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I. INTRODUCTION 

Image from Clément Escoffier (source: SlidesShare.net)





I.1 MODULARITY 

 Most evolving objects in biology can be subdivided into smaller parts, each of which 

can be affected by natural selection. For instance, proteins are composed of protein domains, 

genomes are a set of genes and communities are made of individual organisms. As such, one 

can say that they have a modular organization. An object is modular if it can be divided into 

multiple sets of strongly interacting parts that are relatively autonomous with respect to each 

other (Clune et al. 2013; Melo et al. 2016). During my thesis, I especially focused on studying 

the modularity of various evolving objects (genes, genomes, organisms and languages), using 

the analogy of jigsaw puzzles. For example, genomes can be considered as a puzzle of genes. 

These puzzles can be divided in two categories: simple and composite puzzles (Figure 1). 

Simple puzzles are composed of pieces with the same phylogenetic origin (Figure 1A), 

whereas composite puzzles are composed of pieces with distinct origins (Figure 1B). For 

genomes, acquisition of foreign genes is the consequence of a variety of processes, the most 

well-known being Lateral Gene Transfer.  

Figure 1: Evolution of puzzles. 

(A) Evolution of simple puzzles with a common ancestor and (B) evolution of composite puzzles with distinct 
origins. Colors represent the phylogenetic origin of the component. On the left is a classical scenario where a 
grey ancestor undergoes a speciation, followed by the acquisition of red and blue synapomorphies. On the right 
is a more complex scenario, where blue and orange ancestor combine into an object that speciates and acquires 
black synapomorphies, and afterwards undergoes transfers from green and red objects (arrows). The resulting 
objects are composite.



Figure 2: Network of puzzles.

Network of puzzles showing the relation between each entities. Nodes represent evolving modular objects, an 
edge is drawn between two nodes if the corresponding objects share components.

 Classical tree methods are ill-suited to describe the evolution of objects of the latter 

kind. Since composite objects are made of elements from different origins (and thus having 

different histories), their evolution cannot be described by a tree that describes gradual 

divergence from a unique ancestor. Networks however allow for a better representation of 

modular entities, where each node represents a puzzle and each edge represents their relation, 

better capturing their evolutionary history (Figure 2).  

 Moreover, pieces (e.g. genes) composing the puzzle (e.g. genomes) can be subject to 

different evolutionary processes (e.g. duplication, tinkering by fusion or fission, de novo

evolution, mutation, losses) (Figure 3). During my thesis, I also developed and used network 

methods to detect and analyze the origin of these modular elements.  



I.2 NETWORKS AND BIG DATA 

 First of all, we need to be aware that the concept of a network is not new in biology. 

They are used as a convenient representation of patterns of interaction between appropriate 

biological elements such as chemical reactions in cells or neuronal connections in the brain 

(Newman 2010). 

 A network is a system of elements that are connected (or not) to one another.  It can be 

represented by entities modeled as nodes and their connections as edges (Figure 4). The nodes 

can represent units at all levels of the biological hierarchy, from genes and proteins to neurons 

and organs and limbs, and from individuals in a population to species in a community (Proulx 

et al. 2005). Edges usually represent some kind of interaction between nodes, including 

transcriptional control, biochemical interaction, energy flow and species interactions.  

 The study of a system by a network model requires two steps (Brandes et al. 2013).

The first is to abstract the phenomenon in the form of a network, that means to define entities 

which will constitute the nodes and the relations between these entities which will constitute 

the edges. The second step consists in building the network and then analyzing it, using tools 

issued from graph theory. 

Figure 3: Representation of evolutionary processes affecting the puzzle pieces. 

Different phylogenetic origins are differently colored.



Figure 4: Representation of a network.
In this network nodes are in grey connected by an edge in black.

  

 A huge advantage of networks in evolutionary studies is that they are relatively fast to 

compute. Starting from a set of objects, one only has to compute which pairs are connected, 

according to a given rule. As such, building a network has a very convenient quadratic 

complexity, allowing for the simultaneous study of a very large number of objects, typically 

up to millions. This property is especially desirable when studying the evolution of biological 

sequences, since the post-genomic era is characterized by an accelerated accumulation of 

molecular sequences with a considerable genetic diversity, from genome and metagenome 

sequencing  projects (Sharpton 2014; Dolinski and Troyanskaya 2015; Eisenstein 2015).  

I.2.1 Data avalanche 

 After the discovery of the first sequencing methods, major ambitious projects such as 

the human genome sequencing project in 1990, were launched. The human genome 

sequencing project costed nearly three billion dollars and lasted 13 years. Since then, the aim 

has been not only to improve the sequencing methods by reducing their time but also their 

cost. This evolution has led to the reduction of the human labor force. Although still reserved 

for laboratories with considerable resources, the evolution of sequencing methods tends 

towards democratization. 

 Metagenomics is one of the disciplines that have emerged from sequencing. Its 

purpose is to simultaneously analyze the whole population of micro-organisms from a given 

medium instead of looking at a single species or clones. Thus, using high-throughput 



sequencing methods, genes of interest can be isolated. The advantage is a greater speed of the 

analysis and the principle is also relevant from an ecological point of view. The important 

information is to know which genes, and therefore what biological functions, exist in the 

environment. Metagenomics has led to the study of the metagenomes of marine (Kennedy et 

al. 2010; Ma et al. 2012; Kodzius and Gojobori 2015), terrestrial (Daniel 2005; Delmont et al. 

2011; Nesme et al. 2016) or even internal environments of animals (Mandal et al. 2015; Wang 

et al. 2015). The study of the genomes of organisms living in the environment can be useful in 

understanding the composition of an ecosystem. The TARA oceans project is a non-profit 

initiative. This project involves the sampling of planktonic samples and the core drilling of a 

selection of important coral colonies (Sunagawa et al. 2015). Planktonic organisms form the

basis of oceanic ecosystems. The analysis of the samples, using high-throughput sequencing 

methods, will allow to know the study of the diversity and the geographical distribution of 

planktonic and coral species in order to better preserve them. The analysis of metagenomic 

data from TARA Oceans is expanding scientific databases and knowledge (Mitchell et al. 

2016). Since 2015, several milestone articles were published on the TARA Oceans and 

studies related to ocean microbes (Zhang and Ning 2015; Gimmler et al. 2016). 

 Equally ambitious is the TerraGenome project (Vogel et al. 2009). The aim of this 

project is to complete the sequencing of the genome of all soil microorganisms. A colossal 

challenge, which opens up countless perspectives. Currently, 70% of the antibiotics on the 

market are derived from soil bacteria. These bacteria represent only a tiny fraction of the total 

bacterial biodiversity. On average, each gram of soil contains one billion bacterial cells, 

which is an almost inexhaustible reservoir of new bioactive molecules to discover. Results are 

thus expected in the understanding of bacterial mechanisms of adaptation and evolution in 

underground ecosystems. Metagenomics is also useful for exploring the bacterial "ecosystem" 

in humans.  

 In 2008, the METAHIT project was setup with the aim to characterize the genes and 

functions of microbes in human intestinal flora, as well as to understand their impact on our 

health. The first results observed by the sequencing of the genomes of the microorganisms 

made it possible to identify 1,150 species of bacteria, many of which were unknown until then 

(Qin et al. 2010). Many if the sequenced genes are genes needed by bacteria for the use of 

complex carbohydrates, the synthesis of vitamins and amino acids, as well as survival in the 

hostile environment of the intestine. The symbiosis between man and intestinal flora is 

particularly important for human physiology. Indeed, there is a relationship between the state 



of the intestinal flora and certain chronic diseases of the intestine (Guinane and Cotter 2013;

Zhang et al. 2015). The intestinal flora is composed of a group of bacteria common to all 

individuals, as well as a group specific to each. Studies on this second group would help to 

understand the cause of intestinal diseases or the tendency to obesity in some people (Duranti 

et al. 2017). 

 All these metagenomic projects are producing enormous amount of data that should be 

exploited in evolutionary biology (see article in Annex 1). This phenomenon is often 

described as a deluge of sequences, as a powerful flow difficult to channel. Indeed, the 

analysis of the information contained in such quantities of data poses many practical 

difficulties. The computer is now indispensable as a tool at all stages, from the sequencing of 

the nucleotides and the assembly of the fragments produced. Gene detection is based on 

necessarily automated statistical models. The study of these genes, once detected, uses 

methods that are extremely computationally intensive. Bioinformatic tools and associated 

databases for handling those datasets have been developed for the scientific community (Kim

et al. 2013).   

A fundamental challenge is the interpretation of this huge amount of data to elucidate 

new proteins functions, three-dimensional structures and evolutionary origin. Classical 

computational approaches heavily rely on homology-based annotation transfer, using tools 

such as BLAST (Altschul et al. 1990), HMMs (Yoon 2009), multiple alignments (Edgar and 

Batzoglou 2006) and motif finding algorithms (Bailey et al. 2009). So to study a set of new 

genetic sequences, biologists usually start to compare them with already known sequences 

and group them. For example, they can create groups of homologous genes (inherited genes in 

different species from a common ancestor) to study the evolutionary history of genes or create 

groups of orthologous genes (homologous genes where a gene diverges after a speciation 

event) for functional annotation (Pearson 2013). Along with the evolution of high-throughput 

sequencing technology, new methods based on network approaches have been introduced to 

analyze the rapid influx of these massive datasets of molecular sequences. That is why 

another key aspect of this thesis has focused on the development of new in silico approaches, 

which extend the exploitation of these large molecular data sets, based on networks. 



Figure 5: Constructing a simple sequence similarity network.

I.2.2 Sequence Similarity Networks 

 In the late 1990s, networks of sequences based on their similarity, known as  

"Sequence Similarity Networks" (SSNs) started to represent an attractive approach to enhance 

multiple sequence alignments and phylogenetic trees (Atkinson et al. 2009). One of the 

earliest formal and heuristic uses of SSNs was to define the COG groups of homologous 

families and facilitate prediction of the functions of large numbers of genes based on 

homology (Tatusov et al. 1997; Tatusov et al. 2000). SSNs are undirected graphs, where each 

node represents a unique sequence and each edge represents the similarity between connected 

sequences. This is the abstraction of a sequence similarity network, which in practice can be 

constructed in several ways. Sequence similarity searches can be performed by alignment 

tools, considering the sequence set as both a request and a target. In general, BLAST is the 

most commonly used tool for this purpose. BLAST returns all the local alignments with high 

similarity found between pairs of sequences. The construction of SSNs is based on the 

descriptors of these alignments such as the E-value and the percentage of identity (Figure 5). 

This output can already be interpreted as a network, where each line is an edge between a 

target sequence and a query sequence. This output needs to be filtered in order to keep useful 

information for the SSN. 



 As all sequences are compared against themselves (all versus all), we obtain self 

alignment information for each sequence. Self-hits are not informative and should be deleted. 

For a given comparison between two sequences, the alignment, score and E-value are not 

symmetric. The BLAST score between a pair of sequences can vary depending on which 

sequence is used as the query. It is also possible that given a pair of sequences, the alignment 

is present in one direction and not in the other. If the E-values associated with the 

comparisons are on either side than the threshold limit given in argument to BLAST. This 

asymmetry has no biological meaning, and it is therefore convenient to symmetrize the 

network by considering the best match of each pairwise comparison. In order to build the 

SSN, it is then common to annotate the undirected edge by the descriptors of this alignment 

(Percentage of identity, length, etc.). Finally, there may be multiple alignments at distinct 

locations along a pair of sequences, for various reasons related to the evolution of the 

sequences (variable divergence rhythms, insertion of non-homologous regions) or the BLAST 

algorithm (excluding regions of low complexity). In that situation, we will only keep the best 

alignment based on E-value. 

I.2.3 Computational bottleneck of SSN 

 Although networks allow the study of large datasets, there are some major 

computational bottlenecks that need to be overcome in the construction of a SSN. The most 

expensive step is often the comparison of sequences with alignment tools which produce a 

hypothesis of homology. Alignment is the first and most important step in the network 

analysis. This fundamental procedure attempts to infer which series of individual characters or 

patterns within sequences are homologous, that is to say, share a common evolutionary origin. 

The alignments may contain errors depending on the nature of the data and may have huge 

downstream effects (Rosenberg 2005).  

 Since the 1970s and the seminal work of Needleman and Wunsch, more than hundred 

alignment programs have been developed (Rosenberg 2009). However, this field still needs 

more exploration. We can divide the alignment algorithms into two categories: global 

alignment and local alignment. Global alignment attempts to align the entire sequence, end-

to-end. It was introduced by Needleman and Wunsch and was the first alignment procedure 

(Needleman and Wunsch 1970). Global alignment is well suited for comparing closely related 

sequences having approximately the same length. Nevertheless, this assumption may be 

incorrect in molecular evolution involving sequence rearrangement and shuffling. In this 



situation, local alignment is an alternative to global alignment. The local alignment attempts 

to align subsections of the sequences without considering the alignment of rest of the 

sequence regions. The subsections may be part or all of the sequences. These local alignment 

tools, used to find conserved patterns between sequences, are appropriated for aligning more 

divergent or distantly related sequences. Although the first local alignment approaches were 

introduced by Sankoff (Sankoff 1972) and Sellers (Sellers 1974), the most commonly used 

procedure is a modification of the Needleman-Wunsch algorithm proposed by Smith and 

Waterman (Smith and Waterman 1981). 

 From the mid 1980s, local alignment tools like FASTA (Pearson and Lipman 1988) 

were developed in the aim of database searching rather than a simple sequence comparison 

(Pearson 2013). In 1990, Altschul et al. published an article about their alignment tool called 

Basic Local Alignment Search Tool (or BLAST) providing flexible and fast alignments 

involving large sequence databases. BLAST, considered as the reference among alignment 

tools, is the most popular and most widespread approach with more than 65,000 citations of 

the original paper (Altschul et al. 1990). BLAST uses a "seed-extension" approach. A seed is 

short word (k-mer) of k letters. First, all identical or very similar k-mers between two

sequences are identified. Secondly, these short subsequences matches between the sequences 

are extended by measuring the similarity score at each extension. The seed extension is 

stopped when the score decreases, and the best score alignment obtained during the extension 

is retained. Since BLAST, the seeding technique became central in the theory of sequence 

alignment. Unlike Smith-Waterman and Needleman-Wunsch strategy which compare 

sequences base by base, the seeding and extending approach significantly increases speeds but 

cannot be guaranteed to find the optimal alignment (Altschul et al. 1990). Recently, new 

variants of seed-extension approach have been implemented using flexible-length seeds on a 

reduced amino acid alphabet like Tachyon (Tan et al. 2012), PAUDA (Huson and Xie 2014),

PSimScan (Kaznadzey et al. 2013), RAPsearch2 (Zhao et al. 2012), Lambda (Hauswedell et 

al. 2014), UBLAST (Edgar 2010), DIAMOND (Buchfink et al. 2015) and MMseqs 

(O'Driscoll et al. 2015).  

 There is a fundamental difference between the biological and computational goals of 

alignment algorithms, respectively homology and optimization. A computationally optimal 

solution is not always biologically correct (Kumar 1996; Nei et al. 1998; Takahashi and Nei 

2000). Computing similarities against very large datasets or databases is almost impossible in 

a single workstation in a feasible time using exhaustive sensitivity settings. Thus, much effort 



has been put on the improvement of existing programs to use high-performance computing 

(HPC) environments, such as clusters, grids, graphics processing units and clouds, together 

with parallelism techniques. For example, HBLAST (O'Driscoll et al. 2015) or HAMOND 

(Yu et al. 2017) are the parallelized versions of BLAST and DIAMOND using the Hadoop 

framework for computer clusters.  

I.3 AIMS OF THE THESIS 

 As stated above, the exponential increase of the number of available sequences, in 

particular from metagenomic studies, requires new comparative methods to explore the 

diversity of large datasets, in a way that also accounts for the complexity of the evolving 

entities (i.e. their modularity).  

The main subject of this thesis was thus the study of the modular evolution of genes. 

The modular nature of genes, i.e. the fact that genes are comprised of various components, 

such as introns, exons, domains, is well known (Gilbert 1978). The remodelling of these 

modular genes by shuffling, fusion and fission of genetic fragments, as well as de novo DNA

synthesis, contributes to the creation and diversification of gene families. These processes 

differ from mechanisms where sequences progressively diverge by accumulating point 

mutations (substitution, insertion, deletion) within a gene family. They are problematic for the 

construction of gene phylogenies and, as much as possible, are eliminated when studying the 

evolution of genes using trees. This recognized modularity complexifies the study of 

molecular evolution, requiring the development of specific strategies to characterize genes 

features, i.e. to identify the components of the genes and to decipher the rules of these 

components’ associations. Before the start of this thesis, sequence similarity networks had 

proven to be an important tool to identify homologous gene families and to provide a useful 

analytical framework to study the impact of combinatorial processes on molecular evolution, 

such as recombination, fusion or fission. 

 Further, in my thesis, I show that similarity networks are adapted to capture and 

analyze evolutionary history of modular entities beyond genes, such as organisms 

morphology and languages.  

 In Chapter I, I explain why network-based methods are starting to be used to 

complement phylogenetic analyses in studies in molecular evolution. With my colleagues, I 



contributed to write a book chapter on the different kinds of networks based on sequence 

similarity that have been introduced to tackle a wide range of biological questions, including 

sequence similarity networks, genome networks and bipartite graphs, and a guide for their 

construction and analyses. 

 In Chapter II, I introduce case studies that show how networks based approaches can 

be used to study the modularity in molecular, morphological and linguistic evolution. 

First, I explain the benefit of using networks to study gene remodeling (Chapter II.1). I 

introduce CompositeSearch, one of the software that I developed during my thesis, for the 

detection of composite genes and composite gene families. I applied CompositeSearch to 

analyze the distribution and impact of remodeled genes in plasmids, in eukaryotes (to study 

the transition of unicellularity to multicellularity, in collaboration with Pr Iñaki Ruiz-Trillo),

and in microbiomes from polluted environments. 

 Second, I introduce a new approach, developed with a palaeontologist (Pr Pierre-

Olivier Antoine) and ecologist and biostatistician (Pr François-Joseph Lapointe), to study the 

evolution of organisms morphology (Chapter II.2). Organisms are modular at one or more 

levels of organization, e.g. interconnected regulatory, metabolic, protein-protein interaction 

and genetic or developmental networks (Wake 2008; Mitra et al. 2013). Beyond the molecular 

level, organisms can also be seen as networks of morphological components, whose 

organization stems from that of underlying molecular networks. With Dr Etienne Lord 

(former Postdoc in Pr F-J Lapointe Lab), we developed Component-Grapher, a tool using 

network approaches and applied it on palaeontological and extant morphological data to 

analyse the co-occurrence relationships between organismal traits during the evolution of 

panarthropods since the Cambrian, and the evolution of rhinocerotid mammals.

 Finally, I investigated the important evolutionary processes in biology and in 

linguistics with our linguist collaborator Dr Mattis List (Chapter II.3), and we identified 

specific and common processes in these disciplines. We showed that network-based methods 

can also be used to detect non-tree like aspects of language history, like compound words, 

which are similar to composite genes or words borrowing similar to horizontal gene transfer 

in language. We also designed a case study, using networks in linguistics for the 

reconstruction of one aspect of language evolution, i.e. phonemes in Old Chinese 

pronunciation. 





II. NETWORK-THINKING IN EVOLUTION 

Sequence similarity network of complete virus genomes





II.1 NETWORKS: A COMPLEMENTARY METHOD TO 

PHYLOGENETIC ANALYSIS OF EVOLUTION  

 An evolutionary biologist is interested in how processes affecting evolution have 

produced the diversity of genes, genomes, organisms, species and communities that are 

observed today.   

 A classical approach to study these processes is the reconstruction of phylogenetic 

trees of genes, genomes, organisms and species (Figure 6); an outcome from the crucial 

Darwin works on theory of evolution by natural selection, published in his book "On the 

Origin of Species" (1859) (Darwin 1859). The theory of evolution is based on the idea that all 

living organisms evolve from earlier forms by modification and divergence according to a tree 

process as a result of natural selection (Lewontin 1970). It is commonly assumed that such 

evolving units present a few necessary conditions for evolution by natural selection, namely 

(i) phenotypic variation among members of an evolutionary unit, (ii) a link between 

phenotype, survival, and reproduction (i.e., differential fitness), and (iii) heritability of fitness 

differences (individuals resemble their relatives more than unrelated individuals) (Bapteste et 

al. 2012).  

Figure 6: A gene tree can have a different branching order from a species tree.

In this example, the gene has undergone two mutations in the ancestral species, the first mutation giving rise 
to the ‘blue’ allele and the second to the ‘green’ allele. Random genetic drift in association with the two 
subsequent speciations results in the red allele lineage appearing in species A, the green allele lineage in 
species B and the blue allele lineage in species C. Molecular phylogenetics based on the gene sequences will 
reveal that the red-blue split occurred before the blue-green split, giving the gene tree shown on the right. 
However, the actual species tree is different, as shown on the left. Based on Li W-H (1997) Molecular 
Evolution. Sinauer, Sunderland, MA.  (Brown 2002)



 Like Darwin, scientists believed that evolution was a slow and gradual process. 

However, the tree model is not enough to explain the evolutionary history of life on Earth 

(Nutman et al. 2016). Besides the tree-like process, other processes called nongradual, 

involving combinatorial (e.g. recombination, fusion, fission) and introgressive (e.g. 

integration of foreign genetic element in to a genome by HGT) exist and cannot be 

represented accurately by a tree (Dagan et al. 2008; Halary et al. 2010; Corel et al. 2016).

 Saltational processes, such as recombination events, fusion, fission or lateral gene 

transfer (or horizontal gene transfer), are found at different levels of biological organization 

(Figure 7) Network-based methods have been described to be a well suited approach to detect, 

analyze and visualize the vertical and horizontal relationships at the genomic level and in 

several genomes at the same time (Corel et al. 2016). Network approaches are increasingly 

used to complement phylogenetic analysis in molecular evolution, comparative genomics, 

classification and ecological studies (Halary et al. 2013). For example, their suitability for 

investigating introgressive events have enhanced our understanding of the chimeric origin of 

genes in the eukaryotic proteome (Thiergart et al. 2012; Alvarez-Ponce et al. 2013), the flow 

of genes between prokaryotes and their mobile genetic elements (Halary et al. 2010; Dagan 

2011; Kloesges et al. 2011; Popa et al. 2011; Jaffe et al. 2016) and gene sharing across mobile 

elements to study the transfer of resistance factors (Fondi and Fani 2010; Tamminen et al. 

2012). Networks have also been used to describe complex biological systems, including 

inferring the “social networks” of biological life forms (Halary et al. 2010), producing maps 

of genetic diversity (Cheng et al. 2014), detecting distant homologues (Park et al. 1997;

Bolten et al. 2001; Bapteste et al. 2012)  and exploring gene and genome rearrangements 

(Jachiet et al. 2013; Meheust et al. 2016).  



 The revolution in DNA sequencing has been a major advance for evolutionists, giving 

them new opportunities to investigate these diverse kinds of questions with molecular data;

however they also present challenges in terms of the scale of the analyses. Consequently, 

development of new methods for the construction and analysis of networks has been 

necessary. In the book chapter "The Methodology Behind Network-Thinking: Graphs to 

Analyze Microbial Complexity and Evolution", we present the different kinds of networks 

based on sequence similarity that have been introduced to tackle a wide range of biological 

questions, including sequence similarity networks, genome networks and bipartite graphs, and 

a guide for their construction and analyses. This book chapter has been submitted to the editor 

Anisimova Maria for the book "Evolutionary Genomics: statistical and computational 

methods" (Humana Press, Springer). 

Figure 7: Several illustrations of mosaicism through merging events.

(A) Composite genes result from the fusion of different gene domains. (B) Composite genomes can result from 
the introgression of a gene into a genome, or (C) from the introgression of a genome into a genome. (D) 
Composite organisms can arise from the introgression of a mobile genetic element. Holobionts result from the 
introgression of a genome (E) or of another cell (F) into a cell. (Corel et al. 2016)
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Summary/Abstract 
In the post genomic era, large and complex molecular datasets from genome and metagenome 

sequencing projects expand the limits of what is possible for bioinformatic analyses. Network 

based methods are increasingly used to complement phylogenetic analysis in studies in 

molecular evolution, including comparative genomics, classification and ecological studies. 

Using network methods, the vertical and horizontal relationships between all genes or 

genomes, whether they are from cellular chromosomes or mobile genetic elements, can be 

explored in a single expandable graph. In recent years, development of new methods for the 

construction and analysis of networks has helped to broaden the availability of these 

approaches from programmers to a diversity of users. This chapter introduces the different 

kinds of networks based on sequence similarity that are already available to tackle a wide 

range of biological questions, including sequence similarity networks, genome networks and 

bipartite graphs,  and a guide for their construction and analyses.  

Key Words 
Sequence similarity network, evolution, lateral gene transfer (LGT), metagenomics, gene 

remodelling, ecology. 

 

  



Introduction 
An evolutionary biologist is interested in how processes governing evolution have produced 

the diversity of genes, genomes, organisms, species and communities that are observed today. 

For example, a biologist interested in the eukaryotes may wonder what symbiotic partners 

have contributed to their origins and evolution. Eukaryotic nuclear genomes are chimeric in 

nature, encoding many genes acquired from their alpha-proteobacterial endosymbiont (1–3).

However in recent years it has been proposed that the ongoing gain of genes by both 

microbial (4–6) and multicellular Eukaryotes (7, 8) via lateral gene transfer (LGT) has 

continued to contribute to eukaryotic evolution, though to a lesser extent than prokaryotes 

(9). A biologist interested in prokaryotes may wish to investigate lateral gene transfer to 

explore the extent and kinds of genes transferred between bacteria, archaea and their mobile 

genetic elements (10–14). These transfers are important for understanding the accessory 

genomes of prokaryotes (15–17). Further, studying gene transfers in real bacterial 

communities from different environments can help to test the effect of LGT on ecology and 

evolution of communities (18). Given the prevalence of introgression (9–11, 19), one 

interesting question is whether gene transfer has led to the formation of novel fusion genes 

that combine parts of genes originating from separate domains of life (20). An ecologist may 

wish to analyse the distribution of genes and species in the environment (21). A metagenome 

analyst may need to overcome an additional challenge is exploring the nature of the large 

proportion of sequences in metagenome sequence projects that have with little or no 

detectable similarity to characterised sequences in order to study the “microbial dark matter” 

(22). 

High-throughput sequencing technology presents new opportunities to investigate these 

diverse kinds of questions with molecular data; however they also present challenges in terms 

of the scale of the analyses. Consequently, a number of network based methods have recently 

been developed to expand the toolkit available to molecular biologists (23), and these have 

already made major contributions to our understanding molecular evolution. Networks have 

been used to shed light on the nature of the “microbial dark matter” (24) and used in 

ecological studies to explore the geographical distribution of organisms or genes (25, 26) or 

the evolution of different lifestyles (27). Their suitability for investigating introgressive 

events have been used to enhance our understanding of the chimeric origin of genes in the 

eukaryotic proteome (28, 29), the flow of genes between prokaryotes and their mobile genetic 

elements (30–35) and gene sharing across mobile elements to study the transfer of resistance 



factors (14, 36). Networks have also been used to classify highly mosaic viral genomes (37, 

38) and identify gene families (39, 40).  

 

While the generation and analysis of networks was previously limited to biologists with 

programming experience, tools have recently been developed to simplify the process and 

broaden the availability of network analyses of molecular sequence data. This chapter 

introduces the different kinds of networks that are already available to biologists and a guide 

to how these networks can be constructed and analysed for a large range of applications in 

molecular evolution. More precisely, this chapter will focus on three kinds of network and the 

types of analyses that are possible using these networks: sequence similarity networks, 

genome networks, and multipartite graphs (23). 

Sequence similarity networks (SSNs) 
Sequence similarity networks are the bread and butter of network based molecular sequence 

analyses, with a huge range of applications in molecular biology. The use of SSNs for 

molecular sequence analysis first came to the fore in the late 1990s and early 2000s, when 

SSNs were suggested as a way to analyse the rapid influx of new molecular sequence data 

due to advances in sequencing technology and cost, as well as to predict gene functions and 

protein-protein interactions (39, 41–43). One of the earliest formal and heuristic uses of SSNs 

was to define the COG groups of homologous families and facilitate prediction of the 

functions of large numbers of genes based on homology (39, 40). The need for efficient 

computation and analyses for large biological databases still pervades; however more recently 

SSNs have been increasingly appreciated as useful approaches to describe complex biological 

systems, including inferring the “social networks” of biological life forms (30), producing 

maps of genetic diversity (27), detecting distant homologues (44–46) and exploring gene and 

genome rearrangements (47, 48). 

A SSN is a graph in which each node is a sequence and edges connect any two nodes that are 

similar at the sequence level above a certain threshold (e.g. coverage, percent identity and E-

value) as determined by their pair-wise alignment (Box 1) (Figure 1). While the principle 

behind SSN construction is simple, the expression of similarity data in this structure can 

enable the use of powerful algorithms for graph analyses to study complex biological 

phenomena. Construction of a SSN is also frequently the starting point in a diversity of 

further graph analyses. A SSN can be constructed directly from fasta formatted sequence files 

using pipelines, such as EGN (49), the updated and faster performing EGN2 (forthcoming),



or PANADA (50). Visualisation of networks can be performed with programs such as 

Cytoscape (51) or Gephi (52), both of which also have a range of internal tools and external 

plugins for network analysis. While these programs are useful for the visualisation and 

analysis of relatively small networks, it can be difficult to load large and complex networks

with a lot of edges (e.g. ≥50,000 edges). In these cases the iGraph library offers an extremely 

powerful and well supported implementation of a broad range of commonly used methods for 

both complex graph generation and analysis in R, Python and C++ (53). However, using 

iGraph requires knowledge of programming in at least one of these languages. An additional 

package for network analysis in Python is NetworkX (54). It is our goal here to further 

generalise network approaches by explaining how evolutionary biologists with less 

programming knowledge could analyse their data. A list including many of the tools and 

programs available for SSN generation is available at https://omictools.com.  

Figure 1: Constructing a simple sequence similarity network: A set of sequences (protein or DNA) in fasta 
format (A) are aligned in pairs using alignment tools (such as BLAST). These alignments (B) are scored with 
metrics such as the percentage identity between two sequences (the number of identical nucleotides / amino 
acids displayed above) or the E-value of the alignment. In the resulting network, sequences are represented as 
nodes. Two sequence nodes are joined with an edge if they can be aligned above a define threshold, with the 
weight of the edge often based on percentage identity or E-value. 

Box 1: How to build your own sequence similarity network 

1) Dataset assembly: The first and most important step of SSN construction is the assembly 

of a dataset of sequences relevant to your biological question, usually in fasta format. 

This can be used as the initial input for wizards such as EGN or EGN2 (49), which can 

fully automate the process. The nature of the dataset is highly dependent on the question, 

so here we focus on the practicalities of database assembly. To construct the similarity 

network all sequences in the dataset are aligned against one another in a similarity search. 

This similarity search is often the time limiting step in an analysis, and the total number 

of searches required is quadratic to the number of sequences in the dataset. For large 

datasets it is useful to benchmark the alignment using a subset of the data to estimate the 

timescale for the alignment. Large datasets can generate huge outputs, not only due to the 

number of sequences but also the length of their identifier. One way to reduce the output 



size is to replace each sequence name in the fasta file with a unique integer. The use of 

integers will reduce disk space use and the memory consumption for any software used to 

analyse the sequence data.  

2) Similarity search: To generate a sequence similarity network all sequences must be 

aligned against one another in an all versus all search, in which the dataset of sequences is 

searched against a database including the same sequences. For gene networks, the 

alignment is usually done with fast pairwise aligner such as BLAST (55, 56) as 

implemented in EGN (49). Filters are often used to remove low-complexity sequences

from the search, as these can cause artefactual hits (BLAST options --seg yes, -soft-

masking true). The BLAST method of alignment will be the focus of future discussion in 

this chapter, however alternatives are available including BLAT (57) (also implemented in 

EGN), SWORD (58), USEARCH (59) and DIAMOND (60). These alternatives generally 

include an option to produce a “BLAST” style tabulated output, making them compatible 

with programs commonly used in network analyses. 

Within alignment tools like BLAST it is possible to assign set thresholds, such as the 

maximum E-value of the alignment to retain only significant hits or to output only the 

best alignment for a pair of sequences (BLAST option –max_hsps 1), drastically reducing 

the size of the output. It is not recommended to set minimal thresholds for some 

parameters (such as % sequence identity) unless required due to memory constraints so 

that you can generate networks from a single sequence alignment with different 

thresholds for comparison (e.g. comparison of a 30% similarity threshold to a 90% 

threshold, where edges will only be drawn between highly similar genes).     

Note: It may be intuitive to use additional CPUs to speed up the alignment process,

however in BLAST it can be more efficient to split the query file and launch multiple 

searches on separate cores instead of using the BLAST multithreading option. The 

pairwise alignment step is generally the most time limiting part of generating a SSN, so 

benchmarking should be used to establish the optimal settings for the pairwise and/or 

determine the feasibility of a project given the size of the dataset and the available 

computational resources.

3) Filtering similarity search results: In an all versus all similarity search any given query 

sequence will have a self-hit in the corresponding database. For example with sequences 

A and B: a self-hit is query sequence A matching to sequence A in the database, cases of 



which must be removed prior to network construction (Erreur ! Source du renvoi 

introuvable.). When query sequence A in a similarity search is aligned with sequence B in 

the database, often the reciprocal result is also identified (an alignment between query 

sequence B and sequence A in the database). These are called reciprocal hits; while the 

sequences involved are identical, the alignments and scores are not. Retaining both hits 

would generate two different edges between the same two nodes in a SSN, so generally 

only the best results from reciprocal hits are retained, based on a score such as the E-

value (Erreur ! Source du renvoi introuvable.). Finally, a single query sequence may be 

significantly aligned multiple times in different positions of the same sequence in the 

database, however for SSN construction only the best BLAST hit is generally retained

(Erreur ! Source du renvoi introuvable.). The selection of the best BLAST hit is again 

generally often based on the E-value (corresponding to the BLAST -max_hsps 1 option). 

Removing multiple hits against the same sequence allows the generation of an undirected 

network where a single edge connects two nodes, representing the best possible alignment 

between these nodes.

4) Thresholding and Network construction: Constructing a SSN from a BLAST output is 

conceptually simple; an edge is created between two sequences (nodes) that have been 

aligned in the sequence similarity search. It is common to apply thresholding criteria such 

as minimal % ID and/or coverage and/or maximal E-value to determine whether an edge 

is drawn between two sequences in the network (Figure 1). There are different ways to 

calculate the % coverage of an alignment. This could be based on the coverage of a single 

sequence in the alignment, selecting either the query or the database sequence in each 

alignment, or the longest or shortest sequence in each alignment. Alternatively both 

(mutual coverage) can be used, retaining an alignment when both values are above a 

given threshold. Edges above the thresholding criteria can be assigned a weight based on 

these criteria, producing a weighted sequence similarity network that retains information 

of the properties of the alignment between two sequences (Figure 1). It is often useful to 

construct and compare several SSNs with variable stringencies defining the edges 

between sequences, for example, to optimise gene family detection within the SSN 

(discussed below).



Figure 2: Filtering sequence similarity results for network construction: In the output of an all against all sequence 
similarity search there are a number of features that are often filtered out prior to network construction. Self hits (1/ and 2/), 
where like sequences are paired in a sequence alignment, are not informative to network construction and are removed 
(highlighted by the red box surrounding the alignments). In cases where there are reciprocal hits (3/ and 4/) between two 
sequence then only the alignment with the highest E-value is retained (highlighted with a green box around the retained 
alignment) to ensure only one edge representing the best possible alignment connects any two nodes in the network, The 
same is true for cases where a sequence has multiple hits against another sequence, such as when it aligns to another 
sequence in multiple positions (5/ and 6/). 

Exploiting sequence similarity networks for identification of gene 
families 
A gene family is usually defined as a group of sequences that are similar at the sequence 

level, indicative of homology and potentially of shared functions, however there is no 

uniform way to define this similarity (61, 62). One of the early contributions of SSNs in 

molecular sequence analysis was in the construction of the COG database of homologous 

protein sequences (39, 40). This study attempted to define gene families based on similarity 

at the sequence level using the results of sequence similarity searches. Within the results of an 

all versus all BLAST search, groups of at least three proteins encoded by different genomes 

that were more similar to each other than they were to other proteins found in the same 

genomes were defined as a likely orthologous gene family. Orthologous gene families are 

group of genes in different genomes that show sequence similarity, likely as a result of their 

shared evolutionary history.  

The idea of using graphs to identify gene families is now a core part of many graph-based 

analyses. Members of a gene family aggregate in a sub-network in a SSN. These sub-

networks are called connected components (CCs) at these defined thresholds, i.e. clusters of 

nodes connected by edges either directly or indirectly (via intermediate nodes) (Figure 3). 

The size (number of nodes and edges in a CC) and density (the proportion of potential 

connections between all nodes in a CC that are actually connected by edges in the graph) of 

CCs will depend on the thresholds used for constructing the SSN as well as the relationships 

between sequences in the network. For example, for a given dataset at a given mutual 

coverage threshold, a threshold of 90% sequence identity will identify a large number of 

small connected components that only include highly similar genes, while at threshold of 

30% sequence identity there will be fewer but larger connected components including genes 



with more variation in sequence similarity. Commonly used thresholds for detecting 

homologous gene families are an E-value ≤ e-5, mutual coverage ≥ 80% and a percentage of 

identity ≥ 30% (23). 

CCs are often detected in a SSN using the Depth-First Search (DFS) algorithm; however 

there are also other approaches for the detection of gene families based on the idea of 

detecting “communities” (63). In some cases, a CC can be further separated into communities 

of sequences that share more similarity to one another than to other sequences in the CC, thus 

are more highly linked in the SSN (Figure 3).  Communities are commonly identified by 

using graph clustering algorithms such as Louvain (64), MCL (65) or OMA (66), however 

different clustering algorithms will result in different outputs. The Louvain weighted method 

is widely used because it is simple to implement and scales very well to large graphs (Figure 

3, Figure 4) (64). MCL is a strong deterministic algorithm that has been implemented, for 

example, in tribeMCL (65) and orthoMCL (67). A potential drawback of MCL is that it 

requires user specification of the “inflation index”, a parameter which controls cluster 

granularity (or “tightness”). A high inflation index increases the tightness of clustering; 

producing a larger number of clusters that are smaller on average than those that would be 

obtained clustering the same dataset using a low inflation index. Selecting an appropriate 

inflation index is not trivial and requires optimisation (65). 

Figure 3 : Louvain community detection in a sequence similarity network. The network is assembled from the results of 
an all versus all alignment, as previously described. Edges can be weighted by E-value, percentage of identity or bitscore. 
For the purpose of simplification we consider strong or weak weights rather than actual value. A) A giant connected 
component at relaxed threshold. B) Three connected components at a more stringent threshold. C) Three communites with 
Louvain clustering algorithm, taking into account edge weights. 



Figure 4: Giant connected component before and after community detection. A) A single giant connected component 
from a sequence similarity network. B) The same giant connected component after application of a community detection 
algorithm. Node colours correspond to the newly assigned communities. 

 A number of the above approaches have been used to compile additional databases of 

orthology that can act as useful reference datasets. OMA is a program that uses graph based 

algorithms and exact Smith-Waterman alignments to identify orthology between genes (68–

71). OMA is also available as a web browser (72) including a database of orthologues that, in 

2015, included more than 2000 genomes and more than 7 millions proteins (66). SILIX is a 

software package (73) that aims at building families of homologous sequences by using a 

transitive linkage algorithm and HOGENOM (74) is a database that contains families inferred 

by SILIX for 7 millions proteins.  

In addition to clustering genes into families, valuable information can be extracted from the 

connected components using network metrics. Highly conserved sequences tend to form CCs 

where most of the nodes are connected to each other by edges, while sequences from more 

divergent families will tend to form more sparsely interconnected CCs. This information can 

be easily assessed for each component using the clustering coefficient. Conserved families 

will have a clustering coefficient close to 1, even for stringent thresholds. Identifying such 

conserved families can be useful to produce multiple sequence alignments (MSA) needed for 

phylogenetic reconstruction, but SSNs have also been demonstrated to unravel relationships 

between distant homologues by linking distantly related sequences together (24, 29, 45). In a 



SSN, two distant sequences A and C which do not share similarity according to BLAST can 

be linked together due to a sequence B which shows similarity to both A and C. 

The idea of distant homology has been particularly illuminating regarding chimeric 

organisms such as eukaryotes who carry genes inherited from a bacterial ancestor and from 

an archeal ancestor (29). A common way to analyse sequence similarity networks is to 

identify certain “paths” of interest, for example, the shortest possible paths between two 

nodes. This notion describes the path between two nodes in a connected component that 

minimises the sum of the edge weights. Alvarez-Ponce et al. used this approach to explore 

the topology of connected components in a SSN including the complete proteomes of 14 

eukaryotes, 104 prokaryotes (including archaea and bacteria), 2,389 viruses and 1,044 

plasmids. 899 CCs contained sequences from all three domains and of these 208 contained 

eukaryotic sequences that were not directly similar to one another, but only linked to one-

another via a “eukaryote-archaea-bacteria-eukaryote” shortest path.  These are putatively 

distant homologues in Eukaryotes that were present in both the Archaeal-host for the 

mitochondrial endosymbiont and the alphaproteobacterial endosymbiont, with both copies 

subsequently retained in Eukaryotes, and as such strong evidence for the chimeric origin of 

eukaryotes (29). This adds to previous studies to demonstrate the utility of networks in the 

study of ancient evolutionary relationships including the origin of eukaryotes (28) or rooting 

the tree of life (75).  Simple path analysis for a network is possible using existing plugins 

within visualisation tools such as Cytoscape (51) and Gephi (52).

Exploiting SSNs to identify signatures of “tinkering” and gene fusion 
When discussing identification of gene families we have focused on networks where edges 

are drawn between protein sequences that show a high enough similarity across their entire 

length, defined by a high mutual coverage threshold (e.g. 80%). Sequence similarity can also 

be partial, for example following gene remodelling or “tinkering” (76) producing new 

combinations of gene domains via gene fusion and fission events, or through the de novo

sequence synthesis of gene extensions, adding to existing sequences. The term ”Rosetta Stone 

sequence” was coined to define the formation of a new fusion protein in a species as the 

result of the fusion of two proteins that are found separate in another species, with authors 

originally predicting that these fusions could occur between proteins that physically interact 

in a common structural complex (77). One of the earliest applications of sequence similarity 

searches to identify fusion proteins was an attempt to predict pairs of proteins that may 

physically interact in an organism based on whether they could be identified as a single 



“composite” fusion protein in another organism (41). Beyond predicting protein-protein 

interactions, this kind of gene remodelling and recycling of existing gene parts has the 

potential to contribute to the expansion of functional diversity in genomes, creating new and 

unique combinations of domains and functions (48, 76, 78–82). Similarity search based  

screens have been implemented to identify composite genes and genome rearrangements in a 

range of prokaryotes (83–85), eukaryotes (78, 86–88) and viruses (89). 

 

Early attempts to identify composite genes were based on the output of sequence similarity 

searches, but without formalising the results of search methods into a graph structure. The 

first attempt to formalise the problem of identifying “composite” genes in networks was the 

“Neighbourhood Correlation” approach, aiming to distinguish genuine multi-domain proteins 

sharing common ancestry (homologues) from novel multi-domain proteins that share 

domains due to insertions (90). The later development of the FusedTriplets and MosaicFinder 

tools attempted to unify existing graph based methods for detection of “composite” gene 

detection (47). FusedTriplets is a graph based implementation of the traditional gene centred 

method for composite gene identification, originally introduced by Enright et al. 1999, with 

additional cross-checks on the absence of similarity between the two component genes 

contributing to a composite gene based on varying thresholds (47, 91). MosaicFinder is a 

gene family centred approach which will only identify highly conserved composite gene 

families that form “minimal clique separators” (Figure 5) (47). This graph topology implies 

that MosaicFinder may fail to detect divergent (e.g. ancient or fast evolving) composite gene 

families which will tend to form “quasi-cliques” without perfect separation. CompositeSearch 

(forthcoming: available at http://www.evol-net.fr/index.php/en/downloads) is a new program 

designed to overcome this limitation by identifying both conserved and divergent composite 

gene families (Box 2).

Figure 5: Composite gene identification using “minimal clique separators”. A) A multiple sequence alignment of 
composite genes (yellow) with two components (blue and magneta). B) The sequence similarity network corresponding to 
the multiple sequence alignment. The composite genes (yellow) are a minimal clique separator for the network. Their 
removal (shown in C) decomposes the network to the two separate component families. 



Box 2: How to identify composite genes using composite search.
1) BLAST search and filtering: All versus all BLAST search filtered as described in “How 

to build your own sequence similarity network”. 

2) CompositeSearch: Composite search takes a filtered BLAST output and a list of genes 

within as the initial input. Two search algorithms are implemented:  “fastcomposites” 

detects a list of potential composite genes. “Composites” additionally detects potential 

composite and component gene families. Additional options are included to filter the 

network based on a number of standard metrics (e.g. E-value, sequence similarity, mutual 

coverage) and set the maximum overlap allowed between different components aligned 

on the same potential composite gene. The definition of a maximum overlap allows 

adjustment for the tendency of BLAST to produce overhanging alignments (91). The 

output includes a node, edge and information file including information on number of 

nodes, edges and family connectivity from family detection. Two outputs are included for 

composite gene detection, a “composites” file with detailed information on each predicted 

composite gene in fasta format, and “compositesinfo”, summarising the data. Similarly 

two files provide detailed information on composite gene families and a summary of 

composite gene families.   

3) Filtering results: By default compositeSearch outputs all possible composite gene 

families, alongside a number of different scores and measures designed to help to filter 

these results for more confident cases. 

Recent studies have explored composite gene formation as a source of innovation by 

“tinkering” (76) during major evolutionary transitions. These can be especially interesting 

when exploring genome evolution following introgression, raising the possibility of 

formation of new composite genes using components with different evolutionary origins (20, 

48, 92). For example, the gain of a cyanobacterial endosymbiont at the origin of 

photosynthetic eukaryotes was accompanied by the transfer of whole cyanobacterial genes to 

its new host genome, with gene functions related to the role of the plastid (93–95).

Identification of composite genes related to the origin of photosynthetic eukaryotes 

unravelled novel symbiogenetic composite genes; unique fusions of genes encoded in the 

nucleus of photosynthetic eukaryotes that included components derived from the 

endosymbiont. As with whole genes transferred to the nucleus, several of these components 

had predicted functions related to the role of the plastid, including redox regulations and light 

response (48). 



Exploiting SSNs for ecological studies 
Ecological studies increasingly involve the assembly, analysis and comparison of large 

metagenome datasets. In addition to identification of functions and organisms associated with 

a particular environment, these studies enable the investigation of important hypotheses in 

microbial ecology at the level of organism or function, such as the often quoted hypothesis 

that “everything is everywhere, but the environment selects” from Bass Becking: the idea that 

microbial lineages are limitlessly dispersible in the environment, but the environmental 

conditions will select for certain lineages and control their distribution rather than any 

specific geographical separation  (21).   

Networks are useful for these kinds of ecological studies because existing graph algorithms 

can be used to investigate the structure of the network. When investigating gene (or genome 

networks) it is possible to distinguish nodes by labelling them based on their properties, such 

as categories for taxonomic or environmental origins (Figure 6). A simple way to represent 

this visually is to colour nodes based on these properties in Cytoscape or Gephi. A formal 

way to explore the relationships between node properties is to use networks metrics such as 

conductance (96), modularity (64) and assortativity coefficient (normalised modularity) (97).  

Assortativity and conductance are different metrics that attempt to answer the same type of

question: do nodes labelled as belonging to a particular category, such as environmental 

origin, tend to be connected with other nodes labelled as belonging to the same category? 

More precisely, conductance quantifies whether a given group of nodes shares more edges 

between themselves than with the rest of the nodes. A conductance of 0 implies that the graph 

is isolated, while a conductance close to 1 implies more connections are shared between that 

group of nodes and other nodes than are shared within the group of nodes. Assortativity is a 

measure of the preference for labelled nodes in a network to attach to other nodes with 

identical labels. Normalised assortativity values range between -1 and 1, where 0 indicates 

random distribution of labels within the network, 1 indicates that nodes with labels of the 

same type tend to be connected in the network, and -1 indicates that nodes with labels of 

different types tend to be connected in the network. A detailed description of the algorithms 

used in these calculations can be found in (98). 



Figure 6: Exploring distribution of annotations in sequence similarity networks. In this example nodes within a single 
connected component are assigned two colours, blue and yellow, corresponding to their having a different categorical 
annotation (E.g. originating from a different environmental source). Using the example of environmental source, genes in 
cluster A would all have the same environmental source (blue), indicating an environment specific cluster of genes. Genes in 
cluster B are found in two different environmental sources (blue and yellow); however nodes of the same type are 
preferentially linked to each other in the network than to genes from different environmental sources. This would result in a 
positive assortativity coefficient approaching 1 for environment, and a low conductance score, suggesting a strong 
environmental community structure. Genes in cluster C are also found in two different environmental sources; however there 
is no clear pattern for the distribution of genes with regard to environment. This network would have an assortativity 
approaching 0 and a high conductance score. 

Assortativity as a tool to study geographical and habitat distributions of 
microbes and genes 
Forster et al. used assortativity (among other network statistics, including the previously 

discussed shortest path analysis) to explore the geographical dispersion patterns of marine 

ciliates in a network generated from Ciliate SSU-rDNA sequences (25). Sequences were 

clustered into two different levels of gene family – CCs, and Louvain communities (LCs) as 

described in the section. Sequences were assigned categorical labels based on their 

geographical point of origin (eight locations) or habitat of origin (three habitats) and 

assortativity was calculated. If sequences, and thus species, are broadly distributed across 

geographical categories then assortativity of SSU-rDNA sequences labelled with these 

geographical categories would be low because similar sequences would be found in different 

environments. Contrarily, if similar sequences tend to be from the same geographical 

category, indicative of endemism, then assortativity of sequence geographical origin will be 

high (Figure 6). The majority of CCs and LCs showed a positive assortativity for 

geographical origin, higher than expected by chance, indicative of geographical community 

structure as opposed to global dispersal of Ciliates. Similar approaches were used by Fondi et

al. and applied to a collection of environmental metagenome samples to test the “everything 

is everywhere” hypothesis at the gene pool and functional level. Gene pools were more 

strongly associated with a particular ecological niche than with specific geographical 

location, supporting the idea that microbial genes are found everywhere but the environment 

selects for them (26).  

Conductance in the comparison of lifestyles and evolutionary histories 

Conductance is used to explore the clustering of pairs of different node categories in a graph 

connected component. In a study by Cheng et al. the proteomes of 84 prokaryote genomes 



were categorised into four broad redox groups based on their lifestyle, methanogens, obligate 

anaerobes, facultative anaerobes and obligate aerobes (27). For each CC in a pan-proteome 

sequence similarity network including all 84 genomes, the conductance was calculated for 

pairs of redox categories and compared to values obtained following random relabeling of the 

components. The distributions of conductance values for methanogens and for obligate 

anaerobes groups indicated that the sequences in these groups have features distinct from 

those in other groups; and that anaerobes and aerobes tend to be dissimilar and networks that 

are more isolated from one another than expected by chance.  

An additional example of the use of conductance is in exploring the propensity of a gene 

family to lateral gene transfer. Within a network of archaeal and bacterial genes, CCs 

showing a low conductance for both archaeal and bacterial sequences indicate that the 

bacterial and archaeal genes within the corresponding families are structured in two separate 

and conserved groups (Figure 6). Structuring gene families in to two groups would indicate 

that there was little or no evidence for lateral gene transfer between archaea and bacteria 

within this particular gene family. This kind of gene family is rare, with only 86 gene families 

from 40,584 (0.2%) meeting this criteria (24). 

SSNs in remote homologue identification: Shedding light on the microbial dark-
matter 
Up to 99% of microbial species are not cultivable and thus have not been studied in isolated 

culture. Analysis of high-throughput sequencing and metagenomics datasets has shed light on 

these uncultivable organisms, often referred to as the “microbial dark-matter” (99), and in 

some cases enabled the reconstruction of draft genomes (100–104). A considerable portion of 

most metagenome studies have predicted ORFs showing no detectable similarity to any 

known proteins, termed metaORFans (105). These can represent 25% -85% of the total ORFs 

identified in metagenomes (22). Identifying distant homologues of ORFans may help to 

predict their functions and begin to unravel the microbial dark-matter. Recent work by Lopez 

et al. in 2015 probed the microbial diversity of metagenome datasets from a range of 

environments including the human gut microbiome, identifying homologues of genes from 86 

ancient gene families that are distributed across archaea, bacteria and eukaryotes. The 

majority of these gene families included environmental homologues that were highly 

divergent from any of their cultured homologues, and many branched deeply with the 

phylogenetic tree of life, highlighting our limited understanding of diverse elements of the 

microbial world and hinting at the existence of yet unknown major divisions of life (24)

(Figure 7).



Figure 7: Remote homologue detection to help characterise the microbial dark matter. A) A hypothetical highly 
conserved cluster of genes from genomes present in sequence databases, where the average % of identity is high (≥60%). B) 
The same cluster after addition of divergent environmental sequences to the network. Environmental sequences in gray are 
more similar to those already identified from genome surveys (≥60% max identity) so are connected directly to the 
conserved gene cluster in the network. More divergent sequences in pink have <60% maximum identity to their homologues 
in the database. Many of these are only identified as linked to the sequences from the conserved database via intermediate 
gray nodes – the idea of “transitive homology”.

Exploiting SSNs to analyse classifications
Metagenomic and genomic data are providing scientists with a tantalizing amount of 

sequence data, casting the analysis of the extent of biodiversity as a major research theme in 

biology (106–110). In theory, existing organismal and viral classifications are invaluable tools 

to structure and analyze this biodiversity. However, the way taxonomical classifications are 

constructed raises questions about their naturalness and their actual application scope (38,

110–118), in particular regarding genetic diversity surveys. There are three major reasons for 

this. First, organismal and viral diversity is still largely undersampled, which means that 

existing classifications are incomplete (109, 110). Therefore, taxonomically unassigned 

sequences cannot be readily used in class-based genetic diversity surveys, since this dark 

matter remains outside existing classes. Second, classifications are constructed using different 

features (i.e. for viruses, a mix of phylogenetic, morphological, and structural criteria, such as 

replication properties in cell culture, virion morphology, serology, nucleic acid sequence, host 

range, pathogenicity, epidemiology or epizootiology), therefore their classes do not 

necessarily offer immediate proxies for quantifying genetic diversity per se. Third, 

evolutionary processes responsible for both genetic and organismal diversity are diverse, and 

they operate at different tempos and modes in different lineages (46, 113, 119–131). As a 

result, genetic diversity within classes and between classes can be heterogeneous, meaning 

that existing classifications may lack efficiency to discriminate, predict or compare taxa on 

genetic bases, potentially hampering diversity studies, a profound practical issue at a time 

where the analysis of metagenomic sequences is becoming a priority in biology.



Addressing these challenges is notably crucial for viral studies. Recently, the Executive 

Committee of the ICTV (132) proposed that network analyses methods that create similarity 

metrics based on the detection of homologous genes and their genetic divergence constitute a 

valuable strategy to assist classification of viruses. Consistently, basic network properties and 

metrics (Table 1) can quantify (i) whether genetic diversity is consistent within and between 

the classes of existing classifications, and (ii) describe what classes are the most 

homogeneous and distinctive in terms of genetic diversity. Three criteria can be used to 

estimate intra-class genetic heterogeneity (Figure 8 A, B, C). First, the average edge weights 

(measured as % of identity, PID) between pairs of sequences from genomes of the same class 

provides a trivial measure of intra-class genetic diversity. Second, the average proportion of 

Conserved Canonical Connections between sequences from the same connected component 

and from the same taxonomic class can be exploited (CCC, i.e. in each connected component 

of the SSN, the total number of edges connecting sequences of a given class i (intra-group 

edges, denoted Eii) divided by the theoretical maximal number of possible edges between 

sequences of that class in the connected component CCC(i) = 2*Eii/ (Ni x (Ni-1)) where Ni is 

the number of sequences of class i present in the connected component.). CCC ranges 

between 0 and 1. Within a connected component, if all pairs of sequences from the same class 

are directly connected, CCC equals 1, since all these sequences are more conserved than a 

given %ID threshold (e.g. >20 % ID and > 50% mutual cover). By contrast, low CCC are 

observed when sequences from genomes from the same class lack cohesive evolution; for 

example, when some related sequences evolved so fast that they show less than the minimal 

similarity required to be directly connected to their homologs in the graph. Third, the genetic 

consistency of a class can be estimated by 1) identifying what cluster of sequences was 

present in the largest number of genomes of the class, and then 2) by quantifying the 

proportion (in %) of the class members harboring that most ubiquitous cluster (maxCore%). 

When maxCore% of a class is < 100%, it means that, for this dataset, there is no gene family 

shared by all members of that class (i.e. no core genes). The SSN structure can also serve to 

estimate the genetic distinctiveness of each class, i.e. whether sequences from a given class 

are more similar to one another than they are to sequences from other classes (Figure 8 D, E). 

Such sequences could be used as classificatory features to assign members to the class. In a 

SSN, this property translates to a low ratio of inter-class edges over intra-class edges and is 

measured by conductance (Figure 8 D). Likewise, the proportion of clusters comprised 

exclusively of sequences from one class, a diagnostic features of the class, provides an 

estimate of the class genetic distinctiveness. Genetically highly distinct classes have a high % 

of such exclusive clusters. Based on these network measures, inter-classes genetic 



heterogeneity can simply be diagnosed by contrasting estimates of genetic consistency for all 

the above measures for each class. There is inter-class heterogeneity within a classification 

when the mean PID, mean CCC, maxCore%, DRC, and % of exclusive components differ 

between classes. 

Figure 8: Intra- and inter- classes heterogeneity measurements in weighted similarity networks. Sequences are 
represented by nodes. Each node is colored to represent the taxonomic class to which its host belongs. Nodes with the same 
color belong to the same class. Edge weight is represented by edge size proportional to the weight. Subgraphs correspond to 
clusters of sequences. Direct neighbors have a greater similarity than the threshold set to allow such connections. PID, 
average edge weights (% identity) between two sequences from genomes of the same class; CCC, average proportion of 
genetic conservation between sequences from the same cluster and from the same taxonomic class; maxCore%, conductance 
and %-exclusive components correspond to the estimates used to assess genetic consistency of classes. 

‘Ideal’ classes Not ideal classes

Low intra-class genetic diversity
(high average PID)

High intra-class genetic diversity
(low average PID)

High genetic cohesion
(high average CCC)

Low genetic cohesion
(low average CCC)

Core components
(high maxCore%)

No core components
(low maxCore%)

Obvious genetic distinctiveness
(high conductance difference with random groups)

Limited genetic distinctiveness
(conductance similar to random groups)

Exclusive pangenome
(high % of exclusive CC)

No exclusive pangenome
(low % of exclusive CC)

Table 1: Schematic properties of two extreme kinds of taxonomic classes with respect to their genetic diversity: The 3 
top properties inform about genetic diversity within classes (intra-class genetic diversity). The last 2 properties inform about 
the genetic distinctiveness (core and signature genes) of the classes. Inter-classes genetic heterogeneity identifies when 
genetic diversity of a class is not comparable with genetic diversity of another class in the classification. CCC, average 
proportion of genetic conservation between sequences from the same cluster and from the same taxonomic class; PID, 
average edge weights (% identity) between two sequences from genomes of the same class.

