
HAL Id: tel-02333396
https://theses.hal.science/tel-02333396v2

Submitted on 26 May 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Formalisation tools for classical analysis : a case study in
control theory
Damien Rouhling

To cite this version:
Damien Rouhling. Formalisation tools for classical analysis : a case study in control theory. Logic
in Computer Science [cs.LO]. Université Côte d’Azur, 2019. English. �NNT : 2019AZUR4058�. �tel-
02333396v2�

https://theses.hal.science/tel-02333396v2
https://hal.archives-ouvertes.fr

Outils pour la Formalisation en Analyse Classique
Une Étude de Cas en Théorie du Contrôle

Damien Rouhling

Inria Sophia Antipolis Méditerranée

Présentée en vue de l’obtention du
grade de docteur en Informatique
d’Université Côte d’Azur.

Dirigée par : Yves Bertot.

Co-encadrée par : Cyril Cohen.

Soutenue le : 30 septembre 2019.

Devant le jury, composé de :

Jesús Aransay
Yves Bertot
Sylvie Boldo
Cyril Cohen
Éric Goubault
Étienne Lozes
Lawrence Paulson

Outils pour la Formalisation en Analyse Classique
Une Étude de Cas en Théorie du Contrôle

Jury :

Directeurs

Yves Bertot, Directeur de Recherche, Inria Sophia Antipolis Méditerranée
Cyril Cohen, Chargé de Recherche, Inria Sophia Antipolis Méditerranée

Rapporteurs

Sylvie Boldo, Directrice de Recherche, Inria Saclay Île de France
Lawrence Paulson, Professor, University of Cambridge

Examinateurs

Jesús Aransay, Profesor Contratado Doctor, Universida de La Rioja
Éric Goubault, Professeur, École Polytechnique
Étienne Lozes, Professeur, Université de Nice Sophia Antipolis

Formalisation Tools for Classical Analysis
A Case Study in Control Theory

Jury:

Advisors

Yves Bertot, Directeur de Recherche, Inria Sophia Antipolis Méditerranée
Cyril Cohen, Chargé de Recherche, Inria Sophia Antipolis Méditerranée

Rapporteurs

Sylvie Boldo, Directrice de Recherche, Inria Saclay Île de France
Lawrence Paulson, Professor, University of Cambridge

Examiners

Jesús Aransay, Profesor Contratado Doctor, Universida de La Rioja
Éric Goubault, Professeur, École Polytechnique
Étienne Lozes, Professeur, Université de Nice Sophia Antipolis

Outils pour la Formalisation en Analyse Classique
Une Étude de Cas en Théorie du Contrôle

Résumé :

Il s’agit de mettre à l’épreuve une bibliothèque d’analyse dans l’assistant de preuve Coq
au travers d’une étude de cas en théorie du contrôle. Nous formalisons une preuve de stabilité
pour le pendule inversé, un exemple classique en théorie du contrôle. Le contrôle du pendule
inversé est un défi en raison de sa non-linéarité, à tel point que ce système est souvent utilisé
comme référence pour l’essai de nouvelles techniques de contrôle.

Durant cette étude de cas, nous identifions des défauts des outils aujourd’hui accessibles
pour la formalisation en analyse classique et nous en développons d’autres afin d’atteindre
le but de cette étude de cas. En particulier, nous essayons d’imiter le style de preuve sur
papier grâce à de nouvelles notations et de nouveaux mécanismes d’inférence. C’est une étape
essentielle pour rendre la preuve formelle plus accessible aux mathématiciens.

Ensuite, nous développons une nouvelle bibliothèque d’analyse classique en Coq, qui in-
tègre ces nouveaux outils et qui essaie de pallier les limitations de la bibliothèque que nous
avons testée, en particulier dans le domaine du raisonnement asymptotique. Nous testons aussi
cette nouvelle bibliothèque sur la même preuve formelle et tirons des conclusions sur ses forces
et faiblesses.

Enfin, nous esquissons une nouvelle méthodologie pour répondre aux limitations de notre
bibliothèque dans le domaine du calcul. Nous exploitons une technique appelée raffinement
afin de refactoriser la méthode de preuve par réflexion, une technique qui automatise les
preuves grâce au calcul et qui de plus réduit la taille des termes de preuves. Nous mettons en
œuvre cette méthodologie sur l’exemple du raisonnement arithmétique dans les anneaux et
expliquons comment ce travail pourrait servir à généraliser des outils déjà existants.

Mots clés : Preuve formelle, Coq, analyse classique, théorie du contrôle, pendule inversé,
automatisation, calcul.

Formalisation Tools for Classical Analysis
A Case Study in Control Theory

Abstract:

In this thesis, we put a library for analysis in the Coq proof assistant to the test through
a case study in control theory. We formalise a proof of stability for the inverted pendulum, a
standard example in control theory. Controlling the inverted pendulum is challenging because
of its non-linearity, so that this system is often used as a benchmark for new control techniques.

Through this case study, we identify issues in the tools that are currently available for the
formalisation of classical analysis and we develop new ones in order to achieve our formalisation
goal. In particular, we try to imitate the pen-and-paper proof style thanks to new notations
and inference mechanisms. This is an essential step to make formal proofs more accessible to
mathematicians.

We then develop a new library for classical analysis in Coq that integrates these new
tools and tries to palliate the limitations of the library we tested, especially in the domain
of asymptotic reasoning. We also experiment with this new library on the same formal proof
and draw lessons on its strengths and weaknesses.

Finally, we sketch a new methodology in order to address the limitations of our library in
the particular domain of computation. We exploit a technique called refinement to refactor the
methodology of proof by reflection, a technique that automates proofs through computation
and also reduces the size of proof terms. We implement this methodology on the example of
arithmetic reasoning in rings and discuss how this work could be used to generalise existing
tools.

Keywords: Formal proof, Coq, classical analysis, control theory, inverted pendulum,
automation, computation.

REMERCIEMENTS –
ACKNOWLEDGEMENTS

Je ne peux commencer cette thèse sans remercier mes directeurs, Yves Bertot et Cyril
Cohen, pour tout le soutien et tous les conseils qu’ils m’ont prodigués au cours de ces trois
années de travail ensemble. Merci tout particulièrement pour l’autonomie et la confiance que
vous m’avez accordées : j’ai pu librement choisir mon sujet et ma façon de l’aborder. Grâce
à vous, je me suis senti déjà reconnu comme un chercheur à part entière et pas seulement
comme un esclave – je veux dire, étudiant.

Merci à toi, Cyril, pour ton enthousiasme et ton dynamisme. Auprès de toi j’ai appris
qu’aucun projet n’est trop grand, aucun obstacle n’est trop difficile à franchir, tant qu’on
garde à l’esprit qu’écrire une preuve fastidieuse fait perdre du temps qu’il vaudrait mieux
passer à trouver des solutions généralisables. Cette thèse existe aussi grâce à ton courage et
à ta fantaisie. Courage de nous lancer dans des projets ambitieux, fantaisie de ne pas reculer
devant le déraisonnable, comme ce papier commencé à une semaine de la deadline. . .

Yves, merci pour tes commentaires toujours éclairants, qui m’ont souvent aidé à sortir la
tête du guidon et à prendre du recul. Je te remercie aussi pour ces interludes géométriques,
pâtissiers ou sous-marins qui m’ont forcé, pour mon plus grand bien, à faire des pauses. Merci
surtout pour ton humanité. Je me suis toujours senti écouté, compris et respecté dans mes
choix familiaux et professionnels.

I would like to thank my jury for accepting to review my work.
I am particularly grateful to Sylvie Boldo and Lawrence Paulson, who dared being rap-

porteurs even though the summer break would leave them little time to read this thesis and
write their reports.

Many thanks to Jesús Aransay, Éric Goubault and Étienne Lozes for showing interest in
my work and for accepting to participate in this jury.

Parce que faire de la recherche en informatique, ce n’est pas seulement jouer avec un
ordinateur, mais c’est aussi et surtout interagir avec d’autres chercheurs a priori humains, je
remercie toutes les personnes que j’ai rencontrées lors de ce doctorat et qui ont rendu cette
interaction possible.

xi

Je tiens à remercier tous les membres, permanents ou non, de l’équipe Marelle pour l’am-
biance chaleureuse à laquelle ils contribuent. Merci en particulier au « club d’échecs » local (Bo-
ris, Laurent et Maxime) et au « club d’escalade » local (Benjamin et Enrico) and thanks to
those who climbed with us (Anders, Cinzia, Florian, Luc, Matej, Sophie et Vincent). Merci
à Cécile et Sophie pour ces pauses goûter toujours riches en discussions intéressantes. Je te
remercie, Laurence, pour ta gentillesse tout autant que pour ton caractère sans concessions. Je
suis très reconnaissant envers Nathalie, qui se démène pour alléger nos charges administratives
et avec qui je partage de nombreuses valeurs. Merci pour tes romans, dont j’attends la suite
avec impatience. J’ai aussi une pensée particulière pour José, qui nous a quitté récemment,
avec qui j’ai longuement échangé dans le bus en attendant qu’il franchisse les bouchons.

Merci à tous ceux qui ont bien voulu m’écouter parler de ma recherche. Merci en particulier
à mon comité de suivi doctoral, Xavier Allamigeon et Yves Papegay, pour leurs retours et
leurs encouragements. Merci aux équipes Gallinette, Gallium et SpecFun ainsi qu’au projet
FastRelax pour leurs invitations qui ont donné lieu à des échanges très intéressants.

Je remercie aussi Assia Mahboubi, qui a suivi mon parcours avec attention depuis mon
arrivée dans le monde de la recherche et qui, je crois, a eu une grande influence sur ce parcours.

Je remercie enfin tous ceux qui m’ont soutenu et encouragé. Merci en particulier à mes
amis et ma famille, que j’ai peu vus ces dernières années mais qui comptent beaucoup pour
moi.

Merci à Antoine, Antonin, Armaël, Bénédicte, Benjamin, Charles, Charlotte, Francis, Ga-
briel, Guillaume, Guillaume (le petit qui a grandi), Isaline, Jimmy, Mehdi, Méril, Pierre,
Quentin, Régis, Rémi, Sandrine, Victor et aux autres que j’oublie. Je remercie les membres
de l’Échiquier Antibois pour leur convivialité et tout ce qu’ils m’ont appris.

Je remercie mes parents, qui m’ont appris la valeur du travail et m’ont poussé à suivre
mes rêves jusqu’au bout.

Merci à toi, Laura, qui me suit sans (trop) ronchonner depuis quelques années déjà. Merci
d’être là pour me secouer et m’encourager à tirer le maximum de ce que j’ai déjà accompli.

Merci à toi, Alban, pour le bonheur que tu m’apportes et à toi, qui n’es pas encore né, et
qui m’en apporteras sans doute tout autant.

xii

CONTENTS

Introduction xvii

I Case Study: the Inverted Pendulum 1

1 Context 3
1.1 The Inverted Pendulum . 3

1.1.1 The System . 3
1.1.2 Notions in Control Theory and Application to the Pendulum 4
1.1.3 Control of the Inverted Pendulum . 6

1.2 Modelling Physical Systems . 6
1.2.1 On Dynamical Systems . 7
1.2.2 Taking into Account the Control Function 8
1.2.3 An Important Property: Stability . 10

1.3 Practical Aspects of such a Study . 11
1.3.1 How to Formally Study a Physical System 11
1.3.2 Scope of our Case Study . 13

2 LaSalle’s Invariance Principle 15
2.1 The Original Principle . 15

2.1.1 Intuition behind the Invariance Principle 16
2.1.2 Statement of LaSalle’s Invariance Principle 17
2.1.3 Proof of the Invariance Principle . 19

2.2 Generalisation of LaSalle’s Invariance Principle 21
2.2.1 Weaker Hypotheses for the Invariance Principle 21
2.2.2 A Stronger Invariance Principle . 23

2.3 Formalisation of the Generalised Principle . 24
2.3.1 A Note on Logical Foundations and Choosing a Library 24
2.3.2 Filters for Real Analysis . 27

xiii

2.3.3 Topological Notions . 32
2.3.4 Formal Statement of the Invariance Principle 36

2.4 Related Work . 39
2.4.1 Related Work on Stability Analysis . 39
2.4.2 Related Work on the Formalisation of Topology 40
2.4.3 Related Work on the Formalisation of Differential Equations 40

3 Swing-Up of the Inverted Pendulum 43
3.1 The Dynamical System . 43

3.1.1 The Dynamical System and its Control Challenge 44
3.1.2 The System We Actually Formalised . 45

3.2 Stability Proof . 48
3.2.1 Verification of the Hypotheses of LaSalle’s Invariance Principle 48
3.2.2 Convergence to the Homoclinic Orbit . 50
3.2.3 Summary of the Corrected Errors . 53

3.3 Formalisation of the Stability Proof . 53
3.3.1 On the Choice of Data Structures . 54
3.3.2 Topological Spaces . 55
3.3.3 Automatic Computation of Differentials 57

3.4 Related Work . 60
3.4.1 Related Work on Dynamical Systems and Control Theory 60
3.4.2 Related Work on the Formalisation of Mathematics 61

4 Assessment of the Formalisation 63
4.1 Improvements on the Existing . 63

4.1.1 A Smoother Experience with Coquelicot 63
4.1.2 Using Coquelicot in other Fields of Mathematics 64

4.2 Possible Extensions . 64
4.2.1 Completing the Proof of Stability . 65
4.2.2 Towards a Certified Implementation . 65

4.3 Remaining Complications . 66
4.3.1 Discrepancy with Pen-and-Paper Mathematics 66
4.3.2 Missing Tools . 67
4.3.3 Combining Several Hierarchies . 67

II Designing a Library of Mathematics 69

5 Hierarchy of the Mathematical Components Analysis Library 71
5.1 Principles of Design . 71

5.1.1 Logical Foundations . 72
5.1.2 Organising the Library . 73

5.2 The Starting Point: Coquelicot . 75
5.2.1 Coquelicot’s Hierarchy . 75
5.2.2 Making Coquelicot Compatible with Mathematical Components 77
5.2.3 Minor Improvements in the Hierarchy 79

xiv

5.3 Extension of the Hierarchy . 81
5.3.1 Topological Spaces . 81
5.3.2 Filtered Spaces . 82
5.3.3 Non-Empty Spaces . 84

5.4 Modification of the Interfaces . 87
5.4.1 Refactoring Normed Spaces . 87
5.4.2 A More Abstact Definition of Uniform Spaces 88
5.4.3 Removing the Dependency on the Standard Library 89

6 Tools for Asymptotic Reasoning 91
6.1 Small-Scale Filter Elimination . 92

6.1.1 The near Tactics . 92
6.1.2 Example: a Short Completeness Proof 95

6.2 Bachmann-Landau Notations . 99
6.2.1 Mechanisation of Equational Bachmann-Landau Notations 99
6.2.2 Examples and Applications . 102

7 Evaluation of our Library 107
7.1 Improvements on our Case Study . 107
7.2 Remaining and New Issues . 108
7.3 Related Work . 109

7.3.1 Libraries for Analysis . 109
7.3.2 Related Work on Asymptotic Reasoning 110
7.3.3 Related Work on Delayed Production of Witnesses 111

III Tools for Automation 113

8 Refinement and Computation 115
8.1 Refinement . 115

8.1.1 Definition of Refinement . 116
8.1.2 Program Refinement . 117
8.1.3 Data Refinement . 118
8.1.4 Composition of Refinements . 119

8.2 Using Refinement in Proofs . 120
8.2.1 On Proofs and Computation . 120
8.2.2 Automation of Refinement . 123
8.2.3 A Simplification Tactic . 125

8.3 The Benefits of Parametricity . 127
8.3.1 The Parametricity Theorem . 127
8.3.2 Parametricity for Data Refinement . 129
8.3.3 Current and Future Work on Parametricity 130

xv

9 Proof by Reflection 133
9.1 Principles of Proof by Reflection . 133
9.2 A More Modular Methodology . 136
9.3 Possible Improvements and Future Work . 139

9.3.1 Missing Features . 139
9.3.2 Efficiency issues . 140
9.3.3 Possible Generalisations . 140

Conclusion 143

List of Figures 147

Bibliography 149

xvi

INTRODUCTION

On Formal Proofs

Computer programs are playing a predominant role in our society. We entrust them with
our communications (email agents, web browsers, radio software), with our economy (au-
tomated assembly lines, real-time trading tools), and even with our lives (robotic surgery,
autopilot, military robots). With such a wide range of applications, many of them being criti-
cal, it is crucial to ensure that no error sneaked in these programs. These errors can be of two
kinds: they can come from the actual implementation of the program or they can originate
from the design of the underlying algorithm.

Implementation errors seem less important because they may be easier to spot. One can
indeed notice some of them at compilation time, especially if the program is written using
a strongly typed language, preventing even the execution of the program. However, most of
them pass the compilation step so that it is necessary to resort to more complex techniques to
spot them. One of these techniques, the most natural one, is testing. Running the program
and checking its output against the expected one may reveal a bad behaviour. In order to
locate its origin, observing the output is often not sufficient and one has to check the whole
execution trace.

In this way, testing may also expose design errors. Imagine for instance a program whose
result depends on one particular computation, which is the implementation of an erroneous
mathematical formula. The execution trace may reveal a wrong result for this computation
and make the programmer check this formula. However, the execution trace will not reveal
whether an error stems from an erroneous formula or from the implementation of a valid
formula, e.g. from approximations resulting from the necessity of representing real numbers
with a finite precision.

In spite of it being widely used, testing is no magic bullet. According to Dijkstra [Dij72],
"program testing can be a very effective way to show the presence of bugs, but it is hopelessly
inadequate for showing their absence. The only effective way to raise the confidence level of a
program significantly is to give a convincing proof of its correctness". Let me emphasise the
meaning of this last sentence. In order to bring guarantees on a computer program, one has to

xvii

INTRODUCTION

prove its correctness. However, even proofs can be erroneous. That is why a correctness
proof must be convincing so that one can be confident in the result of the program.

Is confidence sufficient? Shall we consider using computer programs only in non-critical
domains of application? Our society has already decided that the benefits exceed by far the
risks incurred, but not without imposing a few limitations. The necessity for the level of
confidence to match the level of safety required for an application already appears in software
safety standards for avionics. In particular, formal methods must be used in complement of
testing for the verification of parts of the system [RTC11]. "Formal methods" refers to a set
of techniques for the verification of a specification. A specification is a mathematical property,
expressed in a given logic, that a system has to satisfy. It is the description of the expected
behaviour of a program, its safety condition. The main characteristics of a specification is
that it is symbolic. The chosen logic defines how each symbol can be manipulated and the
goal of formal verification is to provide a proof of the specification which is valid according to
the rules of manipulation of the symbols.

The main benefit of symbolic logic is that we can mechanise the process of verification,
i.e. we can use computer programs either to build a proof of the specification or to check that
this proof indeed respects the rules of the logic. Isn’t the use of computer programs to check
the correctness of other programs like a dog chasing its own tail? These verifiers can contain
errors, too. What could possibly happen if a faulty verifier produced/accepted an erroneous
proof of correctness of an unsound program? In fact, this is no issue, for everything boils down
to the level of confidence one desire for their program. This is "a matter of trust", as phrased
by Keller [Kel13]. I would personally rather trust someone who gives me a machine-checked
proof than "only" a pen-and-paper proof.

This thesis is concerned with the domain of formal methods that deals with the computer-
aided verification of proofs built by a human being: interactive theorem proving. Interactive
theorem provers, also known as proof assistants, are programs that check that both a statement
and its proof, input by a user, are well-formed. This means that the burden of finding a proof
falls to the user and that the proof assistant deals with a task that is easier for a computer:
mechanically applying rules to check the proof. This does not sound appealing, since the
goal of mechanising a process is to free human beings from "hard" tasks. But in fact, this
has several advantages. First, simple tasks make for simple programs. As a consequence, the
source code of a proof assistant will be easier to read, so that we can convince ourselves that
it is correct. More precisely, since a proof assistant cannot just be reduced to a proof checker,
only the part that indeed checks the proofs, the kernel, has to be simple and small, ideally
readable by a human being. This is called the de Bruijn criterion, as coined by Barendregt and
Barendsen [BB02]. On top of the kernel, proof assistants include various facilities in order to
smoothen the user experience. Although they may deceive the users into thinking they proved
a false result [Wie12], they do not need to be correct since they send to the kernel each proof
that has to be checked.

Then, another advantage that stems from the user having to provide a proof is that we
can make the most of human cleverness. Indeed, many of the involved decision problems
either have a high computational complexity (e.g. Presburger arithmetic [FR98]) or are even
undecidable [Mon76]. That is why modern automated provers use various heuristics to speed
up the proof search on given families of logical formulas, and to maximise the number of
such families. Instead of trying to have computer programs make clever choices, in interactive

xviii

theorem proving the users have to make them themselves. Thus, one has a better control on
how the proof is led and can avoid logical dead ends by performing the appropriate reasoning
steps.

Moreover, the process of building a proof can be beneficial for the user. Instead of throwing
a formula at an automated prover and keeping their fingers crossed, thinking hard to find why
this formula holds gives insights into the manipulated objects. This is all the more patent with
interactive proofs: pen-and-paper proofs contain holes, such as the implicit use of different
equivalent definitions of the same mathematical object, while a proof assistant requires its
user to explicitly fill them in. This means thinking about how to state each property, which
definition to use for each notion, in order to be in an optimal context for proofs. To this
end, it is easier to start with a pen-and-paper proof and then to implement it inside a proof
assistant.

Motivations of this Work

Although writing a proof on paper and then verifying it with a proof assistant is presently
the most efficient way to do interactive theorem proving, this is not entirely satisfactory.
Often, unexpected issues arise when one starts the implementation part: the tools at hand
do not use the same representation of the objects as the one required for the proof, which
sometimes means code duplication [Ben06], one has to adapt the mathematical objects to the
finite world of computers (e.g. working with truncated formal power series in order to be able
to decide equality [Dja18]), or even the proof is erroneous and one may have to start again (at
least partly) from scratch (see Section 3.2 for instance).

In an ideal world, proof assistants would be used for mathematical exploration, the com-
puter checking the small details while the mathematician is testing new ideas. This idea al-
ready appears in Simpson’s plea for the application of formal proofs to mathematics [Sim04].
This is also true for the verification of programs: as Dijkstra advocates [Dij72], "one should not
first make the program and then prove its correctness [. . .]. On the contrary: the programmer
should let correctness proof and program grow hand in hand". Formal methods should then
be integrated into the development process.

Several issues however impede progress in this direction. First of all, interactive theorem
proving is not easy. As Benton says [Ben06], "it’s a strange new skill, much harder to learn
than a new programming language or application, or even many bits of mathematics". Efforts
need to be done in order for proof assistants to be more friendly to newcomers, especially to
mathematicians: these tools are often developed with concerns about logic and programming
in mind [Sim04], which are quite different to mathematical concerns.

Another issue of interactive theorem proving is the difficulty to reach the appropriate
level of automation. Working with a proof assistant is a tedious process: proofs are verbose
because the computer requires the user to show every single statement, even the most trivial
ones like 0 6 1. Full automation also has its own drawbacks [Ben13]. Modern proof assistants
include inference mechanisms but knowing which one to use, and how and when to use it
already requires experience.

Even with proper tools for automation, an additional limitation is the amount of back-
ground theory that has to be developed. Simpson’s description of topics of mathematics in
which formalisations were done or are to be done [Sim04] is quite impressive by its length,

xix

INTRODUCTION

even more if we take into consideration the time required to achieve these formalisations.
The already achieved formalisations are spread in different libraries (the Archive of For-
mal Proofs [BHMN15], Coquelicot [BLM15], CoRN [CGW04], the Lean Mathemat-
ical Components library [LMCLD], Mathematical Components [MCT], the Mizar
library [BBG+18] are only a few of them), for different proof assistants (Coq [CDT19], HOL
Light [Har16], Isabelle/HOL [NPW02], Lean [dMKA+15], Mizar [NK09], PVS [ORS92]
and others [Wie06]), which work in different logical settings. Moreover, some libraries have
their own limitations, which drive users to redevelop parts of them in a different way.

Efforts have been made to overcome these obstacles. In front of the insufficiency of
reference manuals, books were written in order to give clues on how to use different sys-
tems [BC04, MT18, AdMK18], sometimes with a focus on a particular domain of application
of the system [BM17]. Automation is a vast research topic, so I will cite only a few pieces of
work. Inference mechanisms have been developed, e.g. type classes in Isabelle/HOL [HW06],
Coq [SO08] and Lean [dMKA+15] and canonical structures in Coq [Sai99, MT13]. These
mechanisms have various applications, not only in proof automation [GZND11], but also
in the design of libraries, e.g. via the formalisation of a hierarchy of mathematical struc-
tures for algebra [Coh12, GAA+13] or for analysis [HIH13, BLM15]. Computation is also
an important aspect of automation. Its use has been developed through mechanisms such
as reflection [Bou97] and refinement [DMS12, Lam13]. Finally, the communication of proof
assistants with automated procedures, such as SAT/SMT solvers [FMM+06, AFG+11, Kel13]
or automated theorem provers [MBG06], and the communication between different proof as-
sistants [KW10, Kel13, CD17] have been explored.

This thesis falls in with these efforts to provide proof assistants with well-adapted tools
and libraries in order to make interactive theorem proving easier. In my work, I focused on
one particular proof assistant: Coq. Before stating my contributions to interactive proving
with Coq, let me introduce this proof assistant and give my motivations for working with it.

The Coq Proof Assistant

Throughout this thesis, we try to keep code snippets simple and as relevant as possible
with respect to the discussion. As a consequence, some of them are different from the
actual implementation: some parts may be reshaped, renamed or omitted.

Warning

Key Features

Coq [CDT19] is a proof assistant based on type theory, i.e. on a typed λ-calculus. Type
theories make it possible to describe programs, properties and proofs in the same language.
Indeed, λ-calculus is in itself a programming language, though not very practical. Moreover,
propositions can be described by types and proofs of these propositions by λ-terms [How80]:
this is called the Curry-Howard correspondence.

Coq’s type system, called the Calculus of Inductive Constructions, extends the Calculus
of Constructions [Coq85, CH88] with inductive types [CP88]. An important feature of these

xx

calculi is that they include dependent types, i.e. types that can depend on arbitrary expres-
sions. Combined with inductive types, dependent types make Coq’s language very expressive.
For instance, Coq’s standard library contains a type of vectors, i.e. a data structure of lists
that contains the information of their length.

Inductive vector (A : Type) : nat -> Type :=
| nil : vector A 0
| cons : forall (h : A) (n : nat), vector A n -> vector A (S n).

The vector data type is also polymorphic: a single definition of the type makes it
possible to handle both vectors of integers and vectors of real numbers.

Remark

With this language, one can write programs that embed (parts of) their specification:
preconditions (respectively postconditions) can be described by the type of the inputs (re-
spectively outputs) of the program. This is a very strong interpretation of Dijkstra’s rec-
ommendation of "[letting] correctness proof and program grow hand in hand" [Dij72]. An
example of partial specification by definition is the append function on vectors, which already
contains the information that the length of its output is the sum of the lengths of its inputs.

Fixpoint append (A : Type) (n p : nat) (v : vector A n)
(w : vector A p) : vector A (n + p) :=
match v with
| nil _ => w
| cons a v’ => cons a (append v’ w)
end.

Coq comes with a type inference mechanism, which allows the user to let arguments
unspecified and even to write code as if these arguments did not exist: they are called
implicit arguments. For instance, the arguments A and n of the cons function are implicit
and do not appear in the definition of append, since they can be inferred (e.g. from the
types of a and v’ in its first use).

From now on we will follow Coq’s syntax for implicit arguments. When giving a new
definition, implicit arguments are declared using curly brackets, as in

Definition fct {arg1 : type1} (arg2 : type2) :=

Then, arg1 is omitted in subsequent uses of fct, which all are of the form fct arg2.
Still, it is possible to give implicit arguments explicitly, using the @ symbol before the
name of the function: @fct arg1 arg2.

Remark

The append function also illustrates the need for another feature of Coq: conversion.
Indeed, imagine one wants to prove that appending the vectors [0] and [1] gives the vector [0; 1].
In Coq, one would write

xxi

INTRODUCTION

Lemma app_01 :
append (cons 0 (nil nat)) (cons 1 (nil nat)) = cons 0 (cons 1 (nil nat)).

However, one can only compare two terms of the same type, and the left-hand side of the
equation has type vector nat (1 + 1), while the right-hand side has type vector nat 2.
This is where conversion comes into play. In the Calculus of Inductive Constructions, two
terms are said convertible if they are related through a particular equivalence relation ≡,
which tries to capture the notion of equality by computation. The following conversion rule
states that if t is a term of type T and U is well-formed (i.e. U has a sort s as type), and if T
and U are convertible, then t also has type U 1.

Γ ` t : T Γ ` U : s T ≡ U
Γ ` t : U

Since 1 + 1 and 2 are convertible, vector nat (1 + 1) and vector nat 2 are also con-
vertible and, thanks to the conversion rule, Lemma app_01 is indeed well-formed.

The two sides of the equation in Lemma app_01 are convertible, hence the reflexivity
of equality is sufficient to prove this lemma.

Remark

From an implementation point of view, Coq respects the de Bruijn criterion: it only relies
for its correctness on a kernel that checks the proofs. Since Coq is based on type theory,
checking the proofs means here checking that a given λ-term has a given type. This is the
role of Coq’s type-checker.

Finally, a last feature of Coq I would like to mention, also related to its implementation,
is its proof mode. In order to prove a proposition, the user of Coq does not have to provide a
λ-term which inhabits the type describing this proposition. Instead, the user can progressively
build it using tactics (see seminal work by Gordon et al. [GMW79] and Milner [Mil85], and
Delahaye’s work in the particular case of Coq [Del00]). The proposition to prove is called
a goal. Coq also displays a context, which contains the variables and hypotheses that can
be used to prove the goal. With tactics, the user apply transformations to the goal and to
the context, possibly generating new goals. Internally, the tactics build a λ-term with holes,
which are filled in once each goal is closed.

There is an extension of Coq’s tactic language, SSReflect [GMT15], which we used
for this work.

Remark

1. In fact, in the actual implementation of Coq, the convertibility condition T ≡ U is replaced with a
subtyping condition T 6 U [CDT19].

xxii

Let me illustrate Coq’s proof mode on a very simple example: the proof of the
commutativity of the addition on natural numbers.

Lemma addnC (n m : nat) : n + m = m + n.

The proof script starts with the Proof command to mark the beginning of the proof.
Then we proceed by induction on n through the elim: n tactic. At this point, Coq
shows two goals (corresponding to the base case and the induction step) and the context
of the first one.

2 subgoals

m : nat
============================
0 + m = m + 0

subgoal 2 is:
forall n : nat, n + m = m + n -> n.+1 + m = m + n.+1

So, using only m and already proven lemmas, we have to prove the first equation.
Conversion reduces the left-hand side of the equation to m but not the right-hand side.
It is necessary to rewrite with Lemma addn0 to do so. Thus, we can close this subgoal
by typing by rewrite addn0. Coq then prints the second subgoal with its context.

m : nat
============================
forall n : nat, n + m = m + n -> n.+1 + m = m + n.+1

We can then put n together with the induction hypothesis in the context using
the move=> n ihn tactic.

m, n : nat
ihn : n + m = m + n
============================
n.+1 + m = m + n.+1

The next step is to replace the right-hand side of the equation with (m + n).+1 by
rewriting with Lemma addnS and then to use ihn from right to left in order to swap m
and n in the resulting expression. We thus type rewrite addnS -ihn and Coq prints:

m, n : nat
ihn : n + m = m + n
============================
n.+1 + m = (n + m).+1

This is true by computation and after the by [] tactic Coq prints:

No more subgoals.

We can then register this lemma for later use with the Qed command.

Example

xxiii

INTRODUCTION

The advantage of such a proof mode becomes clear when one compares this script,
which can be condensed into the one-liner proof below and which is a description of
the sequence of reasoning steps, and the corresponding (∼ 10 lines) λ-term obtained
through the Print addnC command, which is harder to read and contains irrelevant
information (although proof scripts are also inherently hard to read [Ben06]).

Proof. by elim: n => [|n ihn]; rewrite ?addn0 // addnS -ihn. Qed.

In this script, we find again the ingredients of the proof that we described, but for
conciseness we deal with the base case and the induction step at the same time: the
brackets [|n ihn] indicate that we put the induction hypothesis in the context of the
second subgoal while doing nothing on the first one, the question mark in front of addn0
means that we rewrite with Lemma addn0 in any subgoal where it is possible (only the
first one here) and the subsequent use of // eliminates the trivial subgoals (again, only
the first one here).

Why Coq?

Most of these features are not specific to Coq, so let me explain my reasons to focus on
this proof assistant in this thesis.

First, the most personal one: I already knew Coq before starting to work on this thesis.
This is clearly not a sufficient reason in itself, since I could have learnt to use another proof
assistant. But, the gain of time put aside, this has an advantage: I already had an idea of
what was hard/tedious in Coq, of which domains of mathematics were insufficiently tackled
in Coq.

Then, type theory in general and the Calculus of Inductive Constructions in particular
provide a language that constitutes a unified framework for writing programs, theorems and
proofs. As a consequence, as Benton puts it [Ben13], "a proof assistant like Coq is in many
respects simply a better programming language than most conventional ones".

Since Coq is not the only proof assistant based on type theory, nor on the Calculus of
Inductive Constructions, there is a third reason to focus on it, which is more social. Coq has
a large community of users, and contacts with industry through the Coq Consortium. This
sets up a good environment for a system that constantly evolves and adapts to the needs of
its users.

This brings us to my last argument for using Coq: throughout the years, its large commu-
nity has built tools and well-furnished libraries. This makes both for a great toolkit to work
with and for a working base for our study. I will only cite the Mathematical Components
library [MCT], based on the SSReflect extension of Coq’s tactic language [GMT15], and
the Coquelicot library [BLM15], which both played a significant role in this thesis.

Contributions

Making interactive theorem proving in Coq easier is a huge programme, so I had to make
a choice. I could have worked on Coq’s implementation in order to improve the internal
behaviour of some tools or come up with new ideas on its internals, but I chose instead to
leave the proof assistant untouched and to work on top of it. Developing formalisation tools

xxiv

only makes sense if these tools have some use. It is then important to put these tools to the
test with concrete examples. Having a penchant for mathematics, especially for analysis, I
decided to explore the use of Coq in this domain. Since libraries for analysis already exist in
Coq (see Section 2.3.1), I developed a case study to determine (and palliate) their limitations.

For this experiment, I focused on a concrete example in control theory. This field deals
with dynamical systems, which usually operate in continuous time. This makes control theory
a good candidate to study formalisation techniques in analysis. A goal of this field is to design
techniques to grant a particular behaviour of a dynamical system: a control function affects
the reaction of the system to its inputs in order to achieve this goal.

My case study consists of a formal proof of correctness of a given control function for a
standard example in control theory: the inverted pendulum (see Section 1.1 for a description
of the pendulum and of the control challenges associated to this system). I started from a
pen-and-paper proof [LFB00] and implemented it in Coq. This proof goes through the use
of LaSalle’s invariance principle [LaS60, LaS76], which is widely used in the analysis of the
stability of dynamical systems (see Section 1.2.3 for an introduction to stability analysis). I
formalised in Coq a generalised version of this principle.

This case study required the development of several tools for analysis. I formalised several
notions of topology, up to the proof of Tychonoff’s Theorem. Cyril Cohen and I designed
notations that, combined with a filter inference mechanism, make easier the manipulation of
limits. I worked on combining different libraries (namely Coquelicot [BLM15] and Math-
ematical Components [MCT]), especially to obtain a ready to use formalisation of Rn.
Finally, I also developed a mechanism to compute automatically the derivative/differential of
a function.

From this experiment, we were convinced that a new framework for analysis in Coq was
needed. Reynald Affeldt, Cyril Cohen and I started to work on a fork of Coquelicot, which
rapidly mutated into a whole new library, Mathematical Components Analysis [ACM+],
compatible with Mathematical Components by design. We also collaborate with Assia
Mahboubi and Pierre-Yves Strub on this library since it now depends on a new description of
real numbers that they developed before this library even existed. The parts of the case study
that could be used in a more general context were added to the library. We also developed
new tools for asymptotic reasoning. My other contributions to this library consist of the
proof of standard theorems (e.g. Zorn’s Lemma, Heine-Borel’s Theorem, the Intermediate
Value Theorem, Rolle’s Theorem, and the Mean Value Theorem), different modifications of
the topological hierarchy, the adaptation of the library to the new description of real numbers,
and most of the documentation.

I also worked on tools for the automation of reasoning, that were missing from the new
library. I focused on proofs by computation and the proof technique called reflection. Cyril
Cohen and I designed a more modular methodology for reflection and applied it to a prototype
of tactic to decide equalities on arithmetic expressions, similar to ring [GM05].

Publications

The case study was published in two parts. First, the formalisation of LaSalle’s invari-
ance principle appeared in the proceedings of the 8th International Conference on Interactive
Theorem Proving [CR17a]. Then, its application to the inverted pendulum appeared in the

xxv

INTRODUCTION

proceedings of the 7th ACM SIGPLAN International Conference on Certified Programs and
Proofs [Rou18]. Both formalisations may be found on-line in the same repository [CRa].

The Mathematical Components Analysis library was first introduced at the Coq
Workshop 2018 [ACM+18]. A more technical presentation of some tools we designed for the
library was published in the Journal of Formalized Reasoning [ACR18]. The code of the library
is freely accessible on-line [ACM+].

Our methodology for proofs by reflection and the prototype of tactic based on this method-
ology appeared in the proceedings of the 28e Journées Francophones des Langages Applicat-
ifs [CR17b], which is a French-speaking conference. The prototype of tactic is published as a
part of the CoqEAL library [CCD+].

Organisation of this Thesis

This thesis is organised in three parts which do not respect chronological order. Part III
was in fact the starting point of my work, as a continuation of my Master’s internship, but it
contains hints of solutions to some issues raised in the remainder of this thesis. Hence, these
issues are presented first.

Part I describes the case study.
Chapter 1 gives the necessary context to understand this experiment. It introduces the

inverted pendulum together with its control challenges, defines the notions that are important
to model the pendulum as a dynamical system, and contains my thoughts and choices on how
to formalise such a system.

Chapter 2 and Chapter 3 respectively describe the formalisations of LaSalle’s invariance
principle and of the inverted pendulum. They are both organised as follows: I first explain
the mathematics involved in the proofs and then present the tools I formalised to implement
these proofs in Coq.

Chapter 4 gives an assessment of this formalisation and explains why we started working
on a new library for analysis in Coq.

Part II describes the design of the Mathematical Components Analysis library.
Chapter 5 presents my work on the topological hierarchy of the library. It describes how

my different contributions fit in this new context.
Chapter 6 explains how we exploited this new hierarchy to develop tools for asymptotic

reasoning.
Chapter 7 gives an early assessment of this library based on my experience with it. In

particular, I compare the formalisation of the inverted pendulum from Part I with a new one
using this library, which may be found in the same repository [CRb].

Part III describes tools for automation that could overcome some of the limitations observed
in Chapter 7. This part is focused on proofs by computation.

Chapter 8 introduces a framework that makes it possible to make certified and efficient
computations through a separation of concerns.

Chapter 9 explains how we used this framework in the context of proof by reflection. It
describes a modular methodology for reflection and its application to a concrete example.

xxvi

Part I

Case Study: the Inverted Pendulum

1

Part I
Case Study: the Inverted Pendulum

CHAPTER 1

CONTEXT

This case study deals with the formalisation of the inverted pendulum, which is a standard
example in control theory. We give a description of this system and explain why this example
is standard in Section 1.1. Then we introduce the mathematics used to model the pendulum
in Section 1.2. Finally, we discuss different aspects of the formalisation of such a system and
give a clear delimitation to the present work in Section 1.3.

1.1 The Inverted Pendulum

We give a high-level description of the inverted pendulum in Section 1.1.1. Then we briefly
discuss in Section 1.1.2 control theory in the perspective of using it to study the inverted
pendulum and finally describe the control challenges in the particular case of the pendulum
in Section 1.1.3.

1.1.1 The System

As its name indicates, the inverted pendulum is a pendulum, hence a weight which is fixed
on one end of a pole. The pole can pivot on its other end. The specificity of this pendulum
is that it is inverted: instead of letting gravity bring the weight down, one can act on the
system to push the weight in the opposite direction.

Indeed, the free 1 pendulum will naturally fall down under the action of gravity and, thanks
to friction, eventually stop on a position where the pole is along the vertical line and the weight
is on the lower end of the pole (see Figure 1.1a). This state, the position and the null velocity,
is called an equilibrium: once the system reaches this state it cannot leave it. This equilibrium
is moreover stable, i.e. if the pendulum is slightly perturbed, then it will eventually go back
to this state.

1. As in "free of control".

3

CHAPTER 1. CONTEXT

The pendulum has a second equilibrium, still with null velocity and where the pole is along
the vertical line, but where the weight is on the upper end of the pole (see Figure 1.1b). This
one is unstable: after any perturbation, the system will go further and further from this state.

(a) Stable Equilibrium (b) Unstable Equilibrium

Figure 1.1 – The Two Equilibria of the Free Pendulum

In the case of the inverted pendulum, the unstable equilibrium is the state that matters.
However, since the free pendulum will always move away from this state, one has to act on
the system to have the weight remain near the upper position. In the way one would balance
a ruler on their palm, the mean of action to balance the inverted pendulum is to move the
end of the pole on which it pivots. In this thesis, we consider a pendulum where the pivot is
on a cart that moves along a one-dimensional horizontal line (see Figure 1.2).

Figure 1.2 – The Inverted Pendulum

By acting on the cart, one can move the pivot and thus affect the rotation of the weight.
This action on the cart can be controlled by a computer program: this is where control theory
comes into play.

1.1.2 Notions in Control Theory and Application to the Pendulum

Control theory is a field which is concerned with the design of models and tools to grant
particular behaviours for dynamical systems. The modelled systems usually operate in con-
tinuous time and space, but are often driven by a computer program [ÅM08]. This program,
called a controller or control function, takes some inputs and computes an action to apply to
the system in order to reach the desired behaviour.

4

1.1. THE INVERTED PENDULUM

In open-loop control (see Figure 1.3a), the controller inputs do not depend on the system
outputs. On the contrary, closed-loop control (see Figure 1.3b) takes into account a feed-
back from the system in order to determine the action to apply [MLS94]. This feedback is
often obtained from sensors that measure the state of the system [ÅM08] and the problem
is to deal with this feedback in an effective way to compute the appropriate response of the
controller [LaV06].

Controller System
Inputs Action Outputs

(a) Open-Loop Control

Controller System
Inputs Action Outputs

Sensors
Feedback

(b) Closed-Loop Control

Figure 1.3 – Two Kinds of Control

The inverted pendulum fits in the closed-loop control scheme, as depicted in Figure 1.4:
the control function takes as input the state of the system and computes a force to apply to
the cart in order to affect the movement of the pivot. The way this force is applied depends
on the actual implementation of the pendulum: the choice of the engine will impact the way
it is controlled.

Controller Pendulum

Sensors

Parameters Force Position

Velocity

Estimates

Figure 1.4 – Closed-Loop Control for the Inverted Pendulum

Another point of interest in control theory is the distinction between linear and non-linear
control. Linear control theory deals with dynamical systems which obey to a linear differential
equation. General techniques, in particular frequency analysis, apply to linear systems [ÅM08].

5

CHAPTER 1. CONTEXT

Some non-linear systems can be linearised [MLS94], but this is not always the case, so that
other (often complex) techniques have been developed [Kha02].

The inverted pendulum fits in the category of non-linear systems, which sometimes can
be linearised, depending on the control challenge (see Section 1.1.3 for these challenges). This
is thus a simple system that poses not so simple problems, which makes it a good object of
study. It is also easy to implement thanks to its simplicity and easy to test thanks to the
absence of security constraints (no lives are at stakes). This makes the inverted pendulum a
good benchmark for various control techniques, as shown by the luxuriant literature on the
topic (Åström and Furuta [ÅF00, introduction] already mention numerous references for the
nineties).

1.1.3 Control of the Inverted Pendulum

As explained in Section 1.1.1, the position that actually matters is the unstable equilibrium
of the free inverted pendulum. A goal is thus to control the cart in order to reach this
equilibrium starting from any position. We say that we perform the swing-up of the pendulum.
However, perfect physical systems do not exist: there will always be a tiny discrepancy between
the theoretical position the system can reach and the position it will actually reach. As
a consequence, a second challenge is to stabilise the pendulum in a small region near the
equilibrium.

This second challenge makes possible an analogy with the "non-inverted" pendulum: we
often teach high-school students to linearise the differential equation representing the move-
ment of the pendulum for small swings, in order to solve it explicitly. By choosing a sufficiently
small area near the unstable equilibrium, the equation of the inverted pendulum can also be
linearised, thus opening the door to the use of standard techniques in linear control.

In this thesis, we focus on the first challenge: the swing-up of the inverted pendulum.
While swing-up is possible without taking into account the environment constraints [ÅF00], a
more interesting challenge is to perform the swing-up with a restriction on the space available
to the cart [CPJ02], or even with the condition that the cart has to end on its starting
position [LFB00].

The inverted pendulum is interesting not only for benchmarking linear and non-linear
control techniques [ÅF00], depending on the challenge one considers, but also to model more
complex systems. We will cite only two use cases of such models, since they are out of the
scope of our case study: object transportation [SMKT96, DSK98] and bipedal motion [SNI02].

1.2 Modelling Physical Systems

The first step in order to reason about a physical system such as the inverted pendulum,
either controlled or free, is to build a mathematical model of this system. Such a model is
called a dynamical system, which we briefly introduce in Section 1.2.1. We then discuss in
Section 1.2.2 how to obtain this dynamical system in practice and how the control function
affects such a system, through the example of the inverted pendulum. Finally, we present the
notion of stability, which generalises the notion of stability of an equilibrium, in Section 1.2.3.

6

1.2. MODELLING PHYSICAL SYSTEMS

1.2.1 On Dynamical Systems

Physical systems evolve through time. It is thus important to have a mathematical de-
scription of this evolution. We only consider deterministic systems here, hence at any given
time for any given state there is only one possible evolution. The best case is when one can
express the state of the system in function of time. Such a function then expresses all the
information about the system and constitutes, together with the state space, what we call a
dynamical system.

But often times it is only possible to describe the evolution through time of such a function,
by determining a differential equation it obeys to, or even, for the worst cases, the evolution
through time and space of a quantity that partially describes the state of the system. These
worst cases correspond to partial differential equations, illustrated for instance by the equa-
tions describing the propagation of a wave in different media [BG94]. In this thesis, we focus
on ordinary differential equations, hence on the simpler systems for which it is possible to
describe the evolution through time of the state.

An ordinary differential equation of order n is described by a function F, a solution being
given by a domain D (an interval, included in R+ in the case of physical systems) and a
function y such that

∀t ∈ D. F
(
t, y(t), y′(t), . . . , y(n)(t)

)
= 0. (1.1)

It is possible to transform an ordinary differential equation of order n into a first-order one
by replacing the state y(t) with the vector z(t) =

(
y(t), y′(t), . . . , y(n−1)(t)

)
. Indeed, if (D, y)

is a solution of Equation (1.1), then (D, z) is a solution of

∀t ∈ D. G
(
t, z(t), z′(t)

)
= 0, (1.2)

where G(a, b, c) = (c1 − b2, c2 − b3, . . . , cn−1 − bn,F (a, b1, b2, . . . , bn, cn)).
Conversely, if we know (D, z) is a solution of Equation (1.2), then we can prove that z is

of the form
(
y, y′, . . . , y(n−1)

)
, with (D, y) being a solution of Equation (1.1).

An ordinary differential equation of order n is said to be explicit, as opposed to the implicit
description of Equation (1.1), if we can isolate the nth derivative from the others: (D, y) is a
solution of the equation 2 if and only if

∀t ∈ D. y(n)(t) = F
(
t, y(t), y′(t), . . . , y(n−1)(t)

)
. (1.3)

It is not always possible to transform an implicit ordinary differential equation into an
explicit one [Pet82].

We also say that an ordinary differential equation is autonomous if the function F that
defines it does not depend on t. We can make an ordinary differential equation autonomous
by including time in the state. For instance, if (D, y) is a solution of the first-order ordinary
differential equation defined by F, then we define z(t) = (t, y(t)) and we prove that (D, z) is
a solution of

∀t ∈ D. G
(
z(t), z′(t)

)
= 0, (1.4)

2. This function F is not the same as the one in Equation (1.1), but it is the one that is used in practice
when discussing such systems.

7

CHAPTER 1. CONTEXT

where G(a, b) = (b1 − 1,F (a1, a2, b2)).
Conversely, if (D, z) is a solution of Equation (1.4), we can prove that z can be written

as (t+ C, y(t)), where C is a constant and (D+C, t 7→ y(t−C)) is a solution of the first-order
equation defined by F, where the domain D + C is the set {d+ C | d ∈ D}.

We are often interested in ordinary differential equations with initial conditions, i.e.
when the values of y, y′, . . . , y(n−1), are fixed for a given time t0. With such systems, the
constant C above can be forced to be 0 by choosing the initial condition z (t0) = (t0, y0).

Remark

In Chapter 2, we will focus on first-order explicit autonomous ordinary differential equa-
tions, i.e. on equations of the form

y′ = F ◦ y,

where f ◦ g is the standard notation for the function composition t 7→ f(g(t)). This form
is not however the one we usually obtain when studying physical systems, as we will see in
Section 1.2.2.

1.2.2 Taking into Account the Control Function

The dynamical system corresponding to a physical system can be obtained thanks to the
laws of physics. While Lagrangian mechanics [Lag11] seems to be the preferred method in
robotics, or at least standard enough to constitute a chapter of robotics textbooks [MLS94,
CLH+05], it is not the only method to compute the differential equation that describes the
system.

Lagrange equations are based on the energy of the system [MLS94], but we get a better
intuition of control if we interpret the control function as the source of an external force applied
to the free system: control is a perturbation that prevents the system from evolving according
to its natural behaviour, in order to obtain a different behaviour. It is thus easier to take
into account the effect of the control function if the differential equation is given by a formula
based on the forces that apply to the system, such as Newton’s second law of motion [New87].

