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Résumeé

Titre: la compatibilité local-global p-adique et modulo p pour GL,(Q,)

Cette these est consacrée a deux aspects du programme de Langlands local p-adique et de la
compatibilité local-global p-adique.

Dans la premiere partie, j’étudie la question de savoir comment extraire, d’un certain sous-espace
Hecke-isotypique de formes automorphes modulo p, suffisament d’invariants d’une représentation ga-
loisienne. Soient p un nombre premier, n > 2 un entier, et F un corps a multiplication complexe
dans lequel p est completement décomposé. Supposons qu’une représentation galoisienne automor-
phe continue 7 : Gal(Q/F) — GL,(F,) est triangulaire supérieure, Fontaine-Laffaille et suffisament
générique (dans un certain sens) en une place w au-dessus de p. On montre, en admettant un résultat
d’élimination de poids de Serre prouvé dans [LLMPQ)], que la classe d’isomorphisme de FIGal(ap JF)
est déterminée par 'action de GL,(F,,) sur un espace de formes automorphes modulo p découpé
par I'idéal maximal associée a 7 dans une algebre de Hecke. En particulier, on montre que la partie
sauvagement ramifiée de ﬂGal(Qp /F,) €t déterminée par 'action de sommes de Jacobi (vus comme

éléments de F,[GL,,(F,)]) sur cet espace.

La deuxiéme partie de ma theése vise & établir une relation entre les résultats précédents de [Schrll],
[Brel7] et [BD18]. Soient E une extension finie de Q, suffisamment grande et p, : Gal(Q,/Q,) —
GL3(E) une représentation p-adique semi-stable telle que la représentation de Weil-Deligne WD(p,,)
associée a un opérateur de monodromie N de rang 2 et que la filtration de Hodge associée est non-
critique. On sait que la filtration de Hodge de p, dépend de trois invariants dans E. On construit
une famille de représentations localement analytiques Y™*(\, .24, %, %3) qui dépend de trois in-
variants 4, %, %3 € FE et telle que chaque représentation contient la représentation localement
algébrique Alg ® Steinberg déterminée par p,. Quand p, provient, pour un groupe unitaire con-
venable G g, d'une représentation automorphe 7 de G/(Ag,) avec un niveau fixé UP premier avec p,
on montre (sous quelques hypothéses techniques) qu’il existe une unique représentation localement
analytique dans la famille ci-dessus qui est une sous-représentation du sous-espace Hecke-isotypique
associé dans la cohomologie complétée de niveau UP. On rappelle que [Brel7] a construit une famille
de représentations localement analytiques qui dépend de quatre invariants (voir (4) dans [Brel7])
avec une propriété similaire. On donne un critére purement de théorie de représentation: si une
représentation II dans la famille de Breuil se plonge dans un certain sous-espace Hecke-isotypique
de la cohomologie complétée, alors elle se plonge nécessairement dans une S™%(\, .4, %, £3) pour
certains choix de £, %, %5 € E qui sont déterminés explicitement par II. De plus, certains sous-
quotients naturels de XM (\, %, %, %) permettent de construite un complexe de représentations
localement analytiques qui <réalise>> 1’objet dérivé abstrait X(\,.£) defini dans [Schr1l1]. Par con-
séquent, la famille de représentations localement analytiques Y™(\, 4, %%, %) fournit une relation
entre les Z- invariants supérieurs étudiés dans [Brel7] et [BD18], et la fonction dilogarithme p-adique
qui est apparue dans la construction de (A, .Z) dans [Schrll].

Mots clé : programme de Langlands local p-adique et modulo p, compatibilité local-global,
Fontaine—Laffaille, sommes de Jacobi, représentations de Steinberg, famille de représentations locale-
ment analytiques, fonction dilogarithme p-adique
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Abstract

Title: p-adic and mod p local-global compatibility for GL,,(Q,)

This thesis is devoted to two aspects of the p-adic local Langlands program and p-adic local-global
compatibility.

In the first part, I study the problem of how to capture enough invariants of a local Galois
representation from a certain Hecke-isotypic subspace of mod p automorphic forms. Let p be a prime
number, n > 2 an integer, and F' a CM field in which p splits completely. Assume that a continuous
automorphic Galois representation 7 : Gal(Q/F) — GL,(F,) is upper-triangular and satisfies certain
genericity conditions at a place w above p, and that every subquotient of 7| Gal(@, ) Fu) of dimension

> 2 is Fontaine-Laffaille generic. We show that the isomorphism class of ﬂGal(G /F,) 18 determined
o/ Fu

by GL, (F,)-action on a space of mod p algebraic automorphic forms cut out by the maximal ideal
of a Hecke algebra associated to 7, assuming a weight elimination result which is now a theorem of
Bao V. Le Hung to be proven in [LLMPQ]. In particular, we show that the wildly ramified part of
ﬂGal(Gp /F,,) 18 determined by the action of Jacobi sum operators (seen as elements of F,[GL, (F,)])

on this space.

The second part of my thesis aims at clarifying the relation between previous results in [Schr11],
[Brel7] and [BD18]. Let E be a sufficiently large finite extension of Q, and p, be a p-adic semi-stable
representation Gal(Q,/Q,) — GL3(E) such that the Weil-Deligne representation WD(p,,) associated
with it has rank two monodromy operator N and the Hodge filtration associated with it is non-
critical. We know that the Hodge filtration of p, depends on three invariants in £. We construct a
family of locally analytic representations L™ (\, 4, %, %) of GL3(Q,) depending on three invari-
ants A, %, % € E with each of the representation containing the locally algebraic representation
Alg ® Steinberg determined by p,. When p, comes from an automorphic representation m of G(Ag,)
with a fixed level U? prime to p for a suitable unitary group G,q, we show (under some technical
assumption) that there is a unique locally analytic representation in the above family that occurs
as a subrepresentation of the associated Hecke-isotypic subspace in the completed cohomology with
level UP. We recall that [Brel7] constructed a family of locally analytic representations depending
on four invariants (c.f. (4) in [Brel7]) with a similar property. We give a purely representation
theoretic criterion: if a representation II in Breuil’s family embeds into a certain Hecke-isotypic sub-
space of completed cohomology, then it must equally embed into ™*(\, .74, %, %) for certain
choices of A4, %, % € E determined explicitly by II. Moreover, certain natural subquotients of
Lmin(\ L, L, L) allow us to construct a complex of locally analytic representations that realizes
the abstract derived object X()\, %) in [Schrll]. Consequently, the family of locally analytic repre-
sentations XMR(\, 74, %, ¥3) give a relation between the higher .Z-invariants studied in [Brel7] as
well as [BD18] and the p-adic dilogarithm function which appears in the construction of ¥ (A,.Z) in
[Schr11].

Key words: p-adic and mod p local Langlands program, local-global compatibility, Fontaine—
Laffaille, Jacobi sums, Steinberg representation, family of locally analytic representations, p-adique
dilogarithm function
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Chapter 1

Introduction générale

1.1 Conjecture de compatibilité locale-globale p-adique

Soit p un nombre premier, K une extension finie de Q, et E une autre extension finie de Q, qui est
suffisamment grande. On note Ok (resp. wg, resp. k) anneau des entiers (resp. une uniformisante,
resp. le corps résiduel) de K; On note Op (resp. wg, resp. kg) Uanneau des entiers (resp. une
uniformisante, resp. le corps résiduel) de E. Le programme de Langlands local p-adique initié par
Breuil dans [Bre03a], [Bre03b] et [Bre04] vise & associer une représentation linéaire de GL,,(K') pLL(p)
sur un espace de Banach p-adique & une représentation galoisienne p-adique p : Gal(K /K) — GL,(E).
Cette correspondance de Langlands locale p-adique est connue pour GL2(Q,) et est di & Colmez dans
[Col10]; sa compatibilité avec la cohomologie étale complétée de la tour de courbes modulaires est
montrée par Emerton dans [Eme06]. L’application pLL reste encore trés mystérieuse quand K # Q,,
ou quand n > 3. On s’attend (c.f. [BrelOa]) & ce que pLL soit compatible avec la reduction modulo
wg, avec Kles familles p-adiques>>, etc. Nous utilisons dans la suite la notation pLL pour désigner
lapplication (qui est seulement conjecturale pour K # Q, ou n > 3) qui associe a une représentation
galoisienne p : Gal(K/K) — GL,(kg) une representation lisse admissible de GL,,(K) & coefficients
dans kg.

On commence par donner une formulation plus précise de cette compatibilité local-global con-
jecturale pour pLL, qui est une généralisation naturelle des idées dans [Eme06] (sauf que nous ne
connaissons plus 'existence de pLL si K # Q, ou si n > 3). A partir de maintenant on fixe un corps
F* totalement réel et une extension F' quadratique totalement imaginaire de F+. On fixe une place
finie vo de F'T qui divise p, qui est scindée dans F' et qui vérifie K = Fj; = Fy, ou wq est une place
finie de F' au-dessus de vg. On fixe une telle place wy de F' a partir de maintenant. On fixe un groupe
unitaire G sur F'T tel que

(i) G ®@p+ F = GL,/p;
(i) G(Ft ®q R) est compact.

On fixe aussi un sous-groupe compact ouvert U C G(A[") et un Op-module A de type fini muni de
sa topologie p-adique. Puis on considere I'espace des formes automorphes p-adiques continues (resp.
localement constantes) a valeurs dans A sur G(A%,) de un niveau fixé U premier avec vg:

SU™, A) = {f : G(FT\G(AS,)/U" — A, continue }
(resp. S(U™, A) = {f: G(FT)\G(A%X,)/U" — A, localement constante } ).

En particulier si A est un module de p-torsion muni de la topologie discrete, alors les deux espaces
définis ci-dessus coincident. Chaque espace ci-dessus admet une action d’une algebre de Hecke uni-
verselle T sur O (engendrée librement par des opérateurs de Hecke indexés par les places finies v

1



2 CHAPTER 1. INTRODUCTION GENERALE

de F au-dessus d’un ensemble D(U"°) de places finies de F'* qui sont totalement décomposées dan-
s I, premitres avec p, telles que U, := U N G(F, ) est un sous-groupe compact ouvert maximal
de G(F;H)); et il y a aussi une action continue ( resp. lisse) de GL,(K) sur S(U", A) (resp. sur
S(Uv, A)) qui provient de la translation & droite sur G(F1)\G(A%,)/U". Les actions de GLy,(K)
sur les deux espaces commutent avec les actions de T. Pour une représentation galoisienne p-adique
continue r4 : Gal(F/F) — GL,(A) qui est conjuguée auto-duale et non-ramifiée & toute place de
F au-dessus d'un v € D(U™), on peut lui associer un idéal p,, C T ®o, A; Le sous-espace propre
S, A)[p,,] (resp. S(U™, A)[p,,]) défini par cet idéal admet naturellement une action continue
(resp. lisse) de GL,(K). On note LL I'application donnée par la correspondance de Langlands locale
classique qui envoie une représentation de Weil-Deligne, Frobenius semi-simple de dimension n, vers
la représentation lisse irréductible de GL,,(K) (c.f. [HT01], [He00] et [Sch13]). On pose

ri=r0s ®op B, T =Tk =10, ®0 kB, 0= Tga® k) P = Tla(®/K)

et on utilise la notation abrégée

ﬁ(?") = (S\(Uvo, OE)[pToED ®op b
II(7) = S(U™,kg)pr,]
() = (S, 0p)bro,]) @0 F

On omet le niveau U dans la notation pour simplicité. On définit TI*8(r) comme le sous-
espace de ﬁ(r) des vecteurs localement algébriques. On remarque que I1*8(r) est naturellement
une représentation localement algébrique de GL,,(K). On note WD(p) (resp. Alg(p)) I'application
qui associe une représentation de Weil-Deligne (resp. une représentation algébrique de GL,, (K)
de dimension finie) & une représentation galoisienne p-adique p potentiellement semi-stable (resp.
I’ensemble des poids de Hodge—Tate de p) via la théorie de Fontaine de [Fon94] (resp. via la section
5 de [Brel6]). A ce stade, la compatibilité local-global classique en p (qui a été demontrée dans
[BLGGT12] et [BLGGT14] sous plus d’hypotheses techniques) peut se formuler grossiérement comme
suit :

Théoréme 1.1.1. Supposons que
™8 (r) 0.

Alors p est potentiellement semi-stable et il existe un entier d > 0 qui ne dépend que de r et de U
tel que
T1*'%(r) 2 (LL o WD(p) @ Alg(p))“". (1.1.2)

Il est naturel d’imaginer que la compatibilité local-global p-adique conjecturale devrait avoir la
forme suivante:

Espoir 1.1.3. Supposons que

II(7) # 0.
Alors il existe un entier d > 0 qui ne dépend que de r et de UV tel que
II(r) = pLL(p)®? (1.1.4)
et
II(7) = pLL(p)®<. (1.1.5)

En particulier, I’Espoir 1.1.3 implique :

Conjecture 1.1.6. La structure de II(r) (resp. de II(F)) comme représentation de Banach p-adique
unitaire admissible (resp. représentation lisse admissible o coefficients dans ki) de GLy, (K) détermine
la classe d’isomorphisme de p (resp. de p) et ne dépend que de cette classe.
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On insiste sur le fait que p n’est pas nécessairement potentiellement semi-stable dans I’Espoir 1.1.3
et dans la Conjecture 1.1.6. En revanche, comme les applications pLL et pLL sont trés mystérieuses
quand K # Q,, ou quand n > 3, on ne considere que les cas ou p est potentiellement semi-stable dans le
reste de cette introduction de sorte que le Théoreme 1.1.1 soit disponible. Il est assez difficile d’étudier
directement les représentations de Banach p-adiques unitaires de GL,,(K). On a essentiellement deux
types d’objets par lesquels il est peut-étre plus facile de commencer. Ma these est donc divisée en
deux parties et dans chaque partie on étudie 'un de ces deux types d’objets. La premiere partie de
ma these traite les représentations II(7) lisses et admissibles & coefficients dans kg (travail en commun
avec Chol Park) et la seconde partie traite les représentations IT*"(r) localement analytiques définies
comme P'ensemble des vecteurs localement analytiques (ensemble des vecteurs sur lesquels GL,, (K)
agit par des fonctions localement analytiques sur le groupe GL,, (K) & valeurs vectorielles) dans ﬁ(r)

1.2 Compatibilité local-global modulo p pour GL,(Q,)
On commence par II(7). Plusieures questions naturelles se posent sur II(7):
(i) Est-ce qu’on a II(T) # 07
(ii) Quelle est la structure de TI(7)?
(iii) Quel est le lien explicite entre II(T) et p = T|q, 7/ k) (on rappelle que K = Fy,)?

L’assertion II(T) # 0 revient essentiellement & dire, en terminologie plus classique, que T est modulaire
(ou automorphe). Le cas ot F' = Q et G = GLy est connu et découle de la conjecture de modulairité
de Serre prouvée par Khare-Wintenberger dans [KW09]. Malheureusement (i) reste toujours non
résolu en général et dans cette these il sera parfois nécessaire de le mettre dans ’hypothese. On
suppose que (i) est vraie et on considere la question (ii). La réponse compléte & (ii) est connue dans
le cas ot F' = Q, G = GLgy, elle est dit & Emerton (qui repose sur U'existence de pLL pour GL2(Q,))
mais est toujours ouverte quand K # Q) ou quand n > 3. Un des obstacles principaux est 1’absence
d’une classification complete des représentations lisses irréductibles de GL,, (K) & coefficients dans kg
(sauf le cas GL2(Qp) qui est connu d’apres [BL94] et [Bre03a]). Plus précisément, les résultats de
[BP12], [HulO] et [Schrl5] montrent que la classification des représentations qui n’apparaissent pas
comme sous-quotients d’inductions paraboliques (elles sont appelées supercuspidales) est trés difficile
méme pour GL3(Q,2). En revanche, puisque 'on sait comment classifier toutes les représentations
paraboliquement induites par les caractéres d’un sous-groupe de Borel (voir [Herll] pour les cas
GL,(K)), on peut déja construire en utilisant [BH15] une représentation lisse I1°'4(p) sur kp d'une
longueur finie (qui ne dépend que de p) qui se plonge toujours dans II(7) si K = Q,, et si p est ordinaire
(i.e. P a son image dans un sous-groupe de Borel de GL,(kg)). Mais il est clair, compte tenue de
la construction dans [BH15], que I1°*%(p) n’est pas suffisant pour déterminer 5 en général. Notons
que Hu montre dans [Hul7] qu’une représentations supercuspidale apparait nécessairement dans IT(7)
meéme si K = Q2 et n = 2.

Par conséquent, on a besoin d’une méthode qui nous permet de trouver suffisament d’informations
dans II(7) pour déterminer p. Une approche naturelle est de restreindre l'action de GL,(K) a
GL,(Ok). Il y a au moins deux raisons pour faire ceci : les représentations irréductibles de GL,,(O)
a coeflicients dans kg (donc de GL,,(k)) sont faciles & classifier grace a la section 2 de la partie II de
[Jan03]; au moins la classification des représentations irréductibles de GL,, (k) & coefficients dans F
est bien connue d’apres la théorie de Deligne-Lusztig de [DL76]. En plus on a

Théoréme 1.2.1 ( voir [Jan81] et la Proposition 4.1.3 de [LLL16] ). Pour toute représentation de
Deligne-Lusztig T suffisament générique et pour toute Og-réseau 7° C T, L’ensemble des facteurs de
Jordan—Holder

JHer, (k) (7° ®0p kE)
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est indépendant du choix de T° et admet une description purement combinatoire via le groupe de Weyl

affine de GL,, /.

Ici par suffisamment générique on veut dire que, quand on paramétrise une représentation de
Deligne-Lusztig par un poids et un élément du groupe de Weyl comme dans [Jan81] (voir aussi la
Section 4 de [Her09]), ce poids doit étre suffisamment éloigné du bord de l'alcdve qui le contient.

La premiere étape pour comprendre I1(7)|gL, (0,) consiste a caractériser le socle

socGL,, (0x)1(T)

ce qui est déja un probleme profond et qui est historiquement une reformulation de la partie <poids>
de la conjecture de Serre lorsque I = Q et G = GLy. Les conjectures sur la structure de socqr,,, (0,0)11(7)
sont formulée par Buzzard-Diamond-Jarvis dans [BDJ10] si K = Q,s et n = 2, par Herzig [Her09] si
K = Q, et n arbitraire, et par Gee-Herzig—Savitt [GHS] dans certains cas plus généraux. On s’attend
a ce qu'il y ait une relation profonde entre la structure de socgr,, (0, )II(T) et les fibre spéciales de
différents anneaux de déformations potentiellement semi-stables de p (conjecture de Breuil-Mézard—
Emerton—Gee, c.f. [BMO02], [BM14] et [EG14]).

Quand K = Q, la structure de socgr,, (0,)I1(T) a été déterminée pour n = 2 dans [GK14] et pour
n = 3 dans [EGH13], [HLM17], [MP17], [LMP] et [LLHLMa]. On pose

K(1) := Ker (GL,,(Ok) — GL,(k))

et on remarque qu'il est naturel, du point de vue de la théorie des représentations, d’étudier IT(7)K()
qui contient évidemment socgr,, (0,)I1(F) comme une sous-représentation. La représentation I1(7)K(1)
est un point de départ (déja non-trivial) pour reconstruire II(7) comme une représentation de GL,, (K).
Mais malheureusement les résultats de [HW18], [LMS16] et [Lel7] si K = Q,r et n = 2, ainsi que
des travaux en préparation des auteurs de [LLHLMa] si K = Q,s et n = 3 suggerent que II(7)X(1),
comme représentation de GL,,(k), est toujours insuffisant pour déterminer 5, surtout dans le cas o p
est ordinaire et indécomposable. On a ’exemple suivant

Exemple 1.2.2. On prend K = Q,r, n = 2, et p une représentation galoisienne ordinaire de la
forme suivante
<X2 * )
0 xi

Supposons en plus que ylygl satisfait une hypothése générique. Il s’ensuit d’un calcul standard de
caractéristique d’Fuler—Poincaré en cohomologie galoisienne que

dimkEEXtéal(Qipf/pr)(Y% Yl) =f

et par conséquent p est déterminé par p*° et f — 1 invariants & valeurs dans kg U{oco} & isomorphisme
pres. On sait que p est Fontaine—Laffaille dans ce cas, alors on peut utiliser les modules de Fontaine—
Laffaille (voir [FL82]) pour définir un ensemble d’invariants dans kg U {oo} (voir Lemme 2.1.1 de
[BD14]) qui détermine la classe d’isomorphisme de p. 1l se trouve que la structure de socgr,, (0,)I1(T)
ne peut pas déterminer ces invariants (s’ils ne sont ni 0 ni oo). Plus généralement, supposon-
s que toutes les representations a coefficients dans kg de Gal(K/K) de dimension n peuvent étre
paramétrisées par un certain espace de module et qu’un tel espace admet une stratification par des
sous-schémas localement fermés donnés par certaines conditions explicites, alors on s’attend a ce que
socqr, (0)IL(T) nous permette seulement de dire dans quelle strate p se trouve, au lieu de dire quel
point de la strate p correspond précisement.

On définit le sous-groupe d’Iwahori I, resp. le pro-p sous-groupe d’Iwahori I(1), de GL,,(K) comme
la préimage de I’ensemble des matrices triangulaires supérieures (resp. unipotentes) de GL, (k) via
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la surjection GL,(Og) — GLy (k). Il est bien connu que le normalisateur de I dans GL,,(K) est
engendré par I et I’élément suivant:

0 10 0
0 01 0
Ep = oo ] € GLy(K).
0 00 - 1
wrg 0 0 0

Puisque Z,, et GL,,(Ok) engendrent GL,,(K), on s’attend naturellement & ce que Z,, joue un role
crucial, quelle que soit la méthode utilisée, dans la reconstruction d’une représentation lisse irréductible
de GL,,(K) & partir da sa restriction & GL,(Ok).

Dans [BD14], les auteurs ont montré que (si K = Q,s et n = 2) socgr, (0,)II(T) et 'action de
Zy sur II(7)! (1) détermine p & isomorphisme prés; c’est le premier résultat sur la détermination des
valeurs des invariants de Fontaine—Laffaille (ceci est résumé dans 'Exemple 1.2.2). Le résultat de
[BD14] a été récemment généralisé au cas o K = Q,, et n = 3 dans [HLM17] quand p est ordinaire
et Fontaine-Laffaille, et dans [LMP] quand 7 a une sous représentation ou un quotient irréductible de
dimension deux. Ces deux approches pour n = 3 considerent I’action de =3 sur II(7)! (1) et requierent
des hypotheses génériques techniques supplémentaires sur p qui consistent essentiellement & garantir
que

socqr, (0x)1I(T) a une longueur minimale

si on fixe p*° et si on fait varier les parameétres d’extension de p. La premiere partie de ma these
consiste & généraliser les résultats de [HLM17] au cas ou K = Q, et n est arbitraire. Ceci est fait
dans le Chapitre 3; il s’agit d’un travail en commun avec Chol Park.

Théoréme 1.2.3. Supposons que II(F) # 0. Alors la structure de répresentation lisse admissible de
GL,(Qp) d coefficients dans kg de IL(T) détermine p a isomorphisme prés si p est Fontaine-Laffaille,
ordinaire et suffisamment générique.

Remarquons que le cas ot K = Qs et n = 3 a récemment aussi été obtenu par Enns dans [En]. Un
autre résultat important dans cette direction est le Théoréme 7.8 de [Sch15] ot Scholze a utilisé une
méthode géométrique complétement différente de la nétre pour montrer que II(7) détermine toujours
p pour n = 2 et K arbitraire.

Maintenant on donne un énoncé plus précis du Théoreme 1.2.3 et on renvoie les lecteurs au
Chapitre 3 pour plus de détails. On pose K = Q,, a partir de maintenant. On fixe T tel que

I(7) # 0

et suppose que p est ordinaire. Alors il existe une suite de sous-représentations

0¢ Pr2G S Pin1 GPI=0P

I
N

1,1

)

telle que
X1 :=p11 and X; = pq;/P1,i-1

sont de dimension 1 pour tout 2 < ¢ < n. Si on suppose que X;_1X; ! satisfait certaines hypothéses
(pas tres fortes) qui ressemblent & celle qui a été mentionnée dans ’Exemple 1.2.2; alors on a

Homg, g, /q,) (Xi: Xi—1) = EXtéal(@/QP)(Yia Xi-1) =0

et

dimg, Bxte, gy /q,) (Xir Xi-1) =1
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pour tout 2 < ¢ < n. Par un dévissage on en déduit que

1

dimy,, EXtGal(Qip/Qp)(Ym pl,ifl) =i—1

qui dit grosso modo que p; est déterminé par x;, p; ;_; et ¢ — 2 invariants supplémentaires pour tout
2 <1 < n. Par une récurrence rapide on sait que p est déterminé par

p* =B X,
et w invariants. Selon une classification complete des caracteres de Gal(Q,/Q,) & valeurs
dans kg via la théorie de corps de classes, on sait qu’il existe a; € Z/(p — 1)Z tel que

Yiwfai72+l

est non ramifié pour tout 1 < i < n ou w est la réduction modulo p du caractere cyclotomique

e:Gal(Q,/Q,) ~ Z.

Il se trouve que la condition que
p est Fontaine—Laffaille

est essentiellement équivalente & I’existence d’entiers a; € Z dont les images dans Z/(p — 1)Z sont les
a; et vérifiant
apr+p—1>a, >ap_1> - >ai.

La théorie de [FL82] associe & p un module de Fontaine—Laffaille FL(p). On peut définir un certain
ensemble d’invariants FL; ;(p), pour toute paire d’entiers (¢, j) tels que 1 <i < i+1 < j < n, comme
certaines fonctions rationnelles explicites en entrées de la matrice de Frobenius du module FL(p) et
prouver que les FL; ;(p) ne dépendent que de la classe d’isomorphisme de FL(p). On observe que p
est déterminé par p* et ces invariants FL; ;(p), et que la démonstration du Théoreme 1.2.3 se réduit
au probleme de détecter tous les invariants FL; ;(p) dans II(7).

Une idée générale consiste a étudier II(7) via II™(r) pour de différents relevements r d’un 7

fixé tels que les représentations galoisiennes locales p = r\Gal(FTJO /Fug) satisfassent des conditions
supplémentaires. Plus précisément, pour une représentation de Deligne-Lusztig 7 de GL,,(F,) donnée,
il existe un type inertiel modérément ramifié LLil(T) (qui est une représentation du sous-groupe
d’inertie Iq, C Gal(Q,/Qy) qui se factorise par le quotient modérément ramifié) qui lui correspond
via la correspondance de Langlands locale inertielle (voir Section 3 de [CEGGPS]). La notation
LL_l(T) provient de la compatibilité entre la correspondance de Langlands locale classique et la
correspondance de Langlands locale inertielle. Alors on consideére tous les relevements p de p avec les
poids de Hodge-Tate {0,1,--- ,n — 1} tels que

WD(p)|rg. = LL7 (7). (1.2.4)

|1Qp

On remarque que tout p correspond a un E-point du schéma formel donné par un anneau local

noethérien complet 7?%1' 1(T)’{07”"n71}. C’est un cas spécial de la construction des anneaux de
déformation potentiellement semi-stables de [Kis08] pour les types inertiels et les poids de Hodge-Tate
plus généraux.

Pour toute paire d’entiers (i,j) tels que 1 < ¢ < i+ 1 < j < n, on choisit une représentation de
Deligne-Lusztig 7; ; puis on prend une représentation galoisienne r; ; : Gal(F/F) — GL,(E) telle que

(i) r;; est automorphe et non-ramifié en toute place finie de F' au-dessus de v € D(U");

(ii) r;; contient un Og-réseau rf . invariant dont la réduction modulo wg est 7;
;

J

L N . LL™*(i,4),{0,- ,n—1}
(iil) pi; = Ti,leal(FTJO/FwO) correspond a un morphisme R — F.
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En particulier on a le diagramme commutatif suivant:

~

fi(ry ;) <——S(U™, Op)[pre | — 1(77;) (1.2.5)

I (r; 5) <——S (U™, Op)[pre ]

]

Ti,j >Ti,5 Tij
ou

Ty =Ty N S(U™, Op)lpre ] G I (ri5)
et

- 6
Tig = Tij R0 kg.

En prenant les sous-espaces invariants par (1), le diagramme (1.2.5) induit un autre diagramme:

I (r; ;) 1) <———S(U™, Op)[pre ]'Y ——— II(75)' W (1.2.6)
T 5(78,)' il
Le fait que
iy 0

implique que 7; ; est une représentation de la série principale de GL,,(F;). Cela revient & dire que 7; ;
provient d’une induction parabolique d’un caracteére de T'(F,). Chaque terme de (1.2.6) admet une
action de l'algebre de Hecke-Iwahori qui contient Z,, et n — 1 opérateurs U € Z,[GL,(Q,)] pour
1 <m < n-—1. On note P, le parabolique standard de GL,, qui contient le sous-groupe de Borel
triangulaire supérieur et qui a des blocs de Levi de la forme GL,, X GL,,_,,. On note N,, le radical
unipotent de P,,. Le lemme suivant résume les deux propriétés principales de U;".

Lemme 1.2.7. On a
(En)™o Uy € ZP[GLH(ZP)]'

FEtant donnée une représentation irréductible lisse IL,,, (resp. Iy, ) de GLy (Qp) (resp. de GLy—1n(Qp))
dont le caractére central est wr,, (resp. wm,_..), on a

m n—m

Uyt = wn,, (p)~!

restreint a l’'image de

Non(Zp)

Hm QF anm — (Indg:z?(QCj;)) (Hm QF anm))

On note p; ; un caractere T'(F,) — Z)* (& déterminer plus tard) et 7i; ; : T'(Fp) — F,¢ sa réduction
modulo p. Le groupe T(F,) agit naturellement sur Uespace T (r; ;)/(). On note TI¥™ (r; ;) (Vi
le sous espace propre associé au caractere f; ;. Etant donnée une valeur propre ao € E* de U* sur
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™ (r; ;)T (D#45 on cherche un diagramme:

interpréter o étape 2 étape 3 montrer que « est
via une identité dans Z,[GL,(Qj)] sur o un produit de valeurs propres
(Ti?j)lu),,”j g_ril(jl),ui,j ’C‘Hsm(Ti’j)I(l),Mi,j du Frobenius de WD(p; ;)
étape 1ﬂ étape 4

interpréter FL; ;(p)
via une identité dans Fp[GLn(QJ)] sur FLZ,] (ﬁ)
ml(l),ui,j gn(m)l(l)#"i,j
(1.2.8)
qui a déja apparu dans [BD14]. On insiste sur le fait que k est un entier qui vérifie 1 <k <n—1et
qu’il est déterminé par la paire (i, 7). La partie la plus standard du diagramme 1.2.8 est I'étape 3 qui
est essentiellement une égalité entre valeurs propres de U;* et produits de certaines valeurs propres du
Frobenius de WD(p; ;) et qui découle directement de la correspondance de Langlands locale classique
et de la compatibilité local-global classique (voir Théoréme 1.1.1). L’étape 4 qui réalise I'invariant
FL; ;(p) comme la reduction modulo wg d'un produit de valeurs propres du Frobenius (multiplié
par une puissance convenable de p), est prouvée par des calculs techniques de la théorie de Hodge
p-adique entiere, notamment via des modules de Breuil et de Kisin. La plupart de 1’étape 4 est faite
dans Section 3.3. Il est nécessaire d’insister sur une différence importante entre ’étape 3 et I'étape 4.
L’étape 3 situe complétement en caractéristique 0 a coefficients dans E, ne dépend que de WD(p) et
n’exige pas de conditions supplémentaires sur p. En revanche 1’étape step 4 repose sur une condition
technique supplémentaire sur p qui sera rappelée dans la Définition 1.2.9. .
On peut associer & une paire (p,7; ;) un élément w(p,7; ;) du groupe de Weyl affine W de GL,,
en utilisant la théorie des <shapes>> qui est essentiellement développée dans [LLHLMa]. Pour toute
représentation galoisienne semi-simple

Py : Gal(@,/Q,) — GL, (ke)

on définit I’ensemble suivant

Qpo; 71.,5) == {w(p, 7i5) | 9™ =P}
On considere la longueur
C(w(p, ;)
par rapport au systeme de Coxeter standard de w.

Définition 1.2.9. On dit que p est T, j-générique si la longueur de w(p,7; ;) est mazimale parmi
celles des éléments de Q(p™, T ;).

On peut construire (via les modules de Fontaine-Laffaille) un kg-schéma M, dont les kg-points
paramétrisent toute la représentation de Fontaine-Laffaille p avec une semi-simplification fixée p* =
Po- On a alors une stratification naturelle .” de Mj, indexée par I’ensemble Q(pg, 7; ;) (ceci découle
des travaux en cours des auteurs de [LLHLMa] sur I’espace de module des modules de Kisin avec
données de descente modérément ramifiées). Il s’avere que Mp, est irréductible et il existe un unique
élément de longueur maximale dans (g, 7;,;) qui correspond & l'unique strate ouverte (non vide)
dans .7, ce qui implique que 7; j-générique est en effet une hypothese générique.

Il découle du Lemme 1.2.7 que

Um

n

= Q54 (1210)
sur I1™ (7)T(M:#i pour une certaine constante a;; € EX. On pose
hi’j = Valp(ai,j), &;; = p’hi’fai,j S OE

et on note @;; la réduction modulo wg de a; ;. Le résultat principal issu des étapes 3 et 4 en (1.2.8)
est:
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Proposition 1.2.11. On a l’égalité
ai; =FLi;(p)~" € kj (1.2.12)
51 p est T; j-générique.

11 reste & clarifier les étapes 1 et 2 en (1.2.8). Il nous faut deux opérateurs
549, §49' € Z,[GL,(F,)]

et leurs réductions modulo p o
547, 89" € FplGL, (Fp)]

qui ne dépendent que du choix de 7; ; et de p; ;. Alors I’égalité dans Z,[GL,(Q,)] dont on a besoin
est de la forme o .
Gisd! o (E)™ o U™ = ¢ ;8% (1.2.13)

(sur I (r)!(-1id) ot ¢ ; € EX est une constante qui ne dépend que du choix de 7; ;, p; ; et k. On
insiste que I’égalité (1.2.13) peut étre calculé dans Z,[GL,(Z,)] parce que

(En)™ o Uy € Zy[GL,(Zy)]

d’aprés le Lemme 1.2.7. On suppose que

p~"e, € O
et on note ¢; ; les réductions modulo wg de p*hw‘a—’j. Alors en combinant (1.2.13) et (1.2.10), on
obtient: o o
S o (2,)™ = oy }e ;50 (1.2.14)

K2

sur I1™ (7)T(M:#45 dont les réductions modulo wy sont
SHi' o (2,)™ = ¢; jFL; ;(p)S™ (1.2.15)
sur II(7)/ (D75 par la Proposition 1.2.11, quitte & faire 'hypothése supplémentaire suivante:

Hypotheése 1.2.16. On a o
dimy,, TI(7) T DFs =1

et
ﬁ,jl(lﬁm = H(?)I(l)vm.

On observe que I’'Hypothese 1.2.16 exige un choix optimal du niveau U"°. Sinon on aurait besoin
de la remplacer par une autre hypothese qui assure qu’'un certain module sur ’algebre de Hecke T
est libre sur son support. Pour supprimer ’'Hypothese 1.2.16, on a besoin d’une version forte de la
condition 7; j-générique. En fait, il découle d'un calcul des modules de Kisin avec données de descente
modérément ramifiées (qui généralise les calculs de [LLHLMa)] et sera fait dans [LLMPQ)]) qu’il existe
un sous-schéma ouvert non vide Mg;“ de M3, contenu dans une strate ouverte 7; j-générique tel que

_ . . . ~LL7Y(7:.4),{0,--- ,n—1 . .
p est un kg-point de MZ™ si et seulement si R (ri.):A } est formellement lisse. Lexistence
méme de MZ" donne une restriction tres forte sur le choix des 7; ;.

Définition 1.2.17. On dit que p est fortement 7; ;j-générique s’il est donné par un kg-point de Mg(‘)".

La proposition suivante (qui est tres liée & la conjecture de Breuil-Mézard—Emerton—Gee) sera
prouvée dans [LLMPQ)] et découle essentiellement d’un foncteur construit par la méthode du patching
de Taylor-Wilies—Kisin (voir la Section 7.3 de [LLHLMa] pour le cas de GL3(Q,)).



10 CHAPTER 1. INTRODUCTION GENERALE

Proposition 1.2.18. L’Hypothese 1.2.16 est vraie pour un choiz convenable de UV sip est fortement
Ti,j-générique.

1l faut comprendre pourquoi les opérateurs %1, §13/ € Z,[GL, (F,)] (satisfaisant (1.2.13)) existent
et s'il est possible de les construire ezplicitement et de calculer la constante ¢; ;. L’existence de
certains S et §03 qui satisfont (1.2.13) est relativement formelle et découle essentiellement de
I'Hypothese 1.2.16 mais les opérateurs peuvent étre trées méchants et par conséquent on ne peut rien
dire sur la constante ¢; ;. En revanche la construction explicite d’une seule paire de tels opérateurs
est trés technique et la partie la plus difficile est de montrer que S/ et S%/ ne s’annulent pas sur
I(7)!()F5. Dans le Chapitre 3, on donne en effet (avec des notations différentes) une construction
explicite de ces opérateurs, on prouve la non-annulation mentionnée ci-dessus dans la Section 3.4.8 et
on calcule la constante ¢; ; dans la Section 3.4.5.

On conclut que lidentité (1.2.15) montre que l'invariant FL, ;(p) apparait dans II(F) si p est
fortement 7; ;-générique, et que II(7) détermine p & isomorphisme pres si p est fortement 7; ;-générique
pour toute paire (¢,7) telleque 1 <i<i+1<j<n.

Il y a plusieurs généralisations naturelles du Théoreme 1.2.3 qui ne sont pas incluses dans cette
these. On en donne un résumé rapide. On suppose dans la suite que p*° est suffisamment générique.
Les généralisations suivantes sont pour la plupart des travaux en cours avec Viet Bao Le Hung, Daniel
Le, Stefano Morra et Chol Park.

La premiere étape est de supprimer la condition ordinaire. La nouvelle difficulté se divise en deux
parties : (i) on a besoin d’une famille d’invariants de Fontaine-Laffaille et d’un convenable 7 pour
tout invariant afin que la stratégie en (1.2.8) s’applique; (ii) il faut construire explicitement certaines
paires d’opérateurs S, 5’ € Z,[GL,(F,)] pour tout invariant afin qu'un analogue de (1.2.13) soit vrai
pour une constante explicite ¢. On remarque que il y a beaucoup plus de cas de p. La seconde
étape est de éliminer certaines conditions 7-générique qui sont analogues a la Définition 1.2.9. La

difficulté de cette étape du fait que 7?%L A0 Th g peu de chance d’étre formellement lisse
sans une hypothese générique forte sur p. Ainsi la Proposition 1.2.11, I'Hypothese 1.2.16 et (1.2.15)
s’écroulent completement en général. L’observation cruciale est que I’on peut déterminer p en utilisant
un ensemble d’invariants et un ensemble de poids de Serre modulaires. La derniere étape consiste a
éliminer la condition Fontaine—Laffaille. Le probléme est que p admet d’habitude des relevements
pour beaucoup moins de choix possibles de 7 si on fixe les poids de Hodge—Tate. La solution naturelle
est de considérer les relevements (de p) dont les poids de Hodge-Tate sont plus généraux.

Remarque 1.2.19. Il serait possible de généraliser toutes les discussions ci-dessus au cas ot K = Q¢
en utilisant les travaux récents de Enns dans [En]. Si K est ramifié au-dessus de Q,, la situation
semble beaucoup plus compliquée parce que H(F)K(l) est en général trop petit et que l’on aurait besoin
de types inertiels sauvagement ramifiés pour trouver suffisamment d’invariants de p dans II(T). Le
seul résultat connu sans restriction sur la ramification de K est di a Scholze [Sch15] pour n = 2 et
K arbitraire ot une méthode complétement différente et plus géométrique est employée. L’auteur ne
sait pas comment généraliser la méthode de [Sch15] au cas n arbitraire pour déterminer p.

1.3 Dilogarithme et .Z-invariants supérieurs pour GL3(Q,)

Maintenant on passe & la représentation localement analytique II"(r) qui est l'objet central de la
seconde partie de ma theése. On peut utiliser la théorie des modules de Verma (autrement dit la théorie
de catégorie de Bernstein—Gelfand-Gelfand O expliquée par exemple dans [HumO08]) pour étudier
I1**(r). Treés peu est connu sur la classification compléte d’objets irréductibles dans la catégorie
RepléLn( K),r des représentations localement analytiques admissibles de GL,(K). On considére la

sous-catégorie pleine Repg%n( k), (qui est beaucoup mieux comprise) de Rengn( K),p engendré par

an
les sous-quotients des séries principales localement analytiques (Indgb’ggm X) pour x un caractere
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localement analytique arbitraire de T'(K). Quand on dit qu’une sous-catégorie pleine est engendrée
par une famille d’objets, on veut dire qu’elle est la sous-catégorie pleine minimale (tout objet est de
longueur finie) qui contient cette famille d’objets et qui est stable par extensions et sous-quotients.
On suppose que r est non ramifié en toute place finie de F' au-dessus de D(U") et que

™8 (r) £ 0. (1.3.1)

On remarque que Iéquation (1.3.1) revient & dire que r est automorphe et qu’en particulier p est
potentiellement semi-stable. On définit
CL,(K),E

comme l'ensemble des classes d’isomorphismes d’objets irréductibles de Repgin( K),E €t

PS PS
JHGLH(K),E(T) < JHGL,,L(K),E
comme le sous-ensemble des objets irréductibles IT'™ tels qu’il existe un plongement
T s I (7).

On définit la multiplicité: _
de = dimEHOIIlGLn(K) (ler, Han(T))

qui est finie pour tout I € JH(P;%n( K),(r) puisque II1*%(r) est admissible. Si p est crystalline et

satisfait une certaine hypothese de généricité (faible), alors 'ensemble JHgin( K),5(r) est explicite-
ment déterminé par certaines données combinatoires données par la filtration de Hodge de p par
[BHS17]. Sous les mémes conditions, [BH18] construit une certaine sous-représentation de II**(r) qui
est maximale parmi toutes les représentations qui satisfont une certaine condition de multiplicité une
et qui appartiennent a Repgin( K),5- Sip est crystalline, les résultats de la Section 3.3 de [Brel7]
et de [BH18] suggerent que la question de comment construire une sous-représentation suffisamment
large de II*"(r) pour déterminer complétement p est encore mystérieux (surtout quand la filtration
de Hodge de p se trouve dans une position suffisamment générique). La situation est assez différente
(et meilleure) si p est semi-stable et non-crystalline, au moins quand n = 3. On suppose & partir de
maintenant que F't = Q (ainsi K = Q,, et vg = p) et que le (¢, N)-module D associé & WD(p) a la
forme suivante:

Q = Eeo D E€1 D E62 (132)

N(eo) = O, N(el) = €p, N(eg) = e1

et
plei) = ur(a)p'?e;
pour 0 <4 < 2 et un certain o € E*. 1l découle de la correspondance de Langlands locale classique
que
LL o WD(p) = St5° ®g (ur(a) o dets)

ou St3° est la représentation de Steinberg lisse de GL3(Q,) définie comme l'unique quotient ir-
réductibles de la série principale lisse:

GL3(Qp) 1\
(IndB(ép) 1) ,

dets est le caractere déterminant GL3(Q,) — Q. et ur(a) est le caratere non ramifée qui envoie p a
a. On note k = (k1, ka2, k3) € Z3 avec
ki1 > ko > k3
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I’ensemble des poids de Hodge-Tate de p. On définit
MI"8(k, D) := L(\) ®p Sty ®p (ur(a) o dets)
ot L(\) est la représentation algébrique de dimension finie de GL3(Q,) dont le poids le plus haut est
A= (A1, A0, A3) = (k1 — 2,ka — 1, k3) (1.3.3)

par rapport au sous-groupe de Borel triangulaire supérieur E(Qp). Le Théoreme 1.1.1 implique
I’égalité suivante:
I8 (1) = 1% (k, D)

pour un entier d = dpie(x, py qui dépend de UP et de r. On dit que p est non-critique (voir le (ii) de
la Remarque 6.1.4 de [Brel?7)) si la filtration de Hodge de p satisfait une hypothese générique explicite
qui implique 1’égalité suivante:

JHEY, (k0.5 (r) = {TT"'2(k, D)} (1.3.4)

Si p est non-critique, alors il existe un triplet d’invariants (.%; j)o<i<j<2 € E® tel que la filtration de
Hodge (faiblement admissible) Fil® sur D a la forme suivante:

Q sig < k3
FlllD _ E(€2 + fl’gel + ﬂ)geo) ©® E(el + ﬂ)’leo) si k‘g +1 < ) < kig (1 3 5)
- E(GQ + 317261 + 307260) si kg +1 S ) S kl e
0 sii >k +1

Dans I’étude de pLL I'un des objectifs principaux est de trouver dans le cas (1.3.5) tous les invariants
% ; dans II*" (r) pour 0 <4 < j < 2. On appelle Z-invariants ces .Z; ; et Z-invariants simples les
20,1 et les 21 5. On appelle % 2 le L-invariant supérieur de p. Ce qui fait ce cas (1.3.5) si spécial
est le fait que l'on espere trouver tous les invariants .%; ; dans une sous-représentation de II*"(r) qui
appartient & Repgin(KLE. Le cas de GL2(Q,) a été étudié en premier par Breuil dans [Bre04] et
dans [BrelOb], et c¢’était 'un des points de départ de pLL. Afin de retrouver explicitement 1'unique
Z-invariant de TI*(r) quand p est semi-stable non-crystalline de dimension deux, on doit considérer
la fonction logarithme p-adique pour construire une base d'un certain groupe de Ext!. Un résultat
récent de Ding dans [Dingl8] généralise [Bre04] et [BrelOb] a tous les .Z-invariants simples (qui sont
les généralisations de %1 et Z12) de GL,(K) pour K arbitraire. Il reste donc a traiter % .
Dans [Schrll], Schraen a étudié quelques représentations localement analytiques de GL3(Q,) pour
essayer de réaliser le module filtré Fil®*D dans le complexe de de Rham de ’espace de Drinfeld de
dimension deux. L’un des ingrédients principaux de [Schrll] est un calcul des groupes de cohomologie
localement analytiques. Schraen a construit un objet (A, .Z) (voir la Définition 5.19 de [Schrl1])
dans la catégorie dérivée D (ModD(GLS(Qp),E)) de la catégorie abélienne Modp(cL,(q,),r) des modules
abstraits sur l’algebre de distribution localement analytique D(GL3(Q,), E'). La motivation de cette
construction est de chercher une famille raisonnable de représentations localement analytiques de
GL3(Qp) qui dépend de trois invariants, puisque p dépend de trois invariants. Schraen construit
d’abord une famille de représentations localement analytiques X(\,.Z,.Z") (voir (1.11) de [Schrll])
qui dépendent de deux invariants. Puis il observe qu’un troisiéme invariant se trouve dans le groupe

Extér,q,) (L), B\, Z,.2")) (1.3.6)
mais pas dans B
Extgr,q,) (L), £\, 2Z,.2").

Il semble donc naturel dans un premier temps de remplacer une famille de représentations localement
analytiques par une famille de complexes X(),Z). Grosso modo, on espére rajouter L(\) pour
obtenir le troisiéme invariant mais on n’arrive a le faire qu’au sens d’un complexe abstrait dans
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[Schr11]. Une observation cruciale de Breuil est que 'on peut peut-étre étendre chaque (A, .%,.%")
en une représentation localement analytique plus grande qui contient plus d’invariants, en ajoutant
d’autres représentations que L()). Breuil a construit dans [Brel7] deux représentations localement
analytiques II'(k, D) et I1?(k, D) dans Repgig(Qp) g qui ne dépendent que de k et D telles que

dimpExtgy, (q,) (1(k, D), T*%(k, D)) =3 (1.3.7)
pour ¢ = 1,2. On a besoin des conditions suivantes:
Condition 1.3.8. On suppose que UP et r satisfont:
(i) I8 (r) # 0;
(ii) WD(p) est donné par le casmn =3 de (1.3.2);
(iii) p est non-critique;
)

la représentation automorphe correspondante a r n’apparait qu’une fois dans l'espace des formes
automorphes sur G(A¥, ).

(iv

Alors il est montré dans le Théoréme 6.2.1 dans [Brel7] que pour toute paire fixée (UP,r) qui
satisfait la Condition 1.3.8, il existe une unique représentation localement analytique IT de GL3(Q,)
de la forme

1% (;, D)

M=)

(1.3.9)

telle que
Homgr,(q,) (I ®E % odets, II*"(r)) = Homgr,(q,) (I1*8(k, D) ® € o det, I*(r)). (1.3.10)

Ici on utilise la notation suivante: V — W pour une extension non-scindée de W par V. Une
observation cruciale est que II dépend de quatre invariants selon (1.3.7) mais que p ne dépend que
de trois invariants selon ’égalité (1.3.5). L’isomorphisme (1.3.10) implique 'existence d’une unique
représentation II de la forme (1.3.9) qui apparait comme une sous-représentation de IT*"(r). Puisque
p ne dépend que trois Z-invariants quand n = 3, on ne s’attend pas & ce que toutes les représentations
localement analytiques de la forme (1.3.9) se plongent dans IT**(r) pour certains U? et r. Une question
naturelle que ’on se pose est la suivante:

Question 1.3.11. Y-a-t-il un critére purement de théorie de représentation qui détermine si une
représentation de la forme (1.3.9) se plonge dans un certain II**(r)?

Une observation cruciale est que L()\) est exactement l'critére que 'on voulait dans la Ques-
tion 1.3.11 pour réduire le nombre d’invariants de I1. Plus précisément, le fait qu’une telle représentation
localement analytique IT soit incluse dans une représentation plus grande avec L()\) dans le cosocle
(avec multiplicité deux) donne un critére pour que II se plonge dans la cohomologie complétée. Une
remarque importante de [Schrll] est que la fonction dilogarithme p-adique apparait dans 'espace de
dimension deux (1.3.6) (voir la Corollaire 5.17 de [Schrll]). Par conséquent, Breuil a suggéré qu’il
devait y avoir une relation explicite entre [Schrll], [Brel7] et [BD18], plus précisément la fonction
dilogarithme p-adique devrait étre reliée a I'unique Z-invariant supérieur % » de p, et cette relation
devrait étre analogue & celle entre la fonction logarithme p-adique et les Z-invariants simples. On
arrive donc naturellement a la question suivante:

Question 1.3.12. Quelle est la relation précise entre la fonction dilogarithme p-adique et 'unique
Z-invariant supérieur £y o de p?
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Le résultat principal de la seconde partie de ma these est une tentative de répondre a ces deux
questions a la fois, en utilisant la construction d’une famille de représentations localement analytiques
ymint(\ L, L, L) qui dépend de trois invariants %, %, % € E (voir le Théoréme 4.1.1 pour
une description intuitive de la représentation). L’exposant ‘min, +’ signifie que 2™+ (N, %, %, %)
est légérement plus grande que la représentation localement analytique minimale de GL3(Q,) qui
“contient” la fonction dilogarithme p-adique. On remarque que A et k se déterminent 'un l'autre
par (1.3.3). Les propriétés principales de Y™+ (), 2, %, %) sont résumées dans les trois énoncés
ci-dessous.

Théoréme 1.3.13. FEtant donnés UP et r qui satisfont la Condition 1.5.8, il existe un unique choiz
de paramétres L1, %o, L5 € E tel que
Homgr,(q,) (Emin’+()\, L, L, L) @p (ur(a) ®@F €2) o dets, I1**(r))
= Homgr,(q,) (Halg(k, D) ®p €% o dets, Han(r)) . (1.3.14)

Remarque 1.3.15. On sait que
b =L, Lo=La (1.3.16)

d’aprés la définition de L) et Lo, d’aprés le Théoréme 1.2 de [Ding18] et d’aprés certains arguments
de la théorie de Hodge p-adique qui apparaissent dans le cas de GL2(Qp) (voir la Remarque 3.1 de
[Ding18]). L’énoncé du Théoréme 1.3.13 implique que £ est uniquement déterminé par UP et r,
mais a priori non par p. On croit fortement a l'existence d’un plongement

(D) — ™4 (\, 2, %, L) (1.3.17)

pour certains L1, %y, L5 € E uniquement déterminés par p ot II(D) est la représentation localement
analytique construite o partir de p dans [BD18]. Mais on ne sait pas comment le prouver en utilisant
une méthode purement locale. Si p est ordinaire (autrement dit si elle a des poids de Hodge—Tate
consécutifs), alors le Théoréme 1.1 de [BD18] prouve que II(D) se plonge en fait dans II**(r), ce qui
avec notre Théoréme 1.3.13 impliquent que (1.3.17) existe et que &5 ne dépend que de p.

On donne ci-dessous une réponse positive a la Question 1.3.11 (au moins dans une direction). Elle
découle facilement du Théoréme 6.2.1 de [Brel7] et de notre Théoreme 1.3.13.

Corollaire 1.3.18. On fize une représentation II de la forme (1.3.9). Si l'on a un plongement
I ®p e? odets < II7"(7)
pour un choix convenable de UP et de r, alors on a un plongement
I — Y™\ 24, L, L) @p ur(a) o dets
pour certains L1, Lo, L5 € E uniquement déterminés par I1.

Le résultat suivant est une conséquence naturelle de la construction des XM+ (\ %, %, %).
On trouvera plus de détails dans le Théoreme 4.1.7.

Théoréeme 1.3.19. Il existe un complexe explicite de représentations localement analytiques de GL3(Q,)
dont le dual fort réalise l'objet (N, ZL).



Chapter 2

General Introduction

2.1 p-adic local-global compatibility conjecture

We fix a prime number p, a finite extension [K : Q,] < 400 and another sufficiently large finite
extension [E : Q,] < 4+00. We use the notation Ok (resp. wg, resp. k) for the ring of integer
(resp. a uniformizer, resp. the residual field) of K. Similarly, We use the notation Og (resp. wg,
resp. kg) for the ring of integer (resp. a uniformizer, resp. the residual field) of E. The so-
called p-adic local Langlands correspondence initiated by Breuil in [Bre03a], [Bre03b] and [Bre04] is
conjecturally a bijection between a certain set of p-adic Banach linear representations of GL,,(K) and
the set of p-adic continuous Galois representations p : Gal(K/K) — GL,(E). We use the notation
pLL for the map from p to the conjectural p-adic Banach representation pLL(p) corresponding to
it. The full p-adic local Langlands correspondence is known for GL2(Q,) essentially due to Colmez
in [Col10], and its compatibility with certain p-adic interpolation of étale cohomology (the so-called
completed cohomology) of tower of modular curves is known by Emerton in [Eme06]. The map pLL
is largely mysterious for K # Q, or n > 3 and only a few partial results are known. It is widely
expected (c.f. [BrelOa]) that pLL should be compatible with reduction modulo wg, ‘p-adic families’
and so on, hence we use the notation pLL for the map (which is highly conjectural if K # Q, or
n > 3) that associate a admissible smooth kg-representation of GL,, (K) with a Galois representation
p: Gal(K/K) — GL,(kg).

We start to give more precise formulation of the conjectural local-global compatibility for pLL,
which is a natural generalization of the ideas in [Eme06] (except that we no longer know pLL if
K # Q, or n > 3). From now on we fix a totally real field F'* together with a totally imaginary
quadratic extension F' of F'*. We fix a finite place vg of F'* that divides p, splits in F and satisfies
K= F,jg =~ [, where wy is a fixed finite place of F' above vg. We fix a unitary group G over F'* such
that

(i) G @p+ F = GLy/p;
(i) G(Ft ®q R) is compact.

0

We also fix an open compact subgroup U C G(A7;”) and a finitely generated Op-module A
endowed with its p-adic topology. Then we consider the space of p-adic (resp. locally constant)
A-valued automorphic forms on G(A%, ) with a fixed level U prime to vy:

S(U™,A) = {f : G(F)\G( %)/U% — A, continuous }
(resp. S(U", A) :={f: G(FT)\G(A%X,)/U" — A, locally constant }).

Note in particular that if A is a p-torsion module and has discrete topology, then the two spaces defined
above coincide. Each space above carries an action of a universal Hecke algebra T over O (freely

15
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generated by Hecke operators indexed by finite places of F' lying above a set D(U"?) of finite places of
F* which splits in F, are prime to p and where U,, := U"*NG(F;) is a maximal open compact subgroup
of G(F})), as well as an action of GL,(K) which is continuous (resp. smooth) on S(U*0, A) (resp.
on S(U%,A)) and comes from right translation on G(F*)\G(A%,)/U"). The action of GL, (K)
on both spaces commute with the action of T. Given a p-adic continuous Galois representation
ra : Gal(F/F) — GL,(A) which is absolutely irreducible, conjugate self-dual and unramified at
each place of F' lying above a certain v € D(U"), we can associate an ideal p,, C T ®p, A with
74, then the torsion subspace S(U*, A)[p,.,] (resp. S(U™, A)[p,,]) cut out by this ideal naturally
carries a continuous (resp. smooth) action of GL,(K). We use the notation LL for the map given
by classical local Langlands correspondence that sends an n-dimensional Frobenius semi-simple Weil-
Deligne representation to its corresponding irreducible smooth representation of GL,, (K) (c.f. [HTO01],
[He00] and [Sch13]). We set

ri=roy ®op B, T =Ty =10, ®0g kB, 0= Tgu®/Kk)r P = Tlca(®/K)

and use the shorten notation

~

i) = (S0 08)bro,]) @0, B
H(F) = S(UUO’kE)[kaE]
I (1) (5™, 08)fpro,]) €0,

Note that we omit the level U from the notation for simplicity. We define IT8%8(r) as the subspace
of TI(r) consisting of locally algebraic vectors and note that IT*'5(r) is naturally a locally algebraic
representation of GL, (K). We use the notation WD(p) (resp. Alg(p)) for the map that associates
a Weil-Deligne representation (resp. a finite dimensional algebraic representation of GL,, (K)) to a
potentially semi-stable p-adic Galois representation p (resp. the set of Hodge—Tate weights of p) via
Fontaine’s theory in [Fon94] (resp. via Section 5 of [Brel6]). At this stage, the classical local-global
compatibility at p (which is proven in [BLGGT12] and [BLGGT14] with further technical assumptions)
can be roughly formulated as the following

Theorem 2.1.1. Assume that
Halg(r) #0.

Then p s potentially semi-stable and there exists an integer d > 0 depending only on r and UY° such
that
I8 (r) 2 (LL o WD(p) @p Alg(p))®. (2.1.2)

It is not too difficult to imagine that the conjectural p-adic local-global compatibility should very
roughly have the following form

Hope 2.1.3. Assume that

II(7) # 0.
Then there exists an integer d > 0 depending only on r and U such that
II(r) = pLL(p)®? (2.1.4)
and
II(7) = pLL(p)®“. (2.1.5)

In particular, Hope 2.1.3 predicts that

Conjecture 2.1.6. The structure of II(r) (resp. of II(F)) as a p-adic admissible Banach E-representation
(resp. admissible smooth kg-representation) of GL,,(K) determines and depends only on the isomor-

phism class of p (resp. of p).
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We emphasize that p needs not be potentially semi-stable in Hope 2.1.3 and Conjecture 2.1.6. On
the other hand, as the maps pLL and pLL are highly mysterious if K # Qp or n > 3, we need to
start with the cases when p is indeed potentially semi-stable and thus Theorem 2.1.1 is available. As
a result, we will essentially consider only the cases when p is potentially semi-stable in the rest of this
introduction. It is quite difficult to study the p-adic Banach representations for GL,,(K) directly, and
we have essentially two kinds of possibly easier objects to start with. My thesis is thus divided into
two parts and each part studies one kind of objects. The first part of my thesis studies the admissible
smooth kpg-representation II(7) (which is joint work with Chol Park) while the second part of my
thesis studies the locally analytic representation II*"(r) defined as the set of locally analytic vectors
(vectors upon which elements of GL,,(K) act via vector-valued locally analytic functions on the group
GL,(K)) in II(r).

2.2 Mod p local-global compatibility for GL,(Q,)

We firstly start with II(7). There are several natural questions to ask about II(7):
(i) do we have II(7) # 07
(ii) what is the structure of II(7)?
(ili) what is the explicit relation between II(T) and p = T|q, %, k) (remember that K = Fy,)?

The statement II(7) # 0 is essentially equivalent to the more classical terminology ‘7 is modular (or
automorphic)’. This is known for the case F = Q and G = GL; as a result of Serre’s conjecture which
was proven by Khare-Wintenberger in [KW09]. Unfortunately, (i) is still widely open in general and
therefore will be put as an assumption in my thesis whenever necessary. We assume that (¢) holds
and consider the question (i7). The complete answer to (i) is known for the case F' = Q, G = GLq
due to Emerton (which relies crucially on pLL for GL2(Q,)) and is typically still widely open if
K # Q or n > 3. One of the main obstacles is a lack of complete classification of irreducible smooth
kg-representations of GL,, (K) except the case GL2(Q,) which is known due to [BL94] and [Bre03a].
More precisely, evidences from [BP12], [Hul0] and [Schr15] show that classification of representations
that do not occur as subquotients of parabolic inductions (which are called supercuspidal) is very
difficult even for GL2(Qp2). On the other hand, as one knows how to classify all the representations
parabolically induced from characters of a Borel subgroup (c.f. [Her11] for general parabolic induction
for GL,,(K)), one can already construct by [BH15] a quite big finite length smooth kg-representation
11°*4(p) (depending only on p) that always embeds into II(F) if K = Q, and p is ordinary (i.e.
P has its image in a Borel subgroup of GL,(kg)). However, it is clear from the construction of
[BH15] that 11°"%(p) is not sufficient to determine p in general. Note that Hu shows in [Hul7] that a
supercuspidal representation necessarily appears in II(7) even in the case K = Q2 and n = 2 and it
is widely expected that the extra information of p involves the extensions between I1°*4(p) and certain
supercuspidal representations.

As a result, one needs a method to ‘walk around’ supercuspidal representations but nevertheless
to be able to find enough information in II(7) to determine p. One natural approach is to restrict the
action to GL,,(Ok) due to at least two reasons: irreducible kg-representations of GL,,(Ok) (hence of
GL,(k)) are easy to classify due to section 2 in Part IT of [Jan03]; at least classification of irreducible
E-representations of GL,, (k) is well-known by Deligne-Lusztig theory in [DL76]. Moreover, we have

Theorem 2.2.1 ( c.f. [Jan81] and Proposition 4.1.3 of [LLL16] ). For each sufficiently generic
Deligne—Lusztig representation 7 of GL, (k) and each Og-lattice 7° C 7, the set of Jordan—Hdlder
factors

JHar, (k) (7° ®oy ki)

is independent of the choice of T° and has a purely combinatorial description via the affine Weyl group
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Here the condition sufficiently generic means the following: when we parameterize a Deligne—
Lusztig representation by a weight and an element of the Weyl group due to Jantzen (c.f. [Jan81] and
Section 4 of [Her(09]), this weight should be sufficiently far away from the boundary of the alcove it
lies in.

The very first step to understand II(7)|gL, (0,) is to characterize the socle

SOCGL" (@K)H(?)

which is already a highly non-trivial and deep problem and is historically a reformulation of the more
classical weight part of Serre’s conjecture if we take F' = Q and G = GLjy. Conjectures on (partial)
characterizations of socqr,, (0,)I1(7) have been made by Buzzard-Diamond-Jarvis in [BDJ10] for the
case K = Q,s, n = 2, by Herzig in [Her09] for K = Q, and general n, and by Gee-Herzig-Savitt
in [GHS] for certain more general cases. It is widely expected that there is a deep relation between
the structure of socqr,, (0, )I1(7) and the special fibers of various potentially semi-stable deformations
rings of p which finally leads us to the so-called Breuil-Mézard—Emerton-Gee conjecture formulated
in [BM02], [BM14] and [EG14].

The structure of socar,, (0)II(F) when K = Q,; was determined for n = 2 by [GK14] and for
n =3 by [EGH13|, [HLM17], [MP17], [LMP] and [LLHLMa]. We set

K(1) := Ker (GL,,(Ok) — GL,(k))

and note that it is representation theoretically natural to study II(7)¥() which obviously contains
socaL, (0x)1I(T) as a subrepresentation. The representation II(7)¥M is a very beginning point (al-
ready highly non-trivial) to reconstruct II(7) as a GL,,(K) representation, but unfortunately various
evidences from [HW18], [LMS16] and [Lel7] for K = Q,s, n = 2 and from work in preparation by
the authors of [LLHLMa] K = Q,r, n = 3 suggest that I1(7)X(™) is still not sufficient to determine
P typically in the case when p is ordinary and maximally non-split (i.e. has no subquotient which is
direct sum of two characters). We have the following example

Example 2.2.2. We take K = Q,r, n =2 and p is ordinary with the following form

(% <)

0 Xxi

Assume further that ylygl satisfies a weak generic assumption, then it follows from a standard com-
putation of Euler—Poincaré characteristic of Galois cohomology that

dimkEEXté;al(Qipf/QPf)(Y% X1)=1f

and therefore p is determined by p*° together with f —1 invariants in kg U{oo} up to isomorphism. If
we assume moreover that p is Fontaine—Laffaille (which is again a generic assumption in this setting),
then we can use Fontaine—Laffaille modules (c.f. [FL82]) to define a set of invariants in kpU{oo} (c.f.
Lemma 2.1.1 of [BD14]) that determine the isomorphism class of p. It turns out that the structure
of socar,, (0,)I1(T) usually cannot determine the value of these invariants. In general, suppose that
all n-dimensional kg-representation of Gal(K/K) can be parameterized by some moduli space and
such space has a natural stratification by locally closed subschemes given by certain explicit conditions
generalizing splitness of extensions, then socar,, (0,)I1(T) is expected to contain only the information
of which strata p lies in, rather than which point rho is in the strata.

