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Professeur, Télécom Paris-Tech, Univ. Paris-Saclay (LTCI)

Présidente

Pierrick Coupé
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Introduction

Context

Considered as the seat of our intelligence, the brain is currently one of the
most challenging enigmas that remains to be solved. Its function and in
particular its dysfunctions fascinate. The link between the anatomy of the
brain and its function is one of the unknowns of this enigma. For a while,
it was common to think that our ability to calculate was related to the
size of a bump in our cranium box: the ”math bump”. This expression
comes from a pseudoscience, the phrenology, which was very popular in the
19th century. This pseudoscience attributed each aspect of an individual’s
personality to the extent of a bump in the cranium. Of course, the shape
of the skull is not linked to that of the brain and this pseudoscience no
longer has any credit. However, it has been shown that calculation actually
involves specific areas of our brain, whose location is relatively stable from
one individual to another. In fact, the appearance of non-invasive imaging,
such as Magnetic Resonance Imaging (MRI), about 40 years ago allowed
us to visualize the brain, first anatomically and then functionally. So is
the functioning of these areas related to the anatomical organization of the
brain? Regarding the anatomy of the brain’s surface, the most noticeable
feature is its convolutions, which are so variable that each individual has
unique fold patterns. However, this striking feature is still poorly understood
today.

From a Darwinian point of view, these folds are considered as a trick
of evolution to increase the cortical surface without modifying the volume
of the cranial cavity. Thus, the degree of folding, the complexity of their
arrangement and their variability seem to be related to the degree of in-
telligence of each species. Indeed, most animals have a smooth brain, only
some mammals, such as great apes (but also ferrets, cats, dogs, horses, cows,
elephants, etc.), and some cetaceans, such as dolphins, have a folded brain.
Note that some cetaceans have a brain with a volume and degree of folding
greater than ours, which suggests a much higher degree of intelligence! This
observation nevertheless shows the importance of folds in the uniqueness of
the human species.

Regarding their formation, the cortex folds during the last trimester of
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pregnancy and the sulci do not change their overall configuration afterwards.
This period also corresponds to the emergence of cortical architecture: the
migration of neurons into different predefined areas occurs just before the
formation of folds. This observation suggests a link between cortical folds
and the functional organization of the cortex. In fact, unusual fold patterns
are generally linked to abnormal developments that can lead to psychiatric
syndromes such as epilepsy or schizophrenia. Moreover, a close link has
been demonstrated between the shape of certain sulci and cognitive func-
tions such as manual laterality or reading. Therefore, the fold patterns
appear to be signatures of each individual’s functional organization. This
hypothesis is now relatively accepted for the most important sulci but is
more controversial for secondary sulci.

Anyway, the study of cortical folds requires a high level of expertise that
few neuroanatomists have at this time. In order to facilitate their study,
artificial intelligence algorithms are used in this thesis to automate tasks
requiring advanced learning. But how do you teach a task to an algorithm?
This question is addressed by a field of study of artificial intelligence: the
machine learning. This approach is inspired by our own way of learning: for
exemple, learning to read involves teaching based on decoding many words
and texts. Similarly, machine learning algorithms ”learn” from data. Today,
artificial intelligence has made significant progress, especially in the field of
computer vision, which is revolutionizing our daily lives. This is due to
the emergence of a new method inspired by the brain function: the deep
learning. This technique has allowed smartphones to talk, computers to
beat chess champions, cars to drive on their own, etc. Will they also allow
us to decipher our sulcal lines?

Challenges

The first challenge addressed during this thesis is the automation of local
fold pattern classification. Based on a pattern identified by experts, the ob-
jective is to automate its recognition, which raises several issues. First, the
distinction of patterns is sometimes difficult to the naked eye and requires
ad-hoc criteria. Second, due to the extreme variability of cortical folds, the
choice of classifier is a crucial step. Third, as we are interested in local pat-
terns, the classifier must be able to handle particularly noisy data. Fourth,
since manual labeling is time-consuming, the available learning databases
are limited in size and can be largely unbalanced if the pattern is rare.

The second challenge concerns the automation of cortical sulci labeling.
In order to study the geometry of cortical folds, neuroanatomists have at-
tempted to define a sulci dictionary to differentiate these structures. Among
the several proposed nomenclatures, the main sulci generally have a com-
mon label, but the fold variability is so high that there is no consensual
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nomenclature for all sulci. However, whatever the nomenclature used, sulci
labeling is generally tedious and requires a long expertise in the field. Thus,
the automation of sulci recognition is essential to enable large-scale studies.
This challenge has already been addressed several times, including in the lab-
oratory hosting this thesis, but the results obtained are not yet satisfactory,
on the one hand because the recognition rates are too low to reproduce the
observations obtained with manual labeling and on the other hand because
the recognition pipeline is dependent on an error-prone sub-segmentation
process.

Thesis organization

This thesis is organized in two parts. The first part gives a state of the art
on the topic under study (i.e. cortical sulci) and on the methods of medical
image analysis on which the work of this thesis is based (i.e. multi- atlas
segmentation techniques and convolutional neural networks). The second
part presents the methods implemented for the automatic classification of
local fold patterns and the automatic labeling of the sulci themselves. For
these two problems, several methods are compared and the best method
obtained is tested in practice.

Thesis contribution

The work carried out during this thesis has led to the emergence of two types
of tools dedicated to the study of cortical folds, which will soon be available
in the BrainVISA/Morphologist toolbox (http://brainvisa.info). The first
tool automates the classification of local cortical fold patterns. This issue
had never been addressed before. The second tool automates sulci labeling
by eliminating the main defects of the model previously proposed by the
BrainVISA/Morphologist toolbox. Thus, in addition to improving perfor-
mance and speed, the proposed new model is robust to sub-segmentation
errors, which is one of the greatest weaknesses of the old system.

This thesis continues the work of J.-F. Mangin (Mangin, 1995), D. Rivière
(Riviere, 2000) and M. Perrot (Perrot, 2009) during their respective the-
ses. It took place within the NAO (Neuroimagerie Assistée par Ordinateur)
team of the Neurospin laboratory at CEA (Commissariat à l’énergie atom-
ique et aux énergies alternatives) in Saclay. The work has benefit from an
outstanding visualization environment provided by the Simulation house
in order to manipulate and visualize hundreds of brains simultaneously
(http://maisondelasimulation.fr).
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Background





Chapter 1

Cortical sulci

Abstract

The complex and diverse arrangement of cortical folds is the most striking,
interesting and yet poorly understood coarse morphological feature of the
human brain. First, what is a sulcus? To answer this question, I will
briefly review the anatomy of the brain in order to understand the place
of sulci in its organization. Second, why study sulci? To understand the
interest aroused by cortical folds, I will focus on their anatomy and its main
components before presenting the mechanism of fold formation and their
link with the functional organization of the brain. Third, how to study
sulci? The choice of the fold representation is a key step for studying these
structures. I will make a quick overview of the different representations used
so far before developing the one used in this thesis.

1.1 Brain anatomy

Let’s do a quick reminder about the anatomy of the human brain.

On a cellular scale, the brain is composed of nerve cells, called neurons,
and glial cells. Neurons transmit information in the form of nerve impulses,
while glial cells nourish, support and protect neurons. Glial cells also seem
to have a significant, but still poorly understood, role in brain function. In
order to communicate with each other, neurons have two types of extensions:
dendrites that collect nerve impulses and carry them to the cell body, and
the axon, a long fiber that carries information to other neurons.

On an anatomical scale, the cerebrum represents the largest part of the
human brain. It is separated into two hemispheres communicating through
the corpus callosum. Several brain nuclei are located in the centre of the
brain: the central grey nuclei, the thalamus and the hypothalamus. Also in
the center of the brain, there are cavities filled with cerebrospinal fluid: the
ventricles. Finally, the cerebellum is below the rest of the brain.
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The cellular bodies of cerebrum neurons are located either on the pe-
riphery where they form a grey layer, the cortex, or in nuclei buried in the
depths of the brain. The axons form clusters of fibers, which constitute the
white matter. In this thesis, we focus on a particular region of the brain,
the cortex, which is supposed to be the seat of high-level functions.

1.2 Sulci: anatomy, formation and link with func-
tional organization

1.2.1 Sulci and gyri anatomy

The cortex is divided into several convolutions, called gyri, delimited by
folds, called sulci. On a larger scale, these structures are grouped into
several large cortical lobes on each hemisphere, generally delimited by large
deep sulci (Figure 1.1). Indeed, the central sulcus separates the frontal lobe
from the parietal lobe; the parieto-occipital fissure separates the occipital
lobe from the parietal lobe; the cingulate sulcus separates the frontal lobe
from the limbic lobe on the inner side, etc. There is also a buried lobe at
the bottom of the sylvian valley, between the temporal and frontal lobes:
the insula.

Figure 1.1 – Four main cortical lobes. (Miller and Cummings, 1999)

In order to study cortical folds, neuroanatomists have sought to asso-
ciate a name to each sulcal or gyral structure, which has led to the emer-
gence of several nomenclatures such as those described by Ono et al. (1990),
Rademacher et al. (1992), Destrieux et al. (2010), etc. However, applying
one of these nomenclatures, designed on a limited number of brains, to the
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thousands of brains now available is much more complicated than expected.
In fact, the folds are so variable that the labeling of a sulcus, even a pri-
mary one, can raise many questions. Note that if among the nomenclatures
proposed so far, none of them is a consensus in the community, it is also
because of the extreme variability of these structures.

1.2.2 Mechanism at the origin of cortical folds

Cortical folds appear during the third trimester of pregnancy. Once formed,
their shape may vary slightly depending on the environment and the age of
the subject. However, they maintain roughly the same configuration, which
makes them excellent markers of early brain development. Nevertheless,
the mechanism behind the formation of folds is not yet fully understood.
Recently, a multicultural community has begun to focus on modeling the
mechanisms that drive the folding process.

From a physical point of view, it has been demonstrated that the me-
chanical instability induced by the tangential expansion of the grey matter of
the cortex is sufficient to simulate the folding process (Tallinen et al., 2014,
2016) (Figure 1.2). This result is a big step forward, but this modeling does
not seem sufficient to obtain realistic folding patterns.

Figure 1.2 – Simulation of uniform tangential expansion of the cortical layer
from a smooth fetal brain. This expansion is sufficient to reproduce the
cortex gyrification process. (Tallinen et al., 2016)

Two other major hypotheses exist to explain the mechanism of sulci
formation.

The first hypothesis is based on the relationship between folding and the
existence of primary molecular maps, called protomaps (Fernández et al.,
2016). These maps, supposed to be the result of heterogeneous gene expres-
sion, are present before the neuronal migration accompanying the construc-
tion of the cortex, followed by its folding. The existence of a ”protomap”
of the primary folding scheme is now relatively accepted (de Juan Romero
et al., 2015). Thus, the areas of the protomap intended to become gyri
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would present an increased multiplication of neurons, explaining the expan-
sion maxima responsible for the formation of ”bumps”. Therefore, the me-
chanical model mentioned above could be improved by taking into account
this protomap model.

The second hypothesis, compatible with the first, is that slight fibre ten-
sions could play a role (Van Essen, 1997). After the appearance of primary
sulci, these tensions could explain the following dynamic steps forming the
secondary and tertiary folds. However, this hypothesis is far from being
accepted.

The appearance of cortical folds is concomitant with the distribution of
the cortex into different functional areas (Kostovic and Rakic, 1990; Sur and
Rubenstein, 2005; Reillo et al., 2010). Is that a coincidence? I will discuss
the links between folding patterns and functional organization in the next
section.

1.2.3 Relations with cortical functional organization

The cortex is often divided into several zones, each supposed to be special-
ized in a different cognitive function (Amunts and Zilles, 2015; Glasser et al.,
2016). The existence of close links between primary sulci and functional ar-
chitecture is generally accepted (Welker, 1990; Fischl et al., 2007). These
links are more controversial for other sulci, where the number of studies re-
porting similar results is very low (Watson et al., 1993; Amiez et al., 2006;
Weiner et al., 2014). However, if we consider anatomical studies that are not
based on a functional investigation, several of them suggest a much closer
link than what has been demonstrated today.

1.2.3.1 Abnormal fold patterns and psychiatric pathologies

Abnormal folds patterns are usually related to anomalies in early brain de-
velopment. For example, in (Bénézit et al., 2015), the abnormal development
of interhemispheric fibres strongly disrupts the folding process.

Less obvious links have been identified with some neurodevelopmental
diseases. For example, epilepsy is often due to incomplete migration of a
group of neurons trapped in the white matter before reaching the cortical
mantle: this group is called focal cortical dysplasia. This dysplasia is some-
times linked to abnormal fold patterns (Besson et al., 2008; Régis et al.,
2011; Mellerio et al., 2014; Roca et al., 2015), even when the dysplasia is
invisible on MRI (Figure 1.3).

Similarly, a link has been established between the patterns of the cin-
gulate sulcus and schizophrenia. The shape of this sulcus can be catego-
rized into two patterns: the single type and the double parallel type (Fig-
ure 1.4). It has been shown that patients with schizophrenia tend to have
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Figure 1.3 – The Power Button Sign: a fold pattern related to epilepsy.
(Mellerio et al., 2014).

more symmetric patterns (same pattern on each hemisphere) than controls
(Le Provost et al., 2003; Yücel et al., 2003).

It is interesting to note that children with the same lack of asymme-
try have poor inhibitory control (Borst et al., 2014; Cachia et al., 2014).
Thus, the study of folding patterns is not limited to psychiatric diseases but
extends to the functioning of normal brains.

1.2.3.2 Sulci shape and brain function

In addition to studies based on fold patterns, other anatomical studies are
based on a comparison of sulci length and depth between two groups of
subjects (Mangin et al., 2010; Alemán-Gómez et al., 2013; De Guio et al.,
2014; Janssen et al., 2014; Hamelin et al., 2015; Leroy et al., 2015; Muellner
et al., 2015). These studies show that the links between function and sulci
shape can be much more subtle than an abnormal pattern.

Consider the example of the central sulcus. It is commonly accepted that
this sulcus delimits the primary motor cortex of the primary somatosensory
cortex. This special position makes it a particularly interesting structure to
study. Indeed, it has been shown that the shape of this sulcus is related to
manual laterality (Sun et al., 2012) and recovery after a subcortical stroke
(Jouvent et al., 2016). The link between its form and functional organiza-
tion was also studied through functional MRI activations: Sun et al. (2016)
shows that the position of the ”hand knob” is related to the hand’s motor
activation, as well as to the premotor linguistic zone.

Therefore, studies on the geometry of cortical folds reveal links with the
functional organization of the brain. However, these studies would not have
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Figure 1.4 – Two folding patterns identified in the cingulate region. (Cachia
et al., 2014)

been possible without representing in 3D the folds from the MRI acquisition,
allowing for example to facilitate their visualization when defining patterns
or to evaluate the characteristics of a sulcus (length, depth, opening, etc).

1.3 Sulci representation

In the literature, there are many different approaches for representing corti-
cal folds, each with its advantages and disadvantages. In this thesis focusing
on the classification of local fold patterns and on the sulci labeling, the rep-
resentation chosen must be sufficiently exhaustive to allow the distinction of
these complex structures while remaining standardized enough to be gener-
alizable.

Therefore, in this section, I will give a quick overview of the representa-
tions of sulci presented in the literature, before developing the representation
used in this thesis.

1.3.1 Overview

When considering cortical folds, two types of representations are possible:
either the representations of bumps (gyri) or those of hollows (sulci).
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The first type of representation, used for example by Fischl et al. (2004)
and Chen et al. (2017), is based on a labelisation of the cortical surface into
different gyri. These representations are probably more appropriate when
considering functional MRI or diffusion MRI. In fact, white matter fibers
appear to preferentially fan out in gyri (Van Essen, 1997), so there is a high
probability that this is where the functional activity is also concentrated.
However, gyri do not have a well delineated boundary and are generally
defined by the sulci surrounding them.

Therefore, the second type of representation, based on sulci, is more
obvious from an anatomical point of view because they are better defined
structures. As the representation used in this thesis is based on sulci, I will
develop in particular this type of representation below.

1.3.1.1 Sulcus regions

As for gyri representation, this representation of sulci is based on the cortical
surface labelisation. Each sulcus is represented by a sulcus region, i. e. the
surface of the cortex that surrounds the sulci (Behnke et al., 2003; Rettmann
et al., 2005; Vivodtzev et al., 2006; Yang and Kruggel, 2009).

This representation is particularly effective in capturing all variations of
cortical surface depth, including dimples. However, it is not ideal for repre-
senting the 3D layout of these structures. Moreover, it takes into account
the sulci’s opening, which is highly dependent on the subject’s age. Other
representations allow better normalization of the data.

1.3.1.2 Sulcus roots/pits

In order to overcome the high variability of folds, it was proposed to focus
on sulcus roots, also called sulcus pits. These structures, corresponding to
local maximum depths, represent the position of the first folds during their
formation in utero. Their selection is supposed to provide more information
on the architectural organization of the cortex (Régis et al., 2005; Lohmann
et al., 2007; Im et al., 2009; Mangin et al., 2015a; Im and Grant, 2019).

However, these approaches represent the sulci by a set of points where
only critical parts of the structure shape are preserved, which is not appro-
priate for our applications.

1.3.1.3 Sulcus bottom lines

In the late 1990s, the use of pipelines representing the cortical surface, no
longer in 3D, but as a 2D spherical surface (Dale et al., 1999), promoted
surface representations of sulci. These surface representations are based on
the sulci bottom line as it is more accessible once the cortical surface is
represented by a 2D mesh (Kao et al., 2007; Shi et al., 2008; Li et al., 2010;
Shattuck et al., 2009; Seong et al., 2010; Lyu et al., 2018).
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Although this representation is more appropriate than sulcal roots for
sulci labeling, it does not consider information related to the deep extension
of sulci. Yet, knowing the depth or inclination helps to recognize some sulci:
for example, primary sulci are deeper than others, collateral sulcus has a
characteristic inclination, etc.

1.3.1.4 Sulcus segments

When sulci are considered as hollows filled with cerebrospinal fluid, they can
be extracted by making a negative mold of the cortical surface. To avoid
representing the sulci opening, the extracted structure can be displayed
by median surfaces between the two walls surrounding each sulcus. These
median surfaces are then divided into several sulcus segments, also called
elementary folds.

Compared to sulcus bottom lines, the sulcus segments are particularly
interesting for representing information related to the deep extension of
sulci. Two representations are based on this notion of sulcus segments.
The first representation corresponds to smooth structures, called sulcus rib-
bons, which do not represent the branches of sulci (Le Goualher et al., 1997;
Vaillant and Davatzikos, 1997; Zeng et al., 1999; Zhou et al., 1999). The
second representaion corresponds to the interface between the two walls bor-
dering the sulci (Mangin, 1995; Le Goualher et al., 1998; Riviere et al., 2002;
Klein et al., 2005; Perrot et al., 2011). By displaying branches of sulci, this
representation is therefore much more suitable for studying local patterns
of cortical folds. Thus, this more exhaustive representation has been used
in this thesis.

1.3.2 Morphologist/BrainVISA representation

The Morphologist pipeline of the BrainVISA toolbox provides a represen-
tation of sulcus segments taking into account the branches of sulci (Rivière
et al., 2009). This pipeline, first described in (Mangin et al., 1995), then
more recently in (Riviere et al., 2002) and (Mangin et al., 2004), constitutes
the preprocessing, allowing the extraction of sulci, used in this thesis. It
consists of four major steps: first, the segmentation of white and grey mat-
ter from MRI, then the extraction of the skeleton of cortical folds, followed
by its division into elementary folds and finally the representation of these
folds as a graph (Figure 1.5).

• White/grey matter segmentation: First, MRIs are analyzed to
segment white matter and grey matter. To do this, a bias correction
is made to eliminate signal intensity inhomogeneities depending on
spatial position due to weaknesses in the acquisition process. Then,
the intensity distribution is analyzed to detect grey and white matter,
whose intensities vary according to the MR sequence and the subject.
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Figure 1.5 – A computer vision pipeline mimicking a human anatomist (Man-
gin et al., 2015b). A: interface between the cerebral envelope and the cortex.
B: interface between white matter and grey matter. C: extraction of the fold
skeleton. D: cutting of the skeleton into elementary folds. E: Folds labeling
using the model of Perrot et al. (2011)

Finally, by using the histogram produced, the image is binarized by
keeping the range of intensities that can belong to the brain. The
binary image is eroded iteratively until a seed is obtained which is
then dilated to form the shape of the brain.

• Sulci skeleton: Second, the resulting segmentation is used to ex-
tract the sulci skeleton, located in the cerebrospinal fluid filling the
folds. After separation of the two hemispheres and the cerebellum,
each hemisphere is represented by a spherical object whose outer sur-
face corresponds to the interface between the cerebral envelope and
the cortex and the inner surface to that between white and grey mat-
ter. The object obtained, corresponding to a 3D negative mold of the
white matter, is then skeletonized. The skeleton points connected to
the outside of the brain are used to form the brain envelope. The rest
of the points represent cortical folds.

• Elementary folds: Third, this part of the skeleton is divided into
several elementary folds. Each elementary fold is supposed to corre-
spond to a single sulcus label. Several factors are considered to cut the
fold skeleton: first, topological characterization is used to isolate sur-



16 Cortical sulci

face pieces that do not include any junctions (Malandain et al., 1993;
Mangin et al., 1995) and second, the skeleton is cut to the minimum
depths, which correspond to buried gyri (Figure 1.6).

• Graph representation: Finally, the pipeline also proposes to aggre-
gate the elementary folds in the form of graphs designed for the sulci
recognition method described in (Riviere et al., 2002). Each elemen-
tary fold represents a node of the graph and the relationship with the
other nodes corresponds either to a topological separation (branches),
or to the presence of a buried gyrus (pli de passage), or to that of a
convolution (gyrus) between two unconnected elementary folds.

Figure 1.6 – Schematic representation of the fold skeleton. The fragmenta-
tion into elementary folds isolates the internal and external branches and
cuts the skeleton at the level of the buried gyri. (Riviere et al., 2002).

This pipeline extracts the sulci skeleton reliably enough to allow the
study of local fold patterns and the labeling of cortical sulci. However, the
cutting of the skeleton into elementary folds, which is particularly useful for
regularizing sulci labeling, is considerably less robust. Indeed, when label-
ing sulci, each elementary fold is supposed to have a unique label. However,
it happens that the fragmentation of the skeleton is insufficient and that
some elementary folds actually contain several labels. Moreover, vastly dif-
ferent fragmentations can be observed from the same MRI. In fact, several
stochastic optimizations are included in the segmentation pipeline (e. g. for
bias correction, brain masking, skeletonization, etc.). These optimizations
only have a slight impact on the shape of the resulting fold skeleton, but
for the topological fragmentation into elementary folds, a single voxel can
then make the difference. Thus, these stochastic optimizations can have
important consequences on the fragmentation of large simple surfaces.
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The Morphologist/BrainVISA pipeline offers two methods for automatic
labeling of elementary folds: the first is a graph matching approach (Riviere
et al., 2002) and the second is based on Statistical Probabilistic Anatomy
Map (SPAM) (Perrot et al., 2011). Each of these two methods assigns a
label by elementary fold and does not allow to reconsider the bottom-up
segmentation of the elementary folds. To eliminate the shortcomings asso-
ciated with the fragmentation into elementary folds, this thesis propose to
complement the regularization scheme using a top-down perspective which
triggers an additional cleavage of the elementary folds when required.

Conclusion

This chapter has highlighted why cortical folds are still poorly understood
and why new tools are required to study them. In this thesis, the tools de-
veloped aim on the one hand to automate the classification of local patterns
of cortical folds and on the other hand to automatically label sulci. These
tools will allow the study of sulcal geometry characteristics on the very large
databases currently available, which is not possible with manual recognition.
For each of these tools, the Morphologist/BrainVISA pipeline is used to ex-
tract thes folds. This pipeline allows the fold skeleton to be segmented in a
robust and reliable way, but the fragmentation of the skeleton into elemen-
tary folds is sometimes problematic. Thus, one of the major objectives of
this thesis is to overcome these fragmentation errors when labeling sulci.
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Chapter 2

Multi-Atlas Segmentation
(MAS)

Abstract

The automatic recognition of cortical sulci shares the same characteristics as
segmentation problems. Indeed, as explained in the previous chapter, sulci
are represented in this thesis in the form of a skeleton of folds from which we
want to label each voxel. Similarly, segmentation aims to label each voxel in
an image. Among the most common segmentation methods nowadays, Multi
Atlas Segmentation (MAS) is now widely used in medical imaging because it
allows a better representation of the variability of anatomical structures than
a model based on an average template. Note that the SPAM model proposed
today by the BrainVISA/Morphologist toolbox is indeed based on an average
template while cortical folds are known for their extreme variability. Thus,
a MAS approach seems to have the potential to significantly improve the
performance of the current model.