Application of this approach to a curated dataset of 3,058 classified viruses (all viral 

sequences available at the NCBI in November 2012, and sequences from Mimiviridae from 

URMITE laboratory, Marseille, France) classified according to 3 different schemes ((i) the 

International Committee on Taxonomy of Viruses (133), (ii) the Baltimore classification that 

classified viruses according to the nature of their genome and their replicative strategy (134),

and (iii) a classification into five monophyletic classes of viruses and selfish genetic elements 

as demonstrated by (135). The network was built by an all-against-all BLAST thresholds set 



at an E-value of < 1e-5, a mutual coverage > 50%, and a mininum %ID ≥ 20%. This protocol 

produced 13,819 CCs, and their analysis with the described metrics indicated that viral 

classes are genetically heterogeneous (Table 2), and also unraveled some class-specific 

widespread (maxCore%) genes (available on https://figshare.com/s/0b7428ea3c1b3a03d657.) 

and signature genes (available on https://figshare.com/s/0b7428ea3c1b3a03d657) for these 

viruses. ‘Megavirales’ were within the most genetically consistent viral orders, providing an 

additional argument for the introduction of this order in the ICTV classification.
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PID 20 PID 50 

Baltimore 

Min 0.88 1.49 66.57 20.16 39.37 0.91 1.73 83.87 9.59 61.45 

 
Mean 0.92 7.47 88.38 41.17 46.63 0.94 5.61 90.92 21.79 68.97 

 
Median 0.93 7.14 92.90 46.15 44.65 0.94 5.03 89.91 18.00 68.58 

 
Max 0.95 22.97 99.28 73.68 59.94 0.94 5.61 90.92 21.79 68.97 

 
Phylogenetic 

Min 0.89 1.34 64.86 28.43 43.88 0.87 2.26 82.20 12.62 60.78 

 
Mean 0.92 3.99 88.19 44.36 49.73 0.92 4.11 89.75 26.55 70.56 

 
Median 0.90 2.43 96.35 48.15 47.01 0.92 3.42 89.57 15.46 71.00 

 
Max 0.95 7.67 98.75 55.05 56.87 0.97 6.67 99.00 45.83 80.79 

 
ICTV-Orders 

Min 0.81 1.50 76.39 36.72 35.05 0.80 2.69 83.27 14.75 56.96 

 
Mean 0.92 7.58 89.53 76.94 45.60 0.93 55.40 92.27 45.25 70.10 

 
Median 0.94 6.88 94.13 85.11 42.94 0.94 7.91 91.02 42.07 71.09 

 
Max 0.96 13.61 96.36 100.00 62.04 0.98 394.96 100.00 80.00 80.79 

 
ICTV-Families 

Min 0.61 1.58 17.65 29.03 30.39 0.66 0.34 25.00 15.38 55.20 

 
Mean 0.91 27.31 80.63 89.32 49.42 0.92 23.36 90.69 60.48 71.65 

 
Median 0.93 7.70 87.50 93.92 47.77 0.95 7.02 98.60 57.22 69.84 

 
Max 1.00 331.98 100.00 100.00 84.29 1.00 331.98 100.00 100.00 99.99 

Table 2: Summary of statistics for 4 types of classifications: SSN were constructed at the stringency levels (%ID) 
indicated above the table. Only classes with more than 2 viruses and 5 sequences were retained for the analysis. Details can
be found in tables SI 1-4. CCC, average proportion of genetic conservation between sequences from the same cluster and 
from the same taxonomic class; DRC, deviation to random conductance; Excl.. %( Excl. #), percentage of exclusive CC 
(corresponding number); PID, average eedge weights (i.e. % identity) between two sequences from genomes of the same 
class. 

Consequently, network analyses show that virus classifications face a pragmatic issue: overall 

genetic distinctiveness allows relatively safe assignments of viral sequences to existing 



classes, however genetic diversity of viral taxa of similar ranks differs among the tested 

classifications. Therefore, virus classifications (especially ICTV classification at the family 

level) should be used carefully to avoid inaccurate estimates in metagenomic diversity 

surveys. Classes with broader genetic diversity will tend to be more easily detected in the 

environment than classes with reduced genetic diversity, since the former will necessarily be 

associated with more OTUs than the latter. Some alpha- and beta- diversity analyses of 

environmental data, which rely on counts and on contrasts of the abundance of taxonomic 

classes in different samples, will also be biased. 

 This conclusion suggests that there is a need for novel classifications of viruses, informed 

from a genomic perspective, and suited for diversity surveys. As a possible step in this 

direction, the elaboration of a special classification of viruses that would maximize the 

amount of genetic consistency across classes could be valuable (in agreement with(113)). 

Such a systematics could provide more comparable proxies of viral genetic diversity in the 

genomic and post-genomic era. Recent attempts to classify viruses by (38) may effectively 

come closer to this result. A similar approach could be applied on different types of classified 

lineages, i.e. to identify what groups of bacteria, archaea or eukaryotes with comparable 

taxonomical ranks are the most genetically heterogeneous, and what ranks of their 

classification are the least genetically consistent.

Genome networks 
Genome networks are often called “gene sharing networks” as they are best suited for 

summarising what genes are shared between different genomes, highlighting routes of gene 

sharing. The ability to explore gene sharing between all genomes in a network in a simple 

graph can have useful properties for reflecting microbial social life, inherently inclusive of 

gene sharing both as a consequence of vertical inheritance and lateral gene transfer (LGT). 

Bacteriophage and plasmid genomes are typically highly mosaic in nature due to a high level 

of horizontal gene transfer, making it difficult to classify their genomes (37, 136). Lima-

Mendez et al. proposed the use of genome networks as a new classification method that 

tackles this problem of mosaicism by classifying viruses based on their genome’s content 

(37). Constructing genome networks using subsets of genes from different functional 

categories of genes can also be useful in exploring what kinds of genes are being shared by 

different genomes. 



In a genome network, each genome is represented by a node, and two nodes are connected by 

an edge when the two corresponding genomes share homologous genes or gene families 

(Figure 9). These gene families can be identified from SSNs (of as CCs of LCs) or by 

alternative methods. In genome networks, edges can be weighted by the number of genes or 

gene families shared between the genomes. In this way genome networks enable the study of 

microbial social life, quantitatively displaying the gene families shared between genomes 

both as a result of vertical transmission and lateral gene transfer. 

Figure 9: Translating gene networks to genome networks. A) Gene network for three gene families. Gene nodes are 
coloured based on their genome of origin. The background colour corresponds to the gene family colour in part C. B) The 
genome network corresponding to the gene network in A. Edges are weighted on the number of gene families shared by the 
genomes. C) Multiplex-genome network corresponding to the gene network in A. Genomes are connected by multiple edges 
with colours corresponding to different gene families. These edges are weighted based on the number of genes shared 
between two genomes for each family. 

Genome networks are useful tools for exploring overall patterns of gene sharing between 

genomes. Recently Lord et al. developed BRIDES, a software package that specifically 

identifies different kinds of patterns in evolving genome networks after the addition of new 

genome nodes (137). However, in genome networks the kind of gene families that are being 

shared is generally overlooked. To explore how functions are shared between different 



genomes, genome networks can be built from genes using different subsets of functions 

(Figure 10) (29). An alternative form of the genome network is the multiplex network. In this 

network nodes can be linked by edges of different types, for example, each edge representing 

a different gene family or different functional groups of gene families, thus retaining 

additional information compared to a simpler genome network (Figure 9) (23). Multiplex 

networks can be useful for small scale analyses, however with large datasets they can rapidly 

become difficult to interpret and analyse. Importantly, multiplex networks are unimodal 

projections of bipartite graphs (discussed in the section “Bipartite Graphs“) which can 

provide greater clarity and have a number of attractive properties for the analysis of larger 

datasets. 

Figure 10: Functional genome network reflecting the chimeric nature of eukaryotes. These genome networks describing 
how genes in different functional categories are shared between bacteria (green), archaea (yellow), eukaryotes (grey), 
plasmids (purple) and viruses (red) from a published dataset (29). In both cases a giant connected component is shown 
alongside examples of smaller connected components A) Genome network for COG category D: Cell division control. In this 
network, sequences of eukaryote origin (grey) cluster with bacterial sequences, reflecting their origin in the alpha-
proteobacterial endosymbiont that would become the mitochondrion. B) Genome network for COG category K: 
Transcription machinery. In this network eukaryote sequence (gray) cluster with archaeal sequences; reflecting the origin of 
these genes in the archaeal-host for the eukaryotic endosymbiont. 

Classification of entities using genome networks 
The possibility of summarising gene sharing between sets of entities with complex 

evolutionary histories means that genome networks can be useful for classifying organisms 

based on their gene content. Lima-Mendez et al. analysed bacteriophage genomes to generate 

two different phage genome networks that reflect their reticulate evolutionary history (37). In 

the first genome network phage genomes (nodes) were connected by edges when shared

significant similarity at the sequence level. This genome network was clustered using the 

previously discussed MCL algorithm (138), identifying distinct groups of phages with 

sequence similarity. Following clustering, membership to a particular cluster was reassessed 

based on shared similarity with viruses in other clusters, reflecting their reticulate 

evolutionary history, allowing the generation of a matrix assigning a score describing the 

relative membership of any given viral genome to a particular classification group. In the 



second approach, Lima-Mendez et al. generated a “module” based genome network, where 

edges are drawn between two phage genomes if they share a “module”, in this case defined as 

a group of genes with similar phylogenetic profiles, enabling the exploration of what kinds of 

genes are shared between different groups of phages or are “signatures” for a particular group 

of phage genomes (37).   

Exploring routes of gene sharing in genome networks 
Two network metrics, also useful in the analysis of gene networks, can be used to attempt to 

identify “hubs” of gene sharing in the context of genome networks: node “degree” and 

“betweenness”. Both metrics aim to determine the centrality of a node in a network. The 

degree of a node is simply the number of edges that it is connected to. The betweenness of a 

node is the frequency at which it is found in all the possible shortest paths between any two 

nodes in the network. Halary et al. used a combination of gene and genome networks based 

on DNA sequence similarity to explore gene sharing between prokaryotes and mobile genetic 

elements (30). Plasmids were identified as hubs of gene sharing within this pool of genomes, 

suggesting that they are key vectors for genetic exchange between cellular genome and a

potential DNA reservoir shared by genomes. Phages were more peripheral in the network,

and mostly linked prokaryotes from the same lineage. Thus, genome provided insights on the 

evolutionary processes that shape the gene content of prokaryote genomes 

The importance of plasmids in genetic worlds was further highlighted by exploring plasmid 

genome networks without inclusion of prokaryote genomes (14, 36). Connecting 2,343 

plasmid genomes based on shared gene content in a single graph demonstrated that plasmids 

tended to cluster based on the phylogenetic class of their corresponding host prokaryote 

rather than habitat, but that more mobile plasmids tended to be more “central” in the graph, 

indicating that these were hubs of gene sharing. Specifically, routes of gene sharing for gene 

families including antibiotic resistance markers were identified between actinobacterial

plasmids and gammaproteobacterial plasmids, suggesting that actinobacteria may act as a 

reservoir for antibiotic resistance genes for gammaproteobacteria (14).  

The finding that plasmids are hubs of gene sharing for prokaryote genomes was supported by 

analysis of gene sharing in a Proteobacterial phylogenomic network including 329 

Proteobacterial genomes (32). A phylogenomic network is an extension of a genome network 

in which genome nodes are linked by edges if they share genes, however the genome nodes 

themselves are mapped to the base phylogeny for the set of genomes analysed (34). This 



study identified extensive evidence for lateral gene transfer among Proteobacteria, with at 

least 1 LGT event inferred in 75% of all gene families. Of these putative LGTs, more were 

related to plasmid related genes than phage related genes, suggesting plasmid conjugation 

was a more frequent source of gene transfer (32). Directed graphs exploring directionality of  

LGT events between 657 prokaryote genomes allowed the polarisation of 32,028 putative 

LGT events finding that frequency of recent events correlates with genome sequence 

similarity, and most LGTs occurring between donor-recipient pairs with <5% difference in 

GC content, suggesting that there are some barriers to lateral gene transfer between 

prokaryotes, but that these are not insurmountable (31). Later reconstruction of transduction 

events linking phage donors and recipients in a phylogenomic network demonstrated that 

LGT by transduction was generally highest in similar genomes and between clusters of 

closely related species, but that this constraint was occasionally broken, resulting in LGTs 

over long evolutionary distances (35). 

Bipartite graphs  
Bipartite graphs are excellent at summarising what genes are shared between sets of 

genomes, and as such are ideal for comparative genomics, including for the comparison of 

genomes reconstructed in metagenomic analyses. The potential to extend this approach to 

multi-level graphs, adding additional layers of information such as the environment in 

ecological studies, could provide a powerful summary of gene sharing in relatively complex 

datasets.   

 

A multi-level network is a network in which edges exclusively connect nodes of different 

types, i.e. representing different levels of biological organisation. Thus, a bipartite graph is a 

graph with two types of nodes (top and bottom nodes), where edges exclusively connect 

nodes of different types (Figure 11) (139). The types of nodes used can vary widely 

depending on the biological question, from linking diseases (top nodes) to their associated 

genes (bottom nodes) in order to explore the association between related disease phenotypes 

and their genetic causes (140, 141), to exploring the concept of flavour pairings in food based 

on a graph of ingredients (top nodes) and the flavour compounds they contain (bottom nodes) 

(142). For applications in molecular biology, a typical example of a bipartite graph may 

describe the relationships between genomes (top nodes) and gene families (bottom nodes), 

with edges between nodes indicating that a genome encodes at least one member of the 

corresponding gene family (Figure 11) (23, 33, 38, 143).  This kind of genome to gene family 

graph is particularly suited for the comparative analysis of the gene content of genomes in 



microbial communities and for exploring patterns of gene sharing, for example between 

distantly related cellular genomes (33), or between cellular genomes and their mobile genetic 

elements (Corel et al. forthcoming). It is possible to represent all genes shared between a 

given set of genomes, as a result of both vertical inheritance and horizontal gene transfer, in a 

single bipartite graph (23). This feature was utilised by Iranzo et al. to explore gene sharing 

amongst the entire dsDNA virosphere, a group of entities typified by high rates of molecular 

evolution and gene transfer (38).  

Figure 11: A bipartite graph and its reduction to a quotient graph: A) An example of a bipartite graph displaying how 
five gene families are shared between three genomes. B) A reduced form of the bipartite graph in which gene families are 
combined to “twin” nodes if they share identical taxonomic distributions. A single “articulation point” connects all three 
genomes. 

Two topological features of bipartite graphs can be used to facilitate studies of gene sharing 

by an exact decomposition of the bipartite graph: twins and articulation points (23, 144). A 

bipartite graph can be reduced to a quotient graph, a reduced variant of the bipartite graph 

where nodes from the bipartite graph have been combined based on sharing similar properties 

without the loss of information. For twin nodes (“twins”), this reduction is based on the 

combination of bottom nodes that have identical neighbours into a single “twin” supernode in 

the quotient graph (Figure 11). This is as a useful way of reducing the size of large graphs 

without losing information, but twin nodes also have useful properties for graph 

interpretation. The genomes supporting a twin node (its neighbours) define a club of genomes 

that share genes, through common ancestry and/or horizontal transfer. For example, in any 

given dataset any “core” set of gene families encoded by all species in the analysis will be 

represented by a single twin node. The gene families combined in twin supernodes can be 

viewed as gene families that are likely to be transmitted together (23).  An articulation point 

is a node that, when removed, will split the graph into two or more connected components. 

Within a gene family- genome bipartite graph, articulation points are expected to help to 

identify “public genetic goods”, gene families that are shared by distantly related entities that 

may confer an advantage independent of genealogy (23, 145), as well as selfish genetic 

elements such as transposases that also spread across multiple genomes. Two recently 



developed tools, AcCNET (143) and MultiTwin (forthcoming), have simplified the process of 

constructing and analysing multi-level graphs without the need for custom programming 

(Box 3). 

Box 3: Considerations for the construction and analysis of bipartite graphs using 
AcCNET and MultiTwin 
The default workflow for both ACcNet and MultTwin takes protein sequence data in fasta 

format as input, and generates a bipartite graph alongside a number of graph summary 

statistics and outputs for visualisation in standard tools (such as Gephi and Cytoscape), but 

with a number of important differences, including: 

· Graph levels: Both AcCNET and MultiTwin can generate a bipartite graph using 

their default workflow; however MultiTwin can also be used to explore additional 

graph levels by adding additional node types (e.g. a tripartite graph). Multi-partite 

graphs mean that gene family level annotations can be associated with additional 

levels of biological information beyond which genomes they are found in. This may 

be particularly useful for the comparison of samples in metagenomics studies or time 

course experiments, allowing gene families to be associated directly with features 

such as environmental origin or time point.   

· Gene family identification: AcCNET uses kClust (146) to assemble gene families, a 

kmer based method for rapid assembly of clusters of homologous proteins from 

sequence data. By default, MultiTwin identifies gene families using an all versus all 

BLAST search, followed by identification of connected components at a given 

threshold, as previously discussed for gene family detection from SSNs. MultiTwin 

can also be used in a modular way allowing for additional customisation, including 

the use of any custom gene family input in the form of a “community file”: a tab 

delimited file linking every gene/protein id to a community identifier, with gene 

families defined using a clustering method of choice. 

· Edge weighting: In AcCNET the edge weight is proportional to the inverse of the

phylogenetic distance between proteins in a cluster from a given genome to other 

proteins within the same cluster. In MultiTwin the default edge weight is based on the 

number of genes present in a gene family from any given genome. 

· Graph compression: While both methods can be used to identify “twin” nodes, only 

MultiTwin generates a quotient graph from these twin nodes and identifies 

articulation points. 



AcCNET is available at: https://sourceforge.net/projects/accnet

MultiTwin is available at: http://www.evol-net.fr/index.php/en/downloads

Using bipartite graphs to explore patterns of gene sharing between diverse 
entities 
The simplest application of a bipartite graph is the summary of all genes shared between 

genomes in a single parsable graph, and this feature has been used to explore gene sharing in 

the dsDNA virome (38), a range of Escherichia coli genomes to investigate the E. coli

pangenome (143), and between a broad range of prokaryotes that include newly discovered 

organisms (33).  In their analysis of prokaryote genomes, Jaffe et al. used the notion of 

“twins” to explore patterns of gene sharing between prokaryotes, including Archaea, and the 

recently discovered ultrasmall “Candidate Phyla Radiation” and TM6 bacteria with extremely 

unusual and reduced genomes. They found evidence for lateral gene transfer between 

ultrasmall bacteria and other prokaryotes, consistent with the suggestion they may be 

symbionts (33). In their  exploration of the dsDNA virome, Iranzo et al., used graph module 

detection, algorithms designed to identify groups of densely connected nodes in a graph, to 

identify sets of densely connected viral genes and genomes that included a range of viruses 

with broad host ranges, as well as 14 hallmark viral genes that account for most of the gene 

sharing between all different viral modules (38).  

Conclusions 
This chapter has offered a brief introduction to the generation of commonly used sequence 

similarity networks in molecular biology, and a guide to how they can be generated and 

applied to a broad range of studies (Figure 12). Networks provide a highly scalable 

framework for the study of an increasingly broad range of applications in molecular biology 

and evolution and have already contributed to a number of important discoveries in the field. 

These include exploring patterns of introgression and horizontal transfer across all domains 

of life and mobile elements, the origin of eukaryotes, the contribution of new genes including 

novel fusion genes to major evolutionary transitions, shedding light on the “microbial dark 

matter” in metagenome sequencing datasets, and in testing ecological hypotheses about 

organism and gene distribution and environmental selection. New methods and tools for 

network analysis are becoming increasingly user-friendly and accessible to biologists without 

extensive programming experience, and enabling network analysis to become a more 

common parts of a biologists toolkit in the analysis of molecular sequence data. 



Figure 12: A workflow highlighting some of the available routes for generation and analysis of SSNs, genome 
networks and bipartite graphs. This workflow highlights just some of the many tools and routes for network construction 
and analysis.

Exercises 

The exercises use EGN(49) and require access to a local installation of BLAST+ (55) and 

Perl. The fasta sequence file “example.faa” provided with EGN and includes a dataset protein 

sequences from Archaea, Bacteria, Eukaryotes and mobile genetic elements, available at 

http://www.evol-net.fr/index.php/fr/downloads:  

1) Perform a manual all vs all BLAST using search for a given protein sequence file from 

the unix terminal (requires local installation of BLAST). The output can be filtered to 

generate a network: 

a) Make the blast database using the “makeblastdb”.

i) Command: “makeblastdb -dbtype prot -in example.faa –out example”

b) Performing the BLAST search using “blastp”, remembering to output data in a tabular 

format for easy processing. 

i) Command: “blastp -query example.faa -db example -evalue 1e-5 -seg yes -

soft_masking true - max_target_seqs 5000 -outfmt "6 qseqid sseqid evalue pident 

bitscore qstart qend qlen sstart send slen" -out protein.blastpout”

2) Generate a SSN using EGN from example.faa (requires local installation of BLAST and 

download of EGN from http://www.evol-net.fr/index.php/fr/downloads): 

a) Run EGN from the terminal using “perl egn.1.0.plus.pl” from the programs home 

directory. 



b) Follow onscreen prompts sequentially to generate an alignment, filter the output, and 

generate a gene network with outputs compatible with both Cytoscape and Gephii. 

3) Visualise SSN networks: 

a) In Cytoscape: Import files named “cc.*.txt” as a network to visualise that set of 

connected components. 

i) To associate nodes with their annotations, import “cc*.atr” as a table.

b) In Gephi: Open “cc*.gxf” files to import individual connected components from the 

network in to gephi. Use the “layout” menu to explore different kinds of layouts for 

the network.  



Glossary of terms 

· Articulation point: A node in a graph whose removal increases the number of 
connected components of the resulting graph.   

· Adjacency matrix: A numerical square matrix with row and columns labelled by 
network nodes, with 1 or 0 in the matrix indicating whether are they connected by an 
edge in the network.   

· Assortativity: A measure of the preference for labelled nodes in a network to attach to 
other nodes with identical labels. This is the Pearsons correlation’ coefficient of the 
degrees of pairs of linked nodes. See main text for full equation. 

· Betweenness: A centrality measure for a node in a graph. Precisely, this is the 
proportion of shortest paths between all possible pairs of nodes in a connected 
component that pass through this node. A betweenness close to 1 is indicative of a 
highly central gene, whereas close to 0 is more peripheral. 

· Bipartite graph: A graph with two types of nodes (top and bottom nodes), in which an
edge only connects nodes of different types. 

· Club of genomes: A group of entities that replicated separately but exploit common 
genetic material that may not trace back to the last common ancestor. 

· Communities (also called modules): In graph terminology, a community is defined as 
a group of nodes that are more connected between themselves than to nodes in the rest 
of the graph. 

· Composite gene: A gene that is made up of at least two component parts. 

· Component genes: Genetic fragments sharing partial similarity to a composite gene.  

· Conductance: A measure that quantifies whether a given group of nodes shares more 
edges between them than with the rest of the nodes. A conductance of zero implies 
that the graph is isolated, while a conductance close to one implies more connections 
are shared between that group of nodes and other nodes than are shared within the 
group of nodes.    

· Connected component: A subgraph in which any pair of nodes is connected, either 
directly or indirectly, and that is not connected to the rest of the graph. 

· Degree: The number of edges connected to a given node. 

· Endosymbiont: An organism that lives inside another to the mutual benefit of both 
organisms. 

· Edge: The link between two nodes in a network. 

· E-value: The number of alignments in a sequence similarity search expected to be 
seen by chance searching against a database of a certain size.  

· Introgression: Descent process through which the genetic material of an entity 
propagates into different host structures and is replicated within these new host 
structures. 

· Lateral gene transfer (LGT; Or Horizontal gene transfer, HGT): Movement of genetic 
material between entities not mediated by vertical descent.  

· Louvain community: A graph community identified using the Louvain algorithm. 



· Network (or graph): A system of objects (nodes), some pairs of which are linked 
(edge). 

· Multipartite graph: Similar to a bipartite graph, but with any number of types of nodes 
exclusively connected to nodes of other types 

· Multiplex graph: A graph where nodes can be connected by edges of different types 

· Modularity: The fraction of edges falling within given groups (e.g. communities or 
functional categories) in a network, minus the fraction of edges that would be 
expected with a random distribution of edges.  

· Phylogenomic network: A phylogenetic network constructed from whole genome 
sequences where genomes are connected based on pairwise relationships including 
vertical and lateral gene transfer (LGT) events. 

· Public genetic goods: Common genetic materials shared by clubs of phylogenetically 
distinct genomes 

· Quotient graph: A simplified graph whose nodes represent disjoint subsets of nodes of 
the original graph; an edge in this new graph connects two such new nodes whenever 
an edge in the original graph connects at least one element of a new node with at least 
one from the other.   

· Supporting genomes: The common set of neighbours that support a “twin” class in a 
multipartite graph. 

· Twins: Nodes in a multipartite graph that share identical sets of neighbours. 



Bibliography 
1.  Timmis JN, Ayliffe MA, Huang CY, Martin W (2004) Endosymbiotic gene transfer: organelle genomes forge 

eukaryotic chromosomes. Nat Rev Genet 5:123–135. doi: 10.1038/nrg1271 

2.  Embley TM, Martin W (2006) Eukaryotic evolution, changes and challenges. Nature 440:623–30. doi: 
10.1038/nature04546 

3.  Williams TA, Foster PG, Cox CJ, Embley TM (2013) An archaeal origin of eukaryotes supports only two primary 
domains of life. Nature 504:231–6. doi: 10.1038/nature12779 

4.  Alsmark C, Foster PG, Sicheritz-Ponten T, et al (2013) Patterns of prokaryotic lateral gene transfers affecting 
parasitic microbial eukaryotes. Genome Biol 14:R19. doi: 10.1186/gb-2013-14-2-r19 

5.  Hirt RP, Alsmark C, Embley TM (2015) Lateral gene transfers and the origins of the eukaryote proteome: a view 
from microbial parasites. Curr Opin Microbiol 23:155–162. doi: 10.1016/j.mib.2014.11.018 

6.  Nowack ECM, Price DC, Bhattacharya D, et al (2016) Gene transfers from diverse bacteria compensate for 
reductive genome evolution in the chromatophore of Paulinella chromatophora. Proc Natl Acad Sci U S A 
113:12214–12219. doi: 10.1073/pnas.1608016113 

7.  McCoy JM, Mi S, Lee X, et al (2000) Syncytin is a captive retroviral envelope protein involved in human placental 
morphogenesis. Nature 403:785–789. doi: 10.1038/35001608 

8.  Kondo N, Nikoh N, Ijichi N, et al (2002) Genome fragment of Wolbachia endosymbiont transferred to X 
chromosome of host insect. Proc Natl Acad Sci 99:14280–14285. doi: 10.1073/pnas.222228199 

9.  McInerney JO (2017) Horizontal gene transfer is less frequent in eukaryotes than prokaryotes but can be important 
(retrospective on DOI 10.1002/bies.201300095). BioEssays 39:1700002. doi: 10.1002/bies.201700002 

10.  Gogarten JP, Doolittle WF, Lawrence JG (2002) Prokaryotic evolution in light of gene transfer. Mol Biol Evol 
19:2226–38. 

11.  Dagan T, Martin W (2007) Ancestral genome sizes specify the minimum rate of lateral gene transfer during 
prokaryote evolution. Proc Natl Acad Sci U S A 104:870–5. doi: 10.1073/pnas.0606318104 

12.  Hooper SD, Mavromatis K, Kyrpides NC (2009) Microbial co-habitation and lateral gene transfer: what 
transposases can tell us. Genome Biol 10:R45. doi: 10.1186/gb-2009-10-4-r45 

13.  Nelson-Sathi S, Sousa FL, Roettger M, et al (2014) Origins of major archaeal clades correspond to gene 
acquisitions from bacteria. Nature 517:77–80. doi: 10.1038/nature13805 

14.  Tamminen M, Virta M, Fani R, Fondi M (2012) Large-scale analysis of plasmid relationships through gene-sharing 
networks. Mol Biol Evol 29:1225–40. doi: 10.1093/molbev/msr292 

15.  Lapierre P, Gogarten JP (2009) Estimating the size of the bacterial pan-genome. Trends Genet 25:107–110. doi: 
10.1016/j.tig.2008.12.004 

16.  Vos M, Hesselman MC, te Beek TA, et al (2015) Rates of Lateral Gene Transfer in Prokaryotes: High but Why? 
Trends Microbiol 23:598–605. doi: 10.1016/j.tim.2015.07.006 

17.  McInerney JO, McNally A, O’Connell MJ (2017) Why prokaryotes have pangenomes. Nat Microbiol 2:17040. doi: 
10.1038/nmicrobiol.2017.40 

18.  Niehus R, Mitri S, Fletcher AG, Foster KR (2015) Migration and horizontal gene transfer divide microbial genomes 
into multiple niches. Nat Commun 6:8924. doi: 10.1038/ncomms9924 

19.  Hotopp JCD, Clark ME, Oliveira DCSG, et al (2007) Widespread Lateral Gene Transfer from Intracellular Bacteria 
to Multicellular Eukaryotes. Science (80- ) 317:1753–1756. doi: 10.1126/science.1142490 

20.  Wolf YI, Kondrashov AS, Koonin E V (2000) Interkingdom gene fusions. Genome Biol 1:research0013.1. doi: 
10.1186/gb-2000-1-6-research0013 

21.  Becking LB (1934) Geobiologie of inleiding tot de milieukunde. W.P. Van Stockum & Zoon, Den Haag 

22.  Lobb B, Kurtz DA, Moreno-Hagelsieb G, Doxey AC (2015) Remote homology and the functions of metagenomic 
dark matter. Front Genet 6:234. doi: 10.3389/fgene.2015.00234 

23.  Corel E, Lopez P, Méheust R, et al (2016) Network-Thinking: Graphs to Analyze Microbial Complexity and 
Evolution. Trends Microbiol 24:224–237. doi: 10.1016/j.tim.2015.12.003 

24.  Lopez P, Halary S, Bapteste E (2015) Highly divergent ancient gene families in metagenomic samples are 
compatible with additional divisions of life. Biol Direct 10:64. doi: 10.1186/s13062-015-0092-3 

25.  Forster D, Bittner L, Karkar S, et al (2015) Testing ecological theories with sequence similarity networks: marine 
ciliates exhibit similar geographic dispersal patterns as multicellular organisms. BMC Biol 13:16. doi: 
10.1186/s12915-015-0125-5 

26.  Fondi M, Karkman A, Tamminen M V, et al (2016) &quot;Every Gene Is Everywhere but the Environment 
Selects&quot;: Global Geolocalization of Gene Sharing in Environmental Samples through Network Analysis. 



Genome Biol Evol 8:1388–400. doi: 10.1093/gbe/evw077 

27.  Cheng S, Karkar S, Bapteste E, et al (2014) Sequence similarity network reveals the imprints of major 
diversification events in the evolution of microbial life. Front Ecol Evol 2:72. doi: 10.3389/fevo.2014.00072 

28.  Thiergart T, Landan G, Schenk M, et al (2012) An Evolutionary Network of Genes Present in the Eukaryote 
Common Ancestor Polls Genomes on Eukaryotic and Mitochondrial Origin. Genome Biol Evol 4:466–485. doi: 
10.1093/gbe/evs018

29.  Alvarez-Ponce D, Lopez P, Bapteste E, McInerney JO (2013) Gene similarity networks provide tools for 
understanding eukaryote origins and evolution. Proc Natl Acad Sci U S A 110:E1594-603. doi: 
10.1073/pnas.1211371110 

30.  Halary S, Leigh JW, Cheaib B, et al (2010) Network analyses structure genetic diversity in independent genetic 
worlds. Proc Natl Acad Sci U S A 107:127–32. doi: 10.1073/pnas.0908978107 

31.  Popa O, Hazkani-Covo E, Landan G, et al (2011) Directed networks reveal genomic barriers and DNA repair 
bypasses to lateral gene transfer among prokaryotes. Genome Res 21:599–609. doi: 10.1101/gr.115592.110 

32.  Kloesges T, Popa O, Martin W, Dagan T (2011) Networks of Gene Sharing among 329 Proteobacterial Genomes 
Reveal Differences in Lateral Gene Transfer Frequency at Different Phylogenetic Depths. Mol Biol Evol 28:1057–
1074. doi: 10.1093/molbev/msq297 

33.  Jaffe AL, Corel E, Sylvestre Pathmanathan J, et al (2016) Bipartite graph analyses reveal interdomain LGT 
involving ultrasmall prokaryotes and their divergent, membrane-related proteins. Environ Microbiol 18:5072–5081. 
doi: 10.1111/1462-2920.13477

34.  Dagan T (2011) Phylogenomic networks. Trends Microbiol 19:483–491. doi: 10.1016/j.tim.2011.07.001 

35.  Popa O, Landan G, Dagan T (2017) Phylogenomic networks reveal limited phylogenetic range of lateral gene 
transfer by transduction. ISME J 11:543–554. doi: 10.1038/ismej.2016.116 

36.  Fondi M, Fani R (2010) The horizontal flow of the plasmid resistome: clues from inter-generic similarity networks. 
Environ Microbiol 12:3228–3242. doi: 10.1111/j.1462-2920.2010.02295.x 

37.  Lima-Mendez G, Van Helden J, Toussaint A, Leplae R (2008) Reticulate representation of evolutionary and 
functional relationships between phage genomes. Mol Biol Evol 25:762–777. doi: 10.1093/molbev/msn023 

38.  Iranzo J, Krupovic M, Koonin E V. (2016) The Double-Stranded DNA Virosphere as a Modular Hierarchical 
Network of Gene Sharing. MBio 7:e00978-16. doi: 10.1128/mBio.00978-16

39.  Tatusov RL, Koonin E V, Lipman DJ (1997) A genomic perspective on protein families. Science 278:631–7.

40.  Tatusov RL, Galperin MY, Natale DA, Koonin E V (2000) The COG database: a tool for genome-scale analysis of 
protein functions and evolution. Nucleic Acids Res 28:33–36. doi: 10.1093/nar/28.1.33 

41.  Enright AJ, Iliopoulos I, Kyrpides NC, Ouzounis CA (1999) Protein interaction maps for complete genomes based 
on gene fusion events. Nature 402:86–90. doi: 10.1038/47056 

42.  Pasternak G, Hochhaus  a, Schultheis B, Hehlmann R (1998) Chronic myelogenous leukemia: molecular and 
cellular aspects. J Cancer Res Clin Oncol 124:643–60. 

43.  Watanabe H, Otsuka J (1995) A comprehensive representation of extensive similarity linkage between large 
numbers of proteins. Bioinformatics 11:159–166. doi: 10.1093/bioinformatics/11.2.159 

44.  Park J, Teichmann SA, Hubbard T, Chothia C (1997) Intermediate sequences increase the detection of homology 
between sequences. J Mol Biol 273:349–54. doi: 10.1006/jmbi.1997.1288 

45.  Bolten E, Schliep A, Schneckener S, et al (2001) Clustering protein sequences--structure prediction by transitive 
homology. Bioinformatics 17:935–941. doi: 10.1093/bioinformatics/17.10.935 

46.  Bapteste E, Lopez P, Bouchard F, et al (2012) Evolutionary analyses of non-genealogical bonds produced by 
introgressive descent. Proc Natl Acad Sci 109:18266–18272. doi: 10.1073/pnas.1206541109 

47.  Jachiet P-A, Pogorelcnik R, Berry A, et al (2013) MosaicFinder: identification of fused gene families in sequence 
similarity networks. Bioinformatics 29:837–844. doi: 10.1093/bioinformatics/btt049 

48.  Méheust R, Zelzion E, Bhattacharya D, et al (2016) Protein networks identify novel symbiogenetic genes resulting 
from plastid endosymbiosis. Proc Natl Acad Sci U S A 113:3579–84. doi: 10.1073/pnas.1517551113 

49.  Halary S, McInerney JO, Lopez P, Bapteste E (2013) EGN: a wizard for construction of gene and genome similarity 
networks. BMC Evol Biol 13:146. doi: 10.1186/1471-2148-13-146 

50.  Martin AJM, Walsh I, Domenico T Di, et al (2013) PANADA: Protein Association Network Annotation, 
Determination and Analysis. PLoS One 8:e78383. doi: 10.1371/journal.pone.0078383 

51.  Shannon P, Markiel A, Ozier O, et al (2003) Cytoscape: a software environment for integrated models of 
biomolecular interaction networks. Genome Res 13:2498–504. doi: 10.1101/gr.1239303 

52.  Bastian M, Heymann S, Jacomy M (2009) Gephi: An Open Source Software for Exploring and Manipulating 
Networks. Third Int AAAI Conf Weblogs Soc Media 361–362. doi: 10.1136/qshc.2004.010033 



53.  Csárdi G, Nepusz T The igraph software package for complex network research.  

54.  Hagberg AA, Schult DA, Swart PJ (2008) Exploring Network Structure, Dynamics, and Function using NetworkX. 
In: Varoquaux G, Vaught T, Millman J (eds) Proc. 7th Python Sci. Conf. Pasadena, CA USA, pp 11–15

55.  Camacho C, Coulouris G, Avagyan V, et al (2009) BLAST+: architecture and applications. BMC Bioinformatics 
10:421. doi: 10.1186/1471-2105-10-421 

56.  Altschul SF, Gish W, Miller W, et al (1990) Altschul et al.. 1990. Basic Local Alignment Search Tool.pdf. J Mol 
Biol 215:403–410. doi: 10.1016/S0022-2836(05)80360-2 

57.  Kent WJ (2002) BLAT--the BLAST-like alignment tool. Genome Res 12:656–64. doi: 10.1101/gr.229202. Article 
published online before March 2002 

58.  Vaser R, Pavlović D, Šikić M (2016) SWORD—a highly efficient protein database search. Bioinformatics 32:i680–
i684. doi: 10.1093/bioinformatics/btw445 

59.  Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461. doi: 
10.1093/bioinformatics/btq461 

60.  Buchfink B, Xie C, Huson DH (2014) Fast and sensitive protein alignment using DIAMOND. Nat Methods 12:59–
60. doi: 10.1038/nmeth.3176 

61.  Dayhoff MO (1976) The origin and evolution of protein superfamilies. Fed Proc 35:2132–8.

62.  Heger A, Holm L (2000) Towards a covering set of protein family profiles. Prog Biophys Mol Biol 73:321–337. 
doi: 10.1016/S0079-6107(00)00013-4 

63.  Girvan M, Newman MEJ (2002) Community structure in social and biological networks. Proc Natl Acad Sci U S A 
99:7821–6. doi: 10.1073/pnas.122653799 

64.  Blondel VD, Guillaume J-L, Lambiotte R, Lefebvre E (2008) Fast unfolding of communities in large networks. J 
Stat Mech Theory Exp. doi: 10.1088/1742-5468/2008/10/P10008 

65.  Enright AJ, Van Dongen S, Ouzounis CA (2002) An efficient algorithm for large-scale detection of protein families. 
Nucleic Acids Res 30:1575–84. doi: 10.1093/nar/30.7.1575 

66.  Altenhoff AM,  kunca N, Glover N, et al (2015) The OMA orthology database in 2015: function predictions, better 
plant support, synteny view and other improvements. Nucleic Acids Res 43:D240–D249. doi: 10.1093/nar/gku1158 

67.  Li L, Stoeckert CJ, Roos DS (2003) OrthoMCL: Identification of ortholog groups for eukaryotic genomes. Genome 
Res 13:2178–2189. doi: 10.1101/gr.1224503 

68.  Dessimoz C, Cannarozzi G, Gil M, et al (2005) OMA, A Comprehensive, Automated Project for the Identification 
of Orthologs from Complete Genome Data: Introduction and First Achievements. Springer, Berlin, Heidelberg, pp 
61–72

69.  Dessimoz C, Boeckmann B, Roth ACJ, Gonnet GH (2006) Detecting non-orthology in the COGs database and other 
approaches grouping orthologs using genome-specific best hits. Nucleic Acids Res 34:3309–3316. doi: 
10.1093/nar/gkl433 

70.  Roth ACJ, Gonnet GH, Dessimoz C (2008) Algorithm of OMA for large-scale orthology inference. BMC 
Bioinformatics 9:518. doi: 10.1186/1471-2105-9-518 

71.  Altenhoff AM, Gil M, Gonnet GH, et al (2013) Inferring Hierarchical Orthologous Groups from Orthologous Gene 
Pairs. PLoS One 8:e53786. doi: 10.1371/journal.pone.0053786 

72.  Schneider A, Dessimoz C, Gonnet GH (2007) OMA Browser Exploring orthologous relations across 352 complete 
genomes. Bioinformatics 23:2180–2182. doi: 10.1093/bioinformatics/btm295 

73.  Miele V, Penel S, Duret L (2011) Ultra-fast sequence clustering from similarity networks with SiLiX. BMC 
Bioinformatics 12:116. doi: 10.1186/1471-2105-12-116 

74.  Penel S, Arigon A-M, Dufayard J-F, et al (2009) Databases of homologous gene families for comparative genomics. 
BMC Bioinformatics 10:S3. doi: 10.1186/1471-2105-10-S6-S3

75.  Dagan T, Roettger M, Bryant D, Martin W (2010) Genome Networks Root the Tree of Life between Prokaryotic 
Domains. Genome Biol Evol 2:379–392. doi: 10.1093/gbe/evq025 

76.  Jacob F (1977) Evolution and tinkering. Science (80-. ). 196: 

77.  Marcotte EM, Pellegrini M, Ng HL, et al (1999) Detecting protein function and protein-protein interactions from 
genome sequences. Science 285:751–3.

78.  Kawai H, Kanegae T, Christensen S, et al (2003) Responses of ferns to red light are mediated by an unconventional 
photoreceptor. Nature 421:287–290. doi: 10.1038/nature01310 

79.  Kaessmann H (2010) Origins, evolution, and phenotypic impact of new genes. Genome Res 20:1313–26. doi: 
10.1101/gr.101386.109 

80.  Marsh JA, Teichmann SA (2010) How do proteins gain new domains? Genome Biol 11:126. doi: 10.1186/gb-2010-



11-7-126 

81.  Promponas VJ, Ouzounis CA, Iliopoulos I (2014) Experimental evidence validating the computational inference of 
functional associations from gene fusion events: a critical survey. Brief Bioinform 15:443–454. doi: 
10.1093/bib/bbs072 

82.  McLysaght A, Guerzoni D (2015) New genes from non-coding sequence: the role of de novo protein-coding genes 
in eukaryotic evolutionary innovation. Philos Trans R Soc B Biol Sci 370:20140332. doi: 10.1098/rstb.2014.0332 

83.  Enright AJ, Ouzounis CA (2000) GeneRAGE: a robust algorithm for sequence clustering and domain detection. 
Bioinformatics 16:451–457. doi: 10.1093/bioinformatics/16.5.451 

84.  Snel B, Bork P, Huynen M (2000) Genome evolution. Gene fusion versus gene fission. Trends Genet 16:9–11. 

85.  Enright AJ, Ouzounis CA (2001) Functional associations of proteins in entire genomes by means of exhaustive 
detection of gene fusions. Genome Biol 2:RESEARCH0034. 

86.  Patthy L (2003) Modular assembly of genes and the evolution of new functions. Genetica 118:217–31. 

87.  Nakamura Y, Itoh T, Martin W (2007) Rate and polarity of gene fusion and fission in Oryza sativa and Arabidopsis 
thaliana. Mol Biol Evol 24:110–121. doi: 10.1093/molbev/msl138 

88.  Ekman D, Björklund ÅK, Elofsson A (2007) Quantification of the Elevated Rate of Domain Rearrangements in 
Metazoa. J Mol Biol 372:1337–1348. doi: 10.1016/j.jmb.2007.06.022 

89.  Jachiet P-AA, Colson P, Lopez P, Bapteste E (2014) Extensive gene remodeling in the viral world: new evidence for 
nongradual evolution in the mobilome network. Genome Biol Evol 6:2195–2205. doi: 10.1093/gbe/evu168 

90.  Song N, Joseph JM, Davis GB, et al (2008) Sequence Similarity Network Reveals Common Ancestry of 
Multidomain Proteins. PLoS Comput Biol 4:e1000063. doi: 10.1371/journal.pcbi.1000063 

91.  Yanai I, Derti A, DeLisi C (2001) Genes linked by fusion events are generally of the same functional category: A 
systematic analysis of 30 microbial genomes. Proc Natl Acad Sci. doi: 10.1073/pnas.141236298 

92.  Dorrell RG, Gile G, McCallum G, et al (2017) Chimeric origins of ochrophytes and haptophytes revealed through 
an ancient plastid proteome. Elife. doi: 10.7554/eLife.23717 

93.  Martin W, Stoebe B, Goremykin V, et al (1998) Gene transfer to the nucleus and the evolution of chloroplasts. 
Nature 393:162–165. doi: 10.1038/30234 

94.  Martin W, Rujan T, Richly E, et al (2002) Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast 
genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus. Proc Natl Acad Sci U S A 
99:12246–51. doi: 10.1073/pnas.182432999 

95.  Reyes-Prieto A, Hackett JD, Soares MB, et al (2006) Cyanobacterial Contribution to Algal Nuclear Genomes Is 
Primarily Limited to Plastid Functions. Curr Biol. doi: 10.1016/j.cub.2006.09.063 

96.  Leskovec J, Lang KJ, Dasgupta A, Mahoney MW (2008) Statistical properties of community structure in large 
social and information networks. In: Proceeding 17th Int. Conf. World Wide Web  - WWW ’08. ACM Press, New 
York, New York, USA, p 695 

97.  Newman MEJ (2003) Mixing patterns in networks. Phys Rev E 67:26126. doi: 10.1103/PhysRevE.67.026126 

98.  Newman M (2010) Networks. An introduction. Oxford Univ Press. doi: 
10.1093/acprof:oso/9780199206650.001.0001 

99.  Rappé MS, Giovannoni SJ (2003) The Uncultured Microbial Majority. Annu Rev Microbiol 57:369–394. doi: 
10.1146/annurev.micro.57.030502.090759 

100.  Williams TA, Embley TM (2014) Archaeal ?Dark Matter? and the Origin of Eukaryotes. Genome Biol Evol 6:474–
481. doi: 10.1093/gbe/evu031 

101.  Castelle CJJ, Wrighton KCC, Thomas BCC, et al (2015) Genomic expansion of domain archaea highlights roles for 
organisms from new phyla in anaerobic carbon cycling. Curr Biol 25:690–701. doi: 10.1016/j.cub.2015.01.014 

102.  Brown CT, Hug LA, Thomas BC, et al (2015) Unusual biology across a group comprising more than 15% of 
domain Bacteria. Nature 523:208–211. doi: 10.1038/nature14486 

103.  Spang A, Saw JH, Jørgensen SL, et al (2015) Complex archaea that bridge the gap between prokaryotes and 
eukaryotes. Nature 521:173–179. doi: 10.1038/nature14447 

104.  Zaremba-Niedzwiedzka K, Caceres EF, Saw JH, et al (2017) Asgard archaea illuminate the origin of eukaryotic 
cellular complexity. Nature 541:353–358. doi: 10.1038/nature21031 

105.  Prakash T, Taylor TD (2012) Functional assignment of metagenomic data: challenges and applications. Brief 
Bioinform 13:711–727. doi: 10.1093/bib/bbs033 

106.  Hingamp P, Grimsley N, Acinas SG, et al (2013) Exploring nucleo-cytoplasmic large DNA viruses in Tara Oceans 
microbial metagenomes. ISME J 7:1678–1695. doi: 10.1038/ismej.2013.59 

107.  de Vargas C, Audic S, Henry N, et al (2015) Eukaryotic plankton diversity in the sunlit ocean. Science (80- )



348:1261605–1261605. doi: 10.1126/science.1261605 

108.  Sunagawa S, Coelho LP, Chaffron S, et al (2015) Structure and function of the global ocean microbiome. Science 
(80- ) 348:1261359–1261359. doi: 10.1126/science.1261359

109.  Paez-Espino D, Eloe-Fadrosh EA, Pavlopoulos GA, et al (2016) Uncovering Earth’s virome. Nature 536:425–430. 
doi: 10.1038/nature19094 

110.  Shi M, Lin XD, Tian JH, et al (2016) Redefining the invertebrate RNA virosphere. Nature. doi: 
10.1038/nature20167

111.  van Regenmortel MH, Mayo MA, Fauquet CM, Maniloff J (2000) Virus nomenclature: consensus versus chaos. 
Arch Virol 145:2227–2232.

112.  Gibbs AJ (2000) Virus nomenclature descending into chaos. Arch Virol 145:1505–1507. 

113.  Lawrence JG, Hatfull GF, Hendrix RW (2002) Imbroglios of viral taxonomy: genetic exchange and failings of 
phenetic approaches. J Bacteriol 184:4891–4905. 

114.  Franklin LR (2007) Bacteria, sex, and systematics. Philos Sci 74:69–95. doi: Doi 10.1086/519476 

115.  Bapteste E, Boucher Y (2008) Lateral gene transfer challenges principles of microbial systematics. Trends 
Microbiol 16:200–207. doi: 10.1016/j.tim.2008.02.005 

116.  Bapteste E, O’Malley MA, Beiko RG, et al (2009) Prokaryotic evolution and the tree of life are two different things. 
Biol Direct 4:34. doi: 10.1186/1745-6150-4-34

117.  Andam CP, Williams D, Gogarten JP (2010) Natural taxonomy in light of horizontal gene transfer. Biol Philos 
25:589–602. doi: DOI 10.1007/s10539-010-9212-8 

118.  Koonin E V, Dolja V V (2014) Virus world as an evolutionary network of viruses and capsidless selfish elements. 
Microbiol Mol Biol Rev 78:278–303. doi: 10.1128/MMBR.00049-13

119.  Lederberg J, Tatum EL (1946) Gene recombination in Escherichia coli. Nature 158:558. 

120.  Zinder ND, Lederberg J (1952) Genetic exchange in Salmonella. J Bacteriol 64:679–699. 

121.  Levin BR (1988) Frequency-dependent selection in bacterial populations. Philos Trans R Soc L B Biol Sci 
319:459–472. 

122.  Rodriguez-Valera F (2004) Environmental genomics, the big picture? FEMS Microbiol Lett 231:153–158. 

123.  Chen I, Christie PJ, Dubnau D (2005) The ins and outs of DNA transfer in bacteria. Science (80- ) 310:1456–1460. 
doi: 10.1126/science.1114021 

124.  Edwards RA, Rohwer F (2005) Viral metagenomics. Nat Rev Microbiol 3:504–510. doi: 10.1038/nrmicro1163 

125.  Frost LS, Leplae R, Summers AO, Toussaint A (2005) Mobile genetic elements: the agents of open source 
evolution. Nat Rev Microbiol 3:722–732. doi: 10.1038/nrmicro1235 

126.  Dagan T, Martin W (2009) Getting a better picture of microbial evolution en route to a network of genomes. Philos 
Trans R Soc L B Biol Sci 364:2187–2196. doi: 10.1098/rstb.2009.0040 

127.  Kulp A, Kuehn MJ (2010) Biological functions and biogenesis of secreted bacterial outer membrane vesicles. Annu 
Rev Microbiol 64:163–184. doi: 10.1146/annurev.micro.091208.073413 

128.  McDaniel LD, Young E, Delaney J, et al (2010) High frequency of horizontal gene transfer in the oceans. Science 
(80- ) 330:50. doi: 10.1126/science.1192243 

129.  Dubey GP, Ben-Yehuda S (2011) Intercellular nanotubes mediate bacterial communication. Cell 144:590–600. doi: 
10.1016/j.cell.2011.01.015 

130.  Desnues C, La Scola B, Yutin N, et al (2012) Provirophages and transpovirons as the diverse mobilome of giant 
viruses. Proc Natl Acad Sci U S A 109:18078–18083. doi: 10.1073/pnas.1208835109 

131.  Kutschera VE, Bidon T, Hailer F, et al (2014) Bears in a forest of gene trees: phylogenetic inference is complicated 
by incomplete lineage sorting and gene flow. Mol Biol Evol 31:2004–2017. doi: 10.1093/molbev/msu186 

132.  Simmonds P (2014) Methods for virus classification and the challenge of incorporating metagenomic sequence 
data. J Gen Virol. doi: 10.1099/jgv.0.000016 

133.  International Committee on Taxonomy of Viruses (2014) ICTV Documents. In: 
http://talk.ictvonline.org/files/ictv_documents/default.aspx.  

134.  Baltimore D (1971) Expression of animal virus genomes. Bacteriol Rev 35:235–241. 

135.  Koonin E V, Senkevich TG, Dolja V V (2006) The ancient Virus World and evolution of cells. Biol Direct 1:29. doi: 
10.1186/1745-6150-1-29

136.  Iranzo J, Koonin E V., Prangishvili D, Krupovic M (2016) Bipartite network analysis of the archaeal virosphere: 
evolutionary connections between viruses and capsid-less mobile elements. J Virol 90:11043–11055. doi: 
10.1128/JVI.01622-16



137.  Lord E, Le Cam M, Bapteste É, et al (2016) BRIDES: A New Fast Algorithm and Software for Characterizing 
Evolving Similarity Networks Using Breakthroughs, Roadblocks, Impasses, Detours, Equals and Shortcuts. PLoS 
One 11:e0161474. doi: 10.1371/journal.pone.0161474 

138.  Dongen SM van (2001) Graph clustering by flow simulation.  

139.  Borgatti SP, Everett MG (1997) Network analysis of 2-mode data. Soc Networks 19:243–269. doi: 10.1016/S0378-
8733(96)00301-2 

140.  Goh K-I, Cusick ME, Valle D, et al (2007) The human disease network. Proc Natl Acad Sci U S A 104:8685–90. 
doi: 10.1073/pnas.0701361104 

141.  Himmelstein DS, Baranzini SE, Rand V, et al (2015) Heterogeneous Network Edge Prediction: A Data Integration 
Approach to Prioritize Disease-Associated Genes. PLOS Comput Biol 11:e1004259. doi: 
10.1371/journal.pcbi.1004259 

142.  Ahn Y-Y, Ahnert SE, Bagrow JP, et al (2011) Flavor network and the principles of food pairing. Sci Rep 1:196. doi: 
10.1038/srep00196 

143.  Lanza VF, Baquero F, de la Cruz F, Coque TM (2017) AcCNET (Accessory Genome Constellation Network): 
comparative genomics software for accessory genome analysis using bipartite networks. Bioinformatics 33:283–
285. doi: 10.1093/bioinformatics/btw601 

144.  Diestel R (2010) Graph theory. Springer 

145.  McInerney JO, Pisani D, Bapteste E, O’Connell MJ (2011) The public goods hypothesis for the evolution of life on 
Earth. Biol Direct 6:41. doi: 10.1186/1745-6150-6-41

146.  Hauser M, Mayer CE, Söding J (2013) kClust: fast and sensitive clustering of large protein sequence databases. 
BMC Bioinformatics 14:248. doi: 10.1186/1471-2105-14-248 



II.2 MULTI-LEVEL NETWORKS TO STUDY EVOLUTION 

 To explore how genes are shared between different genomes, genome networks can be 

built from gene similarity (Figure 8B). An alternative form of the genome network is the 

multiplex network. In this network, nodes can be linked by edges of different types, for 

example, each edge representing a different shared gene family or different functional groups 

of gene families, thus retaining additional information compared to a simpler genome network 

(Corel et al. 2016). Multiplex networks can be useful for small scale analyses, however with 

large datasets they can rapidly become difficult to interpret and analyze (Figure 8C).  

Figure 8: Translating gene networks to genome networks.

A) Gene network for three gene families. Gene nodes are coloured based on their genome of origin. 
The background colour corresponds to the gene family colour in part C. B) The genome network 
corresponding to the gene network in A. Edges are weighted on the number of gene families shared 
by the genomes. C) Multiplex-genome network corresponding to the gene network in A. Genomes 
are connected by multiple edges with colours corresponding to different gene families. These edges 
are weighted based on the number of genes shared between two genomes for each family.



 Importantly, multiplex networks are unimodal projections of bipartite graphs which 

can provide greater clarity and have a number of attractive properties for the analysis of larger 

datasets. Bipartite graphs can be used to analyze the transfer or exchange of genetic material 

among organisms from same or different domains of life (e.g. transmission of antibiotic 

resistance in bacteria (Lanza et al. 2015) or diversification of Archaea and Bacteria by LGT 

(Jaffe et al. 2016)). They are ideal for comparative genomics, including the comparison of 

genomes reconstructed in metagenomic analyses as shown in the next section (I.3). A bipartite 

graph is a graph having two sets of nodes U and V, so that the edges only connect nodes of 

the set U to nodes of the set V (Figure 9). 

These types of graphs are useful to explore evolutionary processes at different level 

like gene family-genome bipartite graphs. Two topological features of bipartite graphs can be 

used to study gene sharing: twins and articulation points (Diestel 2006) (Figure 10). Twin 

nodes are useful since they describe entities having similar distributions. Articulation points, 

in contrast, is a bridge linking almost completely different entities, and are therefore indices 

of the graph's modularity. Extending bipartite graph approach to multi-level graphs, adding 

additional layers of information such as the environment in ecological studies (tripartite gene-

genome-environment graphs), could provide a powerful summary of gene sharing in 

relatively complex datasets.  

Figure 9: Example of a bipartite graph.



Figure 10: Twins and articulation points in a bipartite graph. 

(A) Top nodes in this bipartite graph are genomes and bottom nodes gene families. Nodes in each colored ellipse 
at the bottom form a twin class, since their sets of neighbors (supports encircled by similarly colored ellipses on 
the top level) are identical (as highlighted by the coloring of their incident edges). (B) Collapsing twin nodes into 
super-nodes yields a reduced graph, without further bottom twin nodes. The supported groups of host genomes 
are unchanged, and are now defined as the neighbors of a single super-node. Due to the graph reduction, the 
green super-node is now an articulation point, since its removal disconnects the nodes in the pink and brown 
supports. (Corel et al. 2016)

  

 In the article n°2, we present an integrated suite of software tools named MultiTwin, 

aimed at the construction, structuring and analysis of multipartite graphs for evolutionary 

biology. We illustrate the use of this tool with an application of the bipartite approach (using 

gene family-genome graphs) for the analysis of pathogenicity traits in prokaryotes. This 

article has been submitted to the journal "Molecular Biology and Evolution" and is under 

review. 
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Abstract 

The inclusion of introgressive processes in evolutionary studies induces a less 

constrained view of evolution. Network-based methods (like large-scale similarity 

networks) allow to include in comparative genomics all extra-genomic carriers (like 

viruses, the most abundant biological entities on the planet) with their cellular hosts. 

The integration of several levels of biological organisation (genes, genomes, 

communities, environments) enables more comprehensive analyses of gene sharing 

and improved sequence-based classifications. However, the algorithmic tools for the 

analysis of such networks are usually restricted to people with good programming 

skills. We present an integrated suite of software tools named MultiTwin, aimed at 

the construction, structuring and analysis of multipartite graphs for evolutionary 

biology. We illustrate the use of this tool with an application of the bipartite approach 

(using gene family-genome graphs) for the analysis of pathogenicity traits in 

prokaryotes.

Availability: Source code freely available for download at http://www.evol-

net.fr/index.php/fr/downloads, implemented in Python 2.7 and C++ and supported 

on Linux. 



Introduction 

The network paradigm is increasingly used as a complement for phylogenetic tree 

reconstruction for biological evolutionary studies (Halary et al. 2010; Kloesges et al. 

2011; Leigh et al. 2011; Tamminen et al. 2012; Corel et al. 2016; Iranzo, Krupovic, et 

al. 2016). We present here MultiTwin, an exploratory tool for multipartite graph 

analysis. Such graphs encompass several levels of biological organisation. Bipartite 

graphs have been up to now most commonly used (Ahn et al. 2011; Himmelstein et 

al. 2015; Lanza et al. 2017), and particularly gene family-genome bipartite graphs 

have already demonstrated their usefulness, like uncovering membrane-related 

genes shared between recently discovered ultra-small bacteria (CPR) and archae 

(Jaffe et al. 2016), proposing finer classifications of archaeal or ds-DNA viruses 

(Iranzo, Koonin, et al. 2016; Iranzo, Krupovic, et al. 2016), or analyzing the 

transmission of antibiotic resistance through Firmicute plasmids (Lanza et al. 2015).

Higher-level application would also be of considerable interest, like the study of 

environmental adaptive traits with tripartite gene-genome-environment graphs, and 

are starting to gain attention both from the computational (Murata and Tsuyoshi 

2010) and applied point of view (Alaimo et al. 2014). Our contribution consists in a 

general framework and dedicated tools developed in Python for the construction, 

structuring and analysis of multipartite graphs. Detecting regularities and singularities 

in genome-based graphs informs on the degree of redundancy of genomic data, and 

gives a summarization, both in terms of compressibility and modularity of the 

genomes under study, with possible applications to the detection of functional 

modules (bio-bricks).

Our tool implements the search of one type of regularities (twin nodes), and one 

type of singularities (articulation points). Twin nodes are useful since they describe 

entities having similar distributions, and achieve therefore a type of lossless 

compression. Articulation points, in contrast, represent the unique link between 

otherwise completely unrelated communities, and are therefore indices of the graph's 

modularity. Moreover, the MultiTwin suite can generate a bipartite gene family-

genome graph from genomic data (i.e. either from sequences themselves or the 

output file of a BLAST all-against-all run on the set of sequences). 



New approach 

Graph Model 

A graph  = (!, ") is k-partite if there exists a partition of the set of nodes ! = !# ∪

. . .∪ !% such that an edge only connects nodes from two different subsets of the 

partition. For example, a gene family-genome graph has two types of nodes, and an 

edge connects only a gene family and a genome where one member of the family is 

found. 

Our model considers an initial graph structure (named the root graph), and 

distinguishes between iterable and terminal operations. This feature allows for a 

flexible and multi-level analysis of graphs: graph modifications can be nested one 

into another, and all intermediate steps can be considered in the analysis, thanks to 

a consistent trailing scheme for the intermediate graphs (cf. Figure 1). Some graph 

operations involve a node renaming. A key feature of our model is the use of a trail 

file, which maintains the correspondence between the original node identifiers (in the 

root graph) and those of the current (possibly terminal) graph. The rationale behind 

this choice is that some biological annotations are most likely available for the 

entities forming the nodes of the root graph. In our example, the root graph is the 

gene-genome bipartite graph. Functional and taxonomic annotations are available 

for individual genes and for genomes respectively (but usually not for gene families 

or clusters of genomes). 

