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REsUuME

Cette thése est le résultat de mes recherches durant mon doctorat a
I"'Université de La Rochelle. La plupart du matériel de la thése est basée
sur les quatre articles suivants publiés durant cette période :

I: B. Ahmad, A. Alsaedi, M. Kirane and Ramiz Tapdigoglu, An in-
verse problem for time fractional evolution equations with an involution
perturbation, Quaestiones Mathematicae, 2017, vol. 40, no 2, p. 151-160.

II : B.T. Torebek and Ramiz Tapdigoglu, Some inverse problems for
the nonlocal heat equation with Caputo fractional derivative, June 2017,
Mathematical Methods in the Applied Sciences, 2017, vol. 40, no 18, p.
6468-6479.

III : Ramiz Tapdigoglu and B.T. Torebek, Inverse source problems for
a wave equation with involution, Bulletin of the Karaganda University-
Mathematics, 2018, vol. 91, no 3, p. 75-82.

IV : Ramiz Tapdigoglu and B.T. Torebek, On a nonlinear boundary-
layer problem for the fractional Blasius type equation, International
Journal of Nonlinear Sciences and Numerical Simulation, 2018, vol. 19,
no 5, p. 493-498.

L’organisation de cette these est la suivante : La thése commence par
le Chapitre 1 qui contient un bref historique sur 'apparition du concept
de dérivation fractionnaire et un description de quelques problemes phy-
siques modélisés par des équations différentielles fractionnaires. Puis,
nous décrirons quelques concepts de base et donnons quelques infor-
mations nécessaires sur les problemes directs et inverses. Ensuite, nous
recueillons les résultats obtenus a partir de quatre articles ci-dessus et les
présentons respectivement dans les chapitres 2, 3, 4 et 5.

Les trois chapitres suivants sont structurés sur les Problemes Inverses
comme suit : Nous commencons le Chapitre 2, par I'étude d"un probleme
inverse a dérivée fractionnaire. En utilisant la méthode de Fourier, nous
prouvons deux théorémes sur 1'existence et 1'unicité de solutions d’équa-
tions différentielles d’ordre fractionnaire avec involution. Dans le Cha-
pitre 3, nous considérons une classe de problémes inverses pour restaurer
le terme forcing d’une équation fractionnelle de chaleur avec involution
et présentons les résultats sur l'existence et 1'unicité des solutions pour
certaines valeurs de la condition initiale de ces problemes. Nous discu-
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tons également des équations a retards aux dérivées fractionnaires afin
d’obtenir certains résultats connexes. Dans le Chapitre 4, nous étudions
deux problemes inverses concernant l’équation d’onde avec un terme
perturbatif de type involution par rapport a la variable d’espace. Nous
obtenons des résultats d’existence et d"unicité pour ces problemes, basés
sur la méthode de Fourier.

La derniere partie est consacrée a 'étude d'une équation de type Bla-
sius différentielle séquentielle non linéaire avec une dérivée de Caputo.
Nous réduisons le probleme a une équation intégrale non linéaire et
prouvons ensuite la continuité complete de I'opérateur intégral non li-
néaire. Nous démontrons l'existence d'une solution du probléeme pour
I’équation de Blasius d’ordre fractionnaire. Nous le présentons au Cha-
pitre 5.
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ABSTRACT

This thesis is the outcome of my research during my Ph.D. study at
La Rochelle University. The principal materials in the thesis are based on
the following articles from this period :

Paper I : B. Ahmad, A. Alsaedi, M. Kirane and Ramiz Tapdigoglu,
An inverse problem for time fractional evolution equations with an in-
volution perturbation, Quaestiones Mathematicae, 2017, vol. 40, no 2, p.
151-160.

Paper II : B.T. Torebek and Ramiz Tapdigoglu, Some inverse pro-
blems for the nonlocal heat equation with Caputo fractional derivative,
June 2017, Mathematical Methods in the Applied Sciences, 2017, vol. 40,
no 18, p. 6468-6479.

Paper III : Ramiz Tapdigoglu and B.T. Torebek, Inverse source pro-
blems for a wave equation with involution, Bulletin of the Karaganda
University-Mathematics, 2018, vol. 91, no 3, p. 75-82.

Paper IV : Ramiz Tapdigoglu and B.T. Torebek, On a nonlinear
boundary-layer problem for the fractional Blasius type equation, Inter-
national Journal of Nonlinear Sciences and Numerical Simulation, 2018,
vol. 19, no 5, p. 493-498.

The organization of this thesis is as follows : The thesis begins in
Chapter 1 that contains a brief history about the appearance of the
concept of fractional derivation and a description of some physical pro-
blems that are modeled by fractional differential equations. In the sequel,
we describe some basic concepts and give some information about direct
and inverse problems. Afterward, we collect the results obtained from
four articles above and present them respectively in Chapters 2, 3, 4 and
5.

The next three chapters are structured on Inverse Problems as fol-
lows : We start in Chapter 2, by studying an inverse problem in fractional
calculus. Using the Fourier method, we prove two theorems of existence
and uniqueness for the solutions of fractional order differential equations
with involution. In Chapter 3, we consider a class of inverse problems
for restoring the forcing term of a fractional heat equation with involu-
tion and present the results on existence and uniqueness of solutions of
these problems. We also discuss delay fractional order differential equa-
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tions to achieve some related results. In Chapter 4, we study two inverse
problems concerning the wave equation with a perturbative term of in-
volution type with respect to the space variable. We obtain existence and
uniqueness results for these problems based on the Fourier method.

The last part is devoted to studying a nonlinear sequential differential
equation of Blasius type with Caputo fractional derivative. We reduce
the problem to the equivalent nonlinear integral equation and prove the
complete continuity of the nonlinear integral operator. We prove also
the existence of a solution of the problem for the Blasius equation of
fractional order. We present it in Chapter 5.
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INTRODUCTION

This chapter consists of two major parts, namely "Introduction
(Francaise)" and "Introduction (English)".



2 Chapter 1. Introduction

1.1 Introduction (Francaise)

1.1.1 Calcul Fractionnaire

Le calcul fractionnaire est une branche des mathématiques qui fait
référence a l'extension du concept de dérivation classique a la dériva-
tion d’ordre non entier. L'histoire de la dérivée d’ordre non entier re-
monte a la fin de 1695 quand L'Hospital a posé une question a Leibniz
en s’interrogeant sur la signification de

n

d"y
dxn

lors uen—1

Leibniz répond que cela méne a un paradoxe dont on tirera un jour
d’utiles conséquences. Cependant, pas beaucoup des progres ont été faits
dans ce domaine pendant trois siécles. Une des raisons est que les out-
ils mathématiques du calcul fractionnaire n’étaient pas disponibles. Une
autre raison est le manque d’applications pratiques de ce concept. Plus
de 300 ans apres, on commence seulement a surmonter les difficultés. De
nombreux mathématiciens se sont penchés sur cette question, en partic-
ulier Euler (1730), Fourier (1822), Abel (1823), Liouville (1832-1837), Rie-
mann (1847), Griinwald (1867-1872), Letnikov (1868-1872), Gelfand and
Shilov (1959- 1964), Caputo (1969), etc.. Le calcul fractionnaire est de-
venu l'un des domaines les plus développés de ’analyse mathématique.
Il a fait un développement rapide et s’est révélé comme un outil puissant
dans la modélisation de certains phénomenes dans plusieurs domaines
de la sciences tels que la physique, la chimie, la biologie, I'ingénierie et
la finance, surtout au cours des trois dernieres décennies.

Les dérivées fractionnaires et les intégrales fractionnaires représen-
tent un comportement non local (en raison de 'intégrale impliquée dans
la définition) associé aux effets de mémoire. Calculer une dérivée frac-
tionnaire a un certain moment exige tous les processus précédents avec
des propriétés de mémoire [83]. C’est 1’avantage principale du calcul
fractionnaire d’expliquer les processus associés aux systemes physiques
complexes qui ont une mémoire a long terme et / ou des interactions
spatiales a longue distance. De plus, les équations différentielles fraction-
naires peuvent nous aider a réduire les erreurs découlant de parametres
négligés dans la modélisation des phénomenes physiques [7], [67]. Ce
théme de recherche peut mieux traduire la réalité de la nature des
phénomenes de la vie réelle, ce qui I'a rendu plus populaire au sein de
la communauté des chercheurs et des ingénieurs [66].

Les champs d’application du calcul fractionnaire s’étendent rapide-
ment. En génie mécanique, il existe plusieurs applications du calcul frac-
tionnaire, par exemple, 1’étude des systéemes de controle [69], modélisa-
tion de la diffusion anormale [109]. Le comportement non-standard ou
anomalie de I'équation de réaction-diffusion, équation de transport, est
connu sous le nom de diffusion anormale non gaussienne, qui a des ef-
fets de mémoires longues. Une solution de modele de diffusion anormale
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basée sur le calcul fractionnaire a différentes conditions d’opérations per-
met d’obtenir de meilleurs résultats [71]. En physique, il existe plusieurs
applications potentielles de dérivées fractionnaires. Une monographie
intéressante sur les applications des intégrales et des dérivées fraction-
naires a la physique des polymeéres, a la biophysique, a la thermody-
namique, a la rhéologie et aux systémes chaotiques a été éditée par R.
Hilfer [44]. De plus, en médecine, il a été déduit que les membranes
des cellules d'un organisme biologique ont une conductance électrique
d’ordre fractionnaire et ensuite, elles sont classées dans des groupes de
modeles d’ordre non-entier. Les dérivées fractionnaires incarnent les car-
actéristiques essentielles du comportement rhéologique cellulaire. Ils ont
un grand succes dans le domaine de la rhéologie [7].

Actuellement dans la littérature mathématique, il existe plusieurs déf-
initions des dérivées fractionnaires. Parmi les plus populaires, citons
la dérivée de Griinwald-Letnikov, Riemann-Liouville, Caputo et Riesz-
Feller [83]. Méme si elles sont différentes, elles sont toutes liées les unes
aux autres. Griinwald-Letnikov est l'approche la plus évidente pour
définir les dérivés fractionnaires. Elle est principalement utilisée pour
I'approximation numérique des dérivées fractionnaires. La derivée de
Riemann-Liouville a joué un role important dans son application en
mathématiques pures tandis que Caputo a été mise en place pour répon-
dre aux problémes appliqués. Caputo a été le premier a appliquer le cal-
cul fractionnaire a la mécanique, en particulier aux modeéles linéaires de
viscoélasticité [21], [22]. Les dérivées de Caputo permettent 1'utilisation
des conditions initiales physiquement interprétables, ce qui n’est pas au-
torisé par la derivée de Riemann-Liouville. Un bref apercu historique
du développement du calcul fractionnaire est donné par Ross [92]. Le
manuel de Oldham et Spanier [78] est concerné par les définitions et les
propriétés des opérateurs intégro-différentielles d’ordre fractionnaire. En
1987, un livre encyclopédique a été écrit par Samko, Kilbas, et Marichev
[96]. Une présentation des nombreuses applications issues du calcul frac-
tionnaire est présentée dans Podlubny [83]. Récemment, plusieurs math-
ématiciens et chercheurs ont obtenu des résultats et des généralisations
importantes de la modélisation des processus réels a I’aide de calcul frac-
tionnaire ([7], [26], [36], [81], [103]).

1.1.2 Revue historique sur les Problémes Inverses

En science, un probleme inverse est une situation dans laquelle a par-
tir d’observations expérimentales, on cherche a déterminer les causes
d'un phénomene. La théorie mathématique des problémes inverses a
été essentiellement ignorée jusqu’au milieu du vingtiéme siecle. Au lieu
de cela, les scientifiques se sont concentrés sur des problemes directs,
c’est-a-dire la construction du modéle lui-méme plutot que le processus
d’inversion. Puisque le modéle lui-méme est inexact, un tel processus
d’inversion entraine généralement des problémes d’existence et de stabil-
ité. Au début du vingtiéme siecle, I'idée de problemes directs dominait la
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physique mathématique. En effet, le mathématicien frangais Hadamard
estimait qu'un probleme physique important devait étre bien posé, c’est-
a-dire que le probléme devait toujours avoir une solution unique qui
dépend contintiment des données. Cette idée a persisté au milieu du
vingtieme siecle. Cependant, 'avénement de la mécanique quantique et
de nombreux problemes dans les domaines de la physique classique tels
que la conduction thermique et la géophysique ont lentement convaincu
les mathématiciens et les scientifiques que les problémes directs n’étaient
pas les seuls problemes scientifiques et que la théorie mathématique des
problemes inverses commencgait a étre développé par des mathématiciens
de I’'Union Soviétique dirigés par Tikhonov. La solution dun probleme
inverse consiste a inverser le modele pour récupérer des informations
cachées sur les phénomenes physiques a partir des observations. Une
étude complete de nombreux domaines des problemes inverses et de
I'imagerie peut étre trouvée dans [99]. Les premieres publications sur
les problémes inverses et les probléemes mal posés remontent a la pre-
miere moitié du XXe siécle. Leurs sujets étaient liés a la physique, la
géophysique, 1'astronomie et d’autres domaines de la science. Depuis
I'avénement des ordinateurs puissants, le domaine d’application de la
théorie des problemes inverses et des problemes mal posés s’est étendu a
presque tous les domaines de la science qui utilisent des méthodes math-
ématiques. La résolution de problemes inverses peut également aider a
déterminer la localisation, la forme et la structure des intrusions, des
défauts, des sources (de chaleur, d’ondes, de différence de potentiel, de
pollution), etc. Compte tenu d’'une telle variété d’applications, il n’est
pas surprenant que la théorie des problemes inverses et des problemes
mal posés soit devenue 1'un des domaines de la science moderne qui se
développe le plus rapidement depuis son apparition.

1.1.3 Problémes Directs

Pour définir diverses classes de problemes inverses, nous devons
d’abord définir le probleme direct. En effet, quelque chose "inverse" doit
étre le contraire de quelque chose de "direct". En général, les problémes
directs sont bien posés [56]. Le concept mathématique de probleme bien
posé a été proposé par Hadamard en 1932. Il croyait que les modeles
mathématiques des phénomenes physiques devraient avoir les propriétés
suivantes:

-Une solution existe;

-La solution est unique;

-Elle dépend continiment de la donnée.

La premiere condition décrit la cohérence du modele mathématique,
la deuxieme refléte la précision de la situation réelle et la troisieme con-
dition exprime la stabilité de 1'équation, c’est-a-dire qu’un petit change-
ment dans 1'équation ou dans les conditions latérales entraine un léger
changement de la solution. Un probléme qui ne satisfait pas a I'une des
conditions précédentes est un probléme mal posé.
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En physique mathématique, un probleme direct est généralement un
probleme de modélisation de certains champs, processus ou phénomenes
physiques (acoustique, électromagnétique, chaleur sismique, etc.). Le but
de résoudre un probleme direct est de trouver une fonction qui décrit un
champ ou un processus physique en n'importe quel point d'un domaine
donné a tout instant (si le champ est non stationnaire).

