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Chapter 1

Introduction

1.1 Challenges and motivation

The sustainable development of the world’s energy sector relies on an extensive use of nuclear
energy and nuclear related technologies. Nowadays, more than a dozen advanced reactor de-
signs are in various stages of development and nuclear reactor designs of Generation IV and
Generation V+ are being actively researched. An accurate prediction of the thermalhydraulic be-
haviors of the coolant through fuel assemblies is essential for reactor design. Thermalhydraulic
behaviors include heterogeneous single-phase and multi-phase flows, the steam/gas mixing and
stratification, pressure drops, temperature distributions and so on. Thermalhydraulic studies aim
to achieve the maximum safety and efficiency levels in operational states and in a wide range of
accident conditions while optimizing the energy generation cost.

FIGURE 1.1: Schematic representation of a Pressurized Water Reactor (PWR)
and a fuel assembly (image from http://www.nrc.gov)

The thermal hydraulic safety analyses of nuclear reactor are performed in two ways. First, in
the system level, the System Thermal-Hydraulic codes (STH) such as RELAP5 [127], CATHARE
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FIGURE 1.2: An illustration of a Pebble Bed Reactor (image from
https://en.Wikipedia.org)

[35], ATHLET [27] etc. are developed for the analysis of integral thermalhydraulic features in
the nuclear reactor system. They are widely used for safety analysis aiming to assess and im-
prove the safety of existing and new nuclear reactors. They are generally based on averaged and
one-dimensional (1D) form of mass, momentum and energy balance equations and some empir-
ical correlations. However, STH software are generally not capable to present a comprehensive
and systematic overview of three-dimensional (3D) parameters in the reactor, while single-phase
Computational Fluid Dynamics (CFD) software are qualified for a wider range of applications
in nuclear reactors, especially complex 3D phenomena. In this context, the coupling of STH
and CFD software that cover different scales seems to be promising and a lot of work has been
reported, such as the coupling of RELAP5 and FLUENT in [108, 114] and the reference therein.
In the Commissariat à l’énergie atomique et aux énergies alerternatives (CEA), active research
work has been carried out for the coupling of internal software CATHARE with TrioCFD [139],
see [30, 71, 124]. However, the coupling of STH and CFD software is not mature and the perfor-
mance needs to be further improved.

Second, in the core scale, most of the nuclear reactor cores are designed based on the sub-
channel analysis codes, such as COBRA [128] and FLICA [138]. They can estimate the thermal-
hyrdaulic safety margins of nuclear reactor core under different steady state and transient oper-
ating conditions. The reader can refer to [115] for a rather detailed list of existing sub-channel
thermal hydraulic codes. These codes solve conservation equations on some specified control
volumes and one dimensional control volumes are connected in both axial and radial directions
to get the three dimensional effect of the core. The accuracy of sub-channel codes are greatly
improved by taking into account the flow mixing between fuel assembly sub-channel. However,
a correct formulation of conservation equations and a good knowledge of the mixing process is
necessary in order to obtain reliable predictions of thermohydraulic behaviors in nuclear reactor
core.

Theoretically, the CFD analysis can provide detailed three-dimensional thermalhydraulic be-
haviors of the reactor core. However, in practice, as shown in the left of Figure 1.1, the scales
of interest spread over several orders of magnitude in the Reactor Pressure Vessel (RPV) of a
Pressurized Water Reactor (PWR). The overall length of the RPV (including closure head and
nozzles) is about 14 m. The reactor core is about 4 m to 5 m in diameter and consists of between
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157 and 200 fuel assemblies shown in the right of Figure 1.1. The fuel assembly is about 4 m to
5 m long and consists of fuel rods generally bundled in a square array of 14×14 to 17×17. The
thickness of the mixing vanes in the spacer mesh is about 1 mm and the diameter of each fuel
rod is about 1 cm. Therefore the RPV contains various scales and the global scale is about 104

times larger than the local scale.
In the 4-Loop Westinghouse PWR multi-physics reduced model presented in [111], only one

fourth of the 193 fuel assemblies are taken into account and there are in total 13,944 fuel rods,
434 spacers and 148,224 mixing vanes. A very complexe mesh consisting of about 1.2 billion
elements is used to resolve all the geometric details in the RPV. Thermohydraulic simulations
and multi-physics simulations in the model show that the full core performance is effectively
affected by localized phenomena. This is thus a typical multiscale problem. It is predictable
that an extremely fine mesh is necessary to resolve all the scales in the RPV. However, direct
simulations on such a mesh require a massive amount of computer memory and computing time,
which can easily exceed today’s computing power. Parallel computing can relieve to some degree
the situation but the size of the problem is not reduced actually.

The Pebble Bed Reactor (PBR) [126] is also a multiscale system. A schematic representation
of the PBR and a fuel element are shown in Figure 1.2. The reactor core contains about 600,000
spherical fuel and moderator elements and each fuel element is about 6 cm in diameter. An
extremely fine mesh is thus required in a direct CFD simulation to resolve the large number of
small fuel elements in the reactor core. Consequently, a direct CFD simulation of the entire
reactor core is extremely expensive or even impossible with modern computing power.

Given the complexity of the reactor core geometry (see Figure 1.1 and Figure 1.2) and lim-
ited computing power, most CFD studies employ homogenized core models to reduce the com-
putational cost and to minimize the computing time. One typical method is the porous media
approach where the reactor core is simplified to a single porous medium. Some CFD software
such as ANSYS CFX [36] provide porous media model for flows in porous region. Parameters
for the porous media model are estimated from CFD analysis of a single fuel assembly or from
empirical studies of the reactor core. The reader can refer to [38] for a concrete example of this
approach. At CEA, this approach is explored in several thesis, such as [20, 37]. These works
employ the volume averaging approach combined with the Representative Elementary Volume
(REV) concept which is presented in section 1.4. The macroscopic simulation could provide
preliminary results but the performance of the method depends on parameters used in the porous
media, which are sometimes empirical.

The difficulty of performing a direct CFD simulation of the entire reactor core lies in the
fact that it is too expensive to resolve all the scales. But from an application perspective, it is
often sufficient to predict important macroscopic behaviors. As a consequence, it is desirable to
develop some methods which are able to capture the effects of microscopic scales on macroscopic
scales, but do not resolve all the microscopic features. Along this direction, many methods such
as upscaling methods, multiscale methods and so on have been proposed for multiscale problems
over the years. These methods attempt to capture fine-scale phenomena on coarse meshes and
microscopic scales below the coarse mesh scale are resolved by incorporating local computations
into a global formulation defined only on the coarse mesh. These methods are thus able to provide
solutions with the desired accuracy at reasonable computational costs. An overview of these
approaches is given in section 1.4.

1.2 Flow problems in heterogeneous media

Modeling of flows in heterogeneous perforated domains is a topic of significant interest in a wide
range of engineering and technical applications, such as reservoir engineering, flows through
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Domain Ωε

Obstacles Bε

Boundary of obstacles ∂Bε

FIGURE 1.3: Schematic description of the perforated domain Ωε = Ω \ B̄ε

vuggy or fractured porous media, and so on. As shown in Figure 1.3, a perforated domain Ωε is
a flow domain with voids left by solid obstacles Bε.

Let Ω ⊂ Rd be a regular bounded open set, with the dimension d ∈ {2, 3}. As shown in
Figure 1.3, we divide the domain Ω into a fixed solid part Bε and its complementary fluid part
Ωε, where ε > 0 denotes the length-scale of the heterogeneities. The solid part is impermeable.
In general, Bε can be a periodic array or obstacles or a set of randomly placed obstacles, each
with a diameter of ε and separated by a distance at the order of ε. For example, Bε can be fuel
rods arranged periodically in a nuclear fuel assembly or rock matrices in sub-surface flows.

This thesis is devoted to solving incompressible single-phase flow problems in very hetero-
geneous media such as the RPV. Now let us first review the definition of different flow problems.

Navier-Stokes problem On the perforated domain Ωε, the incompressible Navier-Stokes equa-
tions [134] can be used to model fluid flows in Ωε. The steady-state incompressible Navier-Stokes
problem with homogeneous Dirichlet boundary condition is to find the velocity u : Ωε → Rd
and the pressure p : Ωε → R solutions to:

−µ∆u+ ρ (u · ∇)u+∇p = f in Ωε

div u = 0 in Ωε

u = 0 on ∂Bε ∩ ∂Ωε

u = 0 on ∂Ω ∩ ∂Ωε

(1.1)

where f is a given force, µ is the dynamic viscosity and ρ is the flow density.
The nonlinear convective term ρ (u · ∇)u in the Navier-Stokes equations increases the dif-

ficulties in mathematical analysis and numerical solutions of these equations. The Reynolds
number defined below is a dimensionless quantity which is defined as the ratio of inertial forces
to viscous forces within a fluid. It quantifies the relative importance of these two forces and
predict flow patterns.

Re = ρUcL/µ

where Uc is a scalar characteristic velocity and L is a characteristic length.

Stokes problem The Reynolds number of flows in porous media is usually small and the in-
ertial forces can be neglected compared to the viscous forces. This simplification leads to the
Stokes problem which is a suitable model of the physical process at pore scales. Stokes flows
[134] exist in diverse engineering practices such as reservoir engineering. The steady-state Stokes
problem with homogeneous Dirichlet boundary condition is to find the velocity u : Ωε → Rd
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and the pressure p : Ωε → R solutions to:
−µ∆u+∇p = f in Ωε

div u = 0 in Ωε

u = 0 on ∂Bε ∩ ∂Ωε

u = 0 on ∂Ω ∩ ∂Ωε

(1.2)

where f is a given force, µ is the dynamic viscosity and complemented with appropriate bound-
ary conditions.

Oseen problem For steady incompressible flows, the Oseen’s approximation [69, 70, 132] is
a linearization of Navier-Stokes equations. The nonlinear inertial term ρ (u · ∇)u is substituted
by the linear Oseen term ρ (Uo · ∇)u, with Uo a known velocity. For flows around a sphere, the
Stokes solution is not valid at large distances from the solid body, because the advective terms
are not negligible compared to the viscous terms. Oseen provided a cure to Stokes solution by
partly accounting for the inertia terms at large distances. Near the body both Stokes and Oseen
approximations have the same order of accuracy. However, the Oseen approximation is better in
the far field where the velocity is only slightly different than Uo.

The steady Oseen problem with homogeneous Dirichlet boundary condition is to find the
velocity u : Ωε → Rd and the pressure p : Ωε → R solutions to:

−µ∆u+ ρ (Uo · ∇)u+∇p = f in Ωε

div u = 0 in Ωε

u = 0 on ∂Bε ∩ ∂Ωε

u = 0 on ∂Ω ∩ ∂Ωε

(1.3)

where Uo a given Oseen velocity, f is a given function, µ is the dynamic viscosity, ρ is the flow
density and complemented with appropriate boundary conditions.

The Oseen flow plays an important role in characterizing the asymptotic structure of steady
solutions to the Navier–Stokes problems at large distances from solids. In the pre-CFD era,
Oseen equations generated significant interest since its solutions offered valuable quantitative in-
sights into properties of flows past solid bodies at low Reynolds numbers. Then the CFD makes it
possible to solve the Navier-Stokes equations numerically and the interest in the Oseen approxi-
mation subsided. The Oseen system is still occasionally used as a testbed for validating numerical
approaches, such as stabilization of finite element discretizations [8], or artificial boundary con-
ditions on truncated computational domains [146] or weak Galerkin finite element method [110]
and so on. Besides, after applying a time discretization and a linearization, many solution algo-
rithms for Navier-Stokes equations are reduced to solving a sequence of Oseen equations if the
advection is treated explicitly. This is why Oseen equations are often used as a first step towards
the analysis of the full Navier-Stokes equations.

In an heterogeneous medium with the characteristic length ε > 0, the number of degrees
of freedom and the computational cost to solve above flows problems with classic numerical
methods, such as the finite element method, is in the order of O

(
vol(Ω)ε−d

)
with vol(Ω) the

volume of Ω. It becomes easily prohibitively expensive for small values of ε.

Darcy’s law The widely used model for flows in porous media is the Darcy equation [86]. It
is an elliptic partial differential equation which describes the effective pressure and the effective
velocity of a saturated fluid in porous media. Many publications such as [10, 12, 14, 86] have
derived the Darcy’s law for incompressible viscous fluid flows in porous media. Starting from
the steady Stokes equations in a periodic porous medium, with a no-slip (Dirichlet) boundary
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condition on the solid pores (or obstacles), [10] shows that Darcy’s law can be rigorously obtained
by periodic homogenization using the two-scale convergence method. The derivation process is
presented in detail in section 1.3.

For any given force term f and the effective permeability tensor a0 : Ω→ Rd×d, the Darcy’s
law is to find the averaged quantity

(
u0, p0

)
which is solution of

u0 = κ0

µ

(
f −∇p0

)
div u0 = 0

u0 · n = 0 on ∂Ω

(1.4)

where the the effective permeability tensor κ0 depends only on the microstructure of the porous
media (neither on external forces f nor on the physical properties µ and ρ of the fluid). The
Darcy equation can be discretized and solved with classic numerical methods at a low cost no
matter the value of ε. Of course, the homogenization of flow models more complicated than
the Stokes equations can lead to various Darcy’s law. However, Darcy’s law is only valid for
creeping flows and we obtain only averaged solutions, i.e., oscillating or fluctuating features are
not visible in the solution.

Ω

ε

FIGURE 1.4: An illustration of a periodic domain with periodicity ε

1.3 The homogenization theory

We now briefly introduce the homogenization theory, which is the basic building block of most
multiscale methods. For a deeper understanding of the homogenization theory, the reader can
refer to [16, 29, 86, 98]. Given the microscopic description of a problem, homogenization is
the process of seeking a macroscopic or effective description via asymptotic analysis. Homoge-
nization was first developed for periodic media but can be applied to any kind of heterogeneous
media. Besides, new models in various multiscale methods are justified as the homogenized lim-
its of complex microscopic equations. Based on [10], this section presents the homogenization
via a simple diffusion problem in a periodic medium.

1.3.1 Problem setting

As shown in Figure 1.4, let Ω be a periodic domain which is a bounded open set in Rd with
periodicity ε (ε is assumed to be very small compared to the size of the domain). The scaled unit
periodic cell is Y = (0, 1)d. The conductivity tensor in Ω is A

(
x
ε

)
where A(y) is Y -periodic
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and satisfy the coerciveness assumption:

α|ξ|2 ≤
d∑
i,j

Aij (y) ξiξj ≤ β|ξ|2 ∀ξ ∈ Rd, ∀y ∈ Y

with β ≥ α > 0.
Denoting f the source term (a scalar function defined in Ω) and imposing a Dirichlet bound-

ary condition, the model problem of conductivity reads

−div
(
A
(x
ε

)
∇uε

)
= f in Ω (1.5)

uε = 0 on ∂Ω (1.6)

where uε is the unknown modeling the electrical potential or the temperature.
Solving the above problem with conventional numerical methods such as finite element meth-

ods requires a mesh with element size h � ε. If ε is very small, the mesh is extremely fine and
the discrete problems have a large number of degrees of freedom. Therefore it is too expensive or
impossible to solve such problems due to limited computing power and storage space. It is thus
desirable to homogenize the properties of Ω and compute an approximation of uε on a coarse
mesh.

We mention that there is a difference between the traditional physical approach of homoge-
nization and the mathematical theory of homogenization. The volume averaging approach com-
bined with the representative volume element (RVE) method [100] consists in taking a sample
of the heterogeneous medium of size much larger than the heterogeneities but still much smaller
than the medium. This sample domain is called RVE. The ∇uε and the flux A

(
x
ε

)
∇uε are

averaged over the RVE and we denote their average as ξ and σ respectively. The effective con-
ductivity A∗ of the RVE is defined by the linear relationship σ = A∗ξ. It turns out that the
averaged stored energy A

(
x
ε

)
∇uε ·∇uε equals to the effective energy A∗ξ · ξ. This definition is

very intuitive and it is not clear whether the effective tensor A∗ is defined correctly. In particular,
it may depend on the choice of source term f , the sampling size or boundary conditions. For
more concrete examples of the applications of the RVE method, see [20, 37].

As pointed out in [10], the mathematical theory of homogenization works completely dif-
ferently. Rather than considering a single heterogeneous medium with a fixed length scale, the
problem is first embedded in a sequence of similar problems for which the length scale ε, be-
coming increasingly small, goes to zero. Then, an asymptotic analysis is performed as ε tends
to zero and the conductivity tensor of the limit problem is called the effective or homogenized
conductivity. This approach has the advantage of defining uniquely the homogenized properties.
Further, the approximation made by using effective properties instead of the true microscopic
coefficients can be rigorously justified by quantifying the resulting error.

In the case of a periodic medium Ω, the asymptotic analysis of the equation (1.5) is quite
simple and the solution uε is written as a power series in ε

uε =

∞∑
i=0

εiui

The first term u0 of this series will be identified as the solution of the homogenized equation
whose effective conductivityA∗ can be computed exactly. It turns out thatA∗ is a constant tensor
describing a homogeneous medium, which is independent of f and the boundary conditions.
Therefore, numerical computations on the homogenized equation do not require a fine mesh since
the heterogeneities of size ε have been averaged out. This homogenized tensorA∗ is almost never
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a usual average (arithmetic or harmonic) of A(y). Various estimates will confirm this asymptotic
analysis by telling in which sense uε is close to u0 as ε tends to zero.

1.3.2 Two-scale asymptotic expansions

We consider the following two-scale asymptotic expansion for the solution uε of (1.5).

uε (x) =

∞∑
i=0

εiui

(
x,
x

ε

)
where each term ui (x, y) is a function of both x and y, periodic in y with period Y = (0, 1)d

(ui is a Y -periodic function with respect to y). This series is plugged into the equation and the
following derivation rule is used:

∇
(
ui

(
x,
x

ε

))
=
(
ε−1∇yui +∇xui

) (
x,
x

ε

)
where ∇x and ∇y denote the partial derivative with respect to the macroscopic variable x and
the microscopic variable y. For example,

∇uε (x) = ε−1∇yu0

(
x,
x

ε

)
+
∞∑
i=0

εi (∇yui+1 +∇xui)
(
x,
x

ε

)
Therefore (1.5) can be written as a series of ε

− ε−2 [divyA∇yu0]
(
x,
x

ε

)
− ε−1 [divyA (∇xu0 +∇yu1) + divxA∇yu0]

(
x,
x

ε

)
− ε0 [divxA (∇xu0 +∇yu1) + divyA (∇xu1 +∇yu2)]

(
x,
x

ε

)
−
∞∑
i=0

εi [divxA (∇xui +∇yui+1) + divyA (∇xui+1 +∇yui+2)]
(
x,
x

ε

)
= f(x)

Identifying each coefficient of the above equation as an individual equation yields a cascade
of equations. It turns out that the first three equations are enough for our purpose. The ε−2

equation is

−divyA(y)∇yu0 (x, y) = 0

which is nothing else than an equation in the unit cell Y with periodic boundary condition. In
this equation, y is the variable, and x plays the role of a parameter. There exists a unique solution
of this equation up to a constant. This implies that u0 is a function that does not depend on y, i.e.
there exists a function u(x) such that

u0(x, y) ≡ u(x)

Since∇yu0 = 0, the ε−1 equation is

−divyA(y)∇yu1 (x, y) = divyA(y)∇xu (x) (1.7)

which is an equation for the unknown u1 in the periodic unit cell Y . It is a well-posed prob-
lem, which admits a unique solution up to a constant, as soon as the right hand side is known.
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This equation allows one to compute u1 in terms of u and u1(x, y) depends linearly on the first
derivative ∇xu(x). Finally the ε0 equation is

−divyA(y)∇yu2 (x, y) = divyA(y)∇xu1 + divxA(y) (∇yu1 +∇xu) + f(x)

which is an equation for the unknown u2 in the periodic unit cell Y . The above equation admits
a solution if a compatibility condition (the Fredholm alternative in Lemma 1.3.1) is satisfied. In-
deed, integrating the left hand side of the above equation over Y and using the periodic boundary
condition for u2, we obtain∫

Y
divyA(y)u2 (x, y) dy =

∫
∂Y

[A(y)∇yu2 (x, y)] · n = 0

This implies that∫
Y

[divyA(y)∇xu1 + divxA(y) (∇yu1 +∇xu) + f(x)] dy = 0

which simplifies to

−divx

(∫
Y
A(y) (∇yu1 +∇xu) dy

)
= f(x) in Ω (1.8)

Since u1(x, y) depends linearly on ∇xu(x), the above equation is simply an equation for
u(x) involving only the second order derivatives of u.

The cell and homogenized problems In order to compute u1 and to simplify (1.8), we intro-
duce the cell problems. We denote (ei)1≤i≤d the canonical basis of Rd. For each vector ei, we
consider the following conductivity problem in the periodic unit cell:{

−divyA(y) (ei +∇yωi (y)) = 0 in Y
y → ωi (y) Y -periodic

where ωi (y) is the local variation of potential or temperature created by an averaged gradient ei.
The existence of a solution ωi is guaranteed by the following theory.

Lemma 1.3.1 (The Fredholm alternative). Let f (y) ∈ L2 (Y ) be a periodic function. There
exists a solution in H1(Y ) (unique up to an additive constant) of{

−div A(y)∇ω(y) = f in Y
y → ω(y) Y − periodic

if and only if
∫
Y f(y)dy = 0.

By linearity, we can compute u1 (x, y) solution of (1.7) in terms of (x) and wi(y)

u1 (x, y) =

d∑
i=1

∂u

∂xi
(x)ωi (y)

Inserting this expression into (1.8), we obtain the homogenized equation for u that we supplement
with a Dirichlet condition on ∂Ω,{

−divxA∗∇xu(x) = f(x) in Ω

u = 0 on ∂Ω
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The homogenized conductivity A∗ is defined by its entries

A∗ij =

∫
Y

[(A(y)∇yωi) · ej +Aij (y)] dy =

∫
Y
A(y) (ei +∇yωi) · (ej +∇ωj) dy

The constant tensor A∗ describes the effective or homogenized properties of the heteroge-
neous material A

(
x
ε

)
. A∗ does not depend on the choice of the domain Ω, source term f or

boundary condition on ∂Ω. Therefore the solution uε can be approximated as detailed in [10] by:

uε(x) ≈ u(x) + ε
d∑
i=1

∂u

∂xi
(x)ωi

(x
ε

)

where the term ε
d∑
i=1

∂u
∂xi

(x)ωi
(
x
ε

)
is the corrector term. This term improves the approximation

of uε. When ε is small, the corrector term can be neglected if one is interested in the value of
uε. Meanwhile, if one is interested in the value of ∇uε, the corrector term should be taken into
account since it is of the same order as the homogenized gradient∇u,.

1.4 Literature overview

A broad range of important scientific and engineering problems are multiscale problems, which
arise due to high contrasts of the system or due to spatial heterogeneity of the domain. Typical
examples include modeling of composite materials, flows in porous media and turbulent transport
in high Reynolds number flows, and so on. In composite materials, the heterogeneity is repre-
sented by multiscale fluctuations in the thermal conductivity or elastic property. In turbulent
transport problems, the convective velocity field fluctuates randomly and contains many scales
depending on the Reynolds number of the flow.

In the last section, we have presented homogenization in periodic porous media in order to
solve multiscale problems at reduced computational costs. With homogenization, we obtain only
the averaged solution by solving the homogenized equations. However, we expect not only to
obtain the homogenized behavior of the real solution, but also take into account the fluctuations
related to multiple scales of the problem. Along this direction, many model reduction techniques
have been proposed over the years based on the homogenization theory. These methods are
also called numerical homogenization methods. In this section, we give an overview of such
techniques in the literature and the state-of-the-art of their applications to solve flow problems in
heterogeneous media.

1.4.1 Numerical homogenization methods

Homogenization of fluid flow in porous media is the mathematical description of the asymptotic
behavior of the flow when ε → 0 (pore scale or the characteristic length of heterogeneity). This
mathematical theory was first described in [130] for the Stokes equations in periodic porous do-
main. It was shown that the Stokes equations can be derived into an effective Darcy equation.
The effective permeability can be computed from a microscopic computation using the Stokes
equations in a sampling domain by taking into account the porous structure. These findings
were rigorously established by [133] and then generalized by[11, 13–15] and [66] to other flow
problems in porous media. In [18, 19], homogenization of conductive and radiative heat transfer
problems in periodic porous media are performed recently. However, its applications are limited
by the restrictive assumptions on the media or the coefficient: scale separation and periodicity.
Besides, it is expensive to use for problems with many separate scales since the computational
cost grows exponentially with the number of scales [87]. However, homogenization theory has
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triggered the development of numerical methods that solve the homogenized equations numeri-
cally.

The Upscaling Method is based on the homogenization theory. It is the process of represent-
ing the system on a coarser scale by defining the average or effective macroscopic parameters.
The method has been applied to solve flow problems in highly heterogeneous media or composite
materials in [39, 49, 68, 93, 94, 144]. However, the application of upscaling methods is still con-
strained by the assumptions of homogenization. Besides, it is difficult to have a priori estimates
of the errors when complex flow processes in general heterogeneous media are investigated using
coarse models constructed via simplified settings.

For situations where the homogenization theory does not work, its idea can still be exported
to other numerical approaches. Instead of computing the effective properties as in upscaling ap-
proaches, one computes multiscale basis functions in multiscale methods. The problem is fully
resolved at the fine scale (smaller than ε) to capture significant local features and a global coarse
problem is solved at the coarse scale (much larger than ε) by incorporating fine scale computa-
tions. Computational efficiency comes from a divide-and-conquer approach: small, localized fine
scale problems are easily solved and the global coarse problem has only a few degrees of freedom
per coarse element. We give below a list of main multiscale methods and some references. The
list is certainly not exhaustive since there is a large number of works in this area.

The Variational Multiscale Method began with the work of [91, 92]. The idea of the method
is decompose the solution into two groups: the resolved (coarse) and the unresolved (fine) parts.
The fine scale part can further be decomposed into independent local unknowns. Since local
unknowns are independent, the global problem is decomposed into small local problems which
can be solved independently. The solutions of local problems can be coupled by a coarse scale
problem defined by elements in the coarse scale part. The solution of coarse scale problem is
assumed to be linear which affects the accuracy of the method. This approach was defined for
the mixed case in [22–25].

The Heterogeneous Multiscale Method (HMM) was first proposed in [57] based on homog-
enization and reviewed in [7, 58, 83]. The name “heterogeneous” was used to emphasize the
“multi-physics” applications that it targets. HMM is in fact a framework for linking models at
different scales. The homogenized problem is solved by conventional methods such as finite
element methods on a coarse mesh. When assembling the discrete problems, local problems are
solved and solutions are used in the numerical integration. In this way, microscopic features
are taken into account in the homogenized problem. HMM are particularly attractive when the
information of the media is only available in some local representative volumes [106]. The work
of [4–6] proposed recently a variant of HMM for Stokes flows in porous media. This approach
is based on the Darcy-Stokes coupling described by the homogenization theory.

One of the most popular multiscale approaches is the Multiscale Finite Element Method
(MsFEM), which is the primary concern of this thesis. We review various MsFEMs in detail
and discuss their advantages and limitations in subsection 1.4.2. Another well-known multiscale
approach is the Multiscale Finite Volumes Method (MsFVM) [31, 51, 72, 96, 97]. This approach
aims mainly at subsurface flow simulations. These approaches share some of the main ideas
of MsFEM. But multiscale basis functions are constructed on a dual coarse mesh. These basis
functions guarantee the mass conservative at both the coarse and the fine scales. This makes the
method particularly attractive for transport problems.

There are many other multiscale methods, such as Mortar Multiscale Finite Element Methods
[74], Multigrid Methods [26, 112, 116, 140, 145], Multiscale Discontinuous Galerkin Methods
[1, 3], Iterative-Multi-Scale-Finite-Volume Method [31] and so on. We mention that [31] pre-
sented the application of Iterative-Multi-Scale-Finite-Volume Method to solve the pressure Pois-
son equation arising in numerical methods for the simulation of incompressible flows with the
immersed-interface method.
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At last, we mention that domain decomposition methods as described in [56, 75, 137] are
quite different from multiscale methods such as MsFEM. In domain decomposition methods, lo-
cal problems are solved iteratively to obtain an accurate approximation of the fine-scale solution.
These iterations guarantee the convergence of the method. The cost of iterations can be high, in
particular for multiscale problems. On the contrary, multiscale methods aim to capture fine-scale
properties as accurately as possible and avoid solving local problems many times.

Development of multiscale numerical methods at CEA In fact, multiscale methods were
developed for the first time at CEA by [2], for diffusion problems in porous media, in the context
of storage of nuclear waste in cement. Several multiscale methods were developed and compared,
such as the MsFEM, MsFVM and Multiscale Discontinuous Galerkin Methods. Oversampling
techniques are applied in the computation of multiscale basis functions. A multiscale simulation
chain was finally built based on the SALOME platform [129] and TRUST [139], which we present
more in Chapter 5 of the thesis. The work of [2] has effectively been, to some degree, a good
reference to this thesis since they share some similarities in simulation tools and in multiscale
methods.

1.4.2 The Multiscale Finite Element Methods (MsFEMs)

Boundary condi-
tions, source terms

Simulations on
coarse meshes

Computation of
basis functions

Reconstruction of
fine-scale features

FIGURE 1.5: An illustration of multiscale simulations and advantages

The Multiscale Finite Element Method was first introduced by [87, 88] for numerical solution
of multiscale problems that are described by partial differential equations with highly oscillatory
coefficients. The main idea of MsFEM is to incorporate the microscopic features of a multiscale
problem into some special finite element basis functions (different from the conventional finite
element basis functions). Then the effects of microscales on macroscales are captured through
the coupling of these special finite element basis functions and a global numerical formulation
such as the Galerkin method.

Since then, MsFEMs have experienced major advancements in [2, 17, 40, 60, 61, 63] and
the references therein. They have mainly applied MsFEMs for elliptic problems with oscillating
coefficients in composite materials and porous media. [17, 85] generalized the original approach
which uses linear finite elements (see [87, 88]) to approaches which use higher-order finite ele-
ments. Higher-order finite elements can improve the accuracy and the efficiency of the method.
[120, 121] provide a priori error estimate of a MsFEM for convection-diffusion problems where
both the velocity and diffusion coefficient exhibits multiscale features. MsFEMs have also been
generalized to solve nonlinear time-dependent problems [62] in porous media. Many new vari-
ants of MsFEMs appeared over the years, such as Mixed Multiscale Finite Element Methods [24,
39, 106] and Generalized Multiscale Finite Element Method (GMsFEM) [44, 46–48, 59, 107]
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and so on. The work of [45, 47, 48] present a GMsFEM to solve Stokes problems in perfo-
rated domains at both the fine and coarse scales. The extension to other flow problems such as
Navier-Stokes equations is not studied yet.

MsFEMs can handle cases with or without scale separation and there are no restrictive as-
sumptions as in homogenization. As described in [61], MsFEMs consist of two main elements:
multiscale basis functions and a global numerical formulation that couples the multiscale basis
functions. The multiscale basis functions are computed on coarse elements and the union of
coarse elements form a coarse mesh. Important fine-scale features of the solution are captured by
localized multiscale basis functions. Then a global formulation defined on the coarse-mesh cou-
ples the multiscale basis functions to provide an accurate solution of the problem. This process
guarantees that the effect of fine-scales on coarse-scales are corrected captured. It is well-known
that conventional finite element methods use piecewise polynomials as basis functions of the ap-
proximation space. These piecewise polynomials need to satisfy some continuity requirements
across inter-element interfaces in order to ensure the convergence of the method. For example,
the Crouzeix–Raviart element [52] uses piecewise linear polynomials which are only continuous
at the midpoint of the interface between adjacent elements.

Therefore MsFEMs can be considered as a finite element method that do not use piecewise
polynomial basis functions but some special pre-computed basis functions. MsFEMs can thus
be easily implemented within an existing finite element software. As introduced in [87], the
main idea is to construct basis functions by solving local problems with prescribed (artificial)
boundary conditions. Basis functions can thus incorporate the fine-scale features of the prob-
lem. Then multiscale basis functions are then coupled via a global formulation (the coarse-scale
problem). This coupling typically requires some overlapping or some parameters for conforming
approaches, which may increase the complexity of the method. However, we expect to couple
basis functions with as minimal information as possible and keep only a few degrees of freedom
in each coarse element. It is thus desired to develop nonconforming multiscale methods.

1.4.2.1 Nonconforming MsFEMs

One great challenge of the MsFEMs is the error due to scale resonance (see [144]), which is
characterized by the ratio between the small physical scales of the media and the artificial size
of the coarse mesh. Numerical errors become large when the small physical scale is close to the
coarse size. [63, 87, 88] revealed two main sources of scale resonance.

One source of scale resonance is the mismatch between the artificial local boundary con-
ditions imposed on the basis functions and the global nature of the oscillatory solution of the
differential operator. This origin induces boundary layers in the first order corrector of basis
functions. It was pointed out that this error is most significant and it can be reduced by using an
oversampling method. The idea of oversampling methods is to solve local problems in a domain
larger than the coarse element itself, aiming to reduce resonance errors due to artificial boundary
conditions. The multiscale basis functions are obtained by restricting solutions of local problems
to the coarse elements. MsFEMs with oversampling techniques are thus nonconforming methods
and errors related to the nonconformity was studied in [63]. Various oversampling methods can
be found in [43, 61, 64, 72, 84] and the references therein.

The other origin of scale resonance is the mismatch between the size of the coarse mesh and
the "perfect" sample size. The "perfect" sample size would be an integer multiple of the period
for periodic media. This error can not be entirely removed by oversampling methods, but it is
of a lower order. Then [89] proposed a Petrov-Galerkin formulation [99] to remove this error,
which leads to a Petrov-Galerkin nonconforming MsFEM.

Another type of nonconforming MsFEM was proposed in [41] for solving a second-order
multiscale elliptic problem. In this approach, there are two sources of nonconformity. The first
one comes from the fact that nonconforming finite elements are used on the coarse mesh. While
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constructing multiscale basis functions, Dirichlet linear boundary conditions are imposed on the
boundary of coarse elements and in particular, basis functions are imposed to be continuous only
at the midpoint of the interface between two neighboring coarse elements. Besides, basis func-
tions are imposed to be zero at the midpoint of edges lying on the boundary of Ω. This finite
element element is in fact the conventional Crouzeix–Raviart element [52]. However, oversam-
pling techniques are needed to reduce resonance errors due to the mismatch between the local
basis functions and the solution of the global formulation on the boundary of each coarse element.
The oversampling technique induces the second source of nonconformity.

Another type of nonconforming MsFEM based on the Crouzeix–Raviart element was pro-
posed in [103] and denoted as Crouzeix–Raviart MsFEM. In this approach, basis functions are
constructed related to the interface between neighboring coarse elements. The non-conforming
nature of Crouzeix-Raviart element is shown to provide a good flexibility especially when arbi-
trary patterns of obstacles are considered. Based on this feature, the Crouzeix–Raviart MsFEM
imposes only a weak conformity along the interface of adjacent coarse elements, i.e. only the
average of the "jump" of basis functions vanish at the interface between neighboring coarse ele-
ment. This leads to a natural boundary condition on the interface of coarse elements, which re-
laxes the sensitivity of the method to complex patterns of obstacles, without using oversampling
methods. The Crouzeix–Raviart MsFEM is different to to the nonconforming MsFEM [41] pre-
sented in the last paragraph. Firstly, the Crouzeix–Raviart MsFEM does not impose linear Dirich-
let boundary conditions on the boundary of coarse elements. Secondly, the Crouzeix–Raviart
MsFEM does not need to use any oversampling techniques while computing basis functions.

Then the Crouzeix–Raviart MsFEM has been generalized for solving the highly oscillatory
elliptic problem [103], diffusion problem [102], advection–diffusion problem [54, 104, 105,
113], Stokes problem [95, 118] and Oseen problem [117] in perforated domains. In order to
use simple Cartesian meshes instead of boundary-fitted unstructured meshes, the penalization
technique [21] is applied in the Crouzeix–Raviart MsFEM so that the velocity is forced to vanish
on the boundaries of obstacles. More recently, [50] proposes an interesting multiscale hydrid
high-order method for highly oscillatory elliptic problems. This method can be considered as a
generalization of the Crouzeix–Raviart MsFEM to arbitrary orders of approximation. Besides,
the authors provide an energy-error estimate in the case of periodic coefficients.

1.4.2.2 Cost and performance of multiscale finite element methods

The steps and advantages of multiscale method are illustrated in Figure 1.5. In multiscale sim-
ulations, a large amount of computing time comes from the construction of multiscale basis
functions. However, these basis functions can be computed in parallel on a massively parallel
computer so that the computing time of basis functions is reduced significantly. In practice, mul-
tiscale method allows great computational savings because basis functions are computed only
once and can be re-used multiple times, for different external parameters such as source terms or
boundary conditions. Significant computational savings can also be obtained for time-dependent
problems in which the heterogeneities representing porous media properties do not change with
time. For these problems, basis functions are pre-computed at the initial time and used through-
out the simulations. The work of [131] proposes a multiscale finite element method in which
time-dependent basis functions are computed for transient problem.

We resume advantages of multiscale finite element methods [87]: (1) construction of mul-
tiscale basis function in parallel; (2) re-use of multiscale basis functions for different external
parameters and boundary conditions; (3) inexpensive and efficient solve of coarse-scale prob-
lems; (4) adaptive reconstruction of fine-scale features of the solution in the regions of interest.
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1.5 Main contributions of the thesis

This thesis is devoted to the development of nonconforming Crouzeix-Raviart multiscale finite
element methods to solve incompressible flow problems in heterogeneous media. We present the
two primary objectives of this thesis in what follows.

The first purpose of this thesis is to develop a kind of model reduction technique which
permits to solve flow problems in highly heterogeneous media with desired accuracy and at
reasonable computational costs. For application and efficiency purpose, this technique is imple-
mented and validated in the internal software TrioCFD [139] of CEA, which focus on the finite
volume element method. We choose to develop nonconforming Crouzeix-Raviart multiscale
finite element methods based on the recent work of [95, 117, 118]. In this thesis, the Crouzeix-
Raviart multiscale finite element method for Stokes equations proposed in [95, 118] are extended
to solve also Oseen problems and Navier-Stokes problems at different Reynolds numbers on
the coarse mesh. The Streamline Upwind/Petrov-Galerkin (SUPG) method [33] is developed in
the multiscale context to stabilize the solution on the coarse mesh. Moreover, we redefine the
Crouzeix-Raviart multiscale finite element method proposed for Oseen equations in [117]. We
provide a proof of the well-posedness of the newly-defined local problems. This new definition
precludes oscillations in the solution of local problems for very large values of Oseen velocity.
This multiscale method is also extended to solve Navier-Stokes problems at different Reynolds
numbers on the coarse mesh with the SUPG stabilization technique. Besides, our implemen-
tation of multiscale finite element methods is original since it is adapted to existing numerical
methods and solvers in TrioCFD, which is quite different from the implementation in [95, 117,
118]. For the first time, we extend the Crouzeix-Raviart multiscale methods to three-dimensional
heterogeneous media and demonstrate the performance of these methods.

The second goal of the thesis is to improve the accuracy of existing Crouzeix-Raviart mul-
tiscale finite element methods for flow problems in heterogeneous media. This is achieved by
enriching the multiscale approximation space using two types of enrichment methods.

The first type of enrichment method enriches only the approximation space of velocity and
we propose three ideas for this. Firstly, the authors of [95] propose to enrich the approximation
space of velocity by adding weighting functions which are defined by linear polynomials. In-
spired by this idea, we propose to add more weighting functions which are defined by linear and
higher-degree polynomials. Numerical experiments show that this enriched multiscale method
can effectively improve the accuracy of numerical results to some degree. However, adding more
than a certain number of weighting functions cannot further improve the accuracy of method.
Secondly, we construct an enriched approximation space of velocity by taking the union of so-
lutions of local Stokes problems and Oseen problems. Contrary to expectations, numerical tests
show that this enriched multiscale method does not outperform the multiscale method defined
by Stokes equations alone or Oseen equations alone. Thirdly, the authors of [54, 102, 113] de-
fined bubble functions for diffusion and advection-diffusion problems to improve the accuracy of
Crouzeix-Raviart multiscale finite element methods. In this thesis, we propose to define bubble
functions for Stokes equations or Oseen equations. Then our numerical experiments showed that
the addition of bubble functions did not improve the accuracy of the method. We thus performed
theoretical analysis which proved that the approximation spaces must be altered and this led to
the second type of enrichment method presented below.

The second type of enrichment method is an original generalization of the method proposed
in [95]. Both the approximation space of velocity and of pressure are enriched by adding weight-
ing functions which are defined by polynomials of different degrees. We can vary the degrees of
these polynomials to obtain a compromise between the computational cost and the desired accu-
racy. Thus this enrichment method provides a much more general definition of the approximation
space compared to that of [95, 117, 118]. We name this innovative multiscale method as the high-
order Crouzeix-Raviart multiscale method. We present in detail the construction of high-order
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Crouzeix-Raviart multiscale methods and define local problems respectively by Stokes equations
and Oseen equations. Moreover, we point out that high-order multiscale methods would be more
accurate when local problems are discretized by higher-order finite elements such as the P2/P1

finite element. Numerical experiments reveal that high-ordre multiscale methods can effectively
improve the accuracy of both velocity and pressure solutions.

At last, we build a multiscale simulation chain mainly based on SALOME [129] and Tri-
oCFD. Necessary meshes are generated in SALOME while multiscale finite element methods are
implemented in TrioCFD. Numerical experiments are performed to study the numerical conver-
gencce and compare the accuracy of Crouzeix-Raviart multiscale finite element methods. We
present some demonstrative two- and three-dimensional applications to show the superior per-
formance of multiscale finite element methods compared to conventional numeical methods in
heterogeneous media with many solid obstacles.

1.6 Contents of the thesis

This thesis is divided into seven chapters. The present chapter, Chapter 1, is an introduction to
the topic as well as the motivation of the thesis.

Chapter 2 deals with the theoretical framework of multiscale finite element methods. We first
recall classical theories of numerical analysis which guarantee the existence and the uniqueness
of the solution to flow problems. Afterwards, we present the Crouzeix-Raviart finite element
and the finite element formulation of Stokes problems as well as its well-posedness. After these
preliminary preparations, we introduce the original multiscale finite element method proposed
by [87] and present each step in detail. At last, we discuss briefly the computational cost of
multiscale finite element methods compared to conventional numerical methods.

Chapter 3 addresses several Crouzeix-Raviart multiscale finite element methods to solve flow
problems in heterogeneous media. The chapter begins by reviewing the main idea of Crouzeix-
Raviart multiscale method as well as basic definitions and notations. Then we present the
Crouzeix-Raviart multiscale method originally proposed by [95, 118] where local problems are
defined by Stokes equations. We propose to solve Oseen problems and Navier-Stokes problems
on the coarse mesh using this method. The SUPG stabilization technique is developed in the
multiscale context to stabilize the solution on the coarse mesh. Then we redefine the Crouzeix-
Raviart multiscale method originally proposed by [117] where local problems are defined by
Oseen equations. We provide a proof of the well-posedness of newly-defined local problems.
This new definition precludes oscillations in the solution of local problems for large values of
Oseen velocity. Similarly, we propose to solve Navier-Stokes problems on the coarse mesh along
with the SUPG stabilization technique.

The remaining part of this chapter seeks primarily to improve the accuracy of the Crouzeix-
Raviart multiscale methods defined by Stokes equations or Oseen equations. For this purpose,
we investigate two ideas to enrich the approximation space. The first idea is to enrich only the
the approximation space of velocity (1) by adding more weighting functions which are defined
by linear and higher-degree polynomials; (2) by taking the union of solutions of local Stokes
problems and Oseen problems; (3) by adding bubble functions. Our numerical experiments
showed that the addition of bubble functions did not improve the accuracy of the method. We
thus performed theoretical analysis which proved that the approximation spaces must be altered
and this led to the second idea of enrichment below.

The second idea is to enrich both the approximation space of velocity and of pressure by
adding weighting functions which are defined by polynomials of different degrees. The degrees
of polynomials can vary to obtain a compromise between the computational cost and the de-
sired accuracy. Thus this enrichment method provides a much more general definition of the
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approximation space compared to that of [95, 117, 118]. We name this multiscale method as the
high-order Crouzeix-Raviart multiscale method. We present in detail the construction of high-
order multiscale methods and define local problems respectively by Stokes equations and Oseen
equations.

Chapter 4 focus on the technical aspects of the implementation of Crouzeix-Raviart mul-
tiscale finite element methods in TrioCFD. We start by introducing the finite volume element
method and the Crouzeix-Raviart finite element. Then we present the discretization of local
Stokes problem by the finite volume element method where unknowns are discretized by the
Crouzeix-Raviart finite element. For local Oseen problems, we present the discretization of the
additional Oseen term using the Upwind scheme. Then local problems are solved by modifying
the original prediction-correction algorithm in TrioCFD. Afterwards, we present the discretiza-
tion of the coarse-scale problem by the Galerkin method where basis functions are solutions of
local problems. We compute matrices locally on coarse elements by taking advantage of the
Crouzeix-Raviart finite element basis functions. The coarse-scale problem is also solved by the
prediction-correction algorithm.

The remaining part of this chapter presents the discretization of local problems in high-order
Crouzeix-Raviart multiscale methods by the P1-nonconforming/P1 finite element. The coarse-
scale problem is discretized by the Galerkin method where basis functions are solutions of local
problems. Then we present the solution of both local and coarse-scale problems by a direct solver
developed in this thesis. At last, we compare solutions of local problems computed by TrioCFD
with those computed by Freefem++ in order to validate our implementation.

Chapter 5 is devoted to practical implementations of the multiscale simulation chain SALOME-
TrioCFD-VisIt. We present two types of parallelism: the extra-cellular parallelism and intra-
cellular parallelism. We present the main steps of the multiscale simulation chain as well as
parallelisms in each step. Then we introduce the SALOME platform and present three algorithms
developed in the thesis for generating respectively conforming meshes, nonconforming meshes
or meshes in periodic heterogeneous media. Then we present briefly the software TrioCFD and
important implementations related to Crouzeix-Raviart multiscale finite element methods. In the
end, we introduce briefly VisIt and the visualization of reconstructed fine-scale solutions.

Chapter 6 presents two- and three-dimensional numerical simulations performed with the
multiscale simulation chain SALOME-TrioCFD-VisIt. We consider two types of media: the non-
periodic heterogeneous media with randomly placed obstacles and the periodic heterogeneous
media with periodically placed obstacles.

In two-dimensional non-periodic heterogeneous media, we present numerical convergence
studies and error analysis of multiscale methods presented in Chapter 3. Our objective is to show
the numerical convergence of multiscale methods and to compare the accuracy of enriched mul-
tiscale methods. We find that the addition of bubble functions does not improve the accuracy
of the method which is consistent with our theoretical analysis. Contrary to expectations, the
multiscale method enriched by adding solutions of local Stokes problems and Oseen problems
does not outperform the multiscale method defined by Stokes equations alone or Oseen equa-
tions alone. Interestingly, numerical experiments show that high-order multiscale methods can
significantly improve the accuracy of both the velocity and pressure. Moreover, we solve the non-
linear Navier-Stokes problems at different Reynolds numbers with Crouzeix-Raviart multiscale
methods defined by Stokes or Oseen equations.

In two-dimensional periodic heterogeneous media, our numerical convergence studies show
that it is necessary to enrich multiscale methods in order to obtain rather accurate solutions. Be-
sides, we generate coarse meshes using two partition methods and compare the accuracy of multi-
scale methods using these partitions. At last, we present several applications of Crouzeix-Raviart
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multiscale methods in two- and three-dimensional highly heterogeneous media to demonstrate
the performance of multiscale methods.

The last chapter concludes this thesis by giving an overview of Crouzeix-Raviart multiscale
finite elements developed in the thesis and discussing the performance of these multiscale meth-
ods. We review some important remarks made during the thesis and propose some ideas and
perspectives to improve the performance of the multiscale simulation chain.
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Chapter 2

Theoretical framework of multiscale
finite element methods

This chapter deals with the theoretical framework of multiscale finite element methods. Before
introducing multiscale finite element methods, we first recall some classical theories of numerical
analysis. These theories guarantee the existence and uniqueness of a solution to flow problems,
in particular, Stokes problems and Oseen problems. Meanwhile, we recall these flow problems
and define their variational formulations. The existence and uniqueness of a solution to these
problems are guaranteed by previously presented theories. Afterwards, we present the Crouzeix-
Raviart finite element and the finite element formulations of flows problems as well as their
well-posedness. After these preliminary preparations, we finally introduce the main idea of the
original multiscale finite element methods proposed by [87]. This introduction makes it easier
to understand Crouzeix-Raviart multiscale finite element methods which will be presented in the
next chapter. At last, the cost of multiscale finite element methods and traditional finite element
methods are compared in order to show the good performance of the first one.

Outline Sections 2.1 to 2.3 introduces the theories of numerical analysis of an abstract problem
and variational formulations of flow problems. Section 2.4 describes briefly the finite element
method and the Crouzeix-Raviart finite element. Section 2.5 addresses the classical multiscale
finite element method. Section 2.6 evaluates the the cost and performance of multiscale finite
element methods.

2.1 Analysis of an abstract variational problem

This section recalls briefly some classical theories of numerical analysis of an abstract prob-
lem. For more details about these theories, the reader can refer to many books on finite element
methods, such as [67, 73].

Let V and M be two Hilbert spaces [9]. The scalar product defined on these spaces are
denoted respectively by (·, ·)V and (·, ·)M . The norms associated to these scalar products are
denoted respectively by ‖·‖V and ‖·‖M . Let V ′ and M ′ be the dual spaces of V and M and let
‖·‖V ′ and ‖·‖M ′ be the associated dual norms. The dual space V ′ (respectively M ′) is the space
of linear forms defined on V (respectively M ). We denote by 〈·, ·〉 the product of an element
in the Hilbert space and an element of its dual space. Let f and g be element of V ′ and M ′

respectively, i.e. f and g are two linear forms.
Let a(., .) and b(., .) be two continuous bilinear forms:

a(., .) : V × V → R, b(., .) : V ×M → R
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Then we consider the following variational problem: Given f ∈ V ′ and g ∈ M ′, find (u, p) ∈
V ×M such that {

a (u, v) + b (v, p) = 〈f, v〉 ∀v ∈ V
b (u, q) = 〈g, q〉 ∀q ∈M

(2.1)

Our purpose is to derive the necessary and sufficient conditions so that the problem (2.1) is
well-posed (the problem has one and only one solution). Let W be a subspace of V and W is
defined by:

W = {v ∈ V | ∀q ∈M, b (v, q) = 0}

We suppose firstly that g = 0. The initial problem (2.1) can be rewritten as: Find u ∈ W
such that

a (u, v) = 〈f, v〉 ∀v ∈W (2.2)

The well-posedness of problem (2.2) is ensured by the following theorem (see theorem 1.7.
of [73]) which is due to Lax & Milgram’s theorem [101].

Theorem 2.1.1. We assume that
– a(., .) is continuous, i.e., there exists a constant β such that

|a (u, v) | ≤ β ‖u‖W ‖v‖W ∀u, v ∈W

– a(., .) is elliptic on W , i.e., there exists a constant α such that

a (v, v) ≥ α ‖v‖2W ∀v ∈W

Then the problem (2.2) has one and only one solution u ∈ W . Moreover, the mapping f → u is
an isomorphism from W ′ onto W .

The work of [67] proposes a more general theorem than Lax & Milgram’s theorem for the
bilinear form a(., .). We recall the theorem below:

Theorem 2.1.2 (Banach-Nečas-Babuška (BNB)). Let X be a Banach space and let Y be a
reflexive Banach space. Let a be a bilinear form: X × Y → R and f ∈ Y ′. Then the problem
(2.2) is well-posed if and only if:

∃α > 0, inf
w∈X

sup
v∈Y

a (w, v)

‖w‖X ‖v‖Y
≥ α

∀v ∈ Y, (∀w ∈ X, a(w, v) = 0)⇒ (v = 0)

Moreover, the following a priori estimate holds:

∀f ∈ Y ′, ‖u‖X ≤
1

α
‖f‖Y ′

This theorem is proved in [67] and it is stated that Theorem 2.1.1 is a consequence of Theo-
rem 2.1.2. We will apply this theorem directly in what follows.

Now we need to consider how to treat the case g 6= 0 and discuss the existence and uniqueness
of p to problem (2.1). To do this, we introduce the inf-sup condition introduced by Babuška-
Brezzi [28, 32].
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Theorem 2.1.3 (Babuška-Brezzi). The three following properties are equivalent:
1, there exists a constant β > 0 such that

inf
q∈M,q 6=0

sup
v∈V

b(v, q)

‖v‖V ‖q‖M
≥ β

2, there exists an isomorphism B′ from M onto W ◦ which verifies:

b(v, q) =
〈
v; B′q

〉
V,V ′ ,

∥∥B′q∥∥
V ′ ≥ β ‖q‖M ∀q ∈M

The space W ◦ is defined as: W ◦ = {h ∈ V ′| ∀v ∈W, 〈h, v〉 = 0}.
3, there exists an isomorphism B from W⊥ onto M ′ which verifies that

b(v, q) = 〈Bv; q〉M ′,M , ‖Bv‖M ′ ≥ β ‖v‖V ∀v ∈W
⊥

The orthogonal space W⊥ of W is defined as W⊥ = {v ∈ V | ∀w ∈W, (v, w) = 0}.

This theorem is proved in [73] and we apply it directly in what follows.

Theorem 2.1.4. Assume that
1, a(., .) is a bilinear form continuous on V × V .
2, b(., .) is a bilinear form continuous on V ×M .
3, a(., .) is V –elliptic, i.e. there exists a constant α > 0 such that

a(v, v) ≥ α ‖v‖2V ∀v ∈ V

4, b(., .) verifies the condition inf-sup: there exists a constant β > 0 such that

inf
q∈M,q 6=0

sup
v∈V

b(v, q)

‖v‖V ‖q‖M
≥ β

Then problem (2.1) is well-posed and it has one unique solution u ∈ V, p ∈ M for any f ∈
V ′, g ∈M ′.

This theorem can be proved easily using Theorem 2.1.3 and we apply directly this theorem
in what follows.

2.2 The variational formulation of Stokes problem

Let Ω be a connected and bounded open set in Rd, d = 2 or 3, with a Lipschitz-continous
boundary. The Stokes problem with homogeneous Dirichlet boundary condition is: find the
velocity u : Ω→ Rd and the pressure p : Ω→ R solutions to:

−µ∆u+∇p = f in Ω (2.3)

div u = g in Ω (2.4)

u = 0 on ∂Ω

where µ is the dynamic viscosity, f is a given force and g is a given function. In particular, g = 0
for incompressible flows.

We introduce the following Sobolev spaces [9]:

– L2(Ω) is the space of square integrable functions.

– L2
0(Ω) =

{
p ∈ L2 (Ω)

∣∣ ∫
Ω p = 0

}
is a subspace of L2(Ω)
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–
(
H1(Ω)

)d
=
{
v ∈

(
L2 (Ω)

)d ∣∣ ∇v ∈ (L2 (Ω)
)d}

–
(
H1

0 (Ω)
)d is a subspace of

(
H1(Ω)

)d and it contains functions whose trace is zero on ∂Ω

The scalar product of L2(Ω) and the associated norm are denoted respectively by (., .) and
by ‖·‖L2 .

(u,v) =

∫
Ω
u · v, ‖u‖L2 = (u,u)

1
2

The norm for the space
(
H1

0 (Ω)
)d is defined as

‖u‖0 =

(∫
Ω
|∇u|2

)1/2

We introduce the following bilinear forms:

aSt(u,v) = µ

∫
Ω
∇u : ∇v, b(v, q) = −

∫
Ω
q div v

and linear forms:

F (v) = 〈f ,v〉 =

∫
Ω
f · v, G (q) = 〈g, q〉 = −

∫
Ω
gq ∀vh ∈ Vh, ∀qh ∈Mh

Now we try to write the variational formulation of Stokes equations (2.3)–(2.4). Multiplying
(2.3) by a test function v ∈

(
H1

0 (Ω)
)d and integrating over Ω, we obtain∫

Ω
µ∇u : ∇v −

∫
Ω
p divv =

∫
Ω
f · v

Similarly, multiplying (2.4) by a function q ∈ L2 (Ω) and integrating on the domain Ω, we
have ∫

Ω
divu q =

∫
Ω
gq

With the notations above, the variational formulation of Stokes equations (2.3)–(2.4) can be
written in the abstract form: find u ∈

(
H1

0 (Ω)
)d and p ∈ L2

0 (Ω) such that{
aSt(u,v) + b(v, p) = F (v) ∀v ∈

(
H1

0 (Ω)
)d

b(u, q) = G (q) ∀q ∈ L2
0 (Ω)

(2.5)

In conclusion, the Stokes problem is one prototype example of problem (2.1), by choosing
V =

(
H1

0 (Ω)
)d and M = L2

0 (Ω). The space W reads:

W =
{
v ∈

(
H1

0 (Ω)
)d ∣∣ ∀q ∈ L2

0 (Ω) , b(v, q) = 0
}

=
{
v ∈

(
H1

0 (Ω)
)d ∣∣ div v = 0

}
The existence and uniqueness of a solution to system (2.5) is guaranteed by Theorem 2.1.4.

We see that each of the hypothesis of Theorem 2.1.4 is verified:

– bilinear forms aSt(., .) and b(., .) are continuous respectively on
(
H1

0 (Ω)
)d × (H1

0 (Ω)
)d

and
(
H1

0 (Ω)
)d × L2

0 (Ω).
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– aSt(., .) is elliptic on V . We recall the Poincaré inequality: there exists a C > 0 such that

∀v ∈
(
H1

0 (Ω)
)d
, aSt (v,v) =

∫
Ω
µ|∇v|2 ≥ C

∫
Ω
µ|v|2 (2.6)

Since the semi-norm ‖∇v‖L2(Ω) is equivalent to the fullH1 norm by the Poincaré inequal-
ity, we obtain easily that aSt(., .) is elliptic on V .

– the bilinear form b(., .) verifies the inf-sup condition. Since the gradient operator is an iso-
morphism from V ⊥ onto L2(Ω)

R and the divergence operator is an isomorphism fromL2
0 (Ω)

onto V ◦, Theorem 2.1.3 implies that b(., .) verifies the inf-sup condition of Theorem 2.1.4.

We introduce another bilinear form cSt(., .) continuous on (V ×M)2:

cSt((u, p), (v, q)) =

∫
Ω
µ∇u : ∇v −

∫
Ω
p div v −

∫
Ω
q div u (2.7)

The variational formulation of (2.3)–(2.4) is equivalent to: find (u, p) ∈ V ×M such that

cSt((u, p), (v, q)) = F (v) ∀ (v, q) ∈ V ×M (2.8)

Let X = V × M with V =
(
H1

0 (Ω)
)d and M = L2

0 (Ω). Theorem 2.1.2 implies that
problem (2.8) has a unique solution if the bilinear form cSt(., .) satisfies the following inf-sup
property:

inf
(u,p)∈X

sup
(v,q)∈X

cSt ((u, p) , (v, q))

‖u, p‖X ‖v, q‖X
≥ γ (2.9)

with a constant γ > 0.

2.3 The variational formulation of Oseen problem

Let Ω be a connected and bounded open set in Rd, d = 2 or 3, with a Lipschitz-continous
boundary. The steady-state Oseen problem with homogeneous Dirichlet boundary condition is
to find the velocity u : Ω→ Rd and the pressure p : Ω→ R solutions to:

−µ∆u+ ρ (Uo · ∇)u+∇p = f in Ω (2.10)

div u = g in Ω (2.11)

u = 0 on ∂Ω (2.12)

where µ is the dynamic viscosity,Uo is a known velocity, ρ is the flow density, f is a given force
and g is a given function. In particular, g = 0 for incompressible flows.

We introduce the bilinear form aOs(., .) for the Oseen problem:

aOs (u,v) =

∫
Ω

(µ∇u : ∇v + ρ (Uo · ∇)u · v) (2.13)

Thus the variational formulation of the Oseen problem is to find u ∈
(
H1

0 (Ω)
)d and p ∈

L2
0 (Ω) such that {

aOs(u,v) + b(v, p) = F (v) ∀v ∈
(
H1

0 (Ω)
)d

b(u, q) = G (q) ∀q ∈ L2
0 (Ω)

(2.14)
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By choosing V =
(
H1

0 (Ω)
)d and M = L2

0 (Ω), we apply Theorem 2.1.4 to guarantee the
existence and uniqueness of a solution to (2.14). It is clear that the hypothesis 1, 2 and 4 of
Theorem 2.1.4 are verified by bilinear forms aOs(., .) and b(., .).

We introduce another continuous bilinear form which is equivalent to aOs(., .):

âOs(u,v) =

∫
Ω

(
µ∇u : ∇v +

1

2
ρ (Uo · ∇u)v − 1

2
ρ (Uo · ∇v)u− 1

2
ρuv div Uo

)
with u = 0 on ∂Ω (boundary condition (2.12)).

Since the two bilinear forms aOs(., .) and âOs(., .) are equivalent and it is easier to prove
that the hypothesis 3 holds using âOs(., .), we now prove that âOs is coercive on V . It is easy to
observe that

âOs(u,u) =

∫
Ω

(
µ∇u : ∇u− 1

2
ρuu div Uo

)
≥
∫

Ω
µ|∇u|2

by assuming that div Uo ≤ 0.
Since the semi-norm ‖∇v‖L2(Ω) is equivalent to the full H1 norm by Poincaré inequality

(2.6), we obtain that aSt(., .) is elliptic on V . Thus the hypothesis 3 holds for âOs(., .) and
aOs(., .).

