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Résumé
La présente recherche vise à développer des algorithmes d’imagerie par interférométrie
cohérente (CINT) pour localiser des sources et des réflecteurs dans des applications im-
pliquant des écoulements. L’imagerie CINT s’est avérée efficace et statistiquement stable
dans des milieux inhomogènes au repos, où les techniques classiques d’imagerie, telles que la
migration de Kirchhoff (KM), peuvent éventuellement échouer en raison de leur manque de
robustesse statistique. Nous visons à étendre ces méthodes aux milieux en mouvement inho-
mogènes, car elles concernent l’aéroacoustique, l’acoustique atmosphérique et sous-marine,
la propagation des infrasons, voire l’astrophysique. Dans ce rapport de thèse, nous abor-
dons à la fois le problème direct de la modélisation de la propagation des ondes acoustiques
dans un écoulement ambiant hétérogène et aléatoire, et le problème inverse de la recherche
de la position de sources ou de réflecteurs par l’algorithme CINT mis en œuvre avec les
traces des ondes acoustiques qui ont traversé l’écoulement.

Mots-clefs: Imagerie par interférométrie cohérente, ondes acoustiques, écoulement aléatoire.

Coherent interferometric imaging
in fluid dynamics

Abstract
The present research is aimed at developing coherent interferometric (CINT) imaging algo-
rithms to localize sources and reflectors in applications involving fluid flows. CINT imaging
has been shown to be efficient and statistically stable in quiescent cluttered media where
classical imaging techniques, such as Kirchhoff’s migration (KM), may possibly fail due to
their lack of statistical robustness. We aim at extending these methods to inhomogeneous
moving media, for it has relevance to aero-acoustics, atmospheric and underwater acous-
tics, infrasound propagation, or even astrophysics. In this thesis report we address both the
direct problem of modeling the propagation of acoustic waves in a randomly heterogeneous
ambient flow, and the inverse problem of finding the position of sources or reflectors by
the CINT algorithm implemented with the traces of the acoustic waves that have travelled
through the flow.
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D
RA
FT



D
RA
FT

Introduction

The purpose of imaging techniques is to estimate the location of one or more sources
and/or reflecting structures with a passive or an active array of sensors, respectively. Co-
herent INTerferometry (CINT) shall be considered for imaging in cluttered media from the
time traces of echoes recorded at a remote array [77]. Here clutter means that the propaga-
tion medium (e.g. water, turbulent flow, stratified flow...) is perturbed by inhomogeneities
that are unknown and cannot be estimated in detail. Its main effect is to induce large
delay spread, or coda, to the recorded time traces in regimes where significant multiple
scattering of the acoustic waves by the clutter occurs. In the envisaged applications, the
size of the targets to be imaged and the typical correlation lengths of the clutter shall be
comparable to the carrier wavelength of the probing pulses. In this work we are more par-
ticularly interested in the propagation of acoustic waves in a stratified, heterogeneous flow
and the possible localization of sources by these wave fields using the CINT approach. It
is therefore understood that we are not interested in the amplitudes when we talk about
imaging techniques and more specifically about CINT. Although the developments are fo-
cused on applications to aeroacoustics and/or underwater acoustics, this technique has a
clear dual feature. Indeed, it has potential direct extensions in e.g. structural health mon-
itoring, seismic or medical imaging among others [93], provided of course that the relevant
space-time scales have been correctly adjusted. More particularly, we have in mind the
experiments carried on by Candel et al. [41–43] more than forty years ago at the low speed
open wind tunnel of the Von Karman Institute. It offers a 3 m initial jet diameter and a
maximum flow velocity of 60 m.s−1 in an anechoic environment whereby acoustic reflections
are partially suppressed. A sound source is placed inside the free jet and the acoustic field
transmitted by the shear flow is explored at the outer of the jet.This typical configuration
is illustrated by the sketch of Fig. 1 where S is the position of the source, P is the position
of a microphone, 0 is the position of the trailing edge of the jet duct, and U1 and U2 are the
high and low-speed side free-stream velocities respectively. A photo of DGA’s CEPRA 19
facility is also displayed, since it is very much similar to the experimental setup described
in [41–43]. As the acoustic waves travel through the turbulent mixing layer and shear flow
they are convected, refracted and scattered resulting in a change of directivity, phase and
amplitude modulation, and a spectral re-distribution of the acoustic energy over a band of
(sufficiently high) frequencies around the tone frequency of the source–the so-called ”spec-
tral broadening” or ”haystacking” effect in the literature; see e.g. [1, 16] and references
therein. It is illustrated for example by the far-field power spectral density (PSD) of the
pressure field recorded at the outside of the jet, which exhibits side lobes induced by the
turbulent structures of the flow and a progressive energy decrease afterwards. The results
obtained by Candel et al. [41] are shown on Fig. 2, where the PSD of the scattered pressure
field for different values of the tone frequency f0 of the acoustic source are displayed. A
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Figure 1 – Anechoic wind tunnel with open-jet test section (nozzle exit Ø = 2-3 m, U1 ≤ 100
m/s); the configuration at CEPRA 19 [50] (left) and a sketch of the experiment (right).

Large Eddy Simulation (LES) consisting in calculating only the larger scales of both the
turbulent flow and the acoustic field, and using a dedicated model for the smaller scales, has
been recently presented in [16]. These results are displayed on Fig. 2 as well. In the mean
time numerous theoretical and numerical studies have been carried on to both understand
the main physical phenomena in acoustic wave propagation in shear layers, and simulate
the interaction between acoustic waves and turbulent flows. Several of them are reviewed
in [1,16,35,36,49,67,107] and references therein, among many other works. Our aim in this
research is twofold:

— First, one intends to develop analytical models of acoustic wave propagation in strat-
ified random flows to obtain the main features of the transmitted waves and their
PSD (direct problem); these models should be able to describe the aforementioned
spectral-broadening effect and PSD shapes.

— Second, one intends to use the previous results to develop a CINT imaging tech-
nique in shear flows to localize acoustic sources from these waves, for applications in
aeroacoustics and underwater acoustics for example (inverse problem).

In both instances we rely on some existing theoretical results on the propagation of waves
in stratified media [25,35,36,72,74,76,107] and extend these analyses to the consideration
of a convective flow, possibly with random characteristics.

CINT imaging is based on the back-propagation of local space-time empirical cross-
correlations of the array data, namely the recorded pressure fields at the near free-surface
of an half-space or a random slab [72, 74, 75]. Imaging of sources or reflectors in smoothly
varying background media is efficiently done with Kirchhoff [20], or reverse-time migration
[120] when the background velocity is known or can be estimated. In cluttered environments
however, Kirchhoff migration does not work well since it produces images with speckles
which are difficult to interpret. These images are also statistically unstable, in the sense
that they depend on the realization of the clutter. This is because the phases of the
measured waves are shifted with respect to the deterministic, unperturbed phase in the
presence of the unknown clutter. Consequently, when these recorded data are numerically
back-propagated in a homogeneous or smoothly varying medium, the phase terms do not
compensate each other at the source location, resulting in instability and loss of resolution
in the image. The original idea of CINT is to correct this effect by considering empirical
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Figure 2 – Power spectral density (PSD) of the scattered pressure field at the outside of
the turbulent mixing layer (M ≈ 0.2, Re ≈ 1200); experimental results after [41] (left) and
numerical simulation (−) compared to experiments (•) for f0 = 15 kHz after [16] (right).

cross-correlations of the data. Indeed, considering recorded data for nearby frequencies and
nearby locations of the receivers, their random phase shifts remain similar, or in a way,
correlated. Consequently, if the space and frequency correlations (products) between these
data are formed, the random phase shifts roughly cancel each other. In such a case, the back-
propagation of these products in a smoothly varying medium should be statistically stable.
Thus the CINT imaging function assembles pairs of receivers and frequencies for which the
corresponding recorded data are presumably coherent, and removes those pairs that do not
bring any information. This strategy introduces some crucial cut-off parameters, namely the
decoherence length and the decoherence frequency. They are defined as the limits beyond
which coherence between the data at pairs of frequency and locations are considered as
lost. At this stage, the approach however raises the difficulty of estimating these windowing
(cut-off) parameters, which are in fact related to the clutter. Consequently, an adaptive
version of the CINT algorithm has been proposed [26, 27], that estimates the decoherence
parameters during the image construction process by optimization of an objective function
quantifying the quality of the image in formation. This approach has shown to be very
efficient in the localization of point sources and reflectors in cluttered media, but the results
presented in the open literature have been limited to two-dimensional, motionless media to
our knowledge.

Outline of the thesis

In Chapter 1 we review several results of the literature concerning acoustic wave prop-
agation and imaging in quiescent and moving random media. In Sect. 1.1 we summarize
the basic setting of acoustic wave propagation in a stationary ambient flow starting from
the Navier-Stokes equations, and write in this context the linearized Euler’s equations in
Sect. 1.1.1, Lighthill’s equation in Sect. 1.1.2, and Lilley’s equation in Sect. 1.1.3. We also
present a global form of the problem of acoustic wave propagation in a layered medium in
Sect. 1.1.4. Then important definitions of the autocorrelation function and the power spec-
tral density of a stationary stochastic process are recalled in Sect. 1.2. After that random
media or flows are considered in Sect. 1.3. We present the experimental context of wave
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propagation in an anechoic open jet wind in Sect. 1.3.1, and then we describe in Sect. 1.3.2
the Born approximation, an approach often used to solve wave propagation problems in
random media or random flows. We finish this section by presenting two other approaches,
the ODA theory in Sect. 1.3.3 and the radiative transfer theory in Sect. 1.3.4. The end of
this first chapter shows numerical methods used for the simulation of acoustic wave prop-
agation in random flows in Sect. 1.4, and introduces the CINT imaging technique and its
context in Sect. 1.5.

In Chapter 2 two models of acoustic wave propagation in random stratified flows are
developed. In Sect. 2.1 we extend the analysis presented in Sect. 1.1.1 to the case of an
unsteady inhomogeneous flow. In Sect. 2.2 we specialize further on the results seen in
Sect. 1.1 to the case where the ambient quantities do not depend any longer on the vertical
coordinate. We obtain a fully explicit integral representation of the transmitted pressure
field. In Sect. 2.3 we turn back to the horizontally stratified case considering random
perturbations of the ambient bulk modulus. Again, we obtain a fully explicit integral
representation of the transmitted pressure in terms of a random transmission coefficient
of which moments are thoroughly characterized. In Sect. 2.4 we consider the situation
where the ambient flow velocity is randomly perturbed and obtain an explicit form of the
power spectrum of the transmitted pressure field. We can recover by our approach the
experimental results of [41–43], at least qualitatively.

The CINT imaging algorithm is developed in Chapter 3. After presenting the problem
in Sect. 3.1.1, we introduce the standard Kirchhoff migration technique in Sect. 3.1.2, the
CINT imaging technique in the absence of a flow in Sect. 3.1.3, and propose a modification
of these algorithms to account for the flow. Then we describe the numerical method (the
discontinuous Galerkin finite element method implemented in the code SPACE [60]) and
the numerical setup in Sect. 3.2. We validate our solver in a homogeneous medium at
rest and then we reproduce the results of the literature [24, 27] with the case of a random
medium at rest in Sect. 3.3. Finally we treat the cases of a random medium subjected to
a homogeneous speed in Sect. 3.4.1 and then subjected to a random speed in Sect. 3.4.2 to
compare KM and CINT in the presence of a flow. Finally we obtain some results for the
case of imaging through a turbulent jet calculated by CFD in Sect. 3.5.
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Chapter 1

Acoustic waves in quiescent and
moving random media

In this chapter we will present the framework in which the work done during these three
years of research is inscribed. After introducing several models of acoustic wave propagation
in quiescent and moving ambient media, we will focus on the experiments carried out in the
70s by Candel and his co-workers around the scattering of acoustic waves by a turbulent
shear layer. Then we will present several numerical methods to simulate the propagation of
acoustic waves in random flows, and more particularly the simulation of these experiments.
Finally, we will present some work done on source localization in quiescent random media
that inspired us in the context of a possible generalization to randomly heterogeneous flows.

1.1 Acoustic waves in a stationary flow and quiescent layered
medium

First, we introduce the notations as well as the context of the fluid mechanics equations
that we consider. We also present several models of acoustic wave propagation in quiescent
and moving media, such as stationary flows.

1.1.1 Linearized Euler equations

We start by considering the Navier-Stokes equations for a compressible fluid flow. The
mass, momentum, and energy conservation equations for that flow read:

d%

dt
= −%∇ · v +m,

%
dv

dt
= ∇ · σ + %f ,

%T
ds

dt
= τ : ∇vT −∇ · q + %Q ,

(1.1)

where:
d

dt
=

∂

∂t
+ v ·∇

is the convective derivative with ∇ = ( ∂
∂x ,

∂
∂y ,

∂
∂z ), A : B = Tr(ABT) =

∑
ij AijBij is the

tensor scalar product of second order tensors A and B, τ : ∇vT =
∑

ij τij
∂vi
∂rj

, and:

13
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— v(r, t) is the fluid velocity, %(r, t) the density, T (r, t) the temperature, s(r, t) the
specific entropy, and q(r, t) the heat flux vector at the position r = (x, y, z) and time
t;

— σ(r, t) = −p(r, t)I + τ (r, t) is the stress tensor, I is the identity matrix, p(r, t) is
the (static) fluid pressure, τ (r, t) is the viscous stress tensor;

— m(r, t) is the specific mass source per unit time, f(r, t) is the force per unit mass
exerted on the fluid (neglecting gravity), and Q(r, t) is the heat production per unit
mass.

For an ideal fluid in which there is no friction (τ = 0), no heat conduction (q = 0), and no
heat production (Q = 0), these conservation equations then read as the Euler equations:

d%

dt
= −%∇ · v +m,

dv

dt
= −1

%
∇p+ f ,

ds

dt
= 0 .

(1.2)

This shows that the flow is isentropic (i.e. each fluid particle has constant entropy), and
by the equation of state p = p#(%, s):

dp

dt
= c2d%

dt
, c2(%, s) =

∂p#

∂%

∣∣∣∣
s

, (1.3)

where c is the adiabatic speed of sound. For a perfect gas for example, the equation of
state p%−γ = C along particle paths, where the constant C may differ for each particle in
isentropic flows, yields c2 = γp/%. The foregoing Euler equations are linearized about an
unperturbed, stationary flow for which the pressure, fluid velocity, and fluid density do not
depend on time. The are denoted by p0(r), v0(r) and %0(r) respectively, such that:

(v0 ·∇)%0 = −%0∇ · v0 ,

(v0 ·∇)v0 = − 1

%0
∇p0 ,

(v0 ·∇)p0 = c2
0(v0 ·∇)%0 .

(1.4)

Here c0 stands for the sound velocity not influenced by the waves. Linearization consists in
considering that the actual flow is a perturbation (%′,v′, p′) of the stationary flow generated
by the mass m and force f injected to the fluid:

%(r, t) = %0(r) + %′(r, t) ,

v(r, t) = v0(r) + v′(r, t) ,

s(r, t) = s0(r) + s′(r, t) ,

p(r, t) = p0(r) + p′(r, t) ,

c2(r, t) = c2
0(r) + (c2)′(r, t) .

The primed quantities p′, v′, %′, and (c2)′ are the acoustic pressure, fluid velocity, density,
and speed of sound, respectively, of which non-linear contributions to the Euler equations
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above are assumed negligible. In other words, these quantities are first-order increments of
the zero-th order stationary quantities. They satisfy the following linearized Euler equations
(LEE):

d%′

dt
+ (v′ ·∇)%0 = −%′∇ · v0 − %0∇ · v′ +m,

dv′

dt
+ (v′ ·∇)v0 =

%′

%2
0

∇p0 −
1

%0
∇p′ + f ,

(1.5)

with the convective derivative modified to:

d

dt
=

∂

∂t
+ v0 ·∇ .

The linearized equation of state reads:

dp′

dt
+ v′ ·∇p0 = c2

0

(
d%′

dt
+ v′ ·∇%0

)
+ (c2)′v0 ·∇%0 . (1.6)

Assume first that in the absence of perturbations (waves) the fluid is at rest, i.e. v0 = 0.
Then ∇p0 = 0 and:

∂%′

∂t
= −∇ · (%0v

′) +m,

∂v′

∂t
= − 1

%0
∇p′ + f ,

(1.7)

with:
∂p′

∂t
= c2

0

(
∂%′

∂t
+ v′ ·∇%0

)
from the linearized equation of state. The operators ∂

∂t and ∇· commute (whereas d
dt and

∇· do not in general), hence the non-homogeneous acoustic wave equation reads [18]:

1

c2
0

∂2p′

∂t2
− %0∇ ·

(
1

%0
∇p′

)
=
∂m

∂t
− %0∇ · f . (1.8)

If the background flow velocity v0 is a non vanishing constant, then ∇p0 = 0 again and
v0 ·∇%0 = 0. d

dt and ∇· can be commuted in this particular case, yielding the convected
wave equation [21]:

d

dt

(
1

c2
0

dp′

dt

)
− %0∇ ·

(
1

%0
∇p′

)
=
dm

dt
− %0∇ · f . (1.9)

This equation can be written as:

L(p′;w0) = S(w0) , (1.10)

with:

L(p′;w0) =
d

dt

(
1

c2
0

dp′

dt

)
− %0∇ ·

(
1

%0
∇p′

)
,

S(w0) =
dm

dt
− %0∇ · f ,

(1.11)

where w0 = (v0, %0, c0). We will see later that other models can be written as above, and
in Sect. 1.3.2 we show how we can solve this form of equation.
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1.1.2 Lighthill equation

In Lighthill’s work [94,95], a subsonic turbulent airflow of relatively small spatial extent
V embedded in a uniform quiescent atmosphere, is considered. Such a situation arises for
example for the flow in a jet, which is the main application we have in mind in this work.
The speed of sound c0, pressure p0, and density %0 in this atmosphere (denoted with a
subscript 0) are constant. The so-called Lighthill’s acoustic analogy consists in realizing
that at large distances from the turbulent region V, the density fluctuations %′ = %− %0,
where % is the density of the real fluid and %′ is not necessarily a first-order term with
respect to %0, ought to behave like acoustic waves in this atmosphere. Thus they should
satisfy an homogeneous wave equation:

1

c2
0

∂2%′

∂t2
−∆%′ = 0 , (1.12)

away from V. To show this, Lighthill rearranged the equations governing the density fluctua-
tions in the real fluid in the form of Eq. (1.12) appropriate to a uniform acoustic atmosphere
at rest, which coincide with the real fluid outside the turbulent region V. His derivation is
done as follows. In the absence of source, the mass conservation and balance of momentum
of Eq. (1.1) also read, in their Reynolds form:

∂%

∂t
+ ∇ · (%v) = 0 ,

∂(%v)

∂t
+ ∇ · (%v ⊗ v − σ) = 0 .

(1.13)

Here a ⊗ b is the usual tensor product of vectors a and b such that (a ⊗ b)ij = aibj in
Cartesian coordinates. Applying ∂t to the first equation, ∇· to the second, and substracting
c2

0∆% and recalling that σ = −pI + τ , one obtains the Lighthill equation:

∂2%

∂t2
− c2

0∆% = ∇⊗∇ : T (1.14)

where T (r, t) is the Lighthill tensor [94,95]:

T = %v ⊗ v − τ + (p− c2
0%)I , (1.15)

and ∇⊗∇ : A =
∑

i,j ∂i∂jAij .
In terms of the pressure and density fluctuations p′ = p− p0 and %′ = %− %0, respec-

tively, about that steady atmosphere (which again are not necessarily first-order terms),
and ignoring from now on the viscous stresses τ , 1 one has:

∂2%′

∂t2
− c2

0∆%′ = ∇⊗∇ : T ′ , (1.16)

with:

T ′ = %v ⊗ v + (p′ − c2
0%
′)I . (1.17)

1. The ratio of the Reynolds stress terms %v⊗v to the viscous stress terms τ is of the order of magnitude
of the Reynolds number Re = ‖(%v·∇)v‖

‖∇·τ‖ , which is usually large in aerodynamic noise applications.



D
RA
FT

1.1. ACOUSTIC WAVES IN A STATIONARY FLOW AND QUIESCENT LAYERED MEDIUM 17

Eq. (1.16) is derived without any approximation and is true for an arbitrary fluid motion.
It has the same form as the wave equation governing the acoustic field produced by a
quadrupole source S = ∇⊗∇ : T ′ in a non-moving ambient medium–the atmosphere.
Thus there is an exact analogy (Lighthill’s acoustic analogy) between the density variations
that occur in any real flow, and the density fluctuations that would arise in a quiescent
homogeneous atmosphere with speed of sound c0 and a quadrupole source distribution
of strength T ′ [79]. In addition the latter vanishes outside the region of extent V of the
turbulent flow, so that Eq. (1.16) reduces to Eq. (1.12) outside V. Indeed, there the velocity
field v is reduced to the small sound motions and it appears quadratically in Lighthill’s
tensor; and heat conduction effects, which causes departures of p′ from c2

0%
′, are very small.

We now turn to the Lighthill tensor T ′ in Eq. (1.17) and its possible simplifications. The
second term p′ − c2

0%
′ pertains to the heterogeneities of the speed of sound, which are induced

by temperature fluctuations. This term vanishes in isentropic subsonic flows (assuming no
combustion occurs either), but for hot jets temperature gradients are important and the
local speed of sound varies significantly from the ambiant speed of sound c0. The first term
%v ⊗ v (the impulse or fluctuating Reynolds stresses) pertains to the heterogeneities of the
flow, and is often approximated by %0v ⊗ v upon assuming that the density fluctuations
%′ are negligible within the moving fluid; this approximation is adopted in [81, 94, 95] and
in the discussion below. In particular, it is argued in e.g. [94] that it is valid at low Mach
number M ≡ |v|c0 and provided that any difference in temperature between the flow and the
atmosphere is due to kinetic heating or cooling.

Next, a sound wave propagating in the surrounding atmosphere is assumed to be incident
upon the turbulent flow. In this situation the fluid particle velocity is written v(r, t) =
v0(r, t) + v′(r, t), where v0 is the turbulent flow velocity in the absence of acoustic field,
and v′ is the velocity perturbation induced by the presence of the incident sound wave.
In this setting v0(r, t) = 0 whenever r 6∈ V. Then adopting the foregoing approximations,
that is, temperature variations are small (the jet is at the ambient temperature) and the
magnitudes of v0 and v′ are small compared to c0, the Lighthill tensor on the right-hand
side of Eq. (1.16) is:

T ′ ' %0v0 ⊗ v0 + 2%0v0 ⊗s v′ , (1.18)

up to second order terms in v′. Here a⊗s b = 1
2(a⊗ b+ b⊗ a) stands for the symmetric

tensor product of vectors a and b. Consequently Eq. (1.16) has the form:

L(%′;w0) = S(w0) , (1.19)

where:

L(%′;w0) =
∂2%′

∂t2
− c2

0∆%′ − 2%0∇⊗∇ : (v0 ⊗s v′) ,

with w0 = (v0, %0, c0), and v′(%′) is the acoustic velocity field induced by %′, and:

S(w0) = %0∇⊗∇ : (v0 ⊗ v0) .

Eq. (1.19) has the same form as Eq. (1.10) for the convected wave equation, and is solved
for a particular model of the background flow velocity v0 by a Born approximation alike;
see Sect. 1.3.2.
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1.1.3 Lilley equation

The analysis in Sect. 1.1.1 is now specialized to the case where v0 does not depend
on ”horizontal” Cartesian coordinates, say x, y, but only on the ”vertical” coordinate z.
This situation arises in many instances of real media (the ocean, the Earth’s crust and
atmosphere, some media in technical applications such as jet flows, etc.) which can be
approximated by layered ones. The case of ”horizontally” stratified media is the primary
subject of the treatment below. From now on we note r = (x, z) where x stands for the two-
dimensional horizontal components of the position vector r, and z stands for the vertical
component. It is further assumed that the background velocity v0 of the unperturbed flow
is also horizontal:

v0(r) = v0x(z)êx + v0y(z)êy , (1.20)

where (êx, êy, êz) is a Cartesian basis. Then (v0 ·∇)v0 = 0, ∇ · v0 = 0, and consequently
∇p0 = 0, (v0 ·∇)%0 = 0. The linearized Euler equations together with the equation of
state read:

d%′

dt
+ v′ ·∇%0 = −%0∇ · v′ +m, (1.21a)

dv′

dt
+ v′z

dv0

dz
= − 1

%0
∇p′ + f , (1.21b)

dp′

dt
= c2

0

(
d%′

dt
+ v′ ·∇%0

)
, (1.21c)

where v′z = v′ · êz is the vertical component of the acoustic velocity. We may eliminate the
horizontal components of v′ from these equations by applying the divergence operator ∇·
to Eq. (1.21b) and the convective derivative d

dt to Eq. (1.21a). By subtracting one from the
other and noting the relation:

∇ · dv
′

dt
− d

dt
∇ · v′ = dv0

dz
·∇v′z = ∇ ·

(
v′z
dv0

dz

)
,

we get:
d

dt

(
1

c2
0

dp′

dt

)
− %0∇ ·

(
1

%0
∇p′

)
− 2%0

dv0

dz
·∇v′z =

dm

dt
− %0∇ · f . (1.22)

In Eq. (1.22) above v′z may be eliminated using the projection of Eq. (1.21b) on êz, which
yields dv′z

dt = − 1
%0

∂p′

∂z + fz where fz = f · êz. Lilley’s equation [97] is finally obtained by
taking the convective derivative of Eq. (1.22):

d

dt

[
d

dt

(
1

c2
0

dp′

dt

)
− %0∇ ·

(
1

%0
∇p′

)]
+ 2%0

dv0

dz
·∇

(
1

%0

∂p′

∂z

)
=
d2m

dt2
+ 2%0

dv0

dz
·∇fz − %0

d

dt
∇ · f . (1.23)

The left-hand side is the so-called Pridmore-Brown operator [113]. The Lilley equation is
also derived in [79, Chapter 1] for a unidirectional, transversely sheared background flow of
the form v0(r) = v0(φ(y, z))êx, where φ is an arbitrary function of the cartesian coordinates
y, z in the crossflow directions. If for example φ(y, z) =

√
y2 + z2 the background flow
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remains constant on cylindrical surfaces of radius r = φ(y, z) and the Lilley equation in
cylindrical coordinates (r, θ, x) is:

d

dt

[
d

dt

(
1

c2
0

dp′

dt

)
− %0∇ ·

(
1

%0
∇p′

)]
+ 2%0

dv0

dr

∂

∂x

(
1

%0

∂p′

∂r

)
=
d2m

dt2
+ 2%0

dv0

dr

∂fz
∂x
− %0

d

dt
∇ · f . (1.24)

We can write this equation as:

L(p′;w0) = S(w0) , (1.25)

with:

L(p′;w0) =
d

dt

[
d

dt

(
1

c2
0

dp′

dt

)
− %0∇ ·

(
1

%0
∇p′

)]
+ 2%0

dv0

dr

∂

∂x

(
1

%0

∂p′

∂r

)
,

S(w0) =
d2m

dt2
+ 2%0

dv0

dr

∂fz
∂x
− %0

d

dt
∇ · f ,

(1.26)

where w0 = (v0, %0, c0). Eq. (1.25) has the same form as Eq. (1.10) for the convected wave
equation, and is solved for a particular model of the background flow velocity v0 by a Born
approximation alike; see Sect. 1.3.2.

1.1.4 Acoustic waves in quiescent layered media

Acoustic waves propagating in quiescent layered media have been studied in [71,72,74]
for example. The situation considered is that of a source f located at xs = 0 and zs ≥ 0
(for we remind that r = (x, z) = (x, y, z) is the position vector where x stands for the
two-dimensional horizontal coordinates and z is the vertical coordinate) emitting a pulse
that will pass through an heterogeneous layer of thickness L, located between z = 0 and
z = −L. The signal is recorded at the bottom of the layer at z = −L; see Fig. 1.1 for
a sketch of this configuration. Here we are first interested by the deterministic case with
constant parameters of the layer and we will show how we can randomize the medium in
Sect. 1.3.

We consider linear acoustic waves propagating in three spatial dimensions:

%0
∂v′

∂t
+ ∇p′ = %0f ,

1

K0

∂p′

∂t
+ ∇ · v′ = 0 ,

(1.27)

where K0 = %0c
2
0 is the bulk modulus. Eq. (1.27) is obtained from Eq. (1.7) with m = 0

and using Eq. (1.6). The particular geometry of the problem suggests to use the particular
Fourier transform, and its inverse:

τ̂(ω,κ, z) =

∫∫
eiω(t−κ·x) τ(t,x, z) dtdx , (1.28a)

τ(t,x, z) =
1

(2π)3

∫∫
e−iω(t−κ·x) τ̂(ω,κ, z)ω2 dωdκ , (1.28b)
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0

zs

f

z

−L

Figure 1.1 – Acoustic waves in a quiescent layered medium of typical thickness L. The
emitting sources f is centered at some zs ≥ 0.

for either τ = p′ or τ = v′. In the Fourier domain the problem (1.27) then reads:

−iω%0v̂
′
x + iωκp̂′ = %0f̂x ,

−iω%0v̂
′
z +

∂p̂′

∂z
= %0f̂z ,

− iω

K0
p̂′ + iωκ · v̂′x +

∂v̂′z
∂z

= 0 ,

(1.29)

where v′x is the projection of v′ on the plan x and v′z is the the projection of v′ on the
z-axis. We eliminate the terms with v̂′x in (1.29) multiplying the first equation by κ

%0
and

adding the third:

∂v̂′z
∂z
− iω

(
1

K0
− |κ|

2

%0

)
p̂′ = κ · f̂x ,

∂p̂′

∂z
− iω%0v̂

′
z = %0f̂z .

(1.30)

The source:

F (x, z) =

(
%0f(x, z)

0

)
= F (xs, zs)δ(x− xs)δ(z − zs). (1.31)

generates a forcing term at the point (xs, zs). We choose xs = 0 here so δ(x− xs) = δ(x).
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It will be useful in the Fourier domain because δ̂(x) = 1. Eq. (1.30) can be reduced to:

L(p̂′, v̂′z;w0) = Ŝ(w0) , (1.32)

with:

L(p̂′, v̂′z;w0) =

(
∂v̂′z
∂z − iω

(
1
K0
− |κ|

2

%0

)
p̂′

∂p̂′

∂z − iω%0v̂
′
z

)
(1.33)

a linear operator with respect to p̂′ and v̂′z, and:

Ŝ(w0) =

(
κ · f̂x
%0f̂z

)
δ(z − zs) , (1.34)

where, in particular, w0 = (K0, %0) here. Again, Eq. (1.32) can be solved for a particular
model of the layer parameters w0 by a Born approximation; see Sect. 1.3.2.

1.1.5 Acoustic waves in randomly heterogeneous media

Research on wave propagation in random media has always been motivated by commu-
nication and imaging problems. Geosciences were the first to take an intense interest in
imaging in random media, typically source and reflector localization [8, 34]. The objective
was to better understand the interaction of waves with the medium in order to design and
implement new imaging techniques. The characterization of a stratified or porous media,
inducing multiple reflections-transmissions is useful in many fields (seismic-volcanic stud-
ies, oil industry, construction, ...). The acoustic wave will be separated in two parts, the
coherent one, which will undergo a delay and an attenuation, and the incoherent one, so-
called coda in seismology, which have random fluctuations. Indeed in the literature, it is
shown that the coherent part of the wave experiences a deterministic spreading and a ran-
dom time shift. As the coherent wave decays exponentially with the propagation distance,
the relevant information is carried by the covariance function or second-order moment of
the incoherent wave field. These phenomena were originally described by O′Doherty and
Anstey in a geophysical context [105]. They were interested in the delay produced by a
stratified environment on a signal as well as the attenuation of that induced by multiple
reflections-transmissions. Then they were studied mathematically in [2, 56]. The mathe-
matical approach is based on techniques of separation of scales as introduced by George
Papanicolaou and his coauthors [8]. One finds that the coherent (mean) wave amplitude
decreases with distance traveled since wave energy is converted to incoherent fluctuations.
In this context the model presented above in Sect. 1.1.4 can be useful for modeling wave
propagation in randomly layered media. Indeed, Alfaro et al. [2], Fouque et al. [72] or
Garnier [74] use this approach assuming that the background properties w0 are decom-
posed into mean properties, and fluctuating parts modeled by zero mean random fields.
Inhomogeneities are supposed to be small. In particular for a randomly stratified quiescent
medium, K0 (and possibly %0) in Eq. (1.32) is randomized in this manner. In Sect. 1.3 we
will further detail some models of acoustic wave propagation in random media.

