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Résumé

Dans cette these, nous étudions certaines équations différentielles partielles avec mécanisme
dissipatif, telles que 1’équation de Boltzmann, I’équation de Landau et certaines systémes hy-
perboliques symétriques avec type de dissipation. L’existence globale de solutions ou les taux
de dégradation optimaux des solutions pour ces systémes sont envisagées dans les espaces de
Sobolev ou de Besov. Les propriétés de lissage des solutions sont également étudiées. Dans
cette these, nous prouvons principalement les quatre suivants résultats, voir les chapitres 3-6
pour plus de détails.

Pour le premier résultat, nous étudions le probleme de Cauchy pour le non linéaire inho-
mogene équation de Landau avec des molécules Maxwelliennes (y = 0). Voir des résultats con-
nus pour ’équation de Boltzmann et ’équation de Landau, leur existence globale de solutions
est principalement prouvée dans certains espaces de Sobolev (pondérés) et nécessite un indice
de régularité élevé, voir Guo [62], une série d’ceuvres d’Alexander Morimoto-Ukai-Xu-Yang
[5, 6, 7, 9] et des références a ce sujet. Récemment, Duan-Liu-Xu [52] et Morimoto-Sakamoto
[145] ont obtenu les résultats de l'existence globale de solutions & I’équation de Boltzmann dans
I’espace critique de Besov. Motivés par leurs ceuvres, nous établissons l'existence globale de
la solution dans des espaces de Besov spatialement critiques dans le cadre de perturbation.
Précisément, si le datum initial est une petite perturbation de la distribution d’équilibre dans
I’espace Chemin-Lerner LQ(B 3/ 2) alors le probleme de Cauchy de Landau admet qu’une solu-
tion globale appartient a L°°L2(B3/ 2) Notre résultat améliore le résultat dans [62] et étend le
résultat d’existence globale de 1’équation de Boltzmann dans [52, 145] a 1’équation de Landau.

Deuxiémement, nous considérons le probleme de Cauchy pour ’équation de Kac non-coupée
spatialement inhomogene. Lerner-Morimoto-Pravda-Starov-Xu a considéré I’'équation de Kac
non-coupée spatialement inhomogéne dans les espaces de Sobolev et a montré que le probleme
de Cauchy pour la fluctuation autour de la distribution maxwellienne admise S 2s Propriétés
de régularité Gelfand-Shilov par rapport a la variable de vélocité et propriétés de regularlsatlon
Gt as Gevrey a la variable de position. Et les auteurs ont supposé qu’il restait encore a
déterminer si les indices de régularité 1 + 2*15 étaient nets ou non. Dans cette these, si la
donnée initiale appartient a ’espace de Besov spatialement critique, nous pouvons prouver que
I’équation de Kac inhomogene est bien posée dans un cadre de perturbation. De plus, il est
montré que la solution bénéficie des propriétés de régularisation de Gelfand-Shilov en ce qui
concerne la variable de vitesse et des propriétés de régularisation de Gevrey en ce qui concerne
la variable de position. Dans notre these, I'indice de régularité de Gelfand-Shilov est amélioré
pour étre optimal. Et ce résultat est le premier qui présente un effet de lissage pour I’équation
cinétique dans les espaces de Besov.

A propos du troisieme résultat, nous considérons les équations de Navier-Stokes-Maxwell
compressibles apparaissant dans la physique des plasmas, qui est un exemple concret de sys-

temes composites hyperboliques-paraboliques a dissipation non symétrique. On observe que le
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probleme de Cauchy pour les équations de Navier-Stokes-Maxwell admet le mécanisme dissi-
patif de type perte de régularité. Par conséquent, une régularité plus élevée est généralement
nécessaire pour obtenir le taux de dégradation optimal de L!(R3)-L?(R3) type, en comparai-
son avec cela pour 'existence globale dans le temps de solutions lisses. Pour les équations de
Navier-Stokes-Maxwell, nous avons prouvé I'existence globale de solutions dans les espaces de
Sobolev et obtenu la régularité minimale de désintégration des solutions globales lisses avec
une aide de LP(R?)-L(R?)-L" (R?) estimations.

Enfin, nous sommes consacrés a étudier le systéme de Timoshenko-Fourier en thermoélasticité,
qui décrit la dynamique de la propagation des ondes élastiques et de la dissipation ther-
mique dans un faisceau vibrant. Dans des travaux antérieurs, Kawashima [92] et Umeda-
Kawashima-Shizuta [171] ont donné une théorie compléte sur 'existence globale et le comporte-
ment & grande échelle de solutions lisses & une classe assez générale de systéemes composites
hyperboliques-paraboliques symétriques, cependant, jusqu’a présent, il n’y a pas de résultats
généraux en cas de dissipation non symétrique. C’est notre motivation pour étudier le systeme
Timoshenko-Fourier, car il admet une dissipation non symétrique. En outre, il est observé que
le mécanisme dissipatif de type perte de régularité se produira si les vitesses des vagues sont
différentes. Merci a LP-LI-L" estimations, nous obtenons le taux de dégradation optimal de
L'-L? type pour les solutions globales lisses avec 'indice de régularité de décroissance minimal
dans les espaces Sobolev.

Dans le chapitre 1, il présente une revue générale de la littérature et une bréve vue des
principaux résultats obtenus dans cette these ol ces systemes sont principalement étudiés dans
des espaces de régularité critiques. Le chapitre 2 fournit des notations, des définitions d’espaces
fonctionnels et des outils d’analyse fondamentale qui seront utilisés dans les chapitres suivants.
Dans le chapitre 7, il présente un résumé de cette these et offre de nouvelles perspectives pour
les questions de recherche. Le chapitre 8 montre une liste des papiers d’auteurs.

Mots-clés: Equation de Landau inhomogene, Equation de Kac inhomogene, Equations de
Navier-Stokes-Maxwell, Systeme de Timoshenko-Fourier, Espace critique de Besov, Régularité
de Gelfand-Shilov, Régularité de Gevrey, LP-LI-L" estimations, Régularité minimale de deca-
dency, Régularité-perte, Décomposition spectrale, Solution globale.

Classification par sujet de mathématiques [2010]: Primaire 35B35,35B40,35B65,35E15;
Secondaire 35H10,35H20,35Q20,35L.40,35L.45,35505,74F05,76P05,82C40,82D10.



Abstract

In this thesis, we study some kinetic equations and some partial differential equations with
dissipative mechanism, such as Boltzmann equation, Landau equation and some non-symmetric
hyperbolic systems with dissipation type. Global existence of solutions or optimal decay rates
of solutions for these systems are considered in Sobolev spaces or Besov spaces. Also the
smoothing properties of solutions are studied. In this thesis, we mainly prove the following
four results, see Chapters 3-6 for more details.

For the first result, we investigate the Cauchy problem for the inhomogeneous nonlinear
Landau equation with Maxwellian molecules (7 = 0). See from some known results for Boltz-
mann equation and Landau equation, their global existence of solutions are mainly proved in
some (weighted) Sobolev spaces and require a high regularity index, see Guo [62], a series works
of Alexandre-Morimoto-Ukai-Xu-Yang [5, 6, 7, 9] and references therein. Recently, Duan-Liu-
Xu [52] and Morimoto-Sakamoto [145] obtained the global existence results of solutions to the
Boltzmann equation in critical Besov spaces. Motivated by their works, we establish the global
existence of solutions for Landau equation in spatially critical Besov spaces in perturbation
framework. Precisely, if the initial datum is a small perturbation of the equilibrium distri-
bution in the Chemin-Lerner space E%(B;/lz), then the Cauchy problem of Landau equation
admits a global solution belongs to E,?OE?](B;’/E) Our results improve the result in [62] and
extend the global existence result for Boltzmann equation in [52, 145] to Landau equation.

Secondly, we consider the Cauchy problem for the spatially inhomogeneous non-cutoff Kac
equation. Lerner-Morimoto-Pravda-Starov-Xu [117] considered the spatially inhomogeneous
non-cutoff Kac equation in Sobolev spaces and showed that the Cauchy problem for the fluctu-

. . T . 14+ . . .
ation around the Maxwellian distribution admitted S 11? Gelfand-Shilov regularity properties
2s

with respect to the velocity variable and Gl as Gevrey regularizing properties with respect to
the position variable. And the authors conjectured that it remained still open to determine
whether the regularity indices 1+ % is sharp or not. In this thesis, if the initial datum belongs
to the spatially critical Besov space E%(B;/lz), we prove the well-posedness to the inhomoge-

neous Kac equation under a perturbation framework. Furthermore, it is shown that the weak
3s+1

solution enjoys S ;" Gelfand-Shilov regularizing properties with respect to the velocity vari-
2s(s+1)

able and Gt Gevrey regularizing properties with respect to the position variable. In our

results, the Gelfand-Shilov regularity index is improved to be optimal. And this result is the
first one that exhibits smoothing effect for the kinetic equation in Besov spaces.

About the third result, we consider compressible Navier-Stokes-Maxwell equations arising
in plasmas physics, which is a concrete example of hyperbolic-parabolic composite systems
with non-symmetric dissipation. It is observed that the Cauchy problem for Navier-Stokes-
Maxwell equations admits the dissipative mechanism of regularity-loss type. Consequently,

extra higher regularity is usually needed to obtain the optimal decay rate of L'(R3)-L?(R3)
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type, in comparison with that for the global-in-time existence of smooth solutions. For the
Navier-Stokes-Maxwell equations, we proved the global existence of solutions in Sobolev spaces
and obtain the minimal decay regularity of global smooth solutions with aid of LP(R%)-L?(R%)-
L"(R?) estimates.

Finally, we are devoted to investigate the Timoshenko-Fourier system in thermoelasticity,
which describes the dynamics of elastic wave propagation and thermal dissipation in a vibrating
beam. In earlier works, Kawashima [92] and Umeda-Kawashima-Shizuta [171] gave a complete
theory on the global existence and large-time behavior of smooth solutions to a rather gen-
eral class of symmetric hyperbolic-parabolic composite systems, however, so far there are no
general results in the case of non-symmetric dissipation. This is our motivation to study the
Timoshenko-Fourier system since it admits a non-symmetric dissipation. Furthermore, it is
observed that the dissipative mechanism of regularity-loss type will occur if wave speeds are
different. Thanks to LP-L9-L" estimates, we get the optimal decay rate of L'-L? type for global
smooth solutions with the minimal decay regularity index in Sobolev spaces.

In Chapter 1, it presents a general literature review and a short view of the main results
obtained in this thesis where these systems are mainly studied in critical regularity spaces.
Chapter 2 provides some notations, definitions of functional spaces and fundamental analysis
tools which will be used in the subsequent chapters. In Chapter 7, it shows a summary of this
thesis and puts forward further prospects for research issues. Chapter 8 shows a list of author’s
papers.

Keywords: Inhomogeneous Landau equation, Inhomogeneous Kac equation, Navier-Stokes-
Maxwell equations, Timoshenko-Fourier system, Critical Besov space, Gelfand-Shilov regular-
ity, Gevrey regularity, LP-L9-L" estimates, Minimal decay regularity, Regularity-loss, Spectral
decomposition, Global solution.

Mathematics Subject Classification [2010]: Primary 35B35,35B40,35B65,35E15; Sec-
ondary 35H10,35H20,35Q20,351.40,351.45,35505,74F05,76P05,82C40,82D10.
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Chapter 1

Introduction

In this introduction, we will give some specific mathematical equations and its basic properties,
mainly see [14, 24, 68, 69, 105, 114, 137, 165, 166, 173, 176] and the references therein. Then,
we show our main results in this thesis. Finally, we recall some known results to the Cauchy

problem for these equations and give a comparison with our main results.

1.1 Mathematical systems

1.1.1 Landau equation

In gas and fluid dynamics, there are many famous equations of motion, which have been derived
by focusing the attention on different aspects of gases and fluids in different physical scales.
Most of them are classical, dating back to the 19th century or earlier. The Landau equation,
which was proposed by Landau in 1936 [105], is a fundamental model in kinetic theory that
describes the evolution of the density of particles in a plasma. In this thesis, we consider the

Cauchy problem to the spatially inhomogeneous Landau equation in R3, which is given by

{ OF +v - Vo F = QL(F, F), (1.1)

Fli—o = Fo,

where F' = F(t,x,v) > 0 is the density of particles on position 2 € R3 and with velocity v € R3
at time ¢t > 0. The collision operator (1, is a bilinear operator acting only on the velocity

variable v and reads as

QL(F, G)(v) = V- (/R a(v — v)[FaVyG — vvF*G]dv*> ,

3
where we used the usual shorthand F, = F(t,z,v.), V,G = V,G(t, x,v), V, Fy = V, F(t, x,vs)

and G = G(t,z,v). The matrix-valued function a(v) = (a;;(v))i<i j<3 is non-negative, sym-

metric and depends on the interaction between particles, which is usually assumed by
a(v) = (0PI —v@ V)| = PP, —3<y <1,

where I = I3y3 is the unit matrix on R3, v ® v = (vivj)i<ij<3 and P, is the orthogonal
projection onto v*. Here, according to the value of v, we have the following classification:

e 0 <7 < 1, one calls hard potentials;



2 Introduction

e v =0, it is Maxwellian molecules (a(v) = |[v|?P,.);

e —3 < v <0, one calls soft potentials;

e v = —3, it is Coulombian potential (a(v) = |[v| 71 P,L).

B Entropy principle

The solutions of the Landau equation have some elementary properties. And these prop-
erties correspond to basic conservation laws (mass, momentum, kinetic energy) and therefore
have a simple physical meaning.

The entropy H can be defined as
H = Flog(1/F)dxzdv.
Rdx R4

We recall the mathematical expression of the entropy principle for Landau equation, see Villani
[173],

d
d/ 1
— Flogle:cdv—/ a;j(v — vy FFy
dt Jraxrd 1/E) RéXRIXRY | Z 7

,J

0 0 3} 0
<8U1 (log F') — Bvn (log F*)> <821j(10g F)— . (log F*)> dxdvdv, = 0.

Define F(t,z,v) = e~¢(t2:) then the entropy

H= e~ ?dxdv
Rd xRd
is increasing with time ¢ (Landau version of Boltzmann’s famous H-theorem), due to that the
right-hand side is nonnegative.
In this thesis, we study the Cauchy problem (1.1) with Maxwellian molecules, since the
Landau operator enjoys very nice spectral property in that case. Here, we are concerned with

the Landau equation around the absolute Gaussian distribution in R3:

2
_ vl

2.

N\C»J

p(v) = (2m)”

With the perturbation F(t,z,v) = u(v) + /u(v)g(t, z,v), the Cauchy problem (1.1) can be

rewritten as

{6tg+v-Vmg+£g—L(g,g), 1.2)
g‘t:O = 9o,
with Fy = p(v) + /(v)go, where

L(g) = L1(g) + L2(9) (1.3)

is a linear operator and non-negative (see [114]) with

L1(9) = =1 2Qr (1 VHG),  L2(9) = —p 2 QrL(Vg, 1)
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and

L(g,9) = 12 Qr(v/1ig, I19)- (1.4)

The null space of operator L is given by

N = span {\/, v1\/It, var/H, V3\/H, ]v|2\/ﬁ}

P denotes the orthogonal projector onto the null space N.

Denote the Harmonic Oscillator

2
L2 _A, ﬂ
H + 1

and the Laplace-Beltrami operator on the unit sphere S?
1 2
ASQ £ 5 Z (’Ujak - ’Ukaj) .
1<5,k<3
J#k
Let {¢n1m;n,l € N,|m| < [} be the orthonormal basis of L*(R?) defined in [65, 114, 122],
composed by the eigenfunction of the Harmonic Oscillator and Laplace-Beltrami operator. We

have 5

H(@n,l,m) = (2n +1+ 5) Pn,lm;s _ASZ (‘Pn,l,m) = l(l + 1)()0n,l,m'
Then, we have the spectral decomposition of the linear Landau operator (see [16, 114])

‘C(Qpn,l,m) = )\n,l Pnlms T leN, -I<m<
with )\070 = )\071 = )\1’0 =0, )\072 =12 and for 2n + 1 > 2,
Mg =22n+1)+1(1+1).

Using this spectral decomposition, we have

L=2H—-3—Ag) —[2H — 3 — Ag2]P; + [-Ag2 — (2H — 3)| Py,

where Py (k = 1,2) is the orthogonal projection onto the Hermite basis.

1.1.2 Kac equation

Kac equation is a simplified model of Boltzmann equation but still keeping some of the main
features of Boltzmann’s. And the Kac operator is a one-dimensional collision model for the
radically symmetric Boltzmann operator. In this thesis, we also consider the spatially inho-
mogeneous Kac’s model of the non-cutoff Boltzmann equation. Hence, firstly we introduce the
Boltzmann equation and its basic property briefly.

B Boltzmann equation
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Ludwig Boltzmann derived the Boltzmann equation in 1872, which is the basic kinetic e-
quation in statistical mechanics and describes the dynamics of particles of dilute gas, see [14].
Since the advent of Boltzmann equation, it has been received much attention from mathemati-
cians and physicists. The Boltzmann equation describes the behavior of a dilute gas when the

only interactions taken into account are binary collisions [24]. It reads as the equation

(1.5)

0G+v -V, G=Qp(G, G),
Gli=o0 = G,

where the unknown G = G(t,z,v) > 0 is a density distribution function in phase space with
position z € R% and velocity v € R? at time ¢ > 0, and Gg is an initial data. The Boltz-
mann equation is one of the fundamental equations of mathematical physics, in particular, a
cornerstone of statistical physics.

The Boltzmann collision operator, Qpg(-,-) is a bilinear operator which is defined by

Qn(F,G) = / [0 — 0. Bo(0)(F/G' — FoG)dvydw
R3xS2

with d > 2, where
in = F(t?$7v>,(<)7 G, = G(t,.ﬁU,’U/), F* = F(t,ﬂ?,’U*), G = G(tax7v)'

In this expression, v, v, and v’,v), are the velocities in R? of a pair of particles before and after

the collision. v’ and v/, are shown through the formulas

;U Uk |v — vy ,_v+v*_|v—v*\

2 5 7 U 2 2 7

where o € S%! belongs to the unit sphere. Those relations correspond physically to elastic

collisions with the conservations of momentum and kinetic energy in the binary collisions
/ / 2 2 12 12
VAU =0 40y, ‘U’ +"U*’ :’v’ +’v*| )

where | - | is the Euclidean norm on R
For monatomic gas, the cross section B(v — vy, 0) is a non-negative function which only
depends on the relative velocity |v — v.| and on the deviation angle 6 defined through the scalar

product in R?
U — Uy

cosf=z-0, z= .
v — 04l

Without loss of generality, we may assume that B(v — v, o) is supported on the set where
z-0 >0, ie. where 0 < § < 7. Otherwise and since the term F’,F] appearing in the
Boltzmann operator Qp(F, F') is invariant under the mapping 0 — —o, we can reduce to this

situation with the customary symmetrization

B(v —vy,0) = [B(v —vy,0) + B(v — vy, —0)]]1{ vove o0y

[v—vx]
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where 1 is the characteristic function of the set E. For more details about collision kernel,

see Villani[176] and references therein. More specifically, we consider cross sections of the type

V — Uy

B(v —vy,0) = ®(Jv — vs])b(cos ), cosh = -0, ogegg,

v — sl
where @ (|v —vi|) = |[v—w4|?, v > —3 is a kinetic factor and it is related to the deviation angle
with a singularity

(sin 6)?~2b(cos 0) 2 671725 0<s<1 and 0<H<
—04+

(1.6)

NI

This singularity is not integrable

uy

2
/ (sin 0)?72b(cos §)dh = +oc.
0

Here, this non-integrability property plays an important effect when considering the qualitative
behaviour of solutions to the Boltzmann equation. Actually, Desvillettes [35] firstly observed
that grazing collisions that account for the non-integrability of the angular factor near § = 0
to induce smoothing effects for the solutions of the non-cutoff Kac equation, or more generally
for the solutions of the non-cutoff Boltzmann equation. On the other hand, when the cross
section is assumed to be integrable, or by using a cutoff function to remove the singularity
(Grad’s angular cutoff assumption), then these solutions are at most as regular as the initial
data, see Wennberg [178]. For some details on the physics background and the derivation of
the Boltzmann equation, we refer the reader to the extensive expositions Cercignani [24] and
Villani [176].

Boltzmann equation and Landau equation both provide a mathematical model for the
description of the evolution of a large number of particles interacting through “collisions”.

Similar to the Landau equation, one can consider the fluctuation of density distribution in R?
G(t,z,v) = M(v) + VM(v)g(t, z,v)
near the absolute Maxwellian distribution
M(v) = (27)"2e” 2.

With the perturbation and since Qp(M, M) = 0 by the conservation of the kinetic energy, the

Cauchy problem (1.5) can be rewritten as

{8tg+v-ng+£g=F(g,g), an

g|t=0 = 9o,

with Gy = M (v) + v M (v)go, where

L(g) = 12 (Qp(M,vMg) + Qe(v'Mg,M)), T(g,9) = M~ 2Qp(vMg,vMyg).
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The operator £ is linear, non-negative (see Cercignani [24] and Lerner-Morimoto-Pravda-

Starov-Xu [114, 115, 116]) and its null space of operator is given by
N = span {\/M, VM, v M, v33/M, W\/M} .

B Kac equation
After a brief introduction to the Boltzmann equation, we introduce the spatially inhomo-

geneous non-cutoff Kac’s equation that we study in this thesis, precisely,

fli=o0 = fo,

where f = f(t,z,v) > 0 is the density distribution function depending on the position = € R,
the velocity v € R and the time ¢t > 0. The Kac collision operator is a one-dimensional collision

model for the radially symmetric Boltzmann operator defined as

: BO) </R (fig' — fe9) dv*> o

with the standard shorthand f, = f(t,z,v.), f = f(t,z, V), f« = f(t,x,v0), [ = f(t, z,v),

where the relations between pre and post collisional velocities given by

K9 = [

|61<

v+ = e (v +iv,), ie., v =vcosl—uv,sinh, v.=vsind+v,cosb, v,v, € R,
follow from the conversation of the kinetic energy in the binary collision
v+ Uz =2+ vf.
Here, the cross section is assumed to be an even non-negative function satisfying

B=>0, pBe Llloc(()? 1)7 B(_Q) = 6(9)

with a non-integrable singularity for grazing collisions

" B(6)d6 = 0.

%
This non-integrability plays an important role when considering the qualitative behaviour of

solutions to the Kac equation and this feature is essential for the smoothing effect.

In this thesis, we consider a cross section with a non-integrable singularity of the type

5O) . 1617 (1.9)

for some given parameter 0 < s < 1. For more details on the physics background, we can

refer to [24, 176] and the references therein. Under the assumption, the Kac collision operator
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can be defined as a finite part integral. For details about this as a finite part integral, we
refer the reader to Lerner-Morimoto-Pravda-Starov-Xu [115, 117]. Desvillettes [35] pointed
out that non-integrability feature (1.9) accounts for the diffusive properties of the non-cutoff
Kac equation. For more details on the physics background, we can refer to Cercignani [24],
Villani [176] and the references therein. In fact, we take the following choice for the cross
section

| cos g|

B0) = ——Fnmasr 101 <

= T (1.10)

il
4?

in part because of the usage of those results in [115] directly.

Here, we consider the Kac equation (1.8) around the normalized Maxwellian distribution
1w
Mv)=(2m)"2e" 2, veR.
In a close to equilibrium framework, consider the fluctuation of density distribution function

f(t,z,v) = M(v) + VM()g(t, z,v).

Since K (M, M) = 0 by conservation of the kinetic energy, the Cauchy problem (1.8) reads as

Org + 00,9+ Kg=T(g,9), t>0,veER,
{ 19 g+Kg=T(g,9) A1)
g|t:0 = 4o,
with fo = M(v) + VM (v)go, where
K(g9) = K1(g) + K2(9) (1.12)
with
Ki(g) = —M V2K (M, MY?), Ka(g) = —MV2K(MY?g, M)
and
I(g,9) = M~2K (Mg, M'?g). (1.13)

The linearized Kac operator K is a non-negative unbounded operator on L?(R,) (see [115])

with a kernel given by

Ker K = Span{eg, ea},

where the Hermite basis (e, )n>0 is an orthonormal basis of L?(R), which is recalled in Section
4.2.1.
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1.1.3 Navier-Stokes-Maxwell equations

In this thesis, we study the motion of one fluid described by the compressible Navier-Stokes
equations coupled with the Maxwell equations through the Lorentz force, that is, Navier-Stokes-
Maxwell (N-S-M) equations. In the isentropic case, it read as
( On+ V- (nu) =0,

O (nu) + V- (nu®u) + Vp(n)

= -—n(E+ux B) — Anu+ pAu+ (p+ /) Vdivu, (1.14)

OE —V x B = nu,

l 0 B+V X E=0

with constraints

V-E=nx(zr)—n, V-B=0. (1.15)
Here the mass density n € R, the velocity field u € R3, the electric field £ € R? and the
magnetic induction B € R3 are unknown functions for (¢,z) € [0,4+00) x R3, respectively.
The pressure p(n) is a given smooth function of n satisfying p’(n) > 0 for n > 0. We denote
by p and p/ the two Lamé coefficients of the fluid, which are assumed to satisfy p > 0 and
2u+ ' > 0, and A > 0 is the damping constant. n.(x) stands for the density of positively
charged background ions, which is assumed to be a positive constant for simplicity. Notice that

the system (1.14) with (1.15) admits a constant equilibrium state of the form
(TL,U,E,B) - (nOO7O7O7BOO)7

where By, € R? is an arbitrarily fixed constant vector. In this thesis, we concerned with the

Cauchy problem to (1.14)-(1.15), so the initial data are supplemented by
(n,u, E, B)|i=o = (no, uo, Eg, Bo)(x), = € R>. (1.16)

Also, it is simple to see that the constraint (1.15) holds true for any ¢ > 0, if it holds initially.

Namely, we only assume that
V-FEy=ne(x) —ng, V-By=0, zcR. (1.17)

We rewrite (1.14) as the linearized perturbation form around the equilibrium state we :=
(Neo, 0,0, Bso). Without loss of generality, we set the physical parameters to be A =1 = p and
i+ 1’ = 0. By taking change of variables

P=N—TNe, V=nUu/Ns, FE=E, h=B — B,
it is not difficulty to verify

O¢p + neodive = 0,

OV + a4 Vp+ v X Boo + E 4+ v — Av/ne = (divga + 12) /neo + Asa,
OE —V x h—ngv =0,

Oth+V x E =0,

(1.18)
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where oo = p'(Noo) /Mcos

g2 = —n30 @ v/n — [p(n) — p(noc) — p'(neo)pl I,
ro = —pFE — noov X h,

so= (1/(p+ noo) — 1 /100 )0 := h(p)v.
For simplicity, we set z := (p,v, E,h)". The corresponding initial data are given by
zlt=0 = (po, vo, Eo, ho) ' (z)
with pg = ng — Neo, Vo = NoUp/Neo and hg = By — Boo. System (1.18) is also rewritten in
vector form as
3 3 ' 3
Agozt—i—ZAf)ozxj 4+ Looz = Z Bgﬁzxﬂk —{—Zij + R+ AS, (1.19)
Jj=1 Jk=1 j=1

where Q(z) = (O,qg/noo,(),())—r7 R(2) = (0,79/N50,0,0) T and S(z) = (0,52,0,0)". The coeffi-
cient matrices A% = A%(woo), Ay = AT (woo), B = BI*(ws) and Lo, = L(weo) are explicitly

given by

Qoo 0 0 0 0 0 0 0

40— 0 ned 0 O I 0 neo(l —Qp.) nool 0
o0 9 [e.e] 9

0 0 I 0 0 —Nood 0 0

0 0 0 I 0 0 0 0

0 0 0 —Q
0 0 Qe 0
and
0 0 0 0
3 2
. 0 [£]*I/ns 0 O
S g | O T 000
G k=1
0 0 0 0

Here, I is the identity matrix of third order, £ = (&1,&2,&3) € R3, and (¢ is the skew-symmetric
matrix defined by

0 =& &
Qe=1| & 0 =& |,
& & 0
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which implies that Q¢ET = (€ x E)T (as a column vector in R3) for E = (Fy, Ez, F3) € R3.
In (1.19), matrices Aéo(j =0,1,2,3) and Bg’ok(j,k = 1,2, 3) are real symmetric, and L, and
Z?,k;:l Bg’gfjﬁk are degenerate and nonnegative definite; however, Lo, is not real symmetric.
Therefore, the dissipation forces (1.19) to go beyond the general class of equations of symmetric

hyperbolic-parabolic type as in [171], which is our motivation to study the N-S-M equations
(1.14).

1.1.4 Timoshenko-Fourier system

It is well known that thermoelastic systems are thermoelastic equations, which are mathemati-
cal models established by the distribution of temperature and the deformation of thermoelastic
bodies. Thermoelasticity is called thermoelastic theory and is a branch of solid mechanics.
The research problem is mainly the deformation and stress generated by the non-uniform tem-
perature field of the object due to heat in the elastic range. Based on the important physical
background of thermoelasticity, thermoelastic equations have attracted the attention of many
physicists and mathematicians and have yielded rich research results. In this thesis, we in-
vestigate the Timoshenko-Fourier system in thermoelasticity, which describes the dynamics of

elastic wave propagation and thermal dissipation in a vibrating beam. Precisely,

o1 — (pz — )z =0,
Yy — [U(wx)]x - (Sox - 1/}) + Yy + 0, =0, (120)
0 — KOz + Bwtm =0,

where ¢ € (0,400) is the time variable and x € R is the space variable. The function ¢ denotes
the transversal displacement of the beam from an equilibrium state, and 1 is the rotation angle
of the filament of the beam, 6 is the temperature difference of the solid elastic material. ~y, 5 and
K are physically positive constants depending on the material elastic and thermal properties.
The smooth function o(n) satisfies o’(n) > 0 for any > 0. In this chapter, we focus on the

Cauchy problem to (1.20), hence initial conditions are prescribed as

(%%ﬂﬂawme)‘tzo - (9007 <P17¢0,¢1790>(x)a z €R. (121)

The linearized version of (1.20) reads correspondingly

ett — (pz — )z =0,
wtt - a2¢xx - (Soac - 7/}) + ’th + ﬁex = 0, (122)
01 — Kbze + B = 0,

where a > 0 denotes the sound speed defined by a? = ¢/(0). The case a = 1 corresponds to the

Timoshenko-Fourier system with equal wave speeds, whereas the case a # 1 implies that the

wave speeds of the first two equations are different.
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In this thesis, we are interested in the Timoshenko-Fourier system (1.20), where the heat
conduction is described by the classical Fourier law. In the whole space, by virtue of the change

of variable in [85]
vchl"iqb? U = ¥, Z:a¢x’ Yy =y

System (1.22) is rewritten as the first-order system of hyperbolic-parabolic type

v —uy +y =0,

up — vy = 0,

2zt — ayy = 0, (1.23)
Yt —azy —v+yy + 0y =0,

0y — kOyy + By = 0.

For simplicity, we set U := (v, u, z,,0) " (T transpose). The corresponding initial data are as

follows
Uli=o = (vo, uo, 20, Y0, 00) ' (2) (1.24)

with
Vo = @o,u — Yo, U = P1, 20 = aPow; Yo = Y1.
Furthermore, (1.23)-(1.24) are equivalent to the following vector form

Ut + AU;C + LU = BUwza

U(2,0) = Up(a), (1.25)

where the coefficient matrices A, L and B are explicitly given by

0 -1 0 0 O 0 00 10
-1 0 0 0 O 0 00 0O
A=l 0 0 O —-a O], L= 0 00 0O
0 0 —a 0 p -1 0 0 v O
0 0 O 0 0 00 0O
and
00000
00000
B=100000
00000
000 0 &k

Observe that matrices A is real symmetric, L is non-negative definite but non-symmetric and

B is real symmetric.
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It is convenient to rewrite (1.20)-(1.21) as the following Cauchy problem for the hyperbolic-

parabolic system
U+ AU, + LU = BUy, + G(U) 4,
(1.26)
U(QZ, 0) = Ug(x),
where G(U) = (0,0,0,g(2),0)" (z) with g(2) = 0(2/a) — 0(0) — 6'(0)z/a := O(2?) near z = 0.
To show the pointwise estimate of solutions to (1.25) in the Fourier space, taking the Fourier
transform of (1.25) gives
Ui+ (iEA+ L+ €2B)U =0,

. . (1.27)
U(&,0) = Uo(§).
The solution to (1.27) is given by U(¢,t) = et®(i6) Up(€), where
d(¢)=—(L+CA—-¢2B), CeC. (1.28)
The corresponding eigenvalue problem along with (1.27) is as follows:
Ao+ (i€A+ L+ €2B)¢ =0, (1.29)

where we denote by A = A(i€) € C the eigenvalue value. Said Houari-Kasimov [160] showed
that the dissipative structure of (1.25) is characterized by

—cem (§), for a=1;

Re A\(7
e@@ﬁ{ﬂmw, for a1

for some constant ¢ > 0, where the dissipative rates n1(§) = % and 1n2(§) = ﬁ, re-
spectively. Furthermore, it follows that the same decay properties (1.40)-(1.41) are available
for the Cauchy problem (1.23)-(1.24). In addition, they strengthened those decay properties
with an additional rate of t=7/2 (v € [0, 1]), by restricting the initial data in the integral space
LY7(R). Such sharp decay rates were shown in [156] for the semilinear Timoshenko system.
Regarding the case of v = 0 in (1.23), it was firstly investigated by Said-Houari and Kasimov
in [161], however, their dissipative rates are not optimal. Recently, Mori-Kawashima [134] have

improved them and got

_6771(5)7 for a=1;

Re A(i€) <
A {ﬂ%@, for az1

4

with 7 (§) = % and 72(§) = Ufj)?” from which we see that the weaker dissipative
mechanism occurs in the absence of damping y = ;.
So far there are few stability results for the nonlinear Timoshenko-Fourier system (1.20)-

(1.21). As a first step, we focus on the cases v > 0 and a # 1.
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1.2 Main results

In this thesis, we mainly study well-posedness and qualitative study to the above four math-
ematical systems, that is, Landau equation (1.1), Kac equation (1.8), Navier-Stokes-Maxwell
equations (1.14) with (1.15) and Timoshenko-Fourier system (1.20). Our main results in this

thesis are shown as follows.

1.2.1 Global existence for the inhomogeneous Landau equation

The Landau equation is not only interesting in itself, but also because we can hope to have
through it a better understanding of the Boltzmann equation in the case when grazing collisions
are not neglected. On the other hand, the Bony’s para-product decomposition have been
widely used in the study of fluid dynamics, see for example [26, 27, 32, 40, 43] and references
therein, however, there are few results available that one applies the Besov space theory to the
global existence of kinetic equations. The recent works [52, 145] are devoted to the Boltzmann
equation. And there are few results concerning the global existence for the Landau equation
in spatially critical Besov spaces. So it is very interesting to work a result for (1.1), since the
collision operator between the Boltzmann equation and Landau equation are fundamentally
different. As the first step, by using the spectral analysis on the nonlinear Landau operator,
we investigate the Cauchy problem (1.2) with Maxwellian molecules (y = 0) in this thesis and
main result is shown as follows.
% Main Theorem A
There exists a constant eg > 0 such that if go € Zg(B;/lz) and

||90||z3(3:23(12) < €o,

then the Cauchy problem (1.2) admits a global solution satisfying
g€ LFLYBYY) and Lige LLABSY).

Moreover, if Fy(w,v) = p(v) + /li(v)go(z,v) > 0, then F(t,z,v) = u(v) + /i(v)g(t, z,v) > 0.
4 We state some comments.

(1) Above norms of the Chemin-Lerner space will be rigorously defined in Chapter 2. The
Chemin-Lerner space without involving the microscopic velocity was initiated by [30] to
establish the global existence of solutions to the incompressible Navier-Stokes equations.
This is the first global existence result of solutions to the inhomogeneous Landau equation

i Besov space.

(2) Observe that the reqularity index s = 3/2 that the Besov space is subjected to B;/lz (R3) —
L®(R3), but the Sobolev space H3/?(R?) is not embedded into L>°(R?), it thus is critical

for the algebra with respect to the spatial variable.
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(3) We remark that the Chemin-Lerner space EQ’OE%(BS/E) enjoys stronger topology than the
usual mized space LtOOL%(BS’/f), which allows to get a good control for nonlinear collision

terms.

1.2.2 Smoothing effect for the inhomogeneous Kac equation

In this thesis, we consider the Gelfand-Shilov and Gevrey smoothing effect of solutions for the
inhomogeneous non-cutoff Kac equation. Firstly, the definitions of Gelfand-Shilov space and

Gevrey class is shown as follows.

Definition 1.1. Let the two constants p,v > 0 satisfy u+v > 1. The Gevrey class GH(R?) is
defined by

Gt ={feC™®"),34,C20, Yae N, sup |95/(v) < CA®l(at)}.
veER

The Gelfand-Shilov spaces S5 (R?) are defined by

SH(RY) = {f € C®(RY),34,C >0, Va,B e N, [8%f(v)] < CAlal(a!)ue%lvl””}
= {f € C®(R%),34,C >0, Va,B e N, sup [vP0%f(v)| < CA\alﬂﬂ\(a!)ﬂ(ﬁ!)V}

veRd
with v € R, These Gelfand-Shilov spaces S5 (R?) may also be characterized as the spaces of
Schwarz functions belonging to the Gevrey space G¥(RY), whose Fourier transforms belong to
the Gevrey space GH(R?). That is,

1/v

SYRY) = {f €SRY),3C >0, >0, [f(v)] <Ce =" |f(e)] < Ce—ew/u}

with v € R ¢ € RY,

In particular, we notice that Hermite functions belong to the symmetric Gelfand-Shilov
1/2

1/2 (R). The symmetric Gelfand-Shilov spaces S/;(R) can be given as:

spaces S

Remark 1.1. The symmetric Gelfand-Shilov spaces S/, (R) with > 1/2 can be characterized
through the decomposition into the Hermite basis (e,)n>0 see e.g. [167] (Proposition 1.2)

f € SER) & f € LA(R), 3to >0, [((f.en)z2 exp(ton?))nollqyy < +00

& f e LAR), 3ty >0, [l f||2 < +o0,

where H = —A, + % is the Harmonic Oscillator and (ey,)n>0 is Hermite basis given in Section
4.2.1.

For extensive expositions of the Gelfand-Shilov regularity theory, we refer the reader to the
works [69, 68, 150, 167] and the references therein.
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Recently, Lerner-Morimoto-Pravda-Starov-Xu [117] considered the spatially inhomogeneous
non-cutoff Kac equation in the Sobolev space and showed that the Cauchy problem for the fluc-

. . . . 14+4 . .
tuation around the Maxwellian distribution admitted S lif Gelfand-Shilov regularity proper-
2s

ties with respect to the velocity variable and Gl*as Gevrey regularizing properties with respect
to the position variable. In [117], the authors conjectured that it remained still open to deter-
mine whether the regularity indices 1 + % is sharp or not. On the other hand, Duan-Liu-Xu
[52] and Morimoto-Sakamoto [145] studied the Cauchy problem for the Boltzmann equation
with the initial datum belonging to critical Besov space. Motivated by those works, we intend
to study the inhomogeneous non-cutoff Kac equation in critical Besov space and then improve
the Gelfand-Shilov regularizing properties with respect to the velocity variable.

Our main results are stated as follows.

% Main Theorem B

Let 0 < T < +o0. We suppose that the collision cross section satisfies (1.10) with 0 < s <
1. There exists a constant g > 0 such that for all gy € Zg(B;/lz) satisfying

HQOHE%(B;’/f) S 507

then the Cauchy problem (1.11) admits a unique weak solution g € E%OZE(B;f) satisfying

s T
||9||Z%°Eg(35{12) + "%29”5%23(35{12) < coe ||90||z5(35(12)

for some constant ¢y > 1. Furthermore, this solution is smooth for all positive time 0 <t < T,
which satisfies the following Gelfand-Shilov and Gevrey type estimates: For § > 0, there exists
C > 1 such that for all0 <t < T and for all k,1,q >0,

Ck+l+g+1

kol oq ~ T (1) 30D (1) 255 (g~
||’U avazg(t)HL%(B;,/f) < t23(?-_i—11)(k+l+2)+232:1q+6 (k) (l) (Q) 2 HQOHL%(B;’/IQ)'

4 Our result deserves some comments in contrast to the result of [117].

(1) We show the well-posedness of Cauchy problem with the initial datum belonging to the
spatially critical Besov space Z?,(Bé/f), rather than in the Sobolev space L2(H}).

(2) For the regularizing effect, our result indicates that

3s+1

V>0, Vo €R, g(t,z,-) € SEED(R); V>0, VYweR, g(t,-,v) € G (R).

2s(s+1)

Actually, the Gelfand-Shilov index for the velocity variable is sharp for 0 < s < 1, if

noticing that
3s+1 2s+1 3s+1 1
= <1+ —.
2s(s+1) 25 (2s+1)(s+1) 2s
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(3) If s is close to 1, the solution is almost analytic in the velocity variable, since

3s+1
- =
2s(s+1)

Therefore, our Gelfand-Shilov index for the velocity variable should be optimal.

1.2.3 Optimal decay rate for Navier-Stokes-Maxwell equations

We study the global existence and decay rate of solutions for Navier-Stokes-Maxwell equations
(1.14)-(1.15) in R3. To state our main results, set w = (n,u, E, B)" (T transpose) and wg =
)T

(no,uo, Eo, Bo) ", which are column vectors in R'%. We define the following energy norm Ny(t)

and the corresponding dissipation norm Dy(t):

No(t) i= sup (1w = woe) (7)1

Do(t)? :2/0 (1 = 100) (D7 + Il 7o + 1B [Fgar + [VB()|[Fe-)dr.

Since the dissipative mechanism of regularity loss, our aim is to seek the minimal decay
regularity of solutions to the N-S-M equations (1.14)-(1.15). Firstly, we recall a notion of mini-
mal decay regularity which is formulated by Xu-Mori-Kawashima [182] for generally dissipative

systems of regularity-loss.

Definition 1.2. If the optimal decay rate of L'(R?)-L?(RY) type is achieved under the lowest
reqularity assumption, then the lowest index is called the minimal decay regularity for dissipative

systems of regularity-loss, which is labeled as sp.

We show our main results as follows.
% Main Theorem C
(1) The global-in-time existence of smooth solutions
Let s > 3 and suppose that the initial data satisfy wy — we € H® and (1.17). Put Iy :=
llwo — weo||prs- Then there exists a constant g > 0 such that if Iy < €g, the Cauchy problem
(1.14) and (1.16) has a unique global solution w(t,x) with

W — We € C([0,00); H) N Cl([O,OO);HS_l),
n € L2([0,00); H®),u € L?([0, 00); H*™1),
E € L*([0,00); H*1), VB € L*([0,00); H*2).

The solution satisfies the uniform energy estimate

No(t)? + Do(t)? <

~

I
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for t > 0. Moreover, the solution w(t,z) converges to the constant state woo uniformly in

z € R? as t — co. More precisely, we have

|(n — noo, uy E)(t)|lys—200 = 0 as t — oo,

(B — Boo)(t)|lps—t.00 = 0 as t — oo,

where the asymptotic behavior for the magnetic field B holds true only by assuming the addi-
tional reqularity s > 4.

(2) The optimal decay rates of smooth solutions

Let s > 3. Assume that the initial data satisfy wy — wee € H* N L' and (1.17). Put
I == ||wo — Weo||rsnr1- Then there exists a constant €1 > 0 such that if Iy < €1, the above

global solution admits the decay estimate

|w — wool|f2 < Iy (1 +¢)73/4,

¢ We give some comments about the above results.

(1) Let us mention that the above result is of the regularity-loss type because we have 1-

reqularity loss for (E, B) in the dissipation part Dy(t).

(2) From the result of decay estimate, we see that the L'(R3)-L?(R3) decay rate of solutions
1s available with the critical reqularity s = 3; that is, we arrive at sp < 3 in the sense of
Definition 1.2, and the extra regqularity is not necessary, which improves previous works
great, for example, [50, 169].

(3) Our decay rate coincides with those results for compressible N-S equations by Matsumura-
Nishida [138] and Ponce [152].

1.2.4 Optimal decay rate for Timoshenko-Fourier system

To state our main results, define Ny(t) and Dg(t) by the following energy norm and the corre-

sponding dissipation, respectively:

Nott) i= sup [U(7)]e)

t
Do(t)* = / o) ety + 100 () o2y + 1002(T) 2 sy
() 3y + 19200131 sy V-

Our main results are shown as follows.
% Main Theorem D
(1) The global-in-time existence of smooth solutions
Let s > 2 and suppose that the initial data satisfy Up € H*(R). Put Iy := ||Uo||gs(r)- Then
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there exists a constant g > 0 such that if Iy < €9, the Cauchy problem (1.26) has a unique
global solution U (t,x) with

U € C([0,00); H*(R)) N C1([0, 00); H*"(R)).
Moreover, the uniform energy inequality
No(t)* + Do(t)* S I

holds for t > 0.

(2) The optimal decay rates of smooth solutions

Let m = 0,1 and s > lg+m + 1 with {9 = m + 1. Assume that the initial data satisfy
Uo € H*NLY(Q). The addition initial condition Zo = 0 is assumed in the periodic space Q = T.
Put I := ||Uo||grsnri (o). Then there exists a constant €1 > 0 such that if Iy < e1, the solution
of (1.26) admits the decay estimate

10 Ull L2 S 1i(1 + t)~1/Amm/2

in case of Q =R, m =0 as well as in case of @ =T and m =0, 1.

¢ Our result deserves the following comments.

(1) We mention that the energy inequality is of the regularity-loss type because there is 1-
reqularity loss for (v,u) in the dissipation part Dy(t).

(2) The above result also holds in the periodic domain T. It is not difficult to see that Z(t) =0
for allt > 0, if 2y = 0 is additionally assumed, where f := ﬁ Jp f(z)dx.

(2) Due to the weaker dissipative mechanism of regularity-loss type, it is more interesting to
seek the possibly lower reqularity. By virtue of LP-LY-L" inequalities which is given by
Xu-Mori-Kawashima in [182], we could achieve the optimal algebraic rate of L'-L? type
under the critical reqularity s. = 2, that is, the minimal decay regularity sp < 2 follows

for the Timoshenko-Fourier system.

1.3 Comparison with known results

In this section, we recall some known results to the above mathematical systems. Also, we

state our motivations and innovation of results for these mathematical problems.

1.3.1 Well-posedness for Landau equation

Landau equation is a fundamental equation to describe collisions among charged particles
interacting with their Coulombic force. The Landau equation is not only interesting in itself,

but also because we can hope to have through it a better understanding of the Boltzmann
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equation in the case when grazing collisions are not neglected. There are lots of known results
concerning the well-posedness to the Landau equation and large-time behavior of its solutions.

B In spatially homogeneous case

In 1989, DiPerna-Lions [51] proved the global existence of a so-called “re-normalized solu-
tion” of Boltzmann equation with angular cut-off and arbitrary initial data. Then, in 1994,
Lions [107] proved similar results on the compactness properties of the Landau equation. Vil-
lani [173] used the above these two results to construct global weak solutions for the Coulombic
interaction with 7 = —3, up to some defect measures. Subsequently, in [175], he extended the
result to the Landau equation without the presence of spatial dependence. In the Maxwellian
molecules case v = 0, Villani proved an exponential in time convergence to equilibrium. For the
hard potential v € (0, 1], Desvillettes-Villani [57, 58] investigated the existence, uniqueness and
smoothness of classical solutions. They proved a functional inequality for entropy-entropy dis-
sipation that is not linear, from which the polynomial in time convergence of solutions towards
equilibrium was also shown.

Recently, Carrapatoso [23] proved the optimal exponential decay to equilibrium with the
decay rate given by the spectral gap of the associated linearized operator, by using the method
developed by Gualdani-Mischler-Mouhot [67]. Morimoto-Xu [148] proved the ultra-analytic
effect for the Cauchy problem of homogeneous nonlinear Landau equation in the case of v = 0.
Li-Xu [122] studied the homogeneous nonlinear Landau operator by introducing the spectral
analysis and proved the existence of weak solution for the Cauchy problem, provided that
the initial datum belonging to Shubin space of negative index which contains the probability
measures.

B In spatially inhomogeneous case

Firstly, Guo [62] proved the global-in-time existence of classical solutions to the Landau
equation in a period box by employing an energy method.

B Guo’s main result in [62] for Landau equation in Sobolev space

Lety > =3 and N > 8. Assume Fy(x,v) = p+/figo(z,v) > 0. There is a constant eg > 0
such that if

Z ||833590||\23| <eg, if Y+2<0;
la|+|BI<N

> l0g0)goll* < e, if ¥+220,
o] +]BI<N

then there exists a unique global solution g(t,x,v) to the Landau equation (1.2) with F(t,x,v) =
p+ /gt z,v) > 0.

Later, Hsiao-Yu [82] extended Guo’s results [62] to the whole space with the same regularity
requirement N > 8. Baranger-Mouhot [22] studied the explicit spectral gap estimates to
the linearized Landau operator with hard potentials. Mouhot [131] established the coercivity

estimates for a general class of interactions including hard potentials and soft potentials. There
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are many other works on the Landau equation; see [22, 23, 28, 78, 80, 114, 121, 122, 146, 159,
174].

To the best of our knowledge, there are various studies concerning the well-posedness of
solutions to the Boltzmann, see for example, [5, 6, 7, 9, 16, 63, 70, 82, 123, 124] and ref-
erences therein. For the inhomogeneous Boltzmann equation, Alexandre-Morimoto-Ukai-Xu-
Yang made a continuous work by introducing a new non-isotropic norm which captures the
main feature of the singularity in the cross-section. This new norm is in fact the counterpart of
the coercive norm which was introduced by Guo [62] as an essential step for Landau equation.
In their series of works, they established the global existence of solutions in some (weighted)
Sobolev space for the inhomogeneous Boltzmann equation near a global equilibrium and proved
the regularity effects of solutions with respect to all variables, see [5, 6, 7, 9]. Precisely,

B Alexandre-Morimoto-Ukai-Xu-Yang’s main results for Boltzmann equation
without angular cut-off in some (weighted) Sobolev space

e Global existence result in [6] for case of Mazwellian molecules v = 0
Let N > 3 and ¢ > 3. Assume that the cross-section satisfies (1.6) with 0 < s < 1/2 and
go € HY (R®) satisfies
Go(x,v) = M(v) + VM (v)go(z,v) > 0.

Then there exists a constant eg > 0 such that if HgOHHéV(RG) < €g, the Cauchy problem (1.7)
admits a unique global solution

g € L([0,00); H' (R%)).

Moreover, G(t,z,v) = M(v) + VM (v)g(t,z,v) >0 and g € C=([0,00) x RS).

e Global existence result in [7] for case of hard potential v+ 2s > 0

Let N > 6 and £ > 3/2 + 2s + ~y. Assume that the cross-section satisfies (1.6) with 0 < s <
1,v+2s >0 and go € HY(RS). There exists a constant g > 0 such that if HgoHngV(Rs) < gy,
then the Cauchy problem (1.7) admits a global solution

g € L([0,00); H{' (R%)).

e Global existence result in [9] for case of soft potential v+ 2s < 0

Let N > 4 and v > max{—3,—2s — 3/2}. Assume that the cross-section satisfies (1.6) with
0<s<1l,7+2s<0 and go € HY(R3; L?>(R3)). There exists a small constant g > 0 such
that if ||goll v (ws;2may) < €0, then the Cauchy problem (1.7) admits a global solution

g € L>([0,00); HY (R}; L*(R}))).
Moreover, let £ > N, the Cauchy problem (1.7) admits a global solution

g € L=([0, 00); HyY (R%)).
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Through the above results, we mention that the global existence of the Boltzmann equation and
Landau equation are all proved in some (weighted) Sobolev space and require a high regularity
index. On one hand, there are many results for fluid dynamics equations and kinetic equations
by using the fundamental (or weighted) energy methods. On the other hand, the Bony’s para-
product decomposition have been widely used in the study of fluid dynamics, see for example
[26, 27, 32, 40, 43] and references therein, however, there are few results available that one
applies the Besov space theory to the global existence of kinetic equations. Very recently, Duan-
Liu-Xu [52] first introduced the Chemin-Lerner type spaces (defined in Chapter 2) involving the
microscopic velocity and established the global existence of strong solutions near Maxwellian
for the cut-off Boltzmann equation with the hard potential (y > 0). Subsequently, Morimoto-
Sakamoto [145] extended Duan-Liu-Xu’s result to the non-cutoff Boltzmann equation by using
the triple norm that was introduced by Alexandre-Morimoto-Ukai-Xu-Yang [6, 9]. Their results
are shown as follows.

B Global existence result for Boltzmann equation in critical Besov space

e Duan-Liu-Xu’s main result in [52] for case of angular cut-off
Assumed 0 < v < 1 and 0 < By(f) < C|cos@|. There exists a constant ¢ > 0 such that if
”90”155(3%") < g0, then the Cauchy problem (1.7) admits a unique global strong solution

g(t,z,0) € LPLA(BYY) in R®

for T > 0. Moreover, if Go(x,v) = M(v) + VM (v)go(z,v) > 0, then G(t,z,v) = M(v) +
VM (v)g(t,z,v) > 0.

e Morimoto-Sakamoto’s main results in [145] for case of non-cutoff

Assume 0 < s < 2 and v > max{—3,—s — 3/2}. There exists a constant g > 0 such that if
”90”33(33,/12) < €9, then the Cauchy problem (1.7) admits a unique global solution

g(t,z,v) € LFLA(BYY) in R®

forT > 0.

Based on the above result, one may carry out the same proof for the angular cutoff case
which formally corresponds to the limiting situation v > —3/2 as s — 0. Consequently, the ex-
isting approaches as in [52, 145] cannot be directly applied to treat the case of —3 < v < —3/2.
Recently, Duan-Sakamoto [56] considered the Boltzmann equation near global Maxwellians in
the d-dimensional whole space and obtained a unique global-in-time mild solution in a Chemin-
Lerner type space with respect to the phase variable (z,v). Both hard and soft potentials with
angular cutoff are considered. The new function space for global well-posedness is introduced
to essentially treat the case of soft potentials, and the key point is that the velocity variable
is taken in the weighted supremum norm, and the space variable is in the s-order Besov space

with s > d/2 including the spatially critical regularity.
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As pointed out in [52], the most interesting value of the index s under consideration is
d/2. One may not expect to take this value if one seeks a solution in the usual Sobolev space
H%2 since H%? is not embedded into L while the Besov space Bg’/f is. In such sense, the
regularity index s = d/2 is said to be spatially critical. There are few results concerning the
global existence for the Landau equation in spatially critical Besov spaces. We refer readers to
[12, 164] for applications of the Besov space to the kinetic theory from different perspectives.
In this thesis, we investigate the Cauchy problem (1.2) with Maxwellian molecules (v = 0) and
obtain the global existence of solutions in spatially Besov space with critical regularity index
(Main Theorem A). Our results improve the results in [62] and extend the global existence

result for Boltzmann equation in [52, 145] to Landau equation.

1.3.2 Gelfand-Shilov and Gevrey smoothing effect for Kac equation

B Smoothing effect for homogeneous Boltzmann and Landau equation

It is known that Boltzmann equation without angular cutoff can enjoy smoothing effects
for solutions of the associated Cauchy problems. There are many results of C'*° smoothing
properties for the spatially homogeneous Boltzmann equation without angular cut-off, see [1,
13, 59, 65, 175] and references therein. These studies demonstrate that the singularity of the
collision cross-section improves the regularity on weak solutions for the Cauchy problem. One
can also obtain the C'*° regularity of weak solutions for the spatially homogeneous Boltzmann
operator without cut-off. The non-integrability of the cross section is essential for the smoothing
effect, see for example [35].

In the local setting, the Gevrey regularity has been first proved in [168] for the initial data
that has the same Gevrey regularity. A more general result on the Gevrey regularity is obtained
in [147] for the spatially homogeneous linear Boltzmann equation with any initial Cauchy data.
Hence, one sees a similar smoothness effect for the homogeneous Boltzmann equations as in
the case of the heat equation. Recently, Barbaroux-Hundertmark-Ried-Vugalter [21] prove any
weak solution of the fully non-linear homogenous Boltzmann equation for Maxwellian molecules
belongs to the Gevrey class at positive time, and the Gevrey index therein is optimal. Recently,
Li-Xu [121, 122] studied the nonlinear spatially homogeneous Boltzmann equation and Landau
equation with the initial datum belonging to Shubin space, respectively, also obtained the
corresponding Gelfand-Shilov smoothing effect by using the spectral decomposition.

