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SYNTHESIS

In this thesis different trajectory-based methods for the study of quantum mechanical
phenomena are developed. The first approach is based on a global expansion of the
hydrodynamic fields in Chebyshev polynomials. The scheme is used for the study of
one-dimensional vibrational dynamics of bound wave packet in harmonic and anharmonic

potentials.

Furthermore, a different methodology is developed, which, starting from a parametriza-
tion previously proposed for the density, allows the construction of effective interaction
potentials between the pseudo-particles representing the density. Within this approach
several model problems are studied and important quantum mechanical effects such as,
zero point energy, tunneling, barrier scattering and over barrier reflection are founded to
be correctly described by the ensemble of interacting trajectories. The same approxima-

tion is used for study the laser-driven atom ionization.

A third approach considered in this work consists in the derivation of an approximate
many-body quantum potential for cryogenic Ar and Kr matrices with an embedded Na
impurity. To this end, a suitable ansatz for the ground state wave function of the solid is
proposed. This allows to construct an approximate quantum potential which is employed
in molecular dynamics simulations to obtain the absorption spectra of the Na impurity

isolated in the rare gas matrix.
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CHAPTER 1 GENERAL INTRODUCTION



1 GENERAL INTRODUCTION

The investigation of the real-time dynamics of complex, anharmonic, correlated many-
body systems is one of the major challenges in contemporary physics, with implications
for reaction dynamics in chemistry and biology. The emergence and the subsequent
development of time-resolved spectroscopic techniques have triggered a large number of
experimental and theoretical investigations of dynamical processes at the molecular scale
[1, 2]. In the last decades, sophisticated numerical techniques have been developed, such
as multiconfigurational time-dependent Hartree (MCTDH) [3], thereby increasing our
understanding of the microscopic world. In particular, two limiting cases have been
extensively studied: on one hand, we have the full quantum dynamics of small systems
and, on the other hand, classical molecular dynamics methods (MD) which allow to study

large systems of many thousands of particles, such as liquids and biomolecules.

Quantum mechanical phenomena are at the essence of any first-principle description of
the microscopic structure of matter. A variety of phenomena such as particle delocaliza-
tion and interference, tunneling, non-adiabatic transitions, etcetera, are ubiquitous in the
theoretical modeling of the structural and dynamical properties of atomic and molecular
systems. The methods to perform exact quantum calculations are in continuous devel-
opment. Typically, those methods are based on spatial grids, basis sets of functions or
discrete variable representations [3, 4, 5], and they scale exponentially with the dimen-
sionality of the system. This scaling properties make them very demanding from the
computational point of view, and therefore not applicable at present to systems beyond
ten degrees of freedom. In contrast, MD methods are based on the propagation of an
ensemble of classical trajectories, which allows the study of many-body systems. How-
ever, these methods are not capable of describing quantum effects such as tunneling, for

example.

It is within this context that we have the scientific problem of this thesis, which is the
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development of alternatives to standard methods to simulate quantum phenomena, in the
perspective to be able to increase the dimensionality of the system under study. We have
the hypothesis that it is possible to conceive a fully quantum mechanical propagation
method, based on trajectories only, which due to the better scalability of trajectory-based

methods, could be suitable for the study of high dimensional quantum systems.

A natural way of including quantum effects into a trajectory-based method is to use
quantum trajectories, a concept that was introduced by de Broglie and Bohm as part of

the hydrodynamic formulation of quantum mechanics [6, 7].

The idea of quantum trajectories was developed by Bohm in the following way: he started
from the hydrodynamic approach, where we can define a velocity field. Then he intro-
duced the concept of trajectories evolving according to this velocity field, and derived a
Hamilton-like Jacobi equation, similar to the classical one, but with an additional poten-
tial term. This potential has no classical analog and hence it is known as the quantum
potential. It depends on the shape of the amplitude of the wave function or, in terms of
the quantum trajectories, on the density of the trajectories around the point where we
are evaluating the potential. In the following chapter we present the main ideas of Bohm

formulation for the particular case of non-relativistic, spin-free particles.

In fact, quantum trajectories could be seen as elements of the probability fluid, associating
their speed with that of the quantum flux. However, the philosophical discussions related
with Bohm interpretation restrained their use for another thirty years. It was in 1999
that the interest in the hydrodynamic formulation of quantum mechanics started to grow,
with the introduction by Robert Wyatt of the Quantum Trajectory Method (QTM) [8].
Within this approach, quantum trajectories are used as a numerical tool to solve the

hydrodynamic equations of motion.

As it was proposed by Wyatt, in this method the quantum trajectories are used as a
numerical grid which evolves in time, and the phase and amplitude of the wave function

are propagated along them. The trajectories are seen as elements of the probability fluid
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following the time evolution of the wave function. An extensive review of this method
and its applications can be found in Ref. [9]. The QTM has been applied to the study of
several model problems [8]—[14]. Furthermore, other approaches allowing the solution of
the hydrodynamic equations in the Lagrangian (i.e., evolving with the fluid) frame have

been proposed [15, 16].

In spite of the theoretical simplicity of the hydrodynamic equations, several factors hin-
der the solution of the equations of motion for the fluid fields for general anharmonic
potentials, e.g., the need to evaluate the fields derivatives on an unstructured grid (as
a consequence of each trajectory moving with a different velocity), and the numerical
instability introduced by the divergence of the quantum potential at the positions of the

nodes of the wave function [17].

To overcome these problems, a variety of techniques have been designed and implemented
such as local least square fitting [8]—[12], global polynomial interpolation [18], derivative
propagation [19, 20], dynamical adaptive grids [13]—[23] and mixing arbitrary Lagrangian-
Eulerian grids [17, 24, 25]. Alternatively, to deal with the node problem caused by in-
terferences, a bipolar decomposition of the wave function has been proposed, to obtain
smooth counter propagating wave packets which create interference [26]. Another ap-
proach is based on complex trajectories, which are able to directly capture quantum
effects such as interference or revivals [27, 28, 29]. However, in the latter approach, the
calculation of observables which require knowledge of the information on the real axis
remains a challenge. Furthermore, complex quantum trajectories have been also used to

study photodissociation dynamics [30].

A different approach has been followed by Chou [31], who modeled a two dimensional
chemical reaction by subsequently eliminating the reflected trajectories from the ensemble.
With this approach the numerical instabilities associated with nodes and ripples formation
are avoided, and the stable propagation of the transmitted trajectories is achieved. As
the calculation of the quantum potential is notoriously difficult, another approach has

been developed by Garashchuk et al. based on an energy conserving approximation of the
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quantum potential, to model quantum delocalization in semi-classical systems [32]-[36].
Furthermore, quantum trajectories have been used in mixing quantum/classical methods.
Recently, Garashchuk et al. studied reactive process in condensed phase by performing
molecular dynamics simulations with quantum corrections, using quantum trajectories to

incorporate quantum effects into the dynamics of some selected light nuclei [37].

As a promising alternative to the QTM pioneered by Wyatt, a fully wave function-free
formulation of quantum mechanics has been developed [38]—[41], and first applications
to atomic scattering have only very recently been published [42]. In this approach, the
time-dependent quantum mechanical problem is recast into a dynamical problem of a
parameterized density. While in principle different parametrizations are possible, for one-
dimensional problems a special ansatz has been proposed in Ref. [39], which leads to an
effective Newton equation with a quantum potential. As it is described in chapter four, a
specific choice of the parametrization (which effectively labels the trajectories according
to their spatial positions) leads to the form of the quantum potential employed in this
thesis [43, 44]. Despite the fact that this discretized version of the density was referred
to as “many interacting world” interpretation [43, 45], it can be used for the study of
quantum dynamics based on the propagation of an ensemble of trajectories, which evolve
under the action of a quantum potential-like quantity, as was already proposed in Ref.

[39).

The second main direction in which quantum trajectories have been used is as an inter-
pretative tool, where quantum trajectories are calculated with the aim to visualize and
interpret quantum dynamical processes. This can be combined with the wave function-free
methods discussed above. However, very often the quantum trajectories are computed
from a wave function obtained by the standard solution of the Schrédinger equation us-
ing wave packet propagation methods. In this sense, quantum trajectories have been
used for example by Sanz et al. to describe particle diffraction [46]-[49]. Furthermore,
in the context of strong field physics quantum trajectories have been recently employed

at descriptive and interpretative levels. In order to gain a deeper insight into the laser-
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driven electron dynamics, they have been used in the study of phenomena such as high
order harmonic generation, above threshold ionization, among others [50]-[60]. However,
if the trajectories are generated a posteriori from a pre-computed wave function (calcu-
lated from standard wave packet propagation methods) the numerical problems associated
with the accurate representation of the wave function, as the number of degrees of freedom

increases, are still present.

The general objective of this thesis is to develop trajectory-based methods to model
quantum mechanical phenomena. As specific objectives we aim to use quantum tra-
jectories as a tool to solve the hydrodynamic equations, without pre-computing the wave
function, and to exploit the advantage of the trajectories also as a tool to describe and
interpret quantum dynamics. Furthermore, we derive approximate expressions for the
quantum potential for one-dimensional and multidimensional model systems by using dif-
ferent parametrizations of the density. Several one-dimensional systems will be studied
within this approximation. The multidimensional quantum potential will be added to the
classical interaction potential to obtain an effective potential, which will be used in MD
simulations, in order to simulate the absorption spectra of atomic sodium embebed in

argon and krypton matrices.

Then, the contribution and scientific novelty of the work we present here is that
we have applied a full quantum wave function (grid/basis-set) free methodology based
entirely on trajectories, to the study of realistic situations in atomic or molecular physics.
It is worth to notice that previous work regarding the specific parametrization of the
density used in this thesis involve its application to the description of model systems only
[38] —[41]. The method implemented in this thesis gives accurate results, captures well-
known quantum effects and is a promising alternative to already existing, standard wave
packet methods. Furthermore, we are able to correctly simulate the absorption spectra
of atomic sodium embebed in argon and krypton matrices. The same methodology can
be applied to study similar systems where quantum effects are relevant and classical

molecular dynamics methods fail. The thesis is structured as follows.
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In chapter two, the main ideas related to the hydrodynamic formulation of quantum

mechanics together with the QTM are presented.

In chapter three, a method based on a global polynomial expansion of the hydrodynamic
fields (here we choose the Chebyshev polynomials) is developed and applied to study the

ground state vibrational dynamics in harmonic and anharmonic potentials.

In chapter four, a different wave function-free method is presented. It starts from the
parametrization for the density proposed by Hall and coworkers [43], from which it is
possible to obtain effective interaction potentials between the pseudo-particles represent-
ing the density. This allows to model quantum dynamics entirely based on trajectory
propagations. This approach is developed and implemented in order to study to which
extent it is capable of capturing quantum effects such as zero point energy, tunneling, bar-
rier scattering and over barrier reflection. Furthermore, the same methodology is applied
to describe the laser-matter interaction and both the ionization yield and the left-right
asymmetry are evaluated as a function of the Carrier Envelope Phase. To assess the
validity of our grid-free and wave function free numerical modeling, the results presented
all along chapter four, are compared to standard wave packet propagations, and the nu-
merical convergence of the former for progressively larger sets of quantum trajectories is

analyzed in detail.

In chapter five, a different parametrization of the density is chosen in order to derive
an approximate quantum potential for a many-body system. This approximate quantum
potential is added to the classical potential to simulate the absorption spectra of atomic

sodium embebed in rare gas matrices (i.e., argon and krypton matrices).

These systems have been chosen due to the availability of experimental results [61]. Fur-
thermore, from the theoretical point of view, the absorption spectra of atomic sodium
embebed in such matrices has been simulated from MD calculations, which are not able
to accurately reproduce the experimental results. Our aim is to evaluate the influence of

the quantum corrections, entering into the MD simulations via a model quantum poten-
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tial, in the simulated absorption spectra.

The main results of the thesis, together with future perspectives of the methods we have
proposed are summarized in the conclusions. Finally in the appendices we present

some technical details regarding the methods used.



CHAPTER 2 ELEMENTS OF THE QUANTUM TRAJECTORY
METHOD



2 ELEMENTS OF THE QUANTUM TRAJECTORY METHOD

2.1 The theory of quantum trajectories

The introduction of deterministic trajectories whose position and momentum were as-
sumed to be known at every point in time, was one of Bohm’s main contributions [7]. In
this chapter we show how to define the new fields in which quantum trajectories evolve
directly from the wave function [62]. The main outcome is that the equations of motion
determining the time evolution of these fields are completely equivalent to the Schrodinger
equation. We will only present the main aspects of the theory related with the introduc-
tion of the concept of trajectories in quantum mechanics. The chapter is structured as
follows: in the first part it is described how new fields can be derived from the wave func-
tion, then the concept of trajectories is introduced and finally, we present the equations
that govern the movement of a set of trajectories. For the sake of simplicity, the equations
of motion are deduced for the study of a single particle in Cartesian coordinates. At the
end of the chapter some partial conclusions are drawn. The reader interested in gaining
deeper understanding of the aspects of the theory could consult the work of Peter R.
Holland [62].

2.1.1 Hydrodynamic field equations

Reformulation of the Schrodinger equation

The development of the theory underlying the dynamics of quantum trajectories dates
from the early years of the 20th century. During the years 1920s, Louis de Broglie in-
troduced the concept of deterministic trajectories into his pilot wave theory [6]. Within
this viewpoint, de Broglie conceived the wave function as a guiding field acting on the
particle that evolves along a deterministic trajectory. During the same period, in 1926,
Madelung developed the hydrodynamic formulation of quantum mechanics [63]. In his

work, Madelung derived the equation for a velocity field, which governs the evolution of

10
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the probability of localizing the particle at a given position. This probability is given
by the square modulus of the wave function. These equations are equivalent to the
time-dependent Schrodinger equation and they had lead, for example, to the notion of

probability flux.

For around twenty years, de Broglie’s ideas were abandoned. It was just at the begin-
ning of the years 1950s, when David Bohm developed a deterministic theory of quantum
mechanics based on trajectories [7]. According to Bohm theory, it is the absence of the
information of the initial exact position of the particle, what is going to determine the
probabilistic character of quantum mechanics. However, it is possible to follow the move-

ment of the particle, evolving along a deterministic quantum trajectory.

In this section we follow Madelung’s derivation of the hydrodynamic equations. Since
we are introducing a special kind of trajectories, which require time-dependent positions,
it can be inferred that we are dealing with a time-dependent theory. Thus, this part is
devoted to rewrite the Schrédinger equation and to introduce the equations of motion of

the new fields.

The starting point is the time-dependent Schrodinger equation (TDSE) for a particle of
mass m which evolves in the external potential V' (x,t), where x stands for the Cartesian

coordinates and t, the time,

e, n_,
zha\ll(x, t) = —%V U(x,t)+ V(x, t)¥(x,t) , (2.1.1)

The wave function can be written in its polar form [9, 62]
U(x,t) = R(x,t)e50/m (2.1.2)

where R(x,t) is the amplitude and S(x,t) is the phase, both real, and time-position

dependent. Then we have,

R(x,t) = (U(x, )" T(x,1))/2 >0, S(x,t)=h/2in(T(x,t)/T(x,t)") . (2.1.3)

11
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At each time ¢, |U(x,t)| = R(x,t), hence R(x,t) is a positive defined magnitude with
dimensions L3/2, being L a length. The phase S(x,t) carries the units of h. The wave
function is invariant to a shift of the phase, that is, it takes the same value under the

change S — S + 27nh [9].

Let us note that the polar form of the wave function ¥ is not useful at points were ¥ = 0,
because S is not well defined as we can see from Eq. (8.0.3). This problem does not
appear when using the Schrodinger equation where the propagation of a complex field is
performed. However, the former does not present any difficulties for the development of
the theory as we will see later. For now, it is important to keep in mind that the upcoming
definitions and equations, are only valid in regions where the wave function W is different

from zero.

In the derivations shown below, we omit the variables x and ¢ unless it is necessary to
specify them. Substituting the ansatz for the wave function (Eq. 8.0.2) into the TDSE

(Eq. 8.0.1) and dividing by e"¥/" it is obtained,

_[orR iROS] = R*[_, R , (2 - R_,
zh{a + 35} {V R~ ﬁ(VS) +Z(7_1<VR)(VS> +2V S)} +V . (2.1.4)

2m

Taking the real and the imaginary part, it is derived for the real part, after dividing by

R (notice that these derivations are valid if R # 0)

05 _ (VS h V'R

- — = 2.1.
ot 2m + 2m R (2.15)
and for the imaginary part after dividing by h,
OR? \
- | RP—) =0. 2.1.6
ot v ( m ) ( )

So far, it has been replaced an equation for a complex field ¥ (Eq.8.0.1) by two coupled
equations for the real fields S and R Eqgs. (8.0.4) and (8.0.5). From the mathematical

point of view, solving the equation (8.0.1) or equations (8.0.4) and (8.0.5) is equivalent.

12
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By starting from the equations (8.0.2) and (8.0.3) it is possible to build R and S from the
wave function U and viceversa. If U is a solution of Eq. (8.0.1) then, by definition, S and
R are solutions of equations (8.0.4) and (8.0.5). Furthermore, a given initial condition
U, defines a unique solution in the same way the initial conditions Sy and Ry produce
it.

Let us remark that Eq. (8.0.4) has the form of a classical Hamilton-Jacobi (HJ) equation,
but it contains and additional potential which is called quantum potential Q) [62]:

_RVR R
2m R 2m |¥]

Q= (2.1.7)

or written in terms of the density p(x,t) = R%*(x,1)

2 2 2

- EEAZ). e
The denomination for this potential comes from the fact that it has no analog in classical
mechanics. If we disregard the quantum potential, the evolution of S will be determined
by the classical HJ equation, independently of the amplitude of the wave function. It is
precisely the presence of the quantum potential ) that determines the difference between
classical and quantum trajectories. Among other properties, the quantum potential is
non-local in the sense that the potential at a given point in space depends not only on
the value of the amplitude at that particular point in space, but also on the amplitude
at neighboring points. This stems from the fact that it depends on the second derivative
of the amplitude. In addition, ) only depends on the shape of the wave function, not

on the phase, and any multiplication of R by a constant will yield the same quantum

potential.

Hydrodynamic analogy
Due to the analogy with the classical HJ equation, Eq. (8.0.4) is usually known as

the quantum Hamilton-Jacobi equation (qHJ). The momentum in classical mechanics is

defined as the gradient of the classical action which is the solution of the classical HJ

13
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equation. Similarly, in quantum mechanics, it can be defined a field p determined by VS.
Dividing the latter by the mass m, we can define the velocity field v = p/m. The fields
p and v are orthogonal to the surface with constant S and they have the dimensions of a
momentum and a velocity respectively. Due to the proportionality between these fields,
we will refer either to one or the other, but the statements we will make are valid for both

of them.

Once we have defined the velocity field, v, we can express its time evolution by taking
the gradient in equation (8.0.4). Furthermore, by entering the velocity field in equation

(8.0.5) and the density p it is obtained,

%—F(V-V)V = —%V(V—FQ), (2.1.9)
0
a—f+v-(pv) — 0. (2.1.10)

Equations (8.0.8) and (8.0.9), were derived by Madelung in 1926 [63] and represent what
is known as the hydrodynamic formulation of quantum mechanics. They are identical to
the classical hydrodynamic equations if we identify v with the velocity field and m with
the mass of a particle evolving in the fluid. Equation (8.0.9) has the form of a continuity

equation.

Let us also note that the equations (8.0.8) and (8.0.9) are equivalent to equations (8.0.4)
and (8.0.5) and thereby, they are equivalent to the Schrédinger equation. From the point
of view of quantum mechanics we can talk about the fluid probability density p which
evolves in the velocity field v given by the gradient of the phase and the wave function. The
qHJ equation (8.0.4) gives the time evolution of the phase S, also known as the quantum
action, hence determining the time evolution of the associate velocity field v (Eq. 8.0.8),
while equation (8.0.5) expresses the conservation of the fluid probability density. The

above derivation has a link with the standard formulation of quantum mechanics, where

14
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the current probability density j is defined as [64],

i _h vuy VS
\\IJ|2_mIm< T ) =-—_—=V. (2.1.11)

Equation (8.0.9) expresses the conservation of the probability density with j = pv. Then,
to reproduce the results of standard quantum mechanics, we would need that at any
time ¢, R correctly represents the module of the wave function |¥| and the velocity field
is determined by Eq. (8.0.10), which is directly fulfilled due to the way this theory is
built. So far, we have described how the Schrodinger equation can be rewritten in terms
of the fields R and S. The fields p and v defined from them by analogy with classical
mechanics, take a well-defined meaning in quantum mechanics through the probability
density current. We are now ready to introduce the notion of quantum trajectories that

evolve in this velocity field v, in the way they were introduced by Bohm [7].

2.1.2 Quantum trajectories

Until now, we have defined the velocity field which determine the time evolution of the
fluid probability density. The existence of trajectories is a postulate, which is added to

those usually admitted [62]:

1. a physical system is composed by a wave function propagating in space and time

together with a point particle which propagates guided by the wave function.
2. the wave function V is the solution of the Schrodinger equation

3. the time evolution of the particle is obtained as the solution x(¢) of the equation

PR EIC ) : (2.1.12)

m x=x(t)
where S is the phase of U given by Eq.(8.0.3).

To solve equation (8.0.11), it is necessary to give an initial condition x(0) = xg. Once this

condition is set, all other quantities are uniquely determined by W (¢ = 0) (the velocity

15
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field is fixed once we know S). It is precisely the time evolution of this particle, governed
by equation (8.0.11) and the initial conditions x(0) and ¥(¢ = 0) what determines a
quantum trajectory. The ensemble of possible motions associated with the wave function
VU, is obtained by generating a set of initial conditions x(0), as we will show in the following

section.

To guarantee the compatibility between the motion of the ensemble and the results of

quantum mechanics, another postulate is necessary, which states that:

4. the probability of finding a particle of the ensemble in the interval x and x + dx is
given by R?(x,t)d>z, with R? = [¢]?.

Now let us look at some of the fundamental properties of the quantum trajectories. If we
take two paths that evolve on the same potential V' and with the same velocity field, which
differ only by their initial position, they can never cross. This property is determined by
the fact that VS is an single-valued function. So, a single path can pass through that
point at that instant. In addition, quantum trajectories cannot pass through the nodes of
the wave function. If equation (8.0.9) is evaluated along a trajectory (where it has been

introduced the Lagrangian derivative d/dt = 9/t + v - V),

d
= In R*(x(t),t) = =V - v(X, ) x(t) + (2.1.13)
or integrating
R2(x(t),t) = R2(xo,0)e Jo VYV mx(rdr | (2.1.14)

where Ry(xp,0) is the amplitude of the initial wave function ¥(xg,0) = Ry(xg, 0)e**0x00/%,
Hence, if R%(x0,0) # 0 then R?*(x(t),t) # 0 at any given time ¢. This is consistent with the
deduction of the equations (8.0.4) and (8.0.5), where we have written the wave function

in polar form, and we have assumed that R # 0.

Evaluated along a single trajectory, the qHJ equation (8.0.4) can be interpreted from the

point of view of an effective particle associated to this trajectory, as an equation for its
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total energy [62] defined as:

E(x,t) = —% . (2.1.15)
x=x(t)

This energy is determined by the sum of a kinetic energy term,

=m— 2.1.16
2m  |x=x(t) m2 ( )

and a potential energy term, V (X, t)x=x@) + Q(X, t)jx=x@r) = V(x(t),t) + Q(x(?), ).

In general, this energy is not conserved along an individual path. Indeed, even when the
external field V' is time-independent, the quantum potential @) is generally time-dependent
as it depends on the wave function R(x,t). However, as we will show later, this energy is

conserved if we average by an ensemble of trajectories.

So far, we have shown how new fields can be defined from W, which can be interpreted
as the equivalent magnitudes corresponding to those of hydrodynamics and classical me-
chanics. In principle, by rewriting the Schrodinger equation there are not new elements
added to the theory, it only allows to have another point of view. We have presented the
concept of trajectory following Bohm’s theory. Propagating trajectories in the velocity
field derived from the wave function implies to know the wave function beforehand, or at
least being able to reproduce it at every time step. Furthermore, this description becomes
very appealing at it is possible to obtain complementary information, such as the total
energy evaluated along a path (seen as a fluid element). That could give insight infor-
mation about the process. It is also interesting to see that we can reproduce the results
of quantum mechanics with the help of an ensemble of quantum trajectories. We will

illustrate this in the following section.

2.1.3 Ensembles of quantum trajectories

As we have already mentioned, it is possible to follow the evolution of the trajectories over

time. This evolution is determined by the initial conditions xq and Wy. The selection of
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these initial conditions is the crucial step to reproduce the results of quantum mechanics
from the information contained in the trajectories. In order to reproduce the probability
distribution determined by the wave function at ¢ = 0, the initial positions x, are gener-
ated in such a way that they are distributed according to |¥y|?, with an initial velocity
vg = VSg/m. Only under these conditions, the evolution of the trajectory ensemble
represents the wave function |¥|? at each time ¢ [7, 62]. According to Bohm’s theory,
it is the lack of precise information on the initial position of trajectories, assumed to be
unique, what justifies the introduction of the set of trajectories that we have just defined
[62]. It is important to emphasize that this is not an ensemble of material particles. In
fact, it represents a set of possible realizations of the trajectories of a single particle. To
ensure the correspondence between the distribution of the trajectories and the wave func-
tion, an infinite set of trajectories must be chosen x; : i = 1,...,00. It is only from this
ensemble and not from a single trajectory that we can reproduce the results of quantum

mechanics.

To obtain the value of any observable in the position representation, it is required to
average over all possible positions. This usually translates into averaging over the wave
function that represents the probability of finding a particle in a certain region of space.
This probability can be also represented by the set of quantum trajectories, which is

unique, once the initial wave function ¥ is given.

In order to introduce the averages, let us change the sense of our notation. So far,
by definition R? = |¥|2. However, from now on, R? will also represent the density
of the quantum trajectories. Let us assume that we have an ensemble of trajectories,
uniquely defined by the initial wave function. In general, the mean value of an operator

O corresponding to a normalized state |W) is expressed as:

~

<O>= (U|0]V) = /W*OQ/d%. (2.1.17)

Evaluating the corresponding mean values of the position, the momentum and the energy
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[62], it is obtained

(x) = / U xUdPy = / Re xR dPy = / Rxd*v = (x) , (2.1.18)
(p) = / U (—ihV)Udr — / R2VSdz = (p) | (2.1.19)

(H) = /\I/*[(—h2/2m)v2 + V¥ = (2.1.20)

/RZ[(VS)Q/Qm +V +Q|d*r = (E) . (2.1.21)

Hence, from the quantum trajectory ensemble, we can reproduce the results of quantum
mechanics, because the mean values calculated with the trajectory ensemble coincide
with those obtained with the wave function. This equality comes from the fact that the
initial distribution of the trajectories as well as their initial velocities vy have been taken
according to the initial wave function W,. Let us also note that the mean value of the
energy is constant for a conservative system, while the energy along any trajectory is
not conserved. It can be also noted that the mean value of the quantum force on the
trajectory ensemble is zero, which guarantees the conservation of energy and the validity

of Ehrenfest’s theorem [62].

Up to this point, we have presented the notion of quantum trajectory in quantum me-
chanics and summarized some of their fundamental properties. We have shown that, by
selecting a suitable set of trajectories, the standard results of quantum mechanics can be
reproduced. From this point of view, Bohm’s formulation is mathematically equivalent to
the Schrodinger equation. In the next section we will illustrate how quantum trajectories

can be used from a practical point of view to study quantum dynamics.

2.2 Quantum Trajectory Method (QTM)

In practice, there are two ways to study the temporal evolution of quantum trajectories
from a computational point of view. A first approach consists in solving the TDSE by the
conventional methods (using space-fixed grids or basis set expansions) and computing the

trajectories afterwards, and the other one is based in propagating quantum trajectories
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evolving in the velocity field determined by ¥ (Eq. (8.0.10)).

The former was actually the main idea in which are based the quantum trajectories
introduced by de Broglie, Bohm, and others [6, 7]. Within this approach the goal is not
to solve the Schrodinger equation by itself, but to visualize and interpret the quantum
dynamics. However, it retains the difficulties of computing the wave function in a fixed

grid when the dimensions of the system increase.

On the other hand, there is a different approach in which quantum trajectories are used
as a tool to solve the Schrodinger equation, and they are propagated together with the
hydrodynamic filed which evolves along them. As we mentioned in the introduction,
here we aim to develop methods that allow us to study quantum dynamics of several
systems, without facing the problem of the representation of the wave function when
the dimensionality of the system grows. In this sense, using quantum trajectories as a
numerical tool seems to be very appealing. Hence, we will use the latter approach to

propagate the quantum trajectories.

In this section we introduce what is known as the Quantum Trajectory Method (QTM)
developed by Wyatt et al. in 1999 [8]. We present the fundamental aspects related to
the solution of the equations of motion in the Lagrangian reference frame using the QTM
method [8, 9]. Furthermore, we discuss which hydrodynamic fields should be propagated,
as well as some of the numerical techniques already developed in order to evolve quantum

trajectories.

2.2.1 General aspects

From now on, we limit our derivation to one spatial dimension x and to a single potential

energy curve. Here, x will represent a variable and x; a trajectory.

Thus, suppose that we have an ensemble of trajectories whose distribution represents the
density |¥|?. For any numerical calculation we will need to discretize the time and the
space. Therefore, it is necessary to define a spatial and a temporal grid. In the quantum

trajectory method, the initial density is discretized in terms of N fluid elements with mass
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m, corresponding to N trajectories x;, i=1,...,N, each of them carrying its own amplitude

Ri == R(ZL’Z, t)

Under this strategy, we do not need to propagate the trajectories, but the amplitude
R, which means that we have to integrate Eq. (8.0.5). Furthermore, this continuity
equation also depends on the phase S, so we also need to integrate Eq. (8.0.4). Hence,
if we integrate together equations (8.0.4) and (8.0.5), we will know the wave function.
In fact, these equations are independent of the trajectories, they just depend on the grid
chosen. This is what is called the Euler reference frame. However, we can also solve these
equations along the trajectories, in the Lagrangian reference frame that moves with the
fluid. In this case, the positions of the trajectories determine the grid which evolves in

time [8, 9].

Let us remark that the choice of the quantum trajectories as a grid is not indispensable.
The advantage of the quantum trajectories is that they constitute a grid with the right
properties to propagate the probability density, because the amplitude and the phase are
directly propagated along them. However, any set of points fulfilling certain properties
can be used, i.e. in Ref [25] a fix and a moving grid were mixed, and the grid velocities
were chosen to adapt dynamically to the evolution of the hydrodynamic fields. As we
already shown, equations (8.0.4) and (8.0.5) can be written in the Lagrangian reference
frame. If we introduce the derivative along a trajectory d/dt = 9/0t + v0/dx and the

velocity field v = %%, it can be obtained the following set of coupled equations

dsS 1

- = = - 2.2.1

o 5 (V+0Q), ( )

dp v

- = —pP 2.2.2

dt Por ( )

dv IV + Q)

— = - 2.2,
o Ox ’ (2.2.3)

j”‘i = v zi=x;(t) > (224)

where the equations for the hydrodynamic fields are evaluated along each trajectory. The

above set of equation is exact. However, the selection of a finite number of trajecto-

21



ELEMENTS OF THE QUANTUM TRAJECTORY METHOD

ries needed for the numerical implementation constitute an approximation. The number
of trajectories used will be then a crucial parameter to ensure the convergence of the

results.

The equations of motion presented above can be combined in different ways in order to
evolve the trajectories in time [9]. In order to integrate equation (8.0.20), we need to know
the value of the velocity field along a trajectory at each time step. Hence, we can use the

Newton-like equation (8.0.19) to integrate the velocity. This requires the evaluation of the

9Q

5., which depends on the density p, then we also need to integrate Eq.

quantum force —
(8.0.18). The above combination has the disadvantage that derivatives of the quantum
potential () are required and this is another source of numerical error in the propagation

of quantum trajectories.

