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Résumé Cette thèse se compose de plusieurs travaux portant sur deux branches de la théorie des
probabilités: processus de particules et cartes planaires aléatoires.

Un premier travail concerne les aspects algébriques des mesures invariantes des processus de
particules. Nous obtenons des conditions nécessaires et suffisantes sous lesquelles un processus de
particules en temps continu avec espace d’états local discret possède une mesure invariante simple.

Dans un deuxième travail nous étudions un modèle "biologique" de coexistence de 2 espèces en
compétition sur un espace partagé, et soumis à des épidémies modélisées par un modèle probabiliste
appelé "feux de forêts". Notre résultat principal montre que pour deux espèces, il existe des régions
explicites de paramètres pour lesquelles une espèce domine ou les deux espèces coexistent. Il s’agit
d’un des premiers modèles pour lesquels la coexistence d’espèces sur le long terme est prouvée.

Les troisièmes et quatrièmes travaux. portent sur les cartes planaires décorées par des arbres.
Dans le troisième nous présentons une bijection entre l’ensemble des cartes décorées par des arbres et
le produit Cartésien entre l’ensemble des arbres planaires et l’ensemble de cartes à bord simple. Nous
obtenons quelques formules de comptage et quelques outils pour l’étude de cartes aléatoires déco-
rées par un arbre. Le quatrième travail montre que les triangulations et quadrangulations aléatoires
uniformes avec f faces, bord simple de taille p et décorées par un arbre avec a arêtes, convergent en
loi pour la topologie locale vers différentes limites, dépendant du comportement fini ou infini de la
limite de f , p et a.

Mots-clés Processus de particules, lois invariantes, coexistence, extinction, comptage bijective de
cartes, cartes aleatoires, limite locale.

Title Some models at the interface of probability and combinatorics : particle systems and maps.

Abstract This thesis consists in several works exploring some models belonging to two branches of
probability theory: interacting particle systems and random planar maps.

A first work concerns algebraic aspects of interacting particle systems invariant measures. We ob-
tain some necessary and sufficient conditions for some continuous time particle systems with discrete
local state space, to have a simple invariant measure.

In a second work we investigate the effect on survival and coexistence of introducing forest fire
epidemics to a certain two-species spatial competition model. Our main results show that, for the
two-type model, there are explicit parameter regions where either one species dominates or there
is coexistence; contrary to the same model without forest fires, for which the fittest species always
dominates.

The third and fourth works are related to tree-decorated planar maps. In the third work we present
a bijection between the set of tree-decorated maps and the Cartesian product between the set of trees
and the set of maps with a simple boundary. We obtain some counting results and some tools to study
random decorated map models. In the fourth work we prove that uniform tree-decorated triangulations
and quadrangulations with f faces, boundary of length p and decorated by a tree of size a converge
weakly for the local topology to different limits, depending on the finite or infinite behavior of f , p
and a.

Keywords Interacting particle systems, invariant measures, coexistence, extinction, bijective map
counting, random maps, limit local.

Laboratoire d’accueil LaBRI. 351, cours de la Libération, F-33405 Talence cedex, France
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Résumé étendu en français (it can be skipped to a much detailed introduction in english).

A. Mesures invariantes de processus de particules discrètes : aspects algébriques.
Travail en commun avec J.F. Marckert.

Dans ce travail [50] nous nous intéressons à une classe spéciale de processus de particules (IPS) :
il s’agit de processus de Markov en temps continus (ηt)t∈R+ prenant leurs valeurs dans l’ensemble
des colorations d’un graphe G = (V,E), c’est-à-dire

ηt = (ηt(u), u ∈ V ) ∈ EVκ ,

où l’ensemble des couleurs est Eκ := {0, 1, . . . , κ− 1} pour un κ ∈ {∞, 2, 3, . . .}.
Les graphes considérés ici seront le réseau Zd pour d ≥ 1 ou Z/nZ avec n ≥ 1 ou le segment

J0, nK, pour n ≥ 1.
Dans le cas de Z et Z/nZ, la dynamique du processus est définie par une matrice de taux de saut

T = [T[u|v]]u,v∈ELκ ,

oú la quantité L ≥ 2 est appelée la portée de l’interaction (taille du voisinage d’influence). L’entrée
T[u|v] est la vitesse à laquelle chaque sous-mot de η égal à u (de longueur L) est transformé en v
(pour u et v mots quelconques de longueur L). Voici un exemple.

t

t+ ∆t

∆t ∼ Exp(1)

Exemple (TASEP) Considérons la ligne Z vue
comme un graphe G = (Z, E) avec ensemble
d’arêtes E = {{x, x+ 1}, x ∈ Z}. Dans ce pro-
cessus de particules, chaque particule essaie de
sauter à droite au taux 1 et le saut ne devient ef-
fectif que si le site d’arrivée est vacant. Les sites
noirs (blancs) représentent la présence (absence)
d’une particule. La matrice de taux de saut est
donnée par

T[w|w′] =

{
1 si w = (•, ◦) et w′ = (◦, •)
0 sinon

Cela signifie que chaque paire de sites dont les couleurs sont (•, ◦) attend un temps aléatoire ex-
ponentiel de taux 1 pour passer à (◦, •) (les couleurs des autres sites restent les mêmes), après les
horloges exponentielles sont redémarrées.

Définition : Une distribution µ sur EVκ est dite invariante pour l’IPS de matrice de taux de

saut T (ou simplement invariante par T) si ηt
(d)
= η0

(d)
= µ pour tout t ≥ 0, où

(d)
= désigne l’égalité en

distribution.

Question principale.
Nous abordons la question suivante : étant donnée une distribution µ sur EZ

κ , quels sont les IPS qui
possèdent µ en tant que mesure invariante ?
Nous répondons complètement à la question dans deux cas : nous caractérisons tous les IPS ayant µ
comme distribution invariante lorsque µ est mesure produit et lorsque µ est la loi d’un processus de
Markov de mémoire m sur la ligne. Nous donnons également des caractérisations similaires pour les
IPS définis sur Z/nZ (et aussi sur Zd).
D’habitude les résultat de calculs explicites de mesures invariantes dans la littérature sont obtenus
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modèle par modèle, ici notre approche permet de calculer les mesures invariantes d’un nombre infini
de modèles présentant certaines caractéristiques algébriques.

Notre contribution :
Nous présentons un bilan des résultat obtenus. C’est important de noter que la même matrice de
taux de saut peut être utilisée pour définir des IPS dans différents graphes, étant donné que les règles
d’évolution sont locales (L <∞) (voir fig. 1).

t = 0 X1 X2 X3 X4 X5 X6 X7 X∼µ=γ

t = ∆t Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y∼µt=γ

Évolution sous T

(a) Esquisse d’une portion finie du processus évo-
luant sur la ligne avec mesure invariante γ.

Y6

X6

Y7

X7

Y8

X8

Y9

X9

Y10

X10

Y5

X5

Y1

X1

Y2

X2

Y3

X3

Y4

X4
t = 0

t = ∆t

X∼µ=ν

Y∼µt=ν

Évolution sous T

(b) Esquisse du processus évoluant sur le cycle de
longueur 10 avec mesure invariante ν.

Figure 1 – Les IPS à droite et à gauche sont définis à partir de la même matrice T (le temps
évoluant de bas en haut).

On dit qu’un processus (Xk, k ∈ Z) possède une distribution de Markov (MD) (ρ,M) (de
mémoire m = 1) avec noyau de Markov M := [Mi,j ]i,j∈Eκ et distribution initiale ρ ∈M(Eκ) si

P(XJ0, nK = x) = ρx0

n−1∏
j=0

Mxj ,xj+1 , pour tout n et tout x ∈ En+1
κ .

Un processus (Xk, k ∈ Z/nZ) à valeurs sur EZ/nZ
κ possède une distribution de Gibbs Gibbs(M)

sur Z/nZ et avec noyau M := [Mi,j ]i,j∈Eκ si

P(X = x) =

∏n−1
j=0 Mxj ,xj+1 mod n

Trace(Mn)
, pour tout x ∈ EZ/nZ

κ .

Théorème : Soient κ fini, L = 2 et M un noyau de Markov sur Eκ. Si M possède des entrées
positives et ρ est la unique mesure invariante de M , les conditions suivantes sont équivalentes pour
le pair (T,M) :

1. La distribution de Markov (ρ,M) est invariante par T sur la ligne Z.
2. Gibbs(M) est invariante par T sur Z/nZ, pour tout n ≥ 3.
3. Gibbs(M) est invariante par T sur Z/7Z.
Comments :
1. L’importance de ce théorème vient du fait que les équations de stabilité des lois finies dimen-

sionnelles forme un système d’équations de taille infinie et de degré non borné en M , alors que
l’invariance de Gibbs(M) sur le cycle de longueur 7 est explicite, fini, linéaire en T de degré
de 7 en M .

2. En autres termes, nous avons relié l’invariance de MD (ρ,M) sur la ligne avec l’invariance du
Gibbs(M) sur le cycle. Si le processus défini par T sur le cycle de longueur 7 possède une
distribution invariante de Gibbs avec un noyau positif M , alors tous les IPS définis à partir de
T sur les cycles de longueur n ≥ 3 ont aussi une distribution Gibbs avec noyau M .
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3. Sous certaines conditions supplémentaires, le théorème est valable pour un nombre infini de
couleurs, c’est-à-dire κ =∞.

4. Nous donnons également une "condition nécessaire et suffisante" pour l’invariance d’une dis-
tribution de Markov M pour toute mémoire m ≥ 0 et pour toute rang L ≥ 2.

5. Nous donnons quelques connexions entre le théorème précédent et le matrix ansatz (voir [32]).

Autres resultats :
— Conditions nécessaires et suffisantes pour l’existence de mesures produits, invariantes sur Z,

Z/nZ et Zd.
— La caractérisation complète des mesures invariantes pour m = 1, L = 2 et κ = 2.

— Un algorithme pour trouver toutes les MD invariantes pour une matrice T donnée sur la ligne.

— Quelques applications sur différents modèles.

B. Survival and coexistence for spatial population models with forest fire epidemics.
Travail en commun avec A. Linker et D. Remenik.

La modélisation d’espèces (biologiques) en concurrence pour l’espace ou les ressources est un
sujet d’étude actif en biologie mathématique. Les modèles classiques ne permettent pas d’expliquer
la biodiversité, car dans les modèles introduits jusqu’à présent, l’espèce la mieux adaptée domine et
conduit les autres à l’extinction. Afin de créer des modèles réalistes et de promouvoir la coexistence,
des extensions ont été explorées, telles que l’ajout de prédateurs [92, 66, 101], de fluctuations aléa-
toires sur l’environnement [115, 86] et de maladies [67, 98]. D’autres travaux incluent l’ajout de l’effet
de surpeuplement, qui prend en compte le fait que les fortes densités de population augmentent la
proximité (promiscuité) des individus, ce qui facilite la propagation des maladies (voir, par exemple,
[63, 102, 53]).

Nous étendons les travaux de Durrett & Remenik de [42] qui ont étudié le comportement d’un
processus de particules inspiré par les spongieuses (type de papillon de nuit), dont la croissance natu-
relle de la population conduit à la formation d’amas géants qui sont anéantis par les épidémies (cet
effet est modélisé par un processus appelé feux de forêt dans la littérature [38]). Nous étendons ce
modèle dans deux directions : à plusieurs espèces en concurrence pour l’espace dans un environne-
ment commun, et nous généralisons les taux des épidémies qui non seulement attaqueront les amas
géants, mais aussi les amas de plus petit ordre.

Le modèle Multi Moth (MMM) : Soit GN = (VN , EN ) un graphe fixé avec N sommets et
soit m ≥ 1 le nombre d’espèces dans le modèle. Le MMM est un processus de Markov à temps
discret

(
ηk
)
k≥0

, où
ηk = (ηk(x) : x ∈ Vn) ,

prenant des valeurs dans {0, . . . ,m}VN , où ηk(x) = i si, au moment k, x est occupé par un individu
de type i si i ∈ {1, ...,m} ou vacant si i = 0. Le processus (ηk : k ≥ 0) est défini à l’aide de 3
familles de paramètres :

~β = (β1, . . . , βm) ∈ Rm+ , ~αN = (α1
N , . . . , α

m
N ) ∈ [0, 1]m et {NN (x) ⊂ VN : x ∈ VN},

où ce dernier paramètre NN (x) est un voisinage (dit de croissance) de x.
Étant donnée une configuration initiale η0 ∈ {0, . . . ,m}VN , la dynamique du processus à chaque

unité de temps est divisée en deux étapes consécutives :

Croissance : Chaque individu de type i présent sur un site x ∈ VN meurt, mais avant cela, il envoie
un nombre aléatoire de descendants de moyenne βi > 0 (indépendamment des autres sites) à des
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sites choisis de manière uniforme et aléatoire dans NN (x) (ces actions sont effectuées simultanément
pour tout type et tout site). Après cela, le type d’un site est choisi uniformément au hasard parmi le
type des individus qu’il a reçu ; s’il n’en a reçu aucun, le type est 0.

Épidémie : Chaque site x occupé par un individu de type i après l’étape de croissance est attaqué
par une épidémie avec probabilité αiN indépendamment des autres sites. Un individu infecté dans x
meurt avec l’ensemble de la composante connexe de sites occupés par des individus du même type.
Cela se produit indépendamment pour i = 1, . . . ,m et pour tout x.

Nos résultats principaux sont :

— Cas mono espèce, m = 1 : Nous obtenons le diagramme complet de survie et extinction selon
les valeurs des paramètres du modèle :

— (Extinction) Lorsque β(1 − α) < 1, le temps moyen d’extinction est sous logarithmique
en terme du nombre de sommets.

— (Survie) Si β(1− α) > 1, le temps moyen d’extinction est au moins une fonction linéaire
en terme du nombre de sommets.

— Cas deux espèces, m = 2 : Nous obtenons des régions (explicites) pour la coexistence ou pour
la domination d’une espèce sur l’autre (avec disparition de l’autre espèce) :

— (Domination) Pour certain paramètres, le temps moyen d’extinction du type 1 est au plus
d’ordre N alors que le type 2 survit pendant au moins une période de temps égal à eθα(N)

pour une fonction θ explicite.

— (Coexistence) Pour certain paramètres, avec une probabilité élevée les deux espèces sont
présentes dans le système pendant une période de temps d’ordre au moins égal à eθα(N)

pour une fonction θ explicite.

C. Cartes planaires decorées par arbres : combinatoire.
Travail en commun avec A. Sepúlveda.

Figure 2 – Une carte décorée par un arbre cou-
vrant.

Une carte planaire enracinée est une paire (m, ~e)
composée de : une cartem, qui est le plongement
d’un graphe planaire fini connecté dans le plan
(ou la sphère), sans croisements d’arêtes, et une
arête orientée ~e de m (l’arête racine). Ces objets
sont considérés à homéomorphisme préservant
l’orientation et ~e près (c’est-à-dire en respectant
l’ordre cyclique d’arêtes autour chaque sommet).
Une carte (ignorez les couleurs pour le moment)
est affichée dans Figure 2, où son arête racine
est représentée par une flèche.

Le degré d’une face est le nombre d’arêtes
qui lui sont adjacentes (une arête incluse dans
une face est comptée deux fois). Une q-
angulation est une carte dont les faces ont degré
q (Figure 2 montre une 4-angulation ; elles sont aussi appelées quadrangulations).

Un arbre enraciné, est une carte enracinée à une face. Le nombre d’arbres à n arêtes, est donné
par le n-ième nombre Catalan (le graphe rouge dans Figure 2).

La face qui se trouve à gauche de l’arête racine est appelée face-racine (face en gris dans Figure 2).
Dans ce qui suit, les cartes à bord sont des cartes où la face racine joue un rôle particulier ; l’ensemble
des arêtes qui lui sont adjacentes forment le bord.
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Toutes les autres faces sont appelées faces internes. Par exemple, une quadrangulation à bord de
taille p est une carte où toutes les faces internes ont degré 4 et la face-racine a degré p.

Le bord d’une carte est dit simple s’il forme une courbe simple dans le plan. Une carte m1 est
dite une sous-carte de m2, si m1 peut être obtenu à partir de m2 en supprimant des arêtes et des
sommets (si la sous-carte contient la racine, elle est enracinée, sinon elle n’est pas enracinée).

Notre contribution

La principale contribution de notre travail est de présenter une nouvelle famille d’objets, les cartes
décorées par un arbre, et de donner une bijection à partir de laquelle on peut les étudier.

Définition : Pour (f, a) ∈ (N∗)2, une carte (f, a) décorée par un arbre est une paire (m, t) où
m est une carte enracinée avec f faces, et t est un arbre enraciné avec a arêtes, de sorte que t est
une sous-carte de m, et que l’arête racine de la carte et l’arête racine de l’arbre coïncident.

Une caractéristique importante des modèles de quadrangulations (f, a) décorées par un arbre
uniforme est qu’elles interpolent, lorsque a varie de 1 à f + 1, entre les quadrangulations uniformes
avec f faces et les quadrangulations décorées par un arbre couvrant uniformes avec f faces.

Notre principal résultat est une bijection, à partir de laquelle nous obtenons de nombreuses for-
mules de dénombrements de cartes décorées, des résultats combinatoires (de décomposition) et de
l’information pour étudier grandes cartes aléatoires décorées par un arbre uniforme comme nous le
verrons dans le résumé du travail suivant.

Proposition : Il existe une bijection explicite g pour tout (a, f) ∈ (N∗)2 entre : l’ensemble des
cartes (f, a) décorées par un arbre et le produit cartésien entre l’ensemble des cartes enracinées à
bord simple de taille 2a et f faces intérieures, et l’ensemble des arbres enracinés avec a arêtes.

D. Cartes planaires aléatoires décorées par arbres : limites locales.
Travail en commun avec A. Sepúlveda.

Le but de ce travail est de décrire la limite locale des différents modèles présentés dans la section
précédente. Le principal résultat est que les triangulations et les quadrangulations décorées par un
arbre à f faces, bord de longueur p et décorées par un arbre à a arêtes convergent dans la topologie
locale vers différentes limites, selon le comportement fini ou infini de f , p et a.

Topologie locale : Pour une carte enracinée m et r ∈ N, [m]r désigne la carte obtenue en
considérant toutes les faces de m dont les sommets sont tous à distance inférieure à r du sommet
racine de m.

Soit M une famille de cartes enracinées localement finies. La topologie locale sur M est la
topologie induite par

dloc(m1,m2) = (1 + sup{r ≥ 0 : [m1]r = [m2]r})−1

Une séquence de cartes (mi)i∈N converge pour dloc ssi pour tout r ∈ N, [mi]r est constant à partir
d’un certain temps.

Nous définissons pour p ∈ N∗ et f ∈ N∗ l’ensemble BT ,af,p (q) de toutes les q-angulations à bord
simple (mb, τN , ~e), où (mb, ~e) est une carte enracine à bord simple de taille p ayant f faces et arête-
racine ~e appartenant au bord, et τN est un arbre à a arêtes qui intersecte le bord seulement au
sommet racine de mb. Nous désignons par BT ,0f,0 a(q) := BT,a

f (q) l’ensemble des q-angulations (f, a)
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k = 1

m m′

=

k = 2

m m′

6=

dloc(m,m′) = 2−1

Calcul de la limite locale entre m et m′. En rouge [m]r et [m′]r.

décorées par un arbre. Finalement nous désignons par

TT,a
f,p = unif. r,v. in BT ,pf,p a(3) (triangulations) (1)

Notre contribution

Notre principal résultat est le suivant :

Proposition : Pour pn → p ∈ N+ ∪ {∞} et an → a ∈ N+ ∪ {∞}, nous avons

TT,an
f,pn

(d)−−−−−−−→
local,f→∞

TT,an∞,pn
(d)−−−−−−−→

local,n→∞
ap

Tous ces objets limites sont des triangulations infinies à bord simple décorées par un arbre. Le résultat
analogue est également valable pour les quadrangulations.
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Introduction

In this thesis we explore some models belonging to two different branches of probability theory:
interacting particle systems and random planar maps. The results presented here include some work
in progress and three articles: two devoted to the study of interacting particles systems and one
dedicated to (random) planar maps. Even though we use combinatorial techniques and probability
theory to study them, they are not linked.

We list a brief description of each chapter and the work in progress included

A Invariant measures of discrete interacting particle systems: algebraic aspects.
We obtain some necessary and sufficient conditions for some continuous time particle systems
with discrete local state space, to have a simple invariant measure. By simple we mean Markov,
Gibbs or product measure depending on the subjacent graph Z,Z/nZ or Z2. We present mul-
tiple applications of our results.

B Survival and coexistence for spatial population models with forest fire epidemics.
We investigate the effect on survival and coexistence of introducing forest fire epidemics to a
certain two-species spatial competition model. Our main results show that, for the two-type
model, there are explicit parameter regions where either one species dominates or there is co-
existence; contrary to the same model without forest fires, for which the fittest species always
dominates. We also characterize the survival and extinction regimes for the particle system with
a single species. In both cases we prove the convergence of the process giving the successive
proportions of individuals of each species to the orbits of a dynamical system.

C Tree-decorated planar maps: combinatorial results.
We introduce a new model: the (f, a) tree-decorated maps, which are maps with f faces dec-
orated by a tree with a edges. This model, when restricted to quadrangulations, interpolates
between quadrangulations with f faces, when a = 1, and the spanning tree-decorated quad-
rangulations, when a = f+1 (also called tree-rooted quadrangulations). We obtain a bijection
from which we get new combinatorial results concerning various models of decorated maps.

D Tree-decorated planar maps: local limits. (work in progress).
We prove that uniform tree-decorated triangulations and quadrangulations with f faces, bound-
ary of length p and decorated by a tree of size a converge in the local topology to different
limits, depending on the finite or infinite behavior of f , p and a. Several new families of objects
are introduced.
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Presentation of the results

Presentation of the results

This document is composed of an introduction and 4 chapters, each devoted to one research
paper (written in collaboration with some co-authors). We chose to present them integrally, adding
some special comments as follows:

Additional note.
Some explanations (in dark blue) are added in order to guide readers that are not familiar with the
area of each specific research. Sometimes we also add them to stress some facts, rephrasing in a
detailed way some already present explanations.

Key idea.

We include them (in dark green) in order to discuss the proofs: main ideas, difficulties, scope, etc.
Sometimes they contain a sub-paragraph, that we call Tools, where we list some keywords to sum
up the techniques and tools used to get the result.

Contributions

In order to explain the results in this introduction, we have chosen to present each article separately
and with references to some statements that will be properly stated and proved in the chapters devoted
to them.

A Invariant measures of discrete interacting particle systems: algebraic aspects.
Joint work with J.F. Marckert.

Introduction

In this work [50] we are interested in a special class of interacting particle systems (IPS): these
processes are time continuous Markov processes (ηt)t∈R+ taking their values in the set of colorings
of a graph G = (V,E), i.e.

ηt = (ηt(u), u ∈ V ) ∈ EVκ ,
where the set of colors is Eκ := {0, 1, . . . , κ − 1} for some κ ∈ {∞, 2, 3, . . .}. The set Eκ will be
also called sometimes "local state space".

The graphs in consideration here will be the lattice Zd for d ≥ 1, Z/nZ with n ≥ 1 and the
segment J0, nK, for some n ≥ 1.

In the case of Z and Z/nZ the dynamics of the process is defined by a jump rate matrix

T = [T[u|v]]u,v∈ELκ ,

where L ≥ 2 is called the range of the interaction (size of the influential neighborhood). The entry
T[u|v] is the rate at which a subword u of η of length L is transformed into v. More precisely (neglect-
ing some potential issues of global well definiteness), it is useful to imagine that each sub-configuration
u with length L, of the global configuration, will be transformed into any subconfiguration v after a
random time with exponential distribution of parameter T[u|v]. Here are some examples.

4 Luis Fredes
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t

t+ ∆t

∆t ∼ Exp(1)

Example 1 (TASEP) Consider the line Z
seen as a graph G = (Z, E) with set of edges
E = {{x, x+1}, x ∈ Z}. In this particle system
each particle tries to jump to the right at rate 1
and the jump becomes effective only if the arrival
site is vacant. Black (white) sites represents the
presence (absence) of a particle on it. The jump
rate matrix is given by

T[w|w′] =

{
1 if w = (•, ◦) and w′ = (◦, •)
0 otherwise

Meaning that each pair of sites which colors are (•, ◦) waits a random time exponentially distributed
with rate 1 to jump to (◦, •) (the colors of other sites remain the same), the exponential clocks are
restarted.

Example 2 (Contact process) Consider G = (Z, E) with E = {{x, x + 1}, x ∈ Z}. Each
healthy (white) particle becomes infected (black) with rate proportional to the number of infected
neighbors. Each infected particle recovers with rate 1. The jump rate matrix is given by:

T[w|w′] =


1 if w = (a, •, b), w′ = (a, ◦, b), for any a, b ∈ {•, ◦}
λ(1a=• + 1b=•) if w = (a, ◦, b), w′ = (a, •, b), for any a, b ∈ {•, ◦}
0 otherwise

The following figure is a sketch of two possible jumps from the same configuration.

t

t+ ∆t

∆t ∼ Exp(1) ∆t ∼ Exp(λ)

t

t+ ∆t

L

∆t ∼ Exp(T[ ])|

It can be noticed at this stage that different
jump rate matrices, with different range L, can
induce the same dynamics.

All IPS defined on Z or Z/nZ with finite
local state spaces (finite set of colors) are well
defined as Markov processes, i.e. there is a corre-
spondence between the jump rate operator and a
Markov semigroup defining a Feller process (see
[84]), but this is not clear when κ = ∞ due to
potential infinitely many jumps at one site in a finite time period (see for the general picture [84, 108]
and [82, 4] for a specific case).

Even if the process is not defined as a Feller process (i.e. the Markovian semigroup is not in
correspondence with a Markovian generator) we can make sense of a generator as follows. Define
"local map"

mi,w,w′ : EZ
κ −→ EZ

κ

η 7−→ mi,w,w′(η)
, (2)

5
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where Ja, bK := [a, b] ∩ Z, ∀a < b ∈ Z. In words, mi,w,w′ encodes the replacement of the subword
ηJi+ 1, i+ LK by w′, when it is equal to w. Formally, mi,w,w′ :
– keeps η unchanged (i.e. mi,w,w′(η) = η), if the subword ηJi+ 1, i+ LK 6= w
– changes ηJi+ 1, i+ LK to w′, if the subword ηJi+ 1, i+ LK = w.

Define the generator

(Gf)(η) =
∑

(i,w,w′)∈Z×E2
κ

T[w|w′]
[
f(mi,w,w′(η))− f(η)

]
, (3)

acting on continuous functions f from the set of configurations to R, encoding somehow the complete
dynamics of the IPS (see section I.1.1 for a detailed discussion)

Definition A.1
A distribution µ on EVκ is said to be invariant by the IPS with jump rate matrix T (or simply by

T) if ηt
(d)
= η0

(d)
= µ for any t ≥ 0, where

(d)
= denote the equality in distribution.

A well defined IPS is a well defined continuous Markov process, with Markovian semigroup {Pt}t ≥ 0,
obtained from the jump rate operator G. We denote by µt = µPt the distribution of the process at
time t, when starting from µ. When the process is well defined, the generator G and the distributions
(µt, t ≥ 0) are linked and satisfy ∀n1 < n2 ∈ Z,∀xJn1, n2K ∈ EJn1,n2K

κ :

∂

∂t
µt(xJn1, n2K) =

∫
G1{wJn1,n2K=xJn1,n2K}dµ

t(w). (4)

This equation (known in the literature as Kolmogorov equation) represents the "fluctuations" of the
finite dimensional distributions of the process (ηt) as the time passes by. For an Invariant measures µ
the left hand side of eq. (4) equals zero; this together with eq. (4) give a characterization of invariant
measure in terms of G, i.e. ∀n1 < n2 ∈ Z, ∀xJn1, n2K ∈ EJn1,n2K

κ :∫
G1{wJn1,n2K=xJn1,n2K}dµ(w) = 0 (5)

In our setting (product σ-algebra) if one wants to discover invariant measures, it is enough to work at
the level of finite dimensional distributions, since they characterize the whole measure. Equation (5)
gives some conditions on the finite dimensional distribution of invariant measures.

Bibliographical notes: In the late 1960’s Frank Spitzer started to explored what he called "more
elaborated random walk models" ([105]). In 1970 [106] he finally introduced several families of,
what we now call, interacting particles systems. Around the same period Ronald Dobrushin published
several articles (see, for example, [36, 37]) related to these, now widely studied, Markov processes.
They were both finally recognized as co-founders of the theory of interacting particle systems. Some
reference of this theory, including some general models, are the books of Liggett [84], Durrett [40],
Kipnis & Landim [71] and Swartz [108].

As said before, IPS when we consider countably many local state space (κ =∞) are not always
well defined. Different techniques are used to define/construct IPS in different general space states
setups, we comment on two of them. First, embedding the IPS on a Poisson point process, which
was inspired by Harris [62]. Second, by means coming from measure theory and functional analysis
(Hille-Yosida theorem). See e.g. [83, 108, 71, 4], where proofs of existence and construction can be
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found in some particular cases. The infinite alphabet case (κ = ∞) is treated for example in [83,
Chap. IX], [71, 7, 4, 45].

Some related works around the computation of invariant distribution(s) of a given PS, or the
characterization of its uniqueness and convergence can be found in [15, 29, 45, 55]. Other questions
about IPS concern the study of IPS out of equilibrium, i.e. out of the invariant measure regime, for
example, their hitting time to reach a certain state and other observables [110], their mixing time
[95, 10, 74, 80], etc. All these works are not directly related to the present work.

Main question/main answer

Usually for a specific IPS the natural questions about its invariant measures are related to its
existence, uniqueness, ergodicity, rate of convergence, among others. Here, we work in an unusual
direction, since instead of focusing on the properties of a given IPS, we consider all of them, altogether,
and address the following question: given a distribution µ ∈ M(EZ

κ ) (the set of measures on EZ
κ ),

what are the IPS that possess µ as an invariant distribution ?
We answer completely to the question in two cases: we characterize all IPS having µ as invariant
distribution when µ is a product measure and when µ is a Markov process with memory m on the
line. We also provide similar and interrelated characterizations for IPS defined on Z/nZ (and also on
Zd). This type of results is reminiscent of the question of integrable systems in statistical physics,
where the typical results consist in finding the subset of the parameters space of the models, in which
some algebraic simplifications arise, eventually leading to closed formulas.

Our contribution

It is important to remark that the same jump rate matrix can be used to define IPS in different
graphs, given that the evolution rules are local (L < ∞). Because of this we will explore the link
between particles system on the line and on the cycle, both defined from the same jump rate matrix
(see fig. 4).

t = 0 X1 X2 X3 X4 X5 X6 X7 X∼µ=γ

t = ∆t Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y∼µt=γ

Evolution under T

(a) Finite segment sketch of the process evolving
on the line with invariant measure γ.

Y6

X6

Y7

X7

Y8

X8

Y9

X9

Y10

X10

Y5

X5

Y1

X1

Y2

X2

Y3

X3

Y4

X4
t = 0

t = ∆t

X∼µ=ν

Y∼µt=ν

Evolution under T

(b) Sketch of the process evolving on the cycle of
length 10 with invariant measure ν.

Figure 4 – Right and left IPS are defined from the same jump rate matrix T (time evolving from
bottom to top).
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Invariance of product measures

Invariant product measures ρZ for L = 2 are characterized by the following (eq. (5)): ∀xJ1, nK ∈
Enκ , ∀n ∈ N

∑
x0,xn+1∈Eκ

n∑
j=0

 ∑
u,v∈Eκ

T[u,v|xj ,xj+1]

( ∏
0≤k≤n+1
k 6∈{j,j+1}

ρxk

)
ρuρv −

(
n+1∏
k=0

ρxk

) ∑
u,v∈Eκ

T[xj ,xj+1|u,v]

 = 0

(6)
which is an infinite system of equations. Each equation can be read as the balance between the
infinitesimal mass creation and mass destruction of the word xJ1, nK, where the left term inside the
parenthesis (6) measures creation and the right term measures destruction. Of course, under the
product measure, the mass of xJ1, nK is ρx1ρx2 . . . ρxn . The range of the second sum in (6) runs over
all possible position where a jump is possible and since L = 2, jumps in x1 and xn may occur from
T acting in (x0, x1) and (xn, xn+1), respectively; for this reason we need to sum over all possible
values of x0 and xn+1.

In the case of the cycle of length n, invariant product measures ρZ/nZ for L = 2 are characterized
by the following (coming from eq. (5)): ∀x ∈ EZ/nZ

κ

n−1∑
j=0

 ∑
u,v∈Eκ

T[u,v|xj ,xj+1]

( ∏
0≤k≤n−1
k 6∈{j,j+1}

ρxk

)
ρuρv −

(
n−1∏
k=0

ρxk

) ∑
u,v∈Eκ

T[xj ,xj+1|u,v]

 = 0, (5’)

where the index numbers are taken mod n. This equation can be again read as the balance between
mass creation and mass destruction of the word x. The main difference with (6) is that in (5’) is no
longer needed to sum over boundary values.

The first result we get is about the invariance of product measures: we prove that ρZ is invariant
for the IPS defined on the line iff ρZ/3Z is invariant for the IPS defined on the cycle of length 3,
therefore establishing the algebraic reduction of an infinite algebraic system with unbounded degree
in the ρi’s to a finite one.

Theorem A.2: See Theorem I.2.2.2 for the complete statement
If Eκ is finite, the range L is 2, T is a jump rate matrix of range L, and ρ is a measure with
support Eκ, then the following are equivalent:

1. The product measure ρZ is invariant by T (for the IPS defined on Z).
2. The product measure ρZ/nZ is invariant by T for n ≥ 2 (for the IPS defined on Z/nZ).
3. The product measure of ρZ/3Z is invariant by T (for the IPS defined on Z/3Z).

A classical sufficient condition is given by the so called detailed balance equations: the product
measure ρZ is invariant by T on Z if:

ρbρcT[b,c|u,v] = ρuρvT[u,v|b,c] for any b, c, u, v ∈ Eκ. (7)

This is equivalent to the invariance of the product measure on an interval of length 2 by T. Theo-
rem A.2 implies that the "detailed balance equation" is just a sufficient condition, not a necessary
one. Theorem I.2.2.2 gives the complete conditions.

8 Luis Fredes
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Invariance of Markov measures

Recall that a process (Xk, k ∈ Z) is said to have a Markov distribution (MD) (ρ,M) (of memory
m = 1) with Markov kernel M := [Mi,j ]i,j∈Eκ and a initial distribution ρ ∈M(Eκ) if

P(XJ0, nK = x) = ρx0

n−1∏
j=0

Mxj ,xj+1 , for any n and any x ∈ En+1
κ .

A process (Xk, k ∈ Z/nZ) with values on EZ/nZ
κ is said to have a Gibbs distribution Gibbs(M) on

Z/nZ with kernel M := [Mi,j ]i,j∈Eκ if

P(X = x) =

∏n−1
j=0 Mxj ,xj+1 mod n

Trace(Mn)
, for any x ∈ EZ/nZ

κ .

Consider L = 2 and m = 1 (one of the simplest non-trivial cases). When working on the line,
the invariance of a Markov distribution (ρ,M) is characterized by the following system of equations
(coming from eq. (5)):∑

x−1,x0,

xn+1,xn+2∈Eκ

n∑
j=0

∑
u,v∈Eκ

T[u,v|xj ,xj+1]ρx−1

( ∏
−1≤k≤n+1

k 6∈{j−1,j,j+1}

Mxk,xk+1

)
Mxj−1,uMu,vMv,xj+2

−
∑

x−1,x0,

xn+1,xn+2∈Eκ

(
ρx−1

n+1∏
k=−1

Mxk,xk+1

) n∑
j=0

∑
u,v∈Eκ

T[xj ,xj+1|u,v] = 0, ∀xJ1, nK ∈ Enκ ,∀n ∈ N

(8)
Again these equations can be read the balance between mass creation and mass destruction as we
did in eq. (6). The boundary effects here are "worse" because of the memory of the Markov process.
This infinite system of equations has unbounded degree in M and is linear in T. Solving such a
system, that is finding all pairs (M,T) such that the the MD (ρ,M) is invariant by T, is not an easy
task a priori: the main result of this part is to bring a complete solution to this problem.

Now we are in position to state our main theorem.

Theorem A.3: See Theorem I.2.1.2 for the complete statement
Let κ be finite, L = 2 and let M be a Markov kernel on Eκ. If M has positive entries and ρ is
the unique invariant measure of M then the following statements are equivalent for the couple
(T,M):

1. The Markov distribution (ρ,M) is invariant by T on the line Z.
2. Gibbs(M) is invariant by T on Z/nZ, for all n ≥ 3.

3. Gibbs(M) is invariant by T on Z/7Z.

Comments:
1. The importance of this theorem comes from the fact that the invariance system on the line has

an infinite number of equations with unbounded degree inM , while the invariance of Gibbs(M)
on the cycle of length 7 is finite. More specifically, the system is explicit, finite, linear on T
and has degree 7 in M .

2. In words, we linked the invariance of the MD (ρ,M) running on the line with the invariance of
Gibbs(M) running on the cycle. If the process defined by T on the cycle of length 7 has an
invariant Gibbs distribution with a positive kernel M , then all IPS defined from T on cycles of
length n ≥ 3 also have a Gibbs distribution with the same kernel as invariant distribution.

9
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3. Under some additional conditions, the theorem still holds for the infinite number of colors case,
i.e. κ =∞ (Section I.3.2).

4. We provide also an “iff condition” (Theorem I.3.1.2) for the invariance of a Markov distribution
M for any memory m ≥ 0 1 and for any range L ≥ 2.
In this case there exists a specific number h := 4m + 2L − 1 replacing 7 in theorem A.3,
meaning that invariance of a MD with kernel M by an IPS with jump rate matrix with range
L is equivalent to the invariance of Gibbs(M) in the cycle with length 4m+ 2L− 1.

5. In section I.3.5 we give some connections between Theorem A.3 and the matrix ansatz (See
[32]). These connections are made by establishing relations of invariance equations (8) for
different sizes from Theorem A.3, which finally relates the invariant measures for different
sizes, as the matrix ansatz does.

Key idea.
We transform the statement of Theorem A.3 into an algebraic one by expressing the balance
of finite dimensional distributions. We manipulate the difference between creation-destruction
equations (eq. (8)) for different (well chosen) words. These differences are shown to be related
with the invariance equation of the cycle. The most difficult part of Theorem A.3 is to show that
the invariance on the cycle of Gibbs(M) implies the invariance of the MD (ρ,M) on the line.

In the case m = 1 and L = 2 we provide an algorithm to find the set of all Markov distributions
which are invariant by a given jump rate matrix T on the line. It relies on the following theorem.

Theorem A.4: See Theorem I.2.5.1 for the complete statement
Let κ < ∞ and ν be a probability measure invariant by T on Z/3Z. If there exists a positive
recurrent Markov kernel M = (Ma,b)a,b∈A such that for a normalization constant t

νa,b,c = t−3Ma,bMb,cMc,a for any (a, b, c) ∈ E3
κ, (9)

then, M is unique and has an explicit expression depending only on ν (this expression appears in
Theorem I.2.5.1).

Algorithm to find the set of all Markov distributions invariant by T on the line

i) Compute the set of probability measures ν invariant on the cycle of length 3 (this is a
linear problem in ν), details given in eq. (I.43).

ii) For each ν found in i) compute M solving (9), this can be done using linear algebra from
the explicit expression (see theorem I.2.5.1).

iii) For each M found in ii) test if Gibbs(M) is invariant by T on Z/7Z (depending on the
algebraic nature of the solution, this can be done directly or by using Gröbner basis tools).

In the literature, one does not find many cases in which explicit invariant distributions have been
found: in general, the invariant measures of IPS are complex to find and to prove in absence of
criteria. We give one, which makes the task easier. The general results that are known deal with
product measures in some mass transport models (see [4, 45]). In other cases only some properties
are known, for example, the existence of a non-trivial invariant measure for the contact process

1. The notion of Markov distribution can be generalized to memory m ∈ {0, 1, 2, · · · } if for P(Xk ∈ A |Xk−i, i ≥
1) = P(Xk ∈ A |Xk−i, 1 ≤ i ≤ m) = MxJk,k−m+1K,xJk−1,k−mK, for any k.

10 Luis Fredes
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running on Z (see [84]), but no information about the form of this measure is known (we add some
in Corollary A.6).

A set of configurations A is called absorbing if leaving A has probability 0, i.e. η0 ∈ A =⇒ ηt ∈
A, ∀t ≥ 0.

The following result is obtained from our main theorem Theorem A.2 and gives some immediate
applications.

Theorem A.5: See Theorem I.2.1.5 for the complete statement
Let κ <∞. Consider a jump rate matrix T with range L, which is not identically 0.
Suppose that for infinitely many integers n the IPS defined on the cycle Z/nZ with jump rate
matrix T possesses a proper absorbing set Sn subset of the configuration set EZ/nZ

κ . Under these
conditions, there does not exist any Markov distribution (with any memory m), with full support,
invariant by T on the line.

Corollary A.6: See Corollary I.4.1.2 and Corollary I.4.1.3 for the complete statement
The voter model a and the contact process do not have a Markov distribution of any memory
m ≥ 0 as invariant distribution on the line.

a. The voter model is an IPS in which colors represents opinions: each site copies the opinion of one random
neighbor at rate 1.

Other applications obtained:

1. We find parameters of some IPS having a hidden Markov chain as invariant distributions.

2. An introduction to Gröbner basis, the main tools to solve explicit algebraic equations, is given
in section I.4.1. Using it, the case κ = 2 and L = 2 is totally explicitly solved (section I.4.3),
that is the manifold on which lives the parameters T′s having an invariant product measure on
the line is given.

Invariance of product measures on Zd

Here we consider IPS indexed by Zd, whose configuration space is of course EZd
κ . We suppose

that the jump rate matrix instead of characterizing “the jump rate of size L-subwords” is defined for
configurations of the d-dimensional hypercube HC[L, d] = J0, L− 1Kd for some L as follows

T =
(

(T[w|w′])w,w′∈EHC[L,d]
κ

)
We can reduce our attention to the case of hypercubes, since any (more general) shape F is a subset
of an hypercube H large enough. For example for d = 2, HC[2, 2] is the square Sq formed by the
cells (0, 0), (1, 0), (1, 1) and (0, 1). An example of jump rate matrix is the following T with all entries
equal to 0, except

T
1 1
0 0

0 1
0 1

= 1,T
0 1
0 1

0 0
1 1

= 1,T
0 0
1 1

1 0
1 0

= 1,T
1 0
1 0

1 1
0 0

= 1, (10)

meaning that the 2 × 2 square sub-configurations having exactly two ones in adjacent positions
(not diagonally), jump at rate 1 to the clockwise rotation of the sub-configuration. The system of
equation that characterizes a product invariant measure on Zd has an infinite number of equations
on the variables {ρu}u∈Eκ and {T[w|w′]}w,w′∈EHC[L,d]

κ
.
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Theorem A.7: See Theorem I.2.3.1 for the complete statement
When κ < +∞, a product measure ρZ

d
is invariant by T if and only if ρZ solves an explicit finite

system of equations on the variables {ρu}u∈Eκ and {T[w|w′]}w,w′∈EHC[L,d]
κ

.

Example of application of Theorem A.7 : For the example defined in eq. (10), all Bernoulli product
measures with any parameter in (0, 1) are invariant. This can be obtained from Theorem A.7, or as
a consequence of reversibility. For the slightly generalized jump rate matrix with zero entries except
for

T
1 1
0 0

0 1
0 1

= a,T
0 1
0 1

0 0
1 1

= b,T
0 0
1 1

1 0
1 0

= c,T
1 0
1 0

1 1
0 0

= d, (11)

two situations are possible: using Theorem A.7

1. a = b = c = d, then all Bernoulli product measures with any parameter ρ ∈ (0, 1) are invariant.

2. Otherwise, there is no invariant product measure.

Reversibility cannot be used to prove the second fact.

B Survival and coexistence for spatial population models with forest fire epi-
demics.

Joint work with A. Linker and D. Remenik.

Introduction

One active subject of study in mathematical biology is the modeling of species competing for
space or resources. The classical models are inadequate to explain biodiversity, since in the so far
introduced models the fittest species dominates and drives the others to extinction. In order to make
realistic models and promote coexistence, some extensions have been explored as the addition of
predators [92, 66, 101], of random fluctuations in the environment [115, 86] and of diseases [67, 98].
Other works include the addition of the crowding effect, which takes into account that high population
densities increase the connectedness of individuals, which makes easier to spread diseases (see, for
example, [63, 102, 53]).

We extend the work of Durrett & Remenik in 2009 [42] where they studied the behavior of a finite
particle system inspired by gypsy moths, whose population’s natural growth leads to the formation
of giant clusters which are wiped out by epidemics, decreasing the population 2. The model we
propose extends this model in two directions: multiple species competing for the space in a common
environment and generalization of the epidemics which will not only attack giant clusters, but also
clusters of smaller size.

As a side remark, we want to add that forest fire models, which were first introduced in [38],
have received much interest as a prime example of a system showing self-organized criticality, see
e.g. [97].

This research is motivated by the question of existence of "simple models" for which biodiversity
occurs. The multi-type extension we propose, where the addition of forest fires in this discrete-time
multi-type contact process indeed generates (long time) coexistence regimes.

2. This effect is called forest fires in the literature [38].
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A related work is [24], where Chan & Durrett explored a continuous time multi-type contact
process in Z2 with the addition of forest fires, which kill individuals regardless of their type. Our
model is different, since we work in a random environment and since the forest fires we consider kill
neighbors of the same type.

The Multi Moth Model (MMM): Fix a graph GN = (VN , EN ) with N vertices and let m ≥ 1
be the number of species in the model. The MMM is a discrete time Markov process

(
ηk
)
k≥0

, where

ηk = (ηk(x) : x ∈ Vn) ,

taking values in {0, . . . ,m}VN , where ηk(x) = i if, at time k, x is occupied by an individual of type i
if i ∈ {1, ...,m} or vacant if i = 0. The process (ηk : k ≥ 0) is defined using 3 families of parameters:

~β = (β1, . . . , βm) ∈ Rm+ , ~αN = (α1
N , . . . , α

m
N ) ∈ [0, 1]m and {NN (x) : x ∈ VN},

where this last parameter NN (x) ⊂ VN is a set containing x.

Consider an initial configuration η0 ∈ {0, . . . ,m}VN .

The dynamics of the process at each time step is divided into two consecutive stages:

Growth: Each individual of any type i present at any site x ∈ VN dies, but before that it sends a
Poisson(β(i)) number of descendants (independently from the others sites), to sites chosen uniformly
at random in NN (x), the growth neighborhood of x (these actions are performed simultaneously).

After that, the individual that survives is chosen uniformly at random among the individuals it
received (this fixes the type); if none, the type is 0.

Epidemic: Each site x occupied by an individual of type i after the growth stage is attacked by
an epidemic with probability αiN , independently across sites. An infected individual at x then dies
along with its entire connected component of sites occupied by individuals of type i. This happens
independently for i = 1, . . . ,m and for all x.

Notice that in the single type model (m = 1), ~αN and ~β are no longer vectors, we write αN and
β instead.

In the previous work [42] Durrett and Remenik showed that in the case m = 1 and for a randomly
chosen 3-regular connected graph on N vertices GN , under some growth conditions on NN and
αN , when αN → 0 and NN (x) = GN (mean field regime), the sequence of densities 3 (ρNk , k ≥ 0)
defined by (recall, only type 1)

ρNk :=
1

N

∑
x∈VN

1ηNk (x)=1, (12)

(where k denotes the time), converges as N →∞ to the orbit of a deterministic dynamical system
which, for certain parameters (α, β), is chaotic. It is worth noting that as αN goes to zero, small order
clusters are less likely to be attacked and in the limit basically only "infinite clusters" are successfully
wiped-out.

3. this is the proportion of occupied sites.
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Our results

We keep considering as in [42] GN as a uniform 3-regular connected graphs on N vertices.

Convergence:

Define ρN,(i)k as the density of type i at time k similarly to eq. (12). We extend the convergence
to a dynamical system as follows

Theorem B.1
Consider the MMM with m ≥ 1 types and with NN (x) = B(x, rN ). Suppose that the sequences
~αN and rN satisfy

αN (i) −−−−→
N→∞

α(i) ∈ [0, 1], αN (i)rN −−−−→
N→∞

∞, and
√

rN
αN (i)

≤ log2(N)

5
∀N ∈ N. (13)

Suppose also that ηN0 is a given by a product measure where each site is independently chosen to
have type i with probability pi. Then as N →∞, the density process

(
~ρNk
)
k≥0

associated to the
MMM converges in distribution (on compact time intervals) to the deterministic orbit, starting
at ~p = (p1, . . . , pm), of the dynamical system DS(h).

Notation: ~ρk is a stochastic process and its time dependence is written, as usual, as sub-index,
while ~p k is a dynamical system value, where time is the k-th composition of a function written, as
usual, as super-index.

Key idea.
We propose a candidate limiting dynamical system and then we prove that, in fact, it is the limit.
The technical assumption √

rN
αN (i)

≤ log2(N)

5
∀N ∈ N

helps to create a close modified version of the process at each point ignoring the epidemics from
the outside of its ball of radius

√
rN/αN (i). Since 3-random regular graphs look like a 3-regular

tree in a neighborhood of radius log2(N)
5 , we can guess the limit candidate from ordinary generating

functions of 3-regular trees.
Tools: Ordinary generating function, percolation on vertices.

The condition ~αN → ~α ∈ (0, 1)m implies that in the limit the epidemic attacks not only giant
clusters, but of small order too.

It is important to remark that even though, the diameter of a uniform random 3-regular graph is
O(log(N)) [16], the condition on rN is not trivial (i.e. it is not of the order of the diameter):

— If α(i) ∈ (0, 1] for all i ∈ {1, 2, . . . ,m}, the conditions on rN simplifies and we can consider
any (rN )N∈N going slowly enough to infinity. Ex: rN = log(log(N)).

— If α(i) = 0, then the MMM with parameters αN (i) = log(log(log(N)))−1 and rN =
log(log(N)) satisfies the hypothesis of the theorem.
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One species (m = 1): survival and extinction regime:
Recall that in this case we denote ~αN = αN and ~β = β. Define the extinction time

τN = inf{k ≥ 0 : ρNk = 0}. (14)

The following theorem states that there is a dichotomy, based on the value

φ(αN , β) := β(1− αN ),

between extinction (φ(αN , β) ≤ 1) and survival (φ(αN , β) > 1).

Theorem B.2: See Theorem II.2.2.2 for the complete statement
In the mean field regime (i.e. NN (x) = VN ) MM and any N ∈ N we have:

(i) (Extinction) If φ(αN , β) ≤ 1, then for all n ∈ N and any initial density ρN0

P(τN ≥ n) ≤

1− (1− φ(αN , β)n)N if φ(αN , β) < 1,

1−
(

1− 2
n(1−αN )(σ2+αNβ2)

)N
if φ(αN , β) = 1,

where σ2 is the variance of the offspring distribution of each particle in the growth stage.
In particular, it follows that when φ(αN , β) < 1 there is C > 0 independent of N such that

E(τN ) ≤ C log(N). (15)

(ii) (Survival) If φ(αN , β) > 1 and ρN0 ≥ ρ̄0 for some ρ̄0 > 0, then there exists c > 0
(depending only on ρ̄0 and αN ) such that

P(τN ≥ n) ≥
(

1− c

N

)3n
.

In particular, if we assume that αN log2(N)→∞ then

E(τN ) ≥ N

4c
. (16)

Key idea.
In the extinction regime, we dominate the process by individuals surviving in a Galton-Watson
process which gives the bounds on the absortion. For the survival regime, it is enough to keep
track of isolated occupied sites.
Tools: Galton-Watson process, Tchebychev inequality, Chernoff bounds, coupling, independent
graph set.

We believe that in the survival setting it holds that the mean extinction time is at least exponential.
Even though we could not prove this in the general setting, we showed that for an explicit b1 ∈ (0, 1)
if b1φ(αN , β) > 1, then the assertion holds (Theorem II.2.2.3). It is worth remarking that this is
obtained without using the behavior of the limiting dynamical system.

The bifurcation diagram of a dynamical system depending on one parameter is the plot of the
orbits of the system in the fiber of each parameter value in an interval (the abscissa). We remark that
form = 1 and for each fixed α ∈ (0, 1) the bifurcation diagram of this dynamical system, with respect
to β, as β grows, seems to develop bifurcation cascades (also known as period-doubling bifurcations)
as shown in fig. 5. This result is not proved in the paper due to some technical obstructions.
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Figure 5 – Left: Bifurcation diagram with α = 0.1, showing the orbits for each β fixed of the system
between iterations 900 and 1000 (transient regime). Right: Bifurcation diagram associated to the orbits of
the densities in the stochastic process for α = 0.1 and different values of β, from iteration 900 to 1000.
Here N takes values in {20000, 40000, 100000}, depending on β.

Multiple species m = 2: domination and coexistence.

In the MMM if one suppresses the epidemic stage, then our process is a variant of a multi-type
contact process for which it can be proved that the fitter species (i.e. the one with the largest
growth parameter βi) will outcompete and drive to extinction all the other ones [94]. In the main
result (multi species case) we show that the introduction of forest fire dynamics changes this picture,
allowing coexistence even when the species have different fitnesses.

From our convergence theorem, to have a clue of how the process behaves, it suffices to explore
the properties of the limiting dynamical system orbits.

Note that for m = 2, the orbits of the dynamical system at time is a vector ~pk = (pk1, p
k
2)

Theorem B.3: See Theorem II.2.3.1 for the complete statement
For the two species model (m = 2), a non-trivial region (determined by curves) in the space of
parameters (αi, βi)i∈{1,2} and p0

1 > 0, there exists a real number p̄1 > 0 depending only on p0
1

such that pk1 > p̄1 for all k.

Theorem B.4: See Theorem II.2.3.3 for the complete statement
For the two species model and a a non-trivial region (determined by curves) in the space of
parameters (αi, βi)i∈{1,2} and for all initial density ~p 0 with p 0

2 ∈ (0, 1) we have

pk1 −−−→
k→∞

0 and lim inf
k→∞

pk2 > 0.

Our main result states that these properties are inherited by the sequence of densities of the process
running on GN in a large time scale (the convergence result Theorem ?? implies the convergence for
any fixed time window). More formally, let

θα(N) =

{
e−
√

log(N) if α = 0

N−α/5 if α > 0,

and τ (i)
N to be the extinction time associated to type i as in eq. (14).
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Theorem B.5: See Theorem II.2.3.5 for the complete statement
For the two species model and mean-field regime, assume that the proportion of individuals of
each type converges, i.e. ~ρN0 → ~p0 [and suppose property II.8 is satisfied], then there exist C > 0,
γ ∈ (0, 1) and N ∈ N such that for α = min{α1, α2} we have:

1. If the conditions of Theorems B.4 or B.3 are satisfied, then for all n > N

P(τ2
N ≥ n) ≥

(
1− Cθα(N)

)n
. (17)

2. If the conditions of Theorem B.3 are satisfied, then for all n > N

P(τ1
N ≥ n) ≥

(
1− Cθα(N)

)n
, (18)

3. If the conditions of Theorem B.4 are satisfied, then for all n > N

P(τ1
N ≥ n) ≤ Nγn +

(
Cθα(N)

)n
. (19)

In other words we obtain that

1. Under the conditions of Theorem II.2.3.1 there is coexistence, in the sense that with high
probability both species are present in the system for an amount of time of order at least
eθα(N).

2. Under the conditions of Theorem II.2.3.3 there is domination, in the sense that, with high
probability, the extinction time of type 1 is at most of order N while type 2 survives for at least
an amount of time of order at least eθα(N).

3. From the theorem we deduce that there exist some parameters (α1, β1),(α1′, β′1) and (α2, β2),
satisfying φ(α2, β2) > 2 log(2) and φ(α1, β1) < φ(α1′, β′1) < φ2(α2, β2), such that:

— In the MMM associated to ~α = (α1, α2) and ~β = (β1, β2), type 2 dominates over type 1.

— The MMM associated to ~α = (α1′, α2) and ~β = (β′1, β2) is in the coexistence regime.

Meaning that tuning the values of α1 and β1, such that the value of φ(α1, β1) increases
without going over φ(α2, β2) can create coexistence. This can be achieved, moreover, when
α1 = α2 = 0.

Key idea.
We prove in Theorem II.2.1.3 that with high probability, when the size of the graph is big enough,
the process and the dynamical system are close at each step. We use this to infer the domination
and coexistence regime of the dynamical system.
Tools: Dynamical systems, basin of attraction, attraction/repulsion of fixed points, Galton-Watson
process.

C Tree-decorated planar maps: combinatorial results.
Joint work with A. Sepulveda

This section is part of a project where we investigate the limit of random tree-decorated maps.
In this chapter we state a bijection that let us extract properties of tree-decorated maps and allows
the counting of different families.

The work that we present in the next section uses these combinatorial studies as a tool to help for
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the description of local limits, in distribution, of several families of decorated maps, with size going
to ∞.

Introduction

Figure 6 – A map decorated by a spanning tree.

A rooted planar map is a pair (m, ~e) made
of: a map m, which is an embedding of a fi-
nite connected planar graph in the plane (or the
sphere), without edge crossings, and an oriented
edge ~e of m (the root-edge), considered up to
direct homeomorphisms of the sphere preserving
the oriented edge ~e too. A map (omit the colors
for the moment) is shown in Figure 6, where its
root edge is represented by an arrow.

The degree of a face is the number of edges
adjacent to it (an edge included in a face is
counted twice). A q-angulation is a map whose
faces have degree q (Figure 6 shows a 4-angulation; these are also called quadrangulations).

A rooted plane tree, or tree for short, is a rooted map with one face (the red graph in Figure 6).
The number of trees with n edges, is given by the nth Catalan number.

Unless otherwise stated, in the following all maps and all trees are rooted.

The face that is at the left of the root-edge will be called the root-face (face in gray in Figure 6).
In what follows maps with a boundary are maps where the root face plays a special role; the set of
edges that are adjacent to it forms the boundary. The boundary will be seen sometimes as a path
around the root face, up to cyclic rotation of the indices, or as a set of edges.

All others faces are called internal faces. For example, a quadrangulation with a boundary of size
p is a map where all internal faces have degree 4 and the root-face has degree p.

The boundary of a map is said to be simple if it forms a non vertex-intersecting path. A map m1

is said to be a submap of m2, if m1 can be obtained from m2 by suppressing edges and vertices (if
the submap contains the root it is rooted, otherwise it is unrooted).