We implement the following basic operations on graphs: subgraphs, factoring and 

(overlapping) clustering.  

· subgraph "′ ⊂ "

.

· Factoring 

': ! → + factor graph  '⁄ = (+, '("))

'(") = /0'(1), '(2)34(1, 2) ∈ "} .

· Overlapping clustering



Iterable and terminal refer to whether the operations preserve the graph's k-partite 

structure. Factoring through a non-overlapping clustering that groups nodes of 

different types or through an overlapping clustering, destroys the k-partite structure 

of the graph. Note, however, that it is possible to model any clustering of a k-partite 

graph as a (k+1)-partite graph, and hence to analyse it further with our tool. 

Our suite includes a program named DetectTwins.py for the detection of twin 

nodes, that is, nodes whose neighbourhoods in G coincide, and their support (i.e.

their common neighbourhood), as well as a dedicated tool to construct gene families 

(FamilyDetector). Finally, we also implemented a module (Description.py) to 

annotate the content of the graph's clusters and its possible intermediate levels. For 

instance, in Figure 1, intermediate levels are gene families (level 1) and twins (level 

2). Clusters can be any kind of node subsets: groups of gene families or genomes, 

nodes forming a connected component, communities returned by an external 

clustering algorithm, and so on. 

Overview of functions 

The MultiTwin suite contains the following main scripts: 

· CleanBlastp 

· FamilyDetector 

· InducedSubgraph.py 

· FactorGraph.py 

· DetectTwins.py 

· Description.py 

as well as a standalone program BiTwin.py which performs the pipeline described in 

Figure 1, and a few utilities used in the main scripts. 



Figure 1: Outline of the bipartite graph generation and analysis. At the root level, the 

bipartite graph only consists in disjoint star graphs. Level 1 and level 2 are constructed by 

two successive runs of FactorGraph.py using the factoring maps described in blue. The 

first factoring is based is the gene family clustering produced by our script 

FamilyDetector. Different similarity thresholds can be used, resulting in differently 

structured graph (assuming a molecular clock, these graphs can be seen as time slices of 

evolution). The second corresponds to the identification of twins by DetectTwins.py. The 

change of identifiers in the graph is recorded in the trail files as indicated on the bottom line. 

At level 3, the operation is a terminal one, since it produces overlapping clusters. The 

analysis of the resulting components is performed by the Description.py script, and is 

based on the annotations (at the root level) and the specified trail files. 

 



File formats and types. 

All files generically follow the same syntax X TAB Y. 

A graph is described by its edge file, where X and Y denote the head and the tail of 

an edge, and a node type file, where X is the node ID and Y is the node type (e.g.

type 1 corresponding to genes and type 2 to genomes). Node type files can be 

omitted for unipartite graphs, and also for bipartite graphs, provided that the first 

column of the edge file only contains type 1 nodes, and the second column type 2 

nodes. Community files, where X is the node ID and Y is a community ID, can be 

used both for overlapping and non-overlapping clusterings (depending on whether 

node IDs are repeated or not). For instance, the decomposition of the graph into 

connected components can be encoded as a community file. 

A distinctive feature of our model is to track consistently the successive 

modifications of our multipartite graphs, by the use of a special community file with 

an additional two-line header, called a trail file. In this file, X refers to the node ID in 

the root graph, Y to the node ID in the current graph, and the header recalls which 

operation on which graph has produced the current graph. 

Only the annotation file (containing the biological information) has a different 

format. It consists of a tabbed file with a compulsory header containing the attribute 

names, and whose rows begin with the identifier used in the root graph. 

Implementation  

The implementation of the framework was carried out in Python (version 2.7) with 

some additional original code in C++. The Python code includes efficient 

implementations of graph algorithms from the igraph package (Csárdi and Nepusz 

2006), that can moreover be accessed through the python-igraph wrapper. 

Features of the multipartite analysis functions. 

The code available at the URL http://www.evol-net.fr/ index.php/fr/downloads 

accepts different kinds of inputs, depending on the user's objectives. A detailed file 

with installation and usage information is provided. The data used in the application 

is also available with a dedicated guide file that allows to replicate our analysis. 



Standalone generation of the bipartite gene family-genome graph.  

The standalone program BiTwin.py consists of four mainly independent modules: 

· Construction of the sequence families: by default, we assume that the 

sequences have been subjected to an all-against-all BLAST run (that can 

optionally be performed if raw sequences are supplied). The sequence 

similarity graph resulting from keeping the reciprocal best hit is filtered above 

similarity, coverage and E-value thresholds (≥30% identity, ≥80% mutual 

coverage and E-value ≤10-5 by default). The sequences are then grouped into 

families, either as connected components (option 1) or as "Louvain 

communities" (Blondel et al. 2008) (option 2) of this graph. 

· Construction of the bipartite graph: this step consists in factoring the user-

supplied genome-sequence file by the sequence families file resulting from 

the previous step, seen as a community file. 

· Twin and articulation point detection: we implemented two algorithms to 

compute the twin nodes (and their supports), and  as well as the articulation 

points of the bipartite graph.  

· Formatting and analysis output: this step uses the tabbed annotation file, with 

a compulsory header with the attribute names. 

All the resulting bipartite graphs produced by the pipeline are stored in a hierarchy of 

directories below the current working directory. 

Custom usage. 

The MultiTwin code can also be used as a framework for the analysis of user-

supplied multipartite graphs (Figure 2). In this usage, the graphs can be modified 

iteratively, either by subgraph induction or by factoring according to a node 

clustering, either iterable or terminal. Any node clustering algorithm can be used, 

provided that the result is supplied to FactorGraph.py as a community file. The 

Cluster.py script of our suite produces a community file for several algorithms that 

are available in igraph. Finally, the obtained graph can be analysed on the basis of 

the resulting intermediate levels of factoring (see the README file for the 

Description.py script). 



Figure 2: Twin nodes in a toy example of tripartite graph. Twin classes are formed by all 

the nodes having exactly the same neighbourhood. In this example, we highlighted in the 

same colour the nodes forming the graph's three non-trivial twin classes. All nodes in black 

have a different set of neighbours (and form thus each their own trivial twin class). In a 

multipartite graph, twins can be homogeneous, like twin 1 (in yellow) or heterogeneous, like 

twins 2 and 3. DetectTwins.py implements an option to detect only homogeneous twins 

(possibly even of a given type). In a tripartite graph where nodes of respective types 1, 2 and 

3 are gene families, genomes and environments, it may be interesting to detect patterns like 

twin 2, where a gene family is found in the strict subset of those genomes that thrive in the 

same environment. Twin 3 is likely less informative, since the environment is non-

discriminating (core genes are nevertheless detected on the lower layer).

Results 

We assembled a dataset of 20 pairs of genomes with comparable sizes, coming 

from phylogenetically closely related pathogen and non-pathogen organisms (Supp. 

Table 1). Organisms were assigned as “pathogens” or “non-pathogens” based on 

metadata from the GOLD (Mukherjee et al. 2017) and PATRIC (Wattam et al. 2017) 

databases. Protein sequences from these genomes were used in an all-against-all 

BLAST search with parameters as described in (Bittner et al. 2010), and the bipartite 

network was generated using BiTwin.py, with a minimum of 30% identity and 80% 

mutual coverage between sequences and gene family direction set to assemble 

connected components. COG annotations were assigned to gene families using 



RPS-BLAST (Marchler-Bauer et al. 2002). The DetectTwins.py function was used to 

identify trivial and non-trivial twins. The twins were used as a community file for 

FactorGraph.py, collapsing gene-families that have an identical species distribution 

into a single node in the factored bipartite graph. Should the gene content of 

prokaryotic genomes have evolved largely in a tree-like fashion, one would expect to 

find mostly twins whose support have the same taxonomy. However, our study 

uncovered many twins with polyphyletic support. 

In total, 26,228 gene families were compressed to 3,982 twin nodes. 3,197 were 

trivial twins (80.29%) - that is, they were single gene families with a unique 

distribution. 785 twins were non-trivial (19.71%), composed of multiple gene families 

with identical taxonomic distributions (Figure 3). Non-trivial twins include a “core” 

bacterial twin, composed of 50 gene families, and 4,371 genes that are universally 

conserved in all 40 genomes included in the analysis (Figure 3). 

Additionally, 119 pathogen specific twins (plus 20 species specific twins) were 

identified that included sequences from more than one pathogen species. 58 twins 

were trivial and 61 were non-trivial (Supp. Table 2). The strongest cases for 

pathogen specific traits identified by bipartite analysis are the pathogen specific twins 

that are most broadly distributed within the group. The majority of pathogen specific 

twins (84) only included sequences from two different pathogen genomes. No single 

twin included sequences exclusive to all pathogen genomes, meaning that there is 

no “core” pool of gene families exclusively shared by pathogens. Additionally, two 

strategies were used to screen for twins enriched in pathogens but also present in 

non-pathogens - either a coarse cutoff value of >80% of genes within a given twin 

being pathogen-derived (42 twins total) or a hypergeometric test followed by FDR 

correction to identify twins significantly enriched in pathogen-derived genes (5 twins) 

(Supp. Table 2). 



Figure 3: Summary of the bipartite graph analysis of forty prokaryotic genomes. A) 

The majority of gene families contained an equal proportion of pathogen and non-pathogen 

genes. Comparatively few are enriched in either pathogens or non-pathogens, with an 

extreme drop off from the peak at 0.5. A subset of gene families are exclusive to pathogens 

or to non-pathogens, indicated by peaks at 0 and 1, however the majority of these are only 

found in one genome. B) Most twins also contain an equal proportion of pathogens and non-

pathogens, however the peak at 0.5 is less extreme in comparison to the surrounding 

distribution. There is a more gradual decline in number of twins from this peak towards the 

extremities at 0 and 1 than in the distribution at the gene family level.  C) Functional analysis 

revealed that the twin containing all "core" gene families was predominantly composed of 

gene families involved in information and storage processing. This contrasts the twins 

containing gene families found in only two species, where informational genes are the least 

represented COG. Gene families found in two species are predominantly either associated 

with poorly characterised COGs or unannotated. (D) An example non-trivial bipartite twin of 

four gene families (bottom nodes) co-distributing in two relatively distantly related pathogen 

genomes (top nodes) from Dickeya zeae (Gamma-proteobacteria) and Capnocytophaga 

gingivalis (Flavobacteria). Two gene families (purple) contain components of the type IV 

secretion system, while two (yellow) have no known COG annotations. Their co-distribution 

with components of the type IV secretion system in distantly related taxa suggests that these 

may play a role in pathogenicity.



Both pathogen specific and pathogen enriched twins identified in this analysis 

include gene families with known roles in pathogenicity. One of the most broadly 

distributed pathogen specific twins, ADP-heptose:LPS heptosyltransferase 

(COG0859), is a part of the core machinery for LPS biosynthesis which, as an 

endotoxin, is a characterised factor in the pathogenesis of a broad range of gram-

negative bacteria (Raetz and Whitfield 2002). Another pathogenicity factor, 

haemolysin co-regulated protein 1, was enriched in pathogens (based on the  >80% 

cutoff). This is part of the type 6 secretion machinery, and has been proposed as a 

chaperone for effector protein secretion (Silverman et al. 2013). In addition to 

pathogenicity factors, a chloramphenicol-O-acetyl transferase and a beta-lactamase 

class D were enriched in pathogen genomes, enzymes conferring antibiotic 

resistance (Schwarz et al. 2004).

The identification of these known pathogen gene families within our set of twins 

can be seen as a proof of concept. It demonstrates the effectiveness of the bipartite 

graph approach for gene rediscovery. Moreover, this approach could be applied to 

identify novel genes associated with a particular feature. For example, in this dataset 

many twins unique to pathogens and enriched in pathogen genomes compared to 

non-pathogens are either annotated by COG as conserved proteins of unknown 

function, or unannotated in COG. Their enrichment in pathogen genomes compared 

to other twins suggests a potential role in pathogenicity for these thus far 

uncharacterised genes. 

Likewise, 181 non-pathogen specific twins (plus 20 single species twins) were 

identified in this analysis, including 98 trivial and 83 non-trivial twins. No twins 

included genes from all non-pathogen genomes. Additionally, we identified 96 twins 

in which >80% of genes were from non-pathogens, and 29 twins enriched in non-

pathogens using the hypergeometric test. The non-pathogen specific and enriched 

twins are more abundant and generally have broader distribution than those found in 

pathogens. This greater abundance is consistent with the findings of a broader 

analysis on 317 genomes (Merhej et al. 2009), which suggested that gene loss, in 

opposed to acquisition of virulence factors, has driven the evolution of parasites in 

their adaptation to their host cell. This included the loss of rRNA genes and 

transcriptional regulators, a result which is mirrored in our analysis. Another 5 

broadly distributed non-pathogen enriched twins (two non-trivial) are associated with 



loss of transcriptional regulation, supporting the idea that the evolution of 

pathogenesis could be related to the loss of regulation. Our approach independently 

found a correlation between nutrient acquisition (Merhej et al. 2009), and specifically 

a nitrogen fixation ability and a non-pathogenic lifestyle. Two large and broadly-

distributed non-trivial twins enriched in non-pathogens are made up entirely of ABC-

transport protein gene families, with predicted substrates including sugars and amino 

acids and oxoions. Four different twins also each include different components of the 

TRAP-type C4-dicarboxylate transport system, with substrates including succinate, 

malate and fumarate. This transport system is required for nitrogen fixation (Finan et 

al. 1983). Another more broadly distributed non-trivial twin exclusive to non-

pathogens includes two gene families, a predicted Fe-S oxidoreductase and 

nitrogenase molybdenum-iron protein (alpha and beta chains). These are central 

components of the pathway for nitrogen fixation (Dixon and Kahn 2004). Moreover, a 

trivial twin unique to non-pathogens is annotated as a Sec-independent protein 

secretion pathway component. This secretion system has a broad range of functions, 

one of which is its requirement for nitrogen oxide reduction in the nitrogen cycle 

(Natale et al. 2008). Finally, two twins containing >80% non-pathogen genes include 

additional parts of the pathway for nitrogen fixation: nitrogenase subunit NifH and 

Nitrate/Nitrite transport proteins. While elements of the nitrogen fixation pathway are 

shared between pathogens and non-pathogens (Carvalho et al. 2010), our bipartite 

graph analysis reinforces the argument that nitrogen fixation is a predominantly a 

feature of non-pathogenic bacteria. 

This relatively small scale bipartite graph analysis identified known signatures of 

pathogenesis and antibiotic resistance that were exclusive to or enriched in 

pathogen genomes, as well as genes of thus far unknown function which may play 

similar roles in pathogen biology, highlighting the potential of the approach for gene 

discovery. A larger number of twins were associated with non-pathogen genomes, 

consistent with the idea that pathogens undergo reductive evolution during their 

adaptation to the host environment including deregulation of gene expression 

(Merhej et al. 2009; Georgiades and Raoult 2011). Non-pathogen enriched twins 

associated were also associated with nitrogen fixation. Nitrogen fixation within a 

community can be viewed as an example of the production of a “public good” - it is a 

pathway that produces an important commodity that can be shared by an entire 



community, but its phylogenetic distribution within that community is patchy. Though 

some pathogens are known to encode genes involved in the production of public 

goods, it would be interesting to explore whether there is a broad trend towards 

production public goods by non-pathogens. MultiTwin would allow to test this 

hypothesis on a larger scale dataset.  
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II.3 APPLICATION OF BIPARTITE GRAPHS FOR THE 

ANALYSIS OF INTERDOMAIN LGT BETWEEN 

ULTRASMALL AND LARGER PROKARYOTES. 

 In recent years, environmental metagenomes studies have shed light on a number of 

new organisms revealing an unsuspected biodiversity of microbial ecosystems (Sunagawa et 

al. 2015). Among the newly discovered organisms are very small prokaryotes known as CPR 

(Candidate Phyla Radiation), encompassing 15% of the known bacterial phyla and thus

arousing a great interest (Brown et al. 2015). It has been shown that these organisms are 

deprived of certain metabolic pathways and that they have a cell envelope sharing common 

characteristics with both Gram (-) bacteria and archaea (Brown et al. 2015; Luef et al. 2015).

Because of their genomic properties, these groups of ultrasmall prokaryotes must be 

dependent on other Bacteria or Archaea, making them as potential candidates for 

endosymbiotic lifestyle. 

 In the article n°3, we used a bipartite approach to verify whether exchanges of genetic 

material occurred by symbiosis or endosymbiosis between CPR and other prokaryotes, which 

might have been potential hosts of CPR. For this, we compared the protein sequences of the 

CPRs with those of the complete prokaryotic genomes from NCBI. The similarities between 

the sequences were detected with BLASTP and only the hits passing a certain number of 

thresholds (percentage of identity, mutual coverage, and E-value,) were kept for analysis. 

Subsequently, this filtered SSN was treated as a bipartite graph. Analysis of these bipartite 

graphs suggest numerous horizontal gene transfer (LGT) between CPR and other prokaryotes, 

including Archaea. Functional analyses of the sequences involved in these LGT showed that 

they were, in the majority of cases, related to membrane proteins. This article has been 

accepted and published in the journal "Environmental Microbiology".
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Summary

Based on their small size and genomic properties,

ultrasmall prokaryotic groups like the Candidate Phyla

Radiation have been proposed as possible symbionts

dependent on other bacteria or archaea. In this study,

we use a bipartite graph analysis to examine patterns

of sequence similarity between draft and complete

genomes from ultrasmall bacteria and other complete

prokaryotic genomes, assessing whether the former

group might engage in significant gene transfer (or

even endosymbioses) with other community mem-

bers. Our results provide preliminary evidence for

many lateral gene transfers with other prokaryotes,

including members of the archaea, and report the

presence of divergent, membrane-associated proteins

among these ultrasmall taxa. In particular, these diver-

gent genes were found in TM6 relatives of the

intracellular parasite Babela massiliensis.

Introduction

Recent metagenomic analyses are revealing a wealth of

new, unusual microbes that challenge current knowledge

about prokaryotic diversity and microbial symbiosis.

Among these groups is a cosmopolitan clade termed the

Candidate Phyla Radiation (CPR; Brown et al., 2015; Luef

et al., 2015; Hug et al., 2016), mostly ultrasmall cells near-

ing the lower theoretical size limit for viability predicted by

physical models (Velimirov, 2001). This clade comprises

15% of the described bacterial phyla and shares cell

envelope characteristics with both Gram-positive bacteria

and archaea (Brown et al., 2015; Luef et al., 2015). Based

on these unusual membranes, small cellular size/

genomes, and lack of certain biosynthetic pathways, it has

been suggested that these bacteria are obligate ferment-

ers dependent on other microbial community members

(Brown et al., 2015). This makes them prime candidates

for an endosymbiotic lifestyle.

However, larger novel microbes like the hydrothermal vent

organism Lokiarchaeum have also been recently described.

This surprising archaeal group harbors membrane-

remodeling systems compatible with rudimentary phagocytic

capability, and displays a composite proteome possibly

acquired by LGT (Spang et al., 2015). Thus, the lineage to

which Lokiarchaeum belongs has been proposed as a prime

candidate host for prokaryotic endosymbionts, with a possi-

ble contribution to eukaryogenesis (Koonin, 2015; Spang

et al., 2015; but see Nasir et al., 2015). In principle, the dis-

covery of these novel, candidate hosts and symbionts in the

environment adds to debated theoretical suggestions that

(i) massive gene transfers between archaea and bacteria

(Nelson-Sathi et al., 2015) and (ii) prokaryote-in-prokaryote

endosymbiosis (Lake, 2009; Swithers et al., 2011) might

have facilitated major evolutionary transitions like the origin of

eukaryotes and the emergence of Gram-negative bacteria.

However, prokaryote-in-prokaryote symbioses remain

extremely rare, with only one described example in the

mealybug (Husnik et al., 2013).

New environmental datasets provide a first opportunity

to examine the genomic relationships among the CPR,

Lokiarchaeota, and other prokaryotic groups. Given the

particular characteristics described above, we tested

whether members of the CPR might have been endosym-

biotic or partners in gene exchange with other bacteria or

archaea. More precisely, we looked for signs of endosym-

biotic gene transfer—a process by which a symbiont

transfers genetic material to the host (Timmis et al., 2004:

Martin et al., 2015)—and LGT involving organisms from

the ultrasmall size fraction published by Brown et al.

(2015). To this end, we performed a large-scale BLAST

comparison of protein sequences from both draft and com-

plete genomes of CPR (and TM6, a related phylum)

Received 8 July, 2016; accepted 27 July, 2016. *For correspondence.

*E-mail: eric.bapteste@upmc.fr; Tel. 1330144272164. †These

authors contributed equally to this work.

VC 2016 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.
This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use,
distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.

Environmental Microbiology (2016) 18(12), 5072–5081 doi:10.1111/1462-2920.13477



dataset against all complete bacterial and archaeal

genomes on NCBI (February 1, 2016). Subsequently, we

used a bipartite graph analysis (BGA) to examine the

resulting patterns of gene sharing across these genomes.

This approach to environmental sequence data allowed us

to identify specific processes of transfer or diversity, like

those involving membrane-related proteins.

Results/discussion

We began by BLASTing a large dataset of predicted pro-

teins from a set of binned and curated CPR/TM6 genomes

(n5 637,155) against proteins from all complete bacterial

and archaeal genomes on NCBI (4,600 genomes,

n515,373,158 proteins). We dereplicated the CPR/TM6

sequences and partitioned them into four categories—

those that showed an above-threshold BLAST hit with only

archaeal genomes (n5 2,236), only bacterial genomes

(BAC, n5 124,022), both (PROK, n5 81,634), or neither

(CPR/TM6, n5 158,245). We first performed a BGA on

the BAC subset, delineating groups of CPR/TM6 sequen-

ces with shared, exclusive similarity to a given set of

prokaryotic genomes. These groupings of proteins exclu-

sively associated with a given set of genomes are known

as “twins,” the detection of which is an efficient way to rep-

resent complex patterns of gene sharing among

organisms (Corel et al., 2016). For example, a “twin” asso-

ciating a group of sequences to one or more complete

CPR genomes indicates that these sequences are likely

from a CPR organism. However, twins connecting a set of

CPR/TM6 sequences with one or more bacteria or

archaea distantly related to CPR/TM6 suggests a case of

gene transfer, endosymbiotic or otherwise, between CPR/

TM6 organisms and other distantly related prokaryotes

(Fig. 1).

The BGA resulted in 82,953 “twins” that were sorted by

decreasing number of CPR/TM6 proteins they contained.

The twins containing the largest number of CPR/TM6

sequences (between 268 and 3,540) involved the com-

plete CPR genomes from the Brown et al. (2015) dataset,

as well as 5 strains of Peribacter riflensis, another phylum

in CPR (Anantharaman et al., 2016). This result is

expected, and offers a good proof of concept for our meth-

odology: given that most proteins in the Brown et al.

(2015) dataset are already classified as CPR, the BGA

approach should associate those proteins with complete

CPR genomes. The next strongest signal (i.e., CPR/TM6

proteins exclusively associated with a particular prokaryot-

ic genome) revealed 456 proteins showing distant (�39%

mean sequence identity, Fig. 2) but exclusive similarity to

Babela massiliensis, a gram-negative, intracellular amoe-

boid parasite in the candidate phylum TM6 (Pagnier et al.,

2015). These 456 genes were contained by 16 different

bins (Supporting Information Table S1), all but one of

which were taxonomically annotated as TM6.

Patterns of gene similarity in the TM6

Our results indicate that as many as 16 ultrasmall organ-

isms in the Brown et al. dataset have genes with exclusive

similarity to those in Babela massiliensis. This is interesting

for two reasons: First, these relationships may help to

begin constructing more detailed phylogeny among the

TM6, which to date remains mostly unstudied. Specifically,

that a set of genes among novel TM6 representatives

resembles Babela (or one of its relatives) adds to existing

Fig. 1. The process of defining ‘twins’ in a BGA delineates groups

of sequences with shared, exclusive similarity to a given set of
genomes. For example, sequences 1 and 2 belong to a twin

because they exclusively associate with the same set of genomes

(Archaeon 1 and Bacterium 1). Note that genomes can be included

in two or more different twins—Twin 2 also contains Bacterium 1
but involves a different set of proteins (3 and 4). In this case,

sequences 2 and 3 show similarity to different genes within

Bacterium 1 (i.e., they are not homologous). Twin 3 is an example

of a twin where one or several CPR/TM6 sequences associate with
many different genomes. Twin 4, in which multiple CPR/TM6

sequences associate exclusively with one genome, is an example

of an interesting case that can allow attribution of CPR/TM6

sequences to a particular species (when the contained genome is a
CPR/TM6 bacterium) or can hint at patterns of gene transfer or

novel diversity (when contained genome is not a CPR/TM6

bacterium). Each edge between sequences and genomes has a

corresponding weight, or percent identity (see Twin 1 for example),
which were calculated from the BLAST results.
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knowledge of gene ancestry in this group. However,

because only several complete TM6 genomes were includ-

ed in our analysis, this relationship remains relative and

may change as additional genomes in this phylum are dis-

covered, described, and analyzed. Second, our results

could help to shed light on the genomic consequences of

ultrasmall size in the TM6. These organisms, based on the

size fraction from which they were collected, would be 6–

10 times smaller than their relative Babela (Pagnier et al.,

2015). Despite this, our twin analysis clearly confirms that

small and ultrasmall TM6 have many related genes, some

of which appear divergent.

Interestingly, Babela exhibits many of the genomic char-

acteristics typical of intracellular symbionts, including

reduction of genome size through loss of biosynthetic path-

ways (Pagnier et al., 2015). In addition, Babela contains

many genes related to transport, including ATP/ADP trans-

locases, porins, an ABC-family permease, and other

transporters (Pagnier et al., 2015). These membrane-

associated proteins could be important in the integration

of metabolisms at the host-endosymbiont interface—in

eukaryotes, specialized transporters currently play a role in

moving small molecules across the inner envelope mem-

brane of chloroplasts, connecting cytosolic and organellar

pathways (Weber and Fisher, 2007). Interestingly, we

recovered highly divergent versions of some of these

same genes, among others, in the BGA twin associated

with Babela—in particular, 17 amino acid transporters, 20

ATP/ADP and preprotein translocases, 18 multidrug pump/

transporters, and several other related genes in the CPR/

TM6 (Table 1). These membrane-related genes were relat-

ed to that of Babela but with a low identity (�37% mean %

ID, Fig. 2), and were contained in 14 bins also belonging to

uncharacterized TM6 organisms. At any rate, further work

should address the possibility that the highly divergent

transport proteins recovered among the environmental

TM6 play a role in adapting to a lifestyle in the ultrasmall

size fraction. This lifestyle may not necessarily be parasitic,

although recent work has indicated that this mode is likely

both common and ancestral among the TM6 clade (Gong

et al., 2014; Yeoh et al., 2015).

Lateral gene transfer between CPR/TM6 and other

prokaryotes

We repeated the BGA for the ARC data partition, again

sorting the resulting twins by decreasing number of CPR/

TM6 proteins they contained. This yielded three top twins,

each of which linked sequences to a single archaeal

genome—Woesearchaeota AR20 and Diapherotrites

AR10, two ultrasmall size-fraction archaea from the super-

phylum DPANN (Rinke et al., 2013; Castelle et al., 2015),

and Lokiarchaeum (Spang et al., 2015)—with which there

were 230, 131, and 53 exclusively associated proteins,

respectively. We subsequently created a heatmap showing

the distribution of sequence similarity between CPR/TM6

sequences in the ARC subset and genes within the com-

plete archaeal genomes from NCBI (Fig. 3). This revealed

further regions of interest.

First, we did not observe a pattern of high similarity

(>70% ID) between CPR/TM6 proteins in the ARC subset

and any archaeal genes, indicating that recent interdomain

gene transfer is an unlikely explanation for the presence of

numerous CPR/TM6 homologs in Archaea. However, the

heatmap did reveal a “core group” of 62 CPR genes that

showed distant homology (mean �39% ID) to a large dis-

tribution of the complete archaeal genomes (Region A in

Fig. 3). Region C and D generally corresponded to the two

twins identified as top results in the BGA, involving the

novel archaeal genomes Diapherotrites AR10 and

Woesearchaeota AR20 (39–40% ID). Interestingly, these

genomes were assembled from the same sample site and

size fraction as the CPR dataset as part of a larger study

identifying new members of the DPANN (Brown et al.,

2015; Castelle et al., 2015). Additionally, the two groups of

CPR/TM6 sequences associated with these genomes

showed similar functional profiles, containing many diver-

gent, membrane-related proteins (Table 2).

To determine whether these archaea-exclusive signals

stemmed from inaccurate binning (and may therefore

reflect that some contigs belong to archaea rather than
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Fig. 2. The distribution of percent identity between CPR/TM6

proteins and their counterparts in Babela massiliensis, with highly
divergent membrane, transporter, pump, and translocase-related

ones highlighted in red. While the BGA twin relating the CPR/TM6

to this TM6 bacterium contained 456 proteins, only 236 could be

annotated by RPS Blast.
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Table 1. Functional description of 236 CPR/TM6 proteins associating exclusively with Babela massiliensis, as annotated by RPS Blast. Highly

divergent membrane, transporter, pump, and translocase-related proteins are in marked in bold face.

Count COG Annotation

17 COG0531 Amino acid transporters

14 COG0612 Predicted Zn-dependent peptidases
13 COG3202 ATP/ADP translocase

12 COG0534 Na1-driven multidrug efflux pump

11 COG0265 Trypsin-like serine proteases, typ. perip. contain C-term PDZ dom.

10 COG0285 Folylpolyglutamate synthase
10 COG2932 Predicted transcriptional regulator

9 COG0544 FKBP-type peptidyl-prolyl cis-trans isomerase (trigger factor)

9 COG0592 DNA polymerase sliding clamp subunit (PCNA homolog)

9 COG4775 Outer membrane protein/protective antigen OMA87

8 COG2812 DNA polymerase III, gamma/tau subunits

6 COG0681 Signal peptidase I

6 COG0706 Preprotein translocase subunit YidC

6 COG1132 ABC-type multidrug transport system, ATPase permease comps.

6 COG1524 Uncharacterized proteins of the AP superfamily

5 COG0712 F0F1-type ATP synthase, delta sub. (mito. oligomycin sens. prot.)

4 COG3264 Small-conductance mechanosensitive channel

3 COG0333 Ribosomal protein L32
3 COG0456 Acetyltransferases

3 COG0596 Pred. hydrolases/acyltransferases (alpha/beta hydrolase superf.)

3 COG0607 Rhodanese-related sulfurtransferase

3 COG0636 F0F1-type ATP synth. sub. c/Arch./vacuolar-type H1-ATPase, sub K
3 COG1011 Predicted hydrolase (HAD superfamily)

3 COG1214 Inactive homolog of metal-dep. proteases, putative mol. Chaperone

3 COG2165 Type II secretory pathway, pseudopilin PulG

3 COG3031 Type II secretory pathway, component PulC
3 COG3283 Transcriptional regulator of aromatic amino acids metabolism

3 COG4972 Tfp pilus assembly protein, ATPase PilM

2 COG0037 Pred. ATPase of the PP-loop superf. implicated in cell cycle control

2 COG0200 Ribosomal protein L15
2 COG0224 F0F1-type ATP synthase, gamma subunit

2 COG0355 F0F1-type ATP synthase, epsilon sub. (mitochondrial delta subunit)

2 COG0360 Ribosomal protein S6

2 COG1974 SOS-response trans. repressors (RecA-mediated autopeptidases)
2 COG2204 Response reg. w/CheY-like receiver, ATPase, & DNA-bind. Doms

2 COG2267 Lysophospholipase

2 COG3688 Predicted RNA-binding protein containing a PIN domain

2 COG4564 Signal transduction histidine kinase
2 COG4591 ABC-type transport sys., inv. in lipop. release, permease comp.

1 COG0006 Xaa-Pro aminopeptidase

1 COG0204 1-acyl-sn-glycerol-3-phosphate acyltransferase

1 COG0269 3-hexulose-6-phosphate synthase and related proteins
1 COG0331 (acyl-carrier-protein) S-malonyltransferase

1 COG0356 F0F1-type ATP synthase, subunit a

1 COG0419 ATPase involved in DNA repair

1 COG0545 FKBP-type peptidyl-prolyl cis-trans isomerases 1
1 COG0666 FOG: Ankyrin repeat

1 COG0707 UDP-N-acetylglucosamine:LPS N-acetylglucosamine transferase

1 COG0758 Pred. Rossmann fold nucl.-binding protein involved in DNA uptake

1 COG0793 Periplasmic protease
1 COG0858 Ribosome-binding factor A

1 COG1221 Trans. Regs. w/AAA-type ATPase domain & DNA-binding dom

1 COG1222 ATP-dependent 26S proteasome regulatory subunit

1 COG1297 Predicted membrane protein

1 COG1314 Preprotein translocase subunit SecG

1 COG1450 Type II secretory pathway, component PulD

1 COG1463 ABC-type tranp. sys. Inv. in resisting org. solvents, peripl. comp.

1 COG1544 Ribosome-associated protein Y (PSrp-1)
1 COG1579 Zn-ribbon protein, possibly nucleic acid-binding

1 COG1723 Uncharacterized conserved protein

1 COG3027 Uncharacterized protein conserved in bacteria

1 COG3829 Trans. regulator w/PAS, AAA-type ATPase, & DNA-binding dom.
1 COG4232 Thiol:disulfide interchange protein

1 COG4907 Predicted membrane protein

1 COG4970 Tfp pilus assembly protein FimT
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CPR/TM6 organisms) or from interdomain gene transfer,

we retrieved the number and taxonomy of genomic bins

containing the genes in each twin. For the twin corre-

sponding to Woesearchaeota AR20, 230 sequences were

contained in 156 bins; for that corresponding to Diaphero-

trites AR10, 131 sequences were contained in 112 bins;

for that corresponding to Lokiarchaeota, 53 sequences

were contained in 52 bins; for that corresponding to the

“core group” (Region A, Fig. 3), 62 sequences were con-

tained in 52 bins; 90% or more of the genes in these twins

were identified as belonging to the CPR phyla Microgeno-

mates or Parcubacteria; a small number were of

Berkelbacteria, Peregrinibacteria, or other origin

(Supporting Information Table S1). Most were unannotated

at the class level. We also examined the sequences at a

contig level, retrieving the most frequent BLAST-assigned

taxonomic annotations on each of the contigs containing

twins with exclusive similarity to archaeal genes. These

results showed that very few of these genes (<5% of each

twin) were from contigs that met the majority rule for ARC

placement. 72% or more of these contigs (containing

genes exclusively similar to archaea) met the majority rule

for bacterial (BAC) or CPR (no BLAST match to other bac-

teria, CPR, or archaea) origin (Supporting Information

Table S1). Thus, while semiautomatic taxonomic assign-

ments are limited, and contamination by low abundance,

Fig. 3. A heatmap showing patterns of similarity between the CPR/TM6 proteins contained in the ARC subset and the archaeal genomes
retrieved from NCBI. The percent identities shown were calculated from the BLAST hits between CPR/TM6 proteins and their corresponding

proteins in the NCBI archaeal genomes. Taxonomic information for these genomes and genomic context/COG info for the CPR/TM6 proteins

are shown in the heatmap sidebars (see Procedures and Supporting Information Methods).
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Table 2. Functional description of CPR/TM6 proteins associating exclusively with singular archaeal genomes –Diapherotrites AR10, Woe-

searchaeota AR20, and Lokiarchaeum, respectively, as annotated by RPS Blast. COG annotations shared across genome groups (“twins”) are

marked in bold face.

Count COG Annotation

Diapherotrites AR10

8 COG4095 Uncharacterized conserved protein

5 COG0785 Cytochrome c biogenesis protein

3 COG1651 Protein-disulfide isomerase

2 COG0526 Thiol-disulfide isomerase and thioredoxins

2 COG1378 Predicted transcriptional regulators

2 COG1522 Transcriptional regulators

2 COG2267 Lysophospholipase

1 COG0089 Ribosomal protein L23

1 COG0189 Glutathione synth/Ribo. Prot. S6 mod enzyme

1 COG0438 Glycosyltransferase

1 COG0451 Nucleoside-diphosphate-sugar epimerases

1 COG0500 SAM-dependent methyltransferases

1 COG1032 Fe-S oxidoreductase

1 COG1305 Transglutaminase-like enzymes, putative cysteine proteases

1 COG1418 Predicted HD superfamily hydrolase

1 COG1577 Mevalonate kinase

1 COG2226 Methylase involved in ubiquinone/menaquinone biosynthesis

1 COG2230 Cyclopropane fatty acid synthase and related methyltransferases

1 COG2717 Predicted membrane protein

1 COG3118 Thioredoxin domain-containing protein

1 COG4106 Transaconitate methyltransferase

1 COG5542 Predicted integral membrane protein

1 COG5650 Predicted integral membrane protein

Woesearchaeota AR20

22 COG1215 Glycosyltransferases, probably involved in cell wall biogenesis

9 COG0438 Glycosyltransferase

6 COG2226 Methylase involved in ubiquinone/menaquinone biosynthesis

5 COG4243 Predicted membrane protein

3 COG0463 Glycosyltransferases involved in cell wall biogenesis

3 COG2244 Membrane protein involved in export of O-antigen/teichoic acid

3 COG2510 Predicted membrane protein

2 COG2511 Archaeal Glu-tRNAGln amidotrans. Sub. E (contains GAD domain)

2 COG3177 Uncharacterized conserved protein

1 COG0262 Dihydrofolate reductase

1 COG0719 ABC-type trans. sys. inv. in Fe-S cluster assem., permease comp.

1 COG1216 Predicted glycosyltransferases

1 COG1414 Transcriptional regulator

1 COG1437 Adenylate cyclase, class 2 (thermophilic)

1 COG1651 Protein-disulfide isomerase

1 COG1669 Predicted nucleotidyltransferases

1 COG1814 Uncharacterized membrane protein

1 COG1898 dTDP-4-dehydrorhamnose 3,5-epimerase and related enzymes

1 COG2129 Predicted phosphoesterases, related to the Icc protein

1 COG2259 Predicted membrane protein

1 COG2887 RecB family exonuclease

1 COG3882 Predicted enzyme involved in methoxymalonyl-ACP biosynthesis

Lokiarchaeum

14 COG1449 Alpha-amylase/alpha-mannosidase

12 COG0064 Asp-tRNAAsn/Glu-tRNAGln amidotrans. B sub. (PET112 hom.)

6 COG0178 Excinuclease ATPase subunit

4 COG0642 Signal transduction histidine kinase

3 COG3259 Coenzyme F420-reducing hydrogenase, alpha subunit

2 COG0084 Mg-dependent DNase

1 COG0125 Thymidylate kinase

1 COG0171 NAD synthase

1 COG0183 Acetyl-CoA acetyltransferase

1 COG0322 Nuclease subunit of the excinuclease complex

1 COG0334 Glutamate dehydrogenase/leucine dehydrogenase

1 COG0674 Pyruvate:ferredoxin oxidoreductase, related oxidored., alpha sub.

1 COG0714 MoxR-like ATPases

1 COG1042 Acyl-CoA synthetase (NDP forming)

1 COG1690 Uncharacterized conserved protein
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highly fragmented genomes is possible, wide-spread

sequence misbinning in the CPR dataset seems unlikely.

Furthermore, contigs containing genes with exclusive simi-

larity to archaeal ones appeared to be of generally high

quality—only several had a coverage below 5, with most

higher (median coverage between 9 and 11, depending on

the twin). Finally, only three genes in the examined twins

were labeled as “Possibly archaeal contamination” in the

original study. Overall, our contig majority analyses

revealed that sequence binning was likely accurate.

Thus, we observed multiple twins exclusively associating

CPR sequences to genes in a variety of archaea, including

those from both major taxonomic groups as well as novel,

ultrasmall DPANN. In other words, numerous ultrasmall bac-

teria presented genes exclusively similar to those of

archaeal groups in their genomes. Ultimately, the results of

the BGA, when combined with the binning and contig analy-

ses, suggest that this similarity between CPR and known

prokaryotic genomes may be the result of multiple inter-

domain LGT between these organisms. For one, an ances-

tor of Woesearchaeota AR20 and an ancestor of

Diapherotrites AR10 could have exchanged genes with

members of the CPR, helping in part to explain the

observed patterns of similarity in Region C and D (Fig. 3).

An RPSBlast of genes in these regions revealed that many

coded for proteins relating to the membrane—integral pro-

teins, cytochrome biogenesis, methylase involved in

ubiquinone/menaquinone biosynthesis, and glycosyltrans-

ferases involved in cell wall biogenesis (Table 2). Common

in certain ultrasmall archaeal genomes these glycosyltrans-

ferases are predicted to play a key role in synthesizing

structural and signaling saccharides (Castelle et al., 2015).

Under the hypothesis of LGT between CPR and archaea,

the large “core” band of similarity seen across all groups in

the ARC heatmap (Region A, Fig. 3) is surprising, as it

includes more conserved archaeal genes like those in infor-

mation storage and processing. Indeed, an RPS Blast

analysis indicated that Region A included many genes that

coded for ribosomal proteins, DNA polymerase, and tRNA

synthethases (green on COG sidebar, also see Supporting

Information Table S2). Several of these synthethases

appeared to show higher homology with thermophilic

archaeal classes, whereas some ribosomal genes were

restricted to members of the phylum Euryarchaeota. This

pattern may indicate ancient gene exchange involving CPR

and some broad distributions of relatively large, varied

archaea. However, it may also reflect an ancient phylogenet-

ic relationship between CPR and archaea, if CPR are

indeed relatively basal in the prokaryotic tree of life as sug-

gested by a recent concatenation of 16 ribosomal proteins

(Hug et al., 2016). Nonetheless, there are several other

regions apparent on the heatmap with exclusive above-

threshold homology of CPR/TM6 genes with particular clas-

ses of Archaea, for example, Region E (Fig. 3) with varied

similarity to members of Thermococci, Region F (Fig. 3),

with �40% similarity to the members of Archaeglobi, or

Region G (Fig. 3), with varied similarity to members of Meth-

anomicrobia. These other patterns of similarity strengthen

the suggestion that ancient gene transfer may have

occurred among members of the ultrasmall size fraction.

Lastly, we also recovered a large group of CPR/TM6

proteins (n5 53) that showed distant homology exclusively

with Lokiarchaeum, which is already known to have a pro-

teome nearly 30% homologous with bacteria (Region B,

Fig. 3; Spang et al., 2015). As above, these genes were

placed in quality bins of diverse bacterial origin, and so

interdomain gene transfer with a relative of Lokiarchaeota

is a possible explanation for the observed pattern of simi-

larity. However, the functional profile of these CPR/TM6

genes was largely different from that of the genes match-

ing with AR10 and AR20. Genes shared exclusively

between CPR/TM6 and Lokiarchaeota were composed

mostly of amidotransferases involved in tRNA biosynthesis

and a family of enzymes involved in carbohydrate metabo-

lism, but lacking membrane-related genes (Table 2). We

can only speculate that these different functional patterns

may hint at different gene-capture mechanisms among

archaea. Lokiarchaeota, if phagotrophic, could prey on a

diversity of ultrasmall bacteria, while AR20/AR10 may be

involved in symbiotic relationships with CPR. This could

then lead to the convergent sharing of membrane-related

genes compatible with such a lifestyle.

The observed results for the ARC subset are consistent

with literature suggesting that ancient gene transfer from

bacteria to archaea can play a major role in evolution of

specific lineages (Nelson et al., 1999; Lopez-Garc�ıa et al.,

2015; Nelson-Sathi et al., 2015). In the striking case of the

Haloarchaea, as many as 157 gene families coding for

transporters were imported from Eubacteria (Nelson et al.,

1999). These transfers can facilitate colonization of new

niche space, for example, Lopez-Garc�ıa et al. (2015)

details the convergent acquisition of metabolism, transport,

and membrane genes allowing adaptation to mesophilic

conditions among three distant archaeal lineages. Ancient

transfer of metabolic genes from bacteria to archaea has

also been implicated in the origin of several major archaeal

groups (Nelson-Sathi et al., 2015). While polarity of any

CPR/TM6-Archaea gene transfers in this dataset would be

difficult to determine, transfer events among these

domains are generally believed to be skewed towards

those in which bacteria act as donors (Lopez-Garc�ıa et al.,

2015; Nelson-Sathi et al., 2015). This may be due to adap-

tive gains made by use of new metabolic strategies and a

lower fitness cost to archaea of incorporating foreign

genetic material (Lopez-Garc�ıa et al., 2015). Transfer of

membrane-related genes could also be achieved endo-

symbiotically, where the symbiont (by lysis or another

process) donates genes to the host. In fact, this scenario
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has been suggested in the literature—as a possible step in

the retention of the mitochondrial progenitor during early

eukaryogenesis (Martin et al., 2015), or as a mechanism

to regulate the cell wall of an intracellular bacterium

(Husnik et al., 2013). Although LGT of membrane trans-

porters was observed primarily between ultra-small donors

and recipients (CPR, DPANN), we speculate that, in the

case of a hypothetical CPR/TM6-large archaeon symbio-

sis, transfer and subsequent expression of the symbiont’s

transporters or other membrane-related genes could be

critical.

Finally, graph analyses of the BAC and PROK subsets

provided several other examples of more recent transfer

between the CPR/TM6 and larger prokaryotes. We ran BGA

analyses maintaining an 80% cover requirement between

CPR/TM6 sequences and their homologs, but for the PROK

subset generated gene families with more stringent percent

identity (>550, >560, >570, >580, >590% ID, see Sup-

porting Information Methods). These gene families would

later be detected as twin members. At 80% similarity, we

observed that CPR/TM6 mannose isomerase genes paired

with both genomes of methanogenic archaea like Methano-

sarcina and with complete CPR genomes (Supporting

Information Table S3). We also observed several sets of

CPR/TM6 genes associated with single deltaproteobacterial

genomes, for example, a set of recombinases with Hippea

maritima and a set of GTP-binding protein TypA/BipA with

Desulfomonile tiedjei. Likewise, at 90% ID, a set of transcrip-

tional regulators from the CPR/TM6 showed homology to a

wide array of Bacillus genomes (these genes also showed

similarity to archaea, just at a lower threshold). These pat-

terns may indicate that CPR/TM6 have also exchanged

genes with other bacteria, and expand upon Brown et al.

(2015) proposal of a possible ribosomal protein transfer

among members of the CPR.

Conclusion

Recent phylogenetic analyses have underscored the

importance of studying ultrasmall microbial groups like

CPR in expanding our knowledge of the tree of life (Hug

et al., 2016). The patterns of genetic diversity and gene

transfer reported in the present study contribute to this

body of knowledge and bring forward a reticulate aspect of

their evolution. Methods complementary to environmental

metagenomics, like single cell genomics, could help to bet-

ter elucidate relationships among organisms and their

gene content (Stepanauskas, 2012) and ultimately shed

additional light on patterns of transfer among these organ-

isms. Furthermore, as we report the unusual membranes

in a second domain of life (Castelle et al., 2015), we pro-

pose that these characteristics may be the result of a

convergent evolutionary pressure. The ultrasmall niche

may require underappreciated membrane adaptations,

and further work should address the role of these proteins

in adapting to or managing this lifestyle. Future analysis of

massive environmental datasets from this size fraction, like

that of TARA Oceans (Karsenti et al., 2011), could help to

shed more light on gene transfer and phylogeny in these

organisms and ultimately further our understanding of any

drivers underlying their evolution.

Procedures

We downloaded the full dataset of CPR/TM6 proteins from

the online repository (ggkbase.berkeley.edu/CPR-com-

plete-draft/organisms) listed in Brown et al. (2015). We

then removed sequences with mid-protein stop codons,

leaving a final dataset of 637,155 proteins. We also down-

loaded all proteins from all complete archaeal and

bacterial genomes on NCBI (4,600 genomes, 15,373,158

sequences, February 1, 2016). This NCBI dataset included

the eight complete CPR genomes from the Brown et al.

(2015) dataset but not the �800 other draft genomes also

reported in that study. Full taxonomy information for the

complete genomes was retrieved from the NCBI taxonomy

database (ncbi.nlm.nih.gov/taxonomy). We performed a

BLAST analysis of all CPR/TM6 proteins against all pro-

teins from the complete genomes on a distributed cluster

(version 2.3.01, with the following options: -seg yes, -

soft_masking true, and -max_target_seqs 5000). We

filtered these results for sequence hits� 30% identity,

� 80% mutual cover, and e-value� 1e-5 to retain only full

sized homologs of CPR/TM6 proteins in complete prokary-

otic genomes. We partitioned the CPR/TM6 proteins into

ARC, BAC, PROK, and CPR/TM6 groups as explained

above, de-replicating each set using cd-hit (version 4.6, -c

1 –s 1; Li and Godzik, 2006) to yield only unique CPR/TM6

sequences. PROK CPR/TM6 genes were further clustered

into gene families (Supporting Information Methods).

We performed a BGA on the BLAST results for each

subset, delineating groups of CPR/TM6 proteins with

shared, exclusive similarity to a given set of prokaryotic

genomes (Corel et al., 2016). This procedure defines

“twins” composed of the CPR/TM6 sequences and the

NCBI genomes hosting homologs of these sequences

(Fig. 1). Twins were sorted on the number of included

CPR/TM6 proteins and were filtered to retain those with

low numbers of included NCBI genomes, as these allowed

us to look more easily for candidate gene transfers. Recent

gene transfer among the PROK and BAC subsets was

detected using a BGA with higher identity thresholds (i.e.,

to be included in a twin, a link between a CPR/TM6 protein

and a gene in an NCBI genome must be of >550, >560,

>570, >580, or >590 percent identity). For each CPR/

TM6 protein in the ARC subset, we retrieved the identity of

its home contig from the original sequence metadata and

used this to retrieve all other sequences, regardless of
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annotation, for those contigs. From these data, we created

the “contig majority” parameter, or the highest frequency

annotation on that contig among ARC, PROK, BAC, or

CPR/TM6, and “contig neighbor,” the annotations of the

genes flanking the ARC gene on that contig (Supporting

Information Methods). For the ARC, PROK, and Babela-

associated CPR/TM6 genes, we performed an RPS

BLAST (version 2.3.01, with the following options: -seg

yes, -soft_masking true and -max_target_seqs 5) with the

NCBI COG database (ncbi.nlm.nih.gov/COG/) to obtain

full gene annotations and COG categories. Finally, bin

analyses were performed for the relevant gene subsets by

retrieving the original sequence headers from Brown et al.

(2015) and extracting bin/taxonomy information.
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SUPPORTING INFORMATION 

1. METHODS 

1.1 Gene Family Construction 

To create ‘gene families,’ we performed an all-against-all BLAST analysis of  
the PROK dataset (81,634 proteins) (version 2.3.0+, with the following options :  
-seg yes, -soft_masking true and -max_target_seqs 5000), in effect creating a  
sequence similarity network (Corel et al., 2016). ‘Gene families’ are isolated groups of 

input sequences that are connected by BLAST hits of ≥ 30% sequence identity, ≥ 80% 
mutual coverage, and an e-value ≤ 1e-5. In our analysis of the PROK dataset, gene 
families were also constructed at >=40, >=50, >=60, >=70, >=80, and >=90 percent 
identity1. In each iteration of that analysis, the threshold used to create gene families 
matched that used to create ‘twins’ with genes from the NCBI genomes. 

1.2 ‘Contig Neighbors’

After retrieving all genes on the home contig of each ARC gene, we could then assign an 
overall annotation to the set of genes directly flanking it. ARC genes with one or more 
‘PROK’ neighbors or with an ‘ARC’ and ‘BAC’ neighbor were assigned the 
contig_neighbor designation ‘PROK’, those without ‘PROK’ but with one or more

‘BAC’ were assigned the contig_neighbor designation ‘BAC’, those without ‘PROK’ or 

‘BAC’ but with one or more ‘ARC’ were assigned the contig_neighbor designation 
‘ARC’. Those with only ‘CPR/TM6’ kept that label (shortened to CPR in the tables 
below). This metric was used to provide genomic context for possible gene transfers 
among the CPR/TM6. 

1.3 Tree Construction 

We combined the CPR/TM6 sequences in the ARC subset with their homologous 
archaeal genes. We also performed a BLAST analysis of these archaeal homologs against 
the bacterial genomes previously taken from NCBI, allowing us to retrieve distant 
bacterial homologs of the CPR/TM6 sequences. Addition of these genes to the dataset 
resulted in 160,284 total sequences - the CPR/TM6 genes in the ARC grouping, their 
homologs in archaea, and any more distant bacterial homologs (see diagram below). We 
then computed ‘gene families’ (see above) and selected those that contained sequences 
from Region A of Fig. 3 (n=21 families). Many of these proteins were assigned to the 
“Information Storage and Processing” category (see Supp. Table 1). For each of these 
selected families, we aligned the contained sequences with MAFFT (v7.273, linsi 
setting), refined the alignments with Gblocks (v0.91b, -b4=6, -b5h), and generated trees 
with FastTree (v2.1.8 SSE3, default parameters).

                                                
1

Méheust, Raphaël, et al. (2016) Protein networks identify novel symbiogenetic genes resulting from 
plastid endosymbiosis. Proceedings of the National Academy of Sciences: 201517551. 



  
Supp. Fig. 1: Using multi-step BLAST to create ‘gene families.’



2. TABLES 

Supp. Table 1. Characteristics of each ‘twin’ or gene grouping described in the text, including the number of genes in each 

twin/grouping, the number of unique genomic bins associated with the twin/grouping and their taxonomic composition, and the 
number of unique contigs associated with the twin/grouping and their BLAST-assigned phylogenetic annotations. 

Gene 

Grouping/Twin

Contained 

Genes

Unique 

Genomic 

Bins

Bin Taxonomic Composition
Unique 

Contigs
Contig Majority Annotation

Core' (Region A) 62 52
48% Microgenomates, 44% 
Parcubacteria, 8% Other

56
73% CPR, 18% BAC, 2% ARC, 
2% PROK, 5% Multiple

Loki.-associated 

(Region B)
53 52

30% Microgenomates, 60% 
Parcubacteria, 10% Other

53
40% CPR, 32% BAC, 17% PROK, 
11% Multiple

AR10-associated 

(Region C)
131 112

27% Microgenomates, 64% 
Parcubacteria, 9% Other

123
52% CPR, 22% BAC, 15% PROK, 
1% ARC, 10% Multiple

AR20-associated 

(Region D)
230 156

27% Microgenomates, 66% 
Parcubacteria, 7% Other

193
52% CPR, 30% BAC, 10% PROK, 
1% ARC, 7% Multiple

Babela-associated 456 16 99.8% TM6, 0.2% Other 145 n/a



Supp. Table 2. Functional description and contig majority/neighbor information for 62 
CPR/TM6 proteins in Region A of Fig. 3, matching exclusively with archaeal genomes. 
A contig majority marker including a ‘/’ indicates a contig where multiple gene types are 
‘most frequent.’

Gene COG Annotation
Contig 
Neigh.

Contig 
Majority

5618 COG1958 Small nuc. Ribonucleo. (snRNP) homolog PROK CPR

5621 COG2007 Ribosomal protein S8E CPR CPR

11123 COG0162 Tyrosyl-tRNA synthetase CPR CPR

38916 COG0162 Tyrosyl-tRNA synthetase PROK CPR

44794 COG0162 Tyrosyl-tRNA synthetase PROK CPR

71328 COG1899 Deoxyhypusine synthase CPR CPR

71337 COG3620 Pred. trans. Reg. with C-terminal CBS domains PROK CPR

71828 COG1601
Trans. Init. factor 2, beta sub. (eIF-2beta)/eIF-5 N-
term. Dom. CPR CPR

86106 COG0162 Tyrosyl-tRNA synthetase PROK BAC

93815 COG0162 Tyrosyl-tRNA synthetase CPR BAC/CPR

96811 COG0008 Glutamyl- and glutaminyl-tRNA synthetases PROK PROK

100907 COG0162 Tyrosyl-tRNA synthetase CPR CPR

102461 COG0162 Tyrosyl-tRNA synthetase PROK CPR

102977 COG1608 Predicted archaeal kinase PROK BAC

109588 COG0162 Tyrosyl-tRNA synthetase PROK CPR

114255 COG2019 Archaeal adenylate kinase BAC CPR

115832 COG1056 Nicotinamide mononuc. adenylyltransferase CPR CPR

116018 COG0162 Tyrosyl-tRNA synthetase CPR CPR

138094 COG0162 Tyrosyl-tRNA synthetase BAC BAC/CPR

143243 COG0162 Tyrosyl-tRNA synthetase CPR BAC

144048 COG0162 Tyrosyl-tRNA synthetase BAC CPR

144459 COG1632 Ribosomal protein L15E PROK CPR

156000 COG0358 DNA primase (bacterial type) CPR CPR

157714 COG0162 Tyrosyl-tRNA synthetase ARC CPR

165156 COG1632 Ribosomal protein L15E PROK CPR

169053 COG0162 Tyrosyl-tRNA synthetase BAC CPR

175411 COG0162 Tyrosyl-tRNA synthetase CPR CPR

177135 COG0468 RecA/RadA recombinase CPR CPR

197611 COG0162 Tyrosyl-tRNA synthetase BAC BAC

207505 COG1471 Ribosomal protein S4E CPR CPR

237384 COG1056 Nicotinamide mononuc. adenylyltransferase CPR CPR

259717 COG0052 Ribosomal protein S2 BAC BAC

260515 COG0162 Tyrosyl-tRNA synthetase PROK CPR

269612 COG0162 Tyrosyl-tRNA synthetase CPR BAC

292544 COG2023 RNase P subunit RPR2 CPR CPR

293093 COG0162 Tyrosyl-tRNA synthetase PROK CPR

334126 COG1056 Nicotinamide mononuc. adenylyltransferase PROK CPR

335241 COG0180 Tryptophanyl-tRNA synthetase PROK CPR



345689 COG0162 Tyrosyl-tRNA synthetase BAC CPR

350374 COG0162 Tyrosyl-tRNA synthetase BAC CPR

358822 COG0361 Translation initiation factor 1 (IF-1) ARC CPR

358823 COG2412 Uncharacterized conserved protein PROK CPR

358825 COG1601
Trans. Init. factor 2, beta sub. (eIF-2beta)/eIF-5 N-
term. dom. BAC CPR

369776 COG1019 Predicted nucleotidyltransferase CPR CPR

406402 COG0162 Tyrosyl-tRNA synthetase PROK CPR

406638 COG0162 Tyrosyl-tRNA synthetase PROK CPR

459632 COG0162 Tyrosyl-tRNA synthetase CPR BAC

462534 COG1632 Ribosomal protein L15E CPR BAC/CPR

476790 COG0162 Tyrosyl-tRNA synthetase BAC CPR

486443 COG1571 Pred. DNA-binding prot. w/ a Zn-ribbon dom. PROK BAC

494502 COG0638 20S proteasome, alpha and beta subunits ARC ARC

494503 COG1500 Predicted exosome subunit ARC ARC

497340 COG2520 Predicted methyltransferase CPR BAC

527889 COG2123 RNase PH-related exoribonuclease PROK CPR

585776 COG1632 Ribosomal protein L15E CPR CPR

613765 COG0592 DNA poly. sliding clamp sub. (PCNA homolog) CPR CPR

617704 COG1899 Deoxyhypusine synthase BAC CPR

619736 COG1056 Nicotinamide mononuc. adenylyltransferase PROK BAC

620955 COG1056 Nicotinamide mononuc. adenylyltransferase PROK CPR

621607 COG2125 Ribosomal protein S6E (S10) PROK CPR

623664 COG1594
DNA-dir. RNA poly. Sub. M/Trans. Elong. Fact.
TFIIS CPR CPR

625354 COG1746 tRNA nucleotidyltransferase (CCA-adding enzyme) PROK CPR

Supp. Table 3. An exemplar ‘twin’ from the PROK BGA analysis at 80% identity. 
Each CPR/TM6 protein listed in the first table shows exclusive similarity at this threshold 
with a gene in all of the genomes listed in the second table, which includes both archaea 
and a member of the CPR. This pattern suggests possible inter-domain gene transfer.
Also noted is the BLAST-assigned phylogenetic annotation for the neighbor of each gene, 
and the most frequent annotation on the contig that contains it. As above, a contig 
majority marker including a ‘/’ indicates a contig where multiple gene types are ‘most
frequent.’

