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Résumé
Cette thèse s’intéresse à la faisabilité des implémentations en boîte blanche de permutations
pseudo-aléatoires sûres. Concrètement nous montrons comment un schéma de chiffrement
fonctionnel à plusieurs entrées, qui satisfait une notion naturelle d’être à sens unique, est
fondamental à la construction d’implémentations protégées contre les attaques d’extraction de
clés. En outre, nous montrons comment réaliser de telles implémentations à partir de schémas
de chiffrement fonctionnel existants. Bien que possédant des limitations, nous pensons que
cette approche éclaire des questions sur la cryptographie en boîte blanche, peu représentée
actuellement dans la littérature cryptographique.

Comme contribution indépendante possédant son intérêt propre, nous étendons la notion
de robustesse cryptographique à des primitives variées. Sommairement, le chiffrement
robuste garantit qu’un chiffré ne peut être lu au moyen de plusieurs clés. Des versions
renforcées de cette notion protègent également des situations où l’adversaire génère les clés.
Décrite tout d’abord dans le contexte de la cryptographie à clé publique, nous étendons
les définitions aux contextes du chiffrement fonctionnel et à l’authentification. Enfin nous
donnons des transformations simples mais génériques pour doter un schéma d’authentification
(respectivement de chiffrement) de robustesse, tout en maintenant la sécurité du schéma
d’origine.
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Abstract
This thesis investigates the realizability of white-box implementations for secure pseudorandom
permutations. Concretely, we show that multi-input functional encryption achieving a natural
definition of one-wayness is instrumental in building implementations that are secure against
key-extraction attacks. Furthermore, we show such implementations can be instantiated from
existing functional-encryption constructions. Although impractical, we believe this proposal
sheds some light over the field of white-box cryptography, currently largely overlooked in the
cryptographic literature.

As a contribution of independent interest, we extend the notion of robustness to a larger set
of primitives. Roughly speaking, robust encryption guarantees that a ciphertext cannot be
decrypted under different keys. Strengthened variations of this notion should guarantee this
happens even under adversarially generated keys. Initially formalized in a public-key context,
we introduce compelling definitions for authentication and functional encryption schemes.
Finally, we present simple, generic transforms that turn an authentication (respectively
encryption) scheme into a robust one while maintaining the original scheme’s security.
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Chapter 1
Introduction

Cryptography stands as one of the cornerstones of modern daily life. Whether using a
smartphone, PC or Mac, an increasing number of people depend on tools such as text-
messaging, online banking, electronic mail or on documents received via various electronic
applications. In the back end, all these user-friendly applications have to ensure (in theory)
the privacy of the data they use, as well as the authenticity of the users accessing the data.

8 Bits of History. From a historical point of view, cryptography played a fundamental
role in transmitting intelligence among friendly forces, without jeopardizing the secrecy
of the intel even when it fell in the hands of enemies. From as early as the Romans’
writings, we find out about trivial encryption methods used during wars (for instance Caesar’s
cipher [Sin99]), which we now call monoalphabetic substitution ciphers. During the Middle Age,
the cryptographic methods became more elaborate, exhibiting properties generically described
as polyalphabetic substitution. But it was not until the 20th century and the birth of formal
computational methods that cryptography became a formal, rigorous and mathematically-
driven field. Alonzo Church, as the father of lambda calculus [Chu36], introduced the first
model of computation, which turned out to be instrumental in the realization of modern
computers. Even if the current architecture of computing devices follow the design by John
von Neumann of a register machine with its own clock, arithmetic logic unit and registers,
it is theoretically equivalent to lambda calculus. To strengthen the direct link between
the evolution of computer science and cryptography, the very first computing devices (that
had, almost exclusively, military purposes) were involved in attacking encrypted military
communication. The usage of Colossus (United Kingdom) and ENIAC (United States) to
break the Lorenz military cipher or to obtain the thermonuclear bomb were well-advertised.
Their main purpose was speeding up the computations that otherwise should have been
carried out by humans. No doubt this played a significant role in the war effort, nonetheless,
the contributions of the people working at Bletchley Park, as well as the Polish “Biuro
Szyfrów”, who had the merit of cryptanalysing the early version of the German Enigma,
should also be mentioned.

Up to the period and including the Second World War we relied on encrypting alphanumeric
data through rotor machines, whose ad hoc designs are considered insecure with respect to
current basic security notions. The study of information theory through probability theory

— 13 —



coincided with the inception of modern cryptography. Nowadays, the entire approach in
cryptographic design has fundamentally changed. A significant advancement was proving
that one-time pad encryption – adding random keys over the plaintexts – is perfectly secret
as long as the keys are used once, making this method the primary way of securing sensitive
communications, such as the telephone lines connecting opposing Cold War countries or
communications between embassies and various centres. As expected, key-reuse in one-time
pad had dreadful consequences: in the 1950s, a Soviet spy-ring operating within British
intelligence, including Kim Philby, Anthony Blunt, Guy Burgess, John Cairncross and Donald
Maclean was neutralized after a member reused the secret key of the one-time pad while
communicating with his Soviet handler; thus, the British counter-intelligence was able to
find his codename: “Homer”. Reflecting on this, although perfectly secure, one can quickly
pinpoint the major issue of one-time pads: the length of their keys should be at least as
long as the length of the transmitted message. Thus, distributing long keys among multiple
members becomes a logistically difficult task.

The cryptographic revolution produced in 1970s. As the key-distribution problem became
more pressing, people thought of conceiving methods for “non-secret encryption”, where the
secret keys are no longer required for encryption. Two distinct groups were responsible for
introducing what is now called public-key encryption: Whitfield Diffie and Martin Hellman,
on the one hand, published their original results on how to exchange a cryptographic key
in a public fashion [DH76], and on the other hand, British GCHQ1, through James Ellis
and Malcolm Williamson considered developing the same “non-secret” encryption paradigm
[Sin99]. However, the latter work has been classified until the end of the 1990s, thus receiving
little to no credit for their original ideas.

Secret Key and Public Key Cryptography. As one can easily deduce from our earlier
exposition, symmetric-key cryptography assumes a pre-shared encryption key that is kept
secret by the two parties involved, say Alice and Bob. On the contrary, public-key schemes
assume the existence of a pair of public/secret keys. The interface of an encryption procedure
requires a public key, a message and a randomness term, while the secret key is needed
throughout the decryption procedure. It is not hard to see that any public-key encryption
(PKE) scheme can be immediately turned into a secret-key scheme by keeping the public-key
secret. Moreover, public-key encryption can be further generalized. In this work, we consider
functional encryption as one of the most general encryption paradigms.

Functional Encryption. Functional encryption (FE) [ONe10b; BSW11] is one of the
most appealing cryptographic primitives, as it offers “surgical” access over encrypted data.
Traditionally, cryptographic schemes have been constructed around the “all-or-nothing”
paradigm – the decryption either recovers the entire plaintext or returns nothing. This view
is challenged in the functional encryption setting: a datum M is encrypted under a master
key2, while functional keys skf are issued for f in some supported class of functions Fλ.
The possessor of skf learns f(M ) from the encryption of M , and (ideally) nothing else on
M . Originally proposed in the public-key setting, FE generalizes on a beautiful sequence of
primitives, starting with public-key cryptography itself [DH76; RSA78; Pai99], continuing to
identity-based encryption3 [Sha84; BF01] and ending up with more advanced primitives such
as attribute-based encryption [GPSW06; Wat11] or predicate encryption [KSW08].

1The Government Communications Headquarters, United Kingdom.
2The master encryption key may be public or private, depending on the setting.
3In IBE, public-keys are represented as memorable identifiers (e.g. phone numbers, email addresses).
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Authentication Mechanisms. Authentication mechanisms are another major benefactor
of the cryptographic explosion with a significant impact in the wild. In the symmetric key
setting, the existence of message authentication codes, as the main authentication mechanism,
proved to be fundamental in the realization of further primitives, such as authenticated
encryption. In practice, at the heart of authentication primitives are the so-called hash
functions that are able to produce hard-to-invert digests of arbitrary long messages. The
public-key counterparts of message authentication codes are called digital signature schemes.
A signer of a message uses its secret key in order to produce a (randomly looking) string
that, associated with the message, can be verified under the signer’s public key. Both
message authentication codes, authenticated encryption or digital signature schemes became
extensively used in practice and even standardized to be used in software libraries or hardware
implementations.

1.1 Provable Security
Proofs are abstract mathematical concepts, used to establish a certain mathematical postcon-
dition, starting from an original working hypothesis – the precondition4 – via a sequence of
sound steps. In the context of cryptography, the vague term of provable security is concerned
with the theoretical or practical behaviours of cryptographic primitives in front of adversaries
attempting to break specific properties. A major benefit is offering formal guarantees that
specific primitives can achieve certain properties: for instance, one can require the outputs of
an encryption scheme to “look random”. Generally speaking, there are two major general
problems with provable security:

1. Proving security is done with respect to a specific scenario.
An inherent problem comes with the fact that certain aspects cannot be easily modelled:
even if the one-time pad reaches perfect confidentiality in a cryptographic sense, it says
nothing on its security when one of the users, for instance, a defector, hands-in his key
to an adversary5. Thus, even if certain properties are achievable, (paranoid) scenarios
in which the scheme does not guarantee confidentiality still exist. As a general rule, a
system is as secure as its weakest link; and if such a link includes human factors, it
might be easier to attack it in this way rather than to defeat the cryptographic tools.
Nevertheless, security experiments capture realistic scenarios, and therefore having
a scheme resisting to broad classes of attacks is undoubtedly desirable, even from a
practical perspective, when compared to constructions lacking such properties.

2. Proving security is often done by relying on problems that are conjectured, but not
proven to be intractable.
The concept of a reduction [Kar72] is the foundation on which complexity theory is
built. First and foremost, a reduction is an algorithm – a well-defined sequence of steps
that can be carried out on a computational device. This algorithm transforms a given
instance of a problem A into an instance of a problem B, where the reduction algorithm
is usually running in polynomial time in its input length. Being able to show that a

4For instance an axiom, an already proven statement, or a conjecture.
5See, for instance, the case of John Anthony Walker, who offered the Soviet Union war-winning capabilities
against the United States in the mid-1980s’. Walker provided his Soviet handlers with cryptographic keys
such that they were able to locate the US nuclear ballistic submarine fleet.
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particular occurrence of a problem is reducible to the one of another problem allows for
constructing a hierarchy of problems. One must distinguish here between the worst
and average case complexity.
In cryptography, we reuse the same idea rooted in complexity theory. By beginning
with a long-studied problem believed to be hard, one attempts to show that a particular
security notion is achieved. In some sense, provable security is a like snake oil: ironically,
the security of construction relies, in the end, on some unverified working hypothesis
that has to be trusted.
A major open problem in computer science is proving or disproving if polynomial
algorithms for a specific set of problems, denoted as NP-Complete problems exist. In
cryptography, very often we rely on a class of intermediate NP problems (NPI) for
which DTM (deterministic Turing machine) solvers running in sub-exponential time
exist, nonetheless, it still remains an open problem to find solvers running in polynomial
time. Throughout this work, it will be very often the case that proving that a scheme is
“secure” concerning some scenario becomes equivalent with proving that an adversary
breaks a specific NPI problem for which there is no known solver.

Bridging theory to practice. Algorithms are abstract descriptions, which have to be
translated into programs to be executed by computing devices. In practice, it is often the
case that the implementation itself leaks precious information on the secret values used
by the cryptographic primitives. For instance, by tracing the power consumption or the
memory-access patterns made by a program, an eavesdropper can mount key-extraction
attacks. Such scenarios assume that cryptographic programs containing sensitive information
are executed in adversarial environments (i.e. the adversary is given an executable). Thus,
another dimension one has to take into account are the types of adversaries considered. From
a theoretical point of view, it matters if the running time of an adversary is bounded to a
polynomial of the input length or if it is unbounded in time or space. Usually, an adversary is
modelled as an algorithm given “black-box” access to procedures interacting with secret-keys,
such as decryption or key-derivation. Practical adversaries are “white-box”, by literally
inspecting the internal working of a procedure. This existing gap remains, and bothers both
practitioners and theoreticians.

1.1.1 Key-Extraction Attacks
As stated above, in the realm of cryptography, there has always been a significant gap
between theory and practice. In this work, we plan to make a step forward towards bridging
the theoretical security notions behind the abstract algorithms to the concrete security of
their implementations. Our motivation is twofold: on the one hand, we point out that most
of the existing security notions treat schemes with kid gloves: many constructions shown
secure in the standard or random oracle models, targeting enhanced security guarantees or
practical efficiency are deployed in the wild, but fail to guarantee their claims. This happens
mainly because proving schemes is done in a black-box model, while the real-life abounds
in white-box adversaries, able to exploit the peculiarities of an implementation. On the
other hand, practitioners developed heuristic methods that may behave appropriately when
implemented, but for which there is no provable security. Thus, we think that being able to
describe a complete (and proven) chain of theoretical relations that ensures security against
white-box adversaries is of great interest for both theoreticians and practitioners.
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White-Box Cryptography. White-box cryptography (WBC), introduced by the seminal
paper of Chow, Eisen, Johnson and van Oorschotin [CEJv03], captures in an informal
manner such adversarial capabilities. However, it was not until the work of Delerablee
et al. [DLPR14] when rigorous (and simple) definitions were introduced. The central
notion, dubbed unbreakability, assumes an adversary interacts with an “implementation” of
a cryptographic primitive, which contains an embedded key, and has to extract the key.
Although important, we point out that such a definition does not rule out an adversary
partially learning the key. However, we assume that if this happens, either the adversary
continues in its attempt to recover the key in its entirety or gives up. In the spirit of the
original definitions, the model we consider assumes correct key generation and no prior
adversarial knowledge on the key (either partial knowledge or complete).

WBC and Obfuscation. Software obfuscation can be stated as the problem of creating
functionally equivalent, but unintelligible programs. Unfortunately, general virtual black-box
obfuscation has been proven impossible for general circuits [BGI+01]. A relaxation of the
original notion – indistinguishability obfuscation (iO) – may still be possible to achieve
and has become a major open problem attracting numerous research [GGH+13; CLT15;
SW14]. A clear overview of the problems connected to iO is given in [Hor15]. In some
respects, obfuscation shares some similarities with WBC (which aims at hiding a secret key
into a circuit). However, iO does not straightly imply white-box unbreakability (UBK) in
the sense that applying an iO compiler to an encryption program/circuit does not make
it unbreakable (i.e. there is no guarantee extracting the key from the resulting program
is difficult). The question of whether UBK could be obtained from iO is still open up to
now. From a theoretical perspective, a significant gap between iO and UBK arises from the
fact that the former is intrinsically an indistinguishability notion, while the latter is in fact
modelled as a computational game.

Motivated by the lack of results in the field of white-box crypto, we leverage the power
of functional encryption for general circuits in order to inspect whether unbreakability can
be achieved through theoretical means. We explain in high-level the technique we employ
towards obtaining a UBK-secure implementation.

WBC and Functional Encryption. Consider functional encryption schemes supporting
circuits that compute one-way functions of the form f : K×M→ C. If there exists a way to
apply f over an input space consisting of {K ||M : K←$ K,M ∈ M}, one would decrypt
to f(K ,M ). We note that such a setting is immediately enabled by multi-input functional
encryption (MIFE) – the public-key setting. Moreover, we observe that if MIFE encryption
is one-way in the presence of a functional key – meaning that once a plaintext has been
encrypted, it is difficult to retrieve it even in the presence of a (single) functional key – the
MIFE scheme is a good candidate for constructing a UBK compiler.

As an alternative, one may think about the decryption algorithm as taking an extra,
auxiliary input – corresponding to M – such that Dec(skf ,CK ,M ) = f(K ,M ), where CK
stands for the encryption of f ’s key. We call this notion as functional encryption with auxiliary
inputs (FEAI).
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1.2 Our Results

The main contributions presented herein can be regrouped over two main domains. The first
stream of work contains concepts connected to the cryptographic notion of robustness. The
results shown have already been published by the author in [FOR17] and [GNR19]. The
second part is rooted in a sequence of results aiming at achieving white-box secure schemes.
Most of the results are presented in one article currently under submission [GPR+19].

1.2.1 Robustness for Cryptographic Primitives

Robustness is a notion often tacitly assumed while working with encrypted data. Roughly
speaking, it states that a ciphertext cannot be decrypted under different keys. Initially
formalized in a public-key context, it has been further extended to key-encapsulation mech-
anisms, and more recently, to pseudorandom functions, message authentication codes and
authenticated encryption.

1.2.1.1 Robustness for Symmetric Primitives

In [FOR17], Farshim, Orlandi and Roşie study the security of symmetric primitives under
the incorrect usage of keys. Roughly speaking, a key-robust scheme does not output ci-
phertexts/tags that are valid with respect to distinct keys. Key-robustness is a notion that
is often tacitly expected/assumed in protocol design – as is the case with an anonymous
auction, oblivious transfer, or public-key encryption. The authors formalize simple, yet strong
definitions of key robustness for authenticated-encryption, message-authentication codes and
pseudorandom functions (PRFs). It is shown that standard notions (such as AE or PRF
security) guarantee a basic level of key-robustness under honestly generated keys, but fail
to imply key-robustness under adversarially generated (or known) keys. Robust encryption
and MACs compose well through generic composition, having robust PRFs as the main
primitive used in building robust schemes. Standard hash functions are expected to satisfy
key-robustness and PRF security and hence suffice for practical instantiations. [FOR17]
provides further theoretical justifications (in the standard model) by constructing robust
PRFs from (left-and-right) collision-resistant pseudorandom generators (PRGs).

1.2.1.2 Robustness Extended to Further Public Primitives

In [GNR19], Géraud, Naccache and Roşie motivate the importance of establishing robustness
guarantees for digital signatures (a signature must not verify under multiple keys), as well as
for functional encryption schemes, even under adversarially generated, but well-formed keys.
Scenarios that can result in attacks against existing constructions (such as the Boneh–Boyen
signature scheme or a simple bounded-norm inner-product functional encryption scheme) if
robustness fails are presented.

Furthermore, the work shows there exist simple, generic transforms that convert a scheme
into a functionally equivalent but robust one, preserving, in particular, the original scheme’s
guarantees.
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1.2.2 Towards Achieving White-Box Cryptography

White-box cryptography is the final frontier in modeling real-world adversaries against cryp-
tographic schemes. In rough terms, the attacker is provided with an implementation of a
particular scheme, and he/she is asked to extract the secret key embedded in the imple-
mentation using every possible means. We say that a construction achieves unbreakability
(UBK) if no adversary succeeds in extracting the key with a significant advantage. Despite
its overwhelming importance in the real-world deployment of cryptographic schemes, no
provably-secure constructions are known to this date. Even the recent developments in
the field of indistinguishability obfuscation (iO) have not provided benefits to white-box
cryptography. As a matter of fact, it is still unknown whether iO can be used to achieve
white-box unbreakability for a given encryption scheme. Meanwhile, the community focused
on the development of heuristic white-box implementations, out of which none resisted
to subsequent attacks. In the recent “WhibOx” challenge of CHES 2017 (appealing for
submissions of white-box AES implementations), none of the candidates managed to resist
the attacks from the cryptographic community, which gives a (dramatic) panorama of the
status quo on white-box cryptography.

1.2.2.1 Is UBK-security achievable?

Motivated by the lack of theoretical results in this field, we focus on achieving unbreakability
for encryption schemes. The main contributions are under submission [GPR+19] and can be
summarized as follows:

We give a positive answer to the question of obtaining white-box implementations for block-
ciphers that are secure against adversaries targeting key-extraction (UBK-security). Although
relying on strong assumptions, to the best of our knowledge, this is the first time when the
problem has been rigorously studied and answered. To this end, we formalize one-wayness
for functional encryption, by introducing simple but powerful definitions for multi-input
functional encryption schemes – denoted OW-MIFE– in both the public and private-key
settings. We show both settings are sufficient to achieve UBK-secure implementation for a
pseudorandom permutation f .

Then, we look into the power conferred by multi-input functional encryption in the private-
key setting. Specifically, we investigate the generic transform introduced by Brakerski,
Komargodski and Segev in [BKS16] (from now on the “BKS" transform). This builds a
n-input MIFE scheme on top of a single input FE scheme for general circuits which is
function-hiding. We prove the BKS transform enjoys one-wayness assuming the original
single input scheme is one-way. Furthermore, we argue that such single input schemes can be
instantiated from standard assumptions, by referring to the construction of Goldwasser et
al. [GKP+13].

By making use of known results in the realm of multi-input functional encryption, we show
that assuming the existence of indistinguishability obfuscation and of one-way functions, an
UBK implementation can be achieved, via the transform by Goyal, Jain and O’Neill [GJO16].
As a contribution of independent interest, we propose the concept of functional encryption
with auxiliary inputs (FEAI), as well as its indistinguishability and one-wayness security
notions. We show IND-FEAI schemes are sufficient to obtain indistinguishability obfuscation.
We regard this as an alternative potential path for obtaining iO, a problem of independent
interest. We also show that one-way FEAI (OW-FEAI) enables to achieve UBK-security.
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1.3 Other Contributions
Several other minor contributions, published or in submission, were left aside and not included
in this thesis. Nonetheless, we believe they may present interest from both theoretical and
practical points of view, and we mention them briefly in what follows:

1.3.1 Adaptive-Secure VRFs with Shorter Keys from Static Assumptions

Verifiable random functions are pseudorandom functions producing publicly verifiable proofs
for their outputs, allowing for efficient checks of the correctness of their computation. In
[Ros18], the author first introduces a new computational hypothesis, the n-Eigen-Value
assumption – which can be seen as a relaxation of the Un-MDDH assumption – and proves
its equivalence with the n-Rank assumption. Based on the newly introduced computational
hypothesis, the core of a verifiable random function having an exponentially large input space
and reaching adaptive security under a static assumption is built. The final construction
achieves shorter public and secret keys compared to the existing schemes reaching the same
properties. The results of this work have been published in the proceedings of CANS 2018.

1.3.2 Compressing Transactional Ledgers

Banks and blockchains need to keep track of an ever-increasing list of transactions between
the accounts owned by their users. However, as time goes by, many of these transactions can
be safely forgotten, in the sense that purging a set of transactions that compensate each other
does not impact the network’s semantic meaning, i.e. the vector b of amounts representing
the balances of users at a given point in time t.
[GNR17] introduces the notion of nilcatenation – a collection of past transaction vectors

having no effect on b. Removing these transactions yields a smaller, but equivalent set of
transactions. Motivated by the computational and analytic benefits obtained from more
compact representations of numerical data, Géraud, Naccache and Roşie formalized the
problem of finding nilcatenations, and propose detection algorithms. Among the suggested
applications are decoupling of centralized and distributed database or even to lower the
burden of large nodes maintaining the increasing blockchains of financial transactions. The
nilcatenation detection algorithm can be seen as proof of useful work, as the periodic removal
of nilcatenations keeps the ledger’s size as small as possible. The results in this work was
published in the proceedings of SecureComm 2017.

1.3.3 Further Algorithms for Simple, SSP Related Problems

The subset-sum problem (SSP) was among the first to be proven NP-Complete; it underwent
thorough analysis and has been used in numerous applications, such as public-key encryption,
signature schemes, or pseudorandom number generation. In most practical scenarios, the
security of such constructions depends on the fastest-known algorithms to solve “randomized"
instances of the SSP.
However, natural variants of the SSP, such as the subset-product problem (SPP) or the

multi-dimensional SSP (MDSSP), did not undergo such scrutiny, despite them appearing in
some contexts of practical interest.

In this work, the authors introduce efficient polynomial reduction of these variants to the
SSP, which results in algorithms with improved running time, under the assumption that
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the SSP solver has a notable property that is called “solution equiprobability”. In particular,
relying on (1) an equiprobable SSP solver running in O(2n·e+o(1)), returning solutions with
probability 1/r and (2) on a hypergraph partitioner running in time O(h) and producing
partitions of maximal size `, the authors give O(r` · 2`·e+o(1) + h)-time new algorithms for
the sparse multiple SSP, from which an efficient subset-product solver is then constructed.
An extended abstract of this result was included in AQIS 2018.

1.4 Organization
This dissertation is organized as follows. We begin by introducing the notations and the main
primitives we use in Chapter 2. These definitions serve as the basis for the future chapters. In
Chapters 3 and 4 we study the security notion of robustness in the context of encryption and
authentication. For encryption primitives, we extend the already existing security definition
for the public-key setting to a broader, functional setting. The authentication part studies
similar guarantees for digital signatures and authenticated encryption. In Chapter 5, we
transit to the study of security notions related to the implementation of schemes. The central
notion of white-box cryptography is under scrutiny, showing that under specific cryptographic
assumptions, it can be achieved in front of adversaries modelled as Turing machines. Finally,
in Chapter 6, the notion of functional encryption with auxiliary inputs is formalized and
linked to the concepts in the previous chapter. The concluding remarks and several open
problems are presented in Chapter 7.
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Chapter 2
Preliminaries

This chapter introduces the notations to be used herein, continuing with a presentation of
relevant computational hardness assumptions and of standard primitives that represent the
workhorse for the following chapters. We present only the main cryptographic concepts while
postponing variations of them to the forthcoming chapters.

2.1 General Notations and Concepts . . . . . . . . . . . . . . . . . . . . . 24
2.1.1 Mathematical Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.1.2 Algorithms and Turing Machines . . . . . . . . . . . . . . . . . . . . . . 25
2.1.3 A Toolkit for Proofs in Cryptography . . . . . . . . . . . . . . . . . . . 25

2.2 Cryptographic Primitives . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2.1 Hash Functions and the Random Oracle Model . . . . . . . . . . . . . . 27
2.2.2 Pseudorandom Generators . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2.3 Pseudorandom Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 28
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2.2.8 Garbling Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
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2.2.11 Indistinguishability Obfuscation . . . . . . . . . . . . . . . . . . . . . . 34
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2.1 General Notations and Concepts

In this section, we introduce the main notations that shall be used to describe several
mathematical and algorithmic concepts.

2.1.1 Mathematical Notations

Integers and Sets. We denote by N the set of natural numbers and by Z the set of integers.
We write N∗ and Z∗ as N \ {0} and Z \ {0} respectively. For a finite set S, we denote its
cardinality by |S|. From now on the symbol “:=” is to be used for defining new terms. We
define [k] := {1, . . . , k} as the set of first k positive integers.

Matrices and Vectors. Variables in bold capital letters stand for matrices (e.g. M) while
bold lowercase letters represent vectors (e.g. u). A subscript i on a vector u (e.g. ui)
stands for the i-th component of the vector. An analogue convention is used for matrices.
We abuse notation and by [a] we also denote the “encoding of an element” with respect to
some algebraic structure, and through [M] and [u], we denote the encodings of a matrix,
respectively vector.

Groups, Rings and Modular Arithmetic. A group (algebraic structure) G = (S, ?) is
defined as a set S and a law of composition ? that takes two elements x, y from S and produces
an element x ? y also in S. A group satisfies the closure, associativity, neutral element, and
inverse element definitions. We call Abelian a group that satisfies, also, commutativity.
A semigroup (S,⊗) satisfies the closure and associativity definitions, while a monoid is
semigroup equipped with a neutral element.
A ring (algebraic structure) R = (S,⊕, ?) is defined with respect to two operations, which
will be called addition and multiplication. We require (S,⊕) to be an Abelian group and
(S, ?) to be a monoid, while multiplication ? to be distributive with respect to addition ⊕.
A field (algebraic structure) F = (S,⊕, ?) is defined for two operations: called addition and
multiplication. We require (S,⊕) to be an Abelian group having the identity element denoted
by 0. (S \ {0}, ?) forms an Abelian group. The multiplication ? is distributive concerning
addition ⊕.

Cyclic Groups. A group is called cyclic if it is finite and all elements can be generated
from a single one, called the group generator. We usually denote the generator of a cyclic
group by g. A cyclic group is Abelian.

Modular Arithmetic. For an integer n, we denote by (Zn,+, ·) or Z/nZ – or simply Zn –
the ring of integers modulo n. We represent the elements of a ring by their representatives
{0, 1, 2, . . . , n− 1}. Observe that whenever n is a prime number, then (Zn,+, ·) is a finite
field.

Negligibility. In the cryptographic parlance, we often refer to negligible functions. What we
mean through this terminology is that a function vanishes faster than any positive polynomial
function. Using our notations, a real-valued function Negl is negligible if it is upper bounded
by the inverse of any polynomial P : that is, there exists a rank N0 such that for any n > N0
we have Negl(n) < 1/P (n). We state that an event occurs with overwhelming probability if
its probability is 1−Negl. We denote the set of all negligible functions by Negl.
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Probabilities. A random variable X : Ω→ E is defined as a map between a set of possible
outcomes Ω and a measurable space E. We denote by Pr

[
X = x

]
the probability the random

variable X takes the value x. A probability distribution provides the probabilities of occurrence
of an event. The uniform distribution over some set S, assigns the same probability to any
element x in the set: Pr[X = x] = 1/|S|.

Assignments. s← a stands for assigning the value a to variable s. We denote the action
of sampling an element x uniformly at random from a set S by x←$ S. When another,
non-uniform distribution χ is to be used, we write x←χ S.

Bitstrings and Lists. We denote an ordered list L of n elements by (a1, . . . , an). For a
real element r ∈ R, we write brc for its integer part while defining dre := brc+ 1. A bitstring
is an element taken from a finite subset of {0, 1}∗. We denote the binary representation
(bitlength) of a positive integer n the following quantity dlog2(n)e.

2.1.2 Algorithms and Turing Machines

According to [CLRS09], an algorithm is a sequence of steps taking some value denoted the
input and produces output values. In this work, we regard algorithms as equivalent to Turing
machines. As a general convention, we assume an algorithm to be randomized unless stated
otherwise.

Turing Machines. A Turing machine is an abstract model of computation. As described
in the original paper of [Tur37], a Turing machine consists of an infinite tape, a special set of
symbols including a separator, starting and stopping symbols. A special reader tool is to be
used, as well as a finite set of instructions that will let the machine in a finite set of states.
For cryptographic applications, we are mostly interested in algorithms whose running

time is bounded by a polynomial in the total length of the input. We denote the security
parameter by λ ∈ N∗ and we assume it is implicitly given to all algorithms in the unary
representation 1λ.

Time and Space Complexity. The two main physical quantities in connection to the
execution of an algorithm are the time and space. We will denote by the time complexity of
an algorithm the total number of steps executed by the Turing machines while running the
algorithm. The space complexity – or the necessary space to run the program description –
is defined as the length of the used tape of the Turing Machine. In terms of notation, PPT is
often used and stands for a probabilistic algorithm running in polynomial-time in the total
length of its input(s).

Functions and Asymptotic Behaviour. Many times, computing the exact time/space
complexity of an algorithm is a complex process. Instead, approximations are preferred. We
say that a function f : X → Y, f(n) ∈ O(g(n)) if ∃n0, c such that ∀n > n0 we have that
f(n) ≥ c · g(n). Similarly, we say that f(n) ∈ ω(g(n)) if there exists n0, c such that ∀n > n0
it is the case that f(n) ≤ c · g(n). Finally, we say that f and g have the same behaviour and
write f(n) ∈ Θ(g(n)) if exists c1, c2, n0 such that c1 · g(n) ≤ f(n) ≤ c2 · g(n), for all n > n0.

2.1.3 A Toolkit for Proofs in Cryptography

We present here basic cryptographic concepts that shall be used in further definitions and
forthcoming sections.
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Security Parameters. Intuitively, in cryptography, by security parameter, we usually
mean the length of some secret that provides guarantees in hardness of breaking a specific
property. Formally, the security parameter is associated with the input length for the Turing
machine that models a specific functionality.

Oracles. Oracles are fundamental tools in theoretical computer science. When we say that
one is given oracle access to a function f , we mean that for any provided input x, one learns
only the corresponding output f(x), being agnostic on the way the internal computations of
the function have been carried out. Oracles can be queried multiple times, even for the same
input. We denote by AO that algorithm A is given access to oracle O.

Security Experiments. A security experiment (vulgarized as a game) is intended to
capture a realistic scenario in a formal manner. The game is, in fact, a randomized algorithm,
that takes as input the security parameter, usually initializes a scheme and provides a
challenging problem to an adversary (again, seen as a Turing machine). Running the
experiment can be done multiple times. The algorithm modelling the game returns an output,
indicating the adversary succeeded or not in winning the given challenge.

Modelling Adversaries. We usually write A to denote an adversary, seen as a PPT
algorithm. Given a randomized algorithm A, we denote the action of running A on input(s)
(1λ, x1, . . . ) with uniform random coins r and assigning the output(s) to (y1, . . . ) by (y1, . . . )←
A(1λ, x1, . . . ; r). We recall the definitions for several standard cryptographic concepts related
to adversaries.

Success Probability and Advantage. The distributions of the outputs returned by the
algorithm modelled by the security experiment define the advantage of an adversary in
winning the game. Assume that for a specific construction C there exists an adversary A
against property P. Acting as a distinguisher, A is given distribution D0 or distribution D1.
We define the advantage as Advp

A,C(λ) :=
∣∣Pr[1← A(D0)]− Pr[1← A(D1)]

∣∣.
Perfect, Statistical and Computational Indistinguishability. Let D0,D1 be two
probabilistic distributions defined over the same support space Ω. The statistical distance
between the two distributions is defined as SD(D0,D1) := 1

2 ·
∑
x∈Ω

∣∣D0(x)−D1(x)
∣∣. We say

that two distributions D0,D1 are ε-close if the SD(D0,D1) ≤ ε. We say that two distributions
are perfectly indistinguishable if the statistical distance between the two is zero. We note
that two distributions are statistically close even in front of computationally unbounded
adversaries.

Many times, it suffices to assume that realistic adversaries’ runtime is fixed, and therefore,
statistical indistinguishability can be relaxed to a notion where two probability distributions
are indistinguishable in front of a computational adversary. The indistinguishability condition
stays as in the previous case, under the restriction that A is now a PPT adversary.

Hybrid Arguments in Cryptographic Security Proofs. As stated in the introduc-
tion, the theory of provable security is built on the assumptions that winning a security
experiment is equivalent to breaking a specific problem believed to be hard to solve. However,
many times, such direct reductions are infeasible, and one has to go through a slightly more
convoluted argument, generically called as a hybrid argument. Suppose we want to show
that D0 is indistinguishable from Dn. One can do so by stepping through a sequence of
hybrid experiments H1, . . . ,Hn where the output distributions of each experiment can be
proven to be indistinguishable from the output of the previous hybrid. Assuming the output
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distribution of H1 is D1 and of Hn is Dn, via the union bound we get an argument for
establishing indistinguishability.

Black-Box Model vs White-Box Model Security Models. Traditionally, security
games were introduced in the so-called black-box model. Here, we model an adversary via
a PPT Turing machine that interacts with oracles representing the encryption, decryption,
key-derivation et al. procedures. In some sense, this model is idealized, as it assumes the
adversary is entirely agnostic to what happens when a message is, for instance, encrypted.

In the real world, the adversary may be able to extract more information rather than just
talking to an oracle. Nevertheless, we still model adversaries as Turing machines, in some
sense being able to theoretically model the leakage functions for a particular implementation
of an algorithm.

2.2 Cryptographic Primitives
2.2.1 Hash Functions and the Random Oracle Model
A hash function (see for instance the definition in Katz and Lindell [LK14]) is a keyed
cryptographic primitive that takes as input arbitrary long messages and outputs message
digests (usually) of a fixed length. Informally, we desire hardness in recovering the original
message given its message digest, as well as hardness in finding messages that produce
colliding digests.

Definition 2.1. A hash function H : K×{0, 1}∗ → {0, 1}l is a deterministic Turing machine
that, given a fixed, publicly available, and uniformly at random sampled key K , takes as input
a message M of arbitrary length, and returns h← HK (M ).

We say that a hash function achieves preimage resistance if for any PPT adversary A we
have that:

Advpr
A,HK

(λ) := Pr
[
y = HK (x′)

∣∣∣∣∣ K←$ K ∧ x←$ {0, 1}∗∧
y ← HK (x) ∧ x′←$ A(1λ,HK , y)

]
∈ Negl(λ) .

Similarly, a hash function is collision-resistant if:

Advcr
A,HK (λ) := Pr

[
HK (x) = HK (y)

∣∣∣ K←$ K ∧ (x, y)←$ A(1λ,HK )
]
∈ Negl(λ) .