B Smoothing effect for inhomogeneous Boltzmann and Landau equation

For the spatially inhomogeneous Landau equation, Chen-Desvillettes-He [28] obtained the
C*° smoothing effect of solutions under a mild regularity assumption on the initial data. Re-
cently, Henderson-Snelson [81] and Snelson [159] showed C'* smoothing of bounded weak so-
lutions where the pointwise Gaussian upper bound played a key role. Imbert-Mouhot-Silvestre
[89] establish upper bounds for Boltzmann equation. For the study of the regularizing effect for

the inhomogeneous Boltzmann equation, one of the main difficulties comes from the coupling
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of the transport operator with the collision operator, which is similar to the Landau equation
studied in [28]. Alexandre-Morimoto-Ukai-Xu-Yang [8] highlighted the importance of regular-
ization effects for Boltzmann equation (see also [5, 11, 39, 55]). They studied C* smoothing
properties of the spatially inhomogeneous non-cutoff Boltzmann equation in [4, 5, 6, 8]. Also,
in [3] they investigated a kinetic equation with the diffusion term as a non-linear function of the
velocity variable and obtained a C'°° regularity result for the linear spatially inhomogeneous
Boltzmann equation without cut-off by using uncertainty principle and microlocal analysis.

Alexandre-Hérau-Li [2] obtained the global sharp estimate for the linearized Boltzmann op-
erator rather than the model operators, using additionally symbolic calculus for the collisional
cross-section; see [78, 80, 112] for the earlier works on the hypoelliptic properties of other relat-
ed models. It is mentioned that the above works about hypoellipticity don’t involve the initial
data as a matter of fact the time variable is supposed to vary in the whole space. Hence, Fouri-
er analysis can be applied when deriving the subelliptic estimates in time variable. Recently,
Chen-Hu-Li-Zhan [29] considered Gevrey regularization effect for the spatially inhomogeneous
Boltzmann equation without angular cutoff and obtained any solution with mild regularity will
become smooth in Gevrey class at positive time, with Gevrey index depending on the angular
singularity. Their proof depends on the symbolic calculus for the collision operator and the
subelliptic estimates for the Cauchy problem of linearized Boltzmann equation, here the initial
data is involved in the analysis.

B Regularity properties and analysis of results for Kac’s equation

In [114], Lerner-Morimoto-Pravda-Starov-Xu studied the linearized Landau and Boltzman-
n equation and proved that the linearized non-cutoff Boltzmann operator with Maxwellian is
exactly equal to a fractional power of the linearized Landau operator which is the sum of the
Harmonic Oscillator and the spherical Laplacian. In addition, Lekrine-Xu [120] investigated
the Gevrey regularizing effect of the Cauchy problem for non-cutoff homogeneous Kac equa-
tion, a one-dimensional Boltzmann model. Later, Lerner-Morimoto-Pravda-Starov-Xu [115]
considered the linearized non-cutoff Kac collision operator around the Maxwellian distribution
and found that it behaved like a fractional power of the Harmonic Oscillator and was diagonal
in the hermite basis. Moreover, it was shown in [116] by Lerner-Morimoto-Pravda-Starov-Xu

that the Cauchy problem to the homogeneous non-cutoff Kac equation

g+ Kg=T(g,9),
g|t:0 =4go € LQ(RU)

enjoys the following Gefand-Shilov regularizing properties
1

vVt >0, g(t)e ST (R).
2s

The analysis of the Gevrey regularizing properties of spatially inhomogeneous kinetic equations

with respect to both position and velocity variables is more complicated. Up to now, there
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are few results expect for a very simplified model of the linearized inhomogeneous non-cutoff

Boltzmann equation, say the generalized Kolomogorov equation

° x _A Sg = )
{(%g—l-@ Vig+ (—Ay)°g=0 (1.30)

gli—o = go € L*(R2%)

with 0 < s < 1. Morimoto-Xu [148] showed that the solution to (1.30) satisfied
Je >0,V >0, T AP HUADN o) € [HR2)),

which implies that the generalized Kolomogorov equation enjoys a G % (R%‘fv) Gevrey smoothing
effect with respect to both position and velocity variables. The phenomenon of hypoellipticity
arises from non-commutation and non-trivial interactions between the transport part v-V, and
the diffusion part (—A,)® in this evolution equation, see [31, 113] for the further improvement
on the exponent of subelliptic estimate. The operator (—A,)® is just a local model of Boltzmann
equation, inspirited by the diffusion property in v velocity obtained by Alexandre-Desvillettes-
Villani-Wennberg in [1]. On the other hand, for the Cauchy problem of the linear model of

spatially inhomogeneous Landau equation,

{ 0ig+v-Vag =V, (@) - Vog — b()g) (1.31)

,g|t=0 = 9o,

with

a5 (1) = ij(|v|* + 1) — vy,
7‘7(”):_0‘77 Z-ajzla'”7d7
they showed in [148] that the solution to (1.31) enjoyed a G! (R?Eflv) Gevrey smoothing effect

with respect to both position and velocity variables with the estimate

Nl

1
ElC > O’Vt > 07 66(t2(_AZ)2+t(_AU) )g(t) 6 LZ(R:QU?U)a

which coincides with the fact that the Landau equation can be regarded as the limit s = 1 of
the Boltzmann equation. There are many other regularity studies for non-cutoff Kac equation;
see [18, 35, 36, 38, 66] and references therein.

Recently, Lerner-Morimoto-Pravda-Starov-Xu [117] considered the spatially inhomogeneous
non-cutoff Kac equation in Sobolev space and showed that the Cauchy problem for the fluctu-

. . T . 14+ . . .
ation around the Maxwellian distribution admitted S 113 Gelfand-Shilov regularity properties
2s

with respect to the velocity variable and Gt as Gevrey regularizing properties with respect to
the position variable. Precisely,

B Lerner-Morimoto-Pravda-Starov-Xu’s main results in [117]
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Let0 < T < 4+00. We assume that the collision cross section satisfies (1.10) with 0 < s < 1.
Then there exist some positive constants €9 > 0,co > 0 such that for all gy € Hlﬁo(R%v)
satisfying

lgoll1,0) < o,
the Cauchy problem associated to the spatially inhomogeneous Kac equation (1.11) admits a
weak solution g € L>([0,T]; H0) (R2.,)) satisfying

9l Lo (om0 g2,y + 12 gl L2 0,100 82, ) < Coe” ll0ll10)

with H = —A, + %. Furthermore, this solution is smooth for all time 0 <t < T, and satisfies
the Gelfand-Shilov and Gevrey type estimates:

1H)3IC>1, Yo<t<T, Vk >0,
ohan 2541
< 2s+1k(k!) 2s HgOH(l,O)7

|3+ (02" at0 LS

2)V6>0,3C >1, VO<t<T, Vk,l,q>0,
Ck+lta+l

2s+1 2s+1 2s+1

(kD)2 ()2 (g!) "2 lgoll(1,0)-

kAql aq
||’U avazg(t)HL‘”(R%’v) < tZSQ—':l(k—l—l-i—q—&-S)-l—é

The above results in [117], the authors conjectured that it remained still open to determine
whether the regularity indices 1+ 21—3 is sharp or not. Duan-Liu-Xu [52] and Morimoto-Sakamoto
[145] both studied the Cauchy problem for the Boltzmann equation with the initial datum
belonging to critical Besov space. In this thesis, we intend to study the inhomogeneous non-
cutoff Kac equation in critical Besov space and then improve the Gelfand-Shilov regularizing
properties with respect to the velocity variable (Main Theorem B). Comparing with the
result of [117], the well-posedness to the Kac equation is proved in critical Besov space EE(B%/E)
rather than in the Sobolev space L2(H}), and our Gelfand-Shilov index for the velocity variable

should be optimal.

1.3.3 Large time behavior for Navier-Stokes-Maxwell equations

Navier-Stokes-Maxwell equations (1.14)-(1.15) appear in the modelling of magnetized plasmas
under the frequency-collision conditions. If there is no Lorentz force coupled to self-consistent
electromagnetic fields, system (1.14) will reduce to the usual compressible Navier-Stokes (N-S)
equations. There are many results for the global existence and large time behavior of classical
solution for the N-S equations.

B Global existence of solutions for the N-S equations

For the following Navier-Stokes equations in the context of gasdynamics,

{ on + V- (nu) =0,

(1.32)
Oi(nu) + V- (nu® u) + Vp(n) = pAu,
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where the electromagnetic field is absent and thus the Maxwell system is decoupled from the
fluid dynamic equations. The N-S equations is hyperbolic-parabolic type. It is essential to
understand the interaction between the hyperbolic conservative part and the parabolic diffu-
sive part. As in [92, 162, 177], this kind of interaction induced some weak smoothness and
dissipation of the hyperbolic component of the coupled system. Kanel [90] firstly observed this
property in the proof of global existence of solutions to (1.32) in R. Later, in R3, Matsumura-
Nishida [137, 138, 139] showed the global well-posedness of the near constant equilibrium
solutions to the Cauchy problem or the initial boundary value problem by using the classical
energy method. Since then, many works are devoted to consider the perturbation theory of
the Navier-Stokes system, see [27, 32, 40, 64, 88, 132, 152].

B Decay estimates of solutions for the N-S equations

To the best of our knowledge, the study of the dissipative property of the equations (1.32)
is not only important for the global existence of solutions under small perturbations but also
useful for obtaining the rates of convergence of solutions trending towards the equilibrium.
The decay rate of solutions to the Cauchy problem of N-S equations has been extensively
investigated since Matsumura-Nishida achieved the first global existence of small solutions in
[137]. For the initial perturbation small in H3(R3) N L!(R3), Matsumura-Nishida [138] showed

[0 = oo, w) 12 S (1+1)75.
Subsequently, Ponce [152] obtained the optimal LP-decay rates
IVF(n = neo, w)l|r < (1 +8) 2075, 2<p<oo, 0<k<2.

For the optimal time decay of solutions, Kagei-Kobayashi [97, 98] proved the large time behavior
of solutions over the half space in R3. Kobayashi-Shibata [102] and later Kobayashi [95] gave
an analysis of the Green’s function and large time behavior of solutions for the compressible
N-S equations in an exterior domain of R3. By introducing the Sobolev space of negative order,
Guo-Wang [71] developed new energy approaches with regularity interpolation technique and
proved the optimal time-decay rates.

Let us emphasize that all the aforementioned works concern solutions with high Sobolev
regularity. Danchin [40] obtained the global existence for the isentropic compressible Navier-
Stokes equations in the L? critical regularity framework. Also, for the global existence results
in the general LP critical regularity framework, see Charve-Danchin [27], Chen-Miao-Zhang [32]
and Haspot [73]. Okati [151] performed low- and high-frequency decompositions and showed
the L2-decay rate in the framework of spatially Besov spaces. In the survey paper [42], Danchin
proposed another description of the time decay which allows to handle dimension d > 2 in the
L? critical framework. Later, Danchin-Xu [43] developed the method of [42] and established
the optimal decay results in the general LP critical Besov space in any dimension d > 2.

B Decay estimates of solutions for the general hyperbolic-parabolic systems



1.8 Comparison with known results 27

Kawashima [92, 94] and Shizuta-Kawashima [162] established a general approach for ob-
taining the optimal time decay of solutions in LP space with p > 2. In [92, 94|, Kawashima
applied the Fourier analysis to the linearized homogeneous system and constructed some com-
pensation function to capture the dissipation of the hyperbolic component in the solution and

then obtained an estimate on the Fourier transform U of the solution U as

cle?

U(t,€)] S e P [Ty (1.33)

for any ¢ and . From (1.33), it is well known the solution over the high frequency domain
decays exponentially while over the low frequency domain it decays polynomially with the rate
of the heat kernel. Besides, in [162], Shizuta-Kawashima proposed the Shizuta-Kawashima
condition in order to assure the time decay of solutions to linear systems of equations of
the hyperbolic-parabolic type. This condition played an important role when considering the
stability and large time behavior of the solution to the nonlinear system; see Hanouzet-Natalini
[79], Yong [184], Bianchini-Hanouzet-Natalini [20] and references therein. For the time decay
in LP space with 1 < p < 2, Zeng [186] provided a complete analysis of the Green matrix with
some sharp, pointwise bounds for the one dimensional viscous heat-conductive fluid system.
As an extension of [186], see Liu-Zeng [126] in the case of zero heat conductivity and Liu-Zeng
[125, 127] for the general hyperbolic-parabolic systems of conservation laws in R. Besides, with
aid of detailed analysis on the Green function, Hoff-Zumbrun [83, 84] relaxed the value of p
as 1 < p < oo and established the same optimal LP-decay rates of solutions towards diffusion
waves.
B A coupled system of the hyperbolic-parabolic type

For the following compressible Navier-Stokes-Poisson system

omn+ V- (nu) =0,
O¢(nu) + V- (nu ® u) + Vp(n) = —nE + pAu,
E=V®, V-E =ne —n.

Compared with the Navier-Stokes-Maxwell system, the magnetic field B is omitted and the
electric field F is generated by a consistent potential function ® therefore satisfying the Poisson
equation

A =ny, —n.

Note that the compressible Navier-Stokes-Poisson system is a coupled system of the hyperbolic-
parabolic-elliptic type and it has some special dissipative and time decay properties. Li-
Matsumura-Zhang [118] made a delicate analysis of the linearized Navier-Stokes-Poisson system
and investigated the spectrum of the linear semigroup in terms of the decomposition of wave
modes at lower frequency and higher frequency respectively. For the sufficiently small initial

perturbation in H® N L! with s properly large, they showed that the solutions in R? holds the
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following optimal decay rates

_3
1

In—neolle S A+6)75,  lule S (1+8)75,
IE|2 S (1+1)77,

for ¢ > 0. Later, Wang-Wu [179] obtained the pointwise estimates of solutions to the Navier-
Stokes-Poisson system through the analysis of the Green’s function; see Hao-Li [76], Hsiao-Li
[77], Zhang-Li-Zhu [187], Zhang-Tan [188] and the references therein for more results.

For the magnetohydrodynamic system in [17, 34], in the isentropic case, it is written as

on + V- (nu) =0,
Oc(nu) + V- (nu®u)+ Vp(n) = (V x B) x B+ pAu,
B+VXx(VxB—-—uxB)=0, V-B=0.

The above system simulates the interaction between the viscous fluid and the variable magnetic
field. Kawashima-Okada [101] and Kawashima [93] proved the global existence of smooth
solutions near constant equilibrium states in R and R?, respectively. Later, Umeda-Kawashima-

Shizuta [171] considered a rather general class of symmetric hyperbolic-parabolic systems:

n n
A2+ Az + L= Bz, (1.34)
j=1 gk=1

where z = z(t, z) is an R™-valued function, and A7(j = 0,1,2---,n), L and B*(j, k = 1,2,---,n)
are real constant matrices of order m. With certain dissipative assumptions (say, Shizuta-
Kawashima condition), they showed the same L?-decay rate as that for linearized N-S equations.
As a matter of fact, the general decay framework could be well applied to not only N-S equations
but also lots of other equations of fluid dynamics, see, e.g., [171]. Chen-Tan [33] and Zhang-Zhao

[189] showed the time decay rates for the nonlinear system magnetohydrodynamic equation.
For the fluid and kinetic systems in the presence of the electromagnetic field, firstly, about

the following Euler-Maxwell system

on + V- (nu) =0,
O(nu) + V- (nu®@u)+ Vp(n) = —n(E + u x B) — nu,

(1.35)
OiFE —V x B = nu,
0:B+V xE=0
with constraints
V-E=nex—n, V-B=0. (1.36)

Duan [48], Ueda-Wang-Kawashima [172] and Ueda-Kawashima [169] proved some global exis-

tence and decay estimates of solutions as follows.
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B Global existence and decay estimates for Euler-Maxwell system
e Duan’s results in [48]
Let s > 4 and (1.36) holds. Then there is a constant €g > 0 such that if

| (no — 1, w0, Eo, Bo)||ms < €o,

the Cauchy problem (1.35)-(1.36) with relazation admits a unique global solution (n,u, E, B)
with
(n,u, B, B) € C((0, 00); H*(R?)) N Lip([0, 00); H*~(R?)).

o Ueda-Wang-Kawashima’s results in [172]
Let s > 3 and suppose that the initial data satisfy (ng —neo, uo, Eo, Bo — Bso) € H®. Then there

exists a constant €9 > 0 such that if
[(no — Moo, U0, Eo, Bo — Boo)||lHs < €0,

the Cauchy problem (1.35)-(1.36) has a unique global solution (n(t,z),u(t,z), E(t,x), B(t,x))
with
(n,u, B, B) € C([0,00); H*(R*)) N C*([0, 00); H*~(R?)).

Moreover, the solution (n,u, E, B) converges to the constant state (neo, 0,0, Bso) uniformly in

x € R3 ast — co. More precisely,

|(n — neo, u, E)|Jjyrs—2.00 = 0 as t — o0,

| B — Boollpys—4,00 — 0 as t — oo,

where the asymptotic convergence of B holds true only by assuming the additional reqularity
s> 4.

o Ueda-Kawashima’s results in [169]

Let s > 6 and assume that the initial data satisfy (no — Neo, ug, Eo, Bo — Boo) € H* N L. Put
Iy = |[(ng — Moo, w0, Eo, Bo — Boo)||gsnri- Then there exists a constant eg > 0 such that if
Iy < €9, the global solution constructed in [172] satisfies the time weighted energy estimate and

admits the following decay estimates

10 (n — noo, t, B, B — Boo) ()| gs—21—s < To(1 4 1) 3/47F/2,
||6k(n — Neo,y U, E)||H5*2k*5 S IO(l + t)_5/4_k/21

T

Ha’f(n - noo)HHS*Qkf'? 5 IO<1 + t)—7/4—]<;/27

T

where taking 0 < s < [%]—1, 0<s< [%]—2 and 0 < s < [%]—3 with s > 7 in the three
inequalities, respectively.
Duan-Strain [54] showed the optimal convergence rates of solutions near equilibriums to the

Vlasov-Maxwell-Boltzmann system (V-M-B) in the two-species case. In the one-species case,
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Duan [49] proved the global existence of classical solutions to the V-M-B system under small
perturbation. Masmoudi [132] proved the global existence and exponential convergence rate of
regular solutions to the Maxwell-Navier-Stokes system over two dimensional bounded domain.
Later, Duan [50] proved the global existence and decay rates of solutions in the whole space as
follows.

B Duan’s results in [50] for the compressible N-S-M equations

RN _ ne P ne 120 B nee 1/2
Let s > 4. Set p=n—ny,v = p/(nw),E = ) E B = Ty B. Assume that

initial data (po,vo, Fo, Bo) € H® and satisfies the norm ||(po, vo, Eo, Bo) || m= is sufficiently small.

Then the Cauchy problem of the N-S-M equations (that is, the system without the damping term
nu in (1.14)) admits a unique global solution (p,v, E, B) with

(p,v, E, B) € C([0,00); H*(R?));
p € L*([0,00); H*(R?)), Vw e L*(]0,00); H*(R?));
VE € L3([0,00); H*%(R3)), V2B € L*([0,00); H*3(R?)).

Moreover, if ||(po, vo, Eo, Bo)|| ps+2np1 is sufficiently small, then the obtained solution (p,v, E, B)

satisfies

_ _5
ol SA+67Y Jolle S 1 +8)7F,
IE|2 S L+ 5B +¢), |Blle<SA+6)75

for any t > 0.

Also, Duan [50] obtained pointwise estimate of the linearized N-S-M system by using the
Green’s function and found that it admits the same time decay property with the one-species
linearized V-M-B system.

From the dissipative structure, the above some systems admit the regularity-loss type, such
as the compressible Euler-Maxwell system in [48, 169, 172] and V-M-B system in [54]; see other
many dissipative systems, quasilinear hyperbolic systems of viscoelasticity in [53], hyperbolic-
elliptic systems of radiating gas in [75, 99], dissipative Timoshenko system in [85, 87, 111, 141],
and a plate equation with rotational inertia effect in [44, 108, 109, 163]. Back to the results
in [171], the dissipation matrices L and B/*(j,k = 1,-- - n) are both assumed to be real
symmetric. In this setting, the typical feature of the time-decay property of solutions is that
the low-frequency part of solutions decays polynomially at the rate of the heat kernel, while
the high-frequency part has a better exponential decay. However, so far there are few general
results in case that L and B7* are not necessary symmetric, which is one of our motivation to
study the N-S-M equations (1.14).

On the other hand, since for the dissipative systems with the regularity-loss type, the extra
regularity will be posted than that for global smooth solutions, if the optimal time-decay rate
L' (R%)-L?(RY) is expected; see the results in [20, 49, 50, 87, 103, 169, 184].
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Thanks to the following key LP(R?)-L(R?)-L"(R%) estimates, which was recently estab-
lished by Xu-Mori-Kawashima [182] for a class of dissipative systems of regularity-loss type:
B L7 (RY)-LI(RY)-L"(R?) estimates in [182]

Let n(€) be a positive, continuous and real-valued function in R? satisfying

n(E) ~ { €[, 1l = 0;

€772, [€] = o0

for o1,09 > 0. For ¢ € S(R™), it holds that

1FH1€[Fe MO B()]|| o
k—j . ¢
< (A4t) PTG 8 gl o + (14 ) 7z 2P gkt (1.37)

~

Low— frequency Estimate High— frequency Estimate

for £ > d(%—%) L1<qgr<2<p<ooand0<j <k, wherev,(q,p) := g(%—%)(a >0). In
[182], Xu-Mori-Kawashima applied the above Lemma to Euler-Maxwell system and obtained
the optimal decay rate t=3/% as t — oo, provided that the initial data are in H3(R%) N L1(R?).
Thus, our another motivation to study the for the N-S-M system (1.14) of regularity-loss type
is to obtain the optimal decay estimates with the minimal decay regularity. In this thesis, we
obtain the global smooth solution to the N-S-M system (1.14) in R? and optimal decay estimate
with the minimal regularity index s = 3 in Sobolev space, which improved the result of Duan

[50].

1.3.4 Decay estimates of solutions for Timoshenko-Fourier system

In 1920s, Timoshenko [165, 166] derived the original model which consists of a coupled system
of two wave equations (i.e., without thermal effect in (1.20)). The Timoshenko system consists
of two coupled wave equations with non-symmetric relaxation, and describes vibrations of the
beam with shear deformation and rotational inertia effect. Normally, if the relaxation is not
symmetric, the dissipation is produced through the complicated interaction of the components
of the system, and the dissipative structure is of regularity-loss type.

B Global existence and Decay property for Timoshenko systems

The subject of stability of Timoshenko systems has received much attention in the last
years, and quite a number of results concerning uniform and asymptotic decay of solutions
have been established, see for instance [133, 136, 141, 142, 144] and references therein. In a
bounded domain, Timoshenko system is exponentially stable if the damping term ¢ is also
present on the left-hand side of the first equation, see, e.g., [153]. Soufyane [158] showed that
Timoshenko system could not be exponentially stable by considering only the damping term of

the form ;, unless for the case of a = 1 (equal wave speeds). A similar result was obtained by

"We would like to remark that £ > 0 in the case of p =1 = 2.
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Rivera-Racke [141] with an alternative proof. In the whole space, Ide-Haramoto-Kawashima
[85] performed the linear analysis for the Timoshenko system, and observed that the linearized

solution U decayed at different rates in cases of @ = 1 and a # 1. Precisely, one has
1050 ()| 2y S (14752 |Toll 1y + =100 | 2y (1.38)
for a =1 and
10T (1)l 2y < (14 0) 732 [Toll sy + (1 -+ ) 2105 Dol ey (1.39)

for a # 1, where k and [ are non-negative integers. Clearly, it verifies that the decay property

(1.39) is of regularity-loss type in comparison with (1.38), since (14-t)~/2

is created by assuming
the additional ¢-th order regularity. Consequently, extra initial regularity is usually posed for
the nonlinear Timoshenko system if the optimal decay rate could be expected, see for example
[87]. Ide-Kawashima proved the global existence of smooth solutions and achieved the decay
estimates of L'-L? type in H*(R) N L'(R) with suitably larger s (s > 7). Very recently,

Xu-Mori-Kawashima [183] got the similar stability results as the initial data in Bg”/f(R) N

Bz7¥2(R), that is, the regularity assumption was reduced heavily. Additionally, the interested
reader is also referred to [136, 142] for the Timoshenko systems with frictional damping, to
[110, 111, 133, 135, 144] for Timoshenko systems with memory effect and to [143, 155] for
Timoshenko system with Cattaneo’s law.

B Some results of solutions for Timoshenko system with Cattaneo’s law or
Fourier’s law

Racke-Said Houari [155] considered the following Timoshenko-Cattaneo system in R

o1t — (pr — V) =0,

Vit — [0(Vz)]e — (P2 — ) + Mpy + B, = 0,
01Gx + Bz = 0,

T0gt + 4+ KOy =0

for a small parameter 79 € (0,1]. They proved the global existence and the decay estimate
of solutions provided with the small initial data in H® N L'. Here, the high regularity index
is to control the weak dissipation. Recently, Mori-Racke [143] improved the results of [155].
They obtained the global existence in H? by energy methods without any negative weights and
proved the optimal decay estimate in H? N L' by using the LP-LI-L" estimates. The original
Timoshenko system consists of the first two equations with A = 8 = 0 and § = ¢ = 0 which
was founded by Timoshenko [165, 166] to describe the vibration of the alleged Timoshenko
beams. Also, the last two equations with # = 0 represent the heat conduction described by
Cattaneo’s law, which is the first-order approximation of Fourier’s law (§ + k6, = 0) with a
time-delay effect ¢(t 4+ 70) + k6, = 0. Formally letting 79 — 0, it has § = —k#,,, which gives

the Timoshenko-Fourier system (1.20) with parabolic heat conduction.
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To the best of our knowledge, few stability efforts can be available for Timoshenko-Fourier
system (1.20). In a bounded domain, Rivera-Racke [140] proved several exponential decay
results for the linearized version (1.22) of Timoshenko-Fourier system (1.20) and found a non-
exponential stability for the case of different wave speeds. Mori-Kawashima [134] studied
similar linearized Timoshenko-Fourier system, that is, removing the term ~1); in the second
equation of (1.22), they obtained the optimal decay estimates by using the pointwise estimates
of solutions in the Fourier space and a refinement of the energy method. Namely,

B Mori-Kawashima’s optimal decay estimates for Timoshenko-Fourier system
in [134]

The solution U of the linearized Timoshenko-Fourier system(removing the term i, in the

second equation of (1.22)) satisfies the following decay estimates for t > 0,
_11_1y_k e
105U (1)l 2y € (1 + 875575 Vol ory + 10500l 2y (1.40)

fora=1 and

[

)_

N|=

Ut <14+ 16 U, 1+ )2 |95y, 1.41
10U @) Lomy S (1+1) 2p |Uoll ey + (1 +1) 72107 " Ul 2(w) (1.41)

fora##1, where 1 <p <2, k andl are non-negative integers.

Also, Mori-Kawashima [134] proved that its dissipative structure is more weaker that that of
Timoshenko system. There is no global existence results and decay estimates for the nonlinear
system of Timoshenko-Fourier system studied in [134]. Since Timoshenko-Fourier system is
the nonsymmetric hyperbolic-parabolic system, the general theory of symmetric hyperbolic-
parabolic systems established by Umeda-Kawashima-Shizuta [171] can not be applied to the
Timoshenko-Fourier system with regularity-loss type, which is one of our motivations to study
the Timoshenko-Fourier system. On the other hand, since the weak dissipative structure,
seeking the minimal decay regularity in Sobolev space corresponding to the optimal decay rate
is our another aim of considering the Timoshenko-Fourier system.

In this thesis, we study the nonlinear Timoshenko-Fourier system (1.20) and obtain the
global existence of smooth solutions in H?. Also we show the optimal decay rate of L'-L?
type provided that the initial data are in H* N L' with s > 2. Here, we also obtain the decay
estimate of first derivative order of solutions provided that the initial data are in H* N L! with

s > 3 in the periodic space.
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In this chapter, we recall some definitions of functional spaces and its fundamental analytical
tools, see [19, 30, 37, 41, 46, 61, 74, 75, 86, 96, 100, 99, 130, 128, 149, 154, 185] for more details.

2.1 Notations

e Let X be an interval in [0,00) and Y be a Banach space over R(R?). Then, for a
nonnegative integer k, C*(X;Y) denotes the space of k-times continuously differential

functions on X with values in Y.

e S stands for the Schwartz space of smooth functions over R? whose derivatives of all order
decay at infinity. The space S is endowed with the topology generated by the following

family of semi-norms:

lullars := sup (1+ |z))™|0%u(z)| for allu € S and M € N.

zeR?
la| <M

e The set S’(R?) of temperate distributions is the dual set of S(R?) for the usual pairing.
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For any u € S, the Fourier transform of u denoted by @ or Flu| is defined by

Ve € RY a(€) = Flul(€) :== / e MLy (2)de.
Rd

The Fourier transform maps S into and onto itself, and the inverse Fourier transform is

given by the formula
F_lu(x) = Fu(z) = / e%ix’fu({)df.
]Rd

The Fourier transform is extended by duality to the whole S’ by setting

~

(,6) == (u, D)5
whenever u € §' and ¢ € S.
Derivatives: for all multi-index o € R?, we have
Floou] = (i€)*Flu] and Flzu] = (—i) 192 Fu].
Algebraic properties: for (u,v) € S x &', we have uxv € 8" and
Flu*v] = Flu|Fv].
The above formula also holds true for couples of distributions with compact supports.

Multipliers: if A is a smooth function with polynomial growth at infinity and u € S’(R%),
then we set A(D)u = F~1(AFu]).

(-,-) denotes the standard inner product in the complex vector space C? (d > 1).

The open ball (resp. closed) with radius R centered at 2o € R? is denoted by B(zg, R)(resp.B(zo, R)).

The shell {¢ € RYR; < |¢] < Ry} is denoted by C(0, Ry, Ra).

The notation A < B means A < CB for some “irrelevant” constant C. A =~ B means
A < B and B < A simultaneously.

For a multi-index o = (a1, ag, - - -, ag) € N, we denote

0% =0y10p2 -+ 0z4 and |a| =a1 +az+ -+ aq.
For a = (1,9, - -, aq) and B = (B1, B2, -+, Ba) € N%, 8 < a stands for 3; < a; for
j=1,2,---,d, and f < a stands for § < a and 8 # a. The Leibniz formulas:

0% (uv) = ud*v + Z CPo*Pudlu, Ya e N
B<a

where 05 for f < a are constants.
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e On R3, the differential operators V = (0y,,04,,0z;) and A = Z] 18% denote the
standard gradient and Laplacian with respect to x = (x1, x2, x3), respectively. Moreover,

the differential operators div(V-) and rot(V x) are defined by
3
V-ou= Z@xjuj, V X u = (Opyug — Opgua, Opgtty — Oyy U3, Op, Ug — Oy, u1)

for vector function u = (u1, ug, us).

2.2 Littlewood-Paley theory

One of the most important roles of Littlewood-Paley theory is to localize the frequency space.
Fourier transform transforms differential operations in physical space into algebraic operations
in frequency space. Littlewood-Paley decomposition writes the temperate distribution form as
the countable sums of smooth functions that are almost orthogonal in the sense of frequency
space. The advantage of this localization method is that for the distributions whose Fourier
transforms are supported in a ball or an annulus, it can make full use of Bernstein estimates to
realize the algebraication of the derivation or differential operation. Littlewood-Paley theory is
fundamental tools for researching nonlinear evolution equation. The Littlewood-Paley theory,
precisely, dyadic partition of unity and Bony’s decomposition are introduced as follows. The

reader is also referred to [19] for more details.

2.2.1 Dyadic partition of unity

Now, let us introduce a dyadic partition of unity in R%.

Proposition 2.1. ([19]) Let (¢, x) be a couple of smooth functions valued in the closed interval
[0, 1] such that Lp is supported in the shell C(0, 4, 3 {5 eRe: 3 < < 3} and x is supported
in the ball B(0 ,g = {{ eR?: €] < %} In terms of the two functwns, it holds that

O+ ¢(27%) =1, VeeR (2.1)
q>0
D e (279) =1, V¢ € R\ {0}, (2:2)
qEZ
Supp (277 )N Supp ¢(27%) =0  if |p—ql>2, (2.3)

Supp x N Supp p(27%) =0 if ¢>1. (2.4)
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IfC B(0, ) + C, then Cisa ring and it holds that

PCNAC =0, if |p—q|l>5, (2.5)

1

5 < 243 P (27%) <1, VEERY, (2.6)
q>0

1

2<q%¢ —g) <1, ve e R%\ {0}. (2.7)

Proof. Let us take a € (1, %) and denote C' = {{ € R?: a1 < |¢] < 2a}. We choose a
smooth function # valued in the closed interval [0, 1] such that 0 is supported in C with value
1 in the neighbourhood of C’. Firstly, we prove (2.3). If we suppose that 2°C N 29C # () and
that p > ¢. It turns out that 2P x % < 2% x % which implies that p — ¢ < 1. That is,

Ip—q| >2=2PCN2IC =0, (2.8)

which gives (2.3). We set

=> 627

qEZ
This sum is locally finite on the space R?\ {0} due to (2.8). Hence, the function S is smooth

on this space. As « is greater than 1, one has

J27C¢’ =r*\ {0}

qEZ

Since the function # is nonnegative and has value 1 near C’, it comes from the above property

that the above function is positive. Then we put

o(§) = o)

S(&)
Now let us check that ¢ fits. It is obviously that ¢ is smooth and Supp ¢ C C. Seeing that

the support of 6 is included in C, if | > %, we have

Tt
200 ZS = IR 29)

q€Z

where we have used the fact S(279%) = > 5 g(2-(Ptag) = Y ez 0(271E) = S(£). Since
(2.8), the function 1 — 3 -, ¢ (279€) is smooth. Set

=1-> ¢(27

920
and Supp x = B(0, ) by using (2.8) again. (2.4) is a obvious consequence of (2.8) and (2.9).
Hence, (2.1)-(2.4) is proved. It is clear that the ring C is the ring of center 0, of small radius
% and of big radius %. Then it turns out that

~ 3 10 1 8
2”Cﬂ2qC7é®:>(Zx2q§2px§0rﬁx2p§2qx§),
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which implies (2.5). As x and ¢ have their values in [0, 1], it is obvious that

—|—Z(p qf <1

q>0

Let us give the lower bound for the sum of squares. Since

=@+ Y e+ Y el2),

keN g=2k keN q=2k+1

then it comes that

1< 3(><2(£) T PRI +Y D PP (2% )

keN g=2k keN q=2k+1

With (2.3), we have

1:(2@(2_‘15))22290 1) +2 30 (279€) p (270 D) <23 P (27

qE€Z qEZ qEZ q€Z

Hence, the proof of Proposition 2.1 is completed. O
More generally, the Fourier transform of a tempered distribution u € S'(R%) is defined by

the dual argument in the standard way. Then the nonhomogeneous dyadic blocks of u = u(x) €
S'(RY) are defined by

Au=0 if ¢<-2;
A qu2 x(Du=VYxu= / U(y)u(z —y)dy with ¥ £ F1y,
R4
(2.10)
Agu 2 o(279D)u = 2999 (29 ) xu = B, % u

= 2qd/ O(2%)u(x — y)dy with ® 2 Flyo, &, (z)=29d(2%), ¢ >0,
Ra

where * is the convolution with respect to the variable  and F~! denotes the inverse Fourier

transform.

The Littlewood-Paley decomposition of a general tempered distribution u € &'(R%) reads

as the following lemma.
Lemma 2.1. Foru € §'(R%), we have u = > g>—1Dqu, in sense of S'(RY).

Proof. For any ¢ € S(R%), one has ¢(£) = (x(€) + Y0¥ (279€))p(€) in the sense of S(R?),
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then for any u € S'(R%), it follows from the Parseval formula that

@>

(u.9) = (2m) (i, 8) = (2m) = (&), (x(&) + D_ ¢ (27%) )

q>0

= (20~ (x(©(9).6()) + D (#(279)i(©). (&) ) )

q>0

= m) (& + X v (271€) Jal€), 6(6))

q>0

= ( Z Aqu,qﬁ).

qg>—1

)

This proves the Lemma 2.1. O

It is also convenient to introduce the following low-frequency cut-off:

Squ = Z Apu,
p<q—1
where Syu = A_ju for ¢ = 0, and Squ = 0 in the case of ¢ < —1. Because ¢(&) = x(£/2) —x(§)
for all ¢ € R?, it holds that

Squ=x(2"1D)u = 2qd/ U(29y)u(x —y)dy for all ¢ € N. (2.11)
R4

Let P be the class of all polynomials on R% and denote by S'(R%)/P the tempered dis-

tributions modulo polynomials. Therefore, the homogeneous dyadic blocks Aq are defined as

follows:

A2 o(279D)u = 299029 ) x u = By u = 29¢ /]Rd O 29y u(x — y)dy

for any u € S'(R%)/P and q € Z, where ®,(x) = 299®(29x). And for any u € S'(R%)/P, we

have
U= Z Aqu.

qEZ

2.2.2 Bony’s decomposition

When dealing with nonlinear problems, one often has to study the functional properties of
products of two temperate distributions v and v. Characterizing distributions such that the
product uv makes sense is an intricate question which is intimately related to the notion of
wavefront (see e.g [10] for an elementary introduction).

In this section, we shall see that very simple arguments based on the use of Littlewood-
Paley decomposition yield sufficient conditions for uv to be defined, and continuity results for

the map (u,v) — uv.
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For two temperate distributions v and v, we have the following formal decomposition:

uv = Z ApulAyv.

p.p’

The fundamental idea of paradifferential calculus is to split uv into three parts, both of them
being always defined. The first part, denoted by T,v corresponds to the low frequencies of u
multiplied by the high frequencies of v. The second term, T,u is the symmetric counterpart
of Tyv. The third and last term (the remainder term) corresponds to the dyadic blocks of u
and v with comparable frequencies.

This split device goes back to the pioneering work by Bony in [15]. In the following, we

adopt the following definition for paraproduct and remainder:

Definition 2.1. Let u and v be two temperate distributions. We denote

T,v= Z ApulApv = Z Sp—1uApv
P

'<p—2 p

and
R(u,v) = Z Apyulyv,
lp—p'|<1

where the above operators T and R are called “paraproduct” and “remainder”, respectively.
At least formally, we have the following Bony’s decomposition:
wv = Tyv 4+ Tyu + R(u,v).

Of course, it may happen that the product uv is not defined. However, the reader may
retain the following principles:

e The paraproduct of two temperate distributions u and v is always defined. This is due
to the fact that the general term of the paraproduct is spectrally localized in dyadic shells.
Besides, the regularity of T,v is mainly determined by the regularity of v. In particular, T,v
cannot be more regular than v.

e The remainder may not be defined. Roughly, it is defined as soon as u and v belong
to functional spaces whose sum of regularity index is positive. In that case, the regularity

exponent of R(u,v) is the sum of the regularity exponents of u and v.

2.3 Functional spaces

In this section, we introduce some function spaces.
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2.3.1 Functional spaces with one variable
Firstly, we give the definition of Lebesgue space for all LP integrable functions.

Definition 2.2. LP(R%)(1 < p < o00) denotes the space of measurable functions whose p-th

powers are integrable on R, with the norm

o = ([ tutoras) ™

L>®(R?) denotes the space of bounded measurable functions on R?, with the norm

||| poe = ess. sup |u(z)].
zeR?

Next, let us recall how nonhomogeneous Sobolev spaces H® are defined.

Definition 2.3. For s € R. A tempered distribution u belongs to H*(R?) if i € L2 (R?) and

1/2
lulla- 2 ([ 0+ 1ePylaRa) <.

It is classical that H® endowed with the norm |||/ zs is a Banach space and note that HO(R?) =
L2(RY).

Definition 2.4. For a nonnegative integer s, the s-th order Sobolev space W*P(R?) is defined

as
WeP(RY) = {u e LP(RY)[9% € LP(RY), |a| < s, with
1/p
fullwer = (3 o) < o},
|ar|=0

When s = 0, WOP(R?) = LP(RY); when p = 2, W*2(RY) is denoted as H*(R?), the norm of
u € H*(R?) is also defined as

e 2 (3 forul2:)”

|a|=0

In addition, we also define some weighted functional spaces LY(R%), H (R2). For p > 1,/ €

R, one defines
1/p
fully = ( [ 1o)uta) o)

full: = ( / (D2 (o) ) P "

where (z) = (14 |z]?)/2? and (D,) = (1 — A,)"Y/2.

Then, let us focus on Hélder spaces.

and for s € R
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Definition 2.5. Let r € (0,1). We denote by C" the set of bounded functions u : RY — R such
that there exists C' > 0 with

¥(z,y) € RTx R, Ju(z) —u(y)| < Clz —y|".

More generally, if r > 0 is not an integer, we denote by C" the set of [r] times differentiable
functions u such that 0%u € C™ I for all |a| < r.

The characterizations of Sobolev and Holder spaces naturally lead to the following definition

of Besov spaces.

Definition 2.6. Let s € R and 1 < p < oo. For 1 <r < oo, the nonhomogeneous Besov space
B? . is defined by

p,r

By, = {u cS'RY): u= Z Agu in S, with
q>-1
1/r

lullsg, 2 [ 32 @=1aqul)” | <oo},
g=—1

where in the case r = oo we set

lullBs . = sup 2%°||Aqu|| 1z < oo
g>—1

Definition 2.7. Let s € R and 1 < p < co0. For 1 < r < 0o, the homogeneous Besov space
B? s defined by

p,r

B;r = {u eS/P: u= ZAqu in S'/P, with
qEZ
1/r

N T
lullg,, 2 | D (218 gulp) <o},

qEZ

where in the case r = 0o we set

) — qs|| A
Jull gy, = sup 21 Al < o

2.3.2 Functional spaces with three variables

For the kinetic equations, such as Boltzmann equation, Landau equation, there is three variable
of function, that is, time ¢, position x and velocity v. Here, we define functional space with
three variables ¢, x,v. For the distribution v = wu(t,z,v), we define the Banach space valued

function space.
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LRV LR [P & LP([0, T; LP? (RY; LP*(RY)))
for 0 < T < o0,1 < p1,p2,p3 < 00, where the norm is given by

T p2/p3 p1/p2 L
||U||L§1L’U’2L§3 = /0 /Rd (/]Rd u(t, z,v) [ dﬂﬁ) dv dt

with the usual convention if pi,ps,p3 = co. We also define the following velocity weighted

T p2/ps3 P1/p2
HuHLmLpz LP3 = / / w(v)p2 (/ |u(t,x,v)]p3 d.fC) dv dt
rone 0 R4 R4

We present the definition of the Chemin-Lerner type space, which were initialed in [30].

norm

1/p1

Definition 2.8. Let s € R and 1 < g1, 09,p,7 < 00. For 0 < T < oo, the space E%E?(B;,T)
is defined by

L9Ie(B:,) = {u(t,m,v) €8 ullai o sy ) < oo} ,
where

1/r

T
llzezee s = | 3 (2% 0Agull e e

g=>—1
with the usual convention for o1, 02,p,r = 00. Similarly, one also denotes
1/r

. T
HUHZ?Z?(B;’T): E <2qSHAfJ“”L§1L§2L§)
qEZ

with the usual convention for o1, 02, p, T = 00.

2.4 Fundamental inequalities

2.4.1 A few properties of Besov spaces

Lemma 2.2. (19, 41]) Let k € N and (R1, R2) satisfy 0 < Ry < Ry. There exists a constant
C > 0 depending only on R, Ra,d such that for all 1 <a <b <00 and u € L*, we have
Supp @ C B(0, RiA) = sup [|0%ul| 0 < CFFARTIGD)|jy| Lo, (2.12)
|a|=k

Supp @ C C(0, Ri\, RoA) = CFIX\E||u)| e < sup [|0%u||ze < CEFFINF||u|fa. (2.13)
|or|=k
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Proof.  Arguing by rescaling with a dilation of size A, one can assume with no loss of
generality that A = 1. Now, fix a smooth function ¢ compactly supported and such that ¢ =1
in a neighborhood of the ball B(0, R1). We notice that & = ¢i. Hence, denoting g := F~'¢,

we get for all multi-index «

0%u(z) = y 9%g(y)u(z — y)dy = 9%g * u.

Taking advantage of Young inequality, we thus get
o o . 1
10%g *ull o < 10%llzellullps with = =1+ - ——.
Since for 1 < ¢ < o0,

10%gllLe < [[0%gl[Lee + 10%g] 11
< C|l(1+ [x*)?0% gl
< C||(1d = A)*((i€)* )| 1
< CF L

the proof of the first inequality (2.12) is completed. To prove the second inequality, we first
notice that the inequality on the right is a particular case of the first inequality. Next, we
introduce a smooth function @ with compact support in R%\ {0} and such that ¢ = 1 in a
neighborhood of the shell C(0, Ry, Rg). Using the following algebraic identity

PP =G +E+ -+ = D &G =) (19—,

1<ji,+Jk<d o=k

we have

S U9

= R

Giving the definition g, := F~1((—i€)¥|¢|72*5(€)), we write as 4 = @ so that

a=Y (gé,)c PO a(E) = D dal&)(i€) 0(8),

laf=k laf=k

which implies that

u= Z o * 0% u.

|a|=k

Making use of Young inequality, one can now conclude to the left inequality in (2.13). Hence,
It ends the proof of Lemma 2.2. ]

As a direct corollary of the above inequality, one has
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Remark 2.1. Let s € R and 1 < p,r < co. It holds that
1
Slulgesior < 1070l < Cllull oy, @ €R,
|0%ulls;,, < Cllull s, @20,
for some constant C' > 0.

The Littlewood-Paley decomposition is “almost” orthogonal.

Lemma 2.3. ([19, 41]) For any u € S'(R%) and v € S'(R%), the following properties hold:

ApAgu =0, if lp—q|l>2, (2.14)
Ag(Sp—1ulpw) =0, if |p—q|>5. (2.15)

Proof. Proving (2.14) is equivalent to prove
[p—ql > 2= Supp ¢(277) N Supp (279 = 0.
Then, (2.14) is given with (2.3) in Proposition 2.1. The proof of (2.15) is equivalent to prove
Supp ©(279) N (Supp @(277-) + Supp x(2°P7V)) =0, if |p—q| >5,
that is, to prove
2WCN22C =0, if |p—q|>5,

where C := B(0, 2)+C. With the aid of (2.5) in Proposition 2.1, (2.15) is obtained. Therefore,
the proof of Lemma 2.3 is completed. O

Additionally, it is crucial that we have

Lemma 2.4. Let 1 < p < oo and u € L%, then there exists a constant C' > 0 independent of
p,q and u such that

1Aqulle < Cllullrz,  [Squllry < Cllullzz.

Proof. With the form for Aju in (2.10), Syu in (2.11), and using the Young inequality, we
can prove the Lemma 2.4. O

Based on the Lemma 2.4, by the direct calculation we obtain

Lemma 2.5. Let se R and 1 < g,p,r < 0o. It holds that

HAqUHZg(Bgm) N ”uHZg(B;,,,)’ HSqUHEg(B;,r) S !\U\\zg(%)-

Lemma 2.6. (Topological properties, see [41]) Let s € R and 1 < p,r < oco. Bj . is a Banach

space which is continuously embedded in S'(RY).
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Proof. Let us first prove that B, is continuously embedded in S’. By definition, B;, is a

subspace of §’. To do this, for any test function ¢ in S, we have
(Agu, ¢) = (—1)F27% 3~ (Agu, 2979, (—29) % 0°¢).
la|=k

We see that for all k € N, there exists an integer M}, and a constant Cj > 0 such that
[(Aqu, )| < Cr27 9270 Agul|1o0) 16|11, -

da
With aid of Bernstein lemma, we have ||Ajul|pc < C297||Aqu||r». Hence, if k has been chosen

so large as to satisfy s — % >1—k, we get
[(Aqu, §)| < Cu279ul| s, |19lla1;.,s-

Sum up the above inequality over g, we can obtain that there exist an integer M and a constant
C>0forany ¢in S

[(u, &)| < Cllullg [0l as- (2.16)
Next, inequality (2.16) implies that for any test function ¢ in S, we have
[(w® —uD, ) < Ju® —uOpg N6s,  Vh,1EN.
Hence, sequence ((u(™, ¢)),en is a Cauchy sequence in R. Thus the formula

(u, ) := lim <u(”),¢>

defines a temperate distribution. By definition of the norm of By ., sequence (Aqu("))neN is
a Cauchy sequence in LP for any ¢. Thus an element u, of LP exists such that (Aqu("))neN
converges to ug in LP, that is, lim,_ec [|Agu(™ —ug[|» = 0. On the other hand, as the sequence
(u™),en converges to u in &', we actually have A, = u,.

Fix a Q € N and a positive constant €. Since for all ¢ > —1, Aqu(”) tends to Agu in LP,
for all n € N we have

(@18, )y )" = tim (30 A — ut) 1))

a<Q a<Q

1/r

Because the argument of the limit in the right-hand side is bounded by [Ju(™ — u(™)|| B;, and
(u(”))neN is a Cauchy sequence in By ., one can now conclude that there exists a ng (independent
of @) such that for all n > ng, we have

1/r
(@8, —w)ly) " <
q<Q
Letting @ go to infinity insures that (u(”))neN tends to w in B; ,. This proves the Lemma 2.6.
O
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Lemma 2.7. (Density, see [{1]) Let s € R and 1 < p,r < oo. The space C° of smooth

functions with compact support is dense in By . if and only if p and r are finite.

Proof. We consider firstly the case r < co. Let u € By . and £ > 0. Since r < oo, there exists

an integer ¢ such that

15
lu = Syullz;, < 5. (2.17)

Now let ¢ € C°. For any ¢’ € N, using Bernstein lemma 2.2 gives

2qls||Aq’(¢Sq“ - SqU)HLP < 2_q/2ql([s]+2)||Aq’(¢Squ - SqU)HLP
< 052_(1/ sup || 0%(¢Squ — Squ)||re-
|a|=[s]+2

From the above inequality, we obtain

l6Squ — Squllz;, < Cs (11 = @)Squller + sup [9%((1 = 9)Sqw)1» ). (2.18)
laf=[s]+2
Let us consider a sequence (¢, )nen such that all the derivatives of ¢,, of order less than or equal
to [s] + 2 are uniformly bounded with respect to n and such that ¢, = 1 in a neighborhood of
the ball B(0,n). If p is finite, combining Leibniz formula and Lebesgue theorem, we discover
that

lim (1= 6n)Syulir & sup 10°((1 = 6u)Syu) e =0,
n—00 o|=|[s]+2

Thus a function ¢ € C2° exists such that

Co(I0 = @)Squllr + s [0°((1 = )Squ)l») <
|ar|=[s]+2

| ™

Combining (2.17) and (2.18), we end up with
[¢Squ — ullps, <e.

As S,u is a smooth function, this completes the proof in the case p,r < oo.

Now, it is obvious that the set C;° of smooth functions with bounded derivatives at all orders
is embedded in any space B, . Therefore C2° cannot be a dense subset of BS ,. Finally, the
closure of C2° for the Besov norm By , is the space of temperate distributions u such that

lim 29%||Aqul|z» =0,
q— o0
which is a strict subspace of By ... This ends the proof of Lemma 2.7. O

We have the following embedding properties in Besov spaces.
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Lemma 2.8. (Embedding properties for Besov spaces on R%, see [41, 181]) Let s € R and
1 <p,r <oo. Then

(a) If s >0, then By, = LP N By ..

(b) Ifs<sors=sand1 <r <7< oo, then By, — B;F_

. Ls—d(L—1)
(c)llf} <p1<p2<ooandl <r; <ry<oo, then By , — Bp,r,"t 7?7 and By, . =
S—d(*—g)

By ™
(d) It holds that ngl — CNL>®. Ifp < oo, then Bzﬁp — Co, where Cy is the space of

continuous bounded functions which decay at infinity.

Proof. Let us first prove (a). We prove mainly (a) for r < oo without loss of generality. If
u € LP, we have
1A ulle = @ % ull o < Clullir.

On the other hand, if u € B;T, we get

. r\ 1/7 , 1/r
(2 (2 1dguler) ) ™ = (3 @ l1@gxulzs)”) ™ < oo,
q€L q€L
Hence, we also have
. ry1/r - 1/r
(3= (2=1dgule) ) " = (D@l xul) )" < +o.
q>0 q>0

Thus, we obtain
N 1/r
fullzg, = (3 (2 18gulr) ) < oc,
g>—1

That is, u € By .. On the other hand, it holds that the embedding B, < LP with s > 0. This
gives (a).

Considering that ¢"(Z) C ¢7(Z) for r < 7. And the first embedding in (b) is straightforward.
This shows (b). In order to prove the embedding in (c), we apply Bernstein lemma 2.2 and get

11
ISoullzrs < 1Soullzer  and || Aqullzes < 2°%F0 %) |Agullm if g €N

Multiplying the above inequality by 29° and summing up the resultant over ¢ > —1, we are led
to the embedding result in (c).
For proving that B;i/lp — Cp, we use again Bernstein lemma 2.2 and get that

d
[Agul| g < 272 || Agul o

This insures that the series ) >—1 Agu of continuous bounded functions converges uniformly
on R?. Hence u is a bounded continuous function. Besides, it is obvious that the embedding is
continuous. If p is finite, one can use in addition that C° is dense in Bzﬁp and conclude that
u decays at infinity. O

Also, it follows from [52] that
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Lemma 2.9. Let s € R and 1 < 91, 09,p, 7 < 00.
(1) If r < min{p1, 02}, then it holds that
HU||L§1L§2(B;1T) < ”UHZ%1Z52(B§,T)~ (2.19)

(2) If r > max{p1, 02}, then it holds that

||U||L§1L52 (B ) 2 ||UHE;1552(B;T). (2.20)

Proof. We only prove (2.19) in terms of 1 < r, 91,02 < +00, the other cases and (2.20) can
be proved similarly. Since go/r > 1 and g1/r > 1, by applying the Generalized Minkowski’s
inequality twice, one can see that

T 01/02 /ex
ST T QQ/T
gy, = | [ L (2 2 180ls) o) a
g>—1
e 1/eo1
T 2 T
/r
_ / /(quSTHAqu”gg)” dv dt
0 \7R N>
o1 1/01
T r/ T
< / 22‘18”(/ |agul g )" |
o \ S5 Rd @
T 971 QLI%
v/
_ / 22%’“(/ 1AguZae)” )
0 \g>—1 Re :
/r
T / r/o1
< 22‘187”(/ (/ 8gul%dv)” ”dt)
0 Rd *

g>-1
lullze: 222 3,
which gives (2.19). O

As in [180], we also obtain the relation between homogeneous Chemin-Lerner spaces and

nonhomogeneous Chemin-Lerner spaces as the following proposition.

Proposition 2.2. Let s € R and 1 < g1, 02,p, 7 < 00.
(1) It holds that
LYLeIP N LY L (Bs,) C LY L& (BS,). (2.21)
(2) Furthermore, if s > 0 and r < min{p1, 02}, then
LYLeIP N LY L (Bs,) = LY L% (B3, (2.22)

for any T > 0.
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Proof. The proof is the similar with that in [180] but with some changes. Here, we give
the detailed proof as follows. We prove mainly this proposition for r < oo without loss of

generality. For s € R, if u € LY LY L, we have
HAfluHLfrlLﬁng = ||‘1’*U||L§}L52L§ = CHUHL%Lﬁ?L’;'
On the other hand, if u € E%E?f (B;”r), we get

. r\ 1/ r 1/r
(Z (QqSHAquHLg}ngLg) ) = (Z (2qs||<1>q*u||L§1ngLg) > < +o0.

qE€Z q€Z

Hence, we also have
1/r

g r 1/r g5 r
(3 =Iaguleges) ) = (30 (210 xull o pe) ) < +oo.

q>0 >0

Thus, we obtain

ry 1/r
lullzeszen sy s = (2 (2 18gulla gz ) ) < +oo.
g>-1

That is, u € L L& (B;,). The formula (2.21) is obtained.
For (2.22), for s > 0 and » < min{ g1, 02} and with Lemma 2.8, we have the embedding as

LY L (By,) — L§ L (By,) — L§LE(By,) — LY L LY,

so if u € LY L% (B;,) then u € L& LE L.