Gene No. COG Annotation
Contig 
Neighbor

Contig 
Majority

1535 COG0662 Mannose-6-phosphate isomerase PROK BAC
10266 COG0662 Mannose-6-phosphate isomerase CPR CPR
35626 COG0662 Mannose-6-phosphate isomerase BAC CPR
43945 COG0662 Mannose-6-phosphate isomerase PROK PROK
44626 COG0662 Mannose-6-phosphate isomerase BAC CPR
56961 COG0662 Mannose-6-phosphate isomerase PROK BAC
64503 COG0662 Mannose-6-phosphate isomerase PROK BAC
64889 COG0662 Mannose-6-phosphate isomerase PROK CPR
65506 COG0662 Mannose-6-phosphate isomerase PROK BAC



66119 COG0662 Mannose-6-phosphate isomerase PROK BAC/CPR
92294 COG0662 Mannose-6-phosphate isomerase PROK BAC
164764 COG0662 Mannose-6-phosphate isomerase PROK BAC/PROK
193855 COG0662 Mannose-6-phosphate isomerase CPR BAC
194601 COG0662 Mannose-6-phosphate isomerase CPR CPR
218473 COG0662 Mannose-6-phosphate isomerase PROK CPR
223543 COG0662 Mannose-6-phosphate isomerase BAC BAC
250887 COG0662 Mannose-6-phosphate isomerase BAC BAC
266479 COG0662 Mannose-6-phosphate isomerase BAC BAC
314490 COG0662 Mannose-6-phosphate isomerase PROK PROK
338550 COG0662 Mannose-6-phosphate isomerase CPR BAC
349979 COG0662 Mannose-6-phosphate isomerase BAC BAC/CPR
370791 COG0662 Mannose-6-phosphate isomerase ARC PROK
395094 COG0662 Mannose-6-phosphate isomerase CPR CPR
399012 COG0662 Mannose-6-phosphate isomerase PROK BAC
424197 COG0662 Mannose-6-phosphate isomerase CPR BAC
470542 COG0662 Mannose-6-phosphate isomerase CPR CPR
477729 COG0662 Mannose-6-phosphate isomerase CPR CPR
489194 COG0662 Mannose-6-phosphate isomerase CPR BAC
514095 COG0662 Mannose-6-phosphate isomerase BAC CPR
517959 COG0662 Mannose-6-phosphate isomerase PROK PROK
537423 COG0662 Mannose-6-phosphate isomerase BAC PROK

Genome
Methanosarcina mazei Go1

Methanosarcina acetivorans C2A

Methanolobus psychrophilus R15

Methanomethylovorans hollandica DSM 15978

Methanosarcina mazei Tuc01

Methanosarcina thermophila TM-1

Methanosarcina vacuolata Z-761

Methanosarcina thermophila CHTI-55

Methanosarcina sp. Kolksee

Methanosarcina sp. WWM596

Methanosarcina barkeri str. Wiesmoor

Methanosarcina sp. WH1

Methanosarcina barkeri MS

Methanosarcina sp. MTP4

Methanosarcina barkeri 227

Methanosarcina siciliae HI350

Methanosarcina siciliae C2J

Methanosarcina mazei WWM610

Methanosarcina mazei SarPi

Methanosarcina mazei S-6

Methanosarcina mazei LYC

Methanosarcina mazei C16

Methanosarcina barkeri 3

Methanosarcina barkeri CM1

Parcubacteria (Wolfebacteria) bacterium GW2011_GWB1_47_1



III. MODULARITY IN EVOLUTION 

Network of puzzles showing the relation between each entities. Nodes represent evolving modular 

objects, an edge is drawn between two nodes if the corresponding objects share components.





III.1 MOLECULAR EVOLUTION 

 The paradigm of evolution of modular proteins could be expressed as follows: there 

exists a limited repertoire of domains from which the set of current proteins have been formed 

(Gilbert 1978; Patthy 1999; Apic et al. 2001; Bashton and Chothia 2002; Chothia et al. 2003). 

New genes arise via molecular mechanisms (Figure 11) such as duplication of pre-existing 

genes, shuffling of genetic fragments, fusion and fission, as well as de novo DNA synthesis 

(Kawai et al. 2003; Marsh and Teichmann 2010; Wu et al. 2012; Promponas et al. 2014;

McLysaght and Guerzoni 2015; Meheust et al. 2016).

Figure 11: Molecular mechanisms for creating new gene structures.
(Long et al. 2003)



 Gene duplication, producing gene copies that can show different expression patterns 

and undergo neofunctionalisation, is a general process for evolutionary change. Gene 

duplication results in multiple related gene copies (paralogs) in the genomes. The analysis of 

the gene structure in many eukaryotic organisms showed a fragmented structure where the 

exons, the coding regions, are separated by the introns, non-coding intragenic regions. The 

intron-exon structure of eukaryotic genes promotes non-homologous recombination (Gilbert 

1978). Exon shuffling, when it associates genetic fragments and domains in original 

combinations, also produces genetic novelty (Orgel and Crick 1980; Patthy 1999; Liu and 

Grigoriev 2004). It creates new genes, coding for new proteins, involved in novel protein-

protein interactions and functions (Marcotte et al. 1999). Therefore, exon shuffling can be 

characterized via the identification of novel domains associations (i.e. the physical association 

between domains).  

 In this part of the thesis, we will focus on genes formed via combinatorial evolution 

processes, such as the fusion and recombination of genetic fragments from different gene 

families or the loss of a stop codon between two unrelated ORFs (Open Reading Frames) 

(Jones and Begun 2005). These genes are known as chimeric genes, fusion genes or

composite genes (Enright et al. 1999). These composite genes are traditionally defined based 

on their detectable modularity: they are composed of segments (i.e. components) that can 

evolve separately in distinct gene families (Figure 12). Under this definition, composite genes 

can be the result of fusion of components, or involved as progenitors in fission events, after 

which associations of components are split in separate gene families.  

 Composite genes are produced by saltational processes. Unlike the gradual processes 

that involve slow and progressive evolutionary changes within a lineage (here a gene lineage), 

saltational processes will create macromutations involving large scale evolutionary jumps that 

can occur in a single generation, frequently involving several genes lineages (Suetsugu et al. 

Figure 12: Composite gene.

Composite (fused) gene C and its two components A and B. A and B are 
similar to disjoint parts of C. A and B are dissimilar. (Jachiet et al. 2013)



2005). These complex genetic changes producing novel combinations of existing modular 

elements have been described as a potential source of novelty upon which selection can act 

(Rogers and Hartl 2012). Genes from these unusual genetic combinations have been reported 

in the three domains of life (Jones et al. 2005; Rodrigues et al. 2007; Nie et al. 2011; Salim et 

al. 2011) but they appear to be more ommon in multicellular organisms' genomes, including 

humans (Courseaux and Nahon 2001; Brennan et al. 2008; Wilson et al. 2008; Kaessmann 

2010; Avelar et al. 2014). Well-understood and well-characterized examples of remodeled 

genes include the Drosophila gene named Jingwei, from a fusion of a retrotransposed copy of 

an Adh locus and the 5’ end of the yande gene (Wang et al. 2000) and Kua-UEV fusion gene 

from two adjacent genes (Kua and UBE2V1) in human (Thomson et al. 2000). As a matter of 

fact, it has been estimated that two-fifths of the prokaryotic genes and more than two-thirds of 

the eukaryotic genes are composed of several domains (Han et al. 2007). A recent study, 

conducted by Jachiet et al., allowed to extend the estimation of composite genes in viruses, 

showing that 8-15 percent of the viral sequences were composite (Jachiet et al. 2014).

Although many of these combinations are likely to be dysfunctional or neutral, some appear 

to be advantageous like fusion of genes coding for proteins that interact in PPI networks 

(Enright et al. 1999; Marcotte et al. 1999; Enright and Ouzounis 2001; Marsh et al. 2013) or 

functionally biased genes encoding for proteins involved in the same metabolic pathways 

(Tsoka and Ouzounis 2000; von Mering et al. 2003; Hagel and Facchini 2017). For example, 

Adiantum ferns' adaptation to low light environment relies upon a composite photoreceptor, 

joining phytochrome and phototropin genes (Figure 13), which enables these ferns to use red 

light effectively (Nozue et al. 1998; Suetsugu et al. 2005) 

  

Figure 13: The origin of fern neochrome. 
Neochrome is a chimeric photoreceptor in which the N terminus consists of a phytochrome 
sensory module fused to an almost complete phototropin sequence at the C terminus. Thick 
and thin lines represent exons and introns, respectively (length not to scale). (Li et al. 2014)



 Another interesting example is the discovery of two fused genes in Tetrathymena

thermophila free-living ciliates (Salim et al. 2009). Its fused genes mtnAK and mtnBD are 

each the result of the fusion of two different genes. Genes involved in these fusions catalyze 

different single steps of methionine salvage pathway in other organisms. Moreover in the case 

of mtnBD, the single fusion of mtnB and mtnD created a multifunctional enzyme replacing 

three independent enzymes in the salvage pathway. As stated by François Jacob, "Nature is a

tinkerer and not an inventor". These unconventional genes from evolutionary 'bricolage' are 

important factors in molecular evolution, as well as contributors to genomic content (Jacob 

1977; Duboule and Wilkins 1998).

 The processes leading to detectable composite genes have been well studied in 

eukaryotic genomes but little is known about their impact on soil, marine, gut microbial 

communities or mobile genetic elements like plasmids (MGE) (Alvarez-Ponce et al. 2013;

Nasir et al. 2014). However, the evolutionary processes shaping composite genes, have not 

been systematically studied, because relatively few composite genes have been identified and 

sufficiently characterized. Where and how composite genes are created in the environment is 

poorly understood. An increasing amount of molecular data with a considerable genetic 

diversity is now available from metagenomics projects, allowing addressing these 

fundamental issues beyond eukaryote genomes: 

- Where are composite genes created ?  

In terms of taxonomical lineage, eukaryotic model genomes are particularly concerned by 

these gene remodeling mechanisms. But the global distribution of composite genes in 

prokaryotes and MGE remains unknown, as well as the environments in which this complex 

molecular evolution occurs. 

- How are composite genes created ?  

Composite genes are not randomly assembled. The rules for association and dissociation of 

their components, e.g. the conditions structuring molecular evolution, are also poorly 

understood, particularly in the environment. 

 Systematic studies of composite genes are well formulated within the framework of 

sequence similarity networks. As in the introduction, SSN could be represented as an 

undirected graph where each node represents a unique sequence and each edge represents the 



similarity between connected sequences. This kind of networks appear to be well suited to 

quantify and study this genetic remodeling (Bapteste et al. 2013). This approach enables the 

application of efficient graph theory concepts and tools to mine similarity information (Tordai 

et al. 2005; Song et al. 2008; Atkinson et al. 2009; Halary et al. 2010). Typically, a sequence 

similarity network can be reconstructed for a large dataset by connecting genes that are related 

in a BLAST search, with an E-value score better than a user-defined threshold. The structure 

of this network captures much of the history of gene evolution: not only divergence by point 

mutations but also recombinations, fusions and fission events (Adai et al. 2004). At the 

beginning of this thesis, bioinformatic tools, such as FusedTriplets 2.0 and MosaicFinder

(Jachiet et al. 2013), were available to detect composite genes (by triplet analysis) and 

composite gene families (by clique analysis), respectively, in sequence similarity networks 

(Figure 14). However, these tools are neither optimal nor adapted for the study of composite 

genes in very large data sets, comprising several million proteins. 

During my thesis, I developed new fast and memory-efficient software called 

CompositeSearch, to improve the detection of composite genes and families of composite 

genes, using (quasi-cliques) (Article n°4). Afterwards, I investigated the biological properties 

of component and composite genes to infer what functions, genomes and environments were 

affected by such genetic reorganizations. I used CompositeSearch to study the impact of gene 

remodeling in plasmids (Article n°5) and in eukaryotes during transition from unicellularity to 

multicellularity (Article n°6).

Figure 14: Composite genes detection by FusedTriplets and MosaicFinder.

FusedTriplets: detect composite (fused) gene C and its two components A and B. A and B are similar to disjoint 
parts of C. A and B are dissimilar.
MosaicFinder:  (A) Multiple alignment of composite genes (white) and component genes (grey and black).(B) 
Similarity network of those genes. The white nodes correspond to a composite gene family. They are a clique 
minimal separator of the network. The black and grey nodes correspond to two separate component families. The 
evolution of genes families does not always result in cliques when some homologous sequences evolved  beyond 
recognition by BLAST . Thus, a quasi-clique approach need to be developed.
(Jachiet et al. 2013)



III.1.1 CompositeSearch: A new tool for studying modularity in molecular 

evolution 

 In the article n°4, I present CompositeSearch, a memory-efficient, fast and scalable 

method to detect composite gene families in large datasets (typically in the range of several 

million sequences). The method generalizes the use of similarity networks to detect composite 

and component gene families with a greater recall, accuracy, and precision than FusedTriplets 

and MosaicFinder. Moreover, CompositeSearch provides user-friendly quality descriptions 

regarding the distribution and primary sequence conservation of these gene families allowing 

critical biological analyses of these data. CompositeSearch was applied to a microbial 

environmental dataset of 3,906,323 sequences from 3 increasingly polluted sites (Sangwan et 

al. 2012) to test whether the evolutionary processes affecting gene remodeling in polluted 

environments followed some detectable rules. We report that increasingly polluted samplings 

sites present increasing percentages of composite genes, whereas the rules of functional 

associations of their components remain identical between sites. This article has been 

submitted to the journal "Molecular Biology and Evolution" and is under major revision. 
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Abstract 

Genetic sequences evolve through multiple processes beyond point mutations. In particular, 

the remodeling of genes by shuffling, fusion and fission of genetic fragments, as well as de 

novo DNA synthesis, contribute to the creation and diversification of gene families. 

Therefore, genetic sequences show similarity with one another for diverse reasons, i.e. 

common ancestry producing homology, and/or partial sharing of component fragments. These

processes must be disentangled to understand the rules and constraints on gene evolution. 

This task is especially challenging in large molecular datasets, since computational analyses 

remain a bottleneck. In this article, we present CompositeSearch, a memory-efficient, fast and 

scalable method to detect composite gene families in large datasets (typically in the range of 

several million sequences). CompositeSearch generalizes the use of similarity networks to 

detect composite and component gene families with a greater recall, accuracy, and precision 

than recent programs (FusedTriplets and MosaicFinder). Moreover, CompositeSearch 

provides user-friendly quality descriptions regarding the distribution and primary sequence 

conservation of these gene families allowing critical biological analyses of these data. We

applied CompositeSearch on a microbial environmental dataset of  3,906,323 protein 

sequences from 3 increasingly polluted sites, to test whether the evolutionary processes 

affecting gene remodeling in polluted environments may obey some detectable rules. Our 



results  suggest a possible correlation between sites level of pollution and proportion of 

composite genes, while the rules of functional associations of their components tends to 

remain identical between sites. 

Introduction  

Genetic sequences evolve through multiple processes beyond point mutations. In particular, 

the remodeling of genes by shuffling of genetic fragments, fusion and fission, as well as de 

novo DNA synthesis, contributes to the creation and diversification of gene families (Kawai et 

al. 2003; Kaessmann 2010; Marsh and Teichmann 2010; Wu et al. 2012; Promponas et al. 

2014; McLysaght and Guerzoni 2015; Meheust et al. 2016). Therefore, genetic sequences 

show similarity with one another for diverse reasons, i.e. common ancestry producing 

homology, and/or partial sharing of component fragments (Song et al. 2008; Haggerty et al. 

2014). These processes must be disentangled to understand the rules and constraints on genes 

evolution. This task is especially challenging in large molecular datasets since computational 

analyses remain a bottleneck (Salim et al. 2011; Jachiet et al. 2013). While gene remodeling 

has been especially studied in eukaryotes (Kawai et al. 2003; Patthy 2003; Ekman et al. 2007;

Nakamura et al. 2007; Meheust et al. 2016) and in cultured prokaryotes (Enright et al. 1999;

Marcotte et al. 1999; Enright and Ouzounis 2000; Snel et al. 2000; Enright and Ouzounis 

2001; Jachiet et al. 2013), it is particularly exciting to consider microbial environmental data 

to test whether the evolutionary processes affecting gene evolution in nature are similar to 

those described for cultured micro-organisms, and whether these processes obey rules. In the 

prokaryotic world (i.e. archaea, bacteria), cultured organisms are estimated to represent less 

than 1% of species diversity (Rappe and Giovannoni 2003), suggesting that evolutionary 

inferences based on cultivation studies need to be tested and complemented by analyses on 

actual environmental taxa, genes and processes (sometimes referred to as “the microbiological 

dark matter”) (Philippe et al. 2013; Cordero and Polz 2014; Brown et al. 2015; Lopez et al. 

2015). In particular, environmental genetic diversity and its causes largely remains to be 

explored and explained (Koonin 2007; Lopez et al. 2015; Culligan and Sleator 2016; Fondi et 

al. 2016; Solden et al. 2016). For example, there are few studies on the effect of pollution on 

the evolution of environmental genetic diversity in microbes, although these studies certainly 

suggest that genetic diversity can be impacted (Zhang et al. 2009; Kriwy and Uthicke 2011;

Sangwan et al. 2012; Chemerys et al. 2014; Staehlin et al. 2016).



In this article, we present CompositeSearch, a memory-efficient, fast and scalable method to 

detect composite gene families in large datasets (typically in the range of several million 

sequences). Composite genes are detected as a result of the fusion of partial or complete non-

homologous DNA fragment, called component, or as a result of fission from a larger gene into 

dissociated persistent fragment. CompositeSearch generalizes the use of similarity networks 

to detect composite and component gene families with a greater recall, accuracy, and 

precision than recent programs (FusedTriplets and MosaicFinder (Jachiet et al. 2013)). 

Moreover, it provides user-friendly quality descriptions regarding the distribution and primary 

sequence conservation of these gene families allowing critical biological analyses of these

data, and it is used as an input for the reconstruction of mutirooted gene networks (Haggerty 

et al. 2014). 

We applied this new method to a published dataset of 3,906,323 environmental sequences 

from soil microbial communities across three hexachlorocyclohexane (HCH) contamination 

levels (Sangwan et al. 2012) to quantify the proportion of composite genes in each of these 

samples, and to describe the functional rules of gene components associations. We observed 

that components associated with a given composite gene family tend to belong to similar 

functional categories (consistent with the findings that genes coding for proteins in functional 

interactions can fuse or fission (Tsoka and Ouzounis 2000; Yanai et al. 2001)). We also report 

that increasingly polluted samplings sites present an observable increase of the proportion of 

composite genes. These observations are raising the hypothesis that “environmental hotspots 

of gene remodeling” might exist, and larger datasets could test in the future whether these 

hotspots may be associated with specific forms of pollution. 

New approach

Here, we present CompositeSearch, a memory-efficient, fast and scalable method, 

implemented in C++, which detects composite gene families in large datasets (typically in the 

range of several million sequences). Composite genes are traditionally defined based on their 

apparent modularity: they are composed of segments (i.e. components) that can evolve 

separately in distinct gene families. Under this definition, composite genes can be the result of 

fusion of components, or involved as progenitors in fission events, after which associations of 

components are split in separate gene families. CompositeSearch generalizes the use of 



similarity networks (SSN) to detect composite and component gene families. SSN are 

undirected graphs, where each node represents a unique sequence and each edge represents 

the similarity between connected sequences (given similarity criteria, such as a minimum 

percentage identity, BLAST E-value (Altschul et al. 1990) and minimum mutual coverage, 

i.e., the minimal length covered by the matching parts with respect to the total length of each 

compared sequence)(Jachiet et al. 2013; Corel et al. 2016). For a given comparison between 

two sequences, the alignment, score and E-value are not symmetric. They can vary depending 

on which sequence is used as the query. Thus, the network is first symmetrized by considering 

the best match of each pairwise comparison. As the greatest asymmetry is found in the better-

scoring comparisons [i.e. at a much more stringent threshold than the ones used for network 

reconstruction (Atkinson et al. 2009)], this procedure does not impact the topology.  

This network's structure captures much of the history of gene evolution: not only divergence 

by point mutations but also recombinations, fusions and fission events (Adai et al. 2004;

Jachiet et al. 2013). Typically, gene families form sub-graphs with high connectivity, in which 

connected sequences display significant BLAST E-values ≤ 1E
-5

, mutual covers ≥ 80%, %ID 

≥ 30%. By contrast, superfamilies (Atkinson et al. 2009) and composite gene families (Song 

et al. 2008; Jachiet et al. 2013; Haggerty et al. 2014; Jachiet et al. 2014; Meheust et al. 2016) 

introduce more complex informative patterns in SSNs.  

Using these graphs to identify composite genes and gene families, CompositeSearch shows a 

greater recall, accuracy, and precision than recent programs (FusedTriplets and 

MosaicFinder). In short, these two programs are helpful but limited in scope. FusedTriplets 

cannot handle large datasets and does not define composite gene families. MosaicFinder is 

also unable to analyze large datasets (due to memory and speed limitations). While it 

identifies composite and component gene families, MosaicFinder is only meant to find highly 

conserved composite gene families that form minimal clique separators in sequence similarity 

network. The ‘clique’ condition implies that MosaicFinder misses divergent (e.g. ancient or

fast evolving) composite gene families (whose members do not necessarily connect all 

together in sequence similarity networks) (Fig.1). The ‘separator’ condition implies that 

composite genes will remain undetected for datasets with highly remodeled genes by 

MosaicFinder. Indeed the repeated use of gene components introduces cyclic paths in 

sequence similarity networks, which turns composite families into local, but not global 

separators. Beyond its larger scope and better performance, CompositeSearch can also 

provide quality descriptions (absent from MosaicFinder and FusedTriplets) regarding the size 



and primary sequence conservation of composite and component gene families, easing critical 

biological analyses of these data. CompositeSearch is available at http://www.evol-

net.fr/downloads/. 

Fig. 1. Similarity network of a composite gene family and its components gene family. (a) represents 

a composite gene family (red) forming a clique and (b) represents a composite gene family forming a 

quasi-clique. The component gene families are represented in green and purple. MosaicFinder will 

detect only the case (a) instead of CompositeSearch which is able to detect composite gene family 

forming clique (a) and quasi-clique (b). 

Results 

Benchmarking 

Simulated data  

We tested and compared CompositeSearch with FusedTriplets and MosaicFinder (Jachiet et 

al. 2013) using data simulated with Seq-Gen (Rambaut and Grassly 1997), as there is no large 

manually curated database of composite genes to use as a test bed to our knowledge. We 

explored the effect of gene family divergence and multiple domain reassortments on 

composite gene detection under the hypothesis that the more divergent gene families are, the 

harder they are to detect (Supplementary Figure S4). We produced gene families with 

different degrees of divergence as follows. We scaled ultrametric phylogenetic trees with Seq-

Gen (option -d) so that the total length of a tree can be measured as the distance from the root 

to any of the leaves in units of mean number of substitutions per site (MNSS). We explored 3 

evolutionary rates (0.1, 0.5 and 1.0) to cover the range from highly conserved to highly 

divergent gene families (parameter 1). 



Three component families (A, B and C) have been evolved under the Whelan and Goldman 

model of amino acid substitution and a site-specific rate heterogeneity following a continuous 

gamma distribution (alpha=1). Ancestral sequences of 300 amino acids were generated 

randomly for each component family. These sequences were then evolved along perfect 

(complete) binary trees with five levels at the same evolution rate, i.e. symmetric and 

balanced trees with 32 leaves at the fifth level, resulting in component families with 32 genes. 

These component families will be used for fusion events leading to composite genes with two 

and three domains.  

First a pair of sequences sA and sB is selected from component family A and B at the same 

distance k from the tree root (from 0 to 5 (parameter 2)) to create a composite sequence with 2 

domains. Second, a sequence sC is selected from component family C at a distance p >= k

from the tree root (from k to 5 (parameter 3)) to create composite sequences with 3 domains 

and reassortments. 

We used sA and sB to create a novel 300 amino acids composite sequence sAB made of 30-

50% of the first sequence fused with 70-50% of the second sequence (parameter 4). This 

ancestral composite sequence sAB was then evolved along a perfect binary tree with q levels 

(q=p-k). This composite family was evolved at the same 3 evolutionary rates (parameter 5) 

that were used for the component families, thereby producing highly conserved to highly 

divergent composite families. Finally we used an evolved sequence of sAB to create three new 

composite sequences with domain reassortments (sABC, sCAB and sACB) made of 30-50% of 

sC (parameter 6). These three composite families were then evolved along a perfect binary 

tree with z levels (z=5-p) at the same 3 evolutionary rates explained previously (parameter 7). 

For recent fusion events (fusion level = 0), composite sequences were left unmodified. This 

protocol was repeated 100 times for each combination of the 7 parameters. 

The sensitivity and specificity of each program were summarized using in Supplementary 

Table S1. In terms of detection of composite genes, CompositeSearch performs equally well 

with FusedTriplets (identical TPR and FPR), but, unlike FusedTriplets, CompositeSearch 

returns composite gene families. In terms of detection of gene families, CompositeSearch 

outperforms MosaicFinder. CompositeSearch has higher TPR than MosaicFinder, especially 

for divergent composite sequences, without enhancing its FPR. Therefore, CompositeSearch 

will find additional composite genes with respect to MosaicFinder (thanks to the detection of 

composite genes forming quasi-cliques). 



As CompositeSearch is able to detect the number of domains (or components) for each 

composites, we created a more detailed table (Supplementary Table S2) showing the 

sensitivity and specificity of CompositeSearch to detect the exact number of domains. 

Computational performances 

Because its algorithm uses a dichotomous search to browse the network and because 

CompositeSearch is multithreaded, CompositeSearch outperforms both FusedTriplets and 

MosaicFinder in terms of speed and memory use, when these parameters are contrasted on a 

Linux machine with Intel Xeon CPU E5-2630 v2 2.60 GHz processors and 256 GB RAM, 

even on one CPU. This is especially noticeable for large metagenomic data sets (Table 1). By 

contrast, construction the SSN composite genes and composite gene families detection run in 

a few second to few minutes depending on the network's size. 

Table 1. CompositeSearch, FusedTriplets and MosaicFinder performances comparison. 

We compared the performance of CompositeSearch, FusedTriplets and MosaicFinder on the same 

Linux machine with Intel Xeon CPU E5-2630 v2 2.60 GHz processors and 256 GB RAM. The data (1) 

is a SSN from plasmids complete genomes (NCBI December 2014) and (2) HCH metagenomes 

(Sangwan et al. 2012). CompositeSearch outperform FusedTriplets and MosaicFinder even with one 

CPU as shown for data (1). On the data (2) FusedTriplets and MosaicFinder stop by running out of 

memory, which was not the case for CompositeSearch. 

Data Nodes Edges Software #Cpu Runtime Memory

1 338,868 71,946,457

MosaicFinder 1 548 h 27 min 82 GB

FusedTriplets 1 70 h 47 min 18 GB

CompositeSearch 1 00 h 12 min 2.5 GB

CompositeSearch 10 00 h 06 min 2.5 GB

2 3,166,706 282,789,792

MosaicFinder 1 - -

FusedTriplets 1 - -

CompositeSearch 10 08 h 48 min 32 GB



Application to metagenomic data 

As an application illustrating the features of CompositeSearch, we detected composite genes 

in the metagenomes of 3 distinct, increasingly polluted sites, gathered from the MG-RAST 

server (Meyer et al. 2008) as indicated in Sangwan et al (2012). The contamination was 

caused by a pesticide used for agriculture crops, hexachlorocyclohexane (HCH). Site 1 was 

considered pristine since it presented a concentration of 0.03 mg HCH/g soil. By contrast, site 

2 presented a concentration of 0.7 mg HCH/g soil, and site 3 presented a concentration of 450 

mg HCH/g soil (Sangwan et al. 2012). Here, we used CompositeSearch to retain all composite 

genes with component gene families having at least 2 genes. Interestingly, the proportion of 

such composite genes per metagenome weakly yet but statistically significantly increased 

with pollution levels. There were 36% of composite genes (594,395 sequences out of 

1,613,523) at site 1; 40% of composite genes (444,495 sequences out of 1,102,372) at site 2; 

and 42% of composite genes (499,532 sequences out of 1,190,337) at site 3. We tested the 

significance of these results with a pairwise Fisher exact test and p-values were corrected with 

the false discovery rate (FDR) method (P < 2.2e-16). Significance was assessed using a 

jackknife procedure by 500 independent resamplings of 500 000 sequences from each site, 

followed by composite genes detection and a pairwise Fisher exact test.  

There are many possible, non-exclusive, interpretations for this correlation between an 

elevated proportion of composite genes in the environments and their increasing 

contamination by HCH. A first hypothesis however is simply that the difference in 

proportions of composite genes across these 3 sites is due to spatial variation. Second, HCH 

pollution may select for taxa whose genomes are intrinsically richer in composite genes. 

Third, HCH pollution may select for specific composite genes. For example, 2.5% of the 

composite families that were detected had a much higher abundance in the most polluted sites 

than in the pristine one. In Figure 2, we show one of these particular composites. After 

annotating with the Kegg Orthology database (KOD), the functional analysis showed that this 

composite gene family is involved in thiamine biosynthesis pathway (TBP) (ID:K03149), a 

pathway of importance for microbial metabolism. These composite genes are formed by the 

association of two components (Supplementary Figure S5): a C-terminal component, 

annotated as ThiS (COG2104) domain, and a N-terminal component, annotated as ThiG

(COG2022) domain.  Both ThiS and ThiG have been reported to form gene clusters 

(Rodionov et al. 2002). Moreover, this finding is consistent with the literature on gene fusions 

of genes involved in TBP, e.g. fusion of ThiE-ThiD; ThiE-ThiM or ThiO-ThiG were described 



(Rodionov et al. 2002). The detection of environmental ThiS-ThiG genes, a novel combination 

thus extends the description of fusion events of TBP genes. In the TBP, ThiS, which is a 

sulfur carrier, interacts with ThiG for thiazole formation in the ThiS-COSH chemical form. 

The fusion of ThiS with ThiG couples this later protein with its sulfur donor, which ensures 

the proximate presence of a thiol donor next to the thiG sequence. Interestingly, this original 

association may provide an additional selective advantage for the composite ThiS-ThiG gene 

in environments polluted by HCH. ThiG proteins are notoriously sensitive to reactive oxygen 

species (ROS), and to chlorine (RCS). These ROS and RCS cause post-translational thiol-

modifications leading to the super-oxidation of the thiol residues of ThiG, which critically 

alter ThiG activities (Loi et al. 2015). Model organisms protect ThiG against thiol-

modification by various processes of thiolations, which rely upon the presence of low-

molecular-weight thiol-redox buffers. In the environment, the coupling of a thiol donor such 

as ThiS with ThiG might therefore interfere with thiolations, and provide an emergent 

mechanism to protect ThiG activity. Testing this hypothesis will of course require

experimental evidence. Fourth, HCH pollution may enhance the formation of composite genes 

in microbial genomes (possibly by introducing stop codons that split complete genes, or by 

enhancing the rate of compensatory mutations between genes coding for interacting proteins, 

as postulated by the theory of constructive neutralism (Gray et al. 2010)). Fifth, the different 

proportions of composite genes across sites may be related to other factors than HCH 

pollution. At any rate, all these interpretations suggest that different environments have 

different proportions of composite genes, hinting at the existence of environmental hot spots 

of gene remodeling. 



Fig. 2. Network of a composite gene family detected by CompositeSearch. This family is composed of 

genes belonging to site 1 (green), site 2 (blue) and site 3 (red). Composite genes are more abundant in 

the most polluted site (red). These genes have been annotated with the Kegg Orthology ID: K03149 

and are involved in thiamin biosynthesis metabolic pathways.   

Interestingly CompositeSearch can also be used to investigate the rules of component 

association. We split each composite gene into its constitutive protein domains, as detected by 

CompositeSearch. For each domain the functional categories was assigned using eggNOG-

mapper (Huerta-Cepas et al. 2016; Huerta-Cepas et al. 2017). For each environment, we 

summarized the information about the functional assignation of pairs of protein domains 

present along a composite gene. We reported the proportion of all combinations of functional 

categories realized by pairs of domains in a matrix. Thus, this matrix provides a functional 

profile of protein domains associated in the composite genes for each environment (Fig. 3 

shows the matrix for site 1, 2 and 3). If gene remodeling strongly depends on the functions of 

protein domains, and if similar constraints apply for the functional association/dissociation of 

genetic components, we expect similar functional profiles for the pairs of associated protein 

domains across all environments. We used the Mantel test to compare the 3 matrices and 

verify if the profiles were similar or different. We did a pairwise comparison of these 3 

matrices using the "CADM.post" function of the Mantel test from the ape (v. 3.5) library 

(Paradis et al. 2004) of the R statistical package (v. 3.2.5) (R Core Team 2016). For our 

purpose we modified the "CADM.post" function to account for values on the diagonal and 

fixed the number of permutation to 999. We observed a quasi perfect correlation (r2 = 0.99) 

for all pairs of matrices (Supplementary Table S3). Therefore, we can reject the null 



hypothesis that the 3 profiles of association of domains forming composite genes were 

different. This suggests that associations/dissociations of protein domains are strongly 

constrained by functions and that the same rules regarding the functions of protein domains 

subjected to gene remodeling apply across environments (here with different pollution levels). 

Typically, the higher frequency of composite genes we report in the most polluted site does 

not involve different rules of functional associations between protein domains than those 

observed at the other 2 sites. 

Fig.  3. Matrix showing the proportion of all combinations of functional categories realized by pairs of 

domains for each site. 

Discussion 

CompositeSearch is an efficient tool that detects composite genes and composite gene 

families. It allows investigating the process of gene remodeling in large datasets, for example 

metagenomes and/or thousands of complete genomes. While CompositeSearch is faster than 

currently available software, like FusedTriplets and MosaicFinder, it still can be improved. 

We observed that in CompositeSearch, the most time consuming step is the detection of gene 

families, using a DFS algorithm than runs on a single CPU. Parallelized algorithms that detect 

connected components are available (Kang et al. 2009; Iverson et al. 2015), but they usually 

require high computational resources. As CompositeSearch was developed with maximum 

portability in mind, these algorithms are not implemented yet could be in a future version. 



This software provides new opportunities to better understand how gene remodeling has 

shaped the evolution of organisms, i.e to detect whether gene remodeling obeys some rules, 

and whether these rules change across different environments and lineages. In particular, 

investigating additional polluted environments and larger datasets could allow, in the future, 

to test whether functional associations of protein domains remain constant at larger 

geographical scales and for different types of pollution, and to better understand the causes of 

environmental genetic diversity.  

Materials and methods 

CompositeSearch is a multithreaded tool, which detects both composite genes and their 

families. Composite genes are traditionally defined based on their apparent modularity: they 

are composed of segments (i.e. components) that can evolve separately in distinct gene 

families. Under this definition, composite genes can be the result of fusion of components, or 

involved as progenitors in fission events, after which associations of components are split in 

separate gene families.   

STEP 1: Construction of the SSN 

The SSN is constructed by CompositeSearch, based on the cleaned result of an all-against-all 

BLAST sequence comparison. This preliminary step relies on a C++ program called 

cleanBlastp, provided along with CompositeSearch. cleanBlastp uniquely numbers each 

sequence in the BLAST output, and removes all self-hits, keeping the best hit (i.e. lowest E-

value) amongst multiple hits between pairs of sequences. At the end of this preliminary step, 

the input file used by CompositeSearch contains BLAST information about matches between 

pairs of sequences (qstart, qend, sstart, send), sequence length (qlen, slen) and their 

symmetrized similarity scores (E-value, pident). The selection of unique pairs of hits avoids 

simultaneous memory access issues and allows to parallelize the SSN construction, by 

splitting the cleaned BLASTP results file into a user defined number of CPUs. 

CompositeSearch utilizes user-defined similarity scores (default E-value ≤ 10, default Pident 

≥ 30%) to construct the SSN. The results are then represented as an undirected network 



G=(V,E), where V is the set of sequences, and edge is (u,v) ϵ E if the similarity score Suv or 

Svu is higher than a user-defined threshold.  

STEP 2: Definition of gene families 

CompositeSearch clusters sequences into gene families in two steps. First, it uses a modified 

Depth First Search (DFS) algorithm on a thresholded SSN (default: mutual coverage between 

two sequences ≥ 80%) that defines connected components (CCs). Each CC is considered as a 

putative gene family, when the minimum mutual sequence coverage criterion is high (≥ 80 

%), but gene family definition is then further refined in a second step as follows. Each time a 

CC is detected a mutual coverage score (Smc) is calculated.  If Smc < 1, this CC is subjected to 

the Louvain community detection algorithm (Blondel et al. 2008), using C++ igraph 0.7.1 

library (Csardi and Nepusz 2006). Indeed, BLAST matches can be over-extended (Mills and 

Pearson 2013), with the consequence that non-homologous sequences  may be introduced in a 

CC in pathological cases (Supplementary Figure S1). This second step of community 

detection allows to define, at a finer granularity, the groups of sequences forming 

communities (e.g. cliques and/or quasi-cliques) within the CC, which are finally considered as 

a gene family. Thus each sequence from the original dataset is assigned to a given gene family 

and a connectivity score is computed for each family. If gene families are pre-computed, a tab 

delimited file with the gene ID and its family ID can be given as an input and for each of 

these gene families a connectivity score will be also computed. 

This step returns 3 files: 

· family.nodes: a file where the nodes for each family is listed which will be useful for 

post-analysis of the gene families; 

· family.edges: a file where the edges for each family is listed; 

· family.info: a file storing the number of nodes and edges for each family and their 

connectivity, which can be used for a sized-based or connectivity-based selection of 

composite gene families by the user. Connectivity is measured as :   
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STEP 3: Detection of composite genes  

Unlike MosaicFinder and FusedTriplets, CompositeSearch starts from the assumption that 

each node could be a composite gene. This decision allows to parallelize detection of 

composite genes by distributing a list of nodes to visit for each CPU, which takes into account 

node degree to produce computationally balanced lists of nodes to be distributed among the 

CPUs. CompositeSearch checks whether a node’s neighbors belong to different gene families

and their size is higher or equal to the minimum number of genes to be used as component 

gene families. If all neighbors of a node belong to only one gene family, this node is not a 

composite gene. If at least two neighbors of this node belong to distinct gene families, 

CompositeSearch takes the sequence corresponding to the node as a reference and maps the 

matches from all different families along that sequence. Each region with matches from 

different families along a composite sequence is called a “protein domain” hereafter. For each 

“protein domain”, CompositeSearch computes an average position for the start of the domain 

and an average position for the end of the domain (Supplementary Figure S2). If there is no 

overlap between at least two “protein domains” along the reference sequence, then the 

reference sequence is considered as composite, since it is composed of at least two non-

overlapping regions with homology to different gene families. In practice, a maximum 

overlap can be allowed (by default ≤ 20 AA, in order not to discard bona fide composite 

genes despite possible BLAST short overextensions introducing artefactual overlaps between 

protein domains). 

During this step, CompositeSearch produces 2 files:  

· file.composites : a file in fasta format with the number of the composite sequences and 

the position and identity of the component families matching along this composite; 

· file.compositesinfo: a file containing the number of protein domains along a 

composite sequence, and a non-overlapping score (Sno) between all of these domain. 

The Sno score is measured as: Ni/NT, where Ni is the number of non-overlapping pairs 

of “protein domains”, and NT is the number of all possible pairs of domains (NT). This 

measure allows the user to sort composite gene families based on the neat separation 

of all their protein domains (Sno close to 1) or the separation of some of their protein 

domains only (lower Sno) (Supplementary Figure S3). 



STEP 4: Detection of composite gene families  

CompositeSearch goes through all gene families to check whether a family is composite or 

not. Any gene family containing at least one composite gene and with a size higher or equal to 

the minimum number of genes fixed for composite gene family detection is considered as 

composite family. This process can be parallelized by distributing a list of gene families to 

analyze for each CPU.  

During this step, CompositeSearch produces 2 files: 

· file.compositefamilies: a file in fasta format with the number of the composite gene 

family and the position and identity of the component families matching along this 

composite; 

· file.compositefamiliesinfo: a file containing the connectivity, percentage of composite 

genes, mean number of “protein domains” of the composite gene families.
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Supplementary Figure S1. Example of a composite gene family (red/blue nodes) and one of 
its component gene family (blue nodes) detect as one gene family due to BLAST 
overextensions (red edges). Applying the Louvain clustering will correct the gene families 
detection by splitting them.

Supplementary Figure S2. The average position of domains' start and end computed by 
CompositeSearch.

Supplementary Figure S3. Example of non-overlapping score (Sno) between all of these 
domain.



Supplementary Figure S4. Simulation and evolution of composite genes. 



Supplementary Figure S5. (a) Network of a composite gene family detected by 
CompositeSearch. This family is composed of genes belonging to site 1 (green), site 2 (blue) 
and site 3 (red). Composite genes are more abundant in the most polluted site (red). These 
genes have been annotated with the Kegg Orthology ID: K03149 and are involved in thiamin 
biosynthesis metabolic pathways. (b) COG annotation of each component, COG2104 (ThiS) 
and COG2022 (ThiG). (c) Multiple alignment of composite gene sequences of the family 
shown in (a). 



Supplementary Table S1. Detection of composite genes and composite gene families on 
simulated data. This table shows the true positive rate (TRP) for the detection of composite 
genes (CompositeSearch and FusedTriplets) and the detection of composite gene families 
(CompositeSearch and MosaicFinder). Depending on the algorithm, CompositeSearch can 
detect composite genes and composite gene families. For composite detection, TRP is defined 
as the percentage of genes identified as composite that are indeed composite in the simulation. 
For composite family detection, TRP is defined as the percentage of genes in the detected
composite families that are indeed composite in the simulation. These percentages are 
computed on 189 possible combinations of parameters explained in the Methods section 
(component lengths and composite tree levels variation) replicated 100 times averaged over 
two-component and three-component composites for each of these 27 combinations of 
evolutionary rates (see Supplementary Figure 4 and Methods section).



Supplementary Table S2. More detailed performance of CompositeSearch. This table shows 
the true positive rate (TPR) and the false positive rate (FPR) of CompositeSearch when 
applied on two-components composites (Composite1) and three-components composites 
(Composite2). Identification is described as EXACT when the correct number of components 
is found and NON EXACT otherwise. The number of replicates is the same as in 
Supplementary Table S1. The FPR values represent occurrences of component sequences 
detected as composite.   

Supplementary Table S3. R² values (correlation coefficients) of sites pairwise comparisons 
with Mantel test. 





III.1.2 Impact of genomic structure and mobility on gene remodeling in 

plasmids, allowing the evolution of new dependency systems. 

 Plasmids are essential in the transfer of genetic information between bacteria 

(Sorensen et al. 2005). They play a key role in the evolution of the prokaryotic world. The 

genomic organization of many plasmids has been described as modular, involving important 

functional and evolutionary consequences. For example, conjugative plasmids, involved in 

lateral transfers of genes between cells, are made up of well-characterized genetic modules, ie 

sets of genes encoding a common process. On the other hand, pairs of genes, particularly 

those involved in Toxin-Antitoxin (STA) systems, have been studied in plasmids (Van 

Melderen 2010). STAs are also referred to as dependency systems since the survival of their 

hosts depends on the presence of TA genes (Van Melderen and Saavedra De Bast 2009) 

(Figure 15).  

Figure 15: Advantage conferred by plasmid-encoded TA systems.

(A) Vertical transmission. TA systems increase plasmid prevalence in growing bacterial populations by post-segregational
killing (PSK). PSK+ plasmid is shown in purple, left panel. Daughterbacteria that inherit a plasmid copy at cell division grow 
normally. If daughter bacteria do not inherit a plasmid copy, degradation of the labile antitoxin proteins by the host ATP-
dependent proteases will liberate the stable toxin. This will lead to the selective killing of the plasmid-free bacteria (in gray). B) 
Horizontal transmission. Plasmid–plasmid competition. The PSK+ plasmid (in purple) and the PSK plasmid (in black) belong 
to the same incompatibility group and are conjugative. Under conditions in which conjugation occurs, conjugants containing 
both plasmids are generated. Because the two plasmids are incompatible, they can not be maintained in the same bacteria. (Van 
Melderen and Saavedra De Bast 2009)



 These genes work together but are expressed separately, which is not the case for 

composite genes. Composite genes are formed by the fusion of at least 2 distinct genes (or 

fragment of genes). The potential impact of host cells, mobility, and plasmid genome 

structure on gene remodeling events leading to the evolution of these composite genes in 

plasmids has never been studied. Similarly, the functions of these composite genes and the 

rules for combining their components are very little known. 

 In the article n°5, we studied composite genes in plasmids in order to answer the 

following questions: 

(1) In which type of plasmids are most of the composite genes found? 

(2) What are the functions of these composite genes? 

 We used 4,393 complete genomes of plasmids (NCBI December 2014) to quantify the 

proportion of composite genes and to analyze the gene remodeling in these plasmids and 

some of its functional consequences. We have observed that plasmids with different 

proportions of composite genes are present in the same host, lineages and / or eventually same 

cell, indicating that selection for composite genes is only weakly bounded by the host. On the 

other hand, our results show that the different properties of plasmids, such as mobility and 

their genomic structure, have an impact on the remodeling of their genes. The functional 

analysis of these composite genes revealed the presence of composite genes combining 

components for which at least one component was not assigned to any of the functional 

categories COG, e.g. "X". We can use these "COG-X" composite genes as molecular Rosetta

stones to decipher the hypothetical functionality of these associations. We report composite 

genes probably involved in the evolution of novel dependence modules, which possess at least 

one toxin or antitoxin component, as well as the evolution of plasmid encoded composite 

genes involved in cell cycle control and cell division. Therefore, genome remodeling on 

plasmids, although more constrained at the plasmid level than at the host level, can have 

important effects on the dynamics and evolution of the host cell population. This article is in 

preparation and will be submitted to the journal "Proceedings of the National Academy of 

Sciences".



Plasmid’s structure affects the distribution of remodelled genes within 

microbial populations 

JS. Pathmanathan, P. Lopez and E. Bapteste 

In Preparation 

ABSTRACT 

Plasmids are extrachromosomal genetic elements, which play important roles in their host cells, and 

affect the stability of microbial communities. Conjugative plasmids have been shown to contribute to 

the acquisition and exchange of genes by lateral gene transfer, introducing genetic variations in 

microbial communities, unraveling the plasticity of plasmid genomes in terms of their gene content. 

Moreover, plasmids of obligate intracellular parasites, which are less frequently mobilized, such as 

the plasmids of Borrelia, have been proposed to contribute to the generation of genetic variation from 

within their host cells via gene remodeling. Together, these observations support the hypothesis that 

plasmids are hosts to a diversity of novel, potentially adaptive, genes, arising via a diversity of 

introgressive processes. Here, we realized a systematic survey of the remodeled genes encoded on 

plasmids, followed by a functional analyses of these genes. We report that the proportion of 

remodeled genes (23% in average per genome) seems more affected by the nature of individual 

plasmids than by the phylogeny of the plasmid host cell. Furthermore, since some remodeled genes 

affect toxin-antitoxin systems and host cell division genes, we postulate that some remodeled genes 

on plasmids may affect the evolutionary dynamics of plasmids and their hosts. 

INTRODUCTION 

Plasmids are central evolutionary players, which carry and/or mobilize genes across the prokaryotic 

world (Heinemann 1991; Sprague 1991; van Elsas and Bailey 2002; Smillie et al. 2010) 

(Conjugative plasmids: vessels of the communal gene pool). The genomic organisation of numerous 

plasmids has been described as modular, which has significant functional and evolutionary 

consequences (Bosi et al. 2011). For example, conjugative plasmids, involved in lateral gene transfer 

events between host cells, are comprised of well characterized genetic modules, i.e. sets of genes 

coding for a common process (Springael and Top 2004; Frost et al. 2005; Frost and Koraimann 

2010; Smillie et al. 2010; Guglielmini et al. 2011). While the products of these genes functionally 

interact, genes from the par modules however are loosely connected because their encoded proteins 

are not directly physically linked after translation (Casart et al. 2008; Okibe et al. 2013; Li et al. 



2015). Likewise, tighter couplings of genes on plasmids have also been well studied, in particular 

toxin-antitoxin addiction modules (Jaffe et al. 1985; Gerdes et al. 1986; Pandey and Gerdes 2005;

Leplae et al. 2011; Unterholzner et al. 2013; Mruk and Kobayashi 2014; Fasani and Savageau 2015;

Rocker and Meinhart 2016). These modules are famously involved in the maintenance and 

distribution of plasmids in the microbial world by a process of post-segregational killing. Microbial 

hosts, which after cellular division have lost plasmids harbouring such toxin-antitoxin modules are 

thus sentenced to death. When associated in operons as they have been repeatedly described 

(Zielenkiewicz and Ceglowski 2005; Van Melderen and Saavedra De Bast 2009; Yamaguchi et al. 

2011), bork operon) genes forming the addiction modules are transcribed and translated together, 

which means that the toxin and antitoxin they produced interact but are present on physically 

separated molecules. By contrast, composite genes constitute a stronger form of genetic 

association(Huynen et al. 2000; Meheust et al. 2016). Composite genes unite genes (or genes 

fragments) from different gene families in a single open reading frame. Composite genes result from 

gene remodelling, which either involves a fusion process (when components encoding separate gene 

products in some genomes combine into a common open reading frame in other genomes), or 

involves a fission process (when a modular gene present in some genomes split into distinct 

components, which subsequently encode separate gene products in other genomes). In the former 

case, genes and proteins become physically coupled, in the latter case, they become physically 

decoupled. Gene remodelling consequently has predictable functional effects, such as easing 

domain-domain interactions between associated components (Meheust et al. 2016), enhancing the 

co-location of interacting proteins in the host cell since they will be present together at the same 

place and time (Tsoka and Ouzounis 2000; Yanai et al. 2001; Fani et al. 2007; Henry et al. 2016), or 

allowing for finer processual regulation (Snel et al. 2000). Significant proportions of plasmid-

encoded composite genes have been reported in a general analysis including genomes from the three 

domains of life and mobile elements, including plasmids (~ 20%,(Jachiet et al. 2013)). However, the 

functions of these plasmid encoded composite genes, the rules of combinations of their components, 

and the potential impact of plasmids and host cells on the gene remodelling events, as well as the 

potential impact of these events on microbial populations have never been studied.  

Here, we used 4,393 complete genomes of plasmids to quantify the proportion of composite 

genes per plasmid genome, and to analyze gene remodelling in plasmids, and some of its functional 

consequences. The nature of the host cell, the mobility and the genomic structure of the plasmids 

could affect the distribution of plasmid-encoded remodelled genes. Typically, the microbial host 

could impact the gene content of all its plasmids, as a result of this host lifestyle (free-living or 



intracellular) and of the effective size of its populations, especially when plasmids impose a genetic 

load to their host cells. However, assuming selection on genes occurs more generally at multiple 

levels (Campos et al. 2015), one could also expect that the make-up of the plasmids themselves could 

influence their gene content. We tested whether hosts cells and/or plasmids had detectable effects on 

the presence of remodelled genes in plasmids. We observed that plasmids with different proportions 

of composite genes are present within the same lineage and/or cell, indicating that the selection for 

composite genes on plasmids is only weakly constrained by the microbial host. By contrast, linear 

plasmids contain in average significantly more composite genes than circular plasmids. Moreover, 

mobilizable plasmids contain significantly more composite genes than non-mobilizable and 

conjugative plasmids. These results indicate that plasmids properties impact the distribution of 

remodelled genes. Moreover, detailed analyses of the functions of components that were coupled or 

decoupled in plasmids show that gene remodelling in different genomic and mobility classes

operated with different rules. Interestingly, these analyses unravelled composites genes combining 

components for which at least one component was not assigned to any functional COG category. 

Using these composite genes as Rosetta stones (Adai et al. 2004) to decipher the hypothetical 

functions of these associations, we propose that 1886 composite genes (from 244 clusters of 

homologous genes) relate to the evolution of unknown addiction modules, since they involve at least 

one toxin or antitoxin component, and 964 composite genes (from 28 clusters of homologous genes) 

relate to the evolution of genes involved in cell cycle control, cell division and chromosome 

partitioning. Therefore, gene remodelling on plasmids, while apparently more constrained at the 

plasmid level than at the host level, can have substantial effects on the dynamics and evolution of 

microbial populations. 



MATERIALS & METHODS 

Data 

We downloaded 4,393 complete genomes of plasmids from NCBI (December 2014) which is 

composed by 3,951 circular and 442 linear plasmids. This led to a dataset of 338,930 protein 

sequences. We used CONJscan-T4SSscan (Guglielmini et al. 2013) to assign the mobility of each 

plasmid (Table.1).  

Composite genes detection 

Construction of the SSN 

SSN were constructed based on the cleaned result of an all-against-all BLAST sequence comparison. 

This preliminary step relies on a C++ program called cleanBlastp. cleanBlastp uniquely numbers 

each sequence in the BLAST output, and removes all self-hits, keeping the best hit (i.e. lowest E-

value) amongst multiple hits between pairs of sequences. This preliminary step produces an input file 

which contains BLAST information about matches between pairs of sequences (qstart, qend, sstart, 

send), sequence length (qlen, slen) and their symmetrized similarity scores (E-value, pident). The 

results are then represented as an undirected network G=(V,E), where V is the set of sequences, and 

edge is (u,v) ϵ E if the similarity score Suv or Svu is higher than a user-defined threshold (here E-value 

≤ 10, default Pident ≥ 30%).

Table 1: Complete genomes of plasmids mobility and structural information.



Definition of gene families 

Sequences were next clustered into clusters of homologous genes (CHG) in two usual steps. First, we 

defined connected components (CCs) by thresholding the SSN, keeping only edges when the mutual 

coverage between two sequences in the BLAST search ≥ 80%. When the minimum mutual sequence 

coverage criterion is high (≥ 80 %), each CC is commonly considered as a putative CHG (Jachiet et 

al. 2013; Corel et al. 2016; Meheust et al. 2016). Here, we further refined this first definition of CHG 

by implementing a mutual coverage score (Smc) for each CC. Smc is equal to 1 when all hits between 

the nodes of the tested CC have a mutual coverage > 80% in the BLAST search, i.e. when no weaker 

edges exists between the nodes of that CC. If Smc < 1, this CC was subjected to the Louvain 

community detection algorithm (Blondel et al. 2008), using C++ igraph 0.7.1 library (Csardi and 

Nepusz 2006). This second step of community detection allows to define, at a finer granularity, the 

groups of sequences forming communities (e.g. cliques and/or quasicliques) within the CC, which 

are finally considered as a CHG. Thus, each sequence from the original dataset was assigned to a 

given CHG. 

Detection of composite genes 

Composite genes were detected by checking whether a node’s neighbors in the SSN belong to

different CHG. If all neighbors of a node belong to only one CHG, this node is not a composite gene. 

If at least two neighbors of this node belong to distinct CHG, we used the sequence corresponding to 

the node as a reference and mapped the matches from all different CHG along that sequence. Each 

region of the reference sequence with matches from different CHG along a composite sequence 

corresponds to a component. For each component associated with a given reference, we computed an 

average position for the start of the component and an average position for the end of the component 

along the reference sequence. If there is no overlap between at least two components along the 

reference sequence, then the reference sequence is considered as composite, since the reference 

sequence is composed of at least two non-overlapping regions with homology to different CHG. 



Detection of composite gene families 

All nodes, for all CHG, were tested to determine whether a CHG is composite or not. Any CHG 

containing at least one composite gene according to the protocol above was considered as composite 

family. 

Statistical analysis

We analyzed the composite gene proportions for plasmids different characteristics (shape, mobility, 

host kingdom and phylum). We performed a pair wise Mann-Whitney-Wilcoxon test (p value <= 

0.05) to verify whether the observed differences were significant or not. P values were adjusted using 

Bonferroni method. In order to check that the obtained results were not biased, for each case we 

performed a Jackknife test with 10,000 resampling. Resampling size was fixed to the smallest sample 

size. 

RESULTS & DISSCUSSION 

 Our approach aimed at detecting composite genes and composite gene families (see M&M).

66,083 CHG with 31,438 singletons (CHG with only one gene) were detected. 5,448 CHG (~ 8%) 

were tagged as composite gene family with 2,184 singletons. These results indicate that 76,997 (~

23%) of plasmid genes are composite, which is more than in viruses (8%) (Jachiet et al. 2014). This 

high proportion of composite genes detected in plasmids suggests that plasmids could play a major 

role in the distribution of composite genes among bacteria.  

Host cell lineage weakly constrains the proportion of composite genes in plasmids

 We analyzed the proportions of composite genes and composite gene families in a diversity 

of host taxa (Figure.1). When plasmids were grouped according to the Domain to which their host 

cell belonged, we observed that bacterial plasmids have a significantly higher average percentage of 

composite gene families than the archaeal and eukaryotic plasmids (Mann-Whitney-Wilcoxon test,



p-value ≤ 0.05 see M&M). Moreover, eukaryotic plasmids have a significantly lower average 

percentage of composite than bacterial and archaeal plasmids (Mann-Whitney-Wilcoxon test, p-

value ≤ 0.05 see M&M), although the difference is less pronounced between eukaryotic and archaeal 

hosts. These differences may reflect the differences between the biology of prokaryotes and 

eukaryotes, these latter preferentially encoding abundant composite genes on their chromosomes 

rather than on their plasmids. However, the larger sample of bacterial plasmids in our dataset may 

also explain this result. 

At the level of host phyla, we compared the percentage of remodeled genes between 26

groups. Phyla with low numbers of plasmids were likely to hosts too limited a number of composite 

genes to allow significant statistical tests, therefore we only retained host phyla with > 10 plasmids 

(Figure.2). The proportions of remodeled genes on plasmids vary widely between phyla (from 

around 60% to 5%). Plasmids of Spirochaetes and Chlamydiae show the highest proportions of 

composite gene families (i.e. greater than 50%), which is significantly higher than the other phyla 

(Mann-Whitney-Wilcoxon test, p-value ≤ 0.05, see M&M). Hosts of these plasmids, which are 

belonging to Spirochaetes and Chlamydiae phyla, are mostly obligate intracellular pathogens.

Interestingly, it had been formerly suggested that hosts with such a reclusive lifestyle may benefit 

from introducing genetic variations from within, and that their extrachromosomal replicons could be 

used as ‘organs enhancing gene evolution’ (Halary et al. 2013) 

Figure 1: Average proportion of composite gene in the three Domains of life.



 At the level of genera and species, we further noticed that the proportions of composite genes 

varied within a given host lineage. This was for example noticeable between the plasmids of Borrelia 

(Table.2). These differences within a genus, a species, and eventually a cell suggest that the 

proportion of plasmid encoded remodelled genes is not imposed by a general selective pressure 

exerted by the host on all its plasmids. Therefore, we searched for another possible cause for the 

differences between the proportions of composite genes in the biology of the plasmids themselves. 

Figure 2: Average proportion of composite genes in various host phyla.

Table 2 : Proportion of composite genes in plasmids hosted by Borrelia species.



Plasmid’s biology impact the distribution of remodelled genes  

We first considered the topology of the plasmid genome (Figure.3). Linear plasmids have a 

significantly higher average percentage of composite gene families than circular plasmids (Mann-

Whitney-Wilcoxon test, p-value ≤ 0.05 see M&M). We do not favor the intuitive hypothesis that this 

difference could be explained by the relative simplicity of the linear plasmids. Whereas the addition 

of novel DNA at the termini of linear plasmids would provide a unique mechanisms for the evolution 

of remodelled genes to linear plasmids, because introducing DNA into a circular genomes requires 

the additional step of opening the genomes, we observed that remodeled genes were distributed 

along all the linear chromosomes, and not mainly at their termini. 

Second, we considered the plasmid mobility (Figure.4). The non-mobilizable (NOMOB) 

plasmids have a significantly lower average percentage of composite gene families than the 

mobilizable, conjugative and unassigned plasmids (Mann-Whitney-Wilcoxon test, p-value ≤ 0.05 see 

M&M). The mobilizable plasmids have a significantly higher average percentage of composite than 

conjugates and unassigned. Moreover, there was no significant difference between conjugative and 

unassigned plasmids. We verified that these differences were not trivially explained by size 

differences between these groups of plasmids. We detected no correlation between individual 

genome size and the proportion of plasmid encoded composite genes families, even though when 

plasmids are grouped into mobility classes genomes from non-mobile plasmids are (2-4x) larger than 

those of the mobilizable and conjugative plasmids, and that genomes of mobilizable plasmids are 

Figure 3: Average proportion of composite genes in linear and circular plasmids.



smaller (3x) than those of conjugative plasmids. Rather than genome size, the frequency at which a 

given plasmid meets foreign DNA, seems a more natural explanation for these differences of 

remodeled gene families on different mobility classes. We speculate that mobile plasmids (be they 

mobilizable or conjugative) have a great opportunity to be in physical vicinity with a diversity of 

genomes than non-mobile DNA, which have a more restricted host distribution. 