In this section, I will describe the general principle of MAS techniques
and then detail the patch approaches used in this thesis.

2.1 General principles

MAS approaches, introduced about ten years ago (Rohlfing et al., 2004;
Klein et al., 2005; Heckemann et al., 2006), are among the most effective
methods for medical image segmentation today. Indeed, these approaches
manipulate each manually labeled image in the database as an ”atlas” used
to label a new image. This allows them to better represent anatomical
variability than a model based on an average representation, and therefore
to have a better segmentation accuracy. This advantage, however, generally
comes at a high calculation cost.
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As proposed in (Iglesias and Sabuncu, 2015), MAS approaches can be
described in four main steps:

Generation of atlases The first step consists in creating atlases, i.e.
labeled training images. Each labeling generally requires a costly effort
from domain-specific experts, using interactive visualization tools.

Registration In order to establish spatial correspondences between the
atlases and the image to be segmented, they must be registered to the im-
age. This step is essential for successful segmentation: it is necessary to
optimize spatial alignment while maintaining an anatomically plausible de-
formation. To do this, it is important to carefully choose the deformation
model (i.e. rigid or non-rigid registration), the distance to be minimized
and the optimization method. However, this crucial step can be extremely
costly depending on the modalities used.

Label Propagation Once the spatial correspondence of the atlases has
been established with the image to be segmented, the atlas labels are prop-
agated to the coordinates of the new image.

Label Fusion The last step consists in combining the propagated labels
of the atlases in order to obtain the final segmentation. This step, ranging
from simple selection of the best atlas to probabilistic fusion of atlases, is
one of the main components of MAS.

One of the critical steps in MAS approaches is the registration of atlases
to the image to be segmented. Indeed, a poor registration can significantly
penalize segmentation accuracy. However, in our opinion, there is currently
no sufficiently precise registration of sulci for this task. Some approaches
recently proposed, however, do not require a precise registration: these are
the patch approaches.

2.2 Patch-based MAS approach

Introduced by Coupé et al. (2011) and Rousseau et al. (2011), the nonlocal
patch-based label fusion have become more popular in recent years (Wang
et al., 2011; Fonov et al., 2012; Zhang et al., 2012; Asman and Landman,
2013; Bai et al., 2013; Konukoglu et al., 2013; Wolz et al., 2013; Wang et al.,
2014; Ta et al., 2014; Romero et al., 2017a,b). These approaches use a patch
search strategy to identify matches with the atlases and use the non-local
means method of Buades et al. (2005) to fuse the labels. Moreover, since
they no longer require costly non-linear registration, these approaches can
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be computationally efficient with an appropriate implementation (Ta et al.,
2014; Giraud et al., 2016), which is a significant advantage in practice.

In this section, I will first briefly present the foundations of patch label
fusion approaches, and then discuss the various proposed improvements.

2.2.1 Nonlocal means label fusion

In the label fusion strategy described in (Coupé et al., 2011), each voxel of
the image to be segmented is labeled based on a cubic patch surrounding
that voxel. This patch is compared to several patches in the atlas library:
the distance between two patches is used to make a robust weighted average
of all patch matches. This weighted average is based on the non-local mean
estimator proposed by Buades et al. (2005). The value of this estimator is
finally used to determine the label of the voxel.

Since comparing each patch of the image to be segmented to all the
patches of all the atlases in the library would be extremely computation-
ally expensive, different techniques are used to limit the number of patch
matches. First, the region of interest of the image to be segmented is ex-
tracted in order to reduce the number of voxels to be labeled. Second, not
all atlases in the library are used: only some atlases are pre-selected based
on their similarity to the image to be segmented. Finally, a selection is made
among the patches of the selected atlases: only the atlas patches located in
the neighbourhood of the position of the voxel to be labeled are taken into
account.

This label fusion strategy has produced results similar or even superior
to the contemporary segmentation algorithms (Coupé et al., 2011; Eskild-
sen et al., 2012). In addition, this segmentation approach has also been
adapted for the classification of patients with Alzheimer’s disease (AD) and
cognitively normal subjects (CN) (Coupé et al., 2012). This classification
is based on the non-local mean estimator to asses the proximity of each
voxel to both populations in the training database (Figure 2.1). Thus, this
approach provides an estimate of the grade (i.e., the degree of proximity of
one group or another) for each voxel. The average of these scores is then
calculated to obtain an estimate of the subject’s grade.

2.2.2 Voxel-wise vs. Patch-wise label fusion

In the method presented above, only the central voxel of the patches is
propagated to the image to be segmented. However, if the patch strongly
matches the image to be segmented, it is likely that it is not the only voxel
that is interesting to propagate. Thus, Rousseau et al. (2011) successfully
propose to propagate all the voxels of the compared patches. This approach
also provides better regularization of the results and has proven its efficiency
in several applications (Wu et al., 2014; Manjón et al., 2014a).
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Figure 2.1 – Global overview of the grading and segmentation method pro-
posed in (Coupé et al., 2012), known as SNIPE (Scoring by Non-local Image
Patch Estimator). The nearest N/2 subjects in the atlas library are selected
from both populations (AD and CN). Each patch of the studied subject is
compared with the patches of the selected atlases in order to segment the
studied structure and note its similarity with the two populations.

2.2.3 Optimized PAtch-match Label fusion (OPAL)

Despite the different techniques used in (Coupé et al., 2011) to reduce the
number of patches to be compared, the computation time is still impor-
tant. To remedy this, a search strategy to find the Approximate Nearest
Neighbours (ANNs) of each patch to be labeled, inspired by the Patch-
Match (PM) algorithm (Barnes et al., 2011), was proposed: the Optimized
Patch-Match (OPM) algorithm. This algorithm gave its name to the new
label fusion strategy that results from it: the Optimized PAtch-Match Label
fusion (OPAL) strategy.

2.2.3.1 PatchMatch (PM) algorithm

The PM algorithm is an efficient strategy to find good patch matches be-
tween two images (initially in 2D). It is based on the assumption that, given
a patch pA(i, j), belonging to image A and whose central pixel is located at
coordinates (i, j), that matches with the patch pB(i′, j′) belonging to image
B, the adjacent patches of pA(i, j) will probably match the adjacent patches
of pB(i′, j′).

This algorithm is implemented in three steps: initialization, propagation
and random search. During initialization, a random patch of the image B
is assigned to each patch of the image A. The adjacent patches are then
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tested during the propagation step, in order to improve the current match
by following the principle mentioned above. Finally, during the random
search step, randomly selected patches in concentric neighbourhoods of the
current match are tested in order to avoid local minima. These last two
steps are performed iteratively to improve correspondences.

2.2.3.2 Optimized PatchMatch (OPM) algorithm

The OPM algorithm proposes to adapt the PM algorithm to biomedical
applications by exploiting the fact that two anatomical images can generally
be roughly aligned (Ta et al., 2014; Giraud et al., 2016). Thus, the search
for a similar patch no longer needs to be in the entire image but only in a
part of it.

Compared to the PM algorithm, the OPM algorithm manipulates 3D
images and does not look for patch matches between two images but between
an image and a library of images (i.e. the atlases). One of the major
advantages of this algorithm is that its duration depends only on the size of
the image to be segmented and not on the size of the library.

As with PM, the OPM algorithm is implemented in three steps: con-
strained initialization, propagation step and constrained random search.
These last two steps are performed iteratively a predetermined number of
times (Figure 2.2).

• Constrained Initialization The constrained initialization aims to
assign to each voxel of the image to be segmented, a patch of the atlas
library being located approximately in the same region. To do this, an
atlas is randomly selected in the library. Then, a patch is randomly
selected in the neighbourhood of the voxel to be labeled. The width of
this neighbourhood is determined a priori according to the variability
of the problem to be managed.

• Propagation Step Once all the voxels in the image have been matched
to a patch in the atlas library, the next step is to propagate the best
matches. Thus, as for the PM algorithm, for each voxel of the image
to be labeled, it is checked whether the propagation of the patches of
one of its adjacent voxels does not allow a better match.

• Constrained Random Search Once the propagation step is com-
pleted, a random constrained search is performed. As with the PM
algorithm, for each match, it looks for a better match in the same
image by testing several randomly selected patches. For the OPM al-
gorithm, this search is constrained by a search window that closes a
little more each time around the position of the matched patch.

Whereas before, all the tested patches were involved in the label fusion,
this time only those returned by the OPM algorithm are propagated. In
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Figure 2.2 – OPAL main steps. (a) Constrained initialization (CI), (b) and
(d) propagation step (PS) for iteration #1 and #2, respectively (c) and (e)
constrained random search (CRS) for iteration #1 and #2, respectively and
(f) multiple Patch Match (PM). (Ta et al., 2014)

order to obtain several patches per voxel to label, the algorithm is run
several times independently.

2.2.4 Multi-scale and multi-feature label fusion

Some approaches propose to use different patch sizes and/or features, which
allows them to significantly improve the results in some cases (Eskildsen
et al., 2012; Manjón et al., 2014b; Giraud et al., 2016; Romero et al.,
2017b,a). For example, Giraud et al. (2016) proposes to merge the score
maps obtained for each modality by following the late fusion principle of
Snoek et al. (2005) (Figure 2.3).
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Figure 2.3 – Fusion of multi-feature and multi-scale label estimator maps.
The algorithm is applied with Ns different patch sizes, on Nf different fea-
tures, so N = Ns ∗Nf estimator maps are computed and merged to provide
the final segmentation. (Giraud et al., 2016)

Conclusion

In conclusion, MAS patch approaches seem particularly appropriate for cor-
tical sulci labeling for two main reasons. First, they effectively represent the
variability of the structures to be segmented. Second, they do not require
any precise registration between the atlases and the image to be segmented,
which is difficult to obtain for cortical sulci without first labeling them.. For
the same reasons, these approaches will also be tested for the automatic
classification of cortical folds, based on the approach proposed in (Coupé
et al., 2012).
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Chapter 3

Convolutionnal Neural
Networks (CNNs)

Abstract

Neural networks, and in particular convolutional neural networks (CNNs),
are famous for their remarkable effectiveness in dealing with many computer
vision problems. These algorithms, inspired by the brain architecture, have
indeed revolutionized image recognition over the past ten years. In this
thesis, this trendy approach is used to automatically classify fold patterns
and automatically recognize sulci. Therefore, this chapter will detail the
history and principles of this method in order to understand why it was
selected for these two problems.

3.1 A model inspired by the brain’s organization

In the 1950s, attempts were made to model the brain function by represent-
ing its operating units: the neurons. The Perceptron of Rosenblatt (1958)
is a simplified mathematical model of how neurons work (Figure 3.1): it
receives a set of binarized inputs (from several other neurons), it processes
this information by weighting the inputs (representing the strength of the
synapse of the neuron transmitting the information) and it thresholds the
sum of the weighted inputs to have a binarized output according to the
sum magnitude (representing a neuron activation when the signal is high
enough). By adjusting the input weights, the Perceptron allows to model
the basic OR/AND/NOT functions, which was a challenge at that time.

In the 1980s, the Perceptron was integrated into a model inspired by the
organization of the visual cortex: the Neocognitron (Fukushima, 1980). In
this model, neurons are organized into several hierarchical layers where each
layer is responsible for detecting a pattern from the outputs of the previous
layer using a sliding filter. The first CNN was created!
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Figure 3.1 – A diagram showing how the Perceptron works (Fei-Fei et al.,
2015). The Perceptron receives a set of binarized inputs x0, x1 and x2. It
processes this information by weighting the inputs by w0, w1 and w2 re-
spectively. It thresholds the sum of the weighted inputs

∑
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b thanks to an activation function f , in order to have a binarized output
according to the sum magnitude. Note that in most current models, output
and inputs are no longer necessarily binary because other activation func-
tions, imitating the thresholding process, are now used, such as the sigmoid
function.

Although the Neocognitron is effective for some pattern recognition tasks,
these convolutional filters were then manually configured. It was only in the
1990s that automatic learning of neural networks was proposed using back-
propagation (Werbos et al., 1990). The first convolutional neural network
trained in this way is LeNet-5 (Figure 3.2), which allows automatic recogni-
tion of handwritten numbers (LeCun et al., 1998). The architecture of this
network is composed of several types of neural layers, which are still widely
used in more recent architectures. The following section will develop the
principles of these different layers.

Figure 3.2 – LeNet-5 architecture, a CNN for digits recognition (LeCun
et al., 1998).
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3.2 Building Blocks of CNNs

The major advantage of CNNs is that they process images efficiently by
taking into account their spatial organization. For 2D image processing, each
layer of these networks is organized in three dimensions: width, height and
depth. The width and height define the size of the feature maps associated
with the layer, and its depth determines their number. Three types of
layers are mainly used by CNNs: convolutional layers, pooling layers and
fully connected layers.

3.2.1 Convolutional Layers

In order to avoid connecting each neuron in a layer to all the neurons in
the previous layer, which would be extremely computationally expensive,
convolution layers limit the inputs of a neuron to a fixed size window. For a
given depth of the output layer, the weights are shared through the different
view windows on the input image. Therefore, the neurons along the depth
”watch” the same window but analyze it differently (Figure 3.3).

Figure 3.3 – Illustration of a convolution layer. The input volume is shown
in red: it corresponds to a 2D image, of size 32*32, whose 3 RGB color
channels are represented along the depth of the input. The layer of neurons
is represented in blue. Each neuron in the layer is connected only to a local
region of the input volume but to the entire depth. Several neurons (5 in
this example) along the depth are connected to the same region of the input
volume. (Fei-Fei et al., 2015)

The first hyperparameter, called the receptive field, corresponds to the
size of the input region observed by a column of neurons. Three other
hyperparameters allow to control the output volume: the depth, i.e. the
number of neurons in a column of neurons, the stride, i.e. the step between
each observation window of two successive columns of neurons, and the size
of the zero-padding, i.e. the quantity of zeros added at the edges of the
input volume.
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Therefore, the convolutional layers allow the image to be analyzed using
different filters, whose nature depends on the weights assigned to each area
of the input window. Each filter sees all the input features and produces a
new output feature. Usually, the number of output features is greater than
the number of input features. In order to control the size of these features,
convolutional layers go hand in hand with pooling layers.

3.2.2 Pooling Layers

Pooling layers are generally placed between two successive convolution lay-
ers. They gradually reduce the size of the representation, and therefore the
number of parameters and calculations in the network. Two hyperparam-
eters are used to define these layers: the stride, i. e. the filter application
step, and the spatial extent, i. e. the filter size. The most commonly used
filter is the maximum function (Figure 3.4).

Figure 3.4 – Illustration of a Max-Pooling Layer. Each color represents a
different input window for filters with a spatial range of 2*2 and stride 2.
For each input window, only the highest value is kept. (Fei-Fei et al., 2015)

Convolutional layers and pooling are repeated iteratively in order to
reduce the size of the features while increasing their number. This allows
the CNN to represent simplified features of the images. Once these features
are extracted, they must be processed to perform the classification: for this
purpose, the fully connected layers are used.

3.2.3 Fully-Connected Layers

Fully connected layers include neurons connected to all the neurons of the
previous layer. This type of layer is used to learn how to classify images,
once the images have been ”analyzed” by the convolutional and pooling
layers.
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After LeNet-5 for handwritten number recognition, other neural network
architectures have been proposed to address different problems. The follow-
ing section describes the historical evolution of architectures developed for
issues related to those of this thesis.

3.3 CNNs architectures

This section discusses the CNNs architectures used for image classification
and segmentation. In fact, this thesis focuses on two applications: the
automatic classification of local folding patterns and the automatic labeling
of the sulci themselves. The first task is similar to image classification: we
want to classify the subjects, or their hemispheres, according to the pattern
they present. The second task is more like image segmentation: for each
voxel of the fold skeleton, we want to assign a label to it.

3.3.1 Image Classification

The classification of 2D images has made spectacular progress thanks to the
use of neural networks. This is particularly well illustrated by the ImageNet
Large Scale Visual Recognition Challenge (ILSVRC) (Russakovsky et al.,
2015), held every year from 2010 to 2017.

In 2012, the first CNN wins this challenge (Krizhevsky et al., 2012)
by reducing the top-5 error from 26.2% to 15.3%. This five-layer convo-
lutional network, known as AlexNet, is trained using Graphics Processing
Units (GPUs) and has an architecture similar to LeNet-5 (LeCun et al.,
1998). This article uses several techniques that are now widespread: data
augmentation and dropout to avoid overfitting and the use of GPUs to ac-
celerate learning.

In 2014, new neural network architectures significantly reduced the top-
5 error from 15.3% to about 7%. GoogleNet, also known as Inception V1
(Szegedy et al., 2015), wins the competition by offering a deeper architecture
(22 layers) thanks to an optimized implementation. The second winner is
the VGG network (Simonyan and Zisserman, 2014) which uses small convo-
lutional filters (3*3*3) to deepen its network architecture which goes up to
16 or 19 layers. It is now one of the most popular architectures because of
its simplicity to train.

In 2015, the ResNet network (He et al., 2016) wins the competition with
a top-5 error of 3.5%. The architecture of this network has been designed
to allow a much deeper network than the VGG (i.e. 152 layers instead
of 19) while maintaining a lower complexity (Figure 3.6). Moreover, in
order to facilitate the training of this particularly deep network, this model
uses ”skip connections”, i.e. shortcuts performing identity mapping (Figure
3.5). Thanks to these connections, the layers only have to learn the residual
functions with reference to the layer inputs, instead of learning unreferenced
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functions. These skip connections have also inspired the architecture of the
DenseNet (Huang et al., 2017) where all layers are connected to each other
instead of just connecting the input and output of a residual block. This
enabled, among other things, to obtain similar results to the ResNet by
using a less deep architecture, containing fewer parameters to learn, and
therefore being less computationally expensive.

Figure 3.5 – Illustration of a ”skip connection” for residual learning. (He
et al., 2016)

In 2017, the Squeeze-and-Excitation (SE) network won the competition
with a top 5 error of only 2.3% (Hu et al., 2018). This network is based
on a new architectural unit, the SE block, which adaptively recalibrates
channel-wise feature responses by explicitly modeling interdependencies be-
tween channels.

All these advances show the importance of network architecture in the
search for the best error rate. Today, a community of researchers is inter-
ested in automating the design of the network architecture to adapt it to
the given problem (Zoph et al., 2018).

Note that all the spectacular advances described above concern the clas-
sification of 2D images, available in very large quantities for the ILSVRC.
The classification of 3D images raises new challenges: on the one hand be-
cause of the large size of the inputs to be processed and on the other hand
because of the difficulty of obtaining images labeled in large quantities. To
date, there is no challenge as renowned as the ILSVRC for 3D image classifi-
cation, which prevents comparing the different neural network architectures
for this problem. However, it is planned that the ILSVRC will be replaced
by a new competition that aims to help robots see the world in all its depth.
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Figure 3.6 – Example network architectures for ILSVRC. Left: the VGG-19
model (19.6 billion FLOPs, i.e. floating-point operations per second) as a
reference. Middle: a plain network with 34 parameter layers (3.6 billion
FLOPs). Right: a residual network with 34 parameter layers (3.6 billion
FLOPs). (He et al., 2016)
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3.3.2 Image Segmentation

Regarding image segmentation, the use of a patch approach was first pro-
posed by Ciresan et al. (2012). The method described in this article aims to
train a neural network to classify each pixel according to its neighbourhood,
i.e. a square patch of which it is the central pixel. This approach, although
particularly effective, is nevertheless costly to apply.

More recently, fully connected networks have been used for semantic
segmentation (Long et al., 2015). This approach is based on the network
architecture designed for image classification mentioned above and adds a
layer to reproduce the size of the input image. Note that the image size
no longer needs to be fixed: the output image has the same size as the
input image. Based on this approach, the use of deconvolutions was then
proposed (Noh et al., 2015). Unlike the previous network, this approach
does not brutally reproduce the segmented image after several convolutions
but allows to progressively enlarge the feature maps obtained to reproduce
the image. This idea inspired Ronneberger et al. (2015) to propose a specific
architecture for medical imaging: the U-Net (Figure 3.7). This architecture
is now widely used and has been adapted for 3D medical image segmentation
by Çiçek et al. (2016) and Milletari et al. (2016).

Figure 3.7 – U-net architecture, a fully convolutional network for medical
image segmentation. (Ronneberger et al., 2015)

Recently, Google proposed a new neural network for semantic segmen-
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tation (Chen et al., 2018) that introduces atrous convolutions (also called
dilated convolutions). These convolutions introduce a new parameter called
the dilation rate that defines a spacing between the input values considered.
This allows a more global vision, supposed to be more adapted to segmen-
tation than the convolutions used for image classification. The interesting
results obtained by this approach show that, even today, image segmentation
is a hot topic.

Although it is important to understand recent neural network architec-
tures, automating image classification or segmentation does not only depend
on the network organization. Training the network is also a critical step that
I will discuss in the next section.

3.4 How to train a neural network?

The design evolution of the CNN architecture shows a tendency to create
deeper models. However, the deeper the network, the more parameters it
contains to learn and the harder the training is to converge. For a long time,
training neural networks was almost impossible to converge in a reasonable
time. The use of GPUs has considerably accelerated the process, especially
as they become more and more powerful and accessible. However, today,
it is mainly many tricks that help them to converge. In this section, I will
briefly explain how a neural network is trained and then detail some of these
tricks.

3.4.1 General approach

When a new data to be modeled is presented to the neural network, the
first step is to calculate the output of the network: this is the forward
propagation.

During training, we want to modify the architecture of the neural net-
work, i. e. its parameters, so that the output obtained is closer to the
desired one. For this purpose, a loss function is calculated. This function
must be derivable and get higher values when the output is far from the
expected learning value.

In order to minimize the loss function, several optimization algorithms
have been proposed, the first and most common being the Stochastic Gra-
dient Descent (SGD). SGD is a gradient descent method used to minimize
an objective function, here the loss function. The stochastic, i. e. random,
side of this algorithm allows it to avoid small local minima and therefore to
be more robust. When training a neural network, this algorithm adapts the
parameters of each neuron by calculating the gradient of the loss function
according to the parameter to be optimized. Depending on the gradient
value, the parameter value is then adjusted to minimize the loss function.
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In order to calculate the gradients for each parameter of the model, SGD
uses backpropagation. This tool first calculates the gradients of the neu-
ron parameters of the last layer, then iteratively goes up the network to
calculate the gradients of the neuron parameters of the previous layers.

3.4.2 Tricks to improve training

In this section, I will discuss two of the main problems encountered when
training a neural network: the vanishing/exploding gradient problem that
prevents the network from learning and overfitting that makes the network
learn incorrectly.

3.4.2.1 How to avoid the vanishing/exploding gradient problem?

First of all, what is the vanishing gradient problem? During learning, gradi-
ents are used to update neuron parameters. If these gradients are too low,
updating the parameters will have only a small impact. However, during
backpropagation, the gradients of the model parameters with respect to the
loss function are calculated by chain rule: each gradient is a multiplication
of partial derivatives that depend on the previous layers. If some of these
derivatives are close to zero, multiplying them will make the gradients even
smaller, i.e. ” vanishing ”, which will cause the mentioned problem. This
is all the more complicated to manage if the network is deep because the
parameter gradients of the first layers will depend on an even higher number
of partial derivatives. Conversely, if these gradients are greater than one, the
gradient values may explode, causing the opposite problem: the parameters
are unstable.

Now, how can we avoid it? First, by carefully initializing the parameters
of the neural network. For example, Glorot and Bengio (2010) initializes
the connection weights so that the input of the activation functions is nor-
malized. Indeed, if the activation function is a sigmoid, input values too
far from zeros have almost zero derivatives. Other activation functions have
been proposed to avoid this problem: for example, the ReLU function has
a zero derivative only for inputs below zero, large inputs will have the same
derivative, i.e. one.

Then, the input data are generally normalized. Indeed, this makes it
possible on the one hand to ensure that they are in the same range of values
and on the other hand to avoid saturation of the activation functions. In the
same vein, batch normalization aims to normalize the input of each layer
during training.

3.4.2.2 How to deal with overfitting?

Another recurrent problem when training a neural network, especially when
it is deep, is overfitting. This phenomenon is manifested by an increase
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of the neural network’s performance on the learning set, accompanied by
a decrease on the validation set. In fact, neural networks are particularly
data-intensive and easily overfit on small learning bases.

In order to limit overfitting, the first solution is to expand the size of the
learning base. To do this, the data can be increased by various transforma-
tions of the images: rotation, translation, cropping, noise effect, etc.

