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Analyse des propriétés structurelles et de transport de sols granulaires par imagerie et simulations numériques à l'échelle des pores.

Résumé

Les transferts de fluide et de soluté en milieux poreux présentent de nombreuses applications dans des contextes environnementaux ou industriels. Ils sont classiquement décrits par des équations macroscopiques faisant intervenir des propriétés effectives telles que la perméabilité ou la dispersivité. Ces propriétés dépendent fortement de la structure géométrique complexe du réseau de pores qui permet le mouvement du fluide. La microtomographie à rayon X a récemment permis d'accéder à une représentation tri-dimensionnelle réaliste de la structure interne de ces milieux. Les images produites permettent d'estimer les propriétés morphologiques du milieu poreux mais aussi les propriétés de transport à partir de simulations numériques directes. Le travail réalisé dans cette thèse constitue une contribution à l'état de l'art dans ce domaine. Une attention particulière est portée à l'effet de la résolution spatiale de la tomographie sur la qualité de l'estimation des propriétés morphologiques et de transport. Un ensemble de méthodes numériques pertinentes a été sélectionné, dévelopée et mis en oeuvre afin de pouvoir calculer la porosité, la surface spécifique, la distribution de taille de pore, la perméabilité et la dispersivité du milieu sur des volumes représentatifs du matériau. Ces travaux se sont concentrés sur l'étude d'un sable réel et d'un empilement virtuel de sphères à différentes résolutions. Ils ont permis de definir un critère de qualité basé sur le rapport entre des grandeurs caractéristiques des grains et la taille des voxels de l'image. Ce critère permet de déterminer a priori si une image de milieu granulaire est adaptée au calcul de perméabilité et de dispersivité par simulation numérique des équations de Stokes et d'advection-diffusion (ADE). Bien que l'ADE utilise le champs de vitesse du fluide, il s'est avéré qu'elle présente un comportement plus robuste que le calcul d'écoulement.
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Introduction

Soils are a natural resource key to environmental, social and economical functions such as: biomass production; environment protection (Filtering, buffering and transformation capacity between the critical zone elements); source of raw materials (e.g. clay, sand, gravel and minerals in general; as well as a source of energy and water); gene reservoir; engineering medium; and cultural heritage [START_REF] Winfried | Functions of soil for society and the environment[END_REF]. All of them depend on the soil physical and chemical properties like texture, bulk density, water holding capacity, organic matter content, and soil structure; rock type, cation exchange capacity, acid production resulting from microbial and root respiration, and management strategies [START_REF] Schoonover | An introduction to soil concepts and the role of soils in watershed management[END_REF]. The change of these properties affects soil natural and human processes.

Examples of these processes are in the agriculture industry where in order to provide food supply the soil is altered physically through soil preparation techniques such as tillage [START_REF] Batey | Soil compaction and soil management-a review[END_REF][START_REF] Badalíková | Influence of soil tillage on soil compaction[END_REF], leading in some cases to soil erosion [START_REF] Prosdocimi | Soil water erosion on mediterranean vineyards: A review[END_REF]. In this same industry the soil chemical properties are modified through soil fertilization [START_REF] Bennett | Human impact on erodable phosphorus and eutrophication: a global perspective: increasing accumulation of phosphorus in soil threatens rivers, lakes, and coastal oceans with eutrophication[END_REF][START_REF] King | Phosphorus transport in agricultural subsurface drainage: A review[END_REF]. Another example of the manipulation of soil properties comes from the energy industry improvement of the performance of processes like hydrocarbons extraction [START_REF] Steven B Hawthorne | Hydrocarbon mobilization mechanisms from upper, middle, and lower bakken reservoir rocks exposed to co[END_REF], or nuclear waste management [START_REF] Marschall | Characterisation of gas transport properties of the opalinus clay, a potential host rock formation for radioactive waste disposal[END_REF][START_REF] Delage | Clays in radioactive waste disposal[END_REF]. A negative consequence of most of these industries is the soil contamination [START_REF] Cram | Mobility and persistence of petroleum hydrocarbons in peat soils of southeastern mexico[END_REF]. Its remediation depends on the contaminant [START_REF] Wang | Phytoremediation of petroleum polluted soil[END_REF][START_REF] Xiaoya Ren | Sorption, transport and biodegradation-an insight into bioavailability of persistent organic pollutants in soil[END_REF] and the techniques rely on some particular reactive transport process with respect to soil properties. Thanks to the filter function of the soil, it can also clean ground water or waste water in a natural [START_REF] Saskia | Soil as a filter for groundwater quality[END_REF] or constructed way [START_REF] Avinash M Kadam | Treatment of municipal wastewater using laterite-based constructed soil filter[END_REF]. In the mitigation strategies of the climate change the soil plays a key role being a natural carbon storage [START_REF] Lal | Challenges and opportunities in soil organic matter research[END_REF][START_REF] Lehmann | The contentious nature of soil organic matter[END_REF] and atmospheric CO 2 storage by the technique called CO 2 sequestering [START_REF] Mehmani | Multiblock pore-scale modeling and upscaling of reactive transport: application to carbon sequestration[END_REF].

Most of these examples depict the effects of soil modification through macroscopic properties like porosity [START_REF] Kumar | Ct-measured macropores as affected by agroforestry and grass buffers for grazed pasture systems[END_REF], permeability (Juanes et al., 2006a), and dispersivity [START_REF] Kuncoro | A study on the effect of compaction on transport properties of soil gas and water i: Relative gas diffusivity, air permeability, and saturated hydraulic conductivity[END_REF]. Despite being macroscopic properties, they comprise the remnants of the microstructure of the porous material. By this means, before introducing the micro and macro scale properties of the soil it turns convenient to define the soil as a porous media. This material is defined as a spatial domain that contains a solid portion (the solid matrix) with an interconnected void space (the pore space) (Nield et al., 2006a), such portions are called phases. A sandy soil containing water (fully filled) is said to have two phases, the sand, and the water. The interconnectedness of the void phase are called pores and through them occurs the flow of one or more fluids. Soils, fissured rocks, filter paper and fibrous aggregates are examples of porous media. In this thesis the porous material we deal with is a sandy soil which has two phases: the solid and the water.

When we study a porous media at the microscale, we are considering orders of magnitude of the characteristic length of the pore (for this study this length has an order of magnitude ≈ 1 × 10 -6 m). The macroscale is the scale derived from averaging the microscale properties within a Representative Elementary Volume (REV) which defines a volume at which the parameter of interest is both homogeneous and statistically stationary, but still small to be considered as a volume element of continuum mechanics (for this study ≈ 1 × 10 -3 m. More details about the REV analysis will be presented in the next chapter).

The so-called up-scaling methods are mathematical methods that allow to pass from the micro to the macro scale description. Some of them are the homogenization (Auriault et al., 2010;[START_REF] Bruining | Computation of the longitudinal and transverse dispersion coefficient in an adsorbing porous medium using homogenization[END_REF] and the volume averaging, the last of which consists in obtaining an average of the studied property (for instance, the pressure, solute concentration, temperature, etc) into the REV. In the macroscale description, this average is considered to be the property value at the center of the REV. By this process of averaging, information on the local variations at the microscopic scale is lost. However, it is at the macroscopic level at which experimental measurements of state variables can be done [START_REF] Bear | Modeling Phenomena of Flow and Transport in Porous Media[END_REF][START_REF] Whitaker | The method of volume averaging[END_REF].

The study of the porous materials and in particular the soil at a microscale has been improved thanks to the progress in pore scale imaging techniques like the X-ray Micro Computed Tomography (µCT ). The µCT is a non destructive and three dimensional (3D) technique to visualize and quantify the internal structures of materials. Applying image analysis techniques enables to compute morphological parameters such as porosity, specific surface, pore size distribution, tortuosity or connectivity. Such information provides a better understanding of the fluid and solute transport [START_REF] Lehmann | Tomographical imaging and mathematical description of porous media used for the prediction of fluid distribution[END_REF][START_REF] Silin | Pore space morphology analysis using maximal inscribed spheres[END_REF][START_REF] Vogel | Quantification of soil structure based on minkowski functions[END_REF].

The imaging techniques also opened the opportunity to take into account the real pore structure while solving flow or transport equations within the pore space by Direct Numerical Simulation (DNS) [START_REF] Mostaghimi | Computations of absolute permeability on micro-ct images[END_REF]. This new branch of research was originally known under the concept of Digital Rock Physics (DRP). It has been applied to various kind of phenomena, for example: water flow in saturated condition, thermal conductivity [START_REF] Andrä | Digital rock physics benchmarks-part ii: Computing effective properties[END_REF], electrical conductivity [START_REF] Miller | Estimates of olivinebasaltic melt electrical conductivity using a digital rock physics approach[END_REF], or solute diffusivity [START_REF] Feng | Molecular modeling of organic materials for flow simulation and digital source-rock physics[END_REF]. These processes can be simulated in stationary conditions using numerical methods like finite differences (FD), finite volume (FV), lattice Boltzmann (LBM). The average of the numerical result allows to estimate the corresponding macroscopic property (permeability, thermal and electrical effective conductivity, effective diffusivity).

The branch of DRP faces two main obstacles. The first of them is that increasing the resolution of the image1 enlarges the number of mesh elements, implying that a bigger computational power is required. The computation of fluid and particle transport is particularly demanding. A quantification of the effects of voxel size on computed parameters is thus needed. The second difficulty is related to the size of the image. In µCT the image resolution is inversely proportional to the size of the sample, i.e., the better is the resolution, the smaller the sample has to be [START_REF] Wildenschild | X-ray imaging and analysis techniques for quantifying pore-scale structure and processes in subsurface porous medium systems[END_REF]. This two restrictions associated with the necessity to make computations in a REV, lead us to a fundamental constraint: The image could not be smaller than a REV, it should have a good resolution, and the mesh elements should not go beyond the computational limits. On top of that, the REV size depends on the measured property (Guibert et al., 2015a). Therefore, one of the problems to be evaluated in the present thesis is: What is the adequate X-ray CT scan resolution and sample volume allowing to derive a reliable macroscopic property? This question has been addressed by several authors concerning microstructural properties [START_REF] Cooper | Effect of voxel size on 3d micro-ct analysis of cortical bone porosity[END_REF][START_REF] Lehmann | Tomographical imaging and mathematical description of porous media used for the prediction of fluid distribution[END_REF][START_REF] Al-Raoush | Comparison of network generation techniques for unconsolidated porous media[END_REF]. Some research is reported on the study of resolution effects on water flow properties [START_REF] Takbiri Borujeni | Effects of image resolution and numerical resolution on computed permeability of consolidated packing using lb and fem pore-scale simulations[END_REF][START_REF] Yoon | Nanopore structures, statistically representative elementary volumes, and transport properties of chalk[END_REF], and less for the solute transport.

In this thesis it is proposed a criterion based on a structural property of a sandy soil to predict if a 3D image has an adequate resolution in order to compute in a reliable way the permeability via a FV method. It was developed an algorithm to compute the advection-diffusion transport directly into the soil microstructure . Numerical column experiments were then simulated in order to explore the dispersion effect in a large range of Peclet number. The averaged breakthrough curves were analyzed by an inverse procedure to compute the Dispersion coefficient and dispersivity of a granular material. The effect of CT resolution on the dispersion coefficient could then be discussed. As well as the effect of computing the macro properties of solute and flux transport on numerically rescaled images and images obtained at different CT resolution.

The thesis is divided as follows: Chapter 1 presents the fundamental concepts to understand the porous media structure characterization and the tools implemented in this thesis; in Chapter 2 the fundamental concepts to understand the flow and solute transport at the microscale are presented as well as the algorithm to solve advection diffusion transport; in Chapter 3 the fundamental concepts to understand the flow and solute transport at the macro scale are presented as well as the way the macroscopic quantities were computed; Chapter 4 is an accepted publication in the journal "Soil Research" where a criterion is proposed in order to determine if the resolution of an image is good enough for the computation of permeability using a FVM; Chapter 5 is an under submission publication where the algorithm here developed is presented and employed to study the effect of the image resolution on a solute transport experiment.

Chapter 1

Acquisition and characterization of the pore structure based on x-ray CT It is possible to visualize the pore structure of a material through 3D images to study its morphology and flux processes occurring on it. Therefore, know the quality of a 3D image is a necessary first step before studying the transport problem. In this chapter we present the tools selected to the study of the porous media, and to define the resolution of the 3D image where we are going to compute the transport equations.

Principles of µCT

One of the techniques that allow to visualize the pore media structure is the micro computed tomography µCT . This method in a rough description, takes 2D radiographs of the sample and through a reconstruction process provides a 3D-image. These radiographs are taken with a X-ray CT scanner which generally consists of three common parts: an X-ray source, a sample manipulation device and a detector. Initially X-rays 1 are emitted from the source and pass through the sample, where are progressively attenuated (see the Lambert-Beer's equation or [START_REF] Ketcham | Acquisition, optimization and interpretation of x-ray computed tomographic imagery: Applications to the geosciences[END_REF]; [START_REF] Wildenschild | X-ray imaging and analysis techniques for quantifying pore-scale structure and processes in subsurface porous medium systems[END_REF]). The X-rays that go through the object hit an X-ray sensitive screen. A digital camera is used to capture the image on the screen, which replicates the X-ray penetration pattern of the object [START_REF] Mooney | Developing x-ray computed tomography to non-invasively image 3-d root systems architecture in soil[END_REF].

Image processing

The product of a complete X-ray CT scan is a 3D matrix of relative attenuation values, sometimes called a data brick. After the reconstruction process, a 3D image stack is obtained as a discrete representation in gray scale. Its discrete 3D elements are called voxels, which normally are symmetric and their side size defines the spatial resolution of the 3D image (i.e. the smaller the voxels size is, the higher the resolution is [START_REF] Takbiri Borujeni | Effects of image resolution and numerical resolution on computed permeability of consolidated packing using lb and fem pore-scale simulations[END_REF]). The total number of voxels mainly depends on the µCT apparatus sensor and the type of X-rays source.

Normally the image reconstructed presents artifacts, i. e., any error in the perception or representation of any visual information introduced by the involved equipment or technique. The most common artifacts are beam hardening, which causes the edges of an object to appear brighter than the center (while a poly-chromatic beam passes through an object, it will preferentially loss the lower energy parts of its spectrum, the resulting beam is a beam which has a higher average energy than the incident one), it can be reduced by pre-hardening the beam using a physical attenuating filter (aluminum, copper or brass), using smaller samples, and a correction during image reconstruction. Another common artifact is called the ring artifact. It occurs in scanners where the sample rotate, appearing as full or partial circles centered on the rotational axis. They are caused by shifts in output from individual detectors or sets of detectors, which cause the corresponding ray or rays in each view to have anomalous values; the position of a ring corresponds to the area of greatest overlap of these rays during reconstruction [START_REF] Ketcham | Acquisition, optimization and interpretation of x-ray computed tomographic imagery: Applications to the geosciences[END_REF].

structures by X-ray crystallography.

Filtering

Images are rarely perfect representations of the attenuation coefficients, since they are disturbed by optical transfer functions, scatter, and noise. Consequently, after reconstruction an image is usually filtered to reduce the noise level. The first filters that one encounters in the image processing literature are filters that have low-pass characteristics and are spatially invariant, like the Gaussian and the median filter. The effect of such filters is to smooth the image, affecting the sharp edged features in the image (Noise suppression as a part of the tomographic reconstruction has the same effect). Therefore, less processed images, which have been captured with an appropriate resolution should always be preferred in order to preserve both the finest details of the micro-structure and the quality of the data [START_REF] Kaestner | Imaging and image processing in porous media research[END_REF]; [START_REF] Mendoza | Three-dimensional pore space quantification of apple tissue using x-ray computed microtomography[END_REF].

Rescaling

A process that will be used in this study is called re-scaling or re-sizing it aims at increasing or decreasing the number of voxels in a 3D image. This process is not lossless. Re-scaling a volume to a smaller number of voxels, and then re-scaling it back to the original resolution, results in an image sightly different from the original one [START_REF] Danahy | Algorithms for the resizing of binary and grayscale images using a logical transform[END_REF].

The re-scaling process can be divided conceptually into two processes: 3D interpolation of the discrete volume to a continuous volume and then sampling the interpolated volume to the desired resolution [START_REF] Parker | Comparison of interpolating methods for image resampling[END_REF]. Various forms of interpolating functions have been developed. Reviews, and catalogs of methods can be found in [START_REF] Thomas Martin Lehmann | Survey: Interpolation methods in medical image processing[END_REF]; [START_REF] Parker | Comparison of interpolating methods for image resampling[END_REF]; [START_REF] Szeliski | Computer vision: algorithms and applications[END_REF]; [START_REF] George | Shape-based interpolation of multidimensional grey-level images[END_REF]. In the present study, re-scaling will be use to decrease the resolution of the 3D image, decreasing the number of voxels in each direction. The ratio of this the new amount of voxels and the original amount of voxels per side is here called the re-scaling factor (RF). In other words an image with RF = 0.5 has a number of voxels in each direction which has decreased to the half of the original image. Where the original image has a RF of 1.

Segmentation

In order to compute morphological and transport properties of the sample, a distinction between solid phase and void phase should be performed. This process is called segmentation and aims at converting the gray scale into distinct phases, by identifying different populations in the image based on their intensity values. This process can be achieved through a variety of methods [START_REF] Dong | Pore-network extraction from microcomputerized-tomography images[END_REF]; Steffen Schluter (2010). In [START_REF] Iassonov | Segmentation of x-ray computed tomography images of porous materials: A crucial step for characterization and quantitative analysis of pore structures[END_REF] an analysis of 14 segmentation methods is presented. In this study the segmentation was done in two phases: solid and void. The default Isodata algorithm of the software Imagej 2.34 was used. It performs a simple thresholding based on the histogram of the full 3D image. In Figure 1.1, a slice of the 3D image in gray scale and segmented is presented. 

Computing morphological properties

Soil structure is the size, shape and arrangement of the solid particles and voids which is highly variable [START_REF] Letey | The study of soil structure-science or art[END_REF] and determines properties and process at physical, chemical and biological level occurring in the soil. For example the soil structure determines the air porosity, available water, permeability, diffusivity, activity of microorganisms. Nowadays with the improvement of the µCT and the image analysis, a new branch of the mathematics has emerged to analyze and process geometrical structures of digital images, based on set theory, lattice theory, topology, and random functions. In this section the main soil structure parameters will be presented as well as the way they were computed.

Porosity

Porosity φ is the fraction of the bulk volume of the porous sample that is occupied by pore or void space Dullien (2012b),

φ = V void V T otal = V T otal -V solid V T otal . (1.1)
Depending on the type of porous medium, the porosity may vary from zero to one. Typically the sand porosity goes from 0.37 to 0.50 in contrast the limestone goes from 0.04 to 0.10 Nield et al.

(2006b).

There are many experimental methods used to determine porosity some of them are mercury intrusion, gas expansion, water evaporation, inhibition.

In general these methods measure the pore volume by measuring how much liquid, or gas can be contained in the soil sample, assuming it is occupying the void space, other methods like the direct one measures the bulk volume of a porous sample and then all the voids are destructed, measuring the volume of only the solids, having the disadvantage of a destructive method.

With the image analysis technique the porosity can be computed counting the number of void voxels and dividing it over the total number of voxels of the image.

Specific surface

The specific surface, S s , is the ratio between the surface between solid and void phases and the total volume. It is defined as:

S s = S V T otal , (1.2)
where the surface S[L 2 ] is the boundary between the solid and the void phases. A typical method to compute it numerically is based on counting the number of voxel faces corresponding to a border. However this is a not converging method because as smaller is the voxel size the bigger is S. Instead here S was computed using the discrete extension in 3D of the integral geometry theorem of Cauchy-Crofton (see Do Carmo and Do Carmo (1976)). This method is based on counting the intersections of a surface, with lines spread parallel to 13 directions in all the 3D volume Santaló (2004); [START_REF] Legland | Computation of minkowski measures on 2d and 3d binary images[END_REF]; Lehmann and Legland (2012).

Specific surface via Cauchy-Crofton theorem

In the following paragraphs we will present the theorem in 3D, its discretization and how we implemented it in a code.

The theorem of Cauchy-Crofton computes the d -1 surface measure of the d-dimensional objects:

S d-1 (X) = d • w d w d-1 L d χ(X ∩ L)dL , (1.3) 
where w d is the volume of the d-dimensional ball, L d is the set of all lines the d-dimensional space, and χ(X ∩L) is the Euler Poincaré characteristic, which is equal to the number of connected components of the intersection of X (the studied object) with a line L, or equivalently half the number of intersections of the boundary of X with the line. The above integral is normalized such that the mass of lines hitting the unit ball equals w d-1 , the measure of the unit ball projection on a (d -1)-dimensional plane Lehmann et al. (2012).