Newton’s second law of motion states that the acceleration of a system, i.e. the second
derivative of the position, is proportional to the sum of the forces that act on it. Thus, if we
are able to list (and compute) all forces that take part in the evolution of the system, then we
get a second-order (explicit) differential equation describing this evolution.

Several notations for differentiation exist [Caj28]. Up to this point, we used Lagrange’s
notations

(
y′, y′′, . . . , y(n)

)
, which is quite commonly used in mathematics. For the sake

of coherence with textbooks [MLS94, CLH+05, ÅM08], with the paper on the inverted
pendulum we formalised [LFB00], and with our own publications [CR17a, Rou18], we
will also use Newton’s notations (ẏ, ÿ, . . .).

Warning

8

1.2. MODELLING PHYSICAL SYSTEMS

In textbooks [MLS94, CLH+05, ÅM08], the state of the system is usually called a config-
uration and denoted by q, which is a vector. Thanks to the laws of Newton, it is possible to
describe the dynamics of the system by the following standard form:

M(q)q̈ + C (q, q̇) q̇ +G(q) +B (q, q̇) = τ, (1.5)

where M(q) is the inertia matrix of the system, C (q, q̇) represents the Coriolis forces, G(q)
the gravitational forces, B (q, q̇) the dissipative forces such as friction and damping and τ the
external forces, including the effect of the control function.

We did not specify in Equation (1.5) on which variables τ depends, since it varies
from a system to another and is also function of the kind of control one applies.

Remark

In the case of the inverted pendulum, the configuration is given by the position of the
cart on the horizontal line, denoted by x, and the angle the pole forms with the vertical line,
denoted by θ (see Figure 1.5). Other relevant pieces of information are the length l of the
weighted pole, the respective masses m and M of the weight and of the cart (we neglect the
pole’s mass) and the control force fctrl.

m

θ

M

x

fctrl

l

Figure 1.5 – The Inverted Pendulum with Annotations

With these notations, considering the dissipative forces are negligible and using the stan-
dard notation g for the gravitational acceleration on Earth, we can rewrite Equation (1.5) for
the pendulum as follows [LFB00]:

M(q)q̈ + C (q, q̇) q̇ +G (q) = τ, (1.6)

where

q =

(
x
θ

)
, C (q, q̇) =

(
0 −mlθ̇ sin θ
0 0

)
,

9

CHAPTER 1. CONTEXT

M(q) =

(
M +m ml cos θ
ml cos θ ml2

)
,

τ =

(
fctrl

0

)
.

G(q) =

(
0

−mgl sin θ

)
,

1.2.3 An Important Property: Stability

As explained in Section 1.1.3, the control challenge of the inverted pendulum is to make it
reach a region near its unstable equilibrium where we can stabilise it. In other terms, we want
to make the unstable equilibrium of the free system a stable equilibrium of the controlled
system.

Although the stability of equilibria is the notion that is usually discussed [Kha02], stability
is a term that covers several concepts. This notion needs thus to be clarified. In this section I
rephrase the presentation of stability by Åström and Murray [ÅM08], which is in my opinion
the clearest one. It is focused on dynamical systems that represent physical systems: we
consider differential equations with initial conditions at time t = 0 and we are interested in
the behaviour of solutions for t > 0.

Definition 1.1 (Stability). A solution y of an ordinary differential equation with initial
condition y0 is said:

— stable (see Figure 1.6a) if and only if ∀ε > 0. ∃δ > 0. ∀z solution with initial condi-
tion z0.

‖z0 − y0‖ < δ ⇒ ∀t > 0. ‖z(t)− y(t)‖ < ε;

— unstable if and only if it is not stable;
— asymptotically stable (see Figure 1.6b) if and only if it is stable and ∃δ > 0. ∀z solution

with initial condition z0.

‖z0 − y0‖ < δ ⇒ ‖z(t)− y(t)‖ −−−−→
t→+∞

0.

ε

δ
y

z

(a) Stable solution

δ
y

z

(b) Asymptotically Stable Solution

Figure 1.6 – Illustration of the Notions of Stability

This notion of stability is called Lyapunov stability, in reference to Aleksandr Lyapunov’s
work [Lia07].

10

1.3. PRACTICAL ASPECTS OF SUCH A STUDY

Lyapunov stability may be used to define the notion of stable equilibrium. Indeed,
no solution can leave an equilibrium point, hence to an equilibrium point p corresponds
a solution which is a constant function: the function t 7→ p. We say that an equilibrium
is (asymptotically) stable if the corresponding solution is (asymptotically) stable.

The intuition we gave in Section 1.1.1 on stable equilibria thus corresponds to asymp-
totically stable equilibria. Although stability is sufficient in some cases, for instance to
keep the pendulum in a small region around the equilibrium, asymptotic stability is a
more desirable property.

We also sometimes abusively say that a dynamical system is (asymptotically) stable
when its equilibrium point is (asymptotically) stable.

Remark

LaSalle [LaS60, LaS76] proposes another point of view on stability in order to extend
Lyapunov’s ideas, based on the notion of stable set. We will discuss this notion in Section 2.1.2.

1.3 Practical Aspects of such a Study

In order to formally study a physical system, one has to take many factors into account.
We enumerate these factors and suggest a possible strategy for considering them separately
in Section 1.3.1. We then give the exact scope and goal of our case study in Section 1.3.2.

1.3.1 How to Formally Study a Physical System

As explained in Section 1.2, the first step to study a physical system is to build a math-
ematical model. However, differences between the physical system and its model are bound
to occur. Already during this first step we have to make approximations: in order to obtain
Equation (1.6) in Section 1.2.2, we had to neglect the mass of the pole as well as friction. We
also assumed the cart was moving on a straight horizontal line, in an empty environment (no
obstacle, no possible perturbation), which is obviously not the case in the real world: the cart
wheels are not exactly parallel, the ground is not perfectly flat and horizontal and obstacles
and perturbations can occur (a meteorite could perfectly fall on the pendulum. . .).

These differences are inherent to modelling: a model is a simplified version of reality that
allows us to focus on the relevant pieces of information. Knowing how far one can go in the
formal description of this simplification in order to reach a high level of confidence in the
physical system is a tough question. The more parameters one takes into account, the more
complex the model will be and the harder it will be to prove properties on this model. We
must however take into account sufficiently many parameters to reach the appropriate level
of confidence.

In my opinion, two kinds of difference must be considered. On one hand, systems such as
the inverted pendulum evolve in a continuous world but are driven by a computer program.
This program is executed on a processor which has a given frequency: it operates in discrete
time. This means that the control function that is computed does not vary continuously
but is a piecewise constant function (with an arbitrary number of pieces). Thus, the system
necessarily deviates from the ideal solution of the differential equation where the feedback is
continuous.

11

CHAPTER 1. CONTEXT

On the other hand, one also has to take into account approximations, which are of several
kinds. First, the fact that the control function is piecewise constant is in itself an approxi-
mation. The computed control force must be applied through the action of the engine, which
cannot instantly reach any force: there is a "latency", the discontinuities of the discrete model
are in fact replaced with continuous pieces with a high slope (e.g. as in Figure 1.7).

Control function

Action of the engine

Figure 1.7 – The Computed Control Function

Then, the control function is not "just" a mathematical function given by a formula, it is
computed by a program. The program that runs on the system’s processor does not compute
using exact real numbers but performs numerical computations using floating-point numbers,
which means there are rounding errors. Finally, another kind of approximation is introduced
by the sensors: they do not measure the exact state of the system but evaluate it with a given
precision.

This classification in discretisation and approximation errors generalises the "method" and
"round-off" errors for numerical approximation schemes (using the same terminology as Boldo
et al. [BCF+13]). The method error, sometimes also called truncation error, is the error one
makes by using an approximation scheme to estimate a solution of a differential equation.
Discretisation is analogous to the use of such a scheme. Although round-off error corresponds
only to errors in computation, I believe the approximations related to sensor precision and
to the engine response to discontinuities could be taken into account through an additional
incertitude on the state of the system. Moreover, since processors have a high frequency, if the
control function is smooth enough the discontinuities should be small and the engine latency
negligible.

Once these differences between the model and the concrete system are taken into account,
one also has to verify that the program is executed in a proper way. In particular, unless one
wants to program using the instruction set of the processor of the system, one must prove
that compilation does not introduce errors, for instance using a certified compiler [KLB+17,
ABB+17].

To sum up, we can establish the following strategy for the formal study of a system such
as the inverted pendulum, illustrated by Figure 1.8. First, select the relevant characteristics of
the system and discard the ones considered to be negligible. The control function is one of the
relevant characteristics. Then, build a mathematical model according to the laws of physics.
This model usually helps to design the formula which defines the control function and thus

12

1.3. PRACTICAL ASPECTS OF SUCH A STUDY

the program that has to be implemented. This makes it possible to prove properties on the
solutions of the obtained differential equation. Then, one has to take into account the impact
of discretisation and of approximations and to verify that these properties remain true. At
this point, a high-level implementation of the control function is proven correct. The last step
is to prove that the compiled version of the program keeps these properties.

1.3.2 Scope of our Case Study

The strategy illustrated by Figure 1.8 is actually a vast programme, which involves differ-
ent formalisation techniques. The last step means proving the correspondence between two
implementations of a same program in two different programming languages. Taking into ac-
count approximations implies proving that the same algorithm keeps its properties while using
different data structures (we switch from exact computations on real numbers to approximate
computations on floating-point numbers). This is all different from studying the behaviour of
the solutions of a differential equation.

Having a predilection for pure mathematics, I focus in this thesis on the analysis step:
proving properties of the solutions of a given differential equation, namely Equation (1.6).
This means that I assume the differential equation is correct, i.e. it accurately models the
system, and I only consider pure mathematical functions dealing with exact real numbers.

This step can be tackled in two ways: either by a qualitative analysis of solutions, or by
a quantitative analysis, i.e. either by considering abstract solutions and deriving properties
from the fact that they obey to the differential equation, or by resolving the equation and
then studying the properties of the concrete solutions. Resolving here means finding an
analytical solution, but one could consider a more general definition of quantitative analysis
where numerical resolution is allowed as long as it is possible to bring guarantees on the
accuracy of the approximation.

This case study is in fact a formalisation of a proof by Lozano et al. [LFB00], who perform
a qualitative analysis of the solutions of Equation (1.6). They prove that the control function
they give makes the solutions of Equation (1.6) achieve the swing-up of the inverted pendulum,
with the additional condition that the cart stops on its initial position.

Before discussing their proof and our formalisation thereof (see Chapter 3), we focus in
Chapter 2 on a standard theorem in stability analysis which is at the core of this proof:
LaSalle’s invariance principle [LaS60, LaS76].

13

CHAPTER 1. CONTEXT

S
y
s
te

m

S
y
s
te

m

c
h
a
ra

c
te

ris
tic

s

C
o
n
tro

l fu
n
c
tio

n

E
q
u
a
tio

n
s
 o

f

m
o
tio

n
P
ro

p
e
rtie

s
 o

f th
e

s
o
lu

tio
n
s

P
ro

p
e
rtie

s
 o

f
th

e

d
is

c
re

te
 s

y
s
te

m
 w

ith

e
x
a
c
t c

o
m

p
u
ta

tio
n
s

P
ro

p
e
rtie

s
 o

f th
e

h
ig

h
-le

v
e
l im

p
le

m
e
n
ta

tio
n

P
ro

p
e
rtie

s
 o

f th
e

lo
w

-le
v
e
l im

p
le

m
e
n
ta

tio
n

Id
e
a
l W

o
rld

 (M
a
th

e
m

a
tic

s
)

R
e
a
l W

o
rld

 (Im
p

le
m

e
n

ta
tio

n
s)

N
e
w

to
n
's

 la
w

s

C
h
a
ra

c
te

ris
tic

s

s
e
le

c
tio

n

A
n
a
ly

s
is

D
is

c
re

tis
a
tio

n

A
p
p
ro

x
im

a
tio

n
s

C
e
rtifi

e
d
 c

o
m

p
ila

tio
n

F
igure

1.8
–
Steps

in
the

Form
alStudy

of
a
P
hysicalSystem

14

Part I
Case Study: the Inverted Pendulum

CHAPTER 2

LASALLE’S INVARIANCE PRINCIPLE

LaSalle’s invariance principle [LaS60, LaS76] states a sufficient condition for the asymptotic
stability of the solutions of a first-order explicit autonomous ordinary differential equation.
Asymptotic stability being a crucial notion in the study of non-linear systems [Kha02], several
versions of this principle exist [LaS60, LaS76, CLH99, CZČ05, MG06, AE09, FKD13, Bar14,
Bar17]. Our case study is based on the original invariance principle [LaS60], which we explain
in Section 2.1. While working on its proof, we noticed that straightforward modifications could
be done to generalise this theorem, leading to yet another version described in Section 2.2.
Then we give more technical details on the formalisation in Section 2.3 and finally discuss
related work in Section 2.4.

This chapter may be seen as an extended version of our publication on the topic [CR17a],
updated with later work that improves the version of the theorem that is formalised [Rou18].
This work was done in collaboration with Cyril Cohen, who mainly contributed to the no-
tations and to the inference mechanism presented in Section 2.3.2. We give here the first
detailed description of this inference mechanism. All code snippets come from our on-line
repository [CRa], unless otherwise specified.

2.1 The Original Principle

LaSalle published several versions of the invariance principle [LaS60, LaS76], but the orig-
inal one seems to be the one that is most commonly used [MLS94, Kha02, ÅM08]. We first
discuss in Section 2.1.1 the intuition behind this theorem and then give its mathematical
statement in Section 2.1.2. Finally, we give its proof in Section 2.1.3.

15

CHAPTER 2. LASALLE’S INVARIANCE PRINCIPLE

2.1.1 Intuition behind the Invariance Principle

LaSalle’s invariance principle [LaS60] is an extension of Lyapunov’s work about stabil-
ity [Lia07]. The idea of Lyapunov is that if one can find a function satisfying a few conditions
with respect to the differential system, then one can guarantee stability. LaSalle’s work in
fact weakens the conditions on this Lyapunov function. We will now discuss these conditions.

We consider an equation of the following form.

y′ = F ◦ y. (2.1)

We thus have a function F which defines the velocity of solutions depending on their
position. This function can be seen as a vector field: at each point of the space corresponds a
vector which represents the velocity of a solution when it goes through this point. Visualising
this vector field can give clues on how solutions are expected to behave (e.g. see Figure 2.1).

Figure 2.1 – A Vector Field

The main condition on Lyapunov functions is that they must be akin to potential functions:
a Lyapunov function V is a scalar function that decreases along the trajectories of solutions
of Equation (2.1). A more illustrative way of putting this is that the vector field defined
by F must drive solutions downwards on the contour map of V (see Figure 2.2 for an example
corresponding to Figure 2.1).

If the Lyapunov function is well-chosen, the trajectories of solutions will converge to a
plateau of V and the solutions will not be able to leave it (this plateau is quite visible in our
example of Figure 2.2). This is the essence of LaSalle’s invariance principle.

Now, the difficulty is to find a Lyapunov function which is appropriate enough for this
plateau to grant the sought properties. Sometimes, one function is not enough and one has
to combine the properties of several Lyapunov functions to obtain the desired result [Mat62,
SPA16]. In the case of the paper on the inverted pendulum we formalised [LFB00], one
Lyapunov function was sufficient to prove the stability of the system.

16

2.1. THE ORIGINAL PRINCIPLE

Figure 2.2 – Contour Map of a Lyapunov Function

2.1.2 Statement of LaSalle’s Invariance Principle

In order to precisely state the original version of LaSalle’s invariance principle [LaS60],
we first have to give the mathematical definition of the different ingredients described in
Section 2.1.1. We consider an ordinary differential equation in Rn, i.e. the function F has
type Rn → Rn. A Lyapunov function is a scalar function, i.e. of type Rn → R. The condition
that a Lyapunov function V must decrease along the trajectories of solutions of Equation (2.1)
is expressed as the condition Ṽ 6 0, where Ṽ is defined as follows.

Definition 2.1. Let V be a scalar function with continuous first partial derivatives. Define,
for all p ∈ Rn,

Ṽ (p) = 〈(gradV)(p), F (p)〉 ,

where 〈., .〉 is the scalar product of Rn and gradV is the gradient of V .

An important property of Ṽ is that if y is a solution of Equation (2.1), then the
derivative of V ◦ y is Ṽ ◦ y. Indeed, for all p,

Ṽ (p) = 〈(gradV)(p), F (p)〉 = (dVp ◦ F)(p),

where dVp denotes the differential of V at point p. As a consequence, the chain rule of
differentiation gives, for all t > 0,

(Ṽ ◦ y)(t) = (dVy(t) ◦ F ◦ y)(t) = (dVy(t) ◦ ẏ)(t) = (V ◦ y)′ (t).

Thus, if Ṽ ◦ y is always non-positive, then V is indeed non-increasing along the
trajectory of y.

Remark

17

CHAPTER 2. LASALLE’S INVARIANCE PRINCIPLE

If Ṽ satisfies this sign condition, then the solutions of Equation (2.1) must converge to a
plateau of V , i.e. a set where Ṽ is constantly null. More precisely, this plateau is proven to
be asymptotically stable: LaSalle generalises the notion of stability (recall Definition 1.1) to
sets (see Definition 2.3). The idea is to replace the distance between points with the distance
of a point to a set (see Definition 2.2).

Definition 2.2 (Convergence to a set). The distance from a point p to a set E is the minimum
distance from p to a point q ∈ E.

d(p,E) = min
q∈E
‖p− q‖ .

We say that the function y converges to a set E as time goes to infinity, if

∀ε > 0. ∃T > 0. ∀t > T. d (y(t), E) < ε.

Since convergence to a set is a straightforward generalisation of convergence to a
point, we use the same notation to denote convergence: y(t) −−−−→

t→+∞
E.

See Figure 2.3 for an illustration of Definition 2.2.

Remark

E

ε

y

Figure 2.3 – Illustration of Convergence to a Set

Definition 2.3 (Stable sets). A set E is:
— stable if and only if ∀ε > 0. ∃δ > 0. ∀y solution with initial condition y0.

d (y0, E) < δ ⇒ ∀t > 0. d (y(t), E) < ε;

— asymptotically stable if and only if it is stable and ∃δ > 0. ∀y solution with initial
condition y0.

d (y0, E) < δ ⇒ y(t) −−−−→
t→+∞

E.

18

2.1. THE ORIGINAL PRINCIPLE

Definition 2.3 gives another equivalent definition of the stability of an equilibrium
point: a stable equilibrium is a stable invariant singleton set (invariance is introduced in
Definition 2.4).

Note that the plateau of V to which the solutions converge is also invariant.

Remark

Definition 2.4 (Invariant Sets). The set E is said to be invariant if every solution y of
Equation (2.1) starting in E, i.e. y(0) ∈ E, remains in E, i.e. ∀t > 0. y(t) ∈ E.

The notion of invariant set is quite important. Usually, stability cannot be obtained glob-
ally. For instance, the stable equilibrium of the free pendulum is only locally stable: not any
starting position makes the pendulum converge to this point, since starting on the unstable
equilibrium gives a trajectory that will not converge to the stable equilibrium. Finding the
equilibrium’s basin of attraction, i.e. the set of starting positions such that the system will
indeed converge to this point, can be hard. Finding an invariant set that contains the equi-
librium is easier and sufficient in LaSalle’s invariance principle (as long as one also finds a
Lyapunov function).

We can now state LaSalle’s principle [LaS60], illustrated by Figure 2.4.

Theorem 2.1 (LaSalle’s Invariance Principle). Assume F has continuous first partial deriva-
tives and F(0) = 0. Let K be an invariant compact set. Suppose there is a scalar function V
which has continuous first partial derivatives in K and is such that Ṽ (p) 6 0 in K. Let E be
the set of all points p ∈ K such that Ṽ (p) = 0. Let M be the largest invariant set in E.

Then for every solution y of Equation (2.1) starting in K, y(t) −−−−→
t→+∞

M .

K
E

M

Figure 2.4 – Illustration of the Original Invariance Principle

2.1.3 Proof of the Invariance Principle

Let us briefly explain LaSalle’s proof of Theorem 2.1 [LaS60]. Under the assumptions of
Theorem 2.1, the goal is to prove that any solution of Equation (2.1) starting in K converges
to M . So, let y be a solution of Equation (2.1) starting in K.

19

CHAPTER 2. LASALLE’S INVARIANCE PRINCIPLE

An important notion to study y’s asymptotic behaviour is its set of limit points (see
Definition 2.5), i.e. the set of points that the trajectory of y approaches arbitrarily close an
infinite number of times as time goes to infinity.

Definition 2.5 (Positive Limiting Set). Let y be a function of time. The positive limiting
set of y, denoted by Γ+(y), is the set of all points p such that

∀ε > 0. ∀T > 0. ∃t > T. ‖y(t)− p‖ < ε.

The most interesting property of positive limiting sets is that, even though y may not
have a limit, y converges to its set of limit points (see Lemma 2.2). This means in particular
that to prove that y converges to M , it is sufficient to prove that Γ+(y) ⊆ M . We do this
by proving that Γ+(y) is an invariant subset of E (see Lemma 2.4 and Lemma 2.5), which
concludes since M is the largest such set. This proof relies on properties of solutions that are
stated in Lemma 2.3.

Lemma 2.2. Let y be a function of time with values in a compact set.
Then y(t) −−−−→

t→+∞
Γ+(y).

Proof. This proof goes by contradiction. Assume y does not converge to its positive limiting
set. Then for some ε > 0, and all T > 0, there exists t > T such that d (y(t),Γ+(y)) > ε.

Thus, we can build a sequence (tn)n∈N such that tn −−−→
n→∞

+∞ and for all n ∈ N,
d (y (tn) ,Γ+(y)) > ε.

However, since all y (tn) are in a compact set, we know the sequence (y (tn))n∈N has a
limit point. This limit point is in Γ+(y) (use tn for t with an appropriate n in Definition 2.5).
But then, we know d (y (tn) ,Γ+(y)) < ε for n large enough, which is a contradiction.

Lemma 2.3. We have the existence and uniqueness (given an initial value) of solutions of
Equation (2.1).

Moreover, we have the continuity of solutions of Equation (2.1) with respect to initial
conditions, i.e. for all solution y starting at y0, all time t > 0 and all ε > 0, there exists δ > 0
such that for all solution z starting at z0 such that ‖y0 − z0‖ < δ, we have ‖y(t)− z(t)‖ < ε.

Proof. Since F has continuous first partial derivatives, F is of class C1, hence it is Lipschitz
continuous and the Cauchy-Lipschitz Theorem (also known as the Picard-Lindelöf Theorem)
concludes.

Lemma 2.4. Γ+(y) is invariant.

Proof. Let z be a solution of Equation (2.1) starting in Γ+(y). We want to prove that for
all t > 0, z(t) ∈ Γ+(y). So, let t0 > 0, ε > 0 and T > 0. The goal is to find some t > T such
that ‖z (t0)− y(t)‖ < ε.

By the continuity of solutions of Equation (2.1) with respect to initial conditions (see
Lemma 2.3), we know that there exists δ > 0 such that for all solution f of Equation (2.1)
such that ‖z(0)− f(0)‖ < δ, we have ‖z (t0)− f (t0)‖ < ε. We also know that z(0) ∈ Γ+(y),
hence there exists t1 > T such that ‖z(0)− y (t1)‖ < δ.

Thanks to the existence of solutions of Equation (2.1) (see Lemma 2.3), there is a solution f
such that f(0) = y (t1). Thus, we know that ‖z (t0)− f (t0)‖ < ε.

20

2.2. GENERALISATION OF LASALLE’S INVARIANCE PRINCIPLE

Using again Lemma 2.3 for the uniqueness of solutions of Equation (2.1), we have for
all t > 0, f(t) = y (t1 + t). In particular, f (t0) = y (t1 + t0), hence ‖z (t0)− y (t1 + t0)‖ < ε.
Since we know t1 + t0 > T , this concludes the proof.

Lemma 2.5. Γ+(y) ⊆ E.

Proof. Since K is invariant and y starts in K, we know that for all t > 0, y(t) ∈ K. Hence,
for all t > 0, we have Ṽ (y(t)) 6 0. Thus, V ◦ y is non-increasing (recall the remark following
Definition 2.1).

Moreover, V is continuous on K, since it has continuous first partial derivatives in K.
Thus, since y takes values in the compact set K, and since the continuous image of a compact
set is compact, we know that V ◦ y is bounded. Since V ◦ y is non-increasing and bounded, it
converges to a finite limit l as time goes to infinity.

Since y takes values in K, which is closed, its limit points all belong to K, i.e. Γ+(y) ⊆ K.
Using the continuity of V on K and the fact that (V ◦ y)(t) −−−−→

t→+∞
l, we can thus prove

that V (Γ+(y)) = {l}.
Let then p ∈ Γ+(y) and z be the unique solution of Equation (2.1) starting at p (see

Lemma 2.3). By Lemma 2.4 and what precedes, we know that for all t > 0, V (z(t)) = l. Thus,
by differentiation, Ṽ ◦z is constantly null. In particular at time 0, Ṽ (p) = 0, hence p ∈ E.

2.2 Generalisation of LaSalle’s Invariance Principle

Observing the proof in Section 2.1.3, we can already notice a few elements that can lead
to a straightforward generalisation of LaSalle’s invariance principle. In particular, we can
relax some hypotheses (see Section 2.2.1) and have a stronger conclusion (see Section 2.2.2).
This was in fact intended by LaSalle who first gave an illustration of his ideas [LaS60] and
later proposed another version of the invariance principle with weaker assumptions [LaS76].
Still, we focused on the original version which is still the one that is explained in modern
textbooks [MLS94, Kha02, ÅM08].

2.2.1 Weaker Hypotheses for the Invariance Principle

In his original paper [LaS60], LaSalle wants to illustrate his method and hence makes
any assumption that makes it easier to present. In particular, LaSalle wants to discuss the
stability of equilibria. Hence, he not only assumes there is an equilibrium, but also that this
equilibrium is conveniently located at the origin (F(0) = 0). This hypothesis does not play
any role in the proof we gave in Section 2.1.3. It is only important in LaSalle’s examples where
there is indeed an equilibrium at the origin and V is such that M = {0}. As a consequence,
we removed this hypothesis.

The other hypothesis on the vector field F (it has continuous first partial derivatives) is also
a convenience. LaSalle in fact needs “any other conditions that guarantee the existence and
uniqueness of solutions and the continuity of the solutions relative to the initial conditions”.
In his later work [LaS76], LaSalle only assumes that these three properties hold on a subset
of the ambient space, and that F is continuous on this subset. Assuming these properties on
a subset of the ambient space is important since it may happen that the vector field is not
defined everywhere (e.g. if the system comes from a control function that has singularities,

21

CHAPTER 2. LASALLE’S INVARIANCE PRINCIPLE

see for instance Section 3.1). However, the continuity of F is not required as long as we still
have the existence and uniqueness of solutions of Equation (2.1) in K and the continuity of
solutions of Equation (2.1) with respect to initial conditions.

The regularity assumption on V is also too strong. What we actually used in the proof of
Lemma 2.5 is the continuity of V and the fact that Ṽ ◦ y is the derivative of V ◦ y when y
is a solution of Equation (2.1). In our first published work on LaSalle’s invariance princi-
ple [CR17a], we assumed that V is differentiable in K. We later realised that this was still too
strong and that we could assume that V is only continuous on K and that for every solution y
of Equation (2.1), V ◦ y is derivable at any time.

This last assumption makes Definition 2.1 unusable since the gradient of V is not necessar-
ily well-defined. We can however use the remark following this definition to give an alternative
formulation of Ṽ (see Definition 2.6).

Definition 2.6. Let V be a scalar function which is differentiable along the trajectories
of solutions of Equation (2.1), i.e. V ◦ y is derivable at any time for every solution y of
Equation (2.1). Define, for all p ∈ Rn,

Ṽ (p) = (V ◦ y)′ (0),

where y is the unique solution of Equation (2.1) starting at p.

Since the existence and uniqueness of solutions of Equation (2.1) are required in
Definition 2.6, Ṽ is only defined in the compact set K, where we assume these properties.

Warning

We still have to check that this definition indeed provides us with the desired property,
which is the purpose of Lemma 2.6.

Lemma 2.6. For any solution y of Equation (2.1) starting in K, Ṽ ◦ y is the derivative
of V ◦ y.

Proof. Let t > 0. We want to prove that Ṽ (y(t)) = (V ◦ y)′ (t).
By assumption, V ◦ y is derivable at time t. By Definition 2.6, Ṽ (y(t)) = (V ◦ z)′ (0),

where z is the unique solution of Equation (2.1) starting at y(t).
By the uniqueness of solutions of Equation (2.1), we know that for all s > 0, z(s) = y(t+s),

hence for all s > 0, (V ◦ z) (s) = (V ◦ y) (t+ s). By differentiation at time 0, we know that

(V ◦ y)′ (t) = (V ◦ z)′ (0) = Ṽ (y(t)) .

Lemma 2.6 gives us another intuition on LaSalle’s invariance principle: the condi-
tion Ṽ (p) = 0 means that the Lyapunov function V converges to a minimum, since it
is decreasing along the trajectories of solutions according to Lemma 2.6 and to the sign
condition on Ṽ .

Remark

22

2.2. GENERALISATION OF LASALLE’S INVARIANCE PRINCIPLE

Using Definition 2.6 instead of Definition 2.1 makes it possible to relax a last hypothesis.
Indeed, since we do not use the gradient any more, the ambient space does not need to be Rn,
nor does it need to be a finite-dimensional vector space. In fact, we managed to prove LaSalle’s
invariance principle in any normed module over R.

2.2.2 A Stronger Invariance Principle

LaSalle’s proof [LaS60] of Theorem 2.1, which we described in Section 2.1.3, shows the
convergence of the solutions of Equation (2.1) toM by using the properties of positive limiting
sets. In fact, the maximality ofM plays a minor role. What is truly important for applications
of LaSalle’s invariance principle is the fact that M is an invariant subset of E. Combining
invariance with the fact that Ṽ is constantly null on M already gives all desirable properties.
For instance, in LaSalle’s paper [LaS60],M is always reduced to the equilibrium of the system.

Since for any solution of Equation (2.1) starting inK, we know by Lemmas 2.4 and 2.5 that
its positive limiting set is already an invariant subset of E, all desirable properties already hold
on this smaller set. We can then strengthen the conclusion of LaSalle’s invariance principle
by replacing M with the positive limiting set of the considered solution (see Theorem 2.7,
illustrated by Figure 2.5).

Theorem 2.7 (A Stronger Invariance Principle). Assume F is such that we have the existence
and uniqueness of solutions of Equation (2.1) in an invariant compact set K and the continuity
of solutions with respect to initial conditions in K. Suppose there is a scalar function V ,
continuous on K, such that for all solution y of Equation (2.1) starting in K, V ◦y is derivable
at any time, and that for all point p ∈ K, Ṽ (p) 6 0. Let E be the set of all points p ∈ K such
that Ṽ (p) = 0.

Then, for all solution y of Equation (2.1) starting in K, Γ+(y) is an invariant subset of E
and y(t) −−−−→

t→+∞
Γ+(y).

K
E

Γ+(y1)

Γ+(y3)

Γ+(y2)

Figure 2.5 – Illustration of the Stronger Invariance Principle

23

CHAPTER 2. LASALLE’S INVARIANCE PRINCIPLE

We also proved a slightly weaker version of Theorem 2.7, where we replace Γ+(y) with
the union of all Γ+(y) for y solution of Equation (2.1) starting in K. This defines an
asymptotically stable set which does not depend on the solution y.

Remark

2.3 Formalisation of the Generalised Principle

We formalised Theorem 2.7 in the Coq proof assistant using the SSReflect tactic lan-
guage [GMT15]. For real analysis, we chose to use the Coquelicot library [BLM15], which is
an extension of Coq’s standard library for real analysis [May01], amongst other libraries. We
explain our choice in Section 2.3.1. We then discuss the formalisation of the two main notions
involved in Theorem 2.7: convergence (see Section 2.3.2) and compact sets (see Section 2.3.3).
Finally, we give the formal statement of Theorem 2.7 in Section 2.3.4.

2.3.1 A Note on Logical Foundations and Choosing a Library

Several libraries for real analysis exist in Coq. Let us say a few words about those we
know of, before explaining our choice of the Coquelicot [BLM15] library.

It is important to have a basic knowledge of logic for this section to make sense.
Coq’s logic is constructive, i.e. one has to provide an explicit witness in order to

prove the existence of a particular object. In particular, this implies that the law of
Excluded Middle (see EM below) is not provable using Coq. In order to use it, one has
to pose it as an additional axiom using the Axiom command.

Γ ` P ∨ ¬P
EM

We sometimes use the term intuitionist logic to denote constructive logic. We say
that the logic is classical when its axioms entail EM.

Thanks to Coq’s constructive logic, the decidability of a predicate P : T -> Prop
corresponds to the existence of a function f : T -> bool that is logically equivalent
to the predicate. Indeed, thanks to the computational content of bool, such a func-
tion is an algorithm that actually decides if the proposition holds on a given argument.
Since witnesses are explicit in intuitionist logic, proving the existence of such a function
amounts to implementing the corresponding algorithm. One may state such an equiva-
lence as a reflection view (using the reflect inductive), which is a common practice in
Mathematical Components [MT18]:

forall t : T, reflect (f t) (P t).

We may also use Coq’s constructive sum, {P} + {Q}, to denote the possibility of
deciding between two propositions P and Q. The constructive sum plays the role of the

Warning

24

2.3. FORMALISATION OF THE GENERALISED PRINCIPLE

disjunction P ∨ Q but has a computational content that can be used to define functions
with values in a given data set depending on whether P or Q is true.

With strong enough axioms (such as the ones we will present in Section 5.1.1), the
existence of a boolean predicate does not mean decidability any longer, since it is possible
to prove such an existence even for undecidable predicates. We will say by abuse of
language that these predicates become decidable: we call decidable any predicate P for
which there exists a function f computing boolean values and that is logically equivalent
to P.

Coq’s standard library

Coq’s standard library contains a part for real analysis that was first developed by
Mayero [May01]. It is based on a classical axiomatisation of the set of real numbers: this
set is represented by an abstract type R together with axioms that make it a totally ordered
archimedean field equipped with an upper bound function. What makes this axiomatisation
classical is the characterisation of the total order:

Axiom total_order_T : forall r1 r2 : R, {r1 < r2} + {r1 = r2} + {r1 > r2}.

Axiom total_order_T expresses the fact that both equality and strict comparison are
decidable on real numbers. This axiom makes it possible to develop a theory of real analysis
without adding EM to Coq’s logic.

This library contains theories about limits, derivatives, series, elementary functions and
Riemann integrals.

The Coquelicot Library

Coquelicot [BLM15] is a conservative extension of Coq’s standard library for real anal-
ysis, i.e. no new axiom is added, which is compatible with the standard library: Coquelicot
redefines in a provably equivalent way some notions such as limits and derivatives.

Coquelicot makes use of the theories of general algebra and general topology in order to
derive a general theory that is not limited to real analysis. To this end, Coquelicot contains
a hierarchy of algebraic and topological structures, depicted in Figure 2.6.

AbelianGroup

Ring

AbsRing

ModuleSpace R

NormedModule K UniformSpace

CompleteSpaceCompleteNormedModule K

−→ Inheritance by definition

=⇒ Particular instance

99K Dependency

Figure 2.6 – The Coquelicot Hierarchy

25

CHAPTER 2. LASALLE’S INVARIANCE PRINCIPLE

The algebraic structures in Coquelicot are abelian groups (AbelianGroup), rings (Ring)
and modules over a given ring (ModuleSpace R). The most basic topological structure in Co-
quelicot is the uniform space (UniformSpace), which is a particular kind of topological space.
Such a space can be complete (CompleteSpace). When a ring is equipped with an absolute
value (AbsRing), modules over such a ring that are equipped with a norm (NormedModule K)
are uniform spaces. These spaces can be complete too (CompleteNormedModule K). We will
more precisely discuss this hierarchy in Section 5.2.

A great part of the library deals with uniform spaces and normed modules. Some parts
specifically concern the set of real numbers, which forms a complete normed module over itself
thanks to the axioms of the standard library.

The CoRN and MathClasses Libraries

The CoRN [CGW04] and MathClasses [SvdW11, KS11] libraries form a constructive
library for real analysis. The library is still built from an abstract interface with a carrier type
and axioms it has to satisfy. However, this interface is bundled in a record one can instantiate,
which has been done by defining real numbers as rational Cauchy sequences [GN00].

An important aspect of constructive real analysis is that equality is no longer decidable.
This rules out some commonly-used proof techniques and makes it necessary to reformulate
some notions, which has a great impact on the formalisation. Mayero details this incompati-
bility between Coq’s standard library and CoRN in her habilitation [May12].

The COQTAIL Library

The COQTAIL library [TCT] is the result of a junior laboratory aiming at making the
formalisation of Bachelor-level mathematics easier. It is born as an attempt to make a com-
promise between the classical axiomatisation of the standard library, which forbids any truly
constructive result, and the constructive approach, which has a great impact on proofs, espe-
cially in Bachelor-level mathematics where the possibility to decide equality on real numbers
and the law of Excluded Middle are pervasive.

This library is based on a constructive axiomatisation of real numbers [MP11] but does
not rule out the use of classical rules of reasoning when needed.

Why we chose Coquelicot

Our goal is very close to the one of the junior laboratory at the origin of the COQTAIL
library. Indeed, we want to make the formalisation in mathematics and especially in real
analysis easier. Although constructive reasoning is a laudable concern and interesting subject,
in particular with regards to real arithmetic [GNSW07], the common mathematical practice
is to use classical reasoning when it is convenient. If we want to make formal mathematics
closer to pen-and-paper proofs, we then have to allow for classical reasoning steps such as
proof by contradiction (which is necessary to prove Lemma 2.2), which rules out the CoRN
and MathClasses libraries.

Since Coquelicot extends Coq’s standard library, solving on the way some of its issues,
the choice is between COQTAIL and Coquelicot, i.e. between a constructive and a classical
axiomatisation while allowing for additional axioms making classical reasoning possible. From

26

2.3. FORMALISATION OF THE GENERALISED PRINCIPLE

this perspective, COQTAIL seems to be the best choice since it does not forbid constructive
results.

However, the COQTAIL library lacks the abstractions that make the success of the Co-
quelicot library. It is mainly focused on real functions while Coquelicot contains more
general results, and convergence is expressed through ε − δ definitions, while Coquelicot
benefits from the notion of filter we will discuss in Section 2.3.2. Since practicality and gener-
ality are to us more important concerns than logical foundations, which we can safely assert
is also true of the average mathematician, we decided to use Coquelicot.

2.3.2 Filters for Real Analysis

Theorem 2.7 is a convergence theorem. As a consequence, we needed a good formali-
sation of convergence-related notions. The state of the art, in Coq [BLM15] but also in
Isabelle/HOL [HIH13] and in Lean [LMCLD], indicates that filters form the appropriate
notion to formalise convergence. Let us first give a few definitions about filters and convergence
before describing our contributions.

Definitions

Filters are a generalisation of sequences introduced by Cartan [Car37b, Car37a] and later
developed by the Bourbaki group [Bou71]. Their original definition corresponds to the notion
of proper filter in Definition 2.7.

Definition 2.7 ((Proper) Filter). A set of sets F is called a:

— filter if and only if it is non-empty, upward closed, and closed under intersection:

F 6= ∅, ∀A,B. A ⊆ B ⇒ A ∈ F ⇒ B ∈ F and ∀A,B ∈ F. A ∩B ∈ F.

— proper filter if and only if it is a filter and it does not contain the empty set.

Since a filter F is non-empty and upward closed, it always contains the full set. This
leads to the following definition of filters in Coquelicot, which is designed as a type
class [SO08] in order to automatically infer the filter structure of given sets of sets.

Class Filter {T : Type} (F : (T -> Prop) -> Prop) := {
filter_true : F (fun _ => True) ;
filter_and : forall P Q : T -> Prop, F P -> F Q ->
F (fun x => P x ∧ Q x) ;

filter_imp : forall P Q : T -> Prop, (forall x, P x -> Q x) ->
F P -> F Q

}.

Note that sets are represented in Coq as predicates, i.e. functions with values in Prop.

Remark

27

CHAPTER 2. LASALLE’S INVARIANCE PRINCIPLE

Filters are used in particular in analysis to represent neighbourhoods. Indeed, "being
a neighbourhood" is a predicate that describes a filter.

For instance, the set {N | ∃ε > 0. Bε(p) ⊆ N} of neighbourhoods of a point p in a
uniform space (see Figure 2.7a), where Bε(p) denotes the ball of centre p and radius ε,
forms a filter denoted by locally p in Coquelicot.

Another kind of neighbourhoods that plays a role in the proof of Theorem 2.7 is the
notion of neighbourhood of a set A (see Figure 2.7b). It generalises the notion of neigh-
bourhood of a point in a straightforward way: instead of balls around the point, consider
strips around the set. Formally, such a strip is the set of points p such that d(p,A) < ε
for a given ε > 0 (recall Definition 2.2 for the distance of a point to a set). We denote
by Bε(A) such a strip (by analogy with balls) and by locally_set A the neighbourhood
filter of the set A.

Finally, the set {N | ∃M. [M ; +∞) ⊆ N} of "neighbourhoods of +∞" (see Fig-
ure 2.7c) is a filter denoted by Rbar_locally p_infty in Coquelicot. In fact, the
function Rbar_locally takes a point in R (i.e. R ∪ {±∞}) and returns a filter on R:
locally p if its argument p represents a real number, and the corresponding set of
neighbourhoods of the infinity if it is either p_infty (for +∞) or m_infty (for −∞).

In all these examples, the neighbourhood filter is defined by taking the supersets
of a family of generators (balls Bε(p) around points, strips Bε(A) around sets, or in-
tervals [M ; +∞) and (−∞;M] for the infinities). We will make formal such a way of
defining filters in Section 5.3.2.

Example

p N

ε
Bε(p)

(a) Neighbourhood of a Point

N

A

ε Bε(A)

(b) Neighbourhood of a Set

M
N [M ; +∞)

(c) Neighbourhood of +∞

Neighbourhood Filter generator

Figure 2.7 – Different Kinds of Neighbourhoods

28

2.3. FORMALISATION OF THE GENERALISED PRINCIPLE

An important construction for analysis is the image of a filter by a function. Given a
function f and a filter F , the image of F by f , defined by f(F) =

{
B | f−1(B) ∈ F

}
, is a

filter, denoted by filtermap f F in Coquelicot.
Finally, filter inclusion is an important property. Indeed, this makes it possible to rephrase

the ε− δ definition of limits into a more concise statement. The inclusion

f(locally(x)) ⊇ locally(y)

indeed unfolds to the elementary definition

∀ε > 0. ∃δ > 0. ∀z ∈ Bδ(x). f(z) ∈ Bε(y),

which represents the statement f(z) −−−→
z→x

y.

Set Notations

We developed notations in order to make the manipulation of filters closer to textbook
mathematics. In particular, we define Mathematical Components-like notations [MCT]
to denote set theoretic operations.

The type of sets over a type T is denoted by set T. Then, set0, setT and [set p] are
respectively the empty set, the total set and the singleton {p}. Also, the notations (A ‘&‘ B),
(A ‘|‘ B), (~‘ A) and (A ‘\‘ B) respectively denote the set intersection, union, complement
and difference. We write (A ‘<=‘ B) for A ⊆ B and (A !=set0) for ∃p ∈ A. The image
and preimage of a set A by a function f are respectively denoted by f @^‘ A and f @^-1‘ A.
Finally, we also introduce set comprehension notations [set p | A] (which is a typed alias
for (fun p => A)) and the big operators \bigcup_(i in A) F i and \bigcap_(i in A) F i
respectively denoting the union and intersection of families indexed by A (big operators were
introduced in Coq by Bertot et al. [BGBP08]).

With these notations, the type class defining filters in Coquelicot can be rephrased
in a more readable way, which is the one we chose to use in the library we will present in
Part II [ACM+].

Class Filter {T : Type} (F : set (set T)) := {
filterT : F setT ;
filterI : forall P Q : set T, F P -> F Q -> F (P ‘&‘ Q) ;
filterS : forall P Q : set T, P ‘<=‘ Q -> F P -> F Q

}.

It is also easy using these notations to define the strip of width ε around a set A as a
generalisation of the notion of ball:

Definition ball_set {U : UniformSpace} (A : set U) (ε : posreal) :=
\bigcup_(p in A) ball p ε,

where posreal is the type of positive real numbers.

Canonical Filters

Set-theoretic notations are not sufficient to make filter manipulation closer to pen-and-
paper mathematics. Indeed, in Coquelicot we still have to represent the statement

29

CHAPTER 2. LASALLE’S INVARIANCE PRINCIPLE

f(x) −−−→
x→p

q, or equivalently lim
x→p

f(x) = q,

with the Coq term

filterlim f (locally p) (locally q),

where filterlim combines filter inclusion with the filtermap function as discussed earlier
in this section.

Although Coquelicot introduces layers over filters to abbreviate convergence, they are
still too restrictive to be practical. For example the predicate is_lim f p q is specialized
to a real function f and to p and q in Rbar (which represents R) and is defined in terms
of filterlim. Since we use other notions of convergence (convergence in a normed space,
convergence to a set, recall the example page 28), adding more alternative definitions for
approximately the same notion would only clutter the formalisation, so we decided to remove
this extra layer. Instead, we provide a unique mechanism to infer which notion of convergence
is required, by inspecting the form of the arguments and their types. We also define notations
that trigger this mechanism and make the statements closer to hand-written mathematics.

First, what makes possible this factorisation is the fact that every type of convergence
is expressed as filter inclusion involving the appropriate kind of neighbourhood filter. We
denote by F --> G the reverse inclusion F ⊇ G. In fact, this notation triggers our infer-
ence mechanism so that it already provides a convenient notation for filter convergence (see
Definition 2.8): the convergence of filter F to point p is denoted by F --> p.

Definition 2.8 (Filter Convergence). We say that a filter F converges to a point p if and
only if F contains the neighbourhood filter of p.

A filter may converge to several points. In fact, we may characterise Hausdorff
spaces (see Definition 2.12) by the fact that filters do not converge to more than one
point.

Remark

Then, in the case of function convergence, we also use the notation f @ F for the image
of the filter F by the function f. Thanks to our inference mechanism, it is also possible to
write f @ p to denote the image by f of the neighbourhood filter of p. Combining both
notations, we can now write

f @ p --> q

instead of

filterlim f (locally p) (locally q).

This mechanism also adapts to sets (e.g. we write f @ p --> A) and to the infinities:
with the notation +oo (respectively -oo) for p_infty (respectively m_infty), the appropriate
instance of the Rbar_locally filter is inferred when we write f @ +oo --> p for "f converges
to p when its argument goes to infinity", or f @ p --> -oo for "f diverges to −∞ at point p".

Finally, although we do not use it in this part of our work, we also cast functions from nat,
i.e. sequences, to the only sensible filter on N (the equivalent of Rbar_locally p_infty on nat,

30

2.3. FORMALISATION OF THE GENERALISED PRINCIPLE

named eventually in Coquelicot), so that one can write u --> p where u : nat -> U is
a sequence.

Coq’s coercion mechanism is not powerful enough to handle casts from an arbitrary term
to an appropriate filter. Hence, the mechanism to automatically infer a filter from an arbitrary
term and its type is implemented using canonical structures [Sai99, MT13].

We define a structure that recognises types whose elements could be cast to filters.

Structure canonical_filter {Y : Type} := CanonicalFilter {
canonical_filter_type :> Type;
_ : canonical_filter_type -> set (set Y)

}.

This structure associates to its first field, a type, a function that maps each of its elements
to a filter on the parameter Y of the structure. For instance, on a uniform space U, the default
filter is given by the locally function: each point is cast to its neighbourhood filter.

Canonical filter_uniform_space (U : UniformSpace) :=
@CanonicalFilter U U (@locally U).

Moreover, having the parameter Y different from the canonical_filter_type field makes
it possible to infer filters on R based on elements in Rbar through the Rbar_locally function.

Canonical filter_Rbar := @CanonicalFilter R Rbar Rbar_locally.

Our notations F --> G and f @ p respectively replace F, G and p with [filter of F],
[filter of G] and [filter of p], where the [filter of _] notation hides the second
projection of the canonical_filter structure. For example, for p of type U where U is a
uniform space, [filter of p] is this second projection applied to p. For this to work, U must
be convertible with canonical_filter_type, the first projection of the structure: unification
triggers the inference of an instance of the canonical structure so that, thanks to the canonical
instance filter_uniform_space, [filter of p] is actually locally p.

In the case where the user gives a filter instead of a point in a uniform space, our mechanism
still makes it possible to use the same notation thanks to a second structure. This second
structure recognises arrow types in order to associate filters to particular cases of functions:
filters, but also sequences and sets, as we already discussed.

Structure canonical_filter_source {Z Y : Type} := CanonicalFilterSource {
canonical_filter_source_type :> Type;
_ : (canonical_filter_source_type -> Z) -> set (set Y)

}.

This structure associates the source type of an arrow type to a function mapping elements
of this arrow type to filters on the parameter Y of the structure. Matching on the source type
makes it possible to distinguish the different kinds of functions: for filters the source type is
an arrow type with codomain Prop (i.e. the type of a set), for sequences it is nat and for sets
it is a uniform space.

Canonical source_filter_filter (Y : Type) :=
@CanonicalFilterSource Prop _ (_ -> Prop) (@id (set (set Y))).

31

CHAPTER 2. LASALLE’S INVARIANCE PRINCIPLE

Canonical eventually_filter (Z : Type) :=
@CanonicalFilterSource Z _ nat (fun f => f @ eventually).

Canonical filter_set_uniform_space (U : UniformSpace) :=
@CanonicalFilterSource Prop _ U locally_set.

We define a canonical instance of the canonical_filter structure that uses this second
structure in order to complete the inference mechanism.