Another way of combining the equations to evolve the trajectories is using equation
(8.0.17) to integrate S and then evaluate the velocity field as V.S/m. For this combi-
nation we also need to integrate the amplitude R (Eq. (8.0.18)) in order to evaluate Q,
but no derivatives of the quantum potential are required. In the next chapter we im-
plement a methodology to integrate the equation of motion of the quantum trajectories

which uses this last combination.

For any of the combinations we choose to propagate the trajectories, in general we have
the time evolution of the hydrodynamic fields S and R, therefore the wave function can
be constructed along the path followed by the quantum trajectories. That is, along a
quantum trajectory z;, from an initial point x;(¢y) the rate of change of the amplitude
is given by equation (8.0.18). This equation can be easily integrated to give the new

amplitude R in terms of the initial value

R(xs,t) = R(wy,to) exp <—% /t: (g_j;)

The derivative of the velocity field in equation (2.2.5) is integrated along a trajectory x;.

xi(T)dT) . (2.2.5)

Furthermore, the integration of Eq. (8.0.17) allows to write the exponential of the action
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at time ¢ in terms of its value at the initial time,

. t 2
to \2m \ Ox

Combining equations (2.2.5) and (2.2.6), the value of the wave function along each tra-

dT) . (2.2.6)
zi(T)

jectory can be expressed as [9, 65],

1 [t/0
wot) = Wantoexn(—; [ (51 ) luior)
to
i [t/ 1 [(0S\°

where we have denoted W(z;,to) = R(x;, to)en @) The above equation gives the wave

function propagator. Hence, within the QTM, by propagating the fields S and R, we can

reconstruct the wave function along each trajectory.

So far we have presented the theory underlying the time evolution of the quantum trajec-
tory. In principle, the solution of the equations described above gives the exact solution of
the time-dependent Schrodinger equation and therefore it has the same predictive power
as standard wave packet propagation methods [16, 66, 67]. However, several factors hin-
der the solution of the equations of motion (EOM) for the quantum trajectories. The
presence of the derivatives of S and R in the equations makes the numerical integration a
very difficult task. In order to integrate equations (8.0.17)-(8.0.20) we need to know the
derivatives of the hydrodynamic fields at each trajectory. But, even if at the beginning of
the propagation the fluid elements form a regular grid, as time evolves, the trajectories
will form an unstructured grid. The evaluation of numerical derivatives on such a grid
is very challenging. Another intrinsic problem related to the propagation of quantum
trajectories is the numerical instabilities at the nodes of the wave function due to the

divergence of the quantum potential and force.

As we mentioned in the introduction, several strategies have been implemented in order to

overcome the numerical problems associated with the propagation of quantum trajectories,
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with relative success [9]. However, the problem is far from being solved and search for
new methods to accurately solve the hydrodynamic equations is still an active field of

research.

In this work we propose two different alternatives to integrate the equation of motion of the
quantum trajectories. The first approach is introduced in the next chapter, and is based
on a Chebyshev representation of the hydrodynamic fields. The scheme is subsequently
applied to the description of the vibrational dynamics, in particular to the evolution of a

wave packet on a harmonic and on a Morse potential.

Then, in chapter four, a different approach is implemented based on a discrete representa-
tion of the density, originally proposed by Hall and coworkers [43]. This approach has the
advantage that analytical expressions for the quantum potential and force are obtained.
The method is used to study some well known quantum phenomena, such as, zero-point
energy, tunneling and scattering on a barrier. Furthermore, the one-dimensional elec-
tron dynamics under the action of a strong and short laser pulse will be studied within
the method. In all cases our calculations are benchmarked with the results from standard
wave packet methods, to show how our methodology is capable to reproduce the quantum

dynamics.

2.3 Conclusions

Here we have presented the theory underlying the QTM. We have obtained the set of
equations we need to solve to propagate the quantum trajectories and we have shown
how the solution of the TDSE can be in principle obtained from the propagation of the
quantum trajectories. In the next two chapters we introduce two different methods to
find the numerical solution of equations (8.0.17)-(8.0.20). The methods are applied to the

study of several one-dimensional problems.
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In this chapter we propose a method for the numerical solution of the equations of motion
of the quantum trajectories. The method is based on the representation of the hydrody-
namic fields in terms of Chebyshev polynomials. It is applied to study the vibrational
dynamics of a Gaussian wave packet on a harmonic and a Morse potential. The main

advantages and disadvantages of the method are discussed.

3.1 Introduction

In the previous chapter we presented the main theoretical aspects related to the prop-
agation of quantum trajectories as a numerical tool to solve the TDSE. As we already
mentioned, within the QTM, the set of equations (8.0.17)-(8.0.20) are solved by propa-
gating the fields S and R and the trajectories simultaneously. However, the solution of

these coupled equations is not straightforward.

One of the main difficulties is the evaluation of the derivatives of the fields in an un-
structured grid. Since the development of the QTM by Wyatt and coworkers [8], several
techniques has been implemented to overcome this problem. Among them, we can cite
local least squares fitting. Within this family of methods, the moving weighted least
squares (MWLS) method has been the most extensively used in the Quantum Trajectory
Method [8, 12, 17, 68].

As an alternative to those fitting schemes, another techniques have been implemented
such as the derivative propagation method along the trajectories [9, 19] as well as methods

based on mixed Eulerian and Lagrangian grids [23, 25].

Here we propose a new method to propagate quantum trajectories, based on a global
Chebyshev expansion of the hydrodynamic fields [18]. Chebyshev expansions of the wave
function propagator have been used extensively in standard wave packet propagation

methods [69]-[73], here we use them to the quantum trajectory modeling of the molecu-
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lar dynamics. Chebyshev polynomials are chosen because of their property of being the
best interpolation polynomials in the minimax sense. In the Chebyshev expansion, the
truncation error is smoothly spread out throughout the interpolated interval. As a con-
sequence, the Chebyshev approximation exhibits the smallest maximum deviation from
the interpolated function (among all polynomials of the same degree). Likewise, the re-
currence relations that satisfied the Chebyshev polynomials allow the direct calculation
of the derivatives of the hydrodynamic fields. The main properties of the Chebyshev
polynomials are described in the Appendix A. In the next section we show how they can
be used to express the hydrodynamic fields and their derivatives in order to propagate

the quantum trajectories.

3.2 Methods

In this section we develop an algorithm to propagate quantum trajectories based on the
expansion of the hydrodynamic fields in Chebyshev polynomials. We restrict ourself to
one dimensional equations and the trajectories are denoted by z;, with (i = 1,...,N).
Several numerical techniques are combined with the Chebyshev expansion in order to
overcome the numerical instabilities inherent to the numerical solution of the hydrody-

namic equations.

The C-amplitude

Before we start with the description of the method, we will rewrite the equations (8.0.17)-
(8.0.20) in terms of the logarithm of the amplitude C' = In R. This representation in
terms of what is known as the C-amplitude has been previously used to solve the EOM of
quantum trajectories [9, 12, 17]. It has been shown to be numerically more stable than the
representation in terms of R, in particular in regions where R approach to zero, due the
fact that near to these points Rln R — 0. In addition, such representation is particularly
useful when working with Gaussian wave packets, in which the logarithm of the density
is a quadratic function, which can therefore be accurately represented in any polynomial

base.
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Thus, in terms of C' and S, the previous ansatz for the wave function (Eq. 8.0.2) takes
the form, U = Re*/" = ¢CeS/". Now we can propagate either R or C. In terms of the

C-amplitude the quantum potential (Eq. (8.0.6)) can be written as,
ac\*  [d*C
- + -
ox 0x?

The interest in the quantum potential expressed in terms of C', comes from the fact that

h2
Q:__

2m

(3.2.1)

we do not longer require division by p or R to evaluate (), which suppose a numerical

advantage, as has been already shown in Refs. [12, 13].

Then, we can write the set of equations we want to solve in terms of the C-amplitude

ds 1 [(2S\°
- = %(%) -V-Q, (3.2.2)
ac 1 028

evaluated along the trajectories:

x.—l@
Y om oz

To integrate the set of equations (3.2.2)-(3.2.4) we need to evaluate at each time step S, C'
and their derivatives at the positions of each trajectory x;. As we already mentioned, this
is a very difficult task because the trajectories move with different velocities v;. Then,
an initially uniform mesh, will become an unstructured grid as time evolves. Here we
propose a methodology based on expanding the fields in Chebyshev polynomials in order

to evaluate their derivatives.

Besides rewriting the equations in terms of ', another step which can improve the nu-

merical stability, is to subtract a conveniently chosen reference function Cy from C:

C=Co+ 9. (3.2.5)
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This transformation is strictly exact and a good reference will reduce the amplitude of

the function ¢ to be expanded and the stiffness of the equations of motion.

In this study, Cj is selected as the logarithm of a Gaussian function py which approximates
the instantaneous density distribution p(z;,t) = €2@s).  Consequently, the quantum
potential Q (Eq. (3.2.1)) is expressed as the quantum potential @)y of the reference
Gaussian (which is known analytically) plus an additional contribution which takes into

account the deviation of the time-dependent wave packet from the Gaussian shape:

R [(0%Cy  [0Cy\?
Qo = _%(M +(%) ) (3.2.6)
B B2 (026 [(06\° _0¢dC,

Then, we can express only the residual function ¢ as a series of Chebyshev polynomials
rather than C'. The separation (3.2.5) is well suited for the application of the QTM to the
investigation of ground state vibrational dynamics, where both the average position and
the width of the molecular wave packet remain bound at all times, and a Gaussian profile

usually constitutes a reasonable first approximation to the molecular density.

Chebyshev expansion

As we discussed in the appendix A, any continuous function can be expressed as a finite
sum of M Chebyshev polynomials [74, 75]. Thus, we can expand the functions S and ¢
at each time step as a sum of Chebyshev polynomials, in particular evaluating them at

the trajectories x;, ¢ = 1, ..., N we can write:

orot) = Y GWTE) St = Y s(OT ) (323)
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where s; and c¢; are the expansion coefficients. In a similar way, we can represent the

RN CIAC (2)

derivatives with coefficients s; 7, s, ¢, and ¢,
0¢ :rz, — o 9S(at) A )
Z " ' “or Z 8§1)(t)13(x¢) ) (3.2.9)
j= 5=0
D (z;,t = . 825z, M-1 )
—a(xz ) C§2) (O)T5(%:) , % =" 1(a) - (3.2.10)
Jj=0 j=0

The new variable Z; = (22; —a —b)/(b— a), maps the real space in which the trajectories

evolve z; € [a, b] into the space of the Chebyshev polynomials [—1, 1].

As we describe in the Appendix A, once we know the Chebyshev expansion coefficients s;
and ¢; of S and ¢, we can obtain the values of the expansion coefficients of their derivatives

from the recurrence relations (Eqs. (A.0.12) and (A.0.13)),

s = s\ 4258, j>1, (3.2.11)
a;_1s =8 2550 j> 1. (3.2.12)

In Eq. (3.2.11) and Eq. (3.2.12), ap = 2 and a; = 1 for j > 1 and we need to fix the

values for the last two coefficients of the first derivative
35\14) =0, 85\2)_2 =2(M — V)sp—q

and for the second derivative:
(2) (2)
Spi-1=5Sp-2=0.

(1) 2).

Similar equations hold for ¢; and c¢;
a1 =+ 2je, j>1, (3.2.13)
aj1c) =P w2 > (3.2.14)
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Usually, the Chebyshev interpolation coefficients of any arbitrary function are evaluated
by collocation methods using for example, the zeros of the Chebyshev polynomials as we
described in the appendix A. However, here we only know the values of S and ¢ at the
instantaneous positions of the trajectories x;, which do not coincide with the zeros of the
Chebyshev polynomials. Therefore, here we propose the following strategy in order to

evaluate the expansion coefficients.

We write equation (3.2.8) in a matrix form, given that we know the value of ¢ at each

trajectory position:

¢(x1,1) To(Z1), -, Ta—1(Z1) co(t)
(9, 1) _ To(Z), ..., Th—1(Z2) c(t) | (3.2.15)
o(zn,t) To(Zn)y - Tar—1(Zn) ) \ear—1(t)

6 = TZ. (3.2.16)

In a similar way we have for S:

S(xy,t) To(Z1), ..., Th—1(Z1) So(t)
S(xq,t) _ To(Za), ..., Th—1(Z2) s1(t) | (3:2.17)
S(zy,t) To(Zn), - Tar1(En) J \sara ()

S = T§ (3.2.18)

In practice, the number of trajectories N used to solve the equations (3.2.2)-(3.2.4) exceeds
the number M of polynomials used for the expansion. Therefore, the expansion coefficients
are obtained by solving an over-determined system of linear equations. Then, to find the
solution to the system of equations (3.2.15) and (3.2.17) we applied the Singular Value

Decomposition method (SVD) [76]. This method is based on proposing the following
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factorization for the (N x M) rectangular matrix T = UX V! with N >> M, where U is
a N x M matrix with orthogonal columns, V is a M x M orthogonal matrix and X is a

M x M matrix whose only nonzero elements lie along the main diagonal.

We construct the matrix 3 of the decomposition T = UX V!, by finding the eigenvalues of
the M x M symmetric matrix T*T. These eigenvalues are all non-negative real numbers,
and we order them from the largest to the smallest one and we denote them by o7 >
o3 > 03 > .0 > 011 = ... = 0, = 0. That is, we denote by o7 the smallest nonzero
eigenvalue of T*T. The positive square roots of these eigenvalues, which are called the
singular values of T, gives the diagonal entries of 3. Then, once we have found the
factorization for T, the values for the coefficients s; and ¢; can be calculated as

¢=Vdiag[o; ', 0;",....,0.'|UC , §=Vdiaglo;', 0, ...,0,'|U'S (3.2.19)

aey n “ey n

where for each singular value o}, such o; = 0, then O'j_l is replaced by 0.

() 8(2),C§~1) and c§2), 7 = 0,....,M — 1, for the first and the second

The coefficients, s;”’, s,

derivatives of S and ¢ can now be evaluated from Eq. (3.2.11)-(3.2.14).

Another step forward in order to increase numerical stability is the regularization of the
density p, in order to avoid singularities in the evaluation of the quantum potential.
Thus, at each time step after the new value of C' is obtained, the density is evaluated

p(z;,t) = 2@t and then regularized, using the form given in Ref. [77]
preg(x’h t) = ,O(JZZ, t) +eexp (_p(m’w t)/E) y €K L. (3220)

Here we have used € = 1076.

In order to build the reference Gaussian py = €2“© for the separation introduced in Eq.
(3.2.5), the center (z) and the width o are chosen as the average and the root mean square

deviation of the positions of the fluid particles, respectively. They are computed using
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the simple quadrature

N
<ZL‘> = inpreg(xiat)Ai ) (3221)
=1

o= Z(mz — (@) preg(Tis ) A (3.2.22)

where

Then, once those parameters are found we express the reference Gaussian as

1 — (2 —(x))?
po(x;,t) = P ) (3.2.24)
2o
and then

With the interpolation using Chebyshev polynomials we no longer require an equally
spaced mesh to interpolate the hydrodynamic fields at each time step. A further important
improvement of the present scheme is the application of the SVD /Chebyshev interpolation
to the residual density, i.e., to the function ¢ in Eq. (3.2.5). This function is in general
small and can present both positive and negative signs, allowing the full potential of

Chebyshev polynomial interpolation to be exploited.

The proposed scheme to solve the EOM (3.2.2)-(3.2.4) is summarized in Figure 3.1. The
starting point is the initialization, setting the trajectories positions, as well as the values
of the fields and their derivatives at each trajectory. Then, the trajectories positions and
the fields are updated using a four order Runge-Kutta integrator and it is performed the
Chebyshev expansion of the fields at the new positions. Afterwards, observables can be
computed and the new integration step is taken. Further details of the numerical algorithm
can be found in the appendix B. In the following section we show the application of the
scheme proposed above to study the vibrational dynamics of a Gaussian wave packet in

two one-dimensional models: a quadratic potential and a Morse potential.
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Initial conditions sampling: x;(t = 0), C;(t = 0), 5;(t = 0), ..

Update numerical states: x; (¢t + At), C;(t + At), S;(t + At)

F 3

Chebyshev expansion:  §, ¢

dS d%S d¢ d2¢
dx’'dx?" dx ' dx?
Update: Q(t + Ab), v(t + At)

|

Compute observables

Recurrence relations:

pZC

p—
Stop l

Figure 3.1: Schematic representation of the numerical algorithm proposed to integrate the
hydrodynamic equations.

In the harmonic case, the outcome of the simulation using the QTM is compared with the
analytical solution of the quantum mechanical equations of motion [62, 78]. On the other
hand, the QTM results on the anharmonic potential are compared with a benchmark
provided by the quantum wave packet propagation approach using the Cranck-Nicholson
scheme [75]. The latter is based on the decomposition of the time evolution operator ac-
cording to the Trotter expansion [79, 80], combined with a finite-difference representation
of the molecular Hamiltonian on a uniform mesh containing 4096 points. The election
of this value of the grid density, together with the time step of At = 2.489 x1072 fs, was
found to yield an accurate representation of the effect of the kinetic energy operator and
of the interaction potential on the evolution of the molecular wave function. The wave
packet is evolved in time by recursively applying the free-particle propagator and the

exponential of the potential energy matrix on the state vector.

The equations of motion for the quantum trajectories are solved using the algorithm

described in the appendix B. The simulations were carried out up to 50 fs, (i.e., the total
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propagation time is several vibrational periods long). At every time step, the coefficients of
the Chebyshev expansion of the functions S and ¢ are computed using M = 10 Chebyshev
polynomials and we have used N = 100 trajectories unless specified otherwise. For these

parameters selection we ensure norm conservation up to 1%.

3.3 Results

3.3.1 Gaussian wave packet on a quadratic potential

As a first example of the implementation of the quantum trajectory method using Cheby-
shev polynomials we will study the vibrational dynamics of a one-dimensional Gaussian
wave packet in a harmonic potential. The results of these simulations are compared with
the analytical solutions of the TDSE, thus providing an accurate assessment of our re-
sults. The upcoming equations of this chapter will be written in atomic units (a.u.),
unless specified (h = 1,]e] = 1 and m, = 1, being e and m, the electron charge and
mass respectively). In the presentation of our results, we use femtoseconds (fs) as the
unit of time while for the rest of the magnitudes we employ atomic units (a.u.). In par-
ticular for the energy and length units we use the symbols E}, and ag, respectively (1 Ej,

= 4.3597 10718 J and 1a.u.=0.5291 A).

We choose the harmonic potential:
V(z) = ~mw?(r — 1.)?, (3.3.1)

centered at x, = 0 ag with a frequency w = 1.25 x10~2 £, and a mass m = 10000 a.u. For
the particular case of the evolution of a Gaussian wave packet in a harmonic potential, the
analytical solutions of the time-dependent and time-independent Schrodinger equation are

known. The ground state is a Gaussian wave packet centered at x. = 0ay
p(z;,0) = Ae 20—z (3.3.2)

as is shown in Figure 3.2 together with the harmonic potential. The constant A =
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Figure 3.2: Quadratic potential (Eq.(3.3.1)) and ground state density built evaluating the
analytical solution (Eq. (3.3.2)) at the initial positions of the trajectories z;, i = 1, ..., 100.

(2a/7)'/? accounts for normalization of the initial density p, and a = mw/2 = 62.8 ay?.
If the center of the initial wave packet is shifted with respect to the minimum of the
potential, we can study the vibrational dynamics. A Gaussian wave packet in a harmonic
potential retains its form. However, depending on the initial conditions, the width of the
wave packet can change periodically in time, which is known as the “breathing of the

wave packet” [78]. In general, the solution of the TDSE can be written as:

_ (—x4)?

p(xh t) - Ae_gﬂt(xi_xt)Q - Ae 20? 9 (333)

where o, and x; represent the time-dependent width and center of the wave packet re-

spectively, and its analytical solutions are given by [78]:

Ty = x,cos(wt) , (3.3.4)
o Bo cos(wt) + ia sin(wt)

s (Zﬂo sin(wt) + acos(wt)) ’ (3.3.5)

PR T Iy 530

4Re|B] 4a? By

where at t = 0, x; = z, and B; = [y. For the particular case of fy = a we obtain
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B¢ = a for all the propagation time. The width of the wave packet does not change, this is
called a “coherent state”. On the other hand if 5y # a we have an “squeezed state”: the
width of the wave packet spreads and contracts (5o > a) (contracts and spreads (5y < a))

periodically in time.

To illustrate the results of the method, the initial wave packet is shifted to x, = 4 ay.
The trajectories are initially selected forming an equally spaced grid around x, between
the values Z,,i = o — 2/v/Fo and Tpae = T, + 2/4/Po. The initial wave packet is then

evaluated at each trajectory
p(3:,0) = (280 /m) /D=2l i —1 N, (3.3.7)

and the hydrodynamic fields are propagated using the algorithm described above. Cal-
culations are performed for three different values of the initial width of the wave packet:

Bo = a, and two squeezed states (8y = a/3 and Sy = 4a).

In Figure 3.3, the results for the time evolution of the mean value (x) (left panel), and the
width of the wave packet o (Eq. (3.2.22)) (right column), for the three cases considered
here are plotted. In both cases the comparison with the analytical results are shown. For
the three initial values of the width of the wave packet, the numerical results obtained
using the implementation of the QTM based on the Chebyshev expansion of the hydro-
dynamic fields exactly match the analytical solutions of the time-dependent Schrodinger
equation. From figures 3.3 and 3.4, it can be noticed that for 5y < a the wave packet con-
tracts first (as the centre of the distribution approaches the equilibrium position). Beyond
this point, the wave packet gradually spreads until it reaches the inner turning point. The
opposite behaviour is observed for fy > a (that is, during its motion inwards, the wave
packet initially broadens and it gets contracted afterwards). The sequential narrowing
and spreading of the squeezed states happens twice every period, as expected from Eq.

(3.3.5).

37



CHEBYSHEV EXPANSION OF THE HYDRODYNAMIC FIELDS

0.015 — T T T T

0.01

0.005

T T I T I T T
—— analytical solution

4.05x1 0-3 | = = trajectories+Chebyshev_|

3.96x10° [~ —

<x> [ao]
c [aO 1

3.87x10° = —

3
0 10 20 30 40 50 >0 0T 07 20 30 40 50

L L L B 20x10” 1T 1T 1

1.5x107 —
1.0x107

5.0x10°

N A B B ool ¥ Y |
0 10 20 30 40 50 0 10 20 30 40 50

t [fs] t [fs]
Figure 3.3: Time evolution of the mean value (z) (left column) and the width o (right
column) of the Gaussian wave packet in the quadratic potential (Eq. (3.3.1)). Three
different values of the initial width are considered: S5y = a/3, (top panel), 8y = a (central

panel) and By = 4a (bottom panel). In all cases the comparison between the analytical
results (solid line) and the averaged values are shown for N = 100 trajectories (points).

3.3.2 Non-Gaussian densities: time-independent analysis

As a preliminary analysis, in this section we discuss the performance of the present im-
plementation of the QTM for structured wave packets from a time-independent perspec-

tive.

We choose three different analytical forms to represent the initial density. The densities
are constructed in order to have the desired structure. The behavior of the quantum
potential and the quantum force for different orders of the Chebyshev expansion are

studied. As a first example we choose a Gaussian wave packet,

po(z;,0) = e~ 24(xi=05)* (3.3.8)
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P [arb. units]

P [arb. units]

P [arb. units]

Figure 3.4: Time evolution of p for the three initial values of § considered: [y = a/3 (top

panel), 8y = 4a (central panel) and [y = a (bottom panel). The density p is evaluated as it

is described in step 2.2 of the algorithm described in the appendix B.
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with a = 1a,>.

The second case corresponds to a density that has a well-defined node, whose analytical

expression is given by:
p1(x;,0) = e 201(@i=05) =a22i(() 15 4 cos(mag;))? . (3.3.9)

and the third form for the density is a more structured function, but without well-defined

nodes,
e~ 2001(2:+1.25)* (1 1 (0.5(1 + cos[10may;]))?
(1 + eagcci/5)2 ’

with a1:1a52 and agzagzlagl.

We restrict our analysis to a maximal basis size of M = 20 Chebyshev polynomials for the
expansion of the hydrodynamic fields. Setting this upper bound for the number of polyno-
mials in the truncated expansion is motivated by the possibility to extend this algorithm

to the modeling of the quantum dynamics in three- or higher-dimensional systems.

In the left column of Figure 3.5 the three analytical densities are shown with continu-
ous lines and with points we have plotted the results of the Chebyshev expansion using
M = 10 polynomials. In the central column we show the quantum potential for the three
densities, using different orders of the Chebyshev expansion with our SVD/Chebyshev
scheme described in the previous section. In order to test the accuracy of these results,
we calculate the quantum potential derived from each analytical density using the collo-
cation method described in the appendix A.0.1. In this case, as we know each density
analytically, we can evaluate them at the zeros of the Chebyshev polynomials and calcu-
late the expansion coefficients from equation (A.0.16). The coefficients used to expand the
derivatives are then calculated from the recurrence relations given in the previous section.
In this case we have used M = 50 polynomials and we have referred to the quantum

potential obtained by this method as the exact quantum potential.

As a general trend, all numerically computed Q) slowly converge to their exact values
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Figure 3.5: Left panel: Analytical densities (Egs. (3.3.8)-(3.3.10)) (solid line) compared
with its representation in Chebyshev polynomials for M=10. Central panel: Quantum
potential calculated after representing the three analytical densities on the left using dif-
ferent orders of the Chebyshev expansion with the SVD/Chebyshev scheme. With the
black continuous line we have represented the exact quantum potential calculated using the
collocation method described in the Appendix A.0.1. Finally, in the right panel we show
the results of evaluating the relative error of the force (Eq. (3.3.11)) for several orders of
the expansion.

as the order of the Chebyshev series is increased. Considering only 20 Chebyshev poly-
nomials in the expansion, the function () reproduces the overall behaviour of the exact
quantum potential but it averages the rapid spatial oscillations of the latter. The quan-
tum potential obtained for the quantum trajectory representation of the Gaussian profile
(top central panel) is perfectly reproduced, as can be expected from the results in the
previous section. The oversmoothing of the quantum potential for the more structured
density patterns is larger for the density with a resolved node (central panel). Due to
their global interpolation properties, the Chebyshev polynomials flatten the large oscil-

lations in the region of the node. Although the third density exhibits more structure,

the unresolved character of the nodes provoke a better overall performance of the density
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smoothing.

This trend can be better observed from the analysis of the error in the forces. The
dynamics of the quantum trajectories is governed by the quantum and the classical forces,
hence we could evaluate the relative error we make in the evaluation of the forces by

evaluating the following ratio

_ fa(x) + foel@)
fa(@) + fee(z)

r(z) (3.3.11)

We have identified with f,. the quantum force evaluated using our Chebyshev/SVD
scheme and with f, the force derived from the exact quantum potential. To calcu-
late the force we need to evaluate the gradient of the quantum potential and then the
third derivatives of the amplitude are required. In fact, from Eq. (3.2.1) we obtain the

quantum force expressed in terms of C,

1 [03C oC 9*C
fo=—5— <@ + 2%@) . (3.3.12)

To obtain the expansion coefficients, we can use the recurrence relations given in the
appendix A (i.e. Eq. (A.0.14) for p = 3). With f,. we have identified the reference
quantum force calculated using the collocation method. Finally, f. is the classical force

derived from the potential V(z) (Eq. (3.3.1)),
Ja = —mw(r —z.). (3.3.13)

A ratio of 1 implies a perfect fit to the density, quantum potential, and quantum force. As
it can be seen, the error in the force calculation increases when the density is more struc-
tured, especially where strict nodes exist (central right panel of Figure 3.5). Increasing
the number of Chebyshev polynomials only improves the convergence to the numerical
exact functions marginally, but the errors still remain modest in all cases. Again, the

density with unresolved nodes (bottom right panel) behaves better than the one with an
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explicit node.

These results indicate that the error associated to the calculation of the quantum potential
depends on the topology of the density distribution: the truncated series produce very
accurate quantum potentials for nearly Gaussian shapes, but the agreement of the SVD-
based and the exact quantum potentials degrades as the number of nodes or ripples

mncreases.

3.3.3 Non-Gaussian densities: time-evolution

As a more realistic model of molecular vibrations, the method is also tested for the time

evolution of a Gaussian wave packet on a Morse potential. The Morse function

V(z) = D(e 2#=r0) _ ge=alz=ro)y (3.3.14)

provides a reasonable description of intra-molecular interactions for a wide range of di-
atomic molecules. The results presented in this subsection correspond to the following
choice of the interaction potential parameters: o = 0.27 aal, ro = 3.5a9 and D = 10 E},.
Following the methodology described in section 3.2, we consider the propagation of a

Gaussian wave packet of the form (3.3.7) for several choices of the initial width.

As in the previous subsection, the equations of motion (3.2.2)-(3.2.4) are solved on the
anharmonic potential energy curve using a fourth order Runge-Kutta integrator (Step 2
of the algorithm described in the appendix B), but employing an adaptive time step. The
value of the time step At is adjusted to keep the maximum change in the positions of
the fluid particles below a pre-defined fraction ¢ of the minimal spacing between adjacent
trajectories. In this study, 0 is set to be 0.5 so that, at every time step, At is chosen
as half the minimum value of (z;11 — z;)/v;, where v; is the value of the velocity field at
the position x;, as in Ref. [17]. In Figure 3.6, a comparison between the results of the
quantum trajectory simulations and those of the wave packet propagation is shown for

the case of a Gaussian initial wave function of width ) = 62.8a,? in Eq. (3.3.7).
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Figura 3.6: Time evolution of a Gaussian wave packet with 5, = 62.8(162 in a Morse poten-
tial. Comparison between the results of the SVD/Chebyshev scheme (left panel) and the
benchmark calculations using Crank-Nicholson method (right panel).

It can be observed that there is a good agreement between both methods. In order to

evaluate the correspondence between the wave packet and the quantum trajectory simu-

lations, we calculated the mean value of the relative error r. at different time steps

e = 3 3 P el 3315

where p,, represents the results from standard wave packet propagation methods, and
pe accounts for the results from our SVD/Chebyshev method. We obtained that up to
46 fs the mean value of the relative error remains smaller than 11%. The correspondence
of our method and the full quantum mechanical wave packet propagation supports the
validity of the numerical approach proposed in this work, at least in the case of the one-
dimensional quantum dynamics on anharmonic potentials for short time propagation (i.e.,
for several vibrational periods). As time evolves the wave packet gets more structured
and the method (in particular, the use of a Gaussian reference function Cj) is no longer

accurate.

3.4 Conclusions

In this chapter we have investigated the ultrafast vibrational dynamics on model one-
dimensional potentials within the framework of the Quantum Trajectory Method in the

Lagrangian frame. We have integrated the equations for the fields S and C along the
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quantum trajectories, by computing the spatial derivatives of those fields via the recur-
rence relations obeyed by global interpolating (Chebyshev) polynomials. A key advantage
of the present approach is that a relatively small number of polynomials are required in the
truncated expansions to attain a reasonably accurate representation of the hydrodynamic
fields. Numerical instabilities in the calculation of the quantum potential and, as a con-
sequence, in the integration of the equation of motion, are surmounted by a combination

of several numerical techniques:

e First, the density is regularized to avoid strict nodes and it is recasted in logarithm

form.

e Second, the logarithm of the density is split into two contributions: that of a refer-
ence Gaussian which approximates the density distribution, and a residual function
¢. This partition have shown to improve the description of the quantum effects
and it is expected to improve convergence in other applications of the QTM to the

treatment of molecular vibrations, especially for localized wave packets.