Consequently Theorem 2.1.4 guarantees that the following variational formulation of Oseen
problem is well-posed.{

âOs(u,v) + b(v, p) = F (v) ∀v ∈
(
H1

0 (Ω)
)d

b(u, q) = G (q) ∀q ∈ L2
0 (Ω)

(2.15)

We introduce also the bilinear form ĉOs(., .):

ĉOs((u, p), (v, q)) =

∫
Ω

(
µ∇u : ∇v +

1

2
ρ (Uo · ∇u)v − 1

2
ρ (Uo · ∇v)u

)
−
∫

Ω
p div v −

∫
Ω
q div u

The variational formula of the Oseen problem can be written as: find (u, p) ∈ V ×M such
that

ĉOs((u, p), (v, q)) = F (v) ∀ (v, q) ∈ V ×M

By choosing X = V ×M , Theorem 2.1.2 guarantees the existence and uniqueness of a solution
to this problem.

2.3.1 The variational formulation of Navier-Stokes problem

Let Ω be a connected and bounded open set in Rd, d = 2 or 3, with a Lipschitz-continous bound-
ary. The steady-state Navier-Stokes problem with homogeneous Dirichlet boundary condition is
to find the velocity u : Ω→ Rd and the pressure p : Ω→ R solutions to:

−µ∆u+ ρ (u · ∇)u+∇p = f in Ω (2.16)

div u = g in Ω (2.17)

u = 0 on ∂Ω
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where µ is the dynamic viscosity and ρ is the flow density, f is a given force and g is a given
function. In particular, g = 0 for incompressible flows.

We introduce the following nonlinear forms:

aNS (u,v) =

∫
Ω

(µ∇u : ∇v + ρ (u · ∇)u · v)

cNS((u, p), (v, q)) =

∫
Ω

(µ∇u : ∇v + ρ (u · ∇)u · v)−
∫

Ω
p div v −

∫
Ω
q div u

The generalization of the abstract variational problem analyzed in section 2.1 to nonlinear
problems can be found in [73]. The family of nonlinear problems contains the Navier-Stokes
problem in particular. The analysis of a nonlinear abstract variational problem is much more
complicated than a linear abstract problem. Thus we choose not to present the numerical analysis
of Navier-Stokes problem in this thesis.

2.4 The finite element method

The finite element method is a very popular method to solve Partial Differential Equations
(PDEs). It approximates the continuous space of solution of PDEs by a finite dimensional space.
To show the main idea of the method, we present the approximation of the abstract variational
problem analyzed in section 2.1.

Let h denote a discretization parameter tending to zero. For each h, let Vh and Mh two
finite dimensional spaces that Vh and Mh. We introduce two bilinear forms ah(., .) and bh(., .)
on Vh × Vh and Vh ×Mh respectively. We now approximate the problem (2.1) by the discrete
problem: Given f ∈ V ′ and g ∈M ′, find (uh, ph) ∈ Vh ×Mh such that{

ah (uh, vh) + bh (vh, ph) = 〈f, vh〉 ∀vh ∈ Vh
bh (uh, qh) = 〈g, qh〉 ∀q ∈Mh

(2.18)

The existence and uniqueness of a solution to system (2.18) is guaranteed by the following
discrete inf-sup condition Theorem 2.4.1, which is a discrete version of Theorem 2.1.4:

Theorem 2.4.1. Assume that
1, ah(., .) is a bilinear form continuous on Vh × Vh.
2, bh(., .) is a bilinear form continuous on Vh ×Mh.
3, ah(., .) is Vh-elliptic, i.e. there exists a constant αh > 0 such that

ah(vh, vh) ≥ αh ‖v‖2Vh ∀vh ∈ Vh

4, bh(., .) verifies inf-sup condition: there exists a constant βh > 0 such that

inf
qh∈Mh,qh 6=0

sup
vh∈Vh

bh(vh, qh)

‖vh‖Vh ‖qh‖Mh

≥ βh

Then problem (2.18) is well-posed and it has one unique solution uh ∈ Vh, ph ∈ Mh for any
f ∈ V ′, g ∈M ′.

2.4.1 The Crouzeix-Raviart finite element

Let Ω be a connected and bounded open set in Rd with d = 2 or 3. We denote Th a discretization
of Ω by triangles (d = 2) or tetrahedrons (d = 3) noted as K. The i-th face of Th is noted as fi
and the middle of the face fi is noted as xi. The barycenter of the triangle or tetrahedron is noted
as gK . The set of faces in the discretization is noted as Eh. The Crouzeix-Raviart finite element



26 Chapter 2. Theoretical framework of multiscale finite element methods

velocity

pressure

FIGURE 2.1: Crouzeix-Raviart element with locations of unknowns (d = 2)

shown in Figure 2.1 was first introduced in [52]. The velocity unknown of this element is in the
barycenter of each face and the pressure unknown is in the barycenter of each element.

We note Vh and Mh as the approximation space of the velocity uh and the pressure ph re-
spectively. The spaces Vh and Mh are defined by

Vh =
{
vh ∈

(
L2 (Ω)

)d ∣∣ vh|K∈ (P1(K))d , vh is continuous at points xi, ∀K ∈ Th
}

Mh =
{
qh ∈ L2

0 (Ω)
∣∣ qh|K ∈ P0(K), ∀K ∈ Th

}
The approximation space Vh is not included in V =

(
H1

0 (Ω)
)d and it is nonconforming. But the

approximation space Mh is included in the continuous space M = L2
0 (Ω).

Let {a0, · · · , ad} be the vertices of K, fi be the face of K opposite to ai and ni be the
outward normal to fi. The associated barycentric coordinates (λ0, · · · , λd) are defined by:

λi : x→ λi(x) = 1− (x− ai) · ni
(aj − ai) · ni

for 0 ≤ i ≤ d

where aj is an arbitrary vertex in fi. We have λi (aj) = δij for any vertex aj of K. Besides,

d∑
i=0

λi(x) = 1,
d∑
i=0

λi(x)(x− ai) = 0 for all x ∈ Rd

Let {φ1, · · · , φn} be the basis function of each component of Vh and Ṽh with n the dimension
of Vh or Ṽh. Using the barycentric coordinates (λ0, · · · , λd), φi reads on each element K:

φi|K = 1− dλi|K

We have φi|K (xj) = δij . Thus each function of Vh can be written as:

uh = (uh; vh) =

(∑
i

uh(xi)φi (x) ;
∑
i

vh(xi)φi (x)

)
=
∑
i

uh (xi)φi (x)

We denote by [[vh]] the "jump" of vh across an internal face with [[vh]] = vh on ∂Ω. [67]
shows that Vh can be defined equivalently as:

Ṽh =

{
vh ∈

(
L2 (Ω)

)d ∣∣ vh|K∈ (P1(K))d ,

∫
fi

[[vh]] = 0, ∀K ∈ Th, ∀fi ∈ Eh
}

Since φi|K ∈ P1 (K), the mean-value over a face is equal to the value at the barycenter.
The condition

∫
fi

[[vh]] = 0 for fi ∈ Eh implies that functions of Ṽh are only continuous at the
barycenter of the face fi. Therefore Vh and Ṽh are indeed the same space. Ṽh is not included in(
H1

0 (Ω)
)d and it is nonconforming.
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Let ψK be the characteristic function of K (ψK equals to 1 in K and 0 otherwise), each
function of Mh can be written as

qh (x) =
∑

K∈Th(Ω)

qh (gK)ψK (x)

where gK is the barycenter of K.

2.4.2 A finite element formulation of Stokes problem

For the sake of simplicity, we consider Stokes problem (2.3)–(2.4) with homogeneous Dirichlet
condition. We recall that the spaces V and M are V =

(
H1

0 (Ω)
)d and M = L2

0 (Ω) in sec-
tion 2.2. In the finite element formulation, we replace V and M by the approximation space Vh
and Mh, the bilinear forms aSt(, ., ) and b(, ., ) by aSth (, ., ) and bh(, ., ). Since functions of Vh is
not included in

(
H1 (Ω)

)d but in ΠK∈Th
(
H1(K)

)d. For Crouzeix-Raviart element, we define
the bilinear forms aSth (., .) and bh(., .) by

aSth (uh,vh) =
∑
K∈Th

∫
K
∇uh : ∇vh ∀uh,vh ∈ Vh

bh(uh, qh) = −
∑
K∈Th

∫
K
qhdiv uh ∀uh ∈ Vh, ∀qh ∈Mh

and the linear forms:

Fh(vh) =
∑
K∈Th

∫
K
f · vh, Gh(qh) = −

∑
K∈Th

∫
K
gqh ∀vh ∈ Vh, ∀qh ∈Mh

The discrete variational formulation of the Stokes problem is: find uh ∈ Vh and ph ∈ Mh

such that {
aSth (uh,vh) + bh (vh, ph) = Fh (vh) ∀vh ∈ Vh
bh (uh, qh) = Gh(qh) ∀qh ∈Mh

(2.19)

The existence and uniqueness of a solution to problem (2.19) can be guaranteed by Theo-
rem 2.1.4. In fact, we can show that each of the hypothesis in this theorem holds, i.e.:

– ah(., .) is continuous on Vh × Vh using the Cauchy-Schwarz inequality.

– bh(., .) is continuous on Vh ×Mh using the Cauchy-Schwarz inequality.

– ah(., .) is elliptic on Vh with the help of the discrete Poincaré inequality [143].

– The inf-sup condition of bh(., .) on Vh ×Mh is proved by Crouzeix and Raviart [52].

2.5 The original multiscale finite element method

Before presenting the Crouzeix-Raviart multiscale finite element methods, we present a simple
example illustrating the main concept of the original multiscale finite element method proposed
in [87]. We consider a second-order elliptic problem in a domain Ω ∈ Rd with d ∈ span {2, 3}.
The problem is to find p : Ω→ R solution to

−∇ · a (x)∇p = f in Ω
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where f is a given function and a (x) = (aij (x)) is the ratio of the permeability tensor κ and the
fluid viscosity µ. Besides, a (x) is assumed to be symmetric and positive definite with upper and
lower bounds. a (x) is a heterogeneous field varying over multiple scales. The steady velocity
field is related to the pressure through the Darcy’s law (1.4).

The heterogeneous domain consists of three scales: the size L of the domain Ω, the coarse-
scale H that corresponds to the macroscopic features of the problem and the small-scale ε that
corresponds to microscopic features of the problem. The three scales verify that ε � H � L.
We recall that multiscale finite element methods consist of two main ingredients: multiscale
basis functions and a global formulation that couples the multiscale basis functions. Important
multiscale features are incorporated into the locally computed basis functions. A pseudo code in
Algorithm 2.1 outlines the main steps of multiscale finite element methods. We present each step
in what follows.

Algorithm 2.1 Main steps of multiscale finite element methods
1: Partition the domain into a set of coarse elements (coarse mesh) . subsection 2.5.1
2: for each coarse element do
3: Partition the element into a fine mesh
4: Construct multiscale basis functions via local problems . subsection 2.5.2
5: Compute matrices locally on the fine mesh
6: end for
7: Assemble global matrices and solve the coarse-scale problem . subsection 2.5.3
8: for coarse elements in the region of interest do
9: Reconstruct fine-scale solutions on the fine mesh . subsection 2.5.4

10: end for

(a) coarse mesh TH and element K (b) coarse element Th(K)

FIGURE 2.2: Illustration of the coarse mesh TH and one coarse element Th(K)

2.5.1 Discretization of the domain

The first step of multiscale finite element methods is to discretize the global domain Ω into a
coarse mesh. As shown in Figure 2.2 (a), we split the domain Ω into a regular mesh TH with
finite elements (triangles or quadrilaterals if d = 2, tetrahedrons or hexagons if d = 3) of size at
most H . The size H is presumed to be much larger than the grid size necessary for a classical
finite element method to solve flow problems in the domain Ωε. We denote this partition as the
coarse mesh (or coarse grid) and finite elements of this partition as coarse elements. For each
coarse element K in TH , as shown in Figure 2.2 (b), we construct individually a finer mesh
Th(K) which consists of fine elements each with a width h and 0 < h� H .
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2.5.2 Computation of multiscale basis functions

As shown in Figure 2.2, let xi be the interior nodes of the mesh TH and φ0
i be the nodal basis

of the standard finite element space Vh = span
{
φ0
i

}
. On a triangular partition, Vh consists of

piecewise linear functions. Denoting the neighborhood of xi as ωi = supp
(
φ0
i

)
, we define the

multiscale basis function φi as solution of the following local problem:

∇ · a (x)∇φi = 0 in K, φi = φ0
i on ∂K, ∀K ∈ TH , K ⊂ ωi (2.20)

In this case, the multiscale basis functions coincide with standard finite element basis func-
tions on the boundary of coarse elements K. Since piecewise linear polynomials are imposed on
the boundary ∂K, the local problem (2.20) defined on element K ⊂ ωi is totally independent
from that defined on the adjacent elementK ′ ⊂ ωi. Thus local problems can be solved in parallel
on different coarse elements of TH . This parallelism allows to reduce significantly the computing
memory and the computing time. Moreover, the local problem (2.20) can be solved on the fine
grid Th (K) for K ∈ TH by a standard finite element method or finite volume method. Then we
denote by YH the finite-dimensional space spanned by φi

YH = span {φi}

2.5.3 The coarse-scale formulation

The approximation uH of the solution is:

pH(x) =
∑
i

piHφi(x) ∀x ∈ Ω (2.21)

with piH the solution value at the nodal point xi of the coarse mesh.
In the case of Galerkin finite element methods, when the basis functions are conforming

(YH ⊂ H1
0 (Ω)), the coarse-scale problem is: find pH ∈ YH such that∑

K∈TH

∫
K
a∇pH : ∇qH =

∫
Ω
fqH ∀qH ∈ YH (2.22)

where qH is the coarse-scale test functions.
Then we substitute pH(x) (2.21) into the above equation (2.22) and obtain a linear system of

equations involving nodal values piH . The system can be written in the matrix system:

AHPH = BH

where

(AH)ij =
∑
K∈TH

∫
K
a∇φi : ∇φj , (BH)i =

∫
Ω
fφi

with PH =
(
piH
)
.

As in standard finite element method, the stiffness matrix AH is a sparse matrix. Integrals
in (AH)ij and (BH)i are computed locally on fine meshes, by projecting basis functions φi
onto traditional finite element spaces. The basis functions and matrices are re-usable when the
boundary condition changes. When the source term changes, we can re-use the pre-computed
matrix AH but we need to recompute the matrix BH .
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2.5.4 Reconstruction of fine-scale solutions

After solving system (2.22), we obtain the coarse-scale solution. Then we reconstruct fine-scale
features of the solution

pH(x) =
∑
i

piHφi(x) ∀x ∈ Ω

The fine-scale solutions are reconstructed locally on the fine mesh of each coarse element.
Therefore one can choose to construct the fine-scale solution on the entire domain or only in
the regions of interest. Moreover, the reconstruction can be done in parallel on different coarse
elements, which allows to reduce computing time. In practice, this step is efficient due to the
parallelism and the simplicity of the multiplication operation.

Nevertheless, the practical implementation of this step needs special consideration and may
take important time. In fact, we reconstruct the fine-scale solutions by weighting the multiscale
basis function φi with the corresponding coarse solution uiH . Multiscale basis functions are
constructed on fine meshes whereas the coarse solution is obtained on the coarse mesh. For
the basis function φi associated to node xi, special attention needs to be paid to identify the
corresponding coarse solution uiH . It is this correspondence between fine meshes and the coarse
mesh which can take considerable time in practical implementation of this step.

2.6 The cost of multiscale finite element methods

If we discretize the domain Ω into M coarse elements and each coarse element into N sub-cell
elements, there is a total of MN sub-cell elements. We denote S (N) the flop counts (floating
point operations) for solving a linear system with N degrees of freedom. Typically, we have
S (N) = O(N q) with q > 1.

Step Cost
Discretization of the domain M ×O(N)
Solution of local problems M × S (N)
Computation of local matrices M ×O(N)
Solution of the coarse-scale problem S (M)
Re-construction of fine-scale solutions M ×O(N)

Total cost M ×O(N q) +O(M q)

TABLE 2.1: Estimation of computing memory

Solving the problem on a fine mesh with MN elements using a traditional finite element
method needs about S(MN) = O(M qN q) amount of computing memory. Table 2.1 shows that
multiscale finite element methods require only about M ×O(M q) +O(N q) amount of memory.
Moreover, the computing time can be evaluated similarly to the computing memory. In multiscale
finite element methods, the discretization of the domain, the solution of local problems, the
computation of local matrices and the reconstruction of fine-scale solutions can be carried out
on M coarse elements at the same time. Thus the total computing memory or computing time
is reduced to O (M q +N q). Taking for example M = N = 30 and q = 2, then the traditional
finite element requires 900 times more computing memory or time than multiscale finite element
methods.

In multiscale finite element methods, basis functions are computed only once and are re-
usable in multiple solutions for different external parameters, such as boundary conditions or
source terms. When using traditional finite element methods, however, each time an external
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parameter changes, we need to re-solve the problem on a very fine mesh which is very time-
consuming. In conclusion, when solving the problem multiple times with different external pa-
rameters in the same medium, multiscale finite element methods allow significant computational
savings compared to conventional numerical methods.
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Chapter 3

Crouzeix-Raviart multiscale finite
element methods

This chapter addresses several variants of Crouzeix-Raviart multiscale finite element methods
to solve flow problems. In the literature, [95, 118] were the first to propose a Crouzeix-Raviart
multiscale finite element method to solve Stokes problems and then [117] extended this method
to Oseen problems. In these studies, the same flow problems were solved at both fine and coarse
scales, i.e. multiscale basis functions are constructed as solutions of Stokes (or Oseen) equa-
tions on fine meshes and then used to solve Stokes (or Oseen) problems on the coarse mesh.
Therefore, one question that needs to be raised is can multiscale basis functions be constructed
as solutions of Stokes or Oseen problems at the fine scale and then used to solve Stokes, Oseen or
Navier-Stokes problems on the coarse mesh. This question will be answered in this thesis. More-
over, another focus of this thesis is to propose various new methods to improve the accuracy of
Crouzeix-Raviart multiscale finite element methods originally proposed in [95, 117, 118].

The chapter begins by reviewing the original Crouzeix-Raviart multiscale finite element
method proposed in [95, 118] to solve Stokes problems. For the sake of simplicity, we de-
note this original method as CR-MsFEM-Stokes. The multiscale basis functions are constructed
as solutions of Stokes equations at the fine scale. In this thesis, we propose to solve not only
Stokes problems, but also Oseen problems and Navier-Stokes problems on the coarse mesh us-
ing this multiscale method. The Streamline-Upwind/Petrov-Galerkin (SUPG) stabilization tech-
nique [33] is adapted to the multiscale context in order to eliminate oscillations in the solution of
coarse-scale problems.

In order to take inertial effects into account in multiscale basis functions, we present a
Crouzeix-Raviart multiscale finite element method where local problems are defined by Oseen
equations. This method was defined originally in [117] and will be denoted as CR-MsFEM-
Oseen. Unfortunately, one drawback of the definition in [117] is that oscillations appear in the
solution of local problems for large Oseen velocity. In order to solve this problem, we revise
the definition of local problems suggested in [117] and prove the well-posedness of new local
problems. We propose also to enrich this method by adding more weighting functions into the
velocity approximation space. On the coarse mesh, we propose to solve Oseen problems as well
as Navier-Stokes problems using this method. The SUPG stabilization technique is developed
for the solution of coarse-scale problems.

The remaining part of this chapter seeks primarily to improve the accuracy of CR-MsFEM-
Stokes and CR-MsFEM-Oseen. We propose several innovative methods to enrich the approxi-
mation spaces of velocity and pressure: (1) assembling velocity basis functions constructed in
CR-MsFEM-Stokes and CR-MsFEM-Oseen together to form an enriched velocity space. (2)
enriching the velocity space by adding bubble functions. The effects of bubble functions on the
accuracy of the method are analyzed. (3) enriching both the velocity and pressure spaces by
adding more weighting functions, leading to an innovative high-order Crouzeix-Raviart multi-
scale finite element method . The construction process of this method as well as the definition of
local problems are presented in detail.
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Outline Section 3.1 introduces the main idea of Crouzeix-Raviart multiscale finite element
methods as well as basic definitions and notations. Section 3.2 and section 3.3 present Crouzeix-
Raviart multiscale finite element methods where local problems are defined respectively by
Stokes equations and Oseen equations. Section 3.4 presents the enrichment of the velocity space
by multiscale basis functions previously defined in section 3.2 and section 3.3. Then section 3.5
discusses the enrichment of Crouzeix-Raviart multiscale finite element methods by bubble func-
tions. Section 3.6 and section 3.7 present high-order Crouzeix-Raviart multiscale finite element
methods where local problems are defined respectively by Stokes equations and Oseen equations.

3.1 Introduction

In this section, we introduce the main idea of Crouzeix-Raviart multiscale finite element meth-
ods and basic definitions and notations originally introduced in [95, 118]. The main steps of
Crouzeix-Raviart multiscale finite element methods follow Algorithm 2.1. We focus on hetero-
geneous media with solid obstacles instead of oscillating permeability tensors as in section 2.5.

3.1.1 Discretization of the heterogeneous domain

Let Ωε be a perforated domain as shown in Figure 3.1 (a). The first step is to discretize the
global domain Ω into a coarse mesh. We remind that Ω is an homogeneous domain which does
not contain obstacles Bε. We split the domain Ω into a regular mesh TH with finite elements
(triangles or quadrilaterals if d = 2, tetrahedrons or hexagons if d = 3) of size at most H . The
size H is presumed to be much larger than the grid size necessary for a classical finite element
method to solve flow problems in the domain Ωε. We note this partition as the coarse mesh and
note finite elements of this partition as coarse elements.

Shown in Figure 3.1 (b), the coarse mesh TH consists of NH coarse elements K and NE

edges (if d = 2) or faces (if d = 3). Let EH denote the set of edges or faces of TH , including
those on the domain boundary ∂Ω. For the sake of simplicity, all elements of EH are referred as
faces in both two (d = 2) and three (d = 3) dimensions. The coarse grid does not contain any
hanging nodes and each face is shared by two neighboring elements except those on ∂Ω which
belong to only one element.

For each coarse element K, we construct a finer mesh Th(K) (see Figure 3.1 (c)) consisting
of fine elements each with a width h. Th(K) is noted as the fine mesh in this thesis. Typically
0 < h � H and Th(K) is fine enough to fully resolve the boundary of obstacles Bε. If fine
meshes are matching along the interface between adjacent coarse elements, the union of fine
meshes on all coarse elements forms a conforming fine mesh Th(Ωε) (see Figure 3.1 (d)), which
overlaps with TH . We call Th(Ωε) the reference mesh in this thesis. We remind that Th(Ωε) is
not required by multiscale finite element methods in practical applications. It is needed only to
perform error analysis for the validation of multiscale methods.

Let ωE be the neighborhood of each face E ∈ EH and it is defined by

ωE =
⋃
j

{Kj ∈ TH | E ∈ ∂Kj} (3.1)

When E lies in the interior of the domain, ωE is the union of two neighboring coarse elements.

3.1.2 Multiscale functional spaces

Let s be a positive integer and let ωE,i: E → Rd be some vector-valued functions associated to
E ∈ EH for i = 1, · · · , s. In this thesis, we call these functions as weighting functions and they
verify the assumption below.
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(a) heterogeneous domain Ωε (b) coarse mesh TH and element K

(c) coarse element Th(K) (d) reference mesh Th(Ωε)

FIGURE 3.1: Illustration of the heterogeneous domain Ωε, the coarse mesh TH ,
one coarse element Th(K) and the reference mesh Th(Ωε)

Assumption 3.1.1. It is assumed that weighting functions satisfy

nE ∈ span {ωE,1, · · · ,ωE,s} for any E ∈ EH

where nE is the unit normal vector to E.

We recall important assumptions proposed in [95] which deal not only with the weights but
also with the manner in which the holes Bε intersect the mesh cells.

Assumption 3.1.2. For any element T ∈ TH and any real numbers cE1 , · · · , cEs on all edges E
composing ∂T . There exists v ∈

(
H1(T ∩ Ωε)

)d vanishing on ∂Bε ∩ T and such that∫
E∩Ωε

v · ωE,i = cEi

for all edges E and i = 1, · · · , s.

Assumption 3.1.3. For any T ∈ TH , let C1, · · · , Cn be the connected components of T ∩Ωε and

let any real numbers c1, · · · , cn with
n∑
i=1

ci = 0. There existsw ∈
(
H1 (T ∩ Ωε)

)d vanishing on

∂Bε ∩ T and such that
∫
∂Ci
w · n = ci, i = 1, · · · , n and

∫
F w · ωF,j = 0 for all the edges F

of T and j = 1, · · · , s.

[95] points out that Assumption 3.1.2 is usually valid provided that ωE,1, · · · ,ωE,s are lin-
early independent and the edgeE is not covered completely byBε, which is the case of weighting
functions in this thesis. In this thesis, we focus on the case where T ∩ Ωε is connected for any
T ∈ TH . Thus the assumption Assumption 3.1.3 is not considered in this work.

Definition 3.1.1. We introduce the extended velocity space V ext
H :

V ext
H =

{
u ∈

(
L2 (Ωε)

)d such that u |T∈
(
H1 (T ∩ Ωε)

)d for any T ∈ TH ,
u = 0 on ∂Bε,

∫
E∩Ωε [[u]] · ωE,j = 0 for all E ∈ EH , j = 1, · · · , s

}
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where [[u]] denotes the "jump" of u across an internal face and [[u]] = u on the boundary ∂Ω.

The space V ext
H enhances the natural velocity space

(
H1

0 (Ωε)
)d so that we have at our dis-

posal discontinuous vector fields across faces of the coarse mesh TH . The continuity of velocity
across faces between adjacent coarse elements is maintained only in a weak sense, i.e., only the
weighted average of u is continuous along the face between adjacent coarse elements. Therefore
V ext
H is not included in

(
H1

0 (Ωε)
)d and we construct a nonconforming multiscale finite element

method. Thus we define a broken integral on V ext
H in this thesis.

Definition 3.1.2. Throughout this thesis, we use the broken integral defined on V ext
H by:∫

Ωε

∇v =
∑
T∈TH

∫
T∩Ωε

∇v, ∀v ∈ V ext
H

We recall that the pressure space M is defined by:

M = L2
0 (Ωε) =

{
p ∈ L2 (Ωε) such that

∫
Ωε

p = 0

}
(3.2)

Then the extended velocity-pressure space Xext
H can be written as

Xext
H = V ext

H ×M

As we are going to present in section 3.2, we want to decompose Xext
H into a direct sum of

a finite dimensional subspace XH containing coarse scales and an infinite dimensional subspace
X0
H containing unsolved fine scales.

Xext
H = XH ⊕X0

H (3.3)

where X0
H = V 0

H ×M0
H and M0

H is an infinite-dimensional pressure space. The subspace XH

will be used for approximation in numerical simulations.
Inspired by [95, 118], we propose several new methods to construct and to enrich the approx-

imation space XH , leading to different Crouzeix-Raviart multiscale finite element methods.

3.2 The Crouzeix-Raviart multiscale finite element method defined
by Stokes equations

In this section, we first review the Crouzeix-Raviart multiscale finite element method originally
proposed in [95, 118], where local problems are defined by Stokes equations. Then for the
first time, we propose to solve not only Stokes problems (1.2), but also Oseen problems (1.3)
and Navier-Stokes problems (1.1) by this method on the coarse mesh. We adapt the SUPG
stabilization technique to the multiscale context in order to stabilize the solution. Moreover, the
practical implementation of this multiscale method is very different to the original work. This is
due to the fact that multiscale finite element methods are implemented in TrioCFD [139] which
imposes some constraints to our work.

3.2.1 The construction of the approximation space XSt
H

We define the space of unresolved fine-scale features X0
H originally introduced in [95, 118]:

X0
H = V 0

H ×M0
H (3.4)
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where

V 0
H =

{
u ∈ V ext

H such that
∫
E∩Ωε

u · ωE,j = 0 ∀E ∈ EH , ∀j = 1, · · · , s
}

(3.5)

M0
H =

{
p ∈M such that

∫
T∩Ωε

p = 0 ∀T ∈ TH
}

(3.6)

In two dimensions, [95, 118] propose weighting functions below: for any E ∈ EH ,

for d = 2,

{
s = 2 : ωE,1 = e1, ωE,2 = e2.

s = 3 : ωE,1 = e1, ωE,2 = e2, ωE,3 = nEψE .
(3.7)

where {e1, e2} is the canonical basis of R2 and nE is the unit vector normal to the face E.
Besides, ψE is a linear polynomial which satisfies

∫
E∩Ωε ψE = 0.

We propose in this thesis also the following weighting functions: for any E ∈ EH ,

for d = 2, s = 4 : ωE,1 = e1, ωE,2 = e2, ωE,3 = nEψE , ωE,4 = τEφE (3.8)

for d = 3,

{
s = 3, ωE,1 = e1, ωE,2 = e2, ωE,3 = e3

s = 4 : ωE,1 = e1, ωE,2 = e2, ωE,3 = e3, ωE,4 = nEψE
(3.9)

where nE and τE are respectively the unit vector normal and tangent to the face E. Besides, ψE
and φE are linear polynomials which satisfy

∫
E∩Ωε ψE = 0 and

∫
E∩Ωε φE = 0.

Since this Crouzeix-Raviart multiscale finite element method is defined by Stokes equations,
we denote the space XH by XSt

H throughout this section.

Definition 3.2.1. The space XSt
H is defined as the "orthogonal" complement of the space X0

H

with respect to the bilinear form cStH (., .):

(uH , pH) ∈ XSt
H ⇐⇒ cStH ((uH , pH) , (v, q)) = 0, ∀ (v, q) ∈ X0

H (3.10)

where cStH (., .) is defined by:

cStH ((uH , pH), (v, q)) =
∑
T∈TH

∫
T∩Ωε

(µ∇uH : ∇v − pH div v − q div uH)

The word "orthogonal" is put between quotes as the bilinear form cStH (., .) is not a scalar
product (not positive definite).

Definition 3.2.2. Let the functional spaces MH ⊂M and VH ⊂ V ext
H be defined by:

MH =
{
q ∈ L2

0 (Ω) such that q |T= const, ∀T ∈ TH
}

(3.11)

V St
H =


v ∈

(
L2 (Ωε)

)d
: ∀T ∈ TH , ∃ζT ∈ L2

0 (T ∩ Ωε) , ∃αT ∈ R such that
−µ∆v +∇ζT = 0 in T ∩ Ωε

div v = αT in T ∩ Ωε

v = 0 on ∂Bε ∩ T
µ∇vn− ζTn ∈ {ωE,1, · · · ,ωE,s} on E ∩ Ωε, ∀E ∈ E (T )

 (3.12)
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where E(T ) is the set of faces composing ∂T and we recall

L2
0 (Ωε) =

{
p ∈ L2 (Ωε) such that

∫
Ωε

p = 0

}
L2

0 (T ∩ Ωε) =

{
p ∈ L2 (T ∩ Ωε) such that

∫
T∩Ωε

p = 0

}
Definition 3.2.3. For any v ∈ V St

H , on any element T ∈ TH , definition (3.12) implies that there
exists a function ζT which is uniquely determined by v. We can thus define a linear operator
πH : V St

H →M0
H such that for any v ∈ V St

H , πH (v) = ζT on any element T ∈ TH .

Theorem 3.2.1. Using MH (3.11) and V St
H (3.12), we define X̃St

H by

X̃St
H = span

{
(uH , πH (uH) + p̄H) , uH ∈ V St

H , p̄H ∈MH

}
(3.13)

then the space XSt
H defined by (3.10) satisfies the following property

XSt
H = X̃St

H (3.14)

This theorem was first proposed and proved in [118]. Here we provide a more detailed proof
in order to help the reader to understand the construction process of this and other Crouzeix-
Raviart multiscale finite element methods presented later in this chapter.

Proof. We first prove that (uH , pH) ∈ XSt
H in the sense of definition (3.10) belongs to the space

defined by (3.13). Let (uH , pH) ∈ XSt
H in the sense of definition (3.10), i.e. ∀ (v, q) ∈ X0

H

cStH ((uH , pH), (v, q)) =
∑
T∈TH

∫
T∩Ωε

(µ∇uH : ∇v − pH div v − q div uH) = 0 (3.15)

In a first step, for any element T ∈ TH , denoting p̄H |T the average of pressure pH on this
element. We define p̄H a function whose restriction on T equals to p̄H |T on any element T ∈ TH .
It is easy to see that p̄H is well defined and p̄H ∈MH . Then p′H = (pH − p̄H) ∈M0

H defined in
(3.6). Consequently, we can decompose the pressure pH in a unique way as

pH = p̄H + p′H with p̄H ∈MH and p′H ∈M0
H

By virtue of this decomposition, the term concerning pH in (3.15) can be decomposed as∑
T∈TH

∫
T∩Ωε

pH div v =
∑
T∈TH

∫
T∩Ωε

p̄H div v +
∑
T∈TH

∫
T∩Ωε

p′H div v (3.16)

Now we compute the first term in the right hand side of (3.16). As p̄H is constant on each
T ∈ TH , we have ∑

T∈TH

∫
T∩Ωε

p̄H div v =
∑
T∈TH

p̄H |T
∫
T∩Ωε

div v, ∀v ∈ V 0
H

Besides, taking advantage of Assumption 3.1.1, for any v ∈ V 0
H , the divergence theorem and

the definition of V 0
H reveals that∫

T∩Ωε

div v =

∫
∂(T∩Ωε)

v · n = 0
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As a result, the first term in the right hand side of (3.16) vanishes∑
T∈TH

∫
T∩Ωε

p̄H div v = 0, ∀v ∈ V 0
H

and then (3.15) reduces to: ∀ (v, q) ∈ X0
H

cStH ((uH , pH) , (v, q)) =
∑
T∈TH

∫
T∩Ωε

(
µ∇uH : ∇v − p′H div v − q div uH

)
= 0 (3.17)

In a second step, choosing an element T ∈ TH and the test function v = 0, for any q ∈M0
H

with q vanishing outside T , (3.17) becomes∫
T∩Ωε

q div uH = 0

We deduce from this equation that there exists a constant αT in T ∩ Ωε such that

div uH = αT in T ∩ Ωε (3.18)

In a third step, we observe that for any face E ∈ E(T ), there exist some (non unique)
functions vE,i ∈

(
H1 (T ∩ Ωε)

)d
, i = 1, · · · , s such that{∫

F∩Ωε vE,i · ωF,j = δE,F δi,j , ∀F ∈ E(T ), ∀j = 1, · · · , s
vE,i = 0 on ∂Bε ∩ T

(3.19)

We denote by V (T ) the set of functions in
(
H1 (T ∩ Ωε)

)d that vanish on ∂Bε ∩ T :

V (T ) =
{
v ∈

(
H1(T ∩ Ωε)

)d such that v = 0 on ∂Bε ∩ T
}

It is easy to check that V (T ) can be decomposed as

V (T ) = V∫ 0(T )⊕ span {vE,i, ∀E ∈ E(T ), ∀i = 1, · · · , s}

where

V∫ 0(T ) =

{
v ∈

(
H1(T ∩ Ωε)

)d
:
∫
E∩Ωε v · ωE,i = 0, ∀E ∈ E(T ), ∀i = 1, · · · , s,

v = 0 on ∂Bε ∩ T

}

By virtue of this decomposition, for any v ∈ V (T ), there exist ṽ ∈ V∫ 0(T ) and βF,1, · · · , βF,s ∈
R such that

v = ṽ +
∑

F∈E(T )

s∑
j=1

βF,jvF,j (3.20)

Now let us compute the coefficient βE,i for E ∈ E(T ) and i = 1, · · · , s. Multiplying (3.20)
by ωE,i and integrating over E yields∫

E∩Ωε

v · ωE,i =

∫
E∩Ωε

ṽ · ωE,i +
∑

F∈E(T )

s∑
j=1

βF,j

∫
E∩Ωε

vF,j · ωE,i (3.21)
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As ṽ ∈ V 0
H , definition of V 0

H (3.5) implies that
∫
E∩Ωε ṽ · ωE,i = 0. Besides, it is easy to

deduce from (3.19) that

∑
F∈E(T )

s∑
j=1

βF,j

∫
E∩Ωε

vF,j · ωE,i = βE,i

Finally (3.21) reduces to ∫
E∩Ωε

v · ωE,i = βE,i (3.22)

Let ṽ be the function defined on Ωε and equal to ṽ on T ∩ Ωε and 0 elsewhere. Hence it is
obvious that ṽ ∈ V 0

H . Taking q = 0, (3.17) shows that∑
T∈TH

∫
T∩Ωε

(
µ∇uH : ∇ṽ − p′H div ṽ

)
=

∫
T∩Ωε

(
µ∇uH : ∇ṽ − p′H div ṽ

)
= 0

Substituting ṽ defined in (3.20) into this equation, it is trivial to verify that∫
T∩Ωε

(
µ∇uH : ∇v − p′H div v

)
=

∑
F∈E(T )

s∑
j=1

βF,j

∫
T∩Ωε

(
µ∇uH : ∇vF,j − p′H div vF,j

)
(3.23)

Denoting for any F ∈ E(T ) and j = 1, · · · , s

λF,j =

∫
T∩Ωε

(
µ∇uH : ∇vF,j − p′H div vF,j

)
and substituting βF,j (3.22) into (3.23), we obtain∫

T∩Ωε

(
µ∇uH : ∇v − p′H div v

)
=

∑
F∈E(T )

s∑
j=1

λF,j

∫
F∩Ωε

v · ωF,j , ∀v ∈ V (T ) (3.24)

In (3.24), taking v = 0 on E(T ) and integrating by parts the left hand side, we obtain

−µ∆uH +∇p′H = 0 in T ∩ Ωε (3.25)

Then by writing the variational formulation of (3.25) for v ∈ V (T ) and comparing with
(3.24), we deduce that

µ∇uHn− p′Hn ∈ span {ωE,1, · · · ,ωE,s} on E ∩ Ωε, ∀E ∈ E(T ) (3.26)

Finally, combining equations (3.18), (3.25) and (3.26), we obtain the following system

−µ∆uH +∇p′H = 0 in T ∩ Ωε

div uH = αT in T ∩ Ωε

uH = 0 on ∂Bε ∩ T
µ∇uHn− p′Hn ∈ span {ωE,1, · · · ,ωE,s} on E ∩ Ωε, ∀E ∈ E(T )

On any element T ∈ TH , for any uH ∈ V St
H fixed in the formula above, it is easy to see that

the gradient ∇p′H is uniquely determined by the first equation. Besides, the fact that the average
of p′H is 0 over any element implies that p′H is uniquely determined by uH . Thus we conclude
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that there exists a linear operator πH such that p′H = πH (uH) with uH ∈ V St
H . We recall that the

pressure pH is decomposed as pH = p̄H + p′H . Thus we have proved that the solution (uH , pH)
defined by (3.10) belongs to the space defined by (3.13).

Reciprocally, we now prove that any (uH , pH) ∈ X̃St
H defined by (3.13) satisfies also the

relation (3.10). Let (uH , pH) ∈ X̃St
H defined by (3.13). For any uH ∈ V St

H , on any T ∈ TH ,
definition of V St

H (3.12) reveals that there exist a unique ζT = πH (uH) ∈ L2
0 (T ∩ Ωε) and a

unique constant αT ∈ R such that

−µ∆uH +∇ζT = 0 in T ∩ Ωε (3.27)

div uH = αT in T ∩ Ωε (3.28)

uH = 0 on ∂Bε ∩ T
µ∇uHn− ζTn ∈ span {ωE,1, · · · ,ωE,s} on E ∩ Ωε, ∀E ∈ E(T ) (3.29)

For any v ∈ V 0
H , integrating by parts (3.27) yields:∫

T∩Ωε

µ∇uH : ∇v −
∫
T∩Ωε

ζT div v =

∫
∂(T∩Ωε)

(
µ∇uHn− ζTn

)
· v (3.30)

Equation (3.29) shows that for any E ∈ E(T ), there exist λE,1, · · · , λE,s ∈ R such that

µ∇uHn− ζTn =

s∑
i=1

λE,iωE,i on E ∩ Ωε

Substituting this expression into (3.30), we obtain∫
T∩Ωε

µ∇uH : ∇v −
∫
T∩Ωε

ζT div v =
∑

E∈E(T )

s∑
i=1

λE,i

∫
E∩Ωε

ωE,i · v (3.31)

Moreover, for any v ∈ V 0
H , definition of V 0

H (3.5) implies that

∑
E∈E(T )

s∑
i=1

λE,i

∫
E∩Ωε

ωE,i · v = 0

Consequently, (3.31) reduces to∫
T∩Ωε

µ∇uH : ∇v −
∫
T∩Ωε

ζT div v = 0 (3.32)

Besides, taking advantage of Assumption 3.1.1, for any v ∈ V 0
H , the divergence theorem and

definition of V 0
H (3.5) imply that∫
T∩Ωε

p̄H div v = p̄H |T
∫
T∩Ωε

div v = p̄H |T
∫
∂(T∩Ωε)

v · n = 0 (3.33)

Meanwhile, for any q ∈M0
H , (3.28) shows that∫

T∩Ωε

q div uH = 0 (3.34)
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As a result, summing (3.32), (3.33) and (3.34), we obtain: ∀ (v, q) ∈ V 0
H ×M0

H∫
T∩Ωε

µ∇uH : ∇v −
∫
T∩Ωε

(
ζT + p̄H |T

)
div v −

∫
T∩Ωε

q div uH = 0

Denoting pH |T = ζT + p̄H |T on each element T ∈ TH , let pH be a function which equals to
pH |T on each T ∈ TH , then (uH , pH) ∈ XSt

H . Summing this equation over all elements T ∈ TH ,
we obtain that ∀ (v, q) ∈ X0

H∑
T∈TH

∫
T∩Ωε

µ∇uH : ∇v −
∑
T∈TH

∫
T∩Ωε

pH div v −
∑
T∈TH

∫
T∩Ωε

q div uH = 0

which is exactly definition (3.10).
Finally, we have proved the identity between (3.13) and (3.10), i.e. property (3.14).

Theorem 3.2.2. The space Xext
H can be decomposed using X0

H (3.4) and XSt
H (3.10) as:

Xext
H = XSt

H ⊕X0
H

Proof. This theorem can be proved in two steps:

(i) Xext
H = XSt

H +X0
H , (ii) XSt

H ∩X0
H = {0}

Now we start by proving the step (i), i.e. for any (u, p) ∈ Xext
H , there exist uH ∈ V St

H ,
p̄H ∈MH , u0 ∈ V 0

H and p0 ∈M0
H such that

u = uH + u0, p = πH (uH) + p̄H + p0 (3.35)

To prove the step (i), we first prove that for any (u, p) ∈ Xext
H , there exist u0 ∈ V 0

H and
p0 ∈M0

H such that

cStH
((
u0, p0

)
, (v, q)

)
= cStH ((u, p) , (v, q)) , ∀ (v, q) ∈ V 0

H ×M0
H

In order to prove the existence of such
(
u0, p0

)
∈ V 0

H×M0
H , we pick up any triangle T ∈ TH

and notice that the restriction of
(
u0, p0

)
to the triangle T belongs to V∫ 0(T ) × L2

0 (T ∩ Ωε).
By restricting test functions v to V∫ 0(T ) and q to L2

0 (T ∩ Ωε), it is easy to check that
(
u0, p0

)
should satisfy∫

T∩Ωε

(
µ∇u0 : ∇v − p0 div v

)
=

∫
T∩Ωε

(µ∇u : ∇v − p div v) , ∀v ∈ V∫ 0(T ) (3.36)∫
T∩Ωε

q div u0 =

∫
T∩Ωε

q div u, ∀q ∈ L2
0 (T ∩ Ωε) (3.37)

This is a standard saddle point problem and the existence of its solution
(
u0, p0

)
∈ V∫ 0(T )×

L2
0 (T ∩ Ωε) is guaranteed by the inf-sup property proved in [118]:

inf
q∈L2

0(T∩Ωε)
sup

v∈V∫ 0(T )

∫
T∩Ωε q div v

‖q‖L2(T∩Ωε) ‖v‖H1(T )

> 0

Therefore we have proved the existence of
(
u0, p0

)
∈ V∫ 0(T ) × L2

0 (T ∩ Ωε). By gluing
together

(
u0, p0

)
on each element T ∈ TH , we obtain that

(
u0, p0

)
∈ V 0

H ×M0
H . Consequently,

we have proved that for any (u, p) ∈ Xext
H , there exist

(
u0, p0

)
∈ X0

H .
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Then we define uH and pH by

uH = u− u0, pH = p− p0

It is trivial to check that (uH , pH) satisfies

cStH ((uH , pH) , (v, q)) = 0, ∀ (v, q) ∈ V 0
H ×M0

H

Making use of Theorem 3.2.1, we deduce that (uH , pH) ∈ V St
H ×MH . Finally, we conclude

that Xext
H = XSt

H +X0
H .

Now it remains to prove that XSt
H ∩X0

H = {0}. Let (u, p) ∈ Xext
H and (u, p) ∈ XSt

H ∩X0
H ,

then Theorem 3.2.1 implies that

cStH ((u, p) , (v, q)) = 0 (3.38)

for (v, q) ∈ XSt
H as well as for (v, q) ∈ X0

H . Meanwhile, the fact thatXext
H = XSt

H +X0
H implies

that (3.38) holds true for any (v, q) ∈ Xext
H . Consequently, we can deduce that (u, p) = 0 using

the inf-sup property of Theorem 2.1.2.
Therefore, combining the results above, we conclude that Xext

H = XH ⊕X0
H .

3.2.2 The local problem defined by Stokes equations

We now present local problems defined by Stokes equations which were originally proposed in
[95, 118].

The strong form For any face E ∈ EH , i = 1, · · · , s, we construct ΦE,i : Ωε → Rd and the
accompanying pressure πE,i : Ωε → R such that ΦE,i and πE,i vanish outside the two coarse
elements Tk ⊂ ωE , k = {1, 2} (only one coarse element if E ∈ ∂Ω) and solve on Tk:

−µ∆ΦE,i +∇πE,i = 0 in Tk ∩ Ωε,

div ΦE,i = αE,i in Tk ∩ Ωε,

µ∇ΦE,in− πE,in ∈ span {ωF,1, · · · ,ωF,s} on F ∩ Ωε, ∀F ∈ E(Tk),

ΦE,i = 0 on ∂Bε ∩ Tk,∫
F∩Ωε ΦE,i · ωF,j =

{
δij , F = E

0, F 6= E
∀F ∈ E (Tk) , j = 1, · · · , s.∫

Tk∩Ωε πE,i = 0.

(3.39)

where E(Tk) is the set of faces of Tk. The constant αE,i depends on Tk and satisfies the compat-
ibility relation

∫
Tk∩Ωε αE,i =

∫
∂(Tk∩Ωε) ΦE,i · n.

To be more explicit, we illustrate the local problem (3.39) in Figure 3.2. We can see that
for an internal face E ∈ EH , its support is ωE = {T1, T2}. In both T1 and T2, we solve Stokes
equations with integral type boundary conditions. We notice that the divergence of velocity is
different in T1 and T2.

The weak form The weak form of system (3.39) reads: for any face E ∈ EH , i = 1, · · · , s,
on the coarse element Tk ⊂ ωE for k = {1, 2} (only one coarse element if E ∈ ∂Ω), find
ΦE,i ∈

(
H1 (Tk ∩ Ωε)

)d such that ΦE,i = 0 on ∂Bε ∩ Tk, πE,i ∈ L2
0 (Tk ∩ Ωε) and Lagrange
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T1 T2

−µ∆ΦE,i +∇πE,i = 0

div ΦE,i = α1

−µ∆ΦE,i +∇πE,i = 0

div ΦE,i = α2

∫
F1

ΦE,i · ωF1,j = 0
∫
F2

ΦE,i · ωF2,j = 0

∫
G1

ΦE,i · ωG1,j = 0
∫
G2

ΦE,i · ωG2,j = 0
E

∫
E ΦE,i · ωE,j = δij

FIGURE 3.2: Schematic illustration of basis functions associated to a face E
between T1 and T2

multipliers λF,1, · · · , λF,s ∈ R for F ∈ E(Tk) such that∫
Tk∩Ωε

µ∇ΦE,i : ∇v −
∫
Tk∩Ωε

πE,i div v +
∑

F∈E(Tk)

s∑
j=1

λF,j

∫
F∩Ωε

v · ωF,j = 0,

∫
Tk∩Ωε

q div ΦE,i = 0,

∑
F∈E(Tk)

s∑
j=1

µF,j

∫
F∩Ωε

ΦE,i · ωF,j = µE,i

for all v ∈
(
H1 (Tk ∩ Ωε)

)d such that v = 0 on ∂Bε ∩ Tk, q ∈ L2
0 (Tk ∩ Ωε), µF,j ∈ R for all

F ∈ E (Tk) and j = 1, · · · , s.

Remark. When weighting functions are chosen as the case s = d defined in (3.7) and (3.9), the
space V St

H is reduced to the standard Crouzeix-Raviart finite element space (see subsection 2.4.1)
if there are no obstacles in the domain, i.e. Bε = ∅. In this situation, it is obvious that functions
constructed in (3.39) can be written as ΦE,i = ΦEei for E ∈ EH and i = 1, · · · , d where ΦE

is linear on any element T ∈ TH , discontinuous across the face E and satisfies that
∫
E ΦE = 1

and
∫
F ΦE = 0 for all F ∈ EH , F 6= E. Besides, the pressure πE,i = 0 for i = 1, · · · , d.

3.2.3 The basis function of the space V St
H

Theorem 3.2.3. The functions ΦE,i for E ∈ EH and i = 1, · · · , s constructed in (3.39) form a
basis of V St

H defined by (3.12). In other words,

V St
H = span{ΦE,i, E ∈ EH , i = 1, · · · , s}. (3.40)

This theorem was first proposed in [118] but no detailed proof was provided. Now we provide
a proof of this theorem in what follows.

Proof. Firstly, it is easy to check that span{ΦE,i, E ∈ EH , i = 1, · · · , s} ⊂ V St
H . It remains

to prove that V St
H ⊂ span{ΦE,i, E ∈ EH , i = 1, · · · , s}. Let u ∈ V St

H , then definition of
V St
H (3.12) implies that: for any T ∈ TH , there exist a unique ζT ∈ L2

0 (T ∩ Ωε) and a unique
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αT ∈ R such that

−µ∆u+∇ζT = 0 in T ∩ Ωε

div u = αT in T ∩ Ωε

u = 0 on ∂Bε ∩ T
µ∇un− ζTn ∈ span {ωE,1, · · · ,ωE,s} on E ∩ Ωε, ∀E ∈ E(T )

For any T ∈ TH , we introduce v and σ defined by

v = u−
∑

E∈E(T )

s∑
i=1

(∫
E∩Ωε

u · ωE,i
)

ΦE,i

σ = ζT −
∑

E∈E(T )

s∑
i=1

(∫
E∩Ωε

u · ωE,i
)
πE,i

It is easy to check that there exists a constant βT ∈ R such that v and σ satisfy

−µ∆v +∇σ = 0 on T ∩ Ωε (3.41)

div v = βT on T ∩ Ωε (3.42)

v = 0 on ∂Bε ∩ T
µ∇vn− σn ∈ span {ωE,1, · · · ,ωE,s} on E ∩ Ωε, ∀E ∈ E(T ) (3.43)∫
E∩Ωε

v · ωE,i = 0 ∀E ∈ E(T ), ∀i = 1, · · · , s (3.44)∫
T∩Ωε

σ = 0 (3.45)

where the constant βT satisfies
∫
T∩Ωε β

T =
∫
∂(T∩Ωε) v · n.

Taking v as the test function, the variational formulation of (3.41) is∫
T∩Ωε

µ|∇v|2 −
∫
T∩Ωε

σ div v =

∫
∂(T∩Ωε)

(µ∇vn− σn) · v (3.46)

Then (3.42) and (3.45) imply that ∫
T∩Ωε

σ div v = 0

Besides, (3.43)–(3.44) show that∫
∂(T∩Ωε)

(µ∇vn− σn) · v = 0

Finally (3.46) reduces to ∫
T∩Ωε

µ|∇v|2 = 0

which reveals that v is constant on T ∩Ωε. On combining (3.44), we deduce that v = 0 and then
σ = 0.
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The fact that v = 0 and σ = 0 imply that for any element T ∈ TH , u and ζT can be
represented as

u =
∑

E∈E(T )

s∑
i=1

(∫
E∩Ωε

u · ωE,i
)

ΦE,i

ζT =
∑

E∈E(T )

s∑
i=1

(∫
E∩Ωε

u · ωE,i
)
πE,i

which implies that V St
H ⊂ span{ΦE,i, E ∈ EH , i = 1, · · · , s}. Combining the results above,

we conclude that V St
H = span{ΦE,i, E ∈ EH , i = 1, · · · , s}.

Consequently, any function of V St
H can be written with multiscale basis functions as

∀uH ∈ V St
H , uH =

∑
E∈EH

s∑
i=1

uE,iΦE,i

We obtain also an explicit formulation of the linear operator πH (see Definition 3.2.3):

∀uH ∈ V St
H , πH (uH) =

∑
E∈EH

s∑
i=1

uE,iπE,i (3.47)

3.2.4 The coarse-scale problems and stabilized formulations

In [95, 118], only Stokes problems were solved on the coarse mesh using the approximation space
XSt
H . In this thesis, we propose to solve not only Stokes problems, but also Oseen problems and

Navier-Stokes problems on the coarse mesh using XSt
H .

3.2.4.1 The discrete variational formulation of the Stokes problem

The discrete variational formulation of Stokes problem (1.2) is: find (uH , pH) ∈ XSt
H such that

cStH ((uH , pH) , (v, q)) = (f ,v) , ∀ (v, q) ∈ XSt
H (3.48)

Theorem 3.2.1 reveals that pH can be decomposed as pH = πH (uH) + p̄H with p̄H ∈MH .
Besides, it is trivial to verify that (πH (uH) , div v) = 0 for all uH ,v ∈ V St

H . Using this
property, (3.48) can be reformulated as: find uH ∈ V St

H and p̄H ∈MH such that

aStH (uH ,v) + bH (v, p̄H) = FH (v) , ∀v ∈ V St
H (3.49)

bH (uH , q) = 0, ∀q ∈MH (3.50)

where

aStH (uH ,v) =
∑
T∈TH

∫
T∩Ωε

µ∇uH : ∇v (3.51)

bH (v, p̄H) = −
∑
T∈TH

∫
T∩Ωε

p̄H div v (3.52)

FH (v) =
∑
T∈TH

∫
T∩Ωε

f · v (3.53)
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We now discuss the well-posedness of discrete variational problem (3.49)–(3.50). We first
propose the following theorem.

Theorem 3.2.4. The space V St
H and MH have the following relation:

div
(
V St
H

)
= MH

Proof. We first prove that div
(
V St
H

)
⊂ MH . For any vH ∈ V St

H , div (vH) is a piecewise
constant on TH and it is easy to verify that∫

Ωε

div vH =
∑
T∈TH

∫
T∩Ωε

div vH =
∑
E∈EH

∫
E∩Ωε

[[vH · nE ]] = 0

Therefore we have proved that div
(
V St
H

)
⊂MH .

Reciprocally, for any qH ∈ MH , [134] implies that there exists v ∈
(
H1

0 (Ωε)
)d such that

div v = q. We observe that v can be decomposed as

v = vH + v0
H with vH ∈ V St

H and v0
H ∈ V 0

H

Multiplying this equation by nE and integrating on a face E ∈ EH , we obtain∫
E∩Ωε

v · nE =

∫
E∩Ωε

vH · nE +

∫
E∩Ωε

v0
H · nE (3.54)

Making use of Assumption 3.1.1, the definition of V 0
H implies that

∫
E∩Ωε v

0
H · nE = 0.

Hence (3.54) reduces to ∫
E∩Ωε

v · nE =

∫
E∩Ωε

vH · nE , ∀E ∈ EH

Using this relation, we deduce that: for any T ∈ TH ,∫
T∩Ωε

div vH =

∫
∂(T∩Ωε)

vH · n =

∫
∂(T∩Ωε)

v · n =

∫
T∩Ωε

div v =

∫
T∩Ωε

q

Since both div vH and q are piecewise constant on TH , we conclude that div vH = q and
thus MH ⊂ div

(
V St
H

)
.

In conclusion, combining the results above, we have proved that div
(
V St
H

)
= MH .

Taking advantage of Theorem 3.2.4, it is straightforward to deduce from (3.50) that div uH =
0 in T ∩Ωε for T ∈ TH . We can eliminate pressure from (3.49)–(3.50) by introducing a subspace
of V St

H :

ZStH =
{
v ∈ V St

H such that div v = 0, ∀T ∈ TH
}

As a result, (3.49)–(3.50) is equivalent to∑
T∈TH

∫
T∩Ωε

µ∇uH : ∇v =
∑
T∈TH

∫
T∩Ωε

f · v, ∀v ∈ ZStH (3.55)

The existence and uniqueness of a solution uH to this equation is guaranteed by Theo-
rem 2.1.2. Then Theorem 3.2.4 implies that there exists one and only one pressure p̄H ∈ MH .
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Therefore we have proved the existence and uniqueness of a solution (uH , p̄H) to the problem
(3.49)–(3.50).

3.2.4.2 The discrete variational formulation of the Navier-Stokes problem

Similarly, the discrete variational formulation of Navier-Stokes problem (1.1) is: find the (uH , pH) ∈
XSt
H such that

cNSH ((uH , pH) , (v, q)) = (f ,v) , ∀ (v, q) ∈ XSt
H (3.56)

where

cNSH ((uH , pH), (v, q)) =
∑
T∈TH

∫
T∩Ωε

(µ∇uH : ∇v + ρ (uH · ∇)uH · v)

+
∑
T∈TH

∫
T∩Ωε

(−pH div v − q div uH)

Using the same arguments as for Stokes problems, the discrete variational formulation (3.56)
is equivalent to: find uH ∈ V St

H and p̄H ∈MH such that

aNSH (uH ,v) + bH (v, p̄H) = FH (v) , ∀v ∈ V St
H (3.57)

bH (uH , q) = 0, ∀q ∈MH (3.58)

where

aNSH (uH ,v) =
∑
T∈TH

∫
T∩Ωε

(µ∇uH : ∇v + ρ (uH · ∇)uH · v)

and the forms bH(., .) and FH(., .) are the same as (3.52)–(3.53).
The formulation (3.57)–(3.58) is the Galerkin formulation of the Navier-Stokes problem (1.1)

on the space V St
H . It is known that this formulation is unstable in the convection-dominated

regime and oscillations appear due to the central-difference type approximation of the convection
term. One can severely refine the mesh to eliminate the oscillations, so that the convection no
longer dominates on an element level. However, multiscale finite element methods are developed
to capture macroscopic features of the problem on a rather coarse mesh. It is thus contradictory to
refine severely the coarse-scale mesh only to prevent oscillations. We propose thus an alternative
to the Galerkin formulation to preclude oscillations without refining the mesh.

In the FE framework, [33] has proposed a Streamline Upwind/Petrov-Galerkin (SUPG) for-
mulation for convection dominated problems. Extended to a Petrov-Galerkin formulation, the
standard Galerkin weighting functions are modified by adding a streamline upwind perturbation,
which acts only in the flow direction, a priori eliminating the possibility of any crosswind diffu-
sion. The modified weighting function can be applied to all terms in the equation, resulting in a
strongly consistent weighted residual formulation.

Therefore, we are motivated to develop a stabilized version of (3.57)–(3.58) by adapting
the original SUPG method to the multiscale context. However, we point out that the direct
application of SUPG stabilization on multiscale finite element methods leads to an approach that
is not strongly consistent, because the basis functions are not known analytically but only up
to the numerical error present in the offline computation. However, the lack of consistency is
minimal and the method we develop still works well in numerical experiments.

In the SUPG formulation, the test function ṽ is defined by:

ṽ = v + τuH · ∇v
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where v is the Galerkin-type test function, uH is the convective velocity field and τ is the stabi-
lization coefficient. τ has the dimension of time and it is a function of element parameters such
as element dimension and element Peclet number. In this work, we choose a τT which converges
to 0 in the limit of H → 0.

Applying the SUPG stabilization method to the whole Navier-Stokes equations yields: find
(uH , pH) ∈ XSt

H such that∑
T∈TH

∫
T∩Ωε

(−µ∆uH + ρ (uH · ∇)uH +∇pH) · (v + τTuH · ∇v) =

∑
T∈TH

∫
T∩Ωε

f · (v + τTuH · ∇v) (3.59)

where τT is the stabilization coefficient defined on T .
Comparing (3.59) and (3.57), the additional terms are the stabilization terms. In the left hand

side of (3.59), the stabilization term is noted as aNSH,stab:

aNSH,stab (uH ,v) =
∑
T∈TH

∫
T∩Ωε

(−µ∆uH + ρ (uH · ∇)uH +∇pH) · (τTuH · ∇v)

Substituting pH = p̄H + πH (uH) into this equation, we obtain

aNSH,stab (uH ,v) =∑
T∈TH

∫
T∩Ωε

(−µ∆uH + ρ (uH · ∇)uH +∇πH (uH) +∇p̄H) · (τTuH · ∇v)

Besides, definition of V St
H (3.12) implies that∫

T∩Ωε

(−µ∆uH +∇πH (uH)) · (τTuH · ∇v) = 0, ∀T ∈ TH

Finally the stabilization term aNSH,stab is reduced to

aNSH,stab (uH ,v) =
∑
T∈TH

∫
T∩Ωε

(ρ (uH · ∇)uH +∇p̄H) · (τTuH · ∇v)

We choose to neglect the stabilization over the gradient term. Hence the stabilized version of
the Navier-Stokes problem (3.59) can be written as: find uH ∈ V St

H , p̄H ∈MH such that

aNSH (uH ,v) + aNSH,stab (uH ,v) + bH (v, p̄H) = FH (v) + FH,stab (v) , ∀v ∈ V St
H (3.60)

bH (uH , q) = 0, ∀q ∈MH (3.61)

with stabilization terms

aNSH,stab (uH ,v) =
∑
T∈TH

∫
T∩Ωε

ρ ((uH · ∇)uH) · (τTuH · ∇v) (3.62)

FH,stab (v) =
∑
T∈TH

∫
T∩Ωε

f · (τTuH · ∇v) (3.63)
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where

τT (x) =
H

2|uH (x) |

[
coth

(
|uH (x) |H

2ν

)
− 2ν

|uH (x) |H

]
(3.64)

where ν =
ρ

µ
and H is the element size of the coarse-scale mesh.

