microscopy. Arrows and arrowheads in inset indicate the plasma membrane 

and the Golgi complex respectively. (b) Quantification of the percentage of burst 

myotubes after a 30 mOsm hypo-osmotic shock (left panel) and mean time of 

bursting in minutes (right panel) in (a). (c) Quantification of pSTAT3 nuclear 

translocation in WT GFP or WT Cav3-GFP transduced myotubes stimulated or not 

for 15 min with 10 ng/mL IL6, corresponding to nuclei/cytoplasm mean intensity ratio 

of pSTAT3. (a) Scale bar = 10 µm. Reproducibility of experiments: (a) 

Representative data from 3 independent experiments. (b) Quantification was done 

on 3 independent experiments (% burst: GFP n=714, Cav3-GFP n=610; time of 

burst: GFP n=80, Cav3-GFP n=171). (c) Quantification was done on 3 independent 

experiments (control: GFP n=16, Cav3-GFP n=21; 15 min: GFP n=16, Cav3-GFP 

n=21). (b, c) Statistical analyses were done using two-tailed unpaired t test; 

***P<0,0001; *P<0,05; ns, non significant. 
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Titre : Mécanosignalisation par les cavéoles : un rôle nouveau dans le contrôle de la signalisation 
JAK-STAT 

Mots clés : mécanosignalisation ; mécanotransduction ;  cavéoles ; JAK-STAT 

Résumé : Les cavéoles sont des invaginations en 
forme de coupelle à la membrane plasmique. Ces 
organelles multifonctionnelles jouent entre autres, un 
rôle clé dans la mécano-protection et la signalisation 
cellulaire. En effet, les cavéoles ont la faculté de 
s’aplanir en réponse à l’augmentation de la tension 
membranaire, afin de protéger la cellule des 
contraintes mécaniques. Les cavéoles jouant un rôle 
clé dans la signalisation cellulaire, nous avions émis 
l’hypothèse que le cycle mécano-dépendent de 
désassemblage/réassemblage des cavéoles constitue 
un interrupteur mécanique de certaines voies de 
signalisation. Ce projet consiste à élucider le 
mécanisme moléculaire responsable du contrôle de 
la voie de signalisation JAK-STAT par la mécanique 
des cavéoles. Dans ces travaux, nous avons pu 
démontré que la cavéoline-1 (Cav1), un constitutant 
essentiel des cavéoles est libérée et devient 
hautement mobile au niveau de la membrane 
plasmique. Considérant les propriétés de 
signalisation de Cav1, Nous avons testé l’effet du 
désassemblage des cavéoles sur la signalisation 
cellulaire. Un  criblage à haut débit, nous a permis 
identifié la voie de signalisation JAK- STAT  

stimulée par  l’IFN-α comme voie modèle pour cette 
étude. En effet, la transduction du signal JAK-STAT 
induit par l’IFN-α est modulée par la mécanique des 
cavéoles. Afin de disséquer le mécanisme 
moléculaire responsable du contrôle de la 
signalisation JAK-STAT par la mécanique des 
cavéoles, nous avons déterminé le rôle de Cav1 dans 
ce contrôle. Nous avons observé que Cav1 est un 
régulateur négatif de la phosphorylation de STAT3 
dépendante de la kinase JAK1. De plus, nous avons 
démontré que Cav1 interagit avec JAK1 en fonction 
de la tension membranaire. Nous avons également 
démontré que cette interaction Cav1-JAK1 fait 
intervenir le « scaffolding domain » de Cav1 (CSD), 
et que celui-ci est responsable de l’abolition de 
l’activité kinase de JAK1. Par conséquent, 
l’interaction de Cav1 avec JAK1 empêche 
l’activation de STAT3 par la kinase JAK1. Ces 
résultats démontrent que les cavéoles sont des 
organelles de mécano-signalisation, qui, lors d’un 
stress mécanique,  libèrent de la Cav1 non cavéolaire 
capable d’inactiver la kinase JAK1, empêchant ainsi, 
la transduction du signal JAK-STAT.  
 

 

 

Title : Mechanosignaling through cavolae : A new role for the control of JAK-STAT signaling 

Keywords : Mechaosignaling ; Mechanotransduction ;  Caveolae ; JAK-STAT 

Abstract : Caveolae are small cup-shaped plasma 
membrane invaginations. These multifunctional 
organelles play a key role in cell mechanoprotection 
and cell signaling. Indeed our laboratory reported 
that caveolae have the ability to flatten out upon 
membrane tension increase, protecting cells from 
mechanical strains. Since caveolae play a key role in 
cell signaling we hypothesized that the mechano-
dependent cycle of caveolae 
disassembly/reassembly may constitute a 
mechanical switch for signaling pathways. In this 
project, we elucidated the molecular mechanism 
underlying the control of JAK-STAT signaling by 
caveolae mechanics. We showed that caveolin-1 
(Cav1), an essential caveolar component is released 
and become highly mobile at the plasma membrane 
under mechanical stress. Considering that caveolae 
are important signaling hubs at the plasma 
membrane, we addressed the effects of the 
mechanical release of Cav1 on cell signaling. Using 

high throughput screening, we identified the JAK-
STAT signaling pathway as a candidate. To further 
dissect the molecular mechanism underlying the 
control of JAK-STAT signaling by caveolae 
mechanics, we addressed the role of Cav1 in the 
control of JAK-STAT signaling stimulated by IFN-
α. We found that Cav1 was a specific negative 
regulator of the JAK1 dependent STAT3 
phosphorylation. Furthermore, the level of Cav1 
interaction with JAK1 depended on mechanical 
stress. We could show that Cav1-JAK1 interaction 
was mediated by the caveolin scaffolding domain 
(CSD), abolishing JAK1 kinase activity, hence, 
interfering with STAT3 activation upon IFN-α 
stimulation. Altogether our results show that 
caveolae are mechanosignaling organelles that 
disassemble under mechanical stress, releasing non-
caveolar Cav1, which binds to the JAK1 kinase and 
inhibits its catalytic activity, preventing thereby 
JAK-STAT signal transduction. 
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