
HAL Id: tel-02328608
https://theses.hal.science/tel-02328608

Submitted on 23 Oct 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Macroscopic modeling in double emulsion systems
Abigail Cervantes de La Rosa

To cite this version:
Abigail Cervantes de La Rosa. Macroscopic modeling in double emulsion systems. Fluids mechanics
[physics.class-ph]. Université Paris Saclay (COmUE), 2019. English. �NNT : 2019SACLC056�. �tel-
02328608�

https://theses.hal.science/tel-02328608
https://hal.archives-ouvertes.fr


 

 

 

Macroscopic modeling of double 

emulsion systems  

  

 

 

Thèse de doctorat de l'Université Paris-Saclay 

préparée à CentraleSupélec 

 

 

École doctorale n°579 : sciences mécaniques et énergétiques, 

matériaux et géosciences (SMEMAG) 

Spécialité de doctorat : Énergétique 

 

 

Thèse présentée et soutenue à Gif-sur-Yvette, le 17 mai 2019, par 

 

 

 

 Mme. Abigail Cervantes De la Rosa  
 

 

 

 

 

Composition du Jury : 

 

M. Dominique Gobin 

Directeur de recherche, CNRS (EM2C – UPR 288)   Président 

Mme. Azita Ahmadi 

Professeure, Université de Bordeaux (I2M – UMR 5295)  Rapporteur 

M. Gerald Debenest 

Professeur, Université de Toulouse (IMFT – UMR 5502)  Rapporteur 

M. J. Alberto Ochoa Tapia 

Professeur, UAMI, Mexique     Examinateur 

M. Benoît Goyeau 

Professeur, CentraleSupélec (EM2C – UPR 288)   Directeur de thèse 

 

 

N
N

T
 :

 2
0

1
9

S
A

C
L

C
0

5
6

 
 





Remerciements

Je remercie le Consejo Nacional de Ciencia y Tecnología, CONACYT, pour son sou-
tien à travers la bourse 230227 / 382033

Je tiens à remercier tout d’abord les membres de mon jury. Merci à Mme Azita
Ahmadi et M. Gerald Debenest pour avoir accepté d’être les rapporteurs de mon
manuscrit. Merci également à M. Dominique Gobin qui a accepté d’être le président
de ce jury, ainsi qu’à M. Alberto Ochoa pour avoir accepté être examinateur. Je vous
remercie à tous pour vos différentes remarques et vos idées qui ont permis d’enrichir
mon travail et les futurs travaux sur le sujet de cette thèse. Je vous remercie tous pour
la qualité des èchanges que nous avons pu avoir lors de la sèance de questions et après.

Je tiens ensuite à remercier chaleureusement l’équipe administrative, Catherine, Nathalie,
Noï et Brigitte pour leur aide, leur soutien et leur amitié. Merci aussi à tous les mem-
bres du laboratoire EM2C.
Je remercie mon directeur de thèse, Benoît Goyeau, d’avoir accepté de travailler avec
moi. L’échange d’idées et d’expériences au cours de ces années a enrichi ma vie, merci
de m’avoir appris que toutes les équations racontent une histoire et que le monde peut
être vu de différentes manières, selon le point de référence.

Merci à ma grande famille et mes amis mexicains pour son soutien inconditionnel
dans chaque étape de ma vie, à ma mère et ma grand-mère pour leur amitié incondi-
tionnelle et à ma sœur pour m’avoir appris à être courageuse.

Enfin, sous la forme d’un petit conte, je voudrais remercier chacune des personnes
qui m’ont accompagné dans cette difficile tâche de faire une thèse.



iv

Il y a quelques années, avec une valise de 20 kg sur le dos, j’ai quitté une famille, des

amis, une langue et des coutumes et je me suis lancée dans l’aventure de vivre le vieux

monde. Avant de partir, une amie m’a souhaité rencontrer de bonnes personnes sur

le chemin. Et il s’avère que cette amie, comme beaucoup de femmes, est une sorcière

et son désir est un sort.

Une fois dans le vieux monde, le sort a fonctionné et j’ai rencontré beaucoup de bonnes

personnes, en fait une communauté internationale de sorcières, venant du Liban, du

sud et du nord de l’Italie, du Maroc, du Brésil, du Chili, de la Russie, du sud et du

nord de la France, de l’Espagne, de la Chine et du Mexique. Cette communauté de

sorcières m’a appris et continue de m’apprendre à être libre, courageuse, authentique,

déterminée et a toujours été là dans les hauts et les bas pour me soutenir, cette com-

munauté partageant leurs vies m’a appris à parler français, à courir, à cuisiner des

gâteaux, à peindre, à dire non et à être plus moi-même.

J’ai aussi rencontré une communauté de confidents de sorcières, venus de Barcelone,

de Benevento, de Veracruz, de Bordeaux qui, par leur amour et leur amitié, m’ont

appris la solidarité masculine.

Dans cette aventure, j’ai aussi partagé ma vie avec un crocodile qui m’a aidé à tra-

verser plusieurs marais et j’ai toujours eu la joie de mes petites abeilles Titi, Tata et

Toto comme motivation.

À la fin de l’histoire, et grâce à ce sort, j’ai trouvé une nouvelle famille de sorcières

avec qui je veux partager et construire de nouveaux projets et avoir de nouvelles aven-

tures



Abstract

Liquid membrane separations as Double Emulsions (DE) have been extensively exam-
ined for potential application in fields such as metal recovery, gas separation, organic
compound removal, pollutant removal, and bioseparations. The difficulties in the
application of these processes did not consist in sophisticated equipment or installa-
tion but in a good understanding of the complex phenomena that occur inside these
systems. Since its invention, efforts have been made for successful modeling of DE
process separation; however, information about the diffusion and reaction phenomena
inside the DE has not been included in the mathematical descriptions in detail yet.
Therefore, the objective of this thesis is to describe the solute transport with chemical
reaction through DE systems by means of rigorous modeling that can provide with
valuable information from the micro-scale to be applied in the macro-scale.
To accomplish this, a DE system has been analyzed as a three-phase system charac-
terized by more than one disparate length scales. The method of volume averaging
has been used to derive rigorous averaged equations in the context of the non-local

mass equilibrium (NLME).The structure of the DES has been studied from two differ-
ent perspectives: 1) the DES as a single domain where concentration changes occur in
the same length scale and 2) the DES consists in two homogeneous regions where con-
centration changes occur at two different length scales. As a result of these different
standpoints of representing the system, two different averaged macroscopic models
were obtained: the three-phase and the two-region models. Both models present ef-
fective coefficients that include information about the micro-scale. These latter are
related to closure variables which are solutions of associated boundary-value prob-
lems. Finally an analysis of a DE-containing separation process in a stirred tank by
applying both models was made.





Résumé

Les séparations à l’aide de membranes liquides sous forme d’émulsions doubles (DE)
ont fait l’objet de nombreuses études compte tenu des applications potentielles no-
tamment dans le domaine de la récupération des métaux, la séparation des gaz,
l’élimination des composés organiques, l’élimination des polluants ou les biosépara-
tions. Les difficultés de mise en œuvre de tels procédés ne relèvent pas de la com-
plexité technique des installations mais avant tout dans la bonne compréhension des
phénomènes couplés qui se produisent au sein de ces systèmes. Depuis leur invention,
des progrès ont été réalisés dans la modélisation des procédés de séparation mais une
description fine des mécanismes de diffusion-réaction au sein des émulsions doubles
reste à établir.
L’objectif de cette thèse est précisément de décrire le transport d’un soluté avec réac-
tion chimique au sein d’un système DE à l’aide d’une modélisation macroscopique
par changement d’échelle permettant la prise en compte des mécanismes à l’échelle
locale. La méthode de la prise de moyenne a été utilisée pour établir rigoureusement
les équations moyennes dans le cas où l’équilibre massique local n’est pas satisfait
(non-équilibre local massique, NLME).

L’émulsion double a été modélisée de deux manières différentes : un premier modèle
consiste à considérer l’émulsion comme un système à un seul domaine composé de
trois phases et défini à l’aide d’une seule échelle caractéristique. Le deuxième modèle
distingue deux régions dont l’une résulte d’une homogénéisation de la phase interne.
Les deux modélisations macroscopique font intervenir les propriétés effectives dont la
détermination passe par la résolution des problèmes de fermeture associés.
Enfin, ces deux modèles sont comparés dans le cas d’un procédé de séparation par
agitation d’une émulsion double au sein d’un réservoir.
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1.1 Double Emulsion Systems: Theory

1.1.1 Definition of a membrane and a membrane process

A membrane is a semipermeable barrier or an inter-phase between two phases and re-
strict the movement of molecules across it in a very particular manner (Ho and Sirkar
1992). If one component of a mixture moves through a membrane faster than another
mixture component, a separation can be accomplished, see Figure 1.1. There are two
important aspects to note considering this definition. First, a membrane is defined
based on its function, not the material used to fabricate it. Secondly, a membrane
separation is a rate process and the separation occurs due to a chemical potential
gradient, not by equilibrium between phases. A gradient in chemical potential may
be due to a concentration gradient or pressure gradient or both (Mulder 1996).

Figure 1.1: Diagram of a two phases system selectivity separate by a membrane

The first recorded study of membrane phenomena appears to be that of Abbe Nollet
in 1748, demonstrating semi-permeability for the first time. In 1855, Fick published
his phenomenological laws of diffusion, which we still use today as a description of
diffusion through membranes. In the same year, Fick also prepared and studied some
of the earliest artificial semipermeable membranes (Lonsdale 1982). From that mo-
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ment to the present, membrane separation processes have evolved into an expanding
and diverse field, process like dialysis (1861) and gas permeation (1866), micro-porous
membranes (1907) and hemodialysis were observed and studied. In the last 50 years,
membranes have developed from a research topic to a mature industrial separation
technology. This increase in the use of membrane technology is driven by spectac-
ular advances in membrane development, the wider acceptance of the technology
in preference to conventional separation processes, increased environmental aware-
ness and, most importantly, strict environmental regulations and legislation. Various
membrane processes are currently applied in the chemical, petrochemical, pharma-
ceutical, and food and beverage industries. Particularly, strong development and
growth of membrane technology can be observed in the purification of wastewater
and the production of drinking water (Sastre et al. 2008)

1.1.2 Liquid Membranes

If membranes are viewed as semipermeable phase separators, then the traditional
concept of membranes as polymer films can be extended to include liquids. Liquid
membrane (LM) system involves a liquid which is an immiscible with the other two
solutions and serves as a semipermeable barrier between these liquid phases (Noble
1987).
LM system can be developed in three different configurations: bulk liquid membrane
(BLM), supported liquid membrane (SLM) and liquid membrane as double emulsions
(ELM). (Bartsch and Way 1996). See Figure 1.2. BLM consists of a bulk aqueous
external phase (phase I), and receiving aqueous phase (phase II) separated by a bulk
organic, water - immiscible phase. Liquid impregnated (or immobilized) in the pores
of a thin microporous solid support is defined as a SLM. And finally in ELM the re-
ceiving phase is emulsified in an immiscible liquid membrane and then the emulsion
is dispersed in the external solution. The general properties of liquid membrane sep-
aration process have been a subject of extensive theoretical and experimental studies.
Some general characteristics of LM processes are : Simple operation, high efficiency,
lager interfacial area and very selective separations are possible. In particular, the
ELM process are known to have great potential for separate mixtures of inorganic and
organic substances, in recovering metal ions, mineral and biochemical components,
also for separating acidic, basic and hydrocarbons wastewater substances. Following,
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Figure 1.2: Three configurations of liquid membrane systems: bulk (BLM), supported (im-
mobilized) (SLM or ILM), and emulsion (ELM). Phase I is the source or feed phase, LM is
the liquid membrane, and Phase II is the receiving phase.

we will discuss in detail this ELM configuration, which is the study system of this
thesis.

1.1.3 Double Emulsion Systems

The emulsion liquid membranes are also known as Double Emulsions (DE). A double
emulsion system (DES) is a three-phase system where an external phase (�-phase)
contains dispersed drops called membrane phase (µ-phase), themselves containing
small dispersed droplets of receiving phase (�-phase). In general, the �-phase globules
have diameters around 1-10µm and emulsion drops (µ-phase + �-phase) diameters
between 0.1-2 mm, i.e. there is a disparity in length scales that characterize each
phase, see Figure 3.2. From now on to make it simpler, when we refer to the emulsion
drops we will use the letter ! instead of µ-phase + �-phase. The size of the emulsion
drops, produce a very large mass transfer area adjacent to continuous phase (A�µ)
and each emulsion drop contains many internal droplets (�-phase). Thus, the internal
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mass transfer surface area (Aµ�), typically 106
✓

m2

per unity of volume m3

◆
, is even much

larger than the external mass transfer surface area, A�µ. Therefore, a rapid mass
transfer in DE separation process can occur from either the external phase to the
internal phase or vice versa. Depending of the characteristics of his phases, DES may

	

0.1-2	mm	

γ-phase	

µ-phase	

σ-phase	
1-2	µm	

Emulsion drop 
(µ-phase + σ-phase) 

Figure 1.3: Schema of Double Emulsion System

be of two types, : water-in-oil emulsion dispersed in an external aqueous phase and
oil-in-water emulsion dispersed in an outer organic phase. The µ-phase in the water-
in-oil-in-water (W/O/W) type is the immiscible oil phase separating the aqueous
phases, while in the O/W/O type the immiscible water phase separating the two
organic phases acts as the membrane. Consequently, the µ-phase has two functions:
permitting selective transfer of one or more components through it from �-phase to
�-droplets and vice versa and preventing mixing of � and � phases. An example of
double emulsions is shown in Figure 1.4.
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Figure 1.4: Microscopic images of double emulsions stabilized by two types of silica particles.
(Top) W/O/W with triglyceride oil (scale bar = 50µm). (Bottom) O/W/O with toluene
(scale bar = 20 µm) Aveyard et al. (2003)

1.1.3.1 Transport mechanism in Double Emulsion Systems

The separation processes with DES involve the transport of a solute of interest,
species A, from the �-phase to the �-phase through µ-phase. The widely accepted
explanation used to describe this transport is the solution-diffusion model. The
solute species dissolves in the liquid membrane and immediately after diffuses through
the membrane due to an imposed concentration gradient (Wijmans and Baker 1995).
Different solutes will have different solubilities and diffusion coefficients in a liquid.
The product of these two terms is a measure of the permeability.
Furthermore, the efficiency and selectivity of transport across the LM may be markedly
enhanced by the presence of a reversible or an irreversible chemical reaction in the
liquid membrane or in phase II, thus increases the concentration gradient of solute
A between phase I and phase II. This procedure is known as facilitated transport
process. Hence, the various separation mechanisms are broadly classified into two
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types : simple and facilitated.

1.1.3.2 Simple transport

If the solute A is soluble and has reasonable diffusivity through the µ-phase, then the
transfer of solute A through the µ-phase will be due to solubility and diffusive trans-
port of A from higher to lower concentration i.e. from the �-phase to �-phase. Hence,
thermodynamic and transport phenomena that determine the essential operation of
all DES processes are set in the simple mechanism. Double emulsion separations
with simple transport mechanism were first used by Li (Li 1968) for separation of
hydrocarbons.

1.1.3.3 Facilitated transport

The effectiveness of the transfer of solute A through the µ-phase is improved by max-
imizing the flux through the µ-phase and the capacity for the diffusing species in the
�-phase. This may be achieved by means of a chemical reaction in the µ-phase or
�-phase or both as follows:

Type I : In this case, the mass transfer rate through the µ-phase is increased by incor-
porating a membrane insoluble reactive (R) in the �-phase which reacts irreversibly
with the solute A yielding a product (P) which is insoluble in the µ-phase, according
to the equation : A + R ! P. Examples of this system are extraction of weak acids
or bases from wastewater such as phenol and benzene and their derivatives removal
(Kargaria and Abbassiana 2015,Reis et al. 2011,Mohagheghi et al. 2008). In Figure
1.5, an example with phenol is illustrated. In this diagram, phenol from the continu-
ous phase (�-phase) solubilizes in the membrane oil phase (µ-phase) and then diffuses
into the internal phase (�-phase) where it reacts with the sodium hydroxide to form
sodium phenolate. Being an ionic species, it is not soluble in the oil µ-phase and is
effectively captured in the internal aqueous phase. The concentration of phenol in
the internal phase is effectively zero.
Type II : This facilitation is also known as carrier facilitated transport, since a car-
rier compound, that is, an extractant or complexing agent, solubilized in the organic
µ-phase is used to assist transfer across the membrane. In this process, a reactive
component or carrier (C ) is incorporated in the µ-phase, this carrier is soluble only
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Figure 1.5: Schematic diagram of type I facilitation in a DES composed by: External
aqueous phase containning phenol (�-phase), oil membrane phase (µ-phase) and Internal
aqueous phase containning NaOH (�-phase), Ho and Sirkar (1992)

in this phase. At the �µ-interface species C forms a membrane-soluble compound
or carrier-solute complex (AB) by reversible reaction with species A to be trans-
ported, according to: A + C ⌧ AB. The reaction product, AB, diffuses through
the membrane to the µ�-interface and dissociates, discharging the solute A to the
�-phase. The unchanged carrier C then diffuses back to the �µ-interface. In this
way each carrier molecule is able to transport solute molecules as many times as
necessary so that only a small amount of species C is required in the µ-phase even
for achieving a high degree of separation. Examples of this system are removal of
metal ions (Hachemaoui et al. 2010,Gameiro et al. 2007). A case of such a process
is the removal of copper from wastewater by the extractant DEHPA (di-2-ethylhexyl
phosphoric acid, represented as HL) as shown in Figure 1.6. In this case, the carrier
also enhances the selectivity as most extractants are specifically designed to extract
particular metal ions under given conditions. The metal ion, Cu2+ in the continuous
�-phase reacts with the DEHPA in the oil µ-phase to form the oil soluble complex,
Cu(HL)2. Concentrated sulfuric acid in the internal aqueous phase strips the metal
ion from the oil phase complex and transfers it into the internal phase, exchanging
the metal ion for protons.
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Figure 1.6: Schematic diagram of type II facilitation in a DES composed by: External
aqueous phase containning Cu2+ (�-phase), oil membrane phase (µ-phase)and carrier HL
and Internal aqueous phase containning H2SO4(�-phase), Ho and Sirkar (1992)

In summary, the diffusive transfer of the solute of interest A from the �-phase into
the droplets of the �-internal phase can improved via two mechanisms, referred to as
type I and type II facilitations by chemical reaction, either by an irreversible reaction
in the �-phase or an reversible reaction in the µ-phase or by both, see Figure 1.7.

Figure 1.7: Diagram of Diffusion an Reaction in a Double Emulsion System
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1.2 Design considerations in double emulsion separation

process

The extraction capabilities of DES have been used successfully in many areas. Since
the work of Li (1968), efforts have been made for successful industrial application of
DE technology. Emphasis has been on facilitated transport. Emulsion liquid process
can be divided in four stages i) emulsification, ii) Dispersion and extraction, iii)
Settling, and iv) Demulsification, see Figure 1.8. The components of a DES normally
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Figure 1.8: Schematic of a continous double emulsion separation process, (Ho and Sirkar
1992)

used are surfactant, the diluent ( part of the µ-phase), internal aqueous phase (�-
phase), continuous phase (�-phase), and carrier in the case of type II facilitation
(species C) and for the effective working of a DES all components must be carefully
chosen and each composition is critical. Each stage and associated critical parameters
are described in the following section.

1.2.1 Emulsification

Double emulsions can be tailor-made to meet the requirements of different separa-
tions, and thus they can offer versatile processes capable of separating a wide range of
liquid mixtures. Emulsification is usually achieved by high speed or ultrasonic stirrers
for batch operations and high-pressure static dispersion or colloid mills for continu-
ous mode.(Ho and Sirkar 1992). The presence of a surfactant is necessary to ensure
adequate stability of the emulsion during the extraction process. However, an ultra
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stable emulsion is not desirable as it will lead to difficulties in the demulsification
stage. The critical parameters for the emulsification stage are described below.

1.2.1.1 Surfactants

Surfactant is a fundamental component for the formation of a stable emulsion, and
the size of the emulsion drops depends on its characteristics and concentration. Ideal
surfactant properties, apart from being relatively cheap and nontoxic include (Perera
et al. 2008) :

1. Virtually no water is carried during operation to prevent or reduce osmotic
swelling

2. No reaction with the extractant in the membrane phase. Any possible reaction
should enhance the extraction rather than cause decomposition of the extrac-
tant.

3. Low interfacial resistance to mass transfer
4. Inhibition to demulsification
5. Solubility in the membrane phase, but not in the internal and external phases.
6. Stability in the presence of acids, bases, and bacteria

1.2.1.2 Diluents

The diluent in which the extractant or C compound and surfactant are solubilized,
is a major component of a DE system. It impacts on the membrane properties
such as distribution coefficient and diffusion coefficient and on the effectiveness of
the membrane system. Apart from being relatively cheap and readily available, the
desired properties of the diluent include

1. Low solubility in the internal and external aqueous phases.
2. Compatibility with the extractant and surfactant and the inability to form new

phases
3. Moderate viscosity (not too low as to compromise membrane stability)
4. Having a density that is sufficiently different to the aqueous phase
5. Low toxicity and high flash point

To date the most commonly used diluents for DE systems include kerosene, isoparaf-
fin, cyclohexane, toluene, Shellsol T, heptane, decane, dodecane, nitrobenzene, S100N,
and Escaid 110.
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1.2.1.3 Carriers

Screening of the extractant agent system requires considerable chemical insight. Gen-
erally, his selection is based on the thermodynamic and kinetic considerations. The
key criterion in selecting a carrier/extractant is that it and the complex formed must
be soluble in the membrane phase, but not soluble in both the internal and contin-
uous phases (Ho and Sirkar 1992). Further precipitation within the membrane or at
the interfaces must be prevented. To ensure successful stripping, it is necessary to
have a solute-complex of moderate stability so as to maximize the effectiveness of the
stripping agent.

1.2.1.4 Internal Phase

Parameters relating to the internal phase such as volume fraction of the internal
aqueous phase, pH, and volume ratio of membrane phase to internal aqueous phase
impact on the working of a DE system. Its concentration and its chemical and
physical properties have an important role in the extraction and settling stages.

1.2.2 Extraction

Following emulsification, the emulsion is dispersed by mechanical agitation into the
external feed phase , �-phase containing the solute A to be extracted. The efficiency
of this extraction process is dependent on several parameters as stirring speed, time
and temperature but also to the DES composition.

1.2.2.1 Surfactant, carrier and additives concentration

These different components have an impact on DE stability and mass transfer rates.
Finding the ideal ratio between their concentrations has been the subject of many
scientific works. Teramoto et al. (1983), Bart et al. (1992) and Li and Shi (1993)
found that an increase in the surfactant concentration also increases the membrane
phase viscosity making difficult the mobility of the carrier. Also mass transfer rates
can be increased by increasing the carrier concentration, however increasing this
concentration usually lowers the DE stability and increases swelling (Sastre et al.
2008,Ho and Sirkar 1992). Finally had been reported that the use of some additives
can be modified the properties of the diluents increasing the stability of the DES,
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reducing the amount of surfactant required for stabilization which, in turn, could
lead to a reduction in swelling.

1.2.2.2 Internal Phase composition

As with the continuous phase, the internal phase properties also influence the prop-
erties of the DES. Ionic strength, pH, and the presence of organic species will impact
on the DE stability . Emulsion liquid membranes work on the basis that the polar
substances (usually high concentrations of acid or base) contained in the internal
phase are impermeable to the membrane phase. However, the presence of the surfac-
tant can cause the uptake of these compounds by the formation of reverse micelles
(Bart et al. 1995). Care should be taken to ensure that the internal phase reagent
concentration is sufficient to effect removal of the solute but not so high as to desta-
bilize the system. Decreasing the volume fraction of the internal phase will lead to
a more stable emulsion in terms of osmosis and leakage due to the increase in the
membrane phase layer around the internal droplets (Ma and Shi 1987, Sastre et al.
2008). However, this leads to an increase in surfactant content in the emulsion and a
consequent increase in the probability of entrapment (Sastre et al. 2008)
Finally has been observed that internal phase drop size increases with increasing
volume (Teramoto et al. 1983). However, increasing the drop size will reduce the
thickness of the membrane phase and lead to a lower mass transfer resistance. Op-
timization is a trade-off between interfacial area reduction and the increase in the
mass transfer rate because of the reduced membrane thickness and thus small mass
transfer resistance.

1.2.3 Settling

One of the disadvantages of DE systems is their tendency to undergo swelling. There
are two types of emulsion swelling, namely, osmotic swelling and entrainment swelling.
In the case of W/O/W type systems osmotic swelling occurs as a result of water
transfer from the continuous phase into the internal phase due to the large difference
in osmotic pressure between the internal and external aqueous phases (Wan and
Zhang 2002). Entrainment swelling is caused by the entrainment of the external phase
into the internal phase due to the repeated coalescence and redispersion of emulsion
globules during the dispersion operation thus causing an increase in the volume of the
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internal phase (Van et al. 1987,Wan and Zhang 2002). The disadvantages of swelling
are dilution of the separated product in the internal phase, an increase in membrane
rupture i. e. breakage, and an increase in agitation power required to disperse the
emulsion (Itoh et al. 1990). Swelling is usually quantified in terms of the swelling
ratio, which is defined as the ratio of the diameter of the W/O/W

1.2.4 Demulsification

The breaking of the loaded emulsion (µ-phase/�-phase) is one o f the key steps in the
double emulsion extraction process. After extraction, the membrane phase (µ-phase)
must be recycled repeatedly, and the enriched internal phase (�-phase) is usually
recovered. Therefore, demulsification of the loaded emulsion is unavoidable for the
use of this separation process.
The demulsification process can be divided into three stages (Hsu and Li 1985):

1. Droplet coalescence and growth
2. Droplet settling
3. Coalescence of the large water and oil droplets with their respective continuous

phases in the coalescer
To date, chemical or physical treatment is the method used for demulsification

1.2.4.1 Chemical treatment

This treatment involves the addition of a demulsifier. For example acetone (Gadekar
et al. 1992), n-butanol (Hsu and Li 1985, Larson et al. 1994), and 2-propanol have
been found to be effective demulsifying agents for particular applications. However,
the added demulsifier will change the properties of the membrane phase and thus
prohibit its reuse. Therefore, chemical treatment is usually not suitable for breaking
liquid membrane emulsions, although few examples of chemical demulsification have
been reported for certain liquid membrane systems.

1.2.4.2 Physical treatments

Physical treatments include heating, centrifugation, high shear, ultrasonics, solvent
dissolution, and the use of high-voltage electrostatic fields (Ho and Sirkar 1992).
Other nonconventional methods, such as microwave demulsification (Chan and Chen
2002) and the use of porous glass membranes (Sun et al. 1998), have also been
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investigated. A summary of the advantages and disadvantages of these physical
treatments is presented in table 1.1.

Treatment Advantages Disadvantages Publication

Heat treatment

Reduction in the density Slow demulsification kinetics.

Larson et al. (1994)
and viscosity of the oil and It must be combined with some

weakening of the interfacial film other technique that improves
coalescence kinetics

High shear
Fast and effectively Requieres the addition of

Ho and Sirkar (1992)
demulsification solvent mixtures and centrifugation

High voltage Faster coalescence can be Theirs mechsnisms are

Gang et al. (1997)
electrostatic fields achieved and membrane phase not completely understood

can be recycled.
Efficient and economic

Table 1.1: Physical treatments of Demulsification stage

1.3 Applications

The extraction capabilities of double emulsion systems have been used successfully
in many areas. As an emerging technology, liquid membrane separations as double
emulsions have been extensively examined for potential application in many fields
such as metal recovery, gas separation, organic compound removal, pollutant removal,
and bioseparations. The difficulties in the application of these processes did not
consist in sophisticated equipment or installation but in the adequate choice of reagent
to allow the selective extraction of solute in required quantity. Since DES invented (Li
1968) efforts have been made for successful industrial application of double emulsion
process separation technology. Some of the possible commercial applications are
discussed below.

1.3.1 Separation of inorganic species

1.3.1.1 Metal ion extraction

The use of DE separation process for the hydrometallurgical recovery of heavy metals
has drawn attention of many investigators. Kitagawa, Frankenfeld and Li (Kitagawa
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et al. 1977), Martin and Davies (Martin and Davies 1977) were among the earliest
investigators to report the extraction of metal ions. Then, in 1986, the method has
been successfully commercialized to remove zinc from wastewater in the viscous fiber
industry at Lenzing, AG, Austria (Kislik and Vladimir 2010). This process can treat
up to 75 m3/h of zinc bearing wastewater with the zinc concentration ranging from
0.3 to 200 mg/l. Zinc can be removed with up to 99.5% efficiency (Ho and Sirkar
1992). Other three industrial plants for zinc removal are located at Glanzstoff, AG,
Austria (700 m3/h capacity), at CFK Schwarza, Germany (200 m3/h capacity), and
at AKZO Iede, Netherlands (200 m3/h capacity) (Sastre et al. 2008). Studies have
been made on the mechanism of separation, process kinetics, mass transfer modeling,
and engineering evaluation with metals like copper, zinc, cadmium, cobalt, nickel,
mercury, uranium, chromium, rhenium, arsenic, lead and several others, including
noble metals like gold and silver, lanthanides and rare earths (Sastre et al. 2008,Kislik
and Vladimir 2010). Table 1.2 presents some examples.
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Solute External phase Membrane phase Internal phase Publication

Cooper
CuSO4

Kerosene
Sulfuric acid

Ma and Waters (2017)
solution solutions

Cu (II) from Metal-containg solution
Kerosene

Sulfuric acid
Valenzuela et al. (2009)acidic mine from acidic cooper solutions

drainage mine drainage

Cadmium
Hydrochloric acid

Corn oil
0.1 M aqueous

Ahmad et al. (2017)
solution ammonia solution

Silver
Potographic waste Kerosene, n-dodecane Acidic thiourea

Othman et al. (2006)
solution and toluene solution

Uranium (VI)
Sodium nitrate Liquid paraffin with Aqueous sodium

Kulkarni et al. (2018)
solution tri-n-buytl phosphate carbonate

Gold (III)
Gold chloride Liquid paraffin Sodium sulfite with

Kargari et al. (2006)solution sodium hydroxide
solution

Dysprosium Acidic solutions Kerosene
Hydrochloric acid

Raji et al. (2018)
solution

Cobalt
Acidic leach

Kerosene
Sulfuric acid

Kumbasar (2010)
solutions solution

Gadolinium(III)
Acidic solution

Kerosene
Nitric acid

Davoodi-Nasab et al. (2018)containing solution
Gadolinium(III)

Bi(III)
Acidic solution

n-pentanol
Sulfuric acid

Mokhtari and Pourabdollah (2015)containing solution
Bi(III)

Cr(VI)
Aqueous solution

Rice bran oil
NaOH

Kumar et al. (2019b)containing solution
Cr(VI)

Table 1.2: Double Emulsion Systems (DES) for recovery metal ions
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Ahmad et al. (2011) analyzed more than 65 different studies of heavy metal DE
extraction. Metals like cooper, zinc, nickel, chromium, silver, molybdenum, ruthe-
nium, platinum, uranium, rare earth metals, gallium, cadmium were recovered using
different emulsion compositions. Generally, the most widely used are Span 80 and
kerosene for surfactant and diluent, respectively. While the use of extractant and
internal phase depend on the kinds of metals to be extracted. For example, in case
of copper removal, the use of LIX as an extractant and H2SO4 as an internal phase
are more favorable than others. While in case of cadmium removal, the use of TOA
and TIOA as an extractant and NaOH as an internal phase are the most used by
researchers. From the same study, they found that DE separation is a promising
method for industrial waste water recovery including heavy metals. They consider
that the successful application is not only depend on the selection of suitable emul-
sification method but also the emulsion formulation in accordance with the solute
which is to be recovered. For them, the great challenge in the application of the DE
extraction at industrial scale is related to the emulsion stability.