Les problemes directs pour les équations de diffusion fractionnaire
telles que les problemes a valeur initiale ou limite ont été étudiés en
détail dans ([31], [65], [70], [95]) et les références qui y figurent.

1.1.4 Problémes Inverses

Un probleme inverse est généralement mal posé. Un probleme mal
posé est un probleme qui ne répond pas a l'un des trois critéres de
Hadamard pour étre bien posé, c’est-a-dire, des petits changements dans
les données de mesure entrainent des changements indéfiniment impor-
tants dans la solution. La plupart des difficultés a résoudre des problemes
mal posés sont causées par l'instabilité de la solution. Par conséquent,
I’expression "probleme mal posé" est souvent utilisée pour des problémes
instables. A cette époque, on pensait que les problémes naturels devaient
avoir des solutions mathématiques continues; on pensait que cela faisait
partie de 1’ordre inhérent des choses. Depuis lors, nous avons découvert
que de nombreux problemes scientifiques et techniques importants ne
sont pas, en fait, bien posés au sens traditionnel, car ils n'ont pas des
solutions continues. Les problemes inverses et mal posés ont commencé
a étre étudiés et appliqués systématiquement pour fournir des informa-
tions a de nombreuses applications dans différents domaines. Cela inclut
les problemes en médecine (par exemple, dans les tissus organiques en
imagerie médicale par résonance magnétique), en physique (mécanique
quantique, acoustique, etc.), en économie (en théorie du controle opti-
mal, etc.) et tous les autres domaines ot les méthodes mathématiques
sont utilisées (voir, par exemple, [10], [33], [106] et [107]). L'un des pre-
miers problemes inverses résolus dans le passé était la découverte de
Newton des forces qui font que les planetes se déplacent conformément
aux lois de Kepler. Des recherches sur la structure interne de la crofite
terrestre ont impliqué des champs électromagnétiques dans la théorie des
problémes inverses.

Tichonov [1963] fut le premier a traiter des problemes mal posés, in-
troduisant ainsi le concept de régularisation. Un probleme mal posé de-
vra souvent étre régularisé ou reformulé avant de pouvoir procéder a
une analyse numérique complete a 1'aide d’algorithmes numériques. La
régularisation demande souvent de nouvelles hypotheses pour affiner
completement le probléme et le réduire. L'idée de la méthode de régu-
larisation est de remplacer le probléme mal posé par un probleme bien
posé, ce qui peut étre fait en introduisant un opérateur régularisé qui
considere les informations préalables concernant la solution exacte.
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Au cours des dernieres années, des avancées significatives ont été réal-
isées dans le domaine des problémes inverses linéaires par Hansen [1992
a,b], [1995], Hanke et Hansen [1993], Oldenburg et al. [1991], [1993],
[1994], Scales [1987], Scales et al. [1987], [1990], [1994], Parker [1994],
Parker et Whaler [1981], Nolet et Snieder [1990], et d’autres.

Dans le domaine des problemes inverses non linéaires, il y a beaucoup
plus de progres a faire.

D’autre part, les équations différentielles fractionnaires deviennent un
outil important dans la modélisation de nombreux problémes de la vie
réelle et il y a eu donc un intérét croissant pour l'étude des problémes
inverses avec des équations différentielles fractionnaires ([6], [39], [54],
[113]). Les premiers résultats mathématiques pour le probleme inverse
de trouver un coefficient de diffusion pour une équation différentielle
fractionnaire sont obtenus dans [73]. De nombreux types de problemes
aux limites, y compris les problémes directs et inverses, ont été formulés
pour les différents types d’EDP d’ordre entier et avec plusieurs opéra-
teurs différentiels d’ordre fractionnaire. Il existe de nombreux travaux
sur I'étude des problemes directs et inverses pour les équations de dif-
fusion fractionnaire en temps ou d’onde avec la dérivée de Caputo (voir
[35], [65], [95]).

Dans cette these, nous nous intéressons a l’existence et 1'unicité des
solutions de problemes inverses pour les équations différentielles frac-
tionnaires en temps.
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1.2 Introduction (English)

1.2.1 Fractional Calculus

The Non-Integer Order Calculus, traditionally known as Fractional
Calculus is the branch of mathematics that tries to interpolate the clas-
sical derivatives and integrals and generalizes them for any orders, not
necessarily integer order. But with this definition, many interesting ques-
tions will arise; for example, if the first derivative of a function gives you
the slope of the function, what is the geometrical meaning of half deriva-
tive? In half order, which operator must be used twice to obtain the first
derivative? The early history of this questions goes back to the birth of
fractional calculus first appeared in the correspondence of Leibniz with
L'Hospital (1695), Johann Bernoulli (1695), and John Wallis (1697) as a
mere question or maybe even play of thoughts. Many mathematicians
focused on this topic. However, nothing much has been done in the field.
One of the reasons is that the mathematical tools of fractional calculus
were not available. Another reason is the lack of practical applications
of this field. Nevertheless, beginning with the nineteenth century, inter-
esting developments have been made in the theory of Fractional Calcu-
lus: Laplace (1812), Lacroix (1812), Fourier (1822), Abel (1823-1826), Liou-
ville (1832-1837), Riemann (1847), Griinwald (1867-1872), Letnikov (1868-
1872), Sonin (1869), Laurent (1884), Heaviside (1892-1912), Weyl (1917),
Davis (1936), Erdelyi (1939-1965), Gelfand and Shilov (1959- 1964), Ca-
puto (1969), and many others. Yet, it is only after the first specialized
conference organized by B. Ross on “Fractional Calculus and its appli-
cations”, the fractional calculus has become one of the most intensively
developing areas of mathematical analysis. Many applications of various
kind of fractional differential equations became a target of specialists due
to both theoretical and practical reasons [9]. It has gone through a rapid
development and has been revealed as a powerful tool in the modeling
of certain phenomena in several sciences as Physics, Chemistry, Biology,
Engineering, and Finance especially during the past three decades.

Considering a differential equation that describes a specific phe-
nomenon, a common way to use fractional modeling is to replace the
integer order derivatives by non-integer derivatives, usually with order
lower than or equal to the order of the original derivatives, so that the
usual solution may be recovered as a particular case [83].

A simple example of fractional derivatives of the function f (t) = 2,
is plotted for different values of the fractional order in Figure 1. The
different values of the fractional order are obtained using the expression

am W I'(p+1)

dtm IF'(p+1—m)

where p is a real number.
Actually, when modeling real physical phenomena, fractional deriva-
tives can provide more accurate results than integer order derivatives

P
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Figure 1.1 — Fractional derivatives ‘. f (t), of a quadratic function, f (t) = t* (blue,
solid line) with the order m which has values 0.25 (magenta, dotted line), 0.50 (black,
dashed line), 0.75 (green, dash-dot line), and 1 (red, thicker solid line).

[66]. The advantages of fractional derivatives are that they have a greater
degree of flexibility in the model and provide an excellent instrument for
the description of the reality. This is because of the fact that the realistic
modeling of a physical phenomenon does not depend only on the instant
time, but also on the history of the previous time, i.e., calculating time-
fractional derivative at some time requires all the previous processes with
memory and hereditary properties [83]. It exists also in many biological
systems ([29], [32]).

Fractional derivatives and integer order derivatives are both linear
operators. However fractional derivatives are usually nonlocal operators
while integer order derivatives are local operators. As shown in Figure
2, the integer order derivative of a function at a point depends only on
the local behavior of the function. However the value of the fractional
derivative at a point depends on the entire behavior of the function [101].

The application areas of fractional calculus is expanding rapidly. The
increasing interest in fractional differential equations are motivated not
only by their application to problems from viscoelasticity, heat conduc-
tion in materials with memory, electrodynamics with memory, and also
because of they can be employed to approach nonlinear conservation
laws. Besides, fractional differential equations can help us to reduce the
errors arising from the neglected parameters in modeling real-life phe-
nomena [7], [67]. In mechanical engineering, there are several applica-
tions of fractional calculus, for example, the study of control and dynam-
ical systems [69], modeling anomalous diffusion [109]. The nonstandard
behavior or anomaly of the reaction diffusion equation, transport equa-
tion, is known as anomalous non Gaussian diffusion, which has long
memory effects. Among several explanations for this anomalous diffu-
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Figure 1.2 — (a) The usual derivative is local, (b) The fractional derivative is nonlocal
and depends on the behaviour of the entire functions.

sion, one is by using fractional derivative in time or in space or both in
the reaction diffusion equation, transport equation. Anomalous diffusion
model solution based on fractional calculus at different operations condi-
tions allow getting better results [71]. In physics, there are several poten-
tial applications of fractional derivative. A valuable monograph about the
applications of fractional integrals and derivatives to polymer physics,
biophysics, thermodynamics, rheology, chaotic systems has been edited
by R. Hilfer [44]. Moreover, in medicine, it has been deduced that the
membranes of cells of a biological organism have fractional order elec-
trical conductance and then, they are classified in groups of noninte-
ger order models. Fractional derivatives embody essential features of cell
rheological behavior and have enjoyed the greatest success in the field of
rheology [7].

In the literature, several definitions of the fractional derivatives have
been proposed. For instance, the Griinwald-Letnikov, the Riemann-
Liouville, the Caputo and the Riesz-Feller [83]. Even though they are
different, they are all related to each other. The Griinwald-Letnikov is the
most obvious approach to define fractional derivatives. It is mainly used
for numerical approximation of fractional derivatives. However, dealing
with fractional derivatives as a limit of fractional-order difference is not
convenient due to the mathematical complexity. Therefore, some studies
use the Griinwald Letnikov numerically, but try to solve the initial prob-
lem with other definitions. The Riemann-Liouville played an important
role for its application in pure mathematics while Caputo has been intro-
duced to respond to applied problems. Indeed, M. Caputo was the first
to give applications of fractional calculus to mechanics, especially to lin-
ear models of viscoelasticity [21], [22]. Caputo derivatives allow the use
of physically interpretable initial conditions, which is not permitted by
the Riemann-Liouville.

Fractional calculus modeling (FCM), using Caputo derivative [93], has
been recently used to generalize the logistic equation. The solution of
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the corresponding fractional differential equation provides a suitable de-
scription for the growth of certain types of cancer tumor [108].

A brief historical overview of the development of fractional calcu-
lus is given by Ross [92]. The textbook of Oldham and Spanier[78] is
concerned with the definitions and the properties of fractional order
differential /integral operators. In 1987, the huge book was written by
Samko, Kilbas, and Marichev [96], referred to now as "encyclopedia” of
fractional calculus. A survey of the many different applications which
have emerged from fractional calculus is given in Podlubny[83]. Recently
several mathematicians and applied researchers have obtained important
results and generalizations from modeling real processes using FC ([7],
[26], [36], [81], [103]).

1.2.2 Historical review on Inverse Problems

Inverse problems are as old as science itself. A scientific problem is the
problem of constructing a model of some physical or biological phenom-
ena that, although inexact, is accurate enough to be able to use observa-
tions or measurements to obtain information about the phenomena un-
der investigation. The challenge is to "invert" the model to recover useful
estimates of the object under investigation. Strangely enough, given the
above description of the scientific method, the mathematical theory of in-
verse problems was essentially ignored until the middle of the twentieth
century. Instead, scientists focused on direct problems, i.e. the construc-
tion of the model itself rather than the inversion process. Since the model
itself is inexact, such an inversion process typically leads to problems of
existence and stability.

By the beginning of the twentieth century, the idea of direct prob-
lems dominated mathematical physics. Indeed, the French mathemati-
cian Hadamard held the opinion that an important physical problem
must be well-posed, i.e. the problem must always have a unique solution
that depends continuously on the data. This idea persisted well into the
middle of the twentieth century. However, the advent of quantum me-
chanics and numerous problems in areas of classical physics such as heat
conduction and geophysics soon slowly convinced mathematicians and
scientists that well-posed direct problems were not the only ones of sci-
entific interest and the mathematical theory of inverse problems began
to be developed by mathematicians of the Soviet Union led by Tikhonov.
In particular, this theory focused on the problem of determining the pa-
rameters and data in the mathematical model of the direct problem from
measurements and observations of the data that arise from the physical
or biological phenomena taking place.

The solution of an inverse problem is to "invert" the model to recover
hidden information about the physical phenomena from the observa-
tions.

A comprehensive survey of many areas of inverse problems and
imaging can be found in 1600 pages handbook [99].
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First publications on inverse and ill-posed problems date back to the
tirst half of the 20th century. Their subjects were related to physics (in-
verse problems of quantum scattering theory), geophysics (inverse prob-
lems of electrical prospecting, seismology, and potential theory), astron-
omy, and other areas of science. Since the advent of powerful computers,
the area of application for the theory of inverse and ill-posed problems
has spread to almost all fields of science that uses mathematical methods.

Solving inverse problems can also help to determine the location,
shape, and structure of intrusions, defects, sources (of heat, waves, poten-
tial difference, pollution), and so on. Given such a wide variety of appli-
cations, it is no surprise that the theory of inverse and ill-posed problems
have become one of the most rapidly developing areas of modern science
since its emergence.

1.2.3 Direct Problems

To define various classes of inverse problems, we should first define
a direct (forward) problem. Indeed, something "inverse" must be the op-
posite of something "direct". Direct problems are based on developing
a mathematical model that maps causes into effects and are typically
well-posed: each cause has a unique effect and causes which are close to
one another have effects which are close to each other. In general, direct
problems are well-posed [56]. The well-posedness criteria was proposed
by Jacques-Salomon Hadamard, a French mathematician, in 1902. He be-
lieved that mathematical models of physical phenomena should have the
properties that:

-A solution exists;

-The solution is unique;

-‘The solution depends continuously on the data (initial conditions
and source term).

The first condition describes the consistency of the mathematical
model, the second reflects the definiteness of the real situation. The third
condition expresses the stability of the equation, a small change in the
equation or in the side conditions give rise to a small change in the solu-
tion.

In mathematical physics, a direct problem is usually a problem of
modeling some physical fields, processes, or phenomena (acoustic, elec-
tromagnetic, seismic heat, etc.). The purpose of solving a direct prob-
lem is to find a function that describes a physical field or a process at
any point of a given domain at any instant of time (if the field is non-
stationary). The formulation of a direct problem includes:

-The domain in which the process is studied;

-The equation that describes the process;

-The initial conditions (if the process is nonstationary);

‘The conditions on the boundary of the domain (existence and
uniqueness involve boundary conditions).