Functional analyses of coupled and decoupled components  

 We summarized the information about the functional assignation of pairs of components 

present along a composite gene for each genomic (circular, linear) (Figure.5) and mobility (mobile, 

non-mobile, conjugative and unassigned) (Figure.6) classes of plasmids. To this end, we split each 

composite gene into its constitutive component. For each component, its functional category was 

assigned using eggNOG-mapper (Huerta-Cepas et al. 2016; Huerta-Cepas et al. 2017). For each 

composite gene family, we computed the average proportion of components with a given COG 

function associated with all the composite genes belonging to that gene family. For each group of 

plasmids, we summarized the information about the functional assignation of pairs of components 

present along all composite gene families. We reported the proportion of all combinations of 

functional categories realized by pairs of components in a matrix. Thus, each matrix provides a 

functional profile of components associated in the composite genes for each group of plasmid 

(Figure 4 shows the matrix for sites 1, 2 and 3). If gene remodelling strongly depends on the 

functions of components, and if similar constraints apply for the functional association/dissociation 

Figure 4: Average proportion of composite genes in mobilizable plasmids (MOB), non-mobilizable plasmids 
(NOMOB), conjugative plasmids (CONJ) and uncharacterized plasmids (Unknown).



of genetic components across groups of plasmids, we expect similar functional profiles for the pairs 

of associated components across all groups of plasmids.  

We used the Mantel test to compare the matrices and to verify if the profiles were similar or 

different, achieving a pairwise comparison of these matrices using the "CADM.post" function of the 

Mantel test from the ape (v. 3.5) library (Paradis et al. 2004) of the R statistical package (v. 3.2.5) (R

Core Team 2016). This required modifying the "CADM.post" function to account for values on the 

diagonal and fixed the number of permutations to 999. This analysis revealed that remodelled genes 

present in different genomic and mobility classes had different functional profiles of components 

associations. In particular, circular plasmids explore a broader range of functional combinations than 

linear plasmids. By contrast, mobilizable plasmids realize a narrower range of functional 

combinations than non-mobile and conjugative plasmids, which harbour a broader diversity of 

metabolic remodelled genes. These distinct profiles can be explained either by the fact that gene 

remodelling follows different rules in these groups of plasmids, or that the composite genes 

associated with these groups of plasmids fulfil different functions, and therefore show different 

functional profiles. In both cases, this confirms the impact of plasmids on the association of 

components in remodelled genes.  

Figure 5: Relative abundance of two-component composite genes in linear and circular plasmids. COG categories of both 
components are given in abscissa and ordinate, and relative abundance is color coded from low (yellow) to high (red).



Figure 6: Relative abundance of two-component composite genes in plasmids, according to their mobility. Color 
code is the same as Fig. 5.



Functional analysis of plasmid encoded composite genes 

 We annotated plasmids genes with using eggNOG-mapper. Roughly 40% of the plasmid 

genes were annotated, and the remaining sequences have been annotated as "Unknown". The 

proportion of composite genes in each COG functional category is represented in Figure 7. 

Remodelled genes were over-represented (Fisher test, p-value ≤ 0.05) in some critical functional 

categories: Transcription (K), Replication, recombination and repair (L), cell cycle control, cell 

division, chromosome partitioning (D), defence mechanisms (V), Transduction signal mechanisms 

(T), Energy production and conversion (C), Amino-acid transport and metabolism (E), Lipid 

transport and metabolism (I), inorganic ion transport and metabolism (P) and secondary metabolite 

biosynthesis, transport and metabolism (Q).  

Consistently, some of the remodelled gene family had the potential to impact plasmids 

dynamics across the microbial populations. This was especially true for remodelled genes involved 

in Toxin-Antitoxin (STA) systems. We identified 1886 composite genes potentially related to STA, 

since these composite genes contained at least one toxin or one antitoxin component. 1855 of these 

Figure 7: Relative abundance of COG functional categories in plasmid-encoded genes (blue) and composite genes (red). Categories 
that are significantly over-represented in composite genes (resp. in all genes) are highlighted in red (resp. in blue).



remodelled genes combined components of unknown functions with known toxins or antitoxins, and 

we predict they may constitute novel addiction modules. Other plasmid-encoded remodelled genes 

had the potential to directly affect host cell dynamics, since one of their components was either 

homologous to the cell division protein FtsK, or to the cell filamentation protein. If that prediction is 

correct, composite genes carried on plasmids could interfere with the host cell division.  

CONCLUSION 

Plasmids host large proportions of remodelled genes. This high abundance confirms that plasmids 

are essential to introduce genetic variability in microbial populations, and that their fluid genomes 

are not only affected by lateral gene transfers of full-sized genes and selection of optimized genes; in 

fact plasmids genomes are also plastic at the sub-genic level. These remodeled genes are likely under 

some selection. We suggest that this selection possibly occurs at the gene level (typically for novel 

addiction modules) and at the plasmid level, since the proportions of plasmid encoded remodelled 

genes seems more affected by the biological properties of their host plasmids rather than by the 

evolutionary history of their host cells. Consequently, gene remodelling has the potential to alter the 

dynamics of microbial populations from within.  
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III.1.3 Evolution of genes and rules of gene remodeling during the 

transition and stabilization of animal multicellularity. 

 The transition from unicellular to multicellular organisms has occurred several times 

with independent origins in eukaryotes (Figure 16) (Ruiz-Trillo et al. 2007). The evolution of 

animals derived from protozoan lineages (Ichthyosporea, Filasterea and Choanoflagellata),

which are closest unicellular eukaryotes relatives of metazoans, is one of the major transition 

in life’s history (Torruella et al. 2012; Torruella et al. 2015). The mechanisms involved in this 

transition are not well known. Various theories stress on different causes of this event. 

Ecological considerations, considerations on cell-cell signalling and population effective size, 

as well as genetic changes have been discussed (King 2004). Regarding the genetic facet, 

gene duplication, exon shuffling and changes in genes regulatory networks have been 

underlined as major contributors in the origin of metazoans (King et al. 2008; Zmasek and 

Godzik 2011; Suga et al. 2012; Suga et al. 2013; Grau-Bove et al. 2017). These processes 

leave different clues in genomes. Additionally, novel gene families, invented within the 

metazoan lineage and/or subsequent molecular tinkering affecting preexisting sequences (e.g. 

insertion) may have contributed to the origin and maintenance of the multicellular lifestyle

(Grau-Bove et al. 2017), and thus constitute important animal synapomorphies. These 

processes affecting the nature, number, length, and evolutionary rates of genes, are mutually 

non exclusive. They may have introduced substantial genetic variation in the sequences of 

metazoans that might be difficult to analyze comprehensively. For example, gene duplication, 

when associated with increased evolutionary rates, may have produced highly divergent and 

hardly detectable homologs. Likewise, within the genome, the association of genetic 

fragments belonging to unrelated gene family produces complex reticulate patterns. Network 

analyses provide a powerful broad-scale systematic comparative framework with the potential 

to unravel a diversity of genetic patterns, and therefore to investigate multiple aspects of 

molecular evolution and their potential connection to the evolution of multicellularity.  



 In the article n°6 in collaboration with Pr Iñaki Ruiz-Trillo, we performed a 

comparative approach using complete proteomes from 27 animals and 5 closely related 

unicellular relatives (representing the Holozoa clade: Choanoflagellates, Filastereans and 

Ichthyosporeans). We used sequence similarity networks to understand the evolution of genes 

and rules of gene remodeling during the transition from unicellular protists to animals, 

without relying on functional annotations for the definition of gene clusters and the 

identification of remodeled genes. This article is in preparation and will be submitted to the 

journal "Current Biology". 

Figure 16: The multiple origins of multicellularity. 
(a) The phylogenetic distribution of multicellularity among eukaryotes.
(b) A timeline of the origins of the major multicellular eukaryotic clades  
showing that transitions to multicellularity have occurred at very different 
times in the history of life. (Sebe-Pedros et al. 2017)
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Summary

The emergence of animals from their unicellular ancestors is an important evolutionary 

event. Recent genomic data from unicellular relatives of animals had already shown

that unicellular ancestors of animals were genetically much more complex than 

previously thought (Richter and King 2013; Suga et al. 2013; Sebe-Pedros et al. 2017). 

Analyses of gains and losses of domains and genes, based on Gene Ontology and Pfam, 

showed some gene innovations (i.e. novel gene families and protein domains) at the 

origin of animals (Zmasek and Godzik 2011; Fairclough et al. 2013; Suga et al. 2013;

Grau-Bove et al. 2017). Moreover, it has been proposed that gene remodeling was an 

important mechanism for animal evolution (King et al. 2008; Suga et al. 2012; Suga et 

al. 2013; Grau-Bove et al. 2017). However, such analyses may be biased because most 

protein domains and Gene Ontology have been defined from animal taxa. To provide an 

unbiased analysis of genetic innovations during animal evolution, we used a

complementary network-based approach, which does not rely on functional annotations 

for the definition of gene clusters and the identification of remodeled genes. We report 



clusters of homologous genes and fusion genes, mapped onto the Holozoa (ie., animals

and their closest relatives) tree. Our data confirmed the burst of genes associated with 

Metazoa and Eumetazoa (Grau-Bove et al. 2017). Moreover, we observed two 

successive trends of functional enrichment in animal evolution: first into Cytoskeleton 

and Extracellular Structures and later into Transcription. Additionally, we found that 

animals exploit a significantly different and broader range of functional combinations 

than their unicellular relatives. In particular, animals display unique combinations of 

genetic segments associated with extracellular matrix, signal transduction mechanisms 

and transcription. This suggest that metazoans and eumetazoans expanded their set of 

specific genes, while exploring a larger space of functional combinations in their 

remodeled genes. Overall, we report two major remodeling of the genetic landscape 

during animal evolution. 

Results and Discussion

To understand the evolution of genes during the transition from unicellular protists to 

animals, we performed a comparative approach using complete proteomes from both 

animals and their closest unicellular relatives: choanoflagellates, filastereans, and 

ichthyosporeans (the Holozoa clade (Torruella et al. 2012; Torruella et al. 2015)). We 

BLASTed all these proteins against each other to construct a protein similarity network,

which allowed us to define clusters of homologous genes (CHG, i.e. connected sets of 

proteins, including proteins with a BLAST Evalue < 1E-5, ≥ 30%ID, and ≥ 80% mutual 

cover). This clustering approach provided us with 299,446 clusters (CHG). We 

assigned each CHG to a specific holozoan clade by searching for homologs of the CHG 

members in the entire NCBI database (January 2015). All homologs of the CHG were 

classified according to the NCBI taxonomy, and all CHG distributed in non-holozoan 

taxa (including prokaryotes) were considered as more ancient than the Holozoa. We 

also functionally annotated CHGs using KOG categories in order to further interpret 

our findings. 

In order to understand the evolutionary origin of holozoan-specific CHGs, we 



mapped them onto the holozoan tree using Dollo parsimony. This procedure allowed us 

to infer the CHG content of ancestral nodes within that tree, as well as their associated 

functional content. We observed a continuous evolution of CHGs along the tree of 

Holozoa, with two bursts: one at the Metazoa clade (N4, Figure 1) and the other at the 

Eumetazoa (Bilateria + Cnidaria) clade (N6, Figure 1). These observations are 

consistent with previous works (Zmasek and Godzik 2011; Grau-Bove et al. 2017), that 

were based on different and more standard methods such as Gene Ontology and/or 

Pfam protein domains assignations. Interestingly, these two bursts were associated with 

functions that are known to be relevant with multicellularity, and with two functional 

trends, spanning over multiple ancestral nodes of the tree (Supplementary Table 2). In 

particular, we observed an enrichment of CHGs associated to Cytoskeleton (Z) and 

Extracellular Structures (W) at the onset of Metazoa. This enrichment in Cytoskeleton 

CHG had started at the Choanozoa (Metazoa + Choanoflagelates) clade (Brooke and 

Holland 2003; Cavalier-Smith and Chao 2003). We also observed successive 

enrichments in CHGs associated to Transcription (K) in the Placozoa + Eumetazoa 

clade, and in the Eumetazoa. Thus, enrichments in genes involved in specific functions 

initiated in an ancestral lineage continued over long evolutionary periods. Such 

contingent trends (in this case first the complexification of the cytoskeleton and the 

extracellular structure, then the complexication of transcription) may have played a role 

in the emergence and further evolution of animals. It should be noted however, that 

CHGs without known functions (corresponding here to the S+X KOG categories) also 

significantly increased within animals. This observation suggests that many genes 

without known functions may have played important roles in animal origin and 

evolution. 

Exon and domain shuffling have been proposed as an important mechanism 

involved in the evolution of multicellular lineages (King et al. 2008; Zmasek and 

Godzik 2011; Suga et al. 2012; Suga et al. 2013; Grau-Bove et al. 2017). These events 

lead to gene remodeling. To better understand some rules of gene remodeling at the 

onset of animals, we also used protein similarity networks to identify composite genes 



in Metazoans and their closest unicellular relatives, without depending on domain 

annotations. A composite gene is formed through evolutionary combinatorial processes 

such as fusion and recombination of segments derived from different gene families or 

fission. Sequence similarity networks, where each node represents a unique sequence 

and each edge represents the similarity between connected sequences, appear to be well 

suited to identify and study this genetic mosaicism (Alvarez-Ponce et al. 2013; Bapteste 

et al. 2013; Jachiet et al. 2013). For each Holozoan clade, we distinguished three classes 

of composite CHGs: i) CHGs that evolved via the fusion of genetic material already 

present in the ancestor (novel fusion CHGs), ii) CHGs that appeared in the lineage, but 

underwent fission events in subsequent lineages (fission CHGs), and iii) CHGs for 

which the polarisation into fusion or fission CHGs was unclear, since these composite 

genes were comprised of components with complicated evolutionary histories. To 

compare the distribution of all these remodeled genes in unicellular and multicellular 

Holozoa, we mapped them onto the Holozoa tree using Dollo parsimony. This 

unraveled that the proportion of composite genes amongst the new CHGs of each clade 

is in general limited (within the range of 7-25%). In particular, there was a continuous 

evolution of novel fusion CHGs along the Holozoa tree, yet in limited and rather 

constant proportion (16,2% at the Metazoa, 15,6% at the Eumetazoa). Interestingly, 

enrichment of fusion CHGs in Metazoa and Eumetazoa only concerned CHG of 

unknown functions. However, in the (Placozoa + Eumetazoa) clade, we observed an 

enrichment of fusion CHGs associated with transcription and extracellular matrix. 

We then focused on the components of the fusion CHGs to further investigate 

which specific functions were associated during the evolution of these composite 

CHGs, for each ancestral node of the Holozoa tree. We summarized the frequency of 

associations of components of fusion CHGs, based on the functional categories of these 

components, thus producing matrices of functional associations within fusion CHGs 

(Figure 1) for all animals and their closely related unicellular lineages, as well as for 

each ancestral node of the Holozoa tree (Figure 1). These matrices were then compared 

using a Mantel test to test whether they described significantly different functional 



associations. Interestingly, we observed significant major changes in the rules of 

remodeling in animals compared to their unicellular ancestors, especially in the same 

two clades (Metazoa and Eumetazoa) for which we observed a burst of CHG evolution 

(Figure 1). These two types of genetic innovations, i.e. a burst of original combinations 

leading to fusion CHGs and a burst of CHG evolution, may not be directly causally 

related, because only a minority of novel CHGs are fusion CHGs. However, our finding 

suggests that these two types of expansions (i.e. one introducing novel specific CHG 

and another introducing new ways of combining genes) were going on simultaneously 

during animal history. Thus, the genomes of the ancestors during early animal 

evolution were remarkably dynamic. This genetic dynamism can be further witnessed 

with the detection of fission CHGs, since this class of composite CHGs suggests that a 

certain proportion of components forming new composite genes along the holozoan 

tree tend to get dissociated later during animal evolution (Supplementary Table 1).  

We further compared the functional composition of fusion CHGs of animals and of 

their closely related protists to understand whether the diversity of these combinations 

could be related to key functions for animal evolution. We found that animals explored 

the space of functional combinations more extensively than their close unicellular 

relatives (Figure 2). For example, components involved in extracellular structures (W) 

were associated with components involved in 13 other functional categories in animals 

(Figure 2 C), something that is not happening in the unicellular holozoan taxa. 

Moreover, fusion CHGs of animals presented exclusive functional associations, which 

were not observed in their close unicellular relatives in our dataset. Interestingly, a very 

large fraction of these exclusive functional combinations in fusion CHGs concerned 

functions that were likely important for animal evolution. A first group of such unique 

combinations implicated components involved in signal transduction mechanisms (T), 

namely “T+T” and “T+J”, suggesting that signal transduction was remodeled during 

animal evolution. Coupling signal transduction with translation, ribosomal structure 

and biogenesis (the “T+J” fusion CHG) may in particular have affected the regulation 

of protein synthesis. A second group of animal-specific functional combinations 



implicated components involved in transcription (K), giving rise to “K+K” and “X+K” 

fusion CHGs. This original remodeling of transcriptional functions fits well with 

findings indicating that transcription factors have likely played a major role in animal 

evolution. This functional remodeling of transcriptional regulation may have had a 

relevant role in the development of the fine tune and cell-type-specific transcriptional 

regulation observed in extant animals (Meyerowitz 2002; Levine and Tjian 2003; de 

Mendoza et al. 2013). Indeed most of those composite CHGs novel for eumetazoans are 

homeobox genes, which is known to have expanded in eumetazoans (de Mendoza et al. 

2013). A third group of unique combinations implicated components involved in 

Extracellular structures (W), i.e. the “W+W” and “O+W” fusion CHG. Such 

remodeling are consistent with the fact that animal cells operate in a different 

environment than their close unicellular relatives, since animal cells must  sense the 

environment of their tissue, as well as the signal coming from other tissues and organs. 

Here, we observed some composite CHGs involving syntrophin, laminins, integrins, 

and other extracellular components involved in adhesion and signaling. Unique 

combinations of the O category, i.e. the “O+O” fusion CHGs, were also exclusively 

observed in animal fusion CHGs. The repeated implication of the O category, coding 

posttranslational modification, protein turnover, and chaperones, into exclusive animal 

fusion CHGs, is also consistent with the observation that animals substantially remodel 

their proteins, as assessed, for example, by their increased abundance in ubiquitin 

(Grau-Bove et al. 2015). Likewise, unique combination of the Z category i.e. “Z+Z” 

fusion CHG in animals, combining components involved in the cytoskeleton, matches 

well with the discovery of new motor proteins in animals (Sebe-Pedros et al. 2014).  

Overall, our data confirm, using a complementary approach, that animal genomes 

encode a significantly larger proportion of novel genetic regions compared to their 

ancestors, some of them resulting from fusion events. More importantly, our results 

show that animals use a larger genetic functional landscape than their unicellular 

relatives in composite genes, including novel combinations of genetic regions that are 

significantly enriched in “multicellular” functions such as extracellular matrix, 



cytoskeleton, signal transduction and transcriptional regulation.  

Conclusion  

 We used an inclusive approach, largely complementary to analyses conducted in 

other studies, as our work did not a priori rely on standard Gene Ontology and Pfam 

definition, and allowed us to investigate 299,446 of CHGs in a single analysis, 

providing a broad picture on the genetic evolution associated with the transition to 

animal multicellularity. In particular, we observed both an increase in novel CHGs in 

animal lineages, and an increase in the diversity of the functional combinations giving

rise to animal-specific fusion CHGs. Both of these bursts of genetic innovation at the 

Metazoa and Eumetazoa clades involved functions that were likely critical for the 

emergence of multicellular animals. Thus, our work provides a novel demonstration 

that genome evolution was particularly dynamic at the onset of animals, both at the 

genetic and sub-genetic levels.  

  

Materials &Methods  

Constitution of the dataset 

We used the proteomes from 27 animal taxa and 5 closely related protist genomes 

representing the Holozoa clade: choanoflagellates, filastereans and ichthyosporeans. In 

total we had 855,506 protein sequences (Supplementary Table 1). We used 

eggNOG-mapper (Huerta-Cepas et al. 2016; Huerta-Cepas et al. 2017), in DIAMOND 

mode with the default parameters to annotate the protein sequences. Sequences without 

significant hits were annotated as X. 

Definition of CHG, and detection of composite CHG 

We constructed a sequence similarity network (SSN) using the results of an 

all-against-all BLASTP (Altschul et al. 1990) of 855,506 sequences. The parameters 



used for the BLASTP are: -seg yes -soft_masking true -max_seq_target 5000. In this 

undirected network, two proteins are connected based on their similarity scores 

(E-value <= 1e-5, Pident >= 30%). The SSN has been symmetrised by keeping only the 

best match of each pairwise comparison. A CHG is a cluster of homologous genes with 

high connectivity, in which connected sequences display significant BLAST E-values ≤ 

1E-5, mutual covers ≥ 80%, Pident ≥ 30%.  

We detected the composite genes and composite CHGs in this SSN using 

CompositeSearch (Pathmanathan JS et al, 2017). Composite genes are detected as a 

result of the fusion of partial or complete non-homologous DNA fragment, called 

component, or as a result of fission from a larger gene into dissociated persistent 

fragment. CompositeSearch generalizes the use of similarity networks to detect 

composite and component CHGs. 

Classification of CHGs 

Composite CHGs have been classified in 3 main categories (fusion, fission and 

non-polarisable) comparing their position and their components position in the tree 

(Supplementary Figure 1, for more details). This classification depend on the tree 

topology, e.g composite genes at basal node of a tree cannot be classified as a fusion.
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Figure 1: Evolution of the number of Clusters of Homologous Genes (CHG) along the Holozoan tree. 

The number of gains and losses of CHGs (used as a proxy for gene families) is given above each internal 

branch in blue and red respectively. The average proportion of composite genes in genomes (resulting 

from fusion of components in purple, from fission in green, and not polarisable in orange) is given as a 

pie charts for extant phyla (tips), as well as for ancestors, as reconstructed by Dollo parsimony. For each 

internal branch, composite genes that were assumed to be synapomorphies by Dollo parsimony had both 

their fragments functionally assigned and the relative abundance of pairs of functions is displayed as a 

matrix. Axes of the matrices are the 20 functional KOG categories.



Figure 2: Functional associations in holozoan composite genes. (A) Following the same 

representations as in Figure 1, the relative abundance of pairs of functions found in composite genes is 

displayed for extant unicellulars of the dataset (top left) and for extant multicellular (top right). (B) Both 

matrices are contrasted in the bottom left matrix, where pairs of functions specific to or enriched in 

multicellulars are displayed in orange and red respectively, and pairs of functions specific to or enriched 

in unicellulars are displayed in green and blue respectively. KOG functions that appear mostly in 

multicellular composite are highlighted with a pink square (matrices are symmetrical).



Supplementary Table 1 : Information about the genome used for the analysis 



Supplementary Table 2: Functional enrichment of composite and non-composite genes at each 

ancestral node represented in the tree Figure 1.



Supplementary Table 3: Proportion of composite genes (Fusion, Fission, non-polarisable) and 

non-composite genes at each internal node and each tip of the tree presented in Figure 1.





III.2 MORPHOLOGICAL EVOLUTION 

 The study of molecular changes is not sufficient to understand the evolution of living 

organisms. It requires ecological, developmental, palaeontological and phylogenetic 

considerations. Palaeontology gives us invaluable information about anatomies, ecologies, 

physiologies, as well as spatial and temporal dynamics of past life (Jablonski and Shubin 

2015). In the past 20 years, great technological improvements have been done not only in the 

molecular biology field but also in paleontology leading to the discovery of new early life 

fossils (Reisz and Sues 2015). The discovery and analysis of fossils from key intervals in the 

history of life can inform about the sequence, pattern, and phylogenetic dynamics underlying 

the origin of major functional and anatomical novelties (Jablonski and Shubin 2015; Parry et 

al. 2016).

 In phylogeny, the use of character matrices from fossils is a widespread to analyze 

similarities and trace the evolutionary history of different traits, mostly in animals. The 

evolution of these traits does not necessarily follow that of the species; some traits may have 

appeared or disappeared several times independently in different lineages (Figure 17). Some 

of pre-existing traits can be dissociated, recycled and used to fulfill new functions. Study of 

this morphological modularity allows understanding the evolvability and plasticity of 

organismal form. Therefore, the analysis of the complex evolution of these morphological 

components requires the development of methods complementary to those used in classical 

phylogeny. Network approaches can be used to analyse the interdependency between 

characters in order to describe a broader range of changes and stases in organisms.

 In the article n°7 in collaboration with Pr Pierre-Olivier Antoine, we propose to use 

network-based methods to study the co-occurrence of the traits in the panarthropods (Smith 

and Caron 2015) and rhinocerotid mammals, thanks to the fossil and current data that are 

available. We transformed the character matrices into traits matrices to focus on relationships 

between individual character states. We used these trait matrices to construct ‘trait networks’ 

to describe and to analyse patterns of co-occurrence between the character states that 

constitute the organisms. Trait networks provide a picture of character state combinations, but 

are not phylogenetic inferences. We have thus been able to analyze the co-occurrence 

relationships between character states during the evolution of panarthropods since the 



Cambrian, and the evolution of rhinocerotid mammals during the last 50 million years. We

observed a substantial general dissociability of traits during evolution for these two sets of 

organisms, and identified pivotal and relatively stable traits forming the structural backbone 

of the panarthropod and rhinocerotid morphological organisations. This article is in 

preparation and will be submitted to the journal "BMC Biology". The supplementary tables 

for this article can be downloaded from http://www.evol-net.fr/downloads/

Figure 17: The evolution of the tardigrade body plan.

Hypothesis for the evolution of the tardigrade body plan by the loss of an 
intermediate trunk region (orange). Panarthropod branches are red in the 
phylogenetic tree. (Smith et al. 2016)
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Summary

Explaining the evolution of animals requires ecological, developmental, paleontological and 

phylogenetic considerations, because organismal traits are affected by complex evolutionary 

processes. During evolution, traits can become tightly interdependent, dissociated, or used to fulfil 

novel functions. Therefore, how to better describe and analyse the evolution of taxa, not merely as 

lineages, but also as evolving organisations of traits, is becoming a key issue. Modelling a plurality 

of processes operating at distinct time-scales on potentially interdependent traits requires 

complementary treatments to phylogenetic analyses. We develop network approaches on 

paleontological and extant data to analyse the co-occurrence relationships between character states 

during the evolution of panarthropods since the Cambrian, and the evolution of rhinocerotid 

mammals during the last 50 million years. The pieces of the morphological toolkits of these taxa 

appear highly dissociable, hinting at repeated developmental changes during evolution, but some 

traits are significantly stable, unravelling backbones in these fluid body plans. Our evo-systemic 

framework supports a pluralistic modelling of organismal evolution, including trees and networks. 

Keywords: networks, tinkering, evolution, palaeontology, co-occurrence, Burgess fauna



Introduction

Organismal evolution is often investigated using phylogenetic approaches, which analyse 
‘characters X taxa’ matrices to infer relationships between organismal lineages. The major focus of 
such, usually tree-based, analyses is generally to determine what groups of organisms derive from a 
last common ancestor, forming clades, and what their shared derived features (e.g. the 
synapomorphies of these clades) are. While invaluable, phylogenies can fruitfully be complemented 
by adopting a system-based perspective1-3, using network approaches that explicitly analyse the 
interdependency between characters in order to describe a broader range of changes and stasis in 
organisms. This conception of organisms is deeply rooted in the biological field, as illustrated by the 
(idealistic) notion of correlation of parts4, and its many critical refinements, as it became clear that 
correlations between animal traits can change in an irregular fashion5

. Contra von Baer’s laws of 

developments, Dollo, De Beer, and others5-7 popularised the notion that individual organs can have 
independent phyletic histories, despite the obvious correlation of parts within any organisms, a clear 
challenge for the study of organismal evolution. Consistently, Evo-devo experiments characterised 
cases of co-options and tinkering of animal traits8-13, and showed that structural biases built into 
genetic and developmental networks2,10 can offer relevant explanations of convergences and 
parallelisms between organisms at the morphological level. Since these important aspects of 
organismal evolution resist traditional analyses14-16, how to better describe and analyse the evolution 
of relationships between traits is becoming a pivotal question to enhance the understanding of 
organismal evolution2. 

Here, we propose to study organismal evolution, by using a different way of enumerating the 
signal of a given ‘characters X taxa’ matrix. More precisely, these matrices can be recoded into
‘traits X taxa’ matrices to focus on relationships between individual character states. Based on these 

recoded matrices, ‘trait networks’ can be used to describe and to analyse a rich body of patterns of 

co-occurrence between the character states making the organisms. Thus, trait networks provide a 
picture of character state combinations, but are not phylogenetic inferences. They are a way to 
organise information about various types of co-occurrence of morphological traits in organisms, and 
to effectively exploit the evolutionary signal associated with these patterns, while taking advantage 
of the tools of graph theory. The main focus of this strategy is to detect traits holding remarkable 
roles in trait networks, and to identify groups of traits with remarkable behaviours, in order to 
stimulate hypotheses about the processes affecting the morphological toolkits of organisms over the 
course of evolution. In particular, trait networks can be used to characterise the relative stability of 
the structural backbone of organisms and to lay out potential rules of associations for some of the 
pieces of their morphological toolkit. For example, strictly co-occurring morphological traits form 
‘complexes of character states’, which may result from a common developmental regulation. Since 
(groups of) traits displaying evolutionary informative patterns in networks may or may not simply 
map onto an organismal phylogeny, patterns in trait networks can be used to detect and to highlight 
evolutionary events and processes that are neither naturally captured nor primarily brought forward 
in analyses of organismal trees or in character compatibility analyses17. Yet, trait networks do not 
aim at replacing phylogenetic approaches. Indeed, phylogenetic considerations can further illuminate 
the outcome of trait networks analyses. For example, traits complexes may be associated with clades, 



and correspond to synapomorphies of these groups. But traits complexes can also be found in 
paraphyletic groups of taxa, requiring more complex explanations of their distributions.  

Below, we introduce a new method and a user-friendly tool called ComponentGrapher for the 
construction and analyses of trait networks. We applied it to two distinct and well-established 
palaeontological‒neontological datasets, featuring panarthropods from the Cambrian Burgess fauna18

and focusing on Cenozoic rhinoceroses19,20, respectively. These two phyla are very different, in 
particular in their body plans. Hence, they are likely subjected to different evolutionary constraints, 
i.e. metamerism is visible in arthropods, which harbors relatively independant metamers (except in 
their heads), whereas metamerism is less visible in mammals, that present very integrated metamers. 
We observed a substantial general dissociability of traits during evolution for these two sets of 
organisms, and identified pivotal and relatively stable traits forming the structural backbone of the 
panarthropod and rhinocerotid morphological organisations. Whilst the two datasets strongly contrast 
in terms of body plans and temporal/taxonomic scales, the general observation that many traits are 
used repeatedly in different combinations in different taxa, which usually do not form a clade, 
constitutes an additional incentive to further couple developmental and palaeontological studies.  

1. Trait networks, a novel comparative approach

We developed a new method, which enumerates the signal present in ‘characters X taxa’ 

matrices to extract patterns of co-occurrence between the character states making the organisms, and 
therefore to generate and to test hypotheses about the evolution of traits relationships during 
organismal evolution. This method is implemented in a software called COMPONENT-GRAPHER 
(https://github.com/etiennelord/ComponentGrapher). It differs from clique / compatibility analysis in 
its approach, scope, and goals21, and it produces a picture, instead of an inference, of character states 
relationships.  

The main steps of our analyses are described below (see also Figure 1, Extended Data Figures 
1 & 2). First, for each dataset of interest, COMPONENT-GRAPHER read a ‘characters X taxa’ 

matrix by columns. Second, each unique character state associated with a given character was 
extracted, i.e. if an original character had three states (0, 1, 2), this was now split into three characters 
states for which the presence/absence of each one was scored. Although the effect of recoding 
multistate characters as binary presence/absence data has been shown to be problematic for the 
reconstruction of phylogenetic trees22-24, this coding is not a problem here as the number of nodes in 
trait networks is determined only by the number of character states and not the number of characters. 
Missing (*), ambiguous (?) and non-applicable (-) tokens were discarded at this stage of the analysis. 
Third, we selected all character states that do not signify absence; only those traits (e.g. character 
states corresponding to a present feature) were considered in subsequent analytical steps. Fourth, the 
nodes of the trait network were created: each node corresponds to a distinct character state. Thus, the 
nodes (and traits) of our networks are not equivalent to the characters used for phylogenetic analyses. 
Fifth, the type of co-occurrence between all pairs of character states from different characters was 
assessed to build the edges of the trait network (see Figures 1, 2 and Extended Data Figures 1, 2). 



Four different types of relationships were characterised. In a type I relationship, two traits have 
identical taxa distributions. Since these traits are always found together, they form remarkable sets of 
features, which we call complexes. In a type II relationship, one trait shows a broader taxonomic 
distribution, entirely including that of the other trait. This is observed when, while two traits are 
simultaneously present in some taxa, a more broadly distributed trait has also evolved separately 
from the other trait in some taxa. By contrast, the least widespread trait is never observed without the 
most broadly distributed one. In a type III relationship, two traits have overlapping taxonomic 
distributions. While these traits are simultaneously present in some taxa, both have also evolved 
separately in distinct organisms. In a type IV relationship, two traits, never found in any common 
taxa, show mutually exclusive taxonomic distributions. Note that with our protocol only pairs of 
character states associated with distinct characters (not from the same character) were assigned a 
type IV relationship.  

Sixth, based on these relationships, the network was constructed and stored as a list of nodes 
and a list of type I-IV edges. The network was then analyzed by COMPONENT-GRAPHER to 
identify the patterns described in Figure 2. This network construction is by definition robust: a given 
data matrix returns only one network of each type (and always the same, since it is an exact ‘picture’ 

of the relationships between character states). Seventh, we used COMPONENT-GRAPHER to 
compute two types of network measures: i) measures relative to the general topological properties of 
the trait network, and ii) specific topological properties of each of its node (i.e. centrality measures). 
For example, in-degree and out-degree of nodes were computed by counting the number of 
incoming/outgoing type II edges of each node. Since all network measures used in our analyses 
relied on exact graph metrics and not on heuristics, the values inferred from the network analyses are 
also robust. Finally, we used permutation tests implemented in COMPONENT-GRAPHER to assess 
the statistical significance of these network values. In short, COMPONENT-GRAPHER uses a null 
model of uncoordinated evolution, in which all characters states would be evolving independently.

Thus this test amounts to a permutation of the states for each character, as already proposed to test 
for the presence of phylogenetic signal in character data25,26. COMPONENT-GRAPHER outputs all 
these results, as well as exportable networks (edgelist, and graphml formats, compatible with 
Cytoscape27 and Gephi28).

2. Interpreting trait networks 

Simple motifs with evolutionary significance can be exactly searched for in trait networks. We 
focused on several of them (Figure 2). Traits connected by type I edges are always associated in 
organisms. For example, in panarthropods, the three or four circumoral enlarged plates, the pre-
ocular  limb pair with arthrodial membranes, and the strengthening rays in lateral flaps are always 
found together, and exclusively so in Anomalocaris, Peytoia, and Hurdia (Supplementary Table 1B 
and Figure 3a). For such tight associations, it is therefore compelling to look for explanations, such 
as common developmental regulations affecting the genes coding for these traits, in particular when 
these pieces of the morphological toolkit were a priori assumed to evolve independently. Such 



complexes may be synapomorphies of clades, but this is not necessary. By contrast, disjoint traits are 
simply never found in the same organisms, such as, in the rhino dataset, the separated metacone and 
hypocone on the fourth upper premolar (present in Hyrachyus eximius, Trigonias osborni,
Huaqingtherium lintungense and Aceratherium incisivum), and the lingual bridge of the protocone 
and hypocone on the third and fourth upper premolar (present in Ceratotherium simum,
Diceratherium armatum, Teleoceras fossiger, and Lartetotherium sansaniense), i.e. two aspects of 
upper premolar molarisation19, whilst they could be considered intuitively as evolving 
interdependently. These traits may be encoded by genes undergoing antagonistic regulations, or 
simply by genes that appeared separately during evolution. Nested traits, such as the very convex 
base of the corpus mandibulae present in the rhinocerotids Ceratotherium simum, Diceros bicornis

and Coelodonta antiquitatis, and the rugose frontal bone present in the former taxa plus 
Dicerorhinus sumatrensis (related to the emblematic diagnostic presence of a frontal horn), convey 
information regarding the relative stability of traits (Figure 4b). This asymmetric taxonomic 
distribution means that some traits are only present when the other trait is also present. Thus, we say 
that the latter, i.e. traits with larger in-degree (number of incoming type II edges), are more stable 
relative to other traits with which they co-existed. Such relatively stable traits are remarkable 
because they provide a structural backbone, around which the rest of the organismal traits changes. 
The detection of backbone traits suggests that past organisation constrains, and in effect biases, the 
future evolution of the traits that evolve in organisms. This is understandable from a systemic 
perspective, i.e. central or essential traits, for example those interacting with many others, have less 
flexibility to change than traits that are more peripheral in biological organisations. Nested traits can 
correspond to nested synapomorphies of clades, but it is not a logical obligation.  

Finally, overlapping traits are distributed across non-nested sets of taxa. For example, in 
panarthropods, the sclerotized pharyngeal ‘teeth’, and the terminal mouth opening orientation only 

occur together in Priapulus, Cricocosmia, Paucipodia, Hallucigenia sparsa, and Jianshanopodia,
while their evolution is dissociated in other organisms (Aysheaia, Siberion, Onychodictyon ferox,
Onychodictyon gracilis, Diania, Microdictyon, Cardiodictyon, Hallucigenia fortis,Halobiotus

(Eutardigrada), Siberian ‘Orsten’ tardigrade, Kerygmachela, Actinarctus (Heterotardigrada), 
Halobiotus (Eutardigrada), Hurdia, Supella longipalpa), in which they do not occur together. Such a 
distribution is a sign of complex evolution of the traits: it may involve losses, reversions, 
convergences, and/or parallelisms. When three traits entertain a type III relationship with each other,
they form a triangle in the type III trait network. A triangle means that the evolution of these traits is 
dissociated in at least some taxa, and suggests that the presence of these traits is not under a common 
developmental regulation over evolutionary time. A high proportion of triangles in the type III trait 
network means that a high proportion of traits can evolve in such a dissociated fashion, and therefore 
it measures a general dissociablity on traits in the studied organisms. We call organismal fluidity the 
fact the same traits (rather than different traits) can be found in distinct combinations. Organismal 
fluidity is higher when the proportion of triangles is higher, i.e. when the type III networks 
increasingly resemble a clique because the highest proportion of triangles obtains when all nodes are 
connected together by a type III edge in the graph. This fluidity should be not confused with the 
dissociations of genes produced by introgressive processes in prokaryotic taxa. The multiple traits of 
a single fluid metazoan are likely derived from a single common ancestor, however the genes coding 
for these traits, and thus the interactions between these traits, have not necessarily been subjected to 



simultaneous regulation, activation, and inactivation during organismal evolution, which decouples 
their presence in organisms. 

Finally, some traits (central in type D triplets, Figure 2) are alternatively found with traits that 
never occur together. We call these central traits ‘pivotal’, because they have taken part in distinct 
morphological organisations. This behaviour is an extreme form of versatility. The morphological 
organisations including a pivotal trait are all the more different (in terms of composition) than there 
are type D triplets centered on the pivotal trait. The detection of pivotal traits is a pre-condition to 
evaluate their role during organismal evolution. They may typically have been co-opted for novel 
functions, hinting at regulatory changes for their coding genes, or may have helped to recruit novel 
traits, before becoming superfluous.

3. Application to two palaeontological datasets

We investigated two datasets covering distinct geological intervals and phyla (Phanerozoic 
panarthropods and Cenozoic mammals). First, we recoded the data set in18, describing 141 traits 
present in 40 taxa of panarthropods, including 35 fossils and five members of extant lineages (see 
Methods and Supplementary Table 1A). The detection of type I relationships between traits returned 
14 complexes, which is significantly higher than expected by chance (Table 1). Finding complexes 
opens the intriguing possibility that maybe some character states that seemed to belong to different 
characters are in fact inseparable instances of a common developmental regulation, hence may 
constitute a single character that was not previously characterized as such. It is of course for the 
experts to determine whether they want to use the detection of unexpected complexes in this way, 
particularly for the 12 complexes, which associated traits from different regions of the body plan 
(such as cluster4 : Mouth + Head + Appendages, or cluster 2: Mouth + Head + Bodyplan, Figure 3a). 
Six complexes mapped perfectly with the organismal phylogeny, suggesting that each of these 
complexes was assembled once in a last common ancestor, and four complexes were on terminal 
branches. By contrast, cluster 14(the 3 neuromeres integrated into the dorsal condensed brain, and 
the deutocerebral innervation) shared by S. longipalpa, Fuxianhuia, Alalcomenaeus, or cluster 3 (the 
pre-oral chamber and sclerites comprise stacked elements) shared by Hallucigenia and E.

kanangrensis are, for example, not merely explained by common ancestry since these taxonomic 
groups do not correspond to clades on the ecdysozoan phylogeny18. Secondary losses or convergent 
evolution likely occurred for these complexes. Remarkably, all of these 14 complexes are small. The 
largest complex merely associates four traits. Four other complexes associate three traits, and the 
nine remaining complexes associate two traits. Such small and rare complexes, encompassing a total 
of 34 traits, represent only limited portions of the morphological toolkit of organisms. Therefore, 
most traits of panarthropods present in this dataset do not form undissociable groups during 
evolution. Consistently, there are 1,766 type II edges, associated traits that are occasionally 
decoupled, which is significantly higher than expected by chance. These pairs of traits with nested 
taxonomical distribution are very rarely clades: only 78 (4.4%) of the type II edges correspond to 
nested clades; 381 (21.6%) correspond to a clade included in a non monophyletic group, and 1307 



(74%) correspond to two nested non monophyletic groups. For example, the distribution of 
annulation on trunk and limbs convergently evolved with the presence of secondary structures on 
non-sclerotized (lobopodous) limbs, the latter never existing without the former (Figure 3b). Thus, 
nested traits cannot usually be simply explained by the evolution of synapomorphies. Detailed 
analysis of type II edges, contrasting in-degrees and out-degrees for all traits of the network, shows 
that the organisation of the pieces forming the “puzzle” of panarthropods is rather labile: no trait is 

especially stable in a large number of taxa. The vast majority of traits have similar and rather small 
in-degrees. However 42 traits, such as the paired appendages, the permanently inverted pharynx or 
distinct pre-ocular limb pair, were significantly more stable relatively to the other traits than 
expected by chance (Supplementary Table 1C, Figure 3a), introducing backbones, around which 
various combinations of morphological pieces have evolved in panarthropods. The majority of these 
significantly stable traits involves character states from different characters, but 16 of these traits 
were couplets, i.e. alternative states of the same features, such as the ventral and the posterior mouth 
opening orientation, indicating that a minority of the characters of panarthropods are structurally 
more stable.  

Additionally, there were 2,937 type III edges in the trait network. Although significantly less 
abundant than by expected by chance, these relationships provide supplemental evidence of the 
general dissociability of traits during panarthropods evolution. The density of the type 3 graph 
reaches 0.38, and its diameter (defined as the longest shortest path that must be traversed to connect 
any pair of nodes in this graph) is 4. Altogether, these graph measures confirm that the evolution of 
panarthropods frequently involved similar traits albeit in different combinations in different 
organisms. Interestingly, 10 traits, such as the uniform distribution around the pharynx of pharyngeal 
teeth or aciculae appear significantly overrepresented at the center of type D triplets (Supplementary 
Table 1D). All these pivotal traits come from different characters, and suggest some transitionist10

changes at the morphological level that occurred during the gradual evolution in panarthropods29. For 
example, after lobopodous organisations, lobopodous organisations with the trunk exites evolved, 
then distinct organisations with both trunk exites and appendages comprising fewer than 15 
podomeres evolved, and finally a third organisation with appendages comprising fewer than 15 
podomeres (Extended Data Figure 3).  

Overall, mapping unstable, stable, significantly stable and pivotal traits on the body plans of 
panarthropods allowed us to analyze whether in different regions of the body plan the morphology is 
affected by different evolutionary processes. Most unstable traits (i.e. relatively to other traits that 
showed a broader taxonomic distribution) can be found in all body compartments, to the exception of 
the eyes, already well-structured in panarthropods (Figure 5). These unstable features occur mainly 
in the anterior parts. In general, Onychophora and Tactopoda display comparable proportions of 
unstable traits (Exact Fisher test, p-value 0.62). However, unstable traits are not evenly distributed in 
the same body regions for these two groups (Extended Data Figures 4, 5, 6). The “brain”, “first post-
ocular” regions (and to a lesser extent “mouth” and “appendages” of Onychophora appear to be 

evolutionarily more flexible than those of Tactopoda. This trend is even more pronounced when the 
stability of traits exclusive to Onychophora is compared with that of traits exclusive to Tactopoda. 
This difference in modes and regimes of evolution along the body plan is likely explained by the 
diverse feeding adaptations in marine fossils of Onychophora, and thus highlights the high 



evolvability of this clade. By contrast, Tactopoda display a greater proportion of exclusive stable 
traits, likely correlated with the stability of the body plan of Euarthropoda and Tardigrada, even 
though their “heads” in general show proportionally more unstable features than Onychophora for 
this dataset. This observation is consistent with the evolutionary importance of this body part for 
Tardigrada, rightly described as walking heads. Overall, our analysis of trait stability provides 
complementary evidence that Onychophora and Tactopoda show distinct evolutionary profiles, 
compatible with the recent proposal of the monophyly of each clade.  

Second, we recoded a data set primarily modified from19,20, describing 120 traits present in 21 
taxa of ceratomorph mammals, without missing data, primarily focused on rhinocerotids (rhinos), 
and including 15 fossil species and 6 members of extant lineages among rhinos and tapirs (see 
Methods and Supplementary Table 2A). We detected eight complexes, which does not differ from 
expectations by chance (Table 1). Six of them associated traits from different regions of the body 
plan (Figure 4a). More precisely, complexes occur at both terminal (1, 3, 4, 6, and 8) and internal
nodes (2, 5, and 7). They are mainly documented in the subfamily of living rhinos, the 
Rhinocerotinae. Within the latter clade, Miocene Aceratheriini have two dental-based complexes 
(complexes 7 and 8) and the short-limbed and hippo-like teleoceratine Brachypotherium brachypus

yields a jaw- and teeth-based complex (complex 4). Two-horned rhinos, either living (Sumatran, 
white and black rhinos) or recently extinct (woolly rhino), comprise more integrative complexes, 
containing skull and tooth characters (complexes 1 and 3), skull and forelimb characters (complex 2). 
The most inclusive complex (complex 5) encompasses jaw, tooth, and forelimb features, observed in 
the morphologically well-supported woolly, white, and black rhino clade19. Conversely, no complex 
characterises the sister group to Rhinocerotinae, i.e., Elasmotheriinae. At first sight, all complexes 
located at internal nodes involve closely related taxa: complexes 2 (two-horned rhinos), 5 (grazers 
among two-horned rhinos), and 7 (Aceratheriini). In other words, they may be good indicators of 
strongly supported morphological clusters. Moreover, one complex concerns the non-rhinocerotid 
taxa of the rhino dataset, i.e. the outgroups (the extant Brazilian tapir Tapirus terrestris and the early 
diverging hyrachyid Hyrachyus eximius) gathering tooth and hind limb characters. 

As for panarthropods, all of these complexes are small, associating at most four traits. 
Collectively, complexes encompass a total of 22 traits, hence less than 18% of the morphological 
toolkit of rhinos. Most traits of rhinos happen to be dissociated during evolution. Consistently, there 
are 5,100 type II edges, which is significantly higher than expected by chance. Only eight (0.16%) of 
the type II edges correspond to nested clades while 492 (9.6%) correspond to a clade included in a 
non monophyletic group, and 4600 (90%) correspond to two nested non monophyletic groups. For 
example, a distal articulation strongly oblique with respect to the trochlea on the astragalus 
convergently evolved with the orientation of lower molar hypolophids, the latter never existing 
without the former (Figure 4b). Interestingly, there was no reason to consider these postcranial and 
dental features as being related a priori. Thus, like for panarthopods, nested traits of rhinos cannot 
usually be simply explained by the evolution of synapomorphies. Fifty traits were significantly more 
stable relatively to other traits than expected by chance (Supplementary Table 2C), constituting a 
detectable backbone in rhinos. The majority of these significantly stable traits involves character 
states from different characters, but 18 of these traits were couplets, such as the narrow and the very 
broad rostral ends of the nasal bones, indicating that a minority of the characters of rhinos are 



structurally more stable. Among them, there is a certain predominance of “iconic” features (e.g., 

nasal and frontal horns, crown height, dental formula, shape of the last upper molar, and tridactylous 
hand), considered as diagnostic in pre-Hennigian/phylogenetic classifications, while phylogenetic 
analyses based on equivalent datasets have demonstrated that these traits were strongly tainted of 
convergence and/or parallelism19,20,30,31. In other words, these traits seem to be relevant for 
understanding the rhinocerotid body plan. 

Additionally, there were 16,063 type III edges in the trait network (significantly less abundant 
than expected by chance). The density of the type 3 graph was much higher than for panarthropds 
(0.71), as well as the proportion of triangles in the type II graph (0.43), for a comparable diameter (of 
2). These network metrics show that the evolution of rhinos also frequently involved similar traits 
albeit in different combinations in different organisms. For example, in some organisations a short 
metastyle on the first-second upper molars is present along with a low zygomatic width (with respect 
to frontal width), whilst in others such a low zygomatic width occurs with a crochet on upper molars. 
Conversely, neither a short metastyle and a crochet on upper molars, nor a short metastyle, a low 
zygomatic width, and a crochet on upper molars occurred simultaneously in any rhinocerotid 
(Extended Data Figure 7). Interestingly, 21 traits, such as the foramen mentale in front of p2 or at the 
level of p2-4, appear significantly overrepresented at the centre of type D triplets (Supplementary 
Table 2D), and they were in large majority couplets (16 out of 21; mainly on teeth, and to a lesser 
extent on jaw and limbs; e.g., tibia and fibula independent or fused). Be they plesiomorphic or 
derived states19, these features have taken part in distinct morphological organisations among 
rhinocerotids. 

Mapping the traits on the rhino body plan unravelled a significant regionalization of unstable 
traits (Fisher exact test, p-value 0.05) (Figure 6). These unstable traits were significantly more 
abundant in the cranio-dental region (c. 10% of cranio-mandibular and dental features) than in the 
postcranial region. Unstable traits consist of independent characteristics or singletons, instead of 
couplets. The total absence of unstable characters recognised for the body plan or the limb bones 
(0/66) was striking. The postcranial skeleton is remarkably stable within the controlled rhinocerotids 
with respect to cranio-mandibular region and teeth, pointing to an early implementation of 
postcranial Bauplan among rhinocerotids, without major changes since then. This is particularly 
contrasting with the results regarding the distribution of homoplasy in phylogenetic analyses focused 
on similar datasets19,30,31, where all the considered body regions yield a similar amount of 
homoplastic characters, further showing that instability does not equal homoplasy and that both 
network- and phylogenetic-based approaches are thus complementary in depicting distinct aspects of 
trait versatility. Other differences were not statistically significant. 

Overall, the panarthropod and rhino datasets show major discrepancies, in particular in terms 
of instability amount (28/141 vs. 19/229). These differences may be due to highly distinct scaling, 
both taxonomic and temporal: for comparable sizes (141 characters in 40 taxa vs. 229 characters in 
21 taxa, respectively), these data sets embrace representatives of either a superphylum 
(Panarthropoda) throughout the Phanerozoic interval (540 million years) or of a suborder 
(Ceratomorpha) during the last 50 million years. 



4. Discussion: “Fluid animals”

Our approach provides a new strategy allowing for complementary re-analyses of currently 
available data from a systemic perspective, in particular palaeontological data. Network analyses 
describing how associations of traits evolved should contribute greatly to a mechanistic explanation 
of evolution. They confirm that not all components of the anatomy of a given organism change at the 
same time, at the same rate, or in the same way, but probably as a result of various structural 
constraints, and that this heterogeneity of modes of evolution can probably not be captured by 
evolutionary models that treat characters as if they were evolving independently, since the 
uncoordinated model of traits evolution was rejected.  Moreover, our method highlighted traits with 
remarkable behaviour during evolution, in terms of their relative stability, their pivotal distribution, 
and their contribution to complexes. It showed that panarthropods and rhinos instantiate different 
sorts of fluidity, since relatively less stable traits are observed everywhere (but in the eyes) of 
panarthropods, yet only in the heads of rhinos. Moreover, the general observation that many of these 
animals traits are used repeatedly, in different combinations, in different taxa, which usually do not 
form clades, suggests that the genes encoding these traits might be inherited without expression (or 
decimation by genetic drift) from a common ancestor, and might be recruited into novel gene 
regulation networks during the course of evolution, unless similar traits can be invented on multiple 
occasions and coded from different gene sets, or traits losses are massive during organismal 
evolution.  

The former interpretations would agree with the description of the main developmental stages 
in terms of gene regulatory networks, proposed in the pioneering work by Britten and Davidson32,
now theoretically and experimentally validated9,33-36. As stated by9

, “it is obvious that if there is 

indeed a finite repertoire of network sub-circuits used to effect development, the evolution of 

development has to be considered as the process of assembly, reassembly, and redeployment of these 

sub-circuits.” A certain morphological fluidity echoes with this genomic fluidity. Thus, importantly, 
fossils could contribute to generate hypotheses about the role of important aspects of developmental 
evolution, namely regulation and heterochrony, in evolutionary changes, when the resulting network 
patterns suggest frequent parallelism, and convergence. Therefore, our analysis encourages an openly 
pluralistic modelling of organismal evolution, including trees and networks, and constitutes a major 
incentive to further couple developmental studies with palaeontological studies. Such consideration 
does not belittle the importance of phylogenetic reconstruction, but stresses the need for a further 
integration of network-thinking into evolutionary analyses2, because it has the potential to enhance 
the retrodictive dimension of evolutionary biology. Precisely, we hope that our study opens an 
avenue for network analyses of palaeontological data. In that process, the current implementation of 
COMPONENT-GRAPHER could be critically improved. On the one hand, the use of variable, non-
applicable, and missing tokens may be considered in the future. On the other hand, while we report 
here an apparent major signal of organismal fluidity, as with any comparative analysis, the 
conclusions still depend (to some extent) on the quality of the available matrix. A different treatment 
of missing data may affect the inference regarding the general dissociablity of traits, even though the 
rhinocerotids dataset was not affected by this possible bias.  

Interestingly, because our graph-theoretical approach investigates types of distribution of 
traits (or more generally components) at higher levels, without the absolute need for an underlying 



phylogeny, it could already be broadly applied to analyse organisations from the molecular level (i.e. 
by analysing the distributions of active sites across homologous genes) up to the ecosystemic level 
(i.e. by analysing the distributions of OTUs or species across environmental samples). In these -
omics days, the types (and amount) of data to be compared between taxa are increasing faster than 
accurate evolutionary models to describe their rules of changes are implemented. In that sense, 
networks can contribute to further the integration of systems and evolutionary biology. We believe 
such an evo-systemic could be especially informative, since evolution from molecules to ecosystems 
depends on changes in organisations as well as on the divergence and merging of lineages.

Methods 

Constitution of the dataset. 

For panarthropods, we retrieved the dataset in18 describing 141 components present in 40 

Phanerozoic taxa, including 35 fossils and five extant species, and removed character states 

describing absent features to focus only on the components making up organisations (Supplementary 

Table 1A). For rhinocerotids, we used a matrix derived from19,20,30,31, including 120 morpho-

anatomical characters scored in 15 extinct and six living ceratomorph mammal species (tapirs, 

rhinoceroses and their kin), ranging from the last 50 million years (Supplementary Table 2A). Non-

applicable and missing characters were removed from the original matrix19, as well as insufficiently 

characterised fossil taxa, so that the dataset is fully documented for a taxonomic sample gathering all 

suprageneric clades usually recognised within Rhinocerotidae31.

Network construction and analyses. 

We implemented COMPONENT-GRAPHER (https://github.com/etiennelord/ComponentGrapher), 

and provided it with the above matrix to construct and analyse the network. To assess whether the 

results could have been obtained by chance alone, a permutation test based on the null hypothesis 

that characters states are randomly distributed among taxa is performed. Namely, this test permutes 

character states in each column of the data matrix in order to break the phylogenetic structure25. New 

networks are then obtained from these permuted data sets, from which the corresponding graph 

statistics are computed. The test values obtained from the actual data matrix are declared significant 

when the vast majority of the values obtained under the null hypothesis are more extreme than the 

original values. For each data set, the number of permutations was set so as to make sure that the 

corresponding p-values could reach a predetermined significance level fixed at 0.05, following a 

Bonferroni correction for multiple tests. 



Detection of stable components. 

Degree analysis of the network of inclusion (type II) quantifies the relative stability of each trait. 

Type II in-degree quantifies how many direct neighbours of a given trait point toward a given node, 

hence how many traits have a more restricted taxonomic distribution than a focal trait. Type II out-

degree quantifies toward how many direct neighbours each individual trait is pointing, indicating that 

a focal trait has a more restricted distribution than these neighbours. Very precarious traits have a 

null in-degree and a positive out-degree. By contrast, stable traits have a higher in-degree and a

lower out-degree. To determine which traits are more stable than by chance alone, another 

permutation test was applied directly to the nodes of the networks, using the same protocol as 

described above. A trait was declared to be significantly stable when its type II in-degree was more 

extreme than the vast majority (95%) of in-degrees obtained under the null hypothesis. 

Detection of organismal fluidity. 

The extensiveness of trait dissociability was tested by investigating topological features of the type 

III graph. We computed (i) the density of the graph of type III, (ii) the number of triangles, and (iii)

the diameter of the type III graph. The use of the same traits in multiple different morphological 

combinations, rather than their irremediable replacement in diverging lineages, produces dense type 

III graphs, with reduced diameters.  
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Legends: 

Figure 1. Principle of the matrix analysis. Our approach exploits existing phylogenetic data matrices 

featuring taxa as rows and homologous characters as columns. Each original column is replicated in 

as many new columns as there are character states (e.g. A2, B2), defining a new matrix of taxa by 

traits, where the presence of each trait is indicated by a ‘+’ and its absence indicated by a ‘-’. All 

pairs of columns of this new matrix are then compared with one another, distinguishing four types of 

distribution of traits across taxa, therefore characterising four possible types of relationships between 

all pairs of traits. 



Figure 2. Some remarkable network patterns and their biological meaning. The first column displays 
the relationships between a pair of traits (here character states). The second column represents the 
corresponding network pattern. The third column introduces the terms specifically used to describe 
and analyse these patterns. The fourth column highlights some possible biological meanings of these 
patterns. 



Figure 3. Phylogeny of panarthropods, modified from 18 to depict a) 14 trait complexes. Each 
complex is represented by its corresponding motif (each node represents a trait, each green edge 
represents the type I relationships between 2 traits) along the phylogeny, based on its taxonomic 
distribution. Each complex is also identified by a circled number; blue circles representing 
complexes shared by a common ancestor and all its descendants (putative synapomorphy), non-blue 
circles representing complexes whose distribution does not map simply onto the phylogeny 
(homoplasy). The top left squared box identifies the distribution of complexes over the main regions 
of the panarthropod body plan (H: head; M: mouth; E: eye; B: brain; PO: 1st post-ocular; BP: body 
plan; TT: trunk and tail; A: appendages). Blue letters highlight complexes of traits from different 
regions. b) Phylogeny of panarthopods showing 2 examplars of traits with type II relationships. The 
distribution of trait 120 is nested in that of trait 27 (clade within clade). The distribution of trait 99 is 
nested in that of trait 62 (non clade within non clade). 120 : Appendages comprise 15 or more 
podomeres | Fewer than 15 podomeres; 27 : Type of eyes | multiple visual units (including 
compound eyes); 99 : Secondary structures on non-sclerotized (lobopodous) limbs | present; 62 :
Annulation distribution | trunk and limbs. 



Figure 4: Composite phylogenetic tree of selected Rhinocerotidae, resulting from the parsimony 
analyses of19,20,30, based on 282 cranio-mandibular, dental, and postcranial characters, to depict a) 8 
trait complexes. Each complex is represented by its corresponding motif (each node represents a 
trait, each green edge represents the type I relationships between 2 traits) along the phylogeny, based 
on its taxonomic distribution. Each complex is also identified by a circled number; blue circles 
representing complexes shared by a common ancestor and all its descendants (putative 
synapomorphy), yellow circles representing a complex whose distribution does not map simply onto 
the phylogeny (homoplasy). The top left squared box identifies the distribution of complexes over 
the main regions of the rhinocerotid body plan (S: skull; T: teeth; J: jaw; BP: body plan; FL: 
Forelimb and HL: Hindlimb). Blue letters highlight complexes of traits from different regions. b) 
Phylogeny of Rhinocerotidae showing 2 examplars of traits with type II relationships. The 
distribution of trait 44 is nested in that of trait 23 (clade within clade). The distribution of trait 160 is 
nested in that of trait 217 (non clade within non clade). 23: Frontal bone: aspect|'rugose '; 44: Corpus 
mandibulae: base|'very convex '; 160: Lower molars: hypolophid|'transverse '; 217: Astragalus: 
orientation trochlea/distal articulation|'very oblique '. 