The comparison between the quantum potential computed using the Chebyshev expan-
sion coefficients of the density retrieved from the singular value decomposition, and the
exact quantum potential for various distributions suggests that the accuracy of the SVD
procedure decreases as the topology of the density distribution gets more structured. The
truncation of the Chebyshev series leads to a slight oversmoothing of the spatial depen-
dence of the quantum potential. Nevertheless, the error remains small and it does not

affect significantly the corresponding forces exerted on the fluid particles.

In general, the proposed methodology allows to propagate quantum trajectories and to
study the full quantum dynamics from a wave function free perspective. Several numer-
ical strategies were implemented all together with the SVD/Chebyshev scheme for the
derivatives evaluation in order to improve the numerical accuracy. However, by using the
SVD method to calculate the expansion coefficients, we are gaining in numerical accuracy,

but we are limited in the future extension of the method to describe higher dimensional
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systems. Indeed, in the multidimensional case, the Singular Value Decomposition needs
to be applied to matrices of order M? (d being the number of spatial dimensions). Re-
trieving the expansion coefficients using the SVD would become impractical for matrices
with order M? exceeding several thousands. Furthermore, the proposed scheme is not
suitable for applications where the wave packet is delocalized. For example, to study phe-
nomena such as scattering on a barrier, where the wave packet splits into a transmitted
and a reflected part, or during the interaction of an atom with a strong laser field. In this
case, the electronic wave packet can spread over a wide region in space while the field is
driving the electron far form the core. Therefore, new algorithms are required in order to
describe these phenomena, within a quantum trajectory perspective. The next chapter is
devoted to the development of a new methodology to study the dynamics of the quantum

trajectories, which will allow the study of such kind of problems.
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CHAPTER 4 QUANTUM DYNAMICS MODELED BY
INTERACTING TRAJECTORIES
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4 QUANTUM DYNAMICS MODELED BY INTERACTING TRAJEC-
TORIES

In this chapter we present a new method to perform quantum dynamical simulations
based on the propagation of interacting trajectories where the effect of the quantum
potential is mimicked by effective pseudo-particle interactions. The method is applied
to several quantum systems, both for bound and scattering problems. Furthermore, the
methodology is applied to ultrashort laser ionization of a model hydrogen atom. The
pulses are chosen to be sufficiently short so the relative phase between the carrier wave

and the pulse envelope becomes important.

4.1 Introduction

In the second chapter we presented the theoretical aspects of the quantum hydrodynamic
equations that govern the dynamics of the quantum trajectories. Together with this
theoretical background, we introduced the QTM, as the numerical implementation of the
equation of motion of the quantum trajectories. As a promising alternative to the QTM
pioneered by Wyatt, a fully wave function-free formulation of quantum mechanics has

been proposed [38]—[41].

In this approach, the time-dependent quantum mechanical problem is recast into a dy-
namical problem of a parameterized density. While in principle different parametrizations
are possible, for one-dimensional problems a special parametrization has been proposed
in [39], which leads to an effective Newton equation with a quantum potential. For a
specific choice of the parametrization, which effectively labels the trajectories according
to their spatial positions, one is lead to the form of the quantum trajectories equations
of motion proposed by Hall and collaborators [43]. The discretized version of the density
was referred by Hall and coworkers as “many interacting world” interpretation [43, 45].

However, apart from the interpretative aspects of the formulation, it can be used for
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the study of quantum dynamics based on the propagation of an ensemble of trajectories,
which evolve under the action of a quantum potential-like quantity. In Ref. [43], the
model quantum potential was chosen as one of the terms of the full quantum potential,
since it contains only the energy conserving term depending only on the first derivative of
the probability density (second term of Eq. (8.0.7) in chapter two). Consequently, using
this approach, it is not straightforward to generate the phase of the wave function. In
contrast, by working with the complete expression of the quantum potential, as proposed
in Ref. [38] and [39], the phase becomes equal to the action and it can easily be computed

via a simple integral (see i.e. Eq. 8.0.21 in chapter two).

Therefore, our objective in this chapter is to derive the full form of the quantum-like
potential considering the same ansatz for the density proposed in Ref. [43]. In order to
evaluate the influence of the term neglected in Ref. [43] on the trajectory dynamics, we
derive the model quantum force and calculate the correlation function and spectra, as

examples of observables where the phase of the wave function is relevant.

Thus, to evaluate the performance of these model quantum potentials and forces, i.e., their
capacity to capture some essential quantum mechanical phenomena (such as the zero-
point energy, tunneling and scattering from a barrier), in the first part of this chapter
the method is applied to several one dimensional test problems for time-independent
potentials. Namely, the determination of the ground state on harmonic and anharmonic
potentials, the propagation of wave packets in the presence of an Eckart barrier and of an
uphill ramp, tunneling dynamics in a double minimum potential and in a potential with
a local minimum and a finite barrier. Moreover, the calculation of correlation functions

and spectra are performed from the quantum trajectory simulations.

Then, in the second part of this chapter we study the laser-driven electron dynamics
within the interacting trajectory formalism. This is precisely, one of the fields where the
use of quantum trajectories arise as a promising alternative. Even for one-dimensional
model systems, as the one we study here, the solution of the Schrodinger equation with

the standard methods is very difficult. This is due to the fact that during the interaction
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with the field, the electron wave packet expands over a wide region in space, and huge
grids are required in order to accurately represent the wave function. Here, we show
the performance of our trajectory-based method in the description of the laser-driven
atomic ionization. As model system we choose a soft-core Coulomb potential to model
the electron-nucleus interaction. An interesting aspect of the dynamical process triggered
by intense and short laser pulses is that for extremely short pulses, comprising only a
few optical cycles, the Carrier Envelope Phase (CEP) has a strong influence on the laser
induced dynamics. This dependence can be used as an additional parameter to experi-
mentally control the ionization dynamics of atomic or molecular systems. A particularly
relevant example of the influence of the CEP on the electron dynamics is found in the
photo-electron emission, where the CEP allows to control the forward-backward asymme-
try (also called the left-right asymmetry) in the photo-electron spectra [81]-[84]. To assess
the performance of our trajectory-based dynamics, observables like the total ionization

yield are calculated and the CEP effects on the photo-electron spectra are analyzed.

The chapter is structured as follows. In the next section we shortly come back to the
EOM of the quantum trajectories presented in chapter two, in order to introduce the
model quantum potential and force. Afterwards we present our main results divided in
two parts. A first part, where the method is applied to simulate quantum dynamics
in the time-independent potentials mentioned above. Then, in the second group of our
results we model the laser driven electron dynamics as an example of the performance of

the method for time-dependent potentials. Finally, some partial conclusions are drawn.

4.2 Methods

In this section, we start from the ansatz for the density proposed by Hall and coworkers
[43] and follow their derivation, but including both terms in the quantum potential, in

order to evaluate the full quantum potential and force.
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4.2.1 Model quantum potential and force

First we will come back to some of the results presented at the end of chapter two con-
cerning the equations to propagate quantum trajectories. The one-dimensional version of
the hydrodynamic equations is used and all equations are written in atomic units unless
specified. As we mentioned in chapter two, one of the possible combinations of the hydro-

dynamic equations which allows to propagate quantum trajectories is the following,

dp v
dv 0
s 1,

In principle, the solutions of equations (4.2.1)-(4.2.3) correspond to the exact time evolu-
tion of the quantum mechanical state of the system. In chapter three, we have proposed
a method to propagate the trajectories based on Chebyshev expansion of the hydrody-
namic fields, which were used to study the ground state vibrational dynamics of bounded
systems. Here we follow a different approach, starting from the anstaz for the density
proposed by Hall and coworkers [43], we derive approximate expressions for the quantum
potential and force. Then, we propagate a set of interacting trajectories with the model
quantum potential and force. We show that in the limit where the number of paths goes
to infinity they resemble the quantum trajectories and the predictions of our model ap-
proach the quantum mechanical results. Following Hall’s derivation [43], given that the
initial set of N trajectories is ordered and labeling them as z; < x5 < ... < xy. Then, if
p(x) is any smooth interpolation of the density, the mean value (A) of certain function

A(x) is given by
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(A) %ZA(%) ~ / o(z) A(z)dz
~Y / U e Al = 3 — m o) Al) - (4.2.4)

It suggests the following ansatz for the smoothed density at x = z,,, as was proposed in

Ref. [43],

1 1
T,) = R , 4.2.5
p( ) N(xn — $n—1) N($n+1 - $n) ( )

where x,, represents the position of the trajectories at each time step. Under the assump-
tion that the separation between the trajectories is a smooth function of the index n, the
discrete sampling at the points x1, xs, ..., £y approaches the density in the limit when the

number of trajectories N tends to infinity.

Now from Eq. (4.2.5) we can derive an approximate expression for the quantum potential.
If we return to equation (8.0.7) the quantum potential for a one-dimensional system,

written in terms of the density p has the form

Q) = —— ['O”(x’t) —l(p,@’t))z} , (4.2.6)

Cdm | pe,t) 2\ pl,1)

where p and p” denote the first and second spatial derivatives of the density. In the
derivation presented in Ref. [43], only the second term in 4.2.6 was considered in the
model quantum potential. Here we follow the same idea, but including both terms in Q.
In our notation we assume that the time dependence is implicitly included, given that z,

represents the trajectory position at a given time.

The first and second derivatives in equation (4.2.6) can be evaluated using finite dif-

ferences. Asymptotically, for a large number of trajectories, the first derivatives of the
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function p(z) at the point = x,, can be approximated as:

() e 2Eme) = PATn) (4.2.7)
Tn+1 — Tn
using Eq. (4.2.5),
1 1 1 1
p () ~ ( — )— , (4.2.8)
Tn+l — Tn \Tn+2 — Tn+l Tn+1 — Tn N

From Eqgs. (4.2.5) and (4.2.8) the ratio p'(x,)/p(x,) can be written as

/ 1 1 1 1
p(n) ~ - A — : (4.2.9)
p(Tn)  Tpyo — Tpgl Tppl — T Tl — Tn Ty — Tpoy

In Ref. [43], this formula was used to approximate the second term in expression (4.2.6),
which was subsequently used to propagate the trajectories. This procedure accounts for
the time evolution of the trajectories under the influence of a purely repulsive quantum-

like potential Qg [43],

Qo(xn)zi(x b1 )2. (4.2.10)

8m n+1—Tn Ly —Tp—-1

s . . "
However, we can use the same procedure to approximate the second derivative p ()

/ Y.
() o L Tt1) = ) (4.2.11)
Tpt1 — T

//(x ) 1 ( 1 B 1
Pt Tpt1 — Tp (xn+3 - $n+2)(9€n+2 - fl?n+1) ($n+2 - $n+1)2
1 1
— + )2> , (4.2.12)

('rn—s—l - xn)(xn+2 - xn—l—l) (xn—s—l — In
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and the ratio p"(z,)/p(,)

p'(tn) 1 ( 1 - 1 1 )+( 1

2
p(l‘n) Tni2 = Tptl \Tnt3 — Tny2  Tpt2 = Tptl Tptdl — Tp Tpy1 — xn)

1 1 1 1 1
~ - - + 5. (4.2.13)
Tn+1 — Tp \Tn+2 — Tn+1 Tp4+1 — T Tp — Tp—1 (mn - mn—l)

Therefore, after substituting equations (4.2.9) and (4.2.13) into Eq. (4.2.6), we derive the

following expression for the quantum potential

Qen)=—1- 1 - 1

Am [ (Tnr2 = Tpi1) (Tnp1—=Tn)  (Tnp1—T0)?  (Tpp1—20) (Tn—Tp-1)

1 1 1 1\’
+ 2——( - )}. (4.2.14)
(xn_'rn—1> 2 Tpnt1—Tn Tp—Tp-1

In this expression, the last term in parenthesis coincides with the quantum-like potential
proposed by Hall and coworkers, Qo (Eq. 4.2.10), and it can also be obtained from a more
general one proposed earlier [39]. In what follows we want to analyze to which extent
the quantum potential @) is capable to account for quantum effects, and to evaluate the
influence of the additional terms, as compared with )y, on the dynamics of the quantum

trajectories.

As we mentioned in the introduction, the quantum force is obtained as the gradient of

the quantum potential. For our one-dimensional model, the quantum force acting on the

-0 Zil Q(ﬁz) .

nth particle, is computed using this quantum potential as f; = =

The approximate quantum force depends on the four nearest neighbors, the first two

particles to the left and to the right, and it reads

1 1 1 9 1
A .

. _
Am | (Tp41 — T 2~ Tnyl Tpp—Tp  Tp—Tp

1 1 2 1
- 5 x( —————+—— )} , (4.2.15)
Tp—Tp— ) Tl — T L= Tn Tp1—Tp-2
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leading to the same expression for the quantum force as the one obtained in Ref.[43] from

Qo-

Because of this equivalence, propagating the trajectories employing the present form for
the quantum potential Eq. (4.2.14) or Qg yields identical results. However, differences
arise in the computation of observables which depend on the phase of the wave function,

for instance, in the evaluation of correlation functions, as shall be shown below.

Equation (4.2.14), together with the relations (4.2.1) to (4.2.3), maps the original problem
of a quantum particle moving in one dimension into an equivalent problem of N particles
interacting with their first and second nearest neighbours. Noteworthy, the paths obtained
using this procedure, strictly obey the non-crossing rule for the quantum trajectories,
because of the divergence of the model quantum potential if trajectories become infinitely
close. Furthermore, if we assume that the initial set of particles is distributed according to
some known initial density, and we define their velocity as v; = V.S(x;)/m as N approach

to infinity our set of interacting trajectories will approach the quantum trajectories.

Here we finally solve the following set of equations

PR (4.2.16)

dv,
m% = fc(wn)+f4<xn) ’ n:L...,N ’ (4217)
(4.2.18)

which represent the equation of motion for the interacting particles evolving under the
action of the external force f. = —0V/0x, evaluated as the gradient of the classical

interaction potential, and the approximate quantum force f,, Eq. (4.2.15).

Furthermore, equations (4.2.1) and (4.2.3) can be integrated to reconstruct the wave

function along each trajectory, as it was shown in chapter two (Eq. (8.0.21)).
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4.2.2 Calculation of observables and wave packet analysis

In sections 4.3 and 4.4, we show the results of using the aforementioned form for the
quantum force (Eq. (4.2.15)) to study a variety of model dynamical problems. Our aim
is to test how the time evolution of these trajectories reproduce the emergence of well
known quantum effects, such as zero-point energy, tunneling, wave packet spreading, over-
barrier reflection, etc. In particular, in section 4.3 we perform ground state calculations
for a harmonic and a Morse potential. As for the quantum dynamics, we study the wave
packet scattering on an Eckart barrier. To illustrate the over-barrier reflection we show
the example of an uphill ramp. As the last examples of this part we study the tunneling
dynamics in a double minimum potential as well as the dynamics in a potential with a local
minimum and a finite barrier. Therefore, now we define some of the observables we will

need in order to evaluate the information coming out from the trajectory dynamics.

From the ansatz proposed in the previous section for the density distribution (Eq. (4.2.5)),

the expectation values of an arbitrary function ¢(z,t) can be computed as:
| X
(&, 1)) = / 4o pla, )0(w, 1)~ 1> () (4.2.19)

n=1

The expectation value of the energy is then evaluated from equation (4.2.19),

(E)= %ZE(%) :%Z {5_72 + Vi(x,) + Q(xn)] : (4.2.20)

Another magnitude of interest is the transmission probability. Let us suppose that we
have the barrier located at x;, then the transmission probability as a function of time

P(t) can be evaluated as

P(t) = /00 p(x, t)dx . (4.2.21)

From the ansatz proposed for the density, this equation translates into a summation over
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all the trajectories with positions x,, such that z; > x,

P(t) =+ > o1, (4.2.22)

n:17x'll >xp

Let us remark that P(t) is the time-dependent transmission probability, in the sense that

it is evaluated from the trajectory distribution at each time.

Furthermore, in the study of wave packet dynamics and of reactive scattering it is often

useful to evaluate the time-dependent autocorrelation function,
C(t) = (¥(z,0)|¥(z,1)) , (4.2.23)

and its Fourier transform, the energy spectrum [78]

F(w) i/m dt(U(x,0)|W(z,t))e™" . (4.2.24)

:27r

—00

In equations (4.2.23) and (4.2.24), the brackets denote the integration over the spatial
coordinate. In order to compute the correlation function, the time evolution of the wave
function along each trajectory is required, which can be formally evaluated starting from
the initial wave function given at the sampling points x;(fy) as it was shown in chapter

two:

U(ai(t)) = \I/(xi(tg))exp(—% /;(%)MT)CZT) Xexp(i /;{% (g—i)Q—V—Q] xi(T)dT) |

From this relation, it can be seen that the synthesis of the wave function along each
trajectory relies on the time integration of the quantum potential (). Hence, the evaluation
of the auto-correlation function provides a suitable test to evaluate the importance of
considering the quantum potential in Eq. (4.2.14), as compared to the one proposed in
Ref.[43]. Although in principle, the correct wave function phase can be generated from

either ) or (Qy, only the complete quantum potential () generates the phase via the
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simple wave function synthesis given in Eq. (4.2.25). This will be documented in Sec. 4.3

below.

4.2.3 Details of the numerical implementation

In the next section, the methodology presented above using the approximate form of the
quantum potential @ (Eq. (4.2.14)) is applied to a variety of one dimensional model
problems. Moreover, we evaluate the influence of the term V2p/p of the quantum po-
tential, in the calculation of observables such as the energy spectrum and the correlation

function.

For each model system, we analyze the numerical convergence properties as the number
of trajectories is increased. For a large number of propagating trajectories, large quan-
tum forces are encountered, which yields the numerical integration difficult and requires
automatic step size control. Hence, the equation of motion for the quantum trajecto-
ries are solved using a fourth order Runge-Kutta integrator with adaptive time step [85].
The time step required for the integration varies over several orders of magnitude, since
the quantum force shows strong variations, in particular when trajectories come close
together. This is shown below for the example of the Eckart barrier (see Figure 4.6).
The integration with an absolute error of 107!2, leads to a relative energy conservation
of 1077 over the full propagation time. Furthermore, left and right boundaries need to
be specified. In the examples presented below, we follow Ref. [43] and assume z_5 and

x_1 — —oo as well as xy11 and xni0 — 0.

In the ground state, the total force (i.e., the gradient of the interaction potential plus the
quantum potential) acting on each trajectory should vanish, that is f.(x,) + f,(z,) = 0,
for n = 1,.., N. Therefore, following a procedure proposed in Ref. [43], in order to find
the stationary distribution of the trajectories, equations (4.2.16)-(4.2.17) are solved, but
the velocities of the trajectories are set to zero after each time step. The final distribution
obtained via this relaxation process approaches the ground state density distribution in the

limit N — co. In the next section we will show the results of the ground state calculation
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for the harmonic and the Morse potential. However, the ground state distribution of
trajectories of an arbitrary potential can be calculated using the same methodology. In
fact, all the initial conditions we use in the examples presented below, are generated with

this relaxation process.

The results derived from the trajectory dynamics are compared with the exact solution of
the TDSE using the split operator Fast Fourier Transform Method (FFT) developed by
Feit et al. [80]. Within this method, the ground state densities of each model potential are

calculated by a relaxation method, propagating the wave function in imaginary time.

4.3 Results. Part I: time-independent potentials

4.3.1 Ground state calculations

Harmonic potential

As a first example, we will study the ground state of a particle in a parabolic potential,
V(z) = %muﬂ(x — 29)?. Using atomic units, we choose the parameters of the harmonic
potential as m = la.u., zo = 10 ag, w = 1 F},. The initial condition is taken as a Gaussian
wave packet with the same width as the ground state wave function and displaced to the

left (i.e., centered at 9.5ay).

The stationary distribution of the trajectories is obtained, after solving the equations
(4.2.16)-(4.2.17), setting to zero the velocities of the trajectories after each integration
step, we build the density using the ansatz proposed in Eq. (4.2.5). We also calculate

the mean value of the total energy (E).

In Figure 4.1, we show the convergence of the energy estimator (Eq. (4.2.20)) and of
the density distribution (Eq. (4.2.5)) towards the ground state energy and probability
density, respectively, as a function of the number of trajectories. It can be seen that
the quantum mechanical probability distribution of the ground state is qualitatively well
reproduced already for the smallest number of trajectories (N = 31). As the number of
sampling points gets larger, the description of the tails of the density distribution improves

progressively, and it becomes very accurate for an ensemble of N = 601 trajectories.
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Figura 4.1: (a) Convergence of the asymptotic density distribution to the probability den-
sity of the ground state of a harmonic oscillator, for an increasing number of trajectories.
(b) Convergence of the quantum potential to the known analytical form of the quantum
potential of a harmonic oscillator, for an increasing number of trajectories. (c) Average
energy (E) for an ensemble of N quantum trajectories as a function of time. The hori-
zontal line indicates the exact value of the zero-point energy. (d) Linear interpolation of
the dependence of the asymptotic energies F as a function of the inverse of the number of
trajectories N.

In panel b) of Figure 4.1, the convergence of the quantum potential towards the analytical
solution is shown. Moreover, for every size of the ensemble the average energy reaches
its asymptotic value after a propagation time <100 fs. These limiting values quickly
approach the zero-point energy as N — oo. The linear extrapolation of the estimated

energy to the limit of 1/N — 0 is plotted in the bottom right panel of Figure 4.1. Indeed,

the relative error decreases below 1072 already for N = 100 trajectories.

Morse oscillator

As an illustration of the performance of the method for the determination of the vibra-

tional ground state in anharmonic potentials, we analyze the case of a Morse oscilla-
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tor
2

V(r)=D[1—elm]" (4.3.1)

with the same mass (m = la.u.), equilibrium position (g = 10ag) and the frequency
in the harmonic approximation (w = 1FE}) as in the previous example. The stiffness
parameter « is varied in the range from o = 0.01ay " to @ = 0.5a; ", while the well depth
D = mw?/2a? is adjusted to keep the vibrational frequency w constant. For this choice
of parameters, the number of supported bound states decreases from N, = 10* (o = 0.01)
down to N, =3 (a = 0.5). The eigenvalues of the Morse oscillator are given analytically

(atomic units are used) [86],
1 1\ % w?
E, = = — -] —. 4.3.2
n <n+2>w <n+2> 1D (4.3.2)

The computed density distribution and energies are depicted in Figure 4.2, for o = 0.1 a;".
On the one hand, the slight shift of the probability density to larger distances is accurately
described in the interacting trajectories representation, for ensembles larger than N = 200,
whereas the convergence to the exact density distribution (for progressively larger sizes

of the ensemble) happens faster than for the harmonic case.

On the other hand, the average energy (Eq. (4.2.20)) is initially larger than that of the
harmonic oscillator, for the same initial wave packet. This reflects the larger steepness
of the Morse function in the region sampled by the initial wave function, compared to
the parabolic potential. The difference in the slopes of the potential energy curves is also
the cause of the faster convergence rate (to the ground state energy, as a function of the
propagation time) observed in Figure 4.2b, in comparison with the corresponding plots in
Figure 4.1c. These variations in the rate of convergence depend on the specific shape of
the anharmonic potential considered, and on the particular distribution chosen as initial

condition for the relaxation process.

In Figure 4.3, it is shown how the error in the determination of the ground state energy

depends on the anharmonicity, for the range of values of the stiffness parameter considered
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Figure 4.2: (a) Convergence of the asymptotic density distribution to the probability density
of the ground state of a Morse oscillator (a = O.laal), for an increasing number of trajec-
tories. (b) Average energy (F) for an ensemble of N quantum trajectories as a function of
time. The horizontal line indicates the exact value of the zero-point energy (E) = 0.4987F},
evaluated from Eq.4.3.2 for the given parameters. (c) Linear interpolation of the depen-
dence of the asymptotic energies F as a function of the inverse of the number of trajectories
N.

in this work. It is striking, that the relative error remains small (below 5%), even for

strongly anharmonic potentials.

4.3.2 Quantum dynamics

The scattering from uphill ramps and Eckart barriers, as well as tunneling in a double well

potential, constitute typical examples of phenomena where numerical difficulties may arise
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Figure 4.3: (a) Morse potential (Eq. (4.3.1)) for different values of the stiffness parameter a.
The corresponding number of supported bound states is in the range from N, =3 (a = 0.5)
to N, = 10* (o = 0.01). (b) Deviation between the asymptotic value of the average energy

(E), obtained via the relaxation of the quantum trajectories, and the energy F of the ground
state, calculated by solving the time-independent Schrédinger equation.

in the propagation of quantum trajectories. These systems have been considered before
as test cases for several previous numerical studies in the QTM [8, 9, 12, 17, 13, 23, 28,
38, 68]. In these problems, the wave packet is squeezed against the barrier, part of the
wave packet is reflected and ripples appear in the tail of the density distribution. The
accurate description of these rapid spatial oscillations is essential to account for quantum
interference effects, but these oscillations are associated with strong repulsion between the
quantum trajectories which subsequently leads to a breakdown of the integration. These
problems have been addressed before giving rise to a variety of numerical techniques,
like the integration of the equation of motion using arbitrary Lagrangian-Eulerian grids,

which allowed to extend markedly the total propagation time [24, 25].

Here we show how the trajectories interacting via the approximate quantum force Eq.
(4.2.15) are able to reproduce the scattering and tunneling through the barrier and a
potential ramp. Four test cases are chosen: Eckart barrier, uphill barrier, double minimum

potential and a potential composed of a local minimum and a finite barrier.
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Eckart barrier
First, we will study the scattering of a one-dimensional Gaussian wave packet from a

repulsive Eckart barrier [44],

1

Viw) = Vocoshz[a(ac — 13)]

: (4.3.3)

where Vj is the barrier height, the parameter a controls the barrier width and x; is
the position of the potential maximum. The parameters determining the form of the
initial wave packet and of the potential barrier were chosen as in Ref. [23], that is,

Vo = 3.6 x 1072E), a = 0.5ay and 2, = 6ag. As the initial condition we choose a

Gaussian wave packet

U(x,0) = (26/7) Y4 exp[—B(x — 20)? + ikz] , (4.3.4)

centered at 2o = 0 ag and the width parameter 3 = 10a;"'. The wave vector k is connected

to the initial kinetic energy F by the relation £ = +/2mFE. The initial situation is sketched

in Figure 4.4.
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Figure 4.4: Eckart barrier (Eq. (4.3.3)) and initial wave packet (WP) p calculated using the
stationary distribution of the trajectories with Eq. (4.2.5), for N = 501 trajectories, plotted
with points. The exact density is represented with a solid line, it has been plotted using
the Gaussian function given in Eq. (4.3.4) with 29 =0 ap and 8 = 10 q; '
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The initial set of trajectories are generated from the initial density Eq. (4.3.4) p = |¢]2.
All the trajectories are chosen with the same initial velocity v, = \/m, n=1,..N.
We are interested in study the transmission probability of the wave packet as a function of
the initial kinetic energy F. Hence, Eqgs. (4.2.16)-(4.2.17) are solved considering different

initial kinetic energies of the incident wave packet.

In Figure 4.5, we show the transmission probability as a function of the kinetic en-
ergy P(E) of the incoming wave packet, for collision energies between 1.14 x 1072 E}, to
4.56 x 1072 E},. The transmission probability was calculated integrating the density using
equation (4.2.22) with z, = 6ao. In order to evaluate P(FE) using equation (4.2.22), the
sum was performed only for the distribution of trajectories at the end of the propagation
time, for all the initial kinetic energies considered. It can be noticed, that a remarkably
good agreement is achieved between the integration of the interacting quantum trajecto-
ries and the results from standard wave packet propagation, which are denoted by WP in
Figure 4.5. In particular, the tunneling through the barrier (for energies below the barrier

height, E < 3.65 x 1072 E},) is reproduced with great accuracy.
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Figure 4.5: Transmission probability for a particle impinging on an Eckart barrier (in
logarithmic scale), as a function of the initial energy of the wave packet. The circles
represent the transmission probability calculated using the quantum trajectories (with N =
301), the solid line is the exact quantum result. The dashed line indicates the height of the
barrier.
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In Figure 4.6 (a), the time evolution of a representative set of the quantum trajectories is
depicted for an incoming particle with an initial kinetic energy E = 3.42 x 1072 E),. It can
be noticed, that the region sampled by the trajectories spreads steadily until the first ones
hit the barrier, after approximately 15fs. From this point in time, and until ¢ = 30fs,
the trajectories in the early part of the wave packet get decelerated, and considerable
strain is accumulated as a consequence of the piling up of these quasi-stationary points
in the region immediately before the barrier. As a result of this stress, a fraction of the

trajectories crosses the barrier at different times between 15 fs and 65 fs.

There is a second group of trajectories which are scattered back from the barrier. On their
way leftwards, they encounter the trajectories in the late portion of the incoming wave
packet, and after the collision taking place between 50 and 60 fs, both groups continue
to move apart from the barrier (due to the repulsion among them and the transmitted
points, and once the majority of the scattered paths have drifted sufficiently away from

the obstacle).
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Figure 4.6: (a) Swarm of N = 301 trajectories representing the evolution of the wave packet
associated with a particle, with an initial energy F = 3.42 x 1072 E},, impinging on an Eckart
barrier centered at x;, = 6ag, as a function of time. The inset shows how the wave packet
spreads during the first 10fs of the dynamics. (b) Quantum force acting on selected trajec-
tories, indicated in (a) by dashed and dotted lines.
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To illustrate the quantum effects, we show in Figure 4.6 (b) the quantum force acting on
three of inner trajectories, as an example. During the initial phase of the dynamics, the
quantum force acting on the trajectories is relatively small, however once the reflected
trajectories encounter the trailing ones on their way back, the non-crossing rule leads to
very strong, peaked quantum forces. The dynamics induced by this strong forces leads to
the nodes in the density, as shown in Figure 4.7. In passing, we want to note that these
very peaked quantum forces make the system of equations very hard to integrate, and a
numerical method with automatic step size control is required to account for these strong

variations happening on a very short timescale.

From the trajectories, the time-dependent density distribution can be evaluated at any
point in time from equation (4.2.5). In Figure 4.7, two snapshots of the particle density

are shown after t = 24{s and ¢t = 56 {s.
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Figure 4.7: Time evolution of a Gaussian wave packet impinging on a Eckart-like potential
centered at z;, = 6ayp. The wave packet is initially centered at z = 0ag, and the collision
energy E = 3.42 x 1072 E},. (a) density distribution after 24fs and (b) t = 56 fs. These results
correspond to a swarm of N = 301 trajectories, and they reflect the splitting of the wave
packet upon collision with the barrier and the subsequent formation of density ripples due
to the quantum interference between the different components of the wave packet. The
vertical dotted line indicates the position of the center of the barrier.
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The overall agreement with the probability density computed via wave packet propagation
(designed as WP in Figure 4.7) is very good over the entire spatial domain. In Figure
4.7a, one can see the onset of the interference between the late portion of the incident
wave packet and the scattered density. The bottom panel 4.7(b) shows two main peaks on
the scattered density, consistently with the two sets of paths previously identified in the
trajectory representation (c.f. Figure 4.6), which get reflected at different times. This plot
captures the instant of maximum squeezing of the main portion of the reflected density,

which interferes mildly with the trajectories scattered later.

Uphill barrier

A similar analysis was performed for the case of a Gaussian wave packet impinging on an
uphill ramp [44]. The solution of this problem employing arbitrary Lagrangian-Eulerian
grids revealed instabilities in the numerical integration of trajectories due to bifurcations
in the wave packet, even for energies above the ramp height. The potential has the form

of a smoothed step function,
A

V<x) = 1 _I_e—b(CC—Ib) :

(4.3.5)

The parameters, A = 3.65 x 1072 E),, b = 1.5 agl and x, = 1ag were taken from the
literature [25]. The initial wave function has the same form as the one used for the Eckart
barrier (cf. Eq. (4.3.4)), with the width parameter 8 = 10a, 2, the mass m = 2000 a.u.
and xg = 1ag. In this case the initial kinetic energy F of the incoming wave packet is
fixed and set to be equal to the ramp height A = 3.65 x 1072 Ej,. The initial condition is

represented in Figure 4.8.