Canonical default_arrow_filter (Y Z : Type)
(X : canonical_filter_source Z Y) :=
@CanonicalFilter _ (X -> Z) (@canonical_source_filter _ _ X),

where canonical_source_filter is a name we gave to the second projection of the structure
matching arrow types.

In fact, the [filter of _] notation uses the second projection of a third structure
that recognises terms that could be cast to filters. This structure associates an element
of a type with a filter on a second type.

Structure canonical_filter_on {X Y : Type} := CanonicalFilterOn {
canonical_filter_term : X;
_ : set (set Y)

}.

If the inference of an instance of this structure for a term x fails, a default instance
triggers the inference of the canonical_filter structure on the type of x.

Canonical default_filter_term (Y : Type) (X : canonical_filter Y)
(x : X) := @CanonicalFilterOn X Y x (canonical_type_filter x),

where canonical_type_filter is the second projection of the canonical_filter struc-
ture.

Actually, we ended up noticing that this structure always fails and the default instance
is always used since we never declared instances for it: we thought particular terms
would be associated to given filters but in all our use cases the type of the term was
sufficient to determine the filter. As a consequence, the canonical_filter_on structure
was removed in later versions of the mechanism and the canonical_filter structure
became the default one (see Section 5.3.2).

Remark

2.3.3 Topological Notions

The other main ingredient of Theorem 2.7, besides convergence, is compactness. Indeed,
the only solutions of the differential equation that are relevant in Theorem 2.7 have values in
a compact set, which is an essential property in the proofs of Lemma 2.2 and Lemma 2.5.

Although many formalisations of topology express compactness using open covers (see
Definition 2.9), we decided to experiment with a definition of compact sets using filters (see

32

2.3. FORMALISATION OF THE GENERALISED PRINCIPLE

Definition 2.11). This definition already appears in Cartan’s work [Car37a] and happens to
be particularly convenient in our settings. In fact, the filter-based definition of compactness
involves the notion of clustering (see Definition 2.10), which is closely related to convergence
and limit points. This notion can also be used to formalise closed sets.

Definition 2.9 (Compactness (Open Covers)). A set A is said to be compact if and only if
for all family of open sets (Oi)i∈I that covers A (i.e. A ⊆

⋃
i∈I

Oi), there exists a finite subset J

of I such that the family (Oi)i∈J still covers A.

Definition 2.10 (Cluster). A point p is a cluster point of the filter F if and only if each
element of F intersects each neighbourhood of p.

We say that F clusters if it admits a cluster point.

Definition 2.11 (Compactness (Filters)). A set A is said to be compact if and only if every
proper filter on A clusters in A.

We proved that Definition 2.9 and Definition 2.11 are equivalent. We use the filter-based
definition of compactness by default in our formalisation, but we had sometimes to use the
one based on open covers. We will explain why in our discussion about compact sets, but first
we describe our formalisation of clustering.

Clustering

Our formalisation of clustering is a straightforward translation of Definition 2.10.

Definition cluster {U : UniformSpace} (F : set (set U)) (p : U) :=
forall A B, F A -> locally p B -> A ‘&‘ B !=set0

To see the link with the limit points of a function y, consider the filter y @ +oo. The set
of points to which y @ +oo clusters is exactly the positive limiting set of y, i.e. the set of limit
points of y (recall Definition 2.5).

Definition pos_limit_set {U : UniformSpace} (y : R -> U) :=
\bigcap_(eps : posreal) \bigcap_(T : posreal)
[set p | Rlt T ‘&‘ (y @^-1‘ ball p eps) !=set0].

Lemma plim_set_cluster (U : UniformSpace) (y : R -> U) :
pos_limit_set y = cluster (y @ +oo).

Note that we wrote an equality between sets, i.e. between functions with propositions as
value. We used the axioms of functional extensionality (funext) and propositional extension-
ality (propext) to be able to prove this. This makes our code closer to textbook mathematics.
This also makes it possible to use rewriting instead of applications of theorems to switch
definitions, which combines well with the fact that proof scripts in the SSReflect tactic
language [GMT15] rely heavily on the rewriting of equalities. All in all, our proofs are more
natural and shorter than without these axioms.

Axiom funext : forall (T T’ : Type) (f g : T -> T’), f =1 g -> f = g.

Axiom propext : forall (P Q : Prop), (P <-> Q) -> P = Q.

33

CHAPTER 2. LASALLE’S INVARIANCE PRINCIPLE

In the funext axiom, the notation f =1 g stands for forall t, f t = g t.
We also noticed that clustering can be used to define Hausdorff spaces (see Definition 2.12).

Indeed, the contrapositive of Definition 2.12 admits a nice statement using clustering: if two
points p and q are such that all their neighbourhoods intersect, i.e. the neighbourhood filter
of p clusters to q (and vice-versa), then they are equal.

Definition 2.12 (Hausdorff Space). A space U is said to be T2 separable if and only if all
distinct points in U can be separated by neighbourhoods, i.e. if and only if for all p 6= q one can
find two neighbourhoods A and B respectively of p and q such that A and B are disjoint (see
Figure 2.8).

T2 separable spaces are called Hausdorff spaces.

p

A

q

B

Figure 2.8 – Illustration of T2 Separation

Definition hausdorff (U : UniformSpace) :=
forall p q : U, cluster (locally p) q -> p = q.

Lemma hausdorffP (U : UniformSpace) :
hausdorff U <-> forall p q : U, p <> q -> exists A B,
locally p A ∧ locally q B ∧ forall r, ~ (A ‘&‘ B) r.

Compact Sets

Our translation of Definition 2.11 is straightforward, too: the filter F clusters in the set A
if A and the set of cluster points of F have non-empty intersection.

Definition compact {U : UniformSpace} (A : set U) :=
forall (F : set (set U)), F A -> ProperFilter F ->
A ‘&‘ cluster F !=set0.

Note how the hypothesis “on A” from Definition 2.11 has been translated into “A is an
element of F”. This is possible thanks to the properties of filters: every filter on A is a
filter base (we will make this precise in Definition 5.4) in U whose completion is a filter
containing A, and every filter on U containing A defines a filter on A when restricted to
sets contained in A.

Thanks to this, we do not have to consider compact spaces, which would require the
use of topological notions such as the subspace topology (see Definition 3.2) and would

Remark

34

2.3. FORMALISATION OF THE GENERALISED PRINCIPLE

add complications. Indeed, the type classes Filter and ProperFilter of Coquelicot
are defined on sets of sets on a type, i.e. on functions of type (T -> Prop) -> Prop
for T of type Type, while in our context A is of type U -> Prop. Canonically transfering
structures to subsets would then require wrapping functions into types, while our solution
is simpler.

As a consequence, we never manipulate compact spaces but only compact sets: a
compact space is a space in which the full set is compact.

We proved the equivalence between this definition and Definition 2.9 following the proof
in Wilansky’s textbook on topology [Wil08] (see our discussion on closed sets). We adapted
Cano’s formalisation [Can14] of Definition 2.9 to this end.

This notion of compact set is quite convenient to use to work with convergence and limit
points: the only hard part is finding the right filter on the compact set and then the cluster
point given by this hypothesis is usually the point one is looking for. However for other proofs
this notion is quite complicated to use. Proving that a set is compact requires finding a cluster
point for any abstract proper filter on this set, or going through a proof by contradiction.
Moreover, to prove that any compact set is bounded, we had to go through the definition
of compactness based on open covers. Indeed, the cluster point given by the filter-based
definition does not give any information on the maximum norm of the elements of the set.

Closed Sets

In Coquelicot [BLM15], a set A is closed if and only if it contains all points the comple-
ment of A is not a neighbourhood of.

Definition closed {U : UniformSpace} (A : set U) :=
forall p, ~ (locally p (~‘ A)) -> A p.

This basically translates to: A is closed if and only if the complement of A is open. Indeed,
an open set is a neighbourhood of all its points. Thus, if ~‘ A is open, the set of the points ~‘ A
is not a neighbourhood of is A and A is indeed the complement of an open set.

However, the notion of closure better fits our purposes. A point is in the closure of a set
if all its neighbourhoods intersect the set. A set is closed if and only if its closure is included
in it (the other inclusion always holds). This definition is (classically) equivalent to the one
in Coquelicot.

Definition closure {U : UniformSpace} (A : set U) (p : U) :=
forall B, locally p B -> A ‘&‘ B !=set0.

Definition is_closed {U : Uniformspace} (A : set U) := closure A ‘<=‘ A.

Lemma closedP (U : UniformSpace) (A : set U) : closed A <-> is_closed A.

This definition is more appropriate in our context than the one in Coquelicot because
it gives us the only property of closed sets we needed (see the third paragraph in the proof
of Lemma 2.5). Indeed, if the image of a function is included in a set A, then its set of
limit points is included in the closure A of A. If moreover A is closed, then the set of limit
points is included in A, since A = A, which is the property we implicitely used in the proof of
Lemma 2.5.

35

CHAPTER 2. LASALLE’S INVARIANCE PRINCIPLE

The notion of closure is also very practical because of its similarity with clustering: a filter
clusters to a point if and only if this point is in the closure of each element of the filter.

Lemma clusterE (U : UniformSpace) (F : set (set U)) :
cluster F = \bigcap_(A in F) (closure A).

This means that the definitions of clusters, Hausdorff spaces, compact sets and closed sets
are very consistent. This makes it easier to prove for instance that compact sets in a Hausdorff
space are closed or that Definition 2.9 and Definition 2.11 are equivalent. Indeed, we prove
this equivalence by going through a third definition of compactness (see Definition 2.14), based
on closed sets and the finite intersection property (see Definition 2.13).

Definition 2.13 (Finite Intersection Property). A family of sets (Ai)i∈I has the finite inter-
section property if and only if for all finite subset J of I, the set

⋂
i∈J

Ai is non-empty.

Definition 2.14 (Compactness (Closed Sets)). A set A is compact if and only if every family
of closed sets of A with the finite intersection property has a non-empty intersection.

This definition is very close to the filter-based one, and we proved constructively that
they are equivalent. Indeed, the set of all finite intersections in such a family is a filter base
defining a proper filter which clusters. Conversely, the family of closures of the elements of
a proper filter which clusters has the finite intersection property (the cluster point belongs
to each closure). The equivalence between this third definition and Definition 2.9 is however
classical. More precisely, both directions in this equivalence are proven by contraposition
and classical steps are required to push negations under existential quantifiers and to remove
double negations.

2.3.4 Formal Statement of the Invariance Principle

Now that we discussed the main ingredients of Theorem 2.7, we can focus on its formal
statement. First, recall that, instead of functions on Rn we considered the ambient space to be
any normed module over R. It can in particular be an infinite-dimensional space. Let then U
be such a space, which is considered to be an implicit argument in all this section.

Then, we need to express the property of being a solution of the differential equation given
by Equation (2.1). We use the is_derive predicate from Coquelicot [BLM15] to express
derivatives: is_derive y t d means that the derivative of y at time t is d. Since solutions
are unique with respect to initial conditions, we use a single function sol of type U -> R -> U
to represent them. For any initial condition p, sol p is a total function that represents the
solution of Equation (2.1) starting at point p. A function y starting in K is a solution of
Equation (2.1) if and only if it is equal to the function sol (y 0), i.e. to the solution which
has same initial condition.

Definition is_sol (y : R -> U) :=
forall t, is_derive y t (F (y t)).

Hypothesis solP : forall y, K (y 0) -> is_sol y <-> y = sol (y 0).

This equality between functions, which we can use thanks to the axiom of functional
extensionality, matches both the pen-and-paper and the SSReflect [GMT15] proof-styles.

36

2.3. FORMALISATION OF THE GENERALISED PRINCIPLE

Indeed, replacing a function by another one which is extensionally equal to it is frequent
in mathematics and can be done here through rewriting, which takes an important part in
proof scripts in the SSReflect tactic language. In addition, using the function sol in our
statements instead of a function y together with the additional hypothesis is_sol y makes
our statements more readable and simplifies our proofs.

The fact that the first argument of sol is the initial condition is expressed through the
following hypothesis.

Hypothesis sol0 : forall p, sol p 0 = p.

Note that the combination of sol0 and solP gives the existence and uniqueness of solutions.
The continuity of solutions relative to initial conditions in the compact setK from Theorem 2.7
is expressed through a third hypothesis: when we fix the second argument of sol, we get a
function which is continuous on K.

Hypothesis sol_cont : forall t, continuous_on K (sol^~ t).

However, we later noticed that our definition of the notion of solution is too restrictive.
Indeed, some differential equations might have no meaning for some values of t. Solutions
usually come with an interval of definition and we are interested in maximal solutions, i.e. the
solutions whose interval of definition cannot be extended. In our case, since we are only
interested in systems which have a physical interpretation, or in other terms in functions of
time, we may restrict the domain of definition of solutions to the set of non-negative real
numbers. The most straightforward way of doing so is to construct the type R+ of non-
negative real numbers and to develop its theory in order to consider functions whose type
is R+ -> U. We considered that the implementation cost of this representation would be too
high, in particular because of the manipulation of dependent types this would require. Instead,
we preferred keeping total functions on R with the constraint that the differential equation is
only satisfied for non-negative times.

Definition is_sol (y : R -> U) :=
forall t, 0 <= t -> is_derive y t (F (y t)).

Unfortunately, this definition is incompatible with solP. Indeed, this assumption is not
satisfiable if we constrain the derivative of solutions only for non-negative times, since there
would be (infinitely) many solutions with the same initial value (the values for negative times
are basically free). In order to keep the benefits of the formulation of solP, we decided to
change the notion of solution rather than to adapt solP. Once again, including the domain
of definition of solutions into their type as suggested above would allow us to use an equality
between functions as in solP, but this would require tedious manipulations of dependent
types in order to develop a theory of these subtypes of R. We chose instead to fix the values
of solutions for negative times in a way which does not constrain the differential equation. It
is always possible since we only want to state properties on values for non-negative times. In
order to keep the solutions derivable everywhere, we made them symmetric with regard to
their initial value, i.e. y(t) = 2y(0)− y(−t), which leads to the following definition in Coq.

Definition is_sol (y : R -> U) :=
(forall t, t < 0 -> y t = 2 *: (y 0) - (y (- t))) ∧
forall t, 0 <= t -> is_derive y t (F (y t)).

37

CHAPTER 2. LASALLE’S INVARIANCE PRINCIPLE

This definition does not make the function sol harder to use (there is only an assumption
to discard). The only true drawback we encountered so far is that this definition significantly
increases (around 50 additional lines) the size of the proof of Lemma 2.6. Indeed, we cannot
directly use the uniqueness of solutions to prove that the function z is equal to the "shifted
solution" s 7→ y(t+ s): the “shifted solution”, of the form s 7→ solp (t+ s) where t ∈ R+, may
not be a solution any more since it may not be symmetric with regard to its initial value. It
is first necessary to build a solution which coincides with the function s 7→ solp (t+ s) on R+

and to prove that it is indeed a solution. Only then we can use the uniqueness of solutions to
conclude the proof.

With all these assumptions, we can finally give the formal statement of Theorem 2.7. As
explained in Section 2.2.2, we proved the convergence of solutions of Equation (2.1) to the
union of the positive limiting sets of the solutions starting in K, which can be expressed using
clustering as discussed in Section 2.3.3.

Definition limS (A : set U) := \bigcup_(q in A) cluster (sol q @ +oo).

Recall that we require K to be compact and invariant. Both these hypotheses are used to
prove the convergence of solutions to limS K.

Definition is_invariant (A : set U) :=
forall p, A p -> forall t, 0 <= t -> A (sol p t).

Lemma cvg_to_limS (A : set U) : compact A -> is_invariant A ->
forall p, A p -> sol p @ +oo --> limS A.

This is in fact an “easy” part of LaSalle’s invariance principle. It is indeed sufficient for a
function to ultimately 1 have values in a compact set in order for it to converge to the set of
its limit points, hence to any superset of its positive limiting set.

Lemma cvg_to_pos_limit_set (y : R -> U) (A : set U) :
(y @ +oo) A -> compact A -> y @ +oo --> cluster (y @ +oo).

Lemma cvg_to_superset (A B : set U) (y : R -> U) :
A ‘<=‘ B -> y @ +oo --> A -> y @ +oo --> B.

The invariance of K is a strong way to force the solutions to ultimately have values in K.
However, since in our proof of LaSalle’s invariance principle we need to use the uniqueness of
solutions for initial conditions which are values of solutions starting in K, the invariance of K
is required anyway.

There are two other aspects to our version of LaSalle’s invariance principle: limS K is
invariant and it is a subset of the set of points p for which Ṽ(p) = 0 (recall Definition 2.6).

The first point does not need any hypothesis: the positive limiting set of any solution
starting in K is invariant (see Lemma 2.4), hence any union of such sets is invariant too.

Lemma invariant_pos_limit_set (p : U) :
K p -> is_invariant (cluster (sol p @ +oo)).

Lemma invariant_limS (A : set U) : A ‘<=‘ K -> is_invariant (limS A).

1. This addition of "ultimately" generalises Lemma 2.2

38

2.4. RELATED WORK

The second point, corresponding to Lemma 2.5, requires the existence of a Lyapunov
function, which is continuous on K, derivable along the trajectories of solutions and such that
for all p ∈ K, Ṽ (p) 6 0. We make use of the Derive function from Coquelicot to express Ṽ :
Derive f t is the derivative of the real function f at time t.
Lemma stable_limS (V : U -> R) :
continuous_on K V ->
(forall p t, K p -> 0 <= t -> ex_derive (V \o (sol p)) t) ->
(forall (p : U), K p -> Derive (V \o (sol p)) 0 <= 0) ->
limS K ‘<=‘ [set p | Derive (V \o (sol p)) 0 = 0].

2.4 Related Work

We divide our references into three categories corresponding to the different topics we dis-
cussed in this chapter: related work on stability analysis (not necessarily in a proof assistant)
in Section 2.4.1, related work on the formalisation of topology in Section 2.4.2 and related
work on the formalisation of differential equations in Section 2.4.3.

2.4.1 Related Work on Stability Analysis

Let us first discuss formalisations on stability and Lyapunov functions and then other
generalisations of LaSalle’s invariance principle [LaS60, LaS76].

Chan et al. [CRLM16] used a Lyapunov function to prove in Coq the stability of a par-
ticular system. They have however no proof of a general stability theorem.

Mitra and Chandy [MC08] formalised in PVS stability theorems using Lyapunov-like func-
tions in the particular case of automata. This is quite different from our work since they work
in a discrete settings.

Herencia-Zapana et al. [HJO+12] took another approach to stability proofs: stability proofs
using Lyapunov functions, under the form of Hoare triples annotations on C code implementing
controllers, are used to generate proof obligations for PVS.

We are definitely not the first to generalise LaSalle’s invariance principle. We decided to
prove a version of the principle which is close to the original statement but several generali-
sations were designed to make it available in more complex settings.

Chellaboina et al. [CLH99] weakened further the regularity hypothesis on the Lyapunov
function at the cost of sign conditions and a boundedness hypothesis on the Lyapunov function
along the trajectories.

Barkana [Bar14, Bar17] restricted the hypotheses on the Lyapunov function to hypothe-
ses along bounded trajectories in order to generalise LaSalle’s invariance principle to non-
autonomous systems.

Mancilla-Aguilar and García [MG06] generalised LaSalle’s invariance principle to switched
autonomous systems by adding further conditions related to switching, but removed the con-
ditions of existence and uniqueness of solutions and of continuity of the solutions relative to
initial conditions by working on a set of admissible trajectories.

Fischer et al. [FKD13] also weakened the hypotheses on the solutions of a non-autonomous
system by using a generalised notion of solution.

39

CHAPTER 2. LASALLE’S INVARIANCE PRINCIPLE

2.4.2 Related Work on the Formalisation of Topology

Several formalisations in topology already exist: in Coq [Can14], in PVS [Les07], in
Isabelle/HOL [HIH13], in Lean [LMCLD] or in Mizar [Dar90, PD90] for instance. All of
them, except the one in Lean, express compactness using open covers.

We adapted Cano’s formalisation [Can14] of compactness based on open covers for our
proof of equivalence with the filter-based definition. We could not use it directly since it relies
on the eqType structure of the Mathematical Components library and Coquelicot’s
structures [BLM15] are not based on this structure.

Note that in the work of Hölzl et al. [HIH13] there is a definition of compactness in terms
of filters which is slightly different from ours: a set A is compact if for each proper filter
on A there is a point p ∈ A such that a neighbourhood of p is contained in the filter. This
is a bit less convenient to use than clustering since one cannot choose the neighbourhood. In
Lean, compactness is also defined using filters, in a way which is equivalent to ours. To our
knowledge, our work is the first attempt to exploit the filter-based definition of compactness
to get simple proofs on convergence.

We must also mention Coquelicot’s definition of compactness, which is based on gauge
functions, and Coq’s topology library by Schepler [Scha]. Both are unfortunately unusable
in our context: Coquelicot’s definition is specialised to Rn while we are working on an
abstract normed module, and Schepler’s library does not interface with Coquelicot, since
it redefines filters for instance. Schepler’s library contains a proof of equivalence between
the filter-based and open covers-based definitions of compactness, which is very close to ours.
However, these definitions concern topological spaces whereas, as mentioned in Section 2.3.3,
we focus on subsets of such spaces without referring to the subspace topology.

2.4.3 Related Work on the Formalisation of Differential Equations

Differential equations have been studied by Boldo et al. [BCF+13] and by Immler and
Hölzl [IH12] with a special focus on numerical approximation schemes. In particular, Immler
later extended his work to formally verify an algorithm computing numerical approximations
of solutions of an ordinary differential equation [Imm18]. We are however interested in the
qualitative analysis of the equations: we prove properties on the solutions without finding
them analytically and without computing approximations.

The work of Immler and Hölzl is not entirely focused on numerical approximations: they
prove the qualitative Cauchy-Lipschitz Theorem, which constitutes the basis for later work by
Immler and Traut [IT16, IT19], who formalise the theory of the flow of an ordinary differential
equation. Our function sol is akin to the flow but, in absence of a proper theory of the flow in
Coq, we do not bother with existence intervals of solutions and assume solutions are always
defined for any time.

Other formalisations of the Cauchy-Lipschitz Theorem include Maggesi’s one in HOL
Light [Mag18], which proves only the local version of this theorem, and the one by Makarov
and Spitters [MS13], which is based on the CoRN library [CGW04] while we work in an
inherently classical settings (recall our discussion from Section 2.3.1).

We thought about proving the Cauchy-Lipschitz Theorem using the fixed-point theorem
formalised by Boldo et al. [BCF+17] in order to have an appropriate theory of the flow and to
generalise Theorem 2.7 (considering limits at the upper bound of the existence interval instead

40

2.4. RELATED WORK

of limits at infinity). However, the proof of this theorem relies on the theory of integration
so that we decided instead to wait for our new library for analysis in Coq (see Part II) to
be more complete in order to have better tools for this proof. We are currently collaborating
with Reynald Affeldt, Cyril Cohen, Marie Kerjean, Assia Mahboubi and Pierre-Yves Strub to
develop the theory of integration in our library.

41

Part I
Case Study: the Inverted Pendulum

CHAPTER 3

SWING-UP OF THE INVERTED
PENDULUM

In this chapter we present our formalisation in the Coq proof assistant of the proof of
soundness of a control function for the inverted pendulum designed by Lozano et al. [LFB00].
This function, presented as a force applied to the dynamical system of the pendulum as
discussed in Section 1.2.2, performs the swing-up of the pendulum.

We first finish in Section 3.1 the description of the dynamical system we started in Sec-
tion 1.2.2. We focus in particular on the control function. Then, we give the mathematical
proof of soundness of this control function in Section 3.2, which in fact boils down to the
stability of the controlled system. Finally, we discuss notable aspects of the formalisation in
Section 3.3 and we mention related work in Section 3.4.

While working on this formalisation, we found a few errors in the mathematical proof
by Lozano et al.. Their statement is however true, since we managed to correct the
proof. We will highlight in slanted boldface the places where the errors were made
and describe our way to correct them.

Warning

This chapter is based on our publication on the topic [Rou18]. All code snippets come
from our on-line repository [CRa].

3.1 The Dynamical System

We first recall in Section 3.1.1 the dynamical system we described in Section 1.2.2 and we
clearly explain what is the soundness property which was proven by Lozano et al. [LFB00].
As a second step we give in Section 3.1.2 a reformulation of the differential equation, which is

43

CHAPTER 3. SWING-UP OF THE INVERTED PENDULUM

the one we used in our formalisation, and we present the ideas of Lozano et al. for the design
of the control function.

3.1.1 The Dynamical System and its Control Challenge

For the reader’s convenience, we repeat Figure 1.5 as Figure 3.1 and Equation (1.6) as
Equation (3.1). We recall that q denotes the state (or configuration) of the system, which is
given by the position x of the cart on the horizontal line and the angle θ the pole forms with
the vertical line. We also denote by l the length of the weighted pole, m and M the respective
masses of the weight and of the cart, g the gravitational acceleration on Earth and fctrl the
control force.

m

θ

M

x

fctrl

l

Figure 3.1 – The Inverted Pendulum with Annotations (repeated)

M(q)q̈ + C (q, q̇) q̇ +G (q) = τ (q, q̇) , (3.1)

where

q =

(
x
θ

)
,

M(q) =

(
M +m ml cos θ
ml cos θ ml2

)
,

τ (q, q̇) =

(
fctrl (q, q̇)

0

)
.

C (q, q̇) =

(
0 −mlθ̇ sin θ
0 0

)
,

G(q) =

(
0

−mgl sin θ

)
,

This time we explicitly give the parameters on which τ depends. Note that the
position x of the cart will only appear in the expression of the control function. Indeed,
the physics of the (free) system does not depend on the position of the cart.

Remark

44

3.1. THE DYNAMICAL SYSTEM

As we explained in Section 1.1.3, the goal of the control function here is to bring this
system to the unstable equilibrium of the free pendulum. More precisely, we want to prove
that the (equilibrium of the) controlled inverted pendulum is asymptotically stable (recall
Definition 1.1). Instead of proving the convergence of the pendulum to its upper equilibrium,
Lozano et al. [LFB00] prove the convergence to a trajectory which converges to the equilibrium,
called homoclinic orbit. This trajectory is characterised by the following differential equation:

1

2
ml2θ̇2 = mgl (1− cos θ) . (3.2)

Moreover, they want the cart to stop at its starting point, so that on this trajectory we also
want to have x = 0 and ẋ = 0. The soundness of the control function is thus expressed as the
asymptotic stability of the set of points which lie on the homoclinic orbit (recall Definition 2.3).
This stability property can be stated as in Theorem 3.1.

Theorem 3.1 (Soundness of the Control Function). For some set K of starting positions and
for a well-chosen control function fctrl, all solutions of Equation (3.1) starting in K converge
to the homoclinic orbit described by Equation (3.2), together with the property that x = 0
and ẋ = 0, when time goes to infinity.

As detailed in Section 2.3.4, we represent the solutions of a differential equation using a
function sol which takes the initial position of the inverted pendulum as input and computes
the trajectory of the system. Here, it also depends on the control function but for simplicity
we do not display this dependency in our notations. We can then state Theorem 3.1 in Coq
as follows.

Lemma cvg_to_homoclinic_orbit (p : ’rV[R]_5) :
K p -> sol p @ +oo --> homoclinic_orbit.

Here, ’rV[R]_5 is the type for vectors in R5 from the Mathematical Components
library [MCT]. We explain in Section 3.1.2 why the state space is R5 and not R4 (two
dimensions for q and two for q̇). The definitions of the control function and of the set K
of valid starting positions and the Coq description of the homoclinic orbit also come in
Section 3.1.2.

3.1.2 The System We Actually Formalised

A major tool in the proof of stability by Lozano et al. [LFB00] is LaSalle’s invariance
principle [LaS60, LaS76]. However the invariance principle requires the dynamical system to
be described by a first-order autonomous differential equation (recall Section 1.2.1). In order
to rewrite Equation (3.1) as such an equation, it is necessary to consider a state that contains
more information:

z =

z0

z1

z2

z3

z4

 =

x
ẋ

cos θ
sin θ

θ̇

 .

45

CHAPTER 3. SWING-UP OF THE INVERTED PENDULUM

Lozano et al. chose to split the information given by θ into the information of its sine
and cosine. This simplifies the differential equation since only these values appear in it.
This has the side effect of making the dimension of the state space to be five instead of
four.

Remark

It is then possible to transform Equation (3.1) into the following equation:

ż = Fpendulum (z) , (3.3)

where, for all p =

p0

p1

p2

p3

p4

,

Fpendulum (p) =

p1
mp3(lp24−gp2)+fctrl(p)

M+mp23
−p3p4

p2p4
(M+m)gp3−p2(mlp24p3+fctrl(p))

l(M+mp23)

.

With these notations, the homoclinic orbit is simply the set of points p such that

p0 = 0 and p1 = 0 and
1

2
ml2p2

4 = mgl (1− p2) .

In Coq, this set is defined in a very similar way thanks to the use of notations for set
comprehension and for the access to components of vectors.

Definition homoclinic_orbit :=
[set p : ’rV[R]_5 | p[0] = 0 ∧ p[1] = 0 ∧
(1 / 2) * m * (l ^ 2) * (p[4] ^ 2) = m * g * l * (1 - p[2])].

However, with Equation (3.3), we lose some pieces of information. For instance, since
we work with points in R5, we forget that z2 is a cosine. It will then be necessary to pose
constraints on the initial value z(0) in order to keep the lost information as an invariant. For
example, the equation z2

2(t) + z2
3(t) = 1 is to be proven for any time t. This is the role of the

set K.
The definition of K is a consequence of the use of LaSalle’s invariance principle: it is the

compact set that is used in the invariance principle. The challenge behind the use of LaSalle’s
invariance principle is to find an appropriate Lyapunov function V so that being an invariant
subset of

{
p ∈ K | Ṽ (p) = 0

}
grants the desired properties. In our case, the desired property

is to be a subset of the set of points described by homoclinic_orbit.
In order to achieve this goal, Lozano et al. choose an energy approach. The energy of the

system is

E (q, q̇) =
1

2
q̇TM (q) q̇ +mgl (cos θ − 1) , (3.4)

46

3.1. THE DYNAMICAL SYSTEM

so that at the unstable equilibrium the energy is null. Conversely, when E (q, q̇) = 0 and ẋ = 0,
Equation (3.4) becomes Equation (3.2), thus the equation of the homoclinic orbit. Hence, it
is sufficient to find a Lyapunov function V such that LaSalle’s invariance principle proves the
convergence to a set where E = 0, ẋ = 0 and x = 0.

The choice of V affects the choice of the compact setK, in the sense that the sign condition
on Ṽ imposes constraints on K. As mentioned in Section 2.2.1, the Lyapunov function V is
minimised along the trajectories hence there is the obvious choice

V (q, q̇) =
kE
2
E2 (q, q̇) +

kv
2
ẋ2 +

kx
2
x2 (3.5)

with kE , kv and kx positive constants.
With the notations of Equation (3.3), Equation (3.5) becomes

V (z) =
kE
2
E2 (z) +

kv
2
z2

1 +
kx
2
z2

0 .

This choice of Lyapunov function explains the definition of the control function by Lozano
et al.. Indeed, an important assumption to be proven is that Ṽ (p) 6 0 for all point p in
the compact set K still to be defined. Computation shows that when z is a solution of
Equation (3.3), the derivative of V ◦ z is

z1

(
fctrl (z)

(
kEE (z) +

kv
M +mz2

3

)
+
kvmz3

(
lz2

4 − gz2

)
M +mz2

3

+ kxz0

)
,

so that the control function

fctrl (p) =
kvmp3

(
gp2 − lp2

4

)
−
(
M +mp2

3

)
(kxp0 + kdp1)

kv +
(
M +mp2

3

)
kEE (p)

for kd a positive constant gives

Ṽ (p) = −kdp2
1 6 0.

With the same notations as before, the control function is defined in Coq as follows:

Definition fctrl (p : ’rV[R]_5) :=
(kv * m * p[3] * (g * p[2] - l * (p[4] ^ 2)) -
(M + m * (p[3] ^ 2)) * (kx * p[0] + kd * p[1])) /
(kv + (M + m * (p[3] ^ 2)) * ke * (E p)).

This choice of control function imposes several constraints on the system and on the
compact set K. First of all, this function needs to be well-defined and smooth in K in order
to have the existence and uniqueness of solutions of Equation (3.3) and the continuity of
solutions relative to initial conditions on K. Moreover, it should not drive the system outside
of its domain of definition. Thus, we need to prove that for any solution z starting in K we
have

kv +
(
M +mz2

3

)
kEE (z) 6= 0.

Knowing that z3 represents a sine (hence z2
3 6 1) and that K should be invariant, it will

be sufficient to have for all p ∈ K

47

CHAPTER 3. SWING-UP OF THE INVERTED PENDULUM

|E (p)| < kv
kE (M +m)

.

Then, to avoid converging to the stable equilibrium of the pendulum, where the energy
is E (p) = −2mgl, we want to ensure that |E (p)| < 2mgl for p ∈ K. Overall, we want that

|E (p)| < b = min

(
kv

kE (M +m)
, 2mgl

)
.

It is then sufficient to have V (p) < B = kEb
2

2 for p ∈ K in order to prove the constraint
on E. This constant corrects the one given by Lozano et al., where kE was forgotten.
Finally, as remarked before, since we forget that p2 represents a cosine and p3 a sine, we also
need to ensure that p2

2 + p2
3 = 1, which leads to the following definition of the compact set K:

K =
{
p ∈ R5 | p2

2 + p2
3 = 1 and V (p) 6 k0

}
where k0 is a constant such that k0 < B.

3.2 Stability Proof

In order to prove the stability of this inverted pendulum, we have first to show that
the system satisfies the hypotheses of Theorem 2.7 (see Section 3.2.1). Then, we prove in
Section 3.2.2 that this theorem indeed grants the convergence of the inverted pendulum to the
homoclinic orbit given by Equation (3.2) together with the property that the cart’s position
and speed are null. We follow here the proof by Lozano et al. [LFB00], briefly giving the
missing justifications for the use of LaSalle’s invariance principle, and highlighting the places
where the proof by Lozano et al. was erroneous. We sum up the errors in the proof in
Section 3.2.3.

3.2.1 Verification of the Hypotheses of LaSalle’s Invariance Principle

The first step in the verification of the inverted pendulum is to check that the system is
well-defined. Looking at the form of Fpendulum in Equation (3.3), it is sufficient to prove
that for all p ∈ K, M +mp2

3 6= 0 and fctrl (p) is well-defined. The first point is in fact true for
any p. The control function is well-defined at points such that its denominator is non zero.
Following the reasoning in Section 3.1.2, we get that fctrl is well-defined on K. Hence, the
system is well-defined on K.

Then, we need to prove the hypotheses of Theorem 2.7. First, we admit the existence
and uniqueness of solutions of Equation (3.3) and the continuity of solutions rela-
tive to initial conditions on K. More precisely, we admit the existence of a function sol
that satisfies the hypotheses described in Section 2.3.4 for the system defined by Fpendulum.
A way to prove these properties is to use the Cauchy-Lipschitz Theorem. However, the only
formalisation of this theorem in the Coq proof assistant [CDT19] we are aware of is the
one by Makarov and Spitters [MS13]. It is based on the CoRN library of constructive real
numbers [CGW04], while our formalisation of the inverted pendulum is based on the Co-
quelicot library [BLM15], which extends Coq’s standard library on classically axiomatised
real numbers [May01].

48

3.2. STABILITY PROOF

Then, the set K is compact, since it is closed and bounded and we are in finite dimen-
sion (we work in R5). The remaining hypotheses of Theorem 2.7 are

Hypothesis 1 K is invariant.

Hypothesis 2 For all p ∈ K, V ◦ solp is derivable at any time.

Hypothesis 3 For all p ∈ K, Ṽ (p) 6 0.

While proving the invariance of K, we found a circular dependency between two
properties in the proof by Lozano et al., none of them being proven in the end.
Indeed, given a point p ∈ K, the goal is to prove that for all non-negative t, solp (t) ∈ K. This
decomposes into two parts:

(solp (t))2
2 + (solp (t))2

3 = 1

and

(V ◦ solp) (t) 6 k0.

The former is easy but in order to prove the latter, the authors argue that V ◦ solp is
non-increasing, which concludes the proof since solp (0) = p and p ∈ K. However, to show
that V ◦ solp is non-increasing, it is necessary that fctrl ◦ solp is well-defined, hence that solp
stays in K.

We managed to eliminate this circular dependency and to prove the three remaining hy-
potheses by proving Lemma 3.2.

Lemma 3.2. For all p ∈ K, for all time t, the derivative at time t of V ◦solp is −kd (solp (t))2
1.

Let us first check that Lemma 3.2 indeed implies the three remaining hypotheses. First,
Hypothesis 2 is an obvious corollary of Lemma 3.2. Then, Hypothesis 3 is true because
by definition Ṽ (p) is the derivative at time 0 of V ◦ solp. Finally, Lemma 3.2 implies that
if p ∈ K, then V ◦ solp is non-increasing, which proves Hypothesis 1 as discussed above.

In the remainder of this section, we explain how we managed to eliminate the circular
dependency in order to prove Lemma 3.2. In fact, given a time t and a point p ∈ K, the
derivative of V ◦ solp at time t has indeed the desired value as soon as fctrl is well-defined at
point solp (t). Instead of proving that fctrl is well-defined on K, we noticed that the reasoning
in Section 3.1.2 proves Lemma 3.3, which states that fctrl is well-defined on a set which is
larger than K.

Lemma 3.3. The control function fctrl is well-defined at the points p such that p2
3 6 1

and V (p) < B.

Then, since
{
p ∈ R5 | p2

2 + p2
3 = 1

}
is invariant, it is possible to show that Lemma 3.3

implies Lemma 3.4.

Lemma 3.4. For all p ∈ K and all time t, the derivative at time t of V ◦solp is −kd (solp (t))2
1

if (V ◦ solp) (t) < B.

Using Lemma 3.4, it is sufficient to prove Lemma 3.5 in order to get Lemma 3.2.

Lemma 3.5. For all p ∈ K and all time t, (V ◦ solp) (t) < B.

49

CHAPTER 3. SWING-UP OF THE INVERTED PENDULUM

It might seem that we are doing the same reasoning as Lozano et al.: we use the expression
of the derivative of V ◦solp in order to prove that V ◦solp stays below a given bound. Moreover,
proving that the bound is correct is necessary to prove the validity of the expression for this
derivative. However, there is here a crucial difference with the previous goal: now we have a
strict inequality in Lemma 3.5 compared to the non-strict inequality in the definition of K.

This allows us to do the following proof. Consider s the greatest lower bound of the set A of
times at which the condition is not satisfied: A = {t ∈ R+ | B 6 (V ◦ solp) (t)} and s = inf A.
The goal is to prove that s = +∞. Since 0 6 s, it is sufficient to prove that s cannot be finite,
which we do by contradiction.

In the case where s is finite, we show that s is a minimum, which implies B 6 (V ◦ solp) (s).
This is where having a non-strict inequality in the definition of s is important. Indeed, if s
is not a minimum, then we have the strict inequality (V ◦ solp) (s) < B. Thus, thanks to
the continuity of V ◦ solp at point s, there exists ε such that for all t ∈ (s− ε; s+ ε), we
have (V ◦ solp) (t) < B. In particular this means that s + ε

2 is a lower bound of A which is
greater than s, which contradicts the definition of s.

We can also prove that s is positive. Moreover, for all time 0 < t < s, since we know
that (V ◦ solp) (t) < B by definition of the greatest lower bound, we also know thanks to
Lemma 3.4 that the derivative of V ◦ solp at time t is −kd (solp (t))2

1. Since V ◦ solp is also
continuous on [0; s], Rolle’s Theorem proves that for some t ∈ (0; s)

(V ◦ solp) (s)− (V ◦ solp) (0)

s− 0
= −kd (solp (t))2

1 6 0.

Thus, (V ◦ solp) (s) 6 V (p), which is a contradiction since V (p) < B 6 (V ◦ solp) (s).

3.2.2 Convergence to the Homoclinic Orbit

Theorem 2.7 applied to the inverted pendulum proves the convergence of any solution of
Equation (3.3) starting in K to the set

L =
⋃

y solution of Equation (3.3)
starting in K

Γ+(y).

The goal is now to prove that L is included in the homoclinic orbit characterised by
Equation (3.2) with the additional property that for all p ∈ L, p0 = 0 and p1 = 0. As
mentioned in Section 3.1.2, it is sufficient to prove that for all p ∈ L,

Goal 1 p0 = 0.

Goal 2 p1 = 0.

Goal 3 E (p) = 0.

Let then p be in L. Since L is an invariant subset of the set
{
p ∈ K | Ṽ (p) = 0

}
by

Theorem 2.7, we know that the derivative of V ◦ solp at time 0 is null. Using Equation (3.2)
we prove that the derivative function of V ◦ solp is the identically zero function. As proven
in Section 3.2.1, this derivative function is also t 7→ −kd (solp (t))2

1. From this, we deduce
Lemma 3.6.

50

3.2. STABILITY PROOF

Lemma 3.6. For all p ∈ L,

1. t 7→ (solp (t))1 is the identically zero function.

2. t 7→ (solp (t))0 is constant.

3. E ◦ solp is constant.

4. t 7→ ((Fpendulum ◦ solp) (t))1 is the identically zero function.

In particular, from point 1 of Lemma 3.6 at time 0 we get Goal 2. From all this, we can
also derive the important equations

∀t, kE (E ◦ solp) (t) (fctrl ◦ solp) (t) + kx (solp (t))0 = 0, (3.6)

and

∀t, (solp (t))3

(
g (solp (t))2 − l (solp (t))2

4

)
=

(fctrl ◦ solp) (t)

m
. (3.7)

We know by Lemma 3.6 that E ◦ solp is constant (equal to E (p)). Either this constant
is zero or it is not. If it is zero, i.e. Goal 3 is true, from Equation (3.6) at time 0 we prove
Goal 1, which ends the proof.

If E (p) 6= 0, we want to derive a contradiction by proving that it implies that E (p) = 0,
or equivalently (thanks to Lemma 3.6) that E ◦ solp is the identically zero function. From
Equation (3.6) and points 2 and 3 of Lemma 3.6 we prove Lemma 3.7.

Lemma 3.7. For all p ∈ L such that E (p) 6= 0, fctrl ◦ solp is constant.

Up to this point, we followed the proof by Lozano et al. [LFB00]. But then the authors
present an erroneous (and unnecessary) proof that fctrl◦ solp is the identically zero
function. They draw from that, again through an erroneous proof, the conclusion
that E ◦ solp is the identically zero function.

In order to understand their error, it is important to know that Lemma 3.8 is a significant
tool for the remaining parts of the proof. If an equation e between two functions is true on
an interval, we will call derivative of e the equation obtained from e using Lemma 3.8.

Lemma 3.8. Let I be an interval which is not reduced to a point and f and g be two real
functions differentiable on I.

If for all t ∈ I, f (t) = g (t), then for all t ∈ I, ḟ (t) = ġ (t).

Taking the derivative of Equation (3.7) and using Lemma 3.7, we get the following equation

∀t, (solp (t))4

(
3g
(

(solp (t))2
2 − (solp (t))2

3

)
+ C (solp (t))2

)
= 0, (3.8)

where C is a constant depending on E (p).
Then, for a given time t, if (solp (t))4 6= 0, then we get from Equation (3.8) that

3g
(

(solp (t))2
2 − (solp (t))2

3

)
+ C (solp (t))2 = 0. (3.9)

The authors then proceed to take the derivative of this new equation, which is incorrect
because an equation has to be valid on an interval for one to be allowed to take its derivative.

51

CHAPTER 3. SWING-UP OF THE INVERTED PENDULUM

In this particular case, it is still possible to take the derivative of Equation (3.9) because it is
true on a small interval containing t. Indeed, when (solp (t))4 6= 0, since solp is continuous one
can find a positive real number ε such that for all s ∈ (t− ε; t+ ε), we have (solp (s))4 6= 0.
However, they repeat several times this error by considering that when a component of solp is
null at some time t, the derivative of this component also must be null at time t. This cannot
be corrected by such a simple argument of continuity.

While looking for a way to correct the proof by Lozano et al., we found a way to simplify
the proof that E◦solp is the identically zero function. It does not require proving that fctrl◦solp
is the identically zero function, only that it is constant (in order to use Equation (3.8)), which
we already know by Lemma 3.7.

The first step is to prove the following equation, which we obtain from Equation (3.7) and
Equation (3.11):

∀t, (Fpendulum (solp (t)))4 =
g

l
(solp (t))3 . (3.10)

∀t, (solp (t))2
2 + (solp (t))2

3 = 1. (3.11)

Equation (3.10) has several consequences. In particular, we can prove Lemma 3.9, from
which we deduce Lemma 3.10 using Equation (3.1), Equation (3.11) and Equation (3.10).

Lemma 3.9. For all p ∈ L such that E (p) 6= 0, the component functions t 7→ (solp (t))2
and t 7→ (solp (t))3 are constant.

Lemma 3.10. For all p ∈ L such that E (p) 6= 0,

1. t 7→ (solp (t))4 is the identically zero function.

2. t 7→ (solp (t))3 is the identically zero function.

3. For all time t, (solp (t))2 is either 1 or −1.

From Equation (3.4), point 1 of Lemma 3.6 and point 1 of Lemma 3.10, we know that

∀t, (E ◦ solp) (t) = mgl
(
(solp (t))2 − 1

)
. (3.12)

Hence, in order for E ◦ solp to be the identically zero function, it is sufficient to prove that

∀t, (solp (t))2 = 1.

By point 3 of Lemma 3.10, it is sufficient to prove that (solp (t))2 = −1 is not possible.
When (solp (t))2 = −1, with Equation (3.12) we get the equation

(E ◦ solp) (t) = −2mgl,

which contradicts the condition |E (p)| < b from Section 3.1.2 (p ∈ K and E ◦solp is constant).
All in all, this gives a (correct) simpler proof that all solutions of Equation (3.1) starting

in K converge to a set L included in the homoclinic orbit characterised by Equation (3.2),
with the additional property that for all p ∈ L, p0 = 0 and p1 = 0. We end this section with
an idea of the proof of Lemma 3.9.

Both points of Lemma 3.9 can be proven using Lemma 3.11. Indeed, using Equation (3.10)
and Equation (3.11) in Equation (3.8) and its derivative, and discussing whether (solp (t))4 is

52

3.3. FORMALISATION OF THE STABILITY PROOF

null or not, we get two polynomials of degree two whose coefficients do not depend on t and
such that (solp (t))2 is a root of one of them. Thus, the component function t 7→ (solp (t))2
can have only a finite number of different values and, by Lemma 3.11, is constant. Similarly,
using Equation (3.11) we prove that the component function t 7→ (solp (t))3 can have only two
different values, since t 7→ (solp (t))2 is constant. It is thus constant by Lemma 3.11.

Lemma 3.11. Let I be an interval and f be a real function.
If f is continuous on I and if f can only take a finite number of different values on I,

then f is constant on I.

3.2.3 Summary of the Corrected Errors

The stability proof by Lozano et al. [LFB00] contains three kinds of errors.

1. There is a forgotten constant in the definition of the compact set K.
The set K is defined as

K =
{
p ∈ R5 | p2

2 + p2
3 = 1 and V (p) 6 k0

}
,

where k0 is a constant such that

k0 < kE

(
min

(
kv

kE(M+m) , 2mgl
))2

2
.

The multiplication by kE in the above inequality was forgotten by Lozano et al..
2. There is a circular dependency between two properties: they are proven equivalent but

none of them is actually proven.
In order to prove that K is invariant, Lozano et al. use the fact that for any t > 0, the

derivative of V ◦ solp at time t is −kd (solp (t))2
1. However, in order to prove this property, they

use the fact that fctrl is well-defined at point solp(t) because this point belongs to K, hence
they use the invariance of K.

We corrected this error by proving that fctrl is well-defined on a set which is larger than K
and that solutions that start in K stay in this larger set.

3. Some computation steps rely on the derivative of equations that are only true at a given
point.

This error happens several times in the proof by Lozano et al.. Sometimes the computation
step is still valid because an argument of continuity provides an interval on which the equation
is true, thus allowing us to take its derivative, but this is not always the case.

We corrected this error by writing a new proof that does not follow the same reasoning.

3.3 Formalisation of the Stability Proof

In this section, we give details on the formalisation of the proof we discussed in Section 3.2.
We start by giving some context on the libraries and data structures we use (see Section 3.3.1).
Then we explain in Section 3.3.2 why we chose to formalise topological spaces, which were
missing from Coquelicot [BLM15]. Finally, we discuss in Section 3.3.3 how we designed a
way to automatically compute derivatives and differentials in order to simplify proofs.

53

CHAPTER 3. SWING-UP OF THE INVERTED PENDULUM

3.3.1 On the Choice of Data Structures

Our formalisation builds on the one we presented in Chapter 2, hence the main library
we are using is Coquelicot. Coquelicot contains a hierarchy of algebraic and topological
structures (recall Figure 2.6) and equips Coq’s type R of real numbers with all these structures.
In our case, since the system described in Section 3.1.2 is in R5, we have first to choose a data
type which represents vectors in R5 and to equip this type with Coquelicot’s structures.

We follow the example of Paşca’s work on multivariate analysis [Paş08, Paş11] and use the
structure of vectors from the Mathematical Components library [MCT] (see [Paş08] for
a discussion on the different possibilities for representing Rn in Coq). A point in Rn is thus
represented as an element of the type ’rV[R]_n of row vectors on R of length n.

Mathematical Components contains a different formalisation of vectors than the in-
ductive type vector we presented in the introduction of this thesis. Indeed, a row vector of
length n is a matrix with one line and n columns. Matrices with m rows and n columns are
represented in Mathematical Components as functions from ’I_m * ’I_n to the type of
coefficients, where ’I_p is the type of natural numbers k such that k < p. Internally, functions
whose domain is finite (as it is the case here) are represented as tuples of length the cardinal
of the domain, i.e. sequences bundled with a proof that their length is this cardinal. The
intuition is the following: each element e of the domain gets a number n and the image of e
is the element of rank n in the sequence.