Another important step to avoid overfitting is the training design. In
particular, the choice of the learning rate, the number of epochs, etc. For
example, a too short learning time may lead to underfitting the model on the
learning and test set, while a too long learning time may lead to overfitting
on the learning set while having poor performance on the test set. In order
to find the right balance, early stopping is generally used: this technique
aims to stop learning when the model’s performance starts to deteriorate on
a validation set, i.e. a part of the learning set reserved to test the model at
each epoch.

Finally, one of the most popular tricks is the use of dropout during
network training (Srivastava et al., 2014). This technique aims to ”drop
out” some neurons during learning: a neuron is kept active according to a
probability determined a priori, otherwise it is ”extinguished” (Figure 3.8).
Thus, only a small network is trained on the data at this stage. The deleted
neurons are then reintegrated into the network with their original weight.

Figure 3.8 – Illustration of the Dropout. (Srivastava et al., 2014)

Conclusion

To conclude, this chapter highlights the importance of choosing the archi-
tecture of the neural network on the one hand and the training design on
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the other. In this thesis, these CNN models inspired by the brain function
will be tested to study one of its most striking anatomical characteristics:
the cortical folds.

For the automatic classification of local folding patterns, a 3D ResNet
will be used. Based on the study conducted by Hara et al. (2018) comparing
the spatiotemporal 3D CNN adaptations of the 2D CNNs used for ILSVRC,
a 3D ResNet has been choosen for the automatic classification of local folding
patterns, as it is the architecture obtaining the best performance in (Hara
et al., 2018).

For the automatic recognition of cortical sulci, two types of approaches
will be tested: the first inspired by the patch segmentation approach pro-
posed by Ciresan et al. (2012) and the second using a fully convolutional
network, i.e. a 3D U-Net (Çiçek et al., 2016). These two approaches were
initially proposed for the segmentation of medical images and have proven
their effectiveness in this task.
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Chapter 4

Automatic recognition of
local patterns of cortical sulci

Abstract

Despite the tools now available to visualize cortical folds in 3D, manually
classifying local sulcal patterns is a time-consuming and tedious task. In
fact, 3D visualization of folds helps experts to identify different sulcal pat-
terns but fold variability is so high that the distinction between these pat-
terns sometimes requires the definition of complex criteria, making manual
classification difficult. However, the assessment of the impact of these pat-
terns on the functional organization of the cortex could benefit from the
study of large databases. In this chapter, the automation of the classifi-
cation of two types of patterns is proposed to allow morphological studies
to be extended and confirmed on such large databases. To do so, three
methods are proposed, the first based on a Support Vector Machine (SVM)
classifier, the second on the Scoring by Non-local Image Patch Estimator
(SNIPE) approach proposed by (Coupé et al., 2012) and the third based
on a 3D Convolution Neural Network (CNN). Two types of patterns are
studied: the Anterior Cingulate Cortex (ACC) patterns and the Power But-
ton Sign (PBS). The two ACC patterns are almost equally present whereas
PBS is a particularly rare pattern in the general population. The three
models proposed have interesting performances for these two classification
problems. The CNN-based model is more interesting for the classification
of ACC patterns thanks to its rapid execution. However, SVM and SNIPE-
based models are more effective in managing unbalanced problems such as
PBS recognition.
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4.1 Introduction

During the third trimester of pregnancy, the surface of the human fetus’
brain forms convolutions, called gyri, delimited by folds, called sulci. The
mechanism of fold formation and the impact of this anatomical characteris-
tic on brain function are still poorly understood today. However, it has been
demonstrated that the spatial pattern of some cortical sulci, markers of early
brain development (Cachia et al., 2016), is associated with local brain func-
tion. Indeed, several studies have reported a correlation between visually
recognized sulcal patterns and some cognitive characteristics – e.g. cognitive
control efficiency (Fornito et al., 2004; Cachia et al., 2014) or handedness
(Sun et al., 2012) – and neuropsychiatric illnesses – e.g. epilepsy (Mellerio
et al., 2014) or schizophrenia (Plaze et al., 2015). By allowing the auto-
matic recognition of these sulcal patterns, it will be possible to extend and
confirm such studies on larger databases and better understand the subtle
links between the sulcal shapes and the functional architecture.

In this chapter, I will focus on automating the identification of two types
of sulcal patterns: first, the classification of the Anterior Cingulate Cor-
tex (ACC) patterns, and second, the recognition of the Power Button Sign
(PBS).

The sulcal pattern of the ACC can be classified with structural MRI
(Cachia et al., 2014, 2016) in two different types (Figure 4.1): a ”single”
type, with only the cingulate sulcus and the ”double parallel” type, with
an additional paracingulate sulcus. Initially, a link has been demonstrated
between these patterns and schizophrenia: schizophrenic subjects tend to
have symmetric patterns between their right and left hemispheres, unlike
controls (Le Provost et al., 2003; Yücel et al., 2003). Later, it was also
shown that children with the same lack of asymmetry have poor inhibitory
control (Borst et al., 2014; Cachia et al., 2014). Thus this pattern is not
only related to a psychiatric disease but also to the healthy brain function.
Automating the recognition of this pattern is particularly difficult because
of its high variability (Figure 4.2). For this purpose, we have a database of
348 hemispheres, including 207 with the double parallel pattern, of which
the cingulate and paracingulate sulci have been manually labeled.

The second pattern we are interested in is related to epilepsy. This
disease is often due to incomplete migration of a group of neurons trapped
in the white matter before reaching the cortical mantle: this group is called
focal cortical dysplasia. This dysplasia is sometimes linked to abnormal
fold patterns (Besson et al., 2008; Régis et al., 2011; Mellerio et al., 2014;
Roca et al., 2015), even when the dysplasia is invisible on MRI. Here, we
are interested in the automatic detection of one of these patterns: the PBS
(Figure 4.3), present in about 60% of patients with dysplasia of the motor
area, whereas in the general population, this pattern is so rare that we do
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Figure 4.1 – Two folding patterns identified in the cingulate region. The
”single” pattern is characterized by the presence of the cingulate sulcus
alone. The ”double parallel” pattern has an additional paracingulate sul-
cus, which must be parallel to the cingulate sulcus and long enough to be
identified. (Cachia et al., 2014)

not know its proportion (Mellerio et al., 2014). This pattern is characterized
by the interposition of a precentral sulcal segment between the central sulcus
and one of its hook-shaped anterior ascending branches. Automating PBS
recognition is particularly challenging because, in addition to the extreme
variability of this pattern (Figure 4.4), the available labeled database is
limited (19 controls and 38 patients with dysplasia, i. e. 114 hemispheres)
and the proportion of hemispheres with a PBS is particularly unbalanced
(22 subjects, including 1 control and 21 patients with dysplasia, have at
least one of the two hemispheres with PBS, i. e. 28 hemispheres with PBS
in the database).

In this chapter, I will first present the three proposed methods for the au-
tomatic recognition of these patterns. Two of them use manually labeled
hemispheres to evaluate the similarity of a new hemisphere to the patterns.
The third method uses a 3D neural network to automatically classify pat-
terns.
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Left hemispheres Right hemispheres
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Figure 4.2 – Illustration of ACC patterns variability. The upper part of the
table shows the single patterns and the lower part shows the double parallel
patterns. We observe that the position, size and number of components of
the paracingulate sulcus are variable. It is sometimes difficult to distinguish
with the naked eye between a large paracingulate sulcus and a double cingu-
late sulcus (see **). Additionally, small paracingulate sulci can sometimes
be confused with other small sulci (see *).

4.2 Databases

The BrainVISA/Morphologist pipeline, freely available at http://brainvisa.info/,
was used to segment and provide 3D graphical representation from raw MRI
data. This 3D mesh-based reconstruction of cortical folds was used to man-
ually visualize and label brains.

4.2.1 Anterior Cingulate Cortex (ACC) pattern

The MRI of 190 subjects (including 74 normal controls, 67 schizophrenia pa-
tients and 49 healthy siblings) were selected from a large prospective study
on brain development at the National Institute of Mental Health (NIMH).
The ACC sulcal pattern was visually labeled for each individual hemisphere
(Cachia et al., 2014, 2016). The cingulate and paracingulate sulci were
manually labeled. Sixteen subjects with at least one hemisphere with am-
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Figure 4.3 – The Power Button Sign: a fold pattern related to epilepsy. This
pattern is characterized by the interposition of a precentral sulcal segment
(in green) between the central sulcus (in red) and one of its hook-shaped
anterior ascending branches (in red). (Mellerio et al., 2014)

biguous pattern types were not included in the analysis. The learning base
was therefore composed of 348 labeled ACC sulcal patterns, including 141
”single” types and 207 ”double parallel” types.

4.2.2 Power Button Sign (PBS)

The MRIs of 57 subjects (including 19 normal controls, 38 epileptic patients)
were selected from the study detailed in (Mellerio et al., 2014). The PBS
was visually labeled for each individual hemisphere according to the criteria
described in the same study. In addition to the identified PBSs, some hemi-
spheres have been labeled as having an intermediate pattern. Intermediate
patterns are considered as PBSs in this study. Among the 114 hemispheres
in the database, 28 have the PBS (including 13 intermediate patterns). The
central sulcus, its ascending branch and the pre-central sulcus forming the
PBS were manually labeled.

4.3 Method

4.3.1 Fold representation

The BrainVISA/Morphologist pipeline, used to visualize the sulci in 3D
and manually label the patterns, is also used for data preprocessing. This
pipeline represents the folds by a set of voxels corresponding to a skeleton of
the cerebrospinal fluid filling the fold. The representation of the folds there-
fore corresponds to a negative mold of the brain. In addition to facilitating
manual labeling of sulcal patterns, the skeleton representation enables to



46 Automatic recognition of local patterns of cortical sulci

Left hemispheres Right hemispheres

Figure 4.4 – Illustration of PBS variability. The first two lines represent
hemispheres without PBS and the last two lines with PBS. The middle line
represents hemispheres with an intermediate pattern. In this study these
intermediate patterns are considered as PBS.

normalize the data optimally. Indeed, the data are particularly influenced
by the type of MRI sequence, the age of the subject (which has a significant
impact on the opening of the sulci) or even pathologies. The fold skele-
tons are affinely registered in the MNI space (Collins et al., 1994). In order
to superimpose the right and left hemispheres, the right hemispheres are
flipped.

With regard to ACC patterns, the single and double parallel types are
respectively characterized by the absence and presence of the paracingulate
sulcus. Thus, the objective is to detect the presence of the paracingulate to
perform the classification. Similarly, for PBS, the algorithm must detect its
presence. Paracingulate sulcus and PBS will be considered as the ”searched
patterns”. In both databases, the searched patterns were extracted from
manual labeling, as described in Figure 4.5.
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ACC PBS

Figure 4.5 – Extraction of searched patterns from manual labeling. The
voxels extracted from the manual labels represent the searched pattern in
red and the sulcus to which it is attached in black. Left: Paracingulate
sulcus, labeled in blue, corresponds to red voxels while cingulate sulcus,
labeled in yellow, corresponds to black voxels. Right: The central sulcus is
labeled in red, the ascending branch of the central sulcus in blue and the pre-
central sulcus, wedged between the blue and red sulci, in yellow. As these
manual labels are insufficient to properly delimit the PBS, the extraction of
red voxels requires additional processing. 1. The yellow point corresponds
to the intersection between the blue and red sulci. 2. The red point is the
point of the yellow sulcus closest to the yellow point. 3. The blue point is
in the centre of the red and yellow points. 4. The radius of the blue sphere,
with the blue point as its centre, is calculated to be at least 20mm and
to ensure that all the whole blue sulcus is contained in the sphere. 5. All
the voxels contained in the blue sphere and belonging to the red/yellow/blue
sulci define the red voxels. The black voxels correspond to the central sulcus
voxels that do not belong to the red voxels.

4.3.2 Classification approaches

4.3.2.1 Support Vector Machine (SVM)

The idea of this first approach is to use the distances from the searched
patterns of the labeled database to the image to be labeled to train a SVM
classifier (Figure 4.6).

Registration: In order to realign the searched patterns to the hemi-
sphere to be classified, the Iterative Closest Point (ICP) algorithm (Besl
and McKay, 1992), with the robust implementation of Holz et al. (2015), is
used. As in our previous study investigating the link between handedness
and the shape of the central sulcus (Sun et al., 2012), the voxels of the fold
skeleton, extracted by the BrainVISA/Morphologist pipeline, are used as
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Figure 4.6 – Illustration of the SVM-based method. For each hemisphere of
the training database with a paracingulate sulcus/PBS, the searched pat-
terns (in red) and their attached sulcus (in black) are registered on the hemi-
spheres to be classified using the Iterative Closest Point (ICP) algorithm.
Once they have been registered, the average distance (from the points of
the searched pattern in red to their nearest points in the hemisphere to be
classified) is used as a feature for the SVM classifier. Each hemisphere of
the training database with the searched pattern is therefore a feature of the
SVM classifier.

point clouds to perform the registration.

In order to constrain the registration of the searched patterns, they are
registered with their attached sulcus (i. e. cingulate sulcus for paracingulate
sulcus, and central sulcus for PBS). This constraint with large sulci increase
the specificity of the pattern and prevents the registration of the searched
patterns to be trapped in a spurious local minima.

Since the ICP algorithm is particularly sensitive to the initial positions
of the point clouds to be registered, several initializations are performed
in order to avoid local minima. From the position of the point clouds in
the MNI space (Collins et al., 1994), the pattern to be registered and its
attached sulcus are translated before applying the ICP algorithm. The am-
plitude of the translations tested is determined by inner cross-validation.
The registration minimizing the distance from the pattern and its attached
sulcus is selected.

Feature extraction: Once registered, the distances between the searched
patterns and the hemisphere to be classified are calculated. This distance
corresponds to the average Euclidean distance from the voxels of the searched
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pattern to their nearest voxel in the new hemisphere. The distance is low if
the hemisphere to be classified also has the searched pattern.

Classifier: The calculated distances are used to train a Support Vec-
tor Machine (SVM) algorithm to classify hemispheres with or without the
searched pattern. An ordered vector containing the distances to the hemi-
sphere to be classified is used to train the classifier: each feature corresponds
to a searched pattern in the training database. The Radial Basis Function
is used as a kernel. Penalty parameter C of the error term and kernel coef-
ficient γ are determined by inner cross validation.

4.3.2.2 Scoring by Non-local Image Patch Estimator (SNIPE)

The second approach is based on the Scoring by Non-local Image Patch Esti-
mator (SNIPE) proposed in (Coupé et al., 2012). In order to classify images,
SNIPE uses a grading measure based on a nonlocal patch-based framework.
This measure estimates the similarity of the patches surrounding the voxels
in the image under study with all the patches present in different training
populations. In this study, the training database contains two ”popula-
tions”: hemispheres with the searched pattern and those without it (Figure
4.7).

Region Of Interest (ROI) delimitation: For this approach, the hemi-
spheres to be classified are represented by binary volumes of 2*2*2mm reso-
lution, containing the fold skeleton registered in the MNI space. A masking
is performed on these volumes in order to extract the ROI. The mask is
calculated from the location in the MNI space of the searched patterns in
the training database. All voxels within 1cm of one of the searched patterns
in the training database belong to the ROI. Note that the calculation of
the mask is based on the location of the searched patterns in the training
database, so it is recalculated for each cross-validation fold.

Optimized PatchMatch (OPM) algorithm: Once the ROI has been
extracted, patches with central voxels belonging to the fold skeleton are
associated with similar patches in the training database. To do this, the
Optimized Patch Match (OPM) algorithm (Ta et al., 2014; Giraud et al.,
2016) is used. This algorithm searches for similar patches in an atlas library
using a cooperative and random strategy resulting in a very low compu-
tational burden. Compared to the PatchMatch algorithm (Barnes et al.,
2009) from which it is inspired, OPM is adapted to 3D anatomical atlases
by taking into account the rough alignment of images.

Here, as only patches with the central voxel belonging to the fold skeleton
are considered, an adapted version of the OPM algorithm has been imple-
mented (see appendix for more details). In addition, to manage the unbal-
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Figure 4.7 – Illustration of the SNIPE-based method. For each voxel in
the Region Of Interest (ROI) of the hemisphere to be classified, its patch
is associated with several similar patches (here 3) in the training database
by using the OptimizedPatchMatch (OPM) algorithm. The distance of the
similar patches to the patch and their location in a hemisphere with the
searched pattern (+) or without it (-), are used to calculate the grade. All
grades associated with ROI voxels are averaged to obtain the grade of the
hemisphere. A positive grade predicts the presence of the searched pattern
and vice versa for a negative grade.

anced presence of populations in the training database, under-represented
hemispheres are proportionately more probable to be selected during the
OPM initialization. Finally, since the compared patches are binarized vol-
umes and not grayscale images, the distance to be minimized is different
from that used in (Ta et al., 2014). This distance is the average Euclidean
distance between the skeleton voxels of one patch and their nearest neigh-
bour in the skeleton of the other patch. Please refer to the appendix for
more details.

To obtain several similar patches, the OPM algorithm is run several
times. The patch sizes and the number of similar patches selected are de-
termined by inner cross-validation.



Method 51

Grading calculation: As in (Coupé et al., 2012), in order to estimate
the proximity of each voxel in the hemisphere to be classified to both pop-
ulations, the selected similar patches are used to calculate the degree of
proximity to one of the populations. To do so, for each voxel in the hemi-
sphere to be classified, a robust weighted average of the distances of the
patches selected to the patch surrounding the voxel is calculated based on
the non-local average estimator proposed by Buades et al. (2005). In our
case, a negative (respectively positive) classification value indicates that the
neighbourhood surrounding the voxel is more specific to hemispheres with-
out the searched pattern than with it. The ROI grades are then averaged
to obtain the hemisphere grade.

In summary, several adaptations have been made compared to (Coupé
et al., 2012):

• The search for similar patches is performed using the OPM algorithm
and not using an exhaustive search.

• In order to manage the unbalanced databases, the initialization of the
OPM algorithm is weighted to compensate.

• The average of the grades is done on the ROI instead of on a simul-
taneously segmented region. In fact, since the searched patterns are
often missing, it is impossible to define an area to be segmented for
the hemispheres without the searched pattern.

• Only patches with a central voxel belonging to the fold skeleton are
considered. By doing so, it limits the number of patch matches that
require optimization as the voxels belonging to the skeleton represent
only a small part of the image’s voxels. Moreover, since the patches
are extracted from binarized images, the calculation of the distance
between two patches can be successful only if the patches contain a
minimum number of skeleton voxels.

4.3.2.3 Convolutional Neural Network (CNN)

The last proposed approach uses a 3D Convolutional Neural Network (CNN)
(Figure 5.12).

Preprocessing: The input data of the neural network corresponds to a
3D volume of resolution 2*2*2mm containing the fold skeleton registered in
the MNI space. Voxels that belong to the fold skeleton are 1; the others are
0. The volume size is calculated to contain all the searched patterns in the
training database. Note that unlike the SVM-based method where a mask
was calculated from the position of the searched patterns to determine the
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Figure 4.8 – Illustration of the CNN-based method. The binary volumes
of resolution 2*2*2mm containing the fold skeleton, registered in the MNI
space, are given as inputs to the neural network. The volume sizes are
calculated to contain all the searched patterns of the training database.
The neural network used is an 18-layer 3D ResNet. Two values are obtained
at the output, one for each class. The highest value determines the predicted
label.

ROI, here it is a parallelepipedic bounding box that is calculated for each
fold of the cross validation.

In order to augment the training database, a rotation in a random di-
rection with a random angle (following a Gaussian distribution N (0, π40

2))
and a random translation (each coordinate following a Gaussian distribution
N (0, 22)) are applied successively to the volumes at each epoch.

Network architecture: Concerning the classification of 2D images, spec-
tacular progress has been made in the last decade. This is particularly
well illustrated by the ImageNet Large Scale Visual Recognition Challenge
(ILSVRC), which saw the emergence of several network architectures that
are now widely used for image classification. However, for the classification
of 3D images, there is currently no such challenge to assess the advantages
and disadvantages of several architectures. In the study (Hara et al., 2018),
the authors evaluate the performance of adaptations to 3D spatiotemporal
images of neural networks used for ILSVRC 2D image classification. Based
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on this study, the architecture of the 3D ResNet was chosen for our problem.
The parameters of the architecture used correspond to those of the initially
proposed 2D architecture (He et al., 2016), with 3D convolutional layers, a
single input channel and only 18 layers. The use of deeper networks did not
appear to improve the results for this study and was therefore not tested.
In order to be able to manage variable input volume size (since it depends
on the folds of the cross-validation), the adaptive average pooling proposed
by the Pytorch library (Paszke et al., 2017) is used.

Training: The weight initialization of the convolutional layers follows the
method described in (He et al., 2015), using a normal distribution. The
stochastic gradient descent with Nesterov momentum (Sutskever et al., 2013)
is used for training, with a batch size of 10 samples and a learning rate
and momentum determined by an 3-folds inner cross validation. The loss
function corresponds to the cross entropy loss, weighted by the inverse of the
number of samples of each class in the training database. The learning rate is
halved when the loss function has not improved for five consecutive epochs.
In accordance with the early stopping strategy, the training is stopped after
ten consecutive epochs without improvement. The selected neural network
corresponds to the epoch at which the balanced accuracy is the highest.

Ideally, in order to perform early stopping, part of the hemispheres in
the training set should be reserved to evaluate the performance of the neural
network at each epoch, and train on the others. In this study, in order to
maintain a training set of sufficient size during 3-folds inner cross-validation,
the validation fold is used to test the model at each epoch and the 2 others
folds are used for training.

4.3.3 Performance evaluation

The evaluation of the performance of the trained model was estimated us-
ing a double loop of Cross Validation (CV): one inner 3-folds CV loop to
select the best hyper-parameters and one outer 10-folds CV loop to evaluate
classification performances. Note that the strategies used to set the method
hyperparameters are detailed in the appendix. In order to define the folds
of the two cross-validations, special attention was paid to ensure that two
hemispheres of the same subject were not separated, one in the training set
and the other in the test set. In addition, the hemispheres were distributed
so that each fold contained approximately the same proportion of searched
patterns.

Balanced accuracy is used to evaluate the performance of each model
(Brodersen et al., 2010). This score is defined as the average of recall Rc
obtained on each class c:
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Rc =
TPc

TPc + FNc
(4.1)

with TPc and FNc, respectively the number of true positive and false neg-
ative samples.

In order to compare the models in pairs, a paired T-test was performed
between the balanced accuracy lists of each CV fold. If the pvalue is less
than 0.05, the models are considered significantly different.

In order to determine whether the average classification rate obtained is
significant or not, it is compared with chance, i.e. the classification obtained
with a Binomial distribution of success probability 0.5 and with a number
of samples corresponding to the number of hemispheres to be classified in
the database. Since this is an exact, two-sided test of the null hypothesis,
the pvalue can be divided by 2 as we test that the accuracy is superior to the
chance level.

Finally, a S score can be calculated for each model to assess its confidence
in the classification of a given hemisphere. For the SVM-based model, the
probabilities of presence/absence of a searched pattern is calculated accord-
ing to the procedure proposed in (Platt et al., 1999). The proposed S score is
the difference between these two probabilities. For the SNIPE-based model,
the value of the estimator is directly used as the S score. For the CNN-
based model, two scores are obtained at the output of the network, one for
each pattern. The S score used corresponds to the difference between these
two outputs. In order to determine whether the S score significantly distin-
guishes fold patterns, the Mann-Whitney test (Mann and Whitney, 1947)
is used. This test is complementary with the paired T-test comparing the
balanced accuracies obtained during the cross validation because the latter
does not take into account the confidence of the model in its classification.

4.4 Results

4.4.1 Which is the best model?

When analysing the balanced accuracy by model (Figure 4.9), we observe
that whatever the fold pattern studied, all models are better than chance
and that none of them is significantly better than the other ones. Thus, the
balanced accuracy of the ACC patterns classification is about 80% and that
of the PBS about 60%. Models therefore have more difficulty managing rare
patterns where the training database is limited and unbalanced.

Regarding the distribution of the S score (Figure 4.10) for PBS recog-
nition, the Mann-Whitney test indicates that, except for the CNN-based
model, the S scores significantly separate the hemispheres with and without
a searched pattern. Thus, the CNN-based model does not provide suffi-
ciently reliable scores to assist in the search for PBSs, while the other two
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Figure 4.9 – Balanced accuracies for the 10 folds of the cross-validation by
model. The SVM-based model is in red, the SNIPE-based model in blue
and the CNN-based model in green. The values of the balanced accuracies
obtained for each fold of the cross-validation were compared by matched
T-test. The pvalues obtained are indicated below the compared models. The
red stars above the models indicate that the model is better than chance
(one star for pvalue < 0.05, two for pvalue < 0.02, three for pvalue < 0.001).
The box extends from the lower to upper quartile balanced accuracy values,
with a line at the median. The whiskers extend from the box to show the
minimum and maximum values.

models can be used to find PBSs on a new database and enrich the cur-
rent training database. This application has been tested on the Human
Connectome Project (HCP) database.