We define the so-called Twahori subgroup I (resp. pro-p Iwahori subgroup I(1)) of GL,(K) as the
pre-image of the set of upper-triangular ( resp. unipotent) matrix in GL, (k) under the surjection
GL,(Ok) — GL, (k). It is a standard fact in the study of p-adic reductive groups that the normalizer
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of I inside GL,,(K) is generated by I and the following element

0o 1.0 --- 0
0 01 -+ 0
Eo=| ¢ 1 | €GLu(K).
0o 00 - 1
wg 0 0 -+ 0

Since Z,, and GL, (Ok) generate GL, (K), it is natural to expect that Z,, plays a key role in whatever
possible methods to reconstruct a smooth irreducible representation of GL,,(K) from its restriction
to GLn (OK)

The first result to determine the values of Fontaine—Laffaille invariants (as sketched in Exam-
ple 2.2.2) is [BD14] where they showed (in the case K = Q,s and n = 2) that socqr,, (0)II(7)
together with the action of Z5 on II(7)’") determine 7 up to isomorphism. The result in [BD14] has
recently been generalized to K = Q,, and n = 3 by [HLM17] when p is ordinary and Fontaine-Laffaille
and by [LMP] when 7 has a two dimensional irreducible sub-(or quotient-) representation. Both results
for n = 3 consider the action of =3 on II(7)’ (1) and requires further ‘technical generic assumption’ on
p which essentially ensures that

socqr, (0x)11(T) has minimal length possible

if we fix p® and vary the extension parameters of p. The first part of my thesis is to generalize the
results in [HLM17] to K = Q, but arbitrary n in Chapter 3. This is joint work with Chol Park.

Theorem 2.2.3. Assume that II(F) # 0. Then the structure of II(T) as a admissible smooth kg-
representation of GL,(Q,) determines p up to isomorphism if p is Fontaine-Laffaille, ordinary and
sufficiently generic.

Note that the case K = Q,,s and n = 3 has also been worked out recently by Enns in [En]. Another
important result in this direction is Theorem 7.8 of [Sch15] where Scholze used a completely different
and more geometric method to prove that II(7) always determines p for n = 2 and arbitrary K.

Now we start to give a more precise statement for Theorem 2.2.3 and refer to Chapter 3 for further
details. We set K = Q,, from now on. We fix 7 such that

II(T) # 0
and assume that p is ordinary, then there exists a sequence of subrepresentations
0CP11CPe G CPn1EPn=0

such that
X1 :=p11 and X; = Py ;/P1,i-1

are one-dimensional for all 2 < ¢ < n. Assume that X; X, ! satisfies some mild generic assumption
similar to the one mentioned in Example 2.2.2, we have

S . 2 S -
HomGal(Gp/Qp)(Xia Xi-1) = EXtGal(@/Qp)(Xia Xi—1) =0

and
dimkEExtéal(@/Qp)(Yi, Xi—1) =1

for each 2 < i < n. Therefore by a simple devissage we can deduce that

dimy,, EXtéal(pr/Qp)(Ym Pri)=i—1
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which roughly means that p; is determined by ;, p; ,_; together with ¢ — 2 extra invariants for each
2 <1 < n. Hence by an immediate induction we know that p is determined by

—S8S

P = ®i1X;
together with % invariants. According to a complete classification of kp-characters of Gal(Q,/Q,)
essentially due to class field theory, we know that there exists @; € Z/(p — 1)Z such that

XiW

—a;—i+1

is unramified for each 1 < ¢ < n where w is the reduction modulo p of the cyclotomic character

e:Gal(Q,/Q,) ~ Z.

It turns out that the condition

p is Fontaine—Laffaille

is essentially the same as the existing of the integers a; € Z whose images in Z/(p — 1)Z is @; and
satisfy

Ap > Qp_1 > - > Q1.

The theory in [FL82] associates a Fontaine—Laffaille module FL(p) with p, and one can define a set
of invariants FL; ;(p) as certain explicit rational functions of the entries of the Frobenius matrix of
the module FL(p) and prove that FL; ;(5) depends only on the isomorphism class of FL(p), for each
pair of integers (i, j) satisfying 1 <i < i+ 1 < j < n. By elementary linear algebra we know that p is
determined by p* and the invariants FL; ;(p), and thus Theorem 2.2.3 is reduced to the problem of
capturing each invariant FL; ;(p) inside II(F).

An important general philosophy is to study II(7) via II®™(r) for all kinds of lifts r of a fixed 7 such
that the local Galois representation p = T|Ga1(FTJO /Fuy) satisfies some extra conditions. More precisely,

for a given Deligne-Lusztig representation 7 of GL,,(F,), there exists a tamely ramified inertia type
LL™'(7) (which is a representation of the inertia subgroup Iq, ¢ Gal(Q,/Q,) that factors through
the tame quotient) corresponding to 7 via the inertial Langlands correspondence (c.f. Section 3 of
[CEGGPS]). The notation LL™!(7) comes from the compatibility between classical local Langlands
correspondence and inertial local Langlands correspondence. Then we consider all lifts p of p with
Hodge-Tate weights {0,1,--- ,n — 1} such that

WD(p)|rg. = LL7 (7). (2.2.4)

|1Qp

We note that each such p corresponds to a E-point of a formal scheme given by a complete Noetherian
-1

local ring RTI;L (MA0-m=1} yhich is a special case of the construction of potentially semi-stable

deformation rings in [Kis08] for more general inertial types and Hodge—Tate weights.

For each pair of integers (i,7) such that 1 <i<i+1<j < n, we will choose a Deligne-Lusztig
representation 7; ; and then pick a Galois representation r; ; : Gal(F/F) — GL,(E) such that

(i) 7 ; is absolutely irreducible, conjugate self-dual and unramified at each finite place of F above
a certain v € D(UY);

(ii) r;; contains a Galois-invariant Og-lattice 7

; whose reduction modulo @g is T;

—1
(iil) ps; == Ti,j|Ga1(FTJO/FwO) corresponds to a morphism R;L (MA0em=1} g
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In particular, we have the following commutative diagram

~

fi(ri ;) <——S(U™, Og)lp,s | —=T1(7i;) (2.2.5)

™ (Ti,j) <—)S(UU0 3 OE)[pTzOJ]

]

Ting >7ij Tij
where

7o =Ti; N S(U™, Op)lpre ] € I (r; ;)
and

- e
Tij = T Rog kg.

By taking I(1)-invariants, the diagram (2.2.5) induces another commutative diagram

I (r;,5)7 D <———S(U", Op)[pye ]V ——— 11(75)"™) (2.2.6)
71{5'1) )(Tio,j)j(l) Ti,jl(l)
The fact that
iy #0

implies that 7; ; is a principal series representation of GL,(F,), which means that 7, ; comes from
parabolic induction of a character of T(F,). Each of the spaces in (2.2.6) carries an action of the
Iwahori Hecke algebra which contains =,, and n — 1 operators U € Z,[GL,(Q,)] for 1 <m <n—1
which are usually called Up,-operators. We use the notation P,, for the standard parabolic of GL,,
containing the upper-triangular Borel and having Levi blocks of the form GL,, x GL,,_,,. We denote
the unipotent radical of P, by Ny,. The following lemma summarizes two main properties of U,".

Lemma 2.2.7. We have
(En)™ o Uy" € Zy[GLy(Zy)].

Given a smooth irreducible representation I, (resp. II,_,,) of GL,(Qp) (resp. of GLy - (Qp)) with
central character wr,, (resp. wm,_,, ). Then we have

U =wn, (p) "

on the image of

) N7YL(ZP)

GL,,
Hm QR anm — (Indpm((QCjﬁ)) (Hm KE anm)

We use the notation p; ; for a character T(F,) — Z,5 (to be chosen) and 7z ; : T(F,) — F* for
its reduction modulo p. We note that T'(F,)-eigenspace II5™ (r; ;)! (V45 with eigencharacter u; ; is

also an eigenspace of U and we denote the corresponding eigenvalue (of U*) by «. Then we have
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the following picture

capture o < 2 <
by applying an identity in Z,[GL,(Qp)] to step a step 3 « equals a product of eigenvalues of Frobenius
o i o WD(p; i
(Tﬁj)l(l),ul‘] gTigl) Mg gHsm(TI_J)I(l),Mw (pi,g)
step 1ﬂ step 4
capture FL; ;(p)
by applying an identity in Fj,[GL,(Q,)] to FL; J(p)

g W I y) (DT

(2.2.8)
which already appears in [BD14]. We emphasize that m is an integer satisfying 1 <m <n —1 and is
determined by the pair (,7). The most standard part of picture 2.2.8 is step 3 which is an equality
between the eigenvalue of U] and a product of certain eigenvalues of Frobenius of WD(p; ;) and follows
directly from classical local Langlands correspondence and the classical local-global compatibility (c.f.
Theorem 2.1.1). Then step 4 which realizes the invariant FL; ;(5) as reduction modulo wg of a
product of Frobenius eigenvalues (up to a factor which is a power of p), is proven using technical
computations in integral p-adic Hodge theory, most notably Breuil and Kisin modules. The step 4 is
mostly done in Section 3.3. We need to emphasize a significant difference between step 3 and 4. Step
3 lies completely in characteristic zero with coefficient E, depends only on WD(p) and requires no
extra condition on p. On the other hand, step 4 relies on an extra technical condition on p which is

going to be recalled in Definition 2.2.9. s
Given a pair (p, 7; ;), one can associate an element w(p, 7; ;) in the affine Weyl group W of GL,, via
the theory of shapes essentially developed in [LLHLMa]. For each semi-simple Galois representation

Py : Gal(@,/Q,) — GL, (ke)

we define the following set
Qpo,7iy) = A{w(p,7i;) | P = Do}
We consider the length
t(w(p,;7iz))
with respect to the standard Coxeter system in w.

Definition 2.2.9. We say that p is 7; j-generic if W(p, 7; ;) has mazimal length among all the elements
mn Q(ﬁss, Ti,j)-
One can construct (via Fontaine-Laffaille modules) a kg-scheme M5, whose kg-points parameter-
ize all Fontaine-Laffaille representation p with a fixed semi-simplification p* = p,. Then we have a
natural stratification . of M7 indexed by the set Q(py,7; ;) (this should follow from some work in
preparation by authors of [LLHLMa] on moduli of Kisin modules with tamely ramified descent data).
It turns out that M5 is irreducible and there is a unique element of maximal length in (5, 7; ;) which
corresponds to the unique (non-empty) open strata in ./, which implies that 7, ;-generic is indeed a
generic assumption. Concerning the terminology of [PQ18], the condition 7; j-generic is essentially
the same as saying that a subqutient of 7 determined by the pair (4, j) is Fontaine—Laffaille generic.
It follows from Lemma 2.2.7 that
U:Ln = Q4j (2.2.10)

on Hsm(r)I(l)’“ivi for a certain constant a; ; € £* and we set
o A — o hiy; X
hiji=val,(a; ), a;; =p ", ; € OF

and let @;; be the reduction modulo wg of @; ;. The main output of step 3 and 4 in picture 2.2.8 is
that

of
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Proposition 2.2.11. We have the equality
a;,; =FL;;(p)" " € kj (2.2.12)
if p is T; j-generic.
It remains to clarify step 1 and 2 in picture 2.2.8. We need two group operators
Sbi, S € Z,[GL, (Fp)]
together with their reduction modulo p
S, §HI" € Fp[GL,(F)p)]

which depends only on the choice of 7; ; and f; ;. Then the identity in Z,[GL,(Q,)] that we need
has the form o o
S4 o (2,)™ o U =7¢; ;5™ (2.2.13)

on 1150 (r)f(M:#is where ¢; ; € EX is a constant depending only on the choice of 7; j, p1; ; and m. We
emphasize that (2.2.13) can be computed inside Z,[GL,,(Z,)] because

(En)"o Uy € ZP[GLn<Zp)]

due to Lemma 2.2.7. Assume that
—h

p it € Op
and let ¢; ; be the reduction modulo wg of p~"44¢; ;. Then we can combine (2.2.13) with (2.2.10)
and obtain that o .
Si,g,l o (En)m — Oé,zj‘l/c\i,jsld (2214)

on Hsm(r)l(l)’“id whose reduction modulo wg is
S4 o (En)™ = ¢ijFLi (7)™ (2:2.15)
on TI(7)!(1:#5 according to Proposition 2.2.11 and modulo an extra hypothesis:

Hypothesis 2.2.16. We have o
dimy,, TI(7)! (W75 = 1

and
ﬁ’jl(l)#ii,j BN H(?)I(l)»m.

One easily observes that Hypothesis 2.2.16 requires an optimal choice of the level U"°, otherwise
we need to replace it by another hypothesis claiming that a certain module over the Hecke algebra T
is free over its support. To remove the Hypothesis 2.2.16, one needs a strong version of the condition
Tij-generic again. In fact, it follows from a computation of Kisin modules with tamely ramified
descent data (generalizing the computation in [LLHLMa] and will be proven in [LLMPQ)]) that there
exists a non-empty open subscheme Mggm of M5, contained in the 7; j-generic open strata such that

-1 P cee —
P is a kg-point of Mgén if and only if 7?%L (730 om =1} 4 formally smooth. The very existence of

Mgom is an extremely strong restriction on the choice of 7; ;.
Definition 2.2.17. We say that p is strongly T; j-generic if it is given by a kg-point of MZ™.

The following proposition (which is closely related to the Breuil-Mézard conjecture) will be proven
in [LLMPQ)] and essentially follows from a functor constructed by the celebrated Taylor—Wilies—Kisin
patching method (c.f. Section 7.3 of [LLHLMa] for the case of GL3(Q,r)).
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Proposition 2.2.18. The Hypothesis 2.2.16 is true for a suitable choice of U if p is strongly 7; ;-
generic.

Now we need to understand why do the group operators Sid and S (satisfying (2.2.13)) exist
and whether it is possible to explicitly construct them and compute the constant ¢; ;. The existence
of certain S and S that satisfy (2.2.13) is relatively formal and essentially follows from Hypoth-
esis 2.2.16 but the group operators can be arbitrarily ugly and therefore we can say nothing about
the constant ¢; ;. On the other hand, the explicit construction of a single pair of such group opera-
tors is very technical and the most difficult part is to show that S%/ and S%J’ are nonvanishing on
II(7)!(M-7i5 . In Chapter 3, we indeed (up to modifications on notation) give an explicit construction
of group operators in Section 3.4.2, prove the nonvanishing property mentioned above in Section 3.4.8
and then compute the constant ¢; ; in Section 3.4.5.

In all, we conclude that the identity (2.2.15) captures the invariant FL; ;(p) inside II(7) if p is
strongly T; j-generic, and thus II(7) determines p up to isomorphism if p is strongly 7; ;-generic for all
pair (4,7) such that 1 <i<i+1<j<n.

There are various natural generalizations of Theorem 2.2.3 that have been largely done but not
included in this thesis, and we will give a quick summary of them within three steps. We always
assume in the following that p* is sufficiently generic. The following generalizations are mostly work
in preparation with Viet Bao Le Hung, Daniel Le, Stefano Morra and Chol Park.

The first step is to remove the condition ordinary. The new difficulty is divided into two parts:
(i) one needs to choose a family of Fontaine-Laffaille invariants and a suitable 7 for reach invariant
such that the philosophy in Picture 2.2.8 works; (ii) one needs to explicitly construct certain pair of
group operators S and S for each invariant such that an analogue of (2.2.13) is true with an explicit
constant ¢. Note that we need to treat much more different cases of p (compared to ordinary case)
and each case requires different choices of Fontaine—Laffaille invariants and of 7. The second step is to
remove certain condition 7-generic which is analogous to Definition 2.2.9. The difficulty of this step
is transparent as we do not expect 7?%L H) A0, 1} to be formally smooth without a strong generic
assumption on p. Hence Proposition 2.2.11, Hypothesis 2.2.16 and (2.2.15) completely fail in general.
The crucial observation is that we can determine p using a set of invariants together with a set of
modular Serre weights. The last step is to remove the condition Fontaine—Laffaille. The problem is
that p usually has lifts with respect to much fewer possible choices of 7 if we fix Hodge—Tate weights.
The natural solution is to to consider lifts (of p) with higher Hodge—Tate weights.

Remark 2.2.19. It should be possible to generalize all the discussions above to the case K = Qs after
a combination with recent work by Enns in [En]. However, if K is ramified over Q,, the situation
seems to be much more complicated as TL(TF)X(M) is usually too small and one may necessarily need
wildly ramified inertial types to find sufficiently many invariants of p inside II(F). The only known
result with no restriction on the ramification of K is by Scholze in [Sch15] for n = 2 and arbitrary K
using a completely different and more geometric method. It is not known (at least to the author) how
to generalize the method in [Sch15] to arbitrary n.

2.3 Dilogarithm and higher .Z-invariants for GL3;(Q,)

Now we switch to the locally analytic representation IT**(r) which is the main focus of the second
part of my thesis. One can apply the theory of Verma modules (namely the theory of Bernstein—
Gelfand-Gelfand category O, c.f. [HumO08]) to study II**(r). Very little is known about the full
classification of irreducible objects in the category Replé‘Ln( K),p consisting of admissible locally an-

alytic representations of GL, (K). We consider the full subcategory Repgin( K).E (which is much
better understood) of Replé”Ln( K),e generated by subquotients of locally analytic principal series rep-

TndGLn (5

B(K) x) for arbitrary locally analytic characters x of T(K). When we say a full

resentations (
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subcategory is generated by a family of objects, we mean that it is the minimal full subcategory (with
each object of finite length) that contains this family of objects and is closed under extensions and
taking subquotients. We assume that r is unramified at each finite place of F' lying above D(U")
and moreover

™8 (r) 0. (2.3.1)

Note that the condition (2.3.1) is the same as saying that r is automorphic and in particular p is
potentially semi-stable. We define

JHEL, (k.5

as the set of isomorphism classes of irreducible objects in Repgin( K),p and

JHE%TL(K),E(T) - JHgsLn(K),E
as the subset consisting of each irreducible object IT'™ such that the embedding
T s T1° ()
exists. Moreover, we define the multiplicity
dipire := dimpgHomgry, (5 (I, TI*"(r))

which is finite for each II'™ € JHgin( Ky,e(r) as II*"(r) is admissible. When p is crystalline and has

generic Frobenius eigenvalues, the set J Hgin( K), g(r) is explicitly determined by certain combinatorial
data given by the Hodge filtration of p due to [BHS17], under certain standard technical assumption.
On the other hand, [BH18] constructs a certain subrepresentation of II*"(r) which is maximal among
those representations that satisfy a certain multiplicity one condition and belong to Repcp;in( K),E-
The problem one might be interested in is to explicitly determine p using the structure of possibly
a subrepresentation of II*"(r). If p is crystalline, evidences from Section 3.3 of [Brel7] and [BH18]
suggest that it is still unclear how to construct a sufficiently large subrepresentation of II*"(r) to
determine p completely, especially when the Hodge filtration of p lies in a sufficiently generic position.
The situation is quite different (and actually much better) if p is semi-stable and non-crystalline, at
least when n = 3. We assume from now on that F* = Q (hence K = Q, and vy = p) and that the
(¢, N)-module D associated with WD(p) has the following form

D = Fey® Ee; @ Fes (2.3.2)
where
N(eo) = 0, N(el) = €, N(eg) =€
and
p(er) = ur(a)pt ey,

for 0 <14 < 2 and a certain o € E*. It follows from classical local Langlands correspondence that
LL o WD(p) = St5° ®g (ur(a) o dets)

where St3° is the smooth Steinberg representation of GL3(Q,) defined as the unique quotient of the
smooth principal series
GL3(Qp) 1\~
(e 1) "

dety is the determinant character GL3(Q,) — Q, and ur(«) is the unramified character of Q, which
sends p to . We use the notation k = (k1, ko, k3) € Z? with

ki1 > ko > k3
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for the set of Hodge-Tate weights of p. We set
I1*¢(k, D) := L(\) ® St5° ®p (ur(a) o dets)
where L()) is the finite dimensional algebraic representation of GL3(Q,) with highest weight
A= (A1, A2, A3) = (k1 — 2, k2 — 1, k3) (2.3.3)
with respect to the upper-triangular Borel subgroup B(Q,). Then Theorem 2.1.1 implies that
118 (1) = T1218 (&, D)®¢

for an integer d = dpjais(g, py depending on UP and r. We say that p is non-critical (c.f. part (ii) of
Remark 6.1.4 of [Brel7]) if the Hodge filtration of p corresponds to a point in the open cell of a flag
variety, which implies the following equality

JHgin(K),E(T) = {I1"'8(k, D)}. (2.3.4)

If p is non-criticial, then there exists a triple of invariants (% ;)o<i<j<2 € E3 such that the (weakly
admissible) Hodge filtration Fil* on D has the following form

D if i <ks
FllzD _ E(€2 + gl,Qel + 0?07260) S5 E(61 + 0?07160) if k’3 +1 < ) < kg (2 3 5)
= E(eq + 21 261 + 20 2€0) ifko+1<i<k e
0 ifi >k +1

One of the main purpose for pLL in the case (2.3.5) is to find all the invariants .Z; ; for 0 <i < j <2
inside II*"(r). We usually use the terminology .Z-invariants for these .Z; ; and usually refer to simple
Z-invariants for %1 and £ 2 and call £ o the higher £-invariant of p. What makes this case
(2.3.5) so special is that one actually expects to find all the invariants .Z; ; inside a subrepresentation
of IT*"(r) that belongs to Repcp;in( K),5- The case for GL2(Qp) was firstly studied by Breuil in [Bre04]
and [BrelOb] and was one of the starting points of pLL. In order to explicitly recover the unique
Z-invariant from TI**(r) if p is semi-stable non-crystalline of dimension two, one needs to consider
the p-adic logarithm function to construct a basis for a certain Ext'-group. A recent result by Ding
generalizes [Bre04] and [BrelOb] to all the simple .Z-invariants (which are generalizations of %5 1 and
2 2 here) of GL,,(K) for arbitrary K in [Dingl8]. It remains to treat .%p 2. In [Schrll], Schraen stud-
ied some locally analytic representations of GL3(Q,) in [Schrll] to try to realize the filtered module
Fil*D inside the de Rham complex of the Drinfeld space with dimension two. One of the main tech-
nical ingredients in [Schrll] is the computation of various (analytic) group cohomologies which leads
to the determination of several crucial Ext-groups between certain locally analytic representations.
Schraen constructs an abstract object X(A,.Z)" (c.f. Definition 5.19 of [Schrll]) in the derived cat-
egory D (ModD(GLa(Qp),E)) of the abelian category Modp(qL,(q,),r) consisting of abstract modules
over the locally analytic distribution algebra D(GL3(Q,), E). The motivation of this construction
is to find a reasonable family of locally analytic representations of GL3(Q,) that depends on three
invariants, as p depends on three invariants. In fact, Schraen firstly constructs a family of locally
analytic representations X (A, .Z,.Z") (c.f. (1.11) of [Schrll]) depending on two invariants. Then he
observes that a third invariant lies inside the group

Extgy, g, (L), B\, 2Z,.2")) (2.3.6)

rather than B
Extgr, ) (LA, B\, Z,.2"),

and thus one has to replace a family of locally analytic representations with a family of complex
2(A,Z). Roughly speaking, one wishes to add L(\) to obtain the third invariant but only succeeds
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in the sense of an abstract complex in [Schr1l1]. A crucial observation by Breuil is that one can possibly
extend each X()\,.Z,.Z’) to a larger locally analytic representation that contains more invariants by
adding some constituents other than L()). Along this line, Breuil constructed in [Brel7] two locally
analytic representations I1'(k, D) and I1?(k, D) of GL3(Q,) depending only on k and D such that

dimpExtgy, (q,) (I (k, D), T*%(k, D)) =3 (2.3.7)
for ¢ = 1,2. To summary, we need the following technical conditions
Condition 2.3.8. Assume that UP and r satisfy the following
(i) T8 (r) #0;
(ii) WD(p) is given by the case n =3 of (2.3.2);
(iii) p is non-critical;
)

(iv) the automorphic representation corresponding to r appears only once in the space of automorphic

forms on G(AS,).

Then it is shown in Theorem 6.2.1 of [Brel7] that for each fixed pair (U?,r) satisfying Condi-
tion 2.3.8, there exists a unique locally analytic representation II of GL3(Q,) of the form
I (k, D)

_—

1'% (k, D) (2.3.9)

I1*(k, D)
such that
Homgr,(q,) (I ®p € o dets, II*"(r)) = Homgr,(q,) (II"¢(k, D) ® € o dets, II*"(r)). (2.3.10)

Note that we use the notation V' — W for a non-split extension of W by V. One crucial observation
is that II depends on four invariants according to (2.3.7) but p depends only on three invariants
according to (2.3.5). In particular, we do not expect all locally analytic representations of the form
(2.3.9) to be able to embed into II*®(r) for certain UP and r. A natural question is the following

Question 2.3.11. Is there a purely representation theoretic criterion for a representation of the form
(2.5.9) to embed into a certain II*"(r)?

The key point is that L()\) is exactly the obstruction we want in Question 2.3.11. More precisely,
whether a locally analytic representation II is included in a larger representation with L()) lying
in the cosocle (actually with multiplicity two) gives a criterion for II to embed into the completed
cohomology. One very interesting insight of [Schrl1] is that the p-adic dilogarithm function appears in
the two dimensional space (2.3.6) (c.f. Corollary 5.17 of [Schr11]). Consequently, Breuil has suggested
that there should be some explicit relation between [Schrll], [Brel7] and [BD18] especially in the
sense that the p-adic dilogarithm function should be related to the unique higher Z-invariant % 2
of p which should be analogues to the relation between the p-adic logarithm function and simple
Z-invariants. We have arrived at the following question

Question 2.3.12. What is the precise relation between the p-adic dilogarithm function and the unique
higher Z-invariant £y 2 of p?

The main ingredient of the second part of my thesis is to try to answer the two questions at the same
time through the construction of a family of locally analytic representations XM+ (N 2, %, %)
depending on three invariants .4, %,.%; € E (c.f. Theorem 4.1.1 for an intuitive description of
the representation). The superscript ‘min, +’ means that Y™+ (N, %, %, %) is slightly bigger
than the minimal locally analytic representation of GL3(Qp) which involves the p-adic dilogarithm
function. Note that A and k determine each other by the formula (2.3.3). The main properties of
wmint(\ L, L, L) are summarized in the following three results.
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Theorem 2.3.13. For each fivred UP and r satisfying Condition 2.3.8, there exists a unique choice of
L, L, L € E such that

Homgr,(q,) (™™ (A, 21, %, &) @F (ur(a) ®p €) o dets, 117%(r))
= Homgr,(q,) (II"'¢(k, D) @ €2 o dets, II*"(r)). (2.3.14)

Remark 2.3.15. We know that
b =LA, Lo=La (2.3.16)

due to our definition of £ and &5, Theorem 1.2 of [Dingl18] and certain p-adic Hodge theoretic argu-
ments appearing in the GL2(Q,) case (c.f. Remark 3.1 of [Ding18]). The statement of Theorem 2.8.18
implies that %5 is uniquely determined by UP and r, but a priori not necessarily by p. It is strongly
believed but not yet known how to prove (using purely representation theoretic methods) that there is
an embedding

(D) — L™ T (N A, Lo, L) (2.3.17)

for certain L1, %, %3 € E uniquely determined by p where II(D) is the locally analytic representa-
tion constructed from p using pLL for GL2(Q,) in (8.111) of [BD18]. If p is ordinary (namely has
consecutive Hodge—Tate weights), it is shown in Theorem 1.1 of [BD18] that II(D) actually embeds
into II*™(r), which together with our Theorem 2.3.13 imply that (2.53.17) exists and &5 depends only
on p.

The following is a positive answer to Question 2.3.11 (at least in one direction) and easily follows
from Theorem 6.2.1 of [Brel7] and our Theorem 2.3.13.

Corollary 2.3.18. We fix a representation 11 of the form (2.3.9). If we have an embedding
I ®p e? odets < II7"(7)
for a suitable choice of UP and r, then we have an embedding
I — Y™t (N, 2, %, L) @p ur(a) o dety
for certain £, %L, L5 € E uniquely determined by I1.

The following result is a natural consequence of the construction of Y™™+ (\ %, %, %), more
details can be found in Theorem 4.1.7.

Theorem 2.3.19. There exists an explicit complex of locally analytic representations of GL3(Q))
whose strong dual realizes the object (N, L) (up to changes on notation, c.f. (1.14) and (5.19) of
[Schri1]).



Chapter 3

Mod p local-global compatibility for
GL,(Qp) in the ordinary case

3.1 Introduction

It is believed that one can attach a smooth F-representation of GL, (K) (or a packet of such repre-
sentations) to a continuous Galois representation Gal(Q,/K) — GL,(F,) in a natural way, that is
called mod p Langlands program for GL,,(K), where K is a finite extension of Q. This conjecture
is well-understood for GL2(Q,) ([BL94], [Ber10], [Bre03al, [Bre03b], [Col10], [Pas13], [CDP], [Eme]).
Beyond the GL3(Qp)-case, for instance GL,(Q,) for n > 2 or even GL3(Q,s) for an unramified ex-
tension Qs of Q, of degree f > 1, the situation is still quite far from being understood. One of the
main difficulties is that there is no classification of such smooth representations of GL,,(K) unless
K = Q, and n = 2: in particular, we barely understand the supercuspidal representations. Some of
the difficulties in classifying the supercuspidal representations are illustrated in [BP12], [Hul0] and
[Schr15].

Let F be a CM field in which p is unramified, and 7 : Gal(Q/F) — GL,(F,) an automorphic
Galois representation. Although there is no precise statement of mod p Langlands correspondence for
GL,(K) unless K = Q, and n = 2, one can define smooth representations II(7) of GL, (F,) in the
spaces of mod p automorphic forms on a definite unitary group cut out by the maximal ideal of a
Hecke algebra associated to 7, where w is a place of F' above p. A precise definition of II(7) when p
splits completely in F', which is our context, will be given in Section 3.1.4. (See also Section 3.5.6.)
One wishes that II(7) is a candidate on the automorphic side corresponding to ?|Gal(ap /F,) for a

mod p Langlands correspondence in the spirit of Emerton [Eme]. However, we barely understand

the structure of II(¥) as a representation of GL,,(F,,), though the ordinary part of II(7) is described

in [BH15] when p splits completely in F and FlGal(a /F,) is ordinary. In particular, it is not known
P w

whether TI(7) and ﬂGal(d /Fu) determine each other. But we have the following conjecture:
o/ Fu
Conjecture 3.1.1. The local Galois representation 7|, q s, i determined by I1(T).
o/ Fu

This conjecture is widely expected to be true by experts but not explicitly written down before.
The case GL2(Q,s) was treated by Breuil-Diamond [BD14]. Herzig-Le-Morra [HLM17] considered
the case GL3(Q,) when ﬂGal(Qp/Fw) is upper-triangular, while the case GL3(Q,) when F‘Gal(ﬁp/Fw)
is an extension of a two dimensional irreducible representation by a character was considered by Le—
Morra—Park [LMP]. A recent work of John Enns studied this conjecture for the group GL3(Q,). All
of the results above are under certain generic assumptions on the tamely ramified part of ﬂGal(QP JFu)

From another point of view, to a admissible smooth Fp—represgltation IT of GL,(K) for a finite
extension K of Q,, Scholze [Sch15] attaches a admissible smooth F,-representation S(II) of D* for

29
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a division algebra D over K with center K and invariant %, which also has a continuous action
of Gal(Qp /K), via the mod p cohomology of the Lubin—Tate tower. Using this construction, it was
possible for Scholze to prove Conjecture 3.1.1 in full generality for GL2(K) (c.f. [Sch15], Theorem 1.5).
On the other hand, the proof of Theorem 1.5 of [Sch15] does not tell us where the invariants that
determine S(IT) lie. We do not know if there is any relation between these two different methods.
The weight part of Serre’s conjecture already gives part of the information of II(7): the local Serre
weights of 7 at w determine the socle of II(7)|qL, (0, ) at least up to possible multiplicities, where O,
is the ring of integers of F,. If ﬂGal(ap /Fy) is semisimple, then it is believed that the Serre weights

of T at w determine 7|, q /r
D

w

) up to twisting by unramified characters, but this is no longer the

case if it is not semisimple: the Serre weights are not enough to determine the wildly ramified part of
ﬂGal(ép/Fw)v so that we need to understand a deeper structure of II(7) than just its GL, (Op, )-socle.

In this paper, we show that Conjecture 3.1.1 is true when p splits completely in F' and HGaI(Qp/Fw)
is upper-triangular and sufficiently generic in a precise sense. Moreover, we describe the invariants in
II(7) that determine the wildly ramified part of ﬂGal(ap /F,)- Lhe generic assumptions on ﬂGal(Qp JF)
ensure that very few Serre weights of 7 at w will occur, which we call the weight elimination con-
jecture, Conjecture 3.1.11. The weight elimination results are significant for our method to prove
Conjecture 3.1.1. But thanks to Bao V. Le Hung, this weight elimination conjecture is known to
be true and will be proven in [LLMPQ]. We follow the basic strategy in [BD14] and [HLM17]: we
define Fontaine—Laffaille parameters on the Galois side using Fontaine—Laffaille modules as well as
automorphic parameters on the automorphic side using the actions of Jacobi sum operators, and
then identify them via the classical local Langlands correspondence. However, there are many new
difficulties that didn’t occur in [BD14] or in [HLM17]. For instance, the classification of semi-linear
algebraic objects of rank n > 3 on the Galois side is much more complicated. Moreover, failing of the
multiplicity one property of the Jordan—H&lder factors of mod p reduction of Deligne-Lusztig repre-
sentations of GL,,(Z,) for n > 3 implies that new ideas are required to show crucial non-vanishing of
the automorphic parameters. In the rest of the introduction, we explain our ideas and results in more
detail.

3.1.1 Local Galois side

Let E be a (sufficiently large) finite extension of Q, with ring of integers O, a uniformizer wg, and

residue field F, and let Iq, be the inertia subgroup of Gal(Q,,/Q,) and w the fundamental character
of niveau 1. We also let p, : Gal(Q,/Q,) — GL,(F) be a continuous (Fontaine-Laffaille) ordinary
generic Galois representation. Namely, there exists a basis e := (ep—1,€n—2, -+, €g) for 7, such that

with respect to e the matrix form of p, is written as follows:

cn—1+(n—1)

w *n—1 * s * *
0 wen-2+(n=2) *p_9 e * *
O 0 wcnf?ﬁi’(”*?’) N * *
Polia, = | | T (3.1.2)
0 0 0 cenwatl oy
0 0 0 e 0 w*o

for some integers ¢; satisfying some genericity conditions (c.f. Definition 3.3.3). We also assume that
Do s maximally non-split, i.e., *; # 0 for all i € {1,2,--- ,n — 1}.

Our goal on the Galois side is to show that the Frobenius eigenvalues of certain potentially crys-
talline lifts of p, determine the Fontaine-Laffaille parameters of p,, which parameterizes the wildly
ramified part of p,. When the unramified part and the tamely ramified part of p, are fixed, we define
the Fontaine-Laffaille parameters via the Fontaine-Laffaille modules corresponding to 7, (c.f. Defini-

n—1)(n—2
f (n=Din=2)

tion 3.3.15). These parameters vary over the space o copies of the projective line P!(F),
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and we write FL207°(5,) € P'(F) for each pair of integers (i0,Jo) with 0 < jo < jo+1 < ip < n—1. For
each such pair (g, jo), the Fontaine-Laffaille parameter FL!°7° () is determined by the subquotient

Pio.jo Of Py which is determined by the subset (e;,, €i,—1,--- ,¢€j,) of e (c.f. (3.3.2)): in fact, we have
the identity FL,>7°(p,) = FL;S:;E’_& (Pig.jo) (c.f. Lemma 3.3.17).

Since potentially crystalline lifts of p, are not Fontaine-Laffaille in general, we are no longer able
to use Fontaine-Laffaille theory to study such lifts of p; we use Breuil modules and strongly divisible
modules for their lifts. It is obvious that any lift of p, determines the Fontaine-Laffaille parameters,
but it is not obvious how one can explicitly visualize the information that determines p; in those lifts.
Motivated by the automorphic side, we believe that for each pair (ig, jo) as above the Fontaine-Laffaille
parameter FL:;?JU (o) is determined by a certain product of Frobenius eigenvalues of the potentially
crystalline lifts of p, with Hodge-Tate weights {—(n — 1),--- ,—1,0} and Galois type @?:_01 ok
where w is the Teichmiiler lift of the fundamental character w of niveau 1 and

o Cio +10 —Jo— 1 for i = ip;
k00 =q ¢j = (io —jo— 1) for i = jo; (3.1.3)
C otherwise

modulo (p — 1). Here, ¢; are the integers determining the tamely ramified part of py in (3.1.2) and
our normalization of the Hodge-Tate weight of the cyclotomic character ¢ is —1.
Our main result on the Galois side is the following:

Theorem 3.1.4 (Theorem 3.3.44). Fiz ig,jo € Z with 0 < jo < jo+1 <iop < n—1. Assume that p, is
generic (c.f. Definition 3.3.3) and that p,, ;. is Fontaine-Laffaille generic (c.f. Definition 3.3.18), and

let ()xiftjf, /\iffé’, e ,)xéo’jo) € (Og)™ be the Frobenius eigenvalues on the (&klojlo,@k?;éo, e ,@kémo)—
isotypic components of Dgp7n71(po) where po is a potentially crystalline lift of p, with Hodge-Tate
weights {—(n — 1), —(n—2),---,—1,0} and Galois type @) """

Then the Fontaine—Laffaille parameter FLi?’jO associated to py is computed as follows:

p[(nfl)* 20190 (40 —jo—1)

Hio—l /\ioJO

i=jo+1 Vi

FLJ0 (5,) = 1:( ) € PY(F).

Note that by ® € F in the theorem above we mean the image of ¢ € O under the natural surjection
Op — F. We also note that p, ; being Fontaine-Laffaille generic implies FL!J0(5,) # 0, 00 for all
10, jo as in Theorem 3.1.4, but is a strictly stronger assumption if ig — jg > 3.

Let us briefly discuss our strategy for the proof of Theorem 3.1.4. Recall that the Fontaine-
Laffaille parameter FL?7°(75,) is defined in terms of the Fontaine-Laffaille module corresponding
to py. Thus we need to describe FLff’jO (po) by the data of the Breuil modules of inertial type
@?:_01 Wi’ corresponding to p,, and we do this via étale ¢-modules, which requires classification
of such Breuil modules. If the filtration of the Breuil modules is of a certain shape, then a certain
product of the Frobenius eigenvalues of the Breuil modules determines a Fontaine-Laffaille parameter
(c.f. Proposition 3.3.32). In order to get such a filtration, we need to assume that p, ; is Fontaine—
Laffaille generic (c.f. Definition 3.3.18). Then we determine the structure of the filtration of the
strongly divisible modules lifting the Breuil modules by direct computation, which immediately gives
enough properties of Frobenius eigenvalues of the potentially crystalline representations we consider.
But this whole process is subtle for general i, jo. To resolve this issue we prove that any potentially
crystalline lift of p, with Hodge-Tate weights {—(n—1), —(n—2),--- ,0} and Galois type EB?:_Ol ok
has a potentially crystalline subquotient p;, ;, of Hodge-Tate weights {—i¢,--- ,—jo} and of Galois

i ~20:70 .. _ .
type .2 jow"i - lifting ;5 . More precisely,
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Theorem 3.1.5 (Corollary 3.3.41). Every potentially crystalline lift po of py with Hodge—Tate weights

. —1 ~pi0sdo . . .
{=(n—1),—(n—2),---,0} and Galois type P;_, @" "~ is a successive extension
pnfl’nfl ... * % B3 e %
Pio+1,i0+1 * *
po = Pio,jo *
Pjo—1,j0—1
£0,0
where

o formn—12>1i>1iy and jo >1i >0, p;; is a 1-dimensional potentially crystalline lift of p; ; with
Hodge-Tate weight —i and Galois type ki
O Pig.jo 5 a (to — jo + 1)-dimensional potentially crystalline lift of Pig.jo With Hodge—Tate weights
. . . . o ~pi0sd
{—i0,—to+ 1, - ,—jo} and Galois type iozjo i
Note that we actually prove the niveau f version of Theorem 3.1.5 since it adds only little more
extra work (c.f. Corollary 3.3.41).

The representation p;, j, ® €77° is a (io — jo + 1)-dimensional potentially crystalline lift of p;, ;,
with Hodge-Tate weights {—(io — jo), —(i0 — jo— 1), - , 0} and Galois type o Gk so that, by

i=j
Theorem 3.1.5, Theorem 3.1.4 reduces to the case (io, jo) = (n —1,0): we prove Theorem 3.1.4 when
(io,.jo) = (n—1,0), and then use the fact FL;>7°(p,) = FL;S:;E’_EI (Piy.jo) to get the result for general
20,J0-

The Weil-Deligne representation WD(pg) associated to pp (as in Theorem 3.1.4) contains those
Frobenius eigenvalues of pg. We then use the classical local Langlands correspondence for GL,, to
transport the Frobenius eigenvalues of py (and so the Fontaine-Laffaille parameters of p, as well by

Theorem 3.1.4) to the automorphic side (c.f. Corollary 3.3.46).

3.1.2 Local automorphic side

We start by introducing the Jacobi sum operators in characteristic p. Let T (resp. B) be the maximal
torus (resp. the maximal Borel subgroup) consisting of diagonal matrices (resp. of upper-triangular
matrices) of GL,,. We let X (T') := Hom(T, G,,) be the group of characters of 7' and ®* be the set
of positive roots with respect to (B,T). We define ¢; € X(T) as the projection of T' = G, onto the
i-th factor. Then the elements {¢; | 1 < i < n} forms a Z-basis for the free abelian group X (7).
We will use the notation (di,ds,--- ,d,) € Z" for the element Y ;_, dyex € X(T). Note that the
group of characters of the finite group T'(F,) = (F,/)" can be identified with X (T")/(p — 1) X(T’), and
therefore we sometimes abuse the notation (dy,ds, - ,d,) for its image in X(T")/(p — 1) X (T). We
define A := {ay, ;=€ — €41 | 1 <k <n—1} C ®T as the set of positive simple roots. Note that we
write s for the reflection of the simple root «y. For an element w in the Weyl group W, we define
oY = {a € @ |w(a) € @} C & and Uy, = [[,cp+ Ua, where U, is a subgroup of U whose
only non-zero off-diagonal entry corresponds to . Note in particular that &+ = @JUCO, where wyg is the

longest element in W. For w € W and for a tuple of integers k = (ka)aeqﬁ e{0,1,---,p— 1}‘¢’$‘,
we define the Jacobi sum operator

Skw =Y I Ak | A-w € Fy[GLL(F,)] (3.1.6)

A€Uy (Fp) \aedf
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where A, is the entry of A corresponding to o € ®. In Section 3.4, we establish many technical
results, both conceptual and computational, around these Jacobi sum operators. The use of these
Jacobi sum operators can be traced back to at least [CL76], and are widely used for GLg in [BP12]
and [Hul0] for instance. But systematic computation with these operators seems to be limited to GLo
or GL3. In this paper, we need to do some specific but technical computation on some special Jacobi
sum operators for GL,,(F,), which is enough for our application to Theorem 3.1.15 below.

By the discussion on the local Galois side, our target on the local automorphic side is to capture
the Frobenius eigenvalues coming from the local Galois side. By the classical local Langlands corre-
spondence, the Frobenius eigenvalues of py are transported to the unramified part of x in the tamely
ramified principal series Indgl(“éi?’) ) x corresponding to the Weil-Deligne representation WD(pg) at-
tached to pg in Theorem 3.1.4, and it is standard to use Up-operators to capture the information in
the unramified part of .

The normalizer of the Iwahori subgroup I in GL,,(Qj) is cyclic modulo I, and this cyclic quotient

group is generated by an element Z,, € GL,,(Q,) that is explicitly defined in (3.4.49). One of our goals

is to translate the eigenvalue of Up,-operators into the action of =,, on the space (Indgl(“éi?”)x) laL,(z,)-

This is firstly done for GL2(Q,s) in [BD14], and then the method is generalized to GL3(Q,) in the
ordinary case by [HLM17]. Both [BD14] and [HLM17] need a pair of group algebra operators: for
instance, group algebra operators S, S’ € Q, [GLg(Qp)] are defined in [HLM17] and the authors prove
GL3(Qp)

B(Qyp)
with x assumed to be tamely ramified, where I(1) is the maximal pro-p subgroup of I. Here, the

constant ¢ € OF, captures the eigenvalues of Uj,-operators. This is the first technical point on the local
automorphic side, and we generalize the results in [BD14] and [HLM17] by the following theorem.

For an n-tuple of integers (a,_1,an_2,--- ,a0) € Z", we write S,, and S/, for Sy1 ,,, with k' = (ki ;)
and Sy, 4, with | (kzl;) respectively, where k}’iﬂ = [ap — ap—i]1 +n — 2, kil’ilﬂ = [ap—i—1 —
an-1)1+n—2for1 <i<n-1, and kil’j = kllj/ = 0 otherwise. Here, (4, j) is the entry corresponding to
aifa =¢ —¢; € P and by [z]; for € Z we mean the integer in [0, p— 1) such that z = [z]; modulo
(p—1). We define S, € Z,[GL,(Z,)] (resp. S/, € Z,|GL,(Z,)]) by taking the Teichmiiller lifts of the
coefficients and the entries of the matrices of S,, € F,[GL,,(F})] (resp. of S}, € F,[GL,(F))]).

We use the notation e for the composition of maps or group operators to distinguish from the
notation o for an Og-lattice inside a representation.

an intertwining identity of the form S . 23 = ¢S on a certain I (1)-fixed subspace of Ind

»Wo

Theorem 3.1.7 (Theorem 3.4.71). Assume that the n-tuple of integers (an—1,an—2, "+ ,a0) is n-
generic in the lowest alcove (c.f. Definition 3.4.5), and let

GL,
I, = IndB(Qi?p)(x1 RX2 @ X3® ... ® Xn—2 ® Xn-1 X0)

be a tamely ramified principal series representation with the smooth characters xy : Q; — E™ satis-
fying Xk|Z>< =w for0<k<n-1.

I(1),(a1,a2,...,an—1,a0)

On the 1-dimensional subspace 11y, we have the identity:

n—2
S e (2,)" 2 =p" %k, (H m(p)) Sn (3.1.8)
k=1

for ky, € Z) satisfying kn =" - Pp(an—1,- -+ ,a0) mod (wg) where
n—2
c* = H(_l)ao ak
k=1
and
n—2n—3 G — Q1 +j
_ n— x
P = T 422 e

k=1 j=0
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In fact, there are many identities similar to the one in (3.1.8) for each operator U for 1 <i <n—1
(defined in (3.4.50)) which can be technically always reduced to Proposition 3.4.60, but it is clear from
the proof of Theorem 3.1.7 in Section 3.4.5 that we need to choose U~ for the U,-operator acting on

Hfl(l)’(al’az""’a”’l’ao), motivated from the local Galois side via Theorem 3.1.4. The crucial point here

is that the constant p" 2k, (HZ;% Xk (p)), which is closely related to FL”~*%(5,) via Theorem 3.1.4
and classical local Langlands correspondence, should lie in O} for each II,, appearing in our application
of Theorem 3.1.7 to Theorem 3.1.15.

The next step is to consider the mod p reduction of the identity (3.1.8), which is effective to capture
pn? Hz;f Xk (p) modulo (wg) only if 8,3 # 0 modulo (wg) for ¥ € T (a2 an-000) g pyng
out that this non-vanishing property is very technical to prove for general GL,,(Q,). Before we state
our non-vanishing result, we fix a little more notation: let

= (apn-1—n+2,an-2, - ,a1,a0 +n — 2);
Mo (an 1,01, 7%72,@0);
s = (ai, a2, ,0p_3,0an_2,0n_1,00);
M1 (an 1,00,01,02," " 7an73;an72)

be four characters of T'(F,), and write my (resp. 75) for the characteristic p principal series (resp.
the characteristic 0 principal series) induced by the characters ugp (resp. by its Teichmiiller lift fig).
Note that we can attach an irreducible representation F(A) of GL,(Fp) to each A € X(T)/(p —
1)X(T) satisfying some regular conditions (c.f. the beginning of Section 3.4). If we assume that
(an—1,-++ ,a9) € Z™ is n-generic in the lowest alcove, the characters u*, pg, p1 and p) do satisfy the
regular condition and thus we have four irreducible representations F'(u*), F(uo), F(p1) and F(u})
of GL,,(F,). There is a unique (up to homothety) Og-lattice 7 in 7§ ®, E such that

socgL, (r,) (T ®o, F) = F(u*).
We are now ready to state the non-vanishing theorem.

Theorem 3.1.9 (Corollary 3.4.37). Assume that the n-tuple of integers (an—1,an—2, - ,ag) is 2n-
generic in the lowest alcove (c.f. Definition 3.4.5).
Then we have

S, ((T R0, F)U(FP)”“) 40 and S, ((T R0, F)UE): “1) £ 0.

The definition of py, p}, po and p* is motivated by our application of Theorem 3.1.9 to Theorem
3.1.15 and is closely related to the Galois types we choose in Theorem 3.1.4. We emphasize that,
technically speaking, it is crucial that F'(x*) has multiplicity one in mg. The proof of Theorem 3.1.9
is technical and makes full use of the results in Sections 3.4.1, 3.4.7, and 3.4.8.

3.1.3 Weight elimination and automorphy of a Serre weight

The weight part of Serre’s conjecture is considered as a first step towards mod p Langlands program,
since it gives a description of the socles of II(F)|qL, (z,) up to possible multiplicities. Substantial
progress has been made for the groups GL2(Ok ), where Of is the ring of integers of a finite extension
K of Q, ([BDJ10], [Geell], [GK14], [GLS14], [GLS15]). For groups in higher semisimple rank, we also
have a detailed description. (See [EGH13], [HLM17], [LMP], [MP17], [LLHLMa] for GL3; [Her09],
[GG10], [BLGG], [LLL16], [GHS] for general n.)

Weight elimination results are significant for the proof of our main global application, Theo-
rem 3.1.15. For the purpose of this introduction, we quickly review some notation. Let F'™ be the
maximal totally real subfield of a CM field F', and assume that p splits completely in F. Fix a place
w of F above p and set v := w|p+. We assume that 7 is automorphic: this means that there exist
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a totally definite unitary group G, defined over F'* that is an outer form of GL,, s+ and split at
places above p, an integral model G,, of G,, such that G,, x O Pt is reductive if v is a finite place of
F that splits in F', a compact open subgroup U = G,,(Opt) x U” C G, (Opyt) x Gn(AF}") that is
sufficiently small and unramified above p, a Serre weight V' = ®U,| » Vo that is an irreducible smooth
Fp—representation of G, (Op+ ,), and a maximal ideal my associated to 7 in the Hecke algebra acting
on the space S(U, V) of mod p algebraic automorphic forms such that

S(U, V) [mz] # 0. (3.1.10)

We write W (7) for the set of Serre weights V' satisfying (3.1.10) for some U, and W, (7) for the
set of local Serre weights V,, that is irreducible smooth representations of G, (Op+) = GL,(OF,) =
GLn(Zp), such that V, @ (&), Vo) € W(T) for an irreducible smooth representation @), Var
of T],, £v gn((’)Ft). The local Serre weights V, have an explicit description as representations of
GL,(F,): there exists a p-restricted (i.e. 0 < a; —a;j—; < p—1forall 1 <i < n—1) weight
a:= (apn-1,an_2, - ,a0) € X(T) such that F(a) =V, where F(a) is the irreducible socle of the dual
Weyl module associated to a (c.f. Section 3.5.2 as well as the beginning of Section 3.4).

Assume that 7| Gal(@, /F.) = Pos where 7, is defined as in (3.1.2). We define certain characters "

and piIn of T(F,) and a principal series

1.1 GLn(Fp) ¢ Oyin,j
ﬂ.il J1 — IndB(Fp) P (M 21 ]1)’Ll)0

at the beginning of Section 3.5.3. Our main conjecture for weight elimination is

Conjecture 3.1.11 (Conjecture 3.5.16). Assume that p,, ; is Fontaine-Laffaille generic and that
phinin s on-generic. Then we have an inclusion

Wou(F) N JH((r 1)) € {F(uD)Y, F(u)V) (3.1.12)

We emphasize that the condition p,  ; is Fontaine-Laffaille generic is crucial in Conjecture 3.1.11.
For example, if n = 4 and (ig, jo) = (3,0) and we assume merely FL3%(5,) # 0,00 (which is strictly
weaker than Fontaine-Laffaille generic), then we expect that an extra Serre weight can possibly appear
in W, (7) N JH((m271)Y).

The Conjecture 3.1.11 is motivated by the proof of Theorem 3.1.4 and the theory of shape in
[LLHLMa]. The special case n = 3 of Conjecture 3.1.11 was firstly proven in [HLM17] and can also
be deduced from the computations of Galois deformation rings in [LLHLMal.

Remark 3.1.13. In an earlier version of this paper, we prove Conjecture 3.1.11 for n < 5. But
our method is rather elaborate to execute for general n. We are informed that Bao V. Le Hung
can prove Conjecture 3.1.11 completely and we have decided to put it inside [LLMPQ]. Therefore,
Congecture 3.1.11 becomes a theorem based on the results in [LLMPQ)].

Finally, we also show the automorphy of the Serre weight F(x=)Y. In other words,
F(uB)Y € W, (7) N JH((z291)V). (3.1.14)

Showing the automorphy of a Serre weight, in general, is very subtle. But thanks to the work of
[BLGG] we are able to show the automorphy of F(u™)Y by checking the existence of certain potentially
diagonalizable crystalline lifts of p, (c.f. Proposition 3.5.17).

3.1.4 Mod p local-global compatibility

We now state our main results on mod p local-global compatibility. As discussed at the beginning of
this introduction, we prove that II(7) determines the ordinary representation p,. Moreover, we also
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describe the invariants in II(7) that determine the wildly ramified parts of p,. We first recall the
definition of II(7).

Keep the notation of the previous sections, and write b; = —c,_1_; for all 0 < ¢ < n — 1, with ¢;
as in (3.1.2). We fix a place w of F above p and write v := w|p+, and we let 7 : G — GL,(F) be
an irreducible automorphic representation, of a Serre weight V' = &, , Vi» (c.f. Section 3.1.3), with
?lGFw = Po-

Let V' 1= @4, Vor and set S(U”, V') = @S(U” - Uy, V") where the direct limit runs over
compact open subgroups U, C Qn(OFJ). This space S(U?,V’) has a natural smooth action of

Gn(Ff) = GL,(F,) = GL,(Q,) by right translation as well as an action of a Hecke algebra that
commutes with the action of G, (F,"). We define

() == S(U", V') [ms]

where mz is the maximal ideal of the Hecke algebra associated to 7. In the spirit of [Eme], this is a
candidate on the automorphic side for a mod p Langlands correspondence corresponding to p,. Note
that the definition of II(7) relies on UY and V' as well as choice of a Hecke algebra, but we suppress
them in the notation.

Fixn—12>1iy> jo+ 1> jo > 0, and define i; and j; by the equation i; +1i9 = j1 + jo =n — 1.
Note that the following Jacobi sum operators

Si17j1) Sildhl7 Silvjl’ Silvjla/ c Fp[Gle—i1+1(Fp)]

are defined at the beginning of Section 3.4.2.
Now we can state the main results in this paper.

Theorem 3.1.15 (Theorem 3.5.44). Fix a pair of integers (ig, jo) satisfying 0 < jo < jo+1 < ip <
n—1, and let 7 : Gp — GL,(F) be an irreducible automorphic representation with 7|, = py-
Assume that

o phiit gs 2n-generic;
© Diy.jo S Fontaine-Laffaille generic.
Assume further that
[P} € W (7) 0 JH((x)Y) € {P(uD)Y, F(uP)Y), (3.1.16)

Then there exists a primitive vector (c.f. Definition 3.5.43) in H(?)I(l)”‘il'h. Moreover, for each
primitive vector vt € TI(F)TMm"™ e have St @ ST yitdt £ and

o R T R S Lo L
811731,/ .S?,jl, ° (:n)h 11 lvu,Jl — Eump“m (bnflv .. ,bo) . FL:LD)JO(HGF,“) . SHJ1 o Silv]lvlh]l
where
ji—1
it — H (71)bi17bk7j1+i1+1
k=i1+1
and

Ji—1 ji—i1—1

b
Pustnri= T =fe=sen

k=i1+1

Note that the conditions in (3.1.16) can be removed under some standard Taylor—Wiles conditions
(c.f. Remark 3.1.13 and (3.1.14)).
Theorem 3.1.15 relies on the choice of a principal series type (the niveau 1 Galois type @1 01 ki’ ).

But this choice is somehow the unique one that could possibly make our strategy of the proof of The-
orem 3.1.15 work.
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Be careful that we cannot apply Theorem 3.1.7 and Theorem 3.1.9 directly to our local global-
compatibility for general (i1, j1). Instead, we need to generalize Theorem 3.1.9 (resp. Theorem 3.1.7)
to Proposition 3.5.38 (resp. Proposition 3.5.25) .

Corollary 3.1.17. Keep the notation of Theorem 3.1.15 and assume that each assumption in Theo-
rem 3.1.15 holds for all (ig, jo) such that 0 < jo < jo+1 <ip < m—1. Assume further that a freeness
assumption is true (c.f. Remark 8.5.47 and note that this assumption can be removed by results in
[LLMPQ)]).

Then the structure of II(T) as a admissible smooth F-representation of GL,(Qp) determines the
Galois representation py up to isomorphism.

3.1.5 Notation

Much of the notation introduced in this section will also be (or have already been) introduced in the
text, but we try to collect together various definitions here for ease of reading.

We let E be a (sufficiently large) extension of Q, with ring of integers O, a uniformizer wg, and
residue field F. We will use these rings E, O, and F for the coefficients of our representations. We
also let K be a finite extension of Q, with ring of integers Ok, a uniformizer w, and residue field k.
Let W (k) be the ring of Witt vectors over k and write K for W(k:)[%] (K is the maximal absolutely
unramified subextension of K.) In this paper, we are interested only in the fields K that are tamely
ramified extension of Q,, in which case we let e := [K : Ko] = p/ — 1 where f = [k : F,)].

For a field F, we write G for Gal(F/F) where F is a separable closure of F. For instance, we are
mainly interested in Gq, as well as Gk, in this paper. The choice of a uniformizer @ € K provides
us with a map:

W : Go,—W(k) : g— 9(=)
w
whose reduction mod (@) will be denoted as wg. This map factors through Gal(K/Qy) and Wx|ay,
becomes a homomorphism. Note that the choice of the embedding o¢ : &k < F provides us with a
fundamental character of niveau f, namely wy := 09 0 We|Gal(k/Ky), and we fix the embedding in this
paper.

For a € k, we write @ for its Teichmiiler lift in W (k). We also use the notation [a] for @, in
particular, in Section 3.4.5. When the notation for an element e in k is quite long, we prefer [e] to s.
For instance, if a,b, ¢, d € k then we write

[(a—b)(a—c)la—d)(b—c)(b—d)] for (a—0b)(a—c)(a—d)(b—c)(b—d).

Note that w,, is the Teichmiiler lift of w,.

We normalize the Hodge-Tate weight of the cyclotomic character € to be —1. Our normalization
on class field theory sends the geometric Frobenius to the uniformizers. If a € F* or a € Oj; then
we write U, for the unramified character sending the geometric Frobenius to a. We may regard a
character of Gq, as a character of Q via our normalization of class field theory.

ie

As usual, we write S for the p-adic completion of W (k)[u, %]ieN, and let So,, := S ®z, Op and
Sg = So, ®z, Qp. We also let Sp := So, /(wg, Fil’So,,) = (k®F, F)[u]/u®. Choose a uniformizer
w of K and let E(u) € W(k)[u] be the monic minimal polynomial of w. The group Gal(K/Kj) acts
on S via the character W, and we write (So, )zm for the W-isotypical component of S for m € Z.
We define (?F)wg in a similar fashion. If O or F are clear, we often omit them, i.e., we write Szm
and Sum for (Sog)zm and (Sg)wm respectively. In particular, So := S0 = (k ®F, F)[u®]/u® and

- { a; (;) | a; € W(k) ®z, Op and a; — 0 p—adically} .
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F, and we write

F

The association a ® b — (o(a)b), gives rise to an isomorphism k ®r, F = [[ ., g
e for the idempotent element in k ®r, F that corresponds to the idempotent element in ]
whose only non-zero entry is 1 at the position of o.

To lighten the notation, we often write G for GL,,z, . (By Gy, we mean an outer form of GL,
defined in Section 3.5.1.) We let B be the Borel subgroup of G consisting of upper-triangular matrices
of G, U the unipotent subgroup of B, and T the torus of diagonal matrices of GL,,. We also write B~
and U~ for the opposite Borel of B and the unipotent subgroup of B, respectively. Let ®* denote
the set of positive roots with respect to (B, T), and A = {og }1<k<n—1 the subset of positive simple
roots. We also let W be the Weyl group of GL,,, which is often considered as a subgroup of GL,, and
let si be the simple reflection corresponding to ay. We write wq for the longest Weyl element in W,
and we hope that the reader is not confused with places w or w’ of F.

We often write K for GL,,(Z,) for brevity. (Note that we use K for a tamely ramified extension
of Q,, as well, and we hope that it does not confuse the reader.) We will often use the following three
open compact subgroups of GL,(Z,): if we let red : GL,(Z,) - GL,(F,) be the natural mod p
reduction map, then

o:k—F

K(1) := Ker(red) C I(1) :=red” "(U(F,)) C I :=red *(B(F,)) C K.

If M is a free F-module with a smooth action of K, then T'(F,) acts on the pro p Iwahori fixed
subspace M'() via I/1(1) = T(F,). We write M!(1):# for the eigenspace with respect to a character
p: T(Fp) — FX. MV decomposes as

M) ~ @MI(U’#

as T'(F,)-representations, where the direct sum runs over the characters p of T(F,). In the obvious
similar fashion, we define MT(1):# when M is a free Og-module or a free E-module.

By [m]y for a rational number m € Z[%] C Q we mean the unique integer in [0, e) congruent to m
mod (e) via the natural surjection Z[%] — Z/eZ. By |y| for y € R we mean the floor function of y,
i.e., the biggest integer less than or equal to y. For a set A, we write |A| for the cardinality of A. If
V is a finite-dimensional F-representation of a group H, then we write socy V' and cosocyV for the
socle of V' and the cosocle of V', respectively. If v is a non-zero vector in a free module over F (resp.
over Op, resp. over E), then we write F[v] (resp. Og|v], resp. E[v]) for the F-line (resp. the Og-line,
resp. the E-line) generated by v.

We write T for the image of x € O under the natural surjection Op — F. We also have a natural

surjection P1(Og) — P}(F) defined by letting [z : y] € P}(F) be the image of [z : y] € P1(Og) where

We often write £ for [z : y] € P(F) if « # 0.
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3.2 Integral p-adic Hodge theory

In this section, we do a quick review of some (integral) p-adic Hodge theory which will be needed
later. We note that all of the results in this section are already known or easy generalization of known
results. We closely follow [EGH13] as well as [HLM17] in this section.

3.2.1 Filtered (¢, N)-modules with descent data

In this section, we review potentially semi-stable representations and their corresponding linear algebra
objects, admissible filtered (¢, N)-modules with descent data.

Let K be a finite extension of Q,, and K the maximal unramified subfield of K, so that Ky =
W (k) ®z, Qp where k is the residue field of K. We fix the uniformizer p € Q,, so that we fix
an embedding By — Bgr. We also let K’ be a subextension of K with K/K’ Galois, and write
¢ € Gal(Ky/Q,) for the arithmetic Frobenius.

A p-adic Galois representation p : Ggr — GL,(E) is potentially semi-stable if there is a finite
extension L of K’ such that p|g, is semi-stable, i.e., ranky,oeDEK (V) = dimg V, where V is an
underlying vector space of p and DE (V) := (By ®q, V)9. We often write DX'(p) for DK (V). 1f
K is the Galois closure of L over K’, then p|g, is semi-stable, provided that p|g, is semi-stable.

Definition 3.2.1. A filtered (¢, N, K/K', E)-module of rank n is a free Ko @ E-module D of rank n
together with

o a ¢ ® l-automorphism ¢ on D;
o a nilpotent Ko ® E-linear endomorphism N on D;

o a decreasing filtration {Filka}iez on D = K ®k, D consisting of K ®q, E-submodules of
Dy, which is exhaustive and separated;

o a Ky-semilinear, E-linear action of Gal(K/K') which commutes with ¢ and N and preserves
the filtration on Dy .

We say that D is (weakly) admissible if the underlying filtered (¢, N, K/K, E)-module is weak-
ly admissible in the sense of [Fon94]. The action of Gal(K/K') on D is often called descent data
action. If V' is potentially semi-stable, then Dgl(V) is a typical example of an admissible filtered
(¢, N, K/K', E)-module of rank n.

Theorem 3.2.2 ([CF|, Theorem 4.3). There is an equivalence of categories between the category
of weakly admissible filtered (¢, N, K/K', E)-modules of rank n and the category of n-dimensional
potentially semi-stable E-representations of G that become semi-stable upon restriction to Gk .

Note that Theorem 3.2.2 is proved in [CF] in the case K = K’, and that [Sav05] gives a general-
ization to the statement with non-trivial descent data. ,

If V is potentially semi-stable, then so is its dual VV. We define D;’K (V) = Dgl(V\/). Then
D;’Kl gives an anti-equivalence of categories from the category of n-dimensional potentially semi-
stable E-representations of Gx that become semi-stable upon restriction to G to the category of
weakly admissible filtered (¢, N, K/K’, E)-modules of rank n, with quasi-inverse

VEE(D) := Homg (D, Bgt) N Hompy (D, Bar).