The main difference with Paşca’s work is that we have access to the Coquelicot li-
brary (and that the Mathematical Components library has evolved since then), so that
we work in a more convenient framework to do multivariate analysis where we can reuse many
theorems already proven.

Still, we have to equip the type ’rV[R]_n with Coquelicot’s structures so that they
are automatically inferred where needed. We can prove that when a type T has a certain
structure, the type ’rV[T]_n canonically inherits this structure. This is the matter of a
few 500 lines, using straightforward definitions such as componentwise addition for the abelian
group structure, or componentwise multiplication by an element of a ring A for the A-module
structure.

However, difficulties arise with the definition of a norm over the type of vectors. A natural
choice is the infinity norm ∥∥(vi)i∈I

∥∥
∞ = max

i∈I
‖vi‖ .

Since the maximum operator on real numbers Rmax is a binary operator, we have to
iterate it in order to compute the infinity norm of a vector in Rn. We can easily define it
using Mathematical Components’ library for iterated operators over an indexed set (big
operators [BGBP08]): the notation \big[op/e]_i f i defines the iteration of the operator op
over the family f and the (assumed neutral) element e.

Definition vnorm (x : ’rV[T]_n) := \big[Rmax/0]_i (norm (x ord0 i)).

In this definition, (x ord0 i) is the ith component of the vector x: recall that row vectors
are matrices with one row and n columns. Thus, the first argument of the function which
represents x is a point in ’I_1, i.e. the set of natural numbers n such that n < 1: the only
possibility is 0, represented by ord0. In our case, the neutral element is 0 since norms are
non-negative numbers.

54

3.3. FORMALISATION OF THE STABILITY PROOF

The main difficulty with this definition comes from the fact that some theorems on big
operators require algebraic structure on the operator, in particular the existence of a neutral
element. This algebraic structure is inferred thanks to canonical structures [Sai99, MT13].
However, the maximum operator on real numbers does not canonically admit such a structure:
with no further assumption the maximum operator does not have a neutral element.

Here, since we only consider non-negative numbers, 0 is a neutral element. Paşca [Paş11]
suggests two possibilities to get round this issue: to build the type of non-negative real num-
bers, equip it with the right structure, and use the theorems in Mathematical Compo-
nents’ library for big operators, or to define a new maximum operator which has the right
structure by definition and such that it coincides with Rmax on non-negative numbers and
move from one operator to the other through rewriting.

The first possibility mentioned by Paşca seems to be the best way in the long-term but
developing a theory of non-negative real numbers in Coq is not so obvious. For instance, if R+

is a new type built on top of the type R, it inherits from R its monoid structure but proving
this in Coq requires a redefinition of addition as an operation on R+ and a proof that this
new addition is associative and that the 0 of R+ (which is not the same as the 0 of R) is an
identity for this operation. This entails a duplication of the code we would like to avoid.

We experimented with the second possibility, which was Paşca’s choice, but we eventually
opted for a third choice of implementation which revealed to be shorter: to prove again the the-
orems from the Mathematical Components library that require some algebraic structure,
instantiated on real numbers together with the additional hypothesis that we only consider
families of non-negative numbers. This is also a duplication of the code, but way shorter than
in the first possibility. We also believe these theorems are not limited to non-negative real
numbers and can actually be generalised: our proofs illustrate that the essential property of e
in \big[op/e]_i f i in the duplicated theorems is idempotence (i.e. op e e = e), which is
weaker than neutrality.

3.3.2 Topological Spaces

Topology is an important topic of this work. Indeed, we heavily rely on filters, we use
LaSalle’s invariance principle which is a theorem of convergence and we work with compact
sets. However, we do not really commit to doing topology: we never manipulate topological
spaces (see Definition 3.1). A reason for this is that the Coquelicot library does not deal
with topological spaces. In fact, the topological structure which is at the base of Coqueli-
cot’s hierarchy is the structure of uniform space and not all topological spaces are uniform
spaces [Wil08].

Definition 3.1 (Topological Space). A set T is said to be a topological space if and only if
it is equipped with a family (Oi)i∈I of sets, called open sets, such that

— T and ∅ are open sets.

— for every subfamily (Oi)i∈J , the union
⋃
i∈J

Oi is open.

— for every finite subfamily (Oi)i∈J , the intersection
⋂
i∈J

Oi is open.

The family (Oi)i∈I is called a topology on T .

55

CHAPTER 3. SWING-UP OF THE INVERTED PENDULUM

In particular, as explained in Section 2.3.3, we speak of compact sets instead of compact
spaces, thus avoiding the use of the subspace topology (see Definition 3.2).

Definition 3.2 (Subspace Topology). Let T be a topological space with its family of open
sets (Oi)i∈I and S ⊆ T .

The subspace topology on S is defined by the family (Oi ∩ S)i∈I .

In our formalisation of the inverted pendulum, as explained in Section 3.2.1, we prove that
the set K is compact by proving that it is closed and bounded: this is called the Heine-Borel
Theorem. A closed and bounded set is compact in a finite-dimensional space because it is a
closed subset of a compact set (the finite product of segments defined by its bound). We have
thus to prove that a finite product of compact sets in R is compact.

We decided to formalise a more general property, called Tychonoff’s Theorem, which ad-
mits a simple proof thanks to filters, although it requires the axiom of choice in the form of
Zorn’s Lemma (we used the version of Zorn’s Lemma contained in Schepler’s small library on
set theory [Schb]).

Tychonoff’s Theorem states that any product of compact topological spaces is compact.
We can rephrase this theorem as: any product of compact sets is compact. Its proof uses the
definition of compactness in terms of ultrafilters (see Definition 3.3 and Lemma 3.12).

Definition 3.3 (Ultrafilter). A set of sets F is an ultrafilter if and only if it is a proper filter
and it is maximal for set inclusion, i.e. for every proper filter G, if F ⊆ G then F = G.

Lemma 3.12. A set A is compact if and only if every ultra filter on A converges in A (recall
Definition 2.8).

What makes the proof simple is the fact that, when given a product space T =
∏
i∈I

Ti,

an ultrafilter F on T and p ∈ T , F converges to p if and only if for all i ∈ I, the ultrafil-
ter Fi = {πi (A) | A ∈ F} converges to πi (p), where πi is the canonical projection to Ti. When
each Ti is compact, we have by definition the convergence of Fi to some pi and thus we can
build a p to which F converges.

However, this proof is not possible if we stay in the world of uniform spaces because of the
underlying topology. In a product of topological spaces, the natural topology is the product
topology (see Definition 3.6), which is defined from the weak topology (see Definition 3.4) and
the supremum topology (see Definition 3.5).

Definition 3.4 (Weak Topology). Let S be a set, T be a topological space with its family of
open sets (Oi)i∈I and f be a function from S to T .

The family
(
f−1 (Oi)

)
i∈I defines a topology on S, called the weak topology by f .

Definition 3.5 (Supremum Topology). Let (Φi)i∈I be a family of topologies on the same
set T .

The supremum topology of (Φi)i∈I is the smallest topology (for set inclusion) on T that
contains every open set of each topology Φi for i ∈ I.

Definition 3.6 (Product Topology). Let (Ti)i∈I be a family of topological spaces.
The product topology on the product space

∏
i∈I

Ti is the supremum topology of the family

of weak topologies by each projection πi on Ti.

56

3.3. FORMALISATION OF THE STABILITY PROOF

The proof we gave actually exploits the properties of the product topology. However, in
uniform spaces, we are stuck with the uniform topology (see Definition 3.7).

Definition 3.7 (Uniform Topology). Let U be a uniform space.
Balls in U induce a topology on U as follows: a set A is open if and only if for all p ∈ A,

there exists ε > 0 such that Bε(p) ⊆ A.

The uniform topology is semi-metrisable (i.e. we can find a semi-metric that induces it
through balls for this semi-metric), while the supremum topology of an uncountable family of
semi-metrisable topologies might not be semi-metrisable [Wil08]. Thus, the uniform topology
on an uncountable product of uniform spaces does not correspond to the product topology.

Since we wanted to prove Tychonoff’s theorem in its full generality, even though we did
not really need it, we decided to formalise topological spaces and prove Tychonoff’s theorem
using the product topology. Since the uniform topology on the finite product Un, where U is
a uniform space, is the same topology as the product topology of the uniform topology on U,
we were able to use this formalisation to prove the Heine-Borel Theorem.

There are two minor differences between Definition 3.1 and our formalisation thereof: finite
intersections are reduced to intersections of arity 2 (n-ary intersections can be obtained by
iteration) and we do not require the empty set to be open, since it is provable (take an union
indexed on the empty set).

Record mixin_of (T : Type) := Mixin {
open : set T -> Prop ;
op_setU : forall (I : eqType) (f : I -> set T),
(forall i, open (f i)) -> open (\bigcup_i f i) ;

op_setI : forall (A B : set T), open A -> open B -> open (A ‘&‘ B) ;
op_setT : open setT

}.

The family of open sets is represented as a predicate on sets. We use for the domains of
indices the eqType structure that comes from the Mathematical Components library and
represents types that have a decidable equality: it is indeed important to be able to compare
two indices. The name mixin_of comes from the way we implement hierarchies (we will give
more details in Section 5.1.2).

3.3.3 Automatic Computation of Differentials

While formalising the mathematics involved in the proof of soundness of the control func-
tion, we noticed that several times we had a simplified form for the differential of a function.
To prove that it is indeed a differential we performed the same steps.

1. First prove that this differential can be written in a more expanded way.
2. Then use the rules of differentiation to prove that this expanded form is the differential

of a given function.

For example, the derivative function of E ◦ solp is

t 7→ (solp (t))1 (fctrl ◦ solp) (t) .

But in order to prove this fact it is first necessary to put this function under the form

57

CHAPTER 3. SWING-UP OF THE INVERTED PENDULUM

t 7→ dEsolp(t) (Fpendulum (solp (t))) ,

where dEq is the expanded form of the differential of E at point q. Then, applying the rule
for the differentiation of a composition of functions (also known as chain rule), we have to
prove that dEsolp(t) is the differential of E at point solp (t) and that Fpendulum (solp (t)) is
the derivative of solp at time t. The first goal is similarly proven, successively using different
rules for differentiation (e.g. the first rule will be the one for the addition of two functions, see
Equation (3.4) for the form of E).

For the first step (expanding functions to put them in the right form), the proof of equality
is already quite automated thanks to reflection-based decision procedures for the equality of
terms such as ring [GM05] or field [DM01] (see Section 9.1 for an introduction about reflec-
tion). For the second step (using the rules of differentiation), the only automation provided
in Coquelicot is for the case of functions from R to R [LM12].

We later learnt that reversing the order between these two steps is possible thanks to
the evar_last tactic from Coquelicot and allows for a slight improvement. When the goal
is of the form P p1 . . . pn, with P a predicate and p1 . . . pn its parameters, this tactic replaces
the last parameter with an existential variable ?v, and the goal with the two goals P p1 . . .?v
and ?v = pn. This allows us to use the rules of differentiation without having to provide the
expanded form for the differential, since it will be inferred from the constraints these rules
impose on ?v. Our contribution is a way to automate this inference.

The automation of the computation of a differential for a given function is done by means of
type classes [SO08]. We keep a data base of differentiation rules thanks to a type class diff en-
capsulating the filterdiff predicate from Coquelicot: filterdiff f F df means that df
is the differential of f at the neighbourhood defined by F. In the remainder of this section, K
is a ring equipped with an absolute value (AbsRing structure in Coquelicot) and U and V
are two normed modules over K.

Context {K : AbsRing} {U V : NormedModule K}.

Class diff (f : U -> V) (F : set (set U)) (df : U -> V) :=
diff_prf : filterdiff f F df.

When we want to prove that a function df is the differential of a given function f, we
apply the following lemma.

Lemma diff_eq (f f’ df : U -> V) (F : set (set U)):
diff f F f’ -> f’ = df -> diff f F df.

Thanks to the SSReflect tactic language [GMT15], f’ is introduced as an existential
variable and type class inference is triggered in a seamless way. Type class inference will then
automatically compute for us the function f’ and prove the assumption diff f F f’. Then
we can prove that f’ is equal to df using for instance the axiom of functional extensionality
and the ring and field tactics.

In order for type class inference to succeed, it is necessary to have a well-stocked data base
of differentiation rules. We turned rules from Coquelicot into instances of the class diff.
For example, we give the rules for the differential of constant functions, for the identity func-
tion, and for the sum of two functions (the proofs are direct applications of the corresponding
lemmas from Coquelicot).

58

3.3. FORMALISATION OF THE STABILITY PROOF

Instance diff_const (p : V) (F : set (set U)) :
Filter F -> diff (fun _ => p) F (fun _ => 0).

Instance diff_id : diff id F id.

Instance diff_plus (f g df dg : U -> V) (F : set (set U)) :
Filter F -> diff f F df -> diff g F dg ->
diff (fun p => (f p) + (g p)) F (fun p => (df p) + (dg p)).

Sometimes, the form of the differential is not interesting because it is sufficient to prove
that this differential exists. It is possible to prove automatically the existence of differentials
by triggering type class inference thanks to the following lemma.

Lemma ex_diff (f df : U -> V) (F : set (set U)) :
diff f F df -> ex_filterdiff f F.

We also have a similar mechanism for derivatives of functions whose domain is a ring with
an absolute value. We define a type class deriv encapsulating the is_derive predicate from
Coquelicot. We prove two lemmas to trigger type class inference whenever we want to
prove that an expression is the derivative of a given function at some point or to prove that
such a derivative exists.

Class deriv (f : K -> V) (x : K) (df : V) :=
deriv_prf : is_derive f x df.

Lemma deriv_eq (f : K -> V) (x : K) (df’ df : V) :
deriv f x df’ -> df’ = df -> deriv f x df.

Lemma ex_deriv (f : K -> V) (x : K) (df : V) :
deriv f x df -> ex_derive f x.

And we also build a data base of rules easily extracted from the Coquelicot library.

Instance deriv_const (p : V) (x : K) : deriv (fun _ => p) x 0.

Instance deriv_id (x : K) : deriv id x 1.

Instance deriv_plus (f g : K -> V) (x : K) (df dg : V) :
deriv f x df -> deriv g x dg ->
deriv (fun y => (f y) + (g y)) x (df + dg).

Let us illustrate our methodology on a very trivial example: we want to prove that
the derivative at point x of the function fun y => p + y, for p a point in K, is 1. The
goal is the following one:

is_derive (fun y => p + y) x 1.

Example

59

CHAPTER 3. SWING-UP OF THE INVERTED PENDULUM

In Coquelicot, one would prove this goal as follows: first apply the evar_last
tactic to get the two goals

is_derive (fun y => p + y) x ?d,
?d = 1,

where ?d is an existential variable representing the derivative at point x of our function.
On the first goal, using Coquelicot’s equivalent of deriv_plus we have to prove

the two goals

is_derive (fun _ => p) x ?d1,
is_derive id x ?d2,

where ?d1 and ?d2 are two fresh existential variables and ?d has been partially instanti-
ated into ?d1 + ?d2.

Then, the equivalent of deriv_const (respectively deriv_id) closes the first (respec-
tively second) goal. The full instantiation of ?d is thus 0 + 1 and the last open goal
is

0 + 1 = 1,

which is easily proven using the rules of the ring structure. For more complex expressions,
the ring tactic [GM05] may be used.

With our inference mechanism, the first part of this proof is automated. On the goal

is_derive (fun y => p + y) x 1,

Lemma deriv_eq yields the two same goals as the evar_last tactic (the first one
being encapsulated in the deriv class), but also triggers type class inference and auto-
matically solves the first goal, yielding the goal

0 + 1 = 1,

which may be solved as before.

3.4 Related Work

We divide our references into two categories: related work on dynamical systems and
control theory (see Section 3.4.1) and related work on the formalisation of mathematics (mul-
tivariate analysis and topology) in Section 3.4.2.

3.4.1 Related Work on Dynamical Systems and Control Theory

Several formalisations on dynamical systems and control theory already exist. Impor-
tant tools in this domain are the KeYmaera prover [PQ08] and its successor, KeYmaera
X [FMQ+15]. They operate however on a quite different domain since they are based on
differential dynamic logic. Moreover, KeYmaera and KeYmaera X use Mathematica as
a trusted oracle for quantifier elimination.

Anand et al. [AK15] developed a framework to build certified programs in Coq for robots,
ROSCoq. They followed an approach which is similar to ours: first define the physics of the
system using differential equations and then prove properties on it. An important difference

60

3.4. RELATED WORK

with our work is that they use the constructive real numbers from the CoRN library [CGW04].
They are thus able to run the programs they certified, whereas it is impossible to carry out
computation using the real numbers from Coq’s standard library. It is however possible to use
such real numbers as a tool in the formal verification of executable functions [BCF+13, BRT18].

The VeriDrone project [MRAL16] is another framework in Coq which is designed for
cyber-physical systems. However, it is based on a different logic (it uses an embedding of
linear temporal logic in Coq) and also trusts external tools (SMT solvers). In this framework,
Chan et al. [CRLM16] use a Lyapunov function to prove the stability of a particular system.
They have however no proof of a general stability theorem and thus have to do a direct proof.

Herencia-Zapana et al. [HJO+12] take another approach to stability proofs: stability proofs
using Lyapunov functions, under the form of Hoare triples annotations on C code, are used
to generate proof obligations for PVS. By this means, they can directly prove properties on
implementations instead of proving them on models of the systems.

3.4.2 Related Work on the Formalisation of Mathematics

Our contributions to the formalisation of mathematics in this chapter cover two domains:
multivariate analysis and topology.

Multivariate Analysis

About multivariate analysis, besides Paşca’s work [Paş08, Paş11] which we mentioned
before, we have access to another formalisation in Coq of Rn. In the Coquelicot li-
brary [BLM15], a type for Rn is defined thanks to a recursive function iterating cartesian
product. It is used to define a type for matrices, but Coquelicot only contains few theo-
rems on these stuctures and the Mathematical Components-like approach is more con-
venient in practice. Harrison, in his work on Rn in HOL Light [Har05, Har13], also comes
to the conclusion that functions from a finite type of cardinality n to R are a good way to
represent points in Rn but the limitations of HOL Light force him to use “encoding tricks”.
Isabelle/HOL also inherits this formalisation from HOL Light, but it is not as constrain-
ing as in HOL Light since the library of multivariate analysis is developed using abstract
structures implemented as type classes [HIH13], and not using the concrete type for Rn.

Concerning differentials, we decided to use type classes to add automation in spite of
the existence in Coquelicot of a reflexive (i.e. based on reflection, which we introduce in
Section 9.1) tactic computing derivatives [LM12, BLM12]. The main issue with this tactic
is that it works only on functions from R to itself, while we have at some point to compute
the differential of a function whose domain is Rn (e.g. we need to compute the differential
of E in order to compute the derivative of E ◦ solp). We can also mention the formal proof of
the automatic differentiation algorithm O∂yssée by Mayero [May02], which is also limited to
functions from R to itself.

Topology

Topological spaces were formalised in most of our references from Section 2.4.2. Let us
briefly comment on the ones in Coq.

Cano’s work [Can14] contains a structure of topological space which is slightly more com-
plex than ours because Cano does not use extensionality axioms. Another (anecdotal) dif-

61

CHAPTER 3. SWING-UP OF THE INVERTED PENDULUM

ference is that he uses sets of sets to represent families in his definition of topological spaces
whereas we use indexed families.

The library for topology by Schepler [Scha] is based on his library for set theory [Schb],
which also represent families as sets of sets. This library also contains a proof of Tychonoff’s
Theorem. However, it has its own definitions of filters and uniform spaces and does not
interface well with Coquelicot. For instance, Schepler’s filters are Coquelicot’s proper
filters and Schepler’s formalisation of uniform spaces implies that these are metric spaces while
Coquelicot’s uniform spaces are not necessarily metric. Moreover, in Schepler’s library the
definition of compactness concerns topological spaces whereas, as mentioned before, we focus
on subsets of such spaces without referring to the subspace topology.

The other formalisations of Tychonoff’s Theorem we know about are the one in Mizar by
Skorulski [Sko01], using open covers, the ones in HOL Light and Isabelle/HOL, based on
open covers too, and the one in Lean [LMCLD], using ultrafilters.

62

Part I
Case Study: the Inverted Pendulum

CHAPTER 4

ASSESSMENT OF THE
FORMALISATION

The goal of this case study was to determine limitations in existing libraries for analysis
in Coq [CDT19] and to sketch solutions to overcome these limitations. We focused on the
Coquelicot library [BLM15] for reasons explained in Section 2.3.1.

In this work, we designed new tools that make the formalisation of mathematics using
Coquelicot smoother (see Section 4.1) and that open the door to new projects that will
undoubtedly suggest other improvements through the challenges they raise (see Section 4.2).
However, our work also revealed other issues that the tools we presented do not solve (see
Section 4.3).

4.1 Improvements on the Existing

In order to achieve the formalisation of the inverted pendulum, we had to extend Coqueli-
cot with a few concepts (e.g. compact sets or topological spaces) or to reformulate parts of
Coquelicot in a classical settings (closed sets, mainly). These extensions put aside, our con-
tribution to the formalisation of mathematics using Coquelicot is two-fold: on one hand,
we designed tools that improve the user’s experience with Coquelicot (see Section 4.1.1)
and, on the other hand, we started experimenting with the use of Coquelicot in other fields
of mathematics (see Section 4.1.2).

4.1.1 A Smoother Experience with Coquelicot

As we explained in the introduction of this thesis, we are concerned with the ease of use
of the available formalisation tools and libraries. We believe our contributions described in
Section 2.3.2 and Section 3.3.3 are an important step towards this goal.

63

CHAPTER 4. ASSESSMENT OF THE FORMALISATION

Indeed, our notations that exploit our filter inference mechanism make statements easier
to read (and faster to write), since they look closer to pen-and-paper notations. In particular,
these notations hide filters that are usually left implicit: in mathematics, we talk about the
limit of a function at a given point p, which implicitly means that we use the neighbourhood
filter of p. If one wants for instance to talk about the limit when p is excluded (e.g. the limit
of x 7→ 1

|x| at 0), a specific notation (not formalised yet) is used in pen-and-paper mathematics.
This specific notation indicates that another filter is used.

Moreover, on top of this better phrasing of mathematical statements in Coquelicot, our
mechanism for the automatic computation of differentials and derivatives also makes proofs
closer to pen-and-paper ones. Indeed, when one wants to prove that the differential of a
function has a given value, the first step is usually to start from an "obvious" value and then
to apply simplifications in order to get the expected result. A value is "obvious" because
one can compute it without writing anything: computation steps are usually implicit. Our
data base makes it possible to automatically compute such an "obvious" value, and existing
reflection-based tactics also help proving the expected result through automatic computation
steps.

4.1.2 Using Coquelicot in other Fields of Mathematics

In front of the diversity of libraries of the fields of mathematics and of the libraries that
formalise parts of these fields, the best strategy is to try to reuse and combine as much as
possible, when it is possible, what already exists. Our formalisation provides hints on the use
of Coquelicot in other fields of mathematics than analysis, either alone or in combination
with Mathematical Components.

Indeed, although Coquelicot was designed for analysis, it contains a few topological
structures. Our formalisation of topological spaces and topological notions (recall Section 2.3.3
and Section 3.3.2) leads us to think that extending Coquelicot’s hierarchy from below with
topological spaces would make it possible to tackle general topology more thoroughly than we
did (we only focused on the tools that would help us formalise the inverted pendulum).

Moreover, our choice of using vectors from Mathematical Components to represent Rn,
in continuity with Paşca’s work (recall Section 3.3.1), makes it possible to reuse results from
linear algebra that are already proven in Mathematical Components in order to prove
theorems in analysis. Combining Coquelicot and Mathematical Components in order
to mechanise proofs that involve both analysis and algebra is not a new idea [BBRS16, Ber17],
but existing approaches (including ours) suffer from a certain heaviness that we will discuss
in Section 4.3.3.

4.2 Possible Extensions

This case study could be extended in two different ways that actually correspond to the
parts of Figure 1.8 that are out of the scope of what we achieved so far. First, we could
improve this formalisation in order to have a complete proof of stability (see Section 4.2.1).
Then, we could progress towards a certified implementation of the control function we proved
correct (see Section 4.2.2).

64

4.2. POSSIBLE EXTENSIONS

4.2.1 Completing the Proof of Stability

Our proof of stability for the inverted pendulum is actually incomplete, since we admitted
some hypotheses of LaSalle’s invariance principle: we assume the existence and uniqueness
of solutions and their continuity with respect to initial conditions. As we explained in Sec-
tion 3.2.1, it is possible to prove these properties using the Cauchy-Lipschitz Theorem.

We mentioned in Section 2.4.3 that no mechanised version of this theorem compatible with
the context of this case study is available and that proving this theorem would be possible
using a fixed-point theorem formalised by Boldo et al. [BCF+17]. However, in front of the
issues we will discuss in Section 4.3, we decided to develop a new library for analysis in Coq.
Formalising the Cauchy-Lipschitz Theorem using this new library would thus require first a
substantial effort on the development of the theory of integration, which is work in progress.

Applying the Cauchy-Lipschitz Theorem to our example is unfortunately not obvious: the
domain of definition of the function that defines the differential equation must be an open
subset of Rn, while we work on the compact set K. It is impossible to consider an open subset
of K for this proof because its interior is empty: the components at indices 2 and 3 of the
points in K, corresponding to cos θ and sin θ (recall Section 3.1.2), describe a circle. It is thus
necessary to choose another representation of the state space, where the equivalent of K will
have a non-empty interior. For instance, we could directly use θ instead of its sine and cosine.
The state space would then be R4 instead of R5 and the definition of K would resemble the
following one:

K =
{
p ∈ R4 | V (p) 6 k0

}
,

which gives the obvious open subset of K{
p ∈ R4 | V (p) < k0

}
for the application of the Cauchy-Lipschitz Theorem.

This would lead to a third representation of the differential equation that models the
behaviour of the inverted pendulum. The multiplicity of the representations of the differential
equation also raises another point with respect to which our formalisation is incomplete:
we worked on the solutions of Equation (3.3), but we did not prove that it was equivalent
to Equation (3.1). Moreover, it should also be possible to prove Equation (3.1) from the
laws of physics, once we admit which characteristics of the pendulum are relevant and which
parts (e.g. friction or the pole’s mass) should be neglected.

4.2.2 Towards a Certified Implementation

This formalisation could be used in order to obtain a certified implementation of the control
function that could run on an actual robot. As explained in Section 1.3.1, we need to take
into account the discretisation of time and approximations in order to prove correct a concrete
implementation.

The impact of discretisation is very similar to the use of a numerical approximation scheme
for solutions of a differential equation. For a stable approximation scheme, we know that the
approximations get closer to the solutions when the discretisation step decreases. By analogy,
we believe that if the processor and the sensor measurements have a high enough frequency,
the behaviour of solutions should not deviate too much from the one of ideal exact solutions

65

CHAPTER 4. ASSESSMENT OF THE FORMALISATION

of the differential equation. We think the same proof techniques as the one used to prove the
stability of an approximation scheme could be used for this step.

We expect that taking into account approximations would be harder. Since we can only
work with a model of the sensor precision and of the engine response to its inputs, we get
another incertitude on the state of the system. We must also switch from axiomatised exact
real numbers to floating point numbers, which introduces rounding errors. This last kind of
approximation could be taken into account in a semi-automated way, for example using the
Flocq library [BM11] and Gappa [BFM09, DM10]. Since this last step consists in proving
that changing the data structures on which the algorithm operates does not affect its result,
refinement (which we introduce in Chapter 8) might be an option too.

4.3 Remaining Complications

Although we developed tools that solve some issues we encountered while working on this
case study, we could not solve all of them. The remaining issues motivated us to develop a
new library, which we will describe in Part II.

We had in particular to perform proof steps that are unnatural for a mathematician (see
Section 4.3.1). We also missed some tools that were either not implemented yet or restricted
to a domain of application that does not fit our example (see Section 4.3.2). Finally, we discuss
in Section 4.3.3 the difficulty to combine several hierarchies of mathematical structures.

4.3.1 Discrepancy with Pen-and-Paper Mathematics

Our set of notations is a step towards a better resemblance between formal proofs and
their pen-and-paper equivalent. However, they are not sufficient: some proofs are unnatural
because they differ too much from usual mathematics.

In particular, issues arise from the fact that we want to do classical reasoning using a
library that was designed, admittedly from a classical axiomatisation of real numbers, but
with an emphasis on constructive proofs. For instance, it is impossible using only Coq’s
standard library and intuitionist reasoning to prove that, if l is the least upper bound of the
set A, then for all ε > 0 there exists p ∈ A such that l − ε 6 p 6 l. In other terms, Coq’s
axiomatisation of real numbers is not expressive enough to give an arbitrary approximation
of a least upper bound.

This issue is easy to solve since we can (and we did) prove this property using additional
axioms allowing for classical reasoning. However, this is not the only example where this choice
of design is problematic. We mentioned in Section 2.3.3 Coquelicot’s definition of closed
sets: a set is closed if and only if its complement is open, which is written in Coquelicot
with a double negation.

Definition closed {U : UniformSpace} (A : set U) :=
forall p, ~ (locally p (~‘ A)) -> A p.

This double negation in the definition of closed sets makes some (constructive) proofs
possible, while they would have been impossible without it: removing a double negation is a
classical reasoning step.

Another difference with the practice of mathematicians is the necessity, in proofs involving
asymptotic reasoning, to anticipate how elements of filters will be built during the proof. To

66

4.3. REMAINING COMPLICATIONS

be more precise, filters constitute an abstraction over ε − δ definitions and mathematical
proofs involving these definitions often requires to split the epsilons. With pen-and-paper,
mathematicians often do not bother splitting them since for instance properties of the form

∀ε > 0. e < ε

and

∀ε > 0. e < 4ε

are equivalent. The important point is that mathematicians do not have to know in advance
that they will end up with 4ε instead of ε. In formal proofs however, although Coquelicot
already provides tools to combine results on filters without unfolding their definition, it is
usually necessary to know beforehand how the splitting of epsilons will be done to reach ε at
the end of the proof, or equivalently to know which will be the multiplying factor in front of ε
at the end, which is unsatisfactory.

4.3.2 Missing Tools

The absence of some tools made our proofs harder than they should. We already discussed
issues with the iteration of the maximum operator in Section 3.3.1. Our solution, duplication
of code from the Mathematical Components library, removing the necessity of a monoid
structure and adding hypotheses is not really satisfactory and is obviously a short-term solu-
tion.

Another missing tool is a function that, given a function f and a point x, computes the
differential d fx. There is only the ternary predicate filterdiff in Coquelicot to express
properties on differentials, but this predicate does not give access to the function d f .

On the opposite, Coquelicot provides the Derive function that takes a function from R
to itself and returns a total function that represents its derivative function [BLM12]. This
function makes proofs easier because it decorrelates the proof of derivability for a function and
the proof of the property one wants to show about the derivative of this function. Moreover,
the way the Derive function is defined sometimes removes the need for derivability hypotheses.
For instance,

Lemma Derive_scal :
forall f k x, Derive (fun x => k * f x) x = k * Derive f x

is a theorem in Coquelicot without any derivability hypothesis.
The equivalent of the Derive function for differentials is unfortunately not implemented

in Coquelicot.

4.3.3 Combining Several Hierarchies

The main obstacle to the simultaneous use of different libraries is the lack of compatibility
between the different definitions of the same mathematical object. For instance, we explained
in Section 3.4.2 that Schepler’s library for topology in Coq [Scha] is hard to use in combination
with Coquelicot [BLM15] since the definitions of filters and uniform spaces are incompatible.
We decided to prove again the theorems from Schepler’s library that we needed, but using
Coquelicot.

67

CHAPTER 4. ASSESSMENT OF THE FORMALISATION

Another option, which we used to combine Coquelicot and Mathematical Compo-
nents, is to provide an interface between both libraries. In our case, this was very simple
since we only had to instantiate Coquelicot’s hierarchy on the type of row vectors from
Mathematical Components. Some more complex operations may however be required.
Bernard et al. [BBRS16] for instance had to prove the correspondence between two differ-
ent implementations of the factorial function, or to use coercions and morphism lemmas to
translate statements on non-negative integers from the type R to the type nat.

Making use of translations from one library to the other quickly becomes extremely tedious,
especially if the hierarchy of algebraic structures itself is duplicated. Both Coquelicot and
Mathematical Components contain their own interfaces describing groups, rings, modules
and normed spaces, and these structures are not compatible, although the axioms we will
present in Section 5.1.1 make some of them equivalent.

In front of these difficulties, we decided to implement a new library for analysis in Coq.
This library, named Mathematical Components Analysis [ACM+], reimplements and
extends Coquelicot’s tools for analysis, based on a hierarchy that is by design compatible
with Mathematical Components (see Chapter 5).

68

Part II

Designing a Library of Mathematics

69

Part II
Designing a Library of Mathematics

CHAPTER 5

HIERARCHY OF THE
MATHEMATICAL COMPONENTS

ANALYSIS LIBRARY

Having a well-organised hierarchy of algebraic and topological structures is important for a
library to be easy to use. It also must be well-tuned in order to maximise sharing. The issues
mentioned in Section 4.3 partly come from the necessity to combine the Coquelicot [BLM15]
and Mathematical Components [MCT] libraries. We thus decided to provide a unified
framework for real analysis, Mathematical Components Analysis [ACM+], taking bene-
fits from the algebraic theory of Mathematical Components to rework Coquelicot (see
Section 5.2). We discuss in Section 5.1 the foundations of this library. We extended Coqueli-
cot’s hierarchy with structures that allow for a better integration of our contributions from
Part I (see Section 5.3). Finally, we are currently reworking some interfaces in the hierarchy
in order to make a better use of tools that solve other issues of the standard library (see
Section 5.4).

This work was done in collaboration with Reynald Affeldt and Cyril Cohen, except for the
current work described in Section 5.4. Assia Mahboubi and Pierre-Yves Strub also worked on
the logical foundations of the library (described in Section 5.1.1). All code snippets come from
the Mathematical Components Analysis library [ACM+], unless otherwise specified.

5.1 Principles of Design

Although the starting point of our library is Coquelicot’s hierarchy, there is a crucial
difference between both libraries, since we work in a different logical context (see Section 5.1.1).
Still, we use the same principles of organisation (see Section 5.1.2), which also proved their
value in the Mathematical Components library.

71

CHAPTER 5. HIERARCHY OF THE MATHEMATICAL COMPONENTS
ANALYSIS LIBRARY

5.1.1 Logical Foundations

As opposed to Coquelicot, which is constructively built on top of a classical axiomati-
sation of the set of real numbers [May01], we make use of classical reasoning in our library. In
particular, we use a set of axioms that allows for reasoning steps that are standard in classical
mathematics.

We use three axioms from the standard library, which are compatible with a model that
covers most of Coq’s logic [TS17]: using these axioms does not introduce inconsistencies.

Axiom functional_extensionality_dep :
forall (A : Type) (B : A -> Type) (f g : forall x : A, B x),
(forall x : A, f x = g x) -> f = g.

Axiom propositional_extensionality :
forall P Q : Prop, P <-> Q -> P = Q.

Axiom constructive_indefinite_description :
forall (A : Type) (P : A -> Prop),
(exists x : A, P x) -> {x : A | P x}.

The two first axioms generalise the ones we presented in Section 2.3.3. The first axiom
is a strong version of functional extensionality, called funext in Section 2.3.3. This axiom
generalises funext to dependent functions. The second axiom is the same as propext, but we
kept the name from the standard library.

The third axiom makes it easier to deal with witnesses for existential propositions. In Coq,
there are limitations in the ways one can use witnesses. Two kinds of existential propositions
exist: the propositional one, denoted by exists x, P x, which lives in the sort Prop, and
the dependent sum, denoted by {x : A | P x} which lives in the sort Set or {x : A & P x}
which lives in the sort Type. A witness for the propositional version can only be used to build
a term in the sort Prop (and similarly for the others). The third axiom makes it possible to
transform an existential proposition in Prop into a dependent sum.

Thanks to this axiom, one can define a function that, given a proposition, computes a
witness for this proposition if there is one: this is Hilbert’s epsilon operator [Hil22]. We will
discuss the role of such a function in Section 5.3.3.

This last axiom is a form of axiom of choice that makes it possible, in combination with
propositional extensionality, to prove that any type inherits from the choiceType structure
from Mathematical Components, or equivalently that any type has a choice function for
decidable predicates. This is stated by the following lemma (we give the meaning of the
name mixin_of in Section 5.1.2):

Lemma gen_choiceMixin (T : Type) : Choice.mixin_of T.

Moreover, it is also possible to prove a strong version of the law of Excluded Middle (using
a constructive sum of propositions).

Lemma pselect (P : Prop): {P} + {~P}.

This lemma is established as a consequence of the standard law of Excluded Middle (i.e. ex-
pressed using the disjunction in Prop), which we prove as Diaconescu’s theorem [Dia75] thanks
to propositional extensionality and indefinite description.

72

5.1. PRINCIPLES OF DESIGN

Lemma pselect makes it possible to define in particular a projection from Prop to bool:
the asbool function computes a boolean value that is logically equivalent to the proposition
in argument. This equivalence is expressed using the reflect inductive we mentioned in
Section 2.3.1.

Definition asbool (P : Prop) := if pselect P then true else false.

Lemma asboolP (P : Prop) : reflect P (asbool P).

As a consequence, any predicate becomes decidable, which strengthens the impact of
Lemma gen_choiceMixin.

5.1.2 Organising the Library

The design technique that proved to be the most efficient and robust for large hierarchies
of mathematical structures is the one called "packed classes" [GGMR09, Gar11]. We recall
this methodology in this section.

A mathematical structure is usually composed of a carrier set and of operations on the
carrier that must satisfy some properties. For instance, a ring is a set equipped with an addi-
tion and a multiplication that must have neutral elements and that must satisfy computation
laws, such as distributivity:

∀x. ∀y. ∀z. x ∗ (y + z) = x ∗ y + x ∗ z.

It is possible to define the type of rings by bundling the operations and their properties
in a record, but it should be done carefully so that this kind of definition scales to large
hierarchies. Sharing between different structures is particularly important for efficiency and
should be maximised. For example, a ring is also an additive group. It is better to provide a
form of inheritance between rings and additive groups rather than copying the laws of additive
groups in the definition of rings.

The methodology of packed classes gives a way to have efficient inheritance through the
use of three different records:

— the mixin, named mixin_of, bundles the operations and properties of a structure, but
only those that cannot be obtained through inheritance.

— the class, named class_of, is the record that allows for inheritance: it packs the mixin
of the structure with the classes of the other structures it inherits from.

— the type, named type, packs the class with the carrier type to define the mathematical
structure.

The names mixin_of, class_of and type are used for every structures in Mathe-
matical Components. Thanks to Coq’s module system, there is no clash of names:
the mixin of the ring structure is called Ring.mixin_of, while the one of the additive
group structure is called Zmodule.mixin_of.

Remark

73

CHAPTER 5. HIERARCHY OF THE MATHEMATICAL COMPONENTS
ANALYSIS LIBRARY

We describe here the ring structure (ringType) from the Mathematical Compo-
nents library [MCT].

The mixin of this structure only gives the laws related to the multiplication, since
the laws about addition are obtained through inheritance from the additive group struc-
ture (zmodType). Since some of these laws also concern the addition (the distributivity
rules), this mixin is parametrised by an additive group.

Record mixin_of (R : zmodType) : Type := Mixin {
one : R;
mul : R -> R -> R;
_ : associative mul;
_ : left_id one mul;
_ : right_id one mul;
_ : left_distributive mul +%R;
_ : right_distributive mul +%R;
_ : one != 0

}.

The class of the ring structure then bundles this mixin with the class of the additive
group.

Record class_of (R : Type) : Type := Class {
base : Zmodule.class_of R;
mixin : mixin_of (Zmodule.Pack base)

}.

The Pack function in the above class is the constructor of the zmodType structure: it
transforms a class of additive group into an element of the type of additive groups. The
same structure also exists for rings.

Structure type := Pack {sort; _ : class_of sort}.

Thanks to coercions, it is possible to identify the ring with its carrier. More precisely,
when we have R : ringType, we may write x : R to denote that x is an element of the
carrier of the ring R.

In Mathematical Components, hence in our library, the inference mechanism
that allows to automatically infer the structure on a type is the one of canonical struc-
tures [Sai99, MT13]. Each structure comes with notations that make it possible to trigger
unification in order to infer the structure. These notations have two roles: to ease the
instantiation of the hierarchy on concrete types and to infer a structure for a given type
when required.

For instance, for the ringType structure, there is a notation RingType T m that,
given a type T and a ring mixin m for T, infers a class of additive group for T and packs
all these elements into a ringType structure. This makes it possible to use only the ring
mixin to define the full ring structure on a type. For example, the declaration of a ring
structure for real numbers in our library is the following one.

Example

74

5.2. THE STARTING POINT: COQUELICOT

Definition R_ringMixin := ...

Canonical R_ringType := Eval hnf in RingType R R_ringMixin.

The additive group class for R is automatically inferred from a previous declaration
of a canonical additive group structure for R.

There is also a notation [ringType of T] that triggers the inference of an element
of ringType whose carrier type is T.

The main ingredients of these notations are phantom types, which we do not detail
here. The interested reader may refer to the book about Mathematical Components
by Mahboubi and Tassi [MT18].

5.2 The Starting Point: Coquelicot

Coquelicot already has a good infrastructure to deal with standard questions in real
analysis, so we decided to keep it. Let us first present Coquelicot’s hierarchy (see Sec-
tion 5.2.1) and then describe our modifications to this hierarchy to make it compatible with the
Mathematical Components library (see Section 5.2.2) and to fix minor issues thereof (see
Section 5.2.3).

5.2.1 Coquelicot’s Hierarchy

For the reader’s convenience, let us repeat Figure 2.6 as Figure 5.1.

AbelianGroup

Ring

AbsRing

ModuleSpace R

NormedModule K UniformSpace

CompleteSpaceCompleteNormedModule K

−→ Inheritance by definition

=⇒ Particular instance

99K Dependency

Figure 5.1 – The Coquelicot Hierarchy (repeated)

The basic algebraic structure in Coquelicot is the abelian group (AbelianGroup). It is
meant to capture the additive structure, both in rings (Ring) and in modules over a given
ring (ModuleSpace R). Most often, in real analysis, we deal with modules that are in fact
vector spaces. The simplest example is the finite-dimensional vector space Rn, which we used
in our case study (see Section 3.3.1), but it is not the only one. Another topic of interest is
the case of function spaces, such as the space C0 ([a; b] , E) of continuous functions from the
segment [a; b] to the vector space E, the space C∞c (R) of smooth real functions with compact
support or the space L1 (I) of real functions whose absolute value is Lebesgue-integrable on I.

75

CHAPTER 5. HIERARCHY OF THE MATHEMATICAL COMPONENTS
ANALYSIS LIBRARY

Another important notion, which appears in all these examples, is the norm. Norms make
it possible to define neighbourhoods and to reason about convergence, but also to develop
the theories of integration and of series. Coquelicot’s structures related to norms are rings
equipped with an absolute value (AbsRing) and modules over such a ring that are equipped
with a norm (NormedModule K).

However, norms are not a good abstraction to reason about neighbourhoods and con-
vergence. Indeed, in a finite-dimensional vector space, all norms are equivalent (see Defini-
tion 5.1) and hence define the same notion of convergence but it is not the case in infinite-
dimensional spaces. Moreover, there are spaces in which one can define a notion of conver-
gence which does not come from a norm, e.g. metric spaces whose metric is not related to a
norm. In Coquelicot, neighbourhoods are defined from the topological notion of uniform
space (UniformSpace), which encompasses both normed and metric spaces.

Definition 5.1 (Norm equivalence). Let N1 and N2 be two norms on a space E.
We say that N1 and N2 are equivalent if and only if there exist k1 and k2, both positive,

such that for all x ∈ E

k1N1(x) 6 N2(x) 6 k2N1(x).

Several equivalent definitions of the notion of uniform space exist. Let us give the one
from Coquelicot here, we will discuss another one in Section 5.4.2. Coquelicot contains
a variant of the pseudometric definition of uniform spaces. A pseudometric on the space E is
a function d : E ∗ E → R+ which is akin to a distance function, but for which the separation
condition

∀x. ∀y. d(x, y) = 0⇒ x = y

is not necessarily true. However, in her PhD thesis [Lel15], Lelay explains that pseudometrics
are not appropriate for the formalisation of the limit switching theorem (see Theorem 5.1).

Theorem 5.1 (Limit Switching). Let E1 and E2 be two sets and F be a complete space.
Let f : E1 ∗ E2 → F , e1 ∈ E1 and e2 ∈ E2. Assume:

1. f (x1, ·) uniformly converges to a function g : E2 → F when x1 tends to e1.

2. f (·, x2) converges pointwise to a function h : E1 → F when x2 tends to e2.

Then, there exists l such that

g(x2) −−−−→
x2→e2

l and h(x1) −−−−→
x1→e1

l.

Balls defined by a pseudometric were a more appropriate abstraction to formalise this
theorem, so that in Coquelicot, a uniform space U : UniformSpace is a type U equipped
with a function ball : U -> R -> U, where R is the type of real numbers from Coq’s standard
library, which satisfies the following properties

ball_center : forall (x : U) (ε : posreal), ball x ε x,
ball_sym : forall (x y : U) (ε : R), ball x ε y -> ball y ε x,
ball_triangle : forall (x y z : U) (ε1 ε2 : R),
ball x ε1 y -> ball y ε2 z -> ball x (ε1 + ε2) z.

76

5.2. THE STARTING POINT: COQUELICOT

Finally, a structure which appears in Theorem 5.1 is the notion of complete uniform
space (CompleteSpace), which also extends to normed modules (CompleteNormedModule K).
Complete uniform spaces are a generalisation of complete metric spaces. A complete metric
space is a metric space in which every Cauchy sequence converges. Similarly, a complete
uniform space is a uniform space in which every Cauchy proper filter converges (recall Sec-
tion 2.3.2 for the definition of (proper) filters and filter convergence, and see Definition 5.2 for
Cauchy filters).

In Coquelicot, complete spaces are also constrained by the fact that extensionally
equal filters must have arbitrarily close limits, i.e. if F and G have the same elements,
then for every positive real number ε, lim F and lim G are ε-close.

Using the axioms we described in Section 5.1.1, if F and G are extensionally equal,
then they are equal so that lim F = lim G, which means that this assumption is not
necessary in Mathematical Components Analysis.

Remark

Definition 5.2 (Cauchy filter). A filter F is a Cauchy filter if and only if for all positive real
number ε, F contains a ball of radius ε.

Definition 5.2 indeed generalises the notion of Cauchy sequence: a sequence u is
Cauchy if and only if the filter u @ \oo, where \oo is a notation for the eventually
filter (recall Section 2.3.2), is Cauchy.

Remark

5.2.2 Making Coquelicot Compatible with Mathematical Components

The biggest obstacle for a combined use of the Coquelicot and Mathematical Com-
ponents libraries is the fact that the same mathematical structure has two different repre-
sentations. This is the case of the abelian group, ring and module structures (see Table 5.1 for
the correspondence between the structures from Coquelicot and Mathematical Com-
ponents). Note however that the structures from Mathematical Components inherit
from the eqType and choiceType structures: all algebraic structures thus have a decidable
equality and a choice function for decidable predicates. This is not the case of Coquelicot’s
structures, except if we add the axioms discussed in Section 5.1.1.

Coquelicot Mathematical Components
AbelianGroup zmodType

Ring ringType
ModuleSpace R lmodType R

Table 5.1 – Corresponding Algebraic Structures in Coquelicot and Mathematical Com-
ponents

77

CHAPTER 5. HIERARCHY OF THE MATHEMATICAL COMPONENTS
ANALYSIS LIBRARY

As a consequence, we decided to remove the algebraic structures from Coquelicot in
order to use the ones from Mathematical Components. This means in particular that
the algebraic hierarchy from Mathematical Components must be instantiated on the
type of real numbers, which is possible thanks to the axioms of Section 5.1.1. We use a file
called Rstruct.v, that contains such an instantiation, and which we believe originated from
Paşca’s work on Kantorovitch’s Theorem [Paş08] and Newton’s Method [Paş11] and was later
used and extended in the CoqApprox library [BJMD+] and by Bernard [Ber].

Another issue that makes it difficult to use both Coquelicot and Mathematical Com-
ponents is the way norms and absolute values are handled. On one hand, in Coquelicot,
both norms and absolute values take their values in the set of real numbers. On the other
hand, in Mathematical Components, as of today, norms only come with ordered integral
domains (numDomainType structure), or with more structure, and have their values in such a
domain. Our choice in Mathematical Components Analysis was to keep the AbsRing
structure, renamed as absRingType, with Coquelicot’s mixin, i.e. an absolute value with
values in R. But we added the class of numDomainType to its class in order for R, which is both
an AbsRing and a numDomainType, to have an absolute value and a norm which are definition-
ally equal. The absRingType structure will eventually be replaced with another one which is
similar to numDomainType, but with less constraints (see the discussion in Section 5.4.1). This
change will also impact the definition of norms in normed modules

This leads to the hierarchy depicted in Figure 5.2, which is not the full hierarchy of this
library (see Section 5.3 for extensions of this hierarchy). The structures were renamed in
order to follow the naming conventions from the Mathematical Components library. The
correspondence between the structures from Coquelicot and the ones from Mathematical
Components Analysis is given in Table 5.2.

ringType zmodType

numDomainType

absRingType

lmodType R

normedModType K uniformType

completeTypecompleteNormedModType K

−→ Inheritance by definition

=⇒ Particular instance

99K Dependency

Translated Coquelicot structures

Mathematical Components structures

Figure 5.2 – Partial Hierarchy of Mathematical Components Analysis

78

5.2. THE STARTING POINT: COQUELICOT

Coquelicot Mathematical Components Analysis
AbsRing absRingType

UniformSpace uniformType
CompleteSpace completeType
NormedModule K normedModType K

CompleteNormedModule K completeNormedModType K

Table 5.2 – Corresponding Structures in Coquelicot and Mathematical Components
Analysis

5.2.3 Minor Improvements in the Hierarchy

We disagree with the developers of Coquelicot on two particular points in the interfaces
of normed structures: the behaviour of norms with respect to multiplication, and the way the
compatibility between uniform balls and norms is expressed.