For ¢ < 0, we get

|2

Therefore, for s > 0 and r» < min{p1, 02}, we obtain

. ry 1/r
gz g, = (30 (2 180uleg ienz) )

_ ||‘I)q*‘I’*U||L§1L§2Lg < CHAfluHL?Li)QLgv q<-—1,
LALPLE

||A,1u||L§1ngL£ < C||U”L§1L§2Lgv q=—-L

qEZL
. r\1/r . rN\1/r
< (X (@ 18aligizi) )+ (2 (20180l o) )
q<0 q=>0
. r\1/r . . ry\1/r
SC( > (QqSIIAqUHLglLsZLg) ) +0278HA—1UHL§1L§2L§+<Z<2qS”AquHL§1L§2L§) )
g<-1 920
s ry\ 1/r
< ClAruller oy + Cllull g oy + (D0 (27 18gul 2 0012) )
q20

< Cllullzp ez g, )

Hence, if u € Z%Egz(B;’T) then u € 5%1552(3577“). That is, if u € E%Z?(Bﬁyr) then u €
LELPLEN E%Z? (B;r). Together with (2.21), we obtain the desired (2.22) directly. The
proof of Proposition 2.2 is completed. O
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2.4.2 Analysis tools of Sobolev spaces

Lemma 2.10. (Young’s inequality for products, see [185]) Assume 1 < p,q < oo with %—i—% =1.
For all a,b,e > 0. Then the following inequalities hold

p )
av< 8 (2.23)
P q
€ 1
a-b< aP+ — b, (2.24)
ger=t

Proof. Obviously, it is true if a = 0 or b = 0. Assume a,b > 0. Set § = % and 1 — 0 = %.

Since the logarithm function is concave,
In(fa® 4+ (1 — 8)b?) > 61n(a?) + (1 — 0) In(b?) = In(a) + In(b) = In(ad),

where the equality holds if and only if a? = 9. (2.23) follows by exponentiating. For ¢ > 0,
substituting ' = ae'/?, b’ = be~ /P into (2.23) gives the Young’s inequality with e in (2.24).
O

Lemma 2.11. (Hélder’s inequality, see [96]) Assume 1 < p,q < oo with % —l—% = 1. For
x,y € C4RY), it holds that

d d p , 4
S ] < (zw) (zw)
=1 =1 i=1

Proof. If x =0 or y =0, it is certainly true. Assume z # 0,y # 0. Set X = (ch'l:1 |3 |P)1/P
and Y = (Z?:l |lys|7)1/4. Tt follows from Young’s inequality in Lemma 2.10 that

1/q

d d
2 : |23 yil < (1(’$i‘)p+1(’yi’)q)
XY — pr X q'Y
=1 =1
d d
11 11
=y 2l g 2l ==L
p i=1 q =1

which implies

d d /p , 4 1/q
S o < XY = (z w) (z w) |
=1 =1 =1
This ends the proof. O

Lemma 2.12. (Hélder’s inequality, see [19]) Let (X, u) be a measure space and (p,q,r) in

[1,00]? be
1 1 1

p g T
If (f,g) belongs to LP(X, ) x LY(X, ), then fg belongs to L" (X, p) and

Ifgllzr <[l fllzeligllLa,

in particular, in case of r = 1,p = q = 2, the above inequality is called Schwarz inequality.
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Proof. The cases where p = 1 or p = oo being trivial, we assume from now on that p is a real
number greater than 1. The concavity of the logarithm function entails that for any positive

real numbers a and b and any 6 in [0, 1],
flog(a) + (1 — 0)log(b) < log(fa + (1 — 6)b),

which obviously implies that
a®p1=% < fa + (1 - 0)b.

Hence, assuming that || f||z» = ||g||r« = 1, we can write

‘[;\ngdu==t/‘ﬂfW)pﬂgP)qdﬂ

/\flpdﬂ+ /Iglqd#

<4l
p g

The Lemma is thus proved. ]

The following lemma is an easy extension of Holder inequality.

Lemma 2.13. (/46]) Suppose that f; : X — C are measurable functions for i =1,---,n and

P1,- -, pn and r are positive constants such that p% + -+ p% = %, then it holds that

n n
| T15||,, =TTl
j=1 j=1

Proof. Firstly, we prove this inequality with n = 2, then for any p € [1, o],

mez/WWMSWWMWMm

where p* = p% is the conjugate exponent. Let p; = pr and ps = p*r so that + - = % are

desired. Then the above inequality becomes

Ifgllzr < I Fllzo[lgl ez

The general case is now proved by induction. Indeed,
n+1

H 114
j=1

where 1 + 1 =1 GQince L +... 4+ L = %, we use the induction hypothesis to conclude

q Pn+1 T p1 DPn
n
< H 15l s »
j=1

n
H H fj La
J=1

which combined with the previous displayed equation proved the generalized form of Holder’s

n n
Lr == HHlfjfTH—lqu S "Hlfj”Lq”fn+l‘|LPn+17
J= Jj=

inequality. O
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Lemma 2.14. (Young’s convolution inequality, see [46]) Let p,q,r € [1,00] satisfy

11 1
S =1+4-. (2.25)
P q r

If f € L? and g € L9 then |f|*|g|(z) < oo for m — a.e.x and

1f % gllr < Fllzellgllza- (2.26)

In particular L' is closed under convolution. (The space (L',%) is an example of a “Banach

algebra” without unit.)

Proof. Before the proof, let us understand (2.25) by the following scaling argument. For
A >0, let fy(x) := f(Az), then after a few simple change of variables we find

[\l = 2721 flle and (% g)x = Afa* oa.
Therefore if (2.26) holds for some p, ¢, € [1, 0], we would also have
1 % gllzr = AT % g)aller < AN Ao llgallze = A =HP79) £| gl o

for all A > 0. This is only possible if (2.25) holds.

Then we begin the proof. Let a, 8 € [0,1] and p1, p2 € [0, 0] satisfy p% + /p% —i—% = 1. Then

by Holder’s inequality,

f *g(z)| = ‘/f(w—y)g(y)dy‘ é/lf(:v—y)l(l_a)lg(y)“‘B)If(w—y)lalg(y)lﬁdy

<(fire- Z/)!(la)rlg(y)!(lﬁ)rdy)l/r ([15 =) o (J1ota) e

1/r
_ < [t~ y>|<1—a>r|g<y>|<1—ﬂ>rdy) T

Taking the r*" power of the above equation and integrating on z, we obtain

1f > gl < / </ f(x - y)l(la)’”lg(y)l(lﬁ)’"dy) da - || fl1Fer: 19117 5r,

1— 1-83
< N gl 2 1 £ 1155 119N, -

(2.27)

Let us now suppose, (1 — «a)r = ap; and (1 — B)r = pa, so (2.27) becomes

1 % gllzr < 1 f 7w gl 600

which is the desired (2.26) with

p:=_1—-a)r=ap; and ¢:=(1— F)r = fpa. (2.28)
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Thus, to finish the proof, it suffices to show p and ¢ are arbitrary indices in [1, 0] satisfying
1,1 1
st =1+5

If «, B, p1, p2 satisfy the above relation (2.28), then

T T
a= , B=
T+ p1 T+ po
and 1 1 1 1 1 1 2 1
r+ T+
-+ -=— p1+7 p2=f+f+f=1+f.
b q p1r T p2 T b1 P2 r r

Conversely, if p, ¢, r satisfy (2.25), then let « and § satisfy p = (1 — a)r and ¢ = (1 — B)r, i.e.

a="P_ 1 Py anap=""0_1_92<1
T T

r

Due to (2.25), it holds that o = p(1 — %) >0and g =q(1 — %) > 0, so that o, 5 € [0,1]. We

define p; := p/a and ps := ¢q/f, then
1 1 1 1 1 1

1 1 1
—+ —+-=pF-4+a-+ - + -
p1 D2 r q p r q r op

Hence, the proof of Lemma 2.14 is completed. O

Lemma 2.15. (Minkowski’s inequality, see [19]) Let (X, p1) and (Y, p2) be two measure spaces

and f is a nonnegative measurable function over X XY . For 1 <p < q < 0o, we have

HHf("y)‘|LP(X7u1)HLq(}/,M2) = H||f(:c, ')HLq(YM)HLp(X,m) :

Proof.  The result is obvious if ¢ = oco. If ¢ is finite, then, using Fubini’s theorem and

r:= (¢/p)’, we have

) el oy = ( L/ fp(w,y)dul(ﬂ:))pduz(y))

= sup / fP(x,y)g(y)dp (x)dpsz(y)
XxY

lgllzr (v,ug)=1
920

1
q

/ sup / 17, ) 9 () dpa(y) | dn (o)
X\ llglleryiug)=1Y

g>0

IN

Using Hoélder’s inequality we may then infer that

I G Nee ) | gy gy < (/X </Yf‘1(:v,y)duz(y)>qdm(x)>p7

which is the desired inequality. O

-
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Lemma 2.16. (Gagliardo-Nirenberg interpolation inequality, see [61, 149]) Let 1 < q,r < oo,
and let k > 0 be an integer. Assume that u € LI(R?Y) and D*u € L"(R?), then for the
derivatives Diu,0 < j < k, the following inequalities hold

1Dl e < ClID*ullgr |lull (2.29)

where 1% = % +at -5+ (1- a)% for all « in the interval % < a <1 and the constant C is a
positive constant depending only on d, k, j,q,r,«. There exist the following exceptional cases:
(1) If j = 0,7k < d and q = oo, then we make the additional assumption that either
u(z) = 0 as |z| — oo or u € LY (RY) for some finite ¢ > 0.
(2) If 1 <r < oo and k — j — d/r is a non-negative integer, then (2.29) holds only for a
satisfying j/k < a < 1.

Proof. We recall the proof of this Lemma that is given by Nirenberg in [149]. Here, we
state the main steps. The proof of the this lemma is elementary and contains in particular an
elementary proof for the Sobolev case & = 1. In order to prove (2.29) for any given j, on has
only to prove it for the extreme values of «a,j/k and unity. For in general there is a simple
interpolation lemma, that is, if —oco < A < A < Ay < o0, then with some simple calculations,
it holds that

A=A A=)
Ag—A1 Ag—A1
[l & SCHUHLﬁ K0

where ¢ is independent of u. For A\; > 0 it is merely the usual interpolation inequality for L?
norms. Now we turn the main proof of this lemma. Firstly consider the Sobolev case, a = 1.
It suffices to consider the case j = 0,k = 1, from which the general result may then be derived.
If r > d, (2.29) asserts that u satisfies a certain Holder condition, and an elementary proof
due to Morrey has long been known. We shall sketch it here for functions defined in a general
domain D.

Definition: A domain D is said to have the strong cone property if there exists positive
constants C, A and a closed solid right spherical cone V' of fixed opening and height such that
any points P, Q in D (the closure of D) with |P — Q| < C are vertices of cones Vp, Vg lying in
D which are congruent to V and have the following property: the volume of the intersection
of the sets: Vp, Vy and the two spheres with contents P, ) and radius |P — @], is not less than
AP — Q.

Now it turns to prove the assertion.

If w has first derivatives in L",r > d, in a domain D having the strong cone property, then
for points P,Q in D with |P — Q| < C, we have

P) —
[uP) = DN < o pu (2:30)
P—-QI
where ¢ is some constant depending only on C, A\, V,d and r. With (2.30), the estimate for

[u],_a, depending on the domain. Now, we prove (2.30). Set s = |P — Q| and let Sp(Sg) be
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the intersection of Vp(V) with the sphere about P(Q) radius s. Set SpNSg =S5. f Ris a

point in S, integrating with respect to R over S, we have
Volume of S - |u(P) —u(Q)| < /S |u(P) — u(R)|dR
+ /S lu(R) — u(Q)|dR = I1 + I>.
Because of the strong cone property, the left hand of the above inequality is not less than

As?lu(P) —u(Q)].

To estimate I1, introducing polar coordinates g,n about P, where n is a unit vector, we find

easily that I; is bounded by

0
/ ledwndg/ la—u’dggcos /
Sp 0 do Sp
< 608d</
Sp
4 1
< cps®—7 (/ )T
Sp

where dw is the element of area on the unit sphere, dz is the elementary of volume and the

ou

aQ!le

r—1
/ r ldl‘ "

Hoélder’s inequality is used in the last inequality. Similarly, the term I can be bounded by a
similar estimate with that for I;. This gives (2.30).
In the following, we return to functions defined in the full d- space.

Suppose r < d. We shall prove a strong formulation of (2.29), that is

ol g <2972 HH—HU (231)

For 1 < r < d, (2.31) follows from the special case r = 1, as one readily verifies, by simply
d—1
applying the inequality for 7 = 1 to the function V = |u|4—" and using Holder’s inequality in

a sultable way. Thus, it suffices to prove (2.31) for the case r = 1 as the following
1 ou 1
||U”L% <5 H Haixz”[d} (2.32)
(2

We prove (2.32) for d = 3. One holds easily that

ou
ﬁxl

‘ ( )‘—2 dxl’ 7::172’3’

where fz denotes integration along the full line through x parallel to x; axis. Thus, we have

[2u(z %S /‘&El‘dxl /‘8$2‘d$2 /‘&rg‘dlpg %
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Integrating with respect to 1 then x2 and then x3, with the aid of Schwarz’s inequality we

have

/|2u Widar < /‘6951‘(1961 //‘8@’(133261301 é //’g;)‘dmgdxl)é, |
//]2u )3 dardas < //‘axl‘dxldxg //‘8x2‘dx2dx1 ///‘axg‘dx 5,
[ ] feertar< ([ [ [l (f ] 150" (] ] [Tl

which is the desired (2.32) for d = 3. For general d the inequality is proved in the same
way with the aid of Holder’s inequality. It is worth pointing out here that the combinatorial
argument of [119] provide a nice shortcut for the proof of the isoperimetric inequality, which
is essentially (2.31).

Finally, for j = 0,k = 1, that r = d, this is the exceptional case. We claim that

1—q q

ulle < el Dull g fullfe, 0<q<p<oo,

where c¢; is a constant depending on d,p and ¢. It suffices to show this for large p and this is
easily done by applying (2.32) to the function v = |u[P=1/9) | and using Holder’s inequality in
a judicious manner.
Now let us consider the other extreme case a = j/k. It suffices to consider the case
= 1,k = 2, the general case may then be proved by induction on k. We claim that the
following inequality holds

1 1 2 1 1
|Dulle < E|D?ullf llullf, for ===+4-, 1<q,r<o0, (2.33)
P T

with ¢ an absolute constant. Inequality (2.33) follows from the corresponding inequality in one

£ = 2 1 1
OpulPdx < & /8§u7"dx a /uqdaz oS4 2.34
[10urds <o ( [102ura)™ ( [ julra) : (234)

p r

dimension

which holds for the full, or half-infinite line (with ¢ an absolute constant) by integrating with
respect to the other variables and applying Holder’s inequality.
The proof of (2.34) is slightly tricky and is based on the following inequality: On an interval

A, whose length we also denote by A, we have

P
/’(%u’pdx < Ep)\Hp_f(/ laﬁu!’“d:c)'“ —i—(_:p)\_(Hp_f)(/uqdm)
A A A

with ¢ an absolute constant. we shall prove that for any interval L : 0 < z < L the following

b
q

(2.35)

inequality holds

P

/OL |OpulPda < Qcp(/ooo ]8£u|rdaz)2% (/OOO |u|qd1:>ﬂ. (2.36)
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(2.34) follows easily from (2.36). Now, we prove (2.36). Suppose that ||02ul|r = 1. we
shall cover the interval L by a finite constant of successive intervals A1, Ao, - - -, each one having
as initial point the end point of the preceding. For m a fixed positive integer, choose first the
interval A : 0 <z < #, and consider (2.35) for this interval. If the first term on the right of
(2.35) is greater than the second term, set A\; = A, then we have

L\ 1+p-2
OpulPdz < 2ap(f)
b m
since ||0%u| - = 1. However, if the second term of (2.35) is the greater extend interval A
(keeping its left endpoint fixed) until the two terms of the right of (2.35) become equal. Since
1+p—2 >0, equality of these two terms must occur for a finite value of A. Let \; be the
resulting interval. Then we have

|0zu|Pdr < 26p< \8§u\rdx) T( ]u!qu) ..
A1 A1 A1

Starting at the end point of A1 repeat this process, keeping m fixed, choosing Ao, Ag, - - -, until
L is covered. There are clearly at most m such intervals ;. If we sum these estimates for
J x, |0zulPdz, with the aid of Holder’s inequality (recall that - + 2% = 1), we have

[t con e [t

By letting m — oo, the first term on the right of the preceding tends to 0 since > 1. Then
(2.36) is obtained and the proof of (2.33) is given. [

o0

P
\u!qdaf) 2q.

Lemma 2.17. (Moser-type calculus inequalities, see [100, 130]) Let s > 1 be an integer.
Suppose u € H*(RY),Vu € L*(RY) and v € H*Y(R?) N L=®(RY). Then for all multi-index o
with 1 < |a| < s. One has 0% (uv) € L*(R%),0%(uv) — ud*v € L?(RY) and

10%(wo)l 2 < Cs(llull o [ D10l g2 + [[oll o< | DIl .2), (2.37)
10%(uv) = ud™v| g2 < Cs([Vull o [ DI 0l g2 + ol e | DMl 2), (238

where || D% u|| = Plaj=s 10%ul|. In particular, if s > 441, then the embedding H*~1(RY) —

L>(RY) is continuous and we have
Juvlls1 < Collulls—lfolls—1, Va0 € HI(RY) (2:39)
and for all |a| < s,
0% (uv) — ud®v| 12 < Csllulls|v]ls—1, Yu,v € H¥(RY). (2.40)

Proof. Asin Moser [128], We shall be using the following version of the well-known Gagliardo-

Nirenberg calculus inequality:

10 porss < Collulljo2 07wl s, (2.41)
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where r >4 > 0. Applying a Holder inequality and then using the above inequality (2.41), for

d > max(|43|,|v|) we can obtain

10%(uo) g2 < Ca S [10°ud 0| 2
Bty=a
<Ca > N0%ullgzone1070]| f2s/1
Bty=a
1— ) ) 1— ) )
<Ca Y CaCyllull 2V 00ul) 2 o) V2 0w Y (2.42)
Bty=a
<Ca Y (ullzee 8]l 2) Vo ([[0] poc 80ull 2) 71V
Bty=a
< Cy([[ullz= | D1No] 2 + o] oo [| D] 2),

which is (2.37). To prove (2.38), we make the following modifications:

10%(ww) = ud™v|r2 < Co Y [[07ud 0|2
B+y=a,B#0
=Ca Y [07(0w)d70| |2,
|8+ <s—1

then replacing f by df and N by N —1 in (2.42), we obtain (2.38). (2.39) and (2.40) are given
by the embedding H*~'(R%) — L*°(R?) with s > % + 1. Hence, the proof of Lemma 2.17 is
completed. O

Lemma 2.18. (see [74, 75]) Let 1 < p,q,r < oo, and % = % + % Then we have
105 (wo)| e S llwllpal| 050l or + [[vl|zallOFull e for k>0, (2.43)
1105, Wzl e S 105wl Lal| 50l or + |Oavl|zal|Ofullr for k> 1, (2.44)

where [ , | stands for the commutator which is defined by [A, B] := AB — BA.

Proof. We state the detailed proof given in [74, 75]. Firstly, we show the following estimate:
Let k1 and k2 be non-negative integers and put & = k1 + ko. Let 1 < p,q,r < oo and
1/p=1/q+ 1/r. Then we have

100 w1052 us| oo S Nlusllpal|Ofus| e + |Juz || al|Ofua | oo (2.45)
To prove this, we put 0; = k;/k,j = 1,2 and define p; by

L_1-6; 6

pj q r

)
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where j = 1,2. Since 01 + 62 = 1, we have 1/p = 1/p1 + 1/pa. Therefore, applying the Holder
inequality and the Gagliardo-Nirenberg inequality, we have

|08 u1 082 us | 1o < (|0 wr || Lo || OFus|| 1o
—0 k —0 k
< (el 1105w |9 ) (luall ;2 #2105 ua | 52)
k k
< (lull o l| 0% us || )% (||| Lal|OFua || £ )™

< llua |l o l|OFus| o + [|uz|| al|Ofual| -,

where we have used the Young’s inequality based on the relation 6; + 02 = 1. This proves
(2.45). Since 9¥(uv) consists of terms of the form ¥ udk2v with ki + ka = k, the estimate
(2.43) directly follows from (2.45).

Next, we show (2.44) for k > 1. We see that [0F, u]0,v = OF(ud,v) — ud%(0,v) consists of
the form 0% ud*?(0,v) with ki + ko = k, where k; > 1,k > 0. These terms are written as
Ol (0,u)0%2 (04v) with Iy + ko = k — 1, where I; > 0,ky > 0. Therefore, applying (2.45), we

have

105 (82w) 052 (8x0) |2 S 10ull o |05 Dol zr + 100 £a| O~ Ol 2o

S N0wull LallOgvl e + 10wvll o 05wl 2.

This shows (2.44). Hence, the proof of Lemma 2.18 is completed. O
In [74, 86], the authors showed a variant of the estimate (2.45) as the the following.

Lemma 2.19. ([74, 86]) Assume that n > 2 is an integer, ki,ko,- - -, k, are non-negative
integers, 1 <p,q,r < oo and 1/p=1/q+1/r. Put k =k +ka+---+ k. Then there ezists a
positive constant C = C(n,p, q,r, k) such that the inequality

| ﬂ(afjupum < Cllull =2 ull s |05ul - (2.46)
j=1
holds for any u = (u1,ug,- - -, up).
Proof. Define p; by
1 k; 1 kil
PR e A T

for j =1,2,---,n. Then it holds that p < p; < oo for j =1,2,---,nand 1/p=1/p1 +1/p2 +
-+ 1/py,. Therefore, by Holder’s inequality we obtain

JUCE

n
k.
< T 10 ujll o (2.47)
j=1
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Here, Gagliardo-Nirenberg’s interpolation inequalities imply that

k k

T R
10 us | £

k. —_ L
102" wjll s < Cllugll g

=TT
< O(llujll o lugllfa )~ F 105wl £
Lya-4)

(1-=1 :
< Ollujllpoe ™

04
lusllze™ "

% ki
|azu]||llfr

Substituting the above inequality into (2.47) yields the desired inequality. O

Lemma 2.20. (/99]) Let 1 < p,q,7 < co with 1/p = 1/q+ 1/r, and let k be a non-negative

integer. Suppose that f(u) is a smooth function of u satisfying f(u) = O(1). Then we have
185 (f (wu) |z < O+ [lul| o)™ |05 ul| 2, (2.48)
105 (f (w)u™) e < CL+ [Jull o) * full 3 lfull 2o | O ul - (2.49)

where N is an integer with N > 2. Here C = C(||u||1) is a quantity depending on ||u||p~ and

is regarded as an increasing function of ||u||fee.
Proof. The proof is from [99]. Firstly, we prove (2.48). The estimate (2.48) is trivial for
k =0. When k > 1, we have

O (f(w)) = f(w)dgu + (05, f(w)]u. (2:50)

Obviously, we have | f(u)0%ul» < C||0%ul|zr for some C = C(||ul/z=). On the other hand,
[0k, f(u)]u consists of the terms of the form

J
where 2 < J <k+1,k=ki + -+ ks, and g(u) = O(1). By using (2.47) with ¢ = oo and

r = p, we can estimate this term as
! k
j J— k
9w qamﬂuHLp < Cllull = 105ull o,
]:

where C' = C(]|u||p~). Therefore, we obtain

k+1
195 (f (ww)l|Le < CllOullLs +C Y [lully= 05wl 2o
J=2

< C(L A+ [lullz=)*(|05ul Lo
Next we prove (2.49) for N = 2. By applying (2.43) and (2.48), we get
105 (f(w)u?) Lo < CUOF(f (wyu) [ erllull o + |Lf (w)ullal|Oyul )
< C((L+ [lull =) l|05ul e lfull L + [lull o[ D5 ull )
< C(1+ [lullpee)*|full o || 05 ull -
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which prove (2.49) for N = 2. The general case can be proved by the induction argument on

N so that we omit the details. Hence, the proof of Lemma 2.20 is completed. O

Lemma 2.21. (Gronwall’s inequality, see [46]) Let x(t), f(t) and g(t) be real continuous func-
tions and g(t) > 0 for t € [a,b]. Suppose that for t € |a,b] it holds that the following inequality

t
o0 < 1)+ [ g(s)a(s)ds,
Then, fort € [a,b] it holds that

/ F(s)g(s) exp [/t (T)dT] ds.

Proof. Consider the function y(t f g(T)x(T)dT,t € [a,b]. Then we have y(a) = 0 and

y'(t) = g(t)z(t) < g(t)f(t) + g(t) / g(s)x(s)ds
= f(®)g(t) +9@)y(t), € la,b].

Multiply the above equality with exp(— f g(s)ds) > 0, we obtain

% (y(t) exp (— /atg(s)ds>> < f(t)g(t) exp (— /atg(s)ds> _

Integrating the above inequality over [a,t], one has

y(t)exp( / > / e exp< /aTg(s)ds>dT.
/f em<[}@¢>m,te@m

Thus, the proof of Lemma 2.21 is completed. O

Then we have

Lemma 2.22. (see [129, 154, 157]) Let a > 0 and b > 0 be constants. Then, it holds that
t .
/ (14t —5)"%1+5)"bds < (1+¢)~ ™06 4f max(a,b) > 1,
0
¢
/ (141t —s)"%1+s)"ds < (14t)" ™M@ 1n(2 4+ 1), if max(a,b) =1,
0

t
/ (14t —s)"%1+s)"ds < (14+)727° if max(a,b) <1
0
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Proof. We write

t/2
/(1+t—s) ¢(1+s) bds— / // Nds = Jy + Ja.
2

We estimate Ji, Jo in case of max(a,b) > 1 and max(a,b) < 1. If max(a,b) > 1 and assume

a < b with loss of generality, we have
t/2 t —b t
Ji+J2 < (1—|—t)_“/ (1+s)_bds+ (1—1—5) / (I+t—s) s
0 t

<A+t <1 —~ (1 - ;)_b+1> t ( ;>_b <<1 * %>_a+1 - 1)

S+t

—_
+
[

which implies the first inequality. On one hand, if max(a,b) < 1 and assume a < b, for J; we

get

t/2
i S (1+t)“/ (14 5)"bds
0

(14+t)*In(1+%) if max(a,b) =1
S b1
~ 1\ a +t)—“(1 +(1+Y) ) if max(a,b) < 1
< (14+¢)"*In(2+1) if max(a,b) = 1;
~ (1+¢t)t-a-b if max(a,b) <1

b rt
Jy S / 1+t—s)%s
t/2
—b —a+1
: (< 1)
< (1 +t)~® if max(a b) =
~ (141¢)- if max(a,b) <

Combining the above inequalities gives the last two inequalities in Lemma 2.22. Hence, the

proof of Lemma 2.22 is completed. O
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In this chapter, we are devoted to study global existence of solutions to the inhomogeneous
nonlinear Landau equation with Maxwellian molecules motivated by the results of [52, 122,
145]. Here, we consider this Cauchy problem in Besov space if the initial datum is a small

perturbation of the equilibrium distribution in the Chemin-Lerner space Z%(Bg/f)
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3.1 Description of problem

In this chapter, we study the Cauchy problem (1.1) with Maxwellian molecules, since the
Landau operator enjoys very nice spectral property in that case. Here, we are concerned with

the Landau equation around the absolute Gaussian distribution in R3:
_3 _hP
u(v) = (2m) HeF
With the perturbation F(t,z,v) = p(v) + /n(v)g(t, z,v), the Cauchy problem (1.1) can be

rewritten as

{6tg+v-vxg+£g=L(g,g), 3.1)

9li=0 = go,
with Fo = p(v) + y/i(v)go, where L(g),L(g, g) are given by (1.3)-(1.4).

There are many results about the well-posedness to the Boltzmann and Landau equation,
see for example, [57, 58, 62, 82, 146, 174, 175] and references therein. However, there are
few results concerning the global existence for the Landau equation in spatially critical Besov
spaces. Recently, Duan-Liu-Xu [52] first introduced the Chemin-Lerner type spaces involving
the microscopic velocity and established the global existence of strong solutions near Maxwellian
for the cut-off Boltzmann equation in the critical Besov space z%z%(B%Q) Morimoto and
Sakamoto [145] studied global solutions of the Cauchy problem to the non-cutoff Boltzmann
equation in a critical Chemin-Lerner space by using the triple norm that was introduced by
Alexandre-Morimoto-Ukai-Xu-Yang [6, 9].

Motivated by those works, the main goal of this chapter is to consider the global existence of
solutions to (3.1). We investigate the Cauchy problem (3.1) with Maxwellian molecules (7 = 0)
in this thesis. Our main result is shown as the following theorem (also, Main Theorem A in
Chapter 1).

Theorem 3.1. There exists a constant g > 0 such that if go € E%(Bg/f) and

HgOHE%(Bg’/f) < €0,

then the Cauchy problem (3.1) admits a global solution satisfying
ge LFLA(BYY) and L3ge L2L2(BYY).
Moreover, if Fo(z,v) = p(v) + /m(v)go(z,v) > 0, then F(t,z,v) = p(v) + /m(v)g(t, z,v) > 0.

B The schema of proof of Theorem 3.1

The proof of Theorem 3.1 is elaborated and its schema is stated as followings.

e Spectral analysis of Landau collision operator (Section 3.2)

Firstly, we recall the spectral analysis properties and some key estimates of Landau collision

operator, which will be used in subsequent sections.
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e Nonlinear estimates of Landau collision operator (Section 3.3)

Nonlinear estimates of Landau collision operator play a key role to our proof. Here, the
methods of estimating collision operator in [52, 145] will be ineffective because the collision
operator between the Boltzmann equation and Landau equation are fundamentally differen-
t. Recently, Lerner-Morimoto-Pravda-Starov-Xu [114] showed that the linearized non-cutoff
Boltzmann operator with Maxwellian molecules is exactly equal to a fractional power of the
linearized Landau operator which is the sum of the Harmonic Oscillator and the spherical
Laplacian. Li-Xu [122] proved some estimates of nonlinear Landau term by using spectral
analysis and proved the existence of weak solution for the Cauchy problem with initial datum
belonging to Shubin space of negative index which includes the probability measures. With the
aid of these spectral analysis results, we establish some new trilinear estimates of the Landau
collision operator.

e Commutator estimates (Section 3.4)

To improve the regularity of weak solution, we proved some commutator estimates for the
Landau collision operator, which will be used to prove the local existence of solutions.

e The local-in-time existence (Section 3.5)

Firstly, we are devoted to the local existence to following linearized Landau equation in

spatially critical Besov space E%Oig(Bg’f)

{8tg+v - Veg+Lig=L(f,g9) — Laf, (32)

g(t, €L, U)|t:0 = 90(‘7:77))‘

Step 1) The existence of weak solution

Due to the fact that the dual space of E%"E% (BS/ 2) is complicated. Usually, the dual space of
L*° (1) appears as the finitely additive finite (signed) measures which are absolutely continuous
with respect to pu, equipped with the total variation norm. To do this, we firstly try to find
a weak solution g to the linearized equation (3.2) in the wider space L>([0,T]; L*(RS ,)) by
using the duality argument and the Hahn-Banach extension theorem in Theorem 3.13.

Step 2) Mollifier of weak solution

Since for g € L>([0,T]; L*(RS ,)), for the terms in (3.2) we only have

V- Vg€ Hx_lLQ Lig € LiHv_,E% L(f,g) € LiHv_,zm Lof € Bz,/22,1Hv_,32'

v,—1»

So, we need to mollifier the function g and take its as right test function. Here, taking different
1> 6,8 > 0, we use a weighted function Wy (v) = (§'v)"" and mollifiers M?(D,), Ss5(D,)
defined in Section 3.4. So that we can take

Wy S5(M°)2SsWyg € Hf H} ,,

as test function to the equation (3.2). The estimates of commutators with the mollifier operators

Wy, Ss and M? are complicated and shown in Section 3.4. We also need to mollifier the function
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f as following fn = Zévz:ll A, f for N € N, then for fy we get
TooT2( i+
fn € L%OLU(H:E oo) and |UNHE§’9Z%(B§{E) < Hf”f;?i%(BS(f)'

For the sequence {fy, N € N}, we consider a sequence of weak solution {gn, N € N} C
L>([0,T]; L*(RS ,)) to the following Cauchy problem

{ OigN +v - Vegn + L1gy = L(fn,9n8) — Lafn, (3.3)

gN(t,-T,U”t:O = gO(xa U)'

Step 3) Regularity of weak solution in velocity variable
For the weak solution gp, based on these commutator estimates given in Section 3.4, we

prove Proposition 3.14
~1
lgnllzse a2 + 17wl 21212 < Cligolliarz + CVTISaf|lpserar2

under the assumption that | f|| is sufficiently small. Remark that we can’t do the

Foo T2 3/2
iteration by using above estimaigsfvs(frfé;)there is no regularity in position variable x for the
weak solution gy while f satisfies the condition f € E?E%(Bg’f) and its norm is small.

Step 4) Regularity of weak solution in position variable

In this step, we mainly prove the regularity of weak solution g in position variable x for

Besov norm, we obtain Proposition 3.15 that
~1
HQNHE%OZ%(BS’/E) + H£2gN||Z%E12)(Bg’/12) < +00.

But here, we can only get a upper bound dependent of N. So that this step is a technical step,
but very important to give a rigorous proof.
Step 5) Energy estimates in Besov space

We prove the following energy estimate for the weak solution gy in Proposition 3.16,
51
HgNHZ%"Z%(BS’/f) + ||£29NHZ%Z%(BS’/12) < CHQO”Z%(BS’/IQ) + C\/T||S2f||Z%Z%(B;/12)

The convergence of this sequence is then standard. The local existence to the linearized Landau

equation is proved in Theorem 3.6 and shown as

g(t,v,x) € EOTOE%(B;’/IQ) and E%g(t,v,x) € E%E%(Bg’/f)

Step 6) The local existence to the nonlinear Landau equation

Finally based on the Theorem 3.6, we employ the Picard’s iteration scheme to prove the
local existence of solution to (3.1) in Proposition 3.17.

e The global-in-time solution (Section 3.6)

A priori estimates is crucial to develop the local existence of solution to global existence.

To obtain that, the following steps is necessary.
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Step 1) Estimate on the macroscopic dissipation

We cannot deduce the dissipative estimate for the macroscopic part Pg directly. To over-
come the difficulty, as in [52, 145], we shall perform the macro-micro decomposition and deduce
a fluid dynamics system of macroscopic projection of g. Consequently, by using the standard
energy method, we can obtain the estimate on the macroscopic dissipation in Proposition 3.18.

Step 2) A priori estimate

With the aid of macro-micro decomposition, we can obtain another form of estimate on
the nonlinear term L(g, g) in Proposition 3.19. With Propositions 3.18-3.19, a global priori
estimate is given in Proposition 3.20. Combining the local existence result in Proposition 3.17
and a priori estimate in Proposition 3.20, we prove the global-in-time existence in Theorem 3.1

by the standard continuity argument.

3.2 Spectral analysis of Landau collision operator

We recall some spectral properties of Landau operator briefly, see [16, 114, 121, 122] for more de-
tails. Firstly, one has an explicit expression for the linearized Landau operator with Maxwellian

molecules.

Lemma 3.1. ([114]) The linearized Landau operator with Mazwellian molecules can be written

as

1
Lg=—p 2 (QL(m Vig) + Qr(v/nug, u)) = L19 + Lag,
where L1 and Ly are equal to

o> _d

L1=(d-1)(-Ay+ 7 5) — Aga-1,
2 4 2 d
N i - WA  } L E

Here and below, Aga-1 stands for the Laplace-Beltrami operator on the unit sphere S and

Pr(k = 1,2) is the orthogonal projection onto the Hermite basis.

There is the algebra property of nonlinear Landau operators on the basis {¢n i} (see
[121, 122] and referencein), for n,l € N;m € Z,|m| <[, let’s denote

Pndm{) = <ﬂ I(n fl - ?»/2))1/2 (%)l g <|U2’2> " <|Z|> ’

where I'(-) is the standard Gamma function, and — L%a) is the Laguerre polynomial of order

«a and degree n,

n

L @) = (1"

r=0

Fa+n+1)
(n—mT(atn—r+1)"

n—r,
)
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—Y™(0) is the orthonormal basis of spherical harmonics

204+ 1 (1= |m[)! jm| m¢
Y — P v < .
(o) = \/ (+ |m))! (cosB)e lm| <1

The notations o = (cos6,sinf cos ¢,sinfsin @), where the angle 6 is the zenith angle and
belongs to (0,7), the angle ¢ is the azimuth angle and belongs to (—m,m); N;, are the nor-

malisation factor and Pl‘m‘ is the Legendre functions of the first kind of order | and degree

[m| l
ml o\ _ oylmid™ (1 d l
B =0-a)> 5 <211'de( _1)>'

m|

From [114, 116], we see that those spherical harmonics are equivalent to the real spherical
harmonics ﬁ(a) for | > 0 and —! < m < [, which are defined by YOO(O') = \/% and for any
[>1,

2lilP (cosf), m=0;

Y, (0) = 2l+1 gierB P‘m‘( osf)cosmp, m=1,2--- I

V 212—;1 gé_’_IZB'P‘m‘( 9) sin mgb, m = _17 _27 Tty —l.

Therefore, we deduce that {¢n;.m} C S(R?) and

©0,0,0(v) = /1, ©o,1,0(v) = v1\/ﬁ,

Vg + U3

vo,1,1(v) = 7 Vi, @o1,-1(v) = 7 Vi,

P100(v) = \/z (g ’v2|2> Vi

In addition, the explicit form of the eigenfunctions {@g 2 m,,|ma| < 2} satisfies that

po20(v) = /5 (30f = 5101°) VA, po2a(v) = eetpnes g,

—v2 v
Po21(v) = PG poza(v) = (g +i y;) NG
(’U) = ('U;\_/’%S _ Z’U\Q/’%g) \/ﬁ

©0,2,—2
and the eigenfunctions {¢1,1,m,,|m1| < 1} are given by

e110(0) = 755 (5~ vl i ealv) = e (5= [of?) s
Pr1-1(0) = g (5= [vf?) 275 V.

In the following, we recall the algebraic property of nonlinear Landau operator that is given
n [122].
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Proposition 3.1. ([122]) For n,l € N, |m| < [, we have

(1)  L(90,0,05@nim) =—2C2n+1) + 1 +1)) Lnim;
(”) L(@O,l,mla San,l,m)
= A;L,l,m,m1 Pn+1,1—1,m1+m + Az,l,m,nu Pn,l+1,m1+m> v |m1’ < 1;

4+/3(n+1)2n + 21 + 3
(Z”) L(Sol,o,Ov @ml,m) = \/ ( )é )Son—l—l,l,m;

. 1
(1v)  L(p0.2mas Prim) = Aplmoms Prt2l—2mtma
3 .
+ An,l,m ma2 ¢n+17l7m+m2 + An,l,m,mQ Qpn,l+2,m+m2; v ’m2| S 2)

(U) L(Spﬁjfnygon,l,m) =0, V2n +l~> 2, ’ﬁl‘ < lN

where the coefficients are defined as follows

_ s m my—m
2 - =4\/g(l—1)\/W/SQ Y™ (@) Y™ (w) Y, (w) de;

AT 4\/§(l +2)V2n+20+3 | V" (w)Y"(w)Y " (w)dw;
S2

n,l,mmy

and

n,l,mmzz \/ \/471_‘_2 n+1 / Ym2 Ym )Y 52 m(w)dw;
A2 my = ,/ \/2n+1 )(2n + 21 + 3)

/ Y @)Y @)Y, )

AD s = — \/7\/2n+2l+5 )(2n + 21 + 3)

o Yy (@)Y (W)Y (w)dw.

It follows from Proposition 3.1 that, for suitable function f,g,

(L(fv 9)7 @n,l,m) 12
== (2(2n + l) + l(l + 1)) f0,0,0(t)gn,l,m(t)

+ Z AL it my Jo1my (8 n—1,141,mx (2)
[m*|< 41, Jma <1
mi1+m*=m

+ Z A:,lfl,m*,ml fO,l,ml (t)gn,lfl,m* (t)

m*| < 1—1,|my|<1
mi+m*=m

N 44/3n(2n + 20+ 1)

3 J1,0,0(t)Gn—1,1m(t)

(3.4)
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+ Z A’}L—Z,l+2,m*,m2 f0,2,m2 (t)gn—Q,l-f—Q,m* (t)

[m*|<142,|m2|<2
m*+mo=m

+ Z Ai—l,l,m*,mng,ZmQ (t)gn—l,l,m* (t)

Im*|<1,|ma|<2
m*+mo=m

+ Z A?z,l—?,m*,mz f0,2,m2 (t)gn,l—Q,m* (t)

m*|< 1=2,Jma <2
m*+mo=m

with the conventions
Inim =0, if n<0 or I<0
and
(L£(9), Pntm) 2 = Anit Gntm(t)
with g 1.m(t) = (9, @nim), .l €N, m € Z, Im| <.

Furthermore, those coefficients A, A2 and A? satisfy the the following estimates.

Proposition 3.2. (/122]) It holds that
i) Forn,l € N, n > 2,

2 16n(n—1)
D S M S (3.5)
lm*|<l 3
[m|< 142, me|<2
m-+mo=m™*
ii) Forn,l € N, n > 1,
Ai—l,o,o,o = 0;
2 4n(2n+20+1)
2 . 3.6
max 3 || T VI 59)
|m|<1,|m2a|<2
m+mo=m*
iit) Forn,l e N, [ > 2,
2 _(2n+20+1)2n+20-1)
o Z A —2,mms| < . (3.7)
Im*| <1 2
Im|<1—2,|m2|<2
m+mo=m*
We prove the following estimates for the coefficients A~ and AT .
Proposition 3.3. For the coefficients of the Proposition 3.1 defined in (3.4), we have
i) Forn,l e N, n > 1,
2
mas. 3 )AMJ +1,m,m1} < dnl(l+1). (3.8)
|m|§l+l,|m1|§1
m+mi=m*
ii) Forn,l e N, [ > 1,
2
max > |AT | 220420+ 1)+ 1 (3.9)

Im* <1
Im|<1-1,jm1|<1
m+mi=m*
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Proof. It follows from (3.4) that

_ [2nm e —
Anfl7l+17m7m1 =4 ?( 2 Ylml (W)Y}Tl(w)yé " m(w)da‘));

Crt 2t 1 /S VI (@) V7 (@)Y, () )

AT =4(1+1) 3

n,l—1,m,m1

Then
2

E : ‘An—l,l—i-l,m,ml

Im|<14+1,|m1|<1
m+mi=m*

32nl%n m m i —m
= > V™ (W)Y (W)Y, ™™ (w)dw

2
Im|< 141, lma|<1 7S
m-+mi=m*

n271' *
S Y | ey @

3
[m|< 141 [ma|<1

32nl?
=== 3 ¥

Im| < I+1 |my |<1

x /S Y @)Y ™ ()Y @) YT (@)Y, ™ (@)Y (o) dwdo.

%

2

2

2
w

We recall again that, for o, s € S?,

47T m —m
Py(o k) = T z|<:k:Yk (o), ™(k), VkeN.

Then
2

E : ‘An—l,l—&-l,mmu

|m|<i+1,/m1|<1
m+mi=m*

_ 32nlPm 3 20 +3
3 4m 4rx

/ / Pi(w-0)Pi(w- 0)Y; ™ (@)Y (0)dwdo.
sz Jsz

By using the fact that,

[+2 I+1
Pl(W'U)PlH(W'U):m3+2(w~0)+2l+3

Pw- o)

and the orthogonal of {Yl_m* (w),l € N, |m*| <1} on S%, one can verify that

§ : )Anfl,lJrl,m,ml

|m|<i4+1,lmq|<1
m+mi=m*

32nl?7 3 20+3 4r 1+1
— = <4 1).
3 4r 4r 2 yi2ig3 A+l

2
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Hence, we arrive at (3.8). On the other hand, we have

+
> At

Im|<1-1,|m1|<1
m+mi=m*

16(2n + 21+ 1)(I +1)%x
— 5 >

2

2

o Y (@)Y (W)Y, (W) dw

[m|<1=1,lm1|<1
m-+mi=m*

16(2n + 21 + 1)(1 + 1)? " - .
- T S % | ey s

Im|<1-1|m1|<1

_16(2n+2z+1 (1 +1)? Ty oy

Im|< 11 [ma|<1

2

/gz /Sg Y™ (W)Y ™ (0)Y (@)Y (0) Y™ ()Y (0)dwdo
6(2n+2l+1)(1+1)*r 3 20— 1
a 3 Ar 4w

< / Pi(w-0)Pi(w- 0)Y, ™ (@)Y (0)dw.
2 Js2
By employing the fact for [ > 1 that,

l
2l-1

P(w-o)P_1(w-0)= P(w-o)+---

and the orthogonal of the {Y,™™ (w),l € N, |m*| <} on S?, one can verify that

+
Z ‘Anvl_17m7ml

[m|<1=1,lm1|<1
m+mi=m*

2 162n+20+ DI+ 1)°7 3201 4m |
B 3 4r 4w 20+120—1

<2(2n 420+ 1)(1+1)2

This leads to the inequality (3.9). O

3.3 Nonlinear estimates of Landau collision operator
In this section, we establish nonlinear estimates of Landau collision operator.

3.3.1 Trilinear estimates

The orthogonal projectors {Sy, N € N} and {Sy, N € N} are defined as follows, for f € S'(R3),

SNf = Z Z fn,l,m Pn,lm € S(Ri)

0<2n+I< N |m|< 1
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and
SNf = Z Z fn,l,m Pn,l,m € S(Rg)7
2<2n+I< N |m|<1
n+1>2
where fy, 1m = (f, ¥nim) and then we have
Pf=(Sn—Sn)f = f000%000+ frooeto0+ Y formPoim:
Im|<1
Firstly, we bound the nonlinear term (L(f,g), h)z2 = as the following theorem.
Theorem 3.2. Let f,g,h € S(RS ). It holds that
1 1 ~1
(L( ‘ S mm{ ‘SQfHL?)(LgO) ||£29”L%,U7 ||S2fHng H‘CQQHLg(LgO)} HE?hHL%’U, (3.10)

where the self-adjoint operator L is defined by
L2291~ Ag.
Proof. For any temperate functions f,g,h € S (Rgv), one has the decomposition
Z Z Znl,m®Pnlms  Znlm = <2 <Pn,z,m>
M+1>0 [m|< 1

with z = f, g, h. We can deduce from Proposition 3.1 that

Z Z 27’L + l + l(l + )) fO,O,Ogn,l,mSOn,l,m

2n+1>0 |m|< 1

+ Z Z Z A;[7m7m1 fO,l,m1gn,l,m(pn+1,l—1,m1+m

2n+l>0 ‘m‘<l |m1‘<1
+ Z Z Z n[mmlfO,l,m1gn,l,m§0n I+1,mi1+m
2n+1>0 |m|<1 |mq|<1
4/3(n+1)(2n + 20 + 3)
DD 3

2n+1>0 |m|< 1

1
+ Z Z Z An,l,m,mgf0,2,m2gn,l7m(pn+2,l—2,m+m2

2n+l>0 ‘m‘<l |m2‘<2

+ Z Z Z n l ,m,ma fO 2,ma9Inl,mPn+1,1,m+ms

2n+1>0 |m|<1 |m2|<L2

§ : 3
+ Z Z An7l7m7m2fO,Z,ngn,l,m@n,l—FZm—i—mg-

2n+12>0 |m|< 1 |m2|<2

J1,0,09n,0,mPn+1,1,m

Then it follows from the above equality that

‘(L<f79)ah)L;U’ ST +Je+ I3+ I+ I5+J6 + 7
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with

Jl = Z Z 2n + l + l(l + 1)) (f0,0,0gn,l,ma hn,l,m)L% s
1> 0 [m|<

Jo = Z Z Anfl,l+1,m,m1 (fO,l,mlgn—l,l+1,mahn,l,ml—&-m)L% )
2n+1> 0 |m|<i+1,)mq|<1
n21 Im+m1|<1
Js=| > > A (fo,1,m19n,1-1,m Pn,i )L
n,l—1,m,m1 Lmidn,l=1,m> 'n,lmi+m/Lz | >
2n+1> 0 |m|< I—1,}m | <1
>1 |m+mq|<1

44/3n(2n + 20+ 1
Ja= Z Z \/ ( ) (fl,0,0gn—l,l,ma hn,l,m)L% y

3
2n+1> 0 |m|<1
n>1

1
Js = E E An_271+27m7m2 (fO,Q,ngn—Q,l-‘rQ,mv hn7l,m+m2)L§ )
201> 0 |m| < 142, |ma| <2
n>2 |m—+ma|<1

2
Jo = Z Z An—17l,m,m2 (fO,Q,ngn—l,l,ma hn,l,m—l—mg)L% 5

M+1> 0 [m]< I [ma| <2
n>LI>1 |m4ma|<I

3
Jr = Z Z An,l—?,m,mg (f0,2,mggn,l—2,m7 hn,l,m—f—mg )L%
2n+1> 0 |m|<1—2,|mo|<2
1>2 Im+ma|<I

For Ji, by using the Cauchy-Schwarz inequality, we get

Z Z (2n + 1) + U1+ 1)) [ fo,.0.09n0mll 22 [hnpmll 2

2n+l>0 Im|<1

S D0 D e+ D+ 1+ 1) [ fooollzz gnmll Lz 1 enimll 22

2n+l20 Im|<1
~1 ~1
S ooollezl£2gll 2 ey 1£20] 2 -

Similarly, we bound the term J4 that

~1 ~1
Ju Sl fro0llezll£2gll 2 e llL2R Lz,
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Next, we turn to estimate Jo. Precisely,

E Z ”f0,17m1HL%Hgn—l,l-i-l,mHLgoHA7:7171+1,m,m1hn,l,m1+mHL§
2n+l> 0 m|<I+1,|m1|<1
n=>1 [m+m1|<1

Y (X i)

2n+1>0  |my|<1
n>1

1/2
x S lonvmlie |40 .
|m| < 141,Jma| <1
Im+m1|<1
/2 1/2
2
S Y (X Mol gl )
2n+l20 Im1]<1 Im|<14+1
n>1
1/2
X Z HAT_L*LZﬁ*I,m,mlh sty
Im1]<1,Im|< 141
Im+m1|<1

By exchanging the order in the last summation, we deduce from (3.8) of Proposition 3.3 that

Z HA;—I,H-I,m,m h

Im1]<1,Im|< 141
[m+m1|<1

"

_ 2
- Z Z ’Anfl,l+1,m,m1|2 th,l,m*HL%

<2\ | <1 jm|< 141
mi+m=m*

<mx, Y | S Il

Im*|<1
jma <1, Jml< 1 jme <1
mi1+m=m*

<A A DU+ D Wt 12 -

[m*|<1

Then we obtain

Z ( Z ”fo,l,ml”%g)1/2\/4(n+1)l(l+1)

>0 |my|<1
1

n>
1/2 1/2
2 2
X ( Z Hgn—l,l—‘rl,mHLgo> ( g th,z,m*lng)
1/2 | ~1 —
< E 2 1 1
~ ( ”f0,17m1||La25> HL‘,QQ L%(Lgo) H,C2h 2

|7n1 Sl x,v
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Those terms J3, J5, Jg and J7 may be treated along the same line as Jo with aid of (3.5),
(3.6), (3.7) of Proposition 3.2 and (3.9) of Proposition 3.3. Therefore, we can deduce that

1/2 | ~1 ~1
2 1 1
I3 5( > Hfo’l’mlnL?c) Hﬁzg L2 (L) Hmh‘L%U
Ima|<1 ’
and
1/2 | ~1 ~1
2 1 1
J5, Jg, I7 < ( > Hfo,z,m2||LgC> H£29 2 HﬁQh’ .
Ima2|<2 ’
Together with those estimates on Ji-J7, we get
~1 ~1
(.0 D)z, | < 18211z, €30l a1 E3 Rz (3.11)

Similarly, when estimating the terms J;-J7, taking L°° norm on the position variable x for f

and taking L? norm on the position variable z for g, we obtain

1 ~1
[CXO RO P e A P it P VT P (3.12)

Combining (3.11)-(3.12) gives the desired inequality (3.10). Hence, the proof of Theorem 3.2
is finished. O

Furthermore, optimal information will be obtained if splitting the functions into frequency

packets of comparable sizes. Indeed, one has

Theorem 3.3. Let f,g,h € S(Rgvv). It holds that

‘(AjL(f, 9), Ajh)Lg.w‘
~1 ~1
S D) 1ApS2 fllra , 1£29llLz e 1£2 bl 22,

1< (3.13)
~1 ~1
+ ) 121l 22 (nooy 1£2 Apgll 2 1£2 Ajh] 22
p>j—4
and
(AL(f,9), Aje* Hh) | S emae!
~1 ~1
X{ Z ”ApgzeclmeLg,vHEQeclmgHLg(Lgo)HﬁwcltHAthLg,v
lp—jl<4 (3.14)
T D T PP o N P e BN PP
p=>j—4

for any 5 > —1.
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Proof. For f,g,he S (Rgv), it follows from Proposition 3.1 and the orthogonal property of
{@nim; n,1 €N, |m| < 1}, that

(AL(f0) Ash)z [ ST+ T+ T+ L+ 15 + T + 17

with

L= ) Y @2n+0)+10+1) (A (fo0.09nim)> Ajhnim)rz|

201> 0 |m|< 1

I, = Z Z An—l,l+1,m,m1 (Aj (fO,l,mlgn—l,l—i-l,m) 7Ajhn,l,m+m1)L:2E )
2n+1> 0 |m|<1+1,|mq|<1
n>1 Im+m1|<l
I3 = Z Z Ary—;—,l—17m7m1 (AJ (fO,l,mlgn,lfl,m) 7Ajhn,l,m+m1)L% )
2n+1>0|m|<1-1,|m1|<1
> Im+m1|<1

4v/3n(2n+ 21 +1
L= Y Y Vinl )(Aj (f1,0,09n—1,1m) s Djhnim)rz| 5

3
2n+1>0|m|<I
n>1

L= Y > Aot 2mmy (B (fo2madn—2042m)  DjPntmems) 12| »

2n+1> 0 |m|< 1+2,|m2|<2
n2 Im+ma|<1

Ii=| Y > A s (A (fozaman—tim) » Ajhntmims) 2|

2n+1>0 |m|<1,|m2|<2
n>2LI>1 " |m4my|<I

3
) ) A 1-2mms (A5 (fo,2,ma0ni—2,m) s DjPnimtms) L2
2n+1> 0 |m|<1—2,|m2|<2
1>2 Im+ma|<1

To estimate I, Bony’s decomposition comes into play in our context. The product of u and v
can be decomposed into
wv = Tyv + Tyu + R(u,v)

with
Tyv = Z Sp—1ulyv,  R(u,v) = Z ApyulApy,  for u,v € S'(R?).

P [p—p'|<1
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The above operators T and R are called “paraproduct” and “remainder”, respectively. More-

over, it follows from Lemma 2.3 that

A Tuv—ZA p—1uApU) = Z A (Sp—1ul,v),

p lp—j|<4
A, Tvu_ZA p10Apu) = Y A(Sp10Au),
lp—jl<4
D oA ApuAw) = > > Aj(Ayudw).
Ip—p'|<1 max(p,p’)> j—2 |p—p'|<1

Consequently, we are led to the inequality

L< Y Y @en+)+i0+ )))(Aj(fo,o,ogn,,,m),Ajhn,,,m)Lg(Ri)

2n-+1>0 |m|<

< > D D e+ +II+1)

|p J|<42n+1>0 m|<1

X (1A (Sp-10,0,0Apgn.1m + Sp-19n1,mApf0,00) |l 12 [|1A5m 1mll 2

+ ) Y Y et i+

max(p,p’)>j—2 |p—p'|<12n+1>0 |m|<1

X (1A (Ap f0,0,02pGn,1m ) L2 | Ajhntmll L2

Furthermore, with aid of Lemma 2.4, we arrive at

LS D> Y Y @eent+l)+ii+1)

|p—j|<4 2n+1>0 |m|< 1
* pIntmlrz + 19ntmll el Apfo.00llr2) 185 1mll L2

+ Z Z Z 2n+l +l(l+ ))HfO,O,OHLgO”Apgn,l,mHL?cHAjhn,l,mHL%'

p=j—32n+1>0|m|<I

The Cauchy-Schwarz inequality enables us to get

~1 ~1
L< Y lfooollzel£28pgl 2 1I£2 80 12,

[p—jl<4
~1 ~1
+ > [1Apfo00llrzl£2gllLz(ree) 1£2 AjR L2,
lp—jl<4
~1 ~1
+ 3 ool 123 Augllzz 123 M1z
p=j—3
~1 ~1
<) 1Apfo00llzz1£2gll L2 (ree) 1£2 Ajh| 2,
lp—jl<4

~1 ~1
+ > Nfooollrell£2 Apgllz L2 AshllLz -
p>j—4
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Similar to the proof of the term Iy, one can verify that

i ~1
I 5 Z 1Apfro0llrz1£2gll L2 (ree) 1£2 AjR 2,
lp—j|<4

~1
+ ) Hfl,o,oHLgoHﬁQAngILgH,IIEZ‘A iz,
p=>j—4

We now estimate the remaining terms I, I3, I5, Ig, Ir. The process of the proofs with respect

to these five terms are almost the same, so we can take I5 as the example.