Hash functions are valuable cryptographic objects. Reasons are twofold: first, when it
comes to theory, it is always valuable to assume that a well-designed hash construction is
close enough to an idealized random oracle [BR93], that perfectly emulates the uniform
distribution over {0, 1}l. Such a reasonable assumption usually allows for clear ways of
building proofs rather than looking into the convoluted mathematical structure behind it.

Second, when it comes to practical cryptographic applications, the existing constructions
based on the theory of boolean functions proved to be fast enough to satisfy the software
and hardware requirements.

2.2.2 Pseudorandom Generators
A pseudorandom generator PRG with domain D and range R is a deterministic algorithm
that on input a point x ∈ D outputs a value y ∈ R. We define the advantage of an adversary
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A against PRG as
Advprg

PRG,A(λ) := 2 · Pr
[
PRGAPRG(λ) = 1

]
− 1 ,

where the game PRGAPRG(λ) is shown in Figure 2.1 (left). A PRG is secure if the above
advantage function is negligible for every PPT adversary A. In what follows, we assume D
and R come with algorithms for sampling elements, which by slight abuse of notation we
denote by D(1λ) and R(1λ). We allow for arbitrary domain and range in this definition to
allow for the analysis of our constructions later on.

PRGAPRG(λ):
b←$ {0, 1}
x←$ D(1λ); y ← PRG(x)
if b = 0 then y←$ R(1λ)
b′←$ A(y)
return b′ = b

PRFAPRF(λ):
b←$ {0, 1}; L← ∅
K←$ Setup(1λ)
b′←$ AEval(1λ)
return b′ = b

Proc. Eval(M ):
if M ∈ L then return ⊥
T ← PRF(K ,M )
if b = 0 then T←${0, 1}|T|
L← L ∪ {M}
return T

Figure 2.1: Games defining the security of pseudorandom generators (left), pseudorandom
functions (right).

2.2.3 Pseudorandom Functions
A PRF is a pair of algorithms (Setup,PRF), where Setup is a randomized algorithm that on
input the security parameter 1λ generates a key K in some key space K. We will assume
that this algorithm simply outputs a random key in {0, 1}λ. Algorithm PRF is deterministic
and given K as input and a point x ∈ D outputs a value y ∈ R. We define the advantage of
an adversary A against PRF as

Advprf
A,PRF(λ) := 2 · Pr

[
PRFAPRF(λ) = 1

]
− 1 ,

where game PRFAPRF(λ) is shown in Figure 2.1 (right). A PRF is secure if the above advantage
function in negligible for every PPT adversary A.

Puncturable PRFs. Punctured programming is a novel proof technique proposed by Sahai
and Waters in [SW14]. Essentially, it asks one to compute a program in all inputs but one.
We will use puncturable PRFs, which allow for a method to puncture the real PRF key K at
one point – say M ∗ – and to obtain a new key K ∗.

Definition 2.2 (Puncturable PRFs). A puncturable pseudorandom function pPRF is a tuple
of algorithms (pPRF.Setup, pPRF.Eval, pPRF.Puncture) such that:

• K←$ Setup: samples K uniformly at random over the key space.

• K ∗ ← Puncture(K ,M ∗) : given K and a point M in the input space, a punctured key
K ∗ is obtained.

• Y ← pPRF.Eval(K ,M ): identical to a PRF’s’ evaluation.

The correctness requirement states that for M ∗ ∈M, for all K ∈ K and for all M 6= M ∗ ∈
M, we have that:

PRF.Eval(K ,M ) = pPRF.Eval(K ∗,M ) ,
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where K ∗ ← PRF.Puncture(K ,M ∗).
We also require the output distribution of the pPRF to be computationally indistinguishable

from the uniform distribution, as depicted in Figure 2.1 (right). Moreover, we require that
even in the presence of the punctured key K ∗, a PPT adversary cannot distinguish between
pPRF.Eval(K ,M ∗) and Y ←$ R.

2.2.4 Symmetric Encryption Schemes
Symmetric encryption algorithms ensure confidentiality of messages under a pre-shared key.

Definition 2.3 (Symmetric Encryption Scheme). A symmetric encryption scheme SE is
defined as a triple of PPT algorithms (KGen,Enc,Dec) such that:

• A key generation algorithm K←$ KGen(1λ) takes as input the security parameter λ in
unary and outputs a key K ;

• The encryption algorithm C←$ Enc(K ,M ) gets as input a key K and a plaintext M ,
while it outputs a ciphertext C ;

• The deterministic decryption algorithm M ← Dec(K ,C ) takes as input a key K and a
ciphertext C , and outputs a plaintext M .

2.2.5 Public Key Encryption
Public key encryption (PKE) enables encryption in the absence of a pre-shared secret key.

Definition 2.4. A public key encryption scheme PKE consists of a triple of algorithms
(PKE.Setup, PKE.Enc, PKE.Dec) described as follows:

• (pk, sk)←$ Setup(1λ): given as input the unary representation of the security parameter
λ, this algorithm returns a public key pk and a secret key sk.

• C←$ Enc(pk,M ): the randomized encryption algorithm takes as input M and the public
key pk, producing as output a ciphertext C .

• M ← Dec(sk,C ): given as input the C and the secret key sk, the decryption outputs
the message M .

We require any public key encryption algorithm to satisfy correctness for any M ∈M:

Pr
[

PKE.Dec(sk,PKE.Enc(pk,M )) = M
∣∣∣∣∣ (pk, sk)←$ PKE.Setup(1λ)

]
∈ 1−Negl(λ) .

2.2.6 Digital Signature Schemes
Digital signature schemes are standard tools used to publicly validate the authenticity of
data.

Definition 2.5 (Digital Signature Scheme). A digital signature scheme DS defined over a
message-spaceM consists of a tuple of four polynomial-time algorithms (DS.Setup, DS.KGen,
DS.Sign, DS.Ver) such that:
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• params←$ DS.Setup(1λ): we assume the existence of a Setup algorithm producing a
set of public parameters which are implicitly given to all algorithms.

• (sk, vk)←$ DS.KGen(params): the randomized key generation algorithm takes as input
the unary representation of the security parameter λ and outputs a pair of secret/verifi-
cation keys.

• σ←$ DS.Sign(sk,M ): the (possibly randomized) signing algorithm takes a message
M ∈M as input and produces a signature σ of M under the secret key sk.

• b ← DS.Ver(vk, σ,M ): the deterministic verification algorithm receives as input a
signature σ of M and checks its validity concerning the verification key vk and M . It
outputs a bit b, which represent the verification passes (b = 1) or not (b = 0).

A digital signature is required to satisfy the following properties:

• Correctness: for any message M ∈M we have that

Pr

 1← DS.Ver(vk, σ,M )

∣∣∣∣∣∣∣
params←$ DS.Setup(1λ)∧
(sk, vk)←$ DS.KGen(params)∧
σ←$ DS.Sign(sk,M )

 ∈ 1−Negl(λ) .

• A signature scheme is EUF-secure if the advantage of any PPT adversary A against
the EUF-game defined in Figure 2.2 is negligible:

Adveuf
A,DS(λ) := Pr

[
EUFADS(λ) = 1

]
∈ Negl(λ) .

EUFADS(λ):
L← ∅
(sk, vk)←$ DS.KGen(1λ)
(M ∗, σ∗)←$ ASignsk(·)(1λ, vk)
if M ∗ 6∈ L:

return DS.Ver(vk,M ∗, σ∗)
return 0

Proc. Signsk(M ):
σ←$ DS.Sign(sk,M )
L← L ∪ {M}
return σ

Proc. Vervk(M , σ):
return DS.Ver(vk,M , σ)

Figure 2.2: The existential unforgeability experiment defined for digital signature schemes.

2.2.7 Fully Homomorphic Encryption
Fully homomorphic encryption (FHE) enables computations over encrypted data. The
result is another ciphertext, which when decrypted, carries the computations on the original
plaintext. It was originally proposed in the work of Rivest, Adleman and Dertouzos [RAD78]
and it remained an open problem until the breakthrough work of Gentry [Gen09].

Definition 2.6 (FHE). A fully homomorphic encryption scheme consists of a tuple PPT
algorithms (Setup, Enc, Eval, Dec) such that:

• (hsk, hpk)←$ Setup(1λ): a randomized algorithm returning a pair of homomorphic
public and secret keys.
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• C←$ Enc(hpk,M ): the encryption algorithm uses hpk to produce a homomorphic
ciphertext C .

• C ′ ← Eval(hpk,C , f): a function f is evaluated over the ciphertext C , the resulting
being another ciphertext corresponding to f(M ).

• f(M ) ← Dec(hsk,C ′): the decryption is a deterministic procedure that is given the
homomorphic secret-key hsk, the ciphertext C ′ and reveals f(x).

We say that a FHE scheme is perfectly correct if for all C : {0, 1}k → {0, 1}l of depth d
and for all x ∈ {0, 1}k we have that:

Pr
[

FHE.Dec(hsk,FHE.Eval(C,
FHE.Enc(hpk, x))) = C(x)

∣∣∣∣∣ (hpk, hsk)←$ FHE.Setup(1λ, 1d)
]

= 1 .

We also require that (FHE.Setup,FHE.Enc,FHE.Dec) to constitute a semantic secure public-key
encryption scheme.

2.2.8 Garbling Schemes

Garbling schemes were introduced by Yao in 1986 [Yao86] to solve the famous “Million-
aires’ Problem”. Since then, garbled circuits became a standard building-block for many
cryptographic primitives. Their definition follows.

Definition 2.7 (Garbling Scheme). Let {Cλ}λ be a family of circuits taking as input λ bits.
A garbling scheme is a tuple of PPT algorithms (Garble,Enc,Eval) such that:

• (Γ, sk)←$ Garble(1λ, C): takes as input the unary representation of the security parame-
ter and a circuit C ∈ {Cλ} and outputs a garbled circuit Γ and a secret key sk.

• c←$ Enc(sk,M ): is given as input M ∈ {0, 1}∗ and the secret key sk, the encoding
procedure returns an encoding c.

• C(M )← Eval(Γ, c): the evaluation procedure receives as inputs a garbled circuit as well
as an encoding of M , returning C(M ).

We say that a garbling scheme Γ is correct if for all C : {0, 1}k → {0, 1}l and for all
M ∈ {0, 1}k we have that:

Pr
[
C(M ) = y

∣∣∣ (Γ, sk)←$ GS.Garble(1λ, C)∧
y ← GS.Eval(Γ,GS.Enc(sk,M ))

]
= 1 .

Yao’s Garbling Scheme. An interesting type of garbled schemes is represented by the
original proposal of Yao, which considers a family of circuits of n input wires and outputting
one single bit. In his proposal, a circuit’s secret key can be viewed as two labels (L0

i , L
1
i )

for each input wire, where i ∈ [n]. The evaluation of the circuit at point x corresponds to
an evaluation of Eval(Γ, (Lx1

1 , . . . , L
xn
n )), where xi is the ith bit of x, — thus the encoding

c = (Lx1
1 , . . . , L

xn
n ).
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2.2.9 Attribute-Based Encryption

Attribute-based encryption (ABE) (in the key-policy setting) is a particular case of (public-
key) functional encryption (Definition 5.3). A (functional) key is generated for a predicate
γ, while a ciphertext is the encryption of a set of attributes α. Thus, the owner of the
(functional) key can recover the secret message encrypted with some attributes α if γ(α) = 1,
or nothing otherwise.

Definition 2.8 (ABE [GPSW06]). A key-policy attribute-based encryption scheme is a tuple
of PPT algorithms such that:

• (mpk,msk)←$ Setup(1λ): takes as input the unary representation of the security pa-
rameter λ and outputs the master public key mpk and a master secret key msk.

• skγ←$ KGen(msk, γ): given the master secret key and a policy γ, the (potentially
randomized) key-derivation outputs a corresponding skγ.

• C←$ Enc(mpk, α,M ): the randomized encryption procedure encrypts the plaintext M
with respect to some attribute set α.

• Dec(skγ ,C ): decrypts the ciphertext C using the key skγ and obtains M if γ(α) = 1 or
a special symbol ⊥, in case the decryption procedure fails (i.e. γ(α) = 0).

In their work, Goldwasser et al. [GKP+13] extend the notion of ABE to a new primitive,
dubbed as two-outcome attribute-based encryption (ABE2), which distinguishes itself through
the way encryption and decryption proceed:

Definition 2.9 (Two-Outcome Attribute-Based Encryption). A Two-Outcome Attribute-
Based Encryption scheme ABE2 is identical to the key-policy ABE scheme up to:

• C←$ ABE2.Enc(mpk, α,M0,M1): the randomized encryption procedure encrypts two
plaintexts with respect to some attribute set α.

• ABE2.Dec(skγ ,C ): decrypts the ciphertext C using the key skγ and obtains M0 if
γ(α) = 0 or M1 if γ(α) = 1.

2.2.10 Functional Encryption

Functional encryption[BSW11; ONe10b] is one of the most general encryption paradigms, as
it encompasses attribute-based, identity-based or public-key encryption as particular cases.
Concretely, an FE scheme allows for surgical access over encrypted data, controlling the leak
the adversary sees: ciphertexts correspond to messages M , keys are derived for functions f ,
while adversaries are able to learn f(M ) and (ideally) nothing more. Different paradigms
were considered to the date: (1) public vs private schemes, (2) single or multi-input ones,
(3) function-revealing or function-hiding constructions. Several versions of FE are known
to imply iO for general circuits (such as compact FE [AJ15; BV15] or multi-input FE in
the public-key setting). In our work, we present construction of UBK-secure pseudorandom
permutations, mostly using the power of FE to hide the keys and to evaluate the circuits
(embedded in the functional keys).
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Definition 2.10 (Functional Encryption Scheme - Public-Key Setting). A functional en-
cryption scheme FE in the public-key setting consists of a tuple of PPT algorithms (PPGen,
Setup, KGen, Enc, Dec) such that:

• params←$ FE.PPGen(1λ): we assume the existence of a PPGen algorithm producing a
set of public parameters which are implicitly given to all algorithms. When omitted
from description, we assume params← 1λ.

• (msk,mpk)←$ FE.Setup(params) : takes as input the public parameters and outputs a
pair of master secret/public keys.

• skf←$ FE.KGen(msk, f): given the master secret key and a function f , the (randomized)
key-derivation procedure outputs a corresponding functional key skf .

• C←$ FE.Enc(mpk,M ): the randomized encryption procedure encrypts the plaintext M
with respect to mpk.

• FE.Dec(C , skf ): decrypts the ciphertext C using the functional key skf in order to learn
a valid message f(M ) or a special symbol ⊥, in case the decryption procedure fails.

A functional encryption scheme is s-IND-FE-CPA-secure if the advantage of any PPT
adversary A against the IND-FE-CPA-game defined in Figure 2.4 is negligible:

Advs-ind-fe-cpa
A,FE (λ) := 2 · Pr

[
s-IND-FE-CPAAFE(λ) = 1

]
− 1 ∈ Negl(λ) .

Similarly we say that it is adaptive IND-FE-CPA-secure if

Advind-fe-cpa
A,FE (λ) := 2 · Pr

[
IND-FE-CPAAFE(λ) = 1

]
− 1 ∈ Negl(λ) .

FULL-SIM-FE Security. For the particular case of single input functional encryption schemes,
we recall simulation-based security as introduced in [GKP+13]. We say a public-key functional
encryption scheme FE is semantically secure if there exists a stateful PPT simulator S such
that for any PPT adversary A,

Advfull-sim-fe
A,FE (λ) := 2 · Pr[FULL-SIM-FEAFE(λ) = 1]− 1 ∈ Negl(λ) ,

where the FULL-SIM-FE experiment is described in Figure 2.3.

Private-Key Setting. FE was initially defined in the public-key setting. However, it turns
out the case for private-key FE is also interesting: in conjunction with PKE, it implies iO for
circuits with inputs of poly-logarithmic length [KS17]. We do not discuss the advantages or
limitations of these two models. For completeness, we define the scheme below:

Definition 2.11 (Functional Encryption Scheme — Private-Key Setting). A functional
encryption scheme FE is a tuple of PPT algorithms (FE.Setup, FE.KGen, FE.Enc, FE.Dec)
such that:

• msk←$ FE.Setup(1λ) : takes as input the unary representation of the security parameters
and outputs msk.

• skf←$ FE.KGen(msk, f): given the master secret key and a function f , the (randomized)
key-derivation procedure outputs a corresponding skf .
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FULL-SIM-FEAFE(λ):
b←$ {0, 1}
(msk,mpk)← Setup(1λ)
f ← A(mpk)
skf ← KeyGen(msk, f)
M ← A(mpk, skf )
if b = 0 :

C0←$ Enc(mpk,M )
if b = 1 :

C1 ← S(mpk, skf , f, f(M ))
b′←$ A(Cb)
return b′ = b

Figure 2.3: The FULL-SIM-FE security for public-key functional encryption schemes, as
defined in [GKP+13].

• C←$ FE.Enc(msk,M ): the randomized encryption procedure encrypts the plaintext M
with respect to msk.

• FE.Dec(C , skf ): decrypts the ciphertext C using the functional key skf in order to learn
a valid message f(M ) or a special symbol ⊥, in case the decryption procedure fails.

A functional encryption scheme is IND-FE-CPA-secure if the advantage of any PPT adversary
A against the IND-FE-CPA-game defined in Figure 2.4 is negligible:

Advind-fe-cpa
A,FE (λ) := 2 · Pr

[
IND-FE-CPAAFE(λ) = 1

]
− 1 ∈ Negl(λ) .

2.2.11 Indistinguishability Obfuscation
We use the formal indistinguishability definition for an obfuscator of a class of circuits [Lin17].

Definition 2.12 (Indistinguishability Obfuscation (iO) for a circuit class). A uniform PPT
machine iO is an indistinguishability obfuscator for a class of circuits

{
Cλ
}
λ∈N if the following

conditions are satisfied:

• Correctness:
Pr
[
∀x ∈ D, C(x) = C(x)|C←$ iO(C)

]
= 1 .

• Indistinguishability:∣∣∣∣∣∣∣Pr

 b = b′

∣∣∣∣∣∣∣
∀C1, C2 ∈ {C}λ ∧ ∀x ∈ D : C1(x) = C2(x)

∧ b←$ {0, 1} ∧ C←$ iO(Cb)
∧ b′←$ A(1λ,C, C0, C1)

− 1
2

∣∣∣∣∣∣∣ ∈ Negl(λ).

where D is the input domain of the circuits C.
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s-IND-FE-CPAAFE(λ):
b←$ {0, 1}
L← ∅
(M0,M1; state)←$ A(1λ)
(mpk,msk) msk←$ FE.Setup(1λ)

C ∗←$ FE.Enc(msk mpk ,Mb)
b′←$ AC∗,KGenmsk(·),Encmsk(·)(1λ, state)
b′←$ AC∗,KGenmsk(·),mpk(1λ, state)
if ∃skf ∈ L s.t. f(skf ,M0) 6= f(skf ,M1):

return 0
return b = b′

Proc. KGenmsk(f):
L← L ∪ {f}
skf←$ FE.KGen(msk, f)
return skf

IND-FE-CPAAFE(λ):
b←$ {0, 1}
L← ∅
(mpk,msk) msk←$ FE.KGen(1λ)

(M0,M1)←$ AKGenmsk(·),FE.Encmsk(·)(1λ)
(M0,M1)←$ AKGenmsk(·),mpk(1λ)

C ∗←$ Enc(msk mpk ,Mb)
b′←$ AKGenmsk(·),Encmsk(·)(1λ)
b′←$ AC∗,KGenmsk(·),mpk(1λ, state)
if ∃skf ∈ L s.t. f(skf ,M0) 6= f(skf ,M1) :

return 0
return b = b′

Proc. KGenmsk(f):
L← L ∪ {f}
skf←$ FE.KGen(msk, f)
return skf

Figure 2.4: The selective and adaptive indistinguishability experiments defined for a functional
encryption scheme. The difference between the private-key and the public settings
are marked in boxed lines of codes, corresponding to the latter notion.

2.3 Computational Hardness Assumptions
Below, we introduce the main computational hardness assumptions to be used herein.

2.3.1 Discrete-Log Related Assumptions
Definition 2.13 (Multiple-DDH problem [BCP02]). Let n ≥ 2, g ∈ G be a generator for
the cyclic group G of prime order p, and (x1, . . . , xn) ∈ Znp be elements sampled uniformly at
random. The following advantage of any PPT adversary A is negligible:

Advn-DDH
A (λ) := Pr

[
1←$ A

(
1λ,
(
gx1 , . . . , gxn , {gxixj}1≤i<j≤n

))]
−

Pr
[
1←$ A

(
1λ,
(
g1, . . . , gn, {gi,j}1≤i<j≤n

))]
∈ Negl(λ) .

2.3.2 Bilinear Maps
Bilinear maps found numerous applications in public-key cryptography. We define them
below.

Definition 2.14. Let (G1, ·), (G2, ·), (GT , ·) be cyclic groups of prime order p. Let g1, g2 be
the generators of G1 and G2. We call e : G1 × G2 → GT a bilinear map if e is efficiently
computable and:

• Given any (a, b) ∈ Z∗p × Z∗p, we have that e(ga1 , gb2) = e(g1, g2)a·b.

• Non-degeneracy: e(g1, g2) 6= 1.
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Bilinear maps found applications in the realization of signature schemes. We review an
assumptions used in the [BB08] signature scheme based on cryptographic pairings:

Definition 2.15 (q-Strong Diffie-Hellman problem [BB08]). Let G1, G2 be cyclic groups of
prime order p with generators g1, g2 and let x←$ Zp. The following advantage of any PPT
adversary A is negligible:

Advq-SDH
A (λ) := Pr

[(
c, g

1/(x+c)
1

)
←$ A

(
1λ,
(
g1, g2, g

x
2 , . . . , g

xq)) ∧ c ∈ Z∗p
]
∈ Negl(λ) .

2.3.3 Collision-Resistant Hash Functions
We also use regular collision-resistant hash functions as described by Canetti, Micciancio and
Reingold in [CMR98]. These are hash functions exhibiting an extra property of regularity
and can be constructed from claw-free permutation pairs.

Definition 2.16 (Regular Collision-Resistant Hash Function [CMR98]). A function h : D →
R is regular if the random variable h(x) defined by a uniformly distributed x ∈ D, is uniform
over R: for all y ∈ R, |h−1(y)| = |D|/|R| holds. A regular collision-resistant hash function
h is a collision-resistant hash meeting the regularity condition.

2.3.4 Learning With Errors and Related Assumptions
The Learning With Error (LWE) search problem [Reg05] asks for the secret vector s over Znq
given a set of noisy vectors of the form A> · s + e, where A denotes a randomly sampled
matrix over Zn×mq , while e is a small error term sampled from an appropriate distribution
χ. Roughly speaking, the decision version of the problem asks to distinguish between the
distribution of the LWE problem as opposed to the uniform distribution.

Definition 2.17 (Learning with Errors). For an integer q = q(λ) ≥ 2 and an error distribu-
tion χ = χ(λ) over Zq, the decision learning with errors problems is to distinguish between
the following pairs of distributions:

{(A,A> · s + e)} and {(A,u)}

where A←$ Zn×mq , s←$ Znq , e←χ Zmq ,u←$ Zmq .

Later, Regev et al. [LPR10] proposed a version over quotient rings: let R = Z[X]/(Xn + 1)
for n a power of 2, while Rq := R/qR for a safe prime q satisfying q = 1 mod 2n. An adversary
is required to distinguish between the following distributions: {(a, a · s+ e)} and {(a, u)}, for
a, s, u elements sampled independently and uniformly at random over Rq and e a small error
term.
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Chapter 3
Robust Encryption

Robustness for public-key encryption guarantees that a ciphertext cannot be decrypted under
two (or more) distinct keys. In this chapter, we generalize the definitions of robust PKE
to the functional encryption setting and provide simple, generic transforms that turn FE
schemes into robust ones. Along the way, we rely on robustness for pseudorandom functions,
a security notion we put forward.
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3.1 Overview of Key-Robustness

Cryptographic primitives, such as encryption and signature schemes, provide security guar-
antees under the condition, often left implicit, that they are “used correctly”. Fatal examples
of cryptographic misuse abound, from weak key generation to nonce reuse. This reliance
on operational security has attracted attackers, who can, for instance, impose faulty or
backdoored random number generators to erode cryptographic protections. At the same
time, the social usage of technology leans towards a more open environment than the one
in which traditional primitives were designed: keys are generated by one party, shared with
another, certified by third... These two observations raise new interesting questions, which
have only recently been addressed in the cryptographic literature. For instance, if Alice
generates keys that she is using, but doesn’t share, can an adversary (observing Alice or
influencing her in some way) nevertheless generate a different set of keys, which would allow
decryption (maybe only partial)? Intuitively this should not be the case, but it was not until
the seminal work of Abdalla, Bellare and Neven [ABN10; ABN18], that this situation was
formally analysed. They introduced the notion of robustness, which ensures that a ciphertext
cannot be decrypted under multiple keys.

Is robustness desirable? Imagine a scenario where users within a network exchange
messages by broadcasting them, and further encrypt them with the public key of the recipient
to ensure confidentiality. If this is the case, we usually assume that there is only one receiver,
by arguing that no other members apart from the intended recipient can decrypt the ciphertext
and obtain a valid (non-⊥) plaintext. However, if the adversary can somehow tamper with
the key generation process, she may “craft” keys that behave unexpectedly for some messages
or design alternative keys that give at least some information on some of the messages.

Farshim et al. [FLPQ13] refined the original definition of robustness, by covering the cases
where the keys are adversarially generated, under a master notion called “complete robustness”.
Mohassel addressed the question in the context of key-encapsulation mechanisms [Moh10].
More recently, Farshim et al. put forward robustness for symmetric primitives [FOR17],
motivated by the security of oblivious transfer protocols [CO15] or message authentication
codes. Further extensions of their security notions found applications in the original password-
authenticated key-exchange protocols described by Jarecki et al. [JKX18] or (fast) message-
franking schemes [GLR17]. We review the original motivating example and point out that the
above line of works leaves several open questions on the semantic of this security definition in
the context of functional encryption [BSW11; ONe10a] or digital signature schemes [GMR84;
BGI14] (Chapter 4). We provide a second motivating example that suggests robustness is an
excellent companion of any FE scheme.

Example 1 – Anonymous Communication. Many practical symmetric encryption
schemes have ciphertexts that look random, which in particular implies a form of key
anonymity: when given two ciphertexts – C0,C1 – it is hard to tell whether or not they were
generated using the same (unknown) secret key. Imagine a protocol with one sender and
several receivers, where each receiver shares a key ki with the sender. Anonymity guarantees
that if the sender broadcasts a ciphertext constructed using ki, then a different receiver
j should only learn that i 6= j and nothing else. At the same time, such protocols often
intuitively assume that at most one of the receivers is believed to be the intended receiver,
i.e., decryption will fail for all but one of the users. However, this is not covered by standard
security definitions. Similarly, many public-key encryption constructions produce ciphertexts
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indistinguishable from random, meaning the previous scenario may repeat if PKE schemes
would be used. More generally, whenever user anonymity is a security goal, it is likely that
some form of robustness is also needed in order to avoid undesired behaviour [ABN10].

Example 2 – Robustness for Inner-Product Encryption: The previous example in-
volving standard, symmetric/public-key encrypted and exchanged messages between multiple
parties can be further generalized. Consider a simple use case of a functional encryption
scheme for the “inner product” function (IP FE) [ABDP15]. From a technical perspective,
suppose the ciphertext is generated by encrypting a plaintext M as C ← FE.Enc(mpk,M ; R).
If msk is somehow corrupted1 to msk′, then is it possible that performing decryption under
sk′y reveals a different plaintext M ′ 6= M? Intuitively, if the functional encryption scheme
meets robustness, we expect that no ciphertext can decrypt under functional keys issued
under different master secret keys.
As a concrete scenario, consider a Computer Science (CS) department’s registry, which

holds the marks obtained by each student in the Crypto course. The final grade is being
computed as a weighted average of the stored marks (i.e., homework counts 30%, midterm
20% and final 50%). A priori established confidentiality rules ask that a clerk should not
have access to the marks, but still, it must be possible to compute the final grade. Therefore,
considering the set of marks as the vector ~x and the weights as ~y, one can use an IP FE
scheme, to obtain the final grade, its formula mapping to ~x> · ~y. In order to achieve this,
for each course: (1) the course leader encrypts the marks; (2) later, the clerk obtains a
new key sky (depending on the established course weights), and uses it to obtain the final
average. A failure to guarantee robustness could result in decryption to succeed, but the
final average being incorrect (and possibly under the control of an adversary). To illustrate
this, consider the (bounded-norm) IP FE scheme instantiated from ElGamal encryption
and introduced in [ABDP15]: encrypting a plaintext under mpk = (gs1 , . . . , gsn) — where
msk = ~s← (s1, . . . , sn) — is done as follows: C ← (g−r, gr·s1+x1 , . . . , gr·sn+xn), for r sampled
uniformly at random in Zp. If an attacker wishes to obtain the same C , then r remains the
same, but it can use different ~s′ and ~x′, implicitly changing the value of msk. As expected,
even if FE.KGen is correct, and the queried key is indeed issued for the vector ~y, the final
decrypted result corresponds to ~x′

>
· ~y rather than to ~x> · ~y.

3.1.1 Previous Work on Robustness

In this chapter, we interact with a rather small subset of the possible, relevant definitions
encapsulating the intuition behind robustness. In a sense, we attempt to capture realistic
attacks. However, from a theoretical perspective, a more general discussion would consider a
comprehensive set of definitions for robustness.
A first option is to study the guarantees obtained under honestly generated keys. We

expect that for many encryption primitives, the standard correctness and indistinguishability
security notions are enough to formally prove that a ciphertext cannot be decrypted under
multiple keys. The original work of [ABN10] introduces this notion for public-key encryption
under the name of strong-robustness (SROB).
The next natural step is to consider settings with increased adversarial power; this can

be done by considering robustness notions where adversarial key-generation is possible. At
1There are several scenarios leading to such corruption, including memory corruption.
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this point, we distinguish two paths: (1) the adversary can interact with the key generation
process and set/inspect partial bits in a key; (2) the adversary can generate the key in
its entirety. An analysis of the former case would cover a more realistic class of attacks,
incorporating the ones presented by Heninger and Shacham [HS09], while the latter favours
simplicity.

Furthermore, one can reconsider the original definition of robustness: a ciphertext cannot
be decrypted under multiple keys into a setting in which, under adversarial key generation, the
adversary is asked to find colliding ciphertexts by issuing encryption keys, randomness terms
and plaintexts. [FLPQ13] elaborates more on such definitions for public-key encryption, by
formalizing the notions of:

• Keyless Robustness (KROB): the adversary outputs two public-keys, two messages
and two randomness terms, winning if it obtains two colliding ciphertexts. Thus, the
security experiment uses encryption queries only.

• Full Robustness (FROB): an adversary outputs a ciphertext C and two secret-keys
sk1, sk2, winning if C decrypts to two valid messages under the two different secret-keys.
This experiment uses only decryption queries.

• Mixed Robustness (XROB): is a variation between the two, essentially requiring one
encryption and one decryption evaluation.

• Complete Robustness (CROB): is the “union” of the previous three security notions,
by considering adversaries that can mount FROB, XROB and KROB attacks.

Finally, the existing robustness notions can be extended to more general primitives, such
as identity-based encryption [Sha84; BF01], attribute-based [SW05] encryption or functional
encryption [BSW11; ONe10b]. As an informal rule, the more advanced the primitive, the
more convoluted the definition. Formalizing such definitions and providing transforms for
achieving robustness constitutes the main contribution we give throughout this chapter.

3.1.2 Chapter Organization
This chapter is based on the works published by the author in [FOR17] and [GNR19]. Its
structure follows:

• In Section 3.2 we review the existing notions of robustness for public-key encryption,
focusing on strong and complete robustness (abbreviated SROB and CROB). We
provide similar definitions in the functional setting, in a multi-authority context and
discuss why similar definitions cannot be achieved in a single authority context. These
notions are designed to enfold the maximal strength of an adversary by allowing to
generate the keys and the random coins used for encryption and key-derivation while
maintaining syntactical simplicity.

• A natural question is whether existing schemes already possess a form of robustness:
we show that while SROB is implied by CROB, there exist FE schemes that are not
CROB-secure.

• In Section 3.3, we look into generically achieving robustness. For the case of functional
encryption considered in the public-key setting, in addition to a commitment scheme
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we make use of an IND-CPA public-key encryption scheme. Turning to the case of a
private-key FE scheme, our technique relies on right-injective PRGs and robust PRFs.
To a certain extent these transformations are “natural”, but we have to ensure and
prove that they work as intended.

• Finally, we show how to construct (computationally) robust and collision-resistant
PRFs assuming the existence of right injective PRGs (Section 3.4). We think such
notions are of independent interest and may find applications in other fields.

3.2 Definitions and Relations
In this section, we give an overview of the generic transform proposed in the original work of
Abdalla, Bellare and Neven [ABN10] as well as its refinement by Farshim, Larraia, Quaglia
and Patterson [FLPQ13]. Then, we put forward robustness for functional encryption, focusing
on a multi-authority context.

3.2.1 Robustness for Public-Key Encryption

The original motivation for introducing robustness resided in Sako’s auction protocol [Sak00],
working as follows: in a preliminary phase, the auctioneer prepares a set of potential bid
values V = {v1, . . . , vn}. Next, he/she generates n public/secret key pairs (pki, ski). During
the auction, whenever one participant wants to auction off for some amount i, he/she will
write a message (say his/her name plus some identifier) and encrypt it under pki. Once
the auction ends, the auctioneer decrypts the ciphertext(s) that were received, first under
skn, (and checks for the winner(s)), then under skn−1 (and checks for the winner(s)) and so
on. Abdalla et al. observe the public-key scheme used must ensure some kind of robustness
guarantees, pleading for the notion of strong robustness. While the intuition in [ABN10] is
correct, Farshim, Larraia, Quaglia and Paterson [FLPQ13] prove that strong robustness is
still insufficient for Sako’s protocol, as the keys could be generated maliciously. Therefore,
they capture such a scenario by introducing complete robustness.

Strong robustness. Strong robustness captures the ability of ciphertexts to be decrypted
under multiple, but honestly generated keys. The game depicted in Figure 3.1 gives an
adversary A the ability to interact with encryption and decryption procedures, winning if A
finds a “problematic” ciphertext C where PKE.Dec(sk1,C ) 6=⊥ ∧ PKE.Dec(sk2,C ) 6=⊥.

3.2.1.1 The ABN Transform - Intuition

Abdalla, Bellare and Neven propose a generic transform – the “ABN” transform – aimed
at transforming any weak-robust PKE encryption scheme into a strong robust one by using
a commitment scheme. By weak robust we mean that under honest key generation it is
hard for an adversary to come with a message and two public keys (M , pk1, pk2) such that
encrypting M under pk1 produces a ciphertext C decryptable under a second decryption oracle
(decryption is done w.r.t. sk2, pk2). We defer a description of weak-robustness, as it plays no
role in our work. Informally, the ABN transform uses a common reference string and proceeds
as follows: a commitment scheme CS is instantiated, and the crs is included in the public
parameters. Then, the transform commits to the public-key pk, and encrypts the resulting
decommitment dec, together with the plaintext. Thus, C←$ (com,PKE.Enc(pk,M ||dec)).

— 41 —



SROBAPKE(λ):
params←$ PKE.Setup(1λ)
C←$ ADecsk1 (·),Decsk2 (·)(params, pk1, pk2)
if pk0 = pk1:

return 0
M1 ← PKE.Dec(sk1,C , pk1, params)
M2 ← PKE.Dec(sk2,C , pk2, params)
if M1 6=⊥ ∧M2 6=⊥:

return 1
return 0

KROBAPKE(λ):
params←$ PKE.Setup(1λ)
(pk1,M1,R1, pk2,M2,R2)←$ A(1λ)
if pk0 = pk1:

return 0
C1 ← PKE.Enc(pk1,M1,R1, params)
C2 ← PKE.Enc(pk2,M2,R2, params)
if C1 = C2 ∧ C1 6=⊥:

return 1
return 0

Figure 3.1: The strong robustness game (left), as defined in [ABN10]. Keyless robustness
(KROB), as defined in [FLPQ13].