The scattering of acoustic waves by a random flow is also widely studied. In [64–66]
or [103, 112] and further works by the same authors, Eq. (1.25) is solved introducing an
incident field propagated in the mean background flow, and a scattered field induced by
scattering by the fluctuating turbulent velocity. In this model the background flow velocity



D
RA
FT

22 CHAPTER 1. ACOUSTIC WAVES IN QUIESCENT AND MOVING RANDOM MEDIA

v0 is randomized by considering its mean part and a fluctuating part, representing the
turbulent velocity fluctuations within the flow. An integral representation is derived for
that scattered field in the Born approximation, using a Green function-like solution of the
Pridmore-Brown operator of which source is constituted by the incident field. As in [64–66],
McAlpine and Tester [104] start from Lilley’s equation (see Sect. 1.1.3) and randomize it to
study the spectral broadening. The Lighthill equation of Sect. 1.1.2 is solved along the same
lines in [81]. In these approaches, the scattered field is thus obtained as a linear function of
the turbulent velocity v0 (or bulk modulus K0 as in Sect. 1.1.4). This allows to compute its
autocorrelation function and power spectrum, provided that the autocorrelation function
and power spectrum of the fluctuations of the turbulent velocity are known. The same
approach will be developed in Chapter 2 for the model of a randomly stratified background
flow we have considered in this research. The overall analysis is described in Sect. 1.3.2,
while in Sect. 1.2 below we recall for completeness the useful definitions and properties of
the autocorrelation and spectral density matrices of a random field.

1.2 Autocorrelation function and power spectral density

In the various models outlined above in Sect. 1.1.1 the ambient flow velocity may be
written:

v0 = v + εV , (1.35)

where v is the constant mean velocity field, V is the fluctuating turbulent velocity modeled
by a random field with zero mean, and ε is a small scaling factor–typically the turbulence
intensity scaling the turbulent kinetic energy of the flow. This model of the ambient flow
velocity will be considered in Chapter 2. For this reason we will review here some important
definitions of stochastic processes and their correlation which are widely used in this thesis.
The random field (V (r, t), (r, t) ∈ R3×R) such that E

{
|V (r, t)|2

}
< +∞,∀(r, t) ∈ R3×R,

is characterized as follows. Its autocorrelation function is:

RV (r1, r2, t1, t2) = E
{
V (r1, t1)V (r2, t2)

T
}

(1.36)

where · T is the complexe conjugate transpose and E stands for mathematical expectation.
The random field is mean-square stationary if its mean is independent of t–if we talk about
time–, i.e. E{V (r, t)} = 0 if the random field is centered–which is the case for us–, and its
autocorrelation function depends on the difference of times solely:

RV (r1, r2, t1, t2) = RV (r1, r2, t1 − t2)

with RV (r1, r2, t1 − t2)T = RV (r1, r2, t2 − t1). This definition holds for the spatial vari-
ables alike. The random field is mean-square homogeneous if its mean is independent of r,
i.e. E{V (r, t)} = 0 if the random field is centered–which is again the case for us–, and its
autocorrelation function depends on the difference of positions solely:

RV (r1, r2, t1, t2) = RV (r1 − r2, t1, t2)

with RV (r1 − r2, t1, t2)T = RV (r2 − r1, t1, t2). The random field can be mean-square sta-
tionary and homogeneous and in this case its autocorrelation function reads:

RV (r1, r2, t1, t2) = RV (r1 − r2, t1 − t2) .
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Thus one has RV (r1 − r2, t1 − t2)T = RV (r2 − r1, t2 − t1). Homogeneous isotropic turbu-
lence is defined by the properties that [13]:

RV (r, t) = Θ
T
RV (Θr, t)Θ

for any proper rotation Θ, and RV (r, t) = RV (r, t)T. Furthermore it is shown that in this
case RV (r, t) necessarily reads [13,88,114]:

RV (r, t) = F (r, t)r̂ ⊗ r̂ +G(r, t)I , (1.37)

where r = |r|, r̂ = r
r for r 6= 0, and r, t → F (r, t) and r, t → G(r, t) are even functions.

According to the Wiener-Khintchine theorem [100], the necessary and sufficient condition
for RV (r, t) to be the correlation function of a mean-square stationary and homogeneous
centered random field is that it should be expressible as (see for example [13, §2.4]):

RV (r, t) =
1

(2π)4

∫∫
e−i(ωt−k·r) ΣV (k, ω)dkdω , (1.38)

where k, ω → ΣV (k, ω) is an Hermitian, non-negative complex matrix function–the power
spectral density (PSD) matrix of the random field (V (r, t), (r, t) ∈ R3 × R). Conversely:

ΣV (k, ω) =

∫∫
ei(ωt−k·r)RV (r, t)drdt . (1.39)

Since
∫

eiωt dt = 2πδ(ω), time stationarity and spatial homogeneity implies that:

E
{
V̂ (k1, ω1)V̂ (k2, ω2)

T
}

= (2π)4δ(k1 − k2)δ(ω1 − ω2)ΣV (k1, ω1) , (1.40)

and ΣV (−k1,−ω1) = ΣV (k1, ω1)T, where the Fourier transform is defined by:

V̂ (k, ω) =

∫∫
ei(ωt−k·r) V (r, t)drdt . (1.41)

Now we have seen the main definitions used in this thesis for the autocorrelation function
and the power spectral density of a stochastic process.

1.3 Acoustic waves in random media and random flows

Having introduced several models of acoustic wave propagation in homogeneous and
heterogeneous flows in Sect. 1.1, and useful definitions for stochastic processes in Sect. 1.2,
we present here some models of acoustic wave propagation in random media and random
flows. The motivations for considering such models have been outlined in Sect. 1.1.5 in a
general context. In this section we more particularly focus on the experiments with acoustic
waves in jet flows carried out by Candel et al. [41–43], and the approaches that may be
used to explain their observations.
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1.3.1 Acoustic scattering in the anechoic open jet wind tunnel measure-
ments

Despite the major differences between real and experimental configurations that must be
considered during acoustic measurements, anechoic open jet wind tunnels are experimental
devices used to approach flight conditions in the laboratory in order to study aeroacoustic
characteristics of an aircraft. Indeed, in the experimental configuration, the scale model
aircraft, placed in a flow of uniform velocity, is motionless compared to the microphones
located in a medium at rest, outside the vein. In a real configuration, the aircraft moves
relative to the observer which induces a Doppler effect on the perceived wavelength. During
the experimental tests, the differential velocity destabilizes the flow according to the Kelvin-
Helmholtz mechanism and causes the formation of a turbulent shear layer. The acoustic
waves emitted by the model cross the uniform flow, then the turbulent shear layer before
reaching the microphones. In order to characterize the physical phenomena that come into
play during the propagation of an acoustic wave, experiments [43,81] have been conducted
by replacing the model with a monochromatic source S of which we know the emission
frequency. The acoustic wave emitted by S thus undergoes four effects: the convection of
the acoustic wave by the medium; the diffraction of the wave by the orifice of the source; the
refraction of the acoustic wave by the average velocity gradient; the diffusion of the acoustic
wave by the fluctuations of turbulent velocities of the shear layer. These phenomena come
to replace the Doppler effect, present in real flight conditions.

The effects of convection and diffraction have been studied by Candel et al. [42] during
measurements in the Von Kármán Institute L1 wind tunnel. Their diffraction model makes
it possible to take into account the influence of uniform flow on acoustic emission. They also
analyzed the effects of refraction on the acoustic propagation thanks to the measurement
of the average phase variation (between the electric pulse of the source and the pressure
signal received by a microphone outside the jet), outside the jet. The average phase differ-
ence evolves linearly as a function of the viewing angle (relative to the direction of flow),
independently of the emission circular frequency ω0. This shows the geometrical nature of
acoustic propagation, confirmed by comparisons between experimentally measured direc-
tivity diagrams and diagrams calculated using a geometrical acoustical code for stationary
flow. Finally, the refraction induces a spatial redistribution of the amplitude, characterized
by a deviation of the acoustic propagation law in 1/d, where d is the distance between the
wavefront and the source. This spatial reorientation of the amplitude and the change of the
propagation angles during the crossing of the shear layer has been studied by Amiet [7].
The author expresses the relationships that exist between the initial propagation angle, the
angle after refraction, and the propagation angle without the shear layer. He shows that the
relationships between the angles do not depend on the thickness of the shear layer, if it is
small compared to the distance between the source and the microphone. For the corrections
to be valid, however, it is necessary that the microphone source distance is large in front of
the wavelength and the dimensions of the source. The amplitude correction depends on the
nature of the shear layer (plane or cylindrical). Ahuja et al. [4] explained the procedure to
take into account the effects of convection and refraction during acoustic measurements in
open-jet anechoic wind tunnel. They showed that the level of sound pressure emitted by the
source is precisely found, provided that we take into account the change in directivity of the
rays and that we apply, at the level of sound pressure received by the microphones located
in outside the jet, correction coefficients related to the microphone source distance. The
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authors are also interested in potential internal reflections on shear layers. They become
important if the direction of the acoustic wave emitted is close to that of the flow. For
measurements more or less above the source, they are weak.

The experimental setup used by Candel et al. [41] is schematized in Fig. 1.2. S is an

x
0
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z
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1

U
2

Figure 1.2 – Sketch of the experimental setup of Candel et al. [41]. S is the source position,
and P is the microphone position.

acoustic source, placed at the center of a jet at the velocity U1. The scattered pressure
field is measured outside the jet, at the microphone P . The microphone P is at an angle
of θP = 90◦ to the source. The authors measure the turbulent velocity fields with hot
wires. The large turbulent structures, described by Brown and Roshko [38], are convected
at the velocity vt. The first consequence of the interaction between the acoustic wave and
the turbulent flow lies in the modulation of the amplitude of the scattered pressure field
extracted from the work of Candel et al. [41]. This modulation is low frequency, compared
to the ”carrier” frequency, i.e. the emission frequency f0 = ω0/2π. The power spectral
density of the pressure fluctuations. received by the microphone P , extracted from [41], is
plotted on Fig. 1.3, as a function of the frequency centered on f0, f − f0. In their works,
the authors used an incident monochromatic source that emits between 4 kHz and 20 kHz,
plunging in a jet between 20 and 60 m/s. This limit is explained by the fact that the energy
scattered is equal to the total energy when one exceeds f0 ' 20 kHz [81]. Furthermore the
travel time between the source and the microphone is independent of the carrier frequency
for 1 kHz ≤ f0 ≤ 20 kHz and in these conditions for a central frequency greater than 6kHz
more than half of the acoustic power is carried by the scattered field [41].

A large part of the acoustic energy remains contained in a ”main peak”, corresponding
to the emission frequency, but we also observe the presence of two ”secondary lobes” on
each side of the peak. As the transmission frequency increases, the energy contained in the
main peak decreases in favor of the side lobes. It is interesting to note that the frequencies
for which the lobes reach their maximum, are identical to the sign and independent of the
emission frequency. Candel et al. [41] also studied the influence of the velocity of the jet
on the position of the maximum lobes. They showed that the frequency shift is propor-
tional to the convection velocity of the turbulent structures vt. The energy distribution on
frequencies adjacent to the transmit frequency is attributed to a Doppler effect. Candel et
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Figure 1.3 – Power spectral density of pressure fluctuations as a function of the centered
frequency f − f0 for a jet velocity U1 = 60 m/s. Figure is taken from [41].

al. [46] show in particular that the diffusion process selects the low frequencies of the shear
layer. This makes it possible to isolate the quasi-periodic nature of the passage of large
turbulent structures. Schlinker and Amiet [116] studied the refraction and also the effects
of acoustic diffusion. The authors explain that the spatial and spectral distribution of scat-
tered energy is a consequence of the Doppler effect. The ray emitted by the source would
be absorbed then re-emitted by the turbulent structure. This induces a double Doppler
effect; At first, the ray is absorbed by a moving receiver and in a second time, re-emitted
by a moving source. Schlinker and Amiet [116] carried out a series of measurements on the
United Technologies Research Center’s Acoustic Research Tunnel to study the influence of
the observation angle θP , the position and frequency of the source, the thickness of the
shear layer and the Mach number of the jet on the attenuation of the main peak. Their
conclusions are in agreement with those of Candel et al. [41]: the main peak is attenuated
when the emission frequency, the thickness of the layer traversed and the Mach number
increase. They also estimated that scattering effects become significant, i.e. when more
than half of the incident energy is scattered, if M1L

λ0
is almost greater than 0.5, with L the

thickness of the shear layer, M1 the Mach number of the jet based on the velocity U1, and
λ0 the wavelength of the acoustic wave emitted by the source.

The characteristics of the scattered pressure field as well as the acoustic diffusion in-
teraction mechanisms previously described have been validated by ”simplistic” analytical
models. These models are often based on a Born approximation applied to the linear equa-
tions retained to describe the acoustic wave propagation phenomena, namely the linearized
Euler equations of Sect. 1.1.1 in [54,55], or the Lighthill equation of Sect. 1.1.2 in [41,81], or
the Lilley equation of Sect. 1.1.3 in [64–66,104], or the wave equation in a layered medium
of Sect. 1.1.4 in [2, 72,74].

1.3.2 The Born approximation

The different models of acoustic wave propagation in quiescent and moving media out-
lined in Sect. 1.1 read:

L(p′;w0) = S(w0) , (or L(%′;w0) = S(w0)) , (1.42)
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where L is a linear operator with respect to p′ (or %′), and S is the right-hand side playing
the role of a source to p′ (or %′). From now on in this section we drop the primes (·)′ and
consider (see Eq. (1.35)) v0(r, t) = v + εV (r, t), where again v is the mean velocity field
of the flow, V is its turbulent (random) fluctuations, and ε is a small parameter. Then the
foregoing equation is further linearized about v as (the same holds for equations in %):

L(p;w0) = S(w0) ,

L(p;v + εV , %0, c0) = S(v + εV , %0, c0) ,

L(p;w) + εL(p;W ) = S(w) + εS(W ) ,

(1.43)

where L and S are the linearized parts of L and S, respectively, with respect to v, w =
(v, %0, c0), and W = (V , %0, c0). The strategy is to formulate (1.43) as:

L(p;w) = S(w) + ε (S(W )− L(p;W )) . (1.44)

Now introduce the Green’s function G0(r, r′, t) satisfying:

L(G0;w) = δ(t)δ(r − r′) ; (1.45)

then:

p = G0 ∗ (S(w) + εS(01)(p;W )) , (1.46)

where S(01)(p;W ) = S(W )−L(p;W ) is linear with respect to V and a∗b is the convolution
product of a and b with respect to the time t and the space r. This is a so-called Lippmann-
Schwinger equation [99], of which a solution can formally be constructed by mathematical
induction:

p(n+1) = p(0) + εG0 ∗ S(01)(p(n);W ) , (1.47)

with p(0) = G0 ∗S(w) is the incident wave. We will only go here until the first order, so we
will write p as the sum of the incident field p(0)(r, t) and the scattered field p(01)(r, t) as:

p ' p(1)(r, t) = p(0)(r, t) + εp(01)(r, t) ; (1.48)

then:
p(01) = G0 ∗ S(01)(p(0);W ) . (1.49)

We have an expression of the scattered field p(01), which we can see as a stochastic process
because it is a function of V . It is even a linear function of V , G0 is a linear operator
as well as the convolution ∗, and we saw previously that S(01) is linear with respect to V .
This allows us to write S(01)(p(0);W ) = S

(01)
O (p(0); %0, c0)V where S

(01)
O is a source operator

acting on V , and to express the PSD of p(01) as a function of the PSD of V . If the latter
is a stationary, homogeneous stochastic process of which PSD is ΣV , then the PSD of the
single-scattered field p(01), Σp(01) reads:

Σp(01)(k, ω) = Ĝ0Ŝ(p̂(0);W )Ŝ(p̂(0);W )
T
Ĝ0

T
,

= Ĝ0Ŝ
(01)
O (p̂(0); %0, c0)ΣV (k, ω)Ŝ

(01)
O (p̂(0); %0, c0)

T

Ĝ0

T
.

(1.50)

This is the approach adopted in [47, 64, 81, 103, 104, 112] among others, to derive the
PSD of the pressure field scattered by a turbulent jet flow for sound waves impinging it.
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This is also the approach that will be followed in Chapter 2 of this thesis. A key ingredient
of these analyses is a relevant choice of the PSD ΣV of the turbulent velocity fluctuations
which is consistent with the form imposed on the correlation function of a homogeneous
isotropic turbulence field as outlined in [13,88,114] or axisymmetric turbulence as outlined
in [12,51,98]; see Sect. 1.2.

1.3.3 The O’Doherty-Anstey (ODA) theory

In this section we will focus on a new approach introduced by Fouque et al. [71] and
Garnier [74] to produce images in the context of media with random inhomogeneities.
The objectif of [74] is to study the cross-correlation functions of the signals recorded at
a series of points located at the surface of a randomly layered medium. It is shown that
this information can be processed to locate and identify an active source embedded in a
randomly layered medium.

Wave propagation in a randomly layered medium

At first we will show how we can describe the propagation of a short pulse emitted by
a source embedded in a random layered medium with the ODA theory. The problem is the
same as in Eq. (1.27):

1

K0

∂p′

∂t
+ ∇ · v′ = 0 ,

%0
∂v′

∂t
+ ∇p′ = f .

(1.51)

In these studies the fluctuation of the medium are modeled by a random process of %0 and
K0 = %0c

2
0. The model is:

%0(z) =

{
% [1 + η (z)] for z ∈ [−L, 0] ,

% for z ∈ (−∞,−L) ∪ (0,+∞) ,
(1.52a)

1

K0(z)
=

{
1
K [1 + ν (z)] for z ∈ [−L, 0] ,
1
K for z ∈ (−∞,−L) ∪ (0,+∞) ,

(1.52b)

with η and ν described as random coefficients rapidly varying, making it possible to model
the inhomogeneities of the medium. They are both zero-mean processes, furthermore the
ratio between the correlation length of the fluctuations of the medium and the typical size
of the medium is small. With this definition we have c =

√
K
% . In [2] the perturbation

model is composed by (1.52a) and (1.52b), the problem is solved in one dimension. A
contrario in [71] and [74] the perturbation model is only on the bulk modulus, (1.52b),
and the problem is solved in three dimensions. This is what is presented here. This case
is the one we consider in Chapter 2 before randomizing the flow. Despite the addition
of two dimensions, compared to [2], the random fluctuations of the medium are still only
z-dependent. The geometry of the problem is the same as the one introduced in 1.1.4, we
will then use the Fourier transform introduced in Eq. (1.28a) and its inverse Eq. (1.28b).
The source f generate a forcing term at the point (xs, zs):

f(t,x, z) = F (t)δ(x− xs)δ(z − zs) . (1.53)
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F (t) emits a short pulse at time ts:

F (t) =

(
fx
fz

)
(t− ts) , (1.54)

and is somewhere below the surface (xs, zs < 0).
The front pulse emitted by the source propagates through the random medium, and its

propagation is governed by the well-known ODA theory [105]. Garnier [74] explains that the
front pulse is modified in two ways in this case. First, its shape spreads out in a deterministic
way due to multiple scattering. Second, the wave itself is no longer deterministic, but a
random time shift can be observed and described in terms of a standard Brownian motion
Bz. These two effects can be described in terms of the convolution ODA kernel KODA of
Eq. (1.55)) [72,105]:

K̂ODA(ω,κ) = exp

(
i
√
γ(ω, κ)Bzs +

γ(ω, κ)zs
2

)
, (1.55)

where:

γ(ω, κ) =
γ0ω

2

2c4ζ(κ)2
,

γ0 =

∫ ∞
0

E {ν(0)ν(z)} dz ,
(1.56)

with ζ(κ) =
√

1
c2
− |κ| and Bzs a standard Brownian motion. To sum up, the coherent

front pulse that can be recorded at the surface z = 0 is:

p′(t,x, z = 0) =
1

2π

∫
I(κ)

2
e−iω(t−ts−κ·(x−xs)+ζ(κ)zs) K̂ODA(ω,κ)Σa(ω,κ)ω2dωdκ , (1.57)

where I =
%

ζ(κ) and Σa is the upward source contribution:

Σa(ω,κ) =

√
I(κ)

%
κ · f̂x(ω) +

1

I(κ)
f̂z(ω) . (1.58)

KODA acts as a low-pass filter. A stationary phase argument shows that the leading-order
contribution is associated with the stationary point:

κ =
x− xs√

|x− xs|2 + z2
s

.

The pressure can be expressed in terms of the solution p(0) of the homogeneous problem.
The random pressure field can be expressed as a convolution of p(0) with a Gaussian kernel:

p′(t,x, z = 0) =
[
p(0)(·, r = (x, 0)) ∗ Nx

](
t−
√
γx√
2c
Bzs

)
, (1.59)

where:

Nx =
c√

γx|zs|π
e
− c2t2

γx|zs| ,

γx = γ0
|x− xs|2 + z2

s

z2
s

.

(1.60)
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Localization of a point source

The principle of inverse problems is to calculate or estimate the causes of a phenomenon
from a set of observations of the effects. Here we give an example of an inverse problem:
the localization of a point source in the context presented before. After that we discuss
some remarks given in the literature about source identification in the context of random
media.

In [74] we can see a brief review of source localization in random media resolving an
inverse problem. The author says that it is important to determine how medium uncer-
tainties transfer to uncertainties for source localization, in oceans or the Earth for example.
As it is impossible to know exactly the medium properties, corrtan efficient method of
localization without knowledge of these properties has to be developed. Considering the
same configuration as in the previous paragraph, the source term is assumed to be centered
below the surface of the random medium at zs < 0, and to emit a short pulse. The arrival
times at each observation point Oj are:

τj = ts +
1

c
|OjS|+

√
γxj√
2c
Bzs .

The aim is then to invert these equations to determine the source location. The situation
seems complicated because of the presence of the random time shifts. However, these
unknown shifts can be removed. From the expression (1.60) of γx, on has [74]:

τj = ts +
1

c
|OjS| (1 + Zs) , Zs =

√
γ0√

2|zs|
Bzs . (1.61)

The analysis shows that Zs does not depend on the observation point. To find the source
location signals are recorded over the time with N sensors positioned at observation points.
Then we need to invert the arrival times to determine the source location S = (xs, zs),
the source emission time ts, and the random delay Zs. We can see in [74] that it is then
possible to compute the source location without error with five observation points, N = 5.
Garnier [74] has therefore just proposed a procedure to locate the source that removes the
random components introduced by the multiple scattering in the medium and thus allows
an exact localization.

In this context Garnier [74] also describes the imaging of passive diffusers embedded
in a random half-space and illuminated by a source located on the surface or simply by a
random noise generated by a set of unknown sources. He shows that the cross-correlation
function (CCF) of noisy signals recorded at two observation points on the surface can be
used to retrieve information on ballistic motion. This information can be processed for
imaging. Moreover, it is proved in [74] that the method is stable with respect to the
statistical distribution of the medium and the statistical distribution of the noisy sources.
It allows passive imaging of unknown media using only background noise. This can be
put into perspective by proposing to use this kind of techniques to construct ”pseudo-
seismograms” in geophysics, where controlled active sources are difficult to obtain. Finally,
it is hypothesized in [74] that the results can be extended to other propagation regimes
where the time inversion technique is statistically stable. Qualitatively, the mechanisms
responsible for the good properties of the CCF are similar to the ones that ensure efficient
pulse refocusing during time-reversal experiments. Time-reversal refocusing properties are
well understood mathematically not only for three-dimensional waves in randomly layered
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media [70] but also, for instance, for paraxial waves [10,22,108] or classical waves with weak
fluctuations and in the high frequency limit [11].

1.3.4 Radiative transfer theory

The incoherent wave intensity can also be calculated approximatively from a transport
equation that has the form of a linear radiative transport equation [1, 67, 85, 86, 115]. The
theory of radiative transport was developed to describe how light energy propagates through
a turbulent atmosphere. It is based upon a linear transport equation for the angularly
resolved energy density and was first derived phenomenologically during the second half
of 20th century, [52, 123]. Ryzhik et al. [115] derive this approach to any type of waves,
and particularly to acoustic wave that what we are interested in. The authors have the
intuition that they need three conditions for obtaining good results with radiative transport
equations:

1. The typical wavelengths λ0 are short compared to macroscopic features of the medium:
high frequency case,

2. the correlation lengths of the inhomogeneities lc are comparable to wavelengths λ0,

3. the fluctuations of the inhomogeneities are weak.

The authors insist on the second condition which allows a strong interaction between waves
and inhomogeneities. This is reminiscent of what has been observed by other studies [103,
104], including the importance of this second condition. Here we consider (1.27) with the
perturbation model (1.52), Ryzhik et al. [115] reformulates the problem as a symmetric
hyperbolic system:

A(x)
∂

∂t

(
v′

p′

)
+

3∑
i=1

Di ∂

∂xi

(
v′

p′

)
= 0 , (1.62)

where

A(x) =

(
%I 0

0 1
K

)[(
I 0
0 1

)
+

(
η(x)I 0

0 ν(x)

)]
, (1.63)

Di has all zero entries expect for Di
i4 = Di

4i = 1 and, v′ and p′ are the velocity and the
pressure disturbances respectively. Therefore the power spectral density Σsvlw(k) of A is:

Σsvlw(k) = δsvδlwδs≤3δl≤3Σηη(k) + δsvδlwδs≤3δl4Σην(k)

+δsvδlwδs4δl4Σνν(k) + δsvδlwδs4δl≤3Σην(k) .
(1.64)

The indices s, v, l, w go from 1 to 4 and we use notation δlw which is equal to 1 if l = w and
equal to 0 otherwise, and δl≤3 which is equal to 1 if l ≤ 3 and to 0 otherwise. Here Σηη,
Σην , and Σνν denote the Fourier transforms of the correlation functions of η with himself,
η with ν, and ν with himself, respectively. Now the authors write the radiative transport
equation verified by the angularly resolved, wave vector dependent, scalar energy density
a(t,x,k) defined for all wave vector k at each point x and time t:

∂a

∂t
+ ck̂ ·∇xa =

πc2|k|2

2

∫
δ(c|k| − c|k′|)(a(k′)− a(k))

×
[
(k̂ · k̂′)2Σηη(k − k′) + 2(k̂ · k̂′)Σην(k − k′) + Σνν(k − k′)

]
dk′ (1.65)
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with:

k̂ =
k

|k|
=

sin θ cosφ
sin θ sinφ

cos θ


in spherical coordinates, and c =

√
K/% is the speed of sound. We can link a with p′ and

v′ by the expression:∫
a(t,x,k)dk =

1

2
%(x)|v′(t,x)|2 +

1

2

1

K(x)
p′2(t,x) . (1.66)

Time-reversal experiments in random media have also been intensively studied [68, 71,
72]. As a result the analysis and understanding of the correlation properties of incoherent
wave fields have made tremendous progress in the recent years and is now the basis of many
modern correlation-based imaging techniques [23, 31, 77]. We will return to these aspects
at the end of this chapter. It should be noted that the work done by Fouque et al. [72] has
focused on grouping all these types of methods, be it the propagation aspects of a wave in
a random medium or the aspects of time-reversal.

There are other methods used to model the scattering of an acoustic wave by a shear
layer. The general method of geometric acoustics has been developed in detail by Candel
in [44, 45, 48] and has been applied in many flow configurations, notably in wind tunnel
jets [41, 42]. Campos [39, 40] proposes a model, called the heuristic approach, to study the
transmission of sound through turbulent shear layers which it establishes by considering
three frequency regimes, λ0 � lc, λ0 � lc, and λ0 ∼ lc, where lc is the typical size of the
inhomogeneities of the shear layer.

1.4 Numerical simulation methods of acoustic waves in ran-
dom flows

In this section we will introduce different approaches to make numerical simulations
of the experiments described in Sect. 1.3.1. These simulations involve the resolution of a
problem of fluid dynamics (computational fluid dynamics: CFD) as well as a problem of
aeroacoustics (computational aeroacoustic: CAA), which makes the implementation com-
plicated.

Several teams have tried to find the results observed by Candel, Guédel and Julienne
numerically. It was interesting, as a first approach, to study the interaction between an
acoustic wave and an isolated vortex. This study was carried out by Candel [44], then
by Colonius et al. [59] on a static vortex and more recently by Clair and Gabard [54] in
the configuration of a moving vortex. A numerical scattering study that is closer to the
turbulent shear layer has been performed by Ewert et al. [63, 64, 66] and more recently by
Clair and Gabard [55]. But the study that is the closest to the observations done by Candel
et al. [41] was made by Bennaceur during his thesis [16,17].

Bailly et al. [9] computed the noise generated and radiated by turbulent flows from the
linearized Euler equations with a source term induced by the turbulent velocity fluctuations
and a mean flow generated by a RANS (Reynolds Averaged Navier-Stokes) simulation.
The turbulent velocity fluctuations were obtained by a random Fourier series [111, 117]
accounting for the convection velocity of the turbulent eddies [90]. Ewert et al. [64, 66]
numerically simulated the propagation of an acoustic wave in a flow with a mean velocity
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gradient and turbulent velocity fluctuations, using the CAA PIANO code [61]. However, the
presence of a mean field gradient in the linearized Euler equations causes the appearance of
hydrodynamic instabilities. This led the authors to rather solve the Pierce equation [110]
which describes the propagation of sound in an unsteady and inhomogeneous flow. The
turbulent velocity fluctuations are modeled by the Random Particle Mesh (RPM) method,
introduced by Ewert [63, 65], which is a stochastic method that generates an unsteady
turbulent field. This method consists in generating a family of either one (in two dimensions)
or three (in three dimensions) fluctuating turbulent quantities ψ by filtering a white noise,
connected to the turbulent velocity field by V = ∇ × ψ, whose tensor of spatio-temporal
cross-correlations depends of the correlation length lc, the correlation time tc, and the
variance σ2

ψ, of the fluctuations of ψ. It is then necessary to choose the values of σ2
ψ, lc, and

tc. These quantities can be linked to the intensity of the fluctuating kinetic energy and the
rate of dissipation of the kinetic energy fluctuating that can be obtained via a numerical
simulation of RANS type. Furthermore they used a sponge layer as boundary conditions
for the PIANO simulations [66, 73]. The authors applied this method to the experimental
configuration of Candel et al. [41, 42]. They first performed a numerical simulation of
RANS type in order to obtain the values of σ2

ψ, lc, and tc to feed the RPM model. Then
they calculated, with their CAA code, the propagation of acoustic waves in the modeled
turbulent shear layer and compared the power spectral densities of the scattered pressure
field with those obtained by Candel et al. [41, 42]. Their spectra actually show the two
lobes around the emission frequency but some essential characteristics of the spectra do not
correspond to the experimental observations. As the convergent output velocity increases,
the amount of energy scattered remains substantially the same. In addition, the position of
the lobes also remains the same, whereas it is supposed to grow linearly with the convection
velocity (see Sect. 1.3.1). The authors also observe a difference in level between the main
peak and the secondary lobes more important than the experimental observations. They
attribute this difference to the fact that their simulation does not calculate the azimuthal
components of the source terms of diffusion.