It will often be convenient to use covariant functors. We define an equivalence of categories: for each
reZ ) )
Vi (D)= VEE (D) @

The functor Dsft(/’T defined by D§/7T(V) :=DX'(V @& ") is a quasi-inverse of Vjﬁ".
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For a given potentially semi-stable representation p : Gx» — GL,(F), one can attach a Weil-
Deligne representation WD(p) to p, as in [CDT99], Appendix B.1. We refer to WD(p)|1q, as to
the Galois type associated to p. Note that WD(p) is defined via the filtered (¢, N, K/K', N)-module
DX'(p) and that WD(p)|r,., £ WD(p®¢e")|z,,, forall r € Z.

Finally, we say that a potentially semi-stable representation p is potentially crystalline if the
monodromy operator N on DX’ (p) is trivial.

3.2.2 Strongly divisible modules with descent data

In this section, we review strongly divisible modules that correspond to Galois stable lattices in
potentially semi-stable representations. We keep the notation of Section 3.2.1

From now on, we assume that K/K' is a tamely ramified Galois extension with ramification index
e(K/K"). We fix a uniformizer @ € K with @w*®/E") ¢ K’ Let e be the absolute ramification index
of K and E(u) € W(k)[u] the minimal polynomial of w over Kj.

ie

Let S be the p-adic completion of W (k)[u, “]ien. The ring S has additional structures:

u
i

'Le)_ upie.
(BT

o a continuous, ¢-semilinear map ¢ : S — S with ¢(u) = uP and ¢(

ie ie
u NS
) = e
A

o a continuous, W (k)-linear derivation of S with N(u) = —u and N(*%;

o a decreasing filtration {FiliS }iGZZo of S given by letting Fil’S be the p-adic completion of the
ideal 37, B’ g,

7!

o a group action of Gal(K/K') on S defined for each g € Gal(K/K’) by the continuous ring

isomorphism g : S — S with ’g\(wlﬁ) = g(wi)hgﬁ for w, € W(k), where h, € W(k)
satisfies g(w) = hyw.

Note that ¢ and N satisfies N¢ = ppN and that §(E(u)) = E(u) for all g € Gal(K/K') since we
assume w*K/K) ¢ K'. We write ¢; for I%¢ on Fil'S. For i < p — 1 we have ¢(Fil'S) C p'S.

Let So, := 5 ®z, O and Sk := So, ®z, Qp. We extend the definitions of ¢, N, FﬂiS7 and the
action of Gal(K/K') to So, (resp. to Sg) Og-linearly (resp. E-linearly).

Definition 3.2.3. Fizr a positive integer r < p—1. A strongly divisible O g-module with descent data
of weight r is a free So,-module M of finite rank together with

o a So,-submodule Fil" M

o additive maps ¢, N : M= /\//Y;

o So,-semilinear bijections g : MM for each g € Gal(K/K")
such that

o Fil"Se,, - M C Fil' M;

o Fil' M N IM = IFil' M for all ideals I in Og;

o ¢(sx) = ¢(s)p(x) for all s € So, and for all x € M:;

o qb(FilTM\) s contained in pT/T/l\ and generates it over So,;

o N(sx) = N(s)x+ sN(x) for all s € So, and for all x € M;

o No = poN;
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— —

o E(u)N(Fil" M) C Fil" M;
o for all g € Gal(K/K') g commutes with ¢ and N, and preserves Filrﬂ,'
© g10Gs=q1-ga for all g1,g2 € Gal(K/K").

We write Og-Modyg, for the category of strongléf\divisi/lzle Opg-modules with descent data of weight
r. It is easy to see that the map ¢, = p%(;ﬁ : FiI'M — M satisfies cNo,.(x) = ¢ (E(u)N(z)) for all
z € Fil" M where ¢ := @ € S5*.

For a strongly divisible Og-module M with descent data of weight r, we define a G g -module
T:t’K/ (M) as follows (c.f. [EGH13], Section 3.1.):

— —~ o~

L5 (M) = Hompyr ¢ n (M, Ag).

Proposition 3.2.4 ([EGH13], Proposition 3.1.4). The functor T;’Kl provides an anti-equivalence of
categories from the category Og-Modyy to the category of G -stable Og-lattices in finite-dimensional
E-representations of G+ which become semi-stable over K with Hodge—Tate weights lying in [—r,0],
when 0 <r <p—1.

Note that the case K = K’ and E = Q,, is proved by Liu [Liu08].

In this paper, we will be mainly interested in covariant functors T2 " from the category Op-Mod} 4
to the category Repg;St’[fr’O]G i+ of Ggs-stable Og-lattices in finite-dimensional E-representations

of Gk which become semi-stable over K with Hodge-Tate weights lying in [—r, 0] defined by
T (M) = T (M) @&

Let M\ in Op-Mod},, and define a free Sp-module D := ﬂ@zp Q,. We extend ¢ and N on D,
and define a filtration on D as follows: Fil"D = Fil" M [%] and

D if i <0;
Fil'D:={ {z€D|E(u) "z € Fi'D} if0<i<r; (3.2.5)
S o (Fil'™ I Sq, ) (FiVD) if i > r, inductively.

We let D :=D ®Sq,,s0 Ky and Dg =D ®Sq, 5= K, where sg : Sq, — Ko and s : Sq, — K are
defined by u — 0 and u — @ respectively, which induce ¢ and N on D and the filtration on Dy by
taking s (Fil'D). The Ko-vector space D also inherits an E-linear action and a semi-linear action
of Gal(K/K’). Then it turns out that D is a weakly admissible filtered (¢, N, K/K’, E)-module with
Fil"™' D = 0. Moreover, there is a compatibility (c.f. [EGH13], Proof of Proposition 3.1.4.): if D
corresponds to D = /T/l\[%], then

Lo T 1 ~ '
Ta (M)[I;]szf’ (D).

3.2.3 Breuil modules with descent data

In this section, we review Breuil modules with descent data. We keep the notation of Section 3.2.2,
and assume further that K’ C K.

We let S := S/(wp,Fil’S) = (k @p, F)[u]/u®. It is easy to check that S inherits ¢, N, the
filtration of S, and the action of Gal(K/K').

Definition 3.2.6. Fiz a positive integer r < p — 1. A Breuil modules with descent data of weight r
is a free S-module M of finite rank together with

o a S-submodule Fil" M of M;
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o maps ¢, : FiI'M - M and N : M — M;

o additive bijections g : M — M for all g € Gal(K/K")
such that

o Fil" M contains u®" M;

o ¢, is F-linear and ¢-semilinear (where ¢ : k[u]/u®? — k[u]/u? is the p-th power map) with
image generating M as S-module;

@]

N is k ®@p, F-linear and satisfies

— N(uz) = uN(z) —ux for allz € M,

— u*N(Fil"M) C Fil"M, and

— ¢r(usN(z)) = ecN(¢r(2)) for all x € Fil'M, where ¢ € (k[u]/u?)* is the image of
%gb(E(’LL)) under the natural map S — klu]/u®?.

o g preserves Fil" M and commutes with the ¢, and N, and the action satisfies 1 0ga = g1 - g2 for
all g1, 92 € Gal(K/K'). Furthermore, if a € k®g, F and m € M then g(au'm) = g(a)((@)%@
Dutg(m).
We write F-BrMod]; for the category of Breuil modules with descent data of weight r. For
M € F-BrMody,, we define a G g--module as follows (c.f. [EGH13], Section 3.2):
T:t (M) := HompMod (Ma ‘&)

This gives an exact faithful contravariant functor from the category F-BrModj,; to the category
ReppG i of finite dimensional F-representations of G k. We also define a covariant functor as follows:
for each r € Z

ToH(M) :=T5(M)Y @w',

in which we will be more interested in this paper.
If M is a strongly divisible module with descent data, then

M = M/(wp, Fil”S)

is naturally an object in F-BrMody, (Fil"M is the image of Fil’ M in M, the map ¢, is induced
by p%¢|Filr % and N and g are those coming from M). Moreover, there is a compatibility: if

M € Op-Mod}j, and we let M = M/(wg, Fil’S) then

—

TX"(M) @0, F = TL(M).

(See [EGH13], Lemma 3.2.2 for detail.)
There is a notion of duality of Breuil modules, which will be convenient for our computation of
Breuil modules as we will see later.

Definition 3.2.7. Let M € F-BrMod’,y,. We define M* as follows:
o M* := Homyy fuer—Mod (M, klu] /uP);
o Fil' M* = {f € M* | f(Fil' M) C u"k[u] /uP};
o ¢y (f) is defined by ¢o(f)(dr(x)) = bo(f(z)) for all x € Fi'M and f € Fil' M*, where ¢, :

u klu]/u? — k[u]/u? is the unique semilinear map sending u®" to c";
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o N(f):=No f— foN, where N : k[u]/u®? — k[u]/uP is the unique k-linear derivation such
that N(u) = —u;

o (gf)(z) = g(f(@ta)) for allz € M and g € Gal(K/K'), where Gal(K/K') acts on k[u]/u? by
glaut) = g(a)(@)iui fora€k.

If M is an object of F-BrMod}4 then so is M*. Moreover, we have M = M** and
T (M") = TG (M).

(c.f. [Carll]), Section 2.1.)
Finally, we review the notion of Breuil submodules developed mainly by [Car11]. See also [HLM17],
Section 2.3.

Definition 3.2.8. Let M be an object of F-BrMod},. A Breuil submodule of M is an S-submodule
N of M if N satisfies

o N is a klu]/uP-direct summand of M;
o NWN)CN and gN) CN forall g € Gal(K/K');
o ¢r(N NFIl"M) C V.

If NV is a Breuil submodule of M, then N' and M/N are also objects of F-BrModj;. We now
state a crucial result we will use later.

Proposition 3.2.9 ([HLM17], Proposition 2.3.5). Let M be an object in F-BrMod,.
Then there is a natural inclusion preserving bijection

© : {Breuil submodules in M} — {G g -subrepresentations of Tr, (M)}

sending N' C M to the image of T4 (N) — T (M). Moreover, if My C My are Breuil submodules
Of./\/l, then @(Ml)/@(/\/lg) = Tgt(Ml/MQ)

We will also need classification of Breuil modules of rank 1 as follows. We denote the Breuil
modules in the following lemma by M(a, s, A).

Lemma 3.2.10 ([MP17], Lemma 3.1). Let k := F s, e := pl -1, w:= —p, and K' = Q,. We
also let M be a rank-one object in F-BrMod},.
Then there ezists a generator m € M such that:

(i) M = Sp-m;

(ii) Fil" M = u*P=Y M where 0 < s < prfl ;

(ili) ¢ (w*®P=Ym) = Am for some X € (F,; ®p, F)*;

(iv) g(m) = (wr(g)* @ 1)m for all g € Gal(K/K,) where a is an integer such that a + ps = 0
mod (=%5);
p—1/7

(v) N(m) = 0.

Moreover, one has
r __,a+ps
Tst(/\/l)h% =w;

The following lemma will be used to determine if the Breuil modules violate the maximal non-
splitness.
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Lemma 3.2.11 ([MP17], Lemma 3.2). Let k := F s, e := pf -1, @w:= =p, and K' = Q,. We
also let My := M(ky, 52, Az) and My, = M(ky, sy, \y) be rank-one objects in F-BrModyy. Assume
that the integers ky, ky, Sq, sy € Z satisfy

P(Sy — Sz) + [ky — k] > 0. (3.2.12)
Assume further that f < p and let
0=+ My —-M—=>M, =0

be an extension in F-BrMody,, with T (M) being Fontaine—Laffaille.

If the exact sequence of Sy-modules
0 —Fil'"'M, - FiI'M - Fil'M, -0 (3.2.13)

splits, then the Gq, -representation T% (M) splits as a direct sum of two characters.
In particular, provided that pk, # k, modulo e and that s,(p—1) < re if f > 1, the representation
T (M) splits as a direct sum of two characters if the element jo € Z uniquely defined by

joe+[p thy —kilp < sz(p—1) < (Jo+ Ve + [p~thy, — kuly (3.2.14)

satisfies
(r+jo)e + [P~ ky — kaly < (50 +5y)(p — 1). (3.2.15)

3.2.4 Linear algebra with descent data

In this section, we introduce the notion of framed basis for a Breuil module M and framed system
of generators for Fil" M. Throughout this section, we assume that Kq = K’ and continue to assume
that K is a tamely ramified Galois extension of K’. We also fix a positive integer r < p — 1.

Definition 3.2.16. Let n € N and let (kp—1,kn—2,...,ko) € Z™ be an n-tuple. A rank n Breuil
module M € F-BrModg, is of (inertial) type W@ wko if M has an S-basis (en—1,- - ,€0)
such that ge; = (wki(g) ® 1)e; for all i and all g € Gal(K/Ky). We call such a basis a framed basis
of M.

We also say that f := (fn-1,fn—2,..., fo) is a framed system of generators of Fil" M if f is a

system of S-generators for Fil'M and §f; = (wglk’i (9) ® 1) f; for all i and all g € Gal(K/Ky).

The existence of a framed basis and a framed system of generators for a given Breuil module

M € F-BrMody, is proved in [HLM17], Section 2.2.2.
Let M € F-BrModg, be of inertial type @?:_01 wki andlet e := (en_1,. .., e9) be a framed basis for

M and f:= (fu_1,..., fo) be a framed system of generators for Fil" M. The matriz of the filtration,

with respect to e, f, is the matrix Mat, ;(Fil"M) € M,,(S) such that

[ =e-Mat, ;(Fil"M).

Similarly, we define the matriz of the Frobenius with respect to e, f as the matrix Mate (¢,) € GLy(S)
characterized by B

(¢7'(fn—1)a e 7¢7'(f0)) =€ Matg,i(‘)DT)'

As we require ¢, f to be compatible with the framing, the entries in the matrix of the filtration
satisfy the important additional properties:

Matgi(FﬂrM)i«,j €S pf =1k —k;

More precisely, Mat,, ¢ (Fil"M); ; = u[pfflkj_’“]fsi,j, where s;; € Sp0 =k ®F, F[uf]/(u®?).
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We can therefore introduce the subspace MY (S) of matrices with framed type 7 = @?:_01 w’; as

M, (S) == {V €M, (S)|Vi; €S -k forall 0 <i,j <n-— 1} )
“r
Similarly, we define

MY/ (S) = {V €M, (S)| Vi€ gwp_lkj,ki forall 0 <i4,j <n— 1}
s

and

M2 (S) := {V €M,(S)| Vi, € gwpq(kj,kj) forall 0 <i4,j <n— 1} .
s

We also define B B B
GL? (S) := GL,(S) n M7 (S)

for e € {O} U {0,/ u{O,n}.
As o (f;) is a w];i—eigenvector for the action of Gal(K/Kj) we deduce that
Mat, ;(Fil"M) € M;’(S) and Mat, s(¢,) € GL, (S).

Note that MJ(S) = MY (S) = MY"(S) if the framed type 7 is of niveau 1.
We use similar terminologies for strongly divisible modules M € Og-Mod},.

Definition 3.2.17. Let n € N and let (kp—1,kn—2, .. k:o) € Z" be an n-tuple. A rank n strongly
divisible module M € Op-Modj, is of (inertial) type e S wko if M has an So,-basis
€= (€u_1,"" ,€0) such that ge; = (0ki(g) ® 1)e; for all i and all g € Gal(K/Ky). We call such a

basis a framed basis for M. R R
We also say that f := (fn-1, fa—2,.- .,fo) is a framed system of generators for Fil" M M if f 18

a system of S-generators for FilT'/\//\l/FiITS - M and ifi = (wp, lki( ) ® )fl for all i and all g €
Gal(K/K).

One can readily check the existence of a framed basis for M and a framed system of generators
for Fil" M, by Nakayama Lemma. We also define

Mat, +(Fil" M) and Mat, ()
each of whose entries satisfies

Matgz(Fﬂr./\//Y)l’,j S Sa,,f—lkj_ki and MatA (¢r)z] € S kj—k;

in the similar fashion to Breuil modules. In particular,

Matgf(Filrﬁ/l\) € MJ/(S) and Mat (<pr) € GLJ(S)

where MY (S) and GLY(S) are defined in the similar way to Breuil modules. We also define GL"(S)
in the similar way to Breuil modules again.

The inertial types on a Breuil module M and on a strongly divisible modules are closely related
to the Weil-Deligne representation associated to a potentially crystalline lift of T7, (M).

Proposition 3.2.18 ([LMP], Proposition 2.12). Let M be an object in Op- Moddd and let M :
M s S/(wE,FllpS) be the Breuil module correspondmg to the mod p reduction of/\/l
If TRor (/\/l)[ | has Galois type @}~ 01 Wit for some integers k;, then M (resp. M) is of inertial

type @, &k (resp. D), whi).
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Finally, we need a technical result on change of basis of Breuil modules with descent data.

Lemma 3.2.19 ([HLM17], Lemma 2.2.8). Let M € F-BrMod’y be of type @I wk, and let ¢,

w

[ be a framed basis for M and a framed system of generators for Fil" M respectively. Write V :=
Mat,, ¢ (Fil'M) € MU(S) and A := Mate, ¢ (¢r) € GLE(S), and assume that there are invertible
matrices R € GLY(S) and C € GLY"(S) such that

R-V-C =V mod (urt)),
for some V' € MEY(S).
Then €' :=e-R~! forms another framed basis for M and f :=¢'- V' forms another framed system
of generators for Fil" M such that
Mat p/(Fil' M) = V' € MJY(S) and Mat, 5 (¢,) = R+ A-¢(C) € GLJ(S).
In particular, if R~ = A then Mater f(¢r) = ¢(C).

The statement of Lemma 3.2.19 is slightly more general than [HLM17], Lemma 2.2.8, but exactly
the same argument works.

3.2.5 Fontaine—Laffaille modules

In this section, we briefly recall the theory of Fontaine-Laffaille modules over F, and we continue to
assume that Ky = K’ and that K is a tamely ramified Galois extension of K'.

Definition 3.2.20. A Fontaine Laffaille module over k ®g, F is the datum (M,Fil*M, ¢,) of
o a free k @, F-module M of finite rank;
o a decreasing, exhaustive and separated filtration {File}jez on M by k ®@p, F-submodules;

Fild M
JEZ FiITTM *

o a ¢-semilinear isomorphism ¢e : gr* M — M, where gr* M :=

We write F-FLMody, for the category of Fontaine-Laffaille modules over k£ ®g, F, which is abelian.
If the field £ is clear from the context, we simply write F-FLMod to lighten the notation.

Given a Fontaine-Laffaille module M, the set of its Hodge-Tate weights in the direction of o €
Gal(k/F,) is defined as HT, := {i € N | ¢,Fil'M # ¢,Fil""' M }. In the remainder of this paper we
will be focused on Fontaine-Laffaille modules with parallel Hodge-Tate weights, i.e. we will assume
that for all i € N, the submodules Fil’M are free over k ®F, F.

Definition 3.2.21. Let M be a Fontaine-Laffaille module with parallel Hodge—Tate weights. A k®p,F
basis f = (fo, f1,---, fa—1) on M is compatible with the filtration if for all i € Z>¢ there exists j; €
Z>q such that Fil'M = Z;L:ji k®@r, F - f;. In particular, the principal symbols (gr(fo), ..., gr(frn-1))
provide a k @p, F basis for gr* M.

Note that if the graded pieces of the Hodge filtration have rank at most one then any two com-
patible basis on M are related by a lower-triangular matrix in GL,(k ®r, F). Given a Fontaine-
Laffaille module and a compatible basis f, it is convenient to describe the Frobenius action vi-
a a matrix Mat(¢s) € GL,(k ®F, F), defined in the obvious way using the principal symbols
(gr(fo),...,er(fu_1)) as a basis on gr*M.

It is customary to write F-FLMod®?~? to denote the full subcategory of F-FLMod formed by
those modules M verifying Fil’M = M and FilP"'M =0 (it is again an abelian category). We have
the following description of mod p Galois representations of Gx, via Fontaine-Laffaille modules:
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Proposition 3.2.22 ([FL82], Theorem 6.1). There is an exact fully faithful contravariant functor

*
Tcris,Kg

. F-FLMod"”? — Repp(Gr,)

which is moreover compatible with the restriction over unramified extensions: if Lo/ Ky is unramified
with residue field l/k and if M is an object in F—FLModLO’p_m, then | @ M is naturally regarded as
an object in F—FLModl[O’p_Q] and

Tlsis o @k M) = T ko (M)lGy, -

for T*

cris, Ko

We will often write T*

cris

if the base field K is clear from the context.

Definition 3.2.23. We say that p € ReppG, is Fontaine-Laffaille if T} (M) = 5 for some M €
F-FLMod 72,

3.2.6 Etale ¢-modules

In this section, we review the theory of étale ¢-modules, first introduced by Fontaine [Fon90], and its
connection with Breuil modules and Fontaine—Laffaille modules. Throughout this section, we continue
to assume that Ky = K’ and that K is a tamely ramified Galois extension of K.

Let po := —p, and let p be identified with a sequence (py), € (Qp)N verifying pf. = p,,—; for all n.

We also fix w := /—p € K, and let wy = w. We fix a sequence (wy,), € (QP)N such that wt = p,
and @w? = w,_; for all n € N, and which is compatible with the norm maps K(wy4+1) — K(w,)
(c.f. [Breld], Appendix A). By letting Ko = UpnenK(w,) and (Ko)oo := UpenKo(pn), we have a
canonical isomorphism Gal(K/(Ko)eo) — Gal(K/Kp) and we will identify w,, as a character of
Gal(Koo/(Kp)oo). The field of norms k((z)) associated to (K, w) is then endowed with a residual
action of Gal(K o /(Ko)oo), which is completely determined by g(w) = wx(9)w.

We define the category (¢, F ®p, k((p))) -9Mod of étale (¢, F @, k((p)))-modules as the category
of free F®r, k((p))-modules of finite rank 9t endowed with a semilinear map ¢ : It — 9 with respect
to the Frobenius on k((p)) and inducing an isomorphism ¢*90t — M (with obvious morphisms between
objects). We also define the category (¢,F @, k((m@)))-Modaq of étale (¢, F @p, k((w)))-modules
with descent data: an object 9 is defined as for the category (¢, F ®p, k((p)))-9M0od but we moreover
require that 9 is endowed with a semilinear action of Gal(K/(Ko)so) (semilinear with respect to
the residual action on F ®p, k((z)) where F is endowed with the trivial Gal(/K /(Ko)oo)-action)
commuting with ¢.

By work of Fontaine [Fon90], there are anti-equivalences

(¢.F @, k((p))) -M0d — Repg (G (xq)...)

and
(¢7 F ®Fp k((@))) _moodd L> RepF (G(Ko)m)
given by
M — Hom (sm, k((g))%p)
and

M — Hom (M, k(())*P)

respectively. See also [HLM17], Appendix A.2.
The following proposition summarizes the relation between the various categories and functors we
introduced above.
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Proposition 3.2.24 ([HLM17], Proposition 2.2.9). There exist faithful functors
Mi((w)) : F-BrModyy — (¢, F @, k((@))) -Modad

and
F : F-FLMod?~2 5 (¢, F @r, k((p))) -MMod

fitting in the following commutative diagram:

F-BrMod}, Met=n (¢, F @, k((z))) Modaq
TZ,
Repp(Gir,) e > Repp(Gxy)..) ~ @k k(=)
T
F-FLMod*?~? — (¢, F @, k((p))) -Dod

where the descent data is relative to Ky and the functor Res o T . is fully faithful.

cris

Note that the functors My () and F are defined in [BD14]. (See also [HLM17], Appendix A).
The following is an immediate consequence of Proposition 3.2.24, which is also stated in [LMP],
Corollary 2.14.

Corollary 3.2.25. Let 0 < r < p—2, and let M (resp. M) be an object in F-BrModgyy (resp. in
F-FLMod*?=2). Assume that T (M) is Fontaine—Laffaille. If

Mi((z))(M) = F(M) ®k((p)) k(@)
then one has an isomorphism of Gk, -representations
T;t(M) = Tcris(M)'

The following two lemmas are very crucial in this paper, as we will see later, which describe the
functors My, () and F respectively.

Lemma 3.2.26 ([HLM17], Lemma 2.2.6). Let M be a Breuil module of inertial type @?;01 wki with
a framed basis e for M and a framed system of generators f for Fil" M, and write M* for its dual as

defined in Definition 3.2.7. Let V = Mat, ;(Fil"M) € M (S) and A = Mat,, f(¢r) € GLY(S).
Then there exists a basis ¢ for My((wy)(M™*) with g-e; = (wzP Fi(g)@1)e; for alli € {0,1,-- ,n—

1} and g € Gal(K/Ky), such that the Frobenius ¢ on Mj((wy)(M™) is described by
PPN
Mate() = V' (A7) € My (F @, k[z]))

where V, A are lifts of V, A in M, (F @r, k[[@]]) via the reduction morphism F ®p, k[[=]] - S
induced by @ — u and Mat(¢); ; € (F @, k[[@]]) -1, -
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Lemma 3.2.27 ([HLM17], Lemma 2.2.7). Let M € F-FLMod®?~? be a rank n Fontaine-Laffaille
module with parallel Hodge—Tate weights 0 < mg < -+ < my_1 < p — 2 (counted with multiplicity).
Let e = (eg,...,en—1) be a k ®p, F basis for M, compatible with the Hodge filtration Fil*M and let
FeM,(k ®F, F) be the associated matriz of the Frobenius ¢e : gr® M — M.

Then there exists a basis ¢ for M := F(M) such that the Frobenius ¢ on M is described by

Mat,(¢) = Diag (p™°,--- ,p™" 1) - F € My (F @p, k[[p]]).

3.3 Local Galois side

In this section, we study ordinary Galois representations and their potentially crystalline lifts. In
particular, we prove that the Frobenius eigenvalues of certain potentially crystalline lifts preserve the
information of the wildly ramified part of ordinary representations.

Throughout this section, we let f be a positive integer, K/ = Q,, e = p/ —1,and K = Qs (/=)
We also fix @ := {/—p, and let S = (F,; ®p, F)[u]/u®? and Sy := ?wff) = (F,s ®@r, F)[u]/u? C S.

Recall that by [m]; for a rational number m € Z[}%] we mean the unique integer in [0, e) congruent to
m mod (e).

We say that a representation p, : Gq, — GL,(F) is ordinary if it is isomorphic to a representation
whose image is contained in the Borel subgroup of upper-triangular matrices. Namely, an ordinary

representation has a basis e := (e,—1, €n—2, -, €g) that gives rise to a matrix form as follows:
U#n_lwc"*ﬁ("*l) %51 e * %
0 U, _ywen2 (=2 * *
Do = : : . : : (3.3.1)
0 0 ‘e UMuJ"’lJr1 %1
0 0 e 0 U owe

Here, U, is the unramified character sending the geometric Frobenius to u € F* and ¢; are integers.
By Py, we always mean an n-dimensional ordinary representation that is written as in (3.3.1). For
n—1>1>35 >0, we write

Pij (3.3.2)

for the (¢ — j + 1)-dimensional subquotient of p, determined by the subset (e;,e;—1,--- ,e;) of the
basis e. For instance, p; ; = Uy,w“*" and p,,_; o = Py

An ordinary representation Gq, — GL,(F) is mazimally non-split if its socle filtration has length
n. For instance, py in (3.3.1) is maximally non-split if and only if %, # 0 for all s = 1,2,--- ,n — 1.
In this paper, we are interested in ordinary maximally non-split representations satisfying a certain
genericity condition.

Definition 3.3.3. We say that p, is generic if
Civ1—ci>n—1 forallie{0,1,--- ,n—2} andcp1 —co < (p—1)— (n—1).
We say that p, is strongly generic if p, is generic and
Cn—1—Co < (p—1)—(3n—5).

Note that this strongly generic condition implies p > n? + 2(n — 3).

We describe a rough shape of the Breuil modules with descent data from K to K’ = Q, corre-
sponding to p,. Let r be a positive integer with p—1 > r > n—1, and let M € F-BrMod}},; be a Breuil
module of inertial type EB;L;Ol wljf such that T% (M) = 5, for some k; € Z. By Proposition 3.2.9, we
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note that M is a successive extension of M;, where M; := M(k;,r;,v;) (c.f. Lemma 3.2.10) is a rank
one Breuil module of inertial type w’;i such that

ki+pri A mr ~ , Cit+i
w2 T (M) 1, = w0 (3.3.4)

|1Qp

for each i € {0,1,--- ,n — 1}. More precisely, there exist a framed basis e = (e,,—1,€n—2, - ,€g) for
M and a framed system of generators f = (fn_1, fu—2, -, fo) for Fil"M such that

uTnfl(pfl) u[p_lkn727kn—l]fvn_1 n—g u[p_lkr)*knfl]fvn_l 0
0 um—2(p—1) . u[Pflko—knr—Z]fvn_Q 0
Matgﬁi(Fil’"M) = ] ) . ] 1, (33.5)
0 0 . o (P—1)
VUp—1 u[k?n—2_knfl]fwn71,n72 e u[ko_kn—l]fwnil’o
0 I/’I’L—Q PP u[ko_knfﬂf wn_270
Matg,[((br) = . . . . , (3.3.6)
0 0 o Yo
and
0 u[k"ﬁ*k"*l]ffyn_l oo e u[krkn—l]ffyn_l 1 u[ko’k"*l]f’yn_l 0
0 0 B I 7] L E VAP
Mat,(N) = | : : : : (3.3.7)
0 0 e 0 ulko=kilr~, o
0 0 e 0 0
for some v; € (F,y ®F, F)* and for some v; j,w; j,7:; € So.
Fix 0 < j <i<n—1. We define the Breuil submodule
M, ; (3.3.8)
that is a subquotient of M determined by the basis (e;,e;—1,--- ,e;). For instance, M, ; = M, for

all 0 <i <n — 1. We note that Tf (M, ;) = p, ; by Proposition 3.2.9.
We will keep these notation and assumptions for M throughout this paper.

3.3.1 Elimination of Galois types

In this section, we find out the possible Galois types of niveau 1 for potentially semi-stable lifts of p,
with Hodge-Tate weights {—(n — 1), —(n —2),--- ,0}.
We start this section with the following elementary lemma.

Lemma 3.3.9. Let p: Gq, — GL,(E) be a potentially semi-stable representation with Hodge—Tate
weights {—(n — 1), ...,—2,—1,0} and of Galois type @?;01 07];’
Then

n(n—1) __ Tb:l ki
det(p)hqp =g 2 . w%b"

)

where ¢ is the cyclotomic character.

Proof. det(p) is a potentially crystalline character of Gq, with Hodge-Tate weight _(Z;Zol i) and
n—1 . -1
of Galois type &%’:0 k“, Le., det(p) - wy Lico ki g crystalline character with Hodge-Tate weight

n—1 . n{n—
—(Z?;OI i) = —w so that det(p) Wy Lico ki oy O

|IQP
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We will only consider the Breuil modules M corresponding to the mod p reduction of the strongly
divisible modules that corresponds to the Galois stable lattices in potentially semi-stable lifts of p,
with Hodge-Tate weights {—(n—1), —(n—2),---,—1,0}, so that we may assume that r =n —1, i.e.,
M € F-BrMod; .

Lemma 3.3.10. Let f = 1. Assume that p, is generic, and that M € F—BrModgd_1 corresponds to
the mod p reduction. of a strongly divisible module M such that T2 Y M) = 5, and Tgp*”*l(/ﬂ) is a
Galois stable lattice in a potentially semi-stable lift of p, with Hodge—Tate weights {—(n — 1), —(n —
2),---,0} and Galois type EB:.:Ol @k for some integers k;.

Then there erists a framed basis e for M and a framed system of generators f for Fil" ' M such
that Mat, ¢ (Fil"~' M), Mat, ;(é,_1), and Mat,(N) are as in (3.3.5), (3.3.6), and (3.3.7) respectively.
Moreover, the (ki,r;) satisfy the following properties:

(i) ki=c; +i—r; mod (e) for alli € {0,1,--- ,n—1};

(i) 0<r;<m—1 forallie{0,1,--- ,n—1};
n—1 n—1)n
(i) Yo7y m = g

Proof. Note that the inertial type of M is @?;01 wP by Proposition 3.2.18. The first part of the
Lemma is obvious from the discussion at the beginning of Section 3.3.

We now prove the second part of the Lemma. We may assume that the rank-one Breuil modules
M, are of weight n — 1, so that 0 < r; < n —1 for i = {0,1,....,n — 1} by Lemma 3.2.10. By the
equation (3.3.4), we have k; = ¢; + 4 — r; mod (e), as e = p — 1. By looking at the determinant of p,
we deduce the conditions

n(n—1)

n(n—1)
o tkn_1tkn_2+tko _ n—1 - 5 — ln—1tCn—2tFcot+—75—
w2 1 2 0 =det Tg; (M)|IQP = detp0|1Qp = en-1 2 0 P

from Lemma 3.3.9, and hence we have r,_1 +r,_o+ - +19 = @ (as p > n? +2(n — 3) due to
the genericity of 7). O

One can further eliminate Galois types of niveau 1 if p, is maximally non-split.

Proposition 3.3.11. Keep the assumptions and notation of Lemma 3.3.10. If the tuple (k;,r;) further
satisfy one of the following conditions

or;=n—1 for someie€{0,1,2,--- ,n—2};
o r; =0 for somei € {1,2,3,--- ,n— 1},
then pgy s not mazimally non-split.

Proof. The main ingredient is Lemma 3.2.11. We fix i € {0,1,2,--- ,n — 2} and identify 2 = i + 1
and y = 7 and all the other following. From the results in Lemma 3.3.10, it is easy to compute that
[ki—kit1]1 = e—(cit1—c;+1)+(riy1—7i). By the genericity conditions in Definition 3.3.3 and by part
(ii) of Lemma 3.3.10, we see that 0 < [k; — k;41]1 < e so that if r; > r; 41 then the equation (3.2.12)
in Lemma 3.2.11 holds.

If Ti+1€ < [kl — ki+1]1 and r; > Ti+1, then *ip1 = 0 by Lemma 3.2.11. Since 0 < [kl — ki+1]1 <e,
we have r;11e < [k; — k1)1 if and only if ;11 = 0, in which case p, is not maximally non-split.

We now apply the second part of Lemma 3.2.11. It is easy to check that jo = r;;1 — 1. One can
again readily check that the equation (3.2.15) is equivalent to 7; = n — 1, in which case x;4; = 0 so
that p, is not maximally non-split. O

Note that all of the Galois types that will appear later in this section will satisfy the conditions in
Lemma 3.3.10, and Proposition 3.3.11 as well if we further assume that p, is maximally non-split.
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3.3.2 Fontaine—Laffaille parameters

In this section, we parameterize the wildly ramified part of generic and maximally non-split ordinary
representations using Fontaine—Laffaille theory.

We start this section by recalling that if p, is generic then p, ® w™ is Fontaine-Laffaille (c.f.
[GG10], Lemma 3.1.5), so that there is a Fontaine-Laffaille module M with Hodge-Tate weights
{0,c1 —cog+1,-++ ,en—1 — co + (n — 1)} such that T%, (M) = p, ® w™ (if we assume that 7, is
generic).

Lemma 3.3.12. Assume that p, is generic, and let M € F—FLMOd&p_m be a Fontaine—Laffaille
module such that T% . (M) = py @ w™.

cris

Then there exists a basis e = (eg, €1, ,en—1) for M such that
| M ifj <0;
Fil M = F(ei,-n,en,l) ifci1—co+i—1<j<c¢—co+1i;
0 ifcpo1—co+n—1<7j.
and )

o~ Qo1 Qo2 Qop—2  QQn—1
0 put 041,% o Qip—2  O1p—1
0 0 py™ ++ a2p_2  Q2p-1

Mat(ge) = [ . S ; ! (3.3.13)

0 0 0 - ply noa
0o 0 0 - 0 pnty

where o; ; € F.
Note that the basis e on M in Lemma 3.3.12 is compatible with the filtration.
Proof. This is an immediate generalization of [HLM17], Lemma 2.1.7. O

For ¢ > j, the subset (e;,---,e;) of e determines a subquotient M; ; of the Fontaine-Laffaille
module M, which is also a Fontaine-Laffaille module with the filtration induced from Fil*M in the
obvious way and with Frobenius described as follows:

1 Q5541 Qji—1 Qg
0 miyy o i1 QG
Aij L : :
0 0 ey il
0 0 o 0 pit

Note that Tj; (M; ;) ® w® =P, ;. We let A} ; be the (i — j) x (i — j)-submatrix of A; ; obtained by
deleting the left-most column and the lowest row of A; ;.

Lemma 3.3.14. Keep the assumptions and notation of Lemma 3.3.12, and let 0 < j < j+1<i <
n — 1. Assume further that p, is mazimally non-split.

If det A} ; # (—1)i*j+1/1j7_&1---,u;_llajyi, then [a;; : det A} ;] € P'(F) does not depend on the
choice of basis e compatible with the filtration.

Proof. This is an immediate generalization of [HLM17], Lemma 2.1.9. O

Definition 3.3.15. Keep the assumptions and notation of Lemma 3.3.14, and assume further that
Do satisfies -
det A ; # (1) il - i hay (3.3.16)
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foralli,jeZ with0<j<j+1<i<n-—1.
The Fontaine—Laffaille parameter associated to py is defined as

(n—2)(n—1)
2

FLA(2) = (FLE (7o), , € [P*(F)]

where N -
FL; (pg) := [ (=1)"7*! - det A} ;] € PX(F)
foralli,jeZ such that 0 <j<j+1<i<n-—1.

We often write £ for [z : y] € P(F) if  # 0. The conditions in (3.3.16) for 4,j guarantee the
well-definedness of FL:7(7,) in P!(F). We also point out that FL%7(5,) # (—1)i_j,ujj}1 cepit in
PL(F).

One can define the inverses of the elements in P*(F) in a natural way: for [z1 : 23] € P}(F),
[T1: @2] 7t = [2g : 1] € PL(F).

Lemma 3.3.17. Assume that p, is generic. Then

(i) py 1is generic;

(i) if py is strongly generic, then so is py ;

(iii) if po is mazimally non-split, then so is pg ;

(iv) if py is mazimally non-split, then the conditions in (3.3.16) are stable under py — py -
Assume further that py is mazimally non-split and satisfies the conditions in (3.5.16).

(v) foralli,j € Z with0<j<j+1<i<n-—1, FL:(p,) = FLY (5, @ w?) for any b € Z;
(vi) foralli,j € Z with0<j<j+1<i<n-—1, FLi/(p,) = FLZ20, (5, ):

(vil) for alli,j € Z with0<j<j+1<i<n—1, FL:(p,)~! = FLE =375,

Proof. (i), (ii) and (iii) are easy to check. We leave them for the reader.

The only effect on Fontaine-Laffaille module by twisting w?® is shifting the jumps of the filtration.
Thus (v) and (vi) are obvious.

For (iv) and (vii), one can check that the Frobenius of the Fontaine-Laffaille module associated to
p¢ is described by

00 01 0 0 01
0 0 1 0 0 0 1 0
PR - [Mate(¢a)] "
o1 - 00 0 1 00
10 - 00 10 00
where Mat,(¢,) is as in (3.3.13). Now one can check them by direct computation. O

We end this section by defining certain numerical conditions on Fontaine—Laffaille parameters. We
consider the matrix (1,n)woMat.(de)", where Mat(¢s) is the upper-triangular matrix in (3.3.13).
Here, wg is the longest element of the Weyl group W associated to T and (1,n) is a permutation
in W. Note that the anti-diagonal matrix displayed in the proof of Lemma 3.3.17 is wg seen as an
element in GL,,(F). For 1 <i <n—1 we let B; be the square matrix of size ¢ that is the left-bottom
corner of (1,n)wy Mat, (¢ )"

Definition 3.3.18. Keep the notation and assumptions of Definition 3.3.15. We say that py is
Fontaine-Laffaille generic if moreover det B; # 0 for all1 <i <n —1 and p, is strongly generic.
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We emphasize that by an ordinary representation p, being Fontaine-Laffaille generic, we always
mean that p, satisfies the maximally non-splitness and the conditions in (3.3.16) as well as det B; # 0
for all 1 <i <n —1 and the strongly generic assumption (c.f. Definition 3.3.3).

Although the Frobenius matrix of a Fontaine-Laffaille module depends on the choice of basis,
it is easy to see that the non-vanishing of the determinants above is independent of the choice of
basis compatible with the filtration. Note that the conditions in Definition 3.3.18 are necessary and
sufficient conditions for

(1,n)wo Mat,(¢s)" € B(F)woB(F)

in the Bruhat decomposition, which will significantly reduce the size of the paper (c.f. Remark 3.3.19).
We also note that

o det By # 0 if and only if FL"~%°(5,) # oo;
o det B,,_1 # 0 if and only if FL"~%(5,) # 0.

Finally, we point out that the locus of Fontaine-Laffaille generic ordinary Galois representations pj,
forms a (Zariski) open subset in [P! (F)]w

Remark 3.3.19. Definition 3.3.18 comes from the fact that the list of Serre weights of p, is then
minimal in the sense of Conjecture 3.5.16. It is very crucial in the proof of Theorem 3.5.44 as it is
more difficult to track the Fontaine—Laffaille parameters on the automorphic side if we have too many
Serre weights. Moreover, these conditions simplify our proof for Theorem 3.3.44.

3.3.3 Breuil modules of certain inertial types of niveau 1

In this section, we classify the Breuil modules with certain inertial types, corresponding to the ordi-
nary Galois representations p, as in (3.3.1), and we also study their corresponding Fontaine-Laffaille
parameters.

Throughout this section, we always assume that p, is strongly generic. Since we are only interested
in inertial types of niveau 1, we let f =1, e =p— 1, and w = /—p. We define the following integers
for0<i<n-—1:

1 ifi=n—1;
r.= 2 if0<i<n—1; (3.3.20)
n—2 ifi=0.

We also set
£ = ci+1— 70
foralli € {0,1,--- ,n—1}.
We first classify the Breuil modules of inertial types described as above.

Lemma 3.3.21. Assume that p, is strongly generic and that M € F-BrMongl corresponds to the
mod p reduction of a strongly divisible modules M such that Tg"’n_l(ﬂ) is a Galois stable lattice in
a potentially semi-stable lift of p, with Hodge—Tate weights {—(n — 1), —(n — 2),---,0} and Galois
type @::01 ok

Then M € F-BrModg;1 can be described as follows: there exist a framed basis e for M and a
framed system of generators f for Fil" ' M such that

(0) (0) (0) (0) (0)
T e T e—k T e—k
u'n—1 /anl,n72u n—1 n—l,n—2 ... 5,”71’0/“ n—1 n—1,0
© (0) (0)
O uTn_)2€ . Bn—Q Ourn—Qe_knfzo

Mat,, ¢ (Fil" ' M) =

0
0 0 urse
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and
Mate, f(¢n—1) = Diag (Vn_1, Vn_2, - , Vo)

where kg?j) = k;o) - k§0), vi € ¥ and B; ; € F. Moreover,

Mate (N) = (3 - u™" ~570)

where v; 5 =0 if i < j and v, ; € ue[ki‘m*kgo)hgo ifi>j.

Note that ¢ and f in Lemma 3.3.21 are not necessarily the same as the ones in Lemma 3.3.10.
Proof. We keep the notation in (3.3.5), (3.3.6), and (3.3.7). That is, there exist a framed basis e
for M and a framed system of generators f for Fil"~'M such that Matgi(Fﬂ"_lM), Mat,, f (¢n-1),

Mat, (NN) are given as in (3.3.5), (3.3.6), and (3.3.7) respectively. Since k; = k;o) mod (p—1), we have

T = 7"1(0) for alli e {0,1,--+ ,n — 1} by Lemma 3.3.10), following the notation of Lemma 3.3.10.
We start to prove the following claim: if n —1 >4 > j > 0 then

e— (kO — &) > n. (3.3.22)
Indeed, by the strongly generic assumption, Definition 3.3.3
e= (6" — k) = (p—1) = (e +i—1{") + (c; +j ="
=(p—1) (i —¢j) = (i— ) + (¥ —rl?)
(-1 —(cn1—c0) = (n=1-0)+(1—(n-2))
>3n—4—-2n+4=n.

Note that this claim will be often used during the proof later.
We now diagonalize Mat, (¢n—1) with some restriction on the powers of the entries of the matrix

Mat,, ; (Fil" "' M). Let Vg = Mate, (Fil* "' M) € M (S) and Ay = Mat, ;(¢n—1) € GL;(S). We also

let V3 € MY(S) be the matrix obtained from Vj by replacing v; ; by vi; € So, and By € GLY(S)

the matrix obtained from Ay by replacing w; ; by wa € So. It is straightforward to check that

Ap- Vi =Vy - By if and only if for all 4 > j

J

i—1
Vi”i,ju[k?)ikgmh + Z wisv;,ju[k.im*k§°>]1+[’€§o)*k§°)h + wi,juﬂ(o)eﬂkﬁo)*kﬁo)h
s=j+1
i—1
(0) gy 15(0) _ 1 () ©) _(® ©) _j,(0) () _1(®
— ) " etk =kl Z vi,sw;’ju[kSO R L) Vjvi’ju[kj BN (3.3.23)
s=j+1

Note that the power of u in each term of (3.3.23) is congruent to [kj(-o) - kl(o)]l modulo (e). It is
immediate that for all ¢ > j there exist vj ; € Sy and wj ; € S satisfying the equation (3.3.23) with

the following additional properties: for all i > j

degv; ; < re. (3.3.24)
Letting e’ := eAy, we have

Mat,r g (Fil" ' M) = V3 and Mate p(¢n-1) = ¢(B1)

where f" = ¢/'Vi, by Lemma 3.2.19. Note that ¢(B1) is congruent to a diagonal matrix modulo (u"¢)
by (3.3.22). We repeat this process one more time. We may assume that w; ; € u™ Sy, i.e., that
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Ap = By modulo (u"¢) where By is assumed to be a diagonal matrix. It is obvious that there exists an
p= k(0 (O]
5 ki

upper-triangular matrix V3 = (v} ]u[ 2) whose entries have bounded degrees as in (3.3.24),

satisfying the equation AgV; = VpB; modulo (u"¢). By Lemma 3.2.19, we get Mat,s g/ (Pn—1) is
diagonal. Hence, we may assume that Mat, r(¢,—1) is diagonal and that degv; ; in Mat, ¢ (Fil" ' M)
is bounded as in (3.3.24), and we do so. Moreover, this change of basis do not change the shape of
Mat, (N), so that we also assume that Mat, (V) is still as in (3.3.7).

We now prove that
U,L]u[kw) k(O)] IB Ju 1(0)6 (k(o) k(O)) (3325)

foralln —12>17 > j >0, where 8; ; € F. Note that this is immediate for i = n — 1 and 7 = 1, since

(O) =1ifi=mn—1ori=1. To prove (3.3.25), we induct on i. The case i = 1 is done as above.
le po € {2,3,- — 2}, and assume that (3.3.25) holds for all i € {1,2,--+ ,po — 1} and for all
j <i. We consider the subquotient My, o of M defined in (3.3.8). By abuse of notation, we write
e=(ep,, -+ ,ep) for the induced framed basis for M, o and f = (fp,,- - , fo) for the induced framed

system of generators for Fil" ™' M, o.
We claim that for pg > j >0

Po
< = RO _p©
N(fj) S Souefj + Z Sou[kjo 7k,,0 ]1ft~
t=j+1
Consider N(f;) = N(f; — “TEO)eej) + N(UT;O)EGJ‘)- It is easy to check that N(f; —u e ‘ej) and

(0) 0 = 1 . . . .
N(u"s “e;) + r( )ef] are S-linear combinations of e,_1,---,e;11, and they are, in fact, So-linear
[k(o) k(o) ] [k(o) (0 ] %0 e
combinations of u L V1L L RS j+1 since they are w"i -invariant. Since u®N(f;) €

), )
Fil"'M > u(®=DeM and ueN(fj) + r§0)eu€fj = [N(f; —u"s “e;)] + [N(u"7 “e;) + 7’§ )efj], we
conclude that

DPo

— 0 _ (0
N(fj) +reutf € 7 Soults THh
t=j+1
which completes the claim.
(©0) (0 —
Let Mat, ¢(N|m = (7 -k =1 where Y. =0if i < jand ~; ; € So if i > j. We also
e,f Yi,j J J
claim that

P00

Vi,j € u° elk” ki 1So
for po >4 > j > 0, which can be readily checked from the equation cN¢y,_1(f;) = ¢n-1(u*N(f;)).
(Note that ¢ =1 € S as E(u) = u® + p.) Indeed, we have

Po
(0) _ 10
cNon-1(f;) = N(vjej) = v; Z %‘,ju[kf v,
i=j+1

On the other hand, since Mat,, f(¢n—1|m is diagonal, the previous claim immediately implies that

po-,O)

(0) _ (0
or(UCN(f5)) Z Sourlks "~k lie,

t=j+1

Hence, we conclude the claim.
(0
We now finish the proof of (3.3.25) by inducting on py — j as well. Write v; ; = =3, -t mftj)u

for x( ) € F. We need to prove x( ) =0forte{0,1,--- Tpo —2}. Assume first j = py — 1, and we
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compute N(f;) as follows:

(U) 1
e (k) _1(0)
fpo 1 Z xpo Po— 1 t+ 1) (k(o kpo) 1)] (t+1) ( PO po*l)ep(J

((0) +1)e— (k(O) k(o) ) (0) 70
+ Ypo,po—1U" POt ! o — Tpy—1€U "po—1 €po—1,

which immediately implies

(0) 1

e © ()
N(fpo-1) Z xpo po—1l€ po) |- (t+1)+(kzgg)—k;(>(o))_1)]u (t+1)— (k) kS 1)€p0

0 +1)e— (kO —£0_))

+ Vpo,po—1U" PO Po=tep,
©
modulo Fil" ™" My, o. Since vy, o1 € u*~ 850 50015 and e — (k) — kO ) > n by (3.3.22), we
get
o
¢ 0 0 e k() — kO
Nlfpom1) = 3 o pyealerpyy —elt 4 1)+ (k) — KL Ju )00 b0e,
=0
modulo Fil"~ ' M,, o, so that
2
t 0 0 e k() — kO
N(fpo—l) = Z igio)apo 1[6 z()o) 1 (t =+ 1) + (k;l(J?)) - kI(FO)—l)]u =t po~ 1)6100
=0

modulo Fil"~ ' M, o.
It is easy to check that

erl® ) —e(t+1)+ (kQ — k) #0 (3.3.26)

Po po—1

modulo ( ) forall 0 <t < réﬂ) — 2. Indeed, eré?)ll —e(t+1)+ (k:,()?)) — kz(f;) 1) =-— 1()0)71 +(t+1)+

(kz(,oo - kpo ) =0+1)+ (cpy — Cpo—1 +1) — r,(g?)) modulo (p). Since 0 <t < r,(go) -2,
0 < (cpy — €po—1+2) — r;(;?)) <(E+1)+(cpy —cpo-1+1) — T(O) <(cpy —Cpo—1— 1) <p

by the strongly generic conditions, Definition 3.3.3. Hence, we conclude that xz(fo),p(rl = 0 for all

0<t< 7’1(;?)) — 2 since uN(fp,—1) € Fil" "' M,, o. This completes the proof of (3.3.25) for j = py — 1.
Assume that (3.3.25) holds for i = pg and j € {po — 1,po — 2, ,s+ 1}. We compute N(f;) for
po— 1> s >0 as follows: using the induction hypothesis on i € {1,2,--- ,po — 1}

r0_1
(S —(k(0) _(0)
N == 3 0ulelt41) (9 — KO0
t=0
= {0 e— (k0 k() S e— (kO —k{7) 0), (0) 4.0
+ Z /Bz su Z Vs,iu s K es_[ (k k )]
i=s+1 s=i+1

Po
(0) _((0) _1.(0) (0)
e E ’Yi,sue (k; kg )61' . ,,,‘g[))eurS ees.
1=s+1
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. (6O 0=
Since v, ; € ule~ " =R IG5, we have

r0 _1
PO
e _(£(0) _.(0)
N(f) == 3 et 1) - (K2 - KO D,

t=0

= (0) (0) (0)\1,, 7P e— (kO —(0)) ), r@e
B Z Bislri e = (k7 = k7)|u™ o e rgreus e

i=s+1

modulo Fil"~ ! M,, o, which immediately implies

r9_q
PO
N = Y af e = e(t 1) + (k) — KO)us =R,
t=0
pol 0) 0) ©) y_ (10 _
+ Z BislrPe =17 e + (k" = k)Jure e~k D
i=s+1

modulo Fil”_lMpg’O. Now, from the induction hypothesis on j € {po — 1,pg — 2,--- ,s+ 1},

u® Pez—:l gi)s[rgo)e _ Tgo)e + (klgo) _ kgO))]ur£°>e—(kEO>—’%f”)ei c Fﬂn71Mp0’0
i=s+1
and so we have
-2
WN(f) = D afllriOe — et 4 1) + (k) — KOJus 2 Ea =60,
t=0

modulo Fil" "' M,, o. By the same argument as (3.3.26), one can readily check that r%% — e(t +

1) + (k},? - kgo)) # 0 modulo (p) for all 0 < t < 7“;(,2) — 2. Hence, we conclude that a:,(,?,s = 0 for all
0<t< rzg,?)) — 2 as u*N(f,) € Fil" "' M, o, which completes the proof. O

Proposition 3.3.27. Keep the assumptions and notation of Lemma 3.3.21. Assume further that p,
is mazimally non-split and satisfies the conditions in (3.3.16).
Then B;i—1 € F* forie{1,2,--- ,n—1} and we have the following identities: for 0 < j < j+1<
1 <n—1 o o
FL;’j (po) = [,61‘7]‘1/]‘_;'_1 REIC 77 S T (71)17]+1 det A;,j] € Pl (F)

where
Bi+15  Bi+a Bj+sj 0 Biiy Bi.j
1 Bit2j+1 Bjrzgrr o Bicier Biga
2 0 1 Bitsg+2 0 Bi—ij+2 Bij+2
% : : ) : :
0 0 0 o Bicti—2 Bii-2
0 0 0 E 1 Bii-1

Proof. We may assume ¢y = 0 by Lemma 3.3.17. Welet V := Matg,i(Fﬂ"_lM) and A := Mate 7 (¢n—1)
be as in the statement of Lemma 3.3.21. By Lemma 3.2.26, the ¢-module over F @, F,((@)) defined
by M := Mg, ((w))(M*) is described as follows:

Mat,(¢) = (Ui,;)
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where
©
vyt e if i = j;
U= 0 it > g
! -1 RO ONITO N, j
vy - Bji-m 3TN ifi<y
. . . 3O O e
in a framed basis ¢ = (¢,_1,¢,—2, -, ¢) with dual type w N N L BE
() £ () . .
By considering the change of basis ¢/ = (@w"n-1¢,_1, @ r~2¢, o,--- , @ ¢)), Mat, (¢) is described
as follows:
Mate (¢) = (Vi;)
where
©) .(0)
l/j_l .Qe(kj +r; ) if 4 :],
Vi.=4 0 if i > j;
] k(g)JrT(o)) o ’,
5; i@ if i < j.

Since k(o) =c+1i— T‘(O) for each n — 1 > ¢ > 0, we easily see that the ¢-module M is the base
change via F ®r, F)((p)) = F ®F, F((@)) of the ¢-module My over F @p, Fy,((p)) described by

-1 en_1+(n—1
vy tper 1+(n—1) 0 0
V,,:,l1ﬁn71,n72pc"71+(n71) V;EQPC,,L,2+(7172) e 0
Mate (¢) = B B
1 2 -1
Vit B, opC” =Dyl B, opc” 2t=2) oy tpe
in an appropriate basis ¢’ = (¢//_1,¢// _5,--- ,¢j), which can be rewritten as
vt 0 )
-1 -1
v LB v e 0
n—1Mn—1n—2 n—2
_ ' n1tn—1 +1
Mat£//(¢) - . . . . 'Dlag (ﬂc o [ 7861 7260) .
-1 -1 -1
Vp1Bn—10  Vp_oBn—20 - Vg
=:H'

By considering the change of basis ¢/ = ¢ - H' and then reversing the order of the basis ¢/, the

Frobenius ¢ of Mty with respect to this new basis is described as follows:

vy Vf1511,0 V»;filﬁnfl,o
0 vy 7 ﬁn—l,l
Mat(¢) = Diag (BC[J’BCl"Fl’ ... 7Bcnﬂ-ﬁ-(n—l)) . 1 . n—1 . (3.3.28)
0 0 0 vty
=H

with respect to the new basis described as above.
The last displayed upper-triangular matrix H is the Frobenius of the Fontaine—Laffaille module
M such that T?. (M) = py = T (M), by Lemma 3.2.27. Hence, we get the desired results (c.f.

cris

Definition 3.3.15). O

Remark 3.3.29. We emphasize that the matriz H is the Frobenius of the Fontaine—Laffaille module
M, with respect to a basis (eg, €1, ,en—1) compatible with the filtration, such that T, (M) = py =
T, (M), so that we can now apply the conditions in (3.3.16) as well as Definition 3.3.18 to the Breuil
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modules in Lemma 3.3.21. Moreover, H can be written as

1 Bio -+ Bn-1p0
0 1 - Ba1s
. . . n‘ 'Diag(U(;l,Vfl,"' V*l )7

0 0 0 1

=:H'
so that we have (1,n)woH"' € B(F)woB(F) if and only if (1,n)we(H')" € B(F)woB(F). Hence, p,
being Fontaine—Laffaille generic is a matter only of the entries of the filtration of the Breuil modules
if the Breuil modules are written as in Lemma 3.5.21.

3.3.4 Fontaine—Laffaille parameters vs Frobenius eigenvalues

In this section, we study further the Breuil modules of Lemma 3.3.21. We show that if the filtration is
of a certain shape then a certain product of Frobenius eigenvalues (of the Breuil modules) corresponds
to the newest Fontaine—Laffaille parameter, FLZ_LO(EO). To get such a shape of the filtration, we
assume further that p, is Fontaine-Laffaille generic.

Lemma 3.3.30. Keep the assumptions and notation of Lemma 3.8.21. Assume further that p, is
Fontaine—Laffaille generic (c.f. Definition 3.3.18).

Then M € F—BrModZd_l can be described as follows: there exist a framed basis e for M and a
framed system of generators f for Fil" ' M such that

Matg,[((bnfl) = Diag (ttn—1, n—2, -+, fto)
and
Mat,, ¢ (Fil" "' M) = (Ui ;)
where (0) (0) (0)
un-1e" ka1 =k ) ifi=n—1andj=0;
urie fO<i=j<n—1;
B N (S o) BV SN L g
Uig=14 "5, " fn—1>i>j; (3.3.31)

(0) (0) _1.(0) o .
uro et knsi—ke ) ifi=0andj=n—1;

(0) (0) _4.(0) . .
xg,j - u'O et (k;" —ko ") ifi=0<j<n—1;
0 otherwise.

Here, p1; € F* and x; j € F.
Moreover, we have the following identity:

n—2
FL, % (pg) = H pi
=1

Due to the size of the matrix, we decide to describe the matrix Matg,i(Fil"_lM) as (3.3.31). But

for the reader we visualize the matrix Mat,, f(FﬂnflM) below, although it is less accurate:

(0) (0)
0 0 S 0 urn—le*kn—u}
(0) 0) ,_ (0 [(0) ,_1.(0)
0 u'n-2 e xn_2)1u’"n726 k‘n72,1 l‘n_g)ouy”*Qe k'r}.fZ,O
0 (0) (0)
0 0 e urt” zyou't ¢ Fo
(0) (0) (0) (0) (0) (0) (0)
w'o etknio Lo p_ou’® etknla0 ... xu"® etkio xoou" ©
0) ._ 1.(0) ()
where k; 7= k; " — k.
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Proof. Let ey be a framed basis for M and f a framed system of generators for Fil"~' M such that
Vo := Mat,, (Fll” M) and Aj := Mate, s (qﬁ,L 1) are given as in Lemma 3.3.21. So, in particular,
Vo is upper- trlangular and Ay is diagonal.

By Proposition 3.3.27, the upper-triangular matrix H in (3.3.28) is the Frobenius of the Fontaine—
Laffaille module corresponding to py, as in Definition 3.3.15. Since we assume that p, is Fontaine—
Laffaille generic, we have (1,n)woH' € B(F)woB(F) as discussed right after Definition 3.3.15, so
that we have woH'wy € (1,n)B(F)woB(F)wy. Equivalently, wo(H')'wo € (1,n)B(F)woB(F)wy by
Remark 3.3.29, where H’ is defined in Remark 3.3.29. Hence, comparing Vo with wo(H’)!wg, there
exists a lower-triangular matrix C' € GLY(S) such that

‘/0 -C = V1 = (Uiaj)ogi,jgn—l

where U; ; is described as in (3.3.31), since any matrix in woB(F)wy is lower-triangular. From the
identity Vo - C' = Vi, we have Vi = Mat,, s (Fil""'M) and A; := Mate, s (¢n-1) = Ao - $(C) by
Lemma 3.2.19, where e; := ¢, and il = Q1V1. If © < j, then [kj(p) — kgo)] = k§o) — kEO) > n as
Do 1s strongly generic, so that A; is congruent to a diagonal matrix B) € GL,(F) modulo (u") as
(0)_1,(©

C=(c;- ulks” =k 11) is a lower-triangular and A, is diagonal.

Let V5 be the matrix obtained from V; by replacing x; ; in (3.3.31) by v, ;, and By = (b; ;) is the
diagonal matrix defined by taking b;; =0}, if 1 <i <n—2and b;; =b,,_,_;, ,_; otherwise, where
= (b} ;). Then it is obvious that there exist y; ; € F such that

A Vo=V

modulo (u"¢). Letting e, := ¢; - A1, we have Vo = Mat,, ¢ (Fll" M) and Mat,, ¢ ((bn 1) = ¢(Ba)
by Lemma 3.2.19. Note that A; := Mate, s (Pn—1) is dlagonal Hence, there exist a “framed basis for

M and a framed system of generators for Fil”~' M such that Mat,, ;(é,_1) and Mat,, ;(Fil*~' M) are
described as in the statement. B B

We now prove the second part of the lemma. It is harmless to assume ¢y = 0 by Lemma 3.3.17. Let
V := Mat, ;(Fil" "' M) and A := Mat, ((¢,_1) be as in the first part of the lemma. By Lemma 3.2.26,
the ¢-module over F @x, F,(()) defined by 9 := Mg (())(M*) is described as follows: there exists
a basis ¢ = (ep—1,¢n—2, - ,¢0), compatible with decent data, such that Mat.(¢) = (/Tflﬁ)t where
Vt and (A~1)* are computed as follows:

wr(()())eJrk(O) 1,0

0 0 0 w
0 (0) (0)
0 Ern,—Q .« O ‘fL‘O n— 2w70 €+kn72 0
Pt =
(0) (0) 0 0 0
n—2%"Mn_21 e 0 1,0
Tng @ 2" @ fco,mr( etk
(0 (0) (0) (0) (0) 0) 0
w n— 1? kn 1,0 xn—Q OErn 2 _kn 2,0 PPN xl 0@”‘1 €e— kg,O xo Owré )e
and
-1 _ 1 -1 -1 -1
A - Dla‘g (Hn—l? Hp_—25 "5 Mo ) .
L. . (0) (0) (0 (0)
By considering the change of basis ¢ = (@knfl o1, T 2ep o, -+, ep,who ¢0), we have

Mate (¢) = (V') - Diag (1, st -y o)
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where
0 0 . 0 ek +r6”)
0] 0]
0 et 0 Zo.p_omo®ks+r8")
(VY = : . : :
0 0
0 Tp_2 1@6<k;22+7';22) s @e(k§0)+r§o)) Iy 1Qe(k(()0)+ré’0))
0 0 0 0
@ it gy gt kae Tl O +1{) (40 +78")

1,0 Zo,0W
Since kj(.o) + r]@ = ¢j +j for all j, it is immediate that the ¢-module 9t over F @, F),((@)) is the
base change via F ®p, F,((p)) = F ®@p, F,((@)) of the ¢g-module My over F @, F,((p)) described
by
Mater (¢) = F” - Diag (per— 1771, por2t772 L. p©)

where )
0 0 0 0 I
0 Fn =2 0 0 po Ton—2
_ 1 —
” 0 ppoTn—2n-3 P 3 0 Mo~ %0,n—3
F" = ) ) . )
-1 -1 - -1
0 Hp_oTn—21  Hp_3Tp-31 - Hq Ho To,1
-1 ] ) 1 -
HBp—1  Hp—2Pn—2,0  Hp_3Tn-30 - H; T10 Hg T0,0

in an appropriate basis ¢”.
Now, consider the change of basis ¢’/ = ¢” - F”" and then reverse the order of the basis ¢/”. Then
the matrix of the Frobenius ¢ for 97y with respect to this new basis is given by

Diag (BCO’BCI+1’ L ’Bcnfﬁrnfl) . F

where

-1 —1 —1 -1 -1
Mo 0,0 My T1,0 Mo T2,0 -0 Mp_0oTn—20 MHy_q
~1 -1 21 -1

Ho T0,1 Hq Ho ®21 0 Py _gTn-21 0
-1 -1 -1

Hg To,2 0 Ho My l9Tp—22 0

F= ) ) )

-1 -1

Mo~ To,n—2 0 0 [ 0
ot 0 0 0 0

By Lemma 3.2.27, there exists a Fontaine-Laffaille module M such that F(M) = My with Hodge-
Tate weights (co,c1 +1,-++ ,cp—1 +n — 1) and Mat.(¢s) = F for some basis e of M compatible with
the Hodge filtration on M. On the other hand, since T} (M) = py, there exists a basis e’ of M
compatible with the Hodge filtration on M such that

wo wWoe,1 v Won—2 Wo,n—1
0 wi - Wip—2 Win-1
Mat, (¢e) =
0 0 Wnp,—2 Wn—-2n—1
0 0 0 Wn_1
=:G

where w; ; € F and w; € F* by Lemma 3.3.12. Since both e and ¢’ are compatible with the Hodge
filtration on M, there exists a unipotent lower-triangular n x n-matrix U such that

U-F=0G.
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Note that we have wg 1 = ", by direct computation.