1.3.1.2 Removal of weak acids/bases

Weak acids like phenol and cresol and weak bases like ammonium and amines have
been successfully removed from wastewater (Sastre et al. 2008,Kislik and Vladimir
2010). Among them, the extraction of phenol and its derivatives like hydroquinone,
nitrophenols, and chlorophenols, have been intensively investigated (Raza et al. 2019).
Cahn and Li (1974) were among the first to report the separation of phenol from
wastewater by DE separation technique. In most of these systems phenol extraction
through the membranes was based on the solubility difference of phenol between the
aqueous and organic phases. Phenol, being somewhat oil soluble, was transferred
into the membrane phase and then diffused across the membrane into the internal
aqueous caustic phase where it was immediately neutralized by the caustic and tied
up as phenolate that is insoluble in oil and consequently could not diffuse back again.
As a result, a high phenol concentration gradient was maintained across the liquid
membrane and thus the phenol was readily removed from the external aqueous phase
(Mortaheb et al. 2008,Ng et al. 2010,Reis et al. 2011)
The recovery of aniline, ethylaniline, nitrophenol, citric acid, acetic acid also have
been studied. Table 1.3 presents recent studies.
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Solute External phase Membrane phase Internal phase Publication

Phenol
Aqueous solution

Iso-kerosene
NaOH

Abbassian and Kargari (2016)
containning phenols solution

Phenol
Industrial wastewater

Soltrol 220
0.5N NaOH

Park et al. (2006)
containning phenols solution

Latic acid
Aqueous solutions

Rice bran oil
NaOH

Kumar et al. (2019a)
of latic acid solutions

Succinic acid
Aqueous soltion

Kerosene
NaOH solution,

Lee (2011)
of succinic acid Na2CO3solution

Citric acid
Aqueous soltion

Kerosene
Na2CO3

Lee (2015)of citric and sulfuric acids solution
and D-xylose

Gibberellic acid
Aqueous soltion

n-Heptane
Aqueous solution

Berrios et al. (2010)
containning GA3 of KCl

Table 1.3: Double Emulsion Systems (DES) for recovery of weak acids/bases

Lately new development in the existing double emulsion systems technique is the use
of green solvents and ionic liquids to form a stable green emulsion ionic liquid mem-
brane which will help in curbing the environmental problems caused by petroleum-
based solvents (Othman et al. 2017,Ahmad et al. 2017,Kumar et al. 2018,Kumar
et al. 2019a,Kumar et al. 2019b)

1.3.2 Biochemical and biomedical applications

DE separation process has promise in the fields of biotechnology and biomedicine and
has found application in the separation of organic acids, extraction of fatty acids and
amino acids, purification of antibiotics, enzyme catalyzed reactions, and detoxification
of blood (Kislik and Vladimir 2010). The first application of DES to bioseparations
was for drug delivery and drug overdose prevention systems (Thien and Hatton 1988).
Thien et al. (1988) and Itoh et al. (1990) reported the separation and concentration
of amino acids using DES. Stobbe et al. (1997) introduced a three step extraction
mechanism, including solubilization, transportation, and release of the protein with
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a DES. Table 1.4 presents some of the most recent studies in this field.

Solute External phase Membrane phase Internal phase Publication

Chlorpheniramine
Aqueous solution Dodecane HCl

Razo-Lazcano et al. (2018)containing and solution
Chlorpheniramine Parleam 4

Tropane alkaloids
Aqueous solution

Chloroform
[C3Tr][PF6]

Tang et al. (2019)containing aqueous
Radix physochlainae solution

Ethylparaben
Aqueous solution

n-Heptane
Na2CO3

Kohli et al. (2018)containing solution
Ethylparaben

Diclofenac
Aqueous solution

Dichloromethane
NaOH

Seifollahi and Rahbar-Kelishami (2017)containing solution
diclofenac

Propylparaben
Aqueous solution

n-Hexane
Na2CO3

Chaouchi and Hamdaoui (2015)containing solution
propylparaben

Table 1.4: Double Emulsion Systems (DES) for the recovery of biomedical compounds

1.3.3 Commercial Applications

Nearly 40 years since the initial reporting of the double emulsion system concept
and the many potential applications discussed in the literature, very few commercial
plants are operating successfully, see Table 1.5. This technology offers a number of
distinct advantages including reduction in the volume of organic, the large interfacial
area, hence transfer rates are compared with traditional solvent extraction. However,
issues of osmotic swelling, the stabilization, and destabilization of the emulsion remain
a problem. Also, the influence of surface active impurities on the stabilization process
is an issue during reuse of these systems. These challenges to the industry implemen-
tation of this technology remain as barriers to more wide spread application. At
present, however, the technology has found some application in the treatment of rel-
atively low concentration waste streams where other technologies are not economical.
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Hence experience in these applications will drive further development and confidence
in this technology and so find its niche in the available separation technologies.

Application Company Plant Size Efficiency Publication
Revomal of cooper Bureau of Pilot plant :

>90% Wright et al. (1995)
from mine solutions Mines, USA 90-159L/h

Revomal of cooper Davy McKee Company,
18L/h 95% Frankenfeld et al. (1981)

from synthetic mine solutions United Kingdom

Revomal of cadmium
Delf University of, Pilot plant

95% Breembroek et al. (2000)
United Kingdom 90 L/h

Revomal of phenol

Nanchung Plastic, Pilot plant

99.6% Xiujuan et al. (1988)
Factory Guangzhou, 200-250 L/h

PR China Commercial plant :
400-500 L/h

Table 1.5: Commercial application of Double Emulsion Systems (Sastre et al. (2008).)
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2.1 The solution-diffusion model for membranes

The principal property of membranes used in separation applications is the ability
to control the permeation of different species (Mulder 1996). The starting point
for the mathematical description of permeation in all membranes is the proposition,
solidly based in thermodynamics, that the driving forces of pressure, temperature,
concentration, and electromotive force are interrelated and that the overall driving
force producing movement of a permeant is the gradient in its chemical potential
(Wijmans and Baker 1995, Mulder 1996). Following this idea, Wijmans and Baker
(1995) suggested that the flux, Ji, of a component, i, is described by the simple
equation:

Ji = �Li
dµi

dx
(2.1)

where dµi
dx is the gradient in chemical potential of component i and Li is a coefficient

of proportionality (not necessarily constant) linking this chemical potential driving
force with flux. All the common driving forces, such as gradients in concentration,
pressure, temperature, and electromotive force, can be reduced to chemical potential
gradients, and their effect on flux expressed by equation 2.1. Restricting ourselves
to driving forces generated by concentration and pressure gradients, the chemical
potential for incompressible phases, is written as

µi = µ0
i + RTln(�ici) + �i(p� pisat) (2.2)

where ci is the molar concentration of component i, �i is the activity coefficient, p

is the pressure, pisat is the saturation vapor pressure and �i is the molar volume of
component i. Wijmans and Baker (1995) explain that a number of assumptions must
be made to define any model of permeation and they assumed that the governing
transport through membranes is that the fluids on either side of the membrane are in
equilibrium with the membrane material at the interface. This assumption means that
there is a continuous gradient in chemical potential from one side of the membrane to
the other. It is implicit in this assumption that the rates of absorption and desorption
at the membrane interface are much higher than the rate of diffusion through the
membrane. This appears to be the case in almost all membrane processes, but the
authors point up that may fail, for example, in transport processes involving chemical
reactions, such as facilitated transport, or in diffusion of gases through metals, where
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interracial absorption can be slow. The solution-diffusion model assumes that the
pressure within a membrane is uniform and that the chemical potential gradient
across the membrane is expressed only as a concentration gradient. Thus, combining
equations 2.1 and 2.2 one can obtained:

Ji = �RTLi

ci

dci
dx

(2.3)

This has the same form as Fick’s law where the term RTLi/ci can be replaced by
the diffusion coefficient D. Thus:

Ji = �Di
dci
dx

(2.4)

and integrating over the thickness of the membrane then gives:

Ji =
Di(c

�µ
i � cµ�i )

�
(2.5)

where c�µi represents the concentration of component i in the external fluid (�-phase)
in contact with the membrane at the feed interface(� � µ), and cµ�i is the concentra-
tion of component i in the membrane at the feed interface (µ� �).

Wijmans and Baker (1995) demonstrated that the solution-diffusion model is a good
description for the transport through dialysis, reverse osmosis, gas separation, and
pervaporation membranes . Since 1970 this model has been used in separation pro-
cesses with liquid membranes and has been fundamental for the models of separation
processes with double emulsions. This will be developed in the following sections.

2.2 Double emulsion separation processes modeling

A number of studies have been reported in the literature for the development and
testing of mathematical descriptions for solute transport through liquid membranes
as DES. Kislik and Vladimir (2010) classified the existing models into:

1. Membrane film model in which the entire resistance to mass transfer is assumed
to be concentrated in a membrane film of constant thickness

2. Distributed resistance model which considers the mass transfer resistance to be
distributed throughout the emulsion drop.

The development of these models over the years has been discussed extensively. Some
of the development highlights are presented in the following sections.
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2.2.1 Membrane film models for DE separation process

2.2.1.1 Uniform flat sheet model

Mathematical descriptions of membrane film models began with the pioneering work
of Cahn and Li (1974), they proposed the uniform flat sheet model, which assumes the
membrane to be a planar film. They suggested that the mass transfer rate through
the film is directly related to the solute concentration difference (�c), across the film
of constant thickness (�). The rate equation then becomes:

�dC�
dt

= DA
�c

�
(2.6)

where C� is the solute concentration in the external continuous phase, D is the
diffusivity of the solute through the membrane phase, and A is the mass transfer area
per unit volume of feed solution. Since A and D are difficult to measure for a DES,
the authors proposed that DA

� can be replaced by:

Deff
V!
V�

(2.7)

where Deff is an effective diffusivity and V!
V�

is the volume ratio of drop emulsion
to external phase. In the case of Type I facilitated transport mechanism, where
the solute is removed by irreversible reaction with reagent in �-phase, the solute
concentration in the internal phase can be considered to be zero and hence Equation
2.6 becomes:

ln
C�0
C�

= Deff
V!
V�

t (2.8)

where C�0 and C� are the initial and final concentrations of solute in the external �-
phase and t any given interval of time. The model assumed a constant mass transfer
resistance with time and also neglected solute accumulation in the membrane as well
as in the internal phase. Cahn and Li (1974) used Eq. 2.8 to analyze data from batch
experiments of phenol removal from wastewater with NaOH as the internal reagent.
These authors also applied this model for analysis of simple transport processes such
as separation of hydrocarbons using an aqueous medium as the membrane phase
separating the organic feed and receiving phases (Cahn and Li 1976). Kremesec and
Slattery (1982) adapted with limited success the flat sheet model, they considered
the overall mass transfer resistance as a sum of the resistance through continuous,
membrane, and internal phases.
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2.2.1.2 Spherical shell model

Matulevicius and Li (1975) attempted to improve upon the uniform flat sheet model
by considering the unsteady state mass transfer of solute through the membrane with
the mass transfer resistance through the membrane film as the controlling resistance.
They considered all the droplets of �-phase as an agglomerate of reactive drop inside
the µ-phase drop, i.e., two concentric circles of radius R� and R! respectively. This is
equivalent to a large membrane film of constant thickness �. Thus, the solute diffuses
from the surface (R!) of the membrane to R�, where it is removed by reaction with
the internal reagent. The model equation is:

@Cµ

@t
= D

1

r2
@Cµ

@r

✓
r2
@Cµ

@r

◆
(2.9)

with initial and boundary conditions:

Cµ = 0 at t = 0 (2.10)

Cµ = ↵C� at r = R!(t > 0) (2.11)

Cµ = 0 at r = R�(t > 0) (2.12)

where Cµ is the membrane phase solute concentration and C� is the continuous phase
solute concentration and ↵ a solubility of permeate in membrane phase. Matulevicius
and Li (1975) obtained a good agreement between their experimental results and the
model predictions.

2.2.2 Distributed resistance models for DE separation process

The distributed resistance models describe adequately the emulsion homogeneity re-
sulting from the presence of the droplets of �-phase dispersed in the membrane µ-
phase. Two different approaches have been reported based on the nature of reaction
with the internal reagent R:

1. When the irreversible reaction A + R �! P , occurs instantaneously due to a
high concentration of reagent R in the �-phase and consequently the concen-
tration of solute A is identically zero in �-phase

2. When the reversible reaction A + R ⌧ P is considered.
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2.2.2.1 Advancing front model

The membrane film models, do not account for the effect of the rate at which the
internal reagent (R) is consumed. Kopp et al. (1978) recognized this problem, and
proposed that the process be described in terms of a boundary at which a reversible
reaction occurs, and which moves in towards the globule center as the reagent is
consumed. The model equations were:

@Cµ

@t
= Deff

1

r2
@Cµ

@r

✓
r2
@Cµ

@r

◆
� @C�

@t
(2.13)

@CR

@t
= KfCµ �KbC� (2.14)

where Cµ and C� are the solute concentrations in the membrane phase and � droplets
respectively, CR is the internal reagent concentration, Deff is an effective diffusivity,
and Kf and Kb are the rate constants of the forward and backward reactions, re-
spectively. This model was improved upon by Ho et al. (1982). They assumed
local equilibrium between the dispersed and continuous phases of the emulsion, and
describe the concentration field within the globule (drop emulsion) in terms of the av-
erage local concentration; i.e., they disregarded the composite nature of the emulsion,
and treat it as though it were a continuum (! = µ + �). In summary, they mod-
eled the DE system in terms of a monodisperse, non-coalescing collection of spherical
globules having no internal circulation. The solute taken up from the external phase
diffuses through the globule to a reaction front, where it is removed by an instanta-
neous and irreversible chemical reaction. The reaction front advances in towards the
globule center as the internal reagent is consumed. The model equations were:
In drop emulsion :

@C

@t
= Deff

1

r2
@C

@r

✓
r2
@C

@r

◆
(2.15)

(2.16)

with initial and boundary conditions:

C = 0 at t = 0 (2.17)

C = ↵C� at r = R!(t > 0) (2.18)

C = 0 at r = R�(t)(t > 0) (2.19)
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In external �-phase :

�V�
dC�
dt

=Deff

✓
@C

@t

◆

r=R!

(n4⇡R2
!) =

3

R
(Vµ + V�)Deff

✓
@C

@t

◆

r=R!

(2.20)

with initial condition:

C� = C�0 at t = 0 (2.21)

A material balance over the reaction front (R�):

�
✓

V�
Vµ + V�

◆
C�0

dR�

dt
= Deff

✓
@C

@t

◆

r=R�(t)

(2.22)

with initial condition:

R� = R! at t = 0 (2.23)

where C(r) is the solute concentration within the globule phase(drop emulsion), av-
eraged over the membrane and internal reagent phases (µ + � phases). The external
�-phase, membrane µ-phase and internal �-phase volumes are V� , Vµ, V� respectively,
and the position of the advancing reaction front is denoted by R�, ↵ is an equilibrium
distribution coefficient with the following form:

↵ =
V� + ↵0Vµ

Vµ + V�
(2.24)

↵0 =
Cµ

C�
(2.25)

Like their predecessors, the authors used some experiments on the batch extraction of
phenol from wastewater using an aqueous NaOH solution as the internal phase, to test
the utility of the mathematical analysis. Kim et al. (1983) and Stroeve and Varanasi
(1984), formulate advancing front theories which include both spherical geometry and
depletion of solute in the bulk phase. Stroeve and Varanasi (1984) included a mass
transfer resistance in the continuous phase. They show that their model reduces to
that of Ho et al. (1982) when the mass transfer resistance becomes negligible. The
mass flux from the continuous �-phase to the surface of the emulsion drop of radius
R! is given by:

N = K�4⇡R2
!(C 0

� � C 0
s) (2.26)
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where K� is the continuous phase mass transfer coefficient, C 0
� is the solute concentra-

tion in external continuous phase, and C 0
s is the solute concentration in the external

continuous phase at the surface of the double emulsion drops.
The flux of solute arriving at the reaction front (R�) is given by:

Deff
dC

dr
=

N

4⇡R2
!

(2.27)

where Deff is the effective solute diffusivity in the double emulsion drops and C is
the solute concentration in the reacted region of the double emulsions. The rate of
consumption of the internal reagent is given by:

� d

dt

✓
4⇡R2

�

3

V�
(V� + Vµ)

C�0

◆
= N � d

dt

✓Z R!

R�

C(4⇡r2) dr

◆
(2.28)

where R� is the reaction front position, V� is the volume of internal reagent phase,
Vµ is the total membrane phase volume, and C�0 is the initial solute concentration
in the external continuous phase. The second term in the right-hand side accounts
for the accumulation of unreacted solute present in the region depleted of internal
reagent that is a partial correction for ignoring the solute accumulation.

Kislik and Vladimir (2010) remarked that one shortcoming of the advancing reaction
front approach is the assumption of reaction irreversibility, which when combined
with instantaneous kinetics requires that the solute concentration be identically zero
inside �-phase. This condition is not satisfied with systems having lower distribu-
tion coefficients and low solute concentrations. This has led to the development of
the reversible reaction model in which there are no separate reacted and unreacted
regions. Thus, it is conceivable that the solute can reach the center of the �-phase
either without contacting the internal reagent R or undergoing a series of forward
and reverse reactions.

2.2.2.2 Reversible reaction model

The reversible reaction model removes the restriction of irreversibility of the �-phase
reaction. The reaction reversibility precludes the reaction advancing front since there
is no separate reacted and unreacted region. Solute diffusing into the emulsion drop
reacts with the internal reagent R or distributes itself between the two phases (µ and
� phases). The product formed inside the encapsulated droplets P may give rise to
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reverse reaction producing unreacted solute that can diffuse back into the membrane.

Bunge and Noble (1984) considered a solute A which diffuses through the emulsion
drop reacting with reagent R to produce product P in the droplets of �-phase by
reversible reaction: A + R ⌧ P . The authors proposed an equilibrium constant, K:

K =
CP

CACR
(2.29)

The material balance equations describing the solute concentration in the membrane
phase, CAµ and in the external phase, CA� are as follows:
In emulsion drops (!-region):

@CAµ

@t
=

Deff
r2

@

@r

✓
r2@CAµ

@r

◆
�
✓

1� fµ
fµ

◆✓
@CA�

@t
+
@CP�

@t

◆
(2.30)

In external �-phase:

@CA�

@t
= �3Deff

R��
(1� ��)�µ

✓
@CAµ

@r

◆

r=R!

(2.31)

with initial and boundary conditions

t = 0 CAµ = 0 (R! > r 1 0) (2.32)

r = R! CAµ = kµCA� (2.33)

r = 0
@CAµ

@r
(2.34)

where CA� and CP� are the concentrations of unreacted solute and reaction product,
respectively, in the internal �-phase, R! is the mean drop emulsion radius, kµ is
the solute partition coefficient between external and membrane phases, �µ and ��

are the volume fractions of membrane and external phases, respectively, and Deff is
the mean effective diffusivity based on the membrane phase driving force, including
diffusion of both the reacted and unreacted solutes through the internal �-phase.
Finally, the authors considered in the Equation. 2.35 the changes in both CA� and
CP� establishing local phase and reaction equilibria between the internal phase and
the membrane phase and related them to the membrane concentration CAµ.

@CA�

@t
+
@CP�

@t
=

1

k�µ

 
1 +

KC0
R��

1 +
KCAµ

k�µ

�2

!
@CAµ

@t
(2.35)
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where K is the equilibrium constant of the reversible reaction and k�µ is the so-
lute partition coefficient between the internal and membrane phases and the initial
concentration of reactive C0

R� in �-phase. After Bunge and Noble (1984) presented
the reversible reaction model, Baird et al. (1987) extended it to include the effects
of multicomponent mixtures on the extraction rates of the individual components.
Lin and Long (1997) also developed a model for carrier-mediated batch extraction of
nitric acid based on the reversible reaction model.

2.2.2.3 Immobilized emulsion globule drop model

Chan and Lee (1987) proposed an immobilized emulsion globule drop model which
assumes transport of solute by diffusion and reversible reaction in internal �-phase.
They also considered the continuous mass transfer resistance due to turbulent bound-
ary layer in external � phase, the interfacial resistance due to surfactant layer in the
� � µ-interface and the leakage of solute due to membrane rupture.
They proposed the next assumptions:

1. Isothermal batch separation process
2. Local physical and chemical equilibrium holds between the internal and mem-

brane phases, i.e. no internal interfacial resistance is considered since the inter-
facial area is very large.

3. Concentration within the internal droplets of �-phase is independent of position.
4. The physical partition coefficient of solute A between external and membrane

phases, ↵� and that between internal and membrane phases ↵� are constant:

↵� =
CAµ

CA�
; ↵� =

CAµ

CA�
(2.36)

5. At a constant given stirring speed, the volumetric leakage rate is assumed to be
a product of a leakage function and the volume of the internal phase. In this
model they assumed that the leakage function to be as follows:

J = �dV�
dt

=  (t)V� (2.37)

For the the leakage function,  (t), the authors founded it independently by
measuring the leakage rate of tracer from the drop emulsion to the external
phase
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The mass transfer equations proposed in this model are as follows:
In emulsion drops:

(1� ��)
@CAµ

@t
+ ��

dCA�

dt
=

Deff
r2

@

@r

✓
r2
@CAµ

@r

◆
(2.38)

with the initial and boundary conditions:

t = 0 CAµ = 0 (2.39)

r = 0
@CAµ

@r
= 0 (2.40)

r = R! Deff

✓
CAµ

@r

◆
= K0

✓
CA� �

CAµ

↵�

����
R!

◆
(2.41)

In Equation 2.41 K0 is defined as:

1

K0
=

1

k
+

1

kL
(2.42)

Where 1
k is the interfacial resistance across the surfactant layer, 1

kL
is the external

continuous phase mass transfer resistance across the boundary layer and 1/K0, is the
combined overall resistance of these two effects.
In external continuous �-phase :

�V�
dCA�

dt
=

3(V� + Vµ)

R!
Deff

@CAµ

@r

����
r!

� (JA + JP ) (2.43)

with the initial conditions:

t = 0 CR� = C0
R�, CA� = C0

A� (2.44)

The model has been found to predict satisfactorily the experimental results of the
extraction of weak acids and weak bases in a batch separation system. Chan and Lee
(1987) they suggested that an optimum extraction time is the time when the leakage
rate equals the permeation rate.

Yan et al. (1992) developed a diffusion and reaction controlled model for Type-I
facilitated transport of acetic acid (solute A) through a DES with NaOH as the in-
ternal reagent (R). The mass transfer, both inside and outside the emulsion globules,
as well as the reaction between the solute and the internal reagent were taken into
consideration in their model. Since far excess reagent was used, pseudo-first-order
reaction between the solute and the internal reagent was assumed (�rA = k�CA!).
The assumptions for this model are:
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1. The emulsion drops (! � region = � � phase + µ � phase) are uniform and
have no internal circulation. The internal droplets are evenly distributed in the
emulsion drops.

2. No coalescence and redispersion occur between all emulsion drops. The external
phase is well-mixed

3. The distribution coefficient and the diffusivity are constant
4. Emulsion breakage and swelling are neglected

Therefore, as a result the mass transfer equations proposed in this model are as
follows:
In emulsion drops:

Deff
r2

@

@r

✓
r2
@CA!

@r

◆
=
@CA!

@t
+
��k�CA!

↵
(2.45)

with the initial and boundary conditions:

t = 0 CA! = 0 (2.46)

r = 0
@CA!

@r
= 0 (2.47)

r = R! Deff

✓
CA!

@r

◆
= k

✓
CA� �

CA!

↵

◆
(2.48)

In external continuous �-phase :

V�
dCA�

dt
=

3(V� + Vµ)

R!
Deff

@CA!

@r

����
r!

(2.49)

with the initial conditions:

t = 0 CA� = C0
A� (2.50)

Where k is the mass transfer coefficient of solute A in external �-phase, ↵ is the
distribution coefficient for solute between external �-phase and the emulsion drop
!-region at equilibrium, which has the form:

↵ =
V� + ↵0Vµ

V� + Vµ
(2.51)

where ↵0 represents the distribution coefficient for solute between external �-phase
and the membrane µ-phase Finally the authors stated that the agreement between
model predictions and experimental data is much better than that of the advancing
front model.
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Yan (1993) also proposed a diffusion and reaction controlled model for Type-II-
facilitated transport in which the next assumption was included:
"The solute A diffuses from the external phase onto the interface of the emulsion drop
where it reacts with carrier C to form a complex AB. Then complex AB diffuses
onto the interface of the internal phase where it reacts with the internal reagent R

to release solute A and carrier C. Thereby A is separated from the external phase.
The reactions may be expressed as follows:

A + C �! AB (2.52)

AB + R �! A + C (2.53)

Since the carrier is consumed on the outer interface of the membrane phase and
regenerated on the inner interface, the concentration of the carrier on the interface
is constant. Therefore, a pseudo-first-order forward reaction is assumed: (�rA) =

kµCA�".
To test the applicability of the model, experiments on batch extraction of gold from
auric chloride using DES were conducted. In general, the model was adequate to
describe the extraction process. The model predictions were in good agreement with
the experimental data.
Reis et al. (2006) proposed a similar diffusion controlled model that allows to predict
the extraction for both type I and type II facilitated transports. The model is based
on the improved advancing front model and takes into account the internal reaction.
The authors concluded that the effects of the volume ratio of external phase to internal
phase and the concentration of internal reagent are relevant to the extraction rate.
The agreement between experimental and calculated results for solute extraction
was found satisfactory for the systems under investigation. Huang et al. (2009)
presented a model for type II facilitation that produces a closed-form solution and
addresses most of the key ingredients in DES, including (1) external phase mass
transfer resistance from external phase to the � � µ interface, (2) mass fluxes at
the � � µ interface, (3) chemical equilibrium of reaction on the � � µ interface, (4)
simultaneous diffusion of the complex AB inside the emulsion drop, (5) reaction of the
complex at the µ� � interface, and (6) chemical equilibrium of the internal reaction
at the µ�� interface. Experimental data of DE extraction of arsenic were compared
with model prediction. It shows that the model with its analytical solutions predicts
experiments well.
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2.3 Generalized one-equation model

Most of the studies reported in the literature for the development and testing of
mathematical descriptions for solute transport with chemical reaction through DE
membranes are based on intuitive considerations that could lead to rough approxi-
mations and inaccurate interpretation of experimental results. In their large majority,
membrane film models (Cahn and Li 1974,Matulevicius and Li 1975,Kremesec and
Slattery 1982) and distributed resistance models (Kopp et al. 1978,Ho et al. 1982,Kim
et al. 1983,Stroeve and Varanasi 1984,Bunge and Noble 1984,Chan and Lee 1987,Yan
et al. 1992,Reis et al. 2006,Huang et al. 2009), implicitly consider average equations
where macroscopic quantities are not explicitly related to local values and therefore
prediction of the effective coefficients is not considered. Morales-Zárate et al. (2008)
were the first to derive a rigorous macroscopic model of diffusion and reaction in DES
and to derive the jump boundary condition at the dividing surface.They divided the
three-phase system into two homogeneous regions, ⌘-region (�-phase) and !-region
(µ-phase + �-phase). Equations in both homogeneous regions were deduced from
a generalized one-equation model, based on the local mass equilibrium, which estab-
lishes that the mass transfer process can be characterized by a single equilibrium
weighted average concentration with the next form:

{CA} = "µ(x)hCAµiµ +
"�(x)

Kµ�
eq
hCA�i� +

"�(x)

Kµ�
eq
hCA� i� (2.54)

Where "�(x) is the volume fraction of the �-phase and hCA�i� is the volume average
concentration of solute A in each of the phases involved i.e. � = �, µ,�. Furthermore
Keq

µ� and Keq
µ� are the equilibrium distribution coefficients for the solute A in each

phase. The equations governing the separation of solute A in the three-phase system
were derived using the volume averaging method (Whitaker 1999). First, a gener-
alized one-equation model was derived in order to describe the solute mass transfer
in both homogeneous regions and in the inter-region (A⌘!). The volume average
concentration and effective parameters were precisely defined in terms of local quan-
tities. Order of magnitude analyses were performed to determine the length scale
constraints associated to the macroscopic model.

The authors assumed that solute A is transferred from the ⌘-region to the !-region.
In this latter region an irreversible reaction A + R �! P takes place in the �-phase
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while a reversible reaction A  ! B occurs in the µ-phase. The formulation of the
problem is restricted to dilute solutions where convective transport is neglected. The
closed set of equations describing the macroscopic mass transport of solute A in this
three-phase system, is given by:

In the ⌘-region:

@{CA}⌘
@t

= r ·
�
DA�r{CA}⌘

�
(2.55)

In the !-region:

@{CA}!
@t

= r ·
�
DA!r{CA}!

�
� hRi! (2.56)

hRi!(x) = "�k�K
µ�
eq {CA}hCR�i� + "µkµ

 
{CA}� hCBµiµ

Kµ

!
(2.57)

where hRi! is the effective reaction rate term, k�, kµ are the reaction rate constants
in � and µ-phases respectively, Kµ is the equilibrium reaction constant in µ-phase.
DA⌘ and DA! are the effectivity tensor of species A in the homogeneous region ⌘ and
!. Equations 2.55, 2.56 have the next boundary conditions at the inter region A⌘!:

�n⌘! · DA�r{CA}⌘|x =� n⌘! · DA!r{CA}!|x (2.58)

�n⌘! · DA!r{CA}!|x =P ⌘
eff({CA}⌘|x �K⌘!

eff {CA}!|x) (2.59)

where n⌘! is the unit normal vector directed from the ⌘-region towards !-region,
K⌘!

eff is the effective equilibrium coefficient at the ⌘ � ! dividing surface and P ⌘
eff is

the effective permeability in the ⌘-region.





Objectives

As mentioned in the previous chapter, the potential of DE in new and innovative
separation processes has brought the attention of several research groups. However,
information about the diffusion and reaction phenomena inside the emulsion drops
has not been included in the mathematical descriptions in detail yet. Therefore, the
general objective of this thesis is:

• To describe the solute transport with chemical reaction through DES by means
of rigorous modeling that can provide with valuable information from the micro-
scale to be applied in the macro-scale.

To accomplish this, the method of volume averaging (Whitaker 1999) will be used
because it allows to rigorously derive continuum equations for multiphase systems
characterized by more than one disparate length scales. The assumption of non-local

mass equilibrium (NLME) is assumed due to the complex physicochemical compo-
sition of DE. The structure of the DES will be studied from two different perspec-
tives: 1) the DES as a single domain where concentration changes occur in the same
length scale and 2) the DES consists in two homogeneous regions where concentra-
tion changes occur at two different length scales. In order to achieve the above, the
following specifics objectives are proposed:

• To develop the averaged equations for the three-phase and two-regions macro-
scopic models.

