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Chapter 1

Introduction

1.1 English

One of the major concepts of geometry that was developed in its modern
form in the 19th century is that of curvature. One can distinguish two types
of curvatures. On the one hand, intrinsic curvatures that measure properties
of geometric spaces and on the other hand, extrinsic curvatures that contain
information on how geometric objects are embedded in another space. The
famous Egregium Theorem, proved by Carl Friedrich Gauss, states that the
Gaussian curvature of a surface embedded in a three dimensional Euclidean
space only depends on the metric properties of the surface itself. This means
that the Gaussian curvature of a surface is in fact an intrinsic notion of
curvature. More generally, to extend the notion of intrinsic curvature that
Gauss studied for surfaces to Riemannian spaces, the relevant notion is that
of Riemannian curvature tensors. The first example of extrinsic curvature
that we introduce is the geodesic curvature of a curve in a Riemannian space.

Let us consider I an open interval in R containing zero, N a Riemannian
manifold and ¢ : I — N a curve that is parametrized by arc length. ( is said
to be a geodesic when the distance between any point ((s) and any other
point ((t) where ¢ is close enough to s is equal to |t — s|. Before we define
the notion of geodesic curvature that measures how far a curve is from being
a geodesic, we explain how geodesics are characterized.

In a Riemannian space, there is a unique linear connection that is torsion-
free and that is compatible with the metric. This connection is called the
Levi-Civita connection and we denote it as V€.

Proposition 1.1.1. Let N be a Riemannian manifold and let ¢ : I — N be
a smooth curve parametrized by arc length. We have that  is a geodesic if,
and only if the equation

Vi =0

1s satisfied along the trajectory of C.



For ¢ : I — N a smooth curve parametrized at speed one in a Rieman-
nian space, the geodesic curvature of ( is therefore naturally defined as the
function

I — R
LC /1
to [ VEG

We now want to understand the geodesic curvature as a measure of how far
a curve is from being a geodesic in a metric sense. Notice that by definition
if (: I — N is a geodesic then for ¢ close enough to zero, we have

dist3; (¢(0),¢(t)) = .

For an arbitrary curve parametrized by arc length, the previous formula is
modified with a correction where the geodesic curvature appears.

Proposition 1.1.2. Let N be a Riemannian manifold and let ¢ : I — N be
a smooth curve parametrized by arc length. We have

2
vEC
dist, (€(0),¢(t)) = t* — Hcg

One can ask if it is possible to extend these notions of curvature we briefly
presented in Riemannian geometry to more general settings. In this thesis
we focus more particularly on sub-Riemannian spaces.

Let us start by explaining what a sub-Riemannian manifold is. To en-
dow a smooth manifold M with a sub-Riemannian structure, we choose a
sub-bundle of its tangent bundle that we denote as A and that we call the
distribution. A vector that is tangent to the distribution is said to be hori-
zontal and a vector field is said to be horizontal when its evaluation at each
point is horizontal. In order for M to be a sub-Riemannian manifold, we
endow the distribtution with a metric tensor g which is a bilinear form on
T M that is symmetric and positive-definite. We also require the Hérmander
condition that means that the Lie algebra generated by the horizontal vector
fields reaches every vector tangent to M.

A sub-Riemannian manifold M is a length space whose distance we now
define. We say that a Lipschitz curve { : I — M is horizontal when its
velocity is almost everywhere horizontal and when the decomposition of its
velocity on an orthonormal frame that smoothly depends on the point of M
is measurable and essentially bounded. It is possible to define the length of
a horizontal curve ¢ : I — M between times ¢t and s with ¢ > s in I as

engtn (6,) = [/ (€. )

That way we can define the distance between two points in a sub-Riemannian
manifold as the infimum of all lengths of curves that join them. This sub-
Riemannian distance satisfies several convenient properties. First of all,

th+o(th).




thanks to the Hormander condition that we imposed on the distribution,
the topology induced by the distance on a sub-Riemannian manifold is equal
to the initial topology of the manifold . Another important property of
the sub-Riemannian distance is that any pair of points in a complete and
connected sub-Riemannian manifold are connected by a length minimizing
curve. Proofs of these fundamental properties can be found in the textbook
[ABB19, Chapter 3] for example.

The dichotomy between intrinsic and extrinsic curvature that we al-
ready mentioned also holds in sub-Riemannian geometry. As regards in-
trinsic curvature of sub-Riemannian spaces, it has been intensively studied
from different perspectives, some of them involving a metric interpretation
of the curvatre, and others using optimal transport or the heat equation.
A brief summary of some existing works concerning intrinsic curvature in
sub-Riemannian geometry can be found in the introduction of [ABR18]. As
regards extrinsic curvature, it can be defined for several types of subspaces.
For instance, the paper [RR08| focuses on curvature of surfaces in the Heisen-
berg group. This thesis is dedicated to studying geodesic curvature of curves
in sub-Riemannian geometry, on which there is not yet an abundant littera-
ture. To the best of our knowledge, previous works that study the geodesic
curvature of curves focus on curves inside the simplest sub-Riemannian struc-
tures, namely the Heisenberg groups. In [DV16] and [BTV17] a notion of
geodesic curvature has been introduced in the context of a Gauss-Bonnet-like
formula. In [CFH18, CHL17| the authors find complete invariants for regular
curves in the Heisenberg groups. The goal of this thesis is to introduce a
notion of geodesic curvature in the contact sub-Riemannian setting and to
understand this curvature as an object that contains metric information by
proving properties similar to Proposition 1.1.2.

Now that we introduced the main definitions of sub-Riemannian geome-
try, we are ready to present the results we obtain in this thesis. But before
we do this, let us first summarize the main goals that we aim at, in order
to keep in mind where we are heading. The central idea in this thesis is to
measure through a notion of geodesic curvature how far a smooth curve is
from beeing a geodesic. Since a smooth curve has to be of finite length and
therefore horizontal in order to be a geodesic, we choose to restrict the study
only to smooth horizontal curves. Moreover, since it is the trajectory of a
curve and not its parametriztion that makes it a geodesic, we focus only on
smooth horizontal curves that are parametrized by arc length. The question
now is, what do we expect from a notion of geodesic curvature 7 First of all,
that a smooth horizontal curve parametrized by arc length is a geodesic if
and only if its geodesic curvature is identically zero. Once we have defined
a notion of geodesic curvature such that the previous characterization of
geodesics is satisfied, we enquire about its metric interpretation. More pre-
cisely, we link the sub-Riemannian geodesic curvature and the asymptotics of
the distance between two close points along a curve to obtain results similar



to Proposition 1.1.2 in the sub-Riemannian setting.

Statement of the results We begin this thesis with a chapter devoted to
the simplest example of sub-Riemannian manifold, namely the Heisenberg
group. The results we present concerning the Heisenberg group can also be
found in the paper [Koh19]. The Heisenberg group H can be represented as
R? with coordinates (x,v, z) that we endow with a distribution generated by
the the orthonormal frame

0 yo 0 x0

YT or 202 2 3y+28z

Let us consider a smooth horizontal curve parametrized by arc length ¢ : I —
H. If we denote by 7 the projection from the Heisenberg group to the (z,y)-
plane parallely to the z-axis, then the curve 7o ( is also parametrized by arc
length in the Euclidean plane. We define k¢ the sub-Riemannian geodesic
curvature of the curve ( as the derivative of the Euclidean curvature of mo(.
If we denote as (z¢(t), ye(t), 2¢(t)) the coordinates of ((t), we can write

e(t) = (L0 — () (0).

Curvature k¢ is identically zero if and only if ¢ is a geodesic in H. We
moreover obtain a metric interpretation of the geodesic curvature.

Proposition 1.1.3. Let ¢ ;| — T,T[— H be a smooth horizontal curve that
is parametrized by arc length. We have
kZ(0)

dist? (€(0),¢(t) =t — Wtﬁ +0(t).

In order to explore other sub-Riemannian spaces than H, we must use
tools we introduce in the third chapter. More specifically, we start the third
chapter by explaining the contact framework, in which we set up to generalize
the result we obtained in the Heisenberg group. A contact manifold is a space
in which the distribution is the kernel of a differential one form w such that
dw restricted to ker w is non degenerate. Contact sub-Riemannian manifolds
are practical to work in since they are endowed with several canonical object.

First of all in any contact sub-Riemannian space there exists a linear
connection V called the Tanno connection that respects the metric but is
not torsion-free.

In a contact sub-Riemannian manifold, we also can naturally define a
fiberwise endomorphism J : A — A such that for any horizontal vector
fields X and Y,

g(X,JY)=dw(X,Y).



In particular J sends each horizontal vector V onto a vector orthogonal to
V.

A last important object that is associated to a contact structure is the
Reeb vector field X such that

ix,dw =0 and w (Xp) = 1.

Let us consider ¢ : I — M a smooth horizontal curve parametrized by
arc length in a contact sub-Riemannian manifold. The first natural idea is
to study Very) ¢’ since in the Riemannian case it is the relevant quantity to
consider to distinguish geodesics from other curves. We start by noticing
that since ( is parametrized by arc length and as the Tanno connection is
compatible with g, we have for all ¢ € I,

0 (Ve 1) =

For a more precise description of VCI(t)C, , we decompose it on the direction

of (J¢'(t)) and on (J¢'(t))" where (-) denotes the span of a family of vectors.
Let us introduce a few notations. For V € A,, we denote by Il : A, — A,
the orthogonal projection on (V). We define the characteristic deviation
function of ¢ as

R

hc: I —
t— gewy (Ve JC1)),

as well as the function
kCJ N R
1
t — HHJCI(t) (VC/(t)C/)H .

However, the knowledge of both of the previous functions along a horizontal
curve is not sufficient to say whether or not this curve is a geodesic. In
the example of the Heisenberg group, it is possible to show that along every
smooth horizontal curve parametrized by arc length ¢ : I — H, k¢ 1 is always
identically zero and that this same curve ¢ is a geodesic if, and only if h¢ is
a constant function. This gives us an indication that if we want to introduce
a third function that vanishes along geodesics, it may contain the derivative
of the characteristic deviation. In fact, for ¢ : I — M a smooth horizontal
curve parametrized by arc length we define

k‘gg: I — R

t o st 4 g (Tor (1), Xo) . C'(1))

where Tor stands for the torsion of the Tanno connection.
By reformulating the interpretation of geodesics in terms of projections
of integral lines of a Hamiltonian vector field we prove the following.



Proposition 1.1.4. Let M be a contact sub-Riemannian space and ¢ : [ —
M be a smooth horizontal curve parametrized by arc length. We have ¢ s a
geodesic if, and only if both k¢ 1 and k¢ o are identically zero.

This last proposition allows us to call k¢ 1 and k¢ 2 the first and the second
geodesic curvature.

The fourth chapter is devoted to the study of the specific case of three
dimensional contact sub-Riemannian manifolds. When M is a three dimen-
sional contact sub-Riemannian manifold, the key simplication that happens
is that for any curve ( : I — M and at any time t € I,

he(t)

Vel = rewmp”

We can notice two consequences of the previous identity.

Proposition 1.1.5. Let M be a three-dimensional contact sub-Riemannian
structure and ¢ : I — M be a smooth horizontal curve parametrized by arc
length. We have

keq = 0.

Proposition 1.1.6. Let M be a three-dimensional contact sub-Riemannian
structure. If (1,(o : I — M are two smooth horizontal curves parametrized
by arc length such that

(i) €1(0) = ¢2(0) and ¢1(0) = ¢;(0),
(ii) he,(t) = hey(t) for every t € 1.
Then (1(t) = Cao(t) for every t € I.

We then generalize Proposition 1.1.3 to 3D contact sub-Riemannian man-
ifolds.

Theorem 1.1.7. Let M be a three-dimensional contact sub-Riemannian
manifold and let ( : I — M be a smooth horizontal curve parametrized
by arc length. We have

k2 2(0)

720

We emphasize the fact that an important part of the proof of the previous
theorem actually consists in proving the regularity at time t = 0 of

dist2, (C(0), ¢(t)).

Actually, in higher dimensions, we are not able to prove that this function
has the same level of regularity than in three dimensions.

dist3, (¢(0),¢(t)) = 2 — t+o(t%).



Theorem 1.1.7 can be compared to Proposition 1.1.2. We notice that the
main order correction appears at a higher order in three dimensional contact
sub-Riemannian spaces than in a Riemannian space. We can roughly inter-
pret this phenomenon by saying that in 3D contact sub-Riemannian spaces
there is a one-parameter family of geodesics parametrized by arc length that
leave from a point in a fixed horizontal direction whereas in the Riemannian
case, there is only one geodesic parametrized by arc length that leaves from
a point in a chosen direction. Since there are “more” geodesics that can ap-
proximate a curve at a point in a 3D contact sub-Riemannian space than in
a Riemannian space, an arbitrary curve can be “more closely” approximated
by geodesics in three dimensional contact sub-Riemannian spaces than in
the Riemannian case. That is why it is not surprising to observe that the
term that indicates how far a curve is to being a geodesics appears further
in the expansion in Theorem 1.1.7 than in Proposition 1.1.2. However, this
phenomenon disappears in contact sub-Riemannian spaces in higher dimen-
sion (than three) since curves are authorized to be “further from” geodesics
as they can have a non-vanishing geodesic curvature k;.

In the last chapter of this thesis, having in mind the same questions as in
three dimensional contact sub-Riemannian spaces, we explore what happens
in higher dimensions. The first result we obtain looks quite like Theorem
1.1.7 but only contains a Taylor expansion at order 3.

Theorem 1.1.8. Let M be a contact sub-Riemannian manifold. If ( : [ —
M is a smooth horizontal curve parametrized by arc length then for t > 0,
k¢1(0)2
distag (¢(0).(1) =t - 24043 o 43).

Under the hypothesis of the previous theorem, it is natural to ask if
we can go deeper in the expansion of dist (((s),{(¢)) in the case where k¢
vanishes along curve ¢ ? The answer is yes in the case where J? = —Id,
provided we assume sufficient regularity of dist ({(s), ((t)) along the diagonal.

Theorem 1.1.9. Let M be a contact sub-Riemannian manifold such that
J? = —1d. If ¢ : I — M is a smooth horizontal curve parametrized by arc
length such that for every s € I and t > s,
d
Sdistar (C(5),C(1) = 1= K(s) (t =)' +o ((t=9)") . (L1)
then
kg,Q(S)
288
Notice that when the hypothesis of Theorem 1.1.9 are satisfied we can
integrate (1.1) and we actually obtain that
kg%g(s)

distar ((s), (1) = (t—s) = 2= (= 5)° +0 ((t - 3)5) .

K(s) =




A first corollary of Theorem 1.1.9 consists in a new characterization of
geodesics.

Corollary 1.1.10. Let M be a contact sub-Riemannian manifold such that
J? = —1d and let ¢ : I — M be a smooth horizontal curve parametrized by
arc length.

Curve ( is a geodesic if, and only if for every s € I and t > s,

%distM (C(s), C(H) = 1 + o ().

Although the previous result is a quite satisfactory consequence of The-
orem 1.1.9 from a theoretical point of view, we would also like to apply
Theorem 1.1.9 to curves that are not geodesics. We show in section 5.5 that
in the (2n + 1)-dimensional Heisenberg groups, the explicit expression of the
distance from a fixed point allows us check that the hypotheses of Theorem
1.1.9 are satisfied along any smooth horizontal curve parametrized by arc
length.

Theorem 1.1.11. Let ¢ : I — Hop11 be a smooth horizontal curve that is
parametrized by arc length such that k¢ 1 is identically zero. We have

2
distfy,, ., (¢(0),¢(t) = 1% — ]%7’22((?)156 +0O(t).

Moreover, the geodesic curvature k¢2(0) is simply equal to hi-(0).

From the results we obtain in this thesis, new questions quite naturally
arise.

Since one of the major difficulties in this work is to prove the regularity
of the squared distance between two close points on a smooth horizontal
curve, it is natural to ask : are there examples of smooth horizontal curves
in dimension strictly greater than three for which the squared distance be-
tween two close points on this curve is not regular enough to have a Taylor
expansion at order 6 7

It would also be interesting to try to generalize the results of this work. If
we want to apply the same techniques as those we use in this thesis in more
general sub-Riemannian spaces than contact spaces, we must possess a con-
nection with which we can carry on computations efficiently and understand
precisely the theory of Jacobi fields.

Another possible generalization of this work would be to define not only
geodesic curvature that characterizes geodesics, but a complete set of Frenet-
Serret invariants that characterize a curve and to study the properties of
these invariants.



1.2 Francais

Une notion géométrique fondamentale développée sous sa forme moderne
au dix-neuviéme siécle est la courbure. On distingue deux types de cour-
bures. Tout d’abord, les courbures intriséques qui mesurent les propriétés
géométriques d’un espace ; mais on définit aussi des courbures extrinséques
qui apportent une information géométrique sur le plongement de notre objet
dans 'espace ambiant. Le Théoréme Egreguim de Gauss montre par exemple
que la courbure gaussienne d’une surface plongée dans un espace euclidien
de dimension trois dépend seulement des propriétés métriques de ladite sur-
face. Ainsi, la courbure gaussienne d’une surface se révéle-t-elle étre une
notion intrinséque de courbure. Une généralisation naturelle de la notion
de courbure intrinséque étudiée par Gauss dans le cas des surface est, dans
les espaces riemanniens, celle de tenseur de courbure riemannienne. Quant
aux courbures extrinséques, la courbure géodésique d’une courbe d’un espace
riemannien en est un premier exemple.

Soient I un intervalle ouvert de R contenant zéro, N une variété rieman-
nienne et ¢ : I — N une courbe paramétrée par longueur d’arc. ¢ est qualifée
de géodésique quand la distance entre chacun de ses points ((s) et des points
¢(t) suffisament proches est égale a |t — s|. Commencons par caractériser les
géodésiques avant de définir la notion de courbure géodésique qui quantifie
& quel point une courbe est loin d’étre une géodésique.

Dans une variété riemannienne, il existe une unique connexion linéaire
sans torsion qui est compatible avec la métrique. Il s’agit de la connexion de
la notion de Levi-Civita, noté V€.

Proposition 1.2.1. Soient N une variété riemannienne et ¢ : I — N
paramétrée par longueur d’arc. Alors ( est une géodésique si et seulement si
l’équation

VE =0
est vérifiée le long de .

Ainsi, pour une courbe lisse ¢ : I — N paramétrée a vitesse 1 dans une
variété riemannienne, la courbure géodésique de ( est naturellement définie
comme suit :

I — R

t —> HV?,%)C’

On cherche désormais & interpréter la courbure géodésique comme une mesure,
au sens métrique du terme, de 1’éloignement de cette courbe par rapport a
la notion de géodésique. Notons que par définition, si ¢ : I — N est une
géodésique, alors pour ¢ suffisament proche de zéro, on a :

dist3, (€(0),¢(1)) = ¢,



Pour une courbe quelconque paramétrée par longueur d’arc la formule précé-
dente admet un terme de correction oil apparait la courbure géodésique.

Proposition 1.2.2. Soient N une variété riemannienne et ¢ : [ — N une
courbe lisse paramétrée par longueur d’arc. On a

HVLC C'

dist3, (¢(0), ¢( =ttt o(th).

On peut se demander si les notions de courbure que nous avons briéve-
ment introduites dans le cadre riemannien s’étendent & un contexte plus
général. Cette thése s’intéresse au cas des espaces sous-riemanniens.

Commencons par définir ce qu’est une variété sous-riemannienne. Pour
munir une variété lisse d’une structure sous-riemannienne, il convient de
choisir un sous-fibré vectoriel de son fibré tangent que I'on notera A ap-
pelé la distribution. Un vecteur tangent a la distribution est dit horizon-
tal et un champ de vecteurs est dit horizontal lorsque son évaluation en
chaque point est horizontale. Pour compléter la définition d’une variété
sous-Riemannienne M, on munit la distribution d’un tenseur métrique ¢
qui est une forme bilinéaire, symétrique, définie-positive sur TM. Enfin,
on demande que la condition de Hormander soit vérifiée, c’est a dire que
I’algébre de Lie générée par les champs de vecteurs horizontaux atteigne
chaque vecteur tangent a M.

Toute variété sous-riemannienne M est un espace de longueur dont la
distance est définie comme suit. On dit qu'une courbe lipschitzienne ( — M
est horizontale lorsque sa vitesse est presque partout horizontale et lorsque
la, décomposition de sa vitesse dans une base orthonormée qui dépend de
maniére lisse du point de M est mesurable et essentiellement bornée. Il est
alors possible de définir la longueur d’une courbe horizontale { : I — M
entre les instants ¢ et s (t > s) de I en posant

longueur (Q[S,t]) _ /st \/gq(u) (¢"(u), ¢'(u))du

Ainsi peut-on définir la distance entre deux points d’une variété sous rieman-
nienne comme l'infimum des longueur de courbes les joignant. Cette distance
vérifie plusieurs propriétés utiles. Tout d’abord la condition de Hérmander
imposée & la distribution assure que la topologie induite par la distance sur
une variété sous-riemannienne est égale & la topologie de la variété initiale.
Une autre propriété importante de la distance sous-riemannienne est que
tout couple de points d’une variété sous-riemannienne connexe et compléte
est joint par une courbe minimsant la longueur. Des preuves de ces résutats
fondamentaux peuvent étre par exemple trouvées dans [ABB19, Chapitre 3|.

La dichotomie déja soulignée entre courbures intrinséque et extrinséque
existe également en géomeétrie sous-riemannienne. Les courbures intrinséques
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en géométrie sous-riemannienne ont été étudiées sous différents angles : intér-
prétation métrique, transport optimal, équation de la chaleur par exemple.
L’introduction de [ABR18] dresse un panorama de certains de ces travaux.
En ce qui concerne les courbures extrinséques, elles peuvent étre définies pour
plusieurs types d’espaces. Par exemple, article [RRO8] traite de courbure
de surfaces dans le groupe de Heisenberg. Cette présente thése est quant
a elle dédiée 4 I'étude de la courbure géodésique de courbes en géométrie
sous-Riemannienne, au sujet de laquelle la littérature n’est pour l'instant
pas trés abondante. A notre connaissance, les travaux existant sur la cour-
bure géodésique dans ce contexte se cantonnent aux cas les plus élémen-
taires de structures sous-riemanniennes, a savoir les groupes de Heisenberg.
Dans [DV16] et [BTV17] une notion de courbure géodésique est introduite
pour étudier I'equivalent de Gauss-Bonnet. Dans [CFH18, CHL17| les au-
teurs définissent des invariants complets pour les courbes réguliéres dans les
groupes de Heisenberg. Le but de cette thése est de définir une courbure
géodésique dans le contexte de la géométrie sous-riemannienne de contact
et de comprendre I'information métrique contenue dans cette courbure en
démontrant des propriétés similaires & la Proposition 1.2.2.

Les définitions de base de la géométrie sous-riemannienne ayant été ex-
plicitées, on peut desormais présenter les résultats obtenus dans ce manuscrit.
L’idée centrale est de chercher & mesurer a travers le spectre d’une courbure
géodésique, ’éloignement d’'une courbe lisse par rapport au fait d’étre une
géodésique. Mais puisqu’'une courbe lisee doit étre de longueur finie, et donc
horizontale pour étre une géodésique, on restreint notre étude au cas des
courbes lisses horizontales. De plus, c’est la trajectoire d’une courbe et non
son paramétrage qui en fait une géodésique. On peut donc considérer que
la courbe lisse horizontale est paramétrée par longueur d’arc. On doit main-
tenant préciser ce qu’on attend d’une courbure géodésique. On souhaite en
premier lieu qu'une courbe horizontale lisse paramétrée par longueur d’arc
soit une géodésique si et seulement sa courbure est identiquement nulle.
On peut ensuite rechercher son interprétation métrique en liant la courbure
géodésique & "asymptotique de la distance entre deux points proches de la
courbe.

Résultats Le premier chapitre de cette thése est consacré a 'exemple le
plus élémentaire de variété sous-riemannienne, le groupe de Heisenberg. Ce
chapitre reprend les résultat de larticle [Koh19]. Le groupe de Heisenberg
H peut étre représenté comme R? de coordonnées (z,y, z) que I'on munit de
la distribution générée par la base orthonormeée

g yo 0 x0

K= "2 2T

Si on considére une courbe lisse horizontale paramétrée par longueur d’arc
¢ — H et qu’on note 7 la projection du groupe de Heisenberg sur le plan
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(z,y) parallelement a I’axe des z, alors la courbe wo( est aussi paramétrée par
longueur d’arc dans le plan euclidien. On définit k¢ la courbure géodésique
sous-riemannienne de ¢ comme étant la dérivée de la courbure euclidienne
de mo (. En écrivant (z¢(t),yc(t), z¢(t)) les coordonnées de ((t), on a

d

ke(t) = i

(ze ()Y (8) — ye(t)zZ (1) -

La courbure k¢ est identiquement nulle si et seulement si ¢ est une
géodésique dans H. De plus, on obtient une interprétation métrique de la
courbure géodésique.

Proposition 1.2.3. Considérons ¢ :] — T,T[— H une courbe horizontale
lisse paramétrée par longueur d’arc. On a

2
distZ (¢(0),¢(t) =t — k;;g)tﬁ +0(t).