The direct problems for fractional diffusion equations such as an initial
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or boundary value problems have been studied extensively in ([31], [65],
[70], [95]) and references therein.

1.2.4 Inverse Problems

An inverse problem is usually ill-posed. The concept of an ill-posed
problem is not new. While there is no universal formal definition for in-
verse problems, Hadamard [1923] defined a problem as being ill-posed
if it violates the criteria of a well-posed problem, that is, either existence,
uniqueness or continuous dependence on data is no longer true, i.e., arbi-
trarily small changes in the measurement data lead to indefinitely large
changes in the solution. Hadamard did not deal with the numerics of
ill-posed problems as he believed that the ill-posedness arose from an
incorrect physical representation of the problem.

Most difficulties in solving ill-posed problems are caused by solu-
tion instability. Therefore, the term "ill-posed problem" is often used for
unstable problems. In the majority of cases, inverse problems turn out
to be ill-posed and, conversely, an ill-posed problem can usually be re-
duced to a problem that is inverse to some direct (well-posed) problem.
Inverse and ill-posed problems began to be studied and applied system-
atically to provide information for many applications in various fields
just like physics, geophysics, medicine, astronomy, and all other areas
of knowledge where mathematical methods are used. They appear in
modeling a wide variety of problems, i.e., Magnetic Resonance Imaging,
Computerized Tomography, Signal Processing, and many other applica-
tions (see, for example,[10], [33], [106] and [107]). Solutions of inverse
problems recover hidden information for a given system and describe
important properties, such as density and velocity of wave propagation,
elasticity parameters, conductivity, dielectric permittivity, and magnetic
permeability, properties and location of inhomogeneities in inaccessible
areas, etc [101].

One of the first inverse problems solved in the past was Newton’s
discovery of forces making planets move in accordance with the Kepler’s
laws. Researches regarding the internal structure of the Earth’s crust in-
volved electromagnetic fields in the theory of the inverse problems.

Tichonov [1963] was the first to deal numerically with ill-posedness,
and in so doing introduced the concept of regularization. An ill posed
problem will often need to be regularized or re-formulated before one
can give it a full numerical analysis using computer algorithms or other
computational methods. Regularization often involves bringing in new
assumptions to fully define the problem and narrow it down. The idea of
regularization method is to replace the ill-posed problem by well-posed
problem, which can be done by introducing a regularized operator which
considers available prior information about the exact solution.

While the concept of regularization is well understood today, the main
problem is its implementation in large problems. In recent years signifi-
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cant advances have been made in the field of linear inverse problems by
the work of Hansen [1992 a,b], [1995], Hanke and Hansen [1993], Olden-
burg et al. [1991], [1993], [1994], Scales [1987], Scales et al. [1987], [1990],
[1994], Parker [1994], Parker and Whaler [1981], Nolet and Snieder [1990],
and others. The backward heat equation which is the model of a linear
inverse problem is one of the first ill-posed problems that is systemati-
cally studied. Solving a heat equation backward in time presents the class
of inverse heat conduction problems ([45], [46], [110]). However, there are
still a number of unanswered questions, and more importantly, there is
insufficient understanding as which method should be used for a specific
problem. In the field of nonlinear inverse problems, there are far more
advances to be made. Inverse scattering problem for acoustic waves is
one of the best-known example of a nonlinear inverse problem and, its
electromagnetic version is the mathematical basis of synthetic aperture
radar [24].

Inverse problems come into various types, for example, inverse ini-
tial problems where initial data are unknown and inverse source prob-
lems where the source term is unknown. These unknown terms are to
be determined using extra boundary data. Fractional differential equa-
tions, on the other hand, become an important tool in modeling many
real-life problems and hence there has been growing interest in study-
ing inverse problems of time fractional differential equations ([1], [6],
[39], [54], [113]). The first mathematical results for the inverse problem
of finding diffusion coefficient for a fractional differential equation is
obtained in [73]. Many kinds of boundary problems, including direct
and inverse problems, were formulated for the different type of PDEs
of integer order and with several fractional order differential operators.
For example, in [113], Zhang and Xu studied inverse source problem
for a fractional diffusion equation where solutions are found based on
the method of eigenfunction expansion. Yikan Liu [64] established the
strong maximum principle for fractional diffusion equations with multi-
ple Caputo derivatives and investigated the related inverse problem. We
also note the work of Daftardar-Gejji and Bhalikar [25] where multi-term
fractional diffusion-wave equation was considered and boundary-value
problems for this equation were solved by the method of separation of
variables. There are many works on studying direct and inverse problems
for time-fractional diffusion or diffusion-wave equations with the Caputo
derivative. Depending on the operator used in the space-variable, the ex-
istence of a classical or generalized solution is partly known, for instance,
see works ([35], [65], [95]) and references therein. In [68], authors consid-
ered the initial inverse problem in heat equation with Bessel operator.
They expressed the solution of the problem and the initial temperature
distribution in terms of an orthogonal set of Bessel functions. These types
of functions arise in the modeling of chemical engineering process in-
cluding hydrodynamics, bio-processes, diffusion and heat transfer (see,
for example, [68],[82]). In this thesis, we are interested in the existence
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and uniqueness of solutions of inverse problems for time fractional dif-
ferential equations.
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1.3 Presentation of the obtained results

1.3.1 Chapter 2: An inverse problem for a time nonlocal
evolution equation with an involution perturbation

Statement of the problem

An inverse problem of a time fractional evolution equation interpolating
the heat and wave equations with involution is considered. The goal is
to determine the spectral problem associated with our problem and then
determine conditions, so that the inverse problem has a unique solution.
The results on the existence and uniqueness of a solution are presented
by the method of separation of variables. The equation

Diu (x,t) — thxy (x, 1) 4+ €tyy (—x, 1) = f (%), (1.1)

posed for x € (—m,m) and t > 0, where f and u are unknowns,
1 < & < 2, €is a nonzero real number such that |e|] < 1. We equip (1.1)
with the initial, final, and boundary conditions

u(x,0)=¢(x), u(x0)=p(x), u(xT) =), xc[-mn, 12

u(—m,t)=0, u(mr,t)=0,tcl0,T], (1.3)

where ¢ (x) and ¢ (x) are given sufficiently smooth functions. The
derivative D} defined as

Diu(x,t) = D*(u(x,t) — u(x,0) — tus(x,0))

is the Caputo derivative for a function built on the Riemann-Liouville
derivative D*. Caputo’s derivative allows us to impose initial conditions
in a natural way.

By a regular solution of problem, we mean a pair of functions
(u(x,t), f(x)) of the class u(x,t) € Ci% (Q) ,(space of two times
continuously differentiable functions on () according to both x and t),
fx)eCl-m,nQ={-n<x<m 0<t<T}.

Main result
The main result of this work is the following theorem.
Theorem 1.3.1 Let ¢ (x),p(x), ¥ (x) € C*[-m, 7] and ¢\ () =

oW (£71) = 9O (£71) = 0,i = 0,1,2,3. If 1 — ug (.) # O then, for a nonzero
real number € such that |e| < 1, problem (1.1)-(1.2)-(1.3) has a unique solution
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which can be written in the form

u(xt) = ¢(x)

and

where,

—TT —7T
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1.3.2 Chapter 3: Some inverse problems for the nonlocal
heat equation with Caputo fractional derivative

The purpose of this chapter is to study inverse problems for the non-

local heat equation with involution of space variable x. Our goal is to

determine the spectral problem associated with our problem and then

determine conditions for which the inverse problem has a unique solu-

tion. The results on the existence and uniqueness of a solution are pre-

sented by the method of separation of variables. We consider the heat
equation

Diu(x,t) — tyy (X, 1) + €ty (T —x, 1) = f(x), (1.4)

for (x,1) e Q={0<x<m 0<t<T<oo}, 0<a<1, where D}
is the Caputo derivative (which is defined in the next section) and ¢ is a
real number.

Statement of problems

The chapter is concerned with four inverse problems concerning the
problem (1.4). We obtain existence and uniqueness results for these prob-
lems, based on the Fourier method.

Problem D. Find the couple of functions (u (x,t), f (x)) satisfying
equation (1.4), under the conditions

u(x,0)=¢(x), x€l0,n], (1.5)
u(x,T)=9(x), x€0,n], (1.6)

and the homogeneous Dirichlet boundary conditions
u(0,t) =u(m,t)=0,te|0,T], (1.7)

where ¢ (x) and ¢ (x) are given sufficiently smooth functions.

Problem N. Find the couple of functions (u (x, t), f (x)) in the domain
() satisfying equation (1.4), conditions (1.5), (1.6) and the homogeneous
Neumann boundary conditions

uy (0,t) = uy (m,t) =0, t€[0,T]. (1.8)

Problem P. Find the couple of functions (u (x,t), f (x)) in the do-
main () satisfying equation (1.4), conditions (1.5), (1.6) and the periodic
boundary conditions

u(0,t) =u(mt), uy (0,t) =uy (m,t), t€[0,T]. (1.9)

Problem AP. Find the couple of functions (u (x,t), f (x)) in the do-
main () satisfying equation (1.4), conditions (1.5), (1.6) and the anti-
periodic boundary conditions

u(0,t) = —u(mt), uy (0,t) = —uy (77, t), t €0, T]. (1.10)
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A regular solution of problems D, N, P and AP is the pair of func-
tions (u(x,t),f (x)) where u € Ci} (Q))(space of two times and one
time continuously differentiable functions on () according to x and t
respectively) and f € C ([0, 7]) .

Main results

For the considered problems D, N, P, AP, the following theorems hold
true.

Theorem 132 Let |¢] < 1, ¢, € C3[0,71] and ¢V (0) = ¢ (1) =

@ (0) = ¢ (1) = 0,i = 0,1,2. Then the solution of problem D exists, is
unique and it can be written in the form

u(x,t)=

(%)

%
0 (171‘3“,1(*(178)(2k+1)2ta))sin(2k+1)x (2) 2)
+k§0 (1_Ea,1<_(1_€)(2k+1)2T“))(2k+1)2 ((Plk — Pk )

O (1—Eq1 (—(14¢)4k2t" ) ) sin 2kx

(2) (2)
+k§1 (1—Ea,1(—(l+s)4k2TW)>4k2 ((P2k — o )/

fx)= —¢"(x) +e¢"(m—x)
(1—¢) ((Pﬁ’—wﬁ))
(1_Ea,1(—(1—s)(2k+1)2Ta))

(1+e) (o 957 )
(1=Eq1(—(1+e)4k2T2))

+

sin(2k +1)x

+

sin 2kx,

ft1e Ire

where

oD = (9" (), ¥5.1), o8 = (¢ (x), ¥B),

P = @ (0, va) 9 = (0 (), ).
and E, g (At) is the Mittag-Leffler type function:

Eup(z) = mgo —F((x; Ay

Theorem 1.3.3 Let ¢, € C3[0,7] and ¢ (0) = ¢ (1) = ) (0) =
@ (1) =0, i = 0,1,2. Then the solution of problem N exists, is unique and
it can be written in the form



1.3. Presentation of the obtained results 19

u(x,t) = ¢(x) + (%o — 9o)
1—E, 1 (—(1—€)4k?t%) ) cos 2kx
( (1_E1,(1(_(1_€)4kz;2))4k2 (¥ — @}7)

00 (1—Ea,1(—(1+€)(2k—|—1)2t0¢))cos(2k+1)x 2) 2)
+k§0 (1=Ea (—(14e) (2k+1)°T%) ) (2k+1)? ($2 = o),

fx) = —¢"(x) +eg"(m—x)
© (19 (ol ~¥i7 )

+ kgl (1_Eal1(_(1_8)4k2w))cos2kx
N (o2 @
+ Y (1) <(P2k ¢2k> cos(2k +1)x,

=0 (1=Eq1(—(14e)(2k+1)°T2) )
where

go=(¢(x), v, 3 = (¢" (x), y}), 9% = (¢" (x), ¥Dy1)

)
Yo = (), ) 91 = (9" (), 93 s = (9 (), ¥h) -
Theorem 134 Let ¢, € C*[0,7] and ¢!V (0) = o) (), p) (0) =

) (1), i = 0,1,2. Then the solution of problem P exists, is unique and it
can be written in the form

o (1-Ean (_ (1_5)4k2t“) ) cos2kx () )
* k§1 (1_Ea,1<—(1—€)4k2T"‘))4k2 (P1 — ¥1c )

X (1=Eg1(—(14e)4k%t* ) ) sin2kx , o) (o)
i g (1—Ea,1(—(1+e)4k2Ta))4k2 Pk — 1/’2k );
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flx)= —¢"(x) +e¢"(m—x)

i (1- 5)<(P1k '1011()
+ Z (U Ear (-0 sza))COSka

+ E (1+e) (G"zk 1P2kz>
= (1=Eq 1 (—(1+e)2k2T"

) ) sin 2kx,

where

go=(¢(x), 1), 9% = (¢" (), v5) . o5 = (¢" (x), yhrn) »

bo= (), ) ¥ = 07 (), 1) 9 = (8 (%), v
Theorem 135 Let ¢, € C3[0, 7] and ¢() (0) = —¢\) (1), @ (0) =

—9p@ (1), i = 0,1,2. Then the solution of problem AP exists, is unique and it
can be written in the form

u(x,t) = ¢(x)
- (1_Etx,1( (1—¢)(2k+1 2t"‘))cos 2k+1)x 2)
+k§0 (1_Eal( (1- )(2k+1)2T“))(2k+1) (91 1/’1k)
00 (1—E,x,1( (14€)(2k+1)? ))s (2k+1)x )
+k§0 (1_E¢x,1(_(1+€)(2k+1) ))(2k+1) (¢ ‘sz)

fx) = —¢"(x) +e¢" (m—x)

0 o) (ol —¥1x)
L EM( . )(zk+1)2w))
o (1+e) (9"2k l/’2k )

+ ) |

= (1=Eg1 (—(1+) (2k+1 2T“))

cos(2k +1)x

sin(2k 4+ 1)x,

where
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1.3.3 Chapter 4: Inverse source problems for a wave equa-
tion with involution
The purpose of this chapter is to study inverse problems for a non-

local wave equation with involution of space variable x. We consider the
nonlocal wave equation

Up (X, 1) — tyy (X, 1) + €Uyy (T —x, 1) = f (x), (1.11)

for (x,t) e Q={0<x <, 0<t<T}, where ¢ is a real number.

Statement of problems

The chapter is devoted to two inverse problems concerning the wave
equation with a perturbative term of involution type with respect to the
space variable. We obtain existence and uniqueness results for these prob-
lems, based on the Fourier method.

Problem D. Find a couple of functions (u (x,t), f (x)) satisfying equa-
tion (1.11), under the conditions

u(x,0)=0, x€[0,n], (1.12)
u(x,T)=¢(x), x€[0,n], (1.13)
ut (x,0) =0, x €0, ], (1.14)

and the homogeneous Dirichlet boundary conditions
u(0,t) =u(m,t)=0,te(0,T], (1.15)

where (x) is a given sufficiently smooth function.