Norms and multiplication

In Coquelicot, the interface of ring with absolute value axiomatises Bourbaki’s notion
of semi-absolute value [Bou74]: the absolute value of a product is not necessarily equal to the
product of the absolute values, but less than or equal to this product.

abs_mult : forall x y : K, abs (x * y) <= abs x * abs y.

This property also affects the interface of normed module: the norm of the product of a
vector by a scalar has to be less than or equal to the product of the absolute value of the
scalar and the norm of the vector.

norm_scal : forall (l : K) (x : V), norm (l *: x) <= abs l * norm x.

This had the consequence to prevent us from proving that if a linear map between two
normed modules is locally bounded at the origin, then it is continuous, because we needed to
use the inequality the other way around. Moreover, semi-absolute values are quite anecdotal,
to the extent that they only appear in exercises in Bourbaki’s book [Bou74], and make proofs
harder. Indeed, instead of simply using the rewrite tactic, one has to combine abs_mult
with the transitivity of inequality, which leads to unnatural proofs from the point of view of
a mathematician.

Thus, we decided to replace these inequalities by equalities, using the notations ‘|x| for
the absolute value, ‘|[x]| for the norm, and x%real for the interpretation scope of real
numbers (see Coq’s reference manual [CDT19] for an explanation of interpretation scopes).

absrM : forall x y : K, ‘|x * y| = ‘|x|%real * ‘|y|%real.
normmZ : forall (l : K) (x : V), ‘|[l *: x]| = ‘|l|%real * ‘|[x]|.

79

CHAPTER 5. HIERARCHY OF THE MATHEMATICAL COMPONENTS
ANALYSIS LIBRARY

We tried as much as possible to follow the naming conventions and the notations from
Mathematical Components. In particular, the notation for the absolute value is the
same as the one for the norm in the numDomainType structure, which is consistent with
our will to replace absRingType with a structure which is closer to numDomainType.

Remark

Norms and balls

Finding a proper way of expressing the compatibility between norms and balls is a slightly
harder issue. Lelay [Lel15] explains that the issue arises when trying to give a structure to
the set C of complex numbers either as a C-module or as a R-module. C is naturally a ring
with absolute value, the absolute value being the modulus |a+ i b| =

√
a2 + b2, and as such a

normed module over itself with the norm being equal to the absolute value. This norm thus

corresponds to the Euclidean norm ‖(u, v)‖2 =
√
‖u‖2 + ‖v‖2 on the product U ∗ V of two

normed spaces.
However, the natural uniform space structure on the product of two uniform spaces define

balls in a way which corresponds to the infinity norm: the distance between two pairs is the
maximum of the distance between corresponding components, or in other terms, the ball of
radius ε centred on a pair p is the set of pairs whose first (respectively second) component is
in the ball of radius ε centred on the first (respectively second) component of p.

forall (u u’ : U) (v v’ : V) (ε : R),
ball (u,v) ε (u’,v’) = ball u ε u’ ∧ ball v ε v’.

As a consequence, the balls defined by the norm are different from the uniform balls. Lelay
hence uses the equivalence of the Euclidean and infinity norms (recall Definition 5.1) to make
it possible to have balls corresponding to the infinity norm while using the Euclidean norm:
she introduces in the NormedModule interface a coefficient, norm_factor, with the following
two axioms:

norm_compat1 : forall (x y : V) (ε : R),
norm (y - x) < ε -> ball x ε y,

norm_compat2 : forall (x y : V) (ε : posreal),
ball x ε y -> norm (y - x) < norm_factor * ε.

Once again, this makes proofs unnatural, since one would expect balls in a normed space
to be defined from the norm, and harder, for one has to anticipate the use of the transi-
tivity of inequality and to put norm_factor beforehand in the right places. Moreover, this
implies two definitions of the neighbourhood filter that are extensionally equal but not con-
vertible (locally and locally_norm in Coquelicot).

We favour another option, which is having only one notion of ball and one notion of
neighbourhood filter, but not necessarily defined from the same norm. This is possible because
equivalent norms define the same notion of neighbourhood.

Hence, we removed the norm_factor coefficient and replaced the two compatibility axioms
with ball_normE.

80

5.3. EXTENSION OF THE HIERARCHY

ball_normE : ball_ norm = ball,

where ball_ is the function that takes a norm function and returns the notion of ball defined
from this norm. This implies that uniform balls and balls defined from the norm are the same.
We then only require the notion of neighbourhood filter to be compatible with balls (we make
this compatibility explicit at the end of Section 5.3.2).

Thus, one may for instance use the Euclidean norm on C, which means that uniform balls
on C are defined from this norm, but still do proofs with a neighbourhood filter defined from
the infinity norm.

5.3 Extension of the Hierarchy

Although the hierarchy we inherited from Coquelicot (see Figure 5.2) contains the
essentials for analysis, it lacks a few structures that become significant in the context of
our contributions described in Part I. First, as explained in Section 3.3.2, a structure for
topological spaces (see Section 5.3.1) was missing. Then, the mechanism for filter inference we
presented in Section 2.3.2 was integrated into a dedicated structure which is now part of the
hierarchy (see Section 5.3.2). Finally, non-empty spaces, combined with the axioms discussed
in Section 5.1.1, offer a fresh perspective on limits and derivatives (see Section 5.3.3).

5.3.1 Topological Spaces

Let us briefly recall Definition 3.1: a topological space is a set equipped with a family
of subsets, called open sets, which is stable by union and by finite intersection and which
contains the full set and the empty set. Our first implementation of this definition, described
in Section 3.3.2, stick to this definition. In the following, the structure describing topological
spaces is denoted by topologicalType.

In a hierarchy where both topological and uniform spaces exist, we are faced with two
competing definitions of neighbourhoods: a set A : set T, where T is a type equipped with
a topological space structure, is a neighbourhood of a point p : T either because it contains
an open set that contains p

locally p A = exists B : set T, open B ∧ B p ∧ B ‘<=‘ A,

or because it contains a ball, which is not necessarily open, that contains p

locally p A = exists ε : posreal, ball p ε ‘<=‘ A.

It is essential to ensure that both notions coincide for the hierarchy to be consistent, since
uniform spaces are a particular case of topological spaces. In particular, in the class defining
the uniformType structure, we put the following field for inheritance

base : Topological.class_of T.

This fact seems to imply that the way to proceed is to define neighbourhoods from open sets
and then add compatibility conditions in the mixin of the uniformType structure to ensure
that balls define the same neighbourhoods. However, we have a use for a more primitive
notion of "neighbourhood" filter (see Section 5.3.2). Thus, we have to make sure that both
notions coincide with this primitive locally. We will explain how to grant this compatibility
in Section 5.3.2. Here we focus on topological spaces.

81

CHAPTER 5. HIERARCHY OF THE MATHEMATICAL COMPONENTS
ANALYSIS LIBRARY

The above equality between locally and the open-based definition of neighbourhoods is
a necessary compatibility condition in the mixin of the topologicalType structure, but we
can go even further in the use of a primitive neighbourhood filter. Indeed, open sets can be
recognised in the fact that they are neighbourhoods (in the sense of the open-based definition)
of all their points. One could thus build the open predicate from locally using this property
as definition. In order to prove all properties of open sets from this definition, it is however
necessary to know that locally p is a proper filter (recall Definition 2.7) for every p. This
leads to the following mixin for the topologicalType structure:

Record mixin_of {T : Type} (locally : T -> set (set T)) := Mixin {
open : set (set T) ;
ax1 : forall p : T, ProperFilter (locally p) ;
ax2 : forall p : T, locally p =
[set A : set T | exists B : set T, open B ∧ B p ∧ B ‘<=‘ A] ;

ax3 : open = [set A : set T | A ‘<=‘ locally^~ A]
}.

We could have inlined the ax3 axiom in the ax2 axiom and have the open predicate
as a definition outside of the structure, but for some instantiations open sets actually are
the primitive notion and we do not want to enforce a definition of the predicate which
would not be definitionally equal to this primitive notion. This is why the predicate
appears as a field of the structure.

We provide factories, i.e. functions that build structures from some arguments, in
order to build topological spaces either from neighbourhoods (deducing open sets) or
from a family/base/subbase (see Definition 5.3) of open sets (deducing neighbourhoods).

Definition 5.3 (Open (Sub)base). A family (Oi)i∈I of sets defines:

— a base for a topology if and only if
⋃
i∈I

Oi covers the whole set and

∀i ∈ I.∀j ∈ I. ∀p ∈ Oi ∩Oj . ∃k ∈ I. p ∈ Ok and Ok ⊆ Oi ∩Oj .

— a subbase for a topology if and only if the collection of all finite intersections of
elements of this family defines a base.

Remark

5.3.2 Filtered Spaces

Up to this point, the locally function could be a field of the topologicalType mixin
instead of being more primitive. However, neighbourhoods in a topological space are not the
only kind of neighbourhoods we are dealing with. Some neighbourhoods cannot be expressed
as neighbourhoods in the topological sense. For instance, "neighbourhoods of +∞" (re-
call Rbar_locally +oo from Section 2.3.2) are subsets of R while +oo is not a point in this
topological space.

A unique locally function capturing all kinds of neighbourhoods can however be defined
thanks to a canonical structure [Sai99, MT13]: this is the purpose of the inference mechanism

82

5.3. EXTENSION OF THE HIERARCHY

we described in Section 2.3.2. Hence, we integrated this mechanism into a new structure
placed lower in the hierarchy than topological spaces, also simplifying the way it works.

We designed a family of types T : filteredType U such that elements of T are asso-
ciated to sets of sets on U through the locally : T -> set (set U) function. This fam-
ily exactly corresponds to the canonical_filter structure of the mechanism we described
in Section 2.3.2. We do not enforce that locally t is a filter for any element t of T,
since this structure is just designed for sharing purposes. This is enforced in the mixin of
the topologicalType structure (recall ax1 in the mixin page 82).

As in Section 2.3.2, having T different from U allows for locally +oo to be equal to
Rbar_locally +oo, thanks to an instantiation of the filteredType R structure as the canon-
ical filter on R associated to +oo : Rbar.

Canonical Rbar_filter := FilteredType R Rbar Rbar_locally.

Here, the FilteredType U T loc notation builds the structure of type filteredType U
associated to T, the locally function being defined as the loc function.

It is then possible to get back the notations from Section 2.3.2 using locally in their
definition. It is still however necessary to keep a dedicated structure to match the source type
of an arrow type. This structure is the same as the one from Section 2.3.2, up to renaming.
We also developed on top of the filteredType structure a set of notations and tactics that
make the manipulation of filters smoother (see Section 6.1).

Inheritance then requires compatibility conditions in the structures describing topological
and uniform spaces. We already discussed such conditions in Section 5.3.1 for topological
spaces. Note that the locally function for a topological space T has type T -> set (set T)
instead of T -> set (set U). Indeed, the compatibility conditions imply that the locally
function associates to any element of a topological space its neighbourhood filter, which means
that T and U are the same. This appears in the definition of the class for the topologicalType
structure.

Record class_of (T : Type) := Class {
base : Filtered.class_of T T;
mixin : mixin_of (Filtered.locally_op base)

}.

The compatibility conditions for uniform spaces must ensure that neighbourhoods corre-
spond to the uniform topology, i.e. are defined using balls: a set A is a neighbourhood of a
point p if and only if A contains a ball centred on p.

This kind of constructions, sets that contain a set from a given family, is actually a standard
way of building filters (recall our example page 28). Hence, we designed a specific function
that builds a filter from a family of sets.

Definition filter_from {I T : Type} (D : set I) (B : I -> set T) :=
[set P | exists2 i, D i & B i ‘<=‘ P].

Here, D should be understood as the domain of indices and B defines the family. If the
family is a filter base (see Definition 5.4), then filter_from D B is indeed a filter. If moreover
no element of the family is empty, then it is a proper filter.

83

CHAPTER 5. HIERARCHY OF THE MATHEMATICAL COMPONENTS
ANALYSIS LIBRARY

Lemma filter_from_filter (I T : Type) (D : set I) (B : I -> set T) :
(exists i : I, D i) ->
(forall i j, D i -> D j -> exists2 k, D k & B k ‘<=‘ B i ‘&‘ B j) ->
Filter (filter_from D B).

Lemma filter_from_proper (I T : Type) (D : set I) (B : I -> set T) :
Filter (filter_from D B) -> (forall i, D i -> B i !=set0) ->
ProperFilter (filter_from D B).

Definition 5.4 (Filter Base). Let (Bi)i∈D be a family of sets.
We say that (Bi)i∈D constitutes a filter base if and only if D is non-empty and any

intersection of two elements of (Bi)i∈D contains another element of the family:

∀i ∈ D. ∀j ∈ D. ∃k ∈ D. Bk ⊆ Bi ∩Bj .

Using this construction, it is then easy to define neighbourhoods from balls.

Definition locally_ {T T’ : Type} (ball : T -> R -> set T’) (x : T) :=
@filter_from R _ [set x | 0 < x] (ball x).

The compatibility condition to put in the mixin for the uniformType structure is then no
more than the equality between the locally function and the neighbourhood filter generated
from balls:

locally = locally_ ball.

5.3.3 Non-Empty Spaces

An important tool for proofs in analysis is the ability to get witnesses for existential
propositions. This is pervasive in the mathematical practice: whenever we know a set is non-
empty, we give a name to one of its elements and manipulate it. An important difference
between classical and intuitionist mathematics comes from the fact that in intuitionist logic
one has to build an explicit witness for existential propositions while it is not the case in
classical proofs. Thus, in constructive mathematics we always know which elements of the
set we are manipulating while in classical mathematics we are satisfied with the knowledge
that it exists. Axioms such as the Axiom of Choice make it possible to prove more existential
propositions and thus to manipulate more witnesses.

Coq’s logic imposes limitations in the ways one can use witnesses, depending on the kind
of existential proposition that is used (recall Section 5.1.1). This is an issue when manipulating
sets. Indeed, sets are most easily represented as predicates, i.e. functions with values in Prop.
This means that if we know a set A is non-empty, i.e. the proposition exists x, A x holds,
then the element of A we get from this proposition can only be used to prove other propositions
and not to build for instance other points in A.

In Mathematical Components [MCT], it is possible to get round this issue by using
predicates with values in bool. In types equipped with a choice function (choiceType), two
functions are defined: xchoose, which takes a boolean predicate P and a proof that it is
satisfiable (i.e. of exists x, P x) and returns an element of T that satisfies P, and choose,

84

5.3. EXTENSION OF THE HIERARCHY

which does the same but requires an element of T instead of a proof of exists x, P x and
returns this default element if P is not satisfiable.

Using the axioms described in Section 5.1.1, any type becomes a choiceType. Hence, we
could use the constructions from Mathematical Components to work with sets. However,
propositions are more natural than boolean expressions to express properties, and in particular
undecidable ones: with our set of axioms, the only way to give a boolean predicate for an
undecidable property is to write the corresponding proposition and then to use the asbool
projection from Prop to bool.

Constantly switching between Prop and bool in proofs is tedious, so we built functions
similar to xchoose and choose, but for propositional predicates. The equivalent of xchoose is
called xget and get corresponds to choose. There is however a slight difference between get
and choose: get does not require a default element. Indeed, in mathematics spaces are never
empty and most often have a distinguished point (e.g. 0 in rings, fields or vector spaces). Thus,
we built a structure called pointedType for types that have a canonical inhabitant (point).
It inherits from the choiceType structure and is placed at the bottom of the hierarchy in
Mathematical Components Analysis, which is fully depicted in Figure 5.3.

numDomainType

absRingType

lmodType R

normedModType K

completeNormedModType K

topologicalType

uniformType

completeType

filteredType U T

pointedType

choiceType

−→ Inheritance by definition

=⇒ Particular instance

99K Dependency

Translated Coquelicot structures

New Mathematical Components Analysis structures

Mathematical Components structures

Figure 5.3 – Hierarchy of Mathematical Components Analysis

The get function is then defined on types that have a pointedType structure: get P
is point if P is not satisfiable, and a witness for P otherwise. The get function thus plays the
role of Hilbert’s epsilon operator [Hil22]. This function has many applications. In particular,
we used it in our proofs of Zorn’s Lemma, directly inspired from the one by Schepler [Schb] 1,

1. We did not keep the dependency on Schepler’s library on set theory.

85

CHAPTER 5. HIERARCHY OF THE MATHEMATICAL COMPONENTS
ANALYSIS LIBRARY

and of Tychonoff’s Theorem. Other applications include the theories of limits and derivatives
that we will now detail.

Limits

The get function allows for a generalisation of the Lim function from the Coquelicot
library [BLM15]. The Lim function computes the limit of a real function at any point in R.
In fact, it can be defined from the lim function, which computes the limit of a filter: the limit
of f at point x is the limit of the filter f @ x, i.e. Lim f x = lim (f @ x).

In Coquelicot, the lim function is defined only for filters on a complete space and can
be used only for Cauchy filters, since we know they converge. Removing the constraint of
constructivism, and using the get function, it is possible to define a function computing the
limit of any filter.

Definition lim_in {U : Type} {T : filteredType U} :=
fun F : set (set U) => get (fun l : T => F --> l).

We provide the notations [lim F in T] and lim F to represent the limit of filter F in
T : filteredType U. In the latter, the type T is inferred.

Of course, it is possible to prove properties on the limit of a filter only if we know it
converges. This comes from the characterisation of the get function: get P is a point that
satisfies P if we know P is satisfiable.

Lemma getPex (T : pointedType) (P : set T) : (exists x, P x) -> P (get P).

Thanks to the lim_in function, it is possible to express filter convergence, i.e. the exis-
tence of a limit, without using an existential quantifier: a filter converges if and only if
it converges to its limit.

Notation "[’cvg’ F ’in’ T]" := (F --> [lim F in T]).

Lemma cvg_ex (U : Type) (T : filteredType U) (F : set (set U)) :
[cvg F in T] <-> (exists l : T, F --> l).

In the same way as for lim, we provide the notation cvg F, which triggers the inference
of T in order to build the term [cvg F in T].

Derivatives

Moreover, we can also compute the directional derivative of a function from a normed
module over R to another one, at any point, in any direction, using the lim function: the
directional derivative of f at point a in the direction given by the vector v is

lim
h→0
h6=0

f(a+ hv)− f(a)

h
.

In Coq, this gives

Definition derive {V W : normedModType R} (f : V -> W) a v :=
lim ((fun h => h^-1 *: ((f \o shift a) (h *: v) - f a)) @ locally’ 0).

86

5.4. MODIFICATION OF THE INTERFACES

We denote by ’D_v f a this directional derivative. On the particular case of real functions,
a similar definition (removing the multiplication by v) gives the derivative function, denoted
by f^‘() for the first derivative and f^‘(n) for the nth one. Thus, our derive function
generalises the Derive function from Coquelicot.

We also explain in Section 6.2.2 how the get function can be used to define differentials.

5.4 Modification of the Interfaces

Originally, the Mathematical Components Analysis library contained a compatibil-
ity layer to make it possible to use proofs developed with Coquelicot without modification.
We later realised that our library deviated so much from Coquelicot that keeping compat-
ibility was a burden which was no longer meaningful.

Our library still inherits from Coquelicot a great portion of its content, parts of which
we are currently modifying. In particular, normed spaces will benefit from a refactoring of
the hierarchy in Mathematical Components (see Section 5.4.1). We are also currently
experimenting a more abstract definition of uniform spaces (see Section 5.4.2). This new
definition opens the door to a removal of the dependency of Mathematical Components
Analysis on Coq’s standard library (see Section 5.4.3).

5.4.1 Refactoring Normed Spaces

As we explained in Section 5.2.2, the Mathematical Components library contains
structures for normed spaces which are at least an ordered integral domain. In these struc-
tures, the norm’s codomain is the normed space itself, while the norm we inherited from
Coquelicot has values in the set R of real numbers.

Our solution to keep compatibility was to make sure that the norm on R does not depend
on the structure from which it comes: either from the normed structures of Mathematical
Components or from ours. We thus imposed the inheritance from the numDomainType struc-
ture in our absRingType structure. However, this solution does not work for complex numbers
since the numDomainType structure forces the norm to have values in C while the absRingType
structure asks for a norm with values in R.

Kazuhiko Sakaguchi is currently refactoring the hierarchy of Mathematical Compo-
nents in order to generalise the structures involving norms. This new interface will provide
a common base for the norms from the numDomainType and normedModType structures and
for the absolute value from the absRingType structure. This will allow for a simplification
of the absRingType and normedModType structures. In particular, the absRingType struc-
ture will be replaced with a new structure in Mathematical Components that combines
the ringType structure and the new structure for normed spaces.

Similarly, the normedModType structure will inherit from this new structure of normed
spaces. By definition, the norm on the module and the absolute value on the underlying ring
will have the same codomain, which will not necessarily be R: an ordered ring is sufficient to
state all the axioms of normed modules and rings with absolute values.

87

CHAPTER 5. HIERARCHY OF THE MATHEMATICAL COMPONENTS
ANALYSIS LIBRARY

5.4.2 A More Abstact Definition of Uniform Spaces

Uniform spaces are currently defined through a reformulation of the definition based on
pseudometrics (recall Section 5.2.1). Similarly as for norms, this definition involves the type
of real numbers. We intend to remove the dependency on this type. We thus decided to exper-
iment with a more abstract definition of uniform spaces that does not require real numbers.

This definition is based on the notion of neighbourhood system, also known as collection
of entourages (see Definition 5.5): a uniform space is a type equipped with a collection of
entourages. This definition is the one used in textbooks on topology [Bou71, Wil08].

Definition 5.5 (Entourages). A neighbourhood system on a set X is a set E of subsets
of X ×X, called entourages, such that:

— E is a filter.

— every entourage contains the diagonal set ∆ = {(x, x) | x ∈ X}.
— for all A ∈ E, the set A−1 = {(x, y) | (y, x) ∈ A} is also an entourage.

— for all A ∈ E, there is an entourage B ∈ E such that A contains the set

B ◦B = {(x, y) | ∃z. (x, z) ∈ B and (z, y) ∈ B} .

A good intuition on entourages is to consider them as neighbourhoods of ∆. In particular,
an entourage A defines a relation of closeness between points:

— a point is always close to itself: ∆ ⊆ A.
— if x is close to y, then y is close to x: A−1 is also an entourage.

The last property of entourages means that there are degrees of closeness: x and y are
close to each other if we can find some z which is twice as close both to x and y. This property
is a bit more restrictive as the triangular inequality for balls, where it is not necessary to use
the same bound on the distance for both x and y.

This intuition naturally leads to the definition of neighbourhoods. Indeed, given an en-
tourage A and a point x, the set of points that are close to x (with respect to A) is the
set

A[x] = {y | (x, y) ∈ A} .

A neighbourhood of x is a set that contains all the points that are close to x for a certain
notion of closeness: N is a neighbourhood of x if and only if A[x] ⊆ N for some entourage A.

Similarly, uniform continuity has a very natural definition in terms of entourages. The ε−δ
definition of uniform continuity is the following one: f is uniformly continuous if and only if

∀ε > 0. ∃δ > 0. ∀x, y ∈ X. d(x, y) < δ ⇒ d(f(x), f(y)) < ε.

This definition means that f(x) and f(y) can be arbitrarily close to each other as soon
as x and y are sufficiently close to each other in a way which does not depend on x and y but
only on how close to each other we want f(x) and f(y) to be. In terms of entourages, this
means that the function (x, y) 7→ (f(x), f(y)) maps neighbourhoods of ∆ to neighbourhoods
of ∆. In Coq, this is written as follows.

88

5.4. MODIFICATION OF THE INTERFACES

Definition unif_cont {U V : uniformType} (f : U -> V) :=
(fun xy => (f xy.1, f xy.2)) @ entourage --> entourage,

where entourage is the set of entourages of a uniform space (given as implicit argument).
We replaced the interface for uniform spaces with one based on Definition 5.5 in a branch

of the repository of the Mathematical Components Analysis library which is still in
experimentation. It seems to be equivalent to the definition based on balls in terms of user
experience. The only flaw we noticed up to now is the lack of practicality of the last point of
Definition 5.5 compared to the triangular inequality of balls.

5.4.3 Removing the Dependency on the Standard Library

Using entourages instead of balls is a first step that makes it possible to remove the depen-
dency on the type R from the standard library. Indeed, we started replacing R with a structure
developed by Assia Mahboubi and Pierre-Yves Strub, called realType, now integrated into
the library.

The realType structure is defined as a combination of the archiFieldType and rcfType
structures from Mathematical Components, equipped with a supremum function. A type
thus represents the set of real numbers if it is an archimedean field that is real closed (i.e. the
Intermediate Value Theorem holds on polynomials), in which the least upper bound property
holds. We reproduce in particular the mixin of this structure here:

Record mixin_of {R : archiFieldType} : Type := Mixin {
sup : pred R -> R;
_ : forall E : pred R, has_sup E -> sup E \in ub E;
_ : forall (E : pred R) (eps : R),

has_sup E -> 0 < eps -> exists2 e : R, E e & (sup E - eps) < e;
_ : forall E : pred R, ~ has_sup E -> sup E = 0

}.

This interface has two main benefits. On one hand, instead of instantiating the hierarchy
of Mathematical Components on the type R of real numbers using axioms (recall our
reference to the Rstruct.v file in Section 5.2.2), we have a structure which is already compat-
ible with this hierarchy. On the other hand, the supremum function defined by this interface
already has all desirable properties, in particular the second one in the above mixin, which we
had to prove using additional axioms for the standard library (recall Section 4.3.1).

Assia Mahboubi and Pierre-Yves Strub also developed a type of "extended real numbers",
that extends any realType with the infinities. We are currently replacing the Rbar type from
Coquelicot with this type.

Since the realType structure is only an interface, a good sanity check is to verify that
one can actually instantiate it with one’s own formalisation of real numbers. Our version of
the Rstruct.v file contains such an instantiation for the type R from the standard library.
Pierre-Yves Strub is also currently formalising in the library a model of real numbers called
Eudoxus real numbers: the set of real numbers is defined as a quotient on the set of "almost
homomorphisms" from the additive group Z to itself [Art04]. Another possible future work
is to develop a model of real numbers based on complete uniform spaces [Bou71]: the set of
real numbers is defined as the completion of the uniform space of rational numbers, i.e. the

89

CHAPTER 5. HIERARCHY OF THE MATHEMATICAL COMPONENTS
ANALYSIS LIBRARY

set of all minimal (for inclusion) Cauchy filters on the set of rational numbers [Wei16]. This
motivated us to develop a formalisation of uniform spaces that does not rely on real numbers.

90

Part II
Designing a Library of Mathematics

CHAPTER 6

TOOLS FOR ASYMPTOTIC
REASONING

We mentioned in Section 4.3.1 a discrepancy between formal and pen-and-paper proofs in
asymptotic reasoning. Let us develop a bit more this argument here. One very early and trivial
example when such reasoning occurs is to prove that the sum of two converging functions is
converging. Indeed from{

∀ε > 0. ∃δf > 0. ∀x. |x− a| < δf ⇒ |f(x)− lf | < ε
∀ε > 0. ∃δg > 0. ∀x. |x− a| < δg ⇒ |g(x)− lg| < ε

,

we get

∀ε > 0. ∃δ > 0. ∀x. |x− a| < δ ⇒ |f(x) + g(x)− (lf + lg)| < ε.

Formally proving this requires to show the existence of such a δ, here it may be the
minimum of the two δf , δg we can get from the hypotheses applied to ε

2 . Giving δ explicitly
makes the proof less stable and less readable than it would be with a “correct” informal
reasoning. By stable proof, we mean that changes in its statement, or in statements it depends
on, will break only the parts of the proof where the changes actually matter. When we provide
an existential witness way before using it, the distance between the place it is used (and
breaks), and the place where it is introduced, makes it difficult to maintain the proof script.
Indeed, the maintainer has to go back and forth in the proof script to understand how changing
the witness leads to breakage.

Filters slightly improve stability and readability by hiding arithmetic reasoning. However,
the explicit existential quantifiers are still replaced with forward reasoning with statements
that depend on how the proof will be led (recall our discussion on splitting epsilons). Our first
contribution is to solve this problem by giving a set of tactics and lemmas to handle existential
variables in a consistent way (see Section 6.1).

91

CHAPTER 6. TOOLS FOR ASYMPTOTIC REASONING

Another common tool in informal classical analysis is asymptotic developments using
Bachmann-Landau notations, often called little-o and big-O notations [Bac94, Lan09]. They
are used to write developments such as

f(x) = a0 + a1x+ . . .+ anx
n + o

x→0
(xn)

or in the definition of the differential of a function f at point x: it is the continuous linear
operator d fx such that

f(x+ h) = f(x) + d fx(h) + o (h) .

Using Bachmann-Landau notations, one performs arithmetic operations with developments
and uses laws like

o
x→0

(xn) + o
x→0

(xn) = o
x→0

(xn) .

At first sight, the abuse of notation seems to make such a law impossible to represent as
an equation on functions in a formal logic. Our second contribution is to provide a solution
for this problem with a set of notations and lemmas which make the users believe that they
are doing arithmetic with little-o and big-O at the same time (see Section 6.2).

This chapter is based on our publication on the topic [ACR18]. This work was done
in collaboration with Reynald Affeldt and Cyril Cohen. All code snippets come from the
Mathematical Components Analysis library [ACM+], unless otherwise specified.

6.1 Small-Scale Filter Elimination

Although filters are a good way to hide ε − δ in statements, in order to prove F P for
some ultimately true proposition P, one might be tempted to replace the filter F with its
definition. This may result in a breakage of abstraction and lead to longer and less stable
proof scripts (e.g. if the filter slightly changes).

Libraries such as Coquelicot already provide tools to combine results on filters without
doing any unfolding but these tools still require anticipation from the user through forward
reasoning. We extend them with tactics, described in Section 6.1.1, that alleviate the user’s
burden. We then illustrate our tactics on an example in Section 6.1.2, which we compare with
the same example in Coquelicot.

6.1.1 The near Tactics

The goal is to make it as easy as possible to prove that a set belongs to a filter. Let us
first give an intuition of how to do such a proof before describing our set of tactics that are
meant to help in this process.

Proving Filter Membership

The properties of filters (recall Definition 2.7) entail the following facts:

Lemma filter_app (T : Type) (F : set (set T)) : Filter F ->
forall H G : set T, F (fun x => H x -> G x) -> F H -> F G.

92

6.1. SMALL-SCALE FILTER ELIMINATION

Lemma filterE (T : Type) (F : set (set T)) : Filter F ->
forall G : set T, (forall x, G x) -> F G.

The first lemma can be used to combine hypotheses of the form F Hi and a conclusion F G
into F (fun x => H1 x -> . . . -> Hn x -> G x), and the second lemma removes the filter so
that we shall prove instead the simpler goal forall x, H1 x -> . . . -> Hn x -> G x.

We call this technique filter elimination: the basic principle of filter elimination is to make
the users believe that instead of proving F G they should instead prove G x directly, where it
is possible to make a few assumptions about x. These assumptions may be arbitrarily precise
as long as they are compatible with F: x may be chosen in any set belonging to F.

However this forces forward reasoning, since the user has to anticipate every fact Hi x that
will be used in the proof of G x beforehand. This means the statements Hi have to be ex-
plicitly written by the user, and they often depend on the choice of splitting of epsilons in
the rest of the proof, which was also the main source of instability of proof scripts without
using filters. This clearly appears in the proofs of the lemmas of the limit switching the-
orem (recall Theorem 5.1) in the Coquelicot library (Lemma filterlim_switch_1 and
Lemma filterlim_switch_2).

We now show a novel method which frees the user from explicitly providing the state-
ments Hi.

Description of the near Tactics

In order to allow for a delayed choice of the assumptions Hi, we use a record, in_filter F,
that describes the type of the sets belonging to a filter F.

Record in_filter {T : Type} (F : set (set T)) := InFilter {
prop_in_filter_proj : T -> Prop;
prop_in_filterP_proj : F prop_in_filter_proj

}.

Lemma filter_near_of combines Lemma filter_app and Lemma filterE using this
record to formally describe filter elimination.

Lemma filter_near_of (T : Type) (F : set (set T)) (H : in_filter F)
(G : set T) :
Filter F -> (forall x, prop_in_filter_proj H x -> G x) -> F G.

From now on, we use a new notation for filter membership: \forall x \near F, G x
denotes F (fun x => G x) and should be read “for all x which is near F, G x holds”. We
will use this phrasing instead of the too specific “G is ultimately (respectively eventually)
true”. We also define the notation x \is_near F for prop_in_filter_proj H x for some H
of type in_filter F. This notation deliberately hides H since it is not meant to be given by
the user but rather instantiated through the use of the near tactics, which we now describe.

— The near=> x tactic performs an “introduction”.
On a goal of the form \forall x \near F, G x, it puts into the local context a variable x

and a hypothesis x \is_near F and yields the goal G x. The hypothesis hides an existential
variable ?H for the neighbourhood to which x belongs, so that the membership proof F ?H is
actually delayed. This is in fact a simple application of Lemma filter_near_of.

93

CHAPTER 6. TOOLS FOR ASYMPTOTIC REASONING

Tactic Notation "near=>" ident(x) := apply: filter_near_of => x ?.

We call the x which is now in the local context a near-variable. A near-variable could be
defined as a variable x which comes with an hypothesis x \is_near F, hiding an existential
variable, in the local context.

— The near: x tactic “discharges” the near-variable x.
On a goal of the form Hi x such that the hypothesis x \is_near F is in the context,

it yields the new goal \forall x \near F, Hi x. This partially instantiates the existential
variable ?H associated with the hypothesis x \is_near F as the intersection of Hi and a fresh
existential variable ?H’. The user is invited to prove the goal right away.

If Hi had already been added to the set hidden in the hypothesis x \is_near F through a
previous use of near: x, then the goal is immediately closed without modifying ?H.

— The end_near tactic instantiates existential variables with the total set.
Once the main goal has been proven, there indeed remain existential variables that have

not been instantiated. These correspond to the ?H’ in the last calls of the near: x tactic.
They can be instantiated with the total set, since it belongs to any filter.

— Similarly as for the near=> x tactic, the near F => x tactic introduces x as a near-
variable along with the x \is_near F hypothesis, once again hiding an existential variable.

However, the goal does not have to be of the form \forall x \near F, G x since the
tactic does not act on it: it only introduces a point x which may be used as a temporary tool
in any proof. Hence, once the assumptions on x are inferred, we must grant that it is possible
to satisfy them, since x is not bound by a universal quantifier. That is why this tactic requires
the filter F to be proper, i.e. no set H in F is empty.

After using near F => x, one may use near: x and end_near in exactly the same way as
before.

The near=> x and near F => y tactics may be combined any number of times, and in any
order. Near-variables can be discharged by using near: z provided that the statement contains
only variables introduced before z was. This limitation, guaranteed by Coq’s type checker,
is legitimate as we must not be able to introduce circular dependencies in the existential
variables.

We also provide versions of the near=> x and near F => x tactics for two variables. They
may be used when the filter is defined on a product space T ∗U , as a product filter: the product
of filters F and G is the filter defined from the following filter base (recall Definition 5.4):

({(x, y) | x ∈ P and y ∈ Q})P∈F,Q∈G .

We provide the notation \forall x \near F & y \near G, P x y to denote that P be-
longs to the product filter of F and G. On such a goal, the near=> x y tactic introduces two
near-variables and yields the goal P x y. If F and G are identical, we also provide the nota-
tion \forall x & y \near F, P x y. These binary notations could be generalised to handle
n-ary products but in practice we manipulate filters on the space of vectors of size n instead,
hence we may use the notation with only one variable.

94

6.1. SMALL-SCALE FILTER ELIMINATION

6.1.2 Example: a Short Completeness Proof

We detail a proof that the type of functions from an arbitrary (choice) type to a complete
type is again complete. This proof is interesting for several reasons. First, it illustrates our
main technical contributions: it uses all of our tactics and demonstrates our use of filters, in
particular, this proof uses two filters on two different types. Second, it shortens the original
proof in Coquelicot (Lemma complete_cauchy_fct) from about 40 lines to 7 lines (we
will briefly explain the differences between the two proofs), by removing in particular the
three explicit witnesses. Finally, it shows how our work leads to formal proofs that look like
informal ones: arguments can be stated without being cluttered by technical constructions of
witnesses (see line 5 in the proof), the latter being delayed and constructed by resorting to
lemma applications (see lines 5–6), which makes for shorter and more stable proof scripts.

Explanation of the Proof

Recall that a complete space is a uniform space in which every proper filter which is
also Cauchy converges (Cauchy filters are introduced in Definition 5.2). For this particular
structure, the mixin is not a record as in Section 5.1.2 since it is reduced to only one property.

Definition mixin_of (T : uniformType) :=
forall (F : set (set T)), ProperFilter F -> cauchy F -> cvg F.

For the user’s convenience, we provide another name to this property which is more conve-
nient than Complete.mixin_of. We do this through Lemma complete_cauchy, whose proof
is trivial (it suffices to unpack the completeType structure).

Lemma complete_cauchy (T : completeType) (F : set (set T))
(FF : ProperFilter F) : cauchy F -> cvg F.

Our goal is to prove that this property holds for the function type T -> U, where U is
complete. Formally:

Lemma fun_complete (T : choiceType) (U : completeType)
(F : set (set (T -> U))) (FF : ProperFilter F) : cauchy F -> cvg F.

Our methodology requires that some notions are phrased in a particular way. The most
direct formalisation of Definition 5.2 is the following one:

Definition cauchy_ex {T : uniformType} (F : set (set T)) :=
forall e : R, 0 < e -> exists x, F (ball x e).

However, in order to use the near tactics, it is easier to use the following equivalent
definition:

Definition cauchy {T : uniformType} (F : set (set T)) :=
forall e, e > 0 -> \forall x & y \near F, ball x e y.

Indeed, the existential quantification is then encapsulated in the near notation and can
thus be treated in a systematic way in our proofs. This rephrasing could be disturbing for
users that might not immediately see these are the same concepts. Hopefully they can be
convinced by simple equivalence lemmas.

95

CHAPTER 6. TOOLS FOR ASYMPTOTIC REASONING

Lemma cauchyP (T : uniformType) (F : set (set T)) :
ProperFilter F -> cauchy F <-> cauchy_ex F.

Although this particular equivalence is only true for proper filters, it is sufficient since in
practice we only manipulate filters that are proper.

Before describing the proof of Lemma fun_complete, observe that the implicit type
of cauchy in its statement is not T -> U as it may appear at first sight; it is actually inferred
to be fct_uniformType T U, the type of the functional metric space, which is a uniformType,
as required by the definition of Cauchy filters.

We start the proof by introducing the hypothesis Fc that states that F is Cauchy (see line 1).
Then, we prove an intermediate property: for all t of type T, the filter {{f(t) | f ∈ A} |A ∈ F}
is Cauchy in U. This filter can be expressed succinctly as soon as one observes that it is
the image of the filter F by the function fun f => f t. More precisely, it can be writ-
ten ((fun f => f t) @ F) using the infix notation @ that denotes the image of a filter (recall
Section 2.3.2). Using a notation from Mathematical Components, this can be further
abbreviated as (@^~t @ F) 1. The statement to prove is thus

forall t, cauchy (@^~t @ F).

Note that we do not have to write explicitly the quantification on t. We may state the
intermediate property with a hole (we write cauchy (@^~_ @ F)) which is then abstracted by
Coq.

Line 2 proves this fact. The proof is very simple since it is a direct consequence of Fc
through the fact that filters are upward closed (Lemma filterS). Lemma near_simpl used
in this proof performs elementary simplifications in the near notations.

Line 1 also transforms this intermediate property into

forall t : T, cvg ((fun f => f t) @ F)

thanks to Lemma complete_cauchy and stores this hypothesis as Ft_cvg in the local con-
text. In order to use Lemma complete_cauchy we have to remove the universal quantifi-
cation, which we have to put back afterwards to obtain Ft_cvg. We do this by instan-
tiating t with a hole (through /(_ _)) which will be abstracted after the application of
Lemma complete_cauchy.

1 move=> Fc; have /(_ _) /complete_cauchy Ft_cvg : cauchy (@^~_ @ F).
2 by move=> t e ?; rewrite near_simpl; apply: filterS (Fc _ _).

At this stage, we have to prove cvg F, knowing that cauchy F holds as well as

forall t : T, cvg ((fun f => f t) @ F).

Under these hypotheses, the function fun t => lim ((fun f => f t) @ F) is the point-
wise limit of the filter F. We now prove that this limit is uniform (recall Lemma cvg_ex from
Section 5.3.3).

3 apply/cvg_ex; exists (fun t => lim (@^~t @ F)).

Under the same hypotheses as before, we now have to prove

1. We display the actual proof script with such an abbreviation but the explanation that follows keeps the
more explicit fun f => f t.

96

6.1. SMALL-SCALE FILTER ELIMINATION

F --> (fun t : T => lim ((fun f => f t) @ F)).

Since the right-hand side is a point of the uniform space T -> U, it is interpreted through
our notation as the filter of neighbourhoods of this point. So it suffices to prove, for all e such
that e > 0, that we have

\forall f \near F, ball (fun t : T => lim ((fun f => f t) @ F)) e f.

This goal transformation is achieved at the beginning of line 4 by the application of the
Lemma flim_ballPpos. After application of this lemma, we are in a position to use the near
tactics as we will explain shortly.

4 apply/flim_ballPpos => e; near=> f => t; near F => g => /=.

The first near tactic used at line 4 has the following consequence: we are asked to prove
for all f which is near F and for all t that

ball (lim ((fun f => f t) @ F)) e (f t)

holds. The proof goes by introducing a function g, which is near F as well; this is also achieved
at line 4 by the second near tactic.

We then split the ball around g t (using Lemma ball_splitl, see line 5) and are left to
prove two goals:

ball (lim ((fun f => f t) @ F)) (e / 2) (g t)

and

ball (f t) (e / 2) (g t),

which will both be true when g is near F, so that we will use the near: g tactic. We claim
that this reasoning is an informal one in the sense that this proof step does not need to be
interleaved with technical proofs that can be handled later as mere consequences of near facts.

The first goal can be proven using Ft_cvg and the fact that balls are neighbourhoods of
their center (Lemma locally_ball). The terseness of SSReflect tactics actually allows us
to prove it on the same line of proof script as the application of Lemma ball_splitl:

5 apply: (@ball_splitl _ (g t)); first by near: g; exact/Ft_cvg/locally_ball.

The second goal can be proven for all values of t, when f is near F, so that we first
generalise t, using move: (t), and then discharge g and f using near: _ twice:

6 by move: (t); near: g; near: f; apply: nearP_dep; apply: filterS (Fc _ _).

After calling near: f, we have to prove

\forall f \near F, \forall g \near F,
forall t, ball (f t) (e / 2) (g t).

This is achieved by using Lemma nearP_dep (see line 6), which folds the two near notations
into a single one. The goal becomes:

\forall f & g \near F, forall t, ball (f t) (e / 2) (g t),

or equivalently

97

CHAPTER 6. TOOLS FOR ASYMPTOTIC REASONING

\forall f & g \near F, ball f (e / 2) g.

We can conclude because the filter F is Cauchy and e / 2 is obviously positive (this is
automatically proven by using another set of canonical structures).

The last line of the proof script is for automatically instantiating the remaining trivial
existential variables:

7 Grab Existential Variables. all: end_near. Qed.

Differences with the Proof in Coquelicot

We give here the statement of Lemma complete_cauchy_fct, Coquelicot’s equivalent
of Lemma fun_complete.

Lemma complete_cauchy_fct (T : Type) (U : CompleteSpace) :
forall (F : ((T -> U) -> Prop) -> Prop), ProperFilter F ->
(forall ε : posreal, exists f : T -> U, F (ball f ε)) ->
forall ε : posreal, F (ball (lim_fct F) ε).

Several differences occur between these lemmas. First, let us compare the statements. Both
lemmas state that for any proper filter on the function space T -> U, if it is Cauchy, then it con-
verges, but both the definitions of Cauchy filters and filter convergence differ. For Cauchy fil-
ters, we use the cauchy predicate while cauchy_ex is used in Coquelicot. This forces the au-
thors of Coquelicot to use in their proof an additional theorem, Lemma cauchy_distance,
which states the equivalence between cauchy_ex and a predicate which is very close to cauchy
once the near notation is unfolded.

For filter convergence, the authors of Coquelicot use an ε− δ phrasing which amounts
to:

\forall e, 0 < e -> F (ball (lim F) e).

We choose instead the cvg F notation, which is equivalent to F --> lim F, i.e. F contains
the neighbourhood filter of lim F. In our definition, balls are thus abstracted through the use
of the topology. However, our proof of Lemma fun_complete still resorts to balls so we have
to use an additional theorem, Lemma flim_ballPpos in order to get back the ε− δ phrasing.

These two differences taken into account, the two proofs follow the same reasoning. How-
ever, in Coquelicot, the reasoning steps are not in the same order since it is necessary to
anticipate the two goals

ball (lim ((fun f => f t) @ F)) (e / 2) (g t),

and

ball (f t) (e / 2) (g t).

The first step after proving that the function fun t => lim ((fun f => f t) @ F) is
the pointwise limit of the filter F is to introduce e (as we did) and to use the fact that F is a
Cauchy filter, with the cauchy_ex definition, on e / 2, to get an element P of F such that any
two elements of P are separated by a distance of at most e / 2. There is no apparent reason
to do this now, since the goal is to prove

F (ball (fun t => lim ((fun f => f t) @ F)) e),

98

6.2. BACHMANN-LANDAU NOTATIONS

but this anticipates the remainder of the proof.
The next step is to use the fact that filters are upward closed to replace this goal with the

inclusion

P ‘<=‘ ball (fun t => lim ((fun f => f t) @ F)) e.

This makes it possible to introduce the function we called f together with the assumption
that it belongs to P. Note that in this proof P cannot be changed any more, while it was not
chosen yet in ours. This explains why it was necessary to split e beforehand. Introducing f,
the goal is to prove that for all t,

ball (lim ((fun f => f t) @ F)) e (f t).

Since we already know that any element of P is at distance at most e / 2 from f, the goal
is, as in our proof, to build a function g which is in P and which is at distance at most e / 2
from lim ((fun f => f t) @ F). Such a function exists since both P and the ball centred
on lim ((fun f => f t) @ F) and of radius e / 2 belong to the proper filter F, hence their
intersection belongs to F too, and proper filters only have non-empty elements.

It is however necessary to prove first that the intersection belongs to F in order to get g,
and only then to finish the proof of the main goal. In comparison, we introduce a function g
which we know will belong to an element of F, but it will only be determined from the use we
make of g. Thus, we can prove the main goal without being worried about easy but tedious
proofs of filter membership.

Apart from the impact of the near tactics, the remaining differences in the proofs are due
to naming conventions and to slight reformulation of some lemmas.

Overall, the near tactics allow for a better focus on the main (informal) argument and
free the user from anticipating every technical fact that will make this argument correct.

6.2 Bachmann-Landau Notations

When Donald Knuth addresses the editor of the Notices of the American Mathematical
Society about teaching calculus, he insists on using the big-O notation so that it blends
smoothly into equational reasoning [Knu98]. “[I]t significantly simplifies calculations because
it allows us to be sloppy but in a satisfactorily controlled way.” He goes as far as “dream[ing]
of writing a calculus text entitled O Calculus”.

This section synthesises the key ideas that mechanise Knuth’s dream in a provably correct
fashion. We explain the principles of our mechanisation in Section 6.2.1 and illustrate it
through examples in Section 6.2.2.

6.2.1 Mechanisation of Equational Bachmann-Landau Notations

The little-o and big-O notations are traditionally defined by

f = o0(e) or f(x) = o
x→0

(e(x)) ⇔ ∀ε > 0. ∃δ > 0. ∀x. |x| < δ ⇒ |f(x)| 6 ε|e(x)|,
f = O0(e) or f(x) = O

x→0
(e(x)) ⇔ ∃k > 0. ∃δ > 0. ∀x. |x| < δ ⇒ |f(x)| 6 k|e(x)|.

For the sake of readability we gave the definitions of these notions at a neighbourhood
of 0, but they are generalised to any filter in our library.

99

CHAPTER 6. TOOLS FOR ASYMPTOTIC REASONING

The “equality” in the notation f = o(e) is a well-known abuse of notation. Indeed it is
neither symmetric, since one cannot write o(e) = f , nor transitive, since f = o(e) and g = o(e)
do not imply f = g and not even f ∼ g (see Section 6.2.2 for the definition of asymptotic
equivalence).

In fact, f = o(e) should be read as “f is a little-o of e”. It is not rare to see this
reading enforced by the notation “f ∈ o(e)” in undergraduate-level teaching, allegedly to
prevent students’ confusion (see for example in a textbook from the eighties still popular
in France [AF88]). It is therefore no surprise to find o0(e) viewed as a set of functions, or
equivalently a predicate on functions, even in recent formalisations [GCP18].

Our formalisation builds on the set-theoretic notation using a type-theoretic variant. In-
deed, we provide both a predicate littleo_def for functions that are little-o of other functions
at the neighbourhood defined by some filter, and a sigma type littleo_type that bundles a
function with the proof of this predicate. Similarly for big-O, we provide a predicate bigO_def
and a type bigO_type. The formal definitions of the predicates advantageously use the near
notation introduced in Section 6.1.1 to encapsulate the existential quantifiers.

Context {T : Type} {K : absRingType} {V W : normedModType K}.

Let littleo_def (F : set (set T)) (f : T -> V) (e : T -> W) :=
forall ε : R, 0 < ε -> \forall x \near F, ‘|[f x]| <= ε * ‘|[e x]|.

Let bigO_def (F : set (set T)) (f : T -> V) (e : T -> W) :=
\forall k \near +oo, \forall x \near F, ‘|[f x]| <= k * ‘|[e x]|.

Regarding notational conventions in the remainder of this section, note that, like in the
code snippet just above, T is a type, K is a ring equipped with an absolute value, and V and W
are normed modules over K; they all are implicit arguments of forthcoming definitions.

