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Introduction

Less than three years ago, the first direct detection of gravitational waves by the LIGO–Virgo
collaboration on the 14th of September 2015, opened a new window on our universe and a
new domain in our field of science: gravitational wave astrophysics. This breakthrough is
the result of decades of theoretical and experimental research in general relativity. In fact,
gravitational waves were mentioned for the first time in 1916 by Albert Einstein, even though
the theoretical community were convinced of their existence much later. Experimental efforts
to detect them started in the 1960s, and their first detection in 2015 results both from
the technological developments made to improve gravitational-wave detectors as well as
theoretical research aiming at predicting gravitational waveforms.

Hence, the different tools used to study general relativity and predict gravitational waves
from astrophysical events have played a crucial role in this discovery. It is today extremely
important to enhance our models and our gravitational wave templates as much as possible
as the quality of the science we will produce from gravitational wave astrophysics will depend
on them. In fact, the better our templates are, the better the signal-to-noise ratio of our
observations are, the more accurate our parameter estimations (masses, spins, distances etc.)
of the observed events are. The validity and the robustness of the astrophysical catalogs we
might build in the next years and decades highly depend on the effort we spend enhancing
our understanding on how extremely accurate predictions from general relativity can be
obtained.

In the landscape of formalisms available to understand gravitational waves, the post-
Newtonian theory is a method to compute physical quantities in an analytical and pertur-
bative manner. The perturbative parameter used is v/c, where v is the typical velocity of
the matter source and c is the speed of light, and a nth post-Newtonian order corresponds
to a factor (v/c)2n. We are going to use this formalism in this manuscript to study and
understand the dynamics and the emission of gravitational waves from compact binary sys-
tems, i.e., from systems made of two compact objects (such as black holes or neutron stars).
The end result of our formalism is either physical gauge-independent quantities — such as
the phase of the gravitational wave signal — that can be used to build templates, or to
cross-validate other methods of computation (such as black hole perturbation approaches
or numerical relativity). However, most results are given in terms of intermediate gauge-
dependent results such as the equations of motion. They are also of interest as they can be
compared with other formalisms, modulo coordinate transformations, and corroborate our
understanding of the various techniques used in general relativity.

In this thesis, we worked on the study of compact binary systems using the post-
Newtonian theory, and in particular the Blanchet-Damour-Iyer formalism, in order to en-
hance our understanding of the dynamics and the emission of gravitational waves by such

vii



viii Introduction

systems.

The thesis is organized as follows. Chapter 1 is an introduction to the linearized theory
of general relativity and to gravitational waves. Different equations, such as the Einstein
quadrupole formulae are provided in order to explain the notion of gravitational waves as
well as their effects on matter systems and get rough orders of magnitude.

In chapter 2, we focus on the detection of gravitational waves. In particular, the different
possible sources are reviewed and we tackle the design of gravitational wave detectors, the
different formalisms used to build templates as well as the data analysis techniques used by
the LIGO–Virgo collaboration. These first two chapters are rather introductory and can be
skipped by a reader who is already familiar with this field and wants to jump directly into
the technical details of post-Newtonian computations.

Chapter 3 is an overall review of the field of post-Newtonian theory describing in partic-
ular the state-of-the-art results in that domain. We describe the different relevant quantities
that can be computed using post-Newtonian theory and explain the overall goal motivating
the different computations done throughout the thesis.

In chapter 4 we describe the multipolar-post-Minkowskian algorithm which is a building
block of the Blanchet-Damour-Iyer formalism, and we obtain new results regarding the highly
non-linear third-order tail effect in the radiative field, in particular we compute the 4.5 post-
Newtonian order coefficient of the energy flux of spinless compact binary systems in circular
orbits.

Chapter 5 is a rather short but highly technical chapter describing the cornerstone of
our framework: the matching procedure. The matching procedure is omnipresent in our
formalism and enables to relate the multipolar-post-Minkowskian expansion done in chapter
4 to the near-zone computations of the post-Newtonian field and to the equations of motion
done in chapters 6-7-8.

In chapters 6 and 7, we start from the recently derived equations of motion of a spinless
compact binary system at the fourth post-Newtonian order, and we compute the last ambi-
guity parameter in these equations of motion. Then the dynamics of such systems is studied
through the computation of the different Noetherian conserved quantities.

Finally, chapter 8 describes the computation of the source moment multipoles and in par-
ticular the source mass quadrupole at the fourth post-Newtonian order, linking the dynamics
of a compact binary system, to its emission of gravitational waves. This chapter constitutes
a major step in the program of computing the radiation field at the fourth post-Newtonian
order.

The work done during this thesis has led to several new results described throughout the
manuscript: (i) the computation of the third-order tail effect and the coefficient at the 4.5
post-Newtonian order of the energy flux for spinless binary systems in circular orbits detailed
in chapter 4, (ii) the computation of the last ambiguity of the Fokker Lagrangian as described
in section 6.2.2, completing therefore the first ambiguity free derivation of the fourth post-
Newtonian order of the equations of motion of spinless compact bodies from first principles,
(iii) the derivation of the different conserved quantities of the fourth post-Newtonian order
dynamics detailed in chapter 7 and finally (iv) the preliminary results of the computation of
the mass quadrupole at the fourth post-Newtonian order provided in chapter 8.

These results have led to the following publications during this thesis:



Introduction ix
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1 – Introduction to gravitational
waves and to the linearized theory of

general relativity

1.1 Short history of the theory of gravitational waves
The history of general relativity started in 1915, with the paper of Albert Einstein Die
Grundlage der allgemeinen Relativitätstheorie (The Foundation of the General Theory of
Relativity) [5] containing the Einstein field equations and providing the foundations of general
relativity. This theory automatically recovers Newton’s laws of gravitation in the weak field
limit, can explain the previously observed anomalous advance of the perihelion of Mercury
and predicts the bending of light rays near massive bodies (this last prediction would be
confirmed in 1919 during a solar eclipse by an expedition led by Eddington).

As soon as 1916, using a perturbation of the metric on top of the Minkowski metric [6],
Einstein predicted the existence of wave solutions for the metric in vacuum. Two years later,
in 1918 [7], he derived the Einstein quadrupole formula for the energy flux, but his proof
did not apply to self-gravitating systems. Curiously enough, his result in this paper was
wrong by a factor 1/2. A new step was done in 1922 when Eddington [8] isolated the two
degrees of freedom of gravitational waves in the transverse and traceless gauge, enhancing
the understanding of the physical reality of gravitational waves. However, it was still unclear
at that time whether gravitational waves were physical or were just an artifact of a specific
choice of a coordinate system. It would be rather long to comprehensively list all the steps
in the controversy that occurred at that time regarding the reality of gravitational waves,
and we refer to [9] for further readings on that topic. This controversy was solved in the late
1950s [10, 11, 12] when it was shown once for all that gravitational waves carry energy and
therefore correspond to a physical reality.

These theoretical breakthroughs were corroborated by the study of the equations of
motion in general relativity of N point-particles that started as soon as 1917 by Lorentz
and Droste deriving the first order correction in

(
v
c

)2 to Newton’s law of physics [13] (the
so-called 1 post-Newtonian equations of motion)1. The study of these equations of motion to
high post-Newtonian orders are still an active field of research, and a historical review of the
different results in that field will be done in detail in chapter 3. Let us just mention here, that

1In post-Newtonian theory, a n post-Newtonian term (or a n-PN term) in a formula corresponds to a
correction at the

(
v
c

)2n order where v is the speed of the considered bodies and c the speed of light. In order
to be more general, we discard v and define the nth PN order to be a correction at the 1

c2n order.

1



2 Chapter 1. Introduction to gravitational waves

the emission of gravitational waves of a binary system predicted by the Einstein quadrupole
formula leads to a loss of energy of the system that explicitly appears in the equations of
motion at the 2.5 post-Newtonian order (i.e. at O [(v/c)5]), and which was computed for
fluids in the early 1970s by Chandrasekar and Esposito [14], Burke and Thorne [15, 16], as
well as many others (cf chapter 3 or [17] for a review) and for point-particle later in 1981 by
Damour and Deruelle [18].

As we will see in section 1.4, the discovery in 1974 of the pulsar PSR1913+16 by Hulse
and Taylor [19], and its study led to the first observational evidence of the loss of energy of
a binary system through the emission of gravitational waves. This discovery earned Hulse
and Taylor the Nobel Prize in 1993 for "new type of pulsar, a discovery that has opened up
new possibilities for the study of gravitation".

In parallel, since the 1960s, experimental efforts were conducted to detect directly on
Earth these gravitational waves. In the University of Maryland, Joseph Weber developed the
first gravitational wave detectors made of resonance bars. While he claimed to have detected
some signals, his result could not be reproduced by other teams and no convincing detections
were made using resonance bars. In the late 1960s, the idea of using laser interferometry to
detect gravitational waves emerged and pioneer works in the US and in Europe led to the
construction of different kilometer-scale laser interferometers (cf section 2.1 for a historical
review of these detectors). It would have required more than 50 years of experimental and
theoretical developments, to do the first direct detections on Earth of these gravitational
waves and to start a new era of physics by opening the windows of gravitational astrophysics.

1.2 The linearized theory of general relativity and gravitational
waves

This section is an introduction to gravitational waves and the linearized theory of general
relativity. It summarizes materials that can be found in a lot of different textbooks. For a
more comprehensive derivation of the following results, we refer to a classical textbook in
gravitational wave such as the first chapters of [20].

1.2.1 The linearized Einstein equations

In general relativity, the space-time is described by a manifold M of dimension 4 together
with a metric gµν which is a symmetric and non-degenerate two-rank tensor of signature +2
on that manifold. The Einstein equations, describing how the matter curves the space-time
are a set of second-order differential equations of the metric gµν sourced by the stress-energy
tensor Tµν

Rµν(g, ∂g, ∂∂g)− 1
2gµνR(g, ∂g, ∂∂g) = 8πG

c4 Tµν , (1.1)

where G is Newton’s constant, c the speed of light and the notation Rµν(g, ∂g, ∂∂g) means
that the tensor Rµν depends on the metric and its first and second space-time derivatives.
The left-hand side of the Einstein equations (1.1) is called the Einstein tensor Gµν = Rµν −
1
2gµνR and depends on the Ricci tensor Rµν and the scalar curvature R. Both of these
quantities are built from the Riemann curvature tensor. In order to be able to write explicitly
the Einstein equations in term of the metric, let us provide the expression of the Riemann
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tensor as a function of the metric

Rλρµν = ∂µΓλρν − ∂νΓλµρ + ΓερνΓλεµ − ΓεµρΓλεν . (1.2)

There exists different sign conventions in general relativity; the conventions, and the nota-
tions used in this manuscript are listed in the appendix A. In particular, greek indices α, β, . . .
take their values in 0, . . . , 3 while latin indices i, j, k, . . . take their values in 1, . . . , 3. We
used the Einstein convention to sum over the indices that are repeated. The symbol Γαµν
represents the Christoffel symbol which is defined as

Γµνρ = 1
2g

µλ (∂νgρλ + ∂ρgνλ − ∂λgνρ) . (1.3)

It is worth noticing that unlike all the other quantities presented so far, the Christoffel
symbol is not a tensor, as it does not transform like a tensor under diffeomorphisms.

Eventually, the Ricci scalar is defined as Rµν = Rλµλν and the curvature scalar as
R = Rµνg

µν . Plugging equation (1.3) in equation (1.2) we can explicitly express the Einstein
equations as a function of the metric. This leads however to quite a cumbersome expression
and we only want to look at the linear theory for now. Therefore we are going to develop
the Einstein equations around flat space-time and define the trace-reverse variable

gµν = ηµν + hµν , (1.4)

where ηµν = diag(−,+,+,+) is the Minkowski metric and where |hµν | � 1. From now on,
all the indices will be raised and lowered using the Minkowski metric ηµν . Besides, when
using the Einstein convention to sum over spatial indices i, j, k, . . . we may sometime omit
to put one of the summed indices up, and the other one down (i.e. hii is the same quantity
than hii). Before rewriting the Einstein equations in the linearized theory, it is convenient
to define

h̄µν = hµν −
1
2ηµνh , (1.5)

where h = hµνη
µν . A rather fastidious but straightforward computation shows that to order

O(h) we have

�h̄µν + ηµν∂
ρ∂σh̄ρσ − ∂ρ∂ν h̄µρ − ∂ρ∂µh̄νρ = −16πG

c4 Tµν , (1.6)

where� = − 1
c2

∂2

∂t2 +δij ∂
∂xi

∂
∂xj

= − 1
c2

∂2

∂t2 +∆ is the d’Alembert operator (or the d’Alembertian)
and where ∆ is known as the Laplace operator. All the terms of order O(h2) or higher have
been discarded. As h is of order O(G) (where G is Newton constant) as wee see from solving
the equation (1.6), it means that we have discarded terms of order O(G2). It is important to
keep that fact in mind because it implies that the formulae derived in the following sections
are only true up to O(G).

1.2.2 Gravitational wave solution to the vacuum linearized Einstein equations
Before solving the linearized Einstein equations (1.6), we are going to use the diffeomorphism
invariance of general relativity to put ourself in a nice and convenient gauge coordinate
system. In fact, under the general diffeomorphism

xµ → x′µ(x) , (1.7)
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the metric transforms as

gµν(x)→ g′µν(x′) = ∂xρ

∂x′µ
∂xσ

∂x′ν
gρσ(x) . (1.8)

In the case of linear coordinate transformation, we can consider

xµ → x′µ = xµ + ξµ(x) , (1.9)

with |∂ξµ| = O(hµν) = O(h̄µν). In that case, using equation (1.8), we can show that h̄µν
transforms as

h̄µν → h̄′µν = h̄µν − (∂µξν + ∂νξµ − ηµν∂ρξρ) . (1.10)

Therefore, we have ∂µh̄µν → ∂µh̄µν − �ξν under that coordinate transformation. Hence
if ∂µh̄µν is not vanishing, we can choose a set of functions ξµ and perform a coordinate
transformation as in equation (1.9) such that we place ourself in a gauge where

∂ν h̄µν = 0 . (1.11)

This kind of gauge transformation will be explicitly done in section 4.1. This specific gauge
is the linear case of the harmonic gauge also called the De Donder gauge or the Lorenz
gauge2, which will be the gauge used in chapters 4-5-6-7-8. In fact we will later introduce
the quantity3 h̃µν = √−ggµν − ηµν and the harmonic gauge will be obtained by setting
∂µh̃

µν = 0. This is in total consistency with what we are doing in the linearized case as we
can show that h̃µν ≡ h̃αβηαµηβν = −h̄µν + O(h̄2). In that gauge, equation (1.6) becomes

�h̄µν = −16πG
c4 Tµν . (1.12)

Considering solutions of gravitational waves in vacuum we can set Tµν = 0

�h̄µν = 0 . (1.13)

We are going to use again the coordinate transformation (1.9) to simplify the result. In fact,
as long as �ξµ = 0, according to equation (1.10), the equation (1.13) remains unchanged.
This provides us 4 degrees of freedom that we can kill using the four functions ξµ (µ =
0, 1, 2, or 3). Said otherwise, we can set 4 new constraints. Let us first set h̄ = 0, which
automatically implies that hµν = h̄µν . We will from now on drop the bar symbol on top
of hµν . We can set the three following constraints h0i = 0 (we recall that i = 1, 2 or 3).
According to harmonic gauge condition, we automatically have that ∂0h00 = 0. As we are
looking for gravitational waves on top of a background (here the flat background), we can
drop any constant term in hµν . Adding up everything we mentioned, and taking into account
the components of hµν that vanish, we have to solve the following system

�hµν = 0, h0µ = 0, ∂ihij = 0, hii = 0, hij = hji . (1.14)
2This gauge is called the Lorenz gauge after the Danish physicist Ludvig Valentin Lorenz (1829-1891) and

not the Lorentz gauge after the Dutch physicist Hendrik Antoon Lorentz (1853-1928). The latter gave his
name to the Lorentz transformation, the electromagnetic Lorentz force but not to the Lorenz gauge. This
confusion is quite common in the literature.

3This quantity will be denoted h in the chapters 4-5-6-7-8, but we denote it h̃ here to avoid any confusion.
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The gauge we introduced by imposing hµµ = 0 and ∂µhµν = 0 is called the transverse-
traceless gauge, which is often abbreviated as the TT-gauge. We will refer to that gauge
by using the notation hTTµν . The general solution of this set of equations will be a sum (or,
in Fourier space an integral) of elementary solutions corresponding to a gravitational wave.
The elementary solution of (1.14) corresponding to a gravitational wave of frequency ω/(2π)
and propagating along a direction z4 is

hTTµν (x,y, z) =




0 0 0 0
0 h+ h× 0
0 h× −h+ 0
0 0 0 0


 , (1.15)

where h+ = A+ cos (ω[t− z/c] + ϕ+) and h× = A× cos (ω[t− z/c] + ϕ×), where A+,× and
ϕ+,× are constant. We can see from (1.15) that a gravitational wave has two polarizations
that are denoted h+ and h× with amplitudes A+ and A× and phases ϕ+ and ϕ×. One could
wonder whether these two polarizations are physical or if one of them can be removed by a
new change of coordinate. This will be the purpose of the next section.

1.2.3 Effect of gravitational waves on matter
Indeed, it is always important to keep in mind that in general relativity, only observables
correspond to physical quantities and that a feature in the metric does not automatically
correspond to a physical effect but could be only due to a coordinate artifact. It is therefore
crucial, in order to interpret equation (1.15), to see the response of test masses to this metric.

Let us consider a test mass A moving on the wordline Xα
A(τ). The wordline Xα

A is
determined in general relativity by the following geodesic equation

d2Xα
A

dτ2 + Γαµν
dXµ

A

dτ
dXν

A

dτ = 0 . (1.16)

Let us assume that the mass A is at τ = τ0 at rest. Then dXi
A

dτ (τ0) = 0 and dX0
A

dτ (τ0) = c and
for α = i the geodesic equation (1.16) at τ = τ0 becomes

d2Xi
A

dτ2 + Γi00c
2 = 0 . (1.17)

However, by using the definition of the Christoffel symbol (1.3) and the harmonic gauge
condition we find Γi00 = O(h2). Therefore, at linear order, a test mass at rest in the TT
frame, remains at rest. Let us consider two nearby masses A and B at rest in the TT
frame. Their coordinates are X0

A(τ) = cτ , Xi
A(τ) = xiA which is constant, and X0

B(τ) = cτ ,
Xi
A(τ) = xiB which is also constant. Let us denote Li = xiB − xiA and L =

√
LiLi. At a

given time τ , the distance between the points A and B can be inferred from the square root
of the following interval quantity ∆ =

√
ds2

ds2 = gµνdxµdxν . (1.18)
4z is the direction corresponding to the space index i = 3. Similarly x and y are the direction corresponding

to the space indices i = 1 and i = 2.
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By considering a general linear metric in the TT-gauge, we obtain to linear order

∆ = L+ hTTij
LiLj
2L . (1.19)

Considering the gravitational waves propagating along z at the frequency ω
2π described in

the equation (1.15), the distance ∆ between two nearby point becomes

∆ = L

[
1 +

A+ cos (ω[t− z/c] + ϕ+)(L2
x − L2

y)− 2A× cos (ω[t− z/c] + ϕ×)LxLy
2L2

]
, (1.20)

where we have used the notations Lx = Li=1 and Ly = Li=2.
It is important to keep in mind that this distance is an observable. In fact, let us assume

that an observer with a clock device at the point A sends a light ray at the time τ to the point
B, which is reflected and sent back and reaches the point A at the time τ+δτ . As long as the
distance between A and B is small with respect to the gravitational wavelength, the proper
distance between the point A and B will be given by ∆ = cδτ/2. As δτ can be measured
by an observer at the point A, so can ∆. We can now assert that the gravitational wave
solution described in the previous section has a real physical effect that can be measured,
and contains two different polarizations. The geometrical effect of these polarizations is
described in the figure 1.1.

t = 0 t = 2⇡/!t = ⇡/!
t = ⇡/(2!) t = 3⇡/(2!)

t = 0 t = 2⇡/!t = ⇡/!
t = ⇡/(2!) t = 3⇡/(2!)

x

y

x

y

�

�z

z

Figure 1.1: Effect of a gravitational wave of pulsation ω propagating along the z direction
on test particles. Top: polarization h×. Bottom: polarization h+.

1.3 The Einstein quadrupole formulae
Now that we have understood how gravitational waves propagate and interact with matter in
the linearized theory of general relativity, we are going to relate the emission of gravitational
waves at linear order to the mass quadrupole of a source. For that we need to go back to
equation (1.12)

�h̄µν = −16πG
c4 Tµν + O(h̄2) . (1.21)
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We recall that � = − 1
c2

∂2

∂t2 + δij ∂
∂xi

∂
∂xj

= − 1
c2

∂2

∂t2 + ∆ is the flat d’Alembert operator. We
want to solve (1.21) in the case of an isolated source imposing the non-incoming radiation
condition. This means, that no gravitational wave should arrive from infinity to the source.
This is done by applying the retarded d’Alembert operator and leads to:

h̄µν(t,x) = 4G
c4

∫
d3x′

Tµν(t− |x−x′|c ,x′)
|x− x′| . (1.22)

By doing a multipolar expansion of the right-hand side of (1.22), we can express the metric
as a function of the mass quadrupole of the source. This derivation is done in detail in a lot
of different textbook (see for example [20]), and reads in TT coordinate:

hTTij (t,x) ≈ 2G
c4r

Λijkl
d2Ikl
dt3

(
t− r

c

)
, (1.23)

where Λij,kl is the TT-projector defined by Λij,kl = PikPjl− 1
2PijPkl where Pij(x) = δij−ninj ,

where ni = xi/r and where xi is the vector x. Iij represent the symmetric trace-free (STF)
part of the mass quadrupole. It is defined at linear order by

Iij =
∫

d3xρ(x)x<ixj> , (1.24)

where ρ is the mass density of the source, and the brackets < · > represent the STF operator:
x<ixj> = 1

2(xixj + xjxi)− 1
3r

2δij .

1.3.1 Einstein quadrupole formulae for the energy and angular momentum
fluxes

The gravitational waves emitted by an isolated source, and given by (1.23) at linear order,
carry energy as well as angular momentum. The derivations of their fluxes at the leading
order are done in different textbooks (such as [20]), and we are going to extend them to much
higher orders in chapter 4 (cf in particular equation (4.122)). Therefore, we are going to
provide them at linear order here, without further proof. The energy flux F and the angular
momentum flux Gi of an isolated source emitted gravitational waves are given by

F = G

c5

[
1
5

d3Iab
dt3

d3Iab
dt3 + O

( 1
c2

)]
, (1.25)

Gi = G

c5

[
2
5εiab

d2Iac
dt2

d3Ibc
dt3 + O

( 1
c2

)]
, (1.26)

where εabc is the Levi-Civita symbol (ε123 = 1). We recall that we used the Einstein con-
vention to sum over repeated indices. When these indices are space-time indices, as the
background metric is the Minkowski metric, we do not systematically raise one of the re-
peated indices.

For a binary system, this loss of energy and angular momentum has two consequences.
First of all, the separation of the two companion objects will slowly decrease and they may
end up merging eventually. Secondly, if a binary system has some eccentricity e (i.e. if
its orbit is not circular), we will see in section 1.3.2 that these fluxes lead to decrease the
eccentricity and circularize the orbit. Therefore, the usual gravitational wave source that
we are often going to consider is made of two masses orbiting each other on circular orbits,
getting closer and closer and eventually merging.
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1.3.2 Some applications of the Einstein quadrupole formulae and orders of mag-
nitude

Magnitude of gravitational waves Let us consider a system of two masses of equal mass
M orbiting around each other at a distance r12. If we drop all the numerical coefficients in
order to just study the order of magnitude of the metric h = |hTTij | we have from equation
(1.23)

h ∼ 1
r

G2M2

c4r12
. (1.27)

For a source of size a and of massM we define the compactness as Ξ = GM
ac2 . The compactness

of a source is a dimensionless number who is smaller than 1
2 and whose value is 1

2 for a non-
spinning black hole in Schwarzschild coordinates. Therefore, for a system of two black holes
of masses M/2 and a separation r12 orbiting each other and eventually merging, the value
of Ξ of the binary system will be Ξ = GM

r12c2
. This value of Ξ will slowly increase as the two

black holes get closer and will reach 1
2 when the two objects merge into a final black hole.

For a single isolated neutron star, Ξ ∼ 0.2, for a white dwarf Ξ ∼ 10−4 − 10−3, for the Sun
Ξ ∼ 2 10−6 and for the Earth Ξ ∼ 7 10−10. By using this notation (1.27) becomes

h ∼ 10−20 Ξ
(
M

M�

)(1Mpc
r

)
, (1.28)

whereM� = 2 1030 kg is the mass of the Sun and 1Mpc = 1Megaparsec. Hence if we observe
two black holes of 10 M� merging at 100 Mpc, the order of magnitude of the signal during
the last cycles before the merger will be 10−21. According to our discussion in section 1.2.3
on the effect of gravitational waves on matter, this means that the distance between free
falling objects on Earth are modified by a factor 10−21 when such an event occurs.

h is proportional to the compactness of the source Ξ, and the compactness of a binary
system is smaller than the compactness of the bodies forming the binary system. Therefore,
we will from now on only consider compact binary systems, i.e., binary systems made of
compact objects such as neutron stars, or black holes.

Lifetime of a binary system Let us use the Einstein quadrupole formulae for the flux
to estimate the lifetime of a compact binary system of two bodies of masses M1 and M2 on
circular orbits with a separation of r12. The Newtonian mechanical energy Em of such a
system is composed of the kinetic energy and the gravitational potential energy. Its value is

Em = −GMν

2r12
. (1.29)

Where M = M1 + M2 is the total mass of the system and ν = M1M2
(M1+M2)2 is the symmetric

mass ration (0 ≤ ν ≤ 1/4 with ν = 1/4 for equal mass system). Let us consider that this
system evolves as a succession of circular orbits of radius r12(t). We can computed the energy
flux of this system using the equation (1.25) and we obtain

F = 32
5
c5ν2

G

(
GM

r12c2

)5
. (1.30)
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By stating the balance equation for the energy at Newtonian order

dEm
dt = −F , (1.31)

we obtain the following differential equation for r12

ṙ12 = − K
r3

12
, (1.32)

with K = 64
5
G3M3ν
c5 . The solution of this equation is r12(t) =

(
r12(t0)4 − 4K(t− t0)

)1/4.
Therefore, the lifetime ∆t (defined as ∆t ≡ tf − t0 where r12(tf ) = 0) of such a system
before its coalescence can be roughly estimated as

∆t = 5
256

r4
12c

5

G3M3ν
. (1.33)

If we consider two equal-masses black holes (of masses M/2) separated by N Schwarzschild
radii (i.e. r12 = NGM

c2 ) we have

∆t ∼
(
N

20

)4 ( M

10M�

)
0.6 sec . (1.34)

As we will see in the next chapter, ground-based detectors can detect gravitational waves
from frequencies starting around 30 Hz. This corresponds to an orbital frequency of the
binary system of 15 Hz. Using Kepler’s law of physics we can compute the separation r12

between the two bodies as a function of their orbital frequency Ω as r12 =
(
GM
Ω2

)1/3
. Hence

we find that the lifetime of a binary of orbital frequency Ω is

∆t = 268 sec
(15 Hz

Ω

)8/3 (20M�
M

)5/3
. (1.35)

The two equations (1.34) and (1.35) provide estimates that are one or two orders of magnitude
above the coalescence times observed in the gravitational wave detection during the last two
years. The main reason of this over-estimation is because close to the merger, the velocity
of the source becomes a high percentage of the speed of light and the gravitational field
that one body feels from its companion becomes strong. Therefore, the accuracy of our
post-Newtonian computation that we did at the 0th order (i.e. at newtonian order) gets
worse and worse as we get close to the merger. We could improve this accuracy either by
going to higher order in post-Newtonian expansion, or by using numerical relativity to solve
directly the full Einstein equations. Also note that we are computing the time remaining
before r12 reaches 0 while the merger actually occurs when r12 is of the order of the radius
of the compact objects.

Circularization of the orbit Let us now focus on a system whose eccentricity e is not
zero. We are going to average the balance equation (1.31) over one period P of the system
and we will consider the following quantity

< F > (t) ≡ 1
P

∫ t+P

s=t
dsF(s) = 32

5
c5

G
ν2
(
GM

rmax
12 c2

)5
f(e) , (1.36)
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where rmax
12 is twice the semi-major axis and f(e) = 1+ 73

24 e
2+ 37

96 e
4

(1−e2)7/2 is the Peters-Mathews
enhancement factor due to the average done over one eccentric orbit. Similarly

< G > (t) ≡ 1
P

∫ t+P

s=t
dsG(s) = −32ν2

5c5

√
G7M9

(rmax
12 )7 fG(e) , (1.37)

with fG(e) = 1+ 7
8 e

2

(1−e2)2 . Note that the functions f(e) and fG(e) are increasing functions of e:
the more eccentric a system is, the more it looses energy and angular momentum through
gravitational wave radiation!

Now, using the average balance equation dE
dt = − < F > and dJ

dt = − < G > we can
find coupled differential equations governing the evolution of rmax

12 (t) and e(t). While these
equations does not have a simple analytical solution, we can use them to express rmax

12 as a
function of e and find that

rmax
12 (e) = κ

e12/19

1− e2

(
1 + 121

304e
2
)870/2299

, (1.38)

where κ depends on the initial conditions.
A careful study of the right-hand side of the equation (1.38) shows that rmax

12 (e) is an
increasing function of e. Therefore, as the semi-major axis of a binary system decreases, the
orbit gets more circular. For any reasonable value of e (i.e. e not extremely close to 1),
the eccentricity of a compact binary system will become relatively small by the time of the
coalescence.

Let us take the example of the binary pulsar PSR1916+13 described in the next section.
Today, this binary system has a semi-major axis rmax

12 /2 ∼ 2 109m and an eccentricity of
e ∼ 0.6. This pulsar is made of two objects of radii of order r ∼ 10 km (cf next section).
Therefore, it is interesting to compute the eccentricity during the last orbits before coales-
cence, for example when the two objects will enter the bandwidth of current ground-based
detectors. This will occur when the orbital frequency will roughly reach 15 Hz which corre-
sponds to rmax

12 = 1000 km. Using (1.38) we get for this system κ = 3.4 109 m. Using that
value of κ we can infer that for rmax

12 = 100r = 1000km we have e = 2 10−6 which is indeed
extremely small.

Once the orbit of a compact binary system is circular, we expect it to remain circular.
This is consistent with the fact that for circular orbit of radius r12, the angular momentum
J =
√
JiJi is

J = ν
√
GM3r12 . (1.39)

If we consider the consecutive circular orbits governed by equation (1.32), we have

dJ
dt = ν

√
GM3 ṙ12

2√r12
= −32Mc2ν2

5

(
G7M7

r7
12c

14

)1/2

. (1.40)

Computing G =
√GiGi from equation (1.26) we find

G = 32Mc2ν2

5

(
G7M7

r7
12c

14

)1/2

. (1.41)
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Thus
dJ
dt = −G . (1.42)

The balance equations for the energy and the angular momentum at linear order are therefore
satisfied for consecutive circular orbits. More detailed studies of the stability of circular
orbits, such as the one carried in [21], corroborate the fact that circular binaries stay on
circular orbits until their coalescence.

1.4 The confirmation with radio-astronomy of the Einstein quadrupole
formulae

The discovery and the study of the binary pulsar system PSR B1913+16 was the first ob-
servational confirmation of the loss of energy of a binary system through the emission of
gravitational waves. The observation of this pulsar over several decades is in perfect agree-
ment with the computation performed using the linearization of the Einstein equations as
well as the Einstein quadrupole formula. This is therefore a huge argument confirming the
validity of perturbative computation in general relativity.

1.4.1 Neutron stars, pulsars, and pulsar binary systems
A neutron star is a compact object (of compactness Ξ ∼ 0.2) that can result from the core-
collapse of a massive star at the end of its life. Known neutron stars have masses roughly in
the range between 1M� and 2M�, and based on different models, we expect them to have
radii of the order of 10− 15km (this uncertainty is due to the unknown composition of the
core and the unknown neutron star equation of state). They are called neutron stars because
the main component of these objects are believed to be a fluid of neutrons.

Neutron stars can be highly magnetized, and their fields can lead to two opposite elec-
tromagnetic jets. Besides they rotate on themselves along an axis which is not specifically
aligned with their jets. Therefore, if the jet of a neutron star turns out to be pointed toward
the Earth once per rotation, we receive periodic signal from it. We call such a neutron star
a pulsar.

It turns out that pulsars are extremely interesting objects for three main reasons. First
of all, they are compact objects, so they constitute a nice laboratory to study relativistic
effects. Secondly, the time of arrival of the pulse from a pulsar can be extremely stable. In
fact due to the conservation of angular momentum, the rotational speeds of these objects are
regular — except for the energy loss due to the radiation of their extreme electromagnetic
field (as well as possibly a small emission of gravitational wave, cf section 2.2.6). Therefore,
once one has fitted the decrease of the rotational period due to radiation, the time arrival of
the pulse can be used as an extremely precise clock that can compete with atomic clocks on
Earth. Last but not least, they emit at radio wavelength so we can observe them using large
radio interferometer arrays which can have an angular precision down to milli-arcseconds.
So to summarize, studying pulsars means studying relativistic objects with an extreme time
and angular accuracy.

A huge breakthrough occurred in 1974 with the discovery by Hulse and Taylor of a pulsar
within a binary system whose secondary object is thought to be a neutron star [19]. Based
on what we previously said, it has therefore been possible to extensively study the trajectory
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(with high accuracy both in time and in space) of such a system and to use it to test the
Einstein quadrupole formula.

1.4.2 Evolution of the orbits
In order to test the Einstein quadrupole formula, we first need to know the masses of the
two objects as well as the semi-major axis of their orbits. This latter parameter cannot be
directly measured because we do not know the inclination under which we see the orbital
plane of the binary.

These three parameters can be inferred directly from the Einstein parameter γ, the
periastron advance< ω̇ > of the system together with the orbital period P of the system. The
Einstein parameter γ is a change of the pulse arrival time due to the perturbation of a clock
that would be on the pulsar because of the gravity field generated by its companion, i.e., the
gravitational redshift (the Einstein effect) as well as its own relativistic speed (i.e. the second
order doppler effect). The periastron advance < ω̇ > is due to the fact that at linear order
in general relativity, the trajectory of the bodies in a binary system are not closed ellipses.
This is exactly the same effect that than the famous 43 arc-seconds per century advance of
the perihelion of Mercury. Both of these two relativistic effects depends on a combination of
the masses and on the period P of the system. Once they have been measured, the masses
are fully determined and their current values are mp = 1.4389(2)± 0.0002M� for the pulsar
and mc = 1.3886± 0.0002M� for the companion [22].

Now that the two masses have been computed, the semi-major axis can be deduced from
its Newtonian value

a =
(
G[mp +mc]

)1/3
(
P

2π

)2/3
. (1.43)

The eccentricity of this binary can be directly measured from the observation and is
e = 0.6171334(5) [22]. Now, we can compute using equation (1.36) the energy loss of the
system and therefore the change of its orbital period Ṗ . The change of its orbital period will
affect the time at which the orbit reach its periastron. This is this shift of the periastron
time that has been measured over the years and is in perfect agreement with the predictions
made by perturbative computations in general relativity as shown in figure 1.2 extracted
from [22].

The study of pulsar binary systems with radio telescope has provided us some crucial
information. It is an evidence for the existence of gravitational waves (or at least for the
loss of energy through gravitational wave radiation). Besides, the perfect fitting between
observations and computations done using the Einstein quadrupole formula corroborates the
validity of using perturbation theory to make predictions in general relativity.
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Figure 1.2: The orbital decay of the binary PSRB1916+13 measured through the cumulative
shift of its periastron time. The black line is the prediction from general relativity using the
Einstein quadrupole formula while the dots correspond to the observations. Figure extracted
from [22]
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2 – Detection of gravitational waves

2.1 Detection of GW with laser interferometry

2.1.1 History: from the Weber bars to the interferometer detectors.
The first gravitational wave detectors built were resonant bars designed by Joseph Weber
in the 1960s in the University of Maryland. These bars are cylinders with a length of 2
meters and a diameter of 1 meter and their resonance frequencies are around fr = 103 Hz.
The closer the frequency of the gravitational wave is to fc, the more sensitive the device
is. Therefore, resonant bars have quite a narrow frequency bandwidth (of the order of
[fr − 100Hz; fr + 100Hz]). While Weber claimed to have detected an interesting signal at
multiple times [23, 24], his results could not be reproduced nor confirmed by the rest of the
community and no convincing detection was made.

Meanwhile, other scientists in the US and in Europe started to work in the late 1960s on
the design and construction of a kilometer-scale interferometer. After more than two decades,
the project LIGO was finally confirmed and funded by the NSF and the construction of two
laser interferometers in Hanford and Livingston (US) started in the mid-1990s. The Initial
LIGO detectors ran from 2002 to 2010 but no detection was made. From 2010 to 2015, the
LIGO detectors were upgraded into the advanced LIGO detectors which started to take data
in 2015.

In Europe, the British and German project GEO started in 1989 and the construction
of the GEO 600 interferometer in Germany near Hannover began in 1995. Meanwhile, a
European interferometer detector led by France and Italy and called Virgo started to be
built in 1996. Different observing runs of the initial VIRGO detector took place between
2007 and 2011 and after an upgrading phase, the advanced VIRGO detector starting to take
data in 2017.

2.1.2 Ground-based interferometry
The principle of an interferometer is shown in the figure 2.1 describing the LIGO detectors.
A laser is emitted by a laser source and split in two different beams by a beam splitter. Each
beam enters a 4 km long arm at the end of which stands a free falling test mass1 which is
a mirror suspended and isolated through different layers of pendula. The two laser beams
are then recombined, and their interference is measured by a photodetector. Besides, other
mirrors are placed at the beginning of the 4 km arms, so the device is actually a Fabry-Perot
interferometer. The interferometer is configured in such a way that when no gravitational

1The free falling properties of these mirrors are only through the horizontal axis.
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wave signal is present, the two beams reaching the photodetector have a difference of phase of
π/2 and interfere destructively. Hence the photodetector is at a black spot. If a wave passes
through the detector, the distances Lx and Ly are modified as explained in section 1.2.3,
and the difference of phase between the lasers changes. This change is directly measured by
the photodetector. Finally, it is worth mentioning the presence of a recycling power mirror
enhancing the total circulating electro-magnetic power in the cavity of the detector. We
refer to [25], for a detailed description of the LIGO interferometer.

the gravitational-wave signal extraction by broadening the
bandwidth of the arm cavities [51,52]. The interferometer
is illuminated with a 1064-nm wavelength Nd:YAG laser,
stabilized in amplitude, frequency, and beam geometry
[53,54]. The gravitational-wave signal is extracted at the
output port using a homodyne readout [55].
These interferometry techniques are designed to maxi-

mize the conversion of strain to optical signal, thereby
minimizing the impact of photon shot noise (the principal
noise at high frequencies). High strain sensitivity also
requires that the test masses have low displacement noise,
which is achieved by isolating them from seismic noise (low
frequencies) and designing them to have low thermal noise
(intermediate frequencies). Each test mass is suspended as
the final stage of a quadruple-pendulum system [56],
supported by an active seismic isolation platform [57].
These systems collectively provide more than 10 orders
of magnitude of isolation from ground motion for frequen-
cies above 10 Hz. Thermal noise is minimized by using
low-mechanical-loss materials in the test masses and their

suspensions: the test masses are 40-kg fused silica substrates
with low-loss dielectric optical coatings [58,59], and are
suspended with fused silica fibers from the stage above [60].
To minimize additional noise sources, all components

other than the laser source are mounted on vibration
isolation stages in ultrahigh vacuum. To reduce optical
phase fluctuations caused by Rayleigh scattering, the
pressure in the 1.2-m diameter tubes containing the arm-
cavity beams is maintained below 1 μPa.
Servo controls are used to hold the arm cavities on

resonance [61] and maintain proper alignment of the optical
components [62]. The detector output is calibrated in strain
by measuring its response to test mass motion induced by
photon pressure from a modulated calibration laser beam
[63]. The calibration is established to an uncertainty (1σ) of
less than 10% in amplitude and 10 degrees in phase, and is
continuously monitored with calibration laser excitations at
selected frequencies. Two alternative methods are used to
validate the absolute calibration, one referenced to the main
laser wavelength and the other to a radio-frequency oscillator

(a)

(b)

FIG. 3. Simplified diagram of an Advanced LIGO detector (not to scale). A gravitational wave propagating orthogonally to the
detector plane and linearly polarized parallel to the 4-km optical cavities will have the effect of lengthening one 4-km arm and shortening
the other during one half-cycle of the wave; these length changes are reversed during the other half-cycle. The output photodetector
records these differential cavity length variations. While a detector’s directional response is maximal for this case, it is still significant for
most other angles of incidence or polarizations (gravitational waves propagate freely through the Earth). Inset (a): Location and
orientation of the LIGO detectors at Hanford, WA (H1) and Livingston, LA (L1). Inset (b): The instrument noise for each detector near
the time of the signal detection; this is an amplitude spectral density, expressed in terms of equivalent gravitational-wave strain
amplitude. The sensitivity is limited by photon shot noise at frequencies above 150 Hz, and by a superposition of other noise sources at
lower frequencies [47]. Narrow-band features include calibration lines (33–38, 330, and 1080 Hz), vibrational modes of suspension
fibers (500 Hz and harmonics), and 60 Hz electric power grid harmonics.
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Figure 2.1: a) Schematic representation of the LIGO interferometer detectors. b) Sensitivity
curves of the LIGO detectors (as of September 2015). Figure extracted from [26]

The sensitivity of the detector at each frequency is represented by its spectral strain
sensitivity which is expressed in Hz−1/2. Let s(t) be the output signal of the detector. This
signal is made of the gravitational wave h(t) that we want to measure as well as all the
instrumental and terrestrial noise n(t)

s(t) = n(t) + h(t) . (2.1)

The noise n(t) is a stochastic time series that we are going to characterize by its spectral
power density. If the noise is stationary, then the Fourier components of the noise at different
frequencies are uncorrelated and we define Sn(f) as

< ñ∗(f), ñ(f ′) >= δ(f − f ′)Sn(f)
2 , (2.2)

where ñ(f) is the Fourier component of n(t) at the frequency f and ñ∗(f) is the complex
conjugate of ñ(f). Sn(f) is the relevant quantity to assess the strength of the noise as it
describes how much noise is contained for each frequency

< n(t)2 >=
∫ ∞

0
dfSn(f) . (2.3)
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The spectral strain density of the noise, or the strain noise is defined to be Sn(f)−1/2 and is
expressed in Hz1/2. We will see in section 2.3.1 how to relate the signal-to-noise ratio of a
signal to the strain noise. The strain noise of the advanced LIGO detector is shown in figure
2.1. As we can see, the bandwidth of the detector is roughly 15−200Hz with the strain noise
containing peaks at some specific frequencies: these frequencies correspond for example to
resonance frequencies of some components of the detector.

The general shape of the strain noise is due to the different sources of noise [27]: (i) the
Newtonian noise, present at low frequency, due to changes of the local gravitational potential
because of the variation of the mass distribution surrounding the detector; (ii) the seismic
noise (also at low frequency); (iii) the thermal noise mainly due to the suspensions, the test
masses and the coating (note that current interferometer detectors are at room temperature
while it is planned to use cryogeny to reduce the thermal noise of the next generation of
ground-based detectors such as the Japanese KAGRA detector under construction [28]); (iv)
finally, at high frequency, the noise is dominated by the shot noise of the laser: the number
of photons hitting the photodetector fluctuates due to the quantum properties of the laser
and affect the measurement.

2.1.3 LISA and space-based interferometry
The LISA project is a space-based gravitational detector project led by the ESA together with
NASA2. In its current design [29], this detector is made of 3 spacecraft forming a triangle with
sides of 2.5 millions of kilometers. Each spacecraft emits two laser beams toward the other
ones. This network of six laser beams enables to measure with great precision the distance
between the spacecraft. Besides each spacecraft contains one free-falling mass (i.e. a cube
inside the spacecraft that does not touch any part of the spacecraft). The exact position with
respect to the spacecraft of each test mass is also measured internally through interferometry.
Therefore, we end up measuring the distances between test masses 2.5 millions of kilometers
apart.

Such a mission will be sensitive at much lower frequencies than the ground-based detectors
because of the size of its arms. LISA is expected to be sensitive in the range of [0.1mHz, 1Hz].

In 2015, the LISA pathfinder mission was launched. It put in orbit two free falling masses
in a spacecraft and measured the relative acceleration between them. The accuracy obtained
was way better than what was required, and the mission was a success [30]. Therefore, the
community is today optimistic on the realization of this mission and its launch is planned in
the 2030s.

2.1.4 Summary of the current and future network of GW observatories
The current network of gravitational wave detectors contains today 4 working ground-based
interferometers: the two advanced LIGO 4-km long detectors in Livingston (US) and Hanford
(US);the 3-km long advanced VIRGO detector in Italy near Pisa; and the 600-meter long
GEO600 detector near Hannover in Germany. This latter is mainly use to develop and
test new technologies as its sensitivity is below the sensitivities of the advanced LIGO and
VIRGO detectors.

2From 1997 to 2011, LISA was a joined project of these two agencies. Due to financial constraints, the
NASA withdrew its contribution in 2011. In summer 2016 however, NASA decided eventually to participate
in this project.
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In the next few years, two other ground-based detectors will be built. Another LIGO
detector called LIGO-India is indeed expected to be constructed in India in the next few
years. Additionally in Japan, a 3-km long detector called the Kamioka Gravitational Wave
Detector (KAGRA) is planned and should be in operation also in the next few years.

In conclusion, we will soon have 5 state-to-the-art ground-based detectors that will be
joined in the 2030s by the LISA space-based mission. Besides, both in Europe and in the
US, projects of third generation detectors start to emerge, such as the Einstein Telescope in
Europe that would be made of three 10-km long arms.

2.2 Possible sources
As we saw in the first chapter, the linear perturbation theory of general relativity tells us that
in order to emit gravitational waves, a source needs to have a varying quadrupole moment.
Besides, the strength of the emitted gravitational wave depends on how compact the source
is. Let us review the main classes of expected gravitational waves that can be detected by
the ground-based and space-based detectors.

2.2.1 Continuous compact binary systems
Let us consider the example of the Hulse-Taylor binary system described in section 1.4. It
is a binary system of orbital frequency of 3.6 10−5 Hz. Today, such a system could not
be observed by ground-based (nor space-spaced) detector such as LIGO/Virgo, because its
frequency is way too low. Such a system will evolve because of its emission of gravitational
waves and enter the ground-based detector bandwidth before its coalescence in few hundreds
of millions of years. This introduces a first kind of source: the coalescence of binary systems
made of compact objects with masses of the order of solar masses.

2.2.2 Compact binary coalescence (CBC)
By stellar mass CBC, we refer to a binary system made of two compact stellar mass objects
(two black holes, two neutron stars, or one black hole and one neutron star)3 coalescing.
All the events detected by the ground-based detectors so far were stellar mass CBC. These
binary systems were formed a long time ago and got closer and closer through different
astrophysical processes, including in the end gravitational wave emission. As we have seen,
the gravitational wave emission of a binary system tends to circularize the orbit, and by the
time of the coalescence, we expect the orbits of most of the CBC to be circular as explained
in section 1.3.

2.2.2.a) CBC made of two black holes

Among the CBC, the coalescence of a binary black hole (BBH) is the simplest to study
theoretically as there is no need to take into account any baryonic matter. The typical
signal of a BBH coalescence is shown in figure 2.2 and can be divided in three parts.

The signal starts with the inspiral, where the two black holes are still quite far away
from each other. The signal received in the detector is essentially a sinusoidal signal whose

3Or any other exotic compact object.
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amplitude and frequency increase with time as the black holes are getting closer and faster.
This part of the signal is quite smooth and regular, and corresponds to relatively small
value of v/c. It can be studied using perturbative approaches, namely using post-Newtonian
approximation (cf section 2.3.2).

Then the merger occurs, where the two black holes merge into one another forming a
final bigger black hole. The physics governing this part is highly non-linear and the only way
to predict the waveform of the merger itself today is through the use of numerical relativity
(cf section 2.3.3).

Finally, during the ringdown, the final spinning black hole relaxes and stabilizes. The
signal during the ringdown is made of a combination of exponentially damped sinusoidal
waves. The frequencies and the damping times associated to the final spinning black hole can
be studied using black hole perturbation theory looking at perturbations of Kerr solutions.

propagation time, the events have a combined signal-to-
noise ratio (SNR) of 24 [45].
Only the LIGO detectors were observing at the time of

GW150914. The Virgo detector was being upgraded,
and GEO 600, though not sufficiently sensitive to detect
this event, was operating but not in observational
mode. With only two detectors the source position is
primarily determined by the relative arrival time and
localized to an area of approximately 600 deg2 (90%
credible region) [39,46].
The basic features of GW150914 point to it being

produced by the coalescence of two black holes—i.e.,
their orbital inspiral and merger, and subsequent final black
hole ringdown. Over 0.2 s, the signal increases in frequency
and amplitude in about 8 cycles from 35 to 150 Hz, where
the amplitude reaches a maximum. The most plausible
explanation for this evolution is the inspiral of two orbiting
masses, m1 and m2, due to gravitational-wave emission. At
the lower frequencies, such evolution is characterized by
the chirp mass [11]

M ¼ ðm1m2Þ3=5

ðm1 þm2Þ1=5
¼ c3

G

!
5

96
π−8=3f−11=3 _f

"
3=5

;

where f and _f are the observed frequency and its time
derivative and G and c are the gravitational constant and
speed of light. Estimating f and _f from the data in Fig. 1,
we obtain a chirp mass of M≃ 30M⊙, implying that the
total mass M ¼ m1 þm2 is ≳70M⊙ in the detector frame.
This bounds the sum of the Schwarzschild radii of the
binary components to 2GM=c2 ≳ 210 km. To reach an
orbital frequency of 75 Hz (half the gravitational-wave
frequency) the objects must have been very close and very
compact; equal Newtonian point masses orbiting at this
frequency would be only ≃350 km apart. A pair of
neutron stars, while compact, would not have the required
mass, while a black hole neutron star binary with the
deduced chirp mass would have a very large total mass,
and would thus merge at much lower frequency. This
leaves black holes as the only known objects compact
enough to reach an orbital frequency of 75 Hz without
contact. Furthermore, the decay of the waveform after it
peaks is consistent with the damped oscillations of a black
hole relaxing to a final stationary Kerr configuration.
Below, we present a general-relativistic analysis of
GW150914; Fig. 2 shows the calculated waveform using
the resulting source parameters.

III. DETECTORS

Gravitational-wave astronomy exploits multiple, widely
separated detectors to distinguish gravitational waves from
local instrumental and environmental noise, to provide
source sky localization, and to measure wave polarizations.
The LIGO sites each operate a single Advanced LIGO

detector [33], a modified Michelson interferometer (see
Fig. 3) that measures gravitational-wave strain as a differ-
ence in length of its orthogonal arms. Each arm is formed
by two mirrors, acting as test masses, separated by
Lx ¼ Ly ¼ L ¼ 4 km. A passing gravitational wave effec-
tively alters the arm lengths such that the measured
difference is ΔLðtÞ ¼ δLx − δLy ¼ hðtÞL, where h is the
gravitational-wave strain amplitude projected onto the
detector. This differential length variation alters the phase
difference between the two light fields returning to the
beam splitter, transmitting an optical signal proportional to
the gravitational-wave strain to the output photodetector.
To achieve sufficient sensitivity to measure gravitational

waves, the detectors include several enhancements to the
basic Michelson interferometer. First, each arm contains a
resonant optical cavity, formed by its two test mass mirrors,
that multiplies the effect of a gravitational wave on the light
phase by a factor of 300 [48]. Second, a partially trans-
missive power-recycling mirror at the input provides addi-
tional resonant buildup of the laser light in the interferometer
as a whole [49,50]: 20Wof laser input is increased to 700W
incident on the beam splitter, which is further increased to
100 kW circulating in each arm cavity. Third, a partially
transmissive signal-recycling mirror at the output optimizes

FIG. 2. Top: Estimated gravitational-wave strain amplitude
from GW150914 projected onto H1. This shows the full
bandwidth of the waveforms, without the filtering used for Fig. 1.
The inset images show numerical relativity models of the black
hole horizons as the black holes coalesce. Bottom: The Keplerian
effective black hole separation in units of Schwarzschild radii
(RS ¼ 2GM=c2) and the effective relative velocity given by the
post-Newtonian parameter v=c ¼ ðGMπf=c3Þ1=3, where f is the
gravitational-wave frequency calculated with numerical relativity
and M is the total mass (value from Table I).
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Figure 2.2: Theoretical signal of the binary black hole coalescence corresponding to
GW150914. Top: the red curve shows the signal reconstructed using numerical relativity
of this event and the grey line the signal reconstructed using phenomenological templates.
Bottom: the relative velocity of the black holes (green) and the distance between the two
black holes (black). Figure extracted from [26]

2.2.2.b) Binary neutron star (BNS)

The signal expected for coalescence of a BNS is quite similar during the inspiral to the signal
of a BBH coalescence. The only noticeable difference is that neutron star have a mass range
of 1− 2 solar masses which is smaller than the usual mass range of stellar mass black holes.
Therefore the frequency of the coalescence is expected to be in general higher, which means
that we can detect them during much more cycles once they enter the ground-based frequency
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bandwidth. Besides, the spin of neutron star is expected to stay quite low, contrary to the
spins of black holes, resulting in less precession of the orbital plane.

The baryonic structure of the neutron star starts to play a role few cycles before the
merger were tidal forces deform the two neutron stars. The response of the neutron stars to
the tidal forces depends on their structures and in particular on their unknown equation of
state. The merger and the post-merger parts of signal are studied using numerical relativity
(cf [31] for a review on BNS numerical relativity).

2.2.2.c) Neutron star black hole coalescence

Nothing theoretically prevents a compact binary system to be made of one neutron star and
one black hole. However, such a system has not been detected using radio-astronomy and
none of the gravitational events detected so far corresponds to a neutron star black hole
coalescence.

The inspiral phase of such binary systems is also similar during the inspiral of the signal of
a BBH coalescence and, the merger and post-merger part of the signal have been extensively
studied using numerical relativity and we refer to the review [32] for further reading on that
topic.

2.2.3 Super Massive Black Hole Binary

It is commonly accepted in astrophysics that a supermassive black hole stands in the center
of a huge fraction, if not all, of the galaxies [33]. These black holes are between 106 and 1010

solar masses. As galaxies merge through the evolution of the universe, their central super-
massive black holes form binaries (SMBHB) that may end up coalescing. The dynamics
of formation of super-massive black hole binaries is an active field of research today, and a
huge effort is made to solve the last parsec problem: in order to bring the two black hole
close enough where the gravitational wave emission starts to be efficient, different frictional
mechanisms have to be invoked [34].

Because of the high masses involved, the gravitational wave frequency of such systems
should be in the range of 10−5Hz - 10−2 Hz by the time of the coalescence, which means that
such system could be detected by space-based detectors such as the LISA project. It is worth
noticing that the LISA detector might detect SMBHB up to redshift z ∼ 10, or beyond if they
exist. Besides, we expect to be able to localize the host galaxies of the SMBHB detected and
measure their redshifts. As the luminosity distance DL of the event can be deduced directly
from the gravitational signal, this ensures extremely promising tests of cosmology by having
an independent measurement of the redshift-distance relation at high redshift.

2.2.4 Extreme mass ratio inspiral (EMRI)

Stellar mass compact objects in the vicinity of a super-massive black holes constitute another
class of interesting sources as they form extreme mass ratio binary systems. The inspiral
phase of such systems is expected to last during N ∼ 105 cycles. Classical post-Newtonian
theory cannot track with an accuracy good enough the gravitational phase of such a signal
and another approximation framework is used to study such system: the self-force theory
framework based on black hole perturbation theory (cf section 2.3.5). The typical frequencies
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of ERMIs are in the range of 10−3 − 10−2 Hz and are expected to be detected by the LISA
mission [35].

2.2.5 Supernovae
At the end of their lives, some stars collapse on themselves because of their gravity fields and
generate core-collapse supernovae of type Ib, Ic, or II. If this process deviates from spherical
symmetry, it can create gravitational waves. The physics of core-collapse supernovae is
highly complex and contains a lot of different factors (electromagnetic fields, neutrino physics,
relativistic hydrodynamical shock fronts, general relativity effects) and their modeling heavily
relies on numerical simulations [36].

2.2.6 Continuous wave
Isolated fast-rotating neutron stars are also a promising source of gravitational waves. In
fact, different mechanisms can generate an asymmetrical distribution of the matter within
the neutron star. Therefore its fast rotation would lead to a varying mass quadrupole, hence
producing gravitational waves. Such a source would produce a continuous quasi single-
frequency signal whose frequency only slowly decreases due to the intrinsic spin-down due
to the rotational energy loss of the source. Thus, even if this signal is weak, it could be
detected by collecting data for a long time. No signal of such a system has been found so far
by digging into the data collected by the ground-based detectors. However, advanced data
analysis algorithms have put interesting upper limits on this process by looking to known
pulsars. In particular the spin-down limit of J1813-1749, has been beaten [37], i.e., the upper
limit on the gravitational wave flux of J1813-1749 is strictly smaller than its rotational energy
loss. Said otherwise, its energy loss cannot be solely due to gravitational wave emission.

2.2.7 Stochastic background
The accumulation of unresolved sources creates a stochastic background that could be ob-
served. In fact, all the astrophysical gravitational events that cannot be isolated in the data,
add up to produce a background whose power spectrum can be predicted. The stochastic
background of compact binary systems has not been detected in the ground-based detectors
so far, but we expect this background to be observable in the future ground-based detectors
as well as in LISA.

2.3 Template building and match filtering
From now on, and until the end of the manuscript, we will only consider gravitational wave
signals coming from compact binary systems.

2.3.1 Matched filtering
Let us take the notation introduced in section 2.1.2. The output of the detector is a signal
s(t) which is the sum of the noise n(t) and a gravitational wave signal h(t). The amplitude of
signal h(t) can be of the same order of magnitude, or even smaller than the magnitude of the
noise n(t). Therefore, we cannot always read by eye the signal in the output of the detector
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and a matched filtering process need to be applied. The main strategy is to compute the
correlation of the output with templates of different expected signals. When the template
corresponds to the real gravitational signal h(t), this correlation will peak.

In order to look for a specific signal h(t) corresponding to the merger of two black holes
for example, we are going to create a filter K(t) and define ŝ as

ŝ =
∫ +∞

−∞
dt s(t)K(t) . (2.4)

A first guess would be to take K(t) = h(t). However, if we know the strain noise of the
detector, there is a better choice for the filter K(t). Indeed, we define the signal-to-noise
ratio as S/N where S is the expected value of ŝ while N is the variance of ŝ when h(t) = 0
(i.e. when no signal is present). If h̃(f) and K̃(f) are the Fourier components of h(t) and
K(t), it can be shown that the signal-to-noise ratio becomes

S

N
=

∫∞
−∞ df h̃(f)K̃∗(f)

√
1
2
∫∞
−∞ df Sn(f)|K̃(f)|2

. (2.5)

It turns out that the right-hand-side of the equation (2.5) is maximal for K̃(f) ∝ h̃(f)/Sn(f),
and becomes

S

N
= 2

(∫ ∞

0
df |h̃(f)|2

Sn(f)

)1/2

. (2.6)

The signal-to-noise ratio depends on the ratio |h̃(f)2|/Sn(f), therefore the signal should peak
at frequencies where the strain noise Sn(f) is as small as possible in order to be detected.

In practice, a bank of templates covering all the phase space of the kind of signal expected
is created. In the case of compact binary systems, the phase space would be made of the
masses of the compact objects, their spins, the time of the coalescence, as well as their
orientation and position in the sky. Then the correlations between the output of the detector
and the different templates is computed using the filter K(t), in order to detect a signal in
the output and study its properties. We will not detail the statistical analysis done by the
LIGO–Virgo collaboration, but we will just mention that different methods of classical and
Bayesian analysis are commonly used to analyze the different runs.

Hence, it is crucial to develop methods that compute with high accuracy the expected
signal h(t) in order to build useful banks of templates. In the case of compact binary systems,
different means of computations that we are going to present are simultaneously used.

2.3.2 Post-Newtonian theory
The post-Newtonian theory in the case of compact binary systems is the main topic of
this thesis and will be extensively studied in the following chapters. In post-Newtonian
theory, the Einstein equations are solved perturbatively order by order in v/c where v is
the relative velocity of the two compact objects, and c the speed of light. This method is
therefore relevant when v/c is a small parameter which is the case in the early phase of
the coalescence during the inspiral. In the figure 2.2, we see that in the case of GW150914
v/c ∼ 0.3 few cycles before the merger and progressively increase up to v/c ∼ 0.6 just before
the merger.
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A nth post-Newtonian order effect is a (v/c)2n effect relatively to the leading order. For
the equations of motion the leading order is derived using the classical Newtonian laws of
physics (hence the terminology post-Newtonian). On the other hand, for the energy flux, the
leading order contains a factor 1/c5 already, and is given by the Einstein quadrupole formula
(1.25).

Post-Newtonian results are completely analytical, and the PN coefficients can be ex-
pressed using rational numbers together with some common irrational numbers. They pro-
vide analytical formulae that depend on the parameters of the compact binary system (masses
and spins) and can be used for any values of the parameters, regardless of the nature of the
compact objects of the binary system (i.e. black holes or neutron stars).

2.3.3 Numerical relativity

The Einstein equations can be solved numerically by computers in order to model compact
binary system coalescences. This constitutes a huge field of research containing both the-
oretical and computational challenges. A breakthrough was achieved in 2005 by Pretorius
[38] simulating for the first time the last few orbits before coalescence, followed by equivalent
work by Campanelli et al. [39] as well as Baker et al. [40]. Since then, different numerical
schemes have emerged and have successfully simulated such events.

Today, numerical relativity is the only tool to study the merger part of the coalescence
and thus plays a major role in the template building process. However, simulating compact
binary systems required a lot of computational power and time. Besides, each simulation is
done for a specific set of physical parameters and a lot of simulations are required to cover
the whole phase space when constructed banks of templates.

The different groups within the numerical relativity community often release banks of
simulations (e.g [41]) containing few hundreds of different simulations that can be used for
building and calibrating templates.