More recently, Clair and Gabard [55] have performed a numerical simulation of acoustic
diffusion by a turbulent layer with the same methodology as [63, 65] (RPM to generate
turbulent fluctuations and CAA code PIANO to compute acoustic propagation). The sta-
tionary average flow is chosen uniform, which avoids having hydrodynamic instabilities
because the average field gradients are zero. Clair and Gabard [55] study in particular the
influence of the source frequency, turbulence convection velocity, and angle of observation
on the shape of the spectrum of the scattered pressure. As in [66] they used a sponge layer
boundary condition [54, 55]. In [55] we can see that 100 points are used to dissipate the
acoustic fluctuations before they reach the boundary. The incoming sound field (monopole
or plane wave) is injected in the domain through a 20 points wide sponge layer adjacent
to the bottom boundary. A specific boundary condition is applied to all other boundaries:
Tam’s radiation boundary condition [119] is applied when the considered incident radiation
is a monopole, and Thompson’s 1-D characteristic condition [122] when it is a plane wave.
The power spectral densities of pressure fluctuations calculated directly above the source
are shown in Fig. 1.4. The spectrum goes from a form similar to that found in their previous
study of acoustic diffusion by a single vortex [54], to a form closer to experimental studies,
when the frequency of the source increases. It would appear that the turbulence zone is
seen as a single large scale by the low frequency acoustic wave, as is the case for diffusion
by a single vortex. As the frequency of the source increases, the finer turbulence plays an
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increasingly important role in the acoustic diffusion mechanism.

Figure 1.4 – Power spectral densities of pressure fluctuations for different frequencies f0 of
the acoustic source. Figure taken from [55]

Bennaceur et al. [16] study the problem of the scattering of an acoustic wave by a
3D spatially-developing plane turbulent mixing layer by means of a large eddy simulation
(LES). The authors generate the turbulent layer and then introduce an acoustic source
in the computational domain. The LES of the turbulent mixing layer and the acoustic
field are performed, allowing the direct computation of the scattered pressure field. They
use CAA methods to minimize the spurious pressure fluctuations created as the turbulent
structures leave the computational domain. The calculated turbulent layer is taken with
an initial Reynolds number Re ≈ 1200 and a convective Mach number M ≈ 0.12. LES is
performed using the FUNk code; see [3,92] for previous studies using this code. A modified
hybrid scheme of the second order AUSM+(P) (advance flow division method), originally
proposed by Mary and Sagaut [101], is used for the discretization of Eulerian flows. It is a
second order centered scheme that detects parasitic oscillations on primitive variables and
activates a sensor function that modifies the Eulerian flow expression, including numerical
dissipation only if oscillations are detected. Finally we can notice that the authors have
added a model of random perturbations at the entry of the computational domain in order
to generate a fully developed turbulent state earlier in the simulations, in the well refined
zone. This mechanism aims at limiting the simulation time as well as the horizontal length
of the computational domain.

A constant pressure is set for the outflow boundary condition while the constant veloci-
ties U1 and U2 (see Fig. 1.2) are set for the upper and lower boundaries in the cross-stream
direction respectively. As the flow is statistically homogeneous span-wise, periodic bound-
ary conditions are applied in the span-wise direction. Thus, a characteristic non-reflecting
boundary condition has been implemented on both the stream-wise and transverse bound-
aries to minimize the spurious waves created while acoustic fluctuations leave the compu-
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Figure 1.5 – Normalized power spectra of pressure fluctuations as functions of the normal-
ized centered frequency (f − f0)∗: (–) numerical simulation of [16] and (•) experimental
observation of [41]. Figure taken from [16].

tational domain. However, Bennaceur et al. [16] notice that such a non-reflecting boundary
condition is not sufficient when aerodynamic fluctuations reach the outflow boundary and
generate small spurious waves that are not negligible compared to the acoustic fluctuations.
Following Colonius et al. [58], two methods are combined. Firstly, the mesh is stretched
in the axial direction so that the turbulent structures are no longer supported by the nu-
merical scheme. Secondly, a damping term is added in the resolution so that the spurious
reflections created by the stretching propagate upstream as less as possible.

The generated results are compared with the experimental results obtained by Candel
et al. [41], with a wide range of parameters studied as well as the effects on the main
characteristics of the scattered field. We can see an example in Fig. 1.5, where one notes the
very good agreement obtained by the authors compared to the experimental observations.

Regarding the works on inverse problems, which we will discuss in detail in the next
section, Borcea et al. [23–29, 31, 32] compute the acoustic pressure by solving the wave
equation in the time domain, with a finite element method that discretizes the mixed
velocity-pressure (first order system) formulation. This is done with a new family of quad-
rangular (2D) mixed finite elements introduced by Bécache et al. [14, 15]. The domain is
assumed infinite so they used a perfectly matched absorbing layer (PML) to surround it,
as introduced by Bérenger [19].

1.5 Source localization in random media

To finish this chapter we will talk about the aspects of the problem of localizing a
source or a reflector buried in a random medium by coherent interferometry. As mentioned
at the end of Sect. 1.3.4 the correlation properties of the incoherent wave field have been
widely studied in order to realize correlation-based imaging. In seismic imaging the goal
is to estimate the location of one or more underground sources with a passive network of
receivers on the surface, or the location of reflective structures with an active network of
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transducers on the surface. This is also the case in medical imaging as well as in underwater
acoustics (except that receivers in underwater acoustics are also very generally immersed
in the medium), and generally in all types of imaging performed in real conditions. Imag-
ing sources or reflectors, when performed in a smooth medium, is effective with Kirchhoff
migration (KM), just as when the background propagation velocity is known or can be esti-
mated. The KM imaging technique is defined as the signal back-propagation by travel time
migration, a simplified version of time-reversal imaging where we back-propagate according
to a wave equation in a fictitious environment. When we speak of time-reversal we must
distinguish:

— the real back-propagation in the environment which benefits from the effects of scat-
tering of the random medium, as in [68] for the purpose of breaking up kidney stones,
which is strictly speaking the time-reversal,

— and time-reversal imaging such as KM, where the signals are numerically back-
propagated in a fictitious environment to image sources and reflectors, of which traces
are rapidly lost in the presence of diffusion in the random medium.

Indeed, when the medium is said to be cluttered, which is generally the case in real-life imag-
ing, travel time or KM does not work well. These methods in which sources transmit pulse
are dependent on clear arrival times. When the medium is cluttered the recorded temporal
traces contain long and noisy codas resulting from multiple scattering by inhomogeneities.
The images obtained are then very noisy. Worse they are dependent on the medium, and
for two different realizations of the same random medium with the same statistical prop-
erties we get two different images. Indeed, although it is a widely used method, KM does
not use cross-correlations of the signal but the raw signals. It is known to be robust with
respect to additive noise, such as measurement noise [5, 6]. This is illustrated for example
in [32], where it is also shown how KM fails to image in a random (cluttered) medium.
Cluttered ”noise” in data and in images has a complex structure, in which correlations play
an important role. By background noise in the images, we mean their random fluctuations
due to fluctuations in the properties of the medium. For these reasons it is necessary to use
methods that are robust with respect to fluctuations induced by the heterogeneity of the
medium to make imaging when it is random. Alternative methods have been introduced
in several areas, notably seismic imaging in order to define the properties of an unknown
environment using coherent interferometry.

1.5.1 Coherent interferometric (CINT) imaging in random media

We will introduce here several studies [23–33,69] which compare the Coherent INTerfer-
ometric (CINT) imaging method (1.68) with the widely used KM imaging method (1.67).
The resolution and statistical fluctuations of the images are analyzed when the ambient
environment is random and wave propagation can be modeled mainly by the distortion of
the wavefront. KM loses statistical stability at an exponential rate with the propagation
distance and leads to unreliable images that change unpredictably with the detailed features
of the clutter. In KM, images are formed by overlaying the propagated array data to the
domain of the image. In CINT, the local cross-correlations of the data are back-propagated
into the medium. This is a denoising process that improves the signal-to-noise ratio of
the images but also reduces the resolution. The tradeoff between increased stability and
reduced resolution in CINT imaging was then quantified [31].



D
RA
FT

1.5. SOURCE LOCALIZATION IN RANDOM MEDIA 37

Borcea et al. [23, 24] as well as Chan et al. [53] show that imaging by interferometry,
where the crosscorrelations of the signals are backpropagated and not the signals themselves,
statistically stabilizes the results. Borcea et al. [23, 24] show this result by comparing the
KM and CINT imaging methods. First we assume that we are in the case of passive
imaging. In this case we are in the presence of a source (or several sources) that emits a
short pulse somewhere in the medium. With a network of N receivers we record the signals
emitted by the source and modulated by the medium, and then try to find its position. So
we use the N temporal signals {p(rr, t), 1 ≤ r ≤ N} recorded by the receivers located at
rr, 1 ≤ r ≤ N , to estimate the source location by rso = arg maxrS∈S I(rS) in some search
region S, where I is either the KM imaging functional IKM or the CINT imaging functional
ICINT given below. The fictitious medium (e.g homogeneous) in which the signals are back-
propagated is assumed to be characterized by a Green’s function Ĝ0(r, r′, ω) ≡ e

i ω
c0
|r−r′|

,
that is, a high frequency approximation of the Green’s function of an homogeneous three-
dimensional acoustic medium of speed of sound c0. Both imaging techniques use the same
data to find the position of the source, but they treat them differently. Indeed in the case
of KM all the signals are back-propagated for all frequencies and all receivers. In CINT
imaging the crosscorrelations of the signals are taken locally in space and time and then
they are back-propagated. These local properties are expressed by the two parameters Xd

and Ωd. They are the spatial and the frequency cut off parameters beyond which the data
are considered to be uncorrelated. The KM imaging functional is:

IKM(rS) =
N∑
r=1

p

(
rr,
|rr − rS |

c0

)
, (1.67)

where c0 stands for the speed of sound in the fictitious medium, and the CINT imaging
functional is:

ICINT(rS ; Ωd, Xd) =
N∑

q,r=1
|rq−rr|≤Xd

∫∫
|ω−ω′|≤Ωd

Ĉ(rq, rr, ω, ω′) e
−i ω

c0
|rq−rS |+iω

′
c0
|rr−rS | dωdω′ ,

(1.68)
where:

Ĉ(rq, rr, ω, ω′) = p̂(rq, ω)p̂(rr, ω′) . (1.69)

Here p̂(rr, ω) is the Fourier transform of p(rr, t) in time domain, rr and rq are the positions
of the receivers, and ω and ω′ are the frequencies associated with the signals received by
these receivers.

In the context of active imaging, one has a network of sensors that this time will serve
as sources and receivers, thus we will say that we have Ns sources and Nr receivers. Indeed
here the principle is that the signals are emitted with our network of sensors. The wave
propagates to a reflector (or several reflectors) which we try to find, and is reflected by it.
Part of the signal will go back to the sensor array which, at that moment, will record the
signal. Then we try to find the position of the reflector, just as in the context of passive
imaging. However the difference with the passive case is that we have Ns controlled sources
at the positions rs, 1 ≤ s ≤ Ns. So in turn we have a matrix of Nr ×Ns temporal signals
{p(rr, t; rs), 1 ≤ r ≤ Nr, 1 ≤ s ≤ Ns} recorded by the Nr receivers. In this case, the wave
travels back and forth in the medium and will normally be modulated more strongly by
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the latter. The fictitious medium is still assumed to be characterized by a Green’s function
Ĝ0(r, r′, ω) ≡ e

i ω
c0
|r−r′|

. The KM imaging functional is:

IKM(rR) =
N∑

r,s=1

p

(
rr,
|rs − rR|+ |rR − rr|

c0
; rs

)
, (1.70)

and the CINT imaging functional is:

ICINT(rR; Ωd, Xd) =

Nr∑
r, r′ = 1

|rr − rr′ | ≤ Xd

Ns∑
s, s′ = 1

|rs − rs′ | ≤ Xd

∫∫
|ω−ω′|≤Ωd

p̂(rr, ω; rs)p̂(rr′ , ω′; rs′)

× e
−i ω

c0
(|rr−rR|+|rR−rs|)+iω

′
c0

(|rr′−rR|+|rR−rs′ |) dωdω′ , (1.71)

where p̂(rr, ω; rs) is the Fourier transform in time domain of the signal p(rr, t; rs) received
by the sensor rr for a signal emitted by the sensor rs; rs and rs′ denote the positions of the
sensors when they are used as sources; rr and rr′ denote the positions of the sensors when
they are used as receivers; and ω and ω′ are the frequencies associated with the signals
received by these sensors. The reflector location is estimated by rref = arg maxrR∈S I(rR)
in some search region S, where I is either IKM or ICINT.

We can see the fundamental difference between the two imaging techniques. Again, the
parameters Ωd and Xd used by the CINT imaging functional are the frequency and spatial
cut off parameters beyond which the data are considered to be uncorrelated. They appear
naturally by construction of the method, however there is no rule or indication to choose
them optimally. Borcea et al [23, 24] point out that taking all receivers over the whole
frequency band is like doing a KM image. They also explain that optimal parameters Ω?

d

and X?
d exist but give no indication of the values of these parameters nor the methods used

to find them. In [25] a study is carried out in order to set up an adaptive imaging functional
that can estimate these optimal parameters. A new optimization function is set up in order
to automatically find the parameters Ω?

d and X?
d :

O(Ωd, Xd) = ‖J (yS ; Ωd, Xd)‖L1(S) + α‖∇ySJ (yS ; Ωd, Xd)‖L1(S) , (1.72)

where:

J (yS ; Ωd, Xd) =

√
|ICINT(yS ; Ωd, Xd)|

supyS∈S
√
|ICINT(yS ; Ωd, Xd)|

, (1.73)

is the bounded variation norm [78] of the normalized square root of the image ICINT, and S
is the search domain. Now we are able to find an approximation of the optimal parameters
Ω?
d and X?

d minimizing (1.72) in Ωd and Xd.

This search is always dependent on a user-defined α > 0 parameter. Ωd and Xd are
always dependent on the user’s choice, but the search is much more efficient than before.
Indeed, for two realizations of the same medium the imaging functional may need a large
Ωd in one case and not in the other, for example. Adaptive search makes it easy to get
optimal values because, from the only choice of the α parameter, it will move faster to the
correct order of magnitude for Ωd and Xd.
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1.5.2 Numerical CINT experiments

The setup for the numerical experiments used by Borcea et al. [24] is shown in Fig. 1.6,
where the dimensions of the problem are given in terms of the central wavelength λ0. An
array of 185 transducers is used, a transducer being a device used as source and receiver.
They are at a distance h = λ0

2 from each other. The object to be imaged is at range
L = 90λ0 and at zero cross-range, measured with respect to the center of the array. In the
passive array simulations the object is a configuration of three point sources emitting the
same pulse f(t) simultaneously and the distance between these points is d = 6λ0. In the
active array simulations the three sources are replaced by three disks of radius λ0 whose
centers are located at the same points. The disks are non-penetrable scatterers modeled
with homogeneous Dirichlet boundary conditions (acoustic soft scatterers). A probing pulse
is emitted by the central array element. The pulse f(t) is the time derivative of a Gaussian
with central frequency f0 = 1kHz and bandwidth 0.6− 1.3 kHz (measured at 6 dB). With
a propagation velocity of 3 km/s the central wavelength is λ0 = 3 m.

To simulate imaging in a cluttered medium, the objects to be imaged (sources or scatter-
ers) are embedded in an heterogeneous background medium. The fluctuations in the speed
of sound are modeled using a random Fourier series and a Gaussian correlation function.
The correlation length is lc = 1.5 m and the standard deviation σ is equal to 3%. A typical
realization of the random medium is shown in Fig. 1.6, where the units in the horizontal
and vertical axes are again given in terms of the central wavelength λ0, and the scale of
the colour bar is in 10 m/s. To generate the data the acoustic wave equation, formulated
as a first order velocity-pressure system in time, is solved using a mixed finite element
method [14, 15]. The propagation medium is considered to be infinite in all directions and
in the numerical computations a perfectly matched absorbing layer (PML) [19] surrounds
the computational domain.

Figure 1.6 – Sketch of the computational setup used by Borcea et al. [24] (left) and typical
realization of the random speed of sound c0(r) (right). The dimensions of the problem are
given in terms of the central wavelength λ0. The locations of the sources or reflectors to be
imaged are shown by dots • and the locations of the transducers are shown by crosses ×.

In their work [24, 31] the authors put forward the statistical stability of CINT imaging
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Figure 1.7 – KM images for three realizations of a random medium with standard deviation
σ = 3%. Figure is taken from [24].

Figure 1.8 – CINT images for three realizations of a random medium with standard deviation
σ = 3%. Figure is taken from [24].
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against KM imaging. They analyzed the KM and CINT point spread functions for passive
and active arrays of sensors [31], and quantified explicitly their resolution limits and their
signal-to-noise ratio (SNR). The SNR is defined as the mean point spread function at its
peak divided by its standard deviation.

To carry out analytically the resolution and SNR comparative study of the KM and
CINT methods, the authors used the relatively simple random travel time model for the
effects of the random medium on the array data. The model is valid in the regime of
geometrical optics in random media. In this regime wave diffraction, amplitude fluctuations
and power delay spread due to multiple scattering are negligible, while wave front distortions
are significant and well-captured by the model. A parabolic approximation model was also
used [26,29] to study CINT and KM in random media. However, an explicit analytical SNR
calculation was not done, because the forward scattering model is too complicated to allow
evaluation of higher order statistical moments of the array data. The results in [26, 29]
agree qualitatively with those obtained in [31]. The authors are particularly interested in
cases of large wave front distortions, where the random medium has a significant effect on
the imaging process. It turns out that:

1. The KM and CINT imaging functions provide an unbiased estimate of the source
or reflector locations. That is to say, the statistical averages of their point spread
functions are maximum at the true positions of the sources or reflectors that we wish
to image.

2. The SNR of the KM and CINT imaging functions near the actual positions of the
sources or reflectors are radically different. The KM SNR is exponentially small
with range, regardless of the bandwidth or the array aperture. This means that the
KM is not statistically stable and can not be used for imaging in regimes with large
wavefront distortions. The random fluctuations of the images are important and it is
not possible to observe the peak of the images near the actual positions of the sources
or reflectors. The CINT imaging method is significantly superior to the KM imaging
method because its SNR is not weak and is improved by increasing the aperture and
the bandwidth.

However, the statistical stability of the CINT comes at the detriment of some blurring of
the images. The compromise between the resolution and the stability of the CINT imaging
function can be explicitly quantified [31].

The results obtained so far are very encouraging and this is the reason that motivates
us to extend this kind of imaging techniques to heterogeneous flows.

1.5.3 Correlation-based imaging of moving objects

More recently, correlation-based imaging used to observe fast moving objects has been
studied [33,69]. In these papers, the authors introduce a Doppler compensation parameter
γD which is used in the imaging functional to provide the necessary correction of the move-
ment of the object to be observed. In Chapter 3 we will consider the same compensation
mechanism to extend the CINT imaging algorithm outlined above to moving heterogeneous
media such as jet flows.

Borcea et al. [33] introduce a passive synthetic aperture radar system motivated by space
surveillance radar networks for imaging small debris (the targets) in low-Earth orbit. The
system proposed is a powerful transmitter on the ground with one or several flying receiver
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Figure 1.9 – Top row: KM images for three realizations of a random medium. Note how the
peak dances around the true location of the reflector, indicated with the white dot. Bottom
row: square root of the CINT images for the same three realizations of a random medium.
Note that the peak is close to the true reflector location for all realizations, as predicted by
the theory. The axes are range and cross-range in terms of λ0. Figure is taken from [31].

Figure 1.10 – CINT imaging function for three choices of smoothing parameters Xd and Ωd.
The left picture is with no smoothing, the middle picture is with optimal smoothing, and
the right picture is with too much smoothing. The three small reflectors are indicated with
black dots. Figure is taken from [25].

platforms. Each platform can separate the direct signals from the source and the reflected
signals coming from below and above, respectively. Fournier et al. [69] also consider the
problem of imaging a fast moving object. The imaging system is almost the same as in [33],
except the receivers that are assumed to be located on the ground for simplicity. Indeed,
it would be more interesting for the correlation-based imaging method to have high-flying
airborne receivers as in [33]. However, since the velocity of the receivers is low, and much
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lower than that of a satellite in low-Earth orbit, Fournier et al. [69] expect their theory to
generalize to this case. Airborne receivers are of interest because they can fly above the
turbulent atmosphere, in which case the expectation is that the correlation-based imaging
method will be robust relative to atmospheric turbulence effects. Robustness of correlation-
based imaging to propagation medium fluctuations was shown in [77] for stationary receiver
arrays. Fournier et al. [69] also expect correlation-based imaging to be robust to additive
measurement noise since they cross-correlate signals recorded at different receivers. Their
aim is to compare the well-known matched-filter imaging method with correlation-based
imaging. Imaging with correlations has the advantage of not requiring any knowledge
about the probing pulse and the emitter position, both assumed known with high accuracy
in the case of matched-filter imaging. But correlation-based imaging requires recording
fully resolved signals without down-ramping while matched-filter imaging does not. Down-
ramping consists in multiplying the signal by the inverse of the carrier frequency, to obtain
a lower frequency signal easier to sample. To account for the fast moving target’s velocity,
Doppler compensation (taken into account through the compensation factor γD invoked
above) is necessary for both imaging methods.

In [33] for the case of a single receiver platform, the image is formed by cross correlating
the direct and reflected signals by adequately selecting the evaluation times in their imaging
function and compensating for Doppler effects. In this case, the functional needs to know
the arrival times from the transmitter to the antenna and from the transmitter to the
search point in the image, so accurate knowledge of the transmitter location is needed.
Furthermore, the one-receiver imaging modality is not capable of determining both the
target location and velocity. Unique recovery can be achieved, however, by using two pairs
of receivers.

For the case of multiple receiver platforms, the image is computed by cross correlating
the Doppler-compensated reflected signals recorded at two of the receivers. In this case,
the image formation relies on differences of travel times between the moving target and
the receivers. Borcea et al. [33] show that we also need to know the transmitter location,
but with relatively low accuracy, a result that is not without surprise. They also show
that two well separated pairs of receiver platforms are sufficient for determining the tar-
get location and velocity. As the distance between the receivers increases, they find that
sensitivity to knowing the transmitter location increases. Borcea et al. [33] anticipate that
the correlation-based imaging methods that they propose are very robust with respect to
additive measurement noise, because they cross-correlate signals recorded at different time
windows in the one-receiver case and they cross-correlate signals recorded by different re-
ceivers in the two-receiver case. They also anticipate that the proposed methods are robust
with respect to medium noise induced by the turbulent atmosphere.

In [69] it is shown that for both imaging methods, matched-filter and correlation-based,
nearly optimal resolution results of the order of the wavelength are obtained. The analysis
shows that even for a fast moving object such as a low-orbit satellite, the Doppler correction
does not affect the resolution but needs to be taken into consideration in the imaging
functions. One of the most important results is that a sparse configuration of a little
number of uniformly distributed receivers over an area big enough is sufficient so as to have
a point spread function with a similar shape (same maximum located at the same point
and same decreasing width, which means same resolution) to the one obtained with a dense
set of receivers. It is therefore possible, with a Doppler correction, to obtain an image of
a fast moving object. This opens very interesting perspectives for the objective of imaging
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through a random flow, which we wish to do.

1.6 Conclusion

In this chapter we have introduced the issues underlying the work that was carried
out during this thesis. Indeed, there are real industrial issues requiring source localization
through a random flow as well as the modeling of the associated direct problem. After a brief
introduction of the equations interesting us, we have presented the work carried out on the
modeling of the propagation of acoustic waves crossing a randomized/turbulent flow, and
more precisely with as a point of reference the experiments carried out by Candel, Julienne
and Guédel in the 70s [41–43]. We have presented several analytical models used to describe
these phenomena: the Lighthill and Lilley equations solved with the Born approximation,
a method using an ODA kernel, a model solving a radiative transfer equation, and a model
considering a stratified medium and using a spectral approach. It is this last type of
approach that interests us with the objective of achieving source localization afterwards.

Several numerical simulation methods can be used to simulate this kind of phenomena.
We have shown some of the results obtained so far, more or less in agreement with the
observations done in their experiments by Candel et al. [41–43]. The treatment of the
boundary conditions is very important and we have seen that several ideas have been
implemented.

Finally we have introduced some aspects of source localization in a random environment.
In particular we have explained methods using coherent interferometry imaging, which is
of particular interest to us. The statistical stability of this technique, unlike Kirchhoff
migration, makes it a strong ally for sources or reflectors localization in a random medium.
However, like any method using smoothing, it is strongly dependent on the choice of few
parameters. This problem has been partially solved by the adaptive choice which, even
though it still depends on a user-defined parameter, effectively finds the right smoothing
parameters to use. Finally we have presented the first results obtained in the context of
moving object detection using CINT imaging, which suggests us that this technique can be
adapted to the case of random flows.
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Chapter 2

Acoustic wave propagation in a
random stratified flow

In this chapter we study the mathematical problem of the scattering of acoustic waves by
a random stratified flow. Starting from Sect. 1.1.1 we consider the Euler Equations for an
ideal fluid flow and linearize them around an unsteady, inhomogeneous ambient flow. Then
we focus on the study of acoustic waves propagating through a random ambient flow, which
is the one that interests us in order to try to explain the experiments depicted in Chapter 1.
We first study in Sect. 2.2 the pressure waves transmitted by a homogeneous ambient flow
to determine the Green’s function of the unperturbed problem. Then in Sect. 2.3 we con-
sider an inhomogeneous ambient flow with a randomly stratified bulk modulus and extend
the results of [72] for a quiescent medium to the case of a moving medium with a uniform
velocity. In Sect. 2.4 we subsequently consider an inhomogeneous ambient flow with weak
perturbations of its velocity. We use a Lippmann-Schwinger approach to obtain an analytical
expression of the transmitted pressure wave with those perturbations, which are modeled by
a mean-square stationary process. From this expression we use a stationary-phase method
to derive the power spectral density of the transmitted pressure wave. In order to get an
analytical formula of the latter we assume, at the end of the calculations, that the source is
time-harmonic and the turbulent layer is thin. At the end of this chapter we make different
hypotheses in order to observe the influence of some source and turbulence parameters on
the power spectrum and compare qualitatively our results with the literature.

2.1 Linearized Euler equations about an unsteady inhomo-
geneous flow

We first outline how the Euler equations (1.2) are linearized adopting here a slightly
different perspective from Sect. 1.1.1 since the ambient flow is now time dependent. The full
non-linear Euler equations for an ideal fluid flow in the absence of friction, heat conduction,

45
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or heat production are (see (1.2) in Chapter 1):

d%

dt
+ %∇ · v = 0 ,

dv

dt
+

1

%
∇p = 0 ,

ds

dt
= 0 ,

(2.1)

where % is the fluid density, v is the particle velocity, s is the specific entropy, and p is the
thermodynamic pressure given by the equation of state p = p#(%, s). It arises from the
thermodynamic equilibrium of the fluid so it depends on its density and temperature, or
entropy. Also:

d

dt
=

∂

∂t
+ v ·∇ (2.2)

is the usual convective derivative following the particle paths. This shows that the flow
is isentropic (i.e. each fluid particle has constant entropy but different particles may have
different entropy). Note that the flow is said to be homentropic if the entropy is constant
and in addition the same for all particles. Besides, if the flow is incompressible then by
definition d%

dt = 0, which implies ∇ · v = 0 from the conservation of mass. In this situation
the pressure field p can no longer be related to the density, because the latter is constant
on the flow paths independently of the external loads. It becomes an independent new
variable, which is not a problem since we have an additional relationship provided by the
incompressibility condition. We will not impose this condition in the following analysis,
though.

Linearized Euler equations arise from the previous conservation equations when their
variables are expressed as sums of ambient quantities pertaining to the background flow
(subscript 0), and lower-order acoustic perturbations (primed quantities):

%(r, t) = %0(r, t) + %′(r, t) ,

v(r, t) = v0(r, t) + v′(r, t) ,

s(r, t) = s0(r, t) + s′(r, t) ,

p(r, t) = p0(r, t) + p′(r, t) ,

(2.3)

where r = (x, z) is the position within the flow, and x is the horizontal coordinates and
z is the vertical coordinate. In such a manner, the ambient quantities satisfy the Euler
equations (2.1):

d%0

dt
+ %0∇ · v0 = 0 ,

dv0

dt
+

1

%0
∇p0 = 0 ,

ds0

dt
= 0 ,

(2.4)

together with the following relations from the equation of state applicable to the ambient
flow p0 = p#(%0, s0):

∇p0 = c2
0∇%0 +

(
∂p#

∂s

)
%0

∇s0 ,

dp0

dt
= c2

0

d%0

dt
,

(2.5)
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where c0 > 0 is the speed of sound in the ambient flow given by:

c2
0 =

(
∂p#

∂%

)
s0

.

Here and from now on one has redefined the convective derivative as:

d

dt
=

∂

∂t
+ v0 ·∇ , (2.6)

that is, the convective derivative within the ambient flow. The primed quantities satisfy
the linearized Euler equations:

d%′

dt
+ %′∇ · v0 + ∇ · (%0v

′) = 0 ,

dv′

dt
+ v′ ·∇v0 +

1

%0
∇p′ − %′

%2
0

∇p0 = 0 ,

ds′

dt
+ v′ ·∇s0 = 0 .

(2.7)

In addition, one has from the linearized equation of state:

p′ = c2
0%
′ +

(
∂p#

∂s

)
%0

s′ . (2.8)

Combining Eq. (2.4), Eq. (2.5), and Eq. (2.8) we arrive at:

d

dt

(
p′

%0c2
0

)
+

1

%0c2
0

v′ ·∇p0 + ∇ · v′ − s′ d
dt

[
1

%0c2
0

(
∂p#

∂s

)
%0

]
= 0 ,

dv′

dt
+ v′ ·∇v0 +

1

%0
∇p′ − p′

(%0c0)2
∇p0 −

s′

(%0c0)2

(
∂p#

∂s

)
%0

∇p0 = 0 ,

ds′

dt
+ v′ ·∇s0 = 0 .

(2.9)

Discarding the last terms in s′ in these first two equations because they are of second order
by the arguments devised in [110], finally yields the system [67] (the last term in the second
equation below is apparently missing in [67, Eq. (2)]):

d

dt

(
p′

K0

)
+ ∇ · v′ + 1

K0
v′ ·∇p0 = 0 ,

dv′

dt
+

1

%0
∇p′ + v′ ·∇v0 −

p′

%0K0
∇p0 = 0 ,

(2.10)

where K0 = %0c
2
0 is the fluid compressibility. In terms of the unknowns q := p′

K0
(dimen-

sionless pressure) and u := %0v
′ (momentum) it reads:

dq

dt
+

1

%0
∇ · u+

1

%0K0

(
∂p#

∂s

)
%0

u · ∇s0 = 0 ,

du

dt
+K0∇q + (Tr(Dv0)I3 + Dv0)u+ (∇K0 −∇p0) q = 0 .

(2.11)
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Here Id is the d × d identity matrix, d ∈ N, Dv0 stands for the velocity strain matrix
within the ambient flow, such that (Dv0)jk =

∂v0j

∂rk
. Consequently (Dv0)u = u ·∇v0 as

usually noted in fluid mechanics textbooks, and Tr(Dv0) = ∇ · v0. In the experiments [41–
43, 91, 118] depicted in Chapter 1 where no combustion occurs and temperature variations
are small, the (cold) jet flow can be considered as a thermally and calorically perfect gas,
whereby its heat capacities at constant volume and constant pressure cv and cp, respectively,
are constant. Therefore by the equation of state of a perfect gas c2

0 = γ p0

%0
where γ =

cp
cv

is
Laplace’s coefficient, and the above system reduces to:

dq

dt
+

1

%0
∇ · u = 0 ,

du

dt
+K0∇q + (Tr(Dv0)I3 + Dv0)u+ q(γ − 1)∇p0 = 0 .