Since we choose a τT which converges to 0 in the limit of H → 0, system (3.60) is strongly
consistent.

Remark. The choice of an optimal stabilization parameter is a little vague but important, since
it can affect the accuracy of the numerical approximation. In practice, when computing τT on
each coarse element, we use an average of uH over T instead of using the varying uH (x) for
x ∈ T . Consequently, the stabilization coefficient is element-wise constant on the coarse mesh
TH .

3.2.4.3 The discrete variational formulation of the Oseen problem

The discrete variational formulation of Oseen problem (1.3) is: find (uH , pH) ∈ XSt
H such that

cOsH ((uH , pH) , (v, q)) = (f ,v) , ∀ (v, q) ∈ XSt
H

where

cOsH ((uH , pH), (v, q)) =
∑
T∈TH

∫
T∩Ωε

(µ∇uH : ∇v + ρ (Uo · ∇)uH · v)

+
∑
T∈TH

∫
T∩Ωε

(−pH div v − q div uH)

Similar to stabilized formulations of Navier-Stokes problem (3.60)–(3.61), the stabilized for-
mulation of the Oseen problem is: find uH ∈ V St

H , p̄H ∈MH such that

aOsH (uH ,v) + aOsH,stab (uH ,v) + bH (v, p̄H) = FH (v) + FH,stab (v) , ∀v ∈ V St
H (3.65)

bH (uH , q) = 0, ∀q ∈MH (3.66)

where

aOsH (uH ,v) =
∑
T∈TH

∫
T∩Ωε

(µ∇uH : ∇v + ρ (Uo · ∇)uH · v) (3.67)

aOsH,stab (uH ,v) =
∑
T∈TH

∫
T∩Ωε

ρ ((Uo · ∇)uH) · (τTUo · ∇v) (3.68)

FH,stab (v) =
∑
T∈TH

∫
T∩Ωε

f · (τTUo · ∇v) (3.69)

and the forms bH(., .) and FH(., .) are the same as (3.52)–(3.53). The stabilization coefficient is
defined by

τT (x) =
H

2|Uo (x) |

[
coth

(
|Uo (x) |H

2ν

)
− 2ν

|Uo (x) |H

]
(3.70)

where ν =
ρ

µ
and H is the element size of the coarse-scale mesh.
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In practice, when computing τT on each coarse element, we use an average of Uo over T
instead of using the varying Uo (x) for x ∈ T . Consequently, the stabilization coefficient is
element-wise constant on the coarse mesh TH .

3.2.5 The reconstruction of fine-scale features

After solving the coarse-scale problem, we obtain the coarse-scale solutions uH and p̄H . Then
we reconstruct the fine-scale features of the solution for visualization. On each coarse element
T ∈ TH , making use of the expression of V St

H defined by (3.40) and the formula of πH defined
by (3.47), the fine-scale velocity and pressure are approximated by

uH |T =
∑

E∈E(T )

s∑
i=1

uE,iΦE,i, pH |T =
∑

E∈E(T )

s∑
i=1

uE,iπE,i + p̄H |T

The mathematical formulation of fine-scale solutions is very simple. However, in practice, it
is much more complicate to implement this step in the software. The implementation of this part
will be presented in Chapter 5.

3.3 The Crouzeix-Raviart multiscale finite element method defined
by Oseen equations

In this section, we present a Crouzeix-Raviart multiscale finite element method where local prob-
lems are defined by Oseen equations. This method was at first proposed in [117] where some nu-
merical experiments with small Oseen velocities Uo were presented. However, a serious flaw of
this method is that whenUo becomes important, oscillations appear in the solution of local prob-
lems even when applying the Upwind scheme on the Oseen term. Besides, the well-posedness
of local problems was not proved. In order to solve this problem, we propose a new definition
of local problems and prove their well-posedness. This improvement precludes oscillations in
the solution of local problems for whatever values of Uo. Besides, we propose to solve Oseen
problems (1.3) as well as Navier-Stokes problems (1.1) on the coarse mesh using this multiscale
method. The SUPG stabilization technique is developed to stabilize the solution of Navier-Stokes
problems.

3.3.1 The construction of the approximation space XOs
H

The Oseen problem is more or less similar to the Stokes problem except the linear Oseen term.
We first introduce the space of unresolved fine-scale features X0

H as X0
H = V 0

H ×M0
H . We recall

the definition of V 0
H and M0

H :

V 0
H =

{
u ∈ V ext

H such that
∫
E∩Ωε

u · ωE,j = 0 ∀E ∈ EH , ∀j = 1, · · · , s
}

(3.71)

M0
H =

{
p ∈M such that

∫
T∩Ωε

p = 0 ∀T ∈ TH
}

(3.72)

where weighting functions ωE,j for E ∈ EH and j = 1, · · · , s are practically the same as what
were defined in (3.7)–(3.9).

Since this Crouzeix-Raviart multiscale finite element method is defined by Oseen equations,
we denote the approximation space XH by XOs

H in order to distinguish from XSt
H . The construc-

tion of XOs
H is more or less similar to that of XSt

H presented in subsection 3.2.1.
In section 2.3, we introduced two bilinear forms aOs(., .) and âOs(., .) in the variational

formulation of Oseen problem. These two forms are completely equivalent when the velocity
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space is included in
(
H1

0 (Ωε)
)d. Similarly, in the discrete form, we introduce two bilinear forms

aOsH (., .) and âOsH (., .):

aOsH (uH ,v) =
∑
T∈TH

∫
T∩Ωε

(µ∇uH : ∇v + ρ (Uo · ∇)uH · v)

âOsH (uH ,v) =
∑
T∈TH

∫
T∩Ωε

(
µ∇uH : ∇v +

1

2
ρ (Uo · ∇)uH · v −

1

2
ρ (Uo · ∇)v · uH

)
+
∑
T∈TH

∫
T∩Ωε

(
−1

2
ρuHv div Uo

)
which all involve broken integral since the approximation space of velocity is not included in(
H1

0 (Ωε)
)d.

On the broken space{
v ∈

(
L2 (Ωε)

)d
, v ∈

(
H1 (T ∩ Ωε)

)d for any T ∈ TH , v = 0 on ∂Ωε
}

and under the classical assumption that div Uo ≤ 0, it is easy to see that

âOsH (v,v) =
∑
T∈TH

∫
T∩Ωε

(
µ∇v : ∇v − 1

2
ρvv div Uo

)
≥
∑
T∈TH

µ ‖∇v‖2L2(T∩Ωε)

under some small additional constraints on the broken space (such as weak continuity of func-
tions across element edges), we prove that âOsH (., .) is coercive. However, it is more difficult to
prove that aOsH (., .) is coercive. Thus we prefer to use âOsH (., .) than aOsH (., .) in this work (except
in subsection 3.3.5).

We introduce also bilinear forms cOs (., .) and ĉOsH (., .):

ĉOsH ((uH , pH), (v, q)) =
∑
T∈TH

∫
T∩Ωε

(µ∇uH : ∇v + ρ (Uo · ∇uH)v)

+
∑
T∈TH

∫
T∩Ωε

(−pH div v − q div uH) (3.73)

ĉOsH ((uH , pH), (v, q)) =
∑
T∈TH

∫
T∩Ωε

(
µ∇uH : ∇v +

1

2
ρ (Uo · ∇uH)v − 1

2
ρ (Uo · ∇v)uH

)
+
∑
T∈TH

∫
T∩Ωε

(
−1

2
ρuv div Uo

)
+
∑
T∈TH

∫
T∩Ωε

(−pH div v − q div uH)

(3.74)

which all involve broken integral. Similarly, cOs (., .) and ĉOsH (., .) are completely equivalent if
the approximation space of velocity is included in

(
H1

0 (Ωε)
)d. Since this is not the case here,

we prefer to use ĉOsH (., .) instead of cOs (., .) (except in subsection 3.3.5).

Assumption 3.3.1. We assume that the Oseen velocity Uo verifies that

div Uo = 0 in T ∩ Ωε, ∀T ∈ TH



3.3. The Crouzeix-Raviart multiscale finite element method defined by Oseen equations 53

Definition 3.3.1. The space XOs
H is defined as the "orthogonal" complement of X0

H with respect
to the bilinear form ĉOsH (., .):

(uH , pH) ∈ XOs
H ⇐⇒ ĉOsH ((uH , pH) , (v, q)) = 0, ∀ (v, q) ∈ X0

H (3.75)

Taking into account Assumption 3.3.1, ĉOsH (., .) defined by (3.74) becomes:

ĉOsH ((uH , pH), (v, q)) =
∑
T∈TH

∫
T∩Ωε

(
µ∇uH : ∇v +

1

2
ρ (Uo · ∇uH)v − 1

2
ρ (Uo · ∇v)uH

)
+
∑
T∈TH

∫
T∩Ωε

(−pH div v − q div uH)

We recall that in the broken integral above, the div Uo is only defined on each coarse element
of TH .

Definition 3.3.2. Let the functional spaces MH ⊂M and V Os
H ⊂ V ext

H be defined by:

MH =
{
q ∈ L2

0 (Ω) such that q |T= const, ∀T ∈ TH
}

(3.76)

V Os
H =



v ∈
(
L2 (Ωε)

)d
: ∀T ∈ TH , ∃ζT ∈ L2

0 (T ∩ Ωε) , ∃αT ∈ R such that
−µ∆v + ρ (Uo · ∇)v +∇ζT = 0 in T ∩ Ωε

div v = αT in T ∩ Ωε

v = 0 on ∂Bε ∩ T
µ∇vn− 1

2
ρ (Uo · n)v − ζTn ∈ {ωE,1, · · · ,ωE,s} on E ∩ Ωε, ∀E ∈ E (T )


(3.77)

where E(T ) is the set of faces composing ∂T .

Definition 3.3.3. For any v ∈ V Os
H , on any element T ∈ TH , definition (3.77) implies that there

exists a function ζT which is uniquely determined by v. We can thus define a linear operator
πH : V Os

H →M0
H such that for any v ∈ V Os

H , πH (v) = ζT on any triangle T ∈ TH .

Theorem 3.3.1. Using MH (3.76) and V Os
H (3.77), we define X̃Os

H by

X̃Os
H = span

{
(uH , πH (uH) + p̄H) , uH ∈ V Os

H , p̄H ∈MH

}
(3.78)

then the space XOs
H defined by (3.75) satisfies the following property

XOs
H = X̃Os

H (3.79)

This theorem is new and we provide its detailed proof in what follows.

Proof. We first prove that (uH , pH) ∈ XOs
H in the sense of definition (3.75) belongs to the space

defined by (3.78). Let (uH , pH) ∈ XOs
H in the sense of definition (3.75), we have ∀ (v, q) ∈ X0

H

ĉOsH ((uH , pH), (v, q)) =
∑
T∈TH

∫
T∩Ωε

(
µ∇uH : ∇v +

1

2
ρ (Uo · ∇uH)v − 1

2
ρ (Uo · ∇v)uH

)
+
∑
T∈TH

∫
T∩Ωε

(−pH div v − q div uH) = 0 (3.80)

In a first step, on any element T ∈ TH , we define p̄H |T the average of pressure pH on this
element. We define p̄H a function whose restriction on T equals to p̄H |T on any element T ∈ TH .
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It is easy to see that p̄H is well defined and p̄H ∈ MH . Then p′H = (pH − p̄H) ∈ M0
H defined

by (3.72). Consequently, we can decompose the pressure pH in a unique way as

pH = p̄H + p′H with p̄H ∈MH and p′H ∈M0
H

By virtue of this decomposition, the term concerning pH in (3.80) can be decomposed as∑
T∈TH

∫
T∩Ωε

pH div v =
∑
T∈TH

∫
T∩Ωε

p̄H div v +
∑
T∈TH

∫
T∩Ωε

p′H div v (3.81)

Now we compute the first term in the right hand side of (3.81). As p̄H is constant on T ∈ TH ,
we have ∑

T∈TH

∫
T∩Ωε

p̄H div v =
∑
T∈TH

p̄H |T
∫
T∩Ωε

div v, ∀v ∈ V 0
H

Taking advantage of Assumption 3.1.1, for any v ∈ V 0
H , the definition of V 0

H implies that∫
T∩Ωε

div v =

∫
∂(T∩Ωε)

v · n

As a result, the first term in the right hand side of (3.81) vanishes∑
T∈TH

∫
T∩Ωε

p̄H div v = 0, ∀v ∈ V 0
H

and then (3.80) reduces to: ∀v ∈ V 0
H , ∀q ∈M0

H

ĉOsH ((uH , pH) , (v, q)) =
∑
T∈TH

∫
T∩Ωε

(
µ∇uH : ∇v +

1

2
ρ (Uo · ∇u)v − 1

2
ρ (Uo · ∇v)u

)
−
∑
T∈TH

∫
T∩Ωε

p′H div v −
∑
T∈TH

∫
T∩Ωε

q div uH = 0 (3.82)

In a second step, choosing an element T ∈ TH and the test function v = 0, for any q ∈M0
H

with q vanishing outside T , (3.82) becomes∫
T∩Ωε

q div uH = 0

We deduce from this equation that there exists a constant αT ∈ R in T ∩ Ωε such that

div uH = αT in T ∩ Ωε (3.83)

In a third step, we observe that for any face E ∈ E(T ), there exist some (non unique)
functions vE,i ∈

(
H1 (T ∩ Ωε)

)d, i = 1, · · · , s such that{∫
F∩Ωε vE,i · ωF,j = δE,F δi,j , ∀F ∈ E (T ) , j = 1, · · · , s
vE,i = 0, on ∂Bε ∩ T

(3.84)

We denote by V (T ) the set of functions in
(
H1 (T ∩ Ωε)

)d that vanish on ∂Bε ∩ T :

V (T ) =
{
v ∈

(
H1(T ∩ Ωε)

)d such that v = 0 on ∂Bε ∩ T
}
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It is easy to check that V (T ) can be decomposed as

V (T ) = V∫ 0(T )⊕ span {vE,i, ∀E ∈ E(T ), ∀i = 1, · · · , s}

where

V∫ 0(T ) =

{
v ∈

(
H1(T ∩ Ωε)

)d
:
∫
E∩Ωε v · ωE,i = 0, ∀E ∈ E(T ), ∀i = 1, · · · , s

v = 0 on ∂Bε ∩ T

}

By virtue of this decomposition, for any v ∈ V (T ), there exist ṽ ∈ V∫ 0(T ) and βF,1, · · · , βF,s ∈
R such that

v = ṽ +
∑

F∈E(T )

s∑
j=1

βF,jvF,j (3.85)

Now let us compute the coefficient βE,i for any E ∈ E(T ) and i = 1, · · · , s. Multiplying
(3.85) by ωE,i and integrating over E yields∫

E∩Ωε

v · ωE,i =

∫
E∩Ωε

ṽ · ωE,i +
∑

F∈E(T )

s∑
j=1

βF,j

∫
E∩Ωε

vF,j · ωE,i (3.86)

Since ṽ ∈ V 0
H , definition of V 0

H (3.71) implies that
∫
E ṽ · ωE,i = 0. Besides, it is trivial to

deduce from (3.84) that

∑
F∈E(T )

s∑
j=1

βF,j

∫
E∩Ωε

vF,j · ωE,i = βE,i

Finally (3.86) reduces to ∫
E∩Ωε

v · ωE,i = βE,i (3.87)

Let ṽ be the function defined on Ωε and equal to ṽ on T ∩ Ωε and 0 elsewhere. It is obvious
that ṽ ∈ V 0

H . Taking q = 0, (3.82) implies that

∑
T∈TH

∫
T∩Ωε

(
µ∇uH : ∇ṽ +

1

2
ρ (Uo · ∇uH) ṽ − 1

2
ρ (Uo · ∇ṽ)uH − p′H div ṽ

)
=

∫
T∩Ωε

(
µ∇uH : ∇ṽ +

1

2
ρ (Uo · ∇uH) ṽ − 1

2
ρ (Uo · ∇ṽ)uH − p′H div ṽ

)
= 0

Substituting ṽ (3.85) into this equation, we obtain∫
T∩Ωε

(
µ∇uH : ∇v +

1

2
ρ (Uo · ∇uH)v − 1

2
ρ (Uo · ∇v)uH − p′H div v

)
=

∑
F∈E(T )

s∑
j=1

βF,j

∫
T∩Ωε

(
µ∇uH : ∇vF,j +

1

2
ρ (Uo · ∇uH)vF,j −

1

2
ρ (Uo · ∇vF,j)uH − p′H div vF,j

)
(3.88)
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Denoting for any F ∈ E(T ) and for any j = 1, · · · , s

λF,j =

∫
T∩Ωε

(
µ∇uH : ∇vF,j +

1

2
ρ (Uo · ∇uH)vF,j −

1

2
ρ (Uo · ∇vF,j)uH − p′H div vF,j

)
and substituting βF,j (3.87), equation (3.88) becomes∫

T∩Ωε

(
µ∇uH : ∇v +

1

2
ρ (Uo · ∇uH)v − 1

2
ρ (Uo · ∇v)uH − p′H div v

)
=

∑
F∈E(T )

s∑
j=1

λF,j

∫
F∩Ωε

v · ωF,j (3.89)

On each T ∈ TH , making use of Assumption 3.3.1, the Oseen term can be decomposed as∫
T∩Ωε

ρ (Uo · ∇uH)v =

∫
T∩Ωε

1

2
ρ (Uo · ∇uH)v −

∫
T∩Ωε

1

2
ρ (Uo · ∇v)uH

+

∫
∂(T∩Ωε)

1

2
ρ (Uo · n)uHv (3.90)

Combining (3.89) and (3.90), equation (3.89) finally becomes∫
T∩Ωε

(
µ∇uH : ∇v + ρ (Uo · ∇uH)v − p′H div v

)
=

∑
F∈E(T )

s∑
j=1

λF,j

∫
F∩Ωε

v · ωF,j+∫
∂(T∩Ωε)

1

2
ρ (Uo · n)uHv, ∀v ∈ V (T )

(3.91)

In (3.91), taking v = 0 on E(T ) and integrating by parts the left hand side, we obtain

−µ∆uH + ρ (Uo · ∇uH)v +∇p′H = 0 in T ∩ Ωε (3.92)

Then by writing the variational formulation of (3.92) for v ∈ V (T ) and comparing with
(3.89), we deduce that

µ∇uHn−
1

2
ρ (Uo · n)uH − p′Hn ∈ span {ωE,1, · · · ,ωE,s} on E ∩ Ωε, ∀E ∈ E(T )

(3.93)

Finally, combining equations (3.83), (3.25) and (3.93), we obtain the following system:

−µ∆uH + ρ (Uo · ∇uH)v +∇p′H = 0 in T ∩ Ωε

div uH = αT in T ∩ Ωε

uH = 0 on ∂Bε ∩ T

µ∇uHn−
1

2
ρ (Uo · n)uH − p′Hn ∈ span {ωE,1, · · · ,ωE,s} on E ∩ Ωε, ∀E ∈ E(T )

On on any element T ∈ TH , for any uH ∈ V Os
H fixed in the formula above, it is easy to

see that the gradient ∇p′H is uniquely determined by the first equation. Besides, the fact that
the average p′H is 0 over any element implies that p′H is uniquely determined by uH . Thus we
conclude that there exists a linear operator such that p′H = πH (uH) with uH ∈ V Os

H . We recall
that the pressure pH is decomposed as pH = p̄H + p′H . Thus we have proved that (uH , pH)
defined by (3.75) belongs to the space defined by (3.78).
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Reciprocally, we now prove that any (uH , pH) ∈ X̃Os
H defined by (3.78) satisfies also relation

(3.75). Let (uH , pH) ∈ X̃Os
H defined by (3.78). For any uH ∈ V Os

H , on any T ∈ TH , definition
of V Os

H (3.77) implies that there exist a unique ζT = πH (uH) ∈ L2
0 (T ∩ Ωε) and a unique

αT ∈ R such that

−µ∆uH + ρ (Uo · ∇uH)v +∇ζT = 0 in T ∩ Ωε (3.94)

div uH = αT in T ∩ Ωε (3.95)

uH = 0 on ∂Bε ∩ T

µ∇uHn−
1

2
ρ (Uo · n)uH − ζTn ∈ span {ωE,1, · · · ,ωE,s} on E ∩ Ωε, ∀E ∈ E(T )

(3.96)

For any v ∈ V 0
H , integrating by parts (3.94) yields:∫

T∩Ωε

(
µ∇uH : ∇v +

1

2
ρ (Uo · ∇uH)v − 1

2
ρ (Uo · ∇v)uH

)
−
∫
T∩Ωε

ζT div v

=

∫
∂(T∩Ωε)

(
µ∇uHn−

1

2
ρ (Uo · n)uH − ζTn

)
· v (3.97)

Equation (3.96) shows that for any E ∈ E(T ), there exist λE,1, · · · , λE,s ∈ R such that

µ∇uHn−
1

2
ρ (Uo · n)uH − ζTn =

s∑
i=1

λE,iωE,i on E ∩ Ωε

Substituting this expression into (3.97), we obtain∫
T∩Ωε

(
µ∇uH : ∇v +

1

2
ρ (Uo · ∇uH)v − 1

2
ρ (Uo · ∇v)uH

)
−
∫
T∩Ωε

ζT div v

=

s∑
i=1

∑
E∈E(T )

λE,i

∫
E∩Ωε

ωE,i · v (3.98)

However, for any v ∈ V 0
H , the definition of V 0

H implies that

s∑
i=1

∑
E∈E(T )

λE,i

∫
E∩Ωε

ωE,i · v = 0

Consequently, (3.98) reduces to∫
T∩Ωε

(
∇uH : ∇v +

1

2
(Uo · ∇uH)v − 1

2
(Uo · ∇v)uH

)
−
∫
T∩Ωε

ζT div v = 0 (3.99)

Besides, taking advantage of Assumption 3.1.1, for any v ∈ V 0
H , the divergence theorem and

definition of V 0
H implies that∫
T∩Ωε

p̄H div v = p̄H |T
∫
T∩Ωε

div v = p̄H |T
∫
∂(T∩Ωε)

v · n = 0 (3.100)

Meanwhile, for any q ∈M0
H , (3.95) shows that∫

T∩Ωε

q div uH = 0 (3.101)
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As a result, summing (3.99), (3.100) and (3.101), we obtain that ∀ (v, q) ∈ V 0
H ×M0

H ,∫
T∩Ωε

(
µ∇uH : ∇v +

1

2
ρ (Uo · ∇uH)v − 1

2
ρ (Uo · ∇v)uH

)
−
∫
T∩Ωε

(
ζT + p̄H |T

)
div v

−
∫
T∩Ωε

q div uH = 0

Denoting pH |T = ζT + p̄H |T on each T ∈ TH , let pH be the function which equals to pH |T
on each T ∈ TH , then (uH , pH) ∈ XOs

H . Summing this equation on all elements of TH , we
obtain that ∀ (v, q) ∈ X0

H∑
T∈TH

∫
T∩Ωε

(
µ∇uH : ∇v +

1

2
ρ (Uo · ∇uH)v − 1

2
ρ (Uo · ∇v)uH

)
−
∑
T∈TH

∫
T∩Ωε

pH div v

−
∑
T∈TH

∫
T∩Ωε

q div uH = 0

which is exactly definition (3.75).
Finally we have proved the identity between (3.78) and (3.75), i.e. property (3.79).

Theorem 3.3.2. The space Xext
H can be decomposed as:

Xext
H = XOs

H ⊕X0
H

This theorem is new in this thesis and the proof of this theorem is more or less identical to
that of Theorem 3.2.2 and the reader can refer to subsection 3.2.1 for more details.

3.3.2 The local problem defined by Oseen equations

Different to the local problems presented in [117], we now propose a new definition of local
problems defined by Oseen equations. Moreover, the well-posedness of the local problem will
be proved in subsection 3.3.3.

The strong form For any E ∈ EH , i = 1, · · · , s, we construct ΦE,i : Ωε → Rd and the
accompanying pressure πE,i : Ωε → R such that ΦE,i and πE,i vanish outside the two coarse
elements Tk ⊂ ωE , k ∈ {1, 2} (only one coarse element if E ∈ ∂Ω) and solve on Tk:

−µ∆ΦE,i + ρ (Uo · ∇) ΦE,i +∇πE,i = 0 in Tk ∩ Ωε,

div ΦE,i = αE,i in Tk ∩ Ωε,

µ∇ΦE,in− 1
2ρ (Uo · n) ΦE,i − πE,in ∈ span {ωF,1, · · · ,ωF,s} on F ∩ Ωε, ∀F ∈ E(Tk),

ΦE,i = 0 on ∂Bε ∩ Tk,∫
F∩Ωε ΦE,i · ωF,j =

{
δij , F = E

0, F 6= E
∀F ∈ E (Tk) j = 1, · · · , s.∫

Tk∩Ωε πE,i = 0.

(3.102)

where E(Tk) is the set of faces of Tk. The constantαE,i depends on Tk and satisfies
∫
Tk∩Ωε αE,i =∫

∂(Tk∩Ωε) ΦE,i · n.

The weak form The weak form of system (3.102) reads: for any E ∈ E (Tk) , i = 1, · · · , s,
on the coarse element Tk ⊂ ωE for k ∈ {1, 2} (only one coarse element if E ∈ ∂Ω), find
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ΦE,i ∈
(
H1(Tk ∩ Ωε)

)d such that ΦE,i = 0 on ∂Bε ∩ Tk, πE,i ∈ L2
0 (Tk ∩ Ωε) and Lagrange

multipliers λF,1, · · · , λF,s ∈ R for F ∈ E(Tk) such that∫
Tk∩Ωε

µ∇ΦE,i : ∇v +

∫
Tk∩Ωε

(
1

2
ρ (Uo · ∇) ΦE,i · v −

1

2
ρ (Uo · ∇)v ·ΦE,i

)
−
∫
Tk∩Ωε

πE,i div v +
∑

F∈E(Tk)

s∑
j=1

λF,j

∫
F∩Ωε

v · ωF,j = 0,

∫
Tk∩Ωε

q div ΦE,i = 0,

∑
F∈E(Tk)

s∑
j=1

µF,j

∫
F∩Ωε

ΦE,i · ωF,j = µE,i

for all v ∈
(
H1 (Tk ∩ Ωε)

)d such that v = 0 on ∂Bε ∩ Tk, q ∈ L2
0 (Tk ∩ Ωε), µF,j ∈ R for all

F ∈ E (Tk) and j = 1, · · · , s.

3.3.3 The proof of the well-posedness of the local problem

The local problem defined by Oseen equations (3.102) is different to that defined in [117]. Now
we provide two different methods to prove the well-posedness of the local problem.

Choosing a coarse elementK ∈ TH , let Th (K) be a fine discretization of the domainK∩Ωε.
Let nK be the number of boundaries composing ∂K and ns = nK × s be the dimension of the
vector containing Lagrange multipliers

(
λKE,i

)
for all E ∈ E(K) and i = 1, · · · , s. The local

problem (3.102) is solved on the fine mesh Th (K). We introduce the spaces of velocity and
pressure:

VK =
{
v ∈

(
H1 (K ∩ Ωε)

)d
, v = 0 on ∂Bε ∩K

}
MK = L2

0 (K ∩ Ωε)

The weak form of (3.102) is: find
(
u, p,

(
λKE,i

))
∈ VK ×MK × Rns such that

âK (u,v) + bK (v, p) + cE
(
v,
(
λKE,i

))
= 0, ∀v ∈ VK (3.103)

bK (u, q) = 0, ∀q ∈MK (3.104)

cE
(
u,
(
µKE,i

))
= −δKE,iµKE,i, ∀µKE,i ∈ R, ∀E ∈ EH , ∀i = 1, · · · , s (3.105)

where

âK (u,v) =

∫
K∩Ωε

(
µ∇u : ∇v +

1

2
ρ (Uo · ∇u)v − 1

2
ρ (Uo · ∇v)u

)
bK (v, p) =

∫
K∩Ωε

p div v

cE
(
v,
(
λKE,i

))
=

∑
E∈E(K)

s∑
i=1

λKE,i

∫
E∩Ωε

v · ωE,i

We recall that δKE,i = 0 or 1 and div Uo = 0 according to Assumption 3.3.1.
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We introduce the space WK

WK =

{
v ∈ VK ,

∫
E∩Ωε

v = 0 for some E ∈ E (T )

}
We prove that the bilinear form âK(., .) is coercive on WK with the help of the Poincaré type

inequality proposed in the Lemma 9 of [103]. For any v ∈WK , we have

âK (v,v) =

∫
K∩Ωε

µ∇v : ∇v

=

∫
K∩Ωε

µ|∇v|2

Since the semi-norm ‖∇v‖L2(K∩Ωε) is equivalent to the full H1 norm by Poincaré inequality
(2.6), we obtain that âK(., .) is coercive on WK .

System (3.103)–(3.105) is called a twofold saddle point problem in the literature and can
be viewed as a single saddle point problem defined on VK × (MK × Rns). By introducing the
following bilinear form

∀v ∈ VK , b̃K
(
v,
(
p,
(
λKE,i

)))
= bK (v, p) + cE

(
v,
(
λKE,i

))
system (3.103)–(3.105) can be reformulated as

âK (u,v) + b̃K
(
v,
(
p,
(
λKE,i

)))
= 0, ∀v ∈ VK (3.106)

b̃K
(
u,
(
q,
(
µKE,i

)))
= GK , ∀

(
q,
(
µKE,i

))
∈MK × Rns (3.107)

where GK =
(

0, δKE,iµ
K
E,i

)
.

Now we can apply Theorem 2.1.4 to prove the well-posedness of (3.106)–(3.107). It is easy
to check that most of the hypothesis in Theorem 2.1.4 are verified and it remains only to prove
that the bilinear form b̃K(., .) satisfies the following inf-sup condition: there exists αh > 0 such
that

sup
v∈VK

b̃K

(
v,
(
p,
(
λKE,i

)))
(
‖p‖L2(K∩Ωε) +

∥∥∥(λKE,i)
∥∥∥) ‖v‖H1(K∩Ωε)

≥ αh, ∀
(
p,
(
λKE,i

))
∈MK × Rns (3.108)

Now we check if the bilinear form b̃K(., .) satisfies this inf-sup condition. It is shown in [67]
that for any p ∈ L2

0 (K ∩ Ωε), there exist a v0 ∈ H1
0 (K ∩ Ωε) and a constant α1 > 0 such that

div v0 = p and ‖v0‖H1(K∩Ωε) ≤ α1 ‖p‖L2(K∩Ωε) (3.109)

Then we construct a v as

v =
∑

F∈E(K)

s∑
j=1

λKF,jΦ
St
F,j + v0

where ΦSt
F,j is the solution of the local problem defined by Stokes equations (3.39). It is trivial

to verify that there exists a α2 > 0 such that
∥∥∥ΦSt

F,j

∥∥∥
H1(K∩Ωε)

≤ α2 for any F ∈ E(K) and

j = 1, · · · , s.
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Then we observe that v ∈ VK and verifies the following inequality

‖v‖H1(K∩Ωε) ≤ ‖v0‖H1(K∩Ωε) +
∑

F∈E(K)

s∑
j=1

∥∥ΦSt
F,j

∥∥
H1(K∩Ωε)

|λKF,j |

≤ α1 ‖p‖L2(K∩Ωε) + α2

∥∥(λKF,j)∥∥
Substituting v into the bilinear form b̃K (., .), we obtain

b̃K
(
v,
(
p,
(
λKE,i

)))
=

∫
K∩Ωε

p2 + p
∑

F∈E(K)

s∑
j=1

λKF,j div ΦSt
F,j

+

∑
E∈E(K)

s∑
i=1

λKE,i

∫
E∩Ωε

v0 · ωE,i +
∑

F∈E(K)

s∑
j=1

λKF,jΦ
St
F,j · ωE,i

 (3.110)

In the first term of the right hand side of (3.110), as div ΦSt
F,j is constant on K and p ∈

L2
0 (K ∩ Ωε), we deduce that∫

K∩Ωε

p
∑

F∈E(K)

s∑
j=1

λKF,j div ΦSt
F,j =

∑
F∈E(K)

s∑
j=1

λKF,j div ΦSt
F,j

∫
K∩Ωε

p = 0

In the second term of the right hand side of (3.110), the fact that v0 ∈ H1
0 (K ∩ Ωε) implies∫

E∩Ωε

v0 · ωE,i = 0

Besides, it is simple to deduce from (3.105) that

∑
E∈E(K)

s∑
i=1

λKE,i

∫
E∩Ωε

 ∑
F∈E(K)

s∑
j=1

λKF,jΦ
St
F,j · ωE,i

 =
∑

E∈E(K)

s∑
i=1

(
λKE,i

)2
Combining the results above, (3.110) reduces to

b̃K
(
v,
(
p,
(
λKE,i

)))
=

∫
K∩Ωε

p2 +
∑

E∈E(K)

s∑
i=1

(
λKE,i

)2
= ‖p‖2L2(K∩Ωε) +

∥∥(λKE,i)∥∥2

By denoting α̃ = max(α1, α2), it is trivial to check that

b̃K

(
v,
(
p,
(
λKE,i

)))
(
‖p‖L2(K∩Ωε) +

∥∥∥(λKE,i)
∥∥∥) ‖v‖H1(K∩Ωε)

≥
‖p‖2L2(K∩Ωε) +

∥∥∥(λKE,i)∥∥∥2

α̃
(
‖p‖L2(K∩Ωε) +

∥∥∥(λKE,i)
∥∥∥)2 ≥

1

2α̃

This inequality shows that the inf-sup condition (3.108) is verified with αh = 1
2α̃ . Hence we

conclude that the problem (3.102) is well-posed.

The work of [90] proposes an alternative to prove the well-posedness of (3.106)–(3.107). We
first introduce a subspace of VK :

ZK = {v ∈ VK | bK (v, q) = 0, ∀q ∈MK} ⊂ VK
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It is shown in [90] that proving the inf-sup condition (3.108) is equivalent to proving the
following statement: there exists a βh > 0 such that

sup
v∈VK

bK (v, p)

‖p‖L2(K∩Ωε) ‖v‖H1(K∩Ωε)

≥ βh, ∀p ∈MK (3.111)

sup
v∈ZK

cE

(
v,
(
λKE,i

))
∥∥∥(λKE,i)

∥∥∥ ‖v‖H1(K∩Ωε)

≥ βh, ∀(λKE,i) ∈ Rns (3.112)

As presented previously, for any p ∈ L2
0 (K ∩ Ωε), there exist a v0 ∈ H0

1 (K ∩ Ωε) and a
constant β1 > 0 such that

div v0 = p and ‖v0‖H1(K∩Ωε) ≤ β1 ‖p‖L2(K∩Ωε)

Thus in a first step, we choose v = v0 and it is easy to check that v0 ∈ VK and

bK (v, p)

‖p‖L2(K∩Ωε) ‖v‖H1(K∩Ωε)

≥
‖p‖2L2(K∩Ωε)

β1 ‖p‖2L2(K∩Ωε)

=
1

β1

In a second step, we construct v as

v =
∑

E∈E(K)

s∑
i=1

λKE,iΦ
St
E,i

where ΦSt
E,i is the solution of (3.39) and there exists a β2 ∈ R such that

∥∥∥ΦSt
E,i

∥∥∥ ≤ β2. Thus we

observe that v ∈ ZK and ‖v‖H1(K∩Ωε) ≤ β2

∥∥∥(λKE,i)∥∥∥.
Using these properties, the following inequality is straightforward

cE

(
v,
(
λKE,i

))
∥∥∥(λKE,i)

∥∥∥ ‖v‖H1(K∩Ωε)

≥

∥∥∥(λKE,i)
∥∥∥2

β2

∥∥∥(λKE,i)
∥∥∥2 =

1

β2

Taking βh = min( 1
β1
, 1
β2

), we conclude that the inf-sup conditions (3.111)–(3.111) are satis-
fied. As a result, we have proved that the problem (3.102) is well-posed.

3.3.4 The basis functions of the space V Os
H

Theorem 3.3.3. The functions ΦE,i, for E ∈ EH and i = 1, · · · , s constructed in (3.102) form
a basis of the space V Os

H defined in (3.77). In other words,

V Os
H = span{ΦE,i, E ∈ EH , i = 1, · · · , s}. (3.113)

The proof of this theorem is completely similar to that of Theorem 3.2.3 and thus we will not
repeat it here.

Consequently, any function of V Os
H can be written with multiscale basis functions as

∀uH ∈ V Os
H , uH =

∑
E∈EH

s∑
i=1

uE,iΦE,i
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The linear operator πH (see Definition 3.3.3) can be written explicitly as

∀uH ∈ V Os
H , πH (uH) =

∑
E∈EH

s∑
i=1

uE,iπE,i (3.114)

3.3.5 The coarse-scale problem and stabilized formulations

In [117], only Oseen problems were solved on the coarse mesh using the approximation space
XOs
H . In this thesis, we propose to solve not only Oseen problems, but also Navier-Stokes prob-

lems on the coarse mesh using XOs
H .

3.3.5.1 The discrete variational formulation of the Oseen problem

The discrete variational formulation of Oseen problem (1.3) is: find (uH , pH) ∈ XOs
H such that

cOsH ((uH , pH) , (v, q)) = (f ,v) , ∀ (v, q) ∈ XOs
H (3.115)

where

cOsH ((uH , pH), (v, q)) =
∑
T∈TH

∫
T∩Ωε

(µ∇uH : ∇v + ρ (Uo · ∇)uH · v)

+
∑
T∈TH

∫
T∩Ωε

(−pH div v − q div uH)

Theorem 3.3.1 shows that pH can be decomposed as pH = πH (uH) + p̄H with p̄H ∈ MH .
Besides, it is easy to verify that (πH (uH) , div vH) = 0 for all uH ,vH ∈ V Os

H . Making use of
this property, (3.115) is equivalent to: find uH ∈ V Os

H and p̄H ∈MH such that

aOsH (uH ,v) + bH (v, p̄H) = FH (v) , ∀v ∈ V Os
H (3.116)

bH (uH , q) = 0, ∀q ∈MH (3.117)

and we recall that

aOsH (uH ,v) =
∑
T∈TH

∫
T∩Ωε

(µ∇uH : ∇v + ρ (Uo · ∇)uH · v)

âOsH (uH ,v) =
∑
T∈TH

∫
T∩Ωε

(
µ∇uH : ∇v +

1

2
ρ (Uo · ∇)uH · v −

1

2
ρ (Uo · ∇)v · uH

)

under Assumption 3.3.1. We recall that aOsH (., .) and âOsH (., .) are completely equivalent when
the approximation space of velocity is in

(
H1

0 (Ωε)
)d. Since V Os

H is not included in
(
H1

0 (Ωε)
)d,

as presented in subsection 3.3.1, it is easier to show that âOsH (., .) is coercive.
In this thesis, for error analysis, we compute reference solutions by TrioCFD using the finite

volume element method. In this software, Neumann boundary condition is defined by µ∇uhn−
p̄hn = g with uh and p̄h the approximated solutions and g a given function. When using
the bilinear form aOsH (., .) in coarse-scale problems, it is easy to see that the boundary term is
µ∇uHn− p̄Hn = g with g a given function. However, when using the bilinear form âOsH (., .) in
coarse-scale problems, we observe that the boundary term will be µ∇uHn− 1

2ρ (Uo · ∇)uH −
p̄Hn = g′ with g′ a given function and g′ 6= g.

Consequently, in this thesis, we adopt for the bilinear form aOsH (., .) instead of âOsH (., .) in
coarse-scale Oseen problems. The existence and uniqueness of a solution (uH , p̄H) to (3.116)–
(3.117) can be proved in the same way as in subsection 3.2.4.1.



64 Chapter 3. Crouzeix-Raviart multiscale finite element methods

Stabilized formulation Now we discuss whether the SUPG stabilization method is necessary
for the coarse-scale Oseen problem when using the approximation space V Os

H . The stabilized
version of the Oseen problem (3.116)–(3.117) is to find (uH , pH) ∈ XOs

H such that∑
T∈TH

∫
T∩Ωε

(−µ∆uH + ρ (Uo · ∇)uH +∇pH) · (v + τTUo · ∇v) =
∑
T∈TH

∫
T∩Ωε

f · v

+
∑
T∈TH

f · (τTUo · ∇v) (3.118)

where τT is the stabilization coefficient defined on T . In this work, we choose a τT which
converges to 0 in the limit of H → 0.

Comparing (3.118) and (3.116), the additional terms in (3.118) are defined as stabilization
terms. In the left hand side of (3.118), the stabilization term aOsH,stab is

aOsH,stab (uH ,v) =
∑
T∈TH

∫
T∩Ωε

(−µ∆uH + ρ (Uo · ∇)uH +∇pH) · (τTUo · ∇v)

By substituting pH = πH (uH) + p̄H into this equation, we obtain

aOsH,stab (uH ,v) =∑
T∈TH

∫
T∩Ωε

(−µ∆uH + ρ (Uo · ∇)uH +∇p̄H +∇πH (uH)) · (τTUo · ∇v)

The definition of V Os
H (3.77) implies that:∫

T∩Ωε

(−µ∆uH + ρ (Uo · ∇)uH +∇πH (uH)) · (τTUo · ∇vH) = 0, ∀T ∈ TH

Therefore the stabilization term aOsH,stab is reduced to

aOsH,stab (uH ,v) =
∑
T∈TH

∫
T∩Ωε

∇p̄H · (τTUo · ∇vH)

We choose to neglect the stabilization over the gradient of pressure. Our numerical simula-
tions reveal that no oscillations appear when solving Oseen problems using V Os

H on the coarse
mesh. This confirms that the SUPG stabilization method is not necessary in this case. However,
one can also define the SUPG stabilization term by

aOsH,stab (uH ,v) =
∑
T∈TH

∫
T∩Ωε

ρ (Uo · ∇)uH · (τTUo · ∇v)

We believe that this stabilization term will not significantly affect numerical solutions of
Oseen problems on the coarse mesh.

3.3.5.2 The discrete variational formulation of the Navier-Stokes problem

The discrete variational formulation of Navier-Stokes problem (1.1) is: find the (uH , pH) ∈ XOs
H

such that

cNSH ((uH , pH) , (v, q)) = (f ,v) , ∀ (v, q) ∈ XOs
H (3.119)
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Using the same arguments as for the Oseen problem, (3.119) equals to: find uH ∈ V Os
H and

p̄H ∈MH such that

aNSH (uH ,v) + bH (v, p̄H) = FH (v) , ∀v ∈ V Os
H (3.120)

bH (uH , q) = 0, ∀q ∈MH (3.121)

In practice, when solving Navier-Stokes problems with Oseen basis functions, the Oseen
velocity Uo in local problems (3.102) is unknown. Thus we try to find an approximation of Uo
close to the convective velocity of the Navier-Stokes problem. We first solve the Stokes problem
(3.49)–(3.50) and then compute an average of the coarse velocity uStH in each coarse element.
This average is then taken as Uo and it is constant in each coarse element.

The stabilized version of (3.120)–(3.121) is: find (uH , pH) ∈ XOs
H such that

aNSH (uH ,v) + aNSH,stab (uH ,v) + bH (v, p̄H) = FH (v) + FH,stab (v) , ∀v ∈ V Os
H (3.122)

bH (uH , q) = 0, ∀q ∈MH (3.123)

Comparing equations (3.122)–(3.123) with (3.120)–(3.121), the additional terms are the sta-
bilization terms. The stabilization term aNsH,stab is defined by

aNsH,stab (uH ,v) =
∑
T∈TH

∫
T∩Ωε

(−µ∆uH + ρ (uH · ∇)uH +∇p̄H +∇πH (uH))

· (τTuH · ∇v) (3.124)

and we choose a τT which converges to 0 in the limit of H → 0.
In this work, we choose to neglect the stabilization over (−µ∆uH +∇p̄H +∇πH (uH)).

The stabilization term aNSH,stab (3.124) reduces to:

aNSH,stab (uH ,vH) =
∑
T∈TH

∫
T∩Ωε

(ρ (uH · ∇)uH) · (τTuH · ∇vH) (3.125)

Moreover, the stabilization term in the right hand side of (3.122) is

FH,stab (vH) =
∑
T∈TH

∫
T∩Ωε

f · (τTuH · ∇vH) (3.126)

where

τT (x) =
H

2|uH (x) |

[
coth

(
|uH (x) |H

2ν

)
− 2ν

|uH (x) |H

]
∀x ∈ T

where ν =
ρ

µ
and H is the element size of the coarse-scale mesh.

Since we choose a τT which converges to 0 in the limit of H → 0, the stabilized formulation
(3.122) with stabilization terms (3.125) and (3.126) is consistent. In practice, when computing
τT on each coarse element, we use an average of uH over T instead of using the varying uH (x)
for x ∈ T . Consequently, the stabilization coefficient is element-wise constant on the coarse
mesh TH .

3.3.6 The reconstruction of fine-scale features

After solving the coarse-scale problems, we obtain the coarse-scale solutions uH and p̄H . Then
we reconstruct the fine-scale features of the solution for visualization. On each coarse element
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T ∈ TH , making use of V Os
H defined by (3.113) and the formula of πH defined by (3.114), the

fine-scale velocity and pressure are approximated by

uH |T =
∑

E∈E(T )

s∑
i=1

uE,iΦE,i, pH |T =
∑

E∈E(T )

s∑
i=1

uE,iπE,i + p̄H |T

3.4 The Crouzeix-Raviart multiscale finite element method defined
by adding solutions of local Stokes and Oseen problems

We presented Crouzeix-Raviart multiscale finite element methods where multiscale basis func-
tions are defined by respectively Stokes equations section 3.2 or Oseen equations section 3.3.
Now we investigate whether using the union of these multiscale basis functions can produce
more accurate results than using basis functions defined by Stokes equations alone or Oseen
equations alone. In this thesis, we propose thus to construct an enriched approximation space of
velocity V St+Os

H using V St
H (3.12) and V Os

H (3.77). We recall that V St
H and V Os

H are defined by

V St
H =

{
ΦSt
E,i, E ∈ EH , i = 1, · · · , s

}
V Os
H =

{
ΦOs
E,i, E ∈ EH , i = 1, · · · , s

}
Definition 3.4.1. We define the enriched space V St+Os

H by

V St+Os
H =

{
ΦSt
E,i ∈ V St

H , ΦOs
E,i ∈ V Os

H , E ∈ EH , i = 1, · · · , s
}

We recall that the approximation space of pressure MH is defined by:

MH =
{
q ∈ L2

0 (Ω) such that q |T= const, ∀T ∈ TH
}

By this definition, any function uH in V St+Os
H can be represented as

uH =
∑
E∈EH

s∑
i=1

uStE,iΦ
St
E,i +

∑
E∈EH

s∑
i=1

uOsE,iΦ
Os
E,i

We recall the linear operators πStH : V St
H →M0

H (see Definition 3.2.3) and πOsH : V Os
H →M0

H

(see Definition 3.3.3). For any v1 ∈ V St
H , on any element T ∈ TH , there exists a unique ζT1 such

that πStH (v1) = ζT1 . For any v2 ∈ V Os
H , on any element T ∈ TH , there exists a unique ζT2 such

that πOsH (v2) = ζT2 . Now we define a new linear operator in what follows.

Definition 3.4.2. Combining definitions of πStH and πOsH , for any w ∈ V St+Os
H , on any element

T ∈ TH , there exists a ξT uniquely determined by w. We define a new linear operator πSt+OsH :
V St+Os
H →M0

H such that for any w ∈ V St+Os
H , πSt+OsH (w) = ξT on any element T ∈ TH .

Proceeding in the same way as in section 3.2 and section 3.3, we can define an explicit
formulation of the linear operator πSt+OsH :

∀uH ∈ V St+Os
H , πSt+OsH (uH) =

∑
E∈EH

s∑
i=1

(
uStE,iπ

St
E,i + uOsE,iπ

Os
E,i

)
Consequently, the multiscale approximation space is defined by

XSt+Os
H = span

{
(uH , πH (uH) + p̄H) , uH ∈ V St+Os

H , p̄H ∈MH

}
(3.127)
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Since the nonlinear convection term in the Navier-Stokes equations increases the difficulty
for the solution of the problem, we first try to solve Oseen problems on the coarse mesh using the
space V St+Os

H and expect to obtain a better accuracy than using V St
H or V Os

H . The coarse-scale
Oseen problem and the stabilized formulation are similar to what were presented in subsec-
tion 3.3.5. Numerical experiments are presented in Chapter 6 to investigate the accuracy of this
multiscale method.

3.5 The Crouzeix-Raviart multiscale finite element method enriched
by bubble functions

In the literature, [54, 102, 105, 113] proposed to enrich the velocity approximation space by bub-
ble functions when solving diffusion or advection-diffusion problems in perforated media. It was
shown that the addition of bubble functions is beneficial for the overall accuracy of the Crouzeix-
Raviart multiscale finite element methods. For advection-diffusion problems, the difference be-
tween [54] and [113] is that [54] uses homogeneous Dirichlet conditions on the boundary of
elements whereas [113] imposes the integral type boundary conditions. However, until now,
bubble functions are not defined yet for Stokes or Oseen equations in the literature. In this the-
sis, we propose to define bubble functions by Stokes or Oseen equations in order to improve the
accuracy of the multiscale method.

3.5.1 Bubble functions defined by Stokes equations

Our goal is to enrich the space V St
H =

{
ΦSt
E,i, E ∈ EH , i = 1, · · · , s

}
defined by (3.12) by

adding bubble functions defined by Stokes equations. We do not consider the enrichment of V St
H

by bubble functions defined by Oseen equations.
We want to decompose the space Xext

H by

Xext
H = XSt+b

H ⊕X0
H,bubble

where XSt+b
H is the enriched finite dimensional space consisting of coarse-scale features and

X0
H,bubble is the infinite dimensional space consisting of fine-scale features.

Let s be a positive integer and let ωE,i: E → Rd be some vector-valued functions associated
to E ∈ EH for i = 1, · · · , s. Let r be a positive integer. We associate the vector-valued functions
ϕT,k : T → Rd to each coarse element T ∈ TH and k = 1, · · · , r. Then we introduce the space
X0
H,bubble = V 0

H,bubble ×M0
H , where

V 0
H,bubble =

{
u ∈ V ext

H such that
∫
E∩Ωε u · ωE,j = 0,

∫
T∩Ωε u ·ϕT,k = 0,

∀T ∈ TH , ∀E ∈ EH , ∀j = 1, · · · , s, ∀k = 1, · · · , r

}
(3.128)

M0
H =

{
p ∈M such that

∫
T∩Ωε

p = 0 ∀T ∈ TH
}

(3.129)

Besides, we define M0
H (T ) by

M0
H (T ) = L2

0 (T ∩ Ωε)

We observe that the space V 0
H,bubble 6= V 0

H defined in (3.5) or (3.71) and the dimension of
V 0
H,bubble is smaller than that of V 0

H .
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Assumption 3.5.1. In the space V 0
H,bubble, for any E ∈ EH , we assume that weighting functions

are chosen as {
s = d : ωE,1 = e1, · · · ,ωE,s = ed.

r = d : ϕT,1 = e1, · · · ,ϕT,r = ed.

Definition 3.5.1. The subspace XSt+b
H is defined as the "orthogonal" complement of X0

H,bubble

with respect to the bilinear form cStH (., .):

(uH , pH) ∈ Xext
H ⇐⇒ cStH ((uH , pH) , (v, q)) = 0, ∀ (v, q) ∈ X0

H,bubble (3.130)

where cStH (., .) is defined by:

cStH ((uH , pH), (v, q)) =
∑
T∈TH

∫
T∩Ωε

(µ∇uH : ∇v − pH div v − q div uH)

In [105, 113], Crouzeix-Raviart multiscale finite element methods are enriched by bubble
functions defined by diffusion or advection-diffusion equations. Inspired by these work, at the
beginning of this study, we propose to construct the following approximation spaces.

Definition 3.5.2. Let the functional spaces MH ⊂M and V St+b
H ⊂ V ext

H be defined by

MH =
{
q ∈ L2

0 (Ω) such that q |T= const, ∀T ∈ TH
}

(3.131)

V St+b
H =



v ∈
(
L2 (Ωε)

)d
: ∀T ∈ TH , ∃ζT ∈M0

H (T ) , ∃λT ∈ Rd,
∃αT ∈ R such that
−µ∆v +∇ζT = λT in T ∩ Ωε

div v = αT in T ∩ Ωε

v = 0 on ∂Bε ∩ T
µ∇vn− ζTn ∈ {ωE,1, · · · ,ωE,s} on E ∩ Ωε, ∀E ∈ E (T )


(3.132)

where E(T ) is the set of faces composing ∂T .

Definition 3.5.3. For any v ∈ V St+b
H , on any element T ∈ TH , definition (3.132) implies that

there exists a function ζT which is uniquely determined by v. We can thus define a linear operator
πH : V St+b

H →M0
H such that for any v ∈ V St+b

H , πH (v) = ζT on any element T ∈ TH .

Theorem 3.5.1. With MH (3.131) and V St+b
H (3.132), we define X̃St+b

H by

X̃St+b
H = span

{
(uH , πH (uH) + p̄H) , uH ∈ V St+b

H , p̄H ∈MH

}
(3.133)

Then the approximation space XSt+b
H defined in (3.130) satisfies the following property:

X̃St+b
H ⊂ XSt+b

H (3.134)

Remark. One could expect that (3.134) would be an equality. We tried to prove the reverse
inclusion but unfortunately we were not to to prove it. This proof as well as some remarks are
presented specially in subsection 3.5.2.

Proof. We prove that any (uH , pH) ∈ X̃St+b
H defined by (3.133) satisfies relation (3.130). Let

(uH , pH) ∈ X̃St+b
H defined by (3.133). For any uH ∈ V St+b

H , on any T ∈ TH , definition of
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V St+b
H (3.132) implies that there exist a unique ζT = πH (uH) ∈ M0

H(T ), a unique λT ∈ Rd
and a unique constant αT ∈ R such that

−µ∆uH +∇ζT = λT in T ∩ Ωε (3.135)

div uH = αT in T ∩ Ωε (3.136)

uH = 0 on ∂Bε ∩ T
µ∇uHn− ζTn ∈ span {ωE,i, · · · ,ωE,s} on E ∩ Ωε, ∀E ∈ E(T ) (3.137)

For any v ∈ V 0
H,bubble, the integration by parts of (3.135) yields:∫

T∩Ωε

µ∇uH : ∇v −
∫
T∩Ωε

ζT div v =

∫
T∩Ωε

λT · v +

∫
∂(T∩Ωε)

(
µ∇uHn− ζTn

)
· v

(3.138)

Equation (3.137) shows that for any E ∈ E(T ), there exists λE,1, · · · , λE,s ∈ R such that

µ∇uHn− ζTn =
s∑
i=1

λE,iωE,i on E ∩ Ωε

Substituting this expression into (3.138), we obtain∫
T∩Ωε

µ∇uH : ∇v −
∫
T∩Ωε

ζT div v =

∫
T∩Ωε

λT · v +
∑

E∈E(T )

s∑
i=1

λE,i

∫
E
ωE,i · v (3.139)

For any v ∈ V 0
H,bubble, definition of V 0

H,bubble implies that

∑
E∈E(T )

s∑
i=1

λE,i

∫
E
λE,i · v = 0

∫
T∩Ωε

λT · v = 0

Consequently, (3.139) reduces to:∫
T∩Ωε

µ∇uH : ∇v −
∫
T∩Ωε

ζT div v = 0 (3.140)

Besides, making use of Assumption 3.1.1, for any v ∈ V 0
H,bubble, the divergence theorem and

the definition of V 0
H,bubble imply that∫

T∩Ωε

p̄H div v = p̄H |T
∫
T∩Ωε

div v = p̄H |T
∫
∂(T∩Ωε)

v · n = 0 (3.141)

Meanwhile, for any q ∈M0
H , (3.136) shows that∫

T∩Ωε

q div uH = 0 (3.142)

As a result, summing (3.140), (3.141) and (3.142), we obtain: for all (v, q) ∈ X0
H,bubble∫

T∩Ωε

µ∇uH : ∇v −
∫
T∩Ωε

(
ζT + p̄H |T

)
div v −

∫
T∩Ωε

q div uH = 0
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Denoting pH |T = ζT + p̄H |T on each T ∈ TH , let pH be a function which equals to pH |T
on each T ∈ TH , then (uH , pH) ∈ XSt+b

H . Summing this equation over all elements T ∈ TH ,
we obtain: ∀ (v, q) ∈ X0

H,bubble∑
T∈TH

∫
T∩Ωε

µ∇uH : ∇v −
∑
T∈TH

∫
T∩Ωε

pH div v −
∑
T∈TH

∫
T∩Ωε

q div uH = 0

which is exactly definition (3.130). Consequently, we have proved property (3.134).

3.5.2 Theoretical analysis of the construction of XSt+b
H

After having proved (3.134), now let us verify whether (uH , pH) ∈ XSt+b
H in the sense of

definition (3.130) belongs to the space defined by (3.133). The objective to understand why the
addition of bubble functions defined by (3.155) can not improve the accuracy of numerical results
and find a remedy to this.