4.4.2 Looking for PBSs

The three models proposed were trained on the whole training database by
fixing the hyperparameters thanks to a 3-folds cross validation. They were
then used to label the HCP database, containing 1023 subjects, i. e. 2046
hemispheres. In order to see if these methods can identify some PBSs on
this new database, the 9 hemispheres with the highest S score are examined
(Figure 4.11, 4.12 and 4.13). Note that we do not know the proportion
of PBSs in the healthy population, so it is difficult to estimate how many
PBSs are actually present in the HCP database. However, the three models
proposed make it possible to find some of them, which is already promising,
in particular for SVM and SNIPE-based models that allow to find more
PBSs than the CNN-based model. Indeed, the first two models identify
three PBSs out of the nine hemispheres examined, while the CNN-based
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Figure 4.10 – S score per model. The proportions of hemispheres with or
without the searched pattern are represented as a function of the S score
value. The proportions are stacked. The pvalue of the Mann-Whitney test
are indicated in the title of each graph. Note that only the pvalue of the
CNN-based model for PBS recognition is less than 0.05.

model identifies only one. Note that the three PBSs identified by the SVM-
based and SNIPE-based models are different. These methods therefore seem
to be complementary for PBSs research.

4.5 Conclusion

In this study, three methods were proposed for the automatic classification
of sulcal patterns. The first method uses the distances of the patterns of
the training database to the hemisphere to be classified to train a SVM.
The second method is based on the SNIPE patch classification approach
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Figure 4.11 – Looking for PBSs with the SVM-based method. The hemi-
spheres presented are those with the highest S scores on the HCP database
(score decreasing in the reading direction). Hemispheres with a PBS, or an
intermediate pattern, are zoomed. The right hemispheres are flipped for this
image.

proposed by Coupé et al. (2012). The third method uses an 18-layer 3D
recurrent neural network.

For the recognition of ACC patterns, the three proposed models have
equivalent labeling performance, with a balanced accuracy of about 80%.
However, the fastest model to apply is by far the one based on CNN. For
PBS recognition, all three models also have equivalent labeling performance,
with a balanced accuracy of about 60%. This score is still insufficient to carry
out large-scale morphological studies. However, the models provide scores to
assess their confidence in the proposed labeling. Except for the CNN-based
model, these scores significantly distinguish between hemispheres with and
without PBS. Thus, the use of these scores facilitates the enrichment of the
training database by searching for PBSs on a new database, which should
lead to an improvement in the classification scores of current models.

In conclusion, the proposed models are promising and have the potential
to extend and confirm morphological studies on larger databases in order to
better understand the links between sulcal shapes and functional organiza-
tion of the cortex. In fact, even if they have difficulty managing unbalanced
training databases, they can still be used to enrich the training database at
a lower cost.
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Figure 4.12 – Looking for PBSs with the SNIPE-based method.

Figure 4.13 – Looking for PBSs with the CNN-based method.
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In order to improve the current performance of the proposed models,
one possible approach would be to train a 2D neural network from the
surface projections of the folds on a 2D image representation. Indeed, 2D
networks are easier to train than 3D networks, thanks to their reduced
number of parameters to learn. The difficulty of such an approach would
be to determine an optimal way to project the folds on a surface, without
excessively distorting the patterns. Such projections have recently been
proposed for sulci recognition using a 2D CNN (Parvathaneni et al., 2019).
Once this step is completed, it opens the way to many promising neural
network architectures that have already proven their worth in 2D image
classification, such as for the ImageNet challenge (Russakovsky et al., 2015).

However, classification of local patterns is sometimes difficult to carry
out because of the continuity between the different configurations. For this
reason, in the study of ACC patterns, some subjects were excluded from the
study due to a lack of consensus on their labeling. Similarly, different lev-
els of PBS presence were used when labeling them. Also, some approaches
prefer to use manifold based techniques to better represent the continuity
between two extreme configurations (Sun et al., 2012, 2016). Nevertheless,
these approaches are based on the prior labeling of the structures of interest,
which is difficult to obtain for patterns absent in at least half of the pop-
ulation and as difficult to delimit as the paracingular sulcus and the PBS.
Similarly, however, it would be interesting to predict a score for the pres-
ence of these patterns rather than attempt to distinguish them into separate
groups.
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Appendix

OPM algorithm adaptation

In this section, I focus only on the adaptations made in comparison to the
Optimized Patch-Match (OPM) algorithm presented in (Ta et al., 2014).
These adaptations are due to the fact that only patches whose central voxel
belongs to the fold skeleton are considered. The information presented here
is insufficient to understand how OPM works. Please refer to (Ta et al.,
2014; Giraud et al., 2016) for more information.

The OPM algorithm itself is an adaptation of the PatchMatch (PM)
algorithm. The PM algorithm aims to assign to each patch of an image A, a
patch similar to it in an image B. For this, it is based on the fact that given
a patch pA(x, y) in image A that matches well with a patch pB(x′, y′) in
image B, then there is a good chance that the patches adjacent to pA(x, y)
match well with the patches adjacent to pB(x′, y′). The OPM algorithm
allows to adapt this algorithm to the segmentation of 3D anatomical images
by no longer searching for the correspondences of the patches of image A
with an image B but with an atlas library and by constraining the search
for patches, thanks to a rough alignment between the anatomical images.

OPM first includes a constrained initialization, followed by a propagation
and a random search step performed iteratively to improve patch matching.
In our case, propagation and random search steps are done three times.

• Constrained initialization: During constrained initialization, for
each voxel of the skeleton to be labeled, we want to randomly asso-
ciate a patch of the database whose central voxel is located around
its position in MNI space. To do so, an atlas is randomly selected in
the atlas library. Then, a voxel is randomly selected from the skele-
ton voxels of the selected atlas included in a window of 14 mm side
drawn around the position of the voxel to be labeled. However, a
problem arises if no sulcus is present in this area. To remedy this, the
search window is increased by one millimeter until at least one voxel
belonging to a sulcus is found.

• Propagation step: During the propagation step, we try to improve
the patch matches of each skeleton voxel by testing whether the at-
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lases associated with its adjacent voxels provide better matches (Figure
4.14). Let sA be a voxel to be labeled of the SA skeleton and s′A one
of its adjacent voxels, associated with the s′B voxel of the SB skele-
ton. We then look for the voxel sB closest to the position adjacent to
s′B where the voxel sA would be located relatively to s′A. The patch
around sB is then compared to the patch around sA to see if it allows
a better match.

• Constrained random search: During the constrained random search,
we randomly select a skeleton voxel in the matched image within a de-
creasing window (42mm, 22mm, 10mm, 6mm) to see if it provides a
better match.

Since the compared patches are binarized volumes and not grayscale
images, the distance to be minimized is different from that used in (Ta et al.,
2014). The following distance d between two patches P (SA) and P (SB),
respectively belonging to the fold skeletons SA and SB (superimposed by a
simple translation) is used:

d(P (SA), P (SB)) =
d(P (SA)→ SB) + d(P (SB)→ SA)

2
(4.2)

The measurement from a patch P (SA) to a fold skeleton SB corresponds
to the average of quadratic Euclidean distances dE of the skeleton voxels
pA ∈ P (SA) and their nearest neighbor in the fold skeleton SB (Figure
4.15):

d(P (SA)→ SB) =
1

|P (SA)|
∑

pA∈P (SA)

min
pB∈SB

[d2E(pA, pB)] (4.3)

Note that, in order to avoid border effects, the closest neighbor of pA is
searched in the entire skeleton SB and not only among the skeleton voxels
contained in the patch P (SB).

Hyperparameters

In order to set the hyperparameters, a 3-folds inner cross validation is per-
formed. The procedures for selecting hyperparameter values for each method
are described below.

SVM-based model Three hyperparameters are fixed by grid search:
the translations used to optimize the registration and the γ/C parameters
of the SVM classifier corresponding respectively to the kernel coefficient and
the penalty parameter of the error term.

Concerning the first hyperparameter, several translations are indeed ap-
plied to the patterns to be registered from their position in the MNI space.
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Each of these translations allows to test a new initialization before ap-
plying the ICP algorithm. Three translation amplitudes are considered,
A = [5], A = [10] and A = [20], as well as the combinations A = [5, 10] and
A = [10, 20]. All translations [tx, ty, tz] with (tx, ty, tz) ∈ (−A∪ [0]∪A)3 are
tested. The A amplitudes leading to the best results in inner cross-validation
are selected. Concerning the classifier parameters, the values [0.0001, 0.001,
0.01, 0.1] are tested for the γ parameter and [0.1, 1, 10, 100, 1000] for the
C parameter.

In Figure 4.16, we observe that the balanced accuracies obtained for
each hyperparameter are relatively stable between the cross-validation folds
for ACC pattern recognition. They are much more variable regarding the
detection of PBS, which is probably due to the small and unbalanced training
database used.

SNIPE-based model Three hyperparameters are estimated using grid
search: number of approximate nearest neighbors selected (5, 10, 15, 20, 25,
30), patch sizes (18, 26 or 34mm) and their combinations (all combinations
of 1, 2, and 3 different patch sizes are tested). Note that two OPAL param-
eters were set a priori: the size of the search window at 14*14*14 mm and
the number of iterations of the propagation and random search steps at 4.

In Figure 4.17, we observe that the balanced accuracy increases globally
with the number of approximate nearest neighbours. This trend is partic-
ularly marked for the recognition of ACC patterns. Regarding patch sizes,
small 18 mm patches seem more appropriate for PBS detection, while it is
the combination of 18 mm and 26 mm patches that allows better recognition
of ACC patterns.

CNN-based model In order to choose the hyperparameters (learning
rate and momentum), several cross-validation loops are performed in turn to
adjust the hyperparameters one after the other. First, the momentum is set
at 0.9 and the learning rates 1e-2, 1e-3 and 1e-4 are tested in turn. Second,
once the learning rates have been tested on all inner cross-validation folds,
the learning rate is refined around the value lr that obtained the best ESI :
the values lr/4, lr/2, lr ∗ 2 and lr ∗ 4 are tested in turn. Finally, the best
learning rate obtained is then tested with momentum 0.8, 0.7 and 0.6 to
select the best value. We have chosen not to test values above 0.9 in order
to reduce the risk of divergence due to excessive gradient memory.

In Figure 4.18, we observe that the values of the selected hyperparam-
eters are quite variable, especially for momentum. In order to limit this
variability, which probably impacts the results obtained, it would be neces-
sary to test with a larger training database.
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Figure 4.14 – Propagation step of the OPM algorithm adapted to our ap-
plication. This step concerns the purple voxel sA of the fold skeleton SA.
Its adjacent voxels are selected (grey or black voxels). Each of them is as-
sociated with a patch of one of the fold skeletons in the atlas library. For
example, the black voxel s′A is associated with the patch around the voxel
s′B of the skeleton SB. In order to find the voxel sB, whose patch will be
compared to the sA patch, we first search for the position adjacent to s′B
where the voxel sA would be located relatively to s′A (purple arrow). Then,
we search for the voxel closest to this position (blue arrow).
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Figure 4.15 – Calculation of the distance from the patch P (SA) to the patch
P (SB). The grey voxel represents the central voxel of the patch P (SA) which
is superposed with a voxel of the skeleton SB. For each voxel pA ∈ P (SA),
we look for its closest neighbor among the voxels of the skeleton SB. The
Euclidean distance between these two voxels is calculated. The distances
over all the points pA ∈ P (SA) and their nearest neighbors are then averaged
to obtain d(P (SA)→ SB).
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Figure 4.16 – Hyperparameters values for the SVM-based model. The graphs
on the left correspond to the recognition of ACC patterns and the graphs
on the right correspond to that of the PBS. Each graph corresponds to
new amplitudes A of the translations tested for ICP initialization. The
amplitudes A are indicated in the graph title. Each color corresponds to
a different γ value (see legend on the first graph), while on the abscissa is
the C values tested. Note that for the last two hyperparameters, the values
indicated correspond to the power of 10 of the true tested value in order to
facilitate visualization.



66 Automatic recognition of local patterns of cortical sulci

Figure 4.17 – Hyperparameters values for SNIPE-based model. The upper
graph corresponds to the recognition of ACC patterns while the lower graph
corresponds to the PBS recognition. During inner cross-validation, the hy-
perparameters are set using a grid search to select values that maximize the
average balanced accuracy. The number of approximate nearest neighbors
was set between 5 and 30. The patch sizes tested were 18, 26 and 34mm.
All possible combinations of these patch sizes are represented in a different
color (see the legend at the top graph). The box extends from the lower to
upper quartile error values, with a line at the median. The whiskers extend
from the box to show the minimum and maximum values.
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Figure 4.18 – Hyperparameters values for CNN-based model. The learning
rate is represented in red and the momentum in blue. Each graph represents
the number of times each tested value is selected. As an external cross
validation of 10 folds is done, the values can be selected up to 10 times.



68 Automatic recognition of local patterns of cortical sulci



Chapter 5

Automatic labeling of
cortical sulci

Abstract

The extreme variability of the folding pattern of the human cortex makes the
recognition of cortical sulci, both automatic and manual, particularly chal-
lenging. Reliable identification of the human cortical sulci in its entirety,
is extremely difficult and is practiced by only a few experts. Moreover,
these sulci correspond to more than a hundred different structures, which
makes manual labeling long and fastidious and therefore limits access to
large labeled databases to train machine learning. Here, I compare two
novel approaches to address this issue: patch-based Multi-Atlas Segmen-
tation (MAS) techniques and Convolutional Neural Network (CNN)-based
approaches. Both are currently applied for anatomical segmentations be-
cause they embed much better representations of inter-subject variability
than approaches based on a single template atlas. However, these meth-
ods typically focus on voxel-wise labeling, disregarding certain geometrical
and topological properties of interest for sulcus morphometry. Therefore, I
propose to refine these approaches with domain specific bottom-up geomet-
ric constraints provided by the Morphologist toolbox, a widely used sulcus
recognition toolbox included in the BrainVISA package. These constraints
are utilized to provide a single sulcus label to each topologically elementary
fold, the building blocks of the pattern recognition problem. To eliminate
the shortcomings associated with the Morphologist’s pre-segmentation into
elementary folds, this regularization scheme is complemented using a top-
down perspective which triggers an additional cleavage of the elementary
folds when required. All the newly proposed models outperform the current
BrainVISA/Morphologist model, the most efficient being a CNN U-Net-
based approach which carries out sulcus recognition within a few seconds.
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Figure 5.1 – Illustration of cortical folds variability. The manual labeling of
the three right hemispheres represented here shows the variability of cortical
sulci by their shape, size, and position.

The work presented in this chapter has been submitted to Medical Image
Analysis as Automatic labeling of cortical sulci using patch- or CNN-based
segmentation techniques combined with bottom-up geometric constraints, L.
Borne, D. Rivière, M. Mancip, J.-F. Mangin.

5.1 Introduction

The surface of the brain is divided into many convolutions, called gyri, de-
limited by folds, called sulci. The main sulci are considered as the limits
between functionally and architecturally different regions. Additionally, cor-
tex morphometry is used to quantify brain development and degenerative
diseases. Despite the many tools available for 3D visualization of sulci, sulci
labeling is a long and fastidious process. It takes several hours for an expert
to label all sulci in a single brain and reliable labeling requires the opinion of
several experts. However, because of the large variability of the folding pat-
tern in the general population, inferring developmental biomarkers requires
the mining of data from a large number of brains. Therefore, automation of
the sulcus recognition is essential.

Nevertheless, learning to label sulci is an extremely complex challenge for
several reasons. First, as illustrated in Figure 5.1, sulci are highly variable
structures, some sulci are even absent in more than 70% of brains. Addi-
tionally, each brain contains more than 120 different sulci and only a small
number of segmentation algorithms are made for as many structures. More-
over, the average size of sulci can vary from a simple to a hundredfold, from
one sulcus to another, thus, the problem is particularly unbalanced. Finally,
the number of manually labeled subjects which can be used for supervised
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learning is limited.

5.1.1 Overview of automatic sulci recognition methods

Algorithms dedicated to automatic sulci recognition are primarily based on
graphical representations, which represents the relative positions of the sulci
with respect to each other, as well as their position and their location in a
standardized space (Royackkers et al., 1999; Riviere et al., 2002; Vivodtzev
et al., 2006; Shi et al., 2007; Yang and Kruggel, 2009; Blida, 2014). To ensure
their robust recognition, other methods have previously been experimented
with to model inter-subject variability using several frameworks ranging
from principal component analysis to Bayesian approaches (Lohmann and
Von Cramon, 2000; Behnke et al., 2003; Fischl et al., 2004; Perrot et al.,
2011). All of these methods are based on a segmentation algorithm followed
by a classification algorithm, in which the sulci are first extracted, according
to different representations, then labeled. In this thesis, the sulci are ex-
tracted by the BrainVISA/Morphologist pipeline and several labeling meth-
ods are compared. The new approaches presented are compared with the
approach proposed in the BrainVISA/Morphologist package (Perrot et al.,
2011), referred as the Statistical Probabilistic Anatomy Map (SPAM) ap-
proach in this thesis.

5.1.2 New approaches: MAS and CNN

Among the segmentation methods for biomedical applications, multi-atlas
segmentation (MAS) and convolutional neural networks (CNNs) are among
the most widely used today.

MAS techniques, initially introduced by Rohlfing et al. (2004) approxi-
mately fifteen years ago, use each manually segmented image as an atlas: the
atlases are adjusted to the image to be segmented and the best matches are
used to participate in the segmentation. Thus, MAS techniques make it pos-
sible to more accurately represent anatomical variability by not attempting
to model a segmentation problem using an average model. These techniques
are now widely used, but have a major disadvantage: the registration of the
atlases to the images is particularly expensive.

Among the many variations of these techniques, the patch-based ap-
proach (Coupé et al., 2011; Rousseau et al., 2011) inspired by the non-local
means method (Buades et al., 2005) have particularly attracted our atten-
tion. By using a patch-based search strategy to identify matches with the
atlases, the image no longer needs to be aligned globally with all the atlases
via expensive non-linear registration. Thus, the registration and selection of
matching patches can be particularly accelerated thanks to the Optimized
PatchMatch algorithm, (Ta et al., 2014; Giraud et al., 2016) based on the
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PatchMatch algorithm (Barnes et al., 2009) adapted to segmentation of 3D
images.

Inspired by these approaches, we propose two algorithms for cortical
sulci recognition. The first is directly inspired by Romero et al. (2017a)
where each patch is a cube in the image to be segmented. With regards
to the second algorithm, we propose a new patch generation strategy based
on a high level representation of the sulci, as the standard way of extract-
ing patches does not seem capable optimally exploiting the sulci geometry
and the relations between them, which we believe to be the discriminative
features for their recognition. These two algorithms will be designated re-
spectively by PMAS (for Patch-based MAS) and HPMAS (for Patch-based
MAS with High level representation of the data).

The CNNs were initially developed to address problems in image classi-
fication and are now renowned for their formidable effectiveness in dealing
with numerous computer vision problems. These techniques allow effective
image analysis by learning an abstract representation of the image. Concern-
ing segmentation problems, the first approach was proposed approximately
ten years ago by Ciresan et al. (2012) where a neural network was trained to
classify each voxel of the image to be segmented from its surrounding patch.
Since then, new approaches allow the entire image segmentation using fully
convolutional neural networks, such as the one initially proposed by Long
et al. (2015) and dedicated to semantic segmentation. Concerning segmen-
tation problems in medical imaging, the most commonly used architecture
is the U-Net, which was initially proposed by Ronneberger et al. (2015) and
whose adaptation to 3D images was proposed in (Çiçek et al., 2016; Milletari
et al., 2016). Here, we propose to compare two approaches based on CNNs.
The first is inspired by Ciresan et al. (2012), adapted to address problems
associated with 3D imaging. The second uses the 3D U-Net architecture
proposed in (Çiçek et al., 2016). These two approaches will be called PCNN
(for Patch-based CNN) and UNET, respectively.

To the best of our knowledge, despite their current popularity, no MAS
or CNN-based approach has yet been proposed for cortical sulci recognition.
Note that these two approaches are generally used to segment the entire
image while in this study only the presegmented folds need to be labeled,
requiring several adjustments in the proposed models.

5.1.3 Bottom-up geometric constraints

There is no guarantee that the geometric definition of a sulcus, as a set of
topologically simple surfaces, is respected in the case of MAS and CNN-
based methods described above. This is particularly disadvantageous for
morphometric studies whose measurements are based on the definition of
sulci. To remedy this, the BrainVISA/Morphologist pipeline provides an
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algorithm for bottom-up aggregation of voxels into elementary folds, which
are the geometric building blocks of the problem. Once the voxels have been
labeled by one of the methods proposed above, it is possible to regularize
the results at the scale of the elementary folds. However, the upstream
extraction of the elementary folds may sometimes be inaccurate. Although
from the same MRI, vastly different fragmentations can be obtained because
of stochastic optimizations embedded in the pipeline. This was previously
a problem in the SPAM model proposed in (Perrot et al., 2011), which uses
the same geometric entities to perform recognition, but is not capable of
automatically re-dividing the elementary folds.

In this thesis, we propose to use voxel-wise labeling to give a top-down
perspective to a traditional bottom-up pattern recognition system. Thus,
the initial cutting into elementary folds proposed by BrainVISA/Morphologist
is challenged by voxel-wise labeling, eliminating under-segmentation errors
in the model. The proposed approach is particularly robust to the spatial
inconsistencies that can occur during voxel labeling and to the potential
incorrect definition of upstream geometric entities.

5.2 Database

The training base is composed of 62 healthy brains selected from different
heterogeneous databases and labeled with a model containing 63 sulci for
the right hemisphere and 64 for the left hemisphere. The ”unknown” label
is used to designate unidentified structures (usually small sulci). Most of
the subjects are right-handed men, aged 25 to 35 years old. Compared to
(Perrot et al., 2011), where 62 sulci were considered for the right hemisphere
and 63 for the left hemisphere, the same MRI acquisitions were used but
the sulci were re-labeled: four new sulci were used and the two ventricles
were labeled but not considered as sulci anymore, which is why 63 sulci are
considered for the right hemisphere and 64 for the left in this thesis.

Unfortunately, there is no gold standard for the sulci nomenclature. Even
the boundaries of the well-known central sulcus can be indistinguishable
from one nomenclature to another (Figure 5.2). Therefore, for this study,
the elementary folds of each brain were manually labeled according to a
sulcus nomenclature following a long iterative process to achieve a consensus
across a panel of several experts on cortex morphology. The last iteration
of the database labeling was performed using the TileViz visualization tool
(Mancip et al., 2018). This tool allows the entire database to be visualized
and labeled simultaneously on a wall of screens (Figure 5.3). Until now it
was only possible to label and simultaneously evaluate a limited number of
hemispheres, generally four, on a standard screen. Thus, this tool helps to
limit the bias of labeling induced by a restricted view of the database. To
support this new iteration, the elementary folds were manually cut when
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Figure 5.2 – Where should the central sulcus end? The folds that may
belong to the central sulcus are shown in red. Limits 1 or 2 could be selected
according to the nomenclature used.

necessary, which was not possible during the study of Perrot et al. (2011).

Note that compared to traditional labeling approaches where only one
expert can label images, this database has been progressively labeled by
several experts, both successively and simultaneously. This consensus-based
labeling has sometimes led to the introduction of new sulci labels when it was
considered necessary, making it essential to use the screen wall. However,
the different experts have thus not produced independent labelings, which
prevents us from assessing human-level performance on this dataset.

The new nomenclature used is described in the Figure 5.4. A more
detailed description is provided in the following appendix section. The
manually labeled database is now available on the BrainVISA website
(http://brainvisa.info/data/sulci database/base 62/2019 ).

5.3 Method

In this study, sulci labeling from an MRI is described in three steps (Fig-
ure 5.5). First, the folds are segmented from the MRI using the Brain-
VISA/Morphologist pipeline. Second, they are labeled using different algo-
rithms. Third, the agglomeration of the voxels into elementary folds pro-
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Figure 5.3 – Wall of screens of the Maison de la Simulation during a labeling
session using the TileViz visualization tool. Fortunately, due to this wall of
screens, brains can be visualized, moved/turned/zoomed all together, which
allows to label them by checking the coherence with the entire database.

posed by the BrainVISA/Morphologist pipeline is used to regularize the
results.