(2.12)

Combining the latter with Eq. (2.4) we obtain:

dq

dt
+

1

%0
∇ · u = 0 ,

du

dt
+K0∇q + (Tr(Dv0)I3 + Dv0)u− q(γ − 1)%0

dv0

dt
= 0 .

(2.13)

2.2 Acoustic waves in an homogeneous flow

Referring to the results of 1.1.4, we specialize the foregoing analysis to the situation
where the ambient flow has a uniform velocity v0, and study the acoustic waves transmitted
by a layer −L ≤ z ≤ 0 of that flow. Then Dv0 = 0 and %0 is also a constant. The constant
ambient flow velocity v0 is also parallel to the horizontal plane with coordinates x, such
that the convective derivative (2.6) is:

d

dt
=

∂

∂t
+ v0 ·∇x . (2.14)

Here ∇x stands for the gradient in the horizontal plane. We more particularly address
the construction of the Green’s function for this problem because it has relevance to the
subsequent developments where the ambient flow characteristics will be randomized. We
thus add general source terms s = (h,f) on the right hand-side of (2.13) with v0 = constant
as follows:

dq

dt
+

1

%0
∇ · u =

h

K0
,

du

dt
+K0∇q = %0f .

(2.15)

The emitting sources s = (h,f) will be specified later on; see Fig. 2.1 for the overall setting.
For the time being we consider the following specific Fourier transform and its inverse with
respect to the time t and the horizontal spatial coordinates x:

τ̂(ω,κ, z) =

∫∫
eiω(t−κ·x) τ(t,x, z) dtdx , (2.16)

and:

τ(t,x, z) =
1

(2π)3

∫∫
e−iω(t−κ·x) τ̂(ω,κ, z)ω2 dωdκ . (2.17)
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We note from this definition that κ is thus homogeneous to an inverse speed, or slowness.
Therefore it is referred to as the (horizontal) slowness vector. Also the inverse Fourier
transform with respect to that slowness vector solely will be considered in the subsequent
analysis:

τ̌(ω,x, z) =
1

(2π)2

∫∫
eiωκ·x τ̂(ω,κ, z)ω2dκ . (2.18)

Taking the Fourier transform (2.16) in Eq. (2.15) yields the following system for û =
(ûx, ûz) and q̂:

−iωβq̂ +
iω

%0
κ · ûx +

1

%0

∂ûz
∂z

=
ĥ

K0
,

−iωβûx + iωK0q̂κ = %0f̂x ,

−iωûz +K0
∂q̂

∂z
= %0f̂z ,

(2.19)

with the definition:
β(κ) := 1− κ · v0 (2.20)

and f̂ = (f̂x, f̂z). Eliminating ûx in the above finally yields:

∂ûz
∂z

= iωK0

(
β(κ)

c2
0

− κ2

β(κ)

)
q̂+

1

c2
0

ĥ+
%0

β(κ)
κ · f̂x ,

∂q̂

∂z
=

iω

K0
ûz +

1

c2
0

f̂z ,

(2.21)

for β(κ) 6= 0 and κ = |κ|.

2.2.1 Modes of wave propagation

In the following developments it is assumed that the waves propagate over distances
much larger than the typical wavelength. This allows us to apply the diffusion approxi-
mation described in [72]. In this high-frequency regime only the propagating modes will
contribute to the quantities of interest, and the evanescent modes will not play any role.
Here we look at the conditions under which the wave modes are actually propagating.
Ignoring the source terms in Eq. (2.21), (ûz, q̂) satisfy the following homogeneous system:

∂ûz
∂z

= iωK0

(
β(κ)

c2
0

− |κ|
2

β(κ)

)
q̂ ,

∂q̂

∂z
=

iω

K0
ûz .

(2.22)

It can be reduced to the following second-order homogeneous differential equation for ûz:

∂2ûz
∂z2

+ ω2D(κ)ûz = 0 , (2.23)

where we have defined the diffusion coefficient:

D(κ) =
β(κ)

c2
0

− |κ|
2

β(κ)
.
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v
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Figure 2.1 – Acoustic waves in a homogeneous flow of thickness L and flow velocity v0.

Note that q̂ satisfies the same equation. The sign of D(κ) determines whether ûz is a
propagating or an evanescent mode. Thus we want to know in which condition we have
D(κ) = 0, or β(κ)2 = c2

0|κ|2, to deduce a condition on the sign of D(κ). We assume here
that the Mach number M := |v0|/c0 for the ambient flow is M < 1. Then it can be deduced
that D(κ) ≥ 0 provided that c2

0|κ|2 ≤ β(κ)2. Eq. (2.20) shows that when v0 = 0, this is
simply c0|κ| ≤ 1. When v0 6= 0 but the Mach number M < 1, the κ-domain where this
condition is fulfilled is more complicated, but it contains the disk:

c0|κ| ≤
1

1 +M
. (2.24)

Both domains are displayed on Fig. 2.2 for various Mach numbers. We shall typically
consider subsonic flows with low Mach numbers in the subsequent developments, thus the
condition M < 1 will always be fulfilled.

2.2.2 Integral representation of the pressure field

The properties of the ordinary differential equations (2.21) for the scalar unknowns
(q̂0, ûz) may be first analyzed by considering the homogeneous differential system:

∂

∂z

(
q̂
ûz

)
= iωζ

[
0 1

K0ζ

K0ζ 0

](
q̂
ûz

)
, (2.25)
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Figure 2.2 – Admissible domain for horizontal wave number c0κ of the propagating modes
(solid line) and the disk c0|κ| ≤ 1

1+M (dotted line) for different Mach numbers M .

where

ζ(κ) :=

√
β(κ)

c2
0

− |κ|
2

β(κ)
(2.26)

is homogeneous to a slowness. Let I0(κ) = K0ζ(κ) be the acoustic impedance and:

M0 =

[
I

1
2
0 I

− 1
2

0

I
1
2
0 −I−

1
2

0

]
,

[
0 I−1

0

I0 0

]
= M−1

0

[
1 0
0 −1

]
M0 ;

then the homogeneous system (2.25) is diagonalized as:

∂

∂z
M0

(
q̂
ûz

)
= iωζ

[
1 0
0 −1

]
M0

(
q̂
ûz

)
,

which introduces the upward and downward wave modes a and b defined such that:

M0

(
q̂
ûz

)
=

[
e+iωζ(κ)z 0

0 e−iωζ(κ)z

](
a
b

)
. (2.27)

The latter then satisfy:
∂

∂z

(
a
b

)
= 0 , (2.28)
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which means that these wave modes are independent of z away from the source position.
Provided that κ lies in the propagating domain displayed on Fig. 2.2 such that ζ(κ) is
real, a is the amplitude of the upward propagating mode while b is the amplitude of the
downward propagating mode. When ζ(κ) is imaginary the wave modes are evanescent (i.e.
they decay exponentially with the propagation distance). Here we are interested in the
far-field expression of the wave so we can restrict our attention to the propagating modes.

We now add the contribution of the source. The latter is assumed to be located at the
depth zs and to generate forcing terms F (t,x) = (F x(t,x), Fz(t,x)) and H(t,x) such that
(see Fig. 2.3):

f(t,x, z) = F (t,x)δ(z − zs) , h(t,x, z) = H(t,x)δ(z − zs) . (2.29)

The forcing terms may either emit a short pulse at some time ts, or a stationary random
signal with Gaussian statistics, as envisaged in [74]. Both signals may also be localized
spatially in the horizontal direction, such that F (t,x) = F t(t)δ(x− xs) and H(t,x) =
Ht(t)δ(x− xs) for example. Then the vertical momentum ûz and pressure q̂ from Eq. (2.21)
satisfy the jump conditions:

ûz(ω,κ, z
+
s )− ûz(ω,κ, z−s ) =

1

c2
0

Ĥ(ω,κ) +
%0

β(κ)
κ · F̂ x(ω,κ) ,

q̂(ω,κ, z+
s )− q̂(ω,κ, z−s ) =

1

c2
0

F̂z(ω,κ) .

(2.30)

Consequently, the upward and downward propagating mode amplitudes of Eq. (2.27) satisfy
the jump conditions:

a(ω,κ, z+
s )− a(ω,κ, z−s ) = %0 e−iωζ(κ)zs Sa(ω,κ) ,

b(ω,κ, z+
s )− b(ω,κ, z−s ) = %0 e+iωζ(κ)zs Sb(ω,κ) ,

(2.31)

with the source contributions given by:(
Sa(ω,κ)
Sb(ω,κ)

)
= K−1

0 M0

(
F̂z(ω,κ)

Ĥ(ω,κ) + K0
β(κ)κ · F̂ x(ω,κ)

)
. (2.32)

One thus deduces that:(
a
b

)
(ω,κ, z) = %0 H(z − zs)

[
e−iωζ(κ)zs 0

0 e+iωζ(κ)zs

](
Sa
Sb

)
(ω,κ) +

(
A
B

)
(ω,κ) , (2.33)

where z 7→ H(z) is the Heaviside step function such that H(z) = 1 if z ≥ 0 and H(z) = 0
otherwise, and A and B are functions of ω and κ independent of z determined by the
boundary conditions imposed on the wave modes. They specify the wave forms impinging
the background flow (2.70) at its boundaries z = −L and z = 0 if the source lies within
it [74], −L < zs < 0, or z = −L and z = zs ≥ 0 if the source lies outside it [72]. In agreement
with the experiments we have in mind, we shall consider in the subsequent developments
that the second situation rather takes place; see Fig. 2.3. However, for the construction of
the Green’s function pertaining to the ambient flow, let us first consider that −L < zs < 0.
Assuming that no energy is coming upward from z = −∞ or downward from z = +∞,
translates into the radiation conditions:

a(ω,κ,−L) = b(ω,κ, 0) = 0 . (2.34)
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Figure 2.3 – Acoustic waves in an homogeneous flow of thickness L and flow velocity v0.
The emitting sources f are centered at some zs ≥ 0. a is the upward wave mode amplitude
and b is the downward wave mode amplitude.

Thus:

A = 0 , B = −%0 e+iωζ(κ)zs Sb(ω,κ) , (2.35)

and one has with Eq. (2.27):

(
q̂
ûz

)
(ω,κ, z) =

1

2
e+iωζ(κ)(z−zs)

 Ĥ(ω,κ)
c20I0(κ)

+ %0κ·F̂x(ω,κ)
β(κ)I0(κ) + F̂z(ω,κ)

c20
Ĥ(ω,κ)
c20

+ %0κ·F̂x(ω,κ)
β(κ) + I0(κ)F̂z(ω,κ)

c20

H(z − zs)

+
1

2
e−iωζ(κ)(z−zs)

 Ĥ(ω,κ)
c20I0(κ)

+ %0κ·F̂x(ω,κ)
β(κ)I0(κ) −

F̂z(ω,κ)
c20

I0(κ)F̂z(ω,κ)
c20

− Ĥ(ω,κ)
c20
− %0κ·F̂x(ω,κ)

β(κ)

 (1−H(z − zs)) . (2.36)

From Eq. (2.19) one has ûx = K0
β q̂κ away from the source. As a result, after defining the

four-dimensional fields:

p =

 q
ux
uz

 , S =

H
F x
Fz

 , (2.37)
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Eq. (2.36) finally yields:

p̂(ω,κ, z) =
1

2
H(z − zs) e+iωζ(κ)(z−zs) %0 ĝ

+
0 (κ)⊗ ĝ+

0 (κ) Ŝ(ω,κ)

+
1

2
(1−H(z − zs)) e−iωζ(κ)(z−zs) %0 ĝ

−
0 (κ)⊗ ĝ−0 (κ) Ŝ(ω,κ) ,

(2.38)

where:

ĝ±0 (κ) =
1√
ζ(κ)

(
1

K0
,
κ

β(κ)
,±ζ(κ)

)
(2.39)

are the so-called (generalized) eigenvectors of propagation. Here a⊗ b stands for the usual
tensor product of vectors a and b such that (a⊗ b)ij = aibj in Cartesian coordinates. This
result identifies the Green’s function for upward waves Ĝ

+

0 (ω,κ, z − zs), z > zs, and the
Green’s function for downward waves Ĝ

−
0 (ω,κ, z − zs), z < zs, as:

Ĝ
±
0 (ω,κ, z) =

1

2
e±iωζ(κ)z %0 ĝ

±
0 (κ)⊗ ĝ±0 (κ) . (2.40)

Since a⊗ b c = (b · c)a for any vector c, b · c being the usual inner product of b and c, the
scalars:

Ŝ±(ω,κ) = ĝ±0 (κ) · Ŝ(ω,κ)

=
1√
ζ(κ)

(
Ĥ(ω,κ)

K0
+
κ · F̂ x(ω,κ)

β(κ)
± ζ(κ)F̂z(ω,κ)

)
(2.41)

then turn out to be the (generalized) coordinates of the forcing terms S on the eigenvectors
of propagation, in the Fourier domain.

We can now summarize the main results of this section in the following lemma.

Lemma 2.2.1 (Solution of Eq. (2.15) and Eq. (2.19)). The solution p = (q,u) of Eq. (2.15)
reads:

p(t,x, z) = G0 ∗ s(t,x, z)

=

∫∫∫
G0(t− t′,x− x′, z − z′)s(t′,x′, z′)dt′dx′dz′ ,

where G0(t,x, z) = G+
0 (t,x, z) H(z)+G−0 (t,x, z)(1−H(z)) is the Green’s function computed

as:

G±0 (t,x, z) =
%0

2(2π)3

∫∫
e+iω(κ·x±ζ(κ)z−t) ĝ±0 (κ)⊗ ĝ±0 (κ)ω2dωdκ . (2.42)

For point sources located at the depth zs ∈ [−L, 0] with forcing terms S(t,x):

s(t,x, z) = S(t,x)δ(z − zs) ,

the solution p̂ of the system (2.19) in the Fourier domain reads for any z ∈ (−L, zs):

p̂(ω,κ, z) =
1

2
e−iωζ(κ)(z−zs) %0 ĝ

−
0 (κ)⊗ ĝ−0 (κ) Ŝ(ω,κ)

=
1

2
e−iωζ(κ)(z−zs) %0 Ŝ−(ω,κ)ĝ−0 (κ) ,

(2.43)

where Ŝ−(ω,κ) = ĝ−0 (κ) · Ŝ(ω,κ).
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Remark. In (2.42) the integral is over all κ in R2. For κ such that ζ(κ) is imaginary,
the sign of the square root of (2.26) which gives rise to an exponentially decaying function
in (2.42) is selected. We are, however, interested only in the far-field expression, so it is
possible to restrict the integral over the κ-domain where ζ(κ) is real-valued; see Fig. 2.2.

2.3 Acoustic waves in a stratified flow with random bulk
modulus

We now consider the case where the bulk modulus K0 is randomly varying about its
homogenized value K and address the diffusion approximation regime [72], whereby the
scale of fluctuations ` of the former is much smaller than the typical wavelength λ of the
waves, which in turn is typically much smaller than the thickness of the flow L. This scaling
is quantified by introducing the small parameter 0 < ε� 1 such that `

λ = ε and `
L = ε2. In

this respect, the bulk modulus depends on the depth z in the flow (−L, 0) and is constant
outside:

1

K0(z)
=

{
1
K

[
1 + ν

(
z
ε2

)]
for z ∈ [−L, 0] ,

1
K for z ∈ (−∞,−L) ∪ (0,+∞) ,

where (ν(z), z ∈ R) is a zero-mean, second order stochastic process. We note from this def-
inition that the fluctuations of the bulk modulus are not assumed to be small. Accordingly,
the source term has now the form:

f ε(t,x, z) = εrF

(
t

ε
,
x

ε

)
δ(z − zs) , (2.44)

where the multiplicative factor εr scales the amplitude, while the exponent r will be specified
later on. In the section we assume that the source term hε in the mass conservation equation
is zero for convenience. Then the momentum uε = %0v

ε′ and dimensionless pressure qε = pε′

K
are the solutions of the system (2.15) modified for this scaling as:[

1 + ν
( z
ε2

)]
(∂t + v0 ·∇x)qε +

1

%0
∇ · uε = 0 ,

(∂t + v0 ·∇x)uε +K∇qε = %0f
ε ,

(2.45)

provided that −L < z < 0. The superscript ε in these quantities stands for the fact that
they depend on it because both the bulk modulus and the source do so. The scaled specific
Fourier transform of the dimensionless pressure qε and its inverse with respect to the time
t and the horizontal spatial coordinates x are:

q̂ε(ω,κ, z) =

∫∫
e

iω
ε

(t−κ·x) qε(t,x, z) dtdx ,

and:

qε(t,x, z) =
1

(2πε)3

∫∫
e−

iω
ε

(t−κ·x) q̂ε(ω,κ, z)ω2 dωdκ ,

with similar expressions for the momentum uε and its transform ûε.
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2.3.1 Integral representation of the pressure field

Taking the scaled Fourier transform in Eq. (2.45) yields:

− iω

ε
β
[
1 + ν

( z
ε2

)]
q̂ε +

iω

ε%0
κ · ûεx +

1

%0

∂ûεz
∂z

= 0 ,

− iω

ε
βûεx +

iω

ε
Kq̂εκ = %0f̂

ε

x ,

− iω

ε
ûεz +K

∂q̂ε

∂z
= %0f̂

ε
z ,

or, after eliminating ûεx:

∂ûεz
∂z

=
iω

ε

[
Kζ2 + %0βν

( z
ε2

)]
q̂ε +

%0

β
κ · f̂

ε

x ,

∂q̂ε

∂z
=

iω

εK
ûεz +

%0

K
f̂ εz ,

(2.46)

where:

ζ(κ) :=

√
β(κ)

c2
− |κ|

2

β(κ)
, (2.47)

for c =
√
K/%0 and β(κ) 6= 0 given by Eq. (2.20). Along the same lines as in Sect. 2.2.1,

we are interested in the propagating wave modes and consider that ζ(κ) is real, which
holds if c|κ| lies in the admissible domain displayed on Fig. 2.2 for various Mach numbers
M = |v0|/c < 1. This is assumed to be the case in the following analysis.

The homogeneous differential system associated to 2.46 reads:

∂

∂z

(
q̂ε

ûεz

)
=

iω

ε
ζ

[
0 1

Kζ

Kζ 0

](
q̂ε

ûεz

)
+

iω

ε
ν
( z
ε2

)[ 0 0
%0β 0

](
q̂ε

ûεz

)
.

Let I(κ) = Kζ(κ) be the homogenized acoustic impedance and:

M =

[
I

1
2 I−

1
2

I
1
2 −I−

1
2

]
,

[
0 I−1

I 0

]
= M−1

[
1 0
0 −1

]
M ;

in addition, let us introduce the upward and downward propagating mode amplitudes aε

and bε defined such that:

M

(
q̂ε

ûεz

)
=

[
e+ iω

ε
ζ(κ)z 0

0 e−
iω
ε
ζ(κ)z

](
aε

bε

)
. (2.48)

The latter then satisfy:

∂

∂z

(
aε

bε

)
=

iωβ(κ)

2εζ(κ)c2
ν
( z
ε2

)[ 1 e−
2iω
ε
ζ(κ)z

− e+ 2iω
ε
ζ(κ)z −1

](
aε

bε

)
, (2.49)

together with the rescaled counterparts of the jump conditions (2.31):

aε(ω,κ, z+
s )− aε(ω,κ, z−s ) = %0ε

r+3 e−
iω
ε
ζ(κ)zs Sa(ω,κ) ,

bε(ω,κ, z+
s )− bε(ω,κ, z−s ) = %0ε

r+3 e+ iω
ε
ζ(κ)zs Sb(ω,κ) ,

(2.50)
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0

Figure 2.4 – Acoustic waves in a stratified random flow of thickness L and flow velocity
v0. The emitting sources f ε are centered at some zs ≥ 0. aε is the upward wave mode
amplitude and bε is the downward wave mode amplitude.

where the source contributions are given by:

Sa(ω,κ) =

√
I(κ)

K
F̂z(ω,κ) +

κ · F̂ x(ω,κ)

β(κ)
√
I(κ)

,

Sb(ω,κ) =

√
I(κ)

K
F̂z(ω,κ)− κ · F̂ x(ω,κ)

β(κ)
√
I(κ)

.

Assuming like in the homogeneous case of Sect. 2.2 that no energy is coming upward from
z = −∞ or downward from z = +∞, and that the source is located at the surface zs = 0,
the upward and downward wave components impinging the flow are:

aε(ω,κ,−L) = 0 ,

bε(ω,κ, 0) = −εr+3Sb(ω,κ) ,
(2.51)

see Fig. 2.4. The system (2.49) may be analyzed as in [72, Chap. 8] by introducing the
propagator matrix P ε(ω,κ,−L, z) such that:

d

dz
P ε(ω,κ,−L, z) =

1

ε
H
(
ω,κ,

z

ε
, ν
( z
ε2

))
P ε(ω,κ,−L, z) (2.52)
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with the initial condition P ε(ω,κ,−L,−L) = I2, and:

H(ω,κ, z, ν) =
iωβ(κ)ν

2ζ(κ)c2

[
1 e−2iωζ(κ)z

− e+2iωζ(κ)z −1

]
. (2.53)

Ordinary differential equations of the form (2.52) have been extensively studied in [72]. The
propagator is a frequency-dependent symplectic matrix which has the form:

P ε(ω,κ,−L, 0) =

[
τ ε(ω,κ,−L, 0) ρε(ω,κ,−L, 0)

ρε(ω,κ,−L, 0) τ ε(ω,κ,−L, 0)

]
,

with
|τ ε|2 − |ρε|2 = 1 (2.54)

owing to TrH(ω,κ, z, ν) = 0. From Eq. (2.49) it is deduced that:

P ε(ω,κ,−L, z)
(
aε(ω,κ,−L)
bε(ω,κ,−L)

)
=

(
aε(ω,κ, z)
bε(ω,κ, z)

)
, −L ≤ z ≤ 0 ;

thus, the boundary conditions (2.51) imply that:

P ε(ω,κ,−L, 0)

(
0

bε(ω,κ,−L)

)
=

(
aε(ω,κ, 0)
−εr+3Sb(ω,κ)

)
,

and consequently:
bε(ω,κ,−L) = −εr+3T ε(ω,κ,−L, 0)Sb(ω,κ) ,

where:
T ε(ω,κ,−L, 0) = τ ε(ω,κ,−L, 0)

−1
(2.55)

is the transmission coefficient of the slab (−L, 0). From (2.54) we get that T ε(ω,κ,−L, 0)
is uniformly bounded by one. Using the same result we also obtain the mode-energy-
conservation equation:

|aε(ω,κ, 0−)|2 − |bε(ω,κ,−L)|2 = |εr+3Sb(ω,κ)|2. (2.56)

It follows that the dimensionless pressure q̂ε at the surface of the flow reads:

q̂ε(ω,κ,−L) = − εr+3%0

2
√
I(κ)

e+iωζ(κ)L
ε T ε(ω,κ,−L, 0)Sb(ω,κ) ,

and therefore the acoustic pressure admits the following integral representation:

pε′(t,x,−L) =

εr

16π3

∫∫
e−

iω
ε

(t−κ·x−Lζ(κ)) T ε(ω,κ,−L, 0)

(
κ · %0F̂ x(ω,κ)

β(κ)ζ(κ)
− %0F̂z(ω,κ)

)
ω2 dωdκ .

(2.57)

Here the integral is over all frequencies ω and over slowness vectors κ such that ζ(κ) is
real-valued. The contributions of the slowness vectors κ that do not satisfy this condition
are negligible when the propagation distance L is large (far-field acoustic pressure).
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2.3.2 Characterization of moments

From the integral representation (2.57) we see that the transmission coefficients T ε

of Eq. (2.55) fully determine the transmitted wave field. From the energy conservation
relationship (2.56) the moduli of these coefficients are bounded by one. Now from Eq. (2.57)
again it is seen that the distribution of waves in time and space depends on the joint
distribution of the integrand over all frequencies ω and horizontal slowness vectors κ. We
next illustrate that the knowledge of the joint moments of the transmission coefficient for all
finite combinations of different frequencies and slowness vectors is enough to characterize
the distribution of the transmitted waves in time and space. This follows from the fact
that the expectations in Eq. (2.58) below have arguments that involve a finite number of
frequencies and slowness vectors. In view of the form of the transmitted pressure (2.57),
the subsequent analysis is a direct extension of the results of [72, Sec. 14.2] with an adapted
phase accounting for the ambient flow velocity v0.

2.3.2.1 Transmission coefficient

A convenient way to characterize the finite-dimensional distributions of the scalar wave
is to compute the joint moments of order m1, . . . ,mn:

E
{
pε′(t0,1 + εs1,x1,−L)m1 · · · pε′(t0,n + εsn,xn,−L)mn

}
,

which, using (2.57), can be written in an integral form with respect to the variables ωj,l
and κj,l, 1 ≤ l ≤ n, 1 ≤ j ≤ ml:

1

(2πε)3m

∫
· · ·
∫

e−i
∑
ωj,lsl ei

∑ ωj,lφj,l
ε E

{∏
T ε(ωj,l,κj,l,−L, 0)

}
× ε(r+3)m

2m

∏[(
κj,l · %0F̂ x(ωj,l,κj,l)

β(κj,l)ζ(κj,l)
− %0F̂z(ωj,l,κj,l)

)]∏
ω2
j,ldωj,ldκj,l , (2.58)

where m =
∑n

l=1ml and we have defined:

φj,l = φ(t0,l,κj,l,xl) = −t0,l + κj,l · xl + Lζ(κj,l) .

In the above expression the sum of exponents and the products are taken over all the
distinct frequencies and slowness vectors, that is, over l and j such that 1 ≤ l ≤ n and
1 ≤ j ≤ ml. Therefore, we are led to study the joint distribution of the transmission
coefficients for a finite number of frequencies and slowness vectors. We now relabel these
by (ω1,κ1), ... , (ωm,κm). First, consider the situation where the phase vanishes φj,l = 0.
Then, if we could obtain the limits:

lim
ε→0

E {T ε(ω1,κ1,−L, 0) · · ·T ε(ωm,κm,−L, 0)} (2.59)

of all these finite-dimensional problems, we would have characterized all the finite-dimensional
distributions of the transmitted wave front in space and time. The argument presented
in [72, Sec 8.2.5] in the one-dimensional case can be directly applied to the present situa-
tion. The limits (2.59) are given by:

E
{
T̃ (ω1,κ1,−L, 0) · · · T̃ (ωm,κm,−L, 0)

}
, (2.60)
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where the coefficients T̃ (ω,κ,−L, 0) are solutions of the system of stochastic differential
equations:

dT̃ (ω,κ,−L, z) =− ω2 %
2
0β(κ)2γ

4ζ(κ)2
T̃ (ω,κ,−L, z)dz

+ iω
%0β(κ)

√
γ

2ζ(κ)
T̃ (ω,κ,−L, z)dW0(L+ z) ,

(2.61)

driven by a single standard Brownian motion W0. The initial condition is given at z = −L
by:

T̃ (ω,κ,−L, z = −L) = 1 ,

and the correlation length coefficient γ is given by:

γ =
1

K2

∫ +∞

−∞
E {ν(0)ν(z)} dz . (2.62)

This physical parameter is discussed in detail in [72, Sec. 6.3.6]. It is the Fourier transform
of the autocorrelation function of ν/K at zero frequency, hence it is non negative. An
application of Itô’s formula shows that Eq. (2.61) can be transformed to the Stratonovich
stochastic differential equation:

dT̃ (ω,κ,−L, z) =− ω2 %
2
0β(κ)2γ

8ζ(κ)2
T̃ (ω,κ,−L, z)dz

+ iω
%0β(κ)

√
γ

2ζ(κ)
T̃ (ω,κ,−L, z) ◦ dW0(L+ z) ,

which admits the following explicit solution:

T̃ (ω,κ,−L, 0) = exp

(
iω
%0β(κ)

√
γ

2ζ(κ)
W0(L)− ω2 %

2
0β(κ)2γ

8ζ(κ)2
L

)
. (2.63)

Therefore, if we substitute T̃ for T ε in Eq. (2.57), we obtain a characterization of the
distribution for the wave front through its moments. This substitution leads to the correct
asymptotic limit expression for the wave front also in the case with a fast phase, that is,
when φj,l is nonzero. The small ε limit for the front is then obtained via a subsequent
stationary-phase argument elaborated in the following Sect. 2.3.2.2. We denote by p̃ the
limit for the pressure that follows from such a stationary-phase (sp) evaluation, so that:

p̃(s,x,−L) := (sp) lim
ε→0

pε′(t0 + εs,x,−L)

= (sp) lim
ε→0

εr

16π3

∫∫
e−iωs e

iω
ε
φ(t0,κ,x) T̃ (ω,κ,−L, 0)(

κ · %0F̂ x(ω,κ)

β(κ)ζ(κ)
− %0F̂z(ω,κ)

)
ω2dωdκ ,

(2.64)

where the phase φ is given by:

φ(t0,κ,x) = −t0 + κ · x+ Lζ(κ) . (2.65)
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2.3.2.2 Stationary-phase method

It remains to evaluate the foregoing integral (2.64) by the stationary-phase method.
The analysis is a direct application of [72, Prop. 14.4] in two dimensions. First, it follows
from the scaling of the stationary-phase limit in two dimensions and Eq. (2.64) that the
transmitted pressure field is of order 1 if r = −1. Second, we search for the stationary
horizontal slowness vector κsp that solves ∇κφ(κsp) = 0 because it is the one that gives
rise to the main contribution to the integral (2.64); see Fig. 2.5 for an illustration. In view
of Eq. (2.65) and Eq. (2.47) we have:

∇κφ = x+ L∇κζ = x− L

2ζ(κ)

[(
1

c2
+

κ2

β(κ)2

)
v0 +

2

β(κ)
κ

]
,

where κ = |κ|. The Hessian Hκφ := ∇κ ⊗∇κφ (used in the asymptotic computation of
the integral by the stationary-phase method) is:

Hκφ = L∇κ ⊗∇κζ

= − L

4ζ3(κ)

[(
1

c2
+

κ2

β(κ)2

)
v0 +

2

β(κ)
κ

]
⊗
[(

1

c2
+

κ2

β(κ)2

)
v0 +

2

β(κ)
κ

]
− L

ζ(κ)β(κ)

[
I2 +

κ2

β(κ)2
v0 ⊗ v0 +

2

β(κ)
κ⊗s v0

]
,

where a ⊗s b = 1
2(a ⊗ b + b ⊗ a). Here the equation ∇κφ = 0 does not admit a trivial

solution so we cannot find an explicit formulation of κsp as in [72]. To work around this
problem we use a Taylor expansion of φ. We assume now and for the rest of this section
that the flow Mach number (a vector here) M = v0/c has small amplitude M = |M | � 1,
and consider that the horizontal slowness vector is such that |κ| < 1/c in view of (2.24).
At first, the Taylor expansion of ζ(κ) yields:

ζ(κ) =
1

c(κ)
− c(κ)

2c
(1 + c2|κ|2)M · κ+ o(M) , c(κ) =

c√
1− c2|κ|2

.

Then the phase φ(t,κ,x) reads φ(t,κ,x) = φ0(t,κ,x) +Mφ1(κ) + o(M) where:

φ0(t,κ,x) = −t+ κ · x+
L

c(κ)
,

φ1(κ) = −Lc(κ)

2c
(1 + c2|κ|2)v̂0 · κ ,

for v̂0 = v0/|v0| being the direction of the flow. Likewise, the gradient of the phase is
expanded as:

∇κφ(t,κ,x) = ∇κφ0(t,κ,x) +M∇κφ1(κ) + o(M)

where:

∇κφ0(t,κ,x) = x− Lc(κ)κ ,

∇κφ1(κ) = −Lc(κ)

2c

[
(1 + c2|κ|2)I2 +

(
3− c2|κ|2

1− c2|κ|2

)
c2κ⊗ κ

]
v̂0 .
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The equation ∇κφ0(t,κ,x) = 0 is exactly the stationary-phase equation solved in [72, Sec.
14.2.2] for a quiescent medium, so we know that:

κ0 =
x

c
√
|x|2 + L2

(2.66)

is its unique solution. Invoking the implicit function theorem, the equation∇κφ(t,κ,x) = 0
has a unique solution κsp in a neighborhood of κ0 and the function M 7→ κsp(M) is
differentiable in a neighborhood of M = 0, such that expanding it as κsp(M) = κ0 +
Mκ1 + o(M) one has:

κ1 = κ′sp(0) = −(Hκφ0(κ0))−1∇κφ1(κ0) . (2.67)

Indeed the Hessian of φ0:

Hκφ0(κ0) = −Lc(κ0)
(
I2 + c(κ0)2κ0 ⊗ κ0

)
,

is invertible provided that κ0 is in the propagating domain such that ζ(κ0) is real, and its
inverse is:

(Hκφ0(κ0))−1 = − 1

Lc(κ0)

(
I2 − c2κ0 ⊗ κ0

)
.