Is < Z Z ‘ Z A}z—2,l+27m,m2 (Aj(Sp—1f0,2,m2Apgn—2,1+2,m)aAjhn,l,m—l-mz)L%
|p—j|<4 2n+1> 0 |m|< 142, |m2| <2
n>2 Im+me|<1
DD ‘ > Ao 112 mms (85 (Sp-19n—2.142.mBp fo,2,m5)s Al tmtms) 22
Ip—j|<4 204120 |m|<1+2,|mo|<2
n>2 [m+ma| <1

+ Z Z Z ’ Z A'}z—Q,l—&—Q,m,mg

max(p,p’)> j—2 [p— p\<12n+l>0 Im|<142,|ma|<2
Im+ma| <1

X (A] (Ap’ f0,2,m2 Apgnf2,l+2,m)7 Ajhn,l,ermg )L%

2 I5y + Isp + Iss.

Regarding the term I5;, we use Cauchy-Schwarz inequality again and get

1
E An—2,l+2,m,m2 (A;(Sp—1f0,2,ms Bpgn—2,1+2,m)s Djhnlm+mo )L%
|m|<142,|m2|<2

|m4+ma|<I
< > 1 fo,2.ms Ml 2o 18pgn—2,12,mll 1 1147 —2,042,mm,m0 i i tymetma | 22
Im|<142,|m2|<2
|m+ma|<l
1/2 1/2
2 2
< (X Woamale ) (X 180gn-2iv2mll}s )
|ma|<2 Im|< 142
1/2
1 2
X Z HAn—2,l+27m7m2 Aj hnvl,m+m2 HLg ’

|m2|<2,|m|< 142
|m+ma|<I
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where the last summation can be estimates by (3.5) of Proposition 3.2,

2
Z HATIL—Q,H-Q,m,mg A]'hnvl7m+m2 HL%
Ima2|<2,|m|< 142
Im+ma|<1
2 2
= Z Z ‘An 2l+2mm2‘ ”A]'hn,l,m*HL%

|m*|<U \ |m2|<2,|m|< 142
m+mo=m*

2
< ln%??l Z ‘An 21+2mm2‘ Z HAjhn,l,m*H%g
T Im2|<2,|m|<I+2 Im*|<1
m+mo=m*
16n(n —1) 9
<= Y (A shnme |7

Im*|<1

Then it follows that

L Y (X ||fo,2,m2\|iw sy \/16"”_1

[p—jl<4  |m2|<2 2n+>l;0
n
1/2 1/2
2 2
X ( Z HApgan,qu,mHL% > ( E HAjhn,l,m* HL%)
|m|< 141 |m*|<1

S (X Mamlis) | Ea], [

lp—jl<4  |ma|<2

Bounding Iss and Iss essentially follows from the same procedure as Is;, so we get

o< Y (X Ianhamliy) |2

L2(Lr) ’

lp—jl<4 Ime|<2
and
1/2 ) ~1
I53§ Z ( Z Hf0,2,m2‘|ig<7> H£§A
p=j—4  |mz|<2
Therefore, by combining those estimates, we conclude that
1/2
X (X Iavoamliy) |2, 17

|p jl<4 me|<2

+ Y (X Moamliz ) 2la

p>j—4  |meo|<L2
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Similarly, we can get the following estimates for Iy, I3, Ig, I7:

Lus Y (X Iavamll) |2k, 25,
p—gl<t  mal<1
+ ) ( > ||f0,1,m1HL°°)1/ HE A
p2j—4  |m|<1
and
I, I < Z ( Z |!Apfo,2,m2||L2) /2H£2g‘ go)’ _

lp—jl<4  Ima|<2

Y (X Ml )2

p=j—4  |m2|<2

Putting above estimate of I1-I7 together, we eventually conclude that (3.13).
Similarly, we obtain the second inequality (3.14) of Theorem 3.3 by using the following
equality

€§Clt clt(2n+l+ ) ffclt

+ eiclt clt(2(n—1)+(l+1)+%)e—gat

eclt(2n+l+ 3y _

+ escrtgart@nt(i-1)+3) —Fert
+ eiclteclt(Q(n*1)+l+%)e*%CIt
+ 6%Clteclt(2(”*2)+(l+2)+%)e*§Clt

+ esrtgart@nt(=2)+3) ,—Feit,

This ends the proof of Theorem 3.3. O
With Theorem 3.3, we establish crucial estimates for Landau collision operator in the

framework of Besov space, which are used to achieve the global-in-time existence.

Theorem 3.4. Assume s > 0,0 < t,T < +o00. Let f = f(t,z,v), g = g(t,z,v) and h =
h(t,x,v) be three suitably functions, then it holds that

S o [/OT‘(A L(f,9), Ajh),, ’dt]m

j=-1

1/2 1/2 1/2 1/2 ~1 1/2
< {0812 g B ey + 182 i VRS g VR
(3.15)
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and

1
2

Z 278 [/ (AL(f.9), Aje* ™R, |dt| < e 3t
2 »U

< lsae 1 (310

1 1 ~
H'CzeeltﬂgulzﬂLQ(LOO)H'Cze L2L2 BS 1)

L§eL2(Bs )

+ HSQeclmeL;om Hﬁzeclmguﬂ I2(B H'&ethum L2(Bs, )]'

Proof. It follows from Theorem 3.3 and Cauchy-Schwarz inequality that

T 1/2
> 2" [ | [anre.am, dt]

Jj=-1
1/2

v(Lgo)HZ%AthLgyvdt

S| 3D / 18,82 £l

J> 1 Ip—j|<4
1/2

D SEC DI P T e B N

j>—1 p>j—4

. 12, ~1
<S> 233( > ”APSQfHL%OL%U> HﬁéQHIL/sz L) €2, hHi/ngm

Jj=-1 [p—jl<4
~ /2, -
+ 3 280 g ey (0 1E50wgllpars ) IE5 8GR,
j>—1 p>j—4 ’ ’

By changing the order of the summation, we have

3 o [/ ‘AL(f, ), A )Lgm‘dt]m

j>—1

S ”82ij;/£1:2 Bs, H£29H}3/22L2

i (X 20

Jj=—1|p—j|<4

o~ 1/2
R sy VL TSN (O DD D 127 P R
j>—1p>j—4 ’

where .
2P ”Apg2f||L%oLgm

c(p) =
18271752 85,)

fulfills ||e(p)||,n < 1. Hence, by Fubini’s theorem and Young’s inequality, we get
ST 20U Ple(p) = > [(11<427°) * c(p)]()
J>—=1|p—j|<4 j=—1

< [1p<a2®ller le() 2 < o0
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We exchange the order in the summation that
Z Z 2j8‘}E%APg“L%L§U = Z 2ps< Z 2U=P) )HﬁQApQHHLz :
j2—1p>j—4 Cop>-1 —1<j<p+4

It is obviously that, for s > 0,

4 —
ST g0 — g s gpe g gt ra-27) L

- 1—-—2-5
—1<j<p+4

then it follows that

PoreD o) A

p>j—4

~1 ~1
Lz, SP;EPSHEQAMHL?TL;U = HEQQHZ%Eg(BgJ)'

Consequently, we conclude that
‘ T 1/2
iz-1 0

1/2 1/2 1/2 ~1 1/2 ~1 1/2
18212 22 s VL2007 a0y + 182 1R Lanmy L2 00 s s (IER RIS e s
LFL2(Bs, TLZ(LE) L3.L2(Bs 1) L7L3(Bs3 )

which is just (3.15). Similarly, we obtain the inequality (3.16) with the aid of (3.14). The proof
of Theorem 3.4 is completed. 0

Remark 3.1. In fact, from the proof of the above Theorem 3.4, we also have

, T
> 2° [/0 [(AL(f, 9), Ajh)|dt

j>—1

1
2

SISl 1, o122 L e L B5,)

+ ||Szf||i2TLg(Lg°) Hﬁagui%"z%(lﬁl)|’£§hH%2TE%(BS,1)'

3.3.2 Coercivity of linear Landau operator

In order to obtain energy estimates, the coercivity of linear operator which indicates the mi-
croscopic dissipation plays a key role. The lower estimate of (£1g,g) and the upper estimate

of (L2f,g) are shown in the following theorem.

Theorem 3.5. For the linear operators L1 and Lo, it holds that

1 1, .1 1~
(L19,9)r2 = 5 (Lg,9)p2 = 5”“9”%5 = 5”“’9”%3 —Cllgli72,

(3.17)
|(£2£.9)13| S 182£1123 118291112

for some positive constant C'.
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Proof. By Proposition 3.1, we have

L19 = —L (0,00, )
+00 400

= —ZZ Z Int;mL (00,005 Pnim)

n=0 =0 m=-1I
“+o00 +0o0

- Z Z Z 2n +l + l(l + 1)) @nlmGn,lm,

n=0 =0 m=-1
L2g = —L(g,%0,00)
- Z il (S%j,mv @0,0,0)
27+1<2

_ +
- _{ Z Ao,o,o,mlgo,l,mlsOO,l,ml + 491,0,0901,0,0
|m1|<1

+ E 000m2902m2(p02m2+A000m2902m29002m2)}
Ima|<2

=—4 E 90,1,m190,1,m1 — 491,00¥1,0,0 + 2 E 90,2,m2%0,2,ms -
Im1]<1 [ma|<2

Furthermore, we see that

—+00 400

(L1g: 92 =D > 2@n+1) +1(1+1)) gnsml”

n=01=0 |m|<I

by 14

<1 <2
+ )0 )@@+ 41+ D)lgnaml®
2n-+1>2 |m| <
(Lof,@)rz = =4 Y formgorm — 41009100 +2 D fo2mdo2m
Im|<1 Im|<2
(£29,9)12 = =4 Y |go.ml” = 4lg100l* +2 D lgo2m|
Im|<1 |m|<2

Thus, keeping in mind that (£(g),9)2 = H£2g||L2, we can obtain (3.17) with aid of Young’s
inequality. The proof of Theorem 3.5 is completed. 0

Since the operator A; acts on the position variable x only, we have the direct consequence
of Theorem 3.5.

Corollary 3.1. For the linear operators L1 and Lo, it holds that

1 1, .1
(Ajﬁlg,Ajg)L%’u = B} (Ajﬁga Ajg)L%,v > §H£2A]‘9H%§MJ’
(AjLaf 8j9) 1z S IS8 f 2, 1928922,
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for each j > —1. Furthermore, we have

A T
> 2 </ (AjL9,Ajg) 2 . dt)
-1 0 ’

fors>0and 0 < T < oo.

1/2

1, .1
= 5“529“?@5(35’1)

3.3.3 Macro projections of nonlinear operator
For the nonlinear Landau operator L(g, g), we have the following macro projections.

Proposition 3.4. Let ¢, ., be the set of eigenfunctions. For g,h € S(R?), we have

(L(g, 9), Ph) 123y = 0; (3.18)

(L(g,9), 800,2,m)L2(R3) = —1290,0,090,2,m

+ ) 4y 157?(/2 Y1m1Y1m/Y2_m)90,1,m190,1,m/, for |m| <2; (3.19)
ma | <1,|m’|<1 s
mi4+m/=m

8v1
(L(g,g),cm,l,m)LQ(Rg) = —890,0,091,1,m + 3 391,0,090,1,m
Z 8\/ 671'

1 |<1,|m/|<2
mi1+m/=m

_|_

( ; YlmlYQW’Y;m)gO,l,mlgoz,m,, for |m| < 1. (3.20)

Proof. For temperate functions f, g € S(R?), it follows from Proposition 3.1 that

(L(f,9), Ph) 12(gs) = = 4f0,0,091,00h1,00 — 4 Z £0,0,090,1,m"0,1,m

[m|<1
+ Z Aal,m,m1f0,17m190,1,mh170,0
[m|<1,|m;|<1
m+m1=0
+
+ Z AO,O,O,mlf0,17m1go,070h0,1,m1 +4f17070907070h1’070.
Im1]<1
+ - ) _
We need to compute Agg g s Ag1mm, for m| < 1 and [mq| < 1. The direct computation

shows that

+ _ — _
AO,O,O,m1 =4, AO,l,m,m1 =0.
Therefore, if we take the case of f = g, then we obtain
(L(g,9), Ph) 23y = — 490,0091,00M1.00 =4 D 90.0090,1,mh0,1.m
Im|<1

+ E 440,1,m190,0,010,1,m1 + 491,0,090,0,0M1,00 = 0,
|m1|<1
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which is just (3.18).
Now we prove the equality (3.19). For |m| < 2,

(L(97 g): @O,Q,m)LQ(Rs)

— + 3
= —10go00go2m + D AG1wm,901mi g0t + AG0,0,mI02m000-
|m1|<1,|m/|<1
mi1+m/=m

It is not difficult to find that

A+ — 4@(/82 }/lml}/l’myé—mlfm1)7 A(3)70707m = —2.

Oylvm,7m1

Substituting into the above formula, we get

(L(ga g)v @O,Q,m)L2(R3)

= —1240,0,090,2,m + E 4v 157T(/2 YlmlYleQ_m>go,1,mlgo,1,m'-
ma | <1,|m’|<1 S
mi+m/=m

On the other hand, by a direct computation, we obtain

(L(g,9), 901,1,m)L2(R3) = —890,0,091,1,m + Z A&zym/7mlgo,1,m190,2,m’
[m/|<2,|m1|<1
m/+mi=m
44/15
3
+ Z A(Q),l,m’,ngoﬂ,mggo,l,m’ )

|ma|<2,|m/|<1
mo+m/=m

+
+ A7 0.0.m90,1,m91,0,0 + 91,0,090,1,m

where
n 4415
1,0,0,m1 — 3 )
_ 4\/ 67'[' Ie oo/ —
0,2,m/,;m1 3 ( - Y1m1Y2m Y] " ml) ;
46 / /

A% 1,m/,mg — 3 a (/ Y'2mzY1m Ylim 7m2) .

bt ] bl SQ

Consequently, we deduce that

8
(L(g, 9), e1.1.m) 2R3y = —890,0,091,1,m + 91,0,090,1,m

3
861 e
+ Z — ( Ylml Y2m Yl m)go,l,mlgO,Z,m/ .

2
Imy|<1,|m/|<2 S
m'+mi=m

Hence, the proof of Proposition 3.4 is completed. O

Based on Proposition 3.4, we have the following estimate in spatially Besov spaces.
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Proposition 3.5. Let s > 0 and ¢(v) be the finite combination of the eigenfunctions

{£0,2m5 (0); ©1,1.m1 (V) } 10y <1, ) <2

Then it holds that

> 2 ([l sou, o)

j>—1

1/2
(3.21)
S 839l pa (o) P9I oo a5 ) + P9I 1312 (150 1539l 2o 22 5 )
for any T > 0.

Proof. We need to prove (3.21) for all {¢02,m,(v),©1,1,m,(v)} with [mq] < 1,|mg| < 2 one
by one. For |m| <2, it follows from (3.19) that

2

H(A]L(g,g),<po,2,m)L%(R3) 2

< “AJ(QO,O,OQO,Z,m>”i%
+ H Z ( Y]_mlylleZ_m> A] (90,1,m190,1,m')’

2
|m1|<1,|m/|<1 S
mi+m’=m

< HAJ‘(QO,O,OQO,Q,m)H%g + Z Z HAj(go,l,mlgo,l,m')Hi%-

Im1|<1|m/|<1

2

p (3.22)

By using Theorem 2.4, the right side of (3.22) can be estimated as

12(90.0,090,2m) 172

< ) |’Aj(8p—190,070Ap90,27m+Ap90,0,05p—190,2,m)||%%
lp—j|<4

T SR DR VNIV )

max(p,p’)> j—2 [p—p’|<1

2 2 2 2
< 3 (lg000lie 18p902ml172 + 902175 1809000172 )

lp—j|<4
2 2
+ Y lgoool7 1Apg02.ml72
p>j—3
< 2 A 2 2 A 2
S D lgozmllie 18pg000ll72 + Y 900007 1 Apgo2mllze
[p—jl<4 p> j—4

and

HA] (90,1,m1 gO,l,m/) Hi%

2 2 2 2
< ). 190,11 1700 (| Apg0,1,m 2t > 1Apg0,1,ms |72 HgO,l,m’HLgo'
lp—j|<4 p=>j—4
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Substituting these two estimates into (3.22) implies that

H (AjL(gv g)) 900,2,m)L%(]R3)

2 2 2 2
S Y SaglBare 1APYIZa s + S [Pyl 18809l o

lp—jl<4

Therefore, we obtain

Jj=-1

> 2" (/OT 1AL (g, 9): po.2m(0)) 12| dt)

2

LE

p>j—4

1/2

T 1/2
DD </O 15291172 1 HApPQHingdt)

j2=1|p—jl<4

. 1/2
o3 3 o ([ 1Pl 18,5l )

Jjz—1p=>j—4

5 HSQQHLzTLg(LgO) HPgHE;?Z%(BSJ) + HPgHL?TL%(LgO) HSZQHZ%OEg(Bg’l) :

Similarly, it follows from (3.20) in Proposition 3.4 that

j>—1

S 839ll2z 12(150) 1P9Nz T2 ) + 1PNz 22 (150) 19390 2 22 5 )

T
> 2" ( /0 1(A5L(g,9): p1,1m(0)) 22| dt>

1/2

for all |m| < 1. It ends the proof of Proposition 3.5. O

3.4 Commutators estimates

To improve the regularity of weak solution, we need delicate commutator estimates involving

the nonlinear term L(f, g) and cut-off functions with respect to variables x and v. Notice that

3
L(g) = 30 0 [ a0 () 0059 0) o,

3
ij=1 R

3
_ % Z / a" (v = v vaip? (v.) £ (v2) 9 (v) v,

i =17/ R
3
=30 [ @ e)n ) @) gl dv,
ij—1 VR
+1i/ (0 — 020t 2(0.) (05 ) (0) g (0)d
2“:1 R3a UV — Uy )Usi b 04) (05 f)(vs)g(v)dvs

(3.23)
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with a (v) = §;;|v|? — v;v; (0;; is Kronecker’s delta), where we used the fact that
Z a (v — v,) (v — Va) Z a” (v —v,)(vj — v4j) = 0.
i

In addition, we have
(Lg.9)r2 = 1L2g]2: =2|[ V(1 - P)g|? +1|| (I-P)gl7; —3[I(T—P)gll7
y9) L2 9lirz v 9liz2 9 v 9Lz 9lir2

1
T3 Z [(v;0k — v0;) (I — P)QHQLg,
1<j,k<3
J#k

which leads to
1
IVo(I—P)gll72 + [I(T - P)gllig S L2l S I - P)QH?{% (3.24)
and

~1 1 1 1
1£29ll2 < [I£2gl22 +[1£2Pgllrz < [1£29]lLz + Cllgll L2

3.4.1 Commutators with moments

Let

—2 1
W (v) = (0}~ = 1 5m

for 0 < ¢’ < 1. Here and below, we agree with the norm

I3 = ([ 1P+ o)

Proposition 3.6. For 0 < <1 and f,g,h € S(R?), one has

‘(W(S’L(fv g) - L(fa W(S’g)’ h)L%
S 1ze (IWslialiblize + IV Wagl o lbllg + [WeglizIFobilz2)

(3.25)

Proof. It follows from (3.23) that
W(S’L(fa ) - L(fa W(S’ )

= Z Wi 0; / (v — v )2 (v,) f (02) (26"%0;Wyg + W51 0; (W g(v))) dus

i,7=1

- = Z W(;// a (v — v ) Vit 1/2 (vs) f (Vi) (26’2ij5/g + W5718j (W(;/g(v))) dvy

Jl

+Z‘o‘ (W) / a9 (0 — 02 (0.) (01) (v) g (v)do
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- Z /R5 D12 (0.) (0205 (W g(v))dvs

4,7=1

£33 [0 v ) ey Wi,

Z]l

which implies that
WJ’ (fv )_ (f7W5’g)

= Z W 0; aﬂ (v — 0.2 (v2) f(0:)26"0;Ws g (v) d,

i,5=1
3
= 30 0We) [ a0 = v ) Flo) Wy 0, (Wyg())dv.
i,7=1
3
- Z/ a¥ (v — v )% (v O f ()80, Wi g(v)du.
i,7=1 R3
3
+ 30 0Wa) [ a0 = v 2003w )g(0)do.
i,7=1

Therefore, we arrive at

WJ’L(fv g) - L(f7 W5’g)

3
:Z’JZ:102 /RS aij(v_U*)MI/Q(U*)f(U*)25/2UjW52/g(’L))d’L)*
3 .
- Z 0; (Wé/)/ a’(v—w ),ul/Q(v*)f(v*)Qé' v;We g(v)do,
ij=1 R3
3
- Z 0; (WJ’)/ a’ (v — vy ) /Q(U*)f(v*)Wa, 0;(Wy g(v))du,
ij=1 R3
- (v — V)V 2 () f (02) 820 WE g (v)do.s
Z/R e 2(0.) £ (0)5 0, W g(0)d
y /
. , aY(v—v 2 Vs ) Uy v,
+ 32 000) [ 0= v @D a0
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3
+ /Rg 0 (v = v ) (v,) £ (0.)260 W5 0;( Wi g (v) ) do.
ij=1

3
S [ v ) )25 W g e,
R3

ij=1
3 ..
=30 [ @ e o) @) (025 0 WEg () o
ij=1 R
A+ Ay + As+ Ay + As,

where
3 ..
A =— Z / </ a’ (v — v*),u1/2(v*)f(v*)25'2ij52/g(v)dv*> Oih(v)dv;
ij—1 7R \JR3
3 ..
Ay = Z / a’(v— v*)ul/z(v*)f(v*)45/4viij(§’,g(v)h(v)dvdv*;
ij—17RO
3 ..
Az = Z / a’(v— v*)ul/Q(v*)f(v*)25’2viW5/8j(W(;/g(v))h(v)dvdv*;
ij=1"R®
3 ..
Ay =— Z / a¥ (v — v )vai i (0,) f (02) 2020, W2 gh(v) dvdo,;
ij—17 RO
3 ..
As = — Z / a¥ (v — v ) (0,)(85 ) (v2) 260, Wi g (v) h(v) dvdu,.
ij—17 RO
In the following, Aq,---,As can be estimated one by one. For A, by using integration by

parts and Cauchy-Schwarz inequality, we have

S L (L e v*>2u<v*>dv*)l/2 (/. \f(vm?dv*)m

ij=1
x 62 |v] ’W(;Q/g(v)aih(v)’ dv‘
3

<2
i=1

1/2 1/2
<1l ( [La+py |W5/g|2dv) ( / |vvh|2dv>
R3 R3
< 1fllz IWagllz [Vl 5

(3.26)

L, W7l (1 1o 28210l Wi [Wig 0)2in ) o

where we used the fact

%ol Ul <d4+1<2.

1 62 |v|Wy =
(1 + [v])6"=|v|Ws 1+‘5/v|2 1+‘5/v|2 =
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Next, we calculate As-As and obtain

Ay] < Z ‘/ </ i — v,)2 (v*)dv*>1/2 </ £ (0.)] dv*>1/2

x 042 |W5,g(v)h(v)|dv‘

3
23/ 1122 (14 [o]) 26" 0]2 W2 Wi g(0)h(v)]| do

1/2 1/2
Slsls ([ woaao) ([ a0)
R3 R3

Sl g2 Wergll gz 1212

As| < Z‘/W(/RB (0 — v.)2u v*dv*>1/2</ \fv*\dv*>1/2

e , (3.27)
x 6" |v|Wy|0; (W g(v)) h(v)|dv

3
N Z/RS 112 (1 + [v))26" 0| Wy |0; (Warg(v)) h(v)] dv
j=1

SN2 IVoWergll 2 1] 2 5

Adl S EZk@(AS v—m>ﬂmmeU7ijm|mQU2

1,j=1
x 820l Wg(v)h(v)|dv|

S [ U6l (4 o521l Ws Warg(u)h(w)] do

S I llzz Wsglizz 121l 2 ;

Aol Z ‘/ ( 1054 (a” (v = v )p(v)] dv*)m </ f(v.) dv*>1/2

i,5=1
X 62[v] [W2g(v)h(v)] dv)

S /R3 1Fllz2 (1 + [0]) 262 [0| Wy [Werg(v)h(v)| dv

< 1l IWargllge Nl -
Hence, (3.25) follows from (3.26)-(3.27) directly. [

3.4.2 Commutators with a mollifier in the z variable

Inspired by [5, 145], we can obtain the commutator of the collision operator with a mollifier

in the x variable.
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Proposition 3.7. Let S € C§°(R) satisfying 0 < S <1 and
S(r)=1, |r|<1; S(r)=0, |r|=2.

Let Ss(Dy) = S(0Dy) for § > 0. Then for f,g,h € S(Rg’v), we have

T
| (SsDILL9) ~ LS S5(Dg) sy

(3.28)
~1 ~1
S 5HVxS2f”Loo([o,T} xR3;L2) H£§QHL2([O,T} xRS ) H'CEhHLQ([o,T]ng}U)-

xr v

Proof. Asin [5, 145], let us introduce

Then, we have

T
/0 (S5(D2)L(f,9) = L(f, S5(D2)9), 1) 12 ge ) dt‘

:‘/01</R%XR2K5(ZC—Z/)
T

X / (L(vl’f(tv T+ T(y - $), U)a 5g(t7 Y, ’U)), h(t? T, U))LQ(R%) dtdl?dy) dT‘
0

T ~1 ~1
S SIIVaSafll e oryxazizay /0 /R (1Kl % 188 gl2 ) @I £ bl gt

~1 ~1
S 0lIVaSa f || oo o1y xr3;22) 1£2 9l 20,7y xR8 ) 1£2 1l 20, 1) 0RS )

which is just (3.28) and where we used Theorem 3.2 and ||Ks|z1 = [[K1l|pr. O

3.4.3 Commutators with a mollifier in the v variable

Let M%(D,) = ﬁ for 0 < 6 < 1, which is a pseudo-differential operator of symbol

Mé(g) = 1+§‘§|2-

Proposition 3.8. Let 0 < § <1, and f,g,h € S(R®). It holds that

| S0z (109l 0V uhllzz + Mgz lAlz) - (3.29)

(ML(7.9) - (s 290
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Proof. By using the nonlinear term L (f, g) of (3.23) and integration by parts, we have

(M°L(f.9) ~ L(£. M%), h)

L3

= — U (v —v,)| 890t (v.) f (v:)Bih(v)dvsdv
%%@ }g m

—1i/ (M2, (0 — )] D000 () F (0. h(v)dd
21.7]-:1 s ya (v — i) | Oj9(V) = (ve) f (Vi) h(v)dvsdv
3

# 30 [ M= )] g 00,0 B dv.do
i,j:l RS

L M0 )] o) 00 e
i,j=1

£ By + By + B3 + By.

For Bi, note that (M?%)~! =1 —6A,, we get

Z . M a0 = 0,), (M)~ M20;9(0) ! (v,) f (0.)05h(v)dv.dv
3,j=1

= M‘S [1—6Ay,a" (v —uv.) 9; M g(v) 2 (v,) f (v.) i (v) dvsd.
RO ]
i,j=1

Owing to the fact

[1—5Av,a’j(v—v* = <2281a”v—v* 014—202 ”v—v*),

furthermore, one can deduce that

=-20 Z Z M‘s(?la” (v — 0.)00; M2 g(v) it/ (v,) f (v:) Bih (V) dvdv
1,0=11=1

-9 leZ: M282a¥ (v — v,)8; MO g(v) i (v.) f (04) Dih (v)dvdv,
1,7 1

where we agree with 9; = 0,,. The direct calculation enables us to get

M°9ya¥ (v — v,) = 81a" (v — v, )M + [M?, 810" (v — v,))]
= gja¥ (v — v, )M° — M? [1—6A,, oat (v — )] MO

3
= 01a" (v — v, )M° + 26M° Y " k00" (v — v,) 0 M°.
k=1
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It is not difficult to see that
Aat (v —v,) = 20;5(v; — vix) — (01i(vj — Vi) + 015 (Vi — Vix)) ;
dfa" (v — ) = 265 — 20,615, 1 =1,2,3;
NOka (v — i) = —6id1j, k# 1,

where the last two derivations are constants. Consequently, we are led to

3 3
By=-25) > /R ) Aa” (v — v.)810;(M®)2g(v) 2 (vs) f (04) D h(v) dvodv

i,j=11=1

3 3 3
42 3030 [ 010 (0 = 0000, (MO glo) 20 ) ()

ij=11=1 k=1
3 3 -
=533 [ oRa o — e (Vo) ) F0 OhC0 o
ij=11=1/R°
So, by Cauchy-Schwarz inequality, we conclude that

3
Bl Sl Y [ 1 loDlooy o) joih(o)do

ivjvlzl

3
F Pl Y [ 100,000 o) |oih(o) o

,7,0,k=1

3
wolfle X [ 0, Rewlonte)ids

1,7,l=1

S Iz

M‘Sg‘

2 IVohllzz,

where the following estimates are used:
OlI(L + [v]) 910 (M°)ull p2gg) < llull2 5
6210100 (M°)?ul| < |Jull 2 < llull 2 ;
8|05 (M°)ul < Jlullzz < flullgz

for u € L¥(R3).

By employing the similar calculations as By, we have

3 3
Ba= =530 [ 00w 000,00 oo 20 Fo h(0)dondo

ij=1I=1

3 3 3
—207) > > /R k01" (v — 0)010; 0 (M) g (V)2 (0,) f () h(v)dv.do

i,j=11=1 k=1

3 3
=50 203 [ e = 0,0 gl 0 0 )

i,j=1 1=1
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which gives
é
[Ba| S £l 2 1M gl 2[1P 22

Similarly, for Bg, By, we obtain

B3 =26 Z Z/ 810" (v — v,) A (M?)2g(v) ' * (v,)8; f (04) s (v) dvndv

i,j=1[1=1

+452ZZZ k010" (v = 0) 00 (Mg (0) a2 (0)0;  (0)Oih(v) dv.

1,j=1[=1 k=1
£ 3 [ R ) (M 010, 00
i,j=11=1

and

Bi=0 Z Z / D107 (6 — v.)A(MP)2g(0) 12 (02), f (02 )h(v)dvsdv

1,0=1[=1

E Y Yy [, 010100 = 00000V g o) (010, (0. (v}

1,7=1 1=1 k=1

+ 5 Z Z / O2a’ (v — v, ) (MP)2g(0) 12 (02), f (02 )h(v)dvs do.

i,j=11=1

Integration by parts with respect to the variable v,, we arrive at
6
1Bs| S 12 1M°gll 2] Vohl| 2,
6
1Bl S 122 1M gl L2 [ 2] £2-

Putting the above estimates for B;-By together, we achieve (3.29) eventually. O
Based on Propositions 3.6-3.8, we obtain commutator estimates involving the nonlinear

term L and various cut-off functions.

Proposition 3.9. For the nonlinear term, for any f,g € S(Rgv), it holds that

T
/ ’ <M555W5'L(f,9) — L(f, M°S;Wsg), M‘SSaWa'g) dt
0

v
N HfHLoo([o,T]xR3~L2) (HW&QHZH [0,T]xR3;L2(R3)) + HVUWWQH%Q([O,T]XRQ,U))
+ (Il oo o, xR3;12) T €) HH|M655W5’9H|HL2 ([0,T]xR3)
+ 6C | VaSa f || oo o, 17xR3;22) ||£2W5’9HL2([0,T]><R21,) ;

dt

T
|| (.30 551w59). a0 55330)

x,v
~1
S 11821l oo 10,77 xk3:12) 1£2 M Ss W gl 2 0 s )
for0< 68,8 <1 ande >0, where Wy, S5, M° are defined by Propositions 3.6-3.8, respectively.
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Proof. Note that

<M585W51L(f,g) — L(f, M°S;Wyg), M‘SS(;W(;/g)x

\U

= <W5/L(f,9) - L(f, Wé/g),Sa(Mé)QS(sWa/g)

+ (SJL(f, Wsig) — L(f, SsWsg), (M6)255W5/9)

T,V
T,V

+ (M(SL(f, SsWsig) — L(f, M‘SS(SW&/Q),M&S&W&Q)

T,v

éJ1+J2+J3.

For Ji, it follows from Proposition 3.6 that

/OT Jrdt S| fll oo jo,mxR3;51.2)
X (HWé’g”LQ([O,T]xRi;L%(R%))”M655W6’9HL2([0,T]XRQ,U)
+ HVUW&QHL?([O,T]ngw)HM555W5'9HL2([0,T]xRi;L%(Rg))
+ HW5’9HL2([O,T]XR%;L%(R%))HVUM(SS‘SW‘S’QHLQ([QT]XRg,v))
S Il o ryxrsc2) MO SsWs g1 11720 )
X (HW6/9||%2([0,T]ng;Lf(Rg)) + ||VUW5/9”%2([07T]XRS,U)> :

For J,, thanks to Proposition 3.7 and Young’s inequality, we get

T
51
/0 Jadt S 0||VaSaf e o,y xr2;2) 1£2War gl 20,11 <8 )
1
x ||1£2 M°Ss W gl L2 0,11 xR
~1
S 0C|VaSa fll oo (jo,mxR3;1.2) |1 £2 W5'g||%2([o,T]ngm)

+ ell[[[M° SsWar g 11172071 r3)

for € > 0, where C¢ > 0 is some constant depending only on €. For J3, by Proposition 3.8, we

obtain

T
/0 Tadt S || £l oo 0.1 m3522) | M° SsWsr gl 120 71 3 12 (R3))

X <||VUM556W6'9||L2([0,T]ng;Lg) + ||M556W5’9||L2([0,T}ng;Lg)>

SNl orixeascz) M SsWar g 11172 0 1) -

The first inequality in Proposition 3.9 follows from above estimates for Ji,Jo and Js. In

addition, we can get the second inequality according to Theorem 3.2. O
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3.4.4 Commutators for linear operator

Moreover, we also need some commutators with the linear operator L.

Proposition 3.10. For 0 < §' < 1, it holds that

(W Lrg — LiWa g, h) 2| S Wargllzz (Ihllcz + 1VohliLs) -

Proof. By using Lemma 3.1, we have

Wy L1g — LaWsig, h) 2
= (2 [Ava W5’] g, h)L% + ([ASQ7 W(S’] g, h)L%
éD1 + Ds.

For the term D;, integration by parts allows to get

Dy = 22/ 8[W5/ 019 + (8l W(;/) ) hdv

—

3
1= /R

Furthermore, we obtain

3 3
Dy §4‘ / Wy galhdv‘+2‘ / 82 W) ghdv
Dy ;RB( ) ;Rg(z )
S AIWs gl 2l Vohllzz + W gll 2l 2 -

On the other hand, it follows from the direct calculation that

Z / (v;0k — v0;)* (Wsrg) — W (v;0 — vkaj)2g> hdv
1<g k<3
J#k

3
@Ws) @) go 23" [ (@ Wi)ghd.
=1 7R

(3.30)

Z / [0k — vk05) W | g + 2 [(v;0), — vkd;) W] (00 — 0,05) g) hdv

1<j k<3
J7#k
=0,

where we used the relation

(vjak — ’ngj)W(;/ = —25’2vjka(;2/ + 25/27}k1}jW52/ =0.

We obtain (3.30) directly. Therefore, the proof of Proposition 3.10 is completed.
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Proposition 3.11. For 0 < d <1, it holds that

(M1g - £a3%0,n) | S 1085l (331

Proof. From Lemma 3.1, we obtain

(M5ﬁlg — LiM’g, h) L2 :% ([Mé’vz] 9 h) 2 ([Mé’ AS% 5 h) L2

éEl + Es.

For E1, by the direct calculation, we arrive at

B = —1/ MO [(1— 6A),0%] M ghdv
2 Jas

3 3
=5 [ > uo(Vghdv+ 28 [ 37 5,000:0M° P ghio
RS 1 R® k=1

3
1
=) M®?ghd
50 [ S Paha,
=1
which indicates that
B S 1M a1 2

Note that
(v]@k - Ukaj)z == ’U?@,% - 2vkvj8k8j + U]%a? - Ukak — v]-@j,
then for 1 < k # j < 3, we get
A (’Ujak — Ukaj)Q u — (Ujak — Q}kaj)z Au

3
= Z 812 [(U?(?,z — 2u,v;0,0; + vi@? — U0 — vjﬁj) u]
=1

3
— Z (1)?8]% — QUkUjakaj + 1)]%8]2 — Ukak — ’Ujaj) 8,2u
=1

3
=2 (0,07 + 01k0; — 01kOk0) — 6,;0;0)u
=1
+4 (5ljvj8,3 — (5lj’l)k8kaj) 8lu + ((5lkvk8]2 - (5lkvj8k8j) 81’11,

:2(8,%—#8]2—8]2—8,3)11
which shows that
E2 = — Z (Mé |:(1 — 5A>, ('Ujak — Ukaj)z} M‘Sg, h> =0.

L2
1<5,k<3
£k
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The inequality (3.31) is followed directly. Hence, the proof of Proposition 3.11 is completed.
O

As a consequence of Propositions 3.10-3.11, we get the commutator estimate.

Proposition 3.12. Let g € S(ng). There exist some positive constants C. > 0 independent
of T > 0 such that

— <£1M5S§W5/Q,MJS§W5/Q> dt

/OT ‘ (Elg, Wngg(M5)255W5/g)

< E”|’|M6S5W5’g|’|H%2([O,T]><R%) + CGTHS5W§’gH%oo([QT];LQ(ng))

T,V T,V

+ O M S5Wo g e o,1y2(85,, -
where € > 0 is sufficiently small.

Proof. Obviously, we see that

(£19: WerS5(MP)285Wrg) = (L1M7 S5Wirg, M S5 Wirg)

v K

= (55W5/£1g — L1SsWy g, (M6)255W5'9>

z,v

+ (ML1S5Wyg — L1M7 S5Wyg, MOS5Wg)

£ Fy + Fs.
For F1y, it follows from the Proposition 3.10 that
T )
/0 Frdt S VT|SsWsgll Lo (o2 me ) 1M SsWargll L2 oy wrs 12 22))

+ \/TH55W6’9||Loo([o,T];L2(Rgv))HVvM(SSEW(S'QHLQ([O,T]ng;Lg(Rg))
€ )
< I SsWar gl 210, r1xms) + CeTISsWar gl oe (0, 77:12m8 )

where we used (3.24). For F», thanks to Proposition 3.11, we obtain

T
/O Fodt S VT||M°SsWi gl oo o102 e ) | M° Ss W gll 120,77 <3 12 (R2))

€
< 5”H’MéSéWé’gH|H%2([0,T}ng) + CETHM(SSJWNQH%oo([o,T];B(Rgv))-

Therefore, we finish the proof of Proposition 3.12. O

3.5 The local-in-time existence

In this section, we establish the local-in-time existence of solution to the Cauchy problem (3.1)

in critical Besov space Z%OE%(B;)/f) Due to the fact that the dual space of E%E%(Bg/f) is
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complicated. In fact, usually, the dual space of L>(u) appears as the finitely additive finite
(signed) measures which are absolutely continuous with respect to p, equipped with the total
variation norm. Consequently, the proof of this local existence is a little bit complicated. For

clarity, we divided it into several parts.

3.5.1 The local existence of weak solution

Firstly, we are devoted to establish the local existence of weak solution to following linearized

Landau equation

{8tg+v -+ Veg+Lig=L(f,9) — Laf, (3.52)

g(tv Z, U)|t=0 = 90<$7 ’U).

By using the duality argument and Hahn-Banach extension theorem, we obtain

Proposition 3.13. There ezist €, > 0 and Ty > 0 such that for all0 < T < Ty, f € L*>(]0,T] x
RY; L*(R3)), go € L*(RS,) satisfying

[ £l oo (o, xR3;L2) < €1,
then the Cauchy problem (8.32) admits a weak solution
g € L=([0,T); L*(RS ).

Proof. The strategy of that proof was originated from [9], and well developed by [145]. We

consider the joint operator
G=—0+(v- Ve + L1 —L(f,")),

where (-)* is taken with respect to the scalar product in L*(RS ). For all h € C*°([0,T], S(RS )
with h(T) = 0, we have

Re (gh(t)v h(t))x,v
1d

= —5%(\|h(t)||%g )+ Re(v-Vih, h)ew + Re(L1h, h), , — Re (L(f, h), ),
1d 1+ ~1
> 2L oIz, )+ SIERIE, — CINIES. — C 82 fll o pusps 1EHHIES

for 0 <t < T, where we used the fact that Re(v -V h,h) = 0.

Since || f | Loo (0,71 xR3;2) 18 sufficiently small, we obtain

d 1 ~1
() )+ e IER I, < 26X s, IGh
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Furthermore, we arrive at
2 L 100
Ih®zz , + SIL2PI e 12 )

T
<2 / 2D ()| g2 |Gh(r) 12 dr

< 26* T[]l oo pory,L2 ) 1GPI L1 (0.11,L2.0)

which leads to

Bl or22.,) < 26°TNGRl L1 (o722, (3.33)
In the following, we consider the vector subspace
U= {u=Gh:heC>(0,T],S(RS,)),n(T) =0}
< L'([0,T], L*(R3 ,))-
Indeed, the above inclusion is true due to similar calculations of Theorem 3.2. For g € ij’v,

we get

T,V T,V

(L(f, ) e g)rz | = (B Lo 9)) iz, | S IS2f e uayllgllca , I £Rll 2.,

which implies that

(S, ) Rl S IS2fllcgs (o) 1£RI L2,
for any ¢ € [0,T].
For go € L*(RS ), we define the linear functional as follows
Q: U—=C
u=Gh (g0,h(0)) 2, — (Lof, h)r20,1),22.,)5
where h € C([0,T],8(RS ,)) with h(T) = 0. It follows from (3.33) that the operator G is
injective. The linear functional Q is hence well-defined. We obtain
1Q(w)| < lgollzz IRz, + CrlSa fllieomyz2 o I1EA Lz
< Cr (llgollzz, + IS2/lleqoy2,) ) 19122,
= Cr (lgollzz,, + 182/l oo z2,)) Iz,

Hence, Q is a continuous linear form on (U, | - [[z1(o,7),z2 ,))- By using the Hahn-Banach
theorem, Q can be extended as a continuous linear form on L'([0, T]; L*(RS ,)). It follows that
there exists g € L°°([0,T]; L*(RS ,)) satisfying

9l zo(o,11.22,,) < Cr (HQOHLQU + HSQfHLOO([O,T],L%U)) ;
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such that
T
vue L'([0,T); L*(RF,)),  Q(u) :/0 (9(t), u(t)) 2 dt.

It implies that for all h € C§°((—00,T),S(RS,)),
T
o(Gh) = [ (al0).Gh1) 3

T
= b0z, = [ (Laf®).10); .

Therefore, g € L>([0,T]; L*(RS ,)) is a weak solution of the Cauchy problem (3.32). The proof
of Proposition 3.13 is completed. O
In next steps, we need to improve the regularity of weak solution g € L>([0,T]; L*(RS )

in both velocity and position variables.

3.5.2 Regularity of weak solution in velocity variable

To do this, we smooth out the function f. Set fy = Sy f = Zévz__ll A, f for N € N. Then,
we have fy € E%OE% (H®) and the following property.

Lemma 3.2. For any f € EE}"E?](BS/E), it holds that

(i) {fn} is a Cauchy sequence in E?E%(Bg’f),
(it) For 0 < s <3/2, fy satisfies || fnllrser2r2 < Clfllzgerzrz and
1N llcgerare < Cillinllizrass,) < Collinllzeiaiss ) < Ollfllzezaas ) (3.34)
where C1,Co,C3 > 0 are some constants independent of N.

Proof. Firstly, for any M', M" € N(M’' > M") big enough, then we have

v = Farrll g oy, = 30 2208 ar = ) erans

g=-1
M'—1
= Z 23q/2” Z AqufHLg?Lng
qg>—1 p=M"-1

q=p+1 M'-1

< Z Z 23q/2||Aquf||L;°Lng

g=p—lp=M"—-1
<3x 22 )" 23p/2||AprL§’9L%L§a
p=M"—1
where we used AjA,f = 0if [p—¢q| > 2. Since f € E%OE%(B;)’/12), by the definition of the norm
LELA(BYY), that is, {2%7/2(|Apf|rser2r2} € ¢4, this deduce that {fy, N € N} is a Cauchy

sequence in EOTOE%(B;/E)



106 Well-posedness of Cauchy problem for Landau equation

It follows from Lemma 2.4 that HfNHL;PLng < C”fHL%OLng- For the left hand side of
(3.34), it can be obtained from Lemma 2.8. For the right hand side, we have

NNz zacns ) = Do 2% 18afNllzprars
’ g>—1

N-1
< Z Z 2| Apfllzeerare

qg>—1p>—1

S DD DR ] [ P

q=—1|p—q|<1

< Gl fllzee 22 sy, )0

where ¢(p) = 2P| Ap fll e r2r2 /|| e 72 (s and we used the estimate
vz T Lu(b3

Z Z 2(‘1_”)50(]9) < Z [(Lp<12P?) * c(p)]

g>—1|p—q|<1 >-1

< <1 2P| lfe(p) || n < +o0.

Therefore, the proof of Lemma 3.2 is completed. O
Then, according to the commutator estimate in Section 3.4, we have the following estimate

for the weak solution.

Proposition 3.14. Set fxy = Sy f for each N € N. There exist ¢ > 0 and Ty > 0 such that
for all0 <T < Ty, g0 € L*(RS,), f € L>([0,T] x R; L*(R3)) satisfying
1 £l oo (jo,r)xR3;22) < €1,

v

then the Cauchy problem

{3th+v * Vagn + Ligny = L(fn,gn) — L2fN, (3.35)
gN(tv z, U)|t=0 = gO(xa U)a
admits a weak solution gn(t,x,v) € L>®([0,T]; L*(RS ) satisfying
~1
lgnllzserzrz + 1£2gn 2 222 < Cllgollzzrz + C\/THSZfHL%OL%Lg- (3.36)

Proof. It follows from Proposition 3.13 that the Cauchy problem (3.35) admits a weak solution
gn(t,x,v) € L°([0,T]; L*(RS ,)). In what follows, we show (3.36) under the assumption that
| N | oo 0,77 xR3;2) 18 sufficiently small (independent of N) and ||V fn || oo (jo,7)xR3;12) < +00.

Let 0 < 6,8" < 1. We use a weighted function W (v) = (§'v)~2 and mollifiers M?(D,), S5(Dy)
defined as in Section 3.4. Taking the inner products of (3.35) with W S5(M?®)2SsWsgn €
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HF OOHf}A and integrating the resulting equation with respect to the time ¢t € [0,7] and
(x,v) € RS. We obtain

T
1M S5 W g 10w o 77,125 ) + / (” -Vagn + Lign, Wafsé(M6)255W5’gN) dt
’ 0
(3.37)

T
= / (LN 98) = Lafr, War S5(MP 2S5 Wirgy ) dt + 1| M2 S5Wargo | 32(as -
0 :
To the term v - V,gn, we bound it as

(v - V29N, W(;/S(;(M‘S)ZS(;W(;/gN)

T,V

= ([ar2,0] .VIS(sWygN,M‘SS(;W(;/gN)xv < 2| M SsWygnll3s

)

where we have used |(V¢M?(€)) - (n)Ss(n)| < M°(€)[0n|S(6n) < 2M°(€)Ss(n). It follows from
Proposition 3.9 that

T
/ (L(fN7 gn), W5/55(M5)255W5'9N) dt
0

S (1 n 1z o, m1xmas2) + €) M2 SsWorgn 111172 (0,71 k3
+ 13l oo orywres ) N Worgn 11122 o 71 <)
+ 0[IVaSo vl oo (0,17 xm2;22) 1 Wer g 11172 (0, 77 ¢

On the other hand, regarding linear terms L1, L2, we deduce from Proposition 3.12 and Theo-
rem 3.5 that

T
/ (/3191\{, W5/35(M6)255W5/9N> dt
0

1
> (5 - ) IS Woax 1 yesy - CTISWoran e oyavces )

and

T
5\2
/0 <£2fN7W6’S<5(M ) 55W6/9N> dt (3:38)

< CT|S2£8 || oo (o,17;L2 (., ) 1M S5 W g || oo 0,735 (R )

where € > 0 is sufficiently small.
Combining (3.37)-(3.38), it is shown that

1
||M656W6’9NH%‘X’([O,T];L?(Rg’v)) + ”EQM(SScSWJ’gNH%?([O,T]ngv)

< CHM‘SS(SWJ'QOH%Z(R%U) + CTHS5W5’9NH%w([OvT];LQ(Rﬁ,v))

+ CTHMaséwé’gN||%oo([0,T];L2(Rg,v)) + CTHSQfN||%°°([07T];L2(R2,u))

+ O(1fN | oo o,y xre:22) + OV aS2 ]l Loero.11x2:22)) NI W g 111172 (0.7 x 3 )
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since || fn |z (j0,71xR3;12) is small enough. Taking T sufficiently small (for example, CT" < 1)
and passing to the limit 6 — 0, we get

1Wargn 7o oryizaces ) + I1£2 Worgn 20 17w
< Cligolzaze ) + CTUS2N e (o 172 L))

+ Cllfwllzoo o,y 22) |IWsr gn 117 2 0,77 ¢m2)
< CHQOH%?(RQ,U) + CT||S2f||%oo([o,T];p(ng))

+ C| fll oo (0,71 x R £2) HE%WéngH%z([o,T]ng’vy

where we used the fact HE%gHL% ~ ||lg|l| and Proposition 3.2. Since || f||rec(o,r)xr3;2) and T'

are both small, we obtain
~1
||W5/9NH%OO([O,T];LQ(R?W)) + ||£2W&QNH%z([O’T]XR%U)
< Cllgolz2qeg ) + CTNS2 oo ryzaes, ) < 00

where we used HW(;/gH%z([OT]XRG ) < HQH%Q([OT}XRﬁ ) for 0 < 0’ < 1. Now letting ¢’ — 0
and taking square root to the reéulting inequality give the desired (3.36) for a weak solution
gn € L>([0,T]; L*(RS ,)). Hence, the proof of Proposition 3.14 is finished. [

3.5.3 Regularity of weak solution in position variable

In the following, we need to obtain the regularity of g with respect to the position variable

x.

Lemma 3.3. Let 0 < s <3/2 and 0 < T < co. Set fy = Sy f for each N € N. If gn satisfies

gn € L=([0,T); LA(RS ), Lzgy € L*([0,T] x RS,),

1/2
dt)

then there exists a constant C > 0 (independent of N ) such that

2ps

T
Z m <A ‘(APL(fNugN)a ApgN)mm
1

p>—

1/2 oL 3.39
= C||SZfN”z/o<>22<B3/2>”EQQN”Z%E%(B;D (3.39)
T Ho\P21 )

+ONIISofn 12, L2 gnll 2 re
L L2(ByY) LrLils

for any Kk > 0, where

lowlzs zocmee 2 3 | Apgw]
INIT2L2(ByY) = 1+ r22ps pINIIL2 1212
p>—1

and C'y > 0 is a constant depending only on N.
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Proof. Due to Z%gN € L*([0,T] x RS ,), we obtain

~1 2p ~1
HﬁQQNHZﬁg(B;;f) - Z 1 + x22ps HAP‘CQQNHLQTL%L%
p>—1

< Ck Z 2_pSH£~%gNHL2TL%L§, < CKHZ%QNHL%Lng <+,
p>—1

where Cy;, > 0 is a constant depending only on x > 0.

With the Bony’s decomposition, we divide the inner product into three terms:

(APL(fv,gn) Apgn) = | Ap | D L(Sj-1fn, Ajgn) | Apgn
> LA fn, Si1gw) | Apgn

p D0 D L(Ajyfn,Ajgn) |, Apgn

J o li=5'l=1
£ Hy + Hy + Hs.

For the term H7, noticing that

A (Sicifn. Djgn) = Ay > (Sim1fv, Ajgn),
J li—pl<4
and using the Theorem 3.3 we have
< Y ISeSi-1iwllare 1€2 A5gn 12 12 Bpgn ] -

lj—p|<4

Hence, it follows that

ops T 1/2
2. 11 noos </ |H1|dt)
p>—1 0
1/2
Z 1+,€22ps Z / 1S28-1/N 120 H£2
p=>— Jj—p|<4

T 2 1/2
< ||S2fNHLooL2 (L) Z Z 1_’_/{/221)8 </ H[,QAJQN’ 2 dt)

p>—11|j—p|<4
9 1/2
dt>
L2,

X Z 1+I€22p5 </ HﬁéA
p>—1
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1/2
SIS2 NIy

1+ k2% ; .
X Z Z 1+ K22ps P ])SC(])
p>—1|j—p|<4

1/2 ~L
< HngNHL/OQLQ(Bs/z) H»C2QNHfj;E%(B;,f)a
2,1 ’

~1
oy 1£29nIEs 22 )

where we used Lemmas 2.4, 2.8 and 2.9 and the following estimate

Y Y )
p2—11]j—p|<4
<O Y W) <0 Y (1) (D)

p=>—1]j—p|<4 p=z—1

< Cl;1<a2la (i)l < 400

with

2123 20w
E 1212
c(j) = ETE L20 satisfying  ||e(4) |l < 1.

12298173 g

For Hy, we get

721)8 ! Hs|d
t
Z 1+ K22ps <A ’ 2| )

p>—1

1/2

1/2

<X e S N

li—p|<4
j<N

Ntd o
N 3 s (1

p=>—1

pgN’

) 1/2
5591\7’ )
’ 1212, 212,

1/2 ~1
< On S22, o 130N 1022,
2,1

where Cy = CN2V%. Owing to

> (AifnAgn) | =4, (Aj fnAjgN)

J li—51<1 max(j,j')>p—2 |j—5'|<1

=0, if p>N+3.
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Finally, Hs can be estimated as follows

ops T 1/2
—_— Hg,]dt>
pzz—1 1+ k220 </0
N+2 ops T ; 12
- Z W </O ’(APL (fN)gN)7ApgN)x7v )
p>—1
N+2 T B 12
Z Z 1+ﬁ22p8 </0 HSQAj'fNHL%LgO HﬁEA dt)
p>—1j<N+1
~1
< CN”SZfN”L;OL%(BW)”’CQQN”L%L%Lg-

Together with above three inequalities, we achieve (3.39). This ends the proof of Lemma 3.3.
O

Based on Proposition 3.14 and Lemma 3.3, we can obtain the regularity of the weak solution

gn to the Cauchy problem (3.35) and get the corresponding energy estimate dependent of V.

Proposition 3.15. There exist e > 0 and Ty > 0 such that for all 0 < T < Ty, f €
E%E%(Bg{lz),go € E%(Bg/f) satisfying

||f||z%oZ%(B3/2) < ez,

then the Cauchy problem (3.35) admits a weak solution gy € L°°([0,T1; L*(RS ,)) satisfying

~1
”gN”Z%OE%(Bg/Z + H[ﬂQNHZz EQ(B3/2)

(3.40)
< Cllgoliz BY2) +COVT|S2f

) + CISaf (1Y

l
LooL2 L°°L2(BS/2 || QgNHL%L%L%?

where Cy > 0 is a constant depending on N and fy = Sy f.