Note that the strategies used to set the method hyperparameters are
detailed in the appendix.

5.3.1 Folds representation

Thanks to the BrainVISA/Morphologist pipeline (www.brainvisa.info), a
widely used resource for studying cortical anatomy, the folds are represented
by a set of voxels corresponding to a skeleton of the cerebrospinal fluid fill-
ing the fold. The representation of the folds, therefore corresponds to a
negative mold of the brain. Once the fold skeleton has been segmented,
the BrainVISA/Morphologist pipeline also proposes to fragment it into ele-
mentary folds based on topological and geometric constraints specific to the
sulci’s definition. This fragmentation is first based on the topological char-
acterization of a simple surface proposed by Malandain et al. (1993) which
isolates surface pieces that do not include any junction. The skeleton is also
fragmented at the level of the buried gyri (Figure 5.6).

The skeleton representation has three main advantages. First, this 3D
representation is essential during manual labeling because it allows the vi-
sualization of the relative position of the sulci between each other and the
evaluation of their depth, size, etc. Additionally, the agglomeration of the
voxels into elementary folds makes it possible to speed up labeling by giving
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Figure 5.4 – New nomenclature used to label sulci. The visualization of
the sulci labels is done thanks to the SPAM representation used by Perrot
et al. (2011) which averages the position of the sulci as probability maps
that are thresholded for this image. The new nomenclature includes 63
labels for the right hemisphere and 64 for the left hemisphere. Only the
left hemisphere is represented in this figure. The right hemisphere has the
same labels except the S.GSM. label. Compared to (Perrot et al., 2011), two
new sulci are labeled (S.intraCing. and S.R.sup.). The ventricle label does
not correspond to a sulcus label, but belongs to the fold skeleton extracted
by the BrainVISA/Morphologist toolbox. Only the ”unknown” label is not
shown in this figure. Please refer to the appendix for English translations
of each label.
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Figure 5.5 – MRI to labeled cortical sulci: a three-step pipeline. First,
the fold skeleton is extracted using the BrainVISA/Morphologist toolbox.
This toolbox also makes it possible to fragment the skeleton into elementary
folds. Second, skeleton voxels are labeled by different algorithms. Algo-
rithms based on MAS techniques (PMAS, HPMAS) and CNN-based algo-
rithms (PCNN, UNET) label each skeleton voxel while the SPAM algorithm
directly labels the elementary folds. Third, voxelwise labeling is regularized
through the elementary folds, while automatically re-dividing them when
the labeling indicates that it is required.

Figure 5.6 – Schematic representation of the fold skeleton. The fragmenta-
tion into elementary folds isolates the internal and external branches and
cuts the skeleton at the level of the buried gyri. Image taken from Riviere
et al. (2002).
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a label to a set of voxels rather than individually. Second, as the data are
particularly influenced by the type of MRI sequence, the age of the subjects
(which has a significant impact on the opening of the sulci) or even their
pathologies, this pre-processing enables optimal normalization of the data.
Moreover, the algorithm can focus on labeling only after its segmentation.
Finally, this representation has previously been used in other pipelines, mak-
ing it possible to automate the calculation of measurements (depth, length,
connectivity, etc.) used in morphometric studies or to realign the brains
according to the major sulci (Auzias et al., 2011, 2013), which is why we
have chosen to keep it. However, if we had chosen to construct a model to
recognize the sulci, that carries out both their extraction and labeling with-
out relying on this representation, it was highly probable that the results
obtained would not conform to the representation used by these pipelines
and that some significant post processing steps would be necessary.

Although the extraction of the fold skeleton is robust, its fragmentation
into elementary folds demonstrates certain significant instabilities, such as
vastly different fragmentations can be observed from the same MRI (Figure
5.7). Several stochastic optimizations were included in the segmentation
pipeline (e. g. for bias correction, brain masking, skeletonization, etc.).
These optimizations only have a slight impact on the shape of the resulting
fold skeleton. However, for the topological fragmentation into elementary
folds, a single voxel can then make the difference. Thus, these stochas-
tic optimizations can have important consequences on the fragmentation of
large simple surfaces. To remedy this, during manual labeling, the folds
were cut manually when necessary. During automatic labeling, we propose
a technique to automatically re-divide elementary folds when the labeling
algorithm allows it.

5.3.2 Labeling methods

The methods described below seek to automatically label the voxels of the
fold skeleton. Among the possible labels, while most correspond to corti-
cal sulci, three other labels are used: those corresponding to the right and
left ventricles and the ”unknown” label. According to the methods pre-
sented here, the ventricles are treated as sulci, as they are relatively stable
anatomical structures of the brain negative mold. However, the ”unknown”
label, corresponding to voxels that do not belong to any of the other labeled
structures, must be treated differently in some cases.

5.3.2.1 Statistical Probabilistic Anatomy Map (SPAM) models

In this comparative study, the reference method corresponds to the one de-
scribed in (Perrot et al., 2011), where they propose a coherent Bayesian
framework to automatically identify sulci based on a probabilistic atlas (a
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MRI

2 DIFFERENT SEGMENTATIONS

1 elementary fold 2 elementary folds

Figure 5.7 – Extraction of the elementary folds from the same MRI. In
the two lower brains, each color represents a different elementary fold. We
observed that the skeleton extraction is visually stable, but its division into
elementary folds can produce very different results.

mixture of SPAM models) estimating simultaneously normalization param-
eters. This method, currently available in the BrainVISA/Morphologist
pipeline, has been widely used on very large databases for large-scale mor-
phometric studies (Le Guen et al., 2019). However, labeling errors are still
too important to allow some studies to be reproduced. We believe that this
is due to the fact that the SPAM models excessively generalize the high
variability of sulci. Each sulcus can have several configurations, which may
prove difficult to represent with a single average model.

5.3.2.2 MAS approaches

Two MAS approaches, PMAS and HPMAS, are compared in this section.
The first approach is largely inspired by the one proposed in (Romero et al.,
2017a) in which, unlike most MAS approaches, to similar atlases are searched
between two cubic patches, instead of two full images. The second MAS al-
gorithm presented here, and described in (Borne et al., 2018), aims to define
a library of local patches embedding enough geometrical information to min-
imize ambiguities when searching for a high similarity hit in the unknown
subject morphology. Therefore, instead of taking native cubic patches, this
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Figure 5.8 – Comparison of MAS approaches: PMAS vs. HPMAS. First of
all, the patches are designed. Second, they are transferred to a new image
to be labeled, where the fold skeleton has been extracted. Third, the best
matches were selected and patch labels were propagated on the image to
be labeled. Finally, the propagated labels are used to calculate the label
score maps. In order to make the figures as readable as possible, we have
chosen to represent the images in 2D while they are processed in 3D. All
images are represented in 2*2*2 mm resolution, while for HPMAS, images
are processed with the acquisition resolution. The acronym ANNs refers to
the Approximate Nearest Neighbors patches obtained by the multiple run
of the Optimized PatchMatch (OPM) algorithm.

algorithm builds virtual patches containing whole sulci.

These two approaches are described in four steps: first, the design of the
patches (patch generation), second, the strategy of realigning the patches be-
tween them and selecting the best matches (registration), third, the strategy
of propagating the labels from the patch to the brain to be labeled (label
propagation) and finally the combination of the labels of the propagated
patches (label fusion) (Figure 5.8).

Patch-based MAS approach (PMAS)

Patch generation The patches are extracted from images with a res-
olution of 2*2*2 mm, containing the fold skeleton that has been relocated
in the well-known MNI space (Collins et al., 1994), which aligns the rough
shapes of the brains through an affine transformation.
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We chose to take into account only the patches with the central voxel
belonging to the fold skeleton for two main reasons. First, it limits the
number of patch matches that require optimization as the voxels belonging
to the skeleton represent only a small part of the image’s voxels. Second,
since the patches are extracted from binarized images, the calculation of the
distance between two patches can be successful only if the patches contain
a minimum number of skeleton voxels.

As in (Giraud et al., 2016), we adopted a multi-scale approach, which
involves the independent use of several patch sizes (determined by inner
cross validation), to produce several score maps per label, which are then
averaged.

Registration In order to find the most similar set of patches, we aimed
to optimize the following distance d between two patches P (SA) and P (SB),
respectively belonging to the fold skeletons SA and SB (superimposed by a
simple translation):

d(P (SA), P (SB)) =
d(P (SA)→ SB) + d(P (SB)→ SA)

2
(5.1)

The measurement from a patch P (SA) to a fold skeleton SB corresponds
to the average of quadratic Euclidean distances dE of the skeleton voxels
pA ∈ P (SA) and their nearest neighbor in the fold skeleton SB (Figure 5.9):

d(P (SA)→ SB) =
1

|P (SA)|
∑

pA∈P (SA)

min
pB∈SB

[d2E(pA, pB)] (5.2)

Note that, in order to avoid border effects, the closest neighbor of pA is
searched in the entire skeleton SB and not only among the skeleton voxels
contained in the patch P (SB).

Realigning and comparing all the patches in the database for each skele-
ton voxel to be labeled would be extremely expensive, making it impossible
to label within a reasonable time. Additionally, it would increase the prob-
ability of spurious matching between remote areas in the brain while the
images are already roughly aligned with each other. It is important to note
that because we use binarized images, the risk of obtaining false positives is
higher than usual.

In (Romero et al., 2017a), the Optimized Patch Match Label fusion
(OPAL) (Ta et al., 2014; Giraud et al., 2016) was used. This segmentation
method is based on the Optimized PatchMatch (OPM) algorithm which uses
a cooperative and random strategy resulting in a very low computational
burden. Compared to the PatchMatch algorithm (Barnes et al., 2009) from
which it is inspired, OPM is adapted to 3D anatomical segmentation by
taking into account the rough alignment of images. Here, as only patches
with the central voxel belonging to the fold skeleton are considered, an
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Figure 5.9 – Calculation of the distance from the patch P (SA) to the skeleton
SB for the PMAS method. The grey voxel represents the central voxel of the
patch P (SA) which is superposed with a voxel of the skeleton SB. For each
voxel pA ∈ P (SA), we look for its closest neighbor among the voxels of the
skeleton SB. The Euclidean distance between these two voxels is calculated.
The distances over all the points pA ∈ P (SA) and their nearest neighbors
are then averaged to obtain d(P (SA)→ SB).

adapted version of the OPM algorithm has been implemented. Please refer
to the appendix of the previous chapter for more details.

Label propagation In order to select several Approximate Nearest
Neighbors (ANNs) patch per skeleton voxel for a given patch size, multiple
independent OPM were launched. The number of ANNs to be selected is
determined by inner cross-validation. Once the ANNs have been selected,
all the voxels of each ANN patch participates in the labeling, as done in
(Rousseau et al., 2011; Giraud et al., 2016). However, there are only a
few voxels belonging to the skeleton of the patch that overlap with the
skeleton voxels to be labeled. Thus, we propose to propagate the label of
each skeleton voxel of the patch to its nearest neighbor in the skeleton to be
labeled.

Label fusion As in (Romero et al., 2017a), the non-local patch-based
label fusion is used. In this strategy, the distance between patches is used
to perform a robust weighted average of the labels. Once the non-local
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means estimator has been calculated for all patch sizes, the final estimation
is obtained by averaging these estimations thanks to a late fusion (Snoek
et al., 2005). Thus, a score map is estimated for each label in the database.

Concerning the ”unknown” label, present in the manually labeled database,
it is treated like a sulcus label.

Patch-based MAS approach with High level representation of the
data (HPMAS) As the standard way of extracting patches does not seem
capable of exploiting the sulci geometry and the relations between them,
which we believe to be the distinguishing features necessary for recognition,
we have proposed a new virtual patch generation strategy based on a high
level representation of the sulci (Borne et al., 2018). This framework is well
adapted to leverage more information about the different folding configura-
tions in the training dataset.

Note that this method is the only one of the proposed new methods
to have been specifically developed for the recognition of cortical sulci. It
includes many arrangements specific to this application. Its complex de-
sign gives an idea of the scores that can be obtained by pushing as far as
possible in this direction. To facilitate the understanding of this ad-hoc
method, Figure 5.10 represents the pipeline in 3D, which complements the
2D representation provided in Figure 5.8.

Patch generation In order to take into account as much geometric
information as possible, the idea was to define virtual patches containing
whole sulci. Some sulci are however too large to be contained in a cubic
patch: it would then be too noisy. A virtual patch therefore only corresponds
to a set of extracted sulci for this method. Note that the shape of small sulci
is not specific enough to prevent spurious hits. Hence the we intended to
aggregate two sulci to create discriminative local shapes. In the following,
we define a type of virtual patches for each pair of sulci that are neighbors
in the brain, extracted from MNI space at the image resolution.

In practice, a pair of sulci is selected in the circumstance that the two
sulci are neighbors in at least one brain of the atlas dataset, according to the
topology provided by the BrainVISA/Morphologist pipeline that produces
the folds. This pipeline endows the list of folds with a graph structure
corresponding to either direct connections or to the fact that two folds are
separated by a piece of gyrus. Finally, each type is made up of the instances
of the pair of sulci in the atlas dataset, most of the time as many shapes as
atlases (some atlases miss a few small sulci) (Figure 5.10.1).

Note that only the unknown sulcus label is not selected to form virtual
patches, as it does not constitute a coherent structure like the other labels.
Thus, unlike the previous PMAS method, the unknown label is not treated
like other sulcus labels.
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Figure 5.10 – 3D representation of the HPMAS method. As for the Figure
5.8 which represents the method in 2D, the approach is described in four
steps: generating the virtual patches, registering them on the image to be
labeled, propagating the labels of the selected virtual patches and finally
merging the propagated labels to obtain the final labeling.

Registration For the registration step, the set of folds of the unknown
brain and the virtual patches of the library are represented by point clouds.
As in (Sun et al., 2012), we have applied the well-known iterative closest
points algorithm (Besl and McKay, 1992), with the robust implementation
of Holz et al. (2015), to find an optimal alignment of each virtual patch into
the skeleton point cloud of the unknown brain. Note that compared to the
PMAS approach which only uses translations to superimpose patches, the
registration here allows rotations.

To build the measure used to rank the matches, the nearest voxels in
the new fold skeleton SB of each skeleton voxel pA ∈ P (SA) are saved as
activated voxels p∗B ∈ S∗B,P (SA). Then, the measure corresponds to the sum
of the quadratic distances of the skeleton voxels and their corresponding
activated voxels, divided by the number of different activated voxels :

d(P (SA)→ SB) =
1

|S∗B,P (SA)|
∑

pA∈P (SA)

min
pB∈SB

[d2E(pA, pB)] (5.3)

Note that by dividing by |S∗B,P (SA)|, we take into account the number
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Figure 5.11 – Calculation of the distance from the virtual patch P (SA) to
the skeleton SB for the HPMAS method. For the sake of clarity, the skele-
tons SA and SB represented do not overlap in this Figure. For each voxel
pA ∈ P (SA), we look for its closest neighbor among the voxels of the skele-
ton SB. The Euclidean distance between these two voxels is calculated. The
distances over all the points pA ∈ P (SA) and their nearest neighbor are then
summed and divided by the number of different activated points p∗B to ob-
tain d(P (SA) → SB). The two configurations represented are penalized by
the division by the number of different activated points rather than by the
number of points in P (SA) as for a classical average. On the first configura-
tion, we observe that the proposed distance penalizes the virtual patch more
if its shape is more complex or if its size is larger than the structure on which
it has been registered. On the second configuration, we observe a greater
penalization of the virtual patch if it has only one connected component and
if it is registered on two different components.

of different activated points. This allows the penalization of virtual patches
where several points activate the same point of the skeleton to be labeled
(Figure 5.11).

With regards to each type of virtual patch, all matches are ranked ac-
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cording to the distance proposed above. A fixed number of matches (deter-
mined by inner cross-validation) leading to the shortest distances is selected
to propagate the two parent sulci. All types of virtual patches are selected
the same number of times even if they are not all equally informative. It
is important to note that some sulcus instances are selected several times,
because they win the competition for several virtual patch types, but their
multiple contributions will be associated with slightly different alignments.
Hence, sulcus instances maximizing regional similarity to the unknown sub-
ject get more weight.

Label Propagation Each selected virtual patch after the optimal
alignment to the unknown subject, concomitantly propagates the label of
each voxel to its nearest neighbor in the target brain. To consider the vir-
tual patch structure, each connected set of voxels in the virtual patch should
correspond to a unique connected set in the target brain: the smallest non-
connected sets are excluded (Figure 5.10.3).

Label Fusion Post complete propagation of all the proposed virtual
patches, the score maps are calculated by averaging the number of times
the points are activated by different virtual patches. Compared to PMAS,
where patches are weighted by their distance to the patch to be labeled,
here each propagated point has the same weight in the label fusion. It is
imperative that a distance should be determined that takes into account
both the distance from the virtual patch point to the point it has activated
and the distance from the entire virtual patch to the skeleton to be labeled.
We were unable to converge on an appropriate distance from the problem
at hand, so we chose to avoid weighting.

As the ”unknown” label does not belong to any virtual patch, its score
map is empty. This label will be selected only if the score maps of all other
labels are also empty for a given elementary fold.

5.3.2.3 CNNs based approaches

As this is the first time that 3D CNNs are used for sulci labeling, we take
inspiration from two models that have proven their efficacy in medical image
segmentation (Figure 5.12): the first being a patch-based approach inspired
by Ciresan et al. (2012) and the second an approach that treats the en-
tire image with a 3D U-Net as in (Çiçek et al., 2016). First the common
modalities used during training of these two networks are detailed followed
by an individual description of each network. The models presented are
implemented using the Pytorch library (Paszke et al., 2017).

Data All the fold skeletons are registered in MNI space and used as
input: they correspond to 3D binary volumes with a common resolution of
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Figure 5.12 – Comparison of CNN-based approaches: PCNN vs. UNET.
Boxes represent feature maps. The number of channels is denoted next to
each feature map. The size of the feature map is indicated after the @ when
appropriate. N is the number of different labels to be predicted. For clarity
sake, input and output are represented in 2D rather than 3D.

2*2*2mm, where the voxels belonging to the skeleton are one and the others
are zero. In order to augment the training dataset, a rotation in a random
direction with a random angle (following a Gaussian distribution N (0, π16

2))
is applied to the images at each epoch.

At the output of the neural network, a score per label present in the
database is obtained per voxel. Concerning the ”unknown” label, it is
treated like a sulcus label.

Training design Initialization of the weights of the neural networks
was done as in (LeCun et al., 2012). Stochastic gradient descent was used
for training, with learning rate and momentum determined by 3-folds inner
cross validation. The learning rate was halved when the loss function had not
improved for two consecutive epochs. After four consecutive epochs without
improvement, training was stopped. The selected trained neural network
corresponds to the epoch obtaining the lower error rate ESI , described in
(Perrot et al., 2011) and in the following section.

The loss function used is the cross- entropy loss. In most cases, for un-
balanced problems, the loss function must be weighted to avoid favoring the
labels most involved in backpropagation, due to their higher presence in the
database. Although the average size of each sulcus is extremely unbalanced,
we have chosen not to weigh this loss function because large sulci are also
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the most interesting from a neuroanatomical point of view and need to be
better recognized than small ones.

Patch-based model with a 3D CNN (PCNN) PCNN method adapts
the approach proposed in (Ciresan et al., 2012), addressing a segmentation
problem as a classification of each voxel based on its environment contained
in a patch. Here, only voxels belonging to the skeleton are selected to
participate in the classification.

We designed the architecture of the neural network so that it takes cubic
patches of 31 side voxels in input, i.e. about 6 cm side, which we considered
to be large enough to identify its central voxel. During training, the dropout
strategy (Srivastava et al., 2014) with a probability of 0.5 is used on fully
connected layers. Batch normalization (Ioffe and Szegedy, 2015) was also
used on convolutional and fully connected layers. The batch size has been
set at 100 to minimize learning time and fit in memory. In order to ensure
that the inner cross-validation is not too time-consuming, only three epochs
are calculated for each hyperparameter value tested.

3D U-Net based model (UNET) For the UNET method, the network
architecture used is largely inspired by the one presented in (Çiçek et al.,
2016). The particularity of this application of U-Net lies in the fact that all
the voxels that do not belong to the fold skeleton, i.e. a large majority of
the voxels in the image, do not need to be classified. Indeed, as the values
predicted by U-Net are masked by the segmentation of the fold skeleton
made upstream, the background voxels do not need to be predicted and
therefore do not need to be learned. Thus, during training, all voxels that
do not belong to sulci are not used for gradient backpropagation. The batch
size has been set at 1 in order to fit in memory.

5.3.3 Bottom-up geometric constraints

In order to standardize the results, the voxels were agglomerated into ele-
mentary folds. However, these folds are not always sufficiently fragmented,
so we propose to use the label score maps to reconsider their fragmentation.

The straightforward approach to regularize the results is to do a weighted
majority vote. The scores of each elementary fold were averaged by label and
the highest score label was selected. This strategy was used as a reference
to evaluate the impact of the automatic re-division of elementary folds.

In this thesis, we propose to re-divide the elementary folds with help of
the Ward’s hierarchical agglomerative clustering method (Ward Jr, 1963).
Clustering for each elementary fold was performed based on the label score
maps. In order to ensure spatial consistency, a spatial connectivity con-
straint was imposed during cluster agglomeration. Then, the Calinski-
Harabaz index (Caliński and Harabasz, 1974) was used to quantify the
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quality of the proposed clustering. This score corresponded to the ratio
of the between clusters dispersion mean and the within cluster dispersion.
The ratio was higher when clusters are dense and well separated. If this
score was higher than a threshold determined by inner cross validation, the
partitioning was performed. When an elementary fold was split in two, each
of the two clusters obtained were also challenged with the same manipula-
tion, until all the elementary folds had a Calinski-Harabaz index below the
threshold.

5.3.4 Performance evaluation of labeling models

As in (Perrot et al., 2011), two measures were used to compare the different
models proposed above: Elocal at the sulcus scale and ESI at the subject
scale. Error rates were assessed by 10-folds cross validation. One model was
trained per hemisphere.

5.3.4.1 Mean/max error rates

To take into account the variability of the fragmentation into elementary
folds and therefore the robustness of the labeling methods to this variabil-
ity, each image was re-segmented ten times (Figure 5.13). Thus, if the
image belonged to the training set, only the segmentation used for man-
ual labeling was considered. However, if the image belonged to the test
set, ten other segmentations (whose true labels have been transferred from
manual segmentation) were labeled and used to quantify the error rates.
Note that manual segmentation was not used to calculate error rates. Using
ten different segmentations for each sulcus highlights the weaknesses of the
BrainVISA/Morphologist preprocessing since we can compute errors from
the worst result, typically associated to an issue of under-segmentation.

To quantify errors, for each new segmentation, the manual labeling on
the initial segmentation must be transferred to the new one. Because of
the variability of the segmentations obtained and the sparsity of the fold
skeleton, the simple superposition of images was insufficient. To remedy
this, a Voronoi diagram of the training segmentation was used to label the
voxels of any other segmentation. Note that the elementary folds were not
used to transfer the labeling and that the true labeling was on the voxel
scale.

For each subject, from the ten segmentations, the average of the errors
(EmeanSI and Emeanlocal ) and the maximum error (EmaxSI and Emaxlocal) were calcu-
lated. Note that the training segmentation used for manual labeling was not
used in the error calculation because it would bias our evaluation. By con-
sidering the maximum error rates, labeling errors due to model variability
were highlighted. These errors in most models were related to an incorrect
fragmentation of the fold skeleton into elementary folds. Only the PMAS
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Figure 5.13 – Estimation of error rates taking into account the variability
of the fragmentation into elementary folds. Using the same MRI, several
different fold segmentations can be obtained because of stochastic optimiza-
tions embedded in the pipeline. In order to take this variability into account
in the calculation of error rates, ten segmentations are performed from each
image of the database. Then, a Voronoi diagram was used to propagate
manual labeling to the ten new segmentations. The labels obtained were
used to estimate the average and maximum error rate per image.

labeling model was not deterministic and includes stochastic optimizations
that can penalize the calculation of maximum error rates.

5.3.4.2 Error at the sulcus scale: Elocal

Given a sulcus l,

Elocal(l) =
FPl + FNl

FPl + FNl + TPl
(5.4)

with TPl, FPl and FNl, respectively the number of true positive, false
positive and false negative voxels for the sulcus l.