Let (uH , pH) ∈ XSt+b
H in the sense of definition (3.130), i.e. ∀(v, q) ∈ X0

H,bubble

cStH ((uH , pH), (v, q)) =
∑
T∈TH

∫
T∩Ωε

(µ∇uH : ∇v − pH div v − q div uH) = 0 (3.143)

In a first step, for any element T ∈ TH , denoting p̄H |T the average of pressure pH on this
element. We define p̄H a function whose restriction on T equals to p̄H |T on any element T ∈ TH .
It is easy to see that p̄H is well defined and p̄H ∈MH . Then p′H = (pH − p̄H) ∈M0

H defined in
(3.129). Consequently, we can decompose pH in a unique way as

pH = p̄H + p′H with p̄H ∈MH and p′H ∈M0
H

By virtue of this decomposition, the term concerning pH in (3.143) can be decomposed as∑
T∈TH

∫
T∩Ωε

pH div v =
∑
T∈TH

∫
T∩Ωε

p̄H div v +
∑
T∈TH

∫
T∩Ωε

p′H div v (3.144)

Now we compute the first term in the right hand side of (3.144). As p̄H is constant on each
T ∈ TH , we have ∫

T∩Ωε

p̄H div v =
∑
T∈TH

p̄H |T
∫
T∩Ωε

div v, ∀v ∈ V 0
H,bubble

Taking advantage of Assumption 3.1.1, for any v ∈ V 0
H,bubble, the divergence theorem and

definition of V 0
H,bubble reveals that∫

∂(T∩Ωε)
div v =

∫
∂(T∩Ωε)

v · n = 0

Consequently, the first term in the hand side of (3.144) vanishes∫
T∩Ωε

p̄H div v = 0, ∀v ∈ V 0
H,bubble
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and then (3.143) reduces to: ∀ (v, q) ∈ V 0
H,bubble ×M0

H

cStH ((uH , pH), (v, q)) =
∑
T∈TH

∫
T∩Ωε

(
µ∇uH : ∇v − p′H div v − q div uH

)
= 0 (3.145)

In a second step, choosing an element T ∈ TH and the test function v = 0, for any q ∈M0
H

with q vanishing outside T , then (3.145) becomes∫
T∩Ωε

q div uH = 0

We deduce from this equation that there exists a constant αT in T ∩ Ωε such that

div uH = αT in T ∩ Ωε (3.146)

In a third step, we observe that for any face E ∈ E(T ), there exist some (non unique)
functions vE,i ∈

(
H1 (T ∩ Ωε)

)d, i = 1, · · · , s such that
∫
F∩Ωε vE,i · ωF,j = δE,F δi,j , ∀F ∈ E(T ), ∀j = 1, · · · , s∫
T∩Ωε vE,i ·ϕT,l = 0, ∀l = 1, · · · , r
vE,i = 0, on ∂Bε ∩ T

We observe that there exist some (non unique) functions vT,k ∈
(
H1 (T ∩ Ωε)

)d, k =
1, · · · , r such that 

∫
F∩Ωε vT,k · ωF,j = 0, ∀F ∈ E(T ), ∀j = 1, · · · , s∫
T∩Ωε vT,k ·ϕT,l = δk,l, ∀l = 1, · · · , r
vT,k = 0, on ∂Bε ∩ T

We denote by V (T ) the set of functions in
(
H1 (T ∩ Ωε)

)d that vanish on ∂Bε ∩ T :

V (T ) =
{
v :
(
H1(T ∩ Ωε)

)d such that v = 0 on ∂Bε ∩ T
}

It is easy to check that V (T ) can be decomposed as

V (T ) = V∫ 0(T )⊕ span {vE,i, vT,k, ∀E ∈ E(T ), i = 1, · · · , s, k = 1, · · · , r}

where

V∫ 0(T ) =

{
v ∈

(
H1(T ∩ Ωε)

)d
:
∫
E∩Ωε v · ωE,i = 0,

∫
T∩Ωε v · ϕT,l = 0, v = 0

on ∂Bε ∩ T, ∀E ∈ E(T ), i = 1, · · · , s, l = 1, · · · , r

}

By virtue of this decomposition, for any v ∈ V (T ), there exist ṽ ∈ V∫ 0(T ), βF,1, · · · , βF,s ∈ R
and βT,1, · · · , βT,r ∈ R such that

v = ṽ +
∑

F∈E(T )

s∑
j=1

βF,jvF,j +
r∑

k=1

βT,kvT,k (3.147)
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Now we compute the coefficients βE,i for any E ∈ E(T ) and i = 1, · · · , s. Multiplying
(3.147) by ωE,i and integrating over E yields:∫

E∩Ωε

v · ωE,i =

∫
E∩Ωε

ṽ · ωE,i +
∑

F∈E(T )

s∑
j=1

βF,j

∫
E∩Ωε

vF,j · ωE,i

+
r∑

k=1

βT,k

∫
E∩Ωε

vT,k · ωE,i

Since ṽ ∈ V 0
H,bubble, the definition of V 0

H,bubble implies that
∫
E∩Ωε ṽ · ωE,i = 0∫
E∩Ωε vT,k · ωE,i = 0∑
F∈E(T )

s∑
j=1

βF,j
∫
E∩Ωε vF,j · ωE,i = βE,i

=⇒
∫
E∩Ωε

v · ωE,i = βE,i (3.148)

Now we compute the coefficients βT,l for l = 1, · · · , r. Multiplying (3.147) by ϕT,l and
integrating over T yields:∫
T∩Ωε

v ·ϕT,l =

∫
T∩Ωε

ṽ ·ϕT,l +
∑

F∈E(T )

s∑
j=1

βF,j

∫
T∩Ωε

vF,j ·ϕT,l +

s∑
j=1

βT,j

∫
T∩Ωε

vT,j ·ϕT,l

The fact that ṽ ∈ V 0
H,bubble and the definition of vF,j imply that

∫
T∩Ωε ṽ ·ϕT,l = 0∫
T∩Ωε vF,j ·ϕT,l = 0
s∑
j=1

βT,j
∫
T∩Ωε vT,j ·ϕT,l = βT,l

=⇒
∫
T∩Ωε

v ·ϕT,l = βT,l (3.149)

Let ṽ be the function defined on Ωε and equal to ṽ on T ∩ Ωε and 0 elsewhere. Hence
ṽ ∈ V 0

H,bubble. Taking q = 0, (3.145) implies that

∑
T∈TH

∫
T∩Ωε

(
µ∇uH : ∇ṽ − p′H div ṽ

)
=

∫
T∩Ωε

(
µ∇uH : ∇ṽ − p′H div ṽ

)
= 0

Substituting ṽ defined in (3.147) into this equation, it is trivial to verify that∫
T∩Ωε

(
µ∇uH : ∇v − p′H div v

)
=

∑
F∈E(T )

s∑
j=1

βF,j

∫
T∩Ωε

(
µ∇uH : ∇vF,j − p′H div vF,j

)
+

r∑
k=1

βT,k

∫
T∩Ωε

(
µ∇uH : ∇vT,k − p′H div vT,k

)
(3.150)

Denoting for any F ∈ E(T ), j = 1, · · · , s and k = 1, · · · , r

λF,j =

∫
T∩Ωε

µ∇uH : ∇vF,j − p′H div vF,j

λT,k =

∫
T∩Ωε

µ∇uH : ∇vT,k − p′H div vT,k
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and substituting βF,j (3.148) and βT,k (3.149) into (3.150), we obtain∫
T∩Ωε

(
µ∇uH : ∇v − p′H div v

)
=

∑
F∈E(T )

s∑
j=1

λF,j

∫
F∩Ωε

v · ωF,j +

r∑
k=1

λT,k

∫
T∩Ωε

v ·ϕT,k

(3.151)

In a last step, in (3.151), taking v = 0 on E(T ) and integrating by parts the left hand side,
we obtain

−µ∆uH +∇p′H =

r∑
k=1

λT,kϕT,k in T ∩ Ωε (3.152)

Then by writing the variational form of (3.152) for v ∈ V (T ) and comparing with (3.151),
it is easy to deduce that

µ∇uHn− p′Hn ∈ span {ωE,1, · · · ,ωE,s} on E ∩ Ωε, ∀E ∈ E(T ) (3.153)

Finally, combining (3.146), (3.152) and (3.153), we obtain the following system

−µ∆uH +∇p′H =
r∑

k=1

λT,kϕT,k in T ∩ Ωε

div uH = αT in T ∩ Ωε

uH = 0 on ∂Bε ∩ T
µ∇uHn− p′Hn ∈ span {ωE,1, · · · ,ωE,s} on E ∩ Ωε, ∀E ∈ E(T )

On any element T ∈ TH , for any uH ∈ V St+b
H fixed in the formula above, now we

check whether p′H and λT are both uniquely determined by uH . Assuming that there exist(
ζT1 , (λ

1
T,k)

)
∈M0

H (T )× Rr and
(
ζT2 , (λ

2
T,k)

)
∈M0

H (T )× Rr that verify:

∇ζT1 =
r∑

k=1

λ1
T,kϕT,k + µ∆uH

∇ζT2 =
r∑

k=1

λ2
T,kϕT,k + µ∆uH

Subtracting these equations, we obtain

∇
(
ζT1 − ζT2

)
=

r∑
k=1

(
λ1
T,k − λ2

T,k

)
ϕT,k

The fact that
r∑

k=1

(
λ1
T,k − λ2

T,k

)
ϕT,k ∈ Rd implies that

(
ζT1 − ζT2

)
∈ P1(T ). Meanwhile,

ζT1 ∈ M0
H (T ) and ζT2 ∈ M0

H (T ). Combining these two arguments, we can not conclude that
ζT1 − ζT2 = 0 and (λ1

T,k) = (λ2
T,k). Thus the uniqueness of p′H and λT is not guaranteed and the

linear operator πH defined by Definition 3.5.3 is not well defined. Consequently, we are not able
to prove that (uH , pH) ∈ XSt+b

H in the sense of definition (3.130) belongs to the space defined
by (3.133).

It is easy to notice that ζT1 − ζT2 = 0 if and only if spaces M0
H (T ) and P1(T ) are orthogonal.

This fact implies that the definition of XSt+b
H and X0

H,bubble need to be revised. We will redefine
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these spaces in section 3.6, leading to a more innovative and more general multiscale method
which can effectively improve the accuracy of numerical solutions.

3.5.3 The local problems defined by Stokes equations

Inspired by bubble functions defined in [105, 113], we have proposed to construct a basis of
V St+b
H by solving the following local problems.

The strong form We recall the multiscale basis functions ΦSt
E,i which were already defined by

(3.39): for any E ∈ EH , for i = 1, · · · , s, we construct ΦSt
E,i : Ωε → Rd and the accompanying

pressure πStE,i : Ωε → R such that ΦSt
E,i and πStE,i vanish outside the coarse element Tk ⊂ ωE for

k ∈ {1, 2} (only one coarse element if E ∈ ∂Ω) and solve on Tk:

−µ∆ΦSt
E,i +∇πStE,i = 0 in Tk ∩ Ωε,

div ΦSt
E,i = αE,i in Tk ∩ Ωε,

µ∇ΦSt
E,in− πStE,in ∈ span {ωF,1, · · · ,ωF,s} on F ∩ Ωε, ∀F ∈ E(Tk),

ΦSt
E,i = 0 on ∂Bε ∩ Tk,∫
F∩Ωε ΦSt

E,i · ωF,j =

{
δij , F = E

0, F 6= E
∀F ∈ E (Tk) , j = 1, · · · , s.∫

Tk∩Ωε π
St
E,i = 0.

(3.154)

where E(Tk) is the set of faces composing ∂Tk. The constant αE,i depends on Tk and satisfies∫
Tk∩Ωε αE,i =

∫
∂(Tk∩Ωε) ΦSt

E,i · n.

Now we construct bubble functions associated to elements of the coarse mesh. For each T ∈
TH , for k = 1, · · · , r, the support of ΨT,k is reduced to T ∩ Ωε. We construct ΨT,k : Ωε → Rd
and πT,k : Ωε → R as solutions of

−µ∆ΨT,k +∇πT,k = ek in T ∩ Ωε,

div ΨT,k = αT,k in T ∩ Ωε,

µ∇ΨT,kn− πT,kn ∈ span {ωF,1, · · · ,ωF,s} on F ∩ Ωε, ∀F ∈ E(T ),

ΨT,k = 0 on ∂Bε ∩ T,∫
F∩Ωε ΨT,k = 0 ∀F ∈ E (T ) ,∫
T∩Ωε πT,k = 0.

(3.155)

where E(T ) is the set of faces composing ∂T and the constant αT,k satisfies
∫
T∩Ωε αT,k =∫

∂(T∩Ωε) ΨT,k · n.

The weak form The weak form of system (3.154) reads: for any face E ∈ EH , for i =
1, · · · , s, on the coarse element Tk ⊂ ωE for k ∈ {1, 2} (only one coarse element if E ∈ ∂Ω),
find ΦSt

E,i ∈
(
H1 (Tk ∩ Ωε)

)d such that ΦSt
E,i = 0 on Tk∩Bε, πStE,i ∈ L2

0 (T ∩ Ωε) and Lagrange
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multipliers λF,1, · · · , λF,s ∈ R for F ∈ E(Tk) such that∫
Tk∩Ωε

µ∇ΦSt
E,i : ∇v −

∫
Tk∩Ωε

πStE,i div v +
∑

F∈E(Tk)

s∑
j=1

λF,j

∫
F∩Ωε

v · ωF,j = 0, (3.156)

∫
Tk∩Ωε

q div ΦSt
E,i = 0,

∑
F∈E(Tk)

s∑
j=1

µF,j

∫
F∩Ωε

ΦSt
E,i · ωF,j = µE,i

for all v ∈
(
H1 (Tk ∩ Ωε)

)d such that v = 0 on ∂Bε ∩ Tk, q ∈ M0
H (Tk), µF,j ∈ R for all

F ∈ E (Tk) and j = 1, · · · , s.

The weak form of system (3.155) is: for each T ∈ TH , for k = 1, · · · , r, find ΨT,k ∈(
H1 (T ∩ Ωε)

)d such that ΨT,k = 0 on T ∩ Bε, πT,k ∈ L2
0 (T ∩ Ωε) and Lagrange multipliers

λF,1, · · · , λF,s ∈ R for F ∈ E(T ) such that∫
T∩Ωε

µ∇ΨT,k : ∇v −
∫
T∩Ωε

πT,k div v +
∑

F∈E(T )

λF,j

∫
F∩Ωε

v · ωF,j =

∫
T∩Ωε

ek · v,∫
T∩Ωε

q div ΨT,k = 0,∑
F∈E(T )

µF ·
∫
F∩Ωε

ΨT,k = 0

for all v ∈
(
H1 (T ∩ Ωε)

)d such that v = 0 on ∂Bε ∩ T , q ∈ M0
H (T ), µF ∈ Rd for all

F ∈ E (T ).

3.5.4 The contribution of bubble functions

Now we try to find out the relation between basis functions ΦSt
E,i for E ∈ EH and i = 1, · · · , s

defined by (3.154) and ΨT,k for T ∈ TH and k = 1, · · · , r defined by (3.155). In (3.156), taking
the test function v = ΨT,k for k = 1, · · · , r, then (3.156) becomes:∫

T∩Ωε

µ∇ΦSt
E,i : ∇ΨT,k −

∫
T∩Ωε

πStE,i div ΨT,k +
∑

F∈E(T )

s∑
t=1

λF,t

∫
F∩Ωε

ΨT,k · ωF,t = 0

(3.157)

System (3.155) reveals that div ΨT,k is constant on T and
∫
T∩Ωε π

St
E,i = 0, we can thus

deduce that ∫
T∩Ωε

πStE,i div ΨT,k = 0 (3.158)

Making use of Assumption 3.5.1, system (3.155) implies that

∑
F∈E(T )

s∑
t=1

λF,t

∫
F∩Ωε

ΨT,k · ωF,t = 0 (3.159)
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Combining (3.158) and (3.159), equation (3.157) reduces to∫
T∩Ωε

µ∇ΦSt
E,i : ∇ΨT,k = 0 (3.160)

Surprisingly, this equation reveals that ΦSt
E,i and ΨT,k are "orthogonal" with respect to the

bilinear form
∫
T∩Ωε ∇u : ∇v for u = ΦSt

E,i and v = ΨT,k. Curiously, numerical experiments
(see Chapter 6) show that there are no significant differences between numerical results given by
using V St

H and V St+b
H when solving a Stokes problem on the coarse mesh.

Making use of basis functions defined by (3.154)–(3.155), we reconstruct the fine-scale ve-
locity on each coarse element T ∈ TH by

uH |T =
∑

E∈E(T )

s∑
i=1

uE,iΦ
St
E,i +

r∑
k=1

uT,kΨT,k

Then we found that the contribution of the second term is negligible compared to that of the
first term in the right hand side of the equation above. Overall, our numerical results show that
the addition of bubble functions defined by (3.155) does not improve the accuracy of velocity
and pressure.

3.6 The high-order Crouzeix-Raviart multiscale finite element method
defined by Stokes equations

Until now, we have presented two methods to enrich the approximation space of velocity VH
whereas the approximation space of pressure MH still remains piecewise constant on the coarse
mesh. In order to further improve the accuracy of the Crouzeix-Raviart multiscale finite element
methods, we propose an innovative high-order multiscale method where both the approximation
spaces of velocity and pressure are enriched. As far as we know, it is the first time that this
multiscale method is proposed for flow problems.

We mention that [50] proposes recently a multiscale hydrid high-order method for highly os-
cillatory elliptic problems. This method can be considered as a first attempt of the generalization
of the Crouzeix–Raviart MsFEM to arbitrary orders of approximation. This method share some
similarities with our high-order method in the use of weighting functions defined by polynomials
of higher degrees. But the method in [50] is defined only for elliptic problems in the framework
of a hybrid high-order method, whereas we develop in our work a higher-order method for flow
problems in the framework of MsFEM.

3.6.1 The construction of the approximation space X̂St
H

We first introduce some notations for later use. For any integer n and any integer 1 ≤ l ≤ d,
we denote by Pln the linear space spanned by l-variate polynomial functions of degree at most n.
The dimension of Pln is

N l
n := dim

(
Pln
)

=

(
n+ l

n

)
For any T ∈ TH , we denote by Pdn (T ) the restriction to T of polynomials in Pln. For any

F ∈ EH , we denote by Pd−1
n (F ) the restriction to F of polynomials of Pln. For the sake of

simplicity, we denote Pdn (T ) and Pd−1
n (F ) respectively by Pn (T ) and Pn (F ).

We now define weighting functions for the velocity and pressure in what follows. Let s be a
positive integer and d be the dimension of heterogeneous media. We associate the vector-valued
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function ωE,i: E → Rd to each face E ∈ EH and i = 1, · · · , s. Let r be a positive integer.
We associate the vector-valued functions ϕT,k : T → Rd to each coarse element T ∈ TH and
k = 1, · · · , r. Let t be a positive integer. We associate the scalar functions $T,j : T → R to each
coarse element T ∈ TH and j = 1, · · · , t.
Assumption 3.6.1. For n = 0, for any T ∈ TH and for any E ∈ EH , we choose

s = d : ωE,1 = e1, · · · ,ωE,d = ed.

r = 1 : ϕT,1 = 0

t = 1 : $T,1 = 1

(3.161)

We notice that the choice of weighting functions above is the same as that of the case s = 2 or
s = 3 defined in (3.7) and (3.9).

Assumption 3.6.2. For n ≥ 1, for any E ∈ EH and for any T ∈ TH , we assume that

1. s = d ·Nd−1
n and (ωE,i)1≤i≤s is a set of basis functions of the space (Pn (E))d.

2. r = d ·Nd
n−1 and (ϕT,k)1≤k≤r is a set of basis functions of the space (Pn−1(T ))d.

3. t = Nd
n and ($T,j)1≤j≤t is a set of basis functions of the space Pn (T ).

Definition 3.6.1. We introduce the extended velocity space V̂ ext
H :

V̂ ext
H =

{
u ∈

(
L2 (Ωε)

)d such that u |T∈
(
H1 (T ∩ Ωε)

)d for any T ∈ TH ,
u = 0 on ∂Bε,

∫
E∩Ωε [[u]] · ωE,j = 0 for all E ∈ EH , j = 1, · · · , s.

}

where [[u]] denotes the "jump" of u across an internal face and [[u]] = u on the boundary ∂Ω.

We recall that the pressure space M is defined by

M = L2
0 (Ωε) =

{
p ∈ L2 (Ωε) such that

∫
Ωε

p = 0

}
Then the extended velocity-pressure space Xext

H can be written as

Xext
H = V̂ ext

H ×M

We want to decompose Xext
H into the sum of a finite dimensional subspace X̂H of coarse

scales and an infinite dimensional subspace X̂0
H of unsolved fine scales:

Xext
H = X̂H ⊕ X̂0

H

Taking into account Assumption 3.6.1 and Assumption 3.6.2, we introduce the fine scale
subspace X̂0

H = V̂ 0
H × M̂0

H with

V̂ 0
H =

{
u ∈ V̂ ext

H such that
∫
E∩Ωε u · ωE,j = 0,

∫
T∩Ωε u ·ϕT,k = 0,

∀T ∈ TH , ∀E ∈ EH , j = 1, · · · , s, k = 1, · · · , r.

}
(3.162)

M̂0
H =

{
p ∈M such that

∫
T∩Ωε

p$T,i = 0, ∀T ∈ TH , i = 1, · · · , t.
}

(3.163)

Besides, we define M̂0
H (T ) by

M̂0
H(T ) =

{
p ∈ L2 (T ∩ Ωε) such that

∫
T∩Ωε p$T,i = 0, ∀T ∈ TH , i = 1, · · · , t.

}
(3.164)
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Since this high-order Crouzeix-Raviart multiscale finite element method is constructed by
Stokes equations, we denote the space X̂H by X̂St

H .

Definition 3.6.2. The subspace X̂St
H is defined as the "orthogonal" complement of X̂0

H with
respect to the bilinear form cStH (., .):

(uH , pH) ∈ X̂St
H ⇐⇒ cStH ((uH , pH) , (v, q)) = 0, ∀ (v, q) ∈ X̂0

H (3.165)

where cStH (., .) is defined by

cStH ((uH , pH), (v, q)) =
∑
T∈TH

∫
T∩Ωε

(µ∇uH : ∇v − pH div v − q div uH)

Definition 3.6.3. Let the functional spaces M̂H ⊂M and V̂ St
H ⊂ V̂ ext

H be defined by

M̂H =
{
q ∈ L2

0 (Ω) such that q |T∈ Pn(T ), ∀T ∈ TH
}

(3.166)

V̂ St
H =


v ∈

(
L2 (Ωε)

)d
: ∀T ∈ TH , ∃ζT ∈ M̂0

H(T ) such that
−µ∆v +∇ζT ∈ span {ϕT,1, · · · ,ϕT,r} in T ∩ Ωε

div v ∈ span {$T,1, · · · , $T,t} in T ∩ Ωε

v = 0 on ∂Bε ∩ T
µ∇vn− ζTn ∈ span {ωE,1, · · · ,ωE,s} on E ∩ Ωε ∀E ∈ E(T )

 (3.167)

where E (T ) is the set of faces composing ∂T .

Definition 3.6.4. For any v ∈ V̂ St
H , on any element T ∈ TH , definition (3.167) implies that there

exists a function ζT which is uniquely determined by v. We can thus define a linear operator
πH : V̂ St

H → M̂0
H such that for any v ∈ V̂ St

H , πH (v) = ζT on any element T ∈ TH .

Theorem 3.6.1. Using M̂H (3.166) and V̂ St
H (3.167), we define X̂

St

H by

X̂
St

H = span
{

(uH , πH (uH) + p̄H) ,uH ∈ V̂ St
H , p̄H ∈ M̂H

}
(3.168)

then the space X̂St
H defined in (3.165) satisfies the following property

X̂St
H = X̂

St

H (3.169)

This theorem is new and now we provide its detailed proof in what follows.

Proof. We first prove that (uH , pH) ∈ X̂St
H in the sense of definition (3.165) belongs to the space

defined by (3.168). Let (uH , pH) ∈ X̂St
H in the sense of definition (3.165), i.e. ∀ (v, q) ∈ X̂0

H :

cStH ((uH , pH), (v, q)) =
∑
T∈TH

∫
T∩Ωε

(µ∇uH : ∇v − pH div v − q div uH) = 0 (3.170)

Choosing p̄H ∈ M̂H , the fact that M̂H and M̂0
H are orthogonal implies that p′H = (pH − p̄H)

is well-defined and p′H ∈ M̂0
H defined in (3.163). Thus we can decompose the pressure pH in a

unique way as

pH = p̄H + p′H with p̄H ∈ M̂H and p′H ∈ M̂0
H
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By virtue of this decomposition, the term concerning pH in (3.170) can be decomposed as∑
T∈TH

∫
T∩Ωε

pH div v =
∑
T∈TH

∫
T∩Ωε

p̄H div v +
∑
T∈TH

∫
T∩Ωε

p′H div v (3.171)

Now we compute the first term in the right hand side of (3.171). Integrating by parts yields:∫
T∩Ωε

p̄H div v =

∫
∂(T∩Ωε)

v · np̄H −
∫
T∩Ωε

v · grad p̄H , ∀v ∈ V̂ 0
H (3.172)

Since p̄H ∈ M̂H , definition of M̂H (3.166) implies that for any T ∈ TH , p̄H |T ∈ Pn (T ).
Thus it is easy to see that for any E ∈ E (T ), p̄H |E ∈ Pn(E). Making use of Assumption 3.1.1
and the item 1 of Assumption 3.6.2, we have np̄H |E ∈ span {ωE,1, · · · ,ωE,s}. Then definition
of V̂ 0

H implies that ∫
∂(T∩Ωε)

v · np̄H = 0

Then (3.172) reduces to∫
T∩Ωε

p̄H div v = −
∫
T∩Ωε

v · grad p̄H

As p̄H |T ∈ Pn(T ), it is obvious that grad p̄H ∈ Pn−1(T ) on T ∈ TH . Making use of the
item 2 of Assumption 3.6.2, definition of V̂ 0

H implies that∫
T∩Ωε

p̄H div v = −
∫
T∩Ωε

v · grad p̄H = 0

As a result, (3.171) equals to∑
T∈TH

∫
T∩Ωε

pH div v =
∑
T∈TH

∫
T∩Ωε

p′H div v

and (3.170) reduces to: ∀ (v, q) ∈ X̂0
H ,

cStH ((uH , pH) , (v, q)) =
∑
T∈TH

∫
T∩Ωε

(
µ∇uH : ∇v − p′H div v − q div uH

)
= 0 (3.173)

In a second step, choosing an element T ∈ TH and the test function v = 0, for any q ∈ M̂0
H

with q vanishing outside T , (3.173) becomes∫
T∩Ωε

q div uH = 0

Then by making use of the item 3 of Assumption 3.6.2, it is straightforward to verify that

div uH ∈ Pn (T ) in T ∩ Ωε, i.e. div uH ∈ span {$T,1, · · · , $T,t} (3.174)
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In a third step, we observe that for any face E ∈ E(T ), there exist some (non unique)
functions vE,i ∈

(
H1 (T ∩ Ωε)

)d, i = 1, · · · , s such that
∫
F∩Ωε vE,i · ωF,j = δE,F δi,j , ∀F ∈ E(T ), ∀j = 1, · · · , s∫
T∩Ωε vE,i ·ϕT,l = 0, ∀l = 1, · · · , r
vE,i = 0, on ∂Bε ∩ T

We observe that there exist some (non unique) functions vT,k ∈
(
H1 (T ∩ Ωε)

)d, k =
1, · · · , r such that 

∫
F∩Ωε vT,k · ωF,j = 0, ∀F ∈ E(T ), ∀j = 1, · · · , s∫
T∩Ωε vT,k ·ϕT,l = δk,l, ∀l = 1, · · · , r
vT,k = 0, on ∂Bε ∩ T

We denote by V (T ) the set of functions in
(
H1 (T ∩ Ωε)

)d vanishing on ∂Bε ∩ T :

V (T ) =
{
v ∈

(
H1(T ∩ Ωε)

)d such that v = 0 on ∂Bε ∩ T
}

It is easy to check that the space V (T ) can be decomposed as

V (T ) = V∫ 0(T )⊕ span {vE,i, vT,k, ∀E ∈ E(T ), i = 1, · · · , s, k = 1, · · · , r}

where

V∫ 0(T ) =

{
v ∈

(
H1(T ∩ Ωε)

)d
:
∫
E∩Ωε v · ωE,i = 0,

∫
T∩Ωε v ·ϕT,l = 0, v = 0

on ∂Bε ∩ T, ∀E ∈ E(T ), i = 1, · · · , s, l = 1, · · · , r.

}

By virtue of this decomposition, for any v ∈ V (T ), there exist ṽ ∈ V∫ 0(T ), βF,1, · · · , βF,s ∈ R
for F ∈ EH and βT,1, · · · , βT,r ∈ R such that

v = ṽ +
∑
F∈EH

s∑
j=1

βF,jvF,j +

r∑
k=1

βT,kvT,k (3.175)

Now we compute βE,i for any E ∈ E(T ) and i = 1, · · · , s. Multiplying (3.175) by ωE,i and
integrating over E yields∫

E∩Ωε

v · ωE,i =

∫
E∩Ωε

ṽ · ωE,i +
∑
F∈EH

s∑
j=1

βF,j

∫
E∩Ωε

vF,j · ωE,i

+

r∑
k=1

βT,k

∫
E∩Ωε

vT,k · ωE,i

Making use of definition of V̂ 0
H (3.162), it is trivial to verify that

∫
E∩Ωε ṽ · ωE,i = 0 for ṽ ∈ V∫ 0(T )
r∑

k=1

βT,k
∫
E∩Ωε vT,k · ωE,i = 0∑

F∈EH

s∑
j=1

βF,j
∫
E∩Ωε vF,j · ωE,i = βE,i

=⇒
∫
E∩Ωε

v · ωE,i = βE,i (3.176)
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Then we compute βT,l for any l = 1, · · · , r. Multiplying (3.175) by ϕT,l and integrating
over T ∈ TH yields∫
T∩Ωε

v ·ϕT,l =

∫
T∩Ωε

ṽ ·ϕT,l +
∑
F∈EH

s∑
j=1

βF,j

∫
T∩Ωε

vF,j ·ϕT,l +

r∑
k=1

βT,k

∫
T∩Ωε

vT,k ·ϕT,l

Making use of definition of V̂ 0
H (3.162), it is straightforward to check that

∫
T∩Ωε ṽ ·ϕT,l = 0 for ṽ ∈ V∫ 0(T )∑
F∈EH

s∑
j=1

βF,j
∫
T∩Ωε vF,j ·ϕT,l = 0

r∑
k=1

βT,k
∫
T∩Ωε vT,k ·ϕT,l = βT,l

=⇒
∫
T∩Ωε

v ·ϕT,l = βT,l (3.177)

Now let ṽ be the function which equals to ṽ on T ∩Ωε and 0 elsewhere. Hence it is obvious
that ṽ ∈ V̂ 0

H . Taking q = 0, (3.173) becomes∫
Ωε

(
µ∇uH : ∇ṽ − p′H div ṽ

)
=

∫
T∩Ωε

(
µ∇uH : ∇ṽ − p′H div ṽ

)
= 0 (3.178)

Substituting ṽ defined in (3.175) into (3.178), we obtain∫
T∩Ωε

(
µ∇uH : ∇v − p′H div v

)
=

∑
F∈E(T )

s∑
j=1

βF,j

∫
T∩Ωε

(
µ∇uH : ∇vF,j − p′H div vF,j

)
+

r∑
k=1

βT,k

∫
T∩Ωε

(
µ∇uH : ∇vT,k − p′H div vT,k

)
(3.179)

Denoting for any F ∈ E(T ), j = 1, · · · , s and k = 1, · · · , r

λF,j =

∫
T∩Ωε

µ∇uH : ∇vF,j − p′H div vF,j

λT,k =

∫
T∩Ωε

µ∇uH : ∇vT,k − p′H div vT,k

and taking advantage of βE,i (3.176) and βT,l (3.177), equation (3.179) can be written as∫
T∩Ωε

(
µ∇uH : ∇v − p′H div v

)
=

∑
E∈E(T )

s∑
i=1

λE,i

∫
E∩Ωε

v · ωE,i +
r∑

k=1

λT,k

∫
T∩Ωε

v ·ϕT,k

(3.180)

In (3.180), taking v = 0 on E ∈ E(T ) and integrating by parts the left hand side, we obtain

−µ∆uH +∇p′H =

r∑
k=1

λT,kϕT,k in T ∩ Ωε (3.181)

Then by writing the variational formulation of (3.181) for v ∈ V (T ) and comparing with
(3.180), it is easy to deduce that

µ∇uHn− p′Hn ∈ span {ωE,1, · · · ,ωE,s} on E ∩ Ωε ∀E ∈ E(T ) (3.182)
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Finally, combining equations (3.174), (3.181) and (3.182), we obtain the following system

−µ∆uH +∇p′H =
r∑

k=1

λT,kϕT,k in T ∩ Ωε

div uH ∈ span {$T,1, · · · , $T,t} in T ∩ Ωε

uH = 0 on ∂Bε ∩ T
µ∇uHn− p′Hn ∈ span {ωE,1, · · · ,ωE,s} on E ∩ Ωε, ∀E ∈ E(T )

On any element T ∈ TH , for any uH ∈ V̂ St
H fixed in the formulation above, we now prove

that p′H and the vector (λT,k) = (λT,1, · · · , λT,r) are both uniquely determined by uH . Assum-

ing that there exist
(
ζT1 ,
(
λ1
T,k

))
∈ M̂0

H(T )× Rr and
(
ζT2 ,
(
λ2
T,k

))
∈ M̂0

H(T )× Rr that both

verify the formulation above. We recall that the space M̂0
H(T ) is defined by (3.164). In other

words,

∇ζT1 =
r∑

k=1

λ1
T,kϕT,k + µ∆uH

∇ζT2 =
r∑

k=1

λ2
T,kϕT,k + µ∆uH

Subtracting these equations, we obtain

∇
(
ζT1 − ζT2

)
=

r∑
k=1

(
λ1
T,k − λ2

T,k

)
ϕT,k

The fact ϕT,k ∈ (Pn−1 (T ))d implies that
(
ζT1 − ζT2

)
∈ Pn(T ). Besides,

(
ζT1 − ζT2

)
∈

M̂0
H(T ) which is orthogonal to Pn (T ). Thus we deduce that ζT1 = ζT2 and then

(
λ1
T,k

)
=(

λ2
T,k

)
. Therefore we conclude that both p′H and (λT,k) are uniquely determined by uH . Conse-

quently, we deduce that there exists a linear operator such that p′H = πH (uH) with uH ∈ V̂ St
H .

We recall that the pressure pH is defined by pH = p̄H + p′H . Thus we proved that (uH , pH)
defined in (3.165) belongs to the space defined by (3.168).

Reciprocally, we now prove that (uH , pH) ∈ X̂
St

H defined by (3.168) satisfies also relation

(3.165). Let (uH , pH) ∈ X̂
St

H defined by (3.168). For any uH ∈ V̂ St
H , on any T ∈ TH ,

definition of V̂ St
H (3.162) shows that there exist a unique ζT = πH (uH) ∈ M̂0

H(T ) and a unique
(λT,1, · · · , λT,r) ∈ Rr such that

−µ∆uH +∇ζT =
r∑

k=1

λT,kϕT,k in T ∩ Ωε (3.183)

div uH ∈ span {$T,1, · · · , $T,t} in T ∩ Ωε (3.184)

uH = 0 on ∂Bε ∩ T (3.185)

µ∇uHn− ζTn ∈ span {ωE,1, · · · ,ωE,s} on E ∩ Ωε, ∀E ∈ E(T ) (3.186)

where πH : V̂ St
H → M̂0

H is the linear operator in Definition 3.6.4.
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Equation (3.186) shows that for any E ∈ E(T ), there exist λE,1, · · · , λE,s ∈ R such that

µ∇uHn− ζTn =
s∑
i=1

λE,iωE,i on E ∩ Ωε, ∀E ∈ E(T )

For any v ∈ V̂ 0
H , integrating by parts (3.183) and making use of the equation above, we

obtain ∫
T∩Ωε

µ∇uH : ∇v −
∫
T∩Ωε

ζT div v =
r∑

k=1

λT,k

∫
T∩Ωε

ϕT,k · v

+
∑

E∈E(T )

s∑
i=1

λE,i

∫
E∩Ωε

ωE,i · v (3.187)

For any v ∈ V̂ 0
H , definition of V̂ 0

H (3.162) implies that∫
T∩Ωε

ϕT,k · v = 0,

∫
E∩Ωε

ωE,i · v = 0

Combining equations above, it is easy to see that (3.187) reduces to∫
T∩Ωε

µ∇uH : ∇v −
∫
T∩Ωε

ζT div v = 0 (3.188)

Besides, integration by parts yields∫
T∩Ωε

p̄H |T div v =

∫
∂(T∩Ωε)

v · np̄H |T −
∫
T∩Ωε

v · grad p̄H |T , ∀v ∈ V̂ 0
H

The definition of M̂H implies that p̄H |T ∈ Pn(T ) and then grad p̄H |T ∈ (Pn−1(T ))d. It is
also obvious that the restriction of np̄H |T to E ∈ E(T ) belongs to (Pn(E))d. Making use of
Assumption 3.1.1 and Assumption 3.6.2, definition of V̂ 0

H implies that{∫
∂(T∩Ωε) v · np̄H |T = 0∫
T∩Ωε v · grad p̄H |T = 0

=⇒
∫
T∩Ωε

p̄H |T div v = 0 (3.189)

Moreover, for any uH ∈ V̂ St
H , div uH ∈ Pn(T ). For any q ∈ M̂0

H(T ), the fact that Pn(T )

and M̂0
H(T ) are orthogonal implies that∫

T∩Ωε

q div uH = 0 (3.190)

As a result, summing (3.188), (3.189) and (3.190), we obtain that ∀ (v, q) ∈ X̂0
H ,∫

T∩Ωε

µ∇uH : ∇v −
∫
T∩Ωε

(
ζT + p̄H |T

)
div v −

∫
T∩Ωε

q div uH = 0, ∀T ∈ TH

Denoting pH |T = ζT + p̄H |T on each element T ∈ TH , let pH be the function which equals
to pH |T on each T ∈ TH , then (uH , pH) ∈ X̂St

H . Summing the equation above on all elements
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T ∈ TH , we obtain that for (v, q) ∈ X̂0
H ,∑

T∈TH

∫
T∩Ωε

µ∇uH : ∇v −
∑
T∈TH

∫
T∩Ωε

pH div v −
∑
T∈TH

∫
T∩Ωε

q div uH = 0

which is exactly definition (3.165).
Consequently, we have proved the identity between (3.165) and (3.168), i.e. property (3.169).

3.6.2 The local problems defined by Stokes equations

We now construct a basis of the space V̂ St
H which consists of functions associated to coarse ele-

ments (element-based basis functions) or faces (face-based basis functions) of the coarse mesh.

The strong form We first construct basis functions associated to faces of the coarse mesh. For
any E ∈ EH , for i = 1, · · · , s, find the function ΦE,i : Ωε → Rd, the pressure πE,i : Ωε → R
such that ΦE,i and πE,i vanish outside the coarse element Tk ⊂ ωE for k ∈ {1, 2} (only one
coarse element if E ∈ ∂Ω) and solve on Tk:

−µ∆ΦE,i +∇πE,i ∈ span {ϕTk,1, · · · ,ϕTk,r} in Tk ∩ Ωε

div ΦE,i ∈ span {$Tk,1, · · · , $Tk,t} in Tk ∩ Ωε

µ∇ΦE,in− πE,in ∈ span {ωF,1, · · · ,ωF,s} on F, ∀F ∈ E(Tk)

ΦE,i = 0 on ∂Bε ∩ Tk∫
F∩Ωε ΦE,i · ωF,j =

{
δij , F = E

0, F 6= E
∀F ∈ E (Tk) , ∀j = 1, · · · , s∫

Tk∩Ωε ΦE,i ·ϕTk,l = 0 ∀l = 1, · · · , r∫
Tk∩Ωε πE,i ·$Tk,m = 0 ∀m = 1, · · · , t

(3.191)

Now we construct basis functions associated to elements of the coarse mesh. For each T ∈
TH , for k = 1, · · · , r, the support of the function ΨT,k is reduced to T ∩ Ωε. We find ΨT,k :
Ωε → Rd and πT,k : Ωε → R by solving on T :

−µ∆ΨT,k +∇πT,k ∈ span {ϕT,1, · · · ,ϕT,r} in T ∩ Ωε

div ΨT,k ∈ span {$T,1, · · · , $T,t} in T ∩ Ωε

µ∇ΨT,kn− πT,kn ∈ span {ωF,1, · · · ,ωF,s} on F, ∀F ∈ E(T )

ΨT,k = 0 on ∂Bε ∩ T∫
F∩Ωε ΨT,k · ωF,j = 0 ∀F ∈ E (T ) , ∀j = 1, · · · , s∫
T∩Ωε ΨT,k ·ϕT,l = δkl ∀l = 1, · · · , r∫
T∩Ωε πT,k ·$T,m = 0 ∀m = 1, · · · , t

(3.192)

The weak form The weak form of (3.191) is: for any E ∈ EH , for i = 1, · · · , s, on the
coarse element Tk ⊂ ωE for k ∈ {1, 2} (only one coarse element if E ∈ ∂Ω), find ΦE,i ∈(
H1 (Tk ∩ Ωε)

)d such that ΦE,i = 0 on ∂Bε ∩ Tk, πE,i ∈ L2
0 (Tk ∩ Ωε), λF,1, · · · , λF,s ∈ R
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for F ∈ E (Tk) and λTk,1, · · · , λTk,r ∈ R by solving:

∫
Tk∩Ωε µ∇ΦE,i : ∇v −

∫
Tk∩Ωε πE,i div v +

∑
F∈E(Tk)

s∑
j=1

λF,j
∫
F∩Ωε v · ωF,j =

r∑
l=1

λTk,l
∫
Tk∩Ωε ϕTk,l · v, ∀v ∈

(
H1 (Tk ∩ Ωε)

)d such that v = 0 on ∂Bε ∩ Tk∫
Tk∩Ωε q div ΦE,i = 0, ∀q ∈ M̂0

H(T )∑
F∈E(Tk)

s∑
j=1

µF,j
∫
F∩Ωε ΦE,i · ωF,j = µE,i, ∀µF,j ∈ R, ∀F ∈ E(Tk), ∀j = 1, · · · , s∫

Tk∩Ωε ΦE,i ·ϕTk,l = 0, ∀l = 1, · · · , r∫
Tk∩Ωε πE,i ·$Tk,m = 0, ∀m = 1, · · · , t

The weak form of (3.192) is: for any T ∈ TH , for k = 1, · · · , r, find ΨT,k ∈
(
H1 (T ∩ Ωε)

)d
such that ΨT,k = 0 on ∂Bε ∩T , πT,k ∈ L2

0 (T ∩ Ωε), λF,1, · · · , λF,s ∈ R for all F ∈ E (T ) and
λT,1, · · · , λT,r ∈ R by solving

∫
T∩Ωε µ∇ΨT,k : ∇v −

∫
T∩Ωε πT,k div v +

∑
F∈E(T )

s∑
j=1

λF,j
∫
F∩Ωε v · ωF,j =

r∑
l=1

λT,l
∫
T∩Ωε ϕT,l · v, ∀v ∈

(
H1 (T ∩ Ωε)

)d such that v = 0 on ∂Bε ∩ T∫
T∩Ωε q div ΨT,k = 0,∀q ∈ M̂0

H(T )∑
F∈E(T )

s∑
j=1

µF,j
∫
F∩Ωε ΨT,k · ωF,j = 0, ∀µF,j ∈ R, ∀F ∈ E(T ), ∀j = 1, · · · , s∫

T∩Ωε ΨT,k ·ϕT,l = δkl, ∀l = 1, · · · , r∫
T∩Ωε πT,k ·$T,m = 0, ∀m = 1, · · · , t

3.6.3 The basis functions of the space V̂ St
H

Theorem 3.6.2. The functions ΦE,i for E ∈ EH and i = 1, · · · , s defined by (3.191) and ΨT,k

for T ∈ TH and k = 1, · · · , r defined by (3.192) form a basis of V̂ St
H defined by (3.167). In other

words,

V̂ St
H = span {ΦE,i, ΨT,k, E ∈ EH , T ∈ TH , i = 1, · · · , s, k = 1, · · · , r} (3.193)

This theorem is new and now we provide its detailed proof in what follows.

Proof. First of all, it is obvious that functions ΦE,i, for E ∈ EH and i = 1, · · · , s defined by
(3.191) and ΨT,k for T ∈ TH and k = 1, · · · , r defined by (3.192) belong both to V̂ St

H . Besides,
it is easy to verify that {ΦE,i, E ∈ EH , i = 1, · · · , s} ∪ {ΨT,k, T ∈ TH , k = 1, · · · , r} forms
a linearly independent family. Consequently, we have

span {ΦE,i, ΨT,k, E ∈ EH , T ∈ TH , i = 1, · · · , s, k = 1, · · · , r} ⊂ V̂ St
H

Reciprocally, let u ∈ V̂ St
H , definition of V̂ St

H implies that on each T ∈ TH , there exist a
unique ζT ∈ M0

H(T ) and a unique vector (λT,1, · · · , λT,r) ∈ Rr that satisfy (3.183)–(3.186).
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We introduce v and σ below:

v = u−
∑
T∈TH

r∑
k=1

(∫
T∩Ωε

u ·ϕT,k
)

ΨT,k −
∑
E∈EH

s∑
i=1

(∫
E∩Ωε

u · ωE,i
)

ΦE,i

σ = ζT −
∑
T∈TH

r∑
k=1

(∫
T∩Ωε

u ·ϕT,k
)
πT,k −

∑
E∈EH

s∑
i=1

(∫
E∩Ωε

u · ωE,i
)
πE,i

For any T ∈ TH , it is easy to check that v and σ verify:

−µ∆v +∇σ ∈ span {ϕT,1, · · · ,ϕT,r} in T ∩ Ωε (3.194)

div v ∈ span {$T,1, · · · , $T,t} in T ∩ Ωε (3.195)

µ∇vn− σn ∈ span {ωF,1, · · · ,ωF,s} on F ∩ Ωε, ∀F ∈ E(T ) (3.196)

v = 0 on ∂Bε ∩ T∫
E∩Ωε

v · ωE,i = 0 ∀E ∈ E(T ), ∀i = 1, · · · , s (3.197)∫
T∩Ωε

v ·ϕT,l = 0 ∀l = 1, · · · , r (3.198)∫
T∩Ωε

σ ·$T,j = 0 ∀j = 1, · · · , t (3.199)

Equation (3.194) implies that there exists (λT,1, · · · , λT,r) ∈ Rr such that

−µ∆v +∇σ =

r∑
l=1

λT,lϕT,l (3.200)

Choosing v as the test function, the variational formulation of (3.200) is∫
T∩Ωε

µ|∇v|2 −
∫
T∩Ωε

σ div v =
r∑
l=1

λT,l

∫
T∩Ωε

ϕT,l · v +

∫
∂(T∩Ωε)

(µ∇vn− σn) · v

(3.201)

It is straightforward to deduce from (3.195) and (3.199) that∫
T∩Ωε

σ div v = 0

Then equation (3.198) reveals that

r∑
l=1

λT,l

∫
T∩Ωε

ϕT,l · v = 0

Combining equations (3.196) and (3.197), we can deduce that∫
∂(T∩Ωε)

(µ∇vn− σn) · v = 0

Finally, equation (3.201) reduces to∫
T∩Ωε

|∇v|2 = 0
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which implies that v is constant on T ∩ Ωε. On combining (3.198), we deduce that v = 0 and
thus σ = 0. Thus we have proved that

V̂ St
H ⊂ span {ΦE,i,ΨT,k, E ∈ EH , T ∈ TH , i = 1, · · · , s, k = 1, · · · , r}

Consequently, combing the results above, we have proved that

V̂ St
H = span {ΦE,i,ΨT,k, E ∈ EH , T ∈ TH , i = 1, · · · , s, k = 1, · · · , r}

We conclude that any function V̂ St
H can be represented as

∀uH ∈ V̂ St
H , uH =

∑
E∈EH

s∑
i=1

uE,iΦE,i +
∑
T∈TH

r∑
k=1

uT,kΨT,k

An explicit formulation of the linear operator πH (see Definition 3.6.4) is

∀uH ∈ V̂ St
H , πH (uH) =

∑
E∈EH

s∑
i=1

uE,iπE,i +
∑
T∈TH

r∑
k=1

uT,kπT,k (3.202)

3.6.4 The choices of weighting functions and finite elements

For n = 0, weighting functions are chosen as (3.161) and thus the following condition∫
T∩Ωε

u ·ϕT,k = 0, ∀T ∈ TH , ∀k = 1, · · · , r

is void in V̂ 0
H defined by (3.162).

For n = 0, Assumption 3.6.1 reveals that the choice of weighting functions (3.161) is the
same as in the case of s = 2 defined by (3.7) and the case of s = 3 defined by (3.9). Thus the
multiscale method defined by Stokes equations (see section 3.2) with weighting functions in the
case of s = 2 defined by (3.7) and the case of s = 3 defined by (3.9) is a special case of the
high-order multiscale method.

For n = 1, in two-dimensional simulations performed in this thesis, we choose for any
T ∈ TH , for any E ∈ EH ,

s = 4 : ωE,1 = e1, ωE,2 = e2, ωE,3 = nEψE , ωE,4 = τEφE .

t = 3 : $T,1 = 1, $T,2 = x, $T,3 = y.

r = 2 : ϕT,1 = e1, ϕT,2 = e2.

(3.203)

where {e1, e2} is the canonical basis of R2 and nE and τE are respectively unit vectors normal
and tangent to the faceE. Besides, ψE ∈ P1(E) and φE ∈ P1(E) which verify that

∫
E∩Ωε ψE =

0 and
∫
E∩Ωε φE = 0. We have not performed three-dimensional simulations using high-order

multiscale methods in this thesis. But the choice of weighting functions in three dimensions is
straightforward.

In this case, by comparing V̂ 0
H and M̂0

H defined by (3.162)–(3.163) with V 0
H,bubble and M0

H

defined by (3.128)–(3.129), we find that the definition of the multiscale method enriched by
bubble functions is not completely correct. The space V 0

H,bubble defined by (3.128) is almost
correctly defined whereas M0

H defined by (3.129) should be enriched by weighting functions
ϕT,k for T ∈ TH and k = 1, · · · , r. This explains why this multiscale method does not improve
the accuracy of numerical results. The high-order multiscale method with n = 1 gives the correct
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definition of bubble functions for Stokes equations and indicates that weighting functions should
be chosen as (3.203). This definition of bubble functions is quite different from that for diffusion
or advection-diffusion problems in [54, 102, 105, 113], due to the existence of pressure.

In conclusion, the high-order Crouzeix-Raviart multiscale finite element method provides
a more general framework which provides appropriate definitions of V̂ 0

H and M̂0
H for different

n > 0. For any n > 1 given, this method indicates that weighting functions should be chosen
as Assumption 3.6.2. When n increases, the approximation space X̂St

H is enriched and the mul-
tiscale method becomes more accurate. However, at the same time, there are more weighting
functions to solve and computing costs increase. By choosing an appropriate n, the high-order
multiscale method allows to find a compromise between the expected accuracy and affordable
computing costs.

Besides, numerical experiments performed in this thesis reveals that the finite element used
to discretize local problems (3.191)–(3.192) plays an important role in the accuracy of the high-
order Crouzeix-Raviart multiscale method. In practice, we first tried to use the Crouzeix-Raviart
finite element to discretize local problems (3.191)–(3.192) with weighting functions chosen as
(3.203). We recall that in the Crouzeix-Raviart finite element, the pressure is discretized in the
P0 space and the velocity in the P1 nonconforming space. Then we tried also to discretize the
pressure of local problems in the P1 space without changing the discretization of the velocity.
Numerical results (see Chapter 6) reveals that the reconstructed fine-scale pressure is more accu-
rate when we discretize the pressure of local problems in the P1 space.

3.6.5 The coarse-scale problem

The coarse-scale formulation of Stokes problem (1.2) reads: find (uH , pH) ∈ X̂St
H such that

cStH ((uH , pH) , (v, q)) = (f ,v) , ∀ (v, q) ∈ X̂St
H

Theorem 3.6.1 implies that pH can be decomposed as pH = πH (uH)+ p̄H with πH (uH) ∈
M̂0
H and p̄H ∈ M̂H . It is easy to verify that (πH (uH) , div v) = 0 for all uH ,v ∈ V̂ St

H .
Therefore, the problem above can be reformulated as: find uH ∈ V̂ St

H and p̄H ∈ M̂H such that

aStH (uH ,v) + bH (v, p̄H) = FH (v) , ∀v ∈ V̂ St
H (3.204)

bH (uH , q) = 0, ∀q ∈ M̂H (3.205)

where

aStH (uH ,v) =
∑
T∈TH

∫
T∩Ωε

µ∇uH : ∇v

bH (v, p̄H) = −
∑
T∈TH

∫
T∩Ωε

p̄H div v

FH (v) =
∑
T∈TH

∫
T∩Ωε

f · v

Theorem 3.6.3. The space V̂ St
H and the space M̂H have the following relation

div V̂ St
H = M̂H

This theorem is new and now we provide its detailed proof in what follows.



3.6. The high-order Crouzeix-Raviart multiscale finite element method defined by Stokes
equations

89

Proof. We prove first that div V̂ St
H ⊂ M̂H . For any v ∈ V̂ St

H , for any T ∈ TH , we have proved
that div v ∈ Pn (T ). As V̂ St

H ⊂ V̂ ext
H , definition of V̂ ext

H implies that
∫
E∩Ωε [[v]] · n = 0. Thus

we deduce that∑
T∈TH

∫
T∩Ωε

div v =
∑
T∈TH

∫
∂(T∩Ωε)

v · n =
∑
E∈EH

∫
E∩Ωε

[[v · n]] = 0

Hence we have proved that div V̂ St
H ⊂ M̂H .

Reciprocally, we now prove that M̂H ⊂ div V̂ St
H . For any q ∈ M̂H , definition of M̂H shows

that q ∈ L2
0 (Ω). Thus there exists v ∈

(
H1

0 (Ωε)
)d such that div v = q. It is easy to check that

v can be decomposed as

v = vH + v0
H with vH ∈ V̂ St

H , v0
H ∈ V̂ 0

H (3.206)

For any element T ∈ TH , let $T ∈ Pn (T ). Integrating by parts gives:∑
T∈TH

∫
T∩Ωε

$T div vH =
∑
T∈TH

∫
∂(T∩Ωε)

$TvH · n−
∑
T∈TH

∫
T∩Ωε

vH · ∇$T

Substituting vH defined in (3.206) into this equation, we obtain∑
T∈TH

∫
T∩Ωε

$T div vH =
∑
T∈TH

∫
∂(T∩Ωε)

$T

(
v − v0

H

)
· n−

∑
T∈TH

∫
T∩Ωε

(
v − v0

H

)
· ∇$T

(3.207)

The fact that $T ∈ Pn (T ) implies that n$T ∈ (Pn(T ))d and ∇$T ∈ Pn−1(T ). Then
definition of V̂ 0

H reveals that∫
∂(T∩Ωε)

v0
H · n$T = 0,

∫
T∩Ωε

v0
H · ∇$T = 0

Finally (3.207) reduces to∑
T∈TH

∫
T∩Ωε

$T div vH =
∑
T∈TH

∫
∂(T∩Ωε)

$Tv · n−
∑
T∈TH

∫
T∩Ωε

v · ∇$T

=
∑
T∈TH

∫
T∩Ωε

$T div v

=
∑
T∈TH

∫
T∩Ωε

q$T

It is easy to deduce that q = div vH and thus M̂H ⊂ div V̂ St
H . Consequently, combining the

results above, we conclude that div V̂ St
H = M̂H .

Making use of Theorem 3.6.3, it is trivial to deduce from (3.205) that div uH = 0 in T ∩Ωε

for T ∈ TH . We can thus eliminate pressure from (3.204)–(3.205) by introducing the subspace:

ẐStH =
{
v ∈ V̂ St

H such that div v = 0, ∀T ∈ TH
}
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Therefore (3.204)–(3.205) is equivalent to: find uH ∈ ẐStH such that∑
T∈TH

∫
T∩Ωε

µ∇uH : ∇v =
∑
T∈TH

∫
T∩Ωε

f · v, ∀v ∈ ẐStH

The existence and uniqueness of a velocity uH to this problem is guaranteed by Theo-
rem 2.1.2. Then the existence and uniqueness of pressure p̄H follows from the fact that div V̂ St

H =

M̂H . As a result, we have proved that (3.204)–(3.205) has one and only one solution (uH , p̄H) ∈
V̂ St
H × M̂H .

Moreover, like other multiscale methods previously presented in this chapter, this high-order
multiscale method can also be applied to solve Oseen problems and Navier-Stokes problems on
the coarse mesh. The reader can refer to subsection 3.2.4 and subsection 3.3.5 for more details.

Remark. In practice, we notice that it is not only inefficient but also difficult to apply the
prediction-correction algorithm to solve local problems (3.191)–(3.192) and coarse problems
(3.204)–(3.205). Thus an important work was devoted in this thesis to the implementation of a
direct solver. More explanations about the choices of finite elements and solvers can be found in
the next chapter.

3.6.6 The reconstruction of fine-scale features

After solving the coarse-scale problems, we obtain the coarse-scale solutions uH and p̄H . Then
we reconstruct the fine-scale features of the solution for visualization. On each coarse element
T ∈ TH , making use of V̂ St

H defined by (3.193) and the formula of πH defined by (3.202), the
fine-scale velocity and pressure are approximated by

uH |T =
∑

E∈E(T )

s∑
i=1

uE,iΦE,i +
r∑

k=1

uT,kΨT,k

pH |T =
∑

E∈E(T )

s∑
i=1

uE,iπE,i +

r∑
k=1

uT,kπT,k + p̄H |T (3.208)

3.7 The high-order Crouzeix-Raviart multiscale finite element method
defined by Oseen equations

The high-order Crouzeix-Raviart multiscale finite element method presented in the last section
can be easily extended for Oseen equations. In this section, the choices of weighting functions
and Assumption 3.6.1 and Assumption 3.6.2 are all valid. Besides, let functional spaces X̂ext

H ,
V̂ ext
H ,M , V̂ 0

H and M̂0
H be the same as those defined in section 3.6. Since this high-order Crouzeix-

Raviart multiscale finite element method is defined by Oseen equations, we denote X̂H by X̂Os
H

in order to distinguish from X̂St
H .

Definition 3.7.1. The subspace X̂Os
H is defined as the "orthogonal" complement of X̂0

H with
respect to the bilinear form ĉOsH (., .):

(uH , pH) ∈ X̂Os
H ⇐⇒ ĉOsH ((uH , pH) , (v, q)) = 0, ∀ (v, q) ∈ X̂0

H (3.209)
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and we recall:

ĉOsH ((uH , pH), (v, q)) =
∑
T∈TH

∫
T∩Ωε

(
µ∇uH : ∇v +

1

2
ρ (Uo · ∇uH)v − 1

2
ρ (Uo · ∇v)uH

)
+
∑
T∈TH

∫
T∩Ωε

(−pH div v − q div uH)

Definition 3.7.2. Let the functional spaces M̂H ⊂M and V̂ Os
H ⊂ V̂ ext

H be defined by

M̂H =
{
q ∈ L2

0 (Ω) such that q |T∈ Pn(T ), ∀T ∈ TH
}

(3.210)

V̂ Os
H =



v ∈
(
L2 (Ωε)

)d
: ∀T ∈ TH , ∃ζT ∈ M̂0

H(T ) such that
−µ∆v + ρ (Uo · ∇)v +∇ζT ∈ span {ϕT,1, · · · ,ϕT,r} in T ∩ Ωε

div v ∈ span {$T,1, · · · , $T,t} in T ∩ Ωε

v = 0 on ∂Bε ∩ T
µ∇vn− 1

2
ρ (Uo · n)v − ζTn ∈ span {ωE,1, · · · ,ωE,s} on E ∩ Ωε ∀E ∈ E(T )


(3.211)

where E (T ) is the set of faces composing ∂T .

Definition 3.7.3. For any v ∈ V̂ Os
H , on any element T ∈ TH , definition (3.211) implies that there

exists a function ζT which is uniquely determined by v. We can thus define a linear operator
πH : V̂ Os

H → M̂0
H such that for any v ∈ V̂ Os

H , πH (v) = ζT on any element T ∈ TH .

Theorem 3.7.1. Using M̂H (3.210) and V̂ Os
H (3.211), we define X̂

Os

H by

X̂
Os

H = span
{

(uH , πH (uH) + p̄H) ,uH ∈ V̂ Os
H , p̄H ∈ M̂H

}
then the space X̂Os

H defined in (3.209) satisfies the following property

X̂Os
H = X̂

Os

H (3.212)

The proof of this theorem is similar to that of subsection 3.3.1 and subsection 3.6.1. Thus we
will not repeat it here and we apply this theorem directly in this thesis.

3.7.1 The local problems defined by Oseen equations

We now construct a basis for the space V̂ Os
H which consists of functions associated to coarse el-

ements (element-based basis functions) or faces (face-based basis functions) of the coarse mesh.

The strong form We first construct the basis function associated to faces of the coarse mesh.
For any E ∈ EH , for i = 1, · · · , s, find ΦE,i : Ωε → Rd such that ΦE,i = 0 on ∂Bε ∩ Tk and
πE,i : Ωε → R such that ΦE,i and πE,i vanish outside the coarse element Tk ⊂ ωE , k ∈ {1, 2}
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(only one coarse element if E ∈ ∂Ω) and solve on Tk:

−µ∆ΦE,i + ρ (Uo · ∇) ΦE,i +∇πE,i ∈ span {ϕTk,1, · · · ,ϕTk,r} in Tk ∩ Ωε

div ΦE,i ∈ span {$Tk,1, · · · , $Tk,t} in Tk ∩ Ωε

µ∇ΦE,in− 1
2ρ (Uo · n) ΦE,i − πE,in ∈ span {ωF,1, · · · ,ωF,s} on F ∩ Ωε, ∀F ∈ E(Tk)

ΦE,i = 0 on ∂Bε ∩ Tk∫
F∩Ωε ΦE,i · ωF,j =

{
δij , F = E

0, F 6= E
∀F ∈ E (Tk) , ∀j = 1, · · · , s∫

Tk∩Ωε ΦE,i ·ϕTk,l = 0 ∀l = 1, · · · , r∫
Tk∩Ωε πE,i ·$Tk,m = 0 ∀m = 1, · · · , t

(3.213)

Now we construct the basis function associated to elements of the coarse mesh. For each
T ∈ TH , for k = 1, · · · , r, the support of the function ΨT,k is reduced to T ∩ Ωε. We find
ΨT,k : Ωε → Rd and πT,k : Ωε → R by solving on T :

−µ∆ΨT,k + ρ (Uo · ∇) ΨT,k +∇πT,k ∈ span {ϕT,1, · · · ,ϕT,r} in T ∩ Ωε

div ΨT,k ∈ span {$T,1, · · · , $T,t} in T ∩ Ωε

µ∇ΨT,kn− 1
2ρ (Uo · n) ΨT,k − πT,kn ∈ span {ωF,1, · · · ,ωF,s} on F, ∀F ∈ E(T )

ΨT,k = 0 on ∂Bε ∩ T∫
F∩Ωε ΨT,k · ωF,j = 0 ∀F ∈ E (T ) , ∀j = 1, · · · , s∫
T∩Ωε ΨT,k ·ϕT,l = δkl ∀l = 1, · · · , r∫
T∩Ωε πT,k ·$T,m = 0 ∀m = 1, · · · , t

(3.214)

The weak form In the weak form, the system (3.213) reads: for any E ∈ E (Tk), for i =
1, · · · , s, on the coarse element Tk ⊂ ωE , k ∈ {1, 2} (only one coarse element if E ∈ ∂Ω), find
ΦE,i ∈

(
H1(Tk ∩ Ωε)

)d such that ΦE,i = 0 , πE,i ∈ L2
0 (Tk ∩ Ωε), λF,1, · · · , λF,s ∈ R for

F ∈ E(Tk) and λTk,1, · · · , λTk,r ∈ R such that

∫
Tk∩Ωε µ∇ΦE,i : ∇v +

∫
Tk∩Ωε

(
1
2ρ (Uo · ∇) ΦE,i · v − 1

2ρ (Uo · ∇)v ·ΦE,i

)
−
∫
Tk∩Ωε πE,idiv v +

∑
F∈E(Tk)

s∑
j=1

λF,j
∫
F v · ωF,j =

r∑
l=1

λTk,l
∫
Tk∩Ωε ϕTk,l · v,∫

Tk∩Ωε q div ΦE,i = 0, ∀q ∈ M̂0
H(Tk)∑

F∈E(Tk)

s∑
j=1

µF,j
∫
F ΦE,i · ωF,j = µE,i, ∀µF,j ∈ R, ∀F ∈ E(Tk), ∀j = 1, · · · , s∫

Tk∩Ωε ΦE,i ·ϕTk,l = 0, ∀l = 1, · · · , r∫
Tk∩Ωε πE,i ·$Tk,m = 0, ∀m = 1, · · · , t

for all v ∈
(
H1 (Tk ∩ Ωε)

)d such that v = 0 on ∂Bε ∩ Tk.

The weak form of (3.214) is: on any coarse element T ∈ TH , for k = 1, · · · , r, find ΨT,k ∈(
H1 (T ∩ Ωε)

)d such that ΨT,k = 0 on ∂Bε ∩ T , πT,k ∈ L2
0 (T ∩ Ωε), λF,1, · · · , λF,s ∈ R for
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all F ∈ E (T ) and λT,1, · · · , λT,r ∈ R such that

∫
T∩Ωε µ∇ΨT,k : ∇v +

∫
T∩Ωε

(
1
2ρ (Uo · ∇) ΨT,k · v − 1

2ρ (Uo · ∇)v ·ΨT,k

)
−
∫
T∩Ωε πT,k div v +

∑
F∈E(T )

s∑
j=1

λF,j
∫
F v · ωF,j =

r∑
l=1

λT,l
∫
T∩Ωε ϕT,l · v,∫

T∩Ωε q div ΨT,k = 0, ∀q ∈ M̂0
H(T )∑

F∈E(T )

s∑
j=1

µF,j
∫
F ΨT,k · ωF,j = 0, ∀µF,j ∈ R, ∀F ∈ E(T ), ∀j = 1, · · · , s∫

T∩Ωε ΨT,k ·ϕT,l = δkl, ∀l = 1, · · · , r∫
T∩Ωε πT,k ·$T,m = 0, ∀m = 1, · · · , t

for all v ∈
(
H1 (T ∩ Ωε)

)d such that v = 0 on ∂Bε ∩ T .