Let U’ be the (n—1) x (n — 1)-matrix obtained from U by deleting the right-most column and the
lowest row, and F’ (resp. G’) the (n — 1) x (n — 1)-matrix obtained from F' (resp. G) by deleting the
left-most column and the lowest row. Then they still satisfy G’ = U’ - F' as U is a lower-triangular
unipotent matrix, so that

FL19(5g) = [won—1 : (~1)"det G'] = [, 21 : (—1)"det F'] = [ H# ]

which completes the proof. O

Proposition 3.3.32. Keep the assumptions and notation of Lemma 3.3.30.
Then M € F—BrModgd_1 can be described as follows: there exist a framed basis e for M and a
framed system of generators f for Fil""* M such that

ue (k(()) k’éo) )

0 0 0 0 n—1

0 u(n—2e 0 e 0 0

) 0 0 um=3e .. 0
Matgi(FiF% M) =

0 0 0 N T 0

=2tk k() 0 0 e 0 0

Moreover, if we let
(0) (0)
Maty, (6n-1) = (aigults” 5710

for a;; € §§ and oy ; € So if i # j then we have the following identity:

n—2 n—2
n— — 0)\— —
FL~10(5) = H(az(ﬁ)) '= H Hy '
=1 i=1

() ()

where «; ; € F is determined by o; @ = «; ; modulo (u®).

Note that Mat, ¢(¢,—1) always belong to GLY(S) as e and f are framed.

Proof. We let e, (resp. e;) be a framed basis for M and £ (resp. f,) be a framed system of gen-
erators for Fil""* M such that Mate,r, (Fil" ' M) and Mate,,f (¢n—1) (resp. Mate s (Fil"' M)
and Mat, ;. (¢n—1)) are given as in the statement of Lemma 3.3.30 (resp. in the statement of
Proposition 3.3.32). We also let Vo = Mat, f (Fll” M) and 4, = Mate,, r (qbn 1) as well as
Vi =Mate, s (Fil""" )M and A, = Mate, f. (gbn,l).

0)  ;.(0) (0) (0>
It is obvious that there exist R = (rm-u[ki ~kIy and € = (¢ ]u[k ki

1) in GLY(S) such that
R-Vy-C=V; and ¢4 :§0R71
for 7; ; and ¢; ; in So. From the first equation above, we immediately get the identities:

#0) (0) —1=,0 . .0

(0) (0)_
n—1lmn—1" 70,0 " Cn—1,n— andr i,i =1

for 0 < i < n — 1, where 7" 0 € F (resp. c ) € F) is determined by r( ) =

cgoj) = ¢; ; modulo (u®)). By Lemma 3.2.19, we see that 41 = R- Ay - ¢(C )

= r;; modulo (u®) (resp.
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(0) _j,(0)
Hence, if we let 4 = (ai,ju[kﬂ' ki ]1) then

(0) 0 _ (0

Tig “Hit G = Oy

for each 0 < ¢ <n — 1 since R and C' are diagonal modulo (u), so that we have

n—2 n—2
0
[Lmi=Tled
i=1 i=1
which completes its proof. O

Note that the matrix in the statement of Proposition 3.3.32 gives rise to the elementary divisors

of M/Fil"™* M.

3.3.5 Filtration of strongly divisible modules

In this section, we describe the filtration of the strongly divisible modules lifting the Breuil modules
described in Proposition 3.3.32. Throughout this section, we keep the notation rfo) as in (3.3.20) as
well as k§0).

We start to recall the following lemma, which is easy to prove but very useful.

Lemma 3.3.33. Let 0 < f < n be an integer, and let Me Og —1\/Iodgd_1 be a strongly divisible module
corresponding to a lattice in a potentially semi-stable representation p : Gq, — GL,(E) with Hodge—

Tate weights {—(n—1), —(n—2),--- ,0} and Galois type of niveau f such that Tgp’n_l(ﬁ/l\)(@oEF & Do-

If we let
qn—1 47 -1é A
X .— Fil MTFHE M 90, F
Fil" S - M

fori e {0,1,--- ;n— 1}, then for any character & : Gal(K/Ky) — K* we have that the &-isotypical
component Xg(l) of X is a free Ky ® E-module of finite rank

G nn—1) di(i+1)
1":&1111{;(0@,%EX£z = 5 — 5 -

Moreover, multiplication by u € S induces an isomorphism Xg(o) = XE(%).

Proof. Since p has Hodge-Tate weights {—(n—1), —(n—2),---, 0}, by the analogue with E-coefficients
of [Bre97], Proposition A.4, we deduce that

Fil" D = Fil" 'Spfr1 @ Fil" 2Spfro® - @ Fil'Spf1 & Spfo

for some Sp-basis fo, -+, fa_1 of D, where D := /\//\l[%] = Sg ®F Dfﬁp’”‘l(V), so that we also have

Fil" 'DNFil'SpD = Fil" 'Sp fr1 ® Fil" 2Spfro@® - ® Fil'Spf; @ - - - @ Fil'Sg fo.

Since p Tg”’n_l(/\?) ®o, B is a Gq,-representation, Fil' (K ®, Dg”’n_l(p)) ~ K ®q, Fil'Dar(p®

1-n (i) ~v Fil" " 'DNFil'SED 3 : SE ~ M2 me—1
gt™™), so that X\*) = —FrTg,p 8@ free Ko®q, F-module. Since ks, = D, =0 (Ko®q,

E)u/E(u)?, we have rankK0®QpEX(i) = % - W} e. We note that Gal(K/Kj) acts semisim-
ply and that multiplication by u gives rise to an Ky ®q, E-linear isomorphism on Sg/Fil’Sg which
cyclically permutes the isotypical components, which completes the proof. O
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Note that Lemma 3.3.33 immediately implies that
rankKO®QpEX£(i) - rankK(]@QpEXg(iH) =i+ 1 (3.3.34)

We will use this fact frequently to prove the main result, Proposition 3.3.36, in this subsection.
To describe the filtration of strongly divisible modules, we need to analyze the Fil"~'M of the
Breuil modules M we consider.

Lemma 3.3.35. Keep the notation and assumptions of Lemma 3.5.21.
() If u® is an elementary divisor of M/Fil"~' M then

e— (k2 k) <a < (n—2)e+ E, — k).

Moreover, FLI19(5,) # oo (resp. FLI''°(5,) # 0) if and only if u®~ (k2 —hg”) (resp.
u"= 2)e+(kff’>1 k(O))) is an elementary divisor of M/Fil" "' M.

(ii) If we further assume that p, is Fontaine—Laffaille generic, then

_ (0) _ 1.(0) _ _ (0 _(0)
{u(n 2)e+(k, 2 —kg )7 u(n 2)67 u(n 3)67 e ue’ u® (k21 —kg )}

are the elementary divisors of M/Fil”fl./\/l.

Proof. The first part of (i) is obvious since one can obtain the Smith normal form of Mat Fil" ™' M by

elementary row and column operatlons By Proposition 3.3.27, we know that FL"~"%(5,) # oo if and

e— (kn.—l

(0)
only if 8,,_1,0 # 0. Since u ~k5”) has the minimal degree among the entries of Mat, ¢ Fil"* M,

we conclude the equivalence statement for FL"~°(5,) # oo holds. The last part of (i) is immediate
from the other equivalence statement, FL ™~ L 0( o) # oo if and only if 8,_1,0 # 0, by considering M*
and using Lemma 3.3.17, (vi).

Part (ii) is obvious from Proposition 3.3.32. O

Proposition 3.3.36. Assume that p, is Fontaine—Laffaille generic and keep the notation 7’( ) as in

(3.3.20) as well as kl( ) Let M € Og-Modyy Y be a strongly divisible module corresponding to a

—1 ~1.(0)
ki and

lattice in a potentially semi-stable representation p : Gq, — GLy(E) with Galois type @

Hodge-Tate weights {—(n —1),—(n —2),---,0} such that TQ"’n_l(M) ®oy F 2 p,.
Then there exists a framed basis (€n,—1,€n—2," eo) for M and a framed system of generators

(ﬁ_l,ﬁl_27 . ,fo) for Fil"~ "M modulo Fil" 'S - M such that MatA Fil"~' M is described as fol-

lows:

_pt 0 0 e 0 ue— k2 =k
0 BE(u)"? 0 0 0
0 0 E"? 0 0
0 0 E(u) 0
k=R S 02 P2 B ()t 0 0 e 0 o

where o € O with 0 < vp(a) <n —1.

Proof. Note that we write the elements of /\/l in terms of coordinates with respect to a framed basis

€:= (€yr_1,€n—2,""+,€0). We let M : - M ®g S, which is a Breuil module of weight n — 1 and of

type D) 0 Lk by Proposition 3.2.18. Note also that M can be described as in Proposition 3.3.32,
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and we assume that M has such a framed basis for M and such a framed system of generators for
Fil" ' M.
Let

_ (0) _1.(0)
ué (k21 —kg )ZZ gxn 1kE(’LL)

(0)
o )Zk 0 Tn-2x B ()" Fil" 3
€
(ot)

k(o)
ﬁ] - - T
© o Fil""'SM
ue ki =k )Zk oxlkE()
Zk:@ zop E(u )k

where z; ; € Og. The vector fo can be written as follows:

2

N (%) 0 Tn—1kE(u)F 0

(k 1=k o) 22_3 ;I;n72y;€E(’U,)k 0

~ © (0
Fo = w21k : " '

[AC (V) -2

(mu( n<;>l )Y Lk E(w) 2—2 k
wFnli=ke) 2;12 Io,k[E( )k —pk]/ue Zo,0 + Zk:l Lo,kP

By (ii) of Lemma 3.3.35, we know that w= k2 =k”) g an elementary divisor of M/Fil"~' M

and all other elementary divisors have bigger powers, so that we may assume v,(2,—1,0) = 0. Since
e _(p©® 0 R . PN
Fil" ' M C u®®a=17R0) M, we must have v,(x0,0) > 0. So €, := (€,_1,8n_2,--- ,€0) is a framed

basis for M by Nakayama lemma and we have the following coordinates of ﬁ) with respect to €;:

0 0
ue_(ki—)l_k(g ))

0 —
~ Fil"™' M
fo= : S v
) Fll SM ~k-(()0)
0 w
«

for o € Op with vp(a) > 0.

0) =~ n—1
Since uk —ko M) there exists such that
fo € Pl 15.07 ) <0 f1

(©
u’ i )Zk 0 Yn— 2kE() (

Fil" ' M )
Fil" 'SM ) .
n—2 E k @1
G z,i’?» oY1, k )
Ek 0 Yo (u )

where y; ; € Op. By Lemma 3.3.33, we have y; 0 = 0 for all i: otherwise, both uk" k" F and i
belong to X(O) - X(lk)m) which violates (3.3.34). Since u€ is an elementary divisor of M /Fil"~* M
w1

by (ii) of Lemma 3.3.35, we may also assume y;,; = 1. Hence, by the obvious change of basis we get

fl as follows:
0

- : Fil" 101
fi=E( el ———— .
w) Fil" 'SM O

= O

o
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By the same arguments, we get ﬁ € (%)~k(o> fori=1,2,--- ,n— 2 as in the statement.
ok
Note that the elements in the set
© 40 > (0) _1(0) ~ o 10 (0 ~
{un=17R fo, B(u)ufn=17r fo, o B(u)* PufmaRo fo)

(0) 1 (0) ~ (0) _ 2.(0) ~ _ (0) (0) ~
U{ukn 1k f17 ( )ukn 1k f17 7E(u)n 3uk M 1}

(0)_(>A
{k k2fn2}

are linearly independent in X © )(0) over F, so that the set forms a basis for X © )(0) by Lemma 3.3.33.

ohn-1 oFn-1

Hence, fn_l is a linear combination of those elements over E. We have

_pn—l
0
kO _g® = n—2—i i\ 7
ZP E(u) 0= :
=0 0

(0) (0)
ukngl—ko ZZL 02pn 2— zE( )

n—2 aan—17 7

_ 1 k(m _p©® o i\ = Fil" ™" M

n— - 0 3 /LE v 6 S
Faor: (E p (u)>fo < v Lo

Fil" " 1SMm

: (n—2)e+(k(ol —k(o)) . .. n—1 ..
since u n-17"% ) ig an elementary divisor for M /Fil"™ "M by (ii) of Lemma 3.3.35. Moreover,
Up (%) > 0 since Fil" "M Cu (k”(‘)lfk((’O))M C uM by Proposition 3.3.32.

It is obvious that the f; mod (wg, Fil’S) generate M /Fil""' M for M written as in Proposi-
tion 3.3.27. By Nakayama Lemma, we conclude that the f; generate /\/I/Filn_l./\/l7 which completes
the proof. O

Corollary 3.3.37. Keep the notation and assumptions of Proposition 3.3.36, and let

()‘n—17>\n—27' e a/\O) € (OE)n

be the Frobenius eigenvalues on the (wkELO)l @ks)>2 e ,cf)kéo))—isotypic component of Dg”’n_l(p), Then
vp() ifi=n-—1
vp(A) =< (n—1)—i ifn—1>i>0
(n—1)—vp(a) ifi=0.
Proof. The proof goes parallel to the proof of [HLM17], Corollary 2.4.11. O

3.3.6 Reducibility of certain lifts

In this section, we let 1 < f < n and e = p/ — 1, and we prove that every potentially semi-stable
lift of p, with Hodge-Tate weights {—(n — 1),—(n — 2),---,0} and certain prescribed Galois types
D 01 wl;" is reducible. We emphasize that we only assume that p, is generic (c.f. Definition 3.3.3)
for the results in this section.

Proposition 3.3.38. Assume that b is generic, and let (kp—_1,kn—2,- - , ko) be an n-tuple of integers.
Assume further that ko = (p? ' + pf=2 4+ .-+ p + 1)co modulo (e) and that k; are pairwise distinct
modulo (e).
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Then every potentially semi-stable lift of p, with Hodge—Tate weights {—(n — 1), —(n —2),---,0}
and Galois types @?:—01 (IJIJ? is an extension of a 1-dimensional potentially semi-stable lift of py o with
Hodge—Tate weight 0 and Galois type (:J];O by an (n — 1)-dimensional potentially semi-stable lift of
P11 with Hodge-Tate weights {—(n — 1), —(n —2),--- , 1} and Galois types @?:_11 &]Jf‘

Note that if f = 1 then the assumption that p, is generic implies that k; are pairwise distinct
modulo (e) by Lemma 3.3.10. In fact, we believe that this is true for any 1 < f < n, but this requires
extra works as we did in Lemma 3.3.10. Since we will need the results in this section only when f =1,
we will add the assumption that k; are pairwise distinct modulo (e) in the proposition.

Proof. Let Meo g-Modjj; ! be a strongly divisible module corresponding to a Galois stable lattice in

n—1

a potentially semi-stable representation p : Gq, — GL,(E) with Galois type @,_, wf‘ and Hodge—

Tate weights {—(n — 1), —(n — 2),--- ,0} such that TQ"’” 1(/\/l) ®op F 2 5,. We also let M be the
Breuil module correspondmg to the mod p reduction of M. M (resp. M) is of inertial type EB;:OI LTJ];
(resp. D 01 w') by Proposition 3.2.18.

Welet f = (fn-1, fn—2, ", fo) (resp. f= (fn,l, Frio, e ,fo)) be a framed system of generators
for Fil" "' M (resp. for Fil"_l./\//\l). Wealsolet e = (e,—1,€n—2, -+ ,€0) (resp. € = (€n—1,€n—2, " ,€0))
be a framed basis for M (resp. for M\) If © = ap_1en—1 + -+ apeo € M, we will write [z],, for
a; for i € {0,1,--- ,n — 1}. We define [z]s, for z € M in the obvious similar way. We may assume
that Matef(Filn_l./\/l) Mat, r(¢n—1), and Mat,(NN) are written as in (3.3.5), (3.3.6), and (3.3.7)
respectively, and we do so.

By the equation (3.3.4), we deduce 79 = 0 modulo (e) from our assumption on kg. Recall that
p > n? + 2(n — 3) by the generic condition. Since 0 < 79 < (n — 1)(p/ — 1)/(p — 1) by (ii) of
Lemma 3.2.10, we conclude that ro = 0. Thus, we may let fy satisfy that [fp]e, =0if0<i<n-—1
and [fole, = 1, so that we can also let

Hence, we can also assume that [fj]e0 =0for 0 <j<n-1 WeletVy = Mat, (Fll” 1/\/1)
MZ¥(So,) and Ag = Mat 7(¢n-1) € GLY(S0,).
We construct a sequence of framed bases {ém)} for M by change of basis, satisfying that

Maté\(m) f(M) (Flln 1M) MEJ(SOE) and Matam) f{m) (an_l) S GLE(SOE)

converge to certain desired forms as m goes to co. We let V™ € MEI7(Sp ) and A(™ e GLE (Sp,)
for a non-negative integer m. We may write

( (m+1) [n lfkjo}f’x,flﬂz-gl)u[k)nfgfko]f7..'

a2t (1) u[kmﬂfko]f’xémﬂ))

’xm+1

for the last row of (A(™)~! where x(()mH) € (85,)o and x;mﬂ) € (Sog)ofor 0 <j<n-—1. We
define an n x n-matrix R(™*+Y as follows:

1 0 0 0

0 1 0 0
R(m+1) —

0 0 1 0

(m+ ) (m+1) (7n+1)
wlkn—1=koly  Zn=2 _, [kn_o—koly ... i
x(()m+ ) x(()m«{»l) x(()m

u[ 1—koly 1
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We also define

1 0 0 0

0 1 0 0

o(m+1) — : : . : :
0 0 S 1 0

yﬁlm'li'l) [P~ (kn—1—Fko)ls yflnzgl)u[lfl(kn—szo)]f ... y§m+1)u[P71(k1*ko)]f 1

by the equation
Rm+1) 1y (m)  o(m+1) _ y/(m)
where y( mt1) € (So,)o for 0 < j < n— 1. Note that the existence of such a matrix C(™*1 ig
obvious, since p~'ky = ko modulo (e) by our assumption on ko immediately implies [p~!(k; — ko)] s <
ks — kol 7 + [p~'kj — ki) ;. We also note that RO € GLY(Sp,) and C"tD e GLEY (S0 ,.).
Let Vm+D) = V(™) for all m > 0. Assume that V(") = Mat ., 7om (Fil" ' M) and A =

A(m ~(m)

Ma tA(m) ]ﬁm)(qﬁn 1), with respect to a framed basis " and a framed system of generators f . If

we let g™ = glm) . (R™+1)=1 then

Gna (T OmD) :¢n_1(§m)(R<m+1>)*1v<m+1>>
= A(m A(m)¢(c(m+1))

E( +1)R(m+1) A(m) ¢(C(m+1)).
Hence, we get

yimt1) — Mat,,.., 4m+1>(Fil"_1M\) and RU™HD . A(m) L go(mt1)y = Mat_,, .., f(m+1)(¢n_1),

o

where f(mﬂ) = gmA Dy (m+1)
We compute the matrix product A+ .= Rm+1) . A(m) . p(C(m+1) as it follows. If we let

Alm) — (agj;)u[k_j—ki]f)Owgn_l for a{™ € ( SoE)o ifi 4 j and o™ € (S5 )o, then
(m+1) _ [ (m+1) [k;—ki]f O
A (alr+ults )Omgn_l e GLY(S0,,) (3.3.39)
where Oé(mH) [ki=kils is described as follows:

("j”)u[k'—k il +a( ) qulko—ki A g(y m“)) plp~ (ki=ko)ls  if § > 0 and j > O;

(m)u[ko kily if7>0and j =0;
e gy yurl ko)l if i =0and j > 0;

;ml+1> ifi=0and j=0.
0

Let VO =V, and A©) = A;. We apply the algorithm above to V(9 and A©). By the algorithm
above, we have two matrices V(™ and A(™ for each m > 0. We claim that

(m+1) _ agﬂj“b) e ulttpt+p™eg, — ifi>0and j > 0;

az,j ,

a(m-‘,—l) Z(rjn) ifi>0and j=0;
a(r;ﬂ) WP +pMe g, if i =0and j > 0;
O‘(TH) 517) € u(Hpt+p""eg, - if j =0 and j = 0.
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It is obvious that the case ¢ > 0 and j = 0 from the computation (3.3.39). For the case i = 0 and
j > 0 we induct on m. Note that p[p~'(k; — ko)ls — [k; — kol = p([p~'kjlr — ko) — (kj — ko) > e
if 5 > 0. From the computation (3.3.39) again, it is obvious that it is true for m = 0. Assume
that it holds for m. This implies that x§-m+1) € uHpt2" e, for 0 < j < n—1 and so
yj(_erl) c u(1+p+~~+p"“1)eSOE_ Since ¢(yj(m+1))up[p’l(k]—ko)]f—[kj—ko]f) e ytpttp"eg, by the
computation (3.3.39) we conclude that the case ¢ = 0 and j > 0 holds. The case i > 0 and j > 0
follows easily from the case i = 0 and j > 0, since [p~'(k; — ko)ls + [ko — kil — [kj — kily =
p(lp~ ki) s — ko) +e+ko — ki — [kj — kil y > plp~'k;]; — kj — (p— 1)ko > e. Finally, we check the case
i =0 and j = 0. We also induct on m for this case. It is obvious that it holds for m = 0. Note that
Rm+D =T, modulo u+P+-+P""eg, - Since AT = Rm+1) . Am) . (C(mHD) we conclude
that the case i = 0 and j = 0 holds.

The previous claim says the limit of A(™) exists (entrywise), say A(®). By definition, we have
V() = V(™) for all m > 0. In other words, there exist a framed basis E(OO) for M\ and a framed

~(c0) can—17% 7
system of generators f ° for Fil"~ "M such that

Mataw)7fw)(Filn_1M\) — V(OO) c ME7I(SOE)

and

Mat_,__, +e0) (dn_1) = A € GLIY(So,).

e f

Note that (V(*)); ; = 0 if either i =0 and j > 0 or 4 > 0 and j = 0, and that (A(>)); ; =0ifi =0
and j > 0. e
Since € is a framed basis for M, we may write

Mat o) (V) = (’Yi,ju[krki]f> € ME(SOE)

0<i,j<n—1

for the matrix of the monodromy operator of M where vij € (Sog)o, and let

Al) = (ag?)u[k-f_ki]f> e GLY(S0,,).

0<i,j<n—1

We claim that 7o = 0 for n — 1 > j > 0. Recall that o) = 0 for j > 0, and write [ =

(720, 7). 7)Y and ) = (&), &), -+, &), We also write

n—1sJn-25"" n—1>%n—2>"""
n—1 L
7 = St
i=1

where ﬂi(;o) € (Soy)o, for each 0 < j <n — 1. From the equation

[eNGn—1(F" e = (b1 (B@)N(F))]

€o

for n —1 > j > 0, we have the identity

n—1 n—1
Z a;j )u[kg kil +(ki ko]f’YO,i — pz 51'(,3' )up[P kj—Fki]s+plk: kO]fQS('YO,i)OZé’O) (3.3.40)
i=1 =1

for each n — 1 > j > 0. Choose an integer s such that ord,, (Vo,su[ks_kdf) < ordu(yo)iu[ki—kdf) for all
n—12>1i>0, and consider the identity (3.3.40) for j = s. Then the identity (3.3.40) induces

agf)u[ks_k‘)]f’yoys =0



3.3. LOCAL GALOIS SIDE 71

modulo (u°dw(0.s)+ks—kols+1) * Note that agif) € S5, so that we get 70, = 0. Recursively, we
conclude that v ; =0 for all 0 < j <n — 1.

§) 5ox) L gloo)y

Finally, it is now easy to check that (e,,"1, €, 5, determines a strongly divisible modules

of rank n — 1, that is a submodule of M. This completes the proof. O

Corollary 3.3.41. Fiz a pair of integers (ig, jo) with 0 < jo < ig < n—1. Assume that p, is generic,
and let (kn—1,kn—2,--+ , ko) be an n-tuple of integers. Assume further that

ki= @ +p P p 4 D

fori >y and for i < jo and that the k; are pairwise distinct modulo (e).

Then every potentially semi-stable lift p of p, with Hodge—Tate weights {—(n—1),—(n—2),---,0}

. —1 ~k; . . .
and Galois types @, W' is a successive extension

pn—l,'ﬂ,—l e * * * e *
Pio+1,i0+1 * *
[a¥)
P = Pio,jo *
Pjo—1,50—1
£0,0

where

o pi; is a 1-dimensional potentially semi-stable lift of p; ; with Hodge—Tate weights —i and Galois
type *°7" for m—1 > i > iy and for jo > i > 0;

O Pig.jo 18 @ (g — jo + 1)-dimensional potentially semi-stable lift of Pi, ;, with Hodge—Tate weights
~k:0»i0

{—ig,—to+1,- - ,—jo} and Galois types @z(’:ﬁ) w

Proof. Proposition 3.3.38 implies this corollary recursively. Let M € F-BrMod}j; ! be a Breuil module

corresponding to the mod p reduction of a strongly divisible module MeoO g-Mod]; ! corresponding
to a Galois stable lattice in a potentially semi-stable representation p : Gq, — GL,(F) with Galois
type @?:_01 @]; and Hodge-Tate weights {—(n—1),—(n—2),---,0} such that Tgp’nil(/{/l\)®oEF =y
Both M (resp. M) is of inertial type @r) &k (resp. @ w’;) by Proposition 3.2.18. We may
assume that Mat, (Fil"~' M), Mat, ;(é,_1), and Mat,(N) are written as in (3.3.5), (3.3.6), and
(3.3.7) respectively, and we do so. B

By the equation (3.3.4), it is easy to see that r; = (p/ = +p/=24---4+p+1)i for i > ig and for i < jo,
by our assumption on k;. By Proposition 3.3.38, there exists an (n — 1)-dimensional subrepresentation
Pr—1.1 of p whose quotient is ppo which is a potentially semi-stable lift of py, with Hodge Tate
weight 0 and Galois type &’;0. Now consider p), ;; ® e~'. Apply Proposition 3.3.38 to pj, _; ; ®e~!
Recursively, one can readily check that p has subquotients p;; for 0 < i < jo — 1. Considering
pY ®e"~ 1 one can also readily check that p has subquotients p; ; lifting piiforn—1>i>ig+1. O

The results in Corollary 3.3.41 reduce many of our computations for the main results on the Galois

side.

3.3.7 Main results on the Galois side

In this section, we state and prove the main local results on the Galois side, that connects the Fontaine—
Laffaille parameters of p, with the Frobenius eigenvalues of certain potentially semi-stable lifts of p,.
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Throughout this section, we assume that p, is Fontaine-Laffaille generic. We also fix f = 1 and
e=p-—1.
Fix ig,jo € Z with 0 < jg < jo + 1 < ip < n — 1, and define the n-tuple of integers

20,J0 20,J0 20,70
(rnilv Tplos ttty To) )

as follows:
. i it o # 1 # jo;
piodo = 4o 41 if i = dg; (3.3.42)
io—1 ifi=jo.
We note that if we replace n by iy — jo + 1 in the definition of TEO) in (3.3.20) then we have the
identities: o ©
0 = jo + 1 (3.3.43)

for all 0 <14 <ip — jo. In particular, r?fLO = TEO) forall0<i¢<n-—1.

From the equation k°7° = ¢; + i — r;°’° mod (e) (c.f. Lemma 3.3.10, (i)), this tuple immediately
determines an n-tuple (k,>70, k>%9, -+ ki”7°) of integers mod (e), which will determine the Galois
types of our representations. We set

10,50 .__ .. - 10,J0
kS =i 4+i—1;

foralli € {0,1,--- ,n—1}.
The following is the main result on the Galois side.

Theorem 3.3.44. Let ig,jo be integers with 0 < jo < jo +1 < ig < n— 1. Assume that py is
generic and that p;, ;. is Fontaine-Laffaille generic. Let (N7, N7, A7) € (Op)™ be the

n—17"n—2"
Frobenius eigenvalues on the (Gk?;]lo,@kz?f'éo7~-~ L@k’ ") <isotypic components of Dgp’n_l(po) where
po 18 a potentially semi-stable lift of p, with Hodge—Tate weights {—(n —1),—(n —2),---,—1,0} and

. n—1 ~%0:J0
Galois types @,_, ™ . o
Then the Fontaine—Laffaille parameter FL;°7° associated to py is computed as follows:

[(n—1)—0F90 ] (ig—jo—1)

Hio—l )\iOJO

i=jo+1 "

FL,?7 (p,) = ( ) € PI(F).

We first prove Theorem 3.3.44 for the case (ig,jo) = (n — 1,0) in the following proposition, which
is the key first step to prove Theorem 3.3.44.

Proposition 3.3.45. Keep the assumptions and notation of Theorem 8.3.44, and assume further
(i0,j0) = (n —1,0). Then Theorem 3.3.44 holds.

Recall that (k"~1° .. k2710 in Proposition 3.3.45 is the same as (', -+, k")) in (3.3.20).

n—1 n—1»
To lighten the notation, we let k; = k?_l’o and \; = )\?_1’0 during the proof of Proposition 3.3.45.
We heavily use the results in Sections 3.3.3, 3.3.4 and 3.3.5 to prove this proposition.

Proof. Let Me Og-Mod}; ! be a strongly divisible module corresponding to a Galois stable lattice in
a potentially semi-stable representation pg : Gq, — GL, (&) with Galois type @?;01 @k and Hodge~
Tate weights {—(n — 1), —(n —2),---,0} such that Tg”’n_l(ﬁ/l\) ®op F = p,. We also let M be the
Breuil module corresponding to the mod p reduction of M. M (resp. M) is of inertial type @?;01 ok
(resp. @?:_01 w*) by Proposition 3.2.18.

We let Z = (ﬁ_l,ﬁ_g,--~ ,fl,fo) be a framed system of generators for Fil" ' M, and € =
(én—1,€n—2, -+ ,€1,€p) be a framed basis for M. We may assume that Matgf(Fﬂnfl/T/l\) is described

as in Proposition 3.3.36, and we do so.
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Define o; € F* by the condition d)n_l(ﬁ) = q;e; modulo (wg, u) for all ¢ € {0,1,--- ,n — 1}.
There exists a framed basis ¢ = (ep—1,€n—2,-+,€p) for M and a framed system of generators f=
(fne1, fn—2,--, fo) for Fil"~* M such that Matg’i(Fﬂ”_lM) is given as in Proposition 3.3.32 and

Matﬁ;i(¢’ﬂ—l) - (ai7ju[k1_ki]1) c GLE(?)

for some «; ; € So with a;; = a; mod (u°).
Recall that f; = E(u) for i € {1,2,---,n — 2} by Proposition 3.3.36. Write ¢,_1(f;) =
S @ julksRhE; for some @; j € Sp. Then we get

N By
S0(Qs) ;)nil (mod wg)

for i € {1,2,--- ,n — 2} since ¢,,_1 = 1%(& for the Frobenius ¢ on Dgp’nfl(po), so that we have

n—2 n—2 s
H o; = H n_;_i (mod wg).
=1 =1 p

(Note that - O by Corollary 3.3.37.) This completes the proof, by applying the results in

pn—lfi

Proposition 3.3.32. O
We now prove Theorem 3.3.44, which is the main result on the Galois side.
Proof of Theorem 3.3.44. Recall from the identities in (3.3.43) that

10,J0 ,.%0,J0 10,J0) _ / / /
(rao 2% e,y ?®) = jo+ (L,n" —2,mn" = 3,--- | 1,n" = 2)

where n’ := iy — jo + 1. Recall also that py has a subquotient p;, j, that is a potentially semi-stable
lift of p;, ;, with Hodge-Tate weights {—ig, —(io — 1),..., —jo} and of Galois type @;0:]'0 k:°7° by
Corollary 3.3.41. _

It is immediate that p; , = Pio.jo€ °w70 is another potentially semi-stable lift Qf Pio.jo with
Hodge-Tate weights {—(ig — jp),f(io — jo — 1),...,0} and of Galois type ;‘):jo @oki" 7o We
let (Migs Mig—1* +Mjo) € (Og)®90FL (resp. (8iy,0ig—1,"" ,0j,) € (Op)~9T1) be the Frobenius

. ~ k0590 __t0:J0 koo . Jio—j
eigenvalues on the (w"io @ 0-1 ... &% )-isotypic component of Dg” 7 (pis.jo) (resp. on the

~ki070 40 ~ki0 70 +jo k070 4oy s - Qpiio—jo v
(@™o e I A )-isotypic component of Dg (Ply.jo))- Then we have

P8 =
for all i € {jo,j0 +1,--- ,i0} and, by Proposition 3.3.45,

io—1

i0—Jo,0 (— . lig=do)(ig=jo=1)
FL22*§2+1(pi0,j0) = H d; Y ST € Pl(F)
i=jo+1

But we also have that
pn—l—(io—jo)m _ /\2073'0

for all ¢ € {jo,jo + 1,--- ,i0} by Corollary 3.3.41. Hence, we have §; = p_(”_l_io))\zo’jo for all
i € {jo,jo+ 1, -+ ,ip} and we conclude that

i0—1
10,90 (= i0—750,0 [— i0,J n—1)—f0tio ;o i _
FL % (By) = FLi 3001 (i 5) = [T Ao |« ple=D="521G0—do=D | ¢ PL(F).
i=jo+1
(Note that FL{%(5y) = FL{Z%0, (5,, ;,) by Lemma 3.3.17.) O
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In the following corollary, we prove that the Weil-Deligne representation WD(pg) associated to pg
still contains Fontaine-Laffaille parameters. As we will see later, we will transport this information
to the automorphic side via local Langlands correspondence.

Corollary 3.3.46. Keep the assumptions and notation of Theorem 3.3.44.
Then pg is, in fact, potentially crystalline and

n—1

WD(po)" ™ = WD(po) = P
1=0

where ; : Q)¢ — E* is defined by Q; := UAz:o,jo/pn,l Nl for allie€{0,1,--- ,n—1}. Moreover,

10.70 /— HZ::O:_‘lJ,-l Qz_l(p) 1
FL;>7 (py) = <<0130><20—0—> € P (F).

Proof. Notice that ¢ is diagonal on D := Dg‘“ (po) with respect to a framed basis e := (e;—1,- -, €0)
(which satisfies ge; = &*°"" (g)e; for all i and for all g € Gal(K/Q,)) since & are all distinct.
Hence, we have WD(pg) = WD(po)¥ 5. Similarly, since the descent data action on D commutes with
the monodromy operator N, it is immediate that N = 0.

From the definition of WD(pg) (c.f. [CDT99]), the action of Wq, on D can be described as follows:
let a(g) € Z be determined by § = ¢, where ¢ is the arithmetic Frobenius in G, and g is the
image under the surjection Wq, — Gal(K/Q,). Then

)\lio,jo —alg) 10470
WD(po)(9) - e: = | o= W (g) e

)\’_’0 ,J0
P are the

for all i € {0,1,-+- ,n — 1}. (Recall that D" " (pg) = DI (py ® e~ (")), s0 that the 2o
Frobenius eigenvalues of the Frobenius on D.) Write £2; for the eigen-character with respect to e;.

Recall that we identify the geometric Frobenius with the uniformizers in Q (by our normalization

of class field theory), so that Q;(p) = 2" which completes the proof by applying Theorem 3.3.44. [

10,70
A

3.4 Local automorphic side

In this section, we establish several results concerning representation theory of GL,, that will be
applied to the proof of our main results on mod p local-global compatibility, Theorem 3.5.44. The
main results in this section are the non-vanishing result, Corollary 3.4.37, as well as the intertwining
identity in characteristic 0, Theorem 3.4.71.

We start this section by fixing some notation. Let G := GL,,z, and T be the maximal split
torus consisting of diagonal matrices. We fix a Borel subgroup B C G consisting of upper-triangular
matrices, and let U C B be the maximal unipotent subgroup. Let ®* denote the set of positive roots
with respect to (B,T), and A = {ax}1<k<n—1 the subset of positive simple roots. Let X(T') and
XY(T) denote the abelian group of characters and cocharacters respectively. We often say a weight
for an element in X (7)), and write X (7T for the set of dominant weights. The set ®* induces a
partial order on X (7'): for A\, u € X(T') we say that A < pif p— A€ ) g+ Zxoa. We will also write
A<pif A<pand X # p.

We use the n-tuple of integers A = (dy,ds, - -+ ,d,) to denote the character associated to the weight
ZZ:1 dieg of T where for each 1 < i < n ¢; is a weight of T defined by

diag(x1, o, - ,xy) o,
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We will often use the following weight
n:=Mm-1n-2,---,1,0).

We let G, B, --- be the base change to F,, of G, B, - - respectively. The Weyl group of G, denoted
by W, has a standard lifting inside G as the group of permutation matrix, likewise with G. We denote
the longest Weyl element by wg which is lifted to the antidiagonal permutation matrix in G or G.
We use the notation s; for the simple reflection corresponding to a; = €; — €41 for 1 < i < n —1.
We define the length ¢(w) of w € W to be its minimal length of decomposition into product of s; for
1<i<n—1. Given A € U(F,), we use A, or equivalently A; ; to denote the (%, j)-entry of A, where
a = €; — €; is the positive root corresponding to the pair (4, j) with 1 <i < j <n.

Given a representation m of G(F,), we use the notation 7* for the T'(F),)-eigenspace with the
eigencharacter p. Given an algebraic representation V of G or G, we use the notation V) for the
weight space of V' associated to the weight A. For any representation V of G or G (Fp) with coefficient
in F,, we define

Ve =V ®F F

to be the extension of coefficient of V' from F, to F. Similarly, we write Vg for V @, F,.

It is easy to observe that we can identify the character group of T'(F)) with X(T)/( - 1)X(T).
The natural action of the Weyl group W on T and thus on T'(F,) induces an action of W on the
character group X (T') and X(T)/(p — 1)X(T'). We carefully distinguish the notation between them.
We use the notation w (resp. u) for the action of W on X (T) (resp. X(T)/(p—1)X(T)) satistying

wA(z) = Mw ™ 'zw) for all z € T

and
p(z) = p(wtzw) for all z € T(F,).

As a result, without further comments, the notation wX is a weight but u" is just a character of
T(F,). There is another dot action of W on X (T') defined by

w-A=wA+n)—nforal e X(T) and w € W.

The affine Weyl group W of G is defined as the semi-direct product of W and X (T') with respect
to the natural action of W on X (T). We denote the image of A € X (T) in W by ¢x. Then the dot
action of W on X(T) extends to the dot action of W on X (T) through the following formula

w-A=w-(\+pu)

if w = wt,. We use the notation A T p for A\, u € X(T) if A < pand X € w- 1. We define a specific
element of W by
’LFE}L = '10015777

following Section 4 of [LLL16].

We usually write K for GL,(Z,) for brevity. We will also often use the following three open
compact subgroups of GL,,(Z,): if we let red : GL,(Z,) — GL,,(F,) be the natural mod p reduction
map, then

K(1) := Ker(red) C I(1) :=red "(U(F,)) C I:=red "(B(F,)) C K.

For each a € T, there exists a subgroup U, of G such that zu, (t)z~! = u,(a(z)t) where z € T
and u,, : G, — U, is an isomorphism sending 1 to 1 in the entry corresponding to «.. For each o € &7,
we have the following equalities by [Jan03] I1.1.19 (5) and (6):

=) t(X3E). (3.4.1)

m>0
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where X, gl%n is an element in the algebra of distributions on G' supported at the origin 1 € G. The
equation (3.4.1) is actually just the Taylor expansion with respect to ¢ of the operation u,(t) at the
origin 1. We use the same notation X glgn if G is replaced by G.

We define the set of p-restricted weights as

X1(T)={ e X(T)|0<(\,aY)<p—1foralla € A}
and the set of central weights as
Xo(T) :={A € X(T) | (\,a") =0 for all a € A}.
We also define the set of p-regular weights as
XI®(T)={NeX(T)|1<{\a)<p-—2foral acA},

and in particular we have X{°®(T) € X;1(T). We say that A\ € X(T) lies in the lowest p-restricted
alcove if
0<(A+n,aY)<pforall a €. (3.4.2)

We define a subset W+ of W as

Wt = {w e w | w- A€ X(T)y for each X in the lowest p-restricted alcove}.

We define another subset W' of W as
Wres .= {w e w | w- A e X1(T) for each A in the lowest p-restricted alcove}. (3.4.3)

In particular, we have the inclusion
Wres C W—&-.
For any weight A € X(T), we let
0 . a alg
HO(\) = (IndEwOA) -
be the associated dual Weyl module. Note by [Jan03], Proposition 11.2.6 that H°(\) # 0 if and only
if A\ € X(T)4. Assume that A € X (T, we write F()\) := socg(H?())) for its irreducible socle as an
algebraic representation (c.f. [Jan03] part 11, section 2). When A is running through X;(T), the F(X)
exhaust all the irreducible representations of G(F,). On the other hand, two weights A, A" € X;(T)
satisfies
F\) =2 F(O)
as G(F)p)-representation if and only if
A=XNe(p—1)Xo(T).

If A € X7°8(T), then the structure of F(\) as a G(F))-representation depends only on the image
of Ain X(T)/(p — 1)X(T), namely as a character of T'(F,). Conversely, given a character y of T'(F))
which lies in the image of
XJS(T) = X(T)/(p — 1)X(T),
reg

its inverse image in X;°*(7T) is uniquely determined up to a translation of (p — 1)Xo(7). In this case,
we say that p is p-regular. Whenever it is necessary for us to lift an element in X(7")/(p — 1) X(T)
back into X;(T') (or maybe X[°®(T')), we will clarify the choice of the lift.

Consider the standard Bruhat decomposition

G= || BuB= || UywB= || BwlU,-.
weWw weW weW
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where U, is the unique subgroup of U satisfying BwB = U,wDB as schemes over Z,. The group U,,
has a unique form of [], .o+ Uy for the subset @ of ®* defined by @} = {a € ¥, w(a) € —@T}.
(If w = 1, we understand ﬁaeqﬁ; U, to be the trivial group 1.) We also have the following Bruhat
decomposition:

G(F,) = | | BE,)wB(F,) = | | Uu(Fp)wB(F,) = | | BF,)wl,-:(F,). (3.4.4)
weW weWw weW

Given any integer x, recall that we use the notation [z]; to denote the only integer satisfying
0<[z]y <p-—2and [z]; =2 mod (p—1). Given two non-negative integers m and k with m > k,
we use the notation ¢,  for the binomial number #k'),k, We use the notation e for composition of
maps and, in particular, composition of elements in the group algebra F,[G(F,)].

3.4.1 Jacobi sums in characteristic p

In this section we establish several fundamental properties of Jacobi sum operators on mod p principal
series representations.

Definition 3.4.5. A weight A € X(T) is called k-generic for k € Z~q if for each o € ®T there ewists
meq € Z such that
map+k < (N a¥) < (ma+1)p—k.

In particular, the n-tuple of integers (an—1,--- ,a1,aq) is called k-generic in the lowest alcove if
a; —a;_1 >k V1<i<n-—-1landa,_1—ag<p-—k.

Note that (ap—1,- - ,ap)—n lies the lowest restricted alcove in the sense of (3.4.2) if (a1, - , ao)
is k-generic in the lowest alcove for some k > 0. Note also that the existence of a n-tuple of integers
satisfying k-generic in the lowest alcove implies p > n(k + 1) — 1.

We use the notation 7 for a general principal series representation:

7= Indg g e = {f : G(Fy) = By | fbg) = (D) f(9) V(b g) € B(F,) x G(Fy)}

where i is a mod p character of T'(F,). The action of GL,,(F,) on 7 is given by (¢g- f)(¢") = f(¢'9).
We will assume throughout this article that p, is p-regular. By definition we have

cosoc e, () = Flir) and socaqe,) () = F(u2°).
By Bruhat decomposition we can deduce that
dimp 7V Fr)uz =1

for each w € W. We denote by v, a non-zero fixed vector in 7V F»)#x  We also consider the natural
lift 7° of 7 defined as

7 = Ind g e = {f 2 G(Fy) = Zy | F(bg) = i(b)[(g) Y(b,g) € B(F,) x G(F,)}  (3.4.6)

where [1; is the Teichmiiller lift of f.
Given w € W with w # 1 and k = (ka)ae@$ e {0,1,--- ,p— 1}"1’;', we define the Jacobi sum
operators

Skw = Y I Ak | A-w e F[G(F,)]. (3.4.7)
A€Uw(Fp) \acdy,

These Jacobi sum operators play a main role on the local automorphic side as a crucial computation
tool. These operators already appeared in [CL76] for example.
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For each @ € &1 and each integer m satisfying 0 < m < p — 2, we define the operator

Xom = Y P77 Mug(t) € Fy[U(F,)] C Fy[G(F,)]. (3.4.8)
teF,

The transition matrix between {u(t) | t € F;} and {Xam | 0 < m < p — 2} is a Vandermonde
matrix
(tk)t X
EF} 1<k<p—1
which has a non-zero determinant. Hence, we also have a converse formula

p—2
Ua(t) ==Y t"Xom forall t € F. (3.4.9)

m=0

By the equation (3.4.1), we note that we have the equality

1
Xam == X Lok (3.4.10)
k>0

Lemma 3.4.11. Fiz w € W and ag = (ig,jo) € D). Given a tuple of integers k = (k; ;) €
{0,1,--- ,p— 1}|‘I’$| satisfying
kiy.; =0 for all (io,j) € ®F, with j > jo +1, (3.4.12)

we have (1)
—1)™m ey Sy if m<k
X oS — ag MR W - — Yoo
ao0,m © Sk { 0 if m > ke,
where k' = (k) acae, satisfies
B kay —m  if @ = ap;
) kg otherwise.

Proof. We prove this lemma by direct computation.

Xom @ Sgw = »_ 7m0 > IT Ak ) ua, (t) Aw

teF, AUy (Fp) a€¢‘1—t

= ) [T Ak ) (Aag =)0 Aw
teF, AEUw(Fp) ae@z,a;éag

= > [T Ak [ (A — ) | Aw
AEU’LU(FP) OCE‘I);rHOGéaO ter

(3.4.13)

where the second equality follows from the change of variable A <> uq, (t) A and the assumption (3.4.12).
Notice that

ke

Z tp_l_m(Aao N t)kuo _ Z tp—l—m Z(_l)jckao,jA]/iao_th
ag

teF, teF, =0

kag
. k'n/ _] 11— .
_ _1\J X 0 P m—+j
= § (-1) CkaovjAkZao § :t
Jj=0

teF,
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which can be easily seen to be

_1\ym+1 kag—m
{ (() D™k m A i ”m”L i :ao (3.4.14)
Q-

The last computation (3.4.14) follows from the fact that

0 if p—11t¢;
> = { : ’ (3.4.15)
& -1 if p—1|£and {#0.
Applying (3.4.14) back to (3.4.13) gives us the result. O

Lemma 3.4.16. Fiz w € W and ag = (io,jo) € D). Given a tuple of integers k = (ki ;) €
{0,1,--- ,p— 1}|¢$| satisfying

kio,j =0 fO’f‘ all (Zo,j) S (I);r TUZth] > jo,

we have
Uy (t) ® Sk,w = Sk,w-

Proof. By Lemma 3.4.11 we deduce that

f —Spw if m=0
X“W“g’““’_{o if 1<m<p-2

Therefore we conclude this lemma from (3.4.9). O

By the definition of principal series representations, we have the decomposition
T = Pwew Tw (3.4.17)

where 7, C 7|p(r,) consists of the functions supported on a non-empty subset of the Bruhat cell
B(Fp)wilB(Fp) = B(Fp)wilUw(Fp)-

Proposition 3.4.18. Fiz a non-zero vector vy € wVFr)t=  For each w € W with w # 1, the set
{Starvn | &= (ka)acay € (0.1, p— 1}751}

forms o T'(Fp)-eigenbasis of m,,.

Proof. We have a decomposition m, = ® scv,, (F,)Tw,a Where m,, 4 is the subspace of 7, consisting of
functions supported on B(F,)w™'A~1. Tt is easy to observe by the definition of parabolic induction
that dimg, 7, 4 = 1 and 7, 4 is generated by Awvy.

We claim that the set of Jacobi sums with the Weyl element w, after being applied to v,, differs
from the set {Awv,, A € U, (F,)} by an invertible matrix. More precisely, for a fixed w € W, the set
of vectors

{SE,wUﬂ' | k= (ka)aeqﬁ‘j € {07 L-p— 1}@4’;'}

can be linearly represented by the set of vectors {Awv,, A € U, (F,)} through the matrix (myg )

where i
k= (ka)aeq)f; € {0717"’ 7p*1}|¢‘w'a Ae Uw(Fp)

and mp 4 = [[ocat Ak Note that this matrix is the |®]|-times tensor of the Vandermonde matrix

w

()\k)AGFp,nggp—l )
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and therefore has a non-zero determinant. As a result, the matrix (my, 1) is invertible and {Sg, v |
0<ky,<p-1 Vae®}l} forms a basis of m,,.

The fact that this is a T'(F,)-eigenbasis is immediate by the following calculation: if we let =
diag(z1, T2, , )

T ®Skylsr = T ® Z H A’f;’ Aw | vy

A€Uw (Fp) \aedf

Z H qujj Az w (wilxw) Uy

A€Uw (Fp) \(i,j)edd

> [I Bizjz;Hk | Bw| (wzw) vx

B=zAz—1€Uy(Fp) \(4,j)cdt

pr (W™ 2w) H (zja; ke Z H AR A w | v,

(1.1) €D, A€Uw (Fp) aca
= (H:A)(I)S&uzvﬂ-y
where A(z) = H1<i<j<n(:cjx;1)kiff and B; j = Aiijl-:rjfl for1<i<j<n. O

We can further describe the action of T'(F,) on S ,vr. By |y| for y € R we mean the floor
function of y, i.e., the biggest integer less than or equal to y.

Lemma 3.4.19. Let pu, = (d1,d2, -+ ,dn—1,dyn). If we write (¢1,82--- ,ly_1,L) for the T(F,)-
eigencharacter of Sk ,vx, then we have

l, = dw71(r) + Z ki,r — Z kr,j (mod p— 1)

1<i<r r<j<n

for all1 <r <n, where k; j = ko if @ € @, and (i,7) corresponds to o, and k; ; = 0 otherwise.
In particular,

(i) if ko =0 for any a € &L\ A, then for all1 <r <n
b =dy-1(ry + (1= [1/r))kr—1r — (L= [1/(n+1=7))krrq1 (mod p—1);
(ii) if w=wp and k; ; =0 for any 2 <i < j <mn, then

g = [ =ik (modp—1) ifr=1;
"7 dogi—r + k1, (modp—1)  if2<7<n.

Proof. The first part of the Lemma is a direct calculation as shown at the end of the proof of Propo-
sition 3.4.18. The second part follows trivially from the first part. O

Given any w € W, we write Sp ., for Sk ., with ko = 0 for all a € ®}.
Lemma 3.4.20. F,[S) ,v,] = 7V Fe)iir,

Proof. Pick an arbitrary positive root a.. If o € ®F, then we have (since uq(t) € Uy, (F,))

@ [ Y A= > A

AeUw(Fp) AeUw (Fp)
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and therefore uq (t)S0,.vr = So,wvx for any ¢ € Fp,. On the other hand, if a ¢ @, then

w?

wo [ X al- X a)uw

AcU, (Fp) A€U, (Fp)

and
ul, () wor = wul (t)vy = woy

where ug,(t) € [ ¢az U,(F,) and v/ (t) € U(F,) are elements depending on z, w and a. Hence,
U (t)S0,wVr = So,wvr for any t € F,, and any o € ®*. So we conclude that Sy , v, is U(F,)-invariant
as {ua(t)}aeétteFP generate U(F)).

Finally, we check that @ - Sy wvr = p¥(2)S0,wv~ for € T(F,). But this is immediate from the
following two easy computations:

e Z Al = Z A ex € F,[G(F))]

A€U, (Fp) AU, (F)p)

and
1

zwor = w (W zw) v = wpr (W zw)ve = P (T)woy.
This completes the proof. O

Note that Proposition 3.4.18, Lemma 3.4.19, and Lemma 3.4.20 are very elementary and have
essentially appeared in [CL76]. In this article, we formulate them and give quick proofs of them for
the convenience.

Definition 3.4.21. Given a,o’ € ®*, we say that o is strongly smaller than o with the notation
-~ !/

o<«

if there exist 1 <i < j <k <n—1 such that

J k
azg arando/:g Q.
r=1 r=1

We call a subset ® of ®* good if it satisfies the following:
(i) if o,/ € ' and a+ o' € T, then a+ o' € &';
(ii) if o € " and a </, then o/ € ¥'.
We associate a subgroup of U to ®' by
Up = (Uy | @ € D) (3.4.22)

and denote its reduction mod p by Ug:. We define U, to be the subgroup scheme of U generated by
U,, for 2 <r <n —1, and denote its reduction mod p by U;.

Example 3.4.23. The following are two examples of good subsets of ®T, that will be important for

us: , '
J j
{Zar1§i<j§n1} and {Zar|2§i§j§nl}.

r=t r=1

The subgroups of U associated with the two good subsets via (3.4.22) are [U,U] and Uy respectively.
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We recall that we have defined 7, C 7 in (3.4.17) for each w € W.

=

Proposition 3.4.24. Let & C ®* be good. Pick an element w € W with w # 1. The following set
of vectors

{SE,M | k= (ka)pcor € 0,1, ,p— 1H0 with ko = 0 Yo € &' N <1>$} (3.4.25)

(Fp

. Ug
forms a basis of the subspace my"*' ) of Ty -

Proof. By Proposition 3.4.18, the Jacobi sums with the Weyl element w, after being applied to v,
form a T'(F))-eigenbasis of 1, and so we can firstly write any Ug: (F,,)-invariant vector v in 7, as a
unique linear combination of Jacobi sums with the Weyl element w, namely

v= E Ck,wSk,wvx for some Cy o, € F.
k{0, p-1}1oE]

Assume that Cj ., # 0 for certain tuple of integers k = (ka)a€<1>$ such that k, > 0 for some
a € ' Ndf. We choose o such that it is maximal with respect to the partial order < on ®* for the
property

Crw # 0, koo > 0, and ag €PN, (3.4.26)
We may write v as follows:
v = Z CE,wS&w’Uﬂ + Z CE,wS&w’Uﬂ. (3.4.27)
k{0, p—1}1 %L k{0, p—1}1 %%
kap=0 Eag >0

By the maximal assumption on ag we know that if Ck ., # 0 and ag < a, then k, = 0. As a result,
we deduce from Lemma 3.4.16 that

Uqy (t) Z CE,wSE,wU‘n = Z C&wSE,wUﬂ— (3428)
ke{0,--- ,p,l}\‘lﬁ\ ke{0,-- ’pfl}\dﬁ\
ag = ag ™
for all t € F,.
We define
Pt = {a € ®f |ap<a} and ¥ = &} \ dL0T

and we use the notation B
o= (o) oo €10, p— 1o

for a tuple of integers indexed by ®°~. Given a tuple £, we can define

ko =0 if a € ®dt\ {ap};
ko >0 if a = ag;
cky =4y o€ dfoT

A(ﬁa Ot()) =qk= (ka)a€¢$ S {0, e, p— 1}‘¢$|

Now we can define a polynomial

fttoy (@) = Y Crua™o € Fyla]
keA(Lao)

for each tuple of integers ¢. By definition, we have

Z Clw Skt = Z Z H Ale | fioog) (Aag)A | wor.

ke, p—1}I%! £e{0,+ p-1}1700 1 \ACUL(Fr) \aceyo™
Kag >0
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By the assumption on v we know that uq, (t)v = v for all ¢ € F),. Using (3.4.28) and (3.4.27) we have

Uy (t) Z CE,wSE,wUn- = Z CE,'UJSE,'UJIUﬂ
EE{O,~~~,p—1}‘¢’$\ EE{O,"',p—l}‘qﬁm
ka0>0 ka0>0
and so
Z Z H Af;a f@’ao) (Aao )A WOx
2640, p—1}1202 71 \ACUw(Fp) \acaf? ™
= tao(t) > > [T A% | flea (Aag)A | wor
2640, p—1}1200 "1 \AEUw(Fp) \aecapo ™
- Z Z H Al Jta0)(Aay — 1) A | wug
2640, p—1}1200 71 \AEUw(Fp) \aecep? ™

where the last equality follows from a change of variable A < u,, (t)A.
By the linear independence of Jacobi sums from Proposition 3.4.18, we deduce an equality

Z H Ale | Foe) (Aag)A | wor

AeUw(Fp) \aedl0'™

w

= Z H Aﬁta f@’ao) (Aao - t)A WOr

A€U, (Fp) Q€D

for each fixed tuple £.
Therefore, again by the linear independence of Jacobi sum operators in Proposition 3.4.18 we
deduce that

f(LOéo)(Aao - t) = f(ﬁyao)(AOto)
for all t € F, and each ({,ap). We know that if f € F,[z] satisfies degf < p —1, f(0) = 0 and
flx—1t) = f(z) for all t € F), then f = 0. Thus we deduce that
fean) =0

for each tuple of integers £, which is a contradiction to (3.4.26) and so we have k, = 0 for any o € @’
for each tuple of integers k such that C} ., # 0.

As a result, we have shown that each vector in 775‘1” () can be written as certain linear combination
of vectors in (3.4.25). On the other hand, by Proposition 3.4.18 we know that vectors in (3.4.25) are

linear independent, and therefore they actually form a basis of ﬂg‘i"(F"). O
Corollary 3.4.29. Let jir = (dy,--- ,dy) and fix a non-zero vector v, € 7V Fr)bx  Given a weight
=, -, Ly,) € Xi(T) the space
WEUUO(FMU(FIJ)],M
has a basis whose elements are of the form
Sk,woUn
where k = (ko) satisfies
b =dnp1r + (1= [1/rDkr1, — (1= [1/(n+1=7))kpri1 mod (p—1)
forall1<r<mnand ky, =0 ifa € DT\ A.
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Proof. By a special case of Proposition 3.4.25 when &' = {Zi:l ar |1 <i<j<n-—1}, we know
that
{Sk,wovﬂ' | ko =0if a € or \ A}

forms a basis of my, U(F UE] - On the other hand, we know from Proposition 3.4.18 that the above

basis is actually an T(F )-eigenbasis. Therefore the vectors in this basis with a fixed eigencharacter

u form a basis of the eigensubspace W[U(F") UEm Finally, using (i) of the second part of Lemma

3.4.19 we conclude this lemma. O

Corollary 3.4.30. Let u, = (di,ds,--- ,d,) and fix a non-zero vector v, € aUFE) b Given a
weight = (b1, ,4n) € X1(T'), the space

Wgé(F”)’“
has a basis whose elements are of the form
S&wovﬂ-
where k = (ki j)i,; satisfies
]{317]' = Kj — dn+1—j mod (p - 1)
for2<j<mnandk;; =0 forall2 <i<j<n.
Proof. By a special case of Proposition 3.4.25 when &' = {Z:f«:z ar | 2<i<j<n-—1}, we know

that

{S&wovﬂ— | ki7j =0if2<14 <j< ’I”L}
forms a basis of ﬂwl(FP) On the other hand, we know from Proposition 3.4.18 that the above basis is
actually an T'(F))-eigenbasis. Therefore the vectors in this basis with a fixed eigencharacter p form

a basis of the eigensubspace 7y I(F") ". Finally, using (i) of the second part of Lemma 3.4.19 we
conclude this lemma. O

3.4.2 Main results in characteristic p

In this section, we state our main results on certain Jacobi sum operators in characteristic p. From

now on we fix an n-tuple of integers (a,—_1,--- ,ag) which is assumed to be n-generic in the lowest
alcove (c.f. Definition 3.4.5).
We let
( 1_n+27an727an737"'7a27a17a0+n_2);

/1//1 i (al,ClQ,"‘ Qn— 3,04“727@”71,040)5 (3431)

/’1'1 - (an 1,00,01,42," " ,Ap—3, an—?)a

Mo = (an 1,01,02 " ,an—37an—2,a0);
and

{ = Indie? o (3.4.32)
_ G(F, ) o
0 = IndB(F ) o5

where 19 is the Teichmiiller lift of py.
We let k' = (k};), k"' = (k;”}) and k” = (kY ), where

kllz+1 = [ap —an—ii +n—2;
/% T = lan—ici—an1li+n—2 (3.4.33)
kl i+1 — [a()*an—l]l +n*2;
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for 1 <i<n—1andkj; = kllj' = k’; = 0 otherwise, and define two most important Jacobi sum
operators S, and S, to be

Sn = Shl’wo and S';L = Sk.l,/ wo * (3434)

We also let Vi, V/, and V) denote the sub-representation of my generated by
Sn (ﬂ.g(Fp)wﬂl) , 87/1 (F(I)J(Fp)aﬂll) , and Sﬁo,wo (ﬂ.g(Fp)fP«O)

respectively.

The following theorem, which we usually call the non-vanishing theorem, is a technical heart on
the local automorphic side. The proofs of this non-vanishing theorem as well as the next theorem,
which we usually call the multiplicity one theorem, will occupy the following sections.

Theorem 3.4.35. Assume that (an—1,--- ,a9) is n-generic in the lowest alcove.
Then we have
Vi=V{ =V,
and
F(p®) € JH(Vo).
Proof. This is an immediate consequence of Corollary 3.4.67 and Theorem 3.4.137. O

We also have the following multiplicity one result.

Theorem 3.4.36. Assume that (an—1, - ,a0) is 2n-generic in the lowest alcove.
Then F(u*) has multiplicity one in .

0,n—1
U

Proof. This is a special case of Corollary 3.4.47: replace u with p*. O

Corollary 3.4.37. Assume that (an—1,--- ,a9) is 2n-generic in the lowest alcove and that T is an
Og-lattice in 7§ Qo, E such that

socg(r,) (T ®o, F) = F(u").
Then we have

Sn ((T R0 F)U<FP>’“1) #0 and S, ((T R0 F)U(Fpma) £0.

Proof. Such a 7 is unique up to homothety by Theorem 3.4.36. By multiplying a suitable power of
wg, we may assume that

~0 ~0
75 C 7 and 7y € wT,

and thus we have a non-zero morphism
T = T Qo F

whose image is the unique quotient of my with socle F(u*). We now finish the proof by applying
Theorem 3.4.35. O

Remark 3.4.38. Theorem 3.4.35 and Corollary 3.4.37 can be generalized to the case when p* is
replaced by any weight lying sufficiently deep in an arbitrary alcove. The crucial points here are the
[U(F,),U(Fp)]-invariance of S,, (resp. S},) and that T (in Corollary 3.4.87) is one of the simplest
lattices of T§ ®o, E apart from those coming from parabolic inductions from B(F,).
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3.4.3 Summary of results on Deligne-Lusztig representations

In this section, we recall some standard facts on Deligne-Lusztig representations and fix the notation
that will be used throughout this paper. We closely follow [Her09]. Throughout this article we
will only focus the group G(F,) = GL,(F)), which is the fixed point set of the standard (p-power)

Frobenius F' inside GL,,(F,). We will identify a variety over F,, with the set of its Fp-rational points
for simplicity. Then our fixed maximal torus T is F-stable and split.

To each pair (T, 6) consisting of an F-stable maximal torus T and a homomorphism 6 : T — Q; ,
Deligne-Lusztig [DL76] associate a virtual representation R% of GL, (F,). (We restrict ourself to
GL,(F,) although the result in [DL76] is much more general.) On the other hand, given a pair
(w,p) € W x X(T), one can construct a pair (Ty,6,,) by the method in the third paragraph
of [Her09], Section 4.1. Then we denote by R, (u) the representation corresponding to R%:’“ after
multiplying a sign. This is the so-called Jantzen parametrization in [Jan81] 3.1.

The representations RY (vesp. R, (u)) can be isomorphic for different pairs (T, 6) (resp. (w, )),
and the explicit relation between is summarized in [Her09], Lemma 4.2. As each p-regular character
we X(T)/(p—1)X(T) of T(F,) can be lift to an element in X;°®(7") which is unique up to (p—1) X (7),
the representation Ry (1) is well defined for each w € W and such a p.

We recall the notation ©(6) for a cuspidal representation for GL, (F,) from [Her06], Section 2.1
where 6 is a primitive character of F. defined in [Her09], Section 4.2. We refer further discussion
about the basic properties and references of O(6) to [Her06], Section 2.1. The relation between the
notation R, (u) and the notation ©(6) is summarized in [Her09], Lemma 4.7. In this paper, we will
use the notation ©,,(6,,) for a cuspidal representation for GL,, (F,) where 6,, is a primitive character
of F 5.

Vzife emphasize that, as a special case of [Her09], Lemma 4.7, we have the natural isomorphism

~ G FP 7
Ra(p)  Ind g i

for a p-regular character p of T'(F),), where f is the Teichmiiler lift of u.

3.4.4 Proof of Theorem 3.4.36

The main target of this section is to prove Theorem 3.4.36. In fact, we prove Corollary 3.4.47 which
is a generalization of Theorem 3.4.36.

We recall some notation from [Jan03]. We use the notation G, for the 7-th Frobenius kernel defined
in [Jan03] Chapter 1.9 as kernel of 7-th iteration of Frobenius morphism on the group scheme G over

F,. We will consider the subgroup scheme G,T, G,.B, G,B of G in the following. Note that our B
(resp. B ) is denoted by B (resp. B) in [Jan03] Chapter II. 9. We define

Zi(n) = imdeP
ZT()\) = coind%rg)\

where ind and coind are defined in 1.3.3 and 1.8.20 of [Jan03] respectively. By [Jan03] Proposition
I1.9.6 we know that there exists a simple G, T-module L,.(\) satisfying

socg. (2;()\)) ~7,(\) cosocg <2r()\)> :

The properties of Z(\) and Z,(\) are systematically summarized in [Jan03] 119, and therefore we
will frequently refer to results over there.

From now on we assume r = 1 in this section.