Afin de pouvoir étudier d’autres espaces sous-riemanniens que H, on in-
troduit des outils adaptés dans le troisiéme chapitre. Ce chapitre commence
par une description du cadre de la géométrie sous-riemannienne de con-
tact propice & la généralisation du développement obtenu dans le groupe de
Heisenberg. Une variété de contact est un espace dans lequel la distribution
est le noyau d’une 1-forme differentielle w telle que dw restreinte & ker w est
non dégénérée. Les variétés sous-riemanniennes de contact sont un cadre
pratique puisqu’elles sont munies de plusieurs objets canoniques.

Tout d’abord, tout espace sous-riemannien de contact admet une con-
nexion linéaire V appelée connexion de Tanno qui préserve la métrique mais
admet de la torsion.

Une variété sous-riemannienne de contact posséde également un endo-
morphisme linéaire sur chaque fibre J : A — A qui vérifie pour tous champs
de vecteurs horizontaux X et Y,

g(X,JY)=dw(X,Y).

En particulier J envoie tout vecteur horizontal V' sur un vecteur qui lui est
orthogonal.

Un dernier objet notable associé a une structure de contact est le champ
de vecteur de Reeb X qui satisfait

ix,dw =0 et w(Xp) = 1.

Considérons ¢ : I — M une courbe lisse horizontale paramétrée par
longueur d’arc dans une variété sous-riemannienne de contact. La premiére
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idée naturelle est d’étudier Ve ¢’ car dans le cas riemannien, ¢’est la quan-
tité qui permet de distinguer les géodésiques parmi toutes les courbes. No-
tons tout d’abord que puisque ( est paramétrée par la longueur d’arc et que
la connexion de Tanno est compatible avec g, on a pour tout ¢ € I,

0 (Vond, (@) =

Afin de décrire V(/(t)C/ plus précisément, on décompose ce vecteur suivant les
directions of (JC'(t)) et (JC'(¢))" ou (-) désigne I'espace vectoriel engendré
par une famille de vecteurs. Introduisons quelques notations supplémen-
taires. Pour V € T; M, on note H‘ﬁ : Ay — Ay la projection orthogonale sur
<V>J‘. On définit de plus la déviation caractéristique de ¢ comme étant la
fonction
hg I — R
t > gery (VoI 1)),

de méme que la fonction

ke I — R
b= H N0 (VC’()C)H

Malgré tout, la connaissance de ces deux fonctions le long d’une courbe
horizontale ne suffit pas & déterminer si il s’agit ou non d’une géodésique.
Dans le cas du groupe de Heisenberg, on peut montrer que le long de toute
courbe lisse horizontale paramétrée par longueur d’arc ¢ : I — H, k¢ 1 est
identiquement nulle. De plus, toujours dans cet espace ( est une géodésique
si et seulement si h¢ est une fonction constante. Cela suggere que si on
souhaite trouver une fonction g’annulant le long des géodésiques, on peut
s’attendre & ce qu’elle contienne la dérivée de la déviation caractérique. De
fait, pour ¢ : I — M une courbe lisse horizontale paramétrée par longueur
d’arc, on définit

k‘gyg: I — R

d _he(t) / /
t — de ||J<‘/(t)||2 + g (TOI‘ (C (t)v XO) 7C (t)) )

ou Tor désigne la torsion de la connexion de Tanno.
En reformulant l'interprétation des géodésiques comme des projections
des lignes intégrales du champ hamiltonien, on démontre le résultat suivant.

Proposition 1.2.4. Soient M wun espace sous-riemannien de contact el
¢ : I — M wune courbe lisse paramétrée par la longueur d’arc. ( est une
géodésique si et seulement les fonctions k¢ et ke o sont toutes deuxw iden-
tiguement nulles.

Ce dernier résultat justifie la terminologie premiére et seconde courbure
géodésique pour k¢ et k¢ .
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Le quatriéme chapitre traite le cas particulier de la dimension trois. Si
M est une variété de contact sous-riemannienne de dimension trois, une
simplification remarquable se produit. Pour toute courbe ¢ : I — M et tout
instant t € I,

' h((t) /
Voo = apE’

Notons deux consequences de l'identité précédente.

Proposition 1.2.5. Soient M une variélé sous-riemannienne de contact
tridimensionelle et ( : I — M wune courbe lisse horizontale pramétrée par
longueur d’arc. Alors

kea = 0.

Proposition 1.2.6. Soit M une variété sous-riemannienne de contact de
dimension trois. Si (1,(s : I — M sont deuz courbes lisses horizontales
paramétrées par longueur d’arc vérifiant

(i) G1(0) = ¢2(0) et (1(0) = 3(0),
(1) h¢ (t) = he,y(t) pour tout t € 1.
On a (1 (t) = C2(t) pour tout t € I.

On généralise ensuite la Proposition 1.2.3 aux variétés sous-riemanniennes
de contact tridimensionnelles.

Théoréme 1.2.1. Soient M une variété de contact sous-riemannienne tridi-
menstonelle et ¢ : I — M une courbe horizontale lisse paramétrée par le
longueur d’arc. On a

) 2 k?72(0) 6 6
disty; (€(0),¢(t) =t — ==t + 0 (°) .
720
Insistons sur le fait qu’une part importante de la preuve du précédent

théoréme consiste en I'étude de la régularité a linstant t = 0 de

dist2; (¢(0), ¢(¢)).

En dimension supérieure, nous n’avons pas pu étblir que cette fonction avait
le méme niveau de régularité qu’en dimension trois.

Le Théoréme 1.2.1 doit étre comparé avec la Proposition 1.2.2. Remar-
quons que le terme de correction prépondérant est d’ordre supérieur dans le
cas sous-Riemannien de contact tridimensionel que dans le cas des variétés
riemanniennes. Ceci peut étre interprété en voyant que dans le cas de con-
tact, il existe une famille & un paramétre de géodésiques paramétrées par la
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longueur d’arc qui partent d’un point dans une direction horizontale fixée,
quand dans le cas riemannien il n’y a qu’une seule telle géodésique. Il y a
donc “plus” de géodésiques approximant une courbe en un point dans le cas
de contact 3D que dans le cas riemannien. Dés lors, cette courbe sera “mieux
)

approximée” par 'une de ces géodésiques. C’est pourquoi il n’est pas sur-
prenant d’observer que le terme indiquant 1’éloignement de la courbe & étre
une géodésique apparait plus loin dans le développement du Théoréme 1.2.1
que dans la Proposition 1.2.2. Cependant, ce phénoméne disparait dans les
espaces sous-riemanniens de contact en dimension supérieure & trois puisque
les courbes sont autorisées & étre plus éloignées des géodésiques car elles
peuvent avoir une courbure géodésique k; non identiquement nulle.

Dans le dernier chapitre du manuscrit, on s’intéresse a I’extension de ces
résultats en dimension supérieure a trois. La premiére propriété obtenue
est similaire au Théoréme 1.2.1 sauf que c’est un développement de Taylor
d’ordre 3.

Théoréme 1.2.2. Soit M une variété de contact sous-riemannienne. Si
¢ : I — M est une courbe lisse horizontale paramétrée par longueur d’arc
alors pour tout t > 0,

ke,1(0)?

<mmﬂqm¢u»:t——75—ﬁ+ou%.

Sous les hypothéses du théoréme précédent il est naturel de se demander
si il est possible de pousser plus loin le développement de dist (¢(s),((t)) au
cas ol k¢ 1 s’annule le long de ¢. On peut apporter une réponse positive si
J? = —1Id et si on suppose dist (¢(s), ((t)) suffisamment réguliére le long de
la diagonale.

Théoréme 1.2.3. Soit M une variété de contact sous-riemannienne vérifi-
ant J?> = —Id. Si ¢ : I — M est une courbe lisse horizontale paramétrée par
longueur d’arc vérifiant, pour tout s € I et tout t > s,

%distM (C(s),Ct)=1—K(s)(t—s) +o ((t — 5)4) : (1.2)
alors

kg,z(s)
K(s) = =555

Notons que sous les hypothéses du Théoréme 1.2.3, on peut intégrer (1.2)
et on obtient alors

k2 (s
distas (¢(s),¢(t)) = (t — s) — iijo) (t—s)’+o ((t - S)5> )

Un corollaire du Théoréme 1.2.3 est une nouvelle caractérisation des
géodésiques.
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Corollaire 1.2.7. Soient M une variété de contact sous-riemannienne véri-
fiant J?> = —Id et ¢ : I — M une courbe lisse horizontale paramétrée par
longueur d’arc.

La courbe ( est une géodésique si el seulement si pour tout s € I el tout
t> s,

%distM (C(s),¢(t) =1+0(th).

Si le résultat précédent est une conséquence théorique remarquable au
Théoréme 1.2.3, on souhaiterais aussi ’appliquer aux courbes qui ne sont
pas des géodésiques. On montre dans la section 5.5 que dans le groupe de
Heisenberg de dimension 2n + 1, l'expression explicite de la distance & un
point fixé nous permet de vérifier que les hypothéses du Théoréme 1.2.3 sont
satisfaites le long de toute courbe lisse horizontale paramétrée par longueur
d’arc.

Théoréme 1.2.4. Soit  : I — Hop 1 une courbe lisse horizontale paramétrée
par la longueur d’arc et vérifiant que k¢ est identiguement nulle. On a

2
distgy,, ., (¢(0),¢(t) =% — ]%7’22((?)%5 +0(t).

De plus, la courbure géodésique k¢ 2(0) est égale & hi:(0).

Des résultats obtenus dans cette thése émergent de nouvelles questions.

Une des difficultés majeures étant d’établir la régularité de la distance
au carré entre deux points proches le long d’une courbe, on s’interroge na-
turellement sur 1’éventuelle existence de courbes en dimension strictement
supérieure a trois telles que cette distance n’est pas suffisamment réguliére
pour en obtenir un développement a ’ordre 6.

Il serait également intéressant de généraliser certains résultats. Si ’on
souhaite appliquer des techniques similaire a celles utilisées en contact dans
un cadre plus large, on doit trouver une connexion adaptée au calcul et com-
prendre précisément la théorie des champs de Jacobi dans ’espace considéré.

Une autre possibilité d’extension de ce travail serait de définir, au dela
de la courbure géodésique, un ensemble d’invariants de Frenet-Serret carac-
térisant entiérement une courbe et d’étudier les propriétés de ces invariants.

Le reste de ce manuscrit sera rédigé dans la langue de Shakespeare.
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Chapter 2

A first example : the
Heisenberg group

In this chapter, we follow the ideas developped in [Koh19| concerning the
notion of geodesic curvature in the simplest example of sub-Riemannian
structure, namely the Heisenberg group. The reason why we start by focusing
on that group is that the properties of its distance function as well as of its
geodesics are explicitly known, and lead to a quite straightforward solution
to the problem of the distance between two points on a horizontal curve,
which we study throughout this text.

2.1 The Heisenberg group

We briefly present the properties of the Heisenberg group that are of some
use to our proof. For a deeper insight into this sub-Riemannian space we
refer to [Mon02|, [Bel96], [ABB19] and [Rif14]. There are several ways to
present the Heisenberg group H. The one we choose is to see it as R? with
coordinates x, y and z endowed with a sub-Riemannian structure whose
distribution is spanned by the orthonormal frame

0 yo 0 x0
X = — <2 Xo = — —— 2.1
"0z 202 2 8y+282 (2.1)
We also define
0
Xo=—. 2.2
0=73, (2.2)
We call g the metric on the distribution whose orthonormal frame is

(X1, X2).

We say that a curve ¢ :] — T, T'[— H is horizontal if ¢ is a Lipshitz curve
that is almost everywhere tangent to the distribution, whose speed defined
with respect to the orthonormal frame (X7, X2) is measurable and essentially
bounded.
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We can compute the length of a horizontal curve by integrating its norm
along the curve. The distance between two points is defined as the infimum
of length of curves that link those two points. This infimum happens to be
a minimum.

We also emphasize the fact that the Heisenberg group is in fact a Lie
group on which the sub-Riemannian structure is left-invariant, where the
group law * is given by :

1
(w1,y1,21) * (22,2, 22) = (361 + 22, y1 + Y2, 21 + 22 + = (T1y2 — Z/11’2)> .

2
(2.3)

Remark 2.1.1. In order to study properties of curves that only depend on the
sub-Riemannian distance, it is sufficient to consider curves that leave from
the origin at time zero, since every other curve can be sent to such a curve
by the isometry that corresponds to the left-multiplication by the inverse of
the initial point.

Another interesting piece of information about the Heisenberg group is
the expression of the geodesics in this space that we can find in [ABB19,
chapter 4, section 4.4.3]. We recall that a geodesic is a horizontal curve
¢ : R — H parametrized at constant speed such that for any ¢ in R and for s
in R close enough to ¢, the length of curve ( between times t and s is equal
to the distance between ((¢) and ((s).

It is sufficient to give the expression of geodesics parametrized by arc
length leaving from the origin since the Heisenberg group is a Lie group, it
follows that all the other geodesics will be left translations and reparametriza-
tions of these geodesics.

Proposition 2.1.2. A curve ( : R — H is a geodesic parametrized by arc
length leaving from the origin at time zero if, and only if, there exist two real
numbers w and 6y such that the coordinates (z(t),y(t), z(t)) of ((t) are

[E(t) _ sin(wt+6p)—sin(0p)
w )
_ (6o)—cos(wt+6p)
y(t) _ cos ’
_ wtfsin(w%j)
2(t) =%,

for w#0. When w = 0 these formulas become :

x(t) =tcos(bo),
y(t) =tsin (),
z(t) =0.

The previous proposition has several other formulations

Corollary 2.1.3. A horizontal curve ¢ : R — H s a geodesic parametrized
by arc length if, and only if its projection on the plane (x,y) parallely to the
z-axis s a circle or o straight line parametrized ot speed one for the canonical
metric on R2.
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Proof. We start by noticing that for any smooth curve ¢ : R — R? that leaves
from the origin at time zero, there exists a unique horizontal lift ¢ : R — H
of ¢ through the projection parallely to the z-axis which leaves from the
origin at time zero. It is therefore possible to characterize if a curve in
the Heisenberg group that leaves from the origin at time zero is a geodesic
parametrized by arc length by checking if its projection coincides with the
projection of a geodesic leaving from the origin and parametrized by arc
length. By using Proposition 2.1.2, we deduce that a smooth curve that
leaves from the origin at time zero is a geodesic if, and only if its projection
along the z—axis coincides with circles leaving from the origin and that are
parametrized at speed one.

Now what about a curve ( in the Heisenberg group that does not leave
from the origin 7 Since the Heisenberg group is a Lie group, we can say that
( is a geodesic parametrized by arc length if and only if its left translation by
¢(0)~! -which leaves from the origin at time zero- is a geodesic parametrized
by arc length. This is equivalent to saying that the projection along the
z—axis of the left translation by ¢(0)~! of ¢ is a circle. But according to
the expression of the group law in the Heisenberg group (2.3), the projection
along the z-axis of a left translation is nothing but a translation in R? of the
projection along the z-axis. We therefore deduce the result we are looking
for. O

In order to state a last characterization of geodesics, we introduce a new
notation.

Definition 2.1.4. To any horizontal curve parametrized by arc length ( :
| =T, T[— H we associate 6 :] —T,T[— R/2nZ such that for any t €| T, T,

C/(t) = COS (ag(t)) Xl + sin (64('&)) XQ.
We now can rewrite Corollary 2.1.3 as

Corollary 2.1.5. A horizontal curve parametrized by arc length ( : R — H
is a geodesic if, and only if O is an affine function.

Proof. We directly show the equivalence.
O : R — R is an affine function of time, if, and only if there exists
(a,b) € R? such that for every t € R, ¢'(t) = cos (at + b) X1 +sin (at + b) Xo.
Now thanks to the expression of X; and X5 given in (2.1), we can say
that 6; : R — R is an affine function of time, if, and only if there exists
(a,b) € R? such that for every ¢t € R the projection of ¢’(t) on (a%’ 8%)

parallely to % is

cos (at + b) 8895 + sin (at + b) (%
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We then notice that another formulation of the previous assertion consists
in saying that 6; : R — R is an affine function of time, if, and only if
the projection of ¢ on the (z,y)—plane parallely to the z—axis is a circle
parametrized by arc length.

We conclude by applying Corollary 2.1.3. O

Since we expect the geodesic curvature of a curve to vanish all along a
curve if and only if the curve is a geodesic, we are lead by the previous corol-
lary to a natural definition of geodesic curvature in the Heisenberg group.

Definition 2.1.6. Let ¢ :] — T, T[— H be a horizontal curve parametrized
by arc length. We define its geodesic curvature as

ket 1-T,7] — R
t — Qg(t).

2.2 Expansion of the distance

Before we actually study the influence of the geodesic curvature on the dis-
tance between two close points on a curve, we must prove a technical result.

Proposition 2.2.1. Let ¢ ] — T,T[— H be a smooth horizontal curve
parametrized by arc length. We denote by x(t), y(t) and z(t) the coordinates
of C(t). They are C* smooth functions of t and

2(0) = 2(0) = 0.
Moreover,

e Either for every integer i > 1, #)(0) = 0 and in this case for all
ntegers 7, 29) (0) = 0 and for every i integer greater or equal to two,
®(0) = 0 and y(0) = 0.

o Or there exists an integer i > 1 such that 0()(0) # 0 which entails
that for t > 0 close enough to zero, 6(t) is non-vanishing and the two
following identities hold true :

22(t) + g2 (t) = 4 /0 t /0 ’ <—9(s)2(s) + ;) dsdu, (2.4)
2(t) = (1) /Ot (—é(s)z'(s) + ;) ds — 62(0)3(t) + 9(;) (2.5)

Proof. First let us notice that z(0) = y(0) = 2(0) = 0 since ( leaves from
(0,0,0) by definition. The smoothness of x and y with respect to time comes
from the fact that 6 is C*° smooth and that

x(t):/o cos(0(s))ds and y(t):/o sin(0(s))ds.
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The coordinate z(t) is also a smooth function of ¢ according to its expression

z(t) = /0 —y(;) cos(6(s)) + :E(;) sin(f(s))ds.

Then we show that z satisfies a differential equation.
We start by writing :

p= o i=y, =i (2.6)

In particular, 2(0) = 0 and if we differentiate z once more
0' . .
y_ Ot +yg) (2.7)
2

This implies that Z2(0) = 0 and if we go further in the differentiation

=1
O (zd +yy) + 0 4 9°) + 02 (—xy + yi)
= 5 _

If we multiply this last identity by @ and combine it with (2.6) and (2.7), we
obtain
. . A 62
0% =03 — 6% + 5 (2.8)
Moreover, (2.6) and (2.7) allow us to assert that if for every integer ¢
greater or equal to one 6 (0) = 0, then for every i integer greater or equal
to two, (9 (0) = 0, 3D (0) = 0 and 2()(0) = 0.
On the other hand if we consider 6 such that there exists an integer
> 1 that satisfies 0)(0) # 0 then for ¢ > 0 close enough to zero, 6(t) is
r}on vanishing and for such ¢ we can divide the differential equation (2.8) by
62(t) and find out that :

. . 1
- e(t)) = —0(1)(t) + .

Therefore the difference between % and fo ( s)z(s) + %) ds is a con-

stant. But since (2.7) holds we know that

2(t) _ 2()2() +y(O)5() 150
0(t) 2 ‘

28 _ /Ot (—9(5)2(8) + ;) ds. (29)




But through (2.7), we are able to find a second expression for 20

0]
£(t)

i = qor O 70).

As a consequence of the two previous formula, for ¢ > 0 small enough

gt (22(t) + y*(t)) = 4/{: (-9’(3)2(5) + ;) ds.

The fact that % (z%(t) + y*(t)) is continuous and that z*(0) + y*(0) = 0 is
sufficient to be sure that for ¢ small enough

2(1) + g2 (t) = 4/; /Ou (—9(5)2(8) + ;) dsdu.

Finally, still in the case where there exists an integer ¢ > 1 such that
0™ (0) # 0, we consider ¢ > 0 small enough to have () # 0 and we divide
the differential equation (2.8) we have already established by 6(¢) :

Y(t) = é(t)zg — 0%(t)2(t) + 9(;)

Then we replace % using (2.9) and we find out that :

() = é(t)/o (—9(3)2(8) + ;) ds — 0%(t)2(t) + ‘9(;)

O]

We are now ready to explain what role the geodesic curvature of a curve
plays in the distance separating two of its points.

Proposition (1.1.3). If ( ;]| = T, T[— H is a smooth horizontal curve that is
parametrized by arc length then

2
(k¢ (0))
720
Proof. We know from [ABRI18, Chapter 5, section 5.7, identity (5.24)] that

the squared distance between ((t) and the origin, which is also {(0) can be
expressed as

distZ(¢(0),¢(t)) = 1% — 5+ 0Ot").

2%(t) +y°(t)

di;(¢(0),¢(1) = - :
sinc2 o ¢ <7x2(t)$22(t)>

(2.10)
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where )
sinc(x) = sin(e) ,
T

with sinc(0) = 1, and where ¢ is the inverse function of

Y [-m7n] — R
u — 1 (Smg(u) - cot(u)) .

We notice that we can rewrite

_ 2u —sin(2u)
V() = 0 " cosza))
Then we check that
3
_ v u 5
w(u)—6 45+(’)(u).

And since v is odd and analytic, so is ¢ = 1~ and
P(u) = 6u+ au® + O (u5) .

Now

u—woqb(u)—u—l—<254+z)u3+(’)(u5),

S0 o = —% and

d(u) = 6u — 1;:_:4u3 +0 (v°).

We recall that sinc, the cardinal sine function is defined as the entire function
such that sinc(x) = %(x) for all x different from 0, which implies that

e =1-% + 21 0 ()
in =1-—=4—= .
sinc(u & T 120 u
We are then able to compute
1 144
s =1+12u - —u* + O (v°). 2.11
sinc? o ¢(u) " 5 " (v) (2.11)

Now we will need to know the Taylor expansion of z at time zero. We
are interested only in the case where there exists an integer ¢ > 1 such that
6 (0) # 0. Indeed, in the other case, we have already noticed in Proposition
2.2.1 that for all integers 4, z(%) (0) = 0. First, by Proposition 2.2.1, we have
that z(0) = 2(0) = 2(0) = 0. Then we write (2.5)

v = é/ot (-9(s)z(s) + ;) ds — 622 4 z
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We evaluate this identity at zero and find out that :

F(0) = . (2.12)

2M(0) = 6(0). (2.13)

Similarly when we differentiate (2.5) twice and look at what we find at t =0
we get,

20(0) = - . (2.14)

These formulae for the first differentials of z at zero entail that

2(t) = 91(2) 3+ 9’;2) th+ (9(250) — 9;i8)> 5 + O(t°%). (2.15)

A last ingredient we will need in order to complete the proof is the ex-
pression of the first differentials of 22 + y? at zero. In order to find these
differentials, we use Proposition 2.2.1 :

2(t) + g2 (t) = 4/0t /Ou (—9(3)2(8) + ;) dsdu.

This identity enables us to compute the derivatives of 22(t) + y2(t).

2(0)+57(0) = o] (@0 +70) =0

82
57 1o
and for n > 3 :

(z°(t) + y*(t)) = 2 (since £(0) = 0 by Proposition 2.2.1),

mn

8 - n — 2 4 n—i—

=0

Now we remember that 2(0) = 2(0) = 0 by Proposition (2.2.1) that z()(0),
24 (0) and 2)(0) are given by (2.12), (2. 13) and (2.14) so we get

03 ) )
%‘tzo (95 (t)+y (t)) =0,
and

84

@L:O (z2(t) + y(t)) = —46(0)2®) (0) = —26%(0),
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and also

gzi"t:o (a2(t) +2(1)) = —126(0)21)(0) — 46(0)21 (0) = ~100(0)4(0),
and finally
Tl @20+ 20) = ~2450)290) - 1650)29 0) - 4602 0)

= —186(0) 9 (0) — 1662 (0) + 26*(0).

From the knowledge of the six first derivatives of 22(t) + 3%(t), we deduce
the following Taylor expansion

$2(t) + y2(t) =t2 _ 921(20) t4 _ 9(0]?2(0) t5
0(0)9(0)  62(0)  6%0)
- <— o0 1 T 360 ) S +o@".  (2.16)

Remark 2.2.2. The expansions that are given by (2.15) and (2.16) are still
valid in the case where for all integers i > 1, #)(0) = 0, according to the
first point in Proposition 2.2.1.

We make use of (2.15) and (2.16) and we find out that

) _00),  00), <e<3><o> +e‘i“’m)) 510 ().

22(t) +y2(t) 12 24 80 360

By composing the previous Taylor expansion with (2.11), we can write :

. L
sinc ogb(mg(t)ﬂﬂ(t))

62(0)  6(0)0®(0)  6*(0)) 4 5

+( 18 + 0 + 510 t+0 ().