Definition C.1
For (f, a) ∈ (N∗)2, an (f, a) tree-decorated map is a pair (m, t) where m is a rooted map with f
faces, and t is a rooted tree with a edges, so that t is a submap of m, and so that the root-edge
of the map and the root-edge of the tree coincide.

Beware that the tree is not necessarily a spanning tree.

Each time that we speak about scaling limit, we mean that we are working with the Gromov-
Hausdorff topology, which is a topology on the space of isometry classes of compact metric spaces.
In this case, maps are seen as metric spaces with set of points given by the vertex set and with
distance given by the graph distance.
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The study of random maps scaling limits started with the case of uniform quadrangulations.
They are mainly studied by using the Cori-Vauquelin-Schaeffer bijection [100], which is a bijection
connecting well-labeled trees and quadrangulations. Their scaling limit, the Brownian map, is a
continuous metric space that was defined by Marckert and Mokkadem [88] and its convergence was
proven later:

Theorem C.2: Le Gall [77] and Miermont [89]
Let qf denote a uniform rooted quadrangulation with f faces, then(

qf ,
dqf

(8/9)f1/4

)
(d)−−−−→
GH

Brownian map, as f →∞

See fig. 7 for a simulation of the limit. In the past decade, the Brownian map has been intensively
studied: it is homeomorphic to the two dimensional sphere [78, 90], its Hausdorff dimension is 4 [76],
it can be endowed with a conformal structure linked with Liouville quantum gravity [91].

The scaling limit of qf,p(f), a uniform rooted quadrangulation with f internal faces and with a
general boundary of size 2p(f), was studied by Bettinelli [13], when f →∞, where he obtained three
different behaviors depending on p(f).

Theorem C.3: Bettinelli [13], Bettinelli & Miermont [14]
For a sequence (p(f))f∈N, define p̄ = lim p(f)f−1/2 as f →∞, then we have

(
qf,p(f),

dmap
s(f, p(f))

)
(d)−−−−→
GH


Brownian map if p̄ = 0 where s(f, p(f)) = (8/9)f1/4

Brownian disk if p̄ ∈ (0,+∞) where s(f, p(f)) = (8/9)f1/4

CRT if p̄ =∞ where s(f, p(f)) = 2p(f)1/2

,

where the CRT is Aldous continuous random tree, a random continuous metric space without cycles
and connected [3]. See fig. 7 for some simulations of some of these limits.

The Brownian disk is a.s. homeomorphic to the closed unit disk in R2, its boundary is a.s. simple,
its interior has Hausdorff dimension 4 and its boundary has Hausdorff dimension 2 [13], it is related
with the Brownian map, in particular the complement of a given ball in the Brownian map is a union
of Brownian disks [79].

From a physical and mathematical perspective it is interesting to equip discrete maps with mea-
sures different from the uniform distribution. In order to do that, it is standard to weight them with
probability distributions proportional to the partition function of some models coming from statistical
mechanics.

One model is the uniform ST-decorated maps which are maps chosen uniformly among all the
maps with e edges decorated by a spanning tree. Uniform ST-decorated maps are studied because
they are important in Euclidean 2D statistical physics. The conjectured scaling limit of ST-decorated
maps (see fig. 7 for a simulation of this limit) is related to continuum Liouville quantum gravity (see
[34]). Not many metric properties are known about this object, however, recently it has been shown
that there exists a constant 0.275 ≤ χ ≤ 0.288, such that their expected diameter is of order fχ

[34, 59]. For the asymptotics ST-decorated map as a metric space, there is evidence that the limit is
not the Brownian map (for example, the Brownian map and the spanning-tree decorated map have
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different limits in the peano-sphere topology [60]).

Uniform tree 50k edges.

Uniform quadrangulation with 30k faces.

Uniform quadrangulation with boundary:
30k faces- 173 boundary edges in red.

Spanning tree-decorated quadrangulation: 100k
edges. Tree in red.

Figure 7 – Sketch of the possible limiting metric spaces

Notice that from the Euler’s characteristic formula, when all the faces have the same fixed degree,
conditioning on the number of total edges and the total number of faces is the same.

An important characteristic of the uniform (f, a) tree-decorated quadrangulation model is that it
interpolates, when a varies from 1 to f + 1, between uniform quadrangulation with f faces and the
uniform ST-decorated quadrangulation with f faces. We expect, in the scaling limit, that this model
interpolates between the Brownian map and the scaling limit of the uniform ST-decorated map. In
light of this effect, we hope to give a phase transition between these objects obtaining an insight
about the scaling limit of uniform ST-decorated maps.

Our contribution

Bijection and counting results.
The first result is a bijection linking the tree-decorated maps with maps with a simple boundary and
trees.

Proposition C.4: See Theorem III.1.2.2 for the complete statement
There exists an explicit bijection g for any (a, f) ∈ (N∗)2 between: the set of (f, a) tree-decorated
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maps and the Cartesian product between the set of rooted maps with a simple boundary of size
2a and f interior faces and the set of rooted trees with a edges.

Key idea.
One direction of the bijection consists in gluing the simple boundary and the tree following the
contour of the tree. The other direction consist in keeping the tree and "ungluing" the contour of
the tree to create a boundary.
Tools: Tree contour, equivalence relation.

mb t′

+ ←→

(m, t)

Figure 8 – Sketch of the bijection. Left: rooted map with simple boundary and planar rooted tree drawn
in a suggestive way. Right: Tree decorated map. We plot it being embedded in the sphere. The arrows are
root-edges and the grid lines represent the inner faces. From left to right we call it the gluing procedure and
ungluing procedure, in the other sense.

Some comments about the bijection:

For a decorated map, we call internal vertices and internal edges to those that do not intersect
the decoration. In the case of a map with a boundary we call internal the vertices and edges that do
not intersect the boundary and we call internal the faces that are different from the root-face.

The gluing function g makes a correspondence between:

Tree-decorated map [Map with a boundary, Tree]
Faces of degree q ←→ Internal faces of degree q
Internal vertices of degree d ←→ Internal vertices of degree d
Internal edges ←→ Internal edges
Corner of the tree ←→ Boundary vertices.

Some extensions:
— The function g can be extended to consider attributes between the object that are in corre-

spondence, for example: coloring of the faces in the tree-decorated map.
— In Theorem III.1.2.2 one can fix the number of edges instead of the number of faces: the same

"gluing" function g induces (by restriction) a bijection between tree-decorated maps with e
edges and tree of size a and the Cartesian product of rooted trees of size a and maps with a
simple boundary of size 2a and e+ 2a total number of edges.

— We can restrict the bijection to q-angulations.
— We can restrict the bijection to decorations taken in some specific family of planar trees, for

example:

21



Contributions

• Binary tree- decorated maps.

• SAW decorated maps (Already done by Caraceni & Curien).

From this bijection one can obtain many counting formulas. We present, as an example, the
following corollaries, obtained from Theorem II.1.1.2 and [12].

Corollary C.5: See Theorem III.1.2.4 for the complete statement
The number of (f, a) tree-decorated quadrangulations, where the root of the map coincides with
the root of the tree, is

3f−a
(2f + a− 1)!

(f + 2a)!(f − a+ 1)!

(3a)!

a!(2a− 1)!

1

a+ 1

(
2a

a

)
. (20)

In the case of quadrangulations, the condition of having f faces implies that it has f + 2 vertices
and 2f edges.

Corollary C.6
The number of spanning tree-decorated quadrangulations with f faces, where the root of the map
coincides with the root of the tree, is

2

(f + 1)(f + 2)

(
3f

f, f, f

)
. (21)

The last result motivates a possible generalization of the Catalan numbers: for n,m ∈ N, m ≥ 1
define:

Cm,n = m!

(
m∏
i=1

1

n+ i

)(
(m+ 1)n

n, n, . . . , n︸ ︷︷ ︸
m+1 times

)
=

(
m+ n

n

)−1( (m+ 1)n

n, n, . . . , n︸ ︷︷ ︸
m+1 times

)
.

When m = 1, we recover the Catalan numbers and, for this definition, C2,f counts the spanning
tree-decorated quadrangulations where the root of the map is the same as that of the tree. These
numbers are in fact integers for any n,m ∈ N for m ≥ 1 (see proposition III.4.3.8).

D Tree-decorated random planar maps: local limits

With A. Sepulveda

The aim of this work is to describe the local limit of different models presented in the preceding
section. The main result states that uniform tree-decorated triangulations and quadrangulations with
f faces, boundary of length p and decorated by a tree of size a converge in the local topology to
different limits, depending on the finite or infinite behavior of f , p and a.

Introduction

We will establish limit theorems, for the local topology.

Local topology: For a rooted map m and r ∈ N, let [m]r denote the map obtained by considering
all the faces of m whose vertices are all at graph distance less than r from the root-vertex of m.
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Consider M a family of locally finite rooted maps. The local topology on M is the topology
induced by

dloc(m1,m2) = (1 + sup{r ≥ 0 : [m1]r = [m2]r})−1

A sequence of maps (mi)i∈N converges for dloc iff for all r ∈ N, [mi]r is eventually constant. It can
be proved that the space (M, dloc) is Polish (metric, separable and complete).

k = 1

m m′

=

k = 2

m m′

6=

dloc(m,m′) = 2−1

Computation of the local distance between m and m′. In red the [m]r and [m′]r.

Define for p ∈ N∗ and f ∈ N∗ the set BT ,af,p (q) of all tree-decorated q-angulations with a simple
boundary (mb, τN , ~e), where (mb, ~e) is a rooted map with a simple boundary of size p having f faces
with the root-edge ~e in the boundary and τN is a tree with a edges which intersects the boundary
only at the root-vertex of mb. Denote by BT ,af,0 (q) := BT,a

f (q) the set of all (f, a) tree-decorated
q-angulations. Also define SBf,p(q) as the set of q-angulations with a simple boundary (mb, ~e) where
mb is a map with f faces and a simple boundary of size p. Set the following random variables

QT,a
f,p = unif. r,v. in BT ,af,p (4) (quadrangulations), (22)

Qf,p = unif. r,v. in SBf,p(4) (quadrangulations), (23)

τa = unif. r,v. in Ta (trees), 4 (24)

TT,a
f,p = unif. r,v. in BT ,af,p (3) (triangulations) (25)

Tf,p = unif. r,v. in SBf,p(3) (triangulations). (26)

One of the first results concerning the local topology is due to Kesten [70] and says that uniform
rooted planar trees of size n converges in distribution for the local topology

τn
(d)−−−→
local

τ∞ (27)

where τ∞ is the critical geometric Galton-Watson tree conditioned to survive. The limiting
object τ∞ is an infinite random plane tree with a.s. one infinite branch called the spine (i.e. it is
one-ended).

In the setting of random triangulations with a simple boundary, Angel [5] obtained that

Tf,p
(d)−−−−−−−→

local(f→∞)
T∞,p

(d)−−−−−−−→
local(p→∞)

H(3)∞, (28)

where H(3)∞ is the Uniform infinite half plane triangulation with simple boundary (also
denoted as the UIHPTS). Both T∞,p and H(3)∞ are one-ended. For p = 1 the limiting object T∞,2
is called Uniform infinite plane triangulation UIPT.

4. The set of rooted planar trees with a edges.

23



Contributions

In the setting of random quadrangulations with a simple boundary, Curien & Miermont [30] proved
that

Qf,p
(d)−−−−−−−→

local(f→∞)
Q∞,p

(d)−−−−−−−→
local(p→∞)

H(4)∞, (29)

where H(4)∞ is the Uniform infinite half plane quadrangulation with simple boundary (also
denoted as the UIHPQS). As in the case of triangulations, Q∞,p and H(4)∞ are one-ended. For
p = 2 the first convergence is due to Krikun [72] and the limiting object Q∞,1 is the well known
Uniform infinite plane quadrangulation UIPQ.

Our results

We prove that uniform tree decorated triangulations (quadrangulations) with a simple boundary
converge in distribution with respect to the local topology to an infinite tree-decorated triangulation
(quadrangulation) with a simple boundary, where different limiting objects appear depending on the
behavior of the tree’s size sequence (an) and the boundary size sequence (pn).

Proposition D.1: See Propositions IV.2.0.1 and IV.2.0.2 for the complete statement
For pn → p ∈ N+ ∪ {∞} and an → a ∈ N+ ∪ {∞}, we have

TT,an
f,pn

(d)−−−−−−−→
local,f→∞

TT,an∞,pn
(d)−−−−−−−→

local,n→∞
TT,a
∞,p

All these limit objects are tree-decorated infinite triangulations with a simple boundary. The
analog result holds for quadrangulationstoo.

As a consequence we obtain that if a =∞ and p =∞, the limiting object is constructed as the
gluing of two independent UIHPTS’s following the contour to the right and to the left of the spine
of τ∞ (see fig. 10 for an sketch of this gluing).

∞< ∞

< ∞

< ∞

H(3)′∞

H(3)∞

←→

τ∞

+

∞<∞

<∞

<∞
H(3)∞

H(3)′∞

Figure 10 – Sketch of the limiting object when a =∞ and p =∞, constructed from two independent
UIHPTS’s (H(3)∞ and H(3)′∞) and a τ∞. The orange and red contour lines in τ∞ are the left and
right contour around the spine. They are glued with the orange and red lines in the boundary of
H(3)∞ and H(3)′∞.
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Generalization

The proof of Proposition D.1 takes into account the one-ended behavior of τ∞ (recall it from
27). If we want to work with distributions whose support is a set of more than one-ended trees, a
generalization is needed.

For example fix m ∈ N∗ consider τ(m)a as the tree obtained by identifying the roots of m copies
t1, . . . , tm of τa (uniform random tree with a edges) in such a way that around the new root, t1 is
the first tree, and after that, tj follows tj−1. A consequence of Equation (27) is

τ(m)a
(d)−−−→
local

τ(m)∞, as a→∞,

where τ(m)∞ is a tree, a.s. m-ended, obtained as the gluing of m (ordered) independent copies of
τ∞ glued in the root-vertex.

We present a way to generalize Proposition D.1 which applies to the case of Q∞,p+m·2a a uniform
infinite quadrangulations with simple boundary of size p+m · 2a glued with τ(m)a. We obtain that
there exists a limit in distribution for the local topology as p→∞ and a→∞. We present a sketch
of the limit in fig. 11.

H1
∞

H4
∞

∞ ∞∞

H2
∞

H3
∞

Figure 11 – Representation of the limit when gluing Q∞,p+6a with τ(3)a. Here (Hi∞)4
i=1 are inde-

pendent copies of UIHPQS when working with quadrangulations and of the UIHPT when working
with triangulations, the tree is an sketch of τ(3)∞.
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Consider a continuous-time particle system ηt = (ηt(k), k ∈ L), indexed by a lattice L which
will be either Z, Z/nZ, a segment {1, · · · , n}, or Zd, and taking its values in the set EL

κ where
Eκ = {0, · · · , κ − 1} for some fixed κ ∈ {∞, 2, 3, · · · }. Assume that the Markovian evolution of
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the particle system (PS) is driven by some translation invariant local dynamics with bounded range,
encoded by a jump rate matrix T. These are standard settings, satisfied by the TASEP, the voter
models, the contact processes... The aim of this chapter is to provide some sufficient and/or necessary
conditions on the matrix T so that this Markov process admits some simple invariant distribution, a
product measure (if L is any of the spaces mentioned above), the law of a Markov process indexed
by Z or [0, n] ∩ Z (if L = Z or {1, · · · , n}), or a Gibbs measure if L = Z/nZ.

Multiple applications follow: efficient ways to find invariant Markov laws for a given jump rate
matrix or to prove that none exists. The voter models and the contact processes are shown not to
possess any Markov laws as invariant distribution (for any memory m) 1, which is not known to our
knowledge. We also prove that some models close to these models do. We exhibit PS admitting
hidden Markov chains as invariant distribution and design many PS on Z2, with jump rates indexed
by 2× 2 squares, admitting product invariant measures.

I.1 Introduction

Some notation

We let N = Z+ = {0, 1, 2, · · · } and N? = N \ {0}. For −∞ ≤ a ≤ b ≤ +∞, define Ja, bK :=
[a, b] ∩ Z as the set of integers in [a, b]. We will call such a set a Z-interval.

If J is a finite subset of Zd and x ∈ EZd
κ , then x(J) stands for the sequence (xi, i ∈ J)

sorted according to the lexicographical order of the indices, so that, for example, if x(1,3) = a,
x(7,2) = c, x(7,5) = b, then x({(1, 3), (7, 5), (7, 2)}) = (a, c, b). If I is a Z-interval, for example
I = J3, 6K, x(I) = (x3, x4, x5, x6), and we will often write xJ3, 6K instead.

For y = x(I), a sequence indexed by a set I, and for A ⊂ Z, set

yA = x(I \A),

the word obtained by suppressing the letters in position belonging to A in y. Following the same
idea, we denote by M{i} the matrix M with the column and row i suppressed.
For any set E, we denote byM(E) the set of probability measures on E (for a topology which will
be specified in the context).
A function g : A→ R is said to be equivalent to 0, we write g ≡ 0, if its image is reduced to 0.

I.1.1 Models and presentation of results

All the results presented in this chapter (apart from Theorem I.2.2.6) concern space and time
homogeneous particle systems (PS), with finite range interactions defined on a lattice L, which
will be Z, Z/nZ, Zd, or a segment J1, nK. The set of colors is Eκ = J0, κ − 1K, where κ (the
number of colors) belongs to {2, 3, · · · } ∪ {+∞}. An element of the set of configurations EL

κ , is a
coloring of the sites of L by the elements of Eκ (neighboring sites may have the same color). When

1. As usual, a random process X indexed by Z or N is said to be a Markov chain with memory m ∈ {0, 1, 2, · · · }
if for P(Xk ∈ A |Xk−i, i ≥ 1) = P(Xk ∈ A |Xk−i, 1 ≤ i ≤ m), for any k.
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well defined, the PS will be a continuous-time Markov process η := (ηt, t ≥ 0), where for any t,
ηt = (ηt(k), k ∈ L) ∈ EL

κ . The set EL
κ is equipped with the product σ-algebra.

The construction of the family of PS considered here is illustrated on Z first, but considerations
for the analogues on Z/nZ, J1, nK and Zd will appear progressively.

Definition I.1.1.1
We call jump rate matrix (JRM) with range L ∈ N?, a matrix

T =
[
T[u|v]

]
u,v∈ELκ

, (I.1)

indexed by the size L words on the alphabet Eκ, with non negative entries and with zeroes on
the diagonal.

Assume for a moment that κ, the number of colors, is finite and fix a JRM T with range L. With
any element of the “possible jumps set”

J =
{

(i, w,w′), i ∈ Z, w ∈ ELκ , w′ ∈ ELκ
}

= Z× (ELκ )2, (I.2)

where:
• i encodes an abscissa in an infinite word,
• w and w′ encode respectively some size L initial and final words,
associate the “local map”

mi,w,w′ : EZ
κ −→ EZ

κ

η 7−→ mi,w,w′(η)
, (I.3)

which:
– if the subword ηJi+ 1, i+ LK 6= w keeps η unchanged (so that mi,w,w′(η) = η)
– if the subword ηJi + 1, i + LK = w, transforms this subword into w′ (formally: mi,w,w′(η) = η′

with η′j = ηj if j /∈ Ji+ 1, i+ LK, and η′i+k = w′k, the kth letter of w′ if 1 ≤ k ≤ L).

Define the generator

(Gf)(η) =
∑

(i,w,w′)∈J
T[w|w′]

[
f(mi,w,w′(η))− f(η)

]
, (I.4)

acting on continuous functions f , for example:
– the set of bounded cylinder functions g : EZ

κ → R (see e.g. the book of Kipnis & Landim [71,
Section 2]) or,
– following the book of Liggett [84] (beginning p.21) or Swart [108] (starting p.72), the class C∆ of
continuous functions g : EZ

κ → R such that
∑

x ∆g(x) <∞ for

∆g(i) = sup
{
|g(η)− g(ξ)|, η, ξ ∈ EZ

κ and η(j) = η(i), ∀j 6= i
}
.

The sum (I.4) represents a word η indexed by Z whose size L subwords jump: a subword equals to
w is transformed into w′ with rate T[w|w′] (a jump is then possible only when T[w|w′] > 0). When κ
is finite, such a particle system is well defined (see references given above for all details).

Many such models have been studied in the literature, for example:
• The contact process, for which κ = 2, L = 3, and all the entries of T are 0 except T[a,1,b|a,0,b] = 1
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for any (a, b) ∈ {0, 1}2 (recovery rate), T[a,0,b|a,1,b] = λ(a + b) for some λ > 0 the infection rate
(the same model can be expressed using a JRM with range L = 2 instead: T[1,0|1,1] = T[0,1|1,1] = λ,
T[1,1|0,1] = T[1,0|0,0] = 1).
• The voter model, for which κ = 2, L = 3, T[a,1−c,b|a,c,b] = 1c=b+1c=a for any (a, b) ∈ {0, 1}2, the
other entries of T being 0: an individual makes its neighbors adopt its opinion after an exponential
random time.
• The stochastic Ising model, for which κ = 2, L = 3 and JRM T with zero entries except for

T[a,b,c|a,1−b,c] = e−β(2b−1)(2a+2c−2) for any (a, b, c) ∈ {0, 1}3. (I.5)

Here the state 1 represents a vertex on the line with positive magnetization, 0 a vertex with negative
magnetization and β a positive parameter, which, depending on its sign, favors or penalizes configu-
rations in which vertices magnetization are aligned.
• The TASEP on Z with κ = 2, L = 2, T[1,0|0,1] = 1 and the others T[u|v] being 0.

A distribution µ on EZ
κ is said to be invariant by T if ηt ∼ µ for any t ≥ 0, when η0 ∼ µ (where

the notation ∼ means “distributed as”). Following the discussion given below (I.4), this property can
be rephrased when κ is finite, as

∫
Gfdµ = 0 for any f bounded cylinder function f (or function of

C∆). A simple argument ([71, Lem. 1.3. p. 23]) shows that it is also characterized by
∫
Gfdµ = 0

for any indicator function f of the type

f(η) = 1ηJn1,n2K=xJn1,n2K (I.6)

for some fixed word xJn1, n2K and fixed indices n1 ≤ n2: this is the balance between the (infinitesimal)
creation and destruction of the subword xJn1, n2K in the interval Jn1, n2K under the distribution µ.

Recall that under the product σ-algebra, a measure µ ∈ M(EZ
κ ) is characterized by its finite

dimensional distributions.

We are interested in the following question: for what JRM T does there exist a simple invariant
distribution ? Here the word “simple” stands for distributions as product measures, Markov laws or
Gibbs measures (depending on the underlying graph where is defined the particle system). It turns
out that this question has a rich algebraic nature, and we then decided to focus on this question only.
The algebra in play depends on T and on the fixed family of distributions whose invariance is under
investigation.

Additional note.
Let us precise what we mean by algebraic nature. Think, for example, of a discrete time Markov
process with transition matrix P , which describe the jump structure of the Markov process as T
does for the particle system. A measure π, in this setting is said to be invariant for P if πP = π.
This equation relate P and π in an algebraic manner. As we will see, there is also an algebraic
relation between T and invariant measures of the particle system.

Consider a function f as given in (I.6). The single jumps of the PS that may affect the value of
f(η) take place in the dependence set of Jn1, n2K which is larger than Jn1, n2K:

DJn1, n2K = Jn1 − (L− 1), n2 + L− 1K. (I.7)

For any w and z in EJn1,n2K
κ , set the induced transition rate T[w|z] from w to z as:

T[w|z] =
∑

Ja+1,a+LK⊂DJn1,n2K

T[wJa+1,a+LK|zJa+1,a+LK] 1wj=zj for all j∈Jn1,n2K\Ja+1,a+LK, (I.8)
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that is the sum of the transition rates which makes this transition possible in a single jump totally
included in w. For a fixed pair (w, z) the contribution of the Z-interval Ja + 1, a + LK is 0 if
T[wJa+1,a+LK|zJa+1,a+LK] = 0 (jump not allowed), or if w and z do not coincide outside Ja+1, a+LK.
This includes the case where n2 − n1 is too small, that is < L− 1.

Notice that taking the same notation for the transition rate between two words as for the JRM
is possible since they coincide if the lengths of w and z are both L.

We want to reformulate in a Lemma what has been said so far concerning the cases where κ is
finite:

Lemma I.1.1.2
Let κ < +∞. A probability measure ν ∈M

(
EZ
κ

)
is invariant under T on the line if it solves the

system of equations Sys(Z, ν,T) defined by{
LineZ(xJn1, n2K, ν) = 0, for any n1 ≤ n2, for any xJn1, n2K ∈ EJn1,n2K

κ , (I.9)

where
LineZ(xJn1, n2K, ν) =

∑
w,z∈EDJn1,n2K

κ

(
ν(w)T[w|z] − ν(z)T[z|w]

)
×1zJn1,n2K=xJn1,n2K.

(I.10)

We now define the notion of algebraic invariance of a probability measure with respect to a
particle system. The aim of this notion is to disconnect the problem of proper definition of a particle
system which brings its own technical difficulties and obstructions when κ = +∞ (see discussion in
Section I.1.2) to the resolution of the systems (I.9) which is “just” an algebraic system, which can be
solved independently from other considerations.

Definition I.1.1.3
For κ finite or infinite, a probability measure ν ∈ M

(
EZ
κ

)
is said to be algebraically invariant

under T on the line (we write ν is AI by T on the line) if it solves the system of equations (I.9).

Additional note.
We reserved the name invariant, as usual, for well defined PS. Nevertheless, AI makes sense even
when a PS is not well defined, where we do not have the characterization given in eq. (I.15).

Again, in the case where κ < +∞, standard invariance of measures and algebraic invariance are
equivalent notions. When κ = +∞, difficulties arise (see Section I.1.2) and the notion of algebraic
invariance is indeed useful.

Extension on Z/nZ. The previous considerations for PS η indexed by Z can be extended to Z/nZ
(the finiteness of Z/nZ provides a more favorable setting).

Lemma I.1.1.4

Let κ be finite. A probability measure µn ∈ M
(
E

Z/nZ
κ

)
is invariant under T on the circle of
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length n if
Sys(Z/nZ, ν,T) :=

{
Cyclen(x, µn) = 0, for any x ∈ EZ/nZ

κ (I.11)

for

Cyclen(x, µn) =
∑

w∈EZ/nZ
κ

µn(w)T[w|x] − µn(x)T[x|w], (I.12)

where T[w|z] has to be adapted to fit with the structure of Z/nZ :

T[w|z] =
∑

Ja+1,a+LK⊂Z/nZ
T[wJa+1,a+LK|zJa+1,a+LK]1wj=zj for all j∈(Z/nZ)\Ja+1,a+LK, (I.13)

where in this context, Ja+ 1, a+ LK stands for (a+ 1 mod n, . . . , a+ L mod n).

When κ is finite, the existence of a measure µn solving the system (I.11) is granted from the theory
of finite state space Markov processes.

Again, we disconnect the problem of existence of particle systems with the solution of the algebraic
system:

Definition I.1.1.5

For κ finite or infinite, we say that a probability measure µn ∈M
(
E

Z/nZ
κ

)
is cyclically algebraic

invariant under T on the circle of length n (we write µn is CAI by T on the circle of length n) if
it solves Sys(Z/nZ, ν,T) as stated in (I.11).

Invariance and algebraic invariance are equivalent when κ < +∞.

The results.
Definition I.1.1.6
� For −∞ < a ≤ b < +∞, a process (Xk, k ∈ Ja, bK) is said to be a Markov chain on Eκ, or to
have a Markov law, if there exists M :=

[
Mi,j

]
i,j∈Eκ , a Markov kernel (we will say also simply

kernel), and an initial distribution ν ∈M(Eκ) such that,

P(Xk = xk, a ≤ k ≤ b) = νxa

b−1∏
j=a

Mxj ,xj+1 , for any x ∈ EJa,bK
κ .

For short, we will say that X (resp. µ) is a (ν,M)-Markov chain on Ja, bK (resp. (ν,M)-Markov
law) if its kernel is M , and its initial distribution is ν.

Definition I.1.1.7
� We will say that a law ρ inM(Eκ) is invariant for M (or for this Markov chain) if ρM = ρ, for
ρ seen as a row vector. If the initial distribution is ρ, we say that X is a M Markov chain under
(one of) its invariant distribution.

� For ρ ∈ M(Eκ) invariant for M , we call (ρ,M)-Markov chain (Xk, k ∈ Z) a process in-
dexed by Z whose finite dimensional distribution are given by P(Xk = xk, a ≤ k ≤ b) =
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ρxa
∏b−1
j=aMxj ,xj+1 , for any x ∈ EJa,bK

κ . Its distribution is called (ρ,M)-Markov law.

– A M -Markov law on Eκ is said to be positive recurrent if under this kernel, a Markov chain is
positive recurrent (we will say also that M is positive recurrent).
– If all the Mi,j ’s are positive, we write M > 0.

Consider a Markov chain with kernel M on Eκ under its invariant distribution ρ.

Let us define

Lineρ,M,T
n (xJ1, nK) := LineZ(xJ1, nK, ν,T), for any xJ1, nK ∈ Enκ (I.14)

where ν(aJ1,mK) = ρa1

∏m−1
j=1 Maj ,aj+1 : in words, Lineρ,M,T

n (·) is the function which coincides with
LineZ(·, ν,T) on Enκ when ν is the (ρ,M)-Markov law (see Definition I.1.1.6).

The system of equations {Lineρ,M,T
n ≡ 0, for any n}, (as stated in (I.17)) provides the necessary

and sufficient algebraic relations between ρ,M and T for the AI of the M -Markov law. This is an
infinite system of equations even when Eκ is finite. It is linear in T, with unbounded degree in M .

� The first goal of this chapter is to produce an equivalent finite system of algebraic equations to
characterize the invariance of (ρ,M)-Markov law by T when the set Eκ is finite. The main result
is the proof of equivalence of {Lineρ,M,T

n ≡ 0, for any n} with each of several (equivalent) algebraic
systems of degree 6 in M and linear in T (Theorem I.2.1.2, and Theorem I.2.1.8, when the range
is L = 2 and the memory of the Markov chain is m = 1). These equivalent systems are finite, and
moreover, they can be explicitly solved using some linear algebra arguments (Theorem I.2.5.1): in
words, it is possible to decide if a PS with JRM T possesses an invariant Markov law, or to describe
the class of all T that do (which provide some applications discussed in Section I.1.1).

– When the cardinality of Eκ is infinite some additional complications arise (Section I.3.2), but
some results still hold.

– When M possesses some zero entries, a plurality of algebraic behaviors for these systems of
equations (and solutions) makes a global approach probably impossible (Section I.3.4).

� Similar criteria are developed to characterize product measures ρZ invariant by T. In this case the
finite representations use equations of degree 3 in ρ and linear in T (Theorem I.2.2.2, when the range
L = 2).
� The invariance of the Gibbs distribution with kernelM on the circle Z/nZ is also studied, when Eκ
is finite. In Theorem I.2.1.2 the equivalence between the invariance of a Gibbs measure (see Definition
I.2.1.1) with Markov kernel M on Z/nZ for n = 7 with the invariance of the (ρ,M)-Markov law
(for ρ such that ρM = ρ) on the line Z is established (Theorem I.2.1.2). Besides, Corollary I.2.1.3
implies that if the Gibbs distribution with kernel M is invariant by T on Z/nZ for n = 7, then it is
also invariant by T on Z/nZ for any n ≥ 3 (when the range is L = 2).
� When considering a PS indexed by the segment J1, nK, some interactions βr and β` with the
boundaries are introduced (Section I.2.6). When the range L = 2, if a Markov law is invariant for
n ≥ 7 on the segment (with fixed boundaries interactions), then it is invariant on the line (Theorem
I.2.6.2). Some relations between invariant measures on the line and on the segment are provided.
� The 2D case and beyond will be discussed in Theorem I.2.4.1, where a simple necessary and
sufficient condition for the invariance of a product measure will be provided (Section I.2.3).
� The case where T has a larger range L and/or where the invariant distribution is a Markov law
with larger memory m is discussed in Section I.3.
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Many extensions discussed in Section I.3 to larger range and memory, are proved by the same
ideas as those for L = 2, with some extra technical complications. We think that the presentation
of the proof in the case L = 2 is needed in order to make the arguments understandable.

Applications.

As said above, the theorems we provide allow one to decide if there exists a Markov law with
kernel M (with memory m) invariant under the dynamics of a PS with a given T. This is done
“by explicitly” solving a finite polynomial system with “small degree in M ”. These kinds of problems
are solved using some algebraic tools, for example, the computation of a Gröbner basis (see Section
I.4.1), using some Computer algebra systems if needed. The theorems also allow to find pairs (T,M)
for which this invariance occurs, and then, to design some PS having a simple known invariance
distribution.

Hence, having in hands a simple algebraic characterization of PS admitting invariant Markov law,
allows to extend considerably the family of PS for which explicit invariant distributions can be found,
and we think that, as illustrated by what we are saying below about hidden Markov distributions, the
interest of these results go far beyond invariant Markov laws.

In the sequel, when we say that we use a specific model with general rates, we mean that we let
the positive rates as free variables. In addition to the results presented in the preceding section we
present here several applications of our work.
� In Section I.4.1, we prove that the voter models does not admit any Markov law of any memory as
invariant distribution. The general rate version is explored and the parameters for which there exist
Markov law invariant on the line are discussed.
� In Section I.4.1, the contact process is discussed: we prove that this process does not have a Markov
law of any memory m ≥ 0 as invariant distribution.
� In Section I.4.1, the TASEP and some variants are explored: Zero-range type processes, 3 colors
TASEP and PushASEP.
– For the zero range type processes we prove that there exists a family of distributions F , such that
depending on T, either all the product measures ρZ are invariant by T for all ρ ∈ F , or none of them
is invariant by T.
– In the general rate 3-color TASEP some sufficient and necessary conditions on T are given so that
there exists a Markov law with a positive-entries kernel M that is invariant by T.
– For the PushASEP we explain how some special types of PS with range L =∞ can be transformed
and solved with our results.
� In Section I.4.1, the stochastic Ising model is analyzed and its well known Markov invariant measure
on the line (Gibbs on the cycle) is found based on our results.
� The possibility offered by our theorems to find automatically parameters (T,M), say, on the space
E3 = {0, 1, 2} (with 3 colors) and L = 2 for which the PS with JRM T let the Markov law with
kernel M invariant, allows to find some PS on E2 = {0, 1} with 2 colors and L = 3 which possesses
some hidden Markov chain distributions as invariant distributions, using some projection from E3

to E2. As far as we are aware of, this is the first time that a hidden Markov chain is shown to be
invariant under a PS on the line. This is discussed in Section I.4.2. We think that this method will
allow in the future to find many invariant distribution for PS with 2 colors, or more.
� In Section I.4.3, the set of pairs (T,M) for which the Markov law with positive-entries kernel M
is invariant under T, in the case κ = 2 and L = 2 is totally explicitly solved. This case corresponds
to standard PS on the line, where 1 and 0 are used to model the presence, or absence of particles at
each position. Under these assumptions and mass preservation (see Def. I.4.1.4) we prove that the
unique Markov kernels that are AI by this type of T’s are the i.i.d. measures.
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� In Section I.4.3, the set of pairs (ρ,T) for which the product measure with marginal ρ is invariant
under T, in the case κ = 2 and L = 2 is totally explicitly solved.
� In Section I.4.4 we use our criteria of invariance of product measures under the dynamics of a PS
defined on Z2, to provide many explicit PS admitting product measures as invariant measure.

I.1.2 Some pointers to related papers

The fact that the construction provided in Section I.1.1 defines indeed a process (ηt, t ≥ 0) can
be better viewed on a Poisson point process (this is the so-called graphical representation due to
Harris [62] see also Swart’s book [108]). For this, consider the Poisson point process Θ on J × R+

with intensity
I =

∑
(i,w,w′)∈J

T[w|w′]δ(i,w,w′) dt,

where δx is the Dirac measure at x. Equip this set with the partial time order< so that (i, w1, w
′
1, s1) <

(j, w2, w
′
2, s2) if s1 < s2. Denote by Θt = {(i, w,w′, s) ∈ Θ, s ≤ t} the events occurring before

time t. Define ηt as the image of η0 by the maps mi,w,w′ for (i, w,w′, s) ∈ Θt composed in the time
order.

Consider, for #Eκ < +∞ (and this is also valid for #Eκ = +∞ when
∑

w,w′ T[w|w′] < +∞),
and for a fixed time t, the set St of j’s which have no point of Θt in their L− 1 neighborhood:

St :=
{
j : Θt ∩

(
Jj − (L− 1), j + (L− 1)K× (ELκ )2 × [0, t]

)
= ∅

}
.

The set St is a.s. infinite, and a.s. possesses +∞ and −∞ as accumulation points, so that every
i ∈ Z is either in St or in a finite connected component of Z\St. Therefore, a.s. only a finite number
of points in Θt have affected the value of ηt(i), for any i. This implies that a.s. ηt is well defined.

We call such a PS a L-site dependent PS with κ colors ((L, κ)-PS for short).

The Markov generator of this process in the favorable cases, including those for which Eκ is finite
(where EZ

κ is compact), is given by (I.4) and it is defined on a large class of functions f , large enough,
to conclude that η is a Feller process on the closure of C0 (the set of functions depending on a finite
number of coordinates) (see [108, Section 4]).

When the state space Eκ is infinite, a complication comes since the state on a site may diverge
in a finite time. As a matter of fact, in this case, it may happen that some JRM T do not allow to
define a time continuous Markov process.

Here are two lists of works related to the present one:

� The problem of well definition, representation and construction of a given (class of) PS. Two
main methods are used to prove the existence of a PS: the embedding on a Poisson point
process as exposed above (inspired by Harris [62]), or by some means coming from measure
theory and functional analysis (Hille-Yosida theorem). See e.g. [83, 108, 71, 4], where proofs of
existence and construction can be found in some particular cases). The infinite case is treated,
for example, in [83, Chap. IX], [71, 7, 4, 45].

� The computation of invariant distribution(s) of a given PS, or the characterization of its er-
godicity (see e.g. [15, 29, 45, 55]).
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Other works concern the study of PS out of equilibrium, their speed of convergence, their time to
reach a certain state, among others. All these works are not directly related to the present work.

As far as we are aware, the paper whose point of view is the closest to the present work, is [45],
in which some conditions for the invariance of product measures are designed, for mass migration
processes (see def. I.4.1.5 and below).

We add that this work has been inspired by some similar works on probabilistic cellular automata,
where the transition matrices for which simple invariant measures exist, have been deeply investigated,
and are at the heart of the theory, [109, 31, 85, 23].

For a general Markov process η = (ηt, t ≥ 0), a probability distribution µ on EZ
κ is said to be

invariant if ηt ∼ µ for any t ≥ 0, when η0 ∼ µ. This can be expressed in terms of the semigroup of
the Markov process (Pt, t ≥ 0) as ∫

Pt(f)dµ =

∫
fdµ,

for f ∈ C(EZ
κ ) (see e.g. [84, Chap. 1]). Using compactness argument, it may be proved that

invariant measures exist when Eκ is finite ([84, Prop.1.8]).

When the generator Gf := limt→0(Ptf−f)/t is well defined on a domain F which contains a class
of functions that characterizes the convergence in distribution (which is the case when Eκ < +∞),
the following characterization is valid ([84, Prop.2.13]): µ is an invariant measure iff µ satisfies∫

Gfdµ = 0. (I.15)

If well defined the distributions (µt, t ≥ 0), where µt = µPt satisfy:

∂

∂t
µtJn1,n2K(xJn1, n2K) =

∫
G1{wJn1,n2K=xJn1,n2K}dµ

t(w) = LineZ(xJn1, n2K, µt). (I.16)

We are interested in invariant distribution for which the LHS in (I.16) is 0, which leads to (I.9) by
considering the invariance in t, and then, by replacing µt by ν. Hence, the notion of AI is more
general than the notion of invariant distribution since it does not require the well-definition of the
PS. Nevertheless, when the characterization given by I.15 is valid, invariance and algebraic invariance
coincide.

Additional note.
It is important to understand different elements playing a role here:

1. The interacting particle system η = (ηt)t∈R+ is a Markovian process on time (when well
define), meaning that the whole line is evolving following the Markovian dynamics that we
already explain from T.

2. For a fixed t, the process ηt = (ηtk)k∈Z is a process on space, not necessarily Markovian.
Nevertheless, we want to find a Markov distribution γ being invariant for T, meaning that
there existsM a positive recurrent Markov kernel with ρ an invariant distribution forM (i.e.
ρM = ρ) such that for a finite pattern x ∈ EJi,kK

κ

γ(x) = ρxi

k∏
j=i

Mxj ,xj+1
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η0
1 η0

2 η0
3 η0

4 η0
5 η0

6 η0
7 η0∼γ

ηt1 ηt2 ηt3 ηt4 ηt5 ηt6 ηt7 ηt∼γ

Evolution under T

I.2 Main results

The case L = 1 being non interesting here, we examine in details the case where the range is
L = 2 , representative of this kind of models as will be seen in Section I.3 where larger ranges will
be investigated.

For a given JRM T, the exit rate out of w ∈ E2
κ is defined by

Tout
[w] =

∑
w′∈E2

κ

T[w|w′].

Consider a Markov chain with kernel M , and let ρ be one of its invariant distribution. The equation
Lineρ,M,T

n (xJ1, nK) = 0 (as defined in (I.14)) rewrites

∑
x−1,x0,

xn+1,xn+2∈Eκ

n∑
j=0

∑
u,v∈Eκ

T[u,v|xj ,xj+1]ρx−1

( ∏
−1≤k≤n+1

k 6∈{j−1,j,j+1}

Mxk,xk+1

)
Mxj−1,uMu,vMv,xj+2

−
∑

x−1,x0,

xn+1,xn+2∈Eκ

(
ρx−1

n+1∏
k=−1

Mxk,xk+1

) n∑
j=0

Tout
[xj ,xj+1] = 0.

(I.17)

Notation: From now on, when the context is clear we will not write
∑

u∈Eκ , instead we just write∑
u.

From Lemma I.1.1.2, a (ρ,M) Markov law under its invariant distribution is invariant by T on
the line when Lineρ,M,T

n ≡ 0, for all n ∈ N.

Since the range is L = 2, the value of x0 and xn+1 “just outside” xJ1, nK play a role (they are in
the dependence set of J1, nK, as defined in Def. I.7) we then need to sum on all the possible values
of (x0, xn+1). But, because of the appearance of the pattern Mxi,uMu,vMv,xi+3T[u,v|xi+1,xi+2], it is
a bit simpler to consider also additionally the extra values (x−1, xn+2) in the sum even if they are
not in the dependence set: these additional terms concern only the representation of the Markov law,
and also the fact that ρ is the invariant distribution of M (not the JRM).

We now present the main theorems of the chapter. The proofs that are not given in this section,
are postponed to Section I.5.
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I.2.1 Invariant Markov laws with positive-entries kernel

In this section, Eκ is finite, and the Markov kernel M =
[
Mi,j

]
i,j∈Eκ has positive entries. The

measure ρ is the invariant law for a Markov chain with kernel M , and is characterized by ρ = ρM .

Additional note.
Since we considerM with positive entries, it is positive recurrent, implying that it possess a unique
invariant measure ρ and that for any distribution ρ′ on Ek, ρ′Mn → ρ as n → ∞. We always
consider M together with its invariant distribution in the AI setting, this is based on the fact
that any position k ∈ Z the chain has already run for infinite time, meaning that ηtk follows the
distribution ρ.

Define the normalized version of Line by:

NLineρ,M,T
n (x) :=

Lineρ,M,T
n (x)∏n−1

j=1 Mxj ,xj+1

, (I.18)

so that, for n = 1, and any x ∈ Eκ, NLineρ,M,T
1 (x) := Lineρ,M,T

1 (x) and for n ≥ 2, and any x ∈ Enκ ,

NLineρ,M,T
n (x) =

∑
x−1,x0,

xn+1,xn+2

ρx−1

∏
k∈{−1,0,n,n+1}

Mxk,xk+1

 n∑
j=0

ZM,T
xJj−1,j+2K, (I.19)

with

ZM,T
a,b,c,d :=

 ∑
(u,v)∈E2

κ

T[u,v|b,c]
Ma,uMu,vMv,d

Ma,bMb,cMc,d

− Tout
[b,c]. (I.20)

We will drop the exponents M,T and write Za,b,c,d instead when they are clear from the context.

Now, for uJ1, `K a `-tuple of elements of Eκ, denote by

Seqk(uJ1, `K) = {uJm+ 1,m+ kK, 0 ≤ m ≤ `− k}

the multiset 2 “of k-subwords” of uJ1, `K so that, for example

Seq4(aJ1, 7K) = { aJ1, 4K, aJ2, 5K, aJ3, 6K, aJ4, 7K }.

Define the map MasterM,T
7 : E7

κ → R by

MasterM,T
7 (aJ1, 7K) =

∑
w∈Seq4(aJ1,7K)

Zw −
∑

w∈Seq4(aJ1,7K{4})

Zw (I.21)

where (following our notation, below the abstract) aJ1, 7K{4} = (a1, a2, a3, a5, a6, a7). The map
MasterM,T

7 will play an important role in the sequel. Let us expand for once, this compressed
notation:

MasterM,T
7 (aJ1, 7K) = Za1,a2,a3,a4 + Za2,a3,a4,a5 + Za3,a4,a5,a6 + Za4,a5,a6,a7

−Za1,a2,a3,a5 − Za2,a3,a5,a6 − Za3,a5,a6,a7 .

Additional note.
2. A multiset is a set in which elements may have multiplicities ≥ 1
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This definition comes in a natural way, when we compare the normalized balanced equations of
two words w and w′, where w′ equals w up to the suppression of a central letter. one word and
another, which is the same word with one letter suppressed in the middle.

Now, extend the notion of subwords to Z/nZ: for aJ0, n− 1K ∈ EZ/nZ
κ , write

Sub
Z/nZ
k (aJ0, n− 1K) = {aJm+ 1 mod n,m+ k mod nK, 0 ≤ m ≤ n− 1}

for the multiset formed by the n words made of k successive letters of aJ0, n − 1K around Z/nZ.
Define the map CycleM,T

n : E
Z/nZ
κ → R+ by

CycleM,T
n (x) :=

∑
w∈EZ/nZ

κ

n−1∏
j=0

Mwi,wi+1 mod n

T[w|x] −

n−1∏
j=0

Mxi,xi+1 mod n

T[x|w]. (I.22)

This formula coincides with Cyclen(x, µn) given in Defi. I.1.1.5 for a Gibbs measure with kernel M :

Definition I.2.1.1
A process (Xk, k ∈ Z/nZ) indexed Z/nZ for some n ≥ 1 and taking its values in EZ/nZ

κ is said
to have a Gibbs measure with kernel

[
Mi,j

]
i,j∈Eκ , a non negative Matrix, if

P(XJ0, n− 1K = xJ0, n− 1K) =

∏n−1
j=0 Mxj ,xj+1 mod n

Trace(Mn)
, for any xJ0, n− 1K ∈ EJ0,n−1K

κ .

For short, we will say that X follows the M -Gibbs measure on Z/nZ.

The Perron-Frobeniüs theorem asserts that if a square matrix A is non negative and irreducible, then
A has a real eigenvalue λ larger (or equal, if A is periodic) than the modulus of the other ones,
and the corresponding right and left eigenvectors may be chosen with positive entries. We qualify by
“main” in the sequel these eigenvectors and eigenvalue. Hence, if M is irreducible, one may suppose
w.l.o.g that M is a classical Markov kernel, since

[
M ′i,j

]
i,j∈Eκ =

[
Mi,jqi/(cqj)

]
i,j∈Eκ , where q is the

main right eigenvector of M and c is the corresponding eigenvalue of M , is a Markov kernel which
induces the same Gibbs measure as M .

When #Eκ < +∞, a M -Gibbs measure is invariant by T on Z/nZ iff CycleM,T
n ≡ 0. Again,

when #Eκ = +∞, independently of the good definition of the PS with JRM with kernel M , we will
say that cyclically algebraic invariant (or CAI ) by T on Z/nZ when CycleM,T

n ≡ 0.

It must be noticed at this point that CycleM,T
n (x) coincides with Cyclen(x, µn) as defined in

(I.12) where µn is the M -Gibbs measure with kernel M . Further for any n ≥ 1, define the map
NCycleM,T

n : E
Z/nZ
κ → R by

NCycleM,T
n (x) =

CycleM,T
n (x)∏n−1

j=0 Mxi,xi+1 mod n

.

By inspection, it can be checked that, for n ≥ 3, diving (I.22) by
∏n−1
j=0 Mxi,xi+1 mod n

gives

NCycleM,T
n (x) =

∑
w∈SubZ/nZ4 (x)

Zw, for any x ∈ EZ/nZ
κ . (I.23)
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This identity fails for n = 1 and n = 2.

Also define the map ReplaceM,T
7 : E7

κ × Eκ → R by

ReplaceM,T
7 (aJ1, 7K; a′4) =

∑
w∈Seq4(aJ1,7K)

Zw −
∑

w∈Seq4(a1a2a3a′4a5a6a7)

Zw.

In fact

ReplaceM,T
7 (aJ1, 7K; a′4) = NCycleM,T

7 (aJ1, 7K)− NCycleM,T
7 (a1a2a3a

′
4a5a6a7).

It is then the balance in NCycleM,T
7 (aJ1, 7K) when the “central letter” a4 of a word aJ1, 7K is replaced

by a′4.

Additional note.
In general Replace is the equation obtained from the difference of invariance equations associated
to two words, which differ in one central letter.

A key result of the chapter is the following: the infinite system of equations {Lineρ,M,T
n ≡ 0, n ≥ 1},

which by definition is the invariance of the Markov law by T on the line is equivalent to many different
finite systems of equations with bounded degree (in M):

Theorem I.2.1.2
Let Eκ be finite and L = 2. If M > 0 then the following statements are equivalent:

(i) (ρ,M) is invariant by T on the line.
(ii) ReplaceM,T

7 (a, b, c, d, 0, 0, 0; 0) = 0 for all a, b, c, d ∈ Eκ.
(iii) ReplaceM,T

7 ≡ 0.

(iv) MasterM,T
7 (a, b, c, d, 0, 0, 0) = 0 for all a, b, c, d ∈ Eκ.

(v) MasterM,T
7 ≡ 0.

(vi) NCycleM,T
n ≡ 0 for all n ≥ 3.

(vii) NCycleM,T
7 ≡ 0.

(viii) NCycleM,T
7 (a, b, c, d, 0, 0, 0) = 0 for all a, b, c, d ∈ Eκ.

(ix) There exists a function W : E3
κ → R such that ZM,T

a,b,c,d = Wb,c,d −Wa,b,c.

Key idea.
Several implications are direct. The difficult part is to show that Master is enough to recover
the complete AI, i.e. that Linen ≡ 0 for all n ∈ N. This is a consequence of the Markovian
structure and of the structure of the equation which let us go from configurations of length n to
configurations of length n− 1. The consequence that it is enough to test the family with zeroes
at the end, comes from a combinatorial structure on the equations.

The implication (vii)⇒ (vi) and (vii)⇒ (i) gives the following Corollary:

Corollary I.2.1.3
Let Eκ be finite. If the Gibbs measure with a positive-entries Markov kernel M is invariant on
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Z/nZ by T for n = 7, then it is also invariant on Z/nZ by T for every n ≥ 3, and the M -Markov
law under its invariant distribution is invariant by T on the line.

Remark I.2.1.4
� The appearance of “0” everywhere in the Theorem is arbitrary. It may be replaced by any
constant element of Eκ in the previous statements.
� The positivity of M is a strong condition whose relaxation entails many difficulties. It is
discussed in Section I.3.4.
� [link with reversibility] The condition

T[u,v|b,c]Ma,uMu,vMv,d = Ma,bMb,cMc,dT[b,c|u,v] for any a, b, c, d, u, v ∈ Eκ (I.24)

is equivalent to the fact that PS with JRM T is reversible with respect to the Gibbs measure
with kernel M on any cylinder with size ≥ 3. As usual reversibility implies invariance. However,
invariance and reversibility are not equivalent even for Gibbs measures: Theorem I.2.1.2 gives the
complete picture. In particular, (I.24) implies ZM,T

a,b,c,d ≡ 0, which implies Conditions (ii) to (ix)
of Theorem I.2.1.2. The converse does not hold.
� Further in this chapter, we will state Theorem I.3.1.5 which implies a result somehow stronger
that Theorem I.2.1.2 in some conditions: NCycleM,T

n ≡ 0 for any n ≤ κ is necessary and sufficient
for the Markov chain (ρ,M) to be invariant by T. When the number of colors κ < 7 this provides
a criterion potentially simpler to check than those given in Theorem I.2.1.2.

We state here a theorem which is important in many applications. Consider a PS with JRM T

defined on Z, and its analogue on EZ/nZ
κ . For a and b two elements of this last configuration set, b

is said to be accessible from a, if a = b or if it is possible to go from a to b using jumps with positive
rates. A strict subset S of EZ/nZ

κ is said to be absorbing, if for any b in EZ/nZ
κ , an element of S is

accessible from b, and if EZ/nZ
κ \ S is not accessible from S.

Theorem I.2.1.5
Consider a finite alphabet Eκ with |κ| ≥ 2. Consider T a JRM with range L, such that T is not
identically 0.
Suppose that for infinitely many integers n the PS with JRM T possesses an absorbing subset Sn
of EZ/nZ

κ , with ∅ ( Sn ( E
Z/nZ
κ . Under these conditions, there does not exist any Markov law

with memory m, for any m, with full support, invariant by T on the line.

In fact only the case m = 1 is a Corollary of Theorem I.2.1.2, the strongest form for general memory
m ≥ 1 and range L is a Corollary of Theorem I.3.1.2 which treats the invariance of Markov law with
memory m.

Remark I.2.1.6
� Notice that if T is identically 0, then all states are absorbing states, then all Markov law are
invariant.
� If the hypothesis of the theorem holds for some fixed n, then the conclusion holds if the memory
size m satisfies m+ L ≤ n.

We will use this theorem in Section I.4 for some applications on the contact process and the voter
model.

41



I.2. Main results

Proof. By Theorem I.2.1.2 (for m = 1) or Theorem I.3.1.2 (for m ≥ 1), if there exists a Markov law
with memory m and full support invariant for T on the line, then the same property holds on Z/nZ
for n ≥ m+L for the corresponding Gibbs measure. But the invariance of a full support measure is
incompatible with the existence of a non trivial absorbing subset.

Remark I.2.1.7: Crucial
� MasterM,T

7 ≡ 0 is equivalent to∑
w∈Seq4(aJ1,7K)

Zw =
∑

w∈Seq4(aJ1,7K{4})

Zw, for any aJ1, 7K ∈ E7
κ. (I.25)

This relation allows to see that the LHS of (I.25), does not depend on a4, and in many places
it will allow us to remove “one letter” in linear combinations involving Z: for any words aJ1, nK
with at least n ≥ 7 letters, for any 4 ≤ k ≤ n− 3,∑

w∈Seq4(aJ1,nK)

Zw =
∑

w∈Seq4(aJ1,nK{k})

Zw.

This property is reminiscent to other algebraic properties, as rewriting systems, dependence in a
vector space or as relation in the presentation of a group by generators and relations.

� The fact that Replace7 ≡ 0 is a necessary condition for the Markov law (ρ,M) to be invariant
by T on the line appears naturally since it is the comparison of the balance of the outgoing and
incoming rate of two similar words. The sufficiency of this condition is not obvious (see Section
I.3.4 for extension when M is not supposed to have positive entries).

There are many links between the systems NCyclen ≡ 0 for different values of n, here are some
of them, which prove that the Markov law with Markov kernel M is invariant by T if (M,T) solves
a system of equations with degree 6 in M , linear in T (the system being finite when κ is finite):

Theorem I.2.1.8
The system NCycleM,T

7 ≡ 0 is equivalent to:

(i) {NCycleM,T
6 ≡ 0,NCycleM,T

5 ≡ 0},
(ii) {NCycleM,T

6 ≡ 0,NCycleM,T
4 ≡ 0}.

Key idea.
The idea here is to find an equivalent system with the smallest possible degree on M . This is
motivated from the fact that (ii), (iv), (xiii) in theorem I.2.1.2 say that there is a subfamily
of words that gives a sufficient condition to check invariance, which may be expressed in the
diminution of degree.

The proof is given in Section I.A

Remark I.2.1.9
A natural question is: are NCycleM,T

6 ≡ 0 and NCycleM,T
7 ≡ 0 equivalent ? We tested this with a

computer for κ = 5 (by the computation of some Gröbner basis), where the answer turns out to
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be negative. We will see in the sequel that 7 is the “critical” length of the systems associated to
the range L = 2. In section I.3 we will give the critical length associated with a general range L.

In the sequel, W1 · · ·Wk will stand for the word obtained by the concatenation of the words
W1, · · · ,Wk−1 and Wk.

Remark I.2.1.10: Linearity principle
From Theorem I.2.1.2, if a Markov law with Markov kernel M > 0 is invariant by T on the line,
then the M -Gibbs measure is invariant in Z/nZ for any n ≥ 3. This is something which can
be guessed and proved as follows. Take three words: p, w, and s, the “prefix”, the “pattern”,
and the “suffix”. Consider the word Wn = pwns. If the M -Markov law is invariant by T on
the line, then NLineρ,M,T

|p|+n|w|+|s|(Wn) = 0. But it is easy to see that NLineρ,M,T
|p|+n|w|+|s|(Wn) =

(n− 1)NCycleM,T
|w| (w) +O(1), so that one infers that NCycleM,T

k ≡ 0 for every k ≥ 3.

In fact, this remark is also valid for any range L, and even the converse holds (see Theorem
I.3.1.5).

I.2.2 Invariant Product measures

Definition I.2.2.1
A process (Xk, k ∈ I) indexed by a finite or countable set I is said to have the product distribution
pI for a distribution p on Eκ if the random variables Xk’s are i.i.d. and have common distribution
p.

Since product measures are special Markov laws, we can use what has been said so far to characterize
invariant product measure by T by replacing Mi,j by ρj in the previous considerations (and rewrite,
for example Theorem I.2.1.2 restricted to this special case). But, the “7” appearing everywhere in
this theorem is no more relevant for product measure... the crucial length here is “3”! To see this,
observe that when Mi,j = ρj , the quantity ZM,T

a,b,c,d does not depend on (a, d), so that we may set

Zρ,Tb,c := ZM,T
a,b,c,d =

∑
(u,v)∈E2

κ

T[u,v|b,c]
ρuρv
ρbρc

− Tout
[b,c]. (I.26)

MasterM,T
7 ,ReplaceM,T

7 and NCycleM,T
n (aJ0, n− 1K) respectively “simplify to”

Masterρ,T3 (a0, a1, a2) := Zρ,Ta0,a1
+ Zρ,Ta1,a2

− Zρ,Ta0,a2
,

Replaceρ,T3 (a0, a1, a2; a′1) := Zρ,Ta0,a1
+ Zρ,Ta1,a2

− Zρ,T
a0,a′1

− Zρ,T
a′1,a2

,

NCycleρ,Tn (aJ0, n− 1K) :=
n−1∑
j=0

Zρ,Taj ,aj+1 mod n
for n ≥ 2. (I.27)

We have the following analogue of Theorem I.2.1.2, which provides some finite certificate/criteria for
the algebraic invariance of product measures.