In the particular case of 3D it reduces to

S(X) = 4 L 3 χ(X ∩ L)dL . (1.4)
For the purpose of applying this theorem in the image analysis field, the Cauchy-Crofton formula is discretized in such a way that measurement of the Euler characteristics can be performed considering a finite number of lines L. The discretization of this theorem in 2D is clearly explained in [START_REF] Boykov | Computing geodesics and minimal surfaces via graph cuts[END_REF], and a more complex procedure is done for the 3D discretization (see [START_REF] Lang | On the analysis of spatial binary images[END_REF]; [START_REF] Ohser | Statistical analysis of microstructures in materials science[END_REF]; Lehmann et al. (2012)):

S(x) 4 k C k λ k χ(X ∩ L k ) , (1.5)
where L k is the finite set of 3D discrete lines parallel to direction k, λ k the density of discrete lines in direction k, and C k is the discretization weight associated to 3D direction k.

The weight C k depends on the distances between e k (the unitary direction k vector) and its neighbor directions. It can be approximated dividing the unit sphere Ω into the Voronoi cells with respect to the set of directions w k .

In this case 26 directions were chosen {w k , k = 0, ..., 25}. The natural choice for C k is the relative area of the corresponding Voronoi cell, 4πC k the area of the kth Voronoi cell: C k = 0.045778 for C k = 0, 1, 2, C k = 0.036981 for k = 3, ..., 8, and C k = 0.035196 for k = 9, ..., 12 with C k = C k+13 [START_REF] Lang | On the analysis of spatial binary images[END_REF]; [START_REF] Ohser | Statistical analysis of microstructures in materials science[END_REF]).

Something surprising of the Cauchy-Crofton formula is the small number of directions needed to have a surface value close to the real value. In the 2D case following the discretization of [START_REF] Boykov | Computing geodesics and minimal surfaces via graph cuts[END_REF], one can obtain good results computing perimeter of curves with few lines at only four directions (by hand computation). In the 3D case we chose to divide the space in a Cartesian grid (to later in the code match the discretization of the space with the discretization of the 3D image) and three families of direction were chosen:

• Parallel to the axis directions (family 1): (1,0,0), (0,1,0), (0,0,1)

• First diagonal (family 2): (1,1,0), (-1,1,0), (1,0,1), (-1,0,1), (0,1,1), (0,-1,1)

• Second diagonal (family 3): (1,1,1), (-1,1,-1), (1,1,-1), (-1,1,-1)

The complete set of directions includes also the negative of each family member i.e. all the directions of family 1 are: (1,0,0), (0,1,0), (0,0,1) and (-1,0,0), (0,-1,0), (0,0,-1). Making a total of 26 directions for the three families. Therefore, for the 26 directions Eq. (1.5) becomes:

S(x) 4 0.045778 λ 1 χ(X ∩ L 1 ) + 0.036981 λ 2 χ(X ∩ L 2 ) + 0.035196 λ 3 χ(X ∩ L 3 ) , (1.6) where λ k = |e k | δ 3 so, λ 1 = 1 δ 2 , λ 2 = √ 2 δ 2 ,λ 1 = √ 3
δ 2 which correspond to family 1, 2 and 3 respectively. Thus, it is only missing to compute the intersections χ(X ∩ L k ) which are associated to each family, and that is the main goal of the code developed for the specific surface computing.

Code implementation

The 3D image to analyze has to be previously segmented therefore, there are just to types of voxels (void or solid). In this situation a boundary void voxel, has at least one solid neighbors voxel. The neighbors voxels are classified in three types according to the families already studied. For a given voxel (i, j, k),

• Neighbors family 1 are (i + 1, j, k), (i, j + 1, k), (i, j, k + 1), (i -1, j, k), (i, j -1, k), (i, j, k -1).

• Neighbors family 2 are (i

+ 1, j + 1, k), (i -1, j -1, k), (i -1, j + 1, k), (i+1, j-1, k), (i+1, j, k+1), (i-1, j, k-1), (i-1, j, k+1), (i+1, j, k-1), (i, j + 1, k + 1), (i, j -1, k -1), (i, j -1, k + 1), (i, j + 1, k -1). • Neighbors family 3 are (i + 1, j + 1, k + 1), (i -1, j + 1, k -1), (i + 1, j + 1, k -1), (i -1, j + 1, k + 1).
In the C program we developed to compute the specific surface via the Cauchy-Crofton theorem, to find the intersections is simplified to count per direction how many voxels (i, j, k) present neighbor of different phase than itself.

To evaluate and understand the capacity of our method, we computed with the Cauchy-Crofton and the counting voxels methods, the surface area of three synthetic figures: a cylinder, a cube, and two spheres touching in a point. We calculated the error (difference between the real known surface value and the surface area computed via the method of Cauchy-Crofton and Counting voxels) and compared it with the radio of voxel size over the characteristic size of the figure. See figure). In all the cases except in the case of the cube, the accuracy of CCM is better than the counting voxels method (CCVM). In fact CCM shows a better behavior as more spherical is the figure. This result is related to the use of the Voronoi sphere as basis for discretization. While the CCVM is good only when the figure has square shapes following the orientation of the mesh.

PSD

The pore size distribution (PSD) is a common porous media property that classifies the porous phase into a set of discrete classes of pore size.

Several methods have been proposed to compute the PSD of soils. Recently, Houston et al. (2017) presented a detailed comparison of existing methods implemented in commercial or free software (Maximum Inscribed Balls, morphological closing, object separation or skeleton computation). Based on its good performance for granular soils, the method of morphological closing was used in the current study following the pioneer work of [START_REF] Doughty | Multinuclear nmr microscopy of twophase fluid systems in porous rock[END_REF] and [START_REF] Cl Lin | Pore structure and network analysis of filter cake[END_REF]. The first one analyzed the pore size and connectivity of Fontainebleau and Bentheim sand stones. And the second one studied the connectivity of the cake deposits in filtration processes. The method was applied on soils by [START_REF] Vogel | A new approach for determining effective soil hydraulic functions[END_REF] and [START_REF] Vogel | Quantitative morphology and network representation of soil pore structure[END_REF] to study a German Orthic Luvisol or more recently by [START_REF] Javier Muñoz-Ortega | Volume, surface, connectivity and size distribution of soil pore space in ct images: comparison of samples at different depths from nearby natural and tillage areas[END_REF] to estimate the effect of tillage on soil structure.

The method here developed requires a segmented image, where one phase is defined as the background (normally the void space), the other as the foreground (normally the solid space), and a structural element (SE).

In the case of PSD in a 3D image, a natural SE choice is a sphere of diameter D i . The morphological operation to be applied is the closing over the solid phase with the chosen SE. This operation is the erosion of the resulting image after a dilatation, both operations using the same SE.

The resulting image has a background where regions smaller than the SE have been removed, and in consequence the foreground is increased (for more details see [START_REF] Serra | Image analysis and mathematical morphology[END_REF]; [START_REF] Wu | Protective relaying of power systems using mathematical morphology[END_REF]; [START_REF] Goutsias | Morphological methods for biomedical image analysis[END_REF]).

In order to compute the PSD the closing operation is applied successively using increasing SE diameters D i , resulting in a progressive reduction of the pore phase or pore volume (Fig. 1.3). At each closing step, the remaining pore volume is computed which corresponds to pores with diameter bigger or equal to D i . The difference between the pore volume in the original image and the pore volume after the closing operation gives the volume associated to pores with diameter between 0 and D i . This technique leads straightforward to the cumulative pore volume in function of the pore size diameter. It is finally presented as the percentage ratio of the total pore volume. 

REV

To find the size, l, of the REV of a given property, there is the deterministic and the statistical method. The first one is implemented by taking a small volume, normally, centered within the sample, compute the property of interest and expand the volume in all directions. This process is repeated untill the property of interest remains constant [START_REF] Wj Drugan | A micromechanics-based nonlocal constitutive equation and estimates of representative volume element size for elastic composites[END_REF]. This method is implemented in [START_REF] Costanza-Robinson | Representative elementary volume estimation for porosity, moisture saturation, and air-water interfacial areas in unsaturated porous media: Data quality implications[END_REF] and [START_REF] Rozenbaum | Representative elementary volume assessment of three-dimensional x-ray microtomography images of heterogeneous materials: Application to limestones[END_REF].

In order to find the statistical REV (SREV), different sets of sub-volumes are tested, the REV is achieved when the standard deviation of the distribution is small (or smaller than an arbitrarily value). Examples where this method was implemented are [START_REF] Calonne | 3-d image-based numerical computations of snow permeability: links to specific surface area, density, and microstructural anisotropy[END_REF] and [START_REF] Yoon | Nanopore structures, statistically representative elementary volumes, and transport properties of chalk[END_REF].

Both the deterministic or the statistical REV depend on the property under consideration. It tends to be smaller for a geometric property (Porosity, specific surface) than for a flux property (permeability, diffusivity) [START_REF] Guibert | Computational permeability determination from pore-scale imaging: Sample size, mesh and method sensitivities[END_REF].

More precisely and the method followed in this thesis is described in [START_REF] Kanit | Determination of the size of the representative volume element for random composites: statistical and numerical approach[END_REF], [START_REF] Zhang | Pore scale study of flow in porous media: Scale dependency, rev, and statistical rev[END_REF], [START_REF] Go Brown | Evaluation of laboratory dolomite core sample size using representative elementary volume concepts[END_REF].

Chapter 2

Modelling flow and solute transport at the microscale

Introduction

The purpose of this section is to present the equations and properties that govern transport in porous media at a microscopic level. In particular we are interested in solving flow and transport equations directly on the pore structure. A mission that few years ago was even considered impossible ( [START_REF] Bear | Introduction to modeling of transport phenomena in porous media[END_REF] page 3) due to the complexity of the geometry of the porous media. However, improvements have been done thanks to the detailed information provided by the µCT . Nevertheless, computational limitations are still present: like computational capacity which lead us to limitations of the volume size, or numerical diffusion.

Flow modelling

Fluid dynamics is the part of physics that study the motion of fluids [START_REF] Landau | Course of theoretical physics[END_REF]. To do it there are two ways to describe the fluid flows, the Lagrangian and the Eulerian. In the Lagrangian description, fixed pack of matter of fixed identity is defined as the system to study sys, and its properties are described as a function of time. In the Eulerian description, a fixed control volume V is defined, through which the fluid flows and the flow properties are described as fields within the control volume. Each property is expressed as a function of space and time (more details see [START_REF] Hauke | An introduction to fluid mechanics and transport phenomena[END_REF]).

The link between the Eulerian and the Lagrangian description is the material or substantial derivative. It is a field quantity, i.e. it is expressed in the Eulerian frame of reference as a function of space and time (x,y,z,t). The material derivative of a variable is the rate at which that variable changes with time for a given particle.

To study conservative quantities in fluid Dynamics the Euler description is preferred, as it is difficult to identify and follow a system of fluid particles.

Because the conservation laws of classic mechanics are in the Lagrangian version, a conversion has to be done. This conversion is done through the Reynolds theorem.

Reynolds transport theorem is used to compute derivatives of integrated quantities. To enunciate it, lets call B to any extensive property (like mass, momentum, volume) and b the intensive version of

B therefore b = B/m , (2.1) 
where m is the mass. B can be computed in the hole system as

B sys = sys ρbdV , (2.2)
with ρ the density. The Reynolds transport theorem for a non deforming control volume V states

DB sys Dt = ∂ ∂t V ρbdV + S ρbu • ndS , (2.3)
which means that the time rate of change of B within the system equals to the rate of change of B within the control volume plus the net flux of B through the control volume boundaries.

Reynolds theorem is used in formulating the basic conservation laws of continuum mechanics, in the following sections we will make use of this theorem to present the mass and momentum conservation.

Mass balance

To use the Reynolds transport theorem to the mass conservation the quantities B and b must be identified. Being the mass the extensive quantity

B then B = m b = m/m = 1 , (2.4)
assuming there are no sinks and sources of mass in our system the substitution of m and 1 instead of B and b in Eq. ( 2.3) leads to

0 = ∂ ∂t V ρdV + S ρu • ndS . (2.5)
This means that the change on time of mass within the control volume equals the rate of mass that enters and leaves the control volume.

Applying Green's formula to express the right term as a volume integral over V Eq. (2.5) can be written as

0 = ∂ ∂t V ρdV + V ∇ • (ρu)dV. (2.6)
Since this equation holds for any volume, the integrand must vanish, i.e.

∂ρ ∂t + ∇ • (ρu) = 0 , (2.7)
the vector quantity ρu is known as the mass flux density j. Its direction is that of the motion of the fluid, while its magnitude equals the mass of fluid flowing in unit time through unit area perpendicular to the velocity [START_REF] Landau | Course of theoretical physics[END_REF].

Eq. (2.7) is the continuity equation for the mass density in absence of sources or sinks, in general when a property Γ is conserved it obeys the general conservation equation

∂Γ ∂t + ∇ • Ω = G , (2.8)
with Ω the flux vector in units of conserved property per unit time per unit area and G is the source/sink term with units of the property per unit time, which in all this study will be considered 0.

Coming back to Eq. (2.7), applying the divergence operator to the flux, it can be rewritten as

ρ∇ • u = -u • ∇ρ - ∂ρ ∂t = -u • ∇ - ∂ ∂t ρ = - D Dt ρ ,
(2.9)

where D Dt is know as the material or substantial derivative of a field quantity, i.e., it is expressed in the Eulerian frame of reference as a function of space and time (x,y,z,t), making a link between the Eulerian and the Lagrangian description.

For example, the material derivative of the velocity, Du/Dt = u • ∇u + ∂u ∂t , does not simply denote the rate of change of fluid velocity at a fixed point. It is composed in two parts: ∂u ∂t the change in time of the velocity at a point fixed in space is called the local or unsteady rate of change of u. And u • ∇u the difference between the velocities (at the same instant) at two points following a velocity field line. It is called the convective or advective rate of change of u.

Momentum conservation

To apply the Reynolds transport theorem on the momentum conservation, the quantities B and b must be identified. Being the momentum mu the extensive quantity

B = mu b = mu/m = u .
(2.10) Substituting into Eq. (2.3)

Dmu Dt = ∂ ∂t V ρudV + S ρuu • ndS . (2.11)
Which means that the change in time of momentum within the system equals the change in time of momentum within the control volume plus the momentum that crosses the boundary of the control volume.

Newton's second law states that the rate of change of the momentum, p = mu is equal to the net force acting on the body F. Depending on the phenomena studied the forces that can act on a control volume V may change, here only the superficial forces will be considered, they are pressure and the viscous forces. The total force due to the stresses is the sum of the stress vectors in all the control volume surface [START_REF] Frank | Fluid mechanics[END_REF], [START_REF] Pedley | Introduction to fluid dynamics[END_REF] and [START_REF] Landau | Course of theoretical physics[END_REF].

F s = cs n • σdS , (2.12)
with n the unitary surface vector, and σ the stress tensor given by

σ =   -p + τ xx τ yx τ zx τ xy -p + τ yy τ zy τ xz τ yz -p + τ zz   , (2.13)
where p is the hydrostatic pressure acting in each face, and τ ij and are the viscous stresses.

Following the second law of Newton from Eq. (2.11) and Eq. (2.12)

Dmu Dt = ∂ ∂t V ρudV + S ρu(u • n)dS = S n • σdS . (2.14)
Applying the divergence theorem to the surface integrals we obtain

∂ ∂t V ρudV + V ∇ • (ρuu)dV = V ∇ • σdV , (2.15)
as it is valid for any kind of control volume

∂ ∂t ρu + ∇ • (ρuu) = ∇ • σ , (2.16)
where uu is a dyadic product, a second rank tensor. The divergence of a second rank tensor is first order tensor field (∇

• (ab) = (∇ • a)b + a • ∇b) ∂ρ ∂t u + ∂u ∂t ρ + (∇ • ρu)u + ρu • ∇u = ∇ • σ .
(2.17)

Regrouping

∂ρ ∂t + ∇ • ρu u + ∂u ∂t + u • ∇u ρ = ∇ • σ . (2.18)
If the mass is conserved then

∂u ∂t + u • ∇u = ∇ • σ , (2.19)
which can be written in terms of the material derivative of velocity

ρ Du Dt = ∇ • σ . (2.20)
For a Newtonian fluid incompressible the viscous stress tensor elements σ ij are proportional to the element strain rates and the coefficient of viscosity this is

τ ij = µ ∂v i ∂j + ∂v j ∂i
where µ is the dynamic viscosity of the fluid. Substituting in Eq. (2.20)

ρ Du Dt = -∇P + µ∇ 2 u .
(2.21)

These are the incompressible Navier-Stokes equations. They are 3 secondorder nonlinear partial differential equations governing four unknowns P and the three components of u. To solve them it should be considered the incompressible continuity relation∇ • u = 0 and the appropriate boundary conditions.

Even though the Navier-Stokes equations have only a limited number of known analytical solutions, numerical solutions can be founded and in this thesis the GeoDict software is implemented to solve them into the 3D images of the sand obtained from the µCT .

Stokes equation

Flow can be better understood based on the characteristic dimensions where it occurs. In this sense, the Reynold's number, Re, is used as a criterion to distinguish between laminar flow occurring at low velocities and turbulent flow occurring at velocities. It is defined as the ratio between inertial and viscous forces:

Re = Inertial f orces V iscous f orces = ρul µ , (2.22)
where ρ, u, µ, l correspond to the characteristic dimensions of the phenomena: density, velocity, dynamic viscosity, and length [START_REF] Adler | Porous media: geometry and transports[END_REF]. In porous media

Re = ud p ν , (2.23)
where u is the maximum pore velocity, d p is the size of the pore where the 50% of the flux occurs1 , and ν is the kinematic viscosity of the fluid. At low Re, there is a region where the flow is creeping, meaning that the viscous forces are predominant, and as long as Re does not exceed some value between 1 and 10 the Darcy's law is valid [START_REF] Bear | Dynamics of Fluids in Porous Media[END_REF][START_REF] Bear | Hydraulics of groundwater. McGraw-Hill series in water resources and environmental engineering[END_REF] When the inertia term is neglected, the Navier-Stokes equations reduce to

-∇ P + ∇ 2 u' = 0 , (2.26)
which is known as the Stokes equation and is generally suitable to describe flow in porous media at low Re.

Numerical modelling on velocity and pressure fields

To compute the velocity field a commercial software was used its name is GeoDict and it comes from the abbreviation for Geometric material designer and material property preDictor. [START_REF] Wiegmann | Computation of the permeability of porous materials from their microstructure by fff-stokes[END_REF] An explicit jump approach of the immersed boundary concept is used to force the no-slip boundary condition as suggested by [START_REF] Rutka | A staggered grid-based explicit jump immersed interface method for two-dimensional stokes flows[END_REF]. A relative error of 10 -3 on the computed permeability was set as convergence criterion.

The EJ solver was complemented by the inflow and outflow conditions of pressure, lateral and tangential periodic boundary conditions. To do it the discretization is done by means of a finite difference method. Resulting a velocity and pressure fields. The EJ solver is recommended for this kind of experiment due that it is very fast for highly porous materials.

Solute transport modelling 2.3.1 Solute conservation

The last conservative quantity that is going to be presented here, is the solute concentration c = c(x, t), which represents the number of solute present in a control volume V . Following the same formalism derived in section 2.2.1, the local equation governing the concentration field is given by

∂ ∂t V cdV + S j c • ndS , (2.27)
with j c the solute flux. Applying the divergence theorem in the surface integral, and because it holds for any volume we obtain

∂c ∂t + ∇ • j c = 0 , (2.28)
where j c is the total flux of solute through the surface of V element and is equal to the sum of the diffusion flux and the advective flux that is j c = j dif f + j adv . Given the linearity of the equation these are two phenomena that can be treated separately. Thus in the following paragraphs we will present the diffusion and the advection phenomena. Always assuming that we are in a situation of no creation or destruction of solute.

In the absence of flow, the flux is just due to diffusion and obeys an empirical formulation done by Adolph Fick in 1855 [START_REF] Fick | on liquid diffusion[END_REF])

j dif f = -D 0 ∇c . (2.29)
This equation states that the flux of solute mass is proportional to the gradient of solute concentration. The minus sign holds the fact that the solute flux goes from the regions with more concentration to the region with less concentration. The diffusion coefficient D 0 is a positive constant dependent on molecule size and other properties of the diffusing substance like the temperature and pressure is positive with units L 2 /T it depends on the temperature which in this study is considered to be constant. A typical value of D 0 for small ions in water is D 0 = 2 × 10 -9 m 2 /s.