In Figure 4.9, a representative set of trajectories propagated using the proposed form of the
model quantum potential is depicted. Clearly, the quantum trajectories can be grouped
in two distinct sets: those at the fore-front of the wave packet, which overcome the barrier
and undergo a change in their momenta at the crossing region, and the trajectories whose
motion is reversed upon collision with the barrier. For illustration purposes, the trajec-
tories defining the limits between these two classifications are highlighted in Figure 4.9.

The set of transmitted trajectories, after surpassing the potential step, spreads in a way
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Figure 4.8: Uphill ramp potential (Eq. (4.3.5)) and initial wave packet p calculated for
a stationary distribution of N = 301 trajectories, plotted with points. The exact density
p = |[¢]* is represented with a solid line (WP), it has been plotted using the Gaussian
function given in Eq. (4.3.4) with zo = 0ag and 3 = 104, .

similar to a wave packet evolving in free space. Alternatively, the scattered trajectories

experience a cascade of collisions among them, which propagates outwards.

Compared with the time evolution of the trajectories for the scattering on an Eckart bar-
rier, it can be seen that the trajectories defining the left-most boundaries of the reflected
wave packet have similar velocities for both model problems (for example, the correspond-
ing trajectories reach the position x = —20ag after ¢t ~ 115fs for the Eckart and for the

uphill barriers).

Conversely, the boundary of the transmitted wave packet moves more slowly for the
smooth step compared with the transmission through the Eckart barrier although the
initial kinetic energy is approximately 7% larger in the former case (i.e., the right-most
trajectory crosses x = 40 aq after ¢ ~ 125 fs, while the corresponding point for the Eckart
barrier reaches this position at ¢ &~ 100 fs). This behaviour reflects the differences between
the asymptotic kinetic energies (i.e., for x — 00) of the transmitted wave packets for each

potential function.

The time evolution of the density distribution as a result of the wave packet scattering

by the ramp is plotted in Figure 4.10 at three different points in time. These density
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Figure 4.9: Swarm of trajectories representing the evolution of the wave packet associated
with a particle, with an initial energy E = 3.65 x 1072 E},, impinging on an uphill barrier, as
a function of time.

profiles were reconstructed from the distribution of trajectories according to Eq. (4.2.5),
and they are shown to correspond nicely with the exact ones obtained from the wave
packet propagation (denoted as WP in Figure 4.10). The wave packet gets split into two
components: at ¢t = 24fs, a wide distribution (approximately 10 ag of full width at half
maximum) continues to move forward, while a much more localized portion of the wave
packet propagates backwards after colliding with the ramp. After 72fs, the formation
of density ripples in the reflected wave packet becomes apparent, which develops into a
highly oscillatory density profile for the late wing of the scattered portion of the wave

packet (see Figure 4.10, panel (c)).

Interestingly, at least for the presented example, the description of the quantum dynamics
by trajectories interacting via a model quantum potential of the form (4.2.14), results in
an averaging of the density field in the region where large-amplitude, spatially-localised
oscillations take place. Although such averaging implies that the interference between the

different components of the wave packet is treated only approximately, this feature has a
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Figure 4.10: Time evolution of a Gaussian wave packet impinging on a ramp-like potential.
The wave packet is initially centered at = 0 ay and the collision energy is E = 3.65 x 1072 E,.
(a) density distribution after 24 fs, (b) 72fs and (c) 97 fs. These results correspond to a swarm
of N = 301 trajectories, and they reflect the splitting of the wave packet upon collision with
the potential step and the subsequent formation of density ripples due to the quantum
interference between the different components of the wave packet. The vertical dotted line
indicates the position of the center of the barrier.

positive impact on the numerical stability of the algorithm. This level of correspondence
between the results obtained using wave packet propagation and in the interacting trajec-
tories picture is found to be preserved even for highly structured density profiles and for a
relatively long times (for this problem, the simulations were stopped after 250 fs). For the
ramp case we study the transmission probabilities for several heights of the ramp. The
corresponding transmission probabilities P () were calculated using equation (4.2.22) with
xp = b ag. The computed transmission probabilities yield accurate results for different val-
ues of the ramp heights, A = 2.73x 1072 E},, 3.65 x 1072 E},, 4.56 x 1072 E),, 5,47 x 1072 £,
as is shown in Figure 4.11. In all cases with a continuous line we show the results for the

transmission probability obtained from standard wave packet propagation.
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Figure 4.11: Transmission probability P(t) Eq. (4.2.22) as a function of time for four

different heights of the uphill ramp (symbols) compared with the standard wave packet
calculation (straight lines, WP).

Double well minimum

As the next example we will study the tunneling dynamics in a double minimum potential.
This problem has been addressed before within the quantum trajectories formalism in
Ref.[68]. There, in order to propagate the quantum trajectories, the moving least square
algorithm was combined with the logarithmic form of the density, in order to represent

the derivatives required to propagate the quantum trajectories.

However, in spite of the numerical strategies implemented in Ref.[68], severe numerical
difficulties arise after some trajectories cross the barrier region and encounter the repulsive
potential wall. As soon as the first trajectories hits the wall and some reflections occur,
the integration of the equations of motion, due to the very picky quantum force, become
extremely difficult. As they report, the trajectories start to cross after t = 16 fs and their

numerical calculations are meaningless beyond this point.

Here we choose the same model potential as in Ref.[68], and we study the tunnelling dy-

namics by propagating the trajectories with the approximate quantum force (Eq. (4.2.15)).
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The model potential is chosen as

V(z) = ax* — ba? , (4.3.6)

with a = 0.007 and b = 0.01 (in atomic units) as in Ref.[68], and the potential height
V, = 3.581072E},. As the initial condition we chose the distribution of trajectories obtained
after the relaxation process described above, for the harmonic approximation to a state
centered in the right hand-side well. That is, after the relaxation the trajectories are
distributed according to a Gaussian wave packet centered at z( = \/% and with a
width 8 = V/4bm, which corresponds to the ground state of the second order expansion of
V() around the minimum, as is shown in Figure 4.12. The density is reconstructed after
the relaxation using equation (4.2.5) employing N = 201 trajectories and is compared

with the exact density.

As the initial state is not an eigenstate of the potential V(z), a net force due to the
non-compensate contributions of f. = —dV'(z)/dx and f, sets the trajectories in motion
at t = 0. In the top panel of Figure 4.13, a swarm of N = 201 trajectories is shown. As
we can see, already at 10 fs some trajectories start to cross the barrier, and continue their

time evolution on the left-hand side well.
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Figure 4.12: Double minimum potential defined in Eq. (4.3.6). The initial wave packet
calculated using Eq. (4.2.5) from the stationary distribution of the trajectories for N = 201
is plotted with points. The exact density is plotted with a solid line (WP).
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Figure 4.13: (a) A swarm of N = 201 trajectories is shown. As we can see, already at 10fs
some trajectories start to cross the barrier, and continue the dynamics on the left had side
well. (b) The probability of finding the particle on the right hand side well Pr(t) calculated
from Eq. (4.3.7) is plotted. With solid line we plotted the results from the standard wave
packet propagation (WP).
The probability of having the particle on the right hand side well as a function of time

P,(t) can be evaluated from equation (4.2.22) as

Pr(t)=% > o1, (4.3.7)

In the bottom panel of Figure 4.13, P,.(t) is plotted. With a solid line we show the results
from standard wave packet propagation. After ¢t = 30fs, already the first trajectories that
hit the repulsive potential wall on the left get reflected and they start the collisions with
those in the incoming portion of the wave packet. This makes the equations of motion

very difficult to integrate and numerical errors start to accumulate, as it can be seen if we
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compare the value of P,(t) computed from the trajectories with the wave packet results.
Beyond 48fs the agreement between the trajectory dynamics and the results obtained
from wave packet calculations start to deteriorate. However, it is worth to notice that
the present approach extends the validity of the quantum trajectory representation of the

dynamics to longer times compared with the methodology employed in [68].

In Figure 4.14, snapshots of the density are shown to illustrate the splitting of the wave
packet when the trajectories start to cross the barrier. The vertical line represent the
position of the barrier. Around ¢t = 12fs, some trajectories have already started to cross
the barrier and they keep crossing up to ¢t = 29 fs, as can be seen from Figure 4.13. At
this point in time, due to the reflections with the repulsive wall on the left hand side well,
some of the trajectories cross back to the right hand side well. We have again represented
the density calculated using Eq. (4.2.5) evaluated at the trajectories together with the

results from wave packet propagation.
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Figure 4.14: Snapshots of the density. With points we have represented the density calcu-
lated using Eq. (4.2.5) evaluated at the trajectories using N = 201 trajectories. The solid
line correspond to the results from wave packet propagation (WP). The vertical dotted line
indicates de maximum of the potential barrier.
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Figure 4.15: Potential defined in Eq. (4.3.8). The initial wave packet is calculated using
the relaxation mechanism described above for the harmonic approximation of the given
potential and then is reconstructed using Eq. (4.2.5) for a set of N = 201 trajectories.

Shape resonances

As a qualitatively different example of time-independent potentials we study the quantum
dynamics on a potential with a local minimum and a finite barrier. This type of potentials
can support a finite number of shape resonant states. In this case, the dynamics is slightly
different because (after tunneling through the barrier) the particle move to the continuum,
and the effects of reflections observed in the double minimum potential disappear. The

one dimensional potential is built as follows,

a(x + x0)?

V(ZL‘) = bed(z—cwo) +1 ’

(4.3.8)

The parameters of the potential are adjusted in such a way that the potential well re-
sembles one of the wells of the double minimum potential we have shown before. The
minimum of the potential is located at xy = —\/b/_2a, the rest of the values for the pa-
rameters in atomic units are a = 0.04, b = 8, ¢ = 0.005 and d = 8.5. The initial situation

is represented in Figure 4.15.

The time evolution of the probability of having the particle on the potential well P(t),
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can be defined from Eq. (4.3.7) as

1
Pt) =+ > o1, (4.3.9)
n=1,,<-0.3
(where 2, = —0.3 qg is the position of the barrier maximum), is plotted in the left panel

in Figure 4.16 for an increasing number of trajectories. The results from standard wave
packet propagation is also shown. As it can be seen, the results derived from the tra-
jectories dynamics converge to the exact quantum result as the number of trajectories

mcreases.

Furthermore, the exponential decay of the excited states can be described within the
trajectory formalism. The decay of the population of the initially excited bound state

/7 where 7, identified as the

P,(t) can be model as an exponential function P(t) = e~
lifetime of the excited state is defined by P,(7) = 1/e [87]. Then, we can calculate the
lifetime of the excited state as a function of the number of trajectories and see how it

converges to the exact quantum result. In order to evaluate the lifetime we have fitted

an exponential function to each curve in the left panel of Figure 4.16. The values of
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Figure 4.16: (a) The time evolution of the probability of having the particle in the well
P,(t) from Eq. (4.3.9) is plotted for an increasing number of trajectories. The wave packet
results are also shown. As the number of trajectories increases, the results converge towards
the wave packet results (WP). (b) The values of 7 obtained as the result of the fitting are
plotted, in the x-axis we have 1/N and in the y-axis, the life time, 7. The point just on top
of the y-axis represents the lifetime obtained from the wave packet population probability.
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Figure 4.17: The time evolution of the probability of having the particle in the well P;(t)
calculated from Eq. (4.3.9) is plotted for N = 410 trajectories. The exponential curve fitted
to P,(t) is plotted with a dashed line.

7 derived as a result of the fitting are plotted in the right panel of Figure 4.16, in the
x-axis we have 1/N and in the y-axis, the life time, 7. The point just on top of the
y-axis represents the lifetime obtained from the wave packet population probability. As
we can see by extrapolating the curve we approach the wave packet result as the number
of trajectories approach to infinity. The exponential curve fitted to P, calculated with

N = 401 trajectories is plotted with a dashed line in Figure 4.17.

4.3.3 Correlation functions and spectra

Of particular interest in the time-dependent formulation of absorption and dissociation
processes is the time-dependent autocorrelation function, whose Fourier transform is pro-
portional to the absorption spectrum. It also provides a very intuitive representation of
the time evolution of the system, since it allows the identification of the modes chiefly

involved in the dynamics.

In this section, the final distribution of trajectories obtained in section 4.3.1 after the re-
laxation procedure is now used as the initial condition for the study of the vibrational dy-
namics of a Gaussian wave packet on a shifted harmonic potential (centred at o = 8.5 ay,
the minimum of the potential is centered at 10ag) [44]. The time-dependent correlation

function is evaluated via the integration of the wave function along each trajectory using

78



QUANTUM DYNAMICS MODELED BY INTERACTING TRAJECTORIES

(Eq.(4.2.25)). In order to update the Lagrangian, the quantum-like potential () and the
full quantum potential () were used. In the appendix C are given further details related to
the calculation of the correlation functions. In Figure 4.18, the real part of the correlation
functions computed using )y and @), are compared with the exact quantum mechanical
result. It can be noticed that using the quantum potential @ in eq. (4.2.14) correctly

reproduces the quantum time-dependent correlation functions.

One can see that using Qo in Eq. (4.2.10) for the wave function reconstruction fails
to reproduce the right amplitudes of the peaks of the correlation function centered at
times t = 2mn/w (27 /w ~ 12.5fs). Moreover, the correlation function computed with Qg

takes opposite signs, compared to the quantum mechanical benchmark, at times equal to

half-integer number of vibrational periods.

On the contrary, using the quantum potential @) of Eq.(4.2.14), comprising both repulsive
and attractive terms, correctly reproduces the positive and negative peaks in the quantum
correlation function. The agreement is less perfect for the region between the mean peaks,
where the small amplitude oscillations in the quantum correlation function are averaged

out in the interacting trajectories representation.
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Figure 4.18: Real part of the correlation function of a Gaussian wave packet on a parabolic
potential, computed from the time evolution of N = 201 interacting trajectories using the
full form of the quantum potential (Q eq. (4.2.14)) and the one introduced in Ref. [43]
(Qo). The solid lines represents the exact solution, obtained via wave packet propagation.
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Augmenting the size of the ensemble of trajectories allows to diminish this smoothing
effect, bringing the results of trajectory and wave packet propagation in closer corre-
spondence. In Figure 4.19, the real part of the correlation function is plotted for a
varying number of trajectories. The quantum mechanical result is recovered in the limit

N — oc.

It is worth to mention that the small deviations from the exact quantum correlation

function, that appear due to insufficient sampling of the probability density distribution,

has minimal impact on the overall structure of the energy spectrum.

1 1 1 -
Jﬁlé N=51 7

» mm N=201 B
B AA N=601gy] —

g R, g 8
i |7+ ]

|||||is||||_

0 5 10\115 20 25 30
| | | | | | | |
O’l_i(b) n n —

B\ X |
! f
o—g
01}

t[fg]
Figure 4.19: (a) Real part of the correlation function of a Gaussian wave packet on a
parabolic potential calculated for an increasing number of trajectories. The results are
compared with the quantum correlation function calculated using standard wave packet
(WP) propagation techniques. (b) Amplification of the highlighted region in panel (a), it
shows how the convergence is reached as the number of trajectories is increased.
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From the plots in Figure 4.20, it becomes apparent that the qualitative agreement between
the trajectory-based and the quantum mechanical correlation function is very good, even
for a small number of quantum trajectories (i.e., N = 51). However, a closer look reveals
the emergence of spurious peaks in the energy spectrum (Figure 4.20 (b)) originated by
the deviations in the calculated autocorrelation function. They become largely depleted

as N increases, eventually converging to the exact result.
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Figure 4.20: Energy spectrum obtained from the Fourier transform of the correlation func-
tion: (a) increasing the number of trajectories and comparing with the exact solution. (b)
Amplification of the highlighted region in panel (a), showing the presence of spurious peaks
in the spectrum, as well as the convergence to the exact solution as the number of trajec-
tories gets larger. (c¢) Comparison between spectra using the model quantum potential and
the approximation introduced in Ref.[43].
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Let us notice in passing that the number of trajectories in the ensemble can not be
augmented arbitrarily. Although, in principle, the exact quantum mechanical result is
recovered in the limit N — oo, increasing the density of quantum trajectories makes
the numerical integration more difficult due to the increase of the quantum forces. As a
consequence, the model (4.2.14) employed to approximate the interaction between neigh-
bouring trajectories is more conveniently used in calculation of observables for a large
but finite value of N. This convergence problem is analog to the problems arising in the
treatment of the inter-bead interaction in numerical implementation of the path integral
formulation of quantum mechanics, i.e., the path integral Monte Carlo and molecular

dynamics methods [88, 89].

In general, the results obtained for the correlation function and the energy spectrum reveal
that these observables are very sensitive to the term in the quantum potential which is
proportional to the curvature of the density profile V2p/p, as it can be seen in Figure
4.20 (bottom panel) and in Figure 4.21. Taking into account this contribution causes the
larger deviations in the computed correlation function to become one order of magnitude
smaller than the corresponding errors for purely repulsive quantum-like potential ().
Likewise, the removal of this term from the equations of motion can lead to incorrect

spectral densities.

4.4 Results. Part II: laser-driven electron dynam-
ics

4.4.1 Brief introduction

This part is devoted to illustrate the performance of the proposed methodology in a

different area: we study the laser-driven atomic ionization within our trajectory, wave

function-free methodology. As we mentioned in the introduction, the study of laser-matter

interactions is one of the areas where the development of trajectory-based methods seems

to be one of the most appealing alternatives to wave packet propagation techniques.
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Figure 4.21: Error in the computed correlation functions, using the model quantum po-
tential of Eq. (8.0.6) (Re[S]— Re[Swp]) and the approximation introduced in Ref. [43]
(RG[SO}—RG[SWP]).

Here, we study the electron dynamics and its interaction with a strong laser field, via the

direct solution of the equation of motion for the ensemble of interacting trajectories we

have obtained above Eqgs. (4.2.16)-(4.2.17).

An interesting aspect of the dynamical process triggered by intense and short laser pulses is
that (for extremely short pulses, comprising only a few optical cycles) the Carrier Envelope
Phase (CEP) has a strong influence on the laser induced dynamics. Here we address
this problem from a quantum trajectory perspective, and evaluate both, the ionization
yield and the left-right asymmetry as a function of the CEP parameter. The results are
compared to standard wave packet propagations, and the numerical convergence of the

former for progressively larger sets of quantum trajectories is analyzed in detail [90].

4.4.2 Theoretical methods and numerical details

As some new aspects are studied in this part, we will give more details on the methods and
numerical calculations corresponding to the results we present below. In all the equations
atomic units are used, being the electron mass m = 1a.u and e = —1 a.u. Coming back

to the Newton-like equation (4.2.17), now concerning the classical part of the potential we
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have two contributions. The interaction between the electron and the core is modeled by a
soft-core Coulomb potential V,(x) = —1/v/22 + 1. We also have the laser atom interaction
modeled as V(x,t) = xE(t) in the dipole approximation. The coordinate x denotes the
electron position and E(t) is the intensity of the electric field of the laser pulse, which is
polarized along the x-axis. Then, Eq. (4.2.17), evaluated along each trajectory takes the
form,

m—r- = fe(xn) + fo(zn) —E(), n=1,.,N, (4.4.1)
where we have identified f, = —dV./dz.

In this section, the trajectory-only propagation method is applied to study the electron

dynamics in interaction with a strong laser field, given by

t T urse
Tz;se)cos (w (t — pzl + gbCEp)) , (4.4.2)

for 0 <t < T,use. In equation (4.4.2), Ey denotes the pulse amplitude, Tpys is the pulse

E(t) = Eysin® (

duration and the CEP parameter denoted by ¢cgp defines the phase difference between
the maxima of the field oscillations with frequency w and the maximum of the pulse
envelope. In Figure 4.22, the time dependence of the laser field is plotted for selected values
of the parameter ¢cpp and for two different durations of the pulse. We employ a high
intensity near-infrared (NIR) laser pulse with a wavelength of 800nm (w = 0.057 E}), an
intensity of I = 3.51 x 10M1¥/cm? and a pulse duration of 1.5 and 2.5 cycles (Tpuise = 4.0
fs and 6.6 fs), respectively. In this regime of ultrashort and intense laser pulses, CEP-
effects occur [81]-[84] and the experimentally accessible quantities are the total ionization
and the right/left (forward/backward) asymmetry of the ejected electrons [81], [82]. In
this context we refer to “right” for the direction of positive “x”, and “left” for the direction

W,

of negative “x”.

One of the main advantages of the trajectory description of these atomic processes is that
the trajectory dynamics (albeit being fully quantum) provides an intuitive picture of the

ionization process.
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Figure 4.22: Shape of the laser pulse for (a) Tpuse = 4.0 fs and (b) Tpuise = 6.6 fs. In both

cases three values of the CEP parameter are represented ¢crp = 0°,90°, 180°, the envelope
is plotted with a thin dashed line.

Hence, the right (left) ionization yield is simply calculated from the number of trajectories

with x, > z. (z, < —x.), with z. = 250 a.u:

R 1 &
P =— 1, P=— 1. 4.4.3
N zlacz>x l N il;—x ( )

This value for z. was chosen to ensure that for the laser and Coulomb potential param-
eters we have used, once the trajectories have reached this point, they will move to the

continuum. The total ionization is

Pr=P.+PF, (4.4.4)
and the asymmetry is given by
Pr - ]Dl
= 4.4.5
17 P,r, + Pl ) ( )
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as in previous studies in this field [82]-[84]. To gain access to the energy-resolution of these
quantities, a binning is performed with a bin size in energy of 5 x 1073 E}, to calculate
P(Ekin) and P.(Egin). We have found this value to be a good compromise between energy

resolution and statistical significance, for an ensemble of 500 trajectories.

The equations of motion for the quantum trajectories are solved using a fourth or-
der Runge-Kutta integrator with an adaptive time step [85] and an absolute error of

10712,

To assess the quality of our trajectory-only approach we have also performed benchmark
calculations based on quantum wave packet propagations. To this end, we have used
the split-operator approach on a grid ranging from —2000a, to 2000 ay. To avoid grid
boundary reflections, and to calculate the spectra of emitted electrons in the right and
left direction, as well as the anisotropy and the ionization, the splitting methodology of

Metiu et al. [91] is employed.

4.4.3 Results and discussion

The ground state of the soft-core Coulomb potential is chosen as the initial condition
for the trajectory propagation. It is obtained after the same relaxation procedure as in
the previous examples. The ground state distribution obtained for a swarm of N = 501
trajectories is shown in Figure 4.23. Compared to the results of standard wave packet cal-
culations (i.e using imaginary-time propagation), there is a very good agreement between

the quantum trajectory and the wave packet representation of the ground state.

As a first application of the interacting trajectory formalism to the study of atomic ion-
ization, we consider the case of the laser-driven ionization for a ¢cgp of 150°. The time
evolution of the quantum trajectories is plotted in Figure 4.24 (top panel), for a set of
N = 301 trajectories and in Figure 4.24 (central panel), for N = 501, whereas the colour
scale plot of the density obtained via wave packet propagation is shown in Figure 4.24
(bottom panel) for comparison. For the sake of clarity, with a brown color we represent

dissociative and in black bound trajectories. It can be noticed that no ionization occurs
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Figure 4.23: Model soft-core Coulomb potential and ground state density evaluated from
Eq. (4.2.5) using N = 501 trajectories after the relaxation, compared with the exact quantum
density (WP). The zero point energy is also plotted, the mean energy for N = 501 is
< Eirg; >= —0.6698 which is in good agreement with the value reported from wave packet
calculation for the model potential (< £ >= —0.6697) [92].

during the first half period of the driving pulse.

During this interval of time, the net effect of the electromagnetic field is the increase
in the kinetic energy of the electron wave packet, which undergoes half an oscillation in
the potential well. During the second half of the cycle, a set of trajectories are driven
away from the confining region of the Coulomb potential (in the half plane =z > 0),
and the wave packet gets split into a portion that continues the propagation outwards
(thereby contributing to the ionization yield) and a fraction of pathways that reverse their
motion and re-collides with the bound part of the wave packet. This inward motion of
the returning portion of the wave packet extends beyond the duration of the laser pulse.
While the top panel of Figure 4.24 shows only direct ionization events, a more dense
sampling of the time-dependent density distribution reveals that the electron may also
get detached as consequence of the re-collision process (cf. central panel of Figure 4.24).
For the specific choice of the laser field employed in the present calculations, the latter

mechanism is however less frequent than direct ionization.

This picture is confirmed by the results of the wave packet propagation (depicted in the

bottom panel of Figure 4.24), which corroborates the accuracy of the interacting trajectory
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Figure 4.24: Time evolution of the quantum trajectories under the influence of a short
and strong laser pulse, for N = 301 (top panel) and N = 501 (central) trajectories. The
parameters of the laser field are ¢cpp = 150°, pulse intensity Ey = 0.1a.u and Tpyse = 1.5
pulse cycles. In the bottom panel, the time-dependent probability density evaluated via
wave packet propagation is plotted.

treatment for the present problem.

The total ionization P; (Eq. (4.4.4)) is plotted as a function of time in Figure 4.25, as
the number of trajectories increase, the total ionization calculated from the trajectories

approaches the results derived from standard wave packet propagation.
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Figure 4.25: Total ionization yield (P;, Eq. 4.4.4) as a function of time for an increasing
number of trajectories N, compared with the exact quantum result (WP). The dashed
vertical line represents the end of the laser pulse.

4.4.4 Carrier Envelope Phase analysis

One of the new aspects related to the dynamics under the action of strong and short laser
fields is the impact of the Carrier Envelope Phase on the laser induced reaction [81]-[84].
As it can be seen in Figure 4.22, a small change in ¢cgp affects the shape of the laser
pulse, so it may have a large impact on the overall dynamics. In this section we will
focus on the influence of the CEP parameter on the atom ionization yield and on the

aforementioned asymmetry of the photo-electron emission.

In Figure 4.26 the total ionization probability Eq.(4.4.4), (top panels) and the asymmetry
parameter Eq.(4.4.5), (bottom panels) are plotted as function of ¢pcgp for a pulse duration
of Tpuse = 1.5 cycles (left columns) and T, = 2.5 cycles (right columns). The total
ionization yield is a periodic function of the carrier envelope phase. For ¢cgp = 180°,
the direction of the driving force is reversed, hence the trajectories are emitted in the
opposite direction with respect to the emission for ¢cpp = 0°. As a consequence, we only
show ¢popp between 0° and 180°. The asymmetry, a more detailed quantity, depends more
sensitively upon details of the collisional dynamics, and in particular onto an extremely
precise initial distribution of the trajectories. Since the initial distribution should be
strictly symmetric with respect to the central point at z = 0 (see Figure 4.23), we have

improved the numerical precision by averaging over a second run with z; replaced by —z;
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Figure 4.26: Total ionization yield P; (Eq.(4.4.4)) and left/right asymmetry 7 (Eq.(4.4.5)),
as a function of the ¢cpp for two different pulse durations: T}, = 1.5 cycles (left panels)
and Ty = 2.5 cycles (right panels). The observables computed using N = 101, N = 301 and
N =501 trajectories are shown, together with the results of wave packet calculations (WP).

for each value of ¢opp. For the short pulses (left columns), we see that already a small
number of N = 101 trajectories yields a qualitative agreement with te exact quantum
results. As expected, when increasing the number of trajectories the results converge
to the exact quantum values (indicated as brown line). For the longer pulses, we find
a significantly slower convergence towards the exact values. Increasing the number of
trajectories, also implies stronger values and variations in the quantum force, leading
to an increased numerical challenge. In particular, the required time step for a precise
integration becomes prohibitively small. As a consequence, in practice, it is not always
possible to increase the number of trajectories. In particular, for longer pulses, the back
and forth driving of the electron leads to significant more collisions between trajectories,

and thus to a much higher numerical effort.

From Figure 4.26 it can also be noticed that in the region from ¢cpp = 80° to dcpp =
180° the agreement between the interacting trajectories formalism and the wave packet

calculations is better, compared to the region from ¢cgp = 0° to ¢pcpp = 80°. This
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difference can be understood from the trajectory dynamics as it will be shown below.

In Figure 4.27, the time evolution of the trajectories is represented for four different values
of pcep. For pcpp = 0°, the ionization burst occurs at the same time that the maximum
of the laser field, when a large fraction of the trajectories are ionized into the region z < 0.
Upon the change of the direction of the field, some of the trajectories are driven back and
a second, less intense ionization event occurs due to the recollisions with the core (bound)
portion of the wave packet, which gives some of the trajectories enough energy to leave

the core towards the region x > 0.

However, a different ionization mechanism takes place for ¢ocpp = 50°. In this case, at
the maximum of the field, a bunch of trajectories is driven to the right, but they do not
get enough energy to leave the nucleus and they are driven back by the field and recollide
with the core ones. The energy is then transmitted through the core trajectories to the
outer ones on the right side, and they are emitted to the region x > 0. During this
ionization process, many collisions occur which make the integration of the equations of
motion for the trajectories very challenging, therefore it is more difficult to reproduce the

wave packet calculations.

For ¢pcpp = 100°, the field only drives a few trajectories to the right, hence less collisions
with the core occur when they are driven back, and finally they get ionized to the left
when the force reaches the maximum in the other direction. A different situation is
obtained for ¢cpp = 150°, where a bunch of trajectories is ionized at once to the left
at the maximum of the field, and no recollision mechanism is involved in the ionization
process. For these CEP values, where a direct ionization occurs and fewer collisions with
the core are involved in the ionization process, the integration of the equation of motion

is less difficult and a good agreement with the wave packet calculations is obtained.

In the right panel of Figure 4.26, the results for a longer laser pulse are shown. In this
case, the total ionization increases and no strong dependence with the CEP parameter is

seen. Furthermore, the left-right asymmetry is markedly depleted. This disappearance
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Figure 4.27: Trajectory dynamics for different values of ¢cpp. They illustrate the different
electron dynamics depending on ¢crgp. The remaining laser parameters are: A\ = 800nm, an
intensity of I = 3.51 x 10*W/cm? and a pulse duration of 1.5 cycles. Brown color indicates
trajectories ending up as free at 2000 a.u., whereas black trajectories end up bound to the
nucleus. The vertical dashed line indicates the center of the laser pulse. The inset gives a
detail of the trajectory dynamics to illustrate the non-crossing of the trajectories.

on the dependence of the CEP on the asymmetry parameter (when the length of the
laser pulse increases) was already discussed in Ref. [84]. For very short laser pulses, only
one or two field peaks exist and different values of the CEP lead to completely different
time-dependent electric fields (see Figure 4.22). Conversely, when the length of the pulse
increases the dependence on the shape of the laser pulse disappears. For Tp,s = 2.5
cycles, more oscillations of the field take place and the trajectories are emitted to the left

and to the right with every oscillation of the field.

In the left panel of Figure 4.28, P)(Ekn) (top) and P.(Eky,) (bottom) are plotted as a
function of the ¢cpp value and the kinetic energy FEy;, of the outgoing electron. In the
right panel, the density plot obtained from the trajectories dynamics is shown, and in the
left panel, the same quantity for the benchmark quantum calculation is represented. We

can see that the trajectory-only calculations qualitatively and quantitatively reproduce
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Figure 4.28: Density map of the left/right photo-electron spectra P, (upper part) and P.
(lower part) as a function of energy and ¢cgp. Left panel: wave packet calculations, right
panel: quantum trajectory results. The maps are plotted one on top of the other to show
the symmetry of the electron emission.

the benchmark calculations, thereby confirming the validity of the present approach.