It is important to note that the error rate was one, when the sulcus was
absent and labeled by the model. Similarly, for when the sulcus was present
but not labeled by the model. As small sulci are frequently absent, this
explained why error rates can be highly variable when averaging the error
rates per subject.
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5.3.4.3 Error at the subject scale: ESI

Given a set of sulci L,

ESI =
∑
l∈L

wl ∗
FPl + FNl

FPl + FNl + 2 ∗ TPl
(5.5)

with wl = sl/
∑
sl and sl = FNl + TPl, the sulcus l true size.

The error at the subject scale allows local errors to be generated in a
single measurement. As explained in (Perrot et al., 2011), each component
of the sum over labels differs on two points compared to Elocal(l). First,
true positive measures are counted twice as compared to the false positive
and negative measures, in order to remove errors shared by several labels,
since each extra sulcal piece for a given label is a missing part for another
label. Second, each component was weighted according to the sulcus true
size so that each local component count as much as its size.

Compared to (Perrot et al., 2011), three labels were not included in
the set of sulci (unknown and both ventricles). These labels were not par-
ticularly considered as sulcus labels, but correspond to other structures,
not pertinent to our study. Thus, the scores presented here for the SPAM
method are worse than presented in (Perrot et al., 2011) for four reasons.
First, because removing the two labels considerably improved the scores.
Second, because we cut the elementary folds during manual labeling while
the SPAM model cannot automatically correct this kind of sub-segmentation
errors. Third, because we are interested in the mean/max of the error rates.
Finally, because the error rates are estimated by 10-folds cross-validation
and not by leave-one-out cross-validation. Moreover, the addition of the
four new sulci labels and our refined labeling of the training dataset may
also have impacted the results.

5.3.4.4 Error rate comparison

During the 10-folds cross validation, each fold contained approximately 6
hemispheres labeled to test the model’s performance. Error rates are calcu-
lated by hemisphere and then averaged over the entire database to obtain
the mean error rates per model. When not specified, the average error rate
includes the right and left hemispheres. In order to compare the models in
pairs, a paired T-test was performed between the error rate lists for each
hemisphere. If the p-value was less than 0.05, the error rates were considered
significantly different.
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5.4 Results

5.4.1 Which is the best model?

In order to compare the five models presented above, we were interested in
the EmeanSI and EmaxSI for each model, trained separately on each hemisphere
(Figure 5.14). Please refer to the appendix for the numerical values of the
error rates per hemisphere (Tables 5.1 and 5.2).

First, we observed that all of the new approaches proposed with reg-
ularization per elementary folds were significantly better than the SPAM
approach (also based on this regularization), which suggests that a model
based on an average template was not the most appropriate to represent the
high variability of cortical folds.

Second, with regards to the four proposed methods, regularization by
elementary folds of the label score maps significantly improved the results
compared to voxel labeling. Most importantly, the automatic re-division of
these elementary folds also significantly improved the four methods. Thus,
the use of top-down refinement of bottom-up regularization is particularly
relevant in this thesis.

Third, by comparing the new models in pairs, the models seem to demon-
strate equivalent performance. Concerning EmeanSI , only the UNET model is
significantly better than the PMAS model, the other models were equivalent.

While observing EmaxSI , it is interesting to note that the HPMAS model
was significantly better than the PMAS model whereas this was not the
case with EmeanSI . This is probably due to the initialization and constrained
random search steps of the OPM algorithm. These steps, based on random
selections, sometimes seem to generate worse labeling than usual. The ro-
bustness of this model could probably be improved by increasing the number
of selected ANNs.

Concerning the PCNN and UNET models, this thesis consequently demon-
strated the incredible efficiency of neural networks, even for the recognition
of structures as variable as cortical folds. However, it is surprising that
the UNET model was not better than the PCNN model due to its deeper
architecture.

The fact that these four models do not stand out radically on this dataset
suggests that these models may have reached the limit of what can be inter-
preted from this database, probably due to its insufficient size to represent
the high variability of cortical folds. Therefore, the fold variability is such
that manual labeling of a brain raises many questions and it may be possible
that the models have reached the human-level performances. Unfortunately,
since manual labeling is based on consensus among several experts, it is im-
possible for us to assess human-level performance on this database.

Finally, with regards to the computation time required to label a hemi-
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Figure 5.14 – Comparison of ESI error rates by model. Once the 10 seg-
mentations have been labeled by hemisphere, we consider the average error
in the upper chart and the maximum error in the lower chart. The box
extends from the lower to upper quartile error values, with a line at the
median. The whiskers extend from the box to show the minimum and max-
imum limits of the error rates. The SPAM model is represented in red,
the PMAS model in blue, the HPMAS model in green, the PCNN model
in yellow and the UNET model in purple. For the four new models, three
modalities are represented: first, labeling at the voxel scale, then labeling
after regularization at the elementary fold scale (+ reg.), and finally the
labeling obtained after automatic re-division of the elementary folds (+ reg.
+ cut.). The models are compared by matched T-test. The p-values of the
differences in model performances are written above and below the com-
pared models. The p-value is written in black if it is less than 0.05 and
in red otherwise. Regularization by elementary folds significantly improves
results. Automatic fold re-division also significantly improves results. All
regularized models are significantly better than the SPAM model.



94 Automatic labeling of cortical sulci

sphere, the SPAM model takes about 5 minutes, while the UNET model
takes about 20 seconds, PCNN takes slightly more than a minute, PMAS
and HPMAS take several hours. Although the PMAS model could be much
faster by optimizing the codes as in (Giraud et al., 2016), the UNET model
is currently by far the fastest. Thus, since the UNET model has the lowest
error rates and is the fastest, we propose to study in more detail the differ-
ences between this model and the SPAM model in the following section. In
the rest of this study, the UNET model will therefore refer to the model with
regularization using elementary folds and automatic redivision of these, if
necessary.

5.4.2 Which sulci are better recognized?

Concerning Emeanlocal and Emaxlocal (Figure 5.15), the SPAM model has aver-
age/max error rates from 5% to 77% while the error rates of the UNET
model vary between 2% and 68%. Comparing the Emaxlocal of each sulcus, we
can see that the difference between the error rates of both model for a given
sulcus reaches up to 25%. Finally, almost all sulci were better recognized by
the UNET model, only about twenty sulci are less well recognized. Their
comparison by paired T-test, by controlling the false discovery rate with
the help of the Benjamini-Hochberg procedure (Benjamini and Hochberg,
1995), showed that around 15% of sulci were significantly better recognized
by UNET than SPAM (Figure 5.16), while none were significantly less well
recognized. Please refer to the appendix for exact values of sulcus error
rates (Tables 5.3, 5.4, 5.5 and 5.6). You will also find a graphical compari-
son of sulcus error rates between SPAM and UNET labeling in the appendix
(Figure 5.24).

In the next section, we focus on the impact of the significant improvement
in central sulcus recognition, in which the Emaxlocal value has gone from about
8% using the SPAM model to only 3% with the best UNET model.

5.4.3 Does this improvement have an impact in practice?

Here, the SPAM model and the UNET model were trained on the entire
manually labeled database. The hyperparameters of the UNET model were
estimated over the entire database, using the same procedures as during
inner cross-validation, i.e. by performing a 3-folds cross-validation to select
the hyperparameter values that minimize error rates. The database used
by Sun et al. (2012) to study the effect of handedness on the shape of the
central sulcus was labeled manually and automatically by these two models.
This database contains 23 right-handed and 18 left-handed people.

We propose to investigate the asymmetry index I of the central sulcus
length along the brain hull between the left lS.C. left and right hemispheres
lS.C. right:
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Figure 5.15 – Elocal error rate per sulcus for SPAM and UNET models. The
UNET model corresponds to the one after re-division of the elementary folds.
Once the 10 segmentations have been labeled by hemisphere, we consider
the average error per sulcus in the left column and the maximum error in
the right column. The external and internal sides are represented for each
of the right and left hemispheres.

I =
lS.C. left − lS.C. right
lS.C. left + lS.C. right

(5.6)

Note that in the nomenclature proposed in this thesis, two sulci labels
belong to the central sulcus: ”S.C.” and ”S.C. sylvian.”. Therefore, the
lengths of these two ”sub-sulci” are added together to obtain lS.C..

With manual labeling, there is a significant difference between left-
handed and right-handed people (Figure 5.17). Therefore, left-handed peo-
ple have on average a longer central sulcus in the right hemisphere than in
the left, and vice versa for right-handed people. However, when focusing
on the asymmetry index with SPAM labeling, no significant difference was
found, whereas this difference was significant with UNET labeling.

Considering the worst labeling errors (Figure 5.18) of each model, we
observe that the SPAM model can double the size of the central sulcus, by
labeling completely unrelated large structures. However, the UNET model
only adds small fragments.
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Figure 5.16 – Comparison of Emaxlocal error rates between the SPAM model
and the UNET model. The left column represents the difference between
the Emaxlocal of the SPAM model and of the UNET model. The right column
shows the p-value of the paired T-test between each model. Note that
the scale of the color palette used to represent p-values is logarithmic. In
order to visualize the sulci significantly better recognized, the threshold
0.05 is indicated and the threshold at the star corresponds to the first sulci
considered significantly better by controlling the false discovery rate through
the Benjamini-Hochberg procedure (Benjamini and Hochberg, 1995).

5.5 Discussion

5.5.1 Patch-based MAS (PMAS)

Considering the hyperparameters selected during the inner cross validation
(Figure 5.19), it seems that this method would benefit from testing new
patch sizes and increasing the number of ANNs selected by voxel. Indeed,
the 24 mm patches are the ones selected while being the smallest size tested.
However, we concur that using patches less than 24 mm would make them
insufficiently informative to capture sulci variability and would not funda-
mentally change the results. Note that the use of several patch sizes does
not improve the results, which may be due to an oversized patch edge effect
when propagating labels. Additionally, the number of ANNs is automati-
cally set to 10, which is the upper limit of the values proposed in the inner
cross-validation. A large number of ANNs probably compensate for the in-
stability of the PMAS model due to the stochastic optimizations used by the
OPM algorithm. However, testing a larger number of ANNs would require
optimization of the codes currently in use and it is very likely that the model
would not gain much in performance. Indeed, the evolution of the scores
according to the number of ANNs suggests that a plateau is reached and
that increasing this parameter would have little influence on the ranking of
the methods obtained.
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Figure 5.17 – Comparison of the asymmetry index I between right-handed
and left-handed people. The left/middle/right graphs respectively show the
results obtained with manual/SPAM/UNET labeling. The index for right-
handed people is represented in blue and the one for left-handed people in
green. The p-values of the T-test for the means of these two independent
samples of scores are indicated on the graphs. With manual labeling, there
is a significant difference: in left-handed people, the central sulcus is longer
in the right hemisphere than in the left, while this is the opposite in right-
handed people. The same significant difference is observed with the UNET
model labeling but not with the SPAM model labeling. The box extends
from the lower to upper quartile index I values, with a line at the median.
The whiskers extend from the box to show the minimum and maximum
values.

M
A
N
U
A
L

A
U
T
O

SPAM UNET

Right Left Right Left

Figure 5.18 – Worst central sulcus labeling errors on the database used by
Sun et al. (2012). The first line represents manual labeling. The second
line represents the corresponding automatic labels, with the worst labeling
errors of the SPAM model on the left and those of the UNET model on the
right.

5.5.2 Patch-based MAS with High level representation of
the data (HPMAS)

With regard to HPMAS, the choice to use sulci pairs to form patches was
questionable, since there was no evidence suggesting that two sulci are suffi-
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Figure 5.19 – Hyperparameters values for PMAS model. During inner cross-
validation, the hyperparameters are set using a grid search to select values
that minimize the average ESI . This error rate is calculated based on the
segmentation used to make the manual labeling. The number of Approxi-
mate Nearest Neighbors (ANNs) was set between 2 and 10. The patch sizes
tested were 26, 34 and 42mm. All possible combinations of these patch sizes
are represented in a different color (see the legend at the top right). In this
graph, the average ESI are represented for each pair of values tested. An
external cross validation of 10 folds being done per hemisphere, 2*10=20
average ESI are represented per possible value pair. The box extends from
the lower to upper quartile error values, with a line at the median. The
whiskers extend from the box to show the minimum and maximum values.

cient to prevent spurious hits, especially when two small sulci are associated.
In order to create distinguishable local shapes, patches containing three or
more sulci should also be considered. However, it would be too expensive to
take into account all combinations of three neighboring sulci, as it is done
for pairs of sulci. To remedy this, criteria for selecting relevant patch types
should be determined, but none of the criteria we tested improves the results
sufficiently to be considered here.

5.5.3 Patch-based CNN (PCNN) and UNET

Compared to the approach proposed by Ciresan et al. (2012), the PCNN
approach has a major difference. In (Ciresan et al., 2012), several patch
sizes, processed by several neural networks in parallel, were used to label
each pixel, yet our PCNN approach is based on only one patch size. More-
over, the neural network used for PCNN is not deep (only one hidden layer)
compared to (Ciresan et al., 2012). However, after trying to make the net-
work architecture more complex by increasing the number of hidden layers
or using multiple patch sizes, we did not observe significant improvements
in the results. It is imperative to note that the PCNN model achieves per-
formances comparable to the UNET model while the U-Net architecture is
much deeper and previous studies show that it is supposed to achieve better
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results (Ronneberger et al., 2015).

5.5.4 Unknown label

In this thesis, except for the HPMAS model, the ”unknown” label in the
manually labeled database is treated like the other sulci labels. However,
although the ”unknown” label represents about 0.5% of the skeleton voxels
of manual labeling, this proportion is null if we consider the labels of the
HPMAS model. Moreover, the PMAS and PCNN models label around
0.02% of voxels as ”unknown” and the SPAM and UNET models 0.04%.
These figures show that treating the ”unknown” label as other labels is
insufficient. Models should also assign the ”unknown” label to structures
where it is not sufficiently confident.

However, since all the new methods were compared to the SPAM model,
which treated the unknown label as sulci labels, we chose not to address this
point in this thesis.

5.6 Conclusion

To summarize, the new methods presented in this thesis outperform the
current SPAM model provided by the Morphologist toolbox of BrainVISA.
Compared to the SPAM model, the best models have a 4% higher recognition
rate and 15% of sulci are significantly better recognized. By automatically
re-dividing the elementary folds, the new models are considerably more ro-
bust to under-segmentation errors. In practice, these improvements make
it possible to reproduce findings that were previously only possible with
manual labeling. The UNET model will soon be available in the Brain-
VISA/Morphologist toolbox.

In this thesis, the application of methods based on MAS or CNNs give ap-
proximately the same results for the automatic recognition of cortical sulci.
However, although CNN-based methods have a particularly long training
process compared to MAS-based methods, which are significantly faster.
Therefore, CNNs-based methods are far more productive in practice. The
UNET method labels a brain in only twenty seconds, whereas the SPAM
method takes about ten minutes. It is interesting to note that patch MAS
approaches are also beginning to integrate deep learning techniques (Manjón
et al., 2018), probably due to their ability to effectively summarize the data
and for their rapidity of execution.

Furthermore, the top-down refinement of bottom-up regularization sig-
nificantly improves the results. Indeed, voxel-wise labeling is used to give a
top-down perspective to a traditional bottom-up pattern recognition process
that agglomerates the voxels into elementary folds: these folds can therefore
be automatically re-divided when necessary. Thus, the labeling is robust to
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under-segmentation errors, unlike the SPAM method, which does not pro-
vide voxel-wise labeling. Note that despite the definition of elementary folds
specific to the problem posed here, defining a coherent geometric entity is
a legitimate concern addressed in many segmentation problems, for exam-
ple by using super-pixels (Giraud et al., 2017; Soltaninejad et al., 2017) that
group the most similar connected pixels together so that they have the same
label.

In order to improve the current performance of the model, several options
remain to be considered. First, the management of the ”unknown” label is
not optimal. Thus, in practice, it is preferable to have an ”unknown” label
on a structure where the model is not certain, rather than using an unreliable
one. However, this aspect is not addressed by the models presented. Second,
the inputs currently contain the fold skeleton in order to normalize the data
for acquisition and age biases. However, the input can be enriched by taking
into account grey/white matter segmentation or directly the normalized
MRI. For instance, we could consider integrating this data into new input
channels for CNN-based approaches. Finally, in order to take advantage of
the large unlabeled databases currently available, a semi-supervised strategy
would be particularly attractive to better represent the variability of the
cortical folds.

In the near future, considering that the labeling model seems sufficiently
reliable to us, we would like to reconsider the number of sulci used in the
nomenclature on the basis of the sulci most often confused by the model.
Indeed, the error rates of some small sulci are still too high to be used in
morphological studies. By allowing the user to choose the level of granularity
of the nomenclature, he will be able to use sufficiently stable labeling of the
structures of interest to him.
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Appendix

Hyperparameters

SPAM SPAM training does not require learning hyperparameters in
inner cross validation: the normalization parameters are directly evaluated
on the training set.

PMAS Three hyperparameters are estimated using grid search with
inner cross validation: number of ANNs selected (2, 4, 6, 8 or 10), patch
sizes (26, 34 or 42 mm) and their combinations (all combinations of 1, 2,
and 3 different patch sizes are tested). Note that two OPAL parameters
were set a priori: the size of the search window at 14*14*14 mm and the
number of iterations of the propagation and random search steps at 4.

The performances obtained by the different hyperparameter values tested
during the inner cross validation were presented and commented earlier in
the Figure 5.19.

HPMAS Here, only one hyperparameter seemed necessary to be tested
with an inner cross-validation: the number of virtual patches selected by
sulci (from 5 to 20). Note that the number of sulci per virtual patch could
also be considered as an hyperparameter, but trying more than two sulci
per virtual patch would be too expensive.

Concerning the selected values during inner cross-validation, the Figure
5.20 shows that the proposed range of values is sufficiently large. It might be
interesting to set up a different number of selected Nearest Neighbors (NNs)
per virtual patch type, which was too expensive to test in cross-validation
for this thesis.

PCNN and UNET During inner cross validation, each fold contains
about 62 * 9/10 (for the outer 10-folds cross validation training set) * 1/3
(for the inner 3-folds cross validation test set) ≈ 18 subjects. The train-
ing set therefore contains 2*18 = 36 subjects. Ideally, in order to perform
early stopping, part of these 36 subjects should be reserved to evaluate the
performance of the neural network at each epoch, and train on the others.
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However, in order to maintain a training set of sufficient size, the validation
fold containing 18 subjects is used to test the model at each epoch and the
remaining 36 subjects are used for training.

In order to choose the hyperparameters (learning rate and momentum),
several cross-validation loops are performed in turn to adjust the hyperpa-
rameters one after the other. First, the momentum is set at 0.9 and the
learning rates 1e-2, 1e-3 and 1e-4 are tested in turn. Second, once the learn-
ing rates have been tested on all inner cross-validation folds, the learning
rate is refined around the value lr that obtained the best ESI : the values
lr/4, lr/2, lr ∗ 2 and lr ∗ 4 are tested in turn. Finally, the best learning rate
obtained is then tested with momentum 0.8, 0.7 and 0.6 to select the best
value. We have chosen not to test values above 0.9 in order to reduce the
risk of divergence due to excessive gradient memory.

Concerning the hyperparameters values selected for UNET and PCNN
approaches (Figure 5.21 and Figure 5.22), we observe that the learning rate
and momentum vary slightly from one fold to another of the cross-validation
but the values retained are rather stable.

Cutting threshold Concerning the threshold on Calinski-Harabaz in-
dex used to either cut the elementary folds or not, this is determined once all
the other hyperparameters have been fixed. Indeed, we consider the value
of this threshold independent of the hyperparameters used for voxel-wise
labeling. In order to set the cutting threshold, the following strategy was
used: the thresholds 10, 100, 1000 and 10000 are tested in turn. Once these
values have been tested on all inner cross-validation folds, the threshold is
refined around the value th that obtained the best ESI : the values th/4,
th/2, th∗2 and th∗4 are tested in turn. For each model, the values selected
per cross-validation fold are represented in Figure 5.23.
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Figure 5.20 – Hyperparameter values for HPMAS model. During inner cross-
validation, the number of Nearest Neighbors (NNs) selected by virtual patch
type is set to minimize the average ESI . This error rate is calculated based
on the segmentation used to make the manual labeling. The number of NNs
is set between 5 and 20. In this graph, the average ESI are represented
for each value tested. An external cross validation of 10 folds being done
per hemisphere, 2*10=20 average ESI are represented per value. The box
extends from the lower to upper quartile error values, with a line at the
median. The whiskers extend from the box to show the minimum and
maximum values.

Figure 5.21 – Hyperparameters values for PCNN model. The learning rate
is represented in red and the momentum in blue. Each graph represents the
number of times each tested value is selected. An external cross validation
of 10 folds being done per hemisphere, the values can be selected up to
2*10=20 times.
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Figure 5.22 – Hyperparameters values for UNET model. The learning rate
is represented in red and the momentum in blue. Each graph represents the
number of times each tested value is selected. An external cross validation
of 10 folds being done per hemisphere, the values can be selected up to
2*10=20 times.

Figure 5.23 – Cutting threshold for each model (PMAS, HPMAS, PCNN,
and UNET). Each graph represents the number of times each tested value is
selected. An external cross validation of 10 folds being done per hemisphere,
the values can be selected up to 2*10=20 times.
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Figure 5.24 – Emaxlocal per sulcus. The graph on the left and the graph on
the right present Emaxlocal for the sulci on the left hemisphere and on the right
hemisphere, respectively. The SPAM model is represented in blue and the
new model is represented in pink. The significant differences (pvalue <
0.05) are marked with a star. The star is black when the difference is still
significant after controlling the false discovery rate through the Benjamini-
Hochberg procedure (Benjamini and Hochberg, 1995). Sulci are sorted from
top to bottom, from the smallest to the largest. The average sulci sizes,
ranging from about 15 voxels to more than 2000 voxels per subject, are
represented on the black graph.
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Table 5.1 – EmeanSI (standard deviation) in % for each model presented. The
lowest error rates are shown in bold. Note that compared to (Perrot et al.,
2011), the left and right hemispheres have similar error rates while the SPAM
model was more accurate in recognizing the right hemisphere than the left
hemisphere before the new iteration of the database labeling.

Left hemisphere Right hemisphere

SPAM 18.44 (2.90) 18.48 (3.13)

PMAS 17.25 (2.16) 17.68 (2.24)
PMAS + reg. 15.92 (2.26) 16.08 (2.83)
PMAS + reg. + cut. 15.32 (2.40) 15.61 (2.71)

HPMAS 18.64 (2.12) 19.12 (2.27)
HPMAS + reg. 15.74 (2.71) 15.66 (3.04)
HPMAS + reg. + cut. 15.09 (2.57) 15.39 (2.79)

PCNN 17.60 (2.29) 17.41 (2.48)
PCNN + reg. 15.61 (2.43) 15.19 (2.94)
PCNN + reg. + cut. 15.27 (2.38) 15.12 (2.93)

UNET 16.83 (2.35) 16.90 (2.34)
UNET + reg. 15.78 (2.67) 15.31 (2.79)
UNET + reg. + cut. 15.07 (2.50) 15.04 (2.61)

Table 5.2 – EmaxSI (standard deviation) in % for each model presented. The
lowest error rates are shown in bold.

Left hemisphere Right hemisphere

SPAM 20.72 (3.00) 20.88 (3.63)

PMAS 18.22 (2.21) 18.66 (2.38)
PMAS + reg. 17.97 (2.39) 18.29 (2.97)
PMAS + reg. + cut. 17.24 (2.65) 17.53 (2.93)

HPMAS 19.14 (2.18) 19.64 (2.34)
HPMAS + reg. 17.26 (2.86) 17.34 (3.23)
HPMAS + reg. + cut. 16.48 (2.76) 16.89 (2.90)

PCNN 18.24 (2.43) 17.98 (2.55)
PCNN + reg. 17.37 (2.65) 16.96 (3.23)
PCNN + reg. + cut. 17.08 (2.69) 16.75 (3.13)

UNET 17.70 (2.46) 17.69 (2.39)
UNET + reg. 17.73 (2.82) 17.21 (3.08)
UNET + reg. + cut. 16.80 (2.67) 16.65 (2.73)
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Table 5.3 – Emeanlocal (standard deviation) in % for the SPAM and UNET
model (first part). The UNET model presented corresponds to the most
sophisticated model (UNET + reg. + cut.).