Introducing Fick's law into the conservation Eq. (2.28), the local conservation law is reduced to the diffusion conservation equation

∂c ∂t -∇ • (D 0 ∇c) = 0 . (2.30)
In the presence of flow, the fluid with its motion, drags the solute and its properties. This phenomena is called advection. Physically it is not possible to avoid the diffusion effects, but theoretically it is possible, in that case the flux is j c = j adv , the advective flux and it is given by j adv = uc .

(2.31)

Introducing the advective flux into the conservation equation we obtain the advection conservation equation.

∂c ∂t -∇ • uc = 0 . (2.32)
Taking Eq. (2.30) and Eq. ( 2.32) into Eq. (2.28) we obtain the advection diffusion equation (ADE)

∂c ∂t -∇ • ∇D 0 c + ∇ • uc = 0 . (2.33)

Peclet number

Similar to Section 2.2.2, doing an adimensional analysis of the diffusion advection equation, a dimensionless number can be defined which relates the advective transport rate with the diffusive transport rate. This is the Peclet number given by: P e = Advective transport rate dif f usive transport rate ,

= ul D 0 , (2.34)
where u, l, D are the characteristic dimensions of the phenomena. If the Pe number is much smaller than 1, diffusion dominates over advection and transport may be modeled considering diffusion only. Up to 10 different Pe number definitions exist and for a particular case these different definitions lead to very diverse Pe number values, differing several orders of magnitude from each other [START_REF] Huysmans | Review of the use of péclet numbers to determine the relative importance of advection and diffusion in low permeability environments[END_REF]. In porous media at the pore scale and particularly in this study, the microscale Pe number will be defined as

P e = uD 50 D 0 , (2.35)
where v is the average pore velocity, D 50 is the average of the solid phase particle size and, D is the diffusion coefficient (Dullien, 2012a).

Development of a transport code FV and the time split operator

To solve the ADE Eq. (2.33) the operator splitting is used. This is a method commonly used in the solution of linear or non-linear partial differential equations which complexity makes difficult to find a solution accurate enough for a reasonable time step. The main idea of this method is to decouple the equation into simpler equations and solve them separately with a method ad hoc to them. The splitting method here implemented splits the time evolution into partial steps to separate the physical process of convection and diffusion. The cost of this splitting is an error which is zero if the operators of the new equations commute (more on splitting operators can be find in [START_REF] Tanoglu | Operator splitting methhods for differential equations[END_REF]; [START_REF] Csomós | Weighted sequential splittings and their analysis[END_REF]). This method is a common process while solving the ADE problem (see for example (Zaretskiy et al., 2010b)). Applying the splitting operator to Eq. (2.33) results in the sum of the advective and the diffusion process in one step time. Allowing us to use the most convenient method for each physical process.

To solve the advection and diffusion problem separately, the finite volume method (FVM) was used for both cases, with an adequate scheme for each case.

The FVM is a popular method to solve conserved PDE. It consists in dividing the solution domain into a finite number of control volumes. The local solution is defined in the center of the finite volume as the average of the conserved quantity into the finite volume which is updated by approximations to the flux through each edge of the finite volume.

An interesting feature of FVM is that the mesh is not obliged to be Cartesian. However, in this study and as is typically done while studying 3D images we will associate each finite volume to a voxel of the 3D image (for example see (Bijeljic et al., 2013a;Yang et al., 2016b)).

Boundary conditions

Two types of boundary conditions were implemented in the program

• Dirichlet BC: it imposes a fixed value of the concentration. In the discretized space, it is imposed in the center if the voxel under consideration. It generally concerns the inlet face of the VOI with a value of 1 during the solute injection and 0 otherwise.

• Neumann BC (or second type): it imposes a value on the derivatives.

Particularly the condition set here is ∇c • n = 0 meaning that there is no flux in the direction normal to the boundary. This condition in the advection case is straightforward imposed due to the fact that the velocity is zero in the solid voxels. In the diffusion case was used in each voxel in function of the existence of some of its neighbours be a solid. Setting in the diffusion matrix the corresponding coefficient A x and/or A y and/or A z equal to 0 (see Eq. (2.50)). This condition is also applied in the lateral face of the VOI to mimic a periodic BC and limit the spreading of the diffusion matrix. It is also used at the outlet face of the VOI since a free flow BC (or purely advective BC) is selected.

Diffusion model

After the splitting operator was applied we can solve separately the problem of pure diffusion and later the problem of only advection. Let's start with the pure diffusion.

∂c ∂t = D 0 ∇ 2 c . (2.36) Which in integral form is V ∂c ∂t dv = V D 0 ∇ 2 cdv , (2.37)
where dv is a control volume with center at ijk. Assuming the grid is not changing with time the temporal derivative of the l.h.s. can go out of the spatial integral, and applying the divergence theorem2 to the r.h.s. yields to

∂ ∂t V cdv = S D 0 (∇c • n)ds . (2.38)
The left hand side (l.h.s.) can be written in terms of the average concentration on the grid element3 . The r.h.s. is now an integral over a closed surface, n is the outer pointing unit normal vector defined at each point on the cell interface. Since our cell has 6 flat faces n takes 6 different values, thus the right hand side (r.h.s.) can be written as a sum of integrals where λ counts for each normal vector of the surface.

∆x∆y∆z ∂c i,j,k ∂t = 6 f ace λ S λ D 0 (∇c • nλ )ds . (2.39)
Notice that c ijk does not depend of any particular point inside the cell, thus the partial temporal derivative can be exchanged for a total time derivative.

∆x∆y∆z dc i,j,k dt = 6 f ace λ S λ D 0 (∇c • nλ )ds . (2.40)
It can be noticed that D 0 ∇c is the vector flux j dif f due to diffusion, therefore the integral in each face is the flux between two adjacent grid elements in the direction of the normal vector of the face at the face center. Using the average concentration at the grid element i, j, k and it neighbors, the flux will be computed at the center of each face and multiplied by its area. For the face 1 (see Fig. 2.1) the integral of the flux will be given by:

1 = S 1 D 0 (∇c i,j,k • n 1 )ds = Do∆y∆z ∆x c i,j,k -c i+1,j,k .
(2.41) Similar for the remaining 5 integrals. Attention must be paid due to the direction of the flux and the surface normal vector.

2 = S2 D 0 (∇c • n 2 )ds = Do∆y∆z ∆x c i,j,k -c i+1,j,k (2.42) 3 = S3 D 0 (∇c • n 3 )ds = Do∆x∆y ∆z c i,j,k -c i,j,k+1 (2.43) 4 = S4 D 0 (∇c • n 4 )ds = Do∆y∆z ∆x c i,j,k -c i-1,j,k (2.44) 5 = S5 D 0 (∇c • n 5 )ds = Do∆x∆z ∆y c i,j,k -c i,j-1,k (2.45) 6 = S6 D 0 (∇c • n 6 )ds = Do∆x∆z ∆y c i,j,k -c i,j+1,k .
(2.46) Therefore the r.h.s. of Eq. (2.39) is the sum of 1 to 6 representing the flux going out the cell. Till now we have a semi-discrete equation. To discretize the temporal part, it was chosen an implicit scheme. On this kind of schemes the numerical solution depends upon the values of c at both old and new time steps. Differently of an explicit scheme, an implicit scheme is unconditionally stable, and it is expressed as

∂c t+1 i,j,k ∂t = c t+1 i,j,k -c t i,j,k ∆t .
(2.47)

Here the upper index count for the time and the lower for the position.

Therefore Eq. (2.40) can be written as

c t+1 i,j,k -c t i,j,k = ∆t ∆x∆y∆z 6 λ λ
.

(2.48)

Eq. (2.48) can rewritten as

c t i,j,k = Bc t+1 i,j,k -A x c t+1 i-1,j,k -A x c t+1 i+1,j,k -A y c t+1 i,j-1,k -A y c t+1 i,j+1,k -A z c t+1 i,j,k-1 -A z c t+1 i,j,k+1 , (2.49) 
where

A x = D 0 ∆t ∆x 2 ; A y = D 0 ∆t ∆y 2 ; A z = D 0 ∆t ∆z 2 ;
(2.50)

B = 1 -2A x -2A y -2A z .
(2.51)

The discretized diffusion equation for all the 3D space, is a system of equations with Eq. (2.49) as the corresponding equation to each element of the grid. In order to write this system in a matrix form, a linearization of the ijk indexes was done (congruence most exist between this linearization and the order at allocating the volume in the code).

c ijk → c α = c (j-i)Nz+(i-1)NzNy+k . (2.52)
This means that we are filling first in the i direction, secondly in the j direction and finally in the k direction The system of equations of diffusion in all the space yields to the linear system of equations in matrix form

Ac t+1 = c t , (2.53) 
where

C t = c t 1 c t 2 . . . c t α . . . c t Nx Ny Nz                                                    
(2.54)

A = B -Az -Ay -Ax -Az B -Az -Ay -Ax -Ax -Ay -Ay -Ax -Az -Ax -Ay -Az B                                                       .
(2.55)

The matrix A is a N x N y N z × N x N y N z spare matrix with 7 non zero diagonals. There are N z spaces between the diagonals B and -A y , and N z N y spaces between the diagonals B and -A x . The elements of these diagonals depend of the nature of the evaluated mesh element and the chosen boundary conditions.

If the mesh element corresponding to the index ijk → α is pore, then the element of the matrix A αα is non zero and equal to B (2.51), as in Section 2.3.2 was explained Neumann boundary condition were chosen for diffusion. And here it is translated to set zero to the elements of the row α if it correspond to a solid neighbor. For example: if the only solid neighbor is the one with center at i + 1, j, k, then the elements of the row α will take its values as indicated in Eq. (2.50) except for the element at A αα = 1+A x +2A y +2A z and the element A α+NyNz,α = 0.

Given the big size of the matrix system Eq. (2.53) a solver has to be implemented. In general there are many solvers focused on solve linear systems containing spar matrices, some of them are PaStiX, SuperLU, Eigen. In this study we chose the package called MUMPS (MUltifrontal Massively Parallel Solver) it was specially designed to solve linear equations like Eq. (2.53) with a A a spare square matrix on parallel computers, using a multifrontal method. It was written in FORTRAN 90 and uses MPI for message passing (for more details see [START_REF] Patrick R Amestoy | Mumps multifrontal massively parallel solver version 2[END_REF]). The frontal method is based in a Gaussian elimination or LU decomposition. Which consists on factorizing the matrix A into a lower and upper matrix

A = LU .
(2.56)

Rewriting the system Eq. (2.53) operations are required, while the classical method of Gauss-Jordan requires approximately N x N y N 3 z operations. We chose to decompose the matrix once during all the ADE computation.

LUc t+1 = c t , ( 2 

Advection model

After the splitting operator was applied, the advection equation part is given by

∂c ∂t = -u • ∇c , (2.60) which integral form is V ∂c ∂t dv = - V u • ∇cdv , (2.61) 
and in the 1D case choosing the direction of the water flow, x, the integral advection part can be written as

x i+1/2 x i-1/2 ∂c ∂t dx = - x i+1/2 x i-1/2 u x ∂c ∂x dx .
(2.62)

Using the mean value theorem and remembering the the advective flux expression Eq. (2.31), Eq. (2.62) could be rewritten in the semi-discrete form as:

∆x i ∂c i ∂t = -[j t adv i+1/2 -j t adv i-1/2 ] = 0 . (2.63)
By taking a first order scheme in time

1 ∆t (c t+1 i -c t i ) = - 1 ∆x i [j t adv i+1/2 -j t adv i-1/2 ] .
(2.64)

The fact that the advection equation is a conservation equation means that c i can only be modified by exchanges with the neighboring cells. Therefore, the change in c i can be seen as in-and out-fluxes through the cell interfaces. Therefore j t adv i+1/2 and j t adv i-1/2 are the flux at the cell interface at time t.

Many methods have been proposed to approximate the solution of Eq. (2.64), however it is well known that linear schemes in time are strongly affected by numerical diffusion [START_REF] John R Fanchi | Multidimensional numerical dispersion[END_REF][START_REF] Lantz | Quantitative evaluation of numerical diffusion (truncation error)[END_REF]) while high order schemes in time (≥ 2), which have been successful in eliminating the numerical diffusion, give rise to non physical oscillations near regions of large gradients (jumps) [START_REF] Patel | A critical evaluation of seven discretization schemes for convection-diffusion equations[END_REF].

A solution is to build an hybrid method where a high order numerical scheme changes to a low order scheme depending on some critical conditions like a steep gradient or a discontinuity. This condition is imposed by a flux limiter. Lets define the flux as a combination of high and low order fluxes as

j adv i+1/2 = j L adv i+1/2 + Ψ i+1/2 j H adv i+1/2 -j L i+1/2 , (2.65)
where j H adv i+1/2 is the high order numerical flux, j L adv i+1/2 is the low order numerical flux and Ψ i+1/2 is the flux limiter. Which in function of the neighbor solutions allows the flux be high or low order. Therefore, the limiter Ψ i+1/2 depends locally on a nonlinear function Θ i+1 , which is the ratio of solution slopes at the neighborhood of the interfaces in the upwind direction.

Θ t i+1/2 =    c t i -c t i-1 c t i+1 -c t i = Θ + i+1/2 if u t i+1/2 ≥ 0 c t i+2 -c t i+1 c t i+1 -c t i = Θ - i+1/2 if u t i+1/2 < 0 .
(2.66)

The limiter function is constrained to be greater or equal to zero, i.e., Ψ(Θ) ≥ 0. Therefore, when the limiter is equal to zero (sharp gradient, opposite slopes or zero gradient), the flux is represented by a low resolution scheme. Similarly, when the limiter is equal to 1 (smooth solution), it is represented by a high resolution scheme. Then different propositions of limiters exist, some of them are:

M inmod : Ψ(Θ) = max(0, min(1, Θ)) (2.67) Superbee : Ψ(Θ) = max(0, min(1, 2Θ), min(2, Θ)) (2.68) V anLeer Ψ(Θ) = (0 + |Θ|)/(1, |Θ)|) (2.69) M U SCL : Ψ(Θ) = max 0, min 1 + Θ 2 , 2, 2Θ (2.70)
More details about these limiters can be found in [START_REF] Dale R Durran | Numerical methods for fluid dynamics: With applications to geophysics[END_REF].

The purpose of the flux limiters method is to avoid the creation of oscillations in the solution or diffusion, to guarantee this property, [START_REF] Harten | High resolution schemes for hyperbolic conservation laws[END_REF] introduced a property of quantity Q specified in a numerical grid, called the total variation (TV) of the solution at a given time which is given by

T V (Q t ) = N i=1 |Q t i+1 -Q t i | , (2.71) 
where i = 1 and i = N are the left and right boundaries of the numerical grid respectively. For a monotonically increasing function

Q the T V (Q) = |Q i+1 -Q i |.
To prevent the system from developing nonphysical maxima or minima, this must remain constant or decreasing over each time step. Then a numerical scheme is said to be TVD (total variation diminishing) if:

T V (Q t+1 ) ≤ T V (Q t ) .
(2.72)

Methods which satisfy TVD criteria also preserve monotonicity of solutions.

A scheme is monotone if given

Q t i ≥ Q t i+1 then Q t+1 i ≥ Q t+1 t+1 .
Pure second order methods cannot be monotone, therefore the goal is to use the flux limiters to control the inclusion of higher order terms, creating schemes with greater than first order accuracy, while preserving TVD (for more details see [START_REF] Randall | Finite volume methods for hyperbolic problems[END_REF][START_REF] Ronald | A new total variation diminishing scheme for the solution of advective-dominant solute transport[END_REF]))

Once the limiter has been chosen, the missing decision is the way the flux is going to be computed into the cell. The multidimensional upstream centered scheme for conservation laws (MUSCL) proposed by [START_REF] Van Leer | Towards the ultimate conservative difference scheme. v. a second-order sequel to godunov's method[END_REF], assumes that the state into the cell is a linear or high order function. In this study a linear function is considered which computes the state in the cell as

c(x, t) = c i (t) + S i (t)(x -x i ) x ∈ [(i -1/2)δx, (i + 1/2)δx] ,
(2.73)

where [(i-1/2)δx, (i+1/2)δx] is the interval in between the cell (for a regular cell otherwise it would be x ∈ [x i -δx/2, x i + δx/2] ) and S i (t) is a slope function of the average values of the neighbor cells and itself. A priori the function is discontinuous at the faces of the cell therefore two values c t i±1/2 are defined in each face x i+1/2 . As can be seen in [START_REF] Dubois | Nonlinear interpolation and total variation diminishing schemes[END_REF], a convenient scheme can be defined as:

c t i+1/2 =      c t i + 1 2 (c t i+1 -c t i )Ψ(Θ + i+1/2 ) u t i+1/2 ≥ 0 c t i+1 -1 2 (c t i+1 -c t i )Ψ(Θ - i+1/2 ) u t i+1/2 < 0 ,
(2.74)

c t i-1/2 =      c t i-1 + 1 2 (c t i -c t i-1 )Ψ(Θ + i-1/2 ) u t i-1/2 ≥ 0 c t i -1 2 (c t i -c t i-1 )Ψ(Θ - i-1/2 ) u t i-1/2 < 0 .
(2.75)

This are the arguments that should be taken into the flux evaluated in the faces of Eq. (2.64) and using Eq. (2.31) and Eq. (2.75) it can be written as

c t+1 i = c t i -A t i-1/2 (c t i -c t i-1 ) + B t i+1/2 (c t i+1 -c t i ) .
(2.76) with A t i-1/2 and B t i+1/2 are data dependent coefficients of neighbor cells. In [START_REF] Harten | High resolution schemes for hyperbolic conservation laws[END_REF] and [START_REF] Peter | High resolution schemes using flux limiters for hyperbolic conservation laws[END_REF] it was proven that sufficient conditions for the scheme to be TVD are the inequalities:

A t i+1/2 ≥ 0, B t i+1/2 ≥ 0, and A t i+1/2 + B t i+1/2 ≤ 1 .
(2.77)

In our case :

c t+1 i = c t i - ∆t ∆x u i+1/2 c t i+1/2 -u i-1/2 c t i-1/2 .
(2.78)

Study of the numerical behaviour: effect of time step

The advection-diffusion problem, was solved treating advection with an Euler explicit scheme while diffusion was treated with an Euler implicit scheme. Implicit methods are unconditionally stables, however explicit methods are not. The time step on the solution of advection must respect the Courant-Friedrichs-Lewy (CFL) condition

∆t adv ≤ dx u max , (2.79)
where dt adv is the advective time step, dx is the voxel size (which in this case is the same in all directions), and u max is the maximum value of velocity in We run the ADE code with different number (1,10,100,1000,10000) of dt T DV per dt dif f . For all these cases we compared the Concentration fields at the same two times (when at 0.5 PV and 0.75 PV), and considering each field element the normalized root mean square deviation (NRMSD) was computed.

Re=10 Re=1 Re=0.1 Re=0.01 dx (µm) dt CF L dt T V D dt CF L dt T V D dt CF L dt T V D dt CF L dt T V D 4.
The NRMSD presented an increasing linear behavior with the number of iterations of dt T DV per dt dif f . The same behave was observed at all the Pe numbers (keeping also the same order of magnitude at the respective number of iteration).

N RM SD = 1 (c max -c min ) N (c dt T DV 1 -c dt T DV 2 ) 2 N .
(2.82)

It was observed that with 10000 iterations of dt T DV per dt dif f leaded to big times considering one PV of the studied VOIs. Since even the case of 10000 iterations of dt T DV per dt dif f presented a NRMSD smaller than 1% it was chosen for all the experiments developed a reason of 1000 dt T DV per dt dif f .

An example of this analysis is shown in Table 2.3.3 for the case of Pe=16.5

General structure of the code

The solute transport is modelled at a microscale by the advection diffusion Eq. (2.33)

∂c ∂t -∇ • ∇D 0 c + ∇ • uc = 0 ,
where c is the solute concentration, x is a coordinate vector, D 0 is the molecular diffusion coefficient, and u is the velocity field obtained from the Stocks Equation in (2.21). As a boundary condition we kept c at a constant value at the inflow boundary and allow it to undergo pure advection at the outflow boundary

c| in = c 0 inlet (cu -D 0 ∇c) • n| out = cu • n outlet (cu -D 0 ∇c) • n| out = 0 walls . (2.83)
Once the steps for the modelling of the solute transport were presented, we can synthesize the whole process in the flux diagram Fig. 2.2. Chapter 3

Modelling flow and solute transport at the macroscale

In the previous chapter the conservation equations were presented at microscale. However, we want to make the transition from the discrete pore space to the continuum and to macroscopic field variables which describe the observed phenomena. Here in this section it is presented the macroscopic scale ones.