Theorem I.2.2.2
If Eκ is finite, L = 2, and if ρ ∈ M(Eκ) with support Eκ, then the following statements are
equivalent:
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(i) ρZ is invariant by T on the line.
(ii) Replaceρ,T3 (a, b, 0; 0) = 0 for all a, b ∈ Eκ.
(iii) Replaceρ,T3 ≡ 0.

(iv) Masterρ,T3 (a, b, 0) = 0 for all a, b ∈ Eκ.
(v) Masterρ,T3 ≡ 0.
(vi) NCycleρ,Tn ≡ 0 for all n ≥ 2.
(vii) NCycleρ,T3 ≡ 0.

(viii) NCycleρ,T3 (a, b, 0) = 0 for all a, b ∈ Eκ.
(ix) There exist a function W : Eκ → R such that Zρ,Ta,b = Wb −Wa for all a, b ∈ Eκ.

In fact Theorem I.2.2.2 is not a corollary of Theorem I.2.1.2, but its proof is almost the same.

Remark I.2.2.3: Comparison with detailed balance condition
Consider a probability distribution ρ on Eκ with full support. A natural/folklore sufficient condition
for this measure to be invariant by T on the line is the fact that it solves the following system:

ρbρcT[b,c|u,v] = ρuρvT[u,v|b,c] for any, b, c, u, v ∈ Eκ. (I.28)

Summing this over (u, v), one sees that this condition implies Zρ,T ≡ 0. Theorem I.2.2.2 applies
to these situations since when Zρ,T ≡ 0, (ii) to (iii) are clearly satisfied.

The crucial point here is that Zρ,T ≡ 0 is just a sufficient condition, not a necessary one (as
we will see by providing examples in Section I.4):Theorem I.2.2.2 gives the complete necessary
and sufficient conditions.

Remark I.2.2.4
For the sake of simplicity, in Section I.2.2 we restrict ourselves to criteria/properties for invariant
of product measures with full support. Nevertheless, contrary to the Markov case, the case of
product measures with a smaller support can be also considered without any problem [see Section
I.3.3].

“Range 2” on a more general class of graphs. Most of the previous discussions on AI Markov
law rely on the geometry of Z, but it turns out that for AI product measures, some of the previous
properties still hold when one defines a PS on a more general graph – in the case where it still relies
on a JRM with range 2.

Formally, consider a continuous-time Markov process X = (Xv, v ∈ V ) defined on a lattice like
G = Zd or (Z/nZ)d. Assume that the pair of states (η(x), η(y)) of two vertices x and y, jumps
to the new pair of states (a, b) with rates p(x, y)T[η(x),η(y)|a,b] for p(·, ·), a translation invariant non
negative function (that is p(u, v) = p(0, v − u)). By p, the rates also depend on the positions. We
suppose that there exists N ∈ N such that p(x, y) = 0 if ‖x− y‖1 ≥ N for all x, y ∈ G.

In this case the equilibrium equations for x(A) ∈ EAκ for A ⊂ G finite is

Lineρ,T,p(x(A))
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:=
∑

w∈ED(A)

w(A)=x(A)

∑
(i,j)∈D(A)2

i∈A or j∈A

p(i, j)

 ∑
(u,v)∈E2

κ

ρuρv
ρwiρwj

T[u,v|wi,wj ] − Tout
[wi,wj ]

 ∏
i∈D(A)

ρwi

=
∑

w∈ED(A)

w(A)=x(A)

∑
(i,j)∈∈D(A)2

i∈A or j∈A

Zρ,Twi,wjp(i, j)
∏

i∈D(A)

ρwi

where D(A) denotes as before the dependence set, which definition needs to be extended for this
type of graphs to D(A) = {v ∈ V : max{pu,v + pv,u, u ∈ A} > 0}}.

Definition I.2.2.5
We will say that ρG is AI by pT if ρG satisfies Lineρ,T,pA ≡ 0 for all finite A ⊂ G (again when Eκ
is finite and G locally finite, invariance and algebraic invariance are equivalent notions.

Theorem I.2.2.6
Let #Eκ < +∞, L = 2 and ρ ∈M(Eκ) with full support. Depending on p we have the following
equivalences

1. If p is symmetric. ρG is invariant by pT iff NCycleρ,T2 ≡ 0.

2. If p is asymmetric. ρG is invariant by pT iff the product measure ρZ is invariant by T on
the line (see the characterizations in Theorem I.2.2.2).

Key idea.

The probability p factorizes outside Z in Lineρ,T,p, this gives some space to manipulate them in
order to simplify the systems, depending only on the symmetry of p.

Hence, if p is asymmetric, the geometry does not matter since Zρ,T only depends on the states (given
by η), and not on the positions.

I.2.3 A glimpse in 2D and beyond

We consider in this part PS indexed by Zd, whose configuration space is EZd
κ . We suppose that

the JRM instead of being defined (as done in (I.1)) by “the jump rate of size L-subwords” is defined
by

T =
(
T[w|w′])u,v∈EHC[L,d]

κ

)
where

HC[L, d] = J0, L− 1Kd

is the hypercube with range L in Zd (see discussion in second point of Remark I.2.3.3 for other
shapes). For example for d = 2, HC[2, 2] is the square Sq formed by the cells (0, 0), (1, 0), (1, 1) and
(0, 1). An example of JRM is the following T with all entries equal to 0, except

T
1 1
0 1

0 0
1 0

= 1,T
0 0
1 0

1 1
0 1

= 1, (I.29)
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meaning that the 2 × 2 square sub-configurations jumps with rate 1, if they are equal to 1 1
0 1

or

0 0
1 0

, in which case, the colors of the 4 vertices are flipped.

Formally, replace J defined in (I.2) by

J (d) =
{

(i, w,w′), i ∈ Zd, w ∈ EHC[L,d]
κ , w′ ∈ EHC[L,d]

κ

}
= Zd × (EHC[L,d]

κ )2, (I.30)

andm bym(d), which again is the family of endofunctionsm(d)
i,w,w′ on the set of configurations defined

for any (i, w,w′) ∈ J (d), generalizing naturally the mi,w,w′ ’s defined in (I.3). The corresponding
generator is (

G(d)f
)

(η) =
∑

(i,w,w′)∈J(d)

T[w|w′]
[
f(m

(d)
i,w,w′(η))− f(η)

]
, (I.31)

acting on continuous functions f sufficiently smooth (see discussion below (I.4)). The dynamics
of this PS is as follows: starting from a (random or not) configuration η0 = (η0

z , z ∈ Zd), each
sub-configuration (η0

z , z ∈ h) = u indexed by a hypercube h equal to HC[L, d] up to a translation, is
replaced by the sub-configuration with same shape v with rate T[u|v]. When Eκ < +∞, this defines
a Markov process (see discussion below (I.4)).

Again a measure µ ∈M
(
EZd
k

)
is said to be AI by T in Zd if its finite dimensional distributions

are preserved by T. It is then possible to state the analogue of LineZ in these settings: let C be a
finite subset of Zd. Set

LineZ
d
(x(C), ν) =

∑
w,z∈ED(C)

κ

(
νD(C)(w)T[w|z] − νD(C)(z)T[z|w]

)
1z(C)=x(C) (I.32)

where x(C) = (xc, c ∈ C) is any element of ECκ , and where D(C) is the dependence set of C: for
any subset F of Zd, the dependence set of F is

D(F ) = F − HC[L, d].

Again, for any w, z ∈ ED(C)
κ , the global transition rate from w to z is

T[w|z] =
∑

c∈Z2:(c+h)∩C 6=∅

T[w(c+h)|z(c+h)]1w(x)=z(x),∀x∈D(C)\(c+h), (I.33)

where h = HC[L, d]. Finally, the normalized version Lineρ,T is defined , for any finite domain C by

NLineρ,T(x(C)) :=
Lineρ,T(x(C))∏

c∈C ρx(c)
for any x(C) ∈ ECκ . (I.34)

The first theorem we want to state gives a necessary and sufficient condition for a product measure
ρZ

d
to be invariant by some PS with JRM T. Again, when Eκ < +∞ it provides a criterion involving

a system composed by a finite number of equations. After that, we will explain how to obtain an
equivalent system with a much smaller number of equations.
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Let C be a finite subset of Zd and D(C) its dependence set. The dependence set by definition
is a union of hypercubes h with sides L: depending on C, some of them may be included completely
in C, some contains some points in C and some points outside. The balance NLineρ,T(x(C)) can
be decomposed as a sum on these hypercubes. Indeed, using the decomposition of T along simple
jump (I.34), one gets

NLineρ,T(x(C)) :=
∑
h⊂C

Zx(h) +
∑

h:h∩C 6=∅
h 6⊂C

Zh∩C,hx(h∩C) (I.35)

depending on whether h is totally included in C or not. Here, the geometry of Zd appears: when h
is not included in C, h ∩ C can be (depending on C) any subset of h, and we then need to mark
this dependence with the pair (h ∩ C, h) as an exponent of Z. A simple analysis on the summation
variables and the simplification of the quotient of weights of unchanged colors, give:

Zx(h) =

∑
y∈Ehκ

∏
c∈y ρc∏

c∈x(h) ρc
T[y|x(h) ]

− Tout
[x(h) ] (I.36)

and more generally, for h such that h ∩ C 6= ∅, h 6⊂ C,

Zh∩C,hx(h∩C) =
∑

w(h)∈Ehκ

Zw(h)1w(h∩C)=x(h∩C)

∏
j∈h\C

ρwj . (I.37)

We said, “more generally” because when h ⊂ C,

Zh∩C,hx(h∩C) = Zh,hx(h) = Zx(h). (I.38)

When |Eκ| < +∞, a product measure ρZ
d
is AI by T if and only if all the maps NLineρ,T ≡ 0.

For this, it is not needed that Z ≡ 0 (but it is sufficient):

Theorem I.2.3.1
When |Eκ| < +∞, a product measure ρZ

d
is invariant by T if and only if the two following

conditions hold:

(i)
∑

h:0∈h Z
0,h
x(0) = 0 where 0 is the origin of Z(d),

(ii) For all subsets C and C ′ = C ∪ {c} of HC[2L− 1, d] (where c is a single vertex), and any
x(C ′) ∈ EC′κ ,

NLineρ,T(x(C ′))− NLineρ,T(x(C)) ≡ 0. (I.39)

Key idea.
Here we try to use the one dimension idea, which is to make the invariance equations of a basal
family of configurations imply the invariance equations for all patterns by means of increments,
i.e. comparison of invariance equations.

as a trivial consequence we get the following condition, weaker than reversibility:

Corollary I.2.3.2
If Eκ < +∞ and if Z ≡ 0 then the product measure ρZ is invariant by T on Z2.
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Proof. The product measure ρZ
d
is invariant by T if and only if for at least one sequence (Ci, i ≥ 0)

of finite subsets of Zd, such that:
� Ci+1 = Ci ∪ {ci+1} (a simple vertex),
� (Ci, i ≥ 0) eventually contains an arbitrarily large hypercube,
the property NLineρ,T(x(C0)) ≡ 0, and for all i ≥ 0, NLineρ,T(x(Ci+1))− NLineρ,T(x(Ci)) = 0 for
any x ∈ ECi+1

κ hold.

Due to (I.36), (I.37) and (I.38), if C ′ = C ∪ {c} for a vertex c not in C, the difference
NLineρ,T(x(C ′)) − NLineρ,T(x(C)) can be written as a sum of the contributions of the hypercubes
h such that (h ∩ C) 6= (h ∩ C ′). A simple inspection of the balance in the corresponding sums as
expressed in (I.35), gives

NLineρ,T(x(C ′))− NLineρ,T(x(C)) =
∑

h:h∩C′ 6=h∩C
Zh∩C

′,h
x(h∩C′) − Zh∩C,hx(h∩C). (I.40)

The theorem states something stronger than the fact that this property holds for all C ′ = Ci+1, C =
Ci: it suffices that this property holds for those included in HC[2L− 1, d]. It remains to say that this
last condition comes from (I.40): the difference between the two NLine concerns only the hypercubes
h that intersect the new vertex c, and then the union of these hypercubes is included in HC[2L−1, d].
A given union of hypercubes appearing in such a difference can be realized by taking two sets Ci+1, Ci
included in HC[2L− 1, d].

Remark I.2.3.3
(i) It is possible to reduce the number of necessary and sufficient conditions in Theorem I.2.3.1 by
designing a particular growing sequence (Ci) in such a way that the family (h,Ci ∩ h,Ci+1 ∩ h)
(up to translation) involved in the right hand side of (I.40) for some i, take only a very small
number of values: in Z2 for 2 × 2 squares, we can manage to get only 2 (kind of) differences,
starting from C0 = {(0, 0), (0, 1), (1, 0)}. This is exemplified in Theorem I.2.4.1 and in its proof.
(ii) What has been said so far concerns JRM indexed by hypercubes. If the PS of interests is
given using some JRM indexed by some other “shape F ”, it is still possible to represent such a
PS using a JRM indexed by hypercube (by taking a hypercube h large enough to contain F , and
by letting the colors in h \F unchanged). However, in Zd the number of equations grows rapidly
if one uses this kind of expedient. The best thing to do, is to adapt what has been said above to
this special shape.

I.2.4 JRM indexed by 2× 2 squares in 2D

Following Remark I.2.3.3, we design a set of necessary and sufficient conditions for invariance of
a product measure ρZ “less abundant” than those given in Theorem I.2.3.1. We examine this in the
2D case, for a PS with JRM indexed by 2×2 squares, denoted further Sq (as the one given in (I.29)).

Consider the three following sets:

Γ0 = {(0, 0), (0, 1), (1, 0)}, Γ1 = Γ0 ∪ {(2, 0)}, Γ2 = Γ1 ∪ {(1, 1)}.
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Theorem I.2.4.1
Let κ < +∞. Consider ρ a probability distribution with full support on Eκ and T =

[
T[u|v]

]
u,v∈ESq

κ

a JRM indexed by Sq. The measure ρZ
2
is invariant by T on Z2 iff the two following conditions

hold simultaneously:

(i) NLineρ,T ≡ 0 on EΓ0
κ ,

(ii) for any x ∈ EΓ2
κ ,

NLineρ,T(x)− NLineρ,T(x(Γ1)) = 0. (I.41)

Key idea.
Here we just present an example of sufficient condition, since we may choose other set of domains
instead of (Γi)

2
i=0 in order to have different sufficient conditions.

As a simple corollary: if NLineρ,T ≡ 0 on Γ2 for a ρ with full support then ρZ is invariant by T on Z.

Proof. We give a picture based proof, using some representation of computations by pictures.

We insist on the fact that ρZ is invariant by T iff all the NLineρ,T(x(C)) = 0 for any sub-
configuration x(C) ∈ ECκ , for any subset C of Z2. As noticed in Theorem I.2.3.1, we just need
to prove that for any s ≥ 0, any square C = J0, sK2 is included in a finite domain C ′ for which
NLineρ,T(x(C ′)) = 0 for all x(C ′) ∈ EC′κ . We will construct a well designed sequence (Ci) satisfying
the hypothesis of Theorem I.2.3.1 and containing eventually J0,mK2.

Recall formula (I.35), which expresses NLine(x(C)) as a sum of some “Z” indexed by the hyper-
cube included in the dependence domain D(C). In view of Figure I.1 the first hypothesis of Theorem

x1x1 x1

x2x2 x2 x3x3 x3 x4x4

x5

Figure I.1 – Shapes Γ0,Γ1 and Γ2 appearing in Theorem I.2.4.1.

I.2.4.1 says that the sums of these Z over the eight 2 × 2 squares contained in the first picture of
Fig. I.1 is 0. Let us express this by

Lineρ,T(x(Γ0)) = Z x x
x x1

+ Z x x1
x x2

+ Z x x2
x x

+ Z x x
x1 x

+ Z x1 x
x2 x3

+ Z x2 x3
x x

+ Z x x
x3 x

+ Z x3 x
x x

.

In Z y1 y2
y4 y3

, the variables x1, x2, x3 refers to some fixed specified values and the “x” refers to free

variables on which a sum is taken (as in the definition of Zh∩C,hx(h∩C), the “variables in h \ C" are free
variables on which a sum is taken).

Further Lineρ,T(x(Γ1)) and Lineρ,T(x(Γ2)) are respectively sums of 10 and 11 such Z: each of these
Z must be seen at this stage as indexed by a 2× 2 square included in the second and third picture
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in Fig. I.1 where Γ1 or Γ2 are drawn. Many of these Z are common between these structures. It
appears then that

Lineρ,T(x(Γ2))− Lineρ,T(x(Γ1)) =

(
Z x1 x

x2 x3

− Z x1 x5
x2 x3

)
+

(
Z x x

x3 x4

− Z x5 x
x3 x4

)
+

(
Z x x

x1 x

− Z x x
x1 x5

)
− Z x x

x5 x

.

The terms have been assembled to make clear what changes the “appearance” of x5 in x(Γ2) compared
to x(Γ1). Graphically, we use the shortcut given in Figure (I.2). This Picture has to be understood as

x1 x1
x1x1

x2 x2
x2x2

x3 x3
x3x3

x4 x4
x4x4

x5
x5

Figure I.2 – Expression of the difference between Lineρ,T(x(Γ2)) and Lineρ,T(x(Γ1)).

when one expressed the difference Lineρ,T(x(Γ2)) and Lineρ,T(x(Γ1)) by summing on the Z indexed
by the squares included in Γ2 and those included in Γ1, one gets the same results as if we do the
same computation in the small figures in the right hand side in Fig. I.2.

Consider some n ≥ 5 (to avoid border effects due to the size of Γ2), and consider the triangle

∆n = {(i, j), 0 ≤ i ≤ n, 0 ≤ j ≤ n, 0 ≤ i+ j ≤ n}.

We will show that under the hypothesis of the theorem, for any x(∆n) ∈ E∆n
κ , Lineρ,T(x(∆n)) = 0.

For this, we will need the four following steps:
(a) if Lineρ,T(x(Γ0)) = 0 for any x(Γ0) ∈ EΓ0

κ , then Lineρ,T(x(G)) = 0 if G is the 2 × 1 or 1 × 2
domino, or if G is a single vertex (1 × 1). Indeed, these structures are included in Γ0, and, for any
G ⊂ Γ0, Lineρ,T(x(G)) = 0 can be obtained by summing Lineρ,T(x(Γ0)) on the variables which are
in Γ0 \G.
(b) From (a), we deduce that if Ln is the n× 1 line, then Lineρ,T(x(Ln)) = 0 for any x(Ln) ∈ ELnκ .
The graphical proof of this property is drawn on Fig. I.3. A single argument is needed: the set of
2× 2 square contributions that do not vanish is the same in the right and left hand side.

(c) We now, extend the construction of this row Ln by adding a single vertex y just above the
right-most element, getting a new shape L′n as represented in the top-left picture in Fig. I.4. The
graphical proof provided in Fig. I.4 allows to prove that Lineρ,T(x(L′n)) = 0 using the nullity of Line
on ELnκ , EΓ0

κ and on dominoes.
(d) The argument given in (c) is independent from the fact that Ln was the first row. Since the

difference Lineρ,T(x(L′n)) − Lineρ,T(x(Ln)) does not involve the square below row at level 1 (say),
if we “complete” both Ln and L′n by the same fixed row at level 0, the difference Lineρ,T(x(L′n))−
Lineρ,T(x(Ln)) would be unchanged. Hence, if two structures S and S′ are equal up to a given row
at level h, and differs only because S′ possesses an additional point just above the leftest position of
this row, then we still have Lineρ,T(x(S′))− Lineρ,T(x(S)) = 0.

Adding a single vertex above the left-most point of the top-most row is a construction which does
not allows to pass from Ln to ∆n. We still need an elementary growing trick to allow to put some
new vertices at the right of the top-most vertex in L′n to complete the second row (in fact, we will
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η0η0

ηiηi ηiηi

ηi ηi

ηi+1ηi+1

ηi+1

Figure I.3 – Representation of the geometry of the computation of NLineρ,T(x(Li+1)) −
NLineρ,T(η(Li)): each sum has to be taken on the set of 2 × 2 squares included in the drawn
rectangles. All squares appearing in both pictures simplify and then the geometry of the summation
reduces to that of the second line. In the third line, some squares are added, but since they correspond
to the same contributions, this is allowed.

η0

η0

η0η0

η0

η0

η′0

η′0

η′0

ηn ηn

η1η1

η1

η1

η1

η1

Figure I.4 – The equation resulting of the addition of a vertex above the leftest corner of the upest
row.

construct a new row with one vertex less than Ln, leading iteratively to ∆n): a slight generalization
of Figure I.2 that do the job, and the graphical computation is represented in Fig. I.5:

I.2.5 How to explicitly find invariant Markov law or invariant product measures
on the line?

In real applications, often T is given, and the need is to find a Markov kernel M so that the
M -Markov law is AI by T. Let us call

Sj(T) = {Markov kernel M : M > 0,NCycleM,T
j ≡ 0}.

When |Eκ| < +∞, by Theorem I.2.1.2, to find such M amounts to finding S7(T) (which can be
empty). The algebraic system NCycleM,T

7 ≡ 0 is huge even when κ is small, and then quite difficult
to solve: many equations of degree 6 in M (by Theorem I.2.1.8) and linear in T. From Theorem
I.2.1.2, we know that if the M -Markov law is invariant by T, S7(T) ⊂ S3(T). It turns out that
computing S3(T) can be done (see Theorem I.2.5.1), and then, in practice, these solutions can be
tested in NCycleM,T

7 afterwards.

To find T when M is given so that T preserves the M -Markov law is a linear algebra problem
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η0 η0

η′0 η′0

ηi ηi

ηi ηi

η′i

η′i

ηi−1ηi−1

ηi−1

η′i−1η′i−1

η′i−1

ηi+1ηi+1

ηi+1 ηn ηn

Figure I.5 – For this formula, observe that in the left hand side, the result is unchanged if, instead
of taking a first specified row yJ0, nK one takes unspecified values x, since the squares involving any
values of the first row vanishes. The right hand side is 0 because of the second hypothesis of the
theorem

since e.g. CycleM,T
7 (a, b, c, d, 0, 0, 0) = 0 is a linear system in T; the set of solutions is a convex set.

Notice that if for a fixed M some tools of linear algebra are used to find the T’s solution of e.g.
CycleM,T

7 ≡ 0, then an additional work of identification of non negative solutions is needed.

Computation of S3(T)

Assume T is given, and let us determine S3(T). Setting

νa,b,c :=
Ma,bMb,cMc,a

Trace(M3)
, for every a, b, c ∈ Eκ, (I.42)

the equation CycleM,T
3 (a, b, c) = 0 is equivalent to{ ∑

(u,v)

(
νc,u,vT[u,v|a,b] + νa,u,vT[u,v|b,c] + νb,u,vT[u,v|c,a]

)
= νa,b,c

(
Tout

[a,b] + Tout
[b,c] + Tout

[c,a]

) (I.43)

This is a linear system in ν, therefore it can be solved by means of linear algebra. If no positive
solution ν exists, then S3(T) = ∅. Assume that a positive solution ν exists. Define for any a, b ∈ Eκ
the row matrices La,b, the square matrices Na, and the vector R:

Na =

[
νa,x,y ν

1/3
a,a,a

νa,x,a

]
x,y∈Eκ

, (I.44)

La,b =
[
νa,b,x, x ∈ Eκ

]
, (I.45)

R = t
[
1, x ∈ Eκ

]
. (I.46)

For each a, take the pair of left and right eigenvector (` = `a, r = ra) with positive entries of
Na corresponding to the main eigenvalue (notion defined below Def. I.2.1.1), normalized so that
‖`a‖1 = `aR = 1, and ra`a = 1. Recall the considerations just above (I.43).
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Theorem I.2.5.1
Let #Eκ < +∞, L = 2 and ν be a given probability measure on E3

κ, invariant under rotation,
and solving (I.43). If there exists a positive recurrent M -Markov law such that (I.42) holds then
all the matrices (Nx, x ∈ Eκ) possess the same main eigenvalue λ.
In case of existence of a positive recurrent Markov kernel M solving (I.42), M is unique and is
characterized together with its invariant distribution ρ by

ρaMa,b =
La,bra
λ3

. (I.47)

Key idea.
Here we use the cyclic structure of ν to discover the measure associated to configurations in cycles
of arbitrary length. We conclude the explicit expression for M by taking the limit in the size of
cycles.
Tools: Perron-Frobenius, algebra on cycles.

Remark I.2.5.2
We don’t know if the fact that the matrices (Nx, x ∈ Eκ) possess the same main eigenvalue λ
implies that there exists a Markov kernel M such that (I.42) holds.

An algorithm to compute S3(T):
– search the set of probability measures ν solving (I.43),
– for each element of this set (which is moreover invariant by rotation), check if the corresponding
Nx’s possess the same main eigenvalues λ,
– if yes, compute M using (I.47),
– if this M satisfies (I.42), then add it to the set S3(T).

Another point of view on the uniqueness ofM : The system of equationsMasterM,T
7 , NCycleM,T

n

are linear in the T[a,b|c,d]’s, and linear in the rational fractions of the family

F :=

(
F (a,u,v,d)

(b,c)

:=
Ma,uMu,vMv,d

Ma,bMb,cMc,d

)
a,b,c,d,u,v∈Eκ

, (I.48)

since ZM,T
a,b,c,d has this property. Finding M satisfying MasterM,T

7 ≡ 0 for a given T can be done in

two steps: first, solve the system of linear equations MasterM,T
7 ≡ 0 with the vector F as unknown

variable, and then when F is found, search if there exists a Markov kernel M which satisfies (I.48).
The second step is algebraically the most difficult since (I.48) is a cubic system in M for a given F,
nevertheless, we have:

Theorem I.2.5.3
Given F, there exists at most one positive recurrent Markov kernel M solving (I.48).

Additional note.

We will prove something stronger, namely: for a given sequence
(
F (a,u,v,a)

(b,c)

)
a,b,c,u,v∈Eκ

with d = a,
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there is at most one M satisfying (I.48); this amounts to: the measures (Gibbsian or not) solving
Cycle3 = 0 will suffice to find the candidate Gibbsian measures with kernel M if any.

The proof is provided in Section I.B.

Finding the set of invariant product measures

Let T be given and |Eκ| < +∞. Now we explore some necessary and/or sufficient conditions for
the existence of product measures invariant by T on the line. Define the symmetric version of T by

S[a,b|c,d] = T[a,b|c,d] + T[b,a|d,c].

Theorem I.2.5.4
Let #Eκ < +∞, L = 2 and ρ ∈M(Eκ) with full support.
(i) If the product measure ρZ is invariant by T, then ρZ is also invariant by S.
(ii) The product measure ρZ is invariant by S (or any symmetric JRM S) on the line iff Zρ,S ≡ 0.

Proof. (i) The set of JRM that preserve a given invariant distribution is a cone. Now, the product
measure ρZ is preserved by “space” reversibility: if ρZ is invariant by the JRM T then it is also
invariant by T′ defined by T′[a,b|c,d] = T[b,a|d,c].

(ii) When the product measure ρZ is invariant by S, then NCycleρ,S4 ≡ 0 by Theorem I.2.2.2 which

implies NCycleρ,S4 (a, b, a, b) = 2
(
Zρ,Sa,b + Zρ,Sb,a

)
= 4Zρ,Sa,b = 0 for any a, b ∈ Eκ, and then Zρ,S ≡ 0.

Conversely, if Zρ,T ≡ 0, by all the criteria of Theorem I.2.2.2, the product measure ρZ is invariant
by S on the line.

Hence, to know if there exist some product measures invariant by some given T, one can
proceed as follows:
(a) compute S,
(b) solve the equation Zρ,S ≡ 0 with unknown S (a pretreatment, can consist to replace in Zρ,S,
each occurrence of ρxρy by ρx,y in order to get a linear equation in the vector (ρu,v, (u, v) ∈ E2

κ)).
After that, it remains to check if indeed ρu,v can be written under the the form ρuρv (notice that in

this case ρu =
√
ρ2
u,u).

(c) If (b) provides no solution, then no product measure are invariant under T. If (b) provides some
solutions, they are candidate to be invariant by T, and it remains to check if whether Cycleρ,T3 ≡ 0
or not.

I.2.6 Models in the segment with boundary conditions

In general when one defines a PS on Z or the segment J1, nK, where a special behavior at the
boundary of the domain is forced.

Definition I.2.6.1

A probability measure γn ∈ M
(
E

J1,nK
κ

)
is said to be AI by TJ1,nK on the segment J1, nK if it
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solves the following system:

Sys(J1, nK, γn,TJ1,nK) :=
{
LineJ1,nK,B(x) = 0, for any x ∈ EJ1,nK

κ ,

where for an extra B in the notation denote the presence of a boundary

LineJ1,nK,B(x) =
∑

w∈EJ1,nK
κ

γn(w)T
J1,nK
[w|x] − γn(x)T

J1,nK
[x|w] ,

Recalling that T[w|z] is the induced jump rate on an interval defined in (I.8), we define TJ1,nK as
the sum of this induced jump rate to which we add some boundary effects at the left and at the
right of the segment given by some jump rate matrices β` and βr with range L− 1:

T
J1,nK
[w|z] = T[w|z]

+ β` [wJ1, L− 1K, zJ1, L− 1K] 1wj=zj ,∀j∈JL,nK

+ βr [wJn− (L− 2), nK, xJn− (L− 2), nK] 1wj=zj ,∀j∈J1,n−(L−1)K.

We go on focusing on AI Markov law here. Take again M a Markov kernel with positive entries,
and ρ its invariant distribution. Define

NLineM,B(xJ1, nK) := LineM,B(xJ1, nK)/(ρx1

n−1∏
i=1

Mxi,xi+1)

where ρ is the unique element of M(Eκ) such that ρM = ρ. For n ≥ 3, a simple computation
shows (see if needed the forthcoming Section I.5.1), that NLineM,B

n (xJ1, nK) =

n−2∑
j=2

ZxJj−1,j+2K

−βout,`x1
− Tout

[x1,x2] +
∑
u1,u2

ρu1Mu1,u2Mu2,x3

ρx1Mx1,x2Mx2,x3

(
T[u1,u2|x1,x2] + β`u1,x1

1u2=x2

)
−βout,rxn − Tout

[xn−1,xn] +
∑

un−1,un

Mxn−2,un−1Mun−1,un

Mxn−2,xn−1Mxn−1,xn

(T[un−1,un|xn−1,xn] + 1un−1=xn−1β
r
un,xn).

Theorem I.2.6.2
Let Eκ be finite, L = 2 and M be a Markov kernel with positive entries on Eκ. If for some
n0 ≥ 7 the (ρ,M)-Markov law is invariant by (βr, β`,T) on J1, nK for n = n0 and for n = n0 +1,
then:

� the (ρ,M)-Markov law is invariant by T on the line,

� the (ρ,M)-Markov law is invariant by (βr, β`,T) on J1, nK for any n ≥ n0.

Key idea.
This is again a consequence of the increments in the invariance equations.

Proof. To prove the first point: By Theorem I.2.1.2, it suffices to prove that MasterM,T
7 ≡ 0. So

assume that NLineM,B
n0+1 ≡ 0 and NLineM,B

n0
≡ 0, and observe that for any x ∈ En0+1

κ ,

NLineM,B
n0+1(x)− NLineM,B

n0
(x{4}) = MasterM,T

7 (x(J1, 7K)), (I.49)
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(the boundary terms cancel out) Now, to prove the second point, it suffices to observe that (I.49)
still holds if one replaces n0 by a larger integer, so that one can infer from the nullity of NLineM,B

n0+1

and NLineM,B
n0

the nullity of MasterM,T
7 , and after that of all NLineM,B

n for n ≥ n0.

Theorem I.2.6.3
Let Eκ be finite, L = 2 and M be a Markov kernel with positive entries on Eκ. If the (ρ,M)-
Markov law is invariant by T on the line, then there exist two vectors βr and β` such that the
(ρ,M)-Markov law is invariant by (βr, β`,T) on J1, NK, for any N ≥ 1.

Key idea.
Invariance on the line gives a natural flow equilibrium of creation and destruction on the segment
in such a way that some consistent parameters can be found in the boundary to preserve the
invariance.

Proof. Suppose that a (ρ,M)-Markov law is invariant by T on the line. The key point in the
proof if that, if (X0, · · · , Xn+1) has the (ρ,M)-Markov law under its invariant distribution, then
(X1, · · · , Xn) has also the (ρ,M)-Markov law under its invariant distribution. Hence, it is possible
to build explicitly β` and βr in such a way they emulate the exterior effects of the segment J1, NK.
It suffices then to take simply{

β`z,a =
(∑

u,v ρuMu,zT[u,z|v,a]

)
/ρz

βrxn,a =
∑

v,b T[xn,v|a,b]Mxn,b.

Remark I.2.6.4
What is done in this section is a bit related to the matrix ansatz used by Derrida & al. [32] in
order to find and describe the invariant distribution µn of the TASEP on a segment J1, nK, in the
sense that it relies on a telescopic scheme.

I.3 Extension to larger range, memory, dimension, etc.

I.3.1 Extension of Theorem I.2.1.2 to larger range and memory

The case L > 2 can be treated as the case L = 2 has been treated, with some adjustments.
Also the case of AI Markov law with memory m > 1 can be managed. We discuss both extensions
simultaneously here. A first change concerns the “7” which played a special role in Theorem I.2.1.2
which will be replaced by

h = 4m+ 2L− 1. (I.50)

As usual, a Markov chain with Markov kernel M and memory m ≥ 0, is a process (Xk, k ≥ k0) (for
some k0) whose distribution is characterized by

P (Xj = xj | (Xj−i = xj−i, i ≥ 1)) = MxJj−m,jK,

for j −m ≥ k0, and an initial distribution µ ∈M(Emκ ), the distribution µ of (Xk0 , · · · , Xk0+m−1).
The Markov kernel M is a matrix with size κm × κ with non negative entries, such that, for any
x ∈ Emκ ,

∑
y∈EκMxy = 1. We call such a Markov kernel, a Markov kernel with memory m.
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We let Lineρ,M,T
n (xJ1, nK) be the equation LineZ(xJ1, nK, ν) where ν is the M -Markov law with

memory m and JRM T (we may use the same notation as before, since in the case (L,m) = (2, 1)
we recover the same definition as before). The equation Lineρ,M,T

n (xJ1, nK) = 0 rewrites:

0 =
∑

w∈EJ−(L−1),n+L−1K
κ

n∑
j=−L+2

1wk=xk,k∈J1,nK\Jj,j+L−1K

∑
u∈ELκ

µG(w,u,j)T[u|xJj,j+L−1K]

−
∑

w∈EJ−(L−1),n+L−1K
κ

n∑
j=−L+2

Tout
[wJj,j+L−1K]µ(w)1wJ1,nK=xJ1,nK,

for G(w, u, j) being the word w in which wJj, j + L− 1K has been replaced by u:

G[w, u, j] = wJ−(L− 1), j − 1KuwJj + L, n+ L− 1K,

µ(wJ1, NK) = ρwJ1,mK

N−m∏
j=1

MwJj,j+mK

and where ρ is the invariant distribution of the Markov kernel M .

Remark I.3.1.1
Mimicking what has been done in (I.17), and explained below we may write a variant of this
formula, by summing on w with index set enlarged, by taking w ∈ EJ−q,n+L−1K

κ with q = L−1+m
(and summing on these words), keeping unchanged the sum on j, in such a way that in the
representation of µ(w) there are no intersection of indices between those involved in ρ and in T.

We also extend the definition of NLineρ,M,T to the present case,:

NLineρ,M,T
n (xJ1, nK) =:

Lineρ,M,T(xJ1, nK)∏n−m
j=1 MxJj,m+jK

. (I.51)

The quantity which plays the role of Z in these settings is:

ZaJ1,mK,bJ1,LK,cJ1,mK =
∑

uJ1,LK∈ELκ

T[uJ1,LK|bJ1,LK]

m+L∏
j=1

Mw′Jj,j+mK

MwJj,j+mK
− Tout

[bJ1,LK], (I.52)

where Tout
[uJ1,LK] =

∑
vJ1,LK∈ELκ T[uJ1,LK|vJ1,LK] and{

w = aJ1,mK bJ1, LK cJ1,mK,
w′ = aJ1,mKuJ1, LK cJ1,mK.

The quantity which will play the role of “4” as in (I.23) is

s = 2m+ L = (h + 1)/2.

We extend the definition of NCyclen for n ≥ m+ 1:

NCycleM,T
n (xJ1, nK) =

∑
w∈SubZ/nZs (xJ1,nK)

Zw;
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for any x ∈ Eh
κ and y ∈ Eκ, extend MasterM,T and ReplaceM,T by:

MasterM,T
h (x) =

∑
w∈Seqs(x)

Zw −
∑

w∈Seqs(x{s})
Zw,

ReplaceM,T
h (x; y) =

∑
w∈Seqs(x)

Zw −
∑

w∈Seqs(xJ1,s−1K y xJs+1,hK)

Zw.

In words, the second sum ranges on the subwords of size s of w with the central letter removed in
the case of MasterM,T and changed in the case of ReplaceM,T. For (L,m) = (2, 1) we recover the
standard definition of MasterM,T

7 and ReplaceM,T
7 . Here is the main result of this section:

Theorem I.3.1.2
Let Eκ be finite and L ≥ 2. If M > 0 with memory m ∈ N ∪ {0} then the following statements
are equivalent:

(i) (ρ,M) is invariant by T on the line.
(ii) ReplaceM,T

h (aJ1, sK 0s−1; 0) = 0 for all aJ1, sK ∈ Es
κ.

(iii) ReplaceM,T
h ≡ 0.

(iv) MasterM,T
h (aJ1, sK 0s−1) = 0 for all aJ1, sK ∈ Es

κ.

(v) MasterM,T
h ≡ 0.

(vi) NCycleM,T
n ≡ 0 for all n ≥ m+ L.

(vii) NCycleM,T
h ≡ 0.

(viii) NCycleM,T
h (aJ1, sK 0s−1) = 0 for all aJ1, sK ∈ Es

κ.

(ix) There exists a function Wm,L : Es−1
κ → R such that ZM,T

aJ1,sK = Wm,L(aJ1, s− 1K) −
Wm,L(aJ2, sK).

Remark I.3.1.3
The constraint n ≥ m+ L in (vi) comes from the fact that, if n < m+ L, the cyclic structure
imposes the repetition of some letters in the product of M ’s inside Cycle. This fact is reflected
in Theorem I.2.1.2 (vi) and Theorem I.2.2.2 (vi), where a product measure is seen as a Markov
law with memory m = 0.

Remark I.3.1.4
(a) A given PS may be represented in several different ways using different JRM: the PS with

jump rate T[0|1] = T[1|0] = 1 with range 1, can be represented using as JRM T[a,b|1−a,b] =
T[a,b|a,1−b] = 1/2 for any a 6= b, a, b ∈ {0, 1} instead, on the line and on any Z/nZ for
n ≥ 2. In Theorem I.3.1.2, we do not assume that the smallest possible range has been
used, but there is a price to pay to use a representation with JRM with a non minimal range
since the equations provided by Theorem I.3.1.2 are more numerous, and have a larger
degree in M .

(b) The previous point may lead to think that it could be a good idea to represent any PS with
a JRM with range 2, which is always possible, by changing the alphabet: if T has range
L > 2, then by taking the map which sends the set of configurations EZ

κ onto AZ where
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the alphabet A = EL−1
κ by sending η ∈ EZκ on to (η′j , j ∈ Z) where

η′j = [ηj+x, 1 ≤ x ≤ L− 1],

that is by rewriting η as a sequence of overlapping subwords on size L − 1, then one can
express on this new space the JRM thanks to a jump rate of range 2. However, since
our theorem allows to characterize the invariant Markov law with some fixed memory m,
with full support they are not suitable to characterize invariant Markov law for η′ (since
consecutive states η′j and η′j+1 must be consistent, that is the suffix of η′j must coincide
with the prefix of η′j+1).

The proof of Theorem I.3.1.2 is a bit more complex that that of Theorem I.2.1.2 (Section I.C).

Equivalence between NCycleM,T
n ≡ 0 for small n’s and invariant of a M-Markov law on the

line. Theorem I.2.1.2 which states that CycleM,T
n ≡ 0 for any n is equivalent to MasterM,T

7 ≡ 0 is
valid only when L = 2 and m = 1, but the fact that NCycleM,T

n ≡ 0 for every “small n” is equivalent
to the invariance of the M -Markov law on the line, is true in all generality, and can be proved using
arguments that are interesting by their own:

Theorem I.3.1.5
Let κ < +∞, L < +∞. For a Markov kernel M with memory m and positive entries to be
invariant by T, it is necessary and sufficient that NCycleM,T

n ≡ 0 for any n ≤ κm.

Key idea.
We use that the alphabet is finite to show by the pigeonhole principle that any configuration of
length bigger than κm has a repeated pattern and then it is close to a Cycle equation plus some
small order term that we show to be zero.
Tools: Pigeonhole principle, total variation distance.

The proof is given in Section I.D.

I.3.2 The case Eκ = N (that is κ =∞)

Here we will consider Markov kernels with positive entries (the case with possibly zero entries is
discussed in Section I.3.4). The main problem in the case κ = +∞ is that the sums defining Line are
now infinite series and therefore some conditions need to be satisfied in order to rearrange terms as
done in the proofs, for example, to write Z. The first problems come from the infinitesimal generator
(see (I.4)) which may fail to have an interesting domain, in other words, in general, it does not define
a Markov process. But even if we jump directly to the AI considerations a second problem arise: it is
no more clear that Lineρ,M,T

n ≡ 0 and NLineρ,M,T
n ≡ 0 are equivalent. The series appearing in both

members of (I.17) are composed with positive terms. It is necessary and sufficient that each of them
converges for Line to be well defined. If each of them converges, Fubini’s theorem ensures that we
can rearrange globally their terms as wished. Hence, we have under this condition(

Lineρ,M,T ≡ 0
)
⇒
(
NLineρ,M,T ≡ 0

)
. (I.53)
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The problem is that it is often the converse which is needed, since all criteria we gave rely on Master,
NLine, NCycle. When #Eκ < +∞,(

NLineρ,M,T ≡ 0
)
⇒
(
Lineρ,M,T ≡ 0

)
, (I.54)

but, when κ is infinite, when a pair (M,T ) solving NLineρ,M,T ≡ 0 is found, (I.54) must be checked.

The following proposition gives a sufficient condition for the validity of both (I.54) and (I.53).

Proposition I.3.2.1
Assume that κ ∈ N ∪ {+∞}, and M is a Markov kernel with positive entries. If{

C1 := supa,b,c,d∈Eκ
∑

u,v∈Eκ
Ma,uMu,vMv,d

Ma,bMb,cMc,d
T[u,v|b,c] <∞

C2 := supb,c∈Eκ T
out
[b,c] <∞,

then NLinen and Linen as defined in (I.10) and (I.19) are well defined, and satisfy (I.18), and
then (I.53) and (I.54) are satisfied.

Proof. Following the discussion above, we verify that under the hypothesis above, the series arising
in each term of (I.17) are absolutely convergent. For this notice that it suffices to replace the sign
“minus” by "plus" in (I.17) and to bound it by

≤ (n+ 1)(C1 + C2)ρx1

n−1∏
k=1

Mxk,xk+1
.

Hence, if C1 and C2 are finite, the sums in Lineρ,M,T are well defined and can be rearranged.

In the same way, the positive and negative contributions in (I.19) can be separated and each of
them converge absolutely. The conclusion follows.

Theorem I.3.2.2
Assume that κ ∈ N ∪ {+∞}. If the three following conditions holds:
� (I.53) and (I.54) hold,
� M has positive entries,
� M is positive recurrent,
then the conclusion of Theorem I.2.1.2 holds.

Proof. The positive recurrence ensures that the Markov kernel M admit an invariant distribution ρ
with full support, from what the proof of Theorem I.2.1.2 can be proved as in the finite case.

Remark I.3.2.3
The additional assumption of positive recurrence is a natural condition for several reasons. The
first one is, in the definition of Lineρ,M,T, the need of an initial distribution for the Markov chain.
When several invariant distributions for M exist (or if none exists), everything is more complex,
as discussed in Section I.3.4.

One way to see the appearance of multiple AI Markov laws is to consider two continuous-time
Markov processes Xt and Y t respectively on AZ, and BZ with A∩B = ∅. With them, one may
construct a continuous-time Markov process Zt which coincides with Xt and Y t if the starting
configurations are in AZ, and BZ, respectively by defining:
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• for u ∈ A2, Tv[Z|u] = Tv[X|u] for v ∈ A
2, and 0 if v /∈ A2

• for u ∈ B2, Tv[Z|u] = Tv[Y |u] for v ∈ B
2, and 0 if v /∈ B2

• and if u is not in A2∪B2, choose any value for T(v1,v2)
[Z|u1,u2]. In this case, the set of configurations

AZ and BZ do not communicate; if both Xt and Y t possess a AI Markov law, then Zt possess
several invariant Markov laws, including those that are mixture of these. Theorem I.2.1.2 and all
its criteria do not allow to characterize this kind of invariant measures.

I.3.3 Invariant product measures with a partial support in Eκ.

We discuss here an iff criterion to show the invariance distribution of a product measures νZ with
support S strictly included in Eκ. The idea to get some criteria is just to discard the set Eκ \ S
which should not be reachable from S if an invariant distribution with support S exists:

Consider T a JRM on Eκ, and let S be a strict (non empty) subset of Eκ and ν a measure with
support S. Assume that for any u, v, a, b ∈ S(

νuνv > 0,T[u,v|a,b] > 0
)
⇒ νaνb > 0 (I.55)

and interpret this condition as: if the word w′ is obtained from the word w ∈ SZ by a jump with
positive rate, then w′ must be in the support of νZ. This implies that the restriction T′ of T to S
defined by

T′[a,b|c,d] = T[a,b|c,d] for a, b, c, d ∈ S

has the following property: the PS on EZ
κ (resp. SZ) with JRM T (resp. T′) coincide if starting

from a measure ν with support in S. The following theorem is a direct consequence of this fact:

Theorem I.3.3.1
Let |Eκ| < +∞. A product measure νZ with support S = Supp(ν) ⊂ Eκ is invariant by T on
the line, for T a JRM on Eκ iff (I.55) holds as well as any of the equivalent conditions listed in
Theorem I.2.2.2 holds within S.

I.3.4 Invariant Markov distributions with MK having some zero entries.

In Theorem I.3.3.1 is discussed the invariance of a product measure which has a partial support
in Eκ, and in fact, our criteria apply to this situation up to a simple restriction of the state space.

The same kind of conditions can be imagined for aM -Markov law satisfyingMi,j > 0 for i, j ∈ S,
and such that for any i ∈ S,

∑
j∈SMi,j = 1, meaning that the states in S just communicate with

other states in S. If
∀a, b ∈ S,T[a,b|u,v] > 0⇒ u, v ∈ S,

then, the JRM T can be restricted to S. Denoting by T′ this restriction, the criteria we have
(Theorem I.2.1.2) allows to decide if the M -Markov law is invariant by T′ on SZ. Under these
conditions, everything is then somehow trivial, since SZ is close under the action of the jumps with
positive rate.
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The general case is much more complicated!
Consider a general Markov kernel M = (Mi,j)i,j∈Eκ . Consider the directed graph G = (Eκ, E)
whose vertex set is the alphabet Eκ and the edge set is E = {(i, j) : Mi,j > 0} . Consider the
strongly connected components (Cj , j ∈ J) of this graph, where J is a set of indices. Starting from
any point v ∈ Eκ, the Markov chain (Xn, n ≥ 0) with kernel M will eventually reach one of these
strongly connected components Cj and will stay inside a.s., forever. The invariant distributions of
M naturally decomposes as a mixture of the invariant distributions ρ(j), where ρ(k) is the invariant
distribution of M on Ck.

The strongly connected components do not communicate, then, one may partition the vertex sets
Eκ along these connected components. The Markov chain on each of this connected component
is irreducible and can be treated separately: the fact that one of them is invariant by T does not
interfere with the fact that the “other sub-Markov chains” have the same property or not.

The property of being irreducible does not mean that E is the complete graph and some Mi,j ’s
can still be 0 in this case. It may also happen that M is periodic, meaning that again, it may exist
several invariant distributions with the Markov kernel M (for example, equal up to a translation,
alternating between even and odd states).

Again, the range considered here is L = 2, and some adjustments need to be made in the next
considerations if L > 2. Consider an irreducible Markov chain (Xn, n ≥ 0) with kernel M . Its
invariant distribution has full support on Eκ. Let

Suppn =

xJ1, nK ∈ Enκ : ρx1

n−1∏
j=1

Mxj ,xj+1 > 0

 .

be the support of the distribution of n consecutive positions of this Markov chain. A necessary
condition for the (ρ,M)-Markov law to be invariant by T on the line is the following local preservation
condition (LPC):

if (a, b, c, d) ∈ Supp4 and if T[b,c|u,v] > 0 then (a, u, v, d) ∈ Supp4.

If xJ1, nK belongs to Suppn then all its subwords xJm,m + 3K with 4 letters are in Supp4. As-
sume that T possesses the LPC, then the (ρ,M)-Markov law is AI by T if for any xJ1, nK ∈
SuppMn , Lineρ,M,T(xJ1, nK) = 0. Under the LPC, we may still pass from Lineρ,M,T(xJ1, nK) to
NLineρ,M,T(xJ1, nK) by dividing by

∏n−1
i=1 Mxi,xi+1 as far as xJ1, nK ∈ SuppMn . Besides, ZM,T

a,b,c,d is
still well defined for (a, b, c, d) ∈ Supp4.

Now, solving NLineρ,M,T
n ≡ 0 cannot at all be done according to the same lines as before,

since one cannot compare simply NLineρ,M,T
n (x[n]) with NLineρ,M,T

n (x[n]{k}) (with a suppressed
letter) simply, since x[n] ∈ Suppn 6⇒ x[n]{k} ∈ Suppn−1.

It turns out that for a general JRM T, the support of an (algebraic) invariant distribution possesses
its own combinatorial structure, which may be really complex.
Indeed T may have some combinatorial properties with a flavor reminiscent to group theory: it
is possible to design some JRM T which preserves several non communicating subsets of EZ

κ , for
example the subset of words w = (wi, i ≥ Z) satisfying wi + wi+1 ∈ 17Z ∪ 19Z for all i’s (such a
property holds for any JRM T satisfying : for any (x, y) such that x+ y ∈ 17Z ∪ 19Z, T[x,y|x′,y′] >
0 ⇒ x′ + y′ ∈ 17Z ∪ 19Z. It is also possible to imagine and design invariant Markov laws with a
much more complex support. In any case, the characterization of the set of pairs (M,T) such that
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a M -Markov law is invariant is quite complex, and all the tools we used to prove Theorem I.2.1.2
fail. In few words, this happens because it is no longer possible to compare the balance for two close
words: for instance, the word obtained from the removal of a letter of a word in the support may not
belong to it – and the number of letters to remove in order to go back to the support is a parameter
of the system, and of the initial word; it is in general not constant, and unbounded.

I.3.5 Matrix ansatz

The matrix ansatz is a clever method used by Derrida & al. [32] in order to find and describe the
invariant distribution µn of TASEP on a segment J1, nK. The matrix ansatz is now widely used (see
Blythe and Evans for a survey [15], Crampe & al. [29], and Corteel & al. [27] for its use in relation
with combinatorial enumeration) : under some conditions on T (details are given below) it allows to
express the invariant distribution µn with some explicit finite or infinite matrices. We present their
ideas in the following paragraphs, but instead of just focusing on TASEP, we will indicate the most
general settings in which it applies. We propose a presentation slightly different than theirs, in order
to make more apparent what is general, and what is specific. Before starting, we state a (folklore)
representation lemma forM

(
E

J1,nK
κ

)
.

Lemma I.3.5.1

Let n ≥ 1 and κ ∈ N ∪ {+∞}. For any µn ∈ M
(
E

J1,nK
κ

)
, there exists a one-line matrix L, a

one-column matrix R, and some square matrices (Ax, x ∈ Eκ) such that

µn (x) = LAx1 · · ·AxnR, for any x ∈ EJ1,nK
κ . (I.56)

The matrices R,L, (Ax, x ∈ Eκ) can be taken with non negative entries.

Here, and thereafter,
∏n
i=1Axi stands for the matrix product Ax1 · · ·Axn in this order.

Proof. Let XJ1, nK be a process with distribution µn. Write

P(XJ1, nK = xJ1, nK) = P(X1 = x1)

n∏
i=2

P(XJ1, iK = xJ1, iK |XJ1, i− 1K = xJ1, i− 1K)

and then (I.56) holds if one takes:
– L indexed by

⋃
j≥1E

j
κ, L(w) being 1 if |w| = 0, that is at the entry corresponding to the empty

word E , 0 otherwise,
– R indexed by

⋃
j≥1E

j
κ, R(w) being 1 for every word w ∈

⋃
j≥1E

j
κ,

– and if, for each y, the matrix Ay is the matrix Ay(w,w′) indexed by the (all) pairs of words (w,w′)
both with sizes ≤ n such that:
• Ay(w,w′) = 0 if w is not the prefix of w′ with |w′| − 1 letter,
• and for any 1 ≤ i ≤ n, any wJ1, iK ∈ Eiκ,

Ay (wJ1, i− 1K, wJ1, iK) = 1wi=yP(XJ1, iK = wJ1, iK |XJ1, i− 1K = wJ1, i− 1K).

When i = 1, this has to be understood as Ay(E , a) = P(X1 = a), where a is a letter.

From this proof one sees that when #Eκ < +∞, there exists a matrix representation of µn with
finite matrices Ax, L,R, but these matrices can also be chosen independently from n if the µj ’s are
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compatible. In this case the proof provides infinite matrices even if in some cases finite matrices
would do the job (for example, when µn is the distribution of i.i.d. random variables, or a MD): the
representation (I.56) is not unique even at the matrix size level.

Consider a segment J1, nK and a continuous Markov process XtJ1, nK taking its values in EJ1,nK
κ

for which is searched an invariant measure µn. The approach of Derrida & al. (for TASEP) consists
in searching a representation of the invariant measure proportional to

fn(xJ1, nK) = LAx1 · · ·AxnR, (I.57)

which is a “free of charge” assumption as granted by Lemma I.3.5.1, for some matrices L,Ax, R
satisfying some additional constraints. Choosing proportionality instead of exactness is not crucial if
one works at a fixed n – since one may divide L by a constant – but this provides a degree of freedom
to get a relation between µn and µn−1.

Starting from µt=0
n the distribution proportional to fn, write

cn
d

dt
µtn(xJ1, nK) = L

(∑
a

β`[a, x1]Aa −
∑
a

β`[x1, a]Ax1

)
Ax2 · · ·AxnR (I.58)

+

n−1∑
j=1

L
(
Ax1 · · ·Axj−1

)
Oxj ,xj+1

(
Axj+2 · · ·Axn

)
R (I.59)

+ LAx1 · · ·Axn−1

(∑
a

βr[a, xn]Aa −
∑
a

βr[xn, a]Axn

)
R, (I.60)

in which cn is the total mass of fn, and where

Oc,d =
∑
a,b

T[a,b|c,d]AaAb − T[c,d|a,b]AcAd. (I.61)

What has been done here is the commutation of the linear differential operator with the matrix
product. This may fail when the matrices (L,Ax, R) are infinite, but this can be checked at the end,
when some matrices Ak have been found. The invariance of µn is granted by d

dtµ
t
n(xJ1, nK) = 0.

The type of this equation is the following

y` + t1 + · · ·+ tn−1 + yr = 0, (I.62)

where the ti’s, yr and yl are functions and the equality is for all possible entries. Letting si =
s0 + t1 + · · ·+ ti, one has si − si−1 = ti so that (I.62) rewrite

y` − s0 + sn−1 + yr = 0. (I.63)

Hence writing ti under the form of a difference ‘ti = si − si−1” is always possible, totally general,
and is just characterized by the choice of s0.

The idea of Derrida & al. is to search the matrices (Ax) that provides a telescopic scheme “at
the level of the inner sum”, searching solutions (Ax) that satisfies moreover the quadratic equation
(in the coefficients of the Ai’s)

Oc,d = −λcAd + λdAc (I.64)
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since in this case the sum (I.59) reduces to

−λx1fn−1(x2, · · · , xn) + λxnfn−1(x1, · · · , xn−1)

a sufficient condition on (L,Ax, R) for fn to be an invariant measure is simply, in conjunction with
(I.64), {

L
(∑

a β
`[a, x1]Aa −

∑
a β

`[x1, a]Ax1

)
= λx1L

(
∑

a β
r[a, xn]Aa −

∑
a β

r[xn, a]Axn)R = −λxnR.
(I.65)

For TASEP and for every MC for which the uniqueness of the invariant measure is known, it suffices
to find one solution: indeed, all assumptions done so far, restrict the solution space where the solution
is searched, but everything is justified if the solution found satisfies all of them.

Condition (I.65) says that L and R are left and right eigenvectors of several linear combinations
of Ax which is a much restrictive condition. Derrida & al. manage to find (L,Ax, R) satisfying all
these constraints, and then, they characterized the invariant distribution of TASEP.

Following the idea to search necessary and/or sufficient conditions on (L,Ax, R) a more general
sufficient condition on µn to be an invariant distribution is

Oc,d = −BcAd +AcBd
L
(∑

a β
`[a, x1]Aa − β`[x1, a]Ax1

)
= LBx1 ,

(
∑

a β
r[a, xn]Aa − βr[xn, a]Axn)R = −BxnR,

(I.66)

for some matrices (Bx, x ∈ Eκ), whose sizes are compatible with the operations in which these
matrices are involved (this can be checked by computing the remaining terms in the telescopic sum).
When the matrices Bx are numbers, this gives the usual matrix ansatz, but when the matrices B
have size > 1, this is more general since L (or R) does not need to be a common eigenvector to all
the Aj ’s.

We may also design some variants where (L,Axi , R) would be replaced by (Ln, Ai,xi , Rn) since
we do not need these matrices to be the same for all n (the problem is to find the solution, and it
may be easier to work with different matrices (Aj,x) instead of identical matrices (Ax), even if such
a representation is possible by Lemma I.3.5.1).