3.7.2 The basis functions of the space V̂ Os
H

Theorem 3.7.2. The functions ΦE,i for E ∈ EH and i = 1, · · · , s defined by (3.213) and ΨT,k

for T ∈ TH and k = 1, · · · , r defined by (3.214) form a basis of V̂ Os
H defined by (3.211). In

other words,

V̂ Os
H = span {ΦE,i, ΨT,k, E ∈ EH , T ∈ TH , i = 1, · · · , s, k = 1, · · · , r} (3.215)

The proof of this theorem is completely similar to that of subsection 3.6.3. We conclude that
any function V̂ Os

H can be represented as

∀uH ∈ V̂ Os
H , uH =

∑
E∈EH

s∑
i=1

uE,iΦE,i +
∑
T∈TH

r∑
k=1

uT,kΨT,k

An explicit formulation of the linear operator πH (see Definition 3.6.4) is

∀uH ∈ V̂ Os
H , πH (uH) =

∑
E∈EH

s∑
i=1

uE,iπE,i +
∑
T∈TH

r∑
k=1

uT,kπT,k (3.216)

3.7.3 The choices of weighting functions and finite elements

For n = 0, weighting functions are chosen as (3.161) and the following condition∫
T∩Ωε

u ·ϕT,k = 0, ∀T ∈ TH , k = 1, · · · , r

is void in V̂ 0
H defined by (3.162).

For n = 0, Assumption 3.6.1 reveals that the choices of weighting functions (3.161) are the
same as in the case of s = 2 defined by (3.7) and the case of s = 3 defined by (3.9). Thus the
multiscale method defined by Oseen equations (see section 3.3) with weighting functions chosen
in the case of s = 2 defined by (3.7) and the case of s = 3 defined by (3.9) is just a special case
of the high-order multiscale method.
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For n = 1, in two-dimensional numerical simulations performed in this thesis, we choose for
any T ∈ TH , for any E ∈ EH ,

s = 4 : ωE,1 = e1, ωE,2 = e2, ωE,3 = nEψE , ωE,4 = τEφE .

t = 3 : $T,1 = 1, $T,2 = x, $T,3 = y.

r = 2 : ϕT,1 = e1, ϕT,2 = e2.

where {e1, e2} is the canonical basis of R2 and nE and τE are respectively unit vectors normal
and tangent to the faceE. Besides, ψE ∈ P1(E) and φE ∈ P1(E) which verify that

∫
E∩Ωε ψE =

0 and
∫
E∩Ωε φE = 0. Three-dimensional numerical simulations are not performed with high-

order multiscale method in this thesis. But the choice of weighting functions in three dimensions
is straightforward.

3.7.4 The coarse-scale problem

The discrete variational formulation of Oseen problem (1.3) is: find (uH , pH) ∈ X̂Os
H such that

cOsH ((uH , pH) , (v, q)) = (f ,v) , ∀ (v, q) ∈ X̂Os
H

where

cOsH ((uH , pH), (v, q)) =
∑
T∈TH

∫
T∩Ωε

(µ∇uH : ∇v + ρ (Uo · ∇)uH · v)

+
∑
T∈TH

∫
T∩Ωε

(−pH div v − q div uH)

Theorem 3.7.1 shows that pH can be decomposed as pH = πH (uH) + p̄H with p̄H ∈ M̂H .
Besides, it is easy to check that (πH (uH) , div v) = 0 for all uH ,v ∈ V̂ Os

H . Making use of this
property, the formula above is equivalent to: find uH ∈ V̂ Os

H and p̄H ∈ M̂H such that

aOsH (uH ,v) + bH (v, p̄H) = FH (v) , ∀v ∈ V̂ Os
H (3.217)

bH (uH , q) = 0, ∀q ∈ M̂H (3.218)

and we recall

aOsH (uH ,v) =
∑
T∈TH

∫
T∩Ωε

(µ∇uH : ∇v + ρ (Uo · ∇)uH · v)

Theorem 3.7.3. The space V̂ Os
H and the space M̂H satisfy the following relation

div V̂ Os
H = M̂H

The proof of this theorem is similar to that of subsection 3.6.5 and we will not repeat it here.
Taking advantage of this theorem, we can deduce from (3.218) that div uH = 0 in T ∩ Ωε for
T ∈ TH . We can thus eliminate the pressure from (3.217)–(3.218) by introducing a subspace of
V̂ Os
H :

ẐOsH =
{
v ∈ V̂ Os

H such that div v = 0, ∀T ∈ TH
}
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Thus system (3.217)–(3.218) is equivalent to: find uH ∈ ẐOsH such that∑
T∈TH

∫
T∩Ωε

(µ∇uH : ∇v + ρ (Uo · ∇)uH · v) =
∑
T∈TH

∫
T∩Ωε

f · v, ∀v ∈ ẐOsH

The existence and uniqueness of a velocity uH to this problem is guaranteed by Theo-
rem 2.1.2. Then the existence and uniqueness of a pressure p̄H follows from the fact that
div V̂ Os

H = M̂H . We conclude that (3.217)–(3.218) has one and only one solution (uH , p̄H) ∈
V̂ Os
H × M̂H .

Moreover, like other multiscale methods previously presented in this chapter, this high-order
multiscale method can also be applied to solve Navier-Stokes problems on the coarse mesh. The
reader can refer to subsection 3.3.5 for more details.

3.7.5 The reconstruction of fine-scale features

After solving the coarse-scale problems, we obtain the coarse-scale solutions uH and p̄H . Then
we reconstruct the fine-scale features of the solution for visualization. On each coarse element
T ∈ TH , making use of V̂ Os

H defined by (3.215) and the formula of πH defined by (3.216), the
fine-scale velocity and pressure are reconstructed by

uH |T =
∑

E∈E(T )

s∑
i=1

uE,iΦE,i +
r∑

k=1

uT,kΨT,k

pH |T =
∑

E∈E(T )

s∑
i=1

uE,iπE,i +
r∑

k=1

uT,kπT,k + p̄H |T
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Chapter 4

Technical aspects of Crouzeix-Raviart
multiscale finite element methods

This chapter addresses some technical aspects of the implementation of Crouzeix-Raviart mul-
tiscale finite element methods in TrioCFD. Local problems are discretized by the finite volume
element method where physical unknowns are discretized by the Crouzeix-Raviart finite ele-
ment. In particular, in high-order Crouzeix-Raviart multiscale finite element methods, we also
discretize the pressure of local problems in the P1 space instead of the P0 space. The idea is to
improve the accuracy of the fine-scale pressure given by the high-order multiscale method.

Coarse-scale problems are discretized by a Galerkin method where basis functions are solu-
tions of local problems. In multiscale finite element methods, coarse-scale problems are defined
on the coarse mesh by assembling matrices pre-computed locally on coarse elements. When
computing matrices on each coarse element, we decompose multiscale basis functions using the
Crouzeix-Raviart finite element basis functions. The properties of the Crouzeix-Raviart finite
element basis functions facilitate the computation of integrals in the coefficients of matrices.

In an early stage of this thesis, we solved both local and coarse-scale problems by adapting
the prediction-correction algorithm [42, 135] which is the only solver natively available in Tri-
oCFD. However, we noticed some limitations of this algorithm, especially when solving local
and coarse-scale problems defined in high-order multiscale methods. Therefore in a later stage
of this thesis, an important work was devoted to the implementation of a direct solver to solve
local and coarse-scale problems efficiently.

Outline Section 4.1 presents the finite volume element method and the Crouzeix-Raviart ele-
ment. Section 4.2 and section 4.3 present respectively the discretization and the solution of local
problems with the prediction-correction algorithm. Section 4.4 and section 4.5 reveal respec-
tively the discretization and the solution of coarse-scale problems with the prediction-correction
algorithm. Section 4.6 presents the discretization of local and coarse-scale problems defined in
high-order multiscale methods and a direct solver.

4.1 The finite volume element method

In this thesis, we implement Crouzeix-Raviart multiscale finite element methods in TrioCFD
which focus on the finite volume element method. This software will be presented in Chap-
ter 5. As indicated by its name, the finite volume element method can be considered as a certain
combination of the finite element method (see Chapter 2) and the finite volume method [141].

The finite volume method is a widely used discretization technique for partial differential
equations. One reason of its popularity is that the method ensures a local mass conservation,
which is important for some physical problems. The finite volume method is based on a balance
approach: the global domain is discretized into a series of control volumes and a local balance
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is performed on each control volume. By the divergence theorem, we obtain an integral formu-
lation of the fluxes on the boundary of the control volume. Then the integral formulation will
be discretized with respect to discrete unknowns. However, the finite volume method requires a
scheme for approximating certain fluxes.

The finite volume element method [34] was developed as an attempt to use the ideas of the
finite element method to create a more systematic finite volume methodology. The main idea
of the finite volume element method is to approximate the fluxes on the boundary of control
volumes by replacing unknowns by a finite element approximation. The finite volume element
method consists of two meshes: a primal mesh and a dual mesh. The primal mesh is used
to approximate the unknowns whereas the dual mesh is used to discretize equations. In other
words, equations are discretized by volume integrals on control volumes of the dual mesh. Then
physical unknowns are discretized into a finite element space on the primal mesh.

The finite volume element method has the following advantages: (1) the accuracy of the
method can be improved by using more accurate finite element spaces; (2) the method offers more
flexibility to handle complicated geometries and simplify the treatment of boundary conditions;
(3) the method can be viewed as a perturbation to the finite element method and can use existing
theories of the finite element method. The reader can refer to [109] and the references therein for
a detailed review of the finite volume element method.

In TrioCFD, the finite volume element method was first developed for the Crouzeix-Raviart
finite element in [65]. The convergence of the method was proved for the Stokes equations by
using results and techniques of the finite element method. Then the finite volume element method
has been further developed in [82, 123, 136].

FIGURE 4.1: The fine mesh on a coarse element perforated by obstacles

4.1.1 The Crouzeix-Raviart finite element and the control volume

For each coarse element T ∈ TH , we denote the fine mesh on this coarse element by Th (T ). In
the fine mesh Th (T ), we denote the number of elements by Nk and the number of faces by Nf .
The mesh Th (T ) is the primal mesh and then we associate to this mesh a dual mesh consisting
of control volumes. In this chapter, we present only the implementation of Crouzeix-Raviart
multiscale finite element methods in two dimensions.

In this thesis, we define a new boundary condition named averaged Dirichlet boundary con-
dition to stand for the integral type boundary condition. As shown in Figure 4.1, the boundary of
T ∩ Ωε is decomposed into two parts:

∂ (T ∩ Ωε) = Γd ∪ Γa

where Γd is the boundary of obstacles and Γa defined by

Γa = E(T ) ∩ Ωε with E(T ) = E ∪ F ∪G
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Note that E(T ) is the set of boundaries of T (not cut by obstacles). We impose the no-slip
Dirichlet condition on Γd and the averaged Dirichlet condition on Γa.

gk1

gk2
xf

Control volume ωf

p1

p2
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s2

Pressure node
Velocity node
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Sfk2
γfk

γfj
γfm

γfn

xj

xk

xm

xn

FIGURE 4.2: The Crouzeix-Raviart element and control volumes

Figure 4.2 illustrates a two dimensional Crouzeix-Raviart element which was already pre-
sented in section 2.4. The pressure unknown is located at the barycenter of the element whereas
the velocity unknown is located at the barycenter of faces. For a velocity node xf located in the
interior of T ∩ Ωε, its control volume is denoted by ωf and is constructed by joining vertices
of the face f with barycenters gk1 and gk2 of elements k1 and k2. The control volume of the
pressure node is the element itself. The boundary of the control volume ωf is denoted by ∂ωf .
As shown in Figure 4.2, denoting the facet between the node f and the node j by γfj , then ∂ωf
is decomposed as

∂ωf = γfj ∪ γfm ∪ γfn ∪ γfk (4.1)

Definition 4.1.1. For any element k ∈ Th(T ), for any velocity node xf in k, we denote the unit
outward vector normal to face f by nfk and the measure of the face by meas(f). Then we define
the outward normal surface vector to the face f by

Sfk = meas(f) · nfk (4.2)

As shown in Figure 4.2, for the node xf , the outward normal surface vector to the face f is
Sfk1 in k1 and Sfk2 in k2 with Sfk1 + Sfk2 = 0.

Γd

Γd

k1

k2

k3

x1

x2

x3

x4

k4

Velocity node

FIGURE 4.3: The treatment of control volumes with respect to Dirichlet nodes
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Control volumes of nodes located on the boundary Γd In fact, in the finite volume element
method, the conservation of momentum equation (see subsection 4.2.2) is not performed on
control volumes of Dirichlet nodes, i.e. nodes on Γd. In order to ensure the conservation of
momentum equation in the entire computational domain, a special treatment is necessary for
control volumes of Dirichlet nodes. As shown in Figure 4.3, we modify the control volume
of velocity according to the number of Dirichlet nodes in one element. This modification was
originally presented in [65].

• if the element has no Dirichlet node, for example, in the element k4, the control volume of
the internal node x4 is constructed by joining vertices with the barycenter of the element.
As a result, the total control volume of this node is 1

3meas (k2) + 1
3meas (k4).

• if the element has only one Dirichlet node, for example, in the element k3, the control
volume of node x2 in k3 is constructed by joining the Dirichlet node x3 with the vertex
faced to it. As a result, the total control volume of the node x2 is 1

3meas (k2)+ 1
2meas (k3).

• if the element has two Dirichlet nodes, for example, in the element k1, the control volume
of node x1 in k1 is the entire element. As a result, the total control volume of the node x1

is meas (k1) + 1
3meas (k2)

p xf

ωf

xj

xk
s1

s2

γfk

γfj

Γa

γaf

Pressure node
Velocity node

FIGURE 4.4: The control volume of a velocity node on the boundary Γa

Control volumes of nodes located on the boundary Γa For a velocity node xf located on the
boundary Γa, we decompose the boundary of its control volume ∂ωf into two parts:

γaf = ∂ωf ∩ Γa, γf = ∂ωf \ γaf (4.3)

For the node xf shown in Figure 4.4, we have γaf = [s1s2] and γf = γfj ∪ γfk. In fact,
for an internal node, γaf = ∅ and γf = ∂ωf . Using this convention, for any node located in the
interior of the domain or on the boundary Γa, the boundary of the control volume ωf is always
decomposed into γaf and γf .

For the coarse element T ∈ TH , we recall the finite element space of velocity Vh(T ) and
pressure Mh(T ) defined for the Crouzeix-Raviart finite element in section 2.4:

Vh (T ) =
{
vh ∈

(
L2 (T ∩ Ωε)

)d ∣∣ vh|k ∈ (P1(k))d , vh continuous at xi, ∀k ∈ Th (T )
}

(4.4)

Mh (T ) =
{
qh ∈ L2 (T ∩ Ωε)

∣∣ qh|k ∈ P0 (k) , ∀k ∈ Th (T )
}
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Let
{
φ1, · · · , φNf

}
be a basis of each component of Vh(T ) where φi(xj) = δij for i, j =

1, · · · , Nf . Let {ψ1, · · · , ψNk
} be a basis of Mh(T ) where ψk is the characteristic function of

the element k for k ∈ Th (T ). We assume that velocity nodes in Th (T ) are numbered in a way
that the first Nf0 are non Dirichlet nodes, in other words,{

1 ≤ f ≤ Nf0 ⇒ xf /∈ Γd

Nf0 < f ≤ Nf ⇒ xf ∈ Γd
(4.5)

Note that non Dirichlet nodes include nodes in the interior of T ∩ Ωε and on the boundary Γa.

4.2 The discretization of local problems

In [95, 117, 118], local problems are discretized by the finite element method and the penalization
method is applied to solve local problems on a simple uniform Cartesien grid. It should be noted
that when using the penalization method, it is required to couple the penalization parameter to
the mesh size and the discrete system may be ill-conditioned if the penalization parameter is too
small.

In TrioCFD, no penalization method is used. The body-fitted unstructured meshes are used
to resolve the boundary of obstacles and no-slip condition is imposed directly on obstacles. In
this section, we discretize the local problem defined by Stokes equations (3.39) with the finite
volume element method and the Crouzeix-Raviart element. The discretization of the Oseen term
in the local problem (3.102) will be discussed in subsection 4.2.3.

On any T ∈ TH , for eachE ∈ E (T ) and for i = 1, · · · , s, the local problem (3.39) is defined
as: find ΦE,i ∈ Vh (T ), πE,i ∈Mh (T ) and αE,i ∈ R such that

−µ∆ΦE,i +∇πE,i = 0 on T ∩ Ωε, (4.6)

div ΦE,i = αE,i on T ∩ Ωε, (4.7)

µ∇ΦE,in− πE,in ∈ span {ωF,1, · · · ,ωF,s} on F ∩ Ωε, ∀F ∈ E(T ), (4.8)

ΦE,i = 0 on ∂Bε ∩ T, (4.9)∫
F

ΦE,i · ωF,j =

{
δij , F = E
0, F 6= E

∀F ∈ E (T ) , j = 1, · · · , s. (4.10)∫
T∩Ωε

πE,i = 0. (4.11)

The constant αE,i is computed by the relation
∫
T∩Ωε αE,i =

∫
∂(T∩Ωε) ΦE,i · n. We assume that

µ is constant in the entire domain T ∩ Ωε.
The velocity and pressure unknowns can be represented using basis of Vh(T ) and Mh(T ) as

∀E ∈ E (T ) , i = 1, · · · , s, ΦE,i =

Nf∑
g=1

Φg
E,iφg, πE,i =

Nk∑
k=1

πkE,iψk (4.12)

Note that throughout this chapter, we will abuse the index by using k also as the index of
the element k. We use f to represent the index of the face f . We use Uh and Ph to denote
respectively the vector containing the discretized velocity and pressure:

Uh =
(
Φ1
E,i, · · · ,Φ

Nf

E,i

)
, Ph =

(
π1
E,i, · · · , π

Nk
E,i

)
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4.2.1 The conservation of mass

For any element k ∈ Th (T ), we integrate equation (4.7) over k:∫
k

div ΦE,i =

∫
k
αE,i

Denoting by n the unit outward vector normal to ∂k and applying the divergence theorem,
we obtain ∫

∂k\Γd

ΦE,i · n = αE,i ·meas(k)

where meas(k) is the measure of k. We recall that ΦE,i = 0 on Γd by equation (4.9).
Substituting ΦE,i defined by (4.12) into this equation, we obtain

Nf0∑
g=1

Φg
E,i

∫
∂k\Γd

φgn = αE,i ·meas(k)

This system can be written in the matrix form:

BhUh = Gh

where

∀k ∈ Th(T ), g ≤ Nf0, (Bh)k,g = −
∫
∂k\Γd

φgn = −Sgk

∀k ∈ Th(T ), (Gh)k = −αE,i ·meas(k)

We recall that the vector Sgk is defined by (4.2).

4.2.2 The conservation of momentum equation

First of all, we recall that ΦE,i = 0 on Γd, i.e. for Dirichlet nodes Nf0 < f ≤ Nf . For non
Dirichlet nodes f = 1, · · · , Nf0 (including internal nodes and nodes on Γa), integrating equation
(4.6) over ωf (see Figure 4.2 and Figure 4.4) and applying the divergence theorem, we obtain∫

γf

(−µ∇ΦE,in+ πE,in) =

∫
γaf

(µ∇ΦE,in− πE,in) (4.13)

Formula (4.3) shows that γaf = ∂ωf ∩ Γa with Γa = E (T ) ∩ Ωε.
Equation (4.8) implies that there exist λF,1, · · · , λF,s ∈ R such that

µ∇ΦE,in− πE,in =

s∑
j=1

λF,jωF,j on F ∩ Ωε, for all F ∈ E(T )

Therefore (4.13) can be written as∫
γf

(−µ∇ΦE,in+ πE,in) =
∑

F∈E(T )

s∑
j=1

λF,j

∫
∂ωf∩F

ωF,j
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Substituting ΦE,i and πE,i defined by (4.12) into this equation, we obtain

Nf0∑
g=1

(
−Φg

E,i

∫
γf

µ∇φg · n

)
+

Nk∑
k=1

(
πkE,i

∫
γf

ψkn

)
=

∑
F∈E(T )

s∑
j=1

λF,j

∫
∂ωf∩F

ωF,j

Denoting Λh = (λF,1, · · · , λF,s)F∈E(T ), this system can be written in the matrix form:

AhUh + ChPh + EhΛh = 0 (4.14)

where

• Ah is a matrix which contains two blocksAh corresponding to each component of velocity
in two dimensions.

Ah =

(
Ah 0
0 Ah

)
where

∀f, g ≤ Nf0, (Ah)f,g = −
∫
γf

µ∇φg · n

We denote the element containing two different faces f and g by kfg and denote its measure
by meas (kfg). The basis functions φf and φg are linear inside the element kfg and their
gradients are constant inside this element. It was proved in [65] that

∇φg|kfg =
1

meas (kfg)

∫
∂kfg

φgn =
Sgkfg

meas (kfg)
(4.15)

Thus the coefficient (Ah)f,g is

(Ah)f,g = ∇φg|kfg ·
∫
∂ωf∩kfg

µn =
Sgkfg

meas (kfg)
·
∫
∂ωf∩kfg

µn

Since µ is constant in kfg, it is easy to check that∫
∂ωf∩kfg

µn = −µSfkfg

Finally, the coefficient (Ah)f,g is

(Ah)f,g = µ
Sfkfg · S

g
kfg

meas (kfg)

• Ch is a matrix with

∀f ≤ Nf0, k ≤ Nk, (Ch)f,k =

∫
γf

ψkn

It was proved in [65] that

(Ch)f,k = −Sfk
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We recall that Sfk is defined by (4.2). By comparing the coefficients of Bh and Ch, it is
easy to verify that Ch = Bt

h.

• Eh is a matrix with

∀f ≤ Nf0, F ∈ E(T ), j = 1, · · · , s, (Eh)f,(F,j) =

∫
∂ωf∩F

ωF,j (4.16)

In two dimensions, E(T ) contains three boundaries. Thus Eh is a matrix withNf ×d rows
and 3× s columns.

4.2.3 The discretization of the Oseen term

Now we recall the local problems defined by Oseen equations (3.102). The Oseen velocity Uo is
assumed to be a constant vector field in the entire domain T ∩ Ωε and thus div Uo = 0. On any
T ∈ TH , for each E ∈ E (T ) and for i = 1, · · · , s, the Oseen local problem is defined by: find
ΦE,i ∈ Vh (T ), πE,i ∈Mh (T ) and αE,i ∈ R such that

−µ∆ΦE,i + ρ (Uo · ∇) ΦE,i +∇πE,i = 0 in T ∩ Ωε, (4.17)

div ΦE,i = αE,i in T ∩ Ωε,

µ∇ΦE,in−
1

2
ρ (Uo · n) ΦE,i − πE,in ∈ span {ωF,1, · · · ,ωF,s} on F ∩ Ωε, ∀F ∈ E(T ),

(4.18)

ΦE,i = 0 on ∂Bε ∩ T∫
F∩Ωε

ΦE,i · ωF,j =

{
δij , F = E
0, F 6= E

∀F ∈ E (T ) j = 1, · · · , s.∫
T∩Ωε

πE,i = 0.

where E(T ) is the set of faces of T . The constant αE,i is computed by the relation
∫
T∩Ωε αE,i =∫

∂(T∩Ωε) ΦE,i ·n. Throughout this section, we assume that both µ and ρ are constant on T ∩Ωε.
For any velocity node xf in the domain, integrating the momentum equation (4.17) over its

control volume ωf gives∫
ωf

(−µ∇ΦE,in+ ρ (Uo · ∇) ΦE,i + πE,in) =

∫
∂ωf

(µ∇ΦE,in− ρ (Uo · n) ΦE,i − πE,in)

(4.19)

Compared to equation (4.13), there is an additional Oseen term in the equation above. Thus
we present specially the discretization of the Oseen term in what follows. We distinguish two
types of nodes: nodes in the interior of the domain and nodes on the boundary Γa.

Nodes in the interior of the domain For a velocity node xf located in the interior of the
domain, we denote by nf the unit outward vector normal to ∂ωf . As shown in Figure 4.5,
denoting the facet between the node f and the node j by γfj , we recall that the boundary of the
control volume ωf is decomposed as

∂ωf = γfj ∪ γfm ∪ γfn ∪ γfk

Now we present the integral of the Oseen term in (4.19) over the facet γfj . The integrals over
other facets are computed in the same way. In TrioCFD, the Upwind scheme and other schemes
are used to discretize the nonlinear convection term in Navier-Stokes equations. In this thesis, we
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FIGURE 4.5: The control volume of an internal node and its boundary ∂ωf

adapt this scheme to discretize the Oseen term in local Oseen problems. The idea of the Upwind
scheme [73, 125] is to approximate ΦE,i on γfj by{

ΦE,i = Φf
E,i if (U0 · nf ) > 0

ΦE,i = Φj
E,i if (U0 · nj) > 0

where nf = −nj . In other words, the integral over γfj of the Oseen term is approximated by∫
γfj

ρΦE,i (Uo · nf ) ≈
∫
γfj

ρΦf
E,imax (Uo · nf , 0) +

∫
γfj

ρΦj
E,imax (Uo · nj , 0) (4.20)

We denote by Lh (Uo) the matrix associated to the Oseen term:

Lh (Uo) =

(
Lh (Uo) 0

0 Lh (Uo)

)
Note that this is a block matrix with Lh (Uo) corresponding to each component of velocity in
two dimensions. The diagonal and non-diagonal coefficients of Lh (Uo) are

∀f ≤ Nf0, Lh (Uo)f,f =

∫
∂ωf

1

2
ρ (Uo · nf + |Uo · nf |)

∀g ≤ Nf0, f 6= g, Lh (Uo)f,g =

∫
γfg

1

2
ρ (Uo · nf − |Uo · nf |)

Nodes on the boundary Γa We present now the treatment of nodes located on the boundary
Γa where we impose the integral type boundary condition. As shown in Figure 4.6, for any node
xf located on Γa, we decompose the boundary of the control volume ωf as

∂ωf = γfj ∪ γfk ∪ γaf

Thus the integral in the right hand side of (4.19) can be decomposed into three integrals γfj ,
γfk and γaf . Since γfj and γfk are in the interior of the domain, we can discretize integrals on
γfj and γfk in the same way as in (4.20). Thus the non-diagonal coefficient of Lh (Uo) for any
node xf located on Γa is

∀g ≤ Nf0, f 6= g, Lh (Uo)f,g =

∫
γfg

1

2
ρ (Uo · nf − |Uo · nf |)

We present the discretization of the integral on γaf in what follows.
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FIGURE 4.6: The control volume of a velocity node on the boundary Γa

Equation (4.18) implies that there exist λF,1, · · · , λF,s ∈ R such that

µ∇ΦE,in−
1

2
ρ (Uo · n) ΦE,i − πE,in =

s∑
j=1

λF,jωF,j on F ∩ Ωε, ∀F ∈ E(T )

Making use of this equality, we can write∫
γaf

(µ∇ΦE,in− ρ (Uo · n) ΦE,i − πE,in) =
∑

F∈E(T )

s∑
j=1

λF,j

∫
γaf∩F

ωF,j

−1

2
ρ (Uo · nf )

∫
γaf

ΦE,i

It is easy to check that
∫
γaf
φg = meas(γaf ). Making use of ΦE,i defined by (4.12), we have

1

2
ρ (Uo · nf )

∫
γaf

ΦE,i =
1

2
ρ (Uo · nf ) meas(γaf )Φf

E,i

Consequently, the diagonal coefficient of Lh (Uo) for any node located on Γa is

Lh (Uo)f,f =
1

2
ρ (Uo · nf ) meas(γaf ), ∀f ∈ Γa

4.2.4 The discretization of the velocity integral boundary condition

Now let us discretize (4.10) for F ∈ E (T ) and j = 1, · · · , s.

Nf0∑
f=1

∫
F∩∂ωf

ΦE,i · ωF,j =

{
δij , F = E
0, F 6= E

It is easy to check that this system can be written in the matrix form:

DhUh = Hh
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where

∀F ∈ E (T ) , j = 1, · · · , s, f ≤ Nf0, (Dh)(F,j),f =

∫
F∩∂ωf

ωF,j

∀F ∈ E (T ) , j = 1, · · · , s, (Hh)F,j =

{
δij , F = E
0, F 6= E

It is easy to see that (Dh) is a matrix with 3 × s rows and Nf × d columns. Comparing the
coefficients of Dh and Eh defined by (4.16), we conclude that Eh = Dt

h.

Until now, we have not presented the discretization of equation (4.11). In TrioCFD, when
solving a flow problem with the prediction-correction algorithm (see section 4.3), the average of
pressure is not imposed to be zero in the computational domain, i.e. equation (4.11) is not satis-
fied. The uniqueness of pressure is guaranteed by taking the pressure imposed on the boundary
(by the user in the input file) as a reference. In this thesis, in order to obtain a pressure which
satisfies (4.11), we first compute the volume average of the pressure solution given by TrioCFD
and then subtract the average from the pressure solution. As a result, (4.11) is satisfied.

4.2.5 The discretization of the temporal inertial term

In TrioCFD, the only solver natively available is the prediction-correction algorithm (see sec-
tion 4.3) which is a time-marching technique for the unsteady Navier-Stokes equations. This
algorithm can also solve steady problems but it still passes through a pseudo-transient process.
In the first stage of this thesis, we have adapted this algorithm to solve steady local problems. As
we are going to present in section 4.6, we have implemented later in this thesis a direct solver to
solve steady local and coarse scale problems without passing through the transient process.

In the prediction-correction algorithm, the unsteady ΦE,i and πE,i can be written as:

ΦE,i (t) =

Nf∑
g=1

Φg
E,i (t)φg, πE,i (t) =

Nk∑
k=1

πkE,i (t)ψk

For f = 1, · · · , Nf0, integrating the temporal inertial term over the control volume ωf gives:

∫
ωf

∂ΦE,i

∂t
=

Nf∑
g=1

∂Φg
E,i

∂t

∫
ωf

φg = Mh
∂Uh

∂t

where the mass matrix can be approximated by:

∀g ≤ Nf0, (Mh)f,g =

∫
ωf

φg ≈ meas(ωf )δfg

Thus the mass matrix Mh is diagonal and easy to reverse. As we are going to present in the
next section, a diagonal mass matrix facilitates the computation of BhM

−1
h Bt

h defined by (4.25)
in the prediction-correction algorithm.

With Ch = Bt
h and Eh = Dt

h, the Oseen local problem can be written in the matrix form:
Mh

∂Uh

∂t
+ (Ah + Lh (Uo)) Uh + Bt

hPh + Dt
hΛh = 0

BhUh = Gh

DhUh = Hh

(4.21)
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with Lh (Uo) = 0 for Stokes local problems (4.6)–(4.11).

4.3 The solution of local problems

The prediction-correction algorithm was originally proposed by [42, 135] for approximating
in time the unsteady incompressible Navier–Stokes equations, then it was further developed in
[76–80]. A major difficulty in the numerical simulation of incompressible flows is that the ve-
locity and pressure are coupled by the incompressibility constraint. The prediction-correction
algorithm is a time-marching technique composed of two sub-steps at each time step: (i) the
prediction step where the pressure is treated explicitly (incremental pressure-correction scheme)
or ignored (non-incremental pressure-correction scheme); (ii) the correction step where the ve-
locity and pressure are corrected in order to verify the incompressibility constraint. Thus in this
algorithm, at each time step, one needs to solve only a sequence of decoupled elliptic equations
for the velocity and pressure.

However, the existence of Lagrange multipliers and the fact that BhUh 6= 0 makes (4.21)
different from existing implementations in TrioCFD. Thus the original prediction-correction al-
gorithm has been adapted to local problems in this thesis.

Now we present the solution of (4.21) by the incremental prediction-correction scheme with
the backward Euler time discretization. We partition the time domain (0, tF ) into Nt equally
spaced intervals of length ∆t and set tn = n∆t. We denote the velocity and pressure at time step
n by Un

h and Pn
h and they are initialized by U0

h = 0 and P0
h = 0. The time step n + 1 consists

of the prediction step and the correction step which are described below.

Prediction step Using the velocity Un
h and the pressure P n

h of the precedent time step n, we
solve the intermediate velocity U∗h and the Lagrange multiplier Λ∗h byMh

U∗h −Un
h

∆t
+ AhU

∗
h + Lh (Uo) U∗h + Dt

hΛ
∗
h = −Bt

hP
n
h

DhU
∗
h = Hh

which is equivalent to(
Mh

∆t
+ Ah + Lh (Uo) Dt

h

Dh 0

)(
U∗h
Λ∗h

)
=

(
Mh

∆t
Un
h −Bt

hP
n
h

Hh

)
(4.22)

This is a typical saddle-point problem for which the original solvers and preconditioners in
TrioCFD are no longer suitable. Thus we have implemented the Schur complement method using
some functions in PETSc [122]. For the sake of simplicity, we denote

Ãh =
Mh

∆t
+ Ah + Lh (Uo) , Rh =

Mh

∆t
Un
h −Bt

hP
n
h

Theoretically Schur complement solves (4.22) in three steps:

ÃhXh = Rh ⇒ Xh

Dh

(
Ãh

)−1
Dt
hΛ
∗
h = DhXh −Hh ⇒ Λ∗h

ÃhU
∗
h = Rh −Dt

hΛ
∗
h ⇒ U∗h

In practice, the Schur complement is not actually formed in PETSc [122]. Rather, only the

matrix-vector product is performed by using the formula Sh = Dh

(
Ãh

)−1
Dt
h and a solver
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is used to approximate the action of
(
Ãh

)−1
. For more details, the reader can refer to the

documentation of PETSc.

Correction step Denoting P′h = Pn+1
h − Pn

h and using U∗h solved in the last step, we solve(
Un+1
h ,P′h

)
by

Mh
Un+1
h −U∗h

∆t
+ Bt

hP
′
h = 0 (4.23)

BhU
n+1
h = Gh (4.24)

Multiplying (4.23) by Bh and subtracting (4.24) from it, we obtain

BhM
−1
h Bt

hP
′
h =

1

∆t
(BhU

∗
h −Gh) (4.25)

Finally, the velocity and pressure at the end of the time step n + 1 are computed using U∗h
and P′h by {

Un+1
h = U∗h −∆tM−1

h Bt
hP
′
h

Pn+1
h = Pn

h + P′h

4.4 The discretization of coarse-scale problems

We denote by VH and MH the multiscale approximation spaces defined in Chapter 3, for exam-
ple, VH = V St

H defined by (3.12) or VH = V Os
H defined by (3.77) and MH is defined by (3.11).

The case of VH and MH defined by high-order multiscale methods will be presented specially in
section 4.6. We recall the coarse-scale Navier-Stokes problem: find (uH , p̄H) ∈ VH ×MH such
that

−µ∆uH + ρ (uH · ∇)uH +∇p̄H = f in Ωε

div uH = 0 in Ωε

uH = uD on ΓD

µ∇uHn− pHn = h on ΓN

where ∂Ω = ΓD ∪ΓN with ΓD and ΓN the Dirichlet and the Neumann boundary respectively. f
is a given volume force and h is a given surface force. Throughout this section, we assume that
both µ and ρ are constant on the entire domain Ωε.

The nonlinear convective term makes the discretization of the coarse-scale Navier-Stokes
problem complicated. Therefore we first choose the coarse-scale Oseen problem as a demon-
strative example to show the discretization process. Besides, Oseen problems become Stokes
problems when Uo = 0. The discretization of the nonlinear convection term in coarse-scale
Navier-Stokes problems will be presented specially in subsection 4.4.3.
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The discrete variational formulation of the coarse-scale Oseen problem is: find (uH , p̄H) ∈
VH ×MH such that∑

T∈TH

∫
T∩Ωε

(µ∇uH : ∇v + ρ (Uo · ∇uH)v)−
∑
T∈TH

∫
T∩Ωε

p̄Hdiv v =

∑
T∈TH

∫
T∩Ωε

f · v +

∫
ΓN

h · v, ∀v ∈ VH (4.26)

∑
T∈TH

∫
T∩Ωε

q div uH = 0, ∀q ∈MH (4.27)

We assume that the Oseen velocity Uo is constant in the entire domain Ωε and thus div Uo = 0.
We present only the discretization of coarse-scale problems in two dimensions in what follows.

4.4.1 Discretization of coarse-scale Oseen problems

Now we present the discretization of (4.26)–(4.27) using the Galerkin method specially devel-
oped in this thesis for multiscale finite element methods. In this Galerkin method, basis functions
are the solutions of local problems. We denote the number of coarse elements in the coarse mesh
TH by NT and the number of faces by NF . As presented in Chapter 3, any function of VH and
MH can be decomposed using multiscale basis functions as:

∀uH ∈ VH , uH =
∑
E∈EH

s∑
i=1

uE,iΦE,i, ∀p̄H ∈MH , p̄H =
∑
T∈TH

p̄TΨT

where ΨT is the characteristic function of T (ΨT = 1 in T and 0 elsewhere) for T ∈ TH .
Substituting uH and p̄H into (4.26)–(4.27), taking v = ΦF,j for F ∈ EH , and j = 1, . . . , s

and q = ΨT for T ∈ TH , we obtain

∑
T∈TH

∑
E∈EH

s∑
i=1

uE,i

∫
T∩Ωε

(µ∇ΦE,i : ∇ΦF,j + ρ (Uo · ∇ΦE,i) ΦF,j)−
∑
T

p̄T

∫
T∩Ωε

div ΦF,j

=
∑
T∈TH

∫
T∩Ωε

f ·ΦF,j +

∫
ΓN

h ·ΦF,j ,

∑
E∈EH

s∑
i=1

uE,i

∫
T∩Ωε

div ΦE,i = 0.

This problem can be written in the matrix form:(
AH + LH(Uo) Bt

H

BH 0

)(
UH

PH

)
=

(
FH

0

)
(4.28)

where

• UH and PH are vectors of size NF × s and NT respectively.

UH = (uE,1, · · · , uE,s)E∈EH , PH = (p̄T )T∈TH
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• AH and LH(Uo) are matrices with NF × s rows and NF × s columns.

(AH)Ei,F j =
∑
T∈TH

∫
T∩Ωε

µ∇ΦE,i : ∇ΦF,j , for E,F ∈ EH , i, j = 1, · · · , s

(LH (Uo))Ei,F j =
∑
T∈TH

∫
T∩Ωε

ρ (Uo · ∇ΦE,i) ΦF,j , for E,F ∈ EH , i, j = 1, · · · , s

• BH is a matrix with NT rows and NF × s columns.

(BH)T,Ei =

∫
T∩Ωε

div ΦE,i, for T ∈ TH , E ∈ EH , i = 1, · · · , s

• FH is a vector of size NF × s.

(FH)Fj =
∑
T∈TH

∫
T∩Ωε

f ·ΦF,j +

∫
ΓN

h ·ΦF,j , for F ∈ EH , j = 1, · · · , s

4.4.2 The computation of matrices

In multiscale finite element methods, matrices AH , BH and LH (Uo) are computed locally on
coarse elements and then assembled on the coarse mesh. Given a coarse element T ∈ TH ,
given any multiscale basis function ΦE,i for E ∈ E(T ) and i = 1, · · · , s, by construction,
ΦE,i ∈ Vh(T ) defined by (4.4). Thus ΦE,i can be written in the Crouzeix-Raviart finite element
basis functions as:

ΦE,i =

Nf∑
m=1

Φm
E,iφm, ∀E ∈ E (T ) , i = 1, · · · , s

In what follows, we make use of the properties of the Crouzeix-Raviart finite basis functions to
compute integrals in the coefficients of matrices AH , BH and LH (Uo).

Matrix AH For E,F ∈ EH and i, j = 1, · · · , s:

(AH)Ei,F j =
∑
T∈TH

∫
T∩Ωε

µ∇ΦE,i : ∇ΦF,j

=
∑
T∈TH

Nf∑
m,n=1

Φm
E,i ·Φn

F,j

∫
T∩Ωε

µ∇φm · ∇φn

=
∑
T∈TH

Nf∑
m,n=1

Φm
E,i ·Φn

F,j

Nk∑
k=1

∫
k∩T∩Ωε

µ∇φm · ∇φn

Making use of equation (4.15), it is easy to deduce that∫
k∩T∩Ωε

µ∇φm · ∇φn = µ
Smk · Snk
meas(k)

We recall that Smk and Snk are defined by (4.2).
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Finally, the coefficient of AH is defined by:

(AH)Ei,F j =
∑
T∈TH

Nf∑
m,n=1

Φm
E,i ·Φn

F,j

Nk∑
k=1

µ
Smk · Snk
meas(k)

, ∀E,F ∈ EH , i, j = 1, · · · , s (4.29)

Matrix LH (Uo) Denoting Uo = (Ux
o ,U

y
o ), for E,F ∈ EH and i, j = 1, · · · , s:

(LH (Uo))Ei,F j =
∑
T∈TH

∫
T∩Ωε

ρ (Uo · ∇ΦF,j) ΦE,i

=
∑
T∈TH

Nf∑
m,n=1

(
Φm
F,j ·Φn

E,i

) ∫
T∩Ωε

ρ

(
Ux
o

∂φm
∂x

+Uy
o

∂φm
∂y

)
φn

Making use of equation (4.15), we deduce that∫
T∩Ωε

∂φm
∂x

φn =

Nk∑
k=1

Smk · ex
meas(k)

∫
k∩T∩Ωε

φn

In two dimensions, it is known that∫
k∩T∩Ωε

φn =
3∑
l=1

meas(k)

3
φn (sl)

where s1, · · · , s3 are the three vertices of the element k.
Finally, the coefficient of LH (Uo) is defined by: ∀E,F ∈ EH and i, j = 1, · · · , s:

(LH (Uo))Ei,F j =
∑
T∈TH

Nk∑
k=1

∑
m,n∈k

ρ
(
Φm
F,j ·Φn

E,i

) (Uo · Smk )

3

3∑
l=1

φn (sl)

Matrix BH For T ∈ TH , for E ∈ EH and i = 1, · · · , s:

(BH)T,Ei =

∫
T∩Ωε

div ΦE,i =

Nf∑
m=1

Φm
E,i

Nk∑
k=1

∫
k∩T∩Ωε

div φm =

Nf∑
m=1

Φm
E,i

Nk∑
k=1

Smk

For an internal face m shared by two adjacent elements k1 and k2, (4.2) reveals that Smk1 +
Smk2 = 0. Consequently, the coefficient of BH reduce to:

(BH)T,Ei =
∑

m∈∂k∩Γa

Φm
E,i · Smk , ∀T ∈ TH , E ∈ E(T ), i = 1, · · · , s (4.30)

4.4.3 Discretization of the nonlinear convection term

In the initial stage of this thesis, we used the prediction-correction algorithm presented in sec-
tion 4.3 to solve coarse-scale problems. This algorithm is a time-marching technique for unsteady
or steady Navier-Stokes problems through a transient process. We partition the time domain
(0, tF ) into equally spaced intervals of length ∆t and set for n > 0, tn = n∆t. At tn+1, the
nonlinear convective term of coarse-scale Naiver-Stokes problems is approximated by∑

T∈TH

∫
T∩Ωε

ρ
(
un+1
H · ∇

)
un+1
H · v '

∑
T∈TH

∫
T∩Ωε

ρ (unH · ∇)un+1
H · v, ∀v ∈ VH (4.31)
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Decomposing unH and un+1
H using multiscale basis functions as:

unH =
∑
G∈EH

s∑
k=1

unG,kΦG,k, un+1
H =

∑
F∈EH

s∑
j=1

un+1
F,j ΦF,j (4.32)

Substituting un+1
H defined by (4.32) into the convective term in the right hand side of (4.31)

and taking v = ΦE,i for E ∈ EH and i = 1, · · · , s, we obtain

∑
T∈TH

∫
T∩Ωε

ρ (unH · ∇)un+1
H ·ΦE,i =

∑
F∈EH

s∑
j=1

un+1
F,j

∑
T∈TH

∫
T∩Ωε

ρ (unH · ∇) ΦF,j ·ΦE,i

=
∑
F∈EH

s∑
j=1

LnEi,F ju
n+1
F,j (4.33)

where

LnEi,F j =
∑
T∈TH

∫
T∩Ωε

ρ (unH · ∇) ΦF,j ·ΦE,i, ∀F ∈ EH , j = 1, · · · , s

We notice that LnEi,F j contains unH which is the velocity of the precedent time step n com-
puted on the coarse mesh. Then substituting unH defined by (4.32) into LnEi,F j , we obtain

LnEi,F j =
∑
T∈TH

∑
G∈EH

s∑
k=1

unG,k

∫
T∩Ωε

ρ (ΦG,k · ∇) ΦF,j ·ΦE,i =
∑
T∈TH

∑
G∈EH

s∑
k=1

LTEi,F j,Gku
n
G,k

where

LTEi,F j,Gk =

∫
T∩Ωε

ρ (ΦG,k · ∇) ΦF,j ·ΦE,i, ∀E,F,G ∈ EH , i, j, k = 1, · · · , s. (4.34)

We compute the term LTEi,F j,Gk locally on each coarse element T ∈ TH . Then when solving
coarse-scale problems on the coarse mesh, at the time step n + 1, we assemble matrix LnEi,F j
using LTEi,F j,Gk and unG,k for G ∈ EH and k = 1, · · · , s.

Now we present how to compute LTEi,F j,Gk in two dimensions. We denote by {ex, ey} the
canonical basis of R2. On each coarse element T ∈ TH , by construction, for any E ∈ E(T )
and i = 1, · · · , s, multiscale basis function ΦE,i ∈ Vh(T ). We can decompose multiscale basis
functions in (4.34) with the Crouzeix-Raviart finite element basis functions: for any E,F,G ∈
EH and i, j, k = 1, · · · , s,

ΦG,k =
(
Φx
G,k,Φ

y
G,k

)
=

Nf∑
f1=1

(
Φx,f1
G,k ,Φ

y,f1
G,k

)
φf1

ΦF,j =
(
Φx
F,j ,Φ

y
F,j

)
=

Nf∑
f2=1

(
Φx,f2
F,j ,Φ

y,f2
F,j

)
φf2

ΦE,i =
(
Φx
E,i,Φ

y
E,i

)
=

Nf∑
f3=1

(
Φx,f3
E,i ,Φ

y,f3
E,i

)
φf3

(4.35)
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In two dimensions, the matrix LTEi,F j,Gk defined by (4.34) equals to:

LTEi,F j,Gk =
∑
T∈TH

∫
T∩Ωε

ρ

(
Φx
G,k

∂Φx
F,j

∂x
+ Φy

G,k

∂Φx
F,j

∂y

)
Φx
E,i

+
∑
T∈TH

∫
T∩Ωε

ρ

(
Φx
G,k

∂Φy
F,j

∂x
+ Φy

G,k

∂Φy
F,j

∂y

)
Φy
E,i

Substituting (4.35) into this equality, we obtain

LTEi,F j,Gk =

Nf∑
f1=1

Nf∑
f2=1

Nf∑
f3=1

(
Φx,f1
G,k Φx,f2

F,j Φx,f3
E,i + Φx,f1

G,k Φy,f2
F,j Φy,f3

E,i

)∫
T∩Ωε

ρφf1
∂φf2
∂x

φf3

+

Nf∑
f1=1

Nf∑
f2=1

Nf∑
f3=1

(
Φy,f1
G,k Φx,f2

F,j Φx,f3
E,i + Φy,f1

G,k Φy,f2
F,j Φy,f3

E,i

)∫
T∩Ωε

ρφf1
∂φf2
∂y

φf3

For any element k ∈ Th (T ), for any f2 ∈ ∂k, ∇φf2 is constant inside the element k and
(4.15) implies that

∇φf2 |k =
Sf2k

meas(k)

Since φf1φf3 is a quadratic polynomial, it is known in two dimensions that∫
k
φf1φf3 =

{
meas(k)/3, if f1 = f3 with f1, f3 ∈ ∂k
0, else

Thus it is easy to check that∫
T∩Ωε

φf1
∂φf2
∂x

φf3 =
∑
k∈T

Sf2k · ex
meas(k)

∫
k∩T∩Ωε

φf1φf3 =
∑
k∈T

Sf2k · ex
3

Finally, for E,F,G ∈ E(T ) and i, j, k = 1, · · · , s, the matrix LTEi,F j,Gk is computed by:

LTEi,F j,Gk =
1

3

∑
k∈T

∑
f1,f2∈k

ρ
(

Φx,f1
G,k Φx,f1

E,i Φx,f2
F,j S

f2
k · ex + Φx,f1

G,k Φy,f1
E,i Φy,f2

F,j S
f2
k · ex

)
+

1

3

∑
k∈T

∑
f1,f2∈k

ρ
(

Φy,f1
G,k Φx,f1

E,i Φx,f2
F,j S

f2
k · ey + Φy,f1

G,k Φy,f1
E,i Φy,f2

F,j S
f2
k · ey

)

with Sf2k defined by (4.2).
The discretization of the SUPG stabilization term is very similar to that of the nonlinear

convection term and will not be repeated here.

4.5 The solution of coarse-scale problems

We solved coarse-scale problems by the prediction-correction algorithm (see section 4.3) in the
early stage of this thesis. We recall that this algorithm is a time-marching technique for un-
steady Navier-Stokes equations. This algorithm can also solve steady problems but via a pseudo-
transient process. As we are going to present in section 4.6, we have implemented later in this
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thesis a direct solver to solve steady local and coarse-scale problems without passing through the
transient process.

In the prediction-correction algorithm, the unsteady uH and p̄H can be written as

∀uH ∈ VH , uH(t) =
∑
E∈EH

s∑
i=1

uE,i(t)ΦE,i

∀p̄H ∈MH , p̄H(t) =
∑
T∈TH

p̄T (t)ΨT

then the temporal inertial term is discretized by

∑
T∈TH

∫
T∩Ωε

∂uH
∂t
·ΦF,j =

∑
T∈TH

∑
E∈EH

s∑
i=1

∂uE,i
∂t

∫
T∩Ωε

ΦE,i ·ΦF,j , ∀F ∈ EH , j = 1, · · · , s

We decompose multiscale basis functions using the Crouzeix-Raviart finite element basis
functions defined in subsection 4.1.1: for any E,F ∈ EH and i, j = 1, · · · , s,

ΦE,i =

Nf∑
m=1

Φm
E,iφm, ΦF,j =

Nf∑
n=1

Φn
F,jφn (4.36)

Substituting (4.36) into the temporal inertial term and we obtain its matrix form:

MH
∂UH

∂t

where the mass matrix MH is computed by: for any E,F ∈ EH and i, j = 1, · · · , s,

(MH)Ei,F j =
∑
T∈TH

∫
T∩Ωε

ΦE,i ·ΦF,j =
∑
T∈TH

Nk∑
k=1

Nf∑
m=1

Φm
E,i ·Φm

F,j

meas(k)

3

The matrix MH is sparse but might be non-diagonal, which makes it difficult to compute the
pressure matrix BHM−1

H Bt
H (see (4.25)). In practice, we construct a condensed matrix which

is diagonal to facilitate the computation of the pressure matrix. For example, we summarize
absolute values of all coefficients in each row of the original matrix and take the sum as the
diagonal coefficient of the condensed matrix. Consequently, the condensed matrix is a diagonal
matrix. Finally the unsteady coarse-scale Oseen problem can be written in the matrix form:

MH
∂UH

∂t
+ (AH + LH(Uo)) UH + Bt

HPH = FH

BHUH = 0

The outflow condition ∇uH · n − p̄H · n = h is a natural condition as it is included in
the variational formulation (4.26). We approximate the non-homogeneous Dirichlet boundary
condition uH = uD in a weak form:∫

E
uH · ωE,i =

∫
E
uD · ωE,i, for all E ∈ EH on ΓD, i = 1, · · · , s.

4.6 Technical aspects of high-order multiscale methods

Previously, we presented the discretization of local problems using the Crouzeix-Raviart finite
element. For the high-order multiscale finite element methods, we discretize also local problems
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using the P1-nonconforming/P1 finite element. The idea is to improve the final accuracy of the
pressure given by high-order multiscale methods. For local and coarse-scale problems in high-
order multiscale methods, we present a direct solver which is an alternative to the prediction-
correction.

Control volume ΠS

PS

uf

Control volume ωf

S1PS1

S2

PS2

pressure node

velocity node

k2
k1

FIGURE 4.7: The P1-nonconforming/P1 finite element and control volumes

4.6.1 The P1-nonconforming/P1 finite element

In the P1-nonconforming/P1 finite element [123], as shown in Figure 4.7, the velocity is located
at the barycenter of faces and the pressure is located at the vertex of elements. The control
volume of velocity ωf is constructed the same as in the Crouzeix-Raviart element. The control
volume of pressure ΠS is constructed by joining the barycenter of faces with the barycenter of
all elements which share the pressure node PS . For any T ∈ TH , we denote by NS the number
of pressure nodes in Th(T ). The finite element space of velocity Vh(T ) is the same as (4.4). We
define the finite element space of pressure M s

h(T ) by

MS
h (T ) =

{
qh ∈ L2 (T ∩ Ωε) ∩ C0 (T ∩ Ωε)

∣∣ qh|k ∈ P1 (k) , ∀k ∈ Th (T )
}

where C0 (T ∩ Ωε) is the set of continuous functions on T ∩ Ωε.
Let {ψ1, · · · , ψNS

} be a basis of MS
h (T ) where ψm satisfies ψm (xn) = δmn for any n =

1, · · · , NS . We recall that
{
φ1, · · · , φNf

}
is a basis of each component of Vh(T ) where φi(xj) =

δij for i, j = 1, · · · , Nf .

Sop1

PSop1

PSop2

Sop2

PS2 S2

PS1 S1

SfC1C2

SfS1S2

C1

C2
k2

k1
xf

ωf

Pressure node
Velocity node

FIGURE 4.8: The control volume ωf of an internal velocity node in the P1-
nonconforming/P1 finite element
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4.6.2 The discretization of local problems

In two dimensions, we recall here local problems defined by (3.191). On any T ∈ TH , for each
E ∈ E (T ) and for i = 1, · · · , s, find ΦE,i ∈ Vh (T ), πE,i ∈M s

h (T ) and ηE,i ∈ R2 such that

−µ∆ΦE,i +∇πE,i = ηE,i in T ∩ Ωε (4.37)

div ΦE,i ∈ span {$T,1, · · · , $T,3} in T ∩ Ωε (4.38)

µ∇ΦE,in− πE,in ∈ span {ωF,1, · · · ,ωF,s} on F, ∀F ∈ E(T ) (4.39)

ΦE,i = 0 on ∂Bε ∩ T (4.40)∫
F

ΦE,i · ωF,j =

{
δij , F = E
0, F 6= E

∀F ∈ E (T ) , j = 1, · · · , s (4.41)∫
T∩Ωε

ΦE,i · el = 0 ∀l = 1, · · · , d (4.42)∫
T∩Ωε

πE,i ·$T,m = 0 ∀m = 1, · · · , t (4.43)

where weighting functions are defined by (3.203). Throughout this section, we assume that µ is
constant on T ∩ Ωε.

The discretization of this system using the Crouzeix-Raviart finite element is very similar to
what was presented in section 4.2. Now we discretize this system using the P1-nonconforming/P1

finite element. The pressure πE,i can be decomposed in the basis of M s
h(T ) as

∀E ∈ E(T ), i = 1, · · · , s, πE,i =

NS∑
m=1

πmE,iψm

and the discretized pressure is denoted by a vector Ph =
(
π1
E,i, · · · , π

NS
E,i

)
.

Definition 4.6.1. As shown in Figure 4.8 and Figure 4.9, for an internal node xf , we use ns as
the index of vertex in the face f , i.e. Sf1 and Sf2 . We use nsop as the index of vertex opposite
to the face f , i.e. Sop1 and Sop2. The vector SC1C2 and SS1S2 represent respectively the vector
normal to segments [C1C2] and [S1S2] with measure meas ([C1C2]) and meas ([S1S2]).

Conservation of momentum equation Since ηE,i =
(
η1
E,i, · · · , ηdE,i

)
∈ Rd, thus we denote

the vector ηh =
(
η1
E,i, · · · , ηdE,i

)
. Equation (4.37) is discretized in the similar way as what was

presented in subsection 4.2.2. Then (4.37) can be written in the matrix form:

AhUh + C̃hPh + EhΛh + Xhηh = Fh (4.44)

where Ah and Eh have the same formulas as what were defined in subsection 4.2.2 and we recall:

Ah =

(
Ah 0
0 Ah

)
where

∀f, g ≤ Nf0, (Ah)f,g = −
∫
γf

µ∇φg · n

∀f ≤ Nf0, F ∈ E(T ), j = 1, · · · , s, (Eh)f,(F,j) =

∫
∂ωf∩F

ωF,j (4.45)

Since E(T ) contains three boundaries, Eh is a matrix with Nf × d rows and 3× s columns.
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It is easy to check that matrices C̃h and Xh in (4.44) are defined by

∀f ≤ Nf0, m ≤ NS ,
(
C̃h

)
f,m

=

∫
γf

ψmn (4.46)

∀f ≤ Nf0, l = 1, · · · , d, (Xh)f,l = meas (ωf ) (4.47)

It is important to note that C̃h is different from Ch defined by subsection 4.2.2 since the
discretization of pressure is different. The computation of C̃h is presented in detail in [123] and
we give directly the coefficient of C̃h here. Making use of Definition 4.6.1, the coefficient of C̃h

is

∀f ≤ Nf0,
(
C̃h

)
f,ns

=
1

2
SfC1C2

(4.48)

∀f ≤ Nf0,
(
C̃h

)
f,nsop

=
1

6
SfS1S2

(4.49)

Conservation of mass Equation (3.203) implies that weighting functions $T,m for m =
1, · · · , t are

$T,1 = 1, $T,2 = x, $T,3 = y

Equation (4.38) implies that there exist κ0, κ1, κ2 ∈ R such that

div ΦE,i = κ0 + κ1x+ κ2y in T ∩ Ωε

Control volume ΠS1

Control volume ΠSop1

PS1

S1

S2

PS2

Sop2

PSop1Sop1

pressure node

velocity node

xf

C1

C2

SfC1C2

SfS1S2

xk

xl

xj

FIGURE 4.9: The control volumes of pressure nodes in the P1-
nonconforming/P1 finite element

Integrating this equation over the control volume ΠS1 shown in Figure 4.9 of the pressure
node S1 yields ∫

ΠS1

div ΦE,i −
∫

ΠS1

(κ0 + κ1x+ κ2y) = 0
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We recall that ΦE,i = 0 on Γd by formula (4.40). The equation above is equivalent to∫
∂ΠS1

\Γd

ΦE,i · n =

∫
ΠS1

(κ0 + κ1x+ κ2y)

Using similar arguments as those in subsection 4.2.1 and denoting the vector Kh = (κ0, κ1, κ2),
the equation above can be written in the matrix form:

B̃hUh + YhKh = 0 (4.50)

where

∀S1 ≤ NS , f ≤ Nf0,
(
B̃h

)
S1,f

= −
∫
∂ΠS1

\Γd

φfn

∀S1 ≤ NS , (Yh)S1,0
=

∫
ΠS1

1, (Yh)S1,1
=

∫
ΠS1

x, (Yh)S1,2
=

∫
ΠS1

y (4.51)

Note that we abuse the index by using S1 also as the index of the pressure node S1.
We compute the coefficient (Yh)S1,0

by

(Yh)S1,0
=

∫
ΠS1

1 =
∑
k∈ΠS1

1

3
meas (k)

The coefficients (Yh)S1,1
and (Yh)S1,2

can also be computed in the similar way.
Now let us compute the coefficient of B̃h. In the first step, we compute the contribution of

φf on the control volume ΠS1 . Using appropriate orientations of vectors SfC1 , SfC2 , SkC1 and
SlC1 , we have(

B̃h

)
S1,f

= −
∫
∂ΠS1

\Γd

φfn =
1

3
(SfC1 + SfC2) +

1

3
(SkC1 + SlC1) (4.52)

Then Figure 4.9 shows that

SkC1 =
1

3
SkS2 , SlC2 =

1

3
SlS2

Besides, it is trivial to verify that

SkS2 + SlS2 = Skl =
3

2
SfC1C2

Thus the coefficient of B̃h corresponding to the contribution of φf in the control volume ΠS1

is: (
B̃h

)
S1,f

=
1

2
SfC1C2

Finally, making use of Definition 4.6.1, the coefficient of B̃h corresponding to contribution
of φf in the control volume of a vertex which is located in the face f is:

∀f ≤ Nf0,
(
B̃h

)
ns,f

=
1

2
SfC1C2

(4.53)
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In the second step, let us compute the contribution of φf in the control volume ΠSop1 . As
shown in Figure 4.9,(

B̃h

)
Sop1,f

=

∫
∂ΠSop1

\Γd

φfn =
1

3
(SjC1 + SC1k) =

1

3
Sjk

It is easy to see that Sjk = 1
2S

f
S1S2

. Consequently, we have(
B̃h

)
Sop1,f

=
1

6
SfS1S2

Finally, making use of Definition 4.6.1, the coefficient of B̃h corresponding to contribution
of φf in the control volume of a vertex which is opposite to the face f is:

∀f ≤ Nf0,
(
B̃h

)
nsop,f

=
1

6
SfS1S2

(4.54)

Comparing coefficients of B̃h defined by (4.53)–(4.54) with coefficients of C̃h defined by
(4.48)–(4.49), we conclude that C̃h = B̃t

h.