Darcy's law and permeability

Darcy's law describes the flow of a fluid through a porous medium. It first was formulated on empirical results [START_REF] Darcy | Les fontaines publiques de la ville de Dijon: exposition et application[END_REF]. It suggests a linear relationship between flux and the gradient of hydraulic head height difference between the water levels at the inlet and outlet ends of a column of pore media.

U Darcy = Q A = - k µ (∇P + ρge z ) , (3.1)
where P is the pressure [P a], µ is the fluid dynamic viscosity, U Darcy the average velocity of the flow into the porous media known also as the Darcy velocity

[m/s], Q is the flow rate [m 3 /s], A is the cross-sectional area [m 2 ] and k is the permeability tensor [m 2 ]
, and e z is a vertical unit vector [START_REF] Bear | Modeling Phenomena of Flow and Transport in Porous Media[END_REF].

The permeability tensor is a material property of the porous material. It characterizes the resistance of the material to let flow the fluid. Math-ematically it is a second rank, symmetric tensor if the material is not homogeneous. For microscopically anisotropic media, k is also anisotropic and causes the flux direction to deviate from that of its driving force.

For isotropic media k may be replaced by a scalar. Typical values of permeability range as high as 10 -7 m 2 for gravel, to values less than10 -20 m 2 for granite. In our case the permeability of sand normally is around 10 -12 m 2 .

It can be shown that Darcy's law could also be deduced from the Stokes equations [START_REF] Whitaker | Flow in porous media i: A theoretical derivation of darcy's law[END_REF].

Because flow only takes place within the pore spaces of the porous medium, for a given Darcy velocity U Darcy the average pore velocity U pore is increased compared to the Darcy velocity by the reciprocal of the porosity [START_REF] Lichtner | and Mineralogical Society of America. Reactive Transport in Porous Media[END_REF].

U pore = U Darcy φ . (3.2)
It is important to clarify that the average pore velocity is quite different from the micro scale fluid velocity within individual pore spaces.

According to Darcy's law the fluid velocity depends only on macroscale properties of the porous medium. While the microscale complexity is conveniently described by the permeability.

Computation of permeability

To compute permeability it was used commercial software GeoDict. It uses the microscale velocity field to compute the mean flow velocity, U Darcy , for a given pressure drop, ∆P . In a post-processing step, Darcy's law, is used to compute the material permeability, k, using mean flow velocity, fluid viscosity, µ, pressure drop, and media thickness. For slow and faster flows, FlowDict assumes a steady flow regime, without time-dependent behavior. Thus, velocity and pressure drop cannot be arbitrarily high. It should guarantee that the Re number remains small (Re<10) in order to prevent the appearance of inertial effects.

Macroscale ADE and hydrodynamic dispersion

The study of solute transport through a porous media leads us to the study of the macroscopic phenomena called dispersion. It can be described as the spread out of the transported species under the combined action of molecular diffusion and the non uniform velocity field. It was originally studied in pipes by Taylor and Aris [START_REF] Taylor | Diffusion and mass transport in tubes[END_REF] and [START_REF] Aris | On the dispersion of a solute in a fluid flowing through a tube[END_REF]. Finding that the dispersion along a tube is governed by a coefficient of diffusivity which can be calculated from observed distributions of concentration. However this task is more complex for a porous media, and is the subject of the following paragraphs. For the writing of this section the books of [START_REF] Bear | Hydraulics of groundwater. McGraw-Hill series in water resources and environmental engineering[END_REF] and [START_REF] Bear | Modeling Groundwater Flow and Pollution. Theory and Applications of Transport in Porous Media[END_REF] were mainly used.

To understand this process we must observe what happens at the pore scale.

The dispersion that occurs along the streamline of the fluid flow is called longitudinal dispersion and in porous media can be caused by

• Changes in the fluid velocity due to the radial position into the pore (the fluid moves faster through the center of the pore than along the solid surface).

• The pathway size variations of the fluid along the porous media.

• Differences in the fluid velocities due to the size of the pore (the fluid that travels through large pores will travel faster than fluid moving in smaller pores).

The dispersion that occurs perpendicular to the fluid flow is called lateral dispersion in the porous media can be caused due to

• The resulting gradient of concentration along the microscopic streamline due to the fluid velocity variations which induces lateral diffusion.

• Lateral spreading due to the shape of flow path.

To obtain the macroscopic equation of solute conservation in a porous media, following the conservation equation Eq. (2.8) we need to find an expression for the macroscopic flux of solute J c . This flux should describe the contribution of diffusion and advection at the microscale. For this purpose it is chosen a REV in order to compute reliable averaged quantities.

A quantity x is defined by its average as x = x + x, where x is the average of the quantity x, and x represent the deviation from the average of the quantity. Therefore x = 0.

In the velocity case it is computed the average pore velocity as

u = 1 v pore udv = U pore (3.3)
where v pore is the pore volume and the average total velocity as

u Darcy = 1 v total udv = U Darcy (3.4)
where v tot is the total volume.

Lets consider the average pore velocity and average concentration (the mass of the substance per unit volume of the liquid) and compute the average product

uc = u c + cũ . (3.5)
Here uc is the average of the microscale advective flux, cũ is the dispersive flux J disp , and u c is the macroscopic advective flux that taking into acount that c is the macroscopic concentration C and Eq. (3.3) it can be writen as

J adv = u c = U pore C (3.6)
The dispersive flux is a macroscopic flux that expresses the effect of the microscopic variations of the velocity in the vicinity of a considered point and therefore, it is responsible of the spreading. Being a result of the averaging it does not exist at a microscopic level. It is assumed that it obeys a Fickian type law with a coefficient of dispersion D.

J disp = cũ = -D • ∇ c = -D • ∇C , (3.7)
where D is a second rank tensor [m 2 /s]. Authors like [START_REF] Scheidegger | General theory of dispersion in porous media[END_REF] developed an expression for the relationship between the dispersion coefficient D, and the flow velocity.

D ik = α iklm u l u m |U pore | , (3.8)
where α is called dispersivity, it is a fourth rank tensor with units [m] which expresses the microscopic configuration of the porous media. Thus, it is considered to be a characteristic property of the porous medium.

The dispersion tensor can be transformed so that the only elements of the major diagonal remains non zero if its principal axes are oriented to parallel and transverse to the mean direction of the flow. This simplification leads to the dispersion coefficient components:

D ik = α T U pore δ ij + (α L -α T )u i u j |U pore | , (3.9) 
where parameters α L and α T are called longitudinal and transversal dispersivities of the isotropic porous medium respectively.

At this point we can observe that dispersion is a macroscopic process similar to the microscopic, however, unlike diffusion, it occurs only during water movement.

The second average flux to compute is the average flux due to diffusion.

Based on the microscopic expression of diffusion Eq. (2.29) in [START_REF] Bear | On the equivalence of areal and volumetric averages in transport phenomena in porous media[END_REF] and [START_REF] Bear | Transport phenomena in porous media-basic equations[END_REF] was derived an expression for the macroscopic flux in the form

J dif f = j dif f = -D * d • ∇ c , (3.10) 
where D * d = D 0 T * and T * is known as tortuosity, a second order rank that expresses the effect of the configuration of the pore space in the REV.

Adding the dispersive flux and the diffusive flux, we obtain the flux known as the hydrodynamic flux (J disp + J dif f )

J hydrod = -(D + D * d ) • ∇ c = -D h • ∇ c , (3.11)
where D h is the coefficient of hydrodynamic dispersion.

D h = D 0 T * + α iklm u l u m |U pore | . (3.12)
Finally adding the advective flux and the hydrodynamic flux we obtain the desired total macroscopic solute flux J c

J c = U pore C -D h • ∇C . (3.13)
Substituting this flux into the continuity Eq. (2.8) we obtain the macroscopic advection-dispersion equation

∂C ∂t = -∇ • (U pore C -D h • ∇C) . (3.14)
In practice it easier to measure the Darcy velocity then substituting Eq. (3.2) into Eq. (3.14) leads to

∂C ∂t = -∇ • ( U Darcy φ C -D h • ∇C) . (3.15)
Which can be simplified to

∂φC ∂t = -∇ • (U Darcy C -φD h • ∇C) . (3.16)
Eq. (3.14) in 1D reduces into an isotropic media to

∂φC ∂t = - ∂ ∂x (CU Darcy -φD h ∂C ∂x ) , (3.17) with D h = T * D 0 + α L U Darcyx . (3.18)
In the studies of solute transport, it is common use (3.17) with the dispersivity like a fitting parameter to match the behavior of curve of concentration function of the time through a porous media. However, even dispersivity is a characteristic of the porous material, studies have reported it is scale dependent. It increases with the travel distance of the solute. For example [START_REF] Huang | Experimental investigation of solute transport in large, homogeneous and heterogeneous, saturated soil columns[END_REF]Pickens and Grisak, 1981a) reported dispersivities of 0.1 to 5 cm for homogeneous sandy columns of 12.5 m long with cross section of 100cm 2 . In [START_REF] Kim | Determination of longitudinal dispersivity in an unconfined sandy aquifer[END_REF] dispersivity was obtained at multiple positions in a aquifer revealing that dispersivity length is proportional to the travel distance by a factor of 0.3, which was moderately higher than the value of 0.1 given in [START_REF] Lallemand | Recherche des relations entre la valeur de la dispersivité macroscopique d'un milieu aquifère, ses autres caractéristiques et les conditions de mesure[END_REF].

BTC analysis

The soil column experiments provide a tool to quantify the mixing, spreading or attenuation of a solute. Therefore, they have been widely used to evaluate solute transport models, to understand the fate and migration of contaminants through soils, to evaluate the properties of the soil, or bacteria transport, among others. They consist in setting a column of porous media and injecting in one side a solute solution with concentration C 0 which gradually will displace the preexisting solution of concentration C i . Analysis of the collected effluent from the pore media at a given depth shows a change in composition of effluent solution with respect to time. The graphical representation of the fraction of the incoming solute (C -C i )/(C 0 -C i ) (or C/C 0 in case of initial concentration equals zero) with respect to time is known as breakthrough curve (BTC) [START_REF] Kutílek | Soil hydrology: texbook for students of soil science, agriculture, forestry, geoecology, hydrology, geomorphology and other related disciplines[END_REF].

A frequent term here used is the pore volume (PV), which is the ratio at a given time between the cumulative effluent volume and the total pore volume of the material. This means that 1PV corresponds to the time needed to fill the pore volume space of the material with the injected solute. Another way to represent a BTC is the incoming solute fraction in function of the PV.

BTCs can have different shapes depending upon the solute application and the nature of the process in between the pore media. A solute introduced as a step input, will displace all the preexisting solution gradually (normally). Therefore, the concentration of applied solution increases whereas that of the preexisting solution decreases with time. If the application of displacing or applied solution continues, it attains the maximum concentration equal to C 0 . The sharpest is the output curve the lower the effect of dispersion or interaction between the solute and the soil matrix.

CXT FIT

In order to obtain the dispersivity coefficient from a BTC the CXTFIT 2.0 software may be used in its inverse problem function. The CXTFIT 2.0 is a public domain software for estimating solute transport parameters using a nonlinear least-squares parameter optimization method. It can be used to solve the inverse problem by fitting a variety of analytical solutions of theoretical transport models, based upon the one-dimensional advection-dispersion equation (ADE), to given concentration function of time data. Therefore given the concentration, time, pore average velocity at the outlet of out simulation we obtained the hydrodynamic coefficient for our sample. The program may also be used to solve the direct or forward problem to determine concentrations as a function of time and/or position.

Here the necessary data are the hydrodynamic coefficient and pore velocity in order to obtain a BTC. We used this mode also to check the behaviour of our resulting BTCs [START_REF] Toride | The cxtfit code for estimating transport parameters from laboratory or field tracer experiments[END_REF].

Computation of the hydrodynamic coefficient and dispersivity

In this thesis we used the algorithm here developed to simulate column sand experiments. In our simulation we injected to a volume of interest (VOI) of Fontainebleau sand solute concentration during 1PV, 2PV and 3PV. We chose four positions where to study the solute mimicking four different sizes of the column sand and we saved the concentration field each 10 ∆t dif f . Being L the size of the VOI we studied, the positions were at L 1 = L/4, L 2 = L/2, L 3 = 3L/4 and L 4 = L. At these positions we compute the solute flux average

C f lux (λ) = Ny,Nz j,k u x (λ, j, k)c(λ, j, k) Ny,Nz j,k u x (λ, j, k) , (3.19) 
with the flux going in the x direction, λ the grid element corresponding to the chosen position for instance L 1 . N y , N z are the maximum number of voxels in the y and z direction and j, k are indexes that run on the grid elements in the direction y and z respectively. We computed in this way the averaged concentration from time equals zero till three times the injection time. We obtained BTCs like are shown in Fig. 3.1 with this data and CXTFIT we computed the hydrodynamic coefficient for each case. 

Analytical analysis

One of the main purposes of this thesis is to generate a 3D model which reads a segmented 3D image and taking it as the geometry, solves the advection diffusion Eq. (2.33). In order to validate this model we drew on analytic solutions of Advection, diffusion and dispersion on simple geometries and boundary conditions where the solution is known.

As it was presented in Section 2.3.1, in the presence of only diffusive flux, the transport equation Eq. (2.30) is a linear parabolic partial differential equation. In the following paragraphs three cases with known analytical solution will be presented. All of them occur in a 1D bar of size L, with constant diffusion coefficient D 0 , but different boundary and initial conditions. In this case Eq. (2.30) can be simplified to

∂c ∂t -D 0 ∂ 2 c ∂x 2 = 0 .
(3.20)

1D Diffusion at stationary case

∂ 2 c
∂x 2 = 0, with Dirichlet boundary conditions:

c(x = 0) = c 1 c(x = L) = c 2 . (3.21)
with c 1 = 1 and c 2 = 0 arbitrary constants. In the static case Eq. (3.20) simplifies to

∂ 2 c ∂x 2 = 0 , (3.22)
integrating it two times in x leads to its general solution

c(x) + xc 1 + c 2 = 0 , (3.23)
where c 1 and c 2 are integration constants, using the c 1 and c 2 we get the particular solution c(x) = 1 -x L .

(3.24)

Code application

To simulate this case (1D diffusion with Dirichlet BC c(0)=1 c(L)=0), the transport phenomena was simulated to pass through a bar of 301×3×3 with a given voxel size of 18 µm (however this computation must be independent of the voxel size) with water as the fluid which has diffusion coefficient

D 0 = 1 × 10 -9 .
The diffusion computation is unconditional stable, therefore this test was used to verify the convergence of the code. If it is good our model should be fine with any diffusion time step, the time input used was: diffusion time step dt=1, total number of iterations Nt=30001 (however the convergence was reached since iteration 24000). A function called M layer was used to compute the average concentration at a given layer i (perpendicular to the flux). In this case 16 positions were computed (i=18,36,54,72,...,288). The code results and the theoretical results can be seen in the this problem represents a source that is always present at x=0, and a well at x=L, being the stationary case, a linear behaviour is expected, It is observed a perfect agreement between the theoretical behavior and the computed results is observed.

1D Diffusion at non stationary case

Boundary and initial conditions:

c(0, t) = c 1 , c(L, t) = c 2 and c(x, 0) = f (x) . (3.25)
With f (x) = 0 for x = 0 and f (x) = 1 for x = 0.

If the conditions were homogeneous (not a function like here) the classical approach to solve the equation would be to use the method of variable separation. However, this is a partial equation with inhomogeneous conditions, one approach to solve it consists in solving the equilibrium case, and rewrite the problem in a more favorable way.

When t → ∞ we can expect that the concentration is stationary then the problem becomes

∂ 2 c eq ∂x 2 = 0, c eq (0) = c 1 , c eq (L) = c 2 , (3.26)
which is known from to the previous case, just using the appropriate BC (c 1 = 1, c 2 = 0)we get

c eq (x) = c 1 -(c 2 -c 1 ) x L . (3.27) 
We now define an auxiliary function A(x, t) = c(x, t) -c eq , then we can write c and its derivatives in terms of A and c eq c(x, t) = A(x, t) + c eq ∂c ∂t

= ∂A ∂t + ∂c eq ∂t ∂ 2 c ∂x 2 = ∂ 2 A ∂x 2 + ∂ 2 c eq ∂x 2 .
(3.28) On the one hand ∂ 2 ceq ∂t = 0 because c eq is the equilibrium concentration and it is independent of time. In the other, according to (3.26)

∂ 2 ceq ∂x 2 = 0 then ∂c ∂t = ∂A ∂t ∂ 2 c ∂x 2 = ∂ 2 A ∂x 2 . (3.29)
Which means that A(x, t) should obey the diffusion Eq. (3.20). In order to be capable to solve A, we need to know its boundary and initial conditions.

A(x, 0) = c(x, 0) -c eq (x) = f (x) -c eq (x) A(0, t) = c(0, t) -c eq (0) = c 1 -c 1 = 0 A(L, t) = c(L, t) -c eq (L) = c 2 -c 2 = 0 . (3.30)
The problem of A is given by

D 0 ∂ 2 A ∂x 2 = ∂A ∂t , (3.31) 
with boundary and initial conditions

A(x = 0, t) = 0, A(x = L, t) = 0 A(x, 0) = f (x) -c eq . (3.32)
It is the problem of a partial differential equation with homogeneous boundary conditions, where we can apply the method of separation of variables and get 

A(x, t) = ∞ n=1 B n sin nπx L exp -D 0( nπ L ) 2 t , (3.33) with Bn = 2 L L 0 (f (x) -c eq (x)) sin nπx L dx n = 1, 2, ... ( 3 

Code application

To simulate this case (1D diffusion with Dirichlet BC c(0,t)=1 c(L,t)=0), the transport phenomena was simulated through a bar of 301×3×3 with a given voxel size of 18 µm (however this computation must be independent of the voxel size), with water as the fluid which has a diffusion coefficient at

D 0 = 1 × 10 -9 .
The diffusion computation is unconditionally stable, thus the code should be fine with any diffusion time step, the time input used were: diffusion time step dt=1 second. Again the average concentration was computed via the function M layer. In this case we are interested in the evolution on time of the concentration, thus it was computed at 5 layers i of the length L of the bar (i=L/6, L/3, L/2, 2L/3, 5L/6) at different times.

In Fig. 3.3 is plot the concentration distribution along the bar at different times, observing its behaviour at big times converges to the 1D diffusion static case solution. In Fig. 3.4 are compared the results from the code and the analytic solution. Again an excellent agreement is observed. Physically the boundary conditions can be represented as a source at x=0 that is always present injecting concentration to the bar and a well at x=L absorbing the concentration. At the beginning the bar is empty, and as time passes it is filled till it reaches the equilibrium (see Fig 3 .3) which should correspond to the linear case 1. In Fig. 3.4 we can see how the layers closer to the source converge to a value bigger than the ones further of the source. In all cases the agreement between the code and the theory is excellent.

1D ADE stationary case

Stationary advection-diffusion transport along a 1D bar of size L and concentration boundary conditions: Substituting the BC into the last expression we obtain

c(0) = c 1 = 0 c(L) = c 2 = 1 . ( 3 
c(x) = exp ux/D 0 -1 exp uL/D 0 -1 . (3.42)

Code application

To compare the result of our 3D code with the analytical case of the 1D stationary ADE transport through a bar with BC c(0)=0 and c(L)=1 at U > 0 in a bar of 300 × 3 × 3 voxels, with voxel size 1 µm with water as the fluid which has diffusion coefficient D 0 = 1 × 10 -9 m 2 /s was implemented to simulate the transport phenomena at four different velocities corresponding to the Pe=100,10,1,0.01. In Fig 3 .5 we observe an excellent agreement between our numerical 3D computation and the analytical solution (3.42).

Figure 3.5: Case 1D ADE for different Pe numbers

3D ADE case along a pipe

Non stationary case of ADE along a pipe with boundary and initial conditions:

• Imposed concentration on the inlet

c| in = c 0 = 1 . (3.43)
• Free flow at the outlet which remains the more natural way to impose the tricky outlet boundary condition

D 0 ∇c • n| out = 0 , (3.44)
with n| out a unit vector normal to the outlet face.

• No flux at the wall interface taking advantage of the null velocity imposed in Stokes equation

D 0 ∇c • n = 0 , (3.45)
with n the unit vector normal to the interface.

To compare the solution to this problem given by our 3D model we used the multiphysics simulation software called Comsol.

Code application

To compare the code and analytical results, we simulate the solute transport in a pipe of length 300µm and radius 20µm at three different average velocities 1 , integrating this expression over the axial angle and the radius we obtain the average velocity in the pipe given by u(r) = ∆P L R 2 8µ

(u = 3.18 × 10 -6 , 3.18 × 10 -5 , 3.18 × 10 -4 ). Using the radius as the length scale of the problem in (2.34), the corresponding Pe numbers for those velocities are: Pe=0.06,0.6,6. The evolution of concentration in time at 3 different positions in the pipe are plotted in Fig 5 .5.