One of the difficulties of this approach for the one who searches the invariant distribution of a
particular Markov process on the segment, is that the “solution space” is huge, and many different
solutions (L,Ax, R) representing the same measures may exist, which makes more complex the
algebraic approach.

Telescopic scheme for AI MDs. More generally, the telescopic scheme occurs in the segment
equilibrium equations if there exists a family of functions {si : Enκ → R, 0 ≤ i ≤ n− 1} such that

ti(xJ1, nK) :=
∑
a,b

fn(xJ1, i− 1Kab xJi+ 2, nK)T[a,b|xi,xi+1] − fn(xJ1, nK)T[xi,xi+1|a,b]

= −si−1(xJ1, nK) + si(xJ1, nK)

for all i ∈ J1, n− 1K and

yl(xJ1, nK) :=
∑
a

β`[a, x1]fn(axJ2, nK)− β`[x1, a]fn(xJ1, nK), (I.67)
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yr(xJ1, nK) :=
∑
a

βr[a, xn]fn(xJ1, n− 1Ka)− βr[xn, a]fn(xJ1, nK). (I.68)

The functions si’s do not need to coincide with µn−1 in any respect.

Let us refocus on AI MD. Reformulate LineM,T
n ≡ 0 (given in (I.61)) for each n ∈ N

LineM,T
n (xJ1, nK) = ynl (xJ1, nK) +

n−1∑
i=1

tni (xJ1, nK) + ynr (xJ1, nK) (I.69)

for j ∈ J1, n− 1K

ynl (xJ1, nK) :=
∑
x−1,x0

xn+1,xn+2

µ(xJ−1, n+ 2K)ZxJ−1,2K (I.70)

tnj (xJ1, nK) :=
∑
x−1,x0

xn+1,xn+2

µ(xJ−1, n+ 2K)ZxJj−1,j+2K (I.71)

ynr (xJ1, nK) :=
∑
x−1,x0

xn+1,xn+2

µ(xJ−1, n+ 2K)ZxJn−1,n+2K, (I.72)

for µ(xJ−1, n+ 2K) = ρx−1

∏n+1
j=−1Mxj ,xj+1 . The following theorem gives a representation like this

in the case of MDs: to be clear, the various parts of Theorem I.2.1.2 explain that NLineM,T satisfies
a telescopic scheme when the (ρ,M) MD is AI by T on the line. This is clearly the role of MasterM,T

7

to produce the related simplifications. But the matrix ansatz is a telescopic scheme that concerns
Line not NLine, so that there is a difference of nature between the matrix ansatz and the content of
Theorem I.2.1.2.

The next theorem fills this gap by making the desired connection between the two approaches:

Theorem I.3.5.2
If (L,m) = (2, 1), #Eκ < +∞ and M is a MK with positive entries on Eκ. The (ρ,M)
MD is AI by T on the line iff there exists a function W : E3

κ → R so that for all n ∈ N,
(ynl , y

n
r , {snj : Enκ → R, 0 ≤ j ≤ n− 1}) defined by

snj (xJ1, nK) :=
∑
x−1,x0

xn+1,xn+2

µ(xJ−1, n+ 2K) (W (xJj, j + 2K)−W (xJ−1, 1K)) , (I.73)

ynl (xJ1, nK) :=
∑
x−1,x0

xn+1,xn+2

µ(xJ−1, n+ 2K)(W (xJ0, 2K)−W (xJ−1, 1K)), (I.74)

ynr (xJ1, nK) := −
∑
x−1,x0

xn+1,xn+2

µ(xJ−1, n+ 2K)(W (xJn− 1, n+ 1K)−W (xJn, n+ 2K))(I.75)

satisfies (ynl , y
n
r ) = (sn0 ,−snn−1) and tnj (xJ1, nK) = −snj−1(xJ1, nK) + snj (xJ1, nK), 1 ≤ j ≤ n− 1.

Remark I.3.5.3
One can find also a direct link between our approach and the matrix ansatz on the segment.
Using Theorem I.2.6.3 and Theorem I.3.5.2 it can be proved that if a Markov measure is AI on
the segment J1, nK (as defined in Section I.2.6) then it follows a telescopic scheme, and this for
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any n ≥ 1.

The following lemma will be a step of the proof of the theorem:

Lemma I.3.5.4
Consider M > 0 and #Eκ < +∞. If the MD (ρ,M) is AI by T on the line, then for any W
satisfying Theorem I.2.1.2 (ix) there exists a constant α ∈ R such that, for any xn, x1 ∈ Eκ,

αρx1 = ρx1

∑
xn+1,xn+2

Mxn,xn+1Mxn+1,xn+2W (xJn, n+ 2K) (I.76)

=
∑
x−1,x0

ρx−1Mx−1,x0Mx0,x1W (xJ−1, 1K). (I.77)

Proof. Consider (ρ,M) MD AI by T. By Theorem I.2.1.2 (ii) and (vii), NCycleM,T
n ≡ 0 and

NLineM,T
n ≡ 0, hence for any xJ1, nK ∈ Eκ

ρx1NCycle
M,T
n (xJ1, nK)− NLineM,T

n (xJ1, nK) = 0. (I.78)

Using the expansion with the Z’s, it is easily seen that all Z involved, whose parameters does not use
x−1, x0, xn+1, xn+2 in NLineM,T

n (xJ1, nK) are simplified by terms of ρx1NCycle
M,T
n (xJ1, nK). Now fix

any function W satisfying Theorem I.2.1.2 (ix). The remaining contributions in the LHS of (I.78)
coming from ρx1NCycle

M,T
n (xJ1, nK) are

ρx1(ZM,T
xn−2,xn−1,xn,x1

+ ZM,T
xn−1,xn,x1,x2

+ ZM,T
xn,x1,x2,x3

) = ρx1(W (xJ1, 3K)−W (xJn− 2, nK))(I.79)

since ZM,T
a,b,c,d = W (b, c, d)−W (a, b, c). The remaining terms coming from NLineM,T

n (xJ1, nK) are∑
x−1,x0

ρx−1Mx−1,x0Mx0,x1(ZM,T
xJ−1,2K + ZM,T

xJ0,3K) (I.80)

+
∑

xn+1,xn+2

ρx1Mxn,xn+1Mxn+1,xn+2(ZM,T
xJn−1,n+2K + ZM,T

xJn−2,n+1K) (I.81)

= −
∑
x−1,x0

ρx−1Mx−1,x0Mx0,x1W (xJ−1, 1K) + ρx1(W (xJ1, 3K)−W (xJn− 2, nK)) (I.82)

+
∑

xn+1,xn+2

ρx1Mxn,xn+1Mxn+1,xn+2W (xJn, n+ 2K) (I.83)

Gathering everything, we obtain∑
xn+1,xn+2

ρx1Mxn,xn+1Mxn+1,xn+2W (xJn, n+ 2K)−
∑
x−1,x0

ρx−1Mx−1,x0Mx0,x1W (xJ−1, 1K) = 0.(I.84)

This, in turn implies that
∑

xn+1,xn+2
Mxn,xn+1Mxn+1,xn+2W (xJn, n + 2K) does not depend on xn,

thus it is a constant, from what we get the result.

Proof of Theorem I.3.5.2. Assume that (ρ,M) is AI by T on the line. Take one fixed W given by
Theorem I.2.1.2 (ix) and define sni as in (I.73) which will take the place of si. For j ∈ J1, n − 1K
satisfies

tni (J1, nK) =
∑
x−1,x0

xn+1,xn+2

µ(xJ−1, n+ 2K)(W (xJj, j + 2K)−W (xJj − 1, j + 1K)) (I.85)
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= −snj−1(xJ1, nK) + snj (xJ1, nK). (I.86)

In the left boundary notice that

yl =
∑
x−1,x0

xn+1,xn+2

µ(xJ−1, n+ 2K)(W (xJ0, 2K)−W (xJ−1, 1K)) = s0. (I.87)

Recall that ρ = ρM for all b ∈ Eκ and that
∑

b∈EκMa,b = 1 for all a ∈ Eκ. Multiplying by∏n−1
k=1 Mxk,xk+1

in Lemma I.3.5.4 and replace by µ(xJ−1, n+ 2K) we get that∑
x−1,x0

xn+1,xn+2

µ(xJ−1, n+ 2K)WxJ−1,1K =
∑
x−1,x0

xn+1,xn+2

µ(xJ−1, n+ 2K)W (xJn, n+ 2K) (I.88)

therefore the right boundary term satisfies that

yr = −
∑
x−1,x0

xn+1,xn+2

µ(xJ−1, n+ 2K)(W (xJn− 1, n+ 1K)−W (xJn, n+ 2K)) = −sn−1. (I.89)

Conversely, for n large enough and i = bn/2c, for all xJ1, nK ∈ Enκ ,

ZM,T
xJi,i+3K =

tni (xJ1, nK)
µ(xJ1, nK)

=
sni (xJ1, nK)− sni−1(xJ1, nK)

fn(xJ1, nK)
= W (xJi+ 1, i+ 3K)−W (xJi, i+ 2K),(I.90)

and then (ρ,M) is AI by T on the line by Theorem I.2.1.2 (ix).

I.4 Applications

I.4.1 Explicit computation : Gröbner basis

In this subsection we generalize and revisit some well known models using our theorems. Before
that, we would like to discuss a bit the “explicit” resolution of systems of algebraic equations.

First, the simplest systems of equations are linear systems: they are systems of polynomial
equations of degree 1 in some unknown variables (x1, ..., xn), with some coefficients in R or, possibly,
with coefficients being some functions of some parameters (y1, · · · , yn). Such systems can be solved
using linear algebra. If some parameters (yi) are present, then the study is in general much more
complicated: typically, even the dimension of the set of solutions can vary when the parameters
change.

To solve these systems a computer algebra system can be used: only simple operations as multi-
plications, additions are needed: if the coefficients are integers, or for examples, polynomials in the
yi’s with integer coefficients, the results obtained are exact.

For polynomial system with only one unknown x, of the form Sys = {Pi(x) = 0, 1 ≤ i ≤ k},
the first step is the computation of the gcd G of these polynomials (using Euclidean algorithm): x is
solution to the system Sys if and only if G(x) = 0. Assuming that the Pi are not all 0 (in which case
the question is trivial, but what follows does not work) if G is a constant, then Sys has no solution,
and if G is a polynomial with degree bigger or equal than 1, then the solutions of Sys is the set of

68 Luis Fredes



I. Invariant measures of discrete interacting particle systems

roots of G, which exists in C by d’Alembert-Gauss theorem. Finding explicit solutions can be done
by numerical approximations, and in some cases, explicit exact solutions can be found; in any case,
the set of solutions of Sys is implicitly known by G(x) = 0.

Here the situation we face is more complex: Take for example MasterM,T
7 ≡ 0 in the case where

Eκ is finite. This system is linear in T and involves quotient of cubic monomials in the M ′i,js. We
can transform this system into a polynomial systems in several variables as follows: A pair (M,T)

solves the system S = {CycleM,T
7 ≡ 0,M > 0} iff it solved the following system of polynomial

equations

S′ :=

 CycleM,T
7 (xJ1, 7K) = 0 ,∀xJ1, 7K ∈ E7

κ,
Ma,bga,b − 1 = 0 ,∀(a, b) ∈ E2

κ

−1 +
∑

b∈EκMa,b = 0 ,∀a ∈ Ek
,

where the ga,b are additional variables which prevent the Ma,b’s to be 0.

Equivalence of systems means here that (M,T) is solves S iff there exists g such that (M,T, g)
solves S′, and M > 0. Any M such that (M,T, g) solves S′ has non zero entries, but could have
some negative ones, or even complex ones: it depends how/where the system is solved.

We then need to solve polynomial systems in several variables. In this case again, we cannot
expect a better situation than for polynomial systems of a single variable: in general no closed
formulas exist for solutions, but again, it is possible to know if solutions exist, and in this case, find
some minimal representations of the solution set (if T is given, the problem is almost the same).

A common way to solve this kind of problems amounts to computing a Gröbner basis: given a
finite set of polynomials S = {Pi, i ∈ I} where the Pi’s belong to R[x1, ..., xn], a Gröbner basis
of S is a basis of the ideal generated by S which have some additional properties. It depends on a
good monomial order (preserved by multiplications, if x(α) < x(β) then x(α)x(γ) < x(β)x(γ) where
x(α) =

∏
i x

αi
i for α = (α1, . . . , αn)). We cannot go too far in the description of the Gröbner

basis properties, or to explain how they are computed: we refer the interested reader to Adams and
Loustaunau [2] to get an overview and to Jean-Charles Faugère webpage [46] for many resources on
this topic, including fast algorithms.

In order to be understandable to the reader unaware of these methods, we will just stress on the
following fact:
� Computation of Gröbner basis for polynomials with integer coefficients relies on simple elementary
operations as Euclidean division of polynomials, sorting of polynomials according to their coeffi-
cients/and or degrees and then can be performed by a computer algebra system working on integers
(and then it is decidable).
� When the basis B has been computed, the basis is a finite sequence of polynomials, equivalent to
the initial system S.

– if the Gröbner basis is G = [1] then there are no solution to the initial system (whatever is the
order used),

– if it is not G = [1] then there are some solutions to the initial system in C: some extra work
could be needed to see if there are some solutions in R, R+ or [0, 1]n if these are some additional
requirements,

– since B is a basis of the ideal generated by S, each polynomial p in B is a necessary condi-
tion on the solution set. Hence if a Gröbner basis contains a polynomial, for example (2x1 + x7 −
9)(3x7 − 8x17

9 + 1) for a system {Pi, 1 ≤ i ≤ k} in the variables x1, · · · , x100: then they are some
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solutions to the system in C100, and each solution (x1, · · · , x100) satisfies either 2x1 + x7 − 9 = 0
or 3x7 − 8x17

9 + 1 = 0 (inclusive “or” of course).
� Computing a Gröbner basis is time and memory consuming, so computing a Gröbner basis is
sometimes impossible in practice by hand, and even by computer.

� There are different notions of Gröbner basis as said above, since they rely on a (good) order
on monomials; this order is also needed to define the Euclidean division in the set of polynomials
in several variables. Each order leads to a specific representation of the ideal. For example, if
P1 = x2 + y2 − z2 − 3, P2 = x2 + 2y2 − 4, P3 = y2 + 3z2 − x − 2, the computation of the
Gröbner basis relative to the graded reverse lexicographical order gives as a basis G = [2z2 − x −
1, 2y2 + x − 1, x2 − x − 3]. If alternatively, the lexicographical order (plex) is chosen, the basis is
G = [4z4− 6z2− 1, y2 + z2− 1,−2z2 +x+ 1]. Both results ensure the existence of solutions in C3.
It is somehow trivial in this case that solution exists if we take as granted the equivalence to solve
the initial system {P1 = 0, P2 = 0, P3 = 0} and (one of) the system(s) G. If we add the polynomial
P4 = xz − y2 + 2, then this time (any) Gröbner basis is G = [1]: there are no solutions. What
happens here is different from the “linear algebra settings”: the number of polynomials in the Gröbner
basis depends on the order chosen, and often, the basis is huge, containing many more polynomials
than the initial system.

Until now, our main theorems assert that “a M -Markov law” is invariant by a PS with JRM T
can be reduced to checking if a polynomial system in (M,T) has some solutions. The message here
is that checking the existence of a M that solves for example CycleM,T

5 = 0 when M is fixed, is
possible at the price of computing a Gröbner basis. If the Gröbner basis is G = [1] there are no
solutions. If G is not [1], it will be a list of polynomials in the variables M and T simpler than the
initial problem (the order plex allows to obtain a kind of triangular system in which a well chosen
order of the variables make apparent the conditions on T, for example). Again, a work still remains
to be done to check that real solutions exist.

When a solution (M,T) has been found by this mean, an independent proof of the invariance of
the Markov chain with kernel M by T can be done by checking directly – without using a Gröbner
basis computation – that CycleM,T

7 ≡ 0.

Remark I.4.1.1
There are some good reasons to be confident on the Gröbner basis computations with computer
algebra systems which rely on simple computations on integers and which are used by many
users, for many reasons including cryptography motivations, but for the reader which prefers to
stay away from this kind of automatic tools, we insist on the fact that these computations can
be done by hands (and patience).

To follow in details the following examples, the reader can download in [49] a maple-file or a pdf
file, where all the computations are done.

Stochastic Ising models

The stochastic Ising model (given below Def. I.1.1.1) possesses a unique Markovian invariant
measure on the line with kernel M characterized by

M0,1 =
1

1 + e2β
and M1,1 =

1

1 + e−2β
= M0,0. (I.91)

When β = 0, this is the Bernoulli(1/2) product measure ([84, Introduction]).
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Let us see how to recover this with our approach. Since M and T are given. By Theorem I.3.1.2,
since m = 1, κ = 2, and the range is L = 3, it suffices to check that CycleM,T

9 ≡ 0. Plug the values
of M and of T (given in (I.91) and in (I.5)) in the corresponding Z (which is found in (I.52)). Here
Z has 5 indices, and then 32 values Za,b,c,d,e need to be computed: one finds that these 32 values
are all zeroes! As a consequence CycleM,T

9 ≡ 0.

Assume now, that the existence of an invariant Markov law is unknown for this PS. Let us see
how to recover this property. Again, since the range is L = 3, we need to find a M , for which
CycleM,T

9 (a, b, c, d, e, 0, 0, 0, 0) = 0 for all a, b, c, d, e ∈ E2 as specified by Theorem I.3.1.2. First, we
make rid of the “exponential function” in T by a change of variables and a deterministic linear change
of time (the computation of a Gröbner basis must be done in a polynomial ring). To do this, we set
x = e−β and use T̄ = x2T instead of T, since this does not alter the set of invariant distributions.
We obtain

T̄[a,b,c | a,1−b,c] = x2T[a,b,c|a,1−b,c] = x2+(2b−1)(2a+2c−2).

We also add the polynomials Ma,bga,b− 1 in the basis computation (this prevents each Ma,b to be 0,
as explained in section I.4.1) and for simplicity we imposedMi,0 = 1−Mi,1 for all i ∈ E2. Then with
a computer algebra system, compute the Gröbner basis: this is immediate, and two solutions appear,
one of them being negative. The unique positive solution (after inverting the change of variable) is
given in (I.91).

The voter model and some variants

Consider the JRM T of the voter model: T is not identically 0 and besides, the voter model
possesses 0n and 1n as absorbing states on Z/nZ (and this can be generalized if more “opinions” are
represented). The following corollary is an immediate consequence of Theorem I.2.1.5.

Corollary I.4.1.2
The only invariant Markov distributions for the voter model (or in the generalized model with κ
opinions) are the mixtures on the Dirac measures on an opinion δjZ for j ∈ Eκ.

To our knowledge this theorem is so far not known. Let us now consider some variants of the voter
model and the existence or not of invariant Markov law for them. Consider a JRM T in which
all the entries of T are taken equal to 0 except for T[a,b,c|a,b′,c] for b′ 6= b, b′ ∈ {a, c}: In words,
this is the voter model in which the rate at which an individual change his minds is a function of
its own opinion and of those of its neighbours. A Gröbner basis for the sequence of polynomials
{Ma,bga,b − 1, a, b ∈ {0, 1},CycleM,T

9 (a, b, c, d, e, 0, 0, 0, 0) ≡ 0} gives

T[1,0,1|1,1,1], T[0,1,0|0,0,0], g1,0g1,1 − g1,0 − g1,1, g0,0g0,1 − g0,0 − g0,1,

M1,1g1,1 − 1, g1,0M1,1 − g1,0 + 1,M0,1g0,1 − 1, M0,1g0,0 − g0,0 + 1,

−M1,1T[0,1,1|0,0,1]g0,0 −M1,1T[1,1,0|1,0,0]g0,0 + T[0,0,1|0,1,1] + T[1,0,0|1,1,0]

Hence if a M -Markov law with positive-entries Markov kernel M is invariant then

T[0,1,0|0,0,0] = T[1,0,1|1,1,1] = 0 (I.92)

(which then excludes the original voter model). From here if we replace ga,b = 1/Ma,b in the basis
and look at the remaining equations, apart those corresponding to Mi,0 +Mi,1 = 1 and to the non
nullity of the Ma,b’s, hen it only remains:

M0,0(T[0,0,1|0,1,1] + T[1,0,0|1,1,0])−M1,1(T[0,1,1|0,0,1] + T[1,1,0|1,0,0]) (I.93)
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whose nullity is the only constraint (together with (I.92)) for the Markov law with positive-entries
kernel M to be invariant by T on the line (since M0,0/M1,1 can take any value in (0,+∞), this is
a trivial system to solve from here: there is a Markov law invariant by this dynamic on the line iff
T[0,1,1|0,0,1] + T[1,1,0|1,0,0] and T[0,0,1|0,1,1] + T[1,0,0|1,1,0] are both positive (or both 0, in which case
all Markov laws are invariant).

The contact process and some extensions

The Dirac measure on 0Z is invariant for the contact process. Another invariant distribution exists
for λ large enough with no atom at 0Z (Liggett [84, Theo.1.33, Sec. VI]). We prove that this other
invariant distribution is not Markovian with memory m, for any λ > 0 and any m ≥ 1. The JRM T
of the contact process is not identically 0 and the contact process possesses 0n as absorbing state
on Z/nZ, thus, an immediate consequence of Theorem I.2.1.5 is:

Corollary I.4.1.3
If a distribution µ 6= δ0Z is invariant for the contact process on the line, then µ is not a Markov
law with memory m, for any m.

In fact, Theorem I.2.1.5 just states the non existence of invariant Markov law with memory m with
positive-entries kernel. By the nature of the contact process, no other kernels are neither possible.

When solving the system for general rates and using T[0,0,0|0,1,0] as a free parameter, meaning
that it can take any real value, we found that a necessary condition to have a Markov law invariant
by T is that T[0,0,0|0,1,0] > 0 which means that there is a sort of “spontaneous infection”.

Around TASEP

The TASEP is the PS defined on the line, or on a segment (see Section I.2.6) whose JRM T is
null, except for T[1,0|0,1] = 1. Some variants of this model have been defined, we will explore some
of them.

3-colored TASEP The 3 colored model (Eκ = {0, 1, 2}) for which again the JRM is null except
for

T[1,0|0,1] = T[2,0|0,2] = T[2,1|1,2] = 1 (I.94)

meaning that a particle can overtake smaller ones, with a constant rate. For more information on
this type of PS and its invariant measure on some special cases see Angel [6] or Zhong-Jun & al [35].

Here, we propose to replace the common value (I.94) by parameters, and use our theorems to
characterize the set of 3-tuple (T[1,0|0,1],T[2,0|0,2],T[2,1|1,2]) for which an invariant Markov law with
positive-entries MK M exists (T being null besides). The computation of the Gröbner basis of the
system (with the additional polynomials Mi,jgi,j − 1 to prevent the Mi,j to be 0) is rapid, but
the expression of a Gröbner basis is too large to be written here. What can be observed is that a
polynomial of the basis is −T[2,0|0,2] + T[2,1|1,2] + T[1,0|0,1] so that the nullity of this polynomial is
a necessary condition for existence of an invariant Markov law, in which case appears that M must
have constant lines, so that the distribution is a product measure with marginal M0,.. Examining
further the very simple Gröbner basis, appears that any product distribution ρZ with ρ having support
over {0, 1, 2} is invariant! This can be checked by hand on Cycleρ,T3 ≡ 0.
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-Variant: if particle i can overtake i− 1 mod 3 only. Here the parameters are

T[0,2|2,0],T[1,0|0,1],T[2,1|1,2],

meaning that now 0 can overtake 2, but not the contrary. The computation of a Gröbner basis
provides a list of polynomials, among which one can find: T[0,2|2,0] + T[2,1|1,2] + T[1,0|0,1]. Since the
T are non negative numbers, the 3 parameters must be 0. Hence, the only case where a Markov law
with positive-entries kernel M is invariant, is when no particle are allowed to move!

-Variant with parameters T[a,b|b,a] This is a generalization of the two previous points. In this
case, each particle can overtake the other ones. This is a case where the Gröbner basis are huge
(more than seven hundred polynomials), with many very simple polynomial of the following kind:

T[2,0|0,2]T[2,1|1,2](g0,1 − g2,1)2

meaning that one of this three factors must be 0 to have a solution. In order to study completely
this system a method consists from here, to choose such an equation and to constitute 3 systems
from here, each of them, constituted by the initial system at which is added one of the factor above,
as a new polynomial.

Due to the complexity of the system, the constitutions of these 3-subsystems is not enough to
conclude (the obtained Gröbner basis stays large), but this method can be iterated if the complete
set of solutions need to be found.

Zero-range type processes We start with a preliminary definition

Definition I.4.1.4
A JRM is said to be mass preserving if T[a,b|c,d] > 0⇒ a+ b = c+ d.

In the literature, PS’s associated to mass preserving T’s are called mass migration processes (MMP)
[45] and mass transport models [55, 44].

The following definition will be useful to define this type of systems.

Definition I.4.1.5
A mass preserving T is said to be zero range mass preserving if there exists a function g : E2

κ → R
such that

T[a,b|c,d] = g(a, k)1(c,d)=(a−k,b+k), ∀a, b, c, d, 1 ≤ k ≤ a.

Additional note.
The qualification “mass preserving” follows the fact that such a system naturally describes some
dynamics which locally preserve the mass, if ones identify the labels (a, b) with some mass a and
b. However globally, the mass can disappear. For example, in the case in which the only positive
entry is T[1,0|0,1] = 1 (TASEP), the particles move to the right. If at the beginning only a finite
number of particles are present in the system, the limit process for the product topology will be
the empty system.
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In words: the rate at which a part k of the mass a jumps to the next vertex at its right is g(a, k)
(for any k legal, that is 1 ≤ k ≤ a).

PS’s associated to zero range mass preserving T’s are called zero range mass migration processes
(MMP-ZR) [45]. These types of processes are generalizations of TASEP, since they could be inter-
preted as particle systems where each site can host more than one particle and where particles in the
same sites can jump at the same time (See [4, 45]).

The zero-range mass migration process is a process on E∞ whose JRM is zero range mass
preserving.

Let ρ ∈ M(Eκ) such that ρ0 > 0. In [45, Proposition 3.10] they obtained that ρZ is invariant
for the MMP-ZR iff ρaρkg(k, k) = ρa+kρ0g(a+ k, k) ∀k ≥ 1, ∀a ≥ 1.

Definition I.4.1.6
We say that a distribution ρ on Eκ is almost-geometrically distributed if there exists a function
g : Eκ → R+ such that

ρuρv = g(u+ v) for any (u, v) ∈ E2
κ. (I.95)

The support of an almost-geometric distribution can be either finite or infinite. If the support is N,
then it is a geometric distribution (since ρaρb = ρa+bρ0).

We make a small break in the TASEP applications to present a result that holds in a more general
setting.

A family of models with an infinite number of invariant product distributions

The next theorem states that the family of mass preserving kernels having almost-geometric
distributions as invariant distributions, have an infinite number of invariant distributions.

Theorem I.4.1.7
If ρZ is AI by a mass preserving kernel T for ρ an almost-geometric distribution such that (I.53)
and (I.54) hold, then for all almost-geometric distributions ν with same support as ρ, νZ is also
AI by T.

Proof. We use Theorem I.3.2.2. Assume that ν is AI by T. Taking into account the discussion
just above, consider E′κ = Supp(ν). A necessary condition for ν to be AI by T is that (I.55) holds.
Theorem I.2.2.2 says: ρZ is AI by T iff NCycleρ,T3 (a, b, c) = 0 for (a, b, c) such that ρaρbρc > 0.
Now, NCycleρ,T3 (a, b, c) =∑

u,v

ρuρv
ρaρb

T (u,v)
(a,b)

− T (a,b)
(u,v)

+
∑
u,v

ρuρv
ρbρc

T (u,v)
(b,c)

− T (b,c)
(u,v)

+
∑
u,v

ρuρv
ρcρa

T (u,v)
(c,a)

− T (c,a)
(u,v)

. (I.96)

From the definition of a mass preserving kernel, the first sum can be restricted to Ia+b, where for
any k, Ik is the set of pairs (u, v) such that u + v = k; the second one can be restricted to Ib+c,
and the last, to Ia+c. Now, (I.95) can be used since for all (u, v) ∈ Ia+b, ρuρv/(ρaρb) = 1, and one
sees that (I.96) rewrites in this case NCycleρ,T3 (a, b, c) =∑

(u,v)∈Ia+b

T (u,v)
(a,b)

− T (a,b)
(u,v)

+
∑

(u,v)∈Ib+c
T (u,v)

(b,c)

− T (b,c)
(u,v)

+
∑

(u,v)∈Ia+c

T (u,v)
(c,a)

− T (c,a)
(u,v)

. (I.97)

The steps which brings us to (I.97) is valid for any (ρ, g) satisfying (I.95) so the theorem is proved.
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Now we return to the TASEP discussion.

From [45, Proposition 3.10] and Theorem I.4.1.7, we get immediately:

Corollary I.4.1.8
Consider a zero range mass preserving T, with g : E2

κ → R positive in the diagonal and ρ ∈
M(Eκ) with ρ0 > 0 such that ρZ is AI by T. If for some h : Eκ → [0,∞), g(b, k) = h(b)g(k, k)
for all b ∈ Eκ, then νZ is also AI by T, for all almost-geometric distributions ν with same support
as ρ.

PushTASEP: The PushASEP is the PS defined on EZ
2 where 0 represents an empty site and 1

an occupied site. The dynamics are described as follows: each particle tries to jump to the right at
rate 1, and it actually jumps if the site is empty. Moreover, each particle jumps to the closest empty
site at its left with rate 1. This type of PS has range L = ∞. However, each configuration can
be encoded by the consecutive size of the blocks along the line, where a block is constituted with
an empty site together with the set of consecutive occupied sites at its left. The dynamics of the
PushASEP induces a PS on the “block size process” with range L = 2 and κ = ∞ (all block sizes
starting by 1 are possible). For this induced PS, the product measure with marginal the geometric
distribution (for any parameter in (0,1) by Theorem I.4.1.7) is AI by T. This provides a description
of some invariant distributions for the PushTASEP.

I.4.2 Projection and hidden Markov chain

This part also illustrates our theorems: with Theorem I.3.1.2 one can find JRM T on EZ
κ for

some κ ≥ 3 (with more than 3 colors) having some Markovian invariant distribution. Some of them,
possess some nice projection properties: they allow to characterize some PS invariant distributions
on {0, 1} (and probably of some PS with more than 2 colors) having as invariant distribution, the
distribution of some hidden Markov chain (see Cappé & al. for more information on these models).

Consider T and T′ be two JRM of two PS defined respectively EZ and FZ, where E and F are
two spaces of colors such that #F < #E. Consider π a surjective map from E on F : with each color
c in F , one or several colors π−1(c) of E are associated by π (on an exclusive basis).

Definition I.4.2.1
T′ is said to be the π-projection of T if for any a, b, c, d ∈ F , any (A,B) ∈

(
π−1(a), π−1(b)

)
∑

(C,D)∈π−1(c)×π−1(d)

T[A,B|C,D] = T′[a,b|c,d]. (I.98)

In words: starting from any representative (A,B) of (a, b), the total jump rate to the representatives
of (c, d) does not depend on (A,B), but only on (a, b).

Lemma I.4.2.2
Consider η = (ηt, t ≥ 0) with ηt = (ηt(k), k ∈ Z) a well defined PS defined on EZ with JRM T,
for some finite E. Assume that T′ is the π-projection of T for a surjection π : E → F , for some
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set F . Under these hypothesis η′ = (η′t, t ≥ 0) defined by η′t = (π (ηt(k)) , k ∈ Z) is a PS with
JRM T′. Hence, if µ is a measure invariant by T on EZ, then µ ◦ π−1 is invariant by T′ on FZ.

Proof. Since the PS under investigation is translation invariant, we focus on the finite dimensional
distribution evolution at the right of zero. Consider any word (x1, · · · , xk) whose projection is
(π(xj), 1 ≤ j ≤ k) = (y1, · · · , yk). Now, consider the rate of jumps from any subword (y`, y`+1) =
(a, b) to (y′`, y

′
`+1) = (c, d). By definition, π(x`) = y`, π(x`+1) = y`+1, and (y`, y`+1) jumps to

(y′`, y
′
`+1) if (x`, x`+1) jumps to any representative (c, d) that is, if its jumps to π−1(c) × π−1(d).

Hence, the total jump rate from (a, b) to (c, d) is given by
∑

(C,D)∈π−1(c)×π−1(d) T[x`, x`+1][C,D],
and this is indeed T′[a,b|c,d] (for any value (x`, x`+1) ∈ π−1(a)× π−1(b)). The statement concerning
the invariance of µ ◦ π−1 is direct.

There exist in the literature several definitions for the notion of hidden Markov chains. The most
classical is the following:

Definition I.4.2.3
(Yk, k ∈ Z) is said to be a hidden Markov chain taking its values in FZ, if it has the following
representation:
– there exists a Markov chain (Zk, k ∈ Z) taking its values in some set EZ,
– there exists a transition kernel K = (K(a, b))a∈E,b∈F ;
such that, conditionally on Z = (Zk, k ∈ Ja, bK), the Yj ’s are independent and conditionally on
Z the distribution of Yj is given by K(Zj , .).

Hence, if (Xk, k ∈ Z) is a Markov chain with state space E, and π : E → F is a surjection (or just
a map) then since the process (π(Xk), k ∈ Z) is a hidden Markov chain. If X has initial distribution
ρ at time 0, and kernel M , then

P(Yj = yj , 0 ≤ j ≤ n) =
∑

(x0,··· ,xn)∈En+1

xj∈π−1(yj),0≤j≤n

ρx0

n∏
j=1

Mxj−1,xj (I.99)

From there, it may be checked that a hidden Markov chain is not a Markov chain in general (with
any memory), since in general, (I.99) does not factorize suitably.

Now, we state the following result:

Theorem I.4.2.4
There exist some PS on {0, 1}Z which admits some hidden Markov chain (which are not Markov
chains) as invariant distributions.

The proof is constructive, we will provide an example. Consider the 4-tuples (T,T′,M, π) as follows
– Take π : E3 → E2 defined by π(0) = 0, π(1) = π(2) = 1.
– Take L = 3 (the range), and T with entries all 0 except

T[0,0,0|0,1,0] = 255, T[0,0,0|0,2,0] = 15

T[0,1,0|0,0,0] = T[0,2,0|0,0,0] = 294

T[0,1,0|0,2,0] = T[0,2,0|0,1,0] = 49
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– The projected JRM T′ has all its entries 0 except T′[0,0,0|0,1,0] = 270, T′[0,1,0|0,0,0] = 294 (notice
that the jump (0, 1, 0)→ (0, 2, 0) does not project on a “true jump” since it would correspond to the
jump (0, 1, 0)→ (0, 1, 0)).
– Take the Markov kernel

M =

7/15 1/3 1/5
1/2 1/6 1/3
1/6 1/2 1/3


and initial distribution is r0 = 35/89, r1 = 29/89, r2 = 25/89.
If (Xj , j ≥ 0) is a Markov chain with kernel M and initial distribution r, then (π(Xk), k ≥ 0)
is not a Markov chain since µ the projected measure satisfies µ([1, 1, 1])/µ([1, 1]) = 71/106 6=
µ([1, 1])/µ([1]) = 53/81, when Markovianity would imply equality of these quantities; it is a hidden
Markov chain.
– It remains to say that the Markov law (ρ,M) is invariant by T. This can be proved by checking that
for any a, b, c, d, e ∈ Eκ, NCycleM,T

9 (a, b, c, d, e, 0, 0, 0, 0) = 0: in fact, the corresponding function
ZM,T ≡ 0.

Notice that, for example, the Dirac measure δZ1 is invariant on the line for this PS, and the
analogous on Z/nZ, but this configuration is not attractive.

I.4.3 Exhaustive solution for the κ = 2-color case with m = 1 and L = 2

Invariant Markov laws

To find all JRM T for which exists an invariant Markov law when κ = 2 can be solved completely
by computation of a Gröbner basis. Instead of writing T[a,b|c,d], we write tx,y where x and y are
the numbers in base 10 corresponding to ab and cd seen as a number in base 2: write for short
x = (a, b)2, and y = (c, d)2, so that 3 = (1, 1)2, 1 = (0, 1)2. Hence, we have ti,i = 0 for i from 0
to 3, and t3,2 = T[1,1|1,0].

Now, set M0,0 = 1−M0,1, M1,0 = 1−M1,1 so that M0,1 and M1,1 are the remaining variables
and now write the system which contains:
� CycleM,T

7 ≡ 0,
� the equations Ma,bga,b − 1 for any a, b ∈ {0, 1} for additional variables g0,0, · · · , g1,1,
� an additional equation (M0,1 −M1,1)x − 1 in order to remove the i.i.d. case (treated below), for
some new variables x.
The Gröbner basis, of this system, is too long to be written here; nevertheless, here are the first
polynomials of the obtained basis, which provide some necessary conditions:

t3,0, t2,1, t1,2, t0,3,
t0,1t1,0 + t0,1t2,0 + t0,2t1,0 + t0,2t2,0 − t1,3t3,1 − t1,3t3,2 − t2,3t3,1 − t2,3t3,2,
(t1,0 + t2,0 − t3,1 − t3,2)M1,1

2 + (−t1,0 − t1,3 − t2,0 − t2,3)M1,1 + t1,3 + t2,3

Hence, t3,0 = t2,1 = t1,2 = t0,3 = 0 is a necessary condition. The polynomial on the second line
expresses somehow “the important condition”, and the third line polynomial (and subsequent, see
[49]) allow to compute the kernel M . We infer that

Corollary I.4.3.1
For κ = 2. If T is mass preserving, then there does not exist any (ρ,M)-Markov law with
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M0,1 6= M1,1, and with coefficients in (0, 1), invariant by T.

Invariant product measure

First, we claim that,

Lemma I.4.3.2
If κ = 2, then ρZ is invariant by T on the line iff NCycleρ,T2 ≡ 0.

Key idea.
The proof is reminiscent of the pigeonhole principle.

Proof. By Theorem I.2.2.2 (vii), it suffices to prove that NCycleρ,T3 ≡ 0⇔ NCycleρ,T2 ≡ 0. Start by
the implication: from NCycleρ,T3 (a, a, a) = 0 = 3Zρ,Ta,a we infer that Zρ,Ta,a = 0 for any a ∈ Eκ = {0, 1}.
Now, write

NCycleρ,T3 (aab) = Zρ,Ta,a + Zρ,Ta,b + Zρ,Tb,a = 0 + NCycleρ,T2 (a, b), (I.100)

so that the implication holds. For the converse, note that any words w with three letters on E2 =
{0, 1} possesses one letter repeated. Given the cyclical structure of the equation NCycleρ,T3 (that is
NCycleρ,T3 (abc) = NCycleρ,T3 (bca)) it suffices to prove that NCycleρ,T3 (aab) = 0 for any a, b ∈ Eκ.
Now, from NCycleρ,T2 ≡ 0, we deduce Zρ,Ta,a = 0, and still from (I.100), NCycleρ,T3 ≡ 0.

Now solving explicitly NCycleρ,T2 ≡ 0 using a computer algebra system is possible. The result
is presented in [49]; there are 5 polynomial, including the following one (product of the 2 first lines
minus the third)

(t1,0t3,0 + t1,0t3,1 + t1,0t3,2 + t1,3t3,0 + t2,0t3,0 + t2,0t3,1 + t2,0t3,2 + t2,3t3,0) (I.101)
(t0,1t1,3 + t0,1t2,3 + t0,2t1,3 + t0,2t2,3 + t0,3t1,0 + t0,3t1,3 + t0,3t2,0 + t0,3t2,3) (I.102)
− (t0,1t3,0 + t0,1t3,1 + t0,1t3,2 + t0,2t3,0 + t0,2t3,1 + t0,2t3,2 + t0,3t3,1 + t0,3t3,2)2 (I.103)

which is the a necessary condition on t to have a product measure as invariant distribution.

I.4.4 2D applications

The criterion provided by Theorem I.2.4.1 seems to depend on all the colorings of the neighbors
of Γ0, Γ1 and Γ2, which represents for this last case, as many as κ14 possibilities, and this for each
of the κ5 different configurations in Γ2. So, the total number of equations seems out of reach, but in
fact, again, (I.32) is decomposed on a sum of Zh∩C,hx(h∩C) (defined in (I.37)) so that it suffices to express
these functions which intersect the domain D under inspection: the contribution of each square can
be computed independently. This provides a small finite set of functions with 1, 2, 3 or 4 variables
(as discussed in (I.35) and in the proof of Theorem I.2.4.1): When Eκ = E2 = {0, 1}, this provides
a small quantity of functions, each of them being a sums of at most 23 elementary quantities. The
corresponding set of equations can be written easily, or even automatically if needed. When T is
totally specified, searching invariant distribution amounts then just to solving a polynomial system
with unknown ρ0, · · · , ρκ−1 in the set {(r0, · · · , rκ−1) ∈ [0, 1]κ :

∑
ri = 1}. Here are some cases

we have investigated (we insist on the fact that all these examples have been found with very few
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manipulations, in a very short time):

� If all the T’s are zero except T 1 1
0 1

0 0
1 0

= a,T
0 0
1 0

1 1
0 1

= 1 (this generalizes a bit (I.29)) then

the Bernoulli product measure with parameter ρ1 ∈ (0, 1) is invariant iff aρ2
1 − ρ2

1 + 2ρ1 − 1 = 0 (so
that for a given a, the density is ρ1 = 1/(

√
a+ 1)). This can be checked by hand with our criterion,

or just using a reversibility argument, as (I.28), for example.

� Similarly, with the same methods, one checks that if all the T’s are zero except T
1 0
0 1

0 1
1 0

=

a,T
0 1
1 0

1 0
0 1

= b then for any (a, b) ∈ (0,+∞)2, all product measures are invariant if a = b, and

none otherwise (the first statement is a consequence of reversibility, but reversibility cannot be used
to prove the second).

� if all the T’s are zero, except T 1 1
0 0

0 1
0 1

, then no product measures with full support are invariant.

� if all the T’s are zero, except

T
1 1
0 0

0 1
0 1

= a,T
0 1
0 1

0 0
1 1

= b,T
0 0
1 1

1 0
1 0

= c,T
1 0
1 0

1 1
0 0

= d

then if a = b = c = d, all Bernoulli product measure with parameter in (0, 1) are invariant, otherwise,
there is no invariant product measure.
� Now, if one lets many free parameters: If all the T’s are 0, except those with the form

T
a b
d c

a 1− b
d 1− c for a, b, c, d ∈ {0, 1}.

In this case, the space of parameters for which there exists invariant product measures is quite
complex: see [49].
� In the 3 colors case E3 = {0, 1, 2} with all the parameters T equal to zero, except

T
i i
i i

i+ 1 mod 3 i+ 1 mod 3
i+ 1 mod 3 i+ 1 mod 3

= ai.

The set of invariant product measures with marginal having support E2, are the measures ρ ∈M(E2)
satisfying a1ρ

4
1 − a2ρ

4
2 = a0ρ

4
0 − a2ρ

4
2 = 0 and ρ0, ρ1, ρ2 > 0.

� We may design similarly many JRM T preserving PZ2

λ where Pλ is the Poisson(λ) distribution, by
considering mass preserving T, which moreover, preserves the Poisson distribution on a square (still
using Corollary I.2.3.2). Many such dynamics exist, and this can be analyzed on the square: condition
on the summ of the 4 values around the square, and interpret the 4 (multinomial) concerned variables
as the number of balls in 4 urns in which m balls labeled from 1 to m have been dropped uniformly
and independently (in a larger probability space). Picking a ball at random and moving it in the
next urn around the square, or shifting the urns around the square, or taking a ball and reinserting it
randomly in any of the other three urns, are three examples of dynamics that preserve the multinomial
distribution.

For the last example, for each positive map m→Wm, the following JRM T preserves PZ2

λ :

T
x1 x2
x4 x3

y1 y2
y4 y3

= W‖xJ1,4K‖1 ×
xi
3

if yJ1, 4K = xJ1, 4K− ei + ej for j ∈ {1, 2, 3, 4} \ {i}, where ek is the k-th canonical vector of R4.
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I.5 Proofs

I.5.1 Proof of Theorem I.2.1.2

Before proving Theorem I.2.1.2, we establish a Lemma used all along the proof. Recall the repre-
sentation formula of NLineρ,M,T

n (for n ≥ 3) in terms of the functions Z given in (I.19).

Lemma I.5.1.1
Assume that M is a positive-entries Markov kernel, then for any JRM T,∑

b,c

Za,b,c,dMa,bMb,cMc,d = 0, ∀a, d ∈ Eκ.

Proof. Just expand Z. By definition∑
b,c

Za,b,c,dMa,bMb,cMc,d =
∑
u,v

∑
b,c

T[u,v|b,c]Ma,uMu,vMv,d −
∑
b,c

Tout
[b,c]Ma,bMb,cMc,d.

This is zero since
∑

b,c T[u,v|b,c] = Tout
[u,v].

Remark I.5.1.2
The Lemma does not use the fact that the (ρ,M)-Markov law is invariant by T on the line, but
just a kind of local equilibrium and the form of Z. In fact, what is true in all generality is that,
for any function f taking its values in R?, for Z′a,b,c,d = −Tout

[b,c] +
∑

u,v
f(a,u,v,d)
f(a,b,c,d) T[u,v|b,c] then,

one has
∑

b,c Z
′
a,b,c,df(a, b, c, d) = 0. This is particularly true if f(a, b, c, d) = Ma,bMb,cMc,d or

f(a, b, c, d) = αaMa,bMb,cMc,dβd.

To prove Theorem I.2.1.2 we will show two cyclical implications (i)⇒ (ii)⇒ (iii)⇒ (iv)⇒ (v)⇒
(i) and (v)⇒ (vi)⇒ (vii)⇒ (viii)⇒ (ix)⇒ (v).
• Proof of (i)⇒ (ii)

Key idea.
We compare two words that differ in one letter to obtain the equations Replace.

Observe the contribution of the term with index j, in the following equation I.19, for a j in J2, n−2K
that is, far from 0 and from n

NLineρ,M,T
n (x) =

∑
x−1,x0,

xn+1,xn+2

ρx−1

∏
k∈{−1,0,n,n+1}

Mxk,xk+1

 n∑
j=0

ZM,T
xJj−1,j+2K, (I.104)

One sees that since for any a,
∑

bMa,b = 1, and ρM = ρ, for any 1 < j < n− 1,∑
x−1,x0,

xn+1,xn+2

ZM,T
xJj−1,j+2Kρx−1

∏
k∈{−1,0,n,n+1}

Mxk,xk+1
= ρx1Z

M,T
xJj−1,j+2K. (I.105)

Take three arbitrary words xJ1, nK, yJ1,mK and aJ1, 7K with letters in Eκ, and a′4 ∈ Eκ. Define

w = xJ1, nK aJ1, 4K 000 yJ1,mK and w′ = xJ1, nK aJ1, 3K 0000 yJ1,mK,

80 Luis Fredes



I. Invariant measures of discrete interacting particle systems

we recall that the concatenation gives for example: aJ2, 4K b yJ3, 6K = a2a3a4yb3b4b5b6. Using the
property (I.105) and the fact that the boundary terms are the same (those for j ∈ {0, 1, n− 1, n}),
we get

NLineρ,M,T
N (w)− NLineρ,M,T

N (w′) = ρx1Replace
M,T
7 (a1, a2, a3, a4, 0, 0, 0; 0).

If the (ρ,M)-Markov law is invariant by T, then NLineρ,M,T
N ≡ 0 as well as NLineρ,M,T

N−1 ≡ 0 so that
ReplaceM,T

7 (a1, a2, a3, a4, 0, 0, 0; 0) = 0.
• Proof of (ii)⇒ (iii)

Key idea.

We iterate the formula Replace7(a, b, c, d, 0, 0, 0; 0) = 0 to obtain that Replace7 ≡ 0.

For n ≥ 4 define the map Hn : E
J1,nK
κ → R by

Hn(aJ1, nK) :=

n−3∑
j=1

ZM,T
aJj,j+3K

 (I.106)

+
(
ZM,T
an−2,an−1,an,0

+ ZM,T
an−1,an,0,0

+ ZM,T
an,0,0,0

)
− (n− 4)ZM,T

0,0,0,0. (I.107)

If ReplaceM,T
7 (a, b, c, d, 0, 0, 0; 0) = 0 for all a, b, c, d ∈ Eκ, then for n ≥ 4,

Hn(aJ1, nK)−Hn−1(aJ1, n− 1K) = 0. (I.108)

Indeed, since Replace7(aJn− 3, nK 000; 0) = 0,

ZM,T
an−2,an−1,an,0

+ZM,T
an−1,an,0,0

+ZM,T
an,0,0,0

+4ZM,T
0,0,0,0 = ZM,T

an−2,an−1,0,0
+ZM,T

an−1,0,0,0
+ZM,T

0,0,0,0 +4ZM,T
0,0,0,0.

Hence by (I.108), Hn(aJ1, nK) = H3(a1, a2, a3) and then, depends only on a1, a2,3. It follows that
H7(aJ1, 7K) = H7(a1, a2, a3, a

′
4, a5, a6, a7) which implies Replace7(aJ1, 7K; a′4) = 0.

• Proof of (iii)⇒ (iv)

Key idea.

Replace7(a, b, c, d, 0, 0, 0; 0) −Master7(a, b, c, d, 0, 0, 0) = −Z0,0,0,0 which we prove that is equal
to zero.

We first prove that when (iii) holds, NCycleM,T
4 ≡ 0. For this just observe that Replace7(a, b, c, d, a, b, c; 0) =

0 implies
NCycleM,T

4 (a, b, c, d) = NCycleM,T
4 (a, b, c, 0).

By cyclical invariance of the map NCycleM,T
4 this implies that

NCycleM,T
4 (a, b, c, d) = NCycleM,T

4 (0, 0, 0, 0) = 4ZM,T
0,0,0,0.

From that equality, multiplying both sides by Ma,bMb,cMc,dMd,a and summing over a, b, c, d ∈ Eκ
we obtain

4ZM,T
0,0,0,0 × Trace(M4) =

∑
a,b,c,d∈Eκ

NCycle4(a, b, c, d)Ma,bMb,cMc,dMd,a

= 4
∑

a,d∈Eκ
Md,a

(∑
b,c

ZM,T
a,b,c,dMa,bMb,cMc,d

)
,
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By Lemma I.5.1.1, this last quantity is 0, and then ZM,T
0,0,0,0 = 0.

To end the proof, it suffices to observe that when ZM,T
0,0,0,0 = 0, for any a, b, c, d ∈ Eκ,

ReplaceM,T
7 (a, b, c, d, 0, 0, 0; 0) = MasterM,T

7 (a, b, c, d, 0, 0, 0).
• Proof of (iv)⇒ (v)

Key idea.

We iterate the formula Master7(a, b, c, d, 0, 0, 0) = 0 to obtain that Master7 ≡ 0.

Suppose (iv). Master7(0, 0, 0, 0, 0, 0, 0) = 0 implies that ZM,T
0,0,0,0 = 0. Recall the map Hn defined in

(I.106) and replace ZM,T
0,0,0,0 by 0 inside. Using now that Master7(aJn − 3, nK 000) = 0, one has for

any n ≥ 4,
Hn(aJ1, nK) = Hn−1(aJ1, n− 1K).

Hence Hn(aJ1, nK) is a function of (a1, a2, a3) only and it does not depend on n. Therefore, since
Master7(a, b, c, d, e, f, g) = H7(a, b, c, d, e, f, g)−H6(a, b, c, e, f, g) we see that this quantity is 0.
Proof of (v)⇒ (i)

Key idea.

We prove that Master7 ≡ 0 implies NLinei ≡ 0 for i ∈ {1, 2, 3} and therefore for all i ∈ N.

We will need three intermediate results:

Lemma I.5.1.3
Assume that M is a Markov kernel with positive entries. If MasterM,T

7 ≡ 0 then for all n ≥ 3, all
m ∈ J2, n− 1K,

NLineρ,M,T
n (xJ1, nK) = NLineρ,M,T

n−1 (xJ1, nK{m}), for all xJ1, nK ∈ Enκ

and then
NLineρ,M,T

n (xJ1, nK) = NLineρ,M,T
2 (x1, xn), for all xJ1, nK ∈ Enκ .

Proof. The second statement is a consequence of the first one. Following Remark I.2.1.7, when
MasterM,T

7 ≡ 0, we may replace any sum of the form

S(xJ−1, n+ 2K) :=
n∑
j=0

ZxJj−1,j+2K,

which depends on the word xJ−1, n + 2K, with the sum S(xJ−1, n + 2K{m}), that is corresponding
with the same word with the letter with index m removed for any m ∈ J2, n−1K. Hence from (I.19),

NLineρ,M,T
n (xJ1, nK) =

∑
x−1,x0,

xn+1,xn+2

S(xJ−1, n+ 2K)ρx−1

∏
k∈{−1,0,n,n+1}

Mxk,xk+1

=
∑

x−1,x0,
xn+1,xn+2

S(xJ−1, n+ 2K{m})ρx−1

∏
k∈{−1,0,n,n+1}

Mxk,xk+1

and this is NLineρ,M,T
n (xJ1, nK{m}) since m is not equal to 1 or to n.
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Lemma I.5.1.4
Assume that M is a Markov kernel with positive entries. For all a ∈ Eκ,∑

b

NLineρ,M,T
2 (a, b)Ma,b = NLineρ,M,T

1 (a) =
∑
b

NLineρ,M,T
2 (ba)Mb,a.

and more generally, for any xJ1, nK for n ≥ 1,∑
b

NLineρ,M,T
n+1 (xJ1, nKb)Mxn,b = NLineρ,M,T

n (xJ1, nK) =
∑
b

NLineρ,M,T
n+1 (bxJ1, nK)Mb,x1 .

Proof. By (I.19) and (I.18)∑
x2

NLineρ,M,T
2 (x1, x2)Mx1,x2 =

∑
x−1,x0,x2,
x3,x4

(
ρx−1

3∏
k=−1

Mxk,xk+1

)
2∑
j=0

ZM,T
xJj−1,j+2K.

The contribution of the term j = 2, is∑
x−1,x0

(
ρx−1

0∏
k=−1

Mxk,xk+1

) ∑
x2,x3,x4

Mx1,x2Mx2,x3Mx3,x4Z
M,T
xJ1,4K,

which is 0 by the Lemma I.5.1.1. Therefore∑
x2

NLineρ,M,T
2 (x1, x2)Mx1,x2 =

∑
x−1,x0,x2,
x3,x4

(
ρx−1

3∏
k=−1

Mxk,xk+1

)
1∑
j=0

ZM,T
xJj−1,j+2K;

the sum on x4 simplifies (because
∑

x4
Mx3,x4 = 1), which gives the expected result. The proof of

the second statement and of the generalization to larger words, can be obtained similarly.

Lemma I.5.1.5
If M is a Markov kernel with positive entries and if MasterM,T

7 ≡ 0, then NLineρ,M,T
2 ≡ 0 and

NLineρ,M,T
1 ≡ 0.

Proof. Using Lemma I.5.1.4 and then Lemma I.5.1.3 which asserts that one can suppress the middle
letter in the argument of NLineρ,M,T

3 , for any a, b ∈ Eκ,

NLineρ,M,T
2 (ab) =

∑
c

NLineρ,M,T
3 (abc)Mb,c =

∑
c

NLineρ,M,T
2 (ac)Mb,c. (I.109)

Set M t the matrix transposed of M , and, for a fixed a ∈ Eκ, consider the row vector

va =
[
NLineρ,M,T

2 (ab), b ∈ Eκ
]
.

The equality between the leftmost and rightmost quantities in (I.109) can be written va = vaM
t, so

that it is apparent that va is a left eigenvector of M t, associated with the eigenvalue 1. Since
M is a Markov kernel with positive entries, va = λa

[
1, · · · , 1

]
for some λa ∈ R. Therefore

NLineρ,M,T
2 (a, b) = λa, then NLineρ,M,T

2 (a, b) does not depend on b. Now, notice that by trans-
lation invariance

∑
a Line

ρ,M,T
2 (a, b) =

∑
a Line

ρ,M,T
2 (b, a) since both measure the balance of the

state b. Since Lineρ,M,T
2 (a, b) = NLineρ,M,T

a,b Ma,b the previous considerations lead to∑
a

λaMa,b =
∑
a

λbMb,a
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and since the RHS is λb, this says λ = (λa, a ∈ Eκ) is a right eigenvector of M associated with the
eigenvalue 1, so that λa = αρa for a constant α. It remains to compute α.

Write ∑
a

NLineρ,M,T
1 (a) =

∑
a

∑
b

NLineρ,M,T
2 (a, b)Ma,b = α

∑
a

ρa = α.

Now, using that MasterM,T
7 ≡ 0, let us prove that α = 0. For this consider

α =
∑
x1

NLineρ,M,T
1 (x1) =

∑
x−1,x0,x1,x2

ρx−1Zx−1,x0,x1,x2

∏
k∈{−1,0,1}

Mxk,xk+1

+
∑

x0,x1,x2,x3

ρx0Zx0,x1,x2,x3

∏
k∈{0,1,2}

Mxk,xk+1

and this is 0 by Lemma I.5.1.1. Hence α = 0, and therefore NLineρ,M,T
1 ≡ 0 and NLineρ,M,T

2 ≡ 0.

Putting together the three previous Lemmas, we see that when MasterM,T
7 ≡ 0, then NLineρ,M,T ≡ 0

for any n, and then Lineρ,M,T ≡ 0 too.

• Proof of (v)⇒ (vi)

Key idea.
We use that once NCyclen does not depend on one letter, by cyclic invariance, it does not depend
on any letter.
Tools: invariants.

Observe the linear form of NCycleM,T
n given in (I.23) (valid for n ≥ 3) and check that for n ≥ 7 and

any x ∈ EJ0,n−1K
κ ,

NCycleM,T
n (x) = NCycleM,T

n−1(x{n−4}) + MasterM,T
7 (xJn− 7, n− 1K), (I.110)

which rewrites NCycleM,T
n (x) = NCycleM,T

n−1(x{n−4}), sinceMasterM,T
7 ≡ 0. This formula implies that

NCycleM,T
n (x) does not depend on xn−4, and then since NCycleM,T

n is cyclically invariant, does not
depend on any letter. It is then equal to NCycleM,T

n (0n) where 0n is the word formed with n repetitions
of 0, and then since NCycleM,T

n (0n) = nZ0,0,0,0, we can conclude usingMasterM,T
7 (07) = Z0,0,0,0 = 0.