FROBAPKE(λ):
params←$ PKE.Setup(1λ)
(C , pk1, sk1, pk2, sk2)←$ A(1λ)
if pk0 = pk1:

return 0
M1 ← PKE.Dec(sk1,C , pk1, params)
M2 ← PKE.Dec(sk2,C , pk2, params)
if M1 6=⊥ ∧M2 6=⊥:

return 1
return 0

XROBAPKE(λ):
params←$ PKE.Setup(1λ)
(C1, pk1, sk1, pk2,M2,R2)←$ A(1λ)
if pk0 = pk1:

return 0
M1 ← PKE.Dec(sk1,C , pk1, params)
C2 ← PKE.Enc(pk2,M2,R2, params)
if M1 6=⊥ ∧M2 6=⊥ ∧C1 = C2:

return 1
return 0

Figure 3.2: The enhanced security notion capturing adversarial key generation.

When decrypting, one recovers dec, then checks that Ver(crs, com, dec, pk) = 1, down to the
binding property of the commitment scheme.

3.2.1.2 The Refined ABN Transform for Adversarial Keys

As observed by Farshim et al. in [FLPQ13], the notion of strong robustness introduced in
[ABN10] does not suffice to the original goal of protecting losers’ bids in Sako’s auction
protocol, but it still serves as the workhorse of their transform for the notion of complete
robustness.

The need for stronger definitions. Thus, [FLPQ13] proposed the three cases of XROB,
KROB and FROB notions under adversarial key generation, which are provided in Figures 3.1
and 3.2. Finally, a master notion – dubbed complete robustness (abbreviated CROB) –
unionises over the three.

FLPQ transform. As stated previously, SROB is not sufficient for the original application
of auction protocols. The transform in [FLPQ13] is akin to the one in [ABN10] up to the
significant difference that it handles maliciously generated keys by using a PKE scheme that
supports labels (e.g. Cramer-Shoup [CS98]).
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3.2.2 Generalizing Robustness

As discussed in the motivational part of Section 3.1, robustness should be considered as a
security notion achieved by a functional encryption scheme. In what follows, we define it for
the public/private key settings.

Speaking roughly about robustness as the property of a ciphertext of not being decryptable
under multiple keys, then, when it comes to decryption, an FE scheme trivially does not
exhibit this property. The reason resides in the broken symmetry to the way decryption
works in symmetric/public-key schemes. Through its purpose, a functional ciphertext can
be decrypted under multiple keys [BSW11; ONe10a]. In this respect, an adversary holding
multiple functional keys (which is not a restriction by itself) will be able to decrypt under
multiple keys. Therefore, defining robustness in terms of decryption itself is fallacious. We
stress about the existence of essentially two major paths one can explore – multi-authority or
single-authority.

3.2.2.1 Multi-Authority Setting

A first path is placed in a multi-authority context – that is, we assume there exist multiple
pairs (msk,mpk). Aiming for a correct definition, one property that should be guaranteed
is that a ciphertext should not be decryptable under (at least) two functional keys issued
via different master secret keys. Stated differently, if msk1 produces skf1 and msk2 (6= msk1)
produces skf2 for two functionalities f1, f2, we do not want C (say encrypted under mpk1)
to be decrypted under skf2 (it already decrypts under skf1 with high probability due to the
correctness of the scheme). We propose two main flavours of robustness, corresponding to the
public and private key settings. Depending on the case, the adversary has oracle access to
the (encryption, if in a private key case), key-derivation and decryption oracles. The security
experiments are depicted in Figure 3.3. The difference between the two paradigms may
seem minor (for our purpose), but in fact, having a public master key confers a significant
advantage when it comes to deriving a generic transform for achieving complete robustness,
as detailed in Section 3.3. In what follows, we explore this path, since it naturally maps to
our motivational examples.

Malformed Public Keys. In our experiments, we consider only well-formed master public
and secret keys. We believe that it is relatively easy to check if a key is malformed. Thus we
reject the style of the artificial separations introduced in [FLPQ13].

SROB and FEROB. As stated in the algorithmic description of the security experiment,
an adversary against the strongest notion of FEROB attempts to find colliding ciphertexts,
which decrypt under two msk-separated keys skf 1, skf 2.

Definition 3.1 (SROB and FEROB Security for FE). Let FE be a functional encryption
scheme. We say FE achieves functional robustness if the advantage of any PPT adversary A
against the FEROB game defined in Figure 3.3 (bottom) is negligible:

Advferob
A,Pub/PrvFE(λ) := Pr

[
FEROBAPub/PrvFE(λ) = 1

]
SROB-security is defined similarly, the SROBAPub/PrvFE(λ) game being depicted in Figure 3.3
(top).
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SROBAPubFE(λ):
L1 ← ∅
L2 ← ∅
(mpk1,msk1)←$ KGen(1λ)
(mpk2,msk2)←$ KGen(1λ)
(C , skf1 , skf2)←$

←$ A

 KGenmsk1(·),
KGenmsk2(·)


(mpk1,mpk2)

if skf1 ∈ L2 ∨ skf2 ∈ L1:
return 0

if Dec(C , skf1) 6= ⊥ ∧
Dec(C , skf2) 6= ⊥:

return 1
return 0

KGenmski(f):
skf←$ KGen(mski, f)
Li ← Li ∪ {(skf , f)}
return skf

Encmpki(M ):
C←$ Enc(mpki,M )
return C

SROBAPrvFE(λ):
L1 ← ∅
L2 ← ∅
msk1←$ KGen(1λ)
msk2←$ KGen(1λ)
(C , skf1 , skf2)←$

←$ A


Encmsk1(·),
Encmsk2(·),
KGenmsk1(·),
KGenmsk2(·)


(1λ)

if skf1 ∈ L2 ∨ skf2 ∈ L1:
return 0

if Dec(C , skf1) 6= ⊥ ∧
Dec(C , skf2) 6= ⊥:

return 1
return 0

KGenmski(f):
skf←$ KGen(mski, f)
Li ← Li ∪ {(skf , f)}
return skf

Encmski(M ):
C←$ Enc(mski,M )
return C

FEROBAPubFE(λ):
(mpk1,msk1,R1,M1, f1,Rf1 ,

mpk2,msk2,R2,M2, f2,Rf2)←$ A(1λ)
C1←$ Enc(mpk1,M1; R1)
C2←$ Enc(mpk2,M2; R2)
if C1 = C2 ∧mpk1 6= mpk2:

skf1←$ KGen(msk1, f1; Rf1)
skf2←$ KGen(msk2, f2; Rf2)
if Dec(C , skf1) 6= ⊥ ∧

Dec(C , skf2) 6= ⊥:
return 1

return 0

FEROBAPrvFE(λ):
(msk1,R1,M1, f1,Rf1 ,

msk2,R2,M2, f2,Rf2)←$ A(1λ)
C1←$ Enc(msk1,M1; R1)
C2←$ Enc(msk2,M2; R2)
if C1 = C2 ∧msk1 6= msk2:

skf1←$ KGen(msk1, f1; Rf1)
skf2←$ KGen(msk2, f2; Rf2)
if Dec(C , skf1) 6= ⊥∧

Dec(C , skf2) 6= ⊥:
return 1

return 0

Figure 3.3: We introduce FEROB and SROB in the context of FE schemes defined both in
the public and private key setting. For the SROB games, we give the oracles
implementing Enc and KGen procedures, mentioning that each query to the latter
oracle adds an entry of the form (f, skf ) in the corresponding list Li — where
i ∈ {1, 2} stands for the index of the used master keys.
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Lemma 3.1 (Implications). Let FE denote a functional encryption scheme. If FE is FEROB-
secure, then it is also SROB-secure.

Lemma 3.1. We prove the implication holds in both the public and private key settings:
Public-Key FE. We take the contrapositive. For a scheme FE, we assume the existence of

an adversary A winning the SROB-game with non-negligible advantage εSROB. A reduction
R that wins the FEROB game is built as follows: (1) R samples uniformly at random
(msk1,mpk1,msk2,mpk2); (2) the corresponding oracles for key-derivation are built; (3) A
runs with access to the aforementioned oracles, returning (C , skf1 , skf2). If A outputs a
winning tuple, then R wins the FEROB game by releasing the messages and the randomness
terms used to construct (C , skf1 , skf2). Hence, Advsrob

A,FE(λ) ≤ Advferob
R,FE(λ).

Private-Key FE. We take the contrapositive. For a scheme FE, we assume the existence of
an adversary A winning the SROB-game with non-negligible advantage εSROB. A reduction
R that wins the FEROB game is built as follows: (1) R samples uniformly at random
(msk1,msk2); (2) R constructs the encryption and key-derivation oracles under the two
keys; (3) R runs A with access to these oracles, records the random coins used and obtains
(C , skf1 , skf2). Finally, R wins the FEROB game by issuing the FEROB tuple, using the
random coins used to derive the functional keys and the ciphertext and therefore we have:
Advsrob

A,FE(λ) ≤ Advferob
R,FE(λ) .

Proposition 3.1 (Separations). There exist functional encryption schemes in the public/private-
key setting that are not FEROB-secure.

Proposition 3.1. As sketched in Section 3.1, a DDH instantiation for the FE scheme of
[ABDP15] is not FEROB-secure. The adversary is built upon the idea presented in the
introduction and is shown in Figure 3.4. Given that any public-key functional encryption
scheme can be trivially converted into one in the private-key setting simply by making mpk
private, we obtain an FE scheme for the inner product functionality in the private-key setting
that is not FEROB-secure.

FEROB adversary AFEROB
FE (λ):

1. (g~s, ~s, r, ~x, ~y, ∅
g
~s′ , ~s′, r, ~x′, ~y, ∅)←$ KGen(1λ)

such that r · si + xi = r · s′i + x′i and ~s 6= ~s′

2. observe that Enc(g~s, ~x) = (gr, gr·s1+x1 . . . , gr·sn+xn) =
(gr, gr·s′1+x′1 . . . , gr·s

′
n+x′n) = Enc(g~s′ , ~x′)

3. sky ← ~s> · ~y
4. sk′y ← ~s′

>
· ~y

5. Dec(C , sky) = ~y> · ~x 6= ⊥
6. Dec(C , sk′y) = ~y> · ~x′ 6= ⊥

Figure 3.4: A FEROB adversary against the DDH instantiation of the bounded-norm inner
product scheme in [ABDP15].
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Intermediate Notions. Intermediate notions considering robustness under adversarially
generated keys introduced in [FLPQ13] — such as full-robustness or mixed robustness — do
not generalize well to functional encryption (or attribute-based encryption). The notion we
consider, namely FEROB is, in fact, the generalization of KROB (key-less robustness), as
introduced for PKE by Farshim et al. [FLPQ13].

3.2.2.2 Single-Authority Setting

The second stream of work would study the meaning of robustness in a single-authority
context. In rough terms, the problem one would like to solve can be stated as: if a ciphertext
is correctly generated, and the adversary issues two functional keys, is there a chance that one
of the keys fails in decrypting the ciphertext? An astute reader may immediately notice that in
such a setting, an adversary may always win such a game by issuing a pair of correct/random
functional keys, as it owns the master secret key.
In a “dual” mode, if the functional keys are correctly generated under the same msk, is

there a ciphertext decryptable under one key and not under the other? The intuition behind:
if C is generated with respect to some mpk, we want the decryption to pass for any functional
key correctly generated with respect to the (mpk,msk) pair. However, if C is obtained under
some other mpk′ 6= mpk or is sampled according to some distribution, we expect decryption
not to pass under any functional keys generated with respect to msk. Therefore, a set of
potential meaningful definitions may capture this problematic case: decryption “works” under
one correctly generated key out of two.

3.3 Generic Transforms

3.3.1 A Generic FEROB Transform in the Public-Key Setting.

As regards obtaining robust schemes generically, one can reuse the elegant idea rooted
in the binding property of a commitment scheme. Concretely, one can start from an FE
scheme, encrypt the plaintext, and post-process the resulting ciphertext through the use of a
public-key encryption scheme. The transform consists in committing to the two public keys
(corresponding to FE and PK) and encrypting the resulting decommitment together with the
output of FE.Enc under pk. For decryption, in addition to the functional key, the secret key
sk2 is needed to recover the decommitment from the “middle" part of the ciphertext. A key
difference to the ABN transform would be rooted in the innate nature of FE: one cannot
encrypt the plaintext under pk, as this would break indistinguishability.
A simpler idea makes use of a collision-resistant hash function and simply appends the

hash of mpk||C to the already existing ciphertext.

2sk is common to all users querying a skf .
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KGen(1λ):
(mpk,msk)←$ FE.KGen(1λ)
mpk← mpk
msk← msk
return (msk,mpk)

Enc(mpk,M ):
mpk← mpk
C1←$ FE.Enc(mpk,M )
C2←$ H(mpk||C )
C ← (C1,C2)
return C

KGen(msk, f):
msk,← msk
skf←$ FE.KGen(msk, f)
skf ← skf
return skf

Setup(1λ):
K ← H.KGen(1λ); H← HK ; return H

Dec(skf ,C ):
skf ← skf
(C1,C2)← C
if H(mpk||C1) 6= C2 :

return ⊥
return FE.Dec(skf ,C1)

Figure 3.5: Generic transform that turns an FE scheme into a FEROB scheme FE.

Lemma 3.2. Let FE be an IND-FE-CPA-secure functional encryption scheme in the public
setting and let H denote a collision-resistant hash function. The functional encryption scheme
FE obtained through the transform depicted in Figure 3.5 is FEROB-secure, while preserving
the IND-FE-CPA-security.

Lemma 3.2. Robustness. To show the transform achieves FEROB, we argue that if an
adversary concludes with (mpk1,R1,M1,mpk2,R2,M2, . . .) such that FE.Enc(mpk1, M1; R1) =
FE.Enc(mpk2, M2; R2), then the adversary is essentially able to find two tuples such that
H(mpk1||FE.Enc(mpk1,M1; R1)) = H(mpk2||FE.Enc(mpk2,M2; R2)) which cannot happen
with non-negligible probability down to the collision-resistance of H.

Indistinguishability. The proof follows easily down to the indistinguishability of the
underlying scheme FE: during the challenge phase, the reduction will be given the C ∗
corresponding to Mb (chosen by A); after appending H(C ∗||mpk), the adversary will be given
C ∗. Observe that the reduction can answer all the functional key-derivation queries the
adversary makes. Hence the advantage in winning the IND-FE-CPA game against FE is
bounded by the advantage of winning the IND-FE-CPA game against FE.

3.3.2 Anonymity and Robustness
One can define the classical notion of anonymity to the context of functional encryption
and its security experiment in Figure 3.6. We point out that usually, in an FE scheme, a
central authority answers key-derivation queries from a potential set of users U ; therefore it is
unnatural to assume that a user does not know from whom it received the functional key. What
we want to ensure is that an adversary A 6∈ U cannot tell which authority issued a ciphertext,
without interacting with the key-derivation procedures; otherwise the game becomes trivial.
In consequence, we define anonymity only in the context of public-key FE, as for a private
scheme, the adversary uses encryption oracles to obtain a ciphertext. Thus, anonymity
requires that a PPT bounded adversary can tell which mpk was used to encrypt a ciphertext
only with negligible probability: Advanon

A,FE(λ) := 2 · Pr
[
ANONAFE(λ) = 1

]
− 1 ∈ Negl(λ) .
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ANONAFE(λ):
b←$ {0, 1}
(mpk0, msk0)←$ KGen(1λ)
(mpk1, msk1)←$ KGen(1λ)
M←$ A(1λ,mpk0,mpk1)
C←$ Enc(mpkb,M )
b′←$ A(1λ,C )
return b = b′

Figure 3.6: Anonymity for public-key functional encryption in the absence of functional keys.

Interestingly, FEROB does not imply anonymity for the public-key case. And based on
FEROB⇒ SROB, it follows that SROB does not generically imply anonymity. Therefore,
we have the following separation:

Proposition 3.2. There exist FEROB transforms for public-key functional encryption that
do not ensure anonymity (as defined in Figure 3.6).

Proposition 3.2. We consider the scheme in Figure 3.5 and observe that the anonymity
game can be easily won as follows: an adversary, given two master public keys and the
ciphertext C ← (C1,C2), decides the issuer by checking whether H(C1||mpk1) ?= C2 or
H(C1||mpk2) ?= C2, via the publicly available H.

Remark 3.1. A generic construction of an anonymous FEROB scheme, reaching both
anonymity and robustness for FE is non-trivial: on the one hand, we expect the ciphertext
to be “robust” w.r.t. a sole authority (mpk), but the “link” should not be detectable when
included in the ciphertext (anonymity). Therefore, we attempt to embed such a link in the
functional key. Our solution ensures FEROB through the means of a collision-resistant PRF
(detailed in Section 3.4) with keys K generated on the fly. An independent functional key to
compute the PRF value is issued via a second FE supporting general circuits, while the PRF
key K is encrypted under the additional mpk′.

Theorem 3.1. Let PRF denote a collision-resistant PRF computable by circuits in a class C.
Let FE′ be an ANON-secure functional encryption scheme supporting circuits in C. Given an
ANON, IND-FE-CPA-secure scheme FE, the functional encryption scheme FE obtained via
the transform in Figure 3.7 is FEROB-secure while preserving the original scheme’s security
guarantees.

Theorem 3.1. Robustness. FEROB follows from the collision resistance of the PRF: if an
adversary A is able to find (K ,C1), (K ′,C1) such that PRF(K ,C1) = PRF(K ′,C1), then A
wins the collision resistance game against the PRF.

Indistinguishability. Follows from the IND-FE-CPA-security of the underlying scheme
FE. For any adversary A against the IND-FE-CPA-security of the scheme FE in Figure 3.7,
we build the reduction R that wins the IND-FE-CPA game against FE as follows:

First, the IND-FE-CPA experiment samples its own master keys and initializes the key-
derivation oracle. The reduction R instantiates FE′ by sampling the master keys (msk′,mpk′).
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KGen(1λ):
(mpk,msk)←$ FE.KGen(1λ)
(mpk′,msk′)←$ FE′.KGen(1λ)
mpk← (mpk,mpk′)
msk← (msk,msk′)
return (msk,mpk)

Enc(mpk,M ):
(msk,msk′)← msk
(mpk,mpk′)← mpk
C1←$ FE.Enc(mpk,M )
K←$ K
C2 ← PRF(K ,mpk)
C3←$ FE′.Enc(mpk′,K )
C ← (C1,C2,C3)
return C

KGen(msk, f):
msk← msk
skf←$ FE.KGen(msk, f)
skg←$ FE′.KGen(msk′, CPRF(·,mpk))
skf ← (skf , skg)
return skf

Dec(skf ,C ):
(skf , skg)← skf
(C1,C2,C3)← C
if FE.Dec(skg,C3) 6= C2 :

return ⊥
return FE.Dec(skf ,C1)

Figure 3.7: A generic transform that converts an FE scheme into a FEROB scheme FE,
without ensuring anonymity. Here CPRF denotes the circuit that computes the
PRF value, where mpk is hard-coded in the circuit.

Regarding the challenge ciphertext, whenever the adversary A sends the challenge tuple
(M0,M1), the reduction R proceeds as follows: (1) obtains challenge ciphertext C1 from the
IND-FE-CPA experiment; (2) samples (on the fly) its own key K ; (3) computes C2,C3, which
are forwarded to A. Note that all these steps are perfectly computable, as R knows mpk′.
Regarding key-derivation queries, whenever A requests a functional key for some f , R

forwards the request to the key-generation oracle. Independently, the reduction obtains a
functional key for CPRF(·,mpk), a circuit that is designed to compute C2 (the PRF value) over
the encrypted K .

It is clear the reduction R can simulate the IND-FE-CPA game for FE in the view of its
adversary R. Thus, whenever A returns b, R returns the same bit and wins under the same
advantage.

Anonymity. Follows from the anonymity of the underlying FE scheme. We use a hybrid
argument. We start from a setting corresponding to b = 0 in the ANONAFE game (Game0).

• Game1: in Game1, we change C3 from FE′.Enc(mpk0,K ) to FE′.Enc(mpk1,K ), based
on the ANON property of FE′, the hop between the two games being bounded by
Advanon

A,FE′(λ).

• Game2: we change C1 from FE.Enc(mpk0,M ) to FE.Enc(mpk1,M ), based on the
anonymity of the underlying FE scheme, the distance to the previous game being
bounded by Advanon

A,FE(λ). Implicitly, in Game2, the reduction updates the value of the
PRF from PRF(K ,FE.Enc(mpk0,C1)) to PRF(K ,FE.Enc(mpk1,C1)).

Finally, observe that Game2 maps to the setting where b = 1 in the anonymity game for the
FE scheme. Therefore, Advanon

A,FE(λ) ≤ Advanon
A1,FE′(λ) + Advanon

A2,FE(λ) .
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KGen(1λ):
R←$ {0, 1}λ
R1||R2 ← PRG.Eval(R)
msk← FE.Enc(1λ; R1)
sk← R2
msk← (msk, sk)
return msk

Enc(msk,M ):
(msk, sk)← msk
C1←$ FE.Enc(msk,M )
C2←$ PRF.Eval(sk,C1)
C ← (C1,C2)
return C

KGen(msk, f):
(msk, sk)← msk
skf←$ FE.KGen(msk, f)
skf ← (skf , sk)
return skf

Dec(skf ,C ):
(skf , sk)← skf
(C1,C2)← C
if PRF.Eval(sk,C1) 6= C2 :

return ⊥
return FE.Dec(skf ,C1)

Figure 3.8: A generic transform that turns a FE scheme in the private-key setting into a
FEROB-secure scheme FE.

3.3.3 FEROB Transform in the Private-Key FE Setting.
In this part, we provide a similar generic transform for turning any FE scheme into one that
is FEROB-secure, in the private-key framework.

Lemma 3.3. Let FE be an IND-FE-CPA functional encryption scheme in the private-key
setting. Let PRG denote a right-injective length doubling pseudorandom generator from
{0, 1}λ to {0, 1}2·λ and PRF a collision-resistant PRF. The functional encryption scheme FE
obtained through the transform depicted in Figure 3.8 is FEROB-secure, while preserving
IND-FE-CPA-security.

Lemma 3.3. Robustness. Assuming the FEROB adversaryA outputs (msk1,R1,M1, f1,Rf1 ,
msk2,R2,M2, f2,Rf2) such that FE.Enc(msk1,M1; R1) = FE.Enc(msk2,M2; R2), we argue that:

• C2 = PRF.Eval(sk1,C1) = PRF.Eval(sk2,C1). Down to the collision-resistance (over
both keys and inputs) property of the PRF, it results that sk1 = sk2.

• the KGen function makes use of a right injective pseudorandom generator. Since the
right half is exactly sk1(= sk2), through the injectivity property, it must be the case
that the seed R used to feed the PRG is the same.

• since the randomness R is the same for both cases, it results that the random coins
used by FE.KGen are the same, implying that msk1 = msk2.

• finally, we obtain that msk1 = msk2, which is not allowed in the robustness game.

Therefore, the advantage of breaking the FEROB game is bounded by the union bound
applied on the collision-resistance of the PRF and right-injectivity of the PRG: Advferob

A,FE(λ) ≤
Advinj

R,PRG(λ) + Advcr
R′,PRF(λ) .

IND-FE-CPA-security. The reduction proceeds via one game hop:
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• Game0: is the game, where the adversary runs against the scheme depicted in Figure 3.8
— the output of the PRG is the expected one.

• Game1: based on the pseudorandomness property of the PRG, we change the output to
a truly random string, ensuring independence between msk and sk. The distance to
Game0 is bounded by the pseudorandomness advantage against PRG. We now show
that the advantage of an adversary winning the IND-FE-CPA experiment against FE
in this setting is negligible.

Assume the existence of a PPT adversary A against the IND-FE-CPA of FE. We build
an adversary R against the IND-FE-CPA of the underlying FE scheme. The IND-FE-CPA
experiment samples a bit b′, the key msk and constructs a key-derivation oracle KGen under
msk, such that it can be accessed R. The reduction then proceeds as follows:

1. R chooses uniformly at random sk to key the PRF utility.

2. R builds the FE.Enc oracle and the FE.KGen oracle by querying the given FE.Enc,FE.KGen.
The PRF is evaluated under sk.

3. R runs A, obtains a tuple (M0,M1) and gets back the encryption of Mb′ (say C ∗) by
querying FE.Enc(msk,Mb′). R computes the corresponding C ∗, which is passed to A.

4. finally, A returns a bit b, which constitutes the output of R.

Analysis of the reduction. The correctness of the reduction follows trivially. Thus we conclude
that in Game1, the probability of winning is:

Pr[GameA1 ] ≤ Advind-fe-cpa
R,FE (λ) .

For the analysis, we also include the fact that the transition between Game0 and Game1 is
bounded by the pseudorandomness of PRG:

Pr[GameA0 ]− Pr[GameA1 ] ≤ Advprg
R′,PRG(λ) .

Finally, it follows that:

Advind-fe-cpa
A,FE (λ) ≤ Advind-fe-cpa

R,FE (λ) + Advprg
R′,PRG(λ) .

3.4 Robust and Collision-Resistant PRFs
In this section, we show how to construct the main ingredient needed in the aforementioned
generic transform: collision-resistant PRFs.

3.4.1 Definitions

Collision resistance for PRFs. As stated in Chapter 2, pseudorandom functions are
basic primitives having the output distribution indistinguishable from the uniform distribution.
This happens as long as its key remains secret. Naturally, we expect a PRF to reach high
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FROBAPRF(λ):
(K1,M1,K2,M2)←$ A(1λ)
if K1 = K2 return 0
T1 ← Eval(K1,M1)
T2 ← Eval(K2,M2)
return (T1 = T2)

Figure 3.9: Game defining full robustness for a pseudorandom function PRF.

guarantees of collision resistance property assuming the secrecy of K . For the sake of clarity,
we define collision resistance of a pseudorandom function PRFs as:

PRF(K1,M1) = PRF(K2,M2) =⇒ (K1,M1) = (K2,M2) .

However, things change dramatically as soon as an adversary starts tampering with the key.
Consider for instance the simple PRF by Naor and Reingold, where the output is modelled as:

PRF(K ,M ) = ga0·
∏n

i=1 a
Mi
i

Whenever the adversary is given the ability to tamper with the key generation, it may easily
craft the key K = a such that for two specific messages PRF(K ,M1) = PRF(K ,M2).
In the forthcoming parts, we delve into the constructions of PRFs achieving collision

resistance. Such constructions are accomplished by combining: (1) length-doubling right-
injective PRGs and (2) key-injective PRFs. The latter primitive can be obtained via the
GGM construction (see also [CHN+16, Appendix C]).

Robustness for PRFs. We also define a slight variation of the robustness game in the
context of PRFs in Figure 3.9. In such sense, this game would correspond to the collision-
resistance property, but under the additional constraint that the adversary is required to
produce a pair of differing keys (K1 6= K2).

Definition 3.2 (Robustness for PRFs). We say a pseudorandom function PRF is robust if
the advantage of any PPT adversary in winning the game in Figure 3.9

Advfrob
A,PRF(λ) := Pr

[
FROBAPRF(λ) = 1

]
.

is negligible.

As we shall see, from a foundational perspective, robust PRFs underlie feasibility of
robustness for many symmetric primitives.

3.4.2 Construction of Robust and Collision-Resistant PRFs
We now turn to the problem of constructing robust and collision-resistant PRFs. For practical
purposes, it is a reasonable assumption that a keyed hash function acts as a PRF when used
with a random and unknown key, and is also an unkeyed collision-resistant function.3 Hence,
a practical hash function can be used to instantiate the transformations in the previous
section.

3And indeed the random oracle meets this simultaneous security requirement.
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Setup(1λ):
K←$ {0, 1}n
return K

PRF(K ,M ):
(K1||K2)← PRG(K )
C1 ← PRP(K1,M )
C2 ← PRF(K2,C1)
return (C1||C2)

Figure 3.10: Collision-resistant PRF from a key-injective PRF. Keys are derived via a
right-injective length-doubling PRG.

We ask if collision-resistant PRFs can be based on simpler assumptions in the standard
model. One method to immediately obtain collision-resistant PRFs would be to use combiners.
Roughly speaking, a hash function combiner is a transform that takes two (or more) hash
functions as input and outputs a hash function that is secure if either a hash function is secure.
For example, concatenation is a combiner for collision resistance. Fischlin et al. [FLP14]
give a multi-property combiner for hash functions that is proved to simultaneously preserve
multiple security properties of its input hash functions, including collision-resistance and
pseudorandomness; this raises an alternative route to obtain collision-resistant/robust PRFs
based on multi-property hash combiners. The construction of Fischlin et al. [FLP14], however,
considers keyed collision resistance which is not sufficient for our purposes. Furthermore, a
modification to unkeyed hash functions results in key dependency issues (somewhat similarly
to the ABN transform) which then prevents a security proof.

Our first result of this section is a simple transform that converts any CROB-secure PRF
into a fully collision-resistant PRF. In this transform, which is shown in Figure 3.10, we use
a length-doubling PRG that is collision resistant on the right half of its output. We expand
a key K to (K1||K2) via a PRG, use K2 in a key-injective PRF and K1 in a pseudorandom
permutation to guarantee collision resistance over both keys and inputs. Key-injective
PRF [CMR98; Fis99] is a weakening of FROB where it is required that M1 = M2, i.e., it
should be infeasible to find K1 6= K2 such that PRF(K1,M ) = PRF(K2,M ). We will also use
a pseudorandom permutation PRP to ensure injectivity over messages.

Proposition 3.3. The PRF construction in Figure 3.10 is collision-resistant (and in partic-
ular CROB) if the underlying PRF is key-injective and the PRG is right collision-resistant.
Furthermore, the construction is PRF secure if the PRG, PRF, and PRP are secure.

Proposition 3.3. We first prove collision resistance. Suppose an adversary outputs (K ,M ) 6=
(K ′,M ′) such that PRF(K ,M ) = PRF(K ′,M ′). Let (K1,K2) ← PRG(K) and similarly let
(K ′1,K ′2)← PRG(K ′). Then by construction:

PRF(K2,C ) = PRF(K ′2,C ), where C = PRP(K1,M ) = PRP(K ′1,M ′)

This means that the adversary breaks the assumed key-injectivity property of the PRF unless
K2 = K ′2 (note that the PRF is run on the same input). But, K2 = K ′2 implies that we also
have K = K ′ as otherwise, the adversary would break the right collision-resistance property
of the PRG. This, however, means that K1 = K ′1. Now since PRP is a permutation over this
key, collisions can only occur if M = M ′. This, however, contradicts the assumption that
(K ,M ) 6= (K ′,M ′). The proof of PRF security is standard and proceeds as follows.

Game0 : This is the PRF experiment with b = 0, the outputs being computed using the
PRF.
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Game1 : In this game, instead of outputs of PRG we use random and independent K1 and
K2. The distance to the previous game can be bounded via the security of PRG. This
step decouples the two keys.

Game2 : In this game, we replace the outputs of the PRF with random strings. The distance
to the previous game can be bounded via the PRF security of the PRF.

Game3 : In this game, we replace the outputs of the PRP with random strings. The
distance to the previous game can be bounded via the security of the PRP. This game
corresponds to PRF experiment with b = 1.
Therefore, for any A there are B1, B2 and B3 such that

Advprf
PRF,A(λ) ≤ Advprg

PRG,B1
(λ) + Advprf

PRF,B2
(λ) + Advprf

PRP,B3
(λ) .

We now prove that the key-injective PRF used above can be based on length-doubling
PRGs that achieve collision-resistance both on the left and the right halves of their outputs.
That is, for any efficient A the probability

Pr
[
(K 1,K 2)←$ A(1λ); (K i

0,K i
1)← PRG(K i); return (K 1

0 = K 2
0 ∨K 1

1 = K 2
1 ) ∧K 1 6= K 2

]
is negligible. We call such a PRG left-right collision-resistant (LRCR). The next lemma
build on results from [CMR98; Fis99] shows that the GGM construction [GGM86], when
instantiated with an LRCR-secure PRG is key-injective. Recall that the GGM construction
defines a PRF as

PRF(K , [M0, . . . ,Mn]) := PRGMn(PRGMn−1(. . .PRGM1(K ) . . . )) ,

where Mi denotes the i-th bit of M , PRG0(K) the left half of the output of PRG(K) and
PRG1(K) its right half. The difference with [CMR98; Fis99] is that we do not rely on a CRS
(a.k.a. tribe-key) but on the stronger LRCR security of the PRG.

Proposition 3.4. The GGM construction, when instantiated with a left/right collision-
resistant PRG, results in a key-injective pseudorandom function.

Proposition 3.4. The pseudorandomness proof is identical to that of the GGM. We prove
key-injectivity. Let

yij = PRGMi(PRGMi−1(. . .PRGM1(Kj) . . . ))

be the i-th intermediate value for key j. Suppose an adversary finds (K1,K2,M = [M1, . . . ,Mn])
with K1 6= K2 such that yn1 = yn2 . Now either yn−1

1 6= yn−1
2 or yn−1

1 = yn−1
2 . In the first case

a collision is found, and we are done. In the second case we look at yn−2
1 and yn−2

2 and so
on. If we reach y1

1 and y1
2 and a collision is yet to be found then, since K1 6= K2, this is the

collision for the PRG.

Finally, we show that left/right collision-resistant PRGs can be built in the standard model
(without the use of ROs). Consider the function G : Z3

p −→ G6 for a group G of order p
generated by g [BCP02]:

G(x1, x2, x3) := (gx1 , gx1x2 , gx2x3 , gx2 , gx1x3 , gx3) .
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PRG(s):
(a0, b0, a1, b1, x)← PRG0(s)
if (a0 = 0 ∨ a1 = 0) then return ⊥
(x0, x1)← G(x)
s0 ← H((a0, b0)||π((a0, b0), x0)); s1 ← H((a1, b1)||π((a1, b1), x1))
return s0||s1

Figure 3.11: A length-doubling left/right collision resistant PRG : {0, 1}n → {0, 1}2n, based
on a regular collision-resistant hash H : {0, 1}3·3(n+l) → {0, 1}n, a pairwise-
independent permutation π : {0, 1}3(n+l) → {0, 1}3(n+l), a LRCR-secure PRG
G : {0, 1}3n → {0, 1}2·3(n+l) and a PRG0 : {0, 1}n → {0, 1}4·3(n+l)+3n right
injective over the last 3n bits.

We start by observing that this function is indeed injective on its left and right halves of output.
Suppose there exists (x1, x2, x3) 6= (y1, y2, y3) such that (gx1 , gx1x2 , gx2x3) = (gy1 , gy1y2 , gy2y3).
Then by comparing the first elements, we must have x1 = y1, which in conjunction with
the equality of second components implies x2 = y2; this together with the equality of third
components implies x3 = y3. Injectivity for the right half of the outputs is shown similarly.
The outputs of G, when running on random inputs are indistinguishable from a random

element of G6 under the DDH assumption. For clarity of exposition, we start with (gx1 ,
gx1x2 , gx2x3 , gx2 , gx1x3 , gx3) and replace gx1x2 with gz1 using DDH applied to (gx1 , gx2 , gx1x2)
and generating an x3 to simulate the remaining elements. Next, we replace gx2x3 with gz2

via DDH applied to (gx2 , gx3 , gx2x3) and generate an x1 to simulate the remaining elements.
We finally replace gx1x3 with gz2 using DDH.

The outputs of G, however, are not GGM-friendly as they lie in G which may be encoded
as strings that are longer than 2 · |(x1, x2, x3)|. Furthermore, these outputs are not uniformly
distributed. Instead, the outputs are indistinguishable from some distribution D × D on
{0, 1}3(n+l) × {0, 1}3(n+l), where l is the length of the bits needed to represent the group
elements.

Following [Dod05; DS05], we address these issues by applying in parallel a collision-resistant
extractor to the outputs of G in two steps: (1) we apply a pairwise-independent permutation
to bring the output distribution close to uniform; (2) we then use a collision-resistant, regular
hash function to compress the result down to n bits without losing uniformity of the outputs.
A pairwise-independent permutation π can be instantiated as

π((a, b), X) := a ·X + b where a, b←$ {0, 1}3(n+l), a 6= 0

(where the · and + operations are defined over an extension field). A function H : D −→ R is
regular if its outputs are uniformly distributed over R for uniform inputs in D, equivalently
for all y ∈ R it holds |H−1(y)| = |D|/|R|. Regular, collision-resistant hash functions can be
obtained from claw-free permutations [CMR98].

We define the required LRCR-secure and GGM-friendly PRG in Figure 3.11, where PRG0
is a right-injective PRG and G(x) = (x0, x1) is an LRCR-secure PRG (for example the one
above obtained from DDH).