Then the stationary horizontal slowness vector reads:

κsp =
1

c

[
x√

|x|2 + L2
+

1

2

(
2|x|2 + L2

|x|2 + L2

)
M +

L2

(|x|2 + L2)2
(M · x)x

]
+ o(M) , (2.68)

and the vertical slowness vector at the stationary point is:

ζ(κsp) =
1

c

[
L√

|x|2 + L2
− 1

L

(
2|x|4 + 4|x|2L2 + L4

(|x|2 + L2)2

)
(M · x)

]
+ o(M) .

This corresponds to a plane-wave mode that is traveling in the direction of the observation
point (x,−L), as seen on Fig. 2.5.

We can use now this expression to compute p̃(s,x,−L) from Eq. (2.64) by the stationary-
phase method and have an idea of the solution of the transmission problem in the limit of
small Mach numbers. The phase at the stationary point is:

φ(t,κsp,x) = −t+

√
|x|2 + L2

c
− 1

2c

(
2|x|2 + L2

|x|2 + L2

)
(M · x) + o(M) .

In view of Eq. (2.64) and [72, Prop. 14.4] we choose t0 such that it cancels the phase at the
stationary point, since otherwise this integral goes to 0 as ε → 0 by Riemann-Lebesgue’s
lemma. At first order in the Mach number M we thus have:

t0 =

√
|x|2 + L2

c
− 1

2c

(
2|x|2 + L2

|x|2 + L2

)
(M · x) + o(M) .

Applying [72, Prop. 14.4] for n = 2 we obtain:

p̃(s,x,−L) =
ei(n∗−1)π

2

8π2
√
|det Hκφ(κsp)|

×
∫
R

e−iωs T̃ (ω,κsp,−L, 0)

(
κsp · %0F̂ x(ω,κsp)

β(κsp)ζ(κsp)
− %0F̂z(ω,κsp)

)
ωdω ,
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s = 0
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Figure 2.5 – Acoustic waves in a stratified random flow of thickness L and flow velocity v0.
The source position at (xs, zs) = 0, the observation point at (x,−L), and the stationary
slowness vector κsp.

where n∗ is the number of positive eigenvalues of Hκφ(κsp) and T̃ (ω,κ,−L, 0) is given by
Eq. (2.63). Since n∗ = 0 one has therefore:

p̃(s,x,−L) =
1

8π2
√
| det Hκφ(κsp)|

×
∫
R

e−iωs e
iω
%0β(κsp)

√
γ

2ζ(κsp)
W0(L)

e
−ω2 %

2
0β(κsp)2γ

8ζ(κsp)2
L

iω

(
%0F̂z(ω,κsp)− κsp · %0F̂ x(ω,κsp)

β(κsp)ζ(κsp)

)
dω .

(2.69)

The corresponding limit expression for the transmitted pressure field p̃0 in an ambient flow
with constant bulk modulus K is obtained from the above expression with γ = 0, that is:

p̃0(s,x,−L) =
1

8π2
√
| det Hκφ(κsp)|

∫
R

e−iωs iω

(
%0F̂z(ω,κsp)− κsp · %0F̂ x(ω,κsp)

β(κsp)ζ(κsp)

)
dω .

For the particular case of sources (2.44) located at the origin:

f ε(t,x, z) =
1

ε
F t

(
t

ε

)
δ
(x
ε

)
δ(z) = εF t

(
t

ε

)
δ(x)δ(z) ,

the latter equation yields:

p̃0(s,x,−L) =
1

4π
√
| det Hκφ(κsp)|

(
%0F

′
t,z(s)−

κsp · %0F
′
t,x(s)

β(κsp)ζ(κsp)

)
,
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where κsp(x) is given by Eq. (2.68). Eq. (2.69) thus shows that as in [72, Chap. 14], the
transmitted pressure field through a stratified random flow is a simple modification of the
pressure field transmitted through the constant flow. We summarize this results in the
following proposition, which is the counterpart of [72, Prop. 14.3] for a random medium
moving at the (small) Mach number M ; see also Sect. 1.3.3.

Proposition 2.3.1. In distribution the transmitted pressure field is characterized by:

lim
ε→0

pε′

(√
|x|2 + L2

c
− 1

2c

(
2|x|2 + L2

|x|2 + L2

)
(M · x) + εs,x,−L

)
= p̃(s,x,−L) ,

where:
p̃(s,x,−L) = [ND(x,L,M) ∗ p̃0(·,x,−L)](s−D(x, L,M)G) ,

having set:

D(x, L,M) =
%0β(κsp)

2ζ(κsp)

√
γL ,

ND(s) =
1√

2πD
e−

s2

2D2 ,

and G is a Gaussian random variable with mean zero and unit variance.

The shape of the transmitted pressure wave front is thus given by the convolution
of a Gaussian kernel with the shape of the pressure wave front transmitted through the
constant flow. It is deterministic, whereas the travel time shift D(x, L,M)G is a random
delay proportional to a Gaussian random variable with mean zero and unit variance. This
phenomenon is referred to as stabilization of the front, as discussed again in [72, Chap.
14]. Consequently, the proposed model of a stratified flow with a random bulk modulus is
not able to explain the spectral broadening effects outlined in Chapter 1 and observed in
experiments. Thus we turn to the study of an alternative model where the flow velocity is
now considered as a random field. The analysis is outlined in the subsequent Sect. 2.4.

2.4 Acoustic waves in a stratified flow with random velocity

We define a fluctuation model of the ambient flow velocity as follows:

v0(t, r) =

{
v + εV (t,x, z) z ∈ [−L, 0] ,
v elsewhere .

(2.70)

Here 0 < L is the width of the random flow, v is the constant ambient flow velocity which
is also parallel to the horizontal coordinates x of r = (x, z), and 0 ≤ ε � 1 is a small
parameter which scales the amplitude of its fluctuations V . This parameter is often called
turbulence intensity in the dedicated literature, as it is related to the components of the
turbulent kinetic energy. The latter are generally different for each direction [41], but it
is assumed in the above model that such intensities are comparable for all directions. The
fluctuations of the constant ambient flow velocity in Eq. (2.70) are given by the mean-square
stationary random vector (V (t, r); t ∈ R, r ∈ R3) with zero mean:

E {V (t,x, z)} = 0 . (2.71)
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Its auto-correlation matrix function reads:

E {V (t1, r1)⊗ V (t2, r2)} = RV (t1 − t2, r1 − r2)

= R(t1 − t2)δ(x1 − x2 − (t1 − t2)vt)δ(z1 − z2)
1[−L1,−L0](z1)

L1 − L0
, (2.72)

where vt is the convection velocity of the turbulent structures (eddies) in the shear layer,
and t 7→ R(t) is a 3 × 3 matrix function which describes the auto-correlation in time.
Here z 7→ 1I(z) is the characteristic function of the set I such that 1I(z) = 1 if z ∈ I,
and 0 otherwise. L0 and L1 are lengths characterizing the depth of the flow (−L1,−L0)
ultimately chosen as L0 = 0 and L1 = L. This model means that the fluctuations V are
delta-correlated in the local frame moving at the turbulent velocity vt.

0

zs

f

z

−L

V t xv

v

+ε ( ,  ,  )z

v

Figure 2.6 – Acoustic waves in a random flow of thickness L and average ambient flow
velocity v. The emitting sources f are centered at some zs ≥ 0.

2.4.1 Transmitted fields with fluctuations of the ambient flow velocity

We now turn to the case of an ambient flow with a fluctuating velocity, namely Eq. (2.70)
with ε 6= 0. The system (2.13) reads in this case:

dq

dt
+

1

%0
∇ · u =

h

K0
− εV ·∇q ,

du

dt
+K0∇q = %0f − εV ·∇u+ ε%0(γ − 1)

dV

dt
q − ε((∇ · V )I3 + DV )u ,

(2.73)



D
RA
FT

66 CHAPTER 2. ACOUSTIC WAVE PROPAGATION IN A RANDOM STRATIFIED FLOW

where:
d

dt
=

∂

∂t
+ v ·∇x

is the convective derivative. In view of Lemma 2.2.1 its solution can be written as:

p = G0 ∗ (s− εKp) , (2.74)

where:

K =

[
K0V ·∇ 0

(1− γ)dVdt
1
%0

(∇ · V + V ·∇)I3 + 1
%0

DV

]
. (2.75)

This is a so-called Lippmann-Schwinger equation [99], of which a solution can formally be
constructed by induction:

p(n+1) = p(0) − εG0 ∗Kp(n)

=

I4 +
n∑
j=1

(−εG0 ∗K)j

p(0) ,
(2.76)

with p(0) := G0 ∗ s. We will focus on the power spectral density (PSD) of p in the sub-
sequent developments, and more particularly the corrections to the PSD of p(0) induced
by the random fluctuations εV (t, r) of the constant ambient flow velocity v. The leading
correction term is proportional to ε2. Therefore, the above expansion is truncated at order
2 because it is anticipated that higher order terms will be negligible:

p ' p(2) = p(0) − εG0 ∗Kp(0) + ε2 (G0 ∗K)2 p(0) . (2.77)

We note for convenience:

p(01) = G0 ∗Kp(0) , p(02) = (G0 ∗K)2 p(0) ,

the first-order and second-order terms, respectively, in the expansion of p about the unper-
turbed, or ballistic pressure/momentum fields p(0) solving Eq. (2.15). Fig. 2.7 sketches the
zeroth, first, and second order contributions to the perturbative expansion (2.77), where
p(01) corresponds to the waves that have been scattered once by the random heterogeneities
of the ambient flow velocity v, and p(02) corresponds to the waves that have been scattered
twice. All these quantities are the combinations of upward and downward fields. We show
on Fig. 2.7 only the downward fields, i.e. the transmitted fields for z ≤ −L.

Regarding the first-order perturbation p(01), we have explicitly:

p(01)(t,x, z) =

∫∫∫
G0(t− t′,x− x′, z − z′)Kp(0)(t′,x′, z′)dt′dx′dz′ . (2.78)

The second-order perturbation p(02) is expressed similarly by iterating the convolution
product. As will be seen in the following Sect. 2.4.2, the first-order contribution in this
proposed perturbative model is responsible for the spectral broadening effect depicted in
[41–43]. Therefore we will mainly focus on this term in the following analysis. In the Fourier
domain (2.16), the first-order perturbation reads:

p̂(01)(ω,κ, z)

=

∫∫
eiω(t−κ·x) dtdx

∫∫∫
G0(t− t′,x− x′, z − z′)Kp(0)(t′,x′, z′)dt′dx′dz′

=

∫ (∫∫
eiω(t−κ·x)G0(t,x, z − z′)dtdx

)(∫∫
eiω(t′−κ·x′)Kp(0)(t′,x′, z′)dt′dx′

)
dz′

(2.79)
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sz = 0+

z

L−

Figure 2.7 – Acoustic waves in a random flow of thickness L and average ambient flow veloc-
ity v. Zeroth (ballistic), first, and second order perturbations in the second-order expansion
of the transmitted pressure/momentum fields.

with the changes of variable t− t′ → t and x−x′ → x. The first bracketed term is nothing
but Ĝ0(ω,κ, z − z′), while the second one is the Fourier transform of a product–hence a
convolution product in the Fourier domain (2.16). In this setting, the Fourier transform of
the product of regular functions f(t,x, z) and g(t,x, z) reads:

f̂g(ω,κ, z) =
1

(2π)3

∫∫
f̂(ω′,κ′, z) ĝ

(
ω − ω′, ωκ− ω

′κ′

ω − ω′
, z

)
ω′2dω′dκ′ . (2.80)

Thus it remains to compute the Fourier transform (2.16) of K, which depends on time t
and the horizontal spatial coordinates x through V (t,x, z) and its various products with
∇ = (∇x, ∂z). As for the upper left term K11 = K0V ·∇ of K for instance, we have:

K̂11f(ω,κ, z) =
K0

(2π)3

∫∫ [
i(ωκ− ω′κ′) · V̂ x(ω′,κ′, z) + V̂z(ω

′,κ′, z)∂z

]
× f̂

(
ω − ω′, ωκ− ω

′κ′

ω − ω′
, z

)
ω′2dω′dκ′ . (2.81)

Accordingly, the lower left term K21 = (1− γ)dVdt yields:

K̂21f(ω,κ, z) =
1

%0(2π)3

∫∫
K̂21(ω′,κ′)V̂ (ω′,κ′, z)

× f̂
(
ω − ω′, ωκ− ω

′κ′

ω − ω′
, z

)
ω′2dω′dκ′ , (2.82)

where K̂21(ω,κ) = iω%0(γ − 1)β(κ)I3, and the remaining lower right term:

K22 =
1

%0
((∇ · V + V ·∇)I3 + DV )
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yields:

K̂22f(ω,κ, z) =
1

%0(2π)3

∫∫ [(
∂zV̂z(ω

′,κ′, z) + V̂z(ω
′,κ′, z)∂z

)
I3

+ iωκ · V̂ x(ω′,κ′, z)I3 + V̂ (ω′,κ′, z)⊗
(

iω′κ′

0

)
+ ∂zV̂ (ω′,κ′, z)⊗

(
0
1

)]

× f̂
(
ω − ω′, ωκ− ω

′κ′

ω − ω′
, z

)
ω′2dω′dκ′ . (2.83)

We finally apply the foregoing formulas to the calculation of p̂(01) in Eq. (2.79). Here
p̂(0) is given by Lemma 2.2.1, Eq. (2.43), which is considered for the case zs = 0+ from
now on in view of the application of [41–43] we have in mind. In this situation the Green’s
function G0 is reduced to its downward contribution G−0 in the expression of p̂(0) and p̂(01),
as one can see on Fig. 2.7, and p̂(0) is such that:

∂zp̂
(0)(ω,κ, z) = −iωζ(κ)p̂(0)(ω,κ, z) .

This allows us to replace ∂z by −i(ω − ω′)ζ(ωκ−ω
′κ′

ω−ω′ ) in the expressions of the Fourier
transforms of K11p

(0) and K22p
(0) obtained with the above formulas. We summarize these

results in the following proposition.

Proposition 2.4.1. Assume the forcing terms are point sources as in Lemma 2.2.1 with
zs = 0+. Then the first-order transmitted perturbations p(01) in the perturbative expansion
(2.76) are given by:

p̂(01)(ω,κ, z) =
%2

0 e−iωζ(κ)z

4(2π)3

(∫∫∫
eiωσ(ω,κ,ω′,κ′)z′ ĉ(ω,κ, ω′,κ′) · V̂ (ω′,κ′, z′)

× Ŝ−
(
ω − ω′, ωκ− ω

′κ′

ω − ω′

)
ω′2dω′dκ′dz′

)
ĝ−0 (κ) , (2.84)

where Ŝ− is the generalized coordinate given by Eq. (2.41), and the slowness σ is given by:

σ(ω,κ, ω′,κ′) = ζ(κ)−
(

1− ω′

ω

)
ζ

(
ωκ− ω′κ′

ω − ω′

)
. (2.85)

The vector ĉ(ω,κ, ω′,κ′) is:

ĉ(ω,κ, ω′,κ′) = k̂(ω,κ, ω′,κ′)− iωσ(ω,κ, ω′,κ′)d̂(ω,κ, ω′,κ′)

where K0 = diag(K0,
1
%0
, 1
%0
, 1
%0

), and k̂(ω,κ, ω′,κ′) and d̂(ω,κ, ω′,κ′) are given by:

k̂(ω,κ, ω′,κ′) =
1

%0K0
ζ

(
ωκ− ω′κ′

ω − ω′

)− 1
2

K̂21(ω′,κ′)ĝ1(κ)

+
1

%0
ĝ1(κ) · ĝ1

(
ωκ− ω′κ′

ω − ω′

)(
iω′κ′

0

)
+

1

%0

(
iω′κ′

0

)
· ĝ1

(
ωκ− ω′κ′

ω − ω′

)
ĝ1(κ)

+ ĝ−0 (κ)TK0ĝ
−
0

(
ωκ− ω′κ′

ω − ω′

)
k̂d

(
ω − ω′, ωκ− ω

′κ′

ω − ω′

)
, (2.86)
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d̂(ω,κ, ω′,κ′) =
1

%0
ĝ1(κ) · ĝ1

(
ωκ− ω′κ′

ω − ω′

)(
0
1

)
+

1

%0

(
0
1

)
· ĝ1

(
ωκ− ω′κ′

ω − ω′

)
ĝ1(κ) , (2.87)

respectively, with k̂d(ω,κ) = iω(κ,−ζ(κ)) and:

ĝ1(κ) =
1√
ζ(κ)

(
κ

β(κ)
,−ζ(κ)

)
. (2.88)

Proof. Gathering the foregoing definitions of Eq. (2.81), Eq. (2.82), and Eq. (2.83) one
arrives at:

p̂(01)(ω,κ, z) =
%2

0 e−iωζ(κ)z

4(2π)3

(∫∫∫
eiωσ(ω,κ,ω′,κ′)z′

(
K̂(ω,κ, ω′,κ′, z′)

+ D̂(ω,κ, ω′,κ′, z′)
)
Ŝ−
(
ω − ω′, ωκ− ω

′κ′

ω − ω′

)
ω′2dω′dκ′dz′

)
ĝ−0 (κ) ,

where K̂ and D̂ are the scalar functions:

K̂(ω,κ, ω′,κ′, z′) = ĝ−0 (κ)TK0K̂(ω,κ, ω′,κ′, z′)ĝ−0

(
ωκ− ω′κ′

ω − ω′

)
,

D̂(ω,κ, ω′,κ′, z′) = ĝ−0 (κ)TK0D̂(ω,κ, ω′,κ′, z′)ĝ−0

(
ωκ− ω′κ′

ω − ω′

)
,

(2.89)

where K̂ and D̂ are the 4× 4 matrices:

K̂(ω,κ, ω′,κ′, z′) =

(
k̂d

(
ω − ω′, ωκ− ω

′κ′

ω − ω′

)
· V̂ (ω′,κ′, z′)

)
I4

+

[
0 0

K̂21(ω′,κ′)V̂ (ω′,κ′, z′) K̂22(ω′,κ′)V̂ (ω′,κ′, z′)

]
,

D̂(ω,κ, ω′,κ′, z′) =

[
0 0

0 D̂22(ω′,κ′)∂z′V̂ (ω′,κ′, z′)

]
,

with:

K̂22(ω′,κ′)V̂ (ω′,κ′, z′) =

(
iω′κ′

0

)
· V̂ (ω′,κ′, z′)I3 + V̂ (ω′,κ′, z′)⊗

(
iω′κ′

0

)
,

D̂22(ω′,κ′)∂z′V̂ (ω′,κ′, z′) =

(
0
1

)
· ∂z′V̂ (ω′,κ′, z′)I3 + ∂z′V̂ (ω′,κ′, z′)⊗

(
0
1

)
.

But by a straightforward computation:

K̂(ω,κ, ω′,κ′, z′) = k̂(ω,κ, ω′,κ′) · V̂ (ω′,κ′, z′)

where k̂ is given by Eq. (2.86). Likewise:

D̂(ω,κ, ω′,κ′, z′) = d̂(ω,κ, ω′,κ′) · ∂z′V̂ (ω′,κ′, z′)

where d̂ is given by Eq. (2.87). Integrating by parts in z′ one has:∫
eiωσ(ω,κ,ω′,κ′)z′ D̂(ω,κ, ω′,κ′, z′)dz′ =

− iωσ(ω,κ, ω′,κ′)

∫
eiωσ(ω,κ,ω′,κ′)z′ d̂(ω,κ, ω′,κ′) · V̂ (ω′,κ′, z′)dz′ ,

which, when combined with the foregoing expression of K̂, gives the claimed result.
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2.4.2 Computation of the power spectral density

Our aim is to compare the foregoing analytical model with the measurements of [41–43].
Here the experimental results are presented in terms of the PSD or mean-square Fourier
transform of the pressure field recorded at the interface of a free shear flow when an acoustic
pulse is imposed at its opposite interface; see again Fig. 2.6 and Fig. 2.7. Considering
the perturbative model (2.77) elaborated in the previous section, the mean-square Fourier
transform of the pressure/momentum fields p(2) is computed as:

E
{
p̂(2)(ω1,κ1, z1)⊗ p̂(2)(ω2,κ2, z2)

}
= p̂(0)(ω1,κ1, z1)⊗ p̂(0)(ω2,κ2, z2)

+ ε2p̂(0)(ω1,κ1, z1)⊗ E
{
p̂(02)(ω2,κ2, z2)

}
+ ε2E

{
p̂(02)(ω1,κ1, z1)

}
⊗ p̂(0)(ω2,κ2, z2)

+ ε2E
{
p̂(01)(ω1,κ1, z1)⊗ p̂(01)(ω2,κ2, z2)

}
, (2.90)

where Z stands for the complex conjugate of Z. Indeed, p(0) is deterministic and E {p̂(01)} =
0 because by Prop. 2.4.1 p(01) is linear with respect to V , which is such that E {V } = 0
by Eq. (2.71). Also since V (t,x, z) is a mean-square stationary (in both time and space)
random vector, the random vector p(01)(t,x, z) is also mean-square stationary in both time
and space. Its PSD has the form of Eq. (1.50) as a function of the PSD of V (t,x, z), and
both the PSD of V (t,x, z) and p(01)(t,x, z) are given in terms of their mean-square Fourier
transforms by an expression of the form (1.40) ; see Sect. 1.2. In this section we specialize
these expressions with the model (2.72) for the autocorrelation of V (t,x, z).

From now on we assume that the sources S(t,x) are time-harmonic forcing terms emit-
ting at the frequency ω0, which means that:

Ŝ(ω,κ) = Ŝ0(κ)δ(ω − ω0) , (2.91)

and therefore p̂(0)(ω,κ, z) = P̂
(0)

(κ, z)δ(ω − ω0), where P̂
(0)

is deduced straightforwardly
from Lemma 2.2.1:

P̂
(0)

(κ, z) =
1

2
e−iω0ζ(κ)z %0 ĝ

−
0 (κ)⊗ ĝ−0 (κ) Ŝ0(κ) . (2.92)

Consequently, the first, second, and third terms on the right-hand side of Eq. (2.90) are
concentrated around the emission peak of the sources at ω0 in the frequency domain. The
spectral broadening effect described in [41–43] should therefore be explained by the last term
on the right-hand side of Eq. (2.90). Thus this effect stems from the PSD of p(01) with the
perturbative model (2.77). The subsequent analyses are focused on the computation of this
additional contribution, which is denoted by Ψ̂(01)(ω1,κ1, z1, ω2,κ2, z2) such that:

Ψ̂(01)(ω1,κ1, z1, ω2,κ2, z2) = E
{
p̂(01)(ω1,κ1, z1)⊗ p̂(01)(ω2,κ2, z2)

}
. (2.93)

Also, we carefully isolate the ”slow” part of the forcing terms Ŝ0(κ), which is denoted
by Ŝ0,sl(κ), from its ”fast” (highly oscillating) part, which is essentially a phase term
exp(−iω0κ · xs) where xs is the horizontal central position of the sources and ω0 is the
emitting (high) frequency of Eq. (2.91); that is:

Ŝ0(κ) = e−iω0κ·xs Ŝ0,sl(κ) . (2.94)
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Such an ansatz will prove useful for the application of a stationary-phase argument in the
following derivations.

From the result (2.84) of Prop. 2.4.1 one first has:

Ψ̂(01)(ω1,κ1, z1, ω2,κ2, z2) =
%4

0 e−iω1ζ(κ1)z1+iω2ζ(κ2)z2

16(2π)6
×[ ∫∫∫

ω′21 dω
′
1dκ

′
1dz
′
1

∫∫∫
ω′22 dω

′
2dκ

′
2dz
′
2 eiω1σ(ω1,κ1,ω′1,κ

′
1)z′1−iω2σ(ω2,κ2,ω′2,κ

′
2)z′2

ĉ(ω1,κ1, ω
′
1,κ
′
1)TE

{
V̂ (ω′1,κ

′
1, z
′
1)⊗ V̂ (ω′2,κ

′
2, z
′
2)
}
ĉ(ω2,κ2, ω′2,κ

′
2)

Ŝ−
(
ω1 − ω′1,

ω1κ1 − ω′1κ′1
ω1 − ω′1

)
Ŝ−
(
ω2 − ω′2,

ω2κ2 − ω′2κ′2
ω2 − ω′2

)]
ĝ−0 (κ1)⊗ ĝ−0 (κ2) , (2.95)

where the slowness function σ is given by Eq. (2.85). Because the auto-correlation matrix
function of V is given by Eq. (2.72), the covariance matrix of V̂ reads:

E
{
V̂ (ω1,κ1, z1)⊗ V̂ (ω2,κ2, z2)

}
= δ(z1 − z2)

1[−L1,−L0](z1)

L1 − L0

×
∫∫

R(t1 − t2)δ(x1 − x2 − (t1 − t2)vt) eiω1(t1−κ1·x1)−iω2(t2−κ2·x2) dt1dt2dx1dx2

which by the changes of variables τ = t1 − t2, t = 1
2(t1 + t2), ρ = x1 − x2, and x =

1
2(x1 + x2) also reads:

E
{
V̂ (ω1,κ1, z1)⊗ V̂ (ω2,κ2, z2)

}
=

(2π)3δ(ω1 − ω2)δ(ω1κ1 − ω2κ2)δ(z1 − z2)
1[−L1,−L0](z1)

L1 − L0
Σ(ω1(1− κ1 · vt)) , (2.96)

where:

Σ(ω) =

∫
R(τ) eiωτ dτ . (2.97)

Inserting Eq. (2.96) into Eq. (2.95) one arrives at:

Ψ̂(01)(ω1,κ1, z1, ω2,κ2, z2) =

%4
0

16(2π)3
e−iω1ζ(κ1)z1+iω2ζ(κ2)z2 I(ω1,κ1, ω2,κ2) ĝ−0 (κ1)⊗ ĝ−0 (κ2) , (2.98)

where I is given by:

I(ω1,κ1, ω2,κ2) =∫∫∫
1[−L1,−L0](z)

L1 − L0
eiω1σ(ω1,κ1,ω,κ)z−iω2σ(ω2,κ2,ω,κ)z K (ω,κ;ω1,κ1, ω2,κ2)

× Ŝ−
(
ω1 − ω,

ω1κ1 − ωκ
ω1 − ω

)
Ŝ−
(
ω2 − ω,

ω2κ2 − ωκ
ω2 − ω

)
ω2dωdκdz ,

with the change of variable ω′1 → ω, κ′1 → κ and K reads:

K (ω,κ;ω1,κ1, ω2,κ2) = ĉ(ω1,κ1, ω,κ)TΣ (ω(1− κ · vt)) ĉ(ω2,κ2, ω,κ) . (2.99)
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But Ŝ is given by Eq. (2.91), so that letting L1 → L0 yields:

I(ω1,κ1, ω2,κ2) = δ(ω1 − ω2)(ω1 − ω0)2

×
∫

e−iω1σ(ω1,κ1,ω1−ω0,κ)L0+iω1σ(ω1,κ2,ω1−ω0,κ)L0 K (ω1 − ω0,κ;ω1,κ1, ω1,κ2)

× Ŝ−0
(
ω1

ω0
κ1 +

(
1− ω1

ω0

)
κ

)
Ŝ−0
(
ω1

ω0
κ2 +

(
1− ω1

ω0

)
κ

)
dκ , (2.100)

where Ŝ−0 (κ) = ĝ−0 (κ) · Ŝ0(κ). Lastly, we apply the inverse Fourier transform (2.18) with
respect to κ1 and κ2 to the foregoing result in order to get an expression of the correlation
of the transmitted fields at two points (x1, z1) and (x2, z2). The covariance matrix of p̌(01)

(remind the partial Fourier transform of Eq. (2.18)):

Ψ(01)(ω1,x1, z1, ω2,x2, z2) = E
{
p̌(01)(ω1,x1, z1)⊗ p̌(01)(ω2,x2, z2)

}
(2.101)

thus reads:

Ψ(01)(ω1,x1, z1, ω2,x2, z2) =
%4

0ω
2
1ω

2
2

16(2π)7
×∫∫

eiω1(κ1·x1−ζ(κ1)z1)−iω2(κ2·x2−ζ(κ2)z2) I(ω1,κ1, ω2,κ2) ĝ−0 (κ1)⊗ ĝ−0 (κ2)dκ1dκ2 .

Accounting for (2.100) together with the ansatz (2.94) and eventually considering the co-
variance on the vertical line x1 = x2 = 0 yields:

Ψ(01)(ω1,0, z1, ω2,0, z2) = δ(ω1 − ω2)
%4

0(ω1 − ω0)2ω4
1

16(2π)7

×
∫∫∫

dκdκ1dκ2 eiω0φ0(κ,κ1,κ2) K (ω1 − ω0,κ;ω1,κ1, ω1,κ2)

× Ŝ−0,sl

(
ω1

ω0
κ1 +

(
1− ω1

ω0

)
κ

)
Ŝ−0,sl

(
ω1

ω0
κ2 +

(
1− ω1

ω0

)
κ

)
ĝ−0 (κ1)⊗ ĝ−0 (κ2) , (2.102)

where φ0 is the overall phase of the transmitted signals:

φ0(κ,κ1,κ2) = −ω1

ω0
(z1 + L0)ζ(κ1) +

ω1

ω0
(z2 + L0)ζ(κ2)− ω1

ω0
xs · κ1 +

ω1

ω0
xs · κ2

+ L0ζ

(
ω1

ω0
κ1 +

(
1− ω1

ω0

)
κ

)
− L0ζ

(
ω1

ω0
κ2 +

(
1− ω1

ω0

)
κ

)
, (2.103)

and:
Ŝ−0,sl(κ) = ĝ−0 (κ) · Ŝ0,sl(κ) (2.104)

is the generalized coordinate of the ”slow” components of the forcing terms.
In view of Eq. (2.90), the PSD of the ballistic pressure/momentum fields p(0) is also

needed. But these quantities are, again, deterministic and time-harmonic at the frequency
ω0, so that one simply computes:

Ψ(0)(0, z1,0, z2) = P (0)(0, z1)⊗ P (0)(0, z2)

=
%2

0ω
4
0

4(2π)4

∫∫
dκ1dκ2 e−iω0[ζ(κ1)z1−ζ(κ2)z2+κ1·xs−κ2·xs]

× Ŝ−0,sl(κ1)Ŝ−0,sl(κ2) ĝ−0 (κ1)⊗ ĝ−0 (κ2) ,

(2.105)
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reminding the definition (2.92). We finally invoke a stationary-phase argument to conclude
on the derivation of the PSD of the transmitted pressure field, with the foregoing expression
of the phase. This last step is detailed in the next section.

2.4.3 Stationary-phase method

In this section we start by considering the case M = |v|/c0 � 1 (Mach number of
the ambient flow) and eventually choose v ' 0 (β ' 1) to simplify the derivation below.
The case 0 < M � 1 will be addressed in subsequent developments. The first goal is to
determine the stationary slowness vectors κsp, κ1,sp, and κ2,sp such that:

∇κφ0(κsp,κ1,sp,κ2,sp) = ∇κ1φ0(κsp,κ1,sp,κ2,sp) = ∇κ2φ0(κsp,κ1,sp,κ2,sp) = 0 .