Discretization of the velocity integral boundary condition Equation (4.41) is discretized in
the same way as what was presented in subsection 4.2.4 and

DhUh = Hh (4.55)

where

∀F ∈ E (T ) , j = 1, · · · , s, f ≤ Nf0, (Dh)(F,j),f =

∫
F∩∂ωf

ωF,j

∀F ∈ E (T ) , j = 1, · · · , s, (Hh)F,j =

{
δij , F = E
0, F 6= E

Comparing to the coefficients of Eh defined by (4.45), it is easy to see that Eh = Dt
h.

Discretization of the integral of velcity and pressure It is easy to check that (4.42) and (4.43)
can be written in the matrix form:

ShUh = 0, QhPh = 0 (4.56)

where

∀l = 1, · · · , d, f ≤ Nf0, (Sh)l,f = meas (ωf )

∀S1 ≤ NS , (Qh)0,S1
=

∫
T∩Ωε

ψS1 , (Qh)1,S1
=

∫
T∩Ωε

xψS1 , (Qh)2,S1
=

∫
T∩Ωε

yψS1

Comparing to the coefficients of Xh defined by (4.47), it is trivial to verify that Xh = Sth.
Now let us compute the coefficients of matrix Qh. For the pressure node S1 and the control
volume ΠS1 shown in Figure 4.9, the coefficient (Qh)0,S1

is computed by

(Qh)0,S1
=

∫
T∩Ωε

ψS1 =
∑
k∈ΠS1

∫
k
ψS1 =

∑
k∈ΠS1

1

3
meas (k)
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The coefficients (Qh)1,S1
and (Qh)2,S1

are approximated by

(Qh)1,S1
=

∫
T∩Ωε

xψS1 ≈
∫

ΠS1

x

(Qh)2,S1
=

∫
T∩Ωε

yψS1 ≈
∫

ΠS1

y

Comparing with the coefficients of Yh defined by (4.51), we conclude that Yh = Qt
h.

Finally, local problem (4.37)–(4.43) can be written in the following matrix form:
Ah Bt

h Dt
h 0 Sth

Bh 0 0 Qt
h 0

Dh 0 0 0 0
0 Qh 0 0 0
Sh 0 0 0 0




Uh

Ph

Λh

Kh

ηh

 =


Fh

0
Hh

0
0

 (4.57)

Remark. It would be more accurate to solve (4.37)–(4.43) with the P2/P1 finite element. How-
ever, this finite element is not available in TrioCFD. Nevertheless, we were able to solve system
(4.57) in Freefem++ [81] using the P2/P1 finite element. We prove the existence and uniqueness
of a solution to system (4.57) and present the multiscale basis functions in Appendix B.

4.6.3 The discretization of coarse-scale problems

We recall the coarse-scale Stokes problem (3.204)–(3.205) defined in high-order multiscale meth-
ods: ∑

T∈Ωε

∫
T∩Ωε

µ∇uH : ∇v −
∑
T∈Ωε

∫
T∩Ωε

p̄H div v =
∑
T∈Ωε

∫
T∩Ωε

f · v, v ∈ V̂ St
H (4.58)

∑
T∈Ωε

∫
T∩Ωε

q div uH = 0, ∀q ∈ M̂H (4.59)

The coarse-scale Oseen problems are discretized similarly to coarse-scale Stokes problems
and the discretization is thus not detailed here. System (4.58)–(4.59) is discretized by the Galerkin
method where basis functions are solutions of local problems defined in high-order Crouzeix-
Raviart multiscale methods. In two dimensions, d = 2, we decompose the velocity uH ∈ V̂ St

H

defined by (3.167) and the pressure p̄H ∈ M̂H defined by (3.166) using multiscale basis functions
as:

uH =
∑
E∈EH

s∑
i=1

uE,iΦE,i +
∑
T∈TH

d∑
k=1

uT,kΨT,k

p̄H =
∑
T∈TH

(
p̄T0 + p̄T1 x+ p̄T1 y

)
ΘT

where ΘT is the characteristic function of element T , i.e. ΘT = 1 in T and 0 elsewhere.
We denote the discretized velocity and pressure by

UH = (uE,1, · · · , uE,s, uT,1, · · · , uT,d) for all E ∈ EH , T ∈ TH
PH =

(
p̄T0 , p̄

T
1 , p̄

T
2

)
T∈TH

Note that vectors UH and PH are of sizes (NF × s+NT × d) and NT × 3 respectively.
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Substituting uH and p̄H into (4.58)–(4.59), choosing v = ΦF,j for F ∈ EH and j = 1, · · · , s
or v = ΨT,k for k = 1, · · · , d, choosing q = ΘT and proceeding similarly to what was presented
in subsection 4.4.1, system (4.58)–(4.59) can be written in the matrix form:(

AH Bt

BH 0

)(
UH

PH

)
=

(
FH

0

)
(4.60)

where AH , BH and FH are computed similarly to what is presented in section 4.4.
After obtaining PH , the fine-scale pressure is reconstructed on each coarse element by

∀T ∈ TH , pH |T =
∑

E∈E(T )

s∑
i=1

uE,iπE,i +
d∑

k=1

uT,kπT,k +
(
p̄T0 + p̄T1 x+ p̄T2 y

)

4.6.4 The solution of local and coarse-scale problems with a direct solver

In practice, we have remarked several limitations of the prediction-correction algorithm when
solving the local problem (4.57) and the coarse-scale problem (4.60). Firstly, this algorithm
solves steady flow problems through a pseudo-transient process which can be time-consuming.
Secondly, this algorithm is designed to solve the pressure and the velocity separately in two steps
in each time step. However, besides the pressure and the velocity, there exist some Lagrange
multipliers in (4.57), thus it is difficult to adapt this algorithm to solve all these unknowns sep-
arately. Thirdly, in this algorithm, pressure does not have zero average over the computational
domain and its uniqueness is fixed by the pressure imposed on the boundary of the domain. This
is not compatible with (4.43), where the weighted average of pressure must be zero on the entire
domain.

Since the local problem (4.57) and the coarse-scale problem (4.60) are steady problems and
they are not of too large sizes, we used a direct solver UMFPACK [53] as an alternative to the
prediction-correction algorithm. UMFPACK is a set of routines for solving unsymmetric sparse
linear systems written in the form Ax = b, using the Unsymmetric-pattern MultiFrontal method
and direct sparse LU factorization. Using this direct solver, physical unknowns are solved in
a coupled way without passing through a pseudo-transient process. As a result, this solver is
much less time-consuming than the prediction-correction algorithm when solving both local and
coarse-scale problems. It should be noted that this direct solver was developed only for solving
local problems and steady coarse-scale Stokes or Oseen problems in two dimensions in this
thesis.

In the original implementation of TrioCFD, matrices Bh and Bt
h are not assembled, because

only matrix-vector products BhUh and Bt
hPh are required when solving (4.22) and (4.23)–

(4.24) by iterative methods. In other words, matrix systems such as (4.57) or (4.60) are not
assembled in the prediction-correction algorithm. Besides, the architect of the software is de-
signed only for the prediction-correction algorithm. Therefore an important work was devoted to
the assembly of matrix systems (4.57) and (4.60) as well as to the adaptation of the architecture
to the direct solver.

4.6.5 The validation of solutions of local problems

In order to validate the implementation in TrioCFD of local problems (4.37)–(4.43) defined in
high-order multiscale methods, we implement and solve the same problem on the same mesh
in FreeFem++ [81]. FreeFem++ is a widely-used software written in C++ to solve partial dif-
ferential equations in two and three dimensions. We solve ΦE,1 and πE,1 of local problems
(4.37)–(4.43) associated to the boundary E on the mesh shown in Figure 4.10.
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FIGURE 4.10: Mesh on the computational domain and zoom of a corner

FIGURE 4.11: Velocity ΦE,1 computed by TrioCFD (left) and FreeFem++
(right)
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We first discretize local problems (4.37)–(4.43) with the Crouzeix-Raviart finite element. We
observe that there are almost no differences between the velocity and pressure fields computed by
TrioCFD and by FreeFem++. Then we discretize the local problem (4.37)–(4.43) with the P1-
nonconforming/P1 finite element and solve (4.57) with TrioCFD and FreeFem++. In TrioCFD,
when the pressure is discretized in the P1 space, it is recommended to use a function VerifierCoin.
As shown in Figure 4.10, this function allows to cut an element consisting of two faces on the
boundary Γa into three elements. This operation is not performed in FreeFem++.

Denoting by hf the average mesh size, we first solve the local problem on a mesh with
hf = 0.02. As shown in Figure 4.11, there are no significant differences between the velocity
field given by TrioCFD and FreeFem++. However, as shown in Figure 4.12 (a), the pressure field
given by these software is almost the same except some very slight differences. In the pressure
field given by TrioCFD, we observe that there are some strong extrema localized in the corners
of the domain.

In order to understand this phenomenon, we refine the mesh by taking hf = 0.01 and hf =
0.005. As shown in Figure 4.12 (b) and (c), we observe that the magnitude of the pressure field
computed by FreeFem++ decreases and approaches zero whereas the extrema in the pressure
field computed by TrioCFD do not decrease at all. Then we solve ΦF,3 and πF,3 of (4.37)–(4.43)
in the domain shown in Figure 4.13. As shown in Figure 4.14, in the pressure field πF,3 computed
by TrioCFD, we still observe some strong extrema localized in the corners of the computational
domain. This phenomenon is not observed in the pressure field computed by FreeFem++.

Using the P1-nonconforming/P1 finite element, our investigations reveal that the pressure
field computed by TrioCFD is a little disappointing. This was probably related to the intrinsic
implementation of the P1 discretization of the pressure in the software, for example, the treatment
of boundary conditions. The reasons for this phenomenon are not entirely understood during
this thesis. Despite the existence of localized extrema in the pressure field, we can conclude
nevertheless that the pressure and the velocity computed by TrioCFD are in good agreement
with those computed by FreeFem++.

As presented in Chapter 3, velocity solutions of local problems form a basis of the velocity
approximation space VH . These multiscale basis functions are involved in the computation of
matrices on coarse elements and thus in the solution of coarse-scale problems. Since velocity
solutions of local problems are correctly computed with the P1-nonconforming/P1 finite element,
it is understandable that high-order Crouzeix-Raviart multiscale methods can still be applied to
solve flow problems. As defined by (3.208), pressure solutions of local problems are only used
in the reconstruction of the fine-scale pressure.

Our numerical results (see Chapter 6) highlighted that high-order Crouzeix-Raviart multi-
scale methods outperform all other Crouzeix-Raviart multiscale methods presented in this thesis.
In particular, when local problems are discretized using the P1-nonconforming/P1 finite element,
high-order Crouzeix-Raviart multiscale methods yield much more accurate pressure solutions
than other multiscale methods. This confirms that the slight problem in the pressure solution of
local problems is of limited consequence to the accuracy of the fine-scale pressure computed by
high-order multiscale methods.
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(a) hf = 0.02

(b) hf = 0.01

(c) hf = 0.005

FIGURE 4.12: Pressure πE,1 computed by TrioCFD (left) and FreeFem++
(right)
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FIGURE 4.13: Mesh on the computational domain with an obstacle

FIGURE 4.14: Pressure πF,3 computed by TrioCFD in the domain with an ob-
stacle
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Chapter 5

The multiscale simulation chain

In this chapter, we present the multiscale simulation chain SALOME-TrioCFD-VisIt developed
in the thesis. The multiscale simulation chain consists of all necessary tools and preliminary
preparations for numerical simulations with multiscale finite element methods. The simulation
chain consists of three main tools: the SALOME platform [129], the solver TrioCFD [139] and
the visualization tool VisIt [142]. Note that there exist two types of parallelisms in the multiscale
simulaton chain, the intrinsic extra-cellular parallelism and the intra-cellular parallelism. Both
parallelisms allow to reduce computing time and memory.

The SALOME platform is used in the first step of the simulation chain to prepare mesh files
necessary for multiscale finite element methods. Since the generation of such meshes is not a
native function of SALOME, an important work was devoted to the development of some specific
algorithms in SALOME. The solver TrioCFD is involved in the second step of the multiscale
simulation chain to perform numerical simulations. The main steps of multiscale finite element
methods are carried out in TrioCFD, including the solution of local problems, the assembly and
the solution of coarse-scale problems as well as the reconstruction of fine-scale solutions. These
operations are particularly related to multiscale finite element methods and they are not available
in TrioCFD. A considerable work was devoted to the implementation of these operations Tri-
oCFD. At the end of the multiscale simulation chain, VisIt is used to visualize the reconstructed
fine-scale solutions.

Outline Section 5.1 presents the main steps of the multiscale simulation chain as well as the
parallelism of each step. Section 5.2 presents the SALOME platform and algorithms developed
for the generation of meshes. Section 5.3 presents TrioCFD and important developments related
to multiscale methods. Section 5.4 discusses briefly the visualization of solutions in VisIt.

5.1 Parallelisms in the simulation chain

The main steps of the SALOME-TrioCFD-VisIt multiscale simulation chain are illustrated in
Figure 5.1. The theoretical and the practical parallelisms of each step are represented in different
colors. We distinguish two types of parallelism: extra-cellular parallelism and intra-cellular
parallelism. Both parallelisms contribute to the reduction of computing time and memory.

The extra-cellular parallelism is an intrinsic parallelism of multiscale finite element methods.
As presented in Chapter 3, Crouzeix-Raviart multiscale finite element methods are nonconform-
ing methods, i.e. only the average jump of velocity is required to be continuous along the inter-
faces of coarse elements. Local problems are solved on each coarse element independently from
adjacent ones. Similarly, the computation of matrices and the reconstruction of fine-scale solu-
tions are also carried out in each coarse element without communication with neighboring ones.
Therefore these operations can be carried out in parallel by executing one instance of TrioCFD
on each coarse element.

The intra-cellular parallelism allows to assign several processors for one task. SALOME has
parallelized meshing tools which permit to generate large mesh files using several processors
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in order to reduce computing time. Some solvers in TrioCFD are parallelized in order to solve
large systems with numerous processors. In parallel computations, TrioCFD has an optimal
performance provided that each processor treats about 20,000-30,000 mesh elements. This rule
helps the user to decide the number of processors to use in the computation.

Figure 5.1 (a) and (b) show respectively the theoretical and implemented parallelism in the
multiscale simulation chain. Theoretically, all expensive steps (shown in green), such as the gen-
eration of meshes and the solution of local problems have both the extra-cellular parallelism and
intra-cellular parallelism. However, in practice, the intra-cellular parallelism was not developed
for these steps for two main reasons. The first reason is that the intra-cellular parallelism is not
necessary for these steps. For example, the computation of matrices and the reconstruction of
fine-scale solutions are both very fast even with only one processor. The solution of local prob-
lems (with the prediction-correction algorithm) is relatively efficient sequentially if fine meshes
contain less than 30,000 elements. The second reason is a lack of time. In fact, in three dimen-
sions, some coarse elements can contain more than 100,000 elements due to the complexity of
the geometry. When solving local problems on these coarse elements, it is desired to use several
processors in order to reduce computing time.

Generation of meshes
SALOME

Preparation of data files
Python

Solution of local problems
TrioCFD

Computation of local matrices
TrioCFD

Solution of coarse-scale problems
TrioCFD

Construction of fine solutions
TrioCFD

Visualization of fine solutions
VisIt

Generation of meshes
SALOME

Preparation of data files
Python

Solution of local problems
TrioCFD

Computation of local matrices
TrioCFD

Solution of coarse-scale problems
TrioCFD

Construction of fine solutions
TrioCFD

Visualization of fine solutions
VisIt

(a) Theoretical parallelisms (b) Implemented parallelisms

FIGURE 5.1: Main steps of the multiscale simulation chain and associated paral-
lelisms: sequential computation (rounded corner rectangle), the extra-parallelism

(rectangle) and the intra- and extra-parallelism (trapezium)
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5.2 Pre-processings in the SALOME platform

As presented in subsection 2.5.1 of Chapter 2, multiscale finite element methods consist of two
types of meshes: the coarse mesh TH and a fine mesh Th (K) on each coarse element K ∈ TH .
The coarse mesh TH contains no obstacles whereas the mesh Th (K) should be fine enough to
resolve the boundary of obstacles in the coarse element. The coarse-scale mesh and fine meshes
are particularly related to multiscale methods and thus require some special developments in
SALOME. In this section, we present the SALOME platform and the main algorithms developed
for the generation of meshes in this thesis.

5.2.1 The SALOME platform

SALOME [129] is an integration platform developed by CEA and EDF. It is distributed as open-
source software under the terms of the GNU LGPL license. SALOME provides a generic platform
for Pre- and Post-Processings for numerical simulations using spatially discretized, mesh-based
methods like finite element or finite volume methods. The platform is based on an open and
flexible architecture made of reusable components. Besides, it is parallelized for the generation
of very complex or large geometries and meshes.

The platform contains several separate working modes for geometry creation or manipula-
tion (GEOM), meshing (MESH), post-processing (ParaVIS) and manipulation of physical fields
based on meshes (FIELDS). The GEOM module has quite extensive capabilities in creation and
manipulation of geometries. The geometry management is based on Open CASCADE Technol-
ogy (OCCT) [119] and Visualization Toolkit (VTK) visualization library.

The MESH module is capable to generate various two-dimensional (2D) and three-dimensional
(3D) meshes, for example, 3D meshes consisting of tetrahedra or hexahedra or a mix of tetra-
hedra and hexahedra. For 2D surface meshing, we can use tools like NETGEN, Mefisto and
MeshGems-CADSURF etc. For 3D volume meshing, there are various tools such as NET-
GEN, MeshGems-Tetra, MeshGems-Hexa, MeshGems-Hybrid, Gmsh and so on. MeshGems-
CADSURF and MeshGems-Tetra are commercial meshers developed by Distene [55]. Mesh
files can be exported in the MED format which is the standard and default mesh format of SA-
LOME. Moreover, if necessary, mesh files can also be exported in other formats such as UNV,
DAT and so on. Using the ParaVIS module, SALOME can do post-processings of numerical
results and do some manipulations on meshes such as merging and splitting.

In SALOME, we can access to almost all existing functions via the Graphic User Interface
(GUI). We can also use the TUI (Text User Interface) which provides a functionality to access
to all features from the Python console (embedded in GUI desktop or an external one). The TUI
is more practical for the creation of complicated geometries and meshes. It allows to change
geometric or mesh parameters easily for the generation of multiple geometries and meshes. In
this thesis, we used the Python console for the generation of all geometries and meshes. We used
the version SALOME-8.2.0 to export mesh files that can be manipulated by TRUST-1.7.5. We
will present TRUST-1.7.5 later in this chapter. Since the development of SALOME is very active,
several updated versions have come out during this thesis, but all functions used in this thesis
have not been impacted.

In this thesis, we have mainly used commercial meshers MeshGems-CADSURF and MeshGems-
Tetra [55] respectively for 2D and 3D meshing under the license of CEA. All mesh files are
exported in the MED format which can be manipulated easily by TrioCFD.

5.2.2 The GEOM and MESH modules

In the upstream preparation for numerical simulations, GEOM and MESH modules are used
respectively to generate the geometry and the associated mesh.



130 Chapter 5. The multiscale simulation chain

In a first step, the GEOM module is used to create a geometric object which represents the
computational domain. In this object, each characteristic zone such as the boundary of the do-
main is represented as a geometric group. Each geometric group can contain several objects but
it represents only one physical property. The TUI allows to get access to all existing functions
in GEOM. Making use of these functions, we have developed algorithms in Python for the gen-
eration of complicated geometries. These algorithms allows us to automate the generation of
geometries and to change easily geometric parameters.

In a second step, the MESH module is used to discretize the geometric object into finite
elements such as triangles, tetrahedra and so on. A meshing tool is executed to get the mesh
object associated to the geometry object. Mesh groups are created from geometric groups created
in the first step. Mesh groups contain boundary elements which are necessary for the treatment
of boundary conditions in numerical simulations. At the end of this step, the mesh object and
groups are exported into a mesh file in the MED format.

It should be noted that geometric objects created in the first step is essential for normal
operations on the mesh object. If we delete the geometric object, all operations on the mesh
object become impossible except the display of meshes. In practice, it takes more work to create
geometric objects than to create mesh objects.

In this thesis, we work on a perforated domain Ωε which is rectangular (d = 2) or parallelepi-
pedic (d = 3). The discretization of the domain is already briefly presented in subsection 2.5.1
and we recall some notations here. As shown in Figure 3.1, both the coarse mesh and fine meshes
are made of either triangles (d = 2) or tetrahedrons (d = 3). Moreover, we denote by TH(Ω)
the coarse mesh of the domain Ω and denote by Th (K) the fine mesh on the coarse element
K ∈ TH (Ω). For the sake of simplicity, for any K ∈ TH (Ω), we denote by Bε

K the set of
obstacles intersecting with K, i.e. Bε

K = Bε ∩K 6= ∅. Besides, we define Kε = K \ B̄ε
K and

Eε = E \ B̄ε
K for any E ∈ ∂K.

5.2.3 Parallelisms of the generation of meshes

As shown in Figure 5.1 (a), theoretically, the generation of meshes benefits from both the intra-
cellular and extra-cellular parallelisms. Let us discuss first the extra-cellular parallelism. As
presented in Chapter 3, Crouzeix-Raviart multiscale finite element methods are nonconforming
methods, i.e. only the average jump of velocity is required to be continuous along the interfaces
of coarse elements. Local problems are solved on each coarse element independently from adja-
cent ones. Similarly, the reconstruction of fine-scale solutions is also carried out in each coarse
element without communication with adjacent ones. Thus Crouzeix-Raviart multiscale finite el-
ement methods allow to use fine meshes that are non-matching along the interfaces of coarse
elements.

Without the constraint of conformity, non-matching meshes provide more flexibility when
meshing complicated geometries. Theoretically, non-matching fine meshes meet the need of
Crouzeix-Raviart multiscale methods and they can be generated in parallel by executing one
instance of SALOME on each coarse element. However, since the generation of fine meshes is
very fast, we execute in practice only one instance of SALOME and create the fine mesh one after
another.

Now we discuss the intra-cellular parallelism. Theoretically, the generation of both the coarse
and fine meshes can benefit from the intra-cellular parallelism. In other words, it is possible to
assign several processors when using parallelized meshing tools in SALOME. In practice, since
the generation of fine meshes is efficient even sequentially, we have not parallelized the algo-
rithms developed in this thesis. As a result, the generation of meshes is marked as a sequential
step in Figure 5.1 (b).

In order to validate Crouzeix-Raviart multiscale methods, we also solve the multiscale prob-
lem on a reference mesh with the traditional numerical method in TrioCFD and this solution is
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called the reference solution. As shown in Figure 3.1 of Chapter 3, the reference mesh is the
union of fine meshes on coarse elements provided that fine meshes are matching along inter-
faces of coarse elements. Due to the constraint of conformity, it is more complicated to create
conforming fine meshes than nonconforming ones in SALOME. Note that the reference mesh
is not required by multiscale methods and it is only needed for validation purpose during the
development phase of Crouzeix-Raviart multiscale methods.

In this thesis, we distinguish two types of heterogeneous media: (a) with randomly placed
obstacles; (b) with periodically placed obstacles. For the media (a), we have developed an al-
gorithm for the generation of conforming fine meshes (see subsection 5.2.4) and an algorithm
for the generation of nonconforming fine meshes (see subsection 5.2.5). For the media (b), we
have developed a special algorithm which takes advantage of the periodicity of the media (see
subsection 5.2.7).

5.2.4 Generation of the coarse mesh and conforming fine meshes

The generation of the coarse mesh and conforming fine meshes is described in Algorithm 5.1.
The conformity of fine meshes along the interfaces of coarse elements is guaranteed using the fine
mesh Th(Ω). This algorithm is described in a simplified Python script provided in Appendix A.1.

Algorithm 5.1 Generation of the coarse mesh and conforming fine meshes

1: Discretize the domain Ω into a coarse mesh TH (Ω) . subsection 5.2.4.1
2: Create the set of obstacles Bε . subsection 5.2.4.2
3: Discretize the domain Ωε into a fine mesh Th (Ωε) . subsection 5.2.4.3
4: for each element K ∈ TH (Ω) do
5: Create the fine mesh Th(K) based on Th(Ωε) . subsection 5.2.4.3
6: Export the fine mesh Th(K) into a MED file
7: end for

(b) coarse mesh TH (Ω)(a) domain Ω

FIGURE 5.2: An illustration of the generation of the coarse mesh

5.2.4.1 Generation of the coarse mesh

The coarse mesh consists of a connected union of coarse elements which can be of any shape
theoretically. It was pointed out in [61] that an appropriate choice of the coarse mesh will improve
the efficiency and accuracy of multiscale approaches. In this thesis, the coarse mesh consists of
either triangular elements (d = 2) or tetrahedral elements (d = 3).

An shown in Figure 5.2 (a), we first create a square (d = 2) or a cubic (d = 3) geomet-
ric object in the GEOM module. Then we transform the geometric object into a mesh object
which access to functions of the MESH module. In the MESH module, we use the function
QuadTo4Tri (d = 2) to split the square into 2 or 4 triangles or SplitVolumesIntoTetra (d = 3)
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FIGURE 5.3: An example of the function SplitVolumesIntoTetra

to split the cube into 6 or 24 tetrahedrons. The Python script shown in Figure 5.3 reveals the
function SplitVolumesIntoTetra.

In a second step, we transform each element in the mesh object into a geometric object.
Note that geometric objects are easier to manipulate than mesh objects in SALOME. As shown
in Figure 5.2 (a), we translate the geometric object to form a set of triangles (d = 2) or tetra-
hedrons (d = 3) that cover the whole domain Ω. Making use of the function MakePartition or
MakeGlueFaces, the union of these geometric objects forms a unique geometric object Ω which
consists of triangular or tetrahedral coarse elements. Then we create geometric groups on this
geometric object, such as groups of boundaries of Ω.

In a third step, we transform the geometric object to a mesh object which is the coarse mesh
TH (Ω) shown in Figure 5.2 (b). Based on the geometric groups created in the last step, we create
mesh groups on the mesh object and the mesh groups serve to impose boundary conditions in
numerical simulations. At last, the coarse mesh TH (Ω) is exported into a MED file, which
contains the discretization (elements and connectivities) and mesh groups.

5.2.4.2 Creation of obstacles Bε

Given a list of coordinates and sizes of obstacles in the domain, it is straightforward to create
geometric objects of obstacles in the GEOM module. If obstacles are all of the same size, we
can create one geometric object and translate it elsewhere using the function MakeTranslation.
At last, the function MakeCompound assembles all geometric objects of obstacles to form one
unique geometric object Bε.

5.2.4.3 Generation of Th (Ωε) and conforming fine meshes

In the GEOM module, taking the geometric object Ω as the source object and the geometric
object Bε as the tool object, the boolean operation MakeCut creates the perforated domain Ωε.
As described in subsection 5.2.4.1, the geometric object Ω is an union of geometric objects of
elements K ∈ TH (Ω). Thus after using MakeCut, the geometric object Ωε is an union of
geometric objects of elements Kε = K \ B̄ε

K for K ∈ TH (Ω). On the geometric object Ωε, we
create a geometric group of faces Eε for E ∈ EH and a group of solids Kε for K ∈ TH (Ω).

In the MESH module, we create a surface mesh on the group of faces using MG_CADSurf.
This operation determines the position and the number of meshing nodes on each face Eε for
E ∈ EH . Then under the constraint of the surface mesh, we create a volume mesh Th(K) using
MG_Tetra on each solid Kε for K ∈ TH (Ω). At the end, MG_Tetra takes automatically the
union of volume meshes and produces a unique fine mesh Th (Ωε). The volume mesh generated
on each solid is exported into a fine mesh Th(K) for K ∈ TH (Ω).

At last, we create mesh groups respectively on Th (Ωε) and on each fine mesh Th(K) for
K ∈ TH (Ω). All the mesh objects are exported into MED files which contain all necessary
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information for numerical simulations, including the discretization (elements and connectivities)
and mesh groups for boundary conditions.

By construction, neighboring fine meshes share the same meshing nodes on their interface
and we obtain conforming fine meshes. Proceeding in this way, the generation of Th (Ωε) in very
efficient since the mesh is generated by taking the union of small fine meshes which are very fast
to create.

5.2.5 Generation of the coarse mesh and nonconforming fine meshes

As mentioned previously, the reference mesh is not required in multiscale finite element methods
and it is needed only for validation purpose. After the validation phase, the reference mesh is not
required and it is better to create non-matching fine meshes in multiscale simulations. Now we
present the generation of nonconforming meshes following Algorithm 5.2.

Algorithm 5.2 Generation of the coarse mesh and nonconforming fine meshes

1: Discretize Ω into a coarse mesh TH(Ω) . subsection 5.2.5.1
2: for each element K in the coarse mesh TH(Ω) do
3: Create the set of obstacles Bε

K . subsection 5.2.5.2
4: Assemble the macroelement Kε = K \ B̄ε

K . subsection 5.2.5.3
5: Discretize the macroelement Kε to a fine mesh Th(K) . subsection 5.2.5.4
6: Export the mesh Th(K) into a MED file
7: end for

5.2.5.1 Generation of the coarse mesh

The generation of the coarse mesh is the same as what was presented in subsection 5.2.4.1.

5.2.5.2 Creation of obstacles Bε
K

Given a list of coordinates and sizes of obstacles in the domain, for each coarse elementK ∈ TH ,
we need to determine the set of obstacles which intersect with K. In this thesis, we take the
distance between the gravity center of K and that of the obstacle as the characteristic length.
Since obstacles are either circular or square for d = 2 and cylindrical for d = 3, it is easy to
check with existing functions of SALOME whether an obstacle intersects with K.

5.2.5.3 Assembly of the coarse element Kε

For each K ∈ TH (Ω), the coarse element Kε = K \ B̄ε
K is created easily by the function

MakeCut in the GEOM module. It is a boolean operation which takes the element K as the
source object and obstacles Bε

K as the tool object. It returns the source object cut by obstacles,
i.e. the coarse element Kε. Then on the coarse element Kε, we create geometric groups of
boundaries of Kε and a geometric group of boundaries of Bε

K .

5.2.5.4 Generation of nonconforming fine meshes

In the MESH module, we discretize each geometric object Kε independently from neighboring
objects and obtain the fine mesh Th (K). Thus the conformity on the interface of adjacent fine
meshes is not guaranteed and thus the union of fine meshes is nonconforming. The surface
and volume meshes are generated respectively by MG_CADSurf and MG_Tetra. On each
fine mesh, we create mesh groups based on the geometric groups created in the last step. At
last, each fine mesh is exported into a MED file which contains the discretization (elements and
connectivities) and mesh groups.
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5.2.6 Treatment of tangent points

In Algorithm 5.1 and Algorithm 5.2, for K ∈ TH , when creating Kε using Bε and K, randomly
placed obstacles may be tangent to ∂K. Thus the intersection of Bε and K is reduced to only
isolated points and the function MakeCut in the GEOM module might fail to generate Kε. Even
though MakeCut is able to create Kε, meshing tools in the MESH module probably fail due
to isolated tangent points. When obstacles are not strictly tangent but very close to ∂K, a very
fine mesh is needed in order to resolve the tiny space between obstacles and ∂K. Moreover, it is
possible that TrioCFD can not produce correct solutions on such kind of meshes.

However, tangent points are difficult to avoid especially when there is a large number of
obstacles. One solution to this problem is to create a coarse mesh consisting of polygons. The
shape of polygons can be designed to avoid tangent points with obstacles. Note that theoretically,
coarse elements of the coarse mesh can be of any shape. However, TrioCFD can not read this
kind of meshes for the moment.

Another solution is to discretize obstacles and use the penalization technique [21] to impose
the non-slip boundary condition on obstacles. However, in TrioCFD, it is recommended to use
body-fitted unstructured meshes in numerical simulations. Obstacles are not discretized and no
penalization technique is used. In periodic heterogeneous domain, tangent points can be avoided
more easily by choosing an appropriate coarse mesh according to the distribution of obstacles.

5.2.7 A special algorithm for periodic heterogeneous media

The case of flow through closely spaced periodic cylinder arrays is important for nuclear in-
dustrial applications, e.g. flow around nuclear fuel rods, flow past heat exchange coils in steam
generators and so on. A medium with closely spaced periodic cylinder arrays is a typical example
of periodic heterogeneous media.

Ω

Y

FIGURE 5.4: Illustration of a periodic domain

Algorithm 5.3 A special algorithm for periodic media

1: Generate the coarse mesh TH (Y ) and fine meshes Th(K) for K ∈ TH (Y ) using Algo-
rithm 5.2

2: Solve local problems on each fine mesh Th(K)
3: Compute matrices locally on each fine mesh Th(K)
4: Translate each fine mesh Th(K) elsewhere to obtain new meshes Th(K ′)
5: Copy basis functions and matrices computed on each Th(K) to new meshes Th(K ′)

As shown in Figure 5.4, a periodic domain can be considered as the translation of a reference
cell Y . We remark that in Crouzeix-Raviart multiscale finite element methods, basis functions
and matrices computed on Y are the same as those computed on other cells. If the periodic
domain Ωε contains an important number of small obstacles, it can take a lot of computing time
to generate fine meshes following Algorithm 5.2. Besides, it can be expensive to solve local



5.3. Implementations in TrioCFD 135

problems on each fine mesh, especially in 3D (see Chapter 5). To reduce the computing time, we
take advantage of the periodicity of the domain by using Algorithm 5.3. This algorithm presents
the generation of fine meshes, the solution of local problems and the computation of matrices in
periodic media.

In a first step, we create a simple geometric object Y in the GEOM module. Then following
Algorithm 5.2, we create on the reference cell Y a coarse mesh TH(Y ) and fine meshes Th(K)
for K ∈ TH(Y ). The coarse mesh TH(Y ) consists of coarse elements, for example, 4 triangles
if d = 2 or 24 tetrahedrons if d = 3.

In a second step, we solve local problems and compute matrices on each fine mesh Th(K)
for K ∈ TH(Y ). Since TH(Y ) consists of only several coarse elements, we need to solve only
a small number of local problems and compute only several matrices. The solutions of local
problems and the pre-computed matrices are stored for later use.

FIGURE 5.5: A data file to execute the transformer function

In a third step, we use the function transformer of TrioCFD to translate fine meshes Th(K)
for K ∈ TH(Y ) in order to cover the whole domain Ωε. In the data file shown in Figure 5.5,
we translate the source mesh tetra_0.med, following the translation vector (0.2, 0, 0) and then
obtain a new mesh named tetra_18.med. The generation of such data files are automated by
executing a Python file. Numerical tests show that the translation is very fast and at the end of
the translation, we obtain a set of fine meshes. Note that we tried also to translate fine meshes
using some function in SALOME but it was more complicated.

Similarly, we copy basis functions and local matrices computed on fine meshes Th(K) for
K ∈ TH (Y ) to newly created fine meshes. This operation is automated by executing a Python
script. Of course, we can also solve local problems and compute matrices on newly created fine
meshes instead of using the copy operation.

5.3 Implementations in TrioCFD

In this section, we present practical implementations of Crouzeix-Raviart multiscale finite ele-
ment methods in TrioCFD. We first introduce TRUST and TrioCFD. Then we present the im-
plementations of the main steps of multiscale methods, including the solution of local problems,
the computation of matrices, the solution of coarse-scale problems and the reconstruction of
fine-scale solutions.

5.3.1 TRUST and TrioCFD

TrioCFD (previously named Trio_U) [139] is a free, open source CFD software, released and
developed primarily by the Service de Thermohydraulics and Fluid Mechanics (STMF), Depart-
ment of Nuclear Energy (DEN) in CEA. In 2015, Trio_U was separated into two parts: TRUST
and TrioCFD, where TRUST (TRio_U Software for Thermohydraulics) is a new platform and
TrioCFD is a BALTIK (Building Application Linked with TrioCFD Kernel) project based on
TRUST. Figure 5.6 shows the TRUST platform and several BALTIK projects based on it.

TRUST [139] is developed in C++ (object-oriented) and it provides a general framework for
the development of other projects and applications. In this framework, the structure of these
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TRUST platform:
Kernel, Code Coupling Interface, V & V Tools, doc

TrioCFD TrioMC GENEPI3 MPCube

FIGURE 5.6: Trust platform and BALTIK projects

projects and applications is defined by some elementary objects: physical problems, equations,
operators, time schemes, discretization and so on. Besides, TRUST provides an interface to
some parallel numerical software libraries for partial differential equations and sparse matrix
computations, such as PETSc [122]. TRUST also provides data structures and functions for
the conception of parallel softwares, such as the management of memories and parallel I/O,
distributed computations on vectors and matrices as well as distributed algorithms for the solution
of linear systems. Other than TrioCFD, software developers can build other BALTIK projects
based on the framework provided by TRUST, such as TrioMC, GENEPI3 and MPCube.

Based on TRUST, TrioCFD has an extensive range of features to solve various thermo-
hydraulics problems from turbulent flows to two-phase flows. It has also been successfully used
to perform massive parallel calculations for nuclear safety studies. TrioCFD applies a hybrid
finite volume based finite element method which is presented in Chapter 4. Velocity and tem-
perature are discretized at the face center of triangular (d = 2) or tetrahedral elements (d = 3),
leading to a P1 non-conforming discretization. The pressure can be discretized at the gravity
center (P0), at the vertices (P1) or at both the gravity center and the vertices (P0 P1) of a finite
element. The prediction-correction algorithm presented in section 4.3 is the only solver available
to solve Navier-Stokes problems.

5.3.2 Preparations of data files for numerical simulations

In TrioCFD, numerical calculations are performed by executing data files, in which we spec-
ify simulation parameters, such as source terms, boundary conditions, discretization schemes,
solvers and so on.

In Crouzeix-Raviart multiscale methods, we solve local problems locally on coarse elements
and each local problem is specified in a data file. Besides, the assembly of matrices and the
reconstruction of fine-scale solutions are performed on coarse elements. These operations need
to be specified respectively in data files. It should be noted that these data files have been adapted
for multiscale methods based on the native data file of TrioCFD. The working directories and data
files are generated by executing a Python script developed in this thesis. As shown in Figure 5.1
(b), the preparation of data files is performed sequentially in practice. A commented data file for
the solution of local problems is provided in Appendix A.2.

5.3.3 PROJECT_LOCAL_PB for local problems

To solve local problems, we have created a new BALTIK project PROJECT_LOCAL_PB based
on TRUST-1.7.5. In fact, the development of TRUST is very active and several updated versions
have been released during this thesis. Since functions used in this thesis are not significantly
affected, we prefer to continue the development using only one version of TRUST.

In PROJECT_LOCAL_PB, we have defined a new boundary condition named Cl_cellule
to stand for the integral type of boundary condition. We have implemented local problems de-
fined by Stokes equations (3.39) based on native Stokes equations implemented in TrioCFD. We
have introduced some new unknowns i.e. Lagrange multipliers and implemented new matrices
presented in (4.21).
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Since Oseen equations are not natively available in TrioCFD, we have implemented local
problems defined by Oseen problems (3.102) based on the original Navier-Stokes equations im-
plemented in TrioCFD. We have mainly altered the nonlinear convection term to the linear Oseen
term and modified the treatment of boundary conditions related to the Oseen term.

In an early stage of this thesis, we have solved local problems defined by Stokes equations
(3.39) and Oseen equations (3.102) by modifying the native prediction-correction algorithm and
this modification was already detailed in Chapter 4.

However, in a later stage of this thesis, for high-order multiscale methods, we have imple-
mented local problems (3.191)–(3.192) completely differently from the native implementations
of Stokes equations in TrioCFD. As already presented in section 4.6, an important work was
devoted to the implementation of the matrix system (4.57) and a direct solver.

FIGURE 5.7: An example of data file for Execute_parallel

Since most local problems are of small sizes, we have not developed the intra-cellular par-
allelism in PROJECT_LOCAL_PB. Each local problem is solved sequentially using only one
processor. In three dimensions, local problems can be of large sizes and the intra-cellular paral-
lelism might be desired. Since local problems are solved independently from one coarse element
to another, the native function Execute_parallel in TRUST allows to benefit from this extra-
cellular parallelism. As indicated by its name, this function permits to run multiple instances
of TRUST to execute multiple data files at the same time. Besides, the number of processors
is specified for each instance and can be different. As shown in Figure 5.7, Execute_parallel
will solve four local problems by executing four instances of PROJECT_LOCAL_PB and one
processor is assigned to each instance.

In multiscale methods, multiscale basis functions will be reused multiple times in coarse-
scale problems and post-processings. TRUST can export solutions of local problems in several
data formats, such as SAUV, LATA and MED. The SAUV format and the LATA format are the
most used formats. In this thesis, multiscale basis functions are exported into the binary SAUV
format which takes less storage space than other formats.

In order to validate the implementation of local problems in TrioCFD, we have solved the
same problems using FreeFem++ [81]. FreeFem++ is a widely-used software written in C++ to
solve partial differential equations. It can solve multiphysics nonlinear systems in two or three
dimensions. In both FreeFem++ and TrioCFD, we solve local problems (3.39) and (3.102) using
the Crouzeix-Raviart element on the mesh shown in Figure 5.8. Note that weighting functions
are chosen as indicated in the case s = d of (3.7) and d = 2 in two dimensions.

Denoting by utriou and uff the solution of TrioCFD and of FreeFem++, we define the rela-
tive difference by

dr (u) =
‖utriou − uff‖L2

max(‖utriou‖L2 , ‖uff‖L2)

Figure 5.9 shows the velocity field ΦE,1 computed respectively by Triou and Freefem++.
The boundary E is indicated in Figure 5.8. Table 5.1 confirms that there are no significant
differences between solutions given by the two software. The difference of solutions of local
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FIGURE 5.8: The fine mesh on a coarse element

(A) TrioCFD (B) FreeFem++

FIGURE 5.9: Velocity ΦE,1 computed by TrioCFD and of FreeFem++

TABLE 5.1: Error comparison of Triou and Freefem++

local problem dr(u) dr(p)

Stokes equations 6.193e-06 3.931e-05
Oseen equations 0.0168 0.018
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problems defined by Oseen equations is due to the fact that the Oseen term is treated differently
in the two software. In TrioCFD, the Oseen term is approximated by using the upwind scheme
whereas the is not the case in Freefem++. We thus conclude that the implementation of local
problems (3.39) and (3.102) in TrioCFD are valid.

5.3.4 PROJECT_MAT for matrix assembly

The coarse-scale problem is discretized by the finite element method specially developed to in-
terface with multiscale basis functions. As presented in section 4.4, the coarse-scale problem is
assembled from matrices locally computed on coarse elements. Thus we have created a BALTIK
project PROJECT_MAT based on TRUST for the computation of matrices on coarse elements.
On each coarse element, we read multiscale basis functions constructed on this element, compute
matrices as presented in section 4.2 and then store matrices on the local disk.

These locally computed matrices will be used to assemble coarse-scale problems on the
coarse mesh. For each element K ∈ TH (Ω) and each face E ∈ EH in the coarse mesh, it
is necessary to identify the related coarse element Kε = K ∩ Ωε and the related boundary
Eε = E ∩ Ωε. The objective is to find the right matrices computed locally on Kε when assem-
bling coarse-scale problems. Therefore, in PROJECT_MAT, we create a lookup table consisting
of each boundaryEε and the unit vector normal toEε. It is easy to see that the unit normal vector
of the boundaryEε and the faceE ∈ EH is the same. This table will be used for the identification
of Kε and Eε when assembling coarse-scale problems.

5.3.5 PROJECT_COARSE_PB for coarse-scale problems

In multiscale finite element methods, coarse-scale problems are discretized by the finite element
method presented in section 4.4. This finite element is specially developed to interface with
multiscale methods and is not for independent use. The coarse-scale problems are implemented
in a BALTIK project PROJECT_COARSE_PB created based on TRUST. In the general frame-
work provided by TRUST, we have created a new discretization scheme MsEF and implemented
elementary objects related to this discretization, such as Operateurs, Champs, Zones and so on.

Coarse-scale problems are assembled by reading pre-computed matrices stored on the local
disk. For each element K ∈ TH (Ω) and each face E ∈ EH in the coarse mesh, it is necessary to
identify the related coarse elementKε = K∩Ωε and the boundaryEε = E∩Ωε. The objective is
to read the right matrices computed locally on Kε and assemble correctly coarse-scale problems.
The lookup table created in PROJECT_MAT is used to realize this objective.

Once the coarse-scale problem is assembled, we use existing solvers in TrioCFD to solve
the probem. The only solver natively available is the prediction-correction algorithm. In the
first stage of this thesis, we have used this algorithm to solve coarse-scale problems. Then in a
later stage of this thesis, we have assembled the matrix system (4.60) and implemented a direct
solver UMFPACK as presented in section 4.6. After the solution of coarse-scale problems, coarse
solutions are stored on the local disk for the reconstruction of fine-scale solutions in the next step.

Since coarse-scale problems are assembled and solved on the coarse mesh, there is no extra-
cellular parallelism in this step. Besides, coarse-scale problems are of limited sizes, with max-
imum hundreds of thousands unknowns, and can be solved efficiently sequentially. Thus the
intra-cellular parallelism has not been developed in the thesis. In conclusion, coarse-scale prob-
lems are solved completely sequentially as shown in Figure 5.1 (b).

5.3.6 PROJECT_POS for the reconstruction of fine-scale solutions

The last step of the multiscale simulation chain is to reconstruct the fine-scale features of the
velocity and pressure for visualization. This step was implemented in the BALTIK project
PROJECT_POS created based on TRUST. Fine-scale solutions are reconstructed locally on each
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coarse element. We recall the reconstruction of fine-scale solutions presented in subsection 3.2.5:
on each coarse element Kε with K ∈ TH (Ω)

uH =
∑

E∈E(K)

s∑
i=1

uE,iΦE,i

pH =
∑

E∈E(K)

s∑
i=1

uE,iπE,i + p̄H |K

In practice, on the fine mesh Th (K) associated to the coarse element Kε, for E ∈ E(K)
and i = 1, · · · , s, we need to find from the local disk multiscale basis functions ΦE,i and πE,i
that were constructed on this mesh. Then we need to find the value of uE,i from the coarse-scale
velocity stored on the local disk. Similarly, we need to find the value of p̄H |K from the coarse-
scale pressure p̄H stored on the local disk. This identification process is a little complicated in
practice and will not be detailed here. After finding the right ΦE,i, πE,i and uE,i for E ∈ E(K)
and i = 1, · · · , s, we can construct the fine-scale velocity and pressure as defined by equations
above. In this thesis, the re-construction of the fine-scale pressure is not emphasized.

At the end of this step, fine-scale solutions reconstructed on each coarse element are exported
into a file in the LATA format. This format can be manipulated easily by VisIt which is the most
used post-processings tool of TrioCFD. LATA files contain not only fine-scale solutions (velocity
and pressure) but also the meshes used for the computation of solutions. Thus a large number of
LATA files may require a large storage space. In the case of limited storage space, we can choose
to reconstruct fine-scale solutions only in the regions of interest.

In Crouzeix-Raviart multiscale finite element methods, since fine-scale solutions are recon-
structed locally on each coarse element, we manipulate each time only a reasonable amount of
files that will not exceed modern computing capacities. Besides, we can choose to reconstruct
fine-scale solutions on the entire domain or only in the regions of interest. This allows to reduce
the total number of files to be manipulated and the required storage space.

To validate Crouzeix-Raviart multiscale methods, we compare reconstructed fine-scale solu-
tions uH and pH with reference solutions uref and pref . The references solutions are computed
by the classical numerical method implemented in TrioCFD. We defined the L2 norm defined by

‖u‖L2 =

 ∑
K∈TH(Ω)

∑
k∈Th(K)

meas(k)|u (xk) |2
1/2

where xk represents the computing node of the physical unknown.
Using the L2 norm, the relative errors of velocity uH and of pressure pH are defined by

L2 Rel. U =
‖uH − uref‖L2

‖uref‖L2

, L2 Rel. P =
‖pH − pref‖L2

‖pref‖L2

(5.1)

In PROJECT_POS, after the reconstruction of fine-scale solutions, we compute on each
coarse element Kε the following term:

ElocK (uH) =
∑

k∈Th(K)

meas(k)| (uH − uref ) (xk) |2

ElocK (uref ) =
∑

k∈Th(K)

meas(k)|uref (xk) |2

By summing ElocK (uH) and ElocK (uref ) on all coarse elements, we obtain ‖uH − uref‖L2
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and ‖uref‖L2 . Then it is straightforward to compute L2 Rel. U defined by (5.1). The error
L2 Rel. P is computed in the same way.

Note that the computation of relative errors is not required in multiscale finite element meth-
ods. These errors are noly computed in the development phase of multiscale methods for valida-
tion purpose.

Remark. In the SALOME platform, there is a module MEDCoupling which can compare nu-
merical solutions computed on different meshes. Besides, MEDCoupling manipulates files in
the MED format. However, during this thesis, TrioCFD is not able to export velocity located at
element faces into the MED format. By interpolating the velocity computed at element faces, Tri-
oCFD can obtain the velocity located at element centers or vertices and export it into the MED
format. The interpolation introduces additional errors and we have no idea of the importance of
these errors. Thus we did not use MEDCoupling to compute errors between reference solutions
and reconstructed fine-scale solutions.

5.4 Post-processings in VisIt

In this section, we present briefly the visualization of reconstructed fine-scale solutions using
VisIt. In this thesis, we tried several methods and present only the most efficient one.

5.4.1 The visualization tool VisIt

VisIt [142] is one of the most-frequently used visualization tools. It is an open source, interactive,
scalable, visualization, animation and analysis tool created by the Lawrence Livermore National
Laboratory. Users can interactively visualize in parallel and analyze data ranging in scale from
small (<101 core) desktop-sized projects to large (>105 core) leadership-class computing facility
simulation campaigns. VisIt contains a rich set of visualization features to enable users to view
a wide variety of data including scalar and vector fields defined on two- and three-dimensional
structured, adaptive and unstructured meshes. Owing to its customizable plug-in design, VisIt
is capable of visualizing data from various different scientific data formats. Besides, it includes
a rich command line interface (CLI) based on Python which permits to launch VisIt by running
Python scripts with several processors.

5.4.2 The visualization of fine-scale solutions in VisIt

At the end of the multiscale simulation chain, we use VisIt to visualize reconstructed fine-scale
solutions. VisIt is the most used visualization tool of TrioCFD and it can manipulate easily LATA
files produced by TrioCFD. Since the reconstruction of fine-scale solutions were carried out on
each coarse element, we obtain as many LATA files as the number of coarse elements.

In this thesis, we execute VisIt by running a Python script where we specify some common
parameters for all LATA files such as the legend, color tables, point of view and so on. A
commented Python script for VisIt is presented in Appendix A.3. By running this script, VisIt
reads one LATA file after another, visualize the desired physical field and export the visualization
into a file in the PNG format. Finally, we obtain as many PNG files as the number of coarse
elements. Then it is straightforward to glue the PNG files together to obtain one unique PNG file
which shows the vision of the entire physical field or only the regions of interest. Besides, running
this script using more processors can reduce the computing time. To summarize, in practice, the
visualization of fine-scale solutions has no extra-parallelism but only the intra-parallelism as
shown in Figure 5.1 (b).
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Chapter 6

Numerical simulations

In this chapter, we present primarily applications of the multiscale simulation chain SALOME-
TrioCFD-VisIt in two- and three-dimensional heterogeneous media. The heterogeneity is repre-
sented by the arbitrary or periodic placement of obstacles. We distinguish two types of media:
(a) non-periodic heterogeneous media where obstacles are randomly placed; (b) periodic hetero-
geneous media where obstacles are periodically placed.

Throughout this chapter, the acronym MsFEMs stands for multiscale finite element methods.
Fist of all, we apply the multiscale simulation chain to solve Stokes problems in a homogeneous
medium using different Crouzeix-Raviart MsFEMs. The main objective is to validate the imple-
mentation of the multiscale simulation chain and to compare the accuracy of these MsFEMs.

In two-dimensional non-periodic heterogeneous media, we present numerical convergence
studies and error analysis of various Crouzeix-Raviart MsFEMs presented in Chapter 3. These
simulations are carried out for two objectives. The first objective is to show the numerical conver-
gence of Crouzeix-Raviart MsFEMs defined by Stokes equations (see section 3.2) and by Oseen
equations (see section 3.3). The second objective is to compare the accuracy of enriched multi-
scale methods, such as the multiscale method enriched by bubble functions (see section 3.5) and
high-order Crouzeix-Raviart multiscale methods (see section 3.6). Three types of flow problems
are concerned, including Stokes problems, Oseen problems and Navier-Stokes problems. In par-
ticular, we solve Navier-Stokes problems at different Reynolds numbers with the multiscale basis
functions constructed respectively by Stokes equations or by Oseen equations.

In two-dimensional non-periodic heterogeneous media, we perform numerical convergence
studies of various Crouzeix-Raviart MsFEMs presented in Chapter 3 and compare their accu-
racy. In three dimensions, Crouzeix-Raviart MsFEMs are applied to solve flow problems in
non-periodic or periodic heterogeneous media. Due to limited computing capability, we are not
able to compute reference solutions and thus no error analysis is made. Meanwhile, we present
several demonstrative applications of Crouzeix-Raviart multiscale methods in highly heteroge-
neous media. The objective is to show their superior performance of MsFEMs compared to
classical numerical methods in heterogeneous media with numerous solid obstacles.

Outline Section 6.1 describes notations used throughout this chapter. Section 6.2 presents
applications of MsFEMs in a two-dimensional homogeneous medium. Section 6.3 presents the-
oretical results of the numerical convergence in the periodic case. Section 6.4 and section 6.5
present respectively applications of MsFEMs in two-dimensional non-periodic or periodic het-
erogeneous media. Section 6.6 presents some applications of MsFEMs in three-dimensional
media.

6.1 Notations

We recall that in the Crouzeix-Raviart MsFEM defined by Stokes equations (see section 3.2) or
Oseen equations (see section 3.3), weighting functions are defined by (3.7) and we choose in this
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chapter: for any E ∈ EH ,

for d = 2 :


s = 2, ωE,1 = e1, ωE,2 = e2.

s = 3, ωE,1 = e1, ωE,2 = e2, ωE,3 = nEψE .

s = 4, ωE,1 = e1, ωE,2 = e2, ωE,3 = nEψE , ωE,4 = τEφE .

(6.1)

for d = 3 : ωE,1 = e1, ωE,2 = e2, ωE,3 = e3, ωE,4 = nEϕE . (6.2)

where {e1, · · · , ed} is the canonical basis of Rd and nE , τE are respectively the unit vector
normal and tangent to the face E. Besides, ψE , φE and ϕE are linear polynomials which satisfy
that

∫
E∩Ωε ψE = 0,

∫
E∩Ωε φE = 0 and

∫
E∩Ωε ϕE = 0. In numerical simulations, we choose

for d = 2 :

{
ψE = 2x+ 4y + c1

φE = 5x− 3y + c2

(6.3)

for d = 3 : ϕE = 4x+ 4y − 8z + c3 (6.4)

where c1, c2 are computed respectively by the relation
∫
E∩Ωε ψE = 0 and

∫
E∩Ωε φE = 0. For

d = 3, c3 is computed by the relation
∫
E∩Ωε ϕE = 0.

Throughout this chapter, the term CR2, CR3, CR4 denote respectively Crouzeix-Raviart Ms-
FEM defined by Stokes equations with weighting functions in the case of s = 2, s = 3 and s = 4
defined by (6.1). For d = 3, weighting functions are chosen as (6.2) with the polynomial defined
by (6.4). We still denote this multiscale method by CR3 in three dimensions. Besides, the term
CR2_Stab, CR3_Stab represent respectively the CR2, CR3 stabilized by the SUPG technique
presented in subsection 3.2.4. The stabilized versions are used to solve Navier-Stokes problems
on the coarse mesh.

Similarly, the term CR2_Os, CR3_Os, CR4_Os stand for respectively Crouzeix-Raviart Ms-
FEM defined by Oseen equations with weighting functions in the case of s = 2, s = 3 and s = 4
defined by (6.1).

We use {CR2+CR2_Os} and {CR2+CR2_Os}_Stab to stand for respectively the Crouzeix-
Raviart MsFEM defined by adding solutions of both local Stokes problems and local Oseen prob-
lems (see section 3.4), and its stabilized version by the SUPG technique. Weighting functions
are chosen as in the case of s = 2 defined by (6.1).

The term {CR2+B}_Stab stands for the stabilized Crouzeix-Raviart MsFEM defined by
Stokes equations and enriched by bubble functions (see section 3.5).

We recall that in the high-order Crouzeix-Raviart MsFEM defined by Stokes equations (see
section 3.6) or Oseen equations (see section 3.7), weighting functions in two dimensions are
defined by (3.203) and we choose in this chapter: for any T ∈ TH and for any E ∈ E(T ),

for d = 2 :


s = 4 : ωE,1 = e1,ωE,2 = e2, ωE,3 = nEψE , ωE,4 = τEφE .

t = 3 : $T,1 = 1, $T,2 = x, $T,3 = y.

r = 2 : ϕT,1 = e1,ϕT,2 = e2.

(6.5)

where {e1, e2} is the canonical basis of R2 and nE , τE are respectively the unit vector nor-
mal and tangent to the face E. Besides, ψE and φE are linear polynomials which satisfy that∫
E∩Ωε ψE = 0 and

∫
E∩Ωε φE = 0. In practice, ψE and φE are chosen the same as in (6.3).

We use the term CR4_high to denote the high-order Crouzeix-Raviart MsFEM defined by
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Stokes equations with weighting functions defined by (6.5). Note that we have discretized lo-
cal problems with the Crouzeix-Raviart finite element presented in subsection 4.1.1 or the P1-
nonconforming/P1 finite element presented in subsection 4.6.1. We use respectively CR4_high_P0
and CR4_high to denote the high-order MsFEM where local problems are discretized by the
Crouzeix-Raviart finite element or the P1-nonconforming/P1 finite element. The term CR4_Os_high
stands for the high-order Crouzeix-Raviart MsFEM based on Oseen equations where local prob-
lems are discretized by the P1-nonconforming/P1 finite element. Relative errors of the velocity
and pressure are computed using formulas defined by (5.1).

6.2 Simulations in a two-dimensional homogeneous medium

We solve Stokes flows in a two-dimensional homogeneous channel Ω = [0, 2]× [0, 1]. We assign
ρ = 1, µ = 1 and the source term f = 0. A parabolic velocity profile u = y (1− y) e1 is
imposed at the inlet. The boundary condition ∇un − pn = 0 is imposed at the outlet. The
no-slip boundary condition is imposed on other boundaries.

Config. 2×4 Config. 4×8

FIGURE 6.1: Examples of coarse mesh

TABLE 6.1: Error analysis of Stokes flows in a homogeneous medium

Config.
L2 rel. U L2 rel. P

CR2 CR3 CR4 CR4_high CR2 CR3 CR4 CR4_high
2×4 0.1573 0.0139 6.3e-4 3.e-5 0.1875 0.0169 0.0047 8.1e-4
4×8 0.0648 0.0036 5.7e-4 1.4-5 0.0485 0.0072 0.0019 4.6e-4

8×16 0.0131 9.4e-4 1.2e-4 1.0e-5 0.0232 0.0035 6.7e-4 3.3e-4
16×32 0.0034 7.0e-4 9.2e-5 9.2e-6 0.0097 0.0015 5.4e-4 2.5e-4
32×64 8.2e-4 6.2e-4 8.7e-5 8.8e-6 0.0048 0.0010 4.6e-4 2.0e-4

In Table 6.1, the first column Config. indicates the partition of the domain Ω, i.e. the coarse
mesh TH as shown in Figure 6.1. Table 6.1 reveals relative errors of velocity and pressure on
a number of coarse meshes, showing a convincingly converging trends with respect to H . It
is highlighted that CR4_high is the most accurate in both the velocity and pressure. Figure 6.2
shows that the velocity and pressure given by CR2 converges with rate about 2 and 1 respectively.
This is coherent with the convergence rate of the conventional Crouzeix-Raviart finite element.
The errors of other methods are rather small even on the coarse mesh 2×4. Figure 6.3 and Fig-
ure 6.4 present respectively the velocity and pressure contour computed on the coarse mesh 2×4
shown in Figure 6.1. We observe that the velocity and pressure computed by CR4 and CR4_high
are already very close to the reference solutions even on the coarse mesh 2×4. However, the
velocity and pressure computed by CR2 are much less accurate.
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FIGURE 6.2: Numerical convergence of CR2 in a homogeneous medium

(a) CR2 2×4 (b) CR3 2×4

(c) CR4 2×4 (d) CR4_high 2×4

(e) reference

FIGURE 6.3: |u| contours of Stokes flows in the homogeneous medium
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(a) CR2 2×4 (b) CR3 2×4

(c) CR4 2×4 (d) CR4_high 2×4

(e) reference

FIGURE 6.4: Pressure contours of Stokes flows in the homogeneous medium

case (A) case (B)

FIGURE 6.5: A description of computational domains
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6.3 Numerical convergence in the periodic case

In practical implementation of multiscale finite element methods, we do not make any assumption
on the type of heterogeneities of the media. However, it is more convenient to analyze the
convergence of the multiscale methods in the context of periodically placed solid obstacles. The
essential reason for this restriction is that an accurate description of the asymptotic behavior (as
ε→ 0) of the exact solution uε is needed in the numerical analysis. Such an accurate description
is available in the periodic setting. It is provided by the two-scale asymptotic expansion (see
section 1.3) of the homogenized solution to the problem. Now we present some convergence
results of the literature which are obtained in the periodic setting.

Let (uε, pε) ∈
(
H1

0 (Ωε)
)d × L2

0 (Ωε) be the sufficiently smooth exact solution to Stokes
problem (1.2) and let (uH , pH) ∈ XH be the discrete solution computed by multiscale finite
element methods. In the work of [95], the authors suppose that f and the homogenized pressure
p∗ are sufficiently smooth in a domain with periodically placed perforations. It is shown that the
upper error bound between exact solution and its MsFEM approximation is

‖uε − uH‖H1(Ω) + ε ‖pε − pH‖L2(Ω)

≤ Cε
(
H +

√
ε+

√
ε

H

)(
‖f‖H2(Ω)∩C1(Ω̄) + ‖p∗‖H2(Ω)

)
(6.6)

where the constant C depends only on the mesh regularity and the perforation pattern. The
relative error of velocity is thus at the order of

(
H +

√
ε+

√
ε
H

)
. This error bound does not

take into account the error related to the discretization of local problems on fine meshes by
supposing that h� ε.