From the analysis of Figure 4.28, we can notice that when ¢orpp = 0° (top left panel) the
trajectories are mainly emitted to the left (z < 0) and only low energy trajectories are
emitted (0 < Ejy;, < 2ER). As the CEP value is changing from 0° to 90°, 7 is changing
from negative to positive and around ¢cpp = 90° they are all emitted to the region = > 0
(n = 1) and higher energy trajectories are emitted. This high energy trajectories are

the first bunch of trajectories which are emitted at the maximum of the field, and the
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lower energy ones are emitted after several collisions of the ones that are driven back by
the field with those in the core. Another important feature is that in the region from
ocep = 20° to ¢cpp = 100° interferences are seen in the photo-electron spectra, which
is related to the existence of several bunches of ejected trajectories. On the other hand,
from ¢pcpp = 120° to pcpp = 1807, the ionization is due to the burst of trajectories which
are emitted at once at the peak of the field. Hence, the main features of the right or left
emitted electrons as a function of both energy and CEP can be rationalized on the basis of
the trajectories dynamics, as depicted in Figure 4.27. This is one of the main advantages
of the proposed trajectory approach to model quantum mechanics, in particular for the

analysis of ultrafast time-dependent electron dynamics.

4.5 Conclusions

In this chapter, we have proposed a method based on propagation of a swarm of interacting
trajectories using model quantum potentials, which emerges as a promising alternative for
quantum dynamics studies. We use an approximate expression for the quantum potential,
obtained by discretizing the quantum probability density. The expression for the result-
ing quantum potential contains both, attractive and repulsive parts. It yields the same
expression for the quantum force as in Ref. [43], but it allows (in addition) to reconstruct

the wave function through integration of the Lagrangian along the trajectories.

The methodology is applied to a variety of one-dimensional model systems, and the scheme
is found to reproduce important quantum-mechanical phenomena such as the zero-point
energy in harmonic and anharmonic potentials, the tunnelling /transmission probabilities
for different barrier shapes, and autocorrelation functions and energy spectra. Further-
more, the proposed methodology is applied to simulate the laser-driven electron dynamics
and accurate results are also obtained. It is not only capable of reproducing quantitatively
total ionization yields, but also subtle CEP effects such as left /right asymmetries in the

ionization as a function of the carrier envelope phase.

In every case, numerical convergence was achieved for a few hundreds of interacting tra-
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jectories. Besides its numerical performance, the present approach has the advantage to
yield a detailed picture of the dynamical process, since it is based on trajectories. Care
must be taken in the numerical implementation of the present approach, since the use of
very dense trajectory arrangements leads to the appearance of large local peaks in the
quantum potential, which may hinder the stability of the algorithm. However, provided
the desired observables can be computed accurately with a moderately number of trajec-
tories, the method exhibits high potential regarding its generalization to multidimensional
systems, due to the fact that the computed paths strictly abide the non-crossing rule for

quantum trajectories.

In the next chapter we develop a different approach. Based on the idea of deriving
approximations for the quantum potential from a given parametrization of the density, a
many-body system is studied within the molecular dynamics framework, but including the
quantum potential and performing the molecular dynamics simulations with the resulting
effective potential. As model systems we study the absorption spectra of Na embebed in

rare gas matrices, in particular, Ar and Kr matrices.
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In this chapter, an approximate quantum potential is derived from a suitable parametriza-
tion of the ground state wave function of a rare gas matrix. The proposed ansatz takes
into account the physical properties of the target system. We use the Car-Parrinello
minimization scheme to find the parameters that minimize the variational estimate of the
ground state energy. Molecular dynamics simulations are carried out on the total effective
potential, comprising both, the classical pair interaction potential and the approximate
quantum potential. We applied the method to the study the absorption spectra of atomic

Na trapped in Ar and Kr matrices.

5.1 Introduction to matrix isolation spectroscopy of

alkali atoms

The study of photo-induced processes in molecular systems has attracted the interest of
the scientific community in the last decades. The understanding of the main mechanisms
of processes such as photo-dissociation, isomerization, among others, has increased the
possibility of developing technological applications such as obtention of solar energy, opto-
electronics, among others. The isolation of metal atoms in rare gas matrices is one of the
most spread techniques to study the spectroscopy of atoms and molecules [61], [93]-[98].
In particular, alkali atoms are very attractive, because its electronic configuration makes

them very suitable for the study of the matrix embedding.

In the past decades, multiple experiments have been done to study the absorption and
luminescence of alkali atoms in rare gas matrices. The studies performed by Balling et al.
[99]-[101] on Li, Na and K-doped Argon matrices have shown that there may be multiple

sites where the impurity atom can be trapped in the matrix, which are all characterized by
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a rather well defined triplet structure. For those three alkali metals, two sets of maxima in
the absorption spectrum were identified, which are typically referred to as the red and blue
triplets. In addition to these bands, Tam and Fajardo [102] investigated Li and Na atoms
trapped in rare gas matrix using a new experimental technique based on laser ablation.
They found, for both atoms, a new well resolved triplet structure on the high-energy side

of the blue band, which is referred to as the violet triplet.

More recently, Ryan and collaborators [61] conducted an experimental and theoretical
work in order to study the absorption and the luminescence of atomic Na in Ar and Kr
matrices. They also reported the three sets of maxima in the absorption band. Further-
more, they found that the violet band does not produce any characteristic emission for

energies above 12500cm 1.

From the theoretical point of view, many studies have been conducted to identify the
crystal structure responsible for the experimentally observed absorption bands. According
to the theoretical studies performed in Refs. [61] and [103], it seems that the smallest

trapping sites in the matrix are the responsible of the violet absorption band.

The simulations of the absorption and emission bands of the Na atom embebed in the
matrix performed by Ryan and coworkers [61], were based on molecular dynamics meth-
ods. In particular, to simulate the absorption bands they used the method known as
diatomics-in-molecule (DIM). The potential energy surfaces were obtained from spectro-
scopic data, and different isolation sites for the Na atom were considered. However, while
qualitative information on the absorption bands was obtained, their spectral position
turned out to be completely different from those reported experimentally. In Ref. [61], an
artificial modification of the shape of the potential correlating to the second excited state
of sodium was performed in order to match the measured spectra. Simulations employing
the new potential shifted the absorption bands towards the correct spectral positions, but
there remains the ambiguity about which is the physical origin of the proposed shift of the
excited state potential (which was obtained empirically), and if the rest of the potential

energy curves do not change as well.
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A different study, using more precise potentials, was carried out by Boatz and collab-
orators [93] based on first-order perturbation theory analysis of the excited p state of
the alkali atom. However, although some qualitative information was extracted from
them, the absorption spectra obtained as a result of the simulations do not reproduce the

experimental results.

Recently Gervais and collaborators [103] carried out a study based on pseudo-potentials,
that take into account the polarization of the nuclei, and modeled the absorption and
emission bands of alkali atoms in Ar matrices. Their model allowed to identify the dis-
placements of the sodium spectrum in gaseous state with respect to the sodium trapped

in the matrix and to identify certain sites where sodium can be trapped.

It is important to note that the simulations performed by Ryan et al. [61] were purely
classical simulations, which may give correct results if heavy atoms and relatively high
temperatures (i.e., corresponding to liquid and gas phases of rare gas systems) are con-
sidered, but for the noble gas atoms in the matrix the intrinsically quantum character of

the systems becomes relevant.

Thus, the aim of this chapter is to derive a many-body quantum potential to evaluate
the influence of quantum effects onto the simulated absorption spectra of alkali atoms in
rare gas matrices. The approximate quantum potential is derived from a given ansatz
for the ground state wave function. As the extension of the ansatz introduced in the
previous chapter to multi-dimensional systems is not straightforward, here we propose a
different parametrization that takes into account the physical properties of the noble gas
matrix. The parameters to minimize the density are derived by minimizing the variational

estimate of the energy using the Car-Parrinello scheme.

Therefore, MD simulations are performed to simulate the absorption spectra, with an
effective potential comprising both the classical pair interaction and the quantum poten-
tials. As a model system, we study the absorption spectra of Na trapped in a single

vacancy site (sv) in Ar and Kr matrices. This trapping site has been identified as the
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responsible for the violet absorption band [61, 103]. In order to evaluate the influence
of the quantum corrections on the simulated absorption spectra, we perform molecular

dynamics simulations with and without the quantum potential.

The chapter is structured as follows. As in the simulation of the absorption bands of
the Na atom in the matrix requires some of the standards techniques of classical MD
simulations, the next section is dedicated to present the fundamental aspects related to
them. In Section 5.3 we introduce the ansatz for the ground state wave function and
we obtain the approximate many-body quantum potential. Then, the Car-Parrinello
minimization scheme is used to minimize the variational estimate of the energy and to
find the parameters to evaluate the quantum potential. Afterwards, in Section 5.4 we
discuss the results of the MD simulations with an effective potential. Finally, in Section

5.5 we draw some partial conclusions.

5.2 Methods

In this section the main aspects of classical molecular dynamics simulations are sum-
marized. Furthermore, we present the pair-interaction potentials between the noble gas
atoms and between them and the Na atom. We describe how the absorption and emission
bands can be evaluated from MD simulations and we define the pair radial distribution

function.

5.2.1 Classical Molecular Dynamics

In the study of the time evolution of many-body systems, the use of classical Molecular
Dynamics (MD) has been widely spread. Within this method, the dynamics of a micro-
scopic system is studied by the numerical solution of the classical equations of motion,
which are usually expressed in the Newton formulation, but the method is also consistent

with the Lagrangian and Hamiltonian formulations [104].

To perform a classical molecular dynamic simulation, a set of N classical particles with

coordinates r; and velocities v;, ¢ = 1,..., N, is chosen and they evolve on a potential
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energy surface V(ry,...,ry):

N-1 N-1

V(ry,....,ry) = Z V(Q)(ri,rj) - Z V(?’)(ri,rj,rk) + V¥, .ory), (5.2.1)
1,5 (i7#7) 1,4,k (i£j#k)

where V@ (r;,r;) = V(ry;), with r;; = |r; — r;], represent the two-body interaction poten-
tial, V® (r;,r;, ;) is the three-body potential and V¥ (ry,...,ry) denotes the difference
between the total interaction potential V' and the two-body and three-body contribution.
It comprises contributions to the interaction energy involving four or more particles. The
two-body contribution to the interaction potential is the most commonly used, since this
term is usually the dominant one and the higher order terms constitute progressively
smaller corrections to the total energy of the system. Furthermore, the pair potentials
employed in computer simulations are generally regarded as effective pair potentials com-
prising all the many-body effects (e.g., they are obtained by fitting experimental values
for the thermochemical properties of the system). In the simulations described below only

pairwise interactions are considered.

Hence, the classical equations of motion for each particle read as,

d2 r;

where
al o 9 0
L= S = =, =, — ] . 2.
V; . Z V(TZ]) ) VZ (ax27 ayla azl) (5 3)
J=1(3#1)

The standard methods to solve ordinary differential equations like equation (5.2.2) are
based on finite difference schemes. The starting point of the solution is the set of initial
positions and velocities from which all the other dynamical information at time ¢ (includ-
ing the new positions and velocities) at the later time ¢ + At are evaluated. The election
of finite-size elementary time interval At depends on the specific problem, in general it
should be small compared with the characteristic time scale of the dynamics. Among the

methods usually employed, we can mention the Verlet algorithm [105] and its variants:
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the leap-frog [106] and the velocity Verlet [107] algorithms, and the predictor-corrector
methods [104]. In general, Verlet algorithms have good properties for energy conservation,
but the predictor-corrector methods can be up to three orders more precise. On the other
hand, the latest family of methods is rather slow and requires twice the storage capacity
of Verlet algorithms. In the simulations presented below, the velocity Verlet algorithm is

used.

An important practical aspect in the computer simulation of a many-body system is the
number of particles included in the simulations, which is usually limited by the available
storage capacity and, most importantly, by the speed of the calculation. This means
that the number of atoms in the simulation is restricted, bringing undesirable surface
effects into the simulations. The particles located close to the surface experience quite
difference forces, with respect to the inner ones. To tackle this problem, it is customary
to introduce periodic boundary conditions [104]. These are obtained by replication of
the original simulation cell (which contains the N particles) throughout space to form an
infinite lattice. Then, in the course of a simulation, as a particle move in the original box,
its periodic image in each neighboring box performs the same movement. Hence, once
a particle leaves the original box, one of its images will enter through the opposite face.
A two-dimensional example of such periodic system is shown in Figure 5.1. A further
step to speed up the simulations is related to the calculation of the forces acting on each
molecule. In general, we must include the interaction between each particle with the rest,
this means a summation over N — 1 terms. Furthermore, in principle we must include
all the interactions between the particles and their images, this is an infinite number of
terms, which is impossible to evaluate in practice. For short-range potentials the following
approximation, known as the minimum image convention, results in a marked reduction
of the computational cost while providing accurate results: consider the particle 1 (see
Fig. 5.1), in the centre of a region which has the same dimension and shape of the
simulation box, then this molecule will interact with all the molecules whose centres lie

within this region [104] and its interaction with all the particles and replicas lying outside
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Figure 5.1: Illustration of the application of periodic boundary conditions, the original cell
is labeled with the letter A. Reproduced from Ref. [104].

is neglected.

Another approximation which substantially decrease the amount of calculations, which is
also valid for short range potentials, is the application of a spherical cutoff, this means,
setting the pair potential V' (r;;) to zero for r;; > r., being r. the cutoff distance. This is
represented by a dashed circle in Figure 5.1. The cutoff distance must not exceed %L, (L
is the size of the simulation box), to be consistent with the minimum image convention.
In our calculations we fix 7, = 23.24 ao (for the Na doped Ar matrix) and r. = 23.67 ag
(for the Na doped Kr solid), which is 2.5 times longer than the equilibrium distances of

the respective Rg — Rg pair potentials.

The experience shows that the method in general does not converge for molecular dynam-
ics simulations starting from arbitrary initial conditions, even if the system is initially
close to equilibrium. Hence, thermalization techniques are applied in order to equilibrate
the average kinetic energy in the simulations to match a given temperature. Here we use
velocity rescaling as it is described in Ref. [108]. From the energy equipartition princi-

ple the temperature T is calculated from the kinetic energy of the system at the instant
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t,

N
1
T = i 5.2.4
W, 2o (524)

Here, m; are the particles masses and v; their velocities, while &, denotes the Boltzman
constant. Then, if T is the temperature at which we want to perform the simulations
and v; are the values of the rescaled velocities corresponding to this temperature, they

obey a similar relation

N
1
T = 02 5.2.5

We can transform the velocities of the particles from their values v; to the desired ones

T
Y L 5.2.6
vi=v ( )

In addition to this correction to the velocities, the molecular dynamics simulations may

v} with the relation

be performed at an effective temperature T to mimic zero-point energy effects. As it
is well known, when a classical system is in equilibrium, the energy coincides with the
minimum of the potential energy, and the kinetic part is zero. However, when a quantum
system is in its ground state, the average potential energy is larger than the classical one
and the kinetic energy is not zero. An approximation to correct the zero-point energy
effect in the classical simulations was proposed by Bergsma and collaborators [109] and
has been extensively used in MD simulations to include zero-point energy effects [110]-
[113]. The approximation is based on the modeling of the particles motion as harmonic
oscillators. Since crystal site oscillations in the Ar and Kr solids are nearly harmonic, the
approximation seems adequate for these systems. The effective temperature T in the

Bergsma scheme is evaluated as (more details are given in the Appendix D):

hw hw
T* = —tanh™* . 2.
T tan <2ka> (5.2.7)
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5.2.2 Pair-interaction potentials

In the study of the dynamics of atomic and molecular systems, the representation of
the force fields describing their interaction is of fundamental interest. The interaction
potentials allow to establish the most stable configurations, as well as to study the dy-
namics of the system. In general, the calculation of these potentials is a complicated
task, and on the basis of theoretical and experimental results, various analytical forms
have been proposed for their description but they do not always accurately characterize
the real physical situation. As it was previously explained, in the representation of these
potentials we can take into account the N-body contributions effectively in the pairwise
interactions. Therefore, here we only consider two-body interactions between all pairs of

particles.

Here, our model system is a matrix composed of N atoms of noble gas, whose positions are
denoted by r; (with ¢ = 1, ..., V) containing a sodium impurity, whose position is identified
with rg. In particular, we consider Argon and Krypton matrices. The interaction between

the noble gas atoms, which we will denote by V,, are modeled by a Lennard-Jones potential

(LJ>7

12 6
‘/gg(rij) = 48[(1) — (i> :| y  Tig = |I'i - I'j| s Z,j = 1, ,N . (528)

Tij rij

where r;; is the inter-nuclear distance between the pair of atoms i, j. The potential
parameters ¢ and o characterize the depth of the potential well and the intercept with
the distance axis, respectively. The o values were taken as 6.35ay and 6.76 ag for Ar
and Kr respectively, and € as 4.5 x 107* E}, (for the Ar-Ar potential energy curve) and
3.8 x 107* E}, (for the Kr-Kr energy curve) [61]. In addition to the interactions between
the pairs of noble gas atoms, it is necessary to describe the interaction between them and
the sodium atom, V,,. For the sake of simplicity we have identified a with the alkali atom
and g with the noble gas atom. The latter depends on the specific electronic state of the

dimer. Here we consider the ground and the first two excited states, correlating to the
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Table 5.1: Parameters reported in [61] as a result of fitting the analytical expres-

sions given in Eq. (5.2.9) for the interaction potentials, to the experimental results.
For the NaKr pair, the parameters of the VCS) interaction were derived by us in
order to correctly reproduce the shape of the potential energy curve. The values

of the parameters are given in Kelvin.

NaAr vy K VIOK[VIK [NaKr [V K | VO K | VP K
R, (ao) 9.441 5.486 12.773 | R, (ay) | 9.444 5.815 | 12.121
a5 44.45 | 708954 | 39.71 | ag 11819 | -6657.94 | -12.25
as 617.14 | 18550.25 | -471.68 | as "079.40 | 10824.88 | -84L.01
ar 122385 | -27224.38 | 966.04 | aio 9222.37 | -9537.86 | 1513.94
ar 001.07 | 22797.57 | 738.82 | ar T1852.37 | 5541.58 | -1054.72
s 342.28 | -9355.03 | 307.39 | aus 799.96 | -1426.44 | 396.50
16 -71.78 1481.51 | -77.84 16 -191.12 137.52 -89.23
ars 7.01 01236 | ars 24.01 0 12.24
20 0.35 0-1.20 | ax 1.24 0 20.97
a2 0.06 | az 0 0 0.039
21 20.0015 | ass 0 0 |-0.00054

atomic states 2Sy/2, 2P/ and 3P,y of the alkali atoms. In the presence of a noble gas
atom, these excited states are modified to produce a strongly bound state: A%II, hereafter
referred to as Va(; ), and a repulsive one: B%Y (Va(; )), while the ground state is a weakly

bound state: X2% (denoted as Vig)).

In the work done by Ryan and collaborators [61], the following analytical form was pro-
posed to describe the ground Va(;) and the excited states Va(g2 ) of the diatomic pairs

Na— Rg, depending on the distances between the impurity and each rare gas atom,

n i\ 262
‘/a(ga)(rio) = Za2(k-+2) (—> y Tio = ‘I'i - I'(]| y (Oé = 1, 2, 3) . (529)

k=1 Ro

The values of the expansion coefficients reported in Ref. [61] (which are obtained as
a result of fitting the analytical expressions for the potentials given in equation (5.2.9)
to the experimental results) are listed in Table 5.1, except for the B2Y state of the
diatomic pair Na — Ar. The expansion coefficients reported in Ref. [61] do not reproduce
this higher energy excited estate potential (chj’ )). To solve this problem, we fitted the
potential values given by Saxon et al [114] to the analytical form given in Eq. (5.2.9),

and the fitting parameters are reported on the fourth column of Table 5.1. This final set
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of parameters are the one we use in our MD simulations.

The potential energy curves corresponding to the three states Va(; ) (v = 1,2,3) are
depicted in Figure 5.2, for the diatomic pairs NaAr (Figure 5.2 (left panel)) and NaKr
(Figure 5.2 (right panel)). With the aim of comparing the shape of the three potentials,
each curve is plotted with a common asymptotic value of zero. However, in reality the Va(g2 )
(A) and V¥ (B) states dissociate to the 2P asymptote, 16956¢m " above the ground state.
In the description of the interaction potentials presented so far, we have only included the
pairwise interaction, to describe both, the ground and the excited states of the Na atom in
its interaction with the rare gas atoms in the matrix. However, although this description
is correct for modeling the ground state, given that both, the ground state of the Na and
the rare gas atoms present spherical symmetry, in the description of the excited states
this symmetry disappears and therefore a summation of the two-body terms, without
taking into account the angles, is no longer correct. In order to tackle this problem we
will use a correction for the excited state potentials, based on first-order perturbation

theory. This correction, first proposed by Boatz and coworkers [93], is based on using

NaAr NaKr
0.015 T | T | T | T | T | I | T | T | T | T 0.015
I (D
— - Y -~ V dg(X) -
\ 2)
v? (A)
0.01 4 FHl . H0.01
\ v ®)
—, 1 .
=) \
s ¥ 0.005 1N 0.005
>
0 1+ )
1 | 1
14 4 14
Tio [a,]
a) b)

Figure 5.2: Interaction potentials Va(;)(’l’io) (see Eq.(5.2.9)) of the diatomic pairs NaAr (left
panel) and NaKr (right panel) for the three states a = 1,2,3 considered in this study.
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the Born-Oppenheimer approach to separate the electronic structure of the atoms from
the vibrational motion of the matrix. It assumes that the electrons in the closed shells of
the alkali atom are not affected by the interactions with the noble gas atoms, the latter
only affect the optically active electron. Then, the Hamiltonian H of the optically active
electron can be separated in two contributions, H(r.) which is the Hamiltonian for the
free valence electron, and a perturbation caused by the rare gas atoms. Identifying e;
and 1; with the eigenvalues and eigenvectors of the unperturbed Hamiltonian H,4, the

eigenvalues E of H, can be derived by solving,

where,

N
Z TMV Ie, Ik ’wj> ; (5211)
k=1

with r. and r; being the electron and rare gas atoms position vectors, respectively. More
details related to this approach are described in the Appendix E. This correction in the
excited state potential is taken into account in our simulations of the absorption and

emission bands.

5.2.3 Calculation of the absorption and emission bands

As discussed at the beginning of this chapter, our aim here is to study the quantum effects
on the absorption bands of sodium trapped in rare gas matrices. In general, the transition
energies between the different levels of the sodium atom are given by the energy difference
between the final and the initial states of the system. If we assume that the system is
initially in the ground state, the total energy F; can be written as the contribution of the
interaction between the rare gas atoms V,(r;;) given in Eq.(5.2.8) and the interaction of
the Na atom in the ground state with the rare gas surrounding Va(g1 ) (ri0) in Eq.(5.2.9),
N

Ei(ro, 11, ..., TN) = Z N(rio) + Z ZVgg 7ij) —i— Ugg (5.2.12)

i=1 i=1 j>i
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where to simplify the notation we have defined

Zv(a) ro)=U% a=1,23, (5.2.13)

ag

and

ZZ%%: . (5.2.14)

i=1 j>i
According to the modifications introduced in the corresponding potentials for the excited
states described in the Appendix E, after solving equation (5.2.10), three different values
of the energy E¥) with (8 = 1,2, 3) are obtained which represent the total contribution to
the energy due to the electronic excitation and to the interaction of the noble gas atoms
with sodium in the excited states. Hence the energy in the final state can be written
as

E](rﬁ)(roarla "7rN) = E(ﬁ) + Ugg ’ 6 = 1’2’3 ' (5215)

Then, the transition energies AE?) are calculated as the differences between the energies
of the final state Eq.(5.2.15) and the initial state Eq.(5.2.12), therefore the terms Uy,
cancelled,

AE® — g0 _ M)

ag

B=1,23. (5.2.16)

Hence, to simulate the absorption spectra from the MD calculations, the dynamics of
the system is followed along a trajectory with the Na atom evolving in the potential
energy surface corresponding to the ground state. At each time step the total energy

of the system, determined by the atomic positions is calculated, in the ground state

Ei(r),r9,...,r%), as well as in the excited states E( (@0, 19, ... %),
AB® = EP k)19, .., x%) — EBy(xd,1, . 1Y), B=1,2,3, (5.2.17)

where the superscript in the atomic coordinates indicates that the positions of the atoms

are evaluated from the evolution on the ground state energy surface, and the same po-
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sitions are used to evaluate the final energy state as if the Na atom were in the excited
state manifold, assuming that the Franck-Condon principle holds. Finally an histogram is
built with these energy differences, which represents the absorption spectra for transitions

between the ground state and the excited states.

To simulate the emission spectra, we let the system evolve along a trajectory in the
electronic excited states. It is important to note, that while the 2P state of the Na atom
trapped in the matrix, is described by three potential energy surfaces, the simulations were
carried out on the lowest energy excited state. Following the previous results obtained
by Ryan et al. [61], which showed that after a few picoseconds only the lowest energy
state is populated and therefore to simulate the emission spectra it is reasonable to run
the simulations on the lowest energy excited state § = 1. Similar conclusions were drawn

previously by Rojas-Lorenzo et al. [111] in the study of Hg doped Ar solid.

Finally, for the calculation of the emission spectra, the equation (5.2.16) is evaluated at
each time step. Now only the lowest energy excited state is considered, the energies of the
final E}l)(rs, r{,...,r%) and initial E;(rf, xS, ..., r5%) states, are evaluated from a trajectory

with the impurity on the lowest energy excited state,
/e e e e e e
AEW = E](c )(ro,rl, o Iy) — Ei(rg, 1y, ... rh) . (5.2.18)

The histogram obtained at the end of the propagation represents the emission spec-

tra.

5.2.4 Radial distribution function

The analysis of the structure of the solid around the sites accommodating the Na atom is
made through the radial pair-distribution function G(r). It is evaluated by determining
the Na atom-rare gas atom pair distance, r;p, @ = 1,..., N. The histogram h(r) of all the
pair distances is built with a binning width Ar = 2.02ag . Once all the configurations
have been taken into account, the histogram must be normalized by dividing it by the

total number of iterations over time and the total number N of atoms considered. The

110



STUDY OF THE ABSORPTION SPECTRA OF ATOMIC Na ISOLATED IN Ar AND Kr
MATRICES

results are presented in the form of the function G(r) [104]

_ ()
B Ntsteps '

G(r) (5.2.19)

5.3 Molecular dynamics with approximate quantum

potentials

In this section, starting from an ansatz for the ground state wave function we derive an
expression for the effective potential which is used in MD simulations to calculate the ab-
sorption and emission spectra in doped rare gas matrices. This effective potential contains
the contribution of classical pairwise interaction potentials Eq.(5.2.8) and Eq.(5.2.9), as

well as an additional contribution that can be identified as the quantum potential.

To derive the approximate quantum potential, we use the following ansatz for the wave

function, based on the fact that we are modeling the ground state of the noble gas ma-

trix,
N-—1 N

\IJ(I'Q,I'I,...,I'N) :BCL’p(ZZUgg(Tij)+Zuag(7'i0)), Tio = I'l‘—I'0| s Z,j = 1,..7N,
i=1 j>i i=1

(5.3.1)

In general, due to the bosonic character of the rare gas atoms in the matrix, the ground
state wave function must be invariant under translations, rotations and particle permuta-
tions. This restriction is satisfied if the interatomic distances r;; are selected as arguments
rather than the particle positions. Furthermore, the wave function must be positive define.
In general, correlations between all particles must be present in the proposed form, how-
ever these many-body effects must be less and less important as the number of particles

Increases.

The ansatz proposed here in Eq.(5.3.1), only includes pair-interactions terms [115, 116]

and we have distinguished the Rg-Rg interaction (u,,) from the Na-Rg interaction (ug,).

The Hamiltonian of a system composed of the N rare gas atoms and a Na impurity can
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be written as follows (we will use atomic units otherwise indicated, A = 1)
1o 1
H= _§Z_vi + Uy + UY (5.3.2)

Ué;) accounts for the Na-Rg interaction and U, is the contribution due to the Rg-Rg

interactions. From Eq. (5.3.2) we can evaluate the local energy
U(rg,ry,...,vN5)Ep = HU(rg, 11, ...,TN) (5.3.3)
which transforms into the following expression

1
—=Y  —([Vilog U + (Vi log U)%] + Uy + UL . (5.3.4)

m
0 k

[\'JI»—l

N
k=

In expression (5.3.4), we can identify the term under the summation symbol as the quan-
tum potential. Substituting the ansatz for the wave function ¥(rg,ry,...,ry) given in

Eq.(5.3.1) in Eq.(5.3.4) we obtain

N—-1 N
(vk(zzugg rl] +Zuag ;0 )) :| U +U . (535)
=1 j>i

As it can be seen in equation (5.3.5), there are multiple crossed terms. These terms
contains scalar product of unit vectors with origin on each pair of particles, and pointing
to each one of the atoms in the system. Their contribution is expected to vanish for
a sufficiently large number of particles. Here we completely neglect them, as a first
approximation in the evaluation of the local energy. Hence, including only the two-body
terms, the ground state energy can be approximated as (more details related with this

derivation are given in the appendix F)

E*= U + U, (5.3.6)
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where
eff (o Uag(Tho) 1 (1) (1)
Uag = _5 Z uag<7nk0) + 2? + uag(rkO) + Uag =Q+ Uag ) (537)
k=1
eff 1 NN " U;Q(Tkj) 19
Ug' = _m_g Z Z Ugy(Tjk) + 2 Tkj + gy (i) | + Ugg = @+ Ugg -(5.3.8)
k=1 j>k

We have identified p = % with the reduced mass, being m, the Na mass and m, the
gMa

Rg atom mass.

Therefore, the molecular dynamics simulations can be carried out with an effective poten-
tial (5.3.6) ) which includes the classical pair-interaction potential, as well as a quantum
correction, which we have also approximated to consider only the two-body terms. The
quantum correction in equations (F.0.10) and (F.0.11) have the same form as the sec-
ond order approximation to the Feynman-Hibbs potential [117], except for the pre-factor,
which reflects the fact that it has been derived for an isolated system instead of one in
thermal equilibrium. When solving the equations of motion, we must distinguish whether
we are solving them for the impurity, for which the effective potential is given by equation
Eq.(F.0.10) or for the Rg atoms (Eq. (F.0.11)). Finally, the equation of motion for the

particles has the form

d21'7;

my—s -V, i=1,.,N, (5.3.9)
d2r0 e
Mg = —VoUgl (5.3.10)

with VI = UV if i = 0 or VI = UeH for i =1,..., N.

The form for the trial functions wu,, and wu,, in equation (5.3.1) remains to be specified.
For the selection of these functions, we must analyze the asymptotic behavior of the wave

function for long and short inter-particle distances. Based on previous studies on Ar
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clusters [115],[118], here we propose the following functional form
(r) = blogr +ar + 4+ 22 £ 5" ¢ (5.3.11)
u(r) =blogr +ar+ 3 + 3 epr? 3.
p

where we have written generically u(r), i.e., without explicit reference to the specific
chemical elements involved, being r the pairs distance 7;; between any pair of atoms ¢, j
and all the parameters entering in Eq. (5.3.11) are in atomic units. We will have two

different sets of coefficients for the ug4, and u,, functions, respectively.

The first two terms in Eq.(5.3.11) are included to ensure that the particles remain bound.
The terms ay/r* and ag/r? account for short distance repulsion [118]. Finally, the terms
Zp c,7P are included to describe the behavior of the system at intermediate distances,
which is usually described in the form of polynomials. To avoid that higher order poly-
nomials dominate the behavior of the test function w(r) at infinity, we introduce a new
variable 7 mapping the distance into a finite-range interval (which approaches a constant
when r — o0) [118],

F=w(l — el (5.3.12)

In principle, 7o and w are also variational parameters, however in practice, the qual-
ity of the wave function depends weakly on their values [115]. Hence, to simplify the

minimization process we chose them constant and equal to unity.