Figure 5: Schematic mapping of morphological traits on the panarthropod body plan. Main regions 
are indicated in boxes. Red squares are relatively unstable traits (i.e. type II in-degree is null); blue 
squares are relatively stable traits (i.e., type II in-degree is positive); yellow squares indicate traits 
with significant relatively stability (p-value < 0.05, permutation test). Numbers in squares correspond 
to NodeID. Black boxed squares correspond to traits that are significantly central in type D triplets 
(p-value < 0.05, permutation test). The barplot indicates the relative frequencies of traits in main 
regions of the panarthropod body plan, observed in all species. Areas in red/blue/yellow are 
versatile/relatively stable/significantly stable traits respectively. The main regions are H: head; M: 
mouth; E: eye; B: brain; PO: 1st post-ocular; BP: body plan; TT: trunk and tail; A: appendages.  



Figure 6:  Schematic mapping of morphological traits on therhinocerotid body plan. Main regions 
are indicated in boxes. Red squares are relatively unstable traits (i.e. type II in-degree is null); blue 
squares are relatively stable traits (i.e., type II in-degree is positive); yellow squares indicate traits 
with significant relatively stability(p-value < 0.05, permutation test). Numbers in squares correspond 
to NodeID. Black boxed squares correspond to traits that are significantly central in type D triplets 
(p-value < 0.05, permutation test). The barplot indicates the relative frequencies of traits in main 
regions of the rhinocerotid body plan, observed in all species. Areas in red/blue/yellow are 
versatile/relatively stable/significantly stable traits respectively. The main regions are T: teeth; S: 
skull; J: jaw; BP: body plan; FL: Forelimb and HL: Hindlimb. 



Table 1. Summary of network metrics with results of corresponding permutation test for a. 
Panarthropoda and b. rhinocerotidae.P-values were adjusted for multiple tests with a Bonferroni 
correction. Higher: significantly higher than expected by chance; lower:significantly lower than 
expected by chance; NS: non significant. 



Extended Data Figure 1. Pseudocode of the two algorithms in COMPONENT-GRAPHER 



Extended Data Figure 2. Co-occurrence networks for palaeontological studies. Each trait is treated 
as an individual node. Two nodes are directly connected by an edge indicating their type of 
relationship (I, II or III), but are disconnected otherwise (Type IV). This inclusive co-occurrence 
graph can also be decomposed into three networks: a green network of identity featuring only nodes 
connected by type I edges; a blue network of inclusion featuring only nodes connected by oriented 
type II edges, an arrow pointing from the least stable toward the most stable trait; a red network of 
overlaps featuring only nodes connected by type III edges. 



Extended Data Figure 3. Mapping of a type D triplet along the phylogeny of panarthropods. Each 
trait is represented by a different color. The distribution of trait 120 overlaps with that of trait 92; the 
distribution of trait 92 overlaps with that of trait 28; however the distributions of trait 120 and 28 are 
disjoint. 28: Sclerotized post-ocular (post-protocerebral) body appendages with arthrodial 
membranes | ‘lobopodous’ ; 92: Trunk exites | present; 120:Appendages comprise 15 or more 
podomeres | Fewer than 15 podomeres. 



Extended Data Figure 4. Schematic mapping of morphological traits on the onychophoran body 
plan. Main regions are indicated in boxes. Red squares are relatively unstable traits (i.e. type II in-
degree is null); blue squares are stable traits (i.e., type II in-degree is positive). Numbers in squares 
correspond to NodeID. Font colours represent the distribution of the traits: black, present in 
Onychophora and relatives; white, exclusively present in Onychophora. 



Extended Data Figure 5. Schematic mapping of morphological traits on the tactopodan body plan. 

Main regions are indicated in boxes. Red squares are relatively unstable components (i.e. type II in-

degree is null); blue squares are stable traits (i.e., type II in-degree is positive). Numbers in squares 

correspond to NodeID. Font colours represent the distribution of the traits: black: present in 

Tactopoda and relatives; white, exclusively present in Tactopoda.



Extended Data Figure 6. Relative frequencies of traits in main regions of the panarthropod body 

plan. Areas in red/blue are unstable/stable components respectively. Areas in grey are not 

represented. a: Traits observed in Onychophora (o) or Tactopoda (t). b: Traits exclusively observed 

in Onychophora (o) or Tactopoda (t). The main regions are H: head; M: mouth; E: eye; B: brain; PO: 

1st post-ocular; BP: body plan; TT: trunk and tail; A: appendages. Significant differences are 

identified by *.  



Extended Data Figure 7. Mapping of a type D triplet along the phylogeny of rhinocerotids. Each 

trait is represented by a different color. The distribution of trait 27 overlaps with that of trait 99; the 

distribution of trait 27 overlaps with that of trait 115; however the distributions of trait 99 and 115 

are disjoint. 27: Zygomatic/frontal widths|'less than 1.5 '; 99 : Upper molars: crochet|'always present 

' ; 115 : M1-2: metastyle|'short '. 



III.3 LINGUISTIC EVOLUTION 

 The origin of language is linked with the emergence of modern humans (Homo 

sapiens) some 200 000 years ago (Dediu and Levinson 2013). The emergence of human 

language drastically changed the character of human society, but we still know little about the 

details of this process. For a long time biologists and linguists have been noticing surprising 

similarities between the evolution of life forms and languages, although, the objects studied in 

biology (e.g genes and genomes) and linguistic (e.g words, languages) are different.  

 In the 19th century, Charles Darwin (1809-1882) and  August Schleicher (1821-1868), 

a linguist working in Jena (Germany), compared the evolution of languages with the evolution 

of species (Darwin 1859; Schleicher 1863). August Schleicher propagated what he called the 

Stammbaumtheorie (family-tree theory) (Schleicher 1853a; 1853b), a genealogical 

classification of language varieties arranged in a genealogical tree (Figure 18). This 

classification system based on branching trees, was a major development in the study of Indo-

European and other language families (Meier-Brügger 2002).  

 However, soon after the family tree model had first been proposed, many linguistics 

criticized the tree model for its simplicity. This tree model was reproached to mask the 

complexity of language evolution (Schmidt 1872). For those tree opponents, language 

evolution could not be explained simply as a tree-like differentiation, since horizontal 

transmission often plays an equally important role for the development of languages 

(Schuchardt 1900). In linguistic, this process is called lexical borrowing which is the transfer 

of a word from one language to another (Weinreich 1953). This adaptation of foreign 

Figure 18: The first genealogical tree of the Indo-European languages created by August Schleicher in 1863. 
(source: Compendium der vergleichenden Grammatik der Indogermanischen Sprachen)



elements is usually a result of language contact, such as contact between speakers of two 

different languages. Borrowing is not restricted to the concrete integration of foreign words 

from one language into another, but can also happen purely semantically, if bilingual speakers 

start integrating structural aspects of one language into the other (Weinreich 1953).

Borrowing is similar to horizontal gene transfer in evolutionary biology. 

 In 1872, Johannes Schmidt introduced the Wellentheorie (waves theory) (Schmidt 

1872) which states that certain changes spread like waves in concentric circles over 

neighboring speech communities (Figure 19).  He claimed that these waves were independent 

of each other, and are not necessarily nested. For linguists who investigate the evolution of 

language varieties, grammatical features, and words, both models (the trees and the waves) 

are each illustrating one crucial aspect of language evolution.   

  

 Many linguists assume that the two models are complementary with the tree model 

representing the genealogical processes and the wave model representing complex contact 

relations between languages. Surprisingly, not many attempts were made to combine tree and 

wave in a common framework (Southworth 1964). 

Figure 19: Distribution of Indo-European languages seen in term of the waves theory.
(After Schmidt and Lehmann).



 Similarly to what happened in evolutionary biology, an obvious solution, which was 

also pointed out early by linguists, are network models, which could easily handle both 

vertical and horizontal relations between languages (Nelson-Sathi et al. 2011). The first 

explicit network approach was presented by Bonfante in 1931, and tried to depict the 

historical relations between the major branches of Indo-European (Bonfante 1931). Since 

Bonfante, several network-based studies have been proposed (Geisler and List 2013).   

 Linguistic networks are characterized by a high level of abstraction compared to 

networks in other areas of research. Words can be linked because they share the same context 

(semantic network), same sounds (phoneme network) or a common ancestor (cognates 

network) (List et al. 2016a). In addition to representing language history with the help of 

networks, networks can be used for many additional purposes: They can be employed to 

search for homologous words in the same way as biologists use them to search for 

homologous genes, for example, with help of similarity networks. In the previous chapters, it 

was explained that SSN were useful in the detection of homologous genes forming highly 

divergent gene families. In linguistics, homologous words, having descended from a common 

ancestor, are called cognates. Similarity networks can be used to search for highly diverse 

cognate sets across languages (List et al. 2016b). Moreover, network-based methods can also 

be used to detect non-tree like aspects of language history, like, for example, compound 

words, which are similar to composite genes (Figure 20). Many metrics defined for networks 

exist, which can help investigating the relationships between similar components across or 

within the same language. They can address the properties of a single node or a pair of nodes, 

but can be extended to the whole network by averaging. 

  

Figure 20: Similarity networks reconstructed from local alignments for dialect words meaning ‘face’ in 20 

Chinese dialect varieties.
The data contains three variants, two simple words liǎn and mián, two words of different origin, and one fused form 
liǎn-mián. Numbers in the alignment reflect tone patterns, which are characteristic for South-East Asian languages. 
Edges colored in black differ in their local and global alignments, edges colored in gray show identical alignments 
for local and global analyses. The fused form serves as a hub connecting the two components.



 Words as well as genes evolve through multiple evolutionary processes. Although the 

evolution of these two different objects share some common processes, there are also specific 

ones. In the article n° 8, we compared important evolutionary processes in biology and 

linguistics and identified specific and common processes in these disciplines (Figure 21). We

introduced new process-based analogies in biology and linguistics that support the transfer of 

phylogenetic and network methods, from biology to linguistics, to automatize the detection of 

common ancestry and multi-level introgressive processes. We showed that interdisciplinary 

approaches can be fruitful, since methods, models, and research programs can be transferred, 

creating added values in both disciplines. This article has been accepted and published in the 

journal "Biology Direct". 

  

  

Figure 21: Contrasting purely linguistic, purely biological, and analogous processes in linguistics and biology.

For Process-Based Analogies, we contrast the biological term with the linguistic term, if both disciplines address the 
processes in their terminology. See the text for further clarification
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Background
Biological objects on Earth have been evolving for billions

of years. The origin of language evolution dates back to

only about 200 000 years ago. The specific aspects of the

evolution of life forms and the evolution of languages are

traditionally investigated by the disciplines of evolution-

ary biology and historical linguistics. The research objects

of the two disciplines differ greatly. Biology deals with sub-

stantial objects, that is, objects with a concrete physical

manifestation. Languages, on the other hand, are ‘prod-

ucts of the human mind’ ([1], p. 144). They are intellectual

objects ([2], p. 72), that is, objects whose manifestation

is based on the interaction between humans. They are

realized physically, be it when they are spoken or written

down, but their realization is dependent on the existence

of individuals who speak and understand them, and in this

way, language systems are constantly being reconstructed

by new speakers who learn them [3].

Similar models have been developed independently

in the history of both disciplines. Both biologists and

linguists have a long tradition of using trees to model

diversification by a genealogy. Trees were independently

popularized by August Schleicher (1821–1868) in 1853

[4] and Charles Darwin (1809–1882) in 1859 [5]. Both

fields also share a more recent tradition of using networks

to capture reticulation, although early network models of

languages [6–9] (see [10, 11]) and life forms [12, 13] (see

[14]) even predate the classical family trees [4, 5, 15–17]

(see [10, 14, 18], and Fig. 1). Some processual similarities

are also reflected in the methods independently devel-

oped and applied in both disciplines, such as, for example,

cladistic approaches and alignment analyses. In linguis-

tics, approaches for subgrouping based on shared inno-

vations (or shared derived characters) date back to the

end of the 19th century ([19], p. 24). In biology they

were independently developed in the middle of the 20th

century [20]. At about the same time, first approaches

to numerical tree reconstruction based on distance data

can be found in both disciplines [21, 22]. Although only

sporadically applied and never fully automatized, early

examples in which linguists aligned corresponding sounds

in multiple homologous words can already be found in the

early 20th century [23–25]. In biology, automatic meth-

ods for sequence alignment were developed from 1970

onwards soon after the rise of molecular biology [26–28].

Both biologists and linguists also struggle with com-

mon epistemological limitations, since the processes they

investigate lie in the past, which is why uniformitarian-

ism, the assumption that the processes observed today do

not differ much from the processes which happened in the

past ([29], p. 165), still plays an important role in biology

and linguistics [30–32].

Apart from similar models and methods developed

independently, there was and is also a considerable

amount of explicit transfers between the two disciplines.

An early example is the intimate intellectual exchange

on Darwin’s evolutionary theory and its implications

for the study of languages between the biologist Ernst

Haeckel (1834–1919) and the linguist August Schleicher

(1821–1861) [33]. According to this correspondence, it

was Haeckel who brought Schleicher’s attention to the

work of Darwin. Schleicher was deeply impressed by

the similarities of the research objects in such different

domains ([34], p. 6). He emphasized, however, also that

these parallels would only hold for the essential features,

not for the details ([33], p. 29). Haeckel, in turn, took

inspiration from Schleicher’s language tree diagrams to

promote evolutionary tree drawing in biology ([10], p. 300).

In the 20th century, especially the early work on genet-

ics, not long after the correct modelling of the structure

of DNA byWatson and Crick [35], was characterized by a

strong linguistic influence. This is reflected in the multi-

tude of linguistic terms, like ‘alphabet’ and ‘word’ [36] or

‘translation’ [37], which were used to describe biological

phenomena in the biological domain [38]. While, as indi-

cated by Eugene V. Koonin (one of the reviewers of this

manuscript), the majority of these terms reflected mere

metaphors of which only a minority became later inte-

grated into the standard terminology of biology (see also

[39]), we can also find examples for the explicit trans-

fer of linguistic methods and theories to the biological

domain. Thus, up to today, the theory of formal grammar

[40] plays an important role in addressing certain prob-

lems in bioinformatics [41], like RNA folding and protein

structure analysis, and it is not uncommon for biolog-

ical textbooks on sequence comparison to also include

a chapter on formal grammars ([42], pp. 233-259). This

influence is not restricted to classical models of grammar

[43]. Advanced models, like tree adjoining grammar, have

likewise been used for RNA structure prediction [44],

and inherently linguistics methods, like methods for doc-

ument prediction, have been successfully applied for the

task of protein classification [45]. During the last twenty

years the direction of interdisciplinary transfer has turned,

and many methods originally designed for applications in

evolutionary biology have been applied to linguistic data.

These include algorithms for phylogenetic reconstruction

[46, 47], phylogenetic network approaches [48–52], multi-

ple sequence alignment [53–55], and homolog identifica-

tion [55, 56].

In the following, we will argue that these transfers can

be further enhanced. By shifting from the comparison of

research objects to the comparison of processes affecting

the research objects in the disciplines, wrong analogies

due to an exaggeration of similarities and a neglection of

differences can be avoided. At the same time, the iden-

tification of important processes, common to language

and biological evolution, can give rise to new, potentially
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Fig. 1 Timeline of early tree- and network diagrams in linguistics (top) and biology (bottom). Schottel’s branching table of Germanic languages from
1663 is the earliest we could identify. The three following early diagrams in linguistics by Stiernhielm (1671) [7], Hickes (1689), [9], and Gallet (1800) [8]
all contain reticulation, real trees only start with Ćelakovský and Schleicher (1853) [4, 15]. The situation is similar in biology, where the two schemas
by Leclerc De Buffon (1755) [12] and Rühling (1774) [13] allow for reticulation, in contrast to Lamarck (1809) [17] and Darwin (1837, 1859) [5, 16]

fruitful analogies. For linguistics, these transfers offer new

theoretical and practical ways to explain the mosaic distri-

butions of words across related and unrelated languages,

with and without invoking processes of lateral transfer. A

new analogy between the process of word formation in

linguistics and protein assembly in biology offers a fresh

perspective on the idea of a protein grammar [57] and can

inspire newmethods andmodels in both fields. Invoking a

system perspective can further help to demystify the phe-

nomenon of convergent evolution in languages resulting

from common descent.

Process-based analogies
The striking similarities between biological and language

evolution opt for a systematic investigation of analogies in

the two disciplines. Such an investigation may cumulate

in a program whose objectives would be (a) to investigate

the isomorphy of processes, methods, and models in the

two disciplines, (b) to foster the development of models

lacking in either of the disciplines, and (c) to reduce the

duplication of effort. Such a program, very close to the one

proposed by the Society for General Systems Research in

1954 (as reported by ([58], p. 13)), would further ‘promote

the unity of evolutionary science through improving com-

munication among specialists’ (adapted from ([58], p. 13)).

A multitude of analogies between biology and linguis-

tics has been proposed in the past 200 years [59]. Lan-

guages have been compared with organisms ([60], p. 16f ),

species [61], microbes [49, 50], mutualist symbionts [62],

and populations [63]. Words have been compared with

cells ([33], p. 23f ), amino-acids [64], codons [65, 66] and

genes [61]. Sounds (phonemes) have been compared with

nucleic bases [65, 67] and atoms [64]. Only a small amount

of these analogies has received broader attention, many

have been rejected quickly after they were first proposed,

and only recently, an explicit transfer of methods and

models has been initiated [68].

We find two main reasons why the majority of analogies

that have been proposed between biology and linguis-

tics have not turned out to be fruitful on the long run.

First, most of the proposed analogies are object-based,

taking the research objects as their main comparandum.

Second, given the different media in which the research

objects in the two disciplines manifest, it is well likely

that the number of discipline-specific phenomena largely

exceeds the number of commonalities. As a result, all
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analogies which are proposed between the two disciplines

should be rigorously checked, and methods should never

be blindly transferred but always carefully adapted to

the specific needs of the target discipline [55]. Object-

based analogies bear a high risk of overstating similari-

ties in interdisciplinary research and may easily lead to

wrong conclusions and inadequate transfer of methods

and models. Schleicher, for example, compared languages

with organisms and derived from this comparison the

hypothesis that languages would also grow old and die

[33, 59]. To circumvent this problem we propose to con-

centrate on analogies between processes. Process-based

analogies (PBA) are explicitly agnostic regarding further

analogies between the research objects themselves. In tak-

ing processes as our starting point, we build on general

approaches to analogy, which usually claim that the core of

analogy are similarities of functions [69]. Focusing specif-

ically on processes rather than functions is justified by

the evolutionary background of biology and linguistics:

processes serve as the major explanans in evolutionary

research. Identifying analogies between evolutionary pro-

cesses in these two fields as different as biology and

linguistics may thus contribute to a unifying explanatory

framework of evolutionary processes. Even when basing

analogies on processes, however, we should not forget

that we are dealing with very different disciplines, and

any methodological transfer should be accompanied by a

careful adaptation of methods to the needs of the target

discipline. Future research will need to decide whether we

the proposed analogies reflect general evolutionary pro-

cesses or processes specific to the respective disciplines.

Our uncertainty regarding the extent to which a unifica-

tion of evolutionary processes in biology and linguistics is

possible is reflected in Fig. 2, where we have marked the

degree by which the processes in the disciplines overlap

with a question mark.

The focus on processes produces potentially fruitful

novel analogies. It can also identify processes that seem

to be exclusive to one of these two historical sciences

(Fig. 2). Among the exclusively linguistic processes, we

identify such processes as sound change (Fig. 2:14), seman-

tic change (Fig. 2: 16), or purification (Fig. 2: 10). Neither

of these processes seems to have a biological counterpart:

It has been proposed to compare sound change in lin-

guistics with concerted evolution in biology [67], but we

think that the analogy between the two processes does not

completely hold. In concerted evolution, two traits change

in a similar manner. During sound change, the phoneme

system of a language changes [70]. An analogous pro-

cess in biology would be a process in which the canonical

amino acids constantly changed during evolution. Dur-

ing semantic change, the associations between words and

concepts are restructured ([55], pp. 24–27). One might

think of comparing this with changes in the regulation

of genes in a genome which may yield drastic changes

in function [71]. However, while biological function is

still determined and restricted by the nucleic and proteic

forms, no necessary limits are imposed on the associa-

tion between forms and meanings in natural languages:

the association is arbitrary in the sense that a substan-

tial link between form and meaning in languages is not

necessary [72, 73]. Purification is a process by which lan-

guage change is actively triggered with the goal to preserve

the pure state of one’s mother tongue. One paradigmatic

example for this kind of change is the Romanian lan-

guage which was heavily influenced by neighboring Slavic

varieties, until, around the end of the 18th century, nation-

alist movements triggered a purification process by which

Slavic loanwords were successively replaced with native

Romance words [74].

Exclusively biological processes include, among others,

asexual (Fig. 2:6) and sexual reproduction (Fig. 2:12), but

most likely also natural selection in a strict sense (Fig. 2:9).

Some scholars claim that there is evidence that certain

aspects of languages, like their sound systems, correlate

with environmental factors [75], while other aspects, like

their morphological complexity or the way they change,

correlate with demographic factors [76, 77]. But languages

are not independent of the ones who use them. They repli-

cate via acquisition (of one’s first language, Fig. 2:4) and

learning (of a further language, Fig. 2:1). Although we

cannot exclude, that selection processes in biology and

linguistics are similar and that a common theory of fitness

could be derived [78], and that languages, for example, dif-

fer regarding the difficulty with which they can be learned,

we think it would be premature to draw any process-based

analogies here. Linguists tend to avoid the discussion of

the fitness of languages due to its political and cultural

implications, emphasizing that all natural languages are

learnable within the normal time span that children need

to acquire a language. There are also no known cases

of languages becoming abandoned by their speakers due

to their difficulty, since speakers always slightly adjust

their languages to fulfil their communicative needs and

thus maintain the functionality of their most important

communication tool. Even if ease of transmission was a

factor potentially influencing language evolution, as sug-

gested by W. Ford Doolittle (the first reviewer of this

manuscript), learning difficulty is by no means the sole

factor that leads to language spread. The spread of English

as a major second and first language, for example, was

largely due to political factors, depending on those who

carry the language rather than the language itself. It was

not the rather simple grammatical structure of English

that favored its spread but the fact that large powerful

countries in different parts of the world use English as

their first and official language. That the speaker size

and especially the amount of second language speakers
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Fig. 2 Contrasting purely linguistic, purely biological, and analogous processes in linguistics and biology. For Process-Based Analogies, we contrast
the biological term with the linguistic term, if both disciplines address the processes in their terminology. See the text for further clarification

may have an impact on the way languages evolve is most

likely [76, 77]. In order to be able to assess the various

factors more substantially, however, much more research

is required in the future, and we are careful in draw-

ing any analogies with biological processes, as we still

do not know enough about all the mechanisms involved

in language evolution. For this reason, we are careful in

identifying a direct counterpart process of natural selec-

tion in the linguistic world. There is ample evidence that

some kind of selection occurs during language evolution

[79, 80]. This selection is often called cultural selection,

and we place it among the exclusively linguistic processes

(Fig. 2:7).

The large amount of disciplinary-internal processes for

which we could not find any counterpart is a challenge for

current research in the evolutionary sciences, and a spe-

cific challenge for biologists and linguists. One the one

hand, future research may show that some of these pro-

cesses actually have counterparts in the other discipline,

on the other hand, we may make progress in explaining

why those processes are unique to a specific domain. In

both cases, we will gain deeper insights into both the unity

and the disunity of evolutionary processes across disci-

plines. But at least as important as the differences are the

newly identified commonalities, which we will discuss in

detail in the following section.

New analogies for biology and linguistics
The PBAs which we identified can be roughly divided

into three categories, depending on the type of process

which is involved. Tree-like processes represent the clas-

sical Darwinian framework of descent with independent

modification between lineages, like divergence, and drift.

Introgressive processes represent a network model of evo-

lution in which lineages can influence each other after

divergence, be it lateral transfer and borrowing (Fig. 2:13),

hybridization and creolization (Fig. 2:8), or protein assem-

bly and word formation (Fig. 2:15). Systemic processes

represent a systemic model of evolution in which the

interdependence between the components of evolving

objects has a direct impact on the way they change

(Fig. 2:17).

Biological methods can help to automatize the

identification of homologous words

While the process of vertical descent is well established in

both linguistics and evolutionary biology, it is notoriously

difficult to define which words or other linguistic features

are historically related across languages. Identifying words

of common origin, for example, is of fundamental impor-

tance to compare diverging languages. In linguistics, the

term cognate is used to address those words which share

a common origin in which no lateral transfer occurred. So
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cognacy is, strictly speaking, not the same as homology in

evolutionary biology [81], although it is often used inter-

changeably. Just like gene trees can be used to infer species

trees in biology, sets of cognate words can be used to infer

the relationships between languages [61, 82]. Problemat-

ically, the identification of cognates suffers from numer-

ous practical limits. Traditionally, cognates are identified

manually in linguistics, without any help of computational

methods. But since the classical approaches to cognate

identification are notoriously difficult to apply, the num-

ber of words used in phylogenetic language comparison

is restricted to very small parts of the lexicon which are

assumed to be neutral with respect to culture and present

in all languages across all times. These basic parts of the

lexicon, which are supposed to change slowly, only consist

of about 200 words per language [83].

The overall number of words across languages varies

drastically, and it is difficult to come up with a reliable

statistics. However, given that near-native abilities of sec-

ond language learners for the major European languages

require the knowledge of about 4,000 to 5,000 words [84],

it is obvious that cognate sets in computational applica-

tions cover an extremely restricted set of words. Despite

this extreme restriction, only a fragment of the 7,000 lan-

guages spoken today have been thoroughly investigated.

Given a large and increasing amount of digitally available

data, the discipline can no longer be handled by manual

inspection alone.

In evolutionary biology, the problem of identifying pro-

cesses of vertical transmission in large amounts of data

has given rise to a large collection of methods to deal

with homolog identification. Some of these methods have

already been successfully adapted to linguistic needs [50],

thereby showing to biologists that their methods have an

even larger application range than assumed by those who

originally designed them. In order to enhance these meth-

ods further, sequence similarity networks could turn out

to be very fruitful for historical linguistics (see Fig. 3).

In biology, they can be used to identify highly divergent

gene families [85]. When adapting the biological similar-

ity scores used in sequence similarity network approaches

to linguistic needs, similarity graphs could be used to

search for highly diverse cognate sets across languages,

and, potentially, even language families, expanding recent

automatic approaches to search for deeper relationships

among the more than 400 identified language families of

the world [86].

Incomplete lineage sorting as an introgression-free

explanans for mosaic cognate patterns

Polymorphisms can create mosaic patterns of homolo-

gous genes, but also of cognate words. In linguistics,

they may occur on various levels, depending on the data

which is used to model language evolution (see Fig. 4).

Mosaic patterns can be tentatively explained by introgres-

sion (concrete borrowings or language contact in general).

In biology, however, another, introgression-free explanans

is also commonly considered. This alternative explanans

is incomplete lineage sorting (ILS, Fig. 2:5). In this pro-

cess, ancestral polymorphisms are not fully resolved into

lineages when rapid divergence occurs ([87], p. 351). ILS

was, for example, used to account for the fact that 30 % of

the human genes appear more similar to their homologs

in Gorilla than to their homologs in Chimpanzee [88]. In

the scholarly tradition of historical linguistics, there is no

term that might serve as a counterpart. The process, how-

ever, is well-known, and was inherently already addressed

when linguists like Johannes Schmidt (1843 – 1901) and

Hugo Schuchardt (1842 – 1927) refuted Schleicher’s fam-

ily tree theory of language divergence right after it was

proposed [89–91]. As shown in Fig. 4, there are various

sources for polymorphisms in language evolution. If poly-

morphisms created from word formation (see below) or

lexical replacement are resolved after rapid divergence

of the languages, ILS creates patterns quite similar to

those observed with genetic alleles in biology. Impor-

tantly, phylogenetic methods in biology [92, 93] allow one

to reconstruct a lineage tree (i.e. a species tree) taking

Fig. 3 Sequence and word similarity networks. a In sequence similarity networks, sequences and similarities between sequences are represented in
a network. Sequences are represented as nodes, and similarities between sequences are represented as edges if they exceed a certain threshold.
Since evolutionary processes leave certain traces in the topology of these networks, they can be identified by applying standard network
techniques. b Since words can be modeled as sequences of sounds, it is straightforward to create networks which represent the similarity among
words. Due to the peculiarities of language evolution, however, similarity measures need to be specifically adapted to linguistic needs. As in biology,
linguists start from alignments, as illustrated for words meaning ‘sun’ in five Germanic languages, but specific scoring functions are used
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Fig. 4 Polymorphisms in language evolution. a Synonymy: languages have many nearly synonymous words (German Hals and Nacken both mean
‘neck’ in English). They can be interchangeably used to express one and the same concept. Near synonymy is often resolved by dropping one of the
two words. b Analogy: languages with complex morphology (case systems, etc.) often have irregular paradigms which consist of different stems
(like good, better, best in English). These paradigms are often resolved retaining only one form and adapting the other forms to this model (e.g., good,
gooder, goodest). b Derivation: words can be slightly modified by adding affixes (word derivation) or merging to words with each other
(compounding). Often, both the modified or merged forms can still be interchangeably used with the original forms. They can also replace the
original forms. d Incomplete lineage sorting: if rapid divergence occurs before the polymorphisms are resolved, they may yield patterns that seem
to be in contradiction with tree-like divergence

ILS into account. Considering the ILS process and the

associated methods could thus directly benefit linguistics.

The Indo-European language family is a prominent exam-

ple. Although the eight main branches of Indo-European

are well established, and even the system of the proto-

language is rather well understood, scholars have huge

problems in determining the exact branching order of the

eight groups. In the light of ILS, this may be less sur-

prising. Recent studies on ancient genome-wide data of

ancestral Europeans point to a rapid expansion of Indo-

European languages in prehistorical times [94]. A careful

investigation of the effects of ILS on language data may

bring supporting evidence from linguistics.

Network approaches shed light on introgressive processes

in language evolution

In addition to improving the explanation of the complexity

produced when intellectual objects of linguistics undergo

tree-like evolutionary processes (such as vertical descent

or ILS), PBA could also help linguists in their struggles for

handling introgressive processes. Introgressive processes

are a constitutive part of language evolution. Borrow-

ing of words, the PBA of lateral gene transfer [49–51]

(Fig. 2:13), is very frequent and may effect more than 40 %

of the stable parts of a language’s lexicon [95]. For the

task of automatic borrowing identification in linguistic

data, sequence similarity networks could again be useful.

In biology they are increasingly used to study lateral gene

transfer [96–98] and they could be employed in a similar

fashion in historical linguistics, as illustrated in Fig. 5a.

Introgressive processes in language evolution are not

restricted to processes like borrowing, in which two or

more languages interact, but they can also occur in one

and the same language. Words are often created from

smaller meaningful units from the same language (mor-

phemes) via processes of word formation [11]. Word

formation can be roughly divided into two processes:

derivation and compounding [99]. While compounding

creates new words by merging existing ones, derivation

uses affixes which cannot be used in isolation but only

when being attached to other words (compare, e.g., the

-ness in English sick-ness). Word derivation and word

compounding result in the emergence of word families,

that is, groups of words which are cognate within one

and the same language. Word families play an impor-

tant role in lexical organization: by decomposing words

into smaller meaningful units (morphemes), speakers can

quickly induce the meaning of words, even if they hear

them the first time. As a result, speakers can understand

between one and three times as many words as they know

[100]. The size of word families can vary drastically, be

it within one and the same or across several languages.

The 60,000 words of the standard lexicon of German, for

example, can be assigned to 8,000 word families compris-

ing between 1 and 500 words [102].

The immediate consequence of word families is that

cognate words across different languages are not neces-

sarily completely cognate but may often exhibit different

degrees of partial cognacy [81]. In Mandarin Chinese, for

example, the regular word for ‘moon’, yuè liàng, consists
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Fig. 5 Similarity networks applied to linguistic data. a Similarity networks are reconstructed from global alignments for words meaning ‘person’ in
Germanic, Romance, and Slavic languages (data taken from [101]). Five large connected components are identified. While three of them are
homogeneous regarding the language family and show true cognate sets common in the respective branch of Indo-European, the top-left cluster
contains words from all three branches. This cluster mainly shows Romance reflexes of Latin persona ‘person’. Slavic and Germanic words occurring
in this cluster are all borrowed. b Similarity networks are reconstructed from local alignments for dialect words meaning ‘face’ in 20 Chinese dialect
varieties (data taken from [132]). The data contains three variants, two simple words liǎn andmián, two words of different origin, and one fused form
liǎn-mián. Numbers in the alignment reflect tone patterns, which are characteristic for South-East Asian languages. Edges colored in black differ in
their local and global alignments, edges colored in gray show identical alignments for local and global analyses. The fused form serves as a hub
connecting the two components. Data and code to reproduce the networks is available from the data and material accompanying this article
(Additional file 1)

of two morphemes, the first one originally meaning

‘moon’ in isolation, and the second one meaning ‘shine’ in

isolation. In combination, they now mean simply ‘moon’.

In Cantonese, the Chinese variety spoken in Hongkong,

the regular word for ‘moon’ is jyut6 gwong1, with the first

morpheme being cognate with Mandarin yuè, but the sec-

ond element, which means ‘light’ in isolation, being not

cognate with the second element in Mandarin. Although

methods for automatic cognate detection have been

substantially improved over the last years [55, 103], none

of the methods proposed so far is able to handle partial

cognates across different languages. Word formation,

especially word compounding, however, is very produc-

tive in many languages, especially in South-East Asian

language families like Sino-Tibetan, Austro-Asiatic,

Hmong-Mien, and Tai-Kadai ([104], pp. 62–67) which

constitute more than 10 % of the worlds languages [105].

Compounding is not restricted to specific realms of the

lexicon but also affects the core vocabulary of languages

which is used in phylogenetic approaches. In the Chinese

dialects, for example, about 50 % of all nouns and more

than 30 % of all words in basic vocabulary are derived

from fusion or derivation [106]. In biology, sequence

similarity networks have been used to detect composite

genes [107]. In a similar manner, word similarity networks

could be used to automatically identify compound words,

as illustrated in Fig. 5b. In a recent pilot study, it is further

shown how a careful adaptation of similarity networks to

linguistic needs allows to identify partial homologies (as

the one between the Mandarin and Cantonese words for

‘moon’ shown above) with a high accuracy [106].

Towards a new linguistics of proteins

In 2006, Mario Gimona proposed an analogy between

the structure of proteins and the syntax of languages,

necessitated by the higher complexity of “protein gram-

mar” compared to “DNA grammar” [57]. This idea has

been sporadically followed up in the biological literature,

where the generation of new functions via the combina-

tion of different protein domains in biology is compared

with the new meaning that languages produce by com-

bining different words to new sentences [108]. The syntax

of a language is usually understood as the set of rules

needed to combine words to phrases and sentences which

native speakers accept as well-formed examples which are

“grammatically correct”. However, in linguistics, rule sys-

tems by which a set of elements are composed to create

elements of a higher order are not restricted to syntax

alone, but occur at various levels of organization [109].

There are phonotactic rules that handle the composi-

tion of sounds to form well-formed morphemes, there are

morphological rules by which morphemes can be com-

bined to form words, and there are even specific rules by

which sentences can be combined to form texts [110]. If

we take grammar as the cover term for any system of rules

which transforms a set of symbols into a sequence of a

higher order and function, the question for a grammar of

proteins is where to draw the analogy with human lan-

guages exactly? Here, we think that a PBA between the

process of word formation and the assembly of proteins

[111], will be much more fruitful for evolutionary biology

than the analogy between syntax and protein structure

(see Fig. 6). While the syntax of human languages is
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Fig. 6Word formation processes in the German language. Word derivation and word compounding are the major processes underlying word
formation. Word derivation involves the combination of bound morphemes (suffixes, prefixes, and infixes) with free morphemes (regular words of a
language). The graphic shows how the German Krankheitsverlauf ‘disease progression’ has been created in multiple stages by which the adjective
krank ‘sick’ was nominalized with help of the suffix -heit and later compounded with the nominal form of the complex verb verlaufen ‘to progress’.
Note that free morphemes may easily turn into suffixes during language change

extremely productive, being capable of creating virtually

unlimited numbers of different sentences, the rules under-

lying word formation are much more restricted. Similar

to protein evolution, only a small number of the the-

oretically possible words is ever realized in a language.

Similar to proteins, the words which are realized can

also be thought to form a single network of interrelated

sequences [112]. A recent study on word formation in

English and German further shows that the distribution

of morphemes across words resembles the distribution

of domains across proteins [113]. Although many aspects

still require further research, major processes of word

formation are well understood and have been investi-

gated from multiple perspectives, including evolutionary

[114] and cognitive aspects [115]. Especially automatic

approaches to the unsupervised detection of morphemes

date back to the 1950s [116], and many different meth-

ods have been proposed over the last decade [117–119].

A closer interdisciplinary exchange between biologists

and linguists during which similarities and differences

between the processes are identified might inspire new

methods and models in both biology and linguistics. In

biology, first attempts have been made to employ stan-

dard methods for natural language processing to study

protein domain promiscuity [120, 121]. As these attempts

were based on methods originally designed to analyze

syntax in natural languages, shifting the methodological

transfer to methods designed to analyze word forma-

tion might provide biologist with fresh and unexpected

insights.

Invoking a system-perspective to demystify the mysteries

of language drift

Almost 100 years ago, Edward Sapir (1884–1939) made

the strange observation that language change may pro-

duce strikingly similar phases after the divergence of

lineages, independent of areal contact or environmen-

tal influence [122, 123]. Sapir called this phenomenon

of convergence, seemingly conditioned only by common

ancestry, drift. Up to today, a more thorough investiga-

tion of the phenomenon is lacking, and many linguists

even discard it as a mystical observation [124]. If we

look at the evolution of systems, that is, the evolution

of interdependencies between components of evolving

objects as yet another common process in biology and lin-

guistics (Fig. 2:17), we find a possible explanans for this

specific kind of language change. Evolutionary biologists

distinguish two classes of interdependencies, depending

whether they evolved neutrally (as in presuppression) or

as a result of some selection. Typically, the evolution of

several complexmacromolecular machineries (such as the

ribosomes or the splicesomes, [125] could be explained

by a neutral increase of interdependencies between their

elemental components, while convergences in regulatory

networks (i.e. the fact that some patterns are more fre-

quent than by chance, such as the feed forward loops

in transcription networks) can be explained by consid-

erations on the structure of these networks, e.g. the fact

that sets of dependencies between elements stabilize or

destabilize the function of the collective system that these

elements form [71].
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From a linguistic perspective, the use of the systemic

perspective as an explanans for linguistic phenomena is

by no means new. The structuralist movement, originally

initiated by Ferdinand de Saussure (1857–1913) and later

popularized by Roman Jakobson (1896–1982) was sys-

temic in its core, assuming that ‘each system necessarily

manifests as evolution, while, on the other hand, evolu-

tion necessarily bears systemic character’ ([126], p. 68).

In historical linguistics, there is a large amount of lit-

erature on system-driven processes of language change.

These include work on grammaticalization [127], direc-

tion in language change [128], and interaction between

the varieties of one given language [129]. Likewise, it

might be useful to consider ratchet-like (irreversible) pro-

cesses which would affect linguistic systems in specific

states, just as processes of constructive neutral evolution

are assumed to affect biological systems [130]. The com-

mon change of languages which once diverged from a

common ancestor is thus no longer mystical, but sim-

ply a consequence of the interdependencies which they

inherited from their ancestor. It is more than likely that

the many components of languages present interdepen-

dencies affecting their stability and rates of changes. For

example, a recent use of sequence similarity networks

on phoneme diversity across Chinese dialects revealed

that phoneme diversity correlates with the grammati-

cal classes to which these words belong [131]. Hence

the internal grammatical structure of languages certainly

affects their evolution. Unfortunately, the majority of

investigations on interdependencies in linguistics is nei-

ther formalized nor quantified. investigations on inter-

dependencies in linguistics is neither formalized nor

quantified.

Conclusion
We reported unities and disunities between evolution-

ary processes in historical linguistics and evolutionary

biology. Common processes encourage the transfer of

methods that had not been proposed earlier. The success-

ful methodological transfer between the disciplines in the

past encourages us to systematize the efforts of unifica-

tion while at the same time being careful to not exaggerate

the degree of similarity. Given the strong influence of bio-

logical approaches to quantitative research in historical

linguistics in the past, the still low degree of quantifica-

tion in historical linguistic research, and the new analogies

which we proposed in this paper, it is clear that biologists

may have an important role to play, given that their meth-

ods have a wider scope than anticipated earlier. On the

other hand (following Schleicher’s idea proposed in 1863

[33]), given the amount and the subtlety of available his-

torical documentation about the evolutionary processes

that triggered linguistic diversity on earth, linguistic data

could serve as an additional litmus test for the accuracy of

biological methods, and biologists could profit from this

advantage in detailed documentation.

In concrete terms, we showed, how biological methods

can help to automatize the identification of homologous

words in linguistics, how incomplete lineage sorting may

serve as an introgression-free explanans for mosaic cog-

nate patterns, and how similarity networks can be used

to shed light on introgressive processes in language evo-

lution. Furthermore, by refining the analogy of protein

grammar, as a process-based analogy between the pro-

cesses of protein assembly in biology and word formation

in linguistics, both fields could profit from an interdisci-

plinary exchange and a deeper discussion of similarities

and differences between the processes underlying the

grammar of proteins and the processes underlying the

grammar of words. The increasingly recognized need to

account for the systemic dimension of evolution will likely

prompt further unification across these fields and further

interdisciplinary transfers. In the context of the theory of

constructive neutral evolution, it may, furthermore, offer

the long missing explanation for the mystical theory of

parallel drift in the evolution of diverging languages.

Recalling that – apart from new analogies between evo-

lutionary processes – we also identified processes which

are specific to either biology or linguistics, it is important

to keep in mind that the use of analogies should always

be handled with great care. Not all evolutionary processes

accounted for in one discipline necessarily need to have

counterparts in other evolutionary disciplines, even if it

is possible that future research will add process-based

analogies where we failed to identify them. General evo-

lution cannot be studied from within one discipline alone.

Although unifying strategies can be fruitful, evolutionary

explanations will remain fundamentally pluralistic since

there is no reason to assume that all processes are com-

mon between biology and linguistics. In order to get a full

picture of evolution, biologists and linguists need to com-

plement their studies, trying to identify cross-disciplinary

and discipline-specific evolutionary processes. If we want

to understand how evolution triggered the diversity of

substantial and intellectual objects on earth, we need to

consider at least these two sister-disciplines.
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Reviewer’s report 1: W. Ford Doolittle, Dalhousie
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I confess that I put off reviewing this because I feared that

I would not understand it, or else would find it unorig-

inal: how could there be anything new to say about the

similarities between historical linguistics and molecular
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phylogenetics? But I was wrong: I understand much of the

paper and do think it says some important new things.

Basically what the authors propose is that we get even

more serious about looking at the cross-applicability of

methods and concepts being developed in linguistics and

phylogenetics, particularly as these latter focus on evo-

lutionary processes – rather than on the entities that

evolve (words and proteins) – and also pay attention

to the constraints that give direction to such processes

such as syntax and molecular coevolution. Equally useful

will be identification of processes that do not appear to

be analogous between the domains. The authors suggest

sound change, semantic change and purification as purely

linguistic processes (the latter involving intent), and asex-

ual/sexual reproduction and natural selection as purely

biological.

It would be fun to argue about selection. The authors

admit that there might be “cultural selection” (based on

“egocentric”? or “content”? bias – see authors’ citation 70

[80]) that affect acceptance of certain elements within

a language. Might it not also be that certain languages

as systems are more likely to persist than others, either

because of their ease of transmission (surely some lan-

guages are easier to learn than others) or affect on their

speakers (surely language structure affects cultural “evolv-

ability” somehow and unwritten languages have obvious

limitations)? It may also be that in conceptualizing linguis-

tic natural selection we should accept that evolution by

natural selection can result from differential persistence

as well as differential reproduction. Frédéric Bouchard

(with whom the senior author has worked) has extensively

developed this concept for biological evolution.

Authors make a number of observations which seem

(to me, in my linguistic ignorance) novel, and well worthy

of pursuit. For instance, applying models of incomplete

lineage sorting (of alleles) to data in rapidly diverging lan-

guages seems a good idea, as does analogizing “the process

of word formation in linguistics and protein assembly in

biology”. It would be good to hear more about this and

about using networks to identify composite words, as the

senior author has already done for proteins (see their ref-

erence 94). It is also amusing that the numbers here are

so close. Authors claim that there are about 200 uni-

versally conserved “basic parts of the lexicon”, and that

second language learners need only master 4,000 – 5,000

words. There are maybe 200 universally conserved genes

among all genomes, and the average prokaryotic genome

has about 5,000 genes!.

Authors show a curious reticence to go all the way in

analogizing language and genome evolution. They con-

sider languages to be special since they are ‘products of the

human mind’ and note that “If there was no speaker of the

English language, a book containing Shakepeare’s Hamlet

would just be a collection of paper with ink blots”. Actually,

probably not. Surely clever Mandarin- (or even Martian-)

speaking cryptographers could make some sense of the

blots. And anyway, it’s analogously true that the sequence

of bases in the human genome would only be just a

sequence of bases without all the evolved machinery of

gene expression and environmentally-affected epigenetic

baggage, as opponents of genetic reductionism correctly

but so tediously insist.

Authors’ response: We thank the reviewer a lot for the

summary. We are glad that despite the initial reservations

of the reviewer our manuscript turned out to be compre-

hensible enough, also for those who are not experts in the

field of linguistics. The reviewer mentions that it would

‘be fun to argue about selection’ in the linguistic domain,

pointing to the possibility that persistence of languages is

linked to the ‘ease of transmission’ or ‘affect on [...] speak-

ers’. Although in preparing the manuscript, we talked a lot

about this issue in our interdisciplinary team, we decided

to cut it short in the paper, given not only the difficulty to

exhaustively grasp the forces at work in language evolution

but also due to the heat with which the topic is discussed

in linguistics. We refined the relevant passage by adding

some further reasons why we are still careful in drawing

the analogy, concluding, that in order to be able to assess

the various factors triggering “cultural selection” more sub-

stantially, much more research is required in the future.

Nevertheless, we agree with the reviewer that it would

be very interesting to follow up these questions in more

detail and we hope that our paper encourages researchers

from different disciplines to increase their interdisciplinary

work, looking for solutions to this and other problems

related to language evolution. We have slightly modi-

fied the relevant passage in the main manuscript, try-

ing to take the reviewer’s suggestions more closely into

account.

Regarding the proposed process-based analogy between

word and protein compounding, the reviewer further men-

tions that it ‘would be good to hear more about this and

about using networks to identify composite words, as the

senior author has already done for proteins’ [107]. As a

matter of fact, we have, while waiting for the reviews of

this manuscript, managed to carry out some more detailed

pilot studies along these lines, and a manuscript with the

title ‘Using sequence similarity networks to identify partial

cognates in multilingual wordlists’ has been accepted for

publication in the “Proceedings of the Association of Com-

putational Linguistics 2016 (Short Papers)”. In this study,

which would have gone beyond the scope of the current

paper, we show how a careful adaptation of sequence sim-

ilarity networks to linguistic needs allows us to identify

partial homologies in linguistic datasets with a high accu-

racy [106]. We have now modified the manuscript in such

a way that we directly mention this study along with a brief

example, thus showing that similarity networks can indeed
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successfully be used to detect homologies across compound

words in different languages.

As a final point, the reviewer mentions, with a certain

regret, that we ‘show a curious reticence to go all the way

in analogizing language and genome evolution’, which is

definitely correct, but not necessarily since we ‘consider lan-

guages to be special’, but more since our experience with

parallels proposed between the two fields in the past has

led us to be rather cautious. In earlier work on the develop-

ment of the family tree model in the discipline of linguistics,

in which the first author was involved [91], it could be

shown that – in contrast to the conviction of many scholars

– it was an independent development in both disciplines,

evoked by the emerging paradigm of uniformitarianism

that triggered the development of the tree model rather

than interdisciplinary transfer. One could thus argue that

– if only the processes are strikingly similar – scholars

may sooner or later come up with similar ways to handle

them, with or without analogies drawn between disciplines.

On the other hand, many of the analogies that were pro-

posed so far, be it the one between languages and organisms

by August Schleicher that was mentioned earlier in the

manuscript, or the recent one between sounds in languages

and nuclein bases in biology, turned out to be disappoint-

ing, unfruitful, and at times even completely wrong. While

holding back ourselves, we hope, nevertheless, that our idea

to start from common processes when searching for poten-

tially fruitful analogies will offer us and our colleagues a

tool to channel future methodological transfer across dif-

ferent disciplines. Furthermore, the reviewer has convinced

us that our statement that Shakespeare’s work would ink

blots on paper if there were no speakers of the English lan-

guage to read it was essentially ill-chosen, not serving the

point we wanted to underline, namely, the fact that the

medium in which the research objects are realized differs

largely in biology and linguistics, and that – in contrast

to biology – the aspect of transmission via learning repre-

sents a different process of replication and manifestation.

We therefore deleted the sentence from the manuscript.

Reviewer’s report 2: Eugene V. Koonin, NCBI, NLM, NIH, USA

Reviewer summary

The article by List and colleagues drawsmultiple analogies

between evolutionary processes in biology and linguistics.

To me, all, rather numerous articles and a few books that

I have read on comparisons between biology and linguis-

tics share the same, rather regrettable aspect: they seem

very attractive and enticing to begin with but then, disap-

point rather sorely. Regrettably, the present article is no

exception. Quite frankly, I find that the title of the paper

[original title: “Explaining evolution in biology and lin-

guistics using common processes”, note by the authors] is a

misnomer: nothing is explained here neither in biological

evolution nor in the evolution of languages.

I agree that the ’process-based analogy’ touted by the

authors makes more sense than the (apparently, more tra-

ditional) object-based analogy. I can also accept that there

is substantial ILS in linguistic evolution and that there is

some logic in the analogy between protein folding and

word formation. The problem is that, as a student of bio-

logical evolution, I cannot formulate the new perspectives

or ideas that I get from this article. Sadly, I think that I

learned nothing truly new and substantial except for some

details on the history of evolutionary linguistics and the

interactions between linguists and biologists, in particular

Schleicher and Haeckel (these historical details are fasci-

nating). I cannot rule out that linguists do get something

fresh out of this but the article has been submitted to a

biology journal, so one could expect there to be something

biologically relevant and perhaps interesting.

Authors’ response: We thank the reviewer very much

for his critical review. First, we agree that the title may

have been ill-chosen and changed it accordingly in order

to reflect more clearly the scope and content of the

manuscript. The new title “Unity and disunity in evo-

lutionary sciences: Process-based analogies open research

avenues for biologists and linguists” hopefully gives a much

clearer emphasis on what we wanted to discuss in the

paper, namely that we face common and distinct processes

in the evolutionary sciences, and that a focus on com-

mon processes rather than similarities in objects might

help better in identifying fruitful analogies between dis-

ciplines which may eventually open new possibilities for

future research.

Second, regarding the reviewer’s disappointment that

while showing potentially interesting possibilities of

methodological transfer from biology to linguistics, we

do not offer ‘something biologically relevant and perhaps

interesting’, we think it is important to emphasize that the

scope of this paper regards evolution in general. What we

want to show is that neither linguistic nor biological evolu-

tion are reducible to one another, even at the level of their

processes. Therefore, understanding evolution requires (at

least) these two complementary fields, which means that

the lessons from biological evolution (and from historical

linguistics) will never be self-sufficient to account for what

an evolutionist ultimately cares for: evolutionary diversity.

As biologists, we are compelled to work closer with linguists

if we want to learn about aspects of evolution that are sim-

ply – and will otherwise remain – foreign to us. That is one

lesson: our biological models are incomplete to account for

evolution in general, so it would be not only unfortunate

but also wrong-headed to forget about linguistic evolution

in our accounts of the history of life. Biology Direct could

almost have a section for issues related to evolution in gen-

eral. As for the linguistic perspective, we have shown that in

addition to the biological methods for phylogenetic recon-

struction which are now regularly applied by historical
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linguists, there are many more potentially fruitful analo-

gies which could give rise to methodological transfer (such

as lessons from incomplete lineage sorting and sequence

similarity networks). So linguists should and usually do

care for evolutionary biology. But even if it might not yet

seem obvious why linguistics might become methodologi-

cally relevant for biologists, we should not forget that quite

a few methods have already been transferred from linguis-

tics to biology, especially from the disciplines of compu-

tational linguistics and natural language processing [43].

Not only classical models of formal grammar (following

the hierarchy of the linguist Noam Chomsky [40]) are used

by biologist, but also advanced models like tree adjoining

grammar, which can be used for RNA structure prediction

[44], or inherently linguistic methods for document predic-

tion which can be applied in protein classification [45], or

stochastic analyses of syntax, being applied to study pro-

tein domain promiscuity [121]. In order to substantiate this

claim, that – despite the many disappointing examples of

failed analogies – there are examples for methodological

transfer in both directions which could be labelled success

stories, we have added further references and elaborated

the details in the text.

To summarize, we hope that readers will get at least two

major ideas from this work: (a) it makes sense to embrace

a less biology-centered perspective on evolution in evolu-

tionary studies (that is our ignorabimus); (b) introgressive

processes are fundamental to make sense of both linguistic

and biological change, so a network perspective consti-

tutes, despite the dissimilarity between both fields, the

broadest and most fruitful deep commonality to achieve

a form of systemic unification. There is a common core of

processes between biology and linguistics, which is why evo-

lutionary biologists and linguists should care about each

other’s findings. Overall, however, it is true that for all

evolutionary sciences such systemic, process-based unifi-

cations will remain incomplete. Evolutionary sciences will

remain pluralistic in methods and concepts, and another

type of unification, i.e. operating in a piecemeal fash-

ion and preserving the singularities of both evolution-

ary disciplines, will be needed to speak of evolution in

general.

Reviewer recommendations to the authors

The authors themselves notice that in the early days of

genetics, and molecular genetics in particular, linguis-

tic analogies and metaphors have been quite common.

Some of these indeed became integral to the molecular

biology lingo (transcription, translation), some are used

much more sparingly (word, grammar), others have gone

practically out of use (suffix, prefix, flexion). Regard-

less, though, why do these analogies do not really go

beyond metaphors? Somehow it appears to me that this

is not for the lack of effort on part of those interested

in the linguistics-biology comparison. I feel that there is

some deep disparity that precludes any substantial cross-

fertilization. And here lies my major dissatisfaction with

this paper. The problem is not that List et al. fail to find

truly productive analogies between linguistics and biolog-

ical evolutionary processes: many have tried and (at least,

in my opinion) they all failed. The regrettable aspect of the

paper is its rather careless but baseless optimism. I think

the article would have been much improved if the authors

embarked on a true critical discussion of these analogies

and the reasons they do not appear to come across as

genuinely fruitful.

Authors’ response: We agree with the reviewer that

many largely disappointing analogies have been drawn

between both disciplines, and it is for this reason that we

have showed what reviewer 1 called a ‘curious reticence

to go all the way in analogizing language and genome

evolution’. There is a deep dissimilarity between evolution-

ary biology and historical linguistics, even at the level of

processes. There is nonetheless a possiblity of substantial

cross-fertilization between both fields, especially around

introgressive processes and network-like evolution, and

as we can see from the application of formal grammars

in biology (mentioned above) and the recent popularity

of phylogenetic methods in linguistics, fruitful transfer of

methods and models has already taken place in the past

and in both directions. Currently, the direction of transfer

goes especially from biology to linguistics, and this means

that linguists import methods and concepts from biology,

adapting them to their needs. Given the rapid growth of

computational research in the area of natural language

processing, however, it is by no means sure that the situa-

tion will always remain as this, and it might well be that

even in the nearer future our proposed analogy between

word compounding and protein assembly offers biologists

who study linguistic approaches and patterns new insights

into the phenomena in their discipline. Future will tell

whether this claim is careless optimism, or whether exploit-

ing common processes between linguistic and biological

evolution will not only turn out to be fruitful but poten-

tially also inspire cross-disciplinary research on a larger

scale. But even if our optimism turns out to be unjus-

tified, it will essentially contribute to our understanding

of evolutionary processes if we can further narrow down

the exact ratio of unity and disunity in the evolutionary

sciences.

Nevertheless, we understand that we might have been

exaggerating our optimism, and we have tried to trim

it down to a level which is hopefully acceptable for

the reviewer. First, we changed Fig. 2 to reflect more

closely that the amount of common processes is pre-

sumably much smaller than the general amount of pro-

cesses (we also try to indicate our own uncertainty

by showing a scale with a question mark as value).
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We also modified the manuscript in several passages

to reflect justified scepticism more closely, and we also

added references that further substantiate the reviewer’s

scepticism.

Minor issues

In what sense did Watson and Crick ’detect’ DNA? They

did not even discover it, they built the correct structural

model of DNA that allowed them to explain replication.

Authors’ response:We agree and rephrased the sentence

accordingly.
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54. Prokić J, Wieling M, Nerbonne J. Multiple sequence alignments in
linguistics. In: Proceedings of the EACL 2009 Workshop on Language
Technology and Resources for Cultural Heritage, Social Sciences,
Humanities, and Education. Stroudsberg: Association of Computational
Linguistics; 2009. p. 18–25.

55. List JM. Sequence Comparison in Historical Linguistics. Düsseldorf:
Düsseldorf University Press; 2014.

56. Steiner L, Stadler PF, Cysouw M. A pipeline for computational historical
linguistics. Lang Dyn Change. 2011;1(1):89–127.

57. Gimona M. Protein linguistics – a grammar for modular protein
assembly? Nat Rev Mol Cell Biol. 2006;7(1):68–73.

58. Von Bertalanffy L. The history and status of general systems theory. Acad
Manag J. 1972;15(4):407–26.

59. Percival K. Biological analogy in the study of languages before the
advent of comparative grammar In: Hoenigswald HM, editor. Biological
Metaphor and Cladistic Classification: An Interdisciplinary Perspective.
Philadelphia: University of Pennsylvania Press; 1987. p. 3–38.

60. Schleicher A. Zur Vergleichenden Sprachengeschichte [On Comparative
Language History]. Bonn: König; 1848.

61. Pagel M. Human language as a culturally transmitted replicator. Nat Rev
Genet. 2009;10:405–15.

62. van Driem G. Language as organism: A brief introduction to the Leiden
theory of language evolution In: Lin Yc, Hsu Fm, Lee Cc, Sun JTS, Yang
Hf, Ho D, editors. Studies on Sino-Tibetan Languages. Taipei: Academia
Sinica; 2004. p. 1–9.

63. Mufwene SS. The Ecology of Language Evolution. Cambridge:
Cambridge University Press; 2001.

64. Zwick M. Some analogies of hierarchical order in biology and linguistics
In: Klir G, editor. Applied General Systems Research: Recent
Developments & Trends. New York: Plenum Press; 1978. p. 521–9.

65. Enguix GB, Jiménez-López MD. Natural language and the genetic code:
From the semiotic analogy to biolinguistics. In: Proceedings of the 10th
World Congress of the International Association for Semiotic Studies
(IASS/AIS). La Coruña: Association of Semiotic Studies; 2012.
p. 771–80.

66. Jakobson R, Vol. 2. Rapports Internes et Externes du Langage [Internal
and External Relations of Language]. Paris: Les Éditions de Minuit; 1973.

67. Hruschka DJ, Branford S, Smith ED, Wilkins J, Meade A, Pagel M,
Bhattacharya T. Detecting regular sound changes in linguistics as events
of concerted evolution. Curr Biol. 2015;25(1):1–9.

68. Atkinson QD, Gray RD. Curious parallels and curious connections:
Phylogenetic thinking in biology and historical linguistics. Syst Biol.
2005;54(4):513–26.

69. Gentner D. Structure-mapping: A theoretical framework for analogy.
Cogn Sci. 1983;7:155–70.

70. Bermúdez-Otero R. Diachronic phonology In: de Lacy P, editor. The
Cambridge Handbook of Phonology. New York: Cambridge University
Press; 2007. p. 497–517.

71. Allen U. Introduction to Systems Biology: Design Principles of Biological
Cuircuits. London: Chapman & Hall/CRC; 2007.

72. de Saussure F. Cours de Linguistique Générale [Course on General
Linguistics]. Lausanne: Payot; 1916.

73. Merrell F. The Routledge Companion to Semiotics and Linguistics In:
Cobley P, editor. London and New York: Routledge; 2001. p. 28–39.

74. Mallinson G. Rumanian In: Harris M, Nigel V, editors. The Romance
Languages. London and Sydney: Croom Helm; 1988. p. 391–419.

75. Everett C, Blasi DE, Roberts SG. Climate, vocal folds, and tonal
languages: Connecting the physiological and geographic dots. Proc Nat
Acad Sci USA. 2015;112(5):1322–7.

76. Lupyan G, Dale R. Language structure is partly determined by social
structure. PLoS ONE. 2010;5(1):8559.

77. Bromham L, Hua X, Fitzpatrick TG, Greenhill SJ. Rate of language
evolution is affected by population size. Proc Nat Acad Sci USA.
2015;112(7):2097–102.