In numerical convergence studies presented in this chapter, we fix the element size h of fine
meshes, the size of obstacles ε and vary only the element size H of the coarse mesh. We ensure
that these three sizes satisfy h � ε < H . The element size h verifies h � ε in order to capture
precisely small obstacles in the media. We are interested only in the case H > ε since the
opposite case H < ε is covered by classical finite element methods and the multiscale finite
element method is not needed. It is easy to see that when H decreases,

√
ε
H increases. Thus we

can not expect in numerical experiments that the velocity error converges to 0 in the limit when
H → 0.

6.4 Simulations in two-dimensional non-periodic heterogeneous me-
dia

In this section, we consider a channel domain Ω = [0, 2] × [0, 1] with two cases of arbitrarily
placed obstacles. As shown in Figure 6.5, the case (A) consists of about 26 obstacles of diameter
ε = 0.015 and the case (B) consists of about 100 obstacles of diameter ε = 0.003. We present
applications of different Crouzeix-Raviart MsFEMs to solve Stokes problems, Oseen problems
and Navier-Stokes problems in both cases (A) and (B).

The reference solutions in the case (A) of Figure 6.5 are computed on a reference mesh
consisting of about 600,000 fine elements with an average element size h = 0.002. Using the
prediction-correction algorithm in TrioCFD, the number of degrees of freedom are respectively
about 1,800,000 and 600,000 in the prediction step and the correction step. Note that the number
of faces is about 1.5 times the number of elements in the reference mesh. In the prediction step,
the degrees of freedom are velocities located on faces of the mesh and thus the number of degrees
of freedom is the product of number of faces and the number of components of the velocity. The
reference solutions in the case (B) are solved on a reference mesh consisting of about 2,000,000
elements with an average element size h = 0.00025. The reference velocity contour in the case
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(B) is shown in Figure 6.6. In the prediction step and the correction step, the number of degrees
of freedom are respectively about 6,000,000 and 2,000,000.

(a) 2×4 (b) 4×8

(c) 8×16 (d) 16×32

(e) reference

FIGURE 6.6: |u| contours of Stokes flows in the case (B) of Figure 6.5 computed
by CR2

6.4.1 Applications to Stokes flows

We first apply some Crouzeix-Raviart MsFEMs to solve Stokes problems on the coarse mesh.
The nonlinear convection term of Navier-Stokes problems is thus neglected. The simplicity of
Stokes problems allows to perform numerical tests easily and to compare the accuracy and per-
formance of different MsFEMs.

6.4.1.1 Numerical convergence of Crouzeix-Raviart MsFEMs with respect to H

We assign ρ = 1, µ = 1 and the source term f = 0. A parabolic velocity u = y (1− y) e1

is imposed at the inlet. The boundary condition ∇un − pn = 0 is imposed at the outlet. The
no-slip boundary condition is imposed on other boundaries. In this study, we fix the element size
h of fine-scale meshes while decreasing the element size H of the coarse-scale mesh.

Figure 6.6, Figure 6.7 and Figure 6.8 reveal the reconstructed fine-scale velocity computed
respectively by CR2, CR3 and CR4_high on several coarse meshes. The velocity computed by
CR4_high and CR4_high_P0 are the same and thus only CR4_high is presented here. Comparing
velocity fields shown in Figures 6.6 to 6.8, we conclude that the velocity computed by Crouzeix-
Raviart multiscale methods converges well to the reference solution. The presence of very small
obstacles and important flow features in the heterogeneous medium are already well captured on
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(a) 2×4 (b) 4×8

(c) 8×16 (d) 16×32

(e) reference

FIGURE 6.7: |u| contours of Stokes flows in the case (B) of Figure 6.5 computed
by CR3

the coarse mesh 8×16 or 16×32, at a rather large H/ε ratio. Figure 6.9 compares the velocity
contour computed by CR3 and CR4 on the coarse mesh 8×16. We see that CR4 is slightly more
accurate than CR3.

On combining relative velocity errors shown in Table 6.2 and Table 6.3, we find that (i)
multiscale methods which use more weighting functions in the approximation space of velocity,
such as CR3, CR4 and CR4_high are significantly more accurate than CR2; (ii) CR4_high is
more accurate than both CR3 and CR4 and this confirms the superiority of high-order Crouzeix-
Raviart multiscale methods. Figure 6.10 and Figure 6.11 show the numerical convergence of
velocity computed by different MsFEMs in both case (A) and (B). It is shown that CR2, CR3,
CR4 and CR4_high have almost the same rate of convergence, which is about 1. However,
CR4_Os_high has the smallest errors in both case (A) and (B). The same phenomenon has also
been observed in the high-order method proposed in [50]. In this thesis, only CR4 high with
n = 1 has been implemented and tested. In the future work, an error analysis could be performed
for the high-order method in order to find the relation between error of the method and the degree
of polynomials n. It would be also interesting to implement the high-order MsFEMs for n = 2,
n = 3 and so on and compare its performance with other Crouzeix-Raviart MsFEMs.

Figures 6.12 to 6.14 show the reconstructed fine-scale pressure computed respectively by
CR2, CR3 and CR4_high on several coarse meshes. It is revealed that the pressure computed
by Crouzeix-Raviart multiscale methods converges well toward the reference pressure. Most
important fine-scale features and the presence of small obstacles are already well captured on
coarse meshes with a rather large H/ε ratio. Globally, the pressure computed by CR4_high is
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(a) 2×4 (b) 4×8

(c) 8×16 (d) 16×32

(e) reference

FIGURE 6.8: |u| contours of Stokes flows in the case (B) of Figure 6.5 computed
by CR4_high

(c) CR3 8×16 (d) CR4 8×16

FIGURE 6.9: |u| contours of Stokes flows in the case (B) of Figure 6.5 computed
by CR3 and CR4

TABLE 6.2: Error analysis of Stokes flows in the case (A) of Figure 6.5

Config. H/ε
L2 Rel. U L2 Rel. P

CR2 CR3 CR4 CR4_high CR2 CR3 CR4 CR4_high
2×4 50 0.334 0.210 0.190 0.091 0.475 0.212 0.146 0.096
4×8 25 0.174 0.072 0.065 0.039 0.321 0.144 0.083 0.055
8×16 12.5 0.061 0.026 0.020 0.015 0.173 0.075 0.044 0.034
16×32 6.25 0.030 0.014 0.012 0.006 0.116 0.053 0.025 0.020
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TABLE 6.3: Error analysis of Stokes flows in the case (B) of Figure 6.5

Config. H/ε
L2 Rel. U L2 Rel. P

CR2 CR3 CR4 CR4_high CR2 CR3 CR4 CR4_high
2×4 125 0.478 0.301 0.274 0.159 0.595 0.315 0.281 0.227
4×8 62.5 0.329 0.185 0.158 0.114 0.556 0.289 0.249 0.189
8×16 31.25 0.189 0.096 0.084 0.061 0.449 0.232 0.164 0.130

16×32 15.63 0.116 0.055 0.045 0.030 0.307 0.184 0.118 0.102
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FIGURE 6.10: Numerical convergence of MsFEMs in the case (A) of Figure 6.5
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FIGURE 6.11: Numerical convergence of MsFEMs in the case (B) of Figure 6.5
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(a) 2×4 (b) 4×8

(c) 8×16 (d) 16×32

(e) reference

FIGURE 6.12: Pressure contours of Stokes flows in the case (B) of Figure 6.5
computed by CR2

(a) 2×4 (b) 4×8

(c) 8×16 (d) 16×32

FIGURE 6.13: Pressure contours of Stokes flows in the case (B) of Figure 6.5
computed by CR3
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(a) 2×4 (b) 4×8

(c) 8×16 (d) 16×32

(e) reference

FIGURE 6.14: Pressure contours of Stokes flows in the case (B) of Figure 6.5
computed by CR4_high

(a) 2×4 (b) 4×8

(c) 8×16 (d) 16×32

FIGURE 6.15: Pressure contours of Stokes flows in the case (B) of Figure 6.5
computed by CR4_high_P0
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evidently more accurate compared to that of CR2 and CR3 shown in Figure 6.13. Remarkably,
as shown in Figure 6.14, the pressure computed by CR4_high seems already rather satisfying on
the coarse mesh 2×4.

Figure 6.15 shows the pressure computed by CR4_high_P0 on several coarse meshes. Com-
paring Figure 6.15 and Figure 6.14, we conclude that discretizing the pressure of local problems
in the P1 space instead of P0 improves the accuracy of the pressure solution. This result under-
lines the importance of the type of finite element used to discretize local problems in Crouzeix-
Raviart MsFEMs.

6.4.1.2 The Crouzeix-Raviart MsFEM enriched by bubble functions

In the case (B) of Figure 6.5, we imposeu = 0 on ∂Ω and the source term f = (1/2− y, x− 1/2).
We solve a Stokes problem in the case (B) of Figure 6.5 on several coarse meshes using CR2_Stab
and {CR2+B}_Stab. In practice, it is necessary to use the SUPG method to preclude oscillations
in the solution.

TABLE 6.4: Error analysis of the MsFEM enriched by bubble functions in the
case (B) of Figure 6.5

Config. H/ε
L2 Rel. U L2 Rel. P

CR2_Stab {CR2+B}_Stab CR2_Stab {CR2+B}_Stab
2×4 125 0.478 0.481 0.595 0.602
4×8 62.5 0.329 0.334 0.556 0.563
8×16 31.25 0.189 0.196 0.449 0.459
16×32 15.63 0.143 0.149 0.307 0.316

Contrary to expectations, Table 6.4 shows that the addition of bubble functions defined in
section 3.5 cannot improve the accuracy of CR2. This agrees well with our mathematical diffi-
culties in the analysis of the method in subsection 3.5.2. Compared to the accuracy of CR4_high,
this numerical result confirms that CR4_high provides the correct definition of bubble functions
for Stokes equations which can effectively improve the accuracy of Crouzeix-Raviart multiscale
methods.

6.4.1.3 Multiscale basis functions defined by Stokes equations

Figure 6.16 (A) shows a coarse element generated in the case (B) of Figure 6.5. Figure 6.16 (B)
and (C) and Figure 6.17 show the multiscale basis functions associated to the boundary E com-
puted respectively by CR2 and CR3. We recall that without obstacles, multiscale basis functions
computed by CR2 are actually the Crouzeix-Raviart finite element basis functions (see subsec-
tion 4.1.1). However, with the presence of obstacles, Figures 6.16 to 6.17 show that multiscale
basis functions computed with CR2 and CR3 are completely different from polynomial basis
functions used in classical finite element methods.

We observe that multiscale basis functions capture very well the presence of obstacles on the
coarse element and the no-slip boundary condition is well imposed on the boundary of obstacles.
Even on the boundary E which is cut by obstacles, the integral condition

∫
E ΦE,i · ωE,j = δij

for i, j = 1, · · · , 2 is successfully satisfied.

6.4.1.4 Computing time of different steps of multiscale methods

In this thesis, numerical simulations are performed on the cluster Callisto at CEA Saclay. We
have used mainly two kinds of computing node: Eris and Pluton. There are in total 36 nodes
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(A) The coarse element with the boundary E

(B) Vector ΦE,1

(C) Vector ΦE,2

FIGURE 6.16: The coarse element and multiscale basis functions computed by
CR2
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(A) Vector ΦE,1

(B) Vector ΦE,2

(C) Vector ΦE,3

FIGURE 6.17: Multiscale basis functions computed by CR3
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of Eris, each with two CPUs of type Intel(R) Xeon(R) X5667 (frequency 3.06 GHz, memory 48
Go per CPU) and each CPU consists of four cores. We have at our disposal at most a total of
288 cores. There are in total 28 nodes of Pluton, each with two CPUs of type Intel(R) Xeon(R)
L5640 (frequency 2.26 GHz, memory 36 Go per CPU) and each CPU consists of 6 cores. We
have at our disposal at most a total of 336 cores. Overall, we have at our disposal at most 624
cores.

Now we present the computing time used by CR3 for solving some local problems on the
coarse mesh 8×16 in the case (B) of Figure 6.5. There are in average about 5000 small elements
in each fine mesh. Using the prediction-correction algorithm, the number of degrees of freedom
in the prediction step and the correction step are respectively about 15,000 and 5000. The com-
puting time for solving one local problem sequentially is between 900 s and 1200 s. Some local
problems take more computing time due to the complexity of coarse elements or due to the small
memory of some computing nodes in the cluster. At the end of this thesis, we implemented a
direct solver to solve same local problems in only several seconds. This reduces significantly
the time for solving local problems and improves the performance of multiscale finite element
methods.

The average time used by CR3 for computing matrices and reconstructing fine-scale solutions
on one coarse element is about 0.03 s which is negligible. The solution of coarse-scale problems
with the prediction-correction algorithm takes maximum 300 s on the coarse mesh 8× 16.

Making use of all available processors on Callisto, the total time for solving local problems
with the prediction-correction algorithm is about 120 minutes. The total time for computing
matrices and fine-scale solutions on all coarse elements is about 10 minutes. It takes about
12 hours to compute reference solutions in parallel using 80 processors. We recall that reference
solutions are computed by using the finite volume element method and the prediction-correction
algorithm in TrioCFD. As a result, for solving the same flow problem in both cases (A) and (B) of
Figure 6.5, classical numerical methods take up to 6 times more computing time than MsFEMs.

We recall that in multiscale finite element methods, multiscale basis functions are computed
only once and then can be re-used multiple times for solving coarse-scale problems with different
source terms or boundary conditions. The computation of matrices and the reconstruction of fine-
scale solutions take very little time. Coarse-scale problems are not of too large sizes and can be
solved rapidly even using only one processor. In conclusion, MsFEMs allow more important
computational savings especially when multiple computations need to be performed on the same
medium, with different boundary conditions or source terms.

6.4.2 Applications to Oseen flows

To take the convection term into account, we solve Oseen problems on the coarse mesh using
Crouzeix-Raviart MsFEMs presented in this thesis. The Oseen problem [69, 70, 132] is a lin-
earization of the Navier-Stokes problem where the nonlinear convection term is replaced by a
linear Oseen term.

TABLE 6.5: Velocity errors of Oseen flows in the case (A) of Figure 6.5

Config. H/ε
L2 Rel. U

CR2_Os CR3_Os CR4_Os CR4_Os_high
2×4 50 0.593 0.265 0.241 0.201
4×8 25 0.368 0.163 0.140 0.106
8×16 12.5 0.216 0.094 0.079 0.052

16×32 6.25 0.140 0.059 0.038 0.028
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(a) 2×4 (b) 4×8

(c) 8×16 (d) 16×32

(e) reference solution

FIGURE 6.18: |u| contours of Oseen flows in the case (A) of Figure 6.5 com-
puted by CR2_Os

(a) 2×4 (b) 4×8

(c) 8×16 (d) 16×32

FIGURE 6.19: |u| contours of Oseen flows in the case (A) of Figure 6.5 com-
puted by CR3_Os
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(a) 2×4 (b) 4×8

(c) 8×16 (d) 16×32

(e) reference

FIGURE 6.20: Pressure contours of Oseen flows in the case (A) of Figure 6.5
computed by CR3_Os
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(a) 2×4 (b) 4×8

(c) 8×16 (d) 16×32

(e) reference solution

FIGURE 6.21: |u| contours of Oseen flows in the case (B) of Figure 6.5 com-
puted by CR2_Os

(a) 2×4 (b) 4×8

(c) 8×16 (d) 16×32

FIGURE 6.22: |u| contours of Oseen flows in the case (B) of Figure 6.5 with
CR3_Os
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(c) CR3_Os 8×16 (d) CR4_Os 8×16

FIGURE 6.23: |u| contours of Oseen flows in the case (B) of Figure 6.5 com-
puted by CR3_Os and CR4_Os

(a) 2×4 (b) 4×8

(c) 8×16 (d) 16×32

(e) reference

FIGURE 6.24: Pressure contours of Oseen flows in the case (B) of Figure 6.5
computed by CR3_Os
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6.4.2.1 Numerical convergence of Crouzeix-Raviart MsFEMs with respect to H

TABLE 6.6: Pressure errors of Oseen flows in the case (A) of Figure 6.5

Config. H/ε
L2 Rel. P

CR2_Os CR3_Os CR4_Os CR4_Os_high
2×4 50 0.481 0.388 0.306 0.241
4×8 25 0.259 0.209 0.190 0.139

8×16 12.5 0.202 0.165 0.149 0.092
16×32 6.25 0.109 0.105 0.090 0.058

TABLE 6.7: Velocity errors of Oseen flows in the case (B) of Figure 6.5

Config. H/ε
L2 Rel. U

CR2_Os CR3_Os CR4_Os CR4_Os_high
2×4 125 0.615 0.280 0.253 0.217
4×8 62.5 0.372 0.168 0.151 0.115
8×16 31.25 0.222 0.104 0.091 0.068

16×32 15.63 0.146 0.079 0.066 0.048

TABLE 6.8: Pressure errors of Oseen flows in the case (B) of Figure 6.5

Config. H/ε
L2 Rel. P

CR2_Os CR3_Os CR4_Os CR4_Os_high
2×4 125 0.589 0.536 0.498 0.421
4×8 62.5 0.467 0.426 0.415 0.342
8×16 31.25 0.396 0.368 0.354 0.296

16×32 15.63 0.195 0.173 0.161 0.122

In both cases (A) and (B) of Figure 6.5, we solve Oseen problems on the coarse mesh using
different Crouzeix-Raviart MsFEMs. The Oseen velocity is fixed to be Uo = (400,−400) and
the source term is f = (1/2 − y, x − 1/2). It is important to note that the same Oseen velocity
is used in local problems defined by Oseen equations. We impose u = 0 on ∂Ω. We fix the
element size h of the fine meshes while decreasing the element size H of the coarse mesh.
Reference solutions are computed on the same reference meshes as in subsection 6.4.1. Since
Oseen problems are not available in TrioCFD, we implemented Oseen problems based on the
Navier-Stokes problems implemented in the software.

Figures 6.18 to 6.19 and Figures 6.21 to 6.22 show the converging behavior of velocity solved
by CR2_Os and CR3_Os in both cases (A) and (B) of Figure 6.5. It is shown that the velocity
computed by CR3_Os is remarkably more accurate than that computed by CR2_Os. Important
flow features are already well captured by CR3_Os on the coarse mesh 8×16 at a rather large
ratio H/ε. Figure 6.23 shows that CR4_Os is slightly more accurate than CR3_Os. Figure 6.24
shows the convergence of the pressure solved by CR3_Os toward the reference solution in the
case (B) of Figure 6.5. We observe that most important features of the pressure are well captured
at the coarse mesh 16× 32.
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Tables 6.5 to 6.6, Tables 6.7 to 6.8 present the velocity and pressure errors in both cases
(A) and (B) of Figure 6.5. It is shown that CR4_Os_high gives the most accurate velocity and
pressure. In particular, CR4_Os_high improves significantly the accuracy of pressure compared
to CR4_Os and CR3_Os. This underlines the usefulness of enriching the approximation space
of pressure in order to improve the accuracy of both the velocity and pressure. Figure 6.25 and
Figure 6.26 show the convergence of different Crouzeix-Raviart MsFEMs. It is shown that these
MsFEMs have almost the same convergence rate but CR4_Os_high has the smallest errors in
both case (A) and (B). The same phenomenon has also been observed in the high-order method
proposed in [50]. In this thesis, only CR4 high with n = 1 has been implemented and tested.
In the future work, an error analysis could be performed for the high-order method in order to
find the relation between error of the method and the degree of polynomials n. It would be also
interesting to implement the high-order MsFEMs for n = 2, n = 3 and so on and compare its
performance with other Crouzeix-Raviart MsFEMs.
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FIGURE 6.25: Numerical convergence of MsFEMs for Oseen flows in the case
(A) of Figure 6.5
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FIGURE 6.26: Numerical convergence of MsFEMs for Oseen flows in the case
(B) of Figure 6.5
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6.4.2.2 Error analysis with respect to the Reynolds number
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FIGURE 6.27: Velocity errors with respect to Reε (Uo) in the case (B) of Fig-
ure 6.5

In this numerical experiment, we solve Oseen flows in the case (B) of Figure 6.5 at different
Oseen velocities Uo. We impose a parabolic velocity u = Uinlet × 4y (1− y) e1 at the inlet and
∇un− pn = 0 at the outlet. The no-slip condition is imposed on other boundaries.

We define the fine- and coarse-scale Reynolds number for Oseen flows respectively by

Reε (Uo) = ρ|Uo|ε/µ
ReH (Uo) = ρ|Uo|L/µ

with ρ = 1, µ = 1 and L is the characteristic length of the computational domain. It is easy to
see that Reε (Uo)� ReH (Uo) when ε� L.

In this numerical experiment, the Oseen velocity Uo is chosen as Uo = Uinlete1. We vary
the value of Uinlet to change Uo and thus Reε (Uo). The same Oseen velocity is used in both
local and coarse-scale Oseen problems. Thus each time the Oseen velocityUo changes, we solve
local Oseen problems again with the new value of Uo and obtain new multiscale basis functions.

We apply CR2, CR3, CR2_Os and CR3_Os to solve Oseen problems on the coarse mesh
8×16. We recall that local problems in CR2 and CR3 are defined by Stokes equations while
local problems in CR2_Os and CR3_Os are defined by Oseen equations. In practice, when using
CR2 and CR3, oscillations appeared for large values ofUo. Thus the stabilized version CR2_Stab
and CR3_Stab are used instead of CR2 and CR3. It is shown in Figure 6.27 that the CR2_Stab
is quite sensitive to Reε (Uo) since velocity errors increase rapidly with respect to Reynolds
numbers. However, CR3_Stab, CR2_Os and CR3_Os are more accurate and more robust in the
sens that errors increase more slowly with respect to Reε (Uo). The most accurate results are
given by CR3_Os.

Interestingly, we observe that the accuracy of CR3_Stab is very close to that of CR2_Os.
We recall that in CR3_Stab, multiscale basis functions are defined by Stokes equations with
weighting functions in the case of s = 3 defined by (6.1). Consequently, our result highlights
that when using weighting functions in the case of s = 3 or s = 4 defined by (6.1), basis
functions defined by Stokes equations can also solve Oseen problems rather accurately on the
coarse mesh. It would be interesting to check if by using high-order Crouzeix-Raviart multiscale
methods with basis functions defined by Stokes or Oseen equations, we can solve Navier-Stokes
equations more correctly at even larger Reynolds numbers on the coarse mesh.



166 Chapter 6. Numerical simulations

6.4.2.3 The MsFEM defined by adding solutions of local Stokes and Oseen problems
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FIGURE 6.28: Velocity errors with respect to Uo in the case (B) of Figure 6.5

In the case (B) of Figure 6.5, we impose u = 0 on ∂Ω and source term f =
(

1
2 − y, x−

1
2

)
.

In this numerical experiment, the Oseen velocity Uo varies from (0, 0) to (1600,−1600). We
solve Oseen problems on the coarse-mesh using CR2, CR2_Os and {CR2+CR2_Os}. Note
that in CR2_Os, the same Uo is used in both local and coarse-scale Oseen problems. In order to
preclude oscillations in the solution, stabilized methods CR2_stab and {CR2+CR2_Os}_Stab are
used instead of CR2 and {CR2+CR2_Os}. No stabilization technique is necessary for CR2_Os
since no oscillation appears in the solution.

As shown in Figure 6.28, when Uo is small, CR2_Stab, CR2_Os and {CR2+CR2_Os}_Stab
yield very similar results. When Uo is larger than (100,-100), CR2_Os has much smaller veloc-
ity errors compared to CR2_Stab and {CR2+CR2_Os}_Stab. {CR2+CR2_Os}_Stab is slightly
more accurate than the CR2_Stab but unfortunately much less accurate than CR2_Os.

We conclude that when the convection is not dominant, these MsFEMs yield similar results.
However, when the convection dominates, CR2_Os shows its advantage over CR2_Stab and
{CR2+CR2_Os}_Stab. Contrary to expectation, the enriched method {CR2+CR2_Os}_Stab is
more accurate than CR2_Stab but unfortunately much less accurate than CR2_Os. The reasons
for this result is not entirely understood. One possible explanation is that we have only enriched
the velocity approximation space, but not the pressure approximation space.

6.4.2.4 Multiscale basis functions defined by Oseen equations

Figures 6.29 to 6.30 show multiscale basis functions computed on the same coarse element as
shown in Figure 6.16 (A). The multiscale basis functions are computed respectively by CR2_Os
and CR3_Os for a fixed Oseen velocityUo = (200, 0). Comparing with basis functions shown in
Figures 6.16 to 6.17, we remark that CR2_Os and CR3_Os capture correctly the inertial effects
related to the Oseen term. Figures 6.29 to 6.30 reveal that multiscale basis functions capture
successfully the presence of obstacles and no-slip boundary condition is well imposed on ob-
stacles. Even on the boudnary E cut by obstacles, basis functions can still successfully satisfy∫
E ΦE,i · ωE,j = δij for i, j = 1, · · · , 3 defined in local problems.

6.4.3 Applications to Navier-Stokes flows

Now we solve the nonlinear Navier-Stokes flows on the coarse mesh in both cases (A) and (B).
Numerical simulations are carried out on a fixed coarse mesh 8×16. The reference solutions
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(A) The coarse element with the boundary E

(B) Vector ΦE,1

(C) Vector ΦE,2

FIGURE 6.29: The coarse element and multiscale basis functions computed by
CR2_Os
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(A) Vector ΦE,1

(B) Vector ΦE,2

(C) Vector ΦE,3

FIGURE 6.30: Multiscale basis functions computed by CR3
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are discretized by the finite volume element method and solved by the prediction-correction
algorithm in TrioCFD. Besides, the Upwind scheme [65] is used to stabilize the convection term
of Navier-Stokes problems.

We impose a parabolic velocity u = Uinlet × 4y (1− y) e1 at the inlet and ∇un− pn = 0
at the outlet. The no-slip condition is imposed on other boundaries. The fine- and coarse-scale
Reynolds number are defined respectively by

Reε = ρ|Uinlet|ε/µ
ReH = ρ|Uinlet|L/µ

with L the characteristic length of the domain. It is known that ReH � Reε when L � ε in
highly heterogeneous media. In this study, we have ReH ≈ 67 × Reε in case (A) and ReH ≈
333×Reε in case (B).

As presented in Chapter 3, we approximate the Oseen velocity in local Oseen problems of
CR2_Os and CR3_Os in the following way. Firstly, we solve the Stokes problem on the coarse
mesh by CR2 or CR3 and obtain the coarse-scale velocity. Secondly, we compute an average of
the coarse-scale velocity on each coarse element K of the coarse mesh TH . The average on each
coarse element K is denoted by Uo|K . Consequently, the Oseen velocity field Uo is in fact the
vector (Uo|K)K∈TH . Thus the Oseen velocity field Uo is constant on each coarse element. This
velocity field is used in the definition of local Oseen problems of CR2_Os or CR3_Os.

It should be noted that the approximation of the Oseen velocity field should be close to the
convective velocity field in Navier-Stokes problems in order to improve the accuracy of CR2_Os
and CR3_Os. There are other methods to get a better approximation of the Oseen velocity in
local Oseen problems. For example, instead of solving Stokes problems, we can solve Navier-
Stokes problems on the coarse mesh by CR2 or CR3. But the SUPG stabilization technique is
needed if the convection dominates in Navier-Stokes problems.

After obtaining the Oseen velocity field Uo which is constant on each coarse element, we
solve local Oseen problems of CR2_Os or CR3_Os and obtain multiscale basis functions. Then
we solve Navier-Stokes problems using these basis functions on the coarse mesh. Figure 6.31
and Figure 6.32 show the velocity errors computed by various multiscale methods at different
Reε in both cases (A) and (B). When the diffusion dominates, i.e. when Reε < 5 in the case (A)
and Reε < 2 in the case (B), CR2_Stab and CR3_Stab have almost the same results as CR2_Os
and CR3_Os.
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FIGURE 6.31: Velocity errors with respect to Reε in the case (A) of Figure 6.5
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FIGURE 6.32: Velocity errors with respect to Reε in the case (B) of Figure 6.5

When the convection dominates, CR2_Os, CR3_Os and CR3_Stab are significantly more ac-
curate and more robust with respect to Reε compared to CR2_Stab. it is shown that CR2_Stab is
very sensitive toReε and the velocity errors increase rapidly with respect toReε. We observe that
CR2_Os is much more accurate than CR2_Stab. This highlights that using the same weighting
functions (the case of s = 2 defined by (6.1)), multiscale basis functions defined by Oseen equa-
tions are more accurate for solving Navier-Stokes problems on the coarse mesh. Interestingly,
we also observe that CR2_Os and CR3_Stab have almost the same accuracy. This confirms that
with weighting functions in the case of s = 3 or s = 4 defined by (6.1) or high-order multiscale
methods such as CR4_high, multiscale basis functions defined by Stokes equations can also solve
Navier-Stokes problems rather accurately on the coarse mesh.

FIGURE 6.33: Definition of fuel assembly sub-channels (image from [115])

6.5 Simulations in two-dimensional periodic heterogeneous media

The case of flow through closely spaced periodic cylinder arrays is important for applications in
the nuclear industry, such as flow around nuclear fuel rods and flow past heat exchange coils in
steam generators. In this section, we apply MsFEMs to solve flow problems past periodic arrays
of obstacles and show the performance of MsFEMs.
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(A) Rod centered sub-channel

(B) Coolant centered sub-
channel

FIGURE 6.34: Coarse meshes superposed on solid obstacles on partition A and
partition B

P

ε

D

FIGURE 6.35: Periodic setting: the pitch P , the diameter D and the gap ε

TABLE 6.9: Error analysis of Stokes flows in a periodic heterogeneous medium

Partition Config. H/ε
L2 Rel. U L2 Rel. P

CR2 CR3 CR4 CR2 CR3 CR4
5.31 0.852 0.515 0.499 0.934 0.356 0.344

A 2.65 0.823 0.421 0.470 0.927 0.304 0.291
1.43 0.731 0.284 0.269 0.908 0.224 0.207

B 1.33 0.262 0.101 0.091 0.174 0.038 0.030
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6.5.1 Numerical convergence of Crouzeix-Raviart MsFEMs with respect to H

In the nuclear industry, sub-channel thermal-hydraulic codes are widely used to estimate the
thermal-hydraulic safety margins of the nuclear reactor core. A sub-channel is defined as a flow
passage formed between fuel rods or between some fuel rods and wall of channel tube. As
shown in Figure 6.33, the sub-channel can be formed by either coolant centered sub-channels or
rod centered sub-channels. For more details about the sub-channel thermal-hydraulic analysis,
the reader can refer to [115].

In this study, we consider a domain with a square array of 8×8 periodically placed obstacles.
We impose a parabolic velocity u = 4y (1− y) e1 at the inlet and ∇un− pn = 0 at the outlet.
The no-slip condition is imposed on other boundaries. We fix the pitch to diameter ratio as
P/D = 1.33, where the pitch P and D are shown in Figure 6.35. As shown in Figure 6.34, we
consider in this study the partitions A and B which correspond respectively to the rod centered
sub-channel and the coolant centered sub-channel. In the numerical convergence study, we fix
the element size h of fine meshes and vary only the element size H of the coarse-scale mesh.

Table 6.9 shows the numerical convergence of CR2, CR3 and CR4 with respect to H . It is
shown that for both velocity and pressure, CR4 is slightly more accurate than CR3 and they are
both significantly more accurate than CR2. We observe that the velocity and pressure errors of
CR2 remain quite large even on the mesh with H/ε = 1.43.

Now let us compare results computed on the partitions A and B. For CR2, the velocity error
using the partition A is 0.731 whereas that of using the partition B is only 0.262. For CR3, the
velocity error using the partition A is 0.291 whereas that of using the partition B is only 0.101.
This highlights that both CR2 and CR3 are significantly more accurate on the partition B than
the partition A.

Figure 6.36 shows the velocity computed respectively using the partitions A and B. Compar-
ing Figure 6.36 (a) and (b), we observe that using the partition A, the solution of CR2 is almost
wrong whereas that of CR3 is rather accurate. Comparing Figure 6.36 (c) and (d), we observe
that using the partition B, interestingly, both CR2 and CR3 yield rather accurate results.

We conclude that: (i) The numerical convergence study in Table 6.9 shows that CR2 is not
sufficiently accurate in periodic heterogeneous media and this result is consistent with the find-
ings reported in [95]. It is necessary to use CR3, CR4 or high-order multiscale methods such as
CR4_high to obtain much more accurate solutions. (ii) Both CR2 and CR3 can yield much more
accurate results on the partition B than on the partition A. This result is interesting because it
reveals that when using the partition B, CR2 can also give rather accurate solutions in periodic
heterogeneous media.

6.5.2 Error analysis with respect to the heterogeneity

We apply CR3 to solve Navier-Stokes problems in a domain with a square array of periodically
placed obstacles. A schematic description of the medium is shown in Figure 6.37 where obstacles
are located in the center of the medium. The objective of this study is to see the performance of
Crouzeix-Raviart MsFEMs when the computational domain becomes more and more heteroge-
neous. We impose a parabolic velocity at the inlet and∇un− pn = 0 at the outlet. The no-slip
condition is imposed on other boundaries.

We fix the element size H of the coarse mesh and increase the number of obstacles from 400
to 30,000 while decreasing their diameter D. As shown in Figure 6.35, when the ratio P/D is
fixed, ε decreases with D. The element size h of fine meshes deceases also with ε and satisfies
at least ε/h > 5 in order to well capture the presence of small obstacles.

Note that each time we add more obstacles in the medium, the reference solution needs to
be recomputed since the medium has changed. Making use of the periodicity of the medium, we
use Algorithm 5.3 in Chapter 5 to generate necessary meshes and to compute multiscale basis
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(a) Partition A with CR2 (b) Partition A with CR3

(c) Partition B with CR2 (d) Partition B with CR3

(e) reference solution

FIGURE 6.36: |u| computed with CR2 and CR3 on partition A and B

FIGURE 6.37: Schematic description of the medium containing periodic arrays
of small obstacles (too many to show clearly)
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functions. Finally, we need to construct multiscale basis functions only on the reference cell
shown in Figure 6.39 and then we copy them to other fine meshes in the domain. Thus this
algorithm allows great computational savings. However, it should be noted that the computation
of reference solutions is very expensive in terms of time, especially when there are more than
10,000 obstacles in the domain. It can take more than 10 hours using 350 processors and the
prediction-correction algorithm.

Figure 6.38 shows that both the velocity and pressure errors decrease with the number of
obstacles in the medium. This result is coherent with the estimation (6.6). In the right hand side
of (6.6), since H is fixed, when adding more obstacles and decreasing ε, the term

√
ε
H decreases

thus with ε.
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FIGURE 6.38: Velocity errors with respect to the number of obstacles on a fixed
coarse mesh

FIGURE 6.39: Velocity field |u| in the reference cell with 20× 20 obstacles

Figure 6.39 reveals a zoom of the velocity contour in the reference cell containing 20 × 20
periodically placed obstacles. It is shown that important fine-scale features are correctly captured
by Crouzeix-Raviart MsFEMs even when the domain is highly heterogeneous with numerous
solids obstacles. This result is very important since it strengthens our conviction that Crouzeix-
Raviart MsFEMs can be applied to solve flow problems successfully in periodic heterogeneous
media, such as flows around fuel rods and flow past heat exchange coils in steam generators in
the nuclear industry.
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6.5.3 Applications to highly heterogeneous media

Now we present two demonstrative applications of Crouzeix-Raviart MsFEMs in highly hetero-
geneous media with the presence of numerous solids obstacles. It is very expensive in terms
of computing time to solve flow problems in such heterogeneous media using classical numeri-
cal methods. In this situation, multiscale methods show the superior performance compared to
classical numerical methods.

6.5.3.1 Flows through periodic arrays of assemblies with small defects

In this simulation, we solve Stokes problem by CR3 in a domain Ω = [0, 2.5]×[0, 1.5] containing
90,000 densely-placed obstacles. A schematic description of the domain is shown in Figure 6.37
in which obstacles are located in the center of the medium. We impose a parabolic velocity at the
inlet and∇un− pn = 0 at the outlet. The no-slip condition is imposed on other boundaries.

FIGURE 6.40: The reference cell containing periodically placed obstacles (left)
and one coarse element (right)

The part of the medium containing obstacles is formed by a periodic array of the reference
cell shown in the left of Figure 6.40. The reference cell can be considered as a fuel assembly
containing about 20 × 20 periodically placed fuel rods but with some small defects. These
defects may exist when some fuel rods are deformed in accidental operations. Making use of
the periodicity of the medium, we use Algorithm 5.3 in Chapter 5 to generate necessary meshes
and to compute multiscale basis functions. The reference cell is cut into four triangular coarse
elements and one of them is shown in Figure 6.40. We need to solve local problems only on the
four coarse elements and then copy the basis functions to other coarse elements.

The coarse mesh consists of 1500 coarse elements and each coarse element has about 70,000
small elements in average. As a result, there are about 108 small elements in the entire domain
Ω. Thus it is very expensive to solve flow problems in such a domain using classical numerical
methods. However, using the SALOME-TrioCFD-VisIt multiscale simulation chain, the total
computing time is about 2 hours. In particular, about 80% of the total time is taken by the solution
of local problems using the modified prediction-correction algorithm (see Chapter 4). When a
coarse element contains more obstacles, local problems are of larger sizes and the solution of
local problems is more time-consuming.

As mentioned previously, the optimal performance of the prediction-correction algorithm in
TrioCFD is when each processor treats between 20,000 and 30,000 mesh elements. Thus it is
not efficient to solve local problems on a fine mesh containing 60,000 elements. Two processors
should be used to have the optimal performance. However, we have not developed the intra-
cellular parallelism (see section 5.1) for the solution of local problems in this thesis. In the end
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of the thesis, we implemented a direct solver which can solve local problems more rapidly and
can greatly reduce the computing time taken by the solution of local problems.

(A) Velocity field |u| in the entire domain

(B) A zoom

FIGURE 6.41: Velocity field |u| of Stokes flows past 90,000 obstacles

Figure 6.41 shows the velocity solution in the entire domain Ω as well as a zoom of velocity
on the reference cell. We see that fine-scale flow features and the presence of densely-placed
obstacles are well captured by the multiscale method CR3.

6.5.3.2 Flows through periodic arrays of arbitrary obstacles

Now we solve Stokes problems with CR3 in a heterogeneous domain Ω = [0, 3.2] × [0, 1.6]
containing 16,384 densely-placed small obstacles. A schematic representation of the medium
is shown in Figure 6.37 where obstacles are located in the center of the medium. The medium
can be considered as a periodic array of the reference cell shown in the left of Figure 6.42. The
reference cell contains 63 randomly placed obstacles. This medium can be considered as a good
two-dimensional approximation of the core of the Pebble Bed Reactor (see Figure 1.2) which
contains numerous arbitrarily placed spherical fuel elements and moderator elements.

Making use of the periodicity of the medium, we use Algorithm 5.3 in Chapter 5 to create
necessary meshes and to compute multiscale basis functions. The reference cell is cut into four
coarse elements and one of them is shown in the right of Figure 6.42. We need to solve local
problems only in the four coarse elements and then copy them to other coarse elements.

In this heterogeneous medium, we impose a parabolic velocity at the inlet and∇un−pn = 0
at the outlet. The no-slip condition is imposed on other boundaries. The coarse mesh consists of
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FIGURE 6.42: The reference cell containing arbitrarily placed obstacles (left)
and one coarse element (right)

2048 coarse elements and each coarse element is made of about 60,000 small elements in average.
In total, there are about 1 × 108 small elements in the global domain. The total computing
time taken by the SALOME-TrioCFD-VisIt multiscale simulation chain is about 2 hours and the
solution of local problems takes 90% of the total time. Note that local problems are solved by
the prediction-correction algorithm (see Chapter 4).

Figure 6.43 shows the velocity field in the entire domain and a zoom of the velocity in a
particular region. It is shown that important fine-scale flow features and the presence of densely
placed small obstacles are very well captured by CR3.

To summarize, we have presented two demonstrative applications of Crouzeix-Raviart Ms-
FEMs in highly heterogeneous media. It is very expensive to apply classical numerical methods
to solve flow problems in such media whereas Crouzeix-Raviart MsFEMs yield rather satisfying
results at reasonable costs.

6.6 Simulations in three-dimensional media

Now we apply Crouzeix-Raviart MsFEMs to solve flow problems in three-dimensional media.
All the numerical simulations presented in this section are performed with CR3. The objective is
to validate and show the good performance of Crouzeix-Raviart MsFEMs in three dimensional
heterogeneous media. Besides, due to limited computing resources, no reference solutions are
computed by TrioCFD and thus no error analysis is made.

6.6.1 Flows in a homogeneous medium

We solve Stokes problems with CR3 in a three-dimensional homogeneous domain Ω = [0, 1] ×
[0, 1] × [0, 1]. We impose a parabolic velocity u = xy(1.0 − x)(1.0 − y)ez at the inlet and
∇un − pn = 0 at the outlet. The no-slip boundary condition is imposed on other boundaries.
We recall that {ex, ey, ez} is the canonical basis of R3.

Figure 6.44 (A) and (B) show respectively the parabolic velocity profile imposed at the inlet
and the velocity contour at the plane x = 0.5. It is shown that the parabolic velocity profile is
correctly imposed and the velocity field agrees well with theoretical expectations.

6.6.2 Applications to a non-periodic heterogeneous medium

We solve a Stokes problem in a domain Ω = [0, 1] × [0, 1] × [0, 2] with some randomly placed
obstacles. As shown in Figure 6.45 (A), cylindrical obstacles are placed horizontally parallel
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(A) Velocity field |u| in the entire domain

(B) A zoom

FIGURE 6.43: Velocity field |u| of Stokes flows past randomly placed obstacles

(A) Inlet velocity (B) Slice at x = 0.5

FIGURE 6.44: Velocity field |u| computed by CR3 in a homogeneous medium
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(A) (B)

FIGURE 6.45: Computational domain (A) and a slice of velocity at x = 0.5 (B)

to X-axis in the domain. The diameter of cylinders is between ε = 0.02 and ε = 0.032. We
impose a parabolic velocity u = xy(1.0 − x)(1.0 − y)ez at the inlet and boundary condition
∇un− pn = 0 at the outlet. The no-slip boundary condition is imposed on other boundaries.

The coarse mesh consists of 1500 coarse elements and each coarse elements contain about
80,000 small elements. There are more than 1 × 108 small elements in the entire domain. No
reference solution is solved due to limited computing resources in this thesis. Note that the
multiscale basis functions are stored in the SAUV format and these files have taken a storage
space of 20 Go on the local disk.

Figure 6.45 shows a vertical slice of the velocity field at the plane x = 0.5. It is shown that
macroscopic flow features as well as the presence of obstacles in the domain are well captured.
This confirms that CR3 performs also correctly in three dimensional heterogeneous media.

FIGURE 6.46: The three-dimensional reference cell (left) and one coarse ele-
ment (right)
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6.6.3 Applications to a periodic heterogeneous medium

We consider a flow past an array of periodically placed cylindrical obstacles in a parallelepiped
Ω = [0, 1] × [0, 1] × [0, 2]. There are in total 5,000 horizontally placed cylinders in the do-
main. The diameter of cylinders is about ε = 0.016. We impose a parabolic velocity u =
(0, 0, xy(1.0− x)(1.0− y)) at the inlet and∇un− pn = 0 at the outlet. The no-slip condition
is imposed on other boundaries.

The medium is formed by an array of the reference cell shown in Figure 6.46 (A). The
reference cell is a cubic domain containing 10 × 10 horizontally placed cylinders parallel to the
x-axis. Making use of the periodicity of the medium, we use Algorithm 5.3 in Chapter 5 to
generate necessary meshes and to compute multiscale basis functions. We need to solve local
problems only on the reference cell shown in Figure 6.46 (A) and then copy the multiscale basis
functions to other fine meshes. The reference cell is split into 24 tetrahedrons and one tetrahedron
is shown in Figure 6.46 (B). Thus we need to solve local problems only on 24 coarse elements.
In three dimensions, fine meshes on coarse elements must be fine enough in order to well resolve
densely placed obstacles.

The coarse mesh consists of 6,000 tetrahedral coarse elements in total and each coarse ele-
ment contains in average 100,000 tetrahedral small elements. There are about 6×108 tetrahedral
small elements in the entire domain Ω. When using classical finite element, it is too expensive in
terms of computing time to solve flow problems in such media.

TABLE 6.10: Computing time of different operations in Algorithm 5.3

Operation Computing time
Solution of local problems 9 hours
Generation and translation of MED files 5 minutes
Copy of multiscale basis functions 80 minutes
Computation of matrices 10 minutes
Solution of the coarse-scale problem 1 minutes
Reconstruction of fine-scale solutions 10 minutes

Total computing time ∼ 12 hours

6.6.3.1 Computing time

The entire numerical simulation using the multiscale simulation chain SALOME-TrioCFD-VisIt
takes about 12 hours in total. We recall that we use Algorithm 5.3 to generate meshes and to
compute multiscale basis functions in periodic media. The computing time consumed by each
operation is presented in Table 6.10.

We remark that the most time-consuming operation is the solution of local problems which
takes about 83% of the total computing time. We recall that these local problems are solved by
the prediction-correction algorithm. The optimal performance of this algorithm is when each
processor treats between 20,000 and 30,000 small elements. However, the number of small el-
ement in each coarse element exceeds largely 30,000. This explains why the solution of local
problems is so time-consuming. To reduce the computing time, we can either develop a direct
solver in three dimensions or develop the intra-cellular parallelism (see section 5.1) for the so-
lution of local problems. At the end of this thesis, we implemented a direct solver only for two
dimensions but not for three dimensions due to lack of time.
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6.6.3.2 Storage of files

In multiscale simulations, we store mesh files (fine meshes and the coarse mesh), multiscale
basis functions, matrices and reconstructed fine-scale solutions on the local disk. In particular,
mesh files and multiscale basis functions need to be stored for reuse when boundary conditions
or source terms of the coarse-scale problems change. These files take a total storage space of
400 Go on a local disk of 450 Go, in which mesh files take about 50 Go, basis functions and
fine-scale solutions together take about 350 Go.

One important factor that limits the application of multiscale finite element methods is the
storage of files. The storage of a large number of files can exceed easily the limit of the local disk.
It is important to note that the reconstructed fine-scale solutions are stored in the LATA format
which takes a large storage space. Thus in practice, it is possible that we can only reconstruct
fine-scale solutions in the regions of interest.

(A) Slice of velocity field |u| at x = 0.5

(B) A zoom

FIGURE 6.47: The slice of velocity field |u| at the plane x = 0.5

6.6.3.3 Numerical results

Figure 6.47 shows the slice of the velocity field and the zoom of a region at the plane x = 0.5. It
is shown that important flow features are well captured by CR3 and the numerical result is rather
reasonable. This underlines the good performance of multiscale methods in three-dimensional
highly heterogeneous media.
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Conclusions

In this chapter, we summarize the main results of this thesis from theoretical aspects to practi-
cal implementations of Crouzeix-Raviart multiscale finite element methods. Section 7.1 reviews
some Crouzeix-Raviart multiscale finite element methods presented in this thesis and compare
their accuracy. Section 7.2 reviews the SALOME-TrioCFD-VisIt multiscale simulation chain,
including the parallelisms in the simulation chain, algorithms for the generation of meshes in
SALOME and practical implementations in TrioCFD. Throughout this chapter, we review some
remarks made during the thesis and propose some ideas and perspectives to improve the multi-
scale simulation chain.

7.1 Theoretical aspects

7.1.1 The Crouzeix-Raviart multiscale method defined by Stokes equations

We first review the Crouzeix-Raviart multiscale finite element method (see section 3.2) where
multiscale basis functions are solutions of Stokes local problems. This method was originally
proposed by [95, 118] and reviewed in detail in this thesis. Let d the dimension of the computa-
tional domain and s be a positive integer. Let ωE,i : E → Rd be some vector-valued functions
associated to E ∈ EH and i = 1, · · · , s.

The Stokes local problems are associated to faces of the coarse mesh. For any face E ∈ EH
and i = 1, · · · , s, we construct ΦE,i : Ωε → Rd and the accompanying pressure πE,i : Ωε → R
such that ΦE,i and πE,i vanish outside the two coarse elements Tk which share the face E, for
k = {1, 2} (only one coarse element if E ∈ ∂Ω) and solve on Tk:

−µ∆ΦE,i +∇πE,i = 0 in Tk ∩ Ωε,

div ΦE,i = αE,i in Tk ∩ Ωε,

µ∇ΦE,in− πE,in ∈ span {ωF,1, · · · ,ωF,s} on F ∩ Ωε, ∀F ∈ E(Tk),

ΦE,i = 0 on ∂Bε ∩ Tk,∫
F∩Ωε ΦE,i · ωF,j =

{
δij , F = E

0, F 6= E
∀F ∈ E (Tk) , j = 1, · · · , s.∫

Tk∩Ωε πE,i = 0.

(7.1)

where E(Tk) is the set of faces of Tk. The constant αE,i depends on Tk and satisfies the compat-
ibility relation

∫
Tk∩Ωε αE,i =

∫
∂(Tk∩Ωε) ΦE,i · n.

In this thesis, weighting functions are chosen as: for any E ∈ EH ,

for d = 2 :


s = 2 : ωE,1 = e1, ωE,2 = e2.

s = 3 : ωE,1 = e1, ωE,2 = e2, ωE,3 = nEψE .

s = 4 : ωE,1 = e1, ωE,2 = e2, ωE,3 = nEψE , ωE,4 = τEφE .

(7.2)
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for d = 3 :

{
s = 3 : ωE,1 = e1, ωE,2 = e2, ωE,3 = e3.

s = 4 : ωE,1 = e1, ωE,2 = e2, ωE,3 = e3, ωE,4 = nEψE .
(7.3)

where {e1, · · · , ed} is the canonical basis of Rd and nE and τE are respectively the unit vector
normal and tangent to the face E. Besides, ψE and φE are linear polynomials which satisfy∫
E∩Ωε ψE = 0 and

∫
E∩Ωε φE = 0.

Consequently, the approximation space of velocity is formed by solutions of Stokes local
problems defined by (7.1) and the approximation space of pressure contains element-wise con-
stant pressure. In the original work [95, 118], the authors have used weighting functions in the
cases of s = 2 and s = 3 defined by (7.2) and solved two-dimensional Stokes problems on the
coarse mesh. In this thesis, in two dimensions, we try all the weighting functions defined by (7.2)
and compare the accuracy of numerical results. Then we extend the multiscale method in three
dimensions with two choices of weighting functions defined by (7.3).

Besides, we propose to solve not only Stokes problems, but also Oseen problems and Navier-
Stokes problems by this method on the coarse mesh. We adapt the Streamline-Upwind/Petrov-
Galerkin (SUPG) stabilization technique (see subsection 3.2.4) to the multiscale context in order
to preclude oscillations and stabilize the solution of coarse-scale problems. The stabilization
technique is necessary when solving Oseen or Navier-Stokes problems on the coarse mesh.

7.1.2 The Crouzeix-Raviart multiscale method defined by Oseen equations

Then we present a Crouzeix-Raviart multiscale finite element method (see section 3.3) where
multiscale basis functions are solutions of Oseen local problems. This method was first proposed
by [117] and some numerical experiments for small Oseen velocities were presented. However,
no theoretical analysis was provided to show the well-posedness of local problems. In this thesis,
we first tried to solve local problems proposed in [117] but numerical oscillations appeared in
the solution for large Oseen velocities, even when using the Upwind scheme for the Oseen term.
Thus we propose a new definition of local problems and prove their well-posedness. This im-
provement precludes oscillations in the solution of local problems for whatever Oseen velocities.

The Oseen local problems are associated to faces of the coarse mesh. For any E ∈ EH and
i = 1, · · · , s, we construct ΦE,i : Ωε → Rd and the accompanying pressure πE,i : Ωε → R such
that ΦE,i and πE,i vanish outside the two coarse elements Tk which share the face E, k ∈ {1, 2}
(only one coarse element if E ∈ ∂Ω) and solve on Tk:

−µ∆ΦE,i + ρ (Uo · ∇) ΦE,i +∇πE,i = 0 in Tk ∩ Ωε,

div ΦE,i = αE,i in Tk ∩ Ωε,

µ∇ΦE,in− 1
2ρ (Uo · n) ΦE,i − πE,in ∈ span {ωF,1, · · · ,ωF,s} on F ∩ Ωε, ∀F ∈ E(Tk),

ΦE,i = 0 on ∂Bε ∩ Tk,∫
F∩Ωε ΦE,i · ωF,j =

{
δij , F = E

0, F 6= E
∀F ∈ E (Tk) , j = 1, · · · , s.∫

Tk∩Ωε πE,i = 0.

(7.4)

where E(Tk) is the set of faces of Tk. The constantαE,i depends on Tk and satisfies
∫
Tk∩Ωε αE,i =∫

∂(Tk∩Ωε) ΦE,i · n.
Consequently, the approximation space of velocity is formed by solutions of Oseen local

problems defined by (7.4) and the approximation space of pressure contains element-wise con-
stant pressure. In the work [117], the author tried only weighting functions in the case of s = 2
defined by (7.2) and solved only Oseen problems on the coarse mesh. In this thesis, we try all the
weighting functions defined by (7.2) and compare the accuracy of numerical results. Besides, we
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propose to solve not only Oseen problems, but also Navier-Stokes problems by this method on
the coarse mesh. We adapt the SUPG stabilization technique (see subsection 3.3.5) to the multi-
scale context in order to preclude oscillations and stabilize solutions of Navier-Stokes problems
on the coarse mesh. We remark that the stabilization technique is not necessary when solving
Oseen problems on the coarse mesh since no oscillations appeared in the solution.

7.1.3 The Crouzeix-Raviart multiscale method defined by both Stokes and Oseen
local solutions

In order to improve the accuracy of the Crouzeix-Raviart multiscale method where multiscale ba-
sis functions are either defined by Stokes (7.1) or Oseen equations (7.4), we propose a Crouzeix-
Raviart multiscale finite element method (see section 3.4) where the approximation space of
velocity is formed by the union of basis functions defined by Stokes and Oseen equations. The
approximation space of pressure still contains element-wise constant pressure.

In numerical simulations, we solve Stokes problems and Oseen problems on the coarse mesh
with this multiscale method. Contrary to expectations, our numerical results revealed that the
Crouzeix-Raviart multiscale method where basis functions are defined by both Stokes and Oseen
equations is more accurate than the multiscale method defined by Stokes equations alone but
much less accurate than that defined by Oseen equations alone. The reasons for this result is not
entirely understood in this thesis.

7.1.4 The Crouzeix-Raviart multiscale method enriched by bubble functions

In order to improve the accuracy of the Crouzeix-Raviart multiscale method where multiscale
basis functions are solutions of Stokes local problems defined by (7.1), we propose a Crouzeix-
Raviart multiscale finite element method (see section 3.5) where the velocity approximation
space is enriched by adding bubble functions. Inspired by bubble functions proposed by [54,
102, 105, 113] for diffusion or diffusion-advection equations, we propose for the first time to
define bubble functions for Stokes equations.

The bubble functions are associated to elements of the coarse mesh. For each coarse element
T ∈ TH and for k = 1, · · · , r, the support of ΨT,k is reduced to T ∩ Ωε. We construct ΨT,k :
Ωε → Rd and πT,k : Ωε → R as solutions of

−µ∆ΨT,k +∇πT,k = ek in T ∩ Ωε,

div ΨT,k = αT,i in T ∩ Ωε,

µ∇ΨT,kn− πT,kn ∈ span {ωF,1, · · · ,ωF,s} on F ∩ Ωε, ∀F ∈ E(T ),

ΨT,k = 0 on ∂Bε ∩ T,∫
F∩Ωε ΨT,k = 0 ∀F ∈ E (T ) ,∫
T∩Ωε πT,k = 0.

(7.5)

where E(T ) is the set of faces composing ∂T and the constant αT,k satisfies
∫
T∩Ωε αT,k =∫

∂(T∩Ωε) ΨT,k · n.
In two-dimensional numerical experiments performed in this thesis, we choose the following

weighting functions:

for d = 2 :

{
s = 2 : ωE,1 = e1, ωE,2 = e2.

r = 2 : ϕT,1 = e1, ϕT,2 = e2.
(7.6)

Weighting functions in the case of s = 2 are used in Stokes local problems (7.1) and those in the
case of r = 2 are used in the computation of bubble functions defined by (7.5).
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Consequently, the approximation space of velocity is formed by solutions of Stokes local
problems defined by (7.1) and bubble functions defined by (7.5). The approximation space of
pressure contains element-wise constant pressure. However, our numerical experiments show
that the addition of bubble functions does not improve the accuracy of multiscale methods. Thus
we perform serious theoretical analysis to verify the construction of the multiscale approximation
spaces of velocity and pressure. Our theoretical analysis show that the approximation spaces
of velocity and pressure need to be redefined in order to effectively improve the accuracy of
the method. In particular, the approximation space of pressure needs to be enriched by some
weighting functions which are defined by polynomials. Thus we propose an original high-order
Crouzeix-Raviart multiscale method which is presented in what follows.

7.1.5 The high-order Crouzeix-Raviart multiscale finite element method

We propose an original Crouzeix-Raviart multiscale finite element method (see section 3.6) to
provide a general framework which defines proper approximation spaces of velocity and pressure
for higher accuracy. As far as we know, this is the first time that the high-order Crouzeix-Raviart
multiscale finite element method is proposed for flow problems.

For any integer n and any integer 1 ≤ l ≤ d, we denote by Pln the linear space spanned by
l-variate polynomial functions of degree at most n. The dimension of Pln is

N l
n := dim

(
Pln
)

=

(
n+ l

n

)
For any T ∈ TH , we denote by Pdn (T ) the restriction to T of polynomials in Pln. For any

F ∈ EH , we denote by Pd−1
n (F ) the restriction to F of polynomials of Pln. For the sake of

simplicity, we denote Pdn (T ) and Pd−1
n (F ) respectively by Pn (T ) and Pn (F ).

We define weighting functions for the velocity and pressure in what follows. Let s be a
positive integer and d be the dimension of heterogeneous media. We associate the vector-valued
function ωE,i: E → Rd to each face E ∈ EH and i = 1, · · · , s. Let r be a positive integer.
We associate the vector-valued functions ϕT,k : T → Rd to each coarse element T ∈ TH and
k = 1, · · · , r. Let t be a positive integer. We associate the scalar functions $T,j : T → R to each
coarse element T ∈ TH and j = 1, · · · , t. These weighting functions are defined by polynomials
of arbitrary orders n as shown in Assumption 3.6.1 and Assumption 3.6.2.

Local problems in high-order Crouzeix-Raviart multiscale methods are associate to both
faces and elements of the coarse mesh. We first construct the basis function associated to faces
of the coarse mesh. For any E ∈ EH and for i = 1, · · · , s, find the function ΦE,i : Ωε → Rd,
the pressure πE,i : Ωε → R such that ΦE,i and πE,i vanish outside the two coarse elements Tk
which share the face E for k ∈ {1, 2} (only one coarse element if E ∈ ∂Ω) and solve on Tk:

−µ∆ΦE,i +∇πE,i ∈ span {ϕTk,1, · · · ,ϕTk,r} in Tk ∩ Ωε

div ΦE,i ∈ span {$Tk,1, · · · , $Tk,t} in Tk ∩ Ωε

µ∇ΦE,in− πE,in ∈ span {ωF,1, · · · ,ωF,s} on F, ∀F ∈ E(Tk)

ΦE,i = 0 on ∂Bε ∩ Tk∫
F∩Ωε ΦE,i · ωF,j =

{
δij , F = E

0, F 6= E
∀F ∈ E (Tk) , ∀j = 1, · · · , s∫

Tk∩Ωε ΦE,i ·ϕTk,l = 0 ∀l = 1, · · · , r∫
Tk∩Ωε πE,i ·$Tk,m = 0 ∀m = 1, · · · , t

(7.7)

Now we construct the basis function associated to elements of the coarse mesh. For each
T ∈ TH and for k = 1, · · · , r, the support of the function ΨT,k is reduced to T ∩ Ωε. We find
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ΨT,k : Ωε → Rd and πT,k : Ωε → R by solving on T :

−µ∆ΨT,k +∇πT,k ∈ span {ϕT,1, · · · ,ϕT,r} in T ∩ Ωε

div ΨT,k ∈ span {$T,1, · · · , $T,t} in T ∩ Ωε

µ∇ΨT,kn− πT,kn ∈ span {ωF,1, · · · ,ωF,s} on F, ∀F ∈ E(T )

ΨT,k = 0 on ∂Bε ∩ T∫
F∩Ωε ΨT,k · ωF,j = 0 ∀F ∈ E (T ) , ∀j = 1, · · · , s∫
T∩Ωε ΨT,k ·ϕT,l = δkl ∀l = 1, · · · , r∫
T∩Ωε πE,i ·$T,m = 0 ∀m = 1, · · · , t

(7.8)

In this thesis, we have performed two-dimensional numerical simulations with weighting
functions below:

for n = 1, d = 2 :


s = 4 : ωE,1 = e1, ωE,2 = e2, ωE,3 = nEψE , ωE,4 = τEφE .

t = 3 : $T,1 = 1, $T,2 = x, $T,3 = y.

r = 2 : ϕT,1 = e1, ϕT,2 = e2.

where {e1, e2} is the canonical basis of R2 and nE and τE are respectively the unit vector
normal and tangent to the face E. Besides, ψE ∈ P1(E) and φE ∈ P1(E) which satisfy that∫
E∩Ωε ψE = 0 and

∫
E∩Ωε φE = 0.