Problem N. Find the couple of functions (u (x,t), f (x)) in the do-
main () satisfying equation (1.11), conditions (1.12), (1.13), (1.14) and the
homogeneous Neumann boundary conditions

uy (0,t) =uy (m,t) =0, t €[0,T]. (1.16)

A regular solution of the problems D and N is the pair of functions
(u(x,t),f (x)), where u € C2(Q)) and f € C([0, 7t]).

Spectral properties of the perturbed Sturm-Liouville problem

Application of the Fourier method for solving problems D and N leads
to a spectral problem defined by the equation

v (x)—ey (m—x)+Ay(x) =0,0<x <71, (1.17)

and one of the following boundary conditions
y(0)=y(m) =0, (1.18)
¥y (0) =y (m)=0. (1.19)
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Main results
For the considered problems D and N, the following theorems are valid.
Theorem 1 Let |e| < 1, ¢ € C*[0, 7r] and v\ (0) = v\ () = 0,i =

0,1,2,3,4. IfcosvV1—e(2k+1)T < 61 < land cosv/1+€2kT < 6, < 1,
then the solution of problem D exists, is unique and it can be written in the form

(1—cosv1—e(2k+1)t) sin(2k+1)xlp4
k=0 (1 — cos\/l——g(2k+ 1) T) (2k+ 1)4 2k+1
® (1—cos+/1+e2kt)sin2kx

- ,; (1 — cos /T + e2kT) 16k* Yo (120)
v (1—¢) ‘ng+1 -
flx)= kZL’) (1—cosvV1—e(2k+1)T) (2k +1)? sin (2k+1) x
4
+ Z (1 &) Py sin2kx, (1.21)

0s /1 + €2kT) 4k?

where ll}éi)ﬂ = <1/)(4) (x), yg{H) and qjg) = <¢(4) (x), l/gc) .

Theorem 2 Let |e| < 1, ¢ € C*[0, 7r] and v\ (0) = v\ () = 0,i =
0,1,2,3,4. IfcosvV1—e(2k+1)T < 0y < land cosv/1+€2kT < 0p < 1,
then the solution of problem N exists, is unique and it can be written in the form

(1—cosv1+e(2k+1)t) COS(2k+1)x¢4
= (1—cosvVT+e(2k+1)T) (2k+1)* 2k-+1
® (1—cos+/1—e2kt) cos2kx |,

- k_Z:l (1— cos /T — e2kT) 16k* Vo (122)
v (1+e¢) ¢§k+1
flx)= ,(_ZO ([ —cosvite(k+1)T) 2kgap s E L
4
+ Z ( \/1L—ll:322kkT) ik 2kx, (1.23)

where wéi)ﬂ — <1/)(4) (x), ylz\,]{H) and qjg) = (1/)(4) (x), yé\l’{) )
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1.3.4 Chapter 5: On a nonlinear boundary-layer problem
for the fractional Blasius type equation

Statement of the problem and main results

In this chapter, we consider a non-linear sequential differential equation
with Caputo fractional derivative. We reduce the problem to the equiva-
lent nonlinear integral equation and we prove the complete continuity of
the nonlinear integral operator.

Consider the boundary value problem for the nonlinear fractional dif-
ferential equation of Blasius type

%Di“x () 4+ M(x(£), ) D2x () =0, a<t<b,  (124)

with boundary conditions
x (a) = @1, Dix (a) = @2, x (b) = @3, (1.25)

where a € (%, 1) and @1, ¢2, @3 are given real numbers. Note that when

a« = 1, problem (1.24) - (1.25) is met in boundary layer theory in fluid
mechanics and polymer theory. The recent surge in developing the theory
of fractional differential equations has motivated the present work.

Condition (*). Let M (x, t) be defined and continuous in the domain
G={(x,t):|x] <R,R>0,a<t<b},

where .
gl (b —a)")

R =TT

+ 1] +

_$2\0—a)
3 T(a+1) 1
and

m = min M (x,t),
x,teG

M = max{max/\/l (x,t),O}.

x,teG
The space C3_, ([a, b]) denotes the space:
C3 . ([a,b) ={xeC([ab]): x" € Cs_a([ab])}.

Here Cs_, ([a,b]) = {(t —a)>*x e C([a, b])}.
The main result of this work is the following theorem.

Theorem 1.3.6 If condition (*) satisfied, then problem (1.24) - (1.25) has a
solution in C3_, ([a, b]).

Theorem on the existence of a unique solution of the problem for
the non-linear differential equation of fractional order is formulated. In
the limiting case, the considered boundary problem coincides with the
boundary-layer problem for the Blasius equation.
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1.4 Preliminaries

1.4.1 Basic Functions

In this section, we recall definitions of some special functions that we
use later in the thesis.

Gamma Function

The Euler’s gamma function T (z) is one of the basic functions of
fractional calculus. It generalizes the factorial z! to take also non-integers
and complex values and it is defined as follows.

Definition 1.4.1 The gamma function T (.) is defined as: for z € C and
Re(z) >0

(ee]

I(z) = /e_ttz_ldt (2.1)

0

where 21 = e(z=D18() This integral is convergent for all complex z € C
(Re(z) > 0).

For this function the reduction formula
[(z+1)=2zI(z) (Re(z)>0)
holds. In particular, if z = n € INg, then
[(n+1)=mn! (n€Np)

with (as usual) 0! = 1.

Mittag-Leffler functions

Definition 1.4.2  The classical Mittag-Leffler function is defined by Mittag-
Leffler (1903) :

00 n

Ey(z) = Tgm, z € Cand Re (a) > 0. (2.2)

Taking & = 1 the exponential function is recovered, E; (z) = e*. A two
parameter generalization has been proposed by Wiman (1905) as follows:

o Zn
E = ——,zecCand Re(a),R > 0. 2.3
For B = 1 the classical Mittag-Leffler function is recovered, i.e.

Eyi1(z) =Eu(2).
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1.4.2 Fractional Derivatives

Often the easiest access to the idea of the non-integer differential and
integral operators studied in the field of fractional calculus is given by
Cauchy’s well known representation of an n-fold integral as a convolu-
tion integral:

I'f(t) = /717]‘ (s) dsdsids, 1
t

— ﬁ/ (t— s)”_lf(s) ds, n € N,t € Ry, (2.4)

where I} is the n-fold integral operator (Cauchy formula).

The Riemann-Liouville fractional integral is a simple generalization of
the Cauchy formula (2.4), the integer n is substituted by a positive real
number « and the Gamma function I' (.) is used instead of the factorial,

i.e.
t

I () = %/ (t— )"\ f(s)ds, ot € Ry 2.5)

o
The definition of fractional integral is very straightforward and there are
no complications. A more difficult question is how to define a fractional
derivative.

We can give the simplest definition of fractional derivative as concate-
nation of integer order differentiation and fractional integration, i.e.

Dif (t) = D"IF~*f (1) or “Dif (t) = ;=*D"f (1),

where n is the integer satisftying &« < n < a+1 and D", n € N,
is the n-fold differential operator. The operator D is usually denoted
as Riemann-Liouville differential operator, while the operator “D? is
named Caputo differential operator.

Riemann-Liouville definition

The Riemann-Liouville fractional derivative of a function f &
AC" ([a, b]), where —oc0 < a < b < o0, with a,t € R, is defined as
follow:

t
) 1 d
ath(t):mﬁa/ﬁ, (n—1<lX§7’l),n€N (26)

The Riemann-Liouville derivative has certain disadvantages when trying
to model real world phenomena with fractional differential equations.
Therefore, we shall introduce a modified fractional differential operator
proposed by Caputo ( [21], [27]).
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M. Caputo definition

The Caputo fractional derivative of a function f € C" ([a,b]), where
—00 < a < b < 400, with a,t € Ry is defined by,

t
1 () (s)d
sDif (1) = F(n—oc)/(tf_sgi)nil’ m—1<a<n), neN. (27)

The Caputo derivative allows the use of physically interpretable initial
conditions, which is not permitted by the Riemann-Liouville. Another
difference between the two definitions appears when dealing with con-
stant function. Indeed, for a constant, the Caputo fractional derivative is
zero while Reamann-Liouville fractional derivative is not zero.

Relation between Riemann-Liouville and Caputo deriva-
tives

Proposition 1.4.3 If f (t) is n — 1 continuously differentiable in the interval
[a,b] and ) (t) is integrable in [a,b] , then

m—1 ¢(i) o \i—a
D1 0= L G e D) @8

wherem — 1 < a < m < n withm € IN*.

Proof. Applying repeatedly integration by parts to the Riemann-Liouville
will give us: for Vt € R, and « < t,

m=1£G) (g) (£ — q)i~® 1 flmgg
RDEF(E) = l.;)f F((l)JEti—uc)) " r(m—a)/(tiT):nTM' @9)

The right hand side of the above equation is equal to the Caputo deriva-
tives. [

Proposition 1.4.4 Let f (t) be n — 1 continuously differentiable in the in-
terval [a,b] and f") (t) be integrable in [a,b)]. Then, if f) (a) = 0, for
n=20,1,2,...m—1,

rRDff (t) =c Dif (t) forany t € R, (2.10)

wherem — 1 < o < m < n with m € IN*.

1.4.3 Properties of Fractional Derivatives

We recall some useful properties of fractional derivatives.

1. Linearity
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Assuming that the fractional derivatives of f and g exists, then for
A u € R[83]:

D (Af (t) + pg (1)) = ADf (t) + uD"g (t), (2.11)

where D* denotes any of the fractional derivatives we have defined be-
fore.

2. Laplace Transform of Fractional Derivatives

We assume that the fractional derivative and the Laplace transform
of f exists. Then, the Laplace transform of the Riemann-Liouville and
Caputo fractional derivative are defined by [83] : Vs € C,

— Riemann-Liouville

L[rDf (1) = Zs[D””lf )] _om-l<a<n 12)
— Caputo
L[cDEf (1)) = s"f (s) — nfs“‘i‘lf“) (0), n-1<a<n (213
i=0

where f(.) denotes the Laplace transform of f (.), and s is the variable
in the frequency domain.

3. Fourier Transform of Fractional Derivatives

We assume that the fractional derivative and the Fourier transform
of f exists. Then, the Fourier transform of the Griinwald-Letnikov,
Riemann-Liouville, and the Caputo fractional derivatives are defined by

[1]:Vk € R, B
FloDif ()] = (=ik)" f () (2.14)

where oD} denotes any of the mentioned fractional differentiations, f()
denotes the Fourier transform of f (.), and k is the variable in the fre-
quency domain.

4. Derivative of the Fractional Operator with Respect to «.

In the next proposition, we present the derivative of the fractional
derivative with respect to the fractional order a. We consider the left
Riemann-Liouville derivative. However, similar results can be obtained
using other definitions.

Proposition 1.4.5  [83] If the a'" order Riemann-Liouville derivative of f exists
where n — 1 < & < n, then the derivative of % with respect to « is given by
X

%aagxg‘X) = ¥o(n —a) amgxg‘ s r (Tll— ) dd;no/ (x=7)" " n(x - 7) f (1) d,

(2.15)
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Proof. The result can be obtained by differentiating (2.6) with respect to
Q. [



AN INVERSE PROBLEM FOR TIME Z
FRACTIONAL EVOLUTION EQUATIONS
WITH AN INVOLUTION

PERTURBATION

Abstract

In this chapter, we consider an inverse problem for a time fractional
evolution equation, interpolating the heat and the wave equations, with
an involution. Results on the existence and uniqueness of a solution are
presented via the method of separation of variables.

29
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2.1 Introduction and statement of the problem

Differential equations with operations (equations with shift (involu-
tion)), apparently started with the work of Babbage [8], and were dis-
cussed later by Carleman [23] in 1932. In the late sixties and early sev-
enties of the 20th century, Przewoerska-Rolewicz addressed many ques-
tions about differential equations with involutions in a series of nice pa-
pers [86], [84], [85], [87], [90], [89] and then compiled her results in form
of a text [88]. For generalized solutions of functional differential equa-
tions, see the book by Wiener [111]. Recently, Kaliev et al [48], [49], Ora-
zov and Sadybekov [80], [79],Sarsenbi [98], Sadybekov and Sarsenbi [94],
Sarsenbi and Tengaeva [97], treated spectral problems and inverse prob-
lems for evolution equations with involution. In their talk [16], Cabada
and Tojo mentioned an application of a parabolic equation with an invo-
lution related to heat conduction. In this chapter, we address an inverse
problem for the time fractional evolution equation with involution

Diu (x,t) — tixx (%, f) + €Uy (—x,t) = f (x), (2.1)

posed for x € (—m, ) and t > 0, where f and u are unknowns,
1 < a <2, €is a nonzero real number such that |¢|] < 1. We equip (2.1)
with the initial, final, and boundary conditions

u(x,0)=¢(x), u(x,0)=p(x), u(x,T)=¢(x),x€|[-m,nr], (2.2)
u(—m,t)=0, u(mt)=0,te€0,T], (2.3)

where ¢ (x) and ¢ (x) are given sufficiently smooth functions. The
derivative D} defined as

Dfu(x,t) = D*(u(x,t) — u(x,0) — tus(x,0))

is the Caputo derivative for a regular function built on the Riemann-
Liouville derivative D*. Caputo’s derivative allows us to impose initial
conditions in a natural way.

By a regular solution of the problem, we mean a pair of functions
(u(x,t), f(x)) of the class u (x,t) € Cif (Q)(space of two times con-
tinuously differentiable functions on () according to both x and t),
fx)eCl-m,n],Q={-n<x<m0<t<T}.

When one uses the method of separation of variables to solve the prob-
lem, a spectral problem appears, which is mentioned in the next section.

2.2 The Spectral Problem

The spectral problem consists of the equation:

X" (x) —eX" (—x) +AX(x) =0, -t <x <, (2.4)
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where A is the spectral parameter, equipped with the boundary condi-
tions:
X(—n)=X(n)=0, X'(—n)=X'(n) =0. (2.5)

It is proved in [59] that expressing the solution of problem (2.4)- (2.5)
in terms of the sum of even and odd functions, one finds the following
eigenvalues:

2
Ak,l: (1+€)k2,k€Z+, )\k,ZZ(l_e) (k—l-%) , k€N,

with the corresponding normalized eigenfunctions given by

1
Xy1 = —=sinkx =: Sx(x), k€ Z,, Xy»
L (2.6)

1
= ——cos (k+3)x=: Ck+%(x),k€11\T.

NG

Observe that the systems of functions (2.6) is complete in
Ly (—m, ) .[59]

We will use the following result which appears in part 3 of [41].