Proof. We consider a weak solution gy € L*°([0,T]; L*(RS ,)) to the above Cauchy problem
(3.35). To do this, applying Ap(p > —1) to (3.35) and taking the inner product with A,gn

over R3 x R? give

d ~1
%HApgNH%g,v + Hﬁmpngigm
< 2(AL(Fsgn), Apan) g+ CUIDSafnls | + 180w ),

)

where we used Corollary 3.1. Integrating the above inequality with respect to the time variable

over [0,t] with 0 <t < T and taking the square root of both sides of the resulting inequality.
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Multiplying the resulting inequality by % gives

23p/2 23p/2 1/2
1+ k23 HAPQNHL%L% + 1+ k23p (/ H L2L2 )

23p/2 23p/2 1/2
< WHAWOHL%L; i a (/0 ’(ApL<fN79N)aAp9N)ng‘ dt)

/2
+ C’\F 93P (HSzAprHL%oL%L% + HAPQN|’L%°L%L3>

3p/2 23p/2 t k&
< C2°P7%||Apgoll 22 + 14 2 </ )(ApL(fN,gN)yApgN)L%v’ dt)

93p/2

3p/2

HApQNHL%OLng-

Taking supremum over 0 <t < T on the left side and summing up over p > —1, we obtain

~1
||9N||Z%>fg(33/2w +||£29NH5252( By

< Clolz sm+cwmwﬁm(

+CNHSszH BY/2) HKQQNHLQ 1202 + CVT(ISafn Iz

51
3/2) HEQQNHp 2 L2(BY/2")
Ieizs 3’/12)
+ Cf‘|gN‘|LmL2 3/21“)

< Cllgollz, wz+amW2

LOOLZ(B3/2 H gNHLZLQ( 3/2"6)

1/2
+cnﬂg%QWAmeyyp+0¢W&mmﬂ 5
+CVT gl

LOOL2 3{12,n),

where we used the Proposition 3.2 and Lemma 3.3 because the weak solution gy satisfies the

Proposition 3.14. Then, for the small constant 7" > 0 and the small norm || f||+

for
L L2 3f12)(

example, taking CHf||1/j Ea (52 ,CVT < %), we obtain

~1
||9N||z%ozg(33/27n +||[’29N”Z2z2( 32

< Cllgollgy sz + CVTIS: Iz wa+aw&m”

s
LxI2(BY2) £ 29N”L2TL3L§E~

L°°L2

Letting k — 0, we deduce that

~1
HgNHZ%oZ%(Bii/Q + H£29N||E2 EQ(BS’/IZ)
2 + OVTIS: | 32

l
S CHQOH LOOLZ(B3/2 +CNHSQfH °°L2( 3/2 H 29N||L%—,L%L%7

L2(B3/;

which ends the proof of Proposition 3.15. O
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3.5.4 Energy estimates in Besov space

It follows from (3.40) in Proposition 3.15 that
~1
||9N||Z5.9Eg(337/12) + HEQQNHZ%Z%(B;/IQ) < +00.

Then applying (3.15) in Theorem 3.4 to fn, gy and using the Lemma 2.9, we get the following

inequality

3 oo </ ‘ APL(fN,gN),ApgN)I7U’dt> 1/2

p>—1 (3.41)

<C|Safn¥?

L°°L2(B3/2 ” gNHLZ L2( 3/2)

for some constant C' > 0 independent of N.
With the aid of (3.41), one can obtain the further energy estimate, which is independent
of N for the weak solution gy.

Proposition 3.16. There exist e > 0 and Ty > 0 such that for all 0 < T < Ty, f €
E%Ofg(Bg/Q) go € LQ(B 3/2 ) satisfying
HfHZ%OE%(BS!/f) S €2,
then the Cauchy problem (3.35) admits a weak solution gy € L*°([0,T]; LZ(R?C’U)) satisfying
~1
||9N||onoZ%(Bg,/12) + ||£29NH52T52( 3/2)

(3.42)
< Cllgollzz 5372, +CVT|[Sa2f |7

L°°L2 37/12)7
where C' > 0 is a constant independent of N.
Proof. We consider the weak solution gy € L>([0,T]; L*(RS ) to (3.35). Applying A,(p >
—1) to (3.35) and taking the inner product with A,gy over R3 x R3 give
d ~1
aHApgNH%g,v + L2 Apgn 2
< 2(ApL(fn, 9n), Apgn)z |+ CUAS2INIIT | + 185972 ).

where we used corollary 3.1. Integrating the above inequality with respect to the time variable
over [0,¢] with 0 < ¢ < T and taking the square root of both sides of the resulting inequality.
Multiplying the resulting inequality by 25P gives

3 3 <1
22| Apgnllrzrz + 22°(| L2 Apgn | 212
3 1/2
2zP HApQOHLZB +22p (/ ‘ ApL (fNn,9N), Apgzv ‘dt)

+CVT22r <||S2fNHLg9L%L% + HApgNHLgsL%L%) :



114 Well-posedness of Cauchy problem for Landau equation

Take supremum over 0 <t < T on the left side and sum up over p > —1, we obtain

~1
HQNHE%of%( 3/2 +H£29NHE2E2(33/2)

1/2
syt CHSQfN||LOOL2(B

+OVT (182l sy + o Iz oy )

< Cl|goll 3/2y ||£29NHL2 212(B 3/2)

1/2
< Cllgollza ey + U ry ey 1298z 22 sy
rovr (”SQf’f%ﬁ%(BS’ff) * HgN”Z%E%(BS,/f)) ’

where we used the Proposition 3.2 and (3.41) because the weak solution gy satisfies the Proposi-
tion 3.15. Then, for a small 7' > 0 and small HfHLOOL2 BY2) (taking CV/T, C’Hle/2 (B3 <1,

we get

~1
HgNHZg?E%(BS’,/f) +1£2gn 7, 2 72(B2/2)

< Cligolizs per2y + OVT|S2 I

L2(By/ LeI2(BYY)

which is the desired (3.42). Hence, the proof of Proposition 3.16 is finished. O

3.5.5 The local existence to linearized Landau equation

We obtain the following local existence to the linearized Landau equation by using Propo-
sition 3.16.

Theorem 3.6. There exist Cy > 1,9 > 0 and Ty > 0 such that for aoll 0 < T < Ty, f €
E%E%(Bg/z) 9o € LQ(B 32 ) satisfying
S €0,

1Mz sy

then the Cauchy problem

Oig+v - Vag+ L1g = L(f,q) — Lof,
{ g g9+ Lig=L(f.g) - Laf (3.43)
g(ta$,v)|t=0 = 90(1‘70)7
admits a weak solution g € L>([0,T]; L*(RS ,)) satisfying
~1
1925 22 myey T 1€ 002 22y
(3.44)

< G (ol + VIS s ) -
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Proof. As a first step, let us show that

g(t,z,v) € LF L2(BS/2) and E%g(t,x,v) € E%E%(Bg,/f)

Based on Proposition 3.16, it suffices to prove the convergence of the sequences
{gn.N €N} € LFLX(BYY) and {L3gn,N €N} C L3L3(B3))).
Set war v = gv — gur, M, M’ € N. Then it follows that (3.43) that

Oywnra + v - Vewn, e + Liwag, v

= L(fymswmne) + L(far — farrs gn) — Lo2(fr = fur)- (3.45)
Applying A,(p > —1) to (3.45) and taking the inner product with 237 Apwpy pr over R3 x RS,
we get,

d
dt
< C2%| Apwnrarllzz , + 27 (ApL(fars wa ) Apwnrar) gz

+ 2P (A L(fa = fars gm),s Apwarr) ps

+ 2P| ASa(far — far )l N Apwarr iz (3.46)

— 2P| Apwnrarlzz | + 29|22 A, wlizz,

Integrating (3.46) with respect to the time variable over [0,t] with 0 < ¢ < T, taking the square
root of both sides of the resulting inequality and summing up over p > —1. Following from

Lemma 3.4, we obtain

~1
”wM7M/||Z%°Z%(B§/12) + H£2wM,M/HE2 52(33/2)

< VT uniar gy ey + OIS Farll 2 1y o I ol .
1/2 s 1/2 :
+CHSQ(fM fM/)HLOOLQ 3/2 H 29 MHEQZQ(BSM)H Wa, M’ ||L2L2( :237/12)
1/2
+Cf||S2(fM fM’)HLOOLQ(BwQ H WM, M’ ||L°°L2(B3/2)

It follows from Proposition 3.16 and Young’s inequality that

~1
HwM,M/HZooZQ( 3/2 +||£2wM,M/”Z2Z2( 3/2)

< OVTllwnt g o +C||fFII2

LEL2(B LyL2(B3? ”EszM’HLQH( 5
+0 (Nollzqmgny + VI N oy ) 1B 0n0 0l 5

+\/>||S2(fM fM )HLOOLQ 3’/12)'
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Thanks to the smallness of ”go”i%(Bg,/f)’ HfHZ%Oz%(B%Q) and T', we can choose

1
¢ (Iaolzzesyey + VI g ) < 5
Then it is shown that

~1
HwM’M/HE%OE%(BS’/f) + H£2wM’M,HZ2TZ%(B§”/12)

< M[S2(fm — fM')HZ%OE%(BS’/Iz)

for 0 < A < 1. As {fn} is a Cauchy sequence in LOOLQ(B?’/Q) we deduce that {gn} is also true

and satisfies
{gn,N €N} € L¥LA(BYY) and {Lzgn,N € N} C LAL3(B3D).
Set g = limy_, o, gv. Therefore we obtain
g(t,v,z) € LEF L2(B3/2) and E%g(t,v,x) € E%Eg(Bg’/f)

Next, we prove (3.44). Applying A,(p > —1) to (3.43), taking the inner product with 23PA,g
over R3 x R? and using Corollary 3.1, we get

d ~1
271 8glF + 2% L2 00]l3

< 2%t (ApL(f, 9), Apg)ng + QBPC(HAPS?JCH%% + HAPQH%%U) (3.48)

Integrating (3.48) with respect to the time variable over [0, ¢] with 0 < ¢ < T, taking the square
root of both sides of the resulting inequality and summing up over p > —1. It follows from
Lemma 3.4 that

32, < ClISaf 2

3/2 +H£ gHL2L2(B LOOLQ(B3/2 ||£ g”L2L2( 3/2)

||g||LooL2(B

+ C <”go”L2 3/2 + f”SQfHLooLQ 3/2 =+ f|’g|’LmL2(B3/2 ) .

B and T are small (taking C’||f||1/2

Tyi2(BY?) ,CVT < ), we get the desired

Slnce HfHLooLZ

inequality (3.44). O

3.5.6 The local existence to nonlinear Landau equation

The local-in-time existence of solutions to the Cauchy problem (3.1) is shown as follows.
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Proposition 3.17. For a sufficiently small constant g > 0, there exists T > 0 such that if

HgOHE%(BS’/f) < €0,

then the Cauchy problem (3.1) admits a local solution g(t,z,v) € (0,T) x R3 x R? satisfying

g€ LFLABYY) and Lige LRLA(BYY).
Proof. Firstly, we construct the following sequence of iterating approximate solutions:

{ " v Vg L™ = L(g",g"“) —Log", t>0,veR3, (3.49)

n+1(

g t,{E,U)|t:0 290(373’0)’

starting from ¢°(t,xz,v) = go(x,v). Taking g = ¢"™1, f = ¢" and T = min{Tp,1/(4C2)} in

Theorem 3.6 gives
51
HgnHE%OZ%(BS’7/12) + ‘|£2gn“z%zg(33{12) < g,

where g9 > 0 is chosen such that 2Cpeg < €. Secondly, it suffices to prove the convergence of

the sequence {¢g"} in the space Y, which is defined by
Y ={glg € LFLY(BY). Lige LILY(BY)}
Set w,, = g"* — g". Tt follows from (3.49) that
o™ + v - Vouw™ + L1w" = L(g", w") + L(w™ !, g") — Low™ !

with w™|;—9 = 0. The following calculation is similar to the energy estimate leading to (3.47).
Here, for completeness, we also give the basic estimates. Apply Ap(p > —1) to the above

equation and take the inner product with 23?A,w™ over R3 x R2, we obtain

d ~1
S A2, + 2R AR

< 2P| Apw" |7, + 27T (AL(g", w™), Apw™) 5

+ 23p+1 (APL(wn_l,gn), prn)L2

x,v

+ C2P|ApSaw™ g 1 Apu 2.

Then, Integrating the resultant with respect to the time variable over [0,¢] with 0 < ¢ < T,

taking the square root of both sides of the resulting inequality and summing up over p > —1.
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It follows from Lemma 3.4 that

0" e pa sz + 1E20" I 73 s

< OV | gty + 829 N2 g 123" Nz g
+ C[Spw™™ 1||1LQ§L2(BJ/2 122" 1y 7 iy 10" 1 5
+ OV 1 o 0

< CVT|uw" IILW 312) +CVE| L2
+ C(VT + Vo) ||Sow™ Y|+

L3 L3(B3Y)

LOO L2 37/12) .

Furthermore, if € and T are sufficiently small (for example, taking C'v/e, CV/T < %), then
“|

[w s/t |£2wm|;

LooLQ 3’/12) S )\HSan_lu

L I2(B; L L2(ByY)

< ASqw!
H w HLooLQ 3(12)

for some 0 < A < 1. Clearly, we see that {¢g"} is a Cauchy sequence in Y, so there is some
limit function g € Y such that ¢" — g as n — co. The standard procedure enables us to know

that ¢ is the desired solution to the Cauchy problem (3.1) satisfying
g(t,v,x) € LF LZ(BS/2) and ,C2g(t v,x) € LTL2(33/2)

The proof of Proposition 3.17 is finished. 0

3.6 The global-in-time solution

Now we prove that we can extend the above local-in-time solution to a global-in-time solution,

which heavily depends on the key a priori estimate. For this end, we define the energy functional

Er(g) = Hg”i;sigmﬁfﬁ
and the dissipation functional

Dr(g) = [[Vala: b,0)llzz p1r2) +11£2 Iz 2232y

respectively. The following sections is needed to prove a priori estimate.

3.6.1 Estimate on the macroscopic dissipation

In this part, we bound the macroscopic dissipation arising from Landau collision operator. We

by P denote the projection operator on ker N, which is given by
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Pg = (a(t,z) +v- b(t,z) + ([v|* — 3)c(t,x)) /. (3.50)

In terms of the macro-micro decomposition, the distribution function g(¢,v,x) can be decom-

posed as

g=Pg+ (I-P)g.

Precisely, the macroscopic dissipation of g is included in the following proposition.
Proposition 3.18. It holds that

va(a, b, C)”Z%E%(B%/f) 5 HgOHE%(BS’/lz) + gT(g) (3 51)
1 .
129052 70 o2y + E7(9)Dr(9)

for any T > 0.

Proof. We take the velocity moments
VB vl = ([0 = 3) Vi, (10 — 855 /i —= (Jof? — 5) viv/
s Vg ; 6 ) iUj iJ ) \/E i
with i, 7 = 1,2,3 for the Landau equation (3.1). Define

bij = (vivj — 0i)\ /1, P11 = (Iv!2 —5) viv/1t

]

and
Aij(9) = (9,%i5), Bi(g) = (9, P1,1,4)-

Noticing that

¢z‘,j € span {900,0,0, $1,0,05 ¥0,2,05 $0,2,1, £0,2,—15 ¥0,2,2, @0,2,72}

and
Pt e, _ P11 — P11

d1,11 = —P1,1,0; P12 = 7 ;o 9113 = 73 ,

7

we deduce that
Loi;=12S9¢;; with [Cij| <25 L1 =8b11s 4,j=1,2,3.

With the aid of the orthogonal of {¢y, ;m}, we infer that (a,b, ¢) which is the coefficient of the
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macroscopic component Pg in (3.50) satisfies the fluid-type system

(

(9ta + Vx - b= O,
3
Oibi + O, (a+2¢) + Y 0, Ai j((T—P)g) =0,
j=1
1 VI0 &
Ore+ 3V bt == ;@miBi((I —P)g) =0, (3.52)

00 (Ai (T~ P)g) +26;) + Dby + 0a, b1 + 12 (Sag,
0, B;i((I — P)g) + V100,,c + 8B;(g) = B; (L(g,9) — v+ V,(I—P)g),

where 4,5 = 1,2,3. Applying the cut-off operator A, with p > —1 to the system (3.52) implies
that

atApCL + Vx . Apb = 0,

3
Qe Apbi + O, (Apa + 28,0) + > 0 Ai j(A,(I—P)g) =0,
j=1

A pe + %vx S AR+ \/6,?0 23: Oz, Bi(Ap(I = P)g) = 0,
pa (3.53)
00 (Ai (Ap(T = P)g) +28,0;5) + Ou, Agbs + Or, Ay +12 (58,9, 61,
= A j (ApL(g,9) — v ViA,(I-P)g),
0 Bi(Ap(I—P)g) + V100, Apc + 8B;(Apg)
= Bi (ApL(g,9) —v - VzA,(I-P)g).

As in [47, 52], we denote the temporal interactive functionals as follows:

I
.Mw

EO(t) (aZEiApca Bl(AP(I - P)g))L% 3
=1
3
51 (t) = (8901'Apbj + 83;]. Apbi, Ai7j(Ap(I — P)g) + 2Ap65ivj)L% s
ij=1
3
Ex(t) = > (D Apa, Apby) 5

Il
—

)

Set £ (g(t)) = Eo(t) + r1&€1(t) + kaa(t), where 0 < Ky < K1 < 1 are some constants (to be
confirmed below).

By multiplying the fifth equality of (3.53) by 0., Apc and summing up on ¢ with 1 <7 < 3,
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one can get

dEo(t) < >
- 2; (02,801, Bi(Ap(T = P)g)) 1> + V10 Z 102, Apell? 2
3 3
+8 (95,896, Bi(Apg)) 1 = Y (90,850, Bi (ApL(g,9) — v - VoA (T = P)g)) 5 -
=1 =1

Using the third equality of (3.53) and Young’s inequality in Lemma 2.10, we arrive at

3
D |00 Bp0he, BiA, (T P)g)) 1z
=1

3
1 V10
=D || 3Ver Akt == D 0nBi(Ay(I = P)g), O, Bi(Ay (1 = P)g)
i=1 j= 12

<eo1 [|VLA b||L2 + HV (I-P) pgﬂing

for eg; > 0, where C¢,, is a constant depending on €p;. Furthermore, by using Young’s equality
again, we are led to

d&o(t)
dt

+ )\1 HV APCHLQ

< o1 [|Vapb|2, + S, 1A L(g.9)) 2,
=1

+ Coonns IV (1= P) g2, + 1T = P)Aygl255 )

for A1 > 0 and €q1, €92 > 0, where C¢, and C, ¢,, are some constants depending on €g1, €p2

Multiplying the fourth equality of (3.53) by 0z, Apbj+0:,;Apb; and summing up 1 < i, 5 < 3,
we obtain

3
dé’
1 Z O, DpOubs + Dy Dy ibi, Aij (Dp(1 = P)g) + 2850615) 1

2 (V2800113 + V2 - B5013; ) + > (0e200b + 02, Abi, (82209, 015) )

ij=1

L2-

x

3
= (0, Apbj + 0, Apbi, Ai j (ApL(g, 9) — v - VoA, (I - P)g))
ij=1
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Then, substitute the second equality of (3.53) to eliminate A,0;b and get

3

> ((%Apatbj’ Aij(Ap(I = P)g) +2A,¢0;5) 1
ij=1
3 3
-y ( (&Ei(Apa +28,¢) + 3 0a, Ai (A1~ P)g),
i,j=1 j=1

0 zAU(AP(I — P)g) + 2aziApC(5i,j)

L3

3
2 2 2
< 11 [Vadpal2s + Cooy [Valgel2s + Coy 3 V2 A5(A0(T - Pg) 2,
i,j=1

for €17 > 0, where C¢,, is a constant depending on €1;. Consequently, there exist some constant
A2 > 0 such that the following inequality holds

d&i ()

dt
S €n ”VxApaHig + Ceyy ”VxApC”ig + Cery ez ( [V Ap(I - P)QHing

+ 22 [ VoAbl

3
2 2
1A= P)gllTa e + 3 145(AL(g, )17 ).
ij=1
where C,, and C.,, (,, are positive constants depending on €;1, €12 > 0. Multiplying the second
equality by 0,,Apa and summing up 1 <7 < 3,

3

d&s(t) &
T ;(Apbi, 0, 8p000) 2+ |V Apall7, = —202(%%0, Oz, 8p0) 2

3
- Z (0z,; Aij(Ap(I—=P)g), 0z, Apa) 2.

ij=1
Eliminate A,0:b by the first equality of (3.53), we get

d&s(t)
dt

2 [Va2pal2; < Cooy [V (b,0)[12 + Cony V(1 — P)Ag]2, 0

for A3 > 0, where C¢,, is a positive constant depending on ea;.
Put above energy estimates together and choose €g1, €11, K1, k2 small enough. Consequently,
there exists a positive constant A > 0 such that
d int 2
25 (9(0) + A [Valp(a, b, o),
2 2 2
S IVe(I— P)APQHLng + [[Ap(I - P)QHL,%Lg + HAPQHLng

3 3
+ 3 1458 L(a. 9D + 3 IBi(AL(g. 9))2 -
ij=1 i=1
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Integrating the above inequality with respect to ¢ over [0,7] and taking square roots on both

sides give
T 1/2
([ 19:800a .01, )
S V1€ (G(D)] 4+ /1€ (G(O)] + Vo (T = PYApgl 12 1212 + 1T = P)Agl 12 12,2

+ Z 145 (A L(g, 9 2 12 +Z 1Bi(ApL(9, 9))l 2 12 -
7] 1 ’L 1

Multiplying the above inequality by 2% and then taking the summation over p > —1 to get
plymg q y by

||Vz(a,b,c)||L2 (31/2)
S 20 25 IEM DI+ Y 25\/1E O] + I = P)gllzs 1 gz
p>—1 p>—1 (3.54)
5 p 5 p
+ D0 > 22 [ AG(AL(g, )l z e + Do Y25 1B ALg. 91215 -
p>—14i,5=1 p>—1i=1

Clearly, it is not difficult to check that

Z 9% 5'mt )| < || Val(a,b, C)HB;/f + HQHR(B;/E)
p>—1 | |

,S ”(CL, b7 C)HLOO(B3/2 + HgHLooLQ 3/12) )

which implies that

> 2\ IEM TN S Erle), D2 251§ OIS 9ol gz - (3:59)

p>—1 p>—1

By using Proposition 3.5 (taking s = 3) and the Sobolev embedding B;’{f(Ri) — 337/12 (R3) —
L>(R3), we obtain

5 3
2 3 2 AL g+ 20 D 2F IB(AL(9:9)ig 5

p>—1lij=1 p>—1i=1

S 1183913 315 P9l oy oty + [Pl g 3 1S58z ey S Er(0)Pr(9), (3:56)
where we have used the following estimates:
HPgHL%L%LgO S HPg”ZQTZ%(BS’/f) S ||vl"(a’ b, C) HZ%(B;/f(]Rg)) ,S DT(9)7
HSSQHL;Lngo < HPQHLQTLngO + HS?’QHLQTLngO

S ||v93(a7 ba C)HZ%(B;ZIQ(R%) + HS?’QHZ%Z%(B;GQ) fs DT(Q)'
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By inserting (3.55)-(3.56) into (3.54), we conclude that
HVJJ(aa b, C)HZ%(BQIQQ)
1
S ”90”55(33(12) + ”EQQHE%EE(BS@ +&r(9) + Er(9)Dr(g),

which is just (3.51). O

3.6.2 Estimate on the nonlinear term L(g, )

In this section, we estimate the nonlinear term L(g, g). It follows from (3.18) in Proposition
3.4 that

(L(9,9), Pg)r2mey =0, Vg€ SR,
so it suffices to bound
(L(g,9), (I - P)Q)L2(R3) :

Proposition 3.19. Let g = g(t,x,v) be suitably smooth function. It holds that

1/2
Z 95D (/ (ApL(9,9), Ap(T—P)g)sl dt> S mDT(Q)

p>—1

for 0 < T < +o0.

Proof. With aid of the macro-micro decomposition, we split L(g, g) into four terms:
L(g,9) = L(Pg,Pg) + L(Pg,(I-P)g) + L((I - P)g,Pg) + L((I - P)g, (I - P)g).

Then it follows from Theorem 3.4 (taking s = 3) that

1/2
5 2 ([ A1 Pa o) 00—l

S s 1RO s | EH = P2 o
+HPg”1L/22L2 Lge) H£2P9H1L/j>m 5/2)HZ%(I gH1L/22L2 5/12)
S IR 1y ey PN ey 13T = PYgl%,

Note that Bg”/f(Ri) < L>®(R?), Proposition 2.2 and Lemma 2.9, we arrive at

> 2 (/ (A,L(Pg, Pg), Ay (I — P)g)x,v|dt>1/2

p>—1

1/2 1/2 ~1
SIS, o) IPII o 1220 = Pl

1/2

I212(By7)
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where
S; ”Vx(a, b, C)HE%(B%/E) 5 DT(Q)'

Hence, we conclude that

1/2

) T
- L (/0 |(A,L(Pg, Pg), A, (I — P)g)mydt> S Veér(g)Dr(yg)

p>—1

In fact, other collision terms can be estimated at a similar way. Precisely,

> 2 </ [(ApL((I—P)g,Pg), Ap(I—P)g)s,.| dt>1/2

p>—1
1/2 1/2 1/2 1/2
s{la-py ||L;L2( v PO n) I =PI o PG o )
~1 1/2
X H£2 gHLQ L2 3,/12)

<VEr(9)Dr(g
1/2
> 2 / (A,L(Pg. (1 Plg). (1~ Py} |t

p>—1

1/2
S IPgl2

SVEer(g)Dr(g)

~1
o 1B = PUl o IE A= P),

I2.12(B3; 3/2

and
1/2
e / (AT~ P)g, (T— P)g), Ay(T— P)g)...| dt)
p>—1
1/2 s 1/2 s 1/2
rg H( gHLOOLQ( ;’17/12) H 2 HL2L2(B3/2 H 2 HL2L2(33/2
S VEr(9)Dr(g)
Therefore, combine those estimates to finish the proof of Proposition 3.19. O

3.6.3 The global existence to nonlinear Landau equation

Having Propositions 3.18-3.19, we can establish the following priori estimate.

Proposition 3.20. Let g € Y be the solution to the Cauchy problem (3.1). It holds that

ér(9) + Dr(9) < C lollzy sz, + C (€r(9) + VEr(g)) Drlo) (3:57)

for any T > 0, where C > 0 is some constant independent of T
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Proof. Applying A,(p > —1) to (3.1) and taking the inner product with A,g over R3 x R3,
we get,

1d

B dt”AngLQ + H‘C2APQHL2 (ApL(g,9), Ap(I - P)Q)Lgm )
where we used (v-A,Vzg9, Apg) rz = 0. Integrate the above inequality with respect to the time
variable over [0,¢] with 0 < ¢ < T and then take the square root of both sides of the resulting

inequality. Consequently, we obtain
3, 3yl
22P|Apglizare + 22| L2 Apgl| 212
. 1/2
2 Splizas + 20 [ |(&L00.0) 8000, [ )
which implies that (by using Proposition 3.19)
1907725 32y T [ gHL2L2 B/2) SC!!gollzg(nglz)+v5T(g)DT(9)- (3.58)

It follows from Proposition 3.18 that (performing the calculation a x (3.51) + (3.58) in fact)
that

1
(1_Q)ET(Q)+(1_O()HACQQHLQLQ(Bs/z —1—04HV (a b C)HL2L2 17/12)
S lgollzs g2y + (VET(9) + E7(9))Pr(9),

which leads to (3.57) directly if taking o > 0 sufficiently small. [
Proof of Theorem 3.1.

Firstly, we prove the non-negativity of the solution to (1.1). For the solution of the Cauchy
problem (3.1) that obtained in Proposition 3.17, which is the limit of the sequence of (3.49),
coming back to the original Landau equation, it is also the limit of a sequence constructed

successively by the following linear Cauchy problem

Of™ v - Vo [P = Qr(f", [,
f"* im0 = fo = p+ /1igo > 0.

Then, the non-negativity of solutions to the Cauchy problem (1.1) can be proved by the same
methods as Section 5 in [8]. Based on the global a priori estimate (3.57) and the local existence
result (Proposition 3.17), Theorem 3.1 is followed by the standard continuity argument. The
detailed calculation is similar to that of Section 8 in [52]. For completeness, we give the detailed
process.

From the local existence of solutions in Proposition 3.17, that is, for a sufficiently small
mg > 0, there exists T* = T*(mg) > 0 such that if

||90||Zg(33{12) < mo,
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then the Cauchy problem (3.1) admits a local solution g(t,z,v) € (0,T%) x R3 x R3 satisfying

~1 i
||9||Z%oz%(33/12) + HﬁQQHE%E%(B;/f) <2mg, T €0,T7). (3.59)
It is also needed to prove that T — HQHZ%OZg(B;/f) + HZ%QHEQTZ%(B%Q) is continuous in [0,7).

The proof is similar to that of Section 7 (Page 27) in [52]. We also state the detailed proof.
Firstly, prove that

3
ts 7 227|A00(0)rzr (3.60)
p>—1

is continuous in [0, 7). In fact, take 0 < ¢t; < t9 < T*. Letting f = g in (3.48), integrating the
resultant inequality with respect to the time variable over [t1,t3] with 0 < ¢ < T, taking the

square root of both sides of the resulting inequality and summing up over p > —1, we obtain

3 3 t2 1/2
S 23 (|Apgt2) 2z — 1 Apg(t)l222) | S (1 + i) S 237 ( / ||Apg<t>||%ngdt) ,
t1

p>—1 p>—1

where Lemma 3.4 is used. Hence, it is sufficient to prove

3 to 1/2
lim 23P </ 1A,9(1)]|%2 2 dt> = 0. (3.61)
tl v x

to—t1
p=>—1

1/2
Due to that >~ 2P (fOT 1Apg(0)]22 2 dt) is finite for a fixed time 7" with max{t1,t2} <
T < T*, there exists an integer NV such that

1/2

3 to 1/2 3 T
> 2 ([Clapiiee) < 5 2 ([ Iag0Rpa) <
t1

p>N+1 p>N+1

DO ™

for £ > 0. Directly, it holds that
. s, ([ A 2 2
S 2 ([Ciag0e) <o
—1<p<N 1

which implies that there is § > 0 such that

3 t2 2 1/2 g
Z 227 [1Apg () [I72 2 dt <3
—1<p<N f

for |to — t1] < d. Thus, |t2 — t1| < §, one has

to 1/2
R G ANEOT R R B DEEED Dl B
1

p>—1 —1<p<N p>N+1
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The limit formula (3.61) is proved and thus ¢t — > o 2%p||Apg(t)||L%L% is continuous in
[0,7™). Particularly, for t € [0,7™) the norm Zp> 1 %pHApg(t)HLng in (3.61) is well defined.

Then, we show that T+ ||g]|~ 5/2) Hﬁ g+ B3/2) is continuous in [0,7*). As a matter
2.1

L°°L2(B L2.L2(
of fact, take Ty, Ty with 0 < T) < Ty < T*. Observed that ||g||

non-decreasing in T'. After, we calculate that

L°°L2(Bg/2 + H‘C gHLZE%(B;/f) is

~1
0= (Mol 2oy, + 16401y zacmy ) — (1o ooy + 18280055 gy

3
<> 22p< sup  [|Apg()llz2L2 —||Ap9(T1)||Lng>

p>—1 Th<t<T>

1/2
LY o (/ ||Apg<>\Lng) 544 B,

p>—1

It follows from (3.61) that B — 0 as T — Ti. Since t = [[Apg(t)[/z272 is continuous and
||g||Z%oE%(B;/12) is finite for some fixed time T with 75 < T" < T™, we can obtain that A — 0
as To, — Ty with the completely same way as proof of (3.61). Also, one can obtain T'
Er(g) + Dr(g) is continuous with the same proof.

Now we begin to prove the global existence of solutions to (3.1). Let us redefine the constant

C on the right of (3.57) to be C; > 1, and choose m; > 0 such that

1
Cr(m1 +y/mq) < 3
Set m = min{mg, m1}. Choose gy such that

” H < % < %
PNL2B3) = 40, = 2

Define
T =sup{T : Er(g) + Dr(g) < m}.

Then, T > 0 holds true since the solution g exists locally in time from (3.59) and 7'
Er(g) + Dr(g) is continuous. Furthermore, we deduce from (3.57) that for 0 < T < T,

Er(9) +Dr(9) < Cullgollzy sy + C1 (ma + v/mn) (Er(9) + Pr(g))
That is, 0 < T < T one can obtain

m
< —<m

Er(g) + Dr(g) < 2C4 Hgo”ig(z;ﬁff) 5

which implies T = . Hence, the proof of Theorem 3.1 is completed.
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In this chapter, we investigate the Cauchy problem for the spatially inhomogeneous non-
cutoff Kac equation. If the initial datum belongs to the spatially critical Besov space, we
prove the well-posedness for the inhomogeneous Kac equation under a perturbation framework.

Furthermore, it is shown that the solution enjoys Gelfand-Shilov regularizing properties with
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respect to the velocity variable and Gevrey regularizing properties with respect to the position
variable. In comparison with the recent result of [117], the Gelfand-Shilov regularity index is

improved to be optimal.

4.1 Description of problem

In this chapter, we consider the Kac equation (1.8) around the normalized Maxwellian distri-

bution
v\z

M) = (2r)"2e =, veER.
In a close to equilibrium framework, considering the fluctuation of density distribution function
f(t,z,v) = M(v) + VM(v)g(t, z,v).
Since K (M, M) = 0 by conservation of the kinetic energy, the Cauchy problem (1.8) reads as

{atg+v8xg+/Cg:F(g,g), t>0,veR, (1)

g\tzo = 4o

with fo = M(v) + vV M (v)go, where K(g),T'(g, g) are given by (1.12)-(1.13).
Our main results are stated as follows (also, Main Theorem B in Chapter 1).

Theorem 4.1. Let 0 < T < +oo. We suppose that the collision cross section satisfies (4.7)
with 0 < s < 1. There exists a constant €g > 0 such that for all gg € zg(B;/f) satisfying

HgOHE%(B;’/f) < €o,
then the Cauchy problem (4.1) admits a unique weak solution g € E%OE%(B;/E) satisfying
s T
||g||Z%°Zg(B§{12) + H%QQHE%Z%(B%) < o€ ||90||zg(B;(12)

for some constant ¢y > 1. Furthermore, this solution is smooth for all positive time 0 <t < T,

which satisfies the following Gelfand-Shilov and Gevrey type estimates:

)3IC>1, YO<t<T, Yk >0,

1435\ K Ck+1 3s+1
2s < | s
H DY o) S 00 Mg
)Vo >0, 3C >1, YO<t<T, Vk,l,q >0,
loLaxaxan 3s+1 3541 2541
k al
[|lv 8vagg(t)HE2(B;/12) < T MR P (K1) 26D (1) 2640 (gl) "2 HgOHL2 Bl/2:
v s 2s(s+1 2s

Our result deserves some comments in contrast to the result of [117].
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Remark 4.1. (1) We show the well-posedness of Cauchy problem with the initial datum

belonging to the spatially critical Besov space E%(B%’/lz), rather than in the Sobolev space

Ly(Hy).
(2) For the regularizing effect, our result indicates that
3s+1

Vt>0, Vo R, g(t,z,) € SECII(R); VE>0, YweR, g(t,-,v) € GHas(R).

2s(s+1)

Actually, the Gelfand-Shilov index for the velocity variable is sharp for 0 < s < 1, if

noticing that
3s+1 25 +1 3s+1 1
= <1+ —.
2s(s+1) 2s (2s+1)(s+1) 2s

(3) If s is close to 1, the solution is almost analytic in the velocity variable, since

3s+1 R
2s(s+1)

Therefore, our Gelfand-Shilov index for the velocity variable should be optimal.

B The schema of proof of Theorem 4.1

The proof of Theorem 4.1 is a little complex since that we need to prove the local weak
solution in critical Besov space Zg(B;/f) but also prove the Gelfand-Shilov index with respect
to the velocity variable v and Gevrey regularizing effect for position variable . The summary
of the proof is shown as follows.

e Analysis of Kac collision operator (Section 4.3)

The estimates of Kac collision operator make an important effect on our proof. We prove
some estimates of Kac collision operator along the Hermite basis, of which the estimate of the
nonlinear collision operator given in Lemma 4.13 is new and critical to obtain the more sharp
Gelfand-Shilov regularity index. Here, by taking a new mollifier different from that in [117],
we obtain some key estimates.

e The local existence of weak solution (Section 4.4)

The proof of the local existence is similar to that for Landau equation in Chapter 3. How-
ever, the difference is that we take a new mollifier with respect to the position variable and
velocity variable. See Section 4.4 for more details.

e Gelfand-Shilov and Gevrey regularizing effects (Section 4.5)

To show Gelfand-Shilov and Gevrey smoothing effects, we firstly prove a priori estimate
with exponential weights in Proposition 4.6. To do this, some critical estimates are needed,
hypoelliptic estimate of the linear inhomogeneous Kac operator in Lemma 4.17 and Lemmas
4.18-4.20. With a key estimate on the Hermite functions in Lemma 4.9 and Proposition 4.6,
we prove the Gelfand-Shilov regularizing effect for velocity variable v and Gevrey regularizing

effect for position variable x in Theorem 4.1.
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4.2 Analysis tools

4.2.1 Hermite functions

The standard Hermite functions (¢, )n,en are defined for v € R,

oul) = -

where a is the creation operator

2 qn 2 1 d 2 aldo

(6_7) = _\/W(’U - %

50 i)
ar = —(v——).
V] dv
The family (¢y,)nen is an orthonormal basis of L2(R). We set for n € N,v € R,

_ _ 1 v d
en(v) =27 Y49, (27V%), e, = ——

NIRRT

)”eo.

The family (e, )nen is an orthonormal basis of L?(R) composed by the eigenfunctions of the

Harmonic Oscillator

Hé—AU+f:Z(n+;)Pn, 1=> P,

n>0 n>0

where P, stands for the orthogonal projection

Pnf = (f, en)LQ(Rv)ew

It satisfies the identities
Avep, =Vn+ley1, A_ep=+ne, 1, (4.2)

where

v d

AL = —F —. 4.
79T W (4.3)

Furthermore, the fractional Harmonic Oscillator

1
H =Y (b +5) P

k>0

can be defined by the functional calculus.
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4.2.2 The Kac collision operator

The linearized Kac operator K is a non-negative unbounded operator on L?(R,) (see [115])
with a kernel given by
Ker K = Span{eg, e2}.

where the Hermite basis (e, ),>0 is an orthonormal basis of L?(R), which is recalled in Section

4.2.1. The linearized Kac operator is diagonal in the Hermite basis

K= Z e Py (4.4)

k>1

with a spectrum only composed by the non-negative eigenvalues

Nogsr = | BOL — (cos)P1)dg >0, k>0,

us
4

I
Dop = [ BO)(1 — (cos0)** — (sin0)**)dh >0, k>1

%
satisfying the asymptotic estimates

)‘k ~ k‘s, (45)

when k — +00. We notice that
0=X < Agp < Ay, 0< A < Agpyr < Aoy,

when 1 < k < [, and that \; is the lowest positive eigenvalue. The linearized Kac operator

enjoys the coercive estimates
]. S s
30> 0.9f € SRy) FIH2fl7e < (KF, Nz + 1172 < CIH? flI7- (4.6)

Now we take the following choice for the cross section

Bio) — L2

= <
g <

Z (4.7)

in part because of the usage of those results in [115] directly. In that case, the eigenvalues

satisfy the asymptotic equivalence

21+s

AN~

k—4occ S

T(1— s)k*, (4.8)

where I' denotes the Gamma function. Moreover, the linearized Kac operator

1

=1"“(v,Dy)u = —
Ku (v, Dy)u 37 oo

i(v— v+ Yy
'l y)”l(T,n)U(y)dydn
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is a pseudo-differential operator whose Weyl symbol belongs to S*(R?), where for m € R, the
symbol class 8™ (R?) is defined as the set of smooth functions a : R? — C satisfying

V(a, B) € N?, 3Ca s > 0, V(v,m) €R?, (0707 a(v,1)| < Ca,p((v,m))>™ 117
with {(v,n)) = /1 + |v|?2 + |n|2. More specifically, the Weyl symbol I(v,n) admit the following

asymptotic expansion

21+s 2 21+s 2 2)8
r(1—s)(1+7°+ ”Z)s _ 22+ V20
S

VN >1, l(v,n) = .
N v2
a4 7? + ) F mod STNTURY),
k=1

where (c)r>1 is a sequence of real numbers.

Next, we recall the following lemma given by Lerner-Morimoto-Pravda-Starov-Xu in [115],
which gives the details about the Kac collision operator can be defined as a finite part integral
under the assumption (1.9).

For ¢ a function defined on R, we denote its even part by

9 1
p(0) = 5(2(0) + ¢ (=0)).
The lemma in [115] (Lemma A.1) is shows as:
Lemma 4.1. Let v € L{ _(R*) be an even function such that 6?v(0) € L*(R). Then, the

loc
mapping

pE C’f(]R) — lim v(0)((0) — p(0))do = /1 /(1 — t)92y(c9)<,0”(t9)d9dt,
0 R

e—04 |6]>e

defines a distribution of order 2 denoted fp(v). The linear form fp(v) can be extended to C'*
functions (C functions whose second derivative is L>). For ¢ € CY! satisfying ¢(0) = 0, the
function v belongs to L*(R) and

(tp(v), ) = /1/(0)95(9)(19.

Let f,g € S(R) be Schwartz functions. We define

Frolu ) = F0)g(0). 975(6.0) = [ (Fy(Fow) = Fpy(w))d,

w

where Ry stands for the rotation of angle 6 in R?,

cos@ —sind
Ry = = exp(6.J), J = Rx.

sinf cos@
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We have
Fyg(Row) — Fyg(w) = f(vcos — vy sinf)g(vsin g + v, cos @) — f(v)g(v),
so that by using the notation f, = f(v.), f' = f(V"), fx = f(vi), f = f(v) with
v/ =vcosh —v,sinf, v, =wvsinh+ v, cos, v,v, € R,
we may write
prg(0,v) = /R(gif’ = g« J)dvs.

Furthermore, we easily check that its even part as a function of the variable @ is given by

$100.0) = [ (@F = g.0)io. = [ (@1 = @)-F)d.
Notice that for each § € R, the mapping
(f,9) € S(R) x S(R) — ¢y,4(0,-) € S(R)

is continuous uniformly with respect to 6. In fact, the function Fy 4 belongs to S(R?). By

denoting I1; the projection onto the first variable, this implies that the function

vlafcpfyg(&v) = /Hl(w)laf@f’g(ﬁ,w)dv*

is bounded since
q)f,gw, w) = Ff,g(ROUJ) - Ff,g(w) € S(R2)-

As a result, the function v — ¢y 4(6,v) belongs to S(R) uniformly with respect to §. Moreover,

the second derivative with respect to 6 of the function ®; 4,
F]/c'hq(ee‘]w)(eeJJw7 e Jw) — F}y(ee‘]w)ee‘]w

belongs to S(R?) uniformly with respect to 6. This implies that the second derivative with
respect to 6 of the function ¢y 4 is in S(R) uniformly with respect to §. We define the non-cutoff

Kac operator as

K(g, [)(v) = {fp(l(—z )8), ¢1,4(-,0)),
when f is a function satisfying (1.9). Since ®¢4(0,v) = 0, Lemma 4.1 allows to replace the
finite part by the absolutely converging integral

Kon)) = [ 50 [(@18 @) )do = K(a. 1))

1
It was established in [115] (Lemma A.2) that K(g, f) € S(R), when g, f € S(R). We also recall
the Bobylev formula [16] providing an explicit formula for the Fourier transform of the Kac

operator

~ ~

Ko@) = [ s0fismoficeoso -g0fe]w,

when f,g € S(R). The proof of this formula may be found in [115] (Lemma A.4).
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4.2.3 Linear inhomogeneous Kac operator

We recall some spectral analysis for the linear inhomogeneous Kac operator that are given in

[115, 117]. Consider the operator acting in the velocity variable
P = iv€ + ag (v, Dy) (4.9)

with parameter { € R, where the operator A = af (v, D,) stands for the pseudo-differential

operator
1

2 R2

v+ w

ei(v—w)nao( 5

al (v, Dy)u = n)u(w)duwd

defined by the Weyl quantization of the symbol
2

v
ao(v,n) = co(1+n* + Z)S

with some constants cg > 0,0 < s < 1. This operator corresponds to the principle part of the
linear inhomogeneous Kac operator

v0, + K

on the Fourier side in the position variable.
Let ¢ be a C§°(R, [0,1]) function satisfying

Yp=1 on [_lal]a SUPP¢C[—272]'

We define the real-valued symbol

&n P+
m T 2542 w( ) (4'10)
25+1 A2s+1
with
= (142472 +€2)2
It holds that the following equivalence of norms
1 5 VT
Vr € R,3C, > 0, 6||7—[Tu||Lz < HOpw<<1 +n° + Z) )UHH < Crl|H"ul| 2, (4.11)
r
where H = —A, + % stands for the Harmonic Oscillator.

To obtain the hypoelliptic estimate of the inhomogeneous Kac operator, we recall some
notations and metrics on the phase space, see [72, 106, 117]. We consider the following metrics

on the phase space R?),n

ro— dv? + dn? B dv? + dn?
O (o, m)? O M(v,n,€)
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with

((v,m)* = 1+0" 4+ 7%,
2 2 2 2 2 2 2 2\ =
N(v,n,8) =1+v" +n° + A= =14+ 0° + 17+ (L +v° +n° +£) =+,

Notice that the second metric depends on the parameter £ € R. For a positive function
> 1, we define the space S(u,I'g) as the set of functions possibly depending on the parameter
¢ satisfying

Voo e N?,3C, > 0,Y(v,n,€) € R, |05,a(v,7,8)| < Capl(v,m,€){(v,n)) "1,

whereas the space S(u,I'1) corresponds to C’OO(R%W, C) functions depending on the parameter
¢ satisfying
la
Vo € N?,3C, > 0,Y(v,n,8) € R?, 105 ,a(v,1,€)| < Cap(v,m,€)N(v,n,8)" 2.
The metrics I'g and I'y are admissible (slowly varying, satisfying the uncertainty principle and
temperate), see Section A.4 in [117]. In [117], the authors verified some properties for the
weight © > 1 with respect to the metric I'j, namely the slowly varying property of p with

respect to I';, for the function space S(u,I';) to enjoy nice symbolic calculus properties. Also,

they studied in the symbol classes
S(((”»U))"IO): S(Nn>F1)

with n € R, which enjoy nice symbolic calculus since the function ((v,7n))" is a Ip-slowly
varying weight and that the function N is a I'y-slowly varying weight uniformly with respect
to the parameter £ € R, see Section A.4 in [117]. The gain functions in the symbolic calculus

associated to these two symbol classes S({(v,n))",T) and S(N",T';) are respectively given by

Ar, = <(U777)>27 Al"l = N(ffﬂ%f)-

Since {(v,1))? < N(z,n,£), it holds that S(n,I'1) C S(n,Ty).

In [117], the authors show the following symbolic estimates.

Lemma 4.2. Forn € R, the following symbols belongs to their respective function spaces

2 2
D" e son Ty N esorT) st 5T ) e s
2 2 2
Pmesur) ) eme(S5T) e sy
A2s+1 A2s+1

(1-v(S50)) (Lo ) e sy
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uniformly with respect to the parameter & € R. It holds that

o) = —v ()

A2s+1 A2s+1

with a remainder belongs to the symbol class S({(v,n))?*,To) uniformly with respect to the
parameter £ € R.

4.2.4 Fundamental inequalities

We recall some estimates for the Kac collision operator along with the Hermite basis, see [117]

for details.

Lemma 4.3. Let P be the operator defined in (4.9) and M = m™ the self-adjoint operator
defined by the Weyl quantization of the symbol (4.10). Then, the operator M is uniformly
bounded on L*(R,) with respect to the parameter &€ € R, and there exist some positive constants
0<eog<1,c1,ca >0 such that for all 0 < e < eg,u € S(Ry),& € R,

Re(Pu, (1 —eM)u) > C]_H?'l%UH%Q(RD) + cw(f)ﬁ ||u|]%2(Rv) — CQHUH%Q(Rv),
where H = —A, + % stands for the Harmonic Oscillator.
Lemma 4.4. Let (e,)n>0 be the Hermite basis of L>(R) describes in Section 4.2.1. We have
I(ex,e) = oggerri, k,0>0

with

Qonm = \/022777}—1-771/4 B(60)(sin 0)?"(cos§)™dh, n>1, m >0,
1

agm = ’ B(0)((cosB)™ —1)dd, m>1; o= 2pt1,m =0, n,m >0,

I
where Ck = Wlk)' stands for the binomial coefficients.

Lemma 4.5. We assume that the cross section satisfies (4.7) with 0 < s < 1. Then, there

exists a positive constant C' > 0 such that for allm > 1,m > 0,

0 < amm = /C.. / " 5(6) (sin 6)?"(cos )" dh <
s

where finm = (1 + %)5(1 + mil) .

|Q

Hn,m,

W

n

W=
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Lemma 4.6. Let r > 1/2. There exists a positive constant C, > 0 such that for all f,g €
S(R;),t>0,0<k<1,mn>0,

Mot (O (Mo () T M) gD < Coll fllaellgl e

with Fourier multiplier

exp (t(,/n+ 1y <Dm>)2§il>

Mn,n(t) = 25
1+ rkexp (t(\ /n+1+ (Dm>> 25+1>

where || - ||gr stands for the Sobolev norm H"(Ry).

Lemma 4.7. Let r > 1/2. Then, there exists a positive constant C, > 0 such that for all
fr9:he SR ,),t>0,0<¢<1,0<k<1,j1,72 >0 with j1 + j2 <1,
[(T(f, 9), h)LQ(Rg’vﬂ < CerH(r,o)”HSQHL?(R%)”H%h”B(ng),
(T((D2)f, 9): M) 2wz )| < Crll f]
’ ((1 +eVH + (D))" M ()
X T((Mc(0) ™ (1 + VR £, (M) 711+ eVH)2g)  h)

(1,0) HH%QH(T,O)HH%hHLQ(Rgm)v

(T,O)’
< CerH(r,O) HH%Q|

oy IH2 Rl (o)

with
M(t) = (1(vA + <Dx>)25i125 _ *i M, P,
14+ kexp (t(\/’T-[ + (Da:)) 2s+1> =0

exp (1(yfn+ 5+ (D)) 77)
1+ Kexp (t(,/nJr T+ (DI>>2§L>

where P, denotes the orthogonal projections onto the Hermite basis described in Section 4.2.1.
In particular, we also have for all f,g,h € S(R%v),

Mﬁn:

Y
)

((C(f,9)s W) ro)] < Crllf ) 12 9 ri0) [H2 2l 0

Lemma 4.8. Let r > 1/2. Then, there exists a positive constant ¢, > 0 such that for all
9 € S(Rg,fu)?

7T 90y < erll fllroyllgllro)-

In [117], the authors showed a key estimate on the Hermite functions.
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Lemma 4.9. It holds that
(k+1+ n)!‘

)

1) Vn,k,1 >0, ||vk8£en||Lz(R) < 2k '
n!

1
2) Vr > 3,¥e > 0,Yn, k.1 2 0,

3
25+ "\ k+l
—_— DT (H"
inf(s",l)) COROR

where 0y, 0 stands for the Kronecker delta i.e., 0p0 =1 if n=10,0,0 =0 if n # 0.

[0*0henllam) < V2((1 = 6a0) exp(ern”) + dn0)

4.3 Analysis of Kac collision operator

In this section, we present the trilinear estimates of the Kac collision operator which will be

used in the subsequent analysis.

4.3.1 Trilinear estimates I

Due to the coercivity of the linearized Kac collision operator X, we have the following result.

Lemma 4.10. For the linear term IC, there exists a constant C > 0 such that for the suitable

function f,g,

]. s s
G lAH flliam,) < (AR Apf) o) + 180 [2m,) < CIAVHE T2,

for each p > —1. Moreover, for o >0 and T > 0, it holds that
1/2

T
o 1 2
>§ 12p </0 (AngvAPg)Lz(R%m) dt) > 5“H2QHZ2TE%(B§,1) - ”gHZZTZ%(BgJ)'
p>—

Proof. Observe that the inner product (-, ')LQ(RU) is with respect to v, A, acts on = and
the linearized non-cutoff Kac operator K is independent of x. Thus, the first inequality can
be obtained by using the spectral estimate for /C in Section 4.2.3. The second inequality just
follows from the first inequality and the definition of Chemin-Lerner spaces. O

For the nonlinear term I'(f,g), in [117] the authors showed some trilinear estimates in
Sobolev space. Here, we establish the trilinear estimates with minor changes, which will be

used in the proof of local existence of solutions to (4.1).

Lemma 4.11. Let f,g,h € S(Rgm). Then there exists a constant Cy > 0 such that for all
0<0<1,751,52 >0 with j1 + jo < 1, it holds that

‘ (014 6VH + 6(D2)) " T((1+ 5VA) 1, (1+ 6V HY"g). h)

L2,
< C M2 H2h )
< Collfllaree 1729l IH2AlLz (4.12)

‘ ((1 FOVH + 8(D)) TS, (D) (1 + OVH + (D))" Lg), h) .

x,v

s s
< CollfllrzeeeIM2gllez , IH2Al Lz -
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Proof. For f,g,h € S (R%jv), we decompose these functions into the Hermite basis in the

velocity variable
“+oo
[= Z fn(@)en(v),  fo=(f(z,-), 6n>L2(Rv)
n=0

and similar decomposition for g, h. Notice that

+oo 1 oo m i
172z = (S Walemn) s 1 iz = (3 (nt g) Walaen)”  (413)
n=0 n=0

with m € R. Following from Lemma 4.4 and Cauchy-Schwarz inequality, we obtain

‘ ((1 FOVH 1 8(D))IT((1 4+ SVH) S, (1 + Nﬂ)”g), h)

L%,v
= [ 1 -1 1\
:‘Z Z ak7l(<1—|—5 n—|—§+5<DI>) (1—}—(5\/@)
n=0 k+Il=n
%, 1>0

X (1 +04/1+ ;)ijkgl,hn)L%

+o0o +oo
< ol follze lgnllzz Pallirz + Y D leskalll farllzge lgill r2 1ol 22
n=0

= n=0 2k-+l=n
£>1,1>0

where we used that

HO+6Mn+%+&D@)JO+6Mk+%y%1+&n+%y2

since k41 = n and ji, jo > 0 with j; + jo < 1. Under the assumption (4.7), we use the formula
(A.17) in [115] (Section A.4.2), that is

<1
L(L2(Rz))

)

21+s

" B(6)(1 = (cos 0)")d6 ~

s
4

I'(1—s)n’

when n — +o0o, where I denotes the Gamma function. It follows from Lemma 4.5 and the
above formula that for f,g,h € S(R%U),

' ((1 FOVH + 6(D,)) T IT((1 + SVH) S, (1 + 5\/77)j2g), h>

Lz,
= 1 = [kl
< follzze Yoo+ ) Ngnlzzlltallze + 3 Whallzz (S0 5 ol a2 )
n=0 n=0 Stien K1

k>1,1>0

2L+ D
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By using (4.13), we have

+o00 1 too 1
1< folless (304 507l ) (Do n 50 WAl )
n=0 n=0

s S
< [ follzgelH2gll L2 [H2D]l L2 -

On the other hand, we obtain

I = Z /;Izl

k>1,1>0

2| harttll 2

“+o00

[kl
—ZH Halloz (Y 5 s||f2k||Lgouh2k+zHLg)
= 1]@(1"‘%)5

+00 +00 ~

1
s 2
< Iz gl (230 |rh2k+z||Lz) .
1=0 k=1 k2(
Here, we may calculate that
+00 +00 p‘zl 1 400 ﬂ%l 1
2 )2 2 : 2
(X = A hnlt)” = [ Ihalit (3 )]
o k2 (14 5)0 n=0 orgien k2 (L4 5)°

k>1,1>0

Since

1
fieg Ski when k> 1k >1,1>0; jiuy S S+ 5)° when 1<k <1,

it follows from Lemma 4.5 that

l 1\s
Mkl 2 (l + 5) 1
< S — < Z)s
> T > k2(+1)s+ > . Sn+y) (4.14)
2k+l=n 2k+l=n 2 2k+l=n
k>1,1>0 k>1,1>0 k<1,1>0
k>l k<l
Thus, we are led to
+00 +00 Mkl 1
2 3
(XY - Nhapsal?z ) * S 13RI,
=0 k=1 k2l +5)°

We can conclude that there a positive constant Cy > 0 such that

2
T,v

‘ (14 8VH + 8(Da)) 7T (1 4+ OVHY £, (1 + 6v/H)2g), )

E E
< Collfllparee H2gllrz [IH2R 12
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which leads to the first inequality in (4.12). Similarly, we have

(U4 8V +8(D2)) ' T(f,6(D2) (1 + 6VH + 6(D.) " g), h)

§(D,
3> (2@
n=0kti=n (L+6\/n+14+8Dy))  (1+6,/1+1+6(D,))
400
lzzllhsnllizz +Y - Y learilll forllzee lonll 2l 22
n=0 n=0 2k+Il=n

k>1,1>0

H6<Dm> (1 + 5\/ n % + 5<DI>>1H£(L2(RZ)) =1
(1 g/t 5 000) e <

Hence, by proceeding the similar procedure, we can obtain the second inequality in (4.12).
O

Putting 6 = 0 in Lemma 4.11, which coincides with Lemma 3.5 of [116].

where we used

Remark 4.2. Let f,g,h € S(Ri,v), then there exists a constant Cy > 0 such that

(O(f.9) M)z | < Collflane HEgls [HERILz
By the similar proof as in [117], we also have

Lemma 4.12. Let f,g,h € S(RZ,). Then there exists a constant Cy > 0 such that

H’H‘SF fig HLz < Collfllaree HgHL%,v'

We prove the following result in order to estimate the nonlinear collision operator in the

framework of Besov spaces.