• To predict the effective coefficients involved in the averaged equations for both
models

• To analysis of a DE-containing separation process in a stirred tank by applying
both models.





Part II

Diffusion and reaction in Double
Emulsion systems





Chapter 3

Double emulsions and the method
of volume averaging

Contents
3.1 Averaging volume philosophy . . . . . . . . . . . . . . . . 46

3.1.1 Length scales and averaging volumes for a double emulsion
system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.1.2 Diffusion and reaction in porous media . . . . . . . . . . . . 47

3.1.2.1 Non-local mass equlibrium . . . . . . . . . . . . . 48

3.2 Governing equations and boundary conditions in a DES 49

3.3 Averaging volumes in DES . . . . . . . . . . . . . . . . . . 51

3.3.1 Three-phase averagin volume . . . . . . . . . . . . . . . . . 52

3.3.2 Two-regions averaging volumes . . . . . . . . . . . . . . . . 53
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3.1 Averaging volume philosophy

The method of volume averaging is a technique proposed by Whitaker (1999) that can
be used to rigorously derive continuum equations for multiphase-systems. This means
that equations which are valid within a particular phase can be spatially smoothed
to produce equations that are valid everywhere.

Whitaker (1999) explain that most porous media of practical importance are hierar-
chical in nature, i.e., they are characterized by more than one length scale. When
these length scales are disparate, the hierarchical structure can be analyzed by the
method of volume averaging. For example, in process where one needs to know
how one species is transported through the pores to the external surface where the
species can be removed, the direct analysis of this process, in terms of transport
equations that are valid within the pores, is essentially impossible because of the
complex structure of the typical porous medium. Rather than attack this problem in
terms of equations and boundary conditions that are valid in the pores, one can use
the pore-scale information to derive local volume averaged equations that are valid
everywhere. At each level of the method of volume averaging there are three principle
objectives:

1. Development of the spatially smoothed equations and the identification of the
constraints that must be satisfied in order for these equations to be valid.

2. Derivation of the closure problems that are necessary to predict the effective
transport coefficients that appear in the spatially smoothed transport equations.

3. Comparison between theory and experiment

3.1.1 Length scales and averaging volumes for a double emulsion
system

The Double Emulsion multiphase Systems (�, µ,� phases) are characterized by more
than one length scale and these length scales are disparate, in Figure 3.1 we can
see the macroscopic batch-stirred tank reactor, Scale I. The essential macroscopic
characteristic of the tank is the change in the solute concentration that occurs from
the external �-phase to the inlet of droplets of �-phase, and this change is determined
by the diffusion rate and the chemical reactions that take place in the emulsion
drops, Scale II. The efficient design of the tank reactor requires the information about
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interface transfer resistances at �µ surface and µ� surface and the rate of reactions
in µ and � phases respectively, that occur in Scale III. From this analysis, we can
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Macroscopic system 

Scale II 
Double emulsion system 

Scale III 
Three-phase system 

(γ-phase + emulsion drop) 
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(emulsion drop) 

γ-phase  µ-phase + σ-phase  

γ-phase  

Figure 3.1: Length scales and averaging volumes for a Double Emulsion System

conclude that a DE separation process can be modeled with the volume average
method since it is a hierarchical system with scale disparity. In this study our goal
is to transport information from Scale III to Scale I.

3.1.2 Diffusion and reaction in porous media

Different systems in which diffusion and reaction phenomena occur have been studied
with the method of volume averaging. For example, the process of bulk diffusion in
a porous catalyst with heterogeneous reaction (Ochoa-Tapia et al. 1993), in boifilms
(Wood and Whitaker 1998, Wood and Whitaker 2000) or the cell growth kinetics
and substrate diffusion in a polymer scaffold (Galban and Locke 1999). A general
procedure by which governing point equations and boundary conditions for diffusion
and reaction can be spatially smoothed to produce continuum models for multiphase
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systems is:
1. To illustrate the process of spatial smoothing which leads to the governing

equation for the local volume averaged concentration, hcA�i.
2. To develop the closure problem for the spatial deviation concentration ecA� that

appears in the spatially smoothed equation for hcA�i.
3. To solve the closure problem in order to predict values of the effective diffusivity

tensor, Deff.

3.1.2.1 Non-local mass equlibrium

The concep of local equilibrium is strictly associated to multiphase systems. The lo-

cal mass and thermal equilibrium have been introduced by Whitaker (1986),Whitaker
(1999) to obtain a one-equation model in multiphase systems. When the principle of
local mass equilibrium is valid a single transport equation can be used to describe the
overall process of diffusion and reaction and it requires that certain time and length-
scale constraints be valid. The dependent variable for this one-equation model is the
equilibrium weighted average concentration.

In the case of diffusion and reaction in DES, Morales-Zárate et al. (2008) made
use of the local mass equilibrium and proposed that the mass transfer process was
characterized by the single equilibrium weighted average concentration (Eq. 6.1):

{CA} = "µ(x)hCAµiµ +
"�(x)

Kµ�
eq
hCA�i� +

"�(x)

Kµ�
eq
hCA� i� (3.1)

Nevertheless, Wood and Whitaker (1998) explain that if the constraints associated
with local mass equilibrium are not valid, it will be necessary to propose a model
that involves the transport equations for each phase in the system, i. e. a Non-local

equilibrium model. In this respect Morales-Zárate et al. (2008) established that the
assumption of local mass equilibrium was valid when:

1. The difference between the physicochemical coefficients of the �-phase and the
µ-phase is negligible

2. Either "µ or "� is much less than the unity.
These two restrictions seem far from reality. First, as explained in previous chap-
ters, the µ-phase and �-phase are immiscible, which makes their physicochemical
properties quite different between them, in addition their properties can vary greatly
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depending on the surfactants and chemicals that are added to stabilize the system.
Thus, to assume their physicochemical coefficients are similar can be very risky. And
secondly because even though one knows that none of the volumetric fractions ("µ
or "�) can approach to unity, they are of the order of magnitude 10�1. For exem-
ple Ahmad et al. (2017) proposed for cadmium extraction from aqueous solution a
volume ratio of internal:membrane phase equal to 1:3 i.e. "µ = 0.75 and "� = 0.25

and Berrios et al. (2010) reported a volume ration between 2:3 until 3:2. For all the
above, one of the objectives of this thesis is to address the mass transport through
DES from the perspective of Non-local mass equilibrium.

3.2 Governing equations and boundary conditions in a

DES

Let us consider the three-phase DES illustrated in Figure 3.2, thus Scale IIl in Figure
3.1. In this three-phase system, it is assumed that species A is transferred from �-
phase to �-phase. In this latter phase an irreversible reaction A + R �! P takes
place while a reversible reaction A ⌧ B occurs in the µ-phase. The formulation of
the problem is restricted to dilute solutions where convective transport is neglected.
The local equations and the boundary conditions for the diffusive mass transfer with
chemical reactions process in a DE have already proposed by Morales-Zárate et al.
(2008) and for this work we base on them. Therfore the formulation of the problem
is:

In �-phase

@CA�

@t
= r · (DA�rCA�) (3.2)

In µ-phase

@CAµ

@t
= r · (DAµrCAµ)�Rµ (3.3)

@CBµ

@t
= r · (DBµrCBµ) + Rµ (3.4)

In �-phase

@CA�

@t
= r · (DA�rCA�)�R� (3.5)
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Figure 3.2: Schema of Double Emulsion System

The kinetics of the reversible and irreversible chemical reactions occurring in the µ

and � phases can be defined respectively as:

Rµ = kµ

✓
CAµ �

CBµ

Kµ

◆
(3.6)

R� = k�CA� (3.7)

The first order rate of reaction in Eq. 3.7 is assumed that reactive R in �-phase which
reacts irreversibly with solute A is in excess thus one can consider that concentration
of species R, CR, is constant. Eqs. 3.2-3.5 are associated to the following interfacial
boundary conditions:
At the interface between �-phase and µ-phase (A�µ):

� nµ� · DAµrCAµ = �nµ� · DA�rCA� (3.8)

� n�µ · DA�rCA� = P�µ(CA� �Keq
µ�CAµ) (3.9)

� nµ� · DBµrCBµ = 0 (3.10)
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At the interface between µ-phase and �-phase (Aµ�):

� nµ� · DAµrCAµ = �nµ� · DA�rCA� (3.11)

� n�µ · DA�rCA� = P�µ(CA� �Keq
µ�CAµ) (3.12)

� nµ� · DBµrCBµ = 0 (3.13)

Here C�� is the local concentration and D�� is the molecular diffusivity of species �
in the �-phase respectively. Where � = A, B and � = �, µ,�. The boundary condi-
tions Eqs. 3.8, 3.9, 3.11 and 3.12 have been derived following Wood and Whitaker
(1998), who proposed a model for membrane transport based on a set of interfacial
flux consecutive equations. Here, n�µ and nµ� are the unit normal vectors pointing
from �-phase to µ-phase (n�µ=�nµ�) and from µ-phase to �-phase (nµ�=�n�µ) re-
spectively. The permeabilities of the �µ-interface and µ�-interface are represented by
P�µ and Pµ�. Furthermore Keq

µ� and Keq
µ� are the equilibrium distribution coefficients

for the solute A in each phase, all the coefficients are functions of local equilibrium
constants. Eqs. 3.10 and 3.13 indicate that species B is insoluble in � and � phases.

The set of equations given by Eqs. 3.2 - 3.13 represents a reasonably simple model
of mass transfer in a DE system, but it still retains the essential features of the
separation process. However, the solution of this point problem is impractical, and
may contain more information than is needed. We are interested in describing the
system at the macroscopic scale (Scale I and Scale II ), and to accomplish it, in the
next chapters the spatially smoothed transport equations have been developed.

3.3 Averaging volumes in DES

The process of spatial smoothing begins by associating with every point in space
an averaging volume (or representative elementary volume, REV) which is invariant
with respect to time and space (Whitaker 1999). For the three-phase DES under
consideration, we decided to express the averaging volume in two different ways:

• Three-phase averagin volume: when the averaging domain of volume is com-
posed of �, µ and � phases
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• Two-regions averagin volumes: when the system is view as a 2-region problem
where two averaging volumes are established. The first one composed of µ and
� phases to form the !-region and the second averaging volume composed of ⌘
(�-phase) and ! regions.

As a result of these ways of representing the problem, two different averaged macro-
scopic models were obtained. Each model presents important information about the
Scale III in a different way. One of the interests of this thesis is to compare both
assumptions.

3.3.1 Three-phase averagin volume

The three-phase averaging volume illustrated in Figure 3.3 includes a emulsion drop
or parts of it and the �-phase around it. This leads to expression:

V = V�(x) + Vµ(x) + V�(x) (3.14)

Here V�(x) represents the volume of the �-phase contained within the averaging

L

Averaging volume

V = V� + Vµ + V�

`�

r0 `µ

Figure 3.3: Macroscopic region and three-phase averaging volume for the DES, V = V�(x)+

Vµ(x) + V�(x)

volume. The assumption of the three-phase averaging volume and the non-local mass
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equilibrium used in the modeling of DES, produce the Three-phase model which is
composed of 3 coupled averaged equations, each one describing the mass transfer of
species A in the corresponding phase. However the 3 coupled averaged equations are
valid every where in the homogeneous averaged system. Detailed information about
the structure of DE and the transport in the interfacial areas given by Eqs. 3.8 to
3.13 will be represented in effective coefficients and exchange terms respectively. To
illustrated this, the simplified governing averaged equation of species A in �-phase is
presented:

"�(x)
@hCA�i�

@t| {z }
accumulation

= r ·
⇥
D��(x) ·rhCA�i� + D�µ(x) ·rhCAµiµ

⇤
| {z }

diffusion

+ av1k
µ�
1 (Keq

µ�hCAµiµ � hCA�i�)| {z }
exchange term

+ av1k
µ�
1 (Keq

µ�hCAµiµ � hCA�i�)| {z }
exchange term

(3.15)

Here it is highlighted that averaged concentration of A in �-phase hCA�i� is coupled
to averaged concentrations hCAµiµ and hCA�i� by means of diffusion and exchange
terms. Exchange terms have the function of providing information about mass ex-
change in the interfaces Aµ� and A�µ. D�� , D�µ, av1k

µ�
1 , av1k

µ�
1 give information

related to DE structure and molecular properties.

3.3.2 Two-regions averaging volumes

Another way to analyze the DE system at Scale III is to see the emulsion drop
composed of µ-phase and �-phase as a homogeneous region ! and the �-phase as a
homogeneous region ⌘. This could be done by taking a first averaging volume as:

V = Vµ(x) + V�(x) (3.16)

The assumption of the two-phase averaging volume, presented in Figure 3.4, and the
non-local mass equilibrium produce 2 coupled averaged equations valid every where in
the homogeneous region !. Detailed information about the structure of an emulsion
drop and the transport in the interfacial area gives by Eq. 5.7 will be represented
in effective coefficients and the exchange term respectively. To illustrated the above,
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µ � phase + � � phase

Microscale

Macroscale 
3-phases Double Emulsion 

System

L

L

� � phase

Figure 3.4: Macroscopic region (L ) and averaging volume for the drop emulsion µ � �-
system

the simplified governing averaged equation of species A in �-phase is presented:

"�(x)
@hCA�i�!

@t| {z }
accumulation

= r ·
⇥
D�µ(x) ·rhCAµiµ! + D��(x) ·rhCA�i�!

⇤
| {z }

diffusion

+ (avk)�(hCA�i�! �Keq
µ�hCAµiµ!)

| {z }
exchange term

� k�"�(x)hCA�i�!| {z }
reaction

(3.17)

Just as in Eq. 3.15, one can observe that averaged concentration of A in �-phase
hCA�i�! is coupled to averaged concentration hCAµiµ! by means of diffusion and ex-
change terms. D�µ, D��, (avk)� have information related to the emulsion drop
structure.
Once the volume averaged equations for !-region were derived, a new system by
regions is defined as is shown in Figure 3.5 where homogeneous ⌘-region, formed by
�-phase, contains drops of !-region. Thus, it is convenient to establish the second
volume averaging as:

V = V⌘(x) + V!(x) (3.18)

At this point, it is important to note that for this perspective two general length
scales have been considered. One general length scale is associated with the droplets
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of �-phase disperse in the µ-phase, thus `� and `µ lengths. A second general length
scale is associated with emulsion drops of !-region disperse in ⌘-phase, `! and `⌘

which are larger than `� and `µ.

V = V! + V⌘

R0 = O(L)

`⌘

`!

µ � phase + � � phase ! � region

Figure 3.5: Macroscopic region and two-region averaging volume for the DES, V = V⌘(x)+

V!(x)

This time, the use of the two-region averaging volume and the non-local mass equi-
librium assumption in the smooth averaging has produced coupled regional averaged
equations valid every where in the regional domain. Detailed information about the
structure of the system and the transport in the interfacial area A⌘! will be rep-
resented in effective coefficients and the exchange term respectively. To illustrated
the above, the simplified governing averaged equation of species A in ⌘-region is
presented:

"⌘
@{CA⌘}⌘

@t| {z }
accumulation

= r ·
⇥
D⌘� ·r{CA⌘}⌘ + D⌘µ ·r{hCAµiµ!}! + D⌘� ·r{hCA�i�!}!

⇤
| {z }

diffusion

+ av1k
!⌘
1 (Keq

µ�{hCAµiµ!}! � {CA⌘}⌘)| {z }
exchange term

(3.19)
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4.1 Spatial smoothing

The purpose of this section is to develop the volume averaged equations, base on the
Eqs. 3.2 - 3.5 and associated with averaging volume V (or representative elementary
volume, REV) illustrated in Figure 3.3. The details of this averaging volume are
presented in Figure 4.1 where we have used the position vector r� to locate any point
in the �-phase. The position vector x locates the centroid of the averaging volume
which may lie in whether �, µ or �-phases. The relative position vector y� is used to
locate points in the �-phase relative to the centroid of V

V = V� + Vµ + V�

x

r�

y�

Figure 4.1: Three-phase averaging volume for the DES

In terms of the V = V�(x)+Vµ(x)+V�(x) , let us introduce the superficial averaging
operator of a continuous property,  � (� = �, µ,�), as follows :

h �i|x =
1

V

Z

V�(x)

 �|x+y�
dV (4.1)

where V� is the domain occupied by the �-phase in the REV, and y� is the vector
that locates points of the �-phase within the REV. The intrinsic averaging operator
is defined as

h �i�|x =
1

V�

Z

V�(x)

 �|x+y�
dV (4.2)
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Both averaging operators are related by

h �i = "�(x)h �i� (4.3)

Where "� = V�(x)/V is the volume fraction of the �-phase within the averaging
domain, therefore

"�(x) + "µ(x) + "�(x) = 1 (4.4)

In the above expressions, we have explicitly indicated the spatial dependence of vol-
ume averaged quantities, this is convenient for the derivation of average macroscopic
equations that are valid everywhere in the system.

4.1.1 Averaging model

The process of volume averaging is initiated by applying the superficial average op-
erator to the governing equations Eqs. 3.2-3.5. As an example, upon averaging Eq.
3.2 one can obtain:

⌧
@CA�

@t

�
= hr · (DA�rCA�)i (4.5)

Since V�(x) is not a function of the time, we can make use of the general transport
theorem (Whitaker 1992) and interchange differentiation and integration in the left
had side (LHS) of Eq. 4.5, leading to

@hCA�i
@t

= hr · (DA�rCA�)i (4.6)

Applying the Spatial Averaging Theorem (Whitaker 1999), for some quantity  �

associated with the �-phase (Eq.4.7 ), and his vector form (Eq. 4.8):

hr �i = rh �i+
1

V

Z

A�µ(x)
n�µ � |x+y� dA

(4.7)

hr · a�i = r · ha�i+
1

V

Z

A�µ(x)
n�µ · a� |x+y� dA (4.8)

to the term of the right hand side (RHS) of Eq. 4.6 and assuming that DA� is constant
within the averaging volume, it is possible to express in Eq. 4.6 the diffusive flux in
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terms of hCA�i as:

@hCA�i|x
@t

=r ·

DA�

✓
rhCA�i|x +

1

V

Z

A�µ(x)

n�µCA� |x+y�
dA

◆�

+
1

V

Z

A�µ(x)

n�µ · DA�rCA� |x+y�
dA (4.9)

In Eq. 4.9 all the terms associated with the area Aµ� are zero, since due to the nature
of the system, the CA� does not exist in this area. The same reasoning was used for
the averaged equation in �-phase, where all the terms associated with A�µ are zero.
Otherwise, Eq. 4.9 can be rewritten in terms of the intrinsic averaged quantities given
by:

"�(x)
@hCA�i� |x

@t
=r · DA�

✓
"�rhCA�i� |x + hCA�i� |xr"�

◆

+r · DA�

✓
1

V

Z

A�µ(x)

n�µCA� |x+y�
dA

◆

+
1

V

Z

A�µ(x)

n�µ · DA�rCA� |x+y�
dA (4.10)

Besides considering the diffusivity DA� as constant in the averaging volume, no ad-
ditional assumptions were made. However it was use the following relation, deduced
from the Spatial Averaging Theorem (SAT)

1

V

Z

A�µ(x)

n�µ dA = �r"� , (4.11)

in Eq. 4.10 leading to:

"�(x)
@hCA�i� |x

@t
=r · DA�

�
"�rhCA�i� |x

�

+r · DA�

✓
1

V

Z

A�µ(x)

n�µ(CA� |x+y�
� hCA�i� |x) dA

◆

+
1

V

Z

A�µ(x)

n�µ · DA�rCA� |x+y�
dA (4.12)
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here we have the volume averaged concentration hCA�i and the local concentration
CA� |x+y� (where x + y� = r�), in order to remove the local concentration in Eq.
4.12, we make use of the spatial decomposition define by Gray (1975):

Ci,�|r� = hCi,�i�|r� + eCi,�|r� , where i = A, B (4.13)

in which eCi,� is referred to as the spatial deviation concentration. In some respects
Whitaker (1999) suggested that one could think of Eq. 4.13 as decomposing the
point concentration into what we want and whatever else remains. Eq. 4.13 also
represents a decomposition of length scales. Thus the average concentration under-
goes significant changes only over the large length-scale L and the spatial deviation
concentrations are dominated by the small length-scales `� and `µ (See Figure 3.3)

When Eq. 4.13 is used in Eq. 4.12 we obtain the averaged equation:

"�(x)
@hCA�i� |x

@t
= r · DA�

�
"�rhCA�i� |x

�

+r · DA�

✓
1

V

Z

A�µ(x)

n�µ
� eCA� |x+y�

+ hCA�i� |x+y�

�
dA

◆

�r · DA�

✓
1

V

Z

A�µ(x)

n�µhCA�i� |x dA

◆

+
1

V

Z

A�µ(x)

n�µ · DA�r
�
hCA�i� |x+y�

+ eCA� |x+y�

�
dA, (4.14)

here we have the non-closed averaged equation of A in �-phase. It must be noted that
besides the expected terms i.e., accumulation and diffusion, additional non-local terms
are present. Eq. 4.14 is obviously more complicated than its point counterpart since
no significant simplifications have been performed in the spatial smoothing process,
this point will be discussed later. Continuing with the development of the averaged
problem, an analogous averaging procedure has been applied to Eq. 3.3, using the
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spatial averaging theorem for some quantity  µ associated with the µ-phase,

hr µi = rh µi+
1

V

Z

A�µ(x)
nµ� µ|x+yµ dA +

1

V

Z

Aµ�(x)
nµ� µ|x+yµ dA

(4.15)

hr · aµi = r · haµi+
1

V

Z

A�µ(x)
nµ� · aµ|x+yµ dA +

1

V

Z

Aµ�(x)
nµ� · aµ|x+yµ dA,

(4.16)

to obtain the non-closed averaged equation of species A in µ-phase which is given by:

"µ(x)
@hCAµiµ|x

@t
= r · DAµ

�
"µrhCAµiµ|x

�

+r · DAµ

V

✓ Z

Aµ�(x)

nµ�
� eCAµ|x+yµ

+ hCAµiµ|x+yµ

�
dA

◆

+r · DAµ

V

✓ Z

Aµ�(x)

nµ�
� eCAµ|x+yµ

+ hCAµiµ|x+yµ

�
dA

◆

�r · DAµ

V

✓ Z

Aµ�(x)

nµ�hCAµiµ|x dA +

Z

Aµ�(x)

nµ�hCAµiµ|x dA

◆

+
1

V

Z

Aµ�(x)

nµ� · DAµ
�
rhCAµiµ|x+yµ

+r eCAµ|x+yµ

�
dA

+
1

V

Z

Aµ�(x)

nµ� · DAµ
�
rhCAµiµ|x+yµ

+r eCAµ|x+yµ

�
dA

� "µ(x)kµ

✓
hCAµiµ|x �

hCBµiµ|x
Kµ

◆
, (4.17)

one can observe that Eq. 4.17 is composed of accumulation, diffusion and reversible
reaction terms, and additional non-local terms as was observed in Eq. 4.14. However
unlike the Eq. 4.14, it should be noted that in Eq. 4.17 both integrals on the
interfacial areas Aµ� and Aµ� are presented, which indicates that the membrane µ-
phase is adjacent to the other two phases and also mass exchange between them is
presented.
In the case of the non-closed averaged equation of species B in µ-phase which has
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the form :

"µ(x)
@hCBµiµ|x

@t
= r · DBµ

�
"µrhCBµiµ|x

�

+r · DBµ

V

✓ Z

Aµ�(x)

nµ�
� eCBµ|x+yµ

+ hCBµiµ|x+yµ

�
dA

◆

+r · DBµ

V

Z

Aµ�(x)

nµ�
� eCBµ|x+yµ

+ hCBµiµ|x+yµ

�
dA

◆

�r · DBµ
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Aµ�(x)

nµ�hCBµiµ|x dA +
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Aµ�(x)

nµ�hCBµiµ|x dA

◆

+ "µ(x)kµ
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hCAµiµ|x �

hCBµiµ|x
Kµ

◆
(4.18)

one can remark that contrary to Eq. 4.17, the Eq. 4.18 does not contain the non
local terms coming from:

1

V

Z

Aµ�(x)

nµ� · DBµrCBµ|x+yµ
dA +

1

V

Z

Aµ�(x)

nµ� · DBµrCBµ|x+yµ
dA (4.19)

this can be shown by applying the averaging spatial theorem (Eq. 4.16) in the local
equation (Eq. 3.4), and substituting impermeable boundary conditions (Eqs. 3.10
and 3.13). Finally, to obtained the non-closed averaged equation of species A in �-
phase, the averaging procedure has been repeated in local Eq. 3.5 and for this purpose
the spatial averaging theorem for some quantity  � associated with the �-phase has
been used,

hr �i = rh �i+
1

V

Z

Aµ�(x)
n�µ �|x+y� dA

(4.20)

hr · a�i = r · ha�i+
1

V

Z

Aµ�(x)
n�µ · a�|x+y� dA, (4.21)
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Therefore, the non-closed averaged equation of species A in �-phase has the form

"�(x)
@hCA�i�|x

@t
= r · DA�

�
"�rhCA�i�|x

�

+r · DA�

V

✓Z

A�µ(x)
n�µ

� eCA�|x+y�
+ hCA�i�|x+y�

�
dA

◆

�r · DA�

V

✓Z

A�µ(x)
n�µhCA�i�|x dA

◆

+
1

V

Z

A�µ(x)
n�µ · DA�r

�
hCA�i�|x+y�

+ eCA�|x+y�

�
dA

� k�"�(x)hCA�i�|x, (4.22)

Eq. 4.22 contains the expected terms of accumulation, diffusion and irreversible
reaction and, additional non-local terms. At this point it is important to stress
that Eqs. 4.14 - 4.22 are non-local transport equations since the presence of the
spatial deviation concentrations, eCi�|x+y�

, and the volume average concentrations,
hCi�i�|x+y�

, evaluated at points other that the centroid x. In order to express these
equations only in terms of volume averaged quantities it is indispensable to 1) impose
the following length-scale constraint (Whitaker 1999,Wood 2009),

`µ, `� ⌧ r0 ⌧ L, (4.23)

and 2) derive and solve the closure problems related to the spatial deviation concen-
trations, eCi�. Therefore, in order to continue this analysis and simplify the averaged
equations and obtain their closed form, a closure problem was developed which en-
ables to predict the eCi,�. The details of the derivation and formal solution of the
closure problem are quite lengthy and are provided in Appendix A.

4.1.2 Closure variables

With the objective of obtaining a closed form for Eqs. 4.14 - 4.22, the formal solution
of the spatial deviation concentrations is presented:

eCA� =b�� ·rhCA�i� + b�µ ·rhCAµiµ + b�� ·rhCA�i� + b�B ·rhCBµiµ

� sµ��
�
Keq

µ�hCAµiµ � hCA�i�
�
� sµ��

�
Keq

µ�hCAµiµ � hCA�i�
�

(4.24)

eCAµ =bµ� ·rhCA�i� + bµµ ·rhCAµiµ + bµ� ·rhCA�i� + bµB ·rhCBµiµ

+ sµ�µ
�
hCA�i� �Keq

µ�hCAµiµ
�

+ sµ�µ
�
hCA�i� �Keq

µ�hCAµiµ
�

(4.25)
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eCBµ =bB� ·rhCA�i� + bBµ ·rhCAµiµ + bB� ·rhCA�i� + bBB ·rhCBµiµ

+ sµ�B
�
hCA�i� �Keq

µ�hCAµiµ
�

+ sµ�B
�
hCA�i� �Keq

µ�hCAµiµ
�

(4.26)

eCA� =b�� ·rhCA�i� + b�µ ·rhCAµiµ + b�� ·rhCA�i� + b�B ·rhCBµiµ

� sµ��
�
Keq

µ�hCAµiµ � hCA�i�
�
� sµ��

�
Keq

µ�hCAµiµ � hCA�i�
�

(4.27)

Eqs. A.49 - A.52 have been proposed in terms of the sources of the boundary-value
problems for eCi�. As previously explained, the details of the development of these
boundary-value problems are in Appendix A. In Eqs. A.49 - A.52, the variables
bji, sµ�j , sµ�j , where j = �, µ, B,� and i = �, µ,�, B are the closure variables, their
derivation has been performed by considering the following length-scale constraints:

r0 ⌧ L (4.28)

r20 ⌧ L2 (4.29)

`µ, `� ⌧ L (4.30)

where it has been assumed that the characteristic lengths associated to the spatial
variations of the volume averaged concentrations (and their gradients) can be repre-
sented by the system macroscopic length, L. In addition, the derivation of Eqs. A.49
- A.52, requires satisfying the following time-scale constraint:

DA�t⇤

`2�
� 1 (4.31)

Substitution of A.49 - A.52 into 4.14 - 4.22 respectively, gives to the Three-phase
averaged model considering NLME which is presented in the next section.

4.2 Closed averaged equations

In this section the Three-Phase Model is described. This averaged model is valid
in the averaging volume formed by the homogeneous fluid (�-phase) and emulsion
drop (µ+� phases). Since the Non-local mass equilibrium assumption has been used,
the model is conformed of 3 averaged equations, each one describing the mass trans-
fer of species A in the corresponding phase and the averaged equation of species B

in µ-phase. Each equation contains terms of accumulation, diffusion, mass transfer
exchange and convective-like transport. The latter terms are composed of effective
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coefficients which provide information about one of phases involved. For example,
averaged equation of A in �-phase, Eq. 4.77, has 3 effective diffusivity tensors with
the form D�j where j can be �, µ,�, therefore when j = µ, D�µ contributes to Eq.
4.77 with information about the structure of the system related to µ-phase.

Governing averaged equation of species A in �-phase:

"�
@hCA�i�

@t| {z }
accumulation

= r ·
⇥
D�� ·rhCA�i� + D�µ ·rhCAµiµ

⇤
| {z }

diffusion

+r ·
⇥
D�B ·rhCBµiµ + D�� ·rhCA�i�

⇤
| {z }

diffusion

+r ·
⇥
u��hCA�i� + u�µhCAµiµ + u�BhCBµiµ + u��hCA�i�]| {z }

convective-like transport term

+ av1k
µ�
1 (Keq

µ�hCAµiµ � hCA�i�)| {z }
exchange term

+ av1k
µ�
1 (Keq

µ�hCAµiµ � hCA�i�)| {z }
exchange term

(4.32)

More in detail, in Eq. 4.32 one can see three types of effective transport coefficients:
the effective diffusivity tensors D�j , the effective velocity-like vectors u�j and the
mass transfer coefficients av1k

µj
1 . All these coefficients can be computed from the

fields of the closure variables (see Appendix A). For example the diffusivity tensor
D�� is defined as:

D�� =DA�

✓
"�l +

1

V

Z

A�µ(x)

n�µb�� dA

◆
(4.33)

in this case, the effective diffusivity tensor is function of the molecular diffusivity
DA� , the volumetric fraction "� and the structure of the DES through the b��-field.
In contrast the others effective diffusivity tensors, presented in Eq. 4.34 - 4.36, are
functions of DA� and the b�j-field.