It remains to treat the case n = 3 to 6. But observe (I.23), and consider for m ∈ J3, 6K a word
w of size m, and the word wg obtained by the concatenation of g copies of w for the g ≥ 3 of your
choice. Then one sees that

NCycleM,T
m (w) = NCycleM,T

gm (wg)/g = 0,

since gm ≥ 9.
• Proof of (vi)⇒ (vii)⇒ (viii) Trivial
• Proof of (viii)⇒ (ix). Consider the map

Wa,b,c := Z0,0,0,a + Z0,0,a,b + Z0,a,b,c.

We will use NCycleM,T
7 (a, b, c, d, 0, 0, 0) ≡ 0 with different parameters. Start with a = b = c = d = 0

to obtain that ZM,T
0,0,0,0 = 0. Now use arbitrary a, b, c ∈ Eκ and d = 0 to obtain that

Wa,b,c = Z0,0,0,a + Z0,0,a,b + Z0,a,b,c = −Za,b,c,0 − Za,b,0,0 − Za,0,0,0.
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Now for arbitrary a, b, c, d ∈ Eκ, NCycleM,T
7 (a, b, c, d, 0, 0, 0) ≡ 0 is equivalent to

Za,b,c,d = −Z0,0,0,a − Z0,0,a,b − Z0,a,b,c − Zb,c,d,0 − Zc,d,0 − Zd,0,0,0

= −Wa,b,c + Wb,c,d.

• Proof of (ix) ⇒ (v). If Za,b,c,d = −Wa,b,c + Wb,c,d, then a telescopic simplification allows us to
see that for all n ≥ 4 ∑

w∈Seq4(aJ1,nK)

Zw = Wan−2,an−1,an −Wa1,a2,a3

from what we infer by (I.21) that MasterM,T
7 ≡ 0. 2

I.5.2 Proof of Theorem I.2.2.2

The proof is almost the same as that of Theorem I.2.1.2. The only differences concern (v)⇒ (vi)
and (viii)⇒ (ix).
To prove (v)⇒ (vi), take the proof of the corresponding statement in Theorem I.2.1.2 noticing that
now the linear form (I.27) of NCycleρ,Tn is valid from n ≥ 2 and replace (I.110) by

NCycleρ,Tn (x) = NCycleρ,Tn−1(x{n−2}) + Masterρ,T3 (xJn− 3, n− 1K).

For (viii) ⇒ (ix): Take ab0 = 000 to deduce Zρ,T0,0 = 0. Use this and take ab0 = a00 to find that
Zρ,Ta,0 +Zρ,T0,a = 0. For general ab0 we obtain the identity Zρ,Tab = Zρ,T0,b −Zρ,T0,a . So it is enough to define

Wa = Zρ,T0,a + C (for any constant C).

I.5.3 Proof of Theorem I.2.2.6

We will adapt the proof of Theorem 3.1. in [45] (steps 4 and 5). The main difference is that
they use that a measure is invariant iff

∫
Gf(η)dρZ(η) = 0 for every bounded cylinder function

f : EZd
κ → R. This is equivalent to Lineρ,T,p(x(A)) = 0 for any A ⊂ Zd finite, and x(A) ∈ EAκ .

We do not need to take the limit to get (91) and (92) and the last part of step 5, just n sufficiently
large, given that our p is a finite rate transition probability.

I.5.4 Proof of Theorem I.2.5.1

• Let us first assume that νa,b,c =
Ma,bMb,cMc,a

t3
for t = Trace(M3)1/3 for some Markov kernel

M . In this case, Na given in (I.44) satisfies Na = (1/t)

[
Mx,yMy,a

Mx,a

]
x,y∈Eκ

, and then a main

right eigenvector of Na is given by r′a = t
[
1/My,a

]
y∈Ek . One sees that λ = 1/t is the common

main eigenvalue to all the Na’s. In the same way, one sees that `′a =
[
ρxMx,a

]
x∈Ek is a main left

eigenvector associated to Na.

The vectors ra and `a of the theorem are obtained after normalization: `a =
[
ρxMx,a/ρa

]
x∈Eκ ,

ra = ρar
′
a = t

[
ρa/My,a

]
y∈Ek . Now La,b =

(
Ma,bMb,xMx,a/t

3, x ∈ Eκ
)
, giving La,bra = ρaMa,b/t

3
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and indeed,
∑

a,b La,bra = 1/t3 = λ3.
• Now, assume that ν is given, and (I.42) possesses a positive recurrent solution M . From the
previous point, the Na’s have same main eigenvalues. The main argument of the proof we will
develop relies on the structure of ν, which allows to show that M exists, it is characterized by (I.42).
Equation (I.42) motivates to consider νa,b,c as the weight of a cycle abc of length 3, which may be
expanded as a product on its edges:

νa,b,c =
∏

e∈{(a,b),(b,c),(c,a)}
we,

where
w(u,v) = Mu,v/t, for t = Trace(M3)1/3.

More generally, for any directed graph G = (V,E), let

W (G) =
∏
e∈E

we.

We will see that the knowledge of νa,b,c allows to determine the weight of the cycles of every size,
and then, by taking a limit, we will determine M . First, taking (a, b, c) = (a, a, a) provides

Ma,a = t ν1/3
a,a,a

and for the cycle (a, b, a), since νa,b,a = Ma,bMb,aMa,a/t
3,

Ma,bMb,a = t2 νa,b,a ν
−1/3
a,a,a .

Consider a cycle Cn = (a1, . . . , an−1, an, a1) of length n on Eκ, and for some 1 < j < n add the
directed edge (a1, aj) as well as the edge (aj , a1) to get the graph C′n. We may partition this oriented
graph also as the union of Cj of length j and Cj,n = (aj , . . . , an−1, an, a1, aj). Therefore

W (Cn) =
W (C′n)

wa1,ajwaj ,a1

=
W (Cj)W (Cj,n)

wa1,ajwaj ,a1

= W (Cj)W (Cj,n)× ν
1/3
a1,a1,a1

νa1,aj ,a1

. (I.111)

A simple iteration argument allows one to express the weight of a cycle of any length with the weights
of cycles of length 3. A particular way to do that, is to see (I.111) as the algebraic effect of the
addition of the edge (a1, aj) and (aj , a1) in the cycle Cn: adding all the edges from and to a1 yields
to

W (Cn) = νa1,a2,a3

n−1∏
j=3

νa1,aj ,aj+1ν
1/3
a1,a1,a1

νa1,aj ,a1

. (I.112)

Using the matrices L,N,R, (I.112) implies that∑
a3,··· ,an

W (Cn) = La1,a2N
n−3
a1

1.

Using Perron-Frobeniüs theorem and (i) (here is used the fact that the Na’s have the same eigen-
values),

∑
a3,··· ,an

W (Cn)

λn−3
a1

=
∑

a3,··· ,an

W (Cn)

λn−3
−→

n→+∞
La1,a2ra1`a1R = La1,a2ra1 > 0. (I.113)
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It is important to notice that the formula hence obtained, is independent from the Markov ker-
nel M solution of (I.42) chosen, so that every M which solves (I.42) must satisfy tnW (Cn) =
Man,a1

∏n−1
j=1 Maj ,aj+1 . Summing the previous relation over all the values of a3, · · · , an, we get that

it must also satisfy ∑
a3,··· ,an

tnW (Cn) = Ma1,a2M
n−1
a2,a1

. (I.114)

Now we make some connections. Compare (I.113) with (I.114). Taking λ = 1/t, we see that

Ma1,a2M
n−1
a2,a1

−−−−−→
n→+∞

t3La1,a2ra1 .

Since M is assumed to be positive recurrent, Mn−1
a2,a1

→ ρa1 for some probability measure ρ. Hence
we have established that for all pair (ρ,M) where M is a positive recurrent Markov kernel M , and
ρ its invariant probability measure, satisfies ρa1Ma1,a2 = t3La1,a2ra1 for any (a1, a2) ∈ E2

κ. But a
unique pair (ρ,M) is solution of this equation when the RHS is given, since ρa must be equal to∑

b t
3La,bra.
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I.A Proof of Theorem I.2.1.8

For any I ⊂ N, denote by EI = {(M,T) : NCycleM,T
i ≡ 0, i ∈ I}. First, we claim that

Lemma I.A.0.1
E4,5,6 = E7.

Proof. • From Theorem I.2.1.2, if (M,T) ∈ E7 then (M,T) ∈ E4,5,6.

• For the converse: we use the following identity

NCycle7(abcdefg) = −NCycle6(efgdef) + NCycle4(efgd) + NCycle6(efadef)

−NCycle4(efad) + NCycle6(efgcef)− NCycle4(efgc)

−NCycle6(efacef) + NCycle4(efac) + NCycle6(abcdef)

+NCycle6(abcefg)− NCycle5(abcef),

which can be checked by expansion in terms of Zw, and by making an inventory of the multiplicity of
each word w involved. Hence, NCycleM,T

7 is a linear combination of some instances of NCyclej for j
from 4 to 6.

Here is a short explanation of the origin of the formula appearing in the lemma proof: Take (M,T)

a solution of E4,5,6. Since 0 = NCycleM,T
4 (a, b, a, b), therefore Za,b,a,b = −Zb,a,b,a. Now, since

0 = NCycleM,T
6 (a, b, c, d, a, b)− NCycleM,T

4 (a, b, c, d)

= −Zd,a,b,c + Zd,a,b,a + Za,b,a,b + Zb,a,b,c,

replacing Za,b,a,b by −Zb,a,b,a in this equation, gives the identity

Zd,a,b,c − Zd,a,b,a − Zb,a,b,c + Zb,a,b,a ∀a, b, c, d ∈ N.
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In these equations, the parameters of Z have the form Zx,a,b,y for different values of x and y. Two
terms depend on d and two on c: this implies that the differences between the elements that depend
on d (respectively c) do not depend on d (respectively c). This provides new identities. Playing with
the dependence of the differences in the variables involve, leads eventually to the formula. But the
formula can be checked directly independently from these considerations as indicated in the Theorem
proof.

Proof of Theorem I.2.1.8. (ii) We start by proving that if (M,T) ∈ E4,6, then (M,T) ∈ E5. For this
just check that

NCycle5(abcde) = NCycle6(deecde)− NCycle6(deacde) + NCycle4(deac)

NCycle6(dea0de)− NCycle4(deec)− NCycle4(dea0)

−NCycle6(dee0de) + NCycle4(dee0).

(i) We prove that if (M,T) ∈ E5,6 then it is in E4 too. By expansion, one checks that

NCycleM,T
4 (a, b, c, d) = NCycleM,T

5 (a, b, c, d, a) + NCycleM,T
5 (a, b, c, c, d)

−NCycleM,T
6 (a, b, c, c, d, a).

I.B Proof of Theorem I.2.5.3

Here is a Lemma which implies Theorem I.2.5.3.

Lemma I.B.0.1
Let M and M ′ be two positive Markov kernels on Eκ, for 1 ≤ κ ≤ +∞. The following three
properties (1) (2) and (3) are equivalent

(1)
Ma,uMu,vMv,d

Ma,bMb,cMc,d
=
M ′a,uM

′
u,vM

′
v,d

M ′a,bM
′
b,cM

′
c,d

∀a, b, c, d, u, v.

(2)
Ma,uMu,vMv,a

Ma,bMb,cMc,a
=
M ′a,uM

′
u,vM

′
v,a

M ′a,bM
′
b,cM

′
c,a

∀a, b, c, u, v.

(3)
M ′a,bM

′
b,c

Ma,bMb,c
= α

M ′a,c
Ma,c

∀a, b, c, for some α > 0, independent of a, b, c.

Moreover, if M and M ′ are positive recurrent, then each of the previous properties implies that
M = M ′.

Proof. Taking d = a in (1) suffices to see that (1)⇒ (2).
Proof of (2)⇒ (3). Taking u = a and v = c in (2) provides

M ′a,aM
′
a,c

Ma,aMa,c
=
M ′a,bM

′
b,c

Ma,bMb,c
. (I.115)

Taking now b = c in the last equation, gives

M ′a,a
Ma,a

=
M ′c,c
Mc,c

, (I.116)

90 Luis Fredes



I. Invariant measures of discrete interacting particle systems

so that a 7→ M ′a,a
Ma,a

is constant, say, equals to α. Replacing M ′a,a
Ma,a

by α in (I.115) gives (3).
To prove (3) ⇒ (1), it may be useful to see (3) as an equation ruling the addition of any letter b
between a and c. Let us add two letters u and v (or b and c) between a and d...

α
M ′a,d
Ma,d

=
M ′a,vM

′
v,d

Ma,vMv,d
=
M ′a,cM

′
c,d

Ma,cMc,d
⇒
M ′a,uM

′
u,vM

′
v,d

Ma,uMu,vMv,d
= α2

M ′a,d
Ma,d

=
M ′a,bM

′
b,cM

′
c,d

Ma,bMb,cMc,d
.

This gives (1).

It remains to prove the last statement. Using point (3), for a right α > 0, for any word x ∈ Enκ

M ′a,x1
M ′x1,x2

. . .M ′xn,d
Ma,x1Mx1,x2 . . .Mxn,d

= α
M ′a,x2

M ′x2,x3
. . .M ′xn,d

Ma,x2Mx2,x3 . . .Mxn,d
= · · · = αn

M ′a,d
Ma,d

.

Then multiplying by the LHS denominator and summing over all values of x1, · · · , xn, we obtain

(M ′)n+1
a,d

(M)n+1
a,d

= αn
M ′a,d
Ma,d

.

Since M and M ′ are positive recurrent, taking the limit when n→∞, we get

ρ′d
ρd

=
M ′a,d
Ma,d

lim
n→∞

αn, (I.117)

where ρ and ρ′ are the invariant measures for the Markov kernels M and M ′. Hence α = 1. Taking
b = c = a in (3) then gives M ′a,a/Ma,a = 1 for any a. Using this relation and taking d = a and
α = 1 in (I.117), we obtain ρ′a = ρa, and still from (I.117), this implies M ′a,d = Ma,d for any (a, d).

I.C Proof of Theorem I.3.1.2

We start with a preliminary lemma.

Lemma I.C.0.1
(Analogue of Lemma I.5.1.1) If M is a positive Markov kernel with memory m, then for all
a, c ∈ EJ1,mK

κ , any function f, g : Emκ → R,

∑
b∈ELκ

f(a)g(c)Zw

L+m∏
i=1

MwJi,i+mK = 0

where in the sum, w = wJ1, L + 2mK is used instead of abc (meaning that wJ1,mK = a and
wJL+m+ 1, L+ 2mK = c).

The proof is the same as that of Lemma I.5.1.1 taking into account Remark I.5.1.2.

The proof of Theorem I.3.1.2 is very similar to that of Theorem I.2.1.2; we discuss only the main
differences.
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I.C. Proof of Theorem I.3.1.2

We will prove the two cyclical implications (i) ⇒ (ii) ⇒ (iii) ⇒ (iv) ⇒ (v) ⇒ (i) and (v) ⇒
(vi)⇒ (vii)⇒ (viii)⇒ (ix)⇒ (v).
• Proof of (i) ⇒ (ii) The following comparison gives the result if we consider n = 2k + 1 large
enough

NLinen(xJ1, k + 1K0k)− NLinen(xJ1, kK0k+1) = ρ1Replaceh(xJk + 2− s, k + 1K0s−1; 0)

and the LHS is zero, because the solution is invariant.
• Proof of (ii)⇒ (iii)⇒ (iv)⇒ (v) The proof of Theorem I.2.1.2 may be adapted.
• Proof of (v)⇒ (i) The proof of the following lemmas can be adapted

Lemma I.C.0.2
(Analogue of Lemma I.5.1.3) Let M be a Markov kernel with memory m and positive entries. If
MasterM,T

h ≡ 0, then for all n ≥ 2L− 1, all k ∈ J2, n− 1K, all x ∈ Enκ ,

NLineρ,M,T
n (x) = NLineρ,M,T

n−1 (x{k}).

Lemma I.C.0.3
(Analogue of Lemma I.5.1.4) IfM is a positive Markov kernel with memory m then for all n ≥ m,
for all x ∈ EJ1,nK

κ , then∑
y∈Eκ

NLineρ,M,T
n+1 (xy)MxJn−m+1,nKy = NLineρ,M,T

n (x)

=
∑
y∈Eκ

NLineρ,M,T
n+1 (yxJ1, nK)MxJn−m,nK.

Moreover if n ≤ m− 1, then∑
y

NLineρ,M,T
n+1 (xJ1, nKy) = NLineρ,M,T

n (xJ1, nK) =
∑
y

NLineρ,M,T
n (yxJ1, nK).

To prove this modification, just see that from Line to NLine we divided by
∏n−m
j=1 MxJj,m+jK if

n ≥ m + 1 and NLineρ,M,T
n ≡ Lineρ,M,T

n if n ≤ m, hence summing over xn (respectively x1), using∑
b∈EκMa,b = 1 (respectively

∑
a∈Emκ ρaMa,b = ρb) and Lemma I.C.0.1 gives the result.

Lemma I.C.0.4
(Analogue of Lemma I.5.1.5) Consider M a positive Markov kernel with memory m, and T a
JRM with range L. If MasterM,T

h ≡ 0 then for all n, NLineρ,M,T
n ≡ 0.

Proof. Since by Lemma I.C.0.3 one can deduce the nullity of NLineρ,M,T
n from NLineρ,M,T

n+1 , and since
by Lemma I.C.0.2 we may deduce the nullity of NLineρ,M,T

n from that of NLineρ,M,T
n−1 for n ≥ 2L−1, it

suffices to prove NLineρ,M,T
N ≡ 0 from the N of our choice, as far as it is larger than max{2L−1, 2m}

(where 2m is chosen for commodity).

We will adapt the argument of Lemma I.5.1.5. The argument is a bit more involved here. Take
A ∈ ENκ . Using iteratively Lemma I.C.0.3,∑

bJ1,mK∈Emκ

NLineρ,M,T
N+m (AbJ1,mK)

m∏
j=1

MAJN−(m−j),NKbJ1,jK = NLineρ,M,T
N (A). (I.118)
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By Lemma I.5.1.3, NLineρ,M,T
N+m (AbJ1,mK) is unaffected by the suppression of inner letters (as long as

it remains at least 2L− 2 letters), so that NLineρ,M,T
N+m (AbJ1,mK) = NLineρ,M,T

N (AJN −mKbJ1,mK).
Hence, (I.118) becomes

∑
bJ1,mK∈Emκ

NLineρ,M,T
N (AJ1, N −mKbJ1,mK)

m∏
j=1

MAJN−(m−j),NKbJ1,jK = NLineρ,M,T
N (A). (I.119)

Consider the matrix Γ = (Γu,b)u,b∈Emκ defined by

Γu,b =

m∏
j=1

MuJj,mKbJ1,jK

(I.119) is equivalent to∑
B∈Emκ

NLineρ,M,T
N (AJ1, N −mKB)ΓAJN−m+1,NK,B = NLineρ,M,T

N (A) (I.120)

Now, Γu,b is a Markov kernel: it is P(XJm + 1, 2mK = b |XJ1,mK = u) for a Markov chain with
memory m and kernel K. Therefore rewriting in (I.120), A under the form AJ1, N −mKA′J1,mK
where A′J1,mK is the suffix of A, this equation is equivalent to

NLineρ,M,T
N (AJ1, N −mKA′J1,mK) =

∑
B∈Emκ

NLineρ,M,T
N (AJ1, N −mKB)ΓA′J1,mK,B

from what appears that

vAJ1,N−mK =
[
NLineρ,M,T

N (AJ1, N −mKB), B ∈ Emκ
]

is a left eigenvector to the Γt. Taking into account the hypothesis on M ,

vAJ1,N−mK = λAJ1,N−mK
[
1 · · · 1

]
which means that NLineρ,M,T

N (AJ1, N −mKB) = λAJ1,N−mK does not depend on B.

Since N ≥ 2L− 1, and since by Lemma I.5.1.3, NLineρ,M,T
N (AJ1, N −mKB) is unaffected by the

suppression/addition of inner letters (as long as these operations are done on words with more than
2L− 1 letters for the suppression and 2L− 2 letters for the addition), for any C ∈ EN−2m

κ

NLineρ,M,T
N (AJ1, N −mKB) = NLineρ,M,T

2N−2m(AJ1, N −mKCB)

= NLineρ,M,T
N (AJ1,mKCB)

so that λAJ1,N−mK depends only of the m first letters of A (we keep m letters for commodity, we
could have kept only A1). Hence, there exists a function f such that

NLineρ,M,T
N (AJ1,mKB) = f(AJ1,mK), (I.121)

for any word B ∈ EN−mκ . Now, we claim that for any k ≥ m, NLineρ,M,T
k (AJ1, kK) = f(AJ1,mK).

If k ≥ N , this can be proved using the argument above. For m ≤ k ≤ N , by Lemma I.C.0.2,
NLineρ,M,T

N (AJ1, kK) =
∑

yJ1,N−mK NLine
ρ,M,T
N (AJ1, kKyJ1, N − kK)

∏N−k
j=1 MyJj−m,jK where yj =

Ak+j for j ≤ 0. Plugging that for any yJ1, N − kK, NLineρ,M,T
N (AJ1, kKyJ1, N − kK) = f(AJ1,mK),

we get the result.
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Now, consider the matrix M = (Mu,v)u,v∈Emκ defined by

MaJ1,mK,bJ1,mK = 1aJ2,mK=bJ1,m−1KMaJ1,mK,bm .

If X = (Xk, k ∈ Z) is a Markov chain with kernel M and memory m, M is simply the Markov kernel
of the Markov chain (Yk, k ∈ Z) defined by Yk = (XJk, k +m− 1K). Hence,

P(Ym = b | Y0 = a) =
m−1∏
j=0

MaJj,m−1KbJ0,jK = Mm
a,b.

Let C be a word withm letters. Measuring the balance at C gives the relation,
∑

B∈Emκ Lineρ,M,T
2m (BC) =∑

B∈Emκ Lineρ,M,T
2m (CB) so that, by (I.51) and given that M is a Markov kernel∑

B∈Eκ
f(B)Mm

BC =
∑
B∈Eκ

NLineρ,M,T
2m (BC)Mm

BC

=
∑
B∈Emκ

NLineρ,M,T
2m (CB)Mm

C,B = f(C),

for the f given in (I.121). Since Mm is positive, f(C) = αρC , where ρC is the invariant distribution
of the Markov kernel Mm.

It remains to check that α = 0. For this, write∑
B∈Emκ

Lineρ,M,T
m (B) =

∑
B∈Emκ

f(B) =
∑
B∈Emκ

αρB = α

and can be rewritten, taking into consideration Lemma I.C.0.3 and the discussion below it

∑
B∈Emκ

Lineρ,M,T
m (B) =

∑
A∈Eqκ

ρAJ1,mK

∑
B∈Emκ

∑
C∈Eqκ

(
2q−m∏
`=1

MwJ`,`+mK

)
×
∑
j

ZwJj+1,j+sK1Jj+1,j+sK∩Jq+1,q+mK6=∅

where wJ1, 2q+mK = ABC. The contribution of each j such that Jj+1, j+sK intersects Jq+1, q+mK,
that is the indices of the letters of B, can be considered apart, and the summation of each index of
w which does not enter in Z can be simplified. The contribution of the j-th term becomes

∑
wJj+1,j+sK

ρwJj+1,j+mKZwJj+1,j+sK

j+L+m∏
i=j+1

MwJi,i+mK

which is 0 by Lemma I.C.0.1.

I.D Proof of Theorem I.3.1.5

First, the linearity principle (Remark I.2.1.10) can be applied to a larger L and M : if a (ρ,M)-
Markov law is invariant by T, then CycleM,T

n ≡ 0 for any n.
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For the converse, starting from NCycleM,T
n ≡ 0 for n ≥ κm we want to prove that NLineρ,M,T

n ≡ 0
for any n ≥ 1. If n−m+ 1 ≥ κm + 1, for any word w of size n, by the pigeon hole principle, there
is a word w′ of size m which appears twice as a factor of w. The sum on Z (indexed by ` letters)
along each factors of size ` of w between the two occurrences of w′ produce the same contribution
as a cycle, and then can be simplified. After simplification, remains only the words w with at most
κm +m letters. The number of remaining words after simplification is then finite. Therefore,∥∥∥∥ ∂∂tµtn

∥∥∥∥
∞
≤ C := sup

N≤κm+m
sup
x∈ENκ

Lineρ,M,T
N (x) < +∞.

The constant C does not depend on n, and therefore

dTV (µtn, µ
0
n) ≤ Ct,

where dTV denotes the total variation distance. At time ε > 0, for a fixed r, then we have
dTV (µεr, µ

0
r) ≤ Cε. Let us prove that the mixture condition (irreducibility and aperiodicity) im-

plies that it is in fact 0. Recall the following property of the distance in variation:

dTV (µ, ν) = 2 inf E(1X′ 6=Y ′)

where the infimum is taken over all couplings, that is, on all pairs (X ′, Y ′) where X ′ is µ distributed
and Y ′ is ν distributed. Now, take two pairs (X1, X2) ∼ µ1,2 and (Y1, Y2) ∼ ν1,2 with independent
marginals, where X1 and X2 are µ distributed, Y1 and Y2 are ν distributed. Suppose that (Xi, Yi)
for i = 1, 2 are optimal couplings for the marginals, that is d := dTV (µ, ν) = 2E(1X1 6=Y1) =
2E(1X2 6=Y2). We have then

dTV (µ1,2, ν1,2) = d2 + 2d(1− d) = 2d− d2 > (3/2)d,

where this last equality is valid when d is small (d < 1/2). Hence, if one knows that the distance
dTV (µ1,2, ν1,2) < ε < 1/2 and that the marginals are independent, then dTV (µ, ν) < (2/3)ε.

The strategy is as follows: we will deduce from the inequality dTV (µtn, µ
0
n) ≤ Ct for any n, that

dTV (µtn, µ
0
n) ≤ (3/4)Ct for any n, so that necessarily dTV (µtn, µ

0
n) = 0.

Take Ir(k) = J1, rK∪J(k−1)r+1, krK. Now write dTV (µtIr(k), µ
0
Ir(k)) ≤ dTV (µtJ0,krK, µ

0
J0,krK) < ε.

Since Ir(k) is the union of two intervals, µtIr(k) is (for a clear notation) the distribution of the pair
(XtJ1, rK, XtJ(k−1)r+1, krK). According to the previous discussion, to conclude it suffices to prove
that when k → +∞, the two pairs At(k) := (XtJ1, rK, X0J1, rK) and Bt(k) := (XtJ(k − 1)r +
1, krK, X0J(k − 1)r + 1, krK) converges to two independent variables with the same distribution.

By the hypothesis we made on the Markov kernel, for any ε′ > 0, it is possible to find a k large
enough such that the variation distance of the initial configuration (X0J1, rK, X0J(k − 1)r + 1, krK)
with a pair of independent r.v. with the same marginals is smaller than ε′′ > 0 for the ε′′ of our
choice.

The fact that the initial configuration converges to independent vectors with same distribution
when k → +∞, is not sufficient. We need to show that their evolution till time t are asymptotically
(in k) independent too.

The argument is routine: Since the number of colors is finite, L is finite, maxw,w′∈ELκ T[w|w′] <
+∞. For t <∞ fixed we build a dependence graph Gt as follows: first, the vertex set of the graph is
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the set of intervals of size L. For each jump that has occurred in a interval I before time t we add an
edge between this interval and the intervals which intersect it (to encode, the fact that the state at
time t of these intervals may have been modified by the jump in I). Since maxw,w′∈ELκ T[w|w′] < +∞,
when k → +∞, the probability that the two intervals J1, rK and J(k− 1)r+ 1, krK intersect distinct
connected components of Gt goes to 1. This suffices to deduce the asymptotic independence of
(At(k), Bt(k)) when k → +∞.
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II
Survival and coexistence for spatial

population models with forest fire epidemics.
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We investigate the effect on survival and coexistence of introducing forest fire epidemics to a
certain two-species spatial competition model. The model is an extension of the one introduced by
Durrett and Remenik [42], who studied a discrete time particle system running on a random 3-regular
graph where occupied sites grow until they become sufficiently dense so that an epidemic wipes out
large clusters. In our extension we let two species affected by independent epidemics compete for
space, and we allow the epidemic to attack not only giant clusters, but also clusters of smaller order.
Our main results show that, for the two-type model, there are explicit parameter regions where either
one species dominates or there is coexistence; this contrasts with the behavior of the model without
epidemics, where the fitter species always dominates. We also characterize the survival and extinction
regimes for the particle system with a single species. In both cases we prove convergence to explicit
dynamical systems; simulations suggest that their orbits present chaotic behavior.
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II.1 Introduction

In the mathematical biology literature, resource competition between n species is widely modeled
through Lotka-Volterra type ODEs of the form

dxi(t)

dt
= xi(t)

(
ai −

n∑
j=1

bijxj(t)

)
, i = 1, . . . , n

if time is taken to be continuous, and the analogous difference equations

xi(m+ 1)− xi(m) = xi(m)

(
ai −

n∑
j=1

bijxj(m)

)
, i = 1, . . . , n

if time is taken to be discrete, where xi ∈ [0, 1] represents the density of the i-th species and the ai’s
and bij ’s are the parameters of the model. The term inside the parentheses determines the effect
of inter-specific and intra-specific competition, and has the advantage of being simple enough for
an easy interpretation of its coefficients while, at the same time, allowing the system to exhibit a
rich asymptotic behavior, including fixed points, limit cycles and attractors. However, despite its
ubiquitousness, the classical model seems inadequate to explain diverse and complex ecosystems, as
conditions for stability become more restrictive for larger values of n; the same seems to be true
regarding conditions for coexistence (see e.g. [65, 8]), implying that, unless the parameters have
been finely tuned, most species will be driven to extinction as a result of competition.

Even though it has been argued that natural selection alone may be able to tune the relevant
parameters to yield a coexistence regime [1], a considerable amount of effort has been directed
towards extending models such as Lotka-Volterra in ways that favor coexistence. Extensions of this
sort include, for example, the addition of predators [92, 66, 101], of random fluctuations in the
environment [115, 86] and of diseases [67, 98]; these extensions succeed in promoting biodiversity,
but result in much more complicated models. An alternative way of extending the model is based
on questioning the linear form of the inter-specific and intra-specific competition terms; indeed, for
large population densities the intra-specific competition of a species has an increasingly important
non-linear component, known as the crowding effect, which is overlooked in the original equations.
The crowding effect is capable of effectively outbalancing the inter-specific competition effect for a
significantly larger set of parameters, permiting coexistence even when n is large [63, 102, 53].

One important source for the crowding effect is the fact that at high population densities the
connectedness between individuals tends to be high, making it easier for an infectious disease to
spread through the population and giving rise to epidemic outbreaks. To the best of our knowledge,
the effect that this phenomenon may have on coexistence has not been explored in the setting of
competing spatial population models. This provides the main motivation for this chapter.

The model which we will study is based on a particle system introduced by Durrett and Remenik
[42], which we will refer to as the moth model (MM). It is inspired by the gypsy moth, whose
populations grow until they become sufficiently dense for the nuclear polyhedrosis virus (Borralinivirus
reprimens, which strikes at larval stage and spreads between nearby hosts) to reduce them to a low
level. The MM is a discrete time particle system which alternates between a growth stage akin to
a discrete time contact process and a forest fire stage where an epidemic randomly destroys entire
clusters of occupied sites. (Forest fire models, which were first introduced in [38], have received much
interest as a prime example of a system showing self-organized criticality, see e.g. [97], but this is not
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the focus of this chapter). [42] was devoted mostly to the study of the evolution of the density of
occupied sites in the limit as the size of the system goes to infinity. Its main result showed that the
system converges to a discrete-time dynamical system which, for large enough rates of population
growth, and as a result of the forest fire epidemic mechanism, is chaotic.

In this work we study an extension of the moth model to a case where there are multiple species
competing for space, each one affected by a different disease. As expected, when birth rates are
sufficiently large the evolution of the system still presents chaotic behavior. The main goal of this
chapter is to show that, in the case of two species, the introduction of forest fire epidemics can
promote coexistence. The intuition behind this phenomenon is simple. Suppose that we have two
species competing for space, in a situation where we would expect the fitter species to drive the
other one to extinction. If we introduce forest fire epidemics into the system then the fitter species,
which in particular achieves higher densities, will be more susceptible to the destruction of very large
occupied clusters. This will have the effect of periodically clearing space for the growth of the weaker
species, which may then have a chance to survive.

An important feature of our study is the fact that it is done not only at the level of the limiting
dynamical system, but also for the (finite) particle system, for which we show that, depending on
the parameters of the model, the weaker species may die out quickly or it may coexist with the fitter
species for a relatively long time. We perform an analogous analysis of survival for the one-species
particle system, complementing the [42] result for the limiting dynamical system.

Since the MM provides the basic setting for all of our results, we will begin by introducing it
and the main results of [42] in some detail, and defer an overview of our extension and results until
Sections II.1.2 and II.1.3. The detailed discussion of our results will be postponed until Section II.2.

II.1.1 The moth model

Definition II.1.1.1
The MM is a discrete time Markov process

(
ηNk
)
k≥0

taking values in {0, 1}GN , where GN is a
finite, possibly random graph of size N , in which each vertex x is either occupied by a particle
(ηNk (x) = 1) or empty (ηNk (x) = 0). The dynamics of the process at each time step is divided
into two consecutive stages, growth and epidemic:

Growth: Each particle gives birth to a mean β > 0 number of individuals and then dies. Individuals
born at site x are sent to a randomly chosen site in its growth neighborhood NN (x) ⊆ GN .

Epidemic: Each site is attacked by an infection with probability αN , independently across different
sites. When an occupied site x is attacked, the infection wipes out the entire connected component
of occupied sites containing x. The occupied sites which survive the epidemic are the ones making
up the population at the start of the next time step.

The main goal of [42] was to show that, for suitable choices of graphs GN , and under some
growth conditions on NN and αN , the trajectories described by the densities

ρNk =
1

N

∑
x∈GN

ηNk (x) (II.1)

converge to the orbit of a deterministic dynamical system which, for certain parameter values, is

101



II.1. Introduction

chaotic. The dynamical system obtained in [42] is defined by a map h : [0, 1] → [0, 1] of the form
h = g0 ◦ fβ , where

fβ(p) = 1− e−βp

is the expected population density after the growth stage starting with density p and g0(q) is the
expected density of sites that survive the epidemic stage when it attacks a population with density
q which is uniformly spread (i.e. distributed according to a product measure with this density). The
particular form of fβ follows from approximating the spatially dependent model by its mean field
version. The function g0, on the other hand, depends heavily on the choice of the sequence of graphs
GN and the epidemic parameters αN , which in [42] are assumed to be in the weak epidemic regime
αN −→ 0, which implies that in the N → ∞ limit the epidemic only attacks infinite connected
components.

In the first part of [42], the authors take {GN}N∈N to be a sequence of random connected
3-regular graphs and work in the case of mean-field growth, where NN (x) = GN for all N . The
mean-field assumption implies that after the growth stage the process looks like percolation on GN ,
and since this graph looks locally like a 3-regular tree then one can hope to obtain explicit formulas:
indeed, the probability that the root (and by consequence any vertex) is in an infinite component can
be computed in terms of the survival probability of a binary branching process, and is given by

g0(p) =

{
p if p ≤ 1

2 ,
(1−p)3

p2 if 1
2 < p ≤ 1.

(II.2)

Together with the above expression for fβ , this gives (see fig. II.1)

h(p) = g0 ◦ fβ(p) =

{
1− e−βp if 0 ≤ p ≤ a0,
e−3βp

(1−e−βp)2 if a0 < p ≤ 1.
(II.3)

To keep the notation simple, in everything that follows we omit the dependence of h on the parameters
of the model.

Figure II.1 – Plot h function, β = 1.6.

Throughout the chapter we will use the notation DS(h) to denote the dynamical system
(
hn(p)

)
n≥0

defined from the iterates hn of a given map h.
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The following theorem states the precise convergence result for the evolution of the density ρNk
of occupied sites as N →∞:

Theorem II.1.1.2: [42], Thm. 2
Suppose that (GN )N∈N is a sequence of random connected 3-regular graphs and that NN (x) =
GN for all x and N . Assume that the infection probability of the epidemic satisfies αN −→ 0
and αN log2(N) −→∞ as N →∞, and also that ρN0 −→ p ∈ [0, 1] in distribution as N →∞.
Then the process (ρNk )k≥0 converges in distribution as N → ∞ (on compact time intervals) to
the (deterministic) orbit of DS(h) started at p.

Key idea.

The condition containing the log2(N) appears in order to say that the whole process is close to
the process ignoring epidemics coming from the outside of the local trees.

The behavior of DS(h) can be described as follows (see [42] for more details):

• If β ≤ 1 then for every p ∈ [0, 1] the sequence hk(p) decreases to 0 as k →∞.

• If β ∈ (1, 2 log 2] then the orbit of hk(p) eventually gets trapped inside the interval [0, 1
2 ],

where h ≡ fβ , which means that there are no epidemic outbreaks. Inside this interval, hk(p)
converges to the only positive fixed point of fβ .

• If β > 2 log 2 then the orbit of hk(p) is still trapped inside the interval [h(1
2), 1

2 ] but there is no
longer convergence to a fixed point. Indeed, since β > 2 log 2, the fixed point of fβ is larger
than 1

2 , so the successive growth stages drive the density above this value, at which time the
epidemic kicks in and forces a relatively large jump back to [h(1

2), 1
2 ].

Thus the case β ≤ 1 corresponds to the extinction regime (at least for the limiting dynamical
system), while for all β > 1 we have lim infk→∞ hk(p) > 0 (for all p ≥ 0), which corresponds to
survival.

The next result establishes the chaotic behavior of the orbits of h when β > 2 log 2 (the third of
the cases above, see fig. II.2):

Theorem II.1.1.3: [42], Theorem 1
The dynamical system DS(h) restricted to the interval [h(1

2), 1
2 ] is chaotic for every β > 2 log 2.

Furthermore, if β ∈ (2 log 2, 2.48], then the system has an invariant measure, µ = µ ◦h−1, which
is absolutely continuous with respect to the Lebesgue measure.

The notion of chaos in the first assertion of the theorem is the one given by Li and York [81] in
their famous period three implies chaos theorem (see [42, Prop. 1.1] for more details). The authors
also proved versions of Theorem II.1.1.2 and of the second assertion of Theorem II.1.1.3 (which is
actually expected to hold for all β > 2 log 2) for the process running on the discrete torus with local
growth, where newly born particles are sent to a local neighborhood with a diameter which grows
suitably with N . However, in this case there is no explicit formula for g, nor numeric values for the
critical parameters. It is precisely because of the availability of explicit formulas that, in everything
that follows, we choose to work in the setting of random 3-regular graphs.

103



II.1. Introduction

Figure II.2 – Orbits of the system (hk(p))k≥0 started at p = 0.1. The x-axis has the values of β used in the
simulations, while the y-axis has hk(p) for k = J501, 550K (image by Daniel Remenik).

II.1.2 The Multi-type Moth Model

Our main interest in this chapter is the study of the multi-type moth model (MMM), a natural
extension of the moth model which considers multiple species competing for space subject to the
same sort of epidemics. We describe it formally next.

Definition II.1.2.1
Fix a graph GN as before and let m ∈ N, which will be the number of species. The MMM
is a discrete time Markov chain

(
ηNk
)
k≥0

taking values in {0, . . . ,m}GN ; each site x ∈ GN

can be occupied by an individual of type i ∈ {1, ...,m} (ηNk (x) = i) or vacant (ηNk (x) =

0). The process depends on two sets of parameters, ~β = (β(1), . . . , β(m)) ∈ Rm+ and ~αN =
(αN (1), . . . , αN (m)) ∈ [0, 1]m, and as in the MM the dynamics of the process at each time step
is divided into two consecutive stages:

Growth: An individual of type i at site x ∈ GN sends a Poisson[β(i)] number of descendants to
sites chosen uniformly at random in NN (x) ⊆ GN . If a site receives individuals of more than one
type, then the individual that survives is chosen uniformly among the individuals it receives (this
fixes the type).

Epidemic: Each site x occupied by an individual of type i after the growth stage is attacked by an
epidemic with probability αN (i), independently across sites. The individual at x then dies along
with its entire connected component of sites occupied by individuals of type i. This happens
independently for i = 1, . . . ,m.

Note that we have assumed that the offspring of each individual is Poisson distributed. Although it
would be possible to work with more general offspring distributions, as in the MM, we opt to make
this assumption in order to simplify the presentation and proofs.

If one suppresses the epidemic stage then our process turns into a multi-type contact process, for

104 Luis Fredes



II. Survival and coexistence for spatial population models with forest fires

which it is relatively easy to prove that the fitter species (i.e. the one with the largest growth parameter
β(i)) will outcompete and drive to extinction all the other ones. In our main result, Theorem II.2.3.5,
we show that the introduction of forest fire dynamics changes this picture, allowing two species
to coexist even when they have different fitnesses. We remark, however, that in our model we are
assuming that epidemics affect each species independently; this is natural when considering epidemics
lacking cross-species transmission due to genetic distance, but is not a very realistic assumption if
one thinks about the competition of different species of trees and takes the forest fire metaphor
literally. It seems, nevertheless, that this assumption is important for coexistence to arise in our
setting, as we will discuss further in Section II.2.2, where we present an example with non-specific
epidemics in which the stronger species drives all the rest to extinction. It should be noted that this
qualitative difference between epidemics with and without cross-species transmission is somewhat
similar to the one found in the literature for predators, where the addition of a “specialist" predator
to Lotka-Volterra systems can be more effective in promoting coexistence than the addition of a
“generalist" predator (see [101]).

Remark II.1.2.2
A related model was studied by Chan and Durrett [24], who proved coexistence for the two-type,
continuous time contact processes in Z2 with the addition of a different type of forest fires,
which act by killing all individuals (regardless of their type, and regardless of whether they are
connected) within blocks of a certain size. They showed that if the weaker competitor has a
larger dispersal range then it is possible for the two species to coexist in the model with forest
fires; this contrasts with Neuhauser’s result [94] for the model without forest fires for which such
coexistence is impossible. Our context is different, since we work on a random graph with forest
fires which travel only along neighbors of the same type and which have an unbounded range, and
since all species use the same dispersal neighborhoods The techniques we use are also different,
and the results we obtain are of a slightly different nature. But the motivation is similar, and our
results complement nicely with theirs.

As we already mentioned, all of our results will be proved in the case where GN is a random
connected 3-regular graph. The first step in our analysis of the MMM is an adaptation of The-
orem II.1.1.2 to the multi-type case, Theorem II.2.1.2. More precisely, let

{
ρNk
}
k≥0

denote the
sequence of density vectors obtained from

{
ηNk
}
k≥0

as

ρNk = (ρ
N,(1)
k , . . . , ρ

N,(m)
k ) with ρ

N,(i)
k =

1

N

∑
x∈GN

1{ηNk (x)=i}. (II.4)

Then under suitable conditions on ~β, ~αN and the growth neighborhood NN (x), and assuming further
that ~αN converges to some limiting ~α ∈ [0, 1]m, we show that ρNk converges in distribution to a
certain dynamical system DS(h) which is an m-dimensional analogue of the dynamical system we
obtained for the MM.

We remark that in this work we are going beyond the weak epidemic regime of [42] by allowing
the infection rates αN (i) to converge to arbitrary values α(i) ∈ [0, 1]. This is natural from the
biological point of view, as it incorporates into the model the effect of diseases with a fixed incidence
rate. This generalization, which has the effect of modifying the m ≥ 1 analog of g0 (see (II.2)), has
a major impact on the dynamical system, allowing the epidemics to kill not just infinite connected
components but finite ones as well. In particular, for α(i) > 0 the density of the type-i population
no longer needs to be above the percolation parameter of the network for the epidemic to kick in, so
we observe its effects at all times.
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II.1.3 Overview of the main results

Phase diagram of the dynamical system

Since our main interest is to understand whether the introduction of forest fire epidemics can
promote coexistence, for simplicity we restrict our study of the phase diagram of DS(h) to the case
of two species (m = 2). Our results (Theorems II.2.3.1 and II.2.3.3) show that, as expected, there
exist parameter regions where domination occurs (that is, where the fittest species drives the other
one to extinction) as well as other parameter regions where both species coexist (that is, where both
coordinates of hk remain bounded below as k → ∞). The regions obtained in our theorems are
defined through two explicit inequalities, (II.13) and (II.14), which are naturally expressed in terms
of the parameters

φi := (1− α(i))β(i),

which we will refer to as the fitness of each species (and corresponds to the effective birth rate of
individuals after considering the probability that a newly born particle does not survive the epidemic
stage due to an infection arising in its location). In particular, we find the following (see also
Figure II.8); here we assume that type 2 corresponds to the fitter species:

• Extinction is certain for any species with fitness value φi ≤ 1. This is analogous to the
extinction for the case β ≤ 1 described in the analysis of DS(h) for the MM.

• For every given fitness value φ2 > 1 of the stronger species we can choose φ1 sufficiently close
to, but larger than, 1, so that type 2 dominates.

• For any ε > 0 small we can choose φ1 and φ2 large but with relative fitness φ1

φ2
= ε such that

both species coexist.

Note that, in view of the second and third points above, given any small ε > 0 we can choose
two different sets of parameters with the same relative fitness ε so that in one case type 1 is driven
to extinction while in the other case there is coexistence. Hence relative fitness does not provide
enough information about the behavior of the system, which indicates that the effect of the forest
fire epidemics is what is driving the qualitative difference in behavior.

As we have mentioned, even in the case of m = 1 our model provides an extension of the model
studied in [42], as it drops the weak epidemics assumption by allowing for αN → α > 0. This
extension is far from trivial at the level of the limiting dynamical system DS(h): as we will notice
in Section II.2.2, from numerical simulations it is clear that for each fixed α ∈ (0, 1) the bifurcation
diagram of DS(h) develops bifurcation cascades (also known as period-doubling bifurcations) in β,
such as those seen for example for the quadratic maps x 7−→ rx(1 − x), see Figure II.4. See
Section II.2.2 for more details.

Coexistence and survival for the particle systems

Our main results concern the behavior of the particle system for finite N and for one and two
species. The main idea is to show that the behavior of the limiting dynamical systems DS(h) provides
a good guide for the behavior of the original process. Note, however, that the MMM is a finite state
Markov chain for which the extinction time of all types is almost surely finite, so we need to change
our notions of coexistence and survival when working at the level of the particle systems. To this
end we follow the usual approach (see e.g. [28, 41]) where one characterizes the different phases of
the system in terms of the behavior of the (random) extinction times as a function of the network
size N . Our main result in the case with m = 2 is Theorem II.2.3.5, which shows that there are
parameter choices so that the weaker species may die out quickly while the fitter one survives for a
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relatively long time, and other parameter choices for which both species survive for a relatively long
time.

The main challenge in proving results for our particle systems comes from the slow convergence
of the empirical densities to the limiting dynamical system. This is intrinsic in the very nature of
our model: it is hard to obtain a fine control on the distance between the finite system and its limit
when the limiting system itself presents chaotic behavior, which makes it essentially impossible to
predict its evolution. As a consequence, in our proof of coexistence we are not able to show that the
extinction times of both species grow exponentially in N , as should be expected. For the case m = 1
(Theorems II.2.2.2 and II.2.2.3), on the other hand, we prove survival (when φ > 1) and extinction
(when φ ≤ 1) arguing directly on the particle system ηNk (and not relying on the convergence to
the dynamical system), and as a result we are able to prove that the expected extinction time does
indeed grow exponentially at least for φ > φ∗ for some φ∗ > 1.

Outline

The rest of the chapter is organized as follows. In Section II.2.1 we state our convergence results
(discussed in Section II.1.3). In Section II.2.2 we state the results related to the MM (discussed in
Section II.1.3), while in Section II.2.3 we state the results related to the MMM (the multi-type case
discussed in Section II.1.3). Last two sections also contain brief discussions about the main aspects
involved in the proofs of our results. The proof themselves are deferred to Sections II.4, II.5 and
II.5.3, devoted to the MM, the MMM and some technical results respectively.

II.2 Results

II.2.1 Convergence

As discussed in Section II.1.2, the starting point of our work is a convergence theorem for the
MMM, analogous to the convergence proved in [42, Thm. 2] for the MM with weak epidemics.
Analogously to (II.3), the limiting dynamical system will be given as DS(h) with h of the form g~α◦f~β ,
where f~β and g~α describe the limiting densities after the growth and epidemic stage, respectively.
In order to derive a good candidate for f~β we will focus for simplicity on the mean-field model
(NN (x) = GN ), even though our result will be slightly more general, allowing for NN (x) = B(x, rN )
for rN converging to infinity sufficiently fast. Recalling the Poisson assumption on the offspring
distribution, the expected proportion of occupied sites after the growth stage with initial densities
given by p ∈ S(m) is 1 − e−

∑m
i=1 β(i)pi , and since in the process we let each site choose its type

uniformly at random from the particles it receives, the expected density of sites occupied by type i
after the growth stage is given by

f
(i)
~β

(p) =
(

1− e−
∑m
i=1 β(i)pi

) β(i)pi∑m
i=1 β(i)pi

. (II.5)

The function g~α, on the other hand depends heavily on the particular choice GN which, we recall, we
always take to be a random 3-regular connected graph. In this case, and as explained in Section II.1.1,
the graph looks locally like a 3-regular tree, so in order to guess a candidate for g~α we can pretend that
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the epidemic stage acts on the infinite 3-tree T . Let us also assume for a moment that m = 1. Then
we need to analyze the effect of the epidemic when attacking a configuration of particles distributed
as site percolation on T with a given density q (whose distribution, i.e. a product measure on {0, 1}T
where each vertex is occupied with probability q, we denote as Pq). Note that if Cr denotes the
connected component of occupied sites containing r then the probability that r survives is given by
(1− αN )|Cr|1{|Cr|>0}. As a consequence, we should expect that the limiting probability that a given
site is occupied after the epidemic stage (when it attacks a system with a fraction q of occupied
sites) be given by

gα(q) = Pq(r is occupied, r survives the epidemic) = Eq((1− α)|Cr|1{|Cr|>0})

(here r is any vertex of T ).

The right hand side can be computed explicitly:

Proposition II.2.1.1
For any q ∈ [0, 1],

gα(q) =


0 if α = 1,(

1−
√

1−4(1−α)q(1−q)
)3

8(1−α)2q2 if α ∈ (0, 1),

q if α = 0.

Key idea.
Computation of the generating function of the number of subtrees containing the root in a 3-
regular infinite tree.
Tools: formal generating function

The explicit formula in the case α ∈ (0, 1) (whose simple proof is included in Section II.3) is
related to the generating function of the Catalan numbers. Now in the general case, when m ≥ 1,
since the epidemics attack each species independently, we deduce that the density of sites occupied
by type i after the epidemic stage acts on a population with initial densities ~q ∈ S(m) := {~x ∈
[0, 1]m :

∑m
i=1 xi ≤ 1; xi ≥ 0} should be given by

g
(i)
~α (~q) = gα(i)(qi). (II.6)

We are ready to state our main convergence result. Given p ∈ S(m) define h(p) =
(
h1(p), . . . , hm(p)

)
through

hi(p) = gα(i) ◦ f~β(p).

Note that in the case m = 1, h1 coincides with the function h defined above for the MM, which
justifies our use of the same notation in both cases.

Theorem II.2.1.2
Consider the MMM with m types and with NN (x) = B(x, rN ). Suppose that the sequences ~αN
and rN satisfy

αN (i) −−−−→
N→∞

α(i) ∈ [0, 1], αN (i)rN −−−−→
N→∞

∞, and rN ≤ 1
25 log2(N)2αN (i) ∀N ∈ N. (II.7)

Suppose also that ηN0 is a product measure where each site is independently chosen to have
type i with probability pi. Then as N → ∞, the density process

(
ρNk
)
k≥0

associated to the
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MMM converges in distribution (on compact time intervals) to the deterministic orbit, starting
at p = (p1, . . . , pm), of the dynamical system DS(h).

Key idea.
We propose a candidate limiting dynamical system and then we prove that, in fact, it is the limit.
The technical assumption √

rN
αN (i)

≤ log2(N)

5
∀N ∈ N

helps to create a close modified version of the process at each point ignoring the epidemics from
the outside of its ball of radius

√
rN/αN (i). Since 3-random regular graphs look like a 3-regular

tree in a neighborhood of radius log2(N)
5 , we can guess the limit candidate from ordinary generating

functions of 3-regular trees.
Tools: Ordinary generating function, percolation on vertices.

The condition ~αN → ~α ∈ (0, 1)m implies that in the limit the epidemic attacks not only giant
clusters, but of small order too.

It is important to remark that even though, the diameter of a uniform random 3-regular graph is
O(log(N)) [16], the condition on rN is not trivial (i.e. it is not of the order of the diameter):

• If α(i) ∈ (0, 1] for all i ∈ {1, 2, . . . ,m}, the conditions on rN simplifies and we can consider
any (rN )N∈N going slowly enough to infinity. Ex: rN = log(log(N)).

• If α(i) = 0, then the MMM with parameters αN (i) = log(log(log(N)))−1 and rN =
log(log(N)) satisfies the hypothesis of the theorem.

Note that the last two assumptions in (II.7) are trivially satisfied in the mean-field case NN (x) =
GN (i.e. rN = ∞) if α(i) > 0. The proof of Theorem II.2.1.2 is based on a relatively simple
adaptation of the arguments of [42], needed to control the effect of the epidemic on finite components
in order to go beyond the weak epidemics regime. It is worth noting (and will be clear from the proof)
that in the mean-field case one could drop the product measure assumption on the initial condition
(simply because the growth step returns a product measure anyway).

As discussed in the introduction, the behavior of the limiting dynamical system DS(h) provides us
with informed guesses regarding the behavior of our particle systems. However, the above convergence
result is not sufficient in order to prove that the behavior of the dynamical systems is in fact mirrored
at the level of the finite MMM particle system; this requires quantitative estimates on the speed of
convergence with an explicit control on the dependence on N . The approximation result that follows
provides the necessary estimates in the case of mean-field growth. We believe that the result holds
in the local growth setting of Theorem II.2.1.2; however, the algebraic expressions involved become
even more complicated, so for simplicity we choose, here and in basically all the other upcoming
results, to restrict the discussion to the simpler mean-field setting.

Let

θα(N) =

{
e−
√

log(N) if α = 0

N−α/5 if α > 0.

Theorem II.2.1.3
Consider the mean-field MMM (i.e. NN (x) = GN for all x ∈ GN ) with m types. Suppose that
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the sequence ~αN converges to some ~α ∈ [0, 1]m and satisfies

−αN (i) logN/ logαN (i) −→∞ (II.8)

for each i. Then for all δ > 0 and k ∈ N there is a constant C > 0 depending only on δ and k
such that for all N ∈ N and any initial condition ηN0 we have

P
(∥∥ρNk − hk(ρN0 )

∥∥ > δ
)
≤ Cθα(N), (II.9)

where α = min{α(1), . . . , α(M)}.

Key idea.
The main ingredient in the proof is Lemma II.3.0.2, which uses a comparison with a branching
process to estimate the difference between h and the expected density after one step.

II.2.2 Results for the one-type model

Phase diagram and bifurcation cascades

We begin our study of the MM by briefly exploring the behavior of the limiting dynamical system,
see fig. II.3. Recall our definition of the fitness parameter

φ = φ(α, β) = β(1− α).

Figure II.3 – Plot h function, β = 1.6, α = 0.1 (φ = 1.44).

The following simple result establishes the desired phase transition between extinction and survival
in the orbits of DS(h).

Proposition II.2.2.1
Let α ∈ [0, 1] and β > 0.
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(i) (Extinction) If φ(α, β) ≤ 1, then

hk(p)
k→∞−−−→ 0 ∀p ∈ [0, 1].

(ii) (Survival) if φ(α, β) > 1, then

lim inf
k→∞

hk(p) > 0 ∀p ∈ (0, 1).

Key idea.
We study the behavior of repulsion and attraction of 0 as fixed point of the function h, which is
related to the behavior of the derivative of h (similar, for example, to the case of Galton-Watson
trees).

Let us briefly comment on an interesting behavior which becomes apparent from numerical simu-
lations of the orbits of DS(h): the bifurcation cascades which we mentioned in Section II.2.2. These
are sequences of period doubling bifurcations that occur as the parameter β is increased (for fixed
α > 0), and which accumulate at a certain finite value of β. Figure II.4 (left) shows bifurcation
diagrams for DS(h) which clearly suggest the occurrence of this phenomenon in our system. This
behavior contrasts with case α = 0 where, as pointed out in [42] (see the discussion preceding
Prop. 1.1 there), the system proceeds directly from a stable fixed point to a chaotic phase, without
passing through period-doubling bifurcation; the parameter α has thus the effect of modulating the
appearance of these bifurcation cascades.

The prototypical example of a dynamical system presenting this behavior is the one defined by
the quadratic map x 7−→ rx(1− x), which has a first period doubling bifurcation occurring at r = 3
and then subsequent ones which continue up to r ≈ 3.56, where a chaotic regime arises; this pattern
is then repeated for larger values of r. This intricate behavior has been intensely studied since at
least the 1970’s, and presents an intriguing form of universality, which roughly states that the ratio
of the gaps between subsequent period doubling bifurcations converges to a universal constant for
a wide class of dynamical systems showing this type of cascades (see e.g. [47, 111], where several
universality conjectures were settled). This area of dynamical systems continues to be developed to
this day (see e.g. [99, 69]); we refer the reader to [112] for a nice account. Our simulations suggest
that cascades appear for all α ∈ (0, 1) when β is increased above 1, but proving this appears to be
difficult due to the algebraic structure of h (in particular, the bifurcation points do not have a simple
analytic expression). Figure II.4 (right) shows a simulation of the evolution of the MM for finite N
and different values of β; note how some of the period doubling bifurcation behavior of the limiting
system is still apparent in these simulations.

Figure II.5 presents a schematic summary, partly based on simulations, of the behavior of the
orbits of DS(h) as a function α and β.

Extinction and survival for the particle system

We turn now to the dichotomy between extinction and survival at the level of the MM particle
system for finite N . As discussed in the introduction, we will exhibit contrasting behaviors for the
absorption time

τN := inf
{
k ≥ 1 : ηNk (x) = 0∀x

}
= inf

{
k ≥ 1 : ρNk = 0

}
.
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Figure II.4 – Left: Bifurcation diagram in β for DS(h) with α = 0.1, showing the orbits of the system
between iterations 900 and 1000 in the vertical direction for different values of β.

Right: Simulation of the evolution of the mean-field MM for α = 0.1 and different values of β, from iteration
900 to 1000. Here N ∈ {20000, 40000, 100000} (depending on β).

Figure II.5 – Approximate phase diagram of DS(h). The transition between extinction and survival is justified
by Proposition II.2.2.1, while the one governing the appearance of bifurcation cascades (dashed line) is based
on simulations.