Now we recall several well-known results from [Jan81], [Jan84] and [Jan03]. We recall the definition

of W from (3.4.3).
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Theorem 3.4.39 ([Jan81], Satz 4.3). Assume that u + n is in the lowest restricted alcove and 2n-
generic (Definition 3.4.5). Then we have

Rolptn) = 3 [(Zilu=pv+pn) s L(@ - p)]F@@ - (et wv)),
TS

Proposition 3.4.40. Let A € X(T)y. Suppose p € X(T') is mazimal for p T+ X and p # A. If
we X(T)y and if p# X — pa for all « € T, then

HOO) : F(w)] = 1.
Proof. This is the Corollary II 6.24 in [Jan03]. O

If M is an arbitrary G-module, we use the notation M for the Frobenius twist of M as defined
in [Jan03], 1.9.10.

Proposition 3.4.41 ([Jan03], Proposition II. 9.14). Let A € X (T). Suppose each composition factor
of Z1(A\) has the form Li(uo + pp1) with uo € X1(T) and py € X(T) such that

{(p1+n,8Y) >0

for all B € A. Then HO()\) has a filtration with factors of the form F(,ug) ® HO(uy)M. Each such
module occurs as often as L1(M0 + pu1) occurs in a composition series of Zl( ).

Remark 3.4.42. Note that if ju1 is in the lowest restricted alcove, then F(ug) @ HO(u)M = F(p).

Lemma 3.4.43 ([Jan03], Lemma IL. 9.18 (a)). Let Ly (1) be a composition. factor of Z} (), and write
A+n=pAi+ Ao and p = ppa + po

with Ao, po € X1(T) and M\, 1 € X(T).

If
NaY)y>n-—2 (3.4.44)

for all o € T, then
<:U’1 + n7ﬁv> Z 0

for all B € ®T.

Proof. We only need to mention that h, = n for all & € ®* and for our group G = GL,, /¥, where
he is defined in [Jan03], I1.9.18. O

We define an element s, ,, € W by
Sa,m * A= Sq * A+ mpa
for each a € @+ and m € Z.
Theorem 3.4.45. Let A\, u € X(T') such that
U= Sam A and mp < (A+mn,a") < (m+1)p. (3.4.46)

Assume further that there exists v € X (T) such that A\ + pv satisfies the condition (3.4.44) and that
v and py + v are in the lowest restricted alcove.
Then we have

[Z1(A) : Ly(p)] = 1.
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Proof. The condition (3.4.46) ensures that for any fixed v € X (T'), p+pv is maximal for p+prv T A+pv
and p + pv # X+ pv. Notice that we have

~

2N La(w)] = [Z5(0) = La(w)]

by II 9.2(3) in [Jan03], as the character of a G,T-module determine its Jordan-Holder factors with
multiplicities (or equivalently, determine the semisimplification of the G, T-module).
By 11 9.2(5) and II 9.6(6) in [Jan03] we have

[Z1N) : L) = [Z1() @ pv = La(p) @ pv] = [Z](A+ pv) = La(p + pv),
and thus we may assume that
NaYy>n—2

for all o« € ®* by choosing appropriate v (which exists by our assumption) and replacing A by A + pv
and p by p + pr. Then by Lemma 3.4.43 we know that

{(py+n,8") >0

for any p' = puj + pg such that L (1) is a factor of Z!(\).
Thus by Proposition 3.4.41, Proposition 3.4.40 and Remark 3.4.42 we know that

[Z1(N) « Ly ()] = [HO(A) 1 Flpo) @ HO ()] = [HO(N) : F(p)] =1
which finishes the proof. O

We pick an arbitrary principal series m and write
Hr = (dla"' 7dn)
For each pair of integers (i1, 71) satisfying 0 < iy <i; +1 < j3 <n — 1, we define
i ()

where
o di if k#n—j; and k #n —iq;
dzl’jl = dnfil'i_jl_il_]- ifk:n—il;
dn,jl—jl-i-il—i-l if k=n-—j;.
Corollary 3.4.47. Assume that p, is 2n-generic in the lowest alcove (c.f. Definition 3.4.5). Then

F(uir9v) has multiplicity one in 7, or equivalently in Indgg”;pﬁ for any w e W.

Proof. We notice at first that each Indggip;uﬁ has the same Jordan-Hoélder factor as m with the same

multiplicity as each of them is a mod p reduction of certain lattice of the same characteristic zero
representation of G(F,). We only need to apply Theorem 3.4.45 and Theorem 3.4.39 to these explicit
examples. We will follow the notation of Theorem 3.4.39. We fix w = 1 in Theorem 3.4.39 and take

n—l—il

o n = = T 4 (L — i — 1) Z Qr

r=n—ji

We are considering the multiplicity of F(ut1) in 7 = Ry(u+n) and therefore we take w' := 1 € e

and
’I’L*l*il

vi=n—(j1 —i1—1) Z o

r=n—ji
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By II. 9.2(4) and 11.9.16 (4) in [Jan03] we know that

~ ~ ~ ~

(Z1(—pv +pn) : L1(p)] = [Z1((n — j1,n —i1) - (u — pv) +pn) : L1 ()] (3.4.48)

We observe that

(n—ji,n—i1) - (p—pv)+pn
n—1—1q
=(n—ji,n—di) p+p|n—(n—ji,n—di)n— (1 —ir—1) Z ar
r=n—ji

n—1—iq

=(n—ji,n—"d1) p+p Z o

r=n—ji
Therefore we have
n—1—iq
p< <(nj1,ni1) (n—pv)+pm, Y ar> < 2p
r=n—ji
and that
po=sgn-i-in e (=g, —i) - (u—pv) + pn).

r=n—ji

Moreover, it is easy to see that

’I’L*lf’il

(n—ji,n—i) - (u=pv)+pn)+pn=(n—jin—ir)-u+p| > ar|+py

r=n—ji

satisfies (3.4.44).
Hence, replacing the A and p in Theorem 3.4.45 by (n—ji1,n—41)- (u—pv)+pn and p respectively,
we conclude that

~

[Z1((n = juin—in) - (n—pv) +pn) s Li(w)] = 1
which finishes the proof by Theorem 3.4.39 and (3.4.48). O

3.4.5 Jacobi sums in characteristic 0

In this section, we establish an intertwining identity for lifts of Jacobi sums in characteristic 0 in
Theorem 3.4.71, which is one of the main ingredients of the proof of Theorem 3.5.44. All of our
calculations here are in the setting of G(Q,) = GL,(Q,). We first fix some notation.

Let A € G(F,). By [A] we mean the matrix in G(Q,) whose entries are the classical Teichmiiller
lifts of the entries of A. The map A > [A] is obviously not a group homomorphism but only a map
between sets. On the other hand, we use the notation g for the Teichmiiller lift of a character u of
T(F,).

We denote the standard lifts of simple reflections in G(Q,) by

Id; 1
S; =

Idn—i—l

for 1 <i<mn—1. We also use the following notation

(")
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for 1 <7 <n. Let
En = w't, (3.4.49)

where w* := s,_1 @ ... @ 57. We recall the Iwahori subgroup I and the pro-p Iwahori subgroup I(1)
from the beginning of Section 3.4. Note that the operator =,, and the group I actually generates the
normalizer of I inside G(Q,). One easily sees that =, is nothing else than the following matrix:

o1 0 --- 0 0O
o 01 -« 0 0O
o 00 -+ 0 0O
So= |10 1 | €d(Qy).
oo0oo0 --- 010
o 00 -+ 0 01
p 00 -~ 000

For each 1 < i < n — 1, we consider the maximal parabolic subgroup P;” of G containing lower-
triangular Borel subgroup B~ such that its Levi subgroup can be chosen to be GL; x GL,_; which
embeds into G in the standard way. We denote the unipotent radical of P;~ by IV, . Then we introduce

Uy= > t;'[A]foreach 1 <i<n-—1. (3.4.50)

AEN, (Fy)

Note that each A € N, has the form

Id; O(n—s)xi
*ix(n—i) ldn—i '
foreach 1 <i<n-—1.

For each w € W and each tuple k£ = (ka)aeqﬁv € {0,...,p — 1}‘q>7+~‘, we consider the following
Jacobi sum

Sew:=| D [T raa1 ) 141 | w e Z,[G(Z,)].
A€Uw (Fp) \aed
In particular, we consider
Sw = > Al | we Z,[G(Z,)]
AeU, (Fp)
which is a characteristic zero lift of Sp .. Recall the notation 7° from (3.4.6).
Lemma 3.4.51. Assume that pi, is n-generic (Definition 3.4.5). We have the equality

~ ~ L(w)Fe(w')—L(ww’) ~
2

Sw (] Sw/ = p—sww’
on (7)1 for all w,w' € W.

Proof. One can quickly reduce the general case to the following two elementary equalities on (7°)7(1):

~

Sy 0 Sy = Sy if L{ww') = L(w) + L(w') (3.4.52)

and
S;,. 0S8, =pforalll <r<n-—1. (3.4.53)
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The equality (3.4.52) follows directly from the definition of the Jacobi sum operators. The equality
(3.4.53) follows from a simple Bruhat decomposition. In fact, we have for each t # 0

Sptle, (1)8y = Uq, (t7 1) spdiag(1, -+, 1t —t 71 1, Dug, (171

where the diagonal matrix has ¢ at (r,r)-entry and —t~! at (r + 1,7 + 1)-entry. Therefore for each
v € (7°)'(M) there exists an integer n < £ < p — n such that

diag(1,---,1,¢t,—t~ 4 1,--- , 1)0 = £[t]D

and thus
So 08, 0= > ua, () | [T D[] Tua, (t71)]5,D
t'€F, teF,
=po+ > [t ua, ()]s, | D
t'eF,,teF,
= pu.
This finishes the proof. O

Lemma 3.4.54. We have the equality
Proof. This is immediate by definition. O

We quickly recall some standard facts about Jacobi sums and Gauss sums. We fix a primitive p-th
root of unity £ € E and set € := £ — 1. For each pair of integers (a,b) with 0 < a,b <p — 1, we set

J(a,b) ==Y [A]*[1 = A" (3.4.55)

AEF,

We also set

G(a) = > _ [N

AEF,

for each integers a with 0 < a < p — 1. For example, we have G(p — 1) = —1.
It is known by section 1.1, GS3 of [Lang] that if a + b # 0 mod (p — 1), we have

G(a)G(b)
b)) = —"——=. 4.
It is also obvious from the definition that if a,b,a + b # 0 mod (p — 1) then
J(b,a) = J(a,b) = (-1)*J (b, [-a —b]1) = (—1)"J(a,[~a — b]1). (3.4.57)
By Stickelberger’s theorem ([Lang] Section 1.2, Theorem 2.1), we know that
a Gla) _
ord,(G(a)) =1— o1 and iza = a! (mod p). (3.4.58)

Let r € Z with 1 <r <n-—1and w € W. Given the data u, = (dy,ds, - ,d,) and tuple
ke{0,...,p— 1}l we define a tuple

K e {O,...,p—l}"bf| if (ws,) < (w); (3.4.59)
- {0,...,p— 1H®usl if f(ws,) > (w) o

~
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by
K =

[0

{ ko ifaedb;

0 if a=wa,
in the first case and

k/ — [kwaqn - dr + d7-+1]1 if a = WOy,
“ ka if @ € @} and o # wa,

in the second case.
Proposition 3.4.60. Assume that g, = (d1,ds, -+ ,dy) is n-generic and that
ko =0 for all a € <I>$ with wa,. < a.

Assume further that if £(ws,) < £(w) then kya, € {0, p—1, [dy —dry1]1}-
Then for each 1 <r <n —1 we have

Siues, - S, i sy > )
'k, w S (71)dr+1 J(kwaM [dr—i-l — dr]l)SE’,w if E(U)ST) < g(w)
on (%o)l(l),ﬁw.

Proof. By definition we have

StweS, = > I rAa1* | TATw(ua, (£)]s,.

A€U(Fy) teF, \acdy
We divide it into two cases:
(1) L(ws,) > L(w);
(i) Lws,) < (w).
In case (i), we have the Bruhat decomposition
Awug, (1), = Ay, (E)ws,

and thus
SE,U} b Ssr = SE,vwsr'

In case (ii), we have the Bruhat decompositions: if ¢ =0
Awtg, (0)s, = A(ws,) = A"wsta, (Awa, )

where A” is the unipotent matrix that has the same entries as A except a zero at wa,-entry;
ift#0
Awng, (1)8, = Ay, (" Dwdiag(l, - ¢, —t 1 Dug, (t71).

We fix a vector U, € (7°)/(1)F= whose mod p reduction is non-zero. Therefore, we have

S @ S5, T = (—1) %+ > L1 TAaTke | T4 =4 [A e, (¢ wTs

ACU,(Fp) teF)S \acdl

+ Z H [Aojk“ [Alws, Uy

AUy (Fp) QGCI)I,
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The summation > .1 (r,) (Hae¢>$ (Aa]ka) Aws, U, can be rewritten as

> IT 4.1 > [Awa, "o | Aws, Ty

A"€Uws,. (Fp) \aedf,, Awa, €Fp

which is 0 as we assume 0 < ko, < p — 1. Hence, we have

Sy ® S5, Ty = (—1)%r+1 > [T r4a1®e | (1%~ [Aug,,, (t)]wd,.

AEU, (Fp) teF)S \acdy

On the other hand, after setting A’ = Auyq, (t71) we have

> T T4a1% | 1815 [ A, (¢

ACU,(Fp) teF)S \acdl

- ¥ [I [Aal5e | [(AL, — )] Fwer [1] 45 (AT, (3.4.61)

A’€U,, (Fp) teFX \aedi,,

since k, = 0 for all wa, < a.
One can easily check that if A7, = 0 then

3 (A, = 7w [0t = (e 37 [ desn v =,

teFy teF,

and if A7, # 0 then

D (A, =t )P [t] 0

teFy
= [ Al R 7O (3 DT = (Al 1) 7] [(Alg, 1)) =]
teF,
= J(kwar’ [dT-'r]. — d’l‘]l) |—A’/war‘| [ku;(xr_dr+1+dr]l
Combining these computations with (3.4.61) finishes the proof. O

Remark 3.4.62. Proposition 3.4.60 is the technical heart of this section. It roughly says that
[U(Fp), U(F,)]-invariant vectors behave well under intertwining of principal series, which is essential-
ly why the identities in Theorem 8.4.71 and Proposition 3.5.25 exist. On the other hand, it is crucial
that the vector v is invariant under [uq, (t)] fort € F,.

Recall the definition of p1 and pj from (3.4.31). We recursively define sequences of elements in
the Weyl group W by
{ w1 =1, Wy = Sp—mWm—1;
wy =1, Wy, = smwy,
for all 2 < m < n — 1, where s,, are the reflection of the simple roots «,,. We define sequences of

characters of T'(F),)

’

pn = pi’and g, = (p3)"m
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for all 1 <m < n — 1. We also define several families of Jacobi sums:
gEm,wo and 3&"’”'7100
for all integers m with 1 < m < n — 1, where k™ = (k;"j) satisfies

n—2+lag—apn—1)1 fl1<i=j—1<m;
k=49 n—2+a—ap—)1 ifm+1<i=j-1<n-1
0 otherwise

and k™' = (k;njl) satisfies

n—2+[ap—i—1 —apn_1)1 H1l<i=j—-1<n-—-m-1;
k?j,/: n—2+[ag — an—1h ifn—-m<i=j—-1<n-—1;
0 otherwise.

We keep the notation in (3.4.32) and recall that £ is defined in (3.4.33). We also define

{ Hgl) = (—1)27{:21 am Hz;jl J(n -2+ [ao — an,mfl]l, [an,m,1 — an,l]l), (3 4 63)

Iiglz) .— (71)(n*2)0«0 HZ;Ql J(n — 2+ [am — an—l]la [ao — am]l).

Proposition 3.4.64. Assume that (ap—1,--- ,ag) is n-generic.
Then we have

SklAwo [ ] Sw—1 = H;l)sko’wo and SEL/,’LUO [ ] S(w:lfﬂ_l = Kng)SEO,wo

o n—1
on the 1-dimensional space (%8)1(1)"70 foralll<m<n-1.

Proof. By the case w = wq of Proposition 3.4.60 and the fact that

m” j—
kmiimia=n—2+[a0 —an-ma]rand k7 =1 =2+ [am —an_1]1

= (1)@m= (n = 2+ [a0 — Gnem-1]1, [@n—m—1 — Gn—1]1)Sgm1 4,

and

5‘\Em”,wo b §SWL+1 = <_1)a0‘](n -2+ [am - anfl]h [ao - am]l)gkarlv’,wo
on the 1-dimensional space (ﬂg)l(l)’ﬂo for all 1 < m < n—2, and hence we finish the proof by induction
on m. O

Lemma 3.4.65. We have

kD = (—1)Zniam (T2 (”*QH‘IO*%—W—1]1)!([“"—7“—1*“"—1]1)’) (mod p)

m=1 (n—2+[ao—an—1]1)!
— n— A — Ay — ([ag—am]1)!
ki = (—1) D (H;ﬁl e el lpmen ) ) (mod p).

In particular,
ord, (kM) = ord, (x?) = 0.

Proof. This follows directly from (3.4.58), the definition of kD k{2 and the fact that (@n—1,"- ,a0)
is n-generic. O
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Corollary 3.4.66. Assume that (ap—1, - ,a0) is n-generic.
Then we have

Skt e = P" 260850 1o 0 Sy and Sy = 0" 6P S0 1 gw'n_l
on the 1-dimensional space (75)TM#o for all1 <m <n —1.
Proof. We have R R R R
St ®Swass = D" = Stug_ )1 @ Suy
so that this follows from Proposition 3.4.64 and Lemma 3.4.51. O

Corollary 3.4.67. We have the equality

U(F U Fp , ’ U Fp ’
SE1711)0 (ﬂ'o( p) ) = Sﬁl",ﬂlo (71-0( )Nl) — SEOJHO (71-0( )Ho) ]

Proof. The follows directly from Proposition 3.4.60,
Sg,w_il (ﬂ_éj(Fp)al‘O) _ ﬂ_OU(F:n)le and 597(71};71)_1 (Wg(Fp)v#t)) _ ﬂ_éj(FP)Jtll

and Lemma 3.4.65 by taking mod p reduction. O

As in (3.4.34), we use the shorten notation

~ o~ o~

Sn = SE17UI0 and 8/ : k1

To state the main result in this section, we also define
n—2n—3

- ﬁ 1:[ —“k —eh ST a’;o__azk 1;;] zZ7, (3.4.68)
k=1 j=1

l[ag — ak)i +J

k=1 j=0
n—2
e = (=1)c0=am, (3.4.69)
m=1
and
fin = KB (D)L, (3.4.70)

The main result of this section is the following theorem, which is a generalization of the case n = 3
in [HLM17], (3.2.1).

Theorem 3.4.71. Let

11, —Ind Q)X

be a tamely ramified principal series representation where the x = x1 @ --- Q xn : T(Qp) = E* is a
smooth character satisfying X|T(Zp) = [i1.

Hfl(l)’ﬁl

On the 1-dimensional subspace we have the identity:

n—2
S, 0 (En)" 2 =p" %k (H xk(p)> Sn
k=1
for some k,, € OF (defined in (3.4.70)) such that

bn =& Pp(an—1,-+-,a0) (mod wg) (3.4.72)

where ¥ = +1 is a sign defined in (3.4.69) and P, is a rational function defined in (3.4.68).
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The following is a direct generalization of Lemma 3.2.5 in [HLM17].

. -1
U, = (H Xk(p)>
k=1

on the 1-dimensional space Hfl(l)’ﬁl for each 1 <r<n-—1.

Lemma 3.4.73. We have the equality

Proof. The proof of this lemma is an immediate calculation which is parallel to that of [HLM17],
Lemma 3.2.5. 0

Proof of Theorem 8.4.71. Notice that

/

wy, 1 (W) = wemy and (wy, )+ (w)"7?) = 3(n — 2) = L(wp—1) +2(n — 2),

so that by Lemma 3.4.51 we have

~ -~ ~

Sur 8 Speyn-2 =p" S, (3.4.74)

n—1

By composing 5’@0 on both sides of (3.4.74), we deduce from Proposition 3.4.64 that

sWo
(52) L8], @ Speyn—2 = p"2(5D) 1S,

and thus

~

<§, ° (S/‘\(w*)n—Z = pniQKZnSn (3.4.75)
on the 1-dimensional subspace HI(U’”1 Now Lemma 3.4.54 together with Lemma 3.4.73 gives rise to
the identity in the statement of this theorem.

Finally, one can readily check from Lemma 3.4.65 that
fin = 1D (KH) 1

n—2

= (_ A0 —am H n -2+ aO — Un—m— 1]1)!([an7m71 - anfl]l)!
(n =24 [am — an—1]1)!([ao — am]1)!
—2n—2
= (_1)2:” 2 1 G0—am €+ a() ]1
m=1 =1 E am — Qp— 1}1
=e"P, (mod wg).
Note that ord,(%,) = 0. This completes the proof. O

3.4.6 Special vectors in a dual Weyl module

Let R be a Fy-algebra, and A € G(R) a matrix. For Ji,Jo C {1,2,--- ,n — 1,n}, we write A, j, for
the submatrix of A consisting of the entries of A at the (i, j)-position for i € Jy, j € Jo. We define

Jo={1,2,--- i} C{1,-- ,n}

for each 1 <7 < n.
We fix a tuple of integers (hq,--- , hs) for some 1 < s < n — 1 such that

1<h.<n-—-1foralll<r<s
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and
S

Zhr:n—l

r=1

and we denote this tuple by h. Then we can define n — 1 positive roots 8y ; for 1 <i <n—1 as
follows. Given an integer 2 < ¢ < n — 1, there exists an unique integer 1 < ry < s — 1 such that

ro+1

T
Zojhrnghr,
r=1 r=1

and we use the notation

Then we define

We always set
5@,1 = Qj.

Then we define
@g :={O¢€‘I>+|Oé7é,8ﬁ7i forall1 <i<n-—1}

and notice that this set gives an unipotent group U, C U by setting

Uﬁ::: II lja.

+
ae@h

We emphasize that all Up, constructed here are good in the sense of Definition 3.4.21. In particular, if
s=n—1andn, =1for 1 <r <n-—1werecover [U,U], and if s =1 and n; = n — 1 we recover Uy
(c.f. Example 3.4.23). We define U}, as the reduction of Up, mod p.

Given a tuple h as above, we define the subsets J; C {1,--- ,n} for 1 <i<n-—1as

76+1

o v
Tp=A{1,2, i+ BN b} if Y by <i< Y hy
r=1 r=1 r=1

for some 1 < r{j < s—1 and we use the notation

It is easy to see that \J,’l| =jforl<i<n-—1.
We define B
Dp,; = det ((WOA)J;;,.@)

foralll <i<n—1. Wealso set D,, := det(wpA). Hence, Dy ; (1 <i <n-—1)and D,, are polynomials
over the entries of A.

Given a weight A € X, (T), we now introduce an explicit model for the representation H°(\), and
then start some explicit calculation. Consider the space of polynomials on G J¥,» Which is denoted by
O(G). The space O(G) has both a left action and a right action of B induced by right translation
and left translation by B on G respectively. The fraction field of O(G) is denoted by M(G).
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Consider the subspace
OO == {f €O@) | f-b=woAb)f Wbe B},

which has a natural left G-action by right translation. As the right action of ion O(G) is semisimple
(and normalizes U), we have a decomposition of algebraic representations of G-

0@ ={feO@G)| fu=f YueU} = xz00\. (3.4.76)

It follows from the definition of the dual Weyl module as an algebraic induction that we have a natural
isomorphism

H°(\) =2 O(N). (3.4.77)
Note by [Jan03], Proposition I1.2.6 that HY(\) # 0 if and only if A € X (7).
We often write the weight A explicitly as (di,da,- - ,d,) where d; € Z for 1 < i < n. We will

restrict our attention to a p-restricted and dominant A, i.e., dy > dy > ... > d, and d;_1 — d; < p
for 2 < i < n. We recall from the beginning of Section 3.4 the notation (-), for a weight space with
respect to the weight A’. We define ¥ to be the set of (n — 1)-tuple of integers m = (my,...,Mp_1)
satisfying

0<m; <d; —dijpp for 1 <i<n-—1.

For each tuple m, we can define a vector

n—1
alg | d di—dit1—m; ;
’Uﬁ’gm = Dn" H DZ (Dh’i)ml.

=1

Proposition 3.4.78. Let A = (dy,ds,- -+ ,dy) € X1(T). The set

{vp% | m e x} (3.4.79)

forms a basis of HO(\)Ux. Moreover, the weight of vZ{gm is

n—1
A— (Z miﬁh,i)
=1

and thus each element in (3.4.79) has distinct weight.
Proof. We define

U@ ={fcO@)|u-f=f-u=f VuelU& Yu, € Uy}
and B -
MY = {feM@G) |ur-f=fu=f YuecU&VYu, €Uy}

We consider a matrix A such that its entries A; ; are indefinite variables. Then we can formally do
Bruhat decomposition
A= UAwOTA,@UA,Q

such that the entries of U4, T'a p, Ua, are rational functions of A; ; satisfying
1 iti=y;
(Ua)z _{ 0 ifi>j,

(Tan)ij =94 Dnr(A) i (4,7) = Bk
0 otherwise ,
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(Unn)is = 1 ifi=yj;
ARILIT 0 if i > jor (i,5) = B for some 1 < k <n— 1.

For each rational function f € Ur A (é)ﬁ, we notice that f only depends on T4 j, which means
that f is rational function of D; for 1 <i <mn and Dj; for 1 <i <n — 1. In other word, we have

EM(G)Y =Fp (D1, Dn, Dy, s Dpn—1) € M(G).

3

Then we define

wNO@G)A = {fe rO@G)Y |z f=N(2)f, and f-z = \a)f VzeT}
and
UnN M@ = {fe "eM@G)V |z f=N(2)f, and f -z = Aa)f VoeT}.

Note that we have and an obvious inclusion

—_ ’ —_

UL’XO(G)ﬁ’A C Up,A M(G)ﬁ’)\.
We can also identify U2 O(G)U with H(\)}/ via the isomorphism (3.4.77). By definition of D;
(resp. Dy;) we know that they are T-eigenvector with eigencharacter >, _, ex (resp. (Z;;;ll €k) fe[i]/i)

for 1 <4 <n (resp. for 1 <i < n —1). Therefore we observe that UE”\/M(G)U’)‘ is one dimensional
for any A, \' € X(T) and is spanned by

n—1
dn di—dit1—m; my
i T ps (Dp.i)
i=1

where A = (dy,--- ,d,) and
n—1
)\/ =A\— (Z miﬁhﬂ) .
i=1

As O(G) is a UFD and D;, Dy, ; are irreducible, we deduce that

n—1
oy [ pE 7™ (Dup)™ € 0(@)
i=1

if and only if
0<m; <d;j—djqrforall 1 <i<n-—1

if and only if

HO(A)S #0
which finishes the proof. O

We consider the special case of Proposition 3.4.78 when s =1 and ny =n — 1.

Corollary 3.4.80. Let A\ = (dy,ds, -+ ,dy) € X1(T). For N € X(T), we have
dimg, HO(\){* < 1.

Moreover, the set of N such that the space above is nontrivial is described explicitly as follows:
consider the set X, _1) of (n — 1)-tuple of integers m = (ma, ..., myn_1) satisfying m; < d; — diy1 for
1<i<n-—1, and let

n—1
alg . mdn di—dit1—m; m;
Uiy = D0 1] D (Dgn—1y.0)™
=1



100CHAPTER 3. MOD P LOCAL-GLOBAL COMPATIBILITY FOR GLy(Qp) IN THE ORDINARY CASE
Then the set
{5 1y | € Sy}

forms a basis of the space HO()\)E, and the weight of the vector v?}i 18

1}m
n—1
(di — Z M, do +my,.,dn_1 +Mp_2,dy +my_1).
i=1

Remark 3.4.81. Corollary 3.4.80 essentially describes the decomposition of an irreducible algebraic
representation of GL,, after restricting to a maximal Levi subgroup which is isomorphic to GL; x
GL,_1. This classical result is crucial in the proof of Theorem 3.4.137.

3.4.7 Some technical formula

In this section, we prove a technical formula that will be used in Section 3.4.8. The main result of
this section is Proposition 3.4.101.

From now on, we assume that (a,_1,-- ,ag) is n-generic in the lowest alcove (c.f. Definition 3.4.5).
We need to do some elementary calculation of Jacobi sums. For this purpose we need to define the
following group operators for 2 <r <n —1:

X =) 7 s, (1) € Fy[G(F,)],
teF,

and similarly

X,,‘_ = Z tp_QwouE::yl o (t)wo S Fp[G(Fp)].
teF,

We notice that by definition we have the identification X% = X -1, 15 Where X is defined
in (3.4.8). - -

Lemma 3.4.82. For a tuple of integers k = (k; ;) € {0,1,--- ,p— 1}"1):50‘, we have
Xj (] SEJUO = knnSET,n,+7w0

where k"™t = (k£]"+) satisfies kst = kpp — 1, and k;f* =k, if (¢,7) # (r,n).

Proof. This is just a special case of Lemma 3.4.11 when ag = > . «; and m = 1. O
For the following lemma, we set
I:={(i1,i2, - ,is) | 1 <i1 <ig<---<is=mnforsomel <s<n-—1}.

to lighten the notation.

Lemma 3.4.83. Let X = (X, ;j)1<i j<n be a matriz satisfying
X, j=0ifl<j<i<n-—L
Then the determinant of X is

det(X) = 3 (-1 X, I xi (sl:[ximm). (3.4.84)

(i1, yis )€l j#i, 1<k<s
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Proof. By definition of the determinant we know that

det(X) = Z (—1>[(w) H Xk,'u)(k)'
k=1

weWw

From the assumption on X, we know that each w that appears in the sum satisfies
w(k) <k (3.4.85)

forall2<k<n-—1.

Assume that w has the decomposition into disjoint cycles

w = (i%vi%v T ,i,}“) T (iTInvi?Zna T 7i'rTm) (3486)

where m is the number of disjoint cycles and ny > 2 is the length for the k-th cycle appearing in the
decomposition.

We observe that the largest integer in {zéC | 1 <j < ng} must ben for each 1 < k < m by condition
(3.4.85). Therefore we must have m = 1 and we can assume without loss of generality that il L =n.
It follows from the condition (3.4.85) that

i} <y
for all 1 < j <nj; — 1. Hence we can set
Si=mny, Gy =iy, is =1, .
We observe that {(w) = s — 1 and the formula (3.4.84) follows. O

Recall from the beginning of Section 3.4.7 that we use the notation A, ;, for the submatrix of
A consisting of the entries at the (i, j)-position with ¢ € J1,j € Ja, where Jy, JJo are two subsets of
{1,2,--- ,n} with the same cardinality. For a pair of integers (m,r) with 1 <m <r—-1<n—2, we
let
JoT =12, ;r,n—m+1}.

For a matrix A € U(F,), an element t € F,,, and a triple of integers (m,r, {) satisfying 1 < m <
r—1<n-—2and1</<n-—1, we define some polynomials as follows:

when 1 <m<r-—1;

m,r n—r+1
aJo

Dy, (A, 1) := det (uzrl o (t)wkoo)
i=r ST p

Do (A, ) :=det (UZZZS o (t)wkoo) 7. when 1 </l <n-—r

(3.4.87)

We define the following subsets of I: for each 1 </ <n—1
L= {(i1,49, - ,is) €T |n—L+1<i; <iyg<---<is=n for some 1 < s < {}.

Note that we have natural inclusions
I,CI,C1I

if 1 <¢ <V <n-—1. In particular, I has a unique element (n). Similarly, for each 1 < ¢ <n—1 we
define

¥ = {(i1,02, - ,is) | 1 <i1 <ig < <is_1 <n—¥ <ig=nforsomel<s </}

and we set ) ,
I =1,nT"
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forall 1 < ¢ </¢—1<n-—2. We often write i = (i1, -+ ,4s) for an arbitrary element of I, and define
the sign of 7 by

e(d) == (-1)°.

We emphasize that all the matrices (wouzzlz_rl « (t)wkoo) S for1<m<r—1,and all
1 12

the matrices (wouzn—l . (t)wOAw()) . for 1 < ¢ < n — r, after multiplying a permutation matrix,
i=r Ji,J3
satisfy the conditions on the matrix X in Lemma 3.4.83. Hence, by Lemma 3.4.83 we notice that
{ Dpr(At) = Ay +tfmr(A) whenl <m<r—1;

3.4.88
D,@(A,t) =1—tfrn-e+1(A) wehnl</l<n-—r; ( )

where forall 1 <m <r -1
fmr(A) = Z () Am,iy H Ais vy | - (3.4.89)
i€l —prp1 j=2
Let (m,r) be a tuple of integers with 1 < m < r —1 < n — 2. Given a tuple of integers

ke {0,1,---,p— 1}@:50', i = (41,42, ,is) € I,_r11, and an integer r’ satisfying 1 < ' < r, we
define two tuples of integers

Ej,m,r _ (kzmr) c {0)17 Cp— 1}\<I>$0|

and
ghmnr (k%;n,r,w) {01, p— 1}|<I>$O|
as follows:
ke =1 if (i,7) = (m 77“) and iy > r;
, kmi, +1 if (i,7) = (m,41) and i3 > 7;
k’f;nr =19 kmr if (i,7) = (m r) and i, = 7;
kij+1 if (i,5) = (ip,ipsr) for 1 <h <s—1;
ki j otherwise
and
ot _ [ BT 1) = (07,
b7 B k;;n " otherwise.
Finally, we define one more tuple of integers k™ = (k:j) e{0,1,---,p— 1}\‘1>ZOI by

. krm +1 if (4,7) = (r,n);
Ly ki j otherwise.

Lemma 3.4.90. Fiz two integers v and m such that 1 < m <r—1<n—2, and let k = (ki,j) €
{0,1,--- ,p— 1}|q>1+"0‘, Assume that k; j; =0 forr+1 < j <n—1 and that k; , = 0 for i # m, and
assume further that

n—1

Up—r — a1+ a1 — ap_1 — Z kinlt + kma < p.
i=1
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Then we have

X, ® Sk w0 = kmr g €(2)Sgim.r o0

i€ln_r
n—1
+ ([an—r — an—-1 — Z kz’,n]l + km,r)SETvﬂwovO
i=1
n—r
_ Z(an_r — ap—1 + km,r) Z g(i)SELr,n—Zi»l’wovo
=2 A VAN VY
Proof. By the definition of X, we have
_ _ ki
X, @ S0 = > Ol B | wottsn-1 , (tJwoAwp | vo. (3.4.91)
AcU(F,),teF, 1<i<j<n

For an element w € W, we use E,, to denote the subset of U(F,) x F, consisting of all (4,¢) such
that
Wolks 1, (t)woAwy € B(F,)wB(F,).

It is not difficult to see that if E,, # @& then wwy(i) =i for all 1 <7 <r —1.
We define M, to be

M, = Z P2 H Ai,jJ Wolls~n-1 (t)woAwg | vo.

h=r
(At)EE, 1<i<j<n

By the definition of F,,, we deduce that there exist A’ € U, (F,), A” € U(F,), and T € T(F,) for
each given (A4,t) € E,, such that

wougn-1 ., (HwoAwo = AlwT A", (3.4.92)

Here, the entries of A’, T and A” are rational functions of ¢ and the entries of A. We can rewrite
(3.4.92) as
Wolly~n—1 o, (FwoA'w = AwoT~H(T(A")'T—) (3.4.93)

In other words, the right side of (3.4.93) can also be viewed as the Bruhat decomposition of the left
side. Therefore the entries of A, T', A” can also be expressed as rational functions of the entries of A’.
For each A’ € U, (Fp) and w € W, we define

DY (A t) :=det ((uz?_: o (t)woA’w> L J"7'+1> when 1 <m <r—1;
0 0

D:)’(é)(A’,t) = det ((Uzﬁ,—l . (t)woA/w) ) when 1 </ <n-—r.

JE,J¢

(3.4.94)

Note that if w = wp, then the definition in (3.4.94) specializes to (3.4.87). We notice that for a given
matrix A’ € U, (F,), the equality (3.4.93) exists if and only if

DO (A —t) #£0forall 1<l <n—r (3.4.95)

On the other hand, we also notice that given a matrix A € U(F,), the equality (3.4.93) exists if and
only if (3.4.95) holds.
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By the Bruhat decomposition in (3.4.93), we have

D:f)V(Q) D”,L‘U,(’IL—T‘) 1
T~ =diag | DY, ey ey b (3.4.96)
D> Dy D,
in which we write Dy @ for DY ’(i)(A' ,—t) for brevity. We also have
A/i,j ifl<i<j<nandj<r-—1;
A= Dﬁi,r(/A'v —t) if (4,5) = (m,r); (3.4.97)
% if1<i:<n—1andj=n.
D, (A/‘rft)
We apply (3.4.92), (3.4.97) and (3.4.96) to M,, and get
My= Y | F(A wt) IT Ak | Awg | v (3.4.98)

(At)EE, 1<i<j<n
j<r O j=n

where

m,

F(A" w,t) =72 ((Dw ) (D)@ —an— =320 i H(Dg,(s))asaH)
s=2

in which we let Dy, . := Dy (A’, —t) and DY) .= DY) (A", —t) for brevity. We have discussed in

(3.4.95) that (A,t) € E,, is equivalent to (A',t) € Uy(F,) x F, satisfying the conditions in (3.4.95).
As each D;”’(S)(A’, —t) appears in F(A’,w,t) with a positive power, we can automatically drop the
condition (3.4.95) and reach

Mo = 2 FA wy | [T (i)™ [ Awo | vo, (3.4.99)
(A;t)EU w(Fo)xFy 1<i<j<n
j<r OI j=n

If w # wop, then there exist a unique integer ig satisfying r < ig < n such that wwg(ig) < i but
wwp(i) =1 for all ig +1 <4 < n.

By applying Lemma 3.4.83 to D;‘f}’(nJrl_i”)(A’, —t) (as (usn-1,, (HwoA'w) je je satisfy the condi-
tion of Lemma 3.4.83 after multiplying a permutation matrix): ‘we deduce that

D) (47, ) = 1 f(A')

where f(A’) is certain polynomial of entries of A’.
Now we consider F(A’,w,t) as a polynomial of ¢. The minimal degree of monomials of ¢ appearing
in F(A,w,t) is at least
p— 2+ Up41—ig — An—ig >p— ]-7

and the maximal degree of monomials of ¢ appearing in F(A’,w,t) is

n—1 n—r
p— 2+ km,r + [al — Qp—1 — Z ki,n]l + Z s — As—1
i=1 s=2
n—1
=D 2+ km,r + [al —ap—1 — Z ki,n]l + Qp_yr —aq
1=1

<2(p-1).
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As a result, the degree of each monomials of ¢ in F(A’,w,t) is not divisible by p — 1. Hence, we

conclude that
M, = 0 for all w # wq

as we know that >, g tk £ 0 if and only if p— 1 | k and k # 0.
Finally, we calculate M,,, explicitly using (3.4.99). Indeed, by applying (3.4.88), the monomials
of t appearing in F(A’, wg,t) is nothing else than

n—1 n—r
tp_l <_km7rfm,r(z4/) + [al —OGp—1 — Z ki,n]lfnn(A/) + Z(as - as—l)fnn-i-l—s(A/)) .

=1 s=2

As Yep, tP71 = —1, we conclude that

X 0 Spuwoto =My, = | Fo(4) T  Ai)F | Awo | o (3.4.100)
A’eU(Fp) 1<i<j<n
Jj<r Or j=n
where
n—1 n—r
FO(A/) = km,rfm,r(A/) - [al — Qp—1 — Z ki,n]lfr,n(A/) - (as - asfl)fr,nJrlfs(A/)-
i=1 s=2

Recalling the explicit formula of f, , and f, 415 for 1 <s <n—r from (3.4.89) and then rewriting
(3.4.100) as a sum of distinct monomials of entries of A’ finishes the proof. O

Proposition 3.4.101. Keep the assumptions and the notation of Lemma 3.4.90.
Then we have

+ - _ NG
X, ¢ X S, V0 = kmrkrn E €(2) Sgism e 1py V0
[AS) -

n—1
+ (knn + 1) <[an7‘ — Qap—1 — Z kim]l + km,r) S@’W*,wovo
i=1

n—r

- kr,n Z(an—r —ap—1+ km,T) Z E(Z)SELT*"*““,HJOUO
=2 S VAN VI
Proof. This is just a direct combination of Lemma 3.4.90 and Lemma 3.4.82. O

3.4.8 Proof of Theorem 3.4.35

The main target of this section is to prove Theorem 3.4.137. This theorem together with Corol-
lary 3.4.67 immediately implies Theorem 3.4.35. We start this section by introducing some notation.
We first define a subset A,,, of {0, - ,p — 1}"%0‘ consisting of the tuples k = (k; ;); ; such that
foreach1<r<n-1
Z ki,j = [ao—an,1]1 +n—2.
1<i<r<j<n
Note that the set A,, embeds into my by sending k to Sk, w,v0. Moreover, this family of vectors
{Skwovo | k € Ay, } shares the same eigencharacter by Lemma 3.4.19.
We define kf € Ay, where kK= (kf]) is defined by kfn = [ag — ap—1]1 + n — 2 and kfj =0
otherwise. We define V¥ to be the subrepresentation of 7y generated by Sit woVo- We also need to
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define several useful elements and subsets of A,,,. For each 1 <7 <n — 1, we define ke A, where
EPT = (KPT) is defined by

n—2+ap—an—1)1 f2<j=i4+1<r

KPTi=Q n—2+4[ag—an_1)1 if (i,5) = (r,n);
0 otherwise.
In particular, we have
kP =k and kP = &0 (3.4.102)

where k" is defined in (3.4.33).
Foreach 1 <r <n—2and 0 <s < [ap — an—1]1 +n — 2, we define a tuple A= Ay, as follows:

n—2+[ap — ap_1] if2<j=i+1<r;
ﬁ n—2+4ap —apn—1]1 —s if (i,5) = (r,r +1);
kijm =9 s if (i,7) = (r,n);
n—2+4[ap —an—1]1 —s if (i,5) = (r+1,n);
0 otherwise.
In particular, we have
Eﬁmo — Eﬁ,r+1 and k;ﬁ rlao—an—1]1+n—2 E (3.4.103)

foreach 1 <r <n-—2.

We now introduce the rough idea of the proof of Theorem 3.4.137. The first obstacle to generalize
the method of Proposition 3.1.2 in [HLM17] is that V, does not admit a structure as G-representation
in general. Our method to resolve this difficulty is to replace Syo ., v0 by Sit ., v0. We prove in
Proposition 3.4.133 that V¥ admits a structure as G-representation and actually can be identified
with a dual Weyl module H°(y°). (The notation pg° will be clear in the following.) Now it remains
to prove that

Sﬁﬁ,wofUO eV (34104)
to deduce Theorem 3.4.137. We will prove in Proposition 3.4.124 that

SEﬁ,T',sfl vy € V) = SMJ‘»S,W,UO eV

»Wo
foreach 1 <r <nmn—-2and 1< s < [ag — an-1J1 + n — 2. As a result, we can thus pass from
S50 wov0 € Vo t0 Syt pov0 € Vo for r=n —2,n —3,--- 1. The identification Eﬁ = kﬁ’l thus gives us
(3.4.104).

We firstly state three direct Corollaries of Proposition 3.4.101. It is easy to check that each tuple
k appearing in the following Corollaries satisfies the assumption in Proposition 3.4.101.

Corollary 3.4.105. For each2 <r <n-—1and0<s<[ag— an—1]1 +n — 3, we have

X:_ . Xr_ . Sﬁumfhs’wovo = ([ao — an_l]l +n—2— 8)2 Z E(z)S(Eﬁ,Tfl,s)l‘,m,r,r;u)UUO
i€l r

+ (lan—r — an—1]1 = 5)([ao — an—1]1 + 1 =1 = 8)Spr-1.5 4y V0

— ([ao — ap—1}1 +n—2—35) Z Ay — Gp—1 + (a0 — Gn—1]1 + 1 —2 —5)
/=2

S(ku r=Lls)irn—L+1r 4, V0
zEI/\Iz 1
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Corollary 3.4.106. Fiz two integers r and m such that1 <m <r—1<n-—2, and let k = (k; ;) be
a tuple of integers in A, such that

ifr+1<j<n-1;
ifi£Emand j=r;
ifr+1<i<n-—1andj=n;
if (7’73) = (mm);
if(i7j>:(rvn)'

kij =

_ =0 O O

Then we have

X:_ ° Xr_ ° SE,WOUO = Z E(Z)Shi,m,r,r’wovo + Q(GH,T —ag—"n—+ 3)5&71)0’00

€L,
n—r
— E (an,r —Qy—1 + 1) E E(z)skj,w‘,n—l+1.7*7wouo
£=2 €T \I—q

Corollary 3.4.107. Fiz two integers r and m such that1 <m <r—1<n-—2, and let k = (k; ;) be
a tuple of integers in Ay, such that

10 ifr<i<n—1andj=n.

Then we have

X5 e X" 0 Sk wyvo = (an—r — ag — 1+ 2) Sk, weo

n—r
— Z(an,r —ap—1+1) Z €(8) Sgirn—t41.r 400
=2 S VAN VES)

We now define the following constants in F,:

cy = Hf;;ll(ak — ag fn+2+k)2£_k_l;
c, = (ar—ap—n+3+0)c
for all 1 < /¢ <n —1 where we understand c¢; to be 1. As the tuple (a,—1, -+ ,ap) is n-generic in the

lowest alcove, we notice that ¢, # 0 # ¢ for all 1 < ¢ < n—1. By definition of c; and ¢}, one can also
easily check that
-1

[Tk —cx) = ce (3.4.108)
k=1

We also define inductively the constants: for each 1 <4 <n —1
dus :{ 2/(a47a07n+3) v ?fﬁ’:O;
’ cpdep—1—(ar—ap +1)cy [[.2 (c), —cx) if1 <0 <0—1.
We further define inductively a sequence of group operators Z; as follows:
Zyi=diold— X e X | € F)[G(F),)]
and

Zp:=dpe_11d — (Zg,l o.--0Z e X:lr_g ° X;—K) e F,[G(F))]
foreach 2 </¢<n-—2.
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Lemma 3.4.109. For 1 </{ <n—1, we have the identity

-1
dyo—1 = (ag —ag—n+2) (H c%) + cj.
k=1

Proof. During the proof of this lemma, we will keep using the following obvious identity with two
variables
ab=(a+1)(b-1)+a—-b+1 (3.4.110)

By definition of dy¢—; we know that

0—1 0—1 -1 -1
d&g_l = 2((1[ —ag—n-—+ 3) H C% — Z (ag — ayp + 1)0@/ H (C;C — Ck) ( H C%)
k

k=1 =1 k=1

and therefore

-1
dee—1— (ar —ap—n+2) (H%) (ag —ag—n+4) Hck
k=1
/—1 -1 —1
— Z (ag — ap + 1)y H (¢ —ck) < H c%)
=1 k=1 k=041

Now we prove inductively that for each 1 < j </ —1

- -1
deo—1— (ar —ap—n+2) (H%) (ag —ap—n+3+37) (H —ck> HCQ

k=1 k=3

-1 -1 -1
> | (ar—ap +Der | J](ch — ) (H c;> . (3.4.111)

=y k=1 k=041
By the identity (3.4.110), one can easily deduce that
(ae —ap —n+ 34 j)c; — (ap — a; + 1)c;
=[(ag—ap—n+3+j)(aj—ao—n+3+j)—(ar—a; +1)]c,
=(ag—ag—n+4+j)(a; —ap—n+2+j)c;
= (a¢ —ap —n+4+j)(c; —c).
Hence, we get the identity:

—1 j—1
[(ac —ag—n+3+4)c)—(ar—a;+ )] [ ] <k (II@%-CH>

k=j+1

J £—1
=(ag —ap—n+4+j) (H —ck> H c, |- (3.4.112)

k=j+1

Thus, if the equation (3.4.111) holds for j, we can deduce that it also holds for j + 1. By taking
j =+¢—1 and using the equation (3.4.112) once more, we can deduce that

-1
dee—1—(a—ap—n+2) (Hck> (ag—ap—n+3+7) <1_[(c§C ck)> .

k=1

Hence, by the equation (3.4.108), one finishes the proof. O
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Proposition 3.4.113. Fiz two integers v and m such that 1l <m <r—1<n—2.

(i) Let k = (k; ;) be as in Corollary 3.4.106. Then we have
Zy_ro Sﬁ,wo = Cn—rSE’,wU (34114)

where k' = (kj ;) is defined as follows:

0 if (i,73) = (my7r) or (4,5) = (r,n);
k;,j = 1 Zf (Z’]) = (ma n);
ki ; otherwise.

(ii) Let k = (ki ;) be as in Corollary 3.4.107. Then we have

Zn—r ® Skwe = Chy_rSkwo - (3.4.115)

We prove this proposition by a series of lemmas.
Lemma 3.4.116. Proposition 3.4.113 is true forr =n — 1.

Proof. For part (i) of Proposition 3.4.113, by applying Corollary 3.4.106 to the case r = n — 1 we
deduce that

+ - _ .
X, _1eX, e S&wovo = 2(&1 —agp—n-+ 3)5’&71]01)0 - SEAO,NL,"Lfl,nfl1w0’U0

where i, = {n—1,n}. Hence, part (i) of the proposition follows directly from the definition of Z; and
Cy.
For part (ii) of Proposition 3.4.113, again by Corollary 3.4.107 to the case r = n — 1 we deduce
that
X;Z;l ° erfl [ ] S&wovo = ((11 —apgp—n + 2)5&1”0’[10.

Then we have
Z1 0 Skawvo = (a1 — ag — 1+ 4)Sk,w, V0

and part (ii) of the proposition follows directly from the definition of cj. O

Lemma 3.4.117. Let{ be an integer with 2 < ¢ < n—1. If Proposition 3.4.113 is true forr > n—{+1,
then it is true forr =n — L.

Proof. We prove part (ii) first. Assume that (3.4.115) holds for r > n — £+ 1. In fact, for a Jacobi
sum Sy ., satisfying the conditions in the (3.4.115) for r = n — ¢, we have

X:_é o X", ®Skwvo = (ar —ag —n+ 2)Skw,vo
by Corollary 3.4.107. Then we can deduce

-1
Zoy_10---0Z @ X:;Z . X’rsz . S&wovo = (ag —ag—n-+ 2) (H C;) S&wovo
s=1

from the assumption of the Lemma. Hence, by definition of Z,, we have

Z; 0 Skweo = der—15kwe00 — Z¢—10---0Z1 @ X;_g o X, ,®Skwo

-1
= (de,e1 —(ag—ap—n+2) <H Cé)) Sk,wo 0
s=1

/
= Cés&wo Vo
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where the last equality follows from Lemma 3.4.109.
Now we turn to part (i). Assume that (3.4.114) holds for » > n — £+ 1. We will prove inductively
that for each ¢ satisfying 1 < ¢ < ¢ — 1, we have

Zpe---eZ e X' e X 05, v

e/
= dy,er Sk,wov0 + 1_[(6/é —cs) Z £(2)Sytmin—tin=t 1,00
s=1 ier?
Y4 -1
| IIh = | | D0 (@—an+1) D7 c@Spntmnn-e oo | (34.118)
ol h=0'+1 PETNI,

We begin with studying some basic properties of the index sets If;. First of all, the set Ig: 11 \Iﬁ: 12
has a unique element, which is precisely i = {n — ¢ — 1,n}. Furthermore, there is a natural map of
sets

resyr o IfL/ — Iiu'_l
for all #/ +2 < h < £ defined by eliminating the element n — ¢ from i € If: if n — ¢ € 4. In other
words, for each ¢ € Ifﬁl, we have

res; ' ({i}) = {L.1U {n— £}} C T},
We use the shorten notation /
i‘ =iu{n—1}
for each i € If{“. Note in particular that (i) = —e(i’ ).
Given an arbitrary i € If;“ for ¢/ +2 < h < {—1, then Ski,nfz,nfh,nfz
satisfies the conditions before the equation (3.4.115) (resp. (3.4.114)). As a result, by the assumption
that Proposition 3.4.113 is true for r = n — ¢’ — 1, we deduce that

0v0> = (Chryy — Cori1) Spim—tinonnt 0. (3.4.119)

Jwo (resp. Skizl‘n—ﬂ,n—h,n—l{vwo)

Z£’+1 ° <SE1‘,7L72,7L7h,7L72’w0'U0 - SEZW>"—1’~="—}7/:”—K7w

Similarly, we have
!
ZZ’Jrl ° (SELWL,'IL*Z,W.*Z’WO/UO - Ski[/vm—‘%"—‘,wovo> = (Czl+1 - Cg/+1) SELT!L,TL*E,H*Z’U)O'UO (3‘4.120)

for each i € Ig/ﬂ. We also have
Zp 41 ® SkwgV0 = Cpry 1 Sk,wo V0 (3.4.121)
by (3.4.115) for r =n — ¢ — 1, and
Zyr41 @ Spign—tan—t/—1n—t 4 V0 = C/4+1k,w, V0 (3.4.122)

by (3.4.114) for r =n — ¢ — 1 where iy = {n — ¢’ — 1,n}.
Now assume that (3.4.118) is true for some 1 < ¢’ < ¢ — 2. Then by combing (3.4.119), (3.4.120),
(3.4.121) and (3.4.122), we have

ZZ’-&-I ®---0 Zl L] X:7Z L] X;7Z ° SE,wO’UO

e/
! .
= d&g/Zg/.H (] SE,U,OUQ + 1_[((3G — CS) Zpg1® E E(Z)Ski,m,n—ﬁ,n—ﬁ’wovo
s=1 iely
4 -1
/ .
+ 1_[(0S —Cs) | Zoryr @ E (ag —ap +1) E €(2)Sgim—tn—nn—t 4 Vo
— — . ’ ’
= h=t+1 e iy,
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which is the same as
El

cpde e Seaevo + | [J(ch —co) | X +Y +2) (3.4.123)
s=1
where
X =(ag—apr +1)Zp41 @ Spigm—tn—t'—1.n-t 4 V0,
Y = Z 6@)25/_;,_1 [ (SEL7n,7L—e,w,—e7w0U0 — Skiymmfﬁnfﬁwov(]) )
ier!/+1 B
and
-1
7 = Z (ag —ap +1) Z e())Zp41 @ (SEVLn—Z.n—h,nfl7w0’UO — Skié/,nfé,n—h,nfﬁ wovo) .
W ier

One can also readily check that (3.4.123) is also the same as

Z(
/ /
Chprdee + o | ] (el —cs) | (ar—ap +1) | Sk,
s=1
241
+ (C‘lS - CS) E E(l’)SEi.m.n—l.anwaUO
s=1 ielﬁ/‘f*l
041 -1
+ (ch —cy) E (ag —ap +1) E €(2) Spim—tm—nn—t 4 V0 | 5
s=1 h=0"+2 ielfzurl\lﬁ/fll

which finishes the proof of (3.4.118), as we have

e,
! !
deey1=cpqdee +coyr I | (¢ —cs) | (ag —ap +1)

s=1

by definition.
Note that (3.4.118) for each 1 < ¢/ < ¢ —1 then follows from Corollary 3.4.106 for » = n — £. Note
that the case £/ = £ — 1 for (3.4.118) is just the following

-1
+ — /
ZZ—I ®---0 Zl L] anﬁ L] anﬁ L] S&wovo = dg7g_1SE7w0U0 - (H(Cs - CS)> Sﬁil,m,,n—ﬂ.,n—ﬁ.’wOUO

s=1

where i; = {n}.
Finally, (3.4.114) for r = n — ¢ follows from the equation above together with the definition of Z,
and the identity (3.4.108). O

Proof of Proposition 3.4.113. It follows easily from Lemma 3.4.116 and Lemma 3.4.117. O

Proposition 3.4.124. For each1 <r <n—2and1 < s <[ag—an—1]1+n—2, if Sgrra-1 4,00 € Vo,
then Sgt.r.s o0 € Vo.
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Proof. By Proposition 3.4.113 and its proof, we can deduce the following equalities

n—2—r

l
Zn,Q,T ®---0 Zl L] SEﬁ,r,sfl’wOU() = < H C£> SEu,r,s—l’wO’Uo,

(=1

n—2—r
- /
Zn727r ®---0 Zl o E E(E)S(&ﬁ,‘r',sf1)1,7‘,T+1,r+1’wO/U(] = — ( H (CE — Ce)) SEu,r,s,wO'U(),

€Ly 1 =1

and

Zpo p®---0Z @ E 5(1)5(}611,7‘,571)1,7‘4»1,n7€+1,r+17w0'U0

i€l \Ip_1
l—1 n—2—r
/ /
=cy H(ch—ch) H Chy | Sktrs=1 45000

h=1 h=(+1

for each 1 < ¢ <n — 2 —r. Therefore by replacing (r, s) in Corollary 3.4.105 by (r + 1,s — 1), we can
deduce that

+ —
Zp o2 re--c0ZjeXT eX e SEﬁ,r,sfl’wo'Uo
n—2—r
2 /
= —([ao — an_l]l +n—1-— S) H (Cg — Cg) Sﬁu,nswovo + CSE‘Q,T,S*lﬂuo/UO
=1

= —([ao — an_l]l +n—1-— S)an_l_rsﬁn,r,s’wovo + CSEﬁ,r,sfl’wO’Uo

for certain constant C € F,. Note that we use the identity (3.4.108) for the last equality .
By our assumption, we know that Sys.r.s-1 ,, v0 € Vo. Hence we can deduce

,wo
Sptors V0 € Vo
since ([ap — an—1]1 +n—1—38)%ch_1_ # 0. O
Corollary 3.4.125. We have Syt ,,,v0 € Vo.
Proof. By (3.4.103) and Proposition 3.4.124 we deduce that
Sptrvo € Vo = Sper—1v9 € Vo
for each 2 <r <n — 1. Then by (3.4.102) and the definition of Vj, we finish the proof. O
We write 3 for >2"_ a, to lighten the notation.
Lemma 3.4.126. Given a Jacobi sum Sk ,, we have
X1, ® Skawo = (=1
where k' = (kj ;) satisfies K} ,, = 0 and kj ; = ki ; otherwise.
Proof. This is a special case of Lemma 3.4.11 when ag = 8 and m = ky 5. O

From now on, whenever we want to view the notation p° as a weight, namely to fix a lift of
e € X(T)/(p—1)X(T) into X{°®(T'), we always mean

/’LOwO = (ao +p—1lap—2,---,a1,6p—1 —p+ 1) € X(T)

In particular, we have
(1,n) - po” +pB = p".
We recall the operators X;li from the beginning of Section 3.4.
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Lemma 3.4.127. For 1 <r <n —1, we have the following equalities on H®(p§°) = :
al
Xpp=—Xgk
foralll <k<p-—1.
Proof. Note that we have
n? = (W +kB) = ([ao — an—1]1 + n =2 —k,0,---,0,k — ([ap — an—1]1 +n — 2)).

Therefore py® — (0" +kB) & > qcor Lo as long as k > [ag — an—1]1 +1 — 2. As (an_1,--- ,0a0) is
assumed to be n-generic in the lowest alcove throughout this section, we deduce that

pe® = (u* +kB) ¢ Y Zsoaforallk>p—1. (3.4.128)

aedt

On the other hand, by the definition (3.4.1), the image of Xg{% lies inside HO(p(°),+xg, which is
zero by (3.4.128) assuming k > p — 1. Hence we deduce that

ngi =0on H(uy°),~ forall k >p—1.
Then the conclusion of this lemma follows from the equality (3.4.10). 0

We have a natural embedding H®(p14°) < 7o by the definition of algebraic induction and parabolic
induction. Recall that we have defined U; in Example 3.4.23.

Lemma 3.4.129. We have

F[Sgt o v0] = HO (1) 12

In particular,
VEC HO(uy).

Proof. On one hand, by Corollary 3.4.80 we know that

dimg, HO(uy) 2 =1,

and this space is generated by v?iil}’mu where

mt=(mh, - mb_ )= (0,0, a0 — an_1]1 +n — 2). (3.4.130)

We now need to identify the vector v?ffl} e With certain linear combination of Jacobi sums. Note

that by Corollary 3.4.80 we have

n—2
alg _ Nan—1—p+1 nair—ag—n+2 l[ao—an_1]1+n—2 [ao—an—2]1 Qi —Gp—ie1
v{nfl},m1j - ‘Dn? anl (D{n—l},n—l) " D1 .DZ .
=2

Given a matrix A € G(F,), then D;(A) # 0 for all 1 <i <n — 1 if and only if
A € B(F,)woB(F)),

and thus the support of v?}f_l} ¢ is contained in B(Fj,)woB(F,). As a result, by the proof of

Proposition 3.4.18, we know that U?:il}.mﬁ is a linear combination of vectors of the form

S&wo’vo.
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As v?lg is U1-invariant, and in particular Uy (F,)-invariant, then by Proposition 3.4.30 we know
n—1},mt p
that it is a linear combination of vectors of the form

Sk, wo V0 (3.4.131)
such that k1, = [ap — @n-1]1 +n —2, k1; = 0orp—1for 2 < j <n—1and k;; = 0 for all

2<i<j<n.
Finally, note that

1
us(t) U?T%—lhm” -
n—2
Dzn—l*p+1Dziflaofn+2(D{n71}’n71 + tDn_l)[ao7an_1]1+n72D[1a0—an72]1 H D?n—i_an—ifl
=2

is a polynomial of ¢ with degree [ag — a,—1] + n — 2, we conclude that

alg alg _alg
Bilao—an1]i+n—2 Y{n-1},m: = Y{n=1}0

where 0 is the (n — 1)-tuple with all entries zero.
By Lemma 3.4.127 and the fact that

al U(Fp),up°
Fplviy 1y 0l = FplSowevo] = g Enlio”
we deduce that

alg 0
XB’[aofanfl]rHl*? U{n_1}7mﬁ =cC SQJUOUO

for some non-zero constant ¢/. By Lemma 3.4.126 and the linear independence of Jacobi sums proved
in Proposition 3.4.18, we know that only Sy« ,, vo can appear in the linear combination 3.4.131. In
other words, we have shown that

alg o
’U{nfl},mﬁ =c Sﬁu;wovo

for some non-zero constant ¢/, and thus we finish the proof. O

Lemma 3.4.132. The dual Weyl module H%(u3°) is uniserial with length two with socle F(ug°) and
cosocle F(u*).

Proof. By [Jan03] Proposition I1.2.2 we know that socg (H(u¢°)) is irreducible and can be identified
with F(ug°) (which is in fact the definition of F(ug°)). Therefore it suffices to show that H°(ug°)
has only two Jordan—Holder factor F(uy°) and F(u*), each of which has multiplicity one.

By [Jan03] I1.2.13 (2) it is harmless for us to replace H°(ugy°) by the Weyl module V (15°) (defined
in [Jan03] 11.2.13) and show that V(uy°) has only two Jordan-Ho6lder factor F'(uy°) and F(u*) and
each of them has multiplicity one. As

-1
po< (e (TS @)Y) < 2p;
1 —2
0 < (m* (Tisy ai)Y) < s
-1
0 < (m* (Cisp ai)’) < p,
we deduce that the only dominant alcove lying below the one ug° lies in is the lowest p-restricted

alcove. In particular, the only dominant weight which is linked to and strictly smaller than pg® is p*.
By [Jan03] Proposition II. 8.19, we know the existence of a filtration of subrepresentation

V(o) 2 Vi(pg®) 2 -
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such that the following equality in Grothendieck group holds
> Viug) = F(u").
i>0
This equality implies that
Vi(uo®) = F(p")

and
Vi(ug®) =0 for all i > 2.

By [Jan03] I1.8.19 (2) we also know that

V(o) /Vi(pg®) = F(ug®),

and thus we have shown that
Vi) = F(ug®) + F(u7)
in the Grothendieck group. O

Proposition 3.4.133. We have V¥ = HO(u°).

Proof. By Lemma 3.4.132, we have the natural surjection
HO(pug®) — F(p")

which induces a morphism
HO (1) — F(1).

Now we consider H O(ug’") as a Li-representation where L1 = G,, x GL,_; is the standard Levi

subgroup of G which contains U; as a maximal unipotent subgroup. For any A € X, (T')+ (c.f. (3.5.1))
we use the notation Hy (X) for the Li-dual Weyl module defined at the beginning of Section 3.4. The
dual Weyl module H°(u¢®) is the mod p reduction of a lattice Vz, in the unique irreducible algebraic

representation Vq, of G such that (V(gp) # 0. As the category of finite dimensional algebraic
m

w
0

representations of L in characteristic 0 is semisimple, V' decomposes into a direct sum of characteristic
0 irreducible representations of L;. More precisely, we have the decomposition

Vol = @ maVi,(\)
XL, (T)+
(V)3 #0

where Vg, (A\) is the unique (up to isomorphism) irreducible algebraic representation of L, such that
(Vi, (/\)Ul))\ # 0 and

my = dimq, (Vg;)

Therefore in the Grothendieck group of algebraic representations of L; over F,, we have

N .