D�µ =
DA�

V

Z

A�µ(x)

n�µb�µ dA (4.34)

D�B =
DA�

V

Z

A�µ(x)

n�µb�B dA (4.35)

D�� =
DA�

V

Z

A�µ(x)

n�µb�� dA (4.36)
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In addition, the convective-like transport terms are generated by the mass exchange at
the interfacial areas, and contain the effective velocity-like vectors which are defined
by:

u�� =
DA�

V

✓ Z

A�µ(x)

n�µ ·rb�� dA +

Z

A�µ(x)

n�µsµ�� dA

◆
(4.37)

u�µ =
DA�

V

Z

A�µ(x)

✓
n�µ ·rb�µ � n�µ

�
Keq

µ�s
µ�
� + Keq

µ�s
µ�
�

�◆
dA (4.38)

u�B =
DA�

V

Z

A�µ(x)

n�µ ·rb�B dA (4.39)

u�� =
DA�

V

✓ Z

A�µ(x)

n�µ ·rb�� dA +

Z

A�µ(x)

n�µsµ�� dA

◆
(4.40)

Whitaker (1999) has demonstrated that the convective-like transport term is negligi-
ble for the case of diffusion in porous catalysts and Paine et al. (1983) have shown
that this contribution can be important when convection itself is important. In this
senses in the next section it has been demonstrated that the effective velocity-like
vectors presented here, are negligible for the case of mass transfer by diffusion and
chemical reaction in DES. Lastly, the mass transfer coefficients of species A in Eq.
4.77 are defined as:

av1k
µ�
1 = �DA�

V

Z

A�µ(x)

n�µ ·rsµ�� dA (4.41)

av1k
µ�
1 = �DA�

V

Z

A�µ(x)

n�µ ·rsµ�� dA, (4.42)

in which av1 , is the interfacial area A�µ per unit volume and kµ�
1 is the film mass

transfer coefficient in A�µ the term kµ�
1 is a cross coefficient.

Continuing with this description, the governing averaged equation of species A in
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µ-phase is presented:

"µ
@hCAµiµ

@t| {z }
accumulation

= r ·
⇥
Dµ� ·rhCA�i� + Dµµ ·rhCAµiµ

⇤
| {z }

diffusion

+r ·
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DµB ·rhCBµiµ + Dµ� ·rhCA�i�

⇤
| {z }

diffusion

+r ·
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µ�
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µ�
2 ](hCA�i� �Keq

µ�hCAµiµ)
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exchange term

+ [av1k
µ�
1 + av2k
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2 ](hCA�i� �Keq

µ�hCAµiµ)
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exchange term

� "µkµ
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hCAµiµ �

hCBµiµ

Kµ

◆
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reaction

(4.43)

As Eq. 4.32, Eq. 4.43 contains effective diffusivity tensors, such as Dµµ:

Dµµ = DAµ

✓
"µl +

1

V

Z

Aµ�(x)

nµ�bµµ +
1

V

Z

Aµ�(x)

nµ�bµµ dA

◆
, (4.44)

here the effective diffusivity tensor is function of the molecular diffusivity DAµ, the
volumetric fraction "µ and the structure of the DES through the bµµ-field. It should
be remarked that due to µ-phase is bounded by � and � phases all the effective
coefficients presented in Eq. 4.43 are defined by both integrals, the first over A�µ and
the second over Aµ�, as seen in the following tensors:

Dµ� =
DAµ

V

✓ Z

Aµ�(x)

nµ�bµ� dA +

Z

Aµ�(x)

nµ�bµ� dA

◆
(4.45)

DµB =
DAµ
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nµ�bµB dA +

Z
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nµ�bµB dA

◆
(4.46)

Dµ� =
DAµ

V
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Aµ�

nµ�bµ� dA +

Z

Aµ�(x)

nµ�bµ� dA

◆
(4.47)
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the effective velocity-like vectors of species A in the µ-phase are defined by:

uµ� =
DAµ

V

✓ Z

Aµ�(x)

(nµ� ·rbµ� + nµ�s
µ�
µ ) dA +

Z

Aµ�(x)
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(4.48)
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(4.49)

uµB =
DAµ
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nµ� ·rbµB dA +
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(4.50)
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µ ) dA +
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Aµ�(x)

(nµ� ·rbµ� + nµ�s
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◆

(4.51)

As mentioned, has been demonstrated that the effective velocity-like vectors, are
negligible for the case of mass transfer by diffusion and chemical reaction in DES.
The mass transfer coefficients of species A in the µ-phase are defined by:

�
av1k

µ�
1 + av2k

µ�
2

�
=

DAµ

V

✓ Z

Aµ�(x)

nµ� ·rsµ�µ dA +

Z
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(4.52)
�
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nµ� ·rsµ�µ dA +

Z
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nµ� ·rsµ�µ dA

◆

(4.53)

here, one can observed that Eq. 4.52 - 4.53 are conformed of two transfer coefficients,
av1k

µi
1 and av2k

µi
2 , where av1 , is the interfacial area A�µ per unit volume and av2 ,

is the interfacial area Aµ� per unit volume; kµ�
1 is the film mass transfer coefficient

in A�µ and kµ�
1 is a cross coefficient. In the same way kµ�

2 is the film mass transfer
coefficient in Aµ� and kµ�

2 is a cross coefficient.
The governing averaged equation of species B in µ-phase presents the same form
as 4.43 excluding the exchange terms; as discussed above, species B is restricted to
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µ-phase, and this leads to

"µ
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(4.54)

where effective diffusivity tensors of species are defined by:
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DBµ
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(4.55)
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(4.59)

and the velocity-like vectors of species B in the µ-phase are defined by:

uB� =
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◆
(4.60)
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Finally, the governing averaged equation of species A in �-phase is introduced:
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(4.63)

one can see, as in previous cases, the three types of effective transport coefficients:
the effective diffusivity tensors D�j , the effective velocity-like vectors u�j and the
mass transfer coefficients av2k

µj
2 . The diffusivity tensor D�� is defined by:

D�� = DA�
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"�l +
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V

Z

A�µ(x)

n�µb�� dA

◆
, (4.64)

it is function of the molecular diffusivity DA�, the volumetric fraction "� and the
structure of the DES through the b��-field. The others tensor are defined by:
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DA�
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n�µb�� dA (4.65)
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the effective velocity-like vectors of species A in the �-phase have the form:

u�� =
DA�
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u�B =
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n�µ ·rb�B dA (4.70)

u�� =
DA�

V

✓ Z

A�µ(x)

n�µ ·rb�� dA +

Z

A�µ(x)

n�µsµ�� dA

◆
(4.71)

The cross mass transfer coefficient of species A in the �-phase is defined by:

av2k
µ�
2 = �DA�

V

Z

A�µ(x)

n�µ ·rsµ�� dA, (4.72)

while the mass transfer coefficient related with the internal flux in Aµ� has the form:

av2k
µ�
2 = �DA�

V

Z

A�µ(x)

n�µ ·rsµ�� dA (4.73)

All the effective transport coefficients presented in this section, have been determined
by solving the six local boundary-value problems for unit cells representative of the
DES under consideration. In the following section the determination of theses co-
efficients is presented while the derivation of the closure problem is illustrated in
Appendix A.

4.3 Determination of the effective coefficients

In the preceding section, the closed averaged governing equations for hCA�i� (� =

�, µ,�) have been developed, consequently, in this section the predictions of the
geometrically dependent effective coefficients are presented. For this purpose, the six
closure boundary-value problems for eCA� which compose the closure problem, are
solved in 2D unit cells that take into account the geometric structure of a double
emulsion drop dispersed in the �-phase. Figure 4.2 shows a microscopic image of
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double emulsions (left) and a theoretical representation of a DE (right) where the
unit cell is located.

Experimental System Theoretical model

Unit cell

Figure 4.2: Microscopic image of double emulsions (Aveyard et al. 2003) and his theoretical
representation

For practical purposes, a simpler system of this uni cell is proposed in Figure 4.3
which is composed of three domains, the first one (domain A) illustrated as a blue
square with side `cell, represents the �-phase; the second domain, that symbolized the
µ-phase (domain B), is characterized by a yellow concentric circle with a constant
radius r! . Inside of domain B one green circle or an array of non-touching green
circles depict �-phase and consequently the third domain (domain C). This supposes
that DES is a homogeneous system.

Unit cellUnit cell

`cell
� � phase � � phase

µ � phase

� � phase

Figure 4.3: Unit cell representative of a emulsion drop dispersed in �-phase
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Therefore the behavior of the effective coefficients has been analyzed as function of
the volumetric fractions of the three phases ("�+"µ+"�) and the geometric structure
of the 2D unit cells. It should be noted that, surface of µ�-phases (Aµ� for 3D cases)
depends directly on the number of circles of domain C (�-phase) inside domain B
(µ-phase). To illustrate this situation, one can imagine a double emulsion system
with "� = 0.3 and "! = 0.7, where the domain ! is composed of � and µ-phases, thus
"! = "µ + "�. The proportion between both volumetric fractions, �, can vary from 1,
i.e. the limit case when "µ = "� (geometrically there can not be more �-phase than
µ-phase in the 2D unit cells), up to a very large number in such a way �-phase tends
to disappear, "µ = �"�. In this study, � was varied from 1 to 10. Additionally, the
number of circles (nd) of constant radius, r�, that will conform the domain C must
be established. This relation can be written as follows:
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Figure 4.4: Interfacial surface as a function of the unit cell’s geometry
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(4.74)

Finally, one can calculate the interfacial surfaces for the 2D unit cell with "� = 0.3

and "! = 0.7, according to the following expressions:

Sµ� =

r
"!
⇡

, Sµ� =

r
"�(�)

nd⇡
(4.75)
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A plot of the ratio between both interfacial surfaces is shown in Figure 4.4, here
one can see that in one-circle-�-phase case, the interfacial surface Sµ�, is always
smaller than Sµ� for any value of �. In the opposite way, all occasions that �-phase
is constituted by more than 9 circles, Sµ� is larger than the Sµ� for any value of �.
Nevertheless, in the cases that the �-phase is structured from 2 to 9 circles, the Sµ�

can be larger or smaller than or equal to Sµ� depending on the value of �. Following
this idea and if it is also consider that the effective coefficients are directly related
to the area integrals,

R

A�µ

(·) dA and
R

A�µ

(·) dA, it is natural to ask, how the difference

between the sizes of the interfacial surfaces can affect the effective coefficients?. In
this chapter we continue this discussion by presenting a study of the behavior of the
effective coefficients as a function of the geometry. The computation of the closure
problem, in the 2D unit cells has been carried out using the commercial finite element
solver Comsol Multiphysics 4.3b. The numerical procedure consists of solving the
equations of closure boundary-value problems I - VI, Eq. A.53 - A.122, to determine
the fields of the closure variables and then substitute these values in the equations of
the effective coefficients to predict them.
The study of the behavior of the effective coefficients is presented for two different
volumetric fractions of the external phase:

• Test 1 : when "� = 0.3

• Test 2 : when "� = 0.7.
and considering the ratios of molecular diffusivities as ↵�µ = DA�/DAµ , ↵�µ =

DA�/DAµ and the ratios , ⌦�µ = P�µ

DA�
and ⌦�µ = P�µ

DA�
. In both tests, it has been

considered that the solute A diffuses 10 times faster in the external phase than in
the membrane phase, ↵�µ = 10, and at the same rate in the membrane phase and
globular phase, ↵�µ = 1. Moreover, is supposed that the permeability of A in �µ-
interface is 10 times larger than his molecular diffusivity in the �-phase, ⌦�µ = 10.
And in the opposite way, is established the molecular diffusivity of A in the µ-phase
10 times larger than the permeability in �µ-interface, ⌦�µ = 0.1. The equilibrium
distribution coefficients, Keq

µ� and Keq
µ� are set equal to 2 and 0.1 respectively.

4.3.1 Geometry-dependent effective diffusivity tensors

As mentioned, diffusion terms in the closed averaged equations contain the geometry-
dependent effective diffusivity tensors Dij . One must not forget that the first sub-
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script refers to the phase where the averaged equation is valid and the second the
influence of one of the phases.
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(a) Test 1 : "� = 0.3, "! = 0.7
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(b) Test 2 : "� = 0.7, "! = 0.3

Figure 4.5: Spatial dependence of D��

DAµ
for two different values of "!, taking ↵�µ = 10,↵�µ =

1, ⌦�µ = 10, ⌦�µ = 0.1

Analyzing the difussivity tensors present in the closed averaged equation for �-phase
(Eq. 4.32), in Figure 4.5, it is shown the normalized D�� tensor with the molecular
diffusivity DAµ in terms of the variable "µ = �"�, for a 2D unit cell with one-circle-�-
phase geometry, i.e., when Sµ� > Sµ�; in this figure one can see to types of behavior:
1) the diffusivity tensor increases directly with the volumetric fraction "� , as would
be expected according to

D��

DAµ
= ↵�µ

✓
"�l + 1

V

R

A�µ(x)

n�µb�� dA

◆
;

and 2) the tensor increases directly with "� , however, this influence can increase in
importance if the number of circles of domain C (np) increases, (Sµ� 6 Sµ�), as is
shown in Figure 4.6 where the diffusivity tensor decreases with values of np less than
4.
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Figure 4.6: Spatial dependence of D��

DAµ
for different values of np, taking ↵�µ = 10,↵�µ = 1,

⌦�µ = 10, ⌦�µ = 0.1

It is worthwhile to note that the system in consideration is homogeneous and isotropic
and the 2D unit cell is symmetric, thus for all the diffusivity tensors Dij has been
obtained that:

(Dij)xx = (Dij)yy, (Dij)xy = (Dij)yx = 0 (4.76)
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(a) "! = 0.7, "� = 0.3
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(b) "! = 0.3, "� = 0.7

Figure 4.7: Spatial dependence of D�µ

DAµ
for two different values of "µ, taking ↵�µ = 10,↵�µ =

1, ⌦�µ = 10, ⌦�µ = 0.1
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The behavior of the cross tensors D�µ and D��, also normalized with the molecular
diffusivity DAµ, are presented for both tests in the Figures 4.7 and 4.8, these coeffi-
cients are on the order of the smallest of D��

DAµ
or even orders of magnitude smaller,

almost null. In the case of D�µ

DAµ
(Fig. 4.7), the variations between both tests are

insignificant. In contrast to D�µ

DAµ
, D��

DAµ
tensor changes with respect "µ but the orders

of magnitude are the smallest (Fig. 4.8).
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(a) Test 1 : "� = 0.3, "! = 0.7
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(b) Test 2 : "� = 0.7, "! = 0.3,

Figure 4.8: Spatial dependence of D��

DAµ
for two different values of "µ, taking ↵�µ = 10,↵�µ =

0.1, ⌦�µ = 10, ⌦�µ = 0.1
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Figure 4.9: Spatial dependence of D�µ

DAµ
and D��

DAµ
for different values of np taking "! = 07,

↵�µ = 10,↵�µ = 0.1, ⌦�µ = 10, ⌦�µ = 0.1
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The influence that the Sµ� can have on both cross-tensors (D�µ

DAµ
and D��

DAµ
) are shown

in Figure 4.9; as mentioned D�µ

DAµ
is not a function of the number of np, since S�µ is

constant; on the other hand, D��

DAµ
approaches to zero for large values of np, i.e. for

large values of Sµ�.
Next, the theoretical results for the diffusivity tensors present in the averaged equa-
tion for µ-phase are analyzed. First the Dµµ tensor which has the normal form,

Dµµ

DAµ
=

✓
"µl + 1

V

R

Aµ�(x)

nµ�bµµ + 1
V

R

Aµ�(x)

nµ�bµµ dA

◆
,

increases directly with the volumetric fraction "µ as one can see in Figure 4.10. Com-
paring Test 1 between Test 2, in the same figure, it can also be seen that the tensor
decrease for small values of "�
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(b) Test 2 : "� = 0.7, "! = 0.3

Figure 4.10: Spatial dependence of Dµµ for two different values of "µ, taking ↵�µ =

10,↵�µ = 0.1, ⌦�µ = 10, ⌦�µ = 0.1

Nevertheless in Figure 4.11 is shown that this tensor does not change with the surface
Sµ�. Additionally, the cross-tensor Dµ�

DAµ
is on the order of magnitude smaller than

Dµµ

DAµ
; the changes of this tensor with respect to "� and "! is insignificant as one can

see in Figure 4.12
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Figure 4.11: Spatial dependence of Dµµ

DAµ
for different values of np, taking ↵�µ = 10,↵�µ = 1,

⌦�µ = 10, ⌦�µ = 0.1
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(b) Test 2 : "� = 0.7, "! = 0.3

Figure 4.12: Spatial dependence of D��

DAµ
for two different values of "µ, taking ↵�µ =

10,↵�µ = 0.1, ⌦�µ = 10, ⌦�µ = 0.1

On the other hand, the cross-tensor Dµ�

DAµ
presents the smallest orders of magnitude,

and decreases directly with "�, as shown in Figure 4.13
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(b) Test 2 : "� = 0.7, "! = 0.3

Figure 4.13: Spatial dependence of D��

DAµ
for two different values of "µ, taking ↵�µ =

10,↵�µ = 0.1, ⌦�µ = 10, ⌦�µ = 0.1

The influence that the Sµ� can have on both cross-tensors (Dµ�

DAµ
and Dµ�

DAµ
) are shown

in Figure 4.14. In this case, Dµ�

DAµ
is not a function of the number of np, since S�µ is

constant; on the other hand, Dµ�

DAµ
approaches to zero for large values of np, i.e. for

large values of Sµ�.
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Figure 4.14: Spatial dependence of D�µ

DAµ
and D��

DAµ
for different values of np taking "! = 07,

↵�µ = 10,↵�µ = 0.1, ⌦�µ = 10, ⌦�µ = 0.1

Finally, the results for the diffusivity tensors present in the averaged equation for
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�-phase are analyzed. First the D�� tensor which has the normal form,

D�� = DA�

✓
"�l + 1

V

R

A�µ(x)

n�µb�� dA

◆
,

increases directly with the volumetric fraction "� as one can see in Figure 4.15. Com-
paring Test 1 between Test 2, in the same figure, it can also be seen that the tensor
decrease for small values of "�
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(b) Test 2 : "� = 0.7, "! = 0.3

Figure 4.15: Spatial dependence of D�� for two different values of "µ, taking ↵�µ =

10,↵�µ = 0.1, ⌦�µ = 10, ⌦�µ = 0.1
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Nevertheless in Figure 4.16 is shown that this tensor decreases with large values of
surface Sµ�. Additionally, the cross-tensor D��

DAµ
is on the order of magnitude smaller

than D��
DAµ

; the changes of this tensor with respect to "� and "! is insignificant how
one can see in Figure 4.17.
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Figure 4.16: Spatial dependence of Dµµ

DAµ
for different values of np, taking ↵�µ = 10,↵�µ = 1,

⌦�µ = 10, ⌦�µ = 0.1
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(a) Test 1 : "� = 0.3, "! = 0.7

0.35 0.40 0.45 0.50 0.55 0.60 0.65
�µ

0.00000

0.00002

0.00004

0.00006

0.00008

0.00010

0.00012

0.00014

0.00016

0.00018

D��

Dµ

xx-component
yy-component

0.050.100.150.200.250.300.35
��

(b) Test 2 : "� = 0.7, "! = 0.3

Figure 4.17: Spatial dependence of D��

DAµ
for two different values of "µ, taking ↵�µ =

10,↵�µ = 0.1, ⌦�µ = 10, ⌦�µ = 0.1

On the other hand, the cross-tensor D�µ

DAµ
presents the smallest orders of magnitude,
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and decreases directly with "�, as shown in Figure 4.13
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(b) Test 2 : "� = 0.7, "! = 0.3

Figure 4.18: Spatial dependence of D�µ

DAµ
for two different values of "µ, taking ↵�µ =

10,↵�µ = 0.1, ⌦�µ = 10, ⌦�µ = 0.1

The influence, that the Sµ� can have on both cross-tensors (D��

DAµ
and D�µ

DAµ
) are shown

in Figure 4.19. In both cases, the cross-tensor are a function of the number of np,
these approach to zero for large values of np, i.e. for large values of Sµ�.

0.35 0.40 0.45 0.50 0.55 0.60 0.65

�µ

0.00000

0.00002

0.00004

0.00006

0.00008

0.00010

0.00012

0.00014

0.00016

0.00018

D��

Dµ

np=1
np=3
np=4
np=9
np=20
np=60

0.050.100.150.200.250.300.35
��

(a) D��

DAµ

0.35 0.40 0.45 0.50 0.55 0.60 0.65

�µ

0.00000

0.00005

0.00010

0.00015

0.00020

0.00025

0.00030

0.00035

0.00040

D�µ

Dµ

np=1
np=3
np=4
np=9
np=20
np=60

0.050.100.150.200.250.300.35
��

(b) D�µ

DAµ

Figure 4.19: Spatial dependence of D��

DAµ
and D�µ

DAµ
for different values of np taking "! = 07,

↵�µ = 10,↵�µ = 0.1, ⌦�µ = 10, ⌦�µ = 0.1
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4.3.2 Geometry-dependent mass transfer coefficients

Regarding the behavior of the 4 mass transfer coefficients which have been normalized
with `2cell

DAµ
, here the results for Test 1 are presented. First in Figure 4.20 one can

observe the mass transfer coefficients related with the averaged equations for � and
µ-phases. Both coefficients increase with "µ and also are a function of the np variable.
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Figure 4.20: Spatial dependence of: av1k�µ
1 `2cell

DAµ
and av1k��

1 `2cell
DAµ

, taking ↵�µ = 10,↵�µ = 0.1,
⌦�µ = 10, ⌦�µ = 0.1

In contrast with Figure 4.20, Figure 4.21 present the mass transfer coefficients related
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with the averaged equations for µ and �-phases. Both coefficients decrease with "�

and also are a function of the np variable.
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(a) Test 1 : "� = 0.3, "! = 0.7

0.35 0.40 0.45 0.50 0.55 0.60 0.65

�µ

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

av2k
µ�
2 �2

cell

Dµ

np=1
np=3
np=9
np=20
np=60

0.050.100.150.200.250.300.35
��
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Figure 4.21: Spatial dependence of: av2kµ�
2 `2cell

DAµ
and av2kµ�

2 `2cell
DAµ

, taking ↵�µ = 10,↵�µ = 0.1,
⌦�µ = 10, ⌦�µ = 0.1

4.3.3 Effective velocity-like vectors

The effective velocity-like vectors have been also determined; since, all of them for
both test have very small values, of orders of magnitude of 10�10, their contribution
in the averaged equations has been considered negligible. Due to the above stated,
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the corresponding figures are not presented.

4.4 Three-phase simplified model

Finally, after determination and analysis of the different effective coefficients pre-
sented in the closed set of averaged equations describing the macroscopic mass trans-
port of species A in this three-phase system, it was possible to simplify the problem
obtaining:
Governing averaged equation of species A in �-phase:

"�
@hCA�i�

@t| {z }
accumulation

= r ·
⇥
D�� ·rhCA�i� + D�µ ·rhCAµiµ

⇤
| {z }

diffusion

+ av1k
µ�
1 (Keq

µ�hCAµiµ � hCA�i�)| {z }
exchange term

+ av1k
µ�
1 (Keq

µ�hCAµiµ � hCA�i�)| {z }
exchange term

(4.77)

Governing averaged equation of species A in µ-phase:

"µ
@hCAµiµ

@t| {z }
accumulation

= r ·
⇥
Dµ� ·rhCA�i� + Dµµ(x) ·rhCAµiµ

⇤
| {z }

diffusion

+ [av1k
µ�
1 + av2k

µ�
2 ](hCA�i� �Keq

µ�hCAµiµ)
| {z }

exchange term

+ [av1k
µ�
1 + av2k

µ�
2 ](hCA�i� �Keq

µ�hCAµiµ)
| {z }

exchange term

� "µkµ

✓
hCAµiµ �

hCBµiµ

Kµ

◆

| {z }
reaction

(4.78)

Governing averaged equation of species B in µ-phase:

"µ(x)
@hCBµiµ

@t| {z }
accumulation

= r ·
⇥
DBB(x) ·rhCBµiµ

⇤
| {z }

diffusion

+ "µ(x)kµ

✓
hCAµiµ �

hCBµiµ

Kµ

◆

| {z }
reaction

(4.79)
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Governing averaged equation of species A in �-phase:

"�
@hCA�i�

@t| {z }
accumulation

= r ·
⇥
D�� ·rhCA�i�

⇤
| {z }

diffusion

� k�"�hCA�i�| {z }
reaction

+ av2k
µ�
2 (Keq

µ�hCAµiµ � hCA�i�)| {z }
exchange term

(4.80)

In summary, the Three-phase model under non-local mass equilibrium conditions is
composed of 3 coupled averaged equations, each one describing the mass transfer
of species A in the corresponding phase by the accumulation, diffusion and mass
transfer exchange terms. Eqs. (4.77)-(4.80) are valid everywhere in the homogeneous
averaged system. Detailed information about the structure and transfer phenomena
in the DE drops by chemical reaction and permeation in the microscale, Scale III, is
represented in the effective coefficients.
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5.1 Spatial smoothing (!-region)

The purpose of this chapter is to develop the volume averaged equations that describe
the transport of species A in the homogeneous !-region, this can be done considering
the governing equations in the µ and � phases. Therefore the system under considera-
tion is illustrated in Figure 5.1 and the governing equations and boundary conditions
are given by:

In µ-phase

@CAµ

@t
= r · (DAµrCAµ)�Rµ (5.1)

@CBµ

@t
= r · (DBµrCBµ) + Rµ (5.2)

In �-phase

@CA�

@t
= r · (DA�rCA�)�R� (5.3)

The kinetics of the reversible and irreversible chemical reactions are:

Rµ = kµ

✓
CAµ �

CBµ

Kµ

◆
(5.4)

R� = k�CA� (5.5)

Eqs. 5.1-5.3 are associated to the interfacial boundary conditions at Aµ�:

� nµ� · DAµrCAµ = �nµ� · DA�rCA� (5.6)

� n�µ · DA�rCA� = P�µ(CA� �Keq
µ�CAµ) (5.7)

� nµ� · DBµrCBµ = 0 (5.8)

The local equations 5.1 - 5.3 are associated with averaging volume V illustrated in
Figure 3.4 and detailed in Figure 5.1, where `µ and `� represent the characteristic
lengths for the µ and � phases respectively. The averaging volume is defined as:

V = Vµ(x) + V�(x) (5.9)

In the same way as was done in previous sections, for purposes of spatial smoothing,
a position vector r� located in �-phase, a position vector x located in the centroid
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µ � phase + � � phase

V = Vµ + V�

r0

`�
`µ

L

L � L � r0

Figure 5.1: Averaging volume for the drop emulsion (µ-�(-system, !-region

of the averaging volume and the relative position vector y� used to locate points in
the �-phase (� = µ,�) relative to the centroid of V were defined. Consequently, the
superficial averaging operator of a continuous property,  � has the form:

h �i|x =
1

V

Z

V�(x)

 �|x+y�
dV (5.10)

The intrinsic averaging operator is defined as

h �i�|x =
1

V�

Z

V�(x)

 �|x+y�
dV (5.11)

and both averaging operators are related by

h �i = "�(x)h �i� (5.12)

Where "� = V�(x)/V is the volume fraction of the �-phase within the averaging
domain, and therefore

"µ(x) + "�(x) = 1 (5.13)
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In the above expressions, we have explicitly indicated the spatial dependence of vol-
ume averaged quantities, this is convenient for the derivation of average equations
that are valid everywhere in !-region.

5.1.1 Averaged equations

As in the previous chapter, the process of volume averaging is initiated by applying
the superficial averaged operator, Eq. 5.10, to the governing equations Eqs. 5.1-5.3;
then, the Spatial Averaging Theorem for the µ-� system, Eq. 5.14 :

hr · a�i = r · ha�i+
1

V

Z

Aµ�(x)
nµ� · a�|x+y� dA, (5.14)

has been used to interchange differentiation and integration and to express the dif-
fusive flux in terms of averaged concentrations, considering that DAµ and DBµ are
constants in the averaging volume; and in this way, obtaining the averaged equations
as function of the volume averaged and local concentrations. Finally, as stated before,
for developing the non-closed averaged equations of A in µ and � phases the local
concentrations were decomposed according to Gray (1975) as:

Ci,� = hCi,�i� + eCi,�, where i = A, B; (5.15)

here the average concentration undergoes significant changes only over the large
length-scale L and the spatial deviation concentrations are dominated by the small
length-scales `µ and `� (See Figure 5.1). As a result of the averaging procedure, one
obtains, in Eq. 5.16 - Eq. 5.18, the non-closed averaged equations of species i in
µ and � phases. It should be noted that at this point no significant simplifications
have been performed in the spatial smoothing process thus, the non-closed averaged
equations are more complicated than their point counterparts. For example, the
non-closed averaged equation of A in µ-phase, Eq. 5.16, has the expected terms i.e.,
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accumulation, diffusion and reversible reaction, and additional non-local terms:

"µ(x)
@hCAµiµ|x

@t
= r ·


DAµ

✓
"µrhCAµiµ|x

◆�

+r ·

DAµ

✓
1

V

Z

Aµ�(x)

nµ�( eCAµ|x+y�
+ hCAµiµ|x+y�

� hCAµiµ|x) dA

◆�

+
1

V

Z

Aµ�(x)

nµ� · DAµ
�
rhCAµiµ|x+y�

+r eCAµ|x+y�

�
dA

� "µ(x)kµ

✓
hCAµiµ|x �

hCBµiµ|x
Kµ

◆
(5.16)

Moreover, as in the previous case, the non-closed averaged equation of B in µ-phase
does not contain the non local terms coming from the internal flux, since species B

is insoluble in � and � phases, therefore this equation can be written as:

"µ(x)
@hCBµiµ|x

@t
= r ·


DBµ

�
"µrhCBµiµ|x

◆�

+r ·

DBµ

✓
1

V

Z

Aµ�(x)

nµ�( eCBµ|x+y�
+ hCBµiµ|x+y�

� hCBµiµ|x) dA

◆�

+ "µ(x)kµ

✓
hCAµiµ|x �

hCBµiµ|x
Kµ

◆
, (5.17)

nevertheless, Eq. 5.17 has the accumulation, diffusion and reversible reaction terms,
and additional non-local terms. Finally the non-closed averaged equation of species
A in �-phase is presented:

"�(x)
@hCA�i�|x

@t
= r ·


DA�

✓
"�rhCA�i�|x

◆�

+r ·

DA�

✓
1

V

Z

A�µ(x)
n�µ( eCA�|x+y�

+ hCA�i�|x+y�
� hCA�i�|x) dA

◆�

+
1

V

Z

A�µ(x)
n�µ · DA�r

�
hCA�i�|x+y�

+ eCA�|x+y�

�
dA

� k�"�(x)hCA�i�|x (5.18)

Eq. 5.18 contains the expected terms of accumulation, diffusion and irreversible reac-
tion and, additional non-local terms. As discussed in the previous chapter, Eqs. 5.16
- 5.18 are non-local transport equations since the presence of the spatial deviation
concentrations, eCi�|x+y�

, and the volume average concentrations, hCi�i�|x+y�
, eval-

uated at points other that the centroid x. In order to express these equations only
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in terms of volume averaged quantities it is indispensable to 1) impose the following
length-scale constraint,

`µ, `� ⌧ r0 ⌧ L, (5.19)

and 2) derive and solve the closure problems related to the spatial deviation concen-
trations, eCi�. Therefore, in order to continue this analysis and simplify the averaged
equations and obtain their closed form, a closure problem was developed which en-
ables to predict the eCi,�. The details of the derivation and formal solution of the
closure problem are quite lengthy and are provided in Appendix B

5.1.2 Closure variables

With the purpose of obtaining a closed form for Eqs. 5.16 - 5.18, the formal solution
of the spatial deviation concentrations is presented:

eCAµ = bµµ ·rhCAµiµ + bµ� ·rhCA�i� + bµB ·rhCBµiµ (5.20)

+ sµ
�
hCA�i� �Keq

µ�hCAµiµ
�

eCBµ = bBµ ·rhCAµiµ + bB� ·rhCA�i� + bBB ·rhCBµiµ (5.21)

+ sB
�
hCA�i� �Keq

µ�hCAµiµ
�

eCA� = b�µ ·rhCAµiµ + b�� ·rhCA�i� + b�B ·rhCBµiµ (5.22)

� s�
�
Keq

µ�hCAµiµ � hCA�i�
�

These expressions, have been proposed in terms of the sources of the boundary-value
problems for eCi�. As previously explained, the details of the development of these
boundary-value problems are in Appendix B. The variables bji, sj , where j = µ, B,�

and i = µ,�, B are the closure variables, their derivation has been performed by
considering the following length-scale constraints:

r0 ⌧ L (5.23)

r20 ⌧ L2 (5.24)

`�, `µ ⌧ L (5.25)

where it has been assumed that the characteristic lengths associated to the spatial
variations of the volume averaged concentrations and their gradients, can be repre-
sented by the macroscopic length, L. In addition, the derivation of , eCi,�, requires
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satisfying the following time-scale constraint:

DA�t⇤

`2�
� 1 (5.26)

5.1.3 Closed averaged equations in !-region

In this section the averaged equations valid in the homogeneous !-region are pre-
sented. As mentioned, the non-local mass equilibrium assumption has been imposed,
resulting in a local volume averaged equations system formed by coupled equations,
each one describing the mass transfer of species i in the corresponding phase. Each
equation contains terms of accumulation, diffusion, reaction, mass transfer exchange
and convective-like transport. The latter terms are composed of effective coefficients
which provide information about one of the phases. For example, governing averaged
equation of species A in µ-phase, Eq. 5.27, has 3 effective diffusivity tensors with
the form Dµj where j can be µ,�, B, therefore when j = �, Dµ� contributes with
information about the structure of the emulsion drop related to �-phase.