The following result is satisfied for any fixed N (the size of the graph GN ) and any fixed choice
of α(N), but for the sake of concreteness one may think of the case α(N) → α (or even with
α(N) = α).

Theorem II.2.2.2
For the mean-field MM and any N ∈ N we have:

(i) (Extinction) If φ(αN , β) ≤ 1, then for all n ∈ N and any initial density ρN0

P(τN ≥ n) ≤

1− (1− φ(αN , β)n)N if φ(αN , β) < 1,

1−
(

1− 2
n(1−αN )(σ2+αNβ2)

)N
if φ(αN , β) = 1,

where σ2 is the offspring variance distribution of each particle in the growth stage. In

112 Luis Fredes



II. Survival and coexistence for spatial population models with forest fires

particular, it follows that when φ(αN , β) < 1 there is C > 0 independent of N such that

E(τN ) ≤ C log(N). (II.10)

(ii) (Survival) If φ(αN , β) > 1 and ρN0 ≥ ρ̄0 for some ρ̄0 > 0, then there exists c > 0
(depending only on ρ̄0 and αN ) such that

P(τN ≥ n) ≥
(

1− c

N

)3n
.

In particular, if we assume that αN log2(N)→∞ then

E(τN ) ≥ N

4c
. (II.11)

Key idea.
The proof of extinction is based on a comparison with a branching process where one considers
that epidemics do not spread. For survival we keep track of isolated occupied sites, which are not
affected by epidemic events coming from other sites.
Tools: Galton-Watson process, stochastic domination, coupling, Tchebychev inequality.

We believe that in the extinction regime the process actually has exponential expected absorption
times. In the next result we show that this is indeed the case, at least for large enough φ, under an
additional (but reasonable) condition on our random graphs.

Recall that a k-independent set of a graph G is a subset I of its vertices such that, for any
x, y ∈ I, dG(x, y) ≥ k. Given 0 ≤ b < 1 we define the events

RN (b) :=
{
GN has a 3-independent set I with |I| ≥ bN

}
.

From [9, Thm. 1.1] we have there exists b1 ≈ 0.09 such that

P
(
GN ∈ RN (b1)

)
−−−−→
N→∞

1. (II.12)

In words, our random 3-regular graphs contain a 3-independent set made out of fraction of at least b1
of its vertices with probability close to 1 as N becomes large. This justifies conditioning on RN (b1)
in the coming theorem.

Theorem II.2.2.3
Fix b1 as in (II.12) and assume that φ(αN , β) > 1/b1 and that ρN0 ≥ ρ̄0 for some ρ̄0 > 0. Then
(in the case of mean-field growth) there is a c > 0, depending only on αN and ρ̄0 such that

P
(
τN ≥ n

∣∣GN ∈ RN (b1)
)
≥ (1− exp(−cN))3n.

In particular, if αN −→ α ∈ [0, 1) and αN log2(N) −→∞ as N →∞, then

E
(
τN |GN ∈ RN (b1)

)
≥

{
3 exp(cN) if α ∈ (0, 1),

3 exp
(

cN
log(N)2

)
if α = 0.

Key idea.
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The difficulty in Theorem II.2.2.2 is the dependence between vertices. This force us to use Cheby-
chev inequality, which gives a polynomial bound. Here we give a setting with independence between
a subset of sites, we then use a Chernoff type bound to obtain the exponential expected absorption
time.
Tools: Chernoff bounds, independent sets of graphs.

II.2.3 Results for the multi-type model

In everything that follows we only consider the two-type case, m = 2.

Phase diagram

As for the MM, we begin by studying the behavior of the orbits of DS(h). The analysis is much
more involved than the one for the one-type model, but it provides us with a glimpse on the role that
the forest fire dynamics can have in aiding coexistence. In fact, our results in this part, together with
the above approximation result (Theorem II.2.1.3), will constitute the basic ingredients for our later
analysis of the particle system. As we mentioned, we will only look at the two-type case m = 2.

We are interested in identifying two different regimes for DS(h): we say that there is domination
if one species goes extinct while the other one survives, i.e. if (lim infk→∞ hk1(~p), lim infk→∞ hk2(~p))
has one and only one vanishing coordinate, while we say that there is coexistence if both types survive,
i.e. if the same liminf is strictly positive in both coordinates. Notice that once one species dies out,
the behavior of the other one, say the one with type i, evolves according to the dynamical system
given by hi = gα(i) ◦ fβ(i) as in the one-type case.

Since we are interested in coexistence, we will restrict the discussion to the case when

φi := φ(α(i), β(i)) > 1

for both i = 1 and i = 2; by Proposition II.2.2.1 we know that if this fails then at least one of
the species would die out even when facing no competition, whence it easily follows that coexistence
would be impossible. For concreteness we will always assume type 2 is fitter than type 1, i.e. φ1 < φ2.

In order to ease notation, from now on we denote, for a given initial condition p ∈ [0, 1]2 and any
i ∈ {1, 2}

pki = hki (p).

Theorem II.2.3.1: Coexistence
There is a continuous, increasing function z : [0, 1] −→ R+ (defined in (II.52)) satisfying z(0) =
2 log(2) and z(1) < 4 log(2) such that the following holds. Suppose that φ2 > z(α(2)) and

φ1

√
2(1− e−κ2)(1− e−

φ2
2 )

κ2φ2
> 1, (II.13)

where κ2 is the solution of κ2 = β(2)gα(2)(1− e−κ2). Then for any initial condition p ∈ (0, 1)2

we have
lim inf
k→∞

pk1 > 0, and lim inf
k→∞

pk2 > 0.
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Key idea.
The main idea behind this theorem is the following. We only need to worry about situations when
the system gets very close to one of the axes. We focus on the case where p1 is very small. In
that scenario the effect of the type 1 species on pk2 is negligible, meaning that type 2 evolves as if
it were alone. On the other hand, for p1 small, the total growth of type 1 after one iteration will
be roughly φ1 times a factor smaller than 1 corresponding to the competition effect coming from
p2. What condition (II.13) states is that, on average, this competition effect coming from type 2
(represented by the square root factor) is not strong enough to compensate the growth produced
by φ1, allowing thus p1 to move away from low density values.
Tools: dynamical system observables, compactness, finite intersection property.

Remark II.2.3.2
In (II.13), the parameter φ1 needs to grow roughly as

√
φ2 log(φ2) as a function of φ2 in order

for the left hand side to stay above 1. To see this, use the definition of κ2 to write φ2 =
κ2

gα(2)(1−e−κ2 )
= κ2

(1−e−κ2 )Gα(2)(1−e−κ2 )3 =
κ2(1+

√
1−4(1−α(2))e−κ2 (1−e−κ2 ))3

(1−e−κ2 )8e−3κ2
, which says that κ2

grows roughly as log(φ2), and then substitute this approximation in (II.13).

The next result states the domination counterpart to Theorem II.2.3.1.

Theorem II.2.3.3: Domination
Let a1(x) be the solution of a1(x) = x(1− e−a1(x)) and assume that φ1 and φ2 satisfy

a1(φ1) <
φ2

1− α(2)
min

{
gα(2)(1− e−

φ2
2 ), gα(2)(1− e−a1(φ1))

}
. (II.14)

Then for any initial condition p with p2 ∈ (0, 1) we have

pk1 −−−→
k→∞

0 and lim inf
k→∞

pk2 > 0.

Key idea.

Even though the condition given in (II.14) is again relatively obscure (see Figure II.8 for an approx-
imation of the associated region), the basic idea behind this result is simple. Starting from any
initial condition we show that the orbit of the dynamical system eventually reaches a set B where
p1 decays exponentially. We then make use of (II.14) to show that neither low nor high values of
p2 can take the dynamical system out of B, making it a “trapping” set where type 1 species dies
out.
Tools: dynamical systems, attraction of fixed points, basin of attraction.

Remark II.2.3.4
It is easy to see that a1(φ1) is increasing with respect to φ1, with a1(1) = 0, so for a given φ2,
any value of φ1 sufficiently close to 1 satisfies (II.14).

Simulations suggest that if φ2 is smaller than but sufficiently close to 2 log 2 and α(1), α(2) ∈
(0, 1), then there exists φ1 smaller than φ2 such that coexistence holds. See Figure II.7 (right) for
a simulation which exhibits this behavior (note that both species have positive density to the left of
the leftmost vertical line).
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Figure II.6 – Bifurcation diagrams in β(1) for type 1 on the left and type 2 on the right, with β(2) = 4 log(2)

and α(1) = α(2) = 0. From left to right, in each figure, the first vertical line is at φ1 = 2 log 2 and the second
one at φ1 = φ2. These diagrams reflect theorems II.2.3.3(b) and theorem II.2.3.1. These diagrams depict
regions corresponding to Theorems II.2.3.3 (dominance of type 2 over type 1) and II.2.3.1 (coexistence);
coexistence corresponds to the region between the two vertical lines in both figures.

Figure II.7 – Bifurcation diagram for type 1 (black) and type 2 (blue). Left: β(2) = 1.99 log(2), α(1) = 0.01

and α(2) = 0.2. From left to right, the first vertical line is at φ1 = φ2 while the second one is at φ1 = 2 log 2.
Right: β(2) = 2.6 log(2), α(1) = 0.01 and α(2) = 0.1. From left to right, the first vertical line is at
φ1 = 2 log 2 while the second one is at φ1 = φ2.

Coexistence and domination in the MMM

We arrive finally at the main results of the chapter, which explore the possibility of domination
and coexistence for the MMM. This is done by using the approximation theorem to transfer the
properties of DS(h) derived in the last section to the associated particle systems for suitable families
of parameters.

Let us stress again that, if we consider the MMM without epidemics, then the resulting process
is nothing more than a multi-type contact process, for which it is known that the species with larger
offspring parameter will always outcompete the other one (this has been proved for other choices of
GN , e.g. the result of [94] mentioned in Remark II.1.2.2, but in the current setting of mean-field
growth it would be simple to prove). The upcoming results will show that, as advertised, there are
choices of parameters for which there is coexistence even when one species has a larger offspring
parameter, and hence that the introduction of forest fire dynamics can indeed lead to coexistence in
a system which would otherwise show domination.
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Let

τ iN = inf
{
k ≥ 1: ηNk (x) 6= i ∀x ∈ GN

}
= inf

{
k ≥ 1 : ρ

N,(i)
k = 0

}
denote the extinction time of the type i.

Theorem II.2.3.5
Consider the two-species mean-field MMM running on a random 3-regular graph GN . Suppose
that for each N the initial density of the process ρN0 is in (0, 1)2, and that the sequence ~αN
satisfies the conditions in Theorem II.2.1.3. Then there are constants C = C(ρN0 ) > 0 and
γ ∈ (0, 1) such that for α = min{α(1), α(2)} we have:

(1) (Coexistence) If ~αN and ~β satisfy the conditions of Theorem II.2.3.1, then

P(τ1
N , τ

2
N ≥ n) ≥

(
1− Cθα(N)

)n
. (II.15)

(2) (Domination of type 2 over type 1) If ~αN and ~β satisfy the conditions of Theorem II.2.3.3,
then

P(τ2
N ≥ n) ≥

(
1− Cθα(N)

)n (II.16)

and
P(τ1

N ≥ n) ≤ 2− (1− γn)N −
(
1− Cθα(N)

)n
. (II.17)

In particular, if we assume that ρN0 → p ∈ (0, 1)2 as N →∞, then:

(1 ’) For ~α and ~β satisfying the conditions of Theorem II.2.3.1 and all ε > 0,

P
(
τ1
N , τ

2
N ≥ 1/θα(N)1−ε) N→∞−−−−→ 1. (II.18)

(2 ’) For ~α and ~β satisfying the conditions of Theorem II.2.3.3, and for all ε > 0, there is a
C ′ > 0 depending only on p such that

P(τ1
N ≤ C ′ lnN)

N→∞−−−−→ 1 and P
(
τ2
N ≥ 1/θα(N)1−ε) N→∞−−−−→ 1. (II.19)

Recalling that θα(N)1−ε is of larger order than ln(N), this gives domination.

Key idea.
We use Theorem II.2.1.3 to copy the behavior of the dynamical system.
Tools: Galton-Watson processes.

As a consequence if condition (II.8) is satisfied, then (in the mean-field case) we have that:

(a) Under the conditions of Theorem II.2.3.1 there is coexistence, in the sense that with high
probability both species are present in the system for an amount of time of order at least
θα(N)−1.

(b) Under the conditions of Theorem II.2.3.3 there is domination, in the sense that, with high
probability, the extinction time of type 1 is at most of order N while type 2 survives for at least
an amount of time of order at least θα(N)−1.

(c) The possibilities for survival and extinction listed in Section II.1.3 hold for the MMM.

(d) In particular, there exist φ2 > 2 log(2) and φ1 < φ′1 < φ2, such that in the MMM associated
to (φ1, φ2) type 2 dominates over type 1 while the MMM associated to (φ′1, φ2) is in the
coexistence regime. This can be achieved, moreover, when α(1) = α(2) = 0.
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Figure II.8 – Summary of the domination and coexistence regimes for the MMM, for α(1) = α(2) = 0 on
the left and α(1) = α(2) = 0.1 on the right. The white (resp. black) regions represent the domination
regime of type 1 over type 2 (resp. type 2 over type 1); these regions are justified by Theorems II.2.3.3 and
II.2.3.5. The gray regions roughly correspond the coexistence regime, and are justified by Theorems II.2.3.1
and II.2.3.5 (the coexistence regions are only approximate in the sense that they where plotted based on their
asymptotic behavior: as φ2 →∞, φ1 grows as

√
φ2 log(φ2), see Remark II.2.3.2). The behavior of the white

regions is not determined by our results.

Figure II.8 contains a sketch of the regions of the phase diagram of the process which have
been probed in Theorem II.2.3.5, which in particular makes the existence of the parameter triplets
(φ1, φ

′
1, φ2) referred to in (d) above apparent. In fact, as φ2 → ∞ we have that φ′1 is of order√

φ2 log(φ2) (see II.2.3.2 for an explanation), and hence we can find φ′1 < φ2 satisfying the corollary
for β(2) sufficiently large.

II.3 Proofs of the convergence and approximation results

We begin with the simple proof of the formula for gα.

Proof of Proposition II.2.1.1. Recall that T denotes an infinite 3-tree, Pp denotes the site percolation
measure on T with density p, and Cr denotes the percolation cluster containing a given vertex r.
The cases α = 0 and α = 1 are straightforward, so we turn to the case α ∈ (0, 1), where we have

Ep((1− α)|Cr|1|Cr|>0) =
∞∑
n=1

(1− α)nPp(|Cr| = n).

Let An be the number of possible connected components of size n in a 3-tree rooted at r, so that
Pp(|Cr| = n) = Anp

n(1 − p)n+2 (notice that n + 2 is the number of vacant sites surrounding a
cluster Cr of size n). Noting that a 3-tree is a root connected to three binary trees and recalling that
the analog of An for a binary tree is given by the Catalan numbers Cn, we get

A0 = 1 and An+1 =
∑n

i=0

∑n−i
j=0CiCjCn−i−j . (II.20)
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Defining the generating functions A(x) =
∑∞

n=0Anx
n and C(x) =

∑∞
n=0Cnx

n, the above equation
gives

A(x) = xC(x)3 + 1 = x
(

1−√1−4x
2x

)3
+ 1,

where we have used the explicit formula for C(x) (see [104]). Using this above yields

Ep((1− α)|Cr|1|Cr|>0) =
∞∑
n=1

(1− α)npn(1− p)n+2An = (1− p)2
(
A((1− α)p(1− p))− 1

)
=

(
1−
√

1−4(1−α)p(1−p)
)3

8(1−α)2p2 .

The proof of Theorem II.2.1.2 is an adaptation of the proof of [42, Theorem 4] for the one-species
model running on the torus, so we will only explain what needs to be changed. The extension to
m > 1 is relatively straightforward, so we will focus first on the adaptations needed to drop the
αN → 0 assumption. The main ingredient in their proof consists in considering bad sites, which are
sites x such that the density of occupied sites in the ball of radius rN around it is far from the global
density of occupied sites, and then proving (see their Prop. 5.1) that starting one iteration of the
system with a small enough density of bad points yields a small density of bad points after one time
step.

We introduce the following definitions:

B(x, r) := {y ∈ RN : d(x, y) ≤ r}, (II.21)
V (r) := |B(x,m)| = 3 · 2r − 2, (II.22)

d
N,(i)
k (x) :=

1

V (rN )

∑
y∈B(x,rN )

1{ηk(y)=i}, (II.23)

GNk (ε):= {x ∈ GN :
∑m

i=1 |d
N,(i)
k (x)− hki (p)| < ε}. (II.24)

In the next lemma we will use the same random variables defined in the proof of [42, Thm. 4], only
changing their C0 by Cr.

Lemma II.3.0.1
Assume m = 1. Given ε > 0 there exists N sufficiently large such that

E
(
|ρ̃Nk+1 − ρ̂Nk+1|

)
≤ ε.

Proof. We will use δ1 > 0, δ2 > 0 as small as needed. Changing the proof of convergence given for
|dNk (x)− dNk (0)| in [42, Lem. 5.4] by

P
(
|dNk (i)− dNk (0)| > δ1 for some x ∈ B(0, lN )

)
≤ V (lN ) supx∈B(0,lN ) P

(
|dNk (x)− dNk (0)| > δ1

)
= V (lN ) supx∈B(0,lN ) P

(∣∣∣ 1
V (rN )

(∑
y∈B(x,rN )\B(0,rN ) η

N
k (y)−

∑
y∈B(0,rN )\B(x,rN ) η

N
k (y)

) ∣∣∣ > δ1

)
≤ supx∈B(0,lN )

V (lN )Var

(∣∣∣∑y∈B(x,rN )\B(0,rN ) η
N
k (y)−∑y∈B(0,rN )\B(x,rN ) η

N
k (y)

∣∣∣)
V (rN )2δ2

1

≤ supx∈B(0,lN )

V (lN )Var
(∑

y∈B(x,rN )\B(0,rN )∪B(0,rN )\B(x,rN ) η
N
k (y)

)
V (rN )2δ2

1

119



II.3. Proofs of the convergence and approximation results

≤ 2V (lN )V (rN )Var(ηNk (0))
V (rN )2δ2

1

gives
P
(
|dNk (i)− dNk (0)| > δ1 for some i ∈ B(0, lN )

)
≤ 2V (lN )

V (rN )δ2
1
≤ 1

δ2
1
2lN−rN+2 −→ 0.

Now define Y (δ) = #
(
ξ
hk(p)+2δ1
1/2 \ ξhk(p)

1/2

)
. For the inequality in (5.4) in [42] in our case we

consider the following bound

P
(
ξ
hk(p)+2δ1,N
1 (0) = 0, ξ

hk(p),N
1 (0) = 1,#ξ

hk(p)+2δ1
1/2 <∞

)
≤ E

(
1−

(
(1−α)

2

)Y (δ1)
1
{#ξhk(p)+2δ1

1/2
<∞}

)
≤
∑∞

i=0

(
1−

(
(1−α)

2

)i)
P
(
Y (δ1) = i

∣∣∣#ξhk(p)+2δ1
1/2 <∞

)
.

The last term converges to 0 when δ1 → 0, because (here Aj comes from (II.20))

P
(
ξ
hk(p)+2δ1
1/2 = ξ

hk(p)

1/2

∣∣∣#ξhk(p)+2δ1
1/2 <∞

)
=

e−β(hk(p)+2δ1)+
∑∞
j=1 Aj

(
1−e−βhk(p)

)j
e−(j+2)β(hk(p)+2δ1)

1−Pq(|Cr|=∞) −−−→
δ1→0

1,

where q = 1− e−β(hk(p)+2δ1). The last limit is obtained using the proof of Proposition II.2.1.1 and
the Dominated Convergence Theorem. The conclusion follows as in [42].

Proof of Theorem II.2.1.2. The case m = 1 follows by changing Lemma 5.4 in [42, Theorem 4] by
Lemma II.3.0.1 above. The proof for the case m ≥ 2 is just an adaptation of the case m = 1 multiple
species, here we show the key points. In these adaptations one should always use ‖ · ‖1 instead of
| · |. Recall that the evolution in the growth step of a given site x depends on the local density dN,(i)k .
Given that each occupied site x of type i sends a Poisson[β(i)/V (rN )] number of births to each of
its V (rN ) neighbors in B(x, rN ) it follows that each site receives a Poisson[β(i)d

N,(i)
k ] number of

births of type i and a total Poisson[
∑m

i=1 β(i)d
N,(i)
k ] number of births. Then, given ηNk (x), the site

x has a particle of type i after the growing stage with probability

P
(
ηNk+1/2(x) = i

)
=
(

1− exp
(∑m

j=1 β(j)d
N,(j)
k

))
β(i)d

N,(i)
k∑m

j=1 β(j)d
N,(j)
k

.

The random variables η̃Nk , ηNk and η̂Nk have to be extended for multi-species and the coupling between
these has to be reformulated accordingly. These are simple adaptations so they are left to the reader,
together with the remainder of the proof.

Proof of Theorem II.2.1.3. Start defining the eventHN = {x ∈ GN : GN∩B(x, LN ) is a finite 3-tree}
with LN = log2(N)/5. Observe first that, since δ > 0 is arbitrary, and from the uniform continuity
of h, we only need to prove the statement of the theorem for k = 1. Even further, it is enough to
show that for any fixed j ∈ {1, . . . ,m} and δ > 0 we can find C such that

P
( ∣∣∣∣ρN,(j)1 − hj(ρN0 )

∣∣∣∣ > δ

)
≤ Cθα(j)(N). (II.25)

Fix then any such j and define η̃N1 as the modified process with η̃N1 (x) = j if the vertex x belongs to
HN and at time 1

2 is occupied by an individual of type j that survives the epidemic when one ignores
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infections arising outside B(x, LN ) . Defining ρ̃N1 analogously to ρN1 as the density of η̃N1 , we can
bound the event under the probability (II.25) by

QN :=
{∣∣ρN,(j)1 − 1

N |η
N,(j)
1 ∩HN |

∣∣+
∣∣ 1
N |η

N,(j)
1 ∩HN | − ρ̃N,(j)1

∣∣
+ |ρ̃N,(j)1 − E(ρ̃

N,(j)
1 )|+ |E(ρ̃

N,(j)
1 )− hj(ρN0 )| > δ

}
,

and using Markov’s inequality we obtain

P(QN ) ≤ 4
δE
(∣∣ρN,(j)1 − 1

N |η
N,(j)
1 ∩HN |

∣∣)+ 4
δE
(∣∣ 1

N |η
N,(j)
1 ∩HN | − ρ̃N,(j)1

∣∣)
+ 4

δE
(
|ρ̃N,(j)1 − E(ρ̃

N,(j)
1 )|

)
+ P

(
|E(ρ̃

N,(j)
1 )− hj(ρN0 )| > δ

4

)
, (II.26)

so the result will follow by showing that each term in the expression above is bounded by Cθα(j)(N)

for some C independent of ρN0 . For the first term on the right hand side we use the bound

E
(∣∣ρN,(j)1 − 1

N |η
N,(j)
1 ∩HN |

∣∣) ≤ E(GN \HN )

N

where [42, Lem. 3.2] gives E(|GN\HN |)
N ≤ 4N−3/5, and for the third term in (II.26) we use

E
(
|ρ̃N,(j)1 − E(ρ̃

N,(j)
1 )|

)
≤
√

Var(ρ̃N,(j)1 ),

where independence between any pair of events of the form x ∈ η̃N,(j)1 and y ∈ η̃N,(j)1 for x, y ∈ HN

with d(x, y) > 2LN gives

Var(ρ̃N,(j)1 ) ≤ N−2 |{(x, y) ∈ HN ×HN , d(x, y) ≤ 2LN}|

≤ N−2
∑

x∈GN
|B(x, LN )| = N−2(2N ·N2/5) ≤ 2N−3/5,

so for both terms we obtain the bound 16
δ N

−3/10 which is by definition smaller than Cθα(j)(N). To
control the second and fourth terms in (II.26) observe that by translation invariance we can fix any
vertex r ∈ GN and use the definition of η̃N1 to express E(ρ̃

N,(j)
1 ) as

E(ρ̃
N,(j)
1 ) = P(η̃N1 (r) = j) = E

(
1{r∈ηN,(j)

1/2
∩HN}

(1− αN (j))|C
j
r∩B(r,LN )|

)
,

where Cjr is the connected component of the type j containing r. Now, the event r ∈ HN implies
that B(r, LN ) is a 3-tree, and by the mean-field assumption for the growth stage, at time 1/2 each
vertex is occupied by an individual of the j type independently with probability q = f

(j)
~β

(ρN0 ). As a

result, |Cjr ∩B(r, LN )| will be the size of the cluster containing r in the percolated 3-tree, which we
represent as the total amount of individuals of a Galton-Watson process Z0, Z1, . . . , ZLN−1. More
precisely since a 3-tree can be seen as a vertex connected to the root of three binary tress, we set the
offspring distribution on the first generation of the Galton-Watson process as Binomial[3, q], while at
all subsequent generations it is Binomial[2, q], with Z0 = 1{r∈ηN,(j)

1/2
}, giving the expression

E(ρ̃
N,(j)
1 ) = E

(
1{r∈HN}Z0(1− αN (j))Z0+Z1+···+ZLN−1

)
= P(r ∈ HN )E

(
Z0(1− αN (j))Z0+Z1+···+ZLN−1

)
,
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where the second equality comes from the fact that given the event r ∈ HN , the variables Z0, Z1, . . . , ZLN−1

do not depend on the particular realization of GN .

The next result, whose proof we postpone to the appendix, allows us to control the expectation
E(ρ̃

N,(j)
1 ):

Lemma II.3.0.2
Take a sequence (αN )N≥0 ⊆ [0, 1] converging to some α, and a Galton-Watson process Z0, Z1, . . .
as above. If the condition

−αN logN/ logαN −→∞

is satisfied, then there is C > 0 independent of q such that for all N ,∣∣E(Z0(1− αN )Z0+Z1+···+ZLN−1
)
− gαN (q)

∣∣ ≤ Cθα(N). (II.27)

The same bound holds for E
(
Z0(1− αN )Z0+Z1+···+ZLN−11{ZLN−1=0}

)
.

Using Lemma II.3.0.2, the uniform convergence of gαN (j) to gα(j), and that P(0 ∈ HN ) → 1, we

deduce that there is N0 independent of ρN0 such that |E(ρ
N,(j)
1 ) − hj(ρN0 )| < δ/4 for all N ≥ N0.

In particular, we deduce

P
(
|E(ρ

N,(j)
1 )− hj(ρN0 )| > δ

4

)
≤ Cθα(j)(N)

for some C > 0 independent of ρN0 , so it only remains to control the second term in (II.26). Notice
that ρ̃N,(j)1 − 1

N |η
N,(j)
1 ∩ HN | corresponds by definition to the fraction of vertices x in HN which

at time 1
2 are occupied by an individual of type j that survives the restricted epidemic but not the

unrestricted one. In particular, for any such vertex there must be an open path to the boundary of
B(x, LN ) used by the unrestricted infection to kill x, so we deduce

E
(∣∣∣ 1

N |η
N,(j)
1 ∩HN | − ρ̃N,(j)1

∣∣∣) ≤ E
(
1{r∈ηN,(j)

1/2
∩HN}

(1− αN (j))|C
j
r∩B(r,LN )|1{Cjr 6⊆B(r,LN )}

)
≤ E

(
Z0(1− αN (j))Z0+Z1+···+ZLN−11{ZLN−1>0}

)
,

where the variables Z0, . . . , ZLN−1 are defined as before. This last bound is equal to

E
(
Z0(1− αN (j))Z0+Z1+···+ZLN−1

)
− E

(
Z0(1− αN (j))Z0+Z1+···+ZLN−11{ZLN−1=0}

)
,

but from Lemma II.3.0.2 both therms are at distance at most Cθα(N) from gαN (j)(q), so

E
(∣∣∣ 1

N |η
N,(j)
1 ∩HN | − ρ̃N,(j)1

∣∣∣) ≤ 2Cθα(N),

giving the result.

II.4 Proofs for the one-type model

Proof of Theorem II.2.2.2(i). We start by sampling the graph and fixing a labeling on it. We will
couple the MM process after the growing stage, i.e. (ηNn+1/2)n∈N, with a Galton-Watson process

(Zn)n∈N. To this end we consider stacks {(Oji )i∈N}j∈N of i.i.d. random variables distributed according
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to the offspring distribution of the MM model and stacks {(Eji )i∈N}j∈N of i.i.d. random variables with
P(Eji = 1) = 1− P(Eji = 0) = α. We use these random variables to define the MM process (ηn)n∈N
on GN with a given initial configuration η0 in the obvious way, using Oji and Eji to determine the
offspring (if occupied) and an epidemic event at site i and time j. Next we define the Galton-Watson
branching process (Zn)n∈N. It starts with Z0 = |η0| and uses the random variable Xji := Oji (1− Eji )
to determine the offspring of i-th individual of Zj−1. It is clear that |ηn| ≤ Zn for all n (we omit the
simple argument).

Let now τGW
k = inf{n ≥ 1 : Zn = 0} be the extinction time of the Galton-Watson process

started with k particles. From branching process theory we know that, since the mean offspring is
φN , then starting with 1 particle we have that

P(τGW
1 ≥ n) ≤

{
(φN )n if φN < 1,

2
Var(X1

1)n
if φN = 1.

Focusing on the case φN < 1, it follows that, since |η0| ≤ N , there exists a c > 0 such that

P(τN ≥ n) ≤ P(τGW
|η0| ≥ n) = P

(
maxi∈{1,2,...,|η0|} τ

GW
1 (i) ≥ n

)
≤ 1− (1− (φN )n)|η0| ≤ 1− (1− (φN )n)N ≤ 1− exp (−c(φN )nN) .

The next-to-last bound is what we wanted. The last bound yields the estimated on the expectation:
in fact, for K0 = logφ−1(N) there exists C > 0, such that∑

n∈N (1− exp(−c(φN )nN)) ≤ K0 +
∑

n≥K0
(1− exp(−c(φN )nN)) ≤ K0 + c

1−φN ≤ C log(N).

The same arguments yield the result in the case φN = 1.

The proof of Theorem II.2.2.2(ii) will be adapted from that of Theorem II.2.2.3, so we turn to
that proof next.

Proof of Theorem II.2.2.3. We will prove that there is a c ∈ (0, 1) depending only on ρ0 and αN
satisfying

P(τN ≥ n) = (1− exp(−cN))n ∀n ∈ N.

The basic idea is to keep track of the isolated particles in each stage (growth and epidemic). Notice
that since we are in the mean-field case we can suppose without loss of generality that we start from
the product measure, simply because the growth step returns a product measure anyway. We will
need an upper bound on the number of empty sites. We will say that a site is infected by the epidemic
if the epidemic attacks the site, irrespective of whether the site is occupied or not. Let EPi denote
the number of sites infected by the epidemic at time i. Since the mean number of sites attacked by
the epidemic is αNN , a Chernoff bound yields

P
(∣∣∣EPi − αNN ∣∣∣ ≤ αNN/2) ≥ 1− 2 exp(−α2

NN/2). (II.28)

In particular, uniformly on the initial condition and w.h.p. the following event occurs:

Di := {ρi ≤ 1− αN/2}. (II.29)

Now we explore percolation properties of the graph, since our process after the growth stage is a
site-percolation with parameter fβ(p) (when we start with density p). Denote by GN (p) the induced
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subgraph given by the open sites in percolation of parameter p. For every vertex u in the graph
let Xiu = 1{u isolated in GN (p) at time i+1/2}. The family {Xiu}u∈GN is not independent, in fact Xiu = 1
iff the neighbors of u are closed in the percolation. In order to produce an independent family we
will divide the graph into a set of disjoint claws, by which we mean one vertex joined with its three
neighbors.

By hypothesis the graph has a 3-independent set IN of size at least b1N , which implies that it
has at least b1N disjoint claws (each given by a vertex in IN together with its three neighbors).

v0

v1 v2 v3

Figure II.9 – The left figure represents a claw, also called a cherry or K1,3 in the literature. The
right figure represents the local behavior of a 3-independent set on the 3-regular tree (black vertices
belong to IN ).

Consider the family (Xiu)u∈I , and notice that it is made of independent random variables.

Let pi+1/2 be the density of isolated particles after the growing stage in the i-th iteration of the
system. Let also pi+1 be the density of isolated sites that survive the epidemic:

pi+1 =
1

N

∑
v∈GN

ηi+1(v)Xiv

Let ρIN = |IN |/N and define IsoN (ρ) = (1− e−βρ)e−3βρρIN ; this quantity will be important in the
developments that follow as it represents the expected number of isolated particles after the growth
stage in I. More formally, starting with density ρ, the probability that a given site is empty after
the growth stage is by translation invariance equal to the expectation of the density after the growth
stage starting with density ρ, and this expectation is equal to (1− β/N)ρN ≈ eβρ. For simplicity we
will use the function IsoN not just as an approximation for the expectation, but instead of the actual
expectation; this may be justified from the fact that this approximation has a rate of convergence
which is much faster than the approximations which we do in what follows, but we leave these details
to the reader. Notice that we can suppose that we sample the graph, we choose IN , and then we
run the process, so that the function Iso at this point is deterministic; we omit the dependence on
the graph and on N . Define Iso(ρ) := (1 − e−βρ)e−3βρb1 and notice that IsoN (x) ≥ Iso(x) for all
x ∈ [0, 1], since we are conditioning on GN ∈ RN (b1). Let

m = m(δ) = min
x∈[δ,1−δ]

Iso(x).

This minimum is attained at one of the boundary values, as can be checked from simple properties of
Iso(x). In particular, Iso′(x) vanishes at x = x̄ defined as the unique point satisfying exp(βx̄) = 4/3,
which is a maximum. The values of the function are strictly positive inside [0, 1], hence m > 0. Also
0 is not attractive since the derivative there is b1β > 1.
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Lemma II.4.0.1
For small enough ε > 0 there exists δ̄ ∈ (0, 1/2) such that for every δ ∈ (0, δ̄) satisfying
m(δ)(1− αN )(1− 2ε) ≤ x ≤ 1− αN/2, we have m(δ) ≤ Iso(x).

Proof. Notice that limx→0
x

Iso(x) = 1
b1β

, so for γ ≥ 0 small, there exists θγ such that if 0 ≤ x ≤ θγ ,
then

x(1− αN )(1− 2ε)

Iso(x(1− αN )(1− 2ε))
≤ (1 + γ)

b1β
⇐⇒ x(1− αN )βb1

(1− 2ε)

(1 + γ)
≤ Iso(x(1− αN )(1− 2ε)).

But since 1 < (1− αN )βb1, if we choose γ and ε such that

(1− αN )βb1
(1− 2ε)

(1 + γ)
≥ 1

then we have the conclusion, since it is enough to consider δ̄ such that m ≤ θγ .

Fix some small ε > 0 and choose δ such that m(δ)(1 − αN )(1 − 2ε) ≤ ρN0 ; this can be done
because m(δ) is decreasing in δ. The event {ρN0 ≤ 1−αN/2}, on the other hand, happens with high
probability thanks to (II.28)/(II.29). Hence with our parameter choices we may apply Lemma II.4.0.1.
Now we have all the elements to prove the theorem. Define the events

Ai = {m(1− αN )(1− 2ε) ≤ ρi ≤ 1− αN/2}
Ai = ∩ij=0Aj

Bi+1/2 = {|pi+1/2 − IsoN (ρi)| ≤ εIsoN (ρi)}
Ci+1 = {|pi+1 − pi+1/2(1− αN )| ≤ ε(1− ε)(1− αN )pi+1/2}

Ei = {ρi ≥ m(1− αN )(1− 2ε)}

Observe that, from the previous comment and (II.28), P(A0) > 1−exp(−α2
NN/2) by choosing δ > 0

sufficiently small. Also observe that P(τN ≥ n+ 1) ≥ P(An+1) = P(A0)
∏n
i=0 P(Ai+1|Ai) and that

we have the decomposition

P(Ai+1|Ai) = P(Ei+1|Ai,Di+1)P(Di+1|Ai) ≥ P(Ci+1,Bi+1/2|Ai,Di+1)P(Di+1|Ai)
= P(Ci+1|Ai,Bi+1/2,Di)P(Bi+1/2|Ai,Di+1)P(Di+1|Ai);

(II.30)

the inequality follows from ρi ≥ pi and noting that, on the events Bi+1/2 and Ci+1 we have

|pi+1 − IsoN (ρi)(1− αN )| ≤ εpi+1/2(1− αN ) + (1− αN )εIsoN (ρi)

≤ ε(1− αN )(1− ε)IsoN (ρi) + (1− αN )εIsoN (ρi) ≤ 2ε(1− ε)(1− αN )IsoN (ρi),

which together with Lemma II.4.0.1 gives ρi+1 ≥ pi+1 ≥ IsoN (ρi)(1−αN )(1−2ε) ≥ m(1−αN )(1−
2ε) as needed. We need to bound the product in the second line of (II.30). The bound for the third
factor is obtained from (II.28). The middle factor can be bounded using a Chernoff bound similarly
to (II.28) (notice that independence is crucial here again),

P(Bi+1/2|Ai,Di+1) = 1− P(Bci+1/2|Ai,Di+1) ≥ 1− E(E(2e−2N IsoN (ρi)
2ε2 |ρi,Ai,Di+1)|Ai,Di+1)

≥ 1− 2 exp(−2Nm2ε2).
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For the first factor we use that, conditional on Bi+1/2 and Ai, pi+1/2 ≥ (1− ε)IsoN (ρi) ≥ m(1− ε),
and that each isolated particle lives independently from the others with probability (1−αN ); a similar
estimate then gives

P(Ci+1|Bi+1/2,Ai,Di+1) ≥ 1− 2 exp(−2Nm2(1− αN )2ε2(1− ε)4).

The conclusion is that P(Ai+1|Ai) ≥ (1 − e−cN )3 for some c which depends on αN and in ρ0,
and hence

P(τN ≥ n+ 1) ≥ (1− e−cN )3(n+1) (II.31)

as desired.

To obtain an estimate on the expected value appearing in the theorem we need to sum the right
hand side of (II.31) in n. Note that in the above bounds, ε, δ and m are fixed, so we only need to
understand how the constant c in (II.31) depends on αN . Notice first that (since α ∈ [0, 1)) the
dependence on αN comes only from our bound on P(A0), namely P(A0) > 1 − exp(−α2

NN/2). If
αN → α ∈ (0, 1) then there is nothing to proof. Otherwise, if αN → 0, the condition αN log2(N)→
∞ gives a similar bound, since fixing M ∈ N one gets αN ≥ M

log2(N) for large enough N , and then
there exists c′ > 0 such that P(A0) ≥ 1− exp

(
−c′N(log2(N))−2

)
, which again gives us the bound

we want.

Proof of Theorem II.2.2.2(ii). We will just we explain how to adapt the proof of Theorem II.2.2.3 to
obtain this result. We use the whole graph instead of a 3-independent set, and since the variables
are now dependent, we change the Chernoff bounds to Chebychev bounds. Consequently we use
Isop(x) = (1 − e−βρ)e−3βρ instead of Iso, and we bound the middle factor on the second line of
(II.30) by

P(Bi+1/2|Ai,Di+1) = 1− P(Bci+1/2|Ai,Di+1) = 1− E(1Bc
i+1/2
|Ai,Di+1)

≥ 1− E
(
Var(pi+1/2)

ε2Isop(ρi)2 |Ai,Di+1

)
≥ 1− 10

ε2Nm2 ,

where m := minx∈[m(1−α)(1−2ε),1−α/2] Isop(x), and where the inequality is obtained from the site-
percolation of parameter fβ(ρi), at time i, and the following computation, which uses the indepen-
dence between Xiv and Xiu for u ∈ B(v, 2).

Var
(∑

v∈GN Xiv

)
= E

((∑
v∈GN Xiv

)2
)
− E

(∑
v∈GN Xiv

)2

=
∑

v∈GN ,u∈B(v,2) E
(
XivX

i
u

)
+
∑

v∈GN ,u/∈B(v,2) E
(
XivX

i
u

)
−N2Iso(ρi)

≤ (10N) + (N2 − 10N)Iso(ρi)−N2Iso(ρi)

≤ 10N(1− Iso(ρi)
2) ≤ 10N

(where the two summations in the second line correspond respectively to the first and second paren-
thesis in the third line).

Now we turn to the results concerning the dynamical system DS(h). The following proposition
will help us prove Proposition II.2.2.1.

126 Luis Fredes



II. Survival and coexistence for spatial population models with forest fires

Proposition II.4.0.2
DS(h) has 0 as a unique attractive fixed point if α ∈ [0, 1], β ∈ (0,∞] satisfy

φ(α, β) ≤ 1.

If this condition does not hold, i.e. φ(α, β) > 1, then 0 is a repulsive fixed point.

Proof. When the limit limp→0 h
′(p) is smaller than 1, the point 0 is attractive, while when this limit

is bigger than 1, 0 is repulsive. A simple computation gives that

lim
p→0

h′(p) = φ(α, β)

We will show that if φ(α, β) ≤ 1 then the identity function is always above h, yielding the
uniqueness of the fixed point. This is enough to show that the orbits will converge to 0.

Let us compare the difference between the identity function and the function h. To begin we
write h(p) = gα(1−e−βp) = (1−α)(1−e−βp)Gα(1−e−βp)3 so since the function Gα is decreasing
in α (by Proposition II.5.1.2) it is enough to study the case α = 1− 1

β , meaning that our assertion
is equivalent to proving that p− (1− e−βp)G(1−1/β)(1− e−βp)3 is positive for all p ∈ (0, 1] and for
all β > 1. Again, since G(1−1/β) is decreasing in β, from Proposition II.5.1.2 in both the subindex
1 − 1/β and β, and since 1−e−βp

β is also decreasing in β, it is enough to prove that the following
holds:

p−
(

1−
√

1−4e−p(1−e−p)
)3

8(1−e−p)2 > 0 ∀p ∈ (0, 1].

But infimum of the right hand side of the last expression is obtained at 0 when p→ 0, and this yields
the result.

Proof of Proposition II.2.2.1. From Proposition II.5.1.2 for all α ∈ (0, 1) the function gα has a unique
critical point x0, which is a maximum. Without loss of generality we can suppose that p ∈ [0, f−1

β (p∗α)]
, otherwise apply h once to make this happen. Because it is the composition of two increasing
functions, h is increasing inside [0, f−1

β (p∗α)]. Using a restricted version of h : [0, f−1
β (p∗α)] −→

[0, f−1
β (p∗α)], we get that 0 is the unique fixed point according to Proposition II.4.0.2. Finally, from

[64, Prop. 2.3.5] the property holds in the first case. For the second case it is enough to notice that
h is positive in (0, 1), hence the repulsive behavior of 0 in this regime yields the conclusion.

II.5 Proofs of the multi-type results

As discussed in Section II.2, our approach to prove Theorem II.2.3.5 consists in using Theo-
rem II.2.1.3 to show that te particle system “imitates" the behavior observed for the dynamical
system in Theorems II.2.3.3 and II.2.3.1. However, in order to apply our approximation theorem, we
need more information about DS(h) than just the definitions of coexistence and domination. These
definitions only explicit the behavior of DS(h) in the long term, giving no control of the initial part
of the orbits, where the randomness of the particle system might have a large impact. With this in
mind we introduce a new property which will draw most of our attention in this section:
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Definition II.5.0.1
We say that a set A ⊆ [0, 1]2 is interior-trapping for DS(h) if there are 0 < δ′ < δ and k̄ ∈ N
such that

(i) ∀p ∈ A, d(p,Ac) > δ =⇒ d(h(p), Ac) ≥ δ′,

(ii) ∀p ∈ A, d(p,Ac) ≤ δ =⇒ d(hk(p), Ac) ≥ δ′ for some k ≤ k̄.

In words, a set A is interior-trapping if the dynamical system cannot exit A using jumps larger than a
certain size δ and if every time it gets to distance smaller than δ to the boundary, it takes a bounded
number of steps for it to go back to the interior of A, where by interior here we mean a certain subset
of A bounded away from the boundary (see Figure II.10 ).

d(p,Ac) > δ =⇒ d(h(p), Ac) ≥ δ′ d(p,Ac) ≤ δ =⇒ d(hk(p), Ac) ≥ δ′

Figure II.10 – An interior-trapping set, where the white inner region is the set of points at distance
larger than δ from the boundary

Interior-trapping sets as defined above are key within our techniques to show the connection
between the particle system and DS(h). The next proposition shows that, since these sets provide
some control over the amount of time the dynamical system spends near their boundary, we can use
Theorem II.2.1.3 to provide a similar control for ηNk .

Proposition II.5.0.2
Let (ηNk )k∈N be the mean-field MMM whose parameters satisfy the conditions in Theorem II.2.1.3,
and assume that its initial condition ρN0 lies within an interior-trapping set A with parameters
δ,δ′ and k̄. Then, there is C > 0 depending only on A such that

P
(
ρNk /∈ A, ∀k ∈ {1, 2, . . . , k̄}

)
≤ Cθα(N). (II.32)

Proof. Take the parameter δ′ > 0 from the definition of interior-trapping of A. From Theo-
rem II.2.1.3, for this choice of δ′ there is some C > 0 independent of ρN0 and N such that for
any k ≤ k̄, we have

P
(
δ′ <

∥∥ρNk − hk(ρN0 )
∥∥) ≤ Cθα(N). (II.33)

Observe now that from the interior-trapping property of A, we have only two possibilities for
d(ρN0 , A

c):
• If d(ρN0 , A

c) ≥ δ, then from Definition II.5.0.1.(i) we have d(h(ρN0 ), Ac) > δ′, so the left hand
side of (II.32) is bounded by

P
(
ρN1 /∈ A

)
≤ P

(
δ′ < ‖ρN1 − h(ρN0 )‖

)
≤ Cθα(N).

• If d(ρN0 , A
c) < δ, then from Definition II.5.0.1.(ii) there is k ≤ k̄ such that d(hk(ρN0 ), Ac) > δ′,
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so the left hand side of (II.32) is bounded by

P
(
ρNk /∈ A

)
≤ P

(
δ′ < ‖ρNk − hk(ρN0 )‖

)
≤ Cθα(N).

On either case the bound is of the form Cθα(N), giving the result.

Using the newly defined property of interior-trapping we can state a result which shows that under
the conditions of Theorems II.2.3.1 and II.2.3.3 we obtain a much stronger version of coexistence
and domination.

Lemma II.5.0.3
Consider the dynamical system DS(h) with initial condition p0 ∈ (0, 1)2:

1. (Coexistence) Assume that the parameters ~α and ~β satisfy the conditions in Theorem II.2.3.1.
Then, there is a compact interior-trapping set A ⊆ (0, 1)2 which contains p0 as an interior
point.

2. (Domination) Assume that the parameters ~α and ~β satisfy the conditions in Theorem II.2.3.3.
Then, there are γ1, γ2 ∈ (0, 1) and an interior-trapping set B (independent of p0) with pa-
rameter k̄ = 1 such that ∀p ∈ B

(1− α(1))f
(1)
~β

(p) ≤ γ1p1 and γ2 < p2. (II.34)

Even further, there is k ∈ N such that hk(p0) is an interior point of B.

Before turning to the proof of Lemma II.5.0.3 we show how this particular result gives all the
results in Section II.2.3.

Proof of Theorem II.2.3.3. Under the assumptions of the theorem, Lemma II.5.0.3 states that the
orbit of DS(h) eventually reaches an interior-trapping set B with parameter k̄ = 1, which satisfies
(II.34) for some values γ1, γ2 ∈ (0, 1). Now, since k̄ = 1, from Definitions II.5.0.1.(i) and II.5.0.1.(ii)
we deduce that the set B is actually trapping for the dynamical system, meaning that h(p) ∈ B for
all p ∈ B. Since B satisfies (II.34);

1. the condition γ2 < p2 for p ∈ B implies that lim infk→∞ hk2(p) ≥ γ2 > 0, and

2. the condition h1(p) ≤ (1− α(1))f
(1)
~β

(p1) ≤ γ1p1 implies that limk→∞ hk1(p) = 0,

giving domination of the second type.

Proof of Theorem II.2.3.1. Under the assumptions of the theorem, for any initial condition p0 ∈
(0, 1)2 the lemma above gives a compact interior-trapping set A ⊆ (0, 1)2 containing p0. From
Definition II.5.0.1.(ii), every time the dynamical system leaves A, it spends at most k̄ units of time in
Ac, so the orbit of DS(h) is contained in Ak̄ := ∪k̄l=0h

l(A), which is compact from the compactness
of A and the continuity of h. Since Ak̄ ⊆ (0, 1)2 (otherwise it would contain an orbit that never
returns to A), compactness gives that it must be bounded away from the axes, so in particular for
i = 1, 2 we deduce that

lim inf
k→∞

hki (p) > 0,

giving coexistence.

Proof of Theorem II.2.3.5. Consider the mean-field MMM and assume first that the parameters of
the model satisfy the conditions of Theorem II.2.3.1. As in the proof of the previous theorem,
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Lemma II.5.0.3 gives a set A ⊆ (0, 1)2 containing ρN0 which is interior-trapping for the dynamical
system DS(h). Defining σ1 = inf{k ≥ 1, ρNk ∈ A} as the first return time of the dynamical system
to A (with σ1 =∞ if there is no such k), it is clear that

P(σ1 > k̄) = P
(
ρNk /∈ A, ∀k ∈ {1, 2, . . . , k̄}

)
,

which from Proposition II.5.0.2 is bounded by Cθα(N) for some C > 0 which depends only on A.
Since the bound is uniform on the initial condition, the strong Markov property gives that for any
n ∈ N,

P
(
σ1 ≤ k̄, σ2 − σ1 ≤ k̄, . . . , σn − σn−1 ≤ k̄

)
≥ (1− Cθα(N))n

where each σn denotes the n-th return time to A. The event on the left hand side implies in particular
that σn <∞ a.s., but since σn ≥ n it follows that ρNk ∈ A for some k ≥ n. Since both species have
to be alive to lie within A, on this event both τ1

N and τ2
N must be larger than n, so we conclude

(II.15).

To deduce (II.18) simply observe that from Lemma II.5.0.3 we can obtain an interior-trapping set
A as before, but containing p as an interior point. If ρN0 → p, then A contains all ρN0 for large N ,
so for all such N we can repeat the previous argument using the same interior-trapping set, which
allows us to find some C ′ such that

P(τ1
N , τ

2
N ≥ n) ≥

(
1− C ′ θα(N)

)n
for all N ∈ N. Taking n = θα(N)−(1−ε) gives the result. (II.18).

We now turn our attention to the MMM whose parameters satisfy the conditions of Theo-
rem II.2.3.3. Under this assumption Lemma II.5.0.3 gives an interior-trapping set B with parameter
k̄ = 1 which satisfies (II.34). Choose γ = γ1 where γ1 is as in (II.34) and make the assumption that
ρN0 ∈ B; we will show later how to treat the case ρN0 /∈ B.

Since k̄ = 1, from Definition II.5.0.1 it is easy to see that regardless of the value of d(ρN0 , B
c)

we have d(h(ρN0 ), Bc) > δ′ so Theorem II.2.1.3 gives some C > 0 depending only on B such that

P(ρN1 /∈ B) ≤ P
(
δ′ <

∥∥ρN1 − h(ρN0 )
∥∥) ≤ Cθα(N),

and since the bound is uniform over ρN0 ∈ B, an application of the strong Markov property gives that
for any n ∈ N,

P(ρNk ∈ B, ∀k ≤ n) ≥ (1− Cθα(N))n. (II.35)

Noticing that γ2 < p2 for all p ∈ B we deduce that the event on the left hand side, which we call
En, implies τ2

N ≥ n so we conclude (II.16).

To deduce (II.17) observe that by allowing the epidemic of the first species to attack but not to
spread, the total amount of type 1 individuals at time 1 is a Poisson random variable with parameter
(1−αN (1))f

(1)
~β

(ρN0 ), so if ρN0 ∈ B, then this parameter is less than γ1ρ
N
0 . This way, it is easy to see

that on the event En, the process (ρNk )k≤n is stochastically dominated by a subcritical Galton-Watson
process starting with ρN0 N individuals and with offspring distribution Poisson[γ1]. Using the classical
results of Galton-Watson processes we easily deduce that

P
(
τ1
N ≥ n

)
≤ P

(
En ∩ {τ1

N > n}
)

+ P(Ecn) ≤ 1− (1− γn)N + 1− (1− Cθα(N))n. (II.36)

Assume now that ρN0 /∈ B and observe that from Lemma II.5.0.3 there is some k ∈ N depending
only on ρN0 such that hk(ρN0 ) is an interior point of B. Let ε > 0 be small so that B contains the
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ball of center ρN0 with radius ε. Using Theorem II.2.1.3 there is some C̄ depending on k and ε such
that

P(ρNk /∈ B) ≤ P
(
ε <

∥∥ρNk − hk(ρN0 )
∥∥) ≤ C̄θα(N), (II.37)

so the general proof of (II.16) and (II.17) follows from restricting to the event on the left hand side
above and restarting the process at time k.

Finally, to conclude (II.19) observe that these inequalities would follow directly from (II.16),
(II.17), and our definition of θα(N) if the parameter C was independent from ρN0 . However, neither
the bound in (II.35) nor the one in (II.36) depend on ρN0 , so the only parameter dependent on ρN0
is C̄ in (II.37). To show that under the additional assumption ρN0 → p we can find C̄ independent
from the initial condition, take k ≥ 0 such that hk(p) is an interior point of B (such k exists because
of Lemma II.5.0.3), and take ε such that B contains the ball centered at p with radius ε. Since
ρN0 → p, for large enough N we have ‖hk(ρN0 )− hk(p)‖ < ε

2 , so from Theorem II.2.1.3 we obtain

P(ρNk /∈ B) ≤ P
(
ε <

∥∥ρNk − hk(p)∥∥) ≤ P
(ε

2
<
∥∥ρNk − hk(ρN0 )

∥∥) ≤ C̄θα(N),

for some C̄ depending only on p.

The rest of this section is devoted to the proof of Lemma II.5.0.3 which is rather extensive
and technical so we divide it into three subsections; in Section II.5.1 we present some notation and
functions used to facilitate the analysis of the trajectories of DS(h), as well as some calculus results
whose proofs are in Section II.5.3. Using these results we prove the coexistence statement of the
lemma in Section II.5.2, and the extinction statement in Section II.5.3.

II.5.1 Preliminaries

We begin this section by decomposing the function gα as

gα(x) = (1− α)xGα(x)3, with Gα(x) =
1−

√
1− 4(1− α)x(1− x)

2(1− α)x
.

This decomposition is useful since the function Gα satisfies the following properties whose proof we
leave to the reader.

Proposition II.5.1.1
The function Gα : [0, 1]→ [0, 1] satisfies the following:

1. When α = 0, it is defined by parts as

G0(x) =

{
1 if x ≤ 1/2

1−x
x if x > 1/2

.

2. It is decreasing as a function of both α and x, with Gα(0) = 1 and Gα(1) = 0 for all
α ∈ [0, 1).

3. As α→ 1, it converges monotonically to G1(x) := 1− x.

We now introduce p̄ ∈ [0, 1]2 as the maximum possible density achieved after the epidemic stage,
that is

p̄i = supx∈[0,1] gα(i)(x).
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Since gα ≤ (1−α)g0, it is easily seen that p̄i ≤ 1−α(i)
2 and from its definition, except maybe for the

initial value p0, the orbit of DS(h) lies within [0, p̄], where we can use the next result to control the
behavior of gα:

Proposition II.5.1.2
There is a single value x0 ∈ [0, 1/2] where gα attains its global maximum. This value is charac-
terized as the solution of Gα(x0) = x0 + 1

2 and satisfies;

1. If α > 0, this is the only critical point of gα in [0, 1].

2. If φi < 2 log 2, then for any p with pi ≤ p̄i we have f (i)
~β

(p) < x0. In particular, g′α(i) ◦

f
(i)
~β

(p) ≥ 0 for all p ∈ [0, p̄].

Even if gα is not monotone, using the result above we can still obtain sufficient information about
the growth of h:

Proposition II.5.1.3
For each i = 1, 2 define li : [0, 1]2 → R+ as li(p) = hi(p)/pi. Then:

1. The function f (1)
~β

is increasing on p1 and decreasing on p2.

2. The function l1 is decreasing on p1.

3. If φ1 < 2 log 2, then h1 is increasing on p1 and decreasing on p2. In particular, in this case
l1 is also decreasing on p2.

The function l defined in Proposition II.5.1.3 is of great interest to us because from the relation
hi(p) = li(p)pi it is enough to bound li in order to show exponential growth or decay of a species.
This is precisely what we do in the next result, which for simplicity we state under the assumption
that the type 2 species is stronger than the type 1.

Proposition II.5.1.4
For any small ε > 0 define κε as the unique solution of

gα(1)(1− e−β(1)κε) = (1− ε)κε.

Under the assumption φ2 > φ1 there are c̄, ε, ε′ > 0 small such that for all c ≤ c̄:
(i) For all 0 < p1 < κε it holds that:

p2 ∈ (0, c) =⇒ l2(p) > 1 + ε′. (II.38)
p2 ∈ (c, p̄2) =⇒ h2(p) > (1 + ε′)c. (II.39)

(ii) Under the additional assumption φ2 > 2 log 2, the property above holds for all p1 > 0.

(iii) If φ1 < 2 log 2, then:

p1 ∈ (0, κε) =⇒ h1(p) ≤ (1− ε′)κε. (II.40)
p1 ∈ (κε, p̄1) =⇒ l1(p) ≤ 1− ε′. (II.41)

The properties ((i)) and ((ii)) state that when the stronger species is at a very low density, it
starts growing exponentially until it reaches a certain threshold value c, which becomes a lower bound
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for its density from that time onwards. Property ((iii)), on the other hand, states that if the fitness
of the weaker species is below 2 log 2, then its density decays exponentially until it reaches a trapping
set [0, κε].

We are now ready to give the proof of coexistence in Lemma II.5.0.3.

II.5.2 Proof of Lemma II.5.0.3.1

From Proposition II.5.1.4 we already know that the stronger species survives, so in order to
prove coexistence we need to prove the same for the weaker one. Assuming that the conditions of
Theorem II.2.3.1 are satisfied, our approach consists in analyzing the dynamical system when the
density of the weaker species is at low values. In that scenario we can approximate h by a simpler
function h̄, and show that for this particular dynamical system the density p1 tends to grow on
average.

We begin by defining the map h̄ : [0, 1]2 → [0, 1]2 as

h̄(p) =

(
h1(0, p2) + p1

∂h1
∂p1

(0, p2)

h2(0, p2)

)
=

(
φ1p1

1−e−β(2)p2

β(2)p2

h2(0, p2)

)
.