Lemma 2.2.1  The following differential equation of fractional order « > 0

m—1 tk
D*u(t) = D" (u(t) -y Eu<k>(o+)) = —u(t)+q(t), t>0,
k=0 "

where m is a positive integer uniquely defined by m —1 < a < m, with the
prescribed initial values

u® Ot =¢, k=0,1,2,..,m—1,

has the solution
m—1 t
u(t) = Y can(t) + [ alt—s)us(s) ds,
k=0

with
up(t) = Jug(t), ul" = 6cp hk=0,1,..,m—1, 2.7)

us(t) = —up(t),
the functions uy(t) represent the fundamental solutions of the differential equa-
tion of order m.

2.3 Main results

Here we present the existence and uniqueness results for our problem.
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Theorem 2.3.1 Let ¢ (x),p(x), ¥ (x) € C*[-m, 7] and $\) (£7) =
oW (£m) = ¢ (£7) =0,i =0,1,2,3. If 1 — ug (.) # O then, for a nonzero
real number ¢ such that |e| < 1, problem (2.1) - (2.3) has a unique solution
which can be written in the form

u(x,t) = ¢(x)
el

k=0

1/a
) 1k Ho(A't)

c@)
¢+
(C(4))3k uy (ALS) — <C(4)>

1 s Ctl (x)

Crpr(x)

2

~

£ )

)

(c(4))2k up(ALR) + (C(4)>4k u (M) — ()

B

: i K %Sk (x),
k=1
and
o (1— @\ (@
f) = L ! 8)<<¢ >1k 2< )1k>Ck+%( )
k=0 (k—i— %>
LTI CONSCORIN
k=1
where
(C(4)> _ (¢(4)>1k B <¢(4))1k+ (C(4)) u1()x,1/2"‘T),
1k 1— 1o ("1?2”)
p®
(c#), = (A}{;lk,
(C(4)) = <¢(4))2" _ (lp@>2k+ (C(4)> kul(Ai/fxT),
2k 1— up (/\11/1“:’)
(4)
(C(4)>4k _ <p)\llc/122k'
and
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2.4 Proof of the Result

2.4.1 Existence

Here, we give the full proof of the existence of a solution of the
problem as stated in Theorem 2.3.1.

As the eigenfunctions system (2.6) forms an orthonormal basis in
Ly (—m, 7r), the functions u (x,t) and f (x) can be represented as follows

u(xt) = ¥ (G, (1) + 3 0 (1) Si(), 29)
k=0 k=1
and - .
f) =Y fuCipa (%) + ) faxS(x), (2.10)
k=0 k=1

where uy (t), v (t), fix and fo; are unknown. Substituting (2.9) and (2.10)
into equation (2.1), we obtain the following equations for the functions
ug (), vg (t) and the constants fiy, fox

Diuy (£) 4+ Agoug (1) = fix,

and
Dok (t) + Ag1vi(t) = for,

which we write

1 1
DSy (6) (1) = 1 1)
k2 K2
and
1 1
o Dior (8) + o (1) = —fare (2.12)
K1 K1

1
By a change of scale t — Ap,t in (2.11), and using Lemma 2.2.1, we
obtain

1 1 1
uy () = couo (A1) +crur(Af ) — —){ikz (uo(Aft) —up(01)),
where (o
> —T
g == E Tk g ,
w(®) = () =B~ = L gl

up(01) =1,  uy(0t) =0,
ur(07) =0,  uy(0M) =1,

(ex and Je, represent the fundamental solution of the equation
Déuy (t) = —uy (t) + fi/ M 2);
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SO
Uy (t) = (Co — f;];)uo()tli‘zt) + Clul(/\“ t) )J::;
and
) =: Cupttp(Af ot) + C /\“t Jik
T k2
u (t) w0 (AL ot) + Carun (Af ot) + Mo
Similarly
1 1
(o (i’) = (C() — %)Lﬂ)(/\,ﬁlt) —+ Clul()\]?,lt) + %,
and

_. @ h o
Ok (t) =: Czku()(/\kllt) + C4k1/l1()\ t) /\k )

where the constants Cix, Cox, Cax, Cax, fik, and foi are to be determined
using the given data.

Expanding the functions ¢ (x),p (x) and ¢ (x) using the eigenfunc-
tions system (2.6), we obtain

Cik = P1x — Lkz Cok = Pk —

Mo Coe=p1r AN kCye = po,

Cixtto(A5'T) + Carir (A5 T) + & = Pk,
and

CZk“O(Ai,/fXT) + C4ku1()\;1,/1aT) ka = P,

where, @i, pik, Yix,1 = 1,2 are the coefficients of the expansions of the
functions ¢ (x),p (x), ¥ (x) given by

gie= [ 8y dx, gu= [ g Sux)dx, for g=¢,p,p.

Solving the above set of equations for Cy, Cox, Cak, Car, fix, and fo, we
get

¢1c — 1k + Carrin (AL5T) C O1k
— 7 k= 177
”‘ 1 ug( AL T) VG
Pk — Yok + C4ku1(A;1,/1“T) P2k
2k = ’ C4k =

1— uo()\i,/l”‘T) A,l,/l"‘

and

fik = A2 (P — Cix) s fok = A1 (P2 — Cox) - (2.13)
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Now, substituting the expressions for uy (t), vk (), fix, fax into (2.9) and
(2.10), we obtain

u(x,t) = ¢(x)
+ ) <C1ku0(7\;1,/2“t) + C3ku1(7\;1,/2“t) — C1k> Cer1(®)
k=0
+ ) <C2k Mo(/\llc,/fxt) + C4ku1()‘11c,/1at) - C2k> Sk,

T
L

and

£ = Y2 Mz (9= o) Gy (¥) + Y Aun (6ax — Car) Se()
k=0 k=1

Moreover, if ¢() (£71) = o) (&) = v (£7) = 0,i = 0,1,2,3, then
integrating ¢, i, Yir, i = 1,2, by parts yields
)
(s),,

k+ 7

and gy =

— (4) (4 (4) | — i-
for g = ¢,p, 1, where, (4) )ik' (p )ik' (1[1 >ik'l 1,2 are the coeffi
cients of the expansions of the functions ¢*) (x), p® (x), p* (x) and
are given by

= [ 89000 dx W)= [ gH(@)Si(x) dx,
forg=¢,9,p.
Then the constants Cyy, Cok, Csx, Cax, fik, and fox can be written as
(4) (4)
(@), (@),
Cik Y Cax = NG
(k+1) (k+1)
(4) (4)
GO CU))
k4 4 4k k4 4
and
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where,

(99) = (#) , + (€)1 A

(o)
(C(4))1k - 1 — uo()\i,/za:r) ! (C(4)>3k - Ki\ll’/zalk’
@) _ (9 - <¢(4))2k+ (C(4))4k u (A7) cw) — (0™)ax
( >2k N 1 _uo(/\llc’/lﬂT) ’ < )4k N )\]1,/1“ '
Thus the solution of our problem takes the form
u(xt) =¢x) “ 5
o (C At
=" | (>k1k+M;4k,2 t)ck+%(x)
(4) Vapy _ (c@)
+k§0 <C ' >3k ”1<(:k,2it>)4 (C ! >1k Crr1(®)
- +1
+k§1 (€@) uo(agse) + (c<;>) (M - <C(4)>2k5k(x),
- (2.15)
and
o (1— @) —(c@
re = g ()
k=0 (k+1)
o @) —(c@
I CONTCOR I

This completes the proof of Theorem 2.3.1.

2.4.2 Convergence of the series

To establish that the formal solution is indeed a true solution, we will
show that all operations performed in the proof are valid.

The convergence of the series in (2.15) and (2.16) are based on the
following estimates for u (x,t) and f (x):

2 & VE|ol|+ V2|l | 4l
N )
2 o V2[el) |+ v2 el +2 ol |
VIS Ve (1—uo (A4'T) )

u(x, £)] < [@(x)]

(2.17)
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and
1@ 6o 2 vl | +2v2 el
VTS (1 uo(A5T)) <k+%>2
ol 2] val
VTS (1 - ”0<)‘11,/1‘XT)> k2

[f()] <

(2.18)

As ¢ (x),p(x), ¢ (x) € C*[—m, 7], by the Bessel inequality for trigono-
metric series, the following series converge:

]:20 ‘gﬁ)r <C Hg(4) (x) ;(mn) , for g=¢,p,. (2.19)
and
g S <cls® @l o for g=epw Q20

which implies that the set

4 (@) (4
{(Pz(k)fpz(k)r’abi(k)} k=12

is bounded.

Theorem 2.4.1 (Weierstrass M test)  Let {u, } be a sequence of real or complex-
valued functions defined on a set X and that there is a sequence of positive
numbers { M, } satisfying

Vn >1,Vx € X: |fu(x)| < My, such that

Y M, < o

n=1

Then the series % fn(x) converges absolutely and uniformly on X.
k=1

Therefore, by the Weierstrass M-test, series (2.17) and (2.18) converge
absolutely and uniformly in the region ().

Now, using termwise differentiation of the series (2.15) twice with re-
spect to the variables x and f, we get the following estimates for 1, (x, t)
and uy (x,t),

2 = V2IoL |+ V2Ie |+ 4ol
VIS VT (1- wAT)) (k+1)
> o V2|0 |+ V|| +2 el
VTS ‘/1—“<1_”0(A11,/1“T)>k2

[uxx(x,t)| < ’4’//(35)’ +
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and
1@ 2jel | 2wl [+ ovz|ely |

= ﬁkgo (1 uo(A5T)) <k+%>2
1o 2ol | +2 vl | +3vz)el|
" VT o (1 - uo(/\,ll/l"‘T)> k2

which, on using (2.19), (2.20) and the Weierstrass M-test, also converge
absolutely and uniformly on Q).

|tht(x, t)

2.4.3 Uniqueness

The uniqueness of the solution follows from representation of the so-
lution given in the theorem, and from the completeness of the system
(2.6).

Suppose that there are two solutions {uj(x,t),f1(x)} and
{uz (x,t), f (x)} of problem. Denote

u(x,t) =uy(x,t) —up(x,t)

and

f(x)=fx) = fa(x).
Then the functions u (x,t) and f (x) satisfy (2.1), conditions of (2.2) and
homogeneous boundary conditions(2.3).

Let
g (1) = /ﬂ 1 (x, 1) Se(x)dx, k € Z., (2.21)
o () = /n u(x,t) Gy y (x)dx k€N, (2.22)
fik :/ﬂ £ (x) Sp(x)dx, k € Z, (2.23)
o :_/n f (%) Gy (¥)dx, K € N. (2.24)

Applying the operator D* to the equation (2.21) we have

Diuy (1) = / Diu (x, 1) Sp(x)dx = / (tt2x (3, £) — ttze (—x, 1)) Sp(x)dx + fir.

—T7T
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Integrating by parts and taking into account the homogeneous condi-
tions (2.2) and (2.3) , we obtain

Dugy (t) = fix, u(0) =0, u(T) =0.

Consequently, f1x = 0, u (f) = 0.

In a similar way for the functions (2.22), (2.23), (2.24) one proves that
fae = 0,0 (t) =0.

Further, by the completeness of the system (2.6) in L? (—7t, 7r) we ob-
tain f (1) =0,u(x,t) =0,0<t<T,—m<x<m.

Uniqueness of the solution of problem is proved.






SOME INVERSE PROBLEMS FOR THE
NONLOCAL HEAT EQUATION WITH
CAPUTO FRACTIONAL DERIVATIVE

Abstract

In this chapter, a class of inverse problems for restoring the right-hand
side of a fractional heat equation with involution is considered. The
results on existence and uniqueness of solutions of these problems are
presented.

41
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3.1 Introduction

The purpose of this chapter is to study inverse problems for the non-
local heat equation with involution of space variable x. We consider the
heat equation

Diu(x,t) — ey (X, 1) + €tiyy (T —x,t) = f (x), (3.1)

for (x,1) e Q={0<x<m 0<t<T<oo}, 0<a<1 where Df
is the Caputo derivative (which is defined in the next section) and ¢ is a
nonzero real number such that |¢| < 1.

Before describing our results, let us dwell a while on the existing
literature concerning differential equation with delay either in time or in
space.

Differential equations with time deviating arguments have been
treated in a sizable number of articles and monographs, to cite but a
few: [47], [60], [112]. For example in [47], the authors considered an ex-
ample of parabolic functional differential equation with time delay of the
following form:

Ur= Uy (t—nh,x), t>0, 0<x<m h>0,

to study the spectrum distribution of its symbols (characteristic
quasipolinomials). Delay differential equations occur in a variety of
real world applications: biological modelling, automatic control systems,
economics, epidemiology, feedback problems, the theory of climate
models, etc.

Ample opportunities of applying equations with deviating argument
in mathematical models have increased the interest of the study of new
problems for partial differential equations [15], [43], [91]. Among differ-
ential equations with deviating arguments, special place is occupied by
equations with a deviation of arguments of alternating character. Such
deviations include the so-called deviation of involution type [18]. To de-
scribe them, let I be an interval in R and let X € I’ be a real variable.
The homeomorphism

?(X) =a(a(X)) =X,

is called a Carleman shift (deviation of involution) [23].

Equations containing Carleman shift are equations with an alternat-
ing deviation (at X* < X being equations with advanced, and at X* > X
being equations with delay, where X* is a fixed point of the mapping
a(X)).

However, some interesting works contain equations with modifica-
tions of the spatial variable in the unknown function that are motivated
by the nonlinear optics, studied in a number of papers (see [57], [74]);
for instance, in [74], the author studied the Cauchy problem for the
difference-differential parabolic equation

ou
Yl Au + h;\:/l apu(x —h,t),
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TCY) = T(Y)

TEyHT )

(0
(1)-png O
Figure 3.1

where M is a finite set of vectors in R" parallel to coordinate axes ( or
any other orthogonal vector system) and the coefficients a; are real. It
should be noted that parabolic functional-differential equation arise in
the investigation of nonlinear optic systems with two-dimensional feed-
back(see [4] and the references therein). Skubachevskii introduced these
operators for nonlocal problems in heat conduction problems [102]. In
contrast to classical parabolic differential equations, these equations have
a number of new properties. For instance, the smoothness of general-
ized solution can be violated inside the cylindrical domain even for an
infinitely smooth right-hand side of the equation.

Furthermore, for the equations containing transformation of the spa-
tial variable in the diffusion term , we can cite the talk of Cabada and
Tojo [20], where an example that describes a concrete situation in physics
is given: Consider a metal wire around a thin sheet of insulating material
in a way that some parts overlap some others as shown in Figure 1.

Assuming that the position y = 0 is the lowest of the wire, and the
insulation goes up to the left at -Y and to the right up to Y.