We consider the product of the expansion we just found and of the expansion
given by (2.16), and thanks to (2.10) we are able to conclude that

(62(0))°

6 7).
720 +O)

diz(¢(0),¢(t) =% —
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Chapter 3

Some tools and properties in
sub-Riemannian geometry

In this chapter, we present the contact setting in which our study takes
place. We then recall some properties of the distance function in sub-
Riemannian geometry as well as the Hamiltonian interpretation of sub-
Riemannian geodesics. We also introduce, along any smooth horizontal curve
parametrized by arc length, a real valued function, which we call the char-
acteristic deviation of the curve. We show that this characteristic deviation
can be used to reformulate the Hamiltonian geodesic equation.

3.1 Contact geometry

Adressing the problem of the asymptotics of the distance between two close
points along a curve in a general sub-Riemannian manifold is somewhat too
complicated. The object of this section is to present the specific spaces in
which we work in this paper, namely contact sub-Riemannian manifolds.

We say that (M,w,g) is sub-Riemannian contact space when M is a
manifold endowed with a sub-Riemannian structure whose distribution is
the kernel of the differential 1-form w, with the condition that dw restricted
to kerw is non degenerate.

In the following we always consider sub-Riemannian contact manifolds
that are complete.

In a contact sub-Riemannian space there exist several object that we now
present. We start with the Reeb vector field.

Definition 3.1.1. Let us consider (M, w) a contact space, its Reeb vector
field is the unique field Xy € I' (T'M) that satisfies

ix,dw =0 and w (Xp) = 1.
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Definition 3.1.2. Let (M,w,g) be a sub-Riemannian contact space, we
define the map

J: A=A

which acts on each fiber of A as an antisymmetric linear operator such that
for any horizontal vector fields X and Y

g(X,JY) =dw(X,Y).

In contact sub-Riemannian spaces, there also exists a canonical connec-
tion [Tan89).

Theorem 3.1.3. Let us consider (M, w, g) a sub-Riemannian contact space.
There exists a unique linear connection

V:T(TM)x TM — TM

that satisfies

(1) Vw=0,
i) VXo=0,
(i5) Vg =0,
iw) Tor(X,Y)=dw(X,Y) Xy for X and Y any horizontal fields,
(v) Tor (X, JX) = —JTor (Xo,X) for X any horizontal field,

where Tor is the torsion of V.

To get familiar with the Tanno connection in the context of intrinsic
curvature of contact sub-Riemannian manifolds, one can read [ABR17|. We
here stress than in more general sub-Riemannian structures than contact
spaces, the question of finding an adapted connection is complex |[BR17,
BGMRI18, MG17].

Finally we introduce a tensor.

Definition 3.1.4. Let (M,w,g) be a contact sub-Riemannian manifold. In
this space the Tanno tensor is defined as

Q: T(A)xT(TM) —
(X,Y) — (VyJ) X,

where it is to be understood that

(VyJ)X = (VyJX) — J (VyX).
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3.2 Smooth points

Definition 3.2.1. For M a sub-Riemannian manifold and ¢ :] — T, T[— M
a smooth horizontal curve parametrized by arc length, we define the set of
smooth points around ((s), that we denote by ¥4 as the set of points ¢ in
M such that

(i) there exists a unique minimizing geodesic 75, parametrized by arc
length that leaves from ((s) at time 0 and that reaches ¢ at time

dist(¢(s), 9),
(ii) 7s,q is stricly normal,
(iii) points ((s) and ¢ are non-conjugate along - 4.
On a set of smooth points, one can define a radial field.

Definition 3.2.2. For M a sub-Riemannian manifold and ¢ :] -7, 7T[— M a
smooth horizontal curve parametrized by arc length, the radial field around

((s) is the vector field whose evaluation at each point has norm one that is

defined as
r.: ¥, — TM

g Yeq(dist(C(s),q)).
The set X5 as well as the field I'y are closely linked to the distance on M.

Theorem 3.2.3. Let M be a sub-Riemannian manifold and ¢ | —T,T[— M
be a smooth horizontal curve parametrized by arc length. For s €] — T,T],
the set Xg of smooth points around ((s)

(i) is an open set,

(1) is equal to the set of points on the neighbourhood of which the function

0s: M — R
q +—— dist(¢(s),q)

15 smooth.

In addition, over the set X, the field U's is equal to the horizontal
gradient of ds, by which we mean that for any horizontal vector V
tangent to X,

g (P87 V) = dgs (V) .

Proof. For a proof of the properties of the set ¥, namely (i) and (ii), we
recall that we only work on contact sub-Riemannian spaces that are complete
and we refer to [ABB19, Proposition 11.4 and Theorem 11.8 combined with
Proposition 3.47].
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To show that I'y is the gradient of Ss, we assume that it is not the case
at some point q of Xg.
Let us consider v, the minimizing geodesic parametrized by arc length

such that 7,4(0) = ((s) and 74,4 ((53 (q)) = ¢. For times ¢ smaller than

95 (q), 7Vs,q 1s also minimizing between ((s) and v, 4(t), which means that

e (ys.a(t)) = . (3.1)

Now for times ¢ < &, (q) close enough to 5§ (q), since the set X4 is open, we
have that 7,4(t) belongs to ¥, on which J, is smooth. Therefore, for such
times ¢, by differentiating (3.1) with respect to time,

1= db (s (o4(1))) = 95,40 (81206, T ). (3.2)

We recall that by definition of Xy, 754 is stricly normal, therefore vy, is
smooth and field I'y which corresponds to the speed of v, 4 is smooth along
Vo,q- As ds is smooth in Y, therefore gradgs is smooth along s ,(t) for times
t < 8 (q) close enough to d5 (q).

Since we assumed that T'y(q) # gradd,(q) and according to the smooth-
ness properties we just explained, we deduce that for ¢ < ds (q) close enough
to ds (g),

Ls (7s5,4(1)) # gradgs (Vs,q(t)) - (3.3)

If we combine (3.2), (3.3) and the fact that ||I's|| = 1, we find out that for
t < ds(q) close enough to ds (q),

|

Let us fix t, < 0 (¢) that satisfies (3.4). We build a continuous curve 4 that
is composed of two pieces that are geodesics, in such a way that

gradd, (%’Q(t))H > 1. (3.4)

Vo) = V5:d]j0,1,” (3.5)

and such that the curve 4 restricted to times ¢ greater or equal than ¢, is a
geodesic parametrized by arc length that satisfies

(1) = gradd; (7 (t.)) . (3.6)
Jevads, (3 8.

Thanks to (3.5) and since v, 4 is a geodesic parametrized by arc length that
is minimizing between ((s) and 7(¢,) we find out that

0s (7 (ts)) = L. (3.7)
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By (3.4), (3.5) and (3.6), for times ¢ > t, close enough to ¢,

dist (7(0), 3(1)) = &5 (3(1)) > t,

which is impossible since 7 is parametrized by arc length. Our initial as-
sumption that I'y does not coincide with the gradient of 5 on 3 is thereby
disproved. ]

In order to use the property we just proved concerning the gradient of
the distance on a set of smooth points, we must understand the geometry of
this set of smooth points more precisely. As we show in the following, this
geometry of smooth points is closely linked to the notion of cut locus.

Definition 3.2.4. For v : R — M a geodesic parametrized by arc length
and tg any real number, we define the cut time associated to tg that we
denote by CT(v,tp) as the quantity :

sup {t >to : the length of v, equals the distance from (to) to (t)} .

The cut point along ~ associated to «y (o) is the point

Around a point g, we denote by CL(q) the cut locus around ¢, which is the set
of all cut points CP (y,p) where « varies in the set of geodesic parametrized
by arc length that go through q.

Another interpretation of the notion of cut time is given by the following
theorem whose proof can be found in [ABB19, chapter 8, Theorem 8.72].

Theorem 3.2.5. Let us assume that M is a sub-Riemannian space that
contains no abnormal minimizers.

If v : R — M is a geodesic parametrized by arc length and if t is the cut
time associated to ty along v then

(i) either t is the infimum of t > ty -or equivalently "minimum of t > to"-
such that ~ (t) is conjugate to v (to) along 7,

(ii) or there exists 7 : [to,t] — M a geodesic different from Vito. that
satisfies

¥ (to) = v (to) and 7 (t) = (1)

such that both the lengths of 7 and Vit between their extremities are
equal to the distance separating v (to) and v (t),

Conversly if t > to are two real numbers such that either (i) or (ii) is
satisfied then there exists t. in |to,t] such that t. is the cut time associated
to tog along .

30



Corollary 3.2.6. Let us assume that M s a sub-Riemannian space in which
there are no abnormal minimizers. For v : R — M a geodesic parametrized
by arc length, CT (v,t9) is equal to the minimal time t for which ~(t) is
outside the set of smooth points with respect to y(to).

Proof. On the one hand, by using Theorem 3.2.5, v (CT(v,t9)) does not
satisfy the conditions required by Definition 3.2.1 to be in the set of smooth
points with respect to y(to).

On the other hand, for every t < CT(v,tp), neither point (i) nor point
(ii) in Theorem 3.2.5 is satisfied. The fact that for every ¢t < CT(v,to),
(i) does not hold simply means that there are no times ¢t < CT (v, tp) such
that v (¢) is conjugate to v (t9). Moreover, by definition of the cut time, for
t < CT(v,t0), v is minimizing between 7 (tg) and (t). It follows that we
can state the fact that (ii) is false by saying that there is a unique minimizing
geodesic linking v (tg) with v(¢). As a consequence, for every t < CT' (v, tp),
by Definition 3.2.1, y(t) belongs to the set of smooth points with respect to

v(to)- O

Corollary 3.2.7. If M is a sub-Riemannian manifold in which there are
no abnormal geodesics, and ¢ :| — T,T[— M is a smooth horizontal curve
parametrized by arc length, then for s €] — T, T|, the two following disjoint
sets form a partition of M,

M =3,UCL(((s)).

Proof. For g € M, let us consider ¥¢(s) 4 @ minimizing geodesic parametrized
by arc length that links ((s) and ¢ -which is not necessarily unique. Since
Y¢(s),q 18 Minimizing, its cut time is greater than or equal to 55(q), the distance
between ((s) and g. There are two cases

(i) The cut time of J¢(5) 4 is equal to ds(q), which implies that ¢ €
CL (¢(s)) and, by applying Corollary 3.2.6, that ¢ ¢ Xs.

(ii) The cut time of () is strictly greater than gs(q). According to
Corollary 3.2.6, this means that g € X,.

Let us assume that ¢ € C'L({(s)) to show that this is impossible. If
g € CL(¢(s)), there must be 4 a geodesic that reaches ¢ at its cut
time. Since by definition of the cut time, 4 is minimizing between
¢(s) and A(t) for times strictly smaller than its cut time, we deduce
by continuity of the distance that it is also minimizing between ((s)
and ¢q. However, 7 is different from 4y, since both curves do not
share the same cut time. By applying the converse in Theorem 3.2.5,
we find out that the cut time associated to ¢ (4) 4 is smaller than Ss(q),
which is a contradiction.

O
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3.3 Characterisitic deviation

Before we define the characteristic deviation of a curve, let us introduce a
usefull notation.

Definition 3.3.1. For ¢ :] — T, T[— M a horizontal curve parametrized by
arc length in a sub-Riemannian manifold and for s €] — T, T'[, we say that a
vector field T is a normalized extension of the velocity of ¢ around ((s) if it
is horizontal, has norm one at each point and if there exists € > 0 such that
for every t €]s — e, s+ €],

¢'(t) =T((®).

We now present a central object in our study, which is the characteristic
deviation of a horizontal curve parametrized by arc length.

Definition 3.3.2. Let M be a contact sub-Riemannian manifold. The char-
acteristic deviation of ¢ :]—T,T[— M a smooth horizontal curve parametrized
by arc length is the function

hc : ] — T,T[ — R
t 40 (VTT, JT) s

where T is a normalized extension of the velocity of (.
The characteristic deviation can be computed using other formulae.

Lemma 3.3.3. If M is a sub-Riemannian contact space and if ¢ :]—T,T[—
M is a smooth horizontal curve parametrized by arc length then for any t in
] - T’ T[;

he(t) = =g, ([T, JT] + Tor (T, JT),T).
Proof. First of all, let us show that
g(Q(T, T), T)=0. (3.8)
This is the consequence of
0=Tdw (T, T)=Tg(T,JT)=g(VTT,JT)+g(T,VT (JT))
=g (VaT,JT) +g(T,JV1T) +g(T,Q(T,T))
=g(T,Q(T,T)) by antisymmetry of J.
Now we can compute
~Iley ([T, I T+ Tor (T, JT),T) = =g, (VT (JT) = VyrT,T)
=Y (V1 (JT),T) since ||T|| = 1.
=~ (JVTT+Q(T,T),T)
= Glery (VTT,JT),
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where the last line corresponds to the result we were looking for and comes
from (3.8) and from the antisymmetry of J. O

A particular example of characteristic deviation is that that is defined
along geodesics, for which we introduce a specific notation.

Definition 3.3.4. Let us consider M a contact sub-Riemannian space and
¢:]=T,T[— M asmooth horizontal curve parametrized by arc length. For
sin | =T, T[, we define the geodesic deviation around ((s) as

hos: Xs — R
q h'Ys,q <Ss (Q))

Lemma 3.3.5. Let M be a contact sub-Riemannian manifold and let ¢ :
| =T, T[— M be a smooth horizontal curve parametrized by arc length. If we
consider s €] — T, T[ and q € ¥4 then

ho,s(q) = [1TTs()[1* Xo(q)ds.
Proof. By definition of J,
g (s, JTs) =dw (I's, I's) = 0.

As a consequence and since according to Theorem 3.2.3, T's is the gradient
of &5 over X,

0=", (JFSSS) _JT, (FSSS) = [T, JT] 4,
= —Tor (I's, JT) 65 + g ([Ts, JTs] + Tor (L, JT) , Ty)

= —Tor (T's, JTs) ds — ho.s (3.9)

where the second line of the previous computation comes from the fact that
T's is the gradient of §5, and the last line follows from Lemma 3.3.3. Moreover
according to Theorem 3.1.3,

Tor (T'y, JT) = —dw (JT,Ts) Xo = —g (JT, JT) Xo. (3.10)

We combine (3.9) and (3.10) to obtain the result. O

3.4 Hamiltonian interpretation of the geometric in-
variants

Here we briefly recall the main results of the Hamiltonian framework applied
to M a contact sub-Riemannian manifold of dimension 2n + 1. For more
details see [ABB19, Chapter 4].
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In what follows, we denote by m : T*M — M the canonical projection
from T*M to M. Given X € T'(T'M) a smooth vector field on M, we
introduce

hx: T"M — R
Ao (LX) (3.11)

~ \ 2n
For <X1> an orthonormal frame of the distribution, we define the sub-

Riemannian Hamiltonian H : T*M — R by the following formula

2n

1 2
H:2z;hxi. (3.12)

One can show that H actually does not depend on the choice of the frame.
Now we introduce the tautological 1-form 7 on T*M such that for every
AeT*M,

TX - T)\(T*M) — R

w — (A, maw) . (3.13)

The differential of the tautological 1-form o = dr is a canonical symplec-
tic form. This canonical symplectic form allows us to build a Hamiltonian
vector field A from a smooth function h : TM — R through the following
identity.

o(-,h) = dh. (3.14)

Now if we choose any coordinate system (331)1220 on M, we extend it to

coordinates (p,z) on T*M such that (p;,x;) represents a covector A whose
expression is

2n
A=) pida; (3.15)
=0

and whose projection on M has coordinates (x;).

It is interesting to notice that the tautological 1-form evaluated at a point
A of T*M whose coordinates are (p;, ;) has exactly the same expression as
A itself, namely (3.15). Hence the term “tautological”. From this remark we
deduce both the expression of the canonical symplectic structure and of the
Hamiltonian vector field associated to a Hamiltonian function in the (p,z)
system of coordinates.

2n
o= dp; Adz;. (3.16)

1=0
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We thereby deduce an expression for h.

Z oh 0 oh 0
apz Ox; axl 8291' '

(3.17)

It is also convenient to introduce a frame on the cotangent bundle T* M
that is adapted to the choice of an orthonormal frame of the distribution
(X1,...X9,) - to which we add the Reeb vector field X to obtain a frame of
TM.

First, to every vector field X over M we associate a vector field over
T*M that we denote as X and that satisfies for any A in 7% M and for any
J in [0, 2n],

T (X(N)) = X (7(\)) and Xhx, = 0. (3.18)
Then we introduce the frame of T'(T*M) defined by

0 0 0
Ohx, Ohx, " Ohx,,

(Y07Y13"'3Y2n, )

Notice that 57— denotes the vector field tangent to T* M such that
0 0
« | =] =0, d —hx =06 3.19
™ (ath> an ahX X 2,7 ( )

Similarly, we can lift a function f: M — R to a function "M — R that is
defined as f = fowx. In particular, one can define the coordinates of the Lie
brackets of the elements of a frame of T'M as well as their lift to T*M.

Definition 3.4.1. We consider, on a contact sub-Riemannian space M an
orthonormal frame (Xi, Xs,..., X9,) of the distribution that we complete
with the Reeb vector field X to form a frame of TM.

For (i,7,k) € [0,2n], we denote either by cX X, OF simply by ck the
k-th coordinate of the Lie bracket

[Xs, X;].
In other words,
X x, = w ([Xi, Xj))
and for k #£ 0,
X x, = 9 (X0 X;) — w ([Xi, X)) Xo, X)

Moreover c : T*M — M stands for c .o m where we recall that 7 :
™M — M is the canonical projection.
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We now can give another expression of H.

Proposition 3.4.2. Let us consider M a contact sub-Riemannian space on
which we choose (X1, Xo, ..., Xon) an orthonormal frame of the distribution,
to which we add the Reeb vector field Xg to form a frame of the whole tangent
space T M.

The sub-Riemannian Hamiltonian vector field H can be written as

2n  2n
H thX —G—ZZC”hxhxka;?
1=1 5,k=0

Proof. Let us fix coordinates (%)?20 on M. As we explained in our brief sum-
mary of Hamiltonian geometry, these coordinates induce coordinates (p, x)
on T* M. We now link coordinates (z ) ", with the frame (X D o by writing

2n
0
X; = k- 2
> Bikg- (3.20)
k=0
By combining the previous identity with (3.11) and (3.15) we deduce that
2n B
hx; = Zﬁi,kph (3.21)
k=0

We then can apply (3.17) to obtain

h 2n 2n 86%]; P 5.9

7 =

We are now able to compute

by applying (3.14).
EEe—
1 2n 2n
= 9 -

o~ OBy O
:th Zﬁlk Z e (3.23)
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We first notice that
2n 2n
m. (f (n,2)) = 2o (r.9) 3 B )

:th (p. ) Xi(z) by (3.20).

= T, ZhXX —i-zzczjhxhxka}?_ (p, )

i=1 5,k=0

Moreover for any [ € [0, 2n], thanks to (3.21) and (3.23),

G e 2 9B
x)hx, = th Z PiBik o Z pkﬁmaTj

5,k=0 4.k=0

2n 2n 2n
= Z hx, ijyiﬁz,j - Zpkylgi,k by (3.20),
=1 3=0 k=0
2n 2n - o
= Z hx, ij (XiBi; — X1B: )
i=1 =0

= Z hx, ijda:j <[XZ-,XZ]> as a consequence of (3.20),

2n

= hxhix, x> by applying (3.11) and (3.15),
=1
2n 2n

=) @ hx,hx,, by linearity of h. (3.25)
i=1 k=0

Recalling (3.18) and (3.19), we see that the proof of the proposition we
are focusing on is contained in (3.24) and (3.25). O

Theorem 3.4.3. Let us consider M a contact sub-Riemannian manifold. A
smooth curve

C:]-T,T[- M
s a geodesic parametrized at constant speed if and only if there exists
¢ =T, T[— T*M

a lift of ¢ through the canonical projection © : T*M — M such that ¢ is an
integral line of the Hamiltonian vector field H.
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We now reformulate the previous theorem, by stating a result which can
also be found in [ABR17, Lemma 6.7].

Proposition 3.4.4. We consider M a contact sub-Riemannian manifold
and ¢ ;| = T,T[— M a smooth horizontal curve parametrized by arc length.
We have :

(i) ¢ is a geodesic if, and only if, for every t in | —T,T],

_ he(t)
(3.26)
d _ he(®) _
EW = gc(t) (TOI‘ (T, X[)) N T)

where T 1s a horizontal and normalized extention of the velocity of C.

(ii) If ¢ is a geodesic whose lift defined in Theorem 3.4.3 we denote by (,
then we have

he(t) = hx, (C(1)) - (3.27)

Proof. First step. Let us start by assuming that ( is indeed a geodesic to
show that it implies (3.26) and (3.27). In order to do this, we choose an
orthonormal frame of the distribution (X7, Xo,...X2y,) such that

JT

X1:TandX2:W.

(3.28)

We now recall that according to Theorem 3.4.3, ¢ possesses a lift ¢ which is an
integral line of the Hamiltonian vector field H. In particular for t €] — T, T7,

m (A W) =T ). (3.29)

where the expression of H is given by Proposition 3.4.2.

. 2n o 2n  2n 9
H:ZhXiXi+Z Z dijhxihxk%. (3.30)
i=1 i=1 7,k=0 J

We now can reformulate (3.29) thanks to (3.30), (3.28) and (3.18) and we
obtain

th (Z(t)) = 1,
{ hx, (C(t)) = 0 for every i > 2. (3.31)

We can therefore simplify (3.30) along ¢ by writing

2n
7 C0) = T @)+ (e, + &) (€0) g €0) - (332
j=0 y
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To go further in the simplification of H we write, for j € [0, 2n],
=0

A, = w (X1, X)) = X1w (X;) — Xjw (X1) —dw (X1, X;) (3.33)

_ | 0if j = 0 since by defintion, X € ker dw,
- Q(Xj7 JXl) =g (Xj, JT) = 04,2 HJTH otherwise.

As a consequence, we can rewrite (3.32) as

2n
7 C0) =T @)+ (e + 8527, ) (€0) 5 (€00)-

§=0
Since ¢ follows the flow of H , we deduce from the previous identity that for
any j € [0, 2n],
9 hx (€ ci iz ITT (C#)[ hx, (€ 4
51 (C0) = e (C) + 832 | TT (CO) o (C(2)) - (3.34)

But thanks to (3.31), for j > 1, %hx

J

(C(t)) = 0so (3.34) implies

2y, 1) = clo(C)), .
0 = ey () + 1T hxy @), (3.35)
0 = % (¢(t)) for every j € [3,2n].

Let us now compute the Lie brackets that appear in the previous system.
We notice that for j € [2,2n],

[Xl,Xj] + Tor (Xl,Xj) = leXj — VXjX1

is the projection of [ X1, X;] on the distribution parallely to the Reeb vector
field. Indeed, according to Theorem 3.1.3 i. the right hand side of the previ-
ous expression is horizontal and Theorem 3.1.3 iv. implies that Tor (X, X;)
is parallel to the Reeb vector field.

This last remark means that for j € [2,2n],

c1; = 9([X1, X;] + Tor (X1, X;), X1) = g (Vx, Xj — Vx, X1, X1)  (3.36)
If we combine (3.36) with Lemma 3.3.3 we obtain

h
cha (6(0) = ~ s (3.37)
Still using (3.36), we find out that for j € [3,2n],
ci;=9(VrX; - Vx,T,T) (3.38)
=g(V1X;,T)— %ng (T, T) according to Theorem 3.1.3 iii.
=g (V1X;,T) since T has norm one.
T

9(X;,T) —g(X;,V1T) by Theorem 3.1.3 iii.
(Xj,VTT) as Xj L T.
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Moreover

=1

1_—"—
g(VTT,T) = 5Tg (T, T) as a consequence of Theorem 3.1.3 iii.  (3.39)
=0.

We must also compute cio in order to understand the first equation in (3.35).
First of all, thanks to (3.33), we know that [T, X] is horizontal, so we can
write

cro=9(T, Xo],T) =g (V1Xo— Vx,T — Tor (T, X),T) (3.40)
=—-9(Vx,T,T)—g(Tor (T, Xop),T) by Theorem 3.1.3 ii.
1
- _§X0.g (Ta T) -

g
= —g(Tor (T, Xy), T

(Tor (T, Xy),T) by Theorem 3.1.3 iii.
) since T has norm one.

We now come back to (3.35), that we reformulate by applying (3.37), (3.38)
and (3.40) and to which we add two equations, namely (3.39), and also the
formula defining h¢ in Definition 3.3.2. We obtain

fihxo C0) = =g (Tor (T, Xo), T).
__h® =
0 = —ireaE T (C0),
0 = ge (X;,V1T) for every j € [3,2n].
0 = ge (T, VTT)
he(t) = gew (JT,VTT)

This last system exactly corresponds to (3.26) and (3.27), which we wanted
to prove are true if we assume that ( is a geodesic.

Second step. We now must prove the converse of the first part of the
proposition. We assume that ¢ :] — T, T[— M is a smooth horizontal curve
parametrized by arc length such that (3.26) holds for every t €] — T, T[. We
must show that ¢ is a geodesic.