1 In a pipe the velocity field is given by u(r) = ∆P L 1 4µ (R 2 -r 2 ) where P is the pressure, R is the pipe radius, L is the length of the pipe and µ is the Dynamic viscosity 

Abstract

In this study, the quality of soil permeability estimation based on Computational Fluid Dynamics is discussed. Two types of 3D geometries were considered: an image of Fontainebleau sand obtained from X-ray Computed micro-Tomography and a virtual pack of spheres. Numerical methods such as Finite Difference or Lattice Boltzmann can conveniently use the image voxels as computational mesh elements. In this framework, the image resolution is directly associated with the quality of the numerical computation. A higher resolution should promote both a better

Introduction

Understanding fluid flow but also mass and energy transport in soils remains a challenging problem. The difficulty lies in the complexity of the material porous micro-structure. One of the key parameters required to understand these processes is the soil permeability. This macroscopic property describing saturated flow using the Darcy law is studied in many research fields involving flow in porous media such as: soil science studying tillage compaction effects on transport properties of water and gas [START_REF] Chen | Effects of compaction and cover crops on soil least limiting water range and air permeability[END_REF] or the contribution of soil aggregates to water flow [START_REF] Khan | 3d simulation of the permeability tensor in a soil aggregate on basis of nanotomographic imaging and lbe solver[END_REF]; civil engineering in dams construction [START_REF] Nakaya | Determination of anisotropy of spatial correlation structure in a three-dimensional permeability field accompanied by shallow faults[END_REF] or aging of concrete material [START_REF] Chatzigeorgiou | Coupling between progressive damage and permeability of concrete: analysis with a discrete model[END_REF]; petroleum engineering in the estimation of efficiency in methane gas production [START_REF] Liang | Study of the permeability characteristics of porous media with methane hydrate by pore network model[END_REF], petroleum reservoirs (Ahmadi, 2015); or environmental science, in CO 2 geological storage (Juanes et al., 2006b). There have been numerous attempts to establish a relationship between some microstructural properties of the porous media, and permeability [START_REF] Bear | Dynamics of fluids in porous media[END_REF]. However, no explicit function appears totally satisfying to correlate permeability accurately. Thus, to estimate permeability, a currently popular approach consists in solving flow equations within the pore space by Direct Numerical Simulation (DNS) [START_REF] Mostaghimi | Computations of absolute permeability on micro-ct images[END_REF]. This strategy has been significantly improved by the generalization of detailed characterization of the pore space based on X-ray Micro Computed Tomography (µCT ).

The µCT is a non destructive and three dimensional (3D) technique to visualize and quantify the internal structures of materials. It provides a 3D image stack which is a discrete representation in gray scale of volume data linked with the material local density. After a numerical treatment, called segmentation, each discrete 3D element (or voxel) can be assigned to a material phase. An image of dry soil is then composed of solid and void (or pore) voxels. The voxel size defines the spatial resolution of the 3D image (i.e. the smaller the voxel size, the higher the resolution). The total number of voxels mainly depends on the µCT apparatus sensor and the type of X-rays source. In every case, the better is the resolution the smaller has to be the sample.

When studying soils, the µCT technique is able to provide a totally resolved image of the pore and grain system for granular sandy soils [START_REF] Fonseca | Non-invasive characterization of particle morphology of natural sands[END_REF]. When clayey soils are studied, it generally allows an analysis of the macro-porosity only with the micro-porosity consisting of pores smaller than the scan resolution [START_REF] Peng | Dynamic visualization of water flow heterogeneous porous media by x-rays computed tomography[END_REF]. In both cases, the estimation of morphological properties (such as porosity, specific surface, pore size distribution, tortuosity or connectivity) should benefit from higher resolution to obtain a very detailed description of surfaces and volumes [START_REF] Vogel | Quantification of soil structure based on minkowski functions[END_REF]Kumar et al., 2010a). However, reaching the best possible resolution may not be the best solution to characterize soil due to theoretical principles of scale change in porous media. In order to estimate relevant macroscopic properties of a porous medium, the studied volume should remain larger than the representative elementary volume (REV) [START_REF] Cnudde | High-resolution x-ray computed tomography in geosciences: A review of the current technology and applications[END_REF]. For a given image size, it is thus convenient to select the worst resolution ensuring a relevant estimation of the studied properties in order to obtain the largest possible physical domain size. [START_REF] Lehmann | Tomographical imaging and mathematical description of porous media used for the prediction of fluid distribution[END_REF] computed various morphological properties (Pores Size Distribution and Minkowski functionals) of glass beads as a function of the resolution. This study concluded that the computation of these properties is converging provided that the ratio between the mean particle radius (d 50 ) and the voxel size is in the range of 5 to 10, 10 being a reasonable quality criterion. [START_REF] Al-Raoush | Comparison of network generation techniques for unconsolidated porous media[END_REF] proposed that this ratio should be at least of 25 to capture accurately the pore network structure (pore and throat size distributions and pore connectivity) of both ordered and disordered Virtual Pack of Spheres (VPS). [START_REF] Al-Raoush | Extraction of physically realistic pore network properties from three-dimensional synchrotron x-ray microtomography images of unconsolidated porous media systems[END_REF] applied the same pore network analysis to µCT images of glass beads and Ooid marine sand at two resolutions. They concluded that some properties (pore throat number and sizes) drastically deteriorated for a ratio close to 10. This effect was more sensitive for glass beads since it presented a narrow distribution of grain sizes. These studies put forward that such a quality criterion should be chosen for each property of interest.

The question of selecting an appropriate µCT resolution is an even more sensitive issue if the computation of flux properties is considered since it implies a very high computational cost. Moreover, while applying DNS methods, the voxel space is generally used as a computational mesh (Finite Difference Method (FDM); [START_REF] Wiegmann | Computation of the permeability of porous materials from their microstructure by fff-stokes[END_REF] or Lattice Boltzmann Method (LBM); [START_REF] Khan | 3d simulation of the permeability tensor in a soil aggregate on basis of nanotomographic imaging and lbe solver[END_REF]). In this case, the image resolution has both an effect on the morphology of the computational domain and on the quality of the numerical solution since it affects the size of mesh elements. Studying this last effect independently, (Guibert et al., 2015a) suggested that a finer mesh improves the quality of the permeability computation for a given µCT image of Dausse sandstone. The coupled effect of resolution on both the geometry and the mesh size has been addressed in several studies. [START_REF] Jt Fredrich | Predicting macroscopic transport properties using microscopic image data[END_REF] showed a good agreement concerning the permeability value of sandstones computed with LBM on synchrotron tomography images at two resolutions (1.67 µm and 3.34 µm). [START_REF] Takbiri Borujeni | Effects of image resolution and numerical resolution on computed permeability of consolidated packing using lb and fem pore-scale simulations[END_REF] showed that the lower-quality image had a lower permeability computed with both LBM and Finite Element methods on a computer-generated consolidated porous medium at two resolutions. These studies did not address the question of the minimum acceptable resolution. [START_REF] Yoon | Nanopore structures, statistically representative elementary volumes, and transport properties of chalk[END_REF] proposed an interesting approach to study the effect of resolution on permeability while studying Cretaceous Selma Chalk samples. They numerically reduced the resolution of 3D segmented images obtained by the Focus Ion Beam-Scanning Electron Microscopy (FIB-SEM) technique. They concluded that a resolution of 80 nm was enough to compute accurately morphological properties and permeability from LBM with an error lower than 10% compared to the original image which has a resolution of 15.6 nm. In a very detailed study, [START_REF] Shah | Micro-computed tomography pore-scale study of flow in porous media: Effect of voxel resolution[END_REF] analyzed the morphology and permeability of five sandstones and five carbonates samples scanned with µCT at f our resolutions ranging from 4.4 µm to 10.2 µm. They reported drastic changes in these properties in the relatively narrow range of studied resolution.

In this study, a numerical deterioration (or coarsening) of the image was also applied to the segmented image obtained at the best resolution. The resulting computed properties were in much better agreement with the best resolution results than the ones obtained from the corresponding µCT images. This difference was attributed to the discrete coarsening method which limited the partial volume effect observed on real scans since it was based on a segmentation including the information at the finer resolution.

Based on these results, the discrete numerical coarsening was proposed as a suitable method to decrease the computational time for permeability computation based on µCT images. However, this study did not define a maximum coarsening level.

The present paper proposes a method to determine the minimum image scan resolution required to obtain an adequate estimate of the permeability. It applies to granular material with fully imaged porosity (i.e. with no inner micro-porosity). Two materials are studied within a large range of numeri-cally scaled resolutions: a sample of Fontainebleau sand scanned with a µCT and a stochastically generated VPS.

Material and methods

In this section, the image acquisition and processing are presented. The computation of material properties (porosity, specific surface, PSD and permeability) is described. Finally, a new combination of PSD and local flow field is introduced in order to derive the distribution of flow rate with respect to the pore size.

Sand sample preparation and image analysis

Sample A cylindrical PEEK cell with size specifications of inner radius ≈ 7 mm, wall thickness ≈ 0.65 mm and height ≈ 7.5 mm, was used to store the sand during the tomography. The experimental volume, measured by filling the cell with water, was 356 ± 6 mm 3 , 23.34% bigger than the theoretical volume which is 288.63 mm 3 . The cell was filled with 555 ± 6 mg of Fontainebleau NE34 sand, which is a fine well graded sand of uniformity coefficient 1.6 with d 50 = 210 µm, d 0 ≈ 100 µm and d 100 < 450 µm. The porosity is estimated by

φ = V void V T otal = V T otal -V solid V T otal . (4.1)
Knowing the mass of the empty cell, the mass of the cell filled with sand, the volume of the cell and the sand grain density, 2650 kg/m 3 , the porosity was computed as 0.41±0.03 (using the experimental volume value).

X-ray CT

The sample was scanned with a laboratory tomograph EasyTom XL from RXSolutions. The LaB6 X-ray source was set to 70 kV and 67 µA with an exposure time of two seconds and four-frame averaging. A 1 mm aluminum foil was set on the X-ray source in order to filter inappropriate wavelength.

The acquisition sequence consisted of 1600 projections of 2058 × 2058 pixels resulting in a scan time of approximately two hours. The 3D reconstruction stage was based on a cone-beam algorithm. It produced a serial of 1700 slides of 1850 × 1850 pixels cross-section. The corresponding voxel size was 4.5 µm. A cubic volume of interest (VOI) of 1200 voxels (or 5.4 mm) was extracted from the center of the initially cylindrical sample. A process of enhance contrast and a median filter (radius two voxels) were applied to clean the image. This VOI constitutes the reference material used for the analysis.

Image rescaling

In order to define a criterion able to determine if an image resolution is good enough to realize a dynamical computation, the same image was studied at different resolutions following a methodology inspired from [START_REF] Shah | Micro-computed tomography pore-scale study of flow in porous media: Effect of voxel resolution[END_REF]. Rescaling or resizing is the process of increasing or decreasing the number of pixels in an image or voxels in a volume. It is rigorously defined by the image processing community if applied to a gray scale image before segmentation. This process is not lossless. Rescaling a volume to a smaller number of voxels, and then rescaling it back to the original resolution, results in an image sightly different from the original [START_REF] Danahy | Algorithms for the resizing of binary and grayscale images using a logical transform[END_REF].

The rescaling process can be divided conceptually into two processes: 3D interpolation of the discrete volume to a continuous volume and then sampling the interpolated volume to the desired resolution [START_REF] Parker | Comparison of interpolating methods for image resampling[END_REF]. Various forms of interpolating functions have been developed. Reviews, and catalogs of methods can be found in [START_REF] Thomas Martin Lehmann | Survey: Interpolation methods in medical image processing[END_REF] and [START_REF] George | Shape-based interpolation of multidimensional grey-level images[END_REF]. A comprehensive application of the rescaling method on µCT images of bones can be found in [START_REF] Cooper | Effect of voxel size on 3d micro-ct analysis of cortical bone porosity[END_REF]. This study put forward a certain level of divergence between the morphological properties computed from rescaled images compared and µCT scans at the corresponding resolution. However, it should mimic partial volume effects in a more realistic way than the discrete rescaling presented by [START_REF] Shah | Micro-computed tomography pore-scale study of flow in porous media: Effect of voxel resolution[END_REF].

In the present study, the VOI was rescaled with four rescaling factors1 (RF) using the 3D bicubic interpolation algorithm (Imagej 2.34 software) with RF of 0.75, 0.50, 0.25, and 0.125 (The original image is considered to be scaled with RF = 1). The number of voxels per side of the obtained rescaled VOIs were: 900, 600, 300, and 150 voxels respectively, corresponding to voxel sizes of 6, 9, 18, and 36 µm. In Fig. 4.1 a square section of the VOIs is shown at the different RFs. As can be seen, a small RF significantly alters the image. 

Segmentation

In order to compute morphological and transport properties of the sample, a segmentation between solid and void volumes has to be performed. This process aims at converting the gray scale into distinct phases, by identifying different populations in the image based on their intensity values. In this paper, the segmentation was done to distinguish between the solid and the void phases. The default Isodata algorithm of the software Imagej 2.34 was used [START_REF] Tw Ridler | Picture thresholding using an iterative selection method[END_REF]. It performs a simple thresholding based on the histogram of the full 3D image. In Fig. 4.2, the same section shown in Fig. 4.1 is presented after segmentation. Again the given shape is significantly altered for small rescaling factors. Even if the shape is visually preserved until a RF of 0.5, it can be seen that small spaces between grains are lost even for the RF of 0.75 which may limit a part of the flux in the permeability computation.

Virtual pack of spheres

The second material under consideration is a virtual pack of spheres (VPS) proposed by [START_REF] Reboul | A statistical analysis of void size distribution in a simulated narrowly graded packing of spheres[END_REF]. It is a numerical assembly of spheres in loose state designed originally to study filtration and internal erosion of soils.

The VPS was obtained by depositing 10,000 spheres under gravity in a parallelepiped generating box. In order to match approximately the characteristic sizes of the Fontainebleau sand, the original dimensions were divided by a factor 10. The VPS presents a narrow grain size distribution (uniformity coefficient is equal to 1.5) with d 50 being 440 µm (d 0 = 300 µm, d 100 = 1.2 mm). The number of spheres was calibrated to ensure that the sample is a REV: each size of the box must consist of 10 to 100 mean particle diameters. The rationale behind using this virtual material is that its geometry is perfectly described by the 3D location of each individual sphere of known radius. Thus a binary image could be reconstructed at any chosen resolution by a simple Eulerian distance computation. Any voxel which center is contained in a sphere is attributed to the solid phase. In order to compare the VPS with the Fontainebleau sand sample, the reference image voxel size (RF = 1) was chosen arbitrarily as 7.5 µm for a cubic VOI with 3.6 mm length. Scaled images with RF = 0.5, 0.25, 0.125 and 0.0625 were considered (See an exemplary 2D slide in Fig. 4.3). The VPS geometry visually starts deteriorating for RF = 0.125. Shape and connectivity are apparently lost for RF = 0.125 and 0.0625. Some of the smaller spheres also disappear in these low resolution images (their diameter is smaller than the resolution).

Computation of morphological and dynamical properties

The computation of geometrical and dynamical properties is performed on the segmented images. Based on the analysis described in Appendix A, a cubic subsample (2.7x2.7x2.7 mm) was chosen as statistical representative elementary volume (SREV) for porosity, specific surface, and permeability. The computation of those quantities was performed on eight sub volumes of interest (SVOI) (see Fig. 4.4) for each rescaling factors. This approach provides a straightforward estimate of the discrepancy of the computed properties. In order to simplify the readability, the analysis of pore size distributions and the corresponding flow rate distribution are presented in a single SVOI of the same dimension located in the center of the VOI. Considering that the VPS sample's geometry is perfectly defined and designed to be representative, all analyses of this material were performed on the full sample.

Porosity, specific surface and Pore size distribution The porosity, Eq. 4.1, was computed as the number of void voxels divided by the total number of voxels in the image.

The specific surface S s is the ratio between the surface between solid and void phases and the total volume. It is defined as:

S s = S V T otal (4.2)
where the surface S [m 2 ] is the boundary between the solid and the void phases. It was computed using the discrete extension in 3D of the integral geometry theorem of Cauchy Crofton. This method is based on counting the intersections of a surface, with lines spread parallel to 13 directions in the entire 3D volume [START_REF] Legland | Computation of minkowski measures on 2d and 3d binary images[END_REF]Lehmann and Legland, 2012).

Pore size distribution is a common porous media property that classifies the porous phase into a set of discrete classes of pore size. Several methods have been proposed to compute the PSD of soils. Recently, [START_REF] Alasdair N Houston | Quantification of the pore size distribution of soils: Assessment of existing software using tomographic and synthetic 3d images[END_REF] presented a detailed comparison of existing methods implemented in commercial or free software (Maximum Inscribed Balls, morphological closing, object separation or skeleton computation). Based on its good performance for granular soils, the method of morphological closing was used in the current study following the pioneer work of [START_REF] Doughty | Multinuclear nmr microscopy of twophase fluid systems in porous rock[END_REF], who analyzed the pore size and connectivity of Fontainebleau and Bentheim sandstones. The method was applied on soils by [START_REF] Vogel | Quantitative morphology and network representation of soil pore structure[END_REF] to study a German Orthic Luvisol and more recently by [START_REF] Javier Muñoz-Ortega | Volume, surface, connectivity and size distribution of soil pore space in ct images: comparison of samples at different depths from nearby natural and tillage areas[END_REF] to estimate the effect of tillage on soil structure.

The method requires a segmented image, where one phase is defined as the background (normally the void space), the other as the foreground (normally the solid space), and a structural element (SE). In the case of PSD in a 3D image, a natural SE choice is a sphere of diameter D i . The morphological operation to be applied is the closing over the solid phase with the chosen SE. This operation consists of a dilatation step followed by an erosion step using the same SE. The resulting image has a background where regions smaller than the SE have been removed, and consequently the foreground is increased.

In order to compute the PSD the closing operation is applied successively while increasing SE diameters D i , which results in a progressive reduction of the pore phase or pore volume (Fig. 4.5). At each closing step, the remaining pore volume is computed which corresponds to pores with diameter bigger or equal to D i . The difference between the pore volume in the original image and the pore volume after the closing operation gives the volume associated to pores with diameter between 0 and D i . This technique provides the cumulative pore volume as a function of the pore size diameter. It is presented as percentage of the total pore volume. 

Permeability computation

The partial differential equations that describe the mass and momentum balance of the fluid flow within an arbitrary domain are the classical Navier-Stokes equations. While considering the small characteristic length of sandy soils (i.e. Reynolds number typically lower than 10 -1 ); [START_REF] Happel | Low Reynolds number hydrodynamics: with special applications to particulate media[END_REF], the creeping flow assumption is generally used to simplify the set of PDE by neglecting inertial effects. The Stokes equations are then expressing the mass and momentum balances for an isothermal incompressible Newtonian fluid flow in steady state condition and neglecting gravity forces as:

∇• u = 0, (4.3) µ∇ 2 u = ∇P, (4.4)
where u [m/s] is the pore scale velocity field, P [Pa] is the pressure and µ [Pa/s] is the dynamic viscosity of the fluid.

Solving equations 4.3 and 4.4 requires the introduction of appropriate boundary conditions which we set as:

• Uniform pressures applied on two opposite faces of the SVOI in order to impose a pressure drop ∆P of 0.02 Pa.

• Periodic boundary conditions on the lateral faces.

• No slip boundary conditions on the solid/void interfaces inside the domain.

Numerical computations were performed using the FDM, called Explicit Jump-Stokes solver (Wiegmann and Bube, 2000b), implemented in the GeoDict software package. The module "F lowDict" uses a cubic mesh conformed to the image voxels. It computes the three components of the velocity vector u and the pressure P in each voxel on a staggered grid.

The Stokes problem (Eqs. 4.3 and 4.4 is decomposed into four Poisson problems solved iteratively using a Fast Fourier Transform-based algorithm [START_REF] Wiegmann | Computation of the permeability of porous materials from their microstructure by fff-stokes[END_REF] An explicit jump approach of the immersed boundary concept is used to force the no-slip boundary condition as suggested by [START_REF] Rutka | A staggered grid-based explicit jump immersed interface method for two-dimensional stokes flows[END_REF]. A relative error of 10 -3 on the computed permeability was set as convergence criterion.