For the proximity of two sections of wires they added the third term
with modifications on the spatial variable to the right-hand side of the
heat equation with respect to the wire:

oT °T 9°T
g(y,t) = “a—yz(yz t) + ﬁa_yz(_y’ t),

where T is the temperature at (y, t). Such equations have also a purely
theoretical value.

Concerning the inverse problems and spectral problems for equations
with involutions, some recent works have been done by Kaliev [48], [50],
Kirane [52], [5], Sadybekov [80], [79], Sarsenbi [59], [98], [97].
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3.2 Statement of problems

The chapter is concerned with four inverse problems concerning the
time fractional heat equation with a perturbative term of involution type
in the space variable. We obtain existence and uniqueness results for
these problems, based on the Fourier method.

Problem D. Find the couple of functions (u (x,t), f (x)) satisfying the
equation (3.1), under the conditions

u(x,0)=¢(x), xel0,mn], (3.2)
u(x,T)=v¢(x), x €0, 7], (3.3)

and the homogeneous Dirichlet boundary conditions
u(0,t) =u(mt)=0,te|0,T], (3.4)

where ¢ (x) and ¢ (x) are given sufficiently smooth functions.

Problem N. Find the couple of functions (u (x, t), f (x)) in the domain
() satisfying equation (3.1), conditions (3.2), (3.3) and the homogeneous
Neumann boundary conditions

uy (0,t) = uy (m,t) =0, t€[0,T]. (3.5)

Problem P. Find the couple of functions (u (x,t), f (x)) in the do-
main () satisfying equation (3.1), conditions (3.2), (3.3) and the periodic
boundary conditions

u(0,t) =u(mt), uy(0,t) = uy(m,t), t€[0,T]. (3.6)

Problem AP. Find the couple of functions (u (x,t), f (x)) in the do-
main () satisfying equation (3.1), conditions (3.2), (3.3) and the anti-
periodic boundary conditions

u(0,t) = —u(m,t), uy (0,t) = —uy (7, t), t € [0,T]. (3.7)

A regular solution of problems D, N, P and AP is the pair of func-
tions (u(x,t),f (x)) where u € CJZC} (Q))(space of two times and one
time continuously differentiable functions on () according to x and t
respectively)and f € C ([0, t]).

Note that similar problems for the heat equation and their fractional
analogues have been considered in [39], [53], [76].

3.3 Spectral properties of the perturbed Sturm-
Liouville problem

Application of the Fourier method for solving problems D, N, P, AP
leads to the spectral problem defined by the equation

v (x)—ey (m—x)+Ay(x) =0, 0<x<m, (3.8)
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and one of the following boundary conditions

y(0)=y(m)=0, (3.9)

y' (0) =y (m) =0, (3.10)
y(0)=y(m), y (0) =y (n), (3.11)
y(0) =~y (m), ¥y (0) =~y (m). (3.12)

It is easy to see that the Sturm-Liouville problem for the equation
(3.8) with one of the boundary conditions (3.9) - (3.12) is self-adjoint. It is
known that the self-adjoint problem has real eigenvalues and their eigen-
functions form a complete orthonormal basis in L? (0, 7) [75]. To further
investigate the problems under consideration, we need to calculate the
explicit form of the eigenvalues and eigenfunctions.

For |e| < 1 the problem (3.8), (3.9) has the following eigenvalues

AD = (14¢)4k* k€N,
A =(1—-¢)(2k+1)%, k€ Ng = NU{0}

and eigenfunctions

yh = \/%sin(ka), k€N,
(3.13)

¥B,1 = \/2sin(2k+1)x, k€ No.
Similarly, the problem (3.8), (3.10) has the eigenvalues
Mpsr = (1+€) 2k + 1)%, k € No,

AN = (1 —¢)4k?, k € No,

and corresponding eigenfunctions
(N — L
Yo = /7

Yoer1 = \/%COS (2k+1) x, k € No, (3.14)

_ /2
\ yN = \/;cos(ka), k € N.
The eigenvalues of the problem (3.8), (3.11) are
A1 = (1+e)4k% ke N,

AL = (1—¢)4k?, k € No,
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with the corresponding eigenfunctions

( y(l)_) _ \/LEI
Yokr1 = \/% sin(2kx), k € N, (3.15)
yh = \/%cos(ka), k € IN.

Finally, the problem (3.8), (3.12) has the following eigenvalues
AP = (1+¢€) (2k+1)%, k € Ny,
MP = (1—¢) (2k+1), k € N,

and corresponding eigenfunctions

Yl = \/%cos (2k+1) x, k € No,
(3.16)
AP = \/%sin (2k +1) x, k € No.
Lemma 3.3.1 The systems of functions (3.13), (3.14), (3.15), (3.16) are com-
plete and orthonormal in L2 (0, 7t) .

Proof It is known (see. [72]) that the systems of (3.15) and (3.16) form a
complete orthonormal system in L2(0, 7).

It remains to prove the completeness of systems (3.13) and (3.14). We
prove the completeness of the system (3.13).

The system (3.13) is complete in L? (0, ) if the equalities

/Onf(x) sin(2kx)dx = 0, k € N,

7T
/ F(x)sin (2k + 1) xdx = 0, k € No,
0

for f € L2(0, ) lead to f(x) = 0 in L2(0, 7).
We have
Jo" f(x) sin (2k + 1) xdx
= fo )sin (2k + 1) xdx—i—f f(x)sin (2k + 1) xdx
= fo (7t —x))sin (2k + 1) xdx = 0.

(3.17)
Then by the completeness of the system {sin (2k+1)x}; o, in

L? (0, %) [72], we obtain f(x) = f(m—x),0 <x < %
Similarly

/Onf(x) sin (2kx)dx = /07ZT f(x) sin(2kx)dx + /;f(x) sin(2kx)dx
= /072r (f(x) + f(rt — x)) sin(2kx)dx = 0.
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Then by the completeness of the system {sin(2kx)}, . in L? (0, F) [72],
we have f(x) = —f(m—x),0 < x < Z. Whereupon , f(x) = 0 in
L? (0,%), and consequently f(x) = 0 in L?(0, 7).

The completeness of the system (3.14) is proved similarly. O

3.4 Main results

For the considered problems D, N, P, AP, the following theorems hold
true.

Theorem 3.4.1 Let || < 1, ¢, € C3[0, 7] and ¢\ (0) = ¢\ (1) =
@ (0) = v\ () = 0,i = 0,1,2. Then the solution of the problem D exists,
is unique and it can be written in the form

u(xt) = ¢(x)

2 (1-Eup (C0-9@kH)) ) sin@ki1)x )
o (1=Eg1(—(1—e)(2k+1)°T?) ) (2k+1)? (P1x — ¥ )

+
k

© (1-Ep (~(140)421) ) sin(2ky)
+k§1 (1—Eq1 (—(1+€)4k2T2 ) )4k2 Pox — Yo' )

fx) = —¢"(x) +e¢" (m—x)
© (19 (o) -¢?)

+ L

k=0 (1_Ea,1(—(1—£)(2k+1)2w

sin(2k 4+ 1)x
)

ot (o)
= (1—E,X,1<—(1+s)4k2T“))

+ sin(2kx),

2 2 2
o = (0" (), ¥5.1) . o = (9" (%), ¥B), vl = (" (%), ¥h.),

2
Vo = (¥ (¥), v,
and E, g (At) is the Mittag-Leffler type function:

Zm

E“lﬁ (Z) = Z m

m=0
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Theorem 3.4.2 Let ¢, € C3[0, 7] and ¢() (0) = ¢ () = ¢ (0) =
) (1) = 0,1 = 0,1,2. Then the solution of problem N exists, is unique and
it can be written in the form

x) + %(IIJO ~ o)
(1—E‘x,1 (—(1—8)4k2t"‘)) cos(2kx)
(1=Ep1 (—(1—e)4k2T2 ) ) 42

—

u(xt) = ¢

(¥ — i)

13

_|_

k=1

(1=Ea1 (—(149)2k+1)%*) Jcos2k+1)x 5 o)

(1—Ea,1(—(1+8)(2k+1) ))(2k+1) 2w — Pok )

18

_|_

k=0

flx) = —¢"(x) +e¢" (m—x)

i (1- )<§01k ‘/ﬁk)
T Z | (1=Eg1 (—(1—e)4k2T?

cos(2kx

L wolenv)
k=0 (1_Ea,1<—(1+€)(2k+1)2"_]’0¢

cos(2k +1)x,
) '

where

90 = (9(x), v)'), o1f = (9" (x), ¥}) , 97
Yo = (9(x), ), it = (8" (x), ¥30) 95 = (¢ (%), ¥dn) -
Theorem 3.43 Let ¢, € C3[0, 7] and ¢ (0) = ¢ (7), ) (0) =

@ (1), i = 0,1,2. Then the solution of problem P exists, is unique and it
can be written in the form

~—

+ %(llio - @0)

o0 (1—E0¢I1(—(1—8)4k2t06))cos(2kx) @
+k§1 (1_Ea,1(—(1—s)4k2T06))4k2 (91 — ¥1i)

u(x,t) = ¢(x

© (1-Eyq (—(140)82) ) sin(2kx)
i kgl (1_E0¢,1 (—(1+8)4k2T“))4k2 k ¢2k )/
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f(x) = —9¢"(x) +eg" (m—x)
ac (1—¢) <(P1k lP1k)
+ Z (1 EM( sza))COS(ka)

as (1+e) <§92k lPZk ) _
+k§1 (1—E“,1( (1+€) szlx))Sln(ZkX)/

where

go=(9(x), ¥E), 912 = (9" (), ¥5), o2 = (¢" (x), ¥h11)
o= (P (x),¥5), v17 = (@' (x), v5), ’Péi) = (IP” (x), y§k+1) .

Theorem 344 Let ¢, € C3[0,71] and ¢\ (0) = —9) (1), ¢ (0) =

—W (1), i=0,1,2. Then the solution of problem AP exzsts is unique and it
can be written in the form

u(xt) = ¢(x)

- (1_sz 1( )(2k+1 2t"")) cos(2k+1)x 2y @
k=0 (1 Ea1( (1— )(2k+1)2T"‘))(2k—|—1) ((Plk — Py )
1) (1 Ea,l( (1+¢) 2k—|—1 )) sin(2k+1)x -
k=0 (1—E¢x,1( (1+€)(2k+1) T« ))(2k+1) 902k — s ),

flx) = —¢"(x) +e¢" (m—x)

- <(P1k ‘P1k>
T Z o (1- EM( (1—€)(2k+1)°T) )

)

)

cos(2k +1)x

(1+e) <(sz 95
1-Eg 1 (—(1+) (2k+1)°T?

—I—Z(

)) sin(2k+1)x,

where
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3.5 Proof of the existence of the solution of
problem D

We give the full proof for problem D. The existence of the solution of
problems P, N and AP are proved analogously.

As the eigenfunctions system (3.13) of problem D forms an orthonor-
mal basis in L? (0, 77) (this follows from the self-adjoint problem (3.8),
(3.9)), the functions u (x, t) and f (x) can be expanded as follows

Z uy (t) sin (2k +1) x + Z vk (t) sin(2kx), (3.18)
k=1
=Y fisin(2k+1)x+ Y fZsin(2kx), (3.19)
k=0 k=1

where fl, f2,uy (t) , vk (t) are unknown. Substituting (3.18) and (3.19) into
(3.1), we obtain the following equation for the functions uy (¢), v () and
the constants f}}, 2 :

Do (£) + (1 —e) 2k + 1) uy () = L,
D0 () + (1 + &) 420y (t) = f2.

Solving these equations [51] we obtain

i
(1—¢)(2k+1)
2
o (t) = ﬁ

where the constants Cyy, Cyy, fk , sz are unknown. To find these constants,
we use conditions (3.2). Let @i, ¥ir,i = 1,2 be the coefficients of the
expansions of ¢ (x) and ¢ (x)

P1k = \/g/q) (x)sin (2k + 1) xdx,
0
P2k = \/g/go(x) sin(2kx)dx,
0
Y1k = \/%/tp (x)sin (2k + 1) xdx,
0
Por = \/g/zp(x) sin(2kx)dx
0

u () = >+ CixEu 1 (— (1—e¢) (2k+1)2t“>,

+ CoEu 1 (— (1+e¢) 4k2t”‘) )
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We first find Cyy :

_ fi _
ug (0) = -0 (21 1) + Cik = 91k,
ug (T) = s + CixEa1 (— (1—e) (2k+1) T“) = Y1k,
(1—¢) (2k+1)? '
@1k — Cix + CixEa 1 (— (1—e) (2k+1) T“) = P
Then

Coo — P1k — Pk
1k — 5 .
1— Eg1 (— (1—¢) (2k+1) T"‘)

The constant f} is represented as

fi=(1—¢) (2k+1)* g — (1 —e) (2k+1)* Cy.

Now we find Cy :

__ & _
Uk (0) - (1 _|_€) 4:k2 + C2k = P2k,
v (T) = - + Cpe = IHET —
(1+¢) 4k2 ’

_ 2
@k — Cop + Cope™ 1T —

Then

Co — P2k — Pox
KT T Epq (— (1+¢) 4k2T0)

For the constant f7 , we found :
fi = (1+¢€) 4k gy — (1 + ) 4k*Cyy.

Substituting uy (t), v (t), f}, fZ into (3.18) and (3.19) we find

u(xt) = ¢(x)

+§0 Cu (Eun (— (1 - ) (2k+1)*#) 1) sin(2k + 1)x

+ 5 o (Ean (= (1+¢) 42#) — 1) sin(2kx).
k=1

Suppose that
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then
C., — P1k—Y1k
T 1B (—(1—e) (2k+1)2T0)
2) (2
_ oy
(1=Ea1 (—(1—8) (2k+1)T%) ) (2k+1)*"
Similarly,
2) (2
Cr — — o5 —Pre
2k (1=Eq1 (—(1+)4k2T®) ) 4k2”
Then

u(x,t) = ¢(x)

O (1-Epp (~(1-6)(2k4+1)%0) ) sin@k+1)x ) (2)
+k§0 (1=Eg1 (= (1—) (2k+1)°T%) ) (2k+1)? (o1c = ¥1c)

O (1-Eq1(—(1+)ak%) ) sin(2kx)  2) (o)
+k§1 (1_Ea,1(—(1+8)4k2T“)>4k2 Por — Yo ).