Left hemisphere Right hemisphere
SPAM UNET SPAM UNET

F.C.L.a. 25.66 (10.36) 23.13 (7.38) 27.32 (10.67) 24.59 (9.56)
F.C.L.p. 15.16 (7.58) 11.19 (5.99) 11.52 (5.67) 8.02 (3.96)
F.C.L.r.ant. 32.68 (31.01) 28.89 (28.66) 36.78 (30.70) 30.33 (27.90)
F.C.L.r.asc. 33.71 (33.02) 28.77 (28.02) 32.77 (28.02) 26.81 (23.14)
F.C.L.r.diag. 28.82 (41.69) 30.41 (42.91) 35.06 (41.71) 22.96 (35.89)
F.C.L.r.retroC.tr. 52.27 (37.45) 53.44 (38.85) 39.59 (36.01) 36.33 (35.57)
F.C.L.r.sc.ant. 31.63 (42.24) 30.78 (42.72) 33.42 (43.00) 36.63 (44.58)
F.C.L.r.sc.post. 40.72 (38.98) 39.75 (37.62) 38.43 (36.68) 30.18 (30.70)
F.C.M.ant. 36.69 (23.48) 20.72 (13.19) 32.70 (31.24) 19.04 (14.52)
F.C.M.post. 16.07 (15.04) 11.86 (10.39) 16.33 (13.48) 15.30 (12.46)
F.Cal.ant.-Sc.Cal. 24.13 (15.91) 15.44 (7.30) 22.77 (12.58) 16.22 (9.08)
F.Coll. 23.77 (13.37) 19.21 (12.47) 23.21 (15.33) 22.20 (16.04)
F.I.P. 20.11 (8.79) 14.32 (8.93) 22.40 (10.42) 16.01 (8.72)
F.I.P.Po.C.inf. 29.16 (18.59) 28.05 (15.19) 27.62 (16.20) 27.51 (18.29)
F.I.P.r.int.1 46.75 (38.23) 33.44 (37.25) 61.44 (35.38) 40.87 (40.52)
F.I.P.r.int.2 50.25 (41.79) 51.97 (42.58) 64.66 (41.14) 56.33 (44.15)
F.P.O. 32.48 (22.36) 21.31 (15.91) 27.21 (19.18) 21.11 (15.22)
INSULA 16.10 (7.17) 13.38 (5.69) 13.54 (5.36) 12.30 (5.53)
OCCIPITAL 27.99 (12.08) 24.53 (12.02) 33.44 (10.37) 27.61 (11.45)
S.C. 5.77 (7.17) 2.24 (4.25) 5.12 (5.65) 1.68 (2.82)
S.C.LPC. 22.22 (37.00) 17.95 (34.36) 30.58 (42.05) 17.67 (33.28)
S.C.sylvian. 25.87 (36.17) 17.00 (29.65) 27.84 (39.74) 19.54 (32.65)
S.Call. 9.60 (13.42) 8.57 (9.24) 9.22 (15.75) 8.58 (15.70)
S.Cu. 37.30 (27.12) 29.63 (24.63) 35.46 (24.64) 29.61 (28.79)
S.F.inf. 38.16 (22.14) 26.51 (16.47) 32.67 (21.55) 26.06 (20.01)
S.F.inf.ant. 51.40 (34.22) 43.30 (32.83) 41.08 (28.87) 34.47 (30.21)
S.F.int. 31.70 (18.47) 26.43 (15.30) 35.04 (21.95) 26.96 (17.88)
S.F.inter. 36.53 (16.52) 33.44 (14.26) 38.98 (19.73) 36.24 (17.90)
S.F.marginal. 35.58 (25.33) 28.21 (21.92) 32.60 (24.70) 29.90 (21.22)
S.F.median. 39.34 (24.65) 32.15 (23.84) 34.91 (22.10) 28.63 (23.00)
S.F.orbitaire. 47.63 (38.56) 45.63 (40.02) 39.77 (34.66) 41.84 (36.85)
S.F.polaire.tr. 37.90 (22.02) 32.16 (20.69) 31.51 (20.11) 34.19 (20.19)
S.F.sup. 26.86 (15.84) 19.59 (12.21) 25.40 (14.10) 19.94 (12.66)
S.GSM. 39.26 (43.46) 26.11 (35.68)
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Table 5.4 – Emeanlocal (standard deviation) in % for the SPAM and UNET
model (second part). The UNET model presented corresponds to the most
sophisticated model (UNET + reg. + cut.).

Left hemisphere Right hemisphere
SPAM UNET SPAM UNET

S.Li.ant. 27.14 (23.68) 23.97 (25.57) 28.59 (29.77) 31.74 (32.25)
S.Li.post. 34.92 (24.12) 30.83 (23.68) 31.19 (24.36) 29.61 (24.14)
S.O.T.lat.ant. 21.40 (19.38) 18.87 (17.44) 18.61 (21.37) 16.14 (20.83)
S.O.T.lat.int. 48.61 (38.83) 34.57 (37.24) 48.71 (38.85) 36.54 (40.81)
S.O.T.lat.med. 47.27 (28.51) 45.66 (28.36) 47.57 (31.52) 42.29 (26.33)
S.O.T.lat.post. 52.24 (26.21) 46.54 (27.75) 44.62 (25.00) 43.31 (22.06)
S.O.p. 58.36 (37.25) 43.34 (40.11) 49.22 (35.83) 35.85 (35.23)
S.Olf. 5.71 (6.58) 6.33 (7.34) 4.85 (5.82) 4.32 (5.00)
S.Or. 10.88 (8.60) 9.02 (6.81) 10.03 (8.47) 8.27 (7.81)
S.Pa.int. 36.08 (26.53) 29.09 (27.24) 34.13 (22.13) 27.47 (23.63)
S.Pa.sup. 42.59 (39.58) 45.54 (38.85) 43.89 (39.23) 36.34 (39.65)
S.Pa.t. 56.15 (37.69) 47.52 (39.65) 46.04 (35.71) 41.30 (34.50)
S.Pe.C.inf. 29.45 (35.57) 19.75 (24.68) 25.70 (34.09) 19.45 (20.58)
S.Pe.C.inter. 34.06 (27.53) 27.40 (23.75) 41.41 (25.79) 30.50 (24.12)
S.Pe.C.marginal. 48.64 (36.36) 31.35 (29.89) 39.60 (31.07) 40.23 (31.90)
S.Pe.C.median. 42.36 (38.24) 38.73 (38.55) 37.96 (38.29) 35.45 (36.69)
S.Pe.C.sup. 36.07 (37.95) 21.42 (27.72) 33.23 (33.99) 21.44 (30.66)
S.Po.C.sup. 30.41 (25.01) 31.60 (23.57) 40.69 (31.26) 29.23 (22.56)
S.R.inf. 36.06 (38.23) 31.46 (38.93) 29.20 (34.95) 27.12 (31.48)
S.R.sup. 41.75 (33.43) 30.51 (27.95) 36.87 (34.94) 34.54 (29.84)
S.Rh. 26.86 (25.33) 26.31 (25.10) 24.22 (23.97) 21.45 (23.58)
S.T.i.ant. 24.58 (18.99) 25.21 (20.72) 28.66 (16.55) 23.83 (17.23)
S.T.i.post. 37.82 (19.97) 37.28 (21.67) 36.75 (14.78) 34.75 (17.81)
S.T.pol. 27.87 (22.89) 27.25 (22.28) 30.05 (22.22) 29.56 (21.13)
S.T.s. 20.73 (11.79) 15.46 (8.83) 15.66 (10.99) 13.60 (9.06)
S.T.s.ter.asc.ant. 46.12 (35.80) 43.00 (29.56) 64.44 (34.97) 41.41 (29.32)
S.T.s.ter.asc.post. 46.90 (30.21) 43.58 (29.81) 49.04 (29.41) 41.93 (28.55)
S.intraCing. 16.79 (35.76) 15.78 (35.03) 16.76 (36.26) 14.22 (33.59)
S.p.C. 40.72 (38.83) 36.36 (38.00) 48.13 (39.89) 34.94 (39.42)
S.s.P. 20.31 (17.64) 17.87 (15.84) 18.96 (15.04) 20.23 (16.87)
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Table 5.5 – Emaxlocal (standard deviation) in % for the SPAM and UNET model
(first part). The UNET model presented corresponds to the most sophisti-
cated model (UNET + reg. + cut.).

Left hemisphere Right hemisphere
SPAM UNET SPAM UNET

F.C.L.a. 37.44 (18.33) 30.67 (8.97) 39.37 (17.51) 32.79 (11.25)
F.C.L.p. 20.96 (8.68) 15.23 (7.68) 15.96 (7.06) 10.89 (5.25)
F.C.L.r.ant. 42.48 (32.88) 38.44 (31.93) 51.92 (35.33) 43.03 (33.75)
F.C.L.r.asc. 43.88 (33.16) 39.97 (31.88) 48.36 (33.72) 37.82 (27.33)
F.C.L.r.diag. 33.64 (45.93) 35.60 (46.38) 47.43 (48.21) 32.44 (42.94)
F.C.L.r.retroC.tr. 67.47 (37.66) 67.74 (37.01) 57.49 (40.48) 46.32 (38.32)
F.C.L.r.sc.ant. 39.79 (47.79) 37.32 (46.81) 39.90 (47.16) 42.39 (49.09)
F.C.L.r.sc.post. 58.10 (42.97) 59.32 (46.02) 56.18 (40.25) 52.56 (40.83)
F.C.M.ant. 51.49 (26.45) 30.69 (16.01) 43.29 (34.88) 27.18 (16.63)
F.C.M.post. 23.32 (19.68) 18.71 (12.82) 23.46 (17.26) 21.27 (14.13)
F.Cal.ant.-Sc.Cal. 36.96 (19.94) 24.67 (10.65) 38.02 (20.10) 24.05 (11.53)
F.Coll. 35.17 (17.73) 28.26 (15.70) 34.35 (19.96) 31.21 (17.37)
F.I.P. 25.14 (9.28) 19.01 (9.55) 28.54 (11.93) 20.95 (10.51)
F.I.P.Po.C.inf. 39.98 (20.94) 38.11 (16.81) 40.54 (20.41) 37.47 (17.88)
F.I.P.r.int.1 60.13 (39.38) 48.03 (41.51) 74.52 (31.71) 54.16 (40.62)
F.I.P.r.int.2 63.94 (41.94) 64.79 (43.51) 73.34 (41.27) 63.66 (43.62)
F.P.O. 42.69 (22.20) 30.05 (17.20) 41.51 (24.14) 31.35 (18.60)
INSULA 25.37 (12.09) 18.24 (7.60) 21.28 (9.65) 16.83 (6.90)
OCCIPITAL 34.93 (12.60) 31.23 (13.48) 41.32 (10.78) 34.97 (11.50)
S.C. 8.93 (10.37) 3.87 (5.93) 8.25 (8.08) 3.11 (3.88)
S.C.LPC. 32.61 (45.54) 24.31 (41.49) 40.75 (47.21) 24.83 (41.10)
S.C.sylvian. 37.01 (41.30) 26.83 (38.71) 35.52 (42.87) 28.59 (39.71)
S.Call. 19.67 (21.39) 18.10 (18.06) 18.14 (22.39) 15.42 (18.20)
S.Cu. 52.47 (26.15) 47.79 (29.62) 51.57 (27.74) 42.98 (33.64)
S.F.inf. 49.08 (24.32) 35.71 (17.06) 42.19 (24.50) 34.22 (21.53)
S.F.inf.ant. 64.77 (31.99) 60.22 (31.52) 57.04 (30.38) 47.86 (32.70)
S.F.int. 43.45 (19.27) 37.71 (16.49) 45.21 (22.87) 36.37 (19.06)
S.F.inter. 45.36 (16.72) 44.01 (15.95) 46.02 (19.90) 45.38 (19.00)
S.F.marginal. 50.58 (28.20) 41.81 (25.18) 45.93 (27.81) 43.09 (22.19)
S.F.median. 49.22 (26.35) 40.60 (24.96) 47.65 (22.45) 39.53 (23.32)
S.F.orbitaire. 62.47 (39.57) 58.14 (41.25) 56.02 (37.85) 58.22 (38.93)
S.F.polaire.tr. 50.11 (21.88) 46.64 (19.88) 44.27 (20.17) 47.82 (22.48)
S.F.sup. 34.55 (17.81) 27.47 (14.06) 32.47 (15.85) 27.26 (12.67)
S.GSM. 48.89 (46.66) 39.70 (44.85)
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Table 5.6 – Emaxlocal (standard deviation) in % for the SPAM and UNET model
(second part). The UNET model presented corresponds to the most sophis-
ticated model (UNET + reg. + cut.).

Left hemisphere Right hemisphere
SPAM UNET SPAM UNET

S.Li.ant. 46.77 (31.32) 39.23 (32.40) 47.17 (34.90) 50.45 (37.41)
S.Li.post. 50.02 (25.06) 50.91 (29.18) 50.40 (29.25) 45.57 (28.76)
S.O.T.lat.ant. 34.74 (24.66) 30.46 (22.24) 28.67 (25.67) 23.57 (24.57)
S.O.T.lat.int. 61.82 (36.85) 47.89 (41.19) 63.44 (39.75) 44.06 (42.91)
S.O.T.lat.med. 63.47 (26.72) 61.78 (27.77) 65.01 (29.23) 60.29 (28.97)
S.O.T.lat.post. 66.93 (25.45) 60.52 (27.96) 57.61 (24.63) 56.84 (22.26)
S.O.p. 73.90 (37.20) 57.32 (43.75) 69.86 (35.12) 55.17 (39.86)
S.Olf. 10.38 (9.27) 11.49 (10.17) 8.92 (8.09) 8.98 (7.99)
S.Or. 16.65 (9.89) 14.35 (9.12) 15.81 (10.56) 13.09 (9.23)
S.Pa.int. 49.23 (30.40) 37.83 (28.98) 48.88 (25.01) 40.57 (26.46)
S.Pa.sup. 54.34 (42.12) 56.46 (42.46) 55.61 (39.15) 45.75 (41.18)
S.Pa.t. 71.09 (38.08) 61.04 (41.36) 60.11 (38.63) 55.71 (37.68)
S.Pe.C.inf. 39.54 (40.51) 28.41 (27.95) 37.35 (39.79) 27.66 (25.44)
S.Pe.C.inter. 43.50 (30.11) 36.21 (28.06) 50.71 (28.83) 38.33 (26.02)
S.Pe.C.marginal. 59.65 (37.21) 43.76 (32.19) 53.28 (35.45) 52.24 (33.05)
S.Pe.C.median. 52.72 (39.69) 51.91 (40.16) 52.79 (41.55) 44.48 (41.53)
S.Pe.C.sup. 46.98 (40.14) 29.06 (31.49) 43.38 (40.26) 27.97 (33.22)
S.Po.C.sup. 42.37 (29.42) 41.30 (25.69) 54.54 (30.70) 44.22 (25.46)
S.R.inf. 49.75 (41.11) 42.08 (43.04) 46.04 (37.06) 47.38 (37.82)
S.R.sup. 58.83 (35.13) 45.71 (31.38) 51.32 (36.39) 49.98 (34.36)
S.Rh. 44.24 (29.34) 44.69 (30.83) 44.79 (31.43) 39.83 (30.67)
S.T.i.ant. 32.21 (20.12) 33.92 (21.44) 38.68 (15.17) 34.15 (18.73)
S.T.i.post. 47.59 (21.94) 49.11 (22.06) 45.90 (15.37) 44.54 (18.57)
S.T.pol. 38.62 (22.84) 39.10 (24.45) 42.90 (24.29) 45.09 (24.03)
S.T.s. 27.60 (13.01) 21.41 (10.31) 23.32 (14.08) 19.60 (10.28)
S.T.s.ter.asc.ant. 58.07 (35.61) 54.68 (29.33) 77.34 (32.05) 51.74 (29.64)
S.T.s.ter.asc.post. 58.85 (31.47) 59.24 (30.70) 63.76 (31.00) 51.08 (27.90)
S.intraCing. 20.97 (40.71) 17.74 (38.20) 17.74 (38.20) 16.36 (36.72)
S.p.C. 52.84 (43.61) 48.98 (43.22) 60.26 (42.34) 44.19 (44.58)
S.s.P. 29.88 (20.71) 26.42 (16.87) 29.52 (19.34) 30.81 (22.40)
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Conclusion

Contributions

Throughout this thesis, I developed two types of tools: the first for the
automatic recognition of local patterns of cortical folds and the second for
the automatic sulci labeling.

Concerning the automatic recognition of local folding patterns, two types
of patterns were studied: the paracingulate sulcus, a pattern present in
nearly half of the population, and the Power Button Sign (PBS), a con-
siderably rarer pattern. The proposed tools allow to recognize hemispheres
with paracingulate sulcus or PBS with a balanced accuracy of about 80%
and 60% respectively. In the first case, the proposed tools enable the auto-
matic classification of the pattern on very large databases. Additionally, the
tools provide a reliability score to manually verify the hemisphere on which
the model is least confident. In the second case, the tools help to search for
the rare pattern on large databases in order to enlarge the current database
or to associate them with specific cognitive characteristics.

Concerning the automatic labeling of cortical sulci, the new model is
more efficient (with a recognition rate of around 85% instead of 81%) and
faster (it labels a hemisphere in only 20 seconds instead of 5 minutes). I have
demonstrated that this improvement is sufficient to reproduce observations
previously only possible with manual labeling. But above all, the great
novelty of this new model is its robustness to under-segmentation errors.
Indeed, the main errors of the previous model are due to an insufficient
fragmentation of the fold skeleton into elementary folds, forcing the model
to label an elementary fold with a single label when it actually contains two
labels. The new model is capable of automatically re-dividing the elementary
folds when implied by voxelwise labeling.

Limitations

• Data Currently, the manual and automatic labeling of sulci or of local
folds patterns, is only based on structural MRIs. However, central sul-
cus labeling sometimes benefits the use of functional data for ambigu-
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ous configurations. Additionally, the underlying architecture of neural
networks is now available through tractography, which could particu-
larly help to make labeling more anatomically consistent. Therefore,
the combination of structural, functional and diffusion MRIs would be
particularly interesting, both for manual and automatic labeling.

• Deep learning As a first application of 3D convolutional neural net-
works for the study of cortical folds, the results obtained are partic-
ularly impressive. However, deep learning is a hot topic nowadays
and new techniques are continuously being published. Therefore, the
use of these recent techniques could also improve current performance
(e.g., using deeper networks, using atrous convolutions for segmenta-
tion (Chen et al., 2018), using tranfer learning to better represent folds
variability, etc.).

• Unsupervised learning The extreme variability of sulci makes them
fascinating structures but also particularly difficult to study. The def-
inition of folding patterns and the implementation of a nomenclature
are indeed subject to interpretation. In this thesis, a new iteration of
labeling of the database was carried out in order to make it coherent
thanks to the screen wall, allowing to visualize all brains simultane-
ously. However, this task was particularly difficult, especially for small
and more variable sulci. This problem suggests that humans alone are
not able to understand their complex organization because of their
limited ability to represent all possible configurations. Therefore, su-
pervised learning is probably limited by a human interpretation of
this variability, which is sometimes inconsistent. However, current ad-
vances in unsupervised learning suggest that it is time to let the com-
puter, with its memory and computer capabilities far superior than
ours, understand this organization for us.

Perspectives

In the continuity of my thesis work, approaches based on unsupervised learn-
ing seem to be the most promising to understand cortical fold organiza-
tion. Indeed, with the thousands of brain MRIs now available, this colossal
amount of data leaves the door wide open for ambitious studies.

First, some of the proposed methods for supervised learning of local
sulcal pattern classification would, in my opinion, be easily adaptable to
the search for new patterns that characterize a group. For example, fold
skeletons could be used to train a model to distinguish left-handed from
right-handed, women from men, etc. If the model achieves significant clas-
sification performance, it becomes particularly interesting to look at the
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patterns that allow it to perform a correct classification. For example, since
the SNIPE method is based on the similarity of each patch surrounding the
voxels of a fold skeleton to both populations in the learning base, it is then
easy to visually identify, for a given skeleton, the sulcal pattern specific to
the assigned group. Similarly, by training a CNN to make such classifi-
cations, different techniques could help identify areas of the fold skeleton
that allow correct classification, such as the use of saliency maps (Simonyan
et al., 2013) or occlusions (Zeiler and Fergus, 2014), already used to under-
stand how neural networks, used for 2D image classification, work. Such
tools would help neuroanatomy experts to identify fold patterns specific to
a given group.

Concerning the unsupervised definition of sulci, this ambitious project
raises some unusual questions. Indeed, it is simultaneously necessary to
group the voxels of the same subject together to form a sulcus and find the
correspondence of a group of voxels from one subject to another to create a
sulcus label. One alternative would be to use manual labeling as a proxy. For
example, it would be interesting to see if the UNET model trained during
this thesis gets better performance by being re-trained from scratch on a
database that it has labeled itself. Ideally, this approach would eliminate
the inconsistencies of manual labeling and achieve a new consistent labeling
across the entire database. Nevertheless, this method depends heavily on
the proxy used and would probably be subject to overfitting.

In order to avoid these two problems, I think this project could be carried
out with a patch clustering approach. The idea is intuitive: if you need to
group voxels together in the same subject to form a sulcus and between sub-
jects to define a sulcus label, why not cluster the voxels concerned according
to the patches surrounding them? The chosen clustering algorithm will have
to group together voxels belonging to the same elementary folds and those
that have similar patches between subjects. These two conditions make it
difficult to define the similarity between two patches. To this end, deep
learning can be used to learn the optimal representation of patches, guided
by a chosen unsupervised objective. For example, the methods proposed
in (Xie et al., 2016; Yang et al., 2016, 2017) jointly optimizes dimension
reduction and clustering. One of these methods has already been adapted
to the unsupervised segmentation of medical images (Moriya et al., 2018),
by clustering the images patches. Given the promising results obtained with
the use of deep learning and patch learning approaches for the supervised
study of cortical folds, the adaptation of these methods to the unsupervised
study of cortical folds also seems to be a promising approach.
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Closing remarks

The models developed in this thesis are part of a range of tools for studying
cortical folds. These tools are mainly based on the manual or automatic la-
beling of sulci, allowing for example the study of their characteristics (depth,
length, opening, etc.), the registration of the main sulci (Auzias et al., 2009),
etc. The models compared in this thesis for the automatic classification of
fold patterns and the automatic recognition of sulci, once again show the in-
credible effectiveness of deep learning. As this area is constantly evolving, it
is highly probable that recent developments could improve the performance
achieved in this thesis. However, the use of a nomenclature for sulci labeling
has its limitations when it comes to representing all possible folding config-
urations. This is why there is currently no consensus among experts on a
nomenclature. Hence, it seems essential to consider the use of unsupervised
techniques to fully understand their organization, without relying on an too
subjective human interpretation.



Summary in French

Introduction

Considéré comme le siège de notre intelligence, le cerveau est une énigme
fascinante. L’une des inconnues de cette énigme est le lien entre anatomie
et organisation fonctionnelle. Avec l’apparition de l’imagerie non invasive,
comme l’Imagerie par Résonance Magnétique (IRM), il y a une quarantaine
d’années, il a été possible de visualiser le cerveau, d’abord anatomiquement,
puis fonctionnellement. Ces outils puissants ont mis en évidence des zones
correspondant à des fonctions cognitives spécifiques. Le fonctionnement de
ces zones est-il lié à l’organisation anatomique du cerveau ? Concernant
l’anatomie de la surface corticale, les caractéristiques les plus remarquables
sont ses convolutions, dont la variabilité est telle que chaque individu a des
motifs de plissement uniques. Cependant, cette caractéristique frappante
est encore mal comprise aujourd’hui.

D’un point de vue darwinien, les plissements corticaux sont considérés
comme une astuce de l’évolution pour augmenter la surface corticale sans
modifier le volume de la cavité crânienne. Cependant, si on s’intéresse à
leur mécanisme de formation, on observe que le cortex se plisse au cours du
dernier trimestre de grossesse. Or, cette période correspond à l’émergence
de l’architecture corticale : les neurones migrent dans différentes zones
prédéfinies juste avant la formation des plis. Cette observation suggère
un lien entre la formation des plis et l’organisation fonctionnelle du cor-
tex. En effet, des motifs de plissements inhabituels sont généralement liés
à des développements anormaux pouvant mener à des syndromes psychi-
atriques comme l’épilepsie ou la schizophrénie. De plus, un lien étroit a
été démontré entre la forme de certains sillons et des fonctions cognitives
telles que la latéralité manuelle ou la lecture. Par conséquent, les motifs de
plis semblent être des signatures de l’organisation fonctionnelle du cerveau
de chaque individu. Cette hypothèse est maintenant relativement acceptée
pour les sillons les plus importants, mais elle reste controversée pour les
sillons secondaires.