Let us consider (X1, X, ..., X2,) an orthonormal frame of the distribu-
tion. We define the covector py in T*M that satisfies

h¢(0)

7 (po) = €(0), hx, (po) = m (3.41)
and such that
hx; (po) = g¢) (T, Xi), for every i € [1,2n]. (3.42)
We build
¢: |]-T,T] - T*M

40



as the integral line of the Hamiltonian vector field H that leaves at time 0
from point pyg.
We deduce from Theorem 3.4.3 that curve

{=roC

is a geodesic parametrized at constant speed. Moreover, the expression of H
given by Proposition 3.4.2 combined with the defintion of py enables us to
write that

2n
{(0) = (H (o)) = > gc0) (T, X0) Xi = T((0)). (3.43)
i=1

Furthermore, what we have proven in the "first step" of the proof of this
proposition allows us to say that

he(0) = HJE’(O)H2 hx, (€(0)) (3.44)
= ||JT (¢(0)||* hx, (po) according to (3.43),
= h¢(0) by definition of po,

The "first step™ of the proof also shows that ¢ satisfies (3.26) at each time t €
| =T, T[. But we assumed that ¢ also satisfies the differential equation (3.26)
for the same initial conditions according to (3.43) and (3.44). Therefore we
deduce that

o~
I
S

This means that ( is a geodesic. O

The characterization of geodesics we find in Proposition 3.4.4 can be
reformulated in terms of the concept of geodesic curvatures, that we now
introduce.

Definition 3.4.5. For ¢ :] — T,T[— M a smooth horizontal curve in a
contact sub-Riemannian manifold whose speed is extended by the normalized
field T, we define

(i) the first geodesic curvature that is
kea: |-T,7T] — R
¢ — HH‘#T@(S)) (VricenT) H
where, for any V' in A,
Iy = Aggs) — Do)

stands for the orthogonal projection on (V)*.
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(ii) the second geodesic curvature which is

kc72: ]—T,T[ — R

d__h(®)
¢ — @ [TTC@)2 + 9ct) (Tor (T, Xo) 7T) .

To simplify notations, for v € TM such that ||v|| = 1, we denote by 7 (v) the
term g (Tor (v, Xo) ,v) that appears in the defintion of k¢ o.

Remark 3.4.6. Thanks to identity (3.40) we find in the proof of Proposition
3.4.4, we can give another expression for the term 7 (v) we introduced in the
previous definition. For v € T, M such that ||v|| has norm one, if we consider
V' a horizontal vector field which has norm one at each point and such that
V(z) = v then

n (’U) =Yz ([V7 XO} 7V) :

We now write Proposition 3.4.4 differently, using geodesic curvatures.

Proposition (1.1.4). Let M be a contact sub-Riemannian manifold. A hor-
izontal curve parametrized by a arc length ¢ ;] — T,T[— R is a geodesic if,
and only if both function k¢ and k¢ o are identically zero.

Proof. First of all, notice that the vanishing of k¢ o is equivalent to the second
equation in (3.26).

Now let us consider T a normalized horizontal field extending the velocity
of {. According to Definition 3.3.2 we know that

he)
1T ()]

is the orthogonal projection of V()T on the direction of JT (¢(¢)). This
means that the first equation in (3.26) corresponds to saying that V() is
aligned with JT ({(t)), which is also equivalent to the fact that ké vanishes.

O

T(¢(®))

Apart from the characterization of geodesics through geodesic curvatures,
Proposition 3.4.4 allows to study geodesics leaving from a central point. First
of all, if we combine 3.4.4 with Definition 3.2.2 and Defintion 3.3.4 we obtain
the following.

Corollary 3.4.7. let M be a contact sub-Riemannian space and ¢ :|=T,T[—
M be a smooth horizontal curve parametrizd by arc length. For s €] — T, T|
and q € X,

hO,s(Q)
19T (a)]”

hO,s(Q)

Vi Dy = —osd)
B@OT T T ()P

JT, and T's(q) =-—n(s(q)),
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Proposition 3.4.4 also tells us that the exponential map we are about to
define is well-defined.

Definition 3.4.8. Let M be a three dimensional sub-Riemannian manifold.
For p € M by denoting the set of horizontal vectors at p of norm one as S, M
we define the exponential map at p as

exp, : SpM X Rx R — M

where for V. € S, and h € R fixed, ¢ — exp, (V,h,t) is the geodesic
parametrized by arc length that leaves at time zero from ¢ with a veloc-
ity equal to V and an initial Hamiltonian lift whose coordinate hy, is equal
to h.

Proposition 3.4.9. The exponential map around any point in a contact
sub-Riemannian manifold is smooth.

Proof. For V€ S,M and h € R fixed, we know from Theorem 3.4.3 that
the geodesic t +— exp,, (V, h,t) is the projection of some integral line %y, :
R — T*M of the Hamiltonian vector field H. The projection on TM of
H (ﬁv’h(O)) must coincide with V' so by observing the expression of H that
is given in Proposition 3.4.2, we find out that the for i € [|1,2n]],

hx, (Fvn(0) = g(V, X3).

Moreover, by definition hx, (7y,,(0)) = h so Fy,;,(0) smoothly depends on
(V,h). Since t — exp, (V,h,t) is the projection of the integral line of the

smooth Hamiltonian field H which starts at v, (0), the proof is complete.
O
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Chapter 4

Curvature of horizontal curves
in the three dimensional
contact setting

In this chapter we restrict our study to three dimensional contact spaces.
The higher dimensional case is postponed to the next chapter. In the 3D
contact setting, our goal is to understand how the geodesic curvature appears
in the Taylor expansion of the distance between a fixed point on a curve and
an other point of the curve tending to this fixed point.

4.1 Isoperimetric problems

This first section is devoted to presenting examples of three dimensional
contact sub-Riemannian manifolds. Let (IV,gn) be a two-dimensional Rie-
mannian manifold and A be a 1-form on N. For x,y € N set

Qi\{y ={a:[0,T] > N|aecC” a0) ==z .at) =y}

The isoperimetric problem on M associated to A, is the following

inf{l(a) | @ € Qxy,/ A=c}, (4.1)

where c is a real constant and z,y are points on NN. If one chooses A in such
a way that dA = voly then one recovers the classical problem of minimizing
the length of a curve spanning a fixed area.

One can introduce the sub-Riemannian structure on M = N x R by
lifting a curve o on N to a curve ((t) = (a(t), 2(t)) where

_ /OtA(d(s))ds
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The lifted curves ¢ are tangent to the distribution defined as A = ker w where
w = dz — A. Notice that w is contact if and only if dA is never vanishing on
N. If 7 : M — N denotes the canonical projection, then m, restricts to an
isomorphism between A and T'N. Denoting g = n*gy the pull-back of the
metric of N on the distribution A, problem (4.1) rewrites as

inf{lsr(C) | ¢ horizontal, C(0) = (2,0),¢(T) = (3, 0)},  (4.2)

Proposition 4.1.1. Let ¢ : [0,7] — M be the smooth horizontal lift of
a smooth curve o : [0,T] — N. Then h¢(t) = kX (t), where &Y is the
Riemannian geodesic curvature of a on N.

Proof. Fix an orthonormal basis (X7, X3) for the distribution and write
¢ = cos(0) X + sin(h) X

Then it is easy to see that
& = cos(0)Y] + sin(0)Ys

where Y; := 7, X; is an orthonormal basis for the Riemannian metric on V.
Then one can observe that the formula

he = 0 + ¢ty cos O + ¢35 sin .

actually coincides with the geodesic curvature of a on N. O

4.2 Specific properties in the three dimensional set-
ting

4.2.1 Characteristic deviation and geodesic curvature

In the three dimensional case, the characteristic deviation and the geodesic
curvature have specific properties they do not possess in higher dimension.

Proposition 4.2.1. Let M be a three dimensional contact sub-Riemannian
manifold and let (] — T, T[— M be a smooth horizontal curve parametrized
by arc length whose velocity we extend by a normalized vector field T. For
t €] —T,T[ we have

he(t)
Vi T = ———s
TO5 T T ol

Proof. We start by pointing out that T has norm one everywhere. Moreover,
the Tanno connection differentiates horizontal vector fields into horizontal

T(¢(#)-
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vector fields and is compatible with the metric according to Theorem 3.1.3.
So we can write

1
gewy (VTT,T) = §T (€t) g (T, T)=0.
We also notice that by definition of J we have
gC(t) (T, JT) == dwc(t) (T, T) =0.

The distribution is two dimensional and both JT (¢(¢)) and V1T ({(¢)) are
orthogonal to a same vector so they are coolinear. We now use Definition
3.3.2 to conclude. O

From the previous proposition, we deduce results concerning the geodesic
curvature and characteristic deviation.

Proposition (1.1.5). Let M be a three dimensional contact sub-Riemannian
manifold. Any smooth horizontal curve parametrized by arc length ¢ :] —
T,T[— M has a first geodesic deviation that is identically zero.

The previous proposition means that the only relevant geodesic devia-
tion in 3D is the second geodesic deviation so we simply call it the geodesic
deviation and we denote it as k¢ instead of k¢ o.

Proposition (1.1.6). Let M be a complete 3D sub-Riemannian contact struc-
ture. Given x € M, a unit vector v € A, and a smooth function ¢ : I — R,
there exists a unique smooth horizontal curve ¢ : I — M parametrized by arc
length such that ¢(0) = x, ((0) = v, and he(t) = @(t) for all t € I.

Proof. (i). Let (1,2 : I — M be two smooth horizontal curves parametrized
by arc length such that ¢(0) = z, ¢(0) = v and with the same characteristic
deviation ¢ = h¢, = he,. It follows that ¢; : I — TM and ¢ : I — TM
both satisfy the same Cauchy problem

Vel = g(t)JC.

with the same initial conditions. Hence ¢; = (s.

(ii). Fix € M, a unit vector v € T, M, and a smooth function ¢ : I — R.
Since M is complete, there exists ( : I — T'M a smooth solution to the
second order Cauchy problem:

Vel = e®)JC ¢(0) = 2,{(0) = v.

We are left to show that ( is horizontal and has unit speed. Since by definition
of the Tanno connection, Vw = 0 we have

CwlE) = (V) = wlp() IE(1) =0,
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which implies that ¢(¢) is horizontal for any ¢ in I. Moreover since by defi-
nition of the Tanno connection, Vg = 0,

S 0E(0),C0) = 20(T o6, 1) = 20(0(0) (1), (1) =0,

which means that ¢(¢) is indeed a unit vector for every ¢ € I. O

4.2.2 Endomorphism J

Endomorphism J also has properties that are specifically linked to dimension
three. Indeed, J can be interpreted in a very natural way in the 3D contact
sub-Riemannian case. By definition of J, for all X € A

g(X,JX)=dw(X,X)=0.

But when we are considering M a three dimensional contact sub-Riemannian
manifold the distribution is two-dimensional so the previous identity implies
that for any ¢ € M, J, = a(q)ngq where Rz , is the rotation of angle § in
Ag4, and «a(q) is a real number. But if instead of considering w, we choose

the contact form to be equal to © = aw, we simply have
J = Rg. (4.3)

From now on, in the 3D contact sub-Riemannian case, we assume that (4.3)
holds.

4.2.3 Direction-dependant functions

In the general contact case, we have already introduced such a direction-
dependant function, namely 1 whose definition can be found in 3.4.5 and
which one can also compute using the formula presented in Remark 3.4.6.
We now introduce another such function that is closely linked to 7, and that
proves usefull in the three-dimensional setting.

Definition 4.2.2. Let M be a contact sub-Riemannian manifold. Forv € A
such that [|v]| = 1, we define

1(v) = g (Tor (v, Xo) , Jv),
where we recall that Tor stands for the torsion of the Tanno connection.

Notice that since Tor (v, X) is horizontal the previous definition makes
sense. This was already neccesary to introduce 7. Like in Remark 3.4.6, we
can obtain an expression of ¢ in terms of Lie brackets.
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Proposition 4.2.3. Let M be a contact sub-Riemannian manifold. If v €
T.M is such that ||v]| = 1 and if V is a horizontal vector field that has norm
one everywhere with V(z) = v then

(0) = 5 (62 (X0, TV, V) + g0 (X0, V], TV).

Proof. First of all, by applying the definition of ¢, the antisymmetry of J
and point (v) in Theorem 3.1.3,

1
t(v) = 3 (g2 (Tor (JV, Xo) , V) + g, (Tor (V, Xq) , JV)).
Thanks to [ABR17, Lemma 6.8 c)| the previous identity is transformed into
1
(0) = 3 (g2 (Tor (JV, Xo), V) + g2 (Tor (V; Xo), JV) + g (Q (V. Xo) V).

where we recall that () is the Tanno tensor introduced in Defintion 3.1.4.
We now express what the Tanno tensor represents to write

1
t(v) = 5 (g2 (Tor (JV, Xo),V) + g (Tor (V, Xg),JV)
+9z (VXOJV - JVx,V, V),
1
= — (gx (Tor (JV, Xo),V) + g» (Tor (V, Xop) , JV)

2
+92 (Vxo JV, V) 4+ 92 (Vx,V, JV)) as J is antisymmetric by def.
1
= 5 (gx (VXOJV — Vv Xo+ Tor (JV, Xo) , V)

+9: (Vx,V — VyXo + Tor (V, Xo),JV)),

where the last line follows from the fact that V. Xy = 0 according to Theorem
3.1.3, and allows us to conclude. O

Now the link between 1 and ¢ is given by the following proposition.

Proposition 4.2.4. Let M be a three-dimensional contact sub-Riemannian
manifold in which J is a rotation of angle 5. For a € R/2nZ, let us denote

by
R2:A = A and R¥ : R? — R?

the fiberwise rotations of angle a in A and R? respectively.
If v € TM has norm one then

(i) =% (1)
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Proof. Thanks to 4.3 we can write
R%(v) = cos (a) v + sin (@) Jv. (4.4)

We then apply the definition of 7 (Definition 3.4.5) and the defintion of ¢
(Definition 4.2.2) to (4.4) in order to compute ( (( (v)))> To conclude
from the formula we find, we notice that J? = —Id according to 4.3 and we
use point (v) in Theorem 3.1.3. O

Another property of ¢ is its link to the radial vector field and to the
geodesic deviation with respect to a point. We recall that those two notions
are introduced in Definitions 3.2.2 and 3.3.4.

Lemma 4.2.5. Let M be a contact sub-Riemannian manifold such that J is
an isometry and let us consider ¢ ;| — T, T[— M a smooth horizontal curve
parametrized by arc length. QOuver X5 we have

_ Is _ JTs
Jlsho s = Crb.xo = —21(Ts) — . Xy

where we use the notations introduced in Definition 3.4.1.

Proof. According to Lemma (3.3.5) and since by assumption J is an isometry,
over Y, we have

JDshos = JTs <X055> :
= JI's <X053> - Xo (JF555> thanks to Theorem 3.2.3,
= [JFS,XO] Os,
= chi, xoL's0s + Cﬁ;XOJngs + C?&,XOXOS&
= CJF57X0 + CJIQS,XOXO(SS still from Theorem 3.2.3,
= CST“ X, tw ([JTs, Xo]) Xo0s

s
= b, xo0 (4.5)

where the last line comes from applying the Cartan formula to the term
w ([JTs, Xo]). Now that we know (4.5), we deduce

JTshos = =20 (Ts) — ¢,

by applying 4.2.3. O
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4.3 General strategy

We work in M a three-dimensional contact manifold in which J is the rota-
tion of angle 5. Let us consider ¢ : I — XoU{p} an injective horizontal curve
parametrized by arc length such that ¢(0) = p. Without loss of generality,
we study the expansion of the distance between ((0) and ((t) only at time
zero. That is why we can write I' instead of I'pfor the field. Similarly, X
stands for ¥g, hg for hoo and B represents 50. We recall that the objects we
cited are defined in Definitions 3.2.2, 3.2.1, 3.3.4 and Theorem 3.2.3.
We also define 6 : I\ {0} — R/27Z as the angle such that :

¢'(t) = cos (0¢(t)) I (C(£)) + sin (6 (£)) JT' (C(t)) (4.6)

for every ¢t in I.
Assuming regularity, it it is possible to obtain a Taylor expansion of the
distance along curve v in terms of function 0,.

Proposition 4.3.1. Let us consider ¢ : I — XU {p}, a smooth horizontal
curve parametrized by arc length such that ((0) = p and that is injective.
Define 6 : I\ {0} such that

¢'(t) = cos (0¢(£)) T (C(¢)) + sin (6¢(£)) JT' (1)) , (4.7)

for every t in I. Assume that 0; can be extended at zero to a C? function

such that 6¢c(0) = 6:-(0) = 0. Then

" 2
dist(¢(t),¢(0)) =t — 944(00)755 + o(t%). (4.8)

Proof. We write

I
O\N
=
)1
b
&
~
—
»
S—
N—
oY
»
o
<
H
=
D
1
=
(@]
B
w
o
\.OJ

0
NG

= / cos (CQ()SQ + 0(82)> ds,
0

()

=t
40

5+ o(t%).

50



The goal of the following section is to show that these assumptions are
in fact valid for ¢ any smooth horizontal curve parametrized by arc length.
Moreover, we recover the geometric meaning of the coefficient appearing in
(4.8).

We start by linking the characteristic deviation and the geodesic curva-
ture with 0.

Proposition 4.3.2. Let us consider M a contact sub-Riemannian manifold
in which (4.3) is satisfied. If ¢ : I — 3o U {p} is a smooth horizontal curve
parametrized by arc length in M such that ((0) = p and that is injective,
then for any t in I \ {0},

he(t) = 0¢(t) + cos(b¢ () ho(C (1)) — sin(6e (1)) et () (4.9)

ke () = n(C' (1)) + 02(8) — 8:(6)(sin(8c(£) ho(C (1)) + cos(6 (D)l (S (1))
(4.10)
+ cos (6 (1)) (sin(26¢ (1))e(¢/ (1)) — cos(20c(6)n(' (1))
— sin(26,(1)) (Sin(%c(t))n(é'(t)) + cos(26, (£))e(¢/ (1)) + ;JFX)

— SO (e ) (1) — s (00 (Tl 1),

Proof. Let us consider T a smooth horizontal vector field over ¥y extending
the speed of (. We denote by ¢ : ¥g — R/27Z the angle such that

T = cos(¥)T 4 sin(y) JT. (4.11)

In particular, thanks to Definition 4.6, along ¢, ¥(¢(t)) = 6¢(t). We compute
for any t in I \ {0},

he(t) = —et g1 = —g(¢'(), [T, JTI(C(1)))
= —g(¢'(t), — grad ¥(¢(t)) + [I', JT](C(t))) by applying 4.11,
= 0¢(t) — g (cos(0¢ ()T + sin(0¢(¢))JT, [T, JT](((2)))
= 0;(t) — cos(f(t ))CF gr(C(t)) — sin(fc( ))C%FJF(C(t))
= 0L(t) + cos(0c (t))ho (¢ (1)) — sin(Be ()Pl (C(1)).-

This proves (4.9). To obtain the formula for the geodesic curvature, we use
Definition 3.4.5, with the understanding that hypothesis (4.3) holds. For ¢

in I'\ {0},
ke =n(¢'(t)) + h¢(t)

= (¢ () + 07 (1) — 0 () (sin (B (£)) o ( () + cos(Oc (1)) et (S (1))
(4.12)

+ cos (8¢ (1)) (dho) (¢ (1)) — sin(9¢ (1)) (def ) (' (1))
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We now focus on the two terms (dcfjr)(C’(t)) and (dho)(¢'(t)). We replace
vector ('(t) by its expression in the frame (I', JT) in terms of 6. We obtain

(At ) (C'(8)) = cos(bc (8)) (et ) (¢ (t)) + sin(Be () (JTefyr) (¢ (1)
(4.13)

and

(dho)(¢'(£)) = cos(b(£))(Tho)(C(t)) + sin(0¢(£)) (JTho) (C(¢))

= —sin(0c (1)) (2u(T(C(1))) + cfix, (C(£))) — cos(0c(£))n(T (¢ (1)),
(4.14)

where the previous line comes from Lemma 4.2.3, and Corollary 3.4.7 where
it is understood that J is an isometry since (4.3) is satisfied.

Now we carry on the computation of (4.14) by combining Proposition
4.2.4 with the definition of 0, as the angle between I' and the speed of ¢ and
we deduce that

cos(0¢ (1)) (dho) (¢ (1)) = cos (0 (¢)) (sin(20¢ (1))e(¢' (1)) — cos(20¢())n(¢ (1))
— sin(20¢(t)) <Sin(29<(t))n(4’(t)) + cos(20¢(£))u(' (1))

1
+2cgfxo> . (4.15)

The proof is completed by combining (4.12), (4.13) and (4.15). O

4.4 Continuity of the geodesic deviation and asymp-
totics for the Lie brackets

We express the characteristic deviation in a particular adapted set of coor-
dinates called normal coordinates, as introduced in [EAGK96].

Proposition 4.4.1. If p is a point in M, there exist a neighbourhood U of
p and coordinates (x,y,z) on U as well as smooth functions u,v : U — R
that satisfy

u(0,0,2) = 0(0,0, 2) = 2%(0,0, 2) = g

(Y
—(0,0,2) =0
or y(a ,Z) )

such that the two vector fields
(0 yoO 0 0 y 0
X1 = <ax 282) uy <yax ”“’ay> TR
Xo = ﬁ+§£ —ur ﬂ—xg _H]EQ
2" \oy 20z Yor oy 20z
form an orthonormal frame of the distribution.
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A first property of this set of coordinates is the following fact that can
be easily checked from the definition of the Reeb vector field.

Lemma 4.4.2. In normal coordinates, we have [X1, X2](0) = Xo(0) = %.

In normal coordinates the characteristic deviation of a horizontal curve
parametrized by arc length leaving from the origin is computed very easily.

Proposition 4.4.3. Let us consider (z,y, z) a system of normal coordinates
on M. If  : I — M is a smooth horizontal curve parametrized by arc length
with ((t) = (x(t),y(t), 2(t)) such that {(0) = (0,0,0) then

:(0) = £(0) =0, 23 (0)= }142(0).

In particular we have

_ 122(t)
1) =l 20 1 20

Proof. Let us consider T a smooth horizontal unitary vector field extending
the speed of ¢ and let ¢ : U — R/27Z such that T = cos(1) X7 + sin(¢) Xs.
We have, for every tin [ :

he(0) = —g([T, JT](C(0)) — X0(¢(0)), T(¢(0)))
= g(grad ¢:(¢(0)) — [X1, X2](¢(0)) + Xo(¢(0)), T(¢(0)))
= g(grad¥(¢(0)), T(¢(0))) thanks to Proposition 4.4.2.
=21 v

t=0

Moreover,

@ = cos( o O)(1 + (uo ()y?) —sin(y o () (uo )ay,
g =sin(® o ()(1+ (uo ()a?) — cos(ho )(uo zy,

2= (= cos(y og)% +sin(y o g)g)(l Fvol).

By differentiating these expressions we find out that :

(O =50 =0, )= YO _ KO

O

We now intend to use the expression of hg in terms of normal coordinates
to prove that ho(t) is continuous at ¢ = 0. The reason why we are interested
in the regularity of hg is that the function hg appears in the equations in
Proposition 4.3.2. We start with some lemmas and definitions.
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Lemma 4.4.4. Let Z: R4 x R — R be a C* smooth function such that for
any = in R?,

an—l

E(x,y)=..=——| E(x,y)=0,

0
Z2(x,0) = —
(z,0) T,

dy

y=0

then the function R? x R — R defined by (z,y) — E(;[:,;y) is smooth.
Proof. We write the Taylor-Lagrange formula :

_ o =
= (.Z', y) o i Y 0z™ |z:s_‘ (x’ Z) ( _ s)n—l dS
v gy -1 Y
B /y %|Z:SE (z,2) (1 S)n—l ds
o (n=1) Y Y
1 2 E(z, 2z
0 (n—1)!
which is smooth. O

Lemma 4.4.5. Let M be a three dimensional sub-Riemannian contact man-
ifold. If we consider normal coordinates (x,y,z) around p € M, such as
defined in Proposition 4.4.1, the map :

q: S5MxRxR — R

(Z, h, t) N 12z(exp(Z,h,t)) ;
(22(exp(Z,h,t))+y? (exp(Z,h,t))) 2

is smooth and its evaluation at a point of the form (Z,h,0) is h.

Proof. Let us first recall that the exponential map we defined in Definition
3.4.8 is smooth according to Proposition 3.4.9. Thanks to Proposition 4.4.3
combined with Lemma 4.4.4 we learn that
SpM xR xR — R
(Z,ht) o HORZRL)

is smooth and is equal to % at any point (Z, h,0).

Moreover, for any (Z,h) in S,M x R, we have that t — exp(Z, h,t) is
parametrized by arc length, and leaves from p at time 0. By the expression
of the orthonormal frame of the distribution in normal coordinates around
p given in Proposition 4.4.1, we deduce that

(Z,h) fixed
2% (exp (Z,h,t)) + 4% (exp (Z, h,t)) R° 2.

Therefore, by using Lemma 4.4.4 once more, we obtain that

SpMxRxR — R

(Z7 h’ t) — £U2 (eXp(Z,h,t));ng (exp(Z,h,t))
is smooth and is equal to 1 at any point (Z, h,0). O
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By applying the same proof technique as the one we just used, we also
prove the following.