HOus")lz, = B malH2, (V)] (3.4.134)
XL, (T)+
HO (g ®)31 #0

as by Corollary 3.4.80 Ho(ugo)ﬁl is the mod p reduction of VZLQ and VZU: ®z, Qp = Vg;
We say that
IU* TLI A
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if there exists @ € Wi (see the beginning of Section 3.5) such that
A=w-p* and p* < A

Assume that there exists a A € X, (T)4 such that g* 17, A and that HO(ug® )Yl # 0. We denote by

U?if’;l} m the vector in Ho(ug”o)gl = 0 given by Corollary 3.4.80. We note that by Corollary 3.4.80
the vector in Ho(ua"o)gi is U?f_l} i (see (3.4.130)). As p* 1r, A, we must firstly have 2?2_11 m; =

[ap — an—1]1 +n — 2. By the last statement in Corollary 3.4.80, we have

n—1
A= (ao +p_1_zmivan72+m1a”' ,a1 +Mp—2,an1 _p+1+mnl>
i=1

=(ap—1—n+2,an-2+my, - ,a1 + Mp_2,an1 —p+1+mu_1). (3.4.135)

Recall p = (n —1,n —2,---,1,0). We notice that u* — 7 lies in the lowest restricted L;-alcove in the
sense that
0< (u*,aY) <pforall ac @Zl (3.4.136)

where <I>JLF1 is the positive roots of L defined at the beginning of Section 3.5.
As we assume that (a,—1,- - ,ag) is n-generic, it is easy to see the following

Ap—2 + M1 — (anfl _p+]—+mn71) §p+]—+an72 — Qp—1 +m1 < 2p7
Ap—2 +my — (a1 +Mp—2) < ap_o +mi — a1 < [ag — a1]1 < p;
an—3+mg — (a1 —=p+1+my_1) <|an-—3 — an_1)1 + M2 < [an—2 — an_1)1 <p,

so that we know that A — 7 lies in either the lowest Lj-alcove in the sense of (3.4.136) (if we replace
w* by A) or the p-restricted Li-alcove described by the conditions

Vv
p < (A (Z?:_;ai) < 2p
n—2 v
0 < (A (Zi:Q ai) < p
n—1 Vv
0 < )\, (Zi:g Cvi) < p
and

0<(\aY)y<pforalla € Ap,

where A, := {a; |2 <i <n—1} is the positive simple roots in ® .
In the first case, if A — n lies in the lowest Li-alcove, as we assume that p* 17 A, we must have
A = p*; in the second case, we must have

n—1

/\:(27”)M*+p<zaz> :(a'n—l_n+2;a0 +Dpan—3, - aalaan—2+n_2_p)

i—2
which means by (3.4.135) that
m = (my, - ,mp_1) = ([ap — an_2]1 +1,0,---,0,an_2 — apn_1 +n —3).

This implies a,,—2 — ap—1 +n — 1 =m,_1 > 0, which is a contradiction to the n-generic assumption
on (anp—1, -+ ,a9). Therefore we must have A\ = p*. Hence we deduce by (3.4.134) and the strong
linkage principle [Jan03] 11.2.12 (1) that FL1(u*) (see the beginning of Section 3.5 for notation) has
multiplicity one in JHz (H°(ug°)|z,) and is actually a direct summand.
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On the other hand, as FL1(u*) is obviously an Li-subrepresentation of F(u*), we know that the
surjection of G-representation H(ug°) — F(p*) induces an isomorphism of L;-representation on
the direct summand FZ1(u*) on both sides with multiplicity one, by restriction from G to L;. In
particular, we know that the map

U
HO ()t — F() e
is a bijection, and therefore the composition

VE e HO(ug*) — F(p")

is non-zero as _
U 1
HO (™) = Bl ] = FylSis 0]

by Lemma 3.4.129. Hence, we have a surjection
Vi F(u").
Combining this surjection with the injection
VE s H (),
we finish the proof by Lemma 3.4.132. O

Theorem 3.4.137. Assume that (an—_1,- -+ ,ag) is n-generic in the lowest alcove (c.f. Definition 3.4.5).
Then H°(ug®) C Vo. In particular, we have

F(u*) € JH(V).

Proof. The first inclusion is a direct consequence of Proposition 3.4.133 together with Corollary
3.4.125. The second inclusion follows from the first as we have F\(u*) € JH(H®(uy?)). O

Before we end this section, we need several remarks to summarize the proof, and to clarify the
necessity for all the constructions.

Remark 3.4.138. If we assume that for all2 <k <n—2
[ao - an,l]l +n—2<ap—ag_1, (34139)
then we can actually show that o
SEUKLUUUO S HO(/JS)O)LI{«’U]
using Corollary 3.4.29 and the case s =n — 1 of Proposition 3.4.78, and thus
Vo = HO(i).
Moreover, under the condition (3.4.139), we can even prove that the set

{S&WOUO | E € Awo}

forms a basis for H(ug®),x -
On the other hand, if we have

[ap — Gn-1]1 + 1 —2> ap — ar_1
for some 2 < k <n — 2, then we can show that

Fupg*™) € JH(W)
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which means that the inclusion

HO(ug*) € Vo

is actually strict.
In fact, through the proof of Proposition 3.4.124, the subrepresentation of mo generated by Sys.r.svo
is shrinking if v is fived and s is growing. Therefore the subrepresentation of mo generated by Sys.rvo

shrinks as v decreases. Finally, we succeeded in shrinking from Vi to V' which can be identified with
H(ug"°).

Remark 3.4.140. We need to emphasize that the choice of the operators X, and X~ for2 <r <mn-—1
are crucial. For example, the operator

> 7 Pwgug, (Hwo € Fy[G(F,)]
teF,

for some 2 < r < n — 2 does not work in general. The reason is that, as one can check by explic-
it computation, applying such operator to Spy,vo for some k € Ay, will generally give us a huge
linear combination of Jacobi sum operators. From our point of view, it is basically impossible to com-
pute such a huge linear combination explicitly and systematically. Instead, as stated in Proposition
3.4.101, our operators X,© and X, can be computed systematically, even though the computation is
still complicated.

The motivation of the choice of operators X,m and X, can be roughly explained as follows. First
of all, we need one ‘weight raising operator’ X and one ‘weight lowering operator’ X~. These are
two operators lying in a subalgebra Fp,(X T, X ™) of F,[G(F,)] such that

Fp(XT, X7) 2 F,[GLao(F))).

We start with the vector Sk ,,vo for some k € Ay,,. We apply the operator X~ once and then Xt
once, the result is a vector with the same T(F,)-eigencharacter p*. We observe that Sk w,vo 5 in
general not an eigenvector of the operator X+ e X~ because the representation mg, after restricting
from Fp|G(F,)] to F,(X+, X ™), is highly non-semisimple. The naive expectation is that we just take
the difference

X" 0 X~ 0 Sk w0 — €Skawev0

for some constant ¢ € F;,, and then repeat the procedure by applying some other operators similar to
Xt and X~
The case n = 3 is easy. In the case n =4, the operator

> 72 wotta, (t)wo € Fy[GL4(F))]
teF,

s not well behaved as we explained in this remark, and therefore we are forced to use our X5 to
replace ZteFP P20 U, (1) wo -

Now we consider the general case, and it is possible for us to carry on an induction step. We have
a sequence of growing subgroups of G

P{n—l} - F{n—2,n—l} ¢ C P{2,~~ ,n—1}

and B B B
L{n—l} - L{n—Q,n—l} c--C L{2,~~ n—1}

where ﬁ{n...}n,l} is the standard parabolic subgroup corresponding to the simple roots ay for r <

k<n-—1and f{ry,,. n—1} 18 its standard Levi subgroup. Technically speaking, constructing the vector

Sptrt1 oo (for some 1 <r <n—2) from Syo ,,,vo should be reduced to Corollary 3.4.125 when we

»Wo »Wo
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replace G by its Levi subgroup Z{H—L--- ;n—1}y- In other words, to construct Sys.r+1 4, V0 from Sgo ., vo
we only need the operators

XJ»XE € Fp[z{r+2,-~ na—1}(Fp)] € Fp[f{r+1,m -1} (Fp)]

forallr+2<k<n-—1.
In order to construct Sy, vo from Sys.r+1 V0, we only need to prove Proposition 5.4.124. Then

we summarize the proof of Proposition 3.4.124 as the following: for some a € F; and b € F,
X::‘rl [ X;—‘,—l [ S&ﬁ,r.s—l

V0 = aSktrs 4y V0 + bSgtre—1 Vo + error terms

»Wo »Wo

and the error terms can be killed by combinations of the operators X,j,X,; forr+2<k<n-1.

3.5 Mod p local-global compatibility

In this section, we state and prove our main results on mod p local-global compatibility, which is a
global application of our local results of Sections 3.3 and 3.4. In the first two sections, we recall some
necessary known results on algebraic automorphic forms and Serre weights, for which we closely follow
[EGH13], [HLM17], and [BLGG].

We first fix some notation for the whole section. Let P O B be an arbitrary standard parabolic
subgroup and N its unipotent radical. We denote the opposite parabolic by P~ := woPwg with
corresponding unipotent radical N~ := wgNwy. We fix a standard choice of Levi subgroup L :=
PN P~ CG. We denote the positive roots of L defined by the pair (BN L,T) by @z. We use

Xp(T)y ={Ne X(T) | (\aY)>0forall a € ®f} (3.5.1)

to denote the set of dominant weights with respect to the pair (BN L,T). We denote the Weyl group

of L by W1 and identify it with a subgroup of W. The longest Weyl element in W is denoted by w.
We define the affine Weyl group W% of L as the semi-direct product of W% and X (7T') with respect

to the natural action ofl/VL on X(T). Therefore WL has a natural embedding into W. We define the
subgroups P, L, --- of GG in the obvious similar fashion.
We also need to define several open compact subgroups of L(Q,). We define

K = L(Z,),
and via the mod p reduction map
red” : K* = L(Z,) - L(F),)
we also define K*(1), I*(1), and I'” as follows:

KE(1) = (red)71(1) € I%(1) = (red") " (U(F,) N L(F,))

I = (red™)~Y(B(F,) N L(F,)). (3:52)

NN

For any dominant weight A € X (7)., we let

0 T L)
HY(\) = (Indfy pwf2) -

P
be the associated dual Weyl module of L. We also write F(\) := soct (HY (X)) for its irreducible
socle as an algebraic representation of L. Through a similar argument presented at the beginning of

Section 3.4, the notation F¥()) is well defined as an irreducible representation of L(F)) if A € T(F,)
is p-regular, namely lies in the image of X{°¢(T) — X(T")/(p — 1) X (T). We will sometimes abuse the
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notation F“(X) for FX(\) @, F or FL(X) for FX()\) @p, F, in the literature. We will emphasize the
abuse of the notation F*()) each time we do so.

We introduce some specific standard parabolic subgroups of G. Fix integers i and jg such that
0<j0<Jjo+1<ig<n-—1,andlet i; and j; be the integers determined by the equation

We let P;, j, D B be the standard parabolic subgroup of G = GL, corresponding to the subset
{ak | jo+1 <k <io} of A. By specifying the notation for general P to P, j,, we can define P; |
Li, ji, Niy j, and Ny 5 . We can naturally embeds GLj, —;,+1 into G with its image denoted by G, j,

such that L;, ;, = Gy, ;1"
Gle—i1+1 = Gi17j1 — Li17.71 — Pi1,j1 = G. (354)

We define T, ;, to be the maximal tori of G;, ;, that is contained in 7', and define X (7}, ;,) to be the
character group of T;, j,. If i; and j; are clear from the context (or equivalently iy and jy are clear)
then we often write P, P~ L, N, and N~ for P, ;,, P ., L j,, N; and N, ., respectively.

11,517 1,J19 11,517

3.5.1 The space of algebraic automorphic forms

Let F/Q be a CM field with maximal totally real subfield F*. We write ¢ for the generator of
Gal(F/F™"), and let S/} (resp. S,) be the set of places of F* (resp. F) above p. For v (resp. w) a
finite place of F* (resp. F) we write k, (resp. ki) for the residue field of F.\ (resp. F,).

From now on, we assume that

o F/FT is unramified at all finite places;
o p splits completely in F'.

Note that the first assumption above excludes F* = Q. We also note that the second assumption is

not essential in this section, but it is harmless since we are only interested in Gq,-representations in

this paper. Every place v of F'T above p further decomposes and we often write v = ww¢ in F.
There exists a reductive group G,,/p+ satisfying the following properties (c.f. [BLGG], Section 2):

o Gy is an outer form of GL,, with G,,/r = GL,,,F,
o G, is a quasi-split at any finite place of FT;
o Gp(F)) =~ Uy,(R) for all v|oo.

By [CHTOS8], Section 3.3, G,, admits an integral model G, over Op+ such that G, X0,y (’)F;r is
reductive if v is a finite place of F* which splits in F. If v is such a place and w is a place of F
above v, then we have an isomorphism

We fix this isomorphism for each such place v of F'*.

Define Ff := Ft®qQ, and Op+ ), := Op+ ®zZ,. If W is an Op-module endowed with an action
of Gn(Op+,) and U C Gn(AZ") x Gu(Op+ ;) is a compact open subgroup, the space of algebraic
automorphic forms on G,, of level U and coefficients in W, which is also an Og-module, is defined as
follows:

SUW) = {f: Gu(FI)\Gu(AF) = W | fgu) =u; ' f9) V g € Gu(AF:),uc U}

with the usual notation u = uPu,, for the elements in U.
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We say that the level U is sufficiently small if
t G (FOtNU

has finite order prime to p for all t € G,, (A%, ). We say that U is unramified at a finite place v of F'*
if it has a decomposition
U=Gn(Op+)U"

for some compact open U” C G,,(AR"). If w is a finite place of F, then we say, by abuse of notation,
that w is an unramified place for U or U is unramified at w if U is unramified at w|z+.

For a compact open subgroup U of G\, (A7) X G (Op+ ), we let Py denote the set consisting of
finite places w of F' such that

o w|p+ is split in F,
ow ¢ Sp;
o U is unramified at w.

For a subset P C Py of finite complement and closed with respect to complex conjugation we write
TP = OE[TS), w € P,i € {0,1,---,n}] for the universal Hecke algebra on P, where the Hecke
operator T, ) acts on S (U, W) via the usual double coset operator

_ wld; 0
! [GLn(on) (w 0 dn_i) GLn(OFw)]

where w,, is a uniformizer of Op, and Id; is the identity matrix of size <. The Hecke algebra TP
naturally acts on S(U, W).
Recall that we assume that p splits completely in F'. Following [EGH13], Section 7.1 we consider the

subset (Zi)g” consisting of dominant weights a = (a,,)w Where a,, = (1,1, 2.0, " , Gn,w) Satisfying

Qi T Apt1—jwe = 0 (356)
for all w e Sy and 1 <3 <n. We let

Wa,, = M, (OF,) ®op, O
where the M, (OF,) is OF,-specialization of the dual Weyl module associated to a,, (c.f. [EGH13],
Section 4.1.1); by condition (3.5.6), one deduces an isomorphism of G, (Op.+)-representations W, o
tw = Wy, . 0tye. Therefore, by letting W, := W, o, for any place w|v, the Op-representation of

gn(0F+ ,p)
Wy = Q) Wa,
v|p

is well-defined. B
For a weight a € (Zfﬁ)gp, let us write S, (Q,,) to denote the inductive limit of the spaces S(U, W, )®0,
Qp over the compact open subgroups U C Gp(A%") x G,(OF+ ;). (Note that the transition maps

are induced, in a natural way, from the inclusions between levels U.) Then 5,(Q,) has a natural left
action of G, (A%, ) induced by right translation of functions.

We briefly recall the relation between the space A of classical automorphic forms and the previous
spaces of algebraic automorphic forms in the particular case which is relevant to us. Fix an isomor-
phism 2 : Qp 5 C for the rest of the paper. As we did for the O, -specialization of the dual Weyl
modules, we define a finite dimensional G, (F* ®q R)-representation 0, = @ 0, with C-coefficients.

v|oo

(We refer to [EGH13], Section 7.1.4 for the precise definition of oy.)
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Lemma 3.5.7 ([EGH13], Lemma 7.1.6). The isomorphism v : Q, = C induces an isomorphism of
smooth G, (A%, )-representations

5.(Q,) ®q,.C — Homg, (p+aqr) (04, A)

for any a € (Zﬁ)gp

The following theorem guarantees the existence of Galois representations attached to automorphic
forms on the unitary group G,. We let | |1_T" : F* — Q) denote the unique square root of | ['="
whose composite with ¢ : Qp 5 C takes positive values.

Theorem 3.5.8 ([EGH13|, Theorem 7.2.1). Let II be an irreducible G, (A%, )-subrepresentation of
SQ(Q;))'

Then there exists a continuous semisimple representation

oo GF — GLn(Qp)
such that
(i) rig@e" ™! =ry;
(ii) for each place w above p, the representation ri|cy, is de Rham with HodgeTate weights

HT(rnler,) = {a1w + (0 = 1) a0 + (0 = 2),- - s anw};

(iii) if wlp is a place of F and v := w|p+ splits in F, then

1—n

2).

We note that the fact that (iii) holds without semi-simplification on the automorphic side is one of
the main results of [?]. We also note that property (iii) says that the restriction to G, is compatible
with the local Langlands correspondence at w, which is denoted by rec,,.

VVD(rH|GFw)F_Ss > recy (My 0 1') @ - |

3.5.2 Serre weights and potentially crystalline lifts

In this section, we recall the relation of Serre weights and potentially crystalline lifts via (inertial)
local Langlands correspondence.

Definition 3.5.9. A Serre weight for G,, is an isomorphism class of an absolutely irreducible smooth
F,-representation V of G,(Op+ ). If v is a place of F above p, then a Serre weight at v is an
isomorphism class of an absolutely irreducible F,-smooth representation V, of Qn((’)Fj). Finally, if
w is a place of F' above p, a Serre weight at w is an isomorphism class of an absolutely irreducible
Fp—smooth representation V,, of GL,(Op,,).

w

We will often say a Serre weight for a Serre weight for G, if G, is clear from the context. Note
that if V,, is a Serre weight at v, there is an associated Serre weight at w|v defined by V,, o 1!

As explained in [EGH13], Section 7.3, a Serre weight V' admits an explicit description in terms of
GL,, (K )-representations. More precisely, let w be a place of F' above p and write v := w|p+. For any
n-tuple of integers a,, := (a1,w, @20, " ;Un,w) € L}, that is restricted (i.e., 0 < @50 — Gig1,0 <p—1
for i = 1,2,---,n — 1), we consider the Serre weight F(a,,) = F(a1,w,02w; " ,0nw), as defined
in [EGH13], Section 4.1.2. It is an irreducible F,-representation of GL,,(k,) and of G, (k,) via the
isomorphism ¢,,. Note that F(a1,u, 02w, »anw)” 0 twe = F(a1,0, 02,0, ,Gnw) © Ly as Gy (ky)-
representations, i.e. F(a@yc) 0 tye = F(ay,,) © by if @i + anti—iwe = 0 for all 1 < ¢ < n. Hence, if

a=(a,)w € (Z’}r)gp that is restricted, then we can set Fy := F(a,,) ot for w|v. We also set

F, := ®ng

v|p
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which is a Serre weight for G, (Op+ ;). From [EGH13], Lemma 7.3.4 if V is a Serre weight for G,,

there exists a restricted weight a = (a,,)w € (Z’_f_)g ? such that V has a decomposition V' 2 @V, where
vlp
the V, are Serre weights at v satisfying V,, o t;;' = F(a,,)-
Recall that we write F for the residue ﬁeld of E.

Definition 3.5.10. Let 7 : Gp — GL,(F) be an absolutely irreducible continuous Galois represen-
tation and let V' be a Serre weight for G,,. We say that T is automorphic of weight V' (or that V is
a Serre weight of 7) if there exists a compact open subgroup U in G, (AF") x G,(Op+ ) unramified
above p and a cofinite subset P C Py such that T is unramified at each place of P and

SWUV)m, #0

where mr is the kernel of the system of Hecke eigenvalues @ : TP — F associated to T, i.e.

det (1 — 7Y (Frob,, Z ) (Npq(w (w)Ba(r) xI
7=0

for allw e P.

We write W (7) for the set of automorphic Serre weights of 7. Let w be a place of F' above p and
v = w\F;. We also write W, (F) for the set of Serre weights F(a,,) such that

(Flay)ow)® | Q) V| eW(r)
v €S\ {v}

where V, are Serre weights of G,,(O F+) for all v € S\ {v}. We often write W (7|q,,, ) and Wy, (F|ay,, )

for W(7) and W, (F) respectively, when the given 7|y, is clearly a restriction of an automorphic
representation 7 to Gp,
Fix a place w of F above p and let v = w)| P We also fix a compact open subgroup U of

Gn(AZ") x Go(Op+ ,) which is sufficiently small and unramified above p. We may write U =
Gn(Opy) x U?. It W' is an Op-module with an action of [T, gt (yy Gn(Op+), we define

( AN H v, /!
S(U°, W) :=lim S(U" - U,, W)

Uy

where the limit runs over all compact open subgroups U, of G,(Op+), endowing W' with a trivial
Gn(Op+)-action. Note that S(U",W’) has a smooth action of G,(F;") (given by right translation)

and hence of GL,,(F,) via t,. We also note that S(U", W’) has an action of T” commuting with the
smooth action of G, (F,"), where P is a cofinite subset of Py .

Lemma 3.5.11 ([EGH13], Lemma 7.4.3). Let U be a compact open subgroup of Gn(AR")xGn(Op+ )
which is sufficiently small and unramified above p, and P a cofinite subset of Py. Fiz a place w of
F above p and let v = w|Fp+. Let V =2 Q) + Vi be a Serre weight for G,. Then there is a natural

v’ €Sy
isomorphism of TP -modules
Homgn(@FJr) (Vvv, S(UU, V/)) :> S(U, V)

where V' := ®’U’ES;\{U} Vo

We now recall some formalism related to Deligne—Lusztig representations from Section 3.4.3. Let
w be a place of F above p. For a positive integer m, let ky m/ky be an extension satisfying [k m :
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k] = m, and let T be a F-stable maximal torus in GL, /5, where I is the Frobenius morphism. We
have an identification from [Her09], Lemma 4.7

T(kw) = [ [ %,
J

where n > n; > 0 and Zj n; = n; the isomorphism is unique up to Hj Gal(ky,n, /kw)-conjugacy. In
particular, any character 6 : T(k,,) — Q; can be written as 0 = @;0; where 6; : kj . — Q;
Given a F-stable maximal torus T and a primitive character 6, we consider the Deligne-Lusztig

representation Rf of GLy, (k) over Q,, defined in Section 3.4.3. Recall from Section 3.4.3 that ©(6;)
is cuspidal representation of GL;,; (k) associated to the primitive character 6;, we have

1%

(1) - d$ ") (2,0(6)))

0
Ry Pa(ku)

where P, is the standard parabolic subgroup containing the Levi [] j GL,; and r denotes the number
of its Levi factors.

Let Fym = W(kwm)[%} for a positive integer m. We consider §; as a character on O;mnj by

inflation and we define the following Galois type rec(f) : I, — GL,(Q,,) as follows:

r

rec(f) = @ @ o (ej o Art;ﬂi,nj)

j=1 \o€Gal(kw,n; /kw)

where 6; is a primitive character on k;j’nj of niveau n; for each j = 1,---,r. Recall that Art Fum,
Ex n, Wgb s the isomorphism of local class field theory, normalized by sending the uniformizers
’ 'w,'n,j

to the geometric Frobenius.
We quickly review inertial local Langlands correspondence.

Theorem 3.5.12 ([CEGGPS], Theorem 3.7 and [LLL16], Proposition 2.3.4). Let 7 : Iq, — GL,(Q,)
be a Galois type. Then there exists a finite dimensional irreducible smooth Qp—representation o(r)

of GL,(Z,) such that if m is any irreducible smooth Qp—representation of GL,(Qp) then 7lgL,(z,)
contains a unique copy of o(T) as a subrepresentation if and only if recq, () 7 and N =0 on

recq, (7).
Moreover, if T = @©}_;7; and the 7; are pairwise distinct, then o(r) = RY and 1 = rec(f) for a

‘IQP

mazimal torus T in GL,, g, and a primitive character ¢ : T(F,) — Q;

The following theorem provides a connection between Serre weights and potentially crystalline
lifts, which will be useful for the main result, Theorem 3.5.44.

Theorem 3.5.13 ([LLL16], Proposition 4.2.5). Let w be a place of F above p, T a maximal torus in
GLy i, , 0 = ®;:1 0; : T(ky) — Q; a primitive character such that 0; are pairwise distinct, and V.,
a Serre weight at w for a Galois representation 7 : Gp — GL,(F).

Assume that Vi, is a Jordan-Hélder constituent in the mod p reduction of the Deligne—Lusztig

representation R% of GLy(kw). ThenTlg,, has a potentially crystalline lift with Hodge—Tate weights
{-(n—-1),—(n—2),---,0} and Galois type rec(0).

For a given automorphic Galois representation 7 : Gg — GL,,(F), it is quite difficult to determine
if a given Serre weight is a Serre weight of 7. Thanks to the work of [BLGG], we have the following
theorem, in which we refer the reader to [BLGG] for the unfamiliar terminology.

Theorem 3.5.14 ([BLGG], Theorem 4.1.9). Assume that if n is even then so is M%w, that ¢, & F,
and that 7 : Gp — GL,(F) is an absolutely irreducible representation with split ramification. Assume
further that there is a RACSDC' automorphic representation I1 of GL,,(AF) such that
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o T X7,

o For each place w|p of F, rui|g,,, 1is potentially diagonalizable;

o 7(Gr,)) is adequate.

Ifa = (a,)w € (Z’_f_)gp and for each w € Sy, T|g,, has a potentially diagonalizable crystalline lift
with Hodge-Tate weights {a1, + (n—1),a2 +(n—2), -+ ,an—1,w + 1, an4}, then a Jordan-Hélder
factor of W, ®z, F is a Serre weight of 7.

3.5.3 Weight elimination and automorphy of a Serre weight

In this section, we state our main Conjecture for weight elimination (Conjecture 3.5.16) which will
be a crucial assumption in the proof of Theorem 3.5.44. This conjecture is now known by Bao V. Le
Hung (c.f. [LLMPQ)]). We also prove the automorphy of a certain obvious Serre weight under the
assumptions of Taylor-Wiles type.

Throughout this section, we assume that p, is always a restriction of an automorphic representation
7:Gp = GL,(F) to Gp, for a fixed place w above p and is generic (c.f. Definition 3.3.3). Recall
that for 0 < jo < jo + 1 < ip < n — 1 we have defined a tuple of integers (r,>?, -+, r1>7° r>7°) in
(3.3.42), which determines the Galois types as in (3.1.3). In many cases, we will consider the dual of
our Serre weights, so that we define a pair of integers (i1, j1) by the equation (3.5.3). We also let

by = —Cn-1-&

for all 0 < k <n — 1. We will keep the notation (i1, 1) and by for the rest of the paper.
For the rest of the this section, we are mainly interested in the following characters of T'(F)): let

/'LD = (b’n717 e 7b0)

and
uD,il,jl = (Yn—1,Yn—2,""" ,Y1,Y0)
where
b, if j & {j1,i1};
y; =< b —ji+i+1 if =g

bj, +i1—i41—1 ifj=r4.
As P, is generic, each of the characters above is p-regular and thus uniquely determines a p-restricted
weight up to a twist in (p — 1)Xo(T), and, by abuse of notation, we write u=, p=#:71 for those
corresponding p-restricted weights, respectively. We will clarify the twist in (p — 1)Xo(T") whenever
necessary. We also define a principal series representation

miT = Indipr) (u2 e, (3.5.15)

We now state necessary results of weight elimination to our proof of the main results, Theo-
rem 3.5.44, in this paper.

Conjecture 3.5.16. Let 7 : Gp — GL,(F) be a continuous automorphic Galois representation with
Tlap, = P as in (3.3.1). Fiz a pair of integers (io, jo) such that 0 < jo < jo+1 <ig <n—1, and
assume that p;  is Fontaine-Laffaille generic and that it s an-generic.
Then we have
W () N IJH((xi91)Y) € {F(u")Y, F(u191) V),

In an earlier version of this paper, we prove Conjecture 3.1.11 for n < 5. But our method is rather
elaborate to execute for general n. We are informed that Bao V. Le Hung can prove Conjecture 3.1.11
completely. Therefore, Conjecture 3.1.11 becomes a theorem based on the results in the forthcoming
paper [LLMPQ)].

Finally, we prove the automorphy of the Serre weight F(u5)Y.
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Proposition 3.5.17. Keep the assumptions and notation of Conjecture 3.5.16. Assume further that
+.

if n is even then so is M, that ¢, ¢ F, that 7 : Gp — GL,(F) is an irreducible representation

with split ramification, and that there is a RACSDC automorphic representation II of GL,, (A ) such

that

oTr~ ?H;
o for each place w'|p of F, ru|a, , is potentially diagonalizable;

o T(Gp(c,)) is adequate.

Then
{F(u7)V} € Wy (7) N JH((xl171)Y).

Proof. We prove that F(uP)Y = F(cp_1,¢n 2, ,c0) € Wy(T) as well as F(u~)Y € JH ((ﬂf}’jl)v).

Note that (c,—1,-+-,¢) is in the lowest alcove as 7, is generic, so that by Theorem 3.5.14 it is
enough to show that p, has a potentially diagonalizable crystalline lift with Hodge-Tate weights
{¢hn-1+(n—1),--- ,c1 +1,¢0}. Since py is generic, by [BLGGT], Lemma 1.4.3 it is enough to show
that p, has an ordinary crystalline lift with those HodgeTate weights. The existence of such a
crystalline lift is immediate by [GHLS], Proposition 2.1.10. On the other hand, we have F(u”)Y €
JH((727*)V which is a direct corollary of Theorem 3.5.28. Therefore, we conclude that F(u")Y €

W, (7) N JH ((wihﬁ)V). O

3.5.4 Some application of Morita theory

In this section, we will recall standard results from Morita theory to prove Corollary 3.5.23. We fix
here an arbitrary finite group H and a finite dimensional irreducible E-representation V of H. We
may assume that F is sufficiently large such that E (resp. its residual field F) is a splitting field of V.
By Proposition 16.16 in [CR90], we know that for any Opg-lattice V° C V, the set JHg()(V° ®o, F)
depends only on V' and is independent of the choice of V°, and thus we will use the notation JHg(z) (V')
from now on. Let C be the category of all finitely generated Og-modules with an H-action which are
isomorphic to subquotients of Og-lattices in V®* for some k > 1. Then the irreducible objects of C
are just elements of JHgz)(V). If o has multiplicity one in V', then there is an Op-lattice V7 (unique
up to homothety by following the proof of Lemma 4.4.1 of [EGS15] as it actually requires only the
multiplicity one of ¢ in our notation) such that

cosocy (V7 ®o, F) =o0.

By considering an Op-lattice in the E-dual of V with the F-dual of ¢ as cosocle and then taking
Opg-dual of this lattice, we reach another Og-lattice V,, in V', which is the unique (up to homethety),
such that

socy (Vo ®0, F) = 0.

By repeating the proof of Lemma 2.3.1, Lemma 2.3.2 and Proposition 2.3.3 in [Lel5], we deduce
the following.

Proposition 3.5.18. If o has multiplicity one in V', then the lattice V7 is a projective object in C.

We need to emphasize that the proof of Proposition 2.3.3 in [Lel5] requires only the multiplicity
one of o, although it is necessary for all Jordan—Holder factors o to have multiplicity one to have
Proposition 2.3.4 in [Lel5].
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Corollary 3.5.19. Let ¥ be a subset of JHp(g)(V') such that each o € X has multiplicity one in V.
If an Og-lattice V° CV satisfies

cosocy(V° ®@g F) @ o (3.5.20)
oED
then we have a surjection
Pv—ve. (3.5.21)
cEX

Proof. By (3.5.20) we have a surjection
Ve — @ o.
oeX
By Proposition 3.5.18 we know that @y, V7 is a projective object in C. By the definition of V7 we
know that there is a surjection
Dv Do

ceEX oeD

which can be lifted by projectiveness to (3.5.21). O

Note in particular that (3.5.21) implies automatically the surjection

PV esF - V°®o,F. (3.5.22)
oeY

Corollary 3.5.23. Let ¥ be a subset of JHp(g)(V') such that each o € X has multiplicity one in V.
If an Og-lattice V° CV satisfies

socy(V° @ F @a
ogEY

then we have an injection

V@0, F— PV, @pF
ocy

Proof. This is simply the F-dual of (3.5.22). O

3.5.5 Generalization of Section 3.4

In this section, we fix a pair of integers (i, jo) satisfying 0 < jo < jo+ 1 < i9p < n —1, and determine
(41,71) by the equation (3.5.3). We will use the shorten notation P (resp. N, L, P~ ---) for P, j,
(resp. Niyjys Liy jos P --+) as introduced at the beginning of Section 3.5. Proposition 3.5.38 is
crucial for the proof of Theorem 3.5.44. We assume throughout this section that pH%1:91 is 2n-generic
(c.f. Definition 3.4.5).

We start this section by defining some weights and Jacobi sum operators which will play a crucial

role for our main results, Theorem 3.5.44. Let

WJ1 . (a1 1 1,1 sl (1 1, 1, 1,
/Jil n T (xnfl’mnf%'” ,3317111‘0) and M“ ! = (xn—lal‘n—%"' Ty, Ty )
where
bryiy—j fn—jgi+i1+1<j<n—-1;
X bjtjr—ii—1 ifip +2<j<n—j1+ig
T; = bj, +i1—i1—1 ifj=14+1,

bi, —j1+i1+1 if j=iy;
b; f0<j<ii—1
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and
bj,—1—; f0<j<ji—i1—2
bj—jr+ir+1 ifji—in —1<j<j1—2
1, . . e
z;0=9q bjy+ii—ia—1 ifj=jy
bil_j1+i1+1 lszjl—l,
bj 1f]1+1§]§n—1

We also fix certain two elements in the Weyl group W:
wll'hjl — (sn737i1 . Sl)h*hfl cW and wilJl,/ — (Sn7j1+2 L snil)jlfnfl ew,

and further define two more weights

uilajl = (le,jl)ulil’jl and Mz‘l,jl,/ — (Mihjl,/)w;‘hhv’
More precisely, p191 and p?+1' can be written as follow:
'uil)jl = (Tn-1,Tn-2," - ,21,7p) and /‘il’jl’l = (Tp_1,Tp_g, 21, 2)
where
b; if 5 > 71 orig > 7;
go— 4 it ifj1>j>i+1
! bj, +j1—i1—1 ifj=1di1+1;
bil_j1+i1+1 lf]:“
and
bj if j > 41 or i1 > j;
e ifji—1>j>1d;
bj, +j1—i1—1 if j=ju;
bi, —ji+in+1 ifj=j; —1.

Note that if we let
01,41 . .. . L d 11,01, . . L
w = Sp—j; Sp—i;—2 € W% and w = Sp—i -1 Sn—j1+1 € 4%

then we have o o
(Mihjd)w”’“ — (MD,ihjl)woL - (uilajl,/)w”’“’/.

Recall that wl is defined at the beginning of Section 3.5 and that pid1 is defined in Section 3.5.3.
We now define certain mod p Jacobi sum operators:

11,01 . 01,71,/
Sl = SQ;wil’jl and 51 MR = Sg,wil‘jl"'

We further define
o o
St = Sylﬂ'l,wg and S0 = SEil,jl,/’wg

11,71 i1,J1 ‘(I):LI 11,71,/ 11,71,/ |(I>:L| :
where k"7 = (k;}7"); ; € {0,--- ,p—1} 0 and K" = (k;};7"");; €{0,--- ,p— 1} *0 satisfy

1,7
o [bil_bnfi]l lf’rL—jl-i-].é’L:j—].én—Zl—l,
k7= q i =g+ 1+ by, =] ifi=5—-1=n—j;
0 ifj>i+2
and
o [bnflfi—bj]l 1fn—31§l=j—1§n—11—2,
k=i =+ L by = b fi=j—l=n—ii -1

0 ifj>i+2.
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We now consider characteristic 0 lifts of the mod p Jacobi sum operators above.

n—i;—1

SN TT TAeeral ) 1a] | wé

A€U, 1 (Fp) \=n—i

and
n7i171

~. . ZY] !
St = Z H [Agepa]®eis | [A] [ g

A€, 1 (F,) \f=n—j

We also let
n—i3—1

. i1,51,0
881,31 — Z H |—Ag’l+1~|ke,£+1 [A] w(?

A€U, 1 (Fy) \f=n—i

L. . \qﬁ \ .
where k1710 = (k;}j’ﬁ’o)m €{0,---,p—1} *¢ satisfies

0 { =l [biy = by ifn—ji<i=j-1<n—di -1 (3.5.24)

i 0 if §>i+2.

Note that gSA’“?jl, §i1,j1,/7 3’81 J1 are Teichmiiler lifts of Sivdr | Shdnd SEil,jl,waél, respectively. We will

. . . . 3 ) L TN
also consider the Teichmiiler lifts of §;"7' and S;'7""" as follows:
Si1,J1 . 91,41 Si1,gis 11,71,/
St = E [A] | w] and & = E [A] | w7
Aeri'lvjl (Fp) AElel'l,le(Fp)

We recall the operator Z,, € G(Q,) from (3.4.49). Note that i7" : T(F,) — O is the Teichmiiler
lift of p"7*. We also recall kD, kP (c.f. (3.4.63)),kn (c.f. (3.4.70)), e* (c.f. (3.4.69)), and P, (c.f.

(3.4.68)), whose definitions are completely determined by fixing the data n and (ap—_1, -+ ,a9). We
define "@z('ll,)jlv”z(i)jla’fil,j1 € Zx, e = £1 and P;, 5, € Z) by replacing n and (an_1,--- ,a1,a0) by

j1—i1+1and (b, +j1 —91 — 1,bj,-1,- - ,bi41,bi;, — j1 + i1 + 1) respectively with by as at the
beginning of Section 3.5.3.

Proposition 3.5.25. Assume that uu’ihjl s 2n-generic. Let

I .— Indgggzgxihh

be a tamely ramified principal series where Y7 = Ml @ ... @ xél’jl 1 T(Qp) = EX is a smooth

n—1
character satisfying x | (z,)= iy"”*. Then we have the identity
n—1
§i17j17/ ° §il7j1:/ ° (En)jl—il—l _ p(jl—il—l)(h-‘rl)nil’jl H X;cl ,J1 (p> S‘\il,jl ° 3\{17j1

k=n—ji+i1+1
on the 1-dimensional space (H“*jl)l(l)’ﬁiwl.
Proof. By Lemma 3.4.54 we know that

= \ji—i1—1 ji—i1—1 <
(Ep)t e Ut :S(w*)jl—il—L
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Then by Lemma 3.4.51 and the fact
E(wil’jl’/) —|—€((U}*)j1_i1_1) _ €(wil’j1’/(w*)j1_i1_1(w§1’j1)_1) _’_g(w’ily]l) + 2(]1 o il o 1)11

we deduce that

~

5 (Gr=ir=Dir § S
P . . — 1—t1— 1 P S .
Swipjly/ .S(w*)gl—zl—l — p S’w;l’]l”(w*)jl*il*l(wildl)fl ° Swilyjl .

Therefore it remains to show that
—pjl_il_lli‘ .gilvjl
- 71,71

S . @
1,J1 . . . .
S .Swil,Jle/(w*)jl—il—l(wilﬂl)—1

on the 1-dimensional space
P ~iq,j ~ .. ~i1,J1
(HH;JI)I(I)’IJ‘ a1 Swil’jl ((Hn,h)l(l),ul ) )

We observe by Lemma 3.4.51 that

~

~ ~
j1—11—1
Swi1,j1,/ .Swid,j1,/(w*)j17i171(w11,j1),1 =pj1 1 Swil,jl

and therefore by composing 551 71 it remains to show that

Se 7 @ Syir s = P (B ) TIS Y (3.5.26)

on (ITi-31) (WA 4nq
Sy @ Syiran = p T (k) ) TLS (3.5.27)
on (Hil’jl)l(l)’ﬁil’jl. But these can be checked by the same argument as in Corollary 3.4.66. O

We state here a generalization of the Theorem 3.4.36. Recall the definition of 727* from (3.5.15).

Theorem 3.5.28. The constituent F(u5) has multiplicity one in wi 7" .
Proof. This is Corollary 3.4.47 if we replace pi*/t by ub. O

We define a characteristic zero principal series
(%il J1 )° = IndgEEZ; (ﬁD,ihh ywo
which is an Op-lattice in (7271)° @0, E.

Lemma 3.5.29. (i) Forp € {/ﬂl’jl,,u“’jl",/ﬂf’jl,,u’f’jl"}, we have
dimg, (ﬂ-il 1j1)U(Fp)7H - 1.
(ii) We have the following non-vanishing results:
St ((Wil,jl)U(Fp),u”’j1> = St ((Wil,jl)U(FP),mwlv') £0.
(iii) We also have the following non-vanishing results:
S <(7ri1’jl)U(Fp)’Nil"h) = (wihjl)U(Fp)’u”'jl

and o
A o 01,51, i i1,d1./
Sil;]l ((,ﬂ.ilel)U(FP)vﬂl ) = (Wil’fl)U(Fl’)’” .
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Proof. The statement (i) is immediate by Bruhat decomposition (3.4.4).
Now we prove (ii). According to Lemma 3.4.51, (3.5.26) and (3.5.27) and Lemma 3.4.65, we deduce
by mod p reduction with respect to the lattice (7'*7*)° that

i i i1.91 i i i1.91,
St ((ﬂ-ih]l)U(Fp)v/L ) = St ((ﬂ-ilv]l)U(FZD)a/" )

- O,y ,51 ywi
11,71 \U (Fp), LI1)Wo
= SEil,jl,O)w(I]/ ((7(*1 Jl) (Fp)s (1 ) > .

If we abuse the notation k"*"° for the tuple in {0,--- ,p — 1}"1)%| satisfying
k0 =0 for all o ¢ @,
Wo
then by mod p reduction of first possibility of Proposition 3.4.60 we deduce that
Siir a0 wt ® Sowwy = Skiti10,u,
on the 1-dimensional subspace (i71)U(Fo), (™11 " Thyg we finish the proof of (ii) by
SELJ'LO,wo ((’nihjl)U(Fp)’(um,ilvjl)wo) 7é 0

which follows from Proposition 3.4.18.
Finally we prove (iii). We only prove the first equality in (iii) as the same proof works for the
second equality. By Lemma 3.4.20 we know that

. O,i1,41 \w T i1,7
i1, \U(Fp), (B i1d1ywo 0 gy 5 \U(F,), i1t
SQ,(w’ilvjl)*lwoLwo ((Tr*l ]1) (Fp). ) ) - (ﬂ-*l jl) (Fp).p

and

P O,i1,51 ywo P 1,71
S mindn)UFs), (i ) ):(ﬂ-ilvjl)U(Fp)nuq .

g ((
Therefore it remains to show that
S;l;jl oS

Q,(wilvjlwil’jl)*lwéwg = SQa(wil’jl ) Lwlwo

on the 1-dimensional subspace (ﬂ_ihﬁ)U(Fp),(um’”’“)wo, which follows from the mod p reduction of

Lemma 3.4.51 and the fact that
wy™ ) 4+ (w7 T g wg) = £((w' ) T g wo).
This completes the proof. O

We define Vi1 and Vi1 to be the subrepresentations of w:'/! generated by
St ((ﬁihjl)U(Fle’fl) and Sitin ((ﬂil,jl)U(Fp),uil’h”)

respectively. Similarly, we define Voil’j ! as the subrepresentation of 7. generated by

SEile'lvO ((ﬂ—il:jl )U(Fp),(um’il’jl)ub) '

Lemma 3.5.30. We have
Vv = yindn =y (3.5.31)

and o
F(uB) e JH(V). (3.5.32)
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Proof. The equality (3.5.31) follows directly from the proof of (ii) of Lemma 3.5.29.
We define a new tuple k7% = (k2:); ; € {0,--+ ,p— 1}/®wo! defined by

gt J =g+ 1+ [bi, —byli i (4,5) = (n — ji,n —d1);
ki T { 0 otherwise. (35.33)

We also define V?1-71:f to be the subrepresentation of it generated by

i i \U(F 0,i1,51 ywo
Sty ((Wlm) (Fp),(u ) )

By Proposition 3.4.101 and the same method in the proof of Proposition 3.4.124 we deduce that
yinint Voihjl. (3.5.34)

By abuse of notation we view pP7191 as a fixed weight in X;(T), and then there exists u” €
X4 (T) such that

n—iy—1
pP =P (mod (p— 1)X(T)) and p™ = (n—iy,n—j1) - g9 4 p Z Q.

r=n—ji

We define Uil 7' to0 be the unipotent subgroup of L generated by U, forn—j; +1<r<n—i; —1
and then define o o

Fri1,J1 T7U.01 RT

U =U;" -N.
By a direct generalization of proof of Lemma 3.4.129, we can show that

i1,41\U(Fy), (191 ) 0(, D1, g\ T 17
Sﬁiijuﬂuo ((7‘-*1 Jl) (Fe).(u ) ) =H (,U' ! Jl)uD,/

We define V17" to be the G-subrepresentation of HO(p2:11:01) generated by HO(pD:i:01 ﬁil;'jl and by
g p g p )
definition we have

(V;11g7j1)N N HO(MD,il,jl)N and (V;lgjl)fél,;jl _ HO(MD,i1,j1)ES;j1.

(3.5.35)
We have natural identification (c.f. the beginning of Section 3.5 for definition of HY (u=-#1:71))
HO (PN o g (D) and HO(uDin)0 " 2 g (p0ean )T (3.5.36)

By applying Lemma 3.4.132 and the proof of Proposition 3.4.133 to the Levi L, we deduce that
HY (pH#1:91) is uniserial of length two with socle F*(u™11) and cosocle F¥(u"’) and that

A 11,01
HE(MD’“’JI)Zé,, = PE ()00

(3.5.37)

Combine (3.5.35), (3.5.36) and (3.5.37) we deduce the surjection of representations of L

(Vi)™ = FH(u) = HY (i) = HO (45N

and thus a non-zero morphism

(Vi) = H(u) and (V)T S B, & P,

alg alg "

by coinduction for algebraic representation from P to G. In particular we know that

F(u) € Hg (Vi) .

alg
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Now we restrict the action of G to G(F,,) and observe the injections
11,7 11,7 ] O,
Vitieh o VAL gy and F(u™) <= F(u™)|a,)
which induces

. O,iq1,51 yw - i1, (] i A NTTi10d1
o 11,51 \U(Fp),(p—"171)0 N ryrin, g1, ]\ U DI (Fy),u—  (1/i01\U
Syldbﬁ,wo <(7T*1 1) (Fp).( ) - (V n ) () - (Valg )#D”

and
O O
F(MD)U(FPM _ (F(MD,/”G(FP))U(FPW — F(MD’/)MD,/-

Hence we deduce that o
F(u") € JHgw,) (V74

which together with (3.5.34) finishes the proof of (3.5.32). O

Proposition 3.5.38. Let 7 be an Og-lattice in (wil’jl)o ®o, E satisfying
socq(r,) (T ®oy F) = F(uP) & F(pPivm).
(i) For p € {pvan, it dv! b7y} we have
dimp (7 ®p, F)VFo)# =1,

(i) We have the non-vanishing results for St and S

St <(T R0 F)U(FP)Wn,n) — Sitans ((T R0 F)U(Fp)7ui1:j1,/) 40,

(iii) We also have the non-vanishing results for Si7* and St
871;17.7'1 ((T ®0, F)U(Fp),uibﬁ) = (7 ®o, F)U(Fp)7ui1=11

and o
21,317
1

Si—l’jlg/ ((T ®0E F)U(Fp)’ﬂf ) = (7— ®OE F)U(FP)J‘HJL/‘

Proof. We can easily deduce (i) from

dimp((F19)° @0, E)VEDET = dimp((F191)° @0, B)VEDET 2
and Frobenius reciprocity as F(ui191), F(p*91), F(u91) and F(u*J1) all have multiplicity one in
TQ®o F.

We define ng’jl as the mod p reduction of (F27')° ®p, E with respect to the unique (up to
homothety) Og-lattice such that

SOCG(F,) (ﬂ'gl’jl) = F(u").
Then we deduce from Corollary 3.5.23 that there exists an injection

TQRp, F o 10t @ wél’jl
Note that we have

_ (Triuh)U(Fp)»# P (ﬂ-élvjl)U(Fp)v# (3.5.39)
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for pu € {uirt, !y gt Y,
The equality of two spaces in (ii) is true because both of them can be identified with

O,iq .51 \w
SE'il‘jl’O,wo ((T R0y F)U(FP)’(“ 1) 0)

by the same argument as in the proof of (ii) of Lemma 3.5.29. Therefore we only need to show

_— A o N U(F,),pt1it
that St (resp. S“+1') gives rise to a bijection from (ﬂiml 6971';1’31> ' (resp. from

(Fp)vllil'jl
(ml’h @ 71'“ ]1) ) to its image. According to (ii) of Lemma 3.5.29 and (3.5.39) we only

need to show that
i (DY 2 and i (i)

i1 11

which follows from Lemma 3.5.30 by definition of m,
We have a unique (up to scalar) non-zero IIlOI‘phlSHl

rindt ngajl (3.5.40)
which by Lemma 3.5.30 induces isomorphisms
(ﬁilA,jl)U(Fp)aM :_> (ngvjl)U(Fp)»l“

for pu € {piJ, 191/} and hence (iii) follows from (iii) of Lemma 3.5.29 by considering the image of
(iii) of Lemma 3.5.29 under (3.5.40) inside 7, i1, O

Corollary 3.5.41. Let T be an Og-lattice in (77)° @, E satisfying
SOCG(FP) (T ®OE F) — F(/,LD) @ F(/_]/Dvilvjl)-
Then we have

0 # St oSil’jl ((7- R0 F)U(Fp)#?’jl) = St/ .Sil,jlxl ((T ®0, F)U(F )it ') .

3.5.6 Main results

In this section, we state and prove our main results on mod p local-global compatibility. Throughout
this section, p, is always assumed to be a restriction of a global representation 7 : Gp — GL,(F) to
Gp, for a fixed place w of F above p. Let v := w|p+, and assume further that 7 is automorphic of a
Serre weight V = @, Vi with V,, := V, 01! =2 F(uP)Y. We may write V,s o1} = F(a,,)" for a
dominant weight a,,, € Z’ where w’ is a place of F' above v’, and define

r_ ® V, and V= ® Wa,. (3.5.42)

v #v v #v
From now on, we also assume that a,, is in the lowest alcove for each place w' of F' above p, so that
V' = V' ®p, F. Let U be a compact open subgroup of Gn(AZ") % G, (Op+ p), which is sufficiently
small and unramified above p, such that S(U,V)[mz] # 0 where mr is the maximal ideal of T”
attached to 7 for a cofinite subset P of Py.
We fix a pair of integers (ig, jo) such that 0 < jo < jo+1 < ip < n—1, and determine a pair inters
(i1,j1) by the equation (3.5.3). We also define

M = S(U", V/)
M = SUP, VDR
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Note that M%7t is a free Og-module of finite rank as M is a admissible smooth representation of
G(Q,) which is wg-torsion free. For any Op-algebra A, we write M, 7' for M1t @, A. We
similarly define M 4.

Let T+ be the Og-module that is the image of T” in Endp, (M%+1). Then Tt is a local
Opg-algebras with the maximal ideal mz, where, by abuse of notation, we write mz C T for the image
of my of TP. As the level U is sufficiently small, by passing to a sufficiently large F as in the proof
of Theorem 4.5.2 of [HLM17], we may assume that T7" = E" for some r > 0. For any Og-algebra
A we write T7" for T @¢, A.

We have M =@, M M7 [pg], where the sum runs over the minimal primes p of T#1 and
pp = pT%’jl. Note that for any such p T%’jl/pE >~ F. By abuse of notation, we also write p (resp.
pr) for its inverse image in T (resp. T%). We also note that for any such p we have a surjection
M[p] — MF[mﬂ as myE =P + WETP.

Definition 3.5.43. A non-zero vector v'1-1 € Mli,l’j1 s said to be primitive if there exists a vector
oIt e M™Itp] that lifts v'I, for certain minimal prime p of T.

Note that the G(Q,)-subrepresentation of Mg generated by a lift 79191 of a primitive element
v'J1 s irreducible and actually lies in Mg[pg].

Now we can state our main results in this paper. Recall that by p, we always mean an n-dimensional
ordinary representation of Gq, as described in (3.3.1).

Theorem 3.5.44. Fix a pair of integers (ig,jo) satisfying 0 < jo < jo+1 < ig < m—1, and let
(i1,71) be a pair of integers such that ig + 11 = jo+j1 =n—1. We also let T : G — GL,(F) be an
irreducible automorphic representation with |G, = po. Assume that

o MD,ilajl 18 2n-generic;
O Diy.jo 18 Fontaine—Laffaille generic.
Assume further that

{F(u)Y} © Wi (F) N IH((7274)Y) © {F (7)Y, F(pn) Yy, (3.5.45)

Then there exists a pmmztwe vector in S(UY, V') ]! (1) it Moreover, for each primitive vector
Vi e S(UP, V') mg] [ (Dmat " we have S o SitIyindt £ and

01,71,/ 91,71,/ e zlz, — i1, %0,J0 (= i1,] 11,J1,,11,7
5131 .81]1 .( )91 1 1,71 51]17)11]1(71la"'7b0)‘FL7$]0(r|Gpw)'Slj1.81 Pt
where
Ji—1
gl — H (_1)bil—bk—j1+i1+1
k=i1+1
and

J11J1111

Pirji(bn—1,---,b H H —J ¢ Z.

_b —
k=i1+1 j=1 71 k ']

Remark 3.5.46. The right inclusion of (3.5.45) is just Conjecture 3.5.16, which is now a theorem of
Bao V. Le Hung (c.f. Remark 3.1.18 and [LLMPQ)]). We also give an evidence for the left inclusion of
(3.5.45) in Proposition 3.5.17 under some assumption of Taylor—Wiles type. As a result, the condition
(3.5.45) can be removed under some standard Taylor-Wiles conditions.

91,01

Remark 3.5.47. If M7t s free as Tt -module, then all vectors in S(UY,V')[mz]TM#1""" are
primitive. As a result, one needs such a freeness result to remove the “primitive” condition. Under
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a stronger generic condition (compared to our Fontaine-Laffaille generic), it is possible to use results

from [LLMPQ)] to improve (3.5.45) to an equality
W (F) N IH((w274)Y) = {F (™)}

in which case one is able to prove the freeness result mentioned above through the technique in Section
5 of [HLM17] under some standard global assumption. It is also possible to prove a freeness result
over some enlarged Hecke algebra as in Section 5 of [HLM17], at least if (i1,71) = (0,n — 1).

Proof. We firstly point out that M7t #£ 0, as S(U, (F(uP)Y 0 14) @ V') # 0 and F(uP) is a factor
~i1,J1 G(Fp) 1,51
of Indf(,uz1 = IndBEFp;,uzl I

Picking an embedding F¥ — Qp, as well as an isomorphism ¢ : Qp = C, we see that

M = @) - O g (e, (3.5.48)
P I

where the sum runs over irreducible representations II = I1, ® I1, ® II*®? of G,,(Ap+) over Qp such
that II®, C is a cuspidal automorphic representation of multiplicity m(II) € Z~ with I, ®, C being
determined by the algebraic representation (‘7' )V and with associated Galois representation ryy lifting
7V (c.f. Lemma 3.5.7).

We write § for the modulus character of B(Q,):

s=[ "ol I"?e-0| |®l

where | | is the (unramfied) norm character sending p to p~!. For any II contributing to (3.5.48), we
have

(i) I, = Indgggﬁ(w ® ) for some smooth character

YV=Up 1 Q@Yp_2® - QY1 Dy
of T(Qp) such that Y|z, = /7111 Jn |7(z,), where ¢, are the smooth characters of Q).

(ii) mlap, is apotentially crystalline lift of 7 with Hodge-Tate weights {—(n—1), —(n—2),--- , —1,0}
and WD(riflr, )"~ = @200,

Here, part (i) follows from [EGH13], Propositions 2.4.1 and 7.4.4, and part (ii) follows from classical
local-global compatibility (c.f. Theorem 3.5.8). Moreover, by Corollary 3.3.46, we have

i0,J0 (— HZO:_jl+1 ¢i1+1+k(p)
FL7 (o) = W (3.5.49)

(Note that we may identify v, 4141 with Q,;l for jo < k < ip, where Q is defined in Corollary 3.3.46.)
Now we pick an arbitrary primitive vector v/t € Mg [my] with a lift 97171 € M?+91[p]. We set

TR = <K@Vi1’j1>E C MEglpg] and 7 := 75 N M[p],

and thus 7 is an Op-lattice in 7. Note that My [pg] ®EQP is a direct summand of (3.5.48) where 11
runs over a subset of automorphic representations in (3.5.48). The same argument as in the paragraph
above (4.5.7) of [HLM17] using Cebotarev density shows us that the local component II, of each II
occurring in this direct summand does not depend on II.

By the definition of 7, we obtain an injection

TQRop F = (M[p]) ®0, F = Mp[m5] (3.5.50)
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as p + wpT? = m. By the assumption (3.5.45) (c.f. Conjecture 3.5.16), we deduce that
JH (socgr,) (Me([mz])) € {F(u"), F(u27))
and therefore by (3.5.50) we have
JH (socg(r,) (T ®0, F)) C {F(u"), F(u~9)}.
Hence by Corollary 3.5.41 we know that
ST e S (1 @0, F)VED#T Lo, (3.5.51)

On the other hand, we have the following equality by Proposition 3.5.25

(ig+io)(ig—do—1)
2

io—1
~ . i d - s . k=1 11/)1'1+1+k(p) ~ . ~
St o S o (T, )T UG = g ( Jotl 7T Siit o SiNgd(3.5.52)

By taking mod p reduction of (3.5.52) we deduce from (3.5.49) that
St/ o Si1:J1./ o (En)jl—h—lvihh — Eilyjlpil’jl (bnil, .. ’bO) . FLZJJO (HGFW) .Sl o Silvjlvi17jl )
This equation together with (3.5.51) finishes the proof. O

Corollary 3.5.53. Keep the notation of Theorem 3.5.44 and assume that each assumption in Theo-
rem 8.5.44 holds for all (ig,jo) such that 0 < jo < jo+ 1 <ig <n — 1. Assume further that M3t is
free over T3t for all pair (i1,71) (c.f. Remark 3.5.47).

Then the structure of S(UY, V')[mz| as a admissible smooth F-representation of G(Q,) determines
Po up to isomorphism.

Proof. We follow the notation in Section 3.4 of [BH15]. As p, is ordinary, we can view it as a morphism
po: Gq, — B(F) CG(F)

where B (resp. é) is the dual group of B (resp. G). The local class field theory gives us a bijection
between smooth characters of Q, and the smooth characters of the Weil group of Q,, in characteristic
zero. This bijection restricts to a bijection between smooth characters of Q; and smooth characters

of Gal(Q » /Qp) both with values in OF. Taking mod p reduction and then taking products we reach
a bijection between smooth F-characters of T(Q,) and Hom (Gal( Q,/Qyp), ( )) We can therefore

define x5, as the character of T'(Q,) corresponding to the composition
ot Cal(Q,/Qp) — B(F) - T(F).

In [BH15], a closed subgroup Cp, C B (at the beginning of section 3.2) and a subset W5, ((2) before
Lemma 2.3.6) of W is defined.

As we are assuming that p, is maximally non-split, we observe that C;, = B and W5 = {1} in
our case. Therefore by the definition of T1°7%(5,) in [BH15] before Definition 3.4.3, we know that it is
indecomposable with socle

Ind )Xﬂo (w™lo#h)

where 6 € X(T) is a twist character defined after Conjecture 3.1.2 in [BH15] which can be chosen to
be 1 in our notation. Then as a Corollary of Theorem 4.4.7 in [BH15], we deduce that S(U?, V') [mz]
determines yz, and hence X5, .

Now, we know that 7, is determined by the Fontaine Laffaille parameters {FL27 (5,) € PL(F) |
0 <ig <ip+1<jo<n—1}and Xp,, up to isomorphism. Our conclusion thus follows from Theorem
3.5.44 and Remark 3.5.47. O
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Chapter 4

Dilogarithm and higher
Z-invariants for GL3(Qy)

4.1 Introduction

Let p be a prime number and F' an imaginary quadratic extension of Q such that p splits in F'. We fix
a unitary algebraic group G over Q which becomes GL,, over F' and such that G(R) is compact and
G is split at all places of ' above p. Then to each finite extension E of Q, and to each prime-to-p
level UP in G(Ag"p ), one can associate the Banach space of p-adic automorphic forms S (UP E).
One can also associate with UP a set of finite places D(U?) of Q and a Hecke algebra T(UP) which
is the polynomial algebra freely generated by Hecke operators at places of F' lying above D(UP).
In particular, the commutative algebra T(U?) acts on S (UP,E) and commutes with the action of
G(Qp) = GL,(Qp) coming from translations on G(AF).

If p: Gal(F/F) — GL,(FE) is a continuous irreducible representation, one considers the associated
Hecke isotypic subspace S (U?, E)[m,], which is a continuous admissible representation of G(Q,) =
GL,(Qp) over E, or its locally Qp-analytic vectors S (UP, E)[m,]*, which is an admissible locally
Q,-analytic representation of GL,(Q,). We fix w, a place of F' above p and it is widely wished
that S(U?, E)[m,] (and its subspace §(UP7E)[mp]a“ as well) determines and depends only on p, :=
/)|Ga1(ﬁ,p [Py The case n = 2 is well-known essentially due to various results in [Col10], [Eme].
The case n > 3 is much more difficult and only some partial results are known. We are particularly
interested in the case when the subspace of locally algebraic vectors S(UP, E)[m,]*¢ C S(UP, E)[m,)]
is non-zero, which implies that p, is potentially semi-stable. Certain cases when n = 3 and p, is
semi-stable and non-crystalline have been studied in [Brel7] and [BD18]. We are going to continue
their work and obtain some interesting relation between results in [Brel7], [BD18] and previous results
in [Schr11] which involve the p-adic dilogarithm function.

We use the notation A € X(T')4 for a weight A = (A1, A2, A3) (of the diagonal split torus T' of GL3)
which is dominant with respect to the upper-triangular Borel subgroup B and hence satisfies A\; >
A2 > As. Given two locally analytic representations V, W of GL3(Q,), we use the shorten notation
V — W (resp. the shorten notation ¥ - — W ) for a locally analytic representation determined by

a non-zero (resp. possibly zero) element in ExtéLg(Qp) (W, V).

Theorem 4.1.1. [Proposition 4.6.8, Proposition 4.6.29] For each choice of A € X(T) 4 and £, %e, L5 €

139
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E, there exists a locally analytic representation S™™(\, £, %, %) of GL3(Q,) of the form:

Cs1.6 — L(N) ®@p vy
= THY e

an — = Z()\)
St3 ()\) T U%H(A) j/ Z()\) (412)

T Capss — L) @R v

where St5"(X), v (N), vB(A), L(A) and Couy o for w,w' € {s1,52,5182,5281} and * € {@,1,2} are
various explicit locally analytic representations defined in Section 4.2.3. Moreover, different choices
of L1, %s, L5 € E give non-isomorphic representations.

We will see in Lemma 4.6.47 and (4.6.55) that X™0(\, 4, %, %) is the minimal locally analytic
representation that involves p-adic dilogarithm, hence explains the notation ‘min’. We also construct
a locally analytic representation Y™+ (N, %, %, %) of the form

051281 8281
C /7 _j 51,8182
N T L) @p o,
vBH (A
- =1
St5"(A) —
T an()\) /L(/\)
Up, _
\CS . /L()\) ®E UPl S
T 1 _—— 0822,8251

which contains and is uniquely determined by L™(\, 2|, %, %).
Theorem 4.1.3. [Theorem 4.7.5] Assume that p > 5 and n = 3. Assume moreover that
(i

(ii

) p is unramified at all finite places of F above D(UP);

) S(U?, E)[m,]= # 0;

(iii) p, is semi-stable with Hodge—Tate weights {k1 > ko > k3} such that N2 # 0;
(iv) pp is non-critical in the sense of Remark 6.1.4 of [Brel7];

(v) only one automorphic representation contributes to §(Up, E)[m,]%.

Then there exists a unique choice of £, %2, L5 € E such that §(U”,E)[mp]am contains (copies of)
the locally analytic representation

Zmin’+(/\,$1,$2,$3) RE (UI‘(Oé) RE 52) o det

where X = (A1, A2, A3) = (k1 — 2, ke — 1,k3) and o € E* is determined by the Weil-Deligne represen-
tation WD(p,) associated with p,. Moreover, we have

Homar,(q,) (X" (\ 24, %, %) ©p (wr(a) @5 ) o det, (U7, B)™[m,])

= Homgr,(q,) (f(/\) ®p St ®@p (ur(a) @ £2) o det, S(U?, E)an[mpD .
(4.1.4)
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The assumptions of our Theorem 4.1.3 are the same as that of Theorem 1.3 of [Brel7]. We do
not attempt to obtain any explicit relation between £, %, %5 € E and p,, which is similar in
flavor to Theorem 1.3 of [Brel7]. On the other hand, Theorem 7.52 of [BD18] does care about the
explicit relation between invariants of the locally analytic representation associated with p,, under
further technical assumptions such as p, is ordinary with consecutive Hodge-Tate weights and has
an irreducible mod p reduction but without assuming our condition (v). The improvement of our
Theorem 4.1.3 upon Theorem 1.3 of [Brel7] will be explained in Section 4.1.2. One can naturally
wish that there is a common refinement or generalization of our Theorem 4.1.3 and Theorem 7.52 of
[BD18] by removing as many technical assumptions as possible.

Remark 4.1.5. It is actually possible to construct a locally analytic representation ¥™**(\, L1, Lo, L3)
of GL3(Q,) containing S™T (XN, L, L, L3) which is characterized by the fact that it is maximal (for
inclusion) among the locally analytic representations V' satisfying the following conditions:

(i) SOCGL:;(QP)(V) =Vaile = T()\) @p St3°;
(ii) each constituent of V' is a subquotient of a locally analytic principal series

where V8 s the subspace of locally algebraic vectors in V. Moreover, one can use an immediate
generalization of the arguments in the proof of Theorem 4.1.3 (and thus of Theorem 1.1 of [Brel7])
to show that

Homgr(q,) (Z"(\, 21, %, %) @ (ur(a) @5 22) o det, S(U?, B)™[m,])
= Homar,(q,) (f(/\) ®p StF ®p (ur(e) ®p €2) o det, S(U?, E)an[m,,}) .
(4.1.6)

We can also show that B
Emax()\7 31732733)/[/()\) 2 Stg

is independent of the choice of L1, %, L5 € E, which is compatible with the fact that
Zmin,*()\, fl,fg, gg)/f()\) RE Sts

is independent of the choice of £, %, s € E for each x € {&,4+} as mentioned in Remark 4.6.58.
However, the full construction of ¥™2*(\, L1, %o, %3) is lengthy and technical and thus we decided
not to put it in the present article.