For n = 0, for any T ∈ TH , weighting functions are chosen as:

for d = 2, n = 0 :


s = 2 : ωE,1 = e1, ωE,2 = e2.

t = 1 : $T,1 = 1

r = 1 : ϕT,1 = 0

In this case, we remark that the high-order multiscale method is exactly the multiscale method
defined by (7.1) with weighting functions in the case of s = 2 defined by (7.2).

Consequently, the approximation space of velocity is formed by solutions of local problems
defined by (7.7)–(7.8). The approximation space of pressure contains pressure in the Pn(T )
space instead of P0(T ) for any T ∈ TH . By increasing the value of n, we construct more basis
functions by solving system (7.7)–(7.8) and thus both the approximation space of velocity and
pressure will be further enriched. Our numerical simulations confirm that high-order multiscale
finite element methods can improve significantly the accuracy of both the velocity and pressure.

In conclusion, the high-order multiscale method provides a more general definition of ap-
proximation spaces than that proposed by [95, 117, 118]. By varying the degrees of polynomials
in the definition of weighting functions, this multiscale method permits to find a compromise be-
tween the desired accuracy and the computational costs. Similarly, we define also the high-order
multiscale finite element method based on Oseen equations (see section 3.7).

In this thesis, only the high-order multiscale method for n = 1 is implemented in TrioCFD
and validated by numerical experiments. In the future work, an error analysis should be made
for the high-order multiscale method in order to clarify the relation of errors with the degree of
polynomials. It would be interesting to implement the high-order method for n = 2, n = 3 and
so on and compare its performance with other CR multiscale methods.

7.1.6 Comparison of Crouzeix-Raviart multiscale finite element methods

We performed some numerical experiments to study the numerical convergence of Crouzeix-
Raviart multiscale methods presented in this thesis. We fix the element size h of fine meshes,
the size obstacles ε and vary only the element size H of the coarse mesh. We ensure that these
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three sizes verify that h � ε < H . The element size h verifies h � ε in order to capture
the presence of small obstacles in the media. Besides, we are interested only in the case H >
ε since the opposite case H < ε is covered by classical finite element methods. Numerical
convergence studies (see subsection 6.4.1 and subsection 6.4.2) in non-periodic two-dimensional
heterogeneous media show good convergence of Crouzeix-Raviart multiscale methods toward
reference solutions. It is shown that Crouzeix-Raviart multiscale methods can well capture the
presence of small obstacles and important macroscopic flow features in heterogeneous media on
rather coarse mesh.

As expected, high-order multiscale methods produce the most accurate velocity and pressure.
Besides, we have compared solutions given by high-order Crouzeix-Raviart multiscale methods
where local problems are discretized by Crouzeix-Raviart element or P1-nonconforming/P1 ele-
ment. It is shown that the fine-scale velocity is the same but interestingly, the fine-scale pressure
is much more accurate when local problems are discretized by the P1-nonconforming/P1 ele-
ment. In high-order multiscale methods, when increasing degrees of polynomials in weighting
functions (see subsection 3.6.1), it would be important to use higher-order finite elements in local
problems.

Numerical experiments (subsection 6.4.1.2) show that the multiscale method enriched by
bubble functions does not improve the accuracy of numerical results. This result is consistent
with theoretical analysis presented in section 3.5 and it further strengthens our conviction that
high-order multiscale methods provide the correct definition of bubble functions for Stokes or
Oseen equations.

As presented in subsection 6.4.2.3, when solving Oseen problems on the coarse mesh, con-
trary to expectations, the multiscale method defined by both Stokes and Oseen equations is more
accurate than that defined by Stokes equations (7.1) alone but much less accurate than that defined
by Oseen equations (7.4) alone. The reasons for this result are not yet completely understood.

Numerical experiments (see subsection 6.4.2.2 and subsection 6.4.3) show that the multiscale
method defined by Oseen equations (7.4) with weighting functions in the case of s = 2 or s = 3
defined by (7.2), and the multiscale method defined by Stokes equations (7.4) with weighting
functions in the case of s = 3 defined by (7.2) are both rather accurate for solving Navier-
Stokes problems or Oseen problems on the coarse mesh. With weighting functions in the case
of s = 2 defined by (7.2), the multiscale method defined by Stokes equations is sensitive to
Reynolds numbers and becomes much less accurate than the multiscale method defined by Oseen
equations. We are aware that in our numerical experiments, fine-scale Reynolds numbers Reε

defined by subsection 6.4.3 are not very large and we focus only on steady-state Navier-Stokes
problems on the coarse mesh. In the future work, it would be very interesting to extend the
multiscale method to solve unsteady Navier-Stokes problems with larger Reynolds numbers.

In two-dimensional periodic heterogeneous media, numerical experiments (see section 6.5)
reveal that the multiscale method defined by Stokes equations with weighting functions in the
case of s = 2 defined by (7.2) does not produce correct solutions. However, weighting functions
in the case of s = 3 and s = 4 can both improve significantly the accuracy of numerical results.
We conclude that it is necessary to use weighting functions in the case of s = 3 or s = 4 in
periodic heterogeneous media in order to obtain accurate numerical results.

Two- and three-dimensional demonstrative applications shown in subsection 6.5.3 and sec-
tion 6.6 confirm that multiscale methods can capture successfully fine-scale flow features and the
presence of small obstacles in highly heterogeneous media. We are aware that three-dimensional
heterogeneous media remain relatively simple compared to the structures of nuclear fuel assem-
blies which are extremely complicated. In the future work, an important work could be devoted
the development of algorithms in order to generate meshes required by MsFEMs on such com-
plicated structures.
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7.2 The multiscale simulation chain SALOME-TrioCFD-VisIt

The multiscale simulation chain consists of all necessary tools and preliminary preparations for
numerical simulations with multiscale finite element methods. SALOME is used in the first step
of the simulation chain to prepare necessary mesh files. TrioCFD is involved in the second step
to perform numerical simulations with Crouzeix-Raviart multiscale methods. VisIt is used to
visualize the reconstructed fine-scale solutions.

7.2.1 The intra- and extra-cellular parallelisms

In the multiscale simulation chain, as shown in Figure 5.1, we distinguish two types of paral-
lelisms: the intra-cellular parallelism and the extra-cellular parallelism. Both parallelisms con-
tribute to the reduction of computing time and memory. The extra-cellular parallelism is an
intrinsic parallelism of multiscale finite element methods. As presented in Chapter 3, Crouzeix-
Raviart multiscale finite element methods are nonconforming methods, i.e. only the average
jump of velocity is required to be continuous on the interface between coarse elements. Thus
local problems are solved on each coarse element independently from adjacent ones. Similarly,
the computation of matrices and the reconstruction of fine-scale solutions are carried out locally
on each coarse element. we developed efficient algorithms in SALOME which allows to generate
fine meshes rapidly on one coarse element after another. Therefore the generation of fine meshes
does not benefit from the extra-cellular parallelism.

SALOME have parallized meshing tools which allow to assign several processors for one task.
For very complicated geometries, fine meshes can be of large size and it would be necessary to
parallize algorithms developed in this thesis to benefit from the intra-cellular parallelism. In
numerical simulations carried out in this thesis, fine meshes are not of very large size and can be
generated rapidly using even only one processor in SALOME.

Local problems are solved in TrioCFD by adapting the prediction-correction algorithm (see
section 4.3) or by the direct solver (see section 4.6) implemented in this thesis. In numerical
experiments, we remark that the solution of three-dimensional large systems is time-consuming
when using the prediction-correction algorithm. Similarly, it is possible that coarse-scale prob-
lems might be of large size in very complicated applications. Thus in the future, it is interesting
to develop the intra-cellular parallelism to solve local and coarse-scale problems and reduce the
computing time. The computation of matrices and the reconstruction of fine-scale solutions are
carried out sequentially on coarse elements and the intra-cellular parallelism is not necessary.

7.2.2 Generation of meshes in SALOME

In this thesis, we developed three algorithms to generate necessary meshes for Crouzeix-Raviart
multiscale methods. Shown in Algorithm 5.1, the first algorithm creates conforming fine meshes
where mesh nodes match on the interface between coarse elements. The union of conforming
fine meshes forms the fine reference mesh which is thus a conforming mesh. For the validation of
Crouzeix-Raviart multiscale methods, we compare numerical solutions computed by multiscale
methods to those computed by the classical finite volume element method on the reference mesh.

As is well known, the reference mesh is not required in multiscale methods and is needed
only for validation purpose. Shown in Algorithm 5.2, the second algorithm is devoted to the
generation of fine meshes where mesh nodes do not necessarily match on the interface between
coarse elements. We generate fine meshes on one coarse element independently from adjacent
ones.

Shown in Algorithm 5.3, the third algorithm is specially developed for periodic heteroge-
neous media. This algorithm facilitates the generation of fine meshes and multiscale basis func-
tions by taking advantage of the periodicity of the media. A periodic medium can be considered
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as a periodic array of the reference cell and multiscale basis functions computed in the reference
cell are the same as in other cells. Thus we enerate fine meshes and compute multiscale basis
functions only in the reference cell and then copy them to the entire domain.

We remarked one difficulty for generating meshes required by Crouzeix-Raviart multiscale
methods. As discussed in subsection 5.2.7, obstacles may be tangent to the interface between
coarse elements, especially when obstacles are densely packed in heterogeneous media. In this
case, meshing tools may fail to generate meshes due to isolated tangent points. We envision two
solutions to this problem in the future. The first is to mesh obstacles and use the penalization
technique to approximate the no-slip boundary conditions on obstacles. The second is to develop
a coarse mesh consisting of polygons whose forms can change to avoid generating tangent points.
Theoretically, in multiscale finite elements, elements of the coarse mesh can be of any shape.

7.2.3 Implementations in TrioCFD

In the work [95, 118], local problems are discretized by simple Cartesian meshes and the penalty
technique is used to impose the no-slip boundary condition on the boundary of obstacles. In this
thesis, Crouzeix-Raviart multiscale finite element methods are implemented in TrioCFD [139]
which focus on the finite volume element method. We use boundary-fitted unstructured meshes
made of triangular or tetrahedral elements. No penalization technique is used and the no-slip
boundary condition is imposed directly on the boundary of obstacles.

Local problems are discretized by the finite volume element method and physical unknowns
are discretized by the Crouzeix-Raviart finite element (see section 4.1). In particular, local prob-
lems in high-order multiscale methods are also discretized by the P1-nonconforming/P1 element
(see subsection 4.6.1). Numerical simulations confirm that using P1-nonconforming/P1 element,
the pressure is more accurate than using the Crouzeix-Raviart element. In the future work, the
high-order multiscale finite element methods with n = 2, n = 3 and so on should be im-
plemented and tested to better understand the relation between the rate of convergence of the
method and the degree of polynomials n. When n is larger, it would be necessary to implement
higher-order finite elements in TrioCFD to discretize local problems.

The computation of matrices and the reconstruction of fine-scale solutions are not native
functions in TrioCFD. As presnted in section 4.4, when computing matrices locally on coarse
elements, we decompose multiscale basis functions using the Crouzeix-Raviart finite element or
the P1-nonconforming/P1 finite element basis functions. The properties of these finite element
basis functions facilitate the computation of integrals in the coefficients of matrices. Coarse-scale
problems are assembled and discretized by a Galerkin method where basis functions are solutions
of local problems defined by, for example (7.1), (7.4), (7.7) and so on.

In an early stage of this thesis, the prediction-correction algorithm is modified to solve local
and coarse-scale problems. This algorithm is a time-marching technique which solves steady
problems through a pseudo-transient process which can be sometimes time-consuming. We re-
mark that this algorithm is not suitable for solving local and coarse-scale problems in multiscale
methods. Thus in a later stage of this thesis, an important work was devoted to the implemen-
tation of a direct solver in two dimensions. The extension of this solver in three dimensions is
straightforward and could be carried out in the future.
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Appendix A

Source files and data files in the
multiscale simulation chain

We present in this appendix one simplified Python script which describes the generation of con-
forming meshes presented in subsection 5.2.4. We give a commented example of data files for
solving local problems and coarse-scale problems in TrioCFD. We also provide a Python script
for the visualization of fine-scale solutions in VisIt.

A.1 A Python script for generating meshes in SALOME

In Chapter 5, we have presented three algorithms to generate necessary meshes in SALOME for
multiscale finite element methods. Here we present a simplified Python script which describes
main steps of Algorithm 5.1. Using this script, we generate a coarse mesh, a reference mesh and
conforming fine meshes in a three-dimensional heterogeneous medium with periodically placed
cylinders.

1 i m p o r t os , salome , math
from salome . geom i m p o r t geomBui lder
geompy = geomBui lder . New( sa lome . myStudy )
from salome . smesh i m p o r t s m e s h B u i l d e r
mesher = s m e s h B u i l d e r . New( sa lome . myStudy )

6

# De f i ne some g l o b a l p a r a m e t e r s
# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# d e f i n e c y l i n d e r s
o r i g i n _ x = 0

11 o r i g i n _ y = 0
r a d i u s = 0 .003
p a s _ c r a y o n = 0 .0126
e t f = p a s _ c r a y o n − 2∗ r a d i u s

16 # d e f i n e t h e u n i t c e l l
g r i d _ x 0 = 0 . 0
g r i d _ y 0 = 0 . 0
g r i d _ z 0 = 0 . 0
g r i d _ n x = 3 # number o f c y l i n d e r s = g r i d _ n x ∗ g r i d _ n y

21 g r i d _ n y = 3
g r i d _ x = o r i g i n _ x + p a s _ c r a y o n ∗ ( g r id_nx −1)
g r i d _ y = g r i d _ x
g r i d _ z = g r i d _ x

26 # i d _ s p l i t = 3 : c u t t h e c e l l i n t o 24 t e t r a s
i d _ s p l i t = 3

# t r a n s l a t i o n o f u n i t c e l l
t s _ n x = 0

31 t s _ n y = 0
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t s _ n z = 4

# d i r e c t o r y o f t h e e x p o r t o f mesh f i l e s
g r i d _ d i r e c t o r y = ’ . ’

36 p y t h o n _ f i l e = os . p a t h . j o i n ( g r i d _ d i r e c t o r y , " g r i d " + " . py " )
m e d _ f i l e s = os . p a t h . j o i n ( g r i d _ d i r e c t o r y , " MED_files " )
i f n o t os . p a t h . e x i s t s ( m e d _ f i l e s ) :

os . m a k e d i r s ( m e d _ f i l e s , 0755)

41 # B u i l d a t e t r a h e d r o n from i t s v e r t i c e s
# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
t s l _ x = " x "
t s l _ z = " z "
d e f makeTet ra ( p o i n t s ) :

46 f a c e s = [ ]
t e t r a _ t s l = [ ]
f o r i i n x ra ng e ( l e n ( p o i n t s ) ) :

sommets = p o i n t s [ : i ] + p o i n t s [ i + 1 : ]
t r i a n g l e = geompy . MakePo ly l ine ( sommets , True )

51 f a c e = geompy . MakeFace ( t r i a n g l e , True )
f a c e s . append ( f a c e )

s h e l l = geompy . MakeShel l ( f a c e s )
t e t r a = geompy . MakeSol id ( s h e l l )

56 t e t o t . append ( t e t r a )

# t r a n s l a t e t e t r a h e d r o n s i n X, Y, Z d i r e c t i o n s
i f t s_nx >0:

f o r j i n x ra ng e ( t s _ n x ) :
61 name_x = geompy . M a k e T r a n s l a t i o n ( t e t r a , ( j +1)∗ gr id_x , 0 , 0 )

t e t o t . append ( name_x )
i f t s_ny >0:

f o r m i n x ra ng e ( l e n ( t e t r a _ t s l ) ) :
f o r k i n x ra ng e ( t s _ n y ) :

66 name_y = t s l _ x + s t r (m+1)
name_y = name_y+ s t r ( k +1)
name_y = geompy . M a k e T r a n s l a t i o n ( t e t o t [m] , 0 , ( k +1)∗ gr id_y , 0 )
t e t o t . append ( name_y )

i f t s _ n z >0:
71 f o r p i n x ra ng e ( l e n ( t e t r a _ t s l ) ) :

f o r q i n x ra ng e ( t s _ n z ) :
name_z = t s l _ z + s t r ( p +1)
name_z = name_z+ s t r ( q +1)
name_z = geompy . M a k e T r a n s l a t i o n ( t e t o t [ p ] , 0 , 0 , ( q +1)∗ g r i d _ z )

76 t e t o t . append ( name_z )
r e t u r n t e t o t

# Make a group of s o l i d s o r f a c e s
# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

81 d e f b u i l d G r o u p ( geom , subshapes , name , s o l i d _ g r o u p ) :
i f s o l i d _ g r o u p :

t y p = geompy . ShapeType [ "SOLID" ]
e l s e :

t y p = geompy . ShapeType [ "FACE" ]
86 group = geompy . Crea teGroup ( geom , t y p )

group . SetName ( name )
geompy . a d d T o S t u d y I n F a t h e r ( geom , group , name )
geompy . U n i o n L i s t ( group , s u b s h a p e s )
r e t u r n group

91

# B u i l d a group from a p l a n e
# −−−−−−−−−−−−−−−−−−−−−−−−−−
d e f bu i ldGroupShape ( geom , name , normal , x , y , z ) :
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p o i n t = geompy . MakeVertex ( x , y , z )
96 s u b s h a p e s = geompy . Ge tShapesOnPlaneWi thLoca t ion ( geom , geompy . ShapeType [ "

EDGE" ] , normal , p o i n t , geomBui lder .GEOM. ST_ON)
r e t u r n b u i l d G r o u p ( geom , subshapes , name , F a l s e )

d e f b u i l d G r o u p C y l i n d e r s ( geom , name , s o l i d e s = F a l s e ) :
i f s o l i d e s :

101 t y p = geompy . ShapeType [ "FACE" ]
e l s e :

t y p = geompy . ShapeType [ "EDGE" ]
group = geompy . Crea teGroup ( geom , t y p )
group . SetName ( name )

106 geompy . a d d T o S t u d y I n F a t h e r ( geom , group , name )
r e t u r n group

d e f addGroup ( group , t y pe_shape , kind , t a k e ) :
s h a p e s = geompy . SubShapeAl l ( group . GetMainShape ( ) , t y p e _ s h a p e )

111 f o r shape i n s h a p e s :
i s _ k i n d = ( geompy . KindOfShape ( shape ) [ 0 ] == k ind )
i f ( t a k e and i s _ k i n d ) o r ( ( n o t t a k e ) and ( n o t i s _ k i n d ) ) :

geompy . U n i o n L i s t ( group , [ shape ] )

116 # B u i l d a g e o m e t r i c cube
# −−−−−−−−−−−−−−−−−−−−−−
cube = geompy . MakeBox ( 0 , 0 , 0 , g r id_x , g r id_y , g r i d _ z )
geompy . addToStudy ( cube , " mesh_cube " )

121 # Mesh t h e cube i n one hexahedron
# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
mesh_cube = mesher . Mesh ( cube )
mesh_1d = mesh_cube . Segment ( )
mesh_1d . NumberOfSegments ( 1 )

126 mesh_cube . Quadrang le ( )
mesh_cube . Hexahedron ( )
mesh_cube . Compute ( )

# S p l i t t h e hexahedron i n 6 o r 24 t e t r a h e d r o n s
131 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

mesh_cube . S p l i t V o l u m e s I n t o T e t r a ( mesh_cube , i d _ s p l i t )

# B u i l d g e o m e t r i c c y l i n d e r s
# −−−−−−−−−−−−−−−−−−−−−−−−−

136 base = geompy . MakeVertex ( o r i g i n _ x , o r i g i n _ y , 0 )
a x i s = geompy . MakeVectorDXDYDZ ( 0 , 0 , 1 )
l i s t _ c y l i n d e r s = [ ]
c y l 0 = geompy . MakeCyl inder ( base , a x i s , r a d i u s , g r i d _ z )
l i s t _ c y l i n d e r s . append ( c y l 0 )

141 c y l i n d e r s = geompy . MakeCompound ( l i s t _ c y l i n d e r s )
geompy . addToStudy ( c y l i n d e r s , " c y l i n d e r s " )

# Conve r t t h e t e t r a h e d r o n s o f mesh_cube i n t o g e o m e t r i c t e t r a h e d r o n s
# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

146 t e t r a s = [ ]
c e l l s = mesh_cube . GetElementsByType ( s m e s h B u i l d e r .VOLUME)
f o r c e l l i n c e l l s :

nodes = mesh_cube . GetElemNodes ( c e l l )
c o o r d s = [ mesh_cube . GetNodeXYZ ( node ) f o r node i n nodes ]

151 p o i n t s = [ geompy . MakeVertex ( x , y , z ) f o r x , y , z i n c o o r d s ]
t e t r a _ t s l = makeTet ra ( p o i n t s )
t e t r a s = t e t r a s + t e t r a _ t s l

# B u i l d t h e g r o s _ g e o and r e f _ g e o
156 g r o s _ g e o = geompy . M a k e P a r t i t i o n ( t e t r a s , [ ] )
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r e f _ g e o = geompy . MakeCut ( gros_geo , c y l i n d e r s )

# c r e a t e g e o m e t r i c g ro up s on r e f _ g e o
# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

161 nx = geompy . MakeVectorDXDYDZ ( 1 , 0 , 0 )
ny = geompy . MakeVectorDXDYDZ ( 0 , 1 , 0 )
nz = geompy . MakeVectorDXDYDZ ( 0 , 0 , 1 )
i n l e t = bu i ldGroupShape ( r e f _ g e o , " i n l e t " , nz , 0 , 0 , ( t s _ n z +1)∗ g r i d _ z )
o u t l e t = bu i ldGroupShape ( r e f _ g e o , " o u t l e t " , nz , 0 , 0 , 0 )

166 up = bu i ldGroupShape ( r e f _ g e o , " up " , ny , 0 , ( t s _ n y +1)∗ g r i d _ y + e t f + r a d i u s , 0 )
down = bu i ldGroupShape ( r e f _ g e o , " down " , ny ,0 ,− ( e t f + r a d i u s ) , 0 )
l e f t = bu i ldGroupShape ( r e f _ g e o , " l e f t " , nx ,−( e t f + r a d i u s ) , 0 , 0 )
r i g h t = bu i ldGroupShape ( r e f _ g e o , " r i g h t " , nx , ( t s _ n x +1)∗ g r i d _ x + e t f + r a d i u s , 0 , 0 )

171 c y l i n d e r s 2 d = b u i l d G r o u p C y l i n d e r s ( r e f e r e n c e , " c y l i n d e r s 2 d " , F a l s e )
addGroup ( c y l i n d e r s 2 d , geompy . ShapeType [ "FACE" ] , geompy . k ind . CYLINDER2D , True )

# c r e a t e g e o m e t r i c g ro up s on g r o s _ g e o
# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

176 IN = bu i ldGroupShape ( gros_geo , " i n l e t " , nz , 0 , 0 , ( t s _ n z +1)∗ g r i d _ z )
OUT = bu i ldGroupShape ( gros_geo , " o u t l e t " , nz , 0 , 0 , 0 )
UP = bu i ldGroupShape ( gros_geo , " up " , ny , 0 , ( t s _ n y +1)∗ g r i d _ y + e t f + r a d i u s , 0 )
DOWN = bui ldGroupShape ( gros_geo , " down " , ny ,0 ,− ( e t f + r a d i u s ) , 0 )
LHS = bu i ldGroupShape ( gros_geo , " l e f t " , nx ,−( e t f + r a d i u s ) , 0 , 0 )

181 RHS = bu i ldGroupShape ( gros_geo , " r i g h t " , nx , ( t s _ n x +1)∗ g r i d _ x + e t f + r a d i u s , 0 , 0 )

# B u i l d t r i a n g u l a r f a c e s
# −−−−−−−−−−−−−−−−−−−−−−
i n d = 0

186 t r i a n g l e s = { }
f o r f a c e i n geompy . SubShapeAl l ( gros_geo , geompy . ShapeType [ "FACE" ] ) :

compound = geompy . G e t I n P l a c e ( r e f _ g e o , f ace , True )
f o r f a c e 1 i n geompy . SubShapeAl l ( compound , geompy . ShapeType [ "FACE" ] ) :

f a c e _ i d = geompy . GetSubShapeID ( r e f _ g e o , f a c e 1 )
191 t r i a n g l e s [ f a c e _ i d ] = " T r i _ "+ s t r ( i n d )

i n d +=1

# B u i l d 2D and 3D g e o m e t r i c g ro up s
# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

196 c y l i n d e r s n a m e = " C y l i n d e r s "
g roups_2d = [ ]
f o r f a c e i n geompy . SubShapeAl l ( r e f _ g e o , geompy . ShapeType [ "FACE" ] ) :

i f geompy . KindOfShape ( f a c e ) [ 0 ] == geompy . k ind . CYLINDER2D :
name = c y l i n d e r s n a m e

201 e l s e :
f a c e _ i d = geompy . GetSubShapeID ( r e f _ g e o , f a c e )
name = t r i a n g l e s [ f a c e _ i d ]

group_2d = b u i l d G r o u p ( r e f _ g e o , [ f a c e ] , name , F a l s e )
g roups_2d . append ( group_2d )

206

groups_3d = [ ]
i = 0
f o r s o l i d i n geompy . SubShapeAl l ( r e f _ g e o , geompy . ShapeType [ "SOLID" ] ) :

group_3d = b u i l d G r o u p ( r e f _ g e o , [ s o l i d ] , " t e t r a _ "+ s t r ( i ) , True )
211 groups_3d . append ( group_3d )

i += 1

# G e n e r a t e t h e r e f e r e n c e mesh
# −−−−−−−−−−−−−−−−−−−−−−−−−−−

216 m e s h _ t e t = mesher . Mesh ( r e f _ g e o )
a lgo_2d = m e s h _ t e t . T r i a n g l e ( a l g o = s m e s h B u i l d e r . MG_CADSurf )
a lgo_2d . S e t P h y s i c a l M e s h ( 1 )
a lgo_2d . SetMaxSize ( 0 . 0 0 1 )
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a lgo_2d . S e t P h y S i z e ( 0 . 0 0 1 )
221 a lgo_2d . Se tGeometr icMesh ( 1 )

a lgo_2d . SetAngleMesh ( 5 . 0 )
a lgo_2d . S e t G r a d a t i o n ( 1 . 1 )
a lgo_2d . Se tVo lumeGrada t ion ( True , 1 . 2 )
f o r group_3d i n groups_3d :

226 a lgo_3d = m e s h _ t e t . T e t r a h e d r o n ( a l g o = s m e s h B u i l d e r . MG_Tetra , geom= group_3d )
a lgo_3d . P a r a m e t e r s ( ) . S e t G r a d a t i o n ( 1 . 2 )

m e s h _ t e t . Compute ( )

231 # B u i l d mesh g ro up s on t h e r e f e r e n c e mesh
# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
m e s h _ i n l e t = m e s h _ t e t . Group ( i n l e t )
m e s h _ o u t l e t = m e s h _ t e t . Group ( o u t l e t )
mesh_up = m e s h _ t e t . Group ( up )

236 mesh_down = m e s h _ t e t . Group ( down )
m e s h _ l e f t = m e s h _ t e t . Group ( l e f t )
m e s h _ r i g h t = m e s h _ t e t . Group ( r i g h t )
m e s h _ c y l i n d e r s 2 d = m e s h _ t e t . Group ( c y l i n d e r s 2 d )

241 # G e n e r a t e t h e c o a r s e mesh
# −−−−−−−−−−−−−−−−−−−−−−−−
c o a r s e _ g r i d = mesher . Mesh ( g r o s _ g e o )
mesh_1d = c o a r s e _ g r i d . Segment ( )
mesh_1d . NumberOfSegments ( 1 )

246 a lgo_2d = c o a r s e _ g r i d . T r i a n g l e ( a l g o = s m e s h B u i l d e r . MEFISTO)
a lgo_3d = c o a r s e _ g r i d . T e t r a h e d r o n ( a l g o = s m e s h B u i l d e r . MG_Tetra )
c o a r s e _ g r i d . Compute ( )

# B u i l d mesh g ro up s on t h e c o a r s e mesh
251 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

c o a r s e _ i n l e t = c o a r s e _ g r i d . Group ( g r o s _ i n l e t )
c o a r s e _ o u t l e t = c o a r s e _ g r i d . Group ( g r o s _ o u t l e t )
c o a r s e _ u p = c o a r s e _ g r i d . Group ( g ros_up )
coarse_down = c o a r s e _ g r i d . Group ( gros_down )

256 c o a r s e _ r i g h t = c o a r s e _ g r i d . Group ( g r o s _ r i g h t )
c o a r s e _ l e f t = c o a r s e _ g r i d . Group ( g r o s _ l e f t )

# E xp or t t h e c o a r s e mesh i n t o a MED f i l e
med_3d_coarse = os . p a t h . j o i n ( m e d _ f i l e s , " c o a r s e _ g r i d . med" )

261 c o a r s e _ g r i d . ExportMED ( med_3d_coarse )

# B u i l d 2D mesh g ro up s
# −−−−−−−−−−−−−−−−−−−−
groups_2d_mesh = {}

266 f o r f a c e i n groups_2d :
mesh_2d = m e s h _ t e t . Group ( f a c e )
copy_2d = mesher . CopyMesh ( mesh_2d , f a c e . GetName ( ) )
f a c e _ i d = f a c e . G e t S u b S h a p e I n d i c e s ( ) [ 0 ]
groups_2d_mesh [ f a c e _ i d ] = [ copy_2d . GetMesh ( ) , mesh_2d , 0 ]

271 f a c e s = copy_2d . GetElementsByType ( s m e s h B u i l d e r . FACE)
name= f a c e . GetName ( )
copy_2d . MakeGroupByIds ( name , s m e s h B u i l d e r . FACE, f a c e s )

# E xp or t o f each f i n e mesh i n t o a MED f i l e
276 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

s p l i t _ a l l = [ ]
f o r t e t r a i n groups_3d :

c o p i e s = [ ]
t e t r a _ m e s h = m e s h _ t e t . Group ( t e t r a )

281 copy_3d = mesher . CopyMesh ( t e t r a _ m e s h , t e t r a . GetName ( ) )
c o p i e s . append ( copy_3d . GetMesh ( ) )
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f o r f a c e i n geompy . SubShapeAl l ( t e t r a , geompy . ShapeType [ "FACE" ] ) :
f a c e _ i d = geompy . GetSubShapeID ( r e f _ g e o , f a c e )
cp , o r i , c o u n t = groups_2d_mesh [ f a c e _ i d ]

286 c o p i e s . append ( cp )
groups_2d_mesh [ f a c e _ i d ] = [ cp , o r i , c o u n t +1]

name = t e t r a . GetName ( )
t e t r a _ c o n c = mesher . C o n c a t e n a t e ( c o p i e s , True , True , 1e−05 , F a l s e , name )
m e d _ f i l e = os . p a t h . j o i n ( m e d _ f i l e s , name+" . med" )

291 s p l i t _ n a m e = name
s p l i t _ m e d = m e d _ f i l e
s p l i t _ g r o u p s = [ ]
g r ou ps = t e t r a _ c o n c . GetGroups ( s m e s h B u i l d e r .SMESH. FACE)
f o r group i n g r ou ps :

296 s p l i t _ g r o u p s . append ( group )
t e t r a _ c o n c . ExportMED ( m e d _ f i l e )
s p l i t _ a l l . append ( [ s p l i t _ m e d , s p l i t _ n a m e , s p l i t _ g r o u p s ] )

# Remove i n t e r n a l t r i a n g u l a r f a c e s on t h e r e f e r e n c e mesh
301 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

f o r key i n groups_2d_mesh . keys ( ) :
cp , o r i , c o u n t = groups_2d_mesh [ key ]
i f c o u n t == 2 :

l i s t _ i d s = o r i . GetIDs ( )
306 m e s h _ t e t . RemoveElements ( l i s t _ i d s )

m e s h _ t e t . RemoveGroup ( o r i )

# e x p o r t t h e r e f e r e n c e mesh
# −−−−−−−−−−−−−−−−−−−−−−−−−

311 med_3d_ref = os . p a t h . j o i n ( m e d _ f i l e s , " r e f e r e n c e . med" )
m e s h _ t e t . ExportMED ( med_3d_ref )

A.2 An example of data file of TrioCFD

We present an example of data files executed by TrioCFD for solving local problems. As men-
tioned in Chapter 5, these data files are generated automatically by executing a Python program.
Data files in the format .data are text files in which we specify important simulation parameters.
To declare an object, we write the command in the form: "object_type name". As indicated in
the second line of the example below, we declare "pb" as an object of type "Pb_Hydraulique".
To solve a problem or to read a file, the command is in the form: "action parameter1 ... param-
eterN". For example, in order to read the "tetra_10.med" file, we use the command "Lire_med
family_names_from_group_names 10 tetra_10 tetra_10.med" where "Lire_med" is the action
followed by several parameters. In data files, we use { } to add nested parameters and use the
keyword "fin" or "end" to indicate the end of the file. Texts between two # are comments and not
executed by TrioCFD.

The data file presented below is based on the original data file of TrioCFD with several mod-
ifications. The commands "dim 0" and "nom_bord Bord_30" indicate the multiscale basis func-
tions to be computed. The value of "dim" equals to 0, · · · , s− 1 with s the number of weighting
functions defined by (3.7) and (3.203). As described in local problems (3.39), multiscale basis
functions are constructed associated to faces of the coarse mesh. Thus "nom_bord" indicates the
face associated to which the multiscale basis functions is computed. In this example, the face
is "Bord_30". Cl_cellule is the new boundary condition defined in this thesis to stand for the
integral type boundary condition in local problems.

d imens ion 2
2 Pb_Hydrau l ique pb

Domaine 10
# r e a d t h e . med f i l e #



A.2. An example of data file of TrioCFD 197

Lire_med fami ly_names_f rom_group_names 10 t e t r a _ 1 0 t e t r a _ 1 0 . med

7 VEFPreP1B d i s
# d i s c r e t i z a t i o n o f p r e s s u r e P0 or P1 #
Read d i s { P0 }

S c h e m e _ e u l e r _ i m p l i c i t sch
12 Read sch

{
t i n i t 0 .
tmax 1e−1
# dt_min 0 .00001 #

17 dt_max 1 0 .
d t _ i m p r 0
p e r i o d e _ s a u v e g a r d e _ s e c u r i t e _ e n _ h e u r e s 23
# d t _ s a u v 1 0 0 . #
s e u i l _ s t a t i o 1 . e−6

22 s o l v e u r i m p l i c i t e
{

s e u i l _ c o n v e r g e n c e _ i m p l i c i t e 1e−5
# s o l v e r i n t h e p r e d i c t i o n s t e p #
s o l v e u r gmres { d i a g s e u i l 1e−30 nb_i t_max 5 }

27 }
f a c s e c 1
facsec_max 20

}

32 F l u i d e _ I n c o m p r e s s i b l e f l u i d e
Read f l u i d e
{

mu Champ_Uniforme 1 1 .
rho Champ_Uniforme 1 1 .

37 }

A s s o c i a t e pb 10
A s s o c i a t e pb sch
A s s o c i a t e pb f l u i d e

42 D i s c r e t i z e pb d i s

Read pb
{

N a v i e r _ S t o k e s _ s t a n d a r d
47 {

s o l v e u r _ p r e s s i o n p e t s c Cholesky { }
# S t o k e s problem when c o n v e c t i o n i s n e g l e c t e d #
c o n v e c t i o n { n e g l i g e a b l e }
d i f f u s i o n { }

52

# i n d i c a t e t h e b a s i s f u n c t i o n t o s o l v e #
dim 0
nom_bord Bord_30

57 i n i t i a l _ c o n d i t i o n s
{

v i t e s s e Champ_Uniforme 2 0 . 0 0 . 0
}

62 b o u n d a r y _ c o n d i t i o n s
{

Bord_30 C l _ c e l l u l e
Bord_31 C l _ c e l l u l e
Bord_32 C l _ c e l l u l e

67 C i r c l e p a r o i _ f i x e
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}
}

# s e t p a r a m e t e r s f o r t h e pos t−p r o c e s s i n g #
72 P o s t _ p r o c e s s i n g

{
f o r m a t LATA

f i e l d s d t _ p o s t 1 e +10
{

77 v i t e s s e f a c e s
p r e s s i o n elem

}
}

82 # e x p o r t s o l u t i o n s i n . sauv f o r m a t #
S a u v e g a r d e _ s i m p l e b i n a i r e t e s t . sauv

}

So lve pb
87 End

A.3 A Python script for visualization in VisIt

As presented in section 5.4, VisIt is used at the end of the multiscale simulation chain to visu-
alize fine-scale solutions. We give an example of the Python script used to launch VisIt via the
command line interface (CLI).

VisIt can manipulate easily LATA files produced by TrioCFD. Since the reconstruction of
fine-scale solutions were carried out locally on each coarse element, we obtain as many LATA
files as the number of coarse elements. In the loop over LATA files, we first define and open
the "database" to read one LATA file. Then we specify the physical field to be visualized in
the function "AddPlot()". For example, "VITESSE_FACES_dom_dual_magnitude" and "PRES-
SURE_ELEM_dom" stands respectively for the velocity computed in face and the pressure com-
puted in elements. Then the physical field is visualized using "DrawPlots()".

Using "View2DAttributes()" and "PseudocolorAttributes()", we specify common parameters
for the visualization of the physical field, i.e. the velocity in this example. We visualize velocity
in the entire domain Ωε or only in the regions of interest and we specify this domain in "win-
dowCoords". It is necessary to fix the "min", "max" values and the "colorTableName" for the
visualization of velocity in each LATA file. Some annotations, such as "legendFlag", "userIn-
foFlag" and so on are not necessary for the visualization.

At the end, we export the visualization into a file of format PNG or JPEG. It is important to
delete the visualization and close the "database". Then we read the next LATA file and export the
visualization of velocity into another PNG file.

i m p o r t s y s
number_of_lATA = 512

3 f o r i i n x ra ng e ( 0 , number_of_lATA ) :
d a t a b a s e = " l o c a l h o s t : . . / . . / b a s e s _ l o c a l e s / t e t r a _ "+ s t r ( i ) +" _ p o s t . l a t a "
OpenDatabase ( d a t a b a s e , 0 )
AddPlot ( " P s e u d o c o l o r " , " VITESSE_FACES_dom_dual_magnitude " , 1 , 1 )
DrawPlo t s ( )

8

# Begin s p o n t a n e o u s s t a t e
View2DAtts = V i e w 2 D A t t r i b u t e s ( )
View2DAtts . windowCoords = (−0.5 , 1 . 5 , 0 . , 1 . ) # ( x1 , x2 , y1 , y2 )
View2DAtts . v i e w p o r t C o o r d s = ( 0 . 2 , 0 . 9 5 , 0 . 1 5 , 0 . 9 5 )

13 View2DAtts . f u l l F r a m e A c t i v a t i o n M o d e = View2DAtts . Auto # On , Off , Auto
View2DAtts . f u l l F r a m e A u t o T h r e s h o l d = 100
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View2DAtts . x S c a l e = View2DAtts . LINEAR # LINEAR , LOG
View2DAtts . y S c a l e = View2DAtts . LINEAR # LINEAR , LOG
View2DAtts . windowValid = 1

18 SetView2D ( View2DAtts )
# End s p o n t a n e o u s s t a t e

# s e t a t t r i b u t s f o r P s e u d o c o l o r s
P s e u d o c o l o r A t t s = P s e u d o c o l o r A t t r i b u t e s ( )

23 P s e u d o c o l o r A t t s . l e g e n d F l a g = 0
P s e u d o c o l o r A t t s . minFlag = 1
P s e u d o c o l o r A t t s . min = 0
P s e u d o c o l o r A t t s . maxFlag = 1
P s e u d o c o l o r A t t s . max = 0 .3106

28 P s e u d o c o l o r A t t s . c e n t e r i n g = P s e u d o c o l o r A t t s . N a t u r a l # N a t u r a l , Nodal ,
Zonal

P s e u d o c o l o r A t t s . co lorTableName = " h o t _ d e s a t u r a t e d "
S e t P l o t O p t i o n s ( P s e u d o c o l o r A t t s )

# s e t a n n o t a t i o n s
33 A n n o t a t i o n A t t s = A n n o t a t i o n A t t r i b u t e s ( )

A n n o t a t i o n A t t s . u s e r I n f o F l a g = 0
A n n o t a t i o n A t t s . d a t a b a s e I n f o F l a g = 0
S e t A n n o t a t i o n A t t r i b u t e s ( A n n o t a t i o n A t t s )

38 # s e t png
sw = SaveWindowAt t r i bu t e s ( )
sw . o u t p u t T o C u r r e n t D i r e c t o r y = 1
sw . o u t p u t D i r e c t o r y = " . "
sw . f i l eName = " v i s i t "

43 sw . f a m i l y = 1
sw . f o r m a t = sw .PNG # JPEG , PNG, POSTSCRIPT , . . .
sw . wid th = 1024
sw . h e i g h t = 1024
sw . s c r e e n C a p t u r e = 0

48 sw . s a v e T i l e d = 0
sw . q u a l i t y = 80
sw . p r o g r e s s i v e = 0
sw . b i n a r y = 0
sw . s t e r e o = 0

53 sw . c o m p r e s s i o n = sw . P a c k B i t s # None , PackBi t s , Jpeg , D e f l a t e
sw . fo rceMerge = 0
sw . r e s C o n s t r a i n t = sw . S c r e e n P r o p o r t i o n s # N o C o n s t r a i n t , Equa lWidthHeigh t ,

S c r e e n P r o p o r t i o n s
sw . advancedMult iWindowSave = 0
S e t S a v e W i n d o w A t t r i b u t e s ( sw )

58 SaveWindow ( )

# c l o s e t h e d a t a
D e l e t e A l l P l o t s ( )
C l o s e D a t a b a s e ( d a t a b a s e )
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Appendix B

Solution of local problems in
high-order multiscale methods

In Chapter 4, we presented the discretization of local problems in high-order Crouzeix-Raviart
multiscale methods and obtained system (4.57). We expect to solve this system using the P2/P1

finite element. Since this finite element is not available in TrioCFD, we solved system (4.57)
using the P2/P1 finite element in Freefem++. In this appendix, we first prove the existence and
uniqueness of A solution to system (4.57). Then we present some multiscale basis functions
which are solutions of local problems (3.191)–(3.192).

B.1 The well-posedness of discrete local problems

Now let us prove the existence and uniqueness of a solution to system (4.57). Assuming that
(Uh,Ph,Λh,ηh,Kh) satisfies that

AhUh + Bt
hPh + Dt

hΛh + Sthηh = 0 (B.1)

BhUh + Qt
hKh = 0 (B.2)

DhUh = 0 (B.3)

QhPh = 0 (B.4)

ShUh = 0 (B.5)

We want to prove that Uh = 0, Ph = 0, Λh = 0 and ηh = 0. Now let us first prove that
Uh = 0. Multiplying (B.1) by Uh yields

(AhUh,Uh) + (Ph,BhUh) + (Λh,DhUh) + (ηh,ShUh) = 0 (B.6)

Making use of (B.2), it is easy to see that

(Ph,BhUh) = −
(
Ph,Q

T
hKh

)
= − (QhPh,Kh)

then (B.4) implies that

(QhPh,Kh) = 0

Equation (B.3) implies that

(Λh,DhUh) = 0

Equation (B.5) implies that

(ηh,ShUh) = 0
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Finally (B.6) becomes

(AhUh,Uh) = 0

This implies that ∇Uh = 0 and thus Uh is constant. Taking advantage of equation (B.5), we
conclude that Uh = 0.

In this case, (B.1)–(B.5) reduces to

Bt
hPh + Dt

hΛh + Sthηh = 0 (B.7)

Qt
hKh = 0 (B.8)

QhPh = 0 (B.9)

It is straightforward to deduce from (B.8) that Kh = 0. It remains to prove that Ph = 0, Λh

and ηh = 0. For a velocity node xf located in the interior of the domain, (B.7) reduces to

Bt
hPh + Sthηh = 0

Making use of Sth defined by (4.47), in the control volume of velocity ωf shown in Figure 4.2
and Figure 4.7, (

Bt
hPh

)
ωf

= meas (ωf )ηh (B.10)

where

meas (ωf ) =
meas (k1) + meas (k2)

3
(B.11)

With the Crouzeix-Raviart finite element If unknowns in local problems is discretized by
the Crouzeix-Raviart finite element shown in Figure 4.2, then the pressure is constant in each
element. The discretization of the gradient of pressure is presented in subsection 4.2.2. Using
the coefficient of the matrix Ch, the gradient of pressure on the face f shown in Figure 4.2 is
computed by (

Bt
hPh

)
ωf

= (p1 − p2)Sfk1

We recall that Sfk1 +Sfk2 = 0. In the equality above, we choose Sfk1 as the conventional orienta-
tion in k1 and k2.

On combining (B.10), we deduce that ηh is collinear with Sfk1 . Besides, the same result is
obtained for the two other faces m and n of the element k1. This result implies that ηh is also
collinear with both Smk1 and Snk1 . In conclusion, ηh = 0 which implies that p1 = p2. Using the
same arguments for any internal face f of the mesh Th(T ), it is easy to verify that p has the same
value on all elements of Th(T ). In other words, p is in the space P0 (T ). Moreover, making use
of equation (B.9), it is straightforward to deduce that Ph = 0. On combining Λh = 0, (B.7)
implies that Λh = 0.

With the P1-nonconforming/P1 finite element If velocity and pressure in local problems is
discretized by the P1-nonconforming/P1 element shown in Figure 4.7, then the pressure is in the
P1(k) space in each element k ∈ Th(T ). As shown in Figure 4.8, for the internal f , we denote
by τS1S2 the vector collinear with [S1S2] and of meas (S1S2).
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We compute
(
Bt
hPh

)
ωf

by

(
Bt
hPh

)
ωf

=
meas (k1)

3
(∇Ph) |k1 +

meas (k2)

3
(∇Ph) |k2

We multiply the equality above by the vector τS1S2 and we obtain

(
Bt
hPh

)
ωf
· τS1S2 =

meas (k1)

3
(∇Ph) |k1 · τS1S2 +

meas (k2)

3
(∇Ph) |k2 · τS1S2 (B.12)

Besides, the definition of the gradient of pressure implies that

(∇Ph) |k1 · τS1S2 = PS2 − PS1

(∇Ph) |k2 · τS1S2 = PS2 − PS1

Using this equality, (B.12) can be written as

(
Bt
hPh

)
ωf
· τS1S2 =

(
meas (k1)

3
+

meas (k2)

3

)
(∇Ph) |k1 (B.13)

Meanwhile, multiplying (B.10) by τS1S2 , we obtain(
Bt
hPh

)
ωf
· τS1S2 = meas (ωf )ηh · τS1S2 (B.14)

Combining (B.13) and (B.14), we conclude that(
meas (k1)

3
+

meas (k2)

3

)
(∇Ph) |k1 = meas (ωf )ηh · τS1S2

Making use of (B.11), the equality above reduces to

(∇Ph) |k1 · τS1S2 = ηh · τS1S2

Using the same arguments, it is straightforward to verify that this equality holds true for
τS1Sop1 and τS2Sop1 in the element k1. In this case, it is easy to deduce that

(∇Ph) |k1 = ηh (B.15)

Proceeding in this method, for any internal face f in the mesh Th(T ), we conclude that (B.15)
is true for any element of the mesh Th(T ) and thus Ph is in the P1(T ) space. Combining (B.9),
we conclude that Ph = 0. Consequently, (B.10) implies that ηh = 0 and then (B.7) reveals that
Λh = 0.

On the mesh T , there are some elements which contain two faces located on the boundary.
When the P1-nonconforming/P1 element is used to discretize local problems, it is recommended
to use the function VeryfierCoin in TrioCFD to split this kind of elements into three smaller
elements. This operation is illustrated in Figure 4.10. After this operation, elements located on
the boundary of T contains only one face on the boundary but two internal faces. For these two
internal faces, we deduce (B.15) proceeding in the same way as above.

Consequently, we have proved the existence and the uniqueness of a solution to system (B.1)–
(B.5) for both the Crouzeix-Raviart finite element and the P1-nonconforming/P1 finite element.
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B.2 Multiscale basis functions

In two dimensions, we solve system (3.191)–(3.192) on the fine mesh shown in Figure B.1 using
the P2/P1 finite element in Freefem++. We choose weighting functions defined by (3.203) and
we recall below:

s = 4 : ωE,1 = e1, ωE,2 = e2, ωE,3 = nEψE , ωE,4 = τEφE .

t = 3 : $T,1 = 1, $T,2 = x, $T,3 = y.

r = 2 : ϕT,1 = e1, ϕT,2 = e2.

(B.16)

where {e1, e2} is the canonical basis of R2 and nE and τE are respectively unit vectors normal
and tangent to the faceE. Besides, ψE ∈ P1(E) and φE ∈ P1(E) which verify that

∫
E∩Ωε ψE =

0 and
∫
E∩Ωε φE = 0.

On the coarse element T , we obtain 14 multiscale basis functions including (ΨT,1, πT,1),
(ΨT,2, πT,2) and (ΦF,1, πF,1) , · · · , (ΦF,4, πF,4) for any F ∈ E(T ). We recall that the dimension
of E(T ) is 3 for a triangular coarse element in two dimensions.

As shown in Figure B.2, the accompanying pressure πT,1 and πT,2 are both zero in the entire
domain. Figure B.3 reveals the multiscale basis functions ΨT,1 and ΨT,2. On combining the
pressure contour, it is easy to deduce that ΨT,1 and ΨT,2 are both quadratic polynomials on T .

Figures B.4 to B.5 present the multiscale basis functions ΦF,1, · · · ,ΦF,4 associated to the
boundary F . As shown in Figures B.6 to B.7, the accompanying pressure πE,1 and πE,2 are zero
in the entire domain while πE,3 and πE,4 are not zero at all. On combining the pressure contour,
we deduce that ΦF,1 and ΦF,2 are both quadratic polynomials whereas ΦF,3 and ΦF,4 are not.

In conclusion, among the 14 multiscale basis functions computed on T , ΨT,1 and ΨT,2

are both quadratic polynomials. For any boundary F ∈ E(T ), ΦF,1 and ΦF,2 are quadratic
polynomials while ΦF,3 and ΦF,4 are not.

FIGURE B.1: Mesh on the coarse element T
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(A) Contour πT,1 (B) Contour πT,2

FIGURE B.2: Pressure contour πT,1 and πT,2

(A) Vector ΨT,1 (B) Vector ΨT,2

FIGURE B.3: Multiscale basis functions ΨT,1 and ΨT,2



206 Appendix B. Solution of local problems in high-order multiscale methods

(A) Vector ΦF,1 (B) Vector ΦF,2

FIGURE B.4: Multiscale basis functions ΦF,1 and ΦF,2

(A) Vector ΦF,3 (B) Vector ΦF,4

FIGURE B.5: Multiscale basis functions ΦF,3 and ΦF,4
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(A) Contour πF,1 (B) Contour πF,2

FIGURE B.6: Pressure contour πF,1 and πF,2

(A) Contour πF,3 (B) Contour πF,4

FIGURE B.7: Pressure contour πF,3 and πF,4
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Appendix C

Résumé en français

Le cœur d’un réacteur nucléaire est un milieu très hétérogène encombré de nombreux obstacles
solides (crayons combustibles, grilles de mélange etc.) aux différentes échelles. Pour modéliser
les écoulements dans le cœur des réacteurs nucléaires, les codes les plus utilisés sont les codes
thermohydrauliques à l’échelle système, tel que CATHARE, RELAP5, ATHLET etc. Ces codes
sont basés sur des méthodes moyennées et les équations unidimensionnelles de masse, de quantité
de mouvement, d’énergie etc. Mais ces codes ne peuvent pas bien représenter les caractéristiques
tridimensionnelles dans le cœur des réacteurs nucléaires.

La CFD (Computational Fluid Dynamics en anglais) est un moyen approprié qui peut bien
modéliser les phénomènes tridimensionnelles très complexes. Les études CFD des écoulements
dans un réacteur à l’échelle réduite montrent que les phénomènes thermohydrauliques à l’échelle
macroscopique sont directement impactés par les phénomènes à l’échelle microscopique. Les
phénomènes dans le cœur des réacteurs nucléaires sont donc des problèmes multi-échelles. Toute-
fois la simulation CFD de l’écoulement dans le cœur complet exige un maillage extrêmement fin
et nécessite une quantité de ressources de calculs plus grande que les ressources informatiques
actuelles.

Dans la littérature, il y a un grand nombre de techniques (model reduction method en anglais)
qui ont été développées pour résoudre les problèmes multi-échelles sur un maillage grossier,
en capturant les caractéristiques microscopiques les plus importantes. Ces méthodes ont toutes
emprunté l’idée de la théorie de l’homogénéisation [16, 29, 86, 98]. Parmi ces méthodes, on
trouve les méthodes d’éléments finis multi-échelles [61, 87, 88], les méthodes de volumes finis
multi-échelles [72, 96, 97], les méthodes multi-échelles variationnelles [91, 92] ou les méthodes
multi-échelles hétérogènes [7, 57, 58, 83] etc. Cette thèse est consacrée au développement de
méthodes d’éléments finis multi-échelles pour simuler les écoulements incompressibles dans un
milieu hétérogène.

La méthode d’éléments finis multi-échelles s’effectue en quatre étapes. La première étape
est de générer un maillage grossier et des maillages fins. Le maillage grossier ne contient pas
d’obstacles et les maillages fins sont suffisamment fins pour bien modéliser la frontière des ob-
stacles dans le milieu. La deuxième étape est de construire les fonctions de base multi-échelles
par résoudre les problèmes locaux sur les maillages fins. Dans la troisième étape, sur le maillage
grossier, on résout un problème grossier qui est discrétisé par une méthode de Galerkin où les
fonctions de bases sont les solutions des problèmes locaux. La quatrième étape est de recon-
struire les caractéristiques microscopiques des phénomènes physiques sur les maillages fins en
utilisant les fonctions de base multi-échelles et les solutions des problèmes grossiers.

Dans cette thèse, dans un premier temps, on implémente la méthode d’éléments finis multi-
échelles originellement proposée par [95, 118], où les problèmes locaux sont définis par les
équations de Stokes avec des conditions aux limites appropriées. Dans le travail originel, les
auteurs ont résolu seulement le problème de Stokes sur le maillage grossier. Dans cette thèse, on
propose de résoudre aussi les problèmes d’Oseen et de Navier-Stokes sur le maillage grossier.
La méthode de Streamline-Upwind/Petrov-Galerkin (SUPG) [33] est développée pour stabiliser
les solutions sur le maillage grossier.
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Pour prendre en compte le terme de convection dans la définition des fonctions de base multi-
échelles, on peut construire une méthode d’éléments finis multi-échelles où les problèmes locaux
sont définis par les équations d’Oseen avec des conditions aux limites appropriées. Cette méth-
ode a été d’abord proposée dans [117] et on a d’abord implémenté les problèmes locaux proposés
dans la méthode. Néanmoins, nos simulations numériques montrent qu’il existe des oscillations
dans les solutions des problèmes locaux quand la vitesse d’Oseen est relativement grande. Par
conséquent, on définit des problèmes locaux différemment et démontre qu’ils sont bien-posés. En
utilisant la nouvelle définition, il n’existe plus d’oscillations même aux grandes vitesses d’Oseen.
Dans [117], l’auteur a résolu seulement les problèmes d’Oseen sur le maillage grossier. Dans
cette thèse, on propose de résoudre non seulement les problèmes d’Oseen mais aussi les prob-
lèmes de Navier-Stokes sur le maillage grossier. La méthode SUPG [33] est développée pour
stabiliser les solutions sur le maillage grossier.

Dans un deuxième temps, on propose deux idées pour enrichir les deux méthodes multi-
échelles presentées précédemment afin d’améliorer la précision des solutions numériques. La
première idée est d’enrichir seulement l’espace d’approximation de la vitesse. Pour cet objec-
tif, on propose deux méthodes d’enrichissement : (1) Prendre l’ensemble des fonctions de base
définies respectivement par les équations de Stokes et les équations d’Oseen. On espère obtenir
une méthode plus précise que la méthode définie par les équations de Stokes ou d’Oseen seules.
Pour résoudre le problème d’Oseen sur le maillage grossier, les résultats numériques montrent
que la méthode enrichie est plus précise que la méthode définie par les fonctinos de base de
Stokes seules mais moins précise que celle définie par les fonctions de base d’Oseen seules. (2)
Enrichir l’espace d’approximation de la vitesse en ajoutant des fonctions bulles. On a étendu les
fonctions bulles proposées pour les équations de diffusion ou diffusion-advection [54, 102, 113]
aux équations de Stokes. Mais nos expériences numériques montrent que l’addition des fonctions
bulles n’améliore pas la précision des résultats numériques. Puis nos analyses théoriques mon-
trent que l’espace d’approximation de la pression doit aussi être enrichi, menant à la deuxième
idée d’enrichissement.

La deuxième idée est d’enrichir les espaces d’approximation de la vitesse et de la pression
à l’aide des fonctions de poids, qui sont définies par les polynômes de degré plus élevé que
précedemment. On indique comment choisir les fonctions de poids et les degrés des polynômes
dans les espaces d’approximation de la pression et de la vitesse. On définit les nouveaux prob-
lèmes locaux par les équations de Stokes ou Oseen. Par conséquent, on obtient une méthode
innovante d’éléments finis multi-échelles qui est plus générale que toutes les méthodes présen-
tées précédemment. En faisant varier l’ordre des polynômes dans la définition des fonctions de
poids, on peut trouver un bon compromis entre la précision de la méthode et le coût des calculs.
Nos expériences numériques montrent que cette méthode multi-échelle améliore significative-
ment la précision de la vitesse et de la pression.

Une chaîne de simulation multi-échelles SALOME-TrioCFD-VisIt est construite pour simuler
des écoulements dans des milieux hétérogènes de dimension deux et trois. Les maillages néces-
saires sont générés par un code industriel SALOME [129], en utilisant les algorithmes spécifiques
développés dans cette thèse. Les méthodes d’éléments finis multi-échelles sont implémentées et
validées dans un code industriel du CEA, nommé TrioCFD [139]. La visualisation des solutions
fines est réalisée à l’aide du logiciel VisIt [142].



211

Bibliography

[1] J. Aarnes and B. O. Heimsund. “Multiscale discontinuous Galerkin methods for ellip-
tic problems with multiple scales”. In: Multiscale Methods in Science and Engineering.
Lecture Notes in Computational Science and Engineering. Springer, Berlin, Heidelberg,
2005.

[2] T. Abballe. “Simulation multi-échelle et homogénéisation des matériaux cimentaires”.
PhD thesis. École Polytehnique, 2011. URL: https://pastel.archives-ouvertes.
fr/pastel-00627899/.

[3] A. Abdulle. “Heterogeneous multiscale method for elliptic problems with multiple scales”.
In: Mathematics of Computation 81.278 (2012), pp. 687–713.
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Titre : Développement d’une méthode d’éléments finis multi-échelles pour les écoulements
incompressibles dans un milieu hétérogène

Mots clefs : élément de Crouzeix-Raviart, méthodes des éléments finis multi-échelles, équa-
tions de Navier-Stokes, équations de Stokes, milieu hétérogène

Résumé : Le cœur d’un réacteur nucléaire est un milieu très hétérogène encombré de nombreux
obstacles solides et les phénomènes thermohydrauliques à l’échelle macroscopique sont directe-
ment impactés par les phénomènes locaux. Toutefois les ressources informatiques actuelles ne
suffisent pas à effectuer des simulations numériques directes d’un cœur complet avec la préci-
sion souhaitée. Cette thèse est consacrée au développement de méthodes d’éléments finis multi-
échelles (MsFEMs) pour simuler les écoulements incompressibles dans un milieu hétérogène
avec un coût de calcul raisonnable. Les équations de Navier-Stokes sont approchées sur un mail-
lage grossier par une méthode de Galerkin stabilisé, dans laquelle les fonctions de base sont so-
lutions de problèmes locaux sur des maillages fins prenant précisément en compte la géométrie
locale. Ces problèmes locaux sont définis par les équations de Stokes ou d’Oseen avec des
conditions aux limites ou des termes sources appropriés. On propose plusieurs méthodes pour
améliorer la précision des MsFEMs, en enrichissant l’espace des fonctions de base locales. No-
tamment, on propose des MsFEMs d’ordre élevée dans lesquelles ces conditions aux limites et
termes sources sont choisis dans des espaces de polynômes dont on peut faire varier le degré. Les
simulations numériques montrent que les MsFEMs d’ordre élevés améliorent significativement
la précision de la solution. Une chaîne de simulation multi-échelle est construite pour simuler
des écoulements dans des milieux hétérogènes de dimension deux et trois.

Title: Development of a multiscale finite element method for incompressible flows in het-
erogeneous media

Keys words : Crouzeix-Raviart element, multiscale finite element method, Navier-Stokes
equations, Stokes equations, heterogeneous media

Abstract: The nuclear reactor core is a highly heterogeneous medium crowded with numerous
solid obstacles and macroscopic thermohydraulic phenomena are directly affected by localized
phenomena. However, modern computing resources are not powerful enough to carry out di-
rect numerical simulations of the full core with the desired accuracy. This thesis is devoted to
the development of Multiscale Finite Element Methods (MsFEMs) to simulate incompressible
flows in heterogeneous media with reasonable computational costs. Navier-Stokes equations are
approximated on the coarse mesh by a stabilized Galerkin method, where basis functions are
solutions of local problems on fine meshes by taking precisely local geometries into account.
Local problems are defined by Stokes or Oseen equations with appropriate boundary conditions
and source terms. We propose several methods to improve the accuracy of MsFEMs, by enrich-
ing the approximation space of basis functions. In particular, we propose high-order MsFEMs
where boundary conditions and source terms are chosen in spaces of polynomials whose degrees
can vary. Numerical simulations show that high-order MsFEMs improve significantly the accu-
racy of the solution. A multiscale simulation chain is constructed to simulate successfully flows
in two- and three-dimensional heterogeneous media.
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