Similarly,
flx) = —¢"(x) +eg¢"(m—2x)

R [ G i)
=0 (1—1—:“,1(—(1—5)(2k+1)2w))

sin(2k 4+ 1)x

2_, Q)
o) 1+ —
+ ) ( 8)(4)% lPZk) sin(2kx).
k=1

- (1—Ea,1(—(1+e)4k2T"‘))

Now for the convergence of the series, we have the following estimate

u(xHl< Cle )
(2) (2)
= ‘Golk ‘Jr’lplk ’

T C,EO (1-Eq1 (—(1—8) (2k+1)*T%) ) (2k+1)? (3.20)

(2) (2)
= o] _
+ Ck; (1 Eon(— (o) Y 7 © = comst

Similarly for f (x) we obtain the estimate

[f ()< Cle(x)|+ Cle (=x)|

. o1k | +|one |

" Ckgo (1—’5«,1(—1(](1—€)(211t+1)2w)) (3.21)
© o] Hwe|

+C Z - o C = const.

P (1—Ea,1(—(1+8)4k2T“)) ¢
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Since by hypotheses of Theorem 3.4.1, the functions ¢(?), () are

continuous on [0, 7r|, then by the Bessel inequality for the trigonometric
series the following series converge:

> |o2] <cllo® @ =12 (3.22)
=0 La(~7,7)

= @] @ (| -

1; Pik ‘ SCH‘P (x) LZ(_ﬂ,n),l =12, (3.23)

which implies the boundedness of the set

2 2 2 2
{(ng)ﬂ%k)' (Pék)/ ¢§k)/k =12, } .

Therefore, by the Weierstrass M-test (see[58]), series (3.20) and (3.21) con-
verge absolutely and uniformly in the region ().

Now we show the possibility of termwise differentiation of the series
(3.20) twice in the variable x and once in the variable t. For this purpose,
we prove that the obtained term by term differentiation of the series
converge absolutely and uniformly on (). Given the estimates (3.22) and
(3.23) we have

|uex (x, 1)< Clo" (%)

oo o |+ )]
+ Ckgo (1=Eur (—(1—e) (2k+1)°T%) )
o o2]+[42)]
O L TR o)) <
o o2]+[42)]
|Dfu (x,t)] < Ckgo (1—Ea,1(_1(1(1_8)(;;+1)2T“))
R

= (1—E,X,1(—(l+s)4k2T“)>

Hence the obtained solution satisfies the equation (3.1) point-wise; by
construction, it satisfies the conditions (3.2)-(3.4).

3.6 Proof of the uniqueness of the solution of
problem P

Suppose that there are two solutions {ug(x,t),f;(x)} and
{uz (x,t), f2 (x)} of problem P. Denote

u(x,t) =uy(x,t) —uy(x,t)
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and

fx)=fi(x) = f2(x).
Then the functions u (x,t) and f (x) satisfy (3.1)- (3.3) and periodic con-
ditions(3.6).

Let
o (1) = % Z u (x, 1) dx, (3.24)
e (F) = \E /ﬂ u (x, t) cos(2kx)dx, k € N, (3.25)
:
o (£) = \/g /N u (%, t) sin(2kx)dx, k € N, (3.26)
i
fo— % Z F(x)dx, (327)
i = \/g /n £ (x) cos(2kx)dx, k € N, (3.28)
0
o = \/g /ﬂ £ (x) sin(2kx)dx, k € N. (3.29)
2

Applying the operator D* to the equation (3.24) we have

Duq (t) = % /Df‘u (x,t)dx = % / (txx (X, 1) — €Uy (T — x, 1)) dx + fo.
0 0

Integrating by parts and taking into account the homogeneous condi-
tions (3.2) and (3.6) , we obtain

D*uy (t) = fo, u(0)=0, u(T) =0.

Consequently, fo =0, ug (t) = 0.

In a similar way for the functions (3.25), (3.26), (3.27), (3.28), (3.29) one
proves that fix =0, for = 0, u1x (t) =0, uy (t) = 0.

Further, by the completeness of the system (3.15) in L2 (0, 7r) we obtain
f(H)=0,u(x,t)=00<t<T,0<x<m.

Uniqueness of the solution of problem P is proved.

The uniqueness of the solution of problems D, N and AP can be
proved similarly.



INVERSE SOURCE PROBLEMS FOR A
WAVE EQUATION WITH INVOLUTION

Abstract

In this chapter, a class of inverse problems for a wave equation with in-
volution is considered for cases of two different boundary conditions,
namely, Dirichlet and Neumann boundary conditions. The existence and
uniqueness of solutions of these problems are proved. The solutions are
obtained in the form of series expansion using a set of appropriate or-
thogonal basises for each problem. Convergence of the obtained solutions
is also justified.
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4.1 Introduction

In many physical problems, determination of coefficients or right-
hand side according to some available information (the source term, in
case of a wave equation) in a differential equation is required; these prob-
lems are known as inverse problems. These kinds of problems are ill-
posed in the sense of Hadamard.

The purpose of this chapter is to study inverse problems for a non-
local wave equation with involution of space variable x. We consider the
nonlocal wave equation

U (X, 1) — Uxx (X, 1) + ety (T —x, 1) = f (x), (4.1)

for (x,t) e Q={0<x<m, 0<t<T}, where ¢ is a real number.

Wide opportunities for applying equations with deviating argument
in mathematical models have increased the interest of the study of new
problems for partial differential equations [77], [43], [91].

Equations with a deviation of arguments of alternating character has
special interest in differential equations with deviating arguments. Such
deviations include the so-called deviation of involution type [17]. To de-
scribe them, let I" be an interval in R and let X € I’ be a real variable.

The homeomorphism

o? (X) = a(a (X)) = X

is called a Carleman shift (deviation of involution) [23].

Equations containing Carleman shift are equations with an alternat-
ing deviation (at X* < X being equations with advanced, and at X* > X
being equations with delay, where X* is a fixed point of the mapping
a(X)).

Concerning the inverse problems for partial differential equations
with involutions, some recent works have been implemented in [3, 5,
52, 55, 104].

4.2 Statement of problems

The chapter is devoted to two inverse problems concerning the wave
equation with a perturbative term of involution type with respect to the
space variable. We obtain existence and uniqueness results for these prob-
lems, based on the Fourier method.

Problem D. Find a couple of functions (u (x, t), f (x)) satisfying equa-
tion (4.1), under the conditions

u(x,0)=0, xe[0,7], 4.2)

u(x,T)=9(x), x€[0,n], (4.3)
ur (x,0) =0, x € [0, 7], (4.4)
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and the homogeneous Dirichlet boundary conditions
u(0,t) =u(mt)=0, te[0,T], (4.5)

where ¢(x) is a given sufficiently smooth function.

Problem N. Find the couple of functions (u (x, t), f (x)) in the domain
() satistying equation (4.1), conditions (4.2), (4.3), (4.4) and the homoge-
neous Neumann boundary conditions

uy (0,t) =uy (m,t) =0, t € [0, T]. (4.6)

A regular solution of the problems D and N is the pair of functions
(u(x,t),f (x)), where u € C2(Q)) and f € C ([0, 7t]).

4.3 Spectral properties of the perturbed Sturm-
Liouville problem

Application of the Fourier method for solving problems D and N
leads to a spectral problem defined by the equation

v (x)—ey (m—x)+Ay(x) =0,0< x <71, (4.7)

and one of the following boundary conditions
y(0) =y (m) =0, (4.8)
y'(0) =y (m) =0. (4.9)

It is easy to see that the Sturm-Liouville problem for the equation
(4.7) with one of the boundary conditions (4.8) and (4.9) is self-adjoint.
It is known that the self-adjoint problem has real eigenvalues and their
eigenfunctions form a complete orthonormal basis in L? (0, 77) [75]. To
further investigate the problems under consideration, we need to calcu-
late the explicit form of the eigenvalues and eigenfunctions.

It is easy to show that for |e|] < 1 the problem (4.7), (4.8) has the
following eigenvalues

A = (1+¢)4k* k€N,
AR =(1—¢) (2k+1)%, ke No=NU{0}
and eigenfunctions

yh = \/%sinka, ke N,
(4.10)

vB.1 = /2sin(2k+1)x, k€ No.
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Similarly, the problem (4.7), (4.9) has the eigenvalues

A = (1+e) (2k+1)%, k € Ny,
AN = (1—¢) 4k, k € N,

and corresponding eigenfunctions

( 1
yg)\] = \/_E/
Va1 = \@COS (2k+1) x, k € No, (4.11)
yé\,]( = \/%COSka, k € IN.

The following lemma is proved in [104]

Lemma 1 The systems of functions (4.10) and (4.11) are complete and or-
thonormal in L? (0, 77) .

4.4 Main results

For the considered problems D and N, the following theorems are
valid.

Theorem 1 Let |¢| < 1, ¢ € C*[0, 7r] and v\ (0) = v\ (7) = 0,i =
0,1,2,3,4. Ifcosv/1—e(2k+1)T < 61 < land cosv1+¢€2kT < 6, < 1,
then the solution of problem D exists, is unique and it can be written in the form

u (x, £) = i (1—cosv1—e(2k+1)t)sin(2k+1)x ,

= (1—cosy1—e(2k+1)T) (2k+1)* Pors1
(1 — cos /1 + €2kt) sin 2kx

i k_zl 1 — cos /T + 2kT) 16k* Y (412)
RS (1—e¢) ¢§k+1 :
fx) = k‘;, (1—cosv/1—e(2k+1)T) (2k +1)2 sin (2 + 1)
4
+ Z (1+¢) ¢ sin2kx, (4.13)

(1 — cos /1 + €2kT) 4k?

where 1;75;‘:)“ = <¢(4) (x), y?kﬂ) and 1p§) — (¢(4) (x), y?,() )

Theorem 2 Let |¢| < 1, ¢ € C*[0, 7] and v\ (0) = v\ () = 0,i =
0,1,2,3,4. IfcosvV1—e(2k+1)T < 0y < land cosv/1+e2kT < 0y < 1,
then the solution of problem N exists, is unique and it can be written in the form
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(1—cosv1+e(2k+1)t)cos(2k+1)x ,
k=0 (1—cos\/1+e(2k—|—1) )(2k—|—1)4 2k+1
(1 —cos /1 — €2kt) cos2kx

' k—zl 1— cos /T — e2kT) 16k* Vo (4.14)
. e (1 + g) ll);.lk+1
f(x)= ,;) (1—cos\/1——|—e(2k+1) T) (2k+1)? cos (2k +1) x
4
+ Z ( \/%2;”) 5 C0s2kx, (4.15)

where g, = (99 (v), 93, ) and 9l = (9 (), )

4.5 Proof of the uniqueness of the solution

Suppose that there are two solutions {uj(x,t),f1(x)} and
{uz (x,t), f2 (x)} of the problem N. Denote

u(x,t) =uy (x,t) —uy(x,t)
and
f(x)=f(x) = fa(x).

Then the functions u (x,t) and f (x) satisfy (4.1)- (4.4)and homogenious
conditions (4.6).

Let N
— (4.16)
0-go e
Uy (1) = \/g/u (x,t) cos2kxdx, k € IN, (4.17)
0

Uppyq (£) = \/g/u (x,t) cos(2k + 1)xdx, k € Ny, (4.18)
0
1 7T
fo=—=[ f(x)dx, (4.19)
=]

for = \/%/f (x) cos2kxdx, k € N, (4.20)
0
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foki1 = \/%/f (x) cos(2k + 1)xdx, k € N. (4.21)
0

Applying the operator % to the equation (4.16) we have

7T
—L/u xt

Integrating by parts and taking into account the homogeneous condi-
tions (4.2) and (4.6) , we obtain

ug (t) = fo,
u(0)=0, u(T)=0, u'(0) =0.

3\

7T
/ Uy (X, 1) — €lyy (7T — x, 1)) dx + fp.
0

Hence it is easy to get fo =0, ug () =0.
In a similar way for the functions (4.17), (4.18), (4.19), (4.20), (4.21) it
is easy to prove that

fae =0, far1 =0, uy(t) =0, uyi1 () =0.
Further, by the completeness of the system (4.10) in L? (0, 77) we obtain
f(x)=0,u(x,t)=0, 0<t<T, 0<x<m.

The uniqueness of the solution of the problem N is proved.
The uniqueness of the solution of the problem D can be proved simi-
larly.

4.6 Proof of the existence of the solution

We give the full proof for the problem D. The existence of the solution
of the problem N is proved analogously.

As the eigenfunctions system (4.10) of the problem D forms an or-
thonormal basis in L? (0, 7) (this follows from the self-adjoint problem
(4.7), (4.8)), the functions u (x,t) and f (x) can be expanded as follows

Z Uppr1 (1) sin (2k+1) x + Z Uupy (t) sin 2kx, (4.22)
k=1
x) =Y foprsin (2k+1) x + Y for sin 2kx, (4.23)
k=0 k=1

where fori1, fak, Uogr1 (£), upi (f) are unknown. Substituting (4.22)
and (4.23) into (4.1), we obtain the following equation for the functions

U1 (t), uox (t) and the constantsfor 1, fox :

gy (8) 4+ (1 —¢) 2k + 1) g1 (1) = fors,
wh () + (1 + &) 4%ug (£) = fox.
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Solving these equations [51], we obtain

fors
u t) = 4+ CypcosvV1—e(2k+1)t
et (1= I 4 Ceos V=2 (k4 )
+ Cysinv1 —e(2k+1)¢t,
Uy (1) = (1_{% + Dyrcos V1 + €2kt + Dy, sin v/ 1 + €2kt,

where the constants Cyy, Cox, D1k, Dok, foxr1, fox are unknown. To find
these constants, we use the conditions (4.2). Let ¢, or1 be the coeffi-
cients of the expansions of ¢ (x)

Pop1 = \/%/1/} (x)sin (2k 4+ 1) xdx,
0

Yo = \/%/1/} (x) sin 2kxdx.
0

We first find Cyy, Cof :

fori
(1—¢) (2k+1)*
Uppi1 (0) = Cy =0,

__f - _
Udkiq (T) = (1 - 8;?;;_{_ 1)2 <1 —cosv1—e (Zk + 1) T> = lP2k+1.

gt (0) = Cik =0,

The constant fy; 1 is represented as

frny = A= K41 gy
2 1—cosv1—e(2k+1)T

Now we find Dyy, Doy :

ugg (0) = (1_{% + Dy =0,

o (T) = (14:6% (1 —cosV/1F e2kT> = Yo

For the constant f;, we find:

o = (14 €) 4K i
2 ] cos/1 1+ kT
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Substituting oy (t), Uk (f), fak, fokr1 into (4.22) and (4.23), we find
® (1—cosv/1—e(2k+1)t)sin(2k+1)x
kg:‘) (1—cosv1—e(2k+1)T) V2ki1
N Z (1 — cos /1 + €2kt) sin 2kx .
= (1—cosv/1+€2kT)

u(x,t)=

Suppose that
P 0)=0, i) (m1)=0,i=0,1,234,

then

1
Pok+1 = m%kﬂ,

L@
Y2 = TV
Then we have (4.12).