Now the problem is to find the values of the coefficients which minimize the variational

estimate of the ground state energy, which is given in terms of the local energy as:

E* = /p(rg,rl,...,rN)EL(rO,rI,...,rN)drorl...rN . (5.3.13)

In Ref. [115], small clusters of noble gas atoms were studied, and the corresponding
wave function parameters were evaluated by minimizing the local energy using the Vari-
ational Monte Carlo (VMC) method. However, for systems composed of many atoms,

the minimization using VMC is extremely expensive, so here we use the Car-Parrinello
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(CP) minimization strategy [119],[120], to find the coefficients which minimize the energy
estimate E*. Although, the Car-Parrinello method was initially conceived to perform
molecular dynamics simulations based on first principles, it can be used in general to

minimize any functional [121], as we show below.
Car-Parrinello minimization

Similar to the Car-Parinello (CP) strategy, we introduce an artificial kinetic energy term
for each of the coefficients whose value we wish to find, and we write the CP Lagrangian

for each set of coefficients,

N . 7 . . .
m ) a,M, b, M, 49 My, Qos M, Cpo M.,
L, = gzrmL 92 s 4 92bg+ 4g2 g 4 9g2 9g+§ :%JFU;@[.S.M)

=1 p

Mmoo asM,,  bsM,,  aasM,,.  agsM, Cps M.,
L, = : : s 9 5% 4 et (5.3.15
R R e e e +> S+ U ( )

In equations (5.3.14) and (5.3.15), m, and m, denote the masses of the noble gas atoms
and the Na, respectively. The first term in each of these equations accounts for the kinetic
energy of the rare gas atoms and the Na respectively, while the last terms U, ;g Fand U (fg f
are the effective potentials. The other terms are the artificial kinetic energy contributions

corresponding to the coefficients.

The artificial masses of the coefficients are chosen to be orders of magnitude larger than
the masses of the atoms, so the time evolution of the coefficients is slower than the real
system dynamics. Here we have chosen the masses of the coefficients to be 10* times larger
than the mass of the noble gas atoms or the sodium for the coefficients of the functions

Ugg and ugg, respectively.
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The Euler-Lagrange equations of motion for each set of coefficients are given as,

dzag

Y dt2
b,

by dtQ
d2a4g
A4g dt2?
d2agg
a9g dt?
d2cpg
wT

—aaU—ng‘Z“ — Mgy, nay
8?—55]0 — Mbgnég
%UT%J: — M, ndag
aanif — My, ndg,
agcng — Me,,ntpg

(5.3.16)
(5.3.17)
(5.3.18)
(5.3.19)

(5.3.20)

Furthermore, we have added an artificial viscosity term 7 to ensure the convergence [121].

The subindex g refers to the Rg-Rg interactions. A similar set of equations is obtained

for the Na-Rg coefficients, starting from the Lagrangian in Eq.(5.3.15),

d?a,

e dt2
d?b,
bt
d2a45
dQ(Igs
d?cps
P dt2

v
" Ba, Mot
ouelt :
ob. ~ Mo.1bs
v
W - Ma457]a4s
Ul _
Bag, My, ndg
g
8Cps B Mcmncps

p=(1,..

5) .

(5.3.21)
(5.3.22)
(5.3.23)
(5.3.24)

(5.3.25)

In general, the minimization process is complex because, depending on the initial condi-

tions the system can be trapped in local minima. Hence, it is necessary to make an initial

estimate of the coefficients that allows to generate a set of initial conditions for them,

such that the convergence to the global minimum of the system can be achieved.

The system of equations (5.3.16)-(5.3.20), together with the system (5.3.21)-(5.3.25), and

the atomic equations of motion (5.3.9) and (5.3.10), are solved using the velocity Verlet
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algorithm. We can summarize the minimization process as follows:

1. The initial positions and velocities of the atoms are set, as it is usually done in

standard molecular dynamics simulations.

2. The initial values for the coefficients are generated, as well as the initial velocities,
the latest are chosen within the same order of magnitude as those chosen for the

atoms.

3. Hence, the system of equations (5.3.16)-(5.3.20), (5.3.21)-(5.3.25) are solved together
with the equations of motion for the atoms Eq.(5.3.10) and Eq.(5.3.9), using the

velocity Verlet algorithm.
4. At each time step the total energy of the system is calculated according to Eq.(5.3.6).

5. The system is allowed to evolve until the fluctuations in the energy are small. Here
we considered that the energy has converged when its relative fluctuations were of

the order of 1072.

6. Once the energy has converged, we have the final set of coefficients which are used in

the molecular dynamics simulations with the effective potential given by Eq.(5.3.6).

In the Table 5.2, the final values obtained for the wave function coefficients after the Car-
Parrinello minimization are listed. These parameters are used to calculate the ground
state wave function given in Eq.(5.3.1) and the effective potential in Eq.(5.3.6), which

will be used in the MD simulations.

In Figure 5.3 we show an example of the time evolution of the coefficients, in this case
as (left panel) and b, (right panel), obtained by solving equations (5.3.21) and (5.3.22),

respectively.

The time evolution of the energy (Eq.(5.3.6)) calculated in the step 4 of the algorithm
described above, is illustrated in Figure 5.4. It can be seen that after a few femtoseconds

this magnitude does not seem to change significantly.
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Table 5.2: Final set of values for the coefficients of the functions u,, and u,, (Eq.
(5.3.1)) after the minimization of the variational energy with the Car-Parrinello
scheme.

Kr-Kr a.u. Na-Kr a.u.
ag -1.80 Qg -1.78
by 2.21 b 2.22
Qg 3.368x103 Ay 3.367x10°
g -1.979x10° ags -1.979x10°
Cig 0.22 Cis 0.23
Cag 0.22 Cas 0.23
C3g 0.22 C3s 0.23
Cag 0.22 Cas 0.23
Csg 0.22 Css 0.23
Ar-Ar a.u. Na-Ar a.u.
g -0.82 Qg -1.78
by 3.20 bs 3.22
Qg 2.341x103 s 2.350x 10
gg -8.72x10° Q95 -8.72x10°
Cig 1.20 Cls 1.22
Cag 1.20 Cos 1.22
Cag 1.20 C3s 1.22
Cag 1.20 Cas 1.22
Csg 1.20 Css 1.22

5.4 Results

In this section, we discuss the results of the classical molecular dynamics simulations with
effective potentials. Simulations are initially run without the quantum potential but with
the system equilibrated at the effective temperature (Eq. (5.2.7)) and, afterwards, adding
the quantum potential. We analyze the effect of the quantum correction to the potential
energy on the absorption spectra, as well as in the positions of the Na trapping sites in

the matrix.

5.4.1 Molecular dynamic simulations of Na doped rare gas ma-

trices with approximate quantum potentials

In the simulations we have employed a cubic cell composed by N = 863 atoms of rare

gas (Ar or Kr), with a face centered cubic structure (fcc) and the Na atom placed on

118



STUDY OF THE ABSORPTION SPECTRA OF ATOMIC Na ISOLATED IN Ar AND Kr
MATRICES

2.5 | | ]
1.6 — — n=05,M, =M, =10'm,

24 st —
b | L— n=1.M,=M, =10'm, i
231 —
cﬁm - ‘DV} | ]
1.8 = 1 22F 7
-19F — 211 ]

P | | | | ) | | | |

0 2 4 6 8 10 0 2 4 6 8 10
t[fs] t[fs]

Figure 5.3 Time evolution of the parameters a; (right panel) and b; (left panel) obtained
via the integration of the equations of motion (5.3.16) and (5.3.21), for two different values

of the artificial viscosity 1. The artificial masses are M, = 10%*my, My, = 10*my,.
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Figure 5.4: Time evolution of the average energy E* (Eq.(5.3.6)) for two different values
of the viscosity parameter 7. The artificial masses of the coefficients are chosen to be 10*
times larger than the mass of the noble gas atoms or the sodium for the coefficients of the
functions u,, and u,4, respectively.

a substitutional site of the cell (single vacancy site, sv). We apply periodic boundary
conditions to minimize the surface effects, and to simulate an infinite crystal. The initial
velocities are generated randomly according to a Gaussian distribution, with variance
chosen to match the desired temperature. The molecular dynamics simulations (without
the quantum potential) are performed at the effective temperatures 7% = 35K for the Kr
matrix and T* = 45K for the Ar matrix. The values for the effective temperature of each

system are calculated from Eq.(5.2.7), in order to simulate the amplitude of the zero-point

motions at the physical temperature at which experiments are conducted (7" = 10K) [109].
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Figure 5.5: Time evolution of the effective temperature 7* (Eq. 5.2.7) along a MD simula-
tion for both systems, in the left panel for the Ar matrix and in the right panel for the Kr

matrix.

The time evolution of the effective temperature 7 given Eq.(5.2.7) during a MD sim-
ulation for both systems is shown in Figure 5.5. The molecular dynamics simulations
including the quantum potential are performed at the physical temperature T'= 10K. In
this way, we compare two different approaches to incorporate the zero-point energy ef-
fects in the MD simulations: via the effective temperature and by adding an approximate
form of the quantum potential. In all cases, the system is thermalized using the velocity

rescaling scheme explained above (see Eq.(5.2.6) in section 5.2.1).

Radial distribution function (RDF)

In order to analyze how the presence of the impurity, located in a substitutional site of
the matrix, affects the distribution of the Kr and Ar atoms in the solid, we compute
the radial distribution function G(r) defined in Eq. (5.2.19). Two different kinds of
radial distribution functions are calculated, one centered at a Rg atom and the other one
centered at the Na atom. In Figure 5.6, we present the radial distribution functions for

the ArAr (left panel) and the NaAr (right panel) pairs.

As we can see, adding the quantum contribution to the ground state interaction potential

does not shift the relative distances between the argon atoms, compared to the results of
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Figure 5.6 Radial distribution function G(r) defined in Eq.(5.2.19) of the ArAr pairs (left
panel) and of the NaAr (right panels) pairs. The comparison between the simulations with
the interaction potential Va(g) at the effective temperature 7" = 45K and the simulations
with the quantum potential added to the ground state potential Va(gl) 4+ @ at T = 10K are

shown.

the effective temperature MD simulations (the main peaks of the ArAr distribution are
localized at positions corresponding to the relative separations of the atoms in the pure
Ar solid). The peaks of the RDF calculated at the physical temperature 7'= 10 K (and
including the quantum potential) are narrower with respect to the ones at the effective

temperature.

This result shows the advantages of employing the quantum potential to simulate zero-
point energy effects in rare gas solids, over the use of effective temperature of Eq. 5.2.7.
Since the impurity perturbs the lattice only locally, the ArAr RDF computed for the doped
matrix closely resembles that of the pure solid. The widths of the peaks in Figure 5.6
correspond to an amplitude of Ar atoms oscillations which accounts to 5% of the nearest
neighbor distance in the crystal, in good agreement with experimental observations [61].
Likewise, the use of the effective temperature approach cause the overestimation of the
oscillation amplitude of Ar atoms. In the right panel, the analysis of G(r) (NaAr) shows
that the inclusion of a Na atom cause a small displacement of the first nearest neighbors,
(Ar ~ 0.47 ag), in order to accommodate the impurity, while the positions of the rest of

the atoms do not change because of the substitution.
In Figure 5.7 a similar behaviour is observed for the Na doped Kr matrix.
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Figure 5.7 Radial distribution function G(r) defined in Eq.(5.2.19) of the KrKr pairs (left
panel) and of the NaKr pairs (right panel). The comparison between the simulations with
the interaction potential Va(g) at the effective temperature 7* = 35K and the simulations
with the quantum potential added to the ground state potential Va(;) 4+ @ at T = 10K are

shown.

Simulation of the absorption spectra

To simulate the absorption spectra, the equations of motion are solved, first including only
the classical potential and then adding the quantum potential to the ground state pair
interaction potential Eq.(5.3.9) and Eq.(5.3.10). In both cases, the system evolves along a
trajectory with the atoms in the ground electronic state. Once the system has reached the
equilibrium, the energy differences AE®) between the ground and the excited electronic
states (Eq.(5.2.17)) are computed at each time step, and at the end of the simulations
the histogram of these energy differences is built. The energy resolution used to build

1

the histograms we present here is dE' = 20cm™" and in all of them we have plotted the

superposition of the three energy differences. In the histograms we have used em ™! as

units of energy because these are the usual units in which the spectra are reported.

In Figure 5.8 we show the results for the three simulated spectra for both systems, NaKr
on the left and NaAr on the right. With discontinuos vertical lines we represent the

experimental values reported for the maxima of the triplet [61].

As it can be seen, the spectra obtained from the simulations with the classical interaction

potential (shown in blue), captures the triplet structure of the experimental spectra, but
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Figure 5.8: Simulated absorption spectra obtained as the histogram of the superposition of the energy
differences AE(®) between the ground and the excited electronic states for § = 1,2,3 (Eq.(5.2.17). In the
left panel, the results for the NaAr matrix are shown and in the right panel we present the results for the
NaKr matrix. In blue it is plotted the spectra obtained from the MD simulations with the interaction
potential only, at the effective temperatures T* = 35K and T* = 45K calculated from Eq.(5.2.7) for
the NaKr and the NaAr system, respectively. In black, the spectra from the MD simulations with the
quantum potential and at the physical temperature T=10K is plotted. With discontinuos vertical lines
we represent the experimental values reported for the maximum of the triplet [61].

is shifted to a lower energy region with respect to the experimental results. This red shift
of the absorption spectra matches the behaviour observed by Ryan and coworkers [61] for
the different trapping sites for the Na atom in rare gas matrices, the simulated spectra
was located in the red part of the experimental profile. As we already mentioned, in order
to improve the correspondence between the simulated and the experimental spectra, in

their work they empirically modified the repulsive excited state potential (referred here

as m(j )) to have a more repulsive potential.

Here, we show that adding an approximate expression for the quantum potential (obtained
by minimizing the ground state energy) to the interaction potential shifts the simulated
absorption band to the right energy region (for both Na doped Ar and Kr matrices). These
results support the conclusion that the discrepancies between the effective temperature
MD simulations and the experiment are a consequence of the inability of the effective
temperature approach to mimic quantum effects in the vicinity of the impurity, rather

than to a modification of the interaction potential due to matrix effects. The agreement
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Figure 5.9 Comparison between the classical interaction potentials Va(_,}) (left) defined in
Eq.(5.2.9) and V,, (right) given in Eq.(5.2.8) with the effective potentials Ujgf Eq.(F.0.10)
and UZJ/ Eq.(F.0.11).

between our simulated spectra and the experimental ones is only qualitative, because of

the approximations introduced, mainly in the perturbative evaluation of the energies of

the electronic excited states and the constrains imposed to the functions u(r).

In Figure 5.9 we show the classical pairwise interaction potential Va(gl) (Eq.(5.2.9)) and
the effective potential obtained as a result of adding the quantum potential. As we can
see, by adding the quantum correction the resulting potential gets slightly more attractive
around the minimum zone of the well and beyond the equilibrium distance of the alkali-
rare gas interaction. This energy shift can explain why the absorption band move towards
a higher energy region when the quantum correction is added. This effect is reproduced

in Ref. [61] by artificially increasing the B-state potential.

Simulated emission

As we described in the previos section, the emission spectra can be simulated from an
equilibrium configuration in the excited state. The simulations are run on the lower energy
excited state. A strong rearrangement of the matrix in the neighborhood of the Na atom
is observed upon photoexcitation. When evolving the trajectories in the excited energy
surface, the Na atom, which is initially in the sv site (with twelve nearest neighbors),

moves closer to four of them.
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Figure 5.10: Pair distances (r;0) between the Na atom and its nearest neighbors in the
lattice. In the left panel, we show the results for the MD simulations with the system
evolving in the ground state potential energy surface. In the right panel are plotted the
results of the MD simulations with the system evolving in the lower energy excited state.
As we can see, in the excited state the Na atom has four well defined nearest neighbors.

We can see this motion in Figure 5.10, where we have plotted the time evolution of
the pair distances 7,y between the Na atom and its initially twelve nearest neighbors
(specifically we have plotted the results for the NaKr matrix). In the left panel, we show
the results for the Na atom evolving on the ground state energy surface. Initially the
Na atom is placed in the matrix in a sv site and its distance to the nearest neighbors
is around 7.56 ag. As the system evolves, the expansion of the matrix occurs, and at
equilibrium, the Na is still in a sv site with twelve nearest neighbors. The only effect is
hat the matrix has expanded to accommodate the guest atom. Oscillations around the
equilibrium configuration are observed for the twelve nearest neighbors pair distances.
However, when the MD simulations are performed on the lower energy excited state, the

Na atom moves closer to four of the initially nearest Kr atoms, as it is shown in the right

panel of Figure 5.10.

Furthermore, in the left panel of Figure 5.11, the z-coordinate of the Na atom and of the
four Kr atoms already identified as the ones the Na gets closer, are plotted. In the right
panel, the time evolution in the x and y coordinates is shown. From these plots we can see

that the Na atom approaches the Kr atoms by moving in the z direction. This can also
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Figure 5.11: Time evolution of the z-coordinates of the Na atom and its four nearest
neighbors in the excited state (left panel) and in the right panel the time evolution of the
x-coordinate and the y-coordinate of two of these four nearest neighbors.
be seen in the snapshots of Figure 5.12, where the initial positions of the Na atom and
its twelve nearest neighbors at the initial configuration (sv) are shown on the left panel.

The snapshot of the atoms distribution at the final state is shown in the right panel, we

can see how the Na atom has moved towards the upper plane.

Finally, we can calculate the radial distribution function G(r) of the excited system and
compare it with the one for the ground state for both matrices. The results for G(r)
are plotted in Figure 5.13 for the NaAr pairs on the left and for the NaKr pairs on the

right.

As we described in the Appendix E, for the MD simulations we used a modified excited

state potential (Eq. (E.0.4)).

Hence, as the first term in Eq. (E.0.4) is the one which depends on the pair distances, we
added the quantum potential to this part of the excited state potential to simulate the

dynamics of the photoexcited system.

As we can see, for all the calculated RDF, a first peak around 5.66 ag is obtained in the
excited state for both solids. This is in agreement with the results plotted in the right

panel of Figure 5.10. There, we can appreciate that the equilibrium distance between the
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Figure 5.12 Snapshot of the positions of the Na atom and its twelve nearest neighbors (Kr
atoms). The initial configuration with the Na in sv site is shown in the left panel. The
atoms positions at the end of the time evolution is shown in the right panel. We can see

how the Na atom has moved towards the positive z direction.
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Figure 5.13 Left panel(Right panel): NaAr(NaKr) radial distribution function of the Na
doped Ar(Kr) matrix in the equilibrated excited state, for effective temperature and
potential variants of the algorithm, compared with the function G(r) around the Na atom
in the ground state .

Na and the closest Kr atoms in the excited state is around 5.66 ag. We can see how in
the excited state, the Na atom moves to a smaller space with respect to the ground state
position. The influence of the quantum correction into the system structure and dynamics
in the excited state was found to be minor. This can be attributed to the fact that the
four Rg atoms which get closer to the impurity end up in a highly excited vibrational

state in the deep well of the A-state potential, while the rest of the matrix atoms are

located at longer distances from the alkali atom, where the role of the impurity-rare gas
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interactions is less relevant.

As for the emission spectra, the simulated emission bands are obtained at negative en-
ergies. This counter-intuitive result is consistent with those reported by other research
groups [93]. It points to the inadequacy of the perturbation theory scheme employed
to evaluate the interaction energies at the equilibrium configurations in the excited elec-
tronic states. Since the atoms are closer, the total energy can not be evaluated from

atomic energies using first order perturbation theory.

Let us notice that for the structure of the matrix we have chosen, with the Na atom placed
in a sv site, we have obtained the absorption band on the “violet” site. This result is in
agreement with previous works [61], [103], that have identified the sv trapping site with
the violet absorption band. On the other hand, among the experimental results available,
no emission has been reported for this absorption band, at least within the energy range
explored (above 12500 cm™" [61]). Our results are in agreement with this, however, as
in the excited state the atom explores the repulsive part of the potential, which is the
less well represented, further theoretical and experimental studies need to be performed

in order to have final conclusions on this subject.

5.5 Conclusions

In this chapter, we have proposed a methodology to simulate structural changes and the
absorption spectra of doped rare gas matrices, based on the inclusion of quantum correc-
tions into molecular dynamics simulations. The scheme is based on proposing a specific
functional form for the ground state wave function, and deriving from it an approxi-
mate quantum potential, which is afterwards included as an additional potential into the

molecular dynamic simulations.

As a model system to test our methodology, we have chosen Ar and Kr matrices with a
Na impurity located at the substitutional site of the matrix. The parametrization of the
wave function have been chosen to reproduce basic properties of rare gas systems. The

Car-Parrinello minimization scheme have been used to minimize the variational estimate
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of the ground state energy of the doped matrix, and to obtain the parameters to model

the ground state wave function and therefore the quantum potential.

Then, we carried out molecular dynamic simulations with an effective potential, compris-
ing both the interaction potential and the approximate quantum potential. We simulated
the absorption spectra of atomic Na embebed in the Ar and Kr matrices by performing
molecular dynamics simulations with and without the quantum potential. The com-
parison between the two simulated spectra clearly shows how, by adding the quantum
potential, a better agreement between the theoretical and the experimental results is ob-
tained. Our calculations were restricted to the case where the Na atom was located at a
single vacancy site. For this particular structure, the experimental studies reveal that the
absorption spectra is located at the violet region of the energy spectra, and no emission
band has been reported, at least in the energy range explored by the experiments. The
present knowledge of the energies of the first excited electronic states in the solid is not
accurate enough, which prevent us to provide additional insight around this point. Fur-
thermore, we also studied the structural modifications of the system and we found that
the quantum correction to the potential energy improves the description of the vibrational

amplitudes of Ar atoms in the matrix.

The presented scheme can be applied to similar many-body systems where quantum effects
are relevant, and pure classical molecular dynamics methods fail to accurately model the
system. Furthermore, even though we have not studied the photoinduced dynamics, by
modeling the quantum potential we are taking the first step in order to study the dynamics
of the structural modification of the system upon photoexcitation of the alkali atom, using

approximate quantum potentials.
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The main topic of this work, essentially methodological, is to develop trajectory-based nu-
merical alternatives to model quantum phenomena. We have shown that a fully quantum-
mechanical method, wave function-free (i.e., grid and basis-set free), based entirely on
trajectories, is possible and it has been implemented and tested along the thesis. The
methodology is applied to a variety of one dimensional model systems, and the scheme is
found to reproduce quantum phenomena such as the zero point energy in harmonic and
anharmonic potentials, as well as tunneling/transmission probabilities for different barrier
shapes. The expression for the resulting quantum potential contains both attractive and
repulsive parts. While yielding the same expression for the quantum force as in Ref. [43],
it is only using the full quantum potential that correlations functions and energy spectra

can be calculated, by integrating the Lagrangian along the trajectories.

Furthermore, the same methodology is applied to another kind of problems, using time-
dependent potentials (in particular to study the laser-driven electron dynamics). It is not
only capable of reproducing quantitatively the total ionization yields, but also CEP effects
such as left /right asymmetries in the ionization as a function of the carrier envelope phase.
For all the examples shown here, a moderate number of trajectories was necessary to
accurately compute the observables, this also shows the potential of the method regarding

its generalization to higher dimensions.

In addition to the interacting trajectory approach, we have proposed a method to prop-
agate quantum trajectories by expanding the hydrodynamic fields in Chebyshev polyno-

mials.

Moreover, we have derived an approximate quantum potential for a many-body system.
We have used this quantum potential to build an effective potential to the molecular

dynamics simulations. Within this method, we have studied the absorption bands of
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atomic sodium isolated in a rare gas matrix. In particular we have studied two systems,
an Argon and a Krypton matrix with the Sodium atom located in a substitutional site of
the matrix. By adding the quantum potential to the MD simulations, a better agreement
with the experimental results have been obtained. In particular, the absorption spectra
of atomic sodium in the matrix have been qualitatively reproduced. This opens the

possibility of applying the same methodology to study other many-body systems.
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7 RECOMMENDATIONS

e Possible extension to higher dimensions should in principle be possible, and presents
an interesting aspect for future developments. The challenge is to develop a parametri-
sation of the quantum density which allows to rapidly identify neighbouring trajec-

tories as they evolve in time.

e The use of trajectories for quantum dynamics naturally opens the way to mix quan-
tum and classical dynamics. In particular, different regions in configuration space
can be defined to be treated either by quantum mechanics or by classical mechanics,
and a smooth transition from a quantum region to a classical one can be achieved
by simply neglecting the quantum force in the latter. For example, scattering prob-
lems with significantly different short and long range potentials, or large amplitude
motion as encountered in laser driven electron dynamics, are situations where such

an approach can be promising.

e As far as the results presented in chapter five are concerned, it will be interesting
to apply the presented methodology to other many body systems exhibiting quan-
tum effects. In particular, the wide field of matrix isolation spectroscopy with a
large range of chromophores could be modelled based on the quantum corrections

presented in this work.
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Chapitrel: Introduction

La modélisation de la dynamique de systemes complexes quantiques comprenant un grand
nombre de degrés de liberté et impliquant des effets anharmoniques, présente un grand défi
en physique contemporaine. Le développement de méthodes de spectroscopie résolue en
temps a permis de réaliser un grand nombre d’études expérimentales et théoriques de pro-
cessus dynamiques a 1’échelle atomique et moléculaire. Dans ce contexte, des phénomenes
quantiques comme la délocalisation, les interférences, l'effet tunnel ou la discrétisation
des énergies vibrationnelles, sont au coeur des modélisations de la structure et de la
dynamique des systemes moléculaires. Malgré le succes de méthodes sophistiquées de dy-
namique quantique et des ressources informatiques de plus en plus performantes, il n’est
en général pas possible de décrire la dynamique quantique de systemes comportant plus
que quelques degrés de liberté. La complexité réside non seulement dans le nombre de
particules impliquées, mais aussi dans la diversité des interactions mises en jeu ainsi que
dans la réponse a l'excitation par des sources lumineuses externes. Par conséquent, le
développement de nouvelles méthodes est un domaine de recherche de grande actualité,

avec des implications bien au dela de la physique moléculaire.

Le travail présenté est consacré au développement, a I'implémentation et au test de nou-
velles méthodes de dynamique quantique, qui ont pour spécificité d’étre basées entierement
sur des trajectoires. En effet, un ensemble de trajectoires est capable de décrire des
phénomenes quantiques, a condition de rajouter un potentiel supplémentaire, appelé
potentiel quantique. Dans ce travail de these, plusieurs approches pour effectuer des
modélisations quantiques sont présentées, basées sur des trajectoires et sans calcul ex-
plicite de la fonction d’onde. La premiere consiste a utiliser des polynomes de Tchebycheff

pour décrire la densité quantique, ce qui permet de construire de fagon efficace le potentiel
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quantique, et ainsi simuler une dynamique quantique. Une deuxieme méthode, alternative
a la premiere, est basée sur la représentation de la densité quantique par un ensemble de
pseudo-particules, soumises a des interactions construites de telle sorte que leur évolution
temporelle reproduise une dynamique quantique. Il est montré qu'une telle méthode
est en effet capable de décrire correctement des effets quantiques, tel que l'effet tun-
nel, ’énergie de point zéro et des niveaux discrets d’énergie d'une vibration moléculaire.
Cette méthodologie est aussi utilisée pour étudier la dynamique d'un électron lors de
Iionisation avec des champs laser intenses et ultrabrefs. En généralisant cette idée a des
systemes a haute dimensionnalité, une troisieme approche est proposée, pour décrire la
spectroscopie d’atomes d’alcalins incrustés dans des matrices de gaz rares cryogéniques.
L’importance d’inclure des effets quantiques est mise en évidence par un meilleur accord
avec des données expérimentales, montrant ainsi 1'utilité de la nouvelle méthodologie
pour la description des effets quantiques dans des systemes étendus. En résumé, le travail
présente différentes nouvelles méthodes basées entierement sur la propagation de tra-
jectoires, leur implémentation et test numérique pour la modélisation de la dynamique

quantique.

L’idee de base d’utiliser des trajectoires pour décrire la dynamique quantique a été devel-
oppée par David Bohm de la maniere suivante: en commencent de la description hydro-
dynamique de la mécanique quantique, il est possible de définir un champs de vitesses, et
ainsi des trajectoires associées a ce champs de vitesses. En suivant ce développement, on
est naturellement mené a une équation de Newton, mais avec un potentiel supplémentaire,
appelé potentiel quantique. Ce potentiel supplémentaire n’a pas d’équivalent classique,
et est entierement responsable d’induire toutes les effets quantiques de la dynamique. Ce
potentiel dépend de la forme de la densité quantique, et son evaluation numérique pose
d’énormes problemes. C’était seulement en 1999 par les travaux de B. Wyatt qu’une
approche numérique a été proposée (appelée 'Quantum trajectory method, QTM). Dans
cette méthode, la densité quantique requise pour 1’évaluation du potentiel quantique est

déduit de 'ensemble des trajectoires par des méthodes d’interpolation non-equidistantes.
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Les trajectoires peuvent étre considérées comme éléments du fluide de probabilité quan-
tique. Malgré la clarté du concept d’exprimer I’équation de Schrodinger par des équations
hydrodynamiques, leur implémentation numérique reste un grand défi. La raison prin-
cipale est que pour l'utilisation de cette approche, il faut évaluer la densité et sa dérivé
jusqu’a l'ordre trois a partir des schéma d’interpolations. Ceci demande une tres grande
précision, y compris dans des régions de faible densité. En particulier, des noeuds de
la fonction d’onde présentent un probleme, car dans leur proximité la densité de trajec-
toires est tres faible, ce qui rend des schémas d’interpolation précise tres difficile. Dans ce
contexte, plusieurs méthodes numériques ont été proposées pour contourner ce probleme,
nommé le 'node problem’. Notamment, citons l'interpolation par polynémes d’ordre élevé
[18], la propagation simultanée des dérivées [19,20] ou l'utilisation de grilles adaptives.
Une autre approche est basé sur l'utilisation d’'une décomposition en fonctions d’ondes
propageant dans des sens opposés pour décrire des structures d’interférences quantiques.
En outre, des trajectoires dans le plan complexe ont été proposées par Koch et Tannor,
et appliqués a des problemes de dissociation moléculaire. Une autre approche consiste
a utiliser une approximation semiclassique pour modéliser le potentiel quantique et ses
dérivées. Toutes ces approches ont comme point commun d’obtenir une expression de la
densité a partir de I’ensemble des trajectoires. Une alternative prometteur a été proposée
tres récemment par Poirier et al, qui proposent une méthode de propagation de trajec-
toires quantiques sans interpolation, mais d’inclure les effets quantiques en considérant des
potentiels supplémentaires entre les trajectoires. Cet approche consiste donc a propager

des trajectoires quantiques, sans faire référence a la fonction d’onde quantique.

L’objective scientifique est de développer, implémenter et appliquer de tes méthodes pour
les études de processus dynamiques quantiques, pour évaluer leur potentiel futur dans des

simulations a plus grandes échelles.

Le these comporte six chapitres, et est structurée de la maniere suivante : En chapitre
deux, les concepts principales de la formulation hydrodynamique est développée, et les

bases de la méthode QTM sont présentées.
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En chapitre trois, une nouvelle méthode est présentée, qui consiste a utiliser des polynomes
de Chebycheff pour exprimer la densité quantique, pour ainsi pouvoir évaluer numériquement

le potentiel quantique et ses dérivées a une tres haute précision.