2.3.4 Studying the ringdown with black hole perturbation

During the final part of the coalescence, the ringdown, the final black hole oscillates and
stabilizes itself into a stationary Kerr black hole. The field of black hole perturbation can
provide useful insight on this process. In fact, this part of the signal is composed, in linear
approximation in the black hole perturbation, of a sum of exponentially damped sinusoids.
The characteristic frequencies and damping times can be computed by studying the so-called
quasi-normal mode (QNM) of a Kerr black hole using the Teukoslky equation. However, in
order to know the amplitude and time-shift of each QNM, one needs the initial conditions
usually produced by numerical relativity.

2.3.5 The self-force framework

The self-forcemethod, is the perturbative study of binary systems, where the small parameter
is the mass ratio of the two objects. It is therefore designed to study the evolution of extreme
mass ratio inspirals (EMRI), namely stellar mass black holes plunging into supermassive
black holes. At the lowest order, the small object follows a geodesic of the space-time
created by the supermassive black hole. However, the presence of this companion changes
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the metric of the space-time which induces a deviation of the small companion from the
initial geodesic. This deviation can be seen as a self-force of the small companion on itself.

The self-force framework combines both analytical and numerical approaches. It is today
the most promising way to create accurate templates for EMRIs, and is an extremely active
field of research motivated by the future space-based mission such as LISA.

2.3.6 Building the template with Effective-One-Body and IMRPhenomD
The different methods described previously are tools to study the dynamics of CBC as well as
their gravitational wave emissions. On top of these frameworks, there are two main methods
in order to create templates for the data analysis of the LIGO–Virgo collaboration. These
methods use results from different frameworks previously described and create ready-to-use
templates.

2.3.6.a) Effective-One-Body

The Effective-One-Body (EOB) method is an ingenious formalism developed by Damour
and Buonanno in 1999 [42]. In this framework, the two-body problem is reformulated and
described as one effective body on an effective metric, whose dynamics is described by an
effective Hamiltonian. This framework heavily uses post-Newtonian results together with
resummation techniques consisting of re-writing in a factorized form the post-Newtonian
development used. The effective-one-body method also uses numerical relativity results to
inform and adjust certain parameters, especially during the merger and the ringdown phases.

2.3.6.b) IMRPhenom

The second family of templates used are phenomenological templates usually called IMR-
Phenom templates (IMR standing for Inspiral-Merger-Ringdown). These templates are built
in the Fourier space and parametrize the signal with a set of coefficients that are determined
either using post-Newtonian results (for the inspiral), black hole perturbation (for the ring-
down) or by calibration to numerical relativity (for the merger). Besides, they contain extra
coefficients used to describe phenomenologically the intermediate phase between the inspiral
and the merger.

2.4 First detections

2.4.1 Runs O1 and O2
During the first run O1, which started on the 12th of September 2015 and ended on the 19th
of January 2016, only the Advanced LIGO detectors were turned on. Two black hole binary
coalescence detections were confirmed with a significance higher than 5.3σ (GW150914 and
GW151226) and one binary black hole coalescence candidate was detected but could not
be claimed as a detection due to its low significance of 1.7σ and its high false alarm rate of
0.37 year−1. During the second run 02 (from the 30th of November 2016 to the 25th of August
2017 for the Advanced LIGO detectors, with the Advanced Virgo detector joining the run
on the 1st of August 2017), 3 BBH coalescences (GW170104, GW170608, GW170814) and
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one BNS coalescence (GW170817) were detected. In particular, GW170814 and GW170817
were analyzed with the data from both the Advanced LIGO detectors and the Advanced
Virgo detector.

2.4.2 The first direct detection of gravitational waves: GW150914

2.4.2.a) The storyline

Two days after the beginning of the first run, on 14 September 2015, the LIGO detectors
were still in engineering mode, and were not yet turned into the research mode. However,
the whole chain of detection was fully operational and at 09 : 50 : 45 UTC, a chirp signal of
about 0.2s corresponding to a BBH coalescence was observed. Only few minutes afterward,
at 09 : 54 UTC, an automatic alert was triggered and was very quickly read by the scientists
working at Hannover, Germany [26]. This triggered a series of meticulous analyses and
checks. Once the signal was analyzed in-depth and the LIGO–Virgo collaboration had made
sure that the data was free of glitch, the first detection of gravitational waves was announced
on the 11th of February, 2016.

2.4.2.b) The signal

The output recorded by the LIGO detectors is shown in figure 2.3. The last row of figure 2.3
shows the power density contained in the signal in a time-frequency diagram. Similarly, we
can see by eye the characteristic chirp expected in the case of a compact binary coalescence.

The signal received corresponds to a BBH with initial masses of m1 = 36.2+5.2
−3.8M�

and m2 = 29.1+3.7
−4.4M�, with a final black hole of mf = 62.3+3.7

−3.1M�. During this coa-
lescence, 3.0+0.5

−0.4M�c
2 of energy were radiated. This corresponds to a peak luminosity of

3.6+0.5
−0.4 1056 erg s−1 which made GW150914 at the day of its detection, the brightest astro-

physical event (in any kind of radiation) ever recorded [26].

2.4.2.c) Electromagnetic counterpart

Two days after the event, the LIGO–Virgo collaboration sent to their partners a first lo-
calization map of the event. This map has been refined by different offline analyses and a
final map with a 90% credible region with area 630 deg24 was given to the electromagnetic
partners of the LIGO–Virgo collaboration. 25 different observational teams covering the
whole range of the electromagnetic spectrum (Gamma-ray, X-ray, Optical, IR and radio)
reported their observations. A weak signal was found by the Fermi GBM instrument 0.4s
after GW150914 but nothing was found neither by the INTEGRAL SPI-ACS instrument
nor by AGILE [43]. Apart from the Fermi signal, no other observational team has reported
any electromagnetic counterpart that could be linked to GW150914. For a BBH, we do
not expect any electromagnetic counterpart as we do not expect large amount of baryonic
matter around the binary system. This conclusion is so far corroborated by the 4 other BBH
detections for which no electromagnetic counterpart has been found.

4To give an order of magnitude, the angular surface of the moon is around 0.2 deg2.
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properties of space-time in the strong-field, high-velocity
regime and confirm predictions of general relativity for the
nonlinear dynamics of highly disturbed black holes.

II. OBSERVATION

On September 14, 2015 at 09:50:45 UTC, the LIGO
Hanford, WA, and Livingston, LA, observatories detected

the coincident signal GW150914 shown in Fig. 1. The initial
detection was made by low-latency searches for generic
gravitational-wave transients [41] and was reported within
three minutes of data acquisition [43]. Subsequently,
matched-filter analyses that use relativistic models of com-
pact binary waveforms [44] recovered GW150914 as the
most significant event from each detector for the observa-
tions reported here. Occurring within the 10-ms intersite

FIG. 1. The gravitational-wave event GW150914 observed by the LIGO Hanford (H1, left column panels) and Livingston (L1, right
column panels) detectors. Times are shown relative to September 14, 2015 at 09:50:45 UTC. For visualization, all time series are filtered
with a 35–350 Hz bandpass filter to suppress large fluctuations outside the detectors’ most sensitive frequency band, and band-reject
filters to remove the strong instrumental spectral lines seen in the Fig. 3 spectra. Top row, left: H1 strain. Top row, right: L1 strain.
GW150914 arrived first at L1 and 6.9þ0.5

−0.4 ms later at H1; for a visual comparison, the H1 data are also shown, shifted in time by this
amount and inverted (to account for the detectors’ relative orientations). Second row: Gravitational-wave strain projected onto each
detector in the 35–350 Hz band. Solid lines show a numerical relativity waveform for a system with parameters consistent with those
recovered from GW150914 [37,38] confirmed to 99.9% by an independent calculation based on [15]. Shaded areas show 90% credible
regions for two independent waveform reconstructions. One (dark gray) models the signal using binary black hole template waveforms
[39]. The other (light gray) does not use an astrophysical model, but instead calculates the strain signal as a linear combination of
sine-Gaussian wavelets [40,41]. These reconstructions have a 94% overlap, as shown in [39]. Third row: Residuals after subtracting the
filtered numerical relativity waveform from the filtered detector time series. Bottom row:A time-frequency representation [42] of the
strain data, showing the signal frequency increasing over time.

PRL 116, 061102 (2016) P HY S I CA L R EV I EW LE T T ER S week ending
12 FEBRUARY 2016

061102-2

Figure 2.3: From top to bottom: (i) the signal received by the LIGO detectors; (ii) the
templates and numerical simulation corresponding to the best parameter fit; (iii) the residual
noise once the best template fit is subtracted to the signal (iv) the time-frequency power
spectrum of the signal, clearly showing distinctive chirps.

2.4.2.d) Consequences

This first detection by the LIGO–Virgo collaboration is of major importance and corresponds
to a huge scientific breakthrough rewarding decades of experimental and theoretical research.
In particular, this detection constitutes: (i) the first direct detection of gravitational waves;
(ii) the first direct observation of black holes; (iii) the first direct observation of BBH; (iv)
and finally the confirmation that binary black holes merge within a Hubble time.

2.4.3 The first detection of NS-NS coalescence: GW170817

2.4.3.a) Detection, and sky localization

On the 17th of August, 2017, a signal consistent with a BNS coalescence with initial masses
between 0.86M� and 2.26M� at a luminosity distance of 40+8

−14Mpc was observed by the
LIGO–Virgo detectors with a coalescence time of 12 : 41 : 04 UTC [44]. Using the combi-
nation of data from the three detectors, the 90% credible region of the localization of the
BNS was reduced down to 28 deg2 only. As we do expect electromagnetic counterpart com-
ing from BNS coalescence, and as this detection was in coincidence with a detection of a
gamma-ray burst GRB 170817A received at 12 : 41 : 06 UTC, a circular was sent to the
partners of the LIGO–Virgo collaboration the same day at 13 : 21 : 42 UTC.

2.4.3.b) Electro-magnetic counterpart

Thanks to the precision of the localization map provided by the LIGO and Virgo collabora-
tion and to the extensive observing campaign, an optical transient was found associated with
the galaxy NGC 4993 less than 11 hours after the merger by the One-Meter Two-Hemisphere
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(1M2H) team. In the next few hours, this transient was subsequently and independently ob-
served by five different teams, namely the Dark Energy Camera, the Distance Less Than
40Mpc Survey, Las Cumbres Observatory, the Visible and Infrared Survey Telescope for
Astronomy, and Master. This transient is identified as a kilonova linked to GRB 170817A,
providing therefore an extremely precise localization of this event. This has enabled to do
an extensive study across all the electromagnetic spectrum during the following days and
weeks.

2.4.3.c) The signal

As the masses of the neutron stars are smaller than the masses of the black holes of
GW150914, the frequency of the signal just before the merger is higher. Therefore, the
signal enters the bandwidth of the advanced LIGO–Virgo detectors a long time before the
merger. In the case of GW170817, more than 3000 cycles were observed for more than one
minute. This signal is the perfect illustration of the need of post-Newtonian theory as high
accuracy is required to keep track of the phase of this signal for such a long time.

2.4.3.d) Astrophysical consequences

The discovery a this new type of gravitational source, constitutes another major scientific
breakthrough. The existence of binaries made of neutron stars was already known through
pulsar binaries observed with radio-astronomy. Besides we already knew that some of these
pulsars should normally merge within a Hubble time.

However, this is the confirmation that neutron star coalescences are the seed of at least
a part of the short gamma-ray bursts. Besides, as the redshift of the host galaxy has been
measured, and as the luminosity distance of the event can be measured using the gravitational
wave signal, we can make an independent computation of the Hubble constant at low redshift.
Doing so we obtain H0 = 70+12

−8 km s−1Mpc−1 which is consistent with the value measured
from the Planck mission H0 = 67.90 ± 0.55km s−1Mpc−1 [44]. Last but not least, the first
gamma-ray reached Earth 1.7 s after the gravitational wave, which implies new constraints
on the difference between the speed of light and the speed of propagation of gravitational
waves, on Lorentz invariance violations and on the equivalence principle.

2.4.4 Summary
To conclude, these first detections constitute a major breakthrough in theoretical physics
and started a new field of astrophysics by opening a new window on the universe. The
science that we will be able to produce in the next few years and decades depends on the
number of events detected and on our abilities to analyze properly the output of the detectors
and estimate the parameters of the observed events. This requires templates as accurate as
possible covering the whole parameter phase space. As these templates rely on different
methods such as post-Newtonian theory or numerical relativity, it is highly crucial to pursue
our effort in each of these frameworks.
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3 – Introduction to post-Newtonian
theory

In this short chapter, we first introduce the different quantities that we are going to consider
in post-Newtonian theory. Then, we provide a historical review as well as a state-of-the-art
review of the results regarding the spinless equations of motions on one hand, and the spin
effects on the other hand. Finally, we explain the 4.5PN project that motivated the different
works performed during this thesis, and provide the outline of the following chapters.

3.1 Introduction to post-Newtonian theory

The post-Newtonian formalism is a framework that computes the effects of general relativity
perturbatively using analytic tools. The small parameter in our situation is v/c where v is the
relative speed of the compact objects and c the speed of light. In order to be more general,
we consider the small parameter indexing the post-Newtonian order to be 1/c. In particular,
a nth post-Newtonian order, or a n-PN order, corresponds to a factor 1/c2n beyond the
leading order. In this thesis, we use post-Newtonian framework to study compact binary
systems where we model the compact bodies by point particles.

They are different quantities that interest us in the study of compact binary system.

Equations of motion First of all, we want to compute the equations of motion of the two
bodies. These equations start at linear order by the Newton equations of motion, and have
their first relativistic corrections at the first post-Newtonian order in 1/c2. In the equations
of motion, two different contributions have to be distinguished: the conservative part starting
at Newtonian order (i.e. at 0PN) and contributing at even post-Newtonian order (i.e. 1PN,
2PN, 3PN and 4PN etc.), and the dissipative part due to the loss of energy of the system by
the emission of gravitational waves. The dissipative part starts at the 2.5PN order, which is
a direct consequence of the 1/c5 coefficient in the Einstein quadrupole formula (1.26), and
then contributes at the 3.5PN order and at the 4PN order. The latter contribution is due to
the non-local tail effects. The methods used to compute the conservative and the dissipative
parts are often different. For example the Fokker Lagrangian method described in chapter 6
will only compute the conservative part, and the dissipative terms will have to be added to
the final result (as done in chapter 7).

29
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Conserved quantities From the conservative part of the equations of motion, we can
define conserved quantities that correspond to the invariance with respect to the Poincaré
group: the energy, the angular momentum, and the linear momentum of the compact binary
system. Of course, due to the dissipative terms in the equations of motion, these quantities
are not totally conserved in the full dynamics, and balance equations can be written between
the time derivatives of the conserved quantities and their fluxes carried by gravitational
waves.

Radiative field, fluxes, and waveform Once the dynamics of the compact binary sys-
tem is known, the next step is to study how the gravitational waves are emitted, and travel
from the source to the detectors on Earth. In practice, the compact binary system is stud-
ied in an asymptotically flat spacetime (imposing a condition of no-incoming radiation from
other sources located at infinity) and we look at the gravitational wave behavior at future
null infinity I+. There are two particular quantities that we are interesting in. First, we
can compute the gravitational waveform which corresponds to the transverse-traceless part
of the metric near I+. These waveforms are usually given through their two polarizations
h× and h+. Furthermore the polarizations are usually decomposed into modes that corre-
sponds to spin-weighted spherical harmonics of weight −2. The other relevant quantity that
is computed at I+ is the energy flux of the gravitational waves.

The leading order of the energy flux, corresponding to the Einstein quadrupole formula,
has a 1/c5 factor. Therefore the nth post-Newtonian order of the flux corresponds to a factor
1/c2n above the Einstein quadrupole formula, hence to an absolute order of 1/c2n+5.

The phase of the signal For data-analysis purposes, one of the most useful results of
post-Newtonian theory is the phase evolution of the signal. In order to compute this phase
at high-order, we can use an adiabatic approach where we consider that the binary system
follows consecutive circular orbits of energy E, with an energy flux F . If both the energy
and the flux of the system are known as functions of the orbital frequency of the circular
orbits Ω, we can state the following balance equation

dE
dt (Ω) = −F(Ω) . (3.1)

If both sides of the equation (3.1) are known at the nth post-Newtonian order, then the
evolution of the phase φ of the system can be deduced at the nth post-Newtonian. In fact
we have

φ =
∫

Ωdt = −
∫

dΩF(Ω)
dE
dΩ

(3.2)

Today, this phase evolution has been computed at the 3 PN order for general eccentric
orbits [45], and many spin effects were included up to the 3PN and the 4PN order (cf section
3.3). For spinless circular orbits, this phase evolution is known at the 3.5PN order. When
expressed with the 1PN dimensionless variable x ≡

(
GmΩ
c3

)2/3
= O(1/c2) (we recall that Ω

is the orbital frequency), it reads

φ = −x
−5/2

32ν

{
1 +

(3715
1008 + 55

12ν
)
x− 10πx3/2
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+
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2
)
x2 +
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16ν

)
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)

+
[12348611926451

18776862720 − 160
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21 γE −
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+
(
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+
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πx7/2 + O

( 1
c8

)}
, (3.3)

where x0 is a constant of integration that depends on the time arrival of the gravitational
wave, and where ν = m1m2

(m1+m2)2 is the symmetric mass ratio.

3.2 The equations of motion: a historical review

3.2.1 1PN, 2PN and 2.5PN
The first derivation of the equations of motion of self-interacting bodies in general relativity
started as soon as 1917 by the work of Lorentz and Droste computing at 1PN the dynamics
of N point particles [13]. This result was confirmed 20 years later by another derivation by
Einstein, Infeld and Hoffmann using surface-integral method [46]. In this method, surfaces
surrounding the compact bodies (outside of the bodies) are considered and the equations of
motion are derived using only the Einstein equations in the vacuum. Therefore, the Einstein-
Infeld-Hoffmann technique works automatically for any compact objects. At the same time,
Fock [47] obtained in 1939 the equations of motion of the centers of mass of compact objects,
at 1PN order, described by fluid balls, in agreement with the previous derivations.

At the 1PN order, the dynamics is known for an arbitrary number N of particles. This
dynamics is rather short and reads (for particles labeled by A,B,C, . . . )

dvA
dt = −

∑

B 6=A

GmB

r2
AB

nAB


1− 4

∑

C 6=A

GmC

c2rAC
−
∑

D 6=B

Gm2
c2rBD

(
1− nAB · nBD

rAB
rBD

)

+ 1
c2

(
vAvA + 2vBvB − 4vAvB −

3
2vB · nAB

)]

+
∑

B 6=A

GmB

c2r2
AB

vAB [nAB · (3vB − 4vA)]− 7
2
∑

B 6=A

∑

D 6=B

G2mBmD

c2rABr3
BD

nBD . (3.4)

The extension of the equations of motion to the second post-Newtonian order was done only
30 years later. It started with the work of Ohta et al. in 1973-1974 [48, 49, 50, 51] using an
Hamiltonian approach, but their results were not totally complete. In 1981-1983, the work
of Damour and Deruelle led to the 2PN and 2.5PN equations of motion for two particles
[52, 53, 54, 55, 56]. Let us mention other derivations of the 2PN equations of motion that
were done later and independently: first of all, the work from Kopeikin et al. in 1985-1986
[57, 58] who derived this result by taking into account the internal structure of the bodies
and checked explicitly that the dynamics does not depend on it at that order. Secondly, in
1998 Blanchet et al. [59] recovered these equations of motion in harmonic coordinates and
computed also, for the first time, the near-zone metric. Then, Itoh, Futamase and Asada
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in 2000-2001 [60, 61] used a surface-integral (in the same spirit than the Einstein-Infeld-
Hoffmann method, but technically much simpler) to recover the 2PN dynamics. Let us also
mention the different work using extended fluids ball by Pati and Will such as [62] that
recovers the 2PN-2.5PN equations of motion as well as the 3.5PN reaction radiation terms
(cf the last paragraph of section 3.2.2 below).

3.2.2 3PN and 3.5PN

Different derivations including both the 3PN and the 3.5PN term have then been performed,
such as the ADM -Hamiltonian formalism, done by Jaranowski and Schäfer joined later by
Damour in 1997-2000 [63, 64, 65, 66, 67, 68, 69, 70, 71], using point-particle approximation
for the compact bodies, and providing the result in the ADM -gauge.

Another method that have been used, was performed by Blanchet and Faye in 2000-2001
[72, 73, 74, 75], together with de Andrade [76] and Iyer [77]. It is based on solving directly
the equations of motion in harmonic coordinates, iteratively order by order.

In 2003-2004, Itoh and Futamase applied the method they used at 2PN, and extended
it at 3PN and 3.5PN [78, 79, 80]. As usual, this method encapsulates the compact bodies
with surfaces, and only the Einstein equations in the vacuum are used.

More recently in 2011, an Effective-Field-Theory approach developed by Goldberger and
Rothstein, was used by Foffa and Sturani [81] to find the 3PN Lagrangian, also in harmonic
coordinates.

Let us also mention another series of publication focusing on the 3.5PN (and 4.5PN)
dissipative terms, corresponding to a 1PN (and 2PN) relative correction of the dissipative
effect occurring at 2.5PN. This effect has been computed in 1993-1995 by Iyer and Will
[82, 83]. This works is based on balance equation between the conservative part and the
energy flux emitted by the system. In 1996, Will and Wiseman obtained the second post-
Newtonian correction in the flux, and obtained also from first principles the 2.5PN and 3.5PN
coefficients in the equations of motion [84]. Latter works not relying on a specific balance
equation, confirmed the 3.5PN term from first principles such as the derivation from Pati
and Will done in 2002 [62] using their own DIRE (Direct Integration of relaxed Einstein
equations) method developed in 1999-2000 [85, 86].

3.2.3 4PN and 4.5PN

Out of the different methods mentioned above at 3PN, three techniques have been used so
far at 4PN.

The ADM approach was used in 2012-2014 by Jaranowski and Schäfer [87, 88, 89] joined
later by Damour [90, 91]. They obtained the full 4PN dynamics and Hamiltonian except for
one ambiguity parameter that needs to be fitted to self-force computations.

In 2016-2017, the work by Bernard-Bohé-Blanchet-Faye-Marsat [92], used the Fokker
Lagrangian method, to derive the dynamics at 4PN in harmonic coordinates. While a
first result of this latter work was in disagreement with the ADM approach result and the
comparison with self-force computations, a better treatment of the infra-red regularization
and the tail effects, enabled to get rid of that discrepancy and find from first principle the
4PN dynamics without any ambiguity[93, 94, 2]. This work will be explained in detail in
chapter 6.
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Finally, preliminary results have been published between 2013-2017 by Foffa et al. to-
gether with Sturani, Galley, Leibovich, Porto, Ross, using the Effective-Field-Theory ap-
proach [81, 95, 96, 97, 98]. While, the full dynamics is not computed yet, the main difficulties
and caveats appearing at 4PN seemed to have already been solved, and this method might
recover and confirm the first two results soon.

3.3 Spins

3.3.1 Formalism
So far, we have only reviewed work dealing with spinless bodies, i.e. neglecting the effect of
the angular momentum of the compact bodies. However, a significant part of the compact
bodies, and in particular the black holes, that we are going to detect can be spinning very
fast. Some of the black holes may even be close to maximally spinning Kerr black holes. It
is therefore crucial to take into account the effects of the spins on the dynamics and on the
radiation of compact binary systems. As the work during this thesis did not tackle spins at
all, we are just going to review the state-of-the-art results in that field here. Apart from this
section, we will not mention the spins in the rest of the manuscript.

In PN theory, the spins are often described by the spin variable S defined as

S ≡ Sphysicalc , (3.5)

where Sphysical is the physical angular momentum of the compact body. In order to deal
with dimensionless variables, we define χ such that S ≡ m2Gχ, where χ is equal to one for
maximally spinning Kerr black hole. The usual way to count the post-Newtonian order of a
spin effect, is to count the power of c when the result is expressed with the variable χ. This
will give the magnitude of the spin effect in the worst case where the spin is maximal, i.e.,
χ = 1.

The computation of the spin effect is based on the pole-dipole approximation: in the
spinless case, particles are just monopole quantities characterized by their mass. In the pole-
dipole approximation, they are characterized by two quantities: their mass and their spin.
However, there is a variety of formalisms to deal with this pole-dipole approximation. For
example, in some works, the contribution of the spins to the energy-impulsion tensor of the
particles is given by [99, 100, 101, 102, 103] 1

TµνS (t,x) = −1
c

∑

A

∇ρ
[
S
ρ(µ
A v

ν)
A

δ(x− yA)√
−(g)A

]
, (3.6)

where the particles are labelled by A, SµνA is the spin tensor, yA and vµA are the position
and the velocity of particle A and where (g)A is the determinant of the metric at the point
yA. The spin tensor is an antisymmetric 4-rank tensor describing only the 3 degrees of
freedom of the angular momentum of a compact body. Therefore, additional constraints
called supplementary spin condition (SSC) have to imposed2. The dynamics of the particles
is then described by the so-called Mathisson-Papapetrou equation.

1Cf the energy-impulsion tensor of spinless point-particle given by equation (6.16).
2The SSC corresponds to the choice of the point within the compact body from which we define the angular

momentum.



34 Chapter 3. Introduction to post-Newtonian theory

3.3.2 State-of-the-art

As for the equations of motion, the effect of the spins have been computed by different
methods: the ADM-Hamiltonian method, the post-Newtonian iteration scheme in harmonic
coordinates (PNISH), and the effective-field theory framework (EFT). We need here to dis-
tinguish the effect of the spins in the equations of motion, and in the radiative field.

Regarding the equations of motion, the spin-orbit (SO) interaction starts at 1.5PN. It has
been computed at 3.5PN (i.e. at next-to-next-to-leading order) within the ADM Hamiltonian
method [104, 105, 106] and the PNISH formalism [107, 108, 109], while this effect has been
computed only at 2.5PN (next-to-leading order) within the Effective-Field-Theory framework
[110, 111]. The spin-spin interaction (SS) starts at 2PN and has now been computed at
3PN within the PNISH [112], ADM and EFT formalism [113, 114, 115]. Besides, the crossed
interaction between the spins of each body S1S2 has been determined by the ADM formalism
at 4PN [116, 117]. For the spin-spin-spin (SSS) interaction, both the ADM [118] and the
PNISH [119] formalism have computed it at the 3.5PN order.

The effects of the spins to the radiative field and the energy flux have been mainly tackled
by the PNISH (with few partial results also provided by the EFT [120, 121]). Within the
PNISH, for circular orbits, the SO contribution is known at 4PN [122, 123, 124], the SS [112]
and the SSS [119] at 3PN. As both the dynamics and the energy flux are fully known at 3PN
for the spins, the contribution of the spins to the phase at 3PN for circular orbit has been
fully computing.

However, it turns out that the gravitational waveform polarizations are only known so
far at 2PN [125, 126]. It is worth mentioning that all the results presented in this section
take into account the work done for the spinless case. This means that the different effects
are derived in such a way that we only have to add these effects on top of the spinless results.

3.4 The 4.5PN Project

The work done during this thesis is motivated by the project to compute the phase of the
gravitational wave signal at 4.5PN for spinless compact binary in circular orbits, hence
extending the equation (3.3).

In this thesis, the framework used is referred to as the Blanchet-Damour-Iyer formal-
ism. In this framework, the field exterior to the source is studied using a multipolar-post-
Minkowskian expansion of the metric, and is parametrized by a set of source multipole
moments. A matching equation is used to connect the exterior field to the PN expansion
of the field inside the source. This enables to obtain the expression of the source multipole
moments as a function of the interior metric. Then conservative part of the dynamics is
computed using a post-Newtonian expansion of the metric in harmonic coordinate. At the
end of the day, we obtain the phase evolution as shown in equation (3.3)

The following chapters of this manuscript tackle the different steps mentioned above. In
chapter 4, the multipolar-post-Minkowskian algorithm is explained in great detail. Then,
chapter 5 deals with the matching procedure between the far-zone and the near-zone. The
conservative part of the equations of motion at 4PN is obtained in chapter 6 using the Fokker
Lagrangian, and the conserved quantities at 4PN are derived in chapter 7. Finally, chapter
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8 explains how the multipole source moments are computing, dealing in particular with the
computation of the mass quadrupole moment at 4PN.

While the phase is the most relevant and useful quantity for the analysis of the gravita-
tional wave signal, this 4.5PN project will also enable to compute other interesting quantities
such as the waveform and the polarizations at 4.5PN.
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4 – The far-zone radiative field and
the gravitational wave flux

The goal of this chapter is to study the gravitational field outside of the source through the
use of the multipolar post-Minkowskian (MPM) algorithm. In this algorithm, the MPM ex-
pansion of the far-zone field is parametrized by a set of functions called the source multipolar
moments. As we are going to see, non-local terms called tails enter this MPM expansion at
the second post-Minkowskian iteration as well as at higher iterations. The main result of
this chapter (equation (4.106)) correspond to the tails entering the fourth post-Minkowskian
order of the metric. This result depends on the source mass quadrupoleMij . The expression
ofMij as well as the expressions of all the other source multipole moments are derived thanks
to a matching equation between the far zone and the near zone, which is the topic of chapter
5.

Using the equation (4.106) and the explicit value of Mij at the 3PN order given by
equation (4.123) (as well as other source multipolar moments provided by the equations
(4.125)), we can compute the 4.5PN coefficient of the energy flux for spinless binary systems
in circular orbits, as shown in the equation (4.137). This requires a few technical steps, such
as the radiative coordinate transformation that is detailed in section 4.3.1.

4.1 The multipolar post-Minkowskian algorithm

4.1.1 The Einstein multipolar post-Minkowskian equations

In this section, we want to study the propagation of the gravitational waves from the source
to the detectors. We consider a compact source of matter emitting gravitational waves in
an asymptotically flat spacetime, and study the propagation of these waves from the source
to the future null infinity I+. Therefore we want to find the most general solution to the
Einstein equations in the vacuum, outside of a generic source, imposing the non-incoming
radiation boundary condition1. We study such a solution by performing its Multipolar and
post-Minkowskian (MPM) expansion.

We start by defining the deviation of the gothic metric to Minkowski’s metric

hαβ ≡ √−ggαβ − ηαβ , (4.1)

1This means that we are considering an isolated system emitting gravitational waves without any incoming
gravitational waves coming from I−.

37
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where g is the determinant of the metric gµν , and gαβ ≡ √−ggαβ is commonly referred to
as the gothic metric. Besides, we impose the harmonic coordinate condition

∂µh
µν = 0 . (4.2)

In all this chapter, the background metric is the Minkowskian metric, and all the indices are
lowered and raised with ηµν = diag(−1,+1,+1,+1) (except when explicitly specified). The
Einstein equations can be written in the following form

�hαβ = 16πG
c4 ταβ , (4.3)

where � = − 1
c2

∂2

∂t2 +δij ∂
∂xi

∂
∂xj

is the flat d’Alembertian operator, and ταβ is the stress-energy
pseudo tensor that takes into account both the matter and the non-linearities of the Einstein
equations

ταβ = |g|Tαβ + c4

16πGΛαβ . (4.4)

Tαβ is the energy-impulsion tensor of the matter and can be set to zero (Tαβ = 0)
throughout the rest of the chapter as we are considering solutions valid outside the source.
Λαβ takes into account the non-linearities of the Einstein equations and is given by

Λαβ = −hµν∂2
µνh

αβ + ∂µh
αν∂νh

βµ + 1
2g

αβgµν∂λh
µτ∂τh

νλ

− gαµgντ∂λhβτ∂µhνλ − gβµgντ∂λhατ∂µhνλ + gµνg
λτ∂λh

αµ∂τh
βν

+ 1
8
(
2gαµgβν − gαβgµν)(2gλτgεπ − gτεgλπ

)
∂µh

λπ∂νh
τε . (4.5)

In the previous equation (4.5), the indices of the metric gµν are raised with gµν itself (i.e.
gµνgµρ = δνρ). There is no closed-form expression expressing Λαβ as a function of hµν but
one can always use equation (4.5) to expand Λαβ up to any order n of hµν (neglecting terms
of order O[hn+1]). For example

Λµν = Nµν(hαβ, hαβ) +Mµν(hαβ, hαβ, hαβ) + Lµν(hαβ, hαβ, hαβ, hαβ) + O(h5) . (4.6)

Because we set Tαβ = 0, the harmonic condition (4.2) implies

∂µΛµν = 0 . (4.7)

As we mentioned, we are going to find a Multipolar and Post-Minkowskian solution for hµν .
For that, we first define the following post-Minkowskian expansion

hµν = Ghµν(1) +G2hµν(2) + · · · =
∑

n≥1
Gnhµν(n) , (4.8)

where G is Newton’s constant. If we inject the expansion (4.8) into the Einstein equations
(4.3) and look at each power of G we obtain the following set of equations, called the
multipolar post-Minkowskian Einstein vacuum equations (for n ≥ 1)

�hµν(n) = Λµν(n)
(
hαβ(1), h

αβ
(2), . . . , h

αβ
(n−1)

)
, (4.9a)
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∂µh
µν
(n) = 0 , (4.9b)

where Λµν(1) = 0 and Λµν(n) corresponds to the coefficient in Gn in the source Λµν . This coeffi-
cient only depends on the solutions of lower post-Minkowskian orders, i.e., on {hαβ(1), h

αβ
(2), . . . , h

αβ
(n−1)}.

In the following sections, we are going to explicitly solve (4.9) outside the source. Said oth-
erwise, we will look for a solution for all (t,x) such that r = |x| > a where a is bigger than
the size of the source. However, in practice, we will find a formal vacuum solution valid for
any r > 0 in a form of a multipolar expansion.

For convenience, we set c = 1 in the following sections. We will restore explicitly the
powers of c in the equation (4.112).

4.1.2 Solving the MPM Einstein equations in the linear case

4.1.2.a) The MPM solution at linear order

Let us start by looking at the linear case of the set of equations (4.9)

�hµν(1) = 0 , (4.10a)
∂µh

µν
(1) = 0 . (4.10b)

We are looking for the most general solution of this set of equations outside of the source
(r > a) that is past-stationary and is respecting the non-incoming wave boundary conditions.
This means that there exists T such that hµν(1)(t,x) = hµν(1)(x) for t ≤ −T , hence the field is
stationary for t ≤ −T (and even for t+ r/c ≤ T ). Such a solution is known since the work
of Thorne in 1980 [127]. It depends on six sets of functions {IL, JL,WL, XL, YL, ZL} that we
will call the multipolar source moments. Here, L is a short-hand notation denoting ` space
dummy indices. I.e. L ≡ i1i2 . . . i` with {i1, i2, . . . , i`} ∈ {1, 2, 3}`. Similarly, aL− 1 denotes
the set of indices aL − 1 = ai1 . . . i`−1. We summarize all our notations in the appendix
A. The functions {IL, JL,WL, XL, YL, ZL} are symmetric and trace-free (STF) with respect
with all their indices. Besides they are all stationary in the past: for t ≤ −T , IL(t), JL(t),
WL(t), XL(t), YL(t) as well as ZL(t) are constant. With this notation we have [127]

hαβ(1) = kαβ(1) + ∂αϕβ(1) + ∂βϕα(1) − ηαβ∂µϕµ(1) . (4.11)

With kαβ(1) defined as:

k00
(1) = − 4

c2
∑

`>0

(−1)`
`! ∂L

(1
r

IL(u)
)
, (4.12a)

k0i
(1) = 4

c3
∑

`>1

(−1)`
`!

{
∂L−1

(1
r

I(1)
iL−1(u)

)
+ `

`+ 1εiab∂aL−1

(1
r

JbL−1(u)
)}

, (4.12b)

kij(1) = − 4
c4
∑

`>2

(−1)`
`!

{
∂L−2

(1
r

I(2)
ijL−2(u)

)
+ 2`
`+ 1∂aL−2

(1
r
εab(iJ

(1)
j)bL−2(u)

)}
. (4.12c)

And ϕα(1) defined as

ϕ0
(1) = 4

c3
∑

`>0

(−1)`
`! ∂L

(1
r

WL(u)
)
, (4.13a)
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ϕi(1) = − 4
c4
∑

`>0

(−1)`
`! ∂iL

(1
r

XL(u)
)

(4.13b)

− 4
c4
∑

`>1

(−1)`
`!

{
∂L−1

(1
r

YiL−1(u)
)

+ `

`+ 1εiab∂aL−1

(1
r

ZbL−1(u)
)}

. (4.13c)

Where εabc is the Levi-Civita symbol, u = t− r is the retarded time and I(n)
L (u) and J (n)

L (u)
denotes the nth time derivative of the functions IL(u) and JL(u).

4.1.2.b) Interpretation of the functions {IL, JL,WL, XL, YL, ZL}: the multipole
source moments

So far, the functions {IL, JL,WL, XL, YL, ZL} have not been specified. The only constraint is
that they are stationary in the past in order to satisfy the non-incoming radiation condition.
They depend on the physical properties of the source that is enclosed in the world-tube
r < a. Using the matching equation (5.40) derived in the next chapter, we will be able to
provide explicit expressions for these functions at the section 5.4. But for now, we are just
going to provide a physical interpretation of them.

According to the equation (4.11), the function ϕ(1) only plays the role of a gauge trans-
formation: it plays a role similar to gauge transformation parametrized by ξµ in the section
1.2.2, equation (1.10). Therefore let us focus first on the quantity kµν(1) and on the physical
interpretation of IL and JL.

The functions IL are called the `th-order mass multipole source moments. Indeed it
turns out that for ` = 0, I is the ADM-mass of the source and is a constant function of time.
Similarly for ` = 1, Ii is proportional to the center of mass position and depends linearly on
the time t. By imposing the stationary of the solution in the past, we obtain the fact that
Ii is also constant. More generally, IL is the `th-order mass multipole moment of the source,
and at Newtonian order is given by

IL(t) =
∫

d3xρ(x)x̂L + O
( 1
c2

)
, (4.14)

where ρ(x) is the mass density at the position x, where x̂L ≡ x<i1 . . . xi`> and where
< · > means that we take the STF part of the indices. Of course, at Newtonian order,
the quadrupole mass source moments Iij corresponds to the multipole moments introduced
in chapter 1 in equation (1.24).

The functions JL are called the `th-order current multipole source moments with Ji being
the total angular moment (Ji = const). At newtonian order

JL(t) =
∫

d3xεabi`ρ(x)x<i1...i`−1>av
b(x) + O

( 1
c2

)
, (4.15)

where vb(x) is the velocity of the matter at the position x.
The rest of the source multipole moments {WL, XL, YL, ZL} does not play a physical role

at the first post-Minkowskian order because they can be removed by a change of gauge such
as (1.10). However, they become physically relevant at higher post-Minkowskian orders, so it
is crucial to keep them. One could show that the full MPM solution parametrized by the sets
of moments {IL, JL,WL, XL, YL, ZL} is physically equivalent to the solution parametrized by
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the sets {ML, SL, 0, 0, 0, 0} where ML and SL differs from IL and JL from 2.5-PN order and
are called the canonical source multipole moments (respectively the canonical source mass
multipole moments and the canonical source current multipole moments). For example [128]

Mij = Iij + 4G
c5

[
W (2)Iij −W (1)I

(1)
ij

]

+ 4G
c7

[4
7W

(1)
a〈i I

(3)
j〉a + 6

7Wa〈iI
(4)
j〉a −

1
7Ia〈iY

(3)
j〉a − Ya〈iI

(3)
j〉a − 2XI(3)

ij −
5
21IijaW

(4)
a

+ 1
63I

(1)
ijaW

(3)
a − 25

21IijaY
(3)
a − 22

63I
(1)
ijaY

(2)
a + 5

63Y
(1)
a I

(2)
ija + 2WijW

(3)

+ 2W (1)
ij W

(2) − 4
3W〈iW

(3)
j〉 + 2YijW (2) − 4W〈iY

(2)
j〉

+ εab〈i

(1
3Ij〉aZ

(3)
b + 4

9Jj〉aW
(3)
b − 4

9Jj〉aY
(2)
b + 8

9J
(1)
j〉aY

(1)
b + ZaI

(3)
j〉b

)]

+
( 1
c8

)
. (4.16)

4.1.3 The MPM algorithm at any order n
We are now going to show that we can integrate the MPM Einstein equations (4.9) through
the use of the MPM algorithm at each order n (the order n = 1 being already solved in the
previous section). Let us assume that the solution of hµν is known up to Gn−1, i.e. that
{hµν(1), . . . , h

µν
(n−1)} are known as functions of {IL, JL,WL, XL, YL, ZL}, and we focus on the

following equations

�hµν(n) = Λµνn
(
hαβ(1), h

αβ
(2), . . . , h

αβ
(n−1)

)
, (4.17a)

∂µh
µν
(n) = 0 . (4.17b)

4.1.3.a) The operator FPB �−1
ret

[(
r
r0

)B
·
]

The first step is to use some inverse d’Alembertian operator �−1 on the source Λ(n). As we
are imposing the non-incoming radiation condition, we need to to use the retarded propagator
�−1

ret as we did in chapter 1. So a first try would be to define

uµν(n)(t,x) ?≡�−1
retΛ

µν
(n)(t,x) = − 1

4π

∫
d3x′

Λµν(n)(t−
|x′−x|
c ,x′)

|x′ − x| . (4.18)

However, such a solution is ill-defined. In fact, hµν(1) is singular when r → 0, therefore
Λµν(2)

(
hαβ(1), h

αβ
(1)
)
(and hµν(2) etc.) are also singular when r → 0. In particular, we see that if

Λαβ(n) ∼r→0 rk with k ≤ −3, then the equation (4.18) is not convergent. This is an ultra-violet
(UV) divergence that we are going to deal with using the Finite Part regularization.

The first step is to multiply the source by
(
r
r0

)B
where B is a complex number and r0 is

a constant that we introduce by hand. This constant is not physical and should disappear
at the end of the day when we express physical observables, but can stay in intermediate
results. Let us kmax be an integer such that Λαβ(n) =r→0 O(rkmax). One could argue that if
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we consider the formal infinite multipolar sums of equations (4.12)–(4.13), we could not find
such a kmax. However, in practice, our computation will be truncated to a finite multipolar
order, so the degree of divergency of the source at r → 0 will be finite. Now, for B such that
<(B) > kmax − 3, we define

Iµν(n)(B) ≡ �−1
ret

[(
r

r0

)B
Λµν(n)

]

= − 1
4π

∫
d3x′

(
r
r0

)B
Λµν(n)(t−

|x′−x|
c ,x′)

|x′ − x| . (4.19)

As long as <(B) > kmax−3, Iµν(n)(B) is well-defined and is a analytic function of B ∈ C. This
latter assertion will not be proved here but can be checked by studying the mathematical
structure of the source Λµν(n) as done in [129]. By analytic continuation, this function is
uniquely defined over all the complex plane except possibly some isolated poles (in particular
except for B = 0 very often). In the neighborhood of B = 0 we are going to perform a Laurent
expansion of Iµν(n)(B)

Iµν(n)(B) =
B→0

∑

k≥p0

Bkιµν(k) . (4.20)

Now, if we apply the d’Alembertian operator � on both sides of equation (4.20), the left-hand
side becomes

(
r

r0

)B
Λµν(n) =

B→0

[
1 +B ln

(
r

r0

)
+ B2

2! ln2
(
r

r0

)
+ . . .

]
Λµν(n)

=
[
1 +

∑ Bq

q! lnq
(
r

r0

)]
Λµν(n) . (4.21)

By applying the d’Alembertian operator on each side of equation (4.20) and equating the
different powers of B we obtain that

�ιµν(k) = 0 for k < 0 , (4.22a)
�ιµν(0) = Λµν(n) , (4.22b)

�ιµν(k) = 1
k! lnk

(
r

r0

)
Λµν(n) for k ≥ 1 . (4.22c)

Therefore, we are interested in the function ιµν(0) which is called the Finite Part of Iµν(n)(B)
when B → 0 and denoted FPB Iµν(n)(B). Hence, instead of the definition (4.18), we define
uµν(n) by

uµν(n) = FP
B
�−1

ret

[(
r

r0

)B
Λµν(n)

]
. (4.23)

Based on what we previously said, uµν(n) is well-defined and we have

�uµν(n) = Λµν(n) . (4.24)
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4.1.3.b) Going to the harmonic gauge

In the previous section, we find a way to solve the equation (4.17a) but there is no reason
why uµν(n) should be divergence-free. So we have not yet solved the equation (4.17b). Let us
define wµ(n) ≡ ∂νu

µν
(n). We want to find a function vµν(n) such that �vµν(n) = 0 and ∂νvµν(n) = −wµ.

As we are dealing with multipolar-expanded quantities, we can find four sets of functions
{NL, PL, QL, RL} such that [129, 130]

w0
(n) =

+∞∑

l=0
∂L
[
r−1NL(u)

]
, (4.25a)

wi(n) =
+∞∑

l=0
∂iL

[
r−1PL(u)

]

+
+∞∑

l=1

{
∂L−1

[
r−1QiL−1(u)

]
+ εiab∂aL−1

[
r−1RbL−1(u)

]}
, (4.25b)

where we recall that u = t− r is the retarded time. Using these functions, let us define vµν(n)
by [130]

v00
(n) = −r−1N (−1) + ∂a

[
r−1

(
−N (−1)

a + C(−2)
a − 3Pa

)]
, (4.26a)

v0i
(n) = r−1

(
−Q(−1)

i + 3P (1)
i

)
− εiab∂a

[
r−1R

(−1)
b

]
−

+∞∑

l=2
∂L−1

[
r−1NiL−1

]
, (4.26b)

vij(n) = −δijr−1P +
+∞∑

l=2

{
2δij∂L−1

[
r−1PL−1

]
− 6∂L−2(i

[
r−1Pj)L−2

]
(4.26c)

+ ∂L−2
[
r−1(N (1)

ijL−2 + 3P (2)
ijL−2 −QijL−2)

]
− 2∂aL−2

[
r−1εab(iRj)bL−2

]}
. (4.26d)

Here N (−n)
a is the nth primitive of Na, that vanishes in the past2.

Now, all the terms in vµν(n) are on the form ∂L
F (u)
r = ∂L

F (t−r)
r , so we have automatically

�vµν(n) = 0. Besides, it is fastidious but straightforward to show (using the decomposition
(4.25)) that ∂νvµν(n) = −wµ(n).

Now, if we define hµν(n) = vµν(n)+u
µν
(n), we obtain a solution for the equations (4.17a)–(4.17b),

and the procedure presented above, called the MPM algorithm enables us to compute at each
order n the MPM expansion of the metric hµν in harmonic coordinates.

The choice of vµν(n) defined by the equation (4.26) is arbitrary3. We could have chosen
another solution of vµν(n) with the same properties. If we did so, the MPM expansion that
we would have obtained would have differed: it would have been a different function of the
multipole source moments {IL, JL,WL, XL, YL, ZL}. But we can show that this difference
can be absorbed by a redefinition of the multipole source moments. Therefore, when we
derive the explicit expressions of the multipole source moments (cf equation (5.50)), it is
crucial to keep in mind the arbitrary choice of vµν(n) that we made in order to obtain the
expressions of {IL, JL,WL, XL, YL, ZL} consistently with that specific choice.

2More precisely, as all the physical quantities we are dealing with are zero (or constant) for all t ≤ −T ,
we have N (−n)

a (u) =
∫ u
−T N

(−n+1)
a (s)ds for u ≥ −T and N (−n)

a (u) = 0 for u < −T .
3For example, its definition has slightly changed between [129] and [130].
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4.1.4 A useful notation
Let us introduce a useful notation that we are going to use throughout the chapter to list all
the terms appearing in the MPM expansion of the metric. The linear metric hµν(1) depends
in a linear way on the sets of functions {IL, JL,WL, XL, YL, ZL}. We are going to use the
notation hµν(1)IL to denote the term of hµν(1) that depends on IL and so on. For example, using
the definition (4.11)

h00
(1)Ikl = − 2

c4∂ab

[1
r
Iab(u)

]
, (4.27a)

h0i
(1)Ikl = 2

c3∂a

[1
r
I(1)i
a (u)

]
, (4.27b)

hij(1)Ikl = − 2
c4

1
r
I(2)ij(u) . (4.27c)

hµν(1)Ikl corresponds to the contribution of the mass multipole of the source to the first post-
Minkowskian order of the metric. Now, each term appearing at the nth post-Minkowskian
order of the metric can be identified by a list of n multipole source moments and corresponds
to the contribution of the interactions of these moments to the metric at the nth post-
Minkowskian order.

For example, the interaction between the masse quadrupole Iij and the current quadrupole
Jij appearing in the second post-Minkowskian order is noted hµν(2)Ikl×Jmn and is the solution
constructed with the previously described MPM algorithm of the following equations

�hµν(2)Ikl×Jmn = Λµν(2)(h
αβ
(1)Ikl , h

αβ
(1)Jmn) , (4.28a)

∂νh
µν
(2)Ikl×Jmn = 0 . (4.28b)

4.2 An explicit computation of the tails
For the rest of the chapter, we are going to use for convenience the canonical source multipole
moments ML and SL. As we explained above, those multipole moments only differ from IL
and JL at the 2.5PN order (cf equation (4.16)).

We are going to compute the following terms: hµν(2)M×Mij
, hµν(3)M2×Mij

and hµν(4)M3×Mij
.

The first is known since 1992 from Blanchet and Damour [131] and contributes at the 1.5PN
order in the gravitational wave energy flux. The second term hµν(3)M2×Mij

has been computed
asymptotically (i.e. when r → ∞) in 1998 by Blanchet [132] and contributes at 3PN order
in the flux. This latter term has then been fully computed during this thesis in [1], alongside
with the asymptotic value of hµν(4)M3×Mij

that was required to compute the flux at 4.5PN.
In a first section, we are going to derive steps by steps, the explicit propagators used to

compute hµν(2)M×Mij
, and we will discuss the non-local terms called tails appearing already

at the second post-Minkowskian order. Then, we will provide all the useful formulae found
in [1], that are required to compute hµν(3)M2×Mij

and the asymptotic value of hµν(4)M3×Mij
.

This section 4.2 is rather long and technical, as all the formulae required to get the
asymptotic value of hµν(4)M3×Mij

are derived. Its final result, i.e., the asymptotic value of
hµν(4)M3×Mij

is then provided at the end of the section in 4.2.6.
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4.2.1 A computation step by step of hµν(2)M×Mij

To begin with, let us provide the value of hµν(1)M as well as hµν(1)Mij
(posing c = 1):

h00
(1)M (t,x) = −4r−1M , (4.29a)
h0i

(1)M (t,x) = 0 , (4.29b)

hij(1)M (t,x) = 0 . (4.29c)

For further use we also provide

h00
(2)M2(t,x) = −7r−2M2 , (4.30a)
h0i

(2)M2(t,x) = 0 , (4.30b)

hij(2)M2(t,x) = −nijr−2M2 , (4.30c)

and

h00
(3)M3(t,x) = −8r−3M3 , (4.31a)
h0i

(3)M3(t,x) = 0 , (4.31b)

hij(3)M3(t,x) = 0 . (4.31c)

The vector ni is defined as ni = xi/r, and ni1...i` = ni1 . . . ni` . While the equations (4.30)
and (4.31) could be computed through the use of the MPM algorithm, hαβ(n)Mn can be easily
and quickly obtained by expanding up to power Gn the Schwarzschild metric in harmonic
coordinates. Finally we have

h00
(1)Mij

(t,x) = −2n̂abr−3
[
3Mab(t− r) + 3rM (1)

ab (t− r) + r2M
(2)
ab (t− r)

]
, (4.32a)

h0i
(1)Mij

(t,x) = −2n̂ar−2
[
M

(1)
ai (t− r) + rM

(2)
ai (t− r)

]
, (4.32b)

hij(1)Mij
(t,x) = −2r−1M

(2)
ij (t− r) . (4.32c)

This last equation is equivalent to the example provided in section 4.1.4 equation (4.27), but
the derivative ∂L have been explicitly computed. The hat symbol on top of ni1...i` means
that we should take the STF part of it. If we inject these values in the quadratic source in
order to compute Λµν(2)

(
hαβ(1)M , h

αβ
(1)Mij

)
, and multiply the source by the regularization factor

(
r
r0

)B
all the terms of the source can be written in the following form

(
r

r0

)B
Λµν(2)M×Mij

∼
∑(

r

r0

)B n̂LF (t− r)
rk

, (4.33)

where F is a function that is zero or constant for t ≤ −T . In order to perform the MPM
algorithm, we first need to find an expression for FP�−1

ret

[(
r
r0

)B n̂L
rk
F (t − r)

]
for any ` ≥ 0

and k ≥ 2.
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Computing �−1
ret

[(
r
r0

)B n̂L
rk
F (t− r)

]

Let us focus first on the retarded propagator without taking the Finite Part yet and compute
�−1

ret

[(
r
r0

)B n̂L
rk
F (t− r)

]
.

�−1
ret is the operator defined by equation (4.18), but this definition is not very adapted to

our multipolar decomposition of the source. In fact, if a source can be written as S(t,x) =
n̂LS̃(r, t− r), and satisfy some regularity conditions when r → 04 ,then we have [129]

�−1
retS(t,x) =

∫ t−r

−∞
ds∂̂L

(
R
[
t−r−s

2 , s
]−R [ t+r−s2 , s

]

r

)
, (4.34)

where R is defined as

R(r, s) ≡ r`
∫ r

0
dy (r − y)`

`!

(2
y

)`−1
S̃(y, s) . (4.35)

If we use (4.34) for the source S(t,x) =
[(

r
r0

)B n̂L
rk
F (t − r)

]
we get after few algebra steps

including some integration by parts

�−1
ret

[(
r

r0

)B n̂L
rk
F (t− r)

]
= 2k−3

(2r0)B(B − k + 2)(B − k + 1) · · · (B − k − `+ 2)

×
∫ +∞

r
dsF (t− s)∂̂L

{
(s− r)B−k+`+2 − (s+ r)B−k+`+2

r

}
. (4.36)

Case k = 2: FP�−1
ret

[(
r
r0

)B n̂L
r2 F (t− r)

]

For k = 2, equation (4.36) becomes

�−1
ret

[(
r

r0

)B n̂L
r2 F (t− r)

]
= 1

2(2r0)BB(B − 1) · · · (B − `) (4.37)

×
∫ +∞

r
dsF (t− s)∂̂L

{
(s− r)B+` − (s+ r)B+`

r

}
. (4.38)

Now, in order to take the Finite Part when B → 0 we need to do a Laurent expansion of
the right-hand side. For that, we will use the fact that (s− r)B = 1 + B ln(s− r) + O(B2)
and (s+ r)B = 1 +B ln(s+ r) + O(B2). Therefore, by taking into account the pole in 1/B
appearing in the pre-factor of (4.37), we find that

FP�−1
ret

[(
r

r0

)B n̂L
r2 F (t− r)

]
= (−1)`

2

∫ +∞

r
dsF (t− s)

× ∂̂L
{

(s− r)` ln(s− r)− (s+ r)` ln(s+ r)
`!r

}
. (4.39)

4Cf [129] for the mathematical properties that should satisfy S when r → 0. In practice, as we are going
to multiply S by (r/r0)B , these conditions will be automatically satisfied.
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To obtain (4.39), we have used the following [129]:

∂̂L

[
(s− r)k − (s+ r)k

r

]
= 0 for k = 0, . . . , 2` . (4.40)

As shown in [131], this result can be written as

FP�−1
ret

[(
r

r0

)B n̂L
r2 F (t− r)

]
= − n̂L

r

∫ +∞

r
dsF (t− s)Q`

(
s

r

)
, (4.41)

where Q` is the Legendre function of second kind defined by

Q`(x) = 1
2P`(x)ln

(
x+ 1
x− 1

)
−
∑̀

j=1

1
j
P`−j(x)Pj−1(x) , (4.42)

and where P` are the Legendre polynomials. For further use, note that the asymptotic
behavior of Ql is given by

Q`(y) = −1
2 ln

(
y − 1

2

)
−H` + O(y − 1) , (4.43)

where H` = ∑`
j=1

1
j denotes the usual harmonic number.

Equation (4.41) is a closed analytical form that enables us to integrate all the terms with
k = 2 in the source Λµν(2)M×Mij

.

Integrate the quartic source when k ≥ 3

When k ≥ 3, the equation (4.36) is still valid. Starting from there, we can integrate k − 2
times by part the integral along s. This leads to an integral that is similar to the case k = 2
in addition to some boundary terms. Doing so, we obtain [130]

�−1
ret

[(
r

r0

)B n̂L
rk
F (t− r)

]
=
(
r

r0

)B k−3∑

i=0
αi(B)n̂L

F (i)(t− r)
rk−i−2

+ β(B)�−1
ret

[(
r

r0

)B n̂L
r2 F

(k−2)(t− r)
]
, (4.44)

where the coefficient αi and β are given by

αi(B) = 2i(B − k + 2 + i)..(B − k + 3)
(B − k + 2− `+ i)..(B − k + 2− `)(B − k + 3 + `+ i)..(B − k + 3 + `) , (4.45a)

β(B) = 2k−2B(B − 1)..(B − `)
(B − k + 2)..(B − k − `+ 2)(B + `)..(B − k + `+ 3) . (4.45b)

When 3 ≥ k ≥ `+ 2, β(B) = 0 and αi(B) does not have any 1/B pole. Therefore the result
is simply [130]

FP
B=0
�−1

ret

[(
r

r0

)B n̂L
rk
F (t− r)

]
=− 2k−3(k − 3)!(`+ 2− k)!

(`+ k − 2)! n̂L
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×
k−3∑

j=0

(`+ j)!
2jj!(`− j)!

F (k−3−j)(t− r)
rj+1 . (4.46)

In the case k ≥ `+ 3, αi has a pole and β(B) is finite. Thus we obtain [130]

FP
B=0
�−1

ret

[(
r

r0

)B n̂L
rk
F (t− r)

]

=
k−3∑

i=0
α̃in̂L

F (i)(t− r)
rk−i−2 + (−1)k+`2k−2(k − 3)!

(k + `− 2)!(k − `− 3)!

×
{

(−1)`
2 ln

(
r

r0

)
∂̂L

(
F (k−`−3)(t− r)

r

)
+ FPB=0�−1

ret

[
n̂L
r2 F

(k−2)(t− r)
]}

. (4.47)

Explicit expression of h(2)M×Mij

Using the previous integration formulae, the mass-quadrupole metric appearing at the sec-
ond post-Minkowskian order can be explicitly computed. As explained in section 4.1.3, we
proceed in two steps. First we compute uµν(2)M×Mij

using the integration formulae presented
above. Then we compute vµν(2)M×Mij

using the prescription given in 4.1.3.b). The final result
is therefore hµν(2)M×Mij

= uµν(2)M×Mij
+ vµν(2)M×Mij

. However it happens that in that specific
case vµν(2)M×Mij

= 0 and we get

M−1h00
(2)M×Mpq

= nabr
−4
{
−21Mab − 21rM (1)

ab + 7r2M
(2)
ab + 10r3M

(3)
ab

}

+ 8nab
∫ +∞

1
dxQ2(x)M (4)

ab (t− rx) , (4.48a)

M−1h0i
(2)M×Mpq

= niabr
−3
{
−M (1)

ab − rM
(2)
ab −

1
3r

2M
(3)
ab

}

+ nar
−3
{
−5M (1)

ai − 5rM (2)
ai + 19

3 r
2M

(3)
ai

}

+ 8na
∫ +∞

1
dxQ1(x)M (4)

ai (t− rx) , (4.48b)

M−1hij(2)M×Mpq
= nijabr

−4
{
−15

2 Mab −
15
2 rM

(1)
ab − 3r2M

(2)
ab −

1
2r

3M
(3)
ab

}

+ δijnabr
−4
{
−1

2Mab −
1
2rM

(1)
ab − 2r2M

(2)
ab −

11
6 r

3M
(3)
ab

}

+ na(ir
−4
{

6Mj)a + 6rM (1)
j)a + 6r2M

(2)
j)a + 4r3M

(3)
j)a

}

+ r−4
{
−Mij − rM (1)

ij − 4r2M
(2)
ij −

11
3 r

3M
(3)
ij

}

+ 8
∫ +∞

1
dxQ0(x)M (4)

ij (t− rx) . (4.48c)

In the equations (4.48), the quadrupole Mij and its derivative M (n)
ij are evaluated at the

retarded time u = t − r in all the instantaneous terms (for which the dependence is not
written explicitly), while they are evaluated at t− rx in the non-local terms.
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4.2.2 Non-locality: the appearance of the tails

Equation (4.48) shows two kinds of terms: local terms and non-local terms. At linear
order in G — as gravitational waves travel at the speed of light — the metric hµν(1)(t,x)
due to a source whose wordline is along the origin only depends on that source at the
time u = t − r/c. However, starting from the second post-Minkowskian order, terms like
8nab

∫+∞
1 dxQ2(x)M (4)

ab (t−rx) depend on the quadrupole of the source along its past history
up to t− r/c. This non-local effect is called a tail effect and is due to the non-linearities of
the Einstein field equations. It can be interpreted as the gravitational waves emitted by the
varying quadrupole of the source, being scattered by the background metric curved by the
mass of the source. It is therefore in that case a mass-quadrupole interaction. The figure
4.1, provides further clarifications of this non-local effect.

Past Light Cone

Source
t

r

P (tP , rP )

S(tP � rP , 0)

Q(tQ, rQ)

T (tQ � rQ, 0)

Figure 4.1: Schematic representation of the tail effect. The linear metric at point P (tP , rP )
only depends on the source at the point S(tp − rp, 0) which represents the intersection of
the past light cone of P with the wordline of the source. At the second post-Minkowskian
order, the metric at the point P depends on the linear metric on the past light cone of P , for
example on the point Q. However, the linear metric at the point Q depends on the source at
the point T . Therefore, the second post-Minkowskian metric at the point P depends on the
source at the point T and more generally on all the past of the source. This effect constitutes
a non-local term in the metric called a tail.