"µ
@hCAµiµ

@t| {z }
accumulation

= r ·
⇥
Dµµ ·rhCAµiµ + DµB ·rhCBµiµ + Dµ� ·rhCA�i�

⇤
| {z }

diffusion

+r ·
⇥
uµµhCAµiµ + uµBhCBµiµ + uµ�hCA�i�]| {z }

convective-like transport term

+ (avk)(hCA�i� �Keq
µ�hCAµiµ)

| {z }
exchange term

� "µ(x)kµ

✓
hCAµiµ �

hCBµiµ

Kµ

◆

| {z }
reaction

,

(5.27)

it should be noted that the interfacial boundary conditions 5.6 and 5.7 have influenced
the volume averaged equation 5.27 since the interfacial flux is incorporated directly
into it by means of the exchange term. In the case of diffusion term, diffusivity tensor
Dµµ is defined as:

Dµµ = DAµ

✓
"µl +

1

V

Z

Aµ�

nµ�bµµ dA

◆
(5.28)

on can observe that this tensor is function of the molecular diffusivity DAµ, the
volumetric fraction "µ and the structure of the emulsion drop through the bµµ-field.
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The others difussivity tensors have the form:

DµB =
DAµ

V

Z

Aµ�(x)

nµ�bµB dA (5.29)

Dµ� =
DAµ

V

Z

Aµ�(x)

nµ�bµ� dA (5.30)

The position-dependent effective velocity-like vectors of species A in the µ-phase are
represented as:

uµµ =
DAµ

V

✓ Z

Aµ�(x)

nµ� ·rbµµ dA�Keq
µ�

Z

Aµ�(x)

nµ�sµ dA

◆
(5.31)

uµB =
DAµ

V

✓ Z

Aµ�(x)

nµ� ·rbµB dA

◆
(5.32)

uµ� =
DAµ

V

✓ Z

Aµ�(x)

nµ� ·rbµ� dA +

Z

Aµ�(x)

n�µsµ dA

◆
(5.33)

it will be demonstrated that the effective velocity-like vectors presented here, are
negligible for the case of mass transfer by diffusion and chemical reaction in DES,
being consistent with the exposed by Whitaker (1999) and Paine et al. (1983). Lastly,
the mass transfer coefficient of species A in the µ-phase is presented in Eq. 5.34,

avk =
DAµ

V

Z

Aµ�(x)

nµ� ·rsµ dA (5.34)

here av is the interfacial area Aµ� per unit volume and k is the film mass transfer
coefficient in Aµ�. Continuing with this analysis, the governing averaged equation of
species B in µ-phase is presented:

"µ
@hCBµiµ

@t| {z }
accumulation

= r ·
⇥
DBµ ·rhCAµiµ + DBB ·rhCBµiµ + DB� ·rhCA�i�

⇤
| {z }

diffusion

+r ·
⇥
uBµhCAµiµ + uBBhCBµiµ + uB�hCA�i�]| {z }

convective-like transport term

+ "µkµ

✓
hCAµiµ �

hCBµiµ

Kµ

◆

| {z }
reaction

(5.35)

it is also important to highlight that in the governing averaged equation of species
B in µ-phase, Eq. 5.35 there is no mass exchange term since species B is restricted
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to the membrane µ-phase. In Eq. 5.35, the position-dependent effective diffusivity
tensors of species B in the µ-phase are defined by:

DBµ =
DBµ

V

Z

Aµ�(x)

nµ�bBµ dA (5.36)

DBB = DBµ

✓
"µ(x)1 +

1

V

Z

Aµ�(x)

nµ�bBB dA

◆
(5.37)

DB� =
DBµ

V

Z

Aµ�(x)

nµ�bB� dA, (5.38)

and the position-dependent effective velocity-like vectors have the form:

uBµ = �DAµ

V

✓
Keq

µ�

Z

Aµ�(x)

nµ�sB dA

uB� =
DBµ

V

✓ Z

Aµ�(x)

nµ�sB� dA

◆
(5.39)

Lastly, the averaged equations system valid in !-region contains the governing aver-
aged equation of species A in �-phase which is defined by:

"�
@hCA�i�

@t| {z }
accumulation

= r ·
⇥
D�µ ·rhCAµiµ + D�B ·rhCBµiµ + D�� ·rhCA�i�

⇤
| {z }

diffusion

+r ·
⇥
u�µhCAµiµ + u�BhCBµiµ + u��hCA�i�]| {z }

convective-like transport term

+ (avk)(Keq
µ�hCAµiµ � hCA�i�)| {z }
exchange term

� k�"�(x)hCA�i�| {z }
reaction

(5.40)

As expected, Eq. 5.40 presents accumulation, diffusion, reaction, mass transfer ex-
change and convective-like transport terms. The position-dependent effective diffu-
sivity tensors are defined by:

D�µ =
DA�

V

Z

A�µ(x)

n�µb�µ dA (5.41)

D�B =
DA�

V

Z

A�µ(x)

n�µb�B dA (5.42)

D�� = DA�

✓
"�l +

1

V

Z

A�µ(x)

n�µb�� dA

◆
(5.43)
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and the position-dependent effective velocity-like vectors of species A in the �-phase
have the form:

u�µ =
DA�

V

✓ Z

A�µ(x)

n�µ ·rb�µ dA�Keq
µ�

Z

A�µ(x)

n�µs� dA

◆
(5.44)

u�B =
DA�

V

Z

A�µ(x)

n�µ ·rb�B dA (5.45)

u�� =
DA�

V

✓ Z

A�µ(x)

n�µ ·rb�� dA +

Z

A�µ(x)

n�µs� dA

◆
(5.46)

The mass transfer coefficient (Eq. 5.34)can be also represented by:

(avk) = �DA�

V

Z

A�µ(x)

n�µ ·rs� dA, (5.47)

since avk = avkµ = avk�. Once the volume averaged equations representing the mass
transport by diffusion and reaction in the !-region were obtained, the second level of
averaging between ! and ⌘ regions can be developed.

5.2 Determination of the effective coefficients

The closed averaged governing equations for hCA�i� (� = µ,�) have been developed,
consequently, in this section the predictions of the geometrically dependent effective
coefficients are presented. For this purpose, the four closure boundary-value problems
for eCA� which compose the closure problem, are solved in 2D unit cells that take into
account the geometric structure of an emulsion drop. Figure 5.2 shows a microscopic
image of emulsion drop (left) and a theoretical representation of a emulsion drop
(right) where the unit cell is located.
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Experimental System Theoretical model

Unit cell

Figure 5.2: Microscopic image of an emulsion drop (Aveyard et al. 2003) and his theoretical
representation

µ � phase

� � phase

Figure 5.3: Chang’s-like unit cell, representative of an emulsion emulsion drop (µ+�-
phases)

For practical purposes, a simpler system of this uni cell is proposed in Figure 5.3
which is composed of two domains, the first one (domain A) illustrated as a yellow
circle with radius rµ, represents the µ-phase. Inside of domain A one green circle or
an array of non-touching green circles depict �-phase and consequently the second
domain (domain B). This supposes that emulsion drop is a homogeneous system.
Therefore the behavior of the effective coefficients has been analyzed as function of
the volumetric fractions of the two phases ("µ + "�) and the geometric structure of
the 2D unit cells. It should be noted that, surface of µ�-phases (Aµ� for 3D cases)
depends directly on the number of circles of domain B (�-phase). The proportion
between both volumetric fractions, �, can vary from 1, i.e. the limit case when "µ = "�
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(geometrically there can not be more �-phase than µ-phase in the 2D unit cells), up
to a very large number in such a way �-phase tends to disappear, "µ = �"�. In this
study, � has been varied from 1 to 10. Additionally, the number of circles (nd) of
constant radius, r�, that will conform the domain B must be established.The study of
the behavior of the effective coefficients is presented considering the ratio of molecular
diffusivities as, ↵�µ = DA�/DAµ and the ratio, ⌦�µ = P�µ

DA�
.

It has been considered that the solute A diffuses 10 times faster in the µ-phase than in
the internal phase, ↵�µ = 0.1. The molecular diffusivity of A in the µ-phase 10 times
larger than the permeability in �µ-interface, ⌦�µ = 0.1. The equilibrium distribution
coefficient Keq

µ� is set equal to 2.

5.2.1 Geometry-dependent effective diffusivity tensors

As mentioned in previous section, diffusion terms in the closed averaged equations
contain the geometry-dependent effective diffusivity tensors Dij . One must not forget
that the first subscript refers to the phase where the averaged equation is valid and
the second the influence of one of the phases.
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Figure 5.4: Dµµ

Dµ
and Dµ�

Dµ
taking ↵�µ = 0.1, ⌦�µ = 0.1

Analyzing the difussivity tensors present in the closed averaged equation for µ-phase
(Eq. 5.27), in Figure 5.4 (a), it is shown the normalized Dµµ tensor with the molec-
ular diffusivity DAµ in terms of the variable "µ = �"�, for a Chang’s-type unit cell
(Figure 5.3); in this figure one can see that the diffusivity tensor increases directly
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with the volumetric fraction "µ, as would be expected according to

Dµµ

Dµ
=

✓
"µl +

1

V

Z

Aµ�(x)

nµ�bµµ dA

◆
,

however the tensor is not affected by the number of circles of �-phase, i.e. is not
a function of the Sµ�. On the contrary, the cross-tensor D�µ decrease with "µ and
is affected by the surface Sµ�. The D�µ

Dµ
is smallest compare to Dµµ

Dµ
as one can

see in Figure 5.4 (b). Concerning with the difussivity tensors present in the closed
averaged equation for �-phase, Eq. 5.40, one can observe in Figure 5.5 (a) that
the diffusivity tensor increases directly with the volumetric fraction "�, as would be
expected according to

D��

Dµ
= ↵�µ

✓
"�l +

1

V

Z

A�µ

n�µb�� dA

◆
,

moreover, the tensor is affected by the number of circles of �-phase, which decrease
with large values of Sµ�. The cross-tensor Dµ� is smallest compare to D�� and is
equal to D�µ as is shown in Figure 5.5 (b). This behavior has already been found
in the teoretical studies of Quintard and Whitaker (1993) and Aguilar-Madera et al.
(2011) for heat conduction between a porous medium and a fluid.
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5.2.2 Geometry-dependent mass transfer coefficients

Regarding the behavior of the mass transfer coefficient which have been normalized
with `2cell

DAµ
, here the results are presented. In Figure 5.6 one can observe the mass

transfer coefficient increase with "� and also are a function of the np variable.
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Figure 5.6: Spatial dependence of av1k��
1 `2cell

DAµ
, taking ↵�µ = 0.1,⌦�µ = 0.1

5.2.3 Effective velocity-like vectors

As in the three-phase model, the effective velocity-like for this case has been also
determined; since, all of them have very small values, of orders of magnitude of
10�10, their contribution in the averaged equations has been considered negligible.
Due to the above stated, the corresponding figures are not presented.

5.3 Large-scale averaging (2-region averaging volume)

Once the µ and � phases are modeled as continua and the governing equations at the
emulsion drops (Scale III ) are derived, a new system by regions is defined as is shown
in Figure 5.7 where homogeneous ⌘-region, formed by �-phase, contain drops of !-
region. Thus the description of the transport of species A by diffusion and reaction
in the !-⌘ system is:
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In ⌘-region

@hCA�i⌘�
@t

= r · (DA⌘rhCA�i⌘�) (5.48)

In !-region

In µ-phase

"µ
@hCAµiµ!

@t| {z }
accumulation

= r ·
⇥
Dµµ ·rhCAµiµ!

⇤
| {z }

diffusion

+ (avk)(hCA�i�! �Keq
µ�hCAµiµ!)

| {z }
exchange term

� "µkµ

✓
hCAµiµ! �

hCBµiµ!
Kµ

◆

| {z }
reaction

(5.49)

"µ
@hCBµiµ!

@t| {z }
accumulation

= r ·
⇥
DBB ·rhCBµiµ!

⇤
| {z }

diffusion

+ "µkµ

✓
hCAµiµ! �

hCBµiµ!
Kµ

◆

| {z }
reaction

(5.50)

In �-phase

"�
@hCA�i�!

@t| {z }
accumulation

= r ·
⇥
D�� ·rhCA�i�!

⇤
| {z }

diffusion

+ (avk)(Keq
µ�hCAµiµ! � hCA�i�!)

| {z }
exchange term

� k�"�(x)hCA�i�!| {z }
reaction

(5.51)

The boundary condition at the inter-region ⌘! i.e. at A⌘!, was based on the rough as-
sumption that spatial deviation of the concentrations in ⌘ and ! regions ( eCA,� , eCA,µ)
are negligible, thus one can express the local concentrations in terms of local averaged
concentrations as:

CA� ⇡ hCA�i�⌘ (5.52)

CAµ ⇡ hCAµiµ! (5.53)

Following this idea, and observing the diffusion term in Eq. 5.49, one can substitute
Eqs. 5.52 - 5.53 into the local boundary conditions, Eqs. 3.8 - 3.9, and use the
diffusion term to define the regional boundary conditions as:

� n!⌘ ·
�
Dµµ ·rhCAµiµ!

�
= �n!⌘ · DA⌘rhCA�i⌘� (5.54)

� n⌘! · DA⌘rhCA�i⌘� = P⌘!(hCA�i⌘� �Keq
⌘!hCAµiµ!) (5.55)
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A similar analysis was done for the regional boundary condition for species B, ob-
taining:

�n!⌘ ·
�
DBB(x) ·rhCBµiµ!

�
= 0 (5.56)

Here, n⌘! is the unit normal vector pointing from ⌘-region to !-region (n⌘!=�n!⌘).
The permeability of the ⌘!-region is represented by P⌘! and Keq

!⌘ is the equilibrium
distribution coefficient for the solute A; both coefficients are functions of local equi-
librium constants. The diffusivities tensor, Dµµ, DBB, D��, are also constant. It
should be noted that for the ⌘-region, since it is a homogeneous region formed by
�-phase only, we know that D⌘⌘ �! DA⌘ and this diffusivity is also constant.

V = V! + V⌘

R0 = O(L)

`⌘

`!

µ � phase + � � phase ! � region

Figure 5.7: Macroscopic L and averaging volume for ⌘-! regions

Once the problem of regions is established, in the same way as was done in the previ-
ous problems to spatially smooth the local averaged equations, an regional averaging
domain of volume V is defined:

V = V⌘(x) + V!(x) (5.57)

In the method of large-scale averaging, one will make use of both superficial averages
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and intrinsic averages. Thus, the definition of the superficial regional averaging op-
erator of a continuous property in a region, h �i�� (� = µ,� and � = !, ⌘), is defined
as:

{h �i��}|x =
1

V

Z

V�(x)

h �i��|x+y� dV (5.58)

where V� is the domain occupied by the �-region in the averaging volume, x is the
position vector locating the centroid of V and y� is the vector that locates points of
the �-region within the V . The intrinsic regional averaging operator is defined as

{h �i��}
�|x =

1

V�

Z

V�(x)

h �i��|x+y� dV (5.59)

Both averaging operators are related by

{h �i��} = "�(x){h �i��}
� (5.60)

Where "� = V�(x)/V is the volume fraction of the �-region within the averaging
domain, therefore:

"⌘(x) + "!(x) = 1 (5.61)

The averaging theorem for a two-region model, (Howes and Whitaker 1985), can be
expressed as

{rh �i��} = r{h �i��} +
1

V

Z

A⌘!(x)
n⌘!h �i��|x+y� dA (5.62)

In the nomenclature illustrated in Eqs. 5.58 - 5.62 the subscripts always identify
phases or regions while the presence of a superscript always indicates an intrinsic
average. Even though the process under investigation is mathematically analogous to
the previous process, the physics of the regional system is considerably more complex
and it is best to retain the complex nomenclature as a reminder of physics of the
emulsion drop, i.e. in !-region.

5.3.1 Averaged model

The process of volume averaging is initiated by applying the superficial averaged
operator, Eq. 5.58, to the governing equations Eqs. 5.48 - 5.51. In this respect Eq.
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5.48 is written as:

@{CA⌘}|x
@t

=r ·

DA⌘

✓
r{CA⌘}|x +

1

V

Z

A⌘!(x)

n⌘!CA⌘|x+y� dA

◆�

+
1

V

Z

A⌘!(x)

n⌘! · DA⌘rCA⌘|x+y� dA, (5.63)

up here, it should be pointed out that, since the homogeneous ⌘-region is just formed
by �-phase and in sake of simplify the nomenclature, the local intrinsic averaged
concentration of species A in ⌘-region, hCA�i�⌘ , has been substituted by CA⌘. As
in the previous spatial smoothing procedure, the desired dependent variable is an
intrinsic averaged quantity, thus making use of the relation in Eq. 5.60, Eq. 5.63 can
be rewritten under the form:

"⌘(x)
@{CA⌘}⌘|x

@t
= r ·


DA⌘

✓
"⌘r{CA⌘}⌘|x

◆�

+r ·

DA⌘

✓
1

V

Z

A⌘!(x)

n⌘!(CA⌘|x+y� � {CA⌘}⌘|x) dA

◆�

+
1

V

Z

A⌘!(x)

n⌘! · DA⌘rCA⌘|x+y� dA (5.64)

To obtain the final form of the non-closed averaged equation in ⌘-region the following
relation, deduced from the Spatial Averaging Theorem (SAT)

1

V

Z

A⌘!(x)

n⌘! dA = �r"⌘, (5.65)

has been used in Eq. 5.64. Also in order to remove the local concentration CA⌘|x+y,
the spatial decomposition define by:

CA,⌘|x+y⌘ = {CA,⌘}⌘|x+y⌘ + eCA,⌘|x+y⌘ (5.66)

has been applied, thus Eq. 5.64 can be written as:

"⌘(x)
@{CA⌘}⌘|x

@t
= r ·


DA⌘

✓
"⌘r{CA⌘}⌘|x

◆�

+r ·

DA⌘

✓
1

V

Z

A⌘!(x)

n⌘!( eCA⌘|x+y⌘ + {CA⌘}⌘|x+y⌘ � {CA⌘}⌘|x) dA

◆�

+
1

V

Z

A⌘!(x)

n⌘! · DA⌘r
�
{CA⌘}⌘|x+y⌘ + eCA⌘|x+y⌘

�
dA (5.67)
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Eq. 5.67 is the non-closed averaged equation of A in ⌘-region which contains terms of
accumulation, diffusion and additional non-local terms. Eq. 5.67 is obviously more
complicated than its point counterpart since no significant simplifications have been
performed in the spatial smoothing process, this point will be discussed later. It is
worth emphasized that the last term of the left hand side of this equation is related
to the interfacial flux at A⌘! and connects the ⌘-region transport equation to the
!-region transport equations. To continue with the spatial smoothing of Eq. 5.49 -
Eq. 5.51 it is necessary to establish the following regional spatial decomposition of a
local averaged concentration :

hCj�i�!|x+y⌘ = {hCj�i�!}!|x+y! + eCj�! |x+y! , j = A, B;� = µ,�, (5.68)

It should be noted that, Eqs. 5.66 and 5.68 also represents a decomposition of length
scales. Thus the average concentration undergoes significant changes only over the
large length-scale L and the spatial deviation concentrations are dominated by the
small length-scales `⌘ and `! (See Figure 5.7).

Repeating the averaging procedure in Eq. 5.49 - Eq. 5.51, the non-local form of the
regional averaged equations are derived; for example the non-local regional averaged
equation of species A in !-region is defined as:

"!"µ
@{hCAµiµ!}!

@t
= r ·

⇥
Dµµ · "!r{hCAµiµ!}!

⇤

+r ·


1

V

Z

A!⌘(x)

n!⌘ · Dµµ
�
{hCAµiµ!}!|x+y⌘ � {hCAµiµ!}!

�
dA

�

+r ·


1

V

Z

A!⌘(x)

n!⌘ · Dµµ
� eCAµ!|x+y⌘

�
dA

�

+
1

V

Z

A!⌘(x)

n!⌘ · Dµµ ·
�
r{hCAµiµ!}!|x+y! +r eCAµ!|x+y!

�
dA

+ "!(avk)({hCA�i�!}! �Keq
µ�{hCAµiµ!}!)

� "!"µkµ

✓
{hCAµiµ!}! � {hCBµiµ!}!

Kµ

◆
, (5.69)

which contains terms of accumulation, diffusion, mass exchange and, reversible re-
action, and additional non-local terms. In Eq. 5.69 it should be stressed that the
mass exchange term is related to the interfacial mas flux at Aµ�. In contrast with
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this equation the non-local regional averaged equation for species B contains: accu-
mulation, diffusion, reversible reaction, and additional non-local terms as one can see
in the following expression: As mention before, the impermeable nature of species
B, in this regional case in ⌘-region, leads to Eq. ?? without mass exchange term.
Finally the non-local regional averaged equation for species A in !-region is defined
by 5.70 which contains the expected terms of accumulation, diffusion, mass exchange
and irreversible reaction and, additional non-local terms as following:

"!"�
@{hCA�i�!}!

@t
= r ·

⇥
D�� · "!r{hCA�i�!}!

⇤

+r ·


1

V

Z

A!⌘(x)

n!⌘ · D��
�
{hCA�i�!}!|x+y! � {hCA�i�!}!

�
dA

�

+r ·


1

V

Z

A!⌘(x)

n!⌘ · D��
� eCA�!|x+y!

�
dA

�

+
1

V

Z

A!⌘(x)

n!⌘ · D�� ·
�
r{hCA�i�!}!|x+y! +r eCA�!|x+y!

�
dA

+ "!(avk)(Keq
µ�{hCAµiµ!}! � {hCA�i�!}!)

� "!"�k�{hCA�i�!}! (5.70)

At this point it is important to stress that Eqs. 5.67 - 5.70 are non-local regional
averaged transport equations since the presence of the regional spatial deviation con-
centrations, and the regional volume average concentrations, {hCi�i��}� , evaluated
at points other that the centroid x. In order to express these equations only in terms
of regional volume averaged quantities it is indispensable to 1) impose the following
length-scale constraint (Whitaker 1999,Wood 2009),

`⌘, `! ⌧ R0 ⌧ L , (5.71)

and 2) derive and solve the closure problems related to the regional spatial deviation
concentrations, eCi�. Therefore, in order to continue this analysis and simplify the
averaged equations and obtain their closed form, a closure problem was developed
which enables to predict the eCi�. The details of the derivation and formal solution
of the closure problem are quite lengthy and are provided in Appendix B along with
the closure problem for the !-region.
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5.3.2 Closure variables

With the purpose of obtaining a closed form for Eqs. 5.67 - 5.70, the formal solution
of the spatial deviation concentrations is presented:

eCA⌘ =b⌘⌘ ·r{CA⌘}⌘ + b⌘! ·r{hCAµiµ!}! + b⌘� ·r{hCA�i�!}�

+ b⌘B ·r{hCBµiµ!}! � s⌘
�
{CA⌘}⌘ �Keq

⌘!{hCAµiµ!}!
�

(5.72)

eCAµ! =bµ⌘ ·r{CA⌘}⌘ + bµµ ·r{hCAµiµ!}! + bµ� ·r{hCA�i�!}�

+ bµB ·r{hCBµiµ!}! + s!
�
Keq
⌘!{hCAµiµ!}! � {CA⌘}⌘

�
(5.73)

eCBµ! =bB⌘ ·r{CA⌘}⌘ + bBµ ·r{hCAµiµ!}! + bB� ·r{hCA�i�!}�

+ bBB ·r{hCBµiµ!}! + sB
�
Keq
⌘!{hCAµiµ!}! � {CA⌘}⌘

�
(5.74)

eCA�! =b�⌘ ·r{CA⌘}⌘ + b�µ ·r{hCAµiµ!}! + b�� ·r{hCA�i�!}�

+ b�B ·r{hCBµiµ!}! + s�
�
Keq
⌘!{hCAµiµ!}! � {CA⌘}⌘

�
(5.75)

These expressions, have been proposed in terms of the sources of the boundary-
value problems for eCi�. As previously explained, the details of the development
of these boundary-value problems are in Appendix B. The variables bji, sj , where
j = ⌘, µ,B,� and i = ⌘, µ,B,� are the closure variables, their derivation has been
performed by considering the following length-scale constraints:

R0 ⌧ L (5.76)

R2
0 ⌧ L 2 (5.77)

`⌘, `! ⌧ L (5.78)

where it has been assumed that the characteristic lengths associated to the regional
spatial variations of the volume averaged concentrations and their gradients, can be
represented by the system macroscopic length, L. In addition, the derivation of ,
eCi,�, requires satisfying the following time-scale constraint:

DA⌘t⇤

`2⌘
� 1 (5.79)

Diit⇤

`2!
� l; i = µ,� (5.80)
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5.3.3 Closed averaged model

In this section the large-scale averaged equations valid in the regional averaged do-
main are presented. Since the non-local mass equilibrium assumption is used, the
large-scale volume averaged equation system is formed by coupled equations, each
one describing the mass transfer of species i in the corresponding region. As has
been shown in the two previous cases, each equation contains terms of accumulation,
diffusion, reaction, mass transfer exchange and convective-like transport. The lat-
ter terms are composed of large-scale effective coefficients which provide information
about one of the regions. To begin this analysis, the large-scale averaged equation of
species A in ⌘-region, Eq. 5.81, is described:

"⌘
@{CA⌘}⌘

@t| {z }
accumulation

= r ·
⇥
D⌘� ·r{CA⌘}⌘ + D⌘µ ·r{hCAµiµ!}!

⇤
| {z }

diffusion

+r ·
⇥
D⌘� ·r{hCA�i�!}!

⇤
| {z }

diffusion

+r ·
⇥
u⌘�hCA�i� + u⌘µ{hCAµiµ!}! + u⌘BhCBµiµ + u⌘�{hCA�i�!}!]

| {z }
convective-like transport term

+ avk⌘!(Keq
µ�{hCAµiµ!}! � {CA⌘}⌘)| {z }

exchange term

(5.81)

Eq. 5.81 has 3 large-scale effective diffusivity tensors with the form D⌘j where j

can be �, µ,�, therefore when j = µ, D⌘µ contributes with information about the
structure of the emulsion drop related to !-region but also implicitly with the µ-phase.
The exchange term contains the large-scale mass transfer coefficient which has the
information related with regional mass flux. The convective-like transport and the
large-scale vector-like coefficient are negligible as has been discussed throughout this
thesis. More in detail, in Eq. 5.81 one can see three types of effective transport
coefficients: the effective diffusivity tensors D⌘j , the effective velocity-like vectors
u⌘j and the mass transfer coefficient avk⌘!. All these coefficients can be computed
from the fields of the closure variables (see Appendix B). For example the diffusivity
tensor D⌘� is defined as:

D⌘� =DA⌘

✓
"⌘l +

1

V

Z

A⌘!(x)

n⌘!b⌘⌘ dA

◆
(5.82)
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in this case, the effective diffusivity tensor is function of the diffusivity DA⌘, the
volumetric fraction "⌘ and the structure of the DES through the b⌘�-field. In contrast
the others effective diffusivity tensors, presented in Eq. 5.83 - 5.85, are not directly
functions of the"⌘.

D⌘µ =
DA⌘

V

Z

A⌘!(x)

n⌘!b⌘µ dA (5.83)

D⌘B =
DA⌘

V

Z

A⌘!(x)

n⌘!b⌘B dA (5.84)

D⌘� =
DA⌘

V

Z

A⌘!(x)

n⌘!b⌘� dA (5.85)

In addition, the convective-like transport terms are generated by the mass exchange
at the interfacial area, and contain the effective velocity-like vectors which are defined
by:

u⌘� =
DA⌘

V

✓ Z

A⌘!(x)

n⌘! ·rb⌘� dA +

Z

A⌘!(x)

n⌘!s⌘ dA

◆
(5.86)

u⌘µ =
DA⌘

V

Z

A⌘!(x)

✓
n⌘! ·rb⌘µ � n⌘!Keq

µ�s⌘

◆
dA (5.87)

u⌘B =
DA⌘

V

Z

A⌘!(x)

n⌘! ·rb⌘B dA (5.88)

u⌘� =
DA⌘

V

✓ Z

A⌘!(x)

n⌘! ·rb⌘� dA +

Z

A⌘!(x)

n⌘!s⌘ A

◆
(5.89)

As mentioned in the others cases, Whitaker (1999) has demonstrated that the convective-
like transport term is negligible for the case of diffusion in porous catalysts and Paine
et al. (1983) have shown that this contribution can be important when convection
itself is important. In this senses, has been demonstrated that the effective velocity-
like vectors presented here, are negligible for the case of mass transfer by diffusion
and chemical reaction in DES. Lastly, the mass transfer coefficients of species A in
Eq. 5.81 is defined as:

avk⌘! = �DA⌘

V

Z

A⌘!(x)

n⌘! ·rs⌘ dA (5.90)

(5.91)
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in which avk⌘!, is the interfacial area A⌘! per unit volume. Continuing with this
description, the large-scale averaged equation of species A in !-region is presented:

In µ-phase

"!"µ
@{hCAµiµ!}!