Lemma 4.4.6. Let M be a three dimensional sub-Riemannian contact man-
ifold. Let us consider ( : I — M a smooth horizontal curve parametrized by
arc length. If (x,y, z) are normal coordinates around p € M, such as defined
in Proposition 4.4.1 then
122 (¢(t))
3
(@2 (C(1)) + ¥ (¢(2)))>

is smooth at t = 0, where it is equal to h¢(0)

We can now express a key proposition. Before reading the following
proposition, notice that the geodesic deviation that we present in Definition
3.3.4 and that is denoted by hg (as an abreviation of hg ) must be carefully
distingushed from the characteristic deviation that we introduce in Definition
3.3.2 and that depends on a curve (that can be a a minimizing geodesic such
as introduced in Definition 3.2.1).

Proposition 4.4.7. Let M be a three-dimensional contact sub-Riemannian
manifold in which J is the rotation of angle § of the distribution. If C :
I — M is a smooth horizontal curve parametrized by arc length such that
¢ (0) = p then fort # 0 close enough to zero, ((t) belongs to ¥y and we have

t—0 t—0

Py, (0) —= ¢ (0) and ho (C(t)) — h¢(0).

Y¢(@)

Proof. For t € I, we consider 7,(;) a minimizing geodesic such that y¢(;)(0) =
p and () (0 (¢(t))) = ¢(t). This notation extends that given in Defintion
3.2.1 outside Yo, but we have to pay a price : 7. is not necessarily unique.
Let us now assume that

t—0

hovey (0) =" he(0).
There exist ¢ > 0 and (¢,) € IV a sequence that tends to zero such that
g (0) = he(0)] > <.
Without loss of generality, we can assume that
o (0) = = + e (0).

For A1 and Ao two real numbers, we set

12
9C{)\1)\2 = {(x,y,z) eM | A2 7Z§ > )\2} .
(22 +y?)?
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If we apply Lemma 4.4.6 to 7,y We obtain that for s small enough, v¢,)(s)
is above %h<(0)+%a,h<(0)+ie' Similarly, if we apply Lemma 4.4.6 to ¢, we find
out that for n large enough ((¢,) is below that same set g{hg(OH%s,hg(OHis'
Since v¢(¢,) goes through the point ( (t,) at time 0 (¢ (t,)), this means that
for n large enough, 7¢(,) crosses the region %hg(O)-ﬁ-%E,hg(O)-ﬁ-iE from its su-
perior boundary to its inferior boundary.

Another property of the trajectory of v, is a consequence of the fact
that it is a minimizing geodesic between p and ((t,) : between time 0 and
time 0 (C(tn)), Yc(t,) stays inside the ball B (6 (¢(tn))) centered at p of radius
5 (C(tn))-

We are now going to prove that the properties of v.(;,) that we just
explained are in fact incompatible.

We set
1
p1 = §min {cut time of t — exp, (V,h,t) : V € S,M,|h—he(0)| < e},

Thanks to [ABB19, Proposition 8.76] p; > 0.
We also define

p2 = %min {t © exp, (Sp X {hC(O) + g} X {t}) ¢ %h<(0)+%a,h<(0)+%a}

Thanks to Lemma 4.4.5, p > 0. We now set p = min {py, p2}.
By definition of p, the surface

S:=exp (SpM x {hC(O) + %} x [o,p])

is made of geodesics leaving from p that have not yet reached the cut locus.
Therefore, these geodesics are length minimizing at times smaller than p,
which implies that at time p they reach the sphere centered at p of radius p.
Moreover since the geodesics that form the surface S have not yet reached the
cut locus, they can not cross any other length minimizing geodesics leaving
from p. But since S is included in %h<(0)+%e,h<(0)+%e’ also by definition of p,
the surface S is an obstruction that prevents minimizing geodesics contained
in B(p) from crossing %hdo”%e’h( (0)+ 1 from its superior side to its inferior
side.

We have contradicted the properties of ¢, for n great enough to have
5 (C(tn)) < p. As a consequence, our initial assumption was false, and we
obtain that

hoyen (0) 23 1 (0). (4.16)

Y¢(r)

In particular for ¢ small enough, h,, (0) belongs to [h¢(0) — 1, he(0) + 1.
Now according to [ABB19, Proposition 8.76], the cut time is continuous
with respect to geodesics leaving from a point so there exists 1° > 0 such
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that for times ¢ small enough, the cut time of 7. is greater than T As
a consequence, for times ¢ small enough, a minimizing geodesic that comes
from ¢(0) and reaches ((¢) has not yet reached its cut time. According to
Proposition 3.2.7, this means that for ¢ small enough, ((t) € X.

To finish the proof, we apply Proposition 1.1.4 -whose proof is in section
3.4~ to the geodesic 7,y in order to write

kyewy2 = 0.

By Definition 3.4.5 combined with the fact that J is an isometry since (4.3)
is satisfied, the vanishing of k,_, 2 can be rewritten as

/

. /
Yewy — MOty

Since the absolute value of ) of a vector is locally bounded we find out that

ho(¢(2))
—N—
| Py (B0 () =Py (0) ] < 00 (C(2)) sup 7 (v),

zeB(t),
VET M

where g (t) stands for the distance between ((t) and the origin and where
B (t) is the closed sub-Riemannian ball centered at the origin of radius ¢. To
conclude, we combine the last inequality with (4.16). O

Now that we studied the continuity of the geodesic deviation along a
curve, we must also study the Lie bracket terms that appear in the equations
of Proposition 4.3.2. By using the notation ¢ introduced in Theorem 3.2.3
(where as we already said, it is understood that é stands for dp, the distance
from ((0)) we write the following asymptotics.

Proposition 4.4.8. Let ¢ : I — Yo U {p} be a smooth horizontal curve
parametrized by arc length such that ((0) = p and such that for t # 0,
C(t) #p. Then fort —0

(a) 5(¢()) ety (C() — —4,
(b) 6 (¢(#)) e, (C(1) — —6,
(c) 8% (C()) Tl (C(1) — 4,

(4) 8 (¢(8) JTefr (C(1) = O(1).

The proof of Proposition 4.4.8 is contained in Appendix A.

57



4.5 Studying 6

4.5.1 Regularity of the angle 6 along a smooth curve

We now go back to the regularity properties of the function 6, which we
recall is introduced in Definition 4.6. We first prove two technical lemmas.

Lemma 4.5.1. It is impossible that for some t; > 0, cos(6¢(t)) < 0 for
every t in (0,%1).

Proof. We proceed to prove this by contradiction. We assume there exists
t1 > 0 such that cos (6¢(t)) < 0 for every ¢ in (0,¢;). By combining Theorem
3.2.3 and Definition 4.6 we obtain that

d -

S8(C(1) = cos (0 (1))

And 6 (¢(0)) = 0 by definition, so for ¢ positive small enough,

5 (¢(t)) <0,
which is impossible. O

Lemma 4.5.2. If ( : I — XoU{p} is a smooth horizontal curve parametrized
by arc length such that ((0) = p and such that for t # 0, ((t) # p, then
there exists B > 0 such that for any (t1,t2) €]0, B[*> with t; <to :

MaXge|o,t,] | (8) — cos (0¢(s)) ho (C(s))]
3 .

|sin (0¢(t1))| < t2

Proof. By applying Proposition 4.4.8, there exists B > 0 small enough to
have for every ¢ in |0, B :

0 (C(t)) ety (¢(1) < =3. (4.17)

Let us consider ¢ in |0, B[. We decompose the circle R/27Z into three zones.

2, (1) = Jsin|! ((tz maxelo o) |1 (s) —;08 (6¢(5)) ho (¢(5))] 7 +OO)> 7

Z5 (ta) = (R/27Z) \ 21 (t2)) Ncos™ ([0, +00)),
Z3(t2) = (R/27Z) \ 21 (t2)) N cos™! ((—00,0)).

Let us recall that, according to Proposition 4.3.2, the angle 6 satisfies the
differential equation

Oc(t) = he(t) — cos (6¢(1)) ho (¢(1)) +sin (6¢(1)) eflyr (C(1) . (4.18)
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Let us now compare the different terms at the right hand side of the previous
differential equation, in the case where t < to and Gg(t) belongs to Z;. We
have

|sin (6¢(t)) ef5r (C(1)] = (C()) etyr (C(1))

)
in (6¢(1))

‘ by (4.17),

masx |he(s) — cos (6c(s)) ho (C(5))].

But [|¢/] =150 0<d(C(t) <t<tyand
sin (0c()) Ty (C(0D)] > e [he(s) — €05 (0c(5)) o (C(5).

This implies, by (4.18) that in the case where t < to and 6(t) belongs to 2,
0(t) has the same sign as sin (0¢(t)) C%FJF (¢(t)). But by (4.17), this means
that 0;(t) and sin (0(t)) have opposite signs, which means that

< (cos (0c(1)) > 0.

To summarize, for t < tg, the time depending vector field associated to the
differential equation (4.18) is oriented in the direction of increasing coso ¢
on the zone Zj.

Let us now prove the lemma by contradiction. Let us assume there exists
t1 < t9 such that

maXge|o,t,] |h¢(s) — cos (6¢(s)) ho (C(s))]
3 )

This means that ¢(t1) belongs to Z; (t2) with t; < ta. By considering the
orientation of the time depending vector field associated to the differential
equation (4.18) on the set Z; (t2) that we proved a few lines ago, as well as
the relative poistion of the sets Z; (t2), we deduce there are two cases for
what happens at times smaller that ;.

e In the first case there exists a time t3 smaller than t; such that 6, (¢3)
belongs to Z3, which implies that,

sin (6 (t2))] > t2

O (t) € Z5 for all times ¢ € (0, t3] (4.19)

since if this was not the case, then there should exist a positive time smaller
than t3 when the curve belongs to Z; which is incompatible with the orien-
tation of the vector field associated to the differential equation (4.18) on the
zone Z1. Now by definition of Z3, (4.19) implies that for all positive times ¢
smaller than t3,

cos (0¢(t)) <0

99



This is impossible, according to Lemma 4.5.1.

e In the second case, for all times ¢ smaller or equal than ¢y, 6¢(t) belongs
to 21 (t2), and in this case, cosof is increasing on (0,%;] and cos (0¢(t))
converges when ¢ tends to zero.

Now the limit of cos (6¢(t)) when ¢ tends to zero is different from 1, or
else since cos of is increasing on (0,t1], cos of¢ would be constant equal to
1, but this is incompatible with the fact that 6. belongs to Z; (t2).

If the limit of cos (6¢(t)) when t tends to zero is also different from —1,
then we find a contradiction by integrating (4.18).

0c(t) — Oc(tr) = / " he(s) — cos (0¢(5)) ho (¢(5)) + sin (6c(s)) e5yr (¢(s)) ds

More precisely, the contradiction comes from the fact that the left hand
side of the previous identity converges, but that the right hand side of this
same identity diverges. Indeed, according to Proposition 4.4.7, the term
he(s) —cos (0¢(s)) ho (¢(s)) is bounded for s small, but the third term inside
the integral explodes for small times :

sin (0¢(s))
0(¢(s))
sin (6¢(s))

[sin (6¢(s)) et (C(9))| = 35—~

’by (4.17)

> |3 as ( is parametrized by arc length.

Since sin (6¢(s)) converges to a non zero limit when s goes to zero, we deduce
the divergence of the integral we are focusing on.

Now that we have obtained a contradiction in the case where the limit of
cos (0¢(t)) is different from —1 when ¢ tends to zero, we treat the case where
this limit is equal to —1. In particular, for ¢ small enough, cos (6¢(t)) < 0.
This cannot happen according to Lemma 4.5.1.

In both cases, we obtain a contradiction and our assumption was false.
We are done with the proof of the lemma. O

4.5.2 First order

Proposition 4.5.3. If ( : [ — ¥o U {p} is a smooth horizontal curve
parametrized by arc length such that ((0) = p and such that for t # 0,

C(t) # p, then the function 6 : I\ {0} — R/27Z can be extended to a C*
function I — R/27Z that vanishes at time zero and whose derivative also
vanishes at time zero. Moreover,

3 () R

Proof. We study what happens for positive times. The result for negative
times is a consequence by reversing time. We apply Lemma 4.5.2 and we
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find out that there exists B positive such that for any ¢ in (0, B),

maXgelo, ’h((s) — COS (94(3)) ho (¢(s))]
3 .

[sin (0 ()] < ¢ (4.20)

We deduce from Proposition 4.4.7 that the quantity

maxXge)o, 4 |h¢(s) — cos (0¢(s)) ho (C(s))]
3

is bounded for ¢ small enough. This implies by using (4.20) that

sin (6¢(t)) =3 0.
This means that cos (6¢(t)) tends to 1 or —1 as ¢t goes to zero. But by
applying Lemma 4.5.1, we discover that cos (f¢(t)) cannot tend to —1. As a
consequence,

t—0

cos (0c(t)) =3 1 and 6(t) =3 0. (4.21)
From now on we choose to extend ¢; by defining
0:(0) = 0.

A first interesting consequence of the fact that 0(t) converges to zero
when ¢ tends to zero is the asymptotics of ¢ (¢(¢)). Indeed, by combining
Theorem 3.2.3 and Definition 4.6 we obtain that

d -~

S (C(0) = cos (0c(0)

which implies, since 0 (¢(0)) = 0, that

5(ct) = /0 cos (8c(s)) ds 20 ¢. (4.22)

To go futher, we once again make use of (4.20) but we analyse the terms of
this inequality more precisely. We still apply 4.4.7 to obtain the convergence
of the term hg, but we now know that the cosine term tends to one. We
deduce that

sin (6 (1))
t

‘ < maxX,eo.q [he(s) — ;os (B¢ () ho (C(9))] =20, (4.23)

This means that the function 0, is differentiable at time zero and that

6.(0) = 0.
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To show that 0 is C', we recall the first differential that is proved in Propo-
sition 4.3.2 and that is valid for ¢ > 0, namely

0c(t) = he(t) — cos (6c(£)) ho (C(2)) + sin (6 () efiyr (C(1))

which it is more convenient to rewrite as :

040) = he(t) = con () o (€0) + G L (€0 el 00

Now we can analyse each term in the right hand side of the previous identity,
by applying Propositions 4.4.7, 4.4.8 and by using (4.21), (4.22) and (4.23),
we deduce that

0L(t) 25 0 = 6.(0).
We have studied the regularity of 0. at time zero.

The smoothness of this function at any other time where the curve (
stays inside X is a consequence of the fact that the decomposition given in
Definition 4.6 is that of the smooth velocity of the curve ¢ on the frame
(', JT') that is itself smooth thanks to Theorem 3.2.3. O

4.5.3 Second order

Lemma 4.5.4. We have for every t > 0

ke(t) = 01(t) + ), 20()

t 12

+7r(t) (4.24)

where r(t) — 0 for t — 0.

Proof. For the sake of simplicity, we focus on ¢ > 0. We recall that from
Proposition 4.3.2 the curvature k¢(t) can be expressed as:

ke(t) =0 (1)) + 6L()
— 04(8) (sim (6 (1)) ho (C(1)) + cos (B (£)) efTyp (C(4))
+ cos? (0 () (sin (20c(£)) ¢ (C'(8)) — cos (20¢()) m (¢'(#)))

— sin (26¢(t)) (sin (20¢(t))n (C'(t)) + cos (20¢(t)) ¢ (C (t )) + ;c%FXO)

SO (et (1) s (6c(8) (JTefle) () (425)
Let us rewrite the three quantities
~64(1)cos <e<<t>>c%£m (€. (4.26)
_Sin(QQOC(t)) (et (Bc(t)) + (Teflyr) (C(1)) 4 (4.27)
~sin? (8(1) (JFCF ) (C(8) (4.28)
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as follows, respectively

40°.(t)  0.(t _ }
ff( ) Cf ) (5 (C(tt)) cos (HC(t)) 0 (C(t)) C%,FJF (C(t)) - 4) 5 (4.29)

200(t)  0c(t) < —t* sin(20¢(t)) 5
52

22\ ) 26 )
sin (0 (t)) 2 12 _
< tc ) 52 (((t))52 (C(#) (JPefiyr) (C(1)). (4.31)

Using a Taylor expansion, together with the asymptotics of Propositions
4.4.8 and 4.5.3, we obtain (4.24) with r(¢) which tends to zero when t —
0. O

Proposition 4.5.5. If ( : I — Yo U {p} is a smooth horizontal curve
parametrized by arc length such that ((0) = p and such that for t # 0,
¢(t) # p, then the function 0. (extended at zero in such a way that 6:(0) =0)
is C? on I and

k¢ (0)

" o
0(0) = <=

Proof. Let us define, for t belonging to (—=7,T) \ {0}
Ocy  ke(0)t
t 3

According to Proposition 4.5.3, 0;(t) — 0 hence §(t) tends to zero as t — 0
(as the three terms tends to zero). We can reformulate (4.24) by writing

F(t) = 0¢(t) + 2 (4.32)

t
3 (1) + 2555) =% (4.33)
Now we consider € > 0, and ¢, > 0 small enough to have :
t
(t) + 2355)‘ < g, for every t € (0,¢.]. (4.34)

At this point, we proceed by contradiction and we assume there exists £, in
(0, t] such that

5(t.)

*

’2 > €. (4.35)

By combining (4.34) and (4.35), we obtain that % and §'(t.) have opposite

signs which implies, since ¢, > 0, that (32)/ (t.) < 0. As a consequence
3(t)

70 <o
¢

d
dt|i—,
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Therefore (4.35) holds for every t € (0,t,], and (3’2)/ (t) < 0 for every t €
0.

0,t¢]. This is incompatible with the fact that (¢ ﬂ)) Therefore the
( p

assumption was false and for all ¢ in (0, t.],

0.

As a consequence § is differentiable at zero and §(0) = 0. Moreover thanks
to the previous inequality, we can use (4.33) to obtain that

() =%0.

But thanks to (4.32), this means that

0.(t
0L (t) + 2 Ci ) _ 2%9 - kC?EO) =90.

And if we combine this limit with (4.24), we deduce that

k 0. (t) — t*<2
(i(ﬁ’c(t)—tgéo))—i-?)g()t 6=,

where &(t) := 0/ (t) — tkCT(O) 290 in accordance with Proposition 4.5.3. By

reasoning with & exactly as we did with §, we deduce that

t—0

&'(t) — 0,

which proves that 0; is C! and that 0¢(0) = kQT(O), as required. O

4.5.4 Asymptotics of the distance between two close points
along a horizontal curve

Theorem (1.1.7). Let M be a three-dimensional contact sub-Riemannian
manifold and let ( : I — M be a smooth horizontal curve parametrized by
arc length. We have

t2 _ ]{%72(0)

dist3, (¢(0),¢(t)) = Tot6 +o0 (19).

Proof. According to Proposition 4.4.7, for times ¢ # 0 close enough to zero,
¢(t) belongs to Xg. Moreover, since ( is parametrized by arc length, ¢/(0) # 0
and for ¢ # 0 close enough to zero ((t) # p. This means that the hypotheses
of Proposition 4.5.3 and Proposition 4.5.5 are satisfied by curve ( locally
around ¢t = 0. If we apply both those propositions, we deduce that the
hypotheses of Proposition 4.3.1 are satisfied with the additional property
that

o0 = "<,
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We apply Proposition 4.3.1 and we find out that

2
i (02(0))
6 () =t- T
(k¢ (0))?
1440

t° +o(t°)

=t

t° 4 o(t°),

which completes the proof.
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Chapter 5

Curvature of horizontal curves
in the general contact setting

In this chapter, as we already did in three dimensions, we study the Taylor
expansion of the distance between two close points on a horizontal curve in
an arbitrary contact sub-Riemannian manifold. The general idea of the proof
is the same than in 3D, although it is more technical. The main difference
with the 3D case is that in the general contact setting, we are not able to
prove the same regularity for the distance between points along the curve
as we are able to do in three dimensional spaces, so we have to require it
in the hypotheses for some theorems. Nevertheless, in special cases such as
(2n + 1)—Heisenberg groups, we are able to obtain as good results as in 3D.

5.1 A differential equation

In this section, we introduce a differential equation in order to compute, for
s fixed and t close enough to s, the asymptotics of the distance between ((s)
and ((t). First of all, we separate the radial and the orthoradial components
of {'.

Definition 5.1.1. For ¢ :] — T, T[— M a horizontal curve parametrized by
arc length and for (s,t) €]—T, T[? such that ((t) € X, we define the adapted
decomposition of the velocity of ¢ around the point ((s) and at time ¢ as

¢'(t) = f(OTs (1) + (1),
where .7(t) is orthogonal to I's ({(t)).

We can deduce a more precise form for the adapted decomposition of
the velocity of ¢ around the point ((s) from the properties of the field I's.
Before, we do this, we quickly recall the notations we use for the distance
from a point ¢(s) on a curve ¢ ] =T, T[— M. b, is the function introduced in
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the statement of Theorem 3.2.3 that associates to a point in M its distance
to ((s) while 65 maps t €] — T, T[ to 05(¢(t)).

Proposition 5.1.2. Let us consider ¢ :| — T,T|— M a horizontal curve
parametrized by arc length and s €] — T,T[ such that for some ¢, at time
t €ls — e, s+ el€ X, then the adapted decomposition reads

'(t) = 0,()Ts (C(1)) + (1),
where Zs(t) is orthogonal to T's (¢(t)).
Proof. We combine Definition 5.1.1 with Theorem 3.2.3 to deduce

() = digs (€)= gcr (gradg& C’(ﬂ) = gew) (Us, fF(O)Ts + Fs(t)) = f(1).

t
O
Notice that as ¢ is parametrized by arc length, we have ||(’(¢)|| = 1 for
every time ¢, and since we also know that I'y has norm one wherever it is

defined, by using Pythagoras’ Theorem we deduce from Proposition 5.1.2
that

1= (64(0)° + 171 (5.1)

for ¢ close enough to s.

This last identity allows us to study the expansion as t goes to s of
||-75(t)]] instead of the expansion of d(t), which is what we initially wanted
to study.

Now the question is : how do we study the asymptotics of ||.Z5(¢)] as
t goes to s 7 The following proposition consists in presenting a differential
equation on ||.7(t)|| whose terms we must understand to solve our problem.

Proposition 5.1.3. Let ( ;| —T,T[— M be a horizontal curve parametrized
by arc length and s be an element of | — T,T| such that for every t close
enough to s to have ((t) € 5. At such a time t, we choose

(T (¢(2)) , X2 (C(1)) , X3 (C()) 5 -y X (C(2)))

to be an orthonormal frame of the distribution that smoothly depends on t for

t # s. Let us moreover consider V a connection that differentiates horizontal

vector fields into horizontal vector fields and that respects the metric g.
For i > 2 and t such that ((t) € X5, we have

9e(t) (@T«V& Xi) = — 0s(t) igc(t) (ﬁxjfs, Xi) gew) (s, X5)
2

J
+ 9¢() (@TT — 62(t)Vr, T, Xi> :
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Proof. For i > 2,

@TFS,XZ-) as Ty L X;,

@ss(t)FSerst,Xi) by Prop. 5.1.2,

= —0s(t)gc ) <sz;2 ge (X)X, L) Xi)
+ 9¢) (6TT — 82(t)Vp, T, Xi) ,

which corresponds to the result we are looking for. O

5.2 Normal coordinates

5.2.1 Characteristic deviation in normal coordinates

We present an adapted set of coordinates in which we compute the reduced
deviation that is similar to the one we used in three-dimensional spaces whose
existence is proved in [AG01, Theorem 6.6 and Proposition 6.3].

Theorem 5.2.1. Let us consider M a sub-Riemannian contact space and
qo € M. There exists a neighbourhood A of qo on which one can define

1. smooth coordinates
(%1, Y1, 22, Y2, s Tny Yns 2) 5
whose origin s qq,
ii. a smooth orthonormal frame of the distribution on N
(X1, Y1, X0, Y, .., X0, Vo),

16, smooth real valued functions

n
(Wi, X, Ui,y 5 Vi X5 ViY > Wi X, WiY 5 O ) ey

such that
0 0 Yi 0
Xi=0+4ux)s-twxz—+o(5+vix) 5,
( +U’X)8xi+w’xc‘)yi+a (2 —i—v,X) 5
0 0 x; 0
Yi=wiyys—+0+wy) -5 +vy) 5,
w’yaxi—’_( +u’Y)8yZ— @ (2 +U’Y> 0z
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where

;5 (q0) = vij (q0) = wij (q0) = 0,

dui,j (q0) = dwvij (q0) = dwi; (q0) =0,
and where the o; functions do not vanish near qq.
A first remark concerning the frame we just introduced is its link to J.

Definition 5.2.2. If we consider coordinates such as they are introduced in
Theorem 5.2.1 on a neighbourhood .4 of a point gp then at each point ¢ in
A we define ¢ (q) the matrix of J; in the frame

(X1(q),Y2(q), X2(q), Y2(q), -, Xn(q), Yu(q)) -

Proposition 5.2.3. Let us consider a contact sub-Riemannian manifold
(M,w,g) on which we define around a point qy coordinates such as explained
in Theorem 5.2.1. We have that # (qo) has the following block structure

0 a1 (qo)
—ag (CIO) 0 (0)

I (q)=A

(0) | 0 an (o)

where A is the scalar coefficient such that

10

Xo(q) = 195

Proof. We start by checking that the following differential 1-form cancels the
distribution.