4.2.3 Computation of the tails-of-tails and the tails-of-tails-of-tails

Now that hµν(2)M×Mij
is fully known, we can compute the source Λµν(3)M×M×Mij

. This source
contains all the interactions between: hµν(1)M and hµν(2)M×Mij

, hµν(2)M2 and hµν(1)Mij
, and finally

between hµν(1)M , hµν(1)M and hµν(1)Mij
. Using the notation introduced in equation (4.6), we have

Λµν(3)M×M×Mij
= Nµν [hαβ(1)M , h

αβ
(2)M×Mij

] +Nµν [hαβ(2)M2 , h
αβ
(1)Mij

]
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+Mµν [hαβ(1)M , h
αβ
(1)M , h

αβ
(1)Mij

] . (4.49)

We recall that hµν(2)M2 is provided by the equation (4.30). The integration of (4.49) was
investigated by Blanchet in 1998 [132] and h(3)M2×Mij

was found asymptotically when r →∞
with u = t−r/c constant. This result has been extended by our work [1] where we developped
formulae to fully integrate equation (4.49). Once hµν(3)M2×Mij

is computed we have been able
to compute the quartic source Λµν(4)M3×Mij

and to integrate it asymptotically, which means
that we computed hµν(4)M3×Mij

for r →∞ with u = t− r/c constant.
Based on the form of hµν(2)M×Mij

we see that Λµν(3)M2×Mij
contains two kinds of terms:

instantaneous terms that can be integrated with the formulae presented in section 4.2.1, and
non-local terms coming from the tails. These non-local terms are always of the form

n̂L r
−k
∫ +∞

1
dy Vm(y)F (t− ry) , (4.50)

where Vm(y) is a kernel function that can be expressed by means of polynomials and Legendre
functions of second kind Ql(y), and F is usually a time-derivative of the mass quadrupole
Mij . Therefore, the goal of the following section 4.2.4 is to provide explicit formulae to
integrate (4.50), i.e., to find the solution of (4.51).

Once this is done, we can compute Λµν(4)M3×Mij
which depends on hµν(1)M , hµν(2)M2 , hµν(3)M3 ,

hµν(1)Mij
, hµν(2)M×Mij

and finally hµν(3)M2×Mij
. If we do so, we notice that Λµν(4)M3×Mij

also
contains both instantaneous terms and non-local terms of the form (4.50), but with kernel
functions Vm(y) much more complicated this time. So we will only be able to provide
formulae to integrate them asymptotically.

4.2.4 Explicit closed-form representations of the solution
We are looking for the retarded solution of a d’Alembertian equation whose source term is
non-local

� Ψ
k,m

L = n̂L r
−k
∫ +∞

1
dy Vm(y)F (t− ry) , (4.51)

where F (u) is a smooth function of the retarded time that is identically zero in the remote
past, i.e., F ∈ C∞(R) and F (u) = 0 for u 6 −T (with −T being a fixed instant in the past),
and where Vm(y) is a generic function belonging to the following m-dependent class

Vm =
{
V (y) ∈ C∞(]1,+∞[)|∃ a > 0, b > 0 such that

V (y) =
y→+∞

O
[
y−(m+1) lna(y)

]
and V (y) =

y→1+
O
[
lnb(y − 1)

]}
. (4.52)

We see that the integer m basically specifies the behavior of our Vm-type functions when
y → +∞, while those functions are assumed to be integrable when y → 1+. A typical
function belonging to the class Vm is the Legendre function of the second kind Qm(y),
defined by (4.42). Then, for Vm ∈ Vm, we define the retarded multipolar solution of (4.51)
as

Ψ
k,m

L = FP
B=0
�−1

ret

[
n̂L

(
r

r0

)B
r−k

∫ +∞

1
dy Vm(y)F (t− ry)

]
. (4.53)
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Following the prescriptions presented in 4.1.3.a), this solution is defined by analytic contin-
uation in B ∈ C as the finite part (FP) in the Laurent expansion when B → 0 of the usual
inverse retarded integral �−1

ret acting on the source regularized by means of the inserted factor
(r/r0)B.

We shall now present explicit forms for the general solution (4.53), i.e., analytic closed-
form representations for k,mΨL. In order to get the full cubic metric hµν(3)M2×Mij

, we need to
distinguish several cases.

4.2.4.a) Case where k = 1, ` > 0 and m > 0

This case has been already investigated in Ref. [132] when Vm = Qm is the Legendre function
of the second kind. The result extends naturally to all Vm ∈ Vm

Ψ
1,m

L = n̂L

∫ +∞

1
dsF (−1)(t− rs)

[
Q`(s)

∫ s

1
dy Vm(y) dP`

dy (y)

+P`(s)
∫ +∞

s
dy Vm(y) dQ`

dy (y)
]
. (4.54)

Since F (u) is identically zero in the past (before some given finite instant −T ), we define
F (−1)(u) to be the anti-derivative of F that is also identically zero in the past. Here, P`(y)
is the usual Legendre polynomial.

4.2.4.b) Case where k = 2, ` > 0 and m > 0

For k = 2, and still Vm ∈ Vm with m > 0, we start with the formula (D5) of Appendix D in
Ref. [129], which yields, for the case at hands

Ψ
2,m

L = − n̂L2r

∫ t−r

−∞
dξ
∫ t+r+ξ

2

t−r−ξ
2

dw
w

∫ +∞

1
dxVm(x)F

[
ξ − (x− 1)w

]

× P`
[
1− (t− r − ξ)(t+ r − ξ − 2w)

2rw

]
. (4.55)

Now, we define new variables (ξ, w) → (y, z) by ξ − (x − 1)w = t − ry and z = 1 −
(t−r−ξ)(t+r−ξ−2w)

2rw . With these variables we get

Ψ
2,m

L = − n̂L2

∫ +∞

1
dxVm(x)

∫ +∞

1
dy F (t− ry)

×
∫ 1

−1
dz P`(z)√

(xy − z)2 − (x2 − 1)(y2 − 1)
. (4.56)

By virtue of the mathematical formula (A.5) of [132]5 we obtain

Ψ
2,m

L = −n̂L
∫ +∞

1
ds F (t− rs)

[
Q`(s)

∫ s

1
dy Vm(y)P`(y)

5Namely,

1
2

∫ 1

−1

dz P`(z)√
(xy − z)2 − (x2 − 1)(y2 − 1)

=

{
P`(x)Q`(y) when 1 < x 6 y ,

P`(y)Q`(x) when 1 < y 6 x .
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+P`(s)
∫ +∞

s
dy Vm(y)Q`(y)

]
, (4.57)

which has a structure similar to that of the solution (4.54).

4.2.4.c) Case where k > 2, ` > k − 2 and m > k − 2

To deal with this case, it is convenient to introduce, given some positive integer p and some
function Vm ∈ Vm, the p-th anti-derivative V (−p)

m (y) of Vm that vanishes when y = 1, together
with all its derivatives of orders smaller than p. Namely, we define

V (−p)
m (y) =

∫ y

1
dxVm(x) (y − x)p−1

(p− 1)! , (4.58)

and adopt the convention that V (0)
m (y) = Vm(y). Such a choice is indeed meaningful for

functions Vm that satisfy the characteristic properties of the class Vm.
Let us show that, for any ` > k − 2, m > k − 2, and for any Vm ∈ Vm,

Ψ
k,m

L = −n̂L
∫ +∞

1
ds F (k−2)(t− rs)

×
[
Q`(s)

∫ s

1
dy V (−k+2)

m (y)P`(y) + P`(s)
∫ +∞

s
dy V (−k+2)

m (y)Q`(y)
]
, (4.59)

where V (−k+2)
m (y) is the (k − 2)-th anti-derivative of Vm(y) defined by the equation (4.58).

We will proceed by induction over the integer k. The initial case k = 2 corresponds to the
equation (4.57). Let us thus assume that (4.59) is valid up to k − 1 with k > 3, and let us
show that it is then valid for k. By definition, we have

Ψ
k,m

L = FP
B=0
�−1

ret

[
n̂L

(
r

r0

)B
r−k

∫ +∞

1
dy Vm(y)F (t− ry)

]
, (4.60)

which we can integrate by part, for Vm ∈ Vm and m > k − 2. We find

Ψ
k,m

L = FP
B=0
�−1

ret

[
n̂L

(
r

r0

)B
r−k+1

∫ +∞

1
dy V (−1)

m (y)F (1)(t− ry)
]
, (4.61)

where V (−1)
m (y) =

∫ y
1 dxVm(x) in agreement with (4.58). As m > 1 (because k > 3), αm =

∫+∞
1 dy Vm(y) is a convergent integral. Posing Ṽm−1(y) = V

(−1)
m (y)− αm, we rewrite (4.61)

as

Ψ
k,m

L = αm FP
B=0
�−1

ret

[
n̂L

(
r

r0

)B
r−kF (t− r)

]

+ FP
B=0
�−1

ret

[
n̂L

(
r

r0

)B
r−k+1

∫ +∞

1
dy Ṽm−1(y)F (1)(t− ry)

]
. (4.62)

The point now is that Ṽm−1 ∈ Vm−1, so that we can make use of the equation (4.59) (which
is our induction hypothesis) to obtain

Ψ
k,m

L = αm FP
B=0
�−1

ret

[
n̂L

(
r

r0

)B
r−kF (t− r)

]
− n̂L

∫ +∞

1
ds F (k−2)(t− rs)
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×
[
Q`(s)

∫ s

1
dy Ṽ (−k+3)

m−1 (y)P`(y) + P`(s)
∫ +∞

s
dy Ṽ (−k+3)

m−1 (y)Q`(y)
]
. (4.63)

The first term is instantaneous and, keeping in mind that ` > k − 2, it may be integrated
by means of the formula (4.46). Since we have Ṽ (−k+3)

m−1 (y) = V
(−k+2)
m (y) − αm (y−1)k−3

(k−3)! , we
obtain exactly the result k,mΨL given by (4.59) that we wanted to prove, with however the
following additional term

δΨ
k,m

L = αm n̂L

∫ +∞

1
ds F (k−2)(t− rs)

×

Ak−3

` (s)− 2k−3(k − 3)!(`+ 2− k)!
(`+ k − 2)!

k−3∑

j=0

(`+ j)! (s− 1)j
2j(`− j)!(j!)2


 , (4.64)

in which we have introduced the following combination

Ak−3
` (s) = Q`(s)

∫ s

1
dy P`(y) (y − 1)k−3

(k − 3)! + P`(s)
∫ +∞

s
dy Q`(y) (y − 1)k−3

(k − 3)! . (4.65)

We are now going to prove that the additional term (4.64) is actually zero, because the
quantity in the square brackets of (4.64) is in fact identically zero (for any s ∈]1,+∞[). To
this end, we notice that the two integrals appearing in (4.65) are of the same type, namely

Ip` (s) =
∫ s

a
dy f`(y) (y − 1)p

p! , (4.66)

where we have posed p = k− 3 for simplicity sake. The lower boundary is a = 1 or a = +∞
according to the integral in (4.65) we are considering. The function f`(y) represents either
the Legendre polynomial P`(y) for a = 1 or the Legendre function Q`(y) for a = +∞. In
both cases, the integral is well-defined. Using the fact that f`(y) satisfies the usual Legendre
differential equation6 and performing two integrations by parts, we obtain the following
recursive relation

Ip` (s) = 1
(`− p)(`+ p+ 1)

[(
f`(s)

[
(`− p)s− p]− `f`−1(s)

)(s− 1)p
p! + 2p Ip−1

` (s)
]
. (4.67)

It nicely translates, when inserted into (4.65), into the simple recurrence equation

Ap
` (s) = 1

(`− p)(`+ p+ 1)
[(s− 1)p

p! + 2pAp−1
` (s)

]
, (4.68)

6Namely,
d
dy

[
(1− y2)df`(y)

dy

]
+ `(`+ 1)f`(y) = 0 .

We remind also the following properties of Legendre functions that are used in our computation

(1− y2)df`(y)
dy = `

[
f`−1(y)− yf`(y)

]
,

P`(y)Q`−1(y)− P`−1(y)Q`(y) = 1
`
.



54 Chapter 4. The far-zone radiative field and the gw flux

whose solution is straightforwardly found to be

Ap
` (s) = 2pp!(`− p− 1)!

(`+ p+ 1)!

p∑

j=0

(`+ j)! (s− 1)j
2j(`− j)!(j!)2 . (4.69)

To arrive at the latter expression, we need the readily checked relation A0
` (s) = 1

`(`+1) ,
which plays the role of normalization condition. The result (4.69) shows that the additional
term (4.64) is indeed zero, which completes our proof of the equation (4.59).

To conclude, for any ` > k − 2 and m > k − 2, we have shown that the solution k,mΨL

is given by

Ψ
k,m

L = −n̂L
∫ +∞

1
ds F (k−2)(t− rs)

[
Q`(s)

∫ s

1
dy V (−k+2)

m (y)P`(y)

+ P`(s)
∫ +∞

s
dy V (−k+2)

m (y)Q`(y)
]
, (4.70)

which appears to be an interesting generalization of (4.57) corresponding to the case k = 2.
Notice, however, that the latter formula (4.70) is not valid in the case k = 1. This case has
to be treated separately using the result (4.54).

Stricto sensu, we are not allowed to use the equation (4.70) when m = 0, k = 3, ` =
2, which corresponds to one of the non-local terms appearing in the source Λµν(3)M2×Mij

.
However, it happens to be valid also in this case. Indeed, the proof leading to (4.57) still
holds for m = −1 as all integrals are convergent. Then, to derive the formula for m = 0,
k = 3, ` = 2, we proceed similarly to the recursion presented previously, by performing an
integration by parts and choosing for V (−1)

0 (y) the anti-derivative that vanishes for y = 1
(see the equation (4.61)).

4.2.4.d) Case ` = 0, k > 3 and m > k − 2

As it turned out, one (and only one) term of the cubic source does not fall into the previous
cases. For this term, corresponding to the values ` = 0, k = 3 and m = 2, we need to find
another formula. To find it, we notice that, for the proof of the case where ` = 0, k = 3 and
m = 2, all the reasonings in the previous section 4.2.4.c) remain valid for ` = 0 up to (4.63),
which is actually true as soon as m > 1. Now, the equation (4.47) tells us that

FP
B=0
�−1

ret

[(
r

r0

)B
r−3F (t− r)

]

= −
[
ln
(
r

r0

)
+ 1

]
F (t− r)

r
+ 2

∫ +∞

1
ds F (1)(t− rs)Q0(s) . (4.71)

Inserting (4.71) into (4.63) for k = 3, we find

Ψ
3,m

L=0 =−
[
ln
(
r

r0

)
+ 1

]
F (t− r)

r

∫ +∞

1
dy Vm(y)

+
∫ +∞

1
ds F (1)(t− rs)

(
Q0(s)

∫ s

1
dy (y + 1)Vm(y)

+
∫ +∞

s
dy
[
(y + 1)Q0(y) + ln

(
y − 1
s− 1

)]
Vm(y)

)
, (4.72)
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where we recall that Q0(y) = 1
2 ln(y+1

y−1). Observe the first appearance of the logarithm of
r, in the first term of (4.72), due to the presence of a pole in the original integral when
B → 0. As a result the formula (4.72) explicitly depends on the arbitrary scale r0, but this
gauge constant should disappear in any final result expressing physical observables. With
the equation (4.72), we have in hands enough material to integrate explicitly all the cubic
hereditary source terms.

We found a generalization to the case where ` = 0, k > 3 and m > k − 2, even if such
terms do not appear in Λµν(3)M2×Mij

. Indeed, for ` = 0, k > 3 and m > k − 2

Ψ
k,m

L=0 = (−1)k
(k − 2)!

{[
ln
(
r

r0

)
+Hk−2

]
F (k−3)(t− r)

r

∫ +∞

1
dy Vm(y)ϕk−2(y)

−
∫ +∞

1
ds F (k−2)(t− rs)

(
Q0(s)

∫ s

1
dy Vm(y) (y + 1)k−2

+
∫ +∞

s
dy Vm(y)

[
(y + 1)k−2Q0(y) + ϕk−2(y) ln

(
y − 1
s− 1

)])

−
k−3∑

i=1
(−1)k+i (k − 3− i)!

rk−1−i

∫ +∞

1
dy Vm(y)ϕi(y)F (i−1)(t− ry)

}
, (4.73)

where we have posed ϕi(y) = 1
2 [(y+1)i− (y−1)i], to ease the notation, and Hk−2 = ∑k−2

j=1
1
j .

Notice the last term in (4.73), which is absent from (4.72) and constitutes an additional
contribution here for k > 4.

The proof of equation (4.73), differs from the proof we just presented for k = 3, and goes
as follows. First, according to equation (4.34), we have

Ψ
k,m

L=0 = 1
r

FP
B

∫ t−r

−∞
ds
[
RB

(
t− r − s

2 , s

)
−RB

(
t+ r − s

2 , s

)]
, (4.74)

where RB is given by (4.35)

RB(r, s) = 1
2

∫ r

0
dx
(
x

r0

)B
x−k+1

∫ +∞

1
dy Vm(y)F [s− x(y − 1)] . (4.75)

Let us call A1 the first term in the equation (4.74), actually a retarded homogeneous
solution of the wave equation, and A2 the second term, which is made of a mixture of
retarded and advanced times. By construction, we have k,mΨL=0 = A1 +A2.

We inject (4.75) into A1 and define the new variable u = t−r−s
2 , thereby expressing A1

in terms of the new set of variables (u, x, y). Next, after commuting the x and u integrals,
we explicitly integrate over u. Once this is done, we perform k− 1 integrations by part with
respect to x and apply the Finite Part procedure to get

A1 = (−1)k
2(k − 2)!

1
r

∫ +∞

0
dx
[
ln
(
x

r0

)
+Hk−2

]

∫ +∞

1
dy Vm(y) (y + 1)k−1 F (k−2)[t− r − x(y + 1)

]
. (4.76)
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The same treatment is applied to the second term A2 but the computation is longer, as some
boundary terms arise. We find that

A2 = − (−1)k
2(k − 2)!

1
r

∫ +∞

r
dx
[
ln
(
x

r0

)
+Hk−2

]∫ +∞

1
dy Vm(y) (y + 1)k−1 F (k−2)[t+ r − x(y + 1)

]

− (−1)k
2(k − 2)!

1
r

∫ r

0
dx
[
ln
(
x

r0

)
+Hk−2

]∫ +∞

1
dy Vm(y) (y − 1)k−1 F (k−2)[t− r − x(y − 1)

]

+ (−1)k
(k − 2)!

1
r

[
ln
(
r

r0

)
+Hk−2

] ∫ +∞

1
dy Vm(y)ϕk−2(y)F (k−3)(t− ry)

−
k−3∑

i=1

(−1)i
(k − 2) · · · (k − 2− i)

1
rk−i−1

∫ +∞

1
dy Vm(y)ϕi(y)F (i−1)(t− ry) , (4.77)

where ϕi(y) = 1
2 [(y+1)i−(y−1)i]. Then, we make the change of variable t−rs = t−r−x(y+1)

in (4.76), as well as the changes t − rs = t + r − x(y + 1) in the first line of (4.77) and
t− rs = t− r− x(y− 1) in the second line of (4.77). Finally, with these new variables, after
exchanging the integrations, simplifications occur, yielding the formula (4.73).

4.2.4.e) Results: the tails-of-tails

All the formulae presented above enabled us to explicitly compute hµν(3)M2×Mij
. For that we

first compute uµν(3)m2×Mij
using the integration formulae provided above and then vµν(3)M×Mij

as prescribed in section 4.1.3.b). Then we pose hµν(3)M×Mij
≡ uµν(3)M×Mij

+ vµν(3)M×Mij
. While

the result is too long to be display here, we can however, take the limit of hµν(3)M2×Mij
when

r →∞, with u = t− r/c constant. By doing so, we retrieve the results derived in [132]

M−2h00
(3)M2×Mpq

= nab
r

∫ +∞

0
dτM

(5)
ab

{
−4 ln2

(
τ

2r

)
− 4 ln

(
τ

2r

)

+ 116
21 ln

(
τ

2r0

)
− 7136

2205

}
+ o

(
rε0−2

)
, (4.78a)

M−2h0i
(3)M2×Mpq

= n̂iab
r

∫ +∞

0
dτM

(5)
ab

{
−2

3 ln
(
τ

2r

)
− 4

105 ln
(
τ

2r0

)
− 716

1225

}

+ na
r

∫ +∞

0
dτM

(5)
ai

{
−4 ln2

(
τ

2r

)
− 18

5 ln
(
τ

2r

)

+ 416
75 ln

(
τ

2r0

)
− 22724

7875

}
+ o

(
rε0−2

)
, (4.78b)

M−2hij(3)M2×Mpq
= n̂ijab

r

∫ +∞

0
dτM

(5)
ab

{
− ln

(
τ

2r

)
− 191

210

}

+ δij
nab
r

∫ +∞

0
dτM

(5)
ab

{
−80

21 ln
(
τ

2r

)
− 32

21 ln
(
τ

2r0

)
− 296

35

}

+
n̂a(i
r

∫ +∞

0
dτM

(5)
j)a

{52
7 ln

(
τ

2r

)
+ 104

35 ln
(
τ

2r0

)
+ 8812

525

}

+ 1
r

∫ +∞

0
dτM

(5)
ij

{
−4 ln2

(
τ

2r

)
− 24

5 ln
(
τ

2r

)
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+ 76
15 ln

(
τ

2r0

)
− 198

35

}
+ o

(
rε0−2

)
. (4.78c)

ε0 is an arbitrary small positive number and we used the notation o
(
rε0−2) to take into

account logarithmic powers that could appear at 1/r2: lnp(r)r−2 = o
(
rε0−2).

We can see that hµν(3)M2×Mij
, also contains non-local terms: there are called tails-of-tails

or second order tails as they correspond to the mass-mass-quadrupole interaction.

4.2.5 Formulae to integrate the tails-of-tails-of-tails

We can now compute Λµν(4)M3×Mij
which, using the notation from equation (4.6), is given by

Λµν(4)M3×Mij
= Nµν(hαβ(3)M2×Mij

, hαβ(1)M ) +Nµν(hαβ(2)M×Mij
, hαβ(2)M2)

+Nµν(hαβ(1)Mij
, hαβ(3)M3) +Mµν(hαβ(1)M , h

αβ
(1)M , h

αβ
(2)M×Mij

)

+Mµν(hαβ(1)M , h
αβ
(2)M2 , h

αβ
(1)Mij

) + Lµν(hαβ(1)M , h
αβ
(1)M , h

αβ
(1)M , h

αβ
(1)Mij

) . (4.79)

As we mentioned in the section (4.2.3), the source Λµν(4)M3×Mij
contains both local terms of

the form n̂LF (t−r)
rk

as well as non-local terms of the form given by the equation (4.50), but
this time, the kernel functions Vm are much more complicated. Hence, we will not try to
fully integrate Λµν(4)M3×Mij

but we will only compute the asymptotic values of hµν(4)M3×Mij
.

For that purpose, we will now present other formulae, going beyond those investigated in
Ref. [132], for studying the leading order in the asymptotic expansion when r → +∞ with
t− r constant, of hµν(4)M3×Mij

. As done previously, we still define

� Ψ
k,m

L = n̂L r
−k
∫ +∞

1
dy Vm(y)F (t− ry) , (4.80)

with Vm ∈ Vm. For the cases 4.2.5.a), 4.2.5.b) and 4.2.5.c) below, our results is just an
adaptation of the results presented in the appendix of [132]. In fact, in this appendix, the
same formulae are derived for Vm = Qm where Qm still represents the Legendre Functions
of second kind. But all the proofs from that appendix stands if we formally replace Qm by a
generic function Vm ∈ Vm. The situation is different for the case 4.2.5.d), where we provide
a more detailed proof.

4.2.5.a) Case k = 1, m > 0 and ` > 0

From the result (4.54) it is straightforward to see (cf (A.7) of [132]) that, to leading order
at future null infinity (r → +∞ with t− r = const)

Ψ
1,m

L = n̂L
r

∫ +∞

0
dτ F (−1)(t− r − τ)

∫ +∞

1+τ/r
dxVm(x)dQ`

dx (x) + O
( 1
r2−ε0

)
. (4.81)

We remind that the neglected terms in O(rε0−2) also include possible powers of the logarithm
of r.
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4.2.5.b) Case k > 2, ` > k − 2, m > 0

The formulae (A.10)–(A.17) of [132] can be extended to any function Vm ∈ Vm by means of
the same procedure that was used to get them in [132]. We find in that case that

Ψ
k,m

L = − α
k,m

`
n̂L
r
F (k−3)(t− r) + O

( 1
r2

)
. (4.82)

The coefficients are given by the following explicit although involved expressions

α
k,m

` =
k−2∑

i=0
Ck−2
`,i

∫ +∞

1
dy Vm(y)Q`−k+2+2i(y) , (4.83a)

where Ck−2
`,i = (−1)i

(
k − 2
i

)
(2`− 2k + 3 + 2i)!!

(2`+ 1 + 2i)!! (2`− 2k + 5 + 4i) , (4.83b)

with
(k−2
i

)
denoting the usual binomial coefficient. One can check that the remaining integral

is convergent for any Vm ∈ Vm as long as ` > k − 2, since Q`(y) ∼ y−`−1 when y → +∞.
Interestingly, the expression (4.83a) for the k,mα`’s may be recast into the more compact
form

α
k,m

` = (−1)k
∫ +∞

1
dy Vm(y)Q(−k+2)

` (y) , (4.84)

where Q(−k+2)
` (y) is the (k− 2)-th anti-derivative of Q`(y) that vanishes at y = +∞ with all

its derivatives, i.e.,

Q
(−k+2)
` (y) = −

∫ +∞

y
dz Q`(z)

(y − z)k−3

(k − 3)! , (4.85)

for k > 3, and Q(0)
` (y) ≡ Q`(y).

4.2.5.c) Case k > `+ 3 and m > k − `− 2

Adapting the equations (A.19)–(A.21) from [132] we readily get

Ψ
k,m

L = − n̂L
r

∫ +∞

0
dτ F (k−2)(t− r − τ)

[
β
k,m

` ln
(
τ

2r0

)
+ γ
k,m

`

]
+ O

( 1
r2

)
, (4.86)

with the explicit coefficients

β
k,m

` = 1
2

∫ +∞

1
dxVm(x)

∫ 1

−1
dz (z − x)k−3

(k − 3)! P`(z) , (4.87a)

γ
k,m

` = 1
2

∫ +∞

1
dxVm(x)

∫ 1

−1
dz (z − x)k−3

(k − 3)! P`(z)
[
− ln

(
x− z

2

)
+Hk−3

]
. (4.87b)

4.2.5.d) Case k = 4, ` = 0 and m = 0

So far, we have just extended in a natural way the integration formulae of [132]. However, in
our computation, one extra case must still be dealt with, corresponding to the values k = 4,
` = 0 and m = 0. Because m vanishes, the function V0 ∈ V0 does not go to zero fast enough
when y → +∞ to ensure the convergence of the coefficients (4.87). Therefore, we need to
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go back to the equations (4.34)–(4.35). In fact (as mentioned in the lemma 7.2 of [129]),
it turns out that the 1/r behavior of the equation (4.34) comes only from the first term in
R
(
t−r−s

2
)
. Thus we define

R(r, s) = 1
2rB0

∫ r

0
dxxB−3

∫ +∞

1
dy V0(y)F [s− x(y − 1)] . (4.88)

We can then write the leading term of the asymptotic expansion of the solution at infinity,
for any V0 ∈ V0, as

Ψ
4,0
L=0 = 1

r
FP
B=0

∫ t−r

−∞
dsR

(
t− r − s

2 , s

)
+ O

( 1
r2−ε0

)
. (4.89)

Inserting (4.88) into (4.89) we get

Ψ
4,0
L=0 = 1

2r FP
B=0

∫ t−r

−∞
ds
∫ t−r−s

2

0
dx x

B−3

rB0

∫ +∞

1
dy V0(y)F [s−x(y−1)]+O

( 1
r2−ε0

)
. (4.90)

After the convenient change of variable s → z = t−r−s
2 , we can integrate explicitly over z.

Furthermore, we integrate three times by part the remaining integral over x so as to make
the pole ∝ 1/B appear. Those operations result in

Ψ
4,0
L=0 = FP

B=0

{ 1
2B(B − 1)(B − 2)

(
r

r0

)B∫ +∞

1
ds F (2)(t− rs)(s− 1)B

∫ +∞

1
dy V0(y)

(y + 1)B−2

}

+ O
( 1
r2−ε0

)
. (4.91)

The above equation enables us to integrate all the terms that are not covered by the previous
formulae. Notice that the integral

I0(B) =
∫ +∞

1
dy V0(y)

(y + 1)B−2 (4.92)

in (4.91) diverges when B = 0, since the function V0(y) only behaves like y−1 when y → +∞.
However, this divergence is “protected” by the analytic continuation in B and it is even
possible to perform a Laurent expansion of I0(B) as B goes to zero. To this aim, let us
consider the expansion of V0(y) in powers of the variable y + 1 at infinity. For the actual
source we are interested in, it turns out that

V0(y) = V−1
y + 1 + V−2

(y + 1)2 + V−3
(y + 1)3 +

V log
−3 ln(y + 1)

(y + 1)3 + δV−4(y) , (4.93)

where V−1, V−2, V−3 and V log
−3 are numerical constants, whereas the function δV−4(y) behaves

like some power of ln(y− 1) near y = 1 and is o(1/y3) near y → +∞. Thus, we have at first
order in B

∫ +∞

1
dy δV−4(y)

(y + 1)B−2 =
∫ +∞

1
dy (y + 1)2δV−4(y) [1−B ln(y + 1)] + O

(
B2
)
. (4.94)
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Substituting to V0(y) its expansion (4.93) in the equation (4.92), we find

I0(B) = 22−BV−1
B − 2 + 21−BV−2

B − 1 + 2−BV−3
B

+ 2−BV log
−3

( ln 2
B

+ 1
B2

)

+
∫ +∞

1
dy (y + 1)2δV−4(y) [1−B ln(y + 1)] + O

(
B2
)
. (4.95)

Each time that we have to apply (4.91), we use the above truncated expression for the
integral I0(B), which is readily expanded up to the first order in B, and take the Finite Part
when B = 0 as defined in (4.91).

4.2.5.e) Integrating the instantaneous logarithmic terms

Finally, the quartic source also contains terms that are instantaneous, and thus simpler
than the previous hereditary terms, but involve the logarithm of r. These instantaneous
logarithmic terms are not covered by the solution (4.53). The problem amounts to finding
an explicit representation of

χ
k
L = FP

B=0
�−1

ret

[
n̂L

(
r

r0

)B
ln
(
r

r0

)
r−k F (t− r)

]

= FP
B=0

d
dB

{
�−1

ret

[
n̂L

(
r

r0

)B
r−k F (t− r)

]}
. (4.96)

Notice that for all those terms the scale r0 entering the instantaneous logarithms ln(r/r0) is
the same as the one of our MPM algorithm.

Case k = 2 According to the equation (4.37) we have (for any B ∈ C)

�−1
ret

[
n̂L

(
r

r0

)B
r−2 F (t− r)

]

= 1
K`(B)

∫ +∞

r
ds F (t− s) ∂̂L

[
(s− r)B+` − (s+ r)B+`

r

]
, (4.97)

with K`(B) = 2(2r0)BB(B − 1) · · · (B − `). Let us inject (4.97) into (4.96), apply the
differentiation with respect to B, perform the Laurent expansion when B → 0, and look for
the Finite Part coefficient. This leads to

χ
2
L = (−1)`

4`!

∫ +∞

r
ds F (t− s)

∂̂L

[(s− r)`
(
ln
(
s−r
2r0
)

+H`

)2
− (s+ r)`

(
ln
(
s+r
2r0
)

+H`

)2

r

]
, (4.98)

where H` = ∑`
j=1

1
j is the `-th harmonic number. Note that we have used equation (4.40)

to obtain the result (4.98). An alternative, simpler representation of the right-hand side of
(4.98) involving the Legendre function reads

χ
2
L = − n̂L2r

∫ +∞

r
ds F (t− s)Q`

(s
r

)[
ln
(
s2 − r2

4r2
0

)
+ 2H`

]
. (4.99)
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To prove it, we have verified that the above function satisfies the requested d’Alembertian
equation and has the same leading behavior at infinity as the expression (4.98) of χ2L. As a
result, the 1/r coefficient when r → +∞ with t− r constant can be computed from (4.99),
by inserting the expansion (4.43) of the Legendre function Q`(y) when y → 1+. We get

χ
2
L = n̂L

4r

∫ +∞

0
dτ F (t− r − τ)

[(
ln
(
τ

2r0

)
+ 2H`

)2
− ln2

(
r

r0

)]
+ O

( 1
r2−ε

)
. (4.100)

Case 3 6 k 6 `+ 2 According to the equation (4.44) we have in this case

�−1
ret

[
n̂L

(
r

r0

)B
r−k F (t− r)

]
=
(
r

r0

)B k−3∑

i=0
αi(B) n̂L

F (i)(t− r)
rk−i−2

+ β(B)�−1
ret

[
n̂L

(
r

r0

)B
r−2 F (k−2)(t− r)

]
. (4.101)

The B-dependent coefficients αi(B) and β(B) are given by the equation (4.45). However,
for 3 6 k 6 l + 2, αi(B) does not have any pole when B → 0, and the expansion of β(B)
starts at the first order in B, i.e., β(B) = B + O(B2). As the retarded integral of a source
term whose radial dependence is r−2 (with any power of the logarithm of r) does not have
any pole either, we find

χ
k
L = 1

r

[
αk−3(0) ln

(
r

r0

)
+ α′k−3(0)

]
n̂L F

(k−3)(t− r)

+ β′(0) FP
B=0
�−1

ret

[
n̂L

(
r

r0

)B
r−2 F (k−2)(t− r)

]
+ O

( 1
r2−ε

)
, (4.102)

where α′k−3(0) and β′(0) denote the B-derivative, evaluated at B = 0, of the coefficients
αk−3(B) and β(B). For completeness, let us point out that

αk−3(0) = −2k−3(k − 3)!(`− k + 2)!
(k − 3− `)!(k − 2 + `)! , (4.103a)

α′k−3(0) = αk−3(0)
[
Hk+`−2 −Hk−3 − 2H` +H`−k+2

]
, (4.103b)

with β(0) = 0 and β′(0) = 2αk−3(0). The equation (4.102) is sufficient for our purposes as
we can compute the last term thanks to the identity (4.97).

Case k > `+3 In that case, (4.101) is still valid, but αk−3(B) has now a simple pole while
β(B) has no polar part. Let us then write αk−3(B) = a−1B−1 + a0 + a1B + O(B2), so that
α′k−3(B) = −a−1B−2+a1+O(B); similarly, β(B) = b0+b1B+O(B2) and β′(B) = b1+O(B).
When computing the Finite Part of (4.97) we are allowed to commute the Finite Part
operation with the evaluation of β(B = 0) = b0 and β′(B = 0) = b1 since the retarded
integral of a source term ∝ r−2 is convergent. The solution χkL may then be put in the form

χ
k
L = 1

r

[
a−1
2 ln2

(
r

r0

)
+ a0 ln

(
r

r0

)
+ a1

]
n̂L F

(k−3)(t− r)

+ b1 FP
B=0
�−1

ret

[
n̂L

(
r

r0

)B
r−2 F (k−2)(t− r)

]
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+ b0 FP
B=0
�−1

ret

[
n̂L

(
r

r0

)B
ln
(
r

r0

)
r−2 F (k−2)(t− r)

]
+ O

( 1
r2−ε

)
, (4.104)

where

a−1 = (−1)k+`2k−3(k − 3)!
(k − 3− `)!(k − 2 + `)! , (4.105a)

a0 = a−1
[
Hk−3−` −Hk−3 − 2H` +Hk−2+`

]
, (4.105b)

a1 = a2
0

2a−1
+ a−1

2
[
Hk−3−`,2 −Hk−3,2 +Hk−2+`,2

]
, (4.105c)

together with b0 = 2a−1 and b1 = 2a0; here Hp,2 = ∑p
j=1

1
j2 denotes the second harmonic

number. The formula (4.104) is also sufficient for our purposes, as the asymptotic form of
the last two terms can be computed with the help of the equations (4.97)–(4.98).

4.2.6 Result
With the help of the formulae derived in section 4.2.5, we can now integrate the source
Λµν(4)M3×Mij

to get the 1/r asymptotic value of uµν(4)M3×Mij
. Then we compute asymptotically

vµν(4)M3×Mij
by adapting the prescription of section 4.1.3.b) to the asymptotic case (r → ∞,

t− r constant) as done in [132]. This new result was published in [1] and reads

h00
(4)M3×Mij

= M3n̂ab
r

∫ +∞

0
dτ M (6)

ab

{
−8

3 ln3
(
τ

2r

)
+ 148

21 ln2
(
τ

2r

)
+ 232

21 ln
(
r

r0

)
ln
(
τ

2r

)

+1016
2205 ln

(
τ

2r

)
+ 104

15 ln
(
r

r0

)
+ 16489

1575 −
232π2

63

}
+ O

( 1
r2−ε0

)
,

(4.106a)

h0i
(4)M3×Mij

= M3n̂abi
r

∫ +∞

0
dτ M (6)

ab

{
−26

35 ln2
(
τ

2r

)
− 8

105 ln
(
τ

2r

)
ln
(
r

r0

)

− 6658
11025 ln

(
τ

2r

)
+ 178

315 ln
(
r

r0

)
− 59287

33075 + 8π2

315

}

+ M3n̂a
r

∫ +∞

0
dτ M (6)

ai

{
−8

3 ln3
(
τ

2r

)
+ 562

75 ln2
(
τ

2r

)
+ 832

75 ln
(
τ

2r

)
ln
(
r

r0

)

+ 926
1125 ln

(
τ

2r

)
+ 1154

175 ln
(
r

r0

)
+ 212134

18375 −
832π2

225

}
+ O

( 1
r2−ε0

)
,

(4.106b)

hij(4)M3×Mij
= M3n̂abij

r

∫ +∞

0
dτ M (6)

ij

{
− ln2

(
τ

2r

)
− 4

5 ln
(
τ

2r

)
+ 107

105 ln
(
r

r0

)
− 30868

11025

}

+ 2
M3n̂a(j

r

∫ +∞

0
dτ M (6)

i)a

{234
35 ln2

(
τ

2r

)
+ 104

35 ln
(
τ

2r

)
ln
(
r

r0

)

+58694
3675 ln

(
τ

2r

)
− 598

735 ln
(
r

r0

)
+ 1487812

77175 − 104π2

105

}

+ M3n̂abδij
r

∫ +∞

0
dτ M (6)

ab

{
−48

7 ln2
(
τ

2r

)
− 64

21 ln
(
τ

2r

)
ln
(
r

r0

)
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−7108
441 ln

(
τ

2r

)
+ 1756

2205 ln
(
r

r0

)
− 4508029

231525 + 64π2

63

}

+ M3

r

∫ +∞

0
dτ M (6)

ij

{
−8

3 ln3
(
τ

2r

)
+ 16

3 ln2
(
τ

2r

)
+ 152

15 ln
(
τ

2r

)
ln
(
r

r0

)

−2332
525 ln

(
τ

2r

)
+ 3608

525 ln
(
r

r0

)
+ 286408

55125 −
152π2

45

}
+ O

( 1
r2−ε0

)
.

(4.106c)

We remind again that the neglected terms in O(rε0−2) also include possible powers of the
logarithm of r. The quadrupole moments inside the integrals are evaluated at time t− r− τ .
Note that, at this stage, the logarithms involve both the radial distance r to the source and
the constant r0 coming from the MPM algorithm. As we can see, hµν(4)M3×Mij

contains also
non-local terms: they are third order tails or tails-of-tails-of-tails.

4.3 Going to radiative coordinates and flux derivation

4.3.1 Going to radiative coordinates
We shall now extract the relevant physical information from the metric provided in equation
(4.106) as viewed at future null infinity, in the form of the so-called radiative quadrupole
moment Uij [127] — not to be confused of course with the source type quadrupole moment
Mij . So far, we have performed all our computations in harmonic coordinates xµ. However,
this choice of coordinates has the well-known disadvantage that the coordinate cones t − r
(where r = |xi|) deviate by powers of the logarithm of r from the true space-time character-
istics or light cones. As a result, the 1/r expansion of the metric (as r → +∞ with t− r =
const) involves powers of logarithms. For example, it is clear from (4.106), that (for r → +∞
with t− r = const)

hµν(4)M3×Mij
∼ ln3 r

r
+ O

( 1
r2−ε

)
. (4.107)

We get rid of these logarithms by going to radiative coordinates Xµ for which the associated
coordinate cones T − R (where R = |Xi|) become asymptotically tangent to the true light
cones at future null infinity. As in previous works [132], this is achieved by applying the
coordinate transformation Xµ = xµ + ξµ(x), where ξµ is defined by

ξ0 = −2GM ln
(
r

b0

)
, (4.108a)

ξi = 0 , (4.108b)

with b0 denoting an arbitrary scale that is a priori different from the scale r0. Let us show
that this simple coordinate change is sufficient to remove all the log-terms from our quartic
metric (4.106). Keeping only the 1/R terms and consistently taking into account all the
M3 ×Mij interactions, one can check that the metric in radiative coordinates Hµν

(4)M3×Mij

differs from the metric hµν(4)M3×Mij
in harmonic-coordinates by

Hµν
(4)M3×Mij

= hµν(4)M3×Mij
− ξλ∂λhµν(3)M2×Mij

+ 1
2ξ

λξσ∂2
λσh

µν
(2)M×Mij
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− 1
6ξ

λξσξρ∂3
λσρh

µν
(1)Mij

+ O
( 1
R2

)
, (4.109)

where both sides are evaluated at the same dummy coordinate point, say Xµ. Injecting in
this relation the results found for hµν(4)M3×Mij

, hµν(3)M2×Mij
, hµν(2)M×Mij

and hµν(1)Mij
, with ξµ

given by (4.108), we indeed observe that all the logarithms of R vanish. More precisely, we
obtain

H00
(4)M3×Mij

= M3N̂ab

R
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dτ M (6)
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τ
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,

(4.110a)

H0i
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= M3N̂abi
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τ
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+ O
( 1
R2

)
, (4.110b)

H ij
(4)M3×Mij

= M3N̂abij
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,

(4.110c)

where Ni = Xi/R, and where the quadrupole moments are evaluated at time TR − τ in the
past, with TR = T −R denoting the retarded time in radiative coordinates.
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4.3.2 The radiative multipole moments
By definition, the radiative mass and current multipole moments UL(TR) and VL(TR) are
the multipolar coefficients that parameterize the transverse-tracefree (TT) projection of the
spatial metric in radiative coordinates, at retarded radiative time TR, i.e.,

HTT
ij (U,x) = 4G

c2R
Pijab(N)

+∞∑

`=2

1
c``!

{
NL−2UabL−2(U)− 2`

c(`+ 1)NcL−2εcd(aVb)dL−2(U)
}

+ O
( 1
R2

)
. (4.111)

We have explicitly put back the power of c and G in (4.111). The TT projection operator is
given by Pijkl = PikPjl − 1

2PijPkl where Pij = δij −NiNj represents the projector onto the
plane transverse to the unit direction Ni = Xi/R from the source to the observer.

Adding the contribution of hµν(1)Mij
, hµν(2)M×Mij

, hµν(3)M2×Mij
and hµν(4)M3×Mij

to the radiative
mass quadrupole Uij we obtain

Uij(TR) = M
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+ O
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)
. (4.112)

Equation (4.112) is the final result of this section. We have restored the powers of c to show
that the tails-of-tails-of-tails represent a 4.5PN effect in the waveform. They correspond to
the most difficult interaction between multipole moments to be computed up to the 4.5PN
level.

In order to compute the contributions of the tails to the flux at 4.5PN, we need the
following radiative moments. These radiative multipole moments are computed similarly to
Uij by using the MPM algorithm. Because of the 1/c factors contained in equation (4.122),
these radiative multipole moments have to be known to a lower order and have already been
computed in [133].
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, (4.113a)

Vij(TR) = S
(2)
ij (TR) + GM
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+ G2M2
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Uijkl(TR) = M
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, (4.113c)

Vijk(TR) = S
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, (4.113d)

Uijklm(TR) = M
(5)
ijklm(TR) + GM
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Vijkl(TR) = S
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[
2 ln
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. (4.113f)

4.3.3 Deriving the equation for the flux
In this section, we are going to express the energy flux carried by gravitational waves as a
function of the radiative multipole moments UL and VL. In particular, we will recover at
the Newtonian order the Einstein quadrupole formula (1.25) that we used in chapter 1. The
energy contained in the spacetime is described by the 00 component of the energy-impulsion
pseudo-tensor τµν divided by c2 where τµν is defined in equation (6.8)

τ00 = |g|T 00 + c4

16πGΛ00 , (4.114)

where the first term |g|T 00 describes the energy of the matter and the second term c4

16πGΛ00

describes the energy contained in the gravitational field. Therefore, the energy flux F can
be defined as

F = − d
dt

∫
d3x

τ00

c2 . (4.115)

According to the harmonicity condition we have ∂µτµν = 0. Applying this equation for ν = 0
we get

1
c
∂tτ

00 = −∂iτ0i . (4.116)

Let us integrate over d3x the equation (4.116), and divide it by c:

F = − d
dt

∫
d3x

τ00

c2 = 1
c

∫
d3x∂iτ

0i . (4.117)

By using the Gauss’s theorem we can transform the right-hand side of (4.117) into a 2-
dimensional integral at infinity. Therefore, it becomes relevant to use the radiative coordinate
(T,Xi) and we obtain

F = lim
R→∞

1
c

∫
dΩ N iR2τ0i(Hµν) , (4.118)

where dΩ is a solid angle interval. It turns out that τµν is at least quadratic in Hµν , and
Hµν ∼R→∞ 1/R. Thus, we only need to consider the 1/R2 terms in τ0i, that comes from
the quadratic part of Λ0i noted N0i

Λ0i = N0i(Hαβ, Hαβ) + O
( 1
R3

)
, (4.119)
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where Nµν is defined in equation (4.6). We find after a tedious but straightforward compu-
tation that

F = 1
32πGc

∫
dΩ R2PijklḢTT

ij ḢTT
kl , (4.120)

where Pijkl is the TT projector defined after the equation (4.111) and where the dots denote
time-derivatives. Now, the last step is to inject into (4.120) the equation (4.111) and integrate
over the angle dΩ. This requires the extensive use of the following two formulae

∫
dΩNi1 . . . Ni2p+1 = 0 , (4.121a)

∫
dΩNi1 . . . Ni2p = 4π

(2p+ 1)!!δ{i1i2...δi2p−1i2p} . (4.121b)

We can also use the fact that
∫

dΩN̂L = 0 if ` ≥ 1. Doing so, a lot of simplifications occur,
and the final result turns to be

F =
+∞∑

`=2

G

c2`+1

{ (`+ 1)(`+ 2)
(`− 1)``!(2`+ 1)!!U

(1)
L U(1)

L + 4`(`+ 2)
c2(`− 1)(`+ 1)!(2`+ 1)!!V

(1)
L V(1)

L

}
. (4.122)

We can check that at the Newtonian order, we recover the Einstein quadrupole formula. In
fact, we have at the linear order Uij = M

(2)
ij +O

(
1
c2

)
and F = G

5c5U
(1)
ij U

(1)
ij +O

(
1
c7

)
, so the

equation (1.25) is the Newtonian limit of the equation (4.122).

4.3.4 The flux at 4.5PN for circular orbits
In this section we derive, based on the quartic radiative mass quadrupole moment (4.112),
as well as the higher order radiative multipole moments listed in section 4.3.1 , the complete
4.5PN coefficient of the gravitational-wave energy flux (4.122), in the case of binary systems
of non-spinning compact objects moving on circular orbits. We thus extend the circular
energy flux known at the 3.5PN order [134, 132, 77, 135] by including the 4.5PN coefficient,
while the determination of the 4PN coefficient is left to future work. The test mass limit
of our new 4.5PN coefficient turns out to be in perfect agreement with the prediction from
black hole perturbation theory [136, 137, 138].

The reason why we are able to control the 4.5PN order without knowing the complete
4PN field (since the source moments are known only up to the 3.5PN order [45, 128, 133]7)
is the fact that for half-integral PN orders, i.e., n2PN orders where n is an odd integer, any
instantaneous term is zero in the energy flux for circular orbits. This can be shown by a
simple dimensional argument (see the discussion in Sec. II of [139]).

In addition to tail terms and instantaneous terms, there is a third class of term occurring
in the MPM algorithm called semi-hereditary terms. They are linked to memory effects and
correspond to integral along the past of the source. The time derivative of such memory
effects turns out to be an instantaneous term. Therefore, these memory effects do not arise
at half-integral PN orders, because of the time derivative acting on the radiative moments
in the flux equation (4.122).

Hence, at the 4.5PN order, it is therefore sufficient to control the occurrence of such
non-linear tail interactions between multipole moments. For that purpose, it is very useful

7Cf chapter 8 for preliminary results on the 4PN mass quadrupole moment.
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to apply some “selection rules” that permit one to determine all the possible multipole
interactions occurring at a given PN order [45, 128, 133]. According to those selection rules,
in order to control the 4.5PN order for circular orbits, we need only the contributions of (i)
quadratic multipole tails, of the form M ×ML or M ×SL, with 2 6 ` 6 5 for mass moments
ML and 2 6 ` 6 4 for current moments SL, (ii) the quartic quadrupole tails-of-tails-of-tails
M3 × Mij (with ` = 2 in this case), and (iii) the double product between the quadratic
quadrupole tails M ×Mij and the cubic quadrupole tails-of-tails M2 ×Mij .

The cubic tails-of-tails M2 ×Mij by themselves contribute to the circular energy flux,
starting at the 3PN order [132]. The 4PN order correction will be given in (4.132). Moreover,
from the point (iii) above, we see that the cubic tails-of-tails also contribute at the 4.5PN
order through their interactions with the quadrupole tails M ×Mij .

4.3.4.a) Required quantities

The computation of quadratic tails for circular compact binaries only requires at the 4.5PN
order, the mass quadrupole moment at 3PN order, since 4.5PN means 3PN beyond the
dominant quadrupole tail at the 1.5PN order. In chapter 8, we will explain how to derive
explicit formulae for the source multipole moment, and in particular for the mass quadrupole
moment Mij . At 3PN, this quantity is known for a long time (see e.g., Ref. [45]) and reads

Mij = mν

(
Ax〈ij〉 +B

r2

c2 v
〈ij〉 + 48

7
G2m2ν

c5r
x〈ivj〉

)
+ O

( 1
c7

)
. (4.123)

Here xi and vi denote the orbital separation and relative velocity of the two particles (and
the angular brackets refer to the STF projection). The mass parameters are the total mass
m = m1 +m2 and the symmetric mass ratio ν = m1m2

(m1+m2)2 . A and B are given by

A = 1 + γ

(
− 1

42 −
13
14ν

)
+ γ2

(
− 461

1512 −
18395
1512 ν −

241
1512ν

2
)

+ γ3
(395899

13200

−428
105 ln

(
r

r0

)
+
[3304319

166320 −
44
3 ln

(
r

r′0

)]
ν + 162539

16632 ν
2 + 2351

33264ν
3
)
, (4.124a)

B = 11
21 −

11
7 ν + γ

(1607
378 −

1681
378 ν + 229

378ν
2
)

+ γ2
(
−357761

19800 + 428
105 ln

(
r

r0

)
− 92339

5544 ν + 35759
924 ν2 + 457

5544ν
3
)
. (4.124b)

The harmonic-coordinates PN parameter is γ = Gm
rc2 , where r = |xi| represents the radial

harmonic-coordinates separation.
In order to compute the contribution of the tails to the flux, we also require the following

source multipole moments that have been computed in [140, 45]

Mijk = −ν m∆
{
x〈ijk〉

[
1− γν − γ2

(139
330 + 11923

660 ν + 29
110ν

2
)]

+ r2

c2 x〈ivjk〉

[
1− 2ν − γ

(
−1066

165 + 1433
330 ν −

21
55ν

2
)]

+196
15

r

c
γ2 ν x〈ijvk〉

}
+ O

( 1
c5

)
, (4.125a)
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Sij = −ν m∆
{
εab〈ixj〉avb

[
1 + γ

(67
28 −

2
7ν
)

+ γ2
(13

9 −
4651
252 ν −

1
168ν

2
)]

−188
35

r

c
γ2 ν εab〈ivj〉axb

}
+ O

( 1
c5

)
, (4.125b)

Mijkl = ν m

{
x〈ijkl〉

[
1− 3ν + γ

( 3
110 −

25
22ν + 69

22ν
2
)

(4.125c)

+ γ2
(
−126901

200200 −
58101
2600 ν + 204153

2860 ν2 + 1149
1144ν

3
)]

(4.125d)

+ r2

c2 x〈ijvkl〉

[78
55(1− 5ν + 5ν2)

]
+ O

( 1
c4

)
,

Sijk = ν m

{
εab〈ixjk〉avb

[
1− 3ν + γ

(181
90 −

109
18 ν + 13

18ν
2
)]

+ r2

c2 εab〈ixavjk〉b

[ 7
45
(
1− 5ν + 5ν2

)
+
]}

+ O
( 1
c4

)
, (4.125e)

Mijklm = −ν m∆x〈ijklm〉 (1− 2ν) + O
( 1
c2

)
, (4.125f)

Sijkl = −ν m∆εab〈ixjkl〉avb (1− 2ν) + O
( 1
c2

)
. (4.125g)

Where ∆ is defined as ∆ ≡ (m1 − m2)/(m1 + m2). Notice the two scales entering the
logarithmic terms at the 3PN order in the source mass quadrupole: one is the length scale
r0 coming from the MPM algorithm (see Sec. 4.1), while the other scale r′0 is the logarithmic
barycenter of two gauge constants r′1 and r′2 which appear in the 3PN equations of motion
in harmonic coordinates. These constants are defined later in chapters 6 and 7 (cf equation
(7.10) for the definition of r′0). In order to compute the flux at 4.5PN for circular orbits, we
need the circular equations of motion at 3PN. We will just provide them directly here all
these results will be generalized to 4PN in the chapter 7. The circular equations of motion
at 3PN in the center of mass is

a = −ω2x (4.126)

where ω is the orbital frequency. Its value as a function of γ = Gm
rc2 is given by

ω2 = Gm

r3

{
1 +

(−3 + ν
)
γ +

(
6 + 41

4 ν + ν2
)
γ2

+
(
−10 +

[
−75707

840 + 41
64π

2 + 22 ln
(
r

r′0

)]
ν + 19

2 ν
2 + ν3

)
γ3 + O

( 1
c8

)}
. (4.127)

The latter expression can be inverted in order to express γ as a function of the quasi-invariant
PN parameter x defined by x = (Gmω

c3 )2/3 where ω stands for the orbital frequency, related to
r by (4.127). A scalar such as the circular energy flux is quasi-invariant when expressed in
terms of x, in the sense that it stays invariant under the class of coordinate transformations
that are asymptotically Minkowskian at infinity.

γ = x

{
1 +

(
1− ν

3

)
x+

(
1− 65

12ν
)
x2

+
(

1 +
[
−2203

2520 −
41
192π

2 − 22
3 ln

(
r

r′0

)]
ν + 229

36 ν
2 + 1

81ν
3
)
x3 + O

( 1
c8

)}
. (4.128)
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Here, we do not consider the 2.5PN radiation reaction term in the equations of motion, since
it generates some contribution at the 4PN order but not at the 4.5PN order. To summarize,
there are three arbitrary length scales in the problem: r0, r′0, as well as b0 which originates
from our choice of radiative type coordinate system through (4.108). It is non trivial to
check that these three scales cancel out in the final gauge invariant expression of the energy
flux for circular orbits.

Another important step of the calculation is the reduction of the tail integrals to circular
orbits. As usual, those integrals are to be computed proceeding as if the world-lines in the
integrands obeyed the current circular dynamics, which amounts to neglecting the evolution
in the past by radiation reaction. The influence of the past evolution would be to correct
the dominant 1.5PN tail integral by a 2.5PN radiation reaction term, and would thus be of
order 4PN, but not 4.5PN. From (4.112), we see that, at the 4.5PN order, we also need
some integration formulae involving up to three powers of logarithms. Those are [141]

∫ +∞

0
dτ ln

(
τ

τ0

)
e−iΩτ = i

Ω

(
ln
(
Ωτ0

)
+ γE + iπ2

)
, (4.129a)

∫ +∞

0
dτ ln2

(
τ

τ0

)
e−iΩτ = − i

Ω

[(
ln
(
Ωτ0

)
+ γE + iπ2

)2
+ π2

6

]
, (4.129b)

∫ +∞

0
dτ ln3

(
τ

τ0

)
e−iΩτ = i

Ω

[(
ln
(
Ωτ0

)
+ γE + iπ2

)3

+π2

2

(
ln
(
Ωτ0

)
+ γE + iπ2

)
+ 2ζ(3)

]
. (4.129c)

Here, Ω denotes a multiple of the orbital frequency ω. The constant τ0 is arbitrary, and
related either to r0, r′0 or b0. We denote by γE ' 0.577 the Euler constant, whereas ζ(3) '
1.202 is the Apéry constant (ζ being the usual notation for the Riemann zeta function).

4.3.4.b) Results

In order to compute the tail contributions to the energy flux of circular binaries at 4.5PN,
we need first to inject the source multipole moments (equations (4.123), and (4.125)) into
the radiative multipole moments (equations (4.112) and (4.113)). Then, we need to inject
these results into the equation (4.122), and use the prescription defined by the equations
(4.129) to compute the non-local terms.

As we can see in (4.122), the energy flux depends on the square value of the radiative
multipole moments:

(
U

(1)
L

)2
and

(
V

(1)
L

)2
, therefore in order to keep track of the different

terms, we will decompose the result using the explicit dependence on G of each terms

Ftail = Fquadratic + Fcubic + Fquartic + O
(
G5
)
, (4.130)

where Fquadratic = O(G2), Fcubic = O(G3) and Fquartic = O(G4). The quadratic tails
correspond to multipole interactions. In particular, we need the full 3PN precision for the
mass quadrupole moment, as in (4.123)–(4.124). The higher order moments require some
lower PN precision as provided in the equations (4.125). The result in term of the PN
parameter γ = Gm/(rc2) up to the 4.5PN order reads (factorizing out the Newtonian flux
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as usual)

Fquadratic = 32c5

5G ν2γ5
{

4πγ3/2

+
(
−25663

672 − 125
8 ν

)
πγ5/2 +

(90205
576 + 505747

1512 ν + 12809
756 ν2

)
πγ7/2

+
(9997778801

106444800 −
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105 ln

(
r

r0

)
+
[
−8058312817

2661120 + 287
32 π

2 + 572
3 ln

(
r

r′0

)]
ν

−12433367
13824 ν2 − 1026257

266112 ν
3
)
πγ9/2 + O

( 1
c11

)}
. (4.131)

In contrast to the quadratic tails, the cubic tails-of-tails contribute to integral PN approxima-
tions, starting at the 3PN order [132]. At the next 4PN order they involve the contribution
of the mass quadrupole moment (to be computed with 1PN precision), as well as that of
the mass octupole and current quadrupole moments. Furthermore, at the same level of the
cubic tails, we must include in the flux the square of the quadratic tails. Those various
contributions have all been computed. For their sum, we obtain, extending (5.9) of [132],

Fcubic = 32c5

5G ν2γ5
{(
−116761

3675 + 16
3 π

2 − 1712
105 γE −

856
105 ln(16γ) + 1712

105 ln
(
r

r0

))
γ3

+
(12484937

30870 − 4040
63 π2 + 86456

441 γE + 43228
441 ln(16γ)− 86456

441 ln
(
r

r0

)

+ (1− 4ν)
[670000393

7408800 + 445
42 π

2 − 56731
4410 γE −

56731
8820 ln(16γ)

+133771
4410 ln 2− 47385

1568 ln 3 + 56731
4410 ln

(
r

r0

)])
γ4 + O

( 1
c10

)}
. (4.132)

The constant b0 disappears, as expected. However, Fcubic still contains r0. The point is
that these cubic tails at the 3PN and 4PN orders are not the only contributions to the
full coefficients, since the flux also contains many instantaneous terms (i.e. not tail terms)
that depend on the source multipole moments, and notably the 4PN quadrupole. After the
moments have been replaced by their explicit expressions, those terms should cancel out
the remaining constants r0 in (4.132). Thus, since the 4PN instantaneous contributions are
not known, we shall ignore henceforth the 4PN coefficient in the flux except for the partial
result (4.132).

In addition, there are other tail contributions at the 4PN order (but not at the 4.5PN
order) that we have not yet taken into account. We can mention for instance the 2.5PN
effect corresponding to the past evolution of the binary source due to radiation reaction. It
should affect the computation of the 1.5PN tail integral at the 4PN order. We also recall
the non-local 4PN tail term entering the equations of motion (cf chapter 6), which will have
to be included when performing the order reduction of accelerations coming from the time
derivatives of the Newtonian quadrupole moment. All these contributions will have to be
systematically included in future work.

Let us next focus on the computation of the quartic-order tails in the flux. One con-
tribution is directly due to the quartic tail term at the 4.5PN order in the radiative mass
quadrupole moment (4.112). However, there is another contribution coming from a double
product between the quadratic quadrupole tail at the 1.5PN order and the cubic quadrupole
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tail-of-tail at the 3PN order — recall that the energy flux contains the square of the time
derivative of (4.112). It turns out that important cancellations occur between these two
terms, notably all the logarithms squared and cubed disappear, leaving only a term linear
in the logarithm. The constant b0 cancels out as expected, but a dependence of r0 is left out
at this stage. In the end, we find that

Fquartic = 32c5

5G ν2γ5
{(
−467044

3675 − 3424
105 ln(16γ) + 6848

105 ln
(
r

r0

)
− 6848

105 γE

)
πγ9/2

+ O
( 1
c11

)}
. (4.133)

Finally we are in a position to control the half-integral PN approximations (or so-called
“odd” PN terms) in the energy flux for circular orbits, as they are entirely due to tail
integrals. The “odd” part of the flux in this case is

F
∣∣∣
odd

= Ftail
∣∣∣
odd

=
(
Fquadratic + Fquartic

)∣∣∣
odd

+ O
(
G5
)
. (4.134)

We do not include the cubic tail part (4.132) since it is “even” in the PN sense. Therefore,
we need only to sum up (4.131) and (4.133). We gladly discover that the scale r0 cancels
out from the sum, thereby obtaining

F
∣∣∣
odd

= 32c5

5G ν2γ5
{
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. (4.135)

Still there remains a dependence on the scale r′0 coming from the equations of motion, but
that is merely due to our use of the harmonic-coordinates PN parameter γ. Eliminating γ
in favor of the quasi-invariant frequency-related PN parameter x = (Gmω/c3)2/3 with the
help of (4.127) yields then our final result

F
∣∣∣
odd

= 32c5

5G ν2x5
{

4πx3/2
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)
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( 1
c11

)}
. (4.136)

We insist that the latter odd part of the flux, although it has been computed only from tail
contributions, represents the full PN-odd part of the complete flux, in the case of circular
orbits.
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Our result can be compared with those derived from black hole perturbation theory in the
small mass ratio limit ν → 0. Black hole perturbations have been expanded for this problem
at the 1.5PN order [142], then extended up to the 5.5PN order in [143, 144, 145, 136], and
more recently, using the method [146, 147, 148], up to extremely high PN orders [137, 138].
In this framework, a test-particle follows a geodesic on a Schwarzschild metric and the energy
radiated by this particle is computed through a post-Newtonian expansion. When we take
ν → 0 (i.e. m1/m2 → 0 with constant total mass m = m1 + m2), our new 4.5PN result in
(4.136) perfectly reproduces the latter works (see (3.1) in [136]). Last but not least, more
recently, Messina and Nagar [149] confirmed fully our result within the EOB formalism by
recovering the coefficients of the equation (4.136).