Lemma 4.13. There exists a constant C; > 0 such that for all f,g € S(Ry),t > 0,0 < k <
1,m,n>0,

1Gsmn (8) ([(Gresn (D))~ F1[(Gren (8)) F )12 < Cullfl g2 llglre (4.15)

with the Fourier multiplier

Grn(t) = —— (e + 5+ <D>)> . (4.16)
1—|—/€exp( ((n—|— )s+1 +<Dx>gzﬁ)3s+1>
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Proof. Notice that the operator Gy ,(t) is a bounded isomorphism of L?(R;) such that

_2s
1—|—/€exp(t<( + )S+1+(Dx>iiii>35+1)

(Gun®) ™ = e i i
exp (t(n + %)S; + (Dy)2s+1 )35“)

Set

h = Gemn () ([(Grm ()~ (G (1) ™ 9]),

then we have

il o))

1+ Kexp (t( (m+n+ %)SJEI + <€>§§11>33i1>

1 exp <t((m+n+ %)Szl + <5>3§ﬂ>33i125 F(Gom®) " f) % F(Grn(t) " 9),
2W1+nexp<t((m+n+%)521+<§>§§7ﬁ>m) ’ ;

F(([(Grm ) (G (1) 9])

where F denotes the Fourier transform. Consider the increasing function

ex

Z(x) = ——
(@) 1+ re®’

we can calculate and obtain

Z(x+vy) 1-k (x+ey) 1 1
v >0, === <14 — 7<3
HY=" Z(z)Z(y) o 1+ kety + 1+ ke?ty — tatws

which implies that the function Z(z) satisfies the inequality
Vr,y >0, Z(z+y) <3Z(x)Z(y). (4.18)

Since for all m,n > 0,&,n € R,

((rene ) gty

1 = 3541\ 50T 1\ 31 5237
<((m+ )T BT 4 (04 DT s eopE)T
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by using the inequality (4.18), we obtain

s+1 s 2s
exp (t( (m+n+3) T +©F0)"T)
1y &t 3s+1 352%
1+/£exp(t((m+n+§) 2 +<§>25+1> )
1\ 53 3541\ 3or1
3 exp (t((m+§) 2 +<1’]>2s+1) >
1 s+1 3541 352::1
1+mexp(t((m+§) p) +<77>23+> )
1 s+1 3s+1 #jl
exp(t((n+§) 2 +<§_77>2s+1> )
1 s+1 3s+1 352% .
1+mexp<t((n+§) 2 +<5_77>23+1) >

< (4.19)

X

Then it follows from (4.17) and (4.19) that

3 PP
12llze < F1*19lll2 = ——= IFF(Uf1 191l 2

>% (2m)2
= (A 10z = BIF D F D 2
<3IF Dzl F 13Dz < Cill N gprellgl e,

which leads to the desired (4.15). Here we used || F~1(|a])||re < Callul[ gas2 on R4(d > 1) for
2.1
u € S(RY). Indeed,

IF 7 (aDllzse < llalls < D 1Apullry

p>—1

:/| A 1u|d£—|—Z/ A ulde

»s0 Y f2r<lel<§or
< C 251’ A =
< 3" Caa¥apullzz = Calull o
p=>—1
where Cy > 0 is a positive constant depending on the dimension d. Hence, the proof of Lemma
4.13 is finished. O

4.3.2 Trilinear estimates 11

Now, we establish the key trilinear estimates for nonlinear term I'(f, g).

Lemma 4.14. Let f,g,h € S(R%v). Then it holds that for allt >0 and 0 < Kk <1, p,j,j' >
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_1}
(Gul®AT(Ga®) ™ £, (Gat) ) Aph) |
S Y ISy M3 Aggllzz I3 A0l 1z,

lj—pl<4
4.20
£ UA S, IHESiaglzy pur [HE A 2, (4.20
l7—pl<4
+ > >4y Fliga, [k A’QHLQ(BU? 112 Aphllz .
max(j,j')> p—2 |j—j'|<1
with
2s
exp (1(H5 + (D))
G(t) = -
s+1 3s+1\ 3541
1+/€exp(t<7—[ 2 +(D)2S+1> )
Proof. Firstly, we have
Z A j 1uAU Z Ap(Ajqu_l'U)
li—pl<4 l7—pl<4 (4.21)

+ Z Z Ap(Ajulrjv).

max(j,j") > p—2[j—j'|<1
In fact, recalling Bony’s decomposition, one can write A, (uv) as follows
A, (wv) = Ay (Tyv + Tyu + R(u,v)),

where T and R are called as “paraproduct” and “remainder”. They are defined formally by

T,v = Z Sj—1uljv, R(u,v) = Z Z Ajuljv,  for u,v € S'(R).

J VINVES UL

Notice that

ATuvaA (Sj—1uljv) = ZA Si—1ulAjv),

J lj—pl<4
ATUU—ZA (AjuSi1v) = Y Ap(AjuS; 1v),
li—pl<4
=Y ) AAudy) = > > AN(Ajusw),
VRVES UL max(j,j’)> p—2[j—j'|<1

which implies the equality in (5.34). With the eigenfunctions of the Harmonic Oscillator, one

has

wqmw#+wﬁ$yw>

1+ kexp <t<7—[s§1 + (D, )3211)39“)

ng s
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where G, ,, is given by (4.16) and IP,, denotes the orthogonal projections onto the Hermite basis
described in Section 4.2.1. For f,g € S(R% ), following from Lemma 4.4 and then using (5.34)
with u = (Ge k(1)) fr, v = (Gra(t)) " g1, we obtain

(Gr®OAL(Gr() T (Gr(t)"19), Aph) 15
:Z > it (Gen()Ay ((Gr() ™ Frll(Gra(D) " 1)) s Aphn) 1z

n=0k+Il=n
k>0

+oo
Z Z Z Qg1 (gn,n(t)Ap (Sj—l[(gn,k(t))ilfk]Aj[(gﬁ,l(t))ilgl]) 7Aphn)L%

<4n=0k+Il=
li=pl< kl>0

+oo
+ Z Z Z kg (G (A, (Aj[(gﬁ,k(t))_lfk]sj—l[(gx,l<t))_1gl])7Aph”)L%

D <4n=0k+Il=
li=pl< k l>0

+ Z Z Z Z Oékl gnn (AJ[(gH,k( )) fk] [(gnl( )) lgl]),Aphn)La%

max(j,j')>p—2 |j—j5'|<1 n=0 k+I=
>0

éAl—+-./42—|-143.

For Ay, since [S;_1, (Gux(t))™! =0 and [A, (G (1) =0 with j > 1,0 < x < 1,k >0, we

obtain
| Ay

+0o0
D0 HawallGrn(®) (S5-1 (G () Fr) A (G (8) " i) ll2 1 ARl 2

i—p|<4n=0 k+l=n
l7—pI< A

= > Z > lonallGam(®) ((Gr ) [Si-1 £l (Gra (1) " [As01]) 2 | AR I 12

<4n=0k+Il=
li=pl< k, l>0

< > Z > JanallSi-1fell 12801l | Aphnll 2

—p <4n=0k+Il=
|j < k l>0

< S S aonllSsihol 512 1850n 122 1A

|j p|<4 n=0

+ ) Z > looklllSi-1farll 1/2HA391HL2”A hnll L2,

—p|<4 n=0 2k+1=
li=pl< k>1 l>0

where we used Lemma 4.13 and Lemma 4.4 in last three and two line, respectively. Bounding
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equation

Ay, Ag are similar, we have

| Az

“+oo
< D0 >0 D lawlllGen(®) (Aj1Gek) T frlSi—1[(Gra) ™ ) 12 | Ajhall 2

<4n=0k+Ii=
\J -p|< kl>0

= > Z > lawdlllGen(®) (Grp ()M A i) (Gt () ' [Si-191)) 2 | Ajhall 2

<4n=0k+I=
li=pl< k;l>0

< > Z D el A fill 2 1Sj-1a1ll vz Aphn|l 2

—p <4n=0k+Il=n
‘J < k>0

< > z:\aonlllA Jollzz 185 -19n| g1z 1| Aphnll 2

|j—p|<4 n=0

+ ) Z > laodlllA; forll2llSi-19: vz Aphnlrz,

—p|<4n=0 2k+l=n
li=pl< k>1,1>0

| As|

IN

max(j,7)>p—2 <1n=0k+Il=n
(7:3") li—d'< s

- ¥ 3 Z D lokallGen(t) (Grk(8)) A fel(Gra ()M A

max(j,j/ ) >p—2|j—j'|<1n= Okk—i_ll>0n

< ) > Z > lawdlllAifillzlldzall, vz Aphn| 2
max(j,j ) >p—2|j—j|<1n= Okk-l-l n
< ) > Z\QOn\\\A Jollzz 18 gnll g2l Aphnll 2

max(j,j) >p—2]j—j'|<1n=0

Y Y S S Al Al 1B

max N>p—2 <1 n=0 2k+I=
(4,3")>2p—217—7'I< k>1l>0

Combining the three estimates for A1, As, A3 implies that

\(G()A D((G(t) 7, (Gal0) "), Aph) 1

< Y ZlaM\HSJ 1foll gzl Al 221 Aphinll 2

\] p|<4n=0

+o0o
> Do 20 D lowdllGun(®) (Ai[(Ger () FrlAH[(Gra () ™

9)) N2 | AZhn | 2

ial) 122 | AGhn l L2
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+ ) Z:IomnlllA Jollzz 185 -19n g2 1| Aphnll 2

|7—p|<4n=0

DY > Z\QOnHIA Follzz 18 gnll /2l Aphnll 2

maX(JJ)>p 2|j—j'|<1n=0

+ Z > lazkllSi-1 faxll sz 80l | Aphnllzz

<4n=0 2k+Il=
li=pl< k>1 l>0

+ > Z > looklllA; farllr2 1S -1l 1/2HA hanll L2

—p|<4n=0 2k+l=n
=2l k>1,1>0

+ > > Z > JoarallAjfarll 2 189l vz Aphn|l 2

max(j,j/) >p—2 |j—j’|<1 n=0 2k+i=n
k>1,1>0

SN+ e+ s+ Js+ Js + Je.
By using the formula (4.8) and (4.13), for Ji, J2 and J3, we arrive at

J1+Jo+ J3

< > Z n+ ) l1Sj-1fol s/ 8ignll 2 [ Bphnllzz

|] —p|<4n=0

+ Y Z n+ )18 foll 2 1Sj-19nll 12| Aphn|l 2

|l7—p|<4n=0

> > Z ”+ )14 foll 22118 7gnll 2 Aphall 2z

max(j,j')>p—2|j—j'|<1n=0

< Z 1S;—1.foll 1/2||H2AJ9HL2L2HH2A hllzz,
li—pl<4

+ ) A follrallH2S;- 19HL2(31/2)||H 2Aphl|rz,
li—p|<4

+ ) > 1A follez 12 Ajegllz, % JIHEA Lz

max(j,j')>p—2|j—j'I<1

On the other hand, for Jy, J5 and Jg, by using the Lemma 4.5 once again, we obtain
Jy+ J5 + Jg
e,
<>y vzl 8igul 2 [| Aphok-llg

i peakstiso ki (4.22)

fir1
+ > Z HA Fakllez 185191l g2 | Aphan-ll g

|7—p|<4k>1,1>0
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FY Yy By,

max(j,j')>p—2[j—5'|<1 k=1,1>0

S (0 Al (X %usj1f2k|35512||Aph2k+l||Lg)

2[[ A gl 5 1/2||A hok+il 12

lj—pl<4 =0 = Rl
ik
+ ) Z( l+ QHSJ 191 1/2)<237||A forllrz[[Ap h21~c+lHL2)
li—pl<4 1=0 = ki g)?

D SEED Db 9 (R KPP ZQLHM%HLQHA hasill 2
R+ 1)
k=14 2

max(j,j')>p—2 |j—5'|<1 1=0

S :

2

S N L LI O 00 D e VT2
=0 k= 1

li—pl<4

NI

+00 +00 ~
F‘k 1

30 1Al IHES; lg\Lz(Bm)(zzkg |Aphaitl)
=0 k

l7—pl<4

+o00 +o00 ~2 1
DY Al 1A, /gHLQ(Bm)(ZZ e 1A hanilFe )
max(j,j/)>p—2|7—j'|<1 =0 k= 1k2 5)
Here, we may calculate that
I > > i)
2
( PEYTIRgER HA hszp) [ Ahall7s ( )
1=0 k=1 k2 2%-+l=n k2(l+§)s
k>1,1>0
It follows from (4.14) again that
S :ukl 3 s
(X i hawaall3s)* S IHEAhILs (4.23)

lOkl

Therefore, we conclude from the above estimates of Ji-Jg and (4.23) that

(GROAT(GrD) 1 (Ga(t) 9, Aph) 2,
S D0 U851 fllzy pey I3 Agglg 13 AR 1z,

li—pl<4
+ ) 4 ez, (A 19072 5 1) IHzA phllzz,

lj—p|<4

+ Y Do 18l IHEA 79z 5172, 172 Aphll

max(j,j') >p—2 |j—5'|<1

which is (4.20) exactly. The proof of Lemma 4.14 is completed. O
Apply Lemma 2.5 to the above Lemma 4.14, and then combining the last two terms on the

right hand side of the resultant inequality, we obtain the following remark which will be used

mainly in the subsequent calculation.
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Remark 4.3. Let f,g,h € S(wa). Then it holds that for all ¢t >0 and 0 < x < 1,p,j > —1,

(ol AT (Ga(0) 11, (Ga(0) 1), Aph) |
S Y Wz 13 Agglliz IHE Ah 2,

~

li—p|<4

00 1858z, Mgl i I3 Aphlzz

j>p—4
where G () is given in Lemma 4.14.

Take Kk = ¢t = 0 in Lemma 4.14 and use the similar calculation, we have the following

trilinear estimate without exponential weights.

Remark 4.4. Let f,g,h € S(RZ ). Then it holds that for p, j > —1,

(AT (F9), Bph) 12 |
< 7 Ufllane IHEAgllze, IHE Aphl 2,

~

li—pl<4
30 1Al I gl IHE Az,

Jj=p—4
Having Remark 4.3, we can obtain the following result.

Lemma 4.15. Assume o0 > 0,7 > 0 and 0 < k < 1. Let f = f(t,z,v), g = g(t,z,v)
and h = h(t,x,v) be three suitably functions such that all norms on the right of the following

inequalities are well defined. Then there exists a constant C1 > 0 such that

Zzpf’[/ (Ge®AT(Gal0) 1. (G <>>-1g>,Aph)ng\dt]1/2

p>—1
1/2 1/2 s.11/2
HfHLOOLQ(Bl/Q HH gHL2 L2 Bo‘ HH2hHE2 52(35’1)
1/2 é 1/2 1/2
/ 29” / 1/2 ”H h”L/2L2(Bo' )

+C ||f||LooL2(Ba )H L2 L2(

Proof. Based on Remark 4.3, it follows from Cauchy-Schwarz inequality that
1/2

5 27| [ [(@u0A(Gl) 5. (Go0) ) 00 | ]

p>—1

DIEADY / i

p>—1 li—p|<

1/2

‘HSA'
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., 1/2
R LA DN (N UNY PP 2] N DR
p>—1 j>p—4”0 ’
12 R 12 s 1/2
S HfHLOOLQ By Z 2pa< Z HH2A]-9’ L212 ) HH2APh‘ L2.12
p=—1 li—pl<4 T e
s 11/2 1/2 s 1/2
s po 4 s
+mig L2L2<31/2>p>2_12 (j>2_4||Ajf||L?L;,v) [ ann,, .
1/2
1/2 1/2 1/2
S Mg o 1200 1o g IR o gy | Do D0 20777l
’ p2—1|j—p|<4
1/2
s 1/2 1/2
+ ||H29||Z2 Z2(Bl/2)|| ||L2 L2 Bo ) Z Z 2pU ||AJf||L%OL%7U ’
THv\F21 p2,1j2p74
h ) = 2i0 H%A’ HHa o d lle()llx < 1. Hence, with Fubini’
where ¢(j) ;g LQTL%,U/ g Faiams) and |[c(j)||p < ence, with Fubini’s

theorem and Young’s inequality, we have

YooY 2e() = 3 [(1)51<a2) % e(3)])(p)

p=—1|j—p|<4 p>—1
< [1115<42 [l [le(G) o2 < +o0.
Since ) '
g —]0
S i g e o ot ZZTUS 2T
1—-2-7¢ ’

~1<p<j+4

it follows that

S Y UM lgrs, = 2 27( X 207 183 fllyens,

p>—1j>p-4 j2=1 0 —1<piHa
S 2 2708 gz, = 1z mg, )
j>=1

Consequently, we conclude that

T 1/2
5 27 | [ 160N (Gu) 5. (Gu0) ). ) ]
p>—1 0

1/2 1/2 1/2

< Oy vy 19Ny Ty g IR T

1/2 1/2 s 1/2

+ O 2y g ) RN g IR s
Hence, the proof of Lemma 4.15 is complete. O

Similarly, it follows from Remark 4.4, Lemma 2.8 and Lemma 2.9 that
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Corollary 4.1. Set T > 0. Let f = f(t,z,v), g = g(t,z,v) and h = h(t,x,v) be three suitably
functions. Then it holds that

T 1/2
p 1/2 s 1/2 S$.01/2
2 ([ o bz ) S UL e TG o IR o

p>—1 2,1 2,1 2,1

4.4 The local existence of weak solution

This section is devoted to proving the local existence of weak solution to the Cauchy problem

(4.1). To do this, we firstly consider the local existence to the following linearized Kac equation

{ g +v0rg + Kg =T(f,9),

4.24
g(t,2,0)li=0 = go(x, v). (4.24)

4.4.1 Schema of the proof for the linearized Kac equation

Due to that there is a problem that the dual space of E%E%(B;/f) is complicated. There-
fore, the proof of local existence of weak solution for the linearized Kac equation is a little
complicated, we present a schema of its proof as the following five steps.

Step I) The existence of weak solution

Firstly, by using the duality argument and the Hahn-Banach extension theorem, we find a
weak solution g to a linearized Kac equation in a wider space L*°([0,T]; L*(R3 ,)).

Step II) Mollifier of weak solution

Since for g € L>([0,T]; L*(R2 ,)), for the terms in (4.24) we only have

v0,g € H, ' L2 HKg e L2L2, H °T(f,g) € L2L2.

v,—1> vi-x

So, we need to mollifier the function g and take its as right test function. Here, taking different
1> 6 > 0, we use mollifiers (1 4+ §vH + 6(D,))~!. So that we can take

(1+0VH +6(D,)) %9 € HF*HZ,,

as test function to the equation (4.24). We also need to mollifier the function f as following
v = Z;jvz__ll Apf for N € N, then for fy we get

f € BFTRH™) and vl gy < Iz gacspy

For the sequence {fy, N € N}, we consider a sequence of weak solution {gn, N € N} C
L>([0,T]; L*(R2 ,)) to the following Cauchy problem

{ 0N +v0:9n + Kgn =T(fn,9n)s (4.25)

gN(ta .fC,U)|t:0 == gO(‘Tu 'U).
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Step IIT) Regularity of weak solution in velocity variable
For the weak solution g, based on these commutator estimates, we prove
lgnllzgerzrz + IH2gn 2 r202 < Cligollrzre,

under the assumption that | f|| is sufficiently small. Remark that we can’t do the

= /2
iteration by using above estimaigsfvs(ﬁféle)there is no regularity in position variable x for the
weak solution gy while f satisfies the condition f € E%OE%(B;/E) and its norm is small.

Step IV) Regularity of weak solution in position variable

In this step, we mainly prove the regularity of weak solution gy in position variable x for
Besov norm, we obtain

9N e 72 12y + 12Nl 2 3 1y < o0

But here, we can only get a upper bound dependent of N. So that this step is a technical step,
but very important to give a rigorous proof.
Step V) Energy estimates in Besov space

We prove finally the following energy estimate for the weak solution gy,
o 2an ||~ ~ <C - i
”gNHL%OL%(B;,/f) + HH gNHL%L%(B;/f) = Hgo”L%(B;f)
The convergence of this sequence is then standard, that is, g = limy_, ., gn and

g(t,z,v) € LFLA(ByY) and Hig(t,z,v) € LRIA(BY/Y).

4.4.2 The local weak solution of linearized Kac equation

In the first step, we give the existence of local weak solution with the rough initial datum as

the following proposition.

Proposition 4.1. There exists a constant ¢g > 0 such that for all T > 0, gg € LQ(Rgvv),f €
L>(]0,T] x Ry; L2(Ry)) satisfying

[ £1l oo (jo,7) xRy 22) < €05
then the Cauchy problem (4.24) admits a weak solution
g € L=([0,T); L*(R3 ,))-
Proof. The proof is similar as that in [117]. We also consider the joint operator

Q:—8t+(v8x+/C—F(f,))*,
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where (-)* is taken with respect to the scalar product in L*(RZ2 ). Forall h € C*([0,T], S(RZ )

with h(T") = 0, it follows from (4.6) and Remark 4.2 that

Re (h(t), Qh(t)),

1d

= —55 (I8l32, ) +Re(vdsh. h)sy + Re (Kh, b, = Re (D(f.h), h),.,
1d 1 s

>-22 (||h||%a,u) + IR, ~ (1Al

= Co £l oo (0,17 xRas22) HH%hH%g,v

for 0 <t < T, since K is a self-adjoint operator and the fact Re(v0,h,h) = 0.
Since || f | Lo (0, 7)xR.; 12) is sufficiently small, taking

1
1l oirisia) < e T >0

and following from the Cauchy-Schwarz inequality, we obtain

d

3 s
2 B 2 2
— S (I3 ) + o l#E I, < 20k, IRl + 20RIE;

that is
(PR )+ e HE | < 26" bl 2, QB
dt LI;U 20 Lz,v - x,v Lzﬂ,
Since h(T') = 0, we have

3. .

Ihlzs, + 5 1M Allzage ez,
<|[pll72 + 3 TGQ(T*”H%%h(T)HQz 2 ydT
- Lz,v 20 ‘ L ([th]sz,v)

T
<2 / D (r) |2 | Qh(r) 12 dr

< 26”1 |||l oo r0.17,22.) | QP L1 0,11, 22., )

which leads
1Bl Loeqror1,L2.,) < 26T 1 QhllLro.17,22.,)-

In the following, we consider the vector subspace

U={u=0Qh:heC®(0,T],S(R2,)),h(T) =0}
c LY([0,T], L*(R2Z ,))-

Mainly, the above inclusion is right due to similar calculations in Lemma 4.11. For g € L

we have

(O, hag)z | = (T (f )z | = [(Hh HT(f.9)) 1|

<HT(f 9z, IRz, < Collfllzpselgliez 7Rl Lz -

(4.26)

2

T,
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Thus, for any ¢ € [0,T] we have

ICF ) Pz, < Coll fllare MRz,
Since go € L*(R2 ), we define the linear functional

G:U—-C
u=Qh > (g0,h(0))rz
where b € C°°([0,T],S(R2,)) with h(T) = 0. From (4.26), the operator Q is injective.
Therefore the linear functional G is well-defined. We can obtain
1G] < llgollzz N O)zz, < llgollze , 1Al Lo, 7122 ,)
< 262T”90”L§7UHQhHLl([O,T],L%U) = 262T”90HL§,UHuHLl([O,T};Lg’v)-
Hence, G is a continuous linear form on (U, || - [[z1(o,m, L?:,v))‘ By using the Hahn-Banach

theorem, G can be extended as a continuous linear form on L'([0,T]; L*(R2 ,)) with a norm
smaller than 262T||go||L% - 1t follows that there exists g € L>°([0, T7; L*(R2,)) satisfying

9/l Lo (o,y;2,,) < 2€2TH90HL3M7

such that
T
vue NOTEEEE,). G = [ (a(0.ue)y;  dr.

It implies that for all h € C§°((—00,T),S(R2Z,)),

T
G(m) = [ (a(0). @h(1)) 3. e = a0 Oz

Therefore, g € L>([0,T]; L*(R2 ,)) is a weak solution of the Cauchy problem (4.24). The proof
of Proposition 4.1 is completed. O
Next, we turn to prove the regularity of the weak solution with respect to z and v, which

is shown by the following two subsections.

4.4.3 Regularity of weak solution in velocity variable

To obtain the above solution g belongs to the critical Besov space E%OZ%(B;/E), we need to

mollifier the weak solution g € L*°([0,T]; L*(R2 ,)) in velocity and position variables. To do
this, we mollifier the function f, that is, setting fy = Zévg_ll A, f for N € N, then we have fn €
LPLZ(H;>). For each fy(N € N), we consider a weak solution gy € L*([0,T]; L*(R2 ,)) to
the following Cauchy problem

{ OigN + v0gn + Kgn =T (fn, gn), (4.27)

gN(ta z, U)|t=0 = gO(SCa U)’

Some simple calculations enable us to obtain the following proposition for fx.
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Proposition 4.2. If f € E%E%(B;/lz) For N € N, put fn = Snf = Zé\;—fl A, f. Then we

get
i) If fn € EOTOZ%(B;?), then {fn} is a Cauchy sequence in EOTOZ%(B;?)
it) For 0 <o <1/2, fn satisfies || fn|zsor2r2 < C| fllpsorzrz and

[fnllzeerzre < CQ”fNHL%OL%(Bg’l) < C3||fNHz%oZg(Bg’l) < C'4||f||z%ozg(35’l),
where Cq,Cs,Cy > 0 are constants independent of N.
Then, we can establish the following proposition for the weak solution gy.

Proposition 4.3. For N € N, put fy = Z]])VZ__ll Apf. There exists a constant g > 0 such
that for all T > 0,90 € L*(R2 ), f € L>®([0,T] x Ry; L*(Ry)) satisfying

11| Loe (0,71 xRas22) < €05

then the Cauchy problem (4.27) admits a weak solution gn(t,z,v) € L°°([0,T]; L*(R2 ,)) such
that

S
lgnllzgerzrz + 129wl L2 212 < 006’3T||90HL3L§» (4.28)
for some constant co > 1.

Proof. By applying Proposition 4.1, we see that the Cauchy problem (4.27) admits a weak
solution gy (t,z,v) € L*®([0,T]; L*(R%,)). It only need to show (4.28) for a weak solution
gn € L>([0,T]; L*(R2 ) under the assumption that | N oo (f0,7) xR, 12) 18 sufficiently small,
independent of V.

It follows from (4.4), (4.5) and Lemma 4.12 that

WKy € L(0, T) L2(R2,)), HT(f,9) € L=((0,T}; LA(R2,,)),
for f € L>([0,T] x Ry; L*(Ry)), g € L*°([0, T); L*(R2 ,)). Define
gs = (14+6VH+6(D) gy, 0<6<1. (4.29)
Notice that
(1+ 6VH +3(Da)gs € L0, T): L*(B2,)) © LA([0. T); LA(R2.,).
According to Theorem 3 of [60], we deduce that the mapping
Eos lgs(t)IEs .

is absolutely continuous with

d
7 (Hg(slligm) = 2Re(0195,95)12 - (4.30)



Sharp Gelfand-Shilov and Gevrey smoothing effect for the inhomogeneous non-cutoff Kac
158 equation

Taking the inner product of (4.27) with (1 + 6vH + §(D,))2g and integrating the resulting
inequality with respect to (z,v) € R2. It follows from (4.29) and (4.30) that

1d
Sd (Ilgalligw) +Re (Kgs,95) 12, + Re (v9295,95) 12 ,

+Re([(1 4+ 0VH +6(Dy)) ™", 0] (1+ 6VH + 6(D2)) 02955 95) 12,
= Re((1+ 6VH + 6(Dy)) "' T(fn, (1 + 0VH + 6(Dx))g5), 95) 12, »
since [(1 + 6vH 4+ 6(D,))*,K] = 0. Due to the coercivity estimate of the linearized Kac

collision operator I, we obtain, for all 0 <t < T,

1d 1 s
5o lgsl3s )+ SIHEas 3 — sl

2 dt

<|([(1+ 0VH + 6(Dy) ™1, 0)(1 + 0VH + 6(D.) e gs, 95) 12 |
+ (14 6VH + 6(De)) ' T(fn, (1 + 0vVH)gs), 95) 12, |
+[((1+ 6VH +6(D2)) "' T(fn, 6(Dx)gs): 95) 12,

since K is a selfadjoint operator and Re(v0,gs, gs) r2 , = 0. Furthermore, it follows from Lemma
4.11 with j3 = 0,42 = 1 that for all 0 < § < 1,

‘ ((1 FOVH + 5<D$>) “r (fN, 1+ 5\/7?)95) ,g5>

(4.31)

12, (4.32)
< COHfNHL%LgOHHgg&H%%U-
Similarly, we obtain
(14 6VA+02) T 802900 95),
= \ (D 8(Da) (1 + 6VH + 5(D2)) " gw). Mags ) (4.33)
< Collfnllzaee M2 gn L2 112 sl -
Thanks to the commutator estimate (4.10) of [117], we have
2
|[a+ova -+ o] (1+ovr+oDn)ouf| , <alfiis,,
which leads to
-1
<[(1 +OVH + 5(Dz>> ,v] (1 +OVH + 5(Dx>) Omg(;,%) <2lgsl?, . (4.34)
Lg’v T,v

Consequently, we can deduce from (4.31), (4.32), (4.33) and (4.34) that for all 0 < ¢ < T,0 <
5 <1,

1d ) 15 iy
5 (lasllts ) + 5113 gsle,

< 3lgslzz, + Coll fnllzzre (IH2gn 2, + 172 g8l 2 ) I H2 g5 12,

< 3||95||%gm + 2CO||fNHL3Lg°H/}'ﬁgé”%%v + Co”fNHLngo||H§9N\|%gm-
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Furthermore, if taking

1
11| oo (o, 1) xRas22) < 100y’ >0,

then we obtain

v

d 1 s s
= (losliZz, ) + 13 gsl2s , < 6llgsls , + 2Col vz IHEgnls
which leads to
2 1 ! 6(t s 2
loslis, + 5 [ < Ias(r) I ar
< Y|(1+0VH +5(Dx)) g0l 7a

t
120, /0 S () z IHEgn (D) dr

t
< lgollZz , +2C0lF(r)lloe oy kasz2) /0 S35 g ()2, dr
for 0 <t <T and 0 < 6 < 1. Consequently, we obtain
2 Loz 2
||96HL;OL;W + 6”7-[29(5(7—)||L2([0,T}><R§m)
< 66T||go||%g,v + QCOeGTHfN(T)||L°°([0,T]><R1;L%)HHigN(T)H%?([O,T}ngw)'

On the other hand, noticing that

losls . = 5 f/ (146 /n+ 5 +80) " 1Faan(r. e
Lz,ﬂ o e R 92 T ) )

”H%%(T) H%%[o,T]ng,v)

1 T +00 1 . T L )
Sy 29 /R(H(;\/E +06)) | Fai(t.©)Pdedt

with gn = (gn (¢, 2, ), €n) 12(r,), Where F denotes the partial Fourier transform in the position

variable, it follows from the monotone convergence theorem (passing to the limit § — 04 ) that
2 Lo 2
lgnllzse 2, + 6”7'[291\7(7—)HLQ([O,T]XR%,U)
< e gollzz , + 200 L (1)l oo (o.myxusz2) H2 98 (D 220 1yxm2 ) -

Thanks to the smallness of ||fN(T)”Loo([O7T}><Rx;L12}) (taking ”fN(T)”Loo([O7T}XRx;L%) < W),
we arrive at

s T
lonlZee 2, + 12 a8 (M) 720 myxme ) < 2(C + e gollzz -

Hence, the proof of Proposition 4.3 is finished. O
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Remark 4.5. Owing to the embedding LOOLQ(Bl/2) — L([0,T] x Ry; L?(R,)), we deduce

that the norm || f|| zoc((0,7)xR,;z2) is small, since || ]| 12) is sufficiently small. However,

LeL2(B
there is no regularity available in position variable z for the weak solution gy according to
Proposition 4.3. In that case, we cannot attain desired solutions to (4.24) which belongs to the

critical Besov space L°°L2(B1/2)

4.4.4 Regularity of weak solution in position variable

In what follow, we establish the regularity of gy with respect to x. Firstly, for the nonlinear

term I'(fn, gn), we obtain the following lemma if gy belongs to the suitable space.

Lemma 4.16. Let 0 < 0 < 1/2 and 0 < T < +o0. For N € N, setting fn = Zévz__ll Ay f. If

gn satisfies
gN € LOO([[)?T]’LQ(R?:,U))a /H%QN € L2([07T] X R?E,v)?

then there exists a C > 0 independent of N such that for any k > 0,

9po T 1/2
> 11 %o (/ ‘(Apf(fN,gN),ApgN)M’dt)
p>—1 0
1/2 4.
IV o v M08 172 T (4.35)
1/2
+Cnll fnll, s xl e,

L2 L2(B,
where Cy > 0 is a constant depending only on N and
2p7
lon 172 22 gy = > 71+K2QPUHAPQNHL%L%L§'
p>—1
Proof. For o,k > 0, we have

s 2P9 s
HHQQNHZ%Z%(B;’:{‘) = Z WHAP/H29NHL2TL%L§
p=>—1

— S S
<Cx Y 27| H2gn 21212 < CullH2 N 121212,
p=>—1

where C, > 0 is a constant depending only on . Hence, one has HH%QNHZ? f2(pgry < 00
T v 2,1
due to H2gy € L2([0,T] x RZ,).

By using Bony’s decomposition, we divide the inner product into three parts:
(APF(fN)gN)7ApgN) = (Ap(]-_‘l(fNugN) + F2(fN)gN) + FB(fN7gN))7ApgN) )

where I (fi, gn) 2 32, T(Sj-1/n, Ajgn), T2 (fv, gn) £ X2 T(Aj fn, Sj-1gn) and T3 (fi, gn) =
> 2 j—j<1 D(Aj fns Ajgn). For T (fa, gn), note that

Ap Y (SiifnAjan) =8y D (Sifndgn).

J l7—p|<4
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It follows from Remark 4.4 that

opo T ) 1/2
Z m (/ ‘(APF (megN):ApgN)z?U >
p>—1 0
1/2
~ Z 1_|_H122p0 Z / ||Sj 1fN”L2Loo HHQ

—p|<4
1/2

1/2 1+ k227 o(P=9)s (4
< Hf ||L°°L2(B1/2 HH gN”L2 L2 Bgf) g:ll z|:<4 1+ ’i22pa C(])
p Jj—p

1/2
S Al

L°°L2(Bl/2 ”H gNHL2 L2 B”“)

where we used Lemmas 2.4, 2.8 and 2.9 in the third line and the following sequence {c(j)}

207

_ T4w2%0 H,HQA gNHL2 Lz,

#2911 22 2257

L+ R2%7 0o
DD T 2 e)

p=—1]j—p|<4

<C Z Z 2= () < C Z [(111<427) % ()] (p)

p=—1|j—p|<4 p=—1

< Cl1j1<a2 lalle(i) e < +oo,

satisfying |lc(j)||n < 1.
For I'?(fn, gn), similarly, we get

9opo T ) 1/2
Z 1_|_K;22p0 (/ ‘(APP (fN:gN)yApgN)x,v >
p>—1 0
1/2
Y [ 3 1aislis [is;
li—pl<4
J<N
N+4 opo . 1/2
< 2 N s
~N ; 1 4 K22p0 (‘fNHL%"LQ 2L )H gN‘ L2212, HQAPQN‘L%LQ%,U)
< Onlfnl? [#3gn]
NIJN LOOLQ(Bl/z N2 212>
where Cy = CN2N? with N € N. Owing to
> (AifnAgn) | =4, (Aj fnAjgn)
VARVES US| max (5,5 ) >p—2 |j—j'|<1

=0, if p>N+3,
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then I'}(fx, gn) can be estimated as follows:

opo T 5 1/2
2 T ( /0 (AT (9, ), )
p>—1
N+2 T 1/2
- Z 1+ R22p0' (/ ‘(Aprg(vagN)u ApgN):B,”U‘ dt)
N+2 T 1/2
S e () 18l [, [Hisn], )
p>—1j<N+1 ) ,
1/2
S On|l Nl / 1/2 ”H29N||L2 L2L2-

LeL2(B,

Together the above three inequalities, we can get (4.35). [
Based on Proposition 4.3 and Lemma 4.16, we obtain the regularity of the weak solution
gn to (4 27)

Prop031t10n 4.4. There exists a constant €9 > 0 such that for oll T > 0,99 € L2(Bl/2) fe
L°°L2( )fulﬁllmg
||f|’z%oz3(B;{12) < o,

then (4.27) admits a weak solution gy € L>([0,T]; LQ(R%U)) satisfying

1 s
HQN”ZOOEQ( 1/2) + \/T—CH’HQQN”EQ I2(B ;/2)

1/2
< lgollza pyrzy + VEONETINIL 7y

(4.36)
1/2) HH gNHL2 L2125

where Cy > 0 is some constant depending on N.

Proof. Applying A,(p > —1) to (4.27), and then taking the inner product with A,gn over
R, x R, gives
5 (18012, ) + SIHE By, < [18pgxls + (ApT (v gn). Mg

where we used the coercivity estimate of K. It follows that

d s _ 2 _ s _
% <6 2t||ApgN||%%w> + 66 2tH%2ApgNH%%,U < 2e Qt‘ (Apr(fN,gN),ApgN)L%m |
for0<t<T.

Integrating the above inequality with respect to the time variable over [0,¢] with 0 <t <T

and taking the square root of both sides of the resulting inequality, we get

5 o s 1/2
130xlzz, + 1/ /O 013 A ()3 dr)

t 1/2
< e I8mlgzs + VE( [ VNI g Ay i)
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then, taking supremum over 0 < ¢ < T on the left side and multiplying the resulting inequality

b op/2
5 1/2
dr
L3L2

T
T
</ ‘(Apr(fNagN)aApgN ‘dt>

we obtain

op/2 2 2p/2 Bis
T 18008 s ¥ 51 </ |3 800

o 202 op/2
<e ———
= 14k2p 1+ k2P

1/2

Apgollr2r2 + V2el

Further taking the summation over p > —1, the above inequality implies

[2 .2
HQNHEOOEQ(BUM + *HHQQNHZzp( 12

1/2
e Vi A L PR

+V2 cNeTHfN||”2

LooLz(Bl/Q HH 9N||L2 L2125

1
where we used the Proposition 4.2 and Lemma 4.16. Then, by taking || f||+ T I2(BL/?) < Tt

and letting kK — 0, we obtain

1 s
HQN”onozg( 12) + \/T—CH’HQQN”EQ T2(BY?)

1/2
< " llgoll a2, + V2One" 1 ] /

LOOLQ(Bl/Q || gNHL%L%L%,

which ends the proof of Proposition 4.4. O

4.4.5 Energy estimates in Besov space

It follows from (4.36) in Proposition 4.4 that
loxlzs 2 myrzy 1P 2 9z iy < oo

Then applying the Corollary 4.1 to fy and gy, we get the following inequality

Z 2% </T ’(Apr(fNagN)7ApgN)x,v

p>—1 0

1/2
) < Cl||fNH1/2 BL/2) H% gN”L2 2 12(BY?) (4.37)

LeeL2(B)

for some constant C7 > 0 independent of N.
With aid of (4.37), one can obtain the further energy estimate, which is independent of N

for the weak solution gn.

Proposition 4.5. There exists a constant g > 0 such that for T > 0,99 € E%(B;/f),f €

L¥L2(BylY) fulfilling

||f|’Z§°9E3(B§f12) < €0,
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then (4.27) admits a weak solution gy € L>([0,T]; L*(R2 ) satisfying

1. .
||9N||E%OE%(B;,/12) + \/T—CHH?QNHZ%E%(B%?) <e \|90\|g5(B;{12)a (4.38)

where C' > 0 is some constant independent of N.
Proof.  Applying 2°A,(p > —1) to (4.27) and taking the inner product with A,gn over
R, x R, give

1d

1 . )
5 (Z12uonl2, ) + 527175 AgnllEs

< 2 Apgnl3 | + 2 (A0 an). Dpgn)
It follows that

d s _ 2., _ s _
- (6 2t2p||Ap9N”%gU) + =207 [ H2 Apg [Tz < 2e72 2P (AD(fN, gn)s Apgn) 2|

dt C

forall0<t<T.
Integrating the above inequality with respect to the time variable over [0,¢] with 0 <t <T

and taking the square root, we obtain

» 2 v/ [ ouryia,s 1/2
28 850x 1z, + 2t ([ T IHE A (DI )
’ 0 z,v

t 1/2
< 2% | Apgoll o1 +\/§2%< /0 0| (AT (fx, ), Dpgn)pa ydT) .

Taking supremum over 0 < ¢ < T on the left side and summing up over p > —1, we get

2 s
HgNHE%PE%(B;{f) + EHHQ-qNHE%E%(Bl/Q

1/2
< lgollpy e, + VIS Y 28 </ v, |
0 ,

p>—1

< e"llgollza, B2) + V2¢O Y,

s
LooLQ 17/12)”H2gN||Z%Z%(B;7/12)7

where we used Proposition 4.2 and (4.37). It follows from the smallness of | f||+ L I3(BL?)

(takmg HfHLOOLQ 1’/12) S m) that

Lo
lowlzzzaeyey + o Mo zagyre) < € Noollzy ey

which indicates the desired inequality (4.38). The proof of Proposition 4.5 is completed. O
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4.4.6 The local existence for linearized Kac equation

Based on the above propositions, we can obtain the local existence of solutions for linearized

Kac equation.

Theorem 4.2 (Local existence for linearized equation). There exists a constant g > 0
such that for all T > 0, 9o € E%(B;{lz), fe E%OE%(B;/E), satisfying

”f”z%oz%(B%’/f) < €0,

then the Cauchy problem (4.24) admits a weak solution g € L*°([0,T); L*(R3 ,)) satisfying
s T
||g||Z%°Zg(B;{12) + HH29”E%Z%(B;/12) < coe ||90||z12)(3;/12) (439)
for some constant co > 1.

Proof. A) The first step
FooT2/nl/2 £ 7272/ pl/2
Prove g¢(t,z,v) € LFLy(By) and Hzg(t,z,v) € LpLy(Byy).
It suffices to show that the sequence {gn, N € N} is Cauchy in the space
0072/ pl/2\ (4,8 ~9 >9, 51/2
X ={g e LFLUBY )IH3g € LRLU(By )}
Set war v = gv — g for M, M’ € N. Then it follows that (4.27) that

Oywns,mr + vOzwar v + Kwar v = U(farr s war ) +T(far — far, gur)-

Applying A,(p > —1) to the above equality and taking the inner product with 2PA,waz as

over R, x R,, we get

d 2 s
& (Z1asonarliy,) + G2IHE Spwararl,

< 2 Apwnrarllzs , + 277 (A0 (farrs waraen), Apwnsan) s

+ 20T (AL (far — farrs gur)s prM,M’)Lg K

then it follows that

d _ 2 _ s
i (e Bl )+ G 2 I s

< gptl 2 ‘ (ApT(farrs warr), Apwarar) s ‘

4ooptle—2t )(Apr(fM = farsgm), APU)MJW)L% v‘ ‘
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Integrating the above inequality with respect to the time variable over [0,¢] with 0 < ¢ < T

and taking the square root of both sides of the resulting inequality, we are led to
2 t s 1/2
28| Spwarar iz, + 28 ([ IHE Apwagan (DI ar)
z, 0 z,v
2 o 1/2
< V222 (/ 2 (AL (far, warnr), Apwarar) 1o ‘dT)
0 z,v

t
+ V225 (/ 2=
0

1/2
(Apr(fM - fM’agM)aprM,M/)L%,U ‘dT) .

Taking the supremum over 0 < ¢ < T on the left side and summing up over p > —1. It follows

from the condition for small || f|| and Young’s inequality that

oo T 1/2
L%OL%(B&G)

2 S
ool + 5 o]

L312(By)
< V2T Z 22(/ ‘ (ApL(farr, wararr), Apwar, i) 1
0

T,
p>—1

dt) 2

+v2eT Z 2§</T’ (APF(fM - fM/’gM)’prM’M/)LgW )dt)l/z

p>—1 0

< V21T far 1Y,

L°°L2 1/2 HH Wpn,M' ||L2 272(B 1/2)

T 1/2
+V2C1e" || (fur — fM/)llLOOLQ 1(12)|| 29M||L%L%(

2 2T 3
< V2CCH(Far = i) e sy | 200 o 1 102

?)
3 [2, .
T aV gl el gy ey

The smallness of HQOHZg(B;{f) (taking HgoHZ%(%f) < W) and Proposition 4.5 enable us to

1/2) H%QU’MM ||L2 2 12(B1/2)
2.1

obtain

”wM,M’HZ%oZ%(B;/f) + \/%H%SWM,M’HZQTQ(B%)
< 2001263T’\90|!Z%(B;{12)||(fM — ez 122
< M (far = fM')\\Z%oZ%(B;{12)
for 0 < A < 1. It follows from Proposition 4.2 that {fx} is a Cauchy sequence in E%OZ%(B;/E)

which implies that {gn} is a Cauchy sequence in X. Letting g = limy_,., gn, we can get the

desired result.

B) The proof of energy estimate (4.39)
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To prove (4.39), applying A,(p > —1) to (4.24), taking the inner product with 2PA,g over
R, x R, and using (4.6), we get

1d

3 (Z18l3 )+ 52 i, < PI0uly +2 (AT M)

It follows that for all 0 < ¢ < T,

jt ( —2top HAngLz ) 02pe—2t HH%

26_2t2p| (Apr(fv g)v Apg)L%w |

Integrating the above inequality with respect to the time variable over [0,¢] with 0 < ¢ < T

and taking the square root, we can obtain

2 t
25 1 Apgll +,/2§(/ 2(t=7)
T,v C 0

t
< et2§ HAPQOHLgLi + \/§2§</ eQ(t—T)

0

‘?igzxpg(T)Hj%ﬂydT>l/2

1/2
(AL (F.9). Bpg)ya |dr)

Taking supremum over 0 < ¢ < T on the left side and summing up over p > —1, we get

2 s
l9lzee 22512+ & |9

1/2
< lanlgy iy + V2 Y 2 ([ 0.0) 2000, | )

p>—1

To T 1/2
L212(By)

T T 1/2
<e HQOH 1/2 +V2e C1”f”LooL2(Bl/2 IH g”EQTE%(Bé,/f)’

where we used Proposition 4.2 and Corollary 4.1. Then, with the small norm || f[/; 7. (BY2)
T ~v 2,1
(taking HfHLOOL2 BY/2) < m), we get
1 s < T
||g||LooL2(Bl/2) + ﬁ||%29||Z%Z%(B;(12) >€ ||gOHZ%(B;7/12)’
which is the desired (4.39). Due to the steps A) and B), this ends the proof of Theorem 4.2.
O
4.4.7 The local existence for nonlinear Kac equation

Based on Theorem 4.2, We prove the local-in-time existence of weak solution to (4.1).

Theorem 4.3 (Local existence). Let 0 < T < +oo. We assume that the collision cross
section satisfies (4.7) with 0 < s < 1. There exists a constant ¢g > 0 such that for all
g0 € L2(ByYY) fulfilling

||90HZ3(B§{E) < €o,
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then (4.1) admits a unique weak solution g € L>([0,T]; L*(R2 ) satisfying
s T
”g”Z%OZ%(B;/f) + H,HQQHZ%Z%(B;/IQ) < coe HQOHZ%(B;QQ)
for some constant co > 1.

Proof. Let 0 <A< 1,7>0and gy € L2 »(Bof] 1/2 ) be an initial fluctuation satisfying

. .. €0 1 A
_ < &, with 0< & =inf (-, : )<z (440
901173 yz) < 0. vt 0T\ T 10 CC2AT " \foCeyC2e5T ) ~ (4:40)

where cg, g9, C1, C are the constants defined in (4.6), Theorem 3.4 and Theorem 4.3. We define
_2s
Go = exp (—& (\/’T{Jr <DI>) 25“) go, 0<t<T
with 0 < ¢ < 1. Notice that
90z 72 s172) < 90l o) < 0.

By using the Theorem 4.2, we can construct the local solution and prove the local existence of
solutions to the nonlinear Kac equation. Iteration for the local existence of solution to nonlinear

equation (4.1), we consider the following sequence of iterating approximate solutions:

{ OGn+1 + v02Gn+1 + Kgny1 = I'(Gn, Gnt1), t >0, v,2 €R, (4.41)
gn-‘rl(ta x, v)|t:0 = gO(xa U)'
Taking g = gn+1, f = gn in Theorem 4.2 gives

18017073522, + P50z 7 ey < cocT Mol ay < <o (4.42)

for all n > 1. Indeed, if we assume that for some n > 0,

||gn||LooL2(Bl/2 + HH gnHLQ L2 1,/12) S €0,

then it follows from (4.40) and Theorem 4.3 that there exists a solution
- = 1/2
Gni1 € LPLA(ByY)
to the Cauchy problem (4.41) satisfying
- £ T
”gn-‘rlHi%oE%(B;’/f) + HIHQQH-HHZ%E%(B;QQ) < cpe |’90"Zg(35f12) < €o-
Then it remains to prove the convergence of the sequence

{Gnsn € N} € LFL2(B/D), {H%gn,n c N} c BBIABYD).
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Set wy, = gnt1 — gn and (4.41), we obtain
Oywy, + vozwy, + Kwy = T(gn, wy) + T'(wp-1, dn)

with wp|t=0 = 0. The following calculation is similar to that of estimate (4.39) but with little
changes. To be completed, we give the detailed process. Applying A,(p > —1) to the above
equality and taking the inner product with 2P Ajw, over R, x R, we get

d
dt
< 2p+1HAPwnHL% .t 2rtl (AL (Gny wn), pr")L% v

2 s
(218pwallfs ) + Z2 1M gl

+ 2p+1 (Apr(wn—la gn)a Ap'wn)L% Y

Taking the supremum over 0 < ¢ < T on the left side and summing up over p > —1. We deduce
from (4.37) that

2 s
T—cy

< V2eT Z 25 (/T ‘ (ApI (G, wn) ,prn)L,%,u ‘dt>1/2

p>—1 0

To T 1/2
I212(ByY)

. ) T B 1/2
+ \/56 Z 22 (/ ‘ (APF (wn—hgn) 7prn)L§v ‘dt>

p>—1 0
T 1/2
< V201 Gall 7y a2 *0nlza za sy (4.43)
T 1/2 1/2 1/2
+\[Cle [|wp— IHLOOLQ( 1/2 |H gnHL2 LQ(B1/2 |H nHLQ L2(Bl/2)

3 1/2
< V2aCeR g0l oo I3 wnllz 1o e

+ v2C’C’1262THwn_1H 72 LQ(Bl/z)

rramy MG

\/@”H 'lUnHLQ L2 1{12).

It follows from (4.40) that

lwnllz 1/2) +

I212(By/}

vl Lot

2 2T 5
<V2CCfje H/HQQ"HE%E%(B;QQ)||w"_1||Z°T°Z5(B§{12)

L L2 (B

T
< V2CCTe™ [Igollza /2y lwn 1 oo 112,

< Mlwn-tllze gy
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for some constant 0 < A < 1. Then for all n > 1 we have

ol 2oy < Mootlize sy

< An”’wOHZooZQ(Bl/Q)a
Pl 7y < VIOl
<V80)\”HUJOHLOOL2 1/12).

It concludes that {g"} is a Cauchy sequence and the convergence of the sequences

— T T2/ pl/2
g= tm g, in Ly([0,T}Ly(ByY)),

G= lim H2§, in L2([0,T]; L2(Bl/2))_ (4.44)

n—-+oo

Let H = 1g, be the Heaviside function. The convergence

H(t)g= lim H(t)§, in LF((—o0,T]; L2(ByD)),

n—+00

H)G = lim H(EH5§, in L3((—oo, T); L3(By))

n—-+0o

H(t)g= lim H(t)g,, HH)G= lim Ht)H2g, inD'((—00,T),S'(R2,)).  (4.45)

n—-+0oo n—-+00
We obtain for all ¢ € §F = C§°((—00,T),S(R2,))
(HO)G, ¢z = lm (HOH2Gn, 0)z+5 = lim (H(t)gn, H29)55

= (H(t)g, H2 )55 = (H)YH2 g, )5+ 5,

where §* stands for the anti-dual (anti-linear forms) of § and (:,:)z+ 5 denotes the duality
bracket. Thus, it follows that

G="™MHz2g. (4.46)
Therefore, the limit function g is a desired solution to the Cauchy problem (4.1) and g satisfies
g(t,v,x) € L%OLQ(BI/2) and H2g(t,v,x) € LTL2(BI/2)

Passing to the limit when n — oo in the estimate (4.42) and following from (4.44), (4.45) and
(4.46), we are led to

”g”ZOTOZg(B;ff) + ||7{59||Z%g%(3;/12) < 606T||go||Z%(B;/12)-
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We deduce from (4.45) that
O(H(t)g) = ngrfoo O(H(t)gn), H(t)voyg = nEIEOOH(t)v(?xgn (4.47)
with limits in §. Following from (4.4), (4.5) and (4.45), we get
H(t)Kg = ngrfoo H(t)Kgn (4.48)
with limit in §. On the other hand, for all ¢ € § we obtain
(HOT Gos 1), #1503 — (H (9,9 0)53] o)
S HBT(Gn = 9 Gnr1)s ©)z 5l + [(HOT (9, Gnt1 — 9), ©)5+,
We deduce from Remark 4.1 that
- 2 HOAL G~ 9,Gns1) Ap)s 572
p>—1
3 1/2
< X 2 ([ HO[AT G~ .50, Ar)rage | )
p>—1 (4.50)
< CIHQTL - gHZO"ZQ(Bl,/f) ||H§§n+1 HZ%E%(B;’GZ) HH?SOHE%Z%(B;’/E)
< €OCIHH2@”L2 L2(B 1{12) Hgn - gHZ%oZ%(B;’/f)
We deduce from (4.44) and (4.50) that
Jim (H O (9n = g, Gnt1), )55 = 0- (4.51)
Similarly, we deduce from Remark 4.1 that
> 25 (H ()AL (g, Gntr — 9), D)5 5"
p>—1
1/2
< 3 ol / H (1) [(A)T(9, Gus — 9). App) ez, | dt) (4.52)
p>—1
= Cl”g”Z%E%<B§,/f>”H§§”“ ~ 9l 112 Plle 12 my2)
It follows from (4.44) and (4.52) that
Jim  H@L(g, Gnsr — g) =0 (4.53)
with limit in §. We deduce from (4.49), (4.51) and (4.53) that
lim H(t)[(Gn, Gn+1) = H(t)I(g, 9) (4.54)

n—-+o0o

with limit in §. It follows from (4.41), (4.47), (4.48) and (4.54) that

O(H(t)g) +vo,H(t)g + KH(t)g = H()I'(g,9) + do(t) ® go,
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namely,
{ B + 09+ Kg =T(f,9),
g(t,z,v)|=0 = go(x,v).
Next, we prove the uniqueness of solutions to the Cauchy problem (4.1) when the initial

fluctuation is sufficiently small as in (4.40). Let g1, g2 € L""L2 (31/2) be two solutions of the
Cauchy problem (4.1) satisfying

1 s ~5 =9, 1/2\ .
1931 25 22 5172) < 70T 224 Hig;(t,v,x) € L3L2(ByY), j=12
v N 1

where C, C; are the constants defined in (4.6) and Theorem 3.4. Set h = g1 — g2. This function
satisfies the Cauchy problem

8th + 1)8$h + Kh = F(glv f) + F(fu 92)7
h(t,z,v)|1=0 = 0.