@t
= r ·

⇥
D!(µ)⌘ ·r{CA⌘}⌘ + D!(µ)µ ·r{hCAµiµ!}!

⇤
| {z }

diffusion

+r ·
⇥
D!(µ)� ·r{hCA�i�!}!

⇤
| {z }

diffusion

+r ·
⇥
u!(µ)⌘{CA⌘}⌘ + u!(µ)µ{hCAµiµ!}!]

| {z }
convective-like transport term

+r ·
⇥
u!(µ)BhCBµiµ + u!(µ)�{hCA�i�!}!]

| {z }
convective-like transport term

+ avk⌘!(Keq
µ�{hCAµiµ!}! � {CA⌘}⌘)| {z }

exchange term

+ "!(avk)µ({hCA�i�!}! �Keq
µ�{hCAµiµ!}!)

� "!"µkµ

✓
{hCAµiµ!}! � {hCBµiµ!}!

Kµ

◆
(5.92)

As Eq. 5.81, Eq. 5.92 contains effective diffusivity tensors, such as D!(µ)µ:

D!(µ)µ = Dµµ : l

✓
"!l +

1

V

Z

A!⌘(x)

n!⌘bµµ dA

◆
, (5.93)

here the effective diffusivity tensor is function of the effective diffusivity Dµµ, the
volumetric fraction "! and the structure of the DES through the bµµ-field. The
cross-diffusivity tensor are defined as

D!(µ)⌘ =
Dµµ : l

V

✓ Z

A!⌘(x)

n!⌘bµ⌘ dA

◆
(5.94)

D!(µ)B =
Dµµ : l

V

✓ Z

A!⌘(x)

n!⌘bµB dA

◆
(5.95)

D!(µ)� =
Dµµ : l

V

✓ Z

A!⌘(x)

n!⌘bµ� dA

◆
(5.96)

Finally, the governing averaged equation of species A related to �-phase is introduced:
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In �-phase

"!"�
@{hCA�i�!}!

@t
= r ·

⇥
D!(�)⌘ ·r{CA⌘}⌘ + D!(�)µ ·r{hCAµiµ!}!

⇤
| {z }

diffusion

+r ·
⇥
D!(�)� ·r{hCA�i�!}!

⇤
| {z }

diffusion

+r ·
⇥
u!(�)⌘{CA⌘}⌘ + u!(�)µ{hCAµiµ!}!]

| {z }
convective-like transport term

+r ·
⇥
u!(�)BhCBµiµ + u!(�)�{hCA�i�!}!]

| {z }
convective-like transport term

+ avk⌘!(Keq
µ�{hCAµiµ!}! � {CA⌘}⌘)| {z }

exchange term

+ "!(avk)({hCA�i�!}! �Keq
µ�{hCAµiµ!}!)

� "!"�k�{hCA�i�!}! (5.97)

Repiting the procedure, as Eq.5.92, Eq. 5.97 contains effective diffusivity tensors,
such as D!(�)�:

D!(�)� = D�� : l

✓
"!l +

1

V

Z

A!⌘(x)

n!⌘b�� dA

◆
, (5.98)

here the effective diffusivity tensor is function of the effective diffusivity Dµµ, the
volumetric fraction "! and the structure of the DES through the bµµ-field. The
cross-diffusivity tensors are defined as

D!(�)⌘ =
D�� : l

V

✓ Z

A!⌘(x)

n!⌘bµ⌘ dA

◆
(5.99)

D!(�)B =
D�� : l

V

✓ Z

A!⌘(x)

n!⌘bµB dA

◆
(5.100)

D!(�)� =
D�� : l

V

✓ Z

A!⌘(x)

n!⌘bµ� dA

◆
(5.101)

As in the previous model, the effective velocity-like for this case has been also de-
termined; since, all of them have very small values, of orders of magnitude of 10�10,
their contribution in the regional averaged equations has been considered negligible.
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Finally the mass transfer coefficient related with the internal flux in A⌘! has the
form:

avk⌘! = �DA⌘

V

Z

A⌘!(x)

n⌘! ·rs⌘ dA (5.102)

5.4 2-region simplified model

Finally, after determination of the effective coefficients the closed set of equations
describing the macroscopic mass transport of species A in this two-region system, is
given by:

"⌘
@{CA⌘}⌘

@t| {z }
accumulation

= r ·
⇥
D⌘� ·r{CA⌘}⌘ + D⌘µ ·r{hCAµiµ!}!

⇤
| {z }

diffusion

+ avk⌘!(Keq
µ�{hCAµiµ!}! � {CA⌘}⌘)| {z }

exchange term

(5.103)

"!"µ
@{hCAµiµ!}!

@t
= r ·

⇥
D!(µ)⌘ ·r{CA⌘}⌘ + D!(µ)µ ·r{hCAµiµ!}!

⇤
| {z }

diffusion

+r ·
⇥
D!(µ)� ·r{hCA�i�!}!

⇤
| {z }

diffusion

+ avk⌘!(Keq
µ�{hCAµiµ!}! � {CA⌘}⌘)| {z }

exchange term

+ "!(avk)µ({hCA�i�!}! �Keq
µ�{hCAµiµ!}!)

� "!"µkµ

✓
{hCAµiµ!}! � {hCBµiµ!}!

Kµ

◆
(5.104)
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"!"�
@{hCA�i�!}!

@t
= r ·

⇥
D!(�)⌘ ·r{CA⌘}⌘ + D!(�)µ ·r{hCAµiµ!}!

⇤
| {z }

diffusion

+r ·
⇥
D!(�)� ·r{hCA�i�!}!

⇤
| {z }

diffusion

+ avk⌘!(Keq
µ�{hCAµiµ!}! � {CA⌘}⌘)| {z }

exchange term

+ "!(avk)({hCA�i�!}! �Keq
µ�{hCAµiµ!}!)

� "!"�k�{hCA�i�!}! (5.105)

In summary, the Two-region model under non-local mass equilibrium conditions is
composed of 3 coupled averaged equations, each one describing the mass transfer of
species A in the corresponding region by the accumulation, diffusion and mass trans-
fer exchange terms. Eqs. (5.103)-(5.105) are valid everywhere in the homogeneous
averaged system. Detailed information about the structure and transfer phenomena
in the DE drops by chemical reaction and permeation in the microscale, Scale III, is
represented in the effective coefficients.
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6.1 Batch-stirred tank design equation

This chapter is dedicated to the deduction of a design equation for a batch-stirred
tank, where the separation of the solute A in an DE system occurs. The essential
macroscopic characteristic of the tank is the change in the solute concentration that
occurs from the external �-phase to the inlet of droplets of �-phase, and this change
is determined by the diffusion rate and the chemical reactions that take place in the
drop emulsion. Thus, the separation process is analyzed in Scale I, the macroscopic
level (see Figure 6.1)

	

Scale I 
Macroscopic system 

Scale II 
Double emulsion system 

Scale III 
Three-phase system 

(γ-phase + emulsion drop) 

µ-phase + σ-phase 
(emulsion drop) 

γ-phase  µ-phase + σ-phase  

γ-phase  

Figure 6.1: Length scales and averaging volumes for a Double Emulsion System

The deduction of the batch-stirred tank model, implies the following general assump-
tions:

• Very well mixed fluid
• Hypothesis of the continuum
• Newtonian and incompressible fluid
• The �-phase is a diluted solution of species A

• The reactive B and the AB complex are restricted to the membrane phase
• The reactive R in �-phase which reacts irreversibly with solute is in excess,

Since, one of the objectives of this thesis is to compare the accuracy and the appli-
cability of the averaged model deduced in this work, three macroscopic model are
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presented, each one base on a different averaged model. First the generalized one-
equation model proposed by Morales-Zárate et al. (2008) is used to obtain a design
equation that is based on the local-mass equilibrium. Finally, the design equations
for the same tank based on the Three-phase model and the Two-region model
are deduced.

6.1.1 Generalized one-equation model

As previously mentioned, Morales-Zárate et al. (2008) derived a rigorous macroscopic
model of diffusion and reaction in DES and derived the jump boundary condition at
the dividing surface. They divided the three-phase system into two homogeneous
regions, ⌘-region (�-phase) and !-region (µ-phase + �-phase). Equations in both
homogeneous regions were deduced from a generalized one-equation model, based on
the local mass equilibrium, which establishes that the mass transfer process can be
characterized by a single equilibrium weighted average concentration with the next
form:

{CA} = "µ(x)hCAµiµ +
"�(x)

Kµ�
eq
hCA�i� +

"�(x)

Kµ�
eq
hCA� i� (6.1)

Additionally, it has bee assumed that,
• The emulsion drops and the droplets are considered rigid and spherical
• Uniformity in the size of rigid emulsion drops and droplets
• The transport of solute A in the emulsion drop is considered only in the radial

direction.
thus the Eqs. 2.55 can be rewritten as

@{CA}⌘
@t| {z }

accumulation

+r ·
�
{CA}⌘v⌘

�
| {z }

convection

= r · (DA⌘r{CA}⌘)| {z }
diffusion

(6.2)

since the batch-tank is stirred, it has been added the convective term, the velocity
vector of the ⌘-region is defined as, v⌘ . Additionally, the boundary condition at the
inter-region A⌘! is defined as

�n⌘! · DA⌘r{CA}⌘ =P ⌘
eff({CA}⌘ �K⌘!

eff {CA}!) (6.3)
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and the equations for !-region can be rewritten as

("µ + "�K
µ�
eq )

@{CA}!
@t

=DA!

✓
1

@r

@

@r

✓
r2
@{CA}!
@r

◆◆

� "�kµ
✓

{CA}! �
hCBi!

Kµ

◆
� k�{CA}!

"µ
@hCBi!
@t

=DB!

✓
1

@r

@

@r

✓
r2
@CA!

@r

◆◆
+ "�kµ

✓
{CA}! �

hCBi!
Kµ

◆

(6.4)

Continuing with this modeling, the volume of the batch-stirred tank is defined as

VT = V⌘ + V! (6.5)

The total volume of the homogeneous !-region, V!, is described by the ratio between
the total number of emulsion drops, N , and the radius of the emulsion drops Rp; in
the same way the inter-region A⌘! is defined as a function of N and Rp variables,
illustrated in Eqs. 6.6 and 6.7,

V! =
NX

n=1

V!,i =
4

3
⇡NR3

p (6.6)

A⌘! =
NX

n=1

A⌘!,i = 4N⇡R2
p (6.7)

To deduced the design equation of the tank, an average concentration in ⌘-region
presented in the volume of the tank,VT , is proposed

hCAif =
1

V⌘

Z

V⌘

{CA}⌘ dV (6.8)

Applying Eq. 6.8 to Eq. 6.2 and since V⌘ is not a function of the time,the general
transport theorem has been used to express Eq. 6.2 as

@hCAif

@t
+

1

V⌘

Z

A⌘

n · {CA}⌘(v⌘ �w) dA =
1

V⌘

Z

A⌘

n ·
�
DA⌘r{CA}⌘

�
dA (6.9)

it should be noted that the divergence theorem has been used to represent this ex-
pression in terms of area integrals. The velocity vector w represents the speed of
displacement of the surface that defines the volume of ⌘-region. Because the assump-
tion of fluid well mixed, it has been established that

w = v⌘ (6.10)
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thus, the second term in Eq. 6.9 is null. Analyzing the area of ⌘-region on can imagine
that this area is delimited by the walls of the tank and surface of the inter-region ⌘!,
thus one can establish that

A⌘ = Atank walls + A⌘! (6.11)

this area has been substituted in the third term of the Eq. 6.9, on can obtain

1

V⌘

Z

A⌘

n ·
�
DA⌘r{CA}⌘

�
dA +

1

V⌘

Z

Atank walls

n ·
�
DA⌘r{CA}⌘

�
dA (6.12)

due to species A is impermeable to the walls of the tank and making use of the
boundary condition illustrated in Eq. 6.3, the Eq. 6.9 can be rewritten as

@hCAif

@t
=

A⌘!P ⌘
eff

V⌘

✓
K⌘!

eff {CA}!|r=Rp � hCAif |r=Rp

◆
(6.13)

Finally, if one suppose that the hCAif is the same in all the volume of the tank since
it is well mixed, then the assumption,

hCAif = hCAif |r=Rp (6.14)

can be accepted, thus the Eq. 6.13 take his finally form

@hCAif

@t
=

A⌘!P ⌘
eff

V⌘

✓
K⌘!

eff {CA}!|r=Rp � hCAif
◆

(6.15)

Eq. 6.15 is the equation for a batch-stirred tank base on the generalized one-domain
equation model assuming local mass equilibrium.

6.1.2 Three-phase model

The design equation for a batch-stirred tank base on the simplified three-phase model
is developed. For this modeling, as mentioned it has been assumed:

• Very well mixed fluid
• Hypothesis of the continuum
• Newtonian and incompressible fluid
• The �-phase is a diluted solution of species A

• The reactive B and the AB complex are restricted to the membrane phase
• The reactive R in �-phase which reacts irreversibly with solute is in excess,
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It should be remembered that the governing equations for this system represented
one domain assuming the non-local mass equilibrium, therefore the model is formed
by the following coupled averaged equation:
Governing averaged equation of species A in �-phase contained in the tank:

"�
@hCA�i�

@t| {z }
accumulation

+r ·
�
hCA�i�v�

�
| {z }

convection

= r ·
⇥
D�� ·rhCA�i�

⇤
| {z }

diffusion

+ av1k
µ�
1 (Keq

µ�hCAµiµ � hCA�i�)| {z }
exchange term

+ av1k
µ�
1 (Keq

µ�hCAµiµ � hCA�i�)| {z }
exchange term

(6.16)

Governing averaged equation of species A in µ-phase contained in the tank:

"µ
@hCAµiµ

@t| {z }
accumulation

= r ·
⇥
Dµµ(x) ·rhCAµiµ

⇤
| {z }

diffusion

+ [av1k
µ�
1 + av2k

µ�
2 ](hCA�i� �Keq

µ�hCAµiµ)
| {z }

exchange term

+ [av1k
µ�
1 + av2k

µ�
2 ](hCA�i� �Keq

µ�hCAµiµ)
| {z }

exchange term

� "µkµ

✓
hCAµiµ �

hCBµiµ

Kµ

◆

| {z }
reaction

(6.17)

Governing averaged equation of species B in µ-phase contained in the tank:

"µ
@hCBµiµ

@t| {z }
accumulation

= r ·
⇥
DBB ·rhCBµiµ

⇤
| {z }

diffusion

+ "µkµ

✓
hCAµiµ �

hCBµiµ

Kµ

◆

| {z }
reaction

(6.18)

Governing averaged equation of species A in �-phase contained in the tank:

"�
@hCA�i�

@t| {z }
accumulation

= r ·
⇥
D�� ·rhCA�i�

⇤
| {z }

diffusion

� k�"�hCA�i�| {z }
reaction

+ av2k
µ�
2 (Keq

µ�hCAµiµ � hCA�i�)| {z }
exchange term

(6.19)

To continue, the volume of the batch-stirred tank is defined as

VT = V� + Vµ + V� (6.20)

and to deduced the design equation of the tank, an average concentration for each
phase that is presented in the volume of the tank,VT , is proposed

hCA�if =
1

VT

Z

V�

hCA�i� dV (6.21)
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where � = �, µ,�. The next step for this modeling is to used Eq. 6.21 in Eqs. 6.16,
then apply the general transport theorem as it has been done in the previous section,
to obtain

"�
hCAi�

@t| {z }
accumulation

=� 1

V⌘

Z

A�

n · hCA�i�)(v⌘ �w) dA +
1

V⌘

Z

A�

n ·
�
D��rhCA�i�

�
dA

+ av1k
µ�
1 (Keq

µ�hCAµif,µ � hCA�if,�)| {z }
exchange term

+ av1k
µ�
1 (Keq

µ�hCAif,µ � hCAif,�)| {z }
exchange term

(6.22)

here, the velocity vector w represents the speed of displacement of the surface that
defines the volume of �-phase. Because the assumption of fluid well mixed, it has
been established that

w = v� (6.23)

as consequence, the second term in Eq. 6.22 is null. Since the surface that defined
�-phase is delimited by the walls of the tank and the species A is impermeable to
them, the third term of Eq. 6.22, which is associated to the diffusion term, is null.
Finally Eq. 6.22 take his finally form

"�
hCA�if,�

@t| {z }
accumulation

= av1k
µ�
1 (Keq

µ�hCAµif,µ � hCA�if,�)| {z }
exchange term

+ av1k
µ�
1 (Keq

µ�hCAµif,µ � hCA�if,�)| {z }
exchange term

(6.24)

Repeating this procedure, one can use Eq. 6.21 in Eqs. 6.17 - 6.19 to obtained the
equation of hCAµif,µ and hCA�if,µ associated to Eq. 6.24, thus the final expressions
are:

"µ
@hCAµif,µ

@t| {z }
accumulation

= [av1k
µ�
1 + av2k

µ�
2 ](hCA�if,� �Keq

µ�hCAµif,µ)
| {z }

exchange term

+ [av1k
µ�
1 + av2k

µ�
2 ](hCA�if,� �Keq

µ�hCAµif,µ)
| {z }

exchange term

� "µkµ

✓
hCAµif,µ �

hCBµif,µ

Kµ

◆

| {z }
reaction

(6.25)
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"µ
@hCBµif,µ

@t| {z }
accumulation

= "µ(x)kµ

✓
hCAµif,µ �

hCBµif,µ

Kµ

◆

| {z }
reaction

(6.26)

"�
@hCA�if,�

@t| {z }
accumulation

= k�"�hCA�if,�| {z }
reaction

+ av2k
µ�
2 (Keq

µ�hCAµif,µ � hCA�if,�)| {z }
exchange term

(6.27)

6.1.3 Two-region model

The design equation for a batch-stirred tank base on the simplified two-region model
is developed. Since the philosophy for this modeling is the same that in the three-
phase model case and to avoid the repetition, only the main steps are presenting in
this section.
For this model the following assumption are made

• Very well mixed fluid
• Hypothesis of the continuum
• Newtonian and incompressible fluid
• The �-phase is a diluted solution of species A

• The reactive B and the AB complex are restricted to the membrane phase
• The reactive R in �-phase which reacts irreversibly with solute is in excess
• The volume of the batch-stirred tank is defined as, VT = V⌘ + V!

The governing equations for this system represented one domain assuming the non-
local mass equilibrium, therefore the model is formed by the following coupled regional
averaged equation:

"⌘
@{CA⌘}⌘

@t| {z }
accumulation

+r ·
�
{CA⌘}⌘v⌘

�
| {z }

convection

= r ·
⇥
D⌘� ·r{CA⌘}⌘

⇤
| {z }

diffusion

+ avk⌘!(Keq
µ�{hCAµiµ!}! � {CA⌘}⌘)| {z }

exchange term

(6.28)
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"!"µ
@{hCAµiµ!}!

@t
= r ·

⇥
D!(µ)µ ·r{hCAµiµ!}!

⇤
| {z }

diffusion

+ avk⌘!({CA⌘}⌘)�Keq
µ�{hCAµiµ!}!

| {z }
exchange term

+ "!(avk)µ({hCA�i�!}! �Keq
µ�{hCAµiµ!}!)

| {z }
exchange term

� "!"µkµ

✓
{hCAµiµ!}! � {hCBµiµ!}!

Kµ

◆

| {z }
reaction

(6.29)

"!"µ
@{hCBµiµ!}!

@t
= r ·

⇥
D!(B)µ ·r{hCBµiµ!}!

⇤
| {z }

diffusion

+ "!"µkµ

✓
{hCAµiµ!}! � {hCBµiµ!}!

Kµ

◆

| {z }
reaction

(6.30)

"!"�
@{hCA�i�!}!

@t
= r ·

⇥
D!(�)� ·r{hCA�i�!}!

⇤
| {z }

diffusion

+ avk⌘!({CA⌘}⌘)�Keq
µ�{hCAµiµ!}!

| {z }
exchange term

+ "!(avk)(Keq
µ�{hCAµiµ!})� {hCA�i�!}

| {z }
exchange term

�"!"�k�{hCA�i�!}!| {z }
reaction

(6.31)

Then, once the system is established, the average concentrations for each region that
is presented in the volume of the tank,VT , is proposed

hCA⌘if =
1

VT

Z

V⌘

{CA⌘}⌘ dV (6.32)

hCA�i!,f =
1

VT

Z

V!

{hCA�i�!}! ; � = µ,� (6.33)

Finally averaging the tank we obtain as final result the following equations

"⌘
@hCA⌘if

@t| {z }
accumulation

= avk⌘!(Keq
µ�hCAµi!,f � hCA⌘if )| {z }
exchange term

(6.34)
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"!"µ
@hCAµi!,f

@t
= avk⌘!(hCA⌘if �Keq

µ�{hCAµi!,f )| {z }
exchange term

+ "!(avk)µ(hCA�i!,f �Keq
µ�hCAµi!,f )

� "!"µkµ

✓
hCAµi!,f �

{hCBµi!,f

Kµ

◆
(6.35)

"!"µ
@hCBµi!,f

@t
= "!"µkµ

✓
hCAµi!,f �

{hCBµi!,f

Kµ

◆
(6.36)

"!"�
@hCA�i!,f

@t
= avk⌘!({CA⌘}⌘ �Keq

µ�hCAµi!,f )| {z }
exchange term

+ "!(avk)(hCA�i!,f �Keq
µ�hCAµi!,f )

� "!"�k�hCA�i!,f (6.37)

6.2 Comparison between the macroscopic models

Once the different macroscopic design equations for a batch-stirred tank are devel-
oped, it is possible to analyzed the information that each of the macroscopic models
provides. It should be noted that in a general form the three averaged equations
for the continuous phase or region (�-phase or ⌘-region), contained in the tank, are
formed by an accumulation term and one or several mass exchange terms, i.e. the
change of the concentration is a function of the time and a difference of concentra-
tions weighted by effective terms which contain information related to the molecular
properties of the DES as well as the geometrical structure of the emulsion drops. For
example the Eq. 6.38 is the design equation based on the Generalized one-domain

model stand on the local mass equilibrium,

@hCAif

@t| {z }
accumulation

=
A⌘!P ⌘

eff
V⌘

✓
K⌘!

eff {CA}!|r=Rp � hCAif
◆

| {z }
exchange term

(6.38)

in this equation it has been assumed that the !-region is defined by N rigid spheres
and one have to know the values of the !-region concentration at radius r = Rp,{CA}!|r=Rp ,
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i.e in the inter-region between ⌘ and !-regions. It should be remarked that the {CA}!
is defined as

{CA}! = "µhCAµiµ +
"�

Kµ�
eq
hCA�i� (6.39)

thus, Eq. 6.38 contained information about the proportions of the systems and in-
formation about their molecular properties. To obtained the values of {CA}!|r=Rp ,
it is necessary to resolve the Eqs. 6.4.

In contrast with Eq. 6.38, Eq. 6.40 which has the form,

"�
hCA�if,�

@t| {z }
accumulation

= av1k
µ�
1 (Keq

µ�hCAµif,µ � hCA�if,�)| {z }
exchange term

+ av1k
µ�
1 (Keq

µ�hCAµif,µ � hCA�if,�)| {z }
exchange term

,

(6.40)

is based on the Three-phase model that consider the system as a one-domain assuming
non-local mass equilibrium. In Eq. 6.40 one can see two different mass transfer terms
related to hCAµif,µ and hCA�if,µ and two different effective mass transfer coefficients
which are related to, and have information about the system in the microscale, Scale

III . Eq. 6.40 is coupled with Eqs. 6.25 to 6.27 which are also composed by mass
transfer terms. This system of equation provide the information about all the inter-
change that occurs in a DES by chemical reaction and permeation. Thus to know
the changes in the hCA�if,� with time, it is necessary resolve the coupled equation
system Eq. 6.40, 6.25 - 6.27.

Finally, the design equation base on the Two-regions model (Eq. 6.41) is analyzed,

"⌘
@hCA⌘if

@t| {z }
accumulation

= avk⌘!(Keq
µ�hCAµi!,f � hCA⌘if )| {z }
exchange term

(6.41)

here as the previous case, one-domain assuming non-local mass equilibrium has been
considered. In Eq. 6.41 one can observed the mass transfer related to hCAµi!,f

and an effective mass transfer coefficient which is associated to, and has information
about the system in the ⌘ and !-regions, Scale II. Eq. 6.41 is coupled with Eqs.
6.35 to 6.37 which are also composed by mass transfer terms. In contrast to Eq.6.40,
this mass transfer coefficients provide information associated a two different length of
scale. This system of equation provide the information about all the interchange that
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occurs in a DES by chemical reaction and permeation. Thus to know the changes in
the hCA⌘if with time, it is necessary resolve the coupled equation system Eq. 6.41,
6.35 - 6.37.

These three design equations are capable to described the process of transfer of solute
A from the continuous fluid to the inner of the droplets of the DES; the difference
between these equations is the degree of detail in the information that each one can
be provide. To study their relevance and accuracy the latter equation systems must
be resolve.



Conclusion

This thesis has been devoted to modeling the solute transport of species A with
chemical reaction through a DES. This system has been analyzed as a three-phase
system characterized by more than one disparate length scales. The method of volume
averaging has been used to derive rigorous averaged equations in the context of the
non-local mass equilibrium (NLME). This modeling consist of two averaged models :

1. The three-phase model which describe the solute mass transfer in a homogeneous
domain formed by three-phases, where concentration changes occur in the same
length scale.

2. The two-region model which describe the same transport problem, but in a
homogeneous domain formed by two-regions, where concentration changes occur
at two different length scales.

The averaged concentration and effective parameters for both models have been de-
fined and order of magnitude analyses have been performed to determine the length
scale constraints associated to these macroscopic models. Associated closure prob-
lems for the determination of the effective coefficients were obtained and resolved.
Both models present three types of effective coefficients: the effective diffusivity ten-
sors Dij , the effective velocity-like vectors uij and the mass transfer coefficients avkij .
In this work has been demonstrated that the effective velocity-like vectors are negligi-
ble for diffusion transport. Finally an analysis of a DE-containing separation process
in a batch-stirred tank by applying the simplified version of both models has been
made and have been compared with the design equation for the batch-stirred tank
stand on the generalized one-domain model which assumes local mass equilibrium.
Moreover, the three design macroscopic equations deduced the last chapter of this
thesis, are capable to described the process of transfer of solute A from the continuous
fluid to the inner of the droplets of the DES; the difference between these equations
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is the degree of detail in the information that each one can be provide. It has been
proved, that for the macroscopic extraction process the mass exchange between the
inter phases is the dominant phenomena.

6.2.1 Perspectives

Throughout this thesis, rigorous models for the study of the solute transport of species
A with chemical reaction through a DES were presented; providing valuable infor-
mation in the macroscopic modeling of separation processes with DES. However to
complete this study and to know the relevance and accuracy of each model presented,
it must be necessary to resolve all the macroscopic models. The solution of this models
can be provided information about the pertinence of the non local mass equilibrium
assumption in systems which involved chemical reactions.

This study allows a better understanding of DE separation processes lays more re-
alistic modeling, however, to include convective effects in the continuous phase in a
local scale, will be necessary to improve the modeling and get closer to reality.