For consistency, let us provide the full known flux up to 4.5PN where only the 4PN
coefficients (which are not yet fully computed) are missing. This result includes not only
the tail effects, but also all the instantaneous terms. Up to 3.5PN, this formula was already
known for a long time and the 4.5PN coefficient (computed above) is therefore a new term
extended this result. In fact, we recall that at 4.5PN, only tail effects contribute to the flux
for circular orbits. Hence we have

Ftotal = 32c5

5G ν2x5
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}
. (4.137)

The computation of the remaining unknown coefficients at the 4PN order is one of the
main goal of the 4.5PN project. The computation of the equation of motions at the 4PN
order in chapter 6 as well as the computation of the source mass quadrupole at the 4PN
order in chapter 8 constitute crucial steps in the determination of these unknown coefficients.
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5 – The matching equation and its
consequences

The goal of this chapter is to derive a matching equation relating, on the one hand, the
far-zone multipolar post-Minkowskian (MPM) expansion done in the previous chapter, and
on the other hand the near-zone post-Newtonian results that we are going to compute in
chapters 6-7-8. This chapter is rather technical, and its main results are the equations (5.40)–
(5.41). The two major consequences of this matching equation are: (i) the derivation of the
multipole source moments entering the MPM algorithm as explained in section 5.4; (ii) the
effect of the tails in the conservative part of the dynamics at the fourth post-Newtonian
order as explained in chapter 6 section 6.1.5.

5.1 Near zone, far zone, buffer zone and notations
As usual, hµν is the deviation of the gothic metric to Minkowski

hµν =
√−ggµν − ηµν . (5.1)

Using hµν , the Einstein equations are

�hαβ = 16πG
c4 ταβ , (5.2)

where � = − 1
c2

∂2

∂t2 +δij ∂
∂xi

∂
∂xj

is the flat d’Alembertian operator, and ταβ is the stress-energy
pseudo tensor

ταβ = |g|Tαβ + c4

16πGΛαβ , (5.3)

where Tαβ is the energy-impulsion tensor of the matter and Λαβ takes into account the non-
linearities of the Einstein equations and is given by equation (4.5). It is important to keep
in mind that hµν has not been post-Newtonian expanded, or multipolar expanded so far and
that the equation (5.2) represents the full Einstein equations without any approximation
or asymptotical expansion and is valid everywhere, outside and inside the source. In the
rest of this chapter, we will denote by an overbar a post-Newtonian expansion, and by M a
multipolar expansion.

The far zone is defined as the region r >> a where a is the size of the source. In the
far zone, the multipolar expansion of the metric noted M(hµν) is well-defined and is equal
to the real value of the exterior metric

hµνext = M(hµν) . (5.4)
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In the near-zone, defined as the region r ≤ λ where λ is the gravitational wavelength, the
post-Newtonian expansion of the metric is well-defined and converges to the actual value of
the metric

hµνint = hµν . (5.5)

If the source is post-Newtonian, then the gravitational wavelength is much larger than the
size of the source: λ � a. Therefore there exists an intermediate region, or buffer region
where a << r << λ, overlapping the near-zone and the far-zone. In this region, both the
multipolar expansion and the post-Newtonian expansion of the metric are well-defined and
converge to the true value

hµνbuffer = M(hµν) = h
µν
. (5.6)

In the buffer-zone, hµν is also equal at its own multipolar expansion: hµν = M(hµν). Simi-
larly, the multipolar expansion of the metric M(hµν) can be post-Newtonian expanded and
M(hµν) = M(hµν). This leads to the matching equation in the buffer zone (for a ≤ r ≤ λ)

M(hµν) = M
(
h
µν
)
. (5.7)

Actually, the equation (5.7) should not be seen as a numerical equality valid solely in the
buffer zone. Instead, the matching equation states that (5.7) as to be seen as functional
identity true everywhere in the sense that the coefficients of the formal expansion of both
side of (5.7) are equal.

The matching equation extends naturally to the energy-impulsion pseudo tensor τµν . As
τµν = 16πG

c4 Λµν when r ≥ a, M (τµν) = c4

16πGM (Λµν). Therefore the matching equation for
the source is

M (Λµν) = M(Λµν) = 16πG
c4 M (τµν) . (5.8)

Indeed, M(Tµν) = 0 since Tµν has a compact support.

5.2 The Finite Part regularization and propagators

5.2.1 Finite Part
The matching procedure that we are going to present heavily relies on the Finite Part
regularization. We have already seen the Finite Part regulator in section 4.1.3.a) in order
to treat ultra-violet divergences. We will extend this regulator to deal with any kind of
divergence.

Let us F (x) be a function smooth everywhere except potentially at r = 0 such that there
exist (p, q) ∈ Z2 such that F (x) = O(rp) when r → 0 and F (x) = O(rq) when r → ∞.
Basically, we do not want F to have exponential divergences at r = 0 or at infinity. We
define the Finite Part of the integral of F to be

I ≡ FP
B

∫
d3x

( |x|
r0

)B
F (x) ≡ I1 + I2 , (5.9)

where

I1 ≡ FP
B

∫

r≤R
d3x

( |x|
r0

)B
F (x) , (5.10)
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I2 ≡ FP
B

∫

r>R
d3x

( |x|
r0

)B
F (x) , (5.11)

where R > 0 is an arbitrary cut-off and B a complex number used to build the Finite Part
procedure.

The computation of I1, is similar to what was done in 4.1.3.a): for <B > −p − 3, the
integral

∫
r≤R d3x

( |x|
r0

)B
F (x) is well-defined and can under some regularity conditions on

F (cf [129]) be extended by analytical continuation to all the complex plane except isolated
poles. Then I1 is defined as the Finite Part (i.e. the zeroth power of B) of the Laurent’s
expansion of the result when B → 0. For I2, the integral

∫
r>R d3x

( |x|
r0

)B
F (x) is well-defined

for <B < −q − 3 and can similarly be extended as a function of B to all the complex plane
except isolated pole by analytical continuation. I2 is also defined as the Finite Part of the
Laurent’s expansion of this result when B → 0. It can be shown that the result I1 + I2 does
not depend on the arbitrary choice of R, but it can depend of course, on r0.

Hence, the Finite Part regularization can deal with both Ultra-Violet (r → 0) and Infra-
Red (r →∞) divergences.

5.2.2 �̃−1
ret, ∆̃−k and Ĩ−1

Let us define here the three operators that we are going to use in this chapter. Here, F
is a function which is smooth everywhere except at the origin where it can diverge. The
behavior of F when r → 0 (and when r → ∞) is always of the order of O(rN ) with
N ∈ Z, which means that there exists a part of the complex plane for B such that

(
r
r0

)B
F

decreases fast enough at r → 0 (or at r → ∞) for the following integrals to be convergent.
The retarded-propagator �−1

ret has already been extensively used in the chapter 4. Let us
introduce here a new notation and define �̃−1

ret as the propagator �−1
ret combined with the

Finite Part regularization procedure:

�̃−1
ret [F ] (t,x) ≡ FP

B
�−1

ret

[(
r

r0

)B
F

]

= − 1
4π FP

B

∫
d3x′

( |x′|
r0

)B F
(
t− |x−x′|c ,x′

)

|x− x′| . (5.12)

Now, let us define a similar propagator in order to invert the Laplacian operator ∆. For
F (t,x) a smooth function decreasing fast enough at spatial infinity, we define ∆−1 as

∆−1F ≡ − 1
4π

∫
d3x′

F (t,x′)
|x− x′| . (5.13)

In order to extend this operator to any smooth function F which behaves as O(rN ) when
r →∞ we use the Finite Part regularization and define

∆̃−1F ≡ FP
B

[(
r

r0

)B
∆−1F

]
. (5.14)
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A similar reasoning than the one done in 4.1.3.a) shows that ∆
[
∆̃−1F

]
= F . We can

generalize the ∆̃−1 operator to ∆̃−k−1 by defining

∆̃−k−1F ≡ FP
B

[
∆−k−1

(
r

r0

)B
F

]
(5.15)

= − 1
4π FP

B

∫
d3x′

( |x′|
r0

)B
|x− x′|2k−1F (t,x′) . (5.16)

Of course, we have ∆k+1
[
∆̃−k−1F

]
= F .

Finally, we are going to define the instantaneous inverse d’Alembertian propagator by

Ĩ−1F ≡
∞∑

k=0

(
∂

c∂t

)2k
∆̃−k−1F . (5.17)

We can show that �
[
Ĩ−1F

]
= F . This definition is motivated by the following formal

expansion

1
� = 1

∆− ∂2
c2∂t2

= ∆−1 1
1− ∂2

c2∂t2 ∆
= ∆−1


1 + ∂2

c2∂t2
∆−1 +

(
∂2

c2∂t2
∆−1

)2

+ . . .


 (5.18)

=
∞∑

k=0

(
∂

c∂t

)2k
∆−k−1 . (5.19)

To conclude this section, note that we can also define the advanced inverse d’Alembertian
operator as

�−1
advF = − 1

4π

∫
d3x′

F
(
t+ |x−x′|

c ,x′
)

|x− x′| . (5.20)

Then it is interesting to notice that while I−1 and �
−1
ret+�−1

adv
2 are two similar-looking operators,

they are not equal (cf [150] for a discussion on the link between these two operators).

5.3 The matching equation

The exterior metric

The exterior metric has been built in chapter 4, through the use of the multipolar-post-
Minkowskian algorithm where we iteratively computed the nth post-Minkowskian order of
the metric in the form of a multipole expansion. At each step n, we first computed �̃−1

ret
[
Λµν(n)

]

(equation (4.23)), then we added a homogeneous solution in order to satisfy the harmonic
gauge condition (equation (4.26)). Besides, the first post-Minkowskian order was given by
a generic homogeneous solution (4.11). Based on that construction, we can easily show (cf
[151] for a formal demonstration) that the exterior metric can be written as

hµνext ≡M(hµν) = �̃−1
ret [M(Λµν)] +

∞∑

`=0
∂̂L

(
X µν
L (t− r/c)

r

)
, (5.21)
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where the functions X µν
L come from the first post-Minkowskian solution as well as the dif-

ferent homogeneous solutions added throughout the MPM algorithm. These functions are
not known yet and the goal of this section is to find an explicit formula for them.

The interior metric

Let us find an equation similar to (5.21) for the interior metric hµνint. First, we are going to
do a post-Newtonian expansion of each quantity entering the integrated Einstein equations
(5.2). Therefore, we expand hµν as

h
µν =

∑

n≥1

1
c2nh

µν
{n}(t,x, ln c) , (5.22)

where the hµν{n} does not contain any factor cn but may contain power of ln c. Similarly, the
pseudo energy-impulsion tensor can be expanded as

τµν =
∑

n≥−1

1
c2n τ

µν
{n}(t,x, ln c) . (5.23)

This expansion starts with a factor c2. This is consistent with the overall factor 16πG
c4 in the

equation (5.2). If we inject the post-Newtonian expansions (5.22)–(5.23) into the integrated
Einstein equations (5.2), and equal each order of c we obtain for n ≥ 2

∆hµν{n} = 16πGτµν{n−2} + ∂2

∂t2
h
µν
{n−1} . (5.24)

The set of equations (5.24) can be solved iteratively order by order in n. Assuming that the
metric is known up to the (n− 1)th post-Newtonian order (i.e. hµν{2}, . . . , h

µν
{n−1} are known),

we can compute the right-hand side of equation (5.24) and find a particular solution hµν{n},part
such that

h
µν
{n},part = 16πG∆̃−1

[
τµν{n−2}

]
+ ∂2

∂t2
∆̃−1

[
h
µν
{n−1}

]
. (5.25)

We can add a homogeneous (with respect to the ∆ operator) solution to hµν{n},part in order to
obtain the most general solution of (5.24). As the post-Newtonian expansion of the metric is
smooth everywhere, the most general homogeneous solution that we can add is of the form

h
µν
{n},hom =

∑

`≥0
Bµν
L{n}(t)x̂L , (5.26)

where Bµν
L{n} are unspecified functions of the variable t. Now, the nth post-Newtonian order

metric hµν{n} is defined as
h
µν
{n} = h

µν
{n},part + h

µν
{n},hom . (5.27)

Now, if we recursively substitute the value of hµν{n−1} in equation (5.25) by hµν{n−1} = h
µν
{n−1},part+

h
µν
{n−1},hom, and take into account that ∆hµν{1} = 16πGτµν{−1} (as h

µν
{0} = 0), we can see that

h
µν
{n} = 16πG

n−1∑

k=0

∂2k

∂t2k
∆̃−k−1

[
τµν{n−2−k}

]
+
∑

`≥0

n−1∑

k=0
B
µν(2k)
L{n−k}∆̃−k [x̂L] . (5.28)
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If we sum (5.28) for all n ≥ 2 and divide each term by c2n, the first term of the right hand
side becomes

∑

k≥0

∂2k

c2k∂t2k
∆̃−k−1 [τµν ] = Ĩ−1 [τµν ] . (5.29)

Therefore, the general solution of the post-Newtonian metric can be written as a particular
solution that is built with the propagator Ĩ−1 and a homogeneous solution which is regular
at r = 0 and can be parametrized by a set of functions that we will call Aµν

L (cf [151] for a
formal proof, and for the relation between Aµν

L and BµνL(n))

hµνint ≡ h̄µν = 16πG
c4 Ĩ−1 [τ̄µν ] +

∞∑

`=0
∂̂L

(
Aµν
L (t− r/c)−Aµν

L (t+ r/c)
2r

)
. (5.30)

The equation (5.30) is analogous to equation (5.21), and the functions Aµν
L are unspecified at

that point, and will be determined thanks to the matching equation. We recall that the bar
on top of an expression means that this expression is expanded when r/c→ 0, for example

Aµν
L (t− r/c)−Aµν

L (t+ r/c)
2r =

∞∑

i=`

∂̂L(r2i)
(2i+ 1)!

Aµν(2i+1)
L

c2i+1 . (5.31)

5.3.1 Two useful lemmas
In order to fully determine the interior and the exterior metrics, we need to determine
explicitly the values of the functions Aµν

L , and X µν
L parametrizing the homogeneous parts of

the metrics. This will be done by using the two following lemmas that are at the core of the
matching procedure

Lemma 1 [150, 152, 153, 151]

�̃−1
ret [M(Λµν)] = Ĩ−1

[
M(Λµν)

]
− 4G
c4
∑

`≥0

(−1)`
`! ∂̂L

(
Rµν
L (t− r/c)−Rµν

L (t+ r/c)
2r

)
, (5.32)

with
Rµν
L = FP

B

∫
d3x

( |x|
r0

)B
x̂L

∫ ∞

1
γ`(z)M(τµν)(t− zx/c,x) , (5.33)

where γ`(z) = (−1)`+1 (2`+1)!!
2``! (z2 − 1)`.

Lemma 2 [151]

M
[
Ĩ−1(τµν)

]
= Ĩ−1 [M(τµν)]− 1

4π
∑

`≥0

(−1)`
`!

(
Fµν
L (t− r/c) + Fµν

L (t+ r/c)
2r

)
, (5.34)

with
Fµν
L = FP

B

∫
d3x

( |x|
r0

)B
x̂L

∫ 1

−1
dzδ`(z)τµν(t− zx/c,x) , (5.35)

where δ`(z) = (2`+1)!!
2(`+1)`! (1− z

2)`.
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Note that γ`(z) = −2δ`(z). These two notations are motivated by the fact that
∫∞

1 dzγ`(z) =∫ 1
−1 dzδ`(z) = 1 (the latter equality is only true by analytical continuation in `).

These two technical lemmas are proven in the appendices of [151], using the properties
of the operators �̃−1

ret and Ĩ−1 as well as the mathematical structure of the multipolar and
post-Newtonian expansions of the field hµν together with mathematical properties of the
Finite Part regularization. We can see that they express somehow the commutators between
the operators Ĩ−1 (and �̃−1

ret) with the multipolar and the post-Newtonian expansions of the
metric. These commutators are then expressed with the functions Rµν

L and Fµν
L which are

integrals of respectively the multipolar and the post-Newtonian expansions of the energy-
impulsion pseudo-tensor τµν .

5.3.2 The matching equation and its consequences

5.3.2.a) The main result

We are now able to fully exploit the matching equation. We recall that this equation reads

M(hµν) = M(hµν) . (5.36)

Injecting (5.21) and (5.30) into (5.36), we obtain that

�̃−1ret [M(Λµν)] +
∞∑

`=0
∂̂L

(
X µν
L (t− r/c)

r

)

= 16πG
c4 M

(
Ĩ−1 [τ̄µν ]

)
+
∞∑

`=0
∂̂L

(
Aµν
L (t− r/c)−Aµν

L (t+ r/c)
2r

)
. (5.37)

Now if we inject (5.32) and (5.34) into (5.37), and simplify the result using the relation (5.8)
we obtain

− 4G
c4
∑

`≥0

(−1)`
`! ∂̂L

(
Rµν
L (t− r/c)−Rµν

L (t+ r/c)
2r

)
+
∞∑

`=0
∂̂L

(
X µν
L (t− r/c)

r

)

= −4G
c4
∑

`≥0

(−1)`
`!

(
Fµν
L (t− r/c) + Fµν

L (t+ r/c)
2r

)

+
∞∑

`=0
∂̂L

(
Aµν
L (t− r/c)−Aµν

L (t+ r/c)
2r

)
. (5.38)

Therefore

Aµν
L = −4G

c4
(−1)`
`! [Fµν

L + Rµν
L ] , (5.39a)

X µν
L = −4G

c4
(−1)`
`! Fµν

L . (5.39b)

This enables us to provide the final result of this section, that corresponds to the full ex-
pression of the interior and exterior metrics, taking into account the matching equation.
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Theorem The exterior metric hµνext and the interior metric hµνint are given by

hµνext ≡M(hµν) = �̃−1
ret [M(Λµν)]− 4G

c4

∞∑

`=0
∂̂L

(
Fµν
L (t− r/c)

r

)
, (5.40)

hµνint ≡ h̄µν = Ĩ−1 [τ̄µν ]− 4G
c4

∞∑

`=0
∂̂L

(
Fµν
L (t− r/c)− Fµν

L (t+ r/c)
2r

)

− 4G
c4

∞∑

`=0
∂̂L

(
Rµν
L (t− r/c)−Rµν

L (t+ r/c)
2r

)
, (5.41)

with Rµν
L and Fµν

L given by the equations (5.33) and (5.35).

5.3.2.b) Interpretation

The second term of the right-hand side of (5.40) will lead to explicit formulae to compute
the source multipole moments {IL, JL,WL, XL, YL, ZL} used in the previous chapter 4. We
detail this in section 5.4.

Regarding the interior metric, we see that it is constructed using the instantaneous
propagator Ĩ−1 together with two homogeneous terms depending on Fµν

L and Rµν
L . These

two terms are associated with the radiation reactions. In particular, Fµν
L corresponds to

the dissipative radiative effects due to the emission of gravitational waves. This term starts
at 2.5PN (and then contributes at 3.5PN, 4.5PN etc.) in the equations of motion. The
second term including the functions Rµν

L depends on the multipole expansion of the field,
and therefore is related to the exterior field. In fact, this term corresponds to the effect of
the non-local tails being back-scattered into the source. This effect appears at 4PN and will
have to be taken into account in the conservative part of the equations of motion at 4PN (cf
section 6.1.5).

It can be shown (cf [151]) that the radiation reactions terms Fµν
L can be directly computed

if we use the retarded propagator �̃−1
ret (as defined in equation the (5.12)) instead of the

instantaneous one Ĩ−1:

hµνint ≡ h̄µν = �̃−1
ret [τ̄ ]− 4G

c4

∞∑

`=0
∂̂L

(
Rµν
L (t− r/c)−Rµν

L (t+ r/c)
2r

)
. (5.42)

In practice, the first term of equation (5.42) is computed through the potentials (such as V ,
Vi, Wij etc.) that we will later introduce to parametrize the PN metric (cf equations (6.13)
and (6.14)), while the second term has to be computed separately as done in section 6.1.5.

5.4 Explicit expressions of the source moment multipoles
In this section, we show how the matching equation (5.40) lead to explicit formulae for the
multipole source moments {IL, JL,WL, XL, YL, ZL}. The following proof is done in full detail
in [153], and we just show the main steps here in order to provide a general understanding
of the derivation of that result. Let us call uµν the first term of (5.40)

uµν ≡ ˜�−1
ret [M(Λµν)] . (5.43)
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As hµν is divergenceless, so is M(hµν) and therefore

∂νu
µν = 4G

c4 ∂ν

[ ∞∑

`=0
∂̂L

(
Fµν
L (t− r/c)

r

)]
, (5.44)

with Fµν
L given by equation (5.35). Using the properties of the Finite Part regularization

together with (5.35), one can show that (5.44) leads to [153]

∂νu
µν = 4G

c4 ∂ν

[ ∞∑

`=0
∂̂L

(
GµνL (t− r/c)

r

)]
, (5.45)

with

GµL(u) = FP
B

∫
d3xB

( |x|
r0

)B
|x|−2xix̂L

∫ +1

−1
dxδl(z)τµi(x, u+ z|x|/c) . (5.46)

Now that the divergence of uµν has been decomposed multipolarly using the functions GµL we
can use the trick done in equation (4.26) to build a homogeneous solution (for the d’Alembert
operator) that kills the divergence of uµν . Therefore we define vµν such that �vµν = 0 and
∂µv

µν = −∂µuµν [153]:

v00 = 4G
c4

{
− c
r
G0(−1) + ∂a

(1
r

[
cG0(−1)

a + c2Ga(−2) − Gbab
])}

, (5.47a)

v0i = 4G
c4

{
−1
r

[
cGi(−1) − 1

c
Ga(1)
ai

]
+ c

2∂a
(1
r

[
Gi(−1)
a − Ga(−1)

i

])

−
∑

`≥2

(−1)`
`! ∂L−1

(1
r
G0
iL−1

)
 , (5.47b)

vij = 4G
c4





1
r
G(i

j) + 2
∑

`≥3

(−1)`
`! ∂L−3

( 1
rc2G

a(2)
ijaL−3

)

+
∑

`≥2

(−1)`
`!

[
∂L−2

( 1
rc

G0(1)
ijL−2

)
+ ∂aL−2

(1
r
GaijL−2

)
+ 2δij∂L−1

(1
r
GaaL−1

)

−4∂L−2(i

(1
r
Gaj)aL−2

)
− 2∂L−1

(1
r
G(i

j)L−1

)]}
. (5.47c)

Now if we define
Ghµνpart,1 ≡ −

4G
c4

∞∑

`=0
∂̂L

(
Fµν
L (t− r/c)

r

)
− vµν , (5.48)

then we have

�hµνpart,1 = 0 , (5.49a)
∂µh

µν
part,1 = 0 , (5.49b)

which means that hµνpart,1 can be decomposed with a set of unspecified functions {ĨL, J̃L, W̃L,

X̃L, ỸL, Z̃L} in a similar way than what is done in equation (4.11). Now, it can be shown that
if we start our MPM algorithm with hµνpart,1, then we obtain exactly the same result than the
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general MPM solution described in section 4.1.3. Said differently: {ĨL, J̃L, W̃L, X̃L, ỸL, Z̃L} =
{IL, JL,WL, XL, YL, ZL}. By injecting (5.46) into (5.47) and then (5.47) into (5.48), we can
obtain an explicit expression for hpart,1. By decomposing this explicit expression into the set
of multipoles {IL, JL,WL, XL, YL, ZL} (this requires several algebra steps detailed in [153]),
we obtain the following expressions

IL(u) = FP
B

∫
d3x

( |x|
r0

)B ∫ 1

−1
dz
{
δ`x̂LΣ− 4(2`+ 1)

c2(`+ 1)(2`+ 3)δ`+1x̂iLΣ(1)
i

+ 2(2`+ 1)
c4(`+ 1)(`+ 2)(2`+ 5)δ`+2x̂ijLΣ(2)

ij

}
, (5.50a)

JL(u) = FP
B

∫
d3x

( |x|
r0

)B ∫ 1

−1
dz εab〈i`

{
δ`x̂L−1〉aΣb −

2`+ 1
c2(`+ 2)(2`+ 3)δ`+1x̂L−1〉acΣ

(1)
bc

}
,

(5.50b)

WL(u) = FP
B

∫
d3x

( |x|
r0

)B ∫ 1

−1
dz
{ 2`+ 1

(`+ 1)(2`+ 3)δ`+1x̂iLΣi

− 2`+ 1
2c2(`+ 1)(`+ 2)(2`+ 5)δ`+2x̂ijLΣ(1)

ij

}
, (5.50c)

XL(u) = FP
B

∫
d3x

( |x|
r0

)B ∫ 1

−1
dz
{ 2`+ 1

2(`+ 1)(`+ 2)(2`+ 5)δ`+2x̂ijLΣij

}
, (5.50d)

YL(u) = FP
B

∫
d3x

( |x|
r0

)B ∫ 1

−1
dz
{
−δ`x̂LΣii + 3(2`+ 1)

(`+ 1)(2`+ 3)δ`+1x̂iLΣ(1)
i

− 2(2`+ 1)
c2(`+ 1)(`+ 2)(2`+ 5)δ`+2x̂ijLΣ(2)

ij

}
, (5.50e)

ZL(u) = FP
B

∫
d3x

( |x|
r0

)B ∫ 1

−1
dz εab〈i`

{
− 2`+ 1

(`+ 2)(2`+ 3)δ`+1x̂L−1〉bcΣac

}
, (5.50f)

where

Σ = τ00 + τ ii

c2 , (5.51a)

Σi = τ0i

c
, (5.51b)

Σij = τ ij , (5.51c)

and where we recall that δ`(z) = (2`+1)!!
2(`+1)`!(1 − z

2)`. The functions Σ, Σi and Σij are to be
evaluated at the spatial point x and at time u+ zr/c (as done in (5.46) for τ̄µi).



6 – Ambiguity-free equations of
motion at the 4PN order

The goal of this chapter is to obtain the conservative part of the 4PN dynamics for spinless
compact binary systems using a Fokker Lagrangian, in harmonic coordinates. This chapter
is divided in two parts.

1. The section 6.1 explains the method used by Bernard, Blanchet, Bohé, Faye and
Marsat, that provided a first result in 2016 [92] parametrized by an ambiguity pa-
rameter α, that was adjusted in order to agree with the conserved energy of circular
orbit computing by self-force in the small mass ratio limit. As we are going to explain
in section 6.1.5, the origin of this ambiguity came from the normalization of the log-
arithm parametrizing the tails effect contributing in the conservative dynamics at the
4PN order. This result however, was not in agreement with the computation done by
Damour-Jaranowski-Schäfer [90], which also contained a similar ambiguity parameter
C that was adjusted using the conserved energy of circular orbit in the small mass
ratio limit. Besides, this result does not agree with the periastron advance predicted
by self-force in the limit of circular orbit, and for small mass ratio [94], while the result
from Damour-Jaranowski-Schäfer [90] is in perfect agreement.

However, it has been shown [93, 154] that the discrepancy between these two results
can be parametrized by only two coefficients δ1 and δ2 (depending on the value of α),
and that this discrepancy was probably due to the choice of the regularization for the
IR divergences.

2. In the section 6.2 — based on [93, 94, 2]— we see how the systematic use of dimensional
regularization cures that discrepancy. In 6.2.1, we first tackle the difference between
the Finite Part regularization and dimensional regularization to cure the IR divergences
of the instantaneous terms. Then in 6.2.2, we compute the effect of the tails in the
conservative part of the dynamics, in dimensional regularization. Adding all these
contributions [94, 2], we obtain from first principles the 4PN dynamics —i.e. without
fitting some coefficients to results coming from other frameworks.

The particular contribution of this thesis to the results derived in this chapter corresponds
to the computation in d dimensions of the tails presented in the section 6.2.2 determining
the last ambiguity.

85
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6.1 Presentation of the Fokker Lagrangian method

6.1.1 The method
In this section, we are going to construct a generalized Lagrangian L that depends on the
positions yA(t) and the velocities vA(t) of the two bodies (A = 1 or A = 2) as well as on the
accelerations and higher derivatives of the accelerations (aA(t), bA(t) ≡ daA

dt , . . . ), yielding
to an action S =

∫
dtL such that the generalized Euler-Lagrange equations of motion

δS

δyA
= 0⇔ ∂L

∂yA
− d

dt

(
∂L

∂vA

)
+ d2

dt2
(
∂L

∂aA

)
− d3

dt3
(
∂L

∂bA

)
+ · · · = 0 , (6.1)

correspond to the conservative equations of motion at the 4th post-Newtonian order. The
equation (6.1) will not contain any dissipative terms, because it comes from a Lagrangian
method. Such terms (appearing at 2.5PN, 3.5PN and for non-local terms at 4PN) will have
to be added by hand to the final equations of motion.

To obtain such a result, L. Bernard, L. Blanchet, A. Bohé, G. Faye and S. Marsat used
a Fokker Lagrangian method [92] that we are going to present.

To do so, we consider the following action

S = Sg + Sm , (6.2)

where Sg is the Landau-Lifshitz form of the Einstein-Hilbert action containing a gauge-fixing
term

Sg = c3

16πG

∫
d4x
√−g

[
gµν

(
ΓρµλΓλνρ − ΓρµνΓλρλ

)
− 1

2gµνΓµΓν
]
. (6.3)

Here, Γµ ≡ gαβΓµαβ and −1
2gµνΓµΓν is a gauge-fixing term in order to place ourself in

harmonic coordinates. Sm is the usual matter action for 2 point-particles (A ∈ {1, 2})

Sm = −
∑

A

mAc
2
∫

dt
√
−(gµν)A vµAvνA/c2 , (6.4)

where vµA = (c,vA) and yµA = (ct,yA) and where (gµν)A means that the metric is evaluated at
the location of the particle A (which will required a UV regularization technique as described
in 6.1.2). As we can see in the equation (6.3), the gravitational part of the action is of the
form

Sg =
∫

dtLg =
∫

dtd3xLg , (6.5)

where Lg is called a Lagrangian density.
As done in chapter 4, we define hµν to be the deviation of the gothic metric to Minkowski

hµν ≡ √−ggµν − ηµν . (6.6)

Then the generalized Euler-Lagrange equations of (6.3)–(6.4) (i.e. δS = 0) yield

�hαβ = 16πG
c4 ταβ , (6.7a)

∂µh
µν = 0 . (6.7b)
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where � = − 1
c2

∂2

∂t2 +δij ∂
∂xi

∂
∂xj

is the flat d’Alembertian operator, and ταβ is the stress-energy
pseudo tensor

ταβ = |g|Tαβ + c4

16πGΛαβ(hµν) , (6.8)

where
Tµν = 2√−g

δSm
δgµν

, (6.9)

corresponds to the stress-energy tensor of the matter in the space-time and Λαβ(hµν) cor-
responds to the non-linearities of the Einstein equations and describes the stress-energy
contained in the gravitational field.

To define the Fokker Lagrangian, we first solve (6.7) in order to express the metric hαβ as
a functional of the particle positions, velocities, accelerations and higher-derivatives of the
accelerations

hµν = hµν(yA(t),vA(t),aA(t), bA(t), . . . ) . (6.10)

Once this is done, we can inject (6.10) into the gravitational and matter parts of the ac-
tion (6.3)–(6.4) in order to obtain an action that depends only on the positions, velocities,
accelerations (and higher time-derivatives of the accelerations) of the particles

SF [yB(t),vB(t), · · · ] =
∫

dt
∫

d3xLg [x;yB(t),vB(t), · · · ]

−
∑

A

mAc
2
∫

dt
√
−gµν (yA(t);yB(t),vB(t), · · · ) vµAvνA/c2 . (6.11)

Then, the Euler-Lagrange equations of (6.11) provide the expected equations of motion.

6.1.1.a) The n+2 method

As we want to obtain the post-Newtonian expansion of the equations of motion, we are going
to inject into the Fokker Lagrangian a post-Newtonian expansion of a solution of the metric
(6.10). Before doing so, we should ask ourself whether this approach is legitimate, and at
which post-Newtonian order we should compute the metric (6.10) in order to obtain the
equations of motion at the 4th post-Newtonian order. Both of these questions are answered
in details in [92].

Indeed, as discussed in [92], we are allowed to inject a post-Newtonian solution of the
metric hµν in order to obtain the Fokker Lagrangian. By doing so, we get a post-Newtonian
expansion of the Lagrangian density, which we have to integrate over the whole space. This
leads to infra-red divergences that will have to be cured by a regularization scheme (cf section
6.1.4). This procedure yields the correct equations of motion as long as we stay under the
5.5 post-Newtonian order.

Now, let us assume we want to compute the equations of motion at the nth post-
Newtonian order (with n < 5.5), at which post-Newtonian order should we compute the
metric hαβ that we inject in equations (6.3)–(6.4)? The post-Newtonian metric is composed
of local terms that can be derived directly by solving the Einstein equations (6.7), and a
non-local term called a tail term which is computed by using the matching equation. This
tail term will be computed in details in section 6.1.5, and we will focus in this section on the
instantaneous terms only. To state at which PN order we need to compute the instantaneous
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part of the metric, it is convenient to define h00ii ≡ h
00 + h

ii. As shown in [92], thanks to
non-trivial cancellations between the gravitational part and the matter part of the action, in
order to obtain the equations of motion at nPN, we have to inject the metric in the Fokker
Lagrangian at

h = (h00ii
, h

0i
, h

ij) up to order





(
1/cn+2, 1/cn+1, 1/cn+2) when n is even ,
(
1/cn+1, 1/cn+2, 1/cn+1) when n is odd .

(6.12)

For n = 4, such a metric can be parametrized at this order by a set of potentials:

h
00ii = − 4

c2V −
8
c4V

2 − 8
c6

[
2X̂ + V Ŵ + 4

3V
3
]

+ O
( 1
c8

)
, (6.13a)

h
0i = − 4

c3Vi −
4
c5

(
2R̂i + 3V Vi

)
+ O

( 1
c7

)
, (6.13b)

h
ij = − 4

c4

(
Ŵij −

1
2δijŴ

)
− 16
c6

(
Ẑij −

1
2δijẐ

)
+ O

( 1
c8

)
. (6.13c)

Where Ŵ ≡ Ŵii and Ẑ ≡ Ẑii, and where the potentials V , X̂, Vi, R̂i , Ŵij , and Ẑij are
defined by

�V = −4πGσ , (6.14a)

�X̂ = −4πGV σii + Ŵij ∂
2
ijV + 2Vi ∂t∂iV + V ∂2

t V + 3
2 (∂tV )2 − 2∂iVj ∂jVi , (6.14b)

�Vi = −4πGσi , (6.14c)

�R̂i = −4πG
[
V σi − Vi σ

]
− 2 ∂kV ∂iVk −

3
2 ∂tV ∂iV , (6.14d)

�Ŵij = −4πG
(
σij − δij σkk

)
− ∂iV ∂jV , (6.14e)

�Ẑij = −4πGV
(
σij − δij σkk

)
− 2 ∂tV(i ∂j)V + ∂iVk ∂jVk + ∂kVi ∂kVj

− 2∂kV(i ∂j)Vk − δij ∂kVm (∂kVm − ∂mVk)−
3
4 δij (∂tV )2 . (6.14f)

where
σ ≡ T 00 + T ii

c2 , σi ≡
T 0i

c
, σij ≡ T ij . (6.15)

As we are not allowed to replace the accelerations by their values in the Fokker La-
grangian, the computations of the potentials V , X̂, Vi, R̂i , Ŵij , and Ẑij should be done
without replacing the value of the accelerations. This will not be the case for the potentials
used in the chapter 8, where we will automatically replace the accelerations by their explicit
values.

6.1.1.b) Summary

Let us summarize the different steps required in order to obtain a Lagrangian giving the
equations of motion at the 4th post-Newtonian order:
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1. Compute the instantaneous metric at the h = (h00ii
, h

0i
, h

ij) =
(
1/c6, 1/c5, 1/c6) order

by computing the different potentials V , Vi etc. This metric is parametrized by the
trajectory of the particles (yA(t),vA(t),aA(t), bA(t), . . . ). The chapter 8 will provide
more details on how these potentials are computed. Let us just point out here that
these potentials were already known at the required PN order.

2. Inject the post-Newtonian metric into the gravitational and the matter parts of the
action S = Sg + Sm defined in equation (6.3)–(6.4).

3. Integrate over d3x the Lagrangian density L obtained in order to get the Fokker La-
grangian L. This integration requires a regularization scheme for the ultra-violet di-
vergences due to the point particle approximation (cf section 6.1.2) as well as another
regularization scheme for the infra-red divergences due to the post-Newtonian expan-
sion of the metric (cf section 6.1.4).

4. Compute separately the terms due to the non-local part of the metric (tails). This is
done in section (6.1.5).

6.1.2 UV regularization using Hadamard partie finie regularization

6.1.2.a) Point particle approximation and UV divergences

The ultra-violet (UV) divergences that appear in this section are due to the point-particle
approximation done in our formalism. In fact, the two compact objects are described by
Dirac delta functions in the energy-impulsion tensor Tµν

T 00 = µ̃1δ
(3)[x− y1(t)

]
+ µ̃2δ

(3)[x− y2(t)
]
, (6.16a)

T 0i = µ1δ
(3)[x− y1(t)

]
vi1 + µ2δ

(3)[x− y2(t)
]
vi2 , (6.16b)

T ij = µ1δ
(3)[x− y1(t)

]
vi1v

j
1 + µ2δ

(3)[x− y2(t)
]
vi2v

j
2 . (6.16c)

where

µA = mAc
1√

−(gµν)AvµAvνA

1√
−(g)A

, (6.17)

µ̃A =
(

1 + vAivAi
c2

)
µA , (6.18)

where vµA = (c,vA), where (gµν)A is the metric evaluated at the point A and where (g)A is the
determinant of the metric at the point A. At the Newtonian order, we have µ1 = µ̃1 = m1
and µ2 = µ̃2 = m2. This point-particle energy-tensor impulsion generates divergences that
would not appear if we modeled our compact bodies by extended spheres.

To get more insight on this UV divergence, let us consider the case of Newtonian gravity.
In classical physics, the gravitational potential UN created by two masses m1 and m2 with
position y1 and y2 is given by

UN (x) = m1
|x− y1|

+ m2
|x− y2|

, (6.19)
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and the acceleration of the particle 1 is given by

a1 =
[∇UN

]
x=y1

. (6.20)

Injecting, (6.19) into (6.20), we see that the first term of (6.19) leads to a divergence due
to the point-particle approximation. It is solved by saying that the particle 1 does not feel
its own field (due to the action-reaction principle) so only the second term of (6.19) should
be injected in (6.20). Said otherwise, if we have taken extended fluids balls to model our
two bodies, because of the third law of Newton, the overall contribution of the potential
generated by the first body on its own acceleration would exactly cancel out: the body m1
does not feel its own field (cf for example the discussions made on that matter in the book
[155]).

In general relativity, the non-linearities of the theory prevent us from such an interpre-
tation. In fact, at the Newtonian order, the potential V is the same as the Newtonian
gravitational potential UN . However, as can be seen in equation (6.32), the metric will de-
pends on higher power of V such as V 2. V 2 will contains different terms diverging at the
point 1, and in particular crossed-term ∼ m1m2

|x−y1||x−y2| that corresponds to the interaction
between the fields generated by each bodies. It is therefore non-trivial to compute how such
interaction terms affect the motion of the first body, and this is the reason why we need
regularization techniques that will provide explicit formulae to deal with these divergences.

In the case of the Fokker Lagrangian, these divergences appear when we perform the spa-
tial integration of the density Lagrangian in order to obtain the ordinary Fokker Lagrangian.
I.e. the integral

LF (t) =
∫

d3xL(t,x) , (6.21)

diverges when x → yA. Note that these divergences also appear in the matter part of the
action since the matter part contains terms of the form F (x)δ(3)(x − yA), where F (x) is
divergent in yA.

6.1.2.b) Hadamard partie finie regularization

In this section, we present a first regularization technique, called the Hadamard partie finie
regularization. Let us assume that we want to integrate the function F (x) which is a smooth
and well-defined function everywhere except at the positions of the two particles y1 and y2
where it may show poles, and let us compute

I = Pf
∫
F (x)d3x , (6.22)

where Pf denotes the Hadamard partie finie regularization that we are going to define. We
start by defining the partie finie of the function F at the particle 1. For that, we first perform
a Laurent-expansion of F around x = y1. When r1 → 0, we have for all N ∈ N

F (x) =
∑

p0≤p≤N
rp1 f

1
p(n1) + o(rN1 ) , (6.23)

where r1 ≡ |x − y1| (and r2 ≡ |x − y2|) and where n1 is the unit vector n1 ≡ x−y1
r1

. From
(6.23), we first define the partie finie of F at the particle 1 as the angular average

(F )1 ≡
∫ dΩ1

4π f
1

0(n1) , (6.24)
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where dΩ1 is the solid angle element on the unit sphere centered on y1. Now, we are going
to define the partie finie of the divergent integral of F . For that, we integrate F on the whole
space1 R3 except to balls B1(s) and B2(s) centered on y1 and y2 with a radius s. Then we
add to that integral different terms (cf equation (6.25)) that depend on the partie finie of
F at the point y1 and y2 such that the limit s → 0 of the whole sum is finite. Hence the
Hadamard partie finie of the integral of F is defined as

Pfs1,s2
∫
d3xF (x) ≡ lim

s→0

{∫

R3\B1(s)∪B2(s)
d3xF (x)

+ 4π
∑

p+3<0

sp+3

p+ 3

(
F

rp1

)

1
+ 4π ln

(
s

s1

) (
r3

1F
)
1 + 1↔ 2

}
.(6.25)

One can check that this quantity is indeed finite. The two constants s1 and s2 are arbitrary
scales that have been introduced and that reflects some arbitrariness in the choice of the
shape of B1 and B2. In fact, we could check that changing the shape of these two balls
would correspond to a redefinition of s1 and s2.

We have to extend the equations (6.23)–(6.25) in the case where F contains logarithmic
divergences when x→ y1. For example, if F admits the following Laurent-expansion:

F (x) =
∑

p0≤p≤N
rp1

[
f
1
p(n1) + ln r1 f̃

1
p(n1)

]
+ o(rN1 ) . (6.26)

In that case we still apply the prescription (6.25) with the following value for (F )1:

(F )1 ≡
∫ dΩ1

4π

[
f
1

0(n1) + ln r′1 f̃
1

0(n1)
]
, (6.27)

where we have introduced a new constant r′1. Therefore, the final result of (6.22) might
depends on the constants s1, s2, r′1 and r′2.

The partie finie (Pf) regularization is a very powerful tool that has been used to deal
with UV divergences up to 2PN. Starting at 3PN this technique is not powerful enough
and leads to incomplete results. One of the main limitation of this technique is that the
equation (6.24) explicitly breaks the Lorentz invariance and has to be amended in order to
be compatible with Lorentz invariance [74]. For example, the 3PN equations of motion were
first computed using this regularization technique ([72, 73, 74, 75]), and the result obtained
contained an ambiguity parameter called λ. The computation of this ambiguity parameter
from first principle was achieved in [156] by introducing a more powerful regularization
technique called dimensional regularization.

6.1.3 UV regularization using dimensional regularization

6.1.3.a) General principle

Dimensional regularization is a technique that has been extensively used in quantum field
theory for a long time and that has been introduced in the case of post-Newtonian theory in
the 2000s. The principle of dimensional regularization is to compute all our quantities in d+1

1We assume that the integral is convergent when r →∞ in this section. If it is not the case, then an extra
regularization technique to cure infra-red divergences has to be performed as explained in section 6.1.4.
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dimensions (instead of 3+1 in classical GR), where d is a complex number. All the computed
quantities are therefore finite and well-defined for d belonging to a certain part of the complex
plane, and these quantities can be extended by analytical continuation to the whole complex
plane d ∈ C except for some isolated poles. They are then two possibilities: (i) either we
express a physical observable as a function of another observable and no divergence should
occur when we take d→ 3, (ii) or we express intermediate results (such as the equations of
motion) which are gauge-dependent and divergences in 1/ε (where ε ≡ d − 3) might occur.
In that latter case, we can either keep the 1/ε poles in our intermediate result (knowing that
they will cancel out in the final gauge-invariant result) or absorb it through a redefinition of
the word-lines of the particles called a shift.

6.1.3.b) The Einstein equations in d dimensions

We can derive the Einstein equations in d dimensions by considering the Einstein-Hilbert
action in d dimensions with a gauge-fixing term

S = c3

16πGN

∫ dd+1x

`d−3
0

√−g
[
gµν

(
ΓρµλΓλνρ − ΓρµνΓλρλ

)
− 1

2gµνΓµΓν
]

+ Sm , (6.28)

where `0 is an arbitrary constant length-scale that we introduce, and GN denotes Newton
constant in 3 dimensions. We can absorb the factor `d−3

0 into Newton constant and define G
the Newton constant in d dimensions to be G ≡ GN`d−3

0 . The matter action in d dimensions
is still the usual matter action given by

Sm = −
∑

A

mAc
2
∫

dt
√
−(gµν)A vµAvνA/c2 , (6.29)

In that case, the Einstein equations in harmonic coordinates become [156, 17]:

�hµν = 16πG
c4 |g|Tµν + Λµν , (6.30)

where the only differences between (6.7) and (6.30) are (i) G that is now defined as G =
GN`

d−3
0 where GN is the Newton constant in 3 dimensions and (ii) the expression of Λµν

that in d dimensions reads:

Λαβ =− hµν∂2
µνh

αβ + ∂µh
αν∂νh

βµ + 1
2g

αβgµν∂λh
µτ∂τh

νλ

− gαµgντ∂λhβτ∂µhνλ − gβµgντ∂λhατ∂µhνλ + gµνg
λτ∂λh

αµ∂τh
βν

+ 1
4(2gαµgβν − gαβgµν)

(
gλτgεπ −

1
d− 1gτεgλπ

)
∂µh

λπ∂νh
τε . (6.31)

Notice the factor 1
d−1 which is the only difference between the equation (6.31) and (4.5).

Therefore we need to extend the expression of the metric (6.13) as well as the definition
of the potentials (6.14) in d dimensions. The result has been computed in [156]. Defining
h

00ii ≡ 2 (d−2)h00+hii

d−1 , it reads

h
00ii = − 4

c2V −
4
c4

[
d− 1
d− 2V

2 − 2d− 3
d− 2K

]
(6.32a)



6.1 Presentation of the Fokker Lagrangian method 93

− 8
c6

[
2X̂ + V Ŵ + 1

3

(
d− 1
d− 2

)2
V 3 − 2d− 3

d− 1ViVi − 2(d− 1)(d− 3)
(d− 2)2 KV

]
+ O (8) ,

h
0i = − 4

c3Vi −
4
c5

(
2R̂i + d− 1

d− 2V Vi
)

+ O (7) , (6.32b)

h
ij = − 4

c4

(
Ŵij −

1
2δijŴ

)
− 16
c6

(
Ẑij −

1
2δijẐ

)
+ O (8) . (6.32c)

where the potentials in d dimensions are defined by

�V = −4πGσ , (6.33a)
�K = −4πGσ V , (6.33b)

�X̂ = −4πG
[
V σii
d− 2 + 2(d− 3)

d− 1 σiVi +
(
d− 3
d− 2

)2
σ

(
V 2

2 +K

)]
+ Ŵij ∂

2
ijV

+ 2Vi ∂t∂iV + d− 1
2(d− 2)V ∂

2
t V + d(d− 1)

4(d− 2)2 (∂tV )2 − 2∂iVj ∂jVi , (6.33c)

�Vi = −4πGσi , (6.33d)

�R̂i = − 4πG
d− 2

[5− d
2 V σi −

d− 1
2 Vi σ

]
− d− 1
d− 2 ∂kV ∂iVk −

d(d− 1)
4(d− 2)2 ∂tV ∂iV , (6.33e)

�Ŵij = −4πG
(
σij − δij

σkk
d− 2

)
− d− 1

2(d− 2)∂iV ∂jV , (6.33f)

�Ẑij = − 4πG
d− 2 V

(
σij − δij

σkk
d− 2

)
− d− 1
d− 2 ∂tV(i ∂j)V + ∂iVk ∂jVk + ∂kVi ∂kVj

− 2∂kV(i ∂j)Vk −
δij
d− 2 ∂kVm (∂kVm − ∂mVk)−

d(d− 1)
8(d− 2)3 δij (∂tV )2

+ (d− 1)(d− 3)
2(d− 2)2 ∂(iV ∂j)K . (6.33g)

For example, in 3 dimensions, at the Newtonian order we have

V = GNm1
r1

+ GNm2
r2

+ O
( 1
c2

)
, (6.34)

which becomes in d dimensions

V (d) = 2(d− 2)k̃
d− 1

(
Gm1

rd−2
1

+ Gm2

rd−2
2

)
+ O

( 1
c2

)
, (6.35)

where k̃ ≡ Γ( d−2
2 )

π
d−2

2
and Γ is the Euler function. The constant k̃ is defined such that

∆(k̃r2−d) = −4πδ(d)(x) in d dimensions. For the rest of the manuscript, we will use for
simplicity the same notation G for the Newton constant in 3 dimensions (GN ) and in d
dimensions (GN`d−3

0 ).

6.1.3.c) Difference between dimensional regularization and Hadamard partie
finie

In practice, we do not apply dimensional regularization for UV divergences right away.
It is in fact easier and clearer to do a first computation in 3 dimensions only, using the
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Hadamard partie finie, and then to compute explicitly the difference between the dimensional
regularization and the Hadamard partie finie for the UV divergences. We define DI as the
difference between equation (6.22) and its generalization in d dimensions:

DI ≡ I(d) − I , (6.36)

where
I(d) =

∫
F (d)(x) ddx

`d−3
0

. (6.37)

where F (d) is the generalization in d dimensions of the function F . To compute (6.36),
we start by doing an expansion similar to the Laurent expansion done in (6.23), but in d
dimensions

F (d)(x) =
∑

p0≤p≤N
q0≤q≤q1

rp1

(
r1
`0

)qε
f
1

(ε)
p,q(n1) + o(rN1 ) . (6.38)

At the 4PN order, there is no pole in 1/ε in the integrand F (d) which enters the source of
the Fokker action. Therefore F (d) will tend to F when d → 3. This leads to the following
equation relating the expansion of F (d=3) and F (d) around y1

q1∑

q=q0
f
1

(ε=0)
p,q (n1) = f

1
p(n1) . (6.39)

As shown in [157], the difference (6.36) only depends on the coefficients f1 p and f1
(d)
p,q that

describe the function F around y1 and reads

DI = Ω2+ε
ε

q1∑

q=q0

[ 1
q + 1 + ε ln

(
s1
`0

)] 〈
f
1

(ε)
−3,q

〉
2+ε + 1↔ 2 + O(ε) , (6.40)

where the spherical average performed in d dimensions is defined by
〈
f
〉
d−1 ≡

∫
dΩd−1(n1)

Ωd−1
f(n1) . (6.41)

The volume of the (d− 1)-dimensional sphere, embedded into d-dimensional space, is given
by Ωd−1 = 2π d2 /Γ(d2); for instance, Ω2 = 4π. Actually, we can see that the Ωd−1’s cancel out
between (6.40) and (6.41).

At the end of the day, the constants s1 and s2 that were introduced in the Hadamard
partie finie regularization, disappear when computing the difference with dimensional regu-
larization using the equations (6.40). In exchange, the result contains 1/ε poles, as well as
the length scale constant `0.

Similarly to what is done in 6.1.2.b), the equations (6.38)–(6.40) have to be adapted in
the presence of logarithm divergences. In the case of Hadamard partie finie, the logarithm
divergences introduce the constants ln r′1 and ln r′2. These constants vanish when we compute
the difference with dimensional regularization and are replaced by ln `0 [156]. However, (i)
we set `0 = 1 for simplicity in the rest of the manuscript (except in the expression of the
shift in the appendice B) (ii) the specific shifts we apply systematically replace the ln `0 by
ln r′1 and ln r′2 for conveniency. Therefore, our final result in d dimensions (after application
of the shifts) contains the constants ln r′1 and ln r′2 through the quantities ln r′0 and ln r′′0
defined in the equations (7.10).
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6.1.4 Infra-red regularization

6.1.4.a) Infra-red divergences

In order to obtain a post-Newtonian expansion of the Fokker Lagrangian, the instantaneous
part of the metric injected in the total action S = Sg + Sm is post-Newtonian expanded.
The post-Newtonian expansion of the metric is valid in the near-zone only and diverges when
r →∞. Therefore, when we integrate over the whole space the Lagrangian density expressed
with the post-Newtonian metric h̄µν

∫
d3x Lg

(
h̄µν

)
, (6.42)

divergences appear because the integrand Lg
(
h̄µν

)
blows up for r → ∞. These infra-red

(IR) divergences appear only at the 4PN order in the Fokker Lagrangian and we also use
regularization techniques to cure them.

6.1.4.b) The Finite Part regularization

Let us focus on the infra-red regularization of the integration of a generic function F . We
only want to study the infra-red bound at infinity, so we define

IR =
∫

r>R
d3xF (x) , (6.43)

where R is a sufficiently large radius. Similarly to the Finite Part (FP) regularization
introduced in chapter 4, we multiply the function F by a factor

(
r
r0

)B
where B is a complex

number whose real part is negatively large enough so that the integral
∫

r>R
d3x

(
r

r0

)B
F (x) , (6.44)

is well-defined. For functions that admit an expansion at infinity of the type of (6.46), the
result can be extended for values of B through all the complex plane except for isolated poles
by analytical continuation. We then define the Finite Part regularization by doing a Laurent
expansion of the result when B → 0 and taking the Finite Part in B (i.e. the zeroth power
of B in this expansion)

IHR
R = FP

B=0

∫

r>R
d3x

( r
r0

)B
F (x) . (6.45)

It is important to notice that (6.44) is well-defined for <B negatively large enough while the
regularization used in the MPM algorithm required <B to be positively large enough. This
is due to the fact that we are regularizing an IR divergence while the MPM algorithm was
facing an UV divergence. We are going to provide an explicit expression for (6.45). For that,
let us develop F when r →∞ as

F (x) =
N∑

p=−p0

1
rp
ϕp(n) + o

( 1
rN

)
. (6.46)
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By injecting (6.46) into (6.45) we find that

IHR
R = −

∑

p 6=3

R3−p

3− p

∫
dΩ2 ϕp(n)− ln

(R
r0

) ∫
dΩ2 ϕ3(n) , (6.47)

which is the formula that is used to perform the IR Finite Part regularization. Notice that
it depends both on R and r0. The dependence on R disappears when we compute the full
integral

I =
∫

d3xF (x) =
∫

r≤R
d3xF (x) +

∫

r≥R
d3xF (x) . (6.48)

Note that the Fokker Lagrangian, or the equations of motion are not observables but inter-
mediate results, that depend on the choice of gauge, and can depend on gauge constants
such as s1, s2 or r0.

6.1.5 Adding the tail effects in 3 dimensions
According to the matching equation we recall that we have (cf equation (5.41))

h
µν = h

µν
part −

4G
c4

+∞∑

`=0

(−1)`
`! ∂L

{
Fµν
L (t− r/c)− Fµν

L (t+ r/c)
2r

}

− 4G
c4

+∞∑

`=0

(−1)`
`! ∂L

{
Rµν
L (t− r/c)−Rµν

L (t+ r/c)
2r

}
, (6.49)

where the term h
µν
part corresponds to the metric computed with the potentials in equations

(6.32). The terms depending on Fµν
L correspond to dissipative radiation reaction terms at

2.5PN and 3.5PN. As we are only looking to the conservative part of the dynamics, there
is no need to include them here. The last terms depending on Rµν

L correspond however to
the tails back-scattered into the near-zone and contribute to the conservative part of the
equations of motion at 4PN. We have therefore to include them in the Fokker Lagrangian.
Therefore, we are interested in computing

Hµν ≡ −4G
c4

+∞∑

`=0

(−1)`
`! ∂L

{
Rµν
L (t− r/c)−Rµν

L (t+ r/c)
2r

}
, (6.50)

with (cf equation (5.33))

Rµν
L = FP

B

∫
d3x

( |x|
s0

)B
x̂L

∫ ∞

1
γ`(z)M(τµν)(x, t− zx/c) . (6.51)

In equation (6.51), we have replaced the r0 by another constant s0 because as we are going
to see, we do not control the scale at which the tail is back-scattered into the near zone when
we do the computation only in 3d. This term is explicitly known for compact binary systems
since 1993 [150] and is given at the leading 4PN order by

H00 = 8G2M

15c10 x
ixj

∫ +∞

0
dτ ln

(
cτ

2s0

)
I

(7)
ij (t− τ) + O

( 1
c12

)
, (6.52a)
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H0i = −8G2M

3c9 xj
∫ +∞

0
dτ ln

(
cτ

2s0

)
I

(6)
ij (t− τ) + O

( 1
c11

)
, (6.52b)

Hij = 8G2M

c8

∫ +∞

0
dτ ln

(
cτ

2s0

)
I

(5)
ij (t− τ) + O

( 1
c10

)
. (6.52c)

By injecting (6.52) into the Fokker Lagrangian and computing its contribution at 4PN in
the action we obtain, after discarding total time derivatives

Stail
F = −G

2M

5c8

∫ +∞

−∞
dt Iij(t)

∫ +∞

0
dτ ln

(
cτ

2s0

) [
I

(7)
ij (t− τ)− I(7)

ij (t+ τ)
]
. (6.53)

6.1.6 A first result in disagreement with self-force computation
In [92], Bernard et al. computed the 4PN Fokker Lagrangian using the method described
above. This result contains one ambiguity parameter α = ln

(
r0
s0

)
, where r0 is the constant

introduced in the Finite Part regularization for the infra-red and s0 the constant normalizing
the logarithm in the tails. This constant was adjusted in order to be in agreement with the
energy of circular orbits predicted by self-force computation in the small mass ratio limit
(ν → 0). However, by doing so, they did not recover previous results obtained by Damour,
Jaranowski, Schäfer [90]. Moreover, their result was in disagreement with the prediction of
self-force computation of the periastron advance, while Damour, Jaranowski, Schäfer’s result
was in agreement with these predictions.

The discrepancy between Bernard et al. [92] and Damour et al. [90] can be parametrized
by only two coefficients called ambiguities. If L1 is the Fokker Lagrangian obtained through
the method described above, then the following Lagrangian L2 is in agreement with the
self-force results [93, 154]

L2 = L1 +G4mm
2
1m

2
2

c8r4
12

(δ1n12v12 + δ2v
2
12) , (6.54)

with
δ1 = −2179

315 , δ2 = 192
35 . (6.55)

This discrepancy is imputed to the Finite Part regularization method for the IR which no
longer provides a complete result at 4PN. This regularization method breaks the Lorentz
invariance of the underlying theory which is a strong hint that it might not work at high post-
Newtonian orders. Therefore, it was decided [94] to compute the Fokker Lagrangian using
systematically dimensional regularization. In fact, this regularization technique that has
been used in particle physics for decades has proven to be extremely powerful in perturbation
computations, and does preserve the Lorentz invariance of general relativity.

6.2 The systematic use of dimensional regularization

6.2.1 Infra-red dimensional regularization

6.2.1.a) The method

We are now going to consider dimensional regularization to cure both IR divergences and
the UV divergences (as described in 6.1.3).
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Denoting F (d) the version of F in d dimensions, we define

IDR
R =

∫

r>R

ddx
`d−3
0

F (d)(x) . (6.56)

To compute explicitly (6.56), we first define the expansion of F (d) when r →∞

F (d)(x) =
∑

p>−p0

q1∑

q=−q0

1
rp

(
`0
r

)qε
ϕ(ε)
p,q(n) . (6.57)

Similarly to equation (6.39), the fact that F (d) does not have a pole when d → 3 can be
translated into the following equation

ϕp(n) =
q1∑

q=−q0
ϕ(ε=0)
p,q (n) . (6.58)

Injecting (6.57) into (6.56) we find that

IDR
R = −

∑

p 6=3

R3−p

3− p

∫
dΩ2 ϕp(n) +

q1∑

q=−q0

[ 1
(q − 1)ε − ln

(R
`0

)] ∫
dΩ2+ε ϕ

(ε)
3,q(n) + O (ε) .

(6.59)
It is interesting to compute the difference between the Finite Part and the dimensional
regularization for the IR divergence DIR = IHRR − IDRR . Doing so, we obtain

DIR =
q1∑

q=−q0

[ 1
(q − 1)ε − ln

(
r0
`0

)] ∫
dΩ2+ε ϕ

(ε)
3,q(n) + O (ε) . (6.60)

Note that the pole 1/ε here is an IR pole.

6.2.1.b) The result for the instantaneous terms

Using the equation, (6.60), the difference of the instantaneous part of the Fokker Lagrangians
computed with dimensional regularization and Finite Part regularization for the infra-red
divergences was computed in [94]. If we apply to this difference the specific shift χ provided
in the appendix B equation (B.7), it reduces to

DLinst
g = G2m

5c8

[
1
ε
− 2 ln

(√
q̄ r0
`0

)](
I

(3)
ij

)2

+ G4mm2
1m

2
2

c8r4
12

(
−2479

150 (n12v12)2 + 1234
75 v2

12

)
+ O (ε) , (6.61)

where we have defined q̄ ≡ 4πeγE with γE being the Euler constant. Besides, it is crucial
that

(
I

(3)
ij

)2
is taken in d dimensions, which brings extra ε corrections

(
I

(3)
ij

)2
= G3m2

1m
2
2

r4
12

(
−88

3 (n12v12)2 + 32v2
12

)[
1− ε

2 ln
(√

q̄ r12
`0

)]

+ ε
G3m2

1m
2
2

r4
12

(
−836

9 (n12v12)2 + 96v2
12

)
+ O

(
ε2
)
. (6.62)
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6.2.2 The tails in d dimensions
The following corresponds to the contribution of this thesis in the results presented in this
chapter. For conveniency, we set `0 = 1 in this section, and we restore the constant `0 for
the result of the computation.