Quoi qu’il en soit, l’étude des plis corticaux exige un haut niveau
d’expertise que peu de neuroanatomistes possèdent à l’heure actuelle. Afin
de faciliter l’étude des plissements, les outils développés durant cette thèse
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utilisent des algorithmes artificiellement intelligents pour automatiser les
tâches nécessitant des connaissances avancées. Aujourd’hui, l’intelligence
artificielle a fait des progrès significatifs, notamment dans le domaine de
la vision par ordinateur, révolutionnant notre quotidien. Ceci est dû
à l’émergence d’une nouvelle méthode inspirée par le fonctionnement du
cerveau : l’apprentissage profond. Cette technique a permis aux smart-
phones de parler, aux ordinateurs de battre les champions d’échecs, aux
voitures de conduire seules, etc. Permettront-ils également de déchiffrer nos
lignes sulcales ?

Contributions de la thèse: Les travaux menés au cours de cette thèse
ont permis l’implémentation de deux types d’outils dédiés à l’étude des
plis corticaux, qui seront bientôt disponibles dans la bôıte à outils Brain-
VISA/Morphologist (http://brainvisa.info). Le premier outil automatise
la classification des motifs locaux de plissements corticaux. Cette tâche
n’avait jamais été abordée auparavant. Le deuxième outil automatise
l’étiquetage des sillons en modélisant des mécanismes de reconnaissance
”top-down” nécessaires pour pallier les faiblesses des démarches ”bottom-
up” développées jusqu’à présent. Ainsi, en plus d’améliorer les performances
et la rapidité d’exécution par rapport au modèle précédemment proposé par
la bôıte à outils BrainVISA/Morphologist, le nouveau modèle proposé est
robuste aux erreurs de sous-segmentation, ce qui est l’une des plus grandes
faiblesses de l’ancien système.

Classification automatique des motifs locaux de plisse-
ments corticaux

Le mécanisme de formation des plis et l’impact de cette caractéristique
anatomique sur le fonctionnement du cerveau sont encore mal compris au-
jourd’hui. Cependant, il a été démontré que la configuration spatiale de
certains sillons sulcaux, marqueurs du développement précoce du cerveau
(Cachia et al., 2016), sont associés à des fonctions cérébrales spécifiques.
En effet, plusieurs études ont rapporté une corrélation entre des motifs sul-
caux reconnus visuellement et des caractéristiques cognitives - par exemple,
l’efficacité du contrôle cognitif (Fornito et al., 2004; Cachia et al., 2014) ou la
latéralité manuelle (Sun et al., 2012) - ou des maladies neuropsychiatriques
- par exemple, l’épilepsie (Mellerio et al., 2014) ou la schizophrénie (Plaze
et al., 2015). L’automatisation de la reconnaissance de ces motifs sulcaux
permettra d’étendre et de confirmer ces études sur des bases de données
plus importantes et de mieux comprendre les liens subtils entre les formes
sulcales et l’architecture fonctionnelle. Dans cette thèse, l’identification au-
tomatique de deux types de motifs est abordée : les motifs du Cortex Cin-
gulaire Antérieur (CCA) et le signe Power Button (Figure 1 et 2).
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Figure 1 - Deux motifs de plis identifiés dans la région cingulaire. Le motif
’single’ est caractérisé par la présence du sillon cingulaire seul. Le motif
’double parallel ’ présente un sillon paracingulaire supplémentaire, qui est
parallèle au sillon cingulaire et suffisamment long pour être identifié. (Cachia
et al., 2014)

Figure 2 - Le signe Power Button : un motif de plis lié à l’épilepsie. Ce
motif se caractérise par l’interposition d’un segment sulcal précentral (en
vert) entre le sillon central (en rouge) et l’une de ses branches ascendantes
antérieures en forme de crochet (en rouge). (Mellerio et al., 2014)
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Base de données : Le pipeline BrainVISA/Morphologist a été utilisé
pour segmenter et fournir une représentation graphique 3D à partir de
données IRM brutes. Cette reconstruction 3D des plis corticaux à l’aide
d’un maillage a été utilisée pour visualiser et étiqueter manuellement les
cerveaux. Concernant la région du CCA, on distingue deux motifs : le mo-
tif ’single’ et le motif ’double parallel’ (Figure ??). La base de données
d’apprentissage contient 348 hémisphères, dont 141 motifs ’single’ et 207
motifs ’double parallel’. Le signe Power Button est beaucoup plus rare. La
base de données d’apprentissage contient 114 hémisphères, dont seulement
28 possèdent ce signe. Ce désiquilibre et la taille limitée de la base de
données sont deux challenges pour les algorithmes de classification décrits
ci-dessous.

Méthode : Dans cette thèse, trois méthodes ont été implémentées et com-
parées pour la reconnaissance automatique de ces motifs.

La première méthode compare chaque hémiphère de la base
d’apprentissage possédant un sillon paracingulaire, ou un signe Power But-
ton, avec l’hémisphère à classer. Si le même motif est présent dans le nouvel
hémisphère, les distances des motifs de la base d’apprentissage au nouvel
hémisphère devraient être plus faibles. En se basant sur cet a priori, la
première méthode utilise ces distances pour entrainer un classifieur Support
Vector Machine.

La seconde approche se base sur le Scoring by Non-local Image Patch
Estimator (SNIPE) proposé dans (Coupé et al., 2012). Pour classer des
images, le SNIPE utilise une mesure de classement basée sur un système
de comparaison de patchs. Cette mesure permet d’estimer la similitude des
patchs entourant les voxels de l’image à classer avec les patchs présents dans
les différentes populations de la base d’apprentissage. Dans cette thèse, les
”populations” de la base de données d’apprentissage correspondent à des
motifs différents.

La troisième méthode utilise l’apprentissage profond, qui a permis des
avancées fulgurantes dans le monde de la vision par ordinateur. Ici, un
réseau de neurones récurrent 3D est entrâıné à classer les motifs.

Résultats : Les outils proposés permettent de classer les hémisphères en
fonction de leur motif dans la région du CCA et de la présence du signe
Power Button avec une précision équilibrée d’environ 80% et 60% respec-
tivement. Les performances des différents outils sont équivalentes pour les
deux problèmes de reconnaissance posés, néanmoins le réseau de neurones
est beaucoup plus rapide à utiliser en pratique. Concernant les motifs de
la région cingulaire, les outils proposés permettent la classification automa-
tique des motifs sur de très grandes bases de données. De plus, les outils
fournissent un score de fiabilité pour vérifier manuellement les hémisphères
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sur lesquels le modèle est le moins confiant. Concernant le signe Power But-
ton, les outils permettent de rechercher ce motif rare sur de grandes bases
de données afin d’agrandir la base de données actuelle ou de les associer à
des caractéristiques cognitives spécifiques.

Étiquetage automatique des sillons corticaux

L’extrême variabilité des plissements du cortex humain rend l’étiquetage
des sillons, à la fois automatique et manuel, particulièrement diffi-
cile. L’identification fiable des sillons corticaux dans leur intégralité est
extrêmement difficile et n’est pratiquée que par quelques experts. De plus,
ces sillons correspondent à plus d’une centaine de structures différentes,
ce qui rend l’étiquetage manuel fastidieux et limite donc la possibilité
d’accès à des grandes bases de données étiquetées pour entrâıner des al-
gorithmes d’apprentissage automatique. Dans cette thèse, deux nouveaux
types d’approches d’étiquetage automatique sont comparés : les techniques
de segmentation multi-atlas par patch et les approches basées sur les réseaux
neuronaux convolutifs. Ces deux méthodes sont actuellement largement
utilisées pour la segmentation anatomique en imagerie médicale car elles per-
mettent de mieux représenter la variabilité entre les sujets que les approches
basées sur un modèle moyen unique. Cependant, ces méthodes permettent
généralement une segmentation par voxel, sans tenir compte des propriétés
géométriques et topologiques propres à la morphométrie des sillons. Par
conséquent, je propose dans cette thèse de régulariser ces approches avec
des contraintes géométriques ”bottom-up” spécifiques à la morphologie sul-
cale, fournies par le pipeline BrainVISA/Morphologist. Ces contraintes re-
groupent les voxels en plis élémentaires, chaque plis étant associé à une
unique étiquette. Afin d’éliminer les erreurs de pré-segmentation des plis
élémentaires, le schéma de régularisation est complété par une perspective
”top-down” qui permet le découpage automatique des plis élémentaires si
nécessaire.

Base de données : La base de données est composée de 62 cerveaux sains
sélectionnés à partir de différentes bases de données hétérogènes et étiquetés
avec une nomenclature contenant 63 sillons pour l’hémisphère droit et 64
pour l’hémisphère gauche. Malheureusement, il n’existe pas de nomen-
clature standard pour l’étiquetage des sillons. Pour cette étude, les plis
élémentaires de chaque cerveau ont été étiquetés manuellement selon une
nomenclature de sillons issue d’un long processus itératif aboutissant à un
consensus au sein d’un panel de plusieurs experts de la morphologie du
cortex. La dernière itération de l’étiquetage de la base de données a été ef-
fectuée durant cette thèse en utilisant l’outil de visualisation TileViz (Man-
cip et al., 2018). Cet outil permet de visualiser et d’étiqueter simultanément
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l’ensemble de la base de données sur le mur d’écrans situé à la Maison de
la Simulation. Jusqu’à présent, il n’était possible d’étiqueter et d’évaluer si-
multanément qu’un nombre limité d’hémisphères, généralement quatre, sur
un écran standard. Ainsi, cet outil permet de limiter le biais d’étiquetage
induit par une vue restreinte de la base de données. De plus, lors de cette
nouvelle itération, les plis élémentaires ont été découpés manuellement si
nécessaire, ce qui était impossible auparavant.

Méthode : Les techniques de segmentation par multi-atlas, initialement
introduites par Rohlfing et al. (2004) il y a une quinzaine d’années, utilisent
chaque image segmentée manuellement comme atlas : les atlas sont recalés
sur l’image à segmenter et les meilleures correspondances sont sélectionnées
pour participer à la segmentation. Parmi les nombreuses variantes de ces
techniques, les approche par patch (Coupé et al., 2011; Rousseau et al.,
2011) permettent de s’affranchir d’un recalage non linéaire généralement
coûteux et compliqué à mettre en place. Inspirés par ces approches, deux
algorithmes de reconnaissance des sillons corticaux ont été implémentés. Le
premier est directement inspirée de (Romero et al., 2017a) où chaque patch
est un cube dans l’image à segmenter. Concernant le second algorithme,
une nouvelle stratégie de génération de patchs est proposée : celle-ci se
base sur une représentation à plus grande échelle des sillons, car la méthode
standard d’extraction des patchs ne semble pas adéquate pour exploiter de
manière optimale la géométrie des sillons et leurs positions relatives, alors
que ce sont des caractéristiques discriminantes pour leur reconnaissance. Ces
deux algorithmes seront désignés respectivement par PMAS (pour Patch-
based Multi-Atlas Segmentation) et HPMAS (pour Patch-based Multi-Atlas
Segmentation with High level representation of the data).

Les réseaux de neurones convolutifs ont d’abord été développés pour la
classification d’images et sont aujourd’hui reconnus pour leur formidable
efficacité à traiter de nombreux problèmes de vision par ordinateur. Ces
techniques permettent une analyse efficace en apprenant une représentation
abstraite de l’image. Concernant les problèmes de segmentation, la première
approche a été proposée il y a une dizaine d’années par Ciresan et al. (2012)
où un réseau de neurones est entrâıné à classer chaque voxel de l’image à
segmenter à partir de son patch environnant. Depuis, de nouvelles approches
permettent la segmentation complète de l’image en utilisant des réseaux neu-
ronaux entièrement convolutifs, comme celui initialement proposé par Long
et al. (2015), dédié à la segmentation sémantique. En imagerie médicale,
l’architecture la plus couramment utilisée pour les problèmes de segmenta-
tion est le U-Net, initialement proposé par Ronneberger et al. (2015), et
adapté à la segmentation d’images 3D par Çiçek et al. (2016) et Milletari
et al. (2016). Dans cette thèse, deux approches basées sur les réseaux de
neurones convolutifs sont proposées. La première s’inspire de (Ciresan et al.,
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2012), adapté à l’analyse d’images 3D. La seconde utilise l’architecture U-
Net 3D proposée par Çiçek et al. (2016). Ces deux approches seront appelées
PCNN (pour Patch-based Convolutional Neural Network) et UNET, respec-
tivement.

Les quatre méthodes proposées permettent d’étiqueter chaque voxel
du squelette de plis précédemment segmenté par le pipeline Brain-
VISA/Morphologist. Toutefois, ces méthodes ne garantissent pas que
la définition géométrique d’un sillon, comme un ensemble de surfaces
topologiquement simples, soit respectée. Ceci est particulièrement ennuyeux
pour les études morphométriques dont les mesures sont basées sur cette
définition. Pour y remédier, le pipeline BrainVISA/Morphologist fournit
un algorithme d’agrégation ”bottom-up” des voxels en plis élémentaires,
qui sont directement étiquetés pour le modèle SPAM (Statistical Proba-
bilistic Anatomy Map) proposé dans ce même pipeline. Une fois les vox-
els étiquetés par l’une des méthodes proposées ci-dessus, il est possible
de régulariser les résultats à l’échelle des plis élémentaires. Cependant,
l’extraction en amont des plis élémentaires peut parfois être inexacte. Dans
cette thèse, l’étiquetage des voxels est utilisé pour donner une perspective
”top-down” à un système traditionnel de reconnaissance de formes ”bottom-
up” (Figure 3). Ainsi, la découpe initiale en plis élémentaires proposée par
BrainVISA/Morphologist est remise en question par l’étiquetage des voxels,
éliminant les erreurs de sous-segmentation. L’approche proposée est donc
particulièrement robuste aux incohérences spatiales qui peuvent survenir lors
de l’étiquetage par voxel et à la définition potentiellement incorrecte des plis
élémentaires en amont.

Résultats : Les nouvelles méthodes présentées dans cette thèse surpassent
le modèle SPAM actuel fourni par le pipeline Morphologist de BrainVISA
(Perrot et al., 2011). Par rapport à l’ancien système, les nouveaux modèles
sont plus efficaces (avec des taux de reconnaissance d’environ 85 % au lieu
de 81 %) et le modèle UNET est beaucoup plus rapide (il étiquette un
hémisphère en seulement 20 secondes au lieu de 5 minutes). De plus, grâce
à la technique de régularisation ”top-down” permettant le redécoupage au-
tomatique des plis élémentaires, l’ensemble des nouveaux modèles proposés
sont considérablement plus robustes aux erreurs de sous-segmentation. En
pratique, ces améliorations permettent de reproduire des résultats d’analyses
morphométriques sur des populations qui n’étaient auparavant possibles
qu’avec un étiquetage manuel.

Conclusion

Les modèles développés dans cette thèse font partie d’une gamme d’outils
pour l’étude des plissements corticaux. Ces outils sont principalement basés
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Figure 3 - De l’IRM aux sillons corticaux étiquetés : un pipeline en trois
étapes. Tout d’abord, le squelette de plis est extrait à l’aide de la bôıte à out-
ils BrainVISA/Morphologist. Cette bôıte à outils permet également de frag-
menter le squelette en plis élémentaires. Ensuite, les voxels du squelette sont
étiquetés par différents algorithmes. Les algorithmes basés sur les techniques
de segmentation par multi-atlas (PMAS, HPMAS) et sur les réseaux de
neurones convolutifs (PCNN, UNET) étiquettent chaque voxel du squelette
tandis que l’algorithme SPAM étiquette directement les plis élémentaires.
Enfin, l’étiquetage des voxels est régularisé par plis élémentaires, tout en les
redivisant automatiquement en fonction de l’étiquetage par voxel proposé.

sur l’étiquetage manuel ou automatique des sillons, permettant par exem-
ple l’étude de leurs caractéristiques (profondeur, longueur, ouverture, etc.),
le recalage non linéaire de la surface corticale en se basant sur les princi-
paux sillons (Auzias et al., 2009), etc. Les modèles comparés dans cette
thèse pour la classification automatique des motifs de plissement et pour
l’étiquetagee automatique des sillons, montrent une fois de plus l’incroyable
efficacité de l’apprentissage profond. Comme ce domaine est en constante
évolution, il est fort probable que les récents développements liés à ces tech-
niques permettent d’améliorer les performances obtenues dans cette thèse.
Cependant, l’utilisation d’une nomenclature pour l’étiquetage des sillons a
ses limites lorsqu’il s’agit de représenter l’ensemble des configurations de
plissement possibles. C’est pourquoi il n’y a pas actuellement de consensus
entre experts sur une nomenclature. Il semble donc essentiel d’envisager
l’utilisation de techniques non supervisées pour comprendre leur organisa-
tion sans s’appuyer sur une interprétation humaine trop subjective.
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Fonov, V., P. Coupé, S. Eskildsen, J. Manjon, and L. Collins
2012. Multi-atlas labeling with population-specific template and non-
local patch-based label fusion. In MICCAI 2012 Workshop on multi-atlas
labeling, Pp. 63–66.
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2017b. Hips: A new hippocampus subfield segmentation method. Neu-
roImage, 163:286–295.

Ronneberger, O., P. Fischer, and T. Brox
2015. U-net: Convolutional networks for biomedical image segmentation.
In International Conference on Medical image computing and computer-
assisted intervention, Pp. 234–241. Springer.



Bibliography 137

Rosenblatt, F.
1958. The perceptron: a probabilistic model for information storage and
organization in the brain. Psychological review, 65(6):386.

Rousseau, F., P. A. Habas, and C. Studholme
2011. A supervised patch-based approach for human brain labeling. IEEE
transactions on medical imaging, 30(10):1852–1862.

Royackkers, N., M. Desvignes, H. Fawal, and M. Revenu
1999. Detection and statistical analysis of human cortical sulci. NeuroIm-
age, 10(6):625–641.

Russakovsky, O., J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,
A. Karpathy, A. Khosla, M. Bernstein, et al.
2015. Imagenet large scale visual recognition challenge. International
journal of computer vision, 115(3):211–252.

Seong, J.-K., K. Im, S. W. Yoo, S. W. Seo, D. L. Na, and J.-M. Lee
2010. Automatic extraction of sulcal lines on cortical surfaces based on
anisotropic geodesic distance. Neuroimage, 49(1):293–302.

Shattuck, D. W., A. A. Joshi, D. Pantazis, E. Kan, R. A. Dutton, E. R.
Sowell, P. M. Thompson, A. W. Toga, and R. M. Leahy
2009. Semi-automated method for delineation of landmarks on models of
the cerebral cortex. Journal of neuroscience methods, 178(2):385–392.

Shi, Y., P. M. Thompson, I. Dinov, and A. W. Toga
2008. Hamilton–jacobi skeleton on cortical surfaces. IEEE transactions
on medical imaging, 27(5):664–673.

Shi, Y., Z. Tu, A. L. Reiss, R. A. Dutton, A. D. Lee, A. M. Galaburda,
I. Dinov, P. M. Thompson, and A. W. Toga
2007. Joint sulci detection using graphical models and boosted priors. In
Biennial International Conference on Information Processing in Medical
Imaging, Pp. 98–109. Springer.

Simonyan, K., A. Vedaldi, and A. Zisserman
2013. Deep inside convolutional networks: Visualising image classification
models and saliency maps. arXiv preprint arXiv:1312.6034.

Simonyan, K. and A. Zisserman
2014. Very deep convolutional networks for large-scale image recognition.
arXiv preprint arXiv:1409.1556.

Snoek, C. G., M. Worring, and A. W. Smeulders
2005. Early versus late fusion in semantic video analysis. In Proceedings of
the 13th annual ACM international conference on Multimedia, Pp. 399–
402. ACM.



138 Bibliography

Soltaninejad, M., G. Yang, T. Lambrou, N. Allinson, T. L. Jones, T. R.
Barrick, F. A. Howe, and X. Ye
2017. Automated brain tumour detection and segmentation using
superpixel-based extremely randomized trees in flair mri. International
journal of computer assisted radiology and surgery, 12(2):183–203.

Srivastava, N., G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov
2014. Dropout: a simple way to prevent neural networks from overfitting.
The Journal of Machine Learning Research, 15(1):1929–1958.

Sun, Z., P. Pinel, D. Rivière, A. Moreno, S. Dehaene, and J.-F. Mangin
2016. Linking morphological and functional variability in hand movement
and silent reading. Brain Structure and Function, 221(7):3361–3371.
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Titre : Conception d’un algorithme de vision par ordinateur ”top-down” dédié à la reconnaissance des sillons
corticaux

Mots clés : sillons corticaux, apprentissage profond, apprentissage par patch, segmentation, reconnaissance
de formes, vision par ordinateur

Résumé : Les plissements du cortex caractérisent
de manière unique chaque être humain. Ils appa-
raissent pendant le dernier trimestre de grossesse,
c’est-à-dire pendant la mise en place de l’architec-
ture cérébrale. Les motifs de ces plis sont impactés
par les spécificités de cette architecture propres à
chaque individu. Ils pourraient donc dévoiler les si-
gnatures de certaines anomalies du développement à
l’origine de pathologies psychiatriques. Le laboratoire
d’analyse d’images de Neurospin développe depuis
25 ans un programme de recherche visant à mettre
en évidence de telles signatures grâce à la conception
d’outils de vision par ordinateur dédiés qu’il diffuse à
la communauté (http://brainvisa.info). Cette thèse a
permis l’émergence d’une nouvelle génération d’ou-
tils basés sur des techniques d’apprentissage auto-
matique. Le premier outil proposé classifie automati-
quement des motifs locaux de plissements du cortex,
un problème qui n’avait jamais été abordé jusqu’ici. Le
second outil vise l’étiquetage automatique des sillons
corticaux en modélisant des mécanismes de recon-
naissance ”top-down” nécessaires pour pallier les fai-
blesses des démarches ”bottom-up” développées jus-
qu’à présent. Ainsi, en plus d’avoir des taux de recon-

naissances plus élevés et un temps d’exécution plus
court, le nouveau modèle proposé est robuste aux er-
reurs de sous-segmentation, ce qui est l’une des plus
grandes faiblesses de l’ancien système. Pour réaliser
ces deux outils, plusieurs algorithmes d’apprentis-
sage automatique ont été implémentés et comparés.
Ces algorithmes s’inspirent d’une part des méthodes
multi-atlas, en particulier de l’approche par patch,
qui sont largement utilisées pour la segmentation
anatomique d’images médicales et d’autre part des
méthodes d’apprentissage profond qui révolutionnent
aujourd’hui le monde de la vision par ordinateur. Les
travaux de cette thèse confirment l’incroyable effi-
cacité des techniques d’apprentissage profond pour
s’adapter à des problèmes complexes. Cependant,
les performances obtenues avec ces techniques sont
généralement équivalentes à celles des approches
par patch, voire moins bonnes si la base de données
d’apprentissage est restreinte. Ce qui fait de l’appren-
tissage profond un outil particulièrement intéressant
en pratique n’est autre que sa rapidité d’exécution,
d’autant plus pour l’analyse des bases de données
colossales aujourd’hui disponibles.

Title : Design of a top-down computer vision algorithm dedicated to the recognition of cortical sulci

Keywords : cortical sulci, deep learning, patch learning, segmentation, pattern recognition, computer vision

Abstract : We are seven billion humans with unique
cortical folding patterns. The cortical folding process
occurs during the last trimester of pregnancy, during
the emergence of cortical architecture. The folding
patterns are impacted by architectural features spe-
cific to each individual. Hence, they could reveal si-
gnatures of abnormal developments that can lead to
psychiatric syndroms. For the last 25 years, the image
analysis lab of Neurospin has been designing dedi-
cated computer vision tools to tackle the research of
such signatures. The resulting tools are distributed to
the community (http://brainvisa.info). This thesis has
resulted in the emergence of a new generation of tools
based on machine learning techniques. The first pro-
posed tool automatically classifies local patterns of
cortical folds, a problem that had never been addres-
sed before. The second tool aims at the automatic la-
beling of cortical sulci by modeling the top-down re-
cognition mechanisms necessary to overcome weak-
nesses of the current bottom-up systems. Thus, in ad-

dition to having higher recognition rates and shorter
execution time, the proposed new model is robust to
sub-segmentation errors, which is one of the greatest
weaknesses of the old system. To realize these two
tools, several machine learning algorithms were im-
plemented and compared. These algorithms are ins-
pired on the one hand by multi-atlas methods, in par-
ticular the patch approaches, which are widely used
for the anatomical segmentation of medical images
and on the other hand by the deep learning methods
that are revolutionizing the world of computer vision.
The work of this thesis confirms the incredible effec-
tiveness of deep learning techniques to adapt well to
complex problems. However, the performances obtai-
ned with these techniques are generally equivalent to
those of patch approaches, or even worse if the trai-
ning database is limited. What makes deep learning a
particularly interesting tool in practice is its fast execu-
tion, especially for the analysis of the huge databases
now available.
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