Theorem 3.2. The PRG in Figure 3.11 is LRCR-secure and a secure PRG if PRG0 is secure,
G is secure with respect to the output distribution of D with min-entropy at least 3n, H is a
regular and collision-resistant hash function, and π is a pairwise-independent permutation.
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Theorem 3.2. We first show PRG is LRCR secure. Let PRG(s) = s0||s1. Suppose that an
adversary outputs s 6= s′ such that sd = s′d for some d = 0, 1. Let d = 0. So either the
adversary can be used to break the collision resistance of H or ((a0, b0), π((a0, b0), x0)) =
((a′0, b′0), π((a′0, b′0), x′0)). Therefore (a0, b0) = (a′0, b′0) and π((a0, b0), x0) = π((a′0, b′0), x′0).
Since π((a0, b0), ·) is a permutation we must have that x0 = x′0. This contradicts the
LRCR security of G unless x = x′. This in turns means that a collision on the right side
(corresponding to x) of the output of PRG0 is found unless s = s′. The case d = 1 is dealt
with similarly. This concludes the proof of LRCR security.

We now turn to the pseudorandomness of the PRG. If H is regular, its outputs are uniform
when fed with uniform inputs. Hence, we show that the outputs of π are uniform. We prove
this by first replacing the key (a0, b0) (and respectively, (a1, b1)) of π with truly random keys
using the security of PRG0. We then replace x0 (and respectively x1) with random strings
sampled according to the distribution D on {0, 1}3(n+l); this follows from the security of
G. Note that the distribution D has min-entropy at least 3n by the injectivity of group
exponentiation.
Dodis and Smith [DS05, Prop. 11] show a left-over hash lemma for composition with

functions: for H a regular collision-resistant hash function with output length ` ≤ t− 2 log(1
ε ),

where t is the min-entropy of the input source D to a pairwise-independent permutation π,
the statistical distance between H(π(D)) and H(U) is at most ε. Applying this result to our
setting with ε := 2−n, we get that setting ` ≤ 3n − 2 log(1

ε ) = n would result in uniform
outputs; this matches the output length of H and concludes the proof of security of PRG.

Remark. We note that LRCR security is also necessary for building key-injective PRFs
as any key-injective PRF would immediately give rise to an LRCR-secure PRG by setting
the seed to the PRF key and the outputs of the PRG to those of the PRF evaluated at
two points. We leave the possibility of basing LRCR-secure PRGs on generic assumptions,
such as one-way functions/permutations or collision-resistance, to future work. We, however,
observe that collision-resistance does not seem to be a necessary condition as the left or right
halves of the PRG do not need to be compressing.

— 56 —



Ch
ap

te
r4

Chapter 4
Robust Authentication

In this chapter, we define robustness for authentication primitives, focusing on message
authentication codes, authenticated encryption and digital signatures schemes. We show
how to obtain generic transforms for the aforementioned primitives in both the random
oracle model and the standard model. Throughout this chapter, we make extensive use
of the techniques we introduce in Chapter 3, relying chiefly on the collision resistance of
pseudorandom functions.
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4.1 Robustness for Authentication Primitives

The vast and diverse landscape of cryptographic notions of security is a useful resource for
the academic community, as it allows to describe, precisely, what kind of properties a certain
cryptographic scheme guarantees – and implicitly which one it does not. However, this
complexity often hinders the ability of practitioners and users of cryptography to implement
genuinely secure cryptographic systems. In the eyes of the users, cryptography is often seen
as an all-or-nothing process: once cryptography is “turned on”, data gets encrypted, and
therefore the system is secure, hopefully with as little fine print as possible. The shortcomings
of this all-or-nothing property have been shown by a long series of attacks on real-world
cryptographic protocols.

The academic community is reacting to this real-world need with more straightforward and
more comprehensive notions of security. The clearest example of this is the introduction of the
notion of Authenticated Encryption (AE) [Rog02; RS06]. While early cryptography considered
confidentiality to be the only goal of encryption, over the years, it has become apparent
that virtually every application requiring confidentiality would also benefit from some form
of authenticity guarantees. Therefore, instead of letting the users pick an encryption and
a MAC scheme (and combine them in appropriate ways), cryptographers are currently
designing schemes that guarantee all properties at once (cf. the CAESER competition).
Other examples in this direction are the study of misuse-resistant AE schemes [RS06], which
guarantee the best possible security even in the presence of repeating nonces, security under
related-key attacks (RKAs) [Bih94; BK03], and security in the presence of key-dependent
messages [BRS02].

In this quest towards coming up with AE schemes that are as ideally secure as possible, we
extend the notion of key-robustness1. In a nutshell, key-robustness looks at a setting where
multiple keys (possibly known and/or chosen by the adversary) are present in the system.
When using strong encryption, like authenticated encryption, it might be tempting to assume
that any given ciphertext would only be valid for a single secret key. As we shall see, this may
or may not be the case depending on the context. We start with some motivating examples
before discussing the details.

Example 1 – Storage Authenticity: In this application, a user wants to encrypt some
data which is stored on an untrusted storage provider. To ensure the authenticity of the
data, the user encrypts it using an AE scheme. Then the user stores the key in clear on a
different storage provider. What happens now if the second storage provider is corrupt? It
might be tempting to think that, since the data is encrypted with AE, any tampering on
the key will be detected when the user decrypts the data with the key. Unfortunately, this
is not the case, and as we discuss in Section 4.3, AE security alone does not guarantee the
authenticity of the original data against an adversary that can tamper with the stored key.
Note that tampering with the key can be done with the knowledge of the original key.

Example 2 – Oblivious Transfer (OT): Consider the following protocol, for constructing
a
(3
2
)
-OT protocol using only

(3
1
)
-OTs: the sender picks 3 random keys k1, k2, k3 and inputs

the message x1 = (k2, k3), x2 = (k1, k3) and x3 = (k1, k2) to the OT. At the same time, the
1We refrain from formally referring to this notion as robustness in order to avoid confusion with robust AE
schemes [HKR15]. In our discussions, however, we use robustness to ease readability.
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sender sends encryptions of his messages under these keys, i.e., sends ci = E(ki,mi) for
i = 1..3. Now the receiver inputs the index of the message he does not want to learn to the(3
1
)
-OT and learns all keys except ki. Intuitively the fact that the messages are sent only

once (encrypted) should guarantee that the sender’s choice of messages is uniquely defined.
However, consider the following attack: the corrupt sender inputs x∗1 = (k2, k

∗) (instead of
x1) such that D(k∗, c3) = m∗3 with m∗3 6= m3 and m∗3 6= ⊥; this means that the receiver will
see two different versions of m3 depending on whether the receiver asked for the pair (2, 3) or
(1, 3). (This attack is an example of input-dependence and is a clear breach of security since
it cannot be simulated in the ideal world.) The attack described here is a simplified version
of an actual attack described by [Lam16] on the private set-intersection protocol of [DCW13].
A strong form of key-robustness for symmetric encryption is also used to prove the security
of the OT protocol presented in [CO15].

Example 3 – Signature Schemes: Digital signature schemes are used to authenticate
electronic documents publicly. The textbook notion, capturing the existential unforgeability of
a DS ensures that an adversary, interacting with one signing oracle, cannot forge a signature
(for a message he did not previously query). On the other hand, a real-world scenario is
placed in a multi-user context, where it is often assumed (but not necessarily proven) that a
signature can verify only under the issuer’s key.
Consider a practical situation with a clerk acquiring a digital signature for daily use, a

third-party generating the pairs of keys. Even if the scheme remains unforgeable according to
the classical definition, we do not have formal guarantees that two pairs of keys — (sk, pk) and
(sk′, pk′) — generated by the third party (potentially maliciously), cannot be used to produce
a signature σ for some chosen message M , verifiable under both pk and pk′ — something
completely undesirable in practice. To be fully explicit with our example, suppose one pair of
keys (pk, sk) is given to the clerk and a second one (pk′, sk′), is issued by the third-party and
is covertly used by a local/global security agency. When needed (and if needed), an operator
can issue a signature (using sk′) for the message: “I attest XYZ is true.” which can later be
verified under pk, thus having baleful consequences for the clerk.

To give a taste of a signature scheme where such an attack is feasible, consider the one
obtained from a toy version of the Boneh–Boyen scheme [BB04]. The construction is pairing-
based and can be summarized as follows: (1) key-generation samples two group generators
g1 ∈ G1 and g2 ∈ G2, both of order p, and publishes as a public key (g1, g2, g

x
2 , e(g1, g2)) —

for a uniformly sampled x ∈ Zp — keeping x as a secret key. To sign the message M , one
computes σ ← g

1/(x+M)
1 . A robustness attack against this simple signature scheme exploits

the randomness in choosing the secret keys, observing that for a different pair (pk′, sk′),
one can select g′1 ← gt1 and then can set x′ ← t(x+M )−M (over Zp) such that σ ← g′1/(x

′+M).

4.1.1 Chapter Organization
We give simple and strong definitions of key-robustness for a number of symmetric primitives
of interest. Starting with the work of Abdalla et al. [ABN10] and Farshim et al. [FLPQ13]
(which studied the notion of (key-)robustness in the public-key setting) we develop appropriate
notions for symmetric encryption and MACs. To the best of our knowledge, this is the first
attempt in this direction (we note that [Moh10] considers robustness and anonymity of hybrid
encryption, but not for symmetric encryption directly). As briefly mentioned above, our
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notion also formalizes the non-existence of “unexpected collisions” in a cryptosystem over
distinct keys, even when inputs (including keys) are maliciously generated.

In Section 4.2 we consider both notions: (1) where the adversary has control over the keys
and (2) where the keys are generated honestly. The strongest concept that we formulate is
called complete robustness and allows an adversary to create the keys used in the system. We
show that whether the adversary is in control of the keys or not makes a significant difference,
by giving separations between the notions. While previous work in the public-key setting
also had to deal with adversarially generated keys that were also invalid, this is not an issue
in our setting, since in the symmetric world keys are often bit-strings of some pre-specified
length and can be easily checked for validity. By focusing on correctly formed keys, we can
show equivalence between complete robustness and a syntactically simpler notion, which we
call full robustness.
By giving appropriate separating examples, we show that AE security and strong un-

forgeability do not provide full robustness. Before building fully robust schemes, we first
characterize the level of robustness that is enjoyed by AE-secure encryption and strongly
unforgeable MACs (Section 4.3). For MACs, we prove that as long as the two keys are
honestly generated and remain outside the view of the adversary, the scheme is robust in
the presence of tag-generation and verification routines. Interestingly, AE-secure encryption
schemes achieve a higher level of robustness where both keys are honestly generated, but
one is provided to the adversary. Intuitively, this gap arises from the fact that the adversary
against the MAC can still choose a message with respect to which a common tag should
verify under two distinct keys, but in the encryption setting such an adversary is bound to
ciphertexts that are random and outside its control. Unfortunately, these weaker notions
of security provide guarantees only if the keys are honestly and independently generated.
Therefore, no assurances are provided in applications where the adversary completely controls
the keys in the system (like the OT in Example 2), where encryption is performed using
related keys, or when the scheme is used to encrypt key-dependent messages (KDM). Full
robustness, on the other hand, would be sufficient in such settings.

We then show that full robustness composes well: any fully robust symmetric encryption
when combined with a fully robust MAC results in a fully robust AE scheme. Analogous
composition results also hold for MAC-then-Encrypt and Encrypt-and-MAC. In these trans-
formations, however, the length of the key doubles (since independent keys are used for
encryption and MAC), while in practical AE schemes it is desirable to use a single key for
both tasks. Using a single key for both the encryption and MAC components not only reduces
storage, but it also increases security by solely relying on the robustness of either of its
components. We emphasize, however, that AE security of the generically composed scheme
with key reuse, although provable for some schemes, does not always hold. We show that
this can be avoided by modifying the Encrypt-then-MAC transform also to authenticate the
encryption key. As long as the MAC component is both pseudorandom and collision-resistant,
we show this transform gives a robust and AE-secure scheme. Simultaneous pseudorandom-
ness and collision-resistance is an expected property from standard hash functions (and is
met by the random oracle); this provides the most practical route to build robust encryption
schemes generically. We caution, however, that not all MACs would satisfy this requirement.
In particular, we point out that CBC-MAC fails to be fully robust, even when one of two
honestly generated keys is in adversary’s view.

We then ask if feasibility results for robustness in the public-key setting can be translated
to the symmetric setting; this turns out not to be the case. The main reason for this is
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that in the asymmetric setting the public key can be used as a mechanism to commit to
its associated secret key. In the symmetric case, on the other hand, there is no such public
information. It might be tempting to think that one can just commit to the secret key and
append it to the ciphertext. Unfortunately, this approach cannot be proven secure due to a
circular key-dependency between the encryption and the commitment components. To give a
provably secure construction, we construct appropriate commitments that can be used in
this setting. This requires a right-injective PRG (described earlier in Chapter 3) that can
be in turn based on one-way permutations; this result relies on the one-time security of the
MAC and its collision-resistance, which once again we base on right-injective PRGs.

Finally, we investigate the meaning of robustness for signature schemes, by transposing the
definitions of SROB and CROB from MACs to a public-key setting (Section 4.5). We show
that under correct key-generation, any EUF-CMA-secure signature scheme reaches strong
robustness, but point out about the existence of digital signatures that fail to be CROB. In
the spirit of the transforms we proposed for MACs, we give a simple generic transform for
signature schemes.

4.2 Robust MACs and Authenticated Encryption

4.2.1 Definitions

AEAAE(λ):
b←$ {0, 1}; L← ∅
K←$ KGen(1λ)
b′←$ AEnc,Dec(1λ)
return b′ = b

Proc. Enc(M ):
C←$ Enc(K ,M )
if b = 0 then C←$ {0, 1}|C |
L← L ∪ {C}
return C

Proc. Dec(C ):
if C ∈ L then return ⊥
M ← Dec(K ,C )
if b = 0 then M ← ⊥
return M

SUFAMAC(λ), $UFAMAC(λ) :

b←$ {0, 1}; L← ∅
K←$ KGen(1λ)
b′←$ ATag,Ver(1λ)
return b′ = b

Proc. Tag(M ):
T←$ Tag(K ,M )
if b = 0 then T←$ {0, 1}|T|

L← L ∪ {(M ,T )}
return T

Proc. Ver(M ,T ):
if (M ,T ) ∈ L then return ⊥
d← Ver(K ,M ,T )
if b = 0 then d← 0
return d

Figure 4.1: Games defining the security of authenticated encryption (top), and
pseudorandom and strongly unforgeable message authentication codes (bot-
tom). The AE and $UF notions entail strong notions of key anonymity for each
primitive. IND$ security is a weakening of AE security where the adversary is
not allowed to call the decryption oracle. The standard strong unforgeability
game omits the boxed statement from the Tag procedure.

Authenticated encryption. An authenticated encryption scheme AE is a triple of algo-
rithms AE := (KGen, Enc, Dec) such that: (1) KGen(1λ) is the randomized key-generation
algorithm that on input the security parameter 1λ outputs a key K ; (2) Enc(K ,M ; R) is the
randomized encryption algorithm that on input a key K , a plaintext M and possibly random
coins R outputs a ciphertext C ; (3) Dec(K ,C ) is the deterministic decryption algorithm that
on input a key K and a ciphertext C , outputs a plaintext M or the special error symbol
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⊥. We call a scheme AE (perfectly) correct (for message space {0, 1}∗) if for all λ ∈ N, all
K←$ KGen(1λ), all M ∈ {0, 1}∗ and all C←$ Enc(K ,M ) we have that Dec(K ,C ) = M . We
define the advantage of an adversary A against AE as

Advae
AE,A(λ) := 2 · Pr

[
AEAAE(λ) = 1

]
− 1 ,

where game AEAAE(λ) is shown in Figure 4.1 (top). An AE scheme is secure if the above
advantage function in negligible for every PPT adversary A. This is the standard definition
of security for AE schemes [RS06; HK07]. An alternative security definition would come
with a challenge oracle that on input two messages (M0,M1) of the same length, returns an
encryption of Mb. This definition is weaker than AE security, as the latter already implies a
strong form of anonymity due to the pseudorandomness of ciphertexts, whereas this is not
necessarily the case for the left-right-based definition.2

Message authentication codes. A message authentication code (MAC) is a triple of
algorithms MAC := (KGen, Tag, Ver) defined as follows: (1) KGen(1λ) is the random-
ized key generation algorithm that on input the security parameter 1λ outputs a key K ;
(2) Tag(K ,M ; R) is the randomized tagging algorithm that on input a key K , a plaintext M
and possibly random coins R, outputs a tag T ; (3) Ver(K ,M ,T ) is the deterministic verifica-
tion algorithm that on input a key K , a plaintext M and a tag T , outputs a bit. We call a
MAC scheme (perfectly) correct (for message space {0, 1}∗) if for all λ ∈ N, all K←$ KGen(1λ),
all M ∈ {0, 1}∗ and all T←$ Tag(K ,M ), the verification is successful: Ver(K ,M ,T) = 1.
We define the advantage of an adversary A against a MAC as

Adv$uf
MAC,A(λ) := 2 · Pr

[
$UFAMAC(λ) = 1

]
− 1 ,

where game $UFAMAC(λ) is shown in Figure 4.1. This game strengthens the standard strong
unforgeability for MACs, which is shown in the same figure omitting the boxed statement,
in a number of aspects. First, Ver outputs the error symbol only when the pair (M ,T)
was generated via the Tag procedure and therefore pseudorandom MACs are also strongly
unforgeable. Second, the definition implies the tags are pseudorandom and hence they
fully hide the messages and the keys that were used to generate them. Stated differently,
pseudorandom MACs are both confidential and anonymous in the sense that they hide both
the message and the key that is used to generate a tag. Finally, since Tag does not repeat
T for repeated messages, it implies a notion of unlinkability [BFLS10].

Feasibility of pseudorandom MACs. Given a PRF, consider a scheme MAC whose key-
generation algorithm is identical to that of the PRF and whose tag-generation and verification
algorithms operate as

Tag(K ,M ; R) := R||PRF(K ,M ||R), Ver(K ,M , (R||T )) := (T ?= PRF(K ,M ||R)) .

We call such message authentication codes randomized MACs. It is straightforward to prove
that this MAC satisfies our strong security notion for MACs given above.

Encrypt-then-MAC. Recall that in the Encrypt-then-MAC paradigm, one first encrypts a
message M and finally authenticates the resulting ciphertext using a MAC. If the underlying
encryption AE in this transform is AE-secure without access to decryption oracle (a.k.a. IND$
secure) and the MAC used is pseudorandom, the encryption scheme is AE secure [BN08].

2 The left-right-based definition can be modified to imply a left-right notion of key anonymity. The resulting
game, however, is both more cumbersome to work with and weaker than standard AE security.
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CROBAAE(λ):
L← ∅
ε←$ AEnc,Dec(1λ)
for (K1,M1,C1), (K2,M2,C2) ∈ L do
if (C1 = C2 6= ⊥) ∧ (K1 6= K2) ∧ (M1 6= ⊥ ∧M2 6= ⊥)

return 1
return 0

Proc. Enc(K ,M ,R):
C ← Enc(K ,M ; R)
L← L ∪ (K ,M ,C )

Proc. Dec(K ,C ):
M ← Dec(K ,C )
L← L ∪ (K ,M ,C )

CROBAMAC(λ):
L← ∅
ε←$ ATag,Ver(1λ)
for (K1,M1,T1), (K2,M2,T2) ∈ L do
if (T1 = T2 6= ⊥) ∧ (K1 6= K2) then
return 1

return 0

Proc. Tag(K ,M ,R):
T ← Tag(K ,M ; R)
L← L ∪ (K ,M ,T )

Proc. Ver(K ,M ,T ):
b← Ver(K ,M ,T )
if b = 1 then L← L ∪ (K ,M ,T )

Figure 4.2: Complete robustness for symmetric encryption (top) and MAC (bottom).

Robustness for Symmetric-Key Primitives. Informally, in a robust scheme, no unex-
pected collisions in the input/output behaviour of the system exist. For instance, in the case
of encryption, no adversary should be able to compute a ciphertext that decrypts correctly
under two distinct keys. This notion was first formulated in the asymmetric setting [ABN10;
FLPQ13] and we adapt it to authenticated encryption and MACs in the current chapter.

The work of [FLPQ13] refines and strengthens the original definitions of robustness [ABN10].
The central security notion introduced in [FLPQ13] is complete robustness (CROB), a notion
that contains three sub-notions of full robustness (FROB), key-less robustness (KROB) and
mixed robustness (XROB). These, roughly speaking, correspond to three possible ways of
finding a colliding ciphertext using either the encryption or decryption algorithms of the
scheme. That is, for some K1,K2,M1,M2,R1,R2,C1,C2 at least one of the checks

Enc(K1,M1; R1) = Enc(K2,M2; R2), or Dec(K1,C1) = Dec(K2,C1), or

Dec(K2,Enc(K1,M1; R1)) = M2,

pass whenK1 6= K2. The last condition can be made stronger: one expects that Enc(K1,M1;R1)
would decrypt to ⊥ under an unrelated key K2. The middle check can also be made stronger
by only checking that the outputs are both valid. We formalize the resulting notions next.

We define the advantage of an adversary A in the CROB games against an encryption
scheme AE as

Advcrob
AE,A(λ) := Pr

[
CROBAAE(λ) = 1

]
,

where game CROBAAE(λ), is shown in Figure 4.2 (top). Similarly, for a message authentication
code MAC we define

Advcrob
MAC,A(λ) := Pr

[
CROBAMAC(λ) = 1

]
,

where CROBAMAC(λ) is shown in Figure 4.2 (bottom).
Farshim et al. [FLPQ13] give pair-wise separations among the three sub-notions mentioned

above, showing they are all incomparable and hence should be (implicitly) included in the
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CROB notion. Some of these separations use invalid keys, as key pairs in the public-key
setting cannot be necessarily checked for validity. This issue disappears in our setting as
the key space is {0, 1}k, a set which is trivially checkable for validity. This fact simplifies
relations among notions (which we study in detail in Section 4.2.3). Analogues of the FROB
notion [FLPQ13] for AE and MAC turn out to be equivalent to our strongest notions above.
We formalize FROB in Figure 4.3 (left) for AE and (right) for MACs, and summarize this
discussion under Theorem 4.1. Previously (Chapter 3, Figure 3.9) we have already defined
the robustness experiment for PRFs with advantage function

Advfrob
PRF,A(λ) := Pr

[
FROBAPRF(λ) = 1

]
.

As we shall see, from a foundational perspective, robust PRFs underlie feasibility of robustness
for many symmetric primitives.

FROBAAE(λ):
(C ,K1,K2)←$ A(1λ)
if K1 = K2 return 0
M1 ← Dec(K1,C )
M2 ← Dec(K2,C )
return (M1 6= ⊥ ∧M2 6= ⊥)

FROBAMAC(λ):
(T ,K1,M1,K2,M2)←$ A(1λ)
if K1 = K2 return 0
d1 ← Ver(K1,M1,T )
d2 ← Ver(K2,M2,T )
return (d1 = d2 = 1)

Figure 4.3: Games defining full robustness for a symmetric encryption scheme AE (left), a
message authentication code MAC (right).

Collision resistance. Complete robustness is strengthened to unkeyed collision resis-
tance when the case K1 = K2 is not ruled out. For MACs, (unkeyed) collision-resistance
states that it should be hard to come up with (K1,M1,R1) 6= (K2,M2,R1) such that
Tag(K1,M1; R1) = Tag(K2,M2; R1). Unkeyed collision resistance of PRFs requires that
PRF(K1,M1) 6= PRF(K2,M2) for (K1,M1) 6= (K2,M2) (Section 3.4). The standard notion of
keyed collision resistance, on the other hand, imposes that keys are equal, K1 = K2, and
are honestly generated. (Note that unforgeable MACs and pseudorandom PRFs are always
keyed collision-resistant.)

4.2.2 Implications

Theorem 4.1 (Robustness with key validity). Let AE be a perfectly correct symmetric
encryption scheme that checks keys for validity during encryption. Then AE is CROB secure
if and only if it is FROB secure. Similarly, a perfectly correct message authentication code
MAC whose tag-generation algorithm checks keys for validity is CROB secure if and only if
it is FROB secure.

Theorem 4.1. The proof is simple, and we give an example for one case. Suppose that
adversary A wins the CROB game by finding a collision between the outputs of encryption.
In other words, A finds (K1,M1, R1,K2,M2, R2) such that

Enc(K1,M1;R1) = Enc(K2,M2;R2) .
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FROB

SROB

SFROB

CROB

SUF

AE

Theorem 4.1

Prop. 4.1.2, 4.2.2

Prop. 4.1.3, 4.2.3

Prop. 4.1.4, 4.2.4

Prop. 4.1.5, 4.2.5

Theorem 4.2

Theorem 4.2

Figure 4.4: Relations among notions of robustness (with key validity) for AE and MAC
schemes. XROB and KROB are formalized in Section 4.2.3, and SFROB and
SROB are formalized in Section 4.3.

This means that K1 and K2 are valid. Now consider a FROB adversary that computes
C := Enc(K1,M1;R1) and outputs (C,K1,K2). By the perfect correctness of the scheme for
valid keys, it must be the case that Dec(K1, C) = M1 and Dec(K2, C) = M2, which wins the
FROB game.

Other cases are dealt similarly, by either computing a colliding ciphertexts using Enc or a
colliding tag using Tag. We provide the details in the following part.

4.2.3 Further Relations among Notions of Robustness
For completeness and comparison with prior work, we introduce symmetric analogues of
mixed-robustness (XROB) and keyless-robustness (KROB) for AE schemes in Figure 4.5
below. This follows the definitions of [FLPQ13] in the context of public-key encryption.

XROBAAE(λ):
(M1,K1,R1,C2,K2)←$ A(1λ)
C1 ← Enc(K1,M1; R1)
M2 ← Dec(K2,C2)
if M1 6= ⊥ ∧M2 6= ⊥ ∧K1 6= K2∧

C1 = C2 6= ⊥ return 1
return 0

KROBAAE(λ):
(M1,K1,R1,M2,K2,R2)←$ A(1λ)
C1 ← Enc(K1,M1; R1)
C2 ← Enc(K2,M2; R2)
if M1 6= ⊥ ∧M2 6= ⊥ ∧K1 6= K2∧

C1 = C2 6= ⊥ return 1
return 0

Figure 4.5: Mixed robustness (XROB) andkey-less robustness (KROB) for AE.

We study relations among notions of robustness for AE schemes below.

Proposition 4.1. Let AE be an encryption scheme.

1. AE is FROB secure if and only if it is CROB secure.

2. If AE is FROB secure, then it is also XROB secure.

3. If AE is XROB secure, then it is also KROB secure.

4. If AE is FROB secure, then it is also SFROB secure.
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5. If AE is SFROB secure, then it is also SROB secure.

Proof. (1) FROB ⇐⇒ CROB. (“⇐”) Assume the existence of an adversary that wins the
FROB game. Then this adversary also wins the CROB game by querying the FROB winning
tuples to the Dec oracle. (“⇒”) First, from (2) and (3) we have that a FROB scheme is also
KROB and XROB. We then note that a pair of winning tuples for the CROB game can
arise in one of three possible ways: (1) Both tuples were added to the list through decryption
queries. This directly translates into a winning output for a FROB adversary; (2) Both tuples
were added to the list through encryption queries. This translates into a winning output for
a KROB adversary; (3) One tuple was added to the list through an encryption query and
the other through a decryption query. This translates into a winning output for an XROB
adversary.

Algorithm B(1λ):
1. (M1,K1,R1,C2,K2)←$ A(1λ)
2. C1 ← Enc(K1,M1; R1)
3. return (C1,K1,K2)

Figure 4.6: FROB⇒ XROB.

(2) FROB =⇒ XROB. We proceed as
in the previous case. We build an adversary
B that wins the FROB game in Figure 4.6.
B runs A to obtain an XROB winning
tuple (M1,K1,R1,C2,K2) that fulfils the
XROB constraints: C1 = Enc(K1,M1; R1) =
C2 ∧ Dec(K2,C2) 6= ⊥. Then B computes
C1 ← Enc(K1,M1; R1) and uses the tuple
(C1,K1,K2) to win the FROB game: both tuples Dec(K1,C1) and Dec(K2,C2) will return
6= ⊥, given that C is a valid ciphertext. Therefore Advfrob

AE,B(λ) = Advxrob
AE,A(λ).

Algorithm B(1λ):
1. (M1,K1,R1,M2,K2,R2)←$ A(1λ)
2. C2 ← Enc(K2,M2; R2)
3. return (M1,K1,R1,C2,K2)

Figure 4.7: XROB⇒ KROB.

(3) XROB =⇒ KROB. The intuition be-
hind the proof is that an adversary breaking
KROB can be used to construct an XROB
winning tuple simply by encrypting part of
the output obtained from the KROB ad-
versary. The reduction is shown in Fig-
ure 4.7. Let A be an adversary having a
non-negligible advantage against the KROB game. We build an adversary B that wins
the XROB game as follows: B begins by running A to obtain a KROB winning tuple
(M1,K1,R1,M2,K2,R2) that fulfils the KROB constraint: C1 ← Enc(K1,M1; R1) ∧ C2 ←
Enc(K2,M2; R2) ∧ C1 = C2. Next, B computes C2 ← Enc(K2,M2; R2) and creates the tuple
(M1,K1,R1,C2,K2) to win the XROB game; we state that C1 ← Enc(K1,M1; R1) 6= ⊥
because it is part of a KROB tuple while Dec(K2,C2) 6= ⊥ returns a valid message with
non-negligible probability. We conclude that Advxrob

AE,B(λ) = Advkrob
AE,A(λ).

Algorithm B(1λ):
1. (K1,K2)←$ KGen(1λ)
2. C←$ AEnc,Dec(1λ,K2)
3. return (C1,K1,K2)

Figure 4.8: FROB⇒ SFROB.

(4) FROB =⇒ SFROB. As in the pre-
vious cases, we build an adversary B that
wins the FROB game in Figure 4.8. B sam-
ples K1,K2 uniformly at random and runs A
and answers its oracle queries using the keys.
When A returns C ; then, B constructs an
FROB winning tuple (C ,K1,K2) that fulfils
the constraints: M1 ← Dec(K1,C )∧M2 ← Dec(K2,C )∧M1 6= ⊥∧M2 6= ⊥. B simply returns
(C ,K1,K2) to win the FROB game. Therefore Advfrob

AE,B(λ) = Advsfrob
AE,A(λ).
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(5) SFROB =⇒ SROB. This follows from a trivial reduction as the games are identical
except that an SROB adversary does not get to see K2.
We define mixed-robustness (XROB) and keyless-robustness (KROB) for MACs in Fig-

ure 4.9 below.

XROBAMAC(λ):
(M1,K1,R1,M2,K2,T2)←$ A(1λ)
T1 ← Tag(K1,M1; R1)
b2 ← Ver(K2,M2,T2)
if M1 6= ⊥ ∧M2 6= ⊥ ∧K1 6= K2∧
b2 = 1 ∧ T1 = T2 6= ⊥ return 1

return 0

KROBAMAC(λ):
(M1,K1,R1,M2,K2,R2)←$ A(1λ)
T1 ← Tag(K1,M1; R1)
T2 ← Tag(K2,M2; R2)
if M1 6= ⊥ ∧M2 6= ⊥ ∧K1 6= K2∧

T1 = T2 6= ⊥ return 1
return 0

Figure 4.9: Mixed robustness (XROB) and key-less robustness (KROB) for MAC.

Proposition 4.2. Let MAC be a message authentication code.

1. A MAC is FROB secure if an only if it is CROB secure.

2. If MAC is FROB secure, then it is also XROB secure.

3. If MAC is XROB secure, then it is also KROB secure.

4. If MAC is FROB secure, then it is also SFROB secure.

5. If MAC is SFROB secure, then it is also SROB secure.

The proofs are omitted as they are virtually identical to those of Proposition 4.1.
Throughout the chapter, we assume that keys are checkable for validity and that they

are indeed checked for validity in all algorithms. Hence, we will only use FROB security to
establish CROB security in the subsequent sections. We limit our study to schemes that have
perfect correctness (as defined under syntax). Correctness with all but negligible probability
would allow for artificial attacks and separations. As an example, consider an encryption
scheme that, when invoked with a special random tape computes the identity function – this
is allowed since the probability of hitting that random tape is negligible and at the same
time gives an easy way to break robustness.

4.3 Robustness, AE Security, and Unforgeability
We show that standard AE-secure encryption schemes offer a basic level of resilience against
incorrect usage of keys. The level of robustness offered corresponds to a setting where the
adversary does not get to choose any keys. Instead, two keys are honestly generated and
the adversary is given oracle access to encryption and decryption algorithms under both
keys. The notion for MACs is similar where oracle access to tag-generation and verification
algorithms under honestly generated keys are provided to the adversary. This notion, which
we call strong robustness (SROB) is shown in Figure 4.10 (without boxed variables). This
nomenclature follows the original notion of strong robustness by Abdalla et al. [ABN10]. We
also define semi-full robustness (SFROB) as one where the adversary gets to see one of the
keys (as shown in Figure 4.10 with boxed variables).
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SFROBAAE(λ) :
K1,K2←$ KGen(1λ)
C←$ AEnc,Dec(1λ, K2 )
M1 ← Dec(C ,K1)
M2 ← Dec(C ,K2)
return (M1 6= ⊥ ∧M2 6= ⊥)

Proc. Enc(i,M):
return Enc(Ki,M)

Proc. Dec(i,C):
return Dec(Ki,C)

SFROBAMAC(λ):
K1,K2←$ KGen(1λ)
(T ,M1,M2)←$ATag,Ver(1λ, K2 )
d1 ← Ver(K1,T ,M1)
d2 ← Ver(K2,T ,M2)
return (d1 ∧ d2)

Proc. Tag(i,M):
return Tag(Ki,M)

Proc. Ver(i,M ,T):
return Ver(Ki,M ,T)

Figure 4.10: Games defining strong robustness (SROB) and semi-full robustness (SFROB)
for symmetric encryption (left) and MACs (right). The boxed statements are
included in the boxed games.

Theorem 4.2. Any authentication scheme AE that is AE-secure is also SFROB-secure. Any
strongly unforgeable (and in particular pseudorandom) scheme MAC, on the other hand, is
(only) SROB-secure. More precisely, for any adversary A against the SFROB security of the
AE scheme, there is an adversary B against the AE security of the scheme such that

Advsfrob
AE,A(λ) ≤ 3 · Advae

AE,B(λ) .

Moreover, for any adversary A against the SROB-security of the MAC there is an adversary
B against the SUF-security of the scheme such that

Advsrob
MAC,A(λ) ≤ 3 · Advsuf

AE,B(λ) .

Furthermore, there exist a pseudorandom MAC that is not SFROB-secure.

Theorem 4.2. First, we prove the implication from AE security to SFROB. Let Game0 be
the SFROB game. We assume without loss of generality that the adversary in Game0 never
queries the Enc(2, ·) and Dec(2, ·) oracles as it has access to K2, and that it never queries
an output of Enc(1, ·) to Dec(1, ·) as it already knows the answer.
In Game1 we modify the winning condition of Game0 as follows. When the adversary

returns a ciphertext C , instead of checking that Dec(C ,K1) 6=⊥ and Dec(C ,K2) 6=⊥, the
game checks if C was one of the ciphertexts that was returned from the Enc(1, ·) oracle
and that Dec(C ,K2) 6=⊥. The games Game0 and Game1 are identical unless A outputs a
ciphertext C that was not obtained from the Enc(1, ·) oracle, but decrypts correctly (call
this event E). We bound the probability of E via the AE as follows. For any distinguishing
A, we define an algorithm B that picks a random key K2, runs A(K2), and answers its
queries using its own equivalent pair of oracles. When A terminates with C , algorithm
B queries C to its decryption oracle to get M1 and also computes M2 ← Dec(C ,K2). It
returns (M1 6=⊥ ∧M2 6=⊥). If B’s decryption oracle is fake and implements ⊥, algorithm
B will always return 0. If B’s decryption oracle is real, algorithm B runs A according to
the environment of Game0 and Game1 and will output 1 whenever E happens. Hence
Pr[GameA0 ]− Pr[GameA1 ] ≤ Pr[E] = Advae

AE,B(λ).
In Game2 we replace Enc(1, ·) and Dec(1, ·) with the $ and ⊥ procedures respectively.