6.2.2.a) The matching equation in DimReg

The result presented in (6.53) corresponds to a computation in 3 dimensions, using a Finite
Part regularization (cf equation (6.51)), which as we have seen is incomplete (presence of
ambiguities) at 4PN. Therefore, we are going to show how to derive in dimensional regular-
ization the contribution of the tails to the Fokker Lagrangian. In d dimensions, the retarded
propagator �−1(d)

ret becomes

�−1(d)
ret

[
F
]

= − k̃

4π

∫
ddx′

∫ +∞

1
dz γ 1−d

2
(z) F (x′, t− z|x− x′|/c)

|x− x′|d−2 , (6.63)

where k̃ = Γ( d2−1)

π
d
2−1

(Γ being the Eulerian function) and

γ 1−d
2

(z) = 2
√
π

Γ(3−d
2 )Γ(d2 − 1)

(
z2 − 1

) 1−d
2 . (6.64)

It turns out that we also need to introduce a new regularization factor rη in order to have
only convergent integrals. This regulator is exactly the same as the

(
r
r0

)B
factor introduced

in the Finite Part regularization, but now considered in d dimensions. We thus denote it by
a different name. But it turns out that, in d dimensions, in contrast to 3 dimensions, no 1/η
pole should normally remain in our final result. Therefore we define

�̃−1(d)
ret

[
F
] ≡ �−1(d)

ret
[
rηF

]
, (6.65)

with the prescription that we should take η → 0 at the end of the computation (i.e. after
having taken ε ≡ d− 3→ 0). This procedure is called the ηε-regularization technique.

In order to compute the tails in d dimensions, we need first to derive a new matching
equation, similar to equation (5.41), but in d dimensions. The first step is to extend the
lemma 1 (i.e. equation (5.32)) to d dimensions. This has been done in [94] (cf equation
(3.15) in [94] ), and the result is

�̃−1(d)
ret [M(Λµν)] = �̃−1(d)

ret
[
M(Λµν)

]
+ H(d)µν

, (6.66)

where

H(d)µν = − k̃

4π

+∞∑

q=0

(−1)q
q!

+∞∑

j=0
∆−j x̂Q

∫ +∞

1
dz γ 1−d

2
(z)

∫
ddx′ r′η ∂̂′Q



M
(
Λµν(2j)

)
(y, t− zr′)

r′d−2




y=x′
. (6.67)
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Now, we can see that H(d)µν plays a role similar of the last term in (5.32). Based on that
remark, it can be shown that the matching equation in d dimensions leads to

h
µν = 16πG

c4 �−1
ret
[
rη τµν

]
+ H(d)µν

. (6.68)

H(d)µν is therefore the generalization in d dimensions of the quantity computed in equations
(6.50)–(6.52) and contains the tails that we want to compute.

6.2.2.b) Computing the tails

In order to compute the tails in d dimensions, we have to compute at the lowest 4PN
order the equation (6.67). For that, we need to compute through the use of the MPM
algorithm, the lowest-order terms in Λµν contributing in equation (6.67). The part of the
first post-Minkowskian metric that depends on the mass multipole moments can be written
in d dimensions as

h00
(1) = −4G

c2

+∞∑

`=0

(−1)`
`! ∂LĨL , (6.69a)

h0i
(1) = 4G

c3

+∞∑

`=1

(−1)`
`! ∂L−1Ĩ

(1)
iL−1 , (6.69b)

hij(1) = −4G
c4

+∞∑

`=2

(−1)`
`! ∂L−2Ĩ

(2)
ijL−2 , (6.69c)

where ĨL(t, r) is the generalization of I(t−r/c)r in d dimensions and is defined as

ĨL(t, r) = k̃

rd−2

∫ +∞

1
dz γ 1−d

2
(z) IL(t− zr/c) , (6.70)

which, in the monopole case, reduces to M̃(r) = k̃Mr2−d. The lowest order of the source
Λµν is given by its quadratic part N(h, h) that can be deduced in d dimensions directly from
(6.31). It reads

N00
M×Ikl = −h00

M∂
2
00h

00
Ikl
− hijIkl∂

2
ijh

00
M −

3(d− 2)
2(d− 1)∂ih

00
M∂ih

00
Ikl

+ ∂ih
00
M∂0h

0i
Ikl
, (6.71a)

N0i
M×Ikl = −h00

M∂
2
00h

0i
Ikl

+ d

2(d− 1)∂ih
00
M∂0h

00
Ikl

+ ∂jh
00
M∂0h

ij
Ikl

+ ∂jh
00
M

(
∂ih

0j
Ikl
− ∂jh0i

Ikl

)
, (6.71b)

N ij
M×Ikl = −h00

M∂
2
00h

ij
Ikl

+ d− 2
d− 1∂(ih

00
M∂j)h

00
Ikl
− d− 2

2(d− 1)δij∂kh
00
M∂kh

00
Ikl

− δij∂kh00
M∂0h

0k
Ikl

+ 2∂(ih
00
M∂0h

j)0
Ikl
. (6.71c)

Therefore we need to inject the Ĩij and the M̃ part of the metric into (6.71) and inject the
result into (6.67).



6.2 The systematic use of dimensional regularization 101

For the interaction M × Iij , the second post-Minkowskian order of Λµν is a sum of the
form

Λµν(2) =
∑

k,p,`

r−k−2ε n̂L

∫ +∞

1
dy yp γ−1− ε2 (y)FµνL (t− yr/c) , (6.72)

where the finite sum ranges over integers k, p, as well as the multipolarity ` and the functions
FµνL are made of the products involving M and time derivatives of Iij . Injecting (6.72) into
(6.67), we get

H(d)µν(x, t) =
+∞∑

`=0

+∞∑

j=0

1
c2j ∆−j x̂L f (2j)µν

L (t) , (6.73)

where, the j-th iterated inverse Poisson operator ∆−j acts on x̂L as

∆−j x̂L =
Γ(`+ d

2)
Γ(`+ j + d

2)
r2j x̂L
22jj! , (6.74)

and fµνL is given as

fµνL =
∑ (−1)`+k Cp,k`

2`+ 1 + ε

Γ(2ε− η)
Γ(`+ k − 1 + 2ε− η)

×
∫ +∞

0
dτ τ−2ε+η F

µν(`+k−1)
L (t− τ) . (6.75)

Cp,k` are dimensionless coefficients given by

Cp,k` =
∫ +∞

1
dy yp γ−1− ε2 (y)

×
∫ +∞

1
dz (y + z)`+k−2+2ε−η γ−`−1− ε2 (z) , (6.76)

that can be computed in analytic closed form as described in the Appendix D of [94].
If we apply the formulae (6.75)–(6.76) to obtain the leading tail effect in the metric at

the 4PN order, we get (with H(d)00ii = 2
d−1 [(d− 2)H(d)00 + H(d)ii])

H(d)00ii = 8G2M

15c10 xij
∫ +∞

0
dτ
[
ln
(
c
√
q̄ τ

2`0

)
− 1

2ε + 61
60

]
I

(7)
ij (t− τ) + O

( 1
c12

)
, (6.77a)

H(d)0i = −8G2M

3c9 xj
∫ +∞

0
dτ
[
ln
(
c
√
q̄ τ

2`0

)
− 1

2ε + 107
120

]
I

(6)
ij (t− τ) + O

( 1
c11

)
, (6.77b)

H(d)ij = 8G2M

c8

∫ +∞

0
dτ
[
ln
(
c
√
q̄ τ

2`0

)
− 1

2ε + 4
5

]
I

(5)
ij (t− τ) + O

( 1
c10

)
. (6.77c)

The equations (6.77) are therefore the generalization in d dimensions of the result pro-
vided by the equations (6.52). If we inject the tails in d dimensions into the Fokker La-
grangian in d dimensions, their contributions to the action turn out to be

Stail
g = G2M

5c8

∫ +∞

−∞
dt I(3)

ij (t)
∫ +∞

0
dτ
[
ln
(
c
√
q̄ τ

2`0

)
− 1

2ε + 41
60

] (
I

(4)
ij (t− τ)− I(4)

ij (t+ τ)
)
.

(6.78)
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Therefore, the difference between the tail part of Fokker Lagrangian computed in d dimen-
sions (equation (6.78)) and in 3 dimensions (cf equation (6.53)) is

DLtail
g = G2m

5c8

[
−1
ε

+ 41
30 + 2 ln

(√
q̄ s0
`0

)](
I

(3)
ij

)2
. (6.79)

In equation (6.79), the pole is a UV pole, and exactly cancels the IR pole in equation
(6.61).

6.2.3 Conclusion
The difference between the Fokker Lagrangian obtained using the method described in section
6.1, and the Fokker Lagrangian computed using systematically dimensional regularization is
therefore the sum of (6.79) and (6.61). If we add these two contributions, we see that the
1/ε pole disappears non-trivially as well as the ln

(√
q̄ s0
`0

)
terms. The remaining term in the

total difference is

DLtotal
g = G4mm2

1m
2
2

c8r4
12

(
−2179

315 (n12v12)2 + 192
35 v

2
12
)
, (6.80)

which corresponds exactly to the ambiguities introduced in (6.54). Therefore, the work
done in [94, 2] shows that the computation of the Fokker Lagrangian using systematically
dimensional regularization yields the 4PN equations of motion without any ambiguities from
first principles. The resulting 4PN Lagrangian is shown in appendix B. Let us emphasize
again that this Lagrangian, is today the only derivation from first principles of the 4PN
dynamics, that it agrees with the result from Damour-Jaranowski-Schäfer [90], and is in
perfect agreement with the predictions of the conserved energy as well as the periastron
advance of self-force computation in the small mass ratio limit.

Indeed, in the ADM formalism results obtained by Damour, Jaranowski and Schäfer
[90, 91], the full 4PN dynamics is not entirely derived from first principle due to one remaining
ambiguity parameter C that needs to be fitted to self-force computation of the energy for
circular orbits. This ambiguity is due to the scale entering the logarithm in the tail effect.

While the full 4PN dynamics has not been derived yet using the effective-field-theory
(EFT) framework, significant results have been already published within that method. In
particular, the effect of the tail on the dynamics has been computed in 2016 by Galley et al.
[98], and our result (6.78) -and in particular the coefficient 41/60- is in perfect agreement
with their own result (cf equation (3.3) in [98]). This is the main reason why we think that
the EFT method might be able to computed the 4PN dynamics from first principles as well.



7 – Conserved quantities and
equations of motion in the center of

mass

In this chapter, we are going to study in detail the dynamics generated by the Fokker La-
grangian at the 4th post-Newtonian order derived in the previous chapter and provided in
appendix B. In harmonic coordinates, this Lagrangian is manifestly invariant under the
Poincaré group transformation. This leads to 10 Noetherian conserved integrals of the mo-
tion: the integral of the center of mass associated with the invariance under Lorentz boosts
(3 conserved quantities), the conserved angular momentum associated with rotations (3 con-
served quantities), the conserved energy associated with the invariance with respect to time
(1 conserved quantity), and finally the conserved linear momentum associated with transla-
tion invariance (3 conserved quantities).

We first compute explicitly the center of mass at 4PN in order to define the center of
mass (CM) frame at 4PN. Once this is done, we systematically work in the CM frame where
all the results are significantly simpler. The next steps are to express the acceleration in the
CM frame of the compact bodies, and to find a CM Lagrangian, i.e., a Lagrangian whose
Euler-Lagrange equations yield the dynamics of the Fokker Lagrangian expressed in the
CM frame. We then explicitly compute and provide the CM conserved energy and angular
momentum. Finally, we study the dynamics of circular orbits at the 4PN order, as well as
the dissipative effects.

The content of this chapter is mainly based on the work published in [3].

7.1 Conserved integrals of the motion

Any physical quantity Q investigated in this chapter is the sum of (i) many instantaneous
(local-in-time) terms up to the 4PN order, (ii) the non-local conservative tail term arising
at the 4PN order, and, in most cases, (iii) (see section 7.2.3) dissipative radiation-reaction
terms present at the 2.5PN, 3.5PN, as well as the 4PN orders. Accordingly, we write

Q = Qinst +Qtail +Qdiss . (7.1)

Since the long explicit results presented in this chapter concern the instantaneous part of
the dynamics, we adopt the convention that any Qinst is directly given by the sequence of
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its PN coefficients QnPN:

Qinst = QN + 1
c2Q1PN + 1

c4Q2PN + 1
c6Q3PN + 1

c8Q4PN + O
( 1
c10

)
. (7.2)

Furthermore, as the 4PN coefficient is especially lengthy, we split it into non-linear contri-
butions corresponding to increasing powers of G:

Q4PN = Q
(0)
4PN +GQ

(1)
4PN +G2Q

(2)
4PN +G3Q

(3)
4PN +G4Q

(4)
4PN +G5Q

(5)
4PN . (7.3)

7.1.1 The center of mass
To begin with, let us display the CM position G defined as G = P t + Z where P is the
conserved linear momentum and Z the conserved CM integral. G satisfies

dG
dt = P , (7.4)

while Z and P are conserved (dP
dt = 0 and dZ

dt = 0). The complete results are

GN = m1y1 + 1↔ 2 , (7.5a)

G1PN = y1

(
− Gm1m2

2r12
+ m1v2

1
2

)
+ 1↔ 2 , (7.5b)

G2PN = v1Gm1m2

(
− 7

4(n12v1)− 7
4(n12v2)

)
+ y1

(
− 5G2m2

1m2
4r2

12
+ 7G2m1m2

2
4r2

12

+ 3m1v4
1

8 + Gm1m2
r12

(
− 1

8(n12v1)2 − 1
4(n12v1)(n12v2) + 1

8(n12v2)2

+ 19
8 v

2
1 −

7
4(v1v2)− 7

8v
2
2

))
+ 1↔ 2 , (7.5c)

G3PN = v1

(235G2m2
1m2

24r12

(
(n12v1)− (n12v2)

)
− 235G2m1m2

2
24r12

(
(n12v1)− (n12v2)

)

+Gm1m2

( 5
12(n12v1)3 + 3

8(n12v1)2(n12v2) + 3
8(n12v1)(n12v2)2

+ 5
12(n12v2)3 − 15

8 (n12v1)v2
1 − (n12v2)v2

1 + 1
4(n12v1)(v1v2)

+ 1
4(n12v2)(v1v2)− (n12v1)v2

2 −
15
8 (n12v2)v2

2

))

+ y1

(5m1v6
1

16 + Gm1m2
r12

( 1
16(n12v1)4 + 1

8(n12v1)3(n12v2) + 3
16(n12v1)2(n12v2)2

+ 1
4(n12v1)(n12v2)3 − 1

16(n12v2)4 − 5
16(n12v1)2v2

1 −
1
2(n12v1)(n12v2)v2

1

− 11
8 (n12v2)2v2

1 + 53
16v

4
1 + 3

8(n12v1)2(v1v2) + 3
4(n12v1)(n12v2)(v1v2) + 5

4(n12v2)2(v1v2)

− 5v2
1(v1v2) + 17

8 (v1v2)2 − 1
4(n12v1)2v2

2 −
5
8(n12v1)(n12v2)v2

2 + 5
16(n12v2)2v2

2

+ 31
16v

2
1v

2
2 −

15
8 (v1v2)v2

2 −
11
16v

4
2

)
+ G2m2

1m2
r2

12

(79
12(n12v1)2 − 17

3 (n12v1)(n12v2)
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+ 17
6 (n12v2)2 − 175

24 v
2
1 + 40

3 (v1v2)− 20
3 v

2
2

)
+ G2m1m2

2
r2

12

(
− 7

3(n12v1)2

+ 29
12(n12v1)(n12v2) + 2

3(n12v2)2 + 101
12 v

2
1 −

40
3 (v1v2) + 139

24 v
2
2

)

− 19G3m2
1m

2
2

8r3
12

+ G3m3
1m2

r3
12

(13721
1260 −

22
3 ln

(
r12
r′1

))

+ G3m1m3
2

r3
12

(
− 14351

1260 + 22
3 ln

(
r12
r′2

)))
+ 1↔ 2 , (7.5d)

together with

G
(0)
4PN = 35

128m1y1v
8
1 + 1↔ 2 , (7.6a)

G
(1)
4PN = m1m2v1

{
−13

64(n12v1)5 − 11
64(n12v1)4(n12v2)− 5

32(n12v1)3(n12v2)2

− 5
32(n12v1)2(n12v2)3 − 11

64(n12v1)(n12v2)4 − 13
64(n12v2)5 + 1

16(n12v1)3(v1v2)

+ 5
16(n12v1)2(n12v2)(v1v2) + 5

16(n12v1)(n12v2)2(v1v2) + 1
16(n12v2)3(v1v2)

+ 3
16(n12v1)(v1v2)2 + 3

16(n12v2)(v1v2)2 + 77
96(n12v1)3v2

1 + 13
32(n12v1)2(n12v2)v2

1

+ 7
32(n12v1)(n12v2)2v2

1 + 17
96(n12v2)3v2

1 + 3
16(n12v1)(v1v2)v2

1 + 1
16(n12v2)(v1v2)v2

1

− 123
64 (n12v1)v4

1 −
49
64(n12v2)v4

1 + 17
96(n12v1)3v2

2 + 7
32(n12v1)2(n12v2)v2

2

+ 13
32(n12v1)(n12v2)2v2

2 + 77
96(n12v2)3v2

2 + 1
16(n12v1)(v1v2)v2

2 + 3
16(n12v2)(v1v2)v2

2

−33
32(n12v1)v2

1v
2
2 −

33
32(n12v2)v2

1v
2
2 −

49
64(n12v1)v4

2 −
123
64 (n12v2)v4

2

}

+ m1m2y1
r12

{
− 5

128(n12v1)6 − 5
64(n12v1)5(n12v2)− 15

128(n12v1)4(n12v2)2

− 5
32(n12v1)3(n12v2)3 − 25

128(n12v1)2(n12v2)4 − 15
64(n12v1)(n12v2)5 + 5

128(n12v2)6

− 11
64(n12v1)4(v1v2)− 5

16(n12v1)3(n12v2)(v1v2)− 15
32(n12v1)2(n12v2)2(v1v2)

− 11
16(n12v1)(n12v2)3(v1v2)− 65

64(n12v2)4(v1v2) + 5
32(n12v1)2(v1v2)2

+ 5
16(n12v1)(n12v2)(v1v2)2 − 29

32(n12v2)2(v1v2)2 + 1
16(v1v2)3 + 27

128(n12v1)4v2
1

+ 11
32(n12v1)3(n12v2)v2

1 + 27
64(n12v1)2(n12v2)2v2

1 + 15
32(n12v1)(n12v2)3v2

1

+ 137
128(n12v2)4v2

1 + 13
32(n12v1)2(v1v2)v2

1 + 7
16(n12v1)(n12v2)(v1v2)v2

1

+ 81
32(n12v2)2(v1v2)v2

1 + 97
32(v1v2)2v2

1 −
53
128(n12v1)2v4

1 −
31
64(n12v1)(n12v2)v4

1

− 225
128(n12v2)2v4

1 −
433
64 (v1v2)v4

1 + 515
128v

6
1 + 15

128(n12v1)4v2
2 + 9

32(n12v1)3(n12v2)v2
2
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+ 33
64(n12v1)2(n12v2)2v2

2 + 27
32(n12v1)(n12v2)3v2

2 −
27
128(n12v2)4v2

2

+ 7
32(n12v1)2(v1v2)v2

2 + 13
16(n12v1)(n12v2)(v1v2)v2

2 + 77
32(n12v2)2(v1v2)v2

2

+ 67
32(v1v2)2v2

2 −
23
64(n12v1)2v2

1v
2
2 −

23
32(n12v1)(n12v2)v2

1v
2
2 −

157
64 (n12v2)2v2

1v
2
2

− 161
32 (v1v2)v2

1v
2
2 + 381

128v
4
1v

2
2 −

31
128(n12v1)2v4

2 −
53
64(n12v1)(n12v2)v4

2

+ 53
128(n12v2)2v4

2 −
123
64 (v1v2)v4

2 + 251
128v

2
1v

4
2 −

75
128v

6
2

}
+ 1↔ 2 , (7.6b)

G
(2)
4PN = v1

{
m2

1m2
r12

[
−3341

480 (n12v1)3 + 10223
480 (n12v1)2(n12v2)− 3781

160 (n12v1)(n12v2)2

+ 4621
480 (n12v2)3 − 4529

240 (n12v1)(v1v2) + 6499
240 (n12v2)(v1v2) + 9229

480 (n12v1)v2
1

−8849
480 (n12v2)v2

1 + 2293
160 (n12v1)v2

2 −
3733
160 (n12v2)v2

2

]
+ m1m2

2
r12

[4621
480 (n12v1)3

− 3781
160 (n12v1)2(n12v2) + 10223

480 (n12v1)(n12v2)2 − 3341
480 (n12v2)3

+ 6499
240 (n12v1)(v1v2)− 4529

240 (n12v2)(v1v2)− 3733
160 (n12v1)v2

1 + 2293
160 (n12v2)v2

1

−8849
480 (n12v1)v2

2 + 9229
480 (n12v2)v2

2

]}

+ y1

{
m2

1m2
r2

12

[
−1693

960 (n12v1)4 + 53
240(n12v1)3(n12v2)

− 4079
480 (n12v1)2(n12v2)2 + 1133

240 (n12v1)(n12v2)3

− 1133
960 (n12v2)4 − 509

60 (n12v1)2(v1v2)− 127
60 (n12v1)(n12v2)(v1v2)

− 179
60 (n12v2)2(v1v2) + 109

80 (v1v2)2 + 247
60 (n12v1)2v2

1 + 451
60 (n12v1)(n12v2)v2

1

+ 17
60(n12v2)2v2

1 + 713
240(v1v2)v2

1 −
3803
960 v

4
1 + 1709

120 (n12v1)2v2
2

−139
10 (n12v1)(n12v2)v2

2 + 139
20 (n12v2)2v2

2 + 3433
240 (v1v2)v2

2 −
2873
480 v

2
1v

2
2 −

2931
320 v

4
2

]

+ m1m2
2

r2
12

[1133
960 (n12v1)4 + 1337

240 (n12v1)3(n12v2)− 7141
480 (n12v1)2(n12v2)2

+ 2197
240 (n12v1)(n12v2)3 − 4187

960 (n12v2)4 + 247
30 (n12v1)2(v1v2)

+ 37
60(n12v1)(n12v2)(v1v2) + 59

60(n12v2)2(v1v2) + 2091
80 (v1v2)2 − 31

5 (n12v1)2v2
1

+ 2
5(n12v1)(n12v2)v2

1 −
239
120(n12v2)2v2

1 −
10153
240 (v1v2)v2

1 + 5631
320 v

4
1 −

83
15(n12v1)2v2

2

+313
120(n12v1)(n12v2)v2

2 + 241
120(n12v2)2v2

2 −
7193
240 (v1v2)v2

2 + 9473
480 v

2
1v

2
2 + 9083

960 v
4
2

]}

+ 1↔ 2 , (7.6c)
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G
(3)
4PN = v1

{
m2

1m
2
2

r2
12

[1099
144 (n12v1)− 41

64π
2(n12v1) + 1099

144 (n12v2)− 41
64π

2(n12v2)
]

+ m3
1m2
r2

12

[
−562

9 (n12v1) + 44 ln
(r12
r′1

)
(n12v1) + 14377

280 (n12v2)− 110
3 ln

(r12
r′1

)
(n12v2)

]

+m1m3
2

r2
12

[14377
280 (n12v1)− 110

3 ln
(r12
r′2

)
(n12v1)− 562

9 (n12v2) + 44 ln
(r12
r′2

)
(n12v2)

]}

+ y1

{
m2

1m
2
2

r3
12

[2059
96 (n12v1)2 − 123

128π
2(n12v1)2 − 3115

48 (n12v1)(n12v2)

+ 123
64 π

2(n12v1)(n12v2) + 2317
96 (n12v2)2 − 123

128π
2(n12v2)2 + 4429

144 (v1v2)

−41
64π

2(v1v2)− 1071
32 v2

1 + 123
128π

2v2
1 + 439

288v
2
2 −

41
128π

2v2
2

]

+ m3
1m2
r3

12

[
−9921

2800(n12v1)2 + 22 ln
(r12
r′1

)
(n12v1)2 − 198097

4200 (n12v1)(n12v2)

− 22 ln
(r12
r′1

)
(n12v1)(n12v2) + 198097

8400 (n12v2)2 + 11 ln
(r12
r′1

)
(n12v2)2 − 9875

1008(v1v2)

+154
3 ln

(r12
r′1

)
(v1v2) + 160193

10080 v
2
1 − 33 ln

(r12
r′1

)
v2

1 −
937
1440v

2
2 − 22 ln

(r12
r′1

)
v2

2

]

+ m1m3
2

r3
12

[
−185497

8400 (n12v1)2 − 11 ln
(r12
r′2

)
(n12v1)2 + 6397

75 (n12v1)(n12v2)

− 59501
1200 (n12v2)2 − 937

720(v1v2)− 44 ln
(r12
r′2

)
(v1v2) + 2737

1440v
2
1 + 22 ln

(r12
r′2

)
v2

1

−12689
2016 v

2
2 + 77

3 ln
(r12
r′2

)
v2

2

]}
+ 1↔ 2 , (7.6d)

G
(4)
4PN = y1

{
m4

1m2
r4

12

[
−213929

3600 + 220
3 ln

(r12
r′1

)]
+ m1m4

2
r4

12

[215279
3600 − 220

3 ln
(r12
r′2

)]

+ m2
1m

3
2

r4
12

[1301639
12600 − 11

2 π
2 + 16 ln

(r12
r′1

)
− 110

3 ln
(r12
r′2

)]
+ m3

1m
2
2

r4
12

[
−144347

1800

+11
2 π

2 + 88
3 ln

(r12
r′1

)
− 16 ln

(r12
r′2

)]}
+ 1↔ 2 . (7.6e)

The frame of the CM is defined by G = 0, which we solve iteratively for the variable
y1 and y2 starting from the Newtonian order, up to the fourth PN order. Doing so, we
have to replace several times the accelerations by their values in the CM found at the
previous post-Newtonian orders. This standard technique is called standard order reduction
of accelerations. This gives the individual positions of the particles yA in the CM frame as

y1 =
[
X2 + ν(X1 −X2)P

]
x+ ν(X1 −X2)Qv , (7.7a)

y2 =
[
−X1 + ν(X1 −X2)P

]
x+ ν(X1 −X2)Qv , (7.7b)

where x = y1 − y2 and v = dx/dt are the relative separation and velocity and where
X1 = m1/(m1 + m2) and X2 = m2/(m1 + m2). Besides we define r as r ≡ |x| and n as
x = rn. It is important not to confuse the variables x,n, r used to denote the relative



108 Chapter 7. Conserved quantities

separation in the CM, with the field variables also note x,n, r described in the figure A.1.
As the context always clarifies without ambiguity which variables we are using, we will keep
this notation in order to be consistent with the notations used in the literature.

The coefficients P and Q admit the following detailed 4PN expansions:1

P1PN = v2

2 −
Gm

2 r , (7.8a)

P2PN = 3 v4

8 − 3 ν v4

2

+ Gm

r

(
− ṙ

2

8 + 3 ṙ2 ν

4 + 19 v2

8 + 3 ν v2

2

)

+ G2m2

r2

(7
4 −

ν

2

)
, (7.8b)

P3PN = 5 v6

16 −
11 ν v6

4 + 6 ν2 v6

+ Gm

r

(
ṙ4

16 −
5 ṙ4 ν

8 + 21 ṙ4 ν2

16 − 5 ṙ2 v2

16 + 21 ṙ2 ν v2

16

− 11 ṙ2 ν2 v2

2 + 53 v4

16 − 7 ν v4 − 15 ν2 v4

2

)

+ G2m2

r2

(
−7 ṙ2

3 + 73 ṙ2 ν

8 + 4 ṙ2 ν2 + 101 v2

12 − 33 ν v2

8 + 3 ν2 v2
)

+ G3m3

r3

(
−14351

1260 + ν

8 −
ν2

2 + 22
3 ln

( r
r′′0

))
, (7.8c)

P
(0)
4PN =

( 35
128 −

125
32 ν + 145

8 ν2 − 55
2 ν

3
)
v8 , (7.8d)

P
(1)
4PN = m

r

(
− 5

128 ṙ
6 + 35

64νṙ
6 − 125

64 ν
2ṙ6 + 55

32ν
3ṙ6 + 27

128 ṙ
4v2 − 115

64 νṙ
4v2 + 517

64 ν
2ṙ4v2

− 213
16 ν

3ṙ4v2 − 53
128 ṙ

2v4 + 3
2νṙ

2v4 − 95
8 ν

2ṙ2v4 + 36ν3ṙ2v4 + 515
128v

6

−749
32 νv

6 + 91
4 ν

2v6 + 42ν3v6
)
, (7.8e)

P
(2)
4PN = m2

r2

(1133
960 ṙ

4 − 1007
48 νṙ4 + 169

24 ν
2ṙ4 + 9ν3ṙ4 − 31

5 ṙ
2v2 + 26νṙ2v2 − 541

8 ν2ṙ2v2

−83
2 ν

3ṙ2v2 + 5631
320 v

4 − 139
4 νv4 + 71

4 ν
2v4 − 45

2 ν
3v4
)
, (7.8f)

P
(3)
4PN = m3

r3

(
−185497

8400 ṙ2 − 64347
1120 νṙ

2 − 123
128π

2νṙ2 + 495
16 ν

2ṙ2 + 55
4 ν

3ṙ2 + 11ν ln
( r
r′0

)
ṙ2

1For consistency, we also write the dissipative contributions, coming from the dissipative equations of
motion. These terms come from using the dissipative part of the equations of motion when performing the
standard order reductions of acceleration. We write only those that appear at the 2.5PN order, which turn
out to be only of the type Q2.5PN (thus, we have P2.5PN = 0). We also expect 3.5PN contributions P3.5PN
and Q3.5PN, but we do not need these to control the 3.5PN terms in the CM energy and angular momentum
(equations (7.38)–(7.41)), and they have not been computed yet.
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− 11 ln
( r
r′′0

)
ṙ2 + 33ν ln

( r
r′′0

)
ṙ2 + 2737

1440v
2 − 87181

3360 νv
2 + 123

128π
2νv2 − 117

8 ν2v2

+5ν3v2 − 11ν ln
( r
r′0

)
v2 + 22 ln

( r
r′′0

)
v2
)
, (7.8g)

P
(4)
4PN = m4

r4

(215279
3600 + 22043

720 ν − 11
2 π

2ν − 3
2ν

2 − 1
2ν

3 + 16 ln
( r
r′0

)
− 60ν ln

( r
r′0

)

−268
3 ln

( r
r′′0

)
+ 120ν ln

( r
r′′0

))
, (7.8h)

and

Q2PN = −7Gm ṙ

4 , (7.9a)

Q2.5PN = 4Gmv2

5 − 8G2m2

5 r , (7.9b)

Q3PN = Gm ṙ

(
5 ṙ2

12 −
19 ṙ2 ν

24 − 15 v2

8 + 21 ν v2

4

)

+ G2m2 ṙ

r

(
−235

24 −
21 ν

4

)
, (7.9c)

Q
(1)
4PN = m

(
−13

64 ṙ
5 + 25

32νṙ
5 − 17

32ν
2ṙ5 + 77

96 ṙ
3v2 − 187

48 νṙ
3v2 + 19

4 ν
2ṙ3v2 − 123

64 ṙv
4

+199
16 νṙv

4 − 21ν2ṙv4
)
, (7.9d)

Q
(2)
4PN = m2

r

(4621
480 ṙ

3 + 113
24 νṙ

3 + 7
12ν

2ṙ3 − 3733
160 ṙv

2 + 95
4 νṙv

2 + 28ν2ṙv2
)
, (7.9e)

Q
(3)
4PN = m3

r2

(14377
280 + 71509

5040 ν −
41
64π

2ν − 49
4 ν

2

+22
3 ν ln

( r
r′0

)
− 110

3 ln
( r
r′′0

)
− 44

3 ν ln
( r
r′′0

))
ṙ . (7.9f)

We have used the variable ṙ defined as ṙ = v · n. The CM velocities vA are obtained by
differentiating the equations (7.7) with order reduction of accelerations. The formulae (7.8)–
(7.9) contain logarithmic terms depending on the gauge constants r′0 and r′′0 (i.e., not affecting
physical results) defined as

ln r′0 = X1 ln r′1 +X2 ln r′2 , (7.10a)

ln r′′0 = X2
1 ln r′1 −X2

2 ln r′2
X1 −X2

. (7.10b)

We recall that the variables r′1 and r′2 were introduced by the Hadamard partie finie UV
regularization (cf the equation (6.27)); they are then replaced by ln `0 when we compute the
difference between dimensional regularization and the Hadamard partie finie. However, the
shifts that we apply (cf the shifts in appendix B) removed the ln `0 and re-introduced the
r′1 and r′2. This is purely an arbitrary gauge choice that we make, and this has no physical
meaning.

Even if the definition of r′′0 is not well defined for X1 = X2 (i.e. for m1 = m2), the results
are still well-defined as no divergence appears in that case when the results are expressed
using the variables r′1 and r′2.
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7.1.2 Equations of motion in the center of mass frame
Now that the CM frame is defined at 4PN we can present the acceleration in the CM coming
from the Fokker Lagrangian. In reality, the computation of the acceleration in the CM
frame was done simultaneously to the computation of yA in the CM frame as this latter
computation is done post-Newtonian order by order using systematically standard reduction
of accelerations. The final result is of the form

a = −Gm
r2

[(
1 +A

)
n+B v

]
, (7.11)

where the various PN coefficients are given by

A1PN = −3 ṙ2 ν

2 + v2 + 3 ν v2 − Gm

r
(4 + 2 ν) , (7.12a)

A2PN = 15 ṙ4 ν

8 − 45 ṙ4 ν2

8 − 9 ṙ2 ν v2

2 + 6 ṙ2 ν2 v2 + 3 ν v4 − 4 ν2 v4

+ Gm

r

(
−2 ṙ2 − 25 ṙ2 ν − 2 ṙ2 ν2 − 13 ν v2

2 + 2 ν2 v2
)

+ G2m2

r2

(
9 + 87 ν

4

)
, (7.12b)

A3PN = −35 ṙ6 ν

16 + 175 ṙ6 ν2

16 − 175 ṙ6 ν3

16 + 15 ṙ4 ν v2

2

− 135 ṙ4 ν2 v2

4 + 255 ṙ4 ν3 v2

8 − 15 ṙ2 ν v4

2 + 237 ṙ2 ν2 v4

8

− 45 ṙ2 ν3 v4

2 + 11 ν v6

4 − 49 ν2 v6

4 + 13 ν3 v6

+ Gm

r

(
79 ṙ4 ν − 69 ṙ4 ν2

2 − 30 ṙ4 ν3 − 121 ṙ2 ν v2 + 16 ṙ2 ν2 v2

+20 ṙ2 ν3 v2 + 75 ν v4

4 + 8 ν2 v4 − 10 ν3 v4
)

+ G2m2

r2

(
ṙ2 + 32573 ṙ2 ν

168 + 11 ṙ2 ν2

8 − 7 ṙ2 ν3 + 615 ṙ2 ν π2

64 − 26987 ν v2

840

+ ν3 v2 − 123 ν π2 v2

64 − 110 ṙ2 ν ln
( r
r′0

)
+ 22 ν v2 ln

( r
r′0

))

+ G3m3

r3

(
−16− 437 ν

4 − 71 ν2

2 + 41 ν π2

16

)
, (7.12c)

up to 3PN order, together with, for the 4PN terms,

A
(0)
4PN =

(315
128ν −

2205
128 ν

2 + 2205
64 ν3 − 2205

128 ν
4
)
ṙ8 +

(
−175

16 ν + 595
8 ν2 − 2415

16 ν3

+735
8 ν4

)
ṙ6v2 +

(135
8 ν − 1875

16 ν2 + 4035
16 ν3 − 1335

8 ν4
)
ṙ4v4 +

(
−21

2 ν + 1191
16 ν2

−327
2 ν3 + 99ν4

)
ṙ2v6 +

(21
8 ν −

175
8 ν2 + 61ν3 − 54ν4

)
v8 , (7.12d)
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A
(1)
4PN = m

r

(2973
40 νṙ6 + 407ν2ṙ6 + 181

2 ν3ṙ6 − 86ν4ṙ6 + 1497
32 νṙ4v2 − 1627

2 ν2ṙ4v2

− 81ν3ṙ4v2 + 228ν4ṙ4v2 − 2583
16 νṙ2v4 + 1009

2 ν2ṙ2v4 + 47ν3ṙ2v4 − 104ν4ṙ2v4

+1067
32 νv6 − 58ν2v6 − 44ν3v6 + 58ν4v6

)
, (7.12e)

A
(2)
4PN = m2

r2

(2094751
960 νṙ4 + 45255

1024 π
2νṙ4 + 326101

96 ν2ṙ4 − 4305
128 π

2ν2ṙ4 − 1959
32 ν3ṙ4

− 126ν4ṙ4 + 385ν2 ln
( r
r′0

)
ṙ4 + 385ν ln

( r
r′′0

)
ṙ4 − 1540ν2 ln

( r
r′′0

)
ṙ4 − 1636681

1120 νṙ2v2

− 12585
512 π2νṙ2v2 − 255461

112 ν2ṙ2v2 + 3075
128 π

2ν2ṙ2v2 − 309
4 ν3ṙ2v2 + 63ν4ṙ2v2

− 330ν ln
( r
r′0

)
ṙ2v2 − 275ν2 ln

( r
r′0

)
ṙ2v2 − 275ν ln

( r
r′′0

)
ṙ2v2 + 1100ν2 ln

( r
r′′0

)
ṙ2v2

+ 1096941
11200 νv4 + 1155

1024π
2νv4 + 7263

70 ν2v4 − 123
64 π

2ν2v4 + 145
2 ν3v4 − 16ν4v4

+66ν ln
( r
r′0

)
v4 + 22ν2 ln

( r
r′0

)
v4 + 22ν ln

( r
r′′0

)
v4 − 88ν2 ln

( r
r′′0

)
v4
)
, (7.12f)

A
(3)
4PN = m3

r3

(
−2ṙ2 + 1297943

8400 νṙ2 − 2969
16 π2νṙ2 + 1255151

840 ν2ṙ2 + 7095
32 π2ν2ṙ2 − 17ν3ṙ2

− 24ν4ṙ2 + 384 ln
( r
r′0

)
ṙ2 − 920ν ln

( r
r′0

)
ṙ2 + 3100ν2 ln

( r
r′0

)
ṙ2 − 384 ln

( r
r′′0

)
ṙ2

+ 3152ν ln
( r
r′′0

)
ṙ2 − 6464ν2 ln

( r
r′′0

)
ṙ2 + 1237279

25200 νv2 + 3835
96 π2νv2 − 693947

2520 ν2v2

− 229
8 π2ν2v2 + 19

2 ν
3v2 − 64 ln

( r
r′0

)
v2 + 80ν ln

( r
r′0

)
v2 − 1616

3 ν2 ln
( r
r′0

)
v2

+64 ln
( r
r′′0

)
v2 − 1576

3 ν ln
( r
r′′0

)
v2 + 3232

3 ν2 ln
( r
r′′0

)
v2
)
, (7.12g)

A
(4)
4PN = m4

r4

(
25 + 6625537

12600 ν − 4543
96 π2ν + 477763

720 ν2 + 3
4π

2ν2 + 16 ln
( r
r′0

)
− 20ν ln

( r
r′0

)

+98ν2 ln
( r
r′0

)
− 16 ln

( r
r′′0

)
+ 394

3 ν ln
( r
r′′0

)
− 808

3 ν2 ln
( r
r′′0

))
. (7.12h)

Similarly

B1PN = −4 ṙ + 2 ṙ ν , (7.13a)

B2PN = 9 ṙ3 ν

2 + 3 ṙ3 ν2 − 15 ṙ ν v2

2 − 2 ṙ ν2 v2

+ Gm

r

(
2 ṙ + 41 ṙ ν

2 + 4 ṙ ν2
)
, (7.13b)

B3PN = −45 ṙ5 ν

8 + 15 ṙ5 ν2 + 15 ṙ5 ν3

4 + 12 ṙ3 ν v2 − 111 ṙ3 ν2 v2

4 − 12 ṙ3 ν3 v2

− 65 ṙ ν v4

8 + 19 ṙ ν2 v4 + 6 ṙ ν3 v4 + Gm

r

(
329 ṙ3 ν

6 + 59 ṙ3 ν2

2 + 18 ṙ3 ν3
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−15 ṙ ν v2 − 27 ṙ ν2 v2 − 10 ṙ ν3 v2
)

+ G2m2

r2

(
−4 ṙ − 18169 ṙ ν

840

+25 ṙ ν2 + 8 ṙ ν3 − 123 ṙ ν π2

32 + 44 ṙ ν ln
( r
r′0

))
, (7.13c)

B
(0)
4PN =

(105
16 ν −

245
8 ν2 + 385

16 ν
3 + 35

8 ν
4
)
ṙ7 +

(
−165

8 ν + 1665
16 ν2 − 1725

16 ν3 − 105
4 ν4

)
ṙ5v2

+
(45

2 ν −
1869
16 ν2 + 129ν3 + 54ν4

)
ṙ3v4 +

(
−157

16 ν + 54ν2

− 69ν3 − 24ν4
)
ṙv6 , (7.13d)

B
(1)
4PN = m

r

(
−54319

160 νṙ5 − 901
8 ν2ṙ5 + 60ν3ṙ5 + 30ν4ṙ5 + 25943

48 νṙ3v2 + 1199
12 ν2ṙ3v2

−349
2 ν3ṙ3v2 − 98ν4ṙ3v2 − 5725

32 νṙv4 − 389
8 ν2ṙv4 + 118ν3ṙv4 + 44ν4ṙv4

)
, (7.13e)

B
(2)
4PN = m2

r2

(
−9130111

3360 νṙ3 − 4695
256 π

2νṙ3 − 184613
112 ν2ṙ3 + 1845

64 π2ν2ṙ3 + 209
2 ν3ṙ3 + 74ν4ṙ3

+ 660ν ln
( r
r′0

)
ṙ3 − 330ν2 ln

( r
r′0

)
ṙ3 − 220ν ln

( r
r′′0

)
ṙ3 + 880ν2 ln

( r
r′′0

)
ṙ3 + 8692601

5600 νṙv2

+ 1455
256 π

2νṙv2 + 58557
70 ν2ṙv2 − 123

8 π2ν2ṙv2 − 70ν3ṙv2 − 34ν4ṙv2 − 264ν ln
( r
r′0

)
ṙv2

+176ν2 ln
( r
r′0

)
ṙv2 + 110ν ln

( r
r′′0

)
ṙv2 − 440ν2 ln

( r
r′′0

)
ṙv2
)
, (7.13f)

B
(3)
4PN = m3

r3

(
2− 619267

525 ν + 791
16 π

2ν − 28406
45 ν2 − 2201

32 π2ν2 + 66ν3 + 16ν4 − 128 ln
( r
r′0

)

+ 600ν ln
( r
r′0

)
− 3188

3 ν2 ln
( r
r′0

)
+ 128 ln

( r
r′′0

)
− 3284

3 ν ln
( r
r′′0

)

+6992
3 ν2 ln

( r
r′′0

))
ṙ . (7.13g)

7.1.3 Lagrangian in the center of mass frame

7.1.3.a) The general method

The previous CM equations of motion actually derive from a Lagrangian. This Lagrangian,
which is also a generalized one2, can be constructed as follows. We start from the general-
frame Lagrangian, which is a functional of yA, vA and aA, and admits the CM inte-
gral G[yA,vA] explicitly given by (7.5)–(7.6). Then, we perform the change of variables
(y1,y2) −→ (x,G), where we recall that x = y1 − y2. Since to Newtonian order we
have G = m1 y1 + m2 y2 + O(c−2), we find for instance y1 = X2x + 1

mG + O(c−2) and
v1 = X2v + 1

m
dG
dt + O(c−2). Proceeding iteratively with the help of (7.5)–(7.6), it is easy

to see that the old variables yA are obtained as functionals of the new variables (x,G) and
their derivatives up to some high differentiation order depending on the PN order. In the

2I.e. it depends also on the acceleration.
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process, we do not perform any order reduction of accelerations, so that we get

yA = yA
[
x,v,a, · · · ;G, dG

dt ,
d2G
dt2 , · · ·

]
. (7.14)

Plugging those relations into the original general-frame Lagrangian and performing time
derivatives, but still without order reduction of the accelerations, yields an equivalent La-
grangian, which is now “doubly generalized” in terms of the two types of variables, i.e.

L = L
[
x,v,a, · · · ;G, dG

dt ,
d2G
dt2 , · · ·

]
. (7.15)

The ensuing equations of motion read

δL

δx
≡ ∂L

∂x
− d

dt

(
∂L

∂v

)
+ d2

dt2
(
∂L

∂a

)
+ · · · = 0 , (7.16)

together with the equation δL
δG = 0, which is necessarily equivalent to the conservation law

for the CM integral, hence we have

δL

δG
= 0 ⇐⇒ d2G

dt2 = 0 . (7.17)

As a result, we can choose G = 0 as a solution of these equations. The CM equations of
motion are then given by (7.16) in which we pose, everywhere, G = 0, dG

dt = 0, · · · ; these
equations are nothing but the CM equations of motion (7.11)–(7.13). Now it is clear, since
(7.16) and (7.17) are independent, that those CM equations of motion derive precisely from
the Lagrangian (7.15) in which we set, everywhere, G = 0, dG

dt = 0, · · · , hence the CM
Lagrangian is

LCM = L
[
x,v,a, · · · ; 0,0, · · · ] . (7.18)

7.1.3.b) Result

Using the usual notations, the CM Lagrangian is given by L = LCM/µ, where

LN = v2

2 + Gm

r
, (7.19a)

L1PN = v4

8 −
3 ν v4

8 + Gm

r

(
ṙ2 ν

2 + 3 v2

2 + ν v2

2

)
− G2m2

2 r2 , (7.19b)

L2PN = v6

16 −
7 ν v6

16 + 13 ν2 v6

16

+ Gm

r

(
3 ṙ4 ν2

8 − ṙ2 an ν r

8 + ṙ2 ν v2

4 − 5 ṙ2 ν2 v2

4 + 7 an ν r v2

8

+ 7 v4

8 − 5 ν v4

4 − 9 ν2 v4

8 − 7 ṙ ν r av
4

)

+ G2m2

r2

(
ṙ2

2 + 41 ṙ2 ν

8 + 3 ṙ2 ν2

2 + 7 v2

4 − 27 ν v2

8 + ν2 v2

2

)

+ G3m3

r3

(1
2 + 15 ν

4

)
, (7.19c)
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L3PN = 5 v8

128 −
59 ν v8

128 + 119 ν2 v8

64 − 323 ν3 v8

128

+ Gm

r

(
5 ṙ6 ν3

16 + ṙ4 an ν r

16 − 5 ṙ4 an ν2 r

16 − 3 ṙ4 ν v2

16

+7 ṙ4 ν2 v2

4 − 33 ṙ4 ν3 v2

16 − 3 ṙ2 an ν r v2

16 − ṙ2 an ν2 r v2

16

+5 ṙ2 ν v4

8 − 3 ṙ2 ν2 v4 + 75 ṙ2 ν3 v4

16 + 7 an ν r v4

8

−7 an ν2 r v4

2 + 11 v6

16 − 55 ν v6

16 + 5 ν2 v6

2

+ 65 ν3 v6

16 + 5 ṙ3 ν r av
12 − 13 ṙ3 ν2 r av

8

−37 ṙ ν r v2 av
8 + 35 ṙ ν2 r v2 av

4

)

+ G2m2

r2

(
−109 ṙ4 ν

144 − 259 ṙ4 ν2

36 + 2 ṙ4 ν3 − 17 ṙ2 an ν r

6

+ 97 ṙ2 an ν2 r

12 + ṙ2 v2

4 − 41 ṙ2 ν v2

6 − 2287 ṙ2 ν2 v2

48

− 27 ṙ2 ν3 v2

4 + 203 an ν r v2

12 + 149 an ν2 r v2

6

+ 45 v4

16 + 53 ν v4

24 + 617 ν2 v4

24 − 9 ν3 v4

4

− 235 ṙ ν r av
24 + 235 ṙ ν2 r av

6

)

+ G3m3

r3

(
3 ṙ2

2 − 12041 ṙ2 ν

420 + 37 ṙ2 ν2

4 + 7 ṙ2 ν3

2 − 123 ṙ2 ν π2

64

+ 5 v2

4 + 387 ν v2

70 − 7 ν2 v2

4 + ν3 v2

2 + 41 ν π2 v2

64

+22 ṙ2 ν ln
( r
r′0

)
− 22 ν v2

3 ln
( r
r′0

))

+ G4m4

r4

(
−3

8 −
18469 ν

840 + 22 ν
3 ln

( r
r′0

))
, (7.19d)

L(0)
4PN = 7

256v
10 − 121

256νv
10 + 785

256ν
2v10 − 1127

128 ν
3v10 + 2415

256 ν
4v10 , (7.19e)

L(1)
4PN = m

r

(23
20ν

2avrṙ
5 − 5

128νṙ
8 + 35

128ν
2ṙ8 − 35

64ν
3ṙ8 + 35

128ν
4ṙ8 + 7

4νavrṙ
3v2

+ 361
24 ν

3avrṙ
3v2 + 19

32νanrṙ
4v2 + 85

32ν
3anrṙ

4v2 − 5
16νṙ

6v2 − 31
16ν

2ṙ6v2

+ 45
32ν

3ṙ6v2 − 85
32ν

4ṙ6v2 + 341
4 ν2avrṙv

4 + 245
32 ν

2anrṙ
2v4 − 17

64νṙ
4v4 − 11

8 ν
2ṙ4v4

− 193
16 ν

3ṙ4v4 + 693
64 ν

4ṙ4v4 + 217
96 νanrv

6 + 2261
96 ν3anrv

6 − 11
48νṙ

2v6 − 29
4 ν

2ṙ2v6
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+ 1021
96 ν3ṙ2v6 − 665

32 ν
4ṙ2v6 + 75

128v
8 − 1595

384 νv
8 + 2917

128 ν
2v8 + 493

192ν
3v8

−2261
128 ν

4v8
)
, (7.19f)

L(2)
4PN = m2

r2

(5407
288 νavrṙ

3 − 5531
3200νṙ

6 − 487
40 ν

2ṙ6 + 13
5 ν

3ṙ6 + 3
2ν

4ṙ6 + 11497
48 ν2avrṙv

2

+ 469
4 ν3avrṙv

2 + 517
48 ν

2anrṙ
2v2 − 61183

5760 νṙ
4v2 + 3079

96 ν2ṙ4v2 − 161
8 ν3ṙ4v2

− 27
2 ν

4ṙ4v2 + 14627
384 νanrv

4 + 3
16 ṙ

2v4 − 12091
640 νṙ2v4 − 22045

192 ν2ṙ2v4 + 255
64 ν

3ṙ2v4

+569
16 ν

4ṙ2v4 + 115
32 v

6 + 593
120νv

6 + 9467
192 ν

2v6 + 599
64 ν

3v6 + 195
16 ν

4v6
)
, (7.19g)

L(3)
4PN = m3

r3

(4937
1260ν

2avrṙ −
41
32π

2ν2avrṙ + 44
3 ν

2avr ln
( r
r′0

)
ṙ + 22

3 νavr ln
( r
r′′0

)
ṙ − 246373

2240 νṙ4

− 2155
1024π

2νṙ4 − 210733
2016 ν2ṙ4 + 205

128π
2ν2ṙ4 + 367

32 ν
3ṙ4 + 29

4 ν
4ṙ4 − 55

3 ν
2 ln

( r
r′0

)
ṙ4

− 55
3 ν ln

( r
r′′0

)
ṙ4 + 220

3 ν2 ln
( r
r′′0

)
ṙ4 + 229319

6300 νanrv
2 − 21

32π
2νanrv

2 + 49
4 ν

3anrv
2

+ 44νanr ln
( r
r′0

)
v2 + 44

3 ν
2anr ln

( r
r′′0

)
v2 + 7

4 ṙ
2v2 + 516319

4200 νṙ2v2 + 447
512π

2νṙ2v2

+ 53099
560 ν2ṙ2v2 + 123

64 π
2ν2ṙ2v2 − 1003

16 ν3ṙ2v2 − 47
2 ν

4ṙ2v2 − 55ν ln
( r
r′0

)
ṙ2v2

− 22ν2 ln
( r
r′0

)
ṙ2v2 + 11ν ln

( r
r′′0

)
ṙ2v2 − 88ν2 ln

( r
r′′0

)
ṙ2v2 + 91

16v
4 − 166703

20160 νv
4

+ 133
1024π

2νv4 + 10601
3360 ν

2v4 − 123
128π

2ν2v4 + 567
32 ν

3v4 − 15
4 ν

4v4 + 55
3 ν ln

( r
r′0

)
v4

+11ν2 ln
( r
r′0

)
v4 + 44

3 ν
2 ln

( r
r′′0

)
v4
)
, (7.19h)

L(4)
4PN = m4

r4

(9
4 ṙ

2 − 245971
4200 νṙ2 + 2771

96 π2νṙ2 − 8089
140 ν

2ṙ2 − 44π2ν2ṙ2 + 185
8 ν3ṙ2 + 15

2 ν
4ṙ2

− 64 ln
( r
r′0

)
ṙ2 + 482

3 ν ln
( r
r′0

)
ṙ2 − 436ν2 ln

( r
r′0

)
ṙ2 + 64 ln

( r
r′′0

)
ṙ2 − 1499

3 ν ln
( r
r′′0

)
ṙ2

+ 2924
3 ν2 ln

( r
r′′0

)
ṙ2 + 15

16v
2 + 2039993

50400 νv2 − 191
32 π

2νv2 − 52907
1008 ν

2v2 + 11π2ν2v2

− 1
8ν

3v2 + 1
2ν

4v2 + 16 ln
( r
r′0

)
v2 − 71

3 ν ln
( r
r′0

)
v2 + 349

3 ν2 ln
( r
r′0

)
v2 − 16 ln

( r
r′′0

)
v2

+124ν ln
( r
r′′0

)
v2 − 240ν2 ln

( r
r′′0

)
v2
)
, (7.19i)

L(5)
4PN = m5

r5

(3
8 + 1697177

25200 ν + 105
32 π

2ν + 55111
720 ν2 − 11π2ν2 − 16 ln

( r
r′0

)
+ 82

3 ν ln
( r
r′0

)

−120ν2 ln
( r
r′0

)
+ 16 ln

( r
r′′0

)
− 124ν ln

( r
r′′0

)
+ 240ν2 ln

( r
r′′0

))
. (7.19j)

The CM Lagrangian in harmonic coordinates still depends on accelerations starting at 2PN
order, through an = a · n and av = a · v, as well as logarithms of r/r′0 and r/r′′0 (cf (7.10)
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for a definition of r′0 and r′′0).

7.1.4 Energy and angular momentum in the center of mass frame

Now that the CM position is defined at 4PN, we can compute the conserved energy and
the conserved angular momentum at this order in the CM frame. The following quantities
can be computed in two ways: we can take the CM Lagrangian defined in the previous
section and compute them using Noether’s theorem, or we can compute them from the
Fokker Lagrangian presented in appendix B, and then apply the CM transformation (7.7) to
the result. We used these two methods and explicitly checked that they provided the same
answers, which is also a nice way to test our computations. We recall that we only provide
here the conserved quantity of the instantaneous part of the dynamic. The tail contribution
to these quantities are detailed in 7.2.

7.1.4.a) Energy

The reduced CM energy is defined by E = E/µ where µ is the reduced mass µ ≡ (m1m2)/(m1+
m2). It reads

EN = v2

2 −
Gm

r
, (7.20a)

E1PN = 3 v4

8 − 9 ν v4

8 + Gm

r

(
ṙ2 ν

2 + 3 v2

2 + ν v2

2

)
+ G2m2

2r2 , (7.20b)

E2PN = 5 v6

16 −
35 ν v6

16 + 65 ν2 v6

16

+ Gm

r

(
−3 ṙ4 ν

8 + 9 ṙ4 ν2

8 + ṙ2 ν v2

4 − 15 ṙ2 ν2 v2

4 + 21 v4

8 − 23 ν v4

8 − 27 ν2 v4

8

)

+ G2m2

r2

(
ṙ2

2 + 69 ṙ2 ν

8 + 3 ṙ2 ν2

2 + 7 v2

4 − 55 ν v2

8 + ν2 v2

2

)

+ G3m3

r3

(
−1

2 −
15 ν

4

)
, (7.20c)

E3PN = 35 v8

128 −
413 ν v8

128 + 833 ν2 v8

64 − 2261 ν3 v8

128

+ Gm

r

(
5 ṙ6 ν

16 − 25 ṙ6 ν2

16 + 25 ṙ6 ν3

16 − 9 ṙ4 ν v2

16 + 21 ṙ4 ν2 v2

4

−165 ṙ4 ν3 v2

16 − 21 ṙ2 ν v4

16 − 75 ṙ2 ν2 v4

16 + 375 ṙ2 ν3 v4

16

+55 v6

16 − 215 ν v6

16 + 29 ν2 v6

4 + 325 ν3 v6

16

)

+ G2m2

r2

(
−731 ṙ4 ν

48 + 41 ṙ4 ν2

4 + 6 ṙ4 ν3 + 3 ṙ2 v2

4 + 31 ṙ2 ν v2

2

−815 ṙ2 ν2 v2

16 − 81 ṙ2 ν3 v2

4 + 135 v4

16 − 97 ν v4

8 + 203 ν2 v4

8 − 27 ν3 v4

4

)
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+ G3m3

r3

(
3 ṙ2

2 + 803 ṙ2 ν

840 + 51 ṙ2 ν2

4 + 7 ṙ2 ν3

2 − 123 ṙ2 ν π2

64 + 5 v2

4

−6747 ν v2

280 − 21 ν2 v2

4 + ν3 v2

2 + 41 ν π2 v2

64

+22 ṙ2 ν ln
( r
r′0

)
− 22 ν v2

3 ln
( r
r′0

))

+ G4m4

r4

(3
8 + 18469 ν

840 − 22 ν
3 ln

( r
r′0

))
, (7.20d)

E(0)
4PN =

( 63
256 −

1089
256 ν + 7065

256 ν
2 − 10143

128 ν3 + 21735
256 ν4

)
v10 , (7.20e)

E(1)
4PN = m

r

(
− 35

128νṙ
8 + 245

128ν
2ṙ8 − 245

64 ν
3ṙ8 + 245

128ν
4ṙ8 + 25

32νṙ
6v2 − 125

16 ν
2ṙ6v2

+ 185
8 ν3ṙ6v2 − 595

32 ν
4ṙ6v2 + 27

64νṙ
4v4 + 243

32 ν
2ṙ4v4 − 1683

32 ν3ṙ4v4 + 4851
64 ν4ṙ4v4

− 147
32 νṙ

2v6 + 369
32 ν

2ṙ2v6 + 423
8 ν3ṙ2v6 − 4655

32 ν4ṙ2v6 + 525
128v

8 − 4011
128 νv

8

+9507
128 ν

2v8 − 357
64 ν

3v8 − 15827
128 ν4v8

)
, (7.20f)

E(2)
4PN = m2

r2

(
−4771

640 νṙ
6 − 461

8 ν2ṙ6 − 17
2 ν

3ṙ6 + 15
2 ν

4ṙ6 + 5347
384 νṙ

4v2 + 19465
96 ν2ṙ4v2

− 439
8 ν3ṙ4v2 − 135

2 ν4ṙ4v2 + 15
16 ṙ

2v4 − 5893
128 νṙ

2v4 − 12995
64 ν2ṙ2v4 + 18511

64 ν3ṙ2v4

+2845
16 ν4ṙ2v4 + 575

32 v
6 − 4489

128 νv
6 + 5129

64 ν2v6 − 8289
64 ν3v6 + 975

16 ν
4v6
)
, (7.20g)

E(3)
4PN = m3

r3

(
−2599207

6720 νṙ4 − 6465
1024π

2νṙ4 − 103205
224 ν2ṙ4 + 615

128π
2ν2ṙ4 + 69

32ν
3ṙ4 + 87

4 ν
4ṙ4

− 55ν2 ln
( r
r′0

)
ṙ4 − 55ν ln

( r
r′′0

)
ṙ4 + 220ν2 ln

( r
r′′0

)
ṙ4 + 21

4 ṙ
2v2 + 1086923

1680 νṙ2v2

+ 333
512π

2νṙ2v2 + 206013
560 ν2ṙ2v2 + 123

64 π
2ν2ṙ2v2 − 2437

16 ν3ṙ2v2 − 141
2 ν4ṙ2v2

− 33ν ln
( r
r′0

)
ṙ2v2 − 22ν2 ln

( r
r′0

)
ṙ2v2 + 55ν ln

( r
r′′0

)
ṙ2v2 − 220ν2 ln

( r
r′′0

)
ṙ2v2 + 273

16 v
4

− 22649399
100800 νv4 + 1071

1024π
2νv4 + 521063

10080 ν
2v4 − 205

128π
2ν2v4 + 2373

32 ν3v4 − 45
4 ν

4v4

+11ν ln
( r
r′0

)
v4 + 55

3 ν
2 ln

( r
r′0

)
v4 − 22

3 ν ln
( r
r′′0

)
v4 + 88

3 ν
2 ln

( r
r′′0

)
v4
)
, (7.20h)

E(4)
4PN = m4

r4

(9
4 ṙ

2 − 1622437
12600 νṙ2 + 2645

96 π2νṙ2 − 289351
2520 ν2ṙ2 − 1367

32 π2ν2ṙ2 + 213
8 ν3ṙ2

+ 15
2 ν

4ṙ2 − 64 ln
( r
r′0

)
ṙ2 + 746

3 ν ln
( r
r′0

)
ṙ2 − 1352

3 ν2 ln
( r
r′0

)
ṙ2 + 64 ln

( r
r′′0

)
ṙ2

− 507ν ln
( r
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ṙ2 + 1004ν2 ln

( r
r′′0

)
ṙ2 + 15

16v
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16800 νv2 − 149
32 π

2νv2

+ 22963
5040 ν

2v2 + 311
32 π

2ν2v2 − 29
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3v2 + 1
2ν

4v2 + 16 ln
( r
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)
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3 ν ln
( r
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+131ν2 ln
( r
r′0

)
v2 − 16 ln

( r
r′′0

)
v2 + 394

3 ν ln
( r
r′′0

)
v2 − 808

3 ν2 ln
( r
r′′0

)
v2
)
, (7.20i)

E(5)
4PN = m5

r5

(
−3

8 −
1697177
25200 ν − 105

32 π
2ν − 55111

720 ν2 + 11π2ν2 + 16 ln
( r
r′0

)
− 82

3 ν ln
( r
r′0

)

+120ν2 ln
( r
r′0

)
− 16 ln

( r
r′′0

)
+ 124ν ln

( r
r′′0

)
− 240ν2 ln

( r
r′′0

))
, (7.20j)

7.1.4.b) Angular momentum

The reduced CM angular momentum is defined by J = J/JN, which is the Euclidean norm
J = |J | rescaled by that of the Newtonian angular momentum JN = µx× v. We have

JN = 1 , (7.21a)

J1PN = (1− 3 ν) v
2

2 + Gm

r
(3 + ν) , (7.21b)

J2PN = 3 v4

8 − 21 ν v4

8 + 39 ν2 v4

8

+ Gm

r

(
−ṙ2 ν − 5 ṙ2 ν2

2 + 7 v2

2 − 5 ν v2 − 9 ν2 v2

2

)

+ G2m2

r2

(7
2 −

41 ν
4 + ν2

)
, (7.21c)

J3PN = 5 v6

16 −
59 ν v6

16 + 119 ν2 v6

8 − 323 ν3 v6

16

+ Gm

r

(
3 ṙ4 ν

4 − 3 ṙ4 ν2

4 − 33 ṙ4 ν3

8 − 3 ṙ2 ν v2 + 7 ṙ2 ν2 v2

4

+ 75 ṙ2 ν3 v2

4 + 33 v4

8 − 71 ν v4

4 + 53 ν2 v4

4 + 195 ν3 v4

8

)

+ G2m2

r2

(
ṙ2

2 −
287 ṙ2 ν

24 − 317 ṙ2 ν2

8 − 27 ṙ2 ν3

2 + 45 v2

4

− 161 ν v2

6 + 105 ν2 v2

4 − 9 ν3 v2
)

+ G3m3

r3

(
5
2 −
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280 − 7 ν2 + ν3 + 41 ν π2

32 − 44 ν
3 ln

( r
r′0

))
, (7.21d)

J (0)
4PN =

( 35
128 −
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128ν + 3925

128 ν
2 − 5635

64 ν3 + 12075
128 ν4

)
v8 , (7.21e)

J (1)
4PN = m

r

(
−5

8νṙ
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8 ν
2ṙ6 + 45

16ν
3ṙ6 − 85

16ν
4ṙ6 + 3νṙ4v2 − 45

4 ν
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16 ν
3ṙ4v2
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16 ν

4ṙ4v2 − 53
8 νṙ

2v4 + 423
16 ν

2ṙ2v4 + 299
16 ν

3ṙ2v4 − 1995
16 ν4ṙ2v4 + 75

16v
6
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16 ν

3v6 − 2261
16 ν4v6

)
, (7.21f)

J (2)
4PN = m2

r2

(14773
320 νṙ4 + 3235

48 ν2ṙ4 − 155
4 ν3ṙ4 − 27ν4ṙ4 + 3

4 ṙ
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60 νṙ2v2



7.2 Circular orbit and dissipative effects 119

− 256
3 ν2ṙ2v2 + 4459

16 ν3ṙ2v2 + 569
4 ν4ṙ2v2 + 345

16 v
4 − 65491

960 νv4 + 12427
96 ν2v4

−3845
32 ν3v4 + 585

8 ν4v4
)
, (7.21g)

J (3)
4PN = m3

r3

(7
2 ṙ

2 + 7775977
16800 νṙ2 + 447

256π
2νṙ2 + 121449

560 ν2ṙ2 − 1025
8 ν3ṙ2 − 47ν4ṙ2

− 110ν ln
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ṙ2 + 44ν ln
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)
ṙ2 − 176ν2 ln
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ṙ2 + 91
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50400 νv2
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256π

2νv2 + 276433
5040 ν2v2 − 41

16π
2ν2v2 + 637

8 ν3v2 − 15ν4v2 − 44
3 ν ln
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+88
3 ν

2 ln
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v2 − 22

3 ν ln
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v2 + 88

3 ν
2 ln
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)
v2
)
, (7.21h)

J (4)
4PN = m4

r4

(15
8 + 3809041

25200 ν − 85
8 π

2ν − 20131
420 ν2 + 663

32 π
2ν2 − 15

4 ν
3 + ν4 + 32 ln

( r
r′0

)

− 406
3 ν ln

( r
r′0

)
+ 742

3 ν2 ln
( r
r′0

)
− 32 ln

( r
r′′0

)
+ 766

3 ν ln
( r
r′′0

)

−1528
3 ν2 ln

( r
r′′0

))
. (7.21i)

7.2 Circular orbit and dissipative effects

7.2.1 Effects of the tails
All the quantities provided so far did not take the non-local part of the action into account.
The main reasons why we did so are that (i) there is no analytical closed form to express
the acceleration and the contribution to the conserved quantities due to the tails unless we
specify it for circular orbits, (ii) it turns out that even for generic orbits, the tails do not
contribute to the conserved CM, therefore there was no need to take it into account to reduce
all the quantities in the CM frame.