Then, with the similar computation as that of estimate (4.39), precisely, applying A,(p > —1)
to the above equality and taking the inner product with 2°A,h over R, x R,,, we get

d
dt
< 2p+1HAPhH%§ . T 271 (AT (g1, f), APh)Li v

2 s
(27185h1%5 ) + =27 M3 AR

+ 2p+1 (APF(fv 92)7 Aph)L% Y

Taking the supremum over 0 < ¢ < T on the left side and summing up over p > —1. We deduce
from (4.37) that

/2
HhHE?Z%(B;’/f) + Vel HhHZ2 ZQ(Bl/Q)

<\feT22z(/0 (BT (92,1), Ayh), ]dt)

p>—1
+\feT22z(/ ‘ (AT (hyg1), Aph), )dt)
p>1 (4.55)
< V20Nl s IR Bl 7
VORI i IR i IHERIEL S, o
_—u 25212+ 2VCC1T Ml ey i) [HE a1 s o

which implies h = 0 with the aid of (4.40). Hence, we finish the proof of local existence in
Theorem 4.3. O
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4.5 Gelfand-Shilov and Gevrey regularizing effect

In this section, we prove that the Cauchy problem (4.1) enjoys the Gelfand-Shilov regularizing
properties with respect to the velocity variable v and Gevrey regularizing properties with

respect to the position variable z.

4.5.1 A priori estimate with exponential weights

Firstly, it is shown that the sequence of approximate solutions (g, )n>0 (which defined by (4.41))

satisfies a priori estimate with exponential weights for sufficiently small initial data.

Proposition 4.6. Let T' > 0. There exist some positive constants C,eqx > 0,0 < ¢g < 1

such that for all initial data Hgg”zz( < e1, the sequence of approzimate solutions (gn)n>0

1/2
, B3?)
satisfies

GH t~n TooT EG'% t~n~~
|G(ct)g ||LT L%(B%ff) + |H2Gk(ct)g ||L%Lg(35,/12) (4.56)

+ (D) =41 G o (ct) g | < Ce“goliz g2
v 2,1

To T 1/2
L212(B,/2) )

for0 <k <1,0<c<cy,n>1, where

2s

s+1 3s+1
exp(t(H 2 + (D,)2s+1)3s41)
G’{(t) = s+1 3s+1 2s .
1+ kexp(t(H 2 + (Dy)2s+1)3+1)

To prove Proposition 4.6, we need some lemmas. Firstly, we prove the hypoelliptic estimate
for the principal part of the linear inhomogeneous Kac operator. Since the operator A, acts

on the position variable x only, we obtain the following estimate based on Lemma 4.3.

Lemma 4.17. Let P be the operator defined in (4.9) and M = m™ the self-adjoint operator
defined by the Weyl quantization of the symbol (4.10). Then, the operator M is uniformly
bounded on L*(R,) with respect to the parameter £ € R, and there exist some positive constants
0 <eg <1,c3,¢4 >0 such that for all0 < e < eg,u € S(Ry), £ € R,p > —1,

Re(PApu, (1 — eM)Apu) r2(r2)
> e3]|HE Apullagay + e T Apul 2oy — call ApulZaga).
where H = —A, + % stands for the Harmonic Oscillator.
Proof. The proof is similar with that in [117]. Following from (4.9), for 0 < ¢ < 1 we have

Re(PApu, (1 — eM)Apu)r2rz) = Re(ag (v, Dy) Apu, Apu) 12 (g2)

(4.57)
—eRe(iv€Apu, MApu) 22y — eRe(ag (v, Dy) Apu, MApu) 12 (g2).
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Since ag is real-valued, we have Re(ag (v, Dy)Apu, Apu)r2r2y = (ag (v, Dy) Apu, Apu) r2(r2)-
And in the class S({(v,n))*,T), it holds that

_ 2 f 3w 2 Uj p 252 (4.58)
ag — Co 1+77 + 4 ﬁ 1+77 + 4 ES(«U;U» 7F0)CS(1)P0) '

for 0 < s < 1. Following from (4.11), there exist some positive constants ¢y, C' > 0 such that
for all u € S(Ry),

w 2 U2 % 2
jor (1 + 7)) s,
> &||H2 Apul7z — Cl| Ayul|72.

(ag' (v, Dy)Apu, APU)LZ(Rg) > Co

= Cll Al

(4.59)

For the third term in (4.57), since that the operator M = m® is uniformly bounded on L?(R,)
with respect to the parameter £ € R and (4.11), (4.58), we have

Re(ag (v, Dy)Apu, MApu) 12(r2)

2, s 2. s
_ w 2, U'\2 w 2, U'\2 2
_coRe(Op ((1+n + 4) )Apu,Op ((1+n + 4) )MApu)LQ(R%)+0(|mpuup)
= Ri + Ro + O([| Apul[72),

(4.60)

with
Ry = CORe(Opw((l + 7% + zj) )Apu, MOp“’((l +n° + i)S)ApU>L2(R%)

= O(|H2 Apul)75), (4.61)
O G ((R e L L (R S R e

(NI

On the other hand, since m € S(1,Ty) respecting to £ € R and using some symbolic

calculus, it holds that
1)2 s ~
[0;;“}((1 +1” + Z) 2>7mw} € Op”(S({(v,m))**,T0)) € Op“(S(1,T0)), (4.62)

since 0 < s < 1. Combining (4.11), (4.60), (4.61) and (4.62) gives that
Re(aff (v, Do) Aptt, MAu) p2(rz) = O([H2 Apul|72) (4.63)

uniformly with respect to the parameter ¢ € R. Finally, since the operator M and v are

respectively formally self-adjoint and skew-selfadjoint on L?, we obtain

! ([ivfa M] APU, Apu)L2 . (464)

—Re(iv€Apu, MApu) 2 = 3
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By using some symbolic calculus, it holds that %{vf ,m} is the Weyl symbol of the commutator
%[vf , M]. With Lemma 4.2, the symbol r is a first order symbol for the symbolic calculus
associated to the class S({(v,1))?,Ty) and r satisfies

2
Il S (1407 + U—)s.
4
Then, in the class S({(v,7))?,To) we can deduce from the Garding inequality (see e.g. [106],
Theorem 2.5.4) that

2

(" Apu, Apu) 2| < (Opw<<1 + 02+ UZ)S> Apu, Apu) +0 (||Apu\|%2) (4.65)

uniformly with respect to the parameter £ € R. Therefore, it follows from (4.11) and (4.65)
that

2 S
,I8gul: = 0 (I Apull3. ) (4.66)

(7 Ay, Apu) 2| < HOp“’((l Ty ”2)3>Apu’ .

4

uniformly with respect to the parameter £ € R. Put

2 2 2
U= é;4-25 @ZJ(U +277 )> (4.67)
2N\ 2s+1 A2s+1

we deduce from (4.64), (4.65) and (4.66) that there exists a constant ¢ > 0 such that for all
u € S(Ry), & €R,

—Re(wEA u, MAu) 12 > (U Apu, Apu) 2 — cl|H2 Apul|2s. (4.68)
It follows from (4.57), (4.59), (4.63) and (4.68) that
Re(PApu, (1 — eM)Apu)r2(g2)
> ol H2 Apul|2s + (TP Apu, Ayu) 2 — Cl|Apul|2s — eO(|H2Apul2,)

uniformly with respect to the parameter £ € R. Choosing a value of the parameter 0 < ¢ < 1
and a new constant C' > 0 such that for all u € S(R,),0 < e < ¢ep,£ € R,
Re(PApu, (1 — eM)Apu)r2(g2)

Coo s ) y ) (4.69)
= 5||H2APUHL2 + (VY Apu, Apu) 2 — C||Apul|72.

To estimate the term (WY A,u, Apu)2, according to the support of the function

w250,

_2
A 2s+1

we consider the calculation separately on the two regions of the phase space

_2 _2
U2+7]25)\25+1, U2+"72Z>\28+1‘
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One can find a constant ¢; > 0 such that for all (v,7,£) € R3,

2s

U+ B > e ATAT > 0 (€)30T (4.70)

where

o= (o () e )

Here, it follows from Lemma 4.2 that ¥, ® and <§>232% are first order symbols in the class
S(M,T'1) uniformly with respect to the parameter £ € R. We can deduce from (4.67), (4.70)
and the Garding inequality that there exists a constant ca > 0 such that for u € S(R,),& € R,

s sy (00 (1 o)) (1 5 Y )

A 2s+1

- 2 2
> (&) 2T || Apul|z2 — col[Apullze.

(4.71)

Additionally, since 0 < s < 1, Lemma 4.2 and S(n,I'1) C S(n,T), it holds that

1 q,z)(“Q t”Q) € S(1,Ty) C S(1,To)
)\2s+1
’U2 s
and (140" + ) € S(((v.m)™ To) € S({(v,m)” To)

uniformly with respect to the parameter £ € R. Thus, since

2

s 2 2 2. s
(e g) 2 (e (C D)) (e + )
4 A 2s+1 4

and using the Garding inequality, there exists a constant ¢ > 0 such that for all u € S(R,),& €
R,

(v (1 + 7)) )

= (00 (1= () (0 7)) A &), =l

Thus, there exists a positive constant ¢4 > 0 such that for all u € S(R,),¢ € R,

(00 (1= (SN o+ ) Yo ) <l a7

It follow from (4.69), (4.71) and (4.72) that for all u € S(R,),0 < e <¢e¢,€ € R,
R@(PAPU, (1 - EM)APU)Lz(R%)

Co 5 s _2s
> (5 = o) [H2 Apul 7z + ere(€) =+ [ Apull7z — (C + c22) | ApullT2-
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There exist some positive constants cg, ¢4 > 0 with a new parameter 0 < ¢y < 1 such that for
allu € S(R,),0 < e <ep, £ €R,

Re(PApu, (]. — EM)APU)LQ(R%)
El _2s
> cal| M3 Apul2agzzy + e T Ayl Zars) — call gl Zeqpa).
The proof of Lemma 4.17 is completed. O

Lemma 4.18. There exists a constant cs > 0 such that for all f € S(wa),

s+1 3s+1 (1+4s)s

I(H2 + (Dg)241) 555 f| 2 < s H2EFD £l + cs]|(Da) 5 f 12

Proof. We decompose f into the Hermite basis in the velocity variable

+oo
F@,0) =S fal@)en(v), with fu(@) = (f(2,-),en) 2(a,)- (4.73)
n=0

Since

VO<a<l1, Va,b>0, (a+b)*<a“+10b",

one can verify that

+oo 2s
s+1 Bs+1 s _ 1 1. s+1 3541\ 5ogT 9 1/2
H(H 2 +<Dx>2 +1)3 HfHLi,v_ (%T;)/[R((n+2) 2 +<§>2 +1) |fn(£)‘ d&)

1/2

(L3 [ [+ %5 4 @] Fuo )
- \27 —o/R 2 "
s(s+1) _s 1/2
= (IHFS0 f12, + D=1 )
O

Remark 4.6. Since the indices

(1+s)s < s
2(3s+1) 2

we always use the following result

s+1 3s+1 s

(K™ + (Dy)230)57 fll 2 < es|H2 fl2, + esl[(Da) =7 f 2,

T,v

Lemma 4.19. For all 0 < o < 1, there exists a constant ¢, > 0 such that for all f € S(wa),

M QA2 , < Eal MDA fll12 -
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Proof. We can deduce from (4.11) that

2

IHoQa iz, < [op (1402 + )" ) @A

2
Lz,v

< |@op ((1+7? + f)a)Apf (4.74)

2

#[low (e + T)7). Qs

2
Lz,v

)

2
Lz,v

since [Q, Ap] = 0. Due to the fact that the multiplier @) is a bounded operator on LQ(R%U) and

(4.11), we can obtain

Jeow (1447 + 7))

o Slor (4 ) )]
SR

On the other hand, we deduce from (3.7), (3.8), (4.84) and Lemma 4.2 that

12, (4.75)

2

op"((1+7*+5)"). @] € Op" (S(((v.m)* 7%, T0)) € Op"(S(1.To))

uniformly with respect to the parameter £ € R because 0 < o < 1. It implies that

[[ov (o4 75)") s

<A fla,. (4.76)
L2

U

Combining (4.74), (4.75) and (4.76) gives
[HoQA s, < Eall oA flp2 .
This gives the proof of Lemma 4.19. O

Lemma 4.20. There exists a constant ¢1 > 0 such that for all f € S(R3,), 0 < ¢ < 1,0 <
k< 1,t>0,

HH-% (G(ct)o(Glct) ™" = v] Ay f

< rcte® | (Dy) FFALf 12

U

L3

Proof. For all f € S(RZ,), with the aid of the decomposition (4.73), using the identities
(4.2)-(4.3) satisfied by the creation and annihilation operators

v
Are, = (5 — Op)en = Vn+ lepyi;
v
A e, = (5 + 81))671 = \/ﬁen—h
we have immediately

ve, = Ayen +A_e, = Vn+ legi + Vnen_1,

H= % (AJA_+A_Al)e, = (n + ;) €n.
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It follows that

s 3s+1 s s s s
exp(et(HF +(§)3F)3HT) 14 wexp(et(H ' + (€)#H) %)
Its 3atl 25 its Batl 2 €n
L rexplet(H'F +(©F))  exp(a(MF + (g Fh) o)
3 Lis 3s+1 25
exp(et((n+ 3) % + (%) 55)
14s 3s+1 __2s

T 4 (£)2s41)3s4T)

1+s 3s+1 0 _2s

1+ " +l 2s5+1 ) 3s+1
Lt ket ) +(©F)sT) o

s 3s+1 s
exp(ct((n + %)H )

_l’_

1+ rexp(ct((n+ 3)

2+ <§> 2s+1)3s+1)
exp(ct((n — %)135 + (€) 3ﬁﬂ)%)
1+s 3511 2s
1+ rexp(ct((n —3)2 + (€)2s+1) 54

1+s 3s+1

1 + rexp(ct((n+ 1)
exp(ct((n + )1+S 2501 ) 5]

+ <§> 25+1 ) 3s+1 )

One can verify that

Fo (H73 [Gulct)u(Galet) ™ = 0] A0, f)

+oo
—_— 3 S
=D iR OV I(n+ 5) 3AT enia
n=0

+oo
£ 3R FEVAln — ) FAT en

n=1

where F, stands for the partial Fourier transform with respect to the position variable x and

exp <ct ((n_|_ %)3'51 + <§>%)ds+l ot ((n—l— %) -51 n <§>gsﬂ)s +1> 1

I

AZ(&) - s+1 3s+1 20
(1+/<;exp< ((n+ ) 2 +<§>2s+1>35“>>
) v (4.77)
s s+1 3s+1 3s+1 s
exp (et ((n = HF + BT et (s ¥ 4@ F) T
A_ —
n,(€) s s
(1 + Kexp <ct ((n 1) o4 (e gs“) 3s+1>)
Then by the Plancherel theorem and Cauchy-Schwarz inequality, we have
Vor HH—% [Gr(ct)o(Grlct)) ™ — ]
12 [Gr(c)v(Glet) ™ —v] AD,
(7% [Gutetu(Guten)™ =] 00 ), )

(ZHprfn VAL g 72 (n ) (Zqupfn 5)”%g<”>1_3>
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with At ey A () defined in (4.77). Now we come to estimate [A' <§>] and |A <§>\. It follows

from the mean value theorem that

522 _2s
(04 2% +e0 S’:ﬂ) T _ <<n . lyzl e z:¢1>

2

_|_
_cts (1+s)
- 3s+1

(n+ - +9) (0<8<1),

which leads to
1+s

2cts(1 cts(1+s s+1 3s4+1\ 35+l 1, s-1
0< A"‘ 2541 _
35+ 1 ) 35+ 1 ( +(8) > (n+3)7
2cts(1+4s)\ 2cts(1+ — ks
<
_exp( 3s+1 > 3s+1 <£> X >

This shows that, for all n > 0,

At <
Aol = 3s+1 35+ 1 (&

On the other hand, we use the mean value theorem again,

1 El 3541 5 1 T 3s+1 i1
0> A o >exp ct((n—z) +<5>2s+1> —ct((n+2> +<§>2s+1> -1

14s

cts(1+ s) 1 =n psr1 ) T 1 =
— exp —<<n—+0> +<g>zs+1> <n—+9> 1 (0<f<1)

<20t5(1 + 8)) 2cts(1 + s) I

3s+1 2 2
A+s
s+1 39+1 s—1
CTtS(l + S) 1 2 3s+1 1 p)
1+s
s+1 T 3at1 s—1
cts(1+ s) 1 2 3541 1 2

Then for all n > 1, we have

2cts(1+5) ,  _dbs 51
el < g5 r @ M T

Substituting the results (4.79) and (4.80) into (4.78), we conclude that

(4.80)

H’HW [Go(ct)o(Gre(ct)) ™ — ]

o 2cts(1+s)\ 2cts(1+s) 1
X
= OXp 3s+1 3s+1 \/277

+o0
x <2_30||<s>2s11Apfn HL2> (Zn 2*+1Apfn(f)\\%g>

< élcteélctH(DmﬁApfﬂLi .

T,v

1

2
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The proof Lemma 4.20 is completed. O
The proof of Proposition 4.6
Proof.
Let 0 <¢<1and0< k <1. Define

hn,c,m = Gn(Ct)gng n > 0. (481)

The function hy, ., depends on the parameters 0 < ¢ <1 and 0 < x < 1. Here, we write h,, for

P, for simplicity. Notice that

s+1 3s+1 2s

ho(t) = (1 + kexp(t(H 2 + (Dg)2s+1)5+1)) " Lgy, 0<t<T

satisfies
ol 73 12 < 9ol 5 (482)
By using (4.81) that

s+1 3s+1 2s

Jn = (G,.;(ct))_lhn = (k4 exp(—ct(H 2 + (Dy)2s+1)3s+1))hy,

then the equation

OtGn+1 + v02:Gny1 + Kgni1 = F(gnv gn—i—l)

can be rewritten as

(Gr(ct) L 0hns1 + v, (Grl(ct)) hpgr + (Gr(ct)) " Chn1
— o(HF 4 (Dy) 35T exp(—ct (KT 4 (Dy) 31T )y g
=T((Gr(ct)) ™ hn, (Gulet) ™ hpgr)-

Due to (4.4), the linearized Kac operator IC = f(H) is a function of the Harmonic Oscillator
acting on the velocity variable v, which can commute with the exponential weight (G, (ct))~!.

Applying A,(p > —1) to the resulting equality, we have

N Aphni1 + Gr(ct)v(Gu(ct)) 1 0p Aphpit + KAphni1
1

(HF 4 (D))

C 2 - s s

o s+1 3s+1 _2s Aphn—H (4.83)
1+ kexp(ct(H 2 + (Dg)2s+1)3s+1)

= GH(Ct)ApF((GH(Ct))_lhm (GH(Ct))_lhn+1)-

According to Lemma 4.3 and (4.10) in Section 4.2, we choose the positive parameter 0 < € < g

in order to ensure that the multiplier

Q = Q(v,Dy,D,) =1—em®(v, Dy, Dy) (4.84)



Sharp Gelfand-Shilov and Gevrey smoothing effect for the inhomogeneous non-cutoff Kac
182 equation

is a positive bounded isomorphism on L*(RZ ).
By integrating with respect to the £ —variable and using the multiplier QAyhy, 41 in L? (Riv),
we deduce from (4.83) that

> dtHQmA hosillZz,, +Re(KA i1, QAphni1) 12wz )

+ Re(Gr(ct)v(Gr(ct) ' 0 Aphny, QAphni1) 2Rz )
=1 St (4.85)
c(Hz 4 (D,)2s+1)3s+1
B Re( ( s+1< > Q 2s A1ohn+1a QApthrl)
exp(—ct(H z + (Dg)2s+1)3s41)

= Re(GK(ct)APF((Gﬁ(ct))_lhn, (Grlet)  hpsr), QAphn-f—l)LQ(Riyv)a

which leads to

L2(R3,.)

2dtHQ1 A hn+1”L2 + Re((v0z + K)Aphni1, QAphny1)r2we )
+ Re([G(ct)o(Gr(ct)) ™ = 0]0:Dphns1, QAphn11) L2(e2 )
< el|(HF + (Do) 500) 7 A [ 12 |(HF + (D) 55) 55 QAphi |2,
+[(Gal(et) AL (Gielet)) ™ P, (Gal(eD) ™ 1), QAp A1) L2 (e
It follows from Lemma 4.17 that

Re((v0y; + K)Apu, QAPU)LZ(]R%U)

(4.86)

S L (4-87)
> C3||H§Apu|’%2(]1{§‘v) + c3l|{Dg) 2+ Ap“”%%n@g’v) - C4||ApUH%2(RgW)

for some constants cs,cq > 0. We deduce from (4.86) and (4.87) that

S 1Q A a3+ eslH Aphaia s ) + esll (D)5 Ah e

< |-+ (Da) 50) T Aphia 12 |(HF 4+ (Do) 55)5H QA 2,
+ [([Gr(et)o(Gr(ct) ™ = 0]0eAphnst, QAphn 1) p2(ee )| (4.88)
+ [(Grlet) AL (Gre(ct)) " b, (G(et) ™ ng), QBphns1) ez )|
+ cal| Aphntalfes -

By using Lemma 4.18 for f being replaced by Aphpi1, QAphyp4+1 and Lemma 4.19, we have

35+1 3ot 3541\ 33
) R Y [ R R
S(HH%’MHHQ e )

< (st + 1015502, )
s 2 ’
o] L Y R

x,v
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Based on Lemma 4.19 and Lemma 4.20, we obtain
‘ ([GH(Ct)U(GH(Ct))il - U] 890Aphn+1a QAphn-H)LQ(R% v)‘

= ‘(H‘S [Go(ct)v(Gr(ct)) ™t — o] 8$Aphn+1,H§QAphn+1>

L2(R3,,)

< HH—% [Gr(ct)o(Gr(ct)) ™ — ] axAphnHHL%w H’H%QAphnH‘ .

< cgetes

<Dx>*2s+1Aphn+1HL2” HHaAphnHHH ,

since Q) is commuting with any function of the operator D,. Then, it follows from (4.88) that
there exists some positive constants 0 < cg < 1,¢c9 > 0 such that for 0 < ¢ <¢y,0 <k <1,0<
t<T,

s 2
HQl/QA hn+1HL2 (cg — cscTeCST) (H?—ﬁApthrl‘ 282,

2dt

2
o5
"Ulrzrz,,)

2
) < calldphniilfage

+ 1(Gn<ct>Apr<<GH<ct>>-1hn, (Cet) ™ i), @phn 1) s |-
Here, the constant 0 < ¢y < 1 is chosen sufficiently small so that

¢
cgeTesT < —9,
-2

then we obtain that for all 0 < ¢ <c¢y,0 <k <1,0<t < T,

d 1/2 2 H 2 _s 2
*HQ Aphn-‘rl”LQ + c9 HHQAphn+1H 5 + ¢ H<Dw>23+1Aphn+1’ 12

x,v

< 2010“@” A hn+1HL2 +2 ‘ Ct A F((Gn(Ct))_lhna (GR(Ct))_lhn-‘rl): QAPh"'H)LE.’U

with ¢j9 = C4H(Q1/2)_1H£(L2) > 0. Following from (4.41), (4.81) and (4.82), for all 0 < ¢ <
0,0 <k <1,0<t<T we are led to

|28k ;
e /t p2c10(t=) (HHSAphnH(T)‘ 9
0

2
dr
L3,
2 t
+ 2 / e?clo(th)
L%, 0

x ‘ (Galen) AT (Gr(er)) ™ ha(7), (Grler) i1 (7)), QAphas1(7)) pagas )] dr

< 62610tHQ1/2Hi(L2) HAngHQL%,v

t
4 9 / 62010(t7T)
0

X ‘ (Gﬁ(CT)ApF((GH(CT))ilhn(T)’ (GH(CT))ilhn-i-l(T))a QAphnﬁ-l(T))Lz(R%m)

s

S eQClot

@72 290]

dr.
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Taking the square root of the above inequality and taking the supremum over 0 < ¢ < T give

12 Ap st s+ v/ |[HE Al

< €T QY2] £z 1 Apgoll s

ey || (D) B Aphna|

L3LZ, L3L3 .

T 1/2
V2 (|Gl AT (Gulet) e (Glet) ). Qi) [ )

Multiply the above inequality by 2% and take the summation over p > —1, we have

Q" btz 3y + Ve IHE i I 73 iy + VEOID T hsll g e

< 6010T||Q1/2H£ L?) HgOHLQ(B1/2 +f6010T Z 22
p>—1
1/2

T
9 ( | (Gl 30 Galet) (Gt ). @) ez )| dt)
0
It follows from Lemma 4.15 that
oz pz ey + VOONHE il g3 gy + VeI =T hasa gy 1y gy
< e'31°T||Q1/2||z:(L2)||(Q1/2)_1||L(L2)||go||Z%(B;/12)
cioT 1/2 2
+v2e07Cy || Ay, HLOO 2B ;/12)\\7'[2hn+1||Z2TEg(B§{12) (4.89)
< TN QY2 £ 12y ||(Q1/2)_1||L(L2)||90||Zz BY2)

+ e ey a2

LOOLQ(Bl/Q HH hn+1HL2 L2(Bl/2)

Next, we use the mathematical induction argument to show that

C9
(|7 ||LooL2 BL/2) < 22, (2o

for n > 0. In the case of n = 0, owing to the assumption

. . ~ C9 Co ~
~ < g1, with 0 < g1 = inf (&, , < &y, 4.90
HgOHL%(B;/f) >~ c1 1 ( 0 20%16261()']1 20%16301071"@1/2”5(112)) > <0 ( )

where the positive parameter &y > 0 is defined in (4.40), we deduce from (4.82) that

09

In the case of n > 1, if we assume that

€9

||hnHLooL2 1’/12) S 262116720107"’
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then it follows from (4.89) that

th+1||LooL2 1/2 \/ ||H hn+1||L2 L2 1/2 + \/6H< >2é+1 hn+1||L2 L2(31/2

< echqu/Quc(Lz)||<Q1/2> Hewsllgoliz sy

(4.91)

Together with (4.90) and (4.91), we deduce that

C9
in1llzee 72 p1/2) < 262, e2en T

Hence, it follows from (4.91) that for 0 < ¢ < ¢y, 0 <k <1,n>1,

[ Ccg s _s
Hh"HZ%OZ%(B;/f) + 5”H2hnuz%ig(3;/12) + \/@||<Da:>25+1 h””f%Z%(B;/f)
< eCwTHQl/ZHL(B)H(Ql/z)_lﬂﬁ(L?)HQOHE%(B;?)-

This ends the proof of Proposition 4.6. O
Based on Proposition 4.6, by passing the limit when x — 04 in the estimate (4.56), it

follows from the monotone convergence theorem that the following lemma:

Lemma 4.21. Let T > 0. Then, there exist some constants C,e1 > 0,0 < ¢g < 1 such that

for all initial data ||gOHE2(B1/2) < 1, the sequence of approzimate solutions (gn)n>0 satisfies
v 2,1

GO (et)gill 7oy iy + 75 Golet)inllz a2

C
+ H(DI>2S+1 GO( )gn”L2 L2 17/12) <Ce THQOHE%(B;QQ)

for all0 < ¢ < cg,n > 1, where

s+1 3s+1 2s

Go(t) = exp(t(H 2 + (Dy)2s+1)3s+1).

4.5.2 Gelfand-Shilov and Gevrey regularities

It follows from the Cauchy-Schwarz inequality that for all 0 < ¢ < ¢9,0 < x < 1,

= 1435 _2s
|Gr(ct) f”22 _ ( exp(2ct(H 2 + (Dy)1+2s ) T435) Af A f>
K P L - 143s _2s pJ oy —=p
o (14 mexp(t(HF + (D,)Tres ) T ))2 L2(R2.,)

< HG()(th)Apf”L?w HAprLgm

By passing to the limit x — 04 in the above inequality, it follows from the monotone conver-

gence theorem that for all 0 < ¢ < ¢,

IGo(et) ApfI3s , < IGo(2et) A fllzz I 8pf Lz,
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It implies that for all 0 < ¢ < ¢g,

IGa(ct) Apfllzzers , < [Go(2et)Apfll e o 1A F ]}

LPLZ, LPL2.,
We can obtain

1Go(et) s iy = D 2EIGalet)Apsll sz,

p>—1
P
<(X 22|1Go<2ct>Apf\|L%Lgv) (= 2zuApfuL%0Lgv) (4.92)
p>—1 p>—1
1/2 1/2
< IGo ()1 iy oy 191 oy

For the solutions (g, )n>0 defined in (4.41), by using Lemma 4.21 and (4.92), we can obtain
that for 0 < ¢ < %0,

”GO(Ct)gn-i-p GO (Ct)gnHLooL2 1/2)
cr ~ 1/2

< 2V ~

<2vC(Ce: ||90||L%(B;{12)‘|gn+p |

LOOLQ(Bl/Z),

which implies that (Go(ct)gn)n>1 is a Cauchy sequence in LOOLQ(Bl/Q) Let h be the limit of
the Cauchy sequence (Go(%t)Jn)n>1 in the space L°°L2(B1/2) Notice that

GG 2)) I —
= lengen (Go(*t)gn o] P
<len(Gt)an -1

B2

then following from the convergence of the sequences {g,} in Z%Oig( o1 ) and the uniqueness

Lgiz(ByY)

of the solution to the Cauchy problem (4.1), we have
-1 s s _2s
0= (Go(0) "n=exp (= (W + (0BT

On the other hand, we can deduce from Lemma 4.21 that

| G0 < ol 12 (4.93)

LeI2(ByY)
Passing to the limit in the above estimate (4.93) when n — 400, we obtain

+1 3s+1 2s

2 4 (Dg)2et1) 34T

Cot

2
or

<Ce ||90||z3(35/12)~

HhHLOOLQ( VT = || exp (= (H 9HL°°L2(BI/2)

(4.94)
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By using the following elementary inequality

3s+1
3s+1 s EN s
Va,e >0, aFexp <— st cx33+1> < %7
s ¢ sk
we can deduce that for f € S(RZ ) and all k& > 0,
s+1 3s+1\ k cot s+1 8541\ FoiT
(5 4 (D) 550) exp (=50 (HF 4 () 50) ™ ) Ay
L
+o0 2s 1/2
1 1.s 1+3s\ 2k 1. s 1435\ Tras — 2
= <2W [ (045 +©FF) e (=t + )% + ©FF) ) |5 T00) ds)
=0

n
3s+1
35+ 1\ 55k (k!) " 2s
§( seo > tsziTkHAprLg’v-

(4.95)

Then it follows from (4.94) and (4.95) that the solution to the Cauchy problem (4.1) satisfies
forall 0 <t <T,k >0,

st1 3s+1\ k
| (HF 4 (D2 55) gl iy

3s+1
3s+1 Ssglk’(k?') 2s cot s+1 3s+1 325
—- s+1 ) Bot1 o
< ( sco ) t%k ’exp( 2 (H 2 +(Dg)? +1) )gHL%OL%(B;’/f) (4.96)
s 3s+1
< (BEIVEOE oy
T\ sa el Nzz By 2y

By (4.96), we obtain that there exists a positive constant C' > 1 such that V0 < ¢t < T,k > 0,

Ck+1 3s+1
I s -
< tasglk(k') 2 |’90||L12)(B21{12) .

El S k
| + 02 g0

=2 1/2
L2(ByD)

This proves the Gelfand-Shilov property in Theorem 4.1.
On the other hand, we have for p > —1,¢ > 0,

+0o0
OIApg(x,0) = 0IApgn(x)en(x), with gn(z) = (9(x,"),en)r2(r,) (4.97)
n=0
and
agApgn(m) = (agApg(x, )s 6n)L2(Rv)‘ (4.98)

We deduce from (4.97)-(4.98) and Lemma 4.9 with r = 25’(85111) that there exist some con-




Sharp Gelfand-Shilov and Gevrey smoothing effect for the inhomogeneous non-cutoff Kac

158 equation
stants C1, Cy > 0 such that for all k,l,q > 0, > 0,
%0090y gy, = D 25N 0L08 A0 (1) 1z,
p=—1
+oo
p
< 33 2ot AL g0z 0F Dhenll 2
e n (4.99)
C: kL 8st1 o 3st1 N
el G RO RGRIURGRD SO DEL CIACIIE
inf(ezG+0 1) vt
3s+1 s+
1 - 5 ( _— 3s+1 ) 5 )
X (( n,0) €Xp 523(34—1)” + 0n,0

where 9§, 0 stands for the Kronecker delta, i.e., 0,0 = 1 if n = 0,6,,0 = 0 if n # 0. It follows
from (4.94) that for all 0 <¢ < T,

t s 3s s
[exo (L + (Do)

:ZQ%

L2 (31/2)

t s s s
exp <%(H ;1 + <Dx> %igs)liSS)Apg(t)‘

p>—1 Lz,

cot 1 =41 3s+1 _2s 2 \1/2
Z 25 (Z HeXp( ; ((n+ 2) + <Dw>25+1)3s+1>Apgn( ) L2)
p= >—1 x

< C CT _
> e HQOHL2(B;’/12)7

which implies that for all 0 <t < T,

cot 1, 541 3541 _2s
Z 25 supHexp< 5 ((n+ 5) 2+ <Dg;>23+1)3s+1>Apgn(t)H , < CeCTHgoHEZ(Bm). (4.100)
p>—1 20 L3 (B2t

Then we obtain that for all n,q > 0,p > —1,
280z = (5 [ IS Pae) "
= (217r/ €% exp ( — cot((n + %)% + ()i )35%)
R
X ’eXP (%t ((n+ %)%1 + <f>3§i}>a@)@(£)‘2d€>lﬂ
< exp ( - %(n + 2) 3ot (217T /R<§>2q exp ( — c@(ﬁ)%) (4.101)
)" ) Bt ac) "
< (25 + 1) 232t1‘1(q!)252t1 exp ( B cot (n n 1> Séii?)
+

2

X H exp (%t ((n + %) T + <Dx>25“) 3S+1>Ap9n(t)’

)
LE



4.5 Gelfand-Shilov and Gevrey reqularizing effect

where we used the following inequality that, VO <t < T,q > 0,£ € R,

_ Prens 2s+1 28:1(] 2s+1
g < (22 gy

Then it follows from (4.99), (4.100) and (4.101) that for all 0 <t < T, k,l,q > 0,

l*0,09(t)

”E%<B%/f>

k‘-‘rl 2s+1 s s R
<o) () T s e
inf(e 267D, 1)

s+1 3s+1
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If we choose

s(s+ 1)cot
12544

>0,
then there exist some constants C3, Cy > 0 such that for all 0 <t < T,k,l,q > 0,
kql
1%94029(0) 3 5,

< CBCf+l+q F(t)

3511 25t
ts(i-‘—l) (k+l)+ S25

3541 3s+1 2541
lq (k') 2s(s+1) (l') 2s(s+1) (q') 2s ||go||Z%(B;7/12),
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cox 1\ S5
F(:v):g exp(—?<n+—> ) x> 0.
n=0

(4.102)
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For any = > 0, we obtain that

s(s+1) = 3s+1 s(s+1)
3s+1 +o
F(x) s(s»+1)+o‘) Z (CO(II( 1) 3s+1 ) s(s+1) exp ( _ C(gf (n T %) 3s+1 )
1
X
as(s+1)
( . )S(§+1)+a(n + )1+
+oo
7(S3§+1 +a) 53:+1 +a —Zz 1

S G zs6H0 e ||LOO([0,+OO))Z ETES R, [ esGED
n=0 ( . )S(SH) (n + ) 3sF1

,S .’L' s(e+1)+a)

with a positive parameter o« > 0. We deduce from (4.102) that for Va > 0, there exist some
constants C5, Cg > 0 such that for all 0 <t < T, k,l,q > 0,

ktl+q

105808 g ()| /2, < — (k1) 2G50 (13670 (g1) 55 | goll -y, 1/,
v LQ(B )_tQ;(“"S*_"_ll)(kJ,-l—i-Q)—i-nglq—&-a L3(Byly)

This proves the Gevrey smoothing property in Theorem 4.1.
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In this chapter, we investigate compressible Navier-Stokes-Maxwell (N-S-M) equations aris-
ing in plasmas physics, which is a concrete example of hyperbolic-parabolic composite systems
with non-symmetric dissipation. It is observed that the Cauchy problem for N-S-M equations
admits the dissipative mechanism of regularity-loss type. Consequently, extra higher regular-
ity is usually needed to obtain the optimal decay rate of L'(R?)-L?(R3) type, in comparison
with that for the global-in-time existence of smooth solutions. In this chapter, we obtain the
minimal decay regularity of global smooth solutions to N-S-M equations, with aid of LP(R")-
LY(R™)-L"(R™) estimates.

5.1 Description of problem

Plasma dynamics is a field of studying flow problems of electrically conducting fluids, for
instance, ionized gases, interacting with their own self-consistent electromagnetic field. In the
macroscopic continuous level, the transport process is typically governed by the relaxed Euler-
Maxwell equations; see for example [25]. In this chapter, we consider electrically conducting

fluids in the viscous case, which takes the following form of Navier-Stokes-Maxwell (N-S-M)
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equations:
on + V- (nu) =0,
O(nu) +V - (nu® u) + Vp(n)
=-—n(E+uXx B) — Au+ pAu+ (p+ ') Vdivu, (5.1)
OE —V x B = nu,
OB+ V x E =0,

with constraints

V-E=ng(x)—n, V-B=0. (5.2)
Notice that the system (5.1) with (5.2) admits a constant equilibrium state of the form
(n,u, E, B) = (Nneo, 0,0, Bo), (5.3)

where By, € R? is an arbitrarily fixed constant vector. In this chapter, we concerned with the

Cauchy problem to (5.1)-(5.2), so the initial data are supplemented by
(n,u, E, B)|i—o = (ng, uo, Eg, Bo)(x), =€ R3. (5.4)

Also, it is simple to see that the constraint (5.2) holds true for any ¢ > 0, if it holds initially.

Namely, we only assume that
V- Ey=neo(x) —n9, V-By=0, zeR3. (5.5)

We rewrite (5.1) as the linearized perturbation form around the equilibrium state weo :=
(N0, 0,0, Bso). Without loss of generality, we set the physical parameters to be A =1 = p and
i+ 1/ = 0. By taking change of variables

P=N—Ne, V=nu/Ns, E=FE, h=B — By.
For simplicity, we set z := (p,v, E,h)". System (5.1) is also rewritten in vector form as
3 3 3
AL+ Y ALz 4 Loz =Y BFayo +> Qu, + R+ AS, (5.6)
Jj=1 Jk=1 j=1

where Q(z), R(2), S(z) and the coefficient matrices AY_, AL, Béf, Lo are given in Chapter 1.1.3.

The corresponding initial data are given by

2i=0 = (po,vo, Eo, ho) " (2) (5.7)

with pg = no — Neo, Vo = Noup/Neo and hg = By — B. In (5.6), matrices Aéo(j =0,1,2,3)
and Bg’ok(j, k = 1,2,3) are real symmetric, and Lo, and Zik:l Béff]{k are degenerate and

nonnegative definite; however, Lo, is not real symmetric. Therefore, the dissipation forces
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(5.6) to go beyond the general class of equations of symmetric hyperbolic-parabolic type as in
[171], which is our motivation to study the N-S-M equations (5.1).

Indeed, the non-symmetric dissipation affected (5.6) such that the weak dissipative mecha-
nism of regularity-loss is present. Let z, be linearized solutions to (5.6)-(5.7) without nonlinear
source (@, R, S). As shown in Section 5.3, the Fourier image of z, satisfies the following point-

wise estimate

Z2(t,6)] S e 2 (6))|

for any ¢t > 0 and ¢ € R?, where the dissipative rate n(¢) = [£]2/(1 + |€]?)? and ¢g > 0 is a
constant. Consequently, the decay property of z, satisfies that

lzcllze S (L4620l + (1 +6)72[0520]l 12, (5-8)

where / is a nonnegative integer. Clearly, the decay (5.8) is of regularity-loss type at the high-
frequency part, since (1 + t)_f/ 2 is created by assuming the additional /-th order regularity on
the initial data, which is different from that of symmetric hyperbolic-parabolic system (1.34)
studied as in [171]. More important, it follows from (5.8) that the extra regularity will be
posted than that for global smooth solutions, if the optimal time-decay rate (1 + t)_?’/ 4 s
expected. To the best of our knowledge, similar phenomena also appear in the study of other
many dissipative systems, such as quasilinear hyperbolic systems of viscoelasticity in [53],
hyperbolic-elliptic systems of radiating gas in [75], dissipative Timoshenko system in [87, 111],
compressible Euler-Maxwell system in [48, 169], Vlasov-Maxwell-Boltzmann system in [54], and
a plate equation with rotational inertia effect in [163].

Our main goal is to prove the global existence and establish the optimal decay estimates of
solutions with the minimal regularity assumption. Now, we begin to state main results in this
chapter (that is, Main Theorem C in Chapter 1). For this purpose, set w = (n,u, E, B) " (T
)T

transpose) and wo = (ng, o, Fo, Bo) ", which are column vectors in R'?. We define the following

energy norm Ny(t) and the corresponding dissipation norm Dy(¢):

No(t) := sup (1w = wo) (7)1

Do(t)? = /0 (1 = n00) (D 7zs + lul 7o + 1B g1 + [VB() || o).

Theorem 5.1. (Global-in-time existence) Let s > 3 and suppose that the initial data satisfy
Wy — Weo € H® and (5.5). Put Iy := ||{wo — weo||grs. Then there exists a constant £g > 0 such
that if Iy < eq, the Cauchy problem (5.1) and (5.4) has a unique global solution w(t,x) with

W — Weo € C([0,00); H) N C’l([O,oo);Hs_l);
n € L*([0,00); H®), wu € L*([0,00); H*1);
E € L*([0,00); H*Y), VB e L*([0,00); H*72).
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The solution satisfies the uniform energy estimate
No(t)* + Do(t)* < I (5-9)

for t > 0. Moreover, the solution w(t,z) converges to the constant state woo uniformly in

x € R3 ast — co. More precisely, we have
l(n — neo, u, E)(t)|lys-2.00 =+ 0 as t— oo (5.10)
and
(B — Boo)(t)|ls—1.00 = 0 as t — oo, (5.11)

where the asymptotic behavior for the magnetic field B holds true only by assuming the addi-

tional reqularity s > 4.

Remark 5.1. Let us mention that (5.9) is of the regularity-loss type because we have 1-

regularity loss for (F, B) in the dissipation part Dg(t).

Theorem 5.2. (Optimal decay estimate) Let s > 3. Assume that the initial data satisfy
Wo —Weo € HSNLY and (5.5). Put I := ||wo — Weol| grsnr1- Then there exists a constant €1 > 0

such that if Iy < €1, the global solution constructed in Theorem 5.1 admits the decay estimate
Jw — woo|| 2 S T (1 +1)~3/4,

Remark 5.2. From Theorem 5.2, we see that the L!(R?®)-L?(R3) decay rate of solutions
is available with the critical regularity s = 3; that is, we arrive at sp < 3 in the sense
of Definition 1.2, and the extra regularity is not necessary, which improves previous works
great, for example, [50, 169]. Our decay rate coincides with those results for compressible N-S
equations by Matsumura-Nishida [138] and Ponce [152].

Finally, we would like to mention that the same terminology of “Navier-Stokes-Maxwell e-
quations” is also used by Masmoudi [132], Ibrahim-Keraani [88] and Germain-Ibrahim-Masmoudi
[64], where they investigated global well-posedness for the forced (Lorentz force) incompressible
Navier-Stokes equations coupled with Maxwell equations.

B The schema of proof of main theorem

Our aim is to seek minimal decay regularity for smooth solutions to the Cauchy problem of
(5.1)-(5.2). As a first step, we shall construct a priori energy estimates and establish the global-
in-time existence of smooth solutions near the constant equilibrium ws, = (Moo, 0,0, Bso).

e The proof of global smooth solution (Section 5.2)

The proof of the global smooth solution in Theorem 5.1 is based on the energy methods.

Step 1) The mathematical entropy
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Due to the non-symmetric dissipation, the general theory in [92] cannot be applied directly.
Fortunately, compared to the Euler-Maxwell system as in [172], the viscous term (Au+ Vdivu)
in (5.1) does not influence the mathematical entropy from the point of view of energy approaches
(see Section 5.2.1).

Step 2) A priori energy estimates

With the similar calculations as that in [172], and also dealing with the new content arising
from the viscosity, for instance, see (5.24) and (5.30), we obtain global a priori estimates in
Proposition 5.1. It is observed that the dissipative structure of regularity-loss appears not
only in the time-decay estimate, but also in the dissipation part of nonlinear energy estimates.
Based on the Proposition 5.1, global-in-time existence of smooth solutions is follows from the
standard continuation argument. And the large-time behavior of solutions is given with the
aid of Gagliardo-Nirenberg’s inequality.

e The proof of optimal decay estimates (Section 5.3)

Extra higher regularity is usually posted in order to overcome the difficulty arising from
the regularity-loss mechanism. It seems impossible to obtain the optimal decay rate with the
lower regularity, even if a combination of elaborate spectral analysis and Duhamel’s principle
is used; see for example, [50, 169] (the regularity was assumed to be s > 6). Actually, Duan
[50] first investigated compressible N-S-M equations, where the dissipative rate is subjected to
the weaker form 7(¢) = [£]*/(1 + |€]?)? due to the absence of damping. To do this, we emloy
some different techniques.

Step 1) Energy methods in Fourier spaces

We perform the energy method in Fourier spaces and establish the “square formula of
Duhamel principle” for (5.6)-(5.7), where the dissipative rate satisfies n(¢) = |¢2/(1 + |¢|%)?,
see Proposition 5.2. We would like to mention that similar ideas have been used by Kawashima
[91] for the Boltzman equation, and then well developed in [104] for hyperbolic systems of
balance laws.

Step 2) Optimal decay rates

We are led to the optimal decay rates of solution for (5.1) and (5.4) with the aid of LP(R%)-
LY(RY)-L" (RY) estimates in Lemma 5.1, which was recently established for a class of dissipative

systems of regularity-loss type, see Proposition 5.3.

5.2 Global existence

In this section, we prove crucial a priori estimates, which are used to establish the global-in-
time existence of smooth solutions to (5.1) and (5.4). To do this, we first review the basic

property of (5.1) from the point of view of energy approaches.
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5.2.1 The mathematical entropy

We remark that our system (5.1) admits the following energy balance law:
—{ne+ (B2 + 1)}
Jul?

+ div{nug +p(n)u+ E x B — V(7>} + njul? + |Vul? = 0,

(5.12)

where the function £ = £(n, u) is defined by

E(n,u) = é]u\z + ®(n), ®(n):= /n pé?dn

for an arbitrary constant a.

Note that we do not use (5.2) in deriving (5.12). It is easy to see that the total energy H :=
n€ + (|E|*+|B|?)/2 is a strictly convex function of the conserved quantities w := (n, nu, E, B);
for a similar convexity property of the total energy, we refer to [92, 93]. This total energy
can be regarded as a mathematical entropy defined in [103] for symmetric hyperbolic systems
with dissipation (cf.[79, 184]). Also, the potential energy ®(n) can be regarded as a strictly
convex function of v := 1/n, so that £ is also a strictly convex function of (v, u). Based on the

convexity of the total energy H = H(w), we introduce the associated energy form H by
H = H(@) — H(Woo) — DaH(Woo) (T — o),

where W = (Moo, 0,0, B) is the constant state of w := (n,nu, E, B) that corresponds to
(5.1), and DgH(w) denotes the Fréchet derivative of H(w) with respect to w. Similarly, by

direct computations, we find that
- L1
H=né + (P +|B - Baol),
where
~ 1 ~ ~ n —n(n
5mmy:uﬁ+ym,¢my:/'mmﬂ°“@
2 a 1
for the constant a.

It seems here not so difficult to give a complete argument for the following entropy equality

i’ﬁ + div{nué~’+ (p(n) — p(noo))u+ E X (B — By) — v(W)}

dt 2 (5.13)

+ njul®* + |Vul? = 0.

As above, it is observed that N-S-M equations (5.1) have the same mathematical entropy
in comparison with the Euler-Maxwell system as in [172], which allows to construct global a
priori estimates of smooth solutions in the same spirt as [172]. Actually, we may enhance the

regularity of velocity field w in the dissipation norm Dg(t) due to the viscous term Auw.
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5.2.2 The proof of global existence

This section is devoted to the global existence of smooth solutions in Theorem 5.1. To show that
the solutions of (5.1) and (5.4) are globally defined, we need further a priori estimate. To do
this, for any time 7 > 0, and for any solution w —ws € C([0,T); H*)NC([0,T); H*~1)(s > 3),
we define the following quantities:

M(©) 1= sup [0 = ws) (Ol 102 = [ 0= s () e

for t € [0, T], which are used to the subsequent analysis. For clarity, we give a priori estimate

by the following proposition.

Proposition 5.1. Suppose that the initial data satisfy wo — weo € H® with s > 3 and (5.5).
Let w(t,x) be a solution to (5.1) and (5.4) satisfying w—we € C([0,T); H¥)NCL([0,T); H™1)
for any T > 0. There is a constant e > 0 independent of T such that if No(T) < €9, then a

priori estimate
No(t)? + Do(t)? < |Jwo — weol| s (5.14)
holds for t € [0,T].

Proof. The proof is separated into four steps for clarity.

Step 1. The L (L?) estimate of (w — ws) and the LA(H') one of u

In view of the strictly convexity of the total energy H, it follows that H is equivalent to the
quadratic function |w — we|?, since |w — woo| < No(t) is suitablely small. Hence, integrating
(5.13) over [0,] x R? yields

t
(w — woe)(8)]22 + /0 la() 2dr S wo — wocl 2 (5.15)

for t € [0, T7.
Step 2. The L (H*™1) estimate of Vw and the L2(H®) one of Vu

Actually, we derive the following energy inequality for derivatives of solutions:

t
IVw(t)]2es + /0 IVu(r) |3 dr

(5.16)
S [10zwol[77e—1 + (M (#) + No(t)) Do(t)* + No(t) Do(t)1(t)
for t € [0,T7.
To do this, we first rewrite system (5.1) as
on +u-Vn + ndivu = 0,
&m—i—(u-V)u—i—@Vn—i—E—i—u><Boo+u:—u><(B—Boo)—i-%, (5.17)

WE —V X B —neou = (N — neo ),
0B+V x E=0.
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Applying the differential operator 9. (1 <1 < s) to (5.17), we get

Moo n2)(8ln +u-Voin) + nea(n)divolu = noop;gl) l
Moo (OLuy + (1 - V)OLu) + nooa(n)VoLn + nee (OLE + 0Lu x Boo)

1000t — OL AU = Noo f5 — oL (1 X (B — Boo)) + Noodh (h(n)Au), (5.18)
OLE; — V x OLB — nedlu = 9L ((n — noo)u),

| OB+ V x 8LE =0,

where a(n) = plén), B(n) = (L - 1)HAq,

fl=—[oL,u]-vn— [0, n]dive and f}=— [Oi,a(n)}Vn — [0, u] - V.

Taking the inner product of (5.18) with d.n, 0Lu, d.F and 0. B, respectively. Then, adding the

resultant equations implies that

M + noo)0u)? + 10 Vul? + divF! = R4+ SE 4+ U, (5.19)
where
M= oo PO @hm)? + 0k} + L(0LEI? + 10LBP).
Fl= ;noou{p;gb) (dLn)? + |8lu|2} + nooa(n)dln dlu
Y OLE x OLB — V(‘al;‘?),
R = %noo{at pn) + div( ;E n) u) }(Ohn)? + %noodivulaiu\Q

p( )al nfl + noedu - fl,

S'=0'E-8L((n —neo)u) — nooﬁiu -9 (ux (B — B)),
U = ngodbu - 9L (h(n)Au).

+ nsoVa(n) - 8\ ndlu + nee

Integrating (5.19) over = € R? gives
d
dt/ Hldx 4 noo||0Lul|2s + [|0LVul2, < R'+ St + U, (5.20)
3

where we set R := [ps [R|dz, S' := [ps |S!|dz and U' := [ U'dx. Notice that H' is equivalent
to the quadratic function |9Lw|?, since |w — weo| < No(t) is sufficiently small.

Hence, by integrating (5.20) with respect to ¢ > 0 and summing the resulting inequality for
I with 1 <1 < s together, we are led to

t
a0 (8)]Zges + /O IVu(r)|2edr
st (5.21)
< || 0zwo|3pe—1 + Z/ (R + S" + U (r)dr.
1=1"0
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The next step is to evaluate these integrals related to R!, S' and U!. The estimates for terms
R!, S' is the same as that in [172], that is

R'S (|8nllpoe + 1105 (n, w) 220105 (n, w) |72 + 1105 (r, w)l| 2| (1, £2) ]2
S 1105 (n, )| 2201105 (n, ) |72,
where we used |9;n| < |0:(n,u)|. And we used ||(f], f)llzz < 10:(n, u)| Le||0L(n, u)|| L2, which

comes from the estimates for the commutator in Lemma 2.18. We have

[ B s s 0.l [ 1okl £ oD 622

0<r<t
for 1 <1 <'s. Similarly, for St it holds that
S' S NOLE 12|02 ((n — noo)u) || 12 + |0hul| 21| 0% (u x (B = Boo))lI 12
S 1B = Buoollzo |05 ull 72 + (0 = noo, w)l| £ 105 (n, w) || 21|05 (B, B) || 2,

where Lemma, 2.18 is used. As a result, we get

t
/ SHr)dr < sup |B — Boo(r)l|z= / |0 u(r)|2adr
0

0<r<t

(5.23)

+ sup [|0L(E, B)(7) 2 / (1 — 1o ) (7| o 1L (1, 0) ()| o b
0<r<t

< M (t)Do(t)* + No(t) Do(t)I(t)
for 1 <1 < s. For the nonlinear term U, we write U! = U! + U} with
Ul = /R nec@hu- {0L(h(n) Auw) — F(n) 0L A}
and
U = /]1&3 NeoObu - h(n)dL Audz.

By using the Cauchy-Schwarz inequality, Lemma 2.17 and Lemma 2.20, we arrive at
Uy S 110hull 21195 () Aw) — h(n) 9 Aul| 2
S N0%ull 2 (V1) | oo 105 A g2 + |05 h(n) | 2 || Al | o)
S nllars ull s [Vl e
< lnllzs (lullzs + [Vulls ),

where we used the embedding inequality ||Aul|z < ||Vullmgs(s > 3) in second line.
On the other hand, using integration by parts implies that for Ué,

Uy S ()21 Vul 22 + [V A(n) | oo |05l 2105 V] .2
S 1, V)l oo 105Vl 2 (105 ull .2 + 105 Vul| 2)
< lnllzs (lullfzs + [Vullzs)-
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Hence, we obtain
t [ t 2 2
/0 Ul (r)dr < /0 () e Qa3 + [ V() 3 )b

t

.24

< sup [[n(r)]|as / () + [ V()| % )dr (5.24)
0<r<t 0

< No(t)Do(t)?
for 1 <1 < s. Substituting (5.22), (5.23) and (5.24) into (5.21), we can get the desired
inequality (5.16).
Finally, together with (5.15) and (5.16), we conclude that
2 ' 2
w0 =) Ol + [ )y

< llwo — wool[Fs + (M (t) + No(#)) Do(t)® + No(t) Do(£)(2).