En chapitre quatre, une méthode alternative est développée. Cette méthode est basée sur
I’ansatz présenté par Hall et al, et consiste a exprimer la densité d’une fagon discrétisée.
Ceci mene a une forme du potentiel quantique et les forces associées qui permettent leur
prise en compte par un potentiel d’interaction entre les trajectoires. Dans une premiere
partie, cette approche est développée et testée dans des systemes quantiques modeles, pour
étudier sa capacité de décrire correctement des effets quantiques comme 'effet tunnel ou
des interférences. Dans une deuxieme partie, cette méthodologie est étendu pour inclure
des champs laser externes, et appliquée pour des études de l'ionisation ultrarapide de
1 atome d’hydrogene avec des impulsions ultrabreves, comprenant seulement quelques

oscillations optiques.

En chapitre cing, une troisieme approche est présentée, qui permet d’inclure des effets
quantiques dans des systemes a tres haute dimensionnalité. Cette approche est basée
sur un ansatz particulier de la densité quantique multidimensionnelle, permettant ainsi
d’inclure des effets quantiques dans des simulations de dynamique moléculaire. Cette
méthode est appliquée a la spectroscopie de chromophores incrustés dans des matrices
cryogéniques. Ces systemes ont été choisis a cause des données expérimentaux disponibles,
qui ne sont pas reproduit d'une fagon satisfaisante par des simulations classiques a cause
des effets quantiques présents. Ces systemes forment donc des exemples idéaux pour

évaluer la nouvelle méthodologie développée.
Chapitre six comprend une conclusion avec des perspectives du travail présenté.

Comme résultat principal de la these, il est montré que de telles méthodes sont capables de
décrire des effets quantiques comme 1’énergie de point zéro, la discrétisation de 1’énergie
ou l'effet tunnel. Ainsi, elles présentent des alternatives prometteuses aux méthodes

standard, avec comme perspective d’étre avantageuses pour la modélisation de systemes
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a haute dimensionnalité.

Chapitre 2: La théorie des trajectoires quantiques

Dans ce chapitre, nous montrons comment définir les nouveaux champs dans lesquels les
trajectoires quantiques évoluent directement a partir de la fonction onde [62]. Le résultat
principal est que les équations de mouvement déterminant 1’évolution temporelle de ces

champs sont complétement équivalentes a I’équation de Schrodinger.

Equations de champ hydrodynamiques
Reformulation de I’équation de Schrodinger

Dans cette section, nous suivons la dérivation de Madelung des équations hydrody-
namiques. Puisque nous introduisons un type particulier de trajectoires, qui nécessitent
des positions dépendantes du temps, on peut en déduire qu’il s’agit d’une théorie dépendant
du temps. Ainsi, cette partie est consacrée a réécrire I’équation Schrodinger et a introduire

les équations de mouvement des nouveaux champs.

Le point de départ est ’équation de Schrédinger (ESDT) pour une particule de masse m
qui évolue dans le potentiel externe V(x,t), x représente les coordonnées cartésiennes et
t, le temps,

0 h?

ihalll(x, t) = —%VQ\I/(X,IS) + V(x, )U(x,t) . (8.0.1)

La fonction d’onde peut étre écrite sous sa forme polaire [9, 62]
U(x,t) = R(x,t)e50/M (8.0.2)

R(x,t) est Pamplitude et S(x,t) est la phase, a la fois réelle et dépendante de la position

et du temps. On peut donc écrire:
R(x,t) = (U(x, )" U(x, )2 >0, S(x,t)=h/2In(V(x,t)/¥(x,1)*) . (8.0.3)

Notons que la forme polaire de la fonction d’onde ¥ n’est pas utile aux points ou ¥ = 0,

car S n’est pas bien défini comme on peut le voir de Eq. (8.0.3). Pour l'instant, il est
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important de garder a ’esprit que les définitions et équations a venir ne sont valables que

dans les régions ou la fonction d’onde W est différente de zéro.

Dans les dérivations montrées ci-dessous, nous omettons les variables x et ¢ sauf s’il est
nécessaire de les spécifier. Remplacer la fonction d’onde par la fonction ansatz (Eq. 8.0.2)
dans 'ESDT (Eq. 8.0.1), séparant la partie réelle et la partie imaginaire, on obtient pour

la partie réelle

2 2 2
05 _(VSP . VR

-— = 8.0.4
ot 2m 2m R ( )
et pour la partie imaginaire,
OR? \
— |\ RP—) =0. 8.0.5
ot v ( m ) ( )

Eq. (8.0.4) a la forme d’une équation de Hamilton-Jacobi (HJ) classique avec un potentiel
supplémentaire qui est appelé potentiel quantique Q) [62]:

YR R VY

=0 R T Tom

(8.0.6)

ou, écrit en termes de la densité p(x,t) = R*(x,t)

2 2 2
-E(EH)
C’est précisément la présence du potentiel quantique () qui détermine la différence entre
les trajectoires classiques et quantiques. Le potentiel quantique est non local, c-a-d. le
potentiel a un point de ’espace donné dépend non seulement de la valeur de 'amplitude
a ce point particulier de l'espace, mais aussi de 'amplitude aux points voisins. Par
analogie avec la mécanique classique, en mécanique quantique, on peut définir un champ

p déterminé par V.S. En divisant ce dernier par la masse m, nous pouvons définir le

champ de vitesse v = p/m.

Une fois que nous aurons défini le champ de vitesse, v, on peut exprimer son évolution
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temporelle en prenant le gradient dans 1’équation (8.0.4). De plus, en entrant le champ

de vitesse dans ’équation (8.0.5) et la densité p on 'obtient,

) 1
a_: VUV = ——V(V+Q) (8.0.8)
)

a—f +V.-(pv) = 0 . (8.0.9)

Equations (8.0.8) et (8.0.9) représentent la formulation hydrodynamique de la mécanique

quantique.

Notons également que les équations (8.0.8) et (8.0.9) sont équivalentes a des équations
(8.0.4) et (8.0.5) et par conséquent, ils sont équivalents a I’équation de Schrédinger. La
dérivation ci-dessus a un lien avec la formulation standard de la mécanique quantique, ou

la densité de probabilité actuelle j est définie comme suit [64],

j h \VA' VS
| Tl == =v. 8.0.10
o= (5) = ($010
L’équation (8.0.9) exprime la conservation de la densité de probabilité avec j = pv.

Ensuite, pour reproduire les résultats de la mécanique quantique standard, nous avons
besoin qu’a tout moment ¢, R représente correctement le module de la fonction d’onde
|W| et le champ de vitesse est déterminé par Eq. (8.0.10), ce qui est directement réalisé

grace a la fagon dont cette théorie est construite.

Trajectoires quantiques

Jusqu’a présent, nous avons défini le champ de vitesse qui détermine 1’évolution temporelle
de la densité de probabilité du fluide. L’existence de trajectoires est un postulat, qui

s’ajoute a ceux habituellement admis [62]:

1. un systeme physique est composé d’une fonction d’onde se propageant dans ’espace
et dans le temps avec une particule ponctuelle qui se propage guidée par la fonction

d’onde.
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2. la fonction d’onde ¥ est la solution de I’équation de Schrodinger

3. ’évolution temporelle de la particule est obtenue comme la solution x(¢) de I’équation

PR LGS , (8.0.11)
m x=x(t)

la ou S est la phase de ¥ donnée par Eq.(8.0.3).

Pour résoudre 1'équation (8.0.11), il est nécessaire de donner une condition initiale x(0) =
Xo. Une fois cette condition fixée, toutes les autres quantités sont déterminées de maniere
univoque par W(¢ = 0). C’est précisément ’évolution temporelle de cette particule, régie
par I'équation (8.0.11) et les conditions initiales x(0) et W(¢ = 0) ce qui détermine une
trajectoire quantique. L’ensemble des mouvements possibles associés a la fonction d’onde
U, est obtenu en générant un ensemble de conditions initiales x(0), comme nous le mon-

trerons dans la section suivante.

Pour garantir la compatibilité entre le mouvement de l’ensemble et les résultats de la

mécanique quantique, un autre postulat est nécessaire, qui dit que:

4. la probabilité de trouver une particule de I’ensemble dans l'intervalle x et x + dx est

donnée par R%*(x,t)d*z, avec R? = ||

Ensembles de trajectoires quantiques

Pour obtenir la valeur de toute observable en représentation de position, il faut faire la
moyenne sur toutes les positions possibles. Cela se traduit habituellement par un calcul
de la moyenne sur la fonction d’onde qui représente la probabilité de trouver une particule
dans une certaine région de ’espace. Cette probabilité peut également étre représentée
par I'ensemble des trajectoires quantiques, qui est unique, une fois que la fonction d’onde

initiale ¥y est donnée.

Supposons que nous avons un ensemble de trajectoires, définies uniquement par la fonction

d’onde initiale. La valeur moyenne d’un opérateur O correspondant a un état normalisé

142



RESUME EN FRANCAIS

|W) s’exprime par:

N

<O>= (U|0|V) = /\IJ*O\M%. (8.0.12)

En évaluant les valeurs moyennes correspondantes de la position, de la dynamique et de

'énergie [62], on obtient

(X) = / UxUdPr = / Re™“xRedPz = / R*xd*r = (z) | (8.0.13)
(p) = / U (—ihV)Ud*r = / R*VSd*z = (p) , (8.0.14)

() — / V(=12 /2m)V + V] = (8.0.15)

/ RY(VS)?/2m + V + Qld*x = (E) . (8.0.16)

On peut donc, a partir de I'ensemble de trajectoires quantiques, reproduire les résultats de
la mécanique quantique, car les valeurs moyennes calculées avec ’ensemble de trajectoires
coincident avec celles obtenues avec la fonction onde. Cette égalité vient du fait que la
distribution initiale des trajectoires et leurs vitesses initiales vy ont été prises selon la

fonction d’onde initiale Wy.

La Méthode des Trajectoires Quantique (QTM)

En pratique, il y a deux facons d’étudier I’évolution temporelle des trajectoires quantiques
d’un point de vue numerique. Une premiere approche consiste a résoudre 'ESDT par les

méthodes conventionnelles et a calculer les trajectoires par la suite.

D’autre part, il existe une approche différente dans laquelle les trajectoires quantiques
sont utilisées comme outil pour résoudre ’équation de Schrodinger, et elles se propagent
avec le champ hydrodynamique qui évolue avec elles. C’est précisément l'approche qui
nous intéresse. L’utilisation des trajectoires quantiques comme outil numérique pour
résoudre 'ESDT a suscité un intérét particulier aprés le développement de la méthode
de trajectoire quantique (QTM) par Wyatt et al. en 1999 [8]. Désormais, nous limitons

notre dérivation a une dimension spatiale x et a une seule courbe énergétique potentielle.
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Ici, x représentera une variable et z; une trajectoire. Dans la méthode des trajectoires
quantiques, la densité initiale est discrétisée en termes d’éléments fluides N avec une
masse m, correspondant aux trajectoires z;, i=1,...,N, chacun d’entre eux ayant sa propre

amplitude R; = R(x;,t).

Le choix des trajectoires quantiques comme grille n’est pas indispensable. L’avantage
des trajectoires quantiques est qu’elles constituent une grille avec les bonnes propriétés
pour propager la densité de probabilité, car 'amplitude et la phase sont directement
propagées le long de celles-ci. Les équations (8.0.4) et (8.0.5) peuvent étre écrites dans le
systeme de référence Lagrangien. Si nous introduisons la dérivée le long d’une trajectoire
d/dt = 0/0t +vd/0x et le champ de vitesse v = %2_57 on peut obtenir ’ensemble suivant

des équations couplées

ds 1,
= = Z — 0.1
= 5 (V+Q), (8.0.17)
dp v

dvv 0V +Q)

ii = v|$i:$i(t) s (8.0.20)

ou les équations des champs hydrodynamiques sont évaluées le long de chaque trajec-
toire. L’équation ci-dessus est exacte. Toutefois, la sélection d’un nombre fini de trajec-
toires nécessaires a la mise en oeuvre numérique constitue une approximation. Le nombre
de trajectoires utilisées sera alors un parametre crucial pour assurer la convergence des

résultats.

Les équations de mouvement présentées ci-dessus peuvent étre combinées de différentes
manieres pour faire évoluer les trajectoires dans le temps [9]. Parmi toutes les com-
binaisons que nous choisissons pour propager les trajectoires, nous avons en général
I’évolution temporelle des champs hydrodynamiques S et R, donc la fonction d’onde

peut étre construite le long du chemin suivi par les trajectoires quantiques comme suit
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9, 65],

1 [t/0
KIJ(,%“IS) = \Il<x27t0)exp(_§/t (%) :El(T)dT>
i [t/ 1 [0S\?
ool Galn) Vo)l o). wom

ou nous avons dénoté W(x;, tg) = R(x;, to)e%s (@i.to) - 1,’équation ci-dessus donne le propa-

gateur de fonction d’onde. Par conséquent, dans le QTM, en propageant les champs S' et

R, nous pouvons reconstruire la fonction d’onde le long de chaque trajectoire.

Jusqu’a présent, nous avons présenté la théorie qui donne I'évolution temporelle de la
trajectoire quantique. En principe, la solution des équations décrites ci-dessus donne
la solution exacte de I’équation de Schrodinger dépendant du temps et a donc la méme
puissance prédictive que les méthodes standard de propagation de paquets d’ondes [16,
66, 67]. Cependant, plusieurs facteurs entravent la solution des équations du mouvement

(EOM) pour les trajectoires quantiques.

Plusieurs stratégies ont été mises en place afin de surmonter les problemes numériques
associés a la propagation des trajectoires quantiques, avec un succés relatif [9]. Cependant,
le probléme est loin d’étre résolu et la recherche de nouvelles méthodes pour résoudre les

équations hydrodynamiques avec précision reste un domaine de recherche actuel.

Dans ce travail, nous proposons deux alternatives différentes pour intégrer I’'équation
du mouvement des trajectoires quantiques. La premiere approche est présentée dans le
chapitre suivant et est basée sur une représentation de Chebychev des champs hydrody-
namiques. Le schéma est ensuite appliqué a la description de la dynamique vibratoinnelle,
en particulier a I’évolution d’un paquet d’ondes sur un potentiel harmonique et sur un
potentiel de Morse. Une approche différente est suivie dans les chapitres quatre et cinq,
ou des potentiels quantiques approximatifs sont dérivés de différentes paramétrisations de

la densité.
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Nous avons présenté ici la théorie de la méthode QTM. Nous avons obtenu ’ensemble des
équations qu’il nous faut résoudre pour propager les trajectoires quantiques et nous avons
montré comment la solution de 'ESDT peut en principe étre obtenue par la propaga-
tion des trajectoires quantiques. Dans les deux chapitres suivants, nous présentons deux
méthodes différentes pour trouver la solution numérique des équations (8.0.17)-(8.0.20).

Les méthodes sont appliquées a I’étude de plusieurs problemes unidimensionnels.

Chapitre 3: Chebyshev expansion des champs hydrodynamiques

Dans le QTM, les équations (8.0.17)-(8.0.20) sont résolus en propageant les champs S
et R et les trajectoires simultanément. Cependant, la solution de ces équations couplées

n’est pas simple.

L’une des principales difficultés est I’évaluation des dérivées des champs dans une grille
non structurée. Depuis le développement du QTM par Wyatt et ses collaborateurs [8],
plusieurs techniques ont été mises en avant pour surmonter ce probleme. Parmi eux, on
peut citer 'ajustement local des moindres carrés. Dans cette famille de méthodes, les
moindres carrés pondérés mobiles (MWLS) a été la méthode la plus largement utilisée
dans la méthode de trajectoire quantique [8, 12, 17, 68]. Comme alternative a ces schémas
d’ajustement, d’autres techniques ont été mises en place comme la méthode de propaga-
tion des dérivées le long des trajectoires [9, 19] ainsi que des méthodes basées sur les

grilles mixtes eulériennes et lagrangiennes [23, 25].

Nous proposons ici une nouvelle méthode de propagation des trajectoires quantiques,
basée sur une expansion globale de Chebychev des champs hydrodynamiques [18]. Des
expansions dans une base de polynomes de Chebyshev du propagateur de la fonction
d’onde ont été largement utilisés dans les méthodes de propagation de paquets d’ondes
standard [69]-[73], nous les utilisons ici pour la modélisation quantique sur la base de tra-
jectoires. Les polynomes de Chebychev sont choisis en raison de leur propriété d’étre les
meilleurs polynomes d’interpolation dans le sens minimax. Dans I'expansion de Cheby-

chev, 'erreur est répartie sur l'intervalle interpolé. Par conséquent, ’approximation de
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Chebychev présente le plus petit écart maximal par rapport a la fonction interpolée (parmi
tous les polynomes du méme degré). De méme, les relations de récurrence des polynomes

de Chebyshev permettent le calcul direct des dérivées des champs hydrodynamiques.

La méthodologie que nous proposons ici, consiste a résoudre I’ensemble des équations
(8.0.17)-(8.0.20), a developper les champs S et C' dans une base de polynomes de Cheby-
shev a chaque pas de temps et a utiliser les relations de récurrence pour calculer les
dérivés nécessaires. L’amplitude C' est définie comme le logarithme de la densité. Cette
représentation en termes de C' a déja été utilisée pour résoudre les équations du mouvement
des trajectoires quantiques [9, 12, 17] et elle s’est aussi montrée plus stable numériquement
que la représentation en termes de R. Pour évaluer les coefficients de 'expansion de
Chebyshev des champs hydrodynamiques, nous utilisons la méthode SVD (Single Value

Decomposition).

Comme premier exemple, nous étudions la dynamique vibrationnelle d'un paquet d’ondes
Gaussiennes dans un potentiel quadratique, dont les solutions analytiques sont connues

[78]. Trois largeurs différentes du paquet d’onde initial sont prises en compte.

Dans la figure 8.1, les résultats de I’évolution dans le temps de la valeur moyenne (z)
(panneau gauche), et la largeur du paquet d’ondes o (panneau droite), pour les trois cas
considérés ici sont tracés. Dans les deux cas, la comparaison avec les résultats analytiques
est présentée. Pour les trois valeurs initiales de la largeur du paquet d’ondes, les résultats
numériques obtenus en utilisant la mise en application du QTM basé sur 'expansion
Chebyshev des champs hydrodynamiques correspondent exactement aux solutions ana-
lytiques de I’équation Schrédinger, qui dépend du temps. Nous discutons également de
la performance de I'implémentation actuelle du QTM pour les paquets d’ondes struc-
turés d’un point de vue indépendant du temps. Nous choisissons trois formes analytiques
différentes pour représenter la densité initiale. Les densités sont construites de maniere a
avoir la structure désirée. Le comportement du potentiel quantique et la force quantique

pour les différents ordres de I'expansion de Chebychev sont étudiés.
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Figure 8.1: Evolution temporelle de la valeur moyenne (r) (panneau gauche) et la largeur
o (panneau droite) du paquet d’ondes gaussiennes dans le potentiel quadratique. Dans
tous les cas, la comparaison entre les résultats analytiques (ligne continue) et les valeurs
moyennes est indiquée pour N = 100 trajectories (points).

Dans la colonne de gauche de la figure 8.2 les trois densités analytiques sont représentées
par des lignes continues et avec des points, nous avons tracé les résultats de I’expansion
de Chebychev en utilisant des polynomes avec M = 10. Dans la colonne centrale, nous
montrons le potentiel quantique pour les trois densités, en utilisant différents ordres de

I’expansion de Chebychev avec SVD comparé au potentiel quantique exact.

Dans le panneau de droite de la Figure 8.2 I'erreur dans le calcul des forces est donnée.
Comme on peut le voir, I'erreur augmente lorsque la densité est plus structurée, en par-
ticulier lorsque des nceuds stricts existent (panneau central droit). L’augmentation du
nombre de polynomes de Chebychev n’améliore que marginalement la convergence vers

les fonctions exactes numériques, mais les erreurs restent encore modestes dans tous les
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Figure 8.2: Panneau de gauche: Densités analytiques (ligne continue) comparées a sa
représentation dans les polynémes de Chebychev pour M=10. Panneau central: Potentiel
quantique calculé apres avoir représenté les trois densités analytiques a gauche en utilisant
différents ordres de I’expansion de Chebyshev avec le schéma SVD/Chebyshev. Enfin, dans
le panneau de droite, nous montrons les résultats de 1’évaluation de ’erreur relative de la
force.

cas. Encore une fois, la densité avec des nceuds non résolus (panneau inférieur droit) se

comporte mieux que celle avec un nceud explicite.

Le principal avantage de l'approche actuelle est qu'un nombre relativement faible de
polynomes est nécessaire dans les expansions tronquées pour obtenir une représentation
raisonnablement précise des champs hydrodynamiques. Les instabilités numériques dans
le calcul du potentiel quantique et, par conséquent, dans l'intégration de 1’équation du

mouvement, sont surmontées par une combinaison de plusieurs techniques numériques.

La comparaison entre le potentiel quantique calculé a I'aide des coefficients d’expansion de
Chebychev de la densité extraite de la SVD, et le potentiel quantique exact pour diverses
distributions suggere que la précision de la procédure SVD diminue au fur et a mesure

que la topologie de la distribution de la densité devient plus structuré. La troncation de
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la série de Chebyshev conduit a un léger lissage de la dépendance spatiale du potentiel
quantique. Néanmoins, 'erreur reste faible et n’affecte pas significativement les forces

correspondantes exercées sur les particules.

Chapitre 4: Dynamique quantique modélisée par des trajectories

en interaction

Récemment, une formulation de la mécanique quantique sans faire référence a la fonction
d’onde, a été proposée [38]—[41], comme une alternative prometteuse au QTM mis au
point par Wyatt. Dans cette approche, le probleme de mécanique quantique dépendant du
temps est transformé en un probleme dynamique d’une densité paramétrée. Alors qu’en
principe différents paramétrages sont possibles, pour des problemes unidimensionnels,
une paramétrisation spéciale a été proposée dans [39], qui conduit a une équation de
Newton avec un potentiel supplémemtaire. Pour un choix spécifique de la paramétrisation,
qui marque les trajectoires en fonction de leurs positions spatiales, on est conduit a la
forme des équations quantiques de trajectoires de mouvement proposées par Hall et ses

collaborateurs [43].

La version discrétisée de la densité a été qualifiée par Hall et ses collegues de travail
d’interprétation de “monde en interaction”, [43, 45]. Cependant, outre les aspects in-
terprétatifs de la formulation, elle peut étre utilisée pour ’étude de la dynamique quan-
tique basée sur la propagation d’un ensemble de trajectoires, qui évoluent sous l'action
du potentiel quantique. Dans la Réf. [43], le potentiel quantique a été choisi comme 1'un
des termes du potentiel quantique total, puisqu’il ne contient que le terme de conserva-
tion d’énergie dépendant que de la dérivée premiere de la densité de probabilité (deuxieme
terme de I’équation (8.0.7) au chapitre deux). Par conséquent, en utilisant cette approche,
il n’est pas simple de générer la phase de la fonction d’onde. En revanche, en travaillant
avec expression complete du potentiel quantique, comme le propose la Réf. [38] et [39],
la phase devient égale a I'action et elle peut étre calculée par une intégrale du Langrangien

le long de la trajectroire (voir par exemple Eq. 8.0.21 au chapitre deux).
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Dans ce chapitre, nous dérivons la forme complete du potentiel quantique en considérant
le méme ansatz pour la densité proposée dans la Réf. [43]. De plus, nous dérivons la force
quantique du modele et nous obtenons la méme forme pour la force quantique que celle
obtenue dans la Réf. [43]. Par conséquent, afin d’évaluer I'influence du terme négligé par
Hall et ses collaborateurs, nous calculons la fonction de corrélation et les spectres, comme

exemples d’observables ou la phase de la fonction des ondes est pertinente.

Pour évaluer la performance de ces potentiels et forces quantiques modélisés, c’est-a-
dire leur capacité a réproduire des phénomenes de mécanique quantique essentiels, tels
que l'énergie de point zéro ou l'effet tunnel. Dans la premiere partie de ce chapitre, la
méthode est appliquée a plusieurs problemes de test unidimensionnel pour les potentiels
indépendants du temps. A savoir, la détermination de 1’état fondamental sur les po-
tentiels harmoniques et anharmoniques, la propagation de paquets d’ondes en présence
d’une barriere Eckart et d’'une rampe ascendante, la dynamique de tunnel dans un dou-

ble potentiel minimum et dans un potentiel avec un minimum local et une barriere finie

[44].

Pour chaque systeme modele, nous analysons les propriétés de convergence numérique
a mesure que le nombre de trajectoires augmente. Pour un grand nombre de trajec-
toires de propagation, des forces quantiques importantes sont rencontrées, ce qui rend
I'intégration numérique difficile et nécessite un controle automatique du pas d’intégration.
Par conséquent, 1’équation de mouvement pour les trajectoires quantiques est résolue en
utilisant un intégrateur Runge-Kutta de quatrieme ordre avec pas de temps adaptatif
[85]. Les résultats obtenus par la dynamique de trajectoire sont comparés a la solution de
référence a l'aide de la méthode FFT (Fast Fourier Transform Method) développée par
Feit et al. [80]. Pour tous les exemples considérés, on obtient une convergence numérique

vers le résultat quantique exact au fur et a mesure que le nombre de trajectoires augmente.

Comme exemple, nous montrons les résultats obtenus pour la fonction de corrélation en

utilisant le potentiel quantique complet () que nous dérivons ici, et le potentiel quantique
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Figure 8.3: Partie réelle de la fonction de corrélation d’un paquet d’ondes gaussiennes
sur un potentiel parabolique, calculée a partir de 1’évolution temporelle des trajectoires
en interaction N = 201 en utilisant la forme compléte du potentiel quantique @ et celle
introduite dans Ref. [43] (Qy). Les lignes pleines représentent la solution exacte, obtenue
par propagation de paquets d’ondes.

approximatif de Ref. [43] identifié comme @)y dans la Figure 8.3. Ces résultats sont
comparés au résultat quantique exact. On peut remarquer que 'utilisation du potentiel
quantique () comprenant a la fois des termes répulsifs et attractifs, reproduit correctement
les pics positifs et négatifs de la fonction de corrélation quantique. L’accord est moins
parfait pour la région entre les pics moyens, ot 1’on fait la moyenne des petites oscillations

d’amplitude de la fonction de corrélation quantique dans la représentation des trajectoires

en interaction.

Augmenter la taille de I’ensemble des trajectoires permet de diminuer cet effet de lissage en

rapprochant les résultats de la propagation des trajectoires et des paquets d’ondes.

Dans la deuxieme partie de ce chapitre, nous étudions I'ionisation atomique induite par
laser dans le cadre de notre méthodologie sans fonction d’onde. Un aspect intéressant
du processus dynamique déclenché par des impulsions laser intenses et courtes est que
(pour des impulsions extrémement courtes, comprenant seulement quelques cycles op-
tiques) la phase entre I’enveloppe et la porteuse (CEP) a une forte influence sur la dy-

namique induite par laser. Nous abordons ici ce probleme dans une perspective des tra-
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jectoires quantiques et évaluons le rendement d’ionisation et I'asymétrie gauche-droite
en fonction du parametre CEP. Les résultats sont comparés a des propagations par
paquets d’ondes standard, et la convergence numérique des premiers pour des trajec-
toires quantiques progressivement plus grandes est analysée en détail [90]. Nous utilisons
une impulsion laser dans linfrarouge proche (NIR) de haute intensité d’une longueur
d’onde de 800nm (w = 0.057 E},), une intensité de I = 3.51 x 10"W/cm? et une durée
d’impulsion de 1.5 and 2.5 cycles (Tpuse = 4.0 fs et 6.6 fs), respectivement. Dans ce
régime d’impulsions laser ultra-courtes et intenses, les effets CEP se produisent [81]-
[84] et les quantités expérimentalement accessibles sont l'ionisation totale et I’asymétrie

droite/gauche (avant/arriere) des électrons éjectés [81], [82].

Dans la figure 8.4 le rendement d’ionisation total P; et ’asymétrie totale 1 sont tracés en
fonction du parametre CEP pour une durée d’impulsion de Tpsc = 1.5 cycles (colonnes

de gauche) et Tpuse = 2.5 cycles (colonne de droite).

0,2

0,15

0,05

0 60 120 0 60 120 180

Ocpp [deg] Ocgp [dee]

Figure 8.4: Rendement d’ionisation total P; et asymétrie gauche/droite n (Eq.(4.4.5)), en
fonction du parameétre CEP pour deux durées d’impulsion différentes: 7). = 1.5 cycles
(panneaux de gauche) et Ty, = 2.5 cycles (panneaux de droite). Les variables observables
calculées a 1’aide des trajectoires N = 101, N = 301 et N = 501, ainsi que les résultats des
calculs des paquets d’ondes (WP) sont présentés.
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Dans le panneau de droite de la figure 8.4, les résultats pour une impulsion laser plus
longue sont affichés. Dans ce cas, I'ionisation totale augmente et aucune forte dépendance
avec le parametre CEP n’est observée. De plus, 'asymétrie gauche-droite est nette-
ment réduite. Cette disparition de la dépendance de la CEP par rapport au parametre
d’asymétrie (lorsque la longueur de I'impulsion laser augmente) a déja été discutée dans

la Réf. [84].

Pour avoir une image plus détaillé , nous avons effectué une analyse approfondi des spec-
tres d’ionisation en fonction de ¢ogp. Le résultat est donné en Fig. 8.5, avec a gauche, les
spectres issus des calculs de trajectoires, et a droite les spectres obtenus par le calculs de
référence. On voit 'asymétrie de I’émission de ’électron pour toutes les phases ¢cpp. En
plus, 'énergie de I’électron émis dépend aussi de la phase CEP. En particulier, une phase
de ¢cpp de 140° mene a des électrons d’haute énergie émises dans une seule direction,
tandis qu’une valeur de ¢cpp d’environ 30° a une probabilité d’émission équilibré dans
les deux directions spatiales, avec des énergies plus faibles. En comparant les résultats
des trajectoires (a droite) avec les résultats de référence (a gauche), on voit que tous ces

caractéristiques sont parfaitement reproduit par la nouvelle méthode développée.

Dans ce chapitre, nous avons proposé une méthode basée sur la propagation d’un ensem-
ble de trajectoires en interaction a l’aide de potentiels quantiques modeles, qui apparait
comme une alternative prometteuse pour les études de dynamique quantique. Nous util-
isons une expression approximative du potentiel quantique, obtenue en discrétisant la
densité de probabilité quantique. L’expression du potentiel quantique qui en résulte con-
tient a la fois des parties attractives et répulsives. Elle donne la méme expression pour la
force quantique que dans la Réf. [43], mais il permet (en plus) de reconstruire la fonction

de 'onde grace a l'intégration du Lagrangien le long des trajectoires.

La méthodologie est appliquée a différents systémes unidimensionnels et le schéma repro-
duit des phénomenes quantiques importants tels que ’énergie du point zéro dans les poten-
tiels harmoniques et anharmoniques, 1'effet tunnel pour différentes formes de barriere, les

fonctions d’autocorrélation et le spectre énergétique. De plus, la méthodologie proposée
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Figure 8.5: Carte de densité des spectres photo-électroniques gauche/droite en fonction
de I’énergie et ¢cpp. Panneau de gauche: calcul des paquets d’ondes, panneau de droite:
résultats des trajectoires quantiques. Les cartes sont tracées les unes sur les autres pour
montrer la symétrie de 1’émission d’électrons.

est appliquée pour simuler la dynamique des électrons pilotée par laser et des résultats
précis sont également obtenus. Il est non seulement capable de reproduire quantitative-
ment les rendements d’ionisation totale, mais aussi des effets CEP subtils tels que des
asymétries gauche/droite dans 'ionisation en fonction de la phase entre 'enveloppe et la

porteuse.
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Chapitre 5: Etude de spectres d’absorption de 1’atome de Na

incrustée dans des matrices de gaz rares

Au cours des dernieres décennies, de multiples expériences ont été réalisées pour étudier
I’absorption et la luminescence d’atomes alcalins dans des matrices de gaz rares. Les
études réalisées par Balling et al. [99]-[101] sur des matrices d’argon avec Li, Na et K ont
montrées qu’il peut y avoir plusieurs sites ou les atomes d’impureté peuvent étre piégées
dans la matrice. Pour ces trois atomes d’alcalins, deux ensembles de maxima dans le
spectre d’absorption ont été identifiés, que I'on appelle généralement les triplets rouge et
bleu. En plus de ces bandes, Tam et Fajardo [102] ont étudié les atomes de Li et de Na
piégées dans une matrice de gaz rare en utilisant une nouvelle technique expérimentale
basée sur I'ablation laser. Ils ont trouvé, pour les deux atomes, une nouvelle structure
de triplet bien résolue du coté haute énergie de la bande bleue, qu’on appelle le triplet

violet.