The sigma types littleo_type and bigO_type directly follow from the corresponding
ternary predicates:

Structure littleo_type (F : set (set T)) (e : T -> W) := Littleo {
littleo_fun :> T -> V;
littleoP : littleo_def F littleo_fun e

}.

Structure bigO_type (F : set (set T)) (e : T -> W) := BigO {
bigO_fun :> T -> V;
bigOP : bigO_def F bigO_fun e

}.

For the sake of readability, we slightly simplified the definitions compared to the source
code: we removed Prop to bool coercions and the littleoP and bigOP fields are lemmas
deduced from unnamed fields in the actual code.

Let us comment more specifically on the structure littleo_type. It packs a function,
namely the littleo_fun projection, with a proof that it is a little-o of e, providing us with
the type of functions that are a little-o of another function. In particular, we can inhabit this
type with the null function (and the trivial proof that it is a little-o). Let us call littleo0

100

6.2. BACHMANN-LANDAU NOTATIONS

this record with the null function. The type littleo_type F e is furthermore equipped with
the notation {o_F e} to improve reading.

So littleo_type and bigO_type provide a type-theoretic variant of the set-theoretic no-
tation for little-o and big-O, but it can be argued that such a set-theoretic notation is mis-
placed because it precludes the equational viewpoint that Knuth advocates [Knu98]. It may
even be considered anachronistic now that today’s students use symbolic algebra systems like
Maple [Map19] and SageMath [SD19] where the big-O notation appears in power series
calculations. In this work, we make a strong case for the equational viewpoint. We now
explain how to recover it.

Indeed it is also in the folklore to write f = g+ o(e) to mean f − g = o(e) in the previous
acceptation. Since expressions involving the little-o notation are to be considered as classes
of functions, the formula f = g + o(e) suggests a reading in terms of a congruence relation.
It might therefore seem like a good idea to formally define the corresponding equality and
let it be denoted by a ternary notation. However, doing so carelessly might preclude routine
mathematical practice, first because the bound e changes a lot from one equality to another,
for example, if

f(x) = g(x) + o
x→0

(x) ,

then

xf(x) = xg(x) + o
x→0

(
x2
)
.

Second, mathematicians add little-o and big-O from various scales as in: if

f(x) = g(x) + o
x→0

(x)

and

g(x) = O
x→0

(
x2
)
,

then

f(x) = o
x→0

(x) .

To reflect this mathematical practice, we decided to stress that f = g + o(e) actually
means “f = g + h where h is a little-o of e”. We thus define

f = g + o (e)⇔ ∃h. f = g + o (e) [h],

where o(e)[h] denotes h if h is a little-o of e, and 0 otherwise. As a consequence, the state-
ment f = g + o(e)[h] means f = g + h if h is little-o of e and f = g otherwise. In both cases,
f − g is indeed a little-o of e, hence this definition is sound. Note that this definition is also
complete: if f − g is a little-o of e, then f = g + o(e)[f − g] holds.

In Coq, to define o(e)[h], we provide a function mklittleo that builds a little-o from an
arbitrary function. Given a function h, mklittleo tries to coerce it to the subtype of little-os
and, when it fails, it returns the null little-o (using the function littleo0 mentioned before).

101

CHAPTER 6. TOOLS FOR ASYMPTOTIC REASONING

This mechanism of partial projection into a subtype is provided by the generic operator insubd
from the Mathematical Components library.

Definition mklittleo (F : filter_on T) (h : T -> V) (e : T -> W) :=
littleo_fun (insubd (littleo0 F e) h).

Notation "[o_ x e ’of’ h]" := (mklittleo x h e)
(at level 0, x, e at level 0, only parsing).

Here, the filter_on type is a structure meaning that F is a filter (and which is meant
to replace the Filter type class in the near future). For the sake of simplicity, we removed
phantom types (used for the inference of the filter_on structure) from the definition.

In order to avoid explicitly stating witnesses, we notice that if f = g + h, then h = f − g
hence h is a little-o of e if and only if f − g is. This leads us to define the sought ternary
notation to be:

Notation "f = g ’+o_’ x e" := (f = g + [o_x e of f - g]).

The ternary notation f = g +o_x e expands to f = g + [o_x e of f - g], but we de-
liberately hide the h in the printing of the notation [o_x e of h] so that it prints back ’o_x e.

However, if we try to prove f = g +o_x e in a purely arithmetical way, we might rewrite
with equations for f and g and finally get a goal of the form o(e) = o(e). In a pen-and-paper
proof, this is considered as trivial, but in a formal proof, both little-os hide functions h and h′,
and the statement to prove is in fact the equality o(e)[h] = o(e)[h′]. In this situation there
is very little chance that this unification succeeds, since there is no reason for h and h′ to be
equal. Our methodology consists in replacing h′ with an existential variable ?h′ as soon as
possible. This is made possible because of the following observation:

f = g + o (e) [f − g]⇔ ∃h. f = g + o (e) [h],

which allows to replace a goal f = g +o_x e with the goal f = g + [o_x e of ?h], where ?h
is an existential variable. This goal is printed f = g + ’a_o_x e, once again stressing that
f - g is a little-o of e.

6.2.2 Examples and Applications

Our main concern is to preserve the benefits of the equational view of little-o and big-O.
This means developing a small theory containing the main “equations” one may need in order
to combine them easily. Once sufficiently many equations are proven, this allows the user to
prove facts about little-o and big-O using informal reasoning, without having to go back to
the definition of little-o and big-O and to do explicit local reasoning, except in particular cases
where the theory lacks an equation.

We do not claim to have reached such a complete set of equations, but we proved a few
equations that seemed important. We first give examples of such equations, illustrating on a
proof the benefits of the near notations and tactics in this context, and then describe a few
applications of our formalisation of Bachmann-Landau notations.

102

6.2. BACHMANN-LANDAU NOTATIONS

Equational Theory

First, we have arithmetic rules for little-o and big-O. For instance, little-o absorbs addition
and the product of a O(h1) and a O(h2) is a O(h1 · h2).

Context {F : filter_on T}.

Lemma addo (f g : T -> V) (e : T -> W) :
[o_F e of f] + [o_F e of g] =o_F e.

Lemma mulO (h1 h2 f g : T -> R) :
[O_F h1 of f] * [O_F h2 of g] =O_F (h1 * h2).

We also have a few rules combining little-o and big-O. For example, a o(e) is also a O(e)
and a little-o of a O(g) is a o(g).

Lemma littleo_eqO (e : T -> W) (f : {o_F e}) : (f : _ -> _) =O_F e.

Lemma littleo_bigO_eqo (g : T -> W) (f : T -> V) (h : T -> X) :
f =O_F g -> [o_F f of h] =o_F g.

Of course, in order to prove this set of equations, local reasoning is necessary at some
point. This is where the near tactics from Section 6.1.1 come into use. For instance, let us
have a look at the proof of Lemma littleo_bigO_eqo.

The function f is a O(g) and the function [o_F f of h] is a o(f), either equal to h if it
is a o(f), or to the null function. Since the goal is to prove that the function [o_F f of h]
is a o(g), the first step is to go back to the definition of little-o and introduce the uni-
versally quantified ε. This is the application of Lemma eqoP at line 1 that recovers the
definition littleo_def seen in Section 6.2.1.

1 move->; apply/eqoP => _/posnumP[e]; have [k c] := bigO _ g.

In line 1, we also replaced ε and the assumption 0 < ε from littleo_def with a canonically
positive e (thanks to canonical structures we alluded to in the proof in Section 6.1.2) through
the posnumP view. Moreover, we replaced f in [o_F f of h] with the function [O_F g of f]
by rewriting with the assumption of Lemma littleo_bigO_eqo. We also abstracted the latter
function (thanks to Lemma bigO at line 1) using a fresh function k and, since it was a big-O
of g, we get as a hypothesis a positive constant c such that

\forall x \near F, ‘|[k x]| <= c * ‘|[g x]|.

At this point the goal to prove is

\forall x \near F, ‘|[k x]| <= c * ‘|[g x]| ->
\forall x \near F, ‘|[’o_(x \near F) (k x)]| <= e * ‘|[g x]|.

We use Lemma filter_app (recall Section 6.1.1) to combine both statements so that we
should now prove

\forall x \near F, ‘|[k x]| <= c * ‘|[g x]| ->
‘|[’o_(x \near F) (k x)]| <= e * ‘|[g x]|.

Now we give ourselves an x which is near F thanks to the near=> x tactic.

103

CHAPTER 6. TOOLS FOR ASYMPTOTIC REASONING

2 apply: filter_app; near=> x.

We have to prove that

‘|[k x]| <= c * ‘|[g x]| -> ‘|[’o_(x \near F) (k x)]| <= e * ‘|[g x]|,

which we do by manipulating the inequalities until we reach the goal

‘|[’o_(x \near F) (k x)]| <= e / c * ‘|[k x]|

as the result of multiple rewritings and transitivity (see line 3).

3 rewrite −!ler_pdivr_mull //; apply: ler_trans; rewrite ler_pdivr_mull // mulrA.

The latter goal should be true for x which is near F since ’o_(x \near F) (k x) is a
little-o of k and e / c is positive.

To finish the proof, we can now call the near: x tactic. At this point, the remaining goal
is

\forall x \near F, ‘|[’o_(x \near F) (k x)]| <= e / c * ‘|[k x]|

which can be proven using the filter characterisation of little-o (at line 4).

4 by near: x; apply: littleoP.

The last line of the proof script calls the end_near tactic to dispose of the remaining
existential variables:

5 Grab Existential Variables. all: end_near. Qed.

Application: Asymptotic Equivalence

Two functions f and g are equivalent at a neighbourhood of point a (denoted by f ∼a g)
when f = g+ oa(g). Thanks to the ideas explained in Section 6.2.1 and to the already proven
equations, the fact that ∼ is an equivalence relation can be established by short proof scripts.
For the sake of illustration, let us explain how we show that ∼ is symmetric and transitive.

The symmetry of ∼ is mechanised as follows (f ~_F g is the Coq notation for f ∼F g):

Context {F : filter_on T}.

Lemma equiv_sym (f g : T -> V) : f ~_F g -> g ~_F f.
Proof.
move=> fg; have /(canLR (addrK _))<- := fg.
by apply: eqaddoE; rewrite oppo (equivoRL _ fg).
Qed.

The first line of the proof is made of standard tactics that change the goal to f−o(g) ∼ f .
Lemma eqaddoE implements the idea described in Section 6.2.1: it introduces an existential
variable ?h such that the goal becomes f − o(g) = f + o(f)[?h]. Rewriting with Lemma oppo
turns f − o(g) into f + o(g) and Lemma equivoRL turns o(g) into o(f) (it uses the hypothe-
sis f ∼ g). The right- and left-hand sides can now be unified and the proof is completed.

The transitivity of ∼ is mechanised as follows.

104

6.2. BACHMANN-LANDAU NOTATIONS

Lemma equiv_trans (f g h : T -> V) : f ~_F g -> g ~_F h -> f ~_F h.
Proof.
by move=> -> ->; apply: eqaddoE; rewrite eqoaddo -addrA addo.
Qed.

After the application of Lemma eqaddoE, the goal is

h+ o (h) + o
(
h+ o (h)

)
∼ h+ o (h) [?e],

where ?e is an existential variable.
Lemma eqoaddo transforms o(h+o(h)) into o(h) and Lemma addo transforms o(h)+o(h)

into o(h). After rewriting, the goal is h + o(h) ∼ h + o(h)[?e], so that unification succeeds
and completes the proof.

Application: Differential of a Function

Thanks to Bachmann-Landau notations, we can define differentials using the get function
from Section 5.3.3. As we discussed in Section 4.3.2, in Coquelicot there is only a function
computing the derivative of a real function at any point. Thanks to the get function, it is
possible to define a function computing the differential of any function from a normed module
to another one at any neighbourhood defined by a filter.

The differential d fx of a function f at point x is the unique continuous linear operator
that satisfies the following asymptotic development

f(x+ h) = f(x) + d fx(h) + o
h→0

(h) ,

or equivalently

f(h) = f(x) + d fx(h− x) + o
h→x

(h− x) .

Thanks to our formalisation of Bachmann-Landau notations, we can directly use this
definition through the get function.

Definition diff {K : absRingType} {V W : normedModType K} (F : filter_on V)
(f : V -> W) :=
(get (fun (df : {linear V -> W}) => forall x,
f x = f (lim F) + df (x - lim F) +o_(x \near F) (x - lim F))),

We provide the notation ’d f F for the differential of f at the neighbourhood defined by F.
We ported the inference mechanism from Section 3.3.3 to this new definition (and to

the definition of derivatives from Section 5.3.3). We also wrote an equational theory for
differentials and derivatives.

A notable point in this theory is the chain rule for differentials,

d(g ◦ f)x = d gf(x) ◦ d fx,

whose statement in Coq looks like its pen-and-paper equivalent thanks to our notations.

105

CHAPTER 6. TOOLS FOR ASYMPTOTIC REASONING

Lemma diff_comp (U V W : normedModType R) (f : U -> V) (g : V -> W) x :
differentiable f x -> differentiable g (f x) ->
’d (g \o f) x = ’d g (f x) \o ’d f x.

The equational theory of Bachmann-Landau notations we developed made it possible to
write a very compact proof for this theorem.

Application: Uniform Big-O

Boldo et al. designed a notion of uniform big-O in their work on the numerical resolution
of the wave equation [BCF+13]. They are interested in relations of the form

f (x,∆) = O
∆→0

(g (∆)) ,

but with a uniform definition with respect to x, i.e. with the following definition:

∃C > 0. ∃α > 0. ∀x. ∀∆. ‖∆‖ < α⇒ ‖f (x,∆)‖ < C ‖g (∆)‖ .

We can formalise this uniform big-O as

(fun p => f p) =O_F (fun p => g p.2)

where p represents the pair (x,∆) and p.2 is thus ∆, with an appropriate choice for the filter F.
The filter Fmust be a filter on a Cartesian product and can be defined as a product filter (recall
the end of Section 6.1.1). The first filter in this product corresponds to x. Since there is no
constraint on x, we can choose the trivial filter containing only the total set. The second filter
in this product, which corresponds to ∆, is the neighbourhood filter of 0 (i.e. locally 0).

In fact, in their source code, Boldo et al. force ∆ to be within a particular domain and use
sigma types instead of the existential quantifier. We can still provide an equivalent definition
thanks to a “restriction” operator on filters that already existed in Coquelicot (the within
function), and prove that it is indeed equivalent to their definition.

106

Part II
Designing a Library of Mathematics

CHAPTER 7

EVALUATION OF OUR LIBRARY

In this chapter, we give an early assessment of the Mathematical Components Anal-
ysis library [ACM+]. This assessment is mainly based on our case study on the inverted pen-
dulum: we reproduced the proofs from Part I using our library instead of Coquelicot (these
new proofs are released as a new version of the repository of our case study [CRb]).

We first describe the improvements on our original proofs in Section 7.1. Then, we discuss
issues of our library in Section 7.2. Finally, we present related work in Section 7.3.

7.1 Improvements on our Case Study

We reproduced our case study using Mathematical Components Analysis in order
to gather data for an evaluation of the library. Not counting the elements that have been
integrated into the library, both formalisations roughly have the same size: the formalisation
based on Mathematical Components Analysis is around a hundred lines of code shorter.
We may however pinpoint some reasons why there is a slight improvement.

First, the library was designed for classical reasoning, bearing in mind the issues described
in Section 4.3.1. This means that our proofs are closer to the pen-and-paper ones because we
do not need to adapt the definitions to the logical context.

Moreover, our axioms allow for the use of the algebraic theories of Mathematical Com-
ponents [MCT] on the type R of real numbers. These theories are well-thought and designed
for efficient theorem proving, which compensates for the limitations of Coq’s standard li-
brary. In particular, the compatibility with Mathematical Components improves the
way we deal with comparisons of expressions. The comparison predicates in Mathematical
Components compute boolean values, which makes it possible to use small-scale reflection,
and come with a battery of lemmas that make proof writing efficient. Furthermore, most posi-
tivity proofs are automated thanks to a set of canonical structures that Cyril Cohen developed

107

CHAPTER 7. EVALUATION OF OUR LIBRARY

in the library. As a consequence, all the proofs that involve comparisons on real numbers are
shortened.

The new tools in the library are also sources of improvements. The theory of supremum
we mentioned in Section 5.4.3 contains the exact theorems that we needed for our proofs.
Moreover, the near tactics play a significant role: a great part of the formalisation is based
on the manipulation of filters, which is made easier by these tactics (recall our discussion in
Section 6.1.2). Finally, we make use of the diff function from Section 6.2.2, but it has a
relatively limited impact since we mostly manipulate derivatives of functions defined on R and
not their differential.

7.2 Remaining and New Issues

Although our new library resolves some issues we discussed in Section 4.3, some of them
still remain, and new ones appeared.

First, we still lack a good theory of iterated maximum on families of real numbers. It is
not obvious to solve this issue because, as it stems from our discussion in Section 3.3.1, it boils
down to a problem of subtyping. To our knowledge, there is no good mechanism to deal with
subtypes in Coq. The type-correctness conditions (TCC) from PVS [SO99] may be a good
source of inspiration.

Then, although the near tactics ease filter manipulation, it is still necessary to split the
epsilons in proofs. Fortunately, this is not a big constraint since the user does not have to
know beforehand how the epsilons will be split. However, we received comments from users
who found the tactics hard to use. Thus, we still have to work both on the documentation
and on the framework to make it more intuitive.

About new issues, we already mentioned in Section 5.4.2 the lack of practicality of the
equivalent of ball splitting for entourages. More precisely, the proofs on uniform spaces that
involve ball splitting are a bit longer with entourages in the current state of the experiment.
Proofs on normed modules are not impacted by this change of definition since we may use
balls defined by the norm instead of entourages. We do not know yet how problematic this
issue is.

Finally, the biggest issue of our new library is also an issue of the Mathematical Com-
ponents library. Indeed, although a strength of the Mathematical Components library
is the possibility to perform small computation steps to do proofs thanks to small-scale re-
flection, it is impossible to do so for larger computations on its algebraic structures. Indeed,
data structures in Mathematical Components contain locks that prevent computation
and, even without locks, these data structures are not appropriate for efficient computation.
These locks are essential because they make notations steady (e.g. for big operators) and they
make unification more efficient, which is important since unification is the base of the infer-
ence system in the hierarchy of Mathematical Components (recall Section 5.1.2). The
data structures cannot be replaced with computationally more efficient ones because they are
specifically designed to do proofs in an efficient way.

Proof by computation can be emulated through the use of rewriting rules given by the
axioms defining the behaviour of arithmetic operations, or it can be done using more complex
techniques such as large-scale reflection (which we discuss in Section 9.1). In our formalisation
from Part I, we were able to use the ring [GM05] and field [DM01] tactics to this end. The

108

7.3. RELATED WORK

layers of structures and notations added by Mathematical Components however make it
hard to use them: these tactics fail to recognise the ring (respectively field) of real numbers
because they cannot interpret the definitions from Mathematical Components.

Several options are available but none is perfect. First, it is possible to declare new
ring (respectively field) structures to help the tactics interpret the definitions correctly. But
the multiplicity of structures in Mathematical Components makes it hard to cover every
possible case: definitions from several structures may appear in a unique expression, there is an
overloading of notations, and the tactics only allow for one interpretation for each operation.

Then, Strub developed two tactics in Jasmin [ABB+17], ssring and ssfield, that re-
place the ring and field tactics for Mathematical Components, based on a different
implementation of reification (we explain reification in Section 9.1). However, the ssfield
tactic fails in our proofs: it does not terminate in a reasonable time. Hence, instead of call-
ing ssfield, we have first to remove each fraction from our goal by multiplying the goal by
the common denominator of all fractions and then call ssring instead, which makes proof
scripts longer.

Finally, we also worked on a prototype of tactic that should generalise the ring tactic (see
Chapter 9), and that could be extended to generalise the field tactic too, but it is still in an
early stage of development and it is not usable yet.

7.3 Related Work

We first focus on existing libraries for analysis in Section 7.3.1. Then we discuss related
work on Bachmann-Landau notations in Section 7.3.2. Finally, we present in Section 7.3.3
tactics that were designed with the same goal as our near tactics: delaying the production of
explicit witnesses for existential propositions.

7.3.1 Libraries for Analysis

The main reference to discuss analysis libraries is the survey by Boldo et al. [BLM16].
Instead of repeating its content here, which is also detailed in Lelay’s PhD thesis [Lel15], we
invite the interested reader to refer to these two presentations. We will just complete the
picture with libraries that are not presented in these works and try to make clear the position
of Mathematical Components Analysis with respect to these libraries.

We already discussed libraries in Coq in Section 2.3.1, but we will add a few comments on
Coquelicot. As shown by Section 5.2, Coquelicot is truly the base of our library. Most
definitions in our library come from Coquelicot and those that differ from Coquelicot’s
ones were developed for two main reasons: we work in a different logical settings and we
adapted definitions to new tools (e.g. the near tactics) that were not in Coquelicot. On
the other hand, several parts of the Coquelicot library have not been adapted to our new
context yet (mostly, sequences, integrals and series).

The Coquelicot library also provides total functions to compute the limit and the deriva-
tive of a function. They are however restricted to functions from R to R. We define a limit
function for any function whose domain and codomain are equipped with canonical filters and
a differential function for any function whose domain and codomain are normed modules. The
crucial difference is that we include the existence of choice functions in our hierarchy at the

109

CHAPTER 7. EVALUATION OF OUR LIBRARY

cost of additional axioms, which give us these functions for free, while in the Coquelicot
library they are constructed from the limited principle of omniscience.

This difference in terms of logic is very relevant here and we shall precise this point in
light of Table 1 from the survey by Boldo et al. [BLM16]. Coquelicot is constructively
built on top of a classical axiomatisation of the set of real numbers [May01], which implies
that the parts of the survey concerning the logic of Coq’s standard library are still true
for Coquelicot. In comparison, thanks to our axioms from Section 5.1.1, Mathematical
Components Analysis falls in with the systems based on higher-order logic: HOL4 [SN08],
ProofPower-HOL [Lem06], HOL Light [Har16] and Isabelle/HOL [NPW02]. Indeed,
we work in a classical settings where Hilbert’s epsilon operator [Hil22] is available. Moreover,
although this is not shown by Table 1 in this survey, these systems have an equality which is
extensional on functions, which we obtain thanks to the functional extensionality axiom.

This is not the only point of similarity with the systems based on higher-order logic:
we also provide in our library tools to deal with analysis in higher dimensions. Although
the NormedModule interface theoretically covers higher-dimensional vector spaces, and even
spaces of infinite dimension, Coquelicot is limited on concrete types to dimension 2. Thanks
to matrices, we may deal with any finite dimension. The difference with the systems based
on higher-order logic is that we benefit from dependent types through the implementation of
vectors in Mathematical Components.

Finally, there is also a part of the Lean Mathematical Components library [LMCLD]
which is dedicated to analysis. It contains an extensive hierarchy of structures, that covers
most of ours. It is also developed on classical axioms and exploits filters for the formalisation of
convergence. In this library, uniform spaces are defined using entourages (recall Definition 5.5).

7.3.2 Related Work on Asymptotic Reasoning

The Coquelicot library contains ternary predicates defining little-o and asymptotic
equivalence of functions. Our definitions are basically the same (in particular the ternary
predicate littleo_def) but their theory is not quite developed in Coquelicot. We provide
a set of notations and a more substantial equational theory on top of our definitions, which
makes them easier to manipulate. We also have notations and a theory for big-O.

Avigad and Donnelly’s formalisation in Isabelle/HOL [AD04] views big-O as sets. They
describe inclusion and equational reasoning on big-O at the set level, and they manage to prove
the prime number theorem using it. Thirteen years later, Eberl improves and extends their
work by providing, in addition to big-O, the little-o, Ω, ω, and Θ notations, in order to prove
the complexity of divide-and-conquer algorithms [Ebe17]. Coupled with Isabelle/HOL’s
heavy automation, his Landau symbols halve the size of his proofs. He uses in particular this
formalisation to develop tactics that automatically compute (and prove) asymptotic develop-
ments of sequences given by recurrence relations [Ebe19b] and of combinations of standard
real functions [Ebe19a].

Guéneau et al. [GCP18] have developed in Coq a library to formalise the time complexity
of OCaml programs, later applied to a cycle detection algorithm [GJCP19]. To represent
asymptotic bounds, they provide a formalisation of the big-O notation. Similarly to us, their
definition relies on filters, but only on finite filter products of the eventually filter (the
equivalent of Rbar_locally p_infty on nat, recall Section 2.3.2) and its equivalent in Z.
Furthermore, they define a type for types equipped with one filter, while we make it possible

110

7.3. RELATED WORK

to have a different filter for each element of the type thanks to the filteredType
structure.

However, in the face of the difficulties encountered to reproduce the (apparently sloppy)
manipulation of the big-O notation, they give up on producing proofs “as simple [...] as their
paper counterparts”, choose to formalise the big-O notation as a dominance relation, and
deprive themselves of Coq’s equational reasoning capabilities. Their library would require
extension with the little-o notation and to arbitrary filters for it to “have other applications in
mathematics”. In comparison, our work already provides both notations, retains equational
reasoning, and already fits together with a hierarchy of mathematical structures designed on
the model of Mathematical Components [GGMR09, MT18].

A particular formalisation of big-O to be mentioned is the one by Boldo et al. [BCF+13].
Their uniform big-O can be expressed with our definition through the choice of the appropriate
filter, as described in Section 6.2.2.

Finally, Avigad also developed in Lean [LMCLD] a library for little-o and big-O. They
are defined as ternary predicates equivalent to our littleo_def and bigO_def predicates once
the near notations are unfolded.

7.3.3 Related Work on Delayed Production of Witnesses

Eberl’s Landau symbols [Ebe17] are defined using the eventually construct of the stan-
dard library of Isabelle/HOL [HIH13] that applies a predicate to a filter. Formal proofs
therefore enjoy the eventually_elim tactic that automates the application of filter-related
lemmas together, and is often combined with other lemma collections (such as field_simps).
The eventually_elim tactic is a simpler form of the near tactics, well adapted to Is-
abelle/HOL’s proof style. Indeed, when using eventually_elim, one lists upfront a list
of hypotheses that will be used by the automated proof search. Using near, these sets are
inferred at the appropriate places while writing the proofs in an imperative style.

Guéneau et al.’s proofs on complexity [GCP18] also use delayed production of witnesses
of existential quantifiers in the particular case of the computation of cost functions. They
use Procrastination [Gué18], a small library of tactics similar to our near tactics. The
main difference between Procrastination and the near tactics is the following. To prove a
given goal using Procrastination, one can introduce variables and accumulate properties
about them. Once the goal is proven, the user is asked to provide an actual value for these
variables which satisfies every accumulated property. Our work is more centred on filters: we
do not have to provide a witness of the satisfiability of a predicate, but only to prove that the
accumulated predicates belong to a given filter. The implementation of Procrastination
also has more tactics, which are more complex, while we try to minimise them, following the
small-scale reflection strategy [MT18].

Both our work and the Procrastination library are a generalisation of the bigenough
library by Cohen [Coh12]. This library only deals with statements that are eventually true
in N: it is a special case of the near tactics for the eventually filter.

111

Part III

Tools for Automation

113

Part III
Tools for Automation

CHAPTER 8

REFINEMENT AND COMPUTATION

As we explained in Section 7.2, in the Mathematical Components library [MCT] and
hence in Mathematical Components Analysis [ACM+], some data structures make com-
putation impossible. This is a real issue when one tries to formalise proofs where computation
plays a significant role. In this chapter, we describe a framework that makes it possible to
do certified and efficient computation by changing both the representation of the objects that
are manipulated and the algorithms that are executed.

This framework is based on a technique called refinement (see Section 8.1). We describe
in Section 8.2 the benefits of this technique in the context of proofs and a tactic we designed
in order to ease the use of refinement in proofs. We also explain how to automate parts of the
refinement process thanks to parametricity (see Section 8.3).

Our description of refinement is based on the work of Dénès et al. [DMS12], later improved
by Cohen et al. [CDM13], who introduced the use of parametricity for refinement. Our only
original contributions in this chapter are the tactic we describe in Section 8.2.3, which was de-
signed in collaboration with Cyril Cohen and which generalises the one we published [CR17b],
and our current work on parametricity in collaboration with Cyril Cohen, Assia Mahboubi,
Matthieu Sozeau and Nicolas Tabareau, briefly explained in Section 8.3.3. All code snippets
come from the CoqEAL library [CCD+], unless otherwise specified.

8.1 Refinement

Refinement [Wir71, Hoa72] is a term usually used to describe a step-by-step approach in
the verification of a program. We discuss here another kind of refinement [DMS12], which is
nevertheless in some ways analogous to the standard notion (see Section 8.1.1). We distin-
guish in particular two kinds of refinement: program refinement (see Section 8.1.2) and data
refinement (see Section 8.1.3), which can be composed (see Section 8.1.4).

115

CHAPTER 8. REFINEMENT AND COMPUTATION

8.1.1 Definition of Refinement

Refinement, as defined by Wirth [Wir71] and later integrated by Hoare in a methodology
for program verification [Hoa72], makes it possible to obtain a certified implementation of a
given function through simple steps. One starts with an abstract representation of the function
and its specification. Then, the function is progressively refined to a concrete program that
implements it by changing the representation of the data structures and the algorithm, going
from high-level representations to low-level ones. Each step is proven correct with respect to
the previous one.

A specification may be given in the form of a Hoare triplet [Hoa69]:

` {precondition}P {postcondition},

where P is abstract and represents the program to be implemented. For instance, one
may start with the following specification:

` {x = M}P {y = detM}.

Here, the program takes as input a matrixM , stored in variable x, and has to compute
the determinant of M and to store its value in variable y. We do not specify here how
matrices are represented, nor which is the ring of coefficients.

Then, one designs and proves correct with respect to this specification an algorithm
computing determinants (e.g. Bareiss’ algorithm [Bar68]). Note that the representations
of matrices and coefficients are still abstract: the only required primitives, which are
assumed correct at this point, are accesses to coefficients at given coordinates in a matrix
and arithmetic operations in the ring of coefficients.

The next step is to fix the representation of matrices. This is when the programming
language has to be chosen. In a programming language featuring arrays, one may use
them to represent matrices. One has to implement the primitives that are needed by the
algorithm based on this representation and to prove that they are correct. For the sake
of modularity, the ring of coefficients stays abstract.

The last step is to choose the representation of coefficients. Assume one is only in-
terested in determinants of matrices on integers. One may then choose to use an imple-
mentation of the binary representation of integers in the chosen programming language.
Once again the implementation of the primitives has to be proven correct.

All in all, we obtain a certified program that computes the determinant of a given
matrix on integers.

Example

Similarly to the standard notion of refinement, we are interested in a technique that allows
for a change of representation of programs. We also want this change to be certified: two
representations of a program must compute the same function, i.e. they must be extensionally
equal.

However, although some sort of compositionality applies (see Section 8.1.4), this is not
a step-by-step approach: the change of representation is performed in one go. Moreover, as
opposed to the mechanism implemented in the Isabelle/HOL code generator [Lam13, LL19]

116

8.1. REFINEMENT

or in Coq’s Fiat library [DPGC15], the framework which is of interest to us, implemented
in the CoqEAL library [CCD+], does not relate an abstract representation to a concrete
implementation but two concrete implementations.

The specificity of the refinement framework in CoqEAL is that it relates proof-oriented
implementations to computation-oriented ones. The point is to benefit from proof-oriented
representations, such as the ones in the Mathematical Components library [MCT], to
prove correctness properties while still being able to perform computations on more efficient
representations. By proving correct the computation-oriented implementations, only with re-
spect to the proof-oriented ones, we know that the result of an efficient computation is the
computation-oriented representation of the proof-oriented value on which we proved correct-
ness.

The correctness of a representation with respect to another one is expressed through a
refinement relation. For instance, if one wants to relate the unary representation of non-
negative integers (nat in Coq) to the binary one (N in Coq), a possible refinement relation
is the following one:

Definition Rnat (n : nat) (m : N) := nat_of_bin m = n,

where nat_of_bin is a (trusted) function computing the unary representation of a binary non-
negative integer. The intended meaning of Rnat n m is "n and m represent the same (abstract)
non-negative integer".

8.1.2 Program Refinement

Program refinement consists in replacing an algorithm with a different one that computes
more efficiently the same function, but preserving the data structures. The correctness
of such a refinement thus amounts to proving that the two algorithms are extensionally equal:
an algorithm Q is a refinement of another algorithm P if and only if

forall x, P x = Q x.

In Mathematical Components, the determinant of a matrix on a ring is defined
through the \det function, which implements the Leibniz formula

detM =
∑
σ∈Sn

ε(σ)
n∏
i=1

Mσ(i),i,

where ε(σ) is the signature of the permutation σ and n is the dimension of the matrixM .
Locks on the matrix structure put aside, this gives a highly inefficient program com-

puting the determinant of a matrix. Fortunately, CoqEAL contains an implementation
of Bareiss’ algorithm, named bdet.

Its correctness property is the following equality.

Lemma bdetE (R : comRingType) (n : nat) (M : ’M[R]_(1 + n)) :
bdet M = \det M,

Example

117

CHAPTER 8. REFINEMENT AND COMPUTATION

where comRingType is Mathematical Components’ structure of commutative rings
and ’M[R]_(1 + n) denotes the type of square matrices on R of size 1 + n.

8.1.3 Data Refinement

Data refinement involves putting in correspondence the base objects of two different data
representations, but also the primitives of these data structures (thus, through some kind
of program refinement). We already presented a relation for such a refinement (Rnat in
Section 8.1.1). We give here an example based on matrices.

As explained in Section 3.3.1, matrices are represented in Mathematical Compo-
nents by a structure which essentially packs a sequence with a proof on its length. Some
matrix operations however affect the size of the matrix (e.g. matrix product transforms
matrices of sizes m× p and p× n into a matrix of size m× n).

A more efficient representation of matrices is thus the sequence alone, without the
proof and with no information about the size of the matrix. This representation is
parametrised by the type of coefficients.

Definition seqmx {A : Type} := seq (seq A).

For example, the zero matrix of size m×n is then the sequence that contains m times
the sequence that contains n times the null element of the ring of coefficients.

Definition seqmx0 {A : Type} ‘{zero_of A} (m n : nat) :=
nseq m (nseq n 0%C).

Here, the 0%C notation denotes the null element of A, inferred thanks to the zero_of
type class (see Section 8.2.2 for a description of the inference mechanisms for refinement).

This structure is then proven correct with respect to the matrix structure from Math-
ematical Components when it is instantiated on the proof-oriented ringType struc-
ture. The refinement relation relates a matrix M to a sequence s by stating that s and the
sequences that it contains have the right sizes (corresponding to the dimensions of M) and
that corresponding coefficients in s and M are equal. We give the correctness property
for the zero matrix.

CoInductive Rseqmx {R : ringType} {m n : nat} :
’M[R]_(m,n) -> @seqmx R -> Type :=
Rseqmx_spec M s of
size s = m

& forall i, i < m -> size (nth [::] s i) = n
& forall i j, M i j = nth 0%C (nth [::] s i) j : Rseqmx M s.

Lemma Rseqmx_0 (R : ringType) (m n : nat) :
Rseqmx (const_mx 0%R) (@seqmx0 R _ m n).

Example

118

8.1. REFINEMENT

8.1.4 Composition of Refinements

The essential property for refinement is compositionality: it should be possible to combine
several data refinements, or program refinement with data refinement, in a seamless way. For
instance, we should be able to compose refinements from dense to sparse polynomials and from
unary to binary integers to obtain a refinement from dense polynomials over unary integers
to sparse polynomials over binary integers.

In order to achieve this goal, Cohen et al. [CDM13] propose the following refinement
methodology:

1. parametrise the algorithm by the data it manipulates using abstract types and abstract
basic operations (this is called generic programming).

2. prove the correctness of the algorithm instantiated on a proof-oriented representation
of the parameters.

3. use the parametricity of the algorithm to deduce its correctness when it is instantiated
on a corresponding computation-oriented representation of the parameters.

This methodology also applies to data structures and their primitives.
In particular, for the composition of program refinement and data refinement, simple

extensional equality is no longer sufficient. Indeed, one cannot write

forall x, P x = Q x

when P and Q operate on different data structures. In particular, x can be the argument of
only one of those programs: the one which manipulates the data structure which serves to
implement x.

A more complex notion of correctness, based on refinement relations, is then used. Keeping
in mind the fact that for a refinement relation R, R x y means "x and y implement the
same object", one may express the correctness of Q with respect to P in the following way:
for all x and y such that R x y, P x and Q y are related by the appropriate refinement
relation (corresponding to the output data types and denoted by R’ below). This folds into
the following statement in CoqEAL:

(R ==> R’) P Q.

Lemma bdetE in Section 8.1.2 corresponds to the second step of the methodology for
the refinement of the determinant function (the first step being the definition of bdet
through generic programming).

The last step requires first to have a compositional data refinement for matrices. The
two first steps of the refinement of matrices are described in Section 8.1.3. The last one
makes it possible to compose this refinement with a refinement of the coefficients. A new
refinement relation is defined.

Definition RmxC {R : ringType} {C : Type} (rC : R -> C -> Type)
{m n : nat} : ’M[R]_(m,n) -> @seqmx C -> Type :=
(Rseqmx \o (list_R (list_R rC)))%rel.

Example

119

CHAPTER 8. REFINEMENT AND COMPUTATION

Here, the notation (_ \o _)%rel represents relation composition (the composition
of R and S is R ◦ S = {(x, y) | ∃z. (x, z) ∈ R ∧ (z, y) ∈ S}), rC denotes a refinement
relation between R and C, and list_R defines a relation on sequences by mapping the
relation in argument on their elements.

The true refinement theorem on the zero matrix is then the following one:

Lemma RmxC_0 (R : ringType) (C : Type) (rC : R -> C -> Type) ...
(m n : nat) : RmxC rC (const_mx 0%R) (@seqmx0 C _ m n),

where we omitted hypotheses about the null element of C.
We can now state the refinement theorem for the determinant:

Lemma refine_det (R : comRingType) (C : Type) (rC : R -> C -> Type) ...
(n : nat) : (RmxC rC ==> rC) \det bdet.

We omitted parts of the statement that are related to automation and that we will
discuss in Section 8.2.2. In particular, algebraic operations on C and their correctness
properties are omitted.

8.2 Using Refinement in Proofs

The refinement mechanism we presented in Section 8.1 makes it possible to perform certi-
fied and efficient computations inside the proof assistant. We will now explain how to exploit
this possibility in order to simplify the proof process.

We first discuss in Section 8.2.1 the interactions between proofs and computation in the
Coq proof assistant [CDT19]. Then, we describe the inference mechanism that makes it pos-
sible to automate refinement, thus making the use of this mechanism easier (see Section 8.2.2).
Finally, we present in Section 8.2.3 a tactic we designed in order to use refinement to simplify
expressions inside a goal.

8.2.1 On Proofs and Computation

Computation may be used in the context of proofs in order to shorten and simplify them.
We described in Section 3.2 a proof where computation plays a major role: arithmetic ex-
pressions need to be simplified in order to derive properties such as sign conditions. This is
however not the only use of computation for proofs. Indeed, specialised algorithms, decision
procedures, may be used to decide whether an object has a given property. Executing such
algorithms, hence performing a computation, is a way of proving theorems.

In this section, we briefly discuss a terminology coined by Barendregt and Cohen [BC01]
to describe the different possibilities to make use of computation in a proof assistant. We
focus in particular on the options that are available in Coq.

Three strategies are possible to carry out computation in a proof assistant: the believing,
sceptical and autarkic approaches.

120

8.2. USING REFINEMENT IN PROOFS

The Believing Approach

The believing approach is the most efficient one. Computation is performed by an external
tool which was designed for it. For instance, one could use a computer algebra system such
as Maple [Map19] or SageMath [SD19].

An interface between the proof assistant and the external tool has to be designed. When
one wants to compute an arithmetic expression for instance, the first step is to translate the
expression (written in the language of the proof assistant) to the language of the computer
algebra system. Then, the computation is performed and the result is translated back into an
expression that is legible by the proof assistant (see Figure 8.1).

Arithmetic expression Internal representation

ValueAdmitted value

Computer algebra system

Translation

Computation

Translation

Proof Assistant

Figure 8.1 – The Believing Approach

The believing approach is named after the fact that any result returned by the external
tool is assumed correct. The translation functions are trusted too. This means that this
approach gives no guarantee on the correctness of any proof that relies on such computations.

It is possible to have more confidence in this approach if the external tool was previously
proven correct, even though the translation functions still have to be trusted. Indeed, one
could for instance certify a program in Coq and then extract a program that can be compiled
and executed outside the proof assistant (see Letouzey’s work [Let04, Let08] for details about
Coq’s extraction mechanism). Still, this adds to the picture another trusted element: the
extraction mechanism is only partially certified as of today [Glo09, Glo12, MPW+18].

The Sceptical Approach

The sceptical approach adds reliability at the cost of efficiency. With this approach, we try
to minimise the cost in efficiency: computation is still performed by an external tool, but it is
no longer trusted. The proof assistant verifies the results provided by the computer algebra
system.

The performance of this approach will be determined by how this verification is performed.
The best case scenario is when the external tool is able to provide a certificate: together with
the result of the computation, the computer algebra system sends to the proof assistant a
description of elementary steps that led to this result (see Figure 8.2). The proof assistant
can then check the correctness of each of these steps.

In the worst case scenario, only the result of the computation is provided. The proof
assistant then has to check the result by itself (or with the help of a human operator), using
the autarkic approach. Due to the current limitations of proof assistants (bad performances in

121

CHAPTER 8. REFINEMENT AND COMPUTATION

Proof Assistant

Arithmetic expression Internal representation

Certi cateProven value

Computer algebra system

Translation

Computation

Veri cation

procedure

Figure 8.2 – The Sceptical Approach with Certificates

computations, limited number of decision procedures already implemented), only some kinds
of computation can be verified without certificates. In Coq for instance, Maple was used as a
tool in a formal proof of Apéry’s Theorem [CMST14] and an automated interface with Maple
was developed for computations in fields [DM05] and quantifier elimination over algebraically
closed fields [DM06].

In this approach, the translation function and the certificate generator do not need to
be trusted: if they are incorrect and provide a false result, the verification step performed
by the proof assistant will fail and the result will not be used.

Thus, we benefit from the reliability of the proof assistant while keeping part of the
efficiency of the computer algebra system.

Remark

The Autarkic Approach

With the autarkic approach, we try to fulfil the dream that proof assistants become unified
frameworks for mathematics, in which it is possible not only to mechanise proofs but also to
carry out certified and efficient computation. Thus, computation is performed inside the proof
assistant. This is currently the most inefficient strategy.

The basic mechanism for computation in Coq is conversion (recall our discussion in the
introduction). Indeed, Coq’s language is based on λ-calculus, which has a computational
model. Thanks to the reduction rules of λ-calculus, λ-terms are programs that one may want
to execute. Through conversion, Coq captures equality by computation. The compute tactic
implements this computational model.

In order to make computation more efficient than using Coq’s interpreter, other reduction
strategies were developed. The vm_compute tactic [GL02] improves on the compute tactic using
a virtual machine that carries out reduction in an optimised way. The native_compute tac-
tic [BDG11] further improves efficiency by compiling the goal to OCaml [LDF+18] and using
the OCaml compiler to produce binary code that is executed to carry out the computation.

However, conversion may be blocked through locks, as it is the case in the Mathematical
Components library [MCT]. A possible work around is to use rewriting rules: with an
appropriate set of lemmas, one can capture the computational behaviour of functions with

122

8.2. USING REFINEMENT IN PROOFS

equalities that can then be used through the rewrite tactic. This can however be extremely
tedious and fairly inefficient.

The solution proposed in the CoqEAL library [CCD+] is to still make use of conversion,
not by tuning the system to remove locks since the underlying structures and algorithms are
inefficient, but by using its refinement mechanism in order to carry out computation on more
efficient structures, with more efficient algorithms.

8.2.2 Automation of Refinement

The ease of use of the refinement framework is an important concern to us: we want to be
able to trigger computation in a seamless way during a proof. Usually, there is no refinement
theorem that gives the refinement of the particular expression one wants to refine. It is often
necessary to combine several theorems.

For instance, if one wants to refine the expression 2 + 3, one has to look for refinements
of 2 and 3 and for a refinement of the addition on non-negative integers. In short, one has to
decompose the expression to be refined into smaller bricks for which refinement theorems are
available. Moreover, there is also an overloading issue: the + symbol denotes any addition in
a ring. Since different data types have different refinements, it is necessary to use types to
know which theorem to apply.

In order to simplify the use of refinement, the CoqEAL library provides an inference
mechanism [CDM13] based on type classes [SO08]. Type classes serve two purposes here:
they make it possible to resolve overloading of notations and to keep a data base of refinement
theorems.

Type Classes for Overloading

In order to achieve overloading of notations, standard operations are bundled into type
classes that come with standard notations. For instance, the addition operation is inferred
thanks to the add_of type class, that comes with the standard + notation. It can for example
be instantiated for non-negative binary integers.

Class add_of (A : Type) := add_op : A -> A -> A.

Notation "+%C" := add_op.
Notation "x + y" := (add_op x y) : computable_scope.

Instance add_N : add_of N := N.add.

The interpretation scope computable_scope, delimited by %C, distinguishes computation-
oriented operations from proof-oriented ones, usually given in the scope ring_scope from
Mathematical Components. Thus, the refinement theorem for addition on non-negative
integers is easily written as follows.

Lemma Rnat_add : (Rnat ==> Rnat ==> Rnat) addn +%C.

Such type classes play a significant role in our running example of Section 8.1. The
omitted arguments of Lemma refine_det in Section 8.1.4 include arithmetic operations
on the computation-oriented type C, which are inferred thanks to these classes. Moreover,
the zero_of argument of seqmx0 in Section 8.1.3 is such a class.

123

CHAPTER 8. REFINEMENT AND COMPUTATION

Refinement Inference

By using a tag to bundle refinement relations into a type class, one can feed type class
inference with all the theorems involving these relations. Together with particular instances
defining rules to guide the inference, this gives a logic program computing refinements.

Class refines {A B : Type} (R : A -> B -> Type) (a : A) (b : B) :=
refines_rel : R a b.

The refines class takes as argument the proof-oriented type A, the computation-oriented
type B, a relation between those two types and bundles a proof that two elements a and b of
these types are in relation. By default, inference is guided by the form of a: the intuition is
that we refine a term of type A into a term of type B in order to perform a computation. From
a logic programming point of view, a is the input of the program whereas the other arguments
are the outputs.

The refinement theorem for the addition on non-negative integers is for example actually
stored thanks to the following instance.

Instance Rnat_add : refines (Rnat ==> Rnat ==> Rnat) addn +%C.

Once the refinement theorems for the base operators/objects of a data type are stored,
Coq can combine them using rules defined by particular instances in order to infer refinement
theorems for more complex expressions defined from these smaller bricks.

Among these rules, there is the one for the application of a function. In short, a function
applied to an argument is refined to a refinement of the function, applied to a refinement of
the argument.

Instance refines_apply (A B : Type) (R : A -> B -> Type)
(C D : Type) (R’ : C -> D -> Type) :
forall (c : A -> C) (d : B -> D), refines (R ==> R’) c d ->
forall (a : A) (b : B), refines R a b -> refines R’ (c a) (d b).

This rule is sufficient for dealing with any number of arguments thanks to currying. It is
essential to break expressions into smaller bricks. For example, on the goal

refines ?R (2 + 3) ?e,

where ?R and ?e are existential variables denoting holes to be filled, the refines_apply rule
leads to the two following subgoals

refines (?R ==> ?R) (fun n => 2 + n) ?f,
refines ?R 3 ?n,

thus partially instantiating ?e as ?f ?n. Note that we kept the same relation ?R since ?f must
have identical input and output types.

A tactic is available to trigger type class inference. If one types coqeal, the whole goal is
refined and then solved by computation (if CoqEAL contains refinements for all the elements
of the goal). If one wants to refine only a part of the goal and perform no computation yet,
it is possible to use the following lemma.

Lemma refines_eq (T : Type) (x y : T) : refines eq x y -> x = y.

Given x, using this lemma triggers type class inference to find an instance of

124

8.2. USING REFINEMENT IN PROOFS

refines eq x ?y,

thus deriving the refinement ?y of x. To be precise, ?y is not exactly the refinement of x, since
it has the same type. However, most refinement relations are defined using an equality that
involves a function from the computation-oriented type to the proof-oriented type (recall Rnat
in Section 8.1.1), so that ?y is in fact such a function applied to the refinement of x.

In Section 8.2.3, we present a tactic that uses this idea of a function from the computation-
oriented type to the proof-oriented in order to use refinement for the simplification of arith-
metic expressions.

8.2.3 A Simplification Tactic

In the context of a proof such as the one in Section 3.2, computation is used to sim-
plify arithmetic expressions. We designed a tactic in order to make it possible to easily use
refinement for such computations.

The idea behind this tactic is simple: once we know a refinement of a given expression,
we can compute efficiently on this new representation and, in particular, we can compute
simplifications. Since this tactic is designed to simplify proof-oriented expressions, we use
functions that go from computation-oriented types to proof-oriented types in order to get back
proof-oriented expressions. Such functions must respect equality, i.e. they must be refinement
of the identity function: we must be able to prove refinement theorems of the form:

Lemma refines_spec : refines (R ==> eq) id spec,

which unfolds to

forall P C, R P C -> id P = spec C.

Using such a theorem in combination with Lemma refines_apply and Lemma refines_eq
makes it possible to design the following simplification strategy, illustrated by Figure 8.3: given
a proof-oriented expression P,

1. trigger refinement inference using Lemma refines_eq on the term id P, so that a
refinement C of P is inferred and id P is replaced with spec C.

2. use conversion on the computation-oriented object C to simplify it into C’.
3. use a reduction strategy of Coq (e.g. simpl, compute or vm_compute) in order to

reduce spec C’ to a simplified proof-oriented expression P’.