(As in Game1 we still use the list of ciphertexts and K2 for the winning condition). The
distance between Game1 and Game2 can be bounded via the AE game as follows. Consider
an AE adversary B that generates an independent key K2 and runs a distinguishing adversary
A(K2). Algorithm B answers A’s oracle queries using the oracles provided to it. When A
terminates with a ciphertext C , algorithm B performs the winning check and outputs its
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result. Algorithm B runs A with respect to the real or replaced procedures according to the
real or fake procedures that it gets. The output of B is identical to that of A in the two
games. Hence Pr[GameA1 ]− Pr[GameA2 ] ≤ Advae

AE,B(λ).
In Game2, the adversary has essentially no control over C , and we show its advantage

is small. For this, we will rely on the AE game once more (but now implicitly concerning
the second key). Game2 can only be won if Dec(K2,C ) 6=⊥ for at least one of the q distinct
random strings C obtained from the $ oracle. Consider an AE adversary B that generates q
such random C and queries them to its Dec oracle and outputs 1 if and only if one of the
answers is non-⊥. Adversary B always outputs 0 when the oracle implements ⊥. On the
other hand, when the oracle implements the real decryption routine, the probability of B
outputting 1 is exactly the probability that Dec(K2,C ) =⊥ for one of the random C and key
K2. This means Pr[GameA2 ] ≤ Advae

AE,B(λ). The first part of the theorem follows from that
last (in)equalities.

We now prove the second part of the Theorem 4.2. We first note that via a simple hybrid
argument, unforgeability regarding the two keys reduces to unforgeability with respect to
a single key with loss 2 in advantage. We also assume, without loss of generality, that an
adversary in Game0 := SROB does not query Ver on any (i,M ,T ) where T is an output of
Tag(i,M ); the answer is always 1 for such queries.

In Game1 we replace the Ver(1, ·, ·) and Ver(2, ·, ·) procedures with the ⊥ procedure. We
also replace the computation of Ver(Ki,T ,M ) for i = 1, 2 in the winning condition with 0
unless T was output by both Tag(1, ·) and Tag(2, ·) procedures. Hence Game0 and Game1
are identical unless A outputs a tag T that was not output by both tag-generation oracles and
yet verifies under both keys. Call this event E. The probability of event E can be bounded
via the (single-key) SUF game as follows. Algorithm B generates a key K2. It uses its own
oracles and K2 to simulate the oracles for A. When A terminates with a tag (T ,M1,M2),
algorithm B queries (T ,M1) to its verification oracle and returns 1 iff the result was not 0.
Algorithm B will always output 0 when the oracle is 0 (i.e., when it is fake). If its oracles
are real, B runs A according to the environments of Game0 and Game1, and whenever E
happens, it returns 1. Hence, Pr[GameA0 ]− Pr[GameA1 ] ≤ Pr[E] = Advsuf

MAC,B(λ).
The advantage of any adversary A in Game1 can be bounded, once again, by the two-key

SUF game as follows. Consider any adversary against the two-key SUF game. Algorithm B
runs A and answers its oracle queries using its own oracles. When A terminates with a tag
(T ,M1,M2), algorithm B checks for which i this tag was not obtained from Tag(i, ·) (if both,
it chooses either i). Algorithm B then queries Ver(i,T ,Mi) and returns 1 if and only if the
result is not 0. Note that B never outputs 1 when its oracles are fake. However, when its
oracles are real B runs A according to the rules of Game1, and it returns 1 whenever A wins.
Hence, Pr[GameA2 ] ≤ 2 · Advsuf

MAC,B(λ). The second part of the theorem follows.

Interestingly, MAC security (including pseudorandomness) does not imply SFROB security
for MACs. (And the above theorem is, in a sense, “sharp”). Indeed, given a pseudorandom
MAC consider a modified scheme whose verification procedure on input M = K and any
tag always passes. This MAC can be still shown to be pseudorandom (without access to K ),
but fails to be SFROB as any tag T obtained under K1 for, say, message 0 would also be
valid with respect to K2 if message M2 := K2. Note, however, that since any AE scheme is a
pseudorandom MAC, the result for AE schemes shows SFROB-secure MACs can be built via
authenticated encryption.

— 69 —



In the above proof, we showed that for MACs, SROB is strictly weaker than SFROB, and
hence it is also weaker than CROB. We next prove that SFROB is weaker than CROB for
AE schemes. We show a stronger result that not all AE schemes, even those obtained via
Encrypt-then-MAC, are CROB.

Proposition 4.3. There exist an authenticated encryption scheme obtained via the Encrypt-
then-MAC transform that is not CROB secure (but SFROB secure as shown in Theorem 4.2).

Proposition 4.3. Consider any symmetric encryption scheme whose decryption algorithm
never outputs ⊥. (A natural example is a scheme whose encryption algorithm evaluates a PRF
at a random point and masks the message with the result: Enc(Ke,M ; R) := R||Eval(Ke,R)⊕
M ). Then, the AE scheme obtained by applying the EtM transform using such an encryption
scheme and any MAC (even robust ones) will not be CROB secure. For a random MAC key
Km and random and distinct encryption keys Ke1 ,Ke2 consider an attacker that computes
C←$ Enc(Ke1 , 0) and T←$ Tag(Km,C ) and outputs

(
(C ||T), (Ke1 ||Km), (Ke2 ||Km)

)
. The

ciphertext (C ||T) will decrypt to a valid message under the distinct keys (Ke1 ||Km) and
(Ke2 ||Km) as the tag T is always checked against Km and the base encryption scheme does
not have invalid ciphertexts.

The attack described above applies against authenticated encryption schemes that follow
the EtM transform and use independent keys for the encryption and MAC components. If
the same key is used for both the encryption and authentication components (and assuming
the AE security of the composed construction), the above attack no longer works. Artificial
counterexamples, however, still exist. As before, consider a MAC that verifies whenever
M = K irrespectively of its input tag. Such a MAC, when combined with any encryption
scheme whose decryption never returns ⊥ gives rise to a separating example between CROB
and SFROB for AE schemes. Here the attacker gets K2, sets C := K2, computes a tag
T ← Tag(K1,C ) and outputs ((C ||T),K1,K2). Now the verification of T for C with K1
always passes. It also passes with respect to K2 and K2 = C . Since Dec never outputs ⊥ in
the base scheme, C also decrypts under both keys.

CROB insecurity of CBC-MAC. We conclude this section showing that the popular
CBC-MAC is not CROB (or even SFROB) secure as the block cipher used in CBC-MAC
is invertible. In CBC-MAC, a tag is generated as Ci = E(K,Ci−1 ⊕Mi), with C0 := IV
for some fixed IV . To attack the (semi-)full robustness of CBC-MAC, for two random keys
K1,K2 take any plaintext M , generate T ← E(K1,M1 ⊕ IV ), compute M ′2 ← D(K2,T ), and
set M2 := M ′

2 ⊕ IV . Now (T ,K1,M1,K2,M2) constitutes a break against the (semi-)full
robustness of CBC-MAC.

4.4 Constructions
We now prove two positive results for obtaining robust encryption through generic composition.

Theorem 4.3 (Robustness for generic composition). The AE schemes obtained through
either Encrypt-then-Mac (EtM), Encrypt-and-MAC (EaM), or MAC-then-Encrypt (MtE)
(with independent keys) are CROB secure as long as their encryption and MAC components
are CROB secure. Moreover, the AE scheme obtained through EtM, EaM or MtE when
reusing the same key for encryption and authentication is CROB secure as long as either the
encryption or the MAC component is CROB secure.
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Theorem 4.3. We provide the proofs for the three cases separately. EtM composition.

Suppose a CROB adversary A outputs (C ||T ,Ke1 ||Km1 ,Ke2 ||Km2) , a winning tuple for the
CROB game against the generically composed scheme with distinct keys. Since (Ke1 ,Km1) 6=
(Ke2 ,Km2) there are two possibilities to consider:

Case Ke1 6= Ke2 : then (C ,Ke1 ,Ke2) wins the CROB game against encryption, as C would
have decrypted correctly with respect to both keys for A to be successful.

Case Km1 6= Km2 : then (T ,Km1 ,C ,Km2 ,C ) wins the CROB game for MAC as T would
have to be a valid tag with respect to C and two distinct keys.

To sum up, for adversaries B1 and B2, Advcrob
EtM,A(λ) ≤ Advcrob

AE,B1(λ) + Advcrob
MAC,B2(λ). When

the keys are reused, we can apply both branches of the reduction above. This proves the
CROB security of the composed scheme assuming CROB security for either the AE or
MAC component of the scheme and get Advcrob

EtM,A(λ) ≤ Advcrob
AE,B1(λ) and Advcrob

EtM,A(λ) ≤
Advcrob

MAC,B2(λ).

EaM composition. Suppose a CROB adversary A outputs (C ||T ,Ke1 ||Km1 ,Ke2 ||Km2), a
winning tuple for the CROB game against the EaM generically composed scheme with distinct
keys. Since (Ke1 ,Km1) 6= (Ke2 ,Km2), as for the EtM transform, if: (1) Ke1 6= Ke2 , we have
that (C ,Ke1 ,Ke2) wins the CROB game against encryption, as C would have decrypted
correctly with respect to both keys for A to be successful; (2) for the second case we let
M1 ← Dec(Ke1 ,C ) and M2 ← Dec(Ke2 ,C ); when Km1 6= Km2 , then (T ,Km1 ,M1,Km2 ,M2)
wins the CROB game for MAC as T would have to be a valid tag with respect to M1,M2
and both keys for A to be successful. Thus for adversaries B1 and B2, the advantage of A
is bounded by: Advcrob

EaM,A(λ) ≤ Advcrob
AE,B1(λ) + Advcrob

MAC,B2(λ). When the keys are reused, the
same argument as in the previous case applies.

MtE composition. Let a CROB adversary A output a tuple (C ,Ke1 ||Km1 ,Ke2 ||Km2)
winning the CROB game against the MtE generically composed scheme with distinct keys.
Since (Ke1 ,Km1) 6= (Ke2 ,Km2), as for the EtM transform, if: (1) Ke1 6= Ke2 , we have
that (C ,Ke1 ,Ke2) wins the CROB game against encryption, as C would have decrypted
correctly with respect to both keys for A to be successful. Thus we assume Ke1 = Ke2

and let (M ||T) ← Dec(Ke1 ,C ); (2) when Km1 6= Km2 then (T ,Km1 ,M ,Km2 ,M ) wins
the CROB game for MAC as T would have to be a valid tag with respect to M and
both keys for A to be successful. (Note that the same tag is obtained after decryption).
Therefore for adversaries B1 and B2 the advantage of A is bounded in the following way:
Advcrob

MtE,A(λ) ≤ Advcrob
AE,B1(λ) + Advcrob

MAC,B2(λ). When the keys are reused, the same argument
as in the first case applies.

Some CAESAR [Ber14] candidates follow the generic composition paradigm but incorporate
various optimizations to reduce computation, bandwidth and keying material. As many of the
candidate constructions are reusing keys for the encryption and authentication components, a
proof of robustness for either of their components would suffice to show (under Theorem 4.3)
the robustness of the entire scheme. We do not give security proofs in what follows, but point
to candidate constructions for which such proofs may be easier to derive: (1) OCB, a final
round CAESAR candidate introduced in [RBB03] computes the ciphertext and the tag in
parallel; this makes the scheme close to the EaM composition pattern, with an additional
incremental value ∆ injected before calling the underlying ideal encryption procedure. (2)
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Deoxys [JNPS16] is another CAESAR finalist. Deoxys-I is nonce-respecting (the user ensures
the nonce is not reused under the same key K ) and is similar to the tweakable block-cipher
generalization of OCB. Deoxys-II follows the SCT mode [PS16], allows reusing a nonce under
the same key and follows an EtM design. We leave a provable security treatment of the
robustness amongst CAESAR candidates to future work.

To instantiate the components in Theorem 4.3, we start by observing that randomizing a
CROB-secure PRF gives a pseudorandom MAC that is CROB secure. Indeed, a successful
CROB adversary against this randomized PRF outputs a tuple (T ,K1,M1,K2,M2) with
T = (R, Y ) such that PRF(K1,M1||R) = Y = PRF(K2,M2||R), which means (Y,K1,M1||R,K2,
M2||R) wins the CROB game against PRF.

An analogous route for directly building a CROB secure encryption scheme from a CROB
secure PRF does not go through as the decryption algorithm of such schemes would never
return ⊥. However, by using a common PRF in both the encryption and MAC components,
we safely reuse the keys across encryption and MAC. More precisely, given a CROB-secure
PRF, the following scheme is both CROB and AE secure

Enc(K ,M ; R) := (R,PRF(K ,R)⊕M ,PRF(K ,PRF(K ,R)⊕M )))
Dec(K , (R,C ,T )) := if PRF(K ,C ) = T return PRF(K ,R)⊕ C else return ⊥ .

By our theorem above, this scheme is CROB as long as the PRF is CROB. An alternative
and practical route for achieving robustness uses a random oracle to instantiate the MAC as
it can be easily shown to be CROB and also allows secure reuse of keys with any scheme.
The above raises the question if robustness can be achieved without key reuse or random

oracles. Such an approach is sometimes recommended as it allows for modular proofs of AE
security. Below we give a transform akin to EtM that also authenticates the encryption key
and which results in a scheme that is both AE and CROB secure. We provide the details of
the transform in Figure 4.11.

KGen(1λ):
Ke←$ KGene(1λ)
Km←$ KGenm(1λ)
return (Ke,Km)

Enc((Ke,Km),M ):
C←$ Enc(Ke,M )
T←$ Tag(Km, (C ||Ke))
return (C ,T )

Dec((Ke,Km), (C ||T )):
if Ver(Km, (C ||Ke),T ) = 0 return ⊥
M ← Dec(Ke,C )
return M

Figure 4.11: The modified EtM transform that authenticates the encryption key via a collision-
resistant MAC.

Theorem 4.4. Suppose AE = (KGene,Enc,Dec) is IND$ secure (see Figure 4.1) and MAC =
(KGenm,Tag,Ver) is pseudorandom. Then the scheme AE = (KGen,Enc,Dec) in Figure 4.11
is AE secure. Furthermore, this scheme is CROB secure if MAC is collision resistant.

Theorem 4.4. For CROB, consider an adversary that outputs ((C ||T ), (Ke||Km), (K ′e||K ′m))
such that (C ||T) decrypts to valid messages under both keys. Then the tag T must also
verify under both Km and K ′m. However, this constitutes an attack on the collision resistance
of MAC unless Km = K ′m and Ke = K ′e.
For AE security, we follow the standard path as follows. Let Game0 be the AE with real

procedure. In Game1, we compute T in the Enc procedure by replacing T with random
bit strings and also replace the Dec procedure with the ⊥ procedure. We can bound the
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difference between Game0 and Game1 using a direct reduction to the pseudorandomness
of MAC: Pr[GameA0 ] − Pr[GameA1 ] ≤ Adv$uf

MAC,B1
(λ). In Game2 we replace the ciphertext

components in the outputs of the Enc procedure with random strings. Again, using a
reduction to the IND$ security of the AE scheme, we bound the difference between games
Game1 and Game2 by: Pr[GameA1 ]− Pr[GameA2 ] ≤ Advind-$AE,B2

(λ). Finally, Game2 is the AE
game with fake procedures, which translates to: Advae

AE,A(λ) = Pr[GameA0 ]− Pr[GameA2 ] ≤
Adv$uf

MAC,B1
(λ) + Advind-$SE,B2

(λ).

4.4.1 The Symmetric ABN Transform

The starting point for our second construction is the transform introduced by Abdalla
et al. [ABN10] to convert any PKE scheme into one that is also completely robust as
shown in [FLPQ13]. Roughly speaking in the ABN transform one commits to the public
key during encryption, encrypts the decommitment along with the plaintext, and includes
the commitment as part of the ciphertext. The commitment is then checked against the
public key in the decryption algorithm. The transform is shown in Figure 4.12. ABN relies
on a commitment scheme (CPG,Com,Ver) and operates in the CRS model via a common
parameter-generation algorithm CPG.

PKSetup(1λ):
crs←$ CPG(1λ)
return crs

PKKGen(1λ):
(pk, sk)←$ PKKGen(1λ)
return (pk, sk)

PKEnc(crs, pk,M ):
(com, dec)←$ Com(crs, pk)
C←$ PKEnc(pk, (M , dec))
return (C , com)

PKDec(crs, pk, sk, (C , com)):
(M , dec)← PKDec(K ,C )
if Ver(crs, pk, com, dec):

return M
return ⊥

Figure 4.12: The ABN transform [ABN10] for public-key encryption.

We ask if an analogue of ABN, perhaps in the CRS model, can also be formulated for
symmetric encryption. In this setting, there is no public key and a natural alternative would
be to commit to the secret key instead. This, however, results in a key-dependent message
being encrypted as the decommitment dec is computed based on the encryption key K .
Furthermore, the commitment string com must be pseudorandom to accomplish AE security.
One can attempt to adapt the ABN transform as follows. First, use a commitment

scheme with pseudorandom commitments. Any collision-resistant PRF is equivalent to such a
commitment scheme, where crs = ε (assuming the PRF does not use a CRS) and Com(M ||K )
outputs (PRF(K ,M ),K) as the (com, dec) pair. The verification algorithm simply checks
the commitment by recomputing the PRF using K and M . This scheme is computationally
hiding down to the pseudorandomness of PRF. Furthermore, it is computationally binding
down to its collision resistance. This technique still does not resolve the key-dependency issue.
Although in this scheme the decommitment string is merely a random PRF key independent
of the encryption key, a circular dependency between the encryption key and the PRF key
exists, which prevents a proof from going through. (Recall that in the public-key setting this
issue does not arise as the public key is a key-dependent value that is available “for free.”)

To fix these issues, we compute a string that acts as a “public labelling” of the encryption
key, and which does not hurt the security of the scheme. We first expand K using a PRG,
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use its left-half in encryption, and commit to its right-half as the public labelling. For this,
we must, however, ensure that different keys give always rise to different public labellings.
This can be achieved if the PRG is collision resistant (for example injective) on the right-half
of outputs. Such PRGs can be based on one-way permutations via Yao’s transform [Yao82].
Indeed, assuming π is a one-way permutation and HC is a hardcore predicate for it [GL89],
we get a right-injective PRG via

PRG(x) := HC(x)||HC(π(x))|| . . . ||HC(π|x|−1(x))||π|x|(x) .

Observe the last part of the output of this PRG is a permutation, which provides the required
injectivity; this results in the transform shown in Figure 4.13.

KGen(1λ):
Ke←$ KGene(1λ)
return Ke

Enc(Ke,M ):
Km←$ KGenm(1λ)
(K1

e ||K2
e )← PRG(Ke)

C←$ Enc(K1
e , (M ||Km))

T←$ Tag(Km, (C ||K2
e ))

return (C ||T )

Dec(Ke, (C ||T )):
(K1

e ||K2
e )← PRG(Ke)

(M ||Km)← Dec(K1
e ,C )

if Ver(Km, (C ||K2
e ),T ) = 0

return ⊥
return M

Figure 4.13: The modified EtM transform for obtaining CROB security.

Theorem 4.5. Let AE = (KGene,Enc,Dec) be IND$ secure, MAC = (KGenm,Tag,Ver) be
pseudorandom, and suppose PRG is secure. Then the scheme AE = (KGen,Enc,Dec) in
Figure 4.13 is AE secure. Furthermore, this scheme is CROB secure as long as MAC is
collision resistant and PRG is right collision resistant.

Theorem 4.5. Suppose that an adversary computes a ciphertext (C ||T ) that decrypts correctly
under two keys Ke 6= K ′e. The fact that Ke 6= K ′e together with the right collision resistance
of PRG implies that K 2

e 6= K ′e
2. Then, this can be used to break the collision resistance of

MAC using the pair (Km, (C||K 2
e )) and (K ′m, (C||K ′e

2)) where Km and K ′m are computed by
decrypting C using the left halves K 1

e and K ′e
1 of the PRG output, respectively.

AE security can be proven in the standard way as follows. Let Game0 be the AE game
with respect to the real encryption and decryption oracles. In Game1, we replace the
outputs of the PRG with truly random bit strings. This transition can be justified using the
security of PRG: Pr[GameA0 ] − Pr[GameA1 ] ≤ Advprg

PRG,B1
(λ) . In Game2 we replace T with

random tags and decryption with the ⊥ oracle. A direct reduction to $UF security of the
MAC can be used to bound this transition: Pr[GameA1 ] − Pr[GameA2 ] ≤ Adv$uf

MAC,B2
(λ). In

Game3 we replace C with random strings via the IND$ security of the AE. Now note that
Game3 corresponds to the AE game concerning the fake encryption and decryption oracles:
Pr[GameA2 ]− Pr[GameA3 ] ≤ Advind$

AE,B3
(λ).

One advantage of the second transform is that it only relies on the pseudorandomness of
MAC with freshly generated keys; this in turns allows for a simple instantiation of it. For a
right collision-resistant PRG, let

PRG(K ) = PRG0(K )||PRG1(K ) with (`0, `1) := (|PRG0(K)|, |PRG1(K)|) .

Then we compute a MAC on a (hashed) message M with |M | = `0 as:

Tag(K ,M ) := (M ||0`1)⊕
(
PRG0(K )||PRG1(K )

)
.

— 74 —



Ch
ap

te
r4

The collision resistance of this MAC follows from the fact that the right (and collision-resistant)
half of PRG is output in clear.

4.5 Robust Signature Schemes
Signature schemes are the public-key counterparts of message authentication codes. Informally,
a robust signature scheme shall not allow for a verifier to validate a signature under multiple,
distinct verification keys. We commence by presenting the security definition for digital
signatures in Section 4.5.1 and then provide generic transforms for converting any DS scheme
into a complete-robust one. Along the way, we define the intermediate notions of XROB and
KROB, in the spirit of the ones proposed for message authentication codes in Section 4.2.

4.5.1 Robustness for Digital Signatures
For the case of digital signature schemes, we introduce two main security notions, which we
denote strong and complete robustness. The winning condition remains the same in both
experiments, of obtaining a signature/message pair in such a way that it verifies under both
public keys. In the SROB experiment, two signing oracles under sk1, sk2 are given to the
adversary, while a CROB adversary generates its intrinsic keys for accomplishing essentially
the same break.

SROBADS(λ):
(pk1, sk1)←$ KGen(1λ)
(pk2, sk2)←$ KGen(1λ)
(M , σ)←$ ASignsk1 (·),Signsk2 (·)(1λ, pk1, pk2)
if Ver(pk1, σ,M ) = 1 ∧

Ver(pk2, σ,M ) = 1:
return 1

return 0

CROBADS(λ):
(pk1, pk2, σ,M )←$ A(1λ)
if pk1 = pk2 :

return 0
if Ver(pk1, σ,M ) = 1 ∧

Ver(pk2, σ,M ) = 1:
return 1

return 0

Figure 4.14: Games defining strong robustness SROB (left) and complete robustness CROB
(right) for a digital signature scheme DS. We assume a negligible probability of
sampling pk1 = pk2 in the SROB game.

Definition 4.1 (SROB and CROB Security). Let DS be a digital signature scheme. We
say DS achieves complete robustness if the advantage of any PPT adversary A against the
CROB game depicted in Figure 4.14 (right side) is negligible:

Advcrob
A,DS(λ) := Pr

[
CROBADS(λ) = 1

]
SROB-security is defined similarly, the SROBADS(λ) game being defined in Figure 4.14 (left
side).

Notice the difference to the classical unforgeability game where the adversary obtains
signatures issued under the same secret key. We prove any EUF-scheme is implicitly strong-
robust, and show there exist signature schemes that fail to achieve complete robustness (thus
providing a separation between the two).
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Remark 4.1 (Comparison with Unambiguity). Bellare and Duan [BD09] had described,
earlier but in a different context, a notion of digital signature unambiguity.

As stated in [BD09], “Unambiguity can be viewed as a signature analogue of the robustness
property of anonymous encryption defined in [ABN10]. [...] Unambiguity [...] can be viewed
as preventing forgery under an adversarially-modified verification key, something not part of
the normal definition of a signature.” The original motivation for unambiguity stems from
the design of partial signatures.
It is natural to wonder whether unambiguity (UNAMB) coincides with either notion of

signature robustness discussed above. Since unforgeability does not imply unambiguity, and
since any partial signature scheme is a signature scheme, we have SROB 6= UNAMB. However,
it turns out that the definition UNAMB (for partial signatures) is naturally extended to
signatures and matches CROB.

4.5.2 Intermediate Notions
To keep a symmetry with the existing works in public and symmetric key settings [FLPQ13;
FOR17], intermediate notions of robustness such as key-less (KROB) or mixed (XROB)
robustness can be introduced. To give a flavour, in a KROB game, apart from M , an
adversary issues (sk1,M1,R1) on one side, and (sk2,M2,R2) on the other side, Ri standing
for the random coins used to sign Mi under ski. One can then show trivial relations between
these notions, with details being provided below. For brevity, in this section we only use
the SROB and CROB notions. On a different note, we point out that more interesting
intermediate notions result if partial access to a key (i.e., revealing random positions in the
binary representation of the keys) is provided to an adversary [HS09].

Definition 4.2 (XROB and KROB Security). Let DS be a digital signature scheme. Complete
robustness is defined as the advantage of any PPT adversary A against the XROB game
depicted in Figure 4.15 (right side):

Advxrob
A,DS(λ) := Pr

[
XROBADS(λ) = 1

]
.

KROB-security is defined similarly, the KROBADS(λ) game being defined in Figure 4.15 (right
side).

Lemma 4.1. Any CROB-secure digital signature scheme is also XROB-secure. Any XROB-
secure digital signature scheme is also KROB-secure.

Lemma 4.1. For the first case, we take the contrapositive. Assuming an XROB adversary
that returns (σ1,M , pk1, sk2,R2), the reduction builds a public key pk2 via PKGen(sk2). The
winning CROB tuple is, therefore (σ1,M , pk1, pk2). For the second part, assuming a KROB
adversary returning (M , sk1,R1, sk2,R2), the reduction generates pk1←$ PKGen(sk1) and
returns the XROB winning tuple (σ,M , pk1, sk2,R2), where σ ← Sign(sk1,M ; R1).

4.5.3 Implications and Separations
Proposition 4.4. Let DS be a CROB-secure digital signature scheme. Then DS is also
SROB-secure, the advantage of breaking the strong robustness game being bounded as follows:

Advsrob
A,DS(λ) ≤ Advcrob

R,DS(λ) .
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XROBADS(λ):
1. (σ1,M , pk1, sk2,R2)←$ A(1λ)
2. if pk1 = PKGen(sk2) :
3. return 0
4. σ2 ← Sign(sk2,M ; R2)
5. b← Ver(pk1, σ,M )
6. if b = 1 ∧ σ1 = σ2:
7. return 1
8. return 0

KROBADS(λ):
1. (M , sk1,R1, sk2,R2)←$ A(1λ)
2. if PKGen(sk1) = PKGen(sk2) :
3. return 0
4. σ1 ← Sign(sk1,M ; R1)
5. σ2 ← Sign(sk2,M ; R2)
6. if σ1 = σ2:
7. return 1
8. return 0

Figure 4.15: Games defining mixed-robustness XROB (left) and keyless-robustness KROB
(right) for a digital signature scheme DS. We assume that We assume that given
a secret-key sk, there exists a procedure PKGen for generating a public-key.

Proposition 4.4. Suppose DS is not SROB-secure. Let A be a PPT adversary that wins the
SROB game with an advantage at most εSROB. We construct a PPT adversary R against
the CROB game as follows: (1) sample two pairs of keys (sk1, pk1), (sk2, pk2) using KGen(1λ);
(2) R publishes pk1, pk2 and constructs the signing oracles Signsk1(·) and Signsk2(·); (3) R
runs A w.r.t. signing oracles and public-keys to obtain (M , σ); (4) R constructs the tuple
(pk1, pk2, σ, M ) and outputs it. We obtain that Advsrob

R,DS(λ) ≤ Advcrob
A,DS(λ).

Of interest, is a minimal level of robustness achieved by any digital signature scheme. It
turns out that SROB is accomplished and we formalize this in the following lemma.

Lemma 4.2. Any EUF-secure digital signature scheme DS is SROB-secure. The advantage of
breaking the SROB game is bounded by the advantage of breaking the EUF game: Advsrob

A,DS(λ) ≤
2 · Adveuf

R,DS(λ) .

Lemma 4.2. Let A be a PPT adversary against the strong robustness game. Let R stand
for an adversary against the unforgeability of the digital signature. We assume without loss
of generality that A: (1) never queries a “winning” message M to the second signing oracle
after it has been signed by the first oracle (since it can check it right away) and (2) it never
queries a “winning” message M to the first oracle after it has been signed by the second
oracle (for the same reason). We present the reduction in Figure 4.16 and describe it below:

1. The EUF game proceeds by sampling (sk1, pk1) and builds a signing oracle Signsk1(·).

2. The reduction R is given pk1 and oracle access to the Signsk1(·). R samples uniformly
at random (sk2, pk2) via DS.KGen and constructs a second signing oracle Signsk2(·).

3. R runs A w.r.t. the two (pk1, pk2) and the corresponding signing oracles Signsk1(·),
Signsk2(·). R keeps track of the queried messages to each oracle.

4. A returns a pair (σ,M ) which verifies under both public keys with probability εSROB,
s.t. M has been queried to either Signsk1 or Signsk2 but not to both.

5. R returns (σ,M ). If M ∈ Signsk1(·).SignedMessages(), R aborts and reruns A. With
probability 1

2 , M was not queried before to Signsk1(·). The tuple (σ,M ) wins the EUF
game w.r.t. (pk1, sk1) with probability ≥ 1

2 · εSROB.
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Algorithm RA(λ, pk1,Signsk1(·)):
(pk2, sk2)←$ KGen(1λ)
build Signsk2(·)
(M , σ)←$ ASignsk1 (·),Signsk2 (·)(pk1, pk2)
if M ∈ Signsk1(·).SignedMessages()

abort
return (M , σ)

Figure 4.16: The reduction R in Lemma 4.2.

Thus, the reduction (Figure 4.16) shows that the advantage of winning SROB is bounded
by the advantage of breaking EUF, which completes the proof.

Verifiable random functions [MRV99] are PRFs where proofs for the correctness of their
computations are issued. They generically imply (deterministic) digital signatures; thus we
obtain the subsequent corollary.

Corollary 4.1. Any verifiable random function is SROB-secure. The advantage of breaking
the SROB game is bounded by the advantage of breaking the pseudorandomness game of the
VRF as follows

Advsrob
R,DS(λ) ≤ Advrand

A,VRF(λ) .

Proof. Trivially follows from the fact that any VRF is a (deterministic) signature scheme,
which is SROB-secure.

We also show a separation between the SROB and CROB, by pointing to a signature
scheme that is not CROB secure (but already SROB).

Proposition 4.5. There exist DS schemes that are not CROB-secure.

Proposition 4.5. We provide a simple counterexample as follows. Consider the digital signa-
ture scheme in [BB08]:

• KGen: selects uniformly at random g1←$ G1, g2←$ G2 and (x, y)←$ Z2
p. Set sk← (x, y)

and pk← (g1, g2, g
x
2 , g

y
2 , e(g1, g2)), where e : G1 ×G2 → GT is a pairing3.

• Sign: given a message M , sample r←$ Zp and compute σ ← g
1/(x+M+yr)
1 . Note that

with overwhelming probability, x+ M + yr 6= 0 mod p, where p is the order of G1. The
signature is the pair (σ, r).

• Verify: check that e
(
σ, gx2 · gM

2 · (g
y
2)r
) ?= e(g1, g2).

To win the CROB game, an adversary A proceeds as follows:

1. A samples a key-pair: sk←$ (x, y); pk← (g1, g2, g
x
2 , g

y
2 , e(g1, g2)) and a message M ∈ Zp.

2. A samples r←$ Zp and computes σ under sk1. Since g′1 can be written as gt1, A sets
t, x′, y′ such that 1/(x+ M + yr) = t/(x′ + M + y′r) (equate the exponents to obtain
the same σ corresponding to M ). This can be done by assigning random values to x′, y′
and setting t← (x′ + M + y′r)/(x+ M + yr).

3 See for instance [BB08] for the definition and usage of a cryptographic pairing.
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3. A sets sk′ ← (x′, y′); pk′ ← (g′1, g′2, g′
x′

2 , g
′y′
2 , e(g′1, g′2)), for some uniformly sampled

generator g′2←$ G2.

4. Finally, observe that (σ, r) verifies under (sk1, pk1) through the correctness of the
signature scheme, but also under (pk2, sk2), since

e
(
g
t/(x′+M+y′r)
1 , g′

x′

2 · g′
M
2 · (g′

y′

2 )r
)

= e(gt1, g′2) .

A halts and returns (pk, pk′, (σ, r),M ). Note that A runs in probabilistic polynomial
time.

4.5.4 Generic Transform
4.5.4.1 Robust Digital Signatures

We show a generic transform similar in spirit to the original work of Abdalla, Bellare, and
Neven [ABN10; ABN18] in the context of digital signatures. For a digital signature scheme,
we benefit from the fact that pk acts as an “immutable" value to which one can easily commit
to while signing a message. Thus, checking if a message verifies under another public key
implicitly breaks the binding property of the commitment scheme. For simplicity, we use a
hash instead of a commitment scheme.

KGen(1λ):
(sk, pk)←$ DS.KGen(1λ)
pk← pk
sk← sk
return (sk, pk)

Setup(1λ):
K ← H.KGen(1λ); H← HK ; return H

Sign(sk,M ):
sk← sk
σ1←$ DS.Sign(sk,M )
σ2 ← H(pk)
σ ← (σ1, σ2)
return σ

Ver(pk, σ,M ):
pk← pk
(σ1, σ2)← σ
return DS.Ver(pk, σ1) = 1 ∧

σ2
?= H(pk)

Figure 4.17: A generic transform that turns any digital signature scheme DS into one that
is, in addition, CROB-secure. The (publicly available) collision-resistant hash
function H can be based on claw-free permutations in the standard model, as
shown in the seminal work of Damgård [Dam88]. It is used as a commitment to
the public-key.

Lemma 4.3. Let DS be an EUF-secure digital signature scheme. Let H denote a collision-
resistant hash function. The digital signature DS obtained through the transform depicted in
Figure 4.17 is CROB-secure.

Lemma 4.3. We prove both the unforgeability and the complete robustness of the newly
obtained construction:

Unforgeability. Assume the existence of a PPT adversary A against DS. We build an
adversary R against the EUF of the underlying DS. The unforgeability experiment EUF for
DS samples (pk, sk) and constructs a signing oracle under sk, which is given to R. R is given
a collision-resistant hash function H and builds its own signing oracle Sign; when queried,
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Sign returns the output of Sign concatenated to the value of H(pk). When A replies with
(σ,M ), it must be the case that Ver(pk, σ,M ) passes, which breaks EUF for DS. Thus we
conclude that: Adveuf

A,DS(λ) ≤ Adveuf
R,DS(λ) .

CROB. To show robustness, we rely on the collision-resistance of H. The CROB game in
Figure 4.14 specifies that the adversary A against the CROB game finds pk1 6= pk2 such that
Ver passes. The latter implies H(pk1) = H(pk2), trivially breaking the collision-resistance of
H, giving us: Advcrob

A,DS(λ) ≤ Advcr
R,H(λ) .
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Chapter 5
WBC - Definitions and Relations

In this chapter, we investigate the feasibility of white-box compilers for pseudorandom
permutations obtained on top of (multi-input) functional encryption. We begin by presenting
a set of simple theoretical implications, which suggest that a central notion, dubbed one-
wayness, is instrumental in achieving UBK-secure compilers. We also look into specific
constructions of FE schemes, pointing out that some of them suffice in obtaining UBK-secure
implementations.

5.1 Definitions for White-Box Cryptography . . . . . . . . . . . . . . . . 84
5.1.1 White-Box Implementations for Block Ciphers . . . . . . . . . . . . . . 84
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Chapter Organization. A brief motivation behind the need for white-box implementations
has been discussed in Section 1.1.1. For ease of exposition, we provide a short roadmap of
this chapter. The main results of this part are pictorially described in Figure 5.1.

IND-MIFE-CPA [GGG+14]

IND-FEAI (Definition 6.1) UBK [DLPR14]

iO [BGI+01]

OW-MIFE (Definition 5.5)

OW-FEAI (Definition 6.3)

FE (1-bit output, Prv-key)IND-MIFE-CPA (1-bit output, Prv-key)

FE (1-bit output, Pub-key)

ABE + FHE
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Lemma 6.2
Theorem 6.1Corollary 5.1

[GJO
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[BKS16; KS17] Th
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trivial, [BKS16]

[GKP+13]

Figure 5.1: A graphical depiction of the main results in this chapter. Double-arrows origi-
nating in an “FE” node denote that “FE” is considered in the public key setting.
Single arrows originating in an “FE” node denote that the FE scheme is in the
private-key setting.