Plus récemment, Ryan et ses collaborateurs [61] ont mené un travail expérimental et
théorique afin d’étudier ’absorption et la luminescence du Na atomique dans les matrices
Ar et Kr. Les simulations des bandes d’absorption et d’émission de I’atome de Na dans
la matrice, réalisées par Ryan et ses collegues [61], étaient basées sur des méthodes de
dynamique moléculaire. Les surfaces énergétiques potentielles ont été obtenues a partir
de données spectroscopiques et différents sites d’isolation de ’atome de Na ont été con-
sidérés. Cependant, bien que des informations qualitatives sur les bandes d’absorption
ont été obtenues, leur position spectrale s’est avérée completement différente de celles
rapportées expérimentalement. Dans la Réf. [61], une modification artificielle de la forme
du potentiel en corrélation avec le second état excité du sodium a été effectuée afin de
faire correspondre les spectres mesurés. Les simulations utilisant le nouveau potentiel
ont déplacé les bandes d’absorption vers les positions spectrales correctes, mais il reste
I’ambiguité quant a l'origine physique du déplacement proposé du potentiel d’état ex-

cité (qui a été obtenu empiriquement), et si les autres courbes d’énergie potentielle ne
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changent pas aussi.

Une autre étude, utilisant des potentiels plus précis, a été réalisée par Boatz et ses col-
laborateurs [93] basée sur une analyse théorique de premier ordre de la perturbation de
I’état p excité de 'atome alcalin. Cependant, bien que certaines informations qualita-
tives en aient été extraites, les spectres d’absorption obtenus a la suite des simulations ne

reproduisent pas les résultats expérimentaux.

Il est important de noter que les simulations effectuées par Ryan [61] étaient des simula-
tions purement classiques, qui peuvent donner des résultats corrects si ’on considere les
atomes lourds et des températures élevées (correspondant aux phases liquide et gazeuse
des systemes de gaz rares). Néanmoins, pour des atomes de gaz rares dans des matrices

cryogénique, le caractere quantique devient pertinent.

Ainsi, dans ce chapitre, nous dérivons un potentiel quantique a plusieurs corps pour
évaluer l'influence des effets quantiques sur les spectres d’absorption d’atomes alcalins
dans les matrices de gaz rares. Le potentiel quantique approximatif est dérivé d’un ansatz
donné pour la fonction d’onde de I'état fondamental. Comme l'extension de l'ansatz
introduite dans le chapitre précédent aux systemes multidimensionnels n’est pas simple,
nous proposons ici un paramétrage différent qui prend en compte les propriétés physiques
de la matrice du gaz rare. Les parametres pour minimiser la densité sont dérivés en

minimisant I’estimation variationnelle de I’énergie a I’aide du schéma Car-Parrinello.

Par conséquent, des simulations MD sont effectuées pour simuler les spectres d’absorption,
avec un potentiel effectif comprenant a la fois 'interaction de paires classique et les poten-
tiels quantiques. Comme systeme modele, nous étudions les spectres d’absorption du Na
incrustée dans un seul site de vacance (sv) dans les matrices Ar et Kr. Ce site de piégeage a
été identifié comme responsable de la bande d’absorption violette [61, 103]. Afin d’évaluer
I'influence des corrections quantiques sur les spectres d’absorption théoriques, nous effec-

tuons des simulations de dynamique moléculaire avec et sans potentiel quantique.

Pour inclure les effets d’énergie du point zéro, les simulations MD, qui ne comprennent
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que le potentiel d’interaction classique, sont effectuées a une température effectif 7™,
tandis que celles incluant le potentiel quantique, sont réalisées a la température physique

T =10K.

Dans la figure 8.6 nous montrons les résultats des spectres théoriques pour les deux
systemes, NaKr a gauche et NaAr a droite. Avec des lignes verticales discontinues,
nous représentons les valeurs expérimentales rapportées pour les maxima du triplet [61].
Comme on peut voir, les spectres obtenus a partir des simulations avec le potentiel
d’interaction classique (montré en bleu), reproduisent la structure triplet des spectres
expérimentaux, mais ils sont décalés vers une région d’énergie inférieure par rapport
aux résultats expérimentaux. Ce décalage vers le rouge des spectres d’absorption cor-
respond au comportement observé par Ryan et ses collegues [61] pour les différents sites
de piégeage de I'atome de Na dans les matrices de gaz rares, les spectres théoriques étaient
situés dans la partie rouge du profil expérimental. Comme nous 'avons déja mentionné,
afin d’améliorer la correspondance entre les spectres théoriques et expérimentaux, Ryan
et al. [61] ont modifié empiriquement dans leur travail le potentiel d’état excité pour
étre plus répulsif. Ici, nous montrons que 'ajout d’une expression approximative du
potentiel quantique (obtenu en minimisant 1’énergie de ’état fondamental) au potentiel
d’interaction déplace la bande d’absorption simulée vers la bonne région énergétique (pour

les matrices Ar et Kr dopées au Na).

Ces résultats corroborent la conclusion selon laquelle les écarts entre les simulations de
température effective de la DM et 'expérience sont une conséquence de l'incapacité de
I’approche de température effective a imiter les effets quantiques dans le voisinage de
I'impureté, plutot quune modification du potentiel d’interaction due aux effets de matrice.
L’accord entre nos spectres théoriques et les spectres expérimentaux n’est que qualitatif,
en raison des approximations introduites, principalement dans I’évaluation perturbatrice

des énergies des états électroniques excités.
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Figure 8.6: Spectre d’absorption simulé obtenu comme histogramme de la superposition
des différences d’énergie entre le sol et les états électroniques excités. Dans le panneau de
gauche, les résultats de la matrice NaAr sont présentés et dans le panneau de droite, nous
présentons les résultats de la matrice NaKr.

Chapitre 6: Conclusions générales

L’un des problemes majeures de la modélisation de la dynamique de processus atomiques
et moléculaires a ce jour est d’eétre capable de considérer la totalité de la dimensionnalité
du systeme. En général, les méthodes pour étudier des systemes microscopiques peuvent
étre classifiés selon deux approches : Une approche purement quantique, qui est limité
a la description de quelques atomes, ou une approche basée sur la mécanique classique,
qui peuvent étre appliqué a des systemes comprenant un tres grand nombre de particules.

Néanmoins, dans cette derniere, des effets quantiques ne sont pas prises en compte.

Dans ce contexte se place le sujet de cette these, de développer des méthodes quan-
tiques basées sur une description de la dynamique par trajectoires. Dans le futur, de
tels méthodes peuvent ouvrir la voie vers une description quantique de systemes a haute
dimensionnalité. Le travail de cette these consistait a développer, implémenter et tester
de tels méthodes pour des systemes modeles, qui néanmoins présentent des aspects quan-
tiques. Comme résultat principal, il est montré que ces méthodes, qui ne sont pas basées
sur la fonction d’onde, mais sur un ensemble de trajectoires seulement, sont capable de

décrire des effets quantiques comme 1’énergie de point zéro, 1'éffet tunnel, la dispersion
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de paquets d’ondes ou des interférences quantiques. La méthodologie est basée sur la
propagation de trajectoires qui interagissent entre eux par un potentiel d’interaction
qui permet ainsi de décrire des effets quantiques. Comme point de départ, on con-
sidere une discrétisation de la densité quantique, a partir duquel un potentiel quantique
peut étre obtenu analytiquement, permettant ainsi d’effectuer un calcul de dynamique
quantique par une propagation de trajectoires. Cette méthodologie est appliquée a
plusieurs systemes modeles, comme des oscillateurs harmoniques et anharmoniques, et
a une barriere de potentiel de différents parametres pour analyser la diffusion et l'effet
tunnel. En intégrant le Lagrangien avec un potentiel supplémentaire, le potentiel quan-
tique, il est possible de reconstruire la fonction d’onde et ainsi de calculer des spectres via
des fonctions de corrélation. Par cette démarche, il est alors possible de décrire 1’énergie
de point zéro, ainsi que la discrétisation des niveaux d énergie pour des problemes liées par
I'ensemble des trajectoires. En ce qui concerne les calculs de transmission / réflexion, un
accord avec des calculs quantiques standards de référence montrent un tres bonne accord,
montrant ainsi la validité de 'approche par trajectoires. En extension de ces résultats,
la méthodologie est appliquée ensuite a des problemes quantiques avec un Hamiltonien
dépendent du temps. En particulier, 'ionisation de ’atome de hydrogene par des im-
pulsions ultrabreves et fortes a été considérée. Dans le domaine des parametres choisi,
ce systeme a la particularité que la dynamique électronique sous 'influence du champs
s’étale sur un grand domaine spatiale, ce qui rend les méthodes standards, basées sur des
grilles spatiaux ou des fonctions de bases tres laborieux. Dans cette situation, une descrip-
tion par trajectoires est particulierement avantageux, car elle évite des larges grilles ou
fonctions de bases. La méthodologie proposée n’est pas seulement capable de reproduire
quantitativement des résultats des calculs de référence, mais offre aussi la possibilité d'une
interprétation de la dynamique sur la base des trajectoires. En plus de la méthode de
trajectoires mentionnées ci-dessus, deux autres méthodes ont été développées et testées
dans cette these. La premiere consiste en 'utilisation de la densité quantique développée
dans une base de polynomes de Chebychev. L’avantage de cette approche est que les

dérivées nécessaires de la densité pour la propagation peuvent étre obtenues par les pro-
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priétés de recursion des polynoémes. Néanmoins, une extension a plusieurs dimensions de
cette approche reste un défi majeur. Pour étendre la dynamique a des problemes a haute
dimensionnalité, une troisieme approche a été développée. Sur la base d’'un ansatz partic-
ulier pour la densité a plusieurs corps, une expression pour le potentiel quantique a haute
dimension a été développée, qui s’ajoute au potentiel classique. Ainsi, des propagations de
type dynamique moléculaire pour un grand nombre de particules est possible, en incluant
des effets quantiques. Cette méthodologie a été appliquée a la spectroscopie d’atomes
de gaz rare, incrustées dans des matrices cryogéniques. Comme résultat principale de
cette axe de thématique, un meilleur accord avec des données expérimentales qu'une une
approche purement classique a été obtenu, confirmant ainsi les capacités prometteuses de

cette nouvelle approche.

Les perspectives qui se dégagent sur la base du travail proposé sont multiples : Au dela de
I'utilisation des méthodes présentés pour les études de nombreux d’autres systemes atom-
iques et moléculaires, 'utilisation de trajectoires pour effectuer une dynamique quantique
présente un fondement théorique intéressant pour développer des méthodes mixtes quan-
tique/classiques. En particulier, différentes régions dans l’espace de configurations peu-
vent étre définis, qui sont traitées, soit par la dynamique quantique, soit par la dynamique
classique, avec une transition continue. Comme exemple, on peut citer des problemes de
diffusion atomique ou moléculaire, avec des interactions a tres longue portée, ou la dy-
namique électronique a grande amplitude induit par l'interaction avec des impulsions

lasers fortes, une domaine de recherche en plein développement expérimentalement.
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A PROPERTIES OF CHEBYSHEV POLYNOMIALS

The Chebyshev polynomial of first kind, T;(z), is the polynomial of degree k defined in
the range x € [—1, 1] by the relation [74, 75]

Ty (7) = cos(k cos*(z)) . (A.0.1)
Therefore, —1 < Ti(z) < 1. By setting x = cos z, we have
Ty(z) = cos(kz) , (A.0.2)

from which it is possible to deduce the expressions for the first Chebyshev polynomi-
als:
To=1 T, =cosz=x, Ty=-cos2z=2cos’z—1=2z>—1..

From the trigonometric identity
cos (k+ 1)z 4+ cos (k— 1)z = 2cos zcos kz ,
it can be obtained the recurrence relationship
Ti(x) = 22Ty (z) — Tp—1(x), k>1, (A.0.3)

which allows to deduce, in particular, the expression of the polynomials T}, k£ > 2 from
the knowledge of Ty and T} .

The polynomial T} has k zeros in the interval [—1, 1], located at the points x; (abscissas
of Gauss quadrature)

I\ .
xi:cos<z+§)g7 i=0,..,k—1. (A.0.4)

Another important property of the Chebyshev polynomials are the recurrence relations
obtained for the derivatives 77,

/ d dz sinkz
T, = — kz)— =k
b dz(COS Z)d:v sinz
from where it gets,
Ty (x) = 2(k + 1) (k — D)Ti(z) — (k+ )T,y (x) , k>1. (A.0.5)

The Chebyshev polynomials constitute a complete basis of orthogonal polynomials in the
interval [—1, 1] with weight (1 — 22)~1/2,

YT T (x s
/_1 %dfﬁ = §ai5ij s (A06)

where 6;; is the Kronecker delta and a; is defined as ap = 2 and a; = 1 for ¢ > 1.
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PROPERTIES OF CHEBYSHEV POLYNOMIALS

The completeness property tells us that in general any function f(x) can be represented
as a linear combination of Chebyshev polynomials,

M
fu(@) = emTn() (A.0.7)
m=0
where the residual function Ry (z) = f(z) — fu(z) is canceled out when average is

performed [74],

[ -2 a0, imoar oy

Then, making use of the orthogonality of the Chebyshev polynomials Eq. (A.0.6) the
expansion coefficients ¢,, can be evaluated from

cm(T) = Wim /1 ffjlﬂiil(j)dx . (A.0.9)

Among the main properties of the Chebyshev polynomials, those which make them attrac-
tive to describe the quantum dynamics of a system are the recurrence relations between
the expansion coefficients of the function f(x) and the expansion coefficients of its deriva-
tives.

Suppose we have the function f(x) for which the expansion in Chebyshev polynomials up
to certain order M is known, and f®)(z) is the derivative of order p of f(z). In general
we can express its Chebyshev expansion as

(@)= 0T, (2) . (A.0.10)

Then for the expansion coefficients ¢ of f®) (x) we can derive the following recurrence
relation
am_lcgg),l = cﬁﬁll +2mcP YV m>1, (A.0.11)

m

which must be complemented by the initial values of the coefficients

CS&[) =0, cg\?_l = 2Mc,y,,

for the first derivative, and for the second derivative

In the calculations developed in this work it is required to represent up to the third
derivative of the hydrodynamic fields. The explicit expressions for the recurrence relations
between the different coefficients are

am,lcg)_l = cﬁ,?ﬂ +2mey,, m>1, (A.0.12)
am,lcg)_l = cﬁj)ﬂ +2mel m>1. (A.0.13)
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PROPERTIES OF CHEBYSHEV POLYNOMIALS

am_lcgll = cfj)ﬂ +2mc?, m>1. (A.0.14)

A.0.1 Collocation methods used to find the Chebyshev expan-
sion coefficients

Considering the Chebyshev expansion (A.0.10) we want to calculate the coefficients ¢,
by means of a collocation (or interpolation) technique. Here as collocation points we will
use the zeros of the Chebyshev polynomials (A.0.4).

The Chebyshev polynomials satisfy also discrete orthogonality relations. If z;, ¢ =
0,...,m — 1, are the zeros of T,,,(x), and if 7, j < m then we have

m—1
Ti(zp)T(2r) = moyiby, b =1 b; =
k=0

1
5 >0, (A.0.15)
Then, combining equations (A.0.1), (A.0.4) and (A.0.15), it can be obtained an expression
for the expansion coefficients of a certain function f(z) defined in the interval [—1,1]. If

we use N Chebyshev polynomials in order to evaluate each coefficient ¢;, 7 =0,..., N —1
we have [75]

6= 23 F@T ) (A.0.16)

where z; are the Gauss quadrature points defined in Eq. (A.0.4). In order to evaluate the
expansion coefficients using this collocation method we need to know the values of the
arbitrary function f(z) at the zeros of the Chebyshev polynomials. Other set of points,
such as the extrema of T can also be used as collocation points. Here we use the zeros
of T}, for the interpolation.
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B CHEBYSHEV EXPANSION OF THE FIELDS. NUMERICAL ALGO-
RITHM

1. Initialization
1.1 The initial ensemble of trajectories x;, ¢ = 1,..., N, is built. The initial grid
is chosen equally spaced between the interval [z,,in, Zmar] Which sample the region
where the density is localized.
1.2 We evaluate at each trajectory position z;, e =1,..., N
- the initial density p(z;, to),

-the regularized density preq(xi,to) (Eq. (3.2.20)),

- the logarithm of the regularized density C(z;,to) = In(preq(7i,t0))/2,

- the logarithm of the reference Gaussian Cy(x;,t0) (Eq. (3.2.25)),

-and the residual function ¢(z;,ty) (Eq. (3.2.5)).

1.3 The initial wave function is chosen with S(z;,t9) = 0, then the initial velocity
of each trajectory is v; = V.S (z;,t)/m = 0 and V2S5 (z;,t) = 0.

1.4 The expansion coefficients of ¢(z;, 1), Vo (x;, to) and V2¢(x;, ty) are evaluated

from Egs. (3.2.19), (3.2.13) and (3.2.14), respectively.
1.5 The initial quantum potential Q(z;,ty) (Eq.(3.2.7)) is evaluated.

2. Dynamics
2.1 The equations (3.2.2)-(3.2.4) are integrated using the four order Runge-Kutta
method with a fixed At = 0.1a.u. and the trajectories positions, as well as S, C' and
p, are updated:

zi(t + At) , Clxy, t + At) , S(x, t+ At) , p(ag, t + At) = 20@ntEAD

2.2 The regularized density is calculated pre4(7;, t + At) (Eq.(3.2.20)) and then C

is evaluated from the regularized density C(x;, t + At) = In(preq(xi, t + At)) /2.
2.3 (z) and o are calculated evaluating Eqgs. (3.2.21) and (3.2.22).

2.4 The reference function Cy(x;,t + At) is evaluated from Eq. (3.2.25) and then

the residual function ¢(z;,t + At) (Eq. (3.2.5)) is updated.
2.5 The Chebyshev expansion coefficients of S and ¢ are calculated (Eq. (3.2.19)).

2.6 From the coefficients ¢; and s;, using Eq. (3.2.11)-(3.2.14), the coefficients

35-1), s§2), cg-l) and c§2) are evaluated. The derivatives of the fields: V.S(z;,t + At),
V2S(xi, t + At), Vo (x;, t + At) and V3¢ (x;, t + At) are expressed as a finite sum of
Chebyshev polynomials using Egs. (3.2.9) and (3.2.10).

2.7 The quantum potential Q(z;,t + At) (Eq. (3.2.7)) is evaluated.

2.8 Return to step 2.1.
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C CALCULATION OF THE CORRELATION FUNCTION

The correlation function is defined as (atomic units are used unless specified):
C(t) = (U(x,0)[¥(z,1)) . (C.0.1)

Hence, in order to evaluate the correlation function, we need the initial wave function
U(x,0) and its value at each time W(xz,t). The initial wave function at each trajectory is
calculated as

U(z;,0) =/ p(z;,0) ,i=1,..., N, (C.0.2)

where p(z;,0) is evaluated from Eq. (4.2.5) using the final distribution of trajectories
after the relaxation described in Sec. 4.3.1. The initial momentum and phase are fixed
to zero.

In order to evaluate W(x;,t) the wave function is reconstructed along each trajectory

from:
1 [t/ 0v
Uz t) = ‘I’(x“o)eXp<_5/to (%)m<7>d7>

T1 (9S)°
X exp(i/to{%(%) _V_QL.(T)dT) . (C.0.3)

K3

The exponential terms in the equation displayed above are evaluated at each time step
at the position of each trajectory by integrating simultaneously Eqs. (4.2.1)-(4.2.3). The
integration of Eq. (4.2.3) is performed considering the quantum-like potential @)y given
in Eq. (4.2.10) and the full quantum potential ). The correlation functions are then
evaluated from W(x;,t) integrated using @)y and @, and they are identified as Cy(t) and
C'(t) respectively. The results are presented and discussed in chapter four.
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D QUANTUM THERMAL CORRECTION IN THE HARMONIC AP-
PROXIMATION

The diagonal elements of the density matrix p, of the one-dimensional quantum harmonic
oscillator interacting with a reservoir at temperature T has the following form

2
_ mwz tanh( hw )

plz,T)~e MT (D.0.1)

where k; is the Boltzman constant, A is the Planck constant divided by 27, x is the
position, m the mass, w the frequency of the oscillator and 7" the temperature. By applying
the classical correspondence principle i — 0 it can be obtained the corresponding classical
density distribution p.,

mw2z2 V(z)

pel, T*) me 2T =¢ BT (D.0.2)
being V(x) = %%2 for the harmonic oscillator. By comparing (D.0.1) with (D.0.2) and
considering an equivalent classical system with an effective temperature 7™ such that its
respective classical density distribution mimics the quantum density described above, the
following relation can be obtained,

mw2$2 mwx2

hw
_ . h(— D.0.
ey T potan (2ka) ) (D.0.3)

or, writing explicitly the expression for the temperature at which the equality holds,

hw hw
T* = — tanh ™!
T T

). (D.0.4)

Then we arrive to an expression for the effective temperature at which classical molecular
dynamics simulations should be carried out for harmonic sytems in order to account for
zero-point energy effects. As the classical and the quantum system possess the same value
of the density distributions at every point in space, the observables calculated using the
equivalent classical system will be the same as the corresponding ones of the quantum
systems, making this approximation very appealing to describe quantum effects. This
effective temperature is used in chapter five to perform MD simulations of alkali metal
doped rare gas matrices.
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E EVALUATION OF THE ENERGIES OF THE EXCITED ELECTRONIC
STATES OF THE DOPED RARE GAS MATRICES

Here we present the approximation developed by Balling et al. to calculate the energy
of the excited states of alkali atoms trapped in rare gas matrices [122]. In particular,
we are interested in the splitting of the first p state level, because transitions between
the s — p bands give the strongest absorption and emission bands for these systems. As
we mentioned in section 5.2.2 of chapter five, the ground state and the excited p states
of an alkali atom trapped in a rare gas matrix are calculated in terms of the two-body
potentials corresponding to the electronic states X2, A%II, B2Y of the alkali-rare gas
dimers, which were denoted along chapter five as Va(; ) for a = 1,2, 3, respectively.

The calculation of the energy levels of the alkali atom trapped in the matrix, considering
only pairwise interactions is a good approximation only for the ground state. This is
due to the fact that the electronic density of the ground state of the alkali atom, as well
as that of the ground state of the rare gas atoms are spherically symmetric. However,
for the calculation of the p excited states, the interaction energy depends on the angles
between the internuclear distances. In Ref. [93], the approximation developed by Balling
et al. [122] was used to study the absorption spectra of Na atoms trapped in Ar clusters.
In chapter five, we use the same approximation to study the absorption spectra of Na
trapped in Ar and Kr matrices. Therefore, here we give some details related with the
correction proposed in Ref. [122] for the calculation of the excited state energies.

The approach is based on the Borh-Oppenheimer approximation to separate the electronic
structure of the atoms and the vibrational motion of the matrix. Assuming that the core
electrons of the Na atom are not affected by the rare gas atoms, and only the valence
electron is affected by the matrix, the Hamiltonian for the optically active electron of the

Na atom is given by
N

H = Ha(re) + > V(re,rs) , (E.0.1)
k=1
where H4(r.) is the Hamiltonian for the free valence electron, V' (r,ry) is the perturba-
tion caused by the rare gas atoms, with £ running over all the rare gas atoms surrounding
the sodium. The vectors r. and ry are the electron and rare gas atoms position vec-
tors, respectively, for a coordinate system with origin at the center of mass of the alkali
atom.

In Ref. [93], following the previous work of Balling and collaborators, the authors used
the first order perturbation theory to calculate the energy leves of the total Hamiltonian
H in Eq. (E.0.1). Identifying ¢; and 1; with the eigenvalues and eigenvectors of the
unperturbed Hamiltonian H 4, the eigenvalues E of H, can be derived by solving,
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EVALUATION OF THE ENERGIES OF THE EXCITED ELECTRONIC STATES OF
THE DOPED RARE GAS MATRICES

where,
N
= (W|V(xe, i) [5) - (E.0.3)
k=1

The matrix V;; has the form [93],

i{ ( o) + 2V (”0)) *é(va(?(w—Vé?(mo))%} . (E0.4)

k=1

and the matrix elements A;; are given by

A —
—(3cos? O — 1) —34/2sin 0, cos e~ % —35in%0,e= 2%k

—3+/2sin 6, cos ek 2(3cos? 0, — 1) 3v/2sin ), cos Oe~*
—35in%0)eox 3v/2 sin 0}, cos Oe'%k —(3cos? 6, — 1)

where 7y is the radial distance of the k£ — th rare gas atom to the Na impurity and 6y, ¢
are the angles of this atom in a spherical coordinate system centered at the impurity.

Then, by solving equation (E.0.2) we obtain the three energy eigenvalues E representing
the contribution to the total energy of the Na-Rg interaction in the excited states. The
solutions of equation (E.0.2) for E, denoted by E® with 5 = 1,2, 3 will be used in section
5.2.3 to calculate the total energy of the matrix when the Na atom is excited to its first
p-state.
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F DERIVATION OF THE APPROXIMATE QUANTUM POTENTIAL

The Hamiltonian of a system composed by N rare gas atoms and a Na impurity can be
written as follows (we will use atomic units otherwise indicated, h = 1)

1 1
H——— E — V3 + Uy, U
2

ag

(F.0.1)

Ué;) accounts for the Na-Rg interaction and U, is the contribution due to the Rg-Rg
interactions.

The local energy of the system can be evaluated by solving:
U(rg,rq,....,rn)EL :ﬁ\Il(rO,rl,...,rN) ) (F.0.2)

From the ansatz for the ground state wave function proposed in chapter five,

U(rg, Ty, ... = exp(Z Zugg Tij +Zua9 70 ) rio = |ri—rol, 4,7=1,..,N,

=1 j>1
(F.0.3)
we can write (the dependence of ¥ on r; has been omitted in order to simplify the
notation)

log U = ZZugg Tij —1—2%9 Tio) (F.0.4)
=1 j>i

by applying H on ¥ we obtain for the right hand side of equation (F.0.2)

N
1 1 9 1)
VE, = -V kzo o [Vilog U + (Vi log U)?] + Uy ¥ + UDT . (F.0.5)
or from Eq. (F.0.4)
N-1 N
v, — __\pz . {vz(z 3 tgglrig) + zuag )
k =1 j>1i
_1 N 9
+ {V;c (Z Zugg (rij) + Zuag (Ti0 )] ] + Uyg¥ + Ué;)\ll . (F.0.6)
=1 j>i =1

Then, dividing by ¥ which is assumed to have no nodes, as it represents the ground state
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DERIVATION OF THE APPROXIMATE QUANTUM POTENTIAL

wave function of the rare gas matrix, we arrive to Eq. (5.3.5) of chapter five

1 N 1 N-1 N N
Ep = 9 Z . {vz (Z Z Ugg(Tij) + Z Uag(ﬁO))
k=0 =1 j>i =1
N—-1 N 2
(Vk <Z Zugg Tz] + Zuag Tio )) :| —+ Ugg —+ U(E;) . (FO?)
=1 j>i

Analyzing the terms involving V2 the local energy takes the form

E, = ——[Zuag ko) +2 U } _ _{NZ:lXN: (i) + 2 gg(r‘kj>1

k= 1]>k T'kj
1M N-1 N
‘§kaKW<ZZ%g Tij +Zuag rio )) } + Uy + UL, (F.0.8)
k=0 =1 j>i

where u” and u’ stands for the first and second derivatives of the function u and p is the
reduced mass. Thus, by expanding the term containing V; we get several crossed terms
which we will neglect as a first approximation, keeping only the terms of the type u'2(ri 7),
obtaining the following approximation for the local energy,

talrl] L f“ Sl ) + QM}

k=1 "'k0 Mg L1 5ok T'kj
1 N-1 N " N
S ) B b + U+ U (09
9 k=1 j>k k=1

Hence, grouping together the terms involving ug, and the terms involving u,, we arrive
to the for of the effective energies U, ;g Fand U ;;  used in chapter five:

N /
e M " U, (Tk[)) /
vt = 55 () + 222 s ) ) + 0 = @)L (Ro0)
k=1
eff 1 Y& gg( k]) 2
Ugg" = _@ZZ o(Tjk) +2——— . +gy(riy) | + Ugg = @ + Uy (F.0.11)
k=1 j>k
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Abstract of the Thesis

In this thesis different trajectory-based methods for the study of quantum mechanical phenomena are
developed. The first approach is based on a global expansion of the hydrodynamic fields in Chebyshev
polynomials. The scheme is used for the study of one-dimensional vibrational dynamics of bound wave
packets in harmonic and anharmonic potentials.

Furthermore, a different methodology is developed, which, starting from a parametrization previously
proposed for the density, allows the construction of effective interaction potentials between the pseudo-
particles representing the density. Within this approach several model problems are studied and important
quantum mechanical effects such as, zero point energy, tunneling, barrier scattering and over barrier
reflection are founded to be correctly described by the ensemble of interacting trajectories. The same
approximation is used for study the laser-driven atom ionization.

A third approach considered in this work consists in the derivation of an approximate many-body
quantum potential for cryogenic Ar and Kr matrices with an embedded Na impurity. To this end, a
suitable ansatz for the ground state wave function of the solid is proposed. This allows to construct an
approximate quantum potential which is employed in molecular dynamics simulations to obtain the
absorption spectra of the Na impurity isolated in the rare gas matrix.

Keywords: Quantum Dynamics, Molecules, Ultrafast processes

Résumé de these

Dans cette thése, différentes méthodes de dynamique quantique basées sur la propagation de trajectoires
sont développées. La premiére approche consiste en une développer global des champs hydrodynamiques
sur une base de polyndmes de Chebyshev. Ce schéma est utilisé pour étudier la dynamique vibrationnelle
unidimensionnelle de paquets d'ondes dans des potentiels harmoniques et anharmoniques.

Par la suite, une méthodologie différente est développée, qui, a partir d'un paramétrage précédemment
proposé pour la densité quantique, permet de construire des potentiels d'interaction effectifs entre les
pseudo-particules représentant la densité. Dans le cadre de cette approche, plusieurs problémes de
modélisation sont étudiés et des effets quantiques importants sont décrits, tels que I'énergie de point zéro,
I'effet tunnel, la diffusion et la réflexion sur une barriére. La méme approximation est utilisée pour I'étude
de l'ionisation des atomes par laser.

Dans une troisieme approche, un potentiel quantique approximatif a plusieurs corps est dérivé pour
décrire des matrices d’argon et de krypton contenant une impureté de sodium. Il est obtenu en proposant
un ansatz approprié pour la fonction d'onde de I'état fondamental du solide. Le potentiel est utilisé dans
les simulations de dynamique moléculaire pour obtenir les spectres d'absorption de I'atome de Na isolé
dans les matrices cryogéniques.

Mots-clés: Dynamique quantique, Molécules, Processus ultrarapides

Discipline: Sciences de la matiére