Lemma 2.4.1. In the instance that ω1 and ω2 are equal to ω0 at the first order, namely
1− ω1

ω0
= o(1) and 1− ω2

ω0
= o(1), one has:

κ1,sp 'ζ(κ1,sp)
xs
z1

=
xs

c0

√
|xs|2 + z2

1

,

κ2,sp 'ζ(κ2,sp)
xs
z2

=
xs

c0

√
|xs|2 + z2

2

.
(2.106)

Proof. ζ(κ) is given by Eq. (2.26) with β(κ) = 1, therefore ∇κζ(κ) = −κ/ζ(κ). Thus:

∇κ1φ0(κ,κ1,κ2) = +
ω1

ω0

[
(z1 + L0)

κ1

ζ(κ1)
− xs

]
− L0

ω1
ω0
κ1 +

(
1− ω1

ω0

)
κ

ζ
(
ω1
ω0
κ1 +

(
1− ω1

ω0

)
κ
) ,

∇κ2φ0(κ,κ1,κ2) =− ω1

ω0

[
(z2 + L0)

κ2

ζ(κ2)
− xs

]
+ L0

ω1
ω0
κ2 +

(
1− ω1

ω0

)
κ

ζ
(
ω1
ω0
κ2 +

(
1− ω1

ω0

)
κ
) ,

∇κφ0(κ,κ1,κ2) =−
(

1− ω1

ω0

)
L0

ω1
ω0
κ1 +

(
1− ω1

ω0

)
κ

ζ
(
ω1
ω0
κ1 +

(
1− ω1

ω0

)
κ
)

+

(
1− ω1

ω0

)
L0

ω1
ω0
κ2 +

(
1− ω1

ω0

)
κ

ζ
(
ω1
ω0
κ2 +

(
1− ω1

ω0

)
κ
) .

(2.107)

Then for ω1
ω0

= O(1) one obtains the claimed result.

We subsequently apply the stationary-phase theorem to Eq. (2.102) to obtain the final
expression of the PSD of the scattered transmitted pressure field given in Prop. 2.4.2 below.

Proposition 2.4.2. Let d = (|xs|2 + z2)
1
2 be the distance from the time-harmonic sound

source (2.91) at (xs, 0
+) (with Ŝ0 = (Ĥ0, F̂ 0x, F̂0z)) to the observation point (0, z) at

the depth z on the outer side of the flow. Then the ballistic transmitted pressure field
p′(0) = K0q

(0) has the form

p̌′(0)(ω,0, z)p̌′(0)(ω′,0, z) = δ(ω − ω0)δ(ω′ − ω0)Ψ0(xs, z, ω0) (2.108)



D
RA
FT

74 CHAPTER 2. ACOUSTIC WAVE PROPAGATION IN A RANDOM STRATIFIED FLOW

with:

Ψ0(xs, z, ω0) =
%2

0ω
2
0

4(2π)2c2
0d

4

∣∣∣∣ d

%0c0
Ĥ0

(
xs
c0d

)
+ xs · F̂ 0x

(
xs
c0d

)
− zF̂0z

(
xs
c0d

)∣∣∣∣2 , (2.109)

and for 1− ω
ω0

= o(1) the mean-square Fourier transform of the scattered transmitted pres-
sure field p′(01) = K0q

(01) reads:

E
{
p̌′(01)(ω,0, z)p̌′(01)(ω′,0, z)

}
= δ(ω − ω′)Ψ01(xs, z, ω0, ω) (2.110)

where:

Ψ01(xs, z, ω0, ω) =
%2

0ω
2
0

4(2π)3

(
1− ω

ω0

)2( ω

ω0

)4

Ψ1(xs, z, ω, ω0)Ψ0 (xs, z, ω0) , (2.111)

and Ψ1(xs, z, ω, ω0) is a filtered frequency spectrum responsible for the spectral broadening
of the source centered about ω0 given by:

Ψ1(xs, z, ω, ω0) =

∫
|κ|≤ 1

c0

K

(
ω − ω0,κ;ω,

xs
c0d

, ω,
xs
c0d

)
dκ , (2.112)

where K is defined by (2.99).

Proof. Expanding the phase (2.103) in a Taylor series about the small increment ω0 − ω1

yields:

φ0(κ,κ1,κ2) ' −ω1

ω0
(L0 + z1)ζ(κ1) +

ω1

ω0
(L0 + z2)ζ(κ2)− ω1

ω0
(κ1 − κ2) · xs

+ L0ζ(κ1) +

(
1− ω1

ω0

)
L0κ · ∇κζ(κ1)− L0ζ(κ2)−

(
1− ω1

ω0

)
L0κ · ∇κζ(κ2) .

We can thus identify the slow part of the phase φsl from its fast part φf proportional to
ω1/ω0 as follows:

φf(κ1,κ2) =− ζ(κ1)z1 + ζ(κ2)z2 − (κ1 − κ2) · xs ,

φsl(κ,κ1,κ2) = +

(
1− ω1

ω0

)
((L0 + z1)ζ(κ1) + L0κ · ∇κζ(κ1) + κ1 · xs)

−
(

1− ω1

ω0

)
((L0 + z2)ζ(κ2) + L0κ · ∇κζ(κ2) + κ2 · xs) .

(2.113)

Applying the stationary-phase theorem in dimension n = 4 (see for example [72, Eq.
(14.77)]) to the auto-spectrum (2.102) of the first-order perturbations of the transmitted
pressure/momentum fields yields:

Ψ(01)(ω1,0, z1, ω2,0, z2) = δ(ω1 − ω2)
%4

0(ω1 − ω0)2ω4
1

16ω2
0(2π)5

ei(n∗−2)π
2 eiω0φf(κ1,sp,κ2,sp)√

|det Hκ1,κ2φf(κ1,sp,κ2,sp)|

×
∫

eiω0φsl(κ,κ1,sp,κ2,sp) K (ω1 − ω0,κ;ω1,κ1,sp, ω1,κ2,sp)dκ

× Ŝ−0,sl (κ1,sp) Ŝ−0,sl (κ2,sp) ĝ−0 (κ1,sp)⊗ ĝ−0 (κ2,sp) ,
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where n∗ is the number of positive eigenvalues of the Hessian Hκ1,κ2φf(κ1,sp,κ2,sp). The
latter is block-diagonal owing to Eq. (2.107) and reads:

Hκ1,κ2φf(κ1,κ2) =

 z1
ζ(κ1)

(
I2 + κ1⊗κ1

ζ(κ1)2

)
0

0 − z2
ζ(κ2)

(
I2 + κ2⊗κ2

ζ(κ2)2

) ,
such that:

det Hκ1,κ2φf(κ1,κ2) =

(
z1z2

ζ(κ1)ζ(κ2)

)2(
1 +

|κ1|2

ζ(κ1)2

)(
1 +

|κ2|2

ζ(κ2)2

)
.

From this we can deduce that the eigenvalues of Hκ1,κ2φf(κ1,κ2) are:

λ1 =
z1

ζ(κ1)
, λ2 =

z1

ζ(κ1)

(
1 +

|κ1|2

ζ(κ1)2

)
,

λ3 = − z2

ζ(κ2)
, λ4 = − z2

ζ(κ2)

(
1 +

|κ2|2

ζ(κ2)2

)
,

and therefore n∗ = 2. Besides:√
| det Hκ1,κ2φf(κ1,sp,κ2,sp)| = c2

0d
2
1d

2
2

z1z2

introducing d1 = (|xs|2 + z2
1)

1
2 and d2 = (|xs|2 + z2

2)
1
2 , and:

φf(κ1,sp,κ2,sp) =
d2 − d1

c0
.

Indeed, owing to Lemma 2.106 one also has:

ζ(κ1,sp) =
z1

c0d1
, ζ(κ2,sp) =

z2

c0d2
. (2.114)

We can finally compute the mean-square Fourier transform of the first-order transmit-
ted pressure field p′(01) = K0q

(01) as the upper-left term of Ψ(01)(ω1,0, z1, ω2,0, z2), and
that of the ballistic transmitted pressure field p′(0) = K0q

(0) as the upper-left term of
Ψ(0)(0, z1,0, z2). Using Eq. (2.39) with β(κ) = 1 and Eq. (2.41) with the definition (2.94),
we have:

Ŝ−0,sl(κ1,sp) = e
i
ω0
c0

|xs|2
d1 ĝ−0 (κ1,sp) · Ŝ0(κ1,sp)

with a similar expression for Ŝ−0,sl(κ2,sp); see Eq. (2.104). We end up with:

p̌′(0)(ω,0, z1)p̌′(0)(ω′,0, z2) = δ(ω − ω0)δ(ω′ − ω0)
e

i
ω0
c0

(
z22
d2
− z

2
1
d1

)

4(2π)2

%2
0ω

2
0

d1d2

× ϕ
(
xs
c0d1

,
z1

c0d1

)
ϕ

(
xs
c0d2

,
z2

c0d2

)
,

and:

E
{
p̌′(01)(ω1,0, z1)p̌′(01)(ω2,0, z2)

}
= δ(ω1 − ω2)

e
i
ω0
c0

(
z22
d2
− z

2
1
d1

)

16(2π)5

%4
0ω

4
0

d1d2

×
(

1− ω1

ω0

)2(ω1

ω0

)4

Ψ(xs, z1, z2, ω1, ω0)ϕ

(
xs
c0d1

,
z1

c0d1

)
ϕ

(
xs
c0d2

,
z2

c0d2

)
,
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where:

Ψ(xs, z1, z2, ω, ω0) =∫
|κ|≤ 1

c0

eiω0φsl(κ,κ1,sp,κ2,sp) K (ω − ω0,κ;ω,κ1,sp, ω,κ2,sp) dκ , (2.115)

and, for Ŝ0 = (Ĥ0, F̂ 0x, F̂0z):

ϕ(κ, ζ) =
1

K0
Ĥ0(κ) + κ · F̂ 0x(κ)− ζF̂0z(κ) .

We thus define:

Ψ0(xs, z, ω0) =
%2

0ω
2
0

4(2π)2d2

∣∣∣∣ϕ( xsc0d
,
z

c0d

)∣∣∣∣2
for d = (|xs|2 + z2)

1
2 , and:

Ψ1(xs, z, ω1, ω0) = Ψ(xs, z, z, ω1, ω0) =

∫
|κ|≤ 1

c0

K (ω1 − ω0,κ;ω1,κ1,sp, ω1,κ1,sp) dκ ,

(2.116)
then we obtain the claimed formulas (2.109) and (2.111).

It remains to compute the integral (2.115):

Ψ(xs, z1, z2, ω, ω0) =

∫
|κ|≤ 1

c0

eiω0φsl(κ,κ1,sp,κ2,sp) K (ω − ω0,κ;ω,κ1,sp, ω,κ2,sp) dκ ,

pertaining to the propagating waves such that ζ(κ) is real, reminding that κj,sp = xs
c0dj

,
j = 1, 2. This computation is done numerically, observing first that the slow phase is such
that:

φsl(κ,κ1,sp,κ2,sp) =

(
1− ω1

ω0

)[
L0

c0

(
z1

d1
− z2

d2

)
+
d1 − d2

c0
−
(
L0

z1
− L0

z2

)
κ · xs

]
.

(2.117)
We thus have φsl(κ,κ1,sp,κ2,sp) = 0 for the auto-spectrum for which z1 = z2 and d1 = d2.
Also assuming that R(τ) is diagonal, namely R(τ) = R(τ)I3, one has:

K (ω − ω0,κ;ω,κ1,sp, ω,κ2,sp) =

Σ((ω − ω0)(1− vt · κ))ĉ(ω,κ1,sp, ω − ω0,κ) · ĉ(ω,κ2,sp, ω − ω0,κ) .

Corollary 2.4.1. Assume that the time-autocorrelation function τ 7→ R(τ)I3 of V in
Eq. (2.72) is diagonal, and let Σ(ω) =

∫
R(τ) eiωτ dτ . Then the mean-square Fourier trans-

form of the scattered transmitted pressure field p′(01) is:

Ψ01(xs, z, ω0, ω) =
%2

0

4(2π)3
(ω − ω0)2

(
ω

ω0

)4

Ψ0 (xs, z, ω0)

×
∫
|κ|≤ 1

c0

Σ((ω − ω0)(1− vt · κ))

∣∣∣∣ĉ(ω, xsc0d
, ω − ω0,κ

)∣∣∣∣2 dκ , (2.118)

where ĉ is given in Prop. 2.4.1 and d in Prop. 2.4.2.

These results are illustrated in the next section for a correlation function and parameters
adapted from the experiments in [41] and analytical models in [104].
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2.4.4 Numerical example

At first, we choose a Gaussian model for the autocorrelation function τ 7→ R(τ) of
Eq. (2.72):

R(τ) = σ2
V exp

(
−π τ

2

4τ2
s

)
. (2.119)

Here τs is the correlation time, or the turbulence integral timescale in the dedicated litera-
ture, i.e. the typical time scale of a realization of the turbulent velocity fluctuations V such
that

∫ +∞
0

R(τ)
R(0)dτ = τs; and σV quantifies their standard deviation. Then from Eq. (2.97):

Σ(ω) = 2τsσ
2
V exp

(
− 1

π
τ2
s ω

2

)
. (2.120)

In view of Eq. (2.72) and Eq. (2.70), the variance σ2
V scales as a squared velocity–typically

|v|2 the squared mean jet velocity. In order to compare our results of Prop. 2.4.2 with the
experimental results in [41] and the analytical models in e.g. [104,112], we plot on Fig. 2.8
and Fig. 2.9 the normalized ”power spectrum” Ψ2(xs, z, ω0, ω) of the transmitted pressure
field defined by:

Ψ2(xs, z, ω0, ω) = δ(ω − ω0) +
ε2%2

0

4(2π)3
(ω − ω0)2

(
ω

ω0

)2

Ψ1(xs, z, ω0, ω) (2.121)

in dB (ΨdB
2 = 10 log10 Ψ2) for the data provided in [102,104]: L = 0.1 m for the thickness of

the turbulent shear layer at a distance D = 0.5 m from the jet in the experiments of Candel
et al. [41], τs = L/|vt|, ε = 12% for the turbulence intensity, |vt| = 0.5|v| for the velocity of
the turbulent eddies, and c0 = 340 m/s and %0 = 1.2 kg/m3 for the ambient flow character-
istics. More particularly, Fig. 2.8 shows Ψ2(0,−L, ω0, ω) as a function of ∆ω = ω − ω0 for
various tone frequencies f0 = ω0

2π in the range [6–20] kHz and the jet velocity UJ = |v| = 60
m/s, and Fig. 2.9 shows Ψ2(0,−L, ω0, ω) as a function of ∆ω for various jet velocity UJ in
the range [20–60] m/s and f0 = 20 kHz. The two lobes are well recovered, together with
their position on the frequency axis which has been observed to be independent of the tone
frequency f0. Indeed, from the expression of Ψ01(xs, z, ω0, ω) in Prop. 2.4.2 the maxima of
the lobes are approximately found as the maxima of ∆ω2 exp(− 1

π τ
2
s∆ω2(1−Mt)

2) which
yields:

|∆ωmax| '
√
π
c0

L
Mt ,

where Mt = |vt|/c0 � 1 is the (small) Mach number for the turbulent eddies. This estimate
is in good agreement with [16, 41–43, 55, 102, 112, 118]. Despite several simplifications, the
proposed model allows to recover the main trends of the power spectrum of the transmitted
pressure field already outlined in those previous works, namely:

— a linear growth in the position of the maximum of the lobes as a function of the
velocity of the turbulent eddies Mt. Also the width of the lobes and thus the amount
of scattered energy increases as well when Mt increases;

— energetic macro-eddies contribute to the largest part of the scattered pressure field.
Spectral broadening is related to a Doppler shift due to the motion of these large
structures which act as secondary sources for the scattered field.
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Figure 2.8 – Normalized power spectrum of the transmitted pressure field as a function of
the frequency gap f − f0 for various tone frequencies f0 in the range [6–20] kHz and jet
velocity UJ = |v| = 60 m/s: (a) experimental observations from [41]; (b) the results of
Prop. 2.4.2; (c) the model of [104] for a Gaussian homogeneous axisymmetric turbulence
(HAT) correlation function of the fluctuations of the ambient flow velocity; (d) the model
of [104] for a Gaussian homogeneous isotropic turbulence (HIT) correlation function of the
fluctuations of the ambient flow velocity. Note that in [104] the notations ω = 2πF and
ω0 = 2πf are rather used.

2.5 Conclusion

In this chapter we have first developed an analytical model of the pressure field transmit-
ted by a plane shear layer (stratified flow) with uniform velocity and random bulk modulus
(compressibility) when a point source acts above it. The analysis starts from the linearized
Euler’s equations for a uniform ambient flow, for which the associated Green’s function is
derived. Considering random perturbations of the bulk modulus of the ambient flow and a
diffusion scaling, the transmission coefficient of the plane shear layer is constructed explic-
itly as the solution of an Itô stochastic differential equation. This allows to construct an
integral representation of the transmitted pressure field, which exhibits the phenomenon
of stabilization of the front already outlined in [72] for quiescent layered media (see also
Sect. 1.3.3). This model is not able to predict the spectral broadening effect depicted in
Chapter 1, though, and an alternative model had to be considered in this respect.

Consequently, we have developed an analytical model of the power spectrum of the
acoustic waves transmitted by a plane turbulent shear layer of which ambient velocity is
randomly perturbed by weak spatial and temporal fluctuations, when a time-harmonic
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Figure 2.9 – Normalized power spectrum of the transmitted pressure field as a function of
the frequency gap f − f0 for various jet velocities UJ = |v| in the range [20-60] m/s and
tone frequency f0 = 20 kHz: (a) experimental observations from [41]; (b) the results of
Prop. 2.4.2; (c) the model of [104] for a Gaussian homogeneous axisymmetric turbulence
(HAT) correlation function of the fluctuations of the ambient flow velocity; (d) the model
of [104] for a Gaussian homogeneous isotropic turbulence (HIT) correlation function of the
fluctuations of the ambient flow velocity. Note that in [104] the notations ω = 2πF and
ω0 = 2πf are rather used.

source acts above it. (2.93). The analysis again starts from the linearized Euler’s equations
written as a Lippmann-Schwinger equation, considering that the fluctuations of the ambient
flow velocity act as secondary sources for the transmitted acoustic waves. A Born-like
approximate solution of the Lippmann-Schwinger equation has been derived to work out
a first-order model of the pressure field transmitted by the shear layer. In this model, the
transmitted waves are constituted by their unperturbed component formed by the waves
emitted by the source which have not been scattered by the ambient velocity fluctuations,
and their perturbed component formed by the waves which have typically been scattered
once by those fluctuations. These scattered waves are of particular interest since they have
been characterized by their PSD in the experiments reported in [41–43], which primarily
motivated this work. Using various assumptions for the ambient flow (thin layer) and the
(high-frequency) source, and a stationary-phase argument, a model for the PSD of the
scattered waves transmitted by the shear layer has been derived. It exhibits the main
properties observed for the experimental PSD in [41–43, 91, 118], and for the numerically
simulated PSD and alternative analytical models in [16,55,64,102,104,112,118].

The PSD of the pressure field transmitted by the shear layer shows a characteristic
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spectral broadening effect, whereby a reduction of the main peak at the source tone fre-
quency in favor of more distributed spectral humps on both sides of the former, is observed.
The main peak arises from the unperturbed transmitted pressure, and sidebands (lobes)
arise in connection with a Doppler shift effect due to the motion of the turbulent eddies
acting as secondary sources for the scattered transmitted pressure. A widening of these
lobes proportional to the convection velocity of the turbulent eddies has been observed, as
well as the independence of the location of their maxima with respect to the tone frequency.
Increasing the latter also leads to a widening of the sidebands and higher scattered levels.
The proposed analysis has used a delta-correlated model of the turbulent velocity spatial
fluctuations and a Gaussian model of its temporal fluctuations, though it could be improved
by considering correlation models pertaining to homogeneous isotropic turbulent (HIT) or
homogeneous axisymmetric turbulence (HAT) as done in [104]. However the model retained
here has been able to predict the main features outlined above.
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Chapter 3

Coherent interferometry in a
random flow

In this chapter, we are interested in developing imaging algorithms based on coherent
interferometry (CINT) in order to localize acoustic sources or reflectors with acoustic waves
that have passed through a turbulent (random) flow. We thus consider the linearized Euler
equations (1.5) (LEE) about a stationary ambient flow satisfying Eq. (1.4), with the aim
of localizing such defects within the actual random flow. Acoustical data will be generated
by numerical simulations of the LEE and the ambient flow in idealized configurations. The
proposed CINT algorithms will be tested on these configurations and compared with Kirchhoff
migration (KM) algorithms.

3.1 Imaging functionals in random moving media

3.1.1 Model problem

We start by considering the model problem of computing the pressure field emitted by
a point source in an ambient flow with constant velocity because it has relevance to the
imaging algorithms considered in the subsequent developments. The LEE (1.5) where the
specific force f is ignored read:

(∂t + v0 ·∇)%′ + ∇ · (%0v
′) + %′∇ · v0 = m,

(∂t + v0 ·∇)v′ +
1

%0
∇p′ + (v′ ·∇)v0 −

%′

%2
0

∇p0 = 0 ,
(3.1)

with the barotropic assumption p′ = c2
0%
′. Here again c0(r) stands for the speed of sound

not influenced by the waves. The ambient flow is stationary and the ambient quantities,
namely the ambient pressure p0(r), velocity v0(r), and density %0(r) satisfy Eq. (1.4):

∇ · (%0v0) = 0 ,

(v0 ·∇)v0 +
1

%0
∇p0 = 0 ,

(v0 ·∇)p0 − c2
0(v0 ·∇)%0 = 0 .

(3.2)

If the ambient quantities are non vanishing constant, which is consistent at least with
Eq. (3.2), we obtain by taking the convective derivative ∂t + v0 ·∇ of the first equation in

81
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(3.1) and the divergence ∇· of the second equation in (3.1):

1

c2
0

(∂t + v0 ·∇)2p−∆ p = (∂t + v0 ·∇)m. (3.3)

Here we have dropped the primes (·)′ for convenience. This is the convected wave equation
(1.9) first proposed by Blokhintzev [21] for steady irrotational ambient flows. If v0 is
constant all over the domain Ω where the imaging procedure is performed, one can then
consider a local frame moving at this velocity. The local coordinates R and pressure field
P (R, t) are defined by:

R = r − v0t , P (R, t) = p(R+ v0t, t) .

With this change of variable one notices that ∂tP = (∂t + v0 ·∇)p and obtains that in the
moving frame:

1

c2
0

∂2
t P −∆P = ∂tM , (3.4)

where similarlyM(R, t) = m(R+v0t, t). This is actually the acoustic wave equation (1.8)
with a vanishing ambient flow.

The acoustic Green’s function G0(R,R′, t) is defined as the solution of the wave equation
for a right-hand side ∂tM(R, t) ≡ F (R, t) = δ(t)δ(R−R′) with zero initial conditions and
reads:

G0(R,R′, t) = G0(R−R′, t) =


1

4π|R−R′|
δ

(
t− |R−R

′|
c0

)
if t ≥ 0 ,

0 if t < 0 .
(3.5)

The solution of the wave equation (3.4) for a sourceM with time-dependent spatial compact
support Ωs(t) is then:

P (R, t) =
1

4π

∂

∂t

∫
dt′
∫

Ωs(t′)

M(R′, t′)

|R−R′|
δ

(
t′ − t+

|R−R′|
c0

)
dR′ . (3.6)

We now assume that the source is a fixed point source in the reference frame, such that
M(R, t) = A(t)δ(R−Rs(t)) where Rs(t) = rs − v0t and rs is the fixed location of
the source in the reference frame, and A is its amplitude. Then owing to the identity∫
Y (t′)δ(X(t′))dt′ =

∑
j Y (tj)|∂t′X|−1

t′=tj
where the tj ’s depend of t and are the roots of

X(t′) = 0, one obtains:

P (R, t) =
1

4π

∂

∂t

∑
j

A(tj)

||R−Rs(tj)|+M · (R−Rs(tj))|
,

where M := v0
c0

is the Mach number (a vector in the present case) of the ambient flow. The
sum is taken over the tj ’s such that c0(t− tj) = |R−Rs(tj)|, which can not have more
than one solution in the subsonic regime |M | = M < 1 [107, Chapter 5]. Indeed, if one lets
φ(z) = |R−Rs(z)| − c0(t− z) then φ′(z) = c0 + (R−Rs(z))·v0

|R−Rs(z)| > 0 in the subsonic regime.
Thus φ increases monotically and the situation φ(z) = 0 arises at most once, say t = ts the
time of emission of a sound wave which arrives at the observation point R at time t in the
moving frame. Solving for this equation with R = r − v0t, we arrive at:

ts = t− d

c0

√
1− (M sinα)2 −M cosα

1−M2
,
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where Md cosα = M · (r − rs); that is, d = |r − rs| is the distance between the source
point rs and the observation point r in the reference frame, and α is the angle between v0

and r − rs. The acoustic pressure in the reference frame finally reads:

p(r, t) =
1

4π|r − rs|
√

1− (M sinα)2
A′

(
t− |r − rs|

c0

√
1− (M sinα)2 −M cosα

1−M2

)
.

(3.7)

3.1.2 Reverse-time and Kirchhoff migration

We now consider the classical reverse-time (RT) and Kirchhoff migration (KM) algo-
rithms to image sources or reflectors. We adapt them to the situation of interest for us,
namely the localization of such sources or reflectors in an ambient flow. In reverse-time
migration [120], one uses N fixed sensors located at rr, 1 ≤ r ≤ N , to localize a source
(the so-called passive case) or a reflector (the active case) at some unknown location rs in
the actual (unknown) flow by back-propagating in a fictitious flow of known characteristics
the pressure fields recorded by the sensors. This setup is schematized on Fig. 3.1. Let us
consider the case of the wave equation in a quiescent medium, that is a flow with v0 = 0,
and a constant speed of sound c0. Introducing the Fourier and inverse Fourier transform in
the time domain:

p̂(r, ω) =

∫
R

eiωt p(r, t) dt , p(r, t) =
1

2π

∫
R

e−iωt p̂(r, ω) dω , (3.8)

the time-harmonic Green’s function Ĝ0(r, r′, ω) solves the wave equation (3.4) in the Fourier
domain–the Helmholtz equation with F̂ (r, ω) = δ(r − r′):

ω2

c2
0

Ĝ0 + ∆ Ĝ0 = −δ(r − r′) , (3.9)

together with the Sommerfeld radiation condition at infinity |r| → +∞:(
r̂ ·∇− i

ω

c0

)
Ĝ0 = O

(
1

|r|2

)
, (3.10)

where r̂ := r
|r| ; that is, Ĝ0(r, r′, ω) ∝ e

i ω
c0
|r|

at infinity. It satisfies the reciprocity property:

Ĝ0(r, r′, ω) = Ĝ0(r′, r, ω) (3.11)

everywhere, and since the ambient medium is homogeneous:

Ĝ0(r, r′, ω) = Ĝ0(r − r′, ω) =
e

i ω
c0
|r−r′|

4π|r − r′|
. (3.12)

The passive case consists in localizing a source in a quiescent medium of which the actual
speed of sound c0(r) is instead variable and imperfectly known. One starts by recording
at the N sensors the pressure fields emitted by the source F (r, t) = f(t)δ(r − rs). This
yields the dataset {p(rr, t); 1 ≤ r ≤ N} (or its Fourier transforms {p̂(rr, ω); 1 ≤ r ≤ N})
constituted by the pressure fields recorded by the sensors located at rr, 1 ≤ r ≤ N . They
are subsequently time reversed, which amounts of taking the conjugates of their Fourier
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transforms, and back propagated in the fictitious domain of which Green’s function is
known, namely Ĝ0(r, r′, ω). The reverse-time imaging functional IRT(rS) is ultimately
formed by stacking all the data:

IRT(rS) =
1

2π

N∑
r=1

∫
R
Ĝ0(rr, r

S , ω)p̂(rr, ω)dω . (3.13)

The KM algorithm [20] for passive imaging has been introduced in Sect. 1.5.1, Eq. (1.67).
It considers Ĝ0(r, r′, ω) ≡ exp(i ωc0 |r − r

′|) and the following imaging functional, replacing
the Green’s function by its phase term in Eq. (3.13) above:

IKM(rS) =
1

2π

N∑
r=1

∫
R

e
i ω
c0
|rr−rS | p̂(rr, ω) dω

=

N∑
r=1

p

(
rr,
|rr − rS |

c0

)
,

(3.14)

such that the source location can be estimated by:

rso = arg max
rS∈S

IKM(rS) in some search region S .

The range resolution of KM is c0
B , where B is the source frequency bandwidth. Its cross-

range resolution is rc = λ0L
a (Rayleigh’s resolution formula), where a is the aperture of the

sensor array, λ0 is the source central wavelength, and L is the distance from the source
(range); see Fig. 3.1. KM is known to work poorly when the medium is scattering, however
it remains very robust with respect to additive measurement noise. In the random paraxial
regime such that λ0 � a� L it can be shown that for N large (dense array):

E
{
ÎRT(rS , ω)

}
= sinc

(
x

rc

)
sinc

(
y

rc

)
e−η(ω) f̂(ω) , (3.15)

where η(ω) is a damping coefficient depending on the two-point statistics of the random
medium, E {X} stands for the mathematical expectation (or average) of the random variable
X, and rS = (x, y, L). However the reverse-time pressure field is statistically unstable [22]
in the sense that:

SNR =
E
{
IRT(rS , t)

}
Var{IRT(rS , t)}

1
2

� 1 ,

where Var{X} = E
{

(X − E {X})2
}

stands for the variance.

Now in view of the result (3.7), it is proposed to modify the foregoing imaging functional
to include a Doppler compensation factor γD(r, r′,v0) which compensates the shift of the
arrival time induced by the flow when the ambient medium moves at an average velocity
v0 6= 0:

γD(r, r′,v0) =

(
1−

∣∣∣∣v0

c0

∣∣∣∣2
)−1

√1−
∣∣∣∣v0

c0

∣∣∣∣2 +

(
v0 · (r − r′)
c0 |r − r′|

)2

− v0 · (r − r′)
c0 |r − r′|

 . (3.16)
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(a) (b)

Figure 3.1 – The typical imaging configuration considered in this chapter, after [24]. Di-
mensions are given in terms of the central wavelength λ0. (a) The locations of the sources
(passive case) or reflectors (active case) to be imaged is shown by dots • and the locations of
the transducers is shown by crosses ×. In the case of active imaging the central transducer
is used as a source. (b) Typical realization of the random speed of sound c0(r).

The compensated KM imaging functional (3.14) thus reads:

IKM(rS) =
N∑
r=1

p

(
rr, γD(rr, r

S ,v0)
|rr − rS |

c0

)
, (3.17)

where one observes that γD(r, r′,0) = 1 and the imaging functional (3.14) for a quiescent
medium is recovered.

In the active case, the network of sensors is used for detecting reflectors. One or several
sensors rs, 1 ≤ s ≤ Ns, emit signals which are recorded after a round trip to the reflectors.
In this context the dataset {p(rr, t; rs); 1 ≤ r ≤ N, 1 ≤ s ≤ Ns} (or its Fourier transforms
{p̂(rr, ω; rs); 1 ≤ r ≤ N, 1 ≤ s ≤ Ns}) is constituted by the pressure fields recorded by the
sensors located at rr, 1 ≤ r ≤ N , when the sensors located at rs, 1 ≤ s ≤ Ns, act as active
sources. The KM algorithm for active imaging has also been introduced in Sect. 1.5.1,
Eq. (1.70). The KM imaging functional in the active case is written:

IKM(rR) =
N∑
r=1

Ns∑
s=1

p

(
rr,
|rs − rR|

c0
+
|rR − rr|

c0
; rs

)
, (3.18)

and:

rref = arg max
rR∈S

IKM(rR) in some search region S (3.19)

is the position of the reflector. As for the passive case, the foregoing imaging functional is
modified to include a Doppler compensation factor γD(r, r′,v0) when the ambient medium
moves at an average velocity v0 6= 0. In the active case the KM imaging functional (3.18)
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is written now:

IKM(rR) =
N∑
r=1

Ns∑
s=1

p

(
rr, γD(rs, r

R,v0)
|rs − rR|

c0
+ γD(rR, rr,v0)

|rR − rr|
c0

; rs

)
. (3.20)

In this case the first γD compensates the time shift induced by the flow, for the travel
between the source to the reflector. The second γD compensates this shift for the travel
between the reflector and the receiver.