Appendix A

Closed problem for the three phase
modeling approach

A.1 The Closure Problem

This section is devoted to obtain a closed form of the averaged equations presented
in the chapter 4, Eqs. 4.14 - 4.22, and this means that a representation for the
spatial deviation concentrations has to be developed. To achieve it, Eq. 4.13 can be
rewritten as:

eCi�|r� = Ci�|r� � hCi�i�|r� , (A.1)

where r� = x+y�, is the position vector of locating points of the �-phase (� = �, µ,�)
within the domain averaging, with respect to an external reference frame. Base on
Eq. A.1 one can obtain the governing equations for spatial deviation concentrations
by subtracting the average equation when x �! r�, which are presented below:
In �-phase:

@hCA�i� |r�
@t

=r · (DA�rhCA�i� |r� ) + "�1
� r"� · DA�rhCA�i� |r�

+ "�1
� r ·


DA�

V

Z

A�µ(x)

n�µ
eCA� |r� dA

�

+
"�1
�

V

Z

A�µ(x)

n�µ · DA�r
�
hCA�i� |r� + eCA� |r�

�
dA (A.2)

(A.3)
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In µ-phase: Species A:

@hCAµiµ|rµ
@t

=r · (DAµrhCAµiµ|rµ) + "�1
µ r"µ · DAµrhCAµiµ|rµ

"�1
µ r ·


DAµ

V

✓ Z

Aµ�(x)

nµ�
eCAµ|rµ dA +

Z

Aµ�(x)

nµ�
eCAµ|rµ dA

◆�

+
"�1
µ

V

Z

Aµ�(x)

nµ� · DAµ
�
rhCAµiµ|rµ +r eCAµ|rµ

�
dA

+
"�1
µ

V

Z

Aµ�(x)

nµ� · DAµ
�
rhCAµiµ|rµ +r eCAµ|rµ

�
dA

� kµ

✓
hCAµiµ|rµ �

hCBµiµ|rµ
Kµ

◆
(A.4)

Species B:

@hCBµiµ|rµ
@t

=r · (DBµrhCBµiµ|rµ) + "�1
µ r"µ · DBµrhCBµiµ|rµ

+ kµ

✓
hCAµiµ|rµ �

hCBµiµ|rµ
Kµ

◆

+ "�1
µ r ·


DBµ

V

✓ Z

Aµ�(x)

nµ�
eCBµ|rµ dA +

Z

Aµ�(x)

nµ�
eCBµ|rµ dA

◆�

(A.5)

In �-phase:

@hCA�i� |r�
@t

=r · (DA�rhCA�i�|r�) + "�1
� r"� · DA�rhCA�i�|r�

+ "�1
� r ·


DA�

V

Z

A�µ(x)
n�µ

eCA�|r� dA

�

+
"�1
�

V

Z

A�µ(x)
n�µ · DA�r

�
hCA�i�|r� + eCA�|r�

�
dA� k�hCA�i�|r� ,

(A.6)

to the local equations (also evaluated in r� ), which have the form:
In �-phase:

@CA� |r�
@t

= r · (DA�rCA� |r� ) (A.7)
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In µ-phase: Species A:

@CAµ|rµ
@t

= r · (DAµrCAµ|rµ)� kµ

✓
CAµ|rµ �

CBµ|rµ
Kµ

◆
(A.8)

Species B:

@CBµ|rµ
@t

= r · (DBµrCBµ|rµ) + kµ

✓
CAµ|rµ �

CBµ|rµ
Kµ

◆
(A.9)

In �-phase:

@CA�|r�
@t

= r · (DA�rCA�|r�)� k�CA�|r� (A.10)

Finally the result, the transport equations for the spatial deviation concentrations
can be expressed as:
In �-phase:

@ eCA�

@t
=r · (DA�r eCA�)� "�1

� r ·
✓

DA�

V

Z

A�µ(x)

n�µ
eCA� dA

◆

�
"�1
�

V

Z

A�µ(x)

n�µ · DA�r eCA� dA

�
"�1
�

V

Z

A�µ(x)

n�µ · DA�rhCA�i� dA� "�1
� r"� · DA�hCA�i� (A.11)

In µ-phase: Species A:

@ eCAµ

@t
=r · (DAµr eCAµ)� "�1

µ r ·

DAµ

V

✓ Z

Aµ�(x)

nµ�
eCAµ dA +

Z

Aµ�(x)

nµ�
eCAµ dA

◆�

� kµ

✓
eCAµ �

eCBµ

Kµ

◆

�
"�1
µ

V

✓ Z

Aµ�(x)

nµ� · DAµr eCAµ dA +

Z

Aµ�(x)

nµ� · DAµr eCAµ dA

◆

�
"�1
µ

V

✓ Z

Aµ�(x)

nµ� · DAµrhCAµiµ dA +

Z

Aµ�(x)

nµ� · DAµrhCAµiµ dA

◆

� "�1
µ r"µ · DAµrhCAµiµ (A.12)
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Species B:

@ eCBµ

@t
=r · (DBµr eCBµ) + "�1

µ r ·

DBµ

V

✓ Z

Aµ�(x)

nµ�
eCBµ dA +

Z

Aµ�(x)

nµ�
eCBµ dA

◆�

+ kµ

✓
eCAµ �

eCBµ

Kµ

◆

�
"�1
µ

V

✓ Z

Aµ�(x)

nµ� · DAµr eCBµ dA +

Z

Aµ�(x)

nµ� · DBµr eCBµ dA

◆

�
"�1
µ

V

✓ Z

Aµ�(x)

nµ� · DBµrhCBµiµ dA +

Z

Aµ�(x)

nµ� · DBµrhCBµiµ dA

◆

� "�1
µ r"µ · DBµrhCBµiµ (A.13)

In �-phase:

@ eCA�

@t
=r · (DA�r eCA�)� k� eCA� � "�1

� r ·

DA�

V

Z

A�µ(x)

n�µ
eCA� dA

�

� "�1
�

V

Z

A�µ(x)

n�µ · DA�r eCA� dA

� "�1
�

V

Z

A�µ(x)

n�µ · DA�rhCA�i� dA + "�1
� r"� · DA�rhCA�i� (A.14)

Eqs. A.11 - A.14 contain averaged local and non-local sources, in the same way
as the non-closed averaged equations, Eqs. 4.14 - 4.22. In order to remove these
averaged concentrations from the area integrals, the following expansions in Taylor
series about the centroid of the averaging volume (x), are proposed for the averaged
concentrations hCi�i�:

hCi,�i�|r� = hCi,�i�|x| {z }
O(hCi,�i�)

+y� ·rhCi,�i�|x| {z }
O(

r0
L hCi,�i�)

+
1

2
y�y� : rrhCi,�i�|x
| {z }

O

�
r20
L2 hCi,�i�

�

+ · · · (A.15)

rhCi,�i�|r� = rhCi,�i�|x| {z }
O(rhCi,�i�)

+y� ·rrhCi,�i�|x| {z }
O(

r0
L rhCi,�i�)

+ · · · (A.16)

In Eqs. A.15 and A.16 the estimates of order of magnitude of the first terms of
the series have been included, one can observe that it has been assumed that the
characteristic length associated with spatial variations of hCi,�i� and rhCi,�i� are of
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the same order of magnitude which is the large length-scale L. In order to solve the
closure problem, the following length-scale constraints are imposed.

r0 ⌧ L (A.17)

r20 ⌧ L2 (A.18)

Therefore, Eqs. A.15 and A.16 lead to the following:

O

✓
hCi,�i�|r� � hCi,�i�|x

◆
⌧ 1 (A.19)

O

✓
rhCi,�i�|r� �rhCi,�i�|x

◆
⌧ 1 (A.20)

Under these conditions, one can remove the averaged quantities from the area inte-
grals in Eqs. A.11 - A.14 and obtain:

In �-phase:

@ eCA�

@t| {z }
O

�
eCA�/t⇤

�
=r · (DA�r eCA�)| {z }

O

�
DA�

eCA�/`
2
�

�
� "�1

� r ·
✓

DA�

V

Z

A�µ(x)

n�µ
eCA� dA

◆

| {z }
O

�
DA�

eCA�/(L`�"�)
�

� 1

V�

Z

A�µ(x)

n�µ · DA�r eCA� dA

| {z }
O

�
DA�

eCA�/`
2
�

�

(A.21)

In µ-phase:

Species A :

@ eCAµ

@t| {z }
O

�
eCAµ/t⇤

�
=r · (DAµr eCAµ)
| {z }
O

�
DAµ

eCAµ/`
2
µ

�
� kµ

✓
eCAµ �

eCBµ

Kµ

◆

| {z }
O

�
kµ eCBµ

eCAµ/Kµ

�

� "�1
µ r ·


DAµ

V

✓ Z

Aµ�(x)

nµ�
eCAµ dA

◆�

| {z }
O

�
DAµ

eCAµ/(L`�"µ)
�

� "�1
µ r ·


DAµ

V

✓ Z

Aµ�(x)

nµ�
eCAµ dA

◆�

| {z }
O

�
DAµ

eCAµ/(L`µ"µ)
�

� 1

Vµ

✓ Z

Aµ�(x)

nµ� · DAµr eCAµ dA

◆

| {z }
O

�
DAµ

eCAµ/`
2
�

�

� 1

Vµ

✓ Z

Aµ�(x)

nµ� · DAµr eCAµ dA

◆

| {z }
O

�
DAµ

eCAµ/`
2
µ

�

(A.22)
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In µ-phase:

Species B :

@ eCBµ

@t| {z }
O

�
eCBµ/t⇤

�
=r · (DBµr eCBµ)
| {z }
O

�
DBµ

eCBµ/`
2
µ

�
+ kµ

✓
eCAµ �

eCBµ

Kµ

◆

| {z }
O

�
kµ eCBµ

eCAµ/Kµ

�

� "�1
µ r ·


DBµ

V

✓ Z

Aµ�(x)

nµ�
eCBµ dA

◆�

| {z }
O

�
DBµ

eCBµ/(L`�"µ)
�

"�1
µ r ·


DBµ

V

✓ Z

Aµ�(x)

nµ�
eCBµ dA

◆�

| {z }
O

�
DBµ

eCBµ/(L`µ"µ)
�

� 1

Vµ

✓ Z

Aµ�(x)

nµ� · DBµr eCBµ dA

◆

| {z }
O

�
DBµ

eCBµ/`
2
�

�

� 1

Vµ

✓ Z

Aµ�(x)

nµ� · DBµr eCBµ dA

◆

| {z }
O

�
DAµ

eCBµ/`
2
µ

�

(A.23)

In �-phase:

@ eCA�

@t| {z }
O

�
eCA�/t⇤

�
=r · (DA�r eCA�)| {z }

O

�
DA�

eCA�/`
2
µ

�
� k� eCA�| {z }

O

�
k� eCA�

�

� "�1
� r ·


DA�

V

Z

A�µ(x)

n�µ
eCA� dA

�

| {z }
O

�
DA�

eCA�/(L`µ"�)
�

� 1

V�

Z

A�µ(x)

n�µ · DA�r eCA� dA

| {z }
O

�
DA�

eCA�/`
2
µ

�

(A.24)

To simplify Eqs. A.21 - A.24, it should be provided the order of magnitude estimates
of some terms and one can notice that, on the basis of the length scale constraint,

`µ ⌧ `� ⌧ L, (A.25)

the following inequality is satisfied for Eq. A.21,

"�1
� r ·

✓
DA�

V

Z

A�µ(x)

n�µ
eCA� dA

◆

| {z }
non-local diffusion

⌧ DA�r2 eCA�| {z }
diffusion

(A.26)
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since `� ⌧ L. In a similar manner, for Eq. A.22 the inequalities given by,

"�1
µ r ·

✓
DAµ

V

Z

Aµ�(x)

nµ�
eCAµ dA

◆
⌧ DAµr2 eCAµ (A.27)

"�1
µ r ·

✓
DAµ

V

Z

Aµ�(x)

nµ�
eCAµ dA

◆
⌧ DAµr2 eCAµ, (A.28)

are satisfied, i. e. the non-local diffusion term is smaller than diffusion term since
`µ ⌧ L. And exactly for Eq. A.23 as one can see in the next expressions:

"�1
µ r ·

✓
DBµ

V

Z

Aµ�(x)

nµ�
eCBµ dA

◆
⌧ DBµr2 eCBµ (A.29)

"�1
µ r ·

✓
DBµ

V

Z

Aµ�(x)

nµ�
eCBµ dA

◆
⌧ DBµr2 eCBµ (A.30)

The inequality related to Eq. A.24 is given by:

"�1
� r ·

✓
DA�

V

Z

A�µ(x)

n�µ
eCA� dA

◆
⌧ DA�r2 eCA� (A.31)

In addition, as a final simplification, we limit the closure problem as quasi-steady.
The constraint associated to this simplification is:

DA�t⇤

`2�
� 1 (A.32)

In this way, Eqs. A.21 - A.24 take the form of the closure problem:
In �-phase:

0 = DA�r2 eCA�| {z }
diffusion

�
"�1
�

V

Z

A�µ(x)

n�µ · DA�r eCA� dA

| {z }
non-local flux

(A.33)

In µ-phase
Species A:

0 = DAµr2 eCAµ| {z }
diffusion

� kµ

✓
eCAµ �

eCBµ

Kµ

◆

| {z }
reaction

�
"�1
µ

V

✓ Z

Aµ�(x)

nµ� · DAµr eCAµ dA +

Z

Aµ�(x)

nµ� · DAµr eCAµ dA

◆

| {z }
non-local flux

(A.34)
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Species B:

0 = DBµr2 eCBµ| {z }
diffusion

+ kµ

✓
eCAµ �

eCBµ

Kµ

◆

| {z }
reaction

(A.35)

In �-phase:

0 = DA�r2 eCA�| {z }
diffusion

� k� eCA�| {z }
reaction

� "
�1
�

V

Z

A�µ(x)

n�µ · DA�r eCA� dA

| {z }
non local flux

(A.36)

It should be remarked that the closure problem has in Eqs. A.34, A.35 and A.36
reaction terms. In this respect Wood and Whitaker (1998), suggest that reaction
can be neglected in the closure problem even when the reaction is a domain effect at
the macroscopic level and following this idea, an additional simplification is made.
Imposing that the reaction terms are negligible compared with the diffusion terms
one can obtain the constraints given by:

`2µkµ
DAµ

✓
1�

eCBµ

eCAµKµ

◆
⌧ 1 (A.37)

`2�k�
DA�

⌧ 1 (A.38)

After this last simplification, the closure problem takes the final form:
In �-phase:

0 = DA�r2 eCA�| {z }
diffusion

�
"�1
�

V

Z

A�µ(x)

n�µ · DA�r eCA� dA

| {z }
non-local flux

(A.39)

In µ-phase
Species A:

0 = DAµr2 eCAµ| {z }
diffusion

�
"�1
µ

V

✓ Z

Aµ�(x)

nµ� · DAµr eCAµ dA +

Z

Aµ�(x)

nµ� · DAµr eCAµ dA

◆

| {z }
non-local flux

(A.40)
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Species B:

0 = DBµr2 eCBµ| {z }
diffusion

(A.41)

In �-phase:

0 = DA�r2 eCA�| {z }
diffusion

� "
�1
�

V

Z

A�µ(x)

n�µ · DA�r eCA� dA

| {z }
non local flux

(A.42)

From Eqs. 3.8 - 3.13 and the decomposition represented by Eq. A.1 we obtain the
interfacial boundary conditions for the closure problem, which can be express as:
At the interfacial area A�µ:

nµ� · DA�r eCA� � nµ� · DAµr eCAµ =nµ� · DAµrhCAµiµ � nµ� · DA�rhCA�i�| {z }
surface diffusive source

(A.43)

�n�µ · DA�r eCA� � P�µ( eCA� �Keq
µ�
eCAµ) = P�µ

�
hCA�i� �Keq

µ�hCAµiµ
�

| {z }
surface exchange source

+ n�µ · DA�rhCA�i�| {z }
surface diffusive source

(A.44)

�nµ� · DBµr eCBµ =nµ� · DBµrhCBµiµ| {z }
surface diffusive source

(A.45)

At the interfacial area Aµ�:

nµ� · DA�r eCA� � nµ� · DAµr eCAµ =nµ� · DAµrhCAµiµ � nµ� · DA�rhCA�i�| {z }
surface diffusive source

(A.46)

�n�µ · DA�r eCA� � P�µ( eCA� �Keq
µ�
eCAµ) = P�µ

�
hCA�i� �Keq

µ�hCAµiµ
�

| {z }
surface exchange source

+ n�µ · DA�rhCA�i�| {z }
surface diffusive source

(A.47)

�nµ� · DBµr eCBµ =nµ� · DBµrhCBµiµ| {z }
surface diffusive source

(A.48)

Eqs. A.33 - A.48 represent the closure problem, however we have no intention of
solving it over the entire macroscopic region illustrated. Instead, one can to solve for
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eCi� in some representative region and use the computed results in Eqs. 4.14, 4.17,
4.18 and 4.22 to affect the closure.

A.1.1 Closure Variables

Given the nature of the boundary-value problem for eCi� , we propose a solution in
terms of the sources, see Eqs. A.43-A.48 which can be express as:

eCA� =b�� ·rhCA�i� + b�µ ·rhCAµiµ + b�� ·rhCA�i� + b�B ·rhCBµiµ

� sµ��
�
Keq

µ�hCAµiµ � hCA�i�
�
� sµ��

�
Keq

µ�hCAµiµ � hCA�i�
�

(A.49)

eCAµ =bµ� ·rhCA�i� + bµµ ·rhCAµiµ + bµ� ·rhCA�i� + bµB ·rhCBµiµ

+ sµ�µ
�
hCA�i� �Keq

µ�hCAµiµ
�

+ sµ�µ
�
hCA�i� �Keq

µ�hCAµiµ
�

(A.50)

eCBµ =bB� ·rhCA�i� + bBµ ·rhCAµiµ + bB� ·rhCA�i� + bBB ·rhCBµiµ

+ sµ�B
�
hCA�i� �Keq

µ�hCAµiµ
�

+ sµ�B
�
hCA�i� �Keq

µ�hCAµiµ
�

(A.51)

eCA� =b�� ·rhCA�i� + b�µ ·rhCAµiµ + b�� ·rhCA�i� + b�B ·rhCBµiµ

� sµ��
�
Keq

µ�hCAµiµ � hCA�i�
�
� sµ��

�
Keq

µ�hCAµiµ � hCA�i�
�

(A.52)

In Eqs. A.49 - A.52, the variables bji, sj� , sj�, where j = �, µ, B,� and i = �, µ,�, B

are the closure variables. The closure variables are determined by solving the cor-
responding boundary-value problems that result from substituting Eqs. A.49 - A.52
into Eqs. A.33 - A.36.
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Problem I (source rhCA�i�):

In �-phase

0 = DA�r2
b�� �

"�1
�

V

Z

A�µ(x)

n�µ · DA�rb�� dA (A.53)

In µ-phase,

0 = DAµr2
bµ� �

"�1
µ

V

✓ Z

Aµ�(x)

nµ� · DAµrbµ� dA +

Z

Aµ�(x)

nµ� · DAµrbµ� dA

◆

(A.54)

0 = DBµr2
bB� (A.55)

In �-phase:

0 = DA�r2
b�� �

"�1
�

V

Z

A�µ(x)

n�µ · DA�rb�� dA (A.56)

At A�µ

�nµ� · DAµrbµ� = �nµ� · DA�rb�� �DA�nµ� (A.57)

�n�µ · DA�rb�� = n�µDA� + P�µ(b�� �Keq
µ�bµ�) (A.58)

�nµ� · DBµrbB� = 0 (A.59)

At Aµ�

�nµ� · DAµrbµ� = �nµ� · DA�rb�� (A.60)

�n�µ · DA�rb�� = P�µ(b�� �Keq
µ�bµ�) (A.61)

�nµ� · DBµrbB� = 0 (A.62)

Periodicity and restriction:

bj�(r + lk) = bj�(r), k = 1, 2; j = �, µ,�, B (A.63)

hbj�ij = 0, j = �, µ,�, B (A.64)
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Problem II (source rhCAµiµ):

In �-phase

0 = DA�r2
b�µ �

"�1
�

V

Z

A�µ(x)

n�µ · DA�rb�µ dA (A.65)

In µ-phase,

0 = DAµr2
bµµ �

"�1
µ

V

✓ Z

Aµ�(x)

nµ� · DAµrbµµ dA +

Z

Aµ�(x)

nµ� · DAµrbµµ dA

◆

(A.66)

0 = DBµr2
bBµ (A.67)

In �-phase:

0 = DA�r2
b�µ �

"�1
�

V

Z

A�µ(x)

n�µ · DA�rb�µ dA (A.68)

At A�µ

�nµ� · DAµrbµµ = �nµ� · DA�rb�µ + DAµnµ� (A.69)

�n�µ · DA�rb�µ = P�µ(b�µ �Keq
µ�bµµ) (A.70)

�nµ� · DBµrbBµ = 0 (A.71)

At Aµ�

�nµ� · DAµrbµµ = �nµ� · DA�rb�µ + nµ�DAµ (A.72)

�n�µ · DA�rb�µ = P�µ(b�µ �Keq
µ�bµµ) (A.73)

�nµ� · DBµrbBµ = 0 (A.74)

Periodicity and restriction:

bjµ(r + lk) = bjµ(r), k = 1, 2; j = �, µ,�, B (A.75)

hbjµij = 0, j = �, µ,�, B (A.76)
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Problem III (source rhCA�i�):

In �-phase

0 = DA�r2
b�� �

"�1
�

V

Z

A�µ(x)

n�µ · DA�rb�� dA (A.77)

In µ-phase,

0 = DAµr2
bµ� �

"�1
µ

V

✓ Z

Aµ�(x)

nµ� · DAµrbµ� dA +

Z

Aµ�(x)

nµ� · DAµrbµ� dA

◆

(A.78)

0 = DBµr2
bB� (A.79)

In �-phase:

0 = DA�r2
b�� �

"�1
�

V

Z

A�µ(x)

n�µ · DA�rb�� dA (A.80)

At A�µ

�nµ� · DAµrbµ� = �nµ� · DA�rb�� (A.81)

�n�µ · DA�rb�� = P�µ(b�� �Keq
µ�bµ�) (A.82)

�nµ� · DBµrbB� = 0 (A.83)

At Aµ�

�nµ� · DAµrbµ� = �nµ� · DA�rb�� � nµ�DA� (A.84)

�n�µ · DA�rb�� = P�µ(b�� �Keq
µ�bµ�) + n�µDA� (A.85)

�nµ� · DBµrbB� = 0 (A.86)

Periodicity and restriction:

bj�(r + lk) = bj�(r), k = 1, 2; j = �, µ,�, B (A.87)

hbj�ij = 0, j = �, µ,�, B (A.88)
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Problem IV (source rhCBµiµ):

In �-phase

0 = DA�r2
b�B �

"�1
�

V

Z

A�µ(x)

n�µ · DA�rb�B dA (A.89)

In µ-phase,

0 = DAµr2
bµB �

"�1
µ

V

✓ Z

Aµ�(x)

nµ� · DAµrbµB dA +

Z

Aµ�(x)

nµ� · DAµrbµB dA

◆

(A.90)

0 = DBµr2
bBB (A.91)

In �-phase:

0 = DA�r2
b�B �

"�1
�

V

Z

A�µ(x)

n�µ · DA�rb�B dA (A.92)

At A�µ

�nµ� · DAµrbµB = �nµ� · DA�rb�B (A.93)

�n�µ · DA�rb�B = P�µ(b�B �Keq
µ�bµB) (A.94)

�nµ� · DBµrbBB = nµ�DBµ (A.95)

At Aµ�

�nµ� · DAµrbµB = �nµ� · DA�rb�B (A.96)

�n�µ · DA�rb�B = P�µ(b�B �Keq
µ�bµB) (A.97)

�nµ� · DBµrbBB = nµ�DBµ (A.98)

Periodicity and restriction:

bjB(r + lk) = bjB(r), k = 1, 2; j = �, µ,�, B (A.99)

hbjBij = 0, j = �, µ,�, B (A.100)
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Problem V (source hCA�i� �Keq
µ�hCAµiµ):

In �-phase

0 = DA�r2sµ�� �
"�1
�

V

Z

A�µ(x)

n�µ · DA�rsµ�� dA (A.101)

In µ-phase,

0 = DAµr2sµ�µ �
"�1
µ

V

✓ Z

Aµ�(x)

nµ� · DAµrsµ�µ dA +

Z

Aµ�(x)

nµ� · DAµrsµ�µ dA

◆

(A.102)

0 = DBµr2sµ�B (A.103)

In �-phase:

0 = DA�r2sµ�� �
"�1
�

V

Z

A�µ(x)

n�µ · DA�rsµ�� dA (A.104)

At A�µ

�nµ� · DAµrsµ�µ = �nµ� · DA�rsµ�� (A.105)

�n�µ · DA�rsµ�� = P�µ(1 + sµ�� �Keq
µ�s

µ�
µ ) (A.106)

�nµ� · DBµrsµ�B = 0 (A.107)

At Aµ�

�nµ� · DAµrsµ�µ = �nµ� · DA�rsµ�� (A.108)

�n�µ · DA�rsµ�� = P�µ(s�� �Keq
µ�s

µ�
µ ) (A.109)

�nµ� · DBµrsµ�B = 0 (A.110)

Periodicity and restriction:

sµ�j (r + lk) = sµ�j (r), k = 1, 2; j = �, µ, B,� (A.111)

hsµ�j i
j = 0, j = �, µ, B,� (A.112)
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kµ�
� = �DA�

V

Z

A�µ(x)

n�µ ·rsµ�� dA (A.113)

kµ�
µ1

=
DAµ

V

Z

Aµ�(x)

nµ� ·rsµ�µ dA (A.114)

kµ�
� = �DA�

V

Z

A�µ(x)

n�µ ·rsµ�� dA (A.115)

kµ�
µ2

=
DAµ

V

Z

Aµ�(x)

nµ� ·rsµ�µ dA (A.116)

Additionally, one can deduced the following relations: sabiendo que

kµ�
� = kµ�

µ1
= av1k

µ�
1 (A.117)

kµ�
� = kµ�

µ2
= av2k

µ�
2 (A.118)
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Problem VI (source hCA�i� �Keq
µ�hCAµiµ):

In �-phase

0 = DA�r2sµ�� �
"�1
�

V

Z

A�µ(x)

n�µ · DA�rsµ�� dA (A.119)

In µ-phase,

0 = DAµr2sµ�µ �
"�1
µ

V

✓ Z

Aµ�(x)

nµ� · DAµrsµ�µ dA +

Z

Aµ�(x)

nµ� · DAµrsµ�µ dA

◆

(A.120)

0 = DBµr2sµ�B (A.121)

In �-phase:

0 = DA�r2sµ�� �
"�1
�

V

Z

A�µ(x)

n�µ · DA�rsµ�� dA (A.122)

At A�µ

�nµ� · DAµrsµ�µ = �nµ� · DA�rsµ�� (A.123)

�n�µ · DA�rsµ�� = P�µ(sµ�� �Keq
µ�s

µ�
µ ) (A.124)

�nµ� · DBµrsµ�B = 0 (A.125)

At Aµ�

�nµ� · DAµrsµ�µ = �nµ� · DA�rsµ�� (A.126)

�n�µ · DA�rsµ�� = P�µ(1 + sµ�� �Keq
µ�s

µ�
µ ) (A.127)

�nµ� · DBµrsµ�B = 0 (A.128)

Periodicity and restriction:

sµ�j (r + lk) = sµ�j (r), k = 1, 2; j = �, µ, B,� (A.129)

hsµ�j i
j = 0, j = �, µ, B,� (A.130)
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kµ�
� = �DA�

V

Z

A�µ(x)

n�µ ·rsµ�� dA (A.131)

kµ�
µ1

=
DAµ

V

Z

Aµ�(x)

nµ� ·rsµ�µ dA (A.132)

kµ�
� = �DA�

V

Z

A�µ(x)

n�µ ·rsµ�� dA (A.133)

kµ�
µ2

=
DAµ

V

Z

Aµ�(x)

nµ� ·rsµ�µ dA (A.134)

(A.135)

where:

kµ�
� = kµ�

µ1
= av1k

µ�
1 (A.136)

kµ�
� = kµ�

µ2
= av2k

µ�
2 (A.137)

These six closure problems, can be summarized into the following one

Problem i , ( i=1, 2, 3, 4, 5, 6)

In �-phase 0 =DA�r2��i + f�i (A.138)

In µ-phase, (A.139)

species A : 0 =DAµr2�µi + fµi (A.140)

species B : 0 =DBµr2�Bi (A.141)

In �-phase: 0 =DA�r2��i + f�i (A.142)

Boundary conditions:

At A�µ: nµ� · DA�r��i � nµ� · DAµr�µi = gI
i (A.143)

�n�µ · DA�r��i � P�µ(��i �Keq
µ��µi) = gII

i (A.144)

�nµ� · DBµr�Bi = gIII
i (A.145)
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At Aµ�: nµ� · DA�r��i � nµ� · DAµr�µi = hI
i (A.146)

�n�µ · DA�r��i � P�µ(��i �Keq
µ��µi) = hII

i (A.147)

�nµ� · DBµr�Bi = hIII
i (A.148)

Periodicity and restriction:

�ji(r + lk) = �ji(r), k = 1, 2; j = �, µ, B,� (A.149)

h�j�ij = 0, j = �, µ, B,� (A.150)

where �ji (j = �, µ, B,�; i = 1, 2, 3, 4, 5, 6) represent scalar and vectorial fields ac-
cording to: �j1 = bj� , �j2 = bjµ, �j3 = bjB, �j4 = bj�, �j5 = sj� , �j6 = sj�

In addition, in Eqs. (A.138)-(A.148) we introduced:

fji =�
�j�"�1

�

V

Z

A�µ(x)

n�µ · DA�r��i dA

�
�jµ"�1

µ

V

✓ Z

Aµ�(x)

nµ� · DAµr�µi dA +

Z

Aµ�(x)

nµ� · DAµr�µi dA

◆

� �j�"�1
�

V

Z

A�µ(x)

n�µ · DA�r��i dA (A.151)

gI
i = nµ�(��1iDA� + �2iDAµ) (A.152)

gII
i = �1in�µDA� + �5iP�µ (A.153)

gIII
i = �3inµ�DBµ (A.154)

hI
i = nµ�(�2iDAµ � �4iDA�) (A.155)

hII
i = �4in�µDA� + �6iP�µ (A.156)

hIII
i = �6inµ�DBµ (A.157)





Appendix B

Closed problem for the two region
modeling approach

B.1 The Closure Problem (!-region)

This section is devoted to obtain a closed form of the averaged equations presented in
the chapter 5, and this means that a representation for the spatial deviation concen-
trations has to be developed. As mentioned, the details of the derivation and formal
solution of the closure problem are quite lengthy, thus, some repetitive steps, that
were already developed in detail in Appendix A, are omitted in this section.
First to obtaining the spatial deviation concentrations, Eq. 5.15 can be rewritten as:

eCi�|r� = Ci�|r� � hCi�i�|r� , (B.1)

where r� = x +y�, is the position vector of locating points of the �-phase (� = µ,�)
within the domain averaging, with respect to an external reference frame. Base on
Eq. B.1 one can obtain the governing equations for spatial deviation concentrations
by subtracting the average equation when x �! r� (Eqs. 5.27, 5.35 and 5.40), to the
local equations (Eqs. 5.1-5.3), also evaluated in r�, thus, the transport equations for
the spatial deviation concentrations can be expressed as
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In µ-phase:
Sepecies A:

@ eCAµ

@t
=r · (DAµr eCAµ)� "�1

µ r ·

DAµ

V

✓ Z

Aµ�(x)

nµ�
eCAµ dA

◆�
� kµ

✓
eCAµ �

eCBµ

Kµ

◆

�
"�1
µ

V

✓ Z

Aµ�(x)

nµ� · DAµr eCAµ dA

◆
�
"�1
µ

V

✓ Z

Aµ�(x)

nµ� · DAµrhCAµiµ dA

◆

� "�1
µ r"µ · DAµrhCAµiµ (B.2)

Species B:

@ eCBµ

@t
=r · (DBµr eCBµ) + "�1

µ r ·

DBµ

V

✓ Z

Aµ�(x)

nµ�
eCBµ dA

◆�
+ kµ

✓
eCAµ �

eCBµ

Kµ

◆

�
"�1
µ

V

✓ Z

Aµ�(x)

nµ� · DBµr eCBµ dA

◆
�
"�1
µ

V

✓ Z

Aµ�(x)

nµ� · DBµrhCBµiµ dA

◆

� "�1
µ r"µ · DBµrhCBµiµ (B.3)

In �-phase:

@ eCA�

@t
=r · (DA�r eCA�)� k� eCA� � "�1

� r ·

DA�

V

Z

A�µ(x)

n�µ
eCA� dA

�

� "�1
�

V

Z

A�µ(x)

n�µ · DA�r eCA� dA

� "�1
�

V

Z

A�µ(x)

n�µ · DA�rhCA�i� dA + "�1
� r"� · DA�rhCA�i� (B.4)

Eqs. B.2 - B.4 contain averaged local and non-local sources, in the same way as the
non-closed averaged equations, Eqs. 5.27, 5.35 and 5.40. In order to remove these
averaged concentrations from the area integrals, the following expansions in Taylor
series about the centroid of the averaging volume (x), are proposed for the averaged
concentrations hCi�i�:

hCi,�i�|r� = hCi,�i�|x| {z }
O(hCi,�i�)

+y� ·rhCi,�i�|x| {z }
O(

r0
L hCi,�i�)

+
1

2
y�y� : rrhCi,�i�|x
| {z }

O

�
r20
L2 hCi,�i�

�

+ · · · (B.5)

rhCi,�i�|r� = rhCi,�i�|x| {z }
O(rhCi,�i�)

+y� ·rrhCi,�i�|x| {z }
O(

r0
L rhCi,�i�)

+ · · · (B.6)



Appendix B - Closed problem for the two region modeling approach 155

In Eqs. B.5 and B.6 the estimates of order of magnitude of the first terms of the series
have been included, one can observe that it has been assumed that the characteristic
length associated with spatial variations of hCi,�i� and rhCi,�i� are of the same order
of magnitude which is the large length-scale L. In order to solve the closure problem,
the following length-scale constraints are imposed.

r0 ⌧ L (B.7)

r20 ⌧ L2 (B.8)

Consequently, Eqs. B.5 - B.6 lead to the following

O

✓
hCi,�i�|r� � hCi,�i�|x

◆
⌧ 1 (B.9)

O

✓
rhCi,�i�|r� �rhCi,�i�|x

◆
⌧ 1 (B.10)

Under these conditions, one can remove the averaged quantities from the area inte-
grals in Eqs. B.2 - B.4. Then, to simplify this equations, it should be provided the
order of magnitude estimates of some terms and one can notice that, on the basis of
the length scale constraint,

`� ⌧ `µ ⌧ L, (B.11)

the following inequalities are satisfied for Eqs. B.2 - B.4,

"�1
µ r ·

✓
DAµ

V

Z

Aµ�(x)

nµ�
eCAµ dA

◆
⌧ DAµr2 eCAµ (B.12)

"�1
µ r ·

✓
DAµ

V

Z

Aµ�(x)

nµ�
eCAµ dA

◆
⌧ DAµr2 eCAµ, (B.13)

i. e. the non-local diffusion term is smaller than diffusion term since `µ ⌧ L. And
exactly for the equation of species B as one can see in the next expressions:

"�1
µ r ·

✓
DBµ

V

Z

Aµ�(x)

nµ�
eCBµ dA

◆
⌧ DBµr2 eCBµ (B.14)

"�1
µ r ·

✓
DBµ

V

Z

Aµ�(x)

nµ�
eCBµ dA

◆
⌧ DBµr2 eCBµ (B.15)
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Since `� ⌧ L, the last inequality is given by

"�1
� r ·

✓
DA�

V

Z

A�µ(x)

n�µ
eCA� dA

◆
⌧ DA�r2 eCA� (B.16)

In addition, as a final simplification, we limit the closure problem as quasi-steady.
The constraint associated to this simplification is:

DA�t⇤

`2�
� 1 (B.17)

In this way, Eqs. B.2 - B.4 take the form of the closure problem, given by
In µ-phase
Species A:

0 = DAµr2 eCAµ| {z }
diffusion

� kµ

✓
eCAµ �

eCBµ

Kµ

◆

| {z }
reaction

�
"�1
µ

V

✓ Z

Aµ�(x)

nµ� · DAµr eCAµ dA

◆

| {z }
non-local flux

(B.18)

Species B:

0 = DBµr2 eCBµ| {z }
diffusion

+ kµ

✓
eCAµ �

eCBµ

Kµ

◆

| {z }
reaction

(B.19)

In �-phase:

0 = DA�r2 eCA�| {z }
diffusion

� k� eCA�| {z }
reaction

� "
�1
�

V

Z

A�µ(x)

n�µ · DA�r eCA� dA

| {z }
non local flux

(B.20)

From Eqs. 5.6 - 5.8 and the decomposition represented by Eq. B.1 one can obtain
the interfacial boundary conditions for the closure problem, which can be express as
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At Aµ�

nµ� · DA�r eCA� � nµ� · DAµr eCAµ =nµ� · DAµrhCAµiµ � nµ� · DA�rhCA�i�| {z }
surface diffusive source

(B.21)

�n�µ · DA�r eCA� � P�µ( eCA� �Keq
µ�
eCAµ) = P�µ

�
hCA�i� �Keq

µ�hCAµiµ
�

| {z }
surface exchange source

+ n�µ · DA�rhCA�i�| {z }
surface diffusive source

(B.22)

�nµ� · DBµr eCBµ =nµ� · DBµrhCBµiµ| {z }
surface diffusive source

(B.23)

Eqs. B.18 -B.23 represent the closure problem, however we have no intention of
solving it over the entire macroscopic region. Instead, we want to solve for eCi� in
some representative region and use the computed results in Eqs. 5.16, 5.17 and 5.18
to affect the closure.