In Section 5.1, we provide the standard definitions related to white-box cryptography
as well as multi-input functional encryption (MIFE), a notion that proves instrumental
to the incoming steps1. We extend the classical notion of one-wayness in Section 5.2, by
introducing simple but powerful one-wayness definitions for multi-input functional encryption
schemes (OW-MIFE) in both the public and private-key settings (Section 6.1). We show
both settings are sufficient to achieve UBK-secure implementations for some pseudorandom
permutation f . Proving that OW-MIFE is sufficient to construct UBK implementations for
one-way permutations is relatively easy. Our compiler relying on public-key MIFE (two
inputs suffice) works as follows: it computes CK←$ MIFE.Enc(mpk1,K ) and the functional
encryption key skf for the publicly available f . A UBK-secure implementation of f then

1In the following chapter (Section 6.1), we will introduce the related concept of functional encryption with
auxiliary inputs (FEAI), as well as its indistinguishability and one-wayness security notions. We show
IND-FEAI schemes are sufficient to obtain indistinguishability obfuscation. We regard this as an alternative
potential path for obtaining iO, a problem of independent interest.
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consists of the decryption algorithm plus the variables mpk2, skf and CK . For f(K ,M ) to
be simulated, the decryption algorithm computes

MIFE.Dec(skf ,CK ,MIFE.Enc(mpk2,M ))

which, by the correctness of the MIFE, is equivalent to f(K ,M ).
In the private key setting, the crux idea for achieving a UBK implementation w.r.t a

pseudorandom permutation is to allocate a separate slot of the MIFE scheme per each input
bit of the plaintext M (Figure 5.2). Then, one would release MIFE encryptions of 0s and
1s for the corresponding positions. The key K used by f is encrypted separately. Then
computing f(K ,M ) is done by simply selecting the appropriate encryptions of 0s and 1s
based on the binary decomposition of M and decrypt via MIFE.Dec. Moreover, we note that
in a very similar way, one can obtain a simple FEAI construction (defined in Chapter 6). As
regards one-wayness, we need the MIFE construction to be one-way only w.r.t the slot used
to encrypt K (otherwise it is trivial to win the game).

k: 1 2 · · · n-1 n

1 0 · · · 1 0

M : 1 2 · · · n-1 n

0 0 · · · 0 0

1 1 · · · 1 1

Figure 5.2: A ciphertexts is generated for the key K , as well as for each of the bits in the
binary decomposition of the message.

We give a positive answer to the question of obtaining white-box implementations that
are secure against adversaries mounting key-extraction attacks (UBK-security). Although
relying on strong assumptions, to the best of our knowledge, this is the first time when the
problem has been rigorously studied and answered. We prove there exist constructions of
MIFE schemes that are one-way secure (Section 5.4). Proving the existence of such OW-MIFE
schemes Theorem 5.2 in the public-key setting is done by referring to the peculiarities of the
construction proposed by Goyal, Jain and O’Neill in [GJO16]. We note their scheme assumes
the existence of iO and of OWF, but it is simple enough to enable a proof via a standard
hybrid argument.
Along the way, we look into the power conferred by multi-input functional encryption

in the private-key setting. Specifically, we investigate the generic transform introduced by
Brakerski, Komargodski and Segev in [BKS16] (from now on the “BKS" transform); this
builds a t-input MIFE scheme on top of a single input FE scheme for general circuits and is
also function-hiding. We prove the BKS transform enjoys one-wayness assuming the original
single-input scheme is one-way. Furthermore, we argue that such single input schemes can
be instantiated from standard assumptions, by referring to the construction of Goldwasser
et al. [GKP+13]. Care is needed in order to ensure the final transform is one-way: our
proof walks through one-wayness of the required primitives, starting with the single-input
FE instantiation in [GKP+13], and continuing with the function hiding transform of [BS15]
and finally for the BKS transform itself.
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5.1 Definitions for White-Box Cryptography

5.1.1 White-Box Implementations for Block Ciphers

This chapter focuses on white-box implementations for block-ciphers (viewed as pseudorandom
permutations) due to their practical impact. Throughout the chapter we assume a key-space of
the form K = {0, 1}|K | and a message and a ciphertext space of the form: M = C = {0, 1}|M |.
A white-box compiler for a block-cipher E , denoted by CE , is a program that takes as
input a key k from the key space K and a nonce r←$ R for some space R, then outputs a
program embedding k – denoted C.Evalrk – where r is an option for generating diversified
implementations for the same k. CE is correct if C.Evalrk exactly implements E(k, ·), namely,
for any M ∈M we have C.Evalrk(M ) = E .Enc(k,M ).

Definition 5.1 (Compilers for Block Ciphers). A compiler CE for a block cipher described
in some language as E, consists of a tuple of programs

(
C.Setup, C.Eval

)
– implemented

algorithms – described as follows:

• C.Setup(E ,K ): the compiler takes the description E, together with a secret key K and a
nonce r, and outputs two programs

(
C.Evalrk, C−1.Evalrk

)
.

• C ← C.Evalrk
(
M
)
: the program C.Evalrk takes as input a message M and outputs a

ciphertext corresponding to E .Enc(K ,M ). C−1.Evalrk is defined similarly for decryption.

UBKACE (λ):
R←$ R
K←$ K
C.Evalrk ← C.Setup(1λ,K ,R, E)
K ′←$ ACE (1λ,C.Evalrk)
return K = K ′

Figure 5.3: The unbreakability security experiment as defined in [DLPR14].

Delerablée et al. , [DLPR14] introduced several security notions related to white-box cryp-
tography for symmetric encryption. As we focus on the existence of white-box cryptography,
we present below the essential unbreakability notion.

Definition 5.2 (Unbreakability [DLPR14]). Let E be a symmetric-key encryption scheme
and CE a compiler for E. We say that CE is unbreakable if the following advantage is negligible
against any adversary A:

Advubk
A,CE (λ) := Pr[UBKACE (λ) = 1] ≤ Negl .

where the security experiment UBK is defined in Section 5.1.1.

We note that such a definition can be naturally extended to other primitives, such as
pseudorandom functions.
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5.1.2 Multi-Input Functional Encryption
Functional encryption, as defined in Chapter 2, is one of the most general and abstract
encryption paradigms and can be defined in multiple scenarios: for instance, the encryption
key can be either public or private, or the functional key can be function hiding or function
revealing. Below, we recall the definition of FE in the multi-input setting by Goldwasser et
al. [GGG+14], in both private and public encryption settings.

5.1.2.1 MIFE - Public-Key Setting

Definition 5.3 (Public-Key MIFE) [GGG+14]). Let F = {Fλ}λ∈N be an ensemble, where
Fλ is a finite collection of n-ary functions f : Xλ,1× . . .×Xλ,n → Yλ. A public-key multi-input
functional encryption scheme MIFE for Fλ consists of four algorithms (Setup,KGen,Enc,Dec):

• The setup algorithm Setup(1λ) takes the security parameter λ in unary and outputs a
master secret key msk and n encryption keys {mpk1, . . . ,mpkn};

• The encryption algorithm Enc(mpki,Mi) takes as input an encryption key mpki and an
input message Mi ∈ Xλ,i, and outputs a ciphertext Ci, for some position i ∈ [n];

• The functional-key derivation algorithm KGen(msk, f) takes as input the description of
an n-ary function f ∈ Fλ and outputs the corresponding functional key skf ;

• The decryption algorithm Dec(skf ,C1, . . . ,Cn) is a deterministic algorithm that takes as
input a functional key skf and an ordered list of n ciphertext (C1, . . . ,Cn) and outputs
a string y corresponding to f(M1, . . . ,Mn) or a special error symbol ⊥.

Any public-key MIFE scheme is required to satisfy correctness:

Pr

 Dec(skf ,
Enc(mpk1, M1), . . . ,
Enc(mpkn, Mn)) =

f(M1, . . . , Mn)

∣∣∣∣ (msk, mpk1, . . . , mpkn)←$ Setup(1λ)∧
skf←$ KGen(msk, f)

 ∈ 1− Negl(λ).

Indistinguishability for multi-input functional encryption states that for any possible combi-
nations of (“challenge ciphertexts”, “adversarially computable ciphertext”), the KGen-queried
functions return the same values: f(ChalPlaintxt1, AdversPlaintext)= f(ChalPlaintxt2, Ad-
versPlaintext). We define the notion for 2-input FE schemes and point the reader to [GGG+14,
p. 9] for the full definition.
Formally, for any set of message pairs defined over (X1×X2)× (X1×X2) and for any PPT

adversary A, its advantage against the game IND-MIFE-CPAAMIFE(λ) defined in Figure 5.4 is
negligible:

Advind-mife-cpa
A,MIFE (λ) :=

∣∣∣∣Pr[IND-MIFE-CPAAMIFE(λ) = 1]− 1
2

∣∣∣∣ .

5.1.2.2 MIFE - Private-Key Setting.

The private-key counterpart follows naturally, the key difference to the public-key setting
being that encryption is done under msk, as the Setup generates no mpk. A subsequent
change occurs in the description of the indistinguishability game that requires an adversary
to interact with encryption oracles.
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IND-MIFE-CPAAMIFE(λ):
L← ∅
b←$ {0, 1}
I ←$ A(1λ)
(msk, {mpk1,mpk2})←$ Setup(1λ){(−→

M 0
i ,
−→
M 1
i

)}
i∈[q]←$ AKGenmsk(·)({mpki}i∈I)

for i← 1, q:
C ∗1,i←$ Enc(mpk1,M b

1,i)
C ∗2,i←$ Enc(mpk2,M b

2,i)
b′←$ AKGen(·)

msk
({

C ∗j,i
}
j∈{1,2},i∈[q], {mpki}i∈I

)
return b = b′ ∧Valid(L,

{(−→
M 0
i ,
−→
M 1
i

)}
i∈[q])

Valid(L, {mpki}i∈I ,
{(−→

M 0
i ,
−→
M 1
i

)}
i∈[q]):

if ∃f ∈ L ∧ ∃i ∈ [q] ∧ ∃X1 ∈ X1 s.t.:
if f(X1,M 0

2,i) 6= f(X1,M 1
2,i) :

return 0
if ∃f ∈ L ∧ ∃i ∈ [q] ∧ ∃X2 ∈ X2 s.t.:

if f(M 0
1,i, X2) 6= f(M 1

1,i, X2) :
return 0

return 1

KGenmsk(f):
L← L ∪ {f}
return KGen(msk, f)

Figure 5.4: The (adaptive) IND-MIFE-CPA security game, as defined in [GGG+14]. In our
description, we use −→M to denote a 2-ary message. L stands for a set of queried
functions. The Valid algorithm enforces that the queried functions f ∈ L produce
identical outputs when queried on (challenge message, ·) or (·,challenge message).

Definition 5.4 (Private-Key MIFE). Let F = {Fλ}λ∈N be an ensemble, where Fλ is a finite
collections of n-ary functions f : Xλ,1 × . . .×Xλ,n → Yλ.A multi-input functional encryption
scheme MIFE for F is a tuple of PPT algorithms (Setup,KGen,Enc,Dec) such that:

• msk←$ Setup(1λ): the key generation procedure outputs a master secret key msk.

• Ci←$ Enc(msk, i,Mi): the encryption procedure takes as input a plaintext Mi and a
position i – corresponding to the i-th input of a supported function f – and encrypts
Mi under msk for position i.

• skf←$ KGen(msk, f): the key-derivation procedure takes as input the description of a
function f and outputs the corresponding skf .

• f(M1, . . . ,Mn) ← Dec(skf ,C1, . . . ,Cn): while attempting to decrypt under skf , we
require an ordered list of ciphertexts as arguments [C1, . . . ,Cn] (corresponding to the
positions for which they were produced); the result is the f(M1, . . . ,Mn) or a special
error symbol ⊥.

Any private-key MIFE scheme is required to satisfy correctness: for any messages M1 ∈
Xλ,1, . . . ,Mn ∈ Xλ,n and f ∈ F we have that

Pr


MIFE.Dec(skf ,

MIFE.Enc(msk, (M1, 1)), . . .
MIFE.Enc(msk, (Mn, n))) =

f(M1, . . . ,Mn)

∣∣∣∣∣ msk←$ FE.KGen(1λ)∧
skf←$ FE.KGen(msk, f)

 ∈ 1−Negl(λ) .

Indistinguishability: suppose q is the number of challenge message sampled by the adversary,
the IND-MIFE-CPA (Figure 5.5) requires the negligibility of the following advantages:

Advind-mife-cpa
A,MIFE (λ) :=

∣∣∣∣Pr[IND-MIFE-CPAAMIFE(λ) = 1]− 1
2

∣∣∣∣ .
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IND-MIFE-CPAAMIFE(λ):
L← ∅
b←$ {0, 1}
msk←$ Setup(1λ){(−→

M 0
i ,
−→
M 1
i

)}
i∈[q]←$ AKGenmsk(·),Encmsk(·)(1λ)

for i← 1, q:
for j ← 1, n:

C ∗j,i←$ Enc(msk, j,M b
j,i)

b′←$ AKGen(·)
msk,Enc{msk}(·)(1λ,{C ∗i,j

}
i∈[q],j∈[n]

)
return b = b′ ∧Valid(L,

{(−→
M 0
i ,
−→
M 1
i

)}
i∈[q])

KGenmsk(f):
L← L ∪ {f}
return KGen(msk, f)

Valid(L,
{(−→

M 0
i ,
−→
M 1
i

)}
i∈[q]):

if ∃f ∈ L,∃i ∈ [q] : f(−→M 0
i ) 6= f(−→M 1

i ):
return 0

return 1

Figure 5.5: The (adaptive) IND-MIFE-CPA security experiment for multi-input functional
encryption schemes in the private setting, as derived from [GGG+14]. In our
description, we use −→M to denote an n-ary message. L stands for the list of queried
functions. The Valid procedure enforces that for any combination of queried
messages, the two functions return the same outputs.

Function-Hiding: suppose q is the number of challenge messages sampled by the adversary,
the FHIDE (Figure 5.6) requires the negligibility of the following advantages:

Advfhide
A,MIFE(λ) :=

∣∣∣∣Pr[FHIDEAMIFE(λ) = 1]− 1
2

∣∣∣∣ .
FHIDEAMIFE(λ):

L← ∅
b←$ {0, 1}
msk←$ Setup(1λ){(−→

M 0
i ,
−→
M 1
i

)}
i∈[q]←$ AKGenmsk(·),Encmsk(·)(1λ)

for i← 1, q:
for j ← 1, n:

C ∗j,i←$ Enc(msk, j,M b
j,i)

b′←$ AKGen(·)
msk,Enc{msk}(·)(1λ,{C ∗i,j

}
i∈[q],j∈[n]

)
return b = b′ ∧Valid(L,

{(−→
M 0
i ,
−→
M 1
i

)}
i∈[q])

KGenmsk(f0, f1):
L← L ∪ {(f0, f1)}
return KGen(msk, fb)

Valid(L,
{(−→

M 0
i ,
−→
M 1
i

)}
i∈[q]):

if ∃f ∈ L,∃i ∈ [q] : f0(−→M 0
i ) 6= f1(−→M 1

i ):
return 0

return 1

Figure 5.6: The Function-Hiding experiment is defined similarly to IND-MIFE-CPA, with
the KGen choosing between one of the two functions the adversary receives. The
Valid procedure enforces that for any combination of queried messages, the two
functions return the same outputs. Throughout the chapter, we also refer to
this notion as full IND-MIFE-CPA (note that here full is being used in a different
context than adaptive).

5.2 UBK-Secure Implementations from One-Way MIFE
The main catalyst of this work is the investigation of theoretical means under which un-
breakability can be achieved. In doing so, we first point out that indistinguishability may
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be insufficient as a security notion. Imagine the simple case of a MIFE scheme (private-key
setting) supporting pseudorandom permutations, introduced graphically in Figure 5.7. The
indistinguishability security notion quickly becomes prohibitive by imposing computational re-
strictions on adversaries: a valid attacker asking for functional keys corresponding to a pseudo-
random permutation E , can query the encryption oracle only for tuples (K 0,M 0

1 ,M 0
2 , . . . ,M 0

n)
and (K 1,M 1

1 ,M 1
2 , . . . ,M 1

n) such that:

E .Enc(K 0,M 0
1 ||M 0

2 || . . . ||M 0
n) = E .Enc(K 1,M 1

1 ||M 1
2 || . . . ||M 1

n) .

Since multiple and distinct message components (M 0
i ,M 1

i )i∈[n] can be encrypted during the
security experiment, then it must be the case that K 0 = K 12, and by the fact that E is a
keyed permutation we have M 0

i = M 1
i . Put differently, indistinguishability may merely not

be the right security notion for modelling the power of a real-world adversary with respect to
a class of pseudorandom permutations.

Instead, we remark that our goal of achieving unbreakability for implementations of block
ciphers shares similarities with the general notion of one-wayness. In what follows, we
formalize one-wayness for MIFE and show it suffices to attain unbreakability. Finally, we
show a similar result holds in the private-key case, although with a significant increase in the
arity of the supported functionality.

k: 1 2 · · · 127 128

1 0 · · · 1 0

M : 1 2 · · · 127 128

0 0 · · · 0 0

1 1 · · · 1 1

Figure 5.7: Ciphertexts are provided for the bits of the key K , as well as for each of the bits
in the binary decomposition of the message. For ease of exposition, we assume
both the key and the message are 128-bits long, with M = (0, 1, . . . , 0, 0).

5.2.1 One-Wayness for MIFE
Assume MIFE is an n-input scheme. The one-wayness game is defined with respect to a
challenge index set I ⊆ [n] and a function f . The adversary receives the public-keys3 from
I := [n] − I, denoted {mpki}i∈I , and a set of challenge ciphertexts corresponding to I,
and written {C ∗i }i∈I . The challenge ciphertext(s) are build by the one-wayness security
experiment, which samples uniformly at random a set of plaintexts (M1, . . . ,Mn), encrypts
them, and provides (part of) them to the adversary as the challenge(s). The winning condition
says the adversary wins if it successfully recovers at least one of the plaintexts corresponding
to the ciphertexts it received.

Definition 5.5 (One-Wayness for MIFE). Let MIFE be a multi-input functional encryption
scheme in the public-key (private-key) setting. The advantage of any PPT adversary A
against the one-wayness of MIFE with respect to a function f :M1 × . . .×Mn → C and
an index set I, is defined as:

Advow-mife
A,MIFE(λ) := Pr[OW-MIFEA,f,IMIFE (λ) = 1] ,

2Otherwise, the adversary trivially wins the game.
3If in the private-key setting, access to encryption oracles is given.
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where the security experiment OW-MIFEAMIFE(λ) is defined in Figure 5.8 for the public (private)
setting. We say MIFE is OW-MIFE-secure with respect to f and I if Advow-mife

A,MIFE(λ) is negligible.

OW-MIFEA,f,IMIFE (λ): // Public-Key FE
(msk, {mpk1, . . . ,mpkn})←$ Setup(1λ)
skf←$ MIFE.KGen(msk, f)
(M1, . . . ,Mn)←$ M1 × . . .×Mn

C ∗i ←$ MIFE.Enc(mpki,Mi),∀i ∈ I
{Ni}i∈I←$ A(skf , {mpki}i∈I , {C

∗
i }i∈I)

return
∨
i∈I
(
Mi = Ni

)

OW-MIFEA,f,IMIFE (λ): // Private-Key FE
msk←$ Setup(1λ)
skf←$ MIFE.KGen(msk, f)
(M1, . . . ,Mn)←$ M1 × . . .×Mn

C ∗i ←$ MIFE.Enc(msk,Mi),∀i ∈ I
{Ni}i∈I←$ AEncmsk,I(·)(skf , {C ∗i }i∈I)
return

∨
i∈I
(
Mi = Ni

)
Figure 5.8: The one-wayness security experiments defined for functional encryption schemes

in the public (left) and private (right) settings. In both cases, the adversary is
provided with ciphertexts corresponding to randomly sampled messages and is
asked to “extract” the underlying inputs. The adversary wins if it can successfully
recover at least one of the inputs.

The primary expectation is hardness in recovering any of the encrypted plaintexts if
functional-keys are issued for one-way functions candidates f .

5.2.2 OW-MIFE⇒ UBK
As stated in the introductory part, a major goal is to study to what extent a UBK imple-
mentation of a pre-specified block-cipher E is achievable. We show a two-input functional
encryption scheme being one-way secure concerning a class of pseudorandom permutations,
is sufficient in achieving UBK-secure implementations for that class.

Lemma 5.1 (OW-MIFE ⇒ UBK). Let E : K ×M → C denote a secure pseudorandom
permutation (block-cipher). Let MIFE denote a two-input public-key functional encryption
scheme achieving OW-MIFE security with respect to E and index set I = {1}. The program
CE .Eval described in Figure 5.9, achieves UBK-security (Definition 5.2) against any PPT
adversary A under the following advantage:

Advubk
A,CE .Eval(λ) ≤ Advow-mife

R,MIFE(λ) .

Lemma 5.1. We take the contrapositive. Let A be a PPT adversary against the UBK-security
of C.Evalrk. We construct a PPT reduction R that acts as an adversary against the OW-MIFE
game while producing an implementation for A as follows: first, the OW-MIFE game samples
the pair of keys (msk, {mpk1, mpk2}) ←$ Setup(1λ) . Next, R is given the functional key
skE corresponding to E . Since the index set I ← {1}, the OW-MIFE challenger replies
by providing mpk2 (since 1 ∈ I and mpk1 is not revealed) and the challenge ciphertext
corresponding to mpk1 (that is CK = Enc(mpk1,K)). R now defines the implementation
C.Evalrk to include the challenge ciphertext and parameters: (CK ,mpk2, skE). Note that using
these values, the UBK adversary A can obtain the encryption of any message M ′ ∈M.

Assume A returns the key K ′ after interacting with the implementation. The reduction R
simply returns K ′ as its output. If K = K ′ with non-negligible probability, then R succeeds
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C.Setup(1λ, E ,K ):
(msk,mpk1,mpk2)←$ MIFE.Setup(1λ)
skE←$ MIFE.KGen(msk, E)
CK←$ MIFE.Enc(mpk1,K )
C.Evalrk := MIFE.Dec
C.Evalrk.Hardwire(CK , skE ,mpk2)
return C.Evalrk

C.Evalrk(M ):
Hardwire: mpk2, CK , skE
CM←$ MIFE.Enc(mpk2,M )
C ← MIFE.Dec(skE ,CK ,CM )
return C

Figure 5.9: The candidate construction for obtaining a UBK-secure implementation of E ,
given a OW-MIFE secure 2-input functional encryption scheme MIFE. Correctness
follows immediately from the correctness of the MIFE scheme.

in breaking the OW-MIFE game, with the same probability that A breaks UBK, therefore
having: Advubk

A,CE .Eval(λ) ≤ Advow-mife
R,MIFE(λ).

5.2.3 The Private-Key Setting

The same result holds with respect to private-key MIFEs, but in a significantly different
manner. First, we remark that we cannot use a 2-input scheme in the same way we did in
the public-key setting: there is no master public key to be used to encrypt the message M .
Thus, instead of trying to substitute the role of mpk2, we simulate the entire message space
by providing the encryptions of {0, 1} for the entire binary length of M . Thus, the compiled
version selects the correct encodings of 0s and 1s based on the binary decomposition of M
and computes the correct input for the decryption algorithm. Knowing this information,
one can decrypt and learn E(K ,M ). If the MIFE scheme is function hiding, then K may
be “embedded” in the functional key. However, for the general case, we choose to put it
alongside the encodings 0s and 1s.

Lemma 5.2. Let E : K ×M→ C denote a secure pseudorandom permutation (block cipher)
whereM = {0, 1}n and C = {0, 1}n. Let MIFE denote a private-key, (n+ 1)-input functional
encryption scheme that is OW-MIFE-secure w.r.t. E and index set I = {n+ 1}. The program
in Figure 5.10 implements E and achieves UBK-security, against any PPT adversary A such
that:

Advubk
A,CE .Eval(λ) ≤ Advow-mife

R,MIFE(λ) .

Lemma 5.2. The correctness comes straightforward. UBK-security follows immediately. Let
A be the UBK adversary. We construct R that simulates the UBK security experiment (in
the view of A), while modelling a OW-MIFE adversary for the one-wayness game. Thus,
the OW-MIFE game samples uniformly at random a message M = (M1, . . . ,Mn,Mn+1=K)
and provides R with C ∗n+1 and the functional key corresponding to the E .Enc. Next, since
I = {n+ 1}, R can query the Encmsk,[n](·) oracles for the encodings of 0s and 1s (for position
in [n]), such that it can simulate {Ci,b})i∈[n],b∈{0,1}. In what follows, R will set CK to be C ∗n+1,
as received from the challenger and send the implementation to A. Note that R emulates
the UBK setup in the view of A. Assume that A returns K with Advubk

A,CE (λ). Knowing K , R
returns it as its guess for the challenge ciphertext (corresponding to n+1th input) and wins
the OW-MIFE game with the same advantage Advubk

A,CE .Eval(λ).
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C.Setup(1λ, E ,K ):
msk←$ MIFE.Setup(1λ)
skE←$ MIFE.KGen(msk, E)
for i← 1 to n:

Ci,0←$ MIFE.Enc(msk, (i, 0))
Ci,1←$ MIFE.Enc(msk, (i, 1))

CK←$ MIFE.Enc(msk, (n+ 1,K ))
C.Evalrk := MIFE.Dec
C.Evalrk.Hardwire(CK , {Ci,0,Ci,1}i∈[n])
return C.Evalrk

C.Evalrk(M ):
Hardwire: CK , {Ci,0,Ci,1}i∈[n]
CM ← C1,Mi

|| . . . ||Cn,Mn

return MIFE.Dec(skE ,CM ,CK )

Figure 5.10: A compiler providing a UBK-secure implementation for a given block cipher
E and a key K . The construction uses a n-input OW-MIFE-secure functional
encryption scheme MIFE (private key setting).

Weakening the Definition. As one can easily observe from the reduction in the proof
of Lemma 5.2, there is no real reason to provide the reduction R with oracle access to the
encryption procedure. Crafting a UBK-secure implementation for f : K × {0, 1}n → {0, 1}n,
requires only the encryption of the key of f and the encodings of 0s and 1s. It is easy to
show such a security notion is implied by the OW-MIFE notion we provide in Figure 5.8, and
it implies UBK-security.

5.3 Achieving One-Wayness from Standard Assumptions
In this part, we introduce a simple construction of a MIFE scheme that enjoys one-wayness.
It uses as an underlying primitive the private-key MIFE transform from [BKS16]; the latter
relies on any function-hiding private-key FE scheme, which can be instantiated from standard
assumptions. We prove the transform preserves one-wayness and show that it can be based
on an FE scheme achieving one-wayness by looking into the seminal FE construction for
general circuits by Goldwasser et al. [GKP+13].

5.3.1 A One-Way MIFE Transform in the Private-Key Setting

Roadmap. The bulk of this section follows from combining a number of steps: (1) first, we
review the construction of Goldwasser et al. in [GKP+13], and point out that in spite of its
complexity, it will serve as our starting point in achieving a candidate OW-MIFE scheme; (2)
we then obtain a candidate construction in the private-key setting by simply not publishing
the master public key; (3) by using the result of Brakerski and Segev [BS15], we obtain, in
a generic manner, a transform that achieves function-hiding in the private-key setting; (4)
finally, in order to obtain an n-input MIFE scheme in the private-key setting, we have the
choice to either apply the BKS generic transform in [BKS16], which increases the arity of the
function by 1 for each step, or, to apply the transform in [KS17], which doubles the arity of
the supported function at each step, at the cost of supporting “larger” circuits. Our goal
is a final construction achieving one-wayness. To this end, we transit through a chain of
implications, with each step essentially relying on the one-wayness of the underlying scheme.
Proofs are given for one-wayness of the underlying FE construction, as well as for each generic
transform to be used.
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FE.Setup(1λ, `, n):
msk← ∅
mpk← ∅
for i← 1 to `:

(mpki,mski)←$ ABE2.Setup(1λ)
mpk← mpk ∪mpki
msk← msk ∪mski

return (msk,mpk)

FE.KGen(msk, f):
skf ← ∅
for i← 1 to `:

ski←$ ABE2.KGen(mski,FHE.Evalif )
skf ← skf ∪ ski

return skf

FE.Enc(mpk,M ):
(hpk, hsk)←$ FHE.Setup(1λ)
for i← 1 to n:
φi←$ FHE.Enc(hpk,Mi)

Φ← (φ1, . . . , φn)
(Γ, L0

1, L
1
1, . . . , L

0
` , L

1
`)←$

←$ GS.Garble(FHE.Dec(hsk, ·))
for i← 1 to `:
ci←$ ABE2.Enc(mpki, (hpk,Φ), L0

i , L
1
i )

C ← (Γ, c1, . . . , c`)
return C

FE.Dec(skf ,C ):
(Γ, c1, . . . , c`)← C
for i← 1 to `:
Ldi
i ← ABE2.Dec(ski, ci)

return GS.Eval(Γ, Ld1
1 , . . . , L

d`

` )

Figure 5.11: The functional encryption scheme for boolean circuits Cf : {0, 1}n → {0, 1}
as introduced in [GKP+13]. ` stands for the ciphertext’s lenght of FHE, while
FHE.Evalif : K × {0, 1}n·` → {0, 1} denotes the function that applies Cf on the
encrypted input.

5.3.1.1 Step 1 - FE for Boolean Circuits [GKP+13].

Special classes of functions, such as Boolean circuits with 1-bit of output, are functional-
encryption suitable. Such FE constructions can be achieved assuming the existence of ABE
(Definition 2.9), FHE (Definition 2.6) and of Garbling Schemes (Definition 2.7).

The construction in [GKP+13]. Goldwasser et al. propose to regard FE for circuits
with a single-bit of output through the lenses of FHE (Figure 5.11). In their scheme, the
encryption procedure:

• Generates on the fly the keys for an FHE scheme – namely (hpk, hsk) – and encrypts
the input M bitwise; let Φ denote the FHE ciphertext.

• Next, Yao’s garbling scheme GS is used to garble the circuit “FHE.Dec(hsk, ·)” and
obtain two labels L0

i , L
1
i per input bit Mi;

• Finally, the scheme encrypts Φ w.r.t. multiple ABE’s schemes. In some sense, Φ
corresponds to an attribute: if Cf (M1, . . . ,Mn) = 1 a label L0 is revealed. Otherwise, a
label L1 is returned (this is obtained via a two-outcome ABE).

A functional key for a circuit consists in an ABE key for the “FHE.Eval” circuit. The
intuition is that one decrypts an ABE ciphertext with an ABE key; this corresponds to
applying FHE.Eval over a FHE ciphertext. Depending on the output (which is a bit b), a
label Lbi is revealed. Once the labels are known and provided to the garbled circuit (as part
of the ciphertext), the decryptor evaluates and obtains FHE.Dec(f(Φ)), thus yielding the
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expected output in a functional manner. Thus, the master keys for the FE scheme consist
only of ABEs’ msk and mpk. The number of ABE keys needed corresponds to the length of
the FHE ciphertext.
As suggested by the authors, the result can be extended for a circuit with a constant

number n of output bits almost trivially, by “replicating” the construction in [GKP+13] for
each bit of output, incurring a factor n blow-up in the ciphertext length. Most importantly,
the scheme is proven semantic secure: Pr[FULL-SIM-FEA,SFE (λ) = 1]− 1

2 is negligible, where
the FULL-SIM-FE experiment is described in Figure 2.3.

Lemma 5.3. Let f : {0, 1}k × {0, 1}n → {0, 1}n be a secure pseudorandom permutation.
Let FE be the FULL-SIM-FE-secure (public-key) functional encryption scheme introduced in
[GKP+13] supporting circuits Cf : {0, 1}k+n → {0, 1}n. The FE scheme enjoys one-wayness
(Definition 5.5) w.r.t. f and index set I = {1}.

Lemma 5.3. Informally, FULL-SIM-FE guarantees that the decryptor does not learn more
information on M than what f(M ) reveals. Let us suppose that an adversary A against the
one-wayness of the FE scheme exists; we then build a PPT algorithm R that runs A and
wins the FULL-SIM-FE game. Assuming the existence of a simulator S, the FULL-SIM-FE
game proceeds by sampling (msk,mpk), and then receiving (M , f) from R. Depending on the
setting, the challenger replies with skf and a ciphertext C which is either correctly generated
or is obtained from S. R forwards the ciphertext to A. If A replies with M , then R returns
b′ = 0. If A replies with any other value M ′ 6= M , then R returns b′ = 1.
Analysis. If b = 0, then A returns M with Advow-mife

A,FE (λ), as it simulates perfectly the setting of
the OW-MIFE game. On the other hand, when b = 1, then A receives a ciphertext that leaks
M only through f(M ), A’s probability of returning M is essentially bounded by Advowp

A,f (λ).
With overwhelming probability, for this second case, the adversary will return M ′ 6= M .
Directly, R returns 1 with probability 1 − 1/2 · Advow-mife

A,FE (λ) − 1/2 · Advowp
A,f (λ). Now, if

Advow-mife
A,FE (λ) 6∈ Negl then R breaks FULL-SIM-FE.

5.3.1.2 Step 2 - FE in the Private Key Setting.

Given any indistinguishable secure functional encryption scheme in the public-key setting,
its counterpart in the private-key setting is also secure. This observation is straightforward,
as remarked by [BS15, p. 9], and we show it holds even when one-wayness is considered,
as opposed to indistinguishability Put differently, Figure 5.11 immediately yields a secure
one-way scheme in the private-key setting for circuits with one bit of output.

Lemma 5.4. Let f : {0, 1}k × {0, 1}n → {0, 1}n be a secure pseudorandom permutation. Let
FE be a public-key functional encryption scheme supporting circuits Cf : {0, 1}k+n → {0, 1}n,
and let FE be the private-key scheme obtained by setting the master public-key as part of
the master secret key. If FE is OW-MIFE-secure w.r.t. f and index set I, then FE enjoys
OW-MIFE security w.r.t. the same f and I.

Proof. The reduction is straightforward. A, the OW-MIFE adversary against FE, receives
from the reduction R a ciphertext and a functional key corresponding to f , generated by
the OW-MIFE experiment defined for FE. The challenge ciphertext C ∗ corresponds to M ∗.
We note that as per our definition of OW-MIFE, the adversary cannot make any encryption
request as it already has the challenge ciphertext corresponding to the sole input of the
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function – although a stronger one-way definition may allow for this. Hence, if A returns
M ∗, then R wins the game with the same advantage by simply returning M ∗. Therefore,
Advow-mife

A,FE (λ) ≤ Advow-mife
R,FE (λ).

5.3.1.3 Step 3 - Achieving Function Hiding.

Intuitively, function-hiding ensures that a public-key encryption scheme does not leak infor-
mation about the function through the key it generates. Brakerski and Segev [BS15] show
a simple transform, applicable generically to any private-key FE scheme, that results in a
scheme achieving function hiding. We give the original transform as it is, but note that the
double encryption technique [NY90] plays no role in the context of one-wayness.

Definition 5.6 ([BS15]). Let FE be a private-key FE scheme. A function-hiding private-key
functional encryption scheme FE is obtained as follows:

• FE.Setup(1λ) : samples msk ←$ FE.Setup (1λ) and two secret-key (K ,K ′) ←$ SE.
Setup2(1λ) from a semantic-secure secret-key encryption scheme SE. It sets msk ←
(msk,K ,K ′).

• FE.Enc(msk,M ) : given a plaintext M , the ciphertext is obtained by running the under-
lying scheme as follows: C←$ FE.Enc(msk, (M ,⊥,K ,⊥)).

• FE.KGen(msk, f) : the key for a function f is generated as follows - first the circuit
describing f is encrypted w.r.t. K ,K ′ and obtaining c, c′. A circuit Uc,c′ which decrypts
c and applies f on input is constructed. Then skf←$ FE.KGen(msk, CUc,c′ ) is returned.

• FE.Dec(skf ,C ) : applying Uc,c′ on (M ,⊥,K ,⊥) is equivalent to the application of f(M ).

An important remark on the construction above is the fact that K gets encrypted, but is
not part of the message space. It is, in turn, part of the master secret key. Thus, we assume
that whatever functional keys are queried, they will only process the message-dependent part
in the given plaintext.