The non-local part of the Fokker Lagrangian is

Ltail = G2M

5c8 I
(3)
ij (t) Pf

2r12/c

∫ +∞

−∞

dt′
|t− t′|I

(3)
ij (t′)

= G2M

5c8 I
(3)
ij (t)

∫ +∞

0
dτ ln

(
cτ

2r12

) [
I

(4)
ij (t− τ)− I(4)

ij (t+ τ)
]
. (7.22)

The contribution of (7.22) to the acceleration in the CM is

ai tail =− 4G2M

5c8 xj Pf
2r12/c

∫ +∞

−∞

dt′
|t− t′|I

(6)
ij (t′)

+ 8G2M

5c8 xj
[(
I

(3)
ij ln r

)(3)
− I(6)

ij ln r
]
− 2G2

5c8ν

ni

r

(
I

(3)
jk

)2
. (7.23)

Because of the non-locality of the (7.22), the contribution of the tails to the conserved
energy and conserved angular momentum is rather complex to derive. A proper derivation
of these quantities have been done in [93]. In the case of circular orbit, this derivation leads
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to analytically-closed results that we will simply provide in the following section. For the
remaining of this chapter, all the presented quantities consistently include the tail effect.

7.2.2 Circular orbit

Now that we have the dynamics in the CM frame, we are in the position to reduce all
the relevant quantities to the case of circular orbits. The conservative part of the relative
acceleration is then given by the purely radial acceleration a = −ω2x, the physical content
of which is entirely encoded into the relation between the orbital frequency ω and the orbital
separation r.

The tails contribution to ω (atail = −ω2
tail x) is [94, 3]

ω2
tail = 128

5
Gm

r3 γ4ν

[
ln (16γ) + 2γE + 1

2

]
, (7.24)

where we have used the PN parameter γ defined as γ ≡ GM
rc2 ; we recall that γE is Euler’s

constant.
The instantaneous contributions are computed by a straightforward reduction of the

equations of motion (7.12)–(7.13) to circular orbits, with ṙ = 0 and v2 = r2ω2 (since we
neglect the dissipative terms). Adding the tail contribution (7.24), we get

ω2 = Gm

r3

{
1 + (−3 + ν)γ +

(
6 + 41

4 ν + ν2
)
γ2

+
(
−10 +

[
−75707

840 + 41
64π

2 + 22 ln
(
r

r′0

)]
ν + 19

2 ν
2 + ν3

)
γ3 +

(
15 + 48 ln

( r′0
r′′0

)

+ν
[19644217

33600 + 163
1024π

2 + 256
5 γE + 128

5 ln(16γ) + 82 ln
( r
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)
− 372 ln

( r
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)]

+ν2
[44329

336 − 1907
64 π2 − 992

3 ln
( r
r′0

)
+ 720 ln

( r
r′′0

)]
+ 51

4 ν
3 + ν4

)
γ4
}
. (7.25)

This is a gauge dependent result, as the separation r refers to harmonic coordinates. It also
depends on the gauge constants r′0 and r′′0 defined in (7.10). Inverting (7.25), we express
γ = Gm

rc2 as a function of the orbital frequency ω or, rather, of the PN parameter x ≡ (Gmω
c3 )2/3

(cf equation (4.127))

γ = x

{
1 + x

(
1− 1

3ν
)

+ x2
(

1− 65
12ν

)

+ x3
(

1 + ν

[
−2203

2520 −
41
192π

2 − 22
3 ln

(Gm
c2r′0

)
+ 22

3 ln(x)
]

+ 229
36 ν

2 + ν3

81

)

+ x4
(

1 + 16 ln
(Gm
c2r′0

)
− 16 ln

(Gm
c2r′′0

)
− 1261

324 ν
3 + ν4

243

+ ν

[
−2067859

33600 − 256
15 γE −

5411
3072π

2 − 86 ln
(Gm
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)

+124 ln
(Gm
c2r′′0
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− 256

15 ln 4− 698
15 ln(x)

]
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+ν2
[153613

15120 + 6049
576 π

2 + 1168
9 ln

(Gm
c2r′0

)
− 240 ln

(Gm
c2r′′0

)
+ 992

9 ln(x)
])}

. (7.26)

Let us deal next with the conserved energy as a function of the separation r. All the
instantaneous terms in the CM frame are presented in (7.20). We just need to reduce it for
circular orbits and add the contribution of the tails [94]. This leads to

E = −µc
2γ

2

{
1 +

(
−7

4 + 1
4ν
)
γ +

(
−7

8 + 49
8 ν + 1

8ν
2
)
γ2 +

(
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+
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r
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)]
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64ν
3
)
γ3 +

(
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)
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[
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1024 π
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( r
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3 ln
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64ν
3 + 7

128ν
4
)
γ4
}
. (7.27)

This result is not yet the invariant we are looking for, as it still depends on the constant r′0
and r′′0 . However, these constants are canceled when we replace γ by the frequency-related
gauge-invariant parameter x, using (7.26). Finally, we arrive at

E = −µc
2x

2

{
1 +

(
−3

4 −
ν

12

)
x+

(
−27

8 + 19
8 ν −

ν2

24

)
x2

+
(
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64 +
[34445
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96 π

2
]
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96 ν
2 − 35

5184ν
3
)
x3

+
(
−3969

128 +
[
−123671

5760 + 9037
1536π

2 + 896
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15 ln(16x)
]
ν

+
[
−498449

3456 + 3157
576 π

2
]
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1728ν
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31104ν
4
)
x4
}
. (7.28)

Equation (7.28) includes the tail contribution which reads

Ẽtail = −224
15 µc

2νx5
[
ln (16x) + 2γE + 2

7

]
. (7.29)

The 4PN angular momentum for circular orbits can be found either by a direct calculation,
or from the thermodynamic relation dE

dω = ω dJ
dω , which is a particular case of the first law

of compact binary mechanics; this law has been derived up to the 4PN order, taking into
account the non locality associated with the tail effect [158]. We get

J = Gµm
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{
1 +

(3
2 + ν

6

)
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(
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24ν
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1296ν
3
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3 ln(16x)
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ν
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576 π

2
]
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1728ν
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31104ν
4
)
x4
}
, (7.30)
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with the tail contribution therein3

J̃ tail = −64
3
Gµ2 x7/2

c

[
ln (16x) + 2γE + 1

5

]
. (7.31)

7.2.3 Dissipative effects
So far, we have only considered the conservative part of the equations of motion, that are
derived through the use of the Fokker Lagrangian. However, due to the emission of gravita-
tional waves, dissipative effects should be included in the equations of motion. A first kind
of dissipative terms are instantaneous and arise at the 2.5PN and the 3.5PN orders. They
are well-known ([82, 83, 62, 159, 160, 80]) and are given here in the CM frame, with the
notation of (7.11)–(7.13)

A2.5PN = 8Gmν

5r ṙ

[
−17

3
Gm

r
− 3v2

]
, (7.32a)

B2.5PN = 8Gmν

5r

[
3Gm
r

+ v2
]
, (7.32b)
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r
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)

+ Gm ṙ2

r

(294
5 + 376

5 ν

)

−v2ṙ2 (114 + 12ν) + 112ṙ4
]
, (7.32c)

B3.5PN = Gmν

r

[
G2m2

r2

(
−1060

21 − 104
5 ν

)
+ Gmv2

r

(164
21 + 148

5 ν

)

+ v4
(
−626

35 −
12
5 ν
)

+ Gmṙ2

r

(
−82

3 −
848
15 ν

)

+v2ṙ2
(678

5 + 12
5 ν
)
− 120ṙ4

]
. (7.32d)

The second kind of dissipative terms is the dissipative contribution of the tails that occurs
at the (formally even) 4PN order. The conservative tail acceleration was obtained in (7.23).
It contains the tail integral

Pf
2r12/c

∫ +∞

−∞

dt′
|t− t′|I

(6)
ij (t′) =

∫ +∞

0
dτ ln

(
cτ

2r12

) [
I

(7)
ij (t− τ)− I(7)

ij (t+ τ)
]
, (7.33)

which only corresponds to the conservative part of the tail effect. Indeed, we recognize a
"time-symmetric" decomposition, which is conservative in the sense that the corresponding
acceleration is purely radial in the case of circular orbits, as we have seen in (7.24). The
dissipative part is given by the corresponding time-antisymmetric combination, hence the
dissipative tail acceleration is

ai1
tail
diss = −4G2M

5c8 yj1

∫ +∞

0
dτ ln

(
τ

2P

) [
I

(7)
ij (t− τ) + I

(7)
ij (t+ τ)

]
. (7.34)

3Notice that the tail contributions (7.29) and (7.31) satisfy separately the first law: dẼtail

dω = ω dJ̃tail

dω .



7.2 Circular orbit and dissipative effects 123

In this expression, P denotes an arbitrary scale, but it is easy to check that this scale cancels
out from the two terms of (7.34) so that we can choose P = r12/c. Thus, the complete tail
part of the acceleration is the sum of (7.23) and (7.34). It reads

ai1
tail =− 8G2M

5c8 yj1

∫ +∞

0
dτ ln

(
cτ

2r12

)
I

(7)
ij (t− τ)

+ 8G2M

5c8 yj1

[(
I

(3)
ij ln r12

)(3)
− I(6)

ij ln r12

]
− 2G2M

5m1c8
ni12
r12

(
I

(3)
jk

)2
. (7.35)

The non-local tail term agrees with the result found from first-principle derivations of the
near zone metric in [161, 150, 162]. In the case of (quasi-)circular orbits, the 4PN equations
of motion, including the 2.5PN, 3.5PN and 4PN radiation reaction effects, become

a = −ω2x− 32
5
G3m3ν

c5r4

[
1 +

(
−743

336 −
11
4 ν
)
γ + 4πγ3/2

]
v . (7.36)

The orbital frequency as a function of the separation r, with all conservative terms, has been
obtained in (7.25). In the above equation, we witness the contribution of the radiation
reaction 4PN tail effect with coefficient 4π.

With the radiation reaction terms added to the conservative acceleration, the energy and
angular momentum are no longer conserved. Their time derivatives are now equal to (minus)
the corresponding fluxes in gravitational waves. In order to recover the familiar expressions
for those fluxes,4 we have to transfer certain terms in the form of total time derivatives from
the right-hand side of the balance equations to the left-hand side. This implies that the
energy and angular momentum also acquire certain radiation-reaction contributions. The
balance equations read

dE
dt = −F , dJ

dt = −M , (7.37)

with purely dissipative energy and angular momentum fluxes F and M in the right-hand
side. The conservative parts of the CM energy E = E/µ and angular momentum J = J/JN
have already been provided in (7.20) and (7.21). We now present the 2.5PN and 3.5PN
dissipative contributions to the balance equation for the energy [82, 83, 62, 159, 160, 80]

E2.5PN = 8G2m2 ν

5r2 ṙv2 , (7.38a)

E3.5PN = −8G2m2 ν

5r2 ṙ

[(271
28 + 6ν

)
v4 +

(
−77

4 −
3
2ν
)
v2ṙ2 +

(79
14 −

92
7 ν
)
v2Gm

r

+ 10ṙ4 +
( 5

42 + 242
21 ν

)
ṙ2Gm

r
+
(
− 4

21 + 16
21ν

)(
Gm

r

)2 ]
, (7.38b)

together with the corresponding terms in the flux (with F = F/µ)

F2.5PN = 8G3m3 ν

5r4

(
4v2 − 11

3 ṙ
2
)
, (7.39a)

4I.e., the familiar Einstein quadrupole formula at leading order, and its extension, at next-to-leading orders,
built from an irreducible STF decomposition of the mass and current (radiative type) multipole moments
(see for example (68) in [17]).



124 Chapter 7. Conserved quantities

F3.5PN = 8G3m3 ν

5r4

[(785
84 −

71
7 ν
)
v4 +

(
−680

21 + 40
21ν

)
v2Gm

r
+
(
−1487

42 + 232
7 ν

)
v2ṙ2

+
(734

21 −
10
7 ν
)
ṙ2Gm

r
+
(687

28 −
155
7 ν

)
ṙ4 +

( 4
21 −

16
21ν

)(
Gm

r

)2 ]
. (7.39b)

As we said, this expression is nothing but the standard irreducible expression for the flux
reduced to the case of binary motion in the CM frame. For the angular momentum, we have

J2.5PN = −8G2m2 ν

5r2 ṙ , (7.40a)

J3.5PN = −8G2m2 ν

5r2 ṙ

[(40
3 −

11
21ν

)
v2

+
(
−439

28 + 18
7 ν
)
ṙ2 +

(
−17

21 −
169
21 ν

)(
Gm

r

)]
, (7.40b)

while the flux contributions are (with M = M/JN and JN = µ|x× v|)

M2.5PN = 8G2m2 ν

5r3

(
2v2 + 2Gm

r
− 3ṙ2

)
, (7.41a)

M3.5PN = 8G2m2 ν

5r3

[(307
84 −

137
21 ν

)
v4 +

(
−58

21 −
95
21ν

)
v2Gm

r
+
(
−37

7 + 277
14 ν

)
v2ṙ2

+
(62

7 + 197
42 ν

)
ṙ2Gm

r
+
(95

28 −
90
7 ν
)
ṙ4 +

(
−745

42 + ν

21

)(
Gm

r

)2 ]
. (7.41b)

We must still include the dissipative 4PN tail contributions to both fluxes. From the ex-
pression of the corresponding acceleration in (7.34), we readily compute the corresponding
terms in the right-hand sides of the balance equations (7.37) as

F tail
diss = 2G2M

5c8 I
(1)
ij (t)

∫ +∞

0
dτ ln

(
cτ

2r12

) [
I

(7)
ij (t− τ) + I

(7)
ij (t+ τ)

]
, (7.42a)

M i tail
diss = 4G2M

5c8 εijk Ijl(t)
∫ +∞

0
dτ ln

(
cτ

2r12

) [
I

(7)
kl (t− τ) + I

(7)
kl (t+ τ)

]
. (7.42b)



8 – Computing the source mass
quadrupole moment at 4PN

In chapter 4, we expressed the far-zone metric as a function of unspecified source multipole
moments. Using the matching equation, we found an explicit expression for them in chapter
5. The computations of these multipole moments are crucial within the Blanchet-Damour-
Iyer formalism, but they are quite involved and cumbersome. In order to obtain the 4.5PN
phase of the gravitational waves (and in particular in order to obtain the gravitational wave
flux at the 4PN order), the mass quadrupole moment at the fourth post-Newtonian order
as well as the current quadrupole moment at the third post-Newtonian order have to be
computed.

In this chapter, we detail the computation of the mass quadrupole moment at 4PN and
we present a preliminary result of this computation in section 8.4.

8.1 Expression of the mass quadrupole as a function of the poten-
tials

8.1.1 General introduction

In order to compute the mass quadrupole at the 4th post-Newtonian order, we start from
the equation (5.50) obtained at the end of the chapter 5

IL(u) = FP
B

∫
d3x

( |x|
r0

)B ∫ 1

−1
dz
{
δ`x̂LΣ− 4(2`+ 1)

c2(`+ 1)(2`+ 3)δ`+1x̂iLΣ(1)
i

+ 2(2`+ 1)
c4(`+ 1)(`+ 2)(2`+ 5)δ`+2x̂ijLΣ(2)

ij

}
(u+ zr/c,x) , (8.1)

where

Σ = τ00 + τ ii

c2 , (8.2a)

Σi = τ0i

c
, (8.2b)

Σij = τ ij , (8.2c)

and where we recall that δ`(z) = (2`+1)!!
2(`+1)l!(1 − z

2)`. The functions Σ, Σi and Σij are to be
evaluated at the spatial point x and at time u+zr/c. As we are computing a post-Newtonian

125
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expansion of IL, the integral over dz can be evaluated as an asymptotic series in power of
1/c using the following properties of the functions δ`(z)

∫ 1

−1
dzδ`(z)Σ(u+ z|x|/c,x) =

∞∑

k=0
αk,`

( |x|
c

∂

∂u

)2k
Σ(u,x) , (8.3)

where
αk,` ≡

(2`+ 1)!!
(2k)!!(2`+ 2k + 1)!! . (8.4)

Therefore, IL(u) is an integral over the space with the volume element d3x of post-Newtonian
quantities depending on the energy-impulsion pseudo-tensor τµν where

ταβ = |g|Tαβ + c4

16πGΛαβ(hµν) . (8.5)

We recall that Tµν is the energy-impulsion tensor of the matter present in the spacetime
while Λαβ(hµν) corresponds to the stress energy associated with the gravitational field. In
the case of a compact binary system we use the usual point-particle energy-impulsion tensor
for the matter. This energy-impulsion tensor can be derived from the point-particle action
Sm defined in (6.4)

Tµν = 2√−g
δSm
δgµν

. (8.6)

This yields

T 00 = µ1δ
(3)(x− y1) + µ2δ

(3)(x− y2) , (8.7a)
T 0i = µ1v

i
1δ

(3)(x− y1) + µ2v
i
2δ

(3)(x− y2) , (8.7b)
T ij = µ1v

i
1v
j
1δ

(3)(x− y1) + µ2v
i
1v
j
2δ

(3)(x− y2) , (8.7c)

where

µ1 = m1c
1√

−(gµν)1v
µ
1 v

ν
1

1√
−(g)1

, (8.8a)

µ̃1 =
(

1 + v1iv1i
c2

)
µ1 . (8.8b)

Hence if we inject (8.8) into (8.7), and then into (8.5), the mass quadrupole can be expressed
at 4PN as a function of the metric hµν . Then, we need to parametrize the metric with
some potentials as done in the chapter 6. Finally, the integrals with respect to x have to
be performed. These integrals lead to both IR divergences (when r → ∞) as well as UV
divergences (when x→ y1 or x→ y2).

The infra-red divergences are cured using the Finite-Part regularization. The choice of
this regularization is a direct consequence of the matching equation leading to (8.1). However,
as we will discuss in the section 8.4, more work is required to understand the problem of the
IR divergence in the 4PN mass quadrupole moment.

Concerning the UV divergences (due to the point-particle approximation), they can be
cured using Hadamard partie finie regularization up to the second post-Newtonian order.
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This technique no longer works at the third post-Newtonian order and dimensional regular-
ization has to be systematically used at the third and the fourth post-Newtonian orders.

All of these regularization techniques have been explained in section 6.1.2 and 6.1.4 in
the case of the integral defining the Fokker Lagrangian. The way we use them in the case
of the source multipole moments is exactly similar. In particular, a first computation using
the Hadamard partie finie for the UV divergences is done, and then the difference between
dimensional regularization and Hadamard partie finie for those divergences is computed and
added to the first result.

8.1.2 Generalization in d dimensions
The use of dimensional regularization requires to extend to d dimensions the formulae (8.1)
and (8.3). This has been done in [135] and reads

IL(t) = d− 1
2(d− 2) FP

B

∫ ddy
`d−3
0

( |y|
r0

)B {
ŷL Σ[`](y, t)

− 4(d+ 2`− 2)
c2(d+ `− 2)(d+ 2`) ŷiL Σ̇i[`+1](y, t)

+ 2(d+ 2`− 2)
c4(d+ `− 1)(d+ `− 2)(d+ 2`+ 2) ŷijL Σ̈ij[`+2](y, t)

− 4(d− 3)(d+ 2`− 2)
c2(d− 1)(d+ `− 2)(d+ 2`)B ŷiL

yj
|y|2 Σij[`+1](y, t)

}
, (8.9)

where (8.3) becomes in d dimensions

Σ[`](y, t) =
∫ 1

−1
dz δ

(ε)
` (z) Σ(y, t+ z|y|/c)

=
+∞∑

k=0
αk`

( |y|
c

∂

∂t

)2k
Σ(y, t) . (8.10)

The numerical coefficients αk` are given by

αk` = 1
(2k)!!(2`+ d)(2`+ d+ 2) · · · (2`+ d+ 2k − 2) . (8.11)

8.1.3 Metric in d dimensions
In the computation of the Fokker Lagrangian, the n+2 method told us at which post-
Newtonian order we have to expand the metric. In the case of the mass quadrupole, such
a method does not exist, and hµν has to be systematically expanded in such a way that we
get all the term up to 1/c8 in (8.9). A careful study of the structure of this equation shows
that we need the metric at the order (h00, h0i, hij) ∼ (O(c−8),O(c−7),O(c−8)). This metric
can be parametrized as [157]

h00 = − 1
c2

2(−1 + d)V
−2 + d

+ 1
c4

[
4(−3 + d)(−1 + d)K

(−2 + d)2 − 2(−1 + d)2V 2

(−2 + d)2 − 2Ŵ
]
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+ 1
c6

[
−4(−1 + d)3V 3

3(−2 + d)3 + 8(−3 + d)VaVa
−2 + d

+ V
(8(−3 + d)(−1 + d)2K
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−4(−1 + d)Ŵ
−2 + d

)− 8(−1 + d)X̂
−2 + d

− 8Ẑ
]

+ 1
c8
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2dŴabŴab

−2 + d
− 2(−3 + d)2(−1 + d)(−4 + 3d)K2

(−2 + d)4 + 32M̂
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− 2(−1 + d)4V 4

3(−2 + d)4 + 16(−4 + d)R̂aVa
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+ 8(−3 + d)(−1 + d)KŴ
(−2 + d)2 − 2Ŵ 2

+ 8(−3 + d)(−1 + d)3KV 2

(−2 + d)4 − 4(−1 + d)2ŴV 2

(−2 + d)2 + 16(−3 + d)(−1 + d)V VaVa
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]
, (8.12a)

h0i = 4
c3Vi + 1

c5

[
8R̂i + 4(−1 + d)ViV
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]

+ 1
c7
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16Ŷi −
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, (8.12b)

hij = 1
c4

[
− 4Ŵij + 2δijŴ

]
+ 1
c6

[
− 16Ẑij + 8δijẐ

]
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}]
,

(8.12c)

where most of the potentials have already been defined in 6.1.3. The new potentials appearing
in (8.12) at the 4PN order are denoted T̂ , M̂ij and Ŷi. They obey the flat space-time wave
equations

�Ŷi = −4πG
[
−1

2
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d− 1
d− 2
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2 K
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2

(
d− 1
d− 2

)2
V ∂aV ∂aVi + 1

2

(
d− 1
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)
V ∂2

t Vi + 2Va ∂a∂tVi

+ (d− 1)(d− 3)
(d− 2)2 ∂aK∂iVa + d(d− 1)(d− 3)

4(d− 2)3 (∂tV ∂iK + ∂iV ∂tK) , (8.13)
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�T̂ = −4πG
[ 1
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�M̂ij = −4πG
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− (−1 + d)δijŴab∂aV ∂bV
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+ (−1 + d)Ŵia∂aV ∂jV
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− 1
4∂iŴab∂jŴab −
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4(−2 + d) . (8.15)

8.1.4 Simplification of the result
The expression of the mass quadrupole moment as a function of the potentials is given in the
appendix C. This result has been obtained by inserting (8.12) into (8.5) and then into (8.9).
Then, different crucial simplifications have to be done. In fact, we do not know explicitly all
the potentials entering the metric (either in 3 or d dimensions), and we are going to perform
different operations in order to transform their contributions into computable forms.

8.1.4.a) Integration by part

The first technique to simplify the expression of the source mass quadrupole is to integrate
by part some terms. For example, we systematically perform the substitution

∂aV ∂aV 7→
1
2∆V 2 − V∆V . (8.16)

In (8.16), we can further simplify the right-hand side using

∆V = �V + 1
c2
∂2

∂t2
V

= −4πGσ + 1
c2
∂2

∂t2
V , (8.17)

where we have used the definition of V in (8.17). Thus, a complicated integral of the form∫
d3x x̂L∂aV ∂aV is transformed into two simpler terms: a compact term

∫
d3x x̂Lσ and a

surface term
∫

d3x x̂L∆V 2. These two terms are much easier to integrate as we will see in
section 8.2.1 and 8.2.3. This kind of integration by part is done as much as possible for the
different potentials (and not only for V ), generating so-called Laplacian surface terms.

8.1.4.b) Super-potential

The main technique we use to explicitly compute all the terms at 4PN is called the method
of super-potentials. Some of the terms are of the form Ṽ P̃ where Ṽ is one of the following
potentials: {∂iV, ∂ijV, ∂2

t V, ∂t∂iV, ∂jVi}, and P̃ represents a complicated potential whose



8.2 Integrating the different terms 131

explicit expression is not known (for example M̂ij obeying the equation (8.15)). In order to
compute these terms we define the super potential ΨṼ

L such that

∆ΨṼ
L ≡ x̂LṼ . (8.18)

Then we perform the following integration by part
∫ ddx
`d−3
0

x̂LṼ P̃ =
∫ ddx
`d−3
0

∆ΨṼ
L P̃

=
∫ ddx
`d−3
0

∆P̃ΨṼ
L +

∫ ddx
`d−3
0

∂a
(
−ΨṼ

L∂
aP̃ + P̃ ∂aΨṼ

L

)
. (8.19)

We can now substitute ∆P̃ 7→ �P̃ + 1
c2

∂2

∂t2 P̃ and replace �P̃ by its source which is made
of simpler potentials. The term − 1

c2
∂2

∂t2 P̃ will be of higher post-Newtonian order which will
reduce the post-Newtonian order at which P̃ has to be computed. The last term of (8.19)
is called a divergence term and is also a surface term relatively easy to integrate (cf section
8.2.3).

Once these two techniques have been applied, we obtain the result presented in the
appendix C. The following two sections provide all the material needed to compute the
terms of the mass quadrupole presented in the appendix C. In particular, we see in section
8.2 the formulae required to integrate the different types of term, while the section 8.3 focuses
on listing and computing explicitly the different potentials entering the source of these terms.

8.2 Integrating the different terms
In this section, we explain how to integrate in practice the different types of term of the
source mass quadrupole.

8.2.1 Integrating the compact support terms
Some of the integrals that we have to perform to compute the mass quadrupole are compact
terms and their integrations are actually relatively straightforward. Their integrands are
proportional to one of the following three quantities

σ = µ̃1δ
(d)(x− y1) + µ̃2δ

(d)(x− y2) , (8.20a)
σi = µ1v

i
1δ

(d)(x− y1) + µ2v
i
2δ

(d)(x− y2) , (8.20b)
σij = µ1v

i
1v
j
1δ

(d)(x− y1) + µ2v
i
2v
j
2δ

(d)(x− y2) , (8.20c)

where we recall the definitions of µA and µ̃A in the equations (8.22) below. The Dirac
functions in y1 and y2 are due to the presence of the two point-particles. We recall that

∫
ddx δ(d)(x− y1)F = (F )1 , (8.21)

where (F )1 is the value of F at the point x = y1 in d dimensions. In fact, as F can diverge
when x → y1, we need to use dimensional regularization to cure the UV divergence that
might occur.
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8.2.2 µ1 and µ̃1

The expressions of µ1 and µ̃1 in 3 dimensions (equations (8.8)) can be extended in d dimen-
sions

µ1 = m1c
1√

−(gµν)1v
µ
1 v

ν
1

1√
−(g)1

, (8.22a)

µ̃1 = 2
d− 1

(
d− 2 + v1iv1i

c2

)
µ1 , (8.22b)

where g is the determinant of the metric, where (g)1 and (gµν)1 are evaluated at x = y1,
and where v0

1 = c. For the mass quadrupole at 4PN, the 3PN expression of µ1 as well as the
4PN expression of µ̃1 are required. They are given in terms of the potentials as

µ1
m1

= 1 + 1
c2

[1
2v

2
1 + (−4 + d)V

−2 + d

]

+ 1
c4

[
−4vi1Vi −

2(−4 + d)(−3 + d)K
(−2 + d)2 + 3

8v
4
1 + 3

2v
2
1V + (−4 + d)2V 2

2(−2 + d)2 − 2Ŵ
]

+ 1
c6

[
−8R̂iv1i + 4(−4 + d)ViV i

−2 + d
− 3(−3 + d)v2

1K

−2 + d
+ 2Ŵijv

i
1v
j
1 + 5

16v
6
1

− 4(−5 + 2d)vi1ViV
−2 + d

− 2(−4 + d)2(−3 + d)KV
(−2 + d)3 + 3(−8 + 5d)v4

1V

8(−2 + d)

+ 9
4v

2
1V

2 + (−4 + d)3V 3

6(−2 + d)3 − 6v2
1v
j
1Vj − v2

1Ŵ −
2(−4 + d)V Ŵ
−2 + d

+4(−4 + d)X̂
−2 + d

− 8Ẑ
]
, (8.23a)

(d− 1)µ̃1
2m1

= (d− 2) + 1
c2

[1
2dv

2
1 + (−4 + d)V

]

+ 1
c4

[
−4(−2 + d)vi1Vi −

2(−4 + d)(−3 + d)K
−2 + d

+ 1
8(−2 + 3d)v4

1

+(4− 10d+ 3d2)v2
1V

2(−2 + d) + (−4 + d)2V 2

2(−2 + d) − 2(−2 + d)Ŵ
]

+ 1
c6

[
−8(−2 + d)R̂iv1i + 4(−4 + d)ViV i − (−3 + d)(4− 10d+ 3d2)v2

1K

(−2 + d)2

+ 2(−2 + d)Ŵijv
i
1v
j
1 + 1

16(−4 + 5d)v6
1 − 4(−5 + 2d)vi1ViV

− 2(−4 + d)2(−3 + d)KV
(−2 + d)2 + 3

8(−4 + 5d)v4
1V

+ (−40 + 92d− 52d2 + 9d3)v2
1V

2

4(−2 + d)2 + (−4 + d)3V 3

6(−2 + d)2 − 2(−4 + 3d)v2
1v
j
1Vj

− dv2
1Ŵ − 2(−4 + d)V Ŵ + 4(−4 + d)X̂ − 8(−2 + d)Ẑ

]

+ 1
c8

[
−32R̂iVi + 2dŴ 2

ij − 16(−2 + d)vi1Ŷi + 8(−3 + d)(−5 + 2d)vi1ViK
−2 + d
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+ 2(−3 + d)2(16− 9d+ 2d2)K2

(−2 + d)3 + 32M̂ + 16(−4 + d)T̂ + 8(−2 + d)Ẑijvi1v
j
1

− 4(−4 + 3d)R̂iv1iv
2
1 −

3(−3 + d)(−4 + 5d)Kv4
1

4(−2 + d) + 5
128(−6 + 7d)v4

1

− 8(−5 + 2d)R̂iv1iV + 4(−4 + d)2ViV iV

−2 + d

− (−3 + d)(−40 + 92d− 52d2 + 9d3)v2
1KV

(−2 + d)3 + 6(−2 + d)Ŵijv
i
1v
j
1V

+ (52− 90d+ 35d2)v6
1V

16(−2 + d) − 2(26− 22d+ 5d2)vi1ViV 2

−2 + d

− (−4 + d)3(−3 + d)KV 2

(−2 + d)3 + 3(40− 68d+ 25d2)v4
1V

2

16(−2 + d)

+ (304− 768d+ 624d2 − 214d3 + 27d4)v2
1V

3

12(−2 + d)3 + (−4 + d)4V 4

24(−2 + d)3 −
3
2(−6 + 5d)v4

1v
a
1Va

+ 16(−2 + d)vi1v
j
1ViVj −

2(32− 41d+ 12d2)v2
1v
j
1V Vj

−2 + d

− 8(−2 + d)vi1ŴijV
j + 2(4− 10d+ 3d2)v2

1VjV
j

−2 + d
+ 8(−2 + d)vi1ViŴ

+ 4(−4 + d)(−3 + d)KŴ
−2 + d

− 1
4(−2 + 3d)v4

1Ŵ −
(4− 10d+ 3d2)v2

1V Ŵ

−2 + d

− (−4 + d)2V 2Ŵ

−2 + d
+ 2(−2 + d)Ŵ 2 + (−4 + 3d)v2

1v
i
1v
j
1Ŵij

+2(4− 10d+ 3d2)v2
1X̂

−2 + d
+ 4(16− 9d+ 2d2)V X̂

−2 + d
− 4dv2

1Ẑ − 8(−4 + d)V Ẑ
]
,

(8.23b)

where all the potentials are evaluated at the point x = y1.

8.2.3 Integrating the surface terms
Following the notation of [163], let us consider the following Laplacian term

JL ≡ FP
B

∫
d3x

( |x|
r0

)B
x̂L∆G . (8.24)

We can integrate by part (8.24):

JL = FP
B

∫
d3x∆

[( |x|
r0

)B
x̂L

]
G

+ FP
B

∫
d3x ∂a

[
−G∂a

{( |x|
r0

)B
x̂L

}
+
( |x|
r0

)B
x̂L∂aG

]
. (8.25)

The second term in the right-hand side of (8.25) is a surface integral and is zero when <B is
negatively large enough. Therefore, by analytical continuation, this term is exactly zero. In



134 Chapter 8. The source mass quadrupole moment at 4PN

order to compute JL, we are going to apply the Laplacian operator (we recall that ∆x̂L = 0)

JL = FP
B
B(B + 2`+ 1)

∫
d3x

( |x|
r0

)B−2 1
r2

0
x̂LG

= FP
B
B(B + 2`+ 1)

∫

r<R
d3x

( |x|
r0

)B−2 1
r2

0
x̂LG

+ FP
B
B(B + 2`+ 1)

∫

r≥R
d3x

( |x|
r0

)B−2 1
r2

0
x̂LG . (8.26)

The first term of (8.26) is actually zero. Indeed, the matching equation is originally done
for smooth matter distribution, and therefore the metric is normally smooth everywhere in
the near zone. As G is a potential built from the metric, it is also smooth in that region,
and because of the B pre-factor in (8.26), this term is zero by the Finite-Part procedure. In
practice, the point-particle approximation leads to divergences when x→ y1 or x→ y2, but
these UV divergences are killed by the dimensional regularization, and the Finite Part plays
no role in it. Let us focus on the second term of (8.26). Because of the B in the pre-factor
of this term, we need to look at the 1/B pole in the integral. This pole can only come from
radial integrals of the form

∫
drrB−1 = rB/B. Because d3x = r2drdΩ and x̂L ∼ r` when

r →∞ we need to look for the r−`−1 term in the asymptotic expansion of G when r →∞.
Hence, if we define X`(n) to be that coefficient, i.e.,

G = · · ·+ X`(n)
r`+1 + O

(
r−`−2

)
, (8.27)

we obtain

JL = FP
B
B(B + 2`+ 1)r−B0

∫ ∞

R
drrB−1

∫
dΩn̂LX`(n)

= −(2`+ 1)
∫

dΩn̂LX`(n) . (8.28)

We see that the final result does not depend on R nor on r0. It is simply an angular integral
involving the 1/r`+1 coefficient of G. Therefore, there is no need to know G everywhere but
just its asymptotical expansion, which is much easier as we are going to see in section 8.3.7.

The other surface integrals occurring are the divergence terms. They come from the use
of the superpotentials and are of the form

K ≡ FP
B

∫
d3x

( |x|
r0

)B
∂aHa . (8.29)

A similar reasoning as before shows that the Finite Part procedure yields

K =
∫

dΩnaYa(n) , (8.30)

where Ya(n) is the 1/r2 coefficient of the asymptotic expansion of Ha when r →∞:

Ha = · · ·+ Ya(n)
r2 + O

(
r−3

)
, (8.31)
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8.2.4 Integrating the non-compact terms
The rest of the integrals are non-compact terms, i.e., terms whose sources have non compact
support, and are the most difficult terms to compute. Such terms are of the form

∫
d3xṼ

where Ṽ represents a generic product of potentials and of derivatives of potentials.

8.2.4.a) Volume integral

The first task, which is the longest computational task, is to compute this integral using
the Finite Part regularization for the IR divergences as well as the Hadamard partie finie
regularization for the UV ones. This is systematically done using a routine developed mainly
by G. Faye inMathematica using the xAct library [164]. It has been used for different projects
(such as the Fokker Lagrangian project and the computation of the multipole moments at
lower order), and has been heavily tested.

8.2.4.b) Dimensional regularization difference

Once this is done, the difference between dimensional regularization and Hadamard partie
finie needs to be computed as usual. For that, we proceed as explained in section 6.1.3. The
only information required is the expansion of Ṽ in d dimensions in a neighborhood of y1 and
y2, in order to apply equation (6.40).

8.2.4.c) Distributional derivative and the Gel’Fand-Shilov formula

Finally, we need to take care of the compact terms generated by the distributional derivatives
appearing in the non-compact terms. Let us consider the following example

T =
∫

d3xV ∂ijV , (8.32)

and compute the distributional derivative part of this term at the newtonian order. As
V = Gm1

r1
+Gm2

r2
we have

∂ijV = −4
3Gπδij [m1δ(y1) +m2δ(y2)] . (8.33)

Hence, the Dirac functions generate compact terms and the contribution of the distributional
derivatives to T is

Tdistr.der. = −4
3Gπδij [m1(V )1 +m2(V )2] . (8.34)

More generally, the distributional derivative of a function f is computed using the Gel’Fand-
Shilov equation [108]:

∂ijf = ∂ord
ij f +Di

[
∂ord
j f

]
+ ∂ord

i Dj [f ] , (8.35)

where ∂ord
i is the ordinary derivative and D the distributional derivative operator. If f is

a positively homogenous function of degree −λ where λ ∈ N with λ ≥ 2, i.e. if for all
a > 0, f(ax) = a−λf(x) then

Di [f ] = (−1)k
k! ∂i1...ik [δ(x)]

∫

Σ
f(r,Ω)xi1 . . . xikdSi , (8.36)
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where k = λ − 2. The integral is over a sphere Σ of radius r and centered on r = 0, where
dSi = nir

2dΩ.
For most of the potentials, the equation (8.36) is used for f ∼ nL/rm. In that case, the

operator Di is given by [108]

Di

(
nL

rm

)
= 4π

(−1)m2m(`+ 1)!
(
l+m−1

2

)
!

(l +m)!

m/2∑

p=p0

∆p−1∂(M−2P δiL+2P−M)δ
3(x)

22p(p− 1)!(m− 2p)!
(
l+1−m

2 + p
)
!
. (8.37)

8.3 Computing the potentials

8.3.1 Summary of the potentials required
Based on the computational methods explained above and the list of terms composing the
mass quadrupole provided in the appendix C, we can list all the potentials required to com-
pute the mass quadrupole at 4PN. These potentials can be required either everywhere when
they enter non-compact integrals, or only at x = y1 when they enter compact terms. Besides,
we need them in d dimensions in a neighborhood of y1 when they enter non-compact inte-
grals in order to implement the UV dimensional regularization. Finally, in order to compute
surface terms, we need to know their explicit expressions when r →∞ in 3 dimensions.

The table 8.1 summarized the different potentials required for this computation.

8.3.2 Computing the potentials in 3 dimensions

8.3.2.a) Compact source potentials

The first potentials to compute are the so-called compact source potentials, i.e. V , Vi and K.
In fact the d’Alembertian of these potentials are proportional to σ, σi or σij . Their sources
are a combination of products of a function of time (including µ1 and µ̃1 for example)
multiplied by a Dirac function (either δ(3)(x − y1) or δ(3)(x − y2)). It is therefore quite
straightforward to compute them using the following

∆−1δ(3)(x− y1) = − 1
4πr

−1
1 , (8.38a)

∆−1ra1 = ra+2
1

(a+ 2)(a+ 3) , for a /∈ {−2,−3} . (8.38b)

8.3.2.b) ∂V ∂V terms: the case of Ŵij at 0PN

The source of Ŵij contains both compact terms and so-called ∂V ∂V terms:

�Ŵij = −4πG
(
σij − δij σkk

)
− ∂iV ∂jV . (8.39)

The source −4πG
(
σij−δij σkk

)
is easily integrated as explained in (8.3.2.a)). Now, at 0PN,

we have
V = Gm1

r1
+ Gm2

r2
. (8.40)
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Potentials 3 dimensions d dimensions near y1 y1 r →∞
V 2PN 2PN 3PN 3PN
Vi 2PN 2PN 2PN 2PN

Ψ∂a∂bV
ij 2PN 2PN 2PN 2PN

Ψ∂aVb
ij 1PN 1PN 1PN 1PN

Ψ∂t∂aV
ij 1PN 1PN 1PN 1PN

Ψ∂aV
ijk 1PN 1PN 1PN 1PN
Ŵij 1PN 1PN 1PN 2PN
Ŵ 1PN 1PN 1PN 2PN
Ẑij 0PN 0PN 0PN 1PN
Ẑ 0PN 0PN 0PN 1PN
R̂i 0PN 0PN 1PN 1PN
Ŷi × × 0PN 0PN
X̂ 0PN 0PN 1PN 1PN
M̂ij × × × 0PN
M̂ × × 0PN 0PN
T̂ × × 0PN 0PN

Table 8.1: List of the post-Newtonian order required for the different potentials in order to get
the 4PN mass quadrupole. The 3 dimensions column corresponds to the potentials computed
in 3 dimensions for all x ∈ R3. The d dimensions column to the potentials computed in d
dimensions around y1 (and y2). The next column is the value of the potentials at the point
y1 (and therefore y2), and the last column at spatial infinity. In addition to these potentials,
µ̃ is required at 4PN and µ at 3PN.

Hence

∂iV ∂jV = G2m2
1

[
∂i

1
r1
∂j

1
r1

]
+G2m1m2

[
∂i

1
r1
∂j

1
r2

]
+ 1↔ 2 . (8.41)

The term proportional to m2
1 is called a self-term and can be computed using the fact that

∂i
1
r1
∂j

1
r1

= n1in1j
r4
1

. In fact, terms depending only on n1 and r1, can be easily integrated using
the following [74]:

ra1 n̂1L = ∆
{

ra+2
1 n̂1L

(a− `+ 2)(a+ `+ 3)

}
for a ∈ C\{`− 2,−`− 3} , (8.42a)

r`−2
1 n̂1L = ∆

{ 1
2`+ 1

[
ln
(
r1
r0

)
− 1

2`+ 1

]
r`1n̂1L

}
, (8.42b)

r−`−3
1 n̂1L = ∆

{
− 1

2`+ 1

[
ln
(
r1
r0

)
+ 1

2`+ 1

]
n̂1L

r`+1
1

}
. (8.42c)

The constant normalizing the logarithm terms can be taken arbitrary here, as it will be fixed
by the matching procedure of the potentials as explained in section 8.3.3.

The term proportional to m1m2 is called a cross-term, or an interaction term. It repre-
sents the non-linear interaction between the Newtonian fields generated by m1 and m2. To
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integrate it, we are going to use the fact that ∂i 1
r1

= −∂1i
1
r1

where ∂1i represents the space
derivative with respect to yi1. Hence we obtain

∂i
1
r1
∂j

1
r2

= ∂1i
1
r1
∂2j

1
r2

= ∂1i∂2j

[ 1
r1

1
r2

]
. (8.43)

We have been able to factorize the derivatives as r1 does not depend on y2 and r2 does not
depend on y1. Now, we have

∆−1∂1i∂2j

[ 1
r1

1
r2

]
= ∂1i∂2j

[
∆−1 1

r1

1
r2

]

= ∂1i∂2jg , (8.44)

where g is such that ∆g = 1
r1r2

. Such a function g has been known for a long time and is
given by

g = ln(r1 + r2 + r12) . (8.45)

Adding up all these computational techniques, we are able to compute Ŵij at 0PN in 3
dimensions. Computing Ŵij at 1PN, as well as computing more complicated potentials such
as Ẑij at Newtonian order, relies on the same kind of tricks. In particular, it relies on the
functions f12 and f satisfying ∆f12 = r1

r2
and ∆f = 2g respectively. These are given by [74]

f = 1
3r1r2n1 · n2

(
g − 1

3

)
+ 1

6(r1r12 + r2r12 − r1r2) , (8.46a)

f12 = 1
3r1r12n1 · n12

(
g − 1

3

)
+ 1

6(r2r12 + r1r2 − r1r12) . (8.46b)

Similarly, a solution of ∆h = 2f has been recently computed and is given by1:

h = 1
720

[
−11gr4

12 − 11r1r
2
12r2 − 34gr2

1r
2
2 + 11(r1r

3
12 + r3

12r2)− 11(r2
1r12r2 + r1r12r

2
2)

+
(
−46

9 + 22g
)

(r2
1r

2
12 + r2

12r
2
2) + 11(r3

1r2 + r1r
3
2) + 5(−r3

1r12 − r12r
3
2)

+
(104

15 − 11g
)

(r4
1 + r4

2)
]

+ 1
3fr1r2n1 · n2 . (8.47)

8.3.3 Performing correctly the matching
The metric hµν that is parametrized by the potentials V, Vi, . . . is the instantaneous part of
the metric in the near-zone satisfying the matching equation (5.42)2. This means that when
a potential P satisfies the equation �P = S then P should be computed as

P = �̃−1
retS = FP

B
�−1

ret

[(
r

r0

)B
S

]
. (8.48)

1Private communication from A. Bohé, L. Bernard and L. Blanchet.
2Indeed, the potentials do not include the tail effects by definition.
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In practice, in order to compute P , we use the different functions f , g, ∆−1ra1 n̂1L defined in
section 8.3.2; however we are not making sure that we are following the right prescription, i.e.,
that we are using the operator �̃−1

ret . Said otherwise, there might be an extra homogeneous
solution that we could add to our potentials P . The first step that we can do to solve that
issue is to define gmatch and fmatch in such a way that

∆̃−1gmatch = 1
r1r2

, (8.49a)

∆̃−1fmatch = r1
r2
. (8.49b)

Such a procedure has been studied in [74] where the value of gmatch and fmatch are provided.
However, we can proceed in a much more systematic way which ensures us to find au-

tomatically the proper homogeneous solution. Let us assume that we have found a solution
Ppart such that �Ppart = S. We need to compute the homogeneous solution H ≡ P − Ppart
to be added to Ppart. As H is equal to its multipolar expansion, we have

H = M(H) = M(P )−M(Ppart) . (8.50)

The only unknown in (8.50) is M(P ) = M(�̃−1
retS). Looking at the equation (5.40), we see

that if we formally replace hµν by P and Λµν by S, we would obtain an explicit expression
for M(�̃−1

retS). Using techniques similar to the techniques used to derive (5.40), we can show
that

M(P ) =
∑

`≥0

(−1)`
`! ∂L

[1
r
ML

S(t− r/c)
]

+
∑

k≥0

(−1)k
k!

(
∂

c∂t

)k
FP
B

∫ d3x′

(−4π)

( |x′|
r0

)B
|x− x′|k−1M(S)(x′, t) , (8.51)

where

ML
S(u) = − 1

4π FP
B

∫
d3x′

( |x′|
r0

)B
x′LS(x′, u) . (8.52)

For a potential computed at a given post-Newtonian order, the equation (8.51) usually
reduces to few terms, and while the matching procedure seems to be cumbersome at first
sight, its implementation is rather straightforward.

8.3.4 Known formulae in d dimensions
The computation of potentials in d dimensions is closely similar to the computation done in
3 dimensions. The compact parts of the sources of the potentials can be integrated using
the extension to d dimensions of (8.38), i.e.,

∆−1δ(d)(x− y1) = − 1
4π k̃ r

2−d
1 , (8.53a)

∆−1rα1 = rα+2
1

(α+ 2)(α+ d) , (8.53b)
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where k̃ = Γ(d−2
2 )/π d−2

2 .
The self-term in d dimensions are integrated using the extension of equation (8.42)

∆−1n̂1Lr
α
1 = n̂1Lr

α+2
1

(α− `+ 2)(α+ `+ d) . (8.54)

The generalization of g in d dimensions is known, but its expression is rather cumbersome
and quite inconvenient if one wants to use it to compute potentials in d dimensions in the
full space-time. However, the development of g in d dimensions around y1, which is also
known [156], is quite handy. Therefore, while some potentials cannot be easily computed
for all x ∈ Rd, we can compute them around y1 and y2, which is what we need for the UV
dimensional regularization.

8.3.5 Superpotentials
In order to obtain the result presented in appendix C, we have extensively used superpoten-
tials Ψφ

L, i.e., potentials such that
∆Ψφ

L = x̂Lφ . (8.55)

The computation of such super-potentials was done in [165], using the following equation

Ψφ
L =

∑̀

k=0

(−2)k`!
(l − k)!x<L−K∂K>φ2k+2 , (8.56)

where have defined the functions φk by φ0 = φ and ∆φ2k+2 = φ2k. The equation (8.56) have
been derived in 3 dimensions in [165] but all the proofs work as well in d dimensions and no
extra factor needs to be added.

For example, let us find a general formula for ΨV
L assuming that V is defined by3

V = I−1(− 4πG[µ̃1δ(y1) + µ̃2δ(y2)]
)

= −4πG
∑

k≥0
∆−k−1

(
∂

c∂t

)2k
[µ̃1δ(y1) + µ̃2δ(y2)]

=
∑

k≥0

(
∂

c∂t

)2k
U2k , (8.57)

where U2k = ∆−1−k(− 4πG[µ̃1δ(y1) + µ̃2δ(y2)]
)
. It is quite straightforward to compute the

functions U2k using the appendix of [156]:

U2k = Gk̃

(2k)!!(2k + 2− d)(2k − 1) . . . (6− d)(4− d)
(
µ̃1r

2k+2−d
1 + µ̃2r

2k+2−1
2

)
. (8.58)

Now, for φ = V , the function φ2k are given by

φ2k = U2k + ∂2

c2∂t2
U2k+2 + · · · =

∑

j≥0

(
∂2

c2∂t2

)2j

U2k+2j . (8.59)

3In reality, V is defined using �−1
ret instead of I−1. But this does not impact our computation here, as the

difference is made of odd dissipative terms.
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By inserting (8.59) into (8.56) we can obtain at each post-Newtonian order an explicit ex-
pression for the superpotential ΨV

L . To compute Ψ∂kt ∂LV
L , i.e., the superpotential associated

with ∂kt ∂LV , we proceed similarly as all the space derivatives and time derivatives commute.
Thus, we just have to substitute φ2k in (8.56) by ∂kt ∂Lφ2k.

All these equations enable us to compute Ψ∂a∂bV
ij , Ψ∂t∂aV

ij and Ψ∂aV
ijk . The computation

of Ψ∂aVa
ij is done in a similar way as the source of Vi is also compact.

8.3.6 Potentials at the locations of the point particles
For the integrals with compact support entering the source mass quadrupole, only the values
of the potentials in x = y1 and x = y2 are required. When the potentials are known in d
dimensions around y1, we can directly deduce their values in x = y1. This is however not
the case for some of the most difficult potentials. In particular, we have to use another way
to compute Ŷi, M̂ij and T̂ at x = y1 in d dimensions.

Let S be the source of a potential P that we want to compute at x = y1 at Newtonian
order. At 0PN, we have ∆P = S and the problem amounts to computing (∆−1S)1. We
assume that we can compute S in 3 dimensions for all x, and in d dimensions around y1 and
that we known the following decomposition for the source in 3 dimensions

S(x) =
∑

p0≤p≤N
rp1 s1 p

(n1) + o(rN1 ) , (8.60)

as well as the similar decomposition in d dimensions

S(d)(x) =
∑

p0≤p≤N
q0≤q≤q1

rp1

(
r1
`0

)qε
s
1

(ε)
p,q(n1) + o(rN1 ) . (8.61)

As usual, we will proceed in two steps. First of all, let us compute (∆−1S)1 in 3 dimensions
using Hadamard partie finie. In [75], has been shown that

(P )1 = − 1
4πPfs1,s2

∫ d3x

r1
S(x) +

[
ln
(
r′1
s1

)
− 1

]
< s

1 −2(n1) > , (8.62)

where
< s

1 −2 >≡
1

4π

∫
dΩ1(n1) s

1 −2(n1) . (8.63)

Then, the difference between dimensional regularization and Hadamard partie finie is given
by [156]

D(P )1 = − 1
ε(1 + ε)

∑

q0≤q≤q1

(1
q

+ ε

[
ln
(
r′1
`0

)
− 1

])
< s

1
(ε)
−2,q(n1) >

− 1
ε(1 + ε)

∑

q0≤q≤q1

( 1
q + 1 + ε ln

(
s2
`0

))∑

`≥0

(−1)`
`! ∂L

(
1

r1+ε
12

)
< nL2 s2

(ε)
−`−3,q(n1) >

+ O(ε) . (8.64)

The values of M̂ij , M̂ , Ŷi and T̂ at x = y1 are computed using (8.62)–(8.64).
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8.3.7 Potentials at infinity
Finally, the value of some potentials are required at r →∞ in order to compute the surface
terms. For the potentials that are already known in 3 dimensions for all x ∈ R3, we just
perform their expansions when r → ∞. However, other potentials are not known, namely
Ŵij at 2PN, Ẑij at 1PN, X̂ at 1PN, and T̂ , Ŷi as well as M̂ij at 0PN. For those potentials,
we proceed differently.

Let us assume that we want to compute the asymptotic value of a potential P satisfying
�P = S. The first step is to develop S when r →∞:

Sr→∞ =
∑

p≥−p0

∑

`

S`,p(y1,v1,y2,v2)n̂Lrp + o(r−p0) . (8.65)

Then we can compute P by:

P = ∆−1S + 1
c2
∂2

∂t2
∆−2S + 1

c4
∂4

∂t4
∆−3S + . . . , (8.66)

To apply (8.66) we need the following formulae that are similar to equations (8.42):

ran̂L = ∆
{

ra+2n̂L
(a− l + 2)(a+ l + 3)

}
for a ∈ C\{`− 2,−`− 3} , (8.67a)

r`−2n̂L = ∆
{ 1

2`+ 1

[
ln
(
r

r0

)
− 1

2`+ 1

]
r`n̂L

}
, (8.67b)

r−`−3n̂L = ∆
{
− 1

2`+ 1

[
ln
(
r

r0

)
+ 1

2`+ 1

]
n̂L
r`+1

}
. (8.67c)

Besides, for X̂ at 1PN and Ŵij at 2PN, we need to integrate terms proportional to log
(
r
r0

)
ran̂L.

For that, we use the same method as what was done in equation (4.96) and say that

∆̃−1 log
(
r

r0

)
ran̂L = FP

B

d
dB∆−1 r

a+B

rB0
n̂L , (8.68)

which can be easily integrated using equation (8.67a).

8.4 Results

8.4.1 A preliminary result
We have applied the method described in this chapter to compute the source mass quadrupole
moment at the 4PN order, using dimensional regularization to cure the UV divergences and
the Finite Part regularization to cure the IR divergences. The final result contains around
75000 terms.

8.4.1.a) Applying a shift

As for the Fokker Lagrangian computation, we first used Hadamard partie finie to cure the
UV divergences, and obtain a first result depending on ln s1 and ln s2. Then we computed
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the difference between the Hadamard partie finie regularization and the dimensional reg-
ularization for the UV divergences, and obtained a new result free of ln s1 and ln s2 but
containing poles in 1/ε.

Let us recall that these poles should cancel out when expressing physical observables such
as the energy flux or the phase of the system, but can still be present in intermediate results
such as the equations of motion or the source multipole moments. However, in that case, it
is convenient to remove them by applying a common shift to all our intermediate quantities.
Indeed, at the 3PN order, the same shift was applied to the equations of motion and to the
source mass quadrupole, and was able to remove all the UV poles.

At the 4PN, the situation is a bit more complicated. The shift that we applied to the
Fokker Lagrangian in order to obtain the result presented in the appendix B, and from which
we derived all the conserved quantities in chapter 7 is composed of three terms: (i) the shift
ξ published in [92] and given in the appendix B by equation (B.4). This shift removes
all the UV 1/ε poles in the Fokker Lagrangian; (ii) the shift χ (equation (B.7)) that was
applied in [94] and removes all the IR 1/ε poles of the Fokker Lagrangian; (iii) and finally
the shift η (equation (B.9)) published in [3] that does not contain any pole and was used for
conveniency.

As we have not used dimensional regularization to cure the IR divergence of the mass
quadrupole moment (this is left to future work), we cannot apply the shift χ to our result,
but we can still check whether the shift ξ removes the UV 1/ε poles.

We have therefore applied the shift ξ to the mass quadrupole and all the UV 1/ε poles
(as well as the constants γE) cancelled out. This constitutes a major achievement and
confirms our understanding of the connection between the source multipole moments and the
equations of motions within the Blanchet-Damour-Iyer formalism. Besides it corroborates
our result, by robustly checking our UV dimensional regularization computations.

8.4.1.b) Expressing the result in the center of mass frame for circular orbits

The next steps is to reduce our result into the center of mass (CM) frame for circular orbits.
It turns out that we only need the 3PN order CM coordinate, and the 3PN circular equations
of motion to express the source mass quadrupole moment at the 4PN order in the CM frame
for circular orbits. Therefore, even if our result does not use dimensional regularization to
cure the IR divergence, we can still consistently express it in the CM for circular orbits —
as the 3PN dynamics can be derived using the Finite Part regularization for the IR, and as
the shift χ only starts at the 4PN order. The result is then much more compact and is given
below in 8.4.1.c).

8.4.1.c) Result

The UV-shifted mass quadrupole (with dimensional regularization for the UV and Finite
Part regularization for the IR) in the CM frame for circular orbits at the 4PN order reads:

Iij = δIij + µ

(
Ax〈ij〉 +B

r2

c2 v〈ij〉 + 48
7
G2m2ν

c5r
C x〈ivj〉

)
+ O

( 1
c9

)
, (8.69)

with

A = 1 + γ

(
− 1

42 −
13
14ν

)
+ γ2

(
− 461
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18395
1512 ν −

241
1512ν

2
)
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+ γ3
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, (8.70a)
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, (8.70b)

C = 1 + γ

(
−256

135 −
1532
405 ν

)
. (8.70c)

We recall that γ is a 1PN parameter defined as γ ≡ Gm
rc2 , r0 is the constant introduced by

the Finite Part regularization, and r′0 and r′′0 depends on r′1 and r′2 and are defined by the
equations (7.10). The equations (8.69)–(8.70) extend to the 4PN order the expression of the
mass source quadrupole moment that was known at the 3.5PN order [140, 45, 128].