(L +uix) (& +viy) + (4 +vix) wiy)
—d : X) WY
7 Z+Zal (T4 wu;x) (1 4+uy) — wi xwiy Y
(T +uiy) (5 +vix) + (5 +viy) wix)

—a~ bl Y b 9 dx'
’ (T4 u;x) (14 uy) — wi xwiy

As a consequence, there exists a smooth function h : N' — R such that
w = ho.
Therefore

dw|, = hdo|,,

69



which implies that

dw (q0), = P (a0) D eidai (q0) Ay (o),

)

which yields the result by choosing A = h(qp). Indeed, we directly check
that the expression for Xy given in the proposition satisfies the definition of
the Reeb vector field. We also combine the expression of dw we just found
to the fact that

0 0

(X; (a0). Y: (a0) = (&U @) 5 (QO)) ,

to check that the expression of J that we give satisfies the definition of J. [

We are now ready to express the reduced deviation in the coordinates we
just studied.

Proposition 5.2.4. Let us consider M a contact sub-Riemannian manifold
and ¢ ;] = T,T[— M a smooth horizontal curve parametrized by arc length.
If we choose s €] —T,T| and define local coordinates around ((s) such as
described in Theorem 5.2.1, then

he(s) = 2A4%(s) + 5 (T (¢())),

where §) 1s a smooth function whose explicit expression is given in Appendiz
B and where A € R is defined in Proposition 5.2.3.

We postpone the proof of this proposition to Appendix B.

5.2.2 Characteristic deviation and geodesic deviation

Theorem 5.2.5. We consider (M,w, g) a contact sub-Riemannian manifold
and ¢ ;] = T,T[— M a smooth horizontal curve parametrized by arc length.
For every s in | — T, T, there exists I an open interval that contains s such
that for t € I, ((t) belongs to X and we have

ho,s (C(£)) =23 he (s) .

Proof. The idea is to adapt the proof of Proposition 4.4.7 that is valid in
dimension three to make it work in an arbitrary contact space.

To do this, we must identify what in the previous proof cannot be di-
rectly generalized to an arbitrary dimension. The main difference is the
proposition we apply to compute the characteristic deviation of a smooth
curve ¢ parametrized by arc length in terms of normal coordinates. Indeed
Proposition 4.4.3 tells us that the characteristic deviation of such a curve ¢
in dimension three only depends on the evolution of its z coordinate while
in higher dimension, the formula given in Proposition 5.2.4 to compute the
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characteristic deviation of a curve also contains a term that depends on the
initial direction of that curve.

Moreover, we notice that the only object in the proof of 4.4.7 that de-
pends on Proposition 4.4.3 is Ry, , so that is the object that we must
redefine here.

In fact, in the general contact case, we can do the exact same proof as
the proof in 3D of Proposition 4.4.7 by simply replacing 9Ry, , by the set

12Az
e o B
(Xizi+yf)?

where b is the function defined in Proposition 5.2.4 and where V (x;,y;)
represents the horizontal vector of norm one that is tangent to the origin of
the normal coordinates and that points in the direction of (x;,y;).

Q)\l,/\g = (3%'7?/1‘,2’) eM ‘ )\1 2 - [) (V (:Uuyz)) 2 )\2 ,

O]

5.3 Second differential of the squared distance from
a point

We have set to study the differential equation in Proposition 5.1.3 that is
satisfied along ¢ : |=T,T[ — M a smooth horizontal curve parametrized by
arc length. In order to do this, we need to understand the asymptotics of
fields of the form

VxT's (¢(t))

when ¢ goes to s.
We start with a lemma that links the quantity we are focusing on to the
second differential of the squared distance from ((s).

Lemma 5.3.1. If X and Y are two smooth vector fields on X, then

059 (VxTI's,Y) = 1XY5§ - (XSS) (YSS) — 059 (T, VxY).
2
Proof. We write

Ssg (VXFsa Y) = ngg (Fv Y) - Ssg (FSa VXY)
=6, XY b — 0,9 (T, VxY)

= %Xysg - (XSS) (YSS) — 059 (Ts, VxY).
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In order to use the previous lemma to compute the asymptotics of Vx g,
we must understand the term X YS? The second differential of the distance
from a point has already been studied in [ABR17| and [ABR18] but in a
somewhat different setting than ours. We adapt the proof of the precited
papers to our own framework. In order to do this, we must introduce the
normal moving frame along the Hamiltonian lift of a geodesic that was in-
troduced by Zelenko and Li [ZL09].

Theorem 5.3.2. [ZL09] Let us consider M a (2n + 1) —dimensional con-
tact sub-Riemannian manifold and 7 : R — T*M an integral line of the
Hamiltonian vector field H. Along the trajectory of 7 there exist (E;, Fi)?go
a smooth frame of T*M and a one-parameter family of matrices R(t) that
smoothly depend on t such that

s (E;) =0, o (E;, F;) —6;j = o (E;, Ej) = o (F;, F}) =0,

and
LiEo(7(t) = E1(3(1)),
LqE:(7(t) = —F A1) fori>1,
L (A1) = Z o R E; (3(t) — Fo (F(1))
LaF; (7(t)) Zj ORJ(t) (7(1)) fori#1.

Such a frame (El,FZ)%0 is called a normal moving frame.

Moreover, if (EZ,FZ) _o % a normal moving frame along %, any other
~ 2n
frame (Ei,Fi 15 a normal moving frame if and only if there exists O a

constant orthogonal matrix such that
~  ~\2n om
(Ez,-FZ> y (OE;, OFy);Z,
1=

The geometric interpretation of a normal moving frame is made easier
by the following lemma.

Lemma 5.3.3. Inside a contact sub-Riemannian space M, let us consider
v : R — M a geodesic parametrized by arc length that corresponds to the
projection of ¥ : R — T*M. For (EZ,F) _o @ normal moving frame, we
have that

(e (5 (7(6))72

is an orthonormal frame of the distribution evaluated at ~y(t).

Moreover, . (Fy (C(t))) is colinear to Jo'(t).

Furthermore, it is possible to choose a normal moving frame such that
Fy coincides with H. In this case, for every t € R, m, (F2 (Z(t))) 15 equal to

7' (1).
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Proof. The fact that

(m (F; (7())72

is an orthonormal frame of the distribution is proved in [ABRI18, Lemma
7.9].

We still need to prove that m, (Fy (7(t))) is colinear to Jv'(t). Let us
choose s close enough to t so that (s) is a smooth point around ~(t¢), which
is possible thanks to Corollary 3.2.6. By symmetry with respect to ¢1 and ¢
two points of the definition of “¢; is a smooth point around ¢»”, we can say
that v(t) is a smooth point around ~(s). As a consequence next to y(t) we
can consider G, the field representing the velocity of the minimizing geodesic
parametrized by arc length that leaves from 7(s) and reaches the point we
are considering.

We now can write, for i € [1,2n],

ye) (T B3, JY') = dwy oy (72 F3, )
= w (LgmF;) by Cartan and since G and 7. F; € kerw.
=w (W*L’gFZ-) as a consequence of Theorem 3.4.3.
_ 0 if i € [2,2n],

_{ —w (Fo (y(t))) ifi=1. (5.2)

Since we already know that (7, (F; (7(75))))1221 is orthonormal, the only pos-
sibility for (5.2) to be satisfied is that 7, (F} (F(t))) is colinear to J~'(t).
The fact that there exists a normal moving frame along % such that
F5 coincides with the Hamiltonian vector field H can be derived from the
computations in [ABR18, Section 7.5.4], not only in the three dimensional
case, but more generally in the contact case. O

The notion of normal moving frame along the Hamiltonian lift of a
geodesic is used to prove the following. Since the proof of this next re-
sult is quite technical and is not one of the main goals of this thesis, we
postpone it to Appendix C.

Proposition 5.3.4. Let M be a contact sub-Riemannian space and ¢ :] —
T,T[— M be a smooth horizontal curve parametrized by arc length. In an
orthonormal frame of the distribution whose two first elements are the fields

(FS, ﬁ), the matriz of the bilinear form

TC(t)M X Tﬁ(t)M — R
(X, Y) — 9e(t) (VXFS, Y)
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is equal to

50 0 [+o0q).

5.4 Asymptotics of the distance between two close
points along a horizontal curve

We start this section by writing the simplest form of asymptotics of the
distance between two points along a horizontal curve parametrized by arc
length. That corresponds to the result we can find in [Mon01, Theorem
1.3.5].

Proposition 5.4.1. [Mon01, Theorem 1.3.5]. Let M be a contact sub-
Riemannian manifold and ¢ :] — T,T[— M be a smooth horizontal curve
parametrized by arc length. For any s €] — T, T[ we have

68(t) t%_s;" 1
t—s
We now have all the tools to understand the equation in Proposition
5.1.3.

Lemma 5.4.2. Let M be a contact sub-Riemannian space and ¢ :| —T,T[—
M be a smooth horizontal curve parametrized by arc length. For any s €
| = T,T] we have

5s(t) 31, Ty (¢(t) ZET(C(s)) and | A1) = O(t—s).

Proof. In this proof, we only consider times greater than s. The proof for
times smaller than s is similar.

In terms of notations, let us write T to stand for a normalized horizontal
vector field extending the velocity of ¢, and let us consider (T's, Xo, ..., Xo,)
an orthonormal frame of the distribution along (. We have

d B 1 d 9
=9c(t) <VTYS, é&) since V is compatible with g,

2n
. s
= —6,(1) Z 9wy (Vx,Tss Xo) gewy (T X5) gew) <M,Xi>
1,j=2 8

: JT Y
2 S s
T 9¢) (VTT - 5s(t)h0,SW7 W) ) (5.3)
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where the last line of the previous identity comes from Proposition 5.1.3 and
Corollary 3.4.7.
Now the term

» T
Ve T = % Ohos () 7= f

that appears in (5.3) is bounded for ¢ near s since T is smooth along ¢, I's

has norm one and since hg s (¢(t)) =3 h¢(s), according to Theorem 5.2.5.

Equation (5.3) combined with the boundedness of (5.4) and Proposition
5.3.4 allows us to state that

(5.4)

d _ 50 3 I LY

Now we notice that according to (5.1), for ¢t € |-T,s[U s, T7,
1=03(t) + [ (0)]1* (5.6)

As a consequence, another formulation of (5.5) is

= . _§2 3 JT 2

(5.7)

Let us assume that d,(t) does not tend to one as ¢ tends to s in order to
obtain a contradiction.

Let us first notice that d4(¢) cannot tend to —1 as ¢ tends to st or by
integration we would obtain that s would assume negative values, which is
impossible for a distance. The assumption that d,(t) does not tend to one

as t tends to st is therefore equivalent to saying that ‘(L(ﬂ‘ does not tend

to one as t tends to sT. This means that there exists € > 0 such that for any
n > 0 there exists t €]s, s + 7| such that

SS(t)‘ <l-—e (5.8)

Now for times ¢ > s that satisfy condition (5.8), since d5(t) = dist ({(s),((t)) <
t — s we have

1 : 3 JT 2 1—02(1)
1-82(t) + gs< ,«75> >
5.0) ( OF %o 5.0

S V2 — €2

T t—s

i)



As a consequence, for ¢, > s that satisfies condition (5.8) close enough to s,
the term O(1) in (5.7) can be neglected in comparison with the other term
at the right hand side of the identity (5.7) and for such a .,

ds () > 0.

This implies that for such a t,, d5(t) is "trapped" in the interval [—1,1 — ¢]
for s < t < t.. By integrating the inequality 0s(t) < 1 — & for ¢ < ¢, we
obtain

ds(t) < (1—¢e)(t—s). (5.9)
But (5.9) cannot occur, since according to Proposition 5.4.1.

5s(t) t—st
—
t—s

1.

We obtain a contradiction and our initial assumption that d,(t) does not
tend to one as t tends to s* is therefore disproved. By using (5.6) we obtain

5.(t) 23 1 and |7, (1) Z3 0. (5.10)

The convergence of I's (((t)) to T ({(s)) as t goes to s is then a conse-
quence of Proposition 5.1.2 and of (5.10).

We still need to prove that for s € |[-T, T, ||-#(t)|| = O (t — s). To do
so, we come back to (5.3), from which we deduce by using Proposition 5.3.4,
that for ¢ close enough to s to have d, (t) = 0, the following inequality holds:

d ds(t) ( - Jry % >
— 1.7 ()| < FsOl +9cy | VIT =050 hos—5: 77
+ O (IZ@1]) -
The previous identity can be rewritten as
d . JI 8
— (0s(t) [|-Z:(D)]]) <Is(t)g (VTT5§ t)h 7SS,S>
3 s [0 <0s(t)gece) (t)ho T T
2 CHON EAGIE (5.11)

Now since ||.7s]| < 1, we have 0(¢) ||-7s(¢)|| — 2% 0. As a consequence, by
integrating (5.11) between time s and time ¢ we find out that
JLg L

t
RO EAC g/ésugu(Vnguh,s,
QIEAGI (Wg¢w) | VT ()UIIJFSIIQ T

>du (5.12)
/o w) |17, (w) ) du
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We already noticed during this proof that the term V1T — Sg(u)ho,sJI‘s is
bounded, so by applying Gronwall’s Lemma to (5.12) we obtain

5.0 170 < [ 8w (vTT ~§2(uwh

t
+/ u?du.
S

By once again using the boundedness of V1T — Sg(u)ho,sﬁ and the fact
that d5(t) ~ t — s we deduce that

JIg S )
0,5~ 9T T
|12 |||

@] = O(t = s).
O

We carry on our study of the differential equation that appears in Propo-
sition 5.1.3 by studying the frame in which the identity is written.

Lemma 5.4.3. Let M be a contact sub-Riemannian manifold, and ¢ :] —
T,T[— M be a smooth horizontal curve parametrized by arc length. Along
¢, we consider a smooth orthonormal frame of the distribution

JT - . -
T) 77X37X47 "'7X2n) .
( (PAN

By applying the Gram-Schmidt process from left to right to

I o = o )
Ty, 5 X3, X4, ., Xon |

we build a new frame

2n
(Xai)iZ, -

This new frame, which satisfies X1 =T'y, Xo = ”ﬁ?z” is continuous at ((s).
Moreover, for i € [1,2n] we have,

V()X
18 bounded as t tends to s.

Proof. The first fact we point out is that we know from Lemma 5.4.2 that

t—s

Ly (C(1)) — T(<(s)) (5.13)
As a consequence, since
JT - = -
T,,Xg,X4,...,X2n> .
( 17T

7



is chosen to be a frame of the distribution along (, then for times ¢ close
enough to s,

<rs (CO) T (C0) K €0 o Ko <<<t>>> ,

is also a frame of the distribution. It therefore makes sense to apply the
Gram-Schmidt algorithm to the previous family. We add that (5.13) also
means that the family to which we apply the Gram-Schmidt algorithm is
continuous, which entails that the family (Xl)fgl is also continuous.

Now along ¢

VT(((t))Fs = 55 (t)VFS(((t))Fs + Vys(t)rs according to Proposition 5.1.2,

- T, ()
= ds(t)ho,s —
(Whos COV T, P

The expression of V(¢))I's that we just obtained, combined with Theorem
5.2.5, Proposition 5.3.4 and Lemma 5.4.2, shows that Vr())I's is bounded
as t tends to s.

By definition of the Gram-Schmidt process, all the vector fields X; have
an explicit expression in terms of I'y, JT's and the vector fields X j. By using
these expressions and the Tanno tensor to compute V1 (;))X; and since we
already proved that Vy¢(;)I's is bounded as t tends to s, we can conclude

that all the fields V(¢ (;))X; are bounded as ¢ tends to s. O

+ Vys(t)rs by Corollary 3.4.7.

The reason why the previous Lemma is relevant is that it provides us
with a frame where we can rewrite Proposition 5.1.3.

Lemma 5.4.4. Let M be a contact sub-Riemannian manifold and ¢ :] —
T,T[— M be a smooth horizontal curve parametrized by arc length. We
denote by T a normalized horizontal extension of the velocity of (. We also
consider along ¢ an orthonormal frame of the distribution

JI, )
Iy, —— X3,...X
( ST e

such as described in Lemma 5.4.3.

We hawve

d (54 JT, _ 4 he(t)  hos(C(t)
i (55 ()9 (*7 g inmu)) =0,(1) (nJch(t))u ||Jrs(<<t>>||)
. A CHOYEAGIE
& (0s()gewy (L Xi)) = 0s(t)gewy (VTT, Xi) 4+ O (8(8) [|(0)])

where i belongs to [3,2n].
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Proof. For i € [2,2n],

d

e (5 Xi) = 9c(t) (V1% Xi) — gcr) (75, VT X5)

= ge¢) (VTyS, XZ) + O (Hys(t)n) by Lemma 5.4.3.

= =0u(t) > gcry (Vx, T, Xi) g (L X5) + O (101
=2

+ 9c) (VTT —02()Vr, I, Xi) by Proposition 5.1.3.

We now use Proposition 5.3.4 to carry on our computation

s _ s (t
a9 (‘%ﬁ> = —43(H90 (5@, [T, H) AEAGIY
TI¢ (VTT —02()Vr, I, W) ;
ds
Sac (F0 X)) = —EBac (54, X) + O (1A D)
TI¢t) (VTT - 5§(t)Vrst,Xi> for i € [3,2n].

(5.14)

To transform this system let us point out several facts. First of all, according
o (5.1) we have

S () =140 (Hys(t)H?) . (5.15)
Then we write
JT, J (8.0r,)
o (VT pep) =0 \ Y G Gor)|
JT
= 9c(t) (V T, ”JTH) + O (7)) by Prop. 5.1.2,
he(t) .
= ——"—— 40 (||t by Definition 3.3.2.
1T ey C IO

(5.16)

To obtain the result that we stated in the proposition we are focusing on, we
start by considering system (5.14). We multiply its first equation by §2(¢)
and we multiply the family of equations indexed on i € [3,2n] by d4(¢). To
the equations we just found, we apply (5.15), (5.16), Corollary 3.4.7 and the
boundedness of hg s (((t)) that comes from Theorem 5.2.5 and we reach the
conclusion we were looking for. O

We are ready to state a theorem.
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Theorem (1.1.8). Let M be a contact sub-Riemannian manifold. If ¢ :
| =T, T[— M is a smooth horizontal curve parametrized by arc length then
for every s €] =T, T[ and t €]s,T],

k?,l(s)

7(t—5)3+0<(t—s)3>,

5s(t) = (t - S) - 19

where we recall that k¢ 1 is the first geodesic curvature introduced in Definition

3.4.5.

Proof. We start by pointing out that according to Theorem 5.2.5 and Lemma
5.4.2,

(1)

hel)  hos (1) s
— ’ — 0 5.17
T O 9T, €I (5:.17)
We deduce from Lemma 5.4.4 combined with (5.17) and Lemma 5.4.2 that
d 4 JLg 4
4 W2 ) ) = o (s 1
3 (40aco (7 05 ) ) = o 6 0) (5.18)

We recall that according to Proposition 5.4.1, d(t) "2 t—sso0 by integrating
(5.18) between s and ¢, we obtain

JIg
= —3). Nl

Let us now consider (X;)?", an orthonormal frame of the distribution such
as described in Lemma 5.4.3. We insist on the fact that according to the
lemma where the frame (X;)?"; is introduced, this frame is continuous at
((s). We use Lemma 5.4.2 to deduce from Lemma 5.4.4 that for i € [3,2n],

(a0 (0 X)) = (1 5) 9 (Trigy T XlC()) 0 (0~ 5)).

By integrating the previous Taylor expansion bewteen s and ¢ we deduce
that
t—s
e (S Xi) = —5—g (Vo) T, Xi(C(s)) +o((t—s)). (5.20)

We summarize (5.19) and (5.20) by saying that

t—s
s (t) = TﬂfT(g(s)) (VreeyT) +o((t—s)),

where H#T(((s)) stands for the orthogonal projection on (JT (¢(s)))*. This

last identity allows us to conclude by applying (5.1) and Definition 3.4.5. [
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We now go deeper in the expansion of the distance between two close
points of a horizontal curve ( parametrized by arc length. More precisely
we focus on the case where the first corrective term in the expansion of the
distance between ((s) and ((t), that we computed in the previous theorem,
vanishes all along ¢. To do this without getting lost in computations, we
assume that J? = —Id.

Theorem (1.1.9). Let M be a contact sub-Riemannian manifold such that
J?=—1d. If ¢:] =T, T[— M is a smooth horizontal curve parametrized by
arc length such that for every s €] — T,T[ and t > s,

bs(t) =1—K(s)(t—s)* +o0 ((t_ 3)4) ’

then

kéQ(S)
288

K(s) =

where we recall that k¢ o is the second geodesic curvature introduced in Defi-
nition 3.4.5.

Proof. Under the hypotheses we made, for every s €] — T, T,

5,(t) = (t—s) + 0 ((t=5)°),

so using Theorem 1.1.8 (previously proved in section 5.4) we deduce that
Vr(c(s) T is colinear to JT (¢(s)). Since we assumed that J? = —Id, J is an
isometry. So by Definition 3.3.2 we have for every s €] — T, T7,

V)T = he(s)JT (C(s)) - (5.21)

Now if we consider (XZ)?Zl an orthonormal frame of the distribution such as

defined in Lemma 5.4.3, we recall that by defintion, along ¢, Xo = JI's. So
for i € [3,2n] we can write

gc(t) (VTT, Xl) = gC(t) (VTT - hc(t)és(t)JFS,Xi>

= 9¢(t) (hc(t)J (T - 53(t)1“s) ,XZ-) by (5.21),
= gcw) (he(t)J7), X;) by applying Proposition 5.1.2.

It follows that for i € [3,2n],

gew) (VTT, X)) = O (H(t)) .
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As a consequence we can apply Lemma 5.4.4:

d

4 0:(Dgc0) (75, X)) = O (Ba() L) (5.22)
=0 <5s<t> HWH) according to (5.1),
—o (=97,

where the last line comes from the fact that d5(¢t) ~ ¢ — s and from the hy-
pothesis concerning the Taylor expansion of d5. We integrate (5.22) between
times s and ¢ and we find out that for i € [3,2n],

9oy (L5, Xi) = O ((t - 5)3> : (5.23)

But according to (5.1) and the hypothesis on the expansion of dg,

|.Z(t)]| = \/1 = 62(t) = /2K (s) (t — s)* + 0 ((t - 5)2) : (5.24)

If we decompose .74(t) = 2?22 ge) (Ls(t), Xi) X; and take into account
both (5.23) and (5.24), we are able to quantify the asymptotics of .75(¢) in
the direction of X5. Now X3 is equal to JI'y because JI's has norm one since
J? = —Id. We end up with

Gey (S, ITs) = £4/2K(s) (t — 8)* + 0 ((t - 3)2) . (5.25)

Now we rewrite the first equation of the system in Lemma (5.4.4) by taking
into account that .J is an isometry since J? = —Id. we have

d

T (03 (1)gc(r) (Lo, ITs)) = 85 (1) (he(t) — hos (C(1))) + O (6:(2) (D))

Similarly to (5.22) and (5.23), we deduce from the previous identity that

1 t 4 3
g5t (2 TT0) = g5 [ 83000 (helw) = ho (C(u) du+ 0 (2= 9"
(5.26)
We now focus more particularly on the term h¢(t) — hos (C())-

€ (helt) — hos (C(0)) =he(t) — (B(OT4 (1) + 74 (1) by

dt
=h¢(t) + 65(t)gewy (Tor (T's, Xo) , T's) (5.27)
— 75 (C(t)) hos by applying Corollary 3.4.7.
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We need to compute .7 (((t)) hos. Once again, since J?> = —Id, J is an
isometry so we can apply Lemma 3.3.5 to write, for any vector V € T3,

Vhos = VXods,
=V Xods — Xo (C(t)) Vs, (5.28)

because V L I'y = gradgs, according to Proposition 5.1.2 and Theorem 3.2.3.
We carry on computation (5.28),

Vho,s = [V, Xo| ds,
=g([V,Xo],T,) as Iy = gradd, by Theorem 3.2.3,
=g (VyXo—Vx,V —Tor(V,Xp),I's)
=—9g(Vx,V +Tor (V, Xy),I's) as Xo =0 by Theo. 3.1.3,
=—9(Vx,V.Ts) = g¢wy (Tor (V, Xo) , T's)
= —Xog (V,Ts) +9(V,Vx,Is)
—g(Tor (V, Xy),T's) as V is compatible with g,
=g(V,Vx,Ts) —g(Tor (V,Xp),I's)as V L T. (5.29)

In order to understand the term g (V, Vx,I's) in the previous computation,
we start by writting

[Ls, JT's] = Vp, JT's = Vyp,I's — Tor (I's, JTs) ,
= Vr,JTs — VT — dw (T, JT) Xo by Theorem 3.1.3,
= Vr,JTs — Vr,I's — g (I's, J’Ts) Xo by definition of J,
= Vr,JTs — Vr.T's + Xq since J? = —Id and ||I| = 1,
= Q (T, JT,) + JVr,Ts — VT + Xo by Definition 3.1.4,

=Q (T, JT) — hosTs — Vyr.Ts + Xo by Cor. 3.4.7 as J? = —Id.
(5.30)

From (5.30) we extract an expression of Xy which we can use to compute

VxI's =V, orgl's + Vu,r.n.l's = Vo, srol's + hos Vi, L's
= Vi, grgls + Vo,erTs = Vo, rols + hi s JTs by Cor. 3.4.7,
=Vr, (Vyr.,I's) = Vur, (Vr,I's) — Curv (I'y, JTs, T'y)
+ Vv,r.r0.'s = Vo, rol's + h(Z),sJFS?
where Curv represents the curvature tensor of connection V, that is for ex-

ample used in Riemannian geometry with the Levi-Civita connection instead
of the Tanno connection. We continue the previous computation by writing
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that

Vx,I's =Vr, (Vyr,I's) — Vr, (hosJI') — Curv (I, JT', T'y)
+ Vv,r.r. s = Vor, grols + h o JTs by Cor. 3.4.7 as || J|| =1,
= Vr, (Vyr.Ts) — (JTshos) JT — ho sV, JT — Curv (T, JTy, T's)
+ Vv,e.n.ls = Vo, rols + h§ o JTs
= Vr, (Vyr,Ts) = (JTshos) JT — ho s JVr,I' + Q (T, JT's)
— Curv (T, JT5,Ts) + V1. 1. Ts = Vor, gro)Ts + hg o JTs.