78. Huneman P. Titles, uses and instruction of use: The status of intention in
art and artefacts. Facta Philosophica. 2007;9:3–21.

79. Ghirlanda S, Enquist M, Nakamaru M. Cultural evolution develops its
own rules: The rise of conservatism and persuasion. Curr Anthropol.
2006;47(6):1027–34.

80. Tamariz M, Ellison TM, Barr DJ, Fay N. Cultural selection drives the
evolution of human communication systems. Proc R Soc London, Ser B.
2014;281(1788):20140488.

81. List JM. Beyond cognacy: Historical relations between words and their
implication for phylogenetic reconstruction. J Lang Evol. 2016;1:.
doi:10.1093/jole/lzw006.

82. Atkinson QD, Gray RD. How old is the Indo-European language family?
Illumination or more moths to the flame? In: Forster P, Renfrew C,
editors. Phylogenetic Methods and the Prehistory of Languages.
Cambridge and Oxford and Oakville: McDonald Institute for
Archaeological Research; 2006. p. 91–109.

83. Swadesh M. Lexico-statistic dating of prehistoric ethnic contacts. Proc
Am Philol Soc. 1952;96(4):452–63.



List et al. Biology Direct  (2016) 11:39 Page 16 of 17

84. Milton J. The development of vocabulary breadth across the CEFR levels.
a common basis for the elaboration of language syllabuses, curriculum
guidelines, examinations, and textbooks across europe In: Bartning I,
Martin M, Vedder I, editors. Communicative Proficiency and Linguistic
Development: Intersections Between SLA and Language Testing
Research. York: Eurosla; 2010. p. 211–32.

85. Lopez P, Halary S, Bapteste E. Highly divergent ancient gene families in
metagenomic samples are compatible with additional divisions of life.
Biol Direct. 2015;10:64.

86. Jäger G. Support for linguistic macrofamilies from weighted alignment.
Proc Nat Acad Sci USA. 2015;112(41):12752–7.

87. Rogers J, Gibbs RA. Comparative primate genomics: emerging patterns
of genome content and dynamics. Nat Rev Genet. 2014;15(5):347–59.

88. Scally A, Dutheil JY, Hillier LW, Jordan GE, Goodhead I, Herrero J,
Hobolth A, Lappalainen T, Mailund T, Marques-Bonet T, McCarthy S,
Montgomery SH, Schwalie PC, Tang YA, Ward MC, Xue Y, Yngvadottir
B, Alkan C, Andersen LN, Ayub Q, Ball EV, Beal K, Bradley BJ, Chen Y,
Clee CM, Fitzgerald S, Graves TA, Gu Y, Heath P, Heger A, Karakoc E,
Kolb-Kokocinski A, Laird GK, Lunter G, Meader S, Mort M, Mullikin JC,
Munch K, O’Connor TD, Phillips AD, Prado-Martinez J, Rogers AS,
Sajjadian S, Schmidt D, Shaw K, Simpson JT, Stenson PD, Turner DJ,
Vigilant L, Vilella AJ, Whitener W, Zhu B, Cooper DN, de Jong P,
Dermitzakis ET, Eichler EE, Flicek P, Goldman N, Mundy NI, Ning Z,
Odom DT, Ponting CP, Quail MA, Ryder OA, Searle SM, Warren WC,
Wilson RK, Schierup MH, Rogers J, Tyler-Smith C, Durbin R. Insights
into hominid evolution from the gorilla genome sequence. Nature.
2012;483(7388):169–75.

89. Schmidt J. Die Verwantschaftsverhältnisse der Indogermanischen
Sprachen [The Relations of the Indo-European Languages]. Weimar:
Hermann Böhlau; 1872.

90. Schuchardt H. Über die Klassifikation der Romanischen Mundarten. 1319
Probe-Vorlesung, Gehalten zu Leipzig Am 30. April 1870 [On the 1320
Classification of Romance Dialects. Test Lecture, Held at Leipzig on April
1321 30 1870]. Graz. 1900. https://archive.org/details/
berdieklassifik01schugoog.

91. Geisler H, List JM. Do languages grow on trees? the tree metaphor in
the history of linguistics In: Fangerau H, Geisler H, Halling T, Martin W,
editors. Classification and Evolution in Biology, Linguistics and the
History of Science. Concepts – Methods – Visualization. Stuttgart: Franz
Steiner Verlag; 2013. p. 111–24.

92. Maddison WP, Knowles LL. Inferring phylogeny despite incomplete
lineage sorting. Syst Biol. 2006;55(1):21–30.

93. Yu Y, Dong J, Liu KJ, Nakhleh L. Maximum likelihood inference of
reticulate evolutionary histories. Proc Nat Acad Sci USA. 2014;111(46):
16448–53.

94. Haak W, Lazaridis I, Patterson N, Rohland N, Mallick S, Llamas B, Brandt
G, Nordenfelt S, Harney E, Stewardson K, Fu Q, Mittnik A, Banffy E,
Economou C, Francken M, Friederich S, Pena RG, Hallgren F,
Khartanovich V, Khokhlov A, Kunst M, Kuznetsov P, Meller H,
Mochalov O, Moiseyev V, Nicklisch N, Pichler SL, Risch R, Rojo Guerra
MA, Roth C, Szecsenyi-Nagy A, Wahl J, Meyer M, Krause J, Brown D,
Anthony D, Cooper A, Alt KW, Reich D. Massive migration from the
steppe was a source for Indo-European languages in Europe. Nature.
2015;522(7555):207–11.

95. Tadmor U. Loanwords in the world’s languages In: Haspelmath M,
Tadmor U, editors. Loanwords in the World’s Languages. Berlin and New
York: de Gruyter; 2009. p. 55–75.

96. Halary S, McInerney JO, Lopez P, Bapteste E. EGN: a wizard for
construction of gene and genome similarity networks. BMC Evol Biol.
2013;13:146.

97. Alvarez-Ponce D, Lopez P, Bapteste E, McInerney JO. Gene similarity
networks provide tools for understanding eukaryote origins and
evolution. Proc Nat Acad Sci USA. 2013;110(17):1594–603.

98. Bapteste E, Lopez P, Bouchard F, Baquero F, McInerney JO, Burian RM.
Evolutionary analyses of non-genealogical bonds produced by
introgressive descent. Proc Nat Acad Sci USA. 2012;109(45):18266–72.

99. Booij G. The Grammar of Words. An Introduction to Linguistic
Morphology. Cambridge: Cambridge University Press; 2005.

100. Nagy WE, Anderson RC. How many words are there in printed school
English? Reading Res Q. 1984;19(3):304–30.

101. Wichmann S, Müller A, Wett A, Velupillai V, Bischoffberger J, Brown
CH, Holman EW, Sauppe S, Molochieva Z, Brown P, Hammarström H,
Belyaev O, List JM, Bakker D, Egorov D, Urban M, Mailhammer R,
Carrizo A, Dryer MS, Korovina E, Beck D, Geyer H, Epps P, Grant A,
Valenzuela P. The ASJP Database. Version 16. Leipzig: Max Planck
Institute for Evolutionary Anthropology; 2013.

102. Augst G. Worfamilienwörterbuch der Deutschen Gegenwartssprache
[Dictionary of Word Families in Contemporary German. Tübingen:
Niemeyer; 2009.

103. Bouchard-Côté A, Hall D, Griffiths TL, Klein D. Automated
reconstruction of ancient languages using probabilistic models of
sound change. Proc Nat Acad Sci USA. 2013;110(11):4224–9.

104. Goddard C. Languages of East and Southeast Asia. An Introduction.
Oxford: Oxford University Press; 2005.

105. Hammarström H, Forkel R, Haspelmath M, Bank S. Glottolog. Leipzig:
Max Planck Institute for Evolutionary Anthropology; 2015. Version 2.7.
http://glottolog.org. Accessed 16 July 2016.

106. List JM, Lopez P, Bapteste E. Using sequence similarity networks to
identify partial cognates in multilingual wordlists. In: Proceedings of the
Association of Computational Linguistics 2016. Short Papers.
Stroudsberg: Association of Computational Linguistics; 2016.
p. 599–605.

107. Jachiet PA, Pogorelcnik R, Berry A, Lopez P, Bapteste E. MosaicFinder:
identification of fused gene families in sequence similarity networks.
Bioinformatics. 2013;29(7):837–44.

108. Bashton M, Chothia C. The generation of new protein functions by the
combination of domains. Structure. 2007;15(1):85–99.

109. Stark BR. The bloomfieldian model. Lingua. 1972;30:385–421.
110. de Beaugrande RA, Dressler W. Einführung in die Textlinguistik

[Introduction to Text Linguistics]. Tübingen: Niemeyer; 1981.
111. Alva V, Söding J, Lupas AN. A vocabulary of ancient peptides at the

origin of folded proteins. eLife. 2015;4:e09410.
112. Smith JM. Natural selection and the concept of a protein space. Nature.

1970;225(5232):563–4.
113. Keller DB, Schultz J. Word formation is aware of morpheme family size.

PLoS ONE. 2014;9(4):93978.
114. Hartmann S. The diachronic change of German nominalization patterns:

An increase in prototypicality. In: Selected Papers from the 4th UK
Cognitive Linguistics Conference. Lancaster: Cognitive Linguistics
Association; 2014. p. 52–171.

115. Heide J, Lorenz A, Meinunger A, Burchert F. The influence of
morphological structure on the processing of German prefixed verb In:
Onysko A, Michel S, editors. Cognitive Perspectives on Word Formation.
Berlin and New York: de Gruyter Mouton; 2010. p. 375–98.

116. Harris ZS. From phoneme to morpheme. Language. 1955;31(2):190–222.
117. Hammarström H. A naive theory of affixation and an algorithm for

extraction. In: Proceedings of the Eighth Meeting of the ACL Special
Interest Group on Computational Phonology and Morphology at
HLT-NAACL 2006. Stroudsberg: Association for Computational
Linguistics; 2006. p. 79–88.

118. Grönroos SA, Virpioja S, Smit P, Kurimo M. Morfessor FlatCat: An
HMM-based method for unsupervised and semi-supervised learning of
morphology. In: Proceedings of COLING 2014, the 25th International
Conference on Computational Linguistics: Technical Papers. Dublin and
Stroudsberg: Dublin City University and Association for Computational
Linguistics; 2014. p. 1177–1185.

119. Griffiths S, Purver M, Wiggins G. From phoneme to morpheme: A
computational model In: Baayen H, Jäger G, Köllner M, Wahle J,
Baayen-Oudshoorn A, editors. Proceedings of the 6th Conference on
Quantitative Investigations in Theoretical Linguistics. Stroudsberg:
Association of Computational Linguistics; 2015.

120. Basu MK, Carmel L, Rogozin IB, Koonin EV. Evolution of protein domain
promiscuity in eukaryotes. Genome Res. 2008;18(3):449–61.

121. Basu MK, Poliakov E, Rogozin IB. Domain mobility in proteins: functional
and evolutionary implications. Brief Bioinforma. 2009;10(3):205–16.

122. Sapir E. Language. An Introduction to the Study of Speech. New York:
Harcourt, Brace; 1921.

123. Aikhenvald AY. Semantics and pragmatics of grammatical relations in
the vaups linguistic area In: Aikhenvald AY, Dixon RMW, editors.
Grammars in Contact: A Cross-linguistic Typology. Explorations in
linguistic typology. Oxford: Oxford University Press; 2007. p. 237–66.



List et al. Biology Direct  (2016) 11:39 Page 17 of 17

124. Trask L. Trask’s Historical Linguistics, 3rd ed. London and New York:
Routledge; 2015.

125. Lukeš J, Archibald JM, Keeling PJ, Doolittle WF, Gray MW. How a
neutral evolutionary ratchet can build cellular complexity. IUBMB Life.
2011;63(7):528–37.

126. Tynjanow J, Jakobson R. Probleme der literatur- und sprachforschung
[Problems of literature and linguistic research] In: Viehoff R, editor.
Alternative Traditionen [Alternative Traditions]. Braunschweig: Vieweg;
1928. p. 67–9.

127. Heine B, Kuteva T. World Lexicon of Grammaticalizatioin. Cambridge:
Cambridge University Press; 2002.

128. Haspelmath M. On directionality in language change with particular
reference to grammaticalization In: Fischer O, Norde M, Perridon H,
editors. Up and down the Cline – The Nature of Grammaticalization.
Typological Studies in Language. Amsterdam and New York: John
Benjamins Publishing Company; 2004. p. 17–44.

129. Oesterreicher W. Historizität, Sprachvariation, Sprachverschiedenheit,
Sprachwandel [Historicity, language variation, language difference,
language change] In: Haspelmath M, editor. Language Typology and
Language Universals. Berlin and New York: Walter de Gruyter; 2001. p.
1554–1595.

130. Gray MW, Lukes J, Archibald JM, Keeling PJ, Doolittle WF. Cell biology.
Irremediable complexity? Science. 2010;330(6006):920–1.

131. Lopez P, List JM, Bapteste E. A preliminary case for exploratory networks
in biology and linguistics: the phonetic network of Chinese words as a
case-study In: Fangerau H, Geisler H, Halling T, Martin W, editors.
Classification and Evolution in Biology, Linguistics and the History of
Science. Concepts – Methods – Visualization. Stuttgart: Franz Steiner
Verlag; 2013. p. 181–96.

132. In: Hóu J, editor. Xiàndài Hànyǔ Fāngyán Yīnkù [Phonological Database
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 Evolutionary biology and linguistics share a more recent tradition of using networks to 

analyze their respective objects. The article n°9 shows a study case of networks in linguistic 

context. We used rhyme networks to compare eight different Old Chinese reconstruction 

systems, in which linguists have tried to detect how the Old Chinese characters were 

pronounced. Due to the character of the Chinese writing system, which is not phonetic and 

gives us little evidence to infer how the words have been originally pronounced, the 

reconstruction of Old Chinese plays an important role, especially in the context of the higher 

affiliation of Chinese as a Sino-Tibetan language. For our study, we have retrieved rhyme 

data from the Book of Odes (an old collection of Chinese poems, dating back to the first 

millennium B.C.) to construct rhyme networks for eight different reconstruction systems, 

proposed by independent scholars. In our network, nodes represent rhyme words which are 

linked by an edge whenever they rhyme in the Book of Odes. Rhyming behavior of Old 

Chinese words plays a crucial role for the reconstruction of Old Chinese pronunciation. 

Rhyme patterns have been used to test Old Chinese reconstruction systems for consistency 

and plausibility. From the idea that rhyming in Old Chinese was following the principle of 

vowel purity, a tendency to disallow rhymes of words with different vowels, we developed a 

quantitative test using assortativity to check how “pure” each of the given reconstruction 

systems was with respect to the rhyme patterns. Assortativity measures the similarity between 

connected nodes regarding their attributes, calculated by the assortativity coefficient. We 

computed the assortativity coefficients of the rhyme network for all eight reconstruction 

systems. We have shown that we can easily design quantitative tests that check to which 

degree different reconstruction systems conform to a given criterion which can be considered 

as a valuable contribution to the field of Chinese historical linguistics. This article has been 

accepted and published in the journal "Lingua Sinica".
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Abstract

Rhyme patterns in Old Chinese poems are important for the reconstruction of Old
Chinese pronunciation, as they provide evidence for groups of words which formerly
had similar pronunciation. Rhyme patterns can also be used to test Old Chinese
reconstruction systems for consistency and plausibility, as reconstruction systems
should minimize the conflict with attested rhyme patterns. Here, we build on the
idea that rhyming in Old Chinese followed the principle of vowel purity, a tendency
to disallow rhymes of words with different vowels, to develop a quantitative test for
reconstruction systems of Old Chinese. The test is illustrated by comparing seven
different Old Chinese reconstruction systems and by showing that, although the
systems differ regarding their degree of vowel purity, the principle seems to hold for
Old Chinese rhyme data.

1 Introduction

Due to the specific morpheme-syllabic character of the Chinese writing system (Chao

1968: 121), we have considerably fewer clues regarding the original pronunciation of

the oldest attested stages of the Chinese language than we do for languages which are

written in alphabetic writing systems. As a result, reconstructing the pronunciation of

Old Chinese constitutes a challenge in its own right, and quite a few scholars have

proposed a variety of reconstructions which differ considerably from one to another

(Li 李方桂 1971; Karlgren 1957; Wang 王力 1980; Pan 潘悟云 2000; Starostin 1989;

Baxter 1992; Zheng Zhang 郑张尚芳 2003). Apart from the internal structure of

Chinese characters, rhyme evidence plays a crucial role in the reconstruction of Old

Chinese phonology (Baxter 1992). Based on the fundamental assumption that words

which regularly rhyme in older stages of Chinese reflect words with similar pronunci-

ation in their finals, we can systematically investigate Chinese poetry from coherent

epochs, assigning words to classes of similar pronunciations. In classical Chinese schol-

arship, rhyme analysis has a long tradition, going back to scholars like Wu Yu 吳棫

(1100–1154), who was one of the first to systematically assign Chinese characters to

specific rhyme classes (He 何九盈 2006: 163).

Up to the end of the 19th century, traditional Chinese rhyme analysis, which was es-

pecially devoted to 詩經 shijing ‘the Book of Odes’ (ca. 1050–600 BC), led to the iden-

tification of more than 30 distinct rhyme categories (韻部 yunbu, see Baxter 1992:

141–150). The classical approach to rhyme analysis, sometimes called 丝贯绳牵法

siguan shengqian fa ‘link-and-bind method’ (Geng 耿振生 2004), or 韵脚系联法
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License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
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yunjiao xilian fa ‘rhyme linking method’ (Lv 呂胜男 2009) starts from the collection of

words which can be shown to rhyme with each other (usually represented by one

Chinese character), and then clusters these words into rhyme groups by applying a

greedy strategy (Geng 耿振生 2004). This strategy searches exhaustively for connected

components in a rhyme network in which rhyme words are modeled as nodes and

attested rhyme instances are represented as links between the nodes (List 2017).

The most obvious drawback of the classical rhyme analysis is its resolution power; fol-

lowing the idea of connected components blindly will yield very large groups of rhymes

and a very small number of distinct categories. The classical analysis favors lumping

over splitting, and is furthermore vulnerable to incorrectly identified rhyme patterns

and other kinds of errors in the data. The problems of the classical rhyme analysis were

explicitly addressed in the Old Chinese reconstruction system of Baxter (1992), which

proposed six main vowels for Old Chinese and a total of 52 distinct rhyme groups, thus

drastically expanding the number of rhyme categories proposed for Old Chinese by

classical scholarship. The choice of a six vowel system was further substantiated by the

fact that the reconstruction systems by Sergei A. Starostin and Zheng Zhang Shangfang

郑张尚芳, proposed independently around the same time, also employed six vowels

(see Starostin 1989; Zheng Zhang 郑张尚芳 2003). The proposal by Baxter (1992) was

further substantiated by a statistical test which tested the likelihood of specific rhyme

category groupings to have been occurred by chance. In the recently proposed new re-

construction for Old Chinese by Baxter and Sagart (2014), the rhyme schema by Baxter

(1992) was only slightly modified by adding a new coda *-r for rhyme words which

rhyme both with words in coda *-n and *-j. This resulted in six additional rhyme cat-

egories, one for each of the six main vowels *a, *e, *i, *o, *u, and *ə.

2 Vowel purity and rhyme evidence

According to Ho (2016: 176–184), the Old Chinese reconstruction by Baxter and

Sagart (2014) contradicts important rhyming principles, especially the principle of

vowel purity, according to which rhymes in the Book of Odes were very strict regarding

the identity of vowels, while consonant differences could easily be tolerated. According

to the author, vowel purity is in conflict in many cases where pronunciations as sug-

gested by the Old Chinese reconstruction by Baxter and Sagart point to different

vowels, while the respective words frequently rhyme in the Book of Odes. The argu-

ment by Ho (2016) rests on two fundamental assumptions. First, Ho assumes that

vowel purity was a key principle in Chinese rhyming. Second, Ho claims that the recon-

struction system by Baxter and Sagart is in strong conflict with this principle. Unfortu-

nately, he does not provide any concrete examples, apart from contrasting traditional

rhyming categories with the more fine-grained rhyming categories as they were first

proposed by Baxter (1992).

Due to the lack of external evidence for Old Chinese pronunciation, the first assump-

tion is very difficult to check. The argument of the author itself rests uniquely on per-

ceived rhyming tendencies in current folk traditions in China. While they may seem

suggestive on first sight, they stand in strong contrast to classical rhyme traditions

which evolved during the Tang dynasty (618–907) and took the prescriptions in official

rhyme books for granted, as well as cross-linguistic tendencies of rhyme production,

which may favor similarity in vowels, but not necessarily prescribe identity. This is, for

List et al. Lingua Sinica  (2017) 3:5 Page 2 of 17



example, reflected in German rhyme tradition, in which words with vowels [y] and [i]

freely rhyme with each other, as in nieder [niːdər] ‘down’ and Brüder [bryːdər] ‘brothers’,

see also Peust 2014: 62)a. Another obvious problem of vowel purity is the fact that the

Book of Odes from which the rhyme categories are drawn does not reflect a coherent

speech variety that was spoken at a single place and time (Baxter 1992: 343–366). On the

contrary, the Book of Odes was compiled over a period of at least 400 years (from about

1000 until 600 BC, cf. Kern 2004), and scholars have long suggested that certain passages

reflect dialectal rhyme patterns (Baxter and Sagart 2014: 278f). So even when disregarding

the problem of overarching rhyme traditions superimposed by society, it would be rather

surprising if the system of rhyming showed no stages of transitions and conflicts resulting

from language change and dialectal influence.

We can illustrate this further by having a look at concrete poems in the Book of

Odes. Table 1 gives Ode 10 as an example, contrasting both what scholars believe re-

flects the perceived rhyme structure during the time the poem was composed (column

rhyme), the traditional opinion regarding the rhyme group to which the rhyme words

belong (column group), as well as reconstructions in four different systems (see the

table for details). As we can see from this example, stanza 1 shows an impure rhyme in

two systems, contrasting the vowels [ə] and [e], namely, those of Pan Wuyun 潘悟云

(Pan 潘悟云 2000) and Wang Li 王力 (Wang 王力 1980). This impure rhyme was also

recognized in traditional Chinese phonology, as the traditional rhyme groups 微 wei

and 脂 zhi. The OCBS system (Baxter and Sagart 2014) and the system by Starostin

(Starostin 1989) do not show this conflict, as they propose only the vowel [ə] in this

group. If we compare across the following stanzas, we can see that all reconstruction

systems show specific conflicts regarding the principle of vowel purity, including the

traditional classification upon which Ho (2016) bases his criticism. A crucial question

for Old Chinese reconstruction is to what degree one should try to avoid impure

rhymes, and to what degree one should accept them as reflecting vivid poetry which

does not necessarily follow strict rules. How much vowel purity do we need to assume

for the Book of Odes?

We cannot directly test the importance of vowel purity for Old Chinese rhyming, as

our information regarding Old Chinese vowels relies on reconstructions, and these

Table 1 Comparing impure and pure rhymes in Ode 10 and how they are reflected in different
reconstruction systems

MCH refers to the Middle Chinese reading following Baxter (1992), Pan Wuyun 潘悟云 is the reconstruction following the

system of Pan 潘悟云 (2000, available online at http://www.eastling.org/oc/oldage.aspx), OCBS refers to the system by

Baxter and Sagart (2014), Wang Li 王力 to the system by Wang 王力 (1980), and Starostin to the system by Starostin

(1989), (available online at http://starling.rinet.ru). Rhyme judgments follow Baxter (1992) and Wang 王力 (1980), and

group reflects the "traditional rhyme group”, the label used in traditional Chinese phonology
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reconstructions may well have been proposed with the principle in mind, be it explicitly

or intuitively. Whether a given reconstruction system is in strong conflict with the

vowel purity principle, on the other hand, can be directly tested by inspecting the ac-

tual data. Given the restricted corpus of the Book of Odes, an exhaustive investigation

of the conflicting cases is possible, and one could compare all Odes in the corpus in

different reconstruction systems, just as we have illustrated for Ode 10 in Table 1. Such

a qualitative evaluation has the obvious disadvantage that it would be very time-

consuming, both for the experts who carry it out and for the scholars who read the re-

ports. In order to avoid the problems resulting from manual comparisons, we propose

a quantitative test that automatically measures the degree by which reconstruction sys-

tems deviate from the principle of vowel purity. By modeling Chinese rhyme data from

the Book of Odes as a weighted network in which rhyme words serve as the nodes and

attested rhyme occurrences in the Book of Odes are modeled as links between the

rhyme words, we can not only test how well a given reconstruction system conforms to

Ho’s (2016) vowel purity criterion, but we can even compare alternative reconstruction

systems directly with each other.

3 Evaluating vowel purity in reconstruction

3.1 Materials

3.1.1 Rhyme data

The rhyme data used for the experiment follow the rhyme assignments for the Book of

Odes provided in Baxter (1992) which were digitized and converted into a machine-

readable format in List (2017). The data are available online as interactive application,

the Shījīng Rhyme Browser (http://digling.org/shijing/), where all rhyme decisions can

be interactively searched and inspected in the reconstruction systems by Baxter and

Sagart (2014) and Pan 潘悟云 (2000). The former is available for download; the latter

was taken from the Thesaurus Linguae Sericae (Harbsmeier and Jiang 2009). The data-

set lists all potential rhyme words in the Book of Odes, which were determined by

taking the final character in each line of each stanza across the 305 poems of the Book

of Odes. This list of potential rhyme words is contrasted with the actual rhyme words

as assigned in Baxter (1992). The interactive application visualizes rhyme annotations

by coloring words which are marked as rhyming in the same color, as shown in Table 2

for the poem number 60.

In List (2017), the rhyme data are used to construct a rhyme network of all rhyming

words in the Book of Odes. In this network, rhyme words (represented by Chinese

characters) are represented as nodes, and links between the nodes are drawn whenever

two rhyme words actually rhyme in the Book of Odes. The whole network comprises

1845 nodes and 5266 links between the nodes. The number of recurring links between

two nodes is counted and weighted, using specific weighting principles, like (a) count-

ing formulaic (recurring lines in the collection) only once, and (b) by taking the size of

the group in which two words rhyme into account when establishing the weights (in

order to avoid that large groups of rhyming words are scored more often than smaller

ones). As network weighting itself is not of primary importance for the approach pre-

sented in this paper, we refer the readers to List (2017) where the rhyme network con-

struction process is described in detail. All data underlying the study are accessible
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online at https://zenodo.org/badge/latestdoi/43676744, and we used this data to create

the rhyme network for our study. Figure 1 illustrates the structure of the rhyme net-

work by showing a small part of the full graph, corresponding to the codas recon-

structed as *-ar, *-an, and *-aj in the reconstruction of Baxter and Sagart (2014).

3.1.2 Reconstruction systems

For all 1845 rhyme words in the network, Old Chinese readings in eight different re-

construction systems were collected from different sources. The system of Baxter and

Sagart (2014) is available online for download. Unfortunately, it covers only 1431 char-

acters of the full set of 1845 rhyme words, and 414 readings are missing. The Eastling

Table 2 Example of the structure and display of rhymes of the Book of Odes in the Shījīng rhyme
browser

Characters shaded in the same color inside the same stanza are judged to rhyme according to Baxter (1992), the labels

used by Baxter (1992) are given in the column rhyme. Old Chinese readings (OCBS) for the full words and for the rhymes

are given in the reading of Baxter and Sagart (2014). Middle Chinese readings (MCH) follow Baxter (1992)

Fig. 1 Example for a small part of the rhyme network based on the data in List (2017), for rhyme words
reconstructed with coda *-ar (black nodes), *-aj (gray nodes), and *-an (white nodes) in the reconstruction
system of Baxter and Sagart (2014). Nodes correspond to rhyme words, and edges indicate whether the
nodes they connect rhyme together in the Book of Odes. Edge weights represent the frequency of rhyme-
word co-occurrences, and node weights represent the general frequency by which the words occur in
rhyme position in the Book of Odes
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project (Shanghai Normal University 上海师范大学 2016, http://www.eastling.org/oc/

oldage.aspx) offers Old Chinese reconstructions for various authors, including the sys-

tems proposed in Karlgren (1957), Li (1971), Wang 王力 (1980), Zheng Zhang 郑张尚

芳 (2003), and the most recent proposals according to the system of Pan 潘悟云

(2000). The Eastling data has a broad coverage, and only 15 out of 1845 readings in the

original rhyme data from list (in press) were missing in this collection, thus comprising

a total of 1830 readings for each of the five different reconstruction systems. In order

to make sure that these different systems are reflected correctly, we compared the

Eastling data with original and alternative sources. For Li 李方桂 (1971), we compared

the Eastling data with the charts provided in Shen 沈鍾偉 (2005)b, and for Wang 王力

(1980) and Karlgren (1957), we compared it with the original sources. Given that Pan

Wuyun 潘悟云 and Zheng Zhang Shangfang 郑张尚芳 were involved in the creation of

Eastling, and that especially the reconstructions of the system outlined in Pan 潘悟云

(2000) are only available online, we assume that the data for these two reconstruction

systems are truthfully displayed. Apart from a few incorrect characters in the source by

Wang 王力 (1980), which we manually corrected, our comparison did not reveal any errors.

In addition to the five reconstruction systems, Eastling also offers readings attributed to

William Baxter, but since we could not identify these readings with any known published

sources of Baxter corresponding to these readings, we did not use them in our analysis.

The Tower of Babel project (Starostin 2008, http://starling.rinet.ru/) further offers an

exhaustive database of character readings following the Old Chinese reconstruction sys-

tem by Starostin (1989), which was compiled by Sergei Starostin himself from 1991 on

and was expanded in the years thereafter. While the original publication by Starostin

(1989) lists readings for all rhyme words in the Book of Odes, the online version only

offers 1358 character readings for the 1845 characters in our base list, with 487 read-

ings missing. The Old Chinese reconstruction by Schuessler (2007) was collected from

a recently published digital version of the book. Unfortunately, only 1224 readings for

the 1845 rhyming characters in the Book of Odes could be found, leaving us with 621

missing character readings.

In order to compare the different rhyme systems for vowel purity, the main

vowels for all available character readings for the 1845 rhyme words in the rhyme

networks were extracted and added as meta-data to each rhyme in the network.

The different vowel systems proposed in the different reconstruction systems are

shown in Table 3. Although each of our 8 systems has much more than 1200 read-

ings (see column 3 in Table 3), the intersection between all systems is surprisingly

low, and if we only retain those readings reflected in all samples, a sample of 875

nodes remains. The data by Schuessler (2007) is missing the largest amount of

characters (621 readings), followed by the data of Starostin (1989, 487 readings),

and Baxter and Sagart (2014, 414 readings).

It is important to note in this context that missing readings cannot be easily added

without the assistance of those who originally created a given reconstruction system.

While certain aspects in Old Chinese reconstruction are systematic, allowing us to pro-

ject attested Middle Chinese readings back to Old Chinese, the projection rules which

differ in the reconstruction systems proposed by different scholars do not necessarily

allow us to replicate their judgments, as scholars use a range of different types of evi-

dence, including Chinese character structure, evidence from excavated texts, and early
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borrowings into neighboring languages (see especially Baxter and Sagart 2014 for a

discussion of the different types of evidence used in reconstruction). As a result, we

cannot simply add the missing character readings in our comparative dataset without

running the danger of incorrectly representing a given reconstruction system. For our

comparison, we are left with what we have, and we need to address the problems

resulting from gaps in the data. But since we provide all data as an Additional file with

this study, we hope that collaborative efforts of the scholarly community may eventu-

ally close the gaps in the future.

When comparing across datasets, it is important that we compare samples of the data

containing exactly the same nodes, as in smaller or larger samples the basic characteris-

tics, as, for example, the number of edges, may differ, thus giving the reconstruction

systems we want to compare different starting chances. The difference is further

confirmed by the data on network density that is the fraction of the number of edges

divided by the number of potential edges in a network. The number of potential edges

in a network is the number of edges in a network in which all nodes are connected

with each other and can be calculated with the help of the formula n2 � nð Þ=2, where n

is the number of nodes in the networkc. Network density for the different subgraphs is

reported in Table 3. As can be seen from the scores, the subgraphs of the different re-

construction systems slightly differ in density depending on the coverage of the data

sample, with the smaller datasets showing a higher density.

3.2 Methods

We need a measure for the purity of clusters in a graph. If the theory of vowel purity

holds, we should expect a high degree of isolation for those rhyme words which can be

grouped by the same vowel. We thus want to compare how well a given external

grouping of the nodes in our network (the vowels reconstructed for the rhyme words

in a given reconstruction system) conforms to the internal ordering in our network (as

reflected by the rhyme relations among the rhyme words). If we accept that we will

have a certain degree of vowel impurity in all rhyme networks, be it due to the fact that

the poets deliberately decided to tolerate this, or that the underlying data reflects differ-

ent stages in language history, we would still assume that words rhyme more often with

each other if they have the same main vowel.

Table 3 Vowel systems across different Old Chinese reconstructions

Column Rhymes lists the number of character readings available. Column Density reports the density of the rhyme

network, that is, the fraction of the number of attested edges and the number of potential edges
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We can illustrate this notion of purity by creating a fictive dataset of six rhyme words

which we label 1, 2,…, 6, and of which 1, 2, and 3 share the same vowel, and 4, 5, and 6

share a vowel, which is different from the vowel of 1, 2, and 3. In Table 4, we display

two matrices which contrast different fictive types of rhyme co-occurrence for our six

words. If two words rhyme, this is indicated by a cross in the cell of the matrix. Impure

rhymes in which two vowels of different quality rhyme with each other are further

marked by shading the cell in gray. From the two different matrices, we can easily see

that the first one (matrix A) would intuitively reflect a higher degree of vowel purity

than the second one (matrix B), simply because the number of impure rhymes is much

lower in matrix A.

The same information can be also displayed in a network, in which our words 1, 2,…,

6 are modeled as nodes, and the information, whether they rhyme with each other in

the sources (matrices A and B) are displayed by drawing an edge between the nodes.

This is illustrated in Fig. 2, and we can see that the network visualization makes it even

easier to see the difference between the intuitively rather pure rhyme network in A and

the rather impure rhyme network in B. But our intuitive assessment may easily betray

us if the data becomes more complex. For this reason, we need a way to measure to

which degree a given network structure (the rhyme co-occurrences in the Book of

Odes) is in conflict with a given external division of the nodes (the vowels, as annotated

in the reconstruction systems of different scholars).

A measure that measures exactly what we want to test is assortativity (Newman

2003). Assortativity tests whether nodes sharing connections in a graph are also similar

regarding other characteristics. In social network analyses it can, for example, be used

to test whether observed patterns in a network, like friendship, come along with prop-

erties of the individuals, such as language or gender (ibid.). Assortativity can be mea-

sured by calculating the assortativity coefficient of a network in which all nodes have a

given attribute. The basic idea of this coefficient is to compare the proportion of edges

connecting nodes with the same attribute with the proportion of edges connecting

nodes with different attributes. Calculating the assortativity coefficient in a network is

straightforward. Given a network with nodes and node attributes, one first calculates

an attribute mixing matrix which indicates the proportion of edges between all attri-

butes. Based on this matrix, the assortativity coefficient can then be calculated with

help of the formula:

Table 4 Rather high and rather low degree of vowel purity in a fictive set of six rhyming words

Tables A and B show six fictive rhyming words, how they rhyme in a set of poems, with a cross in the cell indicating that

the words have been shown to rhyme together in at least one poem. Assuming that words 1, 2, and 3 have the same

vowels, which is different from the vowels of 4, 5, and 6 (which also share the same vowel), we can find occurrences of

impure rhymes whenever one word from the set of 1, 2, and 3 rhymes with one word from the set 4, 5, 6 (indicated by

shading the cell in gray). Here, our matrix A reflects a rather “pure” dataset, with only one transition in 3 and 4, while

matrix B reflects an impure dataset with as many as four transitions
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r ¼
TraceðmÞ−∥m2∥

1−∥m2∥
; ð1Þ

where m is the attribute mixing matrix, Trace is the sum of the diagonal from top left

to bottom right, and ||m|| is the sum of all cells in the matrix (see Newman 2003 for

details). An assortativity coefficient equal to 1 indicates full assortativity, with all edges

only connecting nodes with the same attributes. 0 indicates no assortativity, and scores

between 0 and −1 indicate inverse assortativity in which edges have the tendency to

connect nodes with different attributes (ibid.).

As an example on how to calculate the assortativity for a given network, consider

again our two networks in Fig. 2. In both networks, colors indicate node attributes, and

even from eyeballing, we have already seen above that network A has a high assortativ-

ity (as there is only one edge connecting red and blue nodes), while network B has a

lower assortativity. In order to calculate the assortativity coefficient for the two net-

works, we first need to determine the proportion of the edges connecting different

types of nodes with each other. Assuming a directed networkd, in which we can draw

two different edges between two nodes, both indicating the direction (from 1 to 2, or

from 2 to 1, as in a one-way street), we have 14 edges (2 × 7) in the first and 18 edges

(2 × 9) in the second network (see also Table 4, where the original matrices are given).

The proportion of edges linking from red to red, red to blue, blue to red, and blue to

blue can then be arranged in a contingency matrix, as illustrated in Table 5, and this

matrix is then used as input for formula (1) to calculate the assortativity coefficient r.

For the networks in Fig. 2, this yields:

A

B

Fig. 2 Comparing networks with (a) high and (b) low “purity” regarding the relation of colors and edges

Table 5 Calculating the attribute mixing matrices for the networks from Fig. 1

A Red Blue Red + blue

Red 6/14 = 0.43 1/14/ = 0.07 7/14 = 0.5

Blue 1/14 = 0.07 6/14 = 0.43 7/14 = 0.5

Red + blue 7/14 = 0.5 7/14 = 0.5 14/14 = 1.0

B Red Blue Red + blue

Red 6/18 = 0.33 4/18/ = 0.22 10/18 = 0.55

Blue 4/18 = 0.33 4/18 = 0.22 8/18 = 0.44

Red + blue 10/18 = 0.55 8/18 = 0.44 18/18 = 1.0
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rA ¼
0:86−0:5

1−0:5
¼ 0:72ð2Þ

rB ¼
0:56−0:51

1−0:51
¼ 0:1ð3Þ

We can see from this example that the assortativity coefficient confirms the intuition

we might have already had by eyeballing the networks in Fig. 2, namely, that the

network structure in network A reflects the coloring of the nodes much better than in

network B.

When comparing two or more reconstruction systems with each other, we need to be

careful in correctly interpreting the results. If one system has a high assortativity coeffi-

cient, this confirms a tendency to produce clusters of high purity. If the assortativity

coefficient of another system is lower, however, this could be triggered by the topo-

logical structure of the network alone, and not by the reconstruction system. As

scholars have chosen their reconstructions independently, assuming different numbers

of vowels for their reconstructions, it may well be that the initial number of vowels

might favor or disfavor a given analysis. A hypothetical system of one single vowel, for

example, would receive the highest assortativity coefficient simply due to the fact that

it covers the full network, and in the light of the theory of vowel purity in rhyming, this

would also reflect a pure rhyming behavior, as all rhyming instances would show the

same vowel.

We need to make sure that the distribution we obtain for a given reconstruction sys-

tem is not due to chance. More concretely, what is interesting for us, is not only

whether the distribution of vowels across a rhyme network is due to chance alone, but

also to compare across different reconstruction systems, which system is most unlikely

to have arisen by chance. Comparability can be achieved by comparing the results

obtained for a given reconstruction system with the results of a random distribution

obtained for the same dataset. The random distribution can be created by shuffling the

node labels (the vowels for each Chinese character in our case). In order to normalize

the data, one then compares to which degree the original result differs from the results

obtained for the randomized distribution, that is, one compares to how unlikely it is

that a given system could have been produced by chance. If we only wanted to test

whether a given distribution is likely to be due to chance, we can calculate the p -

value, using the formula:

p ¼ ðS þ 1Þ=ðRþ 1Þ; ð4Þ

where S is the number of random distributions with an assortativity coefficient higher

than the one we observed, and R is the number of all random distributions we created.

The p - value will range between 1 and 0, and the lower the value we obtain, the lesser

we would expect that the observed distribution was created by chance. It is customary

in the social sciences to set an arbitrary threshold for the p - value, indicating when an

experiment is accepted to confirm a hypothesis and when it is rejected. This value is

usually 0.05 in psychology and sociology, but much lower in physics.

In addition, since we do not only want to test whether a given reconstruction system

is significant with respect to the principle of vowel purity, we also need to find a way to
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compare different reconstruction systems with each other. A good score for this differ-

ence is to count the number of standard deviations between the mean of the random-

ized distribution and the non-randomized test (Lopez et al. 2013), which can be done

with the help of the formula:

σ ¼
rA−rE

sE
; ð5Þ

where rA is the attested assortativity coefficient, rE is the mean of the assortativity

coefficients in the random sample (the expected assortativity), and sE is the standard de-

viation. This score, which we will call the sigma score in the following, tells us how un-

expected a given analysis is with respect to an analysis which was carried out randomly:

the higher the score, the lesser we expect an analysis to be due to chance. In the con-

text of vowel purity in Chinese rhyme networks, this means that the higher a score, the

more closely it groups the rhymes by vowel quality. By reporting both the sigma scores

and the p - values, we further make sure that our results are generally significant.

A further problem mentioned above is the problem of sample size. Since we have a

considerable amount of missing readings in our data, we need to make sure that the

differences do not influence our results. In order to control this, we apply a straightfor-

ward re-sampling procedure by randomly selecting a certain number of nodes from the

networks which occur in all reconstruction systems and re-running the complete ana-

lysis on these subsets of the data. For this purpose, we created 10 random samples for

varying numbers of nodes, ranging from 100 characters up to 800 characters (all

random samples as well as the source code to create new random samples are given in

the Additional file 1: supplementary material). We ran our basic analysis on all these

subsets and averaged the results for a given number of nodes. In this way, we tested

the robustness of our approach when dealing with datasets of different sizes and ran-

dom collections of subsets of the data.

4 Results

We computed the assortativity coefficients for the original and the randomized data

based on the Book of Odes network for all eight reconstruction systems. The random-

ized distribution was obtained by shuffling the nodes in each network 1000 times and

storing the assortativity coefficient for each run. Thanks to the NetworkX software

package (Hagberg 2009), all computations could be carried out in Python, and all

source codes to replicate the analyses reported here are given in the Additional file 1:

supplementary material. In all cases, our primary question was to which degree the div-

ision of the rhyme words in the network according to their reconstructed vowels would

reflect the “natural” division of the networks into rhyme classes as represented in the

annotated network of rhymes in the Book of Odes. Table 5 shows the results for this

experiment for the 875 character readings.

As one can see from the results in Table 6, the reconstruction system by Baxter and

Sagart (2014) outperforms all other systems. With an assortativity coefficient of 0.88

and a sigma score of 79, it shows a higher degree of assortativity than the other

systems, and a generally high assortativity with respect to vowel purity. The next in

order is the system of Starostin (1989), with an assortativity coefficient of 0.84 and a

sigma score of 74. The system of Li 李方桂 (1971) performs worse than the other
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systems with a sigma score of 56, followed by the system of Wang 王力 (1980) with a

sigma score of 61. As the p-values in the last column in Table 6 indicate, all of our

experiments are highly significant, and there was no random distribution of vowels in

all 1000 which achieved a higher assortativity coefficient than the one we achieved for

the observed data. Regardless of the reconstruction system, all reconstructions show a

high tendency to reflect vowel purity.

As we mentioned before, due to the large number of missing readings in our data, we

need to control for the sample size. As a strategy, we carried out the re-sampling

procedure outlined in the end of Section 3.2, in which we split the data into randomly

selected samples of varying sizes of 100, 200,…, up to 800 characters, and then applying

our basic method to those subsets of the data. The averaged results for the ten different

samples we used in each analysis are given in Table 7. For reasons of space, we only

report ranks and sigma scores, but all detailed analyses are provided in the Additional

file 1: supplementary material. All p values for these analyses were highly significant

with p < 0.01. As can be seen from the table, all studies on the subsets confirm the ten-

dency we also saw in the full sample from Table 6, and especially the ranks are remark-

ably stable (the only exception being the analyses by Schuessler and Karlgren in the

lower ranks). What one can also see is that the size of the networks has a direct impact

on the sigma scores, which is easy to understand keeping in mind that if we select only

a small number of nodes the evidence for rhyme co-occurrences will drastically shrink.

Table 6 Results of the analysis for the complete dataset (including all characters reflected in all
reconstruction systems), a total of 875 nodes

Table 7 Results of the re-sampling test on randomized subsets of the data with varying numbers
of characters, and the resulting rankings for all datasets for the respective analysis. The eight re-
sampling trials consist of ten randomly selected sets of characters

The numbers (100, 200,…, 800) indicate the number of selected nodes, and the cell content of the columns shows the

averaged sigma scores. The columns with the hash character (#) reflect the ranking for the respective node selection. Cell

content in bold font reflects the highest value(s), cell content shaded in light gray reflects the lowest value(s) in the rank
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Apart from the remarkable robustness of the results across different random samples

of the data, the difference between the reconstruction systems regarding their individ-

ual degrees of vowel purity is also quite striking. This is interesting since scholars have

often emphasized the similarities between the more recently proposed reconstruction

systems (Behr 1999). Given that we only investigate the main vowels, thus ignoring all

other potential disagreements, shows that we are still far away from a communis opinio

on Old Chinese phonology. The differences between the reconstructions are further

illustrated in Fig. 3, where we contrast the reconstructed vowels for 300 characters out

of the 1830 character readings in the data. While we can see a rather high agreement

in the majority of patterns, especially between the six vowel systems of Old Chinese, it

is also easy to identify certain individual differences in the reconstructions. These cases

show that it is not one major disagreement triggering the variation, but a notable num-

ber of individual reconstructions in which scholars differ.

The assortativity coefficients of all systems and the high significance of our ran-

domized tests indicate that vowel purity plays an important role in Old Chinese

Fig. 3 Comparing the rhyme patterns across different reconstruction systems. The figure shows three
subsets of 100 characters each as they occur in the rhyme data of the Book of Odes; both include missing
characters and the respective vowel readings. While a definite structural similarity can be detected, we also
find remarkable differences. In the figure, each cell corresponds to one reading for a given character in the
row. Since the characters are too small to be readable, we offer a high-resolution version of this figure in
the Additional file 1: supplementary material
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rhyming. If vowel quality was independent of rhyme decisions, we would expect to

find assortativity coefficients to be close to zero, as we found in the random distri-

butions. What this means more concretely is shown in Fig. 4, where we show the

full rhyme network in which nodes have been colored according to the system of

Baxter and Sagart (2014). From this perspective, we can see that the network is

highly structured. Most rhymes which are topographically close from organic

groups in the network, as shown by their colors. That one and the same vowel fur-

ther form multiple distinct clusters is also to be expected, as vowel quality is not

the only factor conditioning rhyming. Furthermore, given the overall structure of

the network with its one larger component that connects almost all of the

characters, we can also see that the rhyme purity assumption is essentially an as-

sumption of degree: we find definite clusters which obviously correspond to words

with a very similar if not identical pronunciation in Old Chinese, but we also find

obvious transitions between all rhyme groups.

Fig. 4 The Book of Odes network with vowels colored according to the reconstruction system of Baxter
and Sagart (2014)
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5 Discussion

What can we learn from this experiment? Surprisingly, the reconstruction system of

Baxter and Sagart (2014), which was heavily criticized by Ho (2016) for its lack in vowel

purity, seems to evince a much higher purity of vowels then all other popular recon-

struction systems for Old Chinese, regardless of the number of vowels which these sys-

tems actually reconstruct. If vowel identity was indeed a valid criterion for the choice

of rhyming words in Old Chinese times, this could be seen as strong evidence for the

superiority of the reconstruction system by Baxter and Sagart (2014) closely followed

by the system of Starostin (1989). Yet, we should be careful with our conclusions, since

vowel purity is surely only one factor that may have contributed to Old Chinese rhym-

ing practice, and we cannot be sure how important this factor was. In order to use the

vowel purity criterion to favor or disfavor certain reconstruction systems of Old

Chinese, more evidence on the universality or the areal prevalence of this principle in

rhyming would be required. Since rhyming practice results from the interaction

between language, culture, and cognition, more studies on cross-linguistic and cross-

cultural rhyming practices would be needed to clearly use external criteria as evidence

for or against a given Old Chinese reconstruction.

Even if we refuse to use the results of this research to rank or evaluate the different

reconstruction systems of Old Chinese, we consider it as a valuable contribution to the

field of Chinese historical linguistics, as we have shown that we can easily design quan-

titative tests that check to which degree different reconstruction systems conform to a

given criterion. By expanding this principle to the finals of different reconstruction

systems, we could, for example, test the general degree of purity with respect to the

rhymes in the Book of Odes. As shown in List (2017), we can also use the rhyme net-

works to resolve uncertainties inside a given reconstruction system. Due to the diversity

of poetry collections like the Book of Odes itself, we could further compare rhyming

behavior across different partitions of the data, thus testing current hypotheses regard-

ing its development history. Given the crucial role that Chinese plays for the history of

the Sino-Tibetan language family, research along these lines may not only have an

impact on Chinese historical linguistics, but may also help us to gain new insights into

the prehistory of one of the largest language families in the world.

Given that Chinese is not the only language whose older stages are reflected in rhym-

ing, one may even think of applying the method to other languages, such as Tangut

(Arakawa 2001) or Egyptian (Peust 2014). When taken with care, network studies on

rhyming practice may provide additional evidence for original pronunciation, especially

in those situations where the writing system lacks precision in truthfully representing

speech in phonetic detail. These methods may also be used to investigate cross-

linguistic rhyming tendencies. So far, the vowel purity principle is still a hypothesis

rather than a confirmed effect. By adding more data from different languages to the

sample, one could investigate whether it reflects a universal tendency rather than a

specific tendency in Old Chinese rhyming.

This paper shows that a thorough quantitative comparison can give us new insights

into the problems in the reconstruction of Old Chinese, but also into the more general

problems of reconstruction in historical linguistics. Instead of dismissing theories or

reconstructions by cherry-picking particular examples, a thorough and if possible ex-

haustive evaluation may often allow us to look at problems from a fresh perspective.
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Unfortunately, increasing the amount of data amenable for quantitative investigations is

time-consuming. For this reason, the results presented in this paper can only be regarded as

preliminary until the existing data are more consistently checked and new data have been

added. In order to tackle these problems in the future, collaborative efforts are required,

and all scholars should try to contribute by sharing their data as transparently as possible.

6 Endnotes
aThe two words given as example occur as rhyme words in the last stanza of the fam-

ous German folk song Abendlied (‘evening song’) by Matthias Claudius’ (1714–1840),

which originally reads: So legt euch denn ihr Brüder, In Gottes Namen nieder (‘now lie

down you brothers in the name of god’).
bNote that the original source by Li 李方桂 (1971) does not list all characters of the

Book of Odes, and all accounts, be it the one provided by Eastling or the one provided

by Shen 沈鍾偉 (2005) apply the principles outlined in Li 李方桂 (1971) independently

to Middle Chinese character readings.
cFor a network of three nodes, we would thus have (32-3)/2 = 3 edges (A-B, A-C, B-

C, for nodes A, B, and C), and for a network with four nodes, the number of potential

edges would amount to (42-4)/2 = 6 (A-B, A-C, A-D, B-C, B-D, C-D).
dAny undirected network can be transformed to a directed network by replacing all

undirected edges between a node pair n1 and n2 with one directed edge from n1 to n2

and one from n2 to n1.
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IV. CONCLUSION 

 During these three years, I used and studied network methods which I have found to 

be efficient for comparing very large datasets (up to millions of objects), in particular for 

structuring genetic diversity into clusters. This provided me with a rather broad view on the 

genetic diversity that is the result of evolution. Because these approaches were very generic, I 

could address a diversity of evolutionary issues. Throughout my thesis I also developed 

several bioinformatics tools to achieve my aims. 

 The first kind of issues were directly related to the evolution of primary sequences. 

CompositeSearch allowed me to quantify the gene families associated with particular 

evolutionary events such as transition to animal multicellularity. Moreover, beyond this 

relatively classic clustering of molecular sequences, CompositeSearch provided insights on a 

set of more complex objects: families of composite genes. This double angle returned a more 

comprehensive description of the changes affecting individual genomes and metagenomes 

because evolution could be investigated at the level of full sized genes as well as at a subgenic 

level. These two levels may be coupled: for example, during the transition to animal 

multicellularity, there was both an increase in the number of novel gene families in the 

ancestor of animals and an increase in the combinations of genetic fragments associated in 

these taxa. The processes leading to composite genes were less known than the evolution of 

entire novel gene families and logically the effect of these combinatorial processes deserved a 

better description.  

 My work on plasmids also shows that composite genes can be plasmid encoded and 

affect host cell biology. My work on soil microbiomes showed that the abundance of 

composite genes can be correlated with pollution levels. These two examples highlight that 

important biological novelties and adaptations can result from processes acting at subgenic 

levels. I believe that this work is just the tip of the iceberg for the contribution of composite 

genes to the evolution of gene families, genomes and organisms. Further tests will of course 

be necessary to confirm these in silico predictions.  

 An additional computational development will also be necessary to provide a more 

comprehensive description of the composite genes. Typically, CompositeSearch could only 

detect composite genes that combine fragments form distinct gene families. As such, it didn't 



detect tandem repeats for instance. Moreover, the composite genes that CompositeSearch 

detected were only genes along which at least two components families match. As such, it 

could not detect extended genes, i.e. genes that presented original terminal extensions or 

insertions with respect to their homologs. Detecting these additional gene remodeling emerges 

as a natural perspective from my PhD research. I have started implementing a tool called 

ExtensionSearch to this endeavor. ExtensionSearch is a parallelized program implemented in 

C++ that uses SSN to detect extended genes and extended gene families. It is able to analyze 

SSN that are composed of several million nodes and hundreds of millions of edges. Based on 

the CompositeSearch algorithm, it is capable of capturing not only the conserved extended 

gene family forming cliques but also the less conserved ones forming quasi-cliques. There are 

two different case of extension that can be detected are shown in Figure 20. 

The first case is the extension that happened within a gene family (Figure 20), where an extra 

segment might originate from either a terminal extension or loss of a terminal segment. The 

second case is an extension that happened in a remodeled genes. Figure 20 shows an example 

of a composite gene where the two component are not fused in a consecutive position and are 

separated by an insertion. 

Figure 22: Different type of gene extension detected by ExtensionSearch.

 My lab mates are expected to take over the completion of the project in order to 

analyze in particular gene extensions associated with animal evolution. Indeed, I found this 

question of high interest as I started collaborating with James McInerney, Mary O'Connell 

and Ray Moran, who were among the first external users of CompositeSearch. Together we 



initiated an ambitious and comprehensive analysis of the events of molecular evolution that 

have affected animal genomes. This work currently features a study of a potential molecular 

clock for gene family creation, gene family duplication and the evolution of composite genes 

(Annex 2). We utilized novel algorithms in phylogenomics and sequence similarity networks 

to understand how and to what extent linear processes, such as gene duplication and mutation 

in gene families, and non-linear processes, that merge gene families, facilitate the emergence 

of new genes and novel phenotypes/functions. While we understand that mutational molecular 

clocks tend to tick with complex but increasingly well-understood rates (Lynch 2010), we 

have not yet been able to understand how, when, and especially at what rate, gene remodeling 

has impacted animal proteomes. Until recently, no comprehensive dataset of proteins was 

available to investigate such questions. Our preliminary results demonstrate that the processes 

involved in the evolution of protein coding genes strikingly differ depending on which part of 

the animal tree of life you examine. We show that remodeled genes are widely prevalent in 

animals and are in fact a major conduit for genetic innovation. Finally, we show that in extant 

species, like human, remodeled genes tend to reuse and recycle already existing remodeled 

material. On a broader scale, this work provides a first glimpse into how the protein coding 

elements of animals have evolved through time and how this correlates with major 

evolutionary transitions in phenotypes from sponges to humans. Before the corresponding 

manuscript is submitted, we will add to this work a study of the gene extensions that are 

found in these taxa.  

While most of my PhD thesis was focused on simple SSNs, I also contributed to 

develop additional types of network. On the one hand, I implemented scripts that ease the 

construction and analysis of bipartite graphs, which are becoming increasingly popular since 

the teams of Fernando Baquero (Spain), Eugene Koonin (USA) and Tal Dagan (Germany) are 

also using comparable approaches. With my scripts, lateral gene transfers in prokaryotes can 

be investigated, even by biologists who are not primarily programmers. For example, my 

collaborator Alex Jaffe, currently a PhD student in metagenomics, has introduced this method 

in the Banfield lab. On the other hand, I also contributed to develop a new type of co-

occurrence network, called trait network. Here the challenge was not so much the avalanche 

of data but rather the need to investigate carefully selected data under a different perspective, 

to get even more out of the current datasets. The construction of trait networks purposely 

relies on simple rules, reflecting the distribution of traits in taxa. They are of immediate 

interest to paleontologists, but because these networks are very generic, they will also be of 

use in the near future to investigate the distribution of diverse components in diverse 



biological systems (proteins in organellar proteomes, OTUs in environmental samples and 

cultural items in human societies).   

Across all these studies arose a common theme. It is possible to model the evolution of 

entities be they genes, genomes, organisms and languages in a way that accounts for more of 

the actual complexity of these objects. Namely, aspects of the modular nature of evolved 

forms can be captured using networks (composite genes, introgressed genomes, versatile body 

plans and compound words). Another pleasant outcome of network studies is that they allow 

to connect issues from different fields (paleontology, molecular evolution, linguistics) in a 

fruitful way. I am very thankful to all my great collaborators.  

 That being said, bioinformatics remains at the center of network analyses, which 

means that evolutionary biologists that are trained in bioinformatics could make significant 

contributions if they succeed in overcoming the following remaining challenges. First, in the 

post-genomic era, we have now access to large molecular data with considerable genetic 

diversity from genomic and metagenomic projects. During my thesis, I was led to construct 

and study very large similarity networks, for example with the study of gene remodeling in 

the polluted environments, where the SSN was composed of 3,166,706 nodes and 

282,789,792 edges. The construction of large similarity networks remains a computational 

challenge in terms of memory and processing time. Computing pairwise similarity is a 

fundamental task in the construction of SSN, especially for composite gene detection where it 

needs information about the position of the alignments on the sequences. While a quadratic 

complexity might seem good enough, in practice the exponential growth of biological 

sequences calls for speedup of sequence alignment tools such as BLAST. One alternative that 

I propose is to use new alignment software such as DIAMOND. These new variants of 

BLAST approach have been using flexible-length seeds on a reduced amino acid alphabet.

They considerably reduce the computational time on a desktop machine, and should be used 

in the future, especially for large metagenomics datasets. Moreover, since pairwise 

comparison can be easily parallelized, promising low-cost solutions could come from the 

Hadoop framework, in order to parallelize existing software such as HAMOND or HBLAST, 

respectively for DIAMOND and BLAST.  

Another perspective to accelerate comparisons would be to adopt an approach which 

reduces the complexity of the data using the alignment-free methods based on k-mers. These 

methods are based on the comparison of subsequences of length k shared between sequences..



Using alignment-free tools we could quickly screening the huge data to filter the sequences in 

order to reduce computational time and memory usage during the all versus all sequence 

comparison. 

Recently, graph databases have started to appear, easing the mining of very large 

networks. Such databases uses graph structures for semantic queries with nodes, edges and 

properties to represent and store data (Angles and Gutierrez 2008). With the emergence of big 

data in biology, several researchers have started to also use graph databases for biological 

network analyses (Henkel et al. 2015; Lysenko et al. 2016; Mullen et al. 2016). However, to 

our knowledge, there is no example of graph databases in evolutionary biology. A neat future 

development would then be to incorporate graph database management systems, such as 

Neo4j (Webber 2012), to our network-based studies of molecular evolution. 
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Abstract  

Microbes are the oldest and most widespread, phylogenetically and metabolically diverse life forms 

on Earth. However, only relatively recently have they been discovered and has their diversity started 

to become seriously investigated. For these reasons, microbial studies that unveil novel microbial 

lineages and processes affecting or involving microbes deeply (and repeatedly) transform knowledge 

in biology. Considering the quantitative prevalence of taxonomically and functionally unassigned 

environmental sequences in metagenomics datasets, and that of uncultured microbes on the planet, we 

propose that unraveling the microbial dark matter should be identified as a central priority for 

biologists. Based on former empirical findings of microbial studies, we sketch a logic of discovery 

with the potential to further highlight the microbial unknowns. 