Similarly,
= (1—€) Py .
2k +1
; 1—cos\/1—s(2k—i—1)T)(2k+1)25m( )%
- (1+¢) 93,

sin 2kx.

+ Z (1 — cos /1 + €2kT) 4k?

Now for the convergence of the series, we have the following estimate

i (1—cosv1—e(2k+1)t)
2 (1—cosv1—e(2k+1)T) (2k+1)* iy 2k+1|
©  (1—cos+/1+ ¢e2kt)

+k21 (1 —cos+/1+ €2kT) 16k4| 2k |

- 5 (@)
< . .
- Ck;o (2K + 1)4|¢2"“‘ L 16k4|¢2k | <oo. (424)

Similarly for f (x) we obtain the estimate

<5 (1) 95| o 950 |
= (1—cosv1—e(2k+1)T) (2k +1)2 1 (1 —cos /14 €2kT) 4k?

cz Wz"“' +CZ |ﬁi’; . (4.25)

Since by hypotheses of Theorem 1, the function ¥*) is continuous
on [0, 7t], then by the Bessel inequality for the trigonometric series the
following series converge:

5 o <c o
k=1

Lo (4.26)
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2

ké 94| <c v (427)

which implies the boundedness of the set

(i} et

Therefore, by the Weierstrass M-test (see[58]), the series (4.24) and (4.25)
converge absolutely and uniformly in the domain Q).

Now we show the possibility of termwise differentiation of the series
(4.24) twice in the variable x and twice in the variable t. For this purpose,
we prove that the series obtained by means of term by term differentia-
tion converge absolutely and uniformly on Q). Given the estimates (4.26)
and (4.27) we have

Ly(0,7)”

i (1—cosv1—e(2k+1)t)
it (%, 1)] < k;,(l—cos\/m&k—i—l) T) (2k 4 1)2 12|

*  (1—cos+/1+ €2kt) )
& (1 — cos /T + e2kT) 4k2 e

CZ 2k—|—1 |¢2k+1|+CZ4k2|¢2k | <,

+

i (
o (]sinv1—e(2k+1)¢t|) (a)
< V1 —
g (x,£)| < V 8,(20(1—cos Tk 1)T) (21 1) ‘ 2k+1‘

)T) (
i ‘smx/l +82kt| (4)
V1
- +€Z l—cos\/1+82kT)4k2| 2 |

< _— — .
= Ck:ZO (2k+1)2|1’b2k+1| +Ck:21 4k2|l/)2k | < oo






ON A NONLINEAR BOUNDARY-LAYER
PROBLEM FOR THE FRACTIONAL
BLASIUS TYPE EQUATION

Abstract

In this chapter, we consider a non-linear sequential differential equation
with Caputo fractional derivative of Blasius type and we reduce the
problem to the equivalent nonlinear integral equation. We prove the
complete continuity of the nonlinear integral operator. The theorem on
the existence of a solution of the problem for the Blasius equation of
fractional order is also proved.
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5.1 Introduction

Various fields of science and engineering deal with dynamical sys-
tems, which can be described by fractional-order equations. Recently,
many authors have studied fractional-order differential equations from
two aspects: the theoretical aspects of existence and uniqueness of solu-
tions and the analytic and numerical methods for finding solutions. The
interest in the study of fractional order differential equations lies in the
fact that fractional-order models in some situations are found to be more
accurate than the classical integer-order models, that is, there are more
degrees of freedom in the fractional-order models.

It is well known that in fluid mechanics, the problems are mostly de-
scribed by systems of partial differential equations (PDEs). If somehow, a
system can be reduced to a single ordinary differential equation (ODE),
this constitutes a considerable mathematical simplification of the prob-
lem. For this goal, one of the approaches is based on the introduction of
new variables having the form of dimensionless combinations of the ini-
tially given physical variables. Therefore, if the number of independent
variables can be reduced, then PDEs can be replaced by ODEs. In the
problem of the modelling of boundary layer, this is sometimes possible,
and in some cases, the system of PDEs reduces to a system involving a
third order differential equation of the form

f/// ‘|’ff” +g (f/) —0, (5.1)
where g : (—00,00) — (—o0, 00) is some function. Notice that equation
(5.1) with g (x) = B (x* —1) was first introduced by Falkner and Skan
in their classical work [34] and for this reason is called the Falkner-Skan
equation.

The most famous example for these types of equations is the Blasius
equation:

f"+ =0, (5.2)

which corresponds to g(x) = 0 and arises in the study of the laminar
boundary layer on a flat plate. For more information see Brighi [13] and
the references therein.

It is well known [12] that the Blasius equation (5.2) with conditions:

£(0)=0, f(0) =0, f/(c0) =11

has a unique solution. Note also that in [34] the author proves some
important results concerning to the so-called subsolutions and superso-
lutions of the Blasius equation (5.2).

In this chapter, we consider a non-linear sequential differential equa-
tion with Caputo fractional derivative. We reduce the problem to the
equivalent nonlinear integral equation and we prove the complete conti-
nuity of the nonlinear integral operator. A theorem on the existence of a
unique solution of the problem for the non-linear differential equation of
fractional order is formulated.
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5.2 Some properties of fractional operators

In this section, we state some basic properties of fractional differential
operators.

Various properties of fractional sequential operators were studied in
[51, 83, 38, 11].

Property 5.2.1 ([51], P.73) If f € L'([a,b]) and « > 0, B > 0, then the
following equality holds

I"IPf(t) = I*TP £ ().
Property 5.2.2  ([51], P96) If f € L'([a,b]) and f' * K1_, € L'([a,b]), then
IDAF(E) = £(1) — fa),

almost everywhere on [a, b).

5.3 Statement of the problem and main results

Consider the boundary value problem for the nonlinear fractional dif-
ferential equation of Blasius type

%Dzax () + M (x (£), ) DXx (1) =0, a < t < b, (5.3)
with boundary conditions
x(a) = ¢1, Dix(a) = @2, x(b) = ¢3, (54)

where a0 € (%, 1) and ¢1, @2, @3 are given real numbers. Note that when
« = 1, problem (5.3) - (5.4) is met in boundary layer theory in fluid
mechanics and polymer theory [40], [62], [30], [42], [100], [105]. Note also
that various problems for nonlinear differential equations of fractional
order are investigated in [2], [28], [61], [19], [63]. The recent surge in
developing the theory of fractional differential equations has motivated
the present work.

Condition (*). Let M (x, t) be defined and continuous in the domain
G={(x,t):|x] <R,R>0,a<t<b},

where .
R o2l [(0—a)"]
I'(e+1)

+ 1] +

_$2\0—a)
3 T (a+1) 1
and

m= min M (x,t),
(x,t)eG

M = max{ max M (x,t),O} .
(x,t)eG
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C3_, ([a,b]) denotes the space:
C3 . ([a,0) ={xeC([ab]): x" € Cs_u([ab])}.

Here Cs_q ([a,b]) = {(t—a)Hx € C([a,b])}.
The main result of this chapter is the following theorem.

Theorem 5.3.1 If condition (*) satisfied, then problem (5.3) - (5.4) has a solu-
tion in C3_, ([a, b]) .

5.4 Auxiliary statements

In this section, we give some auxiliary statements for further investi-
gation.

Theorem 5.4.1  [14](Schauder fixed-point theorem.) If a completely-continuous
operator A maps a bounded closed convex set K of a Banach space X into itself,
then there exists at least one point x € K such that Ax = x.

Consider the following operator:

B (x) = q)rz ﬂxli) +o1+ (403 - 9013 EZ:S - qv1> Sx(t), (55)
where )
%% |exp (— ft./\/l (x(s),s) ds)
e (t) = — : (5.6)

[ _exp (— fb/\/l (x(s),s) ds>_

Lemma 5.4.2 Let x(t) be a continuous function on [a,b|. Then the operator
B; (x) is equicontinuity on [a, b].

Proof. For ty,ty € [a,b], t; > tp, we get
By, (x) — By (1)) < 12111 — 0y — (1, 0
! 2 “TI'(a+1)

@2 (b—a)"

+ |3 — ACESIIRA 1Sy (1) — Sy (B2)]. (5.7)

For some positive constant x we get

% |(t1 —a)* — (t, —a)*| < x.
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For the operator 3y (t) we have

If m = 0, then we have

1 /tl(t . )Za—ld
TQ2a) Jy, “17Y "

where 0 < B = const.

1 2u
- =< B,
F@a+D‘1 2" = B

If m > 0, then
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where

—s)* Lexp (—m (s — t)) ds

-~
N\M
i
Y
~~
—_

~~
—_

1 & (s—t)"
5)2 1}(;)(_m)k k!z s

[2)
1 00 k
:/(tl — (tl —tg T—tz 2“ 1 Z tl —tz)T—i—fz—tz)k(tl—tz)dT
" k=0
00 k 1
_ Z / DA )2 — )Rk ( — ) dT
k=0 5
1
_ i (_131 k+2a/ )2 kg
k=0 0
© [ k
Y ( k”f) (1 — 1) B (20, k +1)
k= <
s em e TEOT (k)
& K T (k+2a+1)
5 Em e _T@OK
&k 7 T(k+2a+1)

=T (2a) (b — t)™ }% (=m)" (b — 1"

= T(k+2a+1)
=T (20) (t; — £2)** Eqpusr (—m (t — 1))

then
ﬁ [ (= exp (-mi(s ) ds
< ﬁ / (1 —s)** Lexp (—m (s —tp)) ds

= ‘(tl — tz)za E112a+1 (—m (fl — tz))‘ < ‘32, 0< ‘32 = const.

Here E, , (z) is a Mittag-Leffler type function.
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If m = —m <0, then

|9 exp (s — ) as| <
e |, exp (1(s s| <
1 h 201
T(2a) /t2 (t1 —s) exp (1(s — tp)) ds
= ‘(tl — t2)24x E1,2rx+1 (ﬁ’l t — tz))‘ < ,33, 0< ,83 = const.
Now for the estimation of [?* [exp ( (x(s),s) ds)] , We con-

sider the following cases:

Case 1: Let M > 0, then taking into account the condition (*) and
using formula (1.101) from [83], we obtain

)
12&) /b(b — )% exp (/s/\/l (x(1),7) dr) ds

b
r(lza) [ =P Vexp (-M(s—a)) ds

a
= (b—a)* Eypas1 (=M (b—a)) > 71 >0, 71 = const. (5.8)
Case 2: Let M = 0, then

)

_L/(b—s)za 1d5—M> >0 . " (59)
_F(th)a = T@ag) = 127 0 2= const. (5

>

Inequalities (5.7) - (5.9) follow the estimate:
Bty (x) = By, (x)| <¢,

where the positive constant ¢ does not depend on (x,t1,t2) € G. This
ends the proof. O

5.5 Proof of the main results

We reduce the problem (5.3) - (5.4) to a nonlinear integral equation.
To do this, we introduce the notation D2*x (t) = y (t). Then, equation
(5.3) can be rewritten as

Y+ M(x(t),Hy(t)=0,a<t<b. (5.10)
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Then, the general solution of equation (5.10) has the form

y(t) = exp( //\/l ),a<t<b,

or equivalently,

D2y (1) = DXy ( wp(/M )ﬂ@<b (5.11)

Applying the operator I* to both sides of the equation (5.11) and using
property 5.2.2 and conditions (5.4), we get

D%x (t) = @3 + D*x (a) “{exp( //\/l )],a<t<b.

(5.12)
Next, by applying to the equation (5.12) the operator I%, and using
properties 5.2.1 and 5.2.2, based on condition (5.4), we obtain

¥ = o - e

+ D*x (Im{wp( /A1 )],a<t<b (5.13)

In (5.13), if we put t = b, and as x (b) = @3, we have
93— g (b= 2)" — 1

; ,
12 [exp (— {./\/l (x (s),s)ds)]

and the problem (5.3) - (5.4) is reduced to the following nonlinear integral
equation

D¥x (a) =

 T(a+1) T ]
. I?* |exp <—j/\/l(x (s),s)ds)
+(¢3_%—q)1) = ab =, a<t<hb.
2% |exp <—!M(x (s),s)ds)
) ] (5.14)

Let us separately investigate operator (5.6). It is obvious that for any
x € C([a,b]) when t € [a,b], we have the inequality for the operator (5.6)

0< 3 (t) <1
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In fact, Sy (b) =1, Sy (a) = 0 and for other case 0 < Sy (¢) < 1. Itis also
easy to see that

* [exp ( /M (x (s),s)ds)] >0, t>a. (5.15)

Consequently, for any x € C ([a,b]) we have the inequality

1Bl = [2ET gt (- 2R g ) 5,00
'(”}”(fgf)) SR pi- D | =R G16)

This means that the integral operator B; maps a ball ||x|| < R into
itself.

Let us prove that operator B; (x) is completely continuous. We use
Arzela’s theorem [105] on precompact sets in C ([a, b]) . (5.16) shows that
image of set ||x|| < R by mapping B; (x) is uniformly bounded by R.

Now, we show the equicontinuity of the operator B; (x). By Lemma
5.4.2, the operator B; (x) satisfies the condition

By, (x) — By (x)| <.

As in the proof of Lemma 5.4.2, the positive constant ¢ does not de-
pend on (x,t1,t) € G. We have then proved that the operator B; is
uniformly bounded and equicontinuous in C ([a,b]). Consequently, by
Arzela-Ascoli” Theorem , the image B; (x) on the ball S (0, R) is pre-
compact in C ([a,b]). By consequence the operator B; is completely
continuous in C ([a,b]), and we conclude that the operator B; satis-
ties the Schauder’s conditions in Theorem 5.4.1. Then, according to the
Schauder’s principle, the nonlinear integral equation (5.14) has solution
in the class C ([a,b]) .

For any x () from the class C ([a, b]), from the structures of operator
B; in (5.5), it is easy to verify that all derivatives up to the third order
of (5.5) are continuous in the weighted class C3_, ([a, b]) . Therefore, the
solution of equation (5.14) will belong to C5_, ([a, b]).






CONCLUSION

In this thesis, we first dealt with some inverse problems in fractional
calculus by using Caputo derivative. Caputo’s derivative allows us to im-
pose natural initial conditions. By using the Fourier method we proved
the existence and uniqueness of each solution of related inverse prob-
lems. Convergences of the obtained solutions are also justified in order
to establish that the formal solutions are indeed true solutions.

Afterwards, we have examined a non-linear sequential differential
(fractional analog of the Blasius equation) equation with Caputo frac-
tional derivative. Considered problem reduced to the equivalent non-
linear integral equation and we proved the complete continuity of the
nonlinear integral operator. The result is formulated on the existence of a
unique solution of the problem for the non-linear differential equation of
fractional order. In the limiting case, the considered boundary problem
coincides with the boundary-layer problem for the Blasius equation.
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