(5.25)

Step 3. The LA(H®) estimate of n — ne and the L2(H*™') one of E
Under conditions in Proposition 5.1, we can derive the following third energy estimate of
solutions for ¢t € [0,T:

/0 (100 = o)D) Zre + 1) 201 )dr

> ! > ! 2 (5.26)
< Cllwo — wool3ps + ¢ / IVB(r) |3 2dr + C. / ()| Zpesrdr
0 0

+C(M(t) + No(t)) Do(t)®

for any € > 0, where C. is a positive constant depending on e.
Set p=n — Noo, h = B — By Then (5.17) can be rewritten as

Otp + noodivu = g1,

Ot + aooVp + E +1u X Boo +u = g2 2 go1 + g2,
OE —V X B — neu = g3,

B+ V x E=0,

(5.27)

where
g1 = —u-Vp+ pdivu,
921 = —{(u-V)u+ (a(p) — as)Vp+u x h},
= 1
g22 = h(p)Au + —Auw,
Neo
g3 = pu
with a(p) = ZEm) g = P) g fip) = L — L
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Applying the differential operator 9% (I > 0) to (5.27) and taking the inner product of the
first, second and the third equations of the resulting equations with —axdivoiu, as VO, p+0LE

and dLu, respectively, we obtain
OH! + Db + divFl = ML+ G,
where [ > 0, and H}, D}, FI, MY and G} are correspondingly defined as
H = —adlpdivolu + 0w - OLE,
D} = 200 (8hp)? + 02|V p[? + |OLE,
Fbi= a000l p(0luy + 20LE) + 0w x 9L h,
M=V x bu-9Lh — (a0 VO p+ OLE) - (OLu x Boo 4 0u)
+ Moo [OL 1) + Goonos (divolu)?,
Gl = —a008L91divolu + (asVOLp 4+ OLE) - 9L gy + OLu - 8Lgs.
Furthermore, there exists a constant cg > 0 such that
d
G L e+ eallohol + 104EI)
< €| OLhl32 + Ccl|dul|F + G
> z!l el H 1

for 0 <1 < s—1 and € > 0, where C¢ is a positive constant depending only on ¢ and

Notice that the fact | [z Hidz| < €]|0L(p, E)||32 4+ Ccl|Ohul|%, for 0 <1< s—1ande >0,

we can arrive at
t
/0 Uo() e + 1B 2 )dr

t t
< Cllwo = wnlfs + ¢ [ IVRpsdr+ Co [ utr) i (5.28)

s—1 t
- CZ/ G (r)dr.
1=0 "0
It follows from [172] that
105g1l2 S (o)< 105" (o, ) 2,
105921112 < 1oy, B) | o 105 (o, )| g1+ [l oo |0 2, (5.29)
10595022 S 11(py )l o210 (p, ) | 2
for 0 <1 < s— 1, where the term ||u||z||0Lh|| ;2 in second line can be omitted if / = 0. On the
other hand, by using Lemma 2.18 and Lemma 2.20, we obtain
105922112 < (1P| 105 Vull 2 + 105 (p) || g2 | A £ ) + (105 V| 2

< L (5.30)
S el IVullgs + 1057 Vaul| 2.
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Due to (5.29) and (5.30), we are led to

Gy SN0 ull 2 )105gnll e + (105 0]l 2 + 10LE | 12)1| 092 2 + 105 ull 211093 | 2
S Mlw = wooll 2= (105 (p, w, V) I3 + 1105, (E, R)|[72) + llpll = | Vull -

. . . l .
Consequently, we get following inequality for G7:

/ Gl (r)dr < / V() e + (M) + No(£)) Do(t)? (5.31)

for 0 <l <s—1andtel0,7]. Finally, substituting (5.31) into (5.28) leads to (5.26).
Step 4. The LA(H*2) estimate of VB
We have the following dissipation rate from of VB inequality

t t
/0 IV B [2eadr < w0 — woe|Zpes + /0 VE()|Pyordr

+ (M(t) + No(t))Do(t)* + No(t)Do(t)I(t)

(5.32)

for t € [0,T7.
The proof of (5.32) is the same as that in [172], here, for completeness we give the detailed
calculations. Taking the inner product of the third and fourth equations of (5.18) with —V x

QIEB and —V x aiE , respectively, and adding the resultant two equations, we obtain
—(0LE -V x 8. B) + |V x 8. B|? — div(0LE x 8.0,B) = M, + G}, (5.33)
where
M= —ndlu-VxB+|VxIE?  Gh:=-0((n—ne)u) V xd.B.

Integrating (5.33) over R? and using Cauchy-Schwarz inequality give

d
- OLE -V x OLBdx + c1||V x 0LB|2, < ||V x LE|2, + C||0Lull3s + Gh,  (5.34)
R3

where Gb := [55 |Gb|dx. Integrate (5.34) with respect to ¢ > 0 and sum the resultant inequality
for I with 0 <1 < s — 2, we have

t
/ IVB(r)[2esdr
0

< C(llwo — woe 3ot + 1w — weo) (1) [3e-1) (5.35)

t t 5=2
+c( [ 1B @ dr + [ fur) e+ 3 [ Gémdr),
0 0 =0 J0



5.2 Global existence 203

where we used the equality [|0LB||2, = [|divB||%, + |V x B2, due to (5.2). It also holds that
Gl < [10L((n — moo)) 12 05 B 2
<110 )l 104 (9o ) 2105 B 12,
t t
/ Gh(r)dr < sup [|(p, )z / 108 (o ) (7) | 2 194 B(r) | dr
0 0<r<t 0
< M(1)Dy(t)?

for 0 <1 < s — 2. By substituting the above inequality for G} into (5.35) and with the aid of
(5.25), we obtain the desired (5.32).

Next, we make the suitable linear combination for (5.25), (5.26) and (5.32). Firstly, substi-
tuting (5.32) into (5.26) and taking € > 0 suitably small give

/0 (101 = 10e) (D) Zre + 1B 30 )

(5.36)
< C(|lwo — wool[F7s + (M (#) + No(t)) Do(t)* + No(t) Do(t) (1))
Then, substitute (5.36) into (5.32) to show
! 2
/0 IV B2 adr .

< C(|lwo — weol[7s + (M(#) + No(t))Do(t)* + No(t) Do(t)1(t)).

Together with (5.25), (5.36) and (5.37), we have

(w — wee) (#) 1 s + /Ot(llp(T)llirs + () [ + 1B + IVB(7) |72 )d7
< C(|lwo — woo 7= + (M(#) + No(t))Do(t)* + No(t) Do(t)1(t)).
That is
No(t)? + Do(t)? < C(Jlwg — wee || 3= + (M(t) + No(t))Do(t)* + No(t)Do(t)I(t)).  (5.38)
Note that M(t) < No(t) for s > 3 and I(t) < Do(t) for s > 2, (5.38) is reduced to
No(t)* + Do(t)? < Cllwy — weo||7= + CNo(t)Do(t)?

which gives a priori estimate (5.14) by using some smallness condition for M (t) and No(t). The
proof of Proposition 5.1 is completed. O
The proof of Theorem 5.1.

Based on Proposition 5.1, we can obtain the global-in-time existence of smooth solutions to
(5.1) and (5.4) by the standard continuation argument. Additionally, the large-time behavior

of solutions stated in (5.10) and (5.11) is a consequence of the usage of Gagliardo-Nirenberg’s
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inequality and its proof is similar to that in [172]. We show the the detailed proof as follows.

Firstly, we obtain the following uniform estimates for the time derivative dyw

t
10w ()] 7o +/0 (10e(r, w) (7)1 + 10(E, B)(7)|I3s-2)dT S llwo — weollfps.  (5-39)
To do this, by using (5.17) and the uniform estimate ||[w — weo| s < C in (5.14), we have

10wl -1 S flw — wool| a5,
10 (n, w)[[ =1 S 102 (n, W)l ot + [[(w, E)l[ o1,
10:(E; B) | o2 S 1102 (E, B)l[ o2 + ||ull a1,

which gives the desired (5.39) by using (5.14) again. Next, by using the Cauchy-Schwarz

inequality, we obtain

dt < 2 /0 0 = o) ()| 1151 19ena ()] ot

[ | =m0l
< [T 1= ) O+ 1m0 ) e S = ey

where (5.14) and (5.39) are used. Combine the above inequality with (5.14) imply that ||(n —
Noo) () ||%76-1 and 4| (n —nso)(£)||%.-1 are integrable in t € (0, 00), that is [|(n — neo ) ()[|%.-1 €
W10, 00). Tt implies that ||(n — neo)(t)| gs—1 — 0 as t — co. We deduce from the Gagliardo-

. . . . 1/4 3/4
Nirenberg’s inequality || f||ze < || £]4 102 £]1%" that

(1 = 1o0) () o200 S 111 = o) (O oz [020() [ 512 = 0 a5t — o0,

where we used the fact that |[(n — ne)(t)||gs is uniformly bounded by (5.14). Similarly, we
also obtain [|u(t)||ys—2.00 — 0 as t — oo.

For the term E, it follows from (5.14) and (5.39) that ||E(t)||3,,-. € W1(0,00) and hence
|E(t)|| gs—2 — 0 as t — oo. Then with the same way as for n — n,, we have ||E(t)||yys—2.00 — 0
as t — oo.

Finally, we deduce from (5.14) and (5.39) for B that [|0,B(t)||3.-s € W(0,00) and
hence we have ||0;B(t)||gs—3 — 0 as t — oo. It follows from the above Gagliardo-Nirenberg’s
inequality that

1(B = Bao) () lws—10 S 1(B = Boo) ()| e |02 B() |3/,

SN(B = Boo) @)1 alld B2y =0 as ¢ — oo,

provided that s > 4. The proof of the asymptotic stability result in (5.10) and (5.11) is
completed. This completes the proof of Theorem 5.1.
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5.3 The proof of optimal decay estimates

In the following, the analysis focuses on (5.6)-(5.7). Actually, we can achieve a similar global
existence for the solution z. For simplification, allow us to abuse the notations Ny(¢) and
Dy(t) a little, which means that the corresponding functional norms with respect to z is still
labeled as Ny(t) and Dy(t). Hence it follows from Theorem 5.1 that they may be bounded by
lz0]| s (s > 3). The proof of Theorem 5.2 is divided into two parts, in order to show optimal
decay rates of L'-L? type for (5.1) and (5.4) with the minimal regularity assumption. Let
us mention that the approach of this chapter is totally different from the elaborate spectral
analysis and Duhamel’s principle as in [50]. To overcome the difficulty arising from the weak
dissipative mechanism of regularity-loss, as a first step, we establish the energy inequality for
(5.6)-(5.7) in Fourier spaces, which is something like “square formula of Duhamel principle”.
Then, by using the LP-LI-L" time-decay estimates in Lemma 5.1, we can obtain the optimal

decay estimates in Theorem 5.2.

5.3.1 Energy methods in Fourier spaces

In this section, our task is to establish the “square formula of Duhamel principle” for (5.6)-(5.7)

in Fourier spaces. Precisely,

Proposition 5.2. Let z = (p,v, E,h)T be the global smooth solutions to (5.6)-(5.7). Then the

Fourier image of solutions satisfies the following pointwise estimate
[£(2,€)* < 7N 2 (€)?

t o ) (5.40)
+ [ e O Q8) O + R ) P)ir
0

for any t > 0 and ¢ € R3, where the dissipative rate n(€) := [£]?/(1 + |€|*)? and cp > 0 is a

constant.
Proof. Applying the Fourier transform to (5.6) gives

[ 0p + Nooi|E]D - w = 0,
A0 + aooil€|pw + E + 0+ 0 X Bog + |€[20/Noo
= (il€lg2 - w + 72) /noo — [€]3, (5.41)
OE +il€|h X w — nsd = 0,
| Oh —i|¢|E x w =0,

for w = ¢/|¢| € S?, where “” is the imaginary unit such that i> = —1. Also, it follows from
(5.2) that

B -w=—p, iélh-w=0. (5.42)
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Step 1. Estimate for dissipative term of ©
By taking the inner product of (5.41) in C3 with asep, nec®, E and h, respectively, we arrive

at

300 g1 PI? + aoonioo(il€]0 - w, p) = 0,

In00 L10]% + acotoo (i[€] pw, 0) + (B, no®) + (0 X Boo + 0, neo®)

+EP01* = (i€l - w + P2 — 1o [€[*52), 0), (5.43)
SIEP + (il€lh x w, B) = (need, B) = 0,
LIR[? = GIE1E x w, h) = 0.

Adding the equations of (5.43) together, and then taking the real part to get

d R Celn . L
760+ 2100 + [6)[0] = 2Relil€|g2 - w + P2 — nocl€[*32,0),

where £ := aoo| |2 + 100 |02 + | E|? + |h|? ~ |2|2. Tt follows from Young’s inequality that
%50 o+ [EP)0P S (EPIQIP + R + |€[75]) (5.44)

for ¢ > 0.
Step 2. Estimate for dissipative term of p
By taking the inner product of the second equation of (5.41) with a?|{|pw, we get

{{o0il€] 10, 8) + (81, Qo] )} + lacoil€]pw]? — nocdocl 216 - w?
+ (0 X Boo + E + 0, acoi|€|pw) + (|€]* /noo?, ooil€] pw) (5.45)
= ((il€]d2 - w + 72) /noo — [€[*32, acoil€] pw).
By taking the real part on both sides of (5.45), then using the Young’s inequality and the first

equation in (5.42), we can obtain

d 00 A . R R )
G (TEE) +ealdl £ (4 IEPNOP + (€PIQR +1RE +1€PISP)  (5.6)

for co > 0, where & := Re(ijpw, ).
Step 3. Estimate for dissipative term ofE
By taking the inner product of the second and third equations of (5.41) with E and 0,
respectively, we have
<®t7E> + <Et7 0> + |E’2 =+ a00|5’2|E : w‘2
= Noo|0)? — (0 X B + 0, E) — (i|€|h x w, D) (5.47)
— (1€ /noc0, B) + ((il€]d2 - w + F2) /noo — [€[*82, E).

By taking the real part of (5.47), and then using the Young’s inequality, we obtain

d/ & )
7))t

e (5.48)
<e— B+ C(1+ [P0 + CUEPIQP + R + €% ]%)

(1+1¢%)
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for any € > 0, where & := Re(0, E), and c3, C, (depending on €) are some positive constants.
Step 4. Estimate for dissipative term ofiL
Performing the inner product of the third and fourth equations of (5.41) with i|¢|h x w and
z|£\E X w, then taking the real part gives

d - - e
2 €1E3) + (€1 1h x w?* = [€PIE x w]? + Re(necd, i[€|h x w), (5.49)

where & := Re(E,ih x w). Due to the second equation in (5.42), we have |h x w| ~ |h|.
Furthermore, dividing (5.49) by (1 + |£]?)2, with the aid of Young’s inequality, we reach

K v L YEp g ) (5.50)
dt L(1+ |§[%)? (T+1EP)27 ~ 1+ [¢)?
for ¢4 > 0.

Step 5. Combining the above analysis

Together with energy inequalities (5.44), (5.46), (5.48) and (5.50), the final step is to make
the suitable linear combination for them, see [169] for similar details. That is, the Navier-

Stokes-Maxwell system admits Lyapunov function

ElZ]l =& +

{aooyg\51+82+ azld 83}

o1
1+ ¢ 1+ [

such that the following differential inequality holds

d A . A
SEL) + oD S (E1QP + IR + |EPISP) (551
where ,
DIE] = I + (4 NP + e B + e P

and oy, g > 0 are suitable small constants which ensure that £[2] ~ |2|?. It follows from (5.51)
that

d . . .
ELE+ con(©E[E] S (IEF1QI + |RI” + €% SP%),

where (&) = |€|?/(1 + |€/?)2. Finally, the inequality (5.40) is followed from the standard
Gronwall’s inequality. This ends the proof of Proposition 5.2. 0

5.3.2 Optimal decay rates

In this section, we prove the optimal decay estimates of smooth solutions to (5.6)-(5.7) in
Theorem 5.2. To this end, we recall LP-L9-L" estimates, which has been developed in [182]

recently.
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Lemma 5.1. ([182]) Let n(€) be a positive, continuous and real-valued function in R? satisfying

n(E) ~ { €[, 1gl =05

€772, |€] = oo;
for o1,09 > 0. For ¢ € S(RY), it holds that

1 1[Fe O ()] o
k—j ) £ r
< (14 0) DTG B gl e+ (14 t) o2 T gk (5.52)

~
Low— frequency Estimate High— frequency Estimate

for€>d(%—]%) L1<qgr<2<p<ooand0<j <k, where v,(q,p) := g(%—%)(a>0).

Obviously, we see that the major contribution of (5.52) with respect to (5.8) is that the
integrability information is captured in the high-frequency estimate, which leads to achieve the

minimal decay regularity s = 3 for (5.6)-(5.7). We define time-weighted energy functionals:

3
N(t) = sup (1+7)4[]z(7)]| 2,
0<r<t

t
DR = [ (10t + 107 ress + 1B e+ TR yeca )

for s > 3. In what follows, let us show a nonlinear energy inequality in terms of N (¢) and D(t),

which is included in the following

Proposition 5.3. Let z = (p,v, E,h)" be the global smooth solutions of (5.6)-(5.7). Addition-
ally, if zo € L', then we have

N(#) < llzollgsnrr + N(6)D(#) + N(t)? (5.53)
for s > 3.

Proof. It follows from (5.40) that

/ 56 P
R3

t
—en(€)t |3 2 —en(@©=7) 1112 (10 2
< [Lem @i+ [ [ ot {igp (ool 550
+18(r )P ) + |R(r. ) pardg
L2 T+ Jo+ Jg+ Jy.

For Jy, by taking 0y =00 =2,p=2,k=0,j =0,g=1and r = 2,£ > 2 in Lemma 5.1, we

arrive at

_3 —
Ji S (1+ )72 |20 20 + (14 6) (1020 7- (5.55)

"We would like to remark that £ > 0 in the case of p =1 = 2.
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Next, we begin to evaluate nonlinear terms. For Js, it is written as the sum of low-frequency

and high-frequency parts
Jo = Jor + Jop.
For Jop, by taking 01 =09 =2,p=2and k=1, =0,¢ =1 in Lemma 5.1, we have

t
Jop < / (11t — 1) 3QM)2adr
0

t
< / (14t — 1) 5 a(r) [Ladr
0

(5.56)
t
< N(t)4/ (1tt—7) 31+ 1) 3dr
0
< (1+1)7EN()Y,
where we have used the fact Q(z) = O(|(p,v)|?). For simplicity, we set 2z := (p, v).
For Jsp, more elaborate estimates are proceeded. For this purpose, we write
t/2 t
Jom = (/ +/ )(- )dr = Jog1 + Jomo.
0 t/2
Taking 01 =09 =2,p=2and k=1,7r=2,¢ > 2 in Lemma 5.1 gives
t/2
Jor1 S / 1+t —7) 75 Q(r)|3dr
0
t/2
S [t 0
0
(5.57)

A

t/2
sup {1+t ) el [ 0 e
0<r<t/2 0

S L+ No(t)*D(t)?
< 1+ =0l

for s > 3, where we have used the fact Q(z) = O(|z*|?) and Lemma 2.18. On the other hand,
by taking 0y =09 =2,p=2and k=1,r =1,/ = 2 in Lemma 5.1, we get

t
ot < // (14t — 1) 3 103Q(n)|2.dr
t/2

t
1
< / (11— 1) |2t 282t 2adr
t

/2
t
< N(1)? / (L4t—7)"3(1+7)" 3|03 | 2.dr (5.58)
t/2
1 3 t
SN(t)? sup {(1+t—7)—2(1+7)—2}/ 102213 2dr
t/2<r<t 0

< (141t)"2N(t)2D(t)2.
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For J3, we write
J3 = J3r + J3g.

Recalling S(z) = O(|h(p)v]), where h(p) is a smooth function satisfying h(0) = 0. By taking
opr=09=2,p=2and k=1, =0,¢=1 in Lemma 5.1, we obtain

t
Jar < / (14t —7)3S(r)|2dr
0

< / (1 -+t — 1) 3[R0 () 2 [0(r)|22dr
0

¢ s 5.59
S [t = ) o) e (559
4 ! -2 -3
S N(t) (I+t—7)2(1+7)°dr
0
<A+t EN@D
Similarly, we split the high-frequency part J3g as follows:
t/2
Jsg = / // dr = Jzu1 + Jszme.
2
Taking 01 =09 =2,p=2and k=1, =2,¢ > 2 in Lemma 5.1 gives
t/2
D AR R LA O
0
wz
S [t 0 o)) ade
0
t/2 - -
5/0 (L+t = 1) ([h(p)IF 105 0l 72 + [vll7 185 h(p)l[72)dr
S t/Q Lt = 7)ol 105 0l 72 + ol Z< 105 ol 72)d
~ PliLe=1Og "UlL2 V|| (107 pll 72 )dT (5.60)

t/2
< /O (14t — 1)t 2 O 2 |2

N

t/2
sup {1 =) el [ 0 e
0

0<7<t/2
(141)""No(t)*D(t)?

S
-/
< (14 )~ [loll7

for s > 3, where Lemma 2.18 and Lemma 2.20 were used in the third and fourth lines, respec-

tively. On the other hand, by taking o1 =09 =2,p=2and k=1,r =1,/ = 2 in Lemma 5.1,
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we get

(1+t—7)"2)|838(7)|2.dr.
2

J3m2 S

S
S

_1l,3 2
(Lt =) 3 (R T 002013 + [0l3: 102 () F2)dr

A
Q\ﬁ

_1
2(1 +t =172 ([lpll22 107072 + [[vIIZ:1107p ]2 dr

N
R

~+

< [t —r) bR )03 st 2adr (5.61)

t/2
t
§N(t)2/ (Lt t—7) 31+ 1) 3|03 Zadr
t/2
2 -1 -3 ’ 312
SN swp {1+ t-n) )i [0kt s
t/2<r<t 0

S (1+6)"2N(6)2D(t)>
For Jy, we write
Jy = Jyr + Jan.
Note that R(z) = O(p|E| + |v||h|), by taking 01 = 02 =2,p=2and k =0,j =0,¢g =1 in

Lemma 5.1, we obtain

t
i < / (14t — 1) 3||R(r)|2.dr
0

! —T_%ZT 427
5/0(1+t )2 ||2(7) [ $2d (5.62)

S N(t)4 /t<1 +t— T)_%(l 4 T)_SdT
0

<A+t ENB

Similarly, we separate the high-frequency part Jyp as follows

12t
Jup = ( + >( < )dT = Jyg1 + Jame.
0 t/2

Taking 01 =09 =2,p=2and k=0, =2,£ > 2 in Lemma 5.1 leads to

t/2 l Y/ 2
Tamn < / (14t — 1) 0LR(r) 2o
0

t/2
< /0 (14t — 7)) 2|0 2] 2ol
(5.63)

N

t/2
sup {1 t=n) el } [ okadr
0<r<t/2 0

(1+1)“No(t)*D(t)

S
—¢
< (L+6) 720l
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where we have used Lemma 2.18. On the other hand, by taking o1 = 09 = 2,p = 2 and

k=0,r=1,f=2in Lemma 5.1, we arrive at
t 1
T S [ (Ut =7y ORI dr
t/2

t
1
< / (1t t— 1) 5 |12] 2011022 2dr
t/2

t .
§N(t)2/ (11— 1) 51+ 1) 3822 2adr (5.64)
t/2
1 3 t
SN swp {1+ t-n) a7 [0l
t/2<r<t 0

<L+ 872N (1)2D()2
Therefore, together with inequalities (5.54)-(5.64), it follows from Plancherel’s theorem that
212 S (1407220l + (1+ 072N (D(1)?
+(1+6) 2N,

which leads to (5.53) exactly. [

The proof of Theorem 5.2. The dissipation norm D(t) < |zollms < |20l gsnrt, according to
the similar energy inequality for the solution z as (5.9) in Theorem 5.1. Thus, if || 20| gsnpt 1S
sufficient small, then it holds that

N(t) < l=ollsnpr + N(¢)?

for s > 3, which implies that N(t) < ||2ol|gsnr1, provided that | zo||gsqrt is sufficient small.

Consequently, the decay estimates in Theorem 5.2 are followed.
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This chapter is devoted to investigate the Timoshenko-Fourier system in thermoelasticity,
which describes the dynamics of elastic wave propagation and thermal dissipation in a vibrating
beam. Indeed, the Timoshenko-Fourier system admits a non-symmetric dissipation, further-
more, it is observed that the dissipative mechanism of regularity-loss type will occur if wave
speeds are different, which makes those classical energy methods in Ide-Kawashima [87] and
Racke-Said Houari [155] cannot work. Consequently, we obtain the optimal decay rate of L!-L?

type for global smooth solutions by using LP-L9-L" estimates.

6.1 Description of problem

In this chapter, we consider the following coupled set of two wave equations of Timoshenko
theory of a vibrating beam [165, 166] with additional effect of heat conduction according to

the Fourier law,
o1t — (pz — )z =0,
Vit — [0 (2)]e — (pz — ) + 7t + 56, = 0, (6.1)
0y — KOzz + Bz = 0,

where initial conditions are prescribed as

(8078025711)31/}1579)“:0 = (QOOa @1,1/}0,1!)1,90)(33), z eR. (62)
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The linearized version of (6.1) reads correspondingly

ot — (pz — V)2 =0,
i — a2wmr - ((Pa: - w) + Y + B0, =0, (63)
0 — KO0zz + Bty = 0,

where a > 0 denotes the sound speed defined by a? = ¢/(0). The case a = 1 corresponds to the
Timoshenko-Fourier system with equal wave speeds, whereas the case a # 1 implies that the
wave speeds of the first two equations are different.

We are interested in the Timoshenko-Fourier system (6.1), where the heat conduction is
described by the classical Fourier law. To the best of our knowledge, few stability efforts can be
available for (6.1). In a bounded domain, Rivera-Racke [140] proved several exponential decay
results for (6.3) and found a non-exponential stability for the case of different wave speeds. In

the whole space, by virtue of the change of variable in [85]

U:SO:E—?/’, U = Pt, Z:aw:m y:¢t

For simplicity, we set U := (v, u, z,5,0) " (T transpose). System (6.3) is rewritten as the first-
order system of hyperbolic-parabolic type

Ut + AUg; + LU = BUac:ca

U(2,0) = Up(a), (64

where the coefficient matrices A, L and B are explicitly given in Chapter 1.1.4. The corre-

sponding initial data are as follows

U|t:0 - (U07UO7Z07y0760)T($)7

with
Vo = o,z — Yo, Up = P1, 20 = aoz, Yo = V1.

It is convenient to rewrite (6.1)-(6.2) as the following Cauchy problem for the hyperbolic-
parabolic system
(6.5)
U(z,0) = Uo(x),
where G(U) = (0,0,0,g(z),0)" (z) with g(z) = o(z/a) — 0(0) — 0’(0)z/a := O(2?) near z = 0.
As yet there are few stability results for the nonlinear Timoshenko-Fourier system (6.1)-
(6.2). As a first step, we focus on the cases v > 0 and a # 1. Now we show our main results, to

do this, define Ny(t) and Dy(t) by the following energy norm and the corresponding dissipation,



6.1 Description of problem 215

respectively:

No(t) i= sup [U(7)]11+e).

t
Do(t s= [ (1) sy + 10t sy + 10,57 o
3oy + 192007 31y ) -

Then we state the global-in-time existence of smooth solutions to (6.5) in the small ampli-

tude regime.

Theorem 6.1. Let s > 2 and suppose that the initial data satisfy Uy € H*(R). Put Iy :=
|Uoll frs(ry- Then there exists a constant eg > 0 such that if Iy < e, the Cauchy problem (6.5)

has a unique global solution U (t,x) with
U € C([0, 50); H*(R)) N C1([0, 00); H\(R)).
Moreover, the uniform energy inequality
No(t)? + Do(t)* S I (6.6)
holds for t > 0.

Remark 6.1. We mention that the energy inequality (6.6) is of the regularity-loss type because
there is 1-regularity loss for (v,u) in the dissipation part Dy(t). In addition, Theorem 6.1 also
holds in the periodic domain T. Tt is not difficult to see that z(t) = 0 for all ¢ > 0, if Zy = 0 is
additionally assumed, where f := ﬁ' Jp f(z)dx.

Furthermore, based on Theorem 6.1, the optimal decay rates for solution to (6.5) are avail-
able.

Theorem 6.2. Let m = 0,1 and s > £y +m+ 1 with £y = m+ 1. Assume that the initial data
satisfy Uy € H*(2) N LY(Q). The addition initial condition Zy = 0 is assumed in the periodic
space Q = T. Put I := ||Uo||gs()nri(q)- Then there exists a constant 1 > 0 such that if
I < &1, the solution of (6.5) admits the decay estimate

107 Ullr2) S 11+ t)HAmm/2
in case of @ =R, m =0 as well as in case of Q=T and m =0, 1.

Remark 6.2. Due to the weaker dissipative mechanism of regularity-loss type, it is more
interesting to seek the possibly lower regularity. By virtue of LP-LI-L" inequalities in Lemma
5.1, we could achieve the optimal algebraic rate of L'-L? type under the critical regularity
Se = 2, that is, the minimal decay regularity sp < 2 follows for the Timoshenko-Fourier

system.
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B The schema of proof of main theorem

e The proof of global smooth solution (Section 6.2)

By a careful observation, we think the viscosity term in (6.5) does not influence the math-
ematical entropy, which inspires us to obtain global a priori estimates in Proposition 6.1 from
the point of view of hyperbolic energy approaches. The global existence in Theorem 6.1 is
obtained by using the standard boot-strap argument.

e The proof of optimal decay estimates (Section 6.3)

System (6.4) admits the decay property (1.41), which is of regularity-loss type at the high
frequency. Consequently, it seems impossible to obtain the optimal decay rate with the rela-
tively lower regularity. To overcome it, we skip the traditional Duhamel’s principle and employ
a different technique.

Step 1) Asymptotic expansion of eigenvalues

Through the asymptotic expansions (6.32) and (6.33), we obtain a result that the analysis
of eigenvalues in [134] is improved due to the existence of the damping term ~i;. Also, the
decay behavior of eigenvalues also confirms the optimality of those linear results in [160].

Step 2) Energy methods in Fourier spaces

We establish the pointwise energy estimate in Fourier spaces for (6.5), which is something
like “square formula of Duhamel principle”, see Proposition 6.2. From this proposition, we
obtain that the dissipative rate is regularity-loss type satisfying n(¢) = |£]?/(1 + |£]?)2.

Step 3) Optimal decay rates

To get the optimal decay rate of L'-L? type, we employ the LP-LI-L" estimates. In partic-
ular, the high-frequency estimate is divided into two parts, and on each part, one can proceed
different spatial integrals (for example, r = 1 or r = 2), which leads to desired decay estimates
effectively. Additionally, it follows from (6.5) that z(¢,x) is a conservative quantity for all time
t > 0. Therefore, by Poincaré inequality, one further achieves the optimal estimate for the

derivative of solutions in the periodic domain. See the detailed proof in Proposition 6.3.

6.2 The proof of global existence

In this section, the central task is to construct a priori estimate according to the dissipative
mechanism produced by the Timoshenko-Fourier system, which ensures that the solution of
(6.5) is globally defined. Define the quantity

Mo(t) = sup U)oy (67)

For clarity, a priori estimate are shown by the following.

Proposition 6.1. Let U(t,x) be a solution to (6.5) satisfying

U e C([0,7); H*(R)) N C'([0,T); H*~'(R))
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foranyT > 0 and s > 2. There are a constant €5 > 0 independent of T such that if No(T) < eq,

then a priori estimate

No(t)? + Do(t)* < |1Uoll3s w) (6.8)
holds for t € [0,T].
Proof. Let us begin with the following equations

v —ug +y =0,

U — vy = 0,

2t — ay, = 0, (6.9)
yi — lo(z/a)le — v+ vy + B8, =0,

| 0t — KOzp + By, = 0.

Indeed, the proof is separated into several steps.
Step 1. The LP(L?) estimate of U and the L3 one of (y,0)
By multiplying (6.9) by v, u, (o0(z/a) — 0(0))/a,y and 6, respectively, and adding the re-

sulting equalities, we arrive at
MY — 0, F° + 4% 4+ kb2 =0, (6.10)
where
HO = L0744 F(2) 447 + ),
F' =vu+(o(2/a) = 0(0))y + B0y + 0.0,
re)=2 [0t - o0

Due to ¢’(n) > 0 and (6.7), we see that F(z) ~ |z|2. Hence, integrating (6.10) over [0,¢] x R
yields

t
lU @) +/O 209y (rIIZ2 + #1102 (7)|[72)d7 < [1Uoll72 (6.11)

for t € [0,T7.
Step 2. The L (H*™1) estimate of 9,U and the L2.(H*™') one of 0x(u,6,)
Actually, the energy inequality for derivatives of solutions is stated as follows
t
102U () 1 e +/O 0y (T [37s—1 + 1020(7) | -1 )dT

< 10:U0 || 351 + Mo (t) Do(t)?

(6.12)

for t € [0,T].
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To do this, by applying the differential operator d.(1 < < s) to (6.9), we obtain

ooy — 0w+ dky = 0,

Oluy — 05w =0,

oLz — adlFly =0, (6.13)
Opyr — o' (2/a)d z/a — v + Oy + OO = (0L, o' (2/a)](2/a)a,

oL, — kOLT20 + poltly = 0.

Multiplying (6.13) by dLv,dlu, (1/a%)0’(z/a)dlz, 0y and 9L, respectively, then adding the
resultant equations implies that
OH + 0, FL +~(0Ly)? + K(8460,)% = R, (6.14)
where
H = %{(3501))2 + (0hu)? + o' (2/a)(02/a)? + (859)° + (9,0)*},
F! = 0pvdyu + 8,ydh0 + o' (2/a)(8,2/a) Oy + KO, 68,8,
R = %0/(2/a)t(3i2/a)2 — 0'(2/a)o(842/a) Oy + 0y[0;, o' (2/a)) (2/a)e,
where we used z = ay, for the third equation of F!. Integrating (6.14) over z € R gives
G | #idn 10k + m10k6 e < R (6.15)

where we set R! := Jz |R!|dz. For R!, it follows from Lemmas 2.17-2.18 that

t
R S 10a(2, )l 105(2, 9) 172, /O RI(r)dr < Mo(t)Do(t)*. (6.16)

Here, [, H'dx is equivalent to the quadratic norm [|9LU||2, due to (6.7). Integrating (6.15)
with respect to t > 0 and summing the resulting inequality for [ with 1 < [ < s together.
Furthermore, (6.12) is followed by (6.16). Finally, together with (6.11) and (6.12), we can

conclude that
t
[GIE +/0 (ly(D)llFrs + 10:0(7) I3 )dr < |UollFrs + Mo(t)Do(t)? (6.17)

for t € [0,T7.
Step 3. The LA(H*™2) estimate of Oyu and the L4(H*) one of 0,2
Applying 9., to the system (6.5) gives
Olvy — 9 lu 4+ 9ly =0,
Oluy — 05w =0,
oLz — adlFly =0, (6.18)
Opye — a0tz — Ohv + 40y + BOLH0 = O3 g(2),
oL, — kOLT20 + pOltly =0,
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where g(z2) := o(2/a) —o(0) —0'(0)z/a = O(z?). By multiplying the first and second equations
of (6.18) with —Qljlu and 8;“'11), respectively, and adding the resultant equations together, we

arrive at
—0y (84005 ) + 0, (DL vdluy) + (95 w)? — (05 10)? = AL ludly. (6.19)

Hence, integrate (6.19) over [0,¢] x R and sum the resulting inequality for [ with 0 <1 < s—2
give that

t t
/0 1007 |2eadlr < /O 000 2 + [y 2rea)dr + U2 + No(8)2. (6.20)

Similarly, multiplying the third and forth equations of (6.18) with 94"y and —9Lt!1z, re-

spectively, and adding the resultant equations. We are led to
~0u(0 1 200y) + 0a(0,y0, ) + a{(0;712)% — (971y)?} = Ry, (6.21)

where R := 9Flz(yoly + BOLHLO — OLv) — 91205 g(2). Hence, integrating (6.21) with

respect to x implies that
d
213 < a0yl + 5 [ 104 sliokuide + [ (R (6.22)
By employing Young’s inequality and Lemma 2.18, we obtain

/R 0 2 0hylde < €0 2)2s + Cellhy] 2,
(6.23)
/R Rl < 022 + Cullh (v, . 8)IPe + 2l |05 2120

for any € > 0 and 0 <1 < s—1, where C¢ (depending on €) is a positive constant. Furthermore,
with aid of (6.23), integrating (6.22) with respect to ¢ and summing the resulting inequality
for [ with 0 <[ < s —1 together. We are lead to the following inequality

/ 1002(7) |71 dr < Ce/ ()= + 1y, 0:0) (7) [ )dr
0 0

+C(|Uoll s + No(t)? + Mo(t) Do(t)?).

(6.24)

Therefore, together with (6.20) and (6.24), we can derive the following energy estimate of

solutions

/ (10au(F)2gss + 1002(P)| s r) dr
0 (6.25)

< IUollZrs + No(t)* + Mo(t) Do(t)? +/0 (o)1 + 11y, 220)(7)IF4s) d

for t € [0,T].
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Step 4. The L3(H®™1) estimate of v
Multiplying the first and forth equations of (6.18) with —dLy and —d.v, respectively. Also,
multiplying the second and third equations of (6.18) with —a@iz and —a@iu, respectively.

Then adding all resultant equations gives
—0Hy + 0uF5 + (9,0)* — (9,y)* = Ry, (6.26)
where

7‘([2 = aivaiy + a@iu@iz,
Fb = adlvd z + a2 udl y,
RY = 70 vdly + BoLvd0 + (a” = 19 udky — 9w g(2).

Integrating (6.26) with respect to z leads to

d
[0Lv)|2s < ||OLyl|2s +/ \H§|dx+/7z’2dx. (6.27)

By using Young’s inequality and Lemma 2.18, we can obtain

| blde < 1oL, )
[ Rhda < e 10k + lowully) + O (jekall + 105113 )
R
+ e 0L (0, 22) 2,

for any € > 0, where C,C, (depending on €) are some positive constants. Here, we would
like to mention that the integration by parts was used, which takes care of the regularity for
Oyu. Thus, integrating (6.27) with respect to ¢ and summing the resulting inequality for | with
0 <1< s—1 together, we get the energy estimates of v as

t t
/OHU(T)\%s—ldTS/O 10zu(T) 13752 + (4, u0) (1) | s dr + 1Uo|| s + Mo(t)Do(t)*  (6.28)

for t € [0,T7.

Finally, it suffices to make the suitable linear combination between (6.17), (6.25) and (6.28),
which leads to (6.8) eventually. Hence, the proof of Proposition 6.1 is completed. ]

The local existence of smooth solutions to (6.5) follows directly based on the general theory
framework (see for example [92]). By using the standard boot-strap argument, see for example
[138] (Theorem 7.1, page 100), we can finish the proof of Theorem 6.1.

Additionally, note that z; = ay, in (6.9), we have the fact % fT zdx = 0 in periodic case,
which leads to [ zdx = [} zodz. That is, if Zy = 0, one has Z = 0 for all ¢ > 0. Thus, the latter

part of Remark 6.1 is also obtained.
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6.3 The proof of optimal decay estimates

In the following, we focus on proving Theorem 6.2. To show our energy methods are optimal in
Fourier spaces, we first investigate the asymptotic expansion of eigenvalues of (1.27) at |{| — 0
and |¢| — oo. Then we establish the energy inequality for (6.5), which is something like “square
formula of Duhamel principle”. Finally, by using LP-L?-L" decay estimates (see Lemma 5.1),

we deduce those decay estimates in Theorem 6.2.

6.3.1 Asymptotic expansion of eigenvalues

We denote by A;(¢),j = 1,2,3,4,5, the eigenvalues of the matrix @(C) in (1.28), which are

solutions to the characteristic equation

det(A — ®(C)) := N 4 (v — k)M + {1 — (1 + a® + 1> + 7)) 233

(6.29)
— {7+ K= r(@®+ 1IN + (0 + 0 + wy)*A =’ = 0.
Case 1: When |¢| — 0, A\;(¢) has the following asymptotic expansion:
MO =AY AW a2y (6.30)
Substituting A = A;(¢) in (6.30) into the characteristic equation (6.29) and calculating the
coefficients A§k), k=0,1,2,- - successively, we obtain
0 1 2 3 ‘
AV =AW =0, AP =y, AP =0, for j=1,2,3;
A =g, AV =0, for j=4,5,

where 3; = —%(’y + /72 —4) and «; are the solutions of the algebraic equation
V3 — (k+7)Y? + (a® + 0> + k7)Y — a*x = 0. (6.31)

By the simple analysis of (6.31), we find that Rea; > 0. Also, Ref; < 0. Consequently, for
|€] — 0, we have

—(Reay)& +O(l¢g|*),  for j=1,2,3;

(6.32)
Ref; + O([¢?), for j=4,5.

Reai - {

Case 2: To obtain the asymptotic expansion of the eigenvalues A;(¢) for || — oo, we define
the matrix \i’((‘l) = B — (" 'A - (2L. Thus, we have the relation CiJ(C) = CQ\iJ(C_l). Let
11;(C1) be the eigenvalues of the matrix W(¢™!), which are the solutions to the characteristic

equation
det(ul — W(¢™1)) o= p® — (5 —7¢ )’
— {1+ a®+ 0+ r5y) = 2+ {B(1+d®) — (5 + 7)Y
+ (@240 + k)t — a?kCr = 0.
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As |¢| = 00, A;(¢) has the following asymptotic expansion:

A Q) = 1P 4 ¢+ pl? g fV e )2

We have the relation A\;(¢) = ¢?u;(¢™1). By direct computations, the coefficients ,ug.k),k =
2,1,0,—1,—2,- - - are shown as follows:
@ _o W0 _ © _qg ,D_y b
2
(—2) _ b*+ Ky .
,LL‘7 = W for ] = 1,2,
2 1 0 b* 4 Ky .
u? =0,y = +a, uﬁ)z—i% for j =3,4;
,u§2) =K, pg.l) =0 for j=35,
where P = a? — 1(a # 1). Consequently, for |¢| — oo, we have
2 .
Lo, for j=1,2
. 2 ,
ReX;(i€) = ¢ —27 4 O(l¢g| ), for j=3,4; (6.33)
—k€2+0(1) for j=5.

From the expansion (6.33) for || — oo, we obtain that one eigenvalue satisfies Re);(i€) ~ —c&?,
two eigenvalues are of the standard type and satisfy Re);(i§) ~ —c, and the last two are not
standard and satisfy Re);(i€) ~ —c&™2.

Here, we would like to mention that the asymptotic expansions (6.32) and (6.33) improved
that analysis in [134] due to the existence of the damping term ~;. Precisely, the dissipative
rate 72(€) becomes into 72(§). See [170] for the notion of dissipative rates. At the same time,
the decay behavior of eigenvalues also confirms the optimality of those linear results in [160].
Due to the dissipative mechanism of regularity-loss, extra higher regularity is usually needed,
see for example [87, 155]. Therefore, it is interesting to seek the possibly lower regularity for
the optimal decay rate of L'(R)-L?(R) type.

6.3.2 Energy methods in Fourier spaces

Based on the asymptotic analysis, the next task is to establish the “square formula of Duhamel

principle” for (6.1)-(6.2) in Fourier spaces, which leads to the optimal decay rates.

Proposition 6.2. Let U = (v,u, z,y,0)" be the global smooth solution to (6.1)-(6.2). Then

the Fourier image of solution satisfies the following pointwise estimate

Ut S e Tp(6)
t . (6.34)
b [ eI, o ar
0
for any t > 0 and ¢ € R, where the dissipative rate n(¢) := £2/(1 + &%)? and co > 0 is a

constant.
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Proof. Applying the Fourier transform to (6.5) gives

O — i€t +9 =0, (6a)
Gy — &0 = 0, (6b)
% — aify = 0, (6¢)
Je — aifz — 0 + vj + Big = i&g, (6d)
0, + KE%0 + Bigy = 0. (6e)

Step 1. Estimate for dissipative term of (g, é)
Multiplying (6a)-(6e) with o, 4, 2, 9 and 0, respectively. Then adding the resultant equations
and taking the real part, we obtain

d ) ) e
0+ 2(v[9)° + K€%10)*) = 2Re(i€g9),

where & := |0]2 + |a]2 + |22 + |92 + 0] = |U|?. It follows from Young’s inequality in Lemma
2.10 that

d A ) R
£50+01!y|2 + e€%10)* < €GP (6.35)

for ¢1,¢co > 0.

Step 2. Estimate for dissipative term of ¥
2, we compute as (6a) x (—9)+ (6d) x (=) + (6b) x (—a2) +
(6¢) x (—aw) and take the real part. We obtain

To create the dissipative term |0

L&+ [0 ~ 15 = ARe(3) + (1 - a?)éRe(idg) + ERe(id (50— 9)},  (6.36)

where & := —Re(0y + at2). Compute (6.36) x (1 + £2) and use the Young’s inequality. This
gives
d ~ ~ ~ ~ ~
S+ & + es(14+ o] < e?fal” + C(1+ (g1 + CEM+ )10 +1GI°)  (6.37)
for any € € (0, 1),where c3, C. (depending on €) are some positive constants.

Step 3. Estimate for dissipative term of (1, 2)

For the dissipative term |i|2, we compute as (6a) x (i€0) + (6b) x (—i€0) and take the real

part. This gives
d N . N
&+ (Al — o) = —ERe(itg), (6.38)

where & := Re(itt). Here we use the fact that Re(idyi — i0i) = {Re(it1) };.
To get the dissipative term for 2, we compute as (6¢) x (—i€7) + (6d) x (i€2) and take the

real part. Then we obtain

€285+ ag (|2 [917) = €Re(3(50 — )} + ERe{i3(0 — 7)), (6.39)
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where &£ := Re(ij)2).
We combine (6.38) and (6.39) such that (6.38)+4(6.39) x (1+£2) by using Young’s inequality.
Then we arrive at
d
Z&+ 1+ )8} + el + e6(1+ )2

< C 1+ +CA+ D+ C(1+ (10 + |G?)

(6.40)

for any € € (0, 1), where ¢4, c5 and C¢ (depending on €) are some positive constants.

Step 4. Combining the above analysis

We combine (6.35), (6.37) and (6.40) such that (6.35) + {(6.37) + (6.40) x a1} x (14?%)2
Thus we obtain the following Lyapunov function to system (6.5)

EI0) =&+ ?52 {an+ 104‘:2252 + 0168 )
such that the following differential inequality holds
9 £[0)+ coD[0] 5 €1GP (6.41)
where
DD = gglol? + o il + g 412+ 1917 + €210
1+¢2 (1+¢2)? 1+¢2

and a1,y > 0 are suitable small constants which ensure that £[U] ~ |U[2. Also, we men-
tion that the asymptotic expansions (6.32) and (6.33) indicate the energy inequality (6.41) is
optimal. Furthermore, it follows from (6.41) that

9 E10)+ con(©)€10) £ €GP,

where n(£) = ¢2/(1+£2)2. Finally, the inequality (6.34) is followed from the standard Gronwall’s
inequality. This ends the proof of Proposition 6.2. O

6.3.3 Optimal decay rates

With above preparations, the final section is devoted to the optimal decay estimates of smooth
solutions to (6.5) with the regularity s. = 2, i.e., sp < 2 follows.

Define new time-weighted energy functionals:

1
sup (1+7)3|U(T)[12w)
N(t) & { 0s7=t Lom o (6.42)
sup sup (14 1) 020 ()] 2o
m=0,1 0<r<t
In what follows, we shall get a nonlinear energy inequality in terms of N (¢) and Dy (t),which

shows the optimal decay rate of solutions to (6.5).
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Proposition 6.3. Let U = (v,u, z,y,0)" be the global smooth solutions of (6.5). Additionally,
if Up € LY(Q) with Q =R form =0, and Q =T for m = 0,1, then it holds that

N(t) S WUoll s nri) + N () Do(t) + N(t)? (6.43)
fors>tlo+m+1 withly=m+1(m=0,1).

Proof. For m = 0,1, it follows from (6.34) that

/ﬂ €207 ()| 2de
t
2m_—en(E)t|77 2 —en(€)(t=7) £2m+2) A 2 (6.44)
5/95 e~ Py (€)] d§+/ﬂ/0e W) g2m42 (37, €) Palrde
2+ Jo.

For Ji, by taking 01 =09 =2,p=2,k=m,j=0,¢q=1and r =2, > ¥y with {p =m + 1 in

Lemma 5.1, we arrive at
1 _
TS (L4872 |Uol|71 gy + (1 + 81107 Uoll2 (- (6.45)

Next, we begin to bound nonlinear terms. For Js, it is written as the sum of low-frequency
and high-frequency parts
Jo := Jor, + Jop.

To get the precise estimate of Jo;, we compute Jo;, with m = 0 and m = 1. In the case for

m =0, by taking 01 =092 =2,p=2and k=1,7 =0,¢g =1 in Lemma 5.1, we have
t B )
Jor S A+t —7)2||G(7)[|adr
0

t
— T _% T 42 T
5/0 (L4t —7)72(|U(7)|7d (6.46)

< N(t)* /t(1 +t— T)_%(l + 1) Ydr
0
S+ IN@)

~

When m =1, by taking 01 =0y =2,p=2and k=2,7 =1,¢g =1 in Lemma 5.1, we obtain
t 3 2
Jo S [kt =D OGOy dr
0

t
3
S| A+t =1) 2 U2 10:U (7) |32y dT
/O ( ) U2y 102U ()2 (6.47)
t

< N(t)4/ (1+t—7)"2(1+7)2dr
0

S+ 2N
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where we have used Lemma 2.18 and the fact G(U) = O(z?). Thus, combining (6.46) and
(6.47), we are led to

Jor, < (L4172 N, m=0,1. (6.48)

For Jsp, more elaborate estimates are proceeded. For this purpose, we write

t/2 t
Jog = ( + >( < )dr = Jag1 + Jama.
0 t/2

Taking 01 = oo =2,p=2and k=m+ 1,7 =2,£ > {y with {; = m + 1 in Lemma 5.1 gives

t/2 0y Atm 2
o < / (14t = 1) O 1G() 2o g dr
0

t/2
< / (14t = 7)) 2 05 ™ 2 22y
(6.49)

N

0 2 /2 Y4 1,12
sup {1t ) el [ I0E
0<r<t/2 0

S (L+1) " No(t)? Do(t)?
S A+ N00lls 0

for s > lp+m + 1 with {o = m +1 (m =0, 1), where we have used Lemma 2.18 and the fact
G(U) = O(z?).

On the other hand, we compute Jofo with m = 0 and m = 1 differently. For m = 0, by
taking 01 =09 =2,p=2and k=1,r =1,/ =1 in Lemma 5.1, we get

t
Jor2 S / (1+1t— 7)7%\\83(;(7)”%16“
t/2

t
< / (14t — 1) 3 |12] 221022 2odr
t/2

t
,SN(t)Q/ (L4t —7)72(1+7)" 2022 %0dr (6.50)
/2
2 5 ! Le e
SN sup {(1+t—7)-2(1+7)—2}/ 182222 dr
t/2<7T<t 0

< (141)"2N(t)2Dg(t)2.
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For m =1, by taking 01 =02 =2,p=2and k=2,r =1,/ =1 in Lemma 5.1, we get
! 193 2
Dotz S // (14t =) 3 |G|y
t/2

t
_1
< /t/2<1+t—7> 2020 1022 22y

t 1 6.51
< /t/2<1+t—f> 1100 2112 ) 1922112 oy (6.51)
< N@®)? su { — )i -2 a8
< p {art—n e 3Y [ |03 dr
t/2<r<t 0

S (L+1)72N(t)2Do(t)%,

where we used Remark 6.1 and ||z||z2(my = ||z = Z||p2(1) < [[V2||12(7) led by Poincaré inequality.
Thus, combining (6.50) and (6.51), we arrive at

Jomz < (14872 ™N(#)2Do(t)2, m=0,1. (6.52)
Therefore, together with inequalities (6.44)-(6.52), it follows from Plancherel’s theorem that
- -
107U 172y S (1 + )72 |Uoll3ps () + (1 +8) 727" N (£)*Do(t)?
—i_m 4
+(1+1t)"27™N(t)",

which leads to (6.43) exactly. O

The proof of Theorem 6.2. Due to the similar energy inequality for the solution U as (6.6)
in Theorem 6.1, we have Do(t) S [|[Uollas@) S 1Uollas@)nzt@)- Thus, if [Usllgs@)nzi ) 18
sufficient small, then it holds that

N(t) S WUl s ynrie) + N(t)?

for s > ly +m + 1 with fo = m + 1 (m = 0,1), which implies that N(t) < ||Uollms)nrt ()
provided that |[Uol| s ()1 () is sufficient small. Consequently, the decay inequality in Theo-

rem 6.2 is followed.






Chapter 7

Summary and further prospects

7.1 Summary

With the fast expansion of breadth and depth of natural phenomena, the study of partial dif-
ferential equations arising in physics, mechanics and other various branches of natural sciences
has become more and more important, which not only provides us the effective solution meth-
ods, but also rigorously characterizes some physical effects, for example, vacuum, convention,
compression, dissipation, dispersion, relaxation and chemical reaction. In recent years, some
dissipative equations, such as Euler-Maxwell system, Navier-Stokes equation and Timoshenko
system etc; kinetic equations, such as Boltzmann equation, Landau equation and its coupling
equations, etc; These systems received extensive attention, many experts and scholars con-
ducted in-depth research on the structure of these equations, and carried out detailed analysis
on the well-posedness, smoothness and decay estimate of solutions to these systems. Many
important and meaningful results are shown.

In this thesis, we investigate well-posedness and qualitative study for some kinetic equa-
tions and some dissipative equations. In this thesis, we study two dissipative equations Navier-
Stokes-Maxwell system and Timoshenko-Fourier system, and both systems have non-symmetric
dissipation and they admit a weakly dissipative mechanism of regularity loss type, to overcome
this difficulty, by using some new methods and detailed analysis, we obtain the global exis-
tence of solutions and optimal decay estimate with minimal decay regularity for both systems
in Sobolev spaces, this gives a special reference example for solving the opening problem left
in [171]. In addition, we also studied the kinetic equations, Landau equation and Boltzmann
equation in one-dimensional space, namely the Kac equation. Here, we study the inhomoge-
neous nonlinear problems of these systems and give a rigorous analysis of collision operator
and some key trilinear estimates, hypoelliptic estimates by using analytical tools for spectral
analysis, Bony’s decomposition and pseudo-differential operator.

As we all know, one of the most important roles of Littlewood-Paley theory is to localize
the frequency space. Fourier transform transforms differential operations in physical space into
algebraic operations in frequency space. Littlewood-Paley decomposition writes the temperate
distribution form as the countable sums of smooth functions that are almost orthogonal in the
sense of frequency space. Bony’s decomposition was introduced by Bony in the study of the

singular propagation of the solution of hyperbolic equations. It is the brilliant achievement of
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Littlewood-Paley theory and has been widely used in the study of partial differential equations.
In recent years, the application of Bony’s decomposition in fluid mechanics equations has been
done by many scholars. However, there are not many research results for the dynamic equations.
In this thesis, we study the dynamic equations in the critical Besov space: Landau equation and
Kac equation. In addition to using Bony’s decomposition, we apply theoretical and analytical
tools such as spectral decomposition, iterative sequence and pseudo-differential operator. The
well-posedness for the systems are proved in the Besov space. In addition, for Kac equation,
we also obtain the Gelfand-Shilov regularity effect on the velocity variable and the Gevrey
regularity effect on the spatial variable. And compared to the Gelfand-Shilov regularity index

in [117], we improve the index to the optimal one.

7.2 Further prospects

Dissipative partial differential equations and kinetic equations have been the focus of many ex-
perts and professors. They have been extensively studied in Sobolev space and have been shown
many well-established systematic results. However, the well-posedness and decay property for
partial differential equation with non-symmetric dissipation, the well-posedness or smoothness
effect for kinetic equation in critical Besov space, the research results about these are relatively
few. These systems of this thesis are studied under relatively ideal or certain circumstances.
Here, for these systems and their results, it is possible to further deepen the research:

(1) The non-symmetric dissipative systems studied in this thesis: Navier-Stokes-Maxwell
system and Timoshenko-Fourier system, both are all studied under the condition that the
damping term affects the dissipative structure, and the optimal decay estimate is obtained
with the minimal decay regularity. We can guess: if there is no damping term effect, can we
get similar results under a weaker dissipation mechanism? Further research is needed.

(2) In critical Besov space, we obtain the well-posedness to the Landau equation with
Maxwellian molecules. However, for the case of soft potential (—3 < v < 0) and hard potential
(0 < v < 1), the study of well-posedness to the Landau equation requires further in-depth
analysis and research.

(3) In addition, for the Landau equation, the smoothing effect of solutions has not yet been
studied. This is a question that is meaningful and worthy of further study.

(4) The uniqueness of solutions for the above systems are obtained when the small per-
turbation of the initial value is bounded, that is, the solution is bounded. For any solution,
if there is no bounded condition, whether the solution is unique is the further work we will

consider and study.
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