This linear approximation of h in the first component is intuitively good when taking p2 fixed and
then p1 small. The next result, however, states the stronger assertion that the approximation is good
uniformly on p2:

Proposition II.5.2.1
For all k ∈ N we have

lim
p1→0

h̄k1(p)

hk1(p)
= 1

uniformly on p2 ∈ [0, 1].

Proof. Define Σk(p) := β(1)hk1(p) + β(2)hk2(p) and Σk(p) := β(2)h̄k2(p). Using these values and
the definition of h and h̄ it is fairly simple to see that

h̄k1(p)

hk1(p)
=

h̄k−1
1 (p)

hk−1
1 (p)

·
(
ψ(Σk−1(p))

ψ(Σk−1(p))
· (Gα(1))

−3 ◦ f (1)
~β
◦ hk−1

1 (p)

)
(II.42)

where ψ is defined as ψ(x) = 1−e−x
x , which is bounded away from zero if the argument x is bounded.

Noticing that Σk(p) and Σk(p) converge to the same value as p1 → 0, the expression between
parentheses on the right hand side of (II.42) converges to 1 uniformly, so h̄k1(p)/hk1(p) converges to
1 uniformly if h̄k−1

1 (p)/hk−1
1 (p) does. Since h̄0

1(p) = h0
1(p) = p1, the result follows by repeating the

argument k times.

The proposition above allows us to approximate h by h̄ whenever p1 is small enough, where the
definition of “small" does not depend on the value of p2. The resulting dynamical system (qk)k∈N
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can be interpreted as running the one-dimensional MM for the type 2 species alone and then using
its trajectory to compute the values of qn1 as

qn1 = q0
1

n−1∏
k=0

φ1(1− e−β(2)qj2)

β(2)qj2
. (II.43)

The expression above motivates us to study the observable ϕ̄ of the orbit (qk2 )k∈N, which is
obtained as the limit when n→∞ of

ϕ̄n(x) =
1

n

n−1∑
k=0

ϕ(hk2(0, x)),

where ϕ : [0, 1] → [0,∞) is defined as ϕ(x) = log
(

1−e−β(2)x

x

)
. The limit above exists because ϕ is

decreasing, and since p̄2 ≤ 1
2 , we may also assume that it is bounded from below by log(2−2e−β(2)/2)

which is positive from the assumption φ2 > z(α(2)) > 2 log 2. Notice that using ϕ̄n we can write
(II.43) as

qn1 = q0
1

(
φ1

β(2)
eϕ̄

n(q0
2)

)n
,

so the function φ1

β(2)e
ϕ̄ represents the average growth of type 1 when taking into account the effect

of type 2. To control this growth we define η to be the lowest possible value of ϕ̄, that is

η = infx∈[0,1] ϕ̄(x).

The following result shows that bounding this term properly allows us to make q1 grow to be as large
as we want:

Lemma II.5.2.2
Suppose that the conditions of Theorem II.2.3.1 hold. If φ1

β(2)e
η > 1, then for all M > 0 there

exists k̄ ∈ N satisfying the following property: For all q0
2 ∈ [0, 1], there is a 0 ≤ k ≤ k̄ such that

k−1∏
j=0

φ1(1− e−β(2)qj2)

β(2)qj2
> M. (II.44)

Proof. From the hypothesis we know that there exists δ > 0 such that φ1 = β(2)e−η(1+2δ). Taking
ε > 0 small enough such that (1− ε)(1 + 2δ) > 1 + δ, for each q0

2 we can find k ∈ N such that for
all k ≥ k

φ1

β(2)
exp

(
ϕ̄k(q0

2)
)
> (1− ε) φ1

β(2)
exp

(
ϕ̄(q0

2)
)
≥ (1− ε) φ1

β(2)
eη > 1 + δ,

where the first inequality follows from convergence of ϕ̄k to ϕ̄. Using the definition of ϕ̄k we obtain

φ1

β(2)

k−1∏
j=1

1− e−β(2)qj2

qj2

1/k

> 1 + δ ∀k ≥ k. (II.45)

In particular, since 1 + δ > 1, we find that for each q0
2 there is some k ≥ k such that(

φ1

β(2)

)k k−1∏
j=0

1− e−β(2)qj2

qj2
> M.
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For k fixed call Ok the set of all q0
2 satisfying the inequality above for that given value of k. From

the continuity of h̄ each Ok is open, and from the previous argument, each q0
2 belongs to some k, so

(Ok)k∈N is an open cover of [0, 1], so in particular it contains a finite subcover. Taking k̄ to be the
largest index of the subcover gives the result.

The next result, in which we state the first notion of interior-trapping follows directly from
Proposition II.5.2.1 and Lemma II.5.2.2.

Proposition II.5.2.3
Suppose that the conditions of Lemma II.5.2.2 are satisfied. If p0

2 ∈ (0, 1), then there is 0 < c̄ < p0
1

small such that for all c ≤ c̄ we can find k̄ ∈ N such that for all n ∈ N,

pn1 ≥ c =⇒ ∃k ≤ k̄ such that pn+k
1 > 3

2r c, (II.46)

where r is defined as r = infp≤p̄ l1(p).

Another way to read this is that once the trajectory has one point above a certain threshold
parameter c, then it will not stay below c more than k̄ consecutive steps.

Proof of Proposition II.5.2.3:. TakingM = 2
r2 we obtain k̄ as in Lemma II.5.2.2 and use the uniform

convergence proved in Proposition II.5.2.1 to choose δ0 > 0 such that

p1 < δ0 =⇒ h̄k1(p)

hk1(p)
<

4

3
∀p2 ∈ [0, 1], ∀1 ≤ k ≤ k̄. (II.47)

Having defined all these parameters, take c = min{2
3δ0,

1
2p

0
1} so that in particular c < p0

1. We prove
(II.46) by contradiction as follows: Suppose that for some n ∈ N we have pn1 ≥ c > pn+1

1 and that
there is no k ≤ k̄ such that pn+k

1 > 3
2r c. From our choice of c and (II.47), we have that each pn+k

1

is smaller than δ0 so for each k ≤ k̄

pn+k
1 = hk1(pn) ≥ 3

4
h̄k1(pn) =

3

4
pn+1

1

(
φ1

β(2)

)k k−1∏
j=0

1− e−β(2)qj2

qj2
. (II.48)

However, for the specific value of k given in Lemma II.5.2.2 with initial condition pn+1
1 , we can bound

the right hand side in (II.48) by 3
2rp

n+1
1 . This is a contradiction with our assumption pn+k

1 < 3
2r c

because
pn+k

1 >
3

2r2
pn+1

1 =
3

2r2
l1(pn1 )pn1 ≥

3

2r2
rc =

3

2r
c, (II.49)

where the last inequality follows from our bound l1 ≥ r and the assumption pn1 ≥ c.

Using the results obtained so far, as well as Proposition II.5.1.4, we are finally ready to prove
Lemma II.5.0.3.1. To do so observe that after one iteration, the orbit of DS(h) lies within [0, p̄]
so we prove the lemma for the case where p0 is in this set. First, we assume that the condition
φ1e

η > β(2) is satisfied and for r = l1(p̄) take c1 as in Proposition II.5.2.3. Next, observe that from
the hypotheses of Theorem II.2.3.1 we have that φ2 > z(α(2)) > 2 log 2 so we can take c2 as in
Proposition II.5.1.4.(ii). We claim that the set

A := [c1, p̄1]× [c2, p̄2]
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satisfies the properties needed in the lemma. Indeed, it is clear that the set is compact and contains
p0 as an interior point. To see that the set is interior-trapping, notice that from (II.39) in Proposi-
tion II.5.1.4, for any p2 ∈ (c2, p̄2) we have h2(p2) > (1 + ε′)c2 independently from p1, so that both
requirements for interior-trapping are satisfied with k̄ = 1 in the second component. To deduce the
same for the first component notice that from the definition of r, we have

p1 >
c

r
=⇒ p1

1 > c

and from Proposition II.5.2.3 there is k̄ such that
c

r
> p1 ≥ c =⇒ ∃k ≤ k̄ such that pk1 >

3
2r c

so both requirements for the interior-trapping definition are satisfied in this component as well.

Finally, to conclude the result we need to show that the hypotheses assumed in Theorem II.2.3.1
imply φ1e

η > β(2). To see this notice that the ϕ is a decreasing function so we can bound it by
taking x as large as possible. On the other hand, for any value of p0

2 we have that pk2 ≤ p̄2 ≤ 1−α(2)
2 ,

so in particular
ϕ(pk2) ≥ ϕ

(1−α(2)
2

)
= log

(2(1−e−φ2/2)
1−α(2)

)
, (II.50)

so the term on the right is a lower bound for η. We can improve this bound reasoning as follows:
Take κ2 as defined in Theorem II.2.3.1 so that in particular P2 := κ2

β(2) is a fixed point of h2(0, ·).
Now, since the function x → 1 − e−β(2)x is increasing, from Proposition II.5.1.2 it follows that the
function h2(0, ·) has a unique critical point P1, in which it attains its maximum. Assume for the
moment that P1 ≤ P2; under this assumption it follows that h2(0, ·) is decreasing on [P2,

1
2 ] so that

P2 ≤ x =⇒ h2(0, x) ≤ h2(0, P2) = P2.

In words, every point qk2 in the orbit of q2 which is larger than P2 is followed by an element qk+1
2

smaller than P2 so at least half of the points in the orbit lie in [0, P2]. Bounding by ϕ(P2) the value
of ϕ in this interval, and by ϕ(1−α(2)

2 ) the value outside of it, we obtain

ϕ̄(p0
2) ≥ 1

2

[
log
(

1−e−β(2)P2

P2

)
+ log

(
2− 2e−φ2/2

1− α(2)

)]
∀p0

2 ∈ [0, 1/2].

Since this bound is satisfied for all p0
2, it is also a lower bound for η, but it is easily seen that with

this bound, φ1 > e−ηβ(2) is equivalent to condition (II.13).

Finally, it only remains to show that P1 ≤ P2; but since P1 is the argument of the only maximum
of h2(0, ·) and P2 is a fixed point of this function, it is not hard to be convinced that the inequality
is equivalent to

P1 ≤ gα(2)

(
1− e−β(2)P1

)
. (II.51)

From Proposition II.5.1.2, x0 = 1 − e−β(2)P1 is a critical point of gα(2) so it satisfies Gα(2)(x0) =

x0 + 1
2 . Replacing these equalities into (II.51) we obtain that x0 must satisfy

φ2x0(x0 + 1
2)3 + log(1− x0) ≥ 0.

Now, from Proposition II.5.1.1, the equality Gα(2)(x0) = x0 + 1
2 defines an implicit function x0(α(2))

which is strictly decreasing in α(2) and satisfies x0(0) = 1/2 and x0(1) = 1/4. Solving for φ2, the
inequality above becomes

φ2 > z(α(2)) :=
− log(1− x0)

x0(x0 + 1/2)3
, (II.52)

which is satisfied by our hypothesis on φ2 so we conclude that P1 ≤ P2 and the result then follows.
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II.5.3 Proof of Lemma II.5.0.3.2

We want to prove that there is a trapping set B where the stronger species survives while the
density of the weaker one decays exponentially. The corner stone of this section is the following
lemma, which shows that the set where p2 remains bounded away from zero and p1 decreases, is a
trapping set.

Lemma II.5.3.1
Assume that conditions of Theorem II.2.3.3 hold. Take c̄, ε and ε′ as in Proposition II.5.1.4 and
for sufficiently small c < c̄ let

B1 =
{
p ∈ [0, κε]× [c, p̄2], l1(p) < 1

}
,

where κε is defined in Proposition II.5.1.4 as the solution of gα(1)(1 − e−β(1)κε) = (1 − ε)κε.
Then

supp∈B1
l1 ◦ h(p) < 1 and inf l1(p)≥1 l2(p) > 1. (II.53)

Proof. We begin by observing that φ1 < 2 log 2. Indeed, from the assumption φ1 < φ2 the result
follows if φ2 ≤ 2 log 2. Assume then that φ2 > 2 log 2 and observe that condition (II.14) gives

a1(φ1) <
φ2

1− α(2)
gα(2)(1− e−

φ2
2 ) ≤ 8φ2(1− e−

φ2
2 )e−

3φ2
2 ,

where we have used thatGα(2)(x) ≤ 2(1−x). Now, the function on the right hand side is decreasing in

(2 log 2,+∞), so we can bound a1(φ1) by 16 log 2(1−e−
2 log 2

2 )e−3 log 2 = log 2, and thus φ1 < 2 log 2,
using the definition and monotonicity of a1(x). This bound on φ1 will allow us to use conclude from
Proposition II.5.1.3 the monotonicity of h1.

From Proposition II.5.1.3 we also know that l1 is strictly decreasing on both p1 and p2, so the
level set {l1(p) = 1} defines a strictly decreasing function p2 = s(p1), for which there are values a
and b such that l1(a, c) = l1(0, b) = 1. Using these values we can easily characterize B1 as a set
bounded by the curves

C1 := {(p1, c), a ≤ p1 ≤ κε}
C2 := {(κε, p2), c ≤ p2 ≤ p̄2}
C3 := {(p1, p̄2), 0 ≤ p1 ≤ κε}
C4 := {(0, p2), b ≤ p2 ≤ p̄2}
C5 := {(p1, s(p1)), 0 ≤ p1 ≤ a} p1

p2

C4

C1

C3

C2
B1

C5

b

c

a κε

(the curve C5 is represented in the figure by an arbitrary decreasing function). We will make use of
the following lemma, its proof is postponed.

Lemma II.5.3.2

supp∈B1
l1 ◦ h(p) = maxp∈C1∪C4∪C5 l1 ◦ h(p). (II.54)

Thus in order to obtain the first statement in (II.53) we need to find the maximum of l1 ◦ h on
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each set C1, C4 and C5 separately.

• C1: From Proposition II.5.1.3 we know that l1(·, 0) is strictly decreasing and since φ1 < 2 log 2,
the same proposition states that h1(·, 0) is strictly increasing on (0, κε]. As a result, the function
p1 7→ l1(h1(p1, 0), 0) is strictly decreasing with no critical points on any interval [u, κε], so its
derivative is negative and bounded away from zero. Since all the functions are smooth, if c is
sufficiently small, we also obtain that ∂

∂p1
l1 ◦ h is negative and bounded away from zero on C1. We

conclude that l1 ◦ h is maximized at the point (a, c), so we need to show that its value at that
point is less than one. Indeed, using the definition of a, we obtain h1(a, c) = a . Also, since
a < κε we can use Proposition II.5.1.4 to deduce that h2(a, c) > c, where the inequality follows from
Proposition II.5.1.4. From the monotony of l1 we finally deduce l1 ◦ h(a, c) < l1(a, c) = 1.

• C4: In this set we have p1 = 0, which greatly simplifies the analysis since

h1(0, p2) = 0, h2(0, p2) = gα(2)(1− e−β(2)p2), l1 ◦ h = φ1
1−e−β(2)h2

β(2)h2
.

Indeed, from the particular form of l1 ◦ h on this set, the condition l1 ◦ h < 1 is equivalent to
1−e−β(2)h2

β(2)h2
< 1−e−a1(φ1)

a1(φ1) from the definition of a1(φ1). Now, since the function 1−e−x
x is decreasing

we obtain
l1 ◦ h(0, p2) < 1 ⇐⇒ a1(φ1) < β(2)gα(2)(1− e−β(2)p2). (II.55)

Observe now that l1 is a decreasing function, so it is maximized at the points where h2 attains its
minimum. From the special form of h2 given above, we deduce from Proposition II.5.1.2 that h2 is
minimized either where p2 is maximal or minimal. Following this argument, we conclude that the
maximum value of l1 on C4 is either l1 ◦ h(0, p̄2) or l1 ◦ h(0, b).

When applying the equivalence (II.55) to the term l1 ◦ h(0, p̄2) we obtain that it is smaller than
one if and only if

a1(φ1) < β(2)gα(2)(1− e−β(2)p̄2),

which follows from p̄2 <
1−α(2)

2 and (II.14). On the other hand, from l1(0, b) it is easy to see that
a1(φ1) = β(2)b so the term l1 ◦ h(0, b) is smaller than one iff

a1(φ1) < β(2)gα(2)(1− e−a1(φ1)),

but this follows directly from (II.14).

• C5: On this set it will be enough to show that

infp∈C5
[
φ2G

3
α(2) ◦ f

(2)
~β
− φ1G

3
α(1) ◦ f

(1)
~β

]
(p) > 0. (II.56)

Indeed, if (II.56) is satisfied then multiplying the inequality by 1−e−Σp

Σp
gives l2(p) > l1(p) = 1, where

Σp = β(1)p1 + β(2)p2. Now,

l2(p) > 1 =⇒ p2 < h2(p) =⇒ l1(h) = l1(p1, h2) < l1(p) = 1,

so (II.56) implies l1 < 1. To prove (II.56) recall that s(p1) is a decreasing function, which means
that f (1)

~β
(p1, s(p1)) is increasing and f (2)

~β
(p1, s(p1)) is decreasing. It follows that on C5 the function

in (II.56) is increasing on p1, so the infimum is positive if the inequality holds at (0, b) which in this
case follows from assumption (II.14).
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To complete the proof we need to show that inf l1(p)≥1 l2(p) > 1, but l2 is decreasing on p2 and
the maximum values of p2 within the region given by l1 ≤ 1 are found whenever l1 = 1. This way,
it is enough to show that inf l1(p)=1 l2(p) > 1, but this is analogous to the proof of (II.56), so the
result follows.

To complete the result above we need to prove Lemma II.5.3.2, which follows from a monotonicity
argument similar to the ones used before.

Proof of Lemma II.5.3.2. Observe that, since f (2)
~β

is increasing in p2 and decreasing in p1, the level

sets {f (2)
~β

(p) = γ} define strictly increasing functions p2 = rγ(p1). On these level sets h2 is
clearly constant and h1 is increasing in p1; this last statement follows from the monotonicity of
gα(1) (proved in Proposition II.5.1.2) and from f

(1)
~β

(p1, rγ(p1)) + γ = (f
(1)
~β

+ f
(2)
~β

)(p1, rγ(p1)) =

1 − exp(−β(1)p1 − β(2)rγ(p1)), which implies that f (1)
~β

increases in p1. Since l1 is decreasing in
both arguments, at each level set, l1(h) attains its maximum at points of minimal values of p1. Our
claim then is a result of the fact that each point p ∈ A belongs to a level set f (2)

~β
≡ γ which attains

a minimal value of p1 at C1 ∪ C4 ∪ C5.

The rest of the proof of Lemma II.5.0.3.2 consists of modifying B1 until obtaining the interior-
trapping set B required in the lemma. As a first step, observe that from Lemma II.5.3.1 there is
some γ ∈ (0, 1) such that supp∈B1

l1 ◦ h(p) = γ. We will build an interior-trapping set B2 simply by
modifying a little bit the definition of B1. Define

B2 :=
{
p ∈ [0, κε]× [c, p̄2], l1(p) < γ̄

}
for some γ̄ ∈ (γ, 1). We claim that this set is interior-trapping with parameter k̄ = 1. Indeed, take
any p ∈ B2, then, from our choice of parameters:

• From Proposition II.5.1.4.(iii) we have h1(p) ≤ (1− ε′)κε.
• Since p1 ≤ κε, from Proposition II.5.1.4.(i) we have h2(p) ≤ (1 + ε′)c.

• From Lemma II.5.3.1 we have supp∈B2
l1 ◦ h(p) ≤ supp∈B1

l1 ◦ h(p) = γ.

This way, there is some δ > 0 such that d(h(p), Bc
2) > δ uniformly on p ∈ B2, which proves that

the set is interior-trapping with parameter k̄ = 1. To show that the dynamical system reaches B2,
it suffices to show that it reaches B1 in finite time. Fix an initial condition p0. If p0

1 > κε, then by
Proposition II.5.1.4.(iii) we have p1

1 ≤ (1 − ε′)p0
1 and we repeat the argument until the trajectory

reaches [0, κε] × [0, p̄2], where it remains forever. From this point on we assume that p0
2 > c, since

if this is not satisfied we use Proposition II.5.1.4.(i) to obtain p1
2 > p0

2(1 + ε′), and then repeat the
argument to show that the sequence eventually reaches [0, κε] × [c, p̄2], where it remains forever.
Hence to finish the proof it is enough to consider an initial condition p0 inside this set and show that
there is some finite k such that l1(pk) < 1. Suppose this is not the case. Then for all n ∈ N we have
l1(pn) ≥ 1, but from Lemma II.5.3.1 this implies that there is some ε > 0 such that l2(pn) > 1 + ε
for all n. In particular, pn+1

2 > (1 + ε)pn2 for all n and hence pn2 → ∞, which is impossible since
p2 ∈ [0, 1]. We conclude that the dynamical system reaches B1.

It remains to show that there are γ1 and γ2 such that

(1− α(1))f
(1)
~β

(p) ≤ γ1p1 and γ2 < p2.
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II.5. Proofs of the multi-type results

Taking γ2 = c the inequality on the right is trivially satisfied. The main problem is that in B2 the
decay inequality is of the form h1(p) ≤ γ̄p1, which is not as strong as the one needed. However,
once inside B2 we have pk1 → 0, so in particular it is easy to see that for each δ, the set Bδ ⊆ B2

given by
Bδ :=

{
p ∈ [0, δ]× [c, p̄2], l1(p) < γ̄

}
is also interior-trapping and satisfies the same properties as B2. Indeed, once the dynamical system
reaches B2, pn1 decreases exponentially so it reaches Bδ. For any ε > 0 we can take δ sufficiently
small, so that for any p1 < δ we have

G3
α(1) ◦ f

(1)
~β

(p) ≥ 1− ε.

Choosing ε sufficiently small, we use the inequality above to conclude that

(1− α(1))f
(1)
~β

(p) ≤ γ̄

1− ε
p1

and the result then follows taking γ1 = γ̄
1−ε .
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II.A Proof of Lemma II.3.0.2

For each k ≥ 2 define
Wk =

√
E1

(
(1− αN )Z2+···+Zk

)
where E1 stands for the law of the Galton-Watson process with Z1 = 1. Since Z0 is a Bernoulli
random variable with parameter q, we clearly have (with the obvious notation)

E
(
Z0(1− αN )Z0+···+ZLN−1

)
= q(1− αN )E

(
(1− αN )Z1+···+ZLN−1

)
= q(1− αN )E

(
(1− αN )Z1

(
E1

(
1− αN )Z2+···+ZLN−1

)Z1
)

= q(1− αN )r((1− αN )W 2
LN−1)

where r(x) = (qx+1−q)3 is the probability generating function of a Binomial[3, q] random variable.
To obtain an expression for WLN−1 we study the sequence (Wk)k≥2 which, using the same reasoning
as above, satisfies the quadratic recurrence equation

Wk+1 = q(1− αN )W 2
k + 1− q (II.57)

with initial condition W2 = (1− αN )q + 1− q. This recurrence equation has two fixed points,

1±
√

1−4q(1−q)(1−αN )

2q(1−αN ) , being the one with a positive sign repulsive, and the one with a

minus sign attractive, so all orbits starting in [0, 1] converge to the latter which we call W . From
its definition we have

r((1− αN )W
2
) =

[
q(1− αN )W

2
+ 1− q

]3
= W

3
,

and observing that gαN (q) = q(1− αN )W
3, we deduce that (II.27) is equivalent to

q(1− αN )
∣∣∣r((1− αN )W 2

LN−1)− r((1− αN )W
2
)
∣∣∣ ≤ Cθα(N). (II.58)
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II.B. Proof of Proposition II.5.1.2

Since q(1− αN ) ≤ 1 and |r(a)− r(b)| ≤ 3|a− b| for all a, b ∈ [0, 1], it will be enough to show that
|WLN−1 −W | ≤ Cθα(N). To this end we notice that, from the definition of W ,∣∣Wk+1 −W

∣∣ =
∣∣∣[q(1− αN )W 2

k + 1− q
]
−
[
q(1− αN )W

2
+ 1− q

]∣∣∣
= q(1− αN )

∣∣Wk −W
∣∣(Wk +W

)
≤ q(1− αN )

∣∣Wk −W
∣∣(1 +W

)
,

(II.59)

but it can be easily deduced that q(1 +W ) ≤ 1, thus∣∣Wk+1 −W
∣∣ ≤ (1− αN )

∣∣Wk −W
∣∣ (II.60)

for all k ≥ 2. In particular, we obtain

|WLN−1 −W | ≤ 2(1− αN )LN−2 ≤ Ce−αNLN = CN
− αN

5 log(2) ,

where the last equality follows from the definition of LN . On the one hand, if α 6= 0, then for N
large the exponent is smaller than −α

5 giving the result. On the other hand, when α = 0, we need
to improve this bound. To do so, we use (II.60) to bound the distance between the LN

2 -th term of
the sequence and W , obtaining the similar expression;

|WLN/2 −W | ≤ 2e−
αN (LN−2)

2 ≤ Ce2 logαN = C(αN )2,

where in the second inequality we used condition (II.8) to bound the exponent (this is valid for N
large, hence the C factor). Noticing that Wk converges monotonically to W , the bound above is
valid for all Wk with k ≥ LN

2 , thus we can restart the sequence at the LN
2 -th term to improve the

bound taken in (II.59) as∣∣Wk+1 −W
∣∣ = q(1− αN )

∣∣Wk −W
∣∣(Wk +W

)
≤ q(1− αN )

∣∣Wk −W
∣∣(C(αN )2 + 2W

)
.

But 2q(1− αN )W = 1−
√

1− 4q(1− q)(1− αN ) ≤ 1−√αN , giving∣∣Wk+1 −W
∣∣ ≤ ∣∣Wk −W

∣∣[1−√αN + C(αN )2
]

for all k ≥ LN
2 . In particular,

|WLN−1 −W | ≤ 2
[
1−
√
αN + C(αN )2

]LN/2 ≤ Ce−√αN logN

20 ≤ Ce−
√

logN ,

where we used that αN logN →∞ as N →∞.

II.B Proof of Proposition II.5.1.2

We prove only the case α > 0 since the case α = 0 is much easier to handle. Observe first that
Gα(x) satisfies

Gα(x)
√

1− 4(1− α)x(1− x) = −Gα(x) + 2− 2x. (II.61)

G′α(x) = Gα(x)−1

x
√

1−4(1−α)x(1−x)
= Gα(x)−1

x[1−2(1−α)xGα(x)] . (II.62)
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To obtain the maximum of gα we impose the first order condition

0 = g′α(x) = xG3
α(x)

[
1

x
+

3G′α(x)

Gα(x)

]
,

where the term xG3
α(x) is equal to 0, only at 0 and 1, so g′α(x) = 0 only if the term on the right

vanishes. It is left to the reader that together with (II.61) and (II.62), the condition above gives
Gα(x) = x+ 1/2. This way, since Gα ≤ 1, every critical point of the function must lie in [0, 1/2].

The first part of the proposition will follow if we show that at every critical point x0 we have
g′′α(x0) < 0, that is, every critical point is a maximum (hence there can be only one). Now, since
g′α(x0) = 0,

g′′α(x0) = gα(x0)

[
3G′′α(x0)

Gα(x0)
− 4

3x2
0

]
,

and it is enough to show that G′′α(x0) < 0. Deriving Gα twice and using (II.61) and (II.62) we obtain
the expression

G′′α(x) =
[Gα(x)− 1]2(1− α)x[2Gα(x) + xG′α(x)]

[x(1− 2(1− α)xGα)]2
,

which is negative as soon as 2Gα(x0) + xG′α(x0) > 0 since Gα ≤ 1. To check the inequality we
use (II.61) and (II.62) yet again to show that it is equivalent to 3− 4x > Gα(x0), which is satisfied
because 0 ≤ x ≤ 1/2.

To prove the second part of the proposition, let us denote Σp := β(1)p1 + β(2)p2, so that for
each i = 1, 2 we can write

f
(i)
~β

(p) =
1− e−Σp

Σp
β(i)pi.

Since the function x 7→ 1−e−x
x is decreasing, it follows that f (i)

~β
(p) ≤ 1−e−β(i)pi ≤ 1−e−β(i)gα(i)(x0)

so it will be enough to prove that 1−e−β(i)gα(i)(x0) ≤ x0 or, equivalently β(i)gα(i)(x0) ≤ − log(1−x0).
Since x0 is characterized by Gα(i)(x0) = x0 + 1/2, it will be enough to show the following inequality:

V (x0) := φix0

(
1
2 + x0

)3
+ log(1− x0) ≤ 0. (II.63)

Our approach to show (II.63) is to prove that the function V is non-positive on the entire interval
[0, 1/2]. Indeed, V (0) = 0 and V (1/2) = φi

2 − log 2, which is negative from our assumption
φi < 2 log 2, so it is enough to prove that the inequality holds at the critical points of V ; this follows
from

V ′(x) = φi(
1
2 + x)2(1

2 + 4x)− 1
1−x , V ′′(x) = φi(

1
2 + x)(3 + 12x)− 1

(1−x)2 ,

so whenever V ′(x1) = 0 we have (1− x1)V ′′(x1) = φi(x1 + 1/2)[−16x2
1 + 13x1/2 + 11/4], which

is positive in [0, 1/2], giving that x1 is a minimum.

II.C Proof of Proposition II.5.1.3

Maintaining the notation Σp used in the previous proof;
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II.D. Proof of Proposition II.5.1.4

1. For the dependence of f (1)
~β

on p1 we write the function as (1 − e−Σp)β(1)p1

Σp
, which, for fixed

p2 is the product of two increasing functions. For the dependence of f (1)
~β

on p2 on the other

hand, we write f (1)
~β

as 1−e−Σp

Σp
β(1)p1, where the term on the left is decreasing on p2, and the

one on the right is constant.

2. Observe that l1(p) = φ1
1−e−Σp

Σp
G3
α(1) ◦ f

(1)
~β

(p). From the analysis above, f (1)
~β

is increasing
and Gα is decreasing, so l1 is a product of decreasing functions on p1.

3. If φ1 < 2 log 2, then from Proposition II.5.1.2 we know that g′α(i) ◦ f
(i)
~β

(p) ≥ 0, so h1 satisfies

the same monotonicity as f (1)
~β

on each argument. Since l1(p) = h1(p)
p1

, it must behave as h1

with respect to p2.

II.D Proof of Proposition II.5.1.4

Recall the definition of Σp used in the proof of Proposition II.5.1.2.
• Proof of (II.38): Take c small (to be fixed later), and suppose that p2 < c. Observing that
f

(2)
~β

(p) = 1−e−Σp

Σp
β(2)p2 we deduce that 1−e−β(1)p1

β(1)p1
β(2)p2 < f

(2)
~β

(p) < β(2)p2, so from the
assumption p2 < c and the monotonicity of Gα, we deduce

l2(p) = (1− α(2))
f

(2)
~β

(p)

p2
G3
α(2) ◦ f

(2)
~β

(p) ≥ φ2
1− e−β(1)p1

β(1)p1
G3
α(2)(β(2)c). (II.64)

Since the fraction is decreasing on p1 we obtain a lower bound by taking p1 = κε and using its
definition to obtain

l2 ≥ φ2
1− e−β(1)κε

β(1)κε
G3
α(2)(β(2)c) ≥ (1− ε)φ2

φ1

G3
α(2)(β(2)c)

G3
α(1)(1− e−β(1)κε)

.

But φ2

φ1
> 1 and as c → 0 we have Gα(2)(β(2)c) → 1, so taking first ε small and then c

sufficiently small, the right hand side is larger than 1 + ε′ for some ε′.

• Proof of (II.39): For the second part, Proposition II.5.1.2 gives that gα(2) has a single critical

point which is a maximum, so h2 = gα(2) ◦ f
(2)
~β

is minimized either when f (2)
~β

is minimized or

maximized. Remembering that f (2)
~β

decreases with p1 and increases with p2, we conclude that

the minimum of h2 over the set [0, κε] × [c, p̄2] is obtained either at (0, 1−α(2)
2 ) or at (κε, c).

We already saw that at the point p = (κε, c) we have h2(p) = l2(p)p2 > (1 + ε′)c, meaning
that we need only to control h2 at (0, 1−α(2)

2 ), which is equal to gα(2)(1 − e−φ2/2), which is
a fixed value so the result follows by taking c small enough so that gα(2)(1−e−φ2/2) > (1+ε′)c.

• Proof of Proposition II.5.1.4.(ii): To prove the properties above for a general value of p1 we
proceed analogously, but when computing (II.64) we use the additional information φ1 < 2 log 2
to improve the lower bound without imposing any restriction on p1. Indeed, since φ1 < φ2 we
deduce that β(1)p1 ≤ φ2

2 so, from monotonicity of 1−e−x
x ,

l2(p) ≥ φ2
1− e−β(1)p1

β(1)p1
G3
α(2)(β(2)c) ≥ 2(1− e−φ2/2)G3

α(2)(β(2)c),
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but 2(1 − e−φ2/2) > 1 from our assumption φ2 > 2 log 2, so taking c sufficiently small we
conclude again that l2(p) > 1 + ε′ for some ε′ small. The proof of the second property is
exactly the same as in II.39.

• Proof of (II.40) and (II.41): Notice that, since φ1 < 2 log 2, from Proposition II.5.1.3 we know
that h1 is increasing in p1 and decreasing in p2, so using the definition of κε we deduce

p1 < κε =⇒ h1(p) ≤ h1(κε, 0) = gα(1)(1− e−β(1)κε) = (1− ε)κε,

which proves (II.40). To prove (II.41) we use a similar argument with l1, which we know is
decreasing in both arguments, so that

κε < p1 =⇒ l1(p) ≤ l1(κε, 0) =
gα(1)(1− e−β(1)κε)

κε
= (1− ε),

and the result follows.
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We introduce the set of (non-spanning) tree-decorated planar maps, and show an explicit bijection
between this set and the Cartesian product between the set of trees and the set of maps with a
simple boundary. As a consequence, we count the number of tree decorated triangulations and
quadrangulations with a given amount of faces and for a given size of the tree. Finally, we generalize
the bijection to study other types of decorated planar maps and obtain explicit counting formulas for
them.

III.1 Introduction

In this chapter, we study the combinatorial properties of tree-decorated maps via the use of a
simple bijection. A tree-decorated map is a pair made of a rooted (planar) map and a submap that
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III.1. Introduction

Figure III.1 – A simulation, based on our bijection, of a uniformly chosen tree-decorated quadrangu-
lation among those with 90000 faces and with a tree of 500 edges. The tree is in red.

is a tree. When fixing the tree size as a parameter, tree decorated maps interpolates between planar
quadrangulations, when the tree has one edge, and the spanning-tree decorated quadrangulations,
when the tree has the same number of vertices that the whole graph.

Planar maps and spanning-tree decorated maps have been studied, both in combinatorics and
probability. Planar maps were introduced in [43] and afterwards have been thoroughly studied in many
works from both a combinatorial (see for example [113, 100, 20]) and a probabilistic perspective (see
for example [87, 77, 89]). Spanning-tree decorated maps were first studied in [93], where a simple
counting formula is given, which later was explained in [114, 26, 11] through bijective methods. These
bijections are the key to the study of planar maps decorated by statistical physics models [103].

III.1.1 Motivation

The main motivation for the introduction of this model is to try to understand the difference, as
metric spaces, between uniformly chosen planar maps and uniformly chosen spanning-tree decorated
planar maps.

The study of planar maps as metric spaces has been an active area of research in combinatorics
and probability theory these last years. Cori-Vauquelin-Schaeffer (CVS) bijection [100] has been used
to understand the case of a uniformly chosen planar quadrangulation with f faces. Many of its
asymptotic properties: the distances scale like the number of faces f to the power 1/4 and there is
an explicit limiting metric space called Brownian map [87, 89, 77]. However, in the world of uniformly
chosen spanning-tree decorated planar maps (general with a fixed number of edges or q-angulations),
we do not know much. Only bounds on the order of the diameter as a function of the number of
edges are known [61, 34]. On the optimistic side, Walsh and Lehman’s bijection [114] shows that in
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the case of uniform spanning tree decorated map, the tree is uniformly distributed over the set of all
trees with the right number of edges.

The main reason why it is difficult to understand distances in the context of spanning-tree deco-
rated maps becomes clear when one compares it to the case of planar quadrangulations. The main
tool used to study distances in these planar maps is the (CVS) bijection, which relates a planar map
to a pair of trees. In this bijection, one of the trees encodes the distance to a marked point, thus
by using scale order of this tree, one gets an immediate lower and upper bound on the diameter of
the map. On the side of tree-decorated planar maps, we are not that lucky. Even though Walsh
and Lehman’s bijection [114, 11] relate them to a pair of trees, it seems not easy to extract any
information about distances in the original graph from them.

At this point, let us make a remark from the point of view of conformal field theory, where these
two models are not expected to look the same. Uniformly chosen planar maps are model associated
to central charge equal to 0 (c = 0), while spanning-tree decorated maps have an associated central
charge of −2 (c = −2) [68]. Thus, two objects, in the world of tree-decorated maps, have two-
different central charges, which gives evidence that theirs conformal properties should change in
general with respect to the number of edges of the tree. Trying to understand how this interaction
works in the limit is the main interest of a work to come [51].

III.1.2 Results

Figure III.2 – A map decorated by a spanning tree.

A rooted planar map is a pair (m, ~e) made
of a map m, which is an embedding of a fi-
nite connected planar graph in the plane (or the
sphere S2), without edge crossings, and an ori-
ented edge ~e (the root-edge), considered up to
direct homeomorphisms of the sphere. A map
(omit the colors for the moment) is shown in
Figure 6, where its root edge is represented by
an arrow.

The degree of a face is the number of
edges adjacent to it (an edge included in a face
is counted twice). A q-angulation is a map
whose faces have degree q (Figure 6 shows a
4-angulation; these are also called quadrangula-
tions).

A rooted plane tree, or tree for short, is a rooted map with one face.

The face that is at the left of the root-edge will be called the root-face or external face (face
in gray in Figure 6). In what follows maps with a boundary are maps where the root face plays a
special role; and the set of edges that are adjacent to it form the boundary. The number of edges
in the boundary will be called its size. The boundary will be seen sometimes as a path around the
root face, up to cyclic rotation of the indices, or as a set of edges. All others faces are called internal
faces. For example, a quadrangulation with a boundary of size p is a map where all internal faces
have degree 4 and the root-face has degree p. The boundary of a map is said to be simple if it forms
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a non vertex-intersecting path.

A map (rooted or unrooted) m1 is said to be a submap of the rooted map m2, if m1 can be
obtained from m2 by suppressing edges and vertices. If the submap m2 contains the root of m1, then
it is rooted, otherwise it is unrooted.

Definition III.1.2.1
For (f, a) ∈ (N∗)2 a rooted (f, a) tree-decorated map is a triplet (m, t, ~e) where (m, ~e) is a
rooted map with f faces, and (t, ~e) is a rooted plane tree with a edges, which is a submap of m.

By definition, in a rooted tree-decorated map the root-edge of the decoration and the root-edge
of the map coincide (this will not be the case further for tree-decorated maps).

For other detailed definitions, we refer the reader to Section III.2. Let us, now, present the main
results of the chapter.

The corner stone of this chapter is an explicit bijection between the set of tree-decorated maps
and the set of pairs made by a rooted maps with a simple boundary and a rooted tree.

Theorem III.1.2.2
There exists an explicit bijection g between:

• the set of rooted (f, a) tree-decorated maps and
• the Cartesian product between the set of rooted trees with a edges and the set of rooted
maps with a simple boundary of size 2a (boundary with 2a edges) and f interior faces.

The bijection can be summarised as follows: a copy of the tree is kept aside and the map with a
simple boundary is generated by inflating the tree decoration, this latter becoming in this way a face
with a simple boundary of size twice the size of the tree (see Figure III.3). We call this direction of the
bijection ungluing procedure/function u, and its inverse the gluing procedure/function g. The gluing
function g consists only in identifying the boundary of the map using the equivalence relationship
generated by the tree.

(m, t)

u
−→

mb t′

+

Figure III.3 – A simple sketch of the ungluing procedure.

In view of the motivation, the main Theorem III.1.2.2 allows us to connect the study of tree-
decorated maps with maps with a boundary. Maps with boundary are also an interpolation model, as
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when the boundary is of size 2, they coincide with planar maps, and, when the boundary has twice
the number of edges, we recover plane trees. This interpolation effect was explored, for uniformly
chosen maps (with a given size) with a boundary in [13], and we hope g will allow us to transfer
the transition from maps to trees, hold in the case of maps with a boundary, to that from maps to
spanning tree-decorated maps, in tree-decorated maps.

Definition III.1.2.3
Fix (f, a) ∈ (N∗)2. A (f, a) tree-decorated map is a triplet (m, t, ~e) where (m, ~e) is a rooted
map with f faces, and t is a tree with a edges, submap of m.

As a submap, the tree t can be rooted by ~e or unrooted, meaning that it could inherit or not the
root-edge ~e of the map m.

This "possibly unrooted version" of rooted tree-decorated maps is introduced in order to fit with
the literature, since for example, in the case of spanning-tree decorated maps the root-edge of the
map is not necessarily on the tree.

Important consequences of Theorem III.1.2.2 are counting formulas for some subsets of tree-
decorated maps. A close look at the ungluing procedure u shows that it only creates a new face,
so that it does not modify the internal faces of the map. Thus, it is possible to obtain counting
formulae for tree-decorated (and spanning-tree decorated) q-angulations. To obtain these results, we
need to count the maps with a simple boundary and use a re-rooting argument (this is explained
in Section III.4.1). Luckily, we can find these countings in [73] for triangulations and in [19] for
quadrangulations.

Corollary III.1.2.4
For a ≤ f/2 + 1, the number of (f, a) tree-decorated triangulations is

2f−2a (3f/2 + a− 2)!!

(f/2− a+ 1)!(f/2 + 3a)!!

3f

a+ 1

(
4a

2a, a, a

)
, (III.1)

where n!! stands for the double factorial of n.

Furthermore, for a ≤ f + 1, the amount of (f, a) tree-decorated quadrangulations is

3f−a
(2f + a− 1)!

(f + 2a)!(f − a+ 1)!

4f

a+ 1

(
3a

a, a, a

)
. (III.2)

Additional note.
Both bounds f/2 + 1 and f + 1 corresponds to the number of edges in a spanning trees for
triangulations and quadrangulations with f faces, respectively. To get these numbers, one can
compute the number of vertices in triangulations and quadrangulations with f faces, thanks to
the Euler formula, and double counting arguments.

The formulas for spanning-tree decorated quadrangulations and spanning-tree decorated triangula-
tions appear in [18], and are based in Walsh and Lehman’s bijection [114]. Our approach will provide
a new bijective proof of them.
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Corollary III.1.2.5
The number of spanning-tree decorated triangulations with f faces, i.e. (f, f/2+1) tree-decorated
triangulations, is

12f

(f + 4)(f + 2)2

(
2f

f, f/2, f/2

)
. (III.3)

Furthermore, the number of spanning-tree decorated quadrangulations with f faces, i.e. (f, f+1)
tree-decorated quadrangulations, is

4f

(f + 1)2(f + 2)

(
3f

f, f, f

)
. (III.4)

Remark III.1.2.6
Additionally, let us note that as the decorating tree is kept without any changes, when one picks a
uniform rooted (f, a) tree-decorated q-angulation (or maps with prescribed number of total edges),
the law of the tree is uniform among all the rooted trees with a edges. This is a generalization
of the result for spanning-trees decorated maps. Furthermore, the power of this bijection is that
it can be restricted to different families of maps (q-angulations) and tree decorations (d-regular
trees).

The counting formula for general maps with some given boundary and edges sizes is given through
its generating function in Section III.4.2.

The bijections u and g "do not change" the vertices and edges that are not adjacent to the tree
(or to the boundary for g) so the bijections induces a correspondence between maps with a given
number of total edges.

Definition III.1.2.7
Fix (e, a) ∈ (N∗)2. A rooted [e, a] tree-decorated map is a triplet (m, t, ~e) where (m, ~e) is a
rooted map with e edges, and (t, ~e) is a rooted tree with a edges, submap of m.

Theorem III.1.2.8
There exists a bijection ge between:

• the set of rooted [e+ a, a] tree-decorated maps and
• the Cartesian product of rooted trees with a edges and rooted maps with a simple boundary
of size 2a and e interior edges.

The bijection is not only useful to obtain counting results, but we plan to use it in [51] to transfer
asymptotic results concerning maps with a boundary, intensively studied in [13, 14, 58] and well
understood, to tree-decorated maps.

Let us also mention that the bijection presented in this work is simple enough so that attributes
on the faces can be carried between the two objects. This may allow in the future to understand
tree-decorated maps weighted by a statistical physic law. This probability law, have been the object
of great interest in the statistical physics community, especially after the introduction of the so-called
‘Hamburger-Cheeseburger’-bijection [103].
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Most of the other results of this chapter consist in using the main idea of the bijection of The-
orem III.1.2.2 to produce bijections between other combinatorial objects. We study forest-decorated
planar maps (see Corollary III.4.3.2) and tree-decorated planar maps with a simple boundary (see
Corollary III.4.3.1). The latter allows us to make the gluing procedure in a progressive dynamical way
(see Proposition III.3.3.1).

In Section III.3.3, we also explain what happens when "one tries to apply our gluing function g"
to maps whose boundary is not necessarily simple. In this case, the natural result is not a maps, but
what we call bubble-maps (see Section III.3.3), which are maps embedded in a tree-like structure of
spheres, and which are decorated by a specific type of circuit (see Proposition III.3.3.1).

As a final remark, we would like to say that gluing maps, by folding the boundary or by gluing
some boundaries, has already been considered, but not in relation with tree-decorated maps, for
example in relation with maps decorated by self avoiding walks [39, 13, 57, 22] and loops [17].

III.1.3 Organisation of the chapter

The chapter is organized as follows: we start by adding some elements on the combinatorial
objects we are interested in. In Section III.3, we present all the bijections and theirs proofs. Finally,
in Section III.4, we discuss the counting formulas we obtain from the bijections.

III.2 Preliminaries

III.2.1 Elementary definitions

For an introduction to planar maps, we recommend, for example, to see [54, 48] and [18]. For
the definitions of maps, faces, trees, boundary, submaps and others we refer to the Section III.1.2.

Figure III.4 – Representations of an edge.

According to the context, we will sometimes consider
the edges of maps as two directed edges (the two possible
directions), two half edges or one (non-directed) edge. We
call root-vertex the starting point of the root-edge. We
associate to each face the set of oriented edges having the
face to its left.

Additional note.
There are several equivalent ways to root a map: the one we have chosen “the root-edge” is
equivalent to the choice of “marked corner” or to the choice of a “half-edge”.

We call rooted plane tree a rooted map with a single face and we denote the set of rooted trees
with a edges by Ta. The number of edges in a tree will be called the size of the tree.

Additional note.
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By definition a rooted plane tree is a map with a single face, therefore, connected and acyclic (any
cycle, in the planar setting, induces more than one face). Moreover, since it is embedded on the
sphere, there is a special rotation order around the tree, which consists in following the boundary
of its unique face from the root-edge. This visiting order coincides with what we call later, the
contour function.

We will encode trees of Ta using walks. In the literature, one can find several of these codings,
see for example Section 1 of [75]. In this chapter, we are interested in: the contour function, bijection
that associates to each rooted plane tree with a edges a Dyck path C indexed by J0, 2aK. For a more
detailed description we refer to Section 1.1 of [75] and Section 2 of [11].

A rooted plane tree t has an intrinsic way of visiting all of its oriented-edges 1. This visit can be
represented by a walker that starts from the root vertex and turns around the tree: he follows the
direction of the root edge touching the tree with his left hand 2 as long as it walks. The walker, then,
continues until he returns to the root edge. Note that this walk visits every oriented edge only once.
Now, we define the contour function C : J0, 2aK→ N as the function (we should write Ct instead of
C) for which C(n) is the distance to the root vertex (height) of the vertex visited at time n by the
walker (time 0 for the root-vertex).

The inverse of this bijection t → Ct is explicit. We say that a function C : J0, 2aK → N is
a contour function if C(0) = C(2a) = 0 and its increments are ±1, i.e., C is a Dyck path. We
can construct a plane tree from a contour function by saying that two points n1, n2 ∈ J0, 2aK are
equivalent if for n1 ≤ n2

C(n1) = C(n2) = inf
n∈Jn1,n2K

C(n). (III.5)

The vertices of the tree are the equivalence classes of the relation and the edges can be recovered as
follows: two vertices have an edge between them if they are the equivalence classes of two elements
that are exactly at distance 1 in J0, 2aK. Note that each edge comes exactly from two steps of the
walk, one going up and the other one going down.

ei

ej+1
ei+1

ej

Figure III.6 – Forbidden clockwise cir-
cuit.

We define a non-self crossing circuit as a sequence
of non-crossing directed edges (ei)

l−1
i=0, for some l ≥ 1,

embedded in the plane, such that the head of ei is the
tail of ei+1 mod l for all i ∈ J0, l − 1K. Non self-crossing
means that for every vertex x in the circuit, we do not find
around x the pattern ei, ej , ei+1, ej+1 in cyclical (clockwise
or anticlockwise) order, where i, j ∈ J0, l−1K and the sum
in the indexes is modulo l (see fig. III.6).

We denote by Bf,p the set of maps with boundary of
size p with f internal faces (see fig. III.7). Note that ori-
ented edges around the boundary of a map have a canonical labeling in J0, p−1K := {0, 1, . . . , p−1}
coming from the amount of step that a walker, who starts from the root edge and who follows the
boundary of the root face, takes to arrive to a given edge (label 0 for the root-edge).

The set of maps with a simple boundary in Bf,p is denoted by SBf,p (see fig. III.7). When the
boundary of the map is simple, i.e., the boundary is not vertex-intersecting, in this case, the labels

1. This is the first time we consider each non-oriented edge as two oriented edges as we remark in Figure III.4.
2. Note that, in the literature, the walker usually walks following its right hand. In this work, the left hand conven

tion makes some statements easier.
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v0 v1 v2
c2
c4c6

c0 c1
c3

c5

v3

v4

1

2

3

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10c0

Figure III.5 – Left: Tree with walker path around the tree in cyan, the corners are numbered by the ci and
are the circular sectors shown in red. All the corners belonging to the same gray circle belongs to the same
equivalence class associated to a vertex, for example v2 = [c2]c = [c4]c = [c6]c.
Right: Contour function.

of the edges induce a labeling of the vertices of the boundary (the label of the root-vertex is 0).

Additional note.
In other words, the boundary is said to be simple iff, when one turns around the boundary each
vertex adjacent to the boundary is visited once.

Let us also introduce another type of boundary. A boundary is called bridgeless if the walk described
above never goes twice along the same edge. Let us give an alternative definition. An edge is called
a bridge if its suppression disconnects the map. Thus, a boundary is said to be bridgeless if it does
not contain any bridges (see fig. III.7).

(a) Simple bridgeless boundary. (b) Non-simple bridgeless bound-
ary.

(c) Non-simple boundary with
bridges (in red).

Figure III.7 – Different types of boundary, the gray region is the interior of the map and the unbounded
region is the outer face.

A rooted decorated map is a map with a special submap, i.e. it is a triplet (m, sm, ~e) with (m, ~e)
a rooted map with f faces and sm ⊂M m.

III.2.2 Tree-decorated maps

Let M̊T,a
f be the set of all rooted (f, a) tree-decorated maps.
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Definition III.2.2.1
Fix a, f, p ∈ N∗. A (f, p, a) tree-decorated map with a simple boundary is a triplet (mb, t, ~e)
with mb a rooted map with a simple boundary in SBf,p, rooted on ~e and t a submap of mb, which
is a tree with a edges, intersecting the boundary only at the root-vertex.

We denote by BT,a
f,p the set of all (f, p, a) tree-decorated map with a simple boundary. The cardinality

of the set of all tree-decorated triangulations with a simple boundary is counted by (III.15) and that
of quadrangulations Corollary III.1.2.5 is counted by (III.16). We set

BT,a
f,0 := M̊T,a

f ,

when the parameter p = 0.

III.3 Main bijections

III.3.1 The basic bijection

From rooted tree-decorated maps to rooted maps with simple boundary and rooted trees:

In the following paragraphs, we define formally the ungluing function u sketched in Figure III.3.
The function u takes as argument a rooted tree-decorated map in M̊T,a

f , its image is a rooted tree
in Ta together with a rooted map with a simple boundary in SBf,2a. Basically, the resulting tree is
equal to the decorating tree and the map with a boundary is obtained by a duplication of the oriented
edges of the tree in such a way that the newly appeared oriented edges form a face, see Figure III.3.

Consider a tree decorated map (m, t, ~e) ∈ M̊T,a
f , and denote ((mb, ~eb), (t

′, ~et′)) the (soon-to-be-
constructed) image of (m, t, ~e) under u. The tree (t′, ~et) is taken equal to the tree (t, ~e), in particular
the root edge of t′ is the same as that of t, i.e., the one of the map m.

To construct the map with a simple boundary (mb, ~eb) we start by defining the notion of a corner
of t at a vertex x as a pair of two consecutive oriented edges (for the clockwise order), where the first
one finishes at x and the second one starts at x. Define K as the set of corners of t. An oriented
edge that starts or ends at x is said to go to a corner (e1, e2) of x if it is between e1 and e2 for the
clockwise order.

We can now define (mb, ~eb). The set of vertices of mb is the union between K and the subset of
vertices of m that are not in the tree t, i.e., V (m)\V (t). To define the edges of mb we will use those
of m. Each oriented edge ~e ′ of m whose vertices do not lie in t is also an oriented edge of mb. Each
oriented edge ~e ′ of m that has at least one vertex in t, becomes an oriented edge that instead of
the vertex in the tree has the corner in which the edge is incident as extremity. Finally, we add the
oriented edges (c1, c2) between two elements of K if c1 and c2 seen as corners in t are connected by
an oriented edge in t (see fig. III.8).

To finish the definition of mb we are only missing the root-edge and the embedding. The root-
edge ~eb is the image of ~e from the edge definition described above. The embedding is characterized
by the cyclic orientation of the edges which is the same as that of m. In other words, in a corner the
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cyclic orientation is kept the same as in m, and this can be done because all edges in mb that belong
to a corner can be identified with a unique edge in m.

u
−→

Figure III.8 – Local image of u

Let us, now, show the following:

Lemma III.3.1.1
The constructed map (mb, ~eb) belongs to SBf,2a.

Proof. First the boundary has clearly size 2a, since the edges of t have been duplicated. Furthermore,
the boundary of the map mb is simple, otherwise the tree would contain a cycle.

To finish, we just need to show that mb is a (planar) map, that is, it can be embedded in the
sphere S2. This comes directly from the fact that there is an orientation preserving isomorphism that
goes from S2\t to S2 ∩ {(x, y, z) : x > 0}, and that can be extended to the boundary in a way that
it sends prime ends of t in S2\t to points in S2 ∩{x = 0} keeping the cyclical order between them 3.
Thus, one can embed mb in S2 using any of these functions. To finish, it is enough to see that any
of these isomorphisms produce an embedding of mb with boundary contained in S2 ∩ {x = 0}.

Finally, let us note that mb has exactly one more face than m: the new root-face. Furthermore,
the internal faces of mb are in one to one correspondence with the faces of m. Thus, we can conclude
the following lemma.

Lemma III.3.1.2
For any q ∈ N, the ungluing function u sends the set of rooted (f, a) tree-decorated q-angulation
(m, t, ~e) to the set of pairs ((mb, ~eb), (t

′, ~et)) where (mb, ~eb) is a rooted q-angulation with boundary
of size 2a and (t′, ~et) is a rooted tree of size a.

From maps with simple boundary and trees to tree decorated maps

It is time to define formally the gluing function g that takes as argument a map with a boundary
in SBf,2a and a tree in Ta and returns as result a rooted (f, a) tree-decorated map. It will be proved
that it is the inverse of u. Informally, g should identify two oriented edges incident to the external
face of the map m ∈ SBf,2a using the relation given by the oriented edges in the tree.

3. In this case it follows from the fact that S2\t is simply connected (so one can use Riemman’s theorem), together
with results of the behaviour of conformal functions close to the boundary. See Chapter 2 of [96] for definitions of
prime ends and the main results in the boundary behaviour of conformal maps.

159



III.3. Main bijections

Let ((mb, ~eb), (t
′, ~et)) be an element of SBf,2a×Ta, we will construct (m, t, ~e) ∈ M̊T,a

f , the value
of g((mb, ~eb), (t

′, ~et))) as follows. Recall that the vertices of the external face of mb are indexed from
0 to 2a− 1, and call C the contour function of t′. Recall that C induces an equivalence relation on
the set of corners via equation (III.5), and define V ′ as the set of equivalence classes.

Let us now construct m. The vertex set of m is made by the union of V ′ with the set of vertices
of mb that do not belong to the exterior face. The edge set of m is constructed from that of mb in
the following way. Let (x, y) be an oriented edge of mb, then the edge (G(x), G(y)) is in mb, where

G(x) :=

{
[l] if x ∈ V ′,
x else,

(III.6)

where l is the label of x in the boundary ( from the simple boundary behavior commented in the
introduction), and [l] is the equivalence class of l under the equivalence relation defined by C.

Before defining the embedding, let us give some properties of the resulting graph.
• If (x, y) is an oriented edge that belongs to the boundary of mb, its reverse (y, x) is associated
exactly to one other edge (y′, x′) such that (x′, y′) belongs to the boundary of mb. In other
words, C induces a perfect matching of the edges in the boundary

• As the boundary of mb is simple, the image of the edges in the boundary of mb has the same
tree structure as t′. We define t as this image.

We define ~e as the image of ~eb under the assignation of edges. Notice that the identification
satisfies that ~e is an oriented edge of t.

To finish the construction of m, we need to set the cyclical order of the edges around each vertex.
If v is a vertex of m that does not belong to V ′, we set the order or the edges surrounding it as its
order in mb. In the case where v ∈ V ′, we consider the order as the gluing of orders, following the
corner identification around v (see Figure (III.9)). Note that this creates for a vertex v ∈ V (t) and
a vertex v̄ ∈ V (t′), where v is the image of v̄ for the gluing g, the same cyclical order.

vikvi1

ci1 ci2

cik

ci1 ci2

cik

Figure III.9 – Gluing of corner and edge orders around a vertex. For vertices vi1 , vi2 , . . . , vik on the boundary
of mb respecting the cyclic order around the boundary, to identify these vertices by the gluing procedure, we
do it roughly as the right side picture. Choose a point x of the plane and partition the plane around x into k
angular sectors, put vij at x and draw its incident edges in the j-th angular sector, respecting the order.