We used Definition 3.1.4 to write the last line of the previous computation.
For the next step of this computation, we use (Xz)fgl an orthonormal frame
of the distribution that comes from the process described in Lemma 5.4.3.
We write

Vxols = Vi, (Vur.Is) — (JTshos) JT — ho s JV yr.T + Q (U, JTs)
2n
— Cwrv (T, JT6, To) + > g(Vor,Te, Xi) Vx,T's = Vo, v Ts
=2
(5.31)

+ h§ o JTs.

Now we need to understand the asymptotics along curve ¢ of each of the eight
terms at the right hand side of (5.31) in order to discover the asymptotics of
Vixoc)l's as t goes to s. We simply explain which are the key properties
that enable us to evaluate the asymptotics of each term. The major tool we
use is Proposition 5.3.4. Moreover, to show that five of the eight terms at
the right hand side of (5.31) are in fact negligible when ((¢) goes to {(s), we
notice that

i. hos(¢(t)) is bounded as t goes to s thanks to Theorem 5.2.5.

ii. terms Curv (T's, JT's,T's) (¢(t)) and @ (T's, JT's) are bounded for ¢ going
to s.

iii. term @ (L', JT's) is horizontal by Definition 3.1.4 since the differential
of a horizontal vector fields with respect to the Tanno connection is
horizontal by Theorem 3.1.3.

If we combine all the element we just presented with equation (5.31), we
find out that the higest order terms at the right hand side of (5.31) are
Vr, (VJFSFS), (Jrsho’s) JI' and the term g (VJ[‘SFS, JFS) Vr.I's in the
sum. More precisely, we find out that

12 1
V I's=—(JI'shys) JI's + ——— JT; .
Xo(C(t)) (J 0, )J + (t—8)2J + O <t—8>
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We can replace JI'shg s by its expression given by (5.29) in the previous
formula and we obtain

12 1
VixoenLs + 9¢ty (VxoLs, JTs) JTs = (t — s)zJFs O (t - s) '

As a consequence,

6 1
Vxools = =52/ 0 (t - 3) '

We now apply (5.29) and we find out that

s
s (C(t)) hos = (t_68)29§(t) (Fs, JTs) + O (”t(f(st))”) . (5.32)

If we use (5.1) to express || (C(t))] in terms of 04 ((t)) - whose Taylor
expansion is given as a hypothesis of the Theorem we are proving - we deduce
from (5.32) that

6
s (<(t)) hO,s = WQC@) (y& JPS) +0 (t - S) . (533)
At this point, combining (5.33) and Lemma 5.4.2, it is possible to deduce
from (5.27) that

S (het) ~ hos (C(0)) =he(s) + g (Tor (T, Xo),T)
6

— mgc(t) (%, JTs) +o(1).

In the previous formula, we can replace the term hc(s)+g<(s) (Tor (T, Xo),T)
by the second geodesic curvature k¢ o(s) according to Definition 3.4.5 and
the fact that J is an isometry since by assumption, J? = —Id. We obtain

d 6

37 (he(®) = ho,s (C(2))) =k¢,2(s) — 59¢t) (L5, JTs) +o(1). (5.34)

(t—s)

We can now integrate (5.34) between ¢ and s to find an expression of h¢(t) —
ho,s (¢(t)) which we substitute to h¢(t) — hos (((t)) in identity (5.26). Then
we replace all the occurences of ge() (s, JT's) by its expression given by
(5.25) in the equality we obtain by this process. We are left with an equation
linking two Taylor expansion from which we deduce the result we wanted to
prove. O

Corollary (1.1.10). Let M be a contact sub-Riemannian space such that
J? = —1d and ¢ ;] — T, T[— M be a smooth horizontal curve parametrized
by arc length.
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Curve ¢ is a geodesic if, and only if for every time s €] — T,T| and for
t>s,

0s(t) =1+ o ((t—s)Y).

Proof. On the one hand, if  is a geodesic, then for any s €] — T, T[ and for
t > s close enough to s,

ds(t) =t —s.
As a consequence, for any s €] — T, T[ and for ¢ > s close enough to s,
bs(t) = 1.
On the other hand, let us assume that for every s €] —T,T| and for ¢t > s,
0s(t) =1+ o((t—s)"). (5.35)

By integrating the previous Taylor expansion between s and ¢ we find out
that for every s €] — T,T[ and for ¢ > s,

5s(t) = (t—s)+o((t—s)°).

Thanks to Theorem 1.1.8 (previously proved in section 5.4), this means that
for every s €] =T, T, Vy(¢(s) T is parallel to JT (((s)), where T is a normal-
ized horizontal extension of the speed of (. By Definition 3.3.2, this means
that for any s €] — T, T

hc(s)
VT s [=————"— JT S)). 5.36

Moreover, thanks to Theorem 1.1.9 (previously proved in section 5.4), we
deduce from (5.35) that for every s €] — T, 77,

he(s) = gegs) (Tor (T, Xo), T) = 0. (5.37)

Notice that since J? = —Id, J is an isometry and ||JT| = 1, (5.36) and
(5.37) correspond to the necessary and sufficient conditions for ¢ to be a
geodesic that we find in Proposition 3.4.4. O

Corollary 5.4.5. Let M be a contact sub-Riemannian manifold such that
J? = —Id and ¢ ;] — T, T[— M be a smooth horizontal curve parametrized
by arc length whose velocity we extend by the normalized horizontal field T.
We assume that for every s €] — T, T, vector I's (((t)) smoothly depends on
t>s, even att = s.

If for every s €] — T, T[ and for t > s,

55(t) = (t—s)+o((t—s)?),
then for any s €] —T,T[ and for t > s,

w(t—s)5+0(t6).



Proof. Let us start by noticing that for s €] — T, T'[, the smoothness of I'; (¢)
for times t > s entails the same regularity for d,(¢) and .Z(t). Indeed, by
Theorem 3.2.3,

Ss(t) = 9¢) (Ta FS) )
and by Proposition 5.1.2,
F5(t) = T (1) = 0s(8)Ts (C(2)) -

Now, according to the regularity of ds we just proved, it is possible for every
s €] —T,T1], to differentiate the Taylor expansion of ds(t) that we assumed
as a hypothesis. For t > s, we find

0s(t) =1+ o ((t—s)?). (5.38)
Now we use (5.1) and we deduce from (5.38) that
@)l = ot —s). (5.39)

But since we started by proving that .75 is smooth, even at time s, we deduce
from (5.39) that

|# @l =0 (t-9°). (5:40)
We combine (5.1) with (5.40) and we find out that
0s(t) =1+ 0O ((t—s)*)

for t > s. We know that SS(t) is smooth for t > s even at t = 5. As a
consequence, we can write a more precise Taylor expansion than the previous
one.

0s(t) =1 —K(s)(t —s)* + O ((t - s)7), (5.41)

for t > s. The value of K(s) for any s €] — T, T is given by Theorem 1.1.9
(previously proved in section 5.4), so we only need to integrate (5.41) to
obtain the result we were looking for. O

5.5 The (2n + 1)—Heisenberg structures

In this section we consider, for n a positive integer, the (2n + 1)-dimensional
Heisenberg group Ha,11. Our goal is to prove that in this space, the hy-
potheses of Corollary 5.4.5 are satisfied along any smooth horizontal curve
parametrized by arc length, which allows us to deduce Theorem 1.1.11.
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Hy, 1 is R?"*! whose coordinates we denote as (21, Y1, ..., Tn, Yn, 2) and
which is endowed with a group law given by

[ - - .1 - N
(xivyhz) * (xi,yi,z) = (xl + T, Yi T Yi, 2+ 2+ 52%% - yzxz> .
7

The (2n + 1)-dimensional Heisenberg group is endowed with a left-invariant
contact sub-Riemannian structure whose distribution is spanned by the or-
thonormal frame
0 ; 0 0 ; 0
axi 202 0y; 2 0z

A smooth horizontal curve ¢ : R — Ha, 11 whose expression in coordinates
we denote as (z¢;,Yc,i,%c) is a geodesic parametrized by arc length and
leaving from the origin of coordinates at time zero if, and only if there exists
(w, 0;,7;) € R?*™FL that satisfies >, 72 = 1 such that

x¢, z(t) - cos(wt+€ )—cos(6;) ,
yC z(t) = 51n(wt+9 ) sin(@i) 7 (542)
(t) _ wim 2121(0.)1?)

For more details concerning Ha, 11, see [ABB19, Section 13.2].

Corollary 5.5.1. If ¢ :] — T,T[— Hapt1 is a smooth horizontal curve
parametrized by arc length then for every s €] — T,T[, T's ({(t)) smoothly
depends ont > s even at t = s.

Proof. Without loss of generality, we choose s = 0 and we assume that in
the set of coordinates (z;,y;,2) that we introduced on Hsay, 1, ((0) has all
its coordinates equal to zero. According to the expression of the geodesics
leaving from the origin at time zero, for any point ¢ in g,

) _ cos(w(q)do(q)+0i(q))—cos(0i(q))

wla) = ) (e 50 ) .00))—sin(0:(q))

w = ((q><2(> q(iww(fz)gq o 0:43)
. w sin(w(q)do

2(q) = 20

where w(q), 0;(q) and r;(q) are the parameters that define the minimizing
geodesic that leaves from the origin at arrives at ¢, with the condition that

Zi Tg(Q) = 1. Now we can write

2 — 2 cos (w(q)do(q))

m? q)+ 1-2(] :7”12 q L
(q) + i (q) (q) w? (q)

It follows that along (,

w 2 2 H
e (2B Tt €OV EC0) gy (5
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where sinc stands for the cardinal sine function and where the previous limit
comes from Proposition 5.4.1. The limit given in (5.44) implies that

t—0

w (¢(t)) do (¢(t)) — 0. (5.45)
Moreover we have
w (¢(2)) 6 (¢(t)) — sin (w (C(t)) do (¢(£))) _ 2 (¢(1))
8 sin? (w) >iap (C) + 7 (C(1)
If we consider
¢: |—mw — _R()
]

¢ is locally invertible around zero. We can therefore write

w6060 =07 (s Dy o). (540

Let us justify that the previous expression of w ({(t)) dp (¢(t)) is smooth at
t = 0. First of all, both 2 (¢(t)) and >, 22 (¢(¢)) +y? (¢(t)) are smooth since
¢ is smooth. Since ( is parametrized by arc length, we have

> (€(0)) + 7 (< dut . Zx )+ 7 (C(1)) =0 and

2
jt%_o D (C) + 7 () =2.

Moreover since ( is horizontal and leaves from the origin at time zero we
have that

d

O =g,

2(¢(#)) = 0.

We have all the elements to apply Lemma 4.4.4 to prove the smoothness

2(¢(1)) : . : :
of EIGOEHEGE which entails that w (¢(¢)) do ({(t)) is smooth by using

(5.46). Now

2z (C(1) w? (C(#)) 05 (¢(1)
w (€(£)) 6o (€(£)) — sin (w (€(£)) 6o (C(£)))’

But the numerator of the right hand side of (5.47) vanishes at a higher order
than is denominator since the left hand side of (5.47) tends to zero. We can

5 (C(t) = (5.47)

89



therefore apply Lemma 4.4.4 and we find out that 58 is also smooth along (.
But 62 (¢(0)) = 0 and by Proposition 5.4.1,

d d?

G M) =0amd g5 R =2
Now for t > 0,
52
do (1)) = 1) D,

so by applying Lemma 4.4.4, 0 (¢(t)) is smooth for ¢ > 0.

We have just proven that w (((t))do (¢(¢)) and o ({(t)) are smooth for
t > 0. In addition w (¢(0))do (¢(0)) = 0 and according to Proposition 5.4.1
%|t:0+ do (C(t)) = 1. As a consequence, we can apply 4.4.4 to deduce that

is smooth for ¢t > 0.
At this point, for ¢ € ¥y we rewrite the equations in (5.43) concerning
x; and y; as

() = 2 (o oo ) (e

The previous identity implies that if w(q)d(g) is not a multiple of 27,
(COS (9i(Q))> _ w(9) <COS (w(g)do(g)) =1 —sin(w(q)do(q)) >_1 <fvi(q)> '

0
sin (0i(q)) ) ri(g) \ sin(w(g)do(q))  cos(w(q)do(q)) — vi(q)
(5.48)

Moreover for g € g, I'o(q) is by definition the velocity of the minimizing
geodesic parametrized by arc length that comes from the origin, so according
to the expression on geodesics leaving from the origin in Hy, 1 given in
(5.42), the projection on the coordinates (z;,y;) of Ty is

_ (—7i(q)sin (w(q)do(q) + 0i(q))
(Tola)); = ( ra(q) cos (w(@)0(q) + 0:(0)) )
o (~sin@(@dole) —cos (w(@)on(a)) (eos (6:(0))
=i(d) ( cos (w(g)oo(q)  —sin <w<q>50<q>>> <sin <ez-<q>>> ‘
(5.49)

(6:(q))

find a new formula for (Iy(q)),

If in (5.49) we replace <C9S( <(Q))> by its expression given by (5.48), we

),
;- Form this new expression of (I'g(q));, it
follows that 'y (¢(¢)) is smooth for ¢t > 0 since w ({(t)) do (¢(¢)) and w (C(t))
are smooth for ¢ > 0.
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Appendix A

Jacobi fields and asymptotics
of Lie brackets in the 3D case

In this section, M is a three dimensional contact sub-Riemannian manifold.
We fix p € M a privileged point. We slightly adapt the notation 4 to this
section by saying that it represents the function that maps a point to its
distance to p.

We consider 7 a vector field defined along 7 : I — T*M an integral
line of the Hamiltonian field. We say that J is a Jacobi field when the Lie
derivative £ﬁ7 in the direction of ﬁ vanishes along 7.

For v: I — M a geodesic and 7 a vector field along ~, we say that 7
is a projected Jacobi field when there exists 7 : I — T*M a lift of v that is
an integral line for the Hamiltonian field and 7 a Jacobi field along 7 such
that the natural projection of 7 on T'M is equal to 7

Notice that we distinguish Jacobi fields tangent to M from those tangent
to T*M by using a calligraphic typography instead of a roman one.

The notion of conjugate points is closely linked to the concept of Jacobi
fields.

We consider 7 : I — T*M an integral line of the Hamiltonian vector
field. We say that two points 7 (t1) and 7 (t2) are conjugate along 7 when
there exists a Jacobi field 7 that is not identically zero along 7 such that

dr (7 (3 (tl))) — 0 and dr (7 (3 (t2)) = o) .

Similarly, for v : I — M a geodesic, we say that points 7 (t1) and ~ (t2)
are conjugate along v when there exists a projected Jacobi field J along ~
that is not identically zero and such that

F(y(0) =0 and 7 (v (t2)) = 0.

Since Jacobi fields are defined along lifts of geodesics, it is important
to understand these lifts of geodesics. The following theorem summarizes

91



several results concerning these lifts. [ABB19, 11.6, 11.9 and 11.10] [ABR17,
Theorem 4.1, Rem 4.2]

Theorem A.0.1. Let p € M be a reference point, and let us consider ¥, C
M the set of smooth points around p, which we recall is the set of points at
which the distance function from p is smooth, or equivalently the complement
of the cut locus.

For g € ¥, let us consider v4 the minimizing geodesic parametrized by arc
length that leaves from p at time zero and thal reaches q, and 7y, : R — T* M
the lift of v4 that is an integral line of the Hamiltonian vector field H that is
provided by Theorem 3.4.3.

Vg4 18 contained in the set H-! (%), since the geodesic of which it is a lift
is paramelrized by arc length. Moreover %, can be computed as follows :

7, (3(0)) = d,é,

where & stands for the distance function from p.

We start by establishing a general property of Jacobi fields. Before we
do this, we introduce technical notations.

Definition A.0.2. We set

G = (H—l (;) n T;M) U{dd/ae s}

We can interpret what this set represents by applying Theorem A.0.1.
Indeed & can be decomposed as the union of the integral lines of that Hamil-
tonian flow that are the lifts to T*M of geodesics leaving from p that are
parametrized by arc length and that have not yet reached their cut time with

respect to p. & can be sent through a smooth diffeomorphism to a subset of
(H(3)NT; M) x R.

Proposition A.0.3. For X a vector field tangent to T*M, V a covector in
T*M and t € R, let us denote by

@ (V)

the covector in T*M that is reached at time t by the integral line of X that
leaves from V' at time 0. The map

F: & — F(6)C(H'(5)NT;M) xR
v (@ ()5 (v))

1 a diffeomorphism whose inverse is :

F1. F(6) — G
(Vi3) — oL (V).
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We can see (V, 5) as coordinates on the set &. Function ¢ is thereby
transported from its initial domain 3, to a new domain &, in a most natural
fashion since 0 = 6 o 7.

At this point, it is possible to link several notations that we have intro-
duced in this paper.

Lemma A.0.4. If we consider (V, 3) as coordinates on & then

0
= - Al
5 (A1)
and over G,
droH =Tor. (A.2)

Proof. Identity (A.1) follows from the expression of map F~! (see Proposi-
tion A.0.3) while identity (A.2) holds over & as a consequence of the defini-
tion of our set & (Definition A.0.2) combined with Theorem A.0.1. O

Before we prove a result concerning Jacobi fields, let us state two usefull
lemmas concerning Lie brackets.

Lemma A.0.5. Let X, Y be two horizontal normalized vector fields. Assume
Y = cos(¢) X +sin(y)J X,

for some smooth function ¥ : M — R/27Z. Then
Y, JY] = [X, JX] — grad ¢.

Here, if f : M — R is a smooth function, we denote by grad f its
horizontal gradient which is the horizontal vector field such that df(X) =
g(grad f, X) for any smooth horizontal X. It is easy to check that

grad f = (X1 ) X1 + (X2f) Xa. (A.3)

where (X1, X3) is any orthonormal frame of the distribution. The proof of
Lemma A.0.5 follows by direct computation.
The next lemma follows from (3.18) and (3.19).

Lemma A.0.6. If {X1, X2} is an orthonormal frame of the distribution then
for every 1,7,k =0,1,2 we have

(X, X5] = [X3, X, (A.4)

which tmplies
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Lemma A.0.7. Let us consider {X1, X2} an orthonormal frame of the
distribution. There exist two smooth vector fields J+ : & — TS and

0.6 = TS which we decompose as
0

Z: (A A VA A A -7
J OéX1+5X2+UX0+]1ahX1+J28hX2+J0

9
Ohx,’

fori e {L,0}, and that satisfy :
(1) Fields TL and 7O are Jacobi fields in the sense that

(7i,H] =o.

(ii) For every i € {1,0} and for every fized V in H™! (%) NT %, M,

5 5
ot o FH(V,6) ~ 5 and 0° o F~1 (V) ~ 5

(iii) For every i € {1,0} and for every covector V in H ' (%) NT;M,

dr (7%’(1/)) —0.

Moreover, functions o' are smooth and do not depend on the choice of { X1, X2} .

Proof. By combining the expression of ﬁ given by Proposition 3.4.2 and
that of J?, to which we add Lemma A.0.5, we can reformulate the condition
[7i, ﬁ] = 0 by writing it on the frame (XO,Xl,XQ, Bhdxo’ Bhdxl , ahdx2)' If
we project the equation on each of the six directions, the system we obtain
is :

( ﬁai = hX2Oéi—hX15i

Hao' = (hxai—hx,B) ¢l o+ hx,0'n (X1) + hx,0'ch o + j}
HB = (hxa' —hx,B) Gl o+ hx,0'n (X2) + hx, o' + 3
Hii = =%, (hxohx, (aiX1 + BXs + 07 X0) T
+2i 5 (73hx, + hx,dk)) (A7)
Hiy = =5 (hxihx, (aiX) + BiX5 + 0 X0) T,

+251 (ihx, + hxdi)
ﬁj(’) = Ej,k,j;éo (hX]-th (Oéin + 6iX2 + UiXo) Elg’j
+c55 (j;ihxk - hij,Q)) .

\

In order to define the vector fields 7J- and 70 it is sufficient to define
their values on H—! (%) N T;M and the values of jL and 70 on the whole
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space F' then follow from differential equation (A.7). We define Tt as equal
to
0 0
hxy,z— — hx, 57—
2 ohy,  X'Ohy,

—1/1 . 0 e - . F)
on H (5) NTyM while 7 coincides with Bhxg OD that same space.

We now use (A.7) to establish the asymptotics of 0° and o+ by computing
the successive differentials of ¢ and evaluating them at zero. We find out
that for any V in H—! (%) NTyM,

a(V)=0
H (o) (V) = hxy (V) (V) —hx, (V) F1(V) = 0
—0 -0

H2 (67) (V) = hag, (V)H () (V) = hx, (V)H (8) (V)

In particular,

H? (04) (V) = 13, (V) + 1%, (V) = 1 since V & H! (;)
and H? (o) (V) = 0.
Furthermore,
H? (0”) (V) = hx,(VVH (1) (V) - hy, (V)H (52) (V)
=%, (V) —h%, (V)= —1since Ve H* <;>

Now, as we noticed in Lemma A.0.4,

n( i _ o cio F1 (V5
i (a)(V)_ag,,l‘E:0 F(V,5),

which is sufficient to conclude concerning the asymptotics we had set to
establish.

The fact that functions ¢! are smooth and independant of the choice of
(X1, X2) simply comes from the formula:

Ui:wodﬂ'(7i).
O

Before we can apply the previous results concerning Jacobi fields to study
the asymptotics of the Lie brackets, we need to prove a property concerning
the set &.
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Lemma A.0.8. The following inclusion holds true:
1 (1 * -1 -1
G\ |(H 3 NTyM ) Chy (1) Nhr(0).

Proof. Let us consider any covector in &\ T,y M. It can be written as dqg for
a certain ¢ in X, by Definition A.0.2. Now if we choose (I', JT') as a frame
of the distribution, by using (3.11), we can write thanks to Theorem 3.2.3,

hr(446) =8 (D) =1, hr (4,6) = dgd (JT) =0,
O

We are now able to compute the asymptotics of the Lie brackets of the
elements of the frame (T, JT', Xj).

Proposition A.0.9. Quantities SC%}}F and 52655(0 (a priori defined on S\
Ty M) can be smoothly extended to & and are respectively equal to —4 and
—6 over H™! (%) NTyM.

Proof. Let us focus on the fields 70 and 7J- that we introduced in Lemma
A.0.7. Over & \ Ty M, we write them in an adapted frame :

0 s 0

+ 58 ,
hor | 00hx,

. B
Ti = o'T + BITT + o' X0 + ji G5

First of all, 70 and ?L are tangent to & \ T;M which is contained in

hi' (1) Nh5E (0) according to Lemma A.0.8. Therefore, their components in
the directions of % and % vanish, which means that

ji =75 =0. (A.8)

Now if we use identity (A.8) and the fact that at each point of &\ T; M,

hr = 1 and hyr = 0, we can simplify system (A.7) that rules the fields 70
and 7% in the case where system (A.7) is written with (X3, Xo) = (T, JT).
If we combine the first and the third equation of the simplified sytem (A.7),
we obtain the following equation

0= ﬁ20i + E%FJFﬁUi + Eg(l;rai.
Since this last equation is satisfied by ¢” and o+ we find out that

Hol 1 -
—ﬁQO'l 5 5C%FJF A9
_ﬁQUO - ﬁo_o 327‘]1'\ ( . )
3 = 3

C
Xo,I'
S 0,

> >I]Q
|53
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The matrix of this system as well as its right hand side are smooth over &
by applying Lemma 4.4.4 to the asymptotics given in Lemma A.0.7 when
§ goes to zero (where we recall the remark we made in Lemma A.0.4 that
= H). Moreover, thanks to the asymptotics in Lemma A.0.7, we deduce
at the left hand side of system (A.9) and its matrix respectively tend to

_ 1
() me (4 2)
1 ~3 "%

when 0 tends to zero. As a consequence, by inversing system (A.9) we obtain

that functions SE%E]F and SQEQ)’F that were a priori defined on & \ Ty M,

can in fact be extended to the whole domain & in a smooth manner. By

inversing system (A.9) and taking its limit as 0 goes to zero, we even discover
- <2_ =1 11

the values of 50{{,P and § cg,lﬂ on theset & ~ (0)=H ' (3)N T, M.