Lemma 5.5. Let f : {0, 1}k × {0, 1}n → {0, 1}n be a secure pseudorandom permutation and
let FE be a functional encryption scheme supporting circuits Cf : {0, 1}2·(k+n)+2·k → {0, 1}n.
If FE is a OW-MIFE-secure private-key functional encryption scheme w.r.t. f and index set
I = {1}, then, the FE in Definition 5.6 enjoys OW-MIFE-security for the same function f
and index set I.

Lemma 5.5. Assuming that A wins the OW-MIFE game against FE, we build a reduction
R winning the OW-MIFE game against the underlying scheme FE. First, the reduction R
defines the message space of the form (M ,⊥,K ,⊥). Next, R samples (K ,K ′), and computes
the corresponding Uc,c′ for f . We note that (K ,K ′) are not formally part of the message,
as they are included in msk. By interacting with the OW-MIFE challenger, a functional key
for Uc,c′ and a challenge ciphertext C ∗ corresponding to (M ,⊥,K ,⊥) are obtained by R. R
forwards them to A. When A returns its “guess” for M ′, R forwards it to the challenger and
wins the OW-MIFE game against FE under the same advantage that A wins the OW-MIFE
game against FE.
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5.3.1.4 Step 4 - Achieving a Multi-Input Scheme.

Expanding a single-input FE scheme (private-key setting) into one supporting multiple inputs
can be done via a generic transform. The idea is to split a single input of – say n · l – into n
inputs of length l, while having an aggregator that “glues” the inputs before a function is to
be applied on them. Two main transforms have been proposed, working sequentially [BKS16]
or using a “divide-and-conquer” approach [KS17]. Here we focus on the straightforward,
sequential approach, which relies on the following building blocks: (1) a function-hiding,
private-key single-input scheme FE1; (2) a private-key t-input scheme FEt; (3) a (puncturable)
pseudorandom function PRF.

We review the transform in [BKS16] – from now on referred to as BKS – which works as
follows:

• MIFE.Setup: samples mskout←$ FE1.Setup(1λ) and mskin←$ FEt.Setup(1λ). The mas-
ter key is set as msk← (mskin, mskout).

• MIFE.KGen : given msk and f ∈ Fλ and z - a randomly sampled bitstring, a functional
key for skf←$ FE1.KGen(mskout, Df,⊥,z,⊥) is provided:

Df0,f1,z,u(msk∗,K , w):
if msk∗ = ⊥

return u
r ← PRF.Eval(K , z)
return FEt.KGen(msk∗, Cfw ; r)

Cfw((x1, x2), x3, . . . xt, xt+1):
return f(x1, x2, x3, . . . xt+1)

• MIFE.Enc : given msk, the message M = xi and index position i, the encryption proceeds
as follows:

– for (x1, i = 1): a new msk∗←$ FEt(1λ) is generated on the fly, as well as a PRF
key K←$ PRF.Setup(1λ) and s←$ {0, 1}λ. Then, the following are computed:

C1←$ FE1.Enc(mskout, (msk∗,K , 0))

sk1←$ FEt.KGen(mskin, AGGx1,⊥,0,s,msk∗,K )
where AGG is defined as follows:
AGGx0

1,x
1
1,a,s,msk∗,K ((x0

2, x
1
2, τ2, s2, v2), . . . , (x0

t+1, x
1
t+1, τt+1, st+1, vt+1)):

if s2 = . . . = st = s:
return (v2, . . . , vt) and HALT

Set xi ← xai for i← 2 to t+ 1
Set ri ← PRF.Eval(K , τi) for i← 2 to t+ 1
return

(
FEt.Enc(msk∗, (x1, x2), 1; r1), . . . ,FEt.Enc(msk∗, xt+1, t; rt)

)
– for (xi, i ∈ {2, . . . , t+ 1}):

Ci←$ FEt.Enc(mskin, (xi,⊥, τi,⊥,⊥), i− 1)

• MIFE.Dec: first, a secret sk∗ is obtained by decrypting C1 under skf . Then a ciphertext
C ∗ is obtained by decrypting (C2, . . . ,Ct+1) under sk1. Finally, C ∗ is decrypted under
sk∗ and the f(x1, . . . , xt, xt+1) is recovered.
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Remark 5.1. As shown by its authors, the BKS transform described above enjoys the full
selective security notion s-IND-MIFE-CPA (i.e. FHIDE). The authors also show how to reach
adaptive security, but this does not constitute a priority for this work. As an independent
remark with potentially useful consequences, we are now able to state that the original security
property achieved by the scheme suffices for proving directly that puncturable pseudorandom
functions admit UBK-secure implementations.

Lemma 5.6 (UBK Implementations for Puncturable PRFs). Let MIFE be the n+1 input and
fully s-IND-FE-CPA-secure scheme defined over {0, 1}×{0, 1}× . . . {0, 1}×K and supporting
functional keys for a class C of puncturable PRFs (Definition 2.2). Let pPRF = (Setup, Eval,
Puncture) denote a puncturable pseudorandom function such that Eval : {0, 1}k × {0, 1}n →
{0, 1}n. Let MIFE denote a s-IND-FE-CPA-secure n+1 input functional encryption scheme
for general circuits. Then, an UBK secure implementation of pPRF exists such that:

Advubk
A,C.Evalrk(λ) ≤ Advfhide

R,MIFE(λ) .

Lemma 5.6. The description of the implementation is trivial: it consists of the encryptions
of 0 and 1 for each of the first n input slots, as well as the functional key that computes
pPRF (analogous to the one presented in Figure 5.10).

The implementation is UBK secure down to the full s-IND-MIFE-CPA security of the
underlying MIFE scheme. The reduction algorithm R sets as the challenge messages n pairs
of the form (0, 0) and (1, 1) (for each input slot). For the final slot – corresponding to the
key – two queries are made: on the one hand side, for the normal pPRF key KpPRF and on
the other side, for the punctured key K ∗pPRF together with real value at the punctured point;
next, two functional key queries are made, one for the circuit computing the pPRF under the
normal key, and one computing the pPRF under the punctured key and also using the real
value pPRF evaluation at the punctured point.

By the correctness of the pPRF, the two circuits are equivalent. Moreover, the two circuits
return the same value when both are fed with any input M . The full s-IND-FE-CPA game
returns the MIFE encryptions of 0 and 1 per each position i ∈ [n], the encoding of either the
normal or the punctured key for position n+1, as well as one of the two functional keys. If an
UBK adversary succeeds in recovering the (normal or punctured) key, the reduction chooses
to return 0 and 1 depending on a normal/punctured key and wins the full s-IND-FE-CPA
game subsequently.

We state two immediate consequences with more relevant impact to practice:

Proposition 5.1 (A UBK-secure Stream Cipher Implementation). Let pPRF : {0, 1}k ×
{0, 1}n → {0, 1}n denote a puncturable pseudorandom functions, and let C.Evalrk be its UBK
secure implementation. Let SE denote a stream cipher where SE.Setup := pPRF.Setup and
SE.Enc := (pPRF.Eval(K ,R)⊕M ,R) Then, an UBK-secure implementation for SE exists.

Proposition 5.1. The implementation queries the C.Evalrk with randomness R 4 and obtains
pPRF.Eval(K ,R). The proof follows immediately via the security of the implementation of
the pPRF.

4 Which can be generated by querying another UBK-secure implementation of pPRF′ with message M .

— 96 —



Ch
ap

te
r5

A similar result can be stated with respect to block ciphers. If there exists a UBK-secure
implementation for a pPRF, the Luby-Rackoff [LR86] transform provides immediately a block
cipher.

Proposition 5.2 (A UBK-secure Block Cipher Implementation). Let pPRF : {0, 1}k ×
{0, 1}n → {0, 1}n denote a puncturable pseudorandom functions, and let C.Evalrk be its UBK
secure implementation. Let PRP : {0, 1}k×{0, 1}n → {0, 1}n denote the pseudorandom permu-
tation obtained using the Luby-Rackoff transformation. Then, a UBK-secure implementation
for PRP exists.

Proposition 5.2. Any adversary extracting the key can be converted into an adversary winning
the UBK game against the C.Evalrk.

We now turn to the construction of a UBK-secure implementation for pseudorandom
permutations starting from the multi-input functional encryption scheme. There are two
main paths one can explore. Essentially, the first one would rely on the fact that the original,
single-input, private-key and function-hiding scheme is one-way and the transform above
produces an implementation by issuing encodings of 0 and 1 as well as a functional key that
embeds the key of the permutation. However, such an approach is extremely convoluted as it
has to explore the intricate nature of the MIFE scheme by making use of the previous steps
described5. Thus we defer it to future work.
The second approach is, by far, simpler to follow, as it exploits the already proven full

s-IND-MIFE-CPA security of the scheme. Concretely, in the first part, we consider a keyed
PRP operating on a short input, say m out of n bits. Equivalently, it has n-m bits of
input “fixed” to some constant and m bits “free”. We show that any s-IND-MIFE-CPA-secure
scheme for this class of PRPs is also OW-MIFE-secure. Then once we showed that such
implementations exist, we can show that there exists OW-MIFE-schemes for PRPs with m+1
free bits, and via n-m transitions, up to n bits of freedom.

Lemma 5.7. Let PRP : {0, 1}k × {0, 1}n → {0, 1}n be a secure pseudorandom permutation.
Let PRPK ,n−m : {0, 1}m → {0, 1}n denote the restriction of the PRP keyed with a randomly
sampled K and having m bits free and n − m bits fixed to some constant. Let MIFE be
a fully s-IND-MIFE-CPA-secure scheme with m+1 inputs defined over the message space
{0, 1} × . . .× {0, 1} ×K → {0, 1}n supporting the circuit representation of PRPK ,n−m. Then,
MIFE is OW-MIFE-secure with respect to PRPK ,n−m and index set {m+ 1}.

Proof. Suppose that on the one hand there exists a lookup-table implementation6 for the
restriction PRPK ,n−m, containing 2m entries. On the other hand, suppose there exists a
genuine circuit that emulates PRPK ,n−m. Both can be build by a reduction R by having
knowledge of the key K .
We proceed via a reduction to the full s-IND-MIFE-CPA game. Let A stand for the

adversary against the OW-MIFE game and R stand for the reduction. R sets as the challenge
messages for the first n positions the following values:

(
{(0, 0), (1, 1)}i∈[n]

)
. This is to ensure

it gets encryptions of 0 and 1 per each position. The full s-IND-MIFE-CPA game replies
with MIFE.Enc(msk, 0, i) and MIFE.Enc(msk, 1, i), which can be used by R to construct the
encryption oracle for the OW-MIFE adversary.

5More specifically, of the one-wayness of the single-input FE scheme keyed by mskout.
6We assume that the input-output behaviour does not leak the key of the PRP.
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For position n+1, R prepares the following challenge message:
(
K , $

)
, where $ denotes an

element sampled uniformly at random over K.
R also submits two functional-key queries for circuits that encode, on one hand the circuit

computing PRPK ,n−m(·) and on the other hand the LookupTable.Return() functionality.
Receiving all the components from the full s-IND-MIFE-CPA game means that R receives

the functional key for the circuit computing the restriction of the PRP to m bits of freedom
(i.e. PRPK ,n−m(·)), as well as the encodings of 0/1 per each input and the encoding of K/$
for the n+1th input. This suffices to simulate the OW-MIFE game in the view of A.
The simulation is correct, as the two functions are equivalent and constitute valid imple-

mentations in the view of A. If the adversary returns the valid key K , R returns b′ = 0.
When A returns K ′ 6= K , R returns a guess b′←$ {0, 1}. Thus, R has a negligible advantage
in winning the s-IND-MIFE-CPA game, meaning that MIFE is one-way secure. As a rapid
consequence, there exists UBK-secure implementations for PRPK ,n−m(·), for any randomly
sampled K and for any choice of the fixed/free bits.

On a separate note regarding the proof above, we remark that a very different theoretical
approach would split the output of PRPK ,n−m(·) as n concatenations of a puncturable PRF.
Assuming that pPRF : {0, 1}k+l×{0, 1}m → {0, 1}, there exist (with overwhelming probability,
a multiset of potentially larger) keys K1, . . . ,Kn to key pPRF such that:

PRPK ,n−m(M ) = pPRF(K1,M )|| . . . ||pPRF(Kn,M ) .

By Lemma 5.6, such pPRFs admit UBK-secure implementations, and thus can be used in the
proof of Lemma 5.7 instead of a lookup table.

Next, we show that assuming that UBK-secure implementation for PRPK ,n−m(·) exist, then
there exist a OW-MIFE-secure multi-input functional encryption scheme for PRPK ,n−m−1(·),
having m+1 ≤ n free variables. Applying this step n−m times leads to the existence of UBK
secure implementation for PRPK (·), via Lemma 5.2. However, the size of implementations
obtained via BKS when instantiated with the scheme in Section 5.3.1.1 is not compact: the
space complexity exceeds the one of a lookup table while “chaining” functions [GKP+13, p.23].

Lemma 5.8 (From m → m+1 free inputs). Let PRP : {0, 1}k × {0, 1}n → {0, 1}n be
a secure pseudorandom permutation. Let C.Evalrki denote an UBK secure implementation
of PRPK ,i||n−m−1 : {0, 1}m → {0, 1}n, where i ∈ {0, 1} and PRPK ,i||n−m−1 denotes the
restriction of the PRP keyed with a randomly sampled K , having m bits free, the m+1th bit
set to i and n −m − 1 bits fixed. Let MIFE be a full s-IND-MIFE-CPA-secure scheme with
m+2 inputs defined over the message space {0, 1} × . . . × {0, 1} × K → {0, 1}n supporting
the circuit representation of PRPK ,n−m−1. Then, MIFE is OW-MIFE-secure with respect to
PRPK ,n−m−1 and index set {m+ 2}.

Proof. Again, we use a reduction to the full s-IND-MIFE-CPA game. As for the base case in
Lemma 5.7, the reduction obtains the encryptions of 0 and 1 for each position i ∈ [m+ 1].
For position m+2, the reduction sends the real key K and a randomly sampled value.

The functional key query is executed with the following arguments: on the one hand, there
is the real circuit computing PRPK ,i||n−m−1. On the other hand, there is the circuit that
contains the two UBK-secure implementations: C.Evalrk0||C.Evalrk1 and returns the output of
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the relevant implementations. For the case of the BKS transform instantiated from [GKP+13],
the sizes of the two implementations exceed the ones of a lookup-table, and we can safely set
C.Evalrkb as LUTb. This is due to the size of the msk∗b for m bits of input, which is larger than
the size of the lookup table with 2m inputs. Equivalently, the advantage of an adversary in
obtaining the keys from the lookup table implementations is negligible. The advantage of an
adversary in recovering the secret key giving the BKS implementations obtained on top of
the two implementations with m free bits is negligible.
Clearly, the two settings are equivalent, as they both describe the same PRPK ,i||n−m−1.

The reduction then emulates the OW-MIFE game with respect to an adversary A, being able
to answer its oracle queries. If the adversary extracts K with noticeable probability, R can
distinguish between the two settings of the full s-IND-MIFE-CPA game.

In the previous reduction, the size of the UBK implementation corresponding to case m+1
grows considerably, as it needs to support a functional-key for a circuit of size twice the size
of the implementation corresponding to case m. To prevent a blow-up in the size parameters,
we remark that the implementation corresponding to case m+1 supports a functional-key
for the circuit representation of PRPK ,n−m−1 padded with enough terms to match the sizes
of the implementations of PRPK ,0||n−m and PRPK ,1||n−m. As we would like a result to be
generic, in this work we assume that the “compact” implementation supporting strictly the
circuits in the class PRPK ,n−m−1 is UBK-secure. Put differently, padding plays no role in
the UBK-security and can be safely removed, obtaining a more compact implementation for
PRPK ,n−m−1.
One can also observe that BKS achieves a relaxed version of the s-IND-MIFE-CPA game,

where a single challenge tuple of the form {(0, 0), (1, 1)} is declared a priori, as well the key
K of the PRP and the PRP circuit itself. Such a game would ask to distinguish between
two settings: in the real setting, the functional key is used to compute the PRPK (·). In the
ideal setting, the AGGs will use the UBK-secure implementations. More specifically, the
BKS transform, when decrypting the ciphertexts in position one (corresponding to 0 and
1), returns two new functional keys, issued under msk∗0 and msk∗1, which need to support
PRPK ,n−m−1. Let the BKS ciphertext corresponding to position 1 and input M1 = b ∈ {0, 1}
consist of the following two elements:

C b
1←$ FE1.Enc(mskout, (msk∗b ,Kb, 0)) and skb1←$ FEt.KGen(mskin, AGGb,⊥,0,s,msk∗b ,Kb)

An m + 2-MIFE can be built on top of two m + 1-MIFEs as follows: (1) take the above
ciphertext corresponding to M1 = b; (2) tweak the AGGb,⊥,0,s,msk∗b ||LUT,Kb circuit to compute
directly PRPK (M1|| . . . ||Mm) via LUT and output an encryption of it(

FEt.Enc(msk∗, (PRPK (M1|| . . . ||Mm), x1, x2), 1; r1), . . . ,FEt.Enc(msk∗, xt+1, t; rt)
)

One can observe that the two settings of this weakened security experiment are functionally
equivalent.
Finally, by repeating the previous argument, one can argue that if a PRP keyed with a

randomly sampled K admits UBK secure implementations, there exists an MIFE construction
that emulate the PRP with all its n-bit input being free (i.e. emulating PRPK (·)).

Theorem 5.1. Let PRP : {0, 1}k ×{0, 1}n → {0, 1}n be a secure pseudorandom permutation.
Let MIFE be a full s-IND-MIFE-CPA-secure scheme with n+1 inputs defined over the message
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space {0, 1} × . . . {0, 1} × K → {0, 1}n supporting the circuit representation of PRP. Then,
MIFE is OW-MIFE-secure.

Theorem 5.1. The proof follows as a consequence of the base case presented in Lemma 5.7
and of the transitory step from Lemma 5.8, as we can show that there exist two UBK-secure
implementations for two PRPs having all but one bits of the input free: one having the fixed
input set to 0 and the other set to 1. We can use the two implementations to feed in the MIFE
scheme in contrast to having it running with respect to the real circuit that describes PRP(·).
Thus, down to the s-IND-MIFE-CPA of the scheme, the two settings are indistinguishable,
meaning that an MIFE supporting PRP(K , ·) is OW-MIFE-secure.

Informally, we remark that a different approach to tackle the space complexity issue may
use an input slot to “encode” groups of r bits, instead of a single bit. In such a way, one can
heavily decrease the arity of the MIFE scheme: from n to n/r supported inputs. But now,
for each group of r bits there must be 2r ciphertexts issued. We leave for future work the
investigation of such a method built on top of a more efficient MIFE scheme [KS17].

5.3.2 Does iO-obfuscation of PRP Guarantee Their UBKSecurity?

Assume the existence of an iO obfuscator for a class of circuits taking l bits as input. Now,
suppose there exists an UBK-secure implementation for a particular pseudorandom permuta-
tion (Section 5.3.1), the implementation not relying on the iO-security of the obfuscator. Let
l stand for the size of this UBK-secure implementation.

5.3.2.1 Best Possible Obfuscator

As stated in [BGI+01], circuits for which there is no virtual black-box obfuscator, exist. The
idea behind introducing best-possible obfuscation (BPO) [GR07; Chi15] was to capture what
happens if no obfuscator can hide some specific information. Apparently, BPO would be an
intermediate notion between VBB and iO. However, it turns out that it is, in fact, equivalent
to iO [GR07; Chi15]. We provide below the definition of a BPO.

Definition 5.7 (Best Possible Obfuscator, [Chi15]). A BPO obfuscator O is a PPT algorithm
having the correctness and security defined identically to an indistinguishability obfuscator.
Moreover, for any PPT adversary A, there exists a PPT S such that: for all circuits
C0, C1, |C0| = |C1| with C0 ≡ C1 we have that:

Pr[A(O(1λ, C0)) ≈c S(1λ, C1)]

belongs to 1−Negl(λ).

As we know from the work of Goldwasser et al. [GR07], iO is the best possible obfuscator
(BPO), meaning that if some data is leaked on the circuit, then this leak is unavoidable. Stated
equivalently, if the BPO does not hide some information, then that piece of information
cannot be hidden by any equivalent representation of that program. Now, assume that
applying iO(PRP(K , ·)||padding) does not hide the key K of the PRP (i.e. the obfuscated
circuit is not UBK-secure). If this is the case, but at the same time we do have an equivalent
implementation that is UBK-secure, then the iO obfuscator is not the best possible obfuscator
for the class of PRP we consider, which contradicts the working hypothesis. Thus, it must
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be the case an iO-obfuscation of PRP(K , ·) protects the key. We make use of this result –
formalized in Corollary 5.1 – in the following part (Section 5.4), in the sense that the circuits
that will be obfuscated will not leak the secret-keys embedded in them.
Corollary 5.1. Let E be a secure pseudorandom-permutation and let CE .Evalkr be a secure
implementation w.r.t. E and a key K . Let iO be a sub-exponentially secure indistinguisha-
bility obfuscator supporting circuits of size |CE .Evalkr | bits. Then, applying iO on the circuit
describing E(K , ·) (appropriately padded) yields a UBK-secure implementation for E keyed by
K .
Corollary 5.1. It follows as a consequence of the work of Goldwasser and Rothblum [GR07]
and by Theorem 5.1. Take the contrapositive and assume the program obtained via iO(CE,K (·))
does not hide the embedded key K , while we know about the existence of an equivalent program
hiding it (Theorem 5.1). Then, there exists two PPT algorithms A,S such that a distinguisher
can differentiate their outputs: |Pr[K←$ A(iO(CE,K (·)))]−Pr[K←$ S(1λ,C.EvalrK )]| 6∈ Negl.
This contradicts the definition of BPO-security property. Finally, this means that iO is not
the best possible obfuscator, which contradicts [GR07; Chi15].

5.4 UBK-Secure Implementations from iO and OWF
In this section, we employ iO to build UBK-secure implementations for pseudorandom
permutations. Our proof relies on the indistinguishability property of the obfuscator. As we
transit through a sequence of hybrids, we seek for formal guarantees that the obfuscated
circuits do not leak information on the sensitive data they encapsulate, even when facing
white-box adversaries.

5.4.1 A MIFE Scheme in the Public Setting
We commence with an overview of a multi-input functional encryption scheme. Proposed by
Goyal, Jain and O’Neill [GJO16], it improves on the construction of Goldwasser et al. from
[GGG+14]. The latter achieves public-key MIFE on top of iO. Finally, we prove that a
slightly modified version of their construction provides an UBK-secure implementation for
pseudorandom permutations. We point the reader to the original description for a complete,
and perhaps more clear understanding of the scheme.
• MIFE.Setup: assuming the arity of the supported functions is n, the Setup algorithm

samples 2 · n, pairs of PKE keys:(
pk0

i , sk0
i )←$ PKE.Setup(1λ) and

(
pk1

i , sk1
i )←$ PKE.Setup(1λ) .

Thus, each input i ∈ [n] is associated with the two pairs. Moreover, a circuit Ci is built
for each input:

Ci ←
Hardwire : pk0

i , pk1
i ,Ki

Input : c0
i , c

1
i ,M ,R0

i ,R1
i

Execute :
if c0

i 6= PKE.Enc(pk0
i ,M ; R0) ∨ c1

i 6= PKE.Enc(pk1
i ,M ; R1)

return ⊥
return PRF.Eval(Ki, c

0
i ||c1

i )

(5.1)
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where the Ki corresponds to a PRFi, and P corresponds to a one-way function. The
circuit Ci is meant to provide a commitment to the two ciphertexts – through the
evaluation of the PRF – under the hypothesis that the two ciphertexts have been
correctly evaluated. Ci is then obfuscated as Ci←$ O(Ci).
Finally, the keys are set as:

msk←
⋃
i∈[n]

(sk0
i , sk1

i ,Ki) mpk←
⋃
i∈[n]

(pk0
i , pk1

i , Ci, P )

• MIFE.Enc(mpk, i,M ): for position i, the MIFE ciphertext consists of two PKE-generated
components encrypting the same plaintext Mi (for some i ∈ [n]), and a PRF evaluation
over these ciphertexts:

c0
i ←$ PKE.Enc(pk0

i ,Mi; R0) c1
i ←$ PKE.Enc(pk1

i ,Mi; R1)

πi←$ Ci(c0
i , c

1
i ,Mi,R0,R1)

Thus, the ciphertext is simply set as: Ci ← (c0
i , c

1
i , πi) and this step is repeated for each

of the n inputs of the MIFE scheme.

• A functional key skf for a function f is an obfuscation of a circuit that: (1) decrypts
PKEs’ ciphertext; (2) recovers the plaintext M ; and (3) computes f(M ). In a sense,
the secret-keys of the PKE are embedded in the obfuscated circuit.

Cf ←
Hardwire : (sk0

i ,Ki, P )i∈[n]

Input : {c0
i , c

1
i , πi}i∈[n]

Execute :
for i← 1, n :

if P (PRF.Eval(Ki, c
0
i ||c1

i )) 6= P (πi)
return ⊥

return f(PKE.Dec(sk0
1, c

0
1), . . . ,PKE.Dec(sk0

n, c
0
n))

skf←$O(Cf )

(5.2)

• Decryption works in a straightforward manner, by feeding the obfuscated circuit of skf
with the n inputs representing a ciphertext:

skf ((c0
1, c

1
1, π1), . . . , (c0

n, c
1
n, πn)) .

5.4.2 UBK-Secure Implementations from [GJO16]
The spirit of the unbreakability security game is to prohibit the adversary from extracting
an embedded key from a given implementation of a cryptographic primitive. We have seen
that the notion of one-wayness we propose for multi-input functional encryption is shown to
imply UBK. However, we observe the OW-MIFE game can be further relaxed in the public
key setting, in the following sense: considering a PRP : K ×M → C, we can encrypt PRP’s
key K with respect to the first slot of the MIFE – say C1 – and then encrypt the plaintext
on the fly, under the second slot. Thus, only two slots are needed. We stress that, as C1 is
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generated once, there is no need to allow the adversary to query for a second C ′1 6= C1. Put
differently, in such a relaxed OW-MIFE game, the obfuscated circuit C occurring in [GJO16]
accepts a single ciphertext for position 1.

From these reasons, we show directly how a UBK-secure implementation can be obtained
from a simplified version of [GJO16], without transiting through the one-wayness of the
original scheme.

C.Setup(1λ,K , E):
for i← 1 to 2:

Ki←$ PRF.Setup(1λ)(
pk0
i , sk

0
i )←$ PKE.Setup(1λ)(

pk1
i , sk

1
i )←$ PKE.Setup(1λ)

c0
1←$ PKE.Enc(pk0

1,K ; R0)
c1

1←$ PKE.Enc(pk1
1,K ; R1)

π1←$ PRF.Eval(K1, c
0
1||c1

1)
C1 ← (c0

1, c
1
1, πi)

C2 ← . . . (Right Column)
skE ← . . . (Right Column)
C.EvalrK ← (skE , C2, pk0

2, pk1
2)

return C.EvalrK

C.EvalrK (M ):
Hardwire : (skE , C2, pk0

2, pk1
2)

c0
2 ← PKE.Enc(pk0

2,M ; R0)
c1

2 ← PKE.Enc(pk1
2,M ; R1)

π2 ← C2(c0
2, c

1
2,M ,R0,R1)

return skE((c0
2, c

1
2, π2))

C2 ←
Hardwire: pk0

2, pk1
2,K2

Input: c0
2, c

1
2,M ,R0

2,R1
2

Execute:
if c0

2 6= PKE.Enc(pk0
2,M ; R0)∨

∨c1
2 6= PKE.Enc(pk1

2,M ; R1)
return ⊥

return (PRF.Eval(K2, c
0
2||c1

2))
C2←$ O(C2)

CE ←
Hardwire: (sk0

i ,Ki)i∈[2],C1
Input: {c0

2, c
1
2, π2}

Execute:
if PRF.Eval(Ki, c

0
i ||c1

i ) 6= πi
return ⊥

return f(PKE.Dec(sk0
1, c

0
1),PKE.Dec(sk0

2, c
0
2))

skE←$ O(CE)

Figure 5.12: A slight modification of the scheme in [GJO16]. A generic construction of a
UBK-compiler from sub-exponentially secure iO, public-key encryption and pseu-
dorandom function. In [GJO16, Theorem 3], the authors prove the construction
achieves indistinguishability. The PRF is defined over KPRF × (C × C) → Y.
As we only seek for one-wayness, we do not require the puncturability from
the PRF. The PKE schemes are defined over KPKE ×M → C, while O is a
sub-exponentially-secure indistinguishability obfuscator. The correctness of the
construction follows similarly to the one of the MIFE in [GJO16].

Our proof for one-wayness covers the case of two input functions solely. This suffices for
building white-box implementations of PRPs (see Lemma 5.1) and allows a relatively clear
exposition. However, it is not hard to derive a proof for the general case of n-input MIFE
schemes in a similar manner.
Theorem 5.2 (UBK implementation from Figure 5.12). Let O denote a circuit obfuscator
enjoying indistinguishability and let E be the circuit representation of f : K ×M → C, a
secure pseudorandom permutation. Let C.Evalrk denote the implementation corresponding
to E described in Figure 5.12. For any PPT adversary A, the advantage in winning the
unbreakability security experiment (Definition 5.2) with respect to E is bounded as follows:

Advubk
A,CE (λ) ≤ 2 · Advind-cpa

R1,PKE(λ) + 3 · Advio
R2,O(λ) + Advowf

R3,E(λ) .
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Theorem 5.2. First, notice the particularity in the construction introduced by Goyal et al. ,
where two sets of public-keys are used to encrypt the input, which in a sense helps to
conceive a solution. The proof follows from a hybrid argument, in rough terms its overview
is summarized as follows: first, we switch from encrypting K to K ∗ with respect to pk1

1.
Then, we change the form of the KGen procedure, ending up with a circuit where the inner
decryption step runs with respect to K rather than to (c0

1, sk0). Once in this state, we switch
from encrypting K to K ∗ with respect to pk0. In the last game, we bound the advantage of
an adversary in winning the one-wayness game by the advantage of winning the one-wayness
game against the underlying PRP, i.e. E .

Hybrid Games’ Description. A game-based description is given in Figures 5.13 and 5.14,
allowing to follow the changes that are made between two games easily.

• Game0: the first game corresponds to the real UBK security experiment cf. Defini-
tion 5.2.

• Game1: is identical to Game0, up to the encryption of the real message under pk1
1. We

change from encrypting K to a randomly sampled K ∗:

c1
1←$ PKE.Enc(pk1

1,K ∗) .

The distance to the previous game is bounded by Advind-cpa
A,PKE (λ) from Game0.

• Game2: we rely on the indistinguishability of the obfuscator in order to wire-in the
secret K in circuit CE . The decryption step in CE is then changed by using K directly
rather than executing PKE.Dec(sk0

1, c
0
1). We note this circuit is equivalent to the one in

Game1, as its behaviour is preserved when adding the extra constant K to compute
the output of E .

• Game3: is identical to the previous one, except that we change the derivation procedure.
The change consists in removing sk0

i from the set of hardwired constants; thus the two
circuits being functionally equivalent. We note the iO-security of the obfuscator bounds
this game hop.

• Game4: is identical to the previous game, except that we remove (c0
1, c

1
1, π1) from the

description of CE . Note that this step is permitted, as the aforementioned values are no
longer used in CE while these two descriptions of CE remain equivalent.

• Game5: identical to the previous game, except the fact that we change c0
1 to

c0
1←$ PKE.Enc(pk0

1,K ∗) .

Finally, in this setting, we are able to bound the advantage of an adversary in winning
the UBK game, by the advantage of an adversary which wins the one-wayness game
against the underlying pseudorandom permutation E .

Lemma 5.9 (Game0 → Game1). For any PPT distinguisher D,

|Pr[GameD0 ]− Pr[GameD1 ]| ≤ Advind-cpa
R,PKE (λ) .
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Game0 UBKACE (λ):
(R0,R1)←$ R
K←$ K

for i← 1 to 2:
Ki←$ PRF.Setup(1λ)(
pk0

i , sk0
i )←$ PKE.Setup(1λ)(

pk1
i , sk1

i )←$ PKE.Setup(1λ)
c0

1←$ PKE.Enc(pk0
1,K ; R0)

c1
1←$ PKE.Enc(pk1

1,K ; R1)
π1←$ PRF.Eval(K1, c

0
1||c1

1)
C1 ← (c0

1, c
1
1, πi)

C2 ←
Hardwire: pk0

2, pk1
2,K2

Input: c0
2, c

1
2,M ,R0

2,R1
2

Execute:
if c0

2 6= PKE.Enc(pk0
2,M ; R0)∨

∨c1
2 6= PKE.Enc(pk1

2,M ; R1)
return ⊥

return (PRF.Eval(K2, c
0
2||c1

2))
C2←$ O(C2)

CE ←
Hardwire: (sk0

i ,Ki)i∈[2], (c0
1, c

1
1, π1)

Input: {c0
2, c

1
2, π2}

Execute:
if PRF.Eval(K2, c

0
2||c1

2) 6= π2
return ⊥

return f(PKE.Dec(sk0
1, c

0
1),PKE.Dec(sk0

2, c
0
2))

skE←$ O(CE)

C.Evalrk ← (skE , C2, pk0
2, pk1

2)
K ′←$ ACE (1λ,C.Evalrk)
return K = K ′

Game1 UBKACE (λ):
(R0,R1)←$ R
K←$ K

for i← 1 to 2:
Ki←$ PRF.Setup(1λ)(
pk0

i , sk0
i )←$ PKE.Setup(1λ)(

pk1
i , sk1

i )←$ PKE.Setup(1λ)
c0

1←$ PKE.Enc(pk0
1,K ; R0)

c1
1←$ PKE.Enc(pk1

1,K ∗; R1)
π1←$ PRF.Eval(K1, c

0
1||c1

1)
C1 ← (c0

1, c
1
1, πi)

C2 ←
Hardwire: pk0

2, pk1
2,K2

Input: c0
2, c

1
2,M ,R0

2,R1
2

Execute:
if c0

2 6= PKE.Enc(pk0
2,M ; R0)∨

∨c1
2 6= PKE.Enc(pk1

2,M ; R1)
return ⊥

return (PRF.Eval(K2, c
0
2||c1

2))
C2←$ O(C2)

CE ←
Hardwire: (sk0

i ,Ki)i∈[2], (c0
1, c

1
1, π1)

Input: {c0
2, c

1
2, π2}

Execute:
if PRF.Eval(K2, c

0
2||c1

2) 6= π2
return ⊥

return f(PKE.Dec(sk0
1, c

0
1),PKE.Dec(sk0

2, c
0
2))

skE←$ O(CE)

C.Evalrk ← (skE , C2, pk0
2, pk1

2)
K ′←$ ACE (1λ,C.Evalrk)
return K = K ′

Game2 UBKACE (λ):
(R0,R1)←$ R
K←$ K

for i← 1 to 2:
Ki←$ PRF.Setup(1λ)(
pk0

i , sk0
i )←$ PKE.Setup(1λ)(

pk1
i , sk1

i )←$ PKE.Setup(1λ)
c0

1←$ PKE.Enc(pk0
1,K ; R0)

c1
1←$ PKE.Enc(pk1

1,K ∗; R1)
π1←$ PRF.Eval(K1, c

0
1||c1

1)
C1 ← (c0

1, c
1
1, πi)

C2 ←
Hardwire: pk0

2, pk1
2,K2

Input: c0
2, c

1
2,M ,R0

2,R1
2

Execute:
if c0

2 6= PKE.Enc(pk0
2,M ; R0)∨

∨c1
2 6= PKE.Enc(pk1

2,M ; R1)
return ⊥

return (PRF.Eval(K2, c
0
2||c1

2))
C2←$ O(C2)

CE ←
Hardwire: (sk0

2,Ki)i∈[2],K , (c0
1, c

1
1, π1)

Input: {c0
2, c

1
2, π2}

Execute:
if PRF.Eval(K2, c

0
2||c1

2) 6= π2
return ⊥

return f(K ,PKE.Dec(sk0
2, c

0
2))

skE←$ O(CE)

C.Evalrk ← (skE , C2, pk0
2, pk1

2)
K ′←$ ACE (1λ,C.Evalrk)
return K = K ′

Figure 5.13: The hybrid experiments Game0 → Game2.