4.1.1 Derived object and dilogarithm

We consider the bounded derived category

D’ (Modp(aLs(q,).2))

associated with the abelian category Mod p(aL,(q,),z) of abstract modules over the algebra D(GL3(Qy), )
of locally Qp-analytic distributions on GL3(Q,). An object

2\, Z) € D" (Modp(arLy(q,).5))

(one should not confuse this notation X(A,.£)" borrowed directly from [Schrll] with our notation
YT (), Z) before Lemma 4.6.18) has been constructed in [Schr11] and plays a key role in Theorem 1.2
of [Schrll]. An interesting feature of [Schrll] is the appearance of the p-adic dilogarithm function
in the construction of X (A, %) in Definition 5.19 of [Schrll]. Roughly, the object X(A,.£)" was
constructed from the choice of an element in ExtéLS(QP)’)\ (L(N), (X, L, %)) together with general
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formal arguments in triangulated categories (c.f. Proposition 3.2 of [Schrll]). In particular, ¥(A,.Z)’
fits into the following distinguished triangle:

F,— S(\,2) — 3S\,.2,2)[-1] 2

as illustrated in (5.99) of [Schrll]. However, it was not clear in [Schr11] whether there is an explicit
complex [C,] of locally analytic representations of GL3(Q,) such that the object

D' € D" (Modp(ar,(q,). )
associated with [C”_,] satisfies

D =~ E(/\,i)/ S Db (MOdD(GL3(Qp),E)) .

Although our notation are slightly different from [Schr11] in the sense that the notation %(\, &£, Z")
(resp. the notation F)) is replaced with X(\, .4, %) (resp. with L())), we show that

Theorem 4.1.7. [Proposition 4.6.36, (4.2.28) and Lemma 4.2.37] The complex

i
[( LN opeE, —L() ) — S04, %, 2

(4.1.8)

maps to the object S(\, L)' in the derived category where L(\) ®p vp,_, — L()\) is the unique non-
split extension of L(\) by L(A) @ p v,

i

thanks to Proposition 4.4.1, E§’+()\, L, L, L) is the locally
analytic subrepresentation of X™R(\, A, L, £L3) of the form

-
Vi (M)
sts" ()

T _,an

J—
”P3,i(>\)

C

$3—141,83—1

and the invariants L, %s, %3 € E are determined by the formula

—— L(\) @pvp_,

1
A== L=- L=~ - 5.,2”.2')
with the constant v € E* defined in Lemma 4.2.34.

Remark 4.1.9. Strictly speaking, the complex (4.1.8) realizes an object in Db (MOdD(GL3(Qp),E))
characterized by an element in

EXtéLg(Qp),,\ (Z(N), 22T\, 4, %))

due to formal arguments from Proposition 3.2 of [Schr11]. However, we can prove that there is a
canonical isomorphism

Extgr, g (L), S\, Z, %)) = Extér, g (L), 0T\, 4, 2))

and hence we can equally say that (4.1.8) realizes (X, Z)" for a suitable normalization of notation
as X(X\, Z) has been constructed by choosing a non-zero element in ExtéLS(Qp)’)\ (L(N), 2\, 2,2)
via Proposition 3.2 of [Schr1l1]. Note that we have

E()\7$,$/) = Z(}\,fth)
by (4.2.27).
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4.1.2 Higher Z-invariants for GL3(Q,)

It follows from (4.6.55) and (4.6.57) that S™nF (X, #, %, %) can be described more precisely by
the following picture:

1

/ C15251;5251 —_
2
Csl,sl \ / 031,5182

Closin == 2, . L(\) ®p vp;
0;271 \
N/ >
AN L(A\)?
\ 0813231,1
v L(\)?
\
C;l,l /
_ > -
0;152,1 C5152,1 L()\) RF U;’,‘i

82,82 S2,828
\ _— 2,5251
0;132;5152
and therefore contains a unique subrepresentation of the form
Cvs1 s1,1 C‘s1 51,5258
, 251l — — 281,8280 — o
51,1 _ _— 081751 —_ __— s1,8182
L(X) ®p St3° _ _
\ ) /L()\) (@E’U%C2 /L()\)@EU%OI\ )
ng,l — — 082752 — _— Ts2,8281
s182,1 08182,8182
which is denoted by
1 (k, D)
o — kK, D
L(\) ®p St5° (4.1.10)
S T2k, D)

in Theorem 1.1 of [Brel7]. It follows from Theorem 1.2 of [Brel7] that
dimpExtr, ) (I (k, D), L(A) @5 St3°) =3

for i = 1,2, and therefore a locally analytic representation of the form (4.1.10) depends on four
invariants. On the other hand, by a computation of extensions of rank one (¢, I')-modules we know that
pp depends on three invariants. As a result, Theorem 1.1 of [Brel7] predicts that not all representations

of the form (4.1.10) can be embedded into S(UP, E)™ [m,] for a certain pair of U? and p,. This is
actually the case as we show that

Theorem 4.1.11. [Corollary 4.7.17] If a locally analytic representation I1 of the form (4.1.10) can
be embedded into S(UP, E)**[m,] for a certain pair of UP and p,, then it can be embedded into

ymint(\ A, Lo, L)

for a unique choice of Ly, %o, %3 € E determined by II.
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4.1.3 Sketch of content

Section 4.2 recalls various well-known facts around locally analytic representations and our notation
for a family of specific irreducible subquotients of locally analytic principal series to be used in the
rest of the article. We emphasize that our definition of various Ext-groups follows [Brel7] closely and
the only difference is that we use the dual notation compared to that of [Brel7]. We also recall the
p-adic dilogarithm function from Section 5.3 of [Schrll] which is part of the main motivation of this
article to relate [Schr1l] with [Brel7] and [BD18].

Section 4.3 proves a crucial fact (Proposition 4.3.14) on the non-existence of locally analytic rep-
resentations of GLy(Q,) of a certain specific form using arguments involving infinitesimal characters
of locally analytic representations. We learn such arguments essentially from Y. Ding.

Section 4.4 is a collection of various computational results necessary for the applications in Sec-
tion 4.6. These computations essentially make use of the formula in Section 5.2 and 5.3 of [Brel7].

Section 4.5 serves as the preparation of Section 4.6 for the construction of XM (\ %, %, . %).
It makes full use of the computational results from Section 4.4 to compute the dimension of vari-
ous more complicated Ext-groups to be crucially used in various important long exact sequences in
Section 4.6(c.f. Lemma 4.6.1 and Proposition 4.6.8).

Section 4.6 finishes the construction of XY™ (\, A, %, .£3) as well as S+ (N, L), %, %), More-
over, the construction of XY™ (\, .74, %, .#3) leads naturally to the construction of an explicit complex
as in Theorem 4.1.7 that realizes the derived object £(A,.Z) constructed in [Schrll].

Section 4.7 finishes the proof of Theorem 4.7.5 by directly mimicking arguments from the proof of
Theorem 6.2.1 of [Brel7]. In particular, we give a purely representation theoretic criterion for a repre-
sentation of the form (4.1.10) to embed into completed cohomology as mentioned in Theorem 4.1.11.

4.1.4 Acknowledgement

The author expresses his gratefulness to Christophe Breuil for introducing the problem of relating
[Schr11] with [Brel7] and [BD18] and especially for his interest on the role played by the p-adic dilog-
arithm function. The author also benefited a lot from countless discussions with Y. Ding especially
for Section 4.3 of this article. Finally, the author thanks B. Schraen for his beautiful thesis which
improved the author’s understanding on the subject.

4.2 Preliminary

4.2.1 Locally analytic representations

In this section, we recall the definition of some well-known objects in the theory of locally analytic
representations of p-adic reductive groups.

We fix a locally Qp-analytic group H and denote the algebra of locally Q,-analytic distribution
with coefficient £ on H by D(H, E), which is defined as the strong dual of the locally convex E-
vector space C*"(H, E) consisting of locally Q,-analytic functions on H. We use the notation Rep?L E
(resp. Rep?ﬁ g) for the abelian category consisting of admissible locally Q,-analytic representations
of H (resp. admissible smooth representations of H) with coefficient E. Therefore taking strong dual
induces a faithful contravariant functor from Rep}f}, g to the abelian category Modp g, g) of abstract
modules over D(H, E). The E-vector space Ext%(HE)(Ml, Ms) is well-defined for any two objects
My, My € Modp(y, gy, and therefore we define

Ext'y (Iy, Ip) = Exth g gy (115, I17)

for any two objects 111,15 € Replﬁ’ g where -/ is the notation for strong dual. We also define the
cohomology of an object M € Modp(y, gy by

H'(H, M) := Extpg g (1, M)
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where 1 is the strong dual of the trivial representation of H. If H' is a closed locally Q,-analytic
normal subgroup of H, then H/H' is also a locally Q,-analytic group. It follows from the fact

D(H7 E) ®D(H/,E) E= D(H/HlvE)
(see Section 5.1 of [Brel7] for example) that H(H’, M) admits a structure of D(H/H’, E)-module

for each M € Modp g, ). We define the H'-homology of II € Repﬁ g as the object (if it exists up to
isomorphism) H;(H',II) € Replfl/H,’E such that

H;(H',11) = H'(H',I).

We emphasize that H;(H',II) is well defined in the sense above only after we know its existence.
We fix a subgroup Z of the center of the group H, then the algebra D(Z, E) consisting of locally
Q,-analytic distribution with coefficient E on Z is naturally contained in the center of D(H, E). For
each locally Qp-analytic E-character x of Z, we can define the abelian subcategory Modp (g, k),
consisting of all the objects in Modp(y, ) on which D(Z, E) acts by x’. Then we consider the

functors ExtiD( u,p)(—, —) defined as EXt%\/IOdD(H,E),X’(_7 —) which are extensions inside the abelian
category Modp (g, g),,- Consequently we can define

Extyy (I, 1) := Exth g gy o (5, 117)

for any two objects II;,II; € ReplﬁE such that II7, 115 € Modp(g,gy,y- In particular, if Z is the

center of H and acts on II € Replﬁ’E via the character x, then II" € Modp (g, g),,, and we usually say
that IT admits a central character .

Assume now H is the set of Q,-points of a split reductive group over Q,. We recall the category
O together with its subcategory O’;lg for each parabolic subgroup P C H from Section 9.3 of [HumO0g|
or [0OS15]. The construction by Orlik—Strauch in [OS15] gives us a functor

H . 1
Fp (’)glg x Repl’p — Repf

for each parabolic subgroup P C H with Levi quotient L. We use the notation RepngE for the abelian
full subcategory of Repﬁ, £ generated by the irreducible objects inside the image of F& when P varies

over all possible parabolic subgroups of H. Here we say a full subcategory is generated by a family of
objects if it is the minimal full subcategory that contains these objects and is stable under extensions
and taking subquotients. In particular, all objects in Repgng have finite length.

4.2.2 Formal properties

In this section, we recall and prove some general formal properties of locally analytic representations
of p-adic reductive groups.

We fix a split p-adic reductive group H and a parabolic subgroup P of H. We use the notation N
for the unipotent radical of P and fix a Levi subgroup L of P.

Lemma 4.2.1. We have a spectral sequece
Ext] , (Hp(N, T0y), I,) = Ext};* (Hl, Ind# (Hg)an).
which implies an isomorphism
Homy . (Ho(N, 1Iy), Ily) = Homp (Hl, Ind? (HQ)‘"‘“)
and a long exact sequence
Ext} , (Ho(N, TIy), Tly) < Extl , (Hl, Ind# (Hg)a“)
— Homy, . (Hy(N, IIy), TI5) — Ext} , (Ho(N, IIy), II,)
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for each I1; € Repi{}’E, Iy € ReplﬂE satisfying the (FIN) condition in Section 6 of [ST05], x € {&, x}
where x is a locally analytic character of the center of H.

Proof. This follows directly from our definition of Ext* and Hj, in Section 4.2.1 for k > 0, the original
dual version in (44) and (45) of [Brel7]. O

We fix a Borel subgroup B C H together with its opposite Borel subgroup B. We fix an irreducible

object M € Ogg. We choose a parabolic subgroup P C H such that P is maximal among all the

parabolic subgroups (¢ C H such that M € Oalg where q is the Lie algebra of the opposite parabolic

subgroup @ associated with . We fix a smooth irreducible representation 7> of L and a smooth
character 6 of H. Then we know that [OS15] constructed an irreducible locally analytic representation

FHM, )
of H.

Lemma 4.2.2. The functor
- Qg6

induces an equivalence of category from Rep%,E to itself. Moreover, the restriction of — ®g 0 to the
subcategory RepgtSE is again an equivalence of category to itself and satisfies

FE(M, 7°)®p 6 =2 FF (M, n° ®g d|L) (4.2.3)
for each irreducible object FH (M, n°°) € Repg‘,SE.

Proof. The functor —® g4 is clearly an equivalence of category from Rep]fl’ g to itself with quasi-inverse
given by
— Qo L

It is sufficient to prove the formula (4.2.3) to finish the proof. First of all, we notice by formal reason
(equivalence of category) that FH (M, m°)®g d is an irreducible object in Rep?LE since FH (M, m)
is. We use the notation f (resp. b) for the Lie algebra associated with the unipotent radical N of
the opposite parabolic subgroup P of P (resp. for the Lie algebra associated with H). We define
M}, as the (finite dimensional) algebraic representation of L whose dual is isomorphic to M™ as a
representation of [ and note that we have a surjection

U(h) ®U(E) M™ » M

where U(h) is the universal enveloping algebra of h. We observe that N acts trivially on ¢, and
therefore we have

Hy (N, FE (M, ) ®p §) = Hy (N, FE(M, 7)) @ 0|, » My ®p ™ ®F 0|
which induces by Lemma 4.2.1 a non-zero morphism
FE(M, 7°)®@pd — Ind}} (M, @ m° @§ 6|1)™" 2 FEU(H) @ug M", 7° @p0lL).  (4.2.4)
We finish the proof by the fact that FE (M, 7°°) ®p ¢ is irreducible and that
FH(M, 7 @g 6|1) = socy (]—'ﬁ(U(b) Que M™, m° ®g L)) .

due to Corollary 3.3 of [Brel6]. O
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We fix a finite length locally analytic representation V & Repﬁ p equipped with a increasing
filtration of subrepresentations {FilyV }o<rp<m such that
Fily(V) = 0, Fil,,(V) =V and gry,,V := Fily11V/Fil,V # 0 for all 0 < k <m — 1.
Note that the assumption above automatically implies that
LV)>m
where (V) is the length of V.

Proposition 4.2.5. Assume that W is another object of Rep}f}’E and x s a locally analytic character
of the center of H.

(i) If Ext}{)x (W, gr,V) =0 for each 1 <k < m, then we have
Exty (W, V) =0.
(i) If there exists 1 < ko < m such that Ext}{’x (W, gr,V) =0 for each 1 < k # kg < m and
dimEExt}LX (VV, grkOV) =1, then we have
dimgExty , (W, V) < 1;

if moreover Extffyx (W, gr,V) =0 for each 1 < k < ko—1 and Hompg , (W, gr, V) =0 for each
ko +1 <k <m, then we have
dimgExty , (W, V) =1.

Proof. The short exact sequence Fil, V' < Filp4 1V — gr; V' induces a long exact sequence
Exty (W, FilgV) — Bxty (W, Filp1V) — Exty (W, gry,V)
which implies
dimpExty; , (W, Fily1V) < dimgExty (W, FilkV) + dimgExty , (W, gr V).

Therefore we finish the proof of part (i) and the first claim of part (ii) by induction on k and the fact
that gryV =Fil1 V.
It remains to show the second claim of part (ii). The same method as in the proof of part (i) shows
that
Exty (W, Filg,—1V) = Extj; (W, Filg,—1V) =0 (4.2.6)

and
Exty, (W, V/Fily, V) = Hompy,, (W, V/Fil,, V) =0 (4.2.7)

The short exact sequence Filg, 1V < Filg,V — gr; V induces the long exact sequence
Exty (W, Filg—1V) = Exty (W, Fily, V) = BExty (W, gr,, V) — Exty (W, Filg,—1V)

which implies that
dimpExty (W, Fily, V) =1 (4.2.8)

by (4.2.6). The short exact sequence Fil,,V < V — V/Fil, V induces the long exact sequence
Homp,, (W, V/Fily, V) — Exty (W, Filg, V) — BExty (W, V) — Exty (W, V/Fil,V)

which finishes the proof by combining (4.2.7) and (4.2.8). O
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4.2.3 Some notation

In this section, we are going to recall some standard notation for the p-adic reductive groups GL2(Q,)
and GL3(Qp) as well as notation for some locally analytic representations of these groups.

We denote the lower-triangular Borel subgroup (resp. the diagonal maximal split torus) of GLy/q,
by By (resp. by T3) and the unipotent radical of By by Ngr,,. We use the notation s for the non-trivial
element in the Weyl group of GLs. We fix a weight v € X (T3) of GLy of the following form

v=(v1,1n) € Z*

which corresponds to an algebraic character of T5(Q),)

Oy, 1= ( 8 2 ) — a”tb"2.

We denote the upper-triangular Borel subgroup by By. If v is dominant with respect to Bo, namely if
v1 > vg, we use the notation Lar, (v) (resp. Lar,(—v)) for the irreducible algebraic representation of
GL3(Q,) with highest weight v (resp. —v) with respect to the positive roots determined by Bs (resp.
Bs). In particular, Lgr,(v) and Lgr,(—v) are the dual of each other. We use the shorten notation

GL an
I5 (xm,) == (Ind32(2(g3)p)XT2)

for any locally analytic character x7, of T>(Q,) and set
. GL2(Qp) . 00\ -
’g? (X1,) = (IndBQ(Z(gj) )XTz) ®p Lar, (V)

if x7, = 01, ®E XF, is locally algebraic where X7 is a smooth character of T5(Qp). Then we
define the locally analytic Steinberg representation as well as the smooth Steinberg representation for
GL2(Qjp) as follows

S65"(v) =I5 (6r0) /Lo (v), St3° 1= 151 (1)1

where 15 (resp. 1p,) is the trivial representation of GL2(Q),) (resp. of T5(Qyp)).

We denote the lower-triangular Borel subgroup (resp. the diagonal maximal split torus) of GL3 /Q,
by B (resp. by T') and the unipotent radical of B by N. We fix a weight A € X(T') of GL3 of the
following form

A= (A1, Ao, A3) € Z3,

which corresponds to an algebraic character of T(Q,)

a8,

o OO

a 0
5T,)\ = 0 b
0 0

We denote the center of GL3 by Z and notice that Z(Q,) = Q). Hence the restriction of iz ) to
Z(Qp) gives an algebraic character of Z(Q,):

Ar+A2+A3

a 0 0
(52_’)\ = 0 a O —a
0 0 a

We use the shorten notation
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for x € {T(Qp), L1(Qp), L2(Qp), GL3(Q,)}. In particular, the notation
EXti,O(_v _)

means (higher) extensions with the trivial central character. We denote the upper-triangular Borel
subgroup of GL3 by B. If \ is dominant with respect to B, namely if A\; > Ay > A3, we use the notation
L()) (resp. L(—\)) for the irreducible algebraic representation of GL3(Q,) with highest weight A (resp.
—)\) with respect to the positive roots determined by B (resp. B). In particular, L()\) and L(—\) are

* % 0 *x 0 0
dual of each other. We use the notation P; := * *x 0 and P, := * ok % for the two
% k% *x %k %

standard maximal parabolic subgroups of GL3 with unipotent radical N; and Ny respectively, and
the notation P; for the opposite parabolic subgroup of P; for i = 1,2. We set

Li = Piﬂﬁi

and set s; for the simple reflection in the Weyl group of L; for each ¢ = 1,2. In particular, the Weyl
group W of GL3 can be lifted to a subgroup of GL3 with the following elements

{1, 51, 82, 5152, 5251, 515251 }-
The group W acts on X (T') via the dot action
w-A:=wA+(2,1,0)) — (2,1,0).

We will usually use the shorten notation N; (c.f. Section 4.4) for its set of Qp-points N;(Q,) if
it does not cause any ambiguity. We use the notation M(—X\) for the Verma module in (’)glg with
highest weight —\ (with respect to B) and simple quotient L(—\) for each A € X (T') (not necessarily
dominant). Similarly, we use the notation M;(—\) for the parabolic Verma module in ngg with
highest weight —\ with respect to B (c.f. Section 9.4 of [Hum08]). We define L;(\) as the irreducible
algebraic representation of L;(Q,) with a highest weight A dominant with respect to BnNL; For
example, if A € X(T);, then we know that X, s; - A and s;s3_; - A are dominant with respect to
BN Ls_; for i =1,2. We use the following notation for various parabolic inductions

GL GL3(Qp) ™  7GL GL3(Q o
Iz (x) = (IndB(é(p)”)X) , Ip 2 (mi) = (Indpi(“gp)p)wa
if y is an arbitrary locally analytic character of T(Q,) and 7; is an arbitrary locally analytic repre-
sentation of L;(Q,) for each i = 1,2. Moreover, we use the notation

IS (x) == (Indg%éi?p)xoo) ®p L(N), igiL?’ (7;) := (Indgjzg?)p)ﬂfo) ®p L()\)
for i = 1,2 if x = dr\ ®p x> and m; = L;(\) ®p 72° are locally algebraic where x> (resp. 7°) is
a smooth representation of T'(Qp) (resp. of L;(Qp)). We will also use similar notation for parabolic
induction to Levi subgroups such as [ én 1, and Zéim 1, for i =1,2. Then we define the locally analytic

(generalized) Steinberg representation as well as the smooth (generalized) Steinberg representation
for GL3(Qp) by

SE(N) =I5 (0r.0)/ (15 (L) + I52 (L) ) 8657 o= iG55 (1) (i85 (12,) + 82 (11))

and
VBN = I (L) /L), vF =g (12,)/13
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where 13 (resp. 1,) is the trivial representation of GL3(Q,) (resp. of L;(Q,) for each i = 1,2). We
define the following irreducible smooth representations of L;i(Qp):

Y = St° ®p 1

G (ep| ™) ®p|-|
(St3° @p (|- | "' odety)) @ |- |2

oo
Mg =
o0
13

and the following smooth representations of Lo (Q,):

7T§?1 = 1®g St2
TS = | Ttepige (|| ep 1)
|- 172 @p (St3° ®@p (| - | o dety))

oo
33

Consequently, we can define the following locally analytic representations for i = 1, 2:

cl = Fp (L(=si- M), 1L,_,) c?, = TP (L(=si- M), 75%)
Csl is3—1,1 = .Fg;[f’l (L(—Si83,i . )\), 1L3—7‘,) Cs2,;53_i,1 = \/—'gsl:i (L(—SiS;g,i . )\)7 7T:(i)
Cs, s, = Far (L(=si - N), m5%) Cosarsi = Fp° (L(—siss—i-\), m5%)
GL GL
0511‘,51'837«; = ‘FPaj (L(_Si ’ /\)’ ﬁﬂ) 0317 = }—ng. (L(_Sl ’ )\)’ W%
Chisevsisss = Fp (L(—Siss—i'/\)a 0%"3,1) C2,, .1 = Fp= (L(=siss—i- \), 153)
(4.2.9)
where
0 =] todeta®p |- |> and 0F = || > ®@p | | o deto.
We also define
Coyspsyw = ]-'SL3 (L(—s18281 - A), X)) (4.2.10)
for each w € W where
X = 1r X5y ="' ®r| @1 Xes ::1®E"|71®E|“
Xors = |- |72@p] [@pl-| XGa=|"®e '@ Xiua=[17?0s1cs]

As one can write out O, explicitly for each parabolic subgroup P C GL3, we notice that the repre-

alg
sentations considered in (4.2.9) and (4.2.10) are all irreducible objects inside Repg&y, (Q,),E according
to the main theorem of [OS15]. We use the notation € for the set whose elements are listed as the
following:

() I epvy L) epel L) op Sty

Gho G G C2.1
o e S ol 05231’1 (4.2.11)
Clsl ;8182 C’ 3178152 015275251 025275251 e
§182,5152 5182,5182 §281,5251 $281,52S51

C'51,51 C15152751 C'52752 C'5251,52

Csi 50810 weW

Remark 4.2.12. It is actually possible to show that S is the set of (isomorphism classes of ) irreducible
objects of the block inside Repgi(QP),E containing the object L()\).

Lemma 4.2.13. The representation v (A) fits into a non-split extension

LX) @p vy = vB(A) — C., (4.2.14)

83—i,1
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fori=1,2. On the other hand, the representation St53"(\) has the following form:

c? —C?

o _— 51,1 s251,1 s251,1 - _
LX) ®@p St§° >< Coysps11 - (4.2.15)
1 2 -
CSZ 1 C51827 - Cslsg,l

Proof. The non-split short exact sequence follows directly from (3.62) of [BD18]. It follows easily from
the definition of St5"(A) and the main theorem of [OS15] that

JHGLS(Qp) (Stgn(A)) = {Z( )®E StB ) 091 1 092 1 ngsl 1> C€1€2 1 09291 1 03182,17 081525171}

and each Jordan—Hélder factor occurs with multiplicity one. It follows from Section 5.2 of [Brel7]
that

HO (NZ‘, fgiLS (L(—53_isi . /\), ZéLﬁL,(lT)>) = Zi(—83_i5i . )\) XE iéiﬁLi(lT)
which together with

JHgrs(Q,) (fgiLs (L(—83—i8i ), @'éthi(lT))) ={C%, i1 C2 51}

imply that fgL?’ (L(753_i5i “A), igimLi(lT)> fits into a non-split extension

Cly e = FE (L=sgmisi - V), iy, (1)) = €2 (4.2.16)
for i = 1,2. We also observe from Section 5.2 and 5.3 of [Brel7] that
H, <N3 iy Fpre (Mi(—s3—i - N), Wi,“i)) % Hy(Ns—i, C2, 1) ® Ha(Ns—y, CZ,_ . 1)
which together with
JHgL,(q,) (Fng (Mi(_SZSfi “A), T )) {C? 55 i1 53 sl )
imply that fgLe‘ (Mi(753_i < A), ’/T?(i) fits into a non-split extension
CF 1 = Fpt (Mi(=s3—i- ), m3%) = C2,_ o1 (4.2.17)

for i = 1,2. We notice that both FS'* (L ( (—ss_isi- \), ik, (1T)) and FS¥ (My(—s3-; - N), 783)

are subquotients of St3™(\) by various properties of the functors F5* (c.f. main theorem of [0S15])
and the definition of St3"()). We finish the proof by combining (4. 2 16) and (4.2.17) with the results
before Remark 3.38 of [BD18]. O

Remark 4.2.18. [t is actually possible to show that all the possibly non-split extensions indicated in
(4.2.15) are non-split, although they are essentially unrelated to the p-adic dilogarithm function.

4.2.4 p-adic logarithm and dilogarithm

In this section, we recall p-adic logarithm and dilogarithm function as well as their representation
theoretic interpretations.
We recall the p-adic logarithm function log, : Q; — Q) defined by the power series

N 2F
logy(1 —2) : Z?
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on the open subgroup 1+ pZ, of Z; and then extended to Q, by the condition log,(p) = logy(¢) =0
for each root of unity (. We also recall the p-adic valuation function val, : Q; — Z satisfying

|| =p~¥2»() (and in particular val,(p) = 1). We notice that
{logy, valp,}
forms a basis of the two dimensional E-vector space
Homcont (Q;v E) .

We define log o := log, — #val, for each . € E and consider the following two dimensional locally
analytic representation of Q)

Ve : QX — By(E), ars < (1) k’gf(“) )

and therefore
S0Cqx (V) = €o80Cqx (Vg)=1 (4.2.19)

where 1 is the notation for the trivial character of Q.. We notice that
1 [a¥)
ExtQ; (1,1) = Homeons (Q;, E),

by a standard fact in (continuous) group cohomology and therefore the set {Vg | £ € E} exhausts
(up to isomorphism) all different two dimensional locally analytic non-smooth FE-representations of
Q,; satisfying (4.2.19). We observe that Vg can be viewed as a representation of T5(Q,) = Q,’ x Q)
by composing with the map

T5(Q,) — Q : ( g 2 ) — a”lb. (4.2.20)
As a result, we can consider the parabolic induction
15k (Vg @5 o1,.,)
which naturally fits into an exact sequence
IS5 (01,0) = 1572 (Ve ®p 61,0) — I (01y0). (4.2.21)

Then we define Yqr,(v,.%) as the subrepresentation of 1332 (Vg ®E 0r1,.,) /LaL, (¥) with cosocle
Lar,(v). Tt follows from (the proof of) Theorem 3.14 of [BD18] that Yqr, (v, %) has the form

St5"(v) — Lar, (v) (4.2.22)

and the set {Xgr, (v, %) | £ € E} exhausts (up to isomorphism) all different locally analytic F-
representations of GL2(Q)) of the form (4.2.22) that do not contain

Law,(v) ®p St3° — Lar, (v)
as a subrepresentation. We have the embeddings
t;  GLy <= L;
for i = 1,2 by identifying GLo with a Levi block of L;, which induce the embeddings

LTyt T2 — T
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by restricting ¢; to To C GLy. We use the notation t7 (V) for the locally analytic representation of
T(Qp) = (Q))? which is Vi after restricting to T5 via v, and is trivial after restricting to the other
copy of Q,. By a direct analogue of Xqr, (v, ), we can construct X, (A, ) as the subrepresentation
of [éﬁL,- (v1,i(Ve) @ 7,0) /Li(A) with cosocle L;(X\). In fact, if we have Az, = v, then we
obviously know that Xz, (A, Z)|GL,,.. = L, (v, Z) where the notation (-)| . means the restriction
of - to % via the embedding . We observe that the parabolic induction IgiLi" (31, (N, Z)) fits into the
exact sequence

v (A) — St () = I (B, (A, L)) = T(\) — vB ().
According to Proposition 5.6 of [Schr11] for example, we know that
Extgr, Q) (L), St5(X) =0

and thus we can define X;(\,.£) as the unique quotient of Ig;LS (21, (A, %)) that fits into the exact
sequence

St (A) = (N, Z) — vp(N).
The constructions of X; (), %) above actually induce canonical isomorphisms
Homeons (Q,, E) = Extg; (1, 1) = Extér, g, (VB (A, S5 (V) (4.2.23)
for ¢ = 1,2. We denote the image of log; (resp, of val,) in

Extgr, g,y (V5 (A); St5"(N))

by bilog, (resp. by bjva,). We use the notation 17 for the trivial character of 7'(Q,). We use the
same notation b; 1og, and b; va1, for the image of log, and val, respectively under the embedding

Ext}Q; (1, 1) = Extrq,)o (1r, 1)
induced by the maps
Di (4.2.20) %
7(Qp) — 12(Qp) —— Q,
where p; is the section of ¢y ; which is compatible with the projection L; - GLg. Recall the elements
Cilog Ci,val € Ext%ﬂ(Qp)’O(lT, 17) constructed after (5.24) of [Schrll] and observe that
Cl,log = bl,logo + 2b2,log07 Cl,val = bl,valp + 2b2,val,, (4 ) 24)
€2log = 21 1og, + b2log,s  C2,val = 201 val, + b2 val, -

We notice that there exists canonical surjections
Extrq,).0 (11, 17) = Extgry g, (08 (A), St3"(X)) (4.2.25)

with kernel spanned by {¢; iog, Cival}, according to (5.70) and (5.71) of [Schr11]. Therefore the relation
(4.2.24) reduces via the surjection (4.2.25) to

C3—ilog = _Sbi,10g07 C3—i,val = _Sbi,vall7 (4.2.26)

inside the quotient Extgy(q v x (VB (), St3%())). We define ()21, %) as the amalgamate sum
of £1(\,.4) and 33(\, %) over St3"(N), for each Z,.%% € E. Consequently, (A, Z,.%) has the
following form
v (A)
St3"(A)

\
v (A)
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and we have

S\, A, L) 22N ZL, L) (4.2.27)
if

Ll =-L' L =-LCE, (4.2.28)

where X(\,.Z,.Z") is the locally analytic representation defined in Definition 5.12 of [Schrll] using
the element
(CQ,IOg + $,02,vala C1,log + gcl,val)

in
Extéry g, (0B (A) @ v (A), St3(N)) .

Remark 4.2.29. The appearance of a sign in (4.2.28) (which is an issue of normalization) is essen-
tially due to Remark 3.1 of [Dingl18], which implies that our invariants £, and % can be identified
with Fontaine—Mazur £ -invariants of the corresponding Galois representation via local-global com-
patibility.

We have a canonical morphism by (5.26) of [Schr11]
k1 Exti g, 0(1r, 1r) = Extér, g,y x (L(A), St5* (V) - (4.2.30)

Note that we also have
Bxt7(q,)0(lr, 17) & A? (EthT(Qp),o(lTv 1T))

by (5.24) of [Schr1l] and thus the set
{bl,val]{7 A b2,va1p 3 bl,logo A b2,valp7 bl,valp A b2,10g0a bl,logo A b2,log;0 ) bl,valp A b1,10g07 b2,va1p A b2,10g0}
forms a basis of EXt%‘(Qp),O (1p, 1p). It follows from (5.27) of [Schrll] and (4.2.24) that the set

{K(bl,valp A b2,va1p)a H(bl,logo A b2,va1p)7 ﬂ(bl,valp A b2,log0)a H(bl,logo A bQ,IOgO)}

forms a basis of the image of (4.2.30).
We recall the p-adic dilogarithm function lis : Q, \ {0,1} — Q, defined by Coleman in [Cole82]
and we consider the function

. 1
Dy(z) :=lia(2) + §log$(z)log$(l —z)
as in (5.34) of [Schr11]. We also define

d(z) :=log (1 — z)val,(z) — log & (z)val,(1 — 2)

as in (5.36) of [Schr11] which is also a locally analytic function over Q, \ {0,1} and is independent of
the choice of .Z € E. Note by our definition that

<z
Dy — Dy = —d.
2
It follows from Theorem 7.2 of [Schrll] that {Dg,d} can be identified with a basis of

EXtéLg(Qp),o (1, St3")

(c.f. (5.38) of [Schr11]) which naturally embeds into ExtéLz(Qp) (1, St5"). Then the map ¢; : GLy <
L; induces the isomorphisms

ExtZ,(q,) (L2, St3") < Ext? q o (1z,, St8") < ExtZ1, )0 (13, JgLS(St;n)) (4.2.31)
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where L;(Q,) acts on St5" via the projection p,. We abuse the notation for the composition
ui: Extly, g, (12, S6") < Ext?r, g0 (13, rGhs (Stgn)) — Ext?p,q,0 (1s, St§")  (4.2.32)

given by (4.2.31) and the surjection
I5 (St5") — St3™.

Finally there is canonical isomorphism

Ext&r,(q,),0 (13 St3") = Extr, ) (L), St3"(N))
by (5.20) of [Schrl1].
Lemma 4.2.33. We have

dimEExtéLS(QPL/\ (L(N), St3"(\)) =5
and the set
{K(b1,va1, A b2val, ), 5(b11og, A b2val, )s K(b1val, A b210g,)s K(D110g, A b2,10g, )5 Li(Do) }

forms a basis of EXtéL;;(Qp),)\ (L(N), St§"(N)) fori=1,2.
Proof. This follows directly from (5.57) of [Schrll] and (4.2.24). O
Lemma 4.2.34. There exists v € E* such that

11(d) = 12(d) = (K(b1,10g, A b2,val, + b1 val, Abalog, ) -
Proof. This follows directly from Lemma 5.8 of [Schrll] and (4.2.24) if we take

v = =3«
where o € E* is the constant in the statement of Lemma 5.8 of [Schrll]. O
Lemma 4.2.35. We have
dimpExtg, ) (L), S\, 21, %)) =1 and dimpExtg, g, (LA, B\, 21, %)) = 2.

Moreover, the image of
{Kl(bl,valp A b2,valp)7 Li(DO)}

under
EXtZGLg(Qp),)\ (Z()\), Stgn()\)) — EXtZGLs(Qp),)\ (Z(/\), Z(}\,Zl,ZQ))

forms a basis of EXtéLg(Qp),)\ (LN), SN, L, L)) fori=1 or2.
Proof. This follows directly from Corollary 5.17 of [Schrll] and (4.2.24). O

We recall from (5.55) of [Schrll] that
1 1
¢o = o~ 11 (Do) — A(C11og A €2 1og) (4.2.36)

where « is defined in Lemma 5.8 of [Schr11].
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Lemma 4.2.37. Assume that &5 € E satisfies the equality

E (11(Do) + Z(b1 var, Abaal,)) = E (co + £ k(c1val A C2,va1))
C Extgr, g, (L), (A, A, %)) . (4.2.38)

Then we have
Ly =~(L" — %leg) =y(Z" - %XX’)

Proof. All the equalities in this lemma are understood to be inside
ExtGry (@ (E), SO\ 4, %))
without causing ambiguity. It follows from our assumption (4.2.38) that
L1 (DO) + XBK(bl,valp A b2,va1p) =« (CO + gnﬁ(cl,val A CQ,val))

which together with (4.2.36) imply that

«
Q%SH(bl,valp A b2,va1,,) = §H(Cl,log A CQ,log) + O[Z”H(Cl,val A C2,val)- (4239)

We know that
K(C110g A C2,l0g) = L L' K(C1 val A C2,val) (4.2.40)

from the proof of Corollary 5.17 of [Schr1l] and that
H(Cl,val A CZ,V&I) = _Sﬂ(bl,valp A b2,va1p) (4241)

from (4.2.24). Therefore we finish the proof by combining (4.2.39), (4.2.40) and (4.2.41) with (4.2.28)
and the equality v = —3a from Lemma 4.2.34. O

Remark 4.2.42. We emphasize that we do not know whether
Eu1(Do) = Eta(Dy)

in ExtéLS(Qp)7/\ (L(N), St3"(N\)) or not, which is of independent interest.

4.3 A key result for GL»(Q),)

In this section, we are going to prove Proposition 4.3.14 which will be a crucial ingredient for the proof
of Lemma, 4.5.8 and Proposition 4.6.8. We usually identify GL2(Q,) with a Levi factor of a maximal
parabolic of GL3 when we apply the results from this section.

We use the following shorten notation

I(v) =I5y Oryn), 1) =I5, (Ors ®5 (|| @5 | 1))
for each weight v € X (T3).

Lemma 4.3.1. We have

dimpBxtiy, q,) (1), S, (2)) =1
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Proof. This is essentially contained in the proof of Theorem 3.14 of [BD18]. In fact, we know that

Il
o

Extir,q, (105 v), Lar, (v) @p St5 — I(s - v)

2
EXtGLQ (Qp) I

(s-v), Lgr,(v)®pSts® — I(s-v)

I
o

and _ -
dimEExtéLQ(Qp)(I(s -v), LaL,(v)) =1

which finish the proof by a simple devissage induced by the short exact sequence

(Tew. () 02865 — 15 v) ) = Sar, (42) — Taw, ().

We fix a split p-adic reductive group H and have a natural embedding
U(b) = D(H, E)1y — D(H, E)

where D(H, E)1y is the closed subalgebra of D(H, E) consisting of distributions supported at the
identity element (c.f. [Koh07]). The embedding above induces another embedding

Z(U(h)) — Z(D(H, E)) (4.3.2)

by the main result of [Koh07] where Z(-) is the notation for the center of a non-commutative algebra.
We say that IT € RengQ(QP)’E has an infinitesimal character if Z(U(h)) acts on I’ via a character.

Lemma 4.3.3. If VIV € Rep}f},E have both the same central character and the same infinitesimal
character and satisfy
Hompg (V, W) =0,

then any non-split extension of the form W — V has both the same central character and the same
infinitesimal character as the one for V. and W.

Proof. This is a direct analogue of Lemma 3.1 in [BD18] and follows essentially from the fact that
both D(Z(H), E) and Z(U(h)) are subalgebras of Z(D(H, E)) by [Koh07]. O

We fix a Borel subgroup By C H as well as its opposite Borel subgroup By We consider the
split maximal torus T := By N By and use the notation Ny (resp. Np) for the unipotent radical
of By (resp. of By). We use the notation Jz—(-) for Emertion’s Jacquet functor.

Lemma 4.3.4. IfV € Repﬁf‘LE has an infinitesimal character, then U(ty)"# (as a subalgebra of
Ulty)) acts on Jg(V) via a character where Wy is the Weyl group of H.

Proof. We know by our assumption that Z(U(h)) acts on V' (and hence on V as well) via a character.
We note from (4.3.2) that Z(U(h)) commutes with D(Nyg,E) C D(H,E) and thus the action of

Z(U(h)) on V commutes with that of N, which implies that Z(U(h)) acts on VNi" via a character
for each open compact subgroup Nu° C Np. We use the notation

0: Z(U(h) = Ulty)"™

for the Harish-Chandra isomorphism (c.f. Section 1.7 of [HumO8]) and the notation j; and js for the
embeddings
J1:Z({Uh)) = U(h) and jo : U(ty) — U(h).

We choose an arbitrary Verma module My (Ag) with highest weight Az, namely we have
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We use the notation Mg (Ag), for the subspace of My () with ty-weight p and note that
dimpMyg(Ag)r, = 1.
We easily observe that
Z(U®)  Mag(Me)ry = Ma(Aag)a, and U(ty) - Mg (Ma)xay = Mua(Ag)ag - (4.3.5)
It is well-known that the the direct sum decomposition
h=ng Sty g (4.3.6)
induces a tensor decomposition of E-vector space
U(h) =U(ng) @p U(ty) @5 U(nn). (4.3.7)

Hence we can write each element in U(h) as a polynomial with variables indexed by a standard basis
of b that is compatible with (4.3.6). It follows from the definition of 6 as the restriction to Z(U(h))
of the projection U(h) — U(ty) (coming from (4.3.7)) that

Jji1(2) —ja20b(z) € U(h) -wg +nm - U(h)
for each z € Z(U(H)). If a monomial f in the decomposition (4.3.7) of ji(z) — j2 0 6(2) belongs to
ng - Ung) - Ulty),

then we have
f MaAe)ry S Me(Am)u

for some p # A, which contradicts the fact (4.3.5). Hence we conclude that
J1(2) —j20b(z) € U(h) -0

and in particular
J1(z) = j2 0 0(2)

on VNu" for each z € Z(U(h)). Hence we deduce that U(ty)V# acts on VNi” via a character. We
note by the definition of J5— (c.f. [Eme061]) that we have a T}-equivariant embedding

J5—(V) = Vi (4.3.8)

where TE is a certain submonoid of Ty containing an open compact subgroup. As a result, (4.3.8) is
also U (ty)-equivariant and thus U(ty)"* acts on Jz—(V) via a character which finishes the proof. [

We set H = GL2(Q,), By = B2 and By = By in the rest of this section. The idea of the following
lemma which is closely related to Lemma 3.20 of [BD18], owes very much to Y.Ding.

Lemma 4.3.9. A locally analytic representation of either the form
ZGLg (v) g Stg° — I(s-v)— ZGLZ (v) — fc;,L2 (V) ®p St5° (4.3.10)

or the form
ZGLQ (l/) E— T(S . I/) — ZGLQ (l/) RE Stgo e ZGLg (I/) (4311)

does mot have an infinitesimal character.
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Proof. Assume that a representation V' of the form (4.3.10) has an infinitesimal character. Note that
V' can be represented by an element in the space ExtéLz(Qp)(LGL2 (v)®ESt5°, e, (v, .£)) for certain

% € E. We consider the upper-triangular Borel subgroup B, and the diagonal split torus 75. Then
by the proof of Lemma 3.20 of [BD18] we know that the Jacquet functor Jz; (c.f. [Eme06I] for the
definition) induces a injection

Extgr,q,) (Lo, (v) ©p St5°, Saw, (v, £))
= Extr,q,) 0nw @6 (|- 1@ - [7), én0@p (- |®|- 7). (43.12)

By twisting 67, —, ®g (|- |7 ®g | - |) we have an isomorphism

Extr,(q,) (0120 @£ (|| @571, 0np ®p (|- @ |- |71)) 2 Exty,q,) (In, 1z,).  (4.3.13)

It follows from Lemma 3.20 of [BD18] (up to changes on notation) that the image of the composition
of (4.3.13) and (4.3.12) is a certain two dimensional subspace Extsz(Qp)(l, 1) of Ext}Q(Qp)(l, 1)
depending on .Z. More precisely, if we use the notation €1, €5 for the two charaters

e :12(Q,) — Q,, ((;L 2)»—>aand62:Tz(Qp)—>Q;7 (g g)Hb

then the set
{logg o €1, val, o €1,log, o €3, val, o €ea}

forms a basis of ExtlTQ(Qp)(l, 1), and the subspace ExtlTQ(Qp)(l, 1) has a basis
{log o €1 + log o €2, val, 0 €1 + val, 0 €2,10g 0 €1 — log, 0 €2 + £ (val, 0 €1 — val, o €2)}.

It follows from Lemma 4.3.4 that U(ty)"et2 acts on J5;(V) via a character where Wgr, is the
notation for the Weyl group of GL2(Q,). Therefore we deduce by a twisting that the the subspace
of ExtlTQ(Qp)(l, 1) corresponding to J-(V') is killed by U (tz)"V*2. We notice that the subspace M of

Ex‘c%p2 (Q,)(1,1) killed by U (t)Werz is two dimensional with basis
{val, o €1,val, 0 €2}

and we have
MnN Ext%FQ(Qp)(l, 1) = E(val, o€ +val, o ea).

However, the representation given by the line E(val, o €; 4 val, o €2) has a subrepresentation of the
form

L, (v) ®p St5° — Lar, (v) @p St°

which is a contradiction.
The proof of the second statement is a direct analogue as we observe that Jz also induces the
following embedding

Exthiaa,) (Lora()s Lora(v) — I(s-v) — Law, () @5 St5° — Lar,(v) )
— EXtTQ( (5Tg,m (STQ’ )
O

We define X5 (v, ) as the unique (up to isomorphism) non-split extension of I(s-v) by Sar, (v, &)
given by Lemma 4.3.1.
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Proposition 4.3.14. We have

Exthia,)  Low,(v) ©x St — Law, (v) , S (1,.2)) =0,
Proof. Assume on the contrary that V' is a representation given by a certain non-zero element inside

Bxtbraq,) ( Zow.(v) ©5 56 — Lar,(v) » S5 (4.9)).

We deduce that V' has both a central character and an infinitesimal character from Lemma 4.3.3 and
the fact

Homary(a,) ( Tor, () 95 868 — Lar,(v) » T3 (,.2)) =0,

Note that we have

Extgr,(q,) (Lo, () @5 St5°, I(s-v)) = Extér,q,) (Law, (v), I(s-v)) =0,

dimEEXtéLz(Qp) (ZGLZ (V)7 IGrLz (V) ®E Stgo) =1

and
dimEExt%;Lz(Qp) (Lew,(v), I(s-v)) =1

by a combination of Lemma 3.13 of [BD18] with Lemma 4.2.1, and thus V has a subrepresentation of
one of the three following forms

(i) ZGLZ (U) RE St;o — ZGLQ (V) ()5 Stgo ;
(i) Lar,(v) ®p St5° — I(s-v) — Law, (v) — Lo, (v) ®p St5° ;

(il)) Law,(v) ©p St — I(s-v) — Lar, (v) — I(s - v) — Law,(v) @5 St5° — Lap, (v) -
In the first case, we know from Proposition 4.7 of [Schr11] and the main result of [Or05] that
ExtéLQ(Qp)W (ZGL2 (v) ®@g St°, Law, (V) ®p Stgo) =0
and therefore this case is impossible due to the existence of central character for V' (and hence for its
subrepresentations). In the second case, we deduce from Lemma 4.3.9 a contradiction as V' has an

infinitesimal character. In the third case, we thus know that V has a quotient representation of the
form

LaL,(v) — I(s - v) — Law, (v) @5 St3° — Law, (v)

which can not have an infinitesimal character due to Lemma 4.3.9, a contradiction again. Hence we
finish the proof. O

Remark 4.3.15. Note that the argument in Proposition 4.3.14 actually implies that

Exthiaq,) ( Lot () ©5 St — Law,(v) » 1(s¥) — Law,(v) — (s -v) ) =0

and we can show by the same method that

Extery(q,) ( Lev, (v) — Lew, (v) @5 5t5° 5 I(s - v) — Low, (v) @5 St3° — I(s - v) ) =0
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4.4 Computations of Ext I

In this section, we are going to compute various Ext-groups based on known results on group coho-
mology in Section 5.2 and 5.3 of [Brel7].

Proposition 4.4.1. The following spaces are one dimensional

Extgr, g,y (EOV), L) @5 0F) Extgr, g, (DY) @6 vE, L(\)
Extgr, ) (DY) @6 St LA ®@pvE)  Extar,q,)a (DY) @6 vE, L) @5 St5°)
ExtéLs(Qp) » (LN ®E5 St5°, L(N)) Extgr,( a (LY, L) @ St5°)
Extdr, ) (L) ®@p v, L) @pvE)  Extdr g (L) ®pvE, L) @p vE)

fori=1,2. Moreover, we have
Extgr, g, (Vi, Vo) =0

in all the other cases where 1 < k <2 and V1,Va € {L(X),L(A\) ®p vy, L(A) ®p v, L(A) ®p St5°}.

Proof. This follows from a special case of Proposition 4.7 of [Schr11] together with the main result of
[Or05]. O

Lemma 4.4.2. We have

(N epvy —I0), L) @psE) =0
Ext]éLS(QP),)\ (A) ®@p vy — L(\) @ St5°, Z(A)) =
Extlir, 0,00 ( L) — L) @0, L(\) @5 vﬁ7i> _

™~

k
ExtGry(g,),a

i

fori=1,2 and k=1,2.
Proof. 1t is sufficient to prove that
X1, () ( IO @5 v —I(\) , L\ @5 St§°) =0 (4.4.3)

and
ExtZ1,(q,)a ( IO @5 v —I(\) , L\ @5 Sth) —0 (4.4.4)

as the other cases are similar. We observe that (4.4.3) is equivalent to the non-existence of a uniserial
representation of the form

L(\) ®@p St5° — L(A\) @p vy — L()\)
which is again equivalent to the vanishing
EXtér (g, (Z(,\), I\ 95 St — L(\) @p 0 ) —0 (4.4.5)

according to the fact
Extgr, g,y (LY, LA ®p St5°) =0

due to Proposition 4.4.1. The short exact sequence

(T @e St — IO @p vf ) = FE& (Mi(=N), 77%) - C

83—i,853—iSi
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induces an injection

Exthiy g (D), I\ @5 St5° — L) @5 v ) = Bxtl,q,a (EO), FE (Mi(-A), 735))
Therefore (4.4.5) follows from Lemma 4.2.1 and the facts that
EthLi(Qp))\ (Ho(Nl,f(A)), Zl(A) ®E 7TZO§))) = HOHlLi(Qp)’)\ (Hl(N“Z(A)), ZZ(A) ®E 71'?%) = 0

On the other hand, the short exact sequence

I e = (I @pvy —I() ) » L)

Nag

induces a long exact sequence
Exthra g (L), L) @5 865°) < Bxtl, g, ( T @5 vF — (V) » L) @ St5°)

— Extér, g, (L) @6 0%, LA) @8 St3°) = Extér, q,)x (L), L) ®g St5°)

— Extp, (g, ( L) vy —I(\) , L) @p St§°) = Extly, q,)x (EOV) ®5 0%, (V) ©p St5)
and thus we cab deduce (4.4.4) from Proposition 4.4.1 and (4.4.3). O

We define Wy as the unique locally algebraic representation of length three satisfying
socary(Q,)(Wo) = L(A) @5 (vE, ®vE) and cosocar,(q,)(Wo) = L(A).
We also define the (unique up to isomorphism) locally algebraic representation of the form
Wi = L(\) ®p vy — L(\)
for each i = 1,2
Lemma 4.4.6. We have
dimEExtéLa(Qp)’/\ (Wo, LN) @ St5°) =1

and

Proof. The short exact sequence

L()\) XRE ’Ui,):fi — Wy —» Wy
induces a long exact sequence
EXt%}L3(Qp)7A (Z(A) RE ’U}O:)?7 Z(}\) RE Stgo) — EthGLs(Qp)7/\ (WO7 Z()\) RF Stgo)

= BExtér, gy (War L) ®5 St5°) = Extgr, ) (L) @pvf, L) @5 St3°)
— EXtéLg,(Qp),)\ (WO, Z(A) RE Stgo) — EXtéLB(Qp))\ (VVQ7 f()\) RE Stgo)

which finishes the proof by Proposition 4.4.1, (4.4.3) and (4.4.4). O
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Recall that we have introduced a set 2 consisting of irreducible locally analytic representations of
GL3(Qp) in (4.2.11). We define the following subsets of 2:

0 (Z()\)) = {L(\) ®g Vg, L\ ®g Vg, CS1 1 52’1}

Q1 (LN @pvy) = {L\), L\) ®@pSt5°, C2 1, Csyes CL 10t
0 (L) @povE) = {L), L\) @pSt3°, CZ, 1, Cs, s, CF, 0}
O (L(N) ®p St5°) {LO) @p g, L) @pvE, CF . C2 0t
Qo (Z(A)) = {L(\) ®p St3°, Cel 1 092 1) 09192 1 8231,1}
Qo (L(N) ®p UPI) = {L(\) ®r UPQa a1 C2 s 0315271, Csysy50}
Qo (Z(A) OF ’UPQ) = {L(\) ®p ”Pl 52,15 032 $281) 03251 15 Csysausi )
Q2 (LN @pSt5°) = {L\), O, g5 C§2,52517 C? asisar Copsrisnst)

Proposition 4.4.7. We have an explicit formula for

Hy (N, FER (M, 75%))
for each admissible smooth representation 73° of L; (Qyp), each

M e {L(=A), Mj(=A),L(=s3—;-A), Mj(—=s3—;j-A), L(—=s3—;s;-A)}
and each 0 < k <2,4,7=1,2.
Proof. This follows directly from Section 5.2 and 5.3 of [Brel7]. O
Lemma 4.4.8. For
Vo € {L(\), L(\) ®p vy, L(\) ®p vy, L) ®p St5°},

we have
dimpExtgr, g (Vo, V) =1

Zf Ve Ql(VO) and
EXt%}Lg(Qp),,\ (Vo, V) =0

if Ve Q\ ().
Proof. We only prove the statements for Vy = L()\) as other cases are similar. If
V e{L(\), L)) ®g vp,, L\ ®p v, L()\) ®g St3°}
then the conclusion follows from Proposition 4.4.1. If
G )
V= fij?’ (L(=s3-jsj - A), 7;°)
for a smooth irreducible representation 77° and j = 1 or 2, then it follows from Lemma 4.2.1 that
— HOHILJ(QP),)\ (Hl(Nj, f()\))7 Zj(S'g,,ij . )\) RE 7'(';)0)
— EXt%j(Qp),A (Ho(Nj, Z(}\))7 Zj(SB—ij . )\) RF WJOO) . (449)
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It follows from Proposition 4.4.7 and (4.4.9) that

Extr g (Li(N), Li(ss—js; - A) @5 75°) = Extir, g, (L), V)
— Homp,(q,)x (Lj(s3—5 - A), Lj(ss—js; - A) @p75°) . (4.4.10)

We notice that Z(L;(Q,)) acts via different characters on L;(X), L;j(s3—;-A) and L;(s3—;5;-\) @pm3°,
and thus we have the equalities

EXt}’J(Qp)vL(fJ()\)v Zj(ig_JSj . )\) RE 71']00) = 0
Homp, @) (Lj(s3—5 - A)s Ly(ss—ys;- A) @p75e) = 0
which imply that
Extar,(q, M( (A), ]'—GLS( (=s3-585 - M), Wfo)) =0 (4.4.11)

for each 77 and j = 1,2. If

V = fg;.LB(L(—SSfj “A), 7r;>°)

for a smooth irreducible representation 7$°

72 and j =1 or 2, then the short exact sequence

Fol(L(=s3—j - A), m5°) = Fp*(Mj(=ss_j - A), 75°) = Fp*(L(—s3_js; - N), 75°)

induces a long exact sequence

EXtéL:}(Qy))\ (Z()\), V) (—>EXt1GL3(Qp)7)\( ( ) fGLs( ( S3_ —; )\), 71';)0))
— Exthir, @,y (Z(A), FOM (L(—s3-5; - ), 7r;>°))

which implies an isomorphism
Exthiygun (FO), V) 5 Bxtée, i (TO) FE2(Mj(=s5-5 - 1), 7)) (4.4.12)
by (4.4.11). It follows from Proposition 4.4.7 and Lemma 4.2.1 that

EXt}l (Q ) A (Z()\)7 Zj(Sg_j . )\) ®E 7TJOO) — EXt%}Lg(Qp),)\ (Z(}\), V)

— HOIIIL](QP) A (L (83 j )\)7 Zj(83_j . )\) RE W;Q) — EXtQLj(Qp)7/\ (ZJ(/\), Ej(Sg_j . /\) RE 7(1';)0) . )
4.4.13

As Z(L;(Qp)) acts via different characters on L;()) and L;(s3—; - \) ®@p 75°, we have the equalities

Ext o (V) Lj(sa—jsi-A) @p ) = 0
2 L;(s3—j85 M) ®E,n_;>o) — 0

Ext], (q,).x (Li(A),
which imply that
Extgr, Q) (LA, V) = Homp (q,)x (Li(ss—j - A), Lj(ss—j - A) @ m5°) . (4.4.14)
It is then obvious that
Hoij(Qp),)\ (Zj(S?,,j . )\), Zj(ngj . )\) QF ﬂ';o) =0

for each smooth irreducible 77° # 1, and therefore

dimEEXtéLg(QP),/\ (Z(A), .FSJLS (L(_S?)—j . )\)7 1Lj)) =1
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and
Exthry g (D), FE(L(=s5-5 - A), 11,)) =0

for each smooth irreducible 75° # 1. Finally, similar methods together with Proposition 4.4.7 also
show that

Exthr, g, (EO), F§¥ (L(=s1s251 - ), %)) =0
for each w € W. O
We define B
Q" =Q\{L(\), L)) ®F vp, L\ ®p vpn, L(A) ®@p St3°}.
Then we define the following subsets of 2~ for i = 1, 2:

M (Cil) = {Oe is3—5,10 0823_7187‘,,17 s, 15 1}

91 (Ci,l) = { $;83—4,1) 053—1'51’753—1'7 C; i,l}

O C\slx,i,sis3,i = {Ci S3_,8i83—4) C’53 i5i,83—i) Cis S3_4 C;i,sis_g,i}
Ql i,s,ﬂ,s;g_i = {Os 83_7,58;83_4) Cslg $8i,83_783" C;i,sis_o,,i? 0521-,37;53,,;}
] (Csi,si) = {CSiSB—ini7 ng,isi,h 0523 185,83 ;83) Csiysi}

Lemma 4.4.15. For

W € {051 1s 052 Cle,s S3_47 C? Csivsi | i= 1’2}’

85,8831
we have
dimpExtgr, g, (Vo, V) =1
if Ve Qi(Vo) and
Extgr, q,ya (Vo, V) =0

fVeQ \ (V).
Proof. The proof is very similar to that of Lemma 4.4.15. O
Lemma 4.4.16. For

Vo € {L(\), L(\) ®p vy, L(\) ®p vy, L) ®p St5°},
we have
dimpExtg, g, (Vo, V) =1
if Ve Qa(Vy) and
Extgr, g (Vo, V) =0
if Ve Q\ Q).

Proof. We only prove the statements for Vy = L()\) as other cases are similar. If
Ve {L(\), L\) ®g vy, L(\) @pvp, L(\) @ St5°}
then the conclusion follows from Proposition 4.4.1. We notice that Z(L;(Q,)) acts via different
characters on L;(A), Lj(s3—; - A) and Lj(s3—;s; - A\) @ 73, and thus we have
ExtL (@)A (L;i(N), Lj(ss—js;-A) @pw5°) =0 (4.4.17)
Ext} (g @ (Li(ss—j - A), Li(ss—js;- A\ @p7°) =0
Ext] g,y (Li(M); Lj(53—j8j N @p T°) =0
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On the other hand, we notice that

Hoij(Qp),)\ (fj(Sg,_ij . )\), fj(83_j8j . )\) R 7'&'})0) =0 (4418)
for each smooth irreducible 77° 7 17, and

dimEHoij(Qp))\ (Zj(Sg_ij . )\), Zj(Sg_ij . )\)) =1. (4419)
We combine (4.4.17), (4.4.18) and (4.4.19) with Lemma 4.2.1 and Proposition 4.4.7 and deduce that

EXt2GL3(Qp),)\ (f(A), }'?J.LB (L(=s3-58; - A), “;O)) =0 (4.4.20)

for each smooth irreducible 73 # 11, and
dimpExt?,q,) (f()\)7 FS (L(—s3-j8) - N, 1Lj)) —1 (4.4.21)

which finishes the proof if
V= Fp(L(=s3_j55 - A), 75°).

Similarly, we have

Ext] (g, (Li(N), Lj(ss—j - A) ®p 75°) =0 (4.4.22)
Homyp g, (Li(s3—js5 - A), Li(ss—j - A) @p75°) =0
Ext? gy (Li(A), Li(ss—j - A) ©p 75°) _0

On the other hand, we have
EXtij(Qp),)\ (fj(s;;,i . )\), Zj(83,j . )\) KRF 71';0) =0 (4423)
for each smooth irreducible 73 # 729 and
dimEEXtij(Qp),)\ (ZJ(83,Z . /\), Zj (83,]‘ . )\) RE 71';3) =1. (4424)
We combine (4.4.22), (4.4.23) and (4.4.24) with Lemma 4.2.1 and Proposition 4.4.7 and deduce that

EXtEL,(Qp) (Z(/\), Fort(My(=s3-; - \), 77;‘)0)> k. (4.4.25)

for each smooth irreducible 72° # 729 and
dimEEXtQGLS(Qp)7>\ (Z(/\), fgjLS (Mj(—83_j . /\)7 7'(';)01)) =1. (4426)
The short exact sequence

Fpl(L(=s3—j - N), m5°) = Fp* (My(=ss—j - A), 75°) = Fp*(L(—s3_js; - N), 75°)

induces a long exact sequence

Extar, q,)a (f()\), Fp 2 (L(=s3-js; - N), W;O)) — Extér, Q) (f()\), Fp(L(=s3- - M), W;.O))
— EXtéLS(Qp)J (Z(A), fgjLs (MJ(*S:;_J . A), WJOO)) — EXtéLs(Qp)J\ (Z(}\), ‘F](;;LS (L(—Sg_ij . )\)7 ﬂ,joo>)

which finishes the proof if
V= Fp(L(=s5-5 - N), 75°).

Finally, similar methods together with Proposition 4.4.7 also show that
EXtEL, Q) (f(/\), Fgr(L(—s1s251 - \), X?)) =0

for each w € W. O
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Lemma 4.4.27. We have

Exthr, g ( EO) @8 v —I() , C2,) =0
EXt%}Lg(Qp),,\ L(\) ®p vE — L(\) ©p St5° 0919€3_) =0
EXtéLS(Q,,),A L(\) — L(\) @p vy, Cs},',,l) =0
Exthr, g, ( V) @5 St — LV @505, C2 .., ) —0

fori=1,2.
Proof. We only prove the first vanishing
Extgr, ) (Wi, C21) = (4.4.28)

si,1

as the other cases are similar. The embedding
Ci,l — ]:gaIi(Ms—i(—Si “A)y m52i4)
induces an embedding
Extésr,(quya (Wis €2 1) < Exthr, @, (W FEV (M i(—s; - \), W;;O_iyl)). (4.4.29)
It follows from Proposition 4.4.7 that

_ L,
Ho(Ns_ij, Wi) = L3_i(\) ®p ( innL, (XS ) ©OF, 7>

_ o (4.4.30)
Hi(Nsis Wi) = Toisi- ) @ (ighg, () ©05%_,)

We notice that Z(Ls_;(Q,)) acts on Lz_;(\) and Lz_;(s; - A) via different characters and that

L3_; 00 Ea fe'e]
Hongq(Qp)A (ZBser3,i(Xss,i)7 L3 _i(si-\) ®@p 7T3—i,1> =0.

Therefore we deduce from (4.4.30) the equalities

EXt}/S—i(Qp)7)\ (Ho(Ng_i, Wz), Z3—i(3i . A) KRE 7T§Xii’1) =0
Homp, (g, (H1(N3—i, W;), Ls_i(si - A\) @ 75°,,) =0

which imply by Lemma 4.2.1 that
Extar, @, (Wm Fars (Ms_i(—s; - N, Wé"ii,1)) =0.

Hence we finish the proof of (4.4.28) by the embedding (4.4.29). O

Lemma 4.4.31. We have fori=1,2:

Bxthi g ( L) @5 0 — Cu, C2) -0
Exthy, g | DOV ®pvE_ —— C2 . ., c) —0
Exthr, @ | L) —— Chusss, + ) =0
Exthry g ( ZO) @6 St 20, 2, ) —0
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Proof. We only prove that
X1, () (Z(A) 2 v — Copss, Ciyl) —0 (4.4.32)

as the other cases are similar. The surjection

‘FS;EBZ (M3—i(_>‘)7 ﬂ-éxii,Z) - L(/\) QF UOPOi - Osivsi

and the embedding
C’i’l s fg;j(M:sfi(—Si “A), m52i1)

induce an embedding

EXt%}Lg(Qp),k ( L) @p vy — Css, 0321-,1)

< Extdr, ) (;ESSLsi (Ms—i(=A), 752, 2), FOI® (My_s(—s; - N), 752 i,l)). (4.4.33)
It follows from Proposition 4.4.7 that
Ho(Ns—i, Fp® (Ms—i(=X), 75%55)) = (Ls—i(A) @ Ls_i(si - \)) ®p 75°,
and
Hy(Ns_i, Fp® (Ms_i(=A), 75%;5))
Lo,

= (134(81' : )\) @ ZSfi(siS?)fi ’ )\)) QF 773?31',2 D 115?53,1- (551")\) ® IBng,i (551")\ ®F X:fmm) :

We notice that Z(Ls—;(Qp)) acts on each direct summand of Hy(N3_;, fg;f‘i (M3—i(=A), 752,5))
(k = 0,1) via a different character, and the only direct summand that produces the same character
as Lg_i(s; - \) @ w52, | is Ifg‘?{ﬁ;_i (0s,.2). However, we know that

L —d L —1
COSOCLS*@'(Q[JLA (IB?TL:;,i (537)\)) = IB%L377; (633*1€’L>‘)

and thus . B
HomL?)fi(Qp):)‘ (IB?{LZg,i (653481"}\) ) L3—i(si : )‘) Y ﬂ-??o—i,l> = 0.