Results and discussion

In this section, the influence of resolution on porosity, specific surface and permeability are discussed. A detailed analysis based on the evolution of cumulative pore size distribution and the related distribution of flow rate in the sample is performed in order to relate the evolution of the permeability with the pore morphology. A criterion was then defined to estimate the quality of the permeability computation based only on morphological properties.

Effects of resolution on morphological and dynamical properties

The results are presented in Fig. 4.6 and detailed in Table 4.2. The computation of eight SVOI for Fontainebleau sand provided a measurement of the discrepancy of the data based on the standard deviation. It should be noticed that the standard deviation never exceeded 6% of the average value for the permeability, 1.5% for the porosity and 1% for the specific surface. These results support our assumption that the size of SVOI is large enough to be considered representative of the full VOI.

The property least affected by resolution was porosity for both materials (Fig. 4.3.a and b). The difference to the value of the best resolution was less than 7.7% even at a RF of 0.125 for Fontainebleau sand. In the case of VPS, the influence of resolution was even less sensitive with a maximum difference of about 0.2% for a RF of 0.0625. The artificial building of the VPS geometry partly explains this result but the disappearing of some grains observed on Fig. 4.3 was also compensated by the voxelization promoting some grain enlargement.

The specific surface exhibited a decreasing trend with decreasing RF for both materials (Fig. 4.3.c and 4.3.d). This behavior was attributed to a progressive smoothing of the solid phase roughness (i.e. a loss of the surface details) as the resolution decreased. Small solids disappearing and the merging of some solid surfaces at the lower RF probably contributed to the stronger decrease observed for RF lower than 0.5. At the worst resolution, the specific surface was underestimated by 38% for the Fontainbleau sand (RF = 0.125) and 42% for the VPS (RF = 0.0625). In the VPS, an exact value of S s was computed explicitly from the known sphere radii. At the best resolution (RF = 1), the numerical value was in good agreement with the exact value with an underestimation of less than 3%. This result confirms the capability of the Cauchy-Crofton method to estimate the surface area of spherical objects in discrete geometries [START_REF] Legland | Computation of minkowski measures on 2d and 3d binary images[END_REF].

The decrease in resolution tended to modify the grain shape promoting a decrease of S s . For RF lower than 0.25, the specific surface diverged strongly.

Permeability exhibited an increasing trend with decreasing RF for both materials (Fig. 4.3.e) and 4.3.f). An error smaller than 10% of the reference value is observed for RF larger than 0.5 and 0.25 for the Fontainebleau sand and the VPS respectively. This error is significant for smaller RF.

The opposite behave between specific surface and permeability is due to the fact that permeability strongly depends on the viscous friction on the solid surface associated with fluid flow. Less specific surface means less friction leading to an increment in permeability. However, the relationship between decreasing surface and increasing permeability was not linear. Permeability exhibited a larger change with the reference value than the specific surface, up to 166% for Fontainebleau sand and 48% for the VPS. The effect of flow computation on a very coarse mesh probably contributed to this larger deviation of permeability values at low resolution.
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These results show a noticeable effect of the image resolution on specific surface and permeability. However, analyzing the specific surface and porosity of a given image does not provide a straightforward estimate of the quality of the permeability computation. In order to provide a better insight on the effect of the microstructure on the permeability computation, a deeper analysis of the pore size distribution and flow distribution within the pore volume was performed.

Analysis of pore size distribution

In Fig. 4.7.a and 4.7.b the cumulative PSD is plotted as a function of the pore diameter for the Fontainebleau sand and VPS respectively. Depending on the RF under consideration the pore size classes were ranging from 9 µm (which at the best scale represents the smallest possible SE) to 180 µm for the Fontainebleau sand. The mean pore diameter D 50 was 46 µm and the ratio between the mean pore diameter and the mean grain diameter ( D 50 d 50 ) was 0.22. The corresponding values for the VPS were a range from 15 µm to 450 µm; D 50 was 190 µm and D 50 d 50 was 0.43. The very loose state of the VPS promoted the presence of larger pores in the VPS compared to the Fontainebleau sand.

For Fontainebleau sand, a very good agreement was observed for RF between 0.5 and 1. For RF = 0.25, the small underestimation of the pore volume contained in pores sizes between 50 µm and 80 µm was due to the lack of available SE in this range. In the worst resolution case (RF = 0.125), the cumulative pore size distribution clearly deviated from the reference case: A translation toward the larger sizes of pore was observed and more than 60% of the pore volume was contained in pores smaller or equal to 72 µm, corresponding to one or two voxels in diameter. This behavior was due to the loss of accuracy in the geometrical description of the surfaces of solid grains. Rescaling and segmentation processes tend to promote the merging of solid grains. On the other hand, since the total porosity was well preserved, larger pores tended to be overestimated corresponding to an effect of coalescence of pores. The VPS exhibited a very similar trend with a good agreement for all RF. However, at the worst resolution (RF = 0.0625), the PSD was only composed of three points depicting the loss of details in the pore morphology.

These results prove that rescaling mostly preserved the distribution of pore sizes until very low resolutions. The good agreement between PSDs computed for the range of RF suggests that the error in permeability observed at low RF was not mainly related to a degradation of pore size distribution with decreasing resolution. In order to obtain a better understanding of the effect of image resolution on the permeability computation, we plot the PSD with respect to the number of voxels per pore diameter (Fig. 4.7.c and 4.7.d respectively). The fraction of the pore volume described by a small number of voxels per diameter increased as the RF decreased. This means that with decreasing resolution, the pores were described with less voxels. Steeper curves correspond to a loss of detail.

On one hand, for the lower RF (0.125 and 0.25 for the Fontainebleau sand and 0.0625 and 0.125 for the VPS) associated with 20% to 166% error in permeability, more than 70% of the pore volume was contained in pores with diameters smaller or equal to four voxels. The low resolutions did not allow a satisfying description of the pore geometry and promoted a very coarse mesh, leading to a loss of accuracy of the numerical method. On the other hand, RF ≥ 0.5 for the Fontainebleau sand and RF ≥ 0.25 for the VPS were associated with an error ≤ 10% in the permeability estimate (Table 4.2). Considering this error acceptable, it could be noticed that less than 25% of the pore volume was contained in pores with four voxels or less in diameter (24.38% for Fontainebleau sand and 22.08% for VPS), i.e. D 25 > 4 voxels, and the D 50 corresponded to about six voxels for both materials.

The last two observations indicate which pore sizes are necessary to achieve acceptable permeability calculations. However, in order to confirm this observation, a new analysis of the distribution of flow field per pore class is proposed in the next section.

Distribution of flow between pore size classes

Eq. 4. When compared to the cumulative pore fraction (Fig. 4.7.c and 4.7.d), the cumulative distribution of flow rates tended to be higher in pores of larger diameters. Mean diameters, containing 50% of the flow rate, were 60 µm and 220 µm for the Fontainebleau sand and the VPS respectively which was larger than D 50 (respectively 46 µm and 190 µm). In other words, more than 50% of the total flux occurred in pores larger than D 50 thus giving more weight to well described pores.

It is interesting to analyze how the flow distribution supports the observations about the PSD described in the last section. Main attention was Where BRZ is the zone of bad resolution paid to pores with diameters smaller or equal to four voxels. For cases of a poor permeability estimates, most of the flow occurred in these pores in the Fontainebleau sand (with 61.3% and 99% of the flux for RF of 0.125 and 0.25 respectively) and in the VPS (with 58.4% and 97% of the flux for RF of 0.0625 and 0.125 respectively). Meaning that more than 50% of the flux occurred in pores badly described. On the contrary, for cases of good permeability estimates, less than 10% of the total flux occurred in these pores.

In the lower acceptable RFs cases (RF = 0.5 for Fontainebleau sand and RF = 0.25 for VPS), this contribution was 10.25% and 9.75% respectively. Since the small pores promote higher viscous friction (or head loss), the flow then tends to favor the easier paths. Even if this effect is relatively small, this property limits the effect of numerical errors that occurred mainly in small pores due to their bad discretization. For lower RF, most of the flow occurred in badly discretized pores. In this situation, errors in the numerical solution of Stokes equation probably increased resulting in an overall decreased quality of the flow solution.

Proposition of a scan quality criterion for permeability computation

The previous comments denote that the cumulative PSD, can be used to decide if a 3D scan of a studied granular media is suitable to perform a reliable computation of permeability. A quality criterion based on this property benefits from the much lower numerical cost of PSD computation compared with that of permeability computation.

We propose that the following two characteristics have to be fulfilled to achieve an accurate computation of permeability:

• D 50 should correspond to a number of voxels large enough to ensure a satisfying description of the pore space. For both studied granular materials, D 50 should be larger or equal to six voxels.

• The volume fraction of pores badly described should not exceed 25% of the total volume in order to limit their contribution to less than 10% of the total flow rate. For both studied granular materials, D 25 should be larger or equal to four voxels.

Following these rules, the suitable resolution estimated for Fontainebleau sand description was about 10 µm and 30 µm for the VPS. For Fontainebleau sand and VPS, the d 50 was thus 20 and 14 times the minimum resolution respectively. This indicates that a material whit a looser grain packing (and a simpler grain geometry in our case) can be scanned at a lower resolution, relatively to its grain size, because it presents a comparatively more opened pore space. Our study suggests a slightly less restrictive condition than the criterion proposed by [START_REF] Al-Raoush | Comparison of network generation techniques for unconsolidated porous media[END_REF]. They suggested that a ratio of 25 was required to preserve accurately the pore throat morphology. On the contrary, it is more restrictive than the ratio of 10 proposed by [START_REF] Lehmann | Tomographical imaging and mathematical description of porous media used for the prediction of fluid distribution[END_REF] for preserving PSD. One should note that PSD computed for Fontainebleau sand at RF = 0.25 and VPS at RF = 0.125, with respective ratio of 10 and 7, were also in good agreement with the reference. Computing of permeability clearly requires a better resolution determining the PSD, which is supported our proposed criterion for D 25 .

Conclusions

We studied the effect of X-ray CT resolution on the quality of permeability computation based on direct numerical simulation for granular soils. The particular case of a finite difference approach considering the image voxels as computational mesh was considered with the FlowDict module of the GeoDict software package. In this situation, the decrease in resolution promoted both a degradation of the pore space geometry description and an increase of badly resolved pores promoting numerical errors. The sample of Fontainebleau scanned with X-ray CT and the VPS behaved very similar.

Computing permeability proved to be reliable for a wide range of resolutions. An inverse relationship between permeability and specific surface was found. However, the specific surface was not suitable as a quality estimator for computing permeability computation. Instead a detailed analysis of the PSD was used. Provided that the pore diameter D 50 was larger than six times the image resolution, permeability was calculated with an error smaller than 10% was observed on the permeability value. Analyzing the flow rate distribution in the different classes of pore size explained permeability results: For the lower resolution with an error in permeability lower than 10%, pores discretized by four or less voxels in diameter only drove 10% of the total flow even if they represent 25% of the pore volume (D 25 = 4 voxels). Considering the very good connectivity of the studied granular materials, this limit corresponded to a situation where the water flux mainly occurred in well discretized pores, the higher friction in small pores limited the amount of flow occurring in these regions. The good agreement between results obtained for the real geometry of Fontainebleau sand and for the synthetic data of VPS suggests that the proposed criterion can be applied to fully resolved scans of granular media. Its validity concerning more structured soils should be the subject of further studies.

volumes of interest (SVOI) were chosen ranging from 450 µm to 1350 µm (from the (5.4x5.4x5.4 mm) image originally obtained from the tomograph). The porosity, φ, was calculated in the full volume providing a reference value = 0.39. The position of each SVOI was then determined stochastically in the full volume. For each SVOI, the porosity, φ i , was calculated as well as, the porosity average φ and the standard deviation σ(φ) of the SVOIs distribution. This calculation was iterated until the difference between the calculated average φ and the reference value φ was lower than 1%. The standard deviation σ(φ) appeared to decrease progressively with increasing SVOI size (Fig. A). It was approximately 5% of the average value for a SVOI of 450 µm reflecting a relatively low discrepancy and a satisfying representativeness. For a SVOI of size of 1350 µm, which was a quarter part of the VOI side, the standard deviation σ(φ) was below 0.25% of the average value.

The classical modeling approach for such processes is based on the use of macroscopic models for porous media including Darcy's law for flow and advection-dispersion equation (macro-ADE) for solute transport. The underlying complexity of the pore system is described by the permeability and the dispersion coefficient which are effective properties of the porous medium. The estimation of such properties is generally based on the analysis of laboratory scale experiments or on the solution of inverse problems using field monitored data.

Reliable measurement or prediction of dispersivity is fundamental to the simulation of solute fate and transport. Many studies have aimed at identifying relationships between dispersivity and morphological properties of the porous medium, both theoretically and empirically (e.g [START_REF] Passioura | Hydrodynamic dispersion in aggregated media: 2. effects of velocity and aggregate size[END_REF][START_REF] Klotz | Hydrodynamic dispersion as aquifer characteristic: Model experiments with radioactive tracers[END_REF][START_REF] Mark | The influence of solute size, pore water velocity, and intraparticle porosity on solute dispersion and transport in soil[END_REF]). For granular media, it is well established that dispersivity is mainly dependent on the mean grain diameter [START_REF] Bear | Dynamics of Fluids In Porous Media[END_REF].

In a more fundamental point of view, these macroscopic models and their effective properties could be derived from the equations of fluid mechanics applied at the pore scale using scale change methods such as volume averaging [START_REF] Whitaker | The method of volume averaging[END_REF] or homogenization (Auriault et al., 2010;[START_REF] Bruining | Computation of the longitudinal and transverse dispersion coefficient in an adsorbing porous medium using homogenization[END_REF]. These equations have the benefit to use only well established thermodynamic properties: The fluid density and viscosity in the Stokes equation of flow and the molecular diffusion coefficient in the advectiondiffusion (micro-ADE) equation of solute transport. Classical scale change methods aim at estimating effective properties, but avoid solving explicitly pore scale equations since their mathematical developments include a step of "small" terms neglected. Concerning the transport equation, the volume averaging method leads to the definition of a stationary vectorial closure problem. This problem could be solved numerically and has been used to analyze processes in 2D or simple 3D periodic geometries. More recently, it has been applied to realistic geometries obtained from pore scale imaging (Yang et al., 2016a).

In the last decade, the development of imaging techniques, specially X-ray computed tomography (CT), associated with the increase of computational power opened new perspectives in the field of porous media study. X-ray CT produces 3D images of the internal structure of porous media. Applying image analysis techniques allowed computing morphological properties of soils such as porosity, specific surface, pores size distribution or pore connectivity (REF). More recently, direct numerical simulation methods have been applied to X-ray CT images in order to simulate flow and transport processes [START_REF] Bultreys | Imaging and imagebased fluid transport modeling at the pore scale in geological materials: A practical introduction to the current state-of-the-art[END_REF]. Being the Stokes equation linear, the flow equation could be solved in stationary condition using Finite Difference (FD, (Wiegmann and Bube, 2000a)), Finite Volume FV, (Guibert et al., 2015a), Lattice Boltzmann Method (LBM, [START_REF] Khan | 3d simulation of the permeability tensor in a soil aggregate on basis of nanotomographic imaging and lbe solver[END_REF]) or Smooth Particle Hydrodynamics SPH, [START_REF] Ferro | Application of smoothed particle hydrodynamics (sph) and pore morphologic model to predict saturated water conductivity from x-ray ct imaging in a silty loam cambisol[END_REF]. The average flow velocity could then be selected by a simple scaling of the velocity field. Less attention has been given to the simulation of transport since its unstationary nature requires a stronger numerical effort. One approach combines a Lagrangian description of advection combined with a random walk algorithm to mimic diffusion (Bijeljic et al., 2013b). It has been recently coupled with a reaction model [START_REF] Alhashmi | Predictions of dynamic changes in reaction rates as a consequence of incomplete mixing using pore scale reactive transport modeling on images of porous media[END_REF]. A more straightforward approach is based on the FV method which benefit from a direct derivation from the micro-ADE equation provided. However, the treatment of advection with FV method requires a particular care, such as total variation diminishing (TVD) scheme, to prevent numerical diffusion (Zaretskiy et al., 2010a). This approach is also well adapted to take into account custom reaction terms [START_REF] Jiang | Changes in pore geometry and relative permeability caused by carbonate precipitation in porous media[END_REF]. These simulations could be used to estimate the corresponding effective properties but also to provide a detailed description of the pressure, velocity and concentration fields inside the pore system [START_REF] Ovaysi | Pore-scale modeling of dispersion in disordered porous media[END_REF]. Understanding the local distribution and dynamics of concentrations in real geometries provides an interesting insight on the origin of dispersion.

It is also a requirement to describe accurately heterogeneous reactions since these reactions are generally strongly influenced by the transport of reactants and products close to the solid surfaces.

An X-ray CT image is characterized by its resolution, i.e. the size and number of its constitutive voxels. In order to be reliable, the computation of morphological or transport properties of a porous medium requires a resolution high enough to capture accurately the complexity of surface and pore structure. It should also allow studying a sample volume large enough to ensure its representativity, i.e. to capture the heterogeneity of the pore system. The effect of X-ray CT resolution on morphological properties and permeability estimation has been the topic of several studies [START_REF] Al | Representative elementary volume analysis of porous media using x-ray computed tomography[END_REF]. Concerning granular media, it allowed the definition of quality criterion based on grain size distribution (Kumar et al., 2010a;[START_REF] Vogel | Quantification of soil structure based on minkowski functions[END_REF][START_REF] Yoon | Nanopore structures, statistically representative elementary volumes, and transport properties of chalk[END_REF][START_REF] Shah | Micro-computed tomography pore-scale study of flow in porous media: Effect of voxel resolution[END_REF]. Concerning granular media, it allowed the definition of quality criterion based on grain size distribution [START_REF] Al-Raoush | Extraction of physically realistic pore network properties from three-dimensional synchrotron x-ray microtomography images of unconsolidated porous media systems[END_REF][START_REF] Lehmann | Tomographical imaging and mathematical description of porous media used for the prediction of fluid distribution[END_REF][START_REF] Patricia | Effect of x-ray ct resolution on the quality of permeability computation for granular soils: definition of a criterion based on morphological properties[END_REF]. To our knowledge, the case of transport simulation did not received a similar attention.

In this study, a sample of Fontainebleau sand was scanned at 4 resolutions.

In addition, the best resolution image was numerically scaled to 4 lower resolutions. The morphology and permeability was computed for each image in order to provide a first insight on the effect of the scan resolution. The computation of virtual tracer tests were then performed in order to analyze the transport process and to assess the behavior of the dispersivity with respect to the resolution.

Material and methods

This study followed the previous work of (Ramírez et al.) that was dedicated to analyzing the effect of X-ray CT resolution on the estimation of permeability. Where the Fontainebleau sand sample under consideration was already studied extensively with respect to its morphological properties and permeability.

Sample description X-ray CT acquisition and image processing

The granular material studied here was a sample of Fontainebleau NE34 sand. It is a fine well graded sand of uniformity coefficient 1.6 with D 50 = 210 µm, D 10 ≈ 100 µm and D 100 < 450µm (where d x = y means that the x% of pores have a diameter size of y). A cylindrical PEEK cell (inner radius ≈ 7 mm, wall thickness ≈ 0.65 mm and height ≈ 7.5 mm) full of dry sand was scanned at the laboratory tomograph EasyTom XL (RX Solutions) at University Grenoble Alpes.

The sample was scanned at four resolutions corresponding to four increasing voxel sizes: 4.5 µm, 6 µm, 9 µm, and 18 µm; which will be referenced as "CT scaling" with rescaling factor RF=1, RF=0.75, RF=0.50, and RF=0.25 Table 5.1: Settings for X-ray CT scans respectively.

The table 5.1 sums up the settings for each scan. One should note that the apparatus was switched to a LaB6 X-ray source with specific current and voltage to obtain the best resolution image. In all cases, a 1mm aluminum foil was used as physical filter in front of the source. Each image acquisition sequence consisted of 1600 projections of 2084 x 2084 voxels.

The 3D reconstruction stage was based on a cone-beam algorithm. The resulting 3D gray-scale images was treated using enhance contrast and a median filter (Imagej 2.34 software). A cubic volume of interest (VOI) of 2.7 mm (i.e. 600 voxels at RF =1) was extracted in the center of the initially cylindrical sample. A second set of images was created applying the rescaling1 treatment [START_REF] Shah | Micro-computed tomography pore-scale study of flow in porous media: Effect of voxel resolution[END_REF] to the best resolution image. This numerical rescaling was performed using the 3D bicubic interpolation algorithm (Imagej 2.34 software). It consisted of four images with RF = 0.75, RF = 0.50, RF = 0.25 and RF = 0.125. The same VOI imaged at 4 resolutions with CT scaling and 4 resolutions with numerical scaling constitutes the material used for all the proposed analysis (see example on Fig. 5.1). Each image thus was segmented in two phases (i.e. void and solid) using the default Isodata algorithm of the software Imagej 2.34 [START_REF] Tw Ridler | Picture thresholding using an iterative selection method[END_REF]. 