Proof-oriented structure Computation-oriented structure

Proof-oriented structure Computation-oriented structure

refinement

conversion

spec and reduction strategy

simplification tactic

Figure 8.3 – Refinement-based Simplification Strategy

Let us give an example on polynomials. In Mathematical Components, a polynomial
is implemented as the sequence of its coefficients with a proof that the last element of the

125

CHAPTER 8. REFINEMENT AND COMPUTATION

sequence is non-zero (it is the leading coefficient). One can refine such a structure by removing
the proof. Thus, the polynomial

1%:P + ’X - (1%:P * ’X),

where %:P casts a constant into the corresponding constant polynomial, is refined into

spec ([:: 1%C] +%C [:: 0%C ; 1%C] -%C ([:: 1%C] *%C [:: 0%C; 1%C])),

where +%C, -%C and *%C respectively denote the coefficient-wise addition, opposite and multipli-
cation of sequences on computation-oriented coefficients. The conversion step then transforms
the sequence in argument of spec into

[:: 1%C ; 0%C].

An appropriate spec function then removes the null coefficient in order to return the
polynomial 1%:P.

In our published work [CR17b], the only reduction strategy that was available was simpl
and our simplification tactic was called coqeal_simpl. Cyril Cohen later reworked its infras-
tructure in order to make it possible to also use the compute, vm_compute and native_compute
tactics and so that different tactics and constructions are available:

— coqeal_ strategy simplifies the whole goal using the given reduction strategy.

— coqeal [pattern] strategy finds a sub-expression in the goal that matches the pat-
tern and then simplifies it using the reduction strategy.

— [coqeal strategy of x] simplifies x into x’ using the given strategy and outputs a
proof of x = x’.

We used in particular this last construction to give a one-liner proof of Lemma det_ctmat1
from the extension of Mathematical Components for real closed fields [Coh]. This lemma
states that the matrix 1 1 1

−1 1 1
0 0 1

has determinant 2. The formal proof is the following.

Lemma det_ctmat1 : \det ctmat1 = 2.
Proof.
by do ?[rewrite (expand_det_row _ ord0) //=;
rewrite ?(big_ord_recl,big_ord0) //= ?mxE //=;
rewrite /cofactor /= ?(addn0, add0n, expr0, exprS);
rewrite ?(mul1r,mulr1,mulN1r,mul0r,mul1r,addr0) /=;
do ?rewrite [row’ _ _]mx11_scalar det_scalar1 !mxE /=].

Qed.

It is a succession of rewriting rules that computes the determinant by expanding it along
the first row. Thanks to our tactics, this can be shortened into

Definition det_ctmat1 := [coqeal vm_compute of \det ctmat1].

126

8.3. THE BENEFITS OF PARAMETRICITY

Note that it is a Definition and not a Lemma: we do not have to manually compute the
determinant in order to provide a statement to be proven. This is not critical on this example
but it would be a great improvement for bigger matrices with larger coefficients. Moreover, if
we type

Check det_ctmat1,

Coq answers as expected

det_ctmat1 : \det ctmat1 = 2.

8.3 The Benefits of Parametricity

Parametricity [Wad89] is a reformulation of Reynolds’ abstraction theorem [Rey83]. It is
based on the idea that all inhabitants of a (closed, i.e. with no free variable) type share a
property, expressed through a relational interpretation of the type.

We first explain this interpretation and state the parametricity theorem in Section 8.3.1.
Then, we show in Section 8.3.2 how parametricity makes it possible to further automate
refinement: this automation does not apply to refinement inference but to the proof of refine-
ment theorems. Finally, we discuss a collaboration that we started with Cyril Cohen, Assia
Mahboubi, Matthieu Sozeau and Nicolas Tabareau in order to generalise parametricity (see
Section 8.3.3).

8.3.1 The Parametricity Theorem

Reynolds introduced a relational interpretation of types in his work about polymorphism.
More precisely, we are interested in parametric polymorphism: a function or a data type is
said to be polymorphic if and only if it can be implemented in such a way that its behaviour
does not depend on the type of its parameters. For instance, both the vector data type
and append function given in the introduction of this thesis are polymorphic with respect to
the type A of the elements: the elements may well be integers, matrices or even functions
from vectors to real numbers, the way vectors are built and the computational behaviour of
the append function are the same in every case.

From a type point of view, polymorphism is captured by the polymorphic type ∀X. A,
where X is a type variable and A is a type where X may appear as a free variable.

Reynolds’ relational interpretation of types was first expressed in terms of a set-theoretic
model of the polymorphic λ-calculus [Rey83], which in fact does not exist [Rey84]. Wadler
however transposed this interpretation to another context where models actually exist [Wad89]
and Reynolds later provided an interpretation in terms of categories [MR91]. In this section,
for the sake of simplicity, we stick to the set-theoretic view to give the intuition of the ab-
straction theorem.

Let us denote by JAK the interpretation of the type A as a relation. We give here examples
of interpretations for constant types, function types and polymorphic types.

— A constant type is interpreted as the identity relation on its elements. For instance,

JintK = {(x, x) | x : int} .

127

CHAPTER 8. REFINEMENT AND COMPUTATION

— The interpretation of function types exactly corresponds to the relation we described
in Section 8.1.2: two functions are related if and only if whenever their argument are related,
their outputs are related too. In short:

JA -> BK = JAK ==> JBK .

— Elements of a polymorphic type ∀X. A can be seen as (dependent) functions: given a
type represented by X, they compute an element of A(X). Since these functions are polymor-
phic, their behaviour does not depend on the type that will replace X.

Thus, the interpretation of ∀X. A must encompass the interpretation of any function type
with input type T and output type A(T). In particular, it depends on the interpretation JAK
where the interpretation JXK is left abstract: it may be any relation between two input types.
Two dependent function are then related if they agree with the interpretation of A for any
two related input types.

J∀X. AK = {(f, g) | ∀S. ∀T. ∀R ⊆ S × T. (f(S), g(T)) ∈ JAK {JXK← R}} .

Parametricity for A can then be expressed as follows: for all closed term t of type A, we
have (t, t) ∈ JAK. In a less naive context, terms also need to be interpreted and parametricity
also holds for terms and types that contain free variables, so long as these variables respect
the relations corresponding to their types. However, in CoqEAL we use parametricity only
on closed terms so we will not state the theorem in its full generality. Instead, we state a
slightly less general parametricity theorem in Theorem 8.1.

Theorem 8.1 (Parametricity). For all closed type A and all closed term t : A, JtK is a proof
of (t, t) ∈ JAK.

The parametricity theorem is stated for a simple calculus, but it can be extended to more
complex systems. To do so, it is sufficient to give an interpretation to the additional type
constructors and to prove that they satisfy the relation given in Theorem 8.1. This has
been done for dependent types: Bernardy et al. [BJP12] and Atkey et al. [AGJ14] proposed
two different interpretations for dependent types. Keller and Lasson [KL12] provided an
interpretation for the Calculus of Inductive Constructions and implemented a plug-in for Coq
that, given a closed term, instantiates the parametricity theorem on it. We helped updating
this plug-in for a new version of Coq and we now use it in CoqEAL for data refinement.

This plug-in only provides instantiations of the parametricity theorem: this is a
meta-theorem, i.e. it cannot be proven inside the theory of Coq. Still, the plug-in is
able, given an explicit Coq term t of type A, to compute JtK and JAK so that Coq’s type
checker will verify that JtK is indeed a proof of (t, t) ∈ JAK.

Some type theories were developed in order to internalise the parametricity theo-
rem [BM13, BCM15], but to our knowledge no proof assistant based on such a theory
exists.

Remark

128

8.3. THE BENEFITS OF PARAMETRICITY

8.3.2 Parametricity for Data Refinement

Wadler showed that the parametricity theorem can be used to derive "free theorems".
Cohen et al. [CDM13] noticed that the compositionality of data refinement corresponded to
these free theorems. In fact, the third step of the refinement methodology we described in
Section 8.1.4 can be automated thanks to parametricity.

Indeed, the parametricity theorem gives properties about polymorphic functions, which
are also called generic functions. The purpose of the first step of the refinement methodol-
ogy (generic programming) is to obtain polymorphic functions for which the parametricity
theorem will be relevant.

For instance, recall from Section 8.1.3 the definitions of the seqmx type and of its null
element, seqmx0. They are polymorphic with respect to the type of the coefficients of matrices.
Lemma Rseqmx_0, which we repeat here, corresponds to the second step of the methodology:
proving that when coefficients are in a ring R, seqmx0 indeed represents the null matrix of the
type ’M[R]_(m,n) of matrices on R.

Lemma Rseqmx_0 (R : ringType) (m n : nat) :
Rseqmx (const_mx 0%R) (@seqmx0 R _ m n).

The last step of the methodology is to use the parametricity of seqmx0 with respect to the
type of coefficients to deduce Lemma RmxC_0, which we also repeat, from Lemma Rseqmx_0.

Lemma RmxC_0 (R : ringType) (C : Type) (rC : R -> C -> Type) ...
(m n : nat) : RmxC rC (const_mx 0%R) (@seqmx0 C _ m n).

The relation RmxC is defined as the composition of the relation between ’M[R]_(m,n)
and @seqmx R and another relation that lifts a relation between R and a computation-oriented
type C to matrices. This second relation uses a function list_R, which is in fact the relational
interpretation of the (polymorphic) type of sequences: the type seq is interpreted as a function
that takes a relation between two types R and C and that returns a relation between seq R
and seq C.

Definition RmxC {R : ringType} {C : Type} (rC : R -> C -> Type)
{m n : nat} : ’M[R]_(m,n) -> @seqmx C -> Type :=
(Rseqmx \o (list_R (list_R rC)))%rel.

Forgetting for now its argument of type zero_of A, and assuming the dimensions m and n
of the matrix are global variables and not arguments, seqmx0 is of type forall A, seqmx A,
or equivalently forall A, seq (seq A). Theorem 8.1 thus proves that for any type R and C
and any relation rC between R and C, @seqmx0 R is related to @seqmx0 C by the interpretation
of seq (seq A) where rC replaces the interpretation of A. In other terms, the parametricity
theorem proves "for free"

(list_R (list_R rC)) (@seqmx0 R) (@seqmx0 C).

Combining this "free theorem" with Lemma Rseqmx_0, we indeed deduce Lemma RmxC_0.
If we take into account the other argument of seqmx0, we can notice that seqmx0 is of
type forall A, A -> seq (seq A). Indeed, the zero_of type class only hides an element
of A. Unfolding the interpretation of function types, the actual "free theorem" about seqmx0
is the following:

rC 0%R 0%C -> (list_R (list_R rC)) (@seqmx0 R 0%R) (@seqmx0 C 0%C).

129

CHAPTER 8. REFINEMENT AND COMPUTATION

The additional assumption in this theorem corresponds to the omitted hypothesis of
Lemma RmxC_0.

The dimensions of the matrix are actually considered as arguments by the function
that computes the parametricity interpretation. This makes statements more complex,
since the relational interpretation of nat appears. Fortunately, this relation coincides
with the identity relation so that we can specialise theorems to remove the extra as-
sumptions.

Ideally, one would indicate to the interpretation function the arguments with respect
to which one wants to exploit parametricity. We hope that the work we describe in
Section 8.3.3 will allow such modularity.

Remark

Thus, thanks to generic programming and to the parametricity plug-in implemented by
Keller an Lasson, we get automated proofs for the compositionality of data refinement.

8.3.3 Current and Future Work on Parametricity

We saw in Section 8.3.2 that the parametricity theorem gives "for free" proofs of compo-
sitionality for data refinement. In fact, the abstraction theorem is really more general and
captures a lot of different applications.

Depending on the context, one may add conditions on the relations that are used in the
interpretation of polymorphic types. Sometimes, these conditions are necessary to prove the
abstraction theorem. This is the case for instance in the work of Gilcher et al. [GLT17], who
coined the expression conditional parametricity.

In other cases, these conditions define the kind of "free theorems" one may expect:

— When refinement relations are used, we obtain compositionality theorems for data
refinement.

— Gross et al. [GEC18] noticed the importance of abstraction for reification (we introduce
reification in Section 9.1) but their work can be generalised: we noticed that the abstraction
theorem in fact proves the correctness of reification when it is used on the appropriate relation.

— Tabareau et al. [TTS18] require the relations to be equivalences (not equivalence re-
lations but what is called equivalence in homotopy type theory [UFP13]) to define univalent
parametricity.

Together with Cyril Cohen, Assia Mahboubi, Matthieu Sozeau and Nicolas Tabareau, we
plan on building a framework that is general enough to share proofs between parametricity
for refinement and univalent parametricity. We noticed that a reformulation of the property
"being an equivalence" may factor both notions.

Indeed, we believe that refinement relations correspond to functional relations. The intu-
ition is that for a functional relation R, for any x there exists exactly one y such that (x, y) ∈ R.
This implies in particular that there is a function f such that

∀x. ∀y. (x, y) ∈ R⇔ y = fx.

130

8.3. THE BENEFITS OF PARAMETRICITY

Moreover, a relation R is an equivalence if and only if it is functional and its converse is also
functional. With enough care for modularity, it should thus be possible to reuse the proof of
the abstraction theorem for functional relations in the proof of this theorem for equivalences.

We give here a more precise explanation for the reader who is fluent in homotopy type
theory.

This reformulation corresponds to the definition of equivalence based on contractible
maps. In particular, a relation R is functional if and only if

∀x. isContr

(∑
y

R x y

)
.

Remark

We also think that a proper instrumentation of the parametricity interpretation may help
automatically finding the appropriate association list for proofs of correctness of reification (see
Section 9.1 for the utility of association lists for reification). We plan to experiment with
an implementation of the parametricity interpretation using MetaCoq [ABTS18, ABC+18,
ACB+], which is simpler than the plug-in we use in CoqEAL.

131

Part III
Tools for Automation

CHAPTER 9

PROOF BY REFLECTION

Reflection [Bou97], also known as computational reflection [Har95], is a proof methodology
based on computation. It has been used to implement several decision procedures in Coq,
such as the ring [GM05] and field [DM01] tactics.

We discuss the original reflection methodology in Section 9.1 before describing a more
modular methodology based on refinement, which we implemented in a prototype of tactic
analogous to ring (see Section 9.2). Finally, we discuss in Section 9.3 possible improvements
on this prototype and future work that will make it more general.

This chapter may be seen as an extended version of our publication on the topic [CR17b].
This work was done in collaboration with Cyril Cohen. The code snippets in Section 9.1
come from Coq’s standard library [CDT19]. Those in Section 9.2 come from the CoqEAL
library [CCD+].

9.1 Principles of Proof by Reflection

As mentioned in Section 8.2.1, it is possible to prove theorems through computation thanks
to decision procedures. This does not apply to any theorem, since some problems are undecid-
able [Mon76]. However, there are properties that are decidable, i.e. there exists an algorithm
that, given an object, decides whether or not this object has the aforesaid property.

When such an algorithm is implemented and proven correct in a proof assistant, it can
serve as a basis for proof techniques. Indeed, if an algorithm A decides a predicate P on type T,
its correctness theorem will take the following form:

Lemma A_correct (x : T) : P x <-> A x = true.

Thus, the algorithm A can be used directly in order to prove that P holds on some object x.
It is sufficient to apply Lemma A_correct and then let computation do the proof: either A

133

CHAPTER 9. PROOF BY REFLECTION

returns true and the property is proven thanks to the reflexivity of equality or A returns false
and we know that the property does not hold on x.

A semi-decision procedure is sometimes sufficient: if one already knows (without any
formal proof) the expected output of A, it is sufficient to use this technique only on instances
that succeed. Thus, it is not necessary to know that A answers true on all x such that P x,
i.e. that A is complete but that P x holds whenever A answers true, i.e. that A is sound (see
Lemma A_sound).

Lemma A_sound (x : T) : A x = true -> P x.

However, for this proof technique to be efficient, it is necessary that the algorithm A both
has a good computational complexity and manipulates a computation-oriented data structure.
Hence, one often has to translate the goal to an appropriate data type.

For Boutin [Bou97], appropriate data types are inductive types since one can build efficient
procedures based on pattern matching. Thus, the goal will be reflected to an abstract syntax
tree, based on an inductive type, on which the (semi)-decision procedure will operate. This
translation step is called metaification by Boutin, since it is usually not implemented in the
language of terms but in a meta-language (e.g. the language Ltac [Del00] of tactics in Coq).
Nowadays, the name reification is preferred.

The soundness theorem of the (semi-)decision procedure is now stated as follows:

Lemma A_interp_sound (e : AST) : A e = true -> P (interp e),

where interp is an interpretation function that translates abstract syntax trees back to terms
in T. This function may depend on an association list that maps variables to values that could
not be reified in the tree (we will give an example later).

Hence, the reflection methodology (to prove P x) is the following 3-step strategy, illustrated
by Figure 9.1:

1. Reify x into an abstract syntax tree e.
2. Compute A e.
3. Apply Lemma A_interp_sound to conclude the proof.

Term of type T Abstract syntax tree

Proven property Boolean value

x
reification

e

computation with A

trueinterpretation and

Lemma A_interp_sound
P x

proof by reflection

Figure 9.1 – The Reflection Methodology

The important point is that both the interpretation and the proof of the property are
done through computation. Thus, reflection is not only an efficient way to prove theorems,
but also to have short proofs. Indeed, in Coq, computation is done through conversion,
which does not appear in proof terms. For instance, the term eq_refl n, i.e. the reflexivity

134

9.1. PRINCIPLES OF PROOF BY REFLECTION

of equality instantiated on the integer n : nat, is a perfectly valid proof of 0 + n = n, since
both sides of the equation are convertible; the computation that transforms 0 + n into n does
not appear in the proof term. As a consequence, the proof of P x does not contain any trace
of the translation from x to interp e nor of the step that transforms A e into true, since
they are convertible: the proof term is only the application of Lemma A_interp_sound to the
reflexivity of equality.

We illustrate this methodology with the example of the ring tactic [GM05], which
decides equality between two arithmetic expressions up to the axioms of rings.

This tactic works as follows: both expressions are put in normal form through a
procedure based on reflection and then compared. If the normal forms are equal, then
the arithmetic expressions are equal. More precisely, the methodology illustrated by
Figure 9.1 is implemented as follows:

1. Reify each expression into an abstract syntax tree representing polynomial expres-
sions with integer coefficients.

This is done by observing the head operator in the expression and interpreting it as
an operator over polynomials, and then recursively reifying its arguments. The abstract
syntax tree data type provides constructors for the arithmetic expression generated by
the following grammar:

e ::= 0 | 1 | e1 + e2 | e1 ∗ e2 | e1 − e2 | −e | en | c,

where n ranges over natural numbers and c over ring-specific constants for which the user
has provided an interpretation. For the remaining operations that have no interpretation,
the sub-expression that cannot be reified is translated as an indeterminate and stored in
an association list for interpretation.

For instance [CDT19], the expression

((f(5) + x) * x) + ((if b then 4 else f(3)) * 2)

is reified into the polynomial

((Y + Z) * Z) + (X * 2),

where the map {X -> if b then 4 else f(3), Y -> f(5), Z -> x} is stored. Here,
f and x are variables and consequently have no interpretation as polynomial opera-
tions/objects and the if construct is not a standard ring operation, although it could be
encoded as follows.

if b then x else y = x * b + y * (1 - b).

2. Normalise the abstract syntax trees into a sparse representation of Horner poly-
nomials and compare the normal forms. Note that this implies another change of repre-
sentation and that this is done by computation.

Horner’s representation of polynomials is the following: the polynomial

Example

135

CHAPTER 9. PROOF BY REFLECTION

a0 + a1 ∗X + a2 ∗X2 + · · ·+ an ∗Xn

is represented as

a0 +X ∗ (a1 +X ∗ (a2 + · · ·+X ∗ an) . . .)).

This representation can be generalised to multivariate polynomials.
Grégoire and Mahboubi implemented an algorithm norm that computes a normal

form in this representation for polynomials and another one, Peq, that compares two
normal forms and returns true if they are equal.

3. The soundness lemma for this procedure is stated as follows (we simplified the
actual statement to hide implementation details for the sake of clarity):

Lemma ring_correct (e1 e2 : AST) (l : map) :
Peq (norm e1) (norm e2) = true -> interp l e1 = interp l e2.

Note that the two abstract syntax trees must share the association list since a single
sub-expression must be represented by the same indeterminate in both polynomials.

A simplification tactic, ring_simplify, based on this procedure, also exists. Its
soundness lemma could be stated as follows (this statement is also simplified):

Lemma ring_rw_correct (e : AST) (P : HornerPoly) (l : map) :
norm e = P -> interp l e = interp_Horner l P,

where interp_Horner evaluates a polynomial in Horner representation into a ring ex-
pression.

9.2 A More Modular Methodology

Decision procedures based on reflection are often designed in a monolithic fashion: they
rely on ad-hoc data structures to which specific transformations are applied. To implement
variations and/or improvements, one has to dive into the core of such procedures and change
the structures/proofs. This may require the development of an extensive theory of the involved
structures. For instance, in our example about the ring tactic in Section 9.1, two different
data structures for polynomial expressions are used and it is necessary to link them in order
to prove Lemma ring_correct.

We propose a more modular methodology for reflection, which makes a clear distinction
between the proofs of soundness for decision procedures and the computations they will per-
form. Thanks to the use of refinement (see Section 8.1), we may use different data structures
for the proof of soundness of a decision procedure and for its execution.

Our approach has two main benefits. On one hand, one can reuse the results of libraries
such as Mathematical Components to prove soundness. This reduces the amount of
lemmas to be proven. Moreover, such libraries usually contain structures that are well-suited
for proofs, which means that the subtleties of the ad-hoc data structures used for computation
will not impact the proof scripts. On the other hand, in this framework the soundness of each
computable operation with respect to the proof-oriented one can be proven independently

136

9.2. A MORE MODULAR METHODOLOGY

from the others. Thus, not only soundness is easier to prove but adding/removing/changing
an operation has less impact in terms of proofs than with the former methodology.

Our suggestion of strategy to use refinement is the following. We still want to prove
that a property P holds on a term x by using a (semi-)decision procedure A. The idea is to
implement A through generic programming so as to prove its soundness on a proof-oriented
data structure and to use a computation-oriented data structure to actually execute it. The
soundness theorem for A can be stated as follows:

Lemma A_PO_interp_sound (p : PO_type) : A p = true -> P (interp p),

where PO_type is the proof-oriented data type used for the proof of this theorem.
This leads to the following methodology, illustrated by Figure 9.2:

1. Reify x into a proof-oriented object p.
2. Refine p to an equivalent computation-oriented object c.
3. Execute A on c.
4. Deduce A p = true thanks to the parametricity of A.
5. Apply Lemma A_PO_interp_sound to conclude the proof.

Term of type T Proof-oriented object Computation-oriented object

Boolean valueBoolean valueProven Property

x
reification

p
refinement

c

computation with A

true

Parametricity of A

A p = trueinterpretation and

Lemma A_PO_interp_sound

proof by reflection with refinement

P x

Figure 9.2 – The Methodology of Reflection with Refinement

The interpretation function is (in general) no longer computable since it manipulates
a proof-oriented structure. As a consequence, the translation from x to interp p will
appear in the proof term.

Refinement also leaves a trace in the proof term. In fact, we trade a part of the effi-
ciency of reflection for a better modularity that eases the development and maintenance
of tactics.

Warning

We implemented a prototype of a tactic named coqeal_ring, which is available in
CoqEAL [CCD+], and that tries to reproduce the ring tactic with this methodology.
Actually, our implementation diverges from this methodology in a few places that we
will pinpoint in our description.

1. We reify arithmetic expressions into the data type for polynomials in Mathemat-
ical Components [MCT].

Example

137

CHAPTER 9. PROOF BY REFLECTION

Since Mathematical Components does not contain a structure for multivari-
ate polynomials, we use an iterated structure of univariate polynomials, i.e. we re-
place Z [X1, . . . , Xn] with Z [X1] . . . [Xn]. This implies the choice of an ordering of the
variables, which must be the same for the two expressions.

This step, implemented as a tactic named polyfication, goes in fact through a
reification into an abstract syntax tree that is then translated into a polynomial by a
function ast_to_poly. The correctness of this function is stated as follows (we simplified
the statement):

Lemma polyficationP (e : AST) (l : map) :
interp l e = eval_poly l (ast_to_poly e),

where eval_poly generalises the polynomial evaluation function from Mathematical
Components to iterated polynomials. This function is not executable.

After executing the polyfication tactic on the goal

e1 = e2,

the goal is

eval_poly l p1 = eval_poly l p2.

2. We refine the polynomials from Mathematical Components to a structure
that implements Horner’s representation of polynomials.

This structure is not exactly the one that is used in the implementation of ring but
it already existed in CoqEAL. In particular, all the refinement theorems were already
proven.

3. At this point, we deviate from the methodology. Although an equality test exists
in CoqEAL for Horner polynomials, there is no normalisation function in this library.
Instead of implementing such a function and proving its refinement theorem, we preferred
fast prototyping over an actual implementation of the methodology so that we exploited
another tool that was available: our simplification tactic described in Section 8.2.3.

Thus, this step corresponds to the second step in Figure 8.3 and we only apply
conversion to simplify the polynomials in Horner representation.

4. This step now corresponds to the third step in Figure 8.3: we use the already
proven correct spec function and the vm_compute reduction strategy to get back poly-
nomials from Mathematical Components.

The three last steps are implemented in a tactic named coqeal_vm_compute_eq2 and
that uses twice our tactic from Section 8.2.3 to transform the goal

eval_poly l p1 = eval_poly l p2

into

eval_poly l q1 = eval_poly l q2,

where q1 (respectively q2) is the simplification of p1 (respectively q2).

138

9.3. POSSIBLE IMPROVEMENTS AND FUTURE WORK

5. We use a set of rewriting rules in order to evaluate the polynomials on the asso-
ciation list and get back arithmetic expressions. This set of rules is applied by a tactic
called depolyfication.

The coqeal_ring tactic successively applies the three tactics we just described, which
is analogous to applying the ring_simplify tactic on both sides of the equation, and
then attempts to close the goal by reflexivity. This strategy is depicted in Figure 9.3.

Arithmetic expression

AST

Proof-oriented polynomial Computation-oriented polynomial

Computation-oriented polynomialProof-oriented polynomialArithmetic expression

reification computation

depolyfication

polyfication

coqeal_vm_compute_eq2coqeal_ring

refinement

computation

spec and
vm_compute

Figure 9.3 – The coqeal_ring Tactic

9.3 Possible Improvements and Future Work

Our prototype of tactic to prove equations in rings may be improved in several ways: it
is missing some features of the ring tactic (see Section 9.3.1), its present implementation is
inefficient (see Section 9.3.2) and it opens the door to new use cases at a lesser implementation
cost than with the ring tactic thanks to the modularity of our methodology (see Section 9.3.3).

9.3.1 Missing Features

Presently, the implementation of coqeal_ring is incomplete. CoqEAL is missing some
refinements, like the power function and some coercions. Although the polyfication tactic
takes them into account, it is not possible to simplify the obtained polynomials through
the coqeal_vm_compute_eq2 tactic since they cannot be refined.

Moreover, the reification step of ring takes into account ring-specific constants for which
the user defined a translation. This is not the case of polyfication.

Another missing feature of our prototype is the possibility to use other rings than the set
of integers as the ring of coefficients for polynomials. The ring of integers is a natural choice
since there is a canonical injection from integers to any ring (in terms of category theory, we
say that the ring of integers is an initial object of the category of rings). However, it may
happen that another ring (e.g. Z/nZ or rational numbers) is a better choice. For instance, the
equation

a+ a = 0

is true for any a in the ring of boolean values. This is not provable if we use integers as
coefficients for the polynomial representation (2X and 0 are two different normal forms) but
it is if we use boolean values instead. Indeed, a+ a is represented by the polynomial

139

CHAPTER 9. PROOF BY REFLECTION

X +X = (1 + 1) ∗X = 0 ∗X = 0,

which is the same normal form as for the right-hand side of the equation.
Finally, Lemma polyficationP holds only for commutative rings, while the ring tactic

can also be used on commutative semi-rings.

9.3.2 Efficiency issues

The coqeal_ring tactic suffers from efficiency issues that we mainly attribute to the re-
finement step. Indeed, the bottleneck of our current prototype is the refinement of polynomial
operations which looks exponential in the number of indeterminates. This is caused by the
fact that we are using a nested data structure (iterated univariate polynomials), which implies
a lot of backtracking in type class resolution.

Cyril Cohen tried to improve the way backtracking in type class resolution works in or-
der to make refinement linear in the number of indeterminates but did not succeed because
of the complexity of the implementation. Another solution, which is currently under ex-
perimentation, is to replace iterated univariate polynomials by the structure of multivariate
polynomials developed by Strub [BBRS16, Str]. A refinement of this structure, now integrated
into CoqEAL, was developed by Martin-Dorel and Roux for the design of a reflexive tactic
to decide polynomial positivity [MR17]. We are currently extending this refinement in order
to use it in the coqeal_ring tactic.

Another efficiency issue may appear in the depolyfication tactic. As of today, it is
instantaneous on our small examples, but we expect that for bigger terms it could become
slower because it is based on rewriting. Indeed, rewriting involves unification and, in spite of
optimisations on the rewrite tactic in SSReflect in order to lower the number of considered
non-solvable unification goals, this method is still expensive in terms of running time.

We suggest to replace this step either with the same process as for the polyfication
tactic (going through an abstract syntax tree to replace rewriting by computation), or with a
refinement of polynomial evaluation. The latter would remove the need for depolyfication
since the simplification step based on refinement would directly evaluate back the polynomials
into arithmetic expressions.

9.3.3 Possible Generalisations

Once our tactic’s proof power catches up with ring and the efficiency issues are solved, it
will be possible to further improve its proof power thanks to the modularity of our method.

A slight modification of the polyfication tactic would allow us to handle morphisms, mak-
ing it possible to translate the expression f(x+y)−f(y), where f is a morphism, intoX+Y −Y
with the variable map [f(x); f(y)] and thus to simplify it into f(x). Indeed, the Mathe-
matical Components library contains canonical structures for morphisms. This inference
mechanism would then allow us to automatically recognise morphisms during reification.

We could also bring more flexibility to the reduction strategy. Instead of using the reduc-
tion strategy from Section 8.2.3, we suggest the user could plug in his own transformation,
like root finding or factoring, which would make it possible to go from an equation of the
form x2 + 2bx+ c = 0 to the conjunction of b2 − c > 0 and x = −b±

√
b2 − c. One can even

imagine plugging in here an external tool which produces a proof witness.

140

9.3. POSSIBLE IMPROVEMENTS AND FUTURE WORK

Finally, another possible improvement would be the use of Gröbner bases [Buc65] to reason
modulo equations. The current ring tactic already deals with hypotheses of the form m = p
where m is a monomial and p a polynomial, but thanks to Gröbner bases m could be any
polynomial. For instance, this would help us in the proof of stability for the inverted pendu-
lum (given in Section 3.2), where we extensively use the equation p2

2 + p2
3 = 1.

Buchberger’s algorithm for computing Gröbner bases was formalised by Théry [Thé01].
Pottier and Théry used Coq’s extraction mechanism to obtain a program from this for-
malisation, called gbcoq [PT98]. Pottier later used gbcoq, together with other programs
computing Gröbner bases, to build a reflexive tactic gbR proving equations in rings in a scep-
tical way [Pot08] but which is not fully automated: the gbR tactic calls gbcoq, which builds
a certificate, and outputs a small proof script based on this certificate, which is meant to close
the goal if it replaces the line that calls gbR.

We rather suggest a fully automated autarkic approach by integrating the formalised al-
gorithm into our tactic and running it inside Coq thanks to refinement. Implementing this
approach is made easier by Théry’s adaptation of his formalisation to the Mathematical
Components library [Thé], based on Strub’s formalisation of multivariate polynomials, for
which a refinement is already available.

141

CONCLUSION

Assessment of our Contributions

The purpose of this thesis was to evaluate available tools for classical analysis in Coq
and to propose solutions to their weaknesses in order to make interactive theorem proving in
mathematics easier. The best way of acquiring experience on a tool being to use it in concrete
situations, this thesis revolves around a case study in control theory.

I first used the Coquelicot library to formalise a proof of stability for the inverted
pendulum. This proof of correctness of a control function for this non-linear dynamical system
required two steps: first the proof of LaSalle’s invariance principle, a standard theorem in
stability analysis, and then its application to the case of the inverted pendulum. During both
steps, I not only accomplished the formal verification of the mathematical proof, but I also
worked on this proof, either to generalise the result that is proven or to correct errors in the
proof. In an ideal world, such a proof would be directly developed in a proof assistant so
that errors would be spotted at the time of making them and that no false result could be
considered proven.

The proof of LaSalle’s invariance principle using Coquelicot allowed me to learn to
use filters, which are not intuitive for someone who has done proofs using ε − δ definitions
for years. However, my experimentation with filters once again confirmed how convenient
they are to prove results about convergence. In particular, I formalised topological notions
such as compactness using filters, which proved to be particularly appropriate for LaSalle’s
invariance principle. This proof was moreover the occasion to introduce notations based on a
filter inference mechanism in order to write theorems that look closer to their pen-and-paper
equivalents.

The application of our formalisation of LaSalle’s invariance principle to the inverted pen-
dulum also allowed for the design of new tools that bridge the gap between formal and pen-
and-paper proofs. Indeed, our inference mechanism for the computation of differentials and
derivatives frees the user from such computation, which is often non-visible in proofs. More-
over, our connection of Coquelicot with Mathematical Components gives access to all
the facilities of Mathematical Components for linear algebra, which will be a great help
for multivariate analysis.

143

CONCLUSION

In spite of these new tools, there remained aspects of formal proofs with Coquelicot
that are unnatural for a mathematician, even for one who is now fluent in filter manipulation,
and there were still issues due to my use of Coquelicot in a context it was not designed
for (e.g. classical reasoning, combination with Mathematical Components). Hence, I
started a collaboration with other researchers in order to develop a new library that would
palliate these issues. This library integrates the tools I developed for the case study and
extends a subset of Coquelicot with new theories, especially in topology, and with tools for
asymptotic reasoning. Our set of tactics for small-scale filter elimination in particular allows for
an intermediate between ε− δ definitions and their filter-based equivalent, making statements
closer to those expressed using ε− δ definitions while still keeping the abstraction provided by
filters. Moreover, they make it possible to write proofs as if they were informal, manipulating
"near enough" values, which is also the purpose of our implementation of Bachmann-Landau
notations.

Although we made progress towards an easier formalisation of mathematics thanks to a
better collaboration between libraries and to tools to make formal proofs closer to pen-and-
paper ones, new challenges emerged. In particular, the near tactics are not intuitive enough,
which means that we need to improve them so that they may contribute to lower the level of
expertise in formal proofs required to formalise mathematics in Coq. Moreover, it is harder
to do proofs by large-scale reflection than with Coquelicot, which is also the case for the
Mathematical Components library.

I started a project on proof by computation to address this issue. Thanks to the introduc-
tion of refinement in the reflection methodology, I obtained a more modular methodology that
eases the proof of correctness of a reflection-based decision procedure while computation on
efficient data structures is still possible. Moreover, this new methodology is flexible enough to
allow for generalisations of existing tactics, thus widening their domain of application, which
means that more proofs could be automated.

Perspectives

The new reflection methodology based on refinement seems promising. It opens the door to
a more efficient development of reflexive tactics thanks to its modularity and the maximisation
of code reuse. In spite of its early development stage, our prototype of reflexive tactic for
arithmetic reasoning in rings paves the way towards generalisations of the ring tactic that
would require more effort on the present implementation of this tactic. Moreover, the use of
refinement by Martin-Dorel and Roux in a reflexive tactic [MR17], although it is only applied to
the verification procedure of a sceptical implementation, proves that the current inefficiencies
of the refinement framework are not prohibitive. Our future work on parametricity should
furthermore help improving the refinement framework. It would also be interesting to apply
this methodology in other contexts that are not necessarily related to arithmetic.

Working on the Mathematical Components Analysis library is a great source of
insight into the formalisation of mathematics. I learnt how important the choice of foundations
is for the proof practice. Our choice of strong axioms definitely eased the development of tools
that make formal proofs closer to pen-and-paper ones. Some of my collaborators are currently
investigating to determine if weaker axioms can be used without damaging the proof style.
This is all the more important as we will share insights on the formalisation of integrals with

144

the members of the MILC project [ABC+], who use Coquelicot with axioms that are similar
to ours to develop a formalisation of the Lebesgue integral [Leb50].

Beyond analysis, the Mathematical Components Analysis library is a step towards
a unified framework for formal mathematics in Coq. Its compatibility by design with Math-
ematical Components turns the combination of both libraries into a significant data base
of theories ranging from general algebra to analysis by way of topology and graph theory. In
particular, this should ease the formalisation of theories that involve both linear algebra and
analysis such as for instance the discrete Fourier transform and its applications (e.g. partial
differential equation resolution or polynomial multiplication).

Finally, this work also revealed that developing powerful tools that ease the proof process
and that bridge the gap between formal and pen-and-paper proofs is not sufficient. More
precisely, these tools may become a hindrance to the use of proof assistants for non-experts
if they are insufficiently intuitive. A great effort has to be put on documentation and, most
of all, on communication with users to understand and to try to meet their need. This is a
necessary condition to spread the use of formal methods.

145

LIST OF FIGURES

1.1 The Two Equilibria of the Free Pendulum . 4
1.2 The Inverted Pendulum . 4
1.3 Two Kinds of Control . 5
1.4 Closed-Loop Control for the Inverted Pendulum 5
1.5 The Inverted Pendulum with Annotations . 9
1.6 Illustration of the Notions of Stability . 10
1.7 The Computed Control Function . 12
1.8 Steps in the Formal Study of a Physical System 14

2.1 A Vector Field . 16
2.2 Contour Map of a Lyapunov Function . 17
2.3 Illustration of Convergence to a Set . 18
2.4 Illustration of the Original Invariance Principle 19
2.5 Illustration of the Stronger Invariance Principle 23
2.6 The Coquelicot Hierarchy . 25
2.7 Different Kinds of Neighbourhoods . 28
2.8 Illustration of T2 Separation . 34

3.1 The Inverted Pendulum with Annotations (repeated) 44

5.1 The Coquelicot Hierarchy (repeated) . 75
5.2 Partial Hierarchy of Mathematical Components Analysis 78
5.3 Hierarchy of Mathematical Components Analysis 85

8.1 The Believing Approach . 121
8.2 The Sceptical Approach with Certificates . 122
8.3 Refinement-based Simplification Strategy . 125

9.1 The Reflection Methodology . 134
9.2 The Methodology of Reflection with Refinement 137
9.3 The coqeal_ring Tactic . 139

147

BIBLIOGRAPHY

[ABB+17] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, Arthur Blot, Benjamin
Grégoire, Vincent Laporte, Tiago Oliveira, Hugo Pacheco, Benedikt Schmidt,
and Pierre-Yves Strub. Jasmin: High-Assurance and High-Speed Cryptography.
In Bhavani M. Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu,
editors, Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, CCS 2017, Dallas, TX, USA, October 30 - November
03, 2017, pages 1807–1823. ACM, 2017.

[ABC+] Stéphane Aubry, Sylvie Boldo, François Clément, Florian Faissole, Vincent Mar-
tin, and Micaela Mayero. MILC: Mesure et Intégrale de Lebesgue en Coq.
https://lipn.univ-paris13.fr/MILC/index.php.

[ABC+18] Abhishek Anand, Simon Boulier, Cyril Cohen, Matthieu Sozeau, and Nicolas
Tabareau. Towards Certified Meta-Programming with Typed Template-Coq. In
Avigad and Mahboubi [AM18], pages 20–39.

[ABTS18] Abhishek Anand, Simon Boulier, Nicolas Tabareau, and Matthieu Sozeau. Typed
Template Coq – Certified Meta-Programming in Coq. In CoqPL 2018 - The
Fourth International Workshop on Coq for Programming Languages, pages 1–2,
Los Angeles, CA, United States, January 2018.

[ACB+] Abhishek Anand, Cyril Cohen, Simon Boulier, Gregory Malecha, Matthieu
Sozeau, and Nicolas Tabareau. metacoq: Metaprogramming in Coq. https:
//github.com/MetaCoq/metacoq.

[ACM+] Reynald Affeldt, Cyril Cohen, Assia Mahboubi, Damien Rouhling, and Pierre-
Yves Strub. The Mathematical Components Analysis Library. https://github.
com/math-comp/analysis/releases/tag/0.2.2. Version 0.2.2.

[ACM+18] Reynald Affeldt, Cyril Cohen, Assia Mahboubi, Damien Rouhling, and Pierre-
Yves Strub. Classical Analysis with Coq. In Sozeau and Tabareau [ST18]. 2-pages
abstract.

[ACR18] Reynald Affeldt, Cyril Cohen, and Damien Rouhling. Formalization Techniques
for Asymptotic Reasoning in Classical Analysis. Journal of Formalized Reason-
ing, 11(1):43–76, 2018.

149

https://lipn.univ-paris13.fr/MILC/index.php
https://github.com/MetaCoq/metacoq
https://github.com/MetaCoq/metacoq
https://github.com/math-comp/analysis/releases/tag/0.2.2
https://github.com/math-comp/analysis/releases/tag/0.2.2

BIBLIOGRAPHY

[AD04] Jeremy Avigad and Kevin Donnelly. Formalizing O Notation in Isabelle/HOL.
In David A. Basin and Michaël Rusinowitch, editors, Automated Reasoning -
Second International Joint Conference, IJCAR 2004, Cork, Ireland, July 4-8,
2004, Proceedings, volume 3097 of Lecture Notes in Computer Science, pages
357–371. Springer, 2004.

[AdMK18] Jeremy Avigad, Leonardo de Moura, and Soonho Kong. Theorem Proving
in Lean. Available at https://leanprover.github.io/theorem_proving_in_
lean/theorem_proving_in_lean.pdf, Nov 2018. Release 3.4.0.

[AE09] Alessandro Arsie and Christian Ebenbauer. Refining LaSalle’s Invariance Prin-
ciple. In Proceedings of the 2009 Conference on American Control Conference,
ACC’09, pages 108–112, Piscataway, NJ, USA, 2009. IEEE Press.

[AF88] Jean-Marie Arnaudiès and Henri Fraysse. Cours de mathématiques, volume 2,
Analyse. Dunod, 1988.

[ÅF00] Karl Johan Åström and Katsuhisa Furuta. Swinging up a pendulum by energy
control. Automatica, 36(2):287–295, 2000.

[AF18] June Andronick and Amy P. Felty, editors. Proceedings of the 7th ACM SIG-
PLAN International Conference on Certified Programs and Proofs, CPP 2018,
Los Angeles, CA, USA, January 8-9, 2018. ACM, 2018.

[AFG+11] Michaël Armand, Germain Faure, Benjamin Grégoire, Chantal Keller, Laurent
Théry, and Benjamin Werner. A Modular Integration of SAT/SMT Solvers to
Coq through Proof Witnesses. In Jouannaud and Shao [JS11], pages 135–150.

[AGJ14] Robert Atkey, Neil Ghani, and Patricia Johann. A Relationally Parametric Model
of Dependent Type Theory. In Suresh Jagannathan and Peter Sewell, editors,
The 41st Annual ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, POPL ’14, San Diego, CA, USA, January 20-21, 2014,
pages 503–516. ACM, 2014.

[AK15] Abhishek Anand and Ross A. Knepper. ROSCoq: Robots Powered by Construc-
tive Reals. In Christian Urban and Xingyuan Zhang, editors, Interactive Theorem
Proving - 6th International Conference, ITP 2015, Nanjing, China, August 24-
27, 2015, Proceedings, volume 9236 of Lecture Notes in Computer Science, pages
34–50. Springer, 2015.

[ÅM08] Karl Johan Åström and Richard M. Murray. Feedback Systems: An Introduction
for Scientists and Engineers. Princeton University Press, Princeton, NJ, USA,
2008.

[AM17] Mauricio Ayala-Rincón and César A. Muñoz, editors. Interactive Theorem Prov-
ing - 8th International Conference, ITP 2017, Brasília, Brazil, September 26-29,
2017, Proceedings, volume 10499 of Lecture Notes in Computer Science. Springer,
2017.

[AM18] Jeremy Avigad and Assia Mahboubi, editors. Interactive Theorem Proving -
9th International Conference, ITP 2018, Held as Part of the Federated Logic
Conference, FloC 2018, Oxford, UK, July 9-12, 2018, Proceedings, volume 10895
of Lecture Notes in Computer Science. Springer, 2018.

150

https://leanprover.github.io/theorem_proving_in_lean/theorem_proving_in_lean.pdf
https://leanprover.github.io/theorem_proving_in_lean/theorem_proving_in_lean.pdf

BIBLIOGRAPHY

[Art04] Rob Arthan. The Eudoxus Real Numbers. Available at https://arxiv.org/
abs/math/0405454, 2004.

[Bac94] Paul Bachmann. Die Analytische Zahlentheorie. B.G. Teubner, 1894.

[Bar68] Erwin H. Bareiss. Sylvester’s Identity and Multistep Integer-Preserving Gaussian
Elimination. Mathematics of Computation, 22(103):565–578, 1968.

[Bar14] Itzhak Barkana. Defending the beauty of the Invariance Principle. International
Journal of Control, 87(1):186–206, 2014.

[Bar17] Itzhak Barkana. Can Stability Analysis be really simplified? (Revisiting
Lyapunov, Barbalat, LaSalle and all that). AIP Conference Proceedings,
1798(1):020017, 2017.

[BB02] Henk Barendregt and Erik Barendsen. Autarkic Computations in Formal Proofs.
Journal of Automated Reasoning, 28(3):321–336, 2002.

[BBG+18] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Ro-
man Matuszewski, Adam Naumowicz, and Karol Pąk. The Role of the Mizar
Mathematical Library for Interactive Proof Development in Mizar. Journal of
Automated Reasoning, 61(1-4):9–32, 2018.

[BBRS16] Sophie Bernard, Yves Bertot, Laurence Rideau, and Pierre-Yves Strub. Formal
Proofs of Transcendence for e and pi as an Application of Multivariate and Sym-
metric Polynomials. In Jeremy Avigad and Adam Chlipala, editors, Proceedings
of the 5th ACM SIGPLAN Conference on Certified Programs and Proofs, Saint
Petersburg, FL, USA, January 20-22, 2016, pages 76–87. ACM, 2016.

[BC01] Henk Barendregt and Arjeh M. Cohen. Electronic Communication of Mathe-
matics and the Interaction of Computer Algebra Systems and Proof Assistants.
Journal of Symbolic Computation, 32(1/2):3–22, 2001.

[BC04] Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Program
Development - Coq’Art: The Calculus of Inductive Constructions. Texts in The-
oretical Computer Science. An EATCS Series. Springer, 2004.

[BCF+13] Sylvie Boldo, François Clément, Jean-Christophe Filliâtre, Micaela Mayero, Guil-
laume Melquiond, and Pierre Weis. Wave Equation Numerical Resolution: A
Comprehensive Mechanized Proof of a C Program. Journal of Automated Rea-
soning, 50(4):423–456, 2013.

[BCF+17] Sylvie Boldo, François Clément, Florian Faissole, Vincent Martin, and Micaela
Mayero. A Coq formal proof of the Lax-Milgram theorem. In Bertot and Vafeiadis
[BV17], pages 79–89.

[BCM15] Jean-Philippe Bernardy, Thierry Coquand, and Guilhem Moulin. A Presheaf
Model of Parametric Type Theory. Electronic Notes in Theoretical Computer
Science, 319:67–82, 2015.

[BDG11] Mathieu Boespflug, Maxime Dénès, and Benjamin Grégoire. Full Reduction at
Full Throttle. In Jouannaud and Shao [JS11], pages 362–377.

[Ben06] Nick Benton. Machine Obstructed Proof - How many months can it take to
verify 30 assembly instructions? In 1st Informal ACM SIGPLAN Workshop on
Mechanizing Metatheory, Portland, Oregon, USA, 2006.

151

https://arxiv.org/abs/math/0405454
https://arxiv.org/abs/math/0405454

BIBLIOGRAPHY

[Ben13] Nick Benton. The Proof Assistant as an Integrated Development Environment.
In Chung-chieh Shan, editor, Programming Languages and Systems - 11th Asian
Symposium, APLAS 2013, Melbourne, VIC, Australia, December 9-11, 2013.
Proceedings, volume 8301 of Lecture Notes in Computer Science, pages 307–314.
Springer, 2013.

[Ber] Sophie Bernard. Fichiers de structures pour R et C. https://github.com/
Sobernard/Struct.

[Ber17] Sophie Bernard. Formalization of the Lindemann-Weierstrass Theorem. In Ayala-
Rincón and Muñoz [AM17], pages 65–80.

[BF12] Lennart Beringer and Amy P. Felty, editors. Interactive Theorem Proving - Third
International Conference, ITP 2012, Princeton, NJ, USA, August 13-15, 2012.
Proceedings, volume 7406 of Lecture Notes in Computer Science. Springer, 2012.

[BFM09] Sylvie Boldo, Jean-Christophe Filliâtre, and Guillaume Melquiond. Combining
Coq and Gappa for Certifying Floating-Point Programs. In Jacques Carette,
Lucas Dixon, Claudio Sacerdoti Coen, and Stephen M. Watt, editors, Intelligent
Computer Mathematics, 16th Symposium, Calculemus 2009, 8th International
Conference, MKM 2009, Held as Part of CICM 2009, Grand Bend, Canada,
July 6-12, 2009. Proceedings, volume 5625 of Lecture Notes in Computer Science,
pages 59–74. Springer, 2009.

[BG94] Leonid M. Brekhovskikh and Valery Goncharov. Mechanics of Continua and
Wave Dynamics. Springer Series on Wave Phenomena. Springer-Verlag Berlin
Heidelberg, second edition, 1994.

[BGBP08] Yves Bertot, Georges Gonthier, Sidi Ould Biha, and Ioana Paşca. Canonical big
operators. In Mohamed et al. [MMT08], pages 86–101.