δIij represents some surface terms whose computations are still being performed and we
expect to have them within few weeks4. In fact, the sources of some integrals contain up
to few millions terms, and their integrations require huge amount of computational power.
The terms in δIij do not contain UV poles as they are only surface terms. Therefore, our
conclusion regarding the fact that the shift ξ removes all the UV poles will of course be still
valid once δIij is fully computed.

8.4.2 Checks and perspectives

The equations (8.69)–(8.70) constitute a preliminary result of the source mass quadrupole
at the 4PN order done in this thesis. However, the fact that the UV 1/ε poles disappear
after the application of the shift ξ, is an excellent check of the dimensional regularization
procedure for the UV divergences.

4 Using the notation of the appendix C, δIij is the 4PN coefficient in the sum of

{−
(−1+d)Ŵ bi∂aΨ∂biV

ij

2(−2+d) } from MQSISD2PN, {− (−1+d)2V X̂
(−2+d)2 } from MQSISL3PN, {

2(−1+d)Ψ∂t∂bV

ij
∂aR̂b

−2+d ,
2(−1+d)Ψ∂biV

ij
∂aẐbi

−2+d ,
2(−1+d)Ẑbi∂aΨ∂biV

ij

−2+d ,
4(−1+d)Ψ∂bVi

ij
∂b∂aR̂i

−2+d ,
4(−1+d)∂aΨ∂iVb

ij
∂iR̂b

−2+d } from MQSISD3PN,

{ 4(−1+d)M̂a
aV

(−2+d)2 } from MQSISL4PN, {−
4(−1+d)Mbi∂aΨ∂biV

ij

−2+d } from MQSISD4PN, {
(−1+d)2(2+d)R̂aV

(−2+d)2d(4+d) } from

MQVISL3PN and {
2(−1+d)2(2+d)Ψ∂bV

iji
∂i∂aR̂b

(−2+d)2d(4+d) ,
2(−1+d)2(2+d)∂aΨ∂bV

iji
∂iR̂b

(−2+d)2d(4+d) } from MQVISD3PN.
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Different checks are currently being performed on our result, especially regarding the inte-
gration of the surface sources, and regarding our implementation of distributional derivatives;
(8.69)–(8.70) are just preliminary results and have not been published yet.

The next steps, which is left to future work, is therefore to implement the dimensional
regularization to cure the IR divergences, and to apply the IR shift χ [94], and to check
whether the IR poles vanish as well. This requires however, a better understanding of the
matching procedure in d dimensions, in order to extend the formula (8.1) in full dimensional
regularization.

Once this is done, we can use the source mass quadrupole moment to express observable
quantities, such as the energy flux, that depends on d3Iij

dt2
d3Iij
dt2 . We expect all the remaining

constants (i.e. r0, r′0 and r′′0) to disappear in the final result.
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Conclusion

We have explained in chapters 1 and 2, how post-Newtonian theory plays a major role in the
development of banks of templates, and how the accuracy of these templates directly impacts
our ability to detect gravitational waves and to analyze the data collected by gravitational-
wave detectors. This framework is therefore crucial to study general relativity and produce
great science in the new field of gravitational wave astrophysics.

The projects carried out during this thesis were motivated by the goal to get the 4.5PN
phase of gravitational waves for spinless compact binary systems in circular orbits, using
the Blanchet-Damour-Iyer formalism. We performed computations in the different compo-
nents of this framework and obtained new results in each of them: the multipolar-post-
Minkowskian algorithm studying the radiative field, the equations of motion and the con-
served quantities associated with the dynamics, and finally the computation of the source
multipole moments. Besides, we saw how a matching equation relates all these projects
together by matching the near-zone and the far-zone expansions of the metric.

In our journey to the 4.5PN phase, we made in this thesis significant progress. In the
radiative field, the third-order tail effect at 4.5PN is fully determined. Hence, for circular
orbits, we were able to compute the full 4.5PN coefficient in the energy flux. The last
ambiguity parameter of the 4PN dynamics has been computed from first principles using
the Fokker Lagrangian and the systematic use of the dimensional regularization. Besides, all
the conserved quantities of the dynamics at 4PN are now explicitly computed. Finally, we
computed all the potentials required to get the 4PN source mass quadrupole and obtained
a preliminary result of this quadrupole based on the Finite Part regularization to treat the
IR divergences. This latter result still needs to be checked by an independent computation.
Besides, it appears now that dimensional regularization will also be required to cure the IR
divergences of the 4PN mass quadrupole.This study will be the topic of further work.

Perspective
While the achievements done during this thesis get us closer to the 4.5PN phase of the signal,
there are still few computations left to perform. The three main remaining tasks are:

1. The implementation of the dimensional regularization to cure the IR divergences of the
mass quadrupole. Once this is done, we can check that the shift χ removes the 1/ε IR
poles.

2. The computation of the source current quadrupole Jij at 3PN. This computation should
also rely on dimensional regularization for the ultra-violet divergences but should be
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however rather straightforward as we believe that most of the technical difficulties have
been solved while computing the 4PN source mass quadrupole.

3. The computation of the 4PN coefficient in the flux. This coefficient requires both the
4PN mass quadrupole moments and the 3PN current quadrupole moments (as well as
other multipole moments at lower PN orders which are already known). Besides, the
leading order effect of the tails entering the flux at 1.5PN, should have a 2.5PN rela-
tive contribution due to the past dynamics of the binary. This contribution therefore
modifies the 4PN coefficient in the flux.

While these three remaining tasks can be rather long and fastidious, we have now tackled
and understood most of their technical difficulties (either in this thesis, or in previous work),
and it would be reasonable to think that the 4.5PN phase and 4PN waveform will be obtained
soon.



A – Conventions and notations

This appendix summarizes the conventions and the notations used within this thesis.

A.1 Indices and summation convention
In all this thesis, the metric gµν has a signature +2 and the Minkowski metric is given by
ηµν = diag(−,+,+,+). Greek indices (α, β, . . . µ, ν, . . . ) are space-time indices and take
their values in {0, 1, 2, 3}, while latin indices (a, b, . . . , i, j, . . . ) are space indices and take
their values in {1, 2, 3}.

gµν is defined as the inverse of gµν , i.e. gµρgρν = δµν . We raise and lower the indices of
all the tensors appearing in this manuscript using the Minkowski metric ηµν(except for gµν ,
Rαβµν Rµν). Therefore, when summing over space indices using the Einstein convention, we
might omit to raise one of the summed indices: Tii ≡ T ii = Tijη

ij .
In chapters 1 and 2, hµν is defined as hµν ≡ gµν − ηµν . In chapters 4 to 8, we define

hµν as hµν ≡ √−ggµν − ηµν . Notice that in the harmonic coordinates, these two quantities
correspond at linear order.

A.2 The Einstein equations
The Riemann tensor is defined as:

Rλρµν = ∂µΓλρν − ∂νΓλµρ + ΓερνΓλεµ − ΓεµρΓλεν . (A.1)

The Ricci tensor as well as the curvature scalar are defined as:

Rµν = Rλµλν , R = Rµνg
µν . (A.2)

We consider the Einstein equations without cosmological constant:

Rµν −
1
2gµνR = 8πG

c4 Tµν . (A.3)

A.3 Multiple indices
We often use the notation L to describe ` space indices: L ≡ i1i2 . . . i` with ik ∈ {1, 2, 3}.
Similarly, L− 1 represents `− 1 space indices and so on. For example:

∂LIL ≡ ∂i1∂i2 . . . ∂i`Ii1i2...i` , (A.4a)
∂iL−1IL−1 ≡ ∂i∂i1∂i2 . . . ∂i`−1Ii1i2...i`−1 . (A.4b)

149



150 Appendix A. Conventions and notations

A.4 Geometrical variables
The figure A.1 lists the different variables used in this thesis to describe a compact binary
systems. Quantities in bold (y1, n etc.) represent vectors.

In chapter 7, some results are expressed in the center of mass frame. In that frame, we
usually denotes r12 as r and n12 as n. While this notation is in conflict with the notation
used for the field point x = rn, the context always removes any ambiguity in the notation.

O

m1

m2

Version du 15 mars 2018, 15:49

6.1 Presentation of the Fokker Lagrangian method 89

At the Newtonian order, we have µ1 = µ̃1 = m1 and µ2 = µ̃2 = m2. This point-particle
energy-tensor impulsion generates divergences that would not appear if we modeled our
compact bodies by extended spheres.

To get more insight on this UV divergence, let’s consider the case of Newtonian gravity.
In classical physics, the gravitational potential UN created by two masses m1 and m2 with
position y1 and y2 is given by

UN (x) = m1
|x≠ y1| + m2

|x≠ y2| , (6.22)

and the acceleration of the particle 1 is given by

a1 = (ÒUN )(x = y1) . (6.23)

Injecting, (6.22) into (6.23), we see that the first term of (6.22) leads to a divergence. This
divergence is due to the point-particle approximation. It is solved by saying that the particle
1 does not feel its own fields so only the second term of (6.22) should be injected in (6.23).
Said otherwise, if we would have taken extended fluids balls to model our two bodies, due to
the third law of Newton, the overall contribution of the potential generated by the first body
on the acceleration of itself would exactly cancel out, which we translate in the point-particle
approximation into the body one does not feel its own field.

In general relativity, the non-linearities of the theory prevent us from such an interpre-
tation. In fact, at the Newtonian order, the potential V is the same than the Newtonian
gravitational potential UN . However, as can be seen in equation (6.30), the metric will de-
pends on higher power of V such as V 2. V 2 will contains di�erent terms diverging at the
point 1, and in particular crossed-term ≥ m1m2

|x≠y1||x≠y2| that corresponds to the interaction
between the fields generated by each bodies. It is therefore non-trivial to compute how such
interaction terms a�ect the motion of the first body, and this is the reason why we need
regularization techniques that will provide explicit formulae to deal with these divergences.

In the case of the Fokker Lagrangian, these divergences appear when we perform the spa-
tial integration of the density Lagrangian in order to obtain the ordinary Fokker Lagrangian.
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⁄

d3xL(t,x) , (6.24)

diverges when x æ yA.

6.1.2.b) Hadamard regularization

In this section, we present a first regularization technique, called the Hadamard regula-
rization. Let’s assume that we want to integrate the function F (x) which is a smooth and
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start by defining the partie finie of the function F at the particle 1. For that, we first to a
Laurent-expansion of F around x = y1. When r1 æ 0, we have for all N œ N

F (x) =
ÿ

p0ÆpÆN
rp1 f

1
p(n1) + o(rN1 ) , (6.26)

Version du 15 mars 2018, 15:49

6.1 Presentation of the Fokker Lagrangian method 89

At the Newtonian order, we have µ1 = µ̃1 = m1 and µ2 = µ̃2 = m2. This point-particle
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compact bodies by extended spheres.
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|x≠ y1| + m2

|x≠ y2| , (6.22)
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1.3 The Einstein quadrupole formula 7

For that we need to find a function, called a Green function G(t,x) such that

⇤G(t,x) = ”(t)”(3)(x) , (1.22)

where ”(·) and ”(3)(·) are the Dirac functions in one and three dimensions and x is a 3-
dimensional space vector. Once a Green function is found, we can create an operator PG

called a propagator by

PG : f(t,x) ‘æ F (t,x) ©
⁄

dtÕd3xÕf(tÕ,xÕ)G(t ≠ tÕ,x≠ xÕ) . (1.23)

Now, we can check that

⇤F (t,x) =
⁄

dtÕd3xÕf(tÕ,xÕ)⇤G(t ≠ tÕ,x≠ xÕ)

=
⁄

dtÕd3xÕf(tÕ,xÕ)⇤”(t)”(3)(x)

= f(t,x) . (1.24)

Therefore PG is an operator that can invert the d’Alembert operator ⇤. There are di�erent
choices that we can make for the Green function G. The choice of the Green function depends
on the boundary conditions we want to impose. In our situation, we want to impose the non-
incoming radiation condition, which states that we are looking at a system of matter without
any gravitational waves arriving to the system, but only gravitational waves emitting by the
system and going outside. The Green function corresponding to this boundary condition is
called the retarded Green operator Gret and is defined by

Gret = ≠ 1
4fi

”

3
t ≠ |x|

c

4 1
|x| . (1.25)

The propagator associated to Gret is called the retarded inverse d’Alembertian or the retarded
inverse d’Alembert operator, is noted ⇤≠1

ret and is defined as

⇤≠1
ret : f(t,x) ‘æ ⇤≠1

retf(t,x) = ≠ 1
4fi

⁄
dtÕd3xÕf(tÕ,xÕ)

”(t ≠ |x|
c )

|x|

= ≠ 1
4fi

⁄
d3xÕ f(t ≠ |xÕ≠x|

c ,xÕ)
|xÕ ≠ x| . (1.26)

1.3.2 Applying it to the matter source
We have now all the tools we need to solve the equation (1.21). By applying the retarded

inverse d’Alembertian to the right-on side we obtain

h̄µ‹(t,x) = 4G
c4

⁄
d3xÕTµ‹(t ≠ |x≠xÕ|

c ,xÕ)
|x≠ xÕ| . (1.27)

Now, we are going to do a couple of assumptions to simplify the results. In this section, we
will not bother ourself with the neglected remainders in the formula, but will we summarize
all our approximations in the section 1.3.3. First, let’s consider an isolated source emitting
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B – 4PN Fokker Lagrangian

This appendix provides the 4PN Fokker Lagrangian which constitutes the final result of
chapter 6. This Lagrangian was computed in [92, 93] with the last ambiguities being fully
determined in [94, 2]. This result corresponds to the computation explained in chapter 6,
modulo a shift given in section B.2

B.1 The Fokker Lagrangian

LN = Gm1m2
2r12

+ m1v2
1

2 + 1↔ 2 , (B.1a)

L1PN = −G
2m2

1m2
2r2

12
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1
8
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r12

(
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4(n12v1)(n12v2) + 3
2v

2
1 −

7
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+ 1↔ 2 , (B.1b)
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The following 4PN part of the harmonic-coordinates Lagrangian, is expressed using the
convention defined by equation (7.3).

L
(0)
4PN = 7

256m1v
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1 + 1↔ 2 , (B.2a)
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160 (a1v1)(n12v2)v2

2 + 7
5(a1n12)(n12v1)(n12v2)v2

2

− 3733
160 (a1v2)(n12v2)v2

2 −
139
20 (a1n12)(n12v2)2v2

2 −
5593
240 (a1n12)(v1v2)v2

2

+3613
192 (a1n12)v2

1v
2
2 + 2931

320 (a1n12)v4
2

)

+ m2
1m2
r2

12

(
−4027

800 (n12v1)6 + 3227
800 (n12v1)5(n12v2)− 6301

240 (n12v1)4(n12v2)2

+ 6661
240 (n12v1)3(n12v2)3 − 2221

64 (n12v1)4(v1v2) + 25267
720 (n12v1)3(n12v2)(v1v2)

− 6661
480 (n12v1)2(n12v2)2(v1v2)− 23401

480 (n12v1)2(v1v2)2

+ 4529
240 (n12v1)(n12v2)(v1v2)2 − 8369

480 (v1v2)3 + 17393
2880 (n12v1)4v2

1

− 26237
720 (n12v1)3(n12v2)v2

1 + 4561
160 (n12v1)2(n12v2)2v2

1 + 691
240(n12v1)(n12v2)3v2

1

+ 4621
240 (n12v2)4v2

1 −
14987
960 (n12v1)2(v1v2)v2

1 + 2601
160 (n12v1)(n12v2)(v1v2)v2

1
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+ 14649
320 (n12v2)2(v1v2)v2

1 + 97
5 (v1v2)2v2

1 −
4879
320 (n12v1)2v4

1

+ 5399
192 (n12v1)(n12v2)v4

1 + 83
15(n12v2)2v4

1 + 749
128(v1v2)v4

1 + 20389
1920 v

6
1

+ 107
180(n12v1)4v2

2 −
1823
240 (n12v1)3(n12v2)v2

2 −
1
2(n12v1)2(n12v2)2v2

2

+ 1021
120 (n12v1)2(v1v2)v2

2 + 1
2(n12v1)(n12v2)(v1v2)v2

2 + 67
4 (v1v2)2v2

2

− 21709
960 (n12v1)2v2

1v
2
2 −

1873
480 (n12v1)(n12v2)v2

1v
2
2 −

4621
320 (n12v2)2v2

1v
2
2

− 42017
960 (v1v2)v2

1v
2
2 + 11119

960 v4
1v

2
2 −

21
8 (n12v1)2v4

2 −
3
8(n12v1)(n12v2)v4

2

+ 3
16(n12v2)2v4

2 −
105
8 (v1v2)v4

2 + 105
16 v

2
1v

4
2 + 115

32 v
6
2

)
+ 1↔ 2 , (B.2c)

L
(3)
4PN = m2

1m
2
2

r2
12

(
−1099

144 (a2v1)(n12v1) + 41
64π

2(a2v1)(n12v1) + 2005
96 (a2n12)(n12v1)2

− 123
128π

2(a2n12)(n12v1)2 + 225233
1800 (a1v1)(n12v2)− 43

64π
2(a1v1)(n12v2)

− 477941
3600 (a1n12)(v1v2) + 21

16π
2(a1n12)(v1v2) + 477941

7200 (a1n12)v2
1

−21
32π

2(a1n12)v2
1

)

+ m2
1m

2
2

r3
12

(
−173617

2880 (n12v1)4 − 2155
1024π

2(n12v1)4

+ 173587
720 (n12v1)3(n12v2) + 2155

256 π
2(n12v1)3(n12v2)− 85871

480 (n12v1)2(n12v2)2

− 6465
1024π

2(n12v1)2(n12v2)2 + 5651
300 (n12v1)2(v1v2)− 939

256π
2(n12v1)2(v1v2)

− 6851
300 (n12v1)(n12v2)(v1v2) + 939

256π
2(n12v1)(n12v2)(v1v2) + 49139

720 (v1v2)2

− 195
512π

2(v1v2)2 − 3677
1200(n12v1)2v2

1 + 447
512π

2(n12v1)2v2
1 −

222679
1200 (n12v1)(n12v2)v2

1

− 189
256π

2(n12v1)(n12v2)v2
1 + 153079

800 (n12v2)2v2
1 −

69
512π

2(n12v2)2v2
1

− 61733
900 (v1v2)v2

1 −
55
256π

2(v1v2)v2
1 + 10337

320 v4
1 + 133

1024π
2v4

1 −
116123
3600 v2

1v
2
2

+ 477
1024π

2v2
1v

2
2

)

+ m3
1m2
r2

12

(44023
720 (a1v1)(n12v1) + 562

9 (a2v1)(n12v1)

+ 44 ln
(r12
r′1

)
(n12v1)(a1v2)− 44 ln

(r12
r′1

)
(n12v1)(a2v2) + 110

3 ln
(r12
r′1

)
(a1v1)(n12v2)

+ 6397
75 (a1n12)(n12v1)(n12v2) + 198097

4200 (a2n12)(n12v1)(n12v2)

+ 22 ln
(r12
r′1

)
(a2n12)(n12v1)(n12v2) + 14377

280 (a1v2)(n12v2)
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− 110
3 ln

(r12
r′1

)
(a1v2)(n12v2) + 44023

720 (a1n12)(v1v2)− 44 ln
(r12
r′1

)
(a1n12)(v1v2)

+44 ln
(r12
r′1

)
(a1n12)v2

1 + 14377
560 (a2n12)v2

1 + 937
1440(a1n12)v2

2

)

+ m3
1m2
r3

12

(
−30313

360 (n12v1)4 + 64001
720 (n12v1)3(n12v2)− 185917

1680 (n12v1)2(n12v2)2

− 55 ln
(r12
r′1

)
(n12v1)2(n12v2)2 + 179617

1680 (n12v1)(n12v2)3 + 55 ln
(r12
r′1

)
(n12v1)(n12v2)3

− 94667
400 (n12v1)2(v1v2) + 338099

1400 (n12v1)(n12v2)(v1v2)

+ 22 ln
(r12
r′1

)
(n12v1)(n12v2)(v1v2)− 214897

8400 (n12v2)2(v1v2)

− 11 ln
(r12
r′1

)
(n12v2)2(v1v2)− 737

18 (v1v2)2 + 903589
16800 (n12v1)2v2

1

− 55 ln
(r12
r′1

)
(n12v1)2v2

1 −
96287
1120 (n12v1)(n12v2)v2

1 + 55 ln
(r12
r′1

)
(n12v1)(n12v2)v2

1

+ 426731
4200 (n12v2)2v2

1 + 11 ln
(r12
r′1

)
(n12v2)2v2

1 + 202687
3360 (v1v2)v2

1

− 55
3 ln

(r12
r′1

)
(v1v2)v2

1 + 22769
2016 v

4
1 + 55

3 ln
(r12
r′1

)
v4

1 −
177
8 (n12v1)2v2

2

+ 66 ln
(r12
r′1

)
(n12v1)2v2

2 −
120397
4200 (n12v1)(n12v2)v2

2 − 88 ln
(r12
r′1

)
(n12v1)(n12v2)v2

2

+ 7
4(n12v2)2v2

2 −
43
2 (v1v2)v2

2 + 22 ln
(r12
r′1

)
(v1v2)v2

2 −
8357
560 v

2
1v

2
2 − 22 ln

(r12
r′1

)
v2

1v
2
2

+91
16v

4
2

)
+ 1↔ 2 , (B.2d)

L
(4)
4PN = m4

1m2
r4

12

(282629
900 (n12v1)2 − 880

3 ln
(r12
r′1

)
(n12v1)2 − 283979

900 (n12v1)(n12v2)

+ 880
3 ln

(r12
r′1

)
(n12v1)(n12v2) + 9

4(n12v2)2 + 208529
3600 (v1v2)− 220

3 ln
(r12
r′1

)
(v1v2)

−211229
3600 v2

1 + 220
3 ln

(r12
r′1

)
v2

1 + 15
16v

2
2

)

+ m3
1m

2
2

r4
12

(
−1268557

50400 (n12v1)2 + 659
96 π

2(n12v1)2

− 286
3 ln

(r12
r′1

)
(n12v1)2 + 11530469

25200 (n12v1)(n12v2)

− 1715
48 π2(n12v1)(n12v2) + 44 ln

(r12
r′1

)
(n12v1)(n12v2) + 64 ln

(r12
r′2

)
(n12v1)(n12v2)

− 2233689
5600 (n12v2)2 + 2771

96 π2(n12v2)2 + 110
3 ln

(r12
r′1

)
(n12v2)2 − 64 ln

(r12
r′2

)
(n12v2)2

− 959797
8400 (v1v2) + 103

16 π
2(v1v2)− 154

3 ln
(r12
r′1

)
(v1v2)− 16 ln

(r12
r′2

)
(v1v2)
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+ 858533
50400 v

2
1 −

15
32π

2v2
1 + 121

3 ln
(r12
r′1

)
v2

1 + 5482669
50400 v2

2 −
191
32 π

2v2
2 + 22

3 ln
(r12
r′1

)
v2

2

+16 ln
(r12
r′2

)
v2

2

)
+ 1↔ 2 , (B.2e)

L
(5)
4PN = 3

8
m5

1m2
r5

12
+ m3

1m
3
2

r5
12

(597771
5600 − 71

32π
2 − 110

3 ln
(r12
r′1

))

+ m4
1m

2
2

r5
12

(1734977
25200 + 105

32 π
2 − 242

3 ln
(r12
r′1

)
− 16 ln

(r12
r′2

))
+ 1↔ 2 . (B.2f)

Besides all previous instantaneous terms, there is also the following non-local tail1:

Ltail = G2M

5c8 I
(3)
ij (t) Pf

2r12/c

∫ +∞

−∞

dt′
|t− t′|I

(3)
ij (t′)

= G2M

5c8 I
(3)
ij (t)

∫ +∞

0
dτ ln

(
cτ

2r12

) [
I

(4)
ij (t− τ)− I(4)

ij (t+ τ)
]
. (B.3)

B.2 Shifts applied
The Lagrangian shown above corresponds to the final result of the computation of chapter
6, modulo a shift of the trajectory. For clarity, we decompose this shift into 3 pieces.

A first shift ξ used in [92], leading to the Lagrangian provided in [93, 94] is given by the
equations (B.4)–(B.6). The poles 1/ε in this shift correspond to UV divergences.

A second shift χ used in [94] (but not published therein), is provided by the equations
(B.7)- (B.8). This shift is used to remove the 1/ε poles due to IR divergences.

Finally, the last shift η was published in [3] and is provided by the equations (B.9) -
(B.10). This shift does not contain any 1/ε pole and were applied for convenience.

B.2.1 Shift ξ

ξ1 = 11
3
G2m2

1
c6

[
1
ε
− 2 ln

(
q1/2r′1
`0

)
− 327

1540

]
a

(d)
1,N + 1

c8 ξ1, 4PN , (B.4)

where a(d)
1,N represents the Newtonian acceleration of 1 in d dimensions and q = 4πeγE and

where
ξi1, 4PN = 1

ε
ξ
i (−1)
1, 4PN + ξ

(0,n12)
1, 4PN n

i
12 + ξ

(0,v1)
1, 4PNv

i
1 + ξ

(0,v12)
1, 4PN v

i
12 , (B.5)

with vi12 = vi1 − vi2 and

ξ
i (−1)
1, 4PN = G3m2

1m2vi12
r2

12

(
11(n12v12) + 11

3 (n12v1)
)

+ ni12
(G4

r3
12

(55
3 m

3
1m2 + 22

3 m
2
1m

2
2 + 4m1m

3
2)

+ G3m2
1m2

r2
12

(11
2 (n12v12)2 − 11(n12v12)(n12v1) + 11

2 (n12v1)2 − 22
3 v

2
12)
)
, (B.6a)

ξ
(0,n12)
1, 4PN = G3m1m

2
2

{ 1
r2

12

[(−2539
560 + 72

5 ln(r12
r0

)
)
(n12v12)2

1For simplicity, we have used r12 to normalize the logarithm entering the non-local term in this form of
the Lagrangian.
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+
(18759

280 + 96
5 ln(r12

r0
)
)
(n12v12)(n12v1) +

(−6253
140 −

64
5 ln(r12

r0
)
)
(v12v1)

+
(5783

840 −
32
5 ln(r12

r0
)
)
v2

12
]

+ 1
r3

12

[(519
35 + 48 ln(r12

r0
)
)
(n12v12)2(n12y1)

+
(−289

35 −
144
5 ln(r12

r0
)
)
(n12v12)(v12y1) +

(−171
35 −

48
5 ln(r12

r0
)
)
(n12y1)v2

12
]}

+G3m2
1m2

{ 1
r2

12

[(−2761
168 −

33
2 ln( q̄

1/2r′1
`0

)− 11
2 ln(r12

r′1
)
)
(n12v12)2

+
(41299

840 + 33 ln( q̄
1/2r′1
`0

) + 96
5 ln(r12

r0
) + 11 ln(r12

r′1
)
)
(n12v12)(n12v1)

+
(7489

840 −
33
2 ln( q̄

1/2r′1
`0

)− 11
2 ln(r12

r′1
)
)
(n12v1)2 +

(−6253
140 −

64
5 ln(r12

r0
)
)
(v12v1)

+
(3103

168 + 22 ln( q̄
1/2r′1
`0

) + 16
5 ln(r12

r0
)
)
v2

12
]

+ 1
r3

12

[(519
35 + 48 ln(r12

r0
)
)
(n12v12)2(n12y1)

+
(−289

35 −
144
5 ln(r12

r0
)
)
(n12v12)(v12y1) +

(−171
35 −

48
5 ln(r12

r0
)
)
(n12y1)v2

12
]}

+G4m2
1m

2
2
[ 1
r3

12

(−811
210 −

88
3 ln( q̄

1/2r′1
`0

)− 16
5 ln(r12

r0
)
)

+ 1
r4

12

(−114
35 −

32
5 ln(r12

r0
)
)
(n12y1)

]

+G4m3
1m2

[ 1
r3

12

(−811
105 −

220
3 ln( q̄

1/2r′1
`0

)− 32
5 ln(r12

r0
)
)

+ 1
r4

12

(−57
35 −

16
5 ln(r12

r0
)
)
(n12y1)

]
+G4m1m

3
2
[ 1
r3

12

(811
210 − 16 ln( q̄

1/2r′1
`0

)

+ 16
5 ln(r12

r0
)
)

+ 1
r4

12

(−57
35 −

16
5 ln(r12

r0
)
)
(n12y1)

]
, (B.6b)

ξ
(0,v1)
1, 4PN = G3

[m2
1m2
r2

12

( 839
2520 + 32

15 ln(r12
r0

)
)
(n12v12) + m1m2

2
r2

12

( 839
2520 + 32

15 ln(r12
r0

)
)
(n12v12)

]
,

(B.6c)

ξ
(0,v12)
1, 4PN = G3m1m

2
2

{ 1
r2

12

[(2041
336 − 8 ln(r12

r0
)
)
(n12v12) +

(−6253
140 −

64
5 ln(r12

r0
)
)
(n12v1)

]

+ 1
r3

12

[(−289
35 −

144
5 ln(r12

r0
)
)
(n12v12)(n12y1) +

(228
35 + 64

5 ln(r12
r0

)
)
(v12y1)

]}

+G3m2
1m2

{ 1
r2

12

[(23113
1680 − 33 ln( q̄

1/2r′1
`0

) + 11
3 ln(r12

r′1
)
)
(n12v12)

+
(−1398

35 − 11 ln( q̄
1/2r′1
`0

)− 64
5 ln(r12

r0
)− 11

3 ln(r12
r′1

)
)
(n12v1)

]

+ 1
r3

12

[(−289
35 −

144
5 ln(r12

r0
)
)
(n12v12)(n12y1) +

(228
35 + 64

5 ln(r12
r0

)
)
(v12y1)

]}
.

(B.6d)
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B.2.2 Shift χ

χi1 = G3

c8

[1
ε
χ
i (3)ε
1 + χ(3)n12ni12 + χ(3)y1yi1 + χ(3)v1vi1 + χ(3)v2vi2

]

+ G4

c8

[1
ε
χ
i (4)ε
1 + χ(4)n12ni12 + χ(4)y1yi1

]
. (B.7)

By defining for convenience Γ as Γ ≡ q̄r2
0

`20
, we have

χ
i (3)ε
1 = ni12

{
m2

1m2

[
−24(n12v2)2(n12y1)

r3
12

+ (n12v1)2
(
− 48

5r2
12
− 24(n12y1)

r3
12

)
+ (v1v2)

(
− 16

5r2
12

−48(n12y1)
5r3

12

)
+ (v2v2)

(
− 8

5r2
12

+ 24(n12y1)
5r3

12

)
+ (v1v1)

( 24
5r2

12
+ 24(n12y1)

5r3
12

)

+ (n12v1)
(

(n12v2)
[ 48

5r2
12

+ 48(n12y1)
r3

12

]
+ 72(v1y1)

5r3
12

− 72(v2y1)
5r3

12

)

+(n12v2)
(
−72(v1y1)

5r3
12

+ 72(v2y1)
5r3

12

)]
+m1m

2
2

[
(n12v1)2

(
− 84

5r2
12
− 24(n12y1)

r3
12

)

+ (n12v2)2
(
− 36

5r2
12
− 24(n12y1)

r3
12

)
+ (v1v2)

(
− 64

5r2
12
− 48(n12y1)

5r3
12

)
+ (v2v2)

( 16
5r2

12

+24(n12y1)
5r3

12

)
+ (v1v1)

( 48
5r2

12
+ 24(n12y1)

5r3
12

)
+ (n12v1)

(
(n12v2)

[ 24
r2

12
+ 48(n12y1)

r3
12

]

+72(v1y1)
5r3

12
− 72(v2y1)

5r3
12

)
+ (n12v2)

(
−72(v1y1)

5r3
12

+ 72(v2y1)
5r3

12

)]}

+ vi1

{
m2

1m2

[
(n12v2)

( 16
15r2

12
− 72(n12y1)

5r3
12

)
+ (n12v1)

( 16
3r2

12
+ 72(n12y1)

5r3
12

)
− 32(v1y1)

5r3
12

+32(v2y1)
5r3

12

]
+m1m

2
2

[
(n12v2)

(
− 44

15r2
12
− 72(n12y1)

5r3
12

)
+ (n12v1)

( 28
3r2

12
+ 72(n12y1)

5r3
12

)

−32(v1y1)
5r3

12
+ 32(v2y1)

5r3
12

]}
+ vi1

{
m2

1m2

[72(n12v2)(n12y1)
5r3

12
+ (n12v1)

(
− 32

5r2
12

−72(n12y1)
5r3

12

)
+ 32(v1y1)

5r3
12

− 32(v2y1)
5r3

12

]
+m1m

2
2

[
(n12v1)

(
− 52

5r2
12
− 72(n12y1)

5r3
12

)

+(n12v2)
( 4
r2

12
+ 72(n12y1)

5r3
12

)
+ 32(v1y1)

5r3
12

− 32(v2y1)
5r3

12

]}
+ yi1

{
m2

1m2

[
−8(n12v1)2

5r3
12

+8(v1v1)
15r3

12
+ 16(n12v1)(n12v2)

5r3
12

− 8(n12v2)2

5r3
12

− 16(v1v2)
15r3

12
+ 8(v2v2)

15r3
12

]

+m1m
2
2

[
−8(n12v1)2

5r3
12

+ 8(v1v1)
15r3

12
+ 16(n12v1)(n12v2)

5r3
12

− 8(n12v2)2

5r3
12

− 16(v1v2)
15r3

12

+8(v2v2)
15r3

12

]}
, (B.8a)

χ(3)n12 = m1m
2
2

{
(v1v1)

[
2096

175r2
12
− 72 ln Γ

5r2
12
−

48 ln( r12
r0

)
5r2

12
+
(
− 223

50r3
12
− 36 ln Γ

5r3
12
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−
24 ln( r12

r0
)

5r3
12

)
(n12y1)

]
+ (v2v2)

[
− 2533

140r2
12
− 24 ln Γ

5r2
12
−

16 ln( r12
r0

)
5r2

12

+
(
− 223

50r3
12
− 36 ln Γ

5r3
12
−

24 ln( r12
r0

)
5r3

12

)
(n12y1)

]
+ (v1v2)

[ 4281
700r2

12

+96 ln Γ
5r2

12
+

64 ln( r12
r0

)
5r2

12
+
(

223
25r3

12
+ 72 ln Γ

5r3
12

+
48 ln( r12

r0
)

5r3
12

)
(n12y1)

]

+ (n12v2)2
[

11477
350r2

12
+ 54 ln Γ

5r2
12

+
36 ln( r12

r0
)

5r2
12

+
( 35

2r3
12

+ 36 ln Γ
r3

12

+
24 ln( r12

r0
)

r3
12

)
(n12y1)

]
+ (n12v1)2

[
− 21719

1400r2
12

+ 126 ln Γ
5r2

12
+

84 ln( r12
r0

)
5r2

12

+
(

35
2r3

12
+ 36 ln Γ

r3
12

+
24 ln( r12

r0
)

r3
12

)
(n12y1)

]
+ (n12v2)

[( 669
50r3

12

+108 ln Γ
5r3

12
+

72 ln( r12
r0

)
5r3

12

)
(v1y1) +

(
− 669

50r3
12
− 108 ln Γ

5r3
12

−
72 ln( r12

r0
)

5r3
12

)
(v2y1)

]
+ (n12v1)

[
(n12v2)

(
− 24189

1400r2
12
− 36 ln Γ

r2
12
−

24 ln( r12
r0

)
r2

12

+[− 35
r3

12
− 72 ln Γ

r3
12
−

48 ln( r12
r0

)
r3

12
](n12y1)

)
+
(
− 669

50r3
12
− 108 ln Γ

5r3
12

−
72 ln( r12

r0
)

5r3
12

)
(v1y1) +

(
669

50r3
12

+ 108 ln Γ
5r3

12
+

72 ln( r12
r0

)
5r3

12

)
(v2y1)

]}

+m2
1m2

{
(v1v1)

[
− 58769

2100r2
12
− 36 ln Γ

5r2
12
−

24 ln( r12
r0

)
5r2

12
+
(
− 223

50r3
12

−36 ln Γ
5r3

12
−

24 ln( r12
r0

)
5r3

12

)
(n12y1)

]
+ (v2v2)

[
− 30479

525r2
12

+ 12 ln Γ
5r2

12

+
8 ln( r12

r0
)

5r2
12

+
(
− 223

50r3
12
− 36 ln Γ

5r3
12
−

24 ln( r12
r0

)
5r3

12

)
(n12y1)

]
+ (v1v2)

[ 36137
420r2

12

+24 ln Γ
5r2

12
+

16 ln( r12
r0

)
5r2

12
+
(

223
25r3

12
+ 72 ln Γ

5r3
12

+
48 ln( r12

r0
)

5r3
12

)
(n12y1)

]

+ (n12v2)2
[

18137
200r2

12
+
(

35
2r3

12
+ 36 ln Γ

r3
12

+
24 ln( r12

r0
)

r3
12

)
(n12y1)

]

+ (n12v1)2
[

2119
50r2

12
+ 72 ln Γ

5r2
12

+
48 ln( r12

r0
)

5r2
12

+
( 35

2r3
12

+ 36 ln Γ
r3

12

+
24 ln( r12

r0
)

r3
12

)
(n12y1)

]
+ (n12v2)

[(
669

50r3
12

+ 108 ln Γ
5r3

12
+

72 ln( r12
r0

)
5r3

12

)
(v1y1)

+
(
− 669

50r3
12
− 108 ln Γ

5r3
12
−

72 ln( r12
r0

)
5r3

12

)
(v2y1)

]
+ (n12v1)

[
(n12v2)

(
− 26613

200r2
12
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−72 ln Γ
5r2

12
−

48 ln( r12
r0

)
5r2

12
+ [− 35

r3
12
− 72 ln Γ

r3
12
−

48 ln( r12
r0

)
r3

12
](n12y1)

)

+
(
− 669

50r3
12
− 108 ln Γ

5r3
12
−

72 ln( r12
r0

)
5r3

12

)
(v1y1) +

( 669
50r3

12
+ 108 ln Γ

5r3
12

+
72 ln( r12

r0
)

5r3
12

)
(v2y1)

]}
, (B.8b)

χ(3)v1 = m2
1m2

{
(n12v1)

[
− 769

24r2
12
− 8 ln Γ

r2
12
−

16 ln( r12
r0

)
3r2

12
+
(
− 669

50r3
12

−108 ln Γ
5r3

12
−

72 ln( r12
r0

)
5r3

12

)
(n12y1)

]
+ (n12v2)

[ 37267
600r2

12
− 8 ln Γ

5r2
12

−
16 ln( r12

r0
)

15r2
12

+
(

669
50r3

12
+ 108 ln Γ

5r3
12

+
72 ln( r12

r0
)

5r3
12

)
(n12y1)

]
+
[ 202

25r3
12

+48 ln Γ
5r3

12
+

32 ln( r12
r0

)
5r3

12

]
(v1y1) +

[
− 202

25r3
12
− 48 ln Γ

5r3
12

−
32 ln( r12

r0
)

5r3
12

]
(v2y1)

}
+m1m

2
2

{
(n12v1)

[
− 561

35r2
12
− 14 ln Γ

r2
12
−

28 ln( r12
r0

)
3r2

12

+
(
− 669

50r3
12
− 108 ln Γ

5r3
12
−

72 ln( r12
r0

)
5r3

12

)
(n12y1)

]
+ (n12v2)

[ 32269
700r2

12

+22 ln Γ
5r2

12
+

44 ln( r12
r0

)
15r2

12
+
(

669
50r3

12
+ 108 ln Γ

5r3
12

+
72 ln( r12

r0
)

5r3
12

)
(n12y1)

]

+
[

202
25r3

12
+ 48 ln Γ

5r3
12

+
32 ln( r12

r0
)

5r3
12

]
(v1y1) +

[
− 202

25r3
12
− 48 ln Γ

5r3
12

−
32 ln( r12

r0
)

5r3
12

]
(v2y1)

}
, (B.8c)

χ(3)v2 = m2
1m2

{
(n12v2)

[
− 1969

30r2
12

+
(
− 669

50r3
12
− 108 ln Γ

5r3
12
−

72 ln( r12
r0

)
5r3

12

)
(n12y1)

]

+ (n12v1)
[

10669
300r2

12
+ 48 ln Γ

5r2
12

+
32 ln( r12

r0
)

5r2
12

+
( 669

50r3
12

+ 108 ln Γ
5r3

12

+
72 ln( r12

r0
)

5r3
12

)
(n12y1)

]
+
[
− 202

25r3
12
− 48 ln Γ

5r3
12
−

32 ln( r12
r0

)
5r3

12

]
(v1y1) +

[ 202
25r3

12

+48 ln Γ
5r3

12
+

32 ln( r12
r0

)
5r3

12

]
(v2y1)

}
+m1m

2
2

{
(n12v2)

[
− 41681

840r2
12

−6 ln Γ
r2

12
−

4 ln( r12
r0

)
r2

12
+
(
− 669

50r3
12
− 108 ln Γ

5r3
12
−

72 ln( r12
r0

)
5r3

12

)
(n12y1)

]

+ (n12v1)
[

82111
4200r2

12
+ 78 ln Γ

5r2
12

+
52 ln( r12

r0
)

5r2
12

+
( 669

50r3
12

+ 108 ln Γ
5r3

12
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+
72 ln( r12

r0
)

5r3
12

)
(n12y1)

]
+
[
− 202

25r3
12
− 48 ln Γ

5r3
12
−

32 ln( r12
r0

)
5r3

12

]
(v1y1) +

[ 202
25r3

12

+48 ln Γ
5r3

12
+

32 ln( r12
r0

)
5r3

12

]
(v2y1)

}
, (B.8d)

χ(3)y1 = m2
1m2

{[
359

75r3
12

+ 12 ln Γ
5r3

12
+

8 ln( r12
r0

)
5r3

12

]
(n12v1)2 +

[
− 133

75r3
12
− 4 ln Γ

5r3
12

−
8 ln( r12

r0
)

15r3
12

]
(v1v1) +

[
− 718

75r3
12
− 24 ln Γ

5r3
12
−

16 ln( r12
r0

)
5r3

12

]
(n12v1)(n12v2)

+
[

359
75r3

12
+ 12 ln Γ

5r3
12

+
8 ln( r12

r0
)

5r3
12

]
(n12v2)2 +

[ 266
75r3

12
+ 8 ln Γ

5r3
12

+
16 ln( r12

r0
)

15r3
12

]
(v1v2) +

[
− 133

75r3
12
− 4 ln Γ

5r3
12
−

8 ln( r12
r0

)
15r3

12

]
(v2v2)

}

+m1m
2
2

{[
359

75r3
12

+ 12 ln Γ
5r3

12
+

8 ln( r12
r0

)
5r3

12

]
(n12v1)2 +

[
− 133

75r3
12

−4 ln Γ
5r3

12
−

8 ln( r12
r0

)
15r3

12

]
(v1v1) +

[
− 718

75r3
12
− 24 ln Γ

5r3
12

−
16 ln( r12

r0
)

5r3
12

]
(n12v1)(n12v2) +

[
359

75r3
12

+ 12 ln Γ
5r3

12
+

8 ln( r12
r0

)
5r3

12

]
(n12v2)2

+
[

266
75r3

12
+ 8 ln Γ

5r3
12

+
16 ln( r12

r0
)

15r3
12

]
(v1v2) +

[
− 133

75r3
12
− 4 ln Γ

5r3
12

−
8 ln( r12

r0
)

15r3
12

]
(v2v2)

}
, (B.8e)

χi(4)ε = 16m3
1m2ni12
5r3

12
+ 8m2

1m
2
2n

i
12

5r3
12

− 8m1m3
2n

i
12

5r3
12

+ 8m3
1m2ni12(n12y1)

5r4
12

+ 16m2
1m

2
2n

i
12(n12y1)

5r4
12

+ 8m1m3
2n

i
12(n12y1)

5r4
12

− 8m3
1m2yi1

15r4
12

− 16m2
1m

2
2y
i
1

15r4
12

− 8m1m3
2y
i
1

15r4
12

, (B.8f)

χ(4)n12 = m2
1m

2
2

{
− 613

350r3
12
− 16 ln Γ

5r3
12
−

16 ln( r12
r0

)
5r3

12
+
[
− 61

25r4
12
− 32 ln Γ

5r4
12

−
32 ln( r12

r0
)

5r4
12

]
(n12y1)

}
+m3

1m2

{
− 8861

2100r3
12
− 32 ln Γ

5r3
12
−

32 ln( r12
r0

)
5r3

12

+
[
− 61

50r4
12
− 16 ln Γ

5r4
12
−

16 ln( r12
r0

)
5r4

12

]
(n12y1)

}
+m1m

3
2

{ 5183
2100r3

12

+16 ln Γ
5r3

12
+

16 ln( r12
r0

)
5r3

12
+
[
− 61

50r4
12
− 16 ln Γ

5r4
12
−

16 ln( r12
r0

)
5r4

12

]
(n12y1)

}
, (B.8g)

χ(4)y1 = m3
1m2

{
73

75r4
12

+ 16 ln Γ
15r4

12
+

16 ln( r12
r0

)
15r4

12

}
+m1m

3
2

{ 73
75r4

12
+ 16 ln Γ

15r4
12
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+
16 ln( r12

r0
)

15r4
12

}
+m2

1m
2
2

{
146

75r4
12

+ 32 ln Γ
15r4

12
+

32 ln( r12
r0

)
15r4

12

}
. (B.8h)

B.2.3 Shift η
The last shift η1 starts at 4PN and is only made of G3 and G4 terms

η1 = G3

c8 η
(3)
1 4PN + G4

c8 η
(4)
1 4PN . (B.9)

with

η
(3)
1 4PN = v12

r2
12

(769
24 m

2
1m2(n12v12) + 561

35 m1m
2
2(n12v12)

)
+ n12
r2

12

[
m1m

2
2
(21719

1400 (n12v12)2 − 2096
175 v

2
12
)

+m2
1m2

(
−2119

50 (n12v12)2 + 58769
2100 v

2
12
)]
, (B.10a)

η
(4)
1 4PN =

(8861
2100m

3
1m2 + 613

350m
2
1m

2
2 −

5183
2100m1m

3
2
)n12
r3

12
. (B.10b)
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C – The mass quadrupole as a
function of the potentials

We recall that in d dimensions, the mass quadrupole is given by the following (cf section
8.1.2):

IL(t) = d− 1
2(d− 2) FP

B

∫ ddy
`d−3
0
|ỹ|B

{
ŷL Σ[`](y, t)

− 4(d+ 2`− 2)
c2(d+ `− 2)(d+ 2`) ŷiL Σ̇i[`+1](y, t)

+ 2(d+ 2`− 2)
c4(d+ `− 1)(d+ `− 2)(d+ 2`+ 2) ŷijL Σ̈ij[`+2](y, t)

− 4(d− 3)(d+ 2`− 2)
c2(d− 1)(d+ `− 2)(d+ 2`)B ŷiL

yj
|y|2 Σij[`+1](y, t)

}
. (C.1)

The last term of (C.1) does not contribute in because of the B and the d − 3 factors. The
first three terms of (C.1) are noted respectively MQS, MQV and MQT (MQ standing for
mass quadrupole and S,V,T for scalar vector and tensor).

As

Σ[`](y, t) =
+∞∑

k=0
αk`

( |y|
c

∂

∂t

)2k
Σ(y, t) , (C.2)

(where the numerical coefficients αk` are given by (8.11)), each term MQS, MQV and MQT
corresponds to a finite sum at 4PN indexed by k in (C.2). This sum has 5 elements
(k ∈ {0, 1, 2, 3, 4}) for MQS noted MQSI, MQSII, MQSIV and MQSV, 4 elements for MQV
noted MQVI, MQVII, MQVIII and MQVIV and 3 elements for MQT noted MTI, MQTII
and MQTIII. Each of these terms contains non-compact terms corresponding to the suffix
NC (such as MQSINC), compact terms (suffix C) and surface terms (suffix SL for surface
Laplacian terms and SD for surface divergence terms). Hence we have

Iij = 1
Gπ

(MQS + MQV + MQT) , (C.3)

where

MQS = FP
B

∫
d3x (MQSINC +GπMQSIC + x̂ij∆MQSISD + ∂aMQSISL)
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+ d2

dt2 FP
B

∫
d3x (MQSIINC +GπMQSIIC)

+ d4

dt4 FP
B

∫
d3x (MQSIIINC +GπMQSIIIC)

+ d6

dt6 FP
B

∫
d3x (MQSIVNC +GπMQSIVC)

+ d8

dt8 FP
B

∫
d3x (GπMQSVC) , (C.4)

MQV = d
dt FP

B

∫
d3x (MQVINC +GπMQVIC + x̂ija∆MQVISD + ∂aMQVISL)

+ d3

dt3 FP
B

∫
d3x (MQVIINC +GπMQVIIC)

+ d5

dt5 FP
B

∫
d3x (MQVIIINC +GπMQVIIIC)

+ d7

dt7 FP
B

∫
d3x (+GπMQVIVC) , (C.5)

MQT = d
dt2 FP

B

∫
d3x (MQTINC +GπMQTIC)

+ d4

dt4 FP
B

∫
d3x (MQTIINC +GπMQTIIC)

+ d6

dt6 FP
B

∫
d3x (MQTIIINC +GπMQTIIIC) . (C.6)

The list of all these coefficients are provided below. We use the notation MQSINC =
MQSINC0PN + MQSINC1PN/c

2 + MQSINC2PN/c
4 + MQSINC3PN/c

6 + MQSINC4PN/c
8. We

do not write the terms that are equal to 0.

MQSI non-compact terms

MQSINC2PN =
(−4 + d)(−1 + d)2x̂ij(∂tV )2

8(−2 + d)3 − (−1 + d)V ax̂ij∂t∂aV
−2 + d

+
(−1 + d)2Ψ∂abV

ij ∂aV ∂bV

4(−2 + d)2

+
(−1 + d)x̂ij∂aVb∂bV a

−2 + d
.

MQSINC3PN =

− (−4 + d)(−3 + d)(−1 + d)2x̂ij∂tK∂tV

2(−2 + d)4 +
(−4 + d)(−1 + d)3V x̂ij(∂tV )2

4(−2 + d)4 +
(−1 + d)2dΨ∂aaV

ij (∂tV )2

4(−2 + d)4

+
2x̂ij∂tVa∂tV a

−2 + d
+

(−1 + d)x̂ij∂tV ∂tŴ
2(−2 + d)

+
2(−3 + d)(−1 + d)V ax̂ij∂t∂aK

(−2 + d)2 − (−1 + d)2V V ax̂ij∂t∂aV

(−2 + d)2

+
(−1 + d)Ŵ x̂ij∂

2
t V

4(−2 + d)
− (−3 + d)V ax̂ij∂2

t Va

−2 + d
+

(−1 + d)V x̂ij∂2
t Ŵ

4(−2 + d)
−

(−1 + d)Ψ∂abV
ij ∂2

t Ŵab

2(−2 + d)

− (−1 + d)2dV ax̂ij∂tV ∂aV

2(−2 + d)3 +
(−1 + d)2dΨ∂t∂aV

ij ∂tV ∂aV

2(−2 + d)3 +
2(−1 + d)2Ψ∂abV

ij ∂tV b∂aV

(−2 + d)2 −
(−1 + d)2dΨ∂aVb

ij ∂t∂aV ∂bV

(−2 + d)3

+
(−3 + d)(−1 + d)Ŵabx̂ij∂b∂aK

(−2 + d)2 −
(−1 + d)2dΨ∂aVb

ij ∂tV ∂b∂aV

(−2 + d)3 +
2(−1 + d)2Ψ∂t∂aV

ij ∂aVb∂
bV

(−2 + d)2
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−
(−3 + d)(−1 + d)2Ψ∂abV

ij ∂aK∂bV

(−2 + d)3 − 2(−1 + d)2V ax̂ij∂bVa∂bV

(−2 + d)2 +
2(−1 + d)x̂ij∂tŴab∂

bV a

−2 + d

−
2(−1 + d)Ψ∂iiV

ij ∂aVb∂
bV a

(−2 + d)2 +
2(−1 + d)Ψ∂iiV

ij ∂bVa∂
bV a

(−2 + d)2 −
2(−1 + d)Ψ∂aiV

ij ∂bV
i∂bV a

−2 + d
−

4(−1 + d)2Ψ∂aVb
ij ∂bV

i∂i∂aV

(−2 + d)2

−
4(−1 + d)2Ψ∂aVb

ij ∂b∂aVi∂
iV

(−2 + d)2 −
2(−1 + d)Ψ∂biV

ij ∂bV a∂iVa

−2 + d
+

4(−1 + d)Ψ∂aiV
ij ∂bV a∂iVb

−2 + d
.

MQSINC4PN =

(−4 + d)(−3 + d)2(−1 + d)2x̂ij(∂tK)2

2(−2 + d)5 − (−4 + d)(−3 + d)(−1 + d)3V x̂ij∂tK∂tV

(−2 + d)5 +
(−3 + d)(−1 + d)2dΨ∂aaV

ij ∂tK∂tV

2(−2 + d)4

− (−4 + d)(−3 + d)(−1 + d)3Kx̂ij(∂tV )2

2(−2 + d)5 +
(−1 + d)3V 2x̂ij(∂tV )2

4(−2 + d)3 +
(−1 + d)2Ŵ x̂ij(∂tV )2

2(−2 + d)2 −
(−1 + d)3dVΨ∂aaV

ij (∂tV )2

8(−2 + d)4

+
8x̂ij∂tR̂a∂tVa
−2 + d

− 2(−1 + d)(8− 5d+ d2)V ax̂ij∂tV ∂tVa
(−2 + d)3 +

4(−1 + d)V x̂ij∂tVa∂tV a

(−2 + d)2 +
4(−1 + d)Ψ∂abV

ij ∂tV a∂tV b

−2 + d

− (−3 + d)(−1 + d)x̂ij∂tK∂tŴ
(−2 + d)2 +

(−1 + d)2V x̂ij∂tV ∂tŴ

(−2 + d)2 +
x̂ij(∂tŴ )2

2(−2 + d)
+

(−3 + d)x̂ij∂tŴab∂tŴ
ab

2(−2 + d)

+
(−4 + d)(−1 + d)2x̂ij∂tV ∂tX̂

(−2 + d)3 +
2(−1 + d)x̂ij∂tV ∂tŴ

−2 + d
+

4(−3 + d)(−1 + d)R̂ax̂ij∂t∂aK
(−2 + d)2

+
2(−3 + d)(−1 + d)2V V ax̂ij∂t∂aK

(−2 + d)3 − 2(−1 + d)2R̂aV x̂ij∂t∂aV

(−2 + d)2 +
2(−3 + d)(−1 + d)2KV ax̂ij∂t∂aV

(−2 + d)3

− (−1 + d)2(−3 + 2d)V 2V ax̂ij∂t∂aV

(−2 + d)3 +
(−1 + d)2V V aΨ∂bbV

ij ∂t∂aV

(−2 + d)2 −
8(−1 + d)V aΨ∂t∂bV

ij ∂t∂aVb

−2 + d
+

2(−1 + d)V aΨ∂bbV
ij ∂t∂aŴ

−2 + d

−
4(−1 + d)V aΨ∂biV

ij ∂t∂aŴbi

−2 + d
− 4(−1 + d)V ax̂ij∂t∂aX̂

−2 + d
+

16(−1 + d)V aΨ∂bVi
ij ∂t∂b∂aVi

−2 + d
+

2(−1 + d)V aŴabx̂ij∂t∂
bV

−2 + d

− (−3 + d)(−1 + d)Ŵ x̂ij∂
2
tK

2(−2 + d)2 − 2(−3 + d)V ax̂ij∂2
t R̂a

−2 + d
−

2(−1 + d)Ψ∂t∂aV
ij ∂2

t R̂a

−2 + d
− (−1 + d)3V 3x̂ij∂2

t V

4(−2 + d)3

+
(−1 + d)2V Ŵ x̂ij∂

2
t V

2(−2 + d)2 +
(−1 + d)x̂ijŴ∂2

t V

−2 + d
+

(−1 + d)3V 2Ψ∂aaV
ij ∂2

t V

4(−2 + d)3 − 2(−3 + d)R̂ax̂ij∂2
t Va

−2 + d

− 2(−3 + d)(−1 + d)V V ax̂ij∂2
t Va

(−2 + d)2 −
2(−1 + d)2VΨ∂t∂aV

ij ∂2
t Va

(−2 + d)2 − (−3 + d)(−1 + d)Kx̂ij∂2
t Ŵ

2(−2 + d)2 +
(−1 + d)2V 2x̂ij∂2

t Ŵ

4(−2 + d)2

+
Ŵ x̂ij∂

2
t Ŵ

2(−2 + d)
+

(−1 + d)2VΨ∂aaV
ij ∂2

t Ŵ

2(−2 + d)2 − Ŵabx̂ij∂
2
t Ŵab

−2 + d
−

(−1 + d)2VΨ∂abV
ij ∂2

t Ŵab

(−2 + d)2

+
(−1 + d)V x̂ij∂2

t Ŵ

−2 + d
−

2(−1 + d)Ψ∂abV
ij ∂2

t Ẑab

−2 + d
+

4(−1 + d)Ψ∂aVb
ij ∂2

t ∂aR̂b

−2 + d
+

4(−1 + d)2VΨ∂aVb
ij ∂2

t ∂aVb

(−2 + d)2

+
(−3 + d)(−1 + d)2dV ax̂ij∂tV ∂aK

(−2 + d)4 −
(−3 + d)(−1 + d)2dΨ∂t∂aV

ij ∂tV ∂aK

(−2 + d)4 +
(−3 + d)(−1 + d)2dV ax̂ij∂tK∂aV

(−2 + d)4

−
(−3 + d)(−1 + d)2dΨ∂t∂aV

ij ∂tK∂aV

(−2 + d)4 − (−1 + d)2dR̂ax̂ij∂tV ∂aV

(−2 + d)3 − (−1 + d)2d(−5 + 2d)V V ax̂ij∂tV ∂aV
2(−2 + d)4

+
(−1 + d)2V aΨ∂bbV

ij ∂tV ∂aV

2(−2 + d)2 +
(−1 + d)3dVΨ∂t∂aV

ij ∂tV ∂aV

2(−2 + d)4 +
4(−1 + d)2Ψ∂aVb

ij ∂2
t Vb∂aV

(−2 + d)2

+
16(−1 + d)Ψ∂aVb

ij ∂t∂iVb∂aV
i

−2 + d
+

2(−3 + d)(−1 + d)2Ψ∂bbV
ij ∂tVa∂aK

(−2 + d)3 −
4(−3 + d)(−1 + d)2Ψ∂abV

ij ∂tV b∂aK

(−2 + d)3

− (−3 + d)2(−1 + d)2(−4 + 3d)V x̂ij∂aK∂aK
2(−2 + d)5 − (−3 + d)2(−1 + d)2(−4 + 3d)Kx̂ij∂aV ∂aK

(−2 + d)5

+
2(−3 + d)(−1 + d)2Ŵ x̂ij∂aV ∂

aK

(−2 + d)3 +
2(−3 + d)(−1 + d)2V x̂ij∂aŴ∂aK

(−2 + d)3 −
2(−1 + d)2Ψ∂bbV

ij ∂tR̂a∂aV

(−2 + d)2
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+
4(−1 + d)2Ψ∂abV

ij ∂tR̂b∂aV

(−2 + d)2 +
(−1 + d)3V 2x̂ij∂tVa∂aV

(−2 + d)3 −
(−1 + d)3VΨ∂bbV

ij ∂tVa∂aV

(−2 + d)3

+
2(−1 + d)3VΨ∂abV

ij ∂tV b∂aV

(−2 + d)3 − (−1 + d)2X̂x̂ij∂aV ∂aV

(−2 + d)2 − 2(−1 + d)2x̂ijŴ∂aV ∂aV

(−2 + d)2 +
2(−3 + d)(−1 + d)2Kx̂ij∂aŴ∂aV

(−2 + d)3

+
(−1 + d)dŴ bix̂ij∂aŴbi∂

aV

(−2 + d)2 − 2(−1 + d)2V x̂ij∂aX̂∂aV

(−2 + d)2 − 4(−1 + d)2V x̂ij∂aŴ∂aV

(−2 + d)2

+
2(−3 + d)(−1 + d)2dΨ∂aVb

ij ∂t∂aV ∂bK

(−2 + d)4 +
2(−3 + d)(−1 + d)2dΨ∂aVb

ij ∂t∂aK∂bV

(−2 + d)4 −
(−1 + d)3dVΨ∂aVb

ij ∂t∂aV ∂bV

(−2 + d)4

+
4(−1 + d)2Ψ∂t∂aV

ij ∂aR̂b∂bV

(−2 + d)2 − (−1 + d)2V aV bx̂ij∂aV ∂bV

(−2 + d)3 +
(−1 + d)2dV aΨ∂t∂bV

ij ∂aV ∂bV

(−2 + d)3 −
(−1 + d)3dΨ∂aVb

ij ∂tV ∂aV ∂bV

(−2 + d)4

+
(−1 + d)Ψ∂abV

ij ∂aŴ ij∂bŴij

−2 + d
+

4(−3 + d)(−1 + d)x̂ijẐab∂b∂aK
(−2 + d)2 +

2(−3 + d)(−1 + d)2dΨ∂aVb
ij ∂tV ∂b∂aK

(−2 + d)4

− 4(−1 + d)R̂aV bx̂ij∂b∂aV
−2 + d

− (−1 + d)2V 2Ŵabx̂ij∂b∂aV

2(−2 + d)2 +
(−1 + d)2V ŴabΨ∂iiV

ij ∂b∂aV

2(−2 + d)2

+
2(−3 + d)(−1 + d)2dΨ∂aVb

ij ∂tK∂b∂aV

(−2 + d)4 −
(−1 + d)3dVΨ∂aVb

ij ∂tV ∂b∂aV

(−2 + d)4 +
(−1 + d)ŴabΨ∂iiV

ij ∂b∂aŴ

−2 + d

−
2(−1 + d)ŴabΨ∂ijV

ij ∂b∂aŴij

−2 + d
− 2(−1 + d)Ŵabx̂ij∂b∂aX̂

−2 + d
−

4(−3 + d)(−1 + d)2Ψ∂t∂aV
ij ∂aVb∂

bK

(−2 + d)3

+
(−3 + d)2(−1 + d)2Ψ∂abV

ij ∂aK∂bK

(−2 + d)4 − 12(−1 + d)V ax̂ij∂bV ∂bR̂a
(−2 + d)2 +

4(−1 + d)x̂ij∂tŴab∂
bR̂a

−2 + d

+
4(−1 + d)x̂ij∂aR̂b∂bR̂a

−2 + d
−

4(−1 + d)Ψ∂iiV
ij ∂aVb∂

bR̂a

−2 + d
+

8(−1 + d)Ψ∂biV
ij ∂aV i∂bR̂a

−2 + d

+
4(−4 + d)(−1 + d)V x̂ij∂bVa∂bR̂a

(−2 + d)2 −
(−1 + d)2V aΨ∂abV

ij ∂tV ∂bV

(−2 + d)2 +
2(−1 + d)2Ψ∂t∂aV

ij ∂tŴab∂
bV

(−2 + d)2

+
6(−1 + d)2V V ax̂ij∂aVb∂bV

(−2 + d)3 +
4(−1 + d)2V aΨ∂biV

ij ∂aV i∂bV

(−2 + d)2 − (−1 + d)2dV Ŵabx̂ij∂
aV ∂bV

4(−2 + d)3

−
(−1 + d)2Ŵa

iΨ∂biV
ij ∂aV ∂bV

(−2 + d)2 +
(−1 + d)2ŴabΨ∂iiV

ij ∂aV ∂bV

4(−2 + d)2 − (−3 + d)(−1 + d)VaV ax̂ij∂bV ∂bV
2(−2 + d)2

− 12(−1 + d)R̂ax̂ij∂bVa∂bV
(−2 + d)2 +

2(−1 + d)3VΨ∂t∂aV
ij ∂bVa∂

bV

(−2 + d)3 −
4(−1 + d)2V aΨ∂aiV

ij ∂bV
i∂bV

(−2 + d)2

− 8(−1 + d)V ax̂ij∂tVb∂bVa
−2 + d

+
4(−3 + d)V ax̂ij∂bŴ∂bVa

−2 + d
+

2(−1 + d)2V x̂ij∂tŴab∂
bV a

(−2 + d)2

+
2(−1 + d)Ψ∂iiV

ij ∂tŴab∂
bV a

−2 + d
−

4(−1 + d)Ψ∂biV
ij ∂tŴai∂

bV a

−2 + d
+

4(−1 + d)Ψ∂aiV
ij ∂tŴbi∂

bV a

−2 + d

+
8(−1 + d)x̂ij∂tẐab∂bV a

−2 + d
+

(−1 + d)2(−7 + 3d)V 2x̂ij∂aVb∂bV a

(−2 + d)3 −
(−1 + d)2VΨ∂iiV

ij ∂aVb∂
bV a

(−2 + d)2

− 2(−3 + d)(−1 + d)2Kx̂ij∂bVa∂bV a

(−2 + d)3 − (−4 + d)(−1 + d)2V 2x̂ij∂bVa∂bV a

(−2 + d)3 +
2(−3 + d)Ŵ x̂ij∂bVa∂

bV a

−2 + d

+
2(−1 + d)2Ψ∂abV

ij ∂aV ∂bX̂

(−2 + d)2 −
2(−1 + d)2dV aΨ∂bVi

ij ∂b∂aV ∂iV

(−2 + d)3 +
8(−3 + d)(−1 + d)2Ψ∂aVb

ij ∂bV
i∂i∂aK

(−2 + d)3

−
8(−1 + d)2Ψ∂aVb

ij ∂bR̂
i∂i∂aV

(−2 + d)2 +
(−1 + d)Ŵa

iŴabx̂ij∂i∂bV

−2 + d
−

2(−1 + d)2dV aΨ∂bVi
ij ∂aV ∂i∂bV

(−2 + d)3

−
4(−1 + d)Ŵ biΨ∂t∂aV

ij ∂i∂bVa

−2 + d
+

8(−3 + d)(−1 + d)2Ψ∂aVb
ij ∂b∂aVi∂

iK

(−2 + d)3 −
4(−1 + d)2Ψ∂aVb

ij ∂t∂aŴbi∂
iV

(−2 + d)2

−
2(−1 + d)2dΨ∂aVb

ij ∂aVi∂bV ∂
iV

(−2 + d)3 −
8(−1 + d)2Ψ∂aVb

ij ∂b∂aR̂i∂
iV

(−2 + d)2 −
4(−1 + d)3Ψ∂aVb

ij ∂aV ∂iVb∂
iV

(−2 + d)3
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−
4(−1 + d)3VΨ∂aVb

ij ∂i∂aVb∂
iV

(−2 + d)3 −
8(−1 + d)Ψ∂biV

ij ∂bR̂a∂iVa

−2 + d
+

8(−1 + d)Ψ∂aiV
ij ∂bR̂a∂iVb

−2 + d

− 4(−1 + d)Ŵaix̂ij∂
bV a∂iVb

−2 + d
−

4(−1 + d)3VΨ∂aVb
ij ∂i∂aV ∂

iVb

(−2 + d)3 +
4(−1 + d)V ax̂ij∂aŴbi∂

iV b

−2 + d

−
4(−1 + d)Ψ∂t∂aV

ij ∂aŴbi∂
iV b

−2 + d
+

4(−1 + d)Ψ∂t∂aV
ij ∂bŴai∂

iV b

−2 + d
− 4(−1 + d)V ax̂ij∂iŴab∂

iV b

−2 + d

+
(−1 + d)dV x̂ij∂iŴab∂

iŴab

2(−2 + d)2 −
4(−1 + d)2Ψ∂aVb

ij ∂tŴbi∂
i∂aV

(−2 + d)2 +
8(−1 + d)Ŵ ijΨ∂aVb

ij ∂j∂i∂aVb

−2 + d

+
8(−1 + d)Ψ∂aVb

ij ∂b∂aŴij∂
jV i

−2 + d
−

8(−1 + d)Ψ∂aVb
ij ∂i∂aŴbj∂

jV i

−2 + d
−

4(−1 + d)Ψ∂abV
ij ∂bŴij∂

jŴa
i

−2 + d

+
2(−1 + d)Ψ∂abV

ij ∂iŴbj∂
jŴa

i

−2 + d
+

(−1 + d)Ψ∂aaV
ij ∂iŴbj∂

jŴ bi

−2 + d
+

8(−1 + d)Ψ∂aVb
ij ∂bŴij∂

j∂aV i

−2 + d

−
8(−1 + d)Ψ∂aVb

ij ∂iŴbj∂
j∂aV i

−2 + d
+

8(−1 + d)Ψ∂aVb
ij ∂aŴij∂

j∂iVb

−2 + d
.