3.1.3 Coherent interferometric imaging

Coherent interferometric imaging (CINT) [23–33,69] of sources or reflectors uses finite-
aperture arrays alike, e.g. a square [−a

2 ,
a
2 ]× [−a

2 ,
a
2 ] × {0} of N sensors, to localize in a

cluttered medium a source rs = (0, 0, L) typically at the distance L (range) from the array;
see again Fig. 3.1 for the standard configuration. It consists in back propagating empirical
correlations of the pressure fields, rather than the pressure fields themselves, in a fictitious
medium in order to alleviate the statistical instability of KM with clutter. Indeed, forming
the correlations enables to partially cancel the incoherent random phase shifts of the signals
and thus enhance statistical stability. As for the RT and KM algorithms, the procedure
goes in two steps described hereafter.

First step

The empirical cross-correlation of the recorded pressure fields at the sensors rq and rr
reads:

CT (rq, rr, t) =

∫
p(rq, τ)p(rr, τ − t)dτ .

Now CINT first step consists in forming the empirical cross-correlation of the recorded
pressure fields in the Fourier domain:

Ĉ(rq, rr, ω, ω′) = p̂(rq, ω)p̂(rr, ω′) , (3.21)

which is such that the Fourier transform in time domain of the empirical cross-correlation
CT is:

ĈT (rq, rr, ω) =

∫
eiωt CT (rq, rr, t)dt

= Ĉ(rq, rr, ω, ω) .

It is important to note that the data used in CINT imaging are the same as those used in
KM imaging. The same network of receivers is used, but it is the way in which these data
are post-processed which differentiates the two methods. As we have already seen, with
KM the raw signals are back-propagated whereas with CINT the empirical cross-correlation
that we have just introduced, (3.21), is back-propagated. Moreover this is done locally in
space and frequency, as it is explained just below (see also the introduction in Sect. 1.5.1).
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Second step

The second step consists in numerically back-propagating the empirical cross-correlations
Ĉ(rq, rr, ω, ω′) in a fictitious (e.g. homogeneous) medium, of which Green’s function is again
Ĝ0(r, r′, ω) ≡ exp(i ωc0 |r − r

′|). The cross-correlations are computed locally in frequency
and space and not over the whole frequency range and for all pairs of sensors. The CINT
imaging functional of a source (passive case) in a quiescent medium reads:

ICINT(rS ; Ωd, Xd) =

N∑
q, r = 1

|rq − rr| ≤ Xd

∫∫
|ω−ω′|≤Ωd

Ĉ(rq, rr, ω, ω′) e
−i ω

c0
|rq−rS |+iω

′
c0
|rr−rS | dωdω′ , (3.22)

such that the source location can be estimated by:

rso = arg max
rS∈S

ICINT(rS ; Ωd, Xd) in some search region S .

Ideally the frequency window Ωd is chosen as the so-called decoherency frequency Ωc, i.e.
the frequency gap beyond which the frequency components of the recorded pressure fields are
no longer correlated. Likewise, the spatial window Xd is ideally chosen as the decoherency
length Xc, i.e. the sensor gap beyond which the recorded pressure fields are no longer
correlated. The range resolution of CINT is c0

Ωd
(the usual range resolution formula with the

effective bandwidth Ωd < B whereB is the source bandwidth), and its cross-range resolution
is λ0L

Xd
(the Rayleigh’s resolution formula with the effective array diameter Xd < a). The

decoherency parameters Ωc and Xc depend on the statistical properties of the fluctuations
in the random medium. They are not known since the random medium is also unknown, so
the CINT parameters Ωd and Xd have to be determined from the data. Alternatively, they
may be determined by the adaptive algorithm developed in [26], as presented in Sect. 1.5.1.

Reflector imaging

CINT imaging can be used to localize reflectors alike: a square array [−a
2 ,

a
2 ]× [−a

2 ,
a
2 ]×

{0} of N transducers is put up at a distance L from a reflector located at rref = (0, 0, L).
Among the N transducers, Ns are used as sources located at {rs; 1 ≤ s ≤ Ns}, and Nr are
used as receivers (sensors) located at {rr; 1 ≤ r ≤ Nr}. The dataset of recorded pressure
fields is denoted by {p(rr, t; rs); 1 ≤ r ≤ Nr, 1 ≤ s ≤ Ns}. The CINT imaging functional
of a reflector (active case) in a quiescent medium reads:

ICINT(rR; Ωd, Xd) =

Nr∑
r, r′ = 1

|rr − rr′ | ≤ Xd

Ns∑
s, s′ = 1

|rs − rs′ | ≤ Xd

∫∫
|ω−ω′|≤Ωd

p̂(rr, ω; rs)p̂(rr′ , ω′; rs′)

× e
−i ω

c0
(|rr−rR|+|rR−rs|)+iω

′
c0

(|rr′−rR|+|rR−rs′ |) dωdω′ , (3.23)

such that the reflector location can be estimated by:

rref = arg max
rS∈S

ICINT(rS ; Ωd, Xd) in some search region S .
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Full migration

The unfiltered full migration imaging functional is (in the passive case):

IBF(rS) =

N∑
q=1

N∑
r=1

∫∫
R2

Ĉ(rq, rr, ω, ω′) e
−i ω

c0
|rq−rS |+iω

′
c0
|rr−rS | dωdω′

= |IKM(rS)|2 ,

(3.24)

if all pairs of sensors and frequencies are summed up in Eq. (3.22). Thus one gets the same
image as with KM (3.14): the full migration of all cross-correlations does not work if the
medium is scattering.

Coherent interferometric imaging in a random flow

In view of the result (3.7) of Sect. 3.1.1, it is proposed to modify the foregoing CINT
imaging functional (3.22) for localizing a source to include the Doppler compensation factor
(3.16). The compensated CINT imaging functional in the passive case thus reads:

ICINT(rS ; Ωd, Xd) =

N∑
q, r = 1

|rq − rr| ≤ Xd

∫∫
|ω−ω′|≤Ωd

Ĉ(rq, rr, ω, ω′) e
−i ω

c0
γD(rq ,rS ,v0)|rq−rS |+iω

′
c0
γD(rr,rS ,v0)|rr−rS | dωdω′ .

(3.25)

Along the same lines, we modify the CINT imaging functional (3.23) in the active case as:

ICINT(rS ; Ωd, Xd) =

Nr∑
r, r′ = 1

|rr − rr′ | ≤ Xd

Ns∑
s, s′ = 1

|rs − rs′ | ≤ Xd

∫∫
|ω−ω′|≤Ωd

p̂(rr, ω; rs)p̂(rr′ , ω′; rs′)

× e
−i ω

c0
(γD(rr,rS ,v0)|rr−rS |+γD(rS ,rs,v0)|rS−rs|)

× e
+iω

′
c0

(γD(rr′ ,r
S ,v0)|rr′−rS |+γD(rS ,rs′ ,v0)|rS−rs′ |) dωdω′ . (3.26)

3.2 Discontinuous Galerkin method for Euler equations

In order to test the KM and CINT imaging functionals in quiescent or moving cluttered
media, the dataset {p(rr, t);, 1 ≤ r ≤ N} of recorded pressure fields is simulated numerically
using the computer code SPACE [60, 109] for computational fluid dynamics (CFD) and
computational aero-acoustics (CAA). It solves the Euler equations (1.2) and linearized
Euler equations (LEE) (1.5) or (3.1) by the discontinuous Galerkin (DG) finite element
method and an explicit Runge-Kutta time integration scheme.

3.2.1 Euler equations DG solver (CFD)

In their conservative form, the Euler equations (1.2) for an ideal fluid read:

∂tw + ∇ ·F(w) = g , (3.27)
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with g = (m,0, 0), w = (%, %v, %E) the vector of conservative variables, where E is the
energy density per unit mass:

E = e+
1

2
|v|2 ,

and e is the internal energy per unit mass, and F the flux operator given by:

F(w) =

 %v
%v ⊗ v + pI3

(p+ %E)v

 .

Note that for a fluid following the law of perfect gas such that p%−γ = constant along
particle paths, where γ =

cp
cv

is the perfect gas constant (Laplace’s coefficient), and cv and
cp are the heat capacities at constant volume and constant pressure, respectively, one has
e(T ) = cvT as a function of temperature T , and %e = p

γ−1 . Considering a bounded domain
Ω with boundary Γ, the variational formulation of the Euler equations (3.27) reads:∫

Ω
(∂tw + ∇ ·F(w)) ψ dΩ =

∫
Ω
gψdΩ , ∀ψ ∈ V (Ω) ,

where V (Ω) is a set of admissible fields in Ω. Subdividing the domain Ω into NΩ non-
overlapping elements or cells as Ωh =

⋃NΩ
i=1 Ωi, and its boundary Γ into NΓ surface elements

as Γh =
⋃NΓ
j=1 Γj , one obtains after integration by parts:

NΩ∑
i=1

(∫
Ωi

∂twψ dΩ−
∫

Ωi

F(w) ·∇ψ dΩ +

∮
∂Ωi|Γ

F̃(w,w+) · ni ψ dΓ

)

+

NΓ∑
j=1

∮
Γj

F(w) · nj ψ dΓ =

∫
Ω
g ψ dΩ , ∀ψ ∈ Vh(Ω) , (3.28)

where ∂Ωi is the boundary of the geometric cell Ωi, and ni is its outward unit normal; like-
wise, nj is the outward unit normal to Γj . Here Vh(Ω) is typically a broken set of piecewise
polynomial functions on the partition Ωh. If it is constructed such that its elements are
continuous at the boundary of two adjacent elements Γij = Ωi ∩ Ωj , then the third term
in the left hand-side above (the summation on the interior boundaries ∂Ωi|Γ) vanishes.
If however it is constructed such that no continuity relation is enforced between adjacent
elements, then the physical normal flux F(w) · ni on ∂Ωi|Γ has to be carefully evaluated.
It is actually replaced by the flux F̃(w,w+) · ni which is a numerical flux accounting for
the fact that in view of this subdivision, w may have different values on both sides of the
edge ∂Ωi. Local Lax-Friedrichs numerical fluxes (see for example [83]) are used in SPACE,
namely:

F̃(w,w+) · n =
1

2
(F(w) + F(w+)) · n− ξλmax(w+ −w) ,

where w (respectively w+) stands for the interior (respectively exterior) trace of w in Ωi,
ξ ∈ [0, 1], and:

λmax = max
(
|v · n|, |v · n+ c|, |v · n− c|, |v+ · n+|, |v+ · n+ + c+|, |v+ · n+ − c+|

)
.

Here c =
√
γp/% is the adiabatic speed of sound.



D
RA
FT

90 CHAPTER 3. COHERENT INTERFEROMETRY IN A RANDOM FLOW

3.2.2 Linearized Euler equations DG solver (CAA)

The LEE are established assuming a subsonic flow. An entropy equation is used rather
than an energy equation. Also assuming that at initial time the entropy is spatially uniform,
it remains spatially uniform at any time; see Eq. (1.2). Hence the flow is homentropic. Such
an hypothesis is not essential for the method, but it is commonly done and provides with a
problem of smaller size. Introducing the variable w′ = (v′, c0%

′

%0
), Eq. (3.1) can be written:[

(∂t + v0 ·∇)I3 c0∇
c0∇T ∂t + v0 ·∇

]
w′ +

[
Dv0

1
%0

(∇(%0c0)− 1
c0
∇p0)

c0
%0

(∇%0)T − 1
c0
v0 ·∇c0

]
w′ = g′ ,

where g′ is an acoustic source term, and (Dv0)ij = ∂j v0i. Since the flow is homentropic
and the fluid is assumed to follow the law of perfect gas, one has:

1

%0

(
∇(%0c0)− 1

c0
∇p0

)
= ∇c0 , − 1

c0
v0 ·∇c0 =

γ − 1

2
∇ · v0 .

Hence the foregoing system also reads:

∂tw
′ +Ai ∂iw′ + Bw′ = g′ ,

where for v0 := (u0, v0, w0):

A1 =


u0 0 0 c0

0 u0 0 0
0 0 u0 0
c0 0 0 u0

 , A2 =


v0 0 0 0
0 v0 0 c0

0 0 v0 0
0 c0 0 v0

 , A3 =


w0 0 0 0
0 w0 0 0
0 0 w0 c0

0 0 c0 w0

 ,
and:

B =

[
Dv0 ∇c0

c0
%0

(∇%0)T γ−1
2 ∇ · v0

]
.

These matrices depend on the ambient flow:

%0 = w1 , u0 =
w2

w1
, v0 =

w3

w1
, w0 =

w4

w1
, c0 =

√
γ(γ − 1)

√
w5

w1
− w2

2 + w2
3 + w2

4

2w2
1

,

where w = (w1, w2, w3, w4, w5) is the solution of Euler equations (3.28). We note that
the matrix B vanishes for constant ambient quantities. For a local element Ωi, the weak
formulation of the LEE reads:∫

Ωi

(∂tw
′+Ai ∂iw′+Bw′)ψ dΩ +

∮
∂Ωi

M(n)(w′+−w′)ψ dΩ =

∫
Ωi

g′ψ dΩ , ∀ψ ∈ V (Ω) ,

(3.29)
where w′+ stands for the exterior trace of w′, w′ stands for the interior one, and n is the
outward unit normal. M is a boundary flux operator, where the chosen flux generalizes
the method of characteristics in one-dimensional media as follows. Since the matrix Aini
(with summation over the repeated index) is symmetric, it is diagonalizable and can be
split into a positive part (corresponding to the set of positive eigenvalues) and a negative
part (corresponding to the set of negative eigenvalues):

Aini = [Aini]+ + [Aini]− .

In our approach M = [Ai.ni]−, that is, a fully upwind scheme. Furthermore, as matrices
Aj , j = 1, 2, 3, B, and M only depend on constant values of the ambient flow, a global
sparse matrix is built for each computational subdomains.



D
RA
FT

3.2. DISCONTINUOUS GALERKIN METHOD FOR EULER EQUATIONS 91

3.2.3 Spatial discretization and functional basis

Both variational formulations (3.28) and (3.29) are solved with a nodal DG method [83].
The field ψ(ξ) (ψ can be w in CFD or w′ in CAA) with coordinates ξ in the d-simplex in
physical dimension d, is discretized in each cell with a set of n values ψi = ψ(ξi). For the
linear element [−1, 1] (d = 1), the approximation of ψ(ξ) reads:

ψ̃(ξ) =
n∑
i=0

`i(ξ)ψi

where {`i(ξ); ξ ∈ [−1, 1], 0 ≤ i ≤ n} is a set of Lagrangian polynomials of degrees n+1 based
on the Gauss-Lobatto points {ξi ∈ [−1, 1]; 0 ≤ i ≤ n}. Indeed, the choice of Gauss-Lobatto
points is required to keep a good condition number of operators with high orders [82].
Polynomials based on equidistant grid points present high amplitude oscillations near the
boundaries while the polynomials based on Gauss-Lobatto points do not. The amplitude
of oscillations increases with the order of polynomials and is responsible of the so-called
Runge phenomenon providing severely ill-conditioned operators. The sets of Lagrangian
polynomials based on equidistant and Gauss-Lobatto points are plotted in Fig. 3.2 for
order n = 30. High order optimized bases are also available for triangles, tetrahedrons,
pyramids and wedges. To evaluate nodal polynomials, the Lebesgue’s function:

l(x) =

n∑
i=0

|`i(x)| (3.30)

is commonly used because it reveals the Runge phenomenon of the polynomial basis. In
Fig. 3.3, the Lebesgue’s function for P10 tetrahedrons (top) and pyramids (bottom) based
on equidistant and optimized points are plotted. The reduction of the Runge phenomenon
with optimized set of nodes is clearly visible.

Figure 3.2 – Sets of Lagrangian basis based on equidistant (left) and Gauss-Lobatto (right)
points for order 30. From [109].

Gauss quadratures are used for numerical integration over triangles, tetrahedrons, and
pyramids. For edges, quadrangles (and hexahedras) the one-dimensional basis is tensorized
and Gauss-Legendre-Lobatto quadratures of order n + 1 are used with the nodal basis
of order n + 1 based on Gauss-Lobatto nodes. For that particular case, Gauss points
and interpolation points are collocated so that `i(ξj) = δij , and the integration formula
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Figure 3.3 – Equidistant and optimized P10 tetrahedron (top) and pyramid (bottom)
Lebesgue’s function. From [109].
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simplifies: ∫ +1

−1
ψ(ξ) dξ =

n∑
i=0

ψi

n∑
j=0

ωj`i(ξj) =
n∑
i=0

ωiψi , (3.31)

where {ωi; 0 ≤ i ≤ n} are the quadrature weights. Moreover, the mass matrix is lumped
and becomes diagonal. However, the Gauss-Legendre-Lobatto quadrature of order n + 1
provides exact numerical integration for polynomials of which degree is lower or equal to
2n− 1, and the degree of the formulation is 2n+ 1. Several studies [57,62] have shown that
the use of Gauss-Lobatto quadratures does not introduce a numerical error higher than the
approximation error for linear problems. For CFD, the collocation of degrees and Gauss
points strongly reduces the time of computation. For CAA, as global matrices are stored,
it does not change anything.

3.2.4 Boundary conditions

For the boundary conditions we use non-reflective, Padé conditions [89]. These con-
ditions allow us to limit the numerical echo. However they also limit the percentage of
randomness that we can take for the perturbation of the flow, as well as the fineness of the
mesh that we take.

3.2.5 Time discretization

Once the variational formulation (3.29) has been discretized in space using piecewise
polynomial functions, it is discretized in time using a second-order Runge-Kutta explicit
scheme [60,109].

3.3 Imaging in a motionless random medium

In this section the imaging algorithms outlined in Sect. 3.1 are first applied to a mo-
tionless random medium. The same configuration as in [24] is considered for validation
purposes; see Fig. 3.1. We seek to determine the position of three sources or reflectors
buried in an inhomogeneous medium in two dimensions. The inhomogeneous medium will
be modeled as a random medium. Regarding the terminology used in the remaining of this
chapter, a random medium refers to a medium with a random speed of sound c0 that can be
subjected to deterministic (constant) or random ambient velocity v0. All CFD and CAA
simulations were performed using the parallel scalar cluster of ONERA [106]. This cluster
has a total of 17,360 cores for a peak performance of 667 Tflop/s. The post-processing of
all results was done using Matlab R2015a. All imaging functionals have been normalized
and their range is between 0 and 1. In addition, to compare the results obtained by the
KM and CINT imaging algorithms, the CINT imaging functional |ICINT| and the squared
KM imaging functional |IKM|2 are formed because |ICINT| ∝ |IKM|2.

3.3.1 Model setup

We thus consider a quiescent ambient medium with v0 = 0, %0 = constant, and a
random speed of sound written here as c0(r) = c(1 + σµ(r)), where c = constant, σ is
the relative standard deviation, and (µ(r), r ∈ R3) is a homogeneous (stationary), mean-
zero second-order random process. An exponential autocorrelation function is chosen (also
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called Matern 1/2 model) corresponding to non-smooth samples of the random process.
This perturbation is simulated by a random Fourier series of the stationary process µ(r)
[111,117]:

Rµ(r, r′) := E
{
µ(r)µ(r′)

}
= e−

|r−r′|
`c , (3.32)

where `c is the correlation length. The setup for numerical validation is shown in Fig. 3.1
where the dimensions of the problem are given in terms of the central wavelength λ0. The
horizontal axis is the range and the vertical axis along which the array is aligned is the
cross-range. This array contains N = 185 transducers at a distance λ0/2 from each other,
with an aperture a = 92λ0. The object to be imaged is at a range L = 90λ0 and zero
cross-range, and it is either constituted by three sources 6λ0 apart from each other and
emitting the same signals t 7→ f(t) (passive configuration), or three non penetrable disks
of radius λ0 with homogeneous Dirichlet boundary conditions and centered at the same
points (active configuration). In this latter case, the central transducer of the array emits
the probing pulse t 7→ f(t) and all other transducers and this one are used as receivers.
The pulse is:

f(t) = −ω2
0(t− t0) e−

1
2
ω2

0(t−t0)2
, (3.33)

where ω0 = 2πf0 is the central (circular) frequency such that λ0 = c/f0. We choose f0 = 1
kHz and t0 = 1/f0 as in [24]; see Fig. 3.4. For this central frequency, the bandwidth of the
signal is [0.6–1.3] kHz. All pressure data in the bandwidth [0–1.5] kHz are post-processed
to build the KM and CINT imaging functionals.

Figure 3.4 – Shape of the signal t → f(t) used for CINT imaging in a motionless ambient
medium.

The cluttered medium in Fig. 3.1 and subsequent simulations correspond to an average
speed of sound c = 3000 m/s, standard deviation σ = 3%, and wavelength λ0 = 0.3 m
at the central frequency f0 = 1 kHz. The correlation length is `c = λ0/2 = 0.15 m.
This is a delicate situation to deal with, since λ0 ' `c as a priori required if one wants to
probe objects of this size. To generate the dataset to be post-processed with the imaging
functionals described above in Sect. 3.1.2 and Sect. 3.1.3, we use the DG finite element
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method described in Sect. 3.2.2 and thus solve the LEE for a random speed of sound. The
propagation medium is considered to be infinite in all directions. Numerically, we use non-
reflective (Padé) boundary conditions all around the discretized medium in order to avoid
wave reflection.

3.3.2 Mesh

The same mesh will be used for all our simulations in this section and the subsequent
Sect. 3.4. It consists in triangular elements with 3 nodes, and includes about 1.1 million
nodes and 2.3 million elements. Fig. 3.5 shows a zoom on the mesh around one of the three
reflectors to be imaged in the active case. The DG SPACE computation code makes it very
easy to increase the order of the mesh elements. We voluntarily take polynomials of degree
1 in agreement with the calculations done in [24]. For a central frequency f0 = 1000Hz
and an average speed of sound c = 3000 m/s, this corresponds to about 5 to 10 nodes per
wavelength. Some differences will be observed in the resolution of the results obtained here
compared to those obtained in [24].

Figure 3.5 – Mesh used for the validation of the KM and CINT imaging functionals in
a motionless and moving random medium. Zoom around one of the three reflectors to be
imaged in the active case.

Indeed, the resolution we use (5-10 nodes per wavelength) is relatively far from the
resolution used in [24], which is 30 nodes per wavelength. This choice to lower the accuracy
of our mesh had to be done because, in addition to studying the case where the ambient
medium is at rest, we also study the case where it is moving with a uniform velocity v0. The
latter case greatly deteriorates the Courant-Friedrichs-Lewy (CFL) number CFL = c∆t/∆x
of the time-space discretization scheme, where ∆t is the typical time increment and ∆x is
the typical element edge length. More precisely, we can not have both a fine mesh and
a large time step because of the risk that the obtained solution may diverge. So without
forgetting that we will post-process all computations with Matlab and are limited by its
memory capabilities, and in order to obtain results that have been converged with a number
of iterations that do not exceed the capacities of the computer, we use a coarser mesh. Mesh
optimization is to be considered in future studies. On the other hand, a regular four-node
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quadrilateral element mesh is used in [24] as well as a mixed finite element spatial resolution
method and a second-order leapfrog temporal integration scheme [14, 15]. Thus we use a
different mesh and resolution scheme.

3.3.3 Active imaging

As a first illustration of the methodology, we consider the localization of three reflectors
(active configuration) using the KM imaging functional (3.14) and the CINT imaging func-
tional (3.22). The search domain is a square of size 20λ0 × 20λ0 centered around (90λ0, 0).

(a) (b)

Figure 3.6 – Imaging in a motionless medium in the configuration of Fig. 3.1. (a) Time
traces recorded at the receivers in the case of a constant speed of sound c = 3000 m/s.
(b) Time traces recorded at the receivers in the case of a random speed of sound of mean
c = 3000 m/s and standard deviation σ = 3%. The horizontal axis is time (in s) and the
vertical axis is the array transducer location (in units of λ0).

Let us first look at the case where the motionless medium of Fig. 3.1 is homogeneous,
that is, its speed of sound is constant and equal to c. For this case, the KM imaging
functional should give peaks corresponding to the positions of the reflectors. An example of
the signals scattered by the reflectors is shown in Fig. 3.6(a). In the active configuration we
use the central sensor as a source and all the sensors of the array as receivers. We clearly
distinguish the echoes of the signal for each reflector. In addition, the signals are symmetric
with respect to the central receiver which also serves as a source. Therefore, we should be
able to find the position of each reflector. To be convinced of this, the results obtained with
the KM imaging algorithm are given in Fig. 3.7 with a pixel size of λ0/2. We find the three
reflectors in the middle of the search region. However, the peak of the imaging functional
at the position of the reflectors is not as sharp as in [24]. This spread of the peak is mainly
attributed to the mesh used. This result is deemed sufficient for a first study, though. A
refined mesh shall be used in future works.

In the case of the motionless medium of Fig. 3.1 with a random speed of sound, it is
much more difficult to distinguish the wavefront and the echoes of the three reflectors on
Fig. 3.6(b), since the signals are noisy. The causes of this noise are the multiple scattering of
acoustic waves on the inhomogeneities present in the medium. In addition, the noise will be
different from one realization of the medium to another. We understand very well why KM
imaging algorithm is not effective. Indeed we back-propagate all the noise contained in the
signals recorded by the receivers, and this noise is not canceled by the Green’s function Ĝ0 of
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Figure 3.7 – KM active imaging in a motionless medium in the configuration of Fig. 3.1
with constant speed of sound c = 3000 m/s. The reflectors to be localized are drawn in
white.

the homogeneous ambient medium playing the role here of a fictitious medium. This noise
phenomenon appears very clearly when we compute the KM imaging functional (Fig. 3.8(a)
and Fig. 3.8(b)). We observe noisy images that are different from one realization of the
medium to another, hence we get statistically unstable images. The random phase present
in the signals is not satisfactorily canceled by back-propagation. We do not get a sharp
peak around the position of the three different reflectors as in the case of the homogeneous
motionless medium.

Let us now look at the results obtained with the CINT imaging algorithm. The results
are displayed in Fig. 3.8(c) and Fig. 3.8(d) for respectively the first realization of the medium
and the second realization of the medium with the same mean c = 3000 m/s and standard
deviation σ = 3%. The squared KM imaging functional |IKM|2 is shown because when
Xd = a and Ωd = B, we have |ICINT| = |IKM|2. The optimal CINT parameters will be
denoted by Ωd = Ω?

d and Xd = X?
d in the following. They were found ”by hand”, however

there may be a more optimal set of parameters but the adaptive algorithm [26] was not
used. Indeed in our computational setup producing a CINT image takes several hours. It
is therefore faster to find parameters close to the optimal parameters by hand. However we
think that with the ability to produce images more quickly the adaptive choice presented
in [26] is a real plus for producing images with a better resolution. Overall we can observe
that the images are less noisy than those obtained by the KM imaging algorithm, as they
are smoother and statistically stable. By using the CINT imaging algorithm, we can thus
cancel a certain part of the random phase present in the signals acquired by the receivers
and coming from the multiple scattering of the acoustic waves on the inhomogeneities of the
medium. The influence of the realization of the random medium has therefore been reduced
as can be seen on Fig. 3.8. For two different realizations of the medium, we obtain two
different images with the KM imaging functional but CINT imaging results are relatively
close. Nevertheless, as expected, the cross-range resolution and the range resolution are
slightly altered. The peak centered around each reflector, which has been observed in the
case of an homogeneous medium, is rather spread here. This comes from the smoothing of
the image induced by the CINT imaging algorithm. Obtaining a good image is therefore
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(a) (b)

(c) (d)

Figure 3.8 – Active imaging in a motionless medium in the configuration of Fig. 3.1 with
random speed of sound with mean c = 3000 m/s and standard deviation σ = 3%. Compar-
ison of the KM and CINT imaging functionals for two different realizations of the random
medium. (a) Squared KM imaging functional for the first realization of the medium. (b)
Squared KM imaging functional for the second realization of the medium. (c) CINT imag-
ing functional for the first realization of the medium. (d) CINT imaging functional for the
second realization of the medium. Ωd = 0.09 × B and Xd = 0.85 × a for both media. The
reflectors to be localized are drawn in white.

based on the compromise between the smoothing necessary to compensate the noise and
the loss of resolution that it induces. It is the heart of the CINT imaging algorithm through
the choice of parameters Ωd and Xd. The choice of an optimal decoherency frequency Ωd

contributes to enhance range resolution, while the choice of an optimal decoherency length
Xd contributes to enhance cross-range resolution.
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3.3.4 Passive imaging

Some results are briefly presented now for the case of passive imaging. Here the sensors
in the array are used as receivers only, and we want to localize three sources buried in a
motionless medium with a random speed of sound; see again Fig. 3.1. In this configuration
we note that the KM imaging functional easily finds the sources, so there is little interest of
using the CINT imaging algorithm in this configuration to the extent that much less time
is required to produce an image by the KM imaging algorithm. We can see on Fig. 3.9
that the two imaging functionals find the three sources with good precision. Indeed in
the passive setup the signal emitted by the sources goes through the random medium only
once, which is not enough to be sufficiently scattered and put in default the KM imaging
algorithm. Surely, there should be higher levels of randomness to achieve this. In the next
two sections we will use an active imaging setup to show the interest of the CINT imaging
algorithm compared to the KM imaging algorithm.

3.4 Imaging in a moving random medium

In this section, we consider again the configuration depicted in Fig. 3.1, except that
the ambient medium is now moving at the velocity v0 which may be either uniform, or
randomly perturbed around its mean uniform value. At first we will assume that the speed
of sound is constant in order to highlight the role of the Doppler compensation factor (3.16)
for the KM and CINT imaging algorithms in that moving ambient medium. Then the speed
of sound will also be randomly perturbed around its mean value, as in the foregoing section.

3.4.1 Active imaging in a random medium moving at a uniform velocity

The ambient medium is moving at a uniform velocity v0 in the cross-range direction:

v0 =

(
0

M · c

)
(3.34)

with the Mach number M = 0.3 and c = 3000 m/s. We use the KM imaging functional
(3.20) and CINT imaging functional (3.26) to localize the three reflectors in Fig. 3.1 (active
configuration). First of all, let us look at the signals recorded by all the sensors for either
a constant or a random speed of sound; see Fig. 3.10. We note that the symmetry with
respect to the transducer used as a source–the central sensor–is no longer respected. This is
because the ambient medium is now moving in the cross-range upward direction. We thus
understand that this phenomenon will have to be consider by a certain correction factor
in our imaging functionals. This is the role of the Doppler compensation coefficient γD
of Eq. (3.16). In Fig. 3.10, we still see the different echoes of the signal on the reflectors.
Thus, if our coefficient is correct, we should be able to see the position of each reflector in
that case of a constant speed of sound.