[BHMN15] Jasmin Christian Blanchette, Maximilian P. L. Haslbeck, Daniel Matichuk, and
Tobias Nipkow. Mining the Archive of Formal Proofs. In Manfred Kerber,
Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, In-
telligent Computer Mathematics - International Conference, CICM 2015, Wash-
ington, DC, USA, July 13-17, 2015, Proceedings, volume 9150 of Lecture Notes
in Computer Science, pages 3–17. Springer, 2015.

[BJMD+] Nicolas Brisebarre, Mioara Joldes, Erik Martin-Dorel, Micaela Mayero, Jean-
Michel Muller, Ioana Paşca, Laurence Rideau, , and Laurent Théry. The Co-
qApprox Library. http://tamadi.gforge.inria.fr/CoqApprox/.

[BJP12] Jean-Philippe Bernardy, Patrik Jansson, and Ross Paterson. Proofs for free
- Parametricity for dependent types. Journal of Functional Programming,
22(2):107–152, 2012.

[BLM12] Sylvie Boldo, Catherine Lelay, and Guillaume Melquiond. Improving Real Anal-
ysis in Coq: A User-Friendly Approach to Integrals and Derivatives. In Chris
Hawblitzel and Dale Miller, editors, Certified Programs and Proofs - Second In-
ternational Conference, CPP 2012, Kyoto, Japan, December 13-15, 2012. Pro-
ceedings, volume 7679 of Lecture Notes in Computer Science, pages 289–304.
Springer, 2012.

152

https://github.com/Sobernard/Struct
https://github.com/Sobernard/Struct
http://tamadi.gforge.inria.fr/CoqApprox/

BIBLIOGRAPHY

[BLM15] Sylvie Boldo, Catherine Lelay, and Guillaume Melquiond. Coquelicot: A User-
Friendly Library of Real Analysis for Coq. Mathematics in Computer Science,
9(1):41–62, 2015.

[BLM16] Sylvie Boldo, Catherine Lelay, and Guillaume Melquiond. Formalization of Real
Analysis: A Survey of Proof Assistants and Libraries. Mathematical Structures
in Computer Science, 26(7):1196–1233, 2016.

[BM11] Sylvie Boldo and Guillaume Melquiond. Flocq: A Unified Library for Proving
Floating-Point Algorithms in Coq. In Elisardo Antelo, David Hough, and Paolo
Ienne, editors, 20th IEEE Symposium on Computer Arithmetic, ARITH 2011,
Tübingen, Germany, 25-27 July 2011, pages 243–252. IEEE Computer Society,
2011.

[BM13] Jean-Philippe Bernardy and Guilhem Moulin. Type-Theory In Color. In Greg
Morrisett and Tarmo Uustalu, editors, ACM SIGPLAN International Conference
on Functional Programming, ICFP’13, Boston, MA, USA - September 25 - 27,
2013, pages 61–72. ACM, 2013.

[BM17] Sylvie Boldo and Guillaume Melquiond. Computer Arithmetic and Formal
Proofs. ISTE Press - Elsevier, December 2017.

[BNUW09] Stefan Berghofer, Tobias Nipkow, Christian Urban, and Makarius Wenzel, edi-
tors. Theorem Proving in Higher Order Logics, 22nd International Conference,
TPHOLs 2009, Munich, Germany, August 17-20, 2009. Proceedings, volume 5674
of Lecture Notes in Computer Science. Springer, 2009.

[Bou71] Nicolas Bourbaki. Topologie générale, Chapitres 1 à 4. Éléments de mathéma-
tiques. Springer-Verlag Berlin Heidelberg, 1971.

[Bou74] Nicolas Bourbaki. Topologie générale, Chapitres 5 à 10. Éléments de mathéma-
tiques. Springer-Verlag Berlin Heidelberg, 1974.

[Bou97] Samuel Boutin. Using Reflection to Build Efficient and Certified Decision Pro-
cedures. In Martín Abadi and Takayasu Ito, editors, Theoretical Aspects of
Computer Software, Third International Symposium, TACS ’97, Sendai, Japan,
September 23-26, 1997, Proceedings, volume 1281 of Lecture Notes in Computer
Science, pages 515–529. Springer, 1997.

[BPP13] Sandrine Blazy, Christine Paulin-Mohring, and David Pichardie, editors. Interac-
tive Theorem Proving - 4th International Conference, ITP 2013, Rennes, France,
July 22-26, 2013. Proceedings, volume 7998 of Lecture Notes in Computer Sci-
ence. Springer, 2013.

[BRT18] Yves Bertot, Laurence Rideau, and Laurent Théry. Distant Decimals of π :
Formal Proofs of Some Algorithms Computing Them and Guarantees of Exact
Computation. Journal of Automated Reasoning, 61(1-4):33–71, 2018.

[Buc65] Bruno Buchberger. Ein Algorithmus zum Auffinden der Basiselemente des Restk-
lassenringes nach einem nulldimensionalen Polynomideal. PhD thesis, Leopold-
Franzens-Universität Innsbruck, 1965.

[BV17] Yves Bertot and Viktor Vafeiadis, editors. Proceedings of the 6th ACM SIGPLAN
Conference on Certified Programs and Proofs, CPP 2017, Paris, France, January
16-17, 2017. ACM, 2017.

153

BIBLIOGRAPHY

[Caj28] Florian Cajori. A History of Mathematical Notations. The Open Court Publish-
ing Company, Chicago, IL, 1928.

[Can14] Guillaume Cano. Interaction entre algèbre linéaire et analyse en formalisation
des mathématiques. (Interaction between linear algebra and analysis in formal
mathematics). PhD thesis, University of Nice Sophia Antipolis, France, 2014.

[Car37a] Henri Cartan. Filtres et ultrafiltres. In Comptes rendus hebdomadaires des
séances de l’Académie des sciences [MM.37], pages 777–779.

[Car37b] Henri Cartan. Théorie des filtres. In Comptes rendus hebdomadaires des séances
de l’Académie des sciences [MM.37], pages 595–598.

[CCD+] Guillaume Cano, Cyril Cohen, Maxime Dénès, Anders Mörtberg, Damien Rouh-
ling, and Vincent Siles. The CoqEAL Library. https://github.com/CoqEAL/
CoqEAL/releases/tag/1.0.0. Version 1.0.0.

[CD17] Raphaël Cauderlier and Catherine Dubois. FoCaLiZe and Dedukti to the Rescue
for Proof Interoperability. In Ayala-Rincón and Muñoz [AM17], pages 131–147.

[CDM13] Cyril Cohen, Maxime Dénès, and Anders Mörtberg. Refinements for Free! In
Georges Gonthier and Michael Norrish, editors, Certified Programs and Proofs -
Third International Conference, CPP 2013, Melbourne, VIC, Australia, Decem-
ber 11-13, 2013, Proceedings, volume 8307 of Lecture Notes in Computer Science,
pages 147–162. Springer, 2013.

[CDT19] The Coq Development Team. The Coq proof assistant reference manual, 2019.
Version 8.9.1.

[CGW04] Luís Cruz-Filipe, Herman Geuvers, and Freek Wiedijk. C-CoRN, the Construc-
tive Coq Repository at Nijmegen. In Andrea Asperti, Grzegorz Bancerek, and
Andrzej Trybulec, editors, Mathematical Knowledge Management, Third Inter-
national Conference, MKM 2004, Bialowieza, Poland, September 19-21, 2004,
Proceedings, volume 3119 of Lecture Notes in Computer Science, pages 88–103.
Springer, 2004.

[CH88] Thierry Coquand and Gérard P. Huet. The Calculus of Constructions. Informa-
tion and Computation, 76(2/3):95–120, 1988.

[CLH99] VijaySekhar Chellaboina, Alexander Leonessa, and Wassim M. Haddad. Gen-
eralized Lyapunov and invariant set theorems for nonlinear dynamical systems.
Systems & Control Letters, 38(4–5):289 – 295, 1999.

[CLH+05] Howie Choset, Kevin M. Lynch, Seth Hutchinson, George A. Kantor, Wolfram
Burgard, Lydia E. Kavraki, and Sebastian Thrun. Principles of Robot Motion:
Theory, Algorithms, and Implementations. MIT Press, Cambridge, MA, June
2005.

[CMST14] Frédéric Chyzak, Assia Mahboubi, Thomas Sibut-Pinote, and Enrico Tassi. A
Computer-Algebra-Based Formal Proof of the Irrationality of ζ(3). In Gerwin
Klein and Ruben Gamboa, editors, Interactive Theorem Proving - 5th Interna-
tional Conference, ITP 2014, Held as Part of the Vienna Summer of Logic, VSL
2014, Vienna, Austria, July 14-17, 2014. Proceedings, volume 8558 of Lecture
Notes in Computer Science, pages 160–176. Springer, 2014.

154

https://github.com/CoqEAL/CoqEAL/releases/tag/1.0.0
https://github.com/CoqEAL/CoqEAL/releases/tag/1.0.0

BIBLIOGRAPHY

[Coh] Cyril Cohen. real-closed: Theorems for Real Closed Fields in Mathematical
Components. https://github.com/math-comp/real-closed.

[Coh12] Cyril Cohen. Formalized algebraic numbers: construction and first-order theory.
PhD thesis, École polytechnique, Nov 2012.

[Coq85] Thierry Coquand. Une théorie des constructions. PhD thesis, Université Paris
7, janvier 1985.

[CP88] Thierry Coquand and Christine Paulin. Inductively defined types. In Per Martin-
Löf and Grigori Mints, editors, COLOG-88, International Conference on Com-
puter Logic, Tallinn, USSR, December 1988, Proceedings, volume 417 of Lecture
Notes in Computer Science, pages 50–66. Springer, 1988.

[CPJ02] Debasish Chatterjee, Amit Patra, and Harish K. Joglekar. Swing-up and stabi-
lization of a cart-pendulum system under restricted cart track length. Systems
& Control Letters, 47(4):355–364, 2002.

[CRa] Cyril Cohen and Damien Rouhling. LaSalle: A formal proof of LaSalle’s invari-
ance principle. https://github.com/drouhling/LaSalle/releases/tag/1.0.
0. Version 1.0.0, based on Coquelicot 3.0.2.

[CRb] Cyril Cohen and Damien Rouhling. LaSalle: A formal proof of LaSalle’s invari-
ance principle. https://github.com/drouhling/LaSalle/releases/tag/2.0.
0. Version 2.0.0, based on Mathematical Components Analysis 0.2.2.

[CR17a] Cyril Cohen and Damien Rouhling. A Formal Proof in Coq of LaSalle’s Invariance
Principle. In Ayala-Rincón and Muñoz [AM17], pages 148–163.

[CR17b] Cyril Cohen and Damien Rouhling. A refinement-based approach to large scale
reflection for algebra. In JFLA 2017 - Vingt-huitième Journées Francophones
des Langages Applicatifs, Gourette, France, January 2017.

[CRLM16] Matthew Chan, Daniel Ricketts, Sorin Lerner, and Gregory Malecha. Formal
Verification of Stability Properties of Cyber-physical Systems. In CoqPL’16, Jan
2016.

[CZČ05] Guanrong Chen, Jin Zhou, and Sergej Čelikovský. On LaSalle’s invariance prin-
ciple and its application to robust synchronization of general vector Liénard
equations. IEEE Transactions on Automatic Control, 50(6):869–874, 2005.

[Dar90] Agata Darmochwał. Compact Spaces. Formalized Mathematics, 1(2):383–386,
1990.

[Del00] David Delahaye. A Tactic Language for the System Coq. In Michel Parigot and
Andrei Voronkov, editors, Logic for Programming and Automated Reasoning, 7th
International Conference, LPAR 2000, Reunion Island, France, November 11-
12, 2000, Proceedings, volume 1955 of Lecture Notes in Computer Science, pages
85–95. Springer, 2000.

[Dia75] Radu Diaconescu. Axiom of Choice and Complementation. Proceedings of the
American Mathematical Society, 51:176–178, 1975.

[Dij72] Edsger W. Dijkstra. The Humble Programmer. Communications of the ACM,
15(10):859–866, 1972.

155

https://github.com/math-comp/real-closed
https://github.com/drouhling/LaSalle/releases/tag/1.0.0
https://github.com/drouhling/LaSalle/releases/tag/1.0.0
https://github.com/drouhling/LaSalle/releases/tag/2.0.0
https://github.com/drouhling/LaSalle/releases/tag/2.0.0

BIBLIOGRAPHY

[Dja18] Boris Djalal. Formalisations en Coq pour la décision de problèmes en géométrie
algébrique réelle. PhD thesis, Université Côte d’Azur, 2018.

[DM01] David Delahaye and Micaela Mayero. Field, une procédure de décision pour
les nombres réels en Coq. In Pierre Castéran, editor, Journées francophones
des langages applicatifs (JFLA’01), Pontarlier, France, Janvier, 2001, Collection
Didactique, pages 33–48. INRIA, 2001.

[DM05] David Delahaye and Micaela Mayero. Dealing with Algebraic Expressions over
a Field in Coq using Maple. Journal of Symbolic Computation, 39(5):569–592,
2005.

[DM06] David Delahaye and Micaela Mayero. Quantifier Elimination over Algebraically
Closed Fields in a Proof Assistant using a Computer Algebra System. Electronic
Notes in Theoretical Computer Science, 151(1):57–73, 2006.

[DM10] Marc Daumas and Guillaume Melquiond. Certification of bounds on expres-
sions involving rounded operators. ACM Transactions on Mathematical Software,
37(1):2:1–2:20, 2010.

[dMKA+15] Leonardo Mendonça de Moura, Soonho Kong, Jeremy Avigad, Floris van Doorn,
and Jakob von Raumer. The Lean Theorem Prover (System Description). In
Felty and Middeldorp [FM15], pages 378–388.

[DMS12] Maxime Dénès, Anders Mörtberg, and Vincent Siles. A Refinement-Based Ap-
proach to Computational Algebra in Coq. In Beringer and Felty [BF12], pages
83–98.

[DPGC15] Benjamin Delaware, Clément Pit-Claudel, Jason Gross, and Adam Chlipala.
Fiat: Deductive Synthesis of Abstract Data Types in a Proof Assistant. In
Sriram K. Rajamani and David Walker, editors, Proceedings of the 42nd Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 2015, Mumbai, India, January 15-17, 2015, pages 689–700. ACM, 2015.

[DSK98] Edward Doskocz, Yuri Shtessel, and Constantine Katsinis. MIMO Sliding Mode
Control of a Robotic "Pick and Place" System Modeled as an Inverted Pendulum
on a Moving Cart. In Proceedings of Thirtieth Southeastern Symposium on System
Theory, pages 379–383, Mar 1998.

[Ebe17] Manuel Eberl. Proving Divide and Conquer Complexities in Isabelle/HOL. Jour-
nal of Automated Reasoning, 58(4):483–508, 2017.

[Ebe19a] Manuel Eberl. Verified Real Asymptotics in Isabelle/HOL. In Proceedings of the
International Symposium on Symbolic and Algebraic Computation, ISSAC ’19,
New York, NY, USA, 2019. ACM.

[Ebe19b] Manuel Eberl. Verified Solving and Asymptotics of Linear Recurrences. In Assia
Mahboubi and Magnus O. Myreen, editors, Proceedings of the 8th ACM SIG-
PLAN International Conference on Certified Programs and Proofs, CPP 2019,
Cascais, Portugal, January 14-15, 2019, pages 27–37. ACM, 2019.

[FKD13] Nicholas R. Fischer, Rushikesh Kamalapurkar, and Warren E. Dixon. LaSalle-
Yoshizawa Corollaries for Nonsmooth Systems. IEEE Transactions on Automatic
Control, 58(9):2333–2338, 2013.

156

BIBLIOGRAPHY

[FM15] Amy P. Felty and Aart Middeldorp, editors. Automated Deduction - CADE-25 -
25th International Conference on Automated Deduction, Berlin, Germany, Au-
gust 1-7, 2015, Proceedings, volume 9195 of Lecture Notes in Computer Science.
Springer, 2015.

[FMM+06] Pascal Fontaine, Jean-Yves Marion, Stephan Merz, Leonor Prensa Nieto, and Al-
wen Fernanto Tiu. Expressiveness + Automation + Soundness: Towards Com-
bining SMT Solvers and Interactive Proof Assistants. In Holger Hermanns and
Jens Palsberg, editors, Tools and Algorithms for the Construction and Analysis
of Systems, 12th International Conference, TACAS 2006 Held as Part of the
Joint European Conferences on Theory and Practice of Software, ETAPS 2006,
Vienna, Austria, March 25 - April 2, 2006, Proceedings, volume 3920 of Lecture
Notes in Computer Science, pages 167–181. Springer, 2006.

[FMQ+15] Nathan Fulton, Stefan Mitsch, Jan-David Quesel, Marcus Völp, and André
Platzer. KeYmaera X: An Axiomatic Tactical Theorem Prover for Hybrid Sys-
tems. In Felty and Middeldorp [FM15], pages 527–538.

[FR98] Michael J. Fischer and Michael O. Rabin. Super-Exponential Complexity of
Presburger Arithmetic. In Bob F. Caviness and Jeremy R. Johnson, editors,
Quantifier Elimination and Cylindrical Algebraic Decomposition, pages 122–135,
Vienna, 1998. Springer Vienna.

[GAA+13] Georges Gonthier, Andrea Asperti, Jeremy Avigad, Yves Bertot, Cyril Co-
hen, François Garillot, Stéphane Le Roux, Assia Mahboubi, Russell O’Connor,
Sidi Ould Biha, Ioana Paşca, Laurence Rideau, Alexey Solovyev, Enrico Tassi,
and Laurent Théry. A Machine-Checked Proof of the Odd Order Theorem. In
Blazy et al. [BPP13], pages 163–179.

[Gar11] François Garillot. Generic Proof Tools and Finite Group Theory. (Outils
génériques de preuve et théorie des groupes finis). PhD thesis, École Polytech-
nique, Palaiseau, France, 2011.

[GCP18] Armaël Guéneau, Arthur Charguéraud, and François Pottier. A Fistful of Dollars:
Formalizing Asymptotic Complexity Claims via Deductive Program Verification.
In Amal Ahmed, editor, Programming Languages and Systems - 27th European
Symposium on Programming, ESOP 2018, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2018, Thessaloniki,
Greece, April 14-20, 2018, Proceedings, volume 10801 of Lecture Notes in Com-
puter Science, pages 533–560. Springer, 2018.

[GEC18] Jason Gross, Andres Erbsen, and Adam Chlipala. Reification by Parametricity -
Fast Setup for Proof by Reflection, in Two Lines of Ltac. In Avigad and Mahboubi
[AM18], pages 289–305.

[GGMR09] François Garillot, Georges Gonthier, Assia Mahboubi, and Laurence Rideau.
Packaging Mathematical Structures. In Berghofer et al. [BNUW09], pages 327–
342.

157

BIBLIOGRAPHY

[GJCP19] Armaël Guéneau, Jacques-Henri Jourdan, Arthur Charguéraud, and François
Pottier. Formal Proof and Analysis of an Incremental Cycle Detection Algo-
rithm. In John Harrison, John O’Leary, and Andrew Tolmach, editors, 10th
International Conference on Interactive Theorem Proving, ITP 2019, September
9-12, 2019, Portland, OR, USA., volume 141 of LIPIcs, pages 18:1–18:20. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2019.

[GL02] Benjamin Grégoire and Xavier Leroy. A Compiled Implementation of Strong Re-
duction. In Mitchell Wand and Simon L. Peyton Jones, editors, Proceedings of the
Seventh ACM SIGPLAN International Conference on Functional Programming
(ICFP ’02), Pittsburgh, Pennsylvania, USA, October 4-6, 2002., pages 235–246.
ACM, 2002.

[Glo09] Stéphane Glondu. Extraction certifiée dans Coq-en-Coq. In Alan Schmitt, editor,
JFLA 2009, Vingtièmes Journées Francophones des Langages Applicatifs, Saint
Quentin sur Isère, France, January 31 - February 3, 2009. Proceedings, volume
7.2 of Studia Informatica Universalis, pages 383–410, 2009.

[Glo12] Stéphane Glondu. Vers une certification de l’extraction de Coq. (Towards certi-
fication of the extraction of Coq). PhD thesis, Paris Diderot University, France,
2012.

[GLT17] Jan Gilcher, Andreas Lochbihler, and Dmitriy Traytel. Conditional Parametricity
in Isabelle/HOL. In TABLEAUX - Frontiers of Combining Systems (FroCoS)
- Interactive Theorem Proving (ITP) 2017, Brasília, Brazil, September 26-29,
2017, Poster session, 2017. Extended abstract.

[GM05] Benjamin Grégoire and Assia Mahboubi. Proving Equalities in a Commutative
Ring Done Right in Coq. In Hurd and Melham [HM05], pages 98–113.

[GMT15] Georges Gonthier, Assia Mahboubi, and Enrico Tassi. A Small Scale Reflection
Extension for the Coq system. Research Report RR-6455, Inria Saclay Ile de
France, 2015.

[GMW79] Michael J. C. Gordon, Robin Milner, and Christopher P. Wadsworth. Edinburgh
LCF, volume 78 of Lecture Notes in Computer Science. Springer, 1979.

[GN00] Herman Geuvers and Milad Niqui. Constructive Reals in Coq: Axioms and Cat-
egoricity. In Paul Callaghan, Zhaohui Luo, James McKinna, and Robert Pollack,
editors, Types for Proofs and Programs, International Workshop, TYPES 2000,
Durham, UK, December 8-12, 2000, Selected Papers, volume 2277 of Lecture
Notes in Computer Science, pages 79–95. Springer, 2000.

[GNSW07] Herman Geuvers, Milad Niqui, Bas Spitters, and Freek Wiedijk. Constructive
analysis, types and exact real numbers. Mathematical Structures in Computer
Science, 17(1):3–36, 2007.

[Gué18] Armaël Guéneau. Procrastination - A proof engineering technique. In Sozeau
and Tabareau [ST18]. 2-pages abstract.

[GZND11] Georges Gonthier, Beta Ziliani, Aleksandar Nanevski, and Derek Dreyer. How
to Make Ad Hoc Proof Automation Less Ad Hoc. In Manuel M. T. Chakravarty,
Zhenjiang Hu, and Olivier Danvy, editors, Proceeding of the 16th ACM SIGPLAN
international conference on Functional Programming, ICFP 2011, Tokyo, Japan,
September 19-21, 2011, pages 163–175. ACM, 2011.

158

BIBLIOGRAPHY

[Har95] John Harrison. Metatheory and Reflection in Theorem Proving: A Survey and
Critique. Technical Report CRC-053, SRI International Cambridge Computer
Science Research Centre, 1995.

[Har05] John Harrison. A HOL Theory of Euclidean Space. In Hurd and Melham [HM05],
pages 114–129.

[Har13] John Harrison. The HOL Light Theory of Euclidean Space. Journal of Automated
Reasoning, 50(2):173–190, 2013.

[Har16] John Harrison. The HOL Light System REFERENCE, 2016. For 2016/10/19
revision.

[HIH13] Johannes Hölzl, Fabian Immler, and Brian Huffman. Type Classes and Filters for
Mathematical Analysis in Isabelle/HOL. In Blazy et al. [BPP13], pages 279–294.

[Hil22] David Hilbert. Die logischen Grundlagen der Mathematik. Mathematische An-
nalen, 88(1):151–165, Mar 1922.

[HJO+12] Heber Herencia-Zapana, Romain Jobredeaux, Sam Owre, Pierre-Loïc Garoche,
Eric Feron, Gilberto Pérez, and Pablo Ascariz. PVS Linear Algebra Libraries for
Verification of Control Software Algorithms in C/ACSL. In Alwyn Goodloe and
Suzette Person, editors, NASA Formal Methods - 4th International Symposium,
NFM 2012, Norfolk, VA, USA, April 3-5, 2012. Proceedings, volume 7226 of
Lecture Notes in Computer Science, pages 147–161. Springer, 2012.

[HM05] Joe Hurd and Thomas F. Melham, editors. Theorem Proving in Higher Or-
der Logics, 18th International Conference, TPHOLs 2005, Oxford, UK, August
22-25, 2005, Proceedings, volume 3603 of Lecture Notes in Computer Science.
Springer, 2005.

[Hoa69] Charles Antony Richard Hoare. An Axiomatic Basis for Computer Programming.
Communications of the ACM, 12(10):576–580, 1969.

[Hoa72] Charles Antony Richard Hoare. Proof of Correctness of Data Representations.
Acta Informatica, 1:271–281, 1972.

[How80] William A. Howard. The formulæ-as-types notion of construction. In Jonathan P.
Seldin and J. Roger Hindley, editors, To H.B. Curry: Essays on Combinatory
Logic, Lambda Calculus and Formalism, pages 479–490. Academic Press, 1980.

[HW06] Florian Haftmann and Makarius Wenzel. Constructive Type Classes in Isabelle.
In Thorsten Altenkirch and Conor McBride, editors, Types for Proofs and Pro-
grams, International Workshop, TYPES 2006, Nottingham, UK, April 18-21,
2006, Revised Selected Papers, volume 4502 of Lecture Notes in Computer Sci-
ence, pages 160–174. Springer, 2006.

[IH12] Fabian Immler and Johannes Hölzl. Numerical Analysis of Ordinary Differential
Equations in Isabelle/HOL. In Beringer and Felty [BF12], pages 377–392.

[Imm18] Fabian Immler. A Verified ODE Solver and the Lorenz Attractor. Journal of
Automated Reasoning, 61(1-4):73–111, 2018.

[IT16] Fabian Immler and Christoph Traut. The Flow of ODEs. In Jasmin Chris-
tian Blanchette and Stephan Merz, editors, Interactive Theorem Proving - 7th
International Conference, ITP 2016, Nancy, France, August 22-25, 2016, Pro-
ceedings, volume 9807 of Lecture Notes in Computer Science, pages 184–199.
Springer, 2016.

159

BIBLIOGRAPHY

[IT19] Fabian Immler and Christoph Traut. The Flow of ODEs: Formalization of Varia-
tional Equation and Poincaré Map. Journal of Automated Reasoning, 62(2):215–
236, 2019.

[JS11] Jean-Pierre Jouannaud and Zhong Shao, editors. Certified Programs and Proofs
- First International Conference, CPP 2011, Kenting, Taiwan, December 7-9,
2011. Proceedings, volume 7086 of Lecture Notes in Computer Science. Springer,
2011.

[Kel13] Chantal Keller. A Matter of Trust: Skeptical Communication Between Coq and
External Provers. (Question de confiance : communication sceptique entre Coq
et des prouveurs externes). PhD thesis, École Polytechnique, Palaiseau, France,
2013.

[Kha02] Hassan K. Khalil. Nonlinear Systems. Pearson Education. Prentice Hall, 2002.

[KL12] Chantal Keller and Marc Lasson. Parametricity in an Impredicative Sort. In
Patrick Cégielski and Arnaud Durand, editors, Computer Science Logic (CSL’12)
- 26th International Workshop/21st Annual Conference of the EACSL, CSL 2012,
September 3-6, 2012, Fontainebleau, France, volume 16 of LIPIcs, pages 381–395.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2012.

[KLB+17] Daniel Kästner, Xavier Leroy, Sandrine Blazy, Bernhard Schommer, Michael
Schmidt, and Christian Ferdinand. Closing the Gap – The Formally Verified
Optimizing Compiler CompCert. In SSS’17: Safety-critical Systems Symposium
2017, Developments in System Safety Engineering: Proceedings of the Twenty-
fifth Safety-critical Systems Symposium, pages 163–180, Bristol, United King-
dom, February 2017. CreateSpace.

[Knu98] Donald E. Knuth. Teach Calculus with Big O. Notices of the AMS, 45(6):687–
688, 1998. Letter to the editor of the Notices of the American Mathematical
Society.

[KS11] Robbert Krebbers and Bas Spitters. Type Classes for Efficient Exact Real Arith-
metic in Coq. Logical Methods in Computer Science, 9(1), 2011.

[KW10] Chantal Keller and Benjamin Werner. Importing HOL Light into Coq. In Matt
Kaufmann and Lawrence C. Paulson, editors, Interactive Theorem Proving, First
International Conference, ITP 2010, Edinburgh, UK, July 11-14, 2010. Proceed-
ings, volume 6172 of Lecture Notes in Computer Science, pages 307–322. Springer,
2010.

[Lag11] Joseph-Louis Lagrange. Mécanique Analytique. Courcier, 1811.

[Lam13] Peter Lammich. Automatic Data Refinement. Archive of Formal Proofs, 2013,
2013.

[Lan09] Edmund Landau. Handbuch der Lehre von der Verteilung der Primzahlen. B.G.
Teubner, 1909.

[LaS60] Joseph LaSalle. Some Extensions of Liapunov’s Second Method. IRE Transac-
tions on Circuit Theory, 7(4):520–527, Dec 1960.

[LaS76] Joseph LaSalle. The Stability of Dynamical Systems. Society for Industrial and
Applied Mathematics, Philadelphia, PA, 1976.

160

BIBLIOGRAPHY

[LaV06] Steven M. LaValle. Planning algorithms. Cambridge University Press, 2006.
[LDF+18] Xavier Leroy, Damien Doligez, Alain Frisch, Jacques Garrigue, Didier Rémy, and

Jérôme Vouillon. The OCaml system release 4.07 - Documentation and user’s
manual, 2018.

[Leb50] Henri Lebesgue. Leçons sur l’Intégration et la Recherche des Fonctions Primi-
tives. Gauthier-Villars, Imprimeur-Éditeur, second edition, 1950.

[Lel15] Catherine Lelay. Repenser la bibliothèque réelle de Coq : vers une formalisation
de l’analyse classique mieux adaptée. (Reinventing Coq’s Reals library : toward
a more suitable formalization of classical analysis). PhD thesis, University of
Paris-Sud, Orsay, France, 2015.

[Lem06] Lemma 1 Ltd. ProofPower HOL Reference Manual, 2006.
[Les07] David R Lester. Topology in PVS: Continuous Mathematics with Applications.

In Proceedings of the Second Workshop on Automated Formal Methods, AFM ’07,
pages 11–20, New York, NY, USA, 2007. ACM.

[Let04] Pierre Letouzey. Programmation fonctionnelle certifiée : L’extraction de pro-
grammes dans l’assistant Coq. (Certified functional programming : Program ex-
traction within Coq proof assistant). PhD thesis, University of Paris-Sud, Orsay,
France, 2004.

[Let08] Pierre Letouzey. Extraction in Coq: An Overview. In Arnold Beckmann, Costas
Dimitracopoulos, and Benedikt Löwe, editors, Logic and Theory of Algorithms,
4th Conference on Computability in Europe, CiE 2008, Athens, Greece, June 15-
20, 2008, Proceedings, volume 5028 of Lecture Notes in Computer Science, pages
359–369. Springer, 2008.

[LFB00] Rogelio Lozano, Isabelle Fantoni, and Dan Block. Stabilization of the inverted
pendulum around its homoclinic orbit. Systems & Control Letters, 40(3):197–204,
2000.

[Lia07] Alexandre Liapounoff. Problème général de la stabilité du mouvement. Annales
de la Faculté des sciences de Toulouse : Mathématiques, 9:203–474, 1907.

[LL19] Peter Lammich and Andreas Lochbihler. Automatic Refinement to Efficient Data
Structures: A Comparison of Two Approaches. Journal of Automated Reasoning,
63(1):53–94, 2019.

[LM12] Catherine Lelay and Guillaume Melquiond. Différentiabilité et intégrabilité en
Coq. Application à la formule de d’Alembert. In 23èmes Journées Francophones
des Langages Applicatifs, pages 119–133, Carnac, France, 2012.

[LMCLD] The Lean Mathematical Components Library Developers. The Lean Mathemat-
ical Components Library. https://github.com/leanprover/mathlib.

[Mag18] Marco Maggesi. A Formalization of Metric Spaces in HOL Light. Journal of
Automated Reasoning, 60(2):237–254, 2018.

[Map19] Maplesoft, a division of Waterloo Maple Inc. Maple 2019. https://www.
maplesoft.com/products/Maple/, 2019.

[Mat62] Vladimir Matrosov. On the Stability of Motion. Journal of Applied Mathematics
and Mechanics, 26(5):1337 – 1353, 1962.

161

https://github.com/leanprover/mathlib
https://www.maplesoft.com/products/Maple/
https://www.maplesoft.com/products/Maple/

BIBLIOGRAPHY

[May01] Micaela Mayero. Formalisation et automatisation de preuves en analyses réelle
et numérique. PhD thesis, Université Paris VI, décembre 2001.

[May02] Micaela Mayero. Using Theorem Proving for Numerical Analysis (Correctness
Proof of an Automatic Differentiation Algorithm). In Victor Carreño, César A.
Muñoz, and Sofiène Tahar, editors, Theorem Proving in Higher Order Logics,
15th International Conference, TPHOLs 2002, Hampton, VA, USA, August 20-
23, 2002, Proceedings, volume 2410 of Lecture Notes in Computer Science, pages
246–262. Springer, 2002.

[May12] Micaela Mayero. Problèmes critiques et preuves formelles. Habilitation à diriger
des recherches, Université Paris 13, novembre 2012.

[MBG06] Sean McLaughlin, Clark Barrett, and Yeting Ge. Cooperating Theorem Provers:
A Case Study Combining HOL-Light and CVC Lite. Electronic Notes in Theo-
retical Computer Science, 144(2):43–51, 2006.

[MC08] Sayan Mitra and K. Mani Chandy. A Formalized Theory for Verifying Stability
and Convergence of Automata in PVS. In Mohamed et al. [MMT08], pages
230–245.

[MCT] The Mathematical Components Team. The Mathematical Compo-
nents Library. https://github.com/math-comp/math-comp/releases/tag/
mathcomp-1.9.0. Version 1.9.0.

[MG06] José Luis Mancilla-Aguilar and Rafael Antonio García. An extension of LaSalle’s
invariance principle for switched systems. Systems & Control Letters, 55(5):376–
384, 2006.

[Mil85] Robin Milner. The Use of Machines to Assist in Rigorous Proof. In Proceedings
Of a Discussion Meeting of the Royal Society of London on Mathematical Logic
and Programming Languages, pages 77–88, Upper Saddle River, NJ, USA, 1985.
Prentice-Hall, Inc.

[MLS94] Richard M. Murray, Zexiang Li, and Shankar Sastry. A Mathematical Introduc-
tion to Robotics Manipulation. CRC Press, 1994.

[MM.37] MM. les secrétaires perpétuels. Comptes rendus hebdomadaires des séances de
l’Académie des sciences, volume 205. Gauthier-Villars, Imprimeur libraire, 1937.

[MMT08] Otmane Aït Mohamed, César A. Muñoz, and Sofiène Tahar, editors. Theo-
rem Proving in Higher Order Logics, 21st International Conference, TPHOLs
2008, Montreal, Canada, August 18-21, 2008. Proceedings, volume 5170 of Lec-
ture Notes in Computer Science. Springer, 2008.

[Mon76] J. Donald Monk. Mathematical Logic. Graduate Texts in Mathematics. Springer-
Verlag, 1976.

[MP11] Jean-Marie Madiot and Pierre-Marie Pédrot. Constructive axiomatic for the real
numbers. In Bas Spitters, editor, Coq Workshop 2011, Nijmegen, The Nether-
lands, August 26, 2011, Aug 2011. Extended abstract.

[MPW+18] Eric Mullen, Stuart Pernsteiner, James R. Wilcox, Zachary Tatlock, and Dan
Grossman. Œuf: minimizing the Coq extraction TCB. In Andronick and Felty
[AF18], pages 172–185.

162

https://github.com/math-comp/math-comp/releases/tag/mathcomp-1.9.0
https://github.com/math-comp/math-comp/releases/tag/mathcomp-1.9.0

BIBLIOGRAPHY

[MR91] QingMing Ma and John C. Reynolds. Types, Abstractions, and Parametric
Polymorphism, Part 2. In Stephen D. Brookes, Michael G. Main, Austin Melton,
Michael W. Mislove, and David A. Schmidt, editors, Mathematical Foundations
of Programming Semantics, 7th International Conference, Pittsburgh, PA, USA,
March 25-28, 1991, Proceedings, volume 598 of Lecture Notes in Computer Sci-
ence, pages 1–40. Springer, 1991.

[MR17] Érik Martin-Dorel and Pierre Roux. A reflexive tactic for polynomial positivity
using numerical solvers and floating-point computations. In Bertot and Vafeiadis
[BV17], pages 90–99.

[MRAL16] Gregory Malecha, Daniel Ricketts, Mario M. Alvarez, and Sorin Lerner. Towards
Foundational Verification of Cyber-Physical Systems. In 2016 Science of Secu-
rity for Cyber-Physical Systems Workshop, SOSCYPS@CPSWeek 2016, Vienna,
Austria, April 11, 2016, pages 1–5. IEEE Computer Society, 2016.

[MS13] Evgeny Makarov and Bas Spitters. The Picard Algorithm for Ordinary Differen-
tial Equations in Coq. In Blazy et al. [BPP13], pages 463–468.

[MT13] Assia Mahboubi and Enrico Tassi. Canonical Structures for the Working Coq
User. In Blazy et al. [BPP13], pages 19–34.

[MT18] Assia Mahboubi and Enrico Tassi. Mathematical Components. Available at
https://math-comp.github.io/mcb/book.pdf, 2018. With contributions by
Yves Bertot and Georges Gonthier. Version of 2018/08/11.

[New87] Isaac Newton. Philosophiæ Naturalis Principia Mathematica. Londini, Jussu
Societatis Regiæ ac Typis Josephi Streater. Prostat apud plures Bibliopolas.,
1687.

[NK09] Adam Naumowicz and Artur Korniłowicz. A Brief Overview of Mizar. In
Berghofer et al. [BNUW09], pages 67–72.

[NPW02] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL - A
Proof Assistant for Higher-Order Logic, volume 2283 of Lecture Notes in Com-
puter Science. Springer, 2002.

[ORS92] Sam Owre, John M. Rushby, and Natarajan Shankar. PVS: A Prototype Ver-
ification System. In Deepak Kapur, editor, Automated Deduction - CADE-11,
11th International Conference on Automated Deduction, Saratoga Springs, NY,
USA, June 15-18, 1992, Proceedings, volume 607 of Lecture Notes in Computer
Science, pages 748–752. Springer, 1992.

[Paş08] Ioana Paşca. A Formal Verification for Kantorovitch’s Theorem. In Journées
Francophones des Langages Applicatifs, January 2008.

[Paş11] Ioana Paşca. Formal proofs for theoretical properties of Newton’s method. Math-
ematical Structures in Computer Science, 21(4):683–714, 2011.

[PD90] Beata Padlewska and Agata Darmochwał. Topological Spaces and Continuous
Functions. Formalized Mathematics, 1(1):223–230, 1990.

[Pet82] Linda Petzold. Differential/Algebraic Equations are not ODE’s. SIAM Journal
on Scientific and Statistical Computing, 3(3):367–384, 1982.

163

https://math-comp.github.io/mcb/book.pdf

BIBLIOGRAPHY

[Pot08] Loïc Pottier. Connecting Gröbner Bases Programs with Coq to do Proofs in Alge-
bra, Geometry and Arithmetics. In Piotr Rudnicki, Geoff Sutcliffe, Boris Konev,
Renate A. Schmidt, and Stephan Schulz, editors, Proceedings of the LPAR 2008
Workshops, Knowledge Exchange: Automated Provers and Proof Assistants, and
the 7th International Workshop on the Implementation of Logics, Doha, Qatar,
November 22, 2008, volume 418 of CEUR Workshop Proceedings. CEUR-WS.org,
2008.

[PQ08] André Platzer and Jan-David Quesel. KeYmaera: A Hybrid Theorem Prover
for Hybrid Systems (System Description). In Alessandro Armando, Peter Baum-
gartner, and Gilles Dowek, editors, Automated Reasoning, 4th International Joint
Conference, IJCAR 2008, Sydney, Australia, August 12-15, 2008, Proceedings,
volume 5195 of Lecture Notes in Computer Science, pages 171–178. Springer,
2008.

[PT98] Loïc Pottier and Laurent Théry. gbcoq: Certified Gröbner bases computations.
http://www-sop.inria.fr/croap/CFC/Gbcoq.html, 1998.

[Rey83] John C. Reynolds. Types, Abstraction and Parametric Polymorphism. In IFIP
Congress, pages 513–523, 1983.

[Rey84] John C. Reynolds. Polymorphism is not Set-Theoretic. In Gilles Kahn, David B.
MacQueen, and Gordon D. Plotkin, editors, Semantics of Data Types, Inter-
national Symposium, Sophia-Antipolis, France, June 27-29, 1984, Proceedings,
volume 173 of Lecture Notes in Computer Science, pages 145–156. Springer, 1984.

[Rou18] Damien Rouhling. A Formal Proof in Coq of a Control Function for the Inverted
Pendulum. In Andronick and Felty [AF18], pages 28–41.

[RTC11] RTCA Inc. DO-178C, Software Considerations in Airborne Systems and Equip-
ment Certification, Dec 2011.

[Sai99] Amokrane Saibi. Formalization of Mathematics in Type Theory. Generic tools
of Modelisation and Demonstration. Application to Category Theory. Theses,
Université Pierre et Marie Curie - Paris VI, March 1999.

[Scha] Daniel Schepler. coq-topology: Topology Library for Coq. https://github.
com/coq-contribs/topology.

[Schb] Daniel Schepler. coq-zorns-lemma: Set Theory Library for Coq. https:
//github.com/coq-community/zorns-lemma.

[SD19] The Sage Developers. SageMath, the Sage Mathematics Software System, 2019.
Version 8.7.

[Sim04] Carlos Simpson. Computer Theorem Proving in Mathematics. Letters in Math-
ematical Physics, 69(1):287–315, Jul 2004.

[Sko01] Bartłomiej Skorulski. The Tichonov Theorem. Formalized Mathematics,
9(2):373–376, 2001.

[SMKT96] Naoji Shiroma, Osamu Matsumoto, Shuuji Kajita, and Kazuo Tani. Cooperative
Behavior of a Wheeled Inverted Pendulum for Object Transportation. In Proceed-
ings of IEEE/RSJ International Conference on Intelligent Robots and Systems.
IROS 1996, November 4-8, 1996, Osaka, Japan, pages 396–401. IEEE, 1996.

164

http://www-sop.inria.fr/croap/CFC/Gbcoq.html
https://github.com/coq-contribs/topology
https://github.com/coq-contribs/topology
https://github.com/coq-community/zorns-lemma
https://github.com/coq-community/zorns-lemma

BIBLIOGRAPHY

[SN08] Konrad Slind and Michael Norrish. A Brief Overview of HOL4. In Mohamed
et al. [MMT08], pages 28–32.

[SNI02] Tomomichi Sugihara, Yoshihiko Nakamura, and Hirochika Inoue. Realtime Hu-
manoid Motion Generation through ZMP Manipulation Based on Inverted Pen-
dulum Control. In Proceedings of the 2002 IEEE International Conference on
Robotics and Automation, ICRA 2002, May 11-15, 2002, Washington, DC, USA,
pages 1404–1409. IEEE, 2002.

[SO99] Natarajan Shankar and Sam Owre. Principles and Pragmatics of Subtyping
in PVS. In Didier Bert, Christine Choppy, and Peter D. Mosses, editors, Re-
cent Trends in Algebraic Development Techniques, 14th International Workshop,
WADT ’99, Château de Bonas, France, September 15-18, 1999, Selected Papers,
volume 1827 of Lecture Notes in Computer Science, pages 37–52. Springer, 1999.

[SO08] Matthieu Sozeau and Nicolas Oury. First-Class Type Classes. In Mohamed et al.
[MMT08], pages 278–293.

[SPA16] Giordano Scarciotti, Laurent Praly, and Alessandro Astolfi. Invariance-Like The-
orems and “lim inf” Convergence Properties. IEEE Transactions on Automatic
Control, 61(3):648–661, March 2016.

[ST18] Matthieu Sozeau and Nicolas Tabareau, editors. Coq Workshop 2018, Oxford,
UK, July 8, 2018, 2018.

[Str] Pierre-Yves Strub. multinomials: Multinomials for Ssreflect. https://github.
com/math-comp/multinomials.

[SvdW11] Bas Spitters and Eelis van der Weegen. Type classes for mathematics in type
theory. Mathematical Structures in Computer Science, 21(4):795–825, 2011.

[TCT] The COQTAIL Team. The COQTAIL Library. https://github.com/coqtail/
coqtail.

[Thé] Laurent Théry. grobner: A formalisation of Gröbner basis in ssreflect. https:
//github.com/thery/grobner.

[Thé01] Laurent Théry. A Machine-Checked Implementation of Buchberger’s Algorithm.
Journal of Automated Reasoning, 26(2):107–137, 2001.

[TS17] Amin Timany and Matthieu Sozeau. Consistency of the Predicative Calculus of
Cumulative Inductive Constructions (pCuIC). CoRR, abs/1710.03912, 2017.

[TTS18] Nicolas Tabareau, Éric Tanter, and Matthieu Sozeau. Equivalences for Free:
Univalent Parametricity for Effective Transport. Proceedings of the ACM on
Programming Languages, 2(ICFP):92:1–92:29, 2018.

[UFP13] The Univalent Foundations Program. Homotopy Type Theory: Univalent Foun-
dations of Mathematics. https://homotopytypetheory.org/book, Institute for
Advanced Study, 2013.

[Wad89] Philip Wadler. Theorems for Free! In Joseph E. Stoy, editor, Proceedings of
the fourth international conference on Functional programming languages and
computer architecture, FPCA 1989, London, UK, September 11-13, 1989, pages
347–359. ACM, 1989.

165

https://github.com/math-comp/multinomials
https://github.com/math-comp/multinomials
https://github.com/coqtail/coqtail
https://github.com/coqtail/coqtail
https://github.com/thery/grobner
https://github.com/thery/grobner
https://homotopytypetheory.org/book

BIBLIOGRAPHY

[Wei16] Ittay Weiss. The Reals as Rational Cauchy Filters. New Zealand Journal of
Mathematics, 46:21–51, 2016.

[Wie06] Freek Wiedijk, editor. The Seventeen Provers of the World, Foreword by Dana
S. Scott, volume 3600 of Lecture Notes in Computer Science. Springer, 2006.

[Wie12] Freek Wiedijk. Pollack-inconsistency. Electronic Notes in Theoretical Computer
Science, 285:85–100, 2012.

[Wil08] Albert Wilansky. Topology for Analysis. Dover books on mathematics. Dover
Publications, New York, NY, 2008.

[Wir71] Niklaus Wirth. Program Development by Stepwise Refinement. Communications
of the ACM, 14(4):221–227, 1971.

166

	Introduction
	I Case Study: the Inverted Pendulum
	Context
	The Inverted Pendulum
	The System
	Notions in Control Theory and Application to the Pendulum
	Control of the Inverted Pendulum

	Modelling Physical Systems
	On Dynamical Systems
	Taking into Account the Control Function
	An Important Property: Stability

	Practical Aspects of such a Study
	How to Formally Study a Physical System
	Scope of our Case Study

	LaSalle's Invariance Principle
	The Original Principle
	Intuition behind the Invariance Principle
	Statement of LaSalle's Invariance Principle
	Proof of the Invariance Principle

	Generalisation of LaSalle's Invariance Principle
	Weaker Hypotheses for the Invariance Principle
	A Stronger Invariance Principle

	Formalisation of the Generalised Principle
	A Note on Logical Foundations and Choosing a Library
	Filters for Real Analysis
	Topological Notions
	Formal Statement of the Invariance Principle

	Related Work
	Related Work on Stability Analysis
	Related Work on the Formalisation of Topology
	Related Work on the Formalisation of Differential Equations

	Swing-Up of the Inverted Pendulum
	The Dynamical System
	The Dynamical System and its Control Challenge
	The System We Actually Formalised

	Stability Proof
	Verification of the Hypotheses of LaSalle's Invariance Principle
	Convergence to the Homoclinic Orbit
	Summary of the Corrected Errors

	Formalisation of the Stability Proof
	On the Choice of Data Structures
	Topological Spaces
	Automatic Computation of Differentials

	Related Work
	Related Work on Dynamical Systems and Control Theory
	Related Work on the Formalisation of Mathematics

	Assessment of the Formalisation
	Improvements on the Existing
	A Smoother Experience with Coquelicot
	Using Coquelicot in other Fields of Mathematics

	Possible Extensions
	Completing the Proof of Stability
	Towards a Certified Implementation

	Remaining Complications
	Discrepancy with Pen-and-Paper Mathematics
	Missing Tools
	Combining Several Hierarchies

	II Designing a Library of Mathematics
	Hierarchy of the Mathematical Components Analysis Library
	Principles of Design
	Logical Foundations
	Organising the Library

	The Starting Point: Coquelicot
	Coquelicot's Hierarchy
	Making Coquelicot Compatible with Mathematical Components
	Minor Improvements in the Hierarchy

	Extension of the Hierarchy
	Topological Spaces
	Filtered Spaces
	Non-Empty Spaces

	Modification of the Interfaces
	Refactoring Normed Spaces
	A More Abstact Definition of Uniform Spaces
	Removing the Dependency on the Standard Library

	Tools for Asymptotic Reasoning
	Small-Scale Filter Elimination
	The near Tactics
	Example: a Short Completeness Proof

	Bachmann-Landau Notations
	Mechanisation of Equational Bachmann-Landau Notations
	Examples and Applications

	Evaluation of our Library
	Improvements on our Case Study
	Remaining and New Issues
	Related Work
	Libraries for Analysis
	Related Work on Asymptotic Reasoning
	Related Work on Delayed Production of Witnesses

	III Tools for Automation
	Refinement and Computation
	Refinement
	Definition of Refinement
	Program Refinement
	Data Refinement
	Composition of Refinements

	Using Refinement in Proofs
	On Proofs and Computation
	Automation of Refinement
	A Simplification Tactic

	The Benefits of Parametricity
	The Parametricity Theorem
	Parametricity for Data Refinement
	Current and Future Work on Parametricity

	Proof by Reflection
	Principles of Proof by Reflection
	A More Modular Methodology
	Possible Improvements and Future Work
	Missing Features
	Efficiency issues
	Possible Generalisations

	Conclusion
	List of Figures
	Bibliography