To finish, let us actually prove that there exists an embedding that satisfy the given properties.

Lemma III.3.1.3
(m, t, ~e) (as constructed above) belongs to M̊T,a

f .

Proof. We already know that t is a submap of m and that it is a tree with a edges, we just need to
prove that there exists an embedding that satisfies the order we imposed. This follows, like in Lemma
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III.3.1.1, the existence of an orientation preserving isomorphism that goes from S2∩{(x, y, z) : x > 0}
to S2\t, and that takes any cyclically ordered prime ends of t in S2\t to elements of S2 ∩ {x = 0}
keeping the same cyclical order.

Remark III.3.1.4
Consider T a subset of Ta the set of rooted trees with a edges. The gluing procedure g can be
restricted to the family SBf,2a × T and with image set corresponding to tree-decorated map for
which the decoration belongs to T .

The gluing is actually a bijection

Let us now prove that the gluing and ungluing functions g and u are inverse of each other.

Proposition III.3.1.5
For f, a ∈ N∗, g ◦ u = Id, the identity in M̊T,a

f and u ◦ g = Id, the identity in SBf,2a × Ta.

Proof. Consider (m, t, ~e) ∈ M̊T,a
f , and let us show that g(u((m, t, ~e))) = (m, t, ~e). First note that the

composition of both functions preserves the number of vertices of m. This is because, every vertex
that does not belong to the decoration does not change by the transformations and the vertices
on the decoration are separated by u in corners of t, and then gathered by g in exactly the same
vertices of m. Let us now note that the edges are kept the same by the composition g ◦ u. This
is because every edge without endpoints in the decoration are unchanged by g and by u, and edges
with endpoints in the decoration again are unglued from the decoration by u and glued back by g.

Finally, the cyclical orders of edges around the vertices are kept: the reason is that for vertices
that are not in the tree the cyclical order is kept the same, and for edges that intersect the tree, this
order is preserved since u inflates the tree and g deflates the tree.

The proof for u ◦ g = Id follows the same lines: the gluing and ungluing functions are designed
in order to conserve the local properties.

Remark III.3.1.6
Proposition III.3.1.5 can also be proven using that the isomorphisms taken in Lemma III.3.1.1 and
III.3.1.3 may be chosen to be the inverse of each other.

It is important to remark that the bijection g makes a correspondence between:

Tree-decorated map [Map with a simple boundary, tree]
Faces of degree q ←→ Internal faces of degree q
Internal vertices of degree d ←→ Internal vertices of degree d
Internal edges ←→ Internal edges
Corners of the tree ←→ Boundary vertices.

As already said, Lemma III.3.1.2 together with Proposition III.3.1.5 imply that the gluing-ungluing
procedures can be also use to produce a bijection where instead of fixing the number of faces, one
fixes the number of edges in the map, which justifies Theorem III.1.2.8. They also imply that g is a
bijection when restricted to q-angulations.
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Proposition III.3.1.7
The function g is a bijection (more exactly, it induces by restriction a bijection) between :

• the set of rooted (f, a) tree-decorated q-angulations and
• the Cartesian product between the set of rooted trees with a edges and the set of rooted
q-angulations with a simple boundary of size 2a and f faces.

Furthermore, as the ungluing keeps the tree without any changes we obtain the following probabilistic
result.

Corollary III.3.1.8
The tree of a uniform rooted (f, a) tree-decorated q-angulation or rooted [e, a] tree-decorated
maps is uniform in the set of rooted trees of size a.

III.3.2 Extensions

In the following section, we discuss some extensions of the gluing procedure which allows us to
make bijections for other tree-decorated map families.

Tree-decorated map with a simple boundary

In this subsection, we study the gluing of trees with maps with a boundary that is bigger than
the contour of the tree, and we create a dynamic gluing of the boundary.

Extension of the gluing procedure g to (f, p, a) tree-decorated maps with a simple boundary:
Recall the definition of (f, p, a) tree-decorated map with a simple boundary in section III.2.2.

For a, f, p ∈ N∗, we extend the gluing function g to SBf,p+2a×Ta → BT,a
f,p , meaning that we glue

a rooted tree with contour smaller than the boundary of a simple boundary map, the exterior face
in this case shrinks but does not disappear. The resulting decorated map has a decoration that is a
tree that shares only one vertex with the exterior face. We define the root of the resulting decorated
map as the image of the edge labeled 2a in the simple boundary map (See ??). This can be made
formal, adapting the proof of theorem III.1.2.2, to conclude the following proposition.

Proposition III.3.2.1
The function g is a bijection (by restriction) between:

• the set of rooted (f, p, a) tree-decorated map with a simple boundary BT,a
f,p and

• the Cartesian product between rooted trees with a edges and rooted maps with a simple
boundary with f faces and boundary of size p+ 2a.

III.3.3 Gluing of trees with non-simple boundary maps

To finish this section, we introduce a gluing procedure for the case when the boundary of the
map glued is not simple. The combinatorial objects that appear do not seem canonical, so we discuss
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with more emphasis the complications which arise.

We mostly focus on the case, where the boundary is bridgeless. In that case, we will make sense
of a generalization of the gluing procedure. After that we will explain why the gluing procedure "does
not make sense" when the boundary has bridges.

Let us start discussing the gluing between a rooted map with a bridgeless boundary and a rooted
tree. Note that, in this case, the resulting glued “map” has a decoration that is not necessarily a tree,
but a submap (see Figure III.10). This generates two problems.

- The first one comes from the fact that gluing function is not injective. This is not a central
problem as it can be fixed: instead of considering the decoration as a submap, one can consider it
as a non-self crossing circuit, defined in Section III.2.1. The circuit is just the image of the contour
of the tree under the gluing. The fact that the boundary was bridgeless, implies that the circuit only
passes once by each oriented-edge.

-The second problem that arises in the gluing is the main one: there are, in fact, two types of
cycles that may appear in the circuit. To describe them, let us first note that cycles can only appear
in vertices that come from a pinch point of the boundary. Thus, there are two possibilities for the
image under the gluing of these vertices. Either, the gluing identifies the corners of a pinch point
with different vertices of the tree. These generate cycles that preserve the topology. On the other
hand, if the gluing identifies two corners of a pinch point with the same vertex in the tree, then a
‘wicked’ point appear. That is to say, this vertex pinches down the sphere, and the graph can no
longer be embedded in the sphere but only in a topological space with bubbles.

+
f1 f2 f3 ←→

f1

f2
f3

Figure III.10 – Left: Bridgeless map with a non-simple boundary (interior faces are filled) and a tree.

Right: Bubbles (3D plot) form by the gluing of a map with non-simple boundary and a tree. We chose to
leave the scar generated by the tree after the gluing (black), even though the decoration is the green circuit
(oriented edges following the sense of the root edge from the root edge).

Let us explain, in a better way, what happens with the wicked points. For that it is useful to
assume that the map with a boundary is already embedded in the sphere. Let x be a pinch point
that generates a wicked point in the resulting object. We know that if we remove x, the map with a
boundary is left with two or more connected components, say CC1 and CC2. Note that two faces,
f1 belonging to CC1 and f2 belonging to CC2 can only be connected through a continuous path in
the sphere that either passes through x or through the exterior face of the map. After the gluing has
been done, the exterior face disappears. Thus, any continuous path that goes from the image of f1

to that of f2 has to pass by x, as the tree does not code the difference between these edges. Thus,
the resulting glued “map”, is not a map since it cannot be embedded in the sphere: removing the
point x results in a disconnection of the faces, which never happens in S2.
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Additionally note that "bubbles" are connected in an arborescent way, as they do not form cycles.
This is because, each bubble is associated with a starting point and a subtree of the original tree,
where two subtrees can only intersect in at most one vertex (See Figure III.10).

Bubble maps definition In the next paragraphs, we will define more rigorously the notion of bubble
maps. We need to define the "supporting topological spaces", which are surfaces homeomorphic to
S2 in the case of planar maps. The construction defined previously produces bubbles that can be
imagined as on Figure III.11.

Figure III.11 – Bubble structure.

However, if this can be used for the intuition we need to work at a topological level (for example,
we will not assume that "bubbles surfaces" are subsets of R3). We will rather call an oriented
bubble topological space (OBTS for short) a space S having the following characteristics:

• S is the union of a finite number b of surfaces, called thereafter "bubbles" B1, B2, . . . , Bb
taken in a fixed order (meaning that the label i of Bi will play a role, see Figure III.14 for an
idea). The sequence of bubbles (B1, · · · , Bb) satisfies:

— Each Bj is homemorphic to S2 and oriented.

— The intersection Bj ∩Bj′ is either empty or a single point, which is a vertex of the graph,
for every j 6= j′.

— More than two bubbles can intersect at the same point.
• The global bubble adjacency graph AG (to be defined) is a tree (see Figure III.12). We define

0

1

3

4 2

{1, 3}

{0, 1, 4}

{2, 4}

Figure III.12 – OBTS together with its adjacency graph in blue.

formally the AG of a OBTS. We say that a set A in Pow(J1, bK) (the powerset of the set J1, bK)
is a junction if ⋂

j∈A
Bj 6= ∅
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0
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3

{0, 1, 2}

{2, 3}

(a) A bubble topology.
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3

1

0
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3

1

{0, 1}

{0, 2}

{2, 3}

(b) A bubble topology.

0

2

3

1

0

2

3 1

{2, 3}

{0, 2}

{0, 1}
{1, 3}

(c) Not a bubble top. AG
contains a cycle.

0

2

3

1

0

2

3 1

{2, 3}

{0, 2}

(d) Not a bubble top. AG
is not connected.

Figure III.13 – At the top sketch of different topologies. At the bottom the AG graph: white points
are junctions while black vertices come from each bubble.

and if A is maximal for the inclusion order; each junction point records the labels of the
bubbles that intersect at the same point. We call IP the set of all junction points. At this
point it is important to notice that junctions and intersection points between bubbles are in
correspondence. Now we define the graph AG by specifying its vertex and edge sets.:

— The set of vertices is IP ∪ J1, bK

— The edge set E is the set of pairs {x, y} where x ∈ IP , y ∈ J1, bK and y ∈ x.
For an idea of OBTS’s see Figure III.13.

Now we consider a OBTS

S = B1 ∪B2 ∪ · · · ∪Bb. (III.7)

as a "labeled" topological space (see Figure III.14 for an intuition), meaning that it is more than
a "formal union" of bubbles since each bubble comes with an orientation and rank in a list (to be
totally formal, we should have written S as a function of the b-tupple (B1, . . . , Bb) ).

0

2

3

1

0

2
3

1

6=

Figure III.14 – OBTS together with its adjacency graph in blue.

We say that two OBTS S = ∪bi=1Bi and S
′ = ∪b′i=1B

′
i are equivalent if there exists an home-

omorphism from S to S′ which preserves the labelings of bubbles and the orientation of bubbles in
correspondence. We call such an homeomorphism good homeomorphism. Notice that S equivalent
to S′ implies that b = b′ and that the AG trees are the same as labeled graphs.

We call a pre-bubble map a pair (D,S) where S is an OBTS andD is the drawing of a connected
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graph on S, such that the restriction of D to each bubble is a proper cellular drawing (as usual for
maps).

Finally, we call bubble map the equivalence classes of pre-bubble maps for the following equiv-
alence relation: (D,S) ∼ (D′, S′) if there exists φ a good homeomorphism φ : S → S′, s.t.
φ(D) = D′.

Returning to decorated bubble maps, let us note that the image of the path given by the walker
around the tree, generates a non-self crossing circuit that passes exactly twice by each edge, more
precisely, once per each oriented edge. From this circuit, it is possible to recover the original tree
structure. Let us describe an algorithm that allows to recover the contour function C of the tree by
using the circuit. Start at n = 0 and C(0) = 0 from the root-vertex and following the root-edge,
and iterate for each new edge of the circuit:

• If the edge has been visited, set C(n+ 1) = C(n)− 1.
• If this is the first time the edge has been visited and it visits a new vertex, set C(n + 1) =
C(n) + 1.

• If this is the first time the edge has been visited and it visits an already visited vertex, set
C(n + 1) = C(n) + 1 and create a new non-self crossing circuit, where the visited vertex is
duplicated. All edges visited before time n (not including the one in this step), goes with the
vertex going to the right, and all the others go with the vertex going to the left. At distance
ε > 0 from this point, the graph is embedded homeomorphically as before. This can be done
because the circuit is not self-crossing.

• Set n = n+ 1.

Let us now define the image set of the gluing of a tree with a bridgeless map with a boundary. For
f, a ∈ N∗, we say that (m, c) ∈ M̊C

f,a if: m is a circuit-decorated bubble map of f faces, c is a
non-crossing circuit with length 2a, going trough each oriented edge once, passing by every pinched
point of the bubble-map and containing the root edge. Let us also define M̊C,a

[e] as M̊C
f,a, where instead

of f faces, we consider e+ a edges.

Let us summarize the discussion.

Proposition III.3.3.1
When one glues a tree t′ ∈ Ta with a map with a (non-simple) bridgeless boundary mb ∈ Bf,2a,
one only obtains a map only if there is no pinch point in the boundary of mb that is identified by
t′. Moreover, g is a bijection between the Cartesian product of Ta with maps with a bridgeless
boundary in Bf,2a and M̊C

f,a.

Proof. Given the above discussion, we only need to show that we can perform the ungluing. Let us
note that the tree can be recovered from the algorithm described above. To recover the map with a
boundary, one just needs to duplicate the edges as described in Figure III.8. Now, we only have to
explain what needs to be done close to the pinch points. In those points, one just needs to locally
modify the underlying space so that pinch points give rise to circular sectors and all these circular
sectors belong to the internal face. The circular sectors are determined by the circuit.

Remark III.3.3.2
Again, the bijection does not modify the degree of interior faces, so proposition III.3.3.1 is valid
when we restrict our attention to bubble q-angulations.
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It can be adapted to families of maps with a given number of edges.

Proposition III.3.3.3
The function g induces a bijection (again by restriction) between:

• the set M̊C,a
[e] and

• the Cartesian product of Ta with the set of map with (non-simple) bridgeless boundary with
e internal edges and boundary of size 2a.

Let us finish this section by describing "the effect" of a boundary with bridges, which prevents
the extension of g. In this case, we do not have only problems with identification of vertices, but
also with the identification of edges. In particular, there may be two bridges in the boundary having
oriented edges identified in the tree. This makes that the circuit we create passes at least twice by
the image of that oriented edge, and thus, it makes impossible to reverse the gluing.

Additional note.
In other words the main problem comes from the fact that one edge can be folded into itself, even
more than once, giving something that is not planar nor homeomorph to a sphere.

+ ←→

Figure III.15 – Left: Bridge map with a non-simple boundary (red tree) and a tree to glue.

Right: The gluing of the objects on the left. As in fig. III.10 the green part represents the circuit (each edge
in the red tree appears twice as we follow the root edge on the boundary of the root-face). We put blue lines
for identifications made by the gluing. The edges of the black tree that do not contain the root-edge generate
only one edge e1, after the gluing, what makes the green circuit visit four times e1.

III.4 Countings

In this section, we discuss how the bijections presented before are translated into counting for-
mulae. Before stating the results, we need to introduce a re-rooting procedure, which allows us to
obtain formulas for decorated maps whose root is not necessarily in the decoration.

III.4.1 Re-rooting procedure

In this section, we explain what we call the re-rooting procedure. The motivation behind this
comes from the fact that the decorated objects considered here so far have the root-edge in the
decoration, while, for example in the literature, spanning-tree decorated maps have theirs root-edge
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in every possible oriented edge of the map. This procedure is quite general, instead we chose to
explain the key idea on a particular family of objects.

Fix r ≥ 1. A forest is a tuple of trees. We call f r-forest, if f = (ti, ~ei)
r
i=1, where (ti, ~ei) is a

rooted tree for all i ∈ {1, 2, . . . , r}. We define Fa1,a2,...,ar as the set of all r-forests such that for
every i ∈ {1, 2, . . . , r}, ti has ai edges.

Define a r-boundaries map (m, ~e1, ~e2, . . . , ~er) as a rooted map (m, ~e1) and (~ei)
r
i=1 r non inter-

secting edges of m. The map has multiple special (ordered) faces f1, f2, . . . , fr, called the boundary
faces, where fi is the face to the left of ~ei; it is also required that the faces of fi are simple and pairwise
vertex-disjoint. We say that ~ei is the root-edge of the i-th boundary. We denote by MSBf,a1,...,ar the
set of all maps with r-boundaries (ordered), f internal faces and with boundaries of size a1, . . . , ar.

We also define a multiply rooted r-forest-decorated map as a decorated map (m, (ti, ~ei)
r
i=1),

where (m, ~e1) is a rooted map and (ti, ~ei)
r
i=1 is a forest with non vertex-intersecting rooted trees

with ti ⊂M m. Notice that from this definition the root-edge of t1 coincides with the root-edge of
m. We define M̊F,a1,a2,...,ar

f as the set of multiply rooted r-forest-decorated maps where the size of
ti is ai for all i ∈ {1, 2, . . . , r}.

By successively gluing the trees in the forest, we obviously have

Theorem III.4.1.1
For every r ∈ N∗, there exists an explicit bijection g between: the set of multiply rooted r-forest-
decorated maps M̊F,a1,a2,...,ar

f and the Cartesian product of r forests Fa1,a2,...,ar and maps with
r-boundaries MSBf,2a1,2a2,...,2ar .

The "re-rooting procedure" is needed in order to count multiply rooted r-forest-decorated map,
when instead of considering r root-edges one considers just one that could be placed in every possible
oriented edge of the map. For this, let us finally define a r-forest-decorated map as the decorated
map ((m, ~e), {ti}i∈I), where (m, ~e) is a rooted map, |I| = r and {ti}i∈I is a set of non vertex-
intersecting unrooted trees with ti ⊂M m. Notice that we define the decorating forest {ti}i∈I as
a set. Consider an infinite vector ~v = (v1, v2, v3, . . . ) with finitely many non-zero coordinates. We
define the set MF,~v

f of r-forest-decorated maps, for which there are among (ti)i∈I , for all j ∈ N∗, vj
trees with j edges.

The main result of this section is the following formula

|M̊F,a1,..,ar
f (q)|2m(f, q) = |MF,~c

f (q)|

(
r∏
i=1

2ai

)∏
k

ck!, (III.8)

where m(f, q) is the number of edges of a q-angulation with f faces, and where ~c is the infinite
vector which encodes the multiplicity of the values ai, i.e.

ck := |{i ∈ J1, rK : ai = k}|, k ≥ 1. (III.9)

Let us now prove Equation (III.8). It just follows from counting a slightly bigger set. Let us call

M̃F,a1,..,ar
f (q) :=

{
(m, ~e, (ti, ~ei)

r
i=1) : (m, (ti, ~ei)

r
i=1) ∈ M̊F,a1,..,ar

f (q) and ~e is an oriented edge of m
}
.
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In other words, an element of M̃F,a1,..,ar
f (q) is made of an element of M̊F,a1,..,ar

f (q) together with
an additional marked oriented edge ~e that can be oriented in any possible oriented edge (including
the ~ei’s). We can compute the cardinality of M̃F,a1,..,ar

f (q) in two ways. The first one is to use the
definition, which gives the product between the amount of possible values of ~e and the cardinality of
M̊F,a1,..,ar
f (q), this gives the left-hand side of (III.8). The other one is to define a bijection between

M̃F,a1,..,ar
f (q) and MF,~c

f (q) with an ordering of its trees respecting that the i-th tree has size ai and

then assigning one root edge to each tree. Therefore the cardinality of M̃F,a1,..,ar
f (q) is obtained by

the multiplication shown in the right-hand side of (III.8), where
∏
k ck! comes from the ordering

needed only for the trees of each size.

Remark III.4.1.2
It is important to remark that we can do this procedure as soon as we work with two types of
rootings of the same family of maps. The justification is subtle since if one unroots a given
map, certain symmetries may appear, breaking down the argument. Instead, when distinguishing
more than one edge, symmetries do not appear and this type of identities follow, since any
automorphism of a map that fixes one oriented edge, fixes all of them..

III.4.2 Counting relation between maps with a boundary and maps with a simple
boundary

The main interest of this section is to compute the generating functions of the maps with a
simple boundary, as they appear in the bijection presented in Theorem III.1.2.8. To do that, we are
going to adapt the technique introduced in [19] that were used to link the generating function of
quadrangulations with a boundary to that of quadrangulations with a simple boundary.

Let us start by noting that the set of maps with a simple boundary and f faces is infinite. Instead,
one needs to specify the number of edges and the size of the boundary.

We define the following generating functions

B(x, y) =

∞∑
e=0

∞∑
p=0

be,px
eyp,

S(x, y) =

∞∑
e=0

∞∑
p=0

se,px
eyp,

where be,p, resp. se,p, is the number of general rooted maps with e total edges and among which p
edges are on the boundary, where the boundary is simple for the case of se,p.

Similar to [19], we obtain the following identity relying S and B.

S(x, yB(x, y)) = B(x, y). (III.10)

Let us sketch the justification (see fig. III.16)): a rooted map with a general boundary (mb, ~e)
can be decomposed for some p ∈ N into ((smb, ~e), (mb

i , ~ei)
p
i=1) where:

• (smb, ~e) is the maximal simple boundary connected component of the root-edge which has
boundary size p, for some p ∈ N∗.
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m ←→ sm

m0

m1

m2

m3

m4

m5

m6

Figure III.16 – Decomposition of a rooted map with general boundary (m, ~e) into a rooted map
with simple boundary together with rooted maps with general boundary ((smb, ~e), (mb

i , ~ei)
p
i=1). The

respective root-edges are represented by arrows.

• (mb
i , ~ei) is a rooted map with general boundary equal to the map hanging from the i-th vertex

in the boundary of smb (numbered following the root-edge) and rooted in the first edge in mb
i

found when following the boundary of mb. Beware this map can be reduced to a point, in such
a case it is unrooted.

It turns out that this decomposition defines a bijection. Because of this, for each edge in the
boundary of a general map with simple boundary we count a weight yB(x, y) to recover all maps
with a boundary. The weight yB(x, y) is associated to the weight of the edge in the boundary and
the map hanging from the tail of this edge consider as oriented following the contour of the simple
boundary in the sense of the root-edge.

The only difference with [19], is that the here external boundary may have any possible length,
while for quadrangulations the external boundary has to be of even length. When applying this
technique, depending on the family of maps under study, it is important to take into account this
type of restriction to obtain the right counting formulas.

Now we use Equation (III.10) to discover S. To start with, it is well known (see, for example,
[48, VII.8.2]) that B(x, y) satisfies

B(x, y) = 1 + y2xB(x, y)2 +
xy

1− y
(B(x, 1)− yB(x, y)) , (III.11)

where B(x, 1) is the counting formula for general maps, with the following explicit form

B(x, 1) =
∞∑
e=0

2 · 3e

(e+ 1)(e+ 2)

(
2e

e

)
xe = − 1

54x2

(
1− 18x− (1− 12x)3/2

)
. (III.12)

Now, turning into general maps with simple boundary, make the change of variable z = yB(x, y) in
eq. (III.11) to obtain

S(x, z) = 1 + xz2 +
xz

S(x, z)− z
(B(x, 1)− z) . (III.13)

This gives a quadratic equation for S, obtaining the desired function S the only possible solution of
this equation with positive coefficients

S(x, z) =
1

2

(
1 + z + xz2 −

√
(−xz2 + z + 1)2 − 2z(1 + 36x− (1− 12x)3/2)

27x

)
,
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Its first coefficients are shown in the expansion S(x, z) = 1 + xz + 2x2z + xz2 + 9x3z + x2z2 +
54x4z + 5x3z2 + 378x5z + 32x4z + x3z3 + ....

This generating function encodes the number of general maps with a simple boundary, the coef-
ficients may be recovered from it doing a sequence of derivations. Nevertheless, they do not have a
closed form to our knowledge.

III.4.3 Counting results

Before presenting the results, let us start by recalling that the number of (rooted) trees with a
edges is given by Catalan numbers, where Ca (see, for example, Section 1 in [11])

|Ta| = Ca :=
1

a+ 1

(
2a

a

)
∀a ≥ 0. (III.14)

Tree decorated maps

Let us now obtain the formulas that directly come from the bijection for tree-decorated maps.
The counting formulas obtained for maps come from [73] for the case of triangulations with multiples
simple boundaries, and from [12] on the case of quadrangulations.

Corollary III.4.3.1
Set m = (p + 2a)/2. The number of tree-decorated triangulations with boundary of size p ≥ 1
and a tree of size a, rooted on the tree, is

|BT,a
f,p (3)| = 2f−2m (3f/2 +m− 2)!!

(f/2−m+ 1)!(f/2 + 3m)!!

2m

a+ 1

(
4m

2m

)(
2a

a

)
, (III.15)

where n!! stands from double factorial (or semifactorial). The cardinality of tree-decorated quad-
rangulations with boundary of size p and a tree of size a, rooted on the tree, is

|BT,a
f,p (4)| = 3f−m

(2f +m− 1)!

(f + 2m)!(f −m+ 1)!

2m

a+ 1

(
3m

m

)(
2a

a

)
(III.16)

Proof. This is obtained from Proposition III.3.2.1, and the comment above Lemma III.3.1.2. The
formula for the number of trees with a edges and Theorem 1 of [73] and Section 2.2 of [19] respec-
tively.

Forest decorated maps
Corollary III.4.3.2
The cardinality of r-forest decorated triangulations, with trees of size a1, a2, . . . , ar, a :=

∑
ai

and a+ r ≥ f/2 + 2 is given by

|MF,~c
f (3)| = 2f−2a 3f∏

k∈N ck!
(3f/2 + a− 2)!!

(f/2− a+ 2− r)!(f/2 + 3a)!!

r∏
i=1

1

ai + 1

(
4ai

2ai, ai, ai

)
(III.17)

where ~c is defined as in eq. (III.9).
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The cardinality of r-forest decorated quadrangulations, with trees of size a1, a2, . . . , ar and
a+ r ≥ f + 2, is given by:

|MF,~c
f (4)| = 3f−a

4f∏
k∈N ck!

(2f + a− 1)!

(f + 2a)!(f − a+ 2− r)!

r∏
i=1

1

ai + 1

(
3ai

ai, ai, ai

)
(III.18)

where ~c is defined as in eq. (III.9).

Proof. This is obtained from Theorem III.4.1.1, the comment above Lemma III.3.1.2, the formula
for the number of trees with ai edges and the results of [73, Theorem 1] and [12, Theorem 1.2]
respectively, giving that

|M̊F,a1,..,ar
f (3)| = 2f−2a (3f/2 + a− 2)!!

(f/2− a+ 2− r)!(f/2 + 3a)!!

r∏
i=1

2ai
ai + 1

(
4ai

2ai, ai, ai

)
(III.19)

and

|M̊F,a1,..,ar
f (4)| = 3f−a

(2f + a− 1)!

(f + 2a)!(f − a+ 2− r)!

r∏
i=1

2ai
ai + 1

(
3ai

ai, ai, ai

)
. (III.20)

We conclude using the re-rooting procedure condensed in (III.8).

Remark III.4.3.3
Let us note that Corollary III.1.2.4 can be obtained from Corollary III.4.3.2 using r = 1.

Similar counting formulas can be obtained for triangulations of girth bigger than 2 (loopless
triangulations) and 3; and loopless quadrangulations (see [12]). In Corollary III.4.3.2, one could also
consider a generalization for “tree-decorated maps with boundaries” an analog of the tree-decorated
maps with a boundary for multiples boundaries.

As discussed in Section III.4.2, the number of general maps with a simple boundary does not
have a closed formula to our knowledge, still it is possible to obtain the number of general maps
decorated by a tree once extracted the coefficients se,p with p even. More formally, the number of
general maps decorated by a tree of size a and with e edges is given by Case+m,2m, which is justified
by Theorem III.1.2.8.

The cardinality of Bubble-maps can be obtained from Proposition III.3.3.3.

Corollary III.4.3.4
The cardinality of the set MC,a

[e] of non-crossing circuit decorated bubble-maps (m, c, ~e) with e+a

edges decorated by a circuit of size 2a and with root-edge ~e in an oriented edge of the map m is

|MC,a
[e] | = 3e

(2e+ 2a− 1)!

e!(e+ 2a+ 1)!

2(e+ a)

a+ 1

(
4a

2a, a, a

)
. (III.21)

Proof. This is obtained from Proposition III.3.3.3, the formula for the number of trees with a edges,
the results of [52, Section 2.2] together with [19, Section 2.2] and a type of re-rooting procedure,
similar to the one in Section III.4.1.

We leave to the reader the computation of the formula of maps decorated by a special type of
trees, as for example trees with prescribed degree distribution, see for example [107].
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Spanning tree-decorated maps

In this subsection, we discuss the consequence of our result for spanning tree-decorated maps. In
this case, the counting formula of spanning tree-decorated maps was given by Mullin [93], where the
root does not necessarily belong to the tree: the set of spanning tree-decorated maps with e edges
are in correspondence with the set of pair of rooted trees with e and e+ 1 edges; i.e the number of
spanning tree decorated maps with e edges is CeCe+1. Later Bernardi [114, 26, 11] gave a bijective
proof of this result.

We denote by M̊ST
f , resp. MST

f , the set of rooted spanning tree-decorated maps with f faces,
resp. spanning tree-decorated maps with f faces. Note that in the case of triangulations we obtain
that for f faces the number of vertices is 2 + f/2 and the number of edges is 3/2f , therefore, the
number of spanning-tree decorated triangulations is

|MST
f (3)| = |MT,f/2+1

f (3)| = 12f

(f + 4)(f + 2)2

(
2f

f, f/2, f/2

)
. (III.22)

In the case of quadrangulations, the condition of having f faces implies that it has f + 2 vertices and
2f edges. Therefore, we obtain the counting formula for spanning-tree decorated quadrangulations.

|M̊ST
f (4)| = |M̊T,f+1

f (4)| = 2

(f + 1)(f + 2)

(
3f

f, f, f

)
(III.23)

|MST
f (4)| = |MT,f+1

f (4)| = 4f

(f + 1)2(f + 2)

(
3f

f, f, f

)
. (III.24)

Here we recover the results from the Walsh and Lehman’s Bijection [114]. In fact, the set of dual
elements of M̊ST

f (3) is the set of spanning tree-decorated 3-regular maps with f vertices, and the
set of dual elements of M̊ST

f (4) is the set of spanning tree-decorated 4-regular maps with f vertices.
The countings appear in Section 6.2 of [18], where they make explicit the formula for more general
families of maps, given that (dual) trees with prescribed degree distribution are easily counted.

Spanning r-forest decorated maps
Corollary III.4.3.5
The cardinality of spanning r-forest-decorated triangulations, with trees of size a1, a2, . . . , ar and
a :=

∑
ai, is given by

|MSF,~c
f (3)| = 4r−2 3f∏

k∈N ck!
(2f + 2− r)!!
(2f + 6− 3r)!!

r∏
i=1

1

ai + 1

(
4ai

2ai, ai, ai

)
, (III.25)

where ~c is defined as in eq. (III.9).

The cardinality of spanning r-forest-decorated quadrangulations, with trees of size a1, a2, . . . , ar,
is given by:

|MSF,~c
f (4)| = 3r−2 4f∏

k∈N ck!
(3f − r + 1)!

(3f − 2r + 4)!

r∏
i=1

1

ai + 1

(
3ai

ai, ai, ai

)
, (III.26)

where ~c is defined as in eq. (III.9).
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Proof. A triangulation with f faces has 2+f/2 vertices, which has to be equal to a+r =
∑r

i=1 ai+r,
the number of vertices covered by the forest. As before, a quadrangulation with f faces has f + 2
vertices, which has to be equal to a+ r. The result follows from Corollary III.4.3.2.

Remark III.4.3.6
From this formula it is also possible to deduce Corollary III.1.2.5.

Remark III.4.3.7
Notice that we explicit the expressions for the cardinality rooted spanning-tree decorated quadran-
gulations. We want to point out that the right side of (III.23) looks like a possible generalization
of the Catalan numbers. More rigorously, for n,m ∈ N, m ≥ 1 define:

Cm,n = m!

(
m∏
i=1

1

n+ i

)(
(m+ 1)n

n, n, . . . , n︸ ︷︷ ︸
m+1 times

)
=

(
m+ n

n

)−1( (m+ 1)n

n, n, . . . , n︸ ︷︷ ︸
m+1 times

)
.

When m = 1, we recover the Catalan numbers and, for this definition, C2,f counts |M̊ST
f (4)|. To

our knowledge, this extension has not been defined so far and it does not appear in the OEIS a.

a. 4th march 2019 update: it has been added for m = 2, 3.

From the definition it is not clear to see that Cm,n is, in fact, an integer. Luckily for us, Vincent
Jugé found an analytical proof of this fact that we present in the following proposition.

Proposition III.4.3.8
For all n, m ∈ N and m ≥ 1, Cm,n is integer.

Proof. Define νp(k) as the largest power of p prime that divides k ∈ N. Recall that by Legendre’s
formula

νp(k!) =
∞∑
i=1

⌊
k

pi

⌋
.

Thanks to this, we can calculate the maximal power of p prime that divides Cm,n

νp((m+ 1)n!)− νp((n!)m+1)− νp((n+m)!) + νp(n!) + νp(m!)

=

∞∑
i=1

⌊
(m+ 1)n

pi

⌋
− (m+ 1)

⌊
n

pi

⌋
︸ ︷︷ ︸

=:(1)≥0

−
⌊
m+ n

pi

⌋
+

⌊
n

pi

⌋
+

⌊
m

pi

⌋
︸ ︷︷ ︸

=:(2)≥−1

Note that to conclude we just need to show that each term in the summation is bigger than or equal
to zero. To do this notice that we just need to show that it cannot happen simultaneously (1) = 0
and (2) = −1.

Assume that this is the case and write

n = kpi + ln,

m = k′pi + lm,

with 0 ≤ ln, lm < pi and lm < m. Note that the fact that (1) = 0 implies that

ln(m+ 1) < pi. (III.27)
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III. Tree-decorated planar maps: counting results.

Furthermore, the fact that (2) = −1 implies that ln 6= 0 and

ln + lm ≥ pi.

Together with (III.27) this implies that mln < lm ≤ m which implies that ln = 0 so we have a
contradiction.

Another proof of this fact was given by Delphin Sénizergues as follows:

Proof.

Cm,n =

(
m−1∏
i=1

(
n+ i

i

))
×An,m+1

where An,m counts the number of standard young tableaux of shape λ = (n, n, . . . , n) with m
repetitions of n [56, page 29], the conclusion follows from the multiplication of natural numbers.
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Tree-decorated planar maps: local limits.
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IV.1 Introduction

In this section we borrow the notation and definitions of section III.2 and in section III.2.2.

Define for f, p, a ∈ N∗:
• BT,a

f,p (q) the set of all (f, p, a) tree-decorated q-angulations with a simple boundary (mb, t, ~e),
where (mb, ~e) is a rooted map with a simple boundary of size p having f faces with the root-
edge ~e in the boundary and t is a tree with a edges which intersects the boundary only at the
root-vertex of mb.

• BT,a
f,0 (q) := BT,a

f (q) the set of all (f, a) tree-decorated q-angulations.

• SBf,p(q) the set of all q-angulations with a simple boundary (mb, ~e) where mb is a map with f
faces and a simple boundary of size p.

Sometimes we will not explicitly mention the root-edge when we use objects of these sets. Set the
following random variables:

QT,a
f,p = unif. r,v. in BT,a

f,p (4) (quadrangulations),

Qf,p = unif. r,v. in SBf,p(4) (quadrangulations),

τa = unif. r,v. in Ta, 1

TT,a
f,p = unif. r,v. in BT,a

f,p (3) (triangulations)

Tf,p = unif. r,v. in SBf,p(3) (triangulations).

177



IV.1. Introduction

All along this section we consider locally finite maps (or graphs), which are maps (or graphs)
where every vertex has finite degree. For a graph G and a subgraph G′ ⊂ G, we define G \ G′ as
the graph with set of vertices V (G) \ V (G′) and set of edges defined by the edges in G with both
endpoints in V (G) \ V (G′).

Let G be a graph and let (Gi)i∈N be a sequence of finite subgraphs of G, which is increasing
and exhausts G, i.e. Gi ⊂ Gi+1 for all i ∈ N and ∪i∈NGi = G. A decreasing sequence (Ci) of
subgraphs of G is called a (Gi)i∈N-end of G if for all i ∈ N, Ci is an infinite connected component
of G \Gi. It is well known that the number of (Gi)i∈N-ends does not depend on the choice of the
sequence (Gi)i∈G (see, for example, [33]), so we just call them ends. We denote for a graph G
the value Ends(G) as the number of ends in G. Ends represent "possible ways to go to infinity",
more formally, ends (in the locally finite setting) can be defined as the equivalence classes of 1-way
(injective) infinite paths, where two such paths are equivalent if no finite set of vertices separates
them, i.e. there is no finite set of vertices such that the removal of such set separates them into two
different connected components.

We will sometimes use some graph notions on maps (as ends): in this case we will naturally
consider the subjacent graph of the maps under discussion.

We will study local limit of tree-decorated maps as the parameters f, p, a ∈ N∗ goes to infinity,
which will give infinite tree-decorated maps which will be decorated by (potentially) an infinite tree.

In our setting, 1-way infinite paths can be classified depending whether they use "effectively" or
not the decoration, given that the tree decorating the map can be seen as a frontier for infinite paths.

We call D-end of a pair of graphs (G,G′), where G′ ⊂ G, an end either in G \G′ or in G′. The
number of D-ends is denoted by D-ends(G,G′) , i.e.

D-ends(G,G′) = Ends(G \G′) + Ends(G′).

Since the random variable QT,a
f,p consists of a random pair of maps, where the second map is a

subgraph of the first one, it makes sense to write D-ends(QT,a
f,p ).

Our motivation to introduce this new notion of "end" comes from the fact that depending on
the type of decoration the local limits that we will obtain have different D-ends values.

Local topology

For a map m and r ∈ {0, 1, 2, . . .}, let [m]r denote the map obtained by considering all the faces
of m whose vertices are all at graph distance smaller than r from the root-vertex in m.

Let S be a family of finite maps. The local topology on S is the topology induced by the metric
dloc, where

dloc(m1,m2) = (1 + sup{r ≥ 0 : [m1]r = [m2]r})−1

i.e. the distance is equal to the inverse of the first ball radius where both maps disagree. It is not
difficult to prove that the space (S, dloc), where S denotes the completion of S with respect to dloc,
is Polish (metric, separable and complete). By definition of the distance, (mn) converges if for all
r ∈ {0, 1, 2, 3, . . .}, [mn]r is a constant sequence from a certain point on.

1. The set of rooted planar trees with a edges.
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IV. Tree-decorated planar maps: local limits.

This topology ensures that limit of locally finite graphs is locally finite too, since sequences where
the degree of a vertex grows indefinitely do not have constant balls from a certain point on. The
completion is notably used since S may possibly be a family of finite maps with sequences converging

to infinite maps for this metric. We specify with
(local)−−−−→ the convergence for the local topology and

(d)−−→ for convergence in distribution.

One of the first results concerning the convergence for the local topology of random combinatorial
objects is due to Kesten [70] and says for τn defined in the intro

τn
(d)−−−→
local

τ∞ (IV.1)

where τ∞ is the critical geometric Galton-Watson tree conditioned to survive. The random
variable τ∞ is an infinite rooted plane tree with a.s. one infinite branch called the spine (i.e. it
is one-ended). It can be constructed as follows: Consider a sequence of i.i.d. random variables
(Gi)i∈N∗ distributed according to a size-biased geometric distribution with parameter 1/2 for all
i ∈ {1, 2, 3, . . .}, so that P(Gi = k) = k2−k, k ≥ 0; and set G0 = 1. Define the preliminary i-th
generation as an ordered set of nodes with size Gi. The tree τ∞ is obtained by:

• linking each element in the i-th preliminary generation with Ii−1 (in an ordered an non-
intersecting fashion) and

• graft at each element in the i-th preliminary generation, but Ii, independent 1/2-geometric
Galton-Watson trees, which are a.s. finite since they are critical Galton-Watson trees.

(for a detailed explanation, see [70]).

In the setting of random triangulations with a simple boundary, Angel [5] obtained that

Tf,p
(d)−−−−−−−−→

local (f→∞)
T∞,p

(d)−−−−−−−−→
local (p→∞)

H(3)∞, (IV.2)

where H(3)∞ is the Uniform infinite half plane triangulation with simple boundary (also
denoted as the UIHPT). Both T∞,p and H(3)∞ are one-ended. For p = 2 the limiting object T∞,1
is called Uniform infinite plane triangulation UIPT.

In the setting of random quadrangulations with a simple boundary, Curien & Miermont [30] proved
that

Qf,p
(d)−−−−−−−−→

local (f→∞)
Q∞,p

(d)−−−−−−−−→
local (p→∞)

H(4)∞, (IV.3)

where H(4)∞ is the Uniform infinite half plane quadrangulation with simple boundary (also
denoted as the UIHPQS). As in the case of triangulations, Q∞,p and H(4)∞ are one-ended. For
p = 2 the first convergence is due to Krikun [72] and the limiting object Q∞,1 is the well known
Uniform infinite plane quadrangulation UIPQ.

Another local limit result, important in the sequel, is due to Caraceni & Curien [21]. They stated
that Q(k)

∞,p defined as the re-rooting at the k-th edge along the boundary of the external face of Q∞,p
is asymptotically independent from Q∞,p as p and k tends to infinity in a coherent way, formally

(Q∞,p, Q(k)
∞,p)

(d)−−−→
local

(H(4)∞,H(4)′∞) as k →∞ and 2p− k →∞, (IV.4)
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with H(4)∞ and H(4)′∞ are two independent UIHPQS. This property follows from invariance under
re-rooting, the one-ended behavior and the spatial Markov property (see [21, Lemma 6]); since these
properties are also valid in the case of triangulations, the same proof applies in this context.

Theorem IV.4 can also be extended for multiple re-rooting as follows: for every r ∈ N and
k0 := 0 < k1 < k2 < · · · < kr < kr+1 := 2p, with ki+1 − ki →∞ for all i ∈ {1, 2, . . . , r}, we have

(Q∞,p, Q(k1)
∞,p, . . . , Q

(kr)∞,p)
(d)−−−→
local

(H(4)∞,H(4)1
∞, . . . ,H(4)r∞) (IV.5)

where (H(4)∞,H(4)1
∞, . . . ,H(4)r∞) are r + 1 independent copies of UIHPQS.

We will use sometimes the product of local topologies (S1×S2, dprod) of two local topologies
(S1, dloc) and (S2, dloc) with dprod defined as

dprod((m1,m2), (m′1,m
′
2)) = max{dloc(m1,m

′
1), dloc(m2,m

′
2)} ∀m1,m

′
1 ∈ S1,∀m2,m

′
2 ∈ S2.

Naturally this distance can be defined for product topologies of more than 2 metric spaces, we
will use the same notation by writing dprod in these cases too.

Here we work with decorated objects meaning that we consider pairs of maps (m1,m2) such that
m2 ⊂M m1. Because of this we need to make sense of a decorated-maps local topology, for this
purpose we follow [25]. For a decorated map (m1,m2) and r ∈ {0, 1, 2, . . .} we define [m1,m2]r as
the decorated map consisting in all vertices at distance at most r from the root-vertex in m1 and
edges in m1 between those vertices. The edges belonging to the decoration of [m1,m2]r are the
edges of m2 with endpoints at distance at most r from the root-edge of m1. Let DS be a family
of decorated maps. The decorated-maps local topology on DS is the metric space (DS, ddec),
where

ddec((m1,m2), (m′1,m
′
2)) = inf{2−r : r ∈ N, [m1,m2]r = [m′1,m

′
2]r}

Again we consider the polish space (DS, ddec).

IV.2 Results

We will prove the following two propositions

Proposition IV.2.0.1
For pn → p ∈ N+ ∪ {∞} and an → a ∈ N+, we have

TT,an
f,pn

(d)−−−−−−−−→
local (f→∞)

TT,an∞,pn
(d)−−−−−−−−→

local (n→∞)
TT,a
∞,p.

All these limit objects are random tree-decorated infinite triangulations with a simple boundary.
In this cases

D-ends(TT,a
∞,p) = 1.

The result is also valid for quadrangulations when changing all T ’s by Q’s in the statement.
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Proposition IV.2.0.2
For pn → p ∈ N+ ∪ {∞} and an → a ∈ N+ ∪ {∞}

TT,an∞,pn
(d)−−−→
local

TT,a
∞,p.

All these limits are infinite triangulations, but depending on p and a

D-ends(TT,a
∞,p) =


1 if p <∞, a <∞
2 if p <∞, a =∞
3 if p =∞, a =∞

.

The result is also valid for quadrangulations.

The scheme that we will follow to prove Propositions IV.2.0.1 and IV.2.0.2 is a usual technique to
prove convergence in distribution for the local topology when the sequence µn of distributions on a
set of combinatorial objects Bn ⊂ B is the pushforward measure, by a bijection f : A → B, of a
measure νn on some set of encoding objects An ⊂ A. The ingredients that we need to ensure this
convergence are:

1. The convergence in distribution for the topology on A of the sequence (νn)n∈N.

2. The continuity of the bijection f .

3. Apply the continuous mapping theorem, which says: under continuous functions with negligible
set of discontinuities for the limiting measure, the image of any converging sequence converges.

Actually if n denotes the size of the objects into play, when n→∞, naturally the limiting object
will have infinite size. We will find the support of the limiting measure µ of the sequence µn, which
is a set of infinite objects, by taking the limit of νn and by extending continuously the function f to
infinite objects.

So our strategy will rely on a "extension by continuity" of the gluing function g on the closure of
the set of finite maps where g was originally defined.

We start by recalling the gluing procedure g defined in Section III.3.2: Given ((m̄b, ~eb), (̄t, ~et)),
where (m̄b, ~eb) is a rooted map with a simple boundary of length p + 2a and (̄t, ~et) is a tree with a
edges, the map g((m̄b, ~eb), (̄t, ~et)) = (mb, t, ~e) a tree-decorated rooted map with a boundary of size
p (possibly with p = 0) obtained by identifying the first 2a edges of the external face, starting from
the root edge of m̄b, with the 2a oriented edges of the tree. The identification is done one by one
following the contour of the tree t̄ from the right of the root-edge (see fig. IV.1). The root-edge ~e
is the image of the edge 2a+ 1 of m̄b when p > 0 and the root of the original tree when p = 0.

IV.2.1 Extension of the gluing for tree-decorated infinite maps decorated in finite
trees

We will extend the gluing procedure g, to be defined on a set with some infinite objects. Consider
the following sets:

D =
⋃

f,a∈N∗
p∈N

(SBf,p+2a × Ta),

181



IV.2. Results

(mb, t)

←→

mb t′

+

Figure IV.1 – Sketch of the correspondence in proposition III.3.2.1.

E =
⋃
a∈N∗

p∈N∪{∞}

(SB∞,p+2a × Ta),

TB =
⋃

f∈N∗∪{∞},a∈N∗
p∈N∪{∞}

BT,p
f,a .

The set D is the set of finite maps where the gluing function g is already defined. The set E consists
of maps with infinite number of faces and potentially infinite boundary. Finally, the set TB is the set
containing the possible images, i.e. tree-decorated maps with simple boundary with possibly infinite
number of faces and infinite perimeter.

We now extend g : D ∪ E→ TB as follows:

• For elements in D, same definition as before.

• For element in E, we define the function as the gluing of the first 2a edges in the boundary
following the root edge, to the tree following its contour, obtaining in this way a tree-decorated
infinite map.

Lemma IV.2.1.1
The function g is continuous from (D ∪ E, dprod) to (TB, ddec).

Proof. This is simply a consequence that the function acts on finitely many edges surrounding the
root-edge and the fact that for the local topology, balls are eventually constant.

Proof of Proposition IV.2.0.1. It follows from eq. (IV.2), the convergence of τan to τa and lemma IV.2.1.1.

IV.2.2 New extension of the gluing for tree-decorated maps with a one-ended
tree

Now we explore the gluing of a map with simple infinite boundary and a one-ended tree.

Notice that one-ended trees cannot be encoded by just one contour function, since a contour
function never crosses the spine, but they can be encoded by two contour functions, the left and
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right contour functions, obtained using walks around the tree following the left (resp. right) side of
the root-edge. These walks are represented in the middle of fig. IV.2.

For k, k̄ ∈ N with k < k̄ and a given map mb with a simple boundary of size k̄, we denote by
mb,(k) the re-rooting of mb at the k-th edge, following the counter-sense of the root-edge, along the
boundary of the root face.

Consider the following sets:

D0 = {(mb,mb,(p), t, p) : (mb, t) ∈ D, p ∈ N},
E0 = {(mb,mb,(p), t, p) : (mb, t) ∈ SB∞,p+2a × Ta, for a ∈ N∗, p ∈ N},
E1 = {(mb,mb,(p), t, p) : (mb, t) ∈ SB∞,∞ × T∞, p ∈ N},

E∞ = {(mb,mb′ , t,∞) ∈ SB∞,∞ × SB∞,∞ × T∞},

TB0 =
⋃

f,a∈N∗∪{∞}
p∈N∪{∞}

BT,p
f,a .

We extend the function g using g1, which takes four arguments instead of pairs. More precisely,
g1 : D0 ∪ E0 ∪ E1 ∪ E∞ → TB0, which is defined as follows:
• For elements in D0 and E0 we define

g1(mb,mb,(p), t, p) = g(mb, t).

• Define the function g1 in E1 as follows: consider (m̄∞,∞, m̄
(p)
∞,∞, t̄, p) ∈ E1, where m̄∞,∞ is

one infinite rooted map with infinite simple boundary and t̄ is a one-ended rooted tree. Here instead

of considering m̄
(p)
∞,∞ as another copy of m̄∞,∞, we use it to denote exactly the same map seen from

another root, i.e. the correct way to read the arguments in the function is (m̄∞,∞, t̄, p). We define
g1(m̄∞,∞, m̄

(p)
∞,∞, t̄, p) as the following decorated map:

1. we glue the right side boundary of m̄(p)
∞,∞, starting from its root-vertex, to the left of the tree

t̄ following the left contour; and

2. we glue the left side boundary of [the same map but starting from another root] m̄∞,∞, starting
from its root-vertex and following its root-edge, to the right of the tree t̄ following the right
contour.

3. The root of the resulting map is defined to be the image of the root-edge of m̄(p)
∞,∞ under the

gluing.

This construction produces a map with an external boundary of size p (coming from the external
boundary between the two rootings). see fig. IV.2 for an sketch of this extension.

• Define the function g1 in E∞ as follows: consider (m̄∞,∞, m̄′∞,∞, t̄,∞), where m̄∞,∞ and m̄′∞,∞
are two infinite rooted maps with infinite simple boundary and where t̄ is a one ended rooted tree.
We define g1(m̄∞,∞, m̄′∞,∞, t̄, p) as the following decorated map:

1. we glue the right side boundary of m̄∞,∞, starting from its root-vertex, to the left of the tree
following the left contour; and

2. we glue the left side boundary of m̄′∞,∞, starting from its root-vertex and following its root-edge,
to the right of the tree following the right contour.

3. The root of the resulting map is defined to be the image of the root-edge of m̄∞,∞ under the
gluing.
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m̄∞,∞ t̄

+

∞< ∞

p edges

< ∞

< ∞
g
−→

g1(m̄∞,∞, m̄
(p)
∞,∞, t̄, p)

∞< ∞

< ∞

< ∞

Figure IV.2 – Sketch of the definition of g1 in E1.

The image is an infinite tree-decorated map with an infinite simple boundary, where the two initial
maps are at the left and right of the tree, "half" of their boundaries have been glued to the tree and
"half" remain. See fig. IV.3 for an sketch of this extension.

m̄∞,∞

m̄′
∞,∞

t̄

+

∞< ∞

< ∞

< ∞
g1−→

g1(m̄∞,∞, m̄′
∞,∞, t̄,∞)

m̄∞,∞
m̄′
∞,∞

∞< ∞

< ∞

< ∞

Figure IV.3 – Sketch of the definition of g1 in E∞. .

Consider the following distance on N ∪ {∞}:

d∗(p, p′) =
∣∣∣ 1

1 + p
− 1

1 + p′

∣∣∣
It can be checked that: for any sequence (pn)n∈N in (N ∪ {∞}, d∗)

1. If pn → p ∈ N, then the sequence is eventually constant.

2. If pn →∞ for d∗, then pn →∞ in the usual sense.

We define d∗prod a metric on D0 ∪ E0 ∪ E1 ∪ E∞ as follows:

d∗prod((m1,m2, t1, p1), (m′1,m
′
2, t
′
1, p
′
1)) = max{dloc(m1,m

′
1), dloc(m2,m

′
2), dloc(t, t

′), d∗(p, p′)}.

Lemma IV.2.2.1
The function g1 is continuous from (D0 ∪ E0 ∪ E1 ∪ E∞, d∗prod) to (TB, ddec).
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Proof of Lemma IV.2.2.1. Let x be an element of D0 ∪ E0 ∪ E1 ∪ E∞:

• It is easy to prove that x is a point of continuity if x belongs to the discrete sets D0 or E0.

• We will now concentrate in x = (m̄b, m̄b′ , t̄, p) belonging to E1 and E∞. We will show that if

m̄b
n −−−→

local
m̄b , m̄b,(pn)

n −−−→
local

m̄b′ , t̄n −−−→
local

t̄ and pn −→
d∗

p as n→∞, (IV.6)

then,
g1(m̄b

n, m̄
b,(pn)
n , t̄n, pn) −−−→

(ddec)
g1(m̄b, m̄b′ , t̄, p) as n→∞.

For this purpose it suffices to prove that for all fixed r ∈ N, the balls [g1(m̄b
n, m̄

b,(pn)
n , t̄n, pn)]r and

[g1(m̄b, m̄b′ , t̄, p)]r coincide for all n large enough.

From (IV.6) follows that for every r ∈ N there exists Nr ∈ N such that for all n ≥ Nr

[m̄b
n]r = [m̄b]r , [m̄b,(pn)

n ]r = [m̄b′ ]r and [̄tn]r = [̄t]r.

There are two possible cases:
• p ∈ N and therefore, mb′ = mb,(p) and x ∈ E1.
• p =∞ and therefore, x ∈ E∞.

The following argument applies to both cases:
Fix r ∈ N and notice that since t̄ is one ended, every vertex has finite right or finite left rank
(apparition index in the right and left contour). We say that a vertex in the tree is a right (resp. left)
vertex of the tree if its right (resp. left) rank is finite.

Consider rL as the length of the left contour interval that covers all the left vertices of t̄ in the
ball of radius r; and define rR for the right. Since the tree t̄ is locally finite, both rL and rR are
finite. Define r̄ = rL+rR. From the definition of left and right contours and of the gluing procedure
[g1(m̄b

n, m̄
b,(pn)
n , t̄n, pn)]r is completely determined from [m̄b

n]r̄, [m̄
(pn)
n ]r̄ and [̄tn]r̄, but these balls

remain constant for all n ≥ Nr̄, proving the assertion.

Proof of Proposition IV.2.0.2. The proof follows eqs. (IV.1), (IV.2) and (IV.4) and Lemma IV.2.2.1.

IV.2.3 Extension for tree-decorated maps to the case of trees with multiple ends.

Up to this moment we handled one ended decorations. A natural question that arises is: can we
consider more than one-ended trees as decoration? The answer to this question is yes.

We give an algorithm to partition t, a i-ended tree, into i one-ended trees (tj)
r
j=1. Notice that i

ended trees possesses i infinite injective paths starting from the root, such that two different paths
have finite intersection.

As in usual algorithm descriptions, we will allow reassignment of variables.

1. Label the paths from left to right starting from the root-edge. It may be observed that the i-th
meets the i− 1-th path.

2. From j = i to j = 2 (one by one).
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(a) Call tj the one-ended subtree associated to the j-th path from the last point of intersection
xj with the j−1-th path (tj contains the portion of the infinite path from xj that contains
all the nodes that have an ancestor on this path).

(b) Record cj as the corner where the subtree tj is attached on t.

(c) Set t := t \ tj , the new tree t is a j − 1 ended tree.
3. The remaining tree t after this loop has one end: it is called t1.

Every tree tj for j ∈ {1, . . . , i − 1} is marked at a corner cj+1 (where was attached tj+1). See
fig. IV.4 for a sketch of this partitioning.

∞ ∞∞

t

−→

∞∞

t1 t2 t3

∞

Figure IV.4 – Sketch of the the tree decomposition applied to a tree with 3-ends. The recorded corner
are represented by circular sectors.

Gluing of i+ 1 infinite maps with infinite simple boundaries with an i ended tree.

We define the gluing function gi which takes as argument i+1 infinite rooted mapsm1,m2, . . . ,mi+1

with infinite simple boundary and a i ended rooted tree ti and takes values in the set of tree-decorated
maps decorated in a tree with i ends.

Consider the sequence cj of corners and trees tj obtained in the preceding decomposition and do
as follows:

1. Glue m1 from the right of the root-edge to the left of the tree t1.

2. From j = 1 to j = i− 1

(a) Glue mj+1 from the left of the root-edge to the right of the tree tj up to the corner cj+1.

(b) Glue mj+1 from the right of the root-edge to the left of the tree tj+1.
3. Glue mi+1 from the left of the root-edge of to the right of the tree t starting from the root-

vertex.

The set of faces of the resulting map is the union of the sets of internal faces of m1,m2, . . . ,mi+1.
The result has infinite boundary and is decorated by t. This construction is reversible.

This can also be adapted for i-ended trees and p <∞.

Proposition IV.2.3.1
Consider a family of random rooted trees τ in such that

τ ia
(d)−−−→
local

τ i∞ as a→∞,

where τ i∞ has a.s. i ends.
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g3(m1,m2,m3,m4, t)

m1

m4

∞ ∞∞

m2

m3

Figure IV.5 – Right: sketch of the gluing for i = 3. The boundaries of m1, m2, m3, m4 is sketched in
red, orange, light blue and light green respectively. The respective root edges are drawn as arrows.

Then, for pn → p ∈ N+ ∪ {∞} and an →∞ , the gluing by gi between T∞,pn+2an and τ ian
converges for the local topology and the limit is described by gi of i+ 1 independent UIHPTand
τ i∞. An analog result is also valid for quadrangulations.

Remark IV.2.3.2
To get this result a suitable notion of topology is needed to take into account all the elements as
(mj)

i+1
j=1, (tj)

i
j=1, {cj}ij=2, (pn)n∈N. This is an adaptation of the proof of continuity of g1 (here

we use that ci converges given that in the limit the trees are i ended and two different infinite
paths intersect in finitely many elements).

A representations of the local limit in the proposition IV.2.3.1 is presented in fig. IV.5.
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