MQSI compact terms

MQSIC0PN =
(−1 + d)x̂ijσ

2(−2 + d)
.

MQSIC1PN = − (−3 + d)(−1 + d)V x̂ijσ
(−2 + d)2 .

MQSIC2PN =
(−3 + d)2(−1 + d)V 2x̂ijσ

(−2 + d)3 +
4(−3 + d)V ax̂ijσa

−2 + d
+

2(−1 + d)V x̂ijσaa
(−2 + d)2

+
2(−1 + d)σabΨ∂abV

ij

−2 + d
−

2(−1 + d)σaaΨ∂bbV
ij

(−2 + d)2 .

MQSIC3PN =

− 2(−3 + d)3(−1 + d)V 3x̂ijσ

3(−2 + d)4 +
8(−1 + d)VaV ax̂ijσ

(−2 + d)2 − 4(−3 + d)(−1 + d)X̂x̂ijσ
(−2 + d)2

+
8(−3 + d)R̂ax̂ijσa

−2 + d
− 4(−5 + d)(−3 + d)V V ax̂ijσa

(−2 + d)2 +
4Ŵabx̂ijσab

−2 + d

− 2(−5 + d)(−1 + d)V 2x̂ijσaa

(−2 + d)3 +
8(−1 + d)V σabΨ∂abV

ij

(−2 + d)2 −
8(−1 + d)V σaaΨ∂bbV

ij

(−2 + d)3

−
4(−1 + d)2V aσΨ∂t∂aV

ij

(−2 + d)2 −
4(−5 + d)(−1 + d)V σaΨ∂t∂aV

ij

(−2 + d)2 +
8(−1 + d)2σΨ∂aVb

ij ∂aVb

(−2 + d)2

+
8(−5 + d)(−1 + d)VΨ∂aVb

ij ∂aσb

(−2 + d)2 + 8(−5 + d)(−1 + d)σaΨLdjV iba∂bV
(−2 + d)2 + 8(−1 + d)2V aΨLdjV iba∂bσ

(−2 + d)2 .

MQSIC4PN =

− 16(−1 + d)Ma
ax̂ijσ

(−2 + d)2 − 16(−3 + d)(−1 + d)T̂ x̂ijσ
(−2 + d)2 +

(−3 + d)(−1 + d)(−43 + 55d− 23d2 + 3d3)V 4x̂ijσ

3(−2 + d)5

− 8(−8 + d)(−1 + d)R̂aVax̂ijσ
(−2 + d)2 +

4(−1 + d)(19− 13d+ 2d2)V VaV ax̂ijσ
(−2 + d)3 − 4(−3 + d)(−1 + d)2V 2Ŵa

ax̂ijσ

(−2 + d)3
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− (−1 + d)(2 + d)ŴabŴ
abx̂ijσ

(−2 + d)2 +
4(−3 + d)(−1 + d)(−7 + 3d)V X̂x̂ijσ

(−2 + d)3 +
8(−1 + d)2V x̂ijẐaaσ

(−2 + d)2

− 8(19− 13d+ 2d2)R̂aV x̂ijσa
(−2 + d)2 +

4(−65 + 71d− 25d2 + 3d3)V 2V ax̂ijσa

(−2 + d)3 − 8(−3 + d)V aŴ b
bx̂ijσa

−2 + d

+
16(−3 + d)x̂ij Ŷ aσa

−2 + d
+

8(−3 + d)V aŴabx̂ijσ
b

−2 + d
+

8(−3 + d)V aV bx̂ijσab
−2 + d

− 2(−8− d+ d2)V Ŵabx̂ijσab

(−2 + d)2 +
16x̂ijẐabσab
−2 + d

+
2(−1 + d)(56− 37d+ 5d2)V 3x̂ijσaa

3(−2 + d)4

+
8(−1 + d)X̂x̂ijσaa

(−2 + d)2 +
8(−3 + d)VaV ax̂ijσbb

(−2 + d)2 +
2(−1 + d)dV Ŵa

ax̂ijσ
b
b

(−2 + d)3

+
8(−1 + d)2V aV bσΨ∂abV

ij

(−2 + d)2 −
16(−1 + d)R̂aσbΨ∂abV

ij

−2 + d
+

8(−5 + d)(−1 + d)V V aσbΨ∂abV
ij

(−2 + d)2

+
16(−1 + d)V 2σabΨ∂abV

ij

(−2 + d)3 −
(−3 + d)2(−1 + d)2V 3σΨ∂aaV

ij

(−2 + d)4 −
2(−1 + d)2X̂σΨ∂aaV

ij

(−2 + d)2

+
8(−1 + d)ŴabσaiΨ∂biV

ij

−2 + d
−

4(−1 + d)2VaV aσΨ∂bbV
ij

(−2 + d)2 +
8(−1 + d)R̂aσaΨ∂bbV

ij

−2 + d

−
8(−4 + d)(−1 + d)V V aσaΨ∂bbV

ij

(−2 + d)2 −
2(−1 + d)2V 2σaaΨ∂bbV

ij

(−2 + d)3 −
2(−1 + d)ŴabσabΨ∂iiV

ij

−2 + d

+
2(−1 + d)Ŵa

aσbbΨ∂iiV
ij

(−2 + d)2 −
8(−1 + d)2R̂aσΨ∂t∂aV

ij

(−2 + d)2 +
4(−5 + d)(−1 + d)2V V aσΨ∂t∂aV

ij

(−2 + d)3

−
16(−3 + d)(−1 + d)V 2σaΨ∂t∂aV

ij

(−2 + d)3 +
8(−1 + d)V aσbbΨ∂t∂aV

ij

(−2 + d)2 +
8(−1 + d)Ŵabσ

aΨ∂t∂bV
ij

−2 + d

+
8(−1 + d)V aσabΨ∂t∂bV

ij

−2 + d
+

16(−1 + d)2σΨ∂aVb
ij ∂aR̂b

(−2 + d)2 −
8(−5 + d)(−1 + d)2V σΨ∂aVb

ij ∂aVb

(−2 + d)3

−
16(−1 + d)σiiΨ∂aVb

ij ∂aVb

(−2 + d)2 −
16(−1 + d)σbiΨ∂aVb

ij ∂aV i

−2 + d
+

32(−3 + d)(−1 + d)V 2Ψ∂aVb
ij ∂aσb

(−2 + d)3

−
16(−1 + d)ŴbiΨ∂aVb

ij ∂aσi

−2 + d
− 8(−5 + d)(−1 + d)2V aσΨLdjV iba∂bV

(−2 + d)3 + 64(−3 + d)(−1 + d)V σaΨLdjV iba∂bV
(−2 + d)3

−
16(−1 + d)σaΨ∂bVi

ij ∂bŴai

−2 + d
+ 16(−1 + d)2R̂aΨLdjV iba∂bσ

(−2 + d)2 − 8(−5 + d)(−1 + d)2V V aΨLdjV iba∂bσ
(−2 + d)3

−
16(−1 + d)V aΨ∂bVi

ij ∂bσai

−2 + d
− 16(−1 + d)V aΨLdjV iba∂bσii

(−2 + d)2 .

MQSI surface terms

MQSISL1PN = − (−1 + d)2V 2

8(−2 + d)2 .

MQSISL2PN = (−3 + d)(−1 + d)2KV

2(−2 + d)3 − (−1 + d)3V 3

12(−2 + d)3 + (−3 + d)VaV a

2(−2 + d)
− (−1 + d)V Ŵa

a

4(−2 + d)
.

MQSISL3PN = − (−3 + d)2(−1 + d)2K2

2(−2 + d)4 + (−3 + d)(−1 + d)3KV 2

2(−2 + d)4 − (−1 + d)4V 4

24(−2 + d)4

+ 2(−3 + d)R̂aVa
−2 + d

+ (−3 + d)(−1 + d)V VaV a

(−2 + d)2 + (−3 + d)(−1 + d)KŴa
a

2(−2 + d)2

− (−1 + d)2V 2Ŵa
a

4(−2 + d)2 + ŴabŴ
ab

2(−2 + d)
− Ŵa

aŴ b
b

4(−2 + d)
− (−1 + d)2V X̂

(−2 + d)2
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− (−1 + d)V Ẑaa
−2 + d

.

MQSISL4PN = 2(−3 + d)R̂aR̂a

−2 + d
+ 4(−1 + d)M̂a

aV

(−2 + d)2 − 4(−1 + d)2T̂ V

(−2 + d)2

+ (−3 + d)(−1 + d)3(−2 + 3d)KV 3

12(−2 + d)5 − (−1 + d)5V 5

60(−2 + d)5

− (−5 + d)(−3 + d)(−1 + d)KVaV a

(−2 + d)3 + 3(−3 + d)(−1 + d)2V 2VaV a

2(−2 + d)3

− (−1 + d)3V 3Ŵa
a

6(−2 + d)3 + (1− d)V Ŵa
aŴ b

b

4(−2 + d)
+ 2(−3 + d)(−1 + d)2KX̂

(−2 + d)3

− (−1 + d)Ŵa
aX̂

−2 + d
+ 4(−3 + d)V aŶa

−2 + d
+ 4ŴabẐab

−2 + d
+ 2(−3 + d)(−1 + d)KẐaa

(−2 + d)2

− 2Ŵa
aẐbb

−2 + d
.

MQSISD2PN =
(−1 + d)Ψ∂biV

ij ∂aŴbi

2(−2 + d)
−

(−1 + d)Ŵ bi∂aΨ∂biV
ij

2(−2 + d)
.

MQSISD3PN =
2(−1 + d)Ψ∂t∂bV

ij ∂aR̂b

−2 + d
+

2(−1 + d)Ψ∂biV
ij ∂aẐbi

−2 + d
−

2(−1 + d)Ẑbi∂aΨ∂biV
ij

−2 + d

−
2(−1 + d)R̂b∂aΨ∂t∂bV

ij

−2 + d
−

4(−1 + d)Ψ∂bVi
ij ∂b∂aR̂i

−2 + d
+

4(−1 + d)∂aΨ∂iVb
ij ∂iR̂b

−2 + d
.

MQSISD4PN =
4(−1 + d)Ψ∂biV

ij ∂aMbi

−2 + d
+

4(−1 + d)Ψ∂t∂bV
ij ∂aŶb

−2 + d
−

4(−1 + d)Mbi∂aΨ∂biV
ij

−2 + d

−
4(−1 + d)Ŷ b∂aΨ∂t∂bV

ij

−2 + d
−

8(−1 + d)Ψ∂bVi
ij ∂b∂aŶi

−2 + d
+

8(−1 + d)∂aΨ∂iVb
ij ∂iŶ b

−2 + d
.

MQSII non-compact terms

MQSIINC2PN = − (−1 + d)2r2x̂ij∂aV ∂aV

8(−2 + d)2(4 + d)
.

MQSIINC3PN =
(−4 + d)(−1 + d)2r2x̂ij(∂tV )2

16(−2 + d)3(4 + d)
− (−1 + d)r2V ax̂ij∂t∂aV

2(−2 + d)(4 + d)
− (−1 + d)2r2V x̂ij∂2

t V

8(−2 + d)2(4 + d)

+
(−3 + d)(−1 + d)2r2x̂ij∂aV ∂aK

2(−2 + d)3(4 + d)
− (−1 + d)2(−2 + 3d)r2V x̂ij∂aV ∂aV

16(−2 + d)3(4 + d)

− (−1 + d)r2x̂ij∂aŴ b
b∂
aV

4(−2 + d)(4 + d)
− (−1 + d)r2Ŵabx̂ij∂b∂aV

4(−2 + d)(4 + d)
+

(−1 + d)r2x̂ij∂aVb∂bV a

2(−2 + d)(4 + d)

+
(−3 + d)r2x̂ij∂bVa∂bV a

2(−2 + d)(4 + d)
.

MQSIINC4PN =
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− (−4 + d)(−3 + d)(−1 + d)2r2x̂ij∂tK∂tV

4(−2 + d)4(4 + d)
+

(−1 + d)2(8− 8d+ d2)r2V x̂ij(∂tV )2

16(−2 + d)4(4 + d)
+
r2x̂ij∂tVa∂tV a

(−2 + d)(4 + d)

+
(−1 + d)r2x̂ij∂tV ∂tŴa

a

4(−2 + d)(4 + d)
+

(−3 + d)(−1 + d)r2V ax̂ij∂t∂aK

(−2 + d)2(4 + d)
− (−1 + d)r2R̂ax̂ij∂t∂aV

(−2 + d)(4 + d)

− 3(−1 + d)2r2V V ax̂ij∂t∂aV

2(−2 + d)2(4 + d)
+

(−3 + d)(−1 + d)2r2V x̂ij∂2
tK

4(−2 + d)3(4 + d)
+

(−3 + d)(−1 + d)2Kr2x̂ij∂2
t V

4(−2 + d)3(4 + d)

− 3(−1 + d)3r2V 2x̂ij∂2
t V

8(−2 + d)3(4 + d)
− (−1 + d)dr2V ax̂ij∂tV ∂aV

2(−2 + d)2(4 + d)
− (−3 + d)2(−1 + d)2r2x̂ij∂aK∂aK

2(−2 + d)4(4 + d)

+
(−3 + d)(−1 + d)2(−2 + 3d)r2V x̂ij∂aV ∂aK

4(−2 + d)4(4 + d)
+

(−3 + d)(−1 + d)r2x̂ij∂aŴ b
b∂
aK

2(−2 + d)2(4 + d)
+

(−1 + d)2r2V x̂ij∂tVa∂aV

2(−2 + d)2(4 + d)

+
(−3 + d)(−1 + d)2(−2 + 3d)Kr2x̂ij∂aV ∂aV

8(−2 + d)4(4 + d)
− (−1 + d)3(−2 + 3d)r2V 2x̂ij∂aV ∂aV

16(−2 + d)4(4 + d)
− (−1 + d)(−3 + 2d)r2Ŵ b

bx̂ij∂aV ∂
aV

8(−2 + d)2(4 + d)

− (−1 + d)2r2V x̂ij∂aŴ b
b∂
aV

2(−2 + d)2(4 + d)
− (−1 + d)2r2x̂ij∂aX̂∂aV

(−2 + d)2(4 + d)
− (−1 + d)r2x̂ij∂aẐbb∂aV

(−2 + d)(4 + d)

+
(−3 + d)(−1 + d)r2Ŵabx̂ij∂b∂aK

2(−2 + d)2(4 + d)
− (−1 + d)2r2V Ŵabx̂ij∂b∂aV

2(−2 + d)2(4 + d)
− (−1 + d)r2x̂ijẐab∂b∂aV

(−2 + d)(4 + d)

+
2(−1 + d)r2x̂ij∂aVb∂bR̂a

(−2 + d)(4 + d)
+

2(−3 + d)r2x̂ij∂bVa∂bR̂a

(−2 + d)(4 + d)
− (−3 + d)(−1 + d)r2V ax̂ij∂aVb∂bV

(−2 + d)2(4 + d)

− (−1 + d)r2Ŵabx̂ij∂
aV ∂bV

4(−2 + d)2(4 + d)
+

(−5 + d)(−1 + d)r2V ax̂ij∂bVa∂bV

(−2 + d)2(4 + d)
+

(−1 + d)r2x̂ij∂tŴab∂
bV a

(−2 + d)(4 + d)

+
3(−1 + d)r2V x̂ij∂aVb∂bV a

2(−2 + d)(4 + d)
+

(−1 + d)r2V x̂ij∂bVa∂bV a

2(−2 + d)(4 + d)
− r2x̂ij∂bŴ i

i∂
bŴa

a

4(−2 + d)(4 + d)

+
r2x̂ij∂iŴab∂

iŴab

2(−2 + d)(4 + d)
.

MQSII compact terms

MQSIIC1PN =
(−1 + d)r2x̂ijσ

4(−2 + d)(4 + d)
.

MQSIIC2PN =
(−1 + d)r2V x̂ijσ

(−2 + d)2(4 + d)
.

MQSIIC3PN = − 2(−3 + d)(−1 + d)Kr2x̂ijσ

(−2 + d)3(4 + d)
+

2(−1 + d)r2V 2x̂ijσ

(−2 + d)3(4 + d)
+

(−1 + d)r2Ŵa
ax̂ijσ

2(−2 + d)(4 + d)
.

MQSIIC4PN = − 8(−3 + d)(−1 + d)Kr2V x̂ijσ

(−2 + d)4(4 + d)
+

8(−1 + d)r2V 3x̂ijσ

3(−2 + d)4(4 + d)
+

4(−1 + d)r2VaV ax̂ijσ

(−2 + d)2(4 + d)

+
2(−1 + d)r2V Ŵa

ax̂ijσ

(−2 + d)2(4 + d)
+

4(−1 + d)r2X̂x̂ijσ

(−2 + d)2(4 + d)
+

2(−1 + d)r2x̂ijẐaaσ

(−2 + d)(4 + d)
.

MQSIII non-compact terms

MQSIIINC3PN = − (−1 + d)2r4x̂ij∂aV ∂aV

32(−2 + d)2(4 + d)(6 + d)
.
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MQSIIINC4PN =
(−4 + d)(−1 + d)2r4x̂ij(∂tV )2

64(−2 + d)3(4 + d)(6 + d)
− (−1 + d)r4V ax̂ij∂t∂aV

8(−2 + d)(4 + d)(6 + d)
− (−1 + d)2r4V x̂ij∂2

t V

32(−2 + d)2(4 + d)(6 + d)

+
(−3 + d)(−1 + d)2r4x̂ij∂aV ∂aK

8(−2 + d)3(4 + d)(6 + d)
− (−1 + d)2(−2 + 3d)r4V x̂ij∂aV ∂aV

64(−2 + d)3(4 + d)(6 + d)
− (−1 + d)r4x̂ij∂aŴ b

b∂
aV

16(−2 + d)(4 + d)(6 + d)

− (−1 + d)r4Ŵabx̂ij∂b∂aV

16(−2 + d)(4 + d)(6 + d)
+

(−1 + d)r4x̂ij∂aVb∂bV a

8(−2 + d)(4 + d)(6 + d)
+

(−3 + d)r4x̂ij∂bVa∂bV a

8(−2 + d)(4 + d)(6 + d)
.

MQSIII compact terms

MQSIIIC2PN =
(−1 + d)r4x̂ijσ

16(−2 + d)(4 + d)(6 + d)
.

MQSIIIC3PN =
(−1 + d)r4V x̂ijσ

4(−2 + d)2(4 + d)(6 + d)
.

MQSIIIC4PN = − (−3 + d)(−1 + d)Kr4x̂ijσ

2(−2 + d)3(4 + d)(6 + d)
+

(−1 + d)r4V 2x̂ijσ

2(−2 + d)3(4 + d)(6 + d)

+
(−1 + d)r4Ŵa

ax̂ijσ

8(−2 + d)(4 + d)(6 + d)
.

MQSIV non-compact terms

MQSIVNC4PN = − (−1 + d)2r6x̂ij∂aV ∂aV

192(−2 + d)2(4 + d)(6 + d)(8 + d)
.

MQSIV compact terms

MQSIVC3PN =
(−1 + d)r6x̂ijσ

96(−2 + d)(4 + d)(6 + d)(8 + d)
.

MQSIVC4PN =
(−1 + d)r6V x̂ijσ

24(−2 + d)2(4 + d)(6 + d)(8 + d)
.

MQSV compact terms

MQSVC4PN =
(−1 + d)r8x̂ijσ

768(−2 + d)(4 + d)(6 + d)(8 + d)(10 + d)
.
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MQVI non-compact terms

MQVINC2PN = − (−1 + d)2(2 + d)x̂ija∂tV ∂aV
4(−2 + d)3(4 + d)

− (−1 + d)2(2 + d)x̂ija∂aVb∂bV
(−2 + d)2d(4 + d)

.

MQVINC3PN =

− (−1 + d)2(2 + d)x̂ija∂tV ∂tVa
(−2 + d)2d(4 + d)

+
4(−1 + d)(2 + d)V ax̂ijb∂t∂aVb

(−2 + d)d(4 + d)
− (−1 + d)2(2 + d)V ax̂ija∂2

t V

2(−2 + d)2d(4 + d)

+
(−1 + d)2(2 + d)V x̂ija∂2

t Va

2(−2 + d)2d(4 + d)
+

(−3 + d)(−1 + d)2(2 + d)x̂ija∂tV ∂aK
2(−2 + d)4(4 + d)

+
(−3 + d)(−1 + d)2(2 + d)x̂ija∂tK∂aV

2(−2 + d)4(4 + d)

− (−1 + d)3(2 + d)V x̂ija∂tV ∂aV
4(−2 + d)4(4 + d)

+
(−1 + d)3(2 + d)Ψ∂aV

ijb
∂t∂bV ∂aV

2(−2 + d)4(4 + d)
− (−1 + d)2(2 + d)V ax̂ijb∂aV ∂bV

2(−2 + d)3(4 + d)

+
(−1 + d)3(2 + d)Ψ∂aV

ijb
∂tV ∂b∂aV

2(−2 + d)4(4 + d)
+

2(−3 + d)(−1 + d)2(2 + d)x̂ija∂aVb∂bK
(−2 + d)3d(4 + d)

− (−1 + d)2(2 + d)x̂ija∂tŴab∂
bV

(−2 + d)2d(4 + d)

+
(−1 + d)3(2 + d)V ax̂ija∂bV ∂bV

2(−2 + d)3d(4 + d)
+

2(−1 + d)3(2 + d)Ψ∂aV
ijb

∂aV i∂i∂bV

(−2 + d)3d(4 + d)
+

2(−1 + d)(2 + d)Ŵ bix̂ija∂i∂bVa

(−2 + d)d(4 + d)

+
2(−1 + d)3(2 + d)Ψ∂aV

ijb
∂b∂aVi∂

iV

(−2 + d)3d(4 + d)
+

2(−1 + d)(2 + d)x̂ija∂aŴbi∂
iV b

(−2 + d)d(4 + d)
− 2(−1 + d)(2 + d)x̂ija∂bŴai∂

iV b

(−2 + d)d(4 + d)
.

MQVINC4PN =

− 2(−1 + d)2(2 + d)x̂ija∂tR̂a∂tV
(−2 + d)2d(4 + d)

− (−1 + d)2(2 + d)V ax̂ija(∂tV )2

2(−2 + d)2d(4 + d)
+

2(−3 + d)(−1 + d)2(2 + d)x̂ija∂tK∂tVa
(−2 + d)3d(4 + d)

− (−1 + d)3(2 + d)V x̂ija∂tV ∂tVa
(−2 + d)3d(4 + d)

− 2(−1 + d)(2 + d)x̂ija∂tVa∂tŴ b
b

(−2 + d)d(4 + d)
+

8(−1 + d)(2 + d)V ax̂ijb∂t∂aR̂b
(−2 + d)d(4 + d)

+
8(−1 + d)(2 + d)R̂ax̂ijb∂t∂aVb

(−2 + d)d(4 + d)
+

4(−1 + d)2(2 + d)V V ax̂ijb∂t∂aVb
(−2 + d)2d(4 + d)

−
8(−1 + d)2(2 + d)V aΨ∂bV

iji ∂t∂i∂aVb

(−2 + d)2d(4 + d)

+
(−3 + d)(−1 + d)2(2 + d)V ax̂ija∂2

tK

(−2 + d)3d(4 + d)
+

(−1 + d)2(2 + d)V x̂ija∂2
t R̂a

(−2 + d)2d(4 + d)
− (−1 + d)2(2 + d)R̂ax̂ija∂2

t V

(−2 + d)2d(4 + d)

− (−1 + d)3(2 + d)V V ax̂ija∂2
t V

2(−2 + d)3d(4 + d)
− (−3 + d)(−1 + d)2(2 + d)Kx̂ija∂2

t Va

(−2 + d)3d(4 + d)
+

3(−1 + d)3(2 + d)V 2x̂ija∂2
t Va

4(−2 + d)3d(4 + d)

− (−1 + d)(2 + d)Ŵ b
bx̂ija∂

2
t Va

(−2 + d)d(4 + d)
+

(−1 + d)(2 + d)Ŵabx̂ija∂
2
t V

b

(−2 + d)d(4 + d)
+

(−1 + d)(2 + d)V ax̂ijb∂2
t Ŵab

(−2 + d)d(4 + d)

− (−1 + d)(2 + d)V ax̂ija∂2
t Ŵ

b
b

(−2 + d)d(4 + d)
−

2(−1 + d)2(2 + d)Ψ∂aV
ijb

∂2
t ∂bR̂a

(−2 + d)2d(4 + d)
−

2(−1 + d)3(2 + d)VΨ∂aV
ijb

∂2
t ∂bVa

(−2 + d)3d(4 + d)

− (−3 + d)2(−1 + d)2(2 + d)x̂ija∂tK∂aK
(−2 + d)5(4 + d)

+
(−3 + d)(−1 + d)3(2 + d)V x̂ija∂tV ∂aK

2(−2 + d)5(4 + d)
−

(−3 + d)(−1 + d)3(2 + d)Ψ∂aV
ijb

∂t∂bV ∂aK

(−2 + d)5(4 + d)

+
(−3 + d)(−1 + d)3(2 + d)V x̂ija∂tK∂aV

2(−2 + d)5(4 + d)
+

(−3 + d)(−1 + d)3(2 + d)Kx̂ija∂tV ∂aV
2(−2 + d)5(4 + d)

+
2(−1 + d)2(2 + d)V ax̂ijb∂tVb∂aV

(−2 + d)2d(4 + d)

− (−1 + d)2(2 + d)x̂ija∂tX̂∂aV
(−2 + d)3(4 + d)

−
(−3 + d)(−1 + d)3(2 + d)Ψ∂aV

ijb
∂t∂bK∂aV

(−2 + d)5(4 + d)
+

(−1 + d)4(2 + d)VΨ∂aV
ijb

∂t∂bV ∂aV

2(−2 + d)5(4 + d)

+
(−1 + d)(2 + d)x̂ija∂tŴbi∂aŴ

bi

(−2 + d)d(4 + d)
− (−1 + d)2(2 + d)x̂ija∂tV ∂aX̂

(−2 + d)3(4 + d)
+

(−3 + d)(−1 + d)2(2 + d)V ax̂ijb∂aV ∂bK
(−2 + d)4(4 + d)

− 4(−1 + d)2(2 + d)V ax̂ijb∂tVa∂bV
(−2 + d)3d(4 + d)

−
2(−1 + d)3(2 + d)Ψ∂aV

ijb
∂2
t Va∂bV

(−2 + d)3d(4 + d)
+

(−3 + d)(−1 + d)2(2 + d)V ax̂ijb∂aK∂bV
(−2 + d)4(4 + d)

− (−1 + d)2(2 + d)R̂ax̂ijb∂aV ∂bV
(−2 + d)3(4 + d)

− (−1 + d)4(2 + d)V V ax̂ijb∂aV ∂bV
(−2 + d)4d(4 + d)

+
(−1 + d)4(2 + d)Ψ∂aV

ijb
∂tV ∂aV ∂bV

2(−2 + d)5(4 + d)
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+
2(−4 + d)(−1 + d)2(2 + d)V ax̂ijb∂tV ∂bVa

(−2 + d)3d(4 + d)
− 4(−1 + d)(2 + d)V ax̂ijb∂aV i∂bVi

(−2 + d)d(4 + d)
−

8(−1 + d)2(2 + d)Ψ∂aV
ijb

∂t∂iVa∂bV
i

(−2 + d)2d(4 + d)

− 4(−1 + d)2(2 + d)x̂ija∂aV b∂bX̂
(−2 + d)2d(4 + d)

−
(−3 + d)(−1 + d)3(2 + d)Ψ∂aV

ijb
∂tV ∂b∂aK

(−2 + d)5(4 + d)
−

(−3 + d)(−1 + d)3(2 + d)Ψ∂aV
ijb

∂tK∂b∂aV

(−2 + d)5(4 + d)

+
(−1 + d)4(2 + d)VΨ∂aV

ijb
∂tV ∂b∂aV

2(−2 + d)5(4 + d)
+

2(−3 + d)(−1 + d)2(2 + d)x̂ija∂tŴab∂
bK

(−2 + d)3d(4 + d)
+

4(−3 + d)(−1 + d)2(2 + d)x̂ija∂aR̂b∂bK
(−2 + d)3d(4 + d)

− 2(−3 + d)(−1 + d)3(2 + d)V ax̂ija∂bV ∂bK
(−2 + d)4d(4 + d)

− 2(−1 + d)3(2 + d)V x̂ija∂bV ∂bR̂a
(−2 + d)3d(4 + d)

+
(−1 + d)2(2 + d)Ŵabx̂ija∂tV ∂

bV

2(−2 + d)3(4 + d)

+
4(−1 + d)2(2 + d)V ax̂ija∂tVb∂bV

(−2 + d)2d(4 + d)
− (−1 + d)3(2 + d)V x̂ija∂tŴab∂

bV

(−2 + d)3d(4 + d)
− 4(−1 + d)2(2 + d)x̂ija∂tẐab∂bV

(−2 + d)2d(4 + d)

+
2(−1 + d)2(2 + d)Ŵbix̂ija∂aV

i∂bV

(−2 + d)2d(4 + d)
+

2(−1 + d)4(2 + d)V V ax̂ija∂bV ∂bV
(−2 + d)4d(4 + d)

+
2(−1 + d)4(2 + d)V 2x̂ija∂bVa∂bV

(−2 + d)4d(4 + d)

+
(−1 + d)3(2 + d)V aΨ∂bV

iji ∂bV ∂i∂aV

(−2 + d)4(4 + d)
−

4(−3 + d)(−1 + d)3(2 + d)Ψ∂aV
ijb

∂aV i∂i∂bK

(−2 + d)4d(4 + d)
+

4(−1 + d)(2 + d)Ŵ bix̂ija∂i∂bR̂a

(−2 + d)d(4 + d)

+
4(−1 + d)3(2 + d)Ψ∂aV

ijb
∂aR̂i∂i∂bV

(−2 + d)3d(4 + d)
+

(−1 + d)3(2 + d)V aΨ∂bV
iji ∂aV ∂i∂bV

(−2 + d)4(4 + d)
+

8(−1 + d)(2 + d)x̂ijaẐbi∂i∂bVa
(−2 + d)d(4 + d)

−
4(−3 + d)(−1 + d)3(2 + d)Ψ∂aV

ijb
∂b∂aVi∂

iK

(−2 + d)4d(4 + d)
+

4(−1 + d)(2 + d)x̂ija∂aŴbi∂
iR̂b

(−2 + d)d(4 + d)
− 4(−1 + d)(2 + d)x̂ija∂bŴai∂

iR̂b

(−2 + d)d(4 + d)

+
2(−1 + d)3(2 + d)Ψ∂aV

ijb
∂t∂bŴai∂

iV

(−2 + d)3d(4 + d)
− 2(−1 + d)2(2 + d)V ax̂ijb∂aŴbi∂

iV

(−2 + d)2d(4 + d)
+

(−1 + d)3(2 + d)Ψ∂aV
ijb

∂aV ∂bVi∂
iV

(−2 + d)4(4 + d)

+
4(−1 + d)3(2 + d)Ψ∂aV

ijb
∂b∂aR̂i∂

iV

(−2 + d)3d(4 + d)
+

2(−1 + d)4(2 + d)Ψ∂aV
ijb

∂bV ∂iVa∂
iV

(−2 + d)4d(4 + d)
+

2(−1 + d)2(2 + d)V ax̂ijb∂iŴab∂
iV

(−2 + d)2d(4 + d)

+
2(−1 + d)4(2 + d)VΨ∂aV

ijb
∂i∂bVa∂

iV

(−2 + d)4d(4 + d)
− 4(−1 + d)(2 + d)V ax̂ijb∂bVi∂iVa

(−2 + d)2(4 + d)
+

2(−1 + d)4(2 + d)VΨ∂aV
ijb

∂i∂bV ∂
iVa

(−2 + d)4d(4 + d)

+
4(−1 + d)(2 + d)V ax̂ijb∂aVi∂iVb

(−2 + d)d(4 + d)
+

2(−1 + d)2(2 + d)Ŵaix̂ija∂
bV ∂iVb

(−2 + d)2d(4 + d)
+

8(−1 + d)(2 + d)x̂ija∂aẐbi∂iV b

(−2 + d)d(4 + d)

+
4(−1 + d)(2 + d)V ax̂ija∂bVi∂iV b

(−2 + d)d(4 + d)
− 8(−1 + d)(2 + d)x̂ija∂bẐai∂iV b

(−2 + d)d(4 + d)
− 2(−1 + d)(2 + d)V ax̂ija∂iVb∂iV b

(−2 + d)d(4 + d)

− 2(−1 + d)(2 + d)x̂ija∂tŴbi∂
iŴa

b

(−2 + d)d(4 + d)
+

2(−1 + d)3(2 + d)Ψ∂aV
ijb

∂tŴai∂
i∂bV

(−2 + d)3d(4 + d)
−

4(−1 + d)2(2 + d)Ŵ ijΨ∂aV
ijb

∂j∂i∂bVa

(−2 + d)2d(4 + d)

−
4(−1 + d)2(2 + d)Ψ∂aV

ijb
∂b∂aŴij∂

jV i

(−2 + d)2d(4 + d)
+

4(−1 + d)2(2 + d)Ψ∂aV
ijb

∂i∂bŴaj∂
jV i

(−2 + d)2d(4 + d)
−

4(−1 + d)2(2 + d)Ψ∂aV
ijb

∂aŴij∂
j∂bV

i

(−2 + d)2d(4 + d)

+
4(−1 + d)2(2 + d)Ψ∂aV

ijb
∂iŴaj∂

j∂bV
i

(−2 + d)2d(4 + d)
−

4(−1 + d)2(2 + d)Ψ∂aV
ijb

∂bŴij∂
j∂iVa

(−2 + d)2d(4 + d)
.

MQVI compact terms

MQVIC1PN = − 2(−1 + d)(2 + d)x̂ijaσa
(−2 + d)d(4 + d)

.

MQVIC2PN =
2(−1 + d)2(2 + d)V ax̂ijaσ

(−2 + d)2d(4 + d)
+

2(−5 + d)(−1 + d)(2 + d)V x̂ijaσa
(−2 + d)2d(4 + d)

.

MQVIC3PN =

4(−1 + d)2(2 + d)R̂ax̂ijaσ
(−2 + d)2d(4 + d)

− 4(−3 + d)(−1 + d)2(2 + d)V V ax̂ijaσ
(−2 + d)3d(4 + d)

− 4(−5 + d)(−3 + d)(−1 + d)(2 + d)Kx̂ijaσa
(−2 + d)3d(4 + d)
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− (−5 + d)2(−1 + d)(2 + d)V 2x̂ijaσa

(−2 + d)3d(4 + d)
− 4(−1 + d)(2 + d)Ŵabx̂ijaσ

b

(−2 + d)d(4 + d)
− 4(−1 + d)(2 + d)V ax̂ijbσab

(−2 + d)d(4 + d)

− 4(−1 + d)(2 + d)V ax̂ijaσbb
(−2 + d)2d(4 + d)

−
4(−5 + d)(−1 + d)2(2 + d)σaΨ∂aV

ijb
∂bV

(−2 + d)3d(4 + d)
−

4(−1 + d)3(2 + d)σΨ∂aV
ijb

∂bVa

(−2 + d)3d(4 + d)

−
4(−1 + d)3(2 + d)V aΨ∂aV

ijb
∂bσ

(−2 + d)3d(4 + d)
−

4(−5 + d)(−1 + d)2(2 + d)VΨ∂aV
ijb

∂bσa

(−2 + d)3d(4 + d)
.

MQVIC4PN =

− 4(−5 + d)(−1 + d)2(2 + d)R̂aV x̂ijaσ
(−2 + d)3d(4 + d)

+
8(−3 + d)2(−1 + d)2(2 + d)KV ax̂ijaσ

(−2 + d)4d(4 + d)
− 16(−1 + d)2(2 + d)V 2V ax̂ijaσ

(−2 + d)3d(4 + d)

+
8(−1 + d)2(2 + d)x̂ijaŶaσ

(−2 + d)2d(4 + d)
+

4(−5 + d)2(−3 + d)(−1 + d)(2 + d)KV x̂ijaσa
(−2 + d)4d(4 + d)

− 2(−1 + d)(2 + d)(53− 15d− 9d2 + 3d3)V 3x̂ijaσa

3(−2 + d)4d(4 + d)
+

8(−5 + d)(−1 + d)(2 + d)X̂x̂ijaσa
(−2 + d)2d(4 + d)

+
24(−1 + d)(2 + d)V aV bx̂ijaσb

(−2 + d)d(4 + d)
+

4(−8 + d)(−1 + d)(2 + d)VaV ax̂ijbσb
(−2 + d)2d(4 + d)

+
4(−5 + d)(−1 + d)(2 + d)V Ŵabx̂ijaσ

b

(−2 + d)2d(4 + d)
− 16(−1 + d)(2 + d)x̂ijaẐabσb

(−2 + d)d(4 + d)
− 8(−1 + d)(2 + d)R̂ax̂ijbσab

(−2 + d)d(4 + d)

− 16(−1 + d)(2 + d)V V ax̂ijbσab
(−2 + d)2d(4 + d)

− 8(−1 + d)(2 + d)R̂ax̂ijaσbb
(−2 + d)2d(4 + d)

+
8(−3 + d)(−1 + d)(2 + d)V V ax̂ijaσbb

(−2 + d)3d(4 + d)

+
8(−5 + d)(−3 + d)(−1 + d)2(2 + d)σaΨ∂aV

ijb
∂bK

(−2 + d)4d(4 + d)
−

8(−1 + d)3(2 + d)σΨ∂aV
ijb

∂bR̂a

(−2 + d)3d(4 + d)

+
4(−5 + d)(−1 + d)3(2 + d)V aσΨ∂aV

ijb
∂bV

(−2 + d)4d(4 + d)
−

32(−3 + d)(−1 + d)2(2 + d)V σaΨ∂aV
ijb

∂bV

(−2 + d)4d(4 + d)

+
4(−5 + d)(−1 + d)3(2 + d)V σΨ∂aV

ijb
∂bVa

(−2 + d)4d(4 + d)
+

8(−1 + d)2(2 + d)σiiΨ∂aV
ijb

∂bVa

(−2 + d)3d(4 + d)

+
8(−1 + d)2(2 + d)σaiΨ∂aV

ijb
∂bV

i

(−2 + d)2d(4 + d)
−

8(−1 + d)3(2 + d)R̂aΨ∂aV
ijb

∂bσ

(−2 + d)3d(4 + d)
+

4(−5 + d)(−1 + d)3(2 + d)V V aΨ∂aV
ijb

∂bσ

(−2 + d)4d(4 + d)

+
8(−5 + d)(−3 + d)(−1 + d)2(2 + d)KΨ∂aV

ijb
∂bσa

(−2 + d)4d(4 + d)
−

16(−3 + d)(−1 + d)2(2 + d)V 2Ψ∂aV
ijb

∂bσa

(−2 + d)4d(4 + d)

+
8(−1 + d)2(2 + d)ŴaiΨ∂aV

ijb
∂bσ

i

(−2 + d)2d(4 + d)
+

8(−1 + d)2(2 + d)V aΨ∂aV
ijb

∂bσ
i
i

(−2 + d)3d(4 + d)

+
8(−1 + d)2(2 + d)σaΨ∂bV

iji ∂iŴab

(−2 + d)2d(4 + d)
+

8(−1 + d)2(2 + d)V aΨ∂bV
iji ∂iσab

(−2 + d)2d(4 + d)
.

MQVI Surface terms

MQVISL2PN = (−1 + d)2(2 + d)V Va
2(−2 + d)2d(4 + d)

.

MQVISL3PN = (−1 + d)2(2 + d)R̂aV
(−2 + d)2d(4 + d)

− (−3 + d)(−1 + d)2(2 + d)KVa
(−2 + d)3d(4 + d)

+ (−1 + d)3(2 + d)V 2V a

4(−2 + d)3d(4 + d)

− (−1 + d)(2 + d)V bŴab

(−2 + d)d(4 + d)
+ (−1 + d)(2 + d)VaŴ b

b

(−2 + d)d(4 + d)
.

MQVISL4PN =
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− 2(−3 + d)(−1 + d)2(2 + d)KR̂a
(−2 + d)3d(4 + d)

+ (−1 + d)3(2 + d)R̂aV 2

(−2 + d)3d(4 + d)
− (−3 + d)(−1 + d)3(2 + d)KV V a

(−2 + d)4d(4 + d)

+ (−1 + d)(2 + d)V aVbV b

(−2 + d)2(4 + d)
− 2(−1 + d)(2 + d)R̂bŴab

(−2 + d)d(4 + d)
− (−1 + d)2(2 + d)V VbŴab

(−2 + d)2d(4 + d)

+ 2(−1 + d)(2 + d)R̂aŴ b
b

(−2 + d)d(4 + d)
+ (−1 + d)2(2 + d)V V aŴ b

b

(−2 + d)2d(4 + d)
+ 2(−1 + d)2(2 + d)VaX̂

(−2 + d)2d(4 + d)

+ 2(−1 + d)2(2 + d)V Ŷa
(−2 + d)2d(4 + d)

− 4(−1 + d)(2 + d)V bẐab
(−2 + d)d(4 + d)

+ 4(−1 + d)(2 + d)VaẐbb
(−2 + d)d(4 + d)

.

MQVISD3PN =
2(−1 + d)2(2 + d)Ψ∂bV

iji ∂i∂aR̂b

(−2 + d)2d(4 + d)
−

2(−1 + d)2(2 + d)∂aΨ∂bV
iji ∂

iR̂b

(−2 + d)2d(4 + d)
.

MQVISD4PN =
4(−1 + d)2(2 + d)Ψ∂bV

iji ∂i∂aŶb

(−2 + d)2d(4 + d)
−

4(−1 + d)2(2 + d)∂aΨ∂bV
iji ∂

iŶ b

(−2 + d)2d(4 + d)
.

MQVII non-compact terms

MQVIINC3PN = − (−1 + d)2(2 + d)r2x̂ija∂tV ∂aV

8(−2 + d)3(4 + d)2 − (−1 + d)2(2 + d)r2x̂ija∂aVb∂bV

2(−2 + d)2d(4 + d)2

+
(−1 + d)2(2 + d)r2x̂ija∂bVa∂bV

2(−2 + d)2d(4 + d)2 .

MQVIINC4PN =

− (−1 + d)2(2 + d)r2x̂ija∂tV ∂tVa

2(−2 + d)2d(4 + d)2 +
2(−1 + d)(2 + d)r2V ax̂ijb∂t∂aVb

(−2 + d)d(4 + d)2

+
(−1 + d)2(2 + d)r2V x̂ija∂2

t Va

2(−2 + d)2d(4 + d)2 +
(−3 + d)(−1 + d)2(2 + d)r2x̂ija∂tV ∂aK

4(−2 + d)4(4 + d)2

+
(−3 + d)(−1 + d)2(2 + d)r2x̂ija∂tK∂aV

4(−2 + d)4(4 + d)2 − (−1 + d)3(2 + d)r2V x̂ija∂tV ∂aV

4(−2 + d)4(4 + d)2

− (−1 + d)2(2 + d)r2x̂ija∂aR̂b∂bV

(−2 + d)2d(4 + d)2 − (−1 + d)2(2 + d)r2V ax̂ijb∂aV ∂bV

2(−2 + d)3d(4 + d)2

+
(−3 + d)(−1 + d)2(2 + d)r2x̂ija∂aVb∂bK

(−2 + d)3d(4 + d)2 − (−3 + d)(−1 + d)2(2 + d)r2x̂ija∂bVa∂bK

(−2 + d)3d(4 + d)2

+
(−1 + d)2(2 + d)r2x̂ija∂bV ∂bR̂a

(−2 + d)2d(4 + d)2 − (−1 + d)2(2 + d)r2x̂ija∂tŴab∂
bV

2(−2 + d)2d(4 + d)2

− (−1 + d)3(2 + d)r2V x̂ija∂aVb∂bV

2(−2 + d)3d(4 + d)2 +
(−1 + d)2(2 + d)r2V ax̂ija∂bV ∂bV

4(−2 + d)3(4 + d)2

+
(−1 + d)3(2 + d)r2V x̂ija∂bVa∂bV

2(−2 + d)3d(4 + d)2 +
(−1 + d)(2 + d)r2x̂ija∂bŴ i

i∂
bVa

(−2 + d)d(4 + d)2

+
(−1 + d)(2 + d)r2Ŵ bix̂ija∂i∂bVa

(−2 + d)d(4 + d)2 +
(−1 + d)(2 + d)r2x̂ija∂aŴbi∂

iV b

(−2 + d)d(4 + d)2

− (−1 + d)(2 + d)r2x̂ija∂bŴai∂
iV b

(−2 + d)d(4 + d)2 − (−1 + d)(2 + d)r2x̂ija∂iŴab∂
iV b

(−2 + d)d(4 + d)2 .

MQVII compact terms

MQVIIC2PN = − (−1 + d)(2 + d)r2x̂ijaσa

(−2 + d)d(4 + d)2 .
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MQVIIC3PN = − 4(−1 + d)(2 + d)r2V x̂ijaσa

(−2 + d)2d(4 + d)2 .

MQVIIC4PN =
8(−3 + d)(−1 + d)(2 + d)Kr2x̂ijaσa

(−2 + d)3d(4 + d)2 − 8(−1 + d)(2 + d)r2V 2x̂ijaσa

(−2 + d)3d(4 + d)2

− 2(−1 + d)(2 + d)r2Ŵ b
bx̂ijaσa

(−2 + d)d(4 + d)2 .

MQVIII non-compact terms

MQVIIINC4PN = − (−1 + d)2(2 + d)r4x̂ija∂tV ∂aV

32(−2 + d)3(4 + d)2(6 + d)
− (−1 + d)2(2 + d)r4x̂ija∂aVb∂bV

8(−2 + d)2d(4 + d)2(6 + d)

+
(−1 + d)2(2 + d)r4x̂ija∂bVa∂bV

8(−2 + d)2d(4 + d)2(6 + d)
.

MQVIII compact terms

MQVIIIC3PN = − (−1 + d)(2 + d)r4x̂ijaσa

4(−2 + d)d(4 + d)2(6 + d)
.

MQVIIIC4PN = − (−1 + d)(2 + d)r4V x̂ijaσa

(−2 + d)2d(4 + d)2(6 + d)
.

MQVIV compact terms

MQVIVC4PN = − (−1 + d)(2 + d)r6x̂ijaσa

24(−2 + d)d(4 + d)2(6 + d)(8 + d)
.

MQTI non-compact terms

MQTINC2PN =
(−1 + d)2(2 + d)x̂ijab∂aV ∂bV

8(−2 + d)2d(1 + d)(6 + d)
.

MQTINC3PN =
(−1 + d)2(2 + d)x̂ijab∂tV b∂aV

(−2 + d)2d(1 + d)(6 + d)
− (−3 + d)(−1 + d)2(2 + d)x̂ijab∂aK∂bV

2(−2 + d)3d(1 + d)(6 + d)

− (−1 + d)(2 + d)x̂ijai∂bV i∂bV a

(−2 + d)d(1 + d)(6 + d)
− (−1 + d)(2 + d)x̂ijbi∂bV a∂iVa

(−2 + d)d(1 + d)(6 + d)

+
2(−1 + d)(2 + d)x̂ijai∂bV a∂iVb

(−2 + d)d(1 + d)(6 + d)
.

MQTINC4PN =
2(−1 + d)(2 + d)x̂ijab∂tV a∂tV b

(−2 + d)d(1 + d)(6 + d)
− 2(−1 + d)(2 + d)V ax̂ijbi∂t∂aŴbi

(−2 + d)d(1 + d)(6 + d)
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− (−1 + d)2(2 + d)V x̂ijab∂2
t Ŵab

2(−2 + d)2d(1 + d)(6 + d)
− 2(−3 + d)(−1 + d)2(2 + d)x̂ijab∂tV b∂aK

(−2 + d)3d(1 + d)(6 + d)

+
2(−1 + d)2(2 + d)x̂ijab∂tR̂b∂aV

(−2 + d)2d(1 + d)(6 + d)
+

(−1 + d)3(2 + d)V x̂ijab∂tV b∂aV
(−2 + d)3d(1 + d)(6 + d)

+
(−1 + d)2(2 + d)Ŵ bix̂ijbi∂aV ∂

aV

4(−2 + d)2d(1 + d)(6 + d)
+

(−1 + d)(2 + d)x̂ijab∂aŴ ij∂bŴij

2(−2 + d)d(1 + d)(6 + d)

− (−1 + d)(2 + d)Ŵabx̂ijij∂b∂aŴij

(−2 + d)d(1 + d)(6 + d)
+

(−3 + d)2(−1 + d)2(2 + d)x̂ijab∂aK∂bK
2(−2 + d)4d(1 + d)(6 + d)

+
4(−1 + d)(2 + d)x̂ijbi∂aV i∂bR̂a

(−2 + d)d(1 + d)(6 + d)
− 4(−1 + d)(2 + d)x̂ijai∂bV i∂bR̂a

(−2 + d)d(1 + d)(6 + d)

+
(−1 + d)2(2 + d)V ax̂ijab∂tV ∂bV

(−2 + d)3d(1 + d)(6 + d)
+

2(−1 + d)2(2 + d)V ax̂ijbi∂aV i∂bV
(−2 + d)2d(1 + d)(6 + d)

+
(−1 + d)2(2 + d)Ŵ i

ix̂ijab∂
aV ∂bV

4(−2 + d)2d(1 + d)(6 + d)
− (−1 + d)2(2 + d)Ŵa

ix̂ijbi∂
aV ∂bV

(−2 + d)2d(1 + d)(6 + d)

− 2(−1 + d)2(2 + d)V ax̂ijai∂bV i∂bV
(−2 + d)2d(1 + d)(6 + d)

− 2(−1 + d)(2 + d)x̂ijbi∂tŴai∂
bV a

(−2 + d)d(1 + d)(6 + d)

+
2(−1 + d)(2 + d)x̂ijai∂tŴbi∂

bV a

(−2 + d)d(1 + d)(6 + d)
+

(−1 + d)2(2 + d)x̂ijab∂aV ∂bX̂
(−2 + d)2d(1 + d)(6 + d)

− 4(−1 + d)(2 + d)x̂ijbi∂bR̂a∂iVa
(−2 + d)d(1 + d)(6 + d)

+
4(−1 + d)(2 + d)x̂ijai∂bR̂a∂iVb

(−2 + d)d(1 + d)(6 + d)

+
2(−1 + d)2(2 + d)V ax̂ijai∂bV ∂iVb

(−2 + d)2d(1 + d)(6 + d)
− (−1 + d)(2 + d)x̂ijab∂iŴ j

j∂
iŴab

(−2 + d)d(1 + d)(6 + d)

− 2(−1 + d)(2 + d)x̂ijab∂bŴij∂
jŴa

i

(−2 + d)d(1 + d)(6 + d)
+

(−1 + d)(2 + d)x̂ijab∂iŴbj∂
jŴa

i

(−2 + d)d(1 + d)(6 + d)

+
(−1 + d)(2 + d)x̂ijab∂jŴbi∂

jŴa
i

(−2 + d)d(1 + d)(6 + d)
.

MQTI compact terms

MQTIC2PN =
(−1 + d)(2 + d)x̂ijabσab
(−2 + d)d(1 + d)(6 + d)

.

MQTIC3PN =
4(−1 + d)(2 + d)V x̂ijabσab
(−2 + d)2d(1 + d)(6 + d)

.

MQTIC4PN = − 8(−3 + d)(−1 + d)(2 + d)Kx̂ijabσab
(−2 + d)3d(1 + d)(6 + d)

+
8(−1 + d)(2 + d)V 2x̂ijabσab

(−2 + d)3d(1 + d)(6 + d)

+
2(−1 + d)(2 + d)Ŵa

ax̂ijbiσbi

(−2 + d)d(1 + d)(6 + d)
.

MQTII non-compact terms

MQTIINC3PN =
(−1 + d)2(2 + d)r2x̂ijab∂aV ∂bV

16(−2 + d)2d(1 + d)(4 + d)(6 + d)
.

MQTIINC4PN =
(−1 + d)2(2 + d)r2x̂ijab∂tV b∂aV

2(−2 + d)2d(1 + d)(4 + d)(6 + d)
− (−3 + d)(−1 + d)2(2 + d)r2x̂ijab∂aK∂bV

4(−2 + d)3d(1 + d)(4 + d)(6 + d)
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− (−1 + d)(2 + d)r2x̂ijai∂bV i∂bV a

2(−2 + d)d(1 + d)(4 + d)(6 + d)
− (−1 + d)(2 + d)r2x̂ijbi∂bV a∂iVa

2(−2 + d)d(1 + d)(4 + d)(6 + d)

+
(−1 + d)(2 + d)r2x̂ijai∂bV a∂iVb
(−2 + d)d(1 + d)(4 + d)(6 + d)

.

MQTII compact terms

MQTIIC3PN =
(−1 + d)(2 + d)r2x̂ijabσab

2(−2 + d)d(1 + d)(4 + d)(6 + d)
.

MQTIIC4PN =
2(−1 + d)(2 + d)r2V x̂ijabσab

(−2 + d)2d(1 + d)(4 + d)(6 + d)
.

MQTIII non-compact terms

MQTIIINC4PN =
(−1 + d)2(2 + d)r4x̂ijab∂aV ∂bV

64(−2 + d)2d(1 + d)(4 + d)(6 + d)2 .

MQTIII compact terms

MQTIIIC4PN =
(−1 + d)(2 + d)r4x̂ijabσab

8(−2 + d)d(1 + d)(4 + d)(6 + d)2 .
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Sujet : Études des ondes gravitationnelles des binaires compactes à
l’approximation post-newtonienne.

Résumé : La détection ainsi que l’analyse des ondes gravitationnelles émises par les systèmes
binaires d’objets compacts reposent sur notre capacité à faire des prédictions précises au sein de
la théorie de la relativité générale. Dans cette thèse, nous utilisons la théorie post-newtonienne
(PN), et en particulier le formalisme connu sous le nom de Blanchet-Damour-Iyer, afin d’étudier
de tels systèmes. La finalité des différents calculs réalisés au sein de cette thèse est d’obtenir
la phase du signal gravitationnel à l’ordre 4,5PN, et les résultats que nous présentons nous
rapprochent fortement de cet objectif. Tout d’abord, nous calculons les sillages d’ondes à l’ordre
3 dans le champ radiatif, ce qui nous permet d’obtenir le coefficient 4,5PN du flux d’énergie
émis par des systèmes binaries compacts sans spin dans le cas d’orbites circulaires. Puis, nous
calculons la dernière ambiguité apparaissant dans les équations du mouvement de deux corps
compacts sans spin à l’ordre 4PN, ce qui nous permet d’obtenir la première dérivation à partir
de principes fondamentaux de ce résultat. Nous étudions alors en détail les différentes quantités
conservées générées par cette dynamique. Enfin, nous présentons un premier résultat préliminaire
du quadrupôle de masse source à l’ordre 4PN, ce qui constitue l’une des étapes cruciales dans
l’obtention de la phase à l’ordre 4.5PN.

Mots clés : théorie post-newtonienne, ondes gravitationnelles, système binaire compact

Subject : Studying gravitational waves of compact binary systems
using post-Newtonian theory.

Abstract: The detection and the analysis of gravitational waves emitted by compact binary
systems rely on our ability to make accurate predictions within general relativity. In this thesis, we
use the post-Newtonian (PN) formalism, and in particular the Blanchet-Damour-Iyer framework,
to study the dynamics and the emission of gravitational waves of such systems. The different
computations that we performed are motivated by our aim to obtain the phase of the gravitational
wave signal at the 4.5PN order. In that regard, crucial steps have been achieved within this thesis.
First of all, we compute the third-order tail effects in the radiation field, yielding the 4.5PN
coefficient of the energy flux for binaries of non-spinning objects in circular orbits. Besides, we
determine the remaining ambiguity of the 4PN Lagrangian of two spinless compact bodies. This
result completes the first derivation from first principles of the 4PN equations of motion. Then
we comprehensively study the conserved quantities of the 4PN dynamics. Finally, we provide a
preliminary result of the 4PN source mass quadrupole, which constitutes one of the crucial steps
towards the computation of the 4.5PN phase.

Keywords : Post-newtonian theory, gravitational waves, compact binary system
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