 

Keywords: metagenomics, eukaryogenesis, microbial evolution, tree of life, web of life, CPR bacteria  

 

Introduction 

Microbial studies are fascinating. Not only their findings can deeply transform knowledge in a broad 

range of scientific fields (from evolutionary biology to zoology and medical and environmental 

sciences), but also, whereas philosophers of sciences debate whether there is such thing as a logic of 

scientific discovery (Schickore 2014), microbial studies provide biologists with a set of empirical rules 

to enhance one’s chances to discover novel and unexpected life forms. This unique potential of 

microbial studies to reshape knowledge has been recognized relatively recently. If the laymen 
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nowadays appreciate that microbes impact our everyday life (i.e. via their fermentative roles in food 

production), and know that microbes also impacted our recent human histories (i.e. via their 

contribution to major pandemics (Diamond 1997)), from a scientific perspective, microbes are 

nonetheless rather novel objects of studies. There are both technical and conceptual reasons for this 

late yet broad recognition of microbes, as we will highlight below, while providing an empirical recipe 

for further insights into the microbial dark matter.  

In 1619, the famous astronomer Galileo, whose observations of the moons of Jupiter had 

threatened the geocentric theory, modified a telescope to magnify nearby terrestrial objects. Although 

he clearly was a revolutionary thinker, he found these observations of the minute world of limited 

interest, and, only 6 years later, did his friends name microscopio the strange inverted telescope Galileo 

had invented (Falkowski 2015). By contrast, Robert Hooke, an English polymath scientist, and, later, 

Anton van Leeuwenhoek, who did not belong to the academic world, were much more excited by 

describing their microscopic observations. In 1671, van Leeuwenhoek, who had substantially changed 

the design of the microscope to enhance its magnifying power, initiated a series of striking findings: 

microscopic lifeforms are abundant and everywhere to be seen. Microbes, who had populated Earth 

for over 3.5 billion years, were for the first time exposed to the human eye (Falkowski 2015). Both a 

technical progress and an uncommon ability to delve into an unseen world were critical components 

of that progress. However, since biological theory at the time considered the living world was 

distributed into two major groups: plants and animals, van Leeuwenhoek naturally assumed he was 

observing populations of minute animals (with tiny organs), when microbes were mobile, rather a new 

kind of living beings. In that sense, the unveiled microbiological world was first rationalized in ways 

that fit within pre-existing theoretical categories derived from the known living world. Importantly, 

neither Hooke nor van Leeuwenhoek had immediate scientific successors. Arguably, it took another 

200 years (Falkowski 2015), and several novel conceptual and technological developments to 
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formulate an issue, currently at the forefront of microbial studies: « is it possible that unknown 

microorganisms, with different properties than those currently associated with the known living world, 

are thriving in nature? ».  

The potential theoretical importance of such ‘known unknowns’ and even ‘unknown 

unknowns’ of the microbial world (e.g. unknown genes, genomes, functions, organisms, processes and 

communities associated with uncultured microbes and virus), that were often popularized under the 

catch-phrase ‘microbial dark matter’, should not be underestimated. Much of the extant knowledge in 

biology, i.e. about biological entities and biological processes, heavily relies on analyses conducted on 

macro-organisms and on cultured microbes. Yet, 99% of the microbial diversity is impossible to 

culture (Staley and Konopka 1985).  Unraveling the microbial dark matter could thus have led to two 

(nonexclusive) types of observations. Either the discovery of hidden microbes will show that microbes 

unveiled from the microbial dark matter are comparable in terms of genetic diversity, ecological roles, 

abundance, evolutionary history and affected by processes similar to those affecting cultured microbes, 

in which case our current knowledge of microbes is representative of what is really happening in nature 

(e.g. we will simply find more of what we already knew by mining the microbial world) ; or the 

microbial dark matter will prove to host entities and processes that differ from those already described, 

with the major consequence that scientific knowledge will not only need to be completed but also 

corrected as microbiologists gain access to this still hidden microbial world in order to consider new 

phenomena, poorly explained in extant theories. Such significant theoretical transformations have 

arguably occurred when i) microbiologists looked for life in extreme environments, ii) detected life 

under unexpected forms, and iii) unveiled new processes involving microbes, which allows us to stress 

some key features for the success of a scientific research oriented toward the discovery of 

microbiological novelty.  
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Searching life in extreme environment: a few lessons 

The developments of molecular markers and sequencing techniques were instrumental for the 

discovery of extremophiles. By unveiling the archaea, a novel early branching Domain of life, possibly 

sister-group to eukaryotes, Carl Woese’s phylogenetic studies of the 16SRNA revolutionized the views 

on the entire biological world (Woese and Fox 1977; Woese, et al. 1990). Woese argued that, rather 

than being partitioned into two major groups, the eukaryotes and the prokaryotes, the living world 

encompassed a much broader microbial diversity, justifying its classification into 3 Domains of life. 

Subsequently, Woese and his colleagues (referred to as ‘the Woese army’ by Lynn Margulis (Doolittle 

2013)) actively promoted this position, bringing the newly termed ‘archaea’ into full light, while 

intending to ban the use of the ‘older’ term ‘prokaryotes’ (Pace 2006).  Importantly, this comparative 

approach of molecular phylogenetics was later coupled to a phase of exploratory science (Waters 2007) 

(i.e. a strategy of data mining, which goes from the data to the hypotheses (Burian 2013), in strong 

contrast with the then classic hypothetico-deductive strategy, which operated from the hypotheses to 

the data, heralded by Karl Popper). Since exploratory science is not first aimed at rejecting (or 

confirming) pre-established hypotheses (thus deepening current knowledge), it can potentially produce 

novel, unexpected knowledge, or simply fail, making the financial and scientific investment in 

exploratory studies especially risky. Fortunately, the pioneering approach, largely based on the 

development of metagenomics, which bypassed the need for culture studies, thereby lifting a blind 

spot imposed by culture-based investigation to comparative analyses, produced remarkable results 

when microbiologists turned their eyes to extreme regions (in terms of temperature, pH, pressure, 

mineralization, radiations) that many considered a priori devoid of life (Pikuta, et al. 2007). The 

seemingly counter-intuitive idea to sample lifeforms in environments hostile to life unveiled a broad 

diversity of extremophiles in the 3 Domains. Microbiologists realized that life was possible at 

temperature  > 113-200 Celsius degree, at negative pH (!) and at pH> 11, at pressures exceeding 1200 
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atmospheres ; that microbes could be resurrected after 20-40 millions of years of dormancy, survive 

2.5 years of travel in space, and thrive within rocks as well as in the terrestrial stratosphere (at > 44km 

of altitude) (de los Rios, et al. 2003; Pikuta, et al. 2007)(see for example: 

https://www.slideshare.net/AnjaliMalik3/extremophiles-imp-1). They concluded nonetheless that 

some of these statistics were so unexpected that Pikuta et al. (Pikuta, et al. 2007), summarizing the 

ongoing knowledge on extremophiles, drew too short axes for temperature, pH and salinity on plots 

showing the physico-chemical conditions compatible with life. Some environmental microbes were 

definitely outliers with respect to the majority of known creatures. This counter-intuitive search for 

extremophiles likely reaches his summit in astrobiological studies, which search for life beyond Earth, 

seeking to define biomarkers in exoplanetary analogs and to train to detect these biomarkers in regions 

of the universe that currently fit the minimal requirements for life in C, H, N, O, P, S, liquid water and 

energy (Olsson-Francis and Cockell 2010). No one knows whether extraterrestrial microbes will 

ultimately be discovered this way, but, at least, ironically terrestrial microbes have increased chances 

to spread in space (Checinska, et al. 2015). 

 

Searching life under unusual forms: a few lessons 

In as much as metagenomics enhance microbial dark matter studies, e.g. by unraveling extremophiles, 

it also raises issues, since metagenomics has its own blind spots. The selection of samples, markers 

and the many filtering decisions and heuristics in the subsequent bioinformatic treatments imposed by 

the wealth of metagenomic data, as well as the increased standardization of the methods and questions 

of metagenomic studies (a logical scientific development for a comparative science (Vigliotti, et al. 

2017)) raise the risk that the most unexpected of life forms, even if already sequenced, remain drowned 

under this deluge of data. This risk has notorious roots: our observations are strongly constrained by 
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what our theory makes us prone to expect, and therefore by former perspectives informing various 

criteria in the sampling process. This limit is obvious in the process of size-fractioning associated with 

metagenomics analyses, such as the one conducted in the Tara expedition, which a priori optimized 

the net sizes of its filter to capture different taxa of marine microbes (Karsenti, et al. 2011). This 

procedure entails the inherent risk that important players of the microbial world may be overlooked if 

their sizes do not satisfy these filtering conditions. For example, 10 years ago, few (or even no) 

microbiologists nor virologists would have assumed that bacteria smaller than 0.2 microns and viruses 

larger than 0.2 microns existed (Council 1999). This view radically changed with the discovery of 

ultra-small bacteria, aka nanoorganisms, such as the CPR in 2015 (Brown, et al. 2015) or some 

DPANN in 2010 (Baker, et al. 2010), and with the discovery of giant viruses, such as Mimiviridae, in 

2003 (La Scola, et al. 2003). These two taxa are now found in diverse environments, albeit at low 

abundance. Moreover, CPR discovery further required acetate amendment, i.e. a technologically-

induced modification of the environment during the sampling process (Brown, et al. 2015). CPR are 

remarkably phylogenetically diverse, representing up to 15% of the bacterial domain, and present an 

unusual biology (i.e. 16SRNA with insertion, lack of essential metabolic genes), which suggests that 

all CPR depend on other life forms. Mimivirus biology is not less striking. In particular, they are hosts 

to yet another new kind of viruses : virophages, i.e. viruses of giant viruses (Boyer, et al. 2011). The 

phylogenetic position of these relatively newcomers, especially regarding  how deep CPR and giant 

viruses branch (if they do) with respect to the other Domains of life, is heavily debated (Colson, et al. 

2012; Hug, et al. 2016; Moreira and Lopez-Garcia 2015). Such debates illustrate that attempts to 

establish novel groups inevitably (and logically) arise resistances, but no one questions that an accurate 

picture of the microbial world and its evolution can any longer satisfactorily be achieved without 

including nanoorganisms and giant viruses.   
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Metagenomics has not merely unraveled new microbial lineages, it has also reported new gene 

families (Lok 2015) and unusual gene forms. In principle, newly sequenced environmental genes could 

fall into one of 4 groups (Figure 1).  

 

Figure 1: Four types of environmental sequences. Environmental sequences can be classified based 

on their taxonomical annotation (horizontal line) and their functional annotation (vertical column), 

which defines 4 categories. The cells in purple and black correspond to categories that are not readily 

explained based on current biological knowledge.   

The in silico functional and taxonomical annotations of environmental genes using existing 

ontologies (here, applied to 339 metagenomes (Fondi, et al. 2016), sampling a diversity of 

environments, i.e. soil, seawater, inland-water, wastewater, host, air, bioremediation, 

biotransformation, and sludge waste) indicates that most environmental genes have unknown 

functions, and belong to uncharacterized microbial lineages (Figure 2). In fact, when the minimum 

%ID threshold is set at 95%, >50% of these genes are neither functionally nor taxonomically annotated, 
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and at 50%, >30% of these genes are neither functionally nor taxonomically annotated, which stresses 

the genuine abundance of microbial dark matter in metagenomic data. 

 

Figure 2: Microbial dark matter across a diversity of environmental samples. Proteins inferred 

(with FragGeneScan (Rho, et al. 2010)) based on Metagenomic sequences from (Fondi, et al. 2016), 

clustered based on their taxonomy (using MEGAN 6 (Huson, et al. 2016)) and functional (using 
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EggNOG-mapper (Huerta-Cepas, et al. 2017)) annotation. The pie charts represent the proportion of 

proteins from each type of environment. The taxonomy annotation was performed using three 

minimum percentage of identity: 50% (panels A and B), 85% (panels C and D) and 95% (panels E and 

F). In panels A, C and E the proteins were clustered based on their functional annotation including the 

category S (‘Function unknown’). Panels B, D and F were clustered with the exclusion of the category 

S. 

Bioinformatics developments are currently designed to associate these unknown genes to reference 

gene families. For example, the search for highly divergent homologs using sequence similarity 

networks (Lopez, et al. 2015) highlighted that a large majority of the ancient gene families that are 

well-conserved in cultured microbes have extremely divergent homologs in nature. Lopez et al. 

proposed that at least some of these very divergent homologs might sign the existence of deep 

branching yet unseen major divisions of life (Lopez, et al. 2015). Discovering environmental deeper 

lineages, branching below the currently recognized prokaryotic domains, could re-open the debate on 

the number of Domains of life, questioning our fundamental knowledge in terms of biological 

classifications and regarding early life evolution. Bioinformatics studies however need to be 

complemented by another type of experimental evidence, i.e. individual sequences of genomes from 

putative very early branching microbes, or even isolations of these organisms. Thus, so far, despite the 

actual high number of environmental ‘known unknowns’ no major scientific journal has yet been 

convinced that enough evidence for new candidate Domains is available (Parks, et al. 2017). 

Microbial processes as a yet unexhausted source of knowledge  

At the same time that microbes left the realm of microbial dark matter, our knowledge on processes 

involving or affecting microbes evolved substantially. The focus on interactions and the use of 

networks rather than trees to frame microbial studies is emerging as a major trend. It is becoming 

obvious that simple tree-based models, aiming at reconstructing the divergence of lineages from a last 

common ancestor, are not fully doing justice to the diversity and complexity of the processes 

explaining microbial evolution. Introgressive processes such as lateral gene transfer stress the 
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collective dimension of microbial evolution (Bapteste, et al. 2012). Likewise, the discovery of 

environmental microbes with genuinely incomplete genomes (i.e. lacking essential genes) and of 

syntrophic consortia insists on the importance of metabolic, ecological, and evolutionary scaffolding 

in the microbial world (Brown, et al. 2015; Caporael, et al. 2013; DeLong 2007; Ereshefsky and 

Pedroso 2015; Morris, et al. 2012; Sachs and Hollowell 2012). The claim that in nature microbes 

depend on other microbes to survive, contrasts strongly with the notion that natural selection ultimately 

favors individual optimized lineages via the success of the fittest cells amongst large and 

phylogenetically homogeneous microbial populations. It matches however well with the empirical 

observation that pure culture fails for most microbes (Staley and Konopka 1985), and in fact provides 

an explanation for this great plate anomaly.  Microbes belong to collectives rather than they live alone. 

Other striking interactions are also unveiled as scientists dig further into the microbial world. For 

example, unheard forms of communication impact microbial and viral population dynamics (Erez, et 

al. 2017).  Microbiomes and their hosts co-construct a broad range of animal and plant phenotypes 

(Gilbert, et al. 2015), to the point that some propose to introduce holobionts (the emergent associations 

of hosts and microbes) as a novel kind of central evolutionary player (Bordenstein and Theis 2015; 

Moran and Sloan 2015; Theis, et al. 2016). At an even broader scale, in the environment, microbes, 

most of which are unknown, are now assumed to affect the geochemical processes that shape our planet 

(Guidi, et al. 2016) and, by a process called niche construction (Laland, et al. 2016), these microbes 

are considered likely to impact ecosystems and the future of life. All these processes (lateral gene 

transfer, scaffolding, communication, microbial co-construction, and niche construction), while 

widespread in the microbial world, are still rather peripheral in biological explanations. Introducing 

the processes of microbial dark matter within biological theory thus requires revising the relative 

priority currently attributed to concepts in scientific explanations, which is likely to be a slow and 

tedious epistemic process. For example, prokaryotic biology, especially when considering 

microbiomes, appears in fact so different from the biology of model eukaryotic organisms that several 
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evolutionary biologists and theoreticians have independently suggested that key aspects of the classic 

Darwinian theory and of the Modern Synthesis would have been very different had microbial studies 

been more central during the early development of the evolutionary theory. Others however disagree 

that the structure and content of the evolutionary theory requires to be reshaped, even in the light of 

this new knowledge in microbiology (Wray 2014). Yet, debates around the gene content, nature and 

phylogenetic position of Asgard archaea (Saw, et al. 2015; Zaremba-Niedzwiedzka, et al. 2017) (Da 

Cunha, et al. 2017) powerfully illustrates that an enhanced knowledge of the microbial dark matter has 

unquestionably the potential to transform central elements in the evolutionary theory. If Asgard 

archaea, currently only known via assemblies of environmental reads, prove to be sister-groups of 

eukaryotes, this should (at least) impact the very notion of a tree of life, the number of Domains of 

life, and, depending on the intimate structural biology and metabolisms of these Asgard, it will also 

help testing amongst competing hypotheses for the origin of eukaryotes (Koonin 2015; Sousa, et al. 

2016). 

  Conclusion 

The discovery of an increasing number of types of microbes has consistently shown that our planet 

hosts microbes with properties that were not simply identical to the ones formerly described. Studies 

of the microbial dark matter have brought forward the existence of novel entities (e.g. nanoorganisms, 

giant viruses, virophages, etc.) and novel relationships within the microbial world (e.g. viral languages, 

high divergence, scaffolding, etc.). This formerly dark microbial matter has not been unraveled 

randomly. To sum up its logic of discovery,  it has required : to think outside the box (e.g. Woese’s 

invention of a novel Domain ), to take scientifically and financially risky decisions (e.g. sampling sites 

where life was unlikely), to develop novel methods pushing back the limits of detection (e.g. better 

microscopes, inclusive networks), to prepare one’s mind to detect unknowns and unexpected forms 

(e.g. biomarkers), to identify and to seek to explain anomaly (e.g. the great plate count anomaly), to 
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change perspectives (e.g. embracing the notion of nanoorganisms, or of multiple prokaryotic domains), 

to use analogies to uncover new microbial systems (e.g. for the study of extremophiles in space), to 

purposely depart from normal scientific practices and background knowledge (e.g. network studies of 

divergent gene forms, exploration of increasingly extreme environments), to be willing to create novel 

groups (e.g. Archea, CPR, Mimiviridae,…), and finally to convince (e.g. by banning competing 

notions, or by establishing new attractive fields, such as metagenomics). Indeed, many of these 

discoveries presented in this work generated resistances. These resistances are perfectly explainable. 

Unraveling the unknown is especially difficult, because although we could empirically sketch a logic 

of scientific discovery, at the time each novel finding was made, their inventors could not yet rely on 

a standard method but essentially they had to convince the rest of the community that both their unusual 

approaches and finding were relevant. Convincing its own peers is finally essential, and possibly one 

of the largest and commonest challenge for microbial dark matter studies, and this seems especially 

difficult even for creative outsiders. Van Leeuwenhoek’s pioneering example offers indeed a great 

reminder that extraordinary results can easily be forgotten.  
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Article n° 11: Major protein-coding innovation by gene remodeling in the animal kingdom 

This article is in preparation and will be submitted to the journal "Molecular Biology and 

Evolution". 





Major protein-coding innovation by gene remodeling 

in the animal kingdom. 

Moran RJ, Pathmanathan JS, Bapteste E, Lopez P, Creevey CJ, Sui Ting K, 

McInerney JO and O'Connell MJ 

In Preparation 

1 Introduction 

Understanding the origin of genetic and functional novelty across the Metazoa (i.e. all 

multicullar animals) is a fundamental problem in modern biology. Although there has 

been a lot of research carried out investigating the role of tree-like mechanisms (such 

as gene duplication and loss) in creating novel genes, little is understood about the 

role of non-tree-like mechanisms (such as gene remodelling) in creating novel genes. 

By performing analyses of sequence similarity networks (SSNs) and phylogenomics 

across 63 Metazoan genomes, we assess the contribution of two interrelated 

mechanisms of protein coding evolution to the diversity of animal protein coding 

gene families. Firstly, we use a novel phylogenetic approach to plot gene duplication, 

loss and point mutation in the evolution of gene families on the animal tree of life. 

Secondly, we use a network approach to study novel gene family evolution by gene 

remodeling. In this article, we focus on gene fusion/fission as the mechanism of gene 

remodeling. We show that gene remodeling is present right across animal life, and is a 

major source of novel protein-coding gene family genesis. In general, we see that the 

rate and specific mechanism involved in the generation of novel protein-coding gene 

varies significantly depending on the lineage. For example, the Deuterostomia as 

compared to the Protostomia have a much higher incidence of gene remodeling 

(specifically fusion). Bilaterian animals are either deuterostomes (in development first 

opening becomes the anus) or protostomes (first opening becomes the mouth). On a 

broader scale, this work provides insight into how novel protein-coding gene families 

have evolved through time and contributed to the diversity we see across the Metazoa.



Genome sequencing is revealing the existence of an enormous repertoire of protein 

coding genes in animal genomes (Consortium 1998, Adams et al. 2000, Holt et al. 

2002, Consortium 2004). Recombinogenic processes and transcription-mediated read-

thorough create remodeled genes that likely contribute novel protein coding genes to 

genomes (Zhou and Wang 2008, Kaessmann et al. 2009, Wu et al. 2013, Agaram et 

al. 2015). Indeed, given the diversity of protein domain combinations, it is reasonable 

to assume that protein remodeling has made a contribution to the whole-organism 

diversity observed in Metazoa. Well-understood and well-characterized examples of 

gene remodeling include Jingwei, a remodeled Drosophila gene derived 2 MYA from 

a fusion of a retrotransposed copy of an Adh locus and the 5’ end of the yande gene. 

The novel phenotype conferred by the resultant remodeled protein is a new specificity 

towards long-chain primary alcohols (Wang et al. 2000, Long et al. 2003). The Kua-

UEV fusion gene in human is remodeled from two adjacent genes (Kua and

UBE2V1)(Thomson et al. 2000) . The functional impact of this remodeling event is 

that the ubiquitin conjugating enzyme UBE2V1, which normally has activity localized 

solely to the nucleus, now has novel activity localized to the cytoplasm (Thomson et 

al. 2000). While we understand that mutational molecular clocks tend to tick with 

complex but increasingly well-understood rates (Lynch 2010), we have not yet been 

able to understand how, when, at what rate, and to what extent remodeling has 

impacted on animal proteomes. Until recently, we have not had available a 

comprehensive dataset of proteins to determine the details and genome wide impact 

of gene remodeling processes. 

Animals exhibit significant diversity in development, morphology and indeed body 

plan. We define major transitions as events that have allowed a lineage to radically 

change their environment, a biological function, and/or phenotype. From studies such 

as McLean et al. (2011) (on the lack of penile spines in Humans) and D'Apice et al. 

(2004) (on the cause of Progeria) we know that even small changes at the genetic 

level can cause major phenotypic effect (D'Apice et al. 2004, McLean et al. 2011). 

While phenotypic transitions in the Metazoa such as the emergence of the mesoderm, 

mineralized skeleton and chordate have been well documented (Bell 2015), the 

underlying genetic changes contributing to these major phenotypic transitions are 

generally quite poorly understood. Major questions in theoretical evolutionary 

biology that are addressed in this article include: are these major phenotypic 



transitions fuelled by the emergence of novel protein coding gene families, and, has 

gene remodeling contributed to these novel families at a steady rate over time or in a 

punctuated manner across the fossil record.  

2 Methods 

2.1 Data acquisition 

We retrieved our data from the OMA database (Altenhoff et al. 2014). We only used 

coding DNA sequences (CDS). All data was passed through our initial quality filter 

(Section 2.2). From the data that passed this filter, we took representatives across the 

Metazoa for each major phylum of the tree (Figure 1). Finally, form all the genomes 

that passed the quality filter, we selected 63 of these Metazoan species as 

representatives of all major groupings within the Metazoa (Figure 2). Some pre-

computed Smith-Waterman alignments were available for download for ~50% of the 

species comparisons (Altenhoff et al. 2014) and we used these pre-computed 

alignments in our analysis.  

2.2 Quality check filter 

Data quality is of paramount importance in any analysis. We carefully researched all 

aspects of data quality. For example, commonly used statistics such as contig/scaffold 

N50 and fold coverage are not good measures of data quality as they are not always 

easily accessible and do not directly correlate with data quality (Bradnam et al. 2013). 

Therefore, we used the raw sequence data and from it extrapolated our own 

statistics/metrics and subsequently assigned data quality measures. This was 

challenging due to the sheer amount of storage needed for the data (data for a single 

species was in the region of many Gigabytes) but we had some working solutions in 

place. However, even more challenging was the acquisition of raw genome data. 

Although there are hundreds of animal genomes sequenced, the raw data is not always 

available. In addition to these challenges we discovered that our assumption that high 

sequencing quality would correlate to high protein coding data quality was simply not 

supported by the data – i.e. high-quality sequences can be poorly annotated. 

Therefore, we explored an alternative procedure for assessing data quality.  



We developed the following procedure to provide us with the necessary metrics on 

data quality. The procedure involves two data filters - both of which are based on sets 

of protein coding genes that are present across: (1) all of life, and (2) all of Metazoa. 

The number of conserved protein coding genes present in a genome acts a proxy for 

the quality of that genome and its annotation. A genome with all (or at least 70% of -)

the orthologs is deemed high quality and genomes with large portions of missing 

orthologs are lower quality (i.e. <70% of orthologs). The first filter uses a gene set of 

412 orthologs that are found across all Metazoa (Powell et al. 2012). Using a 

reciprocal BLASTp (Altschul et al. 1990b), we identify the distribution of the 412 

ortholog families in each genome. 



Figure 1: Relationships and divergence times of the 63 Metazoan species 

sampled. 



Figure 1: The phylogenetic relationship and dates of all 63 Metazoa represented in our 
dataset are shown as generated using TimeTree (Kumar et al. 2017). Branches in the 
phylogeny are scaled according to divergence times. The geological periods from the 
Tonian period (~952 MYA) to present day are color-coded and are scaled in Millions 
of Years. 
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The second filter is the stricter of the two filters. The second filter uses the 40 highly 

conserved orthologous families that are found in all of life as the query in the 

homology search (Ciccarelli et al. 2006). As there are 412 genes in the first filtering 

step, it is expected that there will be a reasonable level of variation in distribution (in 

terms of the number matches in each genome), this is useful in that we can then rank 

the genomes by quantity of genes present. However, this is not a strict filter and by 

random chance some genes be missed even in higher quality genomes. The 40 highly 

conserved genes are present in all of life and are highly conserved in their sequences 

as well as in their distribution. Therefore, we can query one of the 40 genes against a 

particular species to determine if it is present, and we can assess the level of 

conservation of the orthologous sequence. This combination of filters, carried out in 

this order, allowing the highest quality data possible to be retained while also 

accounting for variation in sequence and annotation quality. 

2.3 Metazoan topology and dating 

Sampling across Metazoa is guided by phylogeny - this is particularly challenging as 

there is no agreed species phylogeny for the Metazoa. The large number of alternative 

topologies, and therefore the large number of contentious yet critical nodes, increases 

the number of permutations necessary to represent the evolution of the animal 

kingdom. In addition, some lineages of metazoan life are understudied and poorly 

sampled (e.g. Porifera) whilst others (e.g. the mammals) are well studied and densely 

sampled. To this end, a dataset capable of addressing the major transitions in animal 

evolution was constructed with multiple representatives from before and after each 

transition. 

We used the topology and node dates from TimeTree (Kumar et al. 2017) (latest 

access on 23/09/2016 ). In total 51/63 of the species in our sampling were represented 

in TimeTree. For the remaining 12 species that were not present in the TimeTree 

database, we searched for their closest neighbours (sister taxa) in TimeTree. In most 

cases the time estimate was available for a member of the same genus. 

2.4 Gene gain and loss analysis – OMA 

The major frameworks for inferring orthology are either graph-based or tree-based. 

Graph-based methods use graph theory to create a network where genes/sequences are 

represented as nodes on the network connected by edges representing evolutionary 



relationships between nodes. Usually there are two parts to graph-based orthology 

inference. Initially an orthology network is created where nodes (genes) are connected 

by edges based on a statement of orthology. The OMA algorithm (Roth et al. 2008) 

we employ here to define gene birth and death, bases the edges/connections on Smith-

Waterman alignments. Following on from this the orthologs are clustered into groups 

or gene families. In OMA the orthologous groups are Hierarchical Orthologous 

groups or HOGs (Altenhoff et al. 2014). HOGs are defined as groups of genes that 

have descended from a common ancestor in a given taxonomic range. Traditionally, 

gene/tree reconciliation is used to identify HOGs. However, OMA employs a graph-

based method to identify HOGs based directly on the orthology graph it generates. 

The removal of traditional gene/species tree reconciliation from the inference process 

significantly reduces the computational cost. As well as this, OMA also reports 

several other advantages over standard bidirectional best hit approaches: it uses 

evolutionary distances instead of scores, considers distance inference uncertainty, 

includes many-to-many orthologous relations, and accounts for differential gene 

losses. (Roth et al. 2008). Using OMA v 1.1.2 (Altenhoff et al. 2014) and the default 

parameters (as discussed with the authors of OMA) we carried out our gene family 

evolution analyses. All available pre-computed data for our database was downloaded 

from OMA (http://omabrowser.org (Altenhoff et al. 2014)). We used the 

familyanalyzer python module (Altenhoff et al. 2014), made available from the 

authors, to analyse gene events across our topology according to the HOGs produced 

by OMA.  

2.5 Remodeled gene detection using CompositeSearch 

By definition a remodeled gene is formed through a recombinogenic process such as 

gene fusion, where segments of the remodeled gene are derived from different gene 

families. Sequence similarity networks (SSN) where each node represents a unique 

sequence and each edge represents the similarity between sequences, appear to be 

well suited to identify and study this genetic mosaicism (Alvarez-Ponce et al. 2013, 

Bapteste et al. 2013).  

We constructed a SSN using the results of an all-against-all BLASTp (Altschul et al. 

1990a) of 1.2 million protein coding sequences (i.e. all genes within our database of 

63 genomes). In this undirected network, two proteins are connected based on their 



similarity scores (E-value <= 1e-5, %Identity >= 30%). The SSN was made 

symmetrical by keeping only the best match of each pairwise comparison. We 

detected the remodeled genes and their families in this SSN using the software 

package CompositeSearch (under review Pathmanathan JS et al, 2017). The structure 

of the SSN captures much of the history of the evolution of the gene, such as 

divergence by point mutations and also recombinogenic events like fusions/fission 

events (Adai et al. 2004, Jachiet et al. 2014). Typically, gene families form sub-

graphs with high connectivity, in which connected sequences display significant 

BLAST E-values ≤ 1E-5, mutual covers ≥ 80%, %Identity ≥ 30%. 

The results of CompositeSearch were parsed to retain only remodeled gene families 

with more than one remodeled gene and having no overlapping contributing 

sequences or components. We removed any singleton remodeled gene families, i.e. 

those with only a single member, as these were more potentially false positives. This 

removed 44,453 of the 53,456 remodeled gene families (~83% of total remodeled 

gene families were removed in this step). We also removed any remodeled gene 

families where only 1 member was remodeled. This removed 1,065 (~10%) of the 

leaving a total of 7938 remodeled gene families. 

2.6 Remodeled Gene Family Classification using CompositeClassifier 

Remodeled gene families were classified based on their origin and that of their 

components. This classification allowed us to identify if a remodeled gene family was 

formed by the fusion of pre-existing or entirely new protein coding gene families. All 

gene families were then placed on the reference tree and their last common ancestor 

was inferred using parsimony (Farris 1977). The type of remodeled gene family can 

be inferred by comparing its position on the phylogeny to that of its components. For 

example, a remodeled gene family is classified as old if its component gene families 

evolved before its emergence on the same path. The categories are as follows: Old 

refers to instances when components of a remodeled family are found at ancestral 

nodes only. Mixed refers to instances when components of a composite family are 

found ancestrally in the same lineage and also at the current node of comparison (a 

mix of old and new components). Complex refers to instances when components for a 

composite family are found in another path on the tree (not in a common ancestor). 

Contemporary refers to instances when a components of a composite gene family are 



found at the present node (all components arose at the same node on the tree as the 

composite). Subsequently remodeled refers to instances when components of a 

composite gene family are found at younger time points in the tree that the composite 

family (this is gene fission). Undefined are instances of families that cannot be 

categorized by these rules. This approach aims to show the evolutionary 

combinatorial processes under which genes evolve (Figure 3.5(B)) 

2.7 Functional Enrichment Analysis  

Using the stats.hypergeom function from the python SciPy package (Jones et al. 

2014a), the genes at each node on the tree were assessed for enrichment of Gene 

ontology (GO) functions using a Bonferroni multiple testing correction (Weisstein 

2004). Domains from Pfam (Finn et al. 2016) and their associated GO terms were 

retrieved from the gene ontology website (Consortium 2015). We represented each 

family defined in the CompositeSearch (Pathmanathan JS et al, 2017) analysis by its 

common Pfam domains and GO terms. Our criteria were that the GO term must be in 

> 50% of all genes in the family and a Pfam domain had to be ubiquitous within the 

family. For example, Family_A has 100 member genes. Qualitatively, all members 

have Domain_W and Domain_X, 4 members also have Domain_Y and 62 have 

Domain_Z. The first filter states that each ontology must be present in the majority 

(>50%) of the members to be included as a representative. This filter would exclude 

Domain_Y as it is not a majority. It has 4 associated Pfam domains, 12 have term_A, 

100 have terms B, and C, and 70 have term D. As the criteria requires 100% of the 

genes to have a term only terms B and C pass the filter. 



Figure 3: Phylogenetic tree of our metazoan sampling with internal nodes 

labelled 

Figure 3: A phylogenetic tree (cladogram) of our sampling of the Metazoa with the 

internal nodes labeled for future reference when describing results. 



The next filtering step works on the average of each Pfam domain per gene in the 

family. So, if all genes have 1 copy of Domain_W; 48 members have 2 copies of 

Domain_X, 40 members have 3 copies of Domain_X, and 12 have 1 copy of 

Domain_X; of the 62 members containing the passing Domain_Z 40 members contain 

2 copies of Domain_Z and 22 only have 1 copy. The most common filtered domain 

sums per gene would be: 

Domain_W: 1 copy 

Domain_X: Average = 2.28 copies or 2 copies 

Domain_Z: Average=1.65 copies or 2 copies 

In essence, this removes gene families that show a high probability of being 

homoplastic and give the representative domains present in a gene family. 

3 Results 

3.1 Novel protein coding gene families emerge throughout the Metazoa and 

primarily by gene remodeling. 

The orthology network created by OMA was based on Smith-Waterman alignments 

and subsequently identified orthologous families using a hierarchical clustering 

method (Altenhoff et al. 2014) (Section 3.2.4). The Hierarchical Orthologous groups 

(HOGs) produced by this method were defined as groups of genes that descended 

from a common ancestor in a given taxonomic range. These groups allowed us to 

identify where gene gain, loss or duplication arose in time. Novel gene families are 

those that had not been found prior to this point on the tree and what type of new gene 

family they are (e.g. remodeled or non-remodeled). The analysis of gene gain and loss 

identified 45,612 instances of novel genes at internal nodes on the animal tree. Of this 

cohort of novel genes 36,948 (81%) are remodeled (Figure 3.4). The majority of 

internal nodes (57/61) have more novel remodeled gene families than novel non-

remodeled gene families. The average number of novel genes per node in the 

phylogeny is 760 and the median is 390 (Standard deviation = 1003). Most nodes that 

have above average number of novel gene families are major transitional nodes, 

including the following (Clade (total number of novel genes, % of novel genes that 

are remodeled at each node)): Eumetazoa (2267, 68%); Bilateria (3005, 65%); 

Protostomia (2179, 92%); Euteleostomi (3674, 73%); Sarcopterygii (1584, 85%), and 



Neopterygii (3026, 89%). In the Protostomia there are a total of 2,179 novel genes 

and in the Deuterostomia there are 957. However, on average both Protostomia and 

Deuterostomia have the same number of novel non-remodeled genes per node (118 in 

both cases). The Protostomia have more novel remodeled genes (797) per internal 

node than Deuterostomia (493) (Table 3.1).  

3.2 Gene remodeling is prevalent across the Metazoa, particularly at nodes of 

major phenotypic transition  

Using a sequence similarity network (SSN) approach employed in CompositeSearch 

(Pathmanathan JS et al, 2017) we identified a total of 71,460 gene families in animal 

evolution. The analysis spans 63 Metazoan species representing all major groups of 

animals and 20,801 million cumulative years of animal evolution (Figure 3.1). On the 

SSN, remodeled gene families are represented as nodes that hold otherwise 

unconnected gene families together on the graph and we identify a total of 48,985 

nodes with this feature (Figure 3.5). Using the canonical species phylogeny (Section 

3.2.3) each of the 71,460 gene families were mapped to their node of origin. Each 

internal node (61 in total) in the phylogeny contained remodeled gene families and 

49/61 of the internal nodes had more remodeled than non-remodeled gene families 

indicating that for the majority of internal nodes more novel gene families emerge by 

gene remodeling than other mechanisms. 

Next, we wished to determine if the genesis of novel gene families by remodeling is 

distributed equally across the phylogeny or are there particular nodes that have a 

higher instance of novel gene family genesis by gene remodeling when compared to 

the other nodes in the tree. In particular we identified the internal nodes that contained 

the largest number of gene families (Figure 4): Eumetazoa (3913 families– 84% 

remodeled); Bilateria (8075 families– 87% remodeled); Deuterostomia (1019 

families– 86% remodeled); Vertebrata (1500 families – 85% remodeled); 

Euteleostomi (7723 families- 84% remodeled); Sarcopterygii (1057 – 78% 

remodeled); and Amniota (2267– 75% remodeled). Each of these nodes represents a 

major transition in metazoan life history. In contrast, a large number of new gene 

families also emerge on two more recent nodes on the tree: (1) the ancestral node of 

Caenorhabditis briggsae and C. elegans has 4621 new gene families, 30% of which 



Table 1: Gene counts for each node in the Metazoan tree from the OMA and 

CompositeSearch analyses. 

Name #genes #duplicated #lost 
#novel/singl

eton(leaf) 

#Comp 

Fams 

#Genes in 

Comp Fams 

SCHMA 11404 715 7428 7972 44 136 

STRPU 26882 2896 9697 17563 520 2213 

BRAFL 28464 3582 10079 18015 465 1688 

CIOSA 13936 387 2724 6557 52 115 

CIOIN 16500 459 1706 8077 55 130 

C14 9867 1578 11156 1789 351 897 

PETMA 10766 1188 14587 4340 53 130 

XENTR 19291 2365 12098 4461 36 122 

ORNAN 19730 1452 12789 5786 58 120 

MACEU 15262 374 6289 1174 7 14 

SARHA 19337 650 3741 2518 13 51 

C46 20143 1548 2093 10 8 16 

MONDO 16844 1284 7898 2458 26 231 

C40 21394 3345 7240 144 30 78 

CHOHO 12329 477 10551 1378 3 6 

DASNO 23533 1905 2960 3991 43 130 

C53 21218 2788 4656 12 14 28 

ECHTE 16499 650 7780 2089 12 25 

LOXAF 21050 1427 2677 2149 5 12 

PROCA 16002 275 5806 1034 6 12 

C58 20603 1282 1875 3 8 16 

C54 21761 1403 3408 28 87 180 

C47 24333 2936 4761 80 239 531 

OTOGA 19514 926 2852 1030 2 4 

HUMAN 30808 1314 1200 11464 72 192 

NOMLE 18717 341 2631 1453 6 21 

C61 19699 629 1613 160 86 232 

C59 20773 677 1389 27 31 82 

MOUSE 25679 1876 3332 5945 16 40 

C55 21743 1193 4869 46 89 202 

SORAR 13096 641 12154 1502 5 11 

PIGXX 21452 1849 4653 3222 14 28 

MYOLU 19862 1704 4771 1679 18 46 

C60 21813 1212 2137 15 13 27 

C56 23270 1251 3304 10 11 23 

C48 25853 3399 3507 140 175 515 

C41 27309 2633 2008 1181 1226 5246 

C35 26558 1721 1601 1516 1205 5809 

C31 25639 2128 3135 1019 495 2978 

PELSI 18318 1001 5757 2710 27 62 

CHICK 15504 246 1927 1394 11 59 



MELGA 14627 105 2735 1408 13 26 

C57 15887 441 1604 46 47 110 

ANAPL 15753 177 3469 1899 13 39 

C49 17212 650 2255 84 47 109 

TAEGU 17104 849 2503 2440 33 72 

FICAL 15383 179 2463 1124 5 10 

C50 16608 739 3027 186 54 116 

C42 19036 679 2328 347 142 414 

C36 20650 937 2004 317 82 340 

ANOCA 18029 1172 7119 2524 29 174 

C32 21789 2717 7261 974 113 301 

C27 26527 1166 684 1306 1696 10214 

C24 25211 1091 1123 480 435 3482 

LATCH 20358 2376 10990 4608 58 176 

C21 25165 3008 3881 1584 825 7158 

DANRE 27499 2379 3795 6085 69 353 

ASTMX 23079 1162 4677 3488 23 48 

C28 23595 5085 6072 259 143 316 

ORENI 22257 1644 5579 2129 9 19 

ORYLA 20499 683 6986 3245 30 110 

XIPMA 20370 180 3469 928 2 4 

POEFO 25163 1541 1817 3284 29 65 

C51 22814 1068 1854 215 125 262 

C43 23807 827 1308 79 43 108 

C37 24559 1613 3091 145 101 337 

GASAC 21773 1167 4645 2710 6 12 

TETNG 20020 691 3155 2447 19 48 

TAKRU 22942 585 3219 5448 29 64 

C44 20345 801 3040 55 79 186 

C38 22888 1329 4484 14 19 44 

C33 26592 1711 861 392 299 1053 

GADMO 20479 1424 9187 2741 48 113 

C29 26050 2695 2655 819 404 1219 

C25 26402 2130 823 1293 668 3398 

LEPOC 18893 1326 9101 2383 14 29 

C22 24764 5720 7132 3026 496 3206 

C18 25622 3470 558 3674 6486 103008 

C15 20330 3381 1151 768 1280 33573 

C10 18274 1678 1457 534 802 13561 

C7 18008 2138 1306 728 728 14607 

C5 17107 5332 2340 959 874 11631 

TRISP 15661 575 4319 11333 287 919 

CAEBR 21610 1268 942 8020 132 376 

CAEEL 20800 1838 674 6508 109 455 

C19 13750 1311 991 5381 1350 5597 

ONCVO 12948 447 2662 6806 73 237 



C16 8535 1073 1382 953 404 1461 

C11 8307 1645 8255 368 77 304 

STRMM 14888 1166 8600 7353 182 549 

DAPPU 30088 2143 7108 20308 843 2727 

ZOONE 14336 866 6895 5987 46 216 

RHOPR 15045 835 7535 7546 109 490 

NASVI 16986 1080 6647 8899 370 1021 

TRICA 14798 1037 5887 6555 93 242 

DANPL 16232 727 4847 7971 103 333 

DROME 14506 1349 3120 5430 59 157 

ANOGA 12499 692 2202 3016 27 63 

AEDAE 15129 1843 1600 4420 103 280 

C52 11248 1056 1528 772 404 949 

C45 11332 854 2196 388 315 976 

C39 12660 1043 1459 131 84 284 

C34 13408 872 1304 231 175 493 

C30 14000 919 1289 260 194 628 

C26 14513 694 839 276 184 570 

C23 14689 989 2087 738 476 2087 

C20 15457 1180 1132 451 162 759 

C17 15432 1344 913 631 218 1258 

TETUR 18019 1847 9326 11282 230 1255 

C12 14846 1427 1655 454 124 1450 

C8 15156 1816 4064 520 116 790 

HELRO 23263 1638 6737 13900 389 1618 

CAPTE 31325 2472 3070 17704 635 2473 

C13 15099 2133 2633 414 78 233 

LOTGI 23514 2332 5381 11331 290 1785 

C9 16028 3844 5370 1421 134 402 

C6 17525 5619 2769 2179 407 2455 

C4 14426 1612 67 3005 7001 123510 

C3 10402 638 205 308 612 15143 

NEMVE 26036 3299 3195 17192 197 625 

C2 9832 1920 34 2267 3301 92486 

AMPQE 28464 3053 987 21286 979 4148 

MNELE 16020 992 2650 11929 263 1020 

Table 1: For each node in the tree (Col1) we have shown the counts for each node 

describing the following: 1) the number of genes present in the genome, 2) the 

number of gene duplication events, 3) the number of gene loss events, 4) the number 

of novel/singleton(leaf nodes), 5) the number of  composite gene families emerging 

and 6) the number of composite genes emerging.  



are the result of gene remodeling, and (2) the common ancestor of Ciona savignyi and 

C. intestinalis has 916 new gene families with 37% the result of gene remodeling. 

The protein-coding elements that contribute to a remodeling event are known as 

components and can be of different ages or can themselves be the result of gene 

remodeling (Figure 5). To extract more detail on each case of gene remodeling 

detected we used CompositeClassifier from CompositeSearch (Pathmanathan JS et al, 

2017) (Section 2.6). We categorised the components of every remodeled gene family 

based on their phylogenetic placement as: old, mixed, complex, undefined, 

contemporary and subsequently remodeled (Figure 5). In general, we see that most 

remodeling events on the tree are categorized as old. This means that most gene 

remodeling occur using only genetic material that is ancestral.  

In general, the emergence of remodeled gene families is more prevalent within 

Deuterostomes than Protostomes (501 as compared to 288 remodeled gene families 

per internal node on average) (Figure 5). However, in Section 3.1 above we show that 

Deuterostomes have less novel remodeled genes than Protostomes indicating that 

Protostomes rely on gene remodeling as a mechanism to create novel genes more than 

Deutrostomes. The most prevalent category of remodeling in Metazoa is to reuse 

ancestral genetic protein coding elements (old category) with 50% and 51% of 

remodeling events in Protostomes and Deuterostomes respectively the result of old 

remodeling events (Figure 5). Therefore protein-coding gene families that are already 

established, or segments thereof, are used most often to create new gene families.  

The large number of remodeled gene families predicted may be due to rapid turnover 

throughout the tree. We calculated the consistency index (CI) for remodeled and non-

remodeled gene families (Kluge and Farris 1969) (where the maximum CI of 1 

indicates that a family is gained/lost only once). Remodeled gene families have an 

average CI of 0.4 as compared to 0.7 for non-remodeled gene families suggesting that 

remodeled gene families are gained/lost more readily than non-remodeled gene 

families.  



Figure 4: Proportion of remodeled and non-remodeled events in novel gene 

family genesis 

Figure 4: Each bar represents the proportion of novel genes that arose at each internal 

node on our tree (found in our OMA analysis) in each category: composite or non-



composite (determined from our CompositeSearch analysis) (each bar represents 

100%). The number in black on the right Y-axis represents the number of novel genes 

that originate at this node in the tree. The red bar represents the proportion of novel 

genes that are composite and the blue bar represents the proportion of novel genes 

that are non-composite. The left Y-axis represent the label we have given to internal 

nodes of the tree (Figure 3).We have outlined the major taxonomic groupings.  



Figure 5: Gene remodeling across the Metazoa



Figure 5: (A) Each bar represents the proportion of each category of family from the 

CompositeSearch analysis (each bar represents 100%) for each internal node of our 

tree. All colored bars are subcategory of composite gene families, black represents the 

proportion of gene families that are not composite. We have outlined major 

taxonomic groups. The node labelling system is illustrated in Figure 3. (B) We 

categories the components of every remodeled gene family based on their 

phylogenetic placement as: old, mixed, complex, undefined, contemporary and 

subsequently remodeled.



3.3 The rate of novel gene genesis across the Metazoa is not strictly clocklike 

To determine the rate at which novel genes are emerging across the Metazoa we 

compared the rate of novel gene genesis for remodeled and non-remodeled genes. In 

general, we find that the rate at which novel gene families arise from gene remodeling 

is higher than the emergence of novel genes from other mechanisms (Figure 6). The 

average number of novel remodeled genes per node per million years (MY) is 13.0, 

and for novel non-remodeled genes it is 3.0. While there are some minor fluctuations 

(e.g. Bilateria) in the rate of generation of novel non-remodeled genes, the rates 

remain relatively similar across nodes (standard deviation = 5.7 from the mean). This 

is not the case for novel remodeled genes that have a comparatively high average 

standard deviation of 17.9 from the mean. Some major nodes in the animal phylogeny 

show a relatively high rate of emergence of novel gene genesis by gene remodeling,  

Bilateria (71.5 novel remodeled genes per MY); Sarcopterygii (60.2/MY); Theria 

(72.0/MY); Protostomia (46.2/MY), and Ecdysozoa (47.5/MY) are all examples of 

this. 

Overall, novel remodeled genes have emerged at a faster rate than novel non-

remodeled genes. But certain time points in metazoan evolution show higher than 

expected rates of emergence of novel gene families by both remodeling and non-

remodeling mechanisms. One such node is the Bilateria node, at ~797 MYA (Kumar 

et al. 2017), arguably one of the most significant transitions in the Metazoa 

representing the origin of the third germ layer (the mesoderm) and increased 

morphological complexity (Martindale et al. 2002). The Bilateria node has on average 

109 novel gene families emerge per MY. Another example of a high rate of novel 

gene family genesis is the origin of placental mammals (Crompton and Jenkins Jr 

1979) (82 novel genes per MY).  

3.4 Gene remodeling impacts the functional landscape at major phenotypic 

transitions in the Metazoa

The potential functional roles of the remodeled genes (at the level of domains) was 

assessed using Pfam domain data(Finn et al. 2016). For each internal node on the tree 

we established a list of significant functions gained at that time point (Section 2.7). 

Functional analysis of remodeled gene families at the Euteleostomi



Figure 6: The rate of novel gene genesis is not strictly gradual 

Figure 6: The bar charts represent the number of novel genes that originate at internal 

nodes divided by the internode distance(time) between the node and its closest 

ancestor. This gives the number of genes per unit of time for each node. Nodes that 

have a short internode distance (<10 million years) were not included on this as the 

short period of time skews the data. The Red bars represents the rate of novel 

composite genes and the blue bars represent the rate of novel non-composite genes. 

We have outlined the major taxonomic groupings



Table 2: Sample of Functional enrichment for novel remodelled genes found at 

some Metazoa transition nodes.

Enriched Gene Corrected 

P-value

Tree Node

MHCII(Todd et al. 1988) 3.8e-05 Euteleostomi

RAG-2 involved in the initiation of V(D)J recombination 

during B and T cell development (Shinkai et al. 1992)

5e-06 Euteleostomi

Fibrinogen (3.9e-07) Euteleostomi

Ribosomal_protein_L44 4.2e-07 Eumetazoa

Ribosomal_protein_L21e 2.9e-09 Eumetazoa

Ribosomal_L27e_protein_family 2.0e-08 Eumetazoa

Ribosomal_protein_S17 3.5e-06 Eumetazoa

DHODH)(Fang et al. 2013), 3.2e-05 Eumetazoa

DHFR(Schnell et al. 2004), 7.3e-08 Eumetazoa

GPK(Wu et al. 2004) 3.2e-05 Eumetazoa

NDPK(Almgren et al. 2004) 5.1e-21 Eumetazoa

WNT 5.8e-05 Deuterostomia

Lipoxygenase 2.0e-05 Deuterostomia

Hydroxymethylglutaryl-coenzyme A reductase 3.8e-07 Deuterostomia

GDP dissociation inhibitor 8.3e-07 Deuterostomia

GrpE 1.5e-08 Deuterostomia

Peptidase M41 4.2e-05 Deuterostomia

MOSC 1.0e-05 Deuterostomia

GPI transamidase subunit PIG-U 3.8e-06 Deuterostomia

Cytochrome b 5.7e-06 Chordata

Cytochrome C and  Quinol oxidase polypeptide I 5.7e-10 Chordata

V-ATPase subunit 5.7e-06 Chordata

ATP synthase protein 8 2.9e-07 Chordata

Glycosyltransferase_family_6 6.1e-05 Chordata

Tight Junction protein 4.4e-05 Chordata

Nuclear receptor coactivator 3.3e-06 Chordata



Table 2: The table shows examples of novel remodeled genes (enriched gene) that 

were found to be significantly enriched (Corrected p-value) for a particular function at 

particular nodes in the tree (Tree node column).  All nodes shown in this example 

represent nodes on the animal tree where major phenotypic changes have occurred. 



ancestral node, identifies that many immune system related functions are introduced 

at this point (Table 2) and this node of course represents a major transition in the 

emergence of the adaptive immunity (Flajnik 2014). At the origin of the Eumetazoa

novel gene families gained by gene remodeling have significant enrichment for 

ribosomal protein related functions and for enzyme functions related to cell 

proliferation (Table 2). The origin of the Deuterostomia has significant enrichment in 

functions related to cell signaling, development and metabolism (Jones et al. 2014b). 

The origin of Chordata shows significant gains in a number of key processes (Jones 

et al. 2014b) such as the remodeling of proteins involved metabolism and generating 

cellular energy and protein packaging and transport (Table 2). In summary, there are a 

plethora of significantly enriched functions at most internal nodes, with some nodes 

containing functions that correlate with a major phenotypic transition at that node.

4 Discussion 

This chapter gives an insight into the role of composite gene remodeling (gene 

fusions/gene fissions) in the evolution of novel protein coding genes across the 

Metazoa.

It has been established that modular proteins have an important role in the evolution 

of the Metazoa. For example, Patthy (2003) shows that a large proportion of proteins 

involved in the extracellular matrix of multicellular animals are a result of chimeric or 

gene fusions (Patthy 2003). However, it is generally believed that events to create a 

gene fusion/fission are rare (Jachiet et al. 2013). Fusion genes have been well 

documented in animals (Buljan et al. 2010, Marsh and Teichmann 2010). In humans, 

fusion genes are often linked with cancer (Soller et al. 2006, Soda et al. 2007, Lawson 

et al. 2011). However, it has not been fully established as to how this composite gene 

(fusion/fission gene) mechanism drives the evolution of novel proteins and 

phenotypes right across the Metazoa. We have shown that composite genes are indeed 

present in all major groups across the Metazoa (Figure 5). We have shown that they 

quantitatively form a major part of metazoan protein coding families. Furthermore, 

we have found that the majority of composite gene events occur using ancestral 

protein coding elements within the Metazoa. Until now, there has been no research 

into this aspect of composite gene formation. 



In addition to this, we wanted to understand not only the prevalence of composite 

genes, but also how they impact the creation of novel proteins across the Metazoa. It 

has been established that fusion genes can indeed create novel proteins (Long 2000, 

Thomson et al. 2000). However, the extent to which this process creates novel 

proteins has not been documented. Our findings suggest that composite gene 

formation is a major mechanism for creating novel genes in the Metazoa (Figure 4). 

We find that in the vast majority of our sample animal species, more than >50% of 

novel genes are created through gene remodeling events. This result gives an insight 

into the important role composite gene formation has in genetic innovation. However, 

there are examples of fusion genes making their parent genes redundant. If this 

occurred often, the number of non-composite novel genes that we find would be 

diminished as they would not be found in our search if they became functionally 

redundant.  

After establishing that composite genes are prevalent across all major groups in the 

Metazoa and do have a major role in creating novel proteins, we wanted to gain an 

insight to the rate of composite gene formation through time in the evolutionary 

history of animals. There has been much debate on the rate of evolution.  Two 

strongly supported hypothesis of evolutionary rate are phyletic gradualism and 

punctuated equilibrium (Gould 1972). Phyletic gradualism refers to slow, gradual 

changes that accumulate over time to create new species (within intermediate species 

present). Punctuated equilibrium argues that evolution occurs in bursts of evolution 

(bursts of high rate) that are tied to speciation events to create new species (Gould 

1972). Our results indicate that the rate of composite gene evolution is not strictly 

clocklike (Figure 6). We show that novel composite genes have emerged at a faster 

rate than novel non-remodeled genes. Interestingly, we see that certain time points in 

metazoan evolution show higher than expected rates of emergence of novel gene 

families by both remodeling and non-remodeling mechanisms. For example, we 

found a high rate of novel gene genesis at the Bilateria node which represents a major 

transition in the Metazoa where the third germ layer (the mesoderm) was introduced, 

allowing for increased morphological complexity (Martindale et al. 2002). 

In order to gain an insight into the functional importance of the novel composite 

genes we found across the Metazoa, we carried out a functional enrichment analysis. 



The wide distribution and abundance of composite genes in the Metazoa suggests that 

these genes are not restricted to a single functional pathway. Literature shows 

examples of very different pathways and functions being carried out by composite 

genes (Long 2000, Soller et al. 2006, Demichelis et al. 2007, Soda et al. 2007, 

Lawson et al. 2011, Agaram et al. 2015). Our functional analysis supports this. We 

show many composite genes that are enriched for functions and pathways at each 

node of the Metazoa such as immune system genes at the Euteleostomi node – a point 

in animal history where adaptive immunity originates.

One possible reason for the higher level of apparent homoplasy that we found in the 

remodeled gene families (as compared to non-remodeled gene families) is the 

presence of epaktologs causing interpretation errors. Epaktalogs are multidomain 

gene families that share sequence similarity through the independent acquisition of 

the same domains rather than being homologous due to a common ancestry. The 

classical types of homologs that algorithms detect are orthologs (homologous genes 

derived from the same gene in a common ancestor), paralogs (homologous genes 

derived from a duplicate copy of the same gene) and pseudoparalogs (homologous 

genes in a genome where at one of the genes was transferred from another species). It 

is difficult to distinguish between epaktologs and paralogs. This can lead to 

interpretation errors, where epaktologs are treated as paralogs. In other words, trying 

to cluster a group of epaktologs as a family with a single point of origin on the tree is 

incorrect because the epaktologous genes are not directly related through descent. 

They are only related due to homology shared by containing the same domain (Nagy 

et al. 2011).  

Lastly, our approach relies on high quality data as annotation and sequencing errors 

can cause incorrect inferences. To diminish the impact of this we have used strict 

filtering parameters and high-quality genomes. This work can be built on as more 

high-quality genomes become available, particularly for non-vertebrates.  

5 Conclusion 

In summary, we have utilized novel data driven methods to assess the contribution of 

tree-like and non-tree-like mechanisms in the creation of novel protein coding 



elements across the Metazoa using 63 high quality genomes. We have illustrated that 

gene remodeling is prevalent across the entire Metazoa and has a significant 

contribution to novel gene genesis from protein coding elements. We have shown that 

the rate of novel gene genesis for remodeled genes is not clocklike and is higher than 

novel gene genesis of non-remodeled genes. Finally, we have given an insight into 

how gene remodeling may have had a significant impact in driving adaptive evolution 

at nodes of major phenotypic transition.  
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Abstract 

Over the recent years, it has become clear that molecular evolution proceeds not only by divergence 
from a common ancestor, but also by combining parts from evolving objects of different origins, 
through processes that are called introgressive. Lateral gene transfers are probably the most well-
known of these processes, but introgression has been shown to also happen at various levels of 
biological organization. As a result, most biological evolving objects (genes, genomes, communities) 
can be composed of parts from different phylogenetic origins and can be described as composites. 
Such modular evolution is inadequately modeled  by trees, since composite objects are not merely the 
result of divergence from a common ancestor only. Networks on the other hand are much more suited 
for handling modularity, and graph theory can be used to search networks for patterns that are 
characteristic of such reticulate evolution. During this PhD, I developed a piece of software, 
CompositeSearch, that can efficiently detect composite genes in massive sequence dataset, comprising 
up to millions of sequences. This algorithm was used to identify and quantify the abundance of 
composite genes in polluted soil environments, and in prokaryotic plasmids. These studies show that 
important biological novelties and adaptations can result from processes acting at subgenic levels. 
However, as shown in this manuscript, networks provide a framework that goes well beyond the 
boundaries of molecular evolution and I have applied them to other evolving entities, such as animals 
(trait networks) morphology and  languages (word networks). In both cases, modularity appears to be 
a major evolutionary outcome, following rules that remain to be investigated. 

 

Résumé 

Au cours des dernières années, il est devenu manifeste que l'évolution moléculaire procède non 
seulement par divergence depuis un ancêtre commun, mais aussi en combinant des fragments d'objets 
évoluant d'origines différentes, par des processus appelés introgressifs. Les transferts horizontaux de 
gènes sont probablement les plus connus de ces processus, mais l'introgression affecte aussi d'autres 
niveaux d'organisation biologique. En conséquence, la plupart des objets biologiques évoluant peuvent 
être composés de partie d'origines phylogénétiques différentes et peuvent être décrits comme 
composites. Une telle évolution modulaire se modélise mal par des arbres, puisque les objets 
composites ne sont pas seulement le résultat d'une divergence depuis un ancêtre. Les réseaux en 
revanche sont bien plus aptes à modéliser la modularité, et la théorie des graphes peut être utilisée 
pour chercher dans ces réseaux des patrons caractéristiques d'une évolution réticulée. Pendant cette 
thèse, j'ai développé le logiciel CompositeSearch qui détecte efficacement les gènes composites dans 
des jeux de données de séquences massifs, jusqu'à plusieurs millions de séquences. Cet algorithme a 
été utilisé pour identifier et quantifier l'abondance des gènes composites dans des environnements de 
sols pollués ainsi que dans les plasmides des procaryotes. Les résultats montrent que d'importantes 
adaptations et nouveautés biologiques découlent de processus œuvrant au niveau subgénique. Par 
ailleurs, comme je le montre ici, les réseaux fournissent un cadre conceptuel dont l'utilité va bien au-
delà de l'évolution moléculaire et je les ai appliqués à d'autres objets évoluant, comme les animaux 
(réseaux de traits morphologiques) et les langues (réseaux de mots) . Dans les deux cas, la modularité 
se révèle être une conséquence évolutive majeure, et obéit à des règles qui restent à préciser. 