Game3 UBKACE (λ):
(R0,R1)←$ R
K←$ K

for i← 1 to 2:
Ki←$ PRF.Setup(1λ)(
pk0

i , sk0
i )←$ PKE.Setup(1λ)(

pk1
i , sk1

i )←$ PKE.Setup(1λ)
c0

1←$ PKE.Enc(pk0
1,K ; R0)

c1
1←$ PKE.Enc(pk1

1,K ∗; R1)
π1←$ PRF.Eval(K1, c

0
1||c1

1)
C1 ← (c0

1, c
1
1, πi)

C2 ←
Hardwire: pk0

2, pk1
2,K2

Input: c0
2, c

1
2,M ,R0

2,R1
2

Execute:
if c0

2 6= PKE.Enc(pk0
2,M ; R0)∨

∨c1
2 6= PKE.Enc(pk1

2,M ; R1)
return ⊥

return (PRF.Eval(K2, c
0
2||c1

2))
C2←$ O(C2)

CE ←
Hardwire: (sk0

2,K1,K2,K , c0
1, c

1
1, π1)

Input: {c0
2, c

1
2, π2}

Execute:
if PRF.Eval(K2, c

0
2||c1

2) 6= π2
return ⊥

return f(K ,PKE.Dec(sk0
2, c

0
2))

skE←$ O(CE)

C.Evalrk ← (skE , C2, pk0
2, pk1

2)
K ′←$ ACE (1λ,C.Evalrk)
return K = K ′

Game4 UBKACE (λ):
(R0,R1)←$ R
K←$ K

for i← 1 to 2:
Ki←$ PRF.Setup(1λ)(
pk0

i , sk0
i )←$ PKE.Setup(1λ)(

pk1
i , sk1

i )←$ PKE.Setup(1λ)
c0

1←$ PKE.Enc(pk0
1,K ; R0)

c1
1←$ PKE.Enc(pk1

1,K ∗; R1)
π1←$ PRF.Eval(K1, c

0
1||c1

1)
C1 ← (c0

1, c
1
1, πi)

C2 ←
Hardwire: pk0

2, pk1
2,K2

Input: c0
2, c

1
2,M ,R0

2,R1
2

Execute:
if c0

2 6= PKE.Enc(pk0
2,M ; R0)∨

∨c1
2 6= PKE.Enc(pk1

2,M ; R1)
return ⊥

return (PRF.Eval(K2, c
0
2||c1

2))
C2←$ O(C2)

CE ←
Hardwire: (sk0

2,K1,K2,K )
Input: {c0

2, c
1
2, π2}

Execute:
if PRF.Eval(K2, c

0
2||c1

2) 6= π2
return ⊥

return f(K ,PKE.Dec(sk0
2, c

0
2))

skE←$ O(CE)

C.Evalrk ← (skE , C2, pk0
2, pk1

2)
K ′←$ ACE (1λ,C.Evalrk)
return K = K ′

Game5 UBKACE (λ):
(R0,R1)←$ R
K←$ K

for i← 1 to 2:
Ki←$ PRF.Setup(1λ)(
pk0

i , sk0
i )←$ PKE.Setup(1λ)(

pk1
i , sk1

i )←$ PKE.Setup(1λ)
c0

1←$ PKE.Enc(pk0
1,K ∗; R0)

c1
1←$ PKE.Enc(pk1

1,K ∗; R1)
π1←$ PRF.Eval(K1, c

0
1||c1

1)
C1 ← (c0

1, c
1
1, πi)

C2 ←
Hardwire: pk0

2, pk1
2,K2

Input: c0
2, c

1
2,M ,R0

2,R1
2

Execute:
if c0

2 6= PKE.Enc(pk0
2,M ; R0)∨

∨c1
2 6= PKE.Enc(pk1

2,M ; R1)
return ⊥

return (PRF.Eval(K2, c
0
2||c1

2))
C2←$ O(C2)

CE ←
Hardwire: (sk0

2,K1,K2,K )
Input: {c0

2, c
1
2, π2}

Execute:
if PRF.Eval(K2, c

0
2||c1

2) 6= π2
return ⊥

return f(K ,PKE.Dec(sk0
2, c

0
2))

skE←$ O(CE)

C.Evalrk ← (skE , C2, pk0
2, pk1

2)
K ′←$ ACE (1λ,C.Evalrk)
return K = K ′

Figure 5.14: The hybrid experiments Game3 → Game5.
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Lemma 5.9. Overall, we begin by considering the format of a ciphertext C1 in Figure 5.12,
which can be seen as a triplet consisting of two PKE ciphertexts (c0

1, c
1
1) obtained under two

different public-keys, and a PRF value, essentially acting as a commitment to (c0
1, c

1
1). The

game replaces the values c1
1 and the corresponding PRF evaluation with encryptions of K ∗

relying on IND-CPA of PKE. The reduction works as follows: assume the IND-CPA security
experiment where (pk1

1, sk1
1) are sampled. Assume the existence of a PPT adversary A that

can distinguish between Game0 and Game1. We build a PPT algorithm R, that wins the
IND-CPA game as follows:

• The IND-CPA game samples (pk1
1, sk1

1) and provides pk1
1 to R. R uses the given pk1

1
and has no knowledge on sk1

1.

• R samples (K ,K ∗)←$ K ×K as the challenge messages.

• R provides the challenge messages to the IND-CPA experiment and obtains the challenge
ciphertext c1

1.

• R includes the challenge c1
1 as part of the input for the adversary A. Note that c0

1 is
perfectly computable (since pk0

1 is known). Similarly, π1 is computable. Also, note that
CE can be computed since all sk0

1 are known; thus R is able to derive skE .

If with a certain advantage ε, a distinguisher distinguishes between the two game settings
and returns a bit bA, then R returns the same value bA as its output.

Lemma 5.10 (Game1 → Game2). For any PPT distinguisher D,

|Pr[GameD1 ]− Pr[GameD2 ]| ≤ Advio
R,O(λ) .

Lemma 5.10. Game2 is indistinguishable from Game1 down to the indistinguishability prop-
erty of the obfuscator O. Note that in Game2, we wire-in K in CE .
The reduction R builds two functionally equivalent circuits — one corresponding to the

setting in Game1, the other hardwiring extra values such as K and returning E(K ,M ) if M
is queried — and get from the iO game an obfuscation of one of the two circuits. In detail,
R samples the corresponding PKE/PRF keys for all indexes, then changes CE to compute
f(K , ·). It is clear that R can simulate both games forwarding the two functionally equivalent
circuits to the obfuscator and getting back an obfuscated circuit. Also, we stress the two
circuits are functionally equivalent, as (1) the sanity check:

PRF.Eval(Ki, c
0
i , c

1
i ) 6= πi

is the same in both circuits; (2) when the adversary queries C2, both circuits return:

f(K ,PKE.Dec(sk0
2, c

0
2)) = f(PKE.Dec(sk0

1, c
0
1),PKE.Dec(sk0

2, c
0
2))

as we know that R crafts the challenge ciphertext C ∗ to fulfil the constraint:

PKE.Dec(sk0
1, c

0
1) = K .

Thus, assuming the existence of a distinguisher D between Game1 and Game2, R can use D
to win the iO game. To this end, R returns whatever bit b is obtained from D. Clearly, if D
can distinguish between the hybrids, R wins the iO game with a similar advantage.
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Lemma 5.11 (Game2 → Game3). For any PPT distinguisher D,

|Pr[GameD2 ]− Pr[GameD3 ]| ≤ Advio
R,O(λ) .

Lemma 5.11. The transition from Game2 to Game3 is based, again, on the iO property of
the obfuscator O. First, we argue that the circuits corresponding to CE in Game2 and Game3
are functionally equivalent; this is straightforward as the only change consists in removing
the constant sk0

1, which is no longer used in the circuit.
As regards to the reduction, it proceeds as for the previous hop. First, R samples all

the required data to simulate the UBK game. From then on, the reduction is similar to the
previous case. Considering that the iO game samples uniformly at random a circuit out of the
two classes and this Cf is given to R, then R simulates either Game2 or Game3. Depending
on the bit b issued by a distinguisher D, R wins the indistinguishability game.

Lemma 5.12 (Game3 → Game4). For any PPT distinguisher D,

|Pr[GameD3 ]− Pr[GameD4 ]| ≤ Advio
R,O(λ) .

Lemma 5.12. The transition from Game3 to Game4 is based, again, on the iO property
of the obfuscator O. Concretely, the circuits corresponding to CE in Game3 and Game4
are equivalent up to the usage of the ciphertext (c0

1, c
1
1, π1). As it can be easily observed,

(c0
1, c

1
1, π1) plays no role in the description of CE and can be safely detached from the set of

hard-wired values. A reduction R may use a distinguisher D noticing this change in breaking
the iO game.

Lemma 5.13 (Game4 → Game5). For any PPT distinguisher D,

|Pr[GameD4 ]− Pr[GameD5 ]| ≤ Advind-cpa
R,PKE (λ) .

Lemma 5.13. The transition is based virtually on the same argument used to motivate
Lemma 5.9, thus we defer it here.

Lemma 5.14 (Advantage in Game5). For any PPT adversary A,

Pr[GameA5 ] ≤ Advowf
R,f (λ) .

Lemma 5.14. Finally, in Game5, the challenge ciphertext corresponds to the encryption of
K ∗, while the winning condition asks the adversary to return K , having access to the values
of f(K , ·). We note the value of K is hardwired in the obfuscated circuit and an adversary
cannot extract it. As shown in Corollary 5.1 (Section 5.3), since a UBK-implementation not
using iO already exists, and based on the fact that iO is the best possible obfuscator, the
implementation will not leak K . We also note that based on this property, ski,Ki are not
leaked (otherwise it could have directly extracted sks and decrypt the PKE ciphertext). The
setting maps perfectly to a OWF-game corresponding to f(K , ·), where the adversary can
query f for at various points. Thus, if an adversary R recovers K , it breaks the one-wayness
of the scheme.

Thus, the adversary wins if it guesses at least a component. By applying the union bound
we conclude that:

Advubk
A,MIFE(λ) ≤ 2 · Advind-cpa

R1,PKE(λ) + 3 · Advio
R2,O(λ) + Advowf

R3,f (λ) .

This completes the proof of Theorem 5.2.
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Chapter 6
Functional Encryption with Auxiliary
Inputs and WBC

In this chapter, we put forward the notion of functional encryption with auxiliary inputs,
abbreviated FEAI. It can be thought of as a generalization of the classical FE primitive with
the key difference that the decryption algorithm takes an unencrypted value as an auxiliary
input. Our definitions are for both the public and private key settings. As the main security
notion, we focus on indistinguishability while we show that achieving it suffices to obtain an
indistinguishability obfuscator. Furthermore, we show that one-way secure FEAI is
instrumental in achieving UBK security.

6.1 Functional Encryption with Auxiliary Input . . . . . . . . . . . . . . 110
6.2 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.2.1 Public-Key Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
6.2.1.1 IND-FEAI Implies Indistinguishability Obfuscation. . . . . . . 112

6.2.2 FEAI - Private-Key Setting. . . . . . . . . . . . . . . . . . . . . . . . . . 113
6.3 One-Way FEAI and Unbreakability . . . . . . . . . . . . . . . . . . . 114
6.4 Relations between OW-MIFE and OW-FEAI . . . . . . . . . . . . . 116
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6.1 Functional Encryption with Auxiliary Input

Syntactically, a functional encryption with auxiliary inputs (FEAI) scheme supports two-input
functions. Its distinction from a two-input functional encryption resides in the second input –
say aux– which is provided for the decryption procedure in an unencrypted format. Given a
ciphertext encrypting M and a functional key for f , the decryptor then recovers f(M , aux) for
any aux in the input domain of f . Despite its simplicity and the fact that it may appear as
folklore, to the best of our knowledge, this is the first time that such a primitive is formalized.

Indistinguishability. Naturally, in order to avoid attacks coming from a trivial distin-
guisher, the classical indistinguishability security notion must enforce that f(M1, aux) =
f(M2, aux) for any possible combination of auxiliary inputs an adversary may choose. Al-
though such a constraint may seem to restrict the number of supported functionalities, we
point out that certain primitives – such as puncturable PRFs [SW14] – may be FEAI-suitable.

One-Wayness. A second security notion that we propose, namely one-wayness, captures
the ability of the scheme to hide the encrypted message in the presence of a functional key,
issued for a one-way (candidate) function. Put differently, it provides an adversary with a
ciphertext of a randomly sampled message M , while we require that finding M to be hard in
the presence of a functional key skf as long as f is one-way.

IND-MIFE-CPA [GGG+14]

IND-FEAI (Definition 6.1) UBK [DLPR14]

iO [BGI+01]

OW-MIFE (Definition 5.5)

OW-FEAI (Definition 6.3)

FE (1-bit output, Prv-key)IND-MIFE-CPA (1-bit output, Prv-key)

FE (1-bit output, Pub-key)

ABE + FHE

Lemma 5.1

Lemma 5.2
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m
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a
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[GJO
16]

[BKS16; KS17] Th
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trivial, [BKS16]

[GKP+13]

Figure 6.1: A graphical depiction of the relations between the security notions we consider
in achieving UBK-security. FEAI is characterized through indistinguishability and
one-wayness.

Regarding the structure of this chapter, we begin by introducing the definitions for FEAI in
Section 6.2, and then continue by relating them to UBK-security (Section 6.3) and OW-MIFE
(Section 6.4).
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6.2 Definitions
6.2.1 Public-Key Setting
The definition of FEAI in the public case follows. Regarding the indistinguishability security
notion we present, it allows the adversary to obtain functional keys under the restriction that
f(M0, aux) = f(M1, aux) for any message aux in the domain of f where (M0,M1) represent
the challenge messages the adversary submits during the security experiment.
Definition 6.1 (Functional Encryption with Auxiliary Input - Public-Key Setting). Let
Fλ =

{
f | f :Mλ×Xλ → Vλ

}
be an ensemble of two-input functions. A functional encryption

with auxiliary input scheme consists of four algorithms (Setup, KGen, Enc, Dec) such that:

• The Setup algorithm (msk,mpk)←$ Setup(1λ) takes the security parameter λ and out-
puts a master secret key msk and the master public key mpk;

• The encryption algorithm C←$ Enc(mpk,M ) takes as input the encryption key mpk
and a message M ∈M, and outputs a ciphertext C ;

• The functional key derivation algorithm skf←$ KGen(msk, f) takes as input the de-
scription of a function f ∈ Fλ and outputs the corresponding functional key skf ;

• The decryption algorithm {f(M , aux),⊥} ← Dec(skf ,C , aux) is a deterministic algo-
rithm that takes as input a functional key skf , a ciphertext C and an auxiliary input
aux, and outputs a string f(M , aux) or a special error symbol ⊥.

We define the following properties of an FEAI scheme:
• Correctness: for all aux ∈ X and for all M ∈M the following holds:

Pr
[

Dec(skf ,Enc(mpk,M ), aux)
= f(M , aux)

∣∣∣∣∣ (msk,mpk)←$ Setup(1λ)∧
skf←$ KGen(msk, f)

]
∈ 1-Negl(λ) .

• Indistinguishability: for any PPT adversary A, the following advantage

Advind-feai
A,FEAI(λ) :=

∣∣∣∣Pr[IND-FEAIAFEAI(λ) = 1]− 1
2

∣∣∣∣
is negligible, where the security experiment IND-FEAIAFEAI(λ) is defined in Figure 6.2.

IND-FEAIAFEAI(λ):
L← ∅
b←$ {0, 1}
(msk,mpk)←$ FEAI.Setup(1λ)
(M0,M1)←$ AKGenmsk(·)(1λ,mpk)
C ∗←$ Enc(mpk,Mb)
b′←$ AKGenmsk(·)(1λ,mpk,C ∗)
return b = b′ ∧Valid(L,M0,M1)

KGenmsk(f):
L← L ∪ {f}
return FEAI.KGen(msk, f)

Valid(L,M0,M1):
if ∃aux,∃f ∈ L s.t. f(M0, aux) 6= f(M1, aux)

return 0
return 1

Figure 6.2: The (adaptive) IND-FEAI security experiment in the public-key setting.

The definition for the private-key setting is similar, in some sense keeping a parallel to the
MIFE definitions. We postpone it to Section 6.2.2 while focusing on the relations involving
public-key FEAI.
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6.2.1.1 IND-FEAI Implies Indistinguishability Obfuscation.

In this part, we look into the relation between FEAI and iO. First, we show that FEAI achiev-
ing indistinguishability implies the existence of a trivial construction of an indistinguishable
obfuscator.

iO(C) :
C̃ ←$ Enc(mpk, C)
P := dec(skUλ , C̃, ·)
return P

Figure 6.3: An indistinguishability obfuscator on top of an FEAI scheme. Evaluating the
obfuscated program iO on input x is done as follows: iOP (x) := FEAI.dec(skU , C, x).
By correctness, the result is C(x).

Theorem 6.1. Assuming the existence of an IND-FEAI secure functional encryption with
auxiliary inputs scheme FEAI = (Setup, KGen, Enc, dec) supporting functions represented as
circuits Cλ, the construction in Figure 6.3 is an indistinguishability obfuscator iO for Cλ such
that Advio

A,iO(λ) ≤ Advind-feai
R,FEAI(λ) .

Theorem 6.1. Let Cλ be the class of circuits of size at most poly(λ) for some polynomial poly.
Let Uλ denote a universal circuit for Cλ, where Uλ(C,M ) = C(M ) for any C ∈ Cλ and any
input M ∈M. Given an FEAI instance (msk,mpk) sampled via Setup(1λ), a functional key is
derived for the universal circuit Uλ by skUλ←$ KGen(msk, Uλ). The reduction R constructs
the iO scheme described in Figure 6.3.

We denote by A a distinguisher having a non-negligible advantage in winning the indistin-
guishability game for iO. A sends two functionally equivalent circuits C0, C1 to the reduction
R. The reduction sends the two circuits as messages to the IND-FEAI game and obtains C̃
from the IND-FEAI game, as well as a functional key for Uλ such that Uλ(C0, ·) = Uλ(C1, ·).
Then R provides A with (skUλ , C̃) and wins the IND-FEAI game under the same advantage
A does.

IND-FEAI from IND-MIFE-CPA. We note that a MIFE (a two-input scheme suffices), can be
readily transformed into a FEAI scheme. The encryption key for the second input should be
public, while the first encryption key could be private or public depending on the applications.
The indistinguishability of our construction follows immediately from the one of MIFE.

FEAI.Setup(1λ):
(msk,mpk1,mpk2)←$ 2in-FE.Setup(1λ)
mpk← (mpk1,mpk2)
return (msk,mpk)

FEAI.KGen(msk, f):
return 2in-FE.KGen(msk, f)

FEAI.Enc(mpk,M ):
return 2in-FE.Enc(mpk1,M )

FEAI.Dec(skf ,C , aux):
Caux←$ 2in-FE.Enc(mpk2, aux)
return 2in-FE.Dec(skf ,C ,Caux)

Figure 6.4: The natural construction of FEAI from 2in-FE where mpk2 is public.
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Lemma 6.1 (IND-MIFE-CPA⇒ IND-FEAI). Let 2in-FE be a two-input functional encryption
scheme that enjoys IND-MIFE-CPA security against any adversary R. Then, the FEAI
construction in Figure 6.4 achieves indistinguishability against any PPT adversary A:

Advind-feai
A,FEAI(λ) ≤ Advind-mife-cpa

R,MIFE (λ) .

Lemma 6.1. The proof is immediate. Let A be a PPT adversary able to break the IND-FEAI
game against FEAI. We show how to build an adversary R against the IND-MIFE-CPA
security of the underlying 2in-FE scheme. First, the IND-MIFE-CPA game samples the pair
of keys:

(msk,mpk1,mpk2)←$ 2in-FE.Setup(1λ),

and gives (mpk1,mpk2) to R (which forwards the second to A, as the set up for FEAI scheme).
A selects a pair of challenge messages (M0,M1) and sends them to R, who regards them
as the challenge messages corresponding to the first input, then R sends all the challenge
messages to the IND-MIFE-CPA game. The challenger returns the ciphertext C b

1 to R, who
forwards to A the pair (C b

1 ,mpk2). Any functional key request made by A is forwarded by
R to the IND-MIFE-CPA challenger1. Finally, A replies with b′, which is forwarded by R to
the IND-MIFE-CPA challenger. It is easy to see that if A guesses b, then R returns a correct
answer under the same advantage. Thus, Advind-feai

A,FEAI(λ) ≤ Advind-mife-cpa
R,MIFE (λ) .

6.2.2 FEAI - Private-Key Setting.

FEAI in the private-key setting is similar to the MIFE counterpart. A master encryption
key is derived, to be used during the key-derivation and ciphertext-generation procedures.
Subsequent changes need to be enforced in the indistinguishability experiment: in order to
prevent the adversary trivially winning the game, we need to enforce that for all functions f
for which functional-keys have been issued, it must be the case that “f(M0, ·) = f(M1, ·)”. If
this is not the case, it becomes trivial for an adversary to win this game, given that it can
craft M0 and M1 such that for a specific input X, f(M0, X) has a certain value.

Definition 6.2 (Functional Encryption with Auxiliary Input - Private-Key Setting). Let
Fλ =

{
f | f :Mλ×Xλ → Vλ

}
be an ensemble of two-input functions. A functional encryption

with auxiliary input consists of four algorithms (Setup, KGen, Enc, Dec) such that:

• The Setup algorithm msk←$ Setup(1λ) takes the security parameter λ and outputs a
master secret key msk;

• The encryption algorithm C←$ Enc(msk,M ) takes as input the encryption key msk
and a message M ∈M, and outputs a ciphertext C ;

• The functional key derivation algorithm skf←$ KGen(msk, f) takes as input the de-
scription of a function f ∈ Fλ and outputs the corresponding functional key skf ;

• The decryption algorithm {f(M , aux),⊥} ← Dec(skf ,C , aux) is a deterministic algo-
rithm that takes as input a functional key skf , a ciphertext C and an auxiliary input
aux, and outputs a string f(M , aux) or a special error symbol ⊥.

1Note that a valid skf request made by A implies a valid skf request made by R.
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IND-FEAIAFEAI(λ):
L← ∅
b←$ {0, 1}
msk←$ Setup(1λ)
(M0,M1)←$ AKGenmsk(·),Encmsk(·)(1λ)
C ∗←$ Enc(msk,M b)
b′←$ AKGenmsk(·),Encmsk(·)(1λ,C ∗)
return b = b′ ∧Valid(L,M0,M1)

KGenmsk(f):
L← L ∪ {f}
return KGen(msk, f)

Valid(L,M0,M1):
if ∃aux.∃f ∈ L : f(M0, aux) 6= f(M1, aux)

return 0
return 1

Figure 6.5: The (adaptive) IND-FEAI security experiment, private-key setting.

We define the following properties of an FEAI scheme:

• Correctness: for all aux ∈ X and for all M ∈M the following holds:

Pr
[

Dec(skf ,Enc(msk,M ), aux)
= f(M , aux)

∣∣∣∣∣ msk←$ Setup(1λ)∧
skf←$ KGen(msk, f)

]
∈ 1-Negl(λ) .

• Indistinguishability: for any PPT adversary A, the following advantage

Advind-feai
A,FEAI(λ) :=

∣∣∣∣Pr[IND-FEAIAFEAI(λ) = 1]− 1
2

∣∣∣∣
is negligible, where the security experiment IND-FEAIAFEAI(λ) is defined in Figure 6.2.

6.3 One-Way FEAI and Unbreakability
In the context of FEAI, one-wayness requires that an adversary is not able to recover a
randomly sampled M1 ∈ M1 given access to its corresponding ciphertext and to a single
functional key for function f :M1 ×M2 → Y. A clear requirement from f is to be itself a
(candidate) one-way function.

Definition 6.3 (One-Way FEAI). Let FEAI stand for a functional encryption with auxiliary
inputs scheme in the public-key (private-key) setting. Let f : K ×M → C denote a secure
pseudorandom permutation. For any PPT adversary A, the following advantage:

Advow-feai
A,FEAI(λ) := Pr[OW-FEAIA,fFEAI(λ) = 1]

is negligible, where the security experiment OW-FEAIAFEAI(λ) is defined in Figure 6.6.

FEAI achieving one-wayness proves itself sufficiently strong to obtain UBK-secure schemes.
We state below such implications.

Lemma 6.2 (OW-FEAI⇒ UBK). Let FEAI be a functional encryption with auxiliary inputs
scheme in the public-key setting that is OW-FEAI-secure with respect to a pseudorandom
permutation f : K ×M → C. Then, the advantage of any PPT adversary A in winning
the UBK security experiment against the scheme in Figure 6.7 (top) is bounded as follows:
Advubk

R,CE (λ) ≤ Advow-feai
A,FEAI(λ) . Moreover, if FEAI is defined in the private-key setting, the same

result holds concerning the scheme in Figure 6.7 such that Advubk
R,CE (λ) ≤ Advow-feai

A,FEAI(λ) .
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OW-FEAIA,fFEAI(λ): // Public Setting
(msk,mpk)←$ Setup(1λ)
skf←$ KGen(msk, f)
M←$ M
C←$ Enc(mpk,M )
N ←$ A(1λ,mpk, skf ,C )
return N = M

OW-FEAIA,fFEAI(λ): // Private Setting
msk←$ Setup(1λ)
skf←$ KGen(msk, f)
M←$ M
C←$ Enc(msk,M )
N ←$ A(1λ, skf ,C )
return N = M

Figure 6.6: The one-wayness security experiment: left for the public-key setting, right for
the private-key setting.

C.Setup(1λ, E ,K ):
(msk,mpk)←$ FEAI.Setup(1λ)
skE←$ FEAI.KGen(msk, E)
CK←$ FEAI.Enc(mpk,K )
C.Evalrk := FEAI.Dec
C.Evalrk.Hardwire(CK , skE)
return C.Evalrk

C.Evalrk(M ):
Hardwire: skE , CK
return FEAI.Dec(skE ,CK ,M )

C.Setup(1λ, E ,K ):
msk←$ FEAI.Setup(1λ)
skE←$ FEAI.KGen(msk, E)
CK←$ FEAI.Enc(msk,K )
C.Evalrk := FEAI.Dec
C.Evalrk.Hardwire:(CK , skE)
return C.Evalrk

C.Evalrk(M ):
Hardwire: skE ,CK
return FEAI.Dec(skf ,CK ,M )

Figure 6.7: An UBK symmetric encryption scheme E based on a functional encryption with
auxiliary-inputs scheme FEAI achieving OW-FEAI-security.

Lemma 6.2. For the first part, our reduction R wins the OW-FEAI game against the under-
lying FEAI scheme as follows: first, the OW-FEAI game samples M according to the message
distributionM and encrypts it as C . R receives from the OW-MIFE challenger the functional
key associated to skE . After it is provided with (skE ,C ), R constructs the implementation
of E . Thus, A is fed with the implementation which hard-codes two bit-strings (skE , Ck).
A – as an adversary for the UBK game against E – given the implementation of E , extracts
the key K with a certain advantage and returns it to R, which forwards it to the OW-FEAI
challenger. It is easy to see that R simulates an implementation of E . If an UBK adversary A
wins, by returning K with a non-negligible, then R wins the OW-FEAI game with the same
advantage. Thus, Advubk

A,CE (λ) ≤ Advow-feai
R,FEAI(λ).

The second part of the theorem follows in the same manner. Let A be any PPT adversary
able to win the UBK experiment with an advantage Advubk

A,E(λ). We construct a reduction
R able to win the OW-FEAI game against the underlying FEAI scheme as follows: After it
generates its msk (we are in the private-key setting), the OW-FEAI game samples M ∈ M
and encrypts it to get the challenge ciphertext C . R receives from the OW-FEAI challenger
the functional key associated to skE . After it is provided with (skE ,C ), R constructs an
implementation of E .Enc. Thus, A is fed with an implementation which hard-codes two
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bit-strings (skE , CK ). A — as an adversary for the UBK game against E — given an
implementation of E .Enc, extracts the key K with a certain advantage and returns K to
R. Finally, K is passed by R to the OW-FEAI challenger. If an UBK adversary A wins, by
returning K with a non-negligible, then R wins the OW-FEAI game with the same advantage.
Thus: Advubk

A,CE (λ) ≤ Advow-feai
R,FEAI(λ) .

6.4 Relations between OW-MIFE and OW-FEAI
Lemma 6.3 (OW-MIFE ⇒ OW-FEAI). Let 2in-FE be a two-input functional encryption
scheme (public-key setting) achieving OW-MIFE with respect to a secure pseudorandom
permutation f : K × M → C and index set I = {1}. Then, the FEAI construction in
Figure 6.4 achieves one-wayness w.r.t. f and I against any PPT adversary A such that:

Advow-feai
A,FEAI(λ) ≤ Advow-mife

R,MIFE(λ) .

Lemma 6.3. We construct a reduction R against the OW-MIFE security of the underlying
2in-FE scheme as follows: the OW-MIFE game samples the pair of keys:

(msk,mpk1,mpk2)←$ 2in-FE.Setup(1λ),

and gives mpk2 to R. Once R receives mpk2, it forwards it to A as the setting up for FEAI
scheme. R also receives skf and sends it back to A. The OW-MIFE game picks uniformly at
random the message M1, encrypts it under the corresponding key, i.e.,

C1←$ 2in-FE.Enc(mpk1,M1),

and sends it to R. The reduction receives and forwards C1 to A. A outputs its guess M ′

and sends it to R which forwards M ′ to the experiment. It follows that Advow-mife
R,MIFE(λ) ≥

Advow-feai
A,FEAI(λ).

A similar result holds in the private-key setting:

Lemma 6.4 (OW-MIFE⇒ OW-FEAI). Let MIFE be an (n+ 1)-input functional encryption
scheme (private-key setting) achieving OW-MIFE for I = {1} from Figure 6.8. Then, there
exists an FEAI construction for f : K × {0, 1}n → {0, 1}n achieving one-wayness against any
PPT adversary A:

Advow-feai
A,FEAI(λ) ≤ Advow-mife

R,MIFE(λ) .

Lemma 6.4. The proof is straightforward. The reduction R obtains the challenge ciphertext
CK corresponding to K and then the encryptions of 0s and 1s for the next n positions. R
then simulates the OW-FEAI game (R also obtains skf ). If an adversary wins the OW-FEAI
game, then R wins OW-MIFE under the same advantage.
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FEAI.Setup(1λ):
msk←$ MIFE.Setup(1λ)
return msk

FEAI.KGen(msk, f):
return MIFE.KGen(msk, f)

FEAI.Enc(msk,M ):
C1 ← MIFE.Enc(msk, 1,M )
for i← 1, n:

Ci+1,0←$ MIFE.Enc(msk, i+ 1, 0)
Ci+1,0←$ MIFE.Enc(msk, i+ 1, 1)

return {Ci,0,Ci,1,C1}i∈[n+1]

FEAI.Dec(skf ,C , aux := (M1, . . . ,Mn)):
return MIFE.Dec(skf ,C1C2,M1 , . . . ,Cn+1,Mn

)

Figure 6.8: The natural construction of FEAI from MIFE (private-key setting).
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Chapter 7
Conclusion and Open Questions

This dissertation investigated two main security notions: robustness and unbreakability.
Subsequent work was devoted to achieving them through generic transformations or specific
constructions.
Usually, the security notions for symmetric primitives assume that no two ciphertexts

issued under different keys collide with noticeable probability. Robustness plays a role in
establishing similar guarantees while considering more powerful adversaries, which could
even tamper with the key-generation process. Having illustrated the relevance of such
questions, we show that obtaining robust authenticated-encryption schemes is realizable via
robust and pseudorandom MACs (Section 4.4). In the public-key setting, we extended the
recently-introduced notions of strong and complete key-robustness to the settings of digital
signature schemes (Section 4.5.1), and functional encryption schemes (Section 3.2.2). While
the classical existential unforgeability notion typically guarantees strong robustness, this is
not the case for complete robustness — the separation results being accompanied by concrete
examples; this motivates the generic transformations of Sections 3.3, 4.4 and 4.5, which result
in provable complete-robust schemes.

In Chapters 5 and 6, we looked into the problem of building UBK-secure implementations for
block ciphers. In doing so, we put forward the notion of functional encryption with auxiliary
inputs (FEAI), which may be of independent interest. We show that FEAI achieving one-
wayness is instrumental in providing UBK-compilers for block ciphers, while FEAI reaching
indistinguishability is sufficient for obtaining indistinguishability obfuscation (iO). Moreover,
we show how to construct such compilers relying on iO or on MIFE achieving one-wayness.
To the best of our knowledge, this is the first time the notion of white-box cryptography
is shown to be realizable. We hope that our work will shed a new light in developing and
deploying provably secure white-box implementations. From a practical point of view, we
would like to see implementations based on our ideas or variants thereof, deployed in the
field in the future, as a beneficial replacement to current ad hoc, heuristic solutions.
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7.1 Open Questions
The work presented herein raises some interesting new open problems, and we mention some
of them below.

Question 7.1. Can we build more efficient FE constructions that support general circuits?
Would this enable instantiating UBK implementations for block ciphers of lower space com-
plexity and thus lead to efficient/practical solutions?

Question 7.2. Can we apply our UBK-compiler to other cryptographic primitives such as
signatures schemes or PKE decryption?

Question 7.3. Can FE/MIFE provide similar benefits to other theoretical areas of cryptog-
raphy, more specifically to program obfuscation?

Question 7.4. Can we assess robustness from a practical perspective? Can complete robust-
ness be built-in in the design of primitives (i.e., not through a black-box transform)?

Question 7.5. How are the indistinguishability security notions for functional encryption
related to the strong robustness notion?

Question 7.6. How can the anonymity definition for FE schemes be extended to support
key-derivation queries?

Question 7.7. A different direction would be obtaining functional signature schemes sup-
porting large classes of functionalities. What would be the meaning of robustness for the case
of functional signatures?
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Notations
Mathematical Notations
Z the set of integers
N the set of non-negative integers
p, p1, p2 prime numbers
(ZN ,+) the additive group over ZN
(ZN ,+, ·) ring of integers modulo N
G,G1,G2,Gt cyclic groups
D ×R the Cartesian product of D and R

Algorithmic Concepts
{0, 1}∗ the set of all bitstrings
{0, 1}n the set of all bitstrings of length n
|M | length of M
x← y assignment
x = y equality
x←$ S x is sampled uniformly at random over the set S

Provable Security
λ Security Parameter
A Adversary
R Reduction
Game1,Game2 Games
AdvAGamei(λ) the advantage of adversary A in game Gamei
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Abbreviations

Cryptographic Primitives
H Hash Function
PRG Pseudorandom Generator
PRF Pseudorandom Function
VRF Verifiable Random Function
DS Digital Signature
PKE Public Key Encryption
ABE Attribute-Based Encryption
FHE Fully-Homomorphic Encryption
FE Functional Encryption
MIFE Multi-Input Functional Encryption
iO Indistinguishability Obfuscation
BPO Best Possible Obfuscation
VBB Virtual Black-Box Obfuscation

Cryptographic Assumptions
RO Random Oracle
OW One-Wayness
OWF One-Way Function
CR Collision-Resistance
DDH Decisional Diffie-Hellman
m-DDH Multiple DDH
LWE Learning with Errors
RLWE Ring Learning with Errors
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RÉSUMÉ

Cette thèse s’intéresse à la faisabilité des implémentations en boîte blanche de 
permutations pseudo-aléatoires sûres. Concrètement nous montrons comment un 
schéma de chiffrement fonctionnel à plusieurs entrées, qui satisfait une notion naturelle 
d’être à sens unique, est fondamental à la construction d’implémentations protégées 
contre les attaques d’extraction de clés. 
Comme contribution indépendante possédant son intérêt propre, nous étendons la notion
de robustesse cryptographique. Sommairement, le chiffrement robuste garantit qu’un 
chiffré ne peut être lu au moyen de plusieurs clés. Décrite tout d’abord dans le contexte 
de la cryptographie à clé publique, nous étendons les définitions aux contextes du 
chiffrement fonctionnel et à l’authentification. 

MOTS CLÉS

cryptographie en boîte-blanche, robustesse, chiffrement fonctionnel

ABSTRACT

This thesis investigates the realizability of white-box implementations for secure 
pseudorandom permutations. Concretely, we show that multi-input functional encryption 
achieving a natural definition of one-wayness is instrumental in building implementations 
that are secure against key-extraction attacks.
As a contribution of independent interest, we extend the notion of robustness to a larger 
set of primitives. Roughly speaking, robust encryption guarantees that a ciphertext cannot
be decrypted under different keys. Initially formalized in a public-key context, we 
introduce compelling definitions for authentication and functional encryption schemes. 

KEYWORDS

white-box cryptography, robustness, functional encryption
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