B.1.1 Closure variables

Given the nature of the boundary-value problem for eCi� , the solution of the spatial
deviation concentration, in terms of the sources present in Eqs. B.21 - B.23, are
defined as

eCAµ =bµµ ·rhCAµiµ + bµ� ·rhCA�i� + bµB ·rhCBµiµ + sµ
�
hCA�i� �Keq

µ�hCAµiµ
�

(B.24)

eCBµ =bBµ ·rhCAµiµ + bB� ·rhCA�i� + bBB ·rhCBµiµ + sB
�
hCA�i� �Keq

µ�hCAµiµ
�

(B.25)

eCA� =b�µ ·rhCAµiµ + b�� ·rhCA�i� + b�B ·rhCBµiµ � s�
�
Keq

µ�hCAµiµ � hCA�i�
�

(B.26)

In Eqs. B.24 - B.26, the variables bji, sj , where j = µ, B,� and i = µ,�, B are the
closure variables. The closure variables are determined by solving the corresponding
boundary-value problems that result from substituting Eqs. B.24 - B.26 into the
closure problem, Eqs. B.18 - B.20.
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B.2 Bondary-value problems (!-region)

Problem I (source rhCAµiµ):

In µ-phase,

species A : 0 =DAµr2
bµµ � kµ

✓
bµµ �

bBµ

Kµ

◆
�
"�1
µ

V

Z

Aµ�(x)

nµ� · DAµrbµµ dA

(B.27)

species B : 0 =DBµr2
bBµ + kµ

✓
bµµ �

bBµ

Kµ

◆
(B.28)

In �-phase: 0 =DA�r2
b�µ � k�b�µ �

"�1
�

V

Z

A�µ(x)

n�µ · DA�rb�µ dA (B.29)

At Aµ�

�nµ� · DAµrbµµ = �nµ� · DA�rb�µ + nµ�DAµ (B.30)

�n�µ · DA�rb�µ = P�µ(b�µ �Keq
µ�bµµ) (B.31)

�nµ� · DBµrbBµ = 0 (B.32)

Periodicity and restriction:

bjµ(r + lk) = bjµ(r), k = 1, 2; j = µ,�, B (B.33)

hbjµij = 0, j = µ,�, B (B.34)
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Problem II (source rhCA�i�):

In µ-phase,

species A : 0 =DAµr2
bµ� � kµ

✓
bµ� �

bB�

Kµ

◆
�
"�1
µ

V

Z

Aµ�(x)

nµ� · DAµrbµ� dA

(B.35)

species B : 0 =DB�r2
bB� + kµ

✓
bµµ �

bB�

Kµ

◆
(B.36)

In �-phase: 0 =DA�r2
b�� � k�b�� �

"�1
�

V

Z

A�µ(x)

n�µ · DA�rb�� dA (B.37)

At Aµ�

�nµ� · DAµrbµ� = �nµ� · DA�rb�� � nµ�DA� (B.38)

�n�µ · DA�rb�� = P�µ(b�� �Keq
µ�bµ�) + n�µDA� (B.39)

�nµ� · DBµrbB� = 0 (B.40)

Periodicity and restriction:

bj�(r + lk) = bj�(r), k = 1, 2; j = µ,�, B (B.41)

hbj�ij = 0, j = µ,�, B (B.42)
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Problem III (source rhCBµiµ):

In µ-phase,

species A : 0 =DAµr2
bµB � kµ

✓
bµB �

bBB

Kµ

◆
�
"�1
µ

V

Z

Aµ�(x)

nµ� · DAµrbµB dA

(B.43)

species B : 0 =DBµr2
bBB + kµ

✓
bµB �

bBB

Kµ

◆
(B.44)

In �-phase: 0 =DA�r2
b�B � k�b�B �

"�1
�

V

Z

A�µ(x)

n�µ · DA�rb�B dA (B.45)

At Aµ�

�nµ� · DAµrbµB = �nµ� · DA�rb�B (B.46)

�n�µ · DA�rb�B = P�µ(b�B �Keq
µ�bµB) (B.47)

�nµ� · DBµrbBB = nµ�DBµ (B.48)

Periodicity and restriction:

bjB(r + lk) = bjB(r), k = 1, 2; j = µ,�, B (B.49)

hbjBij = 0, j = µ,�, B (B.50)
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Problem IV (source hCA�i� �Keq
µ�hCAµiµ):

In µ-phase,

species A : 0 =DAµr2sµ � kµ

✓
sµ �

sB
Kµ

◆
�
"�1
µ

V

Z

Aµ�(x)

nµ� · DAµrsµ dA

(B.51)

species B : 0 =DBµr2sB + kµ

✓
sµ �

sB
Kµ

◆
(B.52)

In �-phase: 0 =DA�r2s� � k�s� �
"�1
�

V

Z

A�µ(x)

n�µ · DA�rs� dA (B.53)

At Aµ�

�nµ� · DAµrsµ = �nµ� · DA�rs� (B.54)

�n�µ · DA�rs� = P�µ(1 + s� �Keq
µ�sµ) (B.55)

�nµ� · DBµrsB = 0 (B.56)

Periodicity and restriction:

sj�(r + lk) = sj�(r), k = 1, 2; j = µ, B,� (B.57)

hsj�ij = 0, j = µ, B,� (B.58)

kµ =
DAµ

V

Z

Aµ�(x)

nµ� ·rsµ� dA (B.59)

k� = �DA�

V

Z

A�µ(x)

n�µ ·rs� dA (B.60)

Additionally, one can deduced the following relation

k� = kµ = avk (B.61)
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B.3 Large-scale closure problem

The objective of this section is to obtain a closed form of the large-scale averaged
equations, Eqs. 5.67, 5.69 and 5.70, and this means that we need develop a represen-
tation for the large- scale spatial deviation concentrations. To achieve it, Eq. 5.66
can be rewritten as

eCA,⌘|x+y⌘ = CA,⌘|x+y⌘ � {CA,⌘}⌘|x+y⌘ , (B.62)

and Eq. 5.68 can be rewritten as

eCj�! |x+y! = hCj�i�!|x+y⌘ � {hCj�i�!}!|x+y! , j = A, B;� = µ,�, (B.63)

where r� = x + y�, is the position vector of locating points of the ⌘ or !-region
within the domain averaging, with respect to an external reference. Base on Eq.
B.62 one can obtain the governing equation for the spatial deviation concentration
for ⌘-region by subtracting the averaged equation, Eqs. 5.67, when x �! r⌘, to the
local equation, Eqs. 5.48, also evaluated in r⌘. This equations is defined as

@ eCA⌘

@t
=r · (DA⌘r eCA⌘)� "�1

⌘ r ·
✓

DA⌘

V

Z

A⌘!(x)

n⌘!
eCA⌘ dA

◆

�
"�1
⌘

V

Z

A⌘!(x)

n⌘! · DA⌘r eCA⌘ dA

�
"�1
⌘

V

Z

A⌘!(x)

n⌘! · DA⌘r{CA⌘}⌘ dA� "�1
⌘ r"⌘ · DA⌘{CA⌘}⌘ (B.64)

Similarly, base on Eq. B.63 one can obtain the governing equation for the spatial
deviation concentration for ⌘-region by subtracting the averaged equations, Eqs. 5.69,
?? and 5.70, when x �! r!, to the local equations, Eqs. 5.49, 5.50 and 5.51 also
evaluated in r!, respectively. This equations are defined as
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Species A:

"µ
@ eCAµ!

@t| {z }
accumulation

=r ·
�
Dµµ ·r eCAµ!

�
| {z }

diffusion

�r ·
✓
"�1
!

V

Z

A!⌘(x)

n!⌘ ·
�
Dµµ

eCAµ!
�
dA

◆

| {z }
non-local diffusion

�"
�1
!

V

✓ Z

A!⌘(x)

n!⌘ ·
�
Dµµ ·r eCAµ!

�
dA

◆

| {z }
non-local flux

� "�1
!

V

✓ Z

A!⌘(x)

n!⌘ ·
�
Dµµ ·r{hCAµiµ!}!

�
dA

◆

| {z }
interfacial flux source

�"�1
! r"! ·

�
Dµµ ·r{hCAµiµ!}!

�
| {z }

difussive source

�"µkµ

✓
eCAµ! �

eCBµ!

Kµ

◆

| {z }
reaction

+ avk( eCA�! �Keq
µ�
eCAµ!)

| {z }
exchange term

(B.65)

and finally,

"�
@ eCA�!

@t
=r ·

�
D�� ·r eCA�!

�

�r ·
✓
"�1
!

V

Z

A!⌘(x)

n!⌘ ·
�
D��

eCA�!
�
dA

◆

� "�1
!

V

✓ Z

A!⌘(x)

n!⌘ ·
�
D�� ·r eCA�!

�
dA

◆

� "�1
!

V

✓ Z

A!⌘(x)

n!⌘ ·
�
D�� ·r{hCA�i�!}!

�
dA

◆

� "�1
! r"! ·

�
D�� ·r{hCA�i�!}!

�

� "�k� eCA�! + avk( eCA�! �Keq
µ�
eCAµ!) (B.66)

Eqs. B.64 - B.3 contain averaged local and non-local sources, in the same way as the
regional non-closed averaged equations, Eqs. 5.67, 5.69 and 5.70. In order to remove
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these averaged concentrations from the area integrals, the following expansions in
Taylor series about the centroid of the regional averaging volume (x), are proposed
for the regional averaged concentrations. Concerning to ⌘-region the Taylor series
have the form

{CA,⌘}⌘|r⌘ = {CA,⌘}⌘|x| {z }
O({CA,⌘}⌘)

+y⌘ ·r{CA,⌘}⌘|x| {z }
O(

R0
L {CA,⌘}⌘)

+
1

2
y⌘y⌘ : rr{CA,⌘}⌘|x
| {z }

O

�
R2
0

L2 {CA,⌘}⌘
�

+ · · ·

(B.67)

{CA,⌘}⌘|r⌘ = r{CA,⌘}⌘|x| {z }
O(r{CA,⌘}⌘)

+y⌘ ·rr{CA,⌘}⌘|x| {z }
O(

R0
L r{CA,⌘}⌘)

+ · · · , (B.68)

and for the !-region have the next form

{hCj�i�!}!|r! = {hCj�i�!}!|x| {z }
O({hCj�i�!}!)

+y! ·r{hCj�i�!}!|x| {z }
O(

R0
L {hCj�i�!}!)

+
1

2
y!y! : rr{hCj�i�!}!|x
| {z }

O

�
R2
0

L2 {hCj�i�!}!
�

+ · · ·

(B.69)

{hCj�i�!}!|r! = r{hCj�i�!}!|x| {z }
O(r{hCj�i�!}!)

+y! ·rr{hCj�i�!}!|x| {z }
O(

R0
L r{hCj�i�!}!)

+ · · · (B.70)

In Eqs. B.67 - B.70 the estimates of order of magnitude of the first terms of the series
have been included; one can observe that it has been assumed that the characteristic
length associated with spatial variations of {CA,⌘}⌘ and {hCj�i�!}!, and r{hCj�i�!}!

and r{CA,⌘}⌘ are of the same order of magnitude which is the large length-scale
L . In order to solve the closure problem, the following length-scale constraints are
imposed.

R0 ⌧ L (B.71)

R2
0 ⌧ L 2 (B.72)
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Consequently, Eqs. B.67 - B.70 lead to the following

O

✓
{CA,⌘}⌘|r⌘ � {CA,⌘}⌘|x

◆
⌧ 1 (B.73)

O

✓
r{CA,⌘}⌘|r⌘ �r{CA,⌘}⌘|x

◆
⌧ 1 (B.74)

O

✓
{hCj�i�!}!|r! � {hCj�i�!}!|x

◆
⌧ 1 (B.75)

O

✓
r{hCj�i�!}!|r! �r{hCj�i�!}!|x

◆
⌧ 1 (B.76)

Under these conditions, one can remove the averaged quantities from the area inte-
grals in Eqs. B.64 - B.3. Then, to simplify this equations, it should be provided the
order of magnitude estimates of some terms and one can notice that, on the basis of
the length scale constraint,

`⌘ ⌧ `! ⌧ L , (B.77)

the following inequalities are satisfied for Eqs. B.2 - B.4

"�1
⌘ r ·

✓
DA⌘

V

Z

A⌘!(x)

n⌘!
eCA⌘ dA

◆

| {z }
non-local diffusion

⌧DA⌘r2 eCA⌘| {z }
diffusion

(B.78)

r ·
✓
"�1
!

V

Z

A!⌘(x)

n!⌘ ·
�
Dµµ

eCAµ!
�
dA

◆
⌧ r ·

�
Dµµ ·r eCAµ!

�
(B.79)

r ·
✓
"�1
!

V

Z

A!⌘(x)

n!⌘ ·
�
D��

eCA�!
�
dA

◆
⌧ r ·

�
D�� ·r eCA�!

�
(B.80)

As a final simplification, we limit the analysis to situations when the spatial deviations
of the concentration can be assumed to be quasi-steady. The constraint associated
to this simplification is:

DA⌘t⇤

`2⌘
� 1 (B.81)

Diit⇤

`2!
� l; i = µ,� (B.82)
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In this way, Eqs. B.64 - B.3 take the form of the closure problem:
In ⌘-region

0 =r · (DA⌘r eCA⌘)�
"�1
⌘

V

Z

A⌘!(x)

n⌘! · DA⌘r eCA⌘ dA (B.83)

In !-region

0 =r ·
�
Dµµ ·r eCAµ!

�
� "�1

!

V

✓ Z

A!⌘(x)

n!⌘ ·
�
Dµµ ·r eCAµ!

�
dA

◆

� "µkµ

✓
eCAµ! �

eCBµ!

Kµ

◆
� (avk)µ( eCA�! �Keq

µ�
eCAµ!) (B.84)

0 =r ·
�
D�� ·r eCA�!

�
� "�1

!

V

✓ Z

A!⌘(x)

n!⌘ ·
�
D�� ·r eCA�!

�
dA

◆

� "�k� eCA�! � (avk)�( eCA�! �Keq
µ�
eCAµ!) (B.85)

At the interface between ⌘-region and !-region (A⌘!):

�
�
n!⌘ · Dµµ ·r eCAµ!

�
=� n!⌘ · DA⌘r eCA⌘ �n!⌘ · DA⌘r{CA⌘}⌘| {z }

surface diffusive source

+ n!⌘ · Dµµ ·r{hCAµiµ!}!
| {z }

surface difusive source

(B.86)

�n⌘! · DA⌘r eCA⌘ =P⌘!( eCA⌘ �Keq
⌘!
eCAµ!) +n⌘! · DA⌘r{CA⌘}⌘| {z }

surface diffusive source

+ P⌘!({CA⌘}⌘ �Keq
⌘!{hCAµiµ!}!)

| {z }
surface exchange source

(B.87)

�n!⌘ · DBB ·r eCBµ! =n!⌘ · DBB ·r{hCBµiµ!}!
| {z }

surface diffusive source

(B.88)

B.4 Closure variables

Given the nature of the boundary-value problem for eCi� , the solution of the spatial
deviation concentration, in terms of the sources present in Eqs. B.86 - B.88, are
defined as



Appendix B - Closed problem for the two region modeling approach 167

eCA⌘ =b⌘⌘ ·r{CA⌘}⌘ + b⌘! ·r{hCAµiµ!}! + b⌘� ·r{hCA�i�!}�

+ b⌘B ·r{hCBµiµ!}! � s⌘
�
{CA⌘}⌘ �Keq

⌘!{hCAµiµ!}!
�

(B.89)

eCAµ! =bµ⌘ ·r{CA⌘}⌘ + bµµ ·r{hCAµiµ!}! + bµ� ·r{hCA�i�!}�

+ bµB ·r{hCBµiµ!}! + s!
�
{CA⌘}⌘ �Keq

⌘!{hCAµiµ!}!
�

(B.90)

eCBµ! =bB⌘ ·r{CA⌘}⌘ + bBµ ·r{hCAµiµ!}! + bB� ·r{hCA�i�!}�

+ bBB ·r{hCBµiµ!}! + sB
�
{CA⌘}⌘ �Keq

⌘!{hCAµiµ!}!
�

(B.91)

eCA�! =b�⌘ ·r{CA⌘}⌘ + b�µ ·r{hCAµiµ!}! + b�� ·r{hCA�i�!}�

+ b�B ·r{hCBµiµ!}! + s�
�
{CA⌘}⌘ �Keq

⌘!{hCAµiµ!}!
�

(B.92)

In Eqs. B.89 - B.92, the variables bji, sj , where j = ⌘, µ,B,� and i = ⌘, µ,B,� are the
closure variables. The closure variables are determined by solving the corresponding
boundary-value problems that result from substituting Eqs. B.89 - B.92 into Eqs.
B.83 - B.85.
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B.5 Boundary-value problems (Large-scale)

Problem I (source r{CA⌘}⌘):

In ⌘-region

0 =r · (DA⌘rb⌘⌘)�
"�1
⌘

V

Z

A⌘!(x)

n⌘! · DA⌘rb⌘⌘ dA (B.93)

In !-region

µ-phase:

0 =r ·
�
Dµµ ·rbµ⌘

�
� "�1

!

V

✓ Z

A!⌘(x)

n!⌘ ·
�
Dµµ ·rbµ⌘

�
dA

◆

+ (avk)(b�⌘ �Keq
µ�bµ⌘)� "µkµ

✓
bµ⌘ �

bB⌘
Kµ

◆
(B.94)

�-phase:

0 =r ·
�
D�� ·rb�⌘

�
� "�1

!

V

✓ Z

A!⌘(x)

n!⌘ ·
�
D�� ·rb�⌘

�
dA

◆

+ (avk)(b�⌘ �Keq
µ�bµ⌘)� "�k�b�⌘ (B.95)

At the interface between ⌘-region and !-region (A⌘!):

� n!⌘ ·
�
Dµµ ·rbµ⌘

�
= �n!⌘ · DA⌘rb⌘⌘ � n!⌘DA⌘ (B.96)

� n⌘! · DA⌘rb⌘⌘ = P⌘!(b⌘⌘ �Keq
⌘!bµ⌘) + n⌘!DA⌘ (B.97)

� n!⌘ · DBB ·rbB⌘ = 0 (B.98)

Periodicity and restriction:

bj⌘(r + lk) = bj�(r), k = 1, 2; j = ⌘, µ,�, B (B.99)

hbj⌘ij = 0, j = ⌘, µ,�, B (B.100)
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Problem II (source r{hCAµiµ!i!):

In ⌘-region

0 =r · (DA⌘rb⌘µ)�
"�1
⌘

V

Z

A⌘!(x)

n⌘! · DA⌘rb⌘µ dA (B.101)

In !-region

µ-phase:

0 =r ·
�
Dµµ ·rbµµ

�
� "�1

!

V

✓ Z

A!⌘(x)

n!⌘ ·
�
Dµµ ·rbµµ

�
dA

◆

+ (avk)(b�µ �Keq
µ�bµµ)� "µkµ

✓
bµµ �

bBµ

Kµ

◆
(B.102)

�-phase:

0 =r ·
�
D�� ·rb�µ

�
� "�1

!

V

✓ Z

A!⌘(x)

n!⌘ ·
�
D�� ·rb�µ

�
dA

◆

� (avk)�(K
eq
µ�bµµ � b�µ)� "�k�b�⌘ (B.103)

At the interface between ⌘-region and !-region (A⌘!):

� n!⌘ ·
�
Dµµ ·rbµµ

�
= �n!⌘ · DA⌘rb⌘µ � n!⌘ · Dµµ (B.104)

� n⌘! · DA⌘rb⌘µ = P⌘!(b⌘µ �Keq
⌘!bµµ) (B.105)

� n!⌘ · DBB ·rbBµ = 0 (B.106)

Periodicity and restriction:

bjµ(r + lk) = bj�(r), k = 1, 2; j = �, µ,�, B (B.107)

hbjµij = 0, j = µ, µ,�, B (B.108)
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Problem III (source r{hCA�i�!i!):

In ⌘-region

0 =r · (DA⌘rb⌘�)�
"�1
⌘

V

Z

A⌘!(x)

n⌘! · DA⌘rb⌘� dA (B.109)

In !-region

µ-phase:

0 =r ·
�
Dµµ ·rbµ�

�
� "�1

!

V

✓ Z

A!⌘(x)

n!⌘ ·
�
Dµµ ·rbµ�

�
dA

◆

+ (avk)µ(b�� �Keq
µ�bµ�)� "µkµ

✓
bµ� �

bB�
Kµ

◆
(B.110)

�-phase:

0 =r ·
�
D�� ·rb��

�
� "�1

!

V

✓ Z

A!⌘(x)

n!⌘ ·
�
D�� ·rb��

�
dA

◆

+ (avk)�(K
eq
µ�bµ� � b��)� "�k�b�� (B.111)

At the interface between ⌘-region and !-region (A⌘!):

� n!⌘ ·
�
Dµµ ·rbµµ

�
= �n!⌘ · DA⌘rb⌘µ � n!⌘ · Dµ� (B.112)

� n⌘! · DA⌘rb⌘µ = P⌘!(b⌘µ �Keq
⌘!bµµ) (B.113)

� n!⌘ · DBB ·rbBµ = 0 (B.114)

Periodicity and restriction:

bj�(r + lk) = bj�(r), k = 1, 2; j = �, µ,�, B (B.115)

h�bjµij = 0, j = �, µ,�, B (B.116)
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Problem IV (source r{hCBµiµ!i!):

In ⌘-region

0 =r · (DA⌘rb⌘B)�
"�1
⌘

V

Z

A⌘!(x)

n⌘! · DA⌘rb⌘B dA (B.117)

In !-region

µ-phase:

0 =r ·
�
Dµµ ·rbµB

�
� "�1

!

V

✓ Z

A!⌘(x)

n!⌘ ·
�
Dµµ ·rbµB

�
dA

◆

� (avk)µ(b�B �Keq
µ�bµB)� "µkµ

✓
bµB �

bBB

Kµ

◆
(B.118)

�-phase:

0 =r ·
�
D�� ·rb�B

�
� "�1

!

V

✓ Z

A!⌘(x)

n!⌘ ·
�
D�� ·rb�B

�
dA

◆

+ (avk)�(K
eq
µ�bµB � b�B)� "�k�b�B (B.119)

At the interface between ⌘-region and !-region (A⌘!):

� n!⌘ ·
�
Dµµ ·rbµµ

�
= �n!⌘ · DA⌘rb⌘µ (B.120)

� n⌘! · DA⌘rb⌘µ = P⌘!(b⌘µ �Keq
⌘!bµµ) (B.121)

� n!⌘ · DBB ·rbBµ = n!⌘ · DBB (B.122)

Periodicity and restriction:

bjB(r + lk) = bjB(r), k = 1, 2; j = �, µ,�, B (B.123)

h�bjBij = 0, j = �, µ,�, B (B.124)
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Problem V (source
�
{CA⌘}⌘ �Keq

⌘!{hCAµiµ!}!
�
):

In ⌘-region

0 =r · (DA⌘rs⌘)�
"�1
⌘

V

Z

A⌘!(x)

n⌘! · DA⌘rs⌘ dA (B.125)

In !-region

µ-phase:

0 =r ·
�
Dµµ ·rsµ

�
� "�1

!

V

✓ Z

A!⌘(x)

n!⌘ ·
�
Dµµ ·rsµ

�
dA

◆

+ (avk)µ(Keq
µ�sµ � s�)� "µkµ

✓
sµ �

sB
Kµ

◆
(B.126)

�-phase:

0 =r ·
�
D�� ·rs�

�
� "�1

!

V

✓ Z

A!⌘(x)

n!⌘ ·
�
D�� ·rs�

�
dA

◆

+ (avk)�(K
eq
µ�sµ � s�)� "�k�s� (B.127)

At the interface between ⌘-region and !-region (A⌘!):

� n!⌘ ·
�
Dµµ ·rsµ

�
= �n!⌘ · DA⌘rs⌘ (B.128)

� n⌘! · DA⌘rs⌘ = P⌘!(1 + s⌘ �Keq
⌘!sµ) (B.129)

� n!⌘ · DBB ·rsB = 0 (B.130)

Periodicity and restriction:

sj(r + lk) = sj(r), k = 1, 2; j = ⌘, µ,�, B (B.131)

hsjij = 0, j = ⌘, µ,�, B (B.132)
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Titre : Modélisation macroscopique des émulsions doubles 

Mots clés : Émulsion double, méthode de la prise de moyenne, non équilibre local massique 

Résumé : Les séparations à l’aide de membranes 

liquides sous forme d’émulsions doubles (DE) ont fait 

l’objet de nombreuses études compte tenu des 

applications potentielles notamment dans le domaine 

de la récupération des métaux, la séparation des gaz, 

l’élimination des composés organiques, l’élimination 

des polluants ou les bioséparations. Les difficultés de 

mise en œuvre de tels procédés ne relèvent pas de la 

complexité technique des installations mais avant tout 

dans la bonne compréhension des phénomènes 

couplés qui se produisent au sein de ces systèmes. 

Depuis leur invention, des progrès ont été réalisés ans 

la modélisation des procédés de séparation mais une 

description fine des mécanismes de diffusion-réaction 

au sein des émulsions doubles reste à établir. 

 

L’objectif de cette thèse est précisément de décrire le 

transport d’un soluté avec réaction chimique au sein 

d’un système DE à l’aide d’une modélisation 

macroscopique par changement d’échelle permettant 

la prise en compte des mécanismes à l’échelle locale. 

La méthode de la prise de moyenne a été utilisée pour 

établir rigoureusement les équations moyennes dans 

le cas où l’équilibre massique local n’est pas satisfait 

(non-équilibre local massique, NLME).  

L’émulsion double a été modélisée de deux manières 

différentes : un premier modèle consiste à considérer 

l’émulsion comme un système à un seul domaine 

composé de trois phases et défini à l’aide d’une seule 

échelle caractéristique. Le deuxième modèle 

distingue deux régions dont l’une résulte d’une 

homogénéisation de la phase interne. 

Les deux modélisations macroscopique font 

intervenir les propriétés effectives dont la 

détermination passe par la résolution des problèmes 

de fermeture associés. 

 

Enfin, ces deux modèles sont comparés dans le cas 

d’un procédé de séparation par agitation d’une 

émulsion double au sein d’un réservoir. 

 

 

Title : Macroscopic modeling of double emulsion systems 

Keywords : Double emulsion, method of volume averaging, non-local mass equilibrium  

Abstract : Liquid membrane separations as Double 

Emulsions (DE) have been extensively exam- ined 

for potential application in fields such as metal 

recovery, gas separation, organic compound 

removal, pollutant removal, and bioseparations. The 

difficulties in the application of these processes do 

not consist in sophisticated equipment or installation 

but in a good understanding of the complex 

phenomena that occur inside these systems. Since its 

invention, efforts have been made for successful 

modeling of DE process separation; however, 

information about the diffusion and reaction 

phenomena inside the DE has not been included in 

the mathematical descriptions in detail yet. 

Therefore, the objective of this thesis is to describe 

the solute transport with chemical reaction through 

DE systems by means of rigorous modeling that can 

provide with valuable information from the micro-

scale to be applied at the macro-scale. To accomplish 

this, a DE system has been analyzed as a three-phase 

system  characterized  by  more  than  one disparate 

length scales. The method of volume averaging has 

been used to derive rigorous averaged equations in 

the context of the non-local mass equilibrium 

(NLME).The structure of the DES has been studied 

from two differ- ent perspectives: 1) the DES as a 

single domain where concentration changes occur in 

the same length scale and 2) the DES consists in two 

homogeneous regions where con- centration changes 

occur at two different length scales. As a result of 

these different standpoints of representing the 

system, two different averaged macroscopic models 

were obtained: the three-phase and the two-region 

models. Both models present effective coefficients 

that include information about the micro-scale. These 

latter are related to closure variables which are 

solutions of associated boundary-value problems. 

Finally, an analysis of a DE-containing separation 

process in a stirred tank by applying both models was 

made. 
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