Morphological properties, permeability and flow field

The detail of numerical procedures used to analyze the morphology and the permeability of the sample can be found in (Ramírez et al.). The porosity was computed by a simple counting of void voxels. The specific surface was estimated with the discrete extension in 3D of the integral geometry theorem of Cauchy Crofton (Lehmann and Legland, 2012). The pore size distribution was computed using a sequential application of the morphological closing algorithm [START_REF] Javier Muñoz-Ortega | Volume, surface, connectivity and size distribution of soil pore space in ct images: comparison of samples at different depths from nearby natural and tillage areas[END_REF]. The computation of the flow field inside the void volume of the sample was performed using the FlowDict module of the GeoDict software package. This software solves the classical set of Stokes equations in steady state condition :

∆ • u = 0 (5.1)

µ∆ 2 u = -∆P (5.2)
where u [m/s] is the pore scale velocity field, P [Pa] is the pressure and µ [= 1.005 Pa/s] is the dynamic viscosity of water.

Uniform pressures were applied on the inlet and outlet faces of the sample in order to impose a pressure difference ∆P of 0.02 Pa. Periodic conditions were imposed on lateral faces. No slip boundary conditions were imposed of internal solid/void interfaces. The numerical solver, called Explicit Jump-Stokes solver (Wiegmann and Bube, 2000b), uses the image voxel as mesh element.

The pressure P is computed in the center of each voxel while each component of the velocity vector is computed in the center of voxel faces. This staggered grid configuration associated to uniform voxel sizes makes the FD approach congruent with FV. The solver is based on the decomposition of the Stokes problem (equations 1 and 2) into four Poisson problems. They are solved iteratively using a Fast Fourier Transform-based algorithm [START_REF] Wiegmann | Computation of the permeability of porous materials from their microstructure by fff-stokes[END_REF]). An explicit jump immersed boundary method is used to impose accurately the no-slip boundary condition [START_REF] Rutka | A staggered grid-based explicit jump immersed interface method for two-dimensional stokes flows[END_REF]. In this study, a strong convergence criterion was selected in order to reach a voxel relative mass balance lower than 10 -6 . It was chosen in order to limit mass balance error in the treatment of advective fluxes in the tracer transport simulation. The velocity field was integrated numerically in order to estimate the flow rate Q in the sample. A straightforward use of Darcy law then allowed the computation of the intrinsic permeability k [m 2 ] :

k = µQL S∆P (5.3)
Where S [m 2 ] is cross-section area orthogonal to the average pressure gradient and L [m] is the distance between the inlet and outlet faces.

Computation of tracer transport numerical column test

The Advection diffusion equation (5.4) is solved numerically into the porous structure of the studied granular media :

∂c(x, t) ∂t + ∇ • (c(x, t)u) = ∇ • D 0 ∇c(x, t)) (5.4)
where c is the solute concentration, x is a coordinate vector, D 0 [m 2 /s] is the molecular diffusion coefficient, and u [m/s] is the velocity field obtained from the Stockes Equation. The initial concentration is c(t = 0) = 0. The associated boundary conditions are:

• Imposed concentration on the inlet face

c| in = c 0 (5.5)
Where c 0 is set to one during the tracer injection time, then to zero till the end of the test.

• Free flow at the outlet which remains the more natural way to impose the tricky outlet boundary condition with n the unit vector normal to the interface

The equation (5.4) is discretized using the FV method. Taking advantage of the linearity of the equation, advective et diffusive terms are solved separately applying the splitting operator technique [START_REF] Csomós | Weighted sequential splittings and their analysis[END_REF]. The advection part is solved using a first order explicit scheme in time which in 1D is writen as.

1 ∆t (c t+1 i -c t i ) = - 1 ∆x i [j t adv i+1/2 -j t adv i-1/2 ] .
(5.8) c t i-1/2 is obtained by substituting the index i by i-1 in the previous equation. Substituting Eq.(5.10) and Eq.(5.12) into Eq. (5.8)(see [START_REF] Smaoui | Flux-limiting techniques for simulation of pollutant transport in porous media: Application to groundwater management[END_REF]): .13) which in the 3D case is:

c t+1 i = c t i - ∆t ∆x u t i+1/2 c t i+1/2 -u t i-1/2 c t i-1/2 . ( 5 
c t+1 i,j,k = c t i,j,k - ∆t ∆x u t i+1/2,j,k c t i+1/2,j,k -u t i-1/2,j,k c t i-1/2,j,k - ∆t ∆y u t i,j+1/2,k c t i,j+1/2,k -u t i,j-1/2,k c t i,j-1/2,k - ∆t ∆z u t i,j,k+1/2 c t i,j,k+1/2 -u t i,j,k-1/2 c t i,j,k-1/2 . (5.14)
As a boundary condition we kept c at a constant value at the inflow boundary and allow it to undergo pure advection at the outflow boundary, near the walls there is no BC due to the null velocity imposed at the solid surface, the BC on the side of the domain is periodic to match the BC of the Stokes problem. A high level of convergence is required on the velocity field in order to guarantee the mass balance.

The diffusion part is solved by a first order implicit in time and second in space. Integrating over a control volume the diffusion part of the Eq. 5.4 and applying the divergence theorem leads to the discrete equation:

c t+1 i,j,k = c t i,j,k - ∆t dif f ∆x∆y∆z 6 f ace λ S λ D 0 (∇c i,j,k • nλ )ds (5.15)
where ∆t dif f is the time step of diffusion, ∆x, ∆y, ∆z are the voxel sizes in the respective direction, and n λ is the unit normal vector of the λ face. Introducing a linear estimate of diffusive fluxes on each voxel face considering that the average voxel concentration is imposed in the center of each voxel leads to:

Bc t+1 i,j,k -A x c t+1 i-1,j,k -A x c t+1 i+1,j,k -A y c t+1 i,j-1,k -A y c t+1 i,j+1,k -A z c t+1 i,j,k-1 -A z c t+1 i,j,k+1 = c t i,j,k
(5.16)

where

A x = D 0 ∆t dif f ∆x 2 ; A y = D 0 ∆t dif f ∆y 2 ; A z = D 0 ∆t dif f ∆z 2 ;
(5.17)

B = 1 -2A x -2A y -2A z (5.18)
It can be noticed that no flux BC simply corresponds to null value of A i associated to wall our outlet voxel faces. The set of discretized diffusion equation (5.16) for all the pore voxels generates a large linear system of equations:

Ac t+1 = c t (5.19)
with A a (N x N y N z ) 2 sparse matrix with 7 non zero diagonals. Taking advantage of the constant nature of the matrix, the solver package MUMPS (MUltifrontal Massively Parallel Solver (Amestoy et al., 1998)) was chosen to perform a LU factorization while ensuring an efficient use of the memory and parallel capabilities. This numerically costly factorization step is performed once while initializing the computation. Subsequent calls to the MUMPS package consists in solution steps using the computed LU matrix.

The general work flow of the program is presented in Fig.

(5.2). In the initialization step, the 3D segmented image and the corresponding velocity field are read. The diffusion matrix is built and factorized. The CFL condition is a strong constraint on ∆t adv . After a sensitivity analysis performed on all the Peclet number range, a ratio of 1000 was chosen between ∆t adv and ∆t dif f . It ensured less than 1% of normalized root mean square deviation compared with the results using ∆t dif f = ∆t adv . The concentration field and relevant integrated values (such as the flux averaged concentrations) are saved along the computation in order to generate numerical breakthrough curves (BTC).

Computation of numerical column experiments

The Fontainebleau sand cubic volume of interest (VOI) of side size L = 2.7 mm was studied in eight different configurations: Four images, refereed to as "CT scaling" were directly taken from the µCT with rescaling factors RF=1, We obtained BTC at the mentioned locations for each case (Fig. 5.4) except for the RF = 1 except for the RF = 1 where our computational capacity was limited to a maximum length L 1 .

The numerical BTC are analyzed in similar way as BTC generated by A column experiment. Where the effective coefficients are computed from the one dimensional macroscale advection dispersion equation (1D-macroADE):

∂φC ∂t = - ∂CU Darcy ∂x + ∂ ∂x φD h ∂C ∂x (5.21)
Where C is the macroscale concentration, U Darcy [m/s] is the Darcy velocity in direction of flow x, φ is the porosity, and D h [m 2 /s] is the coefficient of hydrodynamic dispersion (and all the quantities are scalars due that it is a 1D equation).

In 3D, the coefficient of hydrodynamic dispersion is a second order rank tensor, classically considered as the sum of effective diffusion reflecting the macroscopic effect of molecular diffusion in the pore space and mechanical dispersion reflecting the fickian (or mixing) effect due to the heterogeneity of the microscale velocity field.

D h = τ D 0 + αU (5.22)
where τ is the tortuosity and α [m -1 ] is the dispersivity, and U [m/s] is the pore velocity. In a general context, α should be a tensor including dispersion effect in the transverse direction of flow. In this study, the dispersion is studied only in the longitudinal direction of flow.

From our simulated column experiment, the hydrodynamic dispersion coefficient was estimated using the public domain software Stanmod/CXTFIT 2.0 [START_REF] Toride | The cxtfit code for estimating transport parameters from laboratory or field tracer experiments[END_REF]. Which uses an analytical solution of the macroADE, this software performs a least-squares minimization inverse problem. On it one column experiment can me analyzed through the information given at one or many output positions. However, because the dispersion depends on the distace traveled by the concentration, we called D h 1 , D h 2 , D h 3 , and D h to the hydrodynamic dispersion coefficient computed with the output information at position L 1 , L 2 , L 3 , and with the set of the three output positions respectively.

Results and discussion

Analysis of the dispersive effect in the sample

In this section are discussed the results obtained for the numerical scaling RF = 0.75, which is the best resolution containing all the cases.

The figure 5.4 presents three groups of BTCs, the first, second, and third group correspond to the simulation output located at positions L1, L 2 , and

The estimation done with the CXTFIT software of D h was performed for Pe=165, 16.5, 1.65 and 0.165 ; shows and increase of D h from 6.6110 -10 m2 /s up to 3.7110 -7 m 2 /s well scaled with the increase of Pe from 0.165 to 165. In fig. 5.5 is presented together the output of the 3D simulations with the output of the 1D macroADE computed with the corresponding fitted value of D h 2 . We observe that the BTCs obtained from the 3D model respect the shape of 1D macro ADE problem. The good general agreement between both models reflects the good quality of the inverse problem fit (R 2 > 0.989 in all cases). The studied material did not exhibited abnormal dispersive effects at the pore scale. There is an excellent agreement for P e ≤ 1.65, and as the Pe number increases the disagreement grows. It affected more the BTC corresponding to the largest outlet position (L 3 ). In other words, discrepancies increased with the transport distance and high Pe number. The BTC predicted by the 1D macroADE tended to underestimate the dispersion effect (or overestimate the concentration). The Figure 5.6 presents the evolution of D h with the Peclet number. The increasing trend presents a linear behaviour around P e > 1.65 reflecting the increase of mechanical dispersion with increasing velocity. The inflection observed at Pe = 0.165 is characteristic of the transition toward the diffusion dominated regime. This behaviour is in perfect agreement with the literature [START_REF] Pg Saffman | Dispersion due to molecular diffusion and macroscopic mixing in flow through a network of capillaries[END_REF][START_REF] Bear | Modeling Phenomena of Flow and Transport in Porous Media[END_REF]. In the linear region D h can be identified as D h = αU . Therefore for P e > 1.65 through the slope and, the associated Darcy velocity it could be identified the material dispersivity as α = 3.3110 -4 m. Which is approximately 1/10 th of the sample length (Pickens and Grisak, 1981b). Considering that the mechanical dispersion is negligible at Pe = 0.165, the coefficient of hydrodynamic dispersion D h could be identified to the effective diffusion coefficient (τ D 0 ). The material tortuosity τ is then approximately 0.66 which appears also in agreement with a granular media. In order to get a better insight on the discrepancy between the output of the 3D-microADE and of the 1D-macroADE observed in figure 5.4, each individual BTC was fitted separately, obtaining the corresponding D hi . In figure 5.7 is plotted the error between D hi and the corresponding D h . Observing no clear trend for Pe = 0.165 and 1.65, remaining around zero with the travel distance. In this case molecular diffusion processes tend to homogenize concentration fields at the pore scale. In the cases for Pe=16.5 and Pe=165 we observer a linear tendency (with R 2 = 0.97 and 0.99 respectively), the error is bigger in the extremes but negative for the beginning of the column and positive for the end of the column, the slope of the line is more steep for the biggest Pe number. The increase of dispersion with the travel distance is thus more sensitive as the velocity increase. This observation explains the behaviour observed in Fig. 5.7. Using a single averaged hydrodynamic coefficient thus promote a stronger discrepancy between the 1D-macroADE and the 3D-microADE as the travel distance increase at high Pe numbers. The main goal of this research is to analyze the effect of µCT resolutions on subsequent computation of morphological and transport properties. The figure 5.8 reports the relative error on the computed properties with respect to the best resolution available value taken as reference. The porosity obviously appeared as the most robust property since it never exhibited more than 15% error. A significant divergence from the reference occurred at RF = 0.25 for the CT scaling and RF = 0.125 for the numerical scaling. Specific surface and permeability (Fig. 5.8.b and 5.8.c respectively) exhibited opposite trend with an increase of specific surface corresponding to a decrease of permeability. This behaviour is coherent with an increase of flow friction on the solid surface. With about 15% error on both quantities, the CT scaling at RF = 0.5 exhibited approximately twice the difference with the reference case observed for the numerical scaling (7% error). Even if the numerical scaling procedure partially mimics the partial volume effect associated with the interface location on µCT images, it is likely that the interpolation procedure used in the scaling process better preserve underlying information than the CT apparatus. A similar trend was reported by [START_REF] Cooper | Effect of voxel size on 3d micro-ct analysis of cortical bone porosity[END_REF] in their study of bone morphology.

In the case of numerical scaling, the error associated on D h1 compared to the reference at RF = 1 were plotted on Figure 5.8.e. The behavior at low Peclet number (P e ≤ 1.65) could obviously be attributed to the inconsistency of the outlet boundary condition used for the RF = 1 case. The effect of molecular diffusion was predominant in this Peclet regime. The concentration field for RF = 1 was thus strongly influenced by the zero concentration gradient imposed at the outlet. It was thus irrelevant to consider RF = 1 as a reference. However, for higher Peclet numbers (P e ≥ 16.5), very good agreement was found for RF as low as 0.25 which exhibited errors of 8% and 12% at Pe = 16.5 and 165 respectively. These errors should be compared with the underestimation of 19% and 37% observed on specific surface and permeability for this RF. Despite an approximate description of the pore space geometry and the velocity field, D h is estimated with a good accuracy with the numerical scaling at RF = 0.25. However, this observation should be moderated at the lowest Peclet. The figure 5.8.f presents the error on the averaged D h with respect to numerical scaling at RF = 0.75. At Pe = 0.25, the error for RF = 0.25 raised up to 18% probably due to the bad definition of pore tortuosity promoting an overestimation of dispersion. The image at RF = 0.125 presented strong errors in all cases. Its geometry simplification promoted an overestimation of molecular diffusion effect at Pe = 0.25 corresponding to an underestimation of the tortuosity effect. At higher Peclet numbers, the mechanical dispersion was underestimated due to the simplification of flow paths. Cumulative PSD are plotted on figure 5.9 with respect to the adimensional pore size (i.e. the number of voxels in pore diameter). (Ramírez et al.) put forward that the numerical scaling preserved accurately the shape of the PSD. However, the increase of voxel size associated with the decrease of RF tended mainly to a loss of accuracy in the smaller pore diameters. The CT scaling promoted stronger differences on the PSD shapes for the 3 available RF. One should note that these differencies did not exhibit a noticeable trend while compared to the corresponding numerical scaling. At RF = 0.75 the largest pores were mainly concerned with an underestimation of the volume of pores with diameters between 10 and 15 voxels (i.e. between 60 and 90 µm). At RF = 0.5, the small pores between 2 and 5 voxels (i.e. between 18 and 45 µm) are mainly underestimated by the CT scaling. The PSD of CT scaling at RF = 0.25 clearly put forward a general underestimation of all pore sizes. Changing the resolution on a µCT scanner thus implies noticeable changes of the pore structure which is most likely to promote the discrepancies observed on the computed properties.

Cumulative pore fraction [%]

Number of voxels in pore diamenter Based on numerical scaling only, (Ramírez et al.) proposed the following quality criteria to ensure that the error on permeability estimate was lower than 10 % as:

• The median pore size D 50 should be larger or equal to six voxels to ensure that most of the pore system is well defined.

• The median pore size D 25 should be larger or equal to four voxels to ensure that numerical errors on Stokes equation did not infer on a significant part of the total flow rate.

The CT scaling case at RF = 0.25 did not match these criteria and is clearly insufficient to perform permeability computation. It also exhibited significant errors concerning the computation of D h . At RF = 0.75, the criteria were well respected and all the computed properties presented reasonable errors (≤ 10). The CT scaling at RF = 0.5 was clearly at the limit of the quality criteria. The error on specific surface and permeability of about ≤ 15 probably remained acceptable. Once again, the coefficient of hydrodynamic dispersion was estimated with a smaller error than permeability.

Conclusions

In this paper, a sample of Fontainebleau sand was scanned with a µCT in a large range of resolution. Additionally, the best resolution image had been scaled numerically in order to generate virtual images at lower resolutions. The rationale behind this approach was to study the effect of the scan resolution on the quality of morphological and transport properties. Image morphology concepts were used to compute the porosity, specific surface and pore size distribution of each image. The permeability and pore velocity field were computed using the commercial FV software GeoDict. The Coefficient of hydrodynamic dispersion was estimated based on numerical column BTC experiments performed with a dedicated software. The analysis of theses numerical BTC was performed with the classical inverse problem approach of the Stanmod/CXTFit program.

The dispersive behavior of the sand sample exhibited classical trend including a linear increase of the mechanical dispersion with increasing Peclet number and with increasing travel distance. The rate of increase with the travel distance appeared to increase with the Peclet number. In the diffusion dominated regime, the travel distance did not promote a significant increase of the coefficient of hydrodynamic dispersion.

Both morphological and transport properties exhibited increasing errors as the resolution decreased. The porosity appeared the least affected quantity probably because this property is volumetric by essence and only weakly depends on the pore space configuration. The specific surface and permeability exhibited a coherent opposite trends that could be explained

Conclusions and perspectives

In the present thesis the structure of the porous media was studied, particularly on sandy soils and a virtual pack of spheres. Based on bibliographic references we selected and/or generated tools to compute the porous media structural properties such as the porosity, specific surface and pore size distribution.

Porosity was computed with the counting one phase type voxel technique. And for the specific surface, a C code based on the Couchy Crofton method was developed. For the PDS a code in Matlab was written using the morphological operations of closing and image subtraction.

To study flux and solute transport first it was computed the Stokes equation with the FV commercial software GeoDict. We studied the effects of the 3D image resolution on the computation of the permeability. An inverse trend between permeability and specific surface was found.

An original analysis of the flow-rate distribution between the pore size classes was proposed. It allowed us to evaluate the contribution of small, and thus badly discretized, pores on the total flow rate.

These results supported the detailed analysis of the PSD. It was then proposed two conditions to guarantee that the quality of a 3D image is good enough to perform a permeability computation in a granular media. The propositions were:

• D 50 should correspond to a number of voxels large enough to ensure a satisfying description of the pore space. For both studied granular materials, D 50 should be larger or equal to six voxels.

• The volume fraction of pores badly described should not exceed 25% of the total volume in order to limit their contribution to less than 10% of the total flow rate. For both studied granular materials, D 25 should be larger or equal to four voxels.

In a second part, we developed an algorithm to solve the advection diffusion equation at the microscopic scale i.e., directly on the porous media structure.

Using the splitting operator we compute the advective part with a Finite Volume (FV) method, implementing a Total Variation Diminishing (TVD) scheme. The diffusion part was computed using a FV method with the assistance of the MUMPS software to solve the resulting linear system. From the concentration field obtained with the algorithm and following a volume averaging method, we computed the macroscopic properties of dispersivity and the hydrodynamic dispersion coefficient for a sample of Fontainbleau NE34 sand. Peclet numbers ranging from 0.165 (diffusion dominant) up to 165 (advection dominant) were considered. We studied the dependence of the computed properties with the image resolution. It appeared that the solute transport macro properties are less affected by a deterioration of the resolution than the flow property of permeability (both cases computed through a FV method applied directly on the image voxels).