5

t

O]

We can also write several other results that are similar to the previous
proposition.

Proposition A.0.10. Function EQﬁE%FJF that is a priori defined on 6\T;M
can be extended to a smooth function on the domain & and its evaluation is
equal to 4 on H™! (%) NTyM.

Proof. We know from Proposition A.0.9 that SéﬁrJF can be extended to a

. . <1 . .
smooth function on & that is equal to —4 on é = (0). Since H is also smooth,
we can write

=1
—

5H (55{5p) = 6 (ﬁg) A (ﬁeggp)
So
5 (Heflyr) = 5H (3ef5yr) — 5ty

has a smooth extension on & that is equal to 4 on 5! 0 =H'%)n
TEM. 0

Proposition A.0.11. Function SQJTE%FJF that is a priori defined on S \
TyM can be extended to a smooth function on the domain &.

Proof. Let us consider the fields 70 and 7L over & that we introduced
in Lemma A.0.7. We have for i equal to 0 or L, that [ﬁ, 71} = 0 which
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implies that

0::P?ﬁ713
G757

So 7@ is constant on the integral lines of ﬁ But on H~! (%) NTy; M, the
function 7@ is equal to zero. Therefore
Ti5=0 (A.10)

on &. As a consequence, for any V in &, dn (71 (V)) belongs to the kernel
of d§. Moreover, for any V in & the vector

E(V) = dnr (UL(V)Y’O(V) - UO(V)7L(V)) eTM (A.11)

belongs to the distribution, since its component in the direction of the Reeb
vector field Xy is canceled. Now since vector £(V) is a linear combination of
vectors in the kernel of dd , it is also in the kernel of dé and we deduce that
vector £(V) is orthogonal to the sub-Riemannian gradient of 6. By Theorem
3.2.3, this means that £(V) is colinear to JI'. We define

T:6—R
such that for any V in &,
EV)="1(V)JT (m(V)). (A.12)
Now we decide to write the fields J° over & \T;M as :

0 ny
hr J

. 0
09hyx,”

. L ) .
Tl = aiT 4+ BT + o' X + ji o + b5

If we combine the latter with (A.11) and (A.12), we obtain that for any V'
in &\ T, M,

Y(V) =0 (V)B2V) = a"(V)B- (V).

Now thanks to Lemma A.0.8, hr is identically one and hjr is identically zero
on &\ Ty M, so the first equation of (A.7) becomes

ﬁai = -3
As a consequence, for every V in &\ T, M,

Y(V) = o (V)Hot (V) — o (V) HO(V). (A.13)
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At this point, we must remember what our goal consists in. We are comput-
ing the asymptotics of EQWE%E]F over & \T;M. Since the function 6%,1?” is
constant on the fiber of 7* M, we can replace JT in the expression SQWE%’FJF
by any vector field & \ TyM — T*M that has the same projection as JT
through dm, namely that is projected onto JI' through dm.

But by combining (A.11) and (A.12), we obtain that for all covectors V'
in &\ Ty M,

o (V) TOV) = (V)T
dm ( T ) =JI'(n(V)).

As a consequence,

1 f0=JT 0 f1zJT
00 7 Crgr — 0 7 P
T
L f0 (§7JT 0 L (s/JT
T

ot T (Gefly) — T+ (5T

UOﬁO'J‘ —olHoO

S ITelln =4

|

by (A.10),

)

according to (A.13).
(A.14)

We have all the elements we need to conclude. By applying Proposition
A.0.9, (56%71:” can be extended to a smooth function defined on & and its
value on H ! (%) NT; M is constant. Therefore, all functions 71 (5@%%)

can be extended to smooth functions on & that vanish at every point of
H-! (%) NT; M. We combine this with the smoothness and the asymptotics
of functions ¢* that come from Lemma A.0.7, and we now understand the
asymptotics of all the terms in (A.14). We simply apply Lemma 4.4.4 and

. 2= )
we obtain the fact that & JPC%F]F can be extended to a smooth function on
the domain G&. O

A.1 Proof of Proposition 4.4.8
Let us start by proving the first identity. We consider

¢: I\{0} — &
t — d((t)(s,

which is a lift of ¢. We recall that & = o and that Eﬁj = cﬁj om. Therefore,

8 (¢(8)) eftyr (¢(8) = 8 (¢(1)) eiyr (C(1)) (A.15)
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and we may study the right hand side of the previous identity instead of the
left hand side. B )
Now by Theorem A.0.1 for every t in I\{0}, ((t) = d¢()d is the evaluation

at time 6(((t)) of the integral line of the Hamiltonian flow Yewy L\ {0} —
T M, that is a lift of ¢(;), the minimizing geodesic parametried by arc length
linking p to ((t).

In particular by using diffeomorphism F' introduced in Proposition A.0.3,

¢t = F~ (0 (0),5 (<)) (A.16)

But using Proposition 4.4.7 combined with point (ii) in Proposition 3.4.4,

_ t—0
hxo (Te () =3 he(0). (A17)
Moreover, since for every ¢, ¢ is parametrized by arc length, then by
Theorem A.0.1, its lift Ve¢(r) must be contained in H-! (%), which implies
that for (X1, X9) any choice of frame of the distribution,

hx, (74(t)(0)> + hx, (7@@)(0)) =1 (A.18)

Furthermore, since ¢ is parametrized by arc length and leaves from p at time
zero, 0 (((t)) € [0,]t|] for every time ¢, so

3 (¢(t) o (A.19)

By putting together (A.16), (A.17), (A.18) and (A.19), we obtain that for ¢
small enough, {(¢) belongs to a compact subset of &. On this compact set,

thanks to Proposition A.0.9, function SE%FJF is uniformly continuous. Now
t—0

since 4 (C(t)) = 5 (C(t)) == 0, and as EE%FJF is equal to —4 on 5_1(0) =
H-! (%) NT,M, we deduce from the uniform continuity of EE%FJF on the
compact set containing the trajectory of ¢ for times small enough, that

5 (C)) ehr (C(1) =8 —a.

Now we use (A.15) to obtain the first limit in the proposition we are proving.

To prove the other three asymptotics we essentially do the same proof
where we may use Propositions A.0.10 and A.0.11 instead of Proposition
A.0.9 and where we replace (A.15) by

5 (6(1)) ey, (€(1) =3 (1) ek, (C1)
3 (¢(0) Peflyr (¢(1) = 3" (1) Hel"p (C1))
and 5 (C()) JTeflyr (C(1)) =8 (C(1)) Tl (C(2) -
The proof of these three identity is the same as that of (A.15), to which we
add the facts that Tom = dro H (see Lemma A.0.4) and JT o = dro JT
(by 3.18).
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Appendix B

Proof of Proposition 5.2.4

In fact, we prove a more precise result than the one stated in Proposition
5.2.4, since we compute an explicit expression for b, namely

he(s) =2A <Z(3) — Z a;(s) <ii(3)d§(s)U1,X (T) — yi(s)dg(s)vly (T))>

%

1(s) z1(s)
Y1 (s) y1(s)
xn(s) fL‘n(S)
Un(s) Un(s)

We start by defining matrix J whose block made of the intersection of
columns 27 — 1 and 25 and of lines 2¢ — 1 and 2¢ is

iji ijl
(X iYi Yj%) '
According to Theorem 5.2.1, J smoothly depends on its evaluation point and
is such that

3(C(s)) = Id and d3 (¢(s)) = 0. (B.1)

In this proof instead of writing x; (¢(t)), we write x;(¢). Let us also write
#;(t) to denote T (¢(t)) x;. We proceed similarly for all other functions.
The decomposition of vector T (¢(¢)) in the frame (X;,Y;) then reads

iy (t)
(1)
o (t)
j2(t)

(@) | v2(t (B.2)




From which we deduce by using the expressions of X; and Y; given by The-
orem 5.2.1 that

a1 (t) (yl il +U1X ))

—ai(t) ( +oLy t)) ilé

as(t) (yz(t) + vg x )) x;(t

M) =T z= | —as(t) ( ) 37 | et
)

an(t) (y" o) + v x(t)

—an(®) (52 + vy (1))

As a consequence, and by applying (B.1) and the fact that ((s) is the origin
of coordinates,

and

+Zaz ) ()82 g01x (T) = ()2 oy (T))

We now link this value of 2(s) with h¢(s). Thanks to Lemma 3.3.3, we know
that we can study the projection of [T, JT] in the direction of T. Along (,
we already know the decomposition of T on the frame (X;,Y;) from (B.2).
Moreover, using (B.2) and Definition 5.2.2, the decomposition of JT (¢) reads

However, in order to compute [T, JT], it is not sufficent to define the field
T along the curve ¢ but we must extend it outside the curve (. In order
to extend T we start by choosing V any vector field that coincides with JT
along (. Then we define T as a smooth vector that extends the velocity of
¢ whose expression in the frame (X;,Y;) is constant along each integral line
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of V. Now by decomposing T and JT in the frame (X;,Y;) we can compute

T

X, (C(9)) inlt)
Y, (¢(5) in ()

i (0(9)) (5.4

term coming from the [X;,Y;]’s

X1 ¢\
Yi (¢(s)) 91 (s) i1 (s)

+ fAXo (¢(s)),

where we replaced % by AXq by using Proposition 5.2.3.
Now let us recall that according to Lemma 3.3.3,

he(s) = —g,,,., ([T, JT]+ Tor (T,JT),T). (B.5)

In order to deduce the expression of h¢(s) from that of [T,JT](((s)) we
therefore must understand the Tor (T, JT) term.

First of all, we know from Theorem 3.1.3 iv. that Tor (T, JT) is parallel
to the Reeb vector field. Moreover we notice that

[T,JT]+ Tor (T,JT) =V (JT)—VyrT,

where the right hand side is horizontal since by Theorem 3.1.3 i. the dif-
ferential of a horizontal vector field with respect to the Tanno connection
is horizontal. As a consequence, [T, JT] + Tor (T, JT) is the projection of
[T, JT] on the distribution parallely to the Reeb vector field. Therefore, by
(B.4), the expression of [T, JT] + Tor (T, JT) in the frame (X;,Y;) is

1(s) Z1(s)
1(s) 41 (s)
dey (M ¢ |+ 20
T (s) Tn(s)
Un(s) Bin(s)

In this last expression we can replace _# (s) by its expression given by Propo-
sition 5.2.3. If we combine the decomposition of [T, JT]+ Tor (T, JT) in the
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frame (X;,Y;) that we now obtain, with that of T that is given by (B.2) and
(B.1) and with (B.5), we can conclude that

he(s) =AZ ; (8) (£:(8)9i(s) — Gi(s)@i(s)) (B.6)
x1(8) T z1(s)
y1(s) Y1 (s)
-1 deo) A (M) |
T (8) T ()
Un(s) Un(s)

Identities (B.3) and (B.6) entail the result.
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Appendix C

Computing the second
differential of the squared
distance from a point

We start by explaining how normal moving frames such as described along
one single integral line of the the Hamiltonian vector field in Theorem 5.3.2
are linked along different integral lines of this Hamiltonian vector field.

Proposition C.0.1. Let M be a contact sub-Riemannian manifold. We
consider qo € M. Let us lift Xy, the set of smooth points around qo to the
cotangent bundle by considering ¥, C T*M that stands for the union of
all Hamiltonian lifts of geodesics that leave from qq, are parametrized by arc
length and are restricted to the times stricly smaller than the cut time with
respect to qo.

There ezists a smooth frame (Ei,FZ-)?QO of T (T*M) that is defined over
Y4 such thatl the restrictions of this frame to the integral lines of H are
normal moving frames whose vector Fy is equal to H and whose associated
R-matriz is also smooth over 3.

To such a frame (EZ-,FZ-)?ZO of T (T*M) that is defined over ¥, we can
associate a frame of T M

(fi) = ™« (F3)

over X4, since the canonical projection m : T*M — M s a diffeomorphism
between g, \ Ty M C T*M and 3q,.

Proof. The fact that the vector spaces (Eo), (Fo), (E1), (F1), (E;)?", and
<E>§22 as well as the endomorphism that is represented by the matrix R
can be chosen smoothly on iqo is a consequence of explicit computation
that we can find in [ABR17, Section 6] and in [LZ11]. In addition, this
construction provides us with an actual smooth frame (E;, Fz)fgo However
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we must check that it is possible to choose Fy to be equal to H. First of
all, the smooth vector field H belongs to <FZ>322 thanks to the fact that
along one geodesic H can be chosen equal to Fy according to lemma 5.3.3
and since the space (FQ?ZQ is independant of the chosen normal moving
frame. In particular, for p € {)\ eTM: HI—?(A)H = 1} it is possible to
chose an orthogonal matrix O(p) that smoothly depends on p and that sends
(E(QD))ZQZ2 onto a family of vectors whose first element is H(p). Now from
Theorem 5.3.2 this allows us to build over ¥, a smooth frame (E;, Fi)?zo
that is a normal moving frame along the integral lines of H and that coincides

with H over {)\ eTM : Hﬁ ()\)H — 1}. Thanks to [ABRI1S, Section 7.5.4]

adapted to the contact case, field Fy actually conicides with H on iqo.

The proof is complete but let us just point out that papers [ABR17,
Section 6] and [LZ11] we use actually do not treat the complete contact
sub-Riemannian case, but [ABR17, Section 6] assumes that J? = —Id and
[LZ11] assumes some symmetry. Nevertheless, both paper refer to a general
algorithm given in [ZL09] that may be used to prove the regularity in the
general contact case. O

Lemma C.0.2. Let M be a contact sub-Riemannian manifold. We consider
qo € M.

For any geodesic o that is parametrized by arc length and that leaves
from qo at time zero, there exist

(i) an interval I containing zero,
(ii) an open set U that contains vo (I) ,

(iii) an open set 9 of geodesics parametrized by arc length that leave from
qo at time zero (“open” in the sense that the evaluation at time zero of
the Hamiltonian lifts of each of these geodesics forms a open set),

(iv) and a family of orthonormal smooth frames (f;) that are defined over
U and indexed on v €9

such that

(i) for everyy € 4, frame (f;') coincides with frame (f;) that is described
in Proposition C.0.1 along v(I),

(i) frame (f;') smoothly depends on the geodesic v, by which we mean that
it smoothly depends on the evaluation at time zero of the Hamiltonian

lifts of .

Proof. We prove this lemma by explicitly building the vector fields f; by
only using smooth operations. First of all, there exist I C R a time interval
that contains zero such that ~g is injective on I and a diffeomorphism 91 :
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U — I xV C R?*! that sends 7o(t) onto (,0). Moreover, there exists
an open set 4 of geodesics parametrized by arc length that leave from gq
("open" in the sense we mentionned in the statement of the result) that
contains vy such that for every v € ¢, the trajectory 9M(v(I)) is transverse
to the sets {t} x V. Then we define the vector field fZ on U that coincides
with f; along ~v(I) and such that the image of f? through 9 is constant on
the sets {t} x V. Finally we project the field j‘? on the distribution parallely
to the Reeb vector field and normalize this projection to obtain the field f}.

The smoothness of f; as a function of v is a consequence of the smooth-
ness of the vector field F; described in Proposition C.0.1 from which we build
fi and therefore indirectly f;'. O

We must now explain how a Hamiltonian perspective involving a normal
moving frame can help us to prove Proposition 5.3.4.

C.1 Proof of Proposition 5.3.4

Let us start by introducing the notion of second differential of a real-valued
function which is defined on a manifold. For

f: M — R,
we have
df : M — T*M,
so for every ¢ in M we can define

dzf: T,M — Ty T*M
v dgdf(v).

Now that we have set the proper definition for the second differential of
a real-valued function, let us point out an important property of the squared
distance. If ¢ belongs to 35 then the integral line of the Hamiltonian flow
that reaches the covector

1 2
ﬂdq(ss

at time ¢ is a lift of the minimizing geodesic that leaves from ((s) at time
zero and whose speed is compatible with the fact of reaching ¢ at time ¢.
We can for example find a proof of this property for ¢ = 1 in [ABBI19,
Proposition 11.4| to which one can add the time parameter ¢ by applying
[ABB19, Remark 4.26].

As a consequence for every ¢ in X5 and ¢t in R\ {0},

g1
T (e tH 2tdq63> =((s),
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and

wij%ﬁﬁzo (1)
At this point in the proof, let us focus on one single geodesic v that is
parametrized by arc length and leaves from ((s) at time zero. Later on in
the proof, when we have enough information about the asymptotics we are
studying along one geodesic then we can link what happens along several
geodesics to come back to the curve ¢ we are actually interested in. Until
then, let us "forget about" the notations that come from Proposition C.0.1
and Lemma C.0.2, since we simply use the notations in Theorem 5.3.2.
Theorem 3.4.3 provides us with 7, a lift of y that is an integral line of H.
Along 7, we consider a normal moving frame (Ei,Fi)?ZO such as described
in Theorem 5.3.2. Along ~, we also can define a frame

(fz)?go = T (FZ)fzo .

Now notice that according to Theorem 5.3.2, at every point (), the family
(Ei(t))?go is a frame of the vertical subspace of Ty T*M, in other words
of the set of vectors in T5;T*M that vanish through m,. This last remark
combined with (C.1) allows us to write for every time t € R,

fo(v(1)) Eo (7(1))
ot diu)%ﬁ h (?(t)) P Ey (?(t)) | ©2)
fon (7(1)) Eon (7(1))

where 6(t) is an element of Ms,4+1 (R). For the sake of simplicity, in this
proof we simply write f(¢) to stand for the vector whose components are the
fi (v(t)), and we do the same for FE.

At this point, we introduce, for every time ¢t € R two matrices A(¢) and
B(t) both in My,4+1 (R) such that

e B(0) = A(t)E(t) + B(t)F(t). (C.3)

So we can write, for t € R,
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Since f(t) is a frame of T ;) M, we deduce from the previous identity that
6(t) = B~L(¢). (C.4)

We carry on our computations.

1 d _,g1
ﬁgdi(t)ﬂﬁ (F(t)) = T & d2(t)52 (f(8)

— ot %Bil(t)E(O) by combining (C.2) and (C.4),

— (B (t) e E(0),
= (B7™Y (t) (A()E(t) + B(t)F(t)) by using (C.3).
(C.5)

We continue by searching for another expression of £ 5 Qtdg( )52f(t) than the

one given by the previous identity. In order to do this, along 7 instead of
2n
considering the frame (E;, F;)3" - we use the frame (fl, hy, ) . We recall

that this frame is defined by identities (3.18) and (3.19).
Now an important identity that we find in [ABR18, Lemma 8.2] reads

2ts(fz = +Zfz ( )82 (C.6)

for t € R and i € [0, 2n].
2n
Let us link the frames (F;, F) ", and (fl, a}‘?f > . along the curve 7 in
i/ 1=

order to state (C.6) in the frame (F;, F,)ZQZO
We start by noticing that along 7 for i € [0,2n] by Theorem 5.3.2 and
(3.19),

0
* E’L —VU="Tx\ 57 |> .
s (Bi) =0 W(@hﬁ) (C.7)
and that for j € [0,2n],
o (E;, F;) = 6;,j as explained in Theorem 5.3.2,
3}
- %
Ohy, i
3}

= WLT(FJ) by (3.11) and (3.13),

0 0 0
— (-2 ) +F Y F
(o o)+ (o) - (aiom)
0 0 0

=0 <88, Fj) by definition of o. (C.8)
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We combine (C.7) and (C.8) and we deduce that along 7,

0

Then we write that along 7, for i € [1,2n],

F; = —L 5 FE; according to Theorem 5.3.2,

0
=—Lp— oh; by applying (C.9),

_ 0
:fi+z< hfo+2(zj+ckj>hfk> an_? (C.10)
J=0 J

where the last line is provided by Proposition 3.4.2.
By assembling (C.6), (C.9) and (C.10) we find out that along 7 and for
i € [1,2n],

t)2t 2(fi(t) = +Zfz ( ) (1) (C.11)

- Z (C?,jhfo + Z (Eﬁj "‘Ei,j) h‘fk) E;(t).
=0

k=1

For i € [1,2n], if we take the Lie differential of the previous identity in
the direction of H, we obtain an expression of £ d2( =62 (fi(t)) along
7. But (C.5) gives us another expression of that same quantlty Now, for
i € [1,2n] we consider the equation that identifies both the expressions of
Eng 211‘53 (fi(t)) given by (C.5) and (C.11). Then we project the identity
we obtaln on the vector space generated by the F}’s and we have

((B_l)/ (t)B(t)F(t))i =—0;1Fo(t Zfz < ) L (t)
+ Z <C?,jhfo + Z (Ef,j +5?;,j> hfk> F5(t),
j=1

(C.12)

along 7, for any i € [1,2n].

By observing the previous identity, we see that in order to understand
the asymptotics of the second differential of the squared distance from ((s),
we can study the behaviour of matrix B(t) for small times t. To do this,
along 7 we take the Lie differential of (C.3) in the direction of H and we
obtain

0= (a0 | §50) ) (pig) + (a0) | By ) (ZERT)-
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In the previous identity, we replace £ 5 E(t) and £ F(t) by their expressions
in terms of E(t) and F'(¢) given in Theorem 5.3.2, which leads us to writing

01 0 -~ o0f]o]| o
(0) 0| -I
d
g(AlB)B=-(A4]B)® _01
R(t) 0 (0)
0
(C.13)

The previous differential equation on A(t) and B(t) combined with the initial
conditions that are implied by (C.3) namely A(0) = Id and B(0) = 0,
allow us to understand the asymptotics of B(t) and of (Bfl)/ (t)B(t). More
precisely, by studying the differential equation on A(¢) and B(t) we obtain
that

+0(t).
It follows that in a (2n 4+ 1)—dimensional space,
2n+3 N
det (B(t)) = " .
et (B(1) = 5+ 0 (1)
We then use the adjugate matrix of B to compute
12 1 6
B t—36+(9(f) 1—22+(9(1) o)
B (t) = -2 +0(1) =+0(1)
O(1) | {1+ 0(1)

Now we can compute

SAFN
—
o
SN—

BB =] i 0 |+0q).

—~
o
=

=



Then we notice that (B_l), (t)B(t) = —B~'(t)B'(t) and we are able to write

(B 0Bt =| —7 0) | +o). (C.14)

0 @ -

Let us now come back to the study of (. To do this, we apply the
process we just explained along each minimizing geodesic parametrized by
arc length leaving from ((s) at time zero, by choosing the frame (Ej, Fi)?go to
be equal to the frame that is described in Proposition C.0.1. Now according
to Proposition C.0.1, the matrix R is smooth for this choice of frame, so if we
do the same reasoning as we did along one single geodesic v again, but this
time along any compact set of geodesics parametrized by arc length leaving
from the ((s) at time zero, result (C.14) still holds uniformely with respect
to the geodesic we are considering.

But according to Theorem 5.2.5 the minimizing geodesics parametrized
by arc length that reach ((t) for t € [s, s + €| are limited to a compact set
("compact" in terms of initial Hamiltonian lift). As a consequence, if we
define Bq along v, exactly as B was defined along ~, then along ¢ we can
rewrite (C.14) as

(0)

(C.15)

Now we recall Lemma C.0.2 and we replace the fields f; by the fields
f?s‘q(” in identity (C.12), that we evaluate at ((¢). If we combine the identity
we obtain with (C.15) and with Lemma 5.3.1, we are almost done with the
proof. We just need to understand all the terms that are involved.

The terms in (C.12) that involve Lie brackets cfij and Hamiltonian coef-

ficients h; are bounded since the fields f; *¢M whose Lie brackets we consider
are smooth, smoothly depend on the geodesic v, ¢(;) along which they are
evaluated, which are restricted to a compact set of geodesics by Theorem
5.2.5. For the same reason, the term

Vs,
ge() (T&Vf:s,c(t) I C(t))

that comes from Lemma C.0.2 is bounded. Finally, by construction vector
2n
f;s‘q” (C(t)) coincides with I'y (¢(¢)) and Lemma 5.3.3 tells us that (f;ys’g(” (((t))) ‘
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is an orthonormal frame of A, ;) such that fl%’g(t) (C(t)) is equal to JT's (¢(2)).
In particular, thanks to Theorem 3.2.3, we can compute another term that
appears in Lemma C.0.2 :

S350 (C(0) B = L and ]9 ((1)) 8, =0, for i £ 2

Now that we know the asymptotics of every term that is involved, we
can combine (C.12) with (C.15) and with Lemma 5.3.1 to prove Proposition
5.3.4.
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