In order to highlight the role of the Doppler compensation coefficient, we show in
Fig. 3.11 the KM imaging functional (3.18) without γD (Fig. 3.11(a)) and the KM imaging
functional (3.20) with γD (Fig. 3.11(b)). The speed of sound is constant and the search
domain is a square of size 20λ0 × 20λ0 centered around (90λ0, 0). We note that when γD
is not used, we do not find the positions of the three reflectors. Indeed, in this case, we
back-propagate the signals in a medium at rest. Conversely, when γD is taken into account
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(a) (b)

(c) (d)

Figure 3.9 – Passive imaging in a motionless medium in the configuration of Fig. 3.1 with
random speed of sound with mean c = 3000 m/s and standard deviation σ = 3%. Compar-
ison of the KM and CINT imaging functionals for two different realizations of the random
medium. (a) Squared KM imaging functional for the first realization of the medium. (b)
Squared KM imaging functional for the second realization of the medium. (c) CINT imag-
ing functional for the first realization of the medium. (d) CINT imaging functional for the
second realization of the medium. Ωd = 0.09 × B and Xd = 0.85 × a for both media. The
sources to be localized are drawn in white.

in the KM imaging functional, we get their position relatively well. Nevertheless, we notice
that there is a slight shift for the top reflector. There can be several explanations: error of
discretization during the resolution of the equations, imperfect reflections of the waves on
the reflectors and/or imperfect absorption on the edges of the computational domain, or
error induced in the model by the (first-order) corrector γD. Further study may lead to a
better understanding of this phenomenon.

Then the speed of sound of the ambient medium moving at the uniform velocity v0 of
(3.34) is randomly perturbed about its mean value c with the standard deviation σ = 3%.
From now on, the Doppler compensation factor γD of (3.16) will be considered for all
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(a) (b)

Figure 3.10 – Imaging in a moving medium in the configuration of Fig. 3.1 with uniform
velocity in the cross-range direction. (a) Time traces recorded at the receivers in the case
of a constant speed of sound c = 3000 m/s. (b) Time traces recorded at the receivers in the
case of a random speed of sound of mean c = 3000 m/s and standard deviation σ = 3%.
The horizontal axis is time (in s) and the vertical axis is the array transducer location (in
units of λ0).

(a) (b)

Figure 3.11 – KM active imaging in a moving medium in the configuration of Fig. 3.1 with
constant velocity v0 in the cross-range upward direction and constant speed of sound c =
3000 m/s. Influence of the Doppler compensation coefficient γD on KM imaging functional:
(a) without γD; (b) with γD. The reflectors to be localized are drawn in white.

simulations. The KM imaging functional for two realizations of the medium is shown in
Fig. 3.12. As in Fig. 3.8, we observe very noisy images that differ from one realization of
the medium to another. We thus apply the CINT imaging algorithm to the signals received
by the receivers. The optimal setting for Ωd and Xd is found in the same way as before.
The results can be seen in Fig. 3.13. We only show one realization of the medium but we
can make the same observations as in Sect. 3.3: the KM imaging algorithm is statistically
unstable while the CINT imaging algorithm is statistically stable. For the KM imaging
functional of Fig. 3.13(a), we have difficulties finding the positions of the three reflectors
since the image is noisy. For the CINT imaging functional of Fig. 3.13(b), the positions
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of the three reflectors appears much more clearly. The uncertainties present on the image
obtained by the KM algorithm have practically disappeared. Nevertheless, we have, as
expected, a loss in resolution that comes from the smoothing phenomenon of the CINT
algorithm.

(a) (b)

Figure 3.12 – KM active imaging in a moving medium in the configuration of Fig. 3.1 with
constant velocity v0 in the cross-range upward direction and random speed of sound with
mean c = 3000 m/s and standard deviation σ = 3%. (a) Squared KM imaging functional
for the first realization of the medium. (b) Squared KM imaging functional for the second
realization of the medium. The reflectors to be localized are drawn in white.

(a) (b)

Figure 3.13 – Active imaging in a moving medium in the configuration of Fig. 3.1 with
constant velocity v0 in the cross-range upward direction and random speed of sound with
mean c = 3000 m/s and standard deviation σ = 3%. Comparison of the KM and CINT
imaging functionals for one realization of the random medium. (a) Squared KM imaging
functional. (b) CINT imaging functional with Ωd = B

12 and Xd = 0.9× a. The reflectors to
be localized are drawn in white.
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3.4.2 Active imaging in a random medium moving at a random velocity

The same configuration as in the previous sections is considered (see Fig. 3.14), but the
ambient medium is now moving at a random velocity v0:

v0(r) =

(
σ1µ1(r)

M · c(1 + σ2µ2(r))

)
with the Mach number M = 0.3, c = 3000 m/s, and σ1 = σ2 = 3%. The disturbances µ1 and
µ2 are stationary, mean-zero independent random processes. Matern 1/2 autocorrelation
functions (3.32) are chosen for µ1 and µ2. These perturbations are simulated by random
Fourier series of stationary processes [111, 117]. One realization is shown on Fig. 3.14(c)–
3.14(d) for illustration purposes. We note that this random ambient velocity v0 does not
necessarily solve the ambient flow equations (3.2) and the autocorrelation functions of its
turbulent components do not fulfill the necessary condition Eq. (1.37). This simplified
model is a first attempt to take into account turbulent phenomena with the KM and CINT
imaging algorithms. More realistic models shall be envisaged in future works.

In the same way as in the previous sections, let us first look at the signals recorded
by all the sensors for either a constant or a random speed of sound; see Fig. 3.15. We
note that the symmetry with respect to the transducer used as a source–the central sensor–
is not respected. Compared to the moving medium with constant velocity, we observe
here an echo fairly close to the echo in Fig. 3.10 but noisier. This is induced by the
velocity of the ambient medium which is now random. Thus, the waves propagating in this
medium will also be noisy. However, even in the presence of this noise, we always see the
different fronts representing the echoes of the signal on the three reflectors. The role of the
Doppler compensation coefficient γD is also highlighted in Fig. 3.16. Here we show the KM
imaging functional (3.18) without γD and the KM imaging functional (3.20) with γD for one
realization of the random velocity v0 of the ambient medium. The compensation coefficient
is computed for the mean velocity of the ambient medium. The search domain is again a
square of size 20λ0 × 20λ0 centered around (90λ0, 0). KM imaging algorithm accounting
for the Doppler compensation coefficient works well in this configuration (constant speed
of sound) even if the ambient flow velocity is random.

Images obtained by the KM imaging algorithm for two realizations of the ambient
medium with random velocity and random speed of sound are shown in Fig. 3.17. We
observe, as in the preceding cases, the statistical instability of the KM imaging functional,
since we can not determine unambiguously the positions of the reflectors for any realization
of the medium. We thus apply the CINT imaging algorithm to the signals received by the
receivers. The optimal setting for Ωd and Xd is found in the same way as before. The results
can be seen in Fig. 3.18. We only show one realization of the medium but we can make
the same observations as in Sect. 3.3. Using the KM imaging algorithm (Fig. 3.18(a)), we
can not distinguish the positions of the three reflectors. On the contrary, using the CINT
imaging algorithm (Fig. 3.18(b)), we can much more easily distinguish the positions of the
three reflectors. However, we can notice two things. First, we still have a loss in resolution
due to smoothing. Second, we can observe that there are slight offsets of the positions of
the reflectors (of the order of a few pixels). This phenomenon can be explained by the fact
that the mesh step is not sufficiently reduced, discretization errors are therefore present
and not negligible. It could also be explained by the fact that the Doppler compensation
coefficient γD is a first order correction.
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(a) (b)

(c) (d)

Figure 3.14 – Active imaging in a moving medium with random velocity v0 and random
speed of sound with mean c = 3000 m/s and standard deviation σ = 3%. The locations of
the reflectors to be imaged is shown by dots • and the locations of the transducers is shown
by crosses ×. (a) Computational setup with dimensions in terms of the central wavelength
λ0. (b) Typical realization of the random speed of sound c0(r). (c) Typical realization of the
random ambient flow velocity in the range direction. (d) Typical realization of the random
ambient flow velocity in the cross-range direction.

3.5 Passive imaging through a synthetic turbulent jet flow

In this section we finally aim at getting closer to a real flow configuration by trying
to build images through a synthetic turbulent jet flow. Indeed, until now, the medium
in which the imaging algorithms were tested does not really have any physical relevance,
contrary to the framework in which this section fits.

3.5.1 Model setup

A sketch of the configuration considered here is shown in Fig. 3.19. This case study
is inspired by the experiments conducted by Candel et al. in the 70’s [41–43] at the Von
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(a) (b)

Figure 3.15 – Imaging in a moving medium in the configuration of Fig. 3.14 with random
velocity. (a) Time traces recorded at the receivers in the case of a constant speed of sound
c = 3000 m/s. (b) Time traces recorded at the receivers in the case of a random speed of
sound of mean c = 3000 m/s and standard deviation σ = 3%. The horizontal axis is time
(in s) and the vertical axis is the array transducer location (in units of λ0).

(a) (b)

Figure 3.16 – KM active imaging in a moving medium in the configuration of Fig. 3.14 with
random velocity v0 and constant speed of sound c = 3000 m/s. Influence of the Doppler
compensation coefficient γD on KM imaging functional: (a) without γD; (b) with γD. The
reflectors to be localized are drawn in white.

Kármán institute, and more recently by Kröber et al. [91] at the Aeroacoustic Wind Tunnel
Braunschweig (AWB) facility, and by Sijtsma et al. [118] at the DNW (the German-Dutch
Wind Tunnels) PLST wind tunnel. The jet inflow boundary conditions (left side of Fig. 3.19)
yield two sub-domains with average ambient flow velocities U1 = 100 m/s and U2 = 50 m/s,
respectively, with turbulent shear layers in between. Our goal is to image point sources lying
in the first medium with an array of sensors placed in the second medium–that is, a passive
imaging setup in the terminology used in the foregoing sections.

The data for this generic jet configuration are synthesized numerically in two steps as
follows:

— First, we simulate the ambient shear flow by solving the Euler equations using the
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(a) (b)

Figure 3.17 – KM active imaging in a moving medium in the configuration of Fig. 3.14
with random velocity v0 and random speed of sound with mean c = 3000 m/s and standard
deviation σ = 3%. (a) Squared KM imaging functional for the first realization of the
medium. (b) Squared KM imaging functional for the second realization of the medium. The
reflectors to be localized are drawn in white.

(a) (b)

Figure 3.18 – Active imaging in a moving medium in the configuration of Fig. 3.14 with
random velocity v0 and random speed of sound with mean c = 3000 m/s and standard
deviation σ = 3%. Comparison of the KM and CINT imaging functionals for one realization
of the random medium. (a) Squared KM imaging functional. (b) CINT imaging functional
with Ωd = B

15 and Xd = 0.9× a. The reflectors to be localized are drawn in white.

DG solver outlined in Sect. 3.2.1. This is the CFD step. In order to generate tur-
bulence, viscosity phenomenon must be present. By definition, Euler equations are
theoretically only used to solve perfect fluids, i.e. without viscosity. Nevertheless,
some viscosity is actually generated by the numerical scheme. At first, we will use
this numerical viscosity to simulate the turbulent shear layers.

— Second, we simulate the propagation of acoustic waves in the ambient flow obtained in
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Figure 3.19 – Synthetic jet flow configuration: non-reflection Padé boundary conditions;
jet inflow boundary condition for the central zone with U1 = 100 m/s; jet inflow

boundary condition outside the central zone with U2 = 50 m/s.

the CFD step by solving the linearized Euler equations using the DG solver outlined
in Sect. 3.2.2. This is the CAA step. In a first approximation, we will consider that
the acoustic phenomena are much faster than the fluidic phenomena. As a result,
the ambient flow will be considered as ”frozen”. The flow obtained at the last time
increment of the CFD step will be used as the carrier (ambient) flow for the CAA
step.

3.5.2 Imaging setup

A parameterization of the imaging setup for the synthetic jet flow of Fig. 3.19 is shown
in Fig. 3.20. We seek to determine the positions of three point sources whose emitted signals
pass through a turbulent shear layer. All sources emit the same signal given by Eq. (3.33).
The central frequency is here f0 = 50 kHz. The fluid studied is the air defined by a speed
of sound c = 340 m/s at the temperature T = 20̊ C. This corresponds to a wavelength
λ0 = 6.8× 10−3 m. The remote array contains 45 sensors at a distance λ0

2 from each other.

3.5.3 Mesh for the CFD and CAA computations

The same mesh is used for both the CFD and CAA steps. It is constructed so that there
are 30 elements per wavelength λ0 (the typical wave length of the source) for a mesh size
of 100λ0× 100λ0. We thus have 3000× 3000 elements, that is a total of 9 million elements.
The mesh is regular and composed of quadrilateral elements with four nodes each.

3.5.4 Flow calculation

The base flow computed in the CFD step is shown in Fig. 3.21. As a first approximation,
we will consider it as frozen and use it as the ambient flow for testing the KM and CINT
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Figure 3.20 – Synthetic jet flow configuration: imaging setup. a is the aperture of the
sensors array, L is the distance between the central sensor and the barycenter of the two
upper sources, and d is the distance between this barycenter and the lower source.

imaging algorithms. We can already notice that we well observe the development of a
turbulent shear layer at the interfaces between the parts of the jet having different inflow
velocities. This turbulent layer arises from the inflow velocity difference: 100 m/s for
the first medium located between −10λ0 and 10λ0 along the range axis (y), and 50 m/s
elsewhere (the second medium). It should be noted at this stage that we are not interested
in computing precisely the turbulent structures for this jet configuration. Our aim is rather
to test the imaging algorithms in such a heterogeneous medium. The turbulent layers as
resolved by the present numerical scheme are sufficient to exhibit and discuss their main
features.

3.5.5 Refraction compensation mechanism

In addition to the Doppler compensation coefficient γD of Eq. (3.16) which accounts
for the convection effects, we must consider the fact that the acoustic waves generated by
the source in the first medium will pass through media subjected to different velocities;
see Fig. 3.22. Thus, we introduce a refraction compensation mechanism in the imaging
functionals introduced in Sect. 3.1. In this context the KM passive imaging functional
(3.17) and CINT passive imaging functional (3.25) take the form:

IKM(rS) =

N∑
r=1

p
(
rr, γD1(rS , rO, U1êx)T1 + γD2(rO, rr, U2êx)T2

)
, (3.35)
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Figure 3.21 – Base flow obtained by solving Euler equations (CFD step) using a DG finite
element method for space discretization and Runge-Kutta method for time discretization for
the synthetic jet configuration of Fig. 3.19. The color gradient represents the norm of the
momentum |%v|.

and:

ICINT(rS ; Ωd, Xd) =

N∑
q, r = 1

|rq − rr| ≤ Xd

∫∫
|ω−ω′|≤Ωd

Ĉ(rq, rr, ω, ω′) e−iω(γD1
(rS ,rO,U1êx)T1+γD2

(rO,rq ,U2êx)T2)

× eiω′(γD1
(rS ,rO′ ,U1êx)T ′1+γD2

(rO′ ,rr,U2êx)T ′2) dωdω′ , (3.36)

respectively, where êx is the unit vector along the (horizontal) direction of the ambient
flow. The Doppler compensation coefficients γD1 and γD2 are calculated as in (3.16) with
the velocities of sound c1 and c2 of the two media. Referring to Fig. 3.22 where α is the angle
of the incident wave, β the angle of the refracted wave, and O is the point of the interface
between both media where the wave is refracted, then the travel times within the first and
second media are T1 = a1/c1 and T2 = a2/c2, respectively, where a1 = l1/ cosα = |rS − rO|
and a2 = l2/ cosβ = |rO − rq|, respectively (likewise, T ′1 = a′1/c1 and T2 = a′2/c2 with a′1 =
|rS − rO′ | and a′2 = |rO′ − rr|). It is important to note that in this refraction compensation
mechanism only the phase (travel times) is significant for localizing the source, and not
the amplitude. This is the reason why no amplitude reflection/transmission coefficient is
required in the imaging functionals.
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Figure 3.22 – Refracted acoustic wave at the interface between two media with speeds of sound
c1 and c2: α is the angle of the incident wave, β is the angle of the refracted wave. The
interface is taken as the mean shear layer between the first and second media in Fig. 3.19.

One source case

f0 50 kHz

Xs 12λ0

Ys 0

d 0

L 20λ0

a 22λ0

Table 3.1 – Imaging setup parameters for a single source through a synthetic turbulent jet.

3.5.6 Imaging of the sources

We will first focus on determining the position of a single source. The distance d between
the upper sources is set to zero in this case. The size of the search window is 10λ0 × 10λ0

centered around the source point (Xs, Ys). A pixel being of size 2λ0
5 , this corresponds to a

window of 25× 25 pixels. The parameters defining this case are gathered in Tab. 3.1. The
results obtained with the KM imaging algorithm are shown in Fig. 3.23 and those obtained
with the CINT imaging algorithm are shown in Fig. 3.24. We know that the jet flow used
is ideal and does not reflect reality but we obtain the desired mechanisms. We can see
the influence of the Doppler compensation coefficient γD. Without this coefficient we have
a shift of the position of the source, however if we use it in our imaging functionals we
observe that they find with satisfactory precision the position of the source. We can also
see that the refraction compensation mechanism does not really have any influence on the
result. This was predictable because the speeds of sound of the two media are identical.
Furthermore the distance between the source and the receivers is low, which leads to low
refraction of the waves. However in a more favorable configuration for refraction we put
forward the assumption that this mechanism will become of prime importance.

Second, we aim at determining the positions of three sources. The parameters defining
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(a) (b)

(c)

Figure 3.23 – KM passive imaging of a single source through a synthetic turbulent jet
flow. Influence of the Doppler compensation coefficient γD and refraction compensation
mechanism on KM imaging functional: (a) without any compensation; (b) with Doppler
compensation coefficient γD; (c) with Doppler compensation coefficient γD and refraction
compensation mechanism. The source location is shown by a dot •.

this case are gathered in Tab. 3.2. The search window is the same as the case with
one source. The results obtained with the KM imaging algorithm are shown in Fig. 3.25
and those obtained with the CINT imaging algorithm are shown in Fig. 3.26. The same
conclusions can be drawn as for the case with a single source.

3.6 Conclusion

After introducing the model problem and recalling the principles of the two imaging
functionals we use, namely Kirchhoff migration (KM) in Sect. 3.1.2 and Coherent Inter-
ferometry (CINT) in Sect. 3.1.3, we proposed a suitable form of these functionals by in-
troducing the Doppler compensation coefficient γD of Eq. (3.16). This parameter makes it
possible to perform imaging through a random flow. Indeed we first back-propagated our
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(a) (b)

(c)

Figure 3.24 – CINT passive imaging of a single source through a synthetic turbulent jet
flow. Influence of the Doppler compensation coefficient γD and refraction compensation
mechanism on CINT imaging functional: (a) without any compensation; (b) with Doppler
compensation coefficient γD; (c) with Doppler compensation coefficient γD and refraction
compensation mechanism. The source location is shown by a dot •.

signals in a homogeneous medium at rest, which does not cancel out the effects that the
signals have undergone when passing through a moving ambient medium. The factor γD
allows us to compensate these effects and perform imaging efficiently.

In a first step we validated our solver, SPACE, in a homogeneous medium at rest then
in a random medium at rest in Sect. 3.3.1. It has been seen that in the context of passive
imaging the levels of medium disturbances considered are too low to see an interest in
CINT imaging. Indeed, in this context, the signals pass one time in the medium and are
not sufficiently scattered by the latter to put KM in default. That is why we focused on
the context of active imaging.

In active imaging, the signals first go to the reflectors and then go back to the receivers
thus propagating back and forth in a random medium. They are therefore much more
modulated. The difference is easily seen when comparing the figures 3.9 and 3.12 which



D
RA
FT

3.6. CONCLUSION 113

Three sources case

f0 50 kHz

Xs 12λ0

Ys 0

d 3λ0

L 20λ0

a 22λ0

Table 3.2 – Imaging setup parameters for three sources through a synthetic turbulent jet.

(a) (b)

(c)

Figure 3.25 – KM passive imaging of three sources through a synthetic turbulent jet flow. In-
fluence of the Doppler compensation coefficient γD and refraction compensation mechanism
on KM imaging functional: (a) without any compensation; (b) with Doppler compensation
coefficient γD; (c) with Doppler compensation coefficient γD and refraction compensation
mechanism. The source locations are shown by dots •.

show KM in both contexts for a random medium with the same characteristics. The strength
of CINT imaging lies mainly in the fact that it is statistically stable, which is not the case for
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(a) (b)

(c)

Figure 3.26 – CINT passive imaging of three sources through a synthetic turbulent jet
flow. Influence of the Doppler compensation coefficient γD and refraction compensation
mechanism on CINT imaging functional: (a) without any compensation; (b) with Doppler
compensation coefficient γD; (c) with Doppler compensation coefficient γD and refraction
compensation mechanism. The source locations are shown by dots •.

KM imaging. One of the counterparts lies in the smoothing of the CINT imaging that must
be set in order to have satisfactory results. The other main counterpart is the time required
to make an image that is a few hours for the CINT while KM is almost instantaneous, with
Matlab on a standard computer.

Both imaging methods in a moving ambient medium were tested in two configurations:

— the ambient medium has a random speed of sound and is moving with a uniform
velocity,

— the ambient medium has a random speed of sound and is moving with a random
velocity.

We could see the importance of the Doppler compensation coefficient γD. These two con-
figurations that put KM imaging algorithm in default did not affect the CINT imaging
algorithm, which was able to localize the three sources quite efficiently each time; see
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Fig. 3.13 and Fig. 3.18.
Finally, we performed some tests of the KM and CINT imaging algorithms through

a synthetic turbulent jet calculated by CFD. We placed ourselves in the case of passive
imaging because of technical constraints, and added a refraction compensation mechanism.
In this context we saw that the KM algorithm, under the conditions implemented in these
tests, works relatively well if we use the Doppler compensation coefficient γD. We also saw
the tiny influence of the refraction compensation mechanism, which is explained by the
configuration considered. This mechanism could be of prime importance if a configuration
more favorable for refraction is considered.
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Conclusions and perspectives

In this thesis we have analyzed some models of propagation of acoustic waves in inho-
mogeneous quiescent media, as essentially developed in [72], and we have extended these
results to inhomogeneous moving media. We have obtained in Sect. 2.2 and Sect. 2.3 explicit
integral representations of the pressure fields that have been transmitted by an homoge-
neous ambient flow and a cluttered ambient flow with a random bulk modulus, namely
Lemma 2.2.1 and Prop. 2.3.1 respectively. More precisely, in Sect. 2.3 we have adapted to
moving random media the approach of [72, Chap. 14] for quiescent random media. We
have also derived in Sect. 2.4 an explicit expression of the power spectral density of the
pressure field transmitted by a cluttered ambient flow with a random velocity for various
simplifications of the flow features; see Prop. 2.4.2. More particularly, we have obtained
an integral representation of the pressure field for this case in Prop. 2.4.1, using various
assumptions for the ambient flow (thin layer) and the (high-frequency) source, and a Born
approximation. We have also developed a solution for finding the stationary-phase point
for this problem in Lemma 2.4.1. These are the main results of Chapter 2 of the thesis.
We have compared our results with the literature in Sect. 2.4.4 and we have seen that our
model gives the same tendencies as others models [54,55,64,66,103,104,112] or experimen-
tal observations [41–43, 91, 118]. Our model managed to highlight a characteristic spectral
broadening effect, whereby a reduction of the main peak at the source tone frequency in
favor of more distributed spectral humps on both sides of this peak is observed. We have
seen that the main peak is directly related to the unperturbed transmitted pressure while
sidebands (lobes) arise in connection with a Doppler shift effect due to the motion of the
turbulent eddies acting as secondary sources for the scattered transmitted pressure. We
have observed a widening of these lobes proportional to the convection velocity of the tur-
bulent eddies, as well as the independence of the locations of their maxima with respect
to the tone frequency. Increasing the latter also leads to a widening of the sidebands and
higher scattered levels.

It would be interesting in future works to relax some hypotheses such as the thickness
of the layer, which is supposed to be infinitely thin, or the velocity of the flow, for which
the Mach number is assumed to be much smaller than 1. Moreover, the flow has always
been assumed to be z-dependent in order to obtain a stratified configuration as described
in [72]. Axisymmetric flow geometries should be studied in future works for aerospace
applications. Our model of delta-correlated turbulent velocity fluctuations in Sect. 2.4
could also be improved by considering more general auto-correlation functions of the form
(1.37) imposed by the assumption of homogeneous isotropic turbulence, or homogeneous
axisymmetric turbulence as in [104]. Finally, we have considered that the source-microphone
axis was perpendicular to the flow. Studying the influence of the angle of illumination as
in [40, 55, 103, 112] should bring interesting information. Measurements and models of the
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cross power spectra between two microphones have been reported in [41–43, 81], and our
model could also be compared to these results.

Then we have introduced in Chapter 3 two imaging methods, Kirchhoff’s migration
(KM) and coherent interferometry (CINT), which we have adapted to the flow imaging
context with a Doppler compensation factor (3.16). The same idea has been implemented
in [33, 69] to characterize fast moving objects. The Doppler compensation factor must
compensate the shift of the arrival time induced by the flow when the ambient medium
moves at an average velocity. We have compared these two methods in several contexts in
Sect. 3.4.1 (random medium moving at a uniform velocity) and Sect. 3.4.2 (random medium
moving at a random velocity), after validating our discontinuous Galerkin finite element
solver in Sect. 3.3.1. We have highlighted the fact that in a passive imaging context, at
the considered noise levels, the KM imaging technique was more interesting than the CINT
imaging technique because the images made with KM are satisfactory and the computation
time is much lower. However, in the context of active imaging, the results are very different
since KM can not effectively find the positions of the reflectors that we want to image, unlike
CINT. The CINT imaging technique also gives statistically stable results unlike the KM
imaging technique, i.e. in two different realizations of the random medium we get the same
results with CINT imaging which is not the case with KM imaging. It seems interesting
then to optimize the CINT imaging technique in order to reduce its computation time since
it works in a broader context than the KM imaging technique. Moreover this will make the
CINT parameter adaptive choice algorithm introduced in [26] interesting to use, which is
not the case today because of the computation time necessary to produce an image. Finally
some results of imaging through a turbulent jet were presented in Sect. 3.5. Indeed, the
main objective of this work was to be able to characterize (i.e. to detect and to localize) a
source in a real jet configuration. In this context we have seen that we could not fail the
KM technique because we could not generate enough turbulence with our CFD calculation,
and we were in a passive imaging configuration.

It would be interesting in future works to generate more turbulence ”artificially”, as done
in [16], or to consider an active imaging configuration with such a low level of turbulence. It
would also be necessary to modify the configuration of the sensors, the distance separating
them, their distances from the source, or the permeability of the reflectors in the active
setting in order to see the influence of these parameters on our results. Moreover the
computing power having limited us in term of mesh refinement, but also the source-reflectors
distance, it would be interesting to be able to perform simulations on large computers in
order to go further with these questions. It would also be possible, in this case, to propagate
the waves in a CFD-solved jet and get closer to the work of [16]. Finally, as we have seen
for the theoretical considerations, it will be interesting to study the effects induced by a
higher Mach number, especially on the Doppler compensation mechanism, and to see the
influence of a non-perpendicular illumination.
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[14] E. Bécache, P. Joly, C. Tsogka. Étude d’un nouvel élément fini mixte permettant la
condensation de masse. C. R. Acad. Sci. Séries I 324(11), 1281-1286 (1997).
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[15] E. Bécache, P. Joly, C. Tsogka. An analysis of new mixed finite elements for the
approximation of wave propagation problems. SIAM J. Numer. Anal. 37(4), 1053-
1084 (2000).

[16] I. Bennaceur, D. C. Mincu, I. Mary, M. Terracol, L. Larchevêque, P. Dupont. Numerical
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[93] É. Larose. Mesoscopics of ultrasound and seismic waves: applications to passive imag-
ing. Ann. Phys. Fr. 31(3), 1-126 (2006).

[94] M. J. Lighthill. On sound generated aerodynamically: (I) General theory. Proc. R.
Soc. Lond. A211(1107), 564-587 (1952).

[95] M. J. Lighthill. On the energy scattered from the interaction of turbulence with sound
or shock waves. Proc. Cambridge Phil. Soc. 49(3), 531-551 (1953).

[96] M. J. Lighthill. On sound generated aerodynamically: (II) Turbulence as a source of
sound. Proc. R. Soc. Lond. A222(1148), 1-32 (1954).

[97] G. M. Lilley. Generation of sound in a mixing region. In The Generation and Radiation
of Supersonic Jet Noise vol. IV: Theory of Turbulence Generated jet Noise, Noise
Radiation from Upstream Sources, and Combustion Noise, pp. 2-69. Technical report
AFAPL-TR-72-53, Air Force Aero Propulsion Laboratory, Wright-Patterson Air Force
Base OH (1972).

[98] E. Lindborg. Kinematics of homogeneous axisymmetric turbulence. J. Fluid Mech.
302, 179-201(1995).

[99] B. A. Lippmann, J. Schwinger. Variational principles for scattering processes I. Phys.
Rev. 79(3), 469-480 (1950).

[100] L. Mandel, E. Wolf. Optical Coherence and Quantum Optics. Cambridge University
Press, Cambridge (1995).

[101] I. Mary, P. Sagaut. Large eddy simulation of flow around an airfoil near stall. AIAA
J. 40(6), 1139-1145 (2002).

[102] A. McAlpine, C. J. Powles, B. J. Tester. A weak-scattering model for tone haystacking.
In Proc. 15th AIAA/CEAS Aeroacoustics Conf., 11-13 May 2009, Miami, FL. AIAA
paper #2009-3216 (2009).

[103] A. McAlpine, C. J. Powles, B. J. Tester. A weak-scattering model for turbine-tone
haystacking. J. Sound Vib. 332(16), 3806-3831 (2013).

https://doi.org//10.1016/C2013-0-10906-3
https://doi.org//10.1016/C2013-0-10906-3
https://doi.org//10.1016/C2013-0-10906-3
https://doi.org//10.2514/8.350
https://doi.org//10.2514/8.350
https://doi.org//10.1098/rspa.1938.0013
https://doi.org//10.1098/rspa.1938.0013
https://doi.org//10.1002/nme.1390
https://doi.org//10.1002/nme.1390
https://doi.org//10.1002/nme.1390
https://doi.org//10.1063/1.1692799
https://doi.org//10.2514/6.2013-2255
https://doi.org//10.2514/6.2013-2255
https://doi.org//10.2514/6.2013-2255
https://doi.org//10.1016/j.compfluid.2011.07.011
https://doi.org//10.1016/j.compfluid.2011.07.011
https://doi.org//10.1016/j.compfluid.2011.07.011
https://doi.org//10.1051/anphys:2007001
https://doi.org//10.1051/anphys:2007001
https://doi.org//10.1098/rspa.1952.0060
https://doi.org//10.1098/rspa.1952.0060
https://doi.org//10.1017/S0305004100028693
https://doi.org//10.1017/S0305004100028693
https://doi.org//10.1098/rspa.1954.0049
https://doi.org//10.1098/rspa.1954.0049
https://doi.org//10.1017/S002211209500406X
https://doi.org//10.1017/S002211209500406X
https://doi.org//10.1103/PhysRev.79.469
https://doi.org//10.1103/PhysRev.79.469
https://doi.org//10.1017/CBO9781139644105
https://doi.org//10.1017/CBO9781139644105
https://doi.org//10.2514/2.1763
https://doi.org//10.2514/2.1763
https://doi.org//10.2514/6.2009-3216
https://doi.org//10.2514/6.2009-3216
https://doi.org//10.2514/6.2009-3216
https://doi.org//10.1016/j.jsv.2013.02.023
https://doi.org//10.1016/j.jsv.2013.02.023


D
RA
FT

BIBLIOGRAPHY 125

[104] A. McAlpine, B. J. Tester. A weak-scattering model for tone haystacking caused by
sound propagation through an axisymmetric turbulent shear layer. In Proc. 22nd AIAA
Aeroacoustics Conf., 30 May - 1 June 2016, Lyon, France. AIAA paper #2016-2702
(2016).

[105] R. F. O’Doherty, N. A. Anstey. Reflections on amplitudes. Geophys. Prospect. 19(3),
430-458 (1971).

[106] ONERA. Un nouveau super-calculateur pour la recherche aérospatiale
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