Finally, we studied the effect of computing structural and transport properties with numerically rescaled images and with the images directly taken from the µCT . This shows that a numerical rescaled image preserves the behavior of the macroscopic properties more than a real rescaled image. However, the proposed quality criteria appeared reasonable with images directly obtained from the µCT leading to errors on permeability and dispersion coefficient limited under 15%.

Perspectives

• In order to generalize our proposed criteria, it would be enlightening to test it for more granular soils such as soils presenting a spreader PSD. The analysis of finer clayley soil probably remains beyond our computation capability. However, in such cases, it is probably relevant to focus on the macro-porosity (cracks and default behind the clay constituents).

• The microADE solver is currently partially parallelized since the diffusion part is fitted with the MPI capability of MUMPS while the advection part used only OpenMP. A full parallelization of the code should be performed in MPI in order to allow computation on servers with several nodes. In order to share our 3D model a next step would be to developed an adequate interface user/code.

• The natural next step according to the 3D model here developed is to take into account reactive terms, in order to expand the range of usage possibilities. A priority for our team would be to study the transport of bacteria. The microADE is theoretically adequate to model the transport of colloids. Taking advantage of the pore size map obtained from the PSD analysis, the direct geometrical interception of bacteria by pore constrictions could be easily implemented as internal boundary conditions. This process of bacteria collection is very important, for instance, in the process of soil reinforcement by bio-induced calcite precipitation [START_REF] Béguin | Experimental tests of soil reinforcement against erosion and liquefaction by microbially induced carbonate precipitation[END_REF]). This engineering technique also rely on calcite formation in the vicinity of the collected bacteria.

Modeling this reactive mechanism should also be achievable even if it would require to transport simultaneously Urea, Calcium and ammonia which are the main reactive species and products involved. The algorithm of the transport program should include in such case a reactive term located at the solid/liquid interface that could be ponderated by the previously computed location of bacteria collection.

  Figure 1.1: Example of a gray scale image segmented.
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 12 Figure 1.2: Error as a function of the adimensional quantity: voxel size over R, with R the characteristic length of the figure. CCL represents the Cauchy-Crofton method and CV represents the counting voxels method. Fig 1.2(a), Fig 1.2(b), Fig 1.2(c), and Fig 1.2(d) represent the case of a cube parallel to the 3D image mesh, a cylinder parallel to the 3D image mesh, two spheres touching each other in one point, and a sphere alone respectively.
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 13 Figure 1.3: Zoom on a square section of the Fontainebleau sand of an arbitrary slide for RF 1 (size: 540 µm): Progressive closing operation.
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 2 Figure 2.1: Grid element showing the faces setting where the flux is going to be computed.

Figure 2

 2 Figure 2.2: (a) Flow chart of the ADE code and (b) details of the TVD iterations of the ADE code.
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 3 Figure 3.1: Example of a BTC for RF=0.75 and 1PV injection time

  Figure 3.2: Case 1

  .34) Due to the boundary conditions (3.25) and (3.27), B n is simplified to B n = -2 nπ . Substituting the solution of A from Eq. (3.33) and c eq from Eq. (3.27) into Eq. (3.28) we obtain the solution of the initial problem (3.31) (For more details in solving these kind of equations see (Dawkins, 2018)) time grows tends to the linear solution of case 1. in Fig 3.3.

Figure 3 . 3 :

 33 Figure 3.3: Evolution in time of concentration through the bar for the case 2 of diffusion.
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  Figure 3.4: Case 2

  .36)Rewriting (3.38) with the change of variable ∂c ∂x = f (x) we obtain an equation with a known solution given byf (x) = c 1 exp ux/D 0 (-ux/D 0 +c 2 = c .(3.41) 
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 4 Figure 4.1: Zoom on a square section of an arbitrary slide of the gray scale VOI at different rescaling factors for the Fontainebleau sand (side size 540 µm).
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 4 Figure 4.2: Zoom on a square section of an arbitrary slide of the segmented VOI at different rescaling factors for the Fontainebleau sand (side size 540 µm).
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 43 Figure 4.3: Square section of an arbitrary slide of the VPS at different rescaling factors (side size 3.6mm).
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 44 Figure 4.4: Scheme of the cubic VOI of 5.4 mm of side size, divided on 8 independent SVOIs of 2.7mm of side size.
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 45 Figure 4.5: Zoom on a square section of the Fontainebleau sand of an arbitrary slide for RF 1 (size: 540 µm): Progressive closing operation.
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 4 Figure 4.6: Porosity, specific surface and permeability at different RF for Fontainebleau sand (a,c,e) and the virtual pack of sphere (b,d,f).
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 4 Figure 4.7: Cumulative pore volume fraction in function of the dimensional pore size (a,b) and adimensional pore size (c,d). BRZ is the zone of bad resolution.

  7 was solved numerically to obtain the flow rate associated with each pore class. The velocity field was extracted from the flow computation results (the velocity component u z is in the pressure gradient direction [Fig. 4.8.b]) and the index ψ i was assigned to to each voxel in a 3D map of the VOI (Fig. 4.8.a), during the morphological closing computation. The cumulative flow rate distribution was then plotted as a percentage fraction of the total flow rate Q for the Fontainebleau sand and the VPS at each RF (Fig. 4.9.a and 4.9.b).
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 4 Figure 4.8: Pore class indexes map and velocity field for the Fontainbleau sand at RF = 0.5
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 A Figure A: SREV analysis on the porosity of Fontainebleau sand
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  Figure 5.1: Example of 3D gray scale images: 5.1(a) RF = 1 5.1(b) RF = 0.5 (µCT scaling) 5.1(c) RF = 0.5 (numerical rescaling).

D

  0 ∇c • n| out = 0 (5.6) with n| out a unit vector normal to the outlet face • No flux at the solid/void interface taking advantage of the null velocity imposed in Stokes equation D 0 ∇c • n| wall = 0 (5.7)
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 5 Figure 5.2: Algorithm of the 3D-microADE solver

  VOI showing the three planes perpendicular to the flux direction.
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 53 Figure 5.3: Concentration field for a VOI of 2.7 mm at resolution of 6 µm (RF=0.75).

  Figure 5.5: BTC at L1, L2 and L3 for RF = 0.75 with numerical rescaling. With diamonds and triangles are presented the results from the 3D-microADE model, and in continuous lines the results of the 1D macroADE direct problem using the fitted D h
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 56 Figure 5.6: Effect of the Pe on D h for the numerical scaling at RF = 0.75
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 5 Figure 5.7: Effect of the travel distance on the hydrodynamic coefficient D h for the studied Pe numbers

  Figure 5.8: Relative error on morphological and transport properties with respect to the reference case (RF = 1) [except for (d) and (e) based on RF = 0.75]
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 59 Figure 5.9: Cumulative pore size distribution with adimensional pore size

  . As Re increases, there is a transition zone. At this region the flow is still laminar but not linear. And at high Re the flow is turbulent.

	Writing Eq. (2.21) in terms of the dimensionless quantities that are indicated
	by primes:					
		x = lx , u = uu , t =	l u	t , P =	µu l	P	(2.24)
	we obtain	Re	Du Dt	= -∇ P + ∇ 2 u .	(2.25)

  for x it can be substituted in Eq. (2.58) to finally solve for c t+1 . Following these steps, approximately NxNyN 3

	renaming	
	Uc t+1 = x ,	(2.58)
	simplifies (2.57)	
	Lx = c t ,	(2.59)
	solving last equation	
		.57)

z 3

Table 2 .

 2 1: CFL condition on time step for each Re number and RF analyzed. the velocity field. In this study the voxel size was fixed to six cases 4.5 µm, 6µm, 9µm, 18µm and 36 µm according to the respective RF. The maximum velocity is constrained to the velocity field of a creeping flow process Re ≤ 10. Here four cases were chosen those corresponding to Re=10, 1, 0.1, and 0.01. Using Eq. (2.23) we observe that those Re number correspond to velocity fields with maximum velocity given by: velocity computed into the ADE code for each velocity field (obtained from the GeoDict software), D 50 = 5.4 × 10 -5 m ( 4 ) the average pore size lead us to the Peclet numbers 165, 16.5, 1.65, and 0.165. Study of the number of advection time step for one diffusion time step Given that most of the Pe numbers chosen are bigger than one, the no conditioned time step of diffusion and the constant necessity to minimize the computing steps, we searched for the biggest possible diffusion time step, dt dif f .

	5	0.00004 0.00001 0.00043 0.0001 0.00429 0.001	0.04286 0.01
	6	0.00006 0.00001 0.00057 0.0001 0.00571 0.001	0.05714 0.01
	9	0.00009 0.00001 0.00086 0.0001 0.00857 0.001	0.08571 0.01
	18	0.00017 0.00001 0.00171 0.0001 0.01714 0.001	0.17143 0.01
	36	0.00343 0.00001 0.03429 0.0001 0.34286 0.001	3.42857 0.01
		u max =	νRe d 50

= Re 1.05 × 10 -2 m/s , (2.80) with ν = 1.05 × 10 -6 m 2 /s, and d 50 is the pore corresponding to the maximum velocity obtained from (Ramírez et al.) as 1 × 10 -4 m. In this way we obtained a v max as a function of the Re number chosen. According to the CFL condition we can obtain maximum time step dt CF L that leads to a convergent solution if we substitute this velocity into Eq. (2.79) for each RF and each Re number. For simplicity and following the CFL condition for all the RF at a fixed Re number it was chosen as the TVD time step dt tdv the immediately smaller round decimal of the best resolution case at the given Re number. These results are displayed in Table

2

.3.3.

The chosen Re numbers of 10, 1, 0.1, and 0.01, following Eq. (2.35) with v the averaged

Table 4

 4 

				Fontainebleau sand		
	RF	voxel	φ	Relative	S s	Relative	k	Relative
		size		error		error		error
		µm	×10 -1	%	×10 2 m -1	%	×10 -11 m 2	%
	1	4.5 3.90 ± 0.01	-	2.16 ± 0.02	-	2.02 ± 0.10	-
	0.75	6	3.86 ± 0.05	0.9	2.09 ± 0.02	3	2.01 ± 0.11	0.4
	0.50	9	3.86 ± 0.05	0.9	2.00 ± 0.02	7	2.17 ± 0.12	7.7
	0.25	18	3.90 ± 0.04	0.3	1.75 ± 0.01	19	2.77 ± 0.12	38
	0.125	36	4.19 ± 0.04	7.7	1.34 ± 0.01	38	5.36 ± 0.16	166
				Virtual pack of spheres		
	RF	voxel	φ	Relative	S s	Relative	k	Relative
		size		error		error		error
		µm	×10 -1	%	×10 2 m -1	%	×10 -10 m 2	%
	1	7.5	3.798	-	6.63	-	2.15	-
	0.50	15	3.799	0.01	6.32	4	2.19	0.4
	0.25	30	3.797	0.04	5.93	10	2.25	5
	0.125	60	3.802	0.09	5.17	22	2.62	22
	0.0625 120	3.805	0.18	3.87	42	3.1	44

.2: Average properties computed in the rescaled SVOIs for Fontainebleau sand and the VPS.

The resolution of an image is considered to be the size of the image voxel. A higher resolution corresponds to a smaller voxel size

X-radiation is a form of electromagnetic radiation, with wavelengths ranging from 0.01 to 10 nanometers, and energies in the range 100 eV to 100 keV. X-rays with wavelengths below 0.2-0.1 nm are called hard X-rays. And above 0.2-0.1 nm are called soft X-rays. Due to the similar size of atoms the hard X-rays are useful for example determining crystal

The value can be computed using the distribution of flow proposed in(Ramírez et al.).

The divergence theorem or Gauss's theorem states that the outward flux of a tensor field through a closed surface is equal to the volume integral of the divergence over the region inside the surface. V (∇ • F)dv = S (F • n)ds

c ijk is the average value of c into the grid given by ( V cdv)/dv where dv = ∆x∆y∆z is the grid volume

computed via the flux analysis proposed in(Ramírez et al.) 

Here the RF will be the same in the three directions. An image with RF = 0.5 has a number of voxels in each direction decreased to the half of the original image.

Rescaling or resizing is the process of increasing or decreasing the number of pixels in an image or voxels in a volume. This process is not lossless. Rescaling a volume to a smaller number of voxels, and then rescaling it back to the original resolution, results in an image sightly different from the original one(Danahy et al., 

2007).

The CXTFIT software has the option to given the effective coefficients of a column experiment, compute the corresponding BTC (direct problem).
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morphological description and discretization. However, increasing the resolution may prevent the studied volume to be representative. Here, each sample is scaled and analyzed at five resolutions. The dependence of soil properties with respect to the image resolution is discussed. As resolution decreases, the permeability and specific surface values tend to diverge from the reference value. This deterioration could be attributed to the shift of the pore size distribution toward badly resolved pores in the voxelized geometry. As long as granular soils are investigated, the volume fraction of pores smaller than six voxels in diameter should not exceed 50% to ensure the validity of permeability computation. In addition, based on an analysis of flow distribution, the volume fraction of pores smaller than four voxels should not exceed 25% in order to limit the flow rate occurring in badly discretized pores under 10%. For the Fontainebleau sand and virtual pack of spheres, the maximum voxel size meeting this criterion corresponds to 1/14 th and 1/20 th of the mean grain size D 50 respectively.
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At the macroscale the governing equation of flow is the Darcy's law (Eq.4.5). Applied to the studied SVOI, it can be written as:

where Q is the volumetric flow rate [m 3 /s], S is the cross-section area orthogonal to the average pressure gradient [m 2 ], k is the permeability [m 2 ] (sometimes referred to as intrinsic or geometric permeability) and L [m] is the distance between the inlet and outlet faces of the SVOI.

In order to compute the permeability k in Eq.4.5, the flow rate Q is integrated numerically from the local flow field as:

where S [m 2 ] is an arbitrary cross section of the SVOI, d A is the differential area vector, orthogonal to the average pressure gradient and ψ is a pore phase indicator (where 1 is the pore phase and 0 is the solid phase).

Distribution of flow rates in the pore classes

The local velocity field and the PSD allow to compute the contribution of each size of pore to the total flow rate Q (Eq. 4.6). The flow rate Q i occurs in pores of diameters between D i-1 and D i . In order to capture the contribution of each pore class, fluxes Q i are computed as an average in the direction of the pressure gradient as:

Where Z [m] is the length of the SVOI in the pressure gradient direction and ψ i is the phase indicator associated with the pore class i. ψ i is assigned to each voxel during the PSD computation process.
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Appendices A REV

The REV was defined as the volume of heterogeneous material that is sufficiently large to be statistically representative of the complexity of the porous structure i.e., to effectively include a sampling of all micro structural heterogeneities that compose the porous medium [START_REF] Kanit | Determination of the size of the representative volume element for random composites: statistical and numerical approach[END_REF]. The SREV is then supposed to be achieved when the standard deviation of the distribution is smaller than an arbitrarily chosen value [START_REF] Calonne | 3-d image-based numerical computations of snow permeability: links to specific surface area, density, and microstructural anisotropy[END_REF][START_REF] Yoon | Nanopore structures, statistically representative elementary volumes, and transport properties of chalk[END_REF][START_REF] Rozenbaum | Representative elementary volume assessment of three-dimensional x-ray microtomography images of heterogeneous materials: Application to limestones[END_REF]. Both the REV and its approximation by SREV depend on the property under consideration. It tends to be smaller for a geometric property (Porosity, specific surface,..) than for a flux property (permeability, diffusivity,...) (Guibert et al., 2015a).

A SREV analysis was performed on the porosity of the Fontainebleau sand at the best resolution (RF = 1). For the analysis five different sizes of sub

Chapter 5

Effect of the µCT resolution on the numerical simulation of the transport of a tracer

Keywords : Advection-diffusion, Digital Rock Physics

Introduction

Solute transfers in underground water are of main interest in a wide range of situations. In the case of aquifer pollution, understanding and predicting the spreading of solute and its interactions with the solid matrix is crucial to elaborate strategies in order to preserve the water resource and drinking water production facilities [START_REF] Saskia | Soil as a filter for groundwater quality[END_REF]. The design of remediation systems such as Permeable Reactive Barriers strongly relies in transport modelling both at the scale of the contaminated aquifer and at the scale of the barrier itself [START_REF] Wanner | Assessing the cr (vi) reduction efficiency of a permeable reactive barrier using cr isotope measurements and 2d reactive transport modeling[END_REF][START_REF] Weber | Investigating dominant processes in zvi permeable reactive barriers using reactive transport modeling[END_REF]. In the field of agronomy, the fate of nutrients and herbicide strongly depends on the combination of water flow conditions and the nature and structure of soils [START_REF] Vanclooster | On the use of unsaturated flow and transport models in nutrient and pesticide management[END_REF][START_REF] Larry | Transport and fate of nitrate and pesticides[END_REF]. Recent soil engineering processes such as bio-induced calcite precipitation is also an example where the transport of solute drives the efficiency of the resulting soil reinforcement [START_REF] Th Barkouki | Forward and inverse biogeochemical modeling of microbially induced calcite precipitation in halfmeter column experiments[END_REF].

The fact that the advection equation is a conservation equation means that c i can only be modified by exchanges with the neighboring cells. Therefore, the change in c i can be seen as in-and out-fluxes through the cell interfaces. Therefore j t adv i+1/2 and j t adv i-1/2 are the flux at the cell interface at time t.

A total variation diminishing (TVD) method is used to ensure a second order scheme in space in the smooth regions to limit numerical diffusion. It degrades to first order near discontinuities in order to prevent non-physical oscillations. (5.9) where j H adv i+1/2 is the high order numerical flux, j L adv i+1/2 is the low order numerical flux and Ψ i+1/2 is the flux limiter. Which in function of the neighbor solutions allows the flux be high or low order. Therefore, the limiter Ψ i+1/2 depends locally on a nonlinear function Θ i+1 , which is the ratio of solution slopes at the neighborhood of the interfaces in the upwind direction (see [START_REF] Smaoui | Flux-limiting techniques for simulation of pollutant transport in porous media: Application to groundwater management[END_REF]).

(5.10)

The limiter function is constrained to be greater or equal to zero, i.e., Ψ(Θ) ≥ 0. Therefore, when the limiter is equal to zero (sharp gradient, opposite slopes or zero gradient), the flux is represented by a low resolution scheme. Similarly, when the limiter is equal to 1 (smooth solution), it is represented by a high resolution scheme. The limiter here implemented was Superbee:

Superbee : Ψ(Θ) = max(0, min(1, 2Θ), min(2, Θ)).

(5.11)

As can be seen in [START_REF] Dubois | Nonlinear interpolation and total variation diminishing schemes[END_REF], a convenient scheme can be defined as:

L 3 respectively. The members of these groups are the curves corresponding to Pe=165, 16.5, 1.65 and 0.165. The Fickian effect, i.e., the conjugate effect of diffusion and dispersion, could be identified as the spreading of the BTC and the subsequent decrease of the maximum observed concentration. This fickian behavior appears minimum for Pe = 1.65 which corresponds to a situation where advective and diffusive processes are of the same order of magnitude and is increased as Pe increases. Interestingly, the adimensional behavior observed for Pe = 0.165 and Pe = 165 appears of the same order of magnitude even if the BTC at the lower value appears more symmetrical (or normal). This apparent similitude denotes in practice two distinct behavior. For Pe = 165, the column test lasted only 3.8s, promoting a fickian process driven only by the mechanical dispersion due to the strong heterogeneity of the flow field. On the contrary, for Pe = 0.165, the column test lasted 3800s. In this case the advection and mechanical dispersion processes have a very small effect compared to the molecular diffusion. For Pe = 1.65, the effect of translation due to the advection is non-negligible: the small average velocity tends to limit the mechanical dispersion and the effect of molecular diffusion is less sensitive than for Pe = 0.165 promoting finally a limited spreading of the BTC.

by the mechanism of fluid friction on the solid surfaces. The computation of the hydrodynamic dispersion coefficient proved to be more robust than the permeability. Even if the flow field is the main driver of dispersion at high Peclet number, the observed error on D h remained significantly lower than the error on permeability. The FV modelling of transport thus appeared efficient to perform detailed studies of pore scale transport.

Finally, the comparison of µCT images at different resolution exhibited more discrepancy than numerically scaled images. Even if the criteria proposed by (Ramírez et al.) to assess the quality of a given image from its PSD remained globally valid, significant discrepancy had been observed between the scans performed on a single sample of sand. This observation should temper the confidence on µCT images since they could be influenced by the CT apparatus itself but also by the 3D reconstruction or the subsequent segmentation processing step.
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