As a result, we deduce the equalities

EXt}/iﬁ—i(QP)»)‘ (HO(NS*Z" ‘ngi (Mz—i(—=A), W??iig))v 13*1'(8%' A) ®B 7Ti’()xii,l) =0
Homyp, ,(q,)x (Hl(NSm Fars (Ms_i(—X), 75%,5)), Ls—i(si - A) @p 7T§‘ii,1) =0

which imply by Lemma 4.2.1 that
ExtGr, ,)a (7'—1(3}3]“_3; (Ms_i(=A), 75%,5), Fp® (Ma_i(—s;i - N), ﬂ??ii,l)) =0.

Hence we finish the proof of (4.4.32) by the embedding (4.4.33). O

Lemma 4.4.34. There exists a unique representation of the form

0313—1'81'71
\ _— 8,8

2
CS,;,l
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or of the form
Cl

$3—-i87,83—iSq
_— T VoL
\7 _— §i,8i83—i *

L(\) @ vE,_,

Csi75i

Proof. We only prove the first statement as the second is similar. It follows from Proposition 4.4.2 of
[Brel7] that there exists a unique representation of the form

0813—7:57:,1 -
s — T~
CSi 1 Cs,;,si
’ \ . /
L(\) ®g vp
but it is not proven there whether its quotient
Csls—iSiJ -0 057175@' (4435)

is split or not. However, If (4.4.35) is split, then there exists a representation of the form

€2 — T\ @p v — Cs,.s,

Si,
which contradicts the first vanishing in Lemma 4.4.31, and thus we finish the proof. O

Remark 4.4.36. Our method used in Lemma 4.4.31 and in Lemma 4.4.34 is different from the one
due to Y.Ding mentioned in part (ii) of Remark 4.4.3 of [Brel7]. It is not difficult to observe that

CSlsfiSi’l
/
dimpExtgr, gy | Consr Coin _ =1 (4.4.37)

and

C;-S—ivsiwss—isi
Csivsi _ =1 (4.4.38)

L(/\) XRE U%‘;ii

dimEExtéh(Qp),)\ 02

5i,8;83—4’

for i =1,2. Similar methods as those used in Proposition 4.4.2 of [Brel7], in Lemma 4.4.31 and in
Lemma 4.4.34 also imply the existence of a unique representation of the form

C;-i,l
or of the form

2
Csi,si53,i —_ / Csi,l .



170 CHAPTER 4. DILOGARITHM AND HIGHER #-INVARIANTS FOR GL3(Qp)

4.5 Computations of Ext 11

In this section, we are going to establish several computational results (most notably Lemma 4.5.8)
which have crucial applications in Section 4.7. We firstly recall the definition of ¥;(\, %) for i = 1,2
and .2 € E right before (4.2.23).

Lemma 4.5.1. We have
dimpExtir, gy (Cosr Di(A,4)) =1
fori=1,2.
Proof. We only prove that
dimpExtgr, gy (Cor s T1(A,24)) =1 (4.5.2)

as the other equality is similar. We note that X1 ()\, %)) admits a subrepresentation of the form

Cl

5251,1

W= L(\) @p Sty — C2 0

L(\) ®g v

due to Lemma 3.34, Lemma 3.37 and Remark 3.38 of [BD18]. Therefore ¥ (A,.%41)) admits a filtration
such that W appears as one term of the filtration and the only reducible graded piece is

Cl

5251,1

R 2
Vi= G2,

It follows from Lemma 4.4.1 and Proposition 4.2.1 of [Brel7] as well as our Lemma 4.4.15 that
Extgr, g,y (Coisr V) =0 (4.5.3)

for all graded pieces V such that V' # V3. On the other hand, we have

dimgExtGr, @) (Corsns Vi) =1 (4.5.4)

due to (4.4.37) and B
Extgr, g, (Corsrr L(A) ®p St5°) =0 (4.5.5)
by Proposition 4.6.1 of [Brel7]. Hence we finish the proof by combining (4.5.3), (4.5.4), (4.5.5) and
part (ii) of Proposition 4.2.5. O

Lemma 4.5.6. We have
dimgExtér, g, (L) @ 0%, SF(4)) =3
fori=1,2.
Proof. By symmetry, it suffices to prove that
dimpExtgr, a0 (L) ©e v, 7 (A 2) =3.

This follows immediately from Lemma 3.42 of [Brel7] as our ] ()\,.%;) can be identified with the
locally analytic representation IT' (), 1)) defined before (3.76) of [Brel7] up to changes on notation. [J
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We define ¥ (\,.Z1) (resp. 3 (), %)) as the unique non-split extension given by a non-zero
element in ExtéLs(Qp))\ (Coy,50, Z1(A,Z1)) (resp. in Extéh(Qp),)\ (Csy.595 22(A, 22))). Hence we
may consider the amalgamate sum of X7 ()\,.2;) and X7 (\, %) over St3*(\) and denote it by
YT (N, LA, %), In particular, X1 (A, 4, %) has the following form

an _— U?’r11<)‘) - 031,51
St§"(\) .
vaPI;()‘) - 082752

Lemma 4.5.7. We have
dimpExtgr, ) (L) @p v, T\, 4, %)) =2
fori=1,2.
Proof. The short exact sequence
T\ L) = ST\ A, L) » vE(N) — Oy, s,
induces the following long exact sequence
Homay,(q,) (Z(A) op v, V() — Co e )

= Extér, g, (L) @8 vE, 3 (), 2))
— Extér, g, (L) @5 vE, ST\, 24, .2))

— Extd, g, (f()\) op vy, V() — Co o, ) ,
As a result, we can deduce
dimEExtéLS(Qp)))\ (LN @ vy, ST\, 4, 24)) =2
from Lemma 4.5.6 and the facts
dimpHomar, (q,) 1 (T ©p v, vH() — Cyy, ) =1

and

Exthr, i (L) @5 0%, 08 (0) — Cus ) =0
by Proposition 4.4.1 and Lemma 4.4.8. The proof for

dimpExtgr, 0 (L) @rvp, ST\, 2, %)) =2

is similar. O

Lemma 4.5.8. We have
EXtéLg(QP),A(Wiv Zj(/\"’%)) =0

and in particular

Extgr, q,)x Wi (A, £)) =0
fori=1,2.
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Proof. We only need to show the vanishing
ExtéLS(Qp)),\(Wg, YT\ Z4)) =0

as the others are similar or easier. We define v := A, ,,., (which is the restriction of A from T' to T
via the embedding ¢p; : To — T') and view ZgLQ (v,Z1) (which is defined before Proposition 4.3.14)
as a locally analytic representation of L1(Q,) via the projection p; : Ly — GLg2 and denote it by
EJLFI (A, Z41). We note by definition by of 31 (), .Z)) that we have an isomorphism

i 21) S I8 (81, (0 2)) / (VB0 — T ).

Therefore we can deduce from the short exact sequence

S, (n ) = B, 0. A) - (s v)

and the fact (up to viewing I(s- ) as a locally analytic representation of L;(Q,) via the projection
P1)
Cs,,s1 = 850CQLy(Q,) (IglL3 (I(s . V)))

that we have an injection
SHO ) = 182 (SE,004) / (w300 — I )
which induces an injection
Extgr, ) (Wa, EF (A, 4)) < Extgr,q,)x (Wa, V) (4.5.9)
where we use the shorten notation
V=I5 (35 (\A)) / ( V() —— T(N) ) .

Note that we have an exact sequence

Exte, @ (War 187 (5, (A1) )
5 Exthy, g,y (Wa, V) = Extir, g )a (WQ, V() —Z(A)) (4.5.10)
It follows from Proposition 4.4.7 that

Ho(Ny, Wo) = Li(N) ®p ighg, (X3)

Hy(Ny, Wa) = Li(s2- ) ®p ®@pignp, (X5)
Therefore we observe that
Homyp, (q,)» (H1(N1, Wa), Ezl()\,fl)) =0
from the action of Z(L1(Q,)) and
ExtlLl(QpM (Ho(N1, Wa), F (A, 24)) =0
according to Proposition 4.3.14 and the natural identification

EXtil(Qp),/\(_7 —-) = EXt};m(Qp)(—’ -)-
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As a result, we deduce

Exthr, (q,)a (W2, IGks (zgl(A,gl))) =0 (4.5.11)
from Lemma 4.2.1. We know that

Ext3r, @, <W27 v (A) —— L(\) ) =0 (4.5.12)

due to Proposition 4.4.1, Lemma 4.4.16 and a simple devissage, and thus we finish the proof by (4.5.9),
(4.5.10), (4.5.11) and (4.5.12). O

Lemma 4.5.13. We have

dimpExtgr, ) (L), F (A, 2)) =3 (4.5.14)
for eachi=1,2,
dimpExtgr, q,) (L), ST\, 21, 24)) =2 (4.5.15)
and
dimpExtgr, g (L), ST\, 24, 24)) = 1. (4.5.16)

Proof. The equalities (4.5.15) and (4.5.16) follow directly from Lemma 4.2.35 and the fact that
Extgr, @ (L), Csis) = Extdi, i (LY, Csps,) =0 (4.5.17)
by Lemma 4.4.8 and Lemma 4.4.16 using a long exact sequence induced from the short exact sequence
S\, L) = SF (N, L) - C, s,
Due to a similar argument using (4.5.17), we only need to show that
dimpExtgr, g, (LA, Ti(A, Z)) =3 (4.5.18)
to finish the proof of (4.5.14). The short exact sequence
St3"(A) = i(\, L) — vE (M)
induces a long exact sequence
Extar, ) (DY), Zi(A, £)) = Extér, g (L), vE (V)

— Extér, g, (L), S5 (V) = Extér, g,y (L), Ti(A,4)) = Extgr, ) (LA, v (V).
(4.5.19)

We know that B
dimEExtéLS(Qp),,\ (L(N), St3"(\)) =5

by Lemma 4.2.33. It follows from Proposition 4.4.1, Lemma 4.4.8, Lemma 4.4.16 and a simple devis-
sage that

dimpExtgr, ) (LY, 0B (V) =2 (4.5.20)
and B
Extgr, ) (LY, vB'(N) = 0. (4.5.21)

Hence it remains to show that

Extgr, g,y (EOV), Zi(A,£)) =0 (4.5.22)
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to deduce (4.5.18) from (4.5.19). The short exact sequence

UL =IO = IR (B £) = B L)
induces

Bxtbr, g (ZO), VB () —I() )
= Bxtlry g, (EO), 157 (S1,(0 £))) = Bxtliyq,a (EO), Ti(h,2))

by the vanishing

dimpExté, g, (f()\), v (A) —T(\) ) —1 (4.5.23)
and a
dim Bty (L), 157 (S1,(\£))) = 1. (4.5.24)

The equality (4.5.24) follows from Lemma 4.2.1 and the facts
dimEEXt}:,-(Qp),/\ (HO(Nia Z(/\))a ELq(/\,D%)) = 17 HomLi(Qp)J\ (Hl(Nia Z()‘))a ELl()HZ)) =0

where the first equality essentially follows from Lemma 3.14 of [BD18] and the second equality fol-
lows from checking the action of Z(L;(Q,)). On the other hand, (4.5.23) follows from (4.5.20) and
Proposition 4.4.1 by an easy devissage. Hence we finish the proof. O

Proposition 4.5.25. The short exact sequence
L(N) @p vy — W; — L(\)
induces the following isomorphisms
EXtér (g, (Z()\) Dp Ve, zj(x,.,za-)) = Exti, g, (B, £F (N 2)) (4.5.26)

and

X1, (f()\) DB vy, 2+(A,$1,$2)) = Extir, g (L), SFLA,.%))  (4.5.27)
fori=1,2.
Proof. The vanishing from Lemma 4.5.8 implies that

Exthiy g (D) @8 05 BF2)) > Bxtir,q,a (EO), =5 (A2))

is an injection and hence an isomorphism as both spaces have dimension three according to Lem-
ma 4.5.6 and Lemma 4.5.13. The proof of (4.5.27) is similar. We emphasize that both (4.5.26) and
(4.5.27) can be interpreted as the isomorphism given by the cup product with the one dimensional
space

Exthry g (L), T @5 v5_) -
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We define
SN, L, L) =B\ A, L) /TN ©p St5° and X2(\, %) == Si(\, L) /L(N) ©@p St5°
fori=1,2.
Lemma 4.5.28. We have

Proof. We define ¥~ (\, %}, %) as the subrepresentation of X°(\, %}, %) that fits into the following
short exact sequence

ST\ L L) o XN A, L) - CL @O, (4.5.29)
(c.f. (4.2.9) for the definition of C1, ;, CL |, C2 | and C2 ;) and then define £"~~ (X, £, %) as the

subrepresentation of ¥~ (), £}, %) that fits into

SN AL, L) o BT (N A, L) > ( C31— L\ ey ) & ( Ci— L\ @pof ) .

(4.5.30)
It follows from Lemma 4.4.8 that
EXt%;LB(Qp)7,\(Z()\)7 V)=0
for each V' € JHqr,(q,) (Eb’__()\,fl,fg)) and therefore
Exthiy g (L), 5777 (A4, %)) =0 (4.5.31)

by part (i) of Proposition 4.2.5. On the other hand, we know from Lemma 4.4.8 and Lemma 4.4.27
that there is no uniserial representation of the form

C2, —T(\) @p v — L(\)

which implies that
Xt (0,0 (f(A), C2, —TI(\) @p v ) ~0 (4.5.32)

for i = 1,2. Hence we deduce from (4.5.30), (4.5.31), (4.5.32) and Proposition 4.2.5 that
EXtér, () (f()\), Zb’_()\,fl,.,%)) —0. (4.5.33)
Therefore (4.5.29) induces an injection
EXtr, () (f()\), zb(x,gh.,%)) < Extly,(q,)a (L), CL, ®CL ). (4.5.34)

Assume first that (4.5.34) is a surjection, then we pick a representation W represented by a non-zero
element in EXtéLg(Qp),)\ (L()\)7 Zb()\,fl,fg)) lying in the preimage of ExtéLg(Qp)’)\ (L()\), 0512’1)
under (4.5.34). We note that there is a short exact sequence

SN L) = (N, L, L) > o).

We observe that L()) lies above neither C?, | nor L(A\) ®g v, inside W by our definition and (4.5.32),
and thus W is mapped to zero under the map

[ Extar, ) (f()\)’ Zb(/\fho?ﬁ)) — Extgr, g, (L), v5(V)
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which means that W comes from an element in
Ker(f) = Extér, ) (f()\), EQ(A,D%))

and in particular
EXt%}Lg.(Qp),,\ (I(A)v E?()\aiﬂ)) #0 (4.5.35)

The short exact sequence

L(\) ®p vy, < Wa — L())
induces an injection
EXthi, (@, (f(A), E?(AJ&)) < EXtér g, (Wz, ER(A,,%)) . (4.5.36)
On the other hand, the short exact sequence
() @p St3° <= 21(\,4) » 21\, 4) (4.5.37)
induces a long exact sequence
Extar, g,y (Wa, LA ®5 St5°) — Extér,q,yx (Wa, S1(A,21))

— Exthr, @, (WQ, ZQ(A,.,%)) s Ext?r,q,yn (W, I(Y) ®5 St5°)

which implies
Extir,(quyn (Wer Z1(A-21) = Extlr, quya (WQ, ZE(A,,,%)) (4.5.38)

as we have

Extar, g,y (We, LN ®5 St5°) = Extér, g,y (W2, L(N) @5 St5°) =0
from Lemma 4.4.2. We combine Lemma 4.5.8, (4.5.36) and (4.5.38) and deduce that

Exthiy g (D), T1OL2)) =0
which contradicts (4.5.35). In all, we have thus shown that
dimpExtly, (g, (f()\), zb(x,xl,.,%)) < dimpExtly, g, (), CL, @ CL ) =2 (4.5.39)
by combining Lemma 4.4.8. Finally, the vanishing
Extgr, g,y (LY, LA ®p St5°) =0

from Proposition 4.4.1 implies an injection

Extisr,quyn (L), SO0 2. 2)) < Extlr, quya (f()\)7 PN, 2, .,%))
which finishes the proof by combining Lemma 4.2.35 and (4.5.39). O
Lemma 4.5.40. We have

dimEEXt%;Lg(Qp),)\ (Wo, (N, 241, 2,)) =2.



4.5. COMPUTATIONS OF EXT II 177

Proof. The short exact sequence
SN L) = BN L, L) v (V)
induces a long exact sequence

Homar(q,)x () @5 v55_, v (V) = Bxthi i (D) @85, SI02))

L) @5 vE_, D0H,%)) = Bxthr o (D) @5 vE_, vi_ (V).
(4.5.41)

= Bxtr, Q) (

It is easy to observe that
dimgHomey, (g, 2 (f(/\) DpvE_ v;ggfi(x)) —1

and -
Exthr, (@, (L(/\) DB vE u‘;ggfi(x)) ~0

from Proposition 4.4.1 and Lemma 4.4.8. We can actually observe from Lemma 4.4.8 that the only
Ve JHGLS(QP)(ZE(/\,,%)) such that

Extr, q,)a (Z(/\) ®F VP, V) #0
isV=C2 | and

dimEExtém(Qp),)\ (Z()\) ®E /U%zii’ CﬁB—hl) =1.

Hence we deduce that -
Exthia g (L) @5 05, SI(24)) <1

and therefore »
X1, () (L(A) DpvE ., Eb()\7$17.,€”2)> —0 (4.5.42)

for ¢ = 1,2. The short exact sequence

L) @p (vE ®vp) < Wo — L(X)
induces
X1 (Qu)a (f(/\), (N, 31,32)) < Extdr, ) (Wo, (N, A, 32))
= Extli, q,a (ZO) @5 (05 ©0%) . (0 4,.%))
which implies
Exthryiqa (D), P00, %)) = Bxtlq,a (Wo, T\ 21,.4)) (4.5.43)
by (4.5.42). Finally, the short exact sequence (4.5.37) induces
Extgr, g, (Wo, LV ®5 St5°) = Extgr,q,x (Wo, B\, Z1,.2))
5 Exthr, Q) (WO, (N A, gQ)) — Ext?y,q,yn (Wo, Z(V) ®p St5°)
which finishes the proof by
dimpExtgr, )0 (Wo, L(A) ®p St5°) = 1 and Extgy, g0 (Wo, L(A) ©p St5°) =0
from Lemma 4.4.6, and by Lemma 4.5.28 as well as (4.5.43). O
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Lemma 4.5.44. We have the inequality
dimpExtgy, g,).x (Wo, vp(A) —— Cs, s, ) <2
fori=1,2.
Proof. We know that
EXt%}La(QPL/\ (Z(/\) ®F VP, C;-;) = EXt%;Lg(Qp),,\ (f()\) ®pvy, L) ®@p U;ff) =0

for i, 7 = 1,2 from Proposition 4.4.1 and Lemma 4.4.8, and thus

X1, () (f(A) ©5 v, v?;?()\)) =0
for 4,7 = 1,2 which together with (4.5.20) imply that

dimpExtGr, )0 (Wo, v8' (V) < dimpExtgr, g, (Wi, v8 (V)

< dimEExtéLS(Qp)’A (L(A), v (N) — dimgHomgr,(q,)» (LX) @5 v, vB(N))
=2-1=1. (4.5.45)
On the other hand, note that

EXtéLg(QP),A (L()\), Csiwsi) = EXtéLB(QP)y)\ (Z()\) ®E /U})D(i)’ Csiwsi) = O

by Lemma 4.4.8 and thus we have
dimpExtly,, () (Wo, Cirs,) < dimpExthr, q,) (f()\) Qp v c) =1 (4.5.46)

where the last equality follows again from Lemma 4.4.8. We finish the proof by combining (4.5.45)
and (4.5.46) with the inequality

dimEEXtéLg(Qp)7)\ (WO, U?DI:(A) I Csi,Si, >
< dimpExtap, g, x (Wo, 0B (V) + dimpExtar, g, x (Wo, Css,)-

O

4.6 Key exact sequences
Lemma 4.6.1. We have the inequality
dimEExtéLg(Qp)’A (Wo, ST\, 4, 2)) <3.
Proof. The short exact sequence
S\, L, L) = BTN, L, L) Oy s, @ Csy s

induces the exact sequence

EXt%}Lg(Qp),/\ (Wo, B\, 4, 2L)) — EXt%}Lg(Qp),)\ (Wo, (N, 4, 2))
— ExtéLS(QPM (Wo, Csy.5, ® Csys0) - (4.6.2)
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We know that

dimEEXté}Lg(Qp),)\ (WOv CS1,S1 ® 052,82)
= dimEEXté}Lg,(Qp),)\ (WO7 CSl,Sl) + dimEEXt(l}Lg(Qp)ﬁ)\ (Wo, 052’52) =141=2
by Lemma 4.4.8 and Lemma 4.4.16. We also know that
dimEExt};Ls(QpM (Wo, B\, A4, %)) =2
by Lemma 4.5.40, and thus we obtain the following inequality:

dlmEEXtéL@(Q;,),)\ (WO, E+()\, gl, gQ))

S dimEEXt%}L;(Q,,),A (WO, E(}\,fl,gQ)) + dlInEEXtéLs(Q;,),A (WO, 031751 S5 032752) =2 + 2 =4.
(4.6.3)

Assume first that
dimpExtgr, g0 (Wo, ST\, 2, %)) = 4. (4.6.4)

The short exact sequence
SEOLZ) o BT, 2) > (VB — Cuss )
induces a long exact sequence
Extar, ) (Wor T (A, 4)) = Bxtar, g,y (Wo, 57N, 4, £))
5 Exthr, (qu) (WO, VIR (A) — Ciy ey ) (4.6.5)

which implies
dimpExtar, g, (Wo, BT (N, £4)) > 2 (4.6.6)

by (4.6.4) and Lemma 4.5.44. We observe that X (), %) admits a filtration whose only reducible
graded piece is
C: 1 — L\ ®@p vy

and thus it follows from Lemma 4.4.8 and

EXtéLS(Qp))\ (Z()\) XRE 'U?Dol, 051,1 - f()\) ®F 'U(])g?) =0
(coming from Proposition 4.4.1, Lemma 4.4.8 together with a simple devissage) that
Extgry(q,a (L) @5 vE, V) =0

for all graded pieces of such a filtration except the subrepresentation L(\) ® g St3°. Hence we deduce
by part (ii) of Proposition 4.2.5 an isomorphism of one dimensional spaces

Exthr, (g, (EO) 5 05, TV 05 St5°) = Extlhy, q)a (L) @5 05, SF(L2A)).  (46.7)

Then the short exact sequence

L()\) XRE U(I)gol — Wy —» Wy
induces a long exact sequence
EXt%}Lg(Q,,),/\ (W2, =T (\,24)) — EXt%}Lg(Qp),)\ (Wo, =7 (X, 4))
— Extér, g (L) @505, ST\, 24))
which together with (4.6.6) and (4.6.7) implies that
dimpExtgr, )0 (Wa, T (A, 4)) > 1

which contradicts Lemma 4.5.8. Hence we finish the proof. O
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Proposition 4.6.8. We have
dimpExtar, g,y (Wo, BTN, A, %)) =3.

Proof. The short exact sequence

L) ®p (vy, ®vp) < Wy — L(\)
induces a long exact sequence

Extgr, ) (L), EF(N, 4, %)) < Extér,q,)a (Wo, BTN, 4,.2))
— EXt%}L;g(Qp),)\ (f(/\) R (U}Oa.; D ’U%?) R E+()\,D§/p1,$2)) — EXtQGLg(Qp),)\ (Z()\), E+(/\,$1,$2))
(4.6.9)

and thus we have

dimEEXt%}LS(QP),/\(W()v Z+(/\,$1,$2))
Z dimEEXt%}Lg(QP),)\(Z(A% E+(>\,.,%1,fg))—FdimEEXtéLs(Qp),)\(Z()\)@E (’U?go2 D U]ODOI) 5 Z+(/\,$1,$2))
— dimpExtgy, q,) (L), TN, 4, %)) =1+4—-2=3 (4.6.10)

due to Lemma 4.5.7 and Lemma 4.5.13, which finishes the proof by combining with Lemma 4.6.1. [J

We define $F(\, ., .%) as the unique non-split extension of L(A\) by B(\, %4, %) (c.f. Lem-
ma 4.2.35) and then set ©5F(\, £, %) to be the amalgamate sum of (), .2, %) and 5+ (), .4, %)
over X(\, .4, %). Hence $F(\,.Z1,.%) has the form
V)

—

Stam () Z(\)

an —
Up, (A)

and 5% (), .21, %) has the form

1oy

an —
- vy (A)

S5"(\)

52,582
It follows from Lemma 4.2.35, Proposition 4.4.1, (4.5.17) and an easy devissage that
ExtéLS(Qp))/\ (L), Z¥NA4,.%)) = ExtéLs(Qp)),\ (LN, SN, 4, 2)) =0. (4.6.11)

Then we set

SN AL L) = 5NN A, L) /L) @8 St
for » = {+}, {#} and {#, +}. It follows from Lemma 4.5.28, (4.5.17) and an easy devissage that
Exthiyiqa (D), S\ 20,24)) = Bxthy,qa (D), S0 24,.4)) =0, (46.12)
Lemma 4.6.13. We have
Extér, o (L), SHA A, 2)) = BExtérq,)a (L), SPT(N24,.4)) =0
and

dimpExtgr, g0 (L), THN, 2, £)) = dimpExtgr, g, (L), ST\ 4, 2)) =2
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Proof. Tt follows from (4.5.17) that we only need to show that
Extgr, ) (DY), SH, 2, 2)) = 0 and dimpExtér g, (L), SHA, 21, %)) =2
These results follow from combining the long exact sequence
HOIHGL3(QP)7)\ (Z()\), Z(}\)) — EthGLS(Qp)yA (Z()\) )\ fl,gg )
— Extér, g, (L), B\, 21, %)) = Extar, ) ( zﬂ N\ A, L))
EXtGLg(QP),A (L(N), L),

with Lemma 4.2.35 and the equalities

dimpg HOHll(;Lg(Qp)A@()\)»;(A)) =1
EXt;}Lg(Q yaAL(A), L(V) =
Exter, ) (L(A): L(A)) 0
due to Proposition 4.4.1. O

Lemma 4.6.14. We have
Extér, g (L), S\, A, 2)) = Extér, gL, ST (N, 21, 4)) =0
and
dimpgExtey, g A (L), S (N, 4, 2)) = dimgExtey g A (LX), S (N 4, 4)) > 1
Proof. It follows from (4.5.17) that we only need to show the equalities
Extér,qa (L), S\, 2, 2)) = 0 and dimpExtg;, g,y A (L), ISP (N, 24, %)) > 1
which follow from combining (4.6.12), Lemma 4.6.13 and the long exact sequence

EXt%}Lg(QF),A(f(A)’ L)) @p St3°) — EXt%}Lg(Qp),)\(f()‘)a SHN, A, L))
S Bxthqya B, S2 0 24,.2)) — BxtZy, qa(TO), TO) @5 St5)

= Bxtdr, ) (L), ZHN A, 2)) = Extly qa (L), (N, 21,.4)) (4.6.15)

with the equalities - -
EXtGLg(Q ),\(E()\)a L) @p St5°) =

due to Proposition 4.4.1. O

We use the shorten notation & := (£, %, %4, %) for a tuple of four elements in E. We recall
from Proposition 4.5.25 an isomorphism of two dimensional spaces

Extgr, ) (EOV) @603, ST\, 2, %)) = Extgn, g (L), ST\, 2,%4)).  (4.6.16)

We emphasize that the isomorphism (4.6.16) can be naturally interpreted as the cup product map

EXtéLS(QpLA (Z(}\) ®E ’UIODC;7 E+(A,$1,$2)) U EXté’Ls(Qp),k (Z(A), Z(A) ®E /U})Dj)
= Extgr, g, (L), TN 24,.2))  (4.6.17)
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where ExtéLa(Qp),)\ (L(N), L(X) ®p vp) is one dimensional by Proposition 4.4.1. We recall from the
proof of Lemma 4.5.13 that there is a canonical isomorphism

EXtéLg(Qp),A (f(}\), E(A,fl,fz)) ‘N—> EthGLg(Qp),)\ (Z()\), Z+(A,$1,$2))

which together with Lemma 4.2.35 implies that ExtéLs(Qp))\ (L(A), ST\, A, %)) admits a basis
of the form

{H(bl,valp A b2,va1p)> L1 (DO)}a

and therefore the element
t1(Do) + L k(b1 val, A b2 val,)

generates a line in EXtéLg(QP),)\ (L(N), ST\, A, £)) for each £ € E. We define S (A, 21, £, &)
as the representation represent by the preimage of

11(Do) + L/ k(b1 va, A b2 val,)
in B
Extgr, @ (EOY) @pvE, ST\, 21, %))

via (4.6.16) for i = 1,2. Then we define £+ (), %) as the amalgamate sum of X1 (\, %, %, .%/) and
ST\, L, L, L) over (N, 4, %), and therefore YT (), £) has the form

VB (N) —— sy — L(N) @5 05
stg" () T B .
U?Drgl()‘) - Csz,sz - L()\) ®E ’Uj.p(i

We define 2% ()\, %) as the amalgamate sum of ¥7(\,.£) and 2¥(\, .2}, %) over X(\, .4, %), and
thus X5 (\, £) has the form

Csy .5, — L(\) @ v
T e
St§™(A) ) — L(\)
Py _
T G — L) @ 0

We also need the quotients
SHN L) = 2T\, L) /L) @ St°, RPN, L) =S4 (N, L) /T(\) ©p St
Lemma 4.6.18. We have the inequality
dimpExtly, ) (TO), T 0,2)) < 1.
Proof. The short exact sequence
SRR, AL L) < SR (N, L) - L\ 9 (v ©0F)

induces an injection

Ext%;LS(%A (Z(A), zﬁv+»b(>\7z)) < ExtéLS(Qp),)\ (LA), L(\) @5 (vE, ®vp)) (4.6.19)
by Lemma 4.6.14. Note that we have

dimpExtéy, g, (), TO) ©p (vF @) =2
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by Proposition 4.4.1. Assume first that (4.6.19) is a surjection, and thus we can pick a representation
W represented by a non-zero element lying in the preimage of L()\) ® g v, under (4.6.19). We observe
that the very existence of W implies that

Extbe, i (Wer S50 241,.4)) #0. (4.6.20)

We define
5L Z) = B (0L 2) /TN 9 St

and thus we have an embedding

SN L) < SR (N 2, L)

for each ¢ = 1,2. We notice that the quotient En’Jr’b()\,gl,fg)/Ef’b(A,fl) fits into a short exact
sequence

( ,U?DIZI()\) 73()\) ) = Eﬁ’+’b()"31’32)/Eir7b(>‘7$1> - 032,52'

Hence it remains to show the equality

Extgr, (g, Q). (W% v (A) — L(N) ) =0 (4.6.21)
and the equality
Extér,q,n (Wa, Coysy) =0 (4.6.22)
to finish the proof of
Extgry(q (Wz SRR (N AL L) /ST .31)) =0. (4.6.23)

The vanishing (4.6.22) follows from Lemma 4.4.8 and part (i) of Proposition 4.2.5. It follows from
Proposition 4.4.1, Lemma 4.4.8 and a simple devissage that

EXtéLs(Qp)7)\ (f()\) XRE 'U%;, Csl ) = EXtéLS(QpLA <Z(A), C;I 1 f()\) ) =0. (4624)

Hence if
EXté;Lg,(Qp),,\ (W27 ClLi—1I(\) ) £0

then there exists a uniserial representation of the form
C‘511,1 Z()\) - Z()‘) ®F v?;

which contradicts (4.6.24) and Lemma 4.4.27. As a result, we have shown that

EXté’LS(Qp),)\ (WQ, Csll,l 7f()\) ) =0

which together with Proposition 4.4.1 and part (i) of Proposition 4.2.5 implies (4.6.21) and hence
(4.6.23) as well concerning (4.6.22). Therefore we can combine (4.6.23) with Lemma 4.5.8 and conclude
that

EXt%;Lg(Qp),,\ (W% Eﬁ’+’b()\,f1,fz)) =0

which contradicts (4.6.20). Consequently, the injection (4.6.19) must be strict and we finish the
proof. O
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According to Lemma 4.6.14, the short exact sequence
SN L, L) o TR L) - L) 9 (0F, ©0F)
induces a long exact sequence:
Extgr, g,y (DY), P (A, 2)) = Extir,q,a (EO), L) @5 (07, ©vE))
L Bxtly, qn (), 9N 4,.%))  (4.6.25)
Proposition 4.6.26. We have
dimEEXt%}Lg(Qp))\(f()‘)v D (N, ) =1
and the image of f is not contained in the image of the natural injection
Extér, g, (L), TN @5 St5°) < Extgr,q,)a (L), ST\, 24, %)) .
Proof. We use the shorten notation for the two dimensional space
M := Extgr,q,)x (L), L) ®@p (vE & v)) -

We actually have the following commutative diagram

ExtGry Q) (L), HF(), L)) C—)M—>EX‘5GLJ(Q o (L), S50\, 241, %)) (4.6.27)
h ‘|
Extgr, ) (LY, THF2(A,.2)) C—>M—>ExtGL3(Q o (L), S (N 4, %))
where the middle vertical map is just an equality. We know that h is injective by the vanishing

EXt%}LS(QP);)\ (f()\), f()\) ®E Stgc) = 0
and k has a one dimensional image by (4.6.15). Both ¢ and j are injective due to (4.6.11) and (4.6.12).
Therefore by a simple diagram chasing we have
dimpExtlr, g, (Z(A), E’H’b()\,g))
=dimgM — dimglm(g) > dimgM — dimgIlm(k) =2-1=1
by Lemma 4.6.14 and therefore
dimpExtly, () (Z(A), zm,b()\,g)) —1

by Lemma 4.6.18. Moreover, the map ¢ has a one dimensional image and hence k o f has one
dimensional image, meaning that the image of f has dimension one or two and is not contained in
Ker(k), which is exactly the image of

by (4.6.15). In fact, the restriction of f to the direct summand ExtéLB(QP)’)\ (L(N), L(A) @p o) is
given by the cup product map with a non-zero element in the line of

Extgr, o (EO) @pvE, ST\, 21, %))
given by the preimage of
E (11(Do) + &/ k(b1 var, Abaval,))

via (4.6.16) by our definition of X% (), #) and it is obvious that ¢;(Dg) + L} k(b1 va1, A b2val,) does
not lie in the image of (4.6.28) which is exactly the line Er(b1,va1, A b2.val,)- O
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Proposition 4.6.29. We have
dimgExtér, g, (L), ZHT(N,.2)) =1
if and only if &) = £ = L5 for a certain £3 € E.
Proof. It follows from (4.6.25) that
Extgr, ) (EOV, PPN, 2)) =1

if and only if the image of f is one dimensional. Then we notice by the interpretation of f as cup
product in Proposition 4.6.26 that the image of

Extér, (g, (EO), () @5 v5)

under f is the line of B
Extgr, g, (L), 0T (N, 4, 24))

generated by
11(Do) + 2 k(b1 va1, A b2val,)

for each i = 1,2. Therefore the image of f is one dimensional if and only if the two lines for i = 1,2
coincide which means that

=L =
for a certain %3 € E. O
We use the notation Y%+ (), 4, %, %) for the representation X% (\,.#£) when
L = (4, Lo, L3, L3).

We define 2™ (\, 2, %5, 23) as the unique representation (up to isomorphism) given by a non-zero
element in EXtéLS(Qp)’)\ (LX), S5\, 24, %, 23)) according to Proposition 4.6.29. Therefore by

our definition ¥™(\, 4, %, #3) has the following form

an()\) _—— 081781 - z()‘) RF 'U%;

Up, - - -
_— T T e - — \i
St3™(\) \f A T =T(\. (4.6.30)
Iy CTITEZIO
U}aDIgl(/\) - 032,52 71()\) ®F v%l)

It follows from Proposition 4.4.1, Proposition 4.6.29, the definition of ¥™"()\, %}, %, .%3) and an easy
devissage that B .
Extar, ) (DY), (N, 21, %, %)) = 0. (4.6.31)

Remark 4.6.32. The definition of the invariant 3 € E of Y™\, 4, %, L) obviously relies
on the choice of a special p-adic dilogarithm function Dy which is non-canonical. This is similar to
the definition of the invariants £y, %> € E which relies on the choice of a special p-adic logarithm
function log,.

Lemma 4.6.33. We have
dimEExtéLg(QpL/\ (Wo, BTN, 4,.%)) = 2.
Moreover, if V' is a locally analytic representation determined by a line

My ¢ Extgr, o (Wo, ST\, 4, 2))
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satisfying
My # Extgr,qn (Wo, L(A) ©p St5°) < Extgr,q,)a (Wo, BPT(A\, 241, %)),
then there exists a unique &3 € E such that
Ve Ymn N L L D).
Proof. The short exact sequence
L\ ®gp (v%ol <& vj’;‘;) — Wy — L(\)
together with Lemma 4.6.13 induce a commutative diagram

g1 k1

EXt%}LB(Qp))\ (VV()7 V+) EXtéLB(Qp)v\ (Vvlalg D Vv;lg7 V+> e EXtéLS(Qp)7A (E(A), V+)
h ha | ha)
92 a a k T
Exter,(q,a (Wo, VEH) S Extir,q,)a (Vl Eo vy, VM) 2= Extp, g, (L), V)

(4.6.34)
where we use shorten notation Viang for LIN)®@pv, VT for ST(N, 21, %) and VET for S8 (N, 241, 25)
to save space. We observe that g, is an injection due to Lemma 4.6.13, k; is a surjection by the proof
of Proposition 4.6.8, hs is an isomorphism by Proposition 4.4.1 and an easy devissage and finally hg
is an injection. Assume that hs is not surjective, then any representation given by a non-zero element
in Coker(hz) admits a quotient of the form

Cii——TIL(\)—— Vs (4.6.35)
for i =1 or 2 due to Lemma 4.4.8. However, it follows from Lemma 4.4.27 that there is no uniserial

representation of the form (4.6.35), which implies that ho is indeed an isomorphism, and hence ko is
surjective by a diagram chasing. Therefore we conclude that

dlmEEXtéL;;(Qp),)\ (W(h Vﬁ,"t‘)
= dimEExtéLB(Qp)’)\ (Vlalg ® V2alg7 Vﬁ,-i-) _ dimEEXtéLg(Qp),,\ (f(}\)’ Vﬁ7+)

= dimpExtir, Q) (Vfﬂg o Ve, v*) — dimpExtgr g, (L), V) =4-2=2

The final claim on the existence of a unique %5 follows from Proposition 4.6.29, our definition of
Lmin(\ L, %, %) and the observation that the restriction of ks to the direct summand

Exthiq,a (Vi VA)
induces isomorphisms
Fxtbr, () (Vialg7 Vm+> = Extgr, g, (LA, VAT)
which can be interpreted as the cup product morphism with the one dimensional space
ExtGr,,)a (Z(A), Vialg)

fori=1,2. O
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We define Zg’+()\,$1,$2,$3) as the subrepresentation of L4+ (\, %, %, %) that fits into the
short exact sequence

SEYON AL, Lo, L) < TN L, L, L) — L) @p 0

for each ¢ = 1,2. We use the notation D;(\, &1, %%, %) for the object in the derived category
Db (ModD(Gh(Qp)’E)) associated with the complex

[Wg,i — zﬁ*u,z,%,%)’} .
Proposition 4.6.36. The object
Di(\, 21, 22, 23) € D' (Modp(ary(q,),5))
fits into the distinguished triangle
IO — Di(\ A, 5, L) — SN, 4, 5) [-1] =5 (4.6.37)
for each i = 1,2. Moreover, the element in
Extgr, ) (L), S\, 4, 2))

= Extéyr, g, (L), SPT(N, 2, %))

= Homypy,( )(Eﬂ’+(>\,$1,$2)/[—2], L(\)) (4.6.38)

Modp(crs(Qp), B)
associated with the distinguished triangle (4.6.87) is
1t1(Do) + Z35(b1 val, A b2,val,)- (4.6.39)
Proof. Tt follows from Proposition 3.2 of [Schrll] that there is a unique (up to isomorphism) object
D\, &1, %, £3) € D* (Modp(cry(q,),r))

that fits into a distinguished triangle

1

L) — DN, L, Lo, Ls) — SEH(N, L, L) [-1] == (4.6.40)

such that the element in ExtéLS_(Qp)’)\ (L(N), (N, L, %)) associated with (4.6.40) via (4.6.38) is
(4.6.39). Tt follows from TR2 (c.f. Section 10.2.1 of [Wei94]) that

DN, L, Lo, L) — SET(N, A, 5) [-1] — L[] == (4.6.41)

is another distinguished triangle. The isomorphism (4.6.16) can be reinterpreted as the isomorphism

Hom
D¥(Modp(GrLs(Qp), )

) (Eﬁ,+()\7$1,$2)/[1], (Z(A) ®r U?%_i)/>

—%Home(ModD(GLS(QME) (ZPT (N, A4, L) [-1], L)1) (4.6.42)

_ o
induced by the composition with Home(MOdD(GL @) ((L()\) ®p VP, ) , L()\)/[l]). As a result,
3(Qp), -

each morphism
YN, A, L) [-1] = TV[1]
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uniquely factors through a composition
— r_
S A, ) 1] = (T @poE_ ) = T[]

which induces a commutative diagram with four distinguished triangles

A

SEYON, A, Lo, L)

/N

A ®Evp, | D(A -21732733

/N

YN, A, L) [~ Wil (4.6.43)

\

+

by TR4. Hence we deduce that
Z§’+()\,$1,$2,$3)/ — 'D(/\,gl,gg,f?,)/ — W?/,_Z[l] i>

or equivalently

Wi_, — S0V O\ A, L, L) — DN, A, L, L) Bu

is a distinguished triangle. On the other hand, it is easy to see that D;(\, .4, %, %) fits into the
distinguished triangle

Wi_, — SPT O\ AL %, L) — D4, %, L)
and thus we conclude that
Di(\, A, Lo, L3) =D\, L, L2, %) € D' (Modp(aLy(q,).B))
by the uniqueness in Proposition 3.2 of [Schrll]. Hence we finish the proof. O
We define XM~ (), .4, %, .43) as the unique subrepresentation of Y™™ (\, %, %, . %3) of the

form

U?Drll()‘) - CSI;SI - Z()‘) QF 1)1032

—
—_

St3"(A)

U?DI;()‘) - 052,52 — L(/\) ®E ’Ulogol
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that fits into the short exact sequence
Zmin,— ()\, gl,fg, fg) — Zmin<)\, 31732, fg) —» I()\)@Q (4644)
and XM (\ L), L, L) as the unique subrepresentation of XM™~(\, %, %, . %3) of the form

f()\) QF vj’;; —Cs, 5
St —

——
L\ ®p v ———— Coysy

that fits into the short exact sequence

DUNTT(N A, Lo L) = BUNT(N L, L, L) — (LN @5 0F) © (L) @pvE) © Oy, @ Oy, -
(4.6.45)
The short exact sequence (4.6.44) induces a long exact sequence

HomGLg(QZ,),A (f()\), f()\)@2) — EXt(l}Lg.(Qp),)\ (f()\), Zmim_()\,gl,gz,fg))
— Extéry g (L), ™\, 2, %, L)) = Extr,q,)a (DY), LA)?)
which easily implies that
dimEEXtéLg(Qp),)\ (L(N), S (N, A, L, L)) =2

by Proposition 4.4.1 and (4.6.31). On the other hand, we notice that ™™=~ (\, %}, %, .¥3) admits
a filtration whose only reducible graded piece is

L — I @5 vE

Siy

and B
Extgr, g,y (LY, V) =0
for all graded pieces V' of such a filtration by Lemma 4.4.8 and Lemma 4.4.27, which implies that

Extgr, g, (L), EM 77\, 4, %, %)) = 0.
Therefore (4.6.45) induces an injection of a two dimensional space into a four dimensional space
M. EXt%}LS(Qp),)\ (Z(/\), Zmill,—()\7$1’$2,$3))
= M* = Extgr, g, (L), (L) @poE) & (LN @pvE) @ CL, @ CL ). (4.6.46)
It follows from the definition of ™"~ (\, %, %, %) that we have embeddings
2()\,,,2”1, gg) — E+()\,$1, gg) — Zmin’_()\, 2, 95/&2733)
which allow us to identify
M~ = EXté’LB(Qp)J\ (Z(A), E()\,gl,zQ))

with a line in M™®. We use the number 1,2,3,4 to index the four representations L()\) @ vE,

L(\) ®@p vy, CL, 1 and C! | respectively, and we use the notation M for each subset I C {1,2,3,4}

S
to denote the corresponding subspace of M+ with dimension the cardinality of I. For example, My 0y

denotes the two dimensional subspace
Extery @ (L), (EOV) @5 0f) @ (L) @5 vF))

of M™.
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Lemma 4.6.47. We have the following characterizations of M™" inside M :
Mmin N M{i,j} =0 fO?” {17.7} 7é {3a4}a

M™ O My gq =M™ 0 Mgz =M™ N Mgy =M,

and , . i
M™™ = (M™" 0 My 3y) @ (M™" N Mgy 2.43).

Proof. As C} | and CJ, ; are in the cosocle of $(), £, %), it is immediate that
M~ C Myz4y-

It follows from (4.6.30) that _
Mmin g M{3,4}

and thus M™in N M3 4y is one dimensional which must coincide with M ™. The proof of Lemma 4.6.1
implies that M & My; 5 4y for i = 1,2 and therefore M N My; 3 4y is one dimensional, which implies
that

M™ O M54y =M~

by the inclusion ' .
M™R N Mgy © MM 0 Mz

for i = 1,2. We observe (c.f. Lemma 4.5.8) that
M~ ﬂM{g} =M" ﬂM{4} =0

and thus .
Mmln ﬂ M{z)]} - M7 ﬂ M{z,]} — 0

for each {i,j} # {3,4},{1,2}. We define S™in~/(\, £, %, %) as the unique subrepresentation of
Lmin—()\, 4, %, %) that fits into the short exact sequence

SRS\, LA, Lo, L) BPT(N L, Lo, L) — CL L @ CL L B Cugpenn
and then define
SIS (N L Ly L) = BT (N A, L, L) /L(N) @5 St
It is obvious that AM™i® N My 9y # 0 if and only if
Extar, ) (DY), SN, 4, L, £3)) # 0

which implies that
EXth1,y(Q,) A (f()\), zminf”ﬁ*’(A,fl,xz,fgj)) £0 (4.6.48)

as
Extgr, g,y (LY, LA ®p St5°) =0

due to Proposition 4.4.1. We notice that we have a direct sum decomposition
Emimi’/’b()\,gl,f%fg) _ Vl ® ‘/2

where V; is a representation of the form

Cs
<3_isi,1 —
051371'81',1 - L(/\) ©p vfoj.;ﬂ'
e T Cos—
Sl — —— siss

L) ®gp v
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Switching V; and V5 if necessary, we can assume by (4.6.48) that
Extgr, ) (LY, V1) #0.

On the other hand, we have an embedding
Vi—= o7\, .4) — L(\) ®p v

which induces an embedding
EXtéLg(QP),/\ (Z()\)7 ‘/1) — EXt%}LB(Qp),)\ (Z()\), Ef’b(%,ﬂﬂ) —f(}\) RF U%z )

and in particular
Xt (0,00 (f()\), S (A A) — L) @p v ) £0 (4.6.49)
The short exact sequences
L) @5 St° = 21\, 4) — DN, Z4), L) ®@p St — SF(\, 4) — Ef’b()\,fl)
induce isomorphisms
Extgry g (D), T1(0,24)) = Extgryqua (DY), 1A, ) (4.6.50)
T ~ T b
Exthiy@r (EOV): STA)) 2 Bxtby,g,a (T, TF°004))
by Lemma 4.4.2. Hence we deduce that
Exthiy g (War SHA2)) = Extlin,q,a (Wer BP0 21)) =0 (4.6.51)
from Lemma 4.5.8 and (4.6.50). The surjection W5 — L()) induces an embedding
EXth1,(qu)n (Z(/\L zm,zl)) < Extdr, ) (WQ, EQ(A,.,%))
which together with (4.6.51) imply that
Extar,,)a (Z(A% E?(/\wfl)) =0
(4.6.52)

and hence - ,
Exthr, (q,)a (L()\), R (A,,gl)) —0
by (4.5.17) and an easy devissage. It follows from (4.6.51) and (4.6.52) that
Bxtiyamn (T, SH0,2) — ) s ) =0
which contradicts (4.6.49). A a result, we have shown that
Mmin N M{LQ} = 0

As M~ & My 24 for i = 3,4, we deduce that both Mmin A My 2,3y and Mmin A My 2,4y are one

dimensional. On the other hand, since we know that

(Mmin n M{1,273}) n (Mmin N M{17274}) = )min M{L?} =0,

we deduce the following direct sum decomposition

MM = (M™" 0 My .37) @ (M™" 0 M3 2.4y).
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We use the notation L(\)® for copy of L()) inside L(A)®? corresponding to the one dimensional
space M™" N M1 2,412y inside M™", and therefore we have a surjection

SN L, L, L) > ( Cl1— L) ) o ( CL ., —TI(\)? ) : (4.6.53)

As a result, the representation Y™ (\, %, %, .%3) has the following form:

081,81 — L()\) RE ’UIO;Z

v (A) —— T~
sty T L™ (4.6.54)
V) —— —

052752 - L(/\) QF ’UIOQ?

If we clarify the internal structure of St3" (), v (X) and v3! () using Lemma 4.2.13, then X™™ (X, .2, %5, £5)
has the following form:

CS1,S1 \
08125171 S — ” 03231)1 Z(/\) ) vlo:’oz
T yent =L \
0521,1 N/ ,

e N f()\)l
Z(/\) ®p Stg° >< Csys8:.1 (4.6.55)
\ \, 4 Z(}\)Q
02 1 7\
S2, Cl
\ L(\) o1 /
031152,1 == 03152,1 Z(/\) RE UIOD?
\ 082752 /

Remark 4.6.56. [t is actually possible to show that all the possibly split extensions illustrated in
(4.6.55) are non-split. However, the proof is quite technical and not related to the p-adic dilogarithm
function, and thus we decided not to include the proof here.

We observe that S™i()\, 4, %, %) admits a unique subrepresentation ZEth’_(/\, b, L, L) of
the form

1

2 / 03251,1 \
s1,l — /Csl,sl —_

L\ ®p vy L(\) ®p vp,

C

L(\) ®@g St5°
T~

c?
52,1 \Cl /

s182,1

$2,82
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which can be uniquely extend to a representation yExt! (A4, L, %) of the form:

1 1
02 — 05231,1 —_ C — 08251,8231 — 0
s1,l — S1,81 — 51,5182
B IV opoE IV @poE
I\ ©p St3° B B (4.6.57)
\02 /L()‘) ®p vp, — /L()‘) o
s2,1 —_— Cl — 82,82 —_— Cl _— Tsa2,825:1
s182,1 $152,5182

according to Section 4.4 and 4.6 of [Brel7] together with our Lemma 4.4.34. Finally, we define
wmint(\ L, L, L) as the amalgamate sum of L™ (\, 4, %, %) and EEth(A,$1,$27$3) over
S (N, L, Ly, L),

Remark 4.6.58. It is actually possible to prove (by several technical computations of Ext-groups)
that the quotient . B
Emm,—i—()\’ 31732, gg)/L()\) ®E’ Stgo

and the quotient

SN, A, Ly, L) [T(N) @ St
are independent of the choices of £y, %, L3 € E.

4.7 Local-global compatibility

We are going to borrow most of the notation and assumptions from Section 6 of [Brel7]. We fix
embeddings ¢ : Q = C, ¢, : Q — Q,,, an imaginary quadratic CM extension F of Q and a unitary
group G/Q attached to the extension F'/Q such that G xq F' = GL3 and G(R) is compact. If ¢ is
a finite place of Q which splits completely in F, we have isomorphisms tg ., : G(Q) = G(F,) =
GL3(F,,) for each finite place w of F' over £. We assume that p splits completely in F, and we fix a
finite place wy of F dividing p and therefore G(Q,) = G(Fy,) = GL3(Q,).

We fix an open compact subgroup UP C G(AoQo’p) of the form UP = H#p Uy, where Uy is an open
compact subgroup of G(Qg). For each finite extension E of Q, inside Q,, we consider the following
Og-lattice inside a p-adic Banach space:

~

S(UP,0g) ={f: GQ)\G(AZ)/U? = Og, f continuous} (4.7.1)

and note that S(U?, E) := S(UP,0g) ®o,, E. The right translation of G(Qp) on G(Q)\G(AZ)/U?
induces a p-adic continuous action of G(Q,) on S(UP,0p) which makes §(UP,E) an admissible
Banach representation of G(Q,) in the sense of [ST02]. We use the notation S(Ur,E)¥e C S(UP, E)™
following Section 6 of [Brel7] for the subspaces of locally Q,-algebraic vectors and locally Q,-analytic
vectors inside S (UP, E) respectively. Moreover, we have the following decomposition:

SU?, B)" @p Q= D) g (m, ©g Wp) (472)

s

where the direct sum is over the automorphic representations = of G(Aq) over C and W, is the Q,-
algebraic representation of G(Q,) over Q, associated with the algebraic representation m, of G(R)
over C via ¢, and . In particular, each distinct = appears with multiplicity one (c.f. the paragraph
after (55) of [Brel7] for further references).

We use the notation D(UP) for the set of finite places ¢ of Q that are different from p, split
completely in F' and such that Uy is a maximal open compact subgroup of G(Qg). Then we consider
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the commutative polynomial algebra T(U?) := E [Tl(uj )] generated by the variables T indexed by
j€{l,---,n} and w a finite place of F' over a place £ of Q such that ¢ € D(UP). The algebra T(UP)
acts on §(UP,E), k/S’\(Up,E)alg and §(UP,E)a“ via the usual double coset operators. The action of
T(U?P) commutes with that of G(Q)).

We fix now o € E*, hence a Deligne-Fontaine module D over Q, = F,,, of rank three of the form

plea) = aes N(ea) = e
D = Eey @ Eey @ Eegy, with o(e1) = plae; and N(e1) = e (4.7.3)
oleg) = p2aeg N(ep) = 0

and finally a tuple of Hodge-Tate weights k = (k1 > ka > k3). If p : Gal(F/F) — GL3(E) is an
absolute irreducible continuous representation which is unramified at each finite place w lying over a
finite place £ € D(U?), we can associate to p a maximal ideal m, C T(UP) with residual field E by the
usual method described in the middle paragraph on Page 58 of [Brel7]. We use the notation xy,, for

spaces of localization and +[m,] for torsion subspaces where x € {S(U?,E),5(U?, E)e, S(U?, E)™}.
We assume that there exists UP and p such that

(i) pis absolutely irreducible and unramified at each finite place w of F over a place ¢ of Q satisfying
¢ e D(UP);

(ii) §(UP,E)a1g[mp] # 0 (hence p is automorphic and py, := p|Gal(m/Fw0) is potentially semi-
stable);

(iii) puw, has Hodge-Tate weights k and gives the Deligne-Fontaine module D.

By identifying S (UP, E)# with a representation of GL3(Q,) via (G w,, we have the following isomor-
phism up to normalization from (4.7.2) and [Cal4]:

@d(U?,p)

S(U™, E)*¢[m,] = (L(\) @& StF @5 (ur(a) ®p £2) o det) (4.7.4)

for all (UP, p) satisfying the conditions (i), (ii) and (iii), where A = (A1, A2, Ag) = (k1 — 2, ko — 1, k3)
and d(UP, p) > 1 is an integer depending only on UP and p.

Theorem 4.7.5. We consider UP = [],, U and p : Gal(F/F) — GL3(E) such that
(i) p is absolutely irreducible and unramified at each finite place w of F lying above D(UP);
(i) S(U?, Bys[m,] £0;
(iii) p has Hodge—Tate weights k and gives the Deligne—Fontaine module D as in (4.7.3);
(iv) the filtration on D is non-critical in the sense of (ii) of Remark 6.1.4 of [Brel7];
(v) only one automorphic representation m contributes to §(Up, E)¥&[m,)].

Then there exists a unique choice of L1, %e, L5 € E such that:

Homary(q,) (S (\, 24, %, %) @p (wr(a) @ &%) o det, SU”, E)*[m,))

= Homar,(q,) (f()\) ®p St @p (ur(a) ®p £2) o det, S(UP, E)™ [mp]) .
(4.7.6)

We recall several useful results from [Brel7] and [BH18].
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Proposition 4.7.7. Suppose that UP = Hbﬁp Uy is a sufficiently small open compact subgroup of

~

G(AOQO’p), S(UP, E)* — II — II; a short exact sequence of admissible locally analytic representations
of GL3(Qyp), x : T(Qp) — E* a locally analytic character and n : U(t) — E its derived character,
then we have T(Q,)" -equivariant short ezact sequences of finite dimensional E-spaces

(S@?, By N[t =) > TN [t = ] - I [t = )
and N . . N,
(B, By V= oy o T = g 11 = )
where T(Qyp)" is a submonoid of T(Q,) defined by

T(Qp)" = {t € T(Qp) [ tN(Zp)t™" C N(Z,)}.
Proof. This is Proposition 6.3.3 of [Brel7] and Proposition 4.1 of [BH18]. O

Proposition 4.7.8. We fiz UP and p as in Theorem 4.7.5. For a locally analytic character x :
T(Q,) — E*, we have

Homy(q,)+ (x @5 (ur(@) @5 %) o det, (S(U7, B)[m,])¥ @) 0

if and only if x = 6.
Proof. This is Proposition 6.3.4 of [Brel7]. O

We recall the notation igLS (x) for a smooth principal series for each w € W from Section 4.2.3.
Given three locally analytic representations V; for i = 1,2, 3 and two surjections Vi — V5 and V3 — V5,
we use the notation V; xy, V3 for the representation given by the fiber product of Vi and Vi over V;
with natural surjections Vi xy, V3 — Vi and V; xy;, Vs — V3. We also use the shorten notation Valg
for the maximally locally algebraic subrepresentation of a locally analytic representation V. We recall
that UP is sufficiently small if there exists £ # p such that U, has no non-trivial element with finite
order.

Proposition 4.7.9. We fiz UP and p as in Theorem 4.7.5 and assume moreover that UP is a sufficient-
ly small open compact subgroup of G(Ag’p). We also fix a non-split short exact sequence Vi — Vo —»

Vs of finite length representations inside the category chng(Qp),E such that Vi @ (ur(a) @pe?) odet
embeds into S(UP, E)™ [m,]. We conclude that:

(i) if Vs is irreducible and not locally algebraic, then we have an embedding
Vo g (ur(e) ®p ) o det — §(U”,E)an[mp];
(ii) if there is a surjection B
LV ®pig () — Vs

for a certain w € W, then there exists a certain quotient Vi of Vo Xy, (f()x) R i3 (Xfuo))

satisfying oo
s0CGLy(Q,) (Va) = Vi® = L(\) ®p St3°

such that we have an embedding
Vi ®p (ur(e) ©g €2) o det < S(UP, E)*[m,).

Proof. This is an immediate generalization (pr rather formaliza:cion) of Section 6.4 of [Brel7]. More
precisely, part (i) (resp. (ii)) generalizes the Etape 1 (resp. the Etape 2) of Section 6.4 of [Brel7]. O
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proof of Theorem 4.7.5. We may assume that o = 1 for simplicity of notation thanks to Lemma 4.2.2.
According to the Etape 1 and 2 of Section 6.2 of [Brel7], we may assume without loss of generality that
UP is sufficiently small and it is sufficient to show that there exists a unique choice of £, %, %5 € E
such that

Homgr,(q,) (Zmi“""()\,fhgg,fg) ®p (ur(a) ®p 2) o det, S(U?, E)a“[mp]) # 0. (4.7.10)

We borrow the notation II°(k, D) from Theorem 6.2.1 of [Brel7]. We observe from (4.6.55) that
ymint () L, %, %) contains a unique subrepresentation yExt! (N, LA, Lo, L3) of the form

R ' (k, D)
L(\) ®p St5° : (4.7.11)
\

I1?(k, D)

Moreover, Emi“*f (A, L, Lo, &) is uniquely determined by SEX (X, 4, %, %) up to isomorphism.
It is known by Etape 3 of Section 6.2 of [Brel7] that there is at most one choice of 4, %, % € E
such that

Homgr,(q,) (EEth()\7$1,fz,$3) @5 (ur(a) @p ?) o det, S(U?, E)an[mp]) #0,

and thus there is at most one choice of .2}, %, %5 € E such that (4.7.10) holds. As a result, it remains
to show the existence of .4, %, % € E that satisfies (4.7.10). We notice that X2+ (\ &, % L)
admits an increasing filtration Fil, satisfying the following conditions

(i) the representations ™ (X, .7, %, %) and B4+ (\, L, %) (cf. their definition after Propo-
sition 4.6.8 and Proposition 4.6.29) appear as two consecutive terms of the filtration;

(ii) each graded piece is either locally algebraic or irreducible.

As a result, the only reducible graded pieces of this filtration is the quotient
SR A, L, L) SN AL L) = W

Then we can prove the existence of £, %, % € F satisfying (4.7.10) by reducing to the isomorphism

Homgy,(q,) (FilkHEma"(A, L Lo, L) o (ur(a) ©p £2) o det, S(UP, E)an[m,,})
= Homgr,(q,) (FilkzmaX(A,zl,zg,fg) @5 (ur(a) ®p £2) o det, S(U?, E)an[mp}) (4.7.12)
for each k € Z. If
Gry, := Filp 1 Z™(\, A, %, L) /Fil ™0\, L1, Lo, L)

is not locally algebraic, then (4.7.12) is true in this case by part (i) of Proposition 4.7.9. The only
locally algebraic graded pieces of the filtration except L(A\) ®g St3~ are L(\) ®p vg, L(\) ® vE, and
Wo. The isomorphism (4.7.12) when the graded piece Gry equals L(A\) ®g v, or L(\) ®g v, has
been treated in Etape 2 of Section 6.4 of [Brel7]. As a result, it remains to show that

Homgy,(q,) (zmin(x,.,zﬂl,o%, L) ®p (ur(a) ®p €2) o det, S(UP, E)a“[m,,])

= Homar,(q,) (Z”’+()\7$1, L) @ (ur(a) @5 £2) o det, S(U, E)an[mp]) (4.7.13)
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to finish the proof of Theorem 4.7.5. It follows from results in Section 5.3 of [Brel7] (c.f. (53) of
[Brel7]) that 435 (x2°, .. ) has the form

X518251

G0 /’Up1 \
'UP2

and thus there is a surjection
T GL
L()\) ®E ZB 3(X§T$281) - WO'

According to part (ii) of Proposition 4.7.9, we only need to show that any quotient V' of
VO = Zmin()th jQu fi’)) XWo (f()‘) OF ZGLS (Xz?@sl))

such that -
s0CGL,(Q,) (V) = V' = L(\) @5 St° (4.7.14)

must have the form _
SN, A, Ly L)

for certain . € E. We recall from Proposition 4.6.29 and our definition of L™(\ %, %, %3)
afterwards that Y™ (\, .24, %, .%3) fits into a short exact sequence

SPY(N AL L) o SN AL L, L) — W (4.7.15)

and thus V° fits (by definition of fiber product) into a short exact sequence

SN LA, L) > VO i () (4.7.16)
and in particular

— oy B2

SOCGL;;(QI,)(VO) = (L()\) ®E StS )

Hence the condition (4.7.14) implies that V fits into a short exact sequence
TN ®pStE L Ve -V

and that B
i (L) @5 StF) NN, 21, %) =0C V°

which induces an injection

Eﬂ’+(/\,$1,$2) — V.

Therefore V fits into a short exact sequence
SN AL, L) = V- W
and thus corresponds to a line My inside
Extér, ) (Wo, 0T\, 4, £))

which is two dimensional by Lemma 4.6.33. Moreover, the condition (4.7.14) implies that My is
different from the line

EXtéL:;(Qp),)\ (WO, f()\) ®E Stgo) — EXtéLf}(Qp),)\ (WO, Eﬁ’+()\,$1,$2)) .
Hence it follows from Lemma 4.6.33 that there exists .25 € E such that

Vesmin g g L)
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Corollary 4.7.17. If a locally analytic representation 11 of the form (4.7.11) is contained in S(U?, E)™ [m,]
for a certain UP and p as in Theorem 4.7.5, then there exists L1, %o, L5 € E uniquely determined by
IT such that

I — Emill’+()\,$1,$27$3).

Proof. We fix UP and p such that the embedding
Il — S(U?, E)*[m,] (4.7.18)
exists. Then (4.7.18) restricts to an embedding
L(\) ®p St° = S(UP, E)™[m,]
which extends to an embedding
Uit (N L By By) §(UP’E)an[mp] (4.7.19)

for a unique choice of £, %, %5 € E according to Theorem 4.7.5. The embedding (4.7.19) induces
by restriction an embedding

B (N, L, S, L) — S(UP, E)*[m,)]

and therefore we have )
II= ZEXt (A7 31732753)

by Theorem 6.2.1 of [Brel7]. In particular, we deduce an embedding
I — Zmin’+()\,$1, gg,gg)

for certain invariants .21, %, %5 € E determined by II. O
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