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Abstract 

 

 The molecular study and classification of lung adenocarcinomas has led 

to the development of selective targeted therapies aiming to improve disease 

control and survival in patients. 

 The anaplastic lymphoma kinase (ALK) is a tyrosine kinase receptor from 

the insulin tyrosine kinase receptor family, with a physiologic role in neural 

development. Gene rearrangements involving the ALK kinase domain occur in 

~3-6% of patients with lung adenocarcinoma. The fusion protein dimerizes 

leading to transactivation of the ALK kinase domain in a ligand-independent and 

constitutive manner.   

 Lorlatinib is a third generation ALK inhibitor with high potency and 

selectivity for this kinase in vitro and in vivo, and elevated penetrance in the 

central nervous system. Lorlatinib can overcome resistance mediated by over 16 

secondary kinase domain mutations occurring in 13 residues upon progression 

to first- and second- generation ALK TKI. In addition, treatment with lorlatinib is 

effective for patients who have been previously treated with a first and a second 

generation or a second generation ALK TKI upfront and is currently approved for 

this indication. 

 The full spectrum of biological mechanisms driving lorlatinib resistance in 

patients remains to be elucidated. It has been recently reported that the 

sequential acquisition of two or more mutations in the kinase domain, also 

referred as compound mutations, is responsible for disease progression in about 

35% of patients treated with lorlatinib, mainly by impairing its binding to the ALK 

kinase domain. However, the effect of these compound mutations on the 

sensitivity to the repertoire of ALK inhibitors can vary, and other resistance 

mechanisms occurring in most patients are unknown.  

 My PhD thesis aimed at exploring resistance to lorlatinib in patients with 

ALK-rearranged lung cancer through spatial and temporal tumor biopsies and 

development of patient-derived models. Within the institutional MATCH-R study 
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(NCT02517892), we performed high-throughput whole exome, RNA and targeted 

next-generation sequencing, together with plasma sequencing to identify putative 

genomic and bypass mechanisms of resistance. We developed patient-derived 

cell lines and characterized novel mechanisms of resistance and personalized 

treatment strategies in vitro and in vivo.  

 We characterized three mechanisms of resistance in five patients with 

paired biopsies. We studied the induction of epithelial-mesenchymal transition 

(EMT) by SRC activation in two patient-derived cell lines exposed to lorlatinib. 

Mesenchymal cells were sensitive to combined SRC and ALK co-inhibition, 

showing that even in the presence of an aggressive and challenging phenotype, 

combination strategies can overcome ALK resistance. We identified three novel 

ALK kinase domain compound mutations, F1174L/G1202R, C1156Y/G1269A, 

L1196M/D1203N occurring in three patients treated with lorlatinib. We developed 

Ba/F3 cell models harboring single and compound mutations to study the 

differential effect of these mutations on lorlatinib resistance. Finally, we 

characterized a novel mechanism of resistance caused by NF2 loss of function 

at the time of lorlatinib progression through the development of patients derived 

PDX and cell lines, and in vitro validation of NF2 knock-out with CRISPR/CAS9 

gene editing. Downstream activation of mTOR was found to drive lorlatinib 

resistance by NF2 loss of function and was overcome by providing treatment with 

mTOR inhibitors.  

 This study shows that mechanisms of resistance to lorlatinib are more 

diverse and complex than anticipated. Our findings also emphasize how 

longitudinal studies of tumor dynamics allow deciphering TKI resistance and 

identifying reversing strategies. 
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Résumé 

 

 Les analyses moléculaires et la classification des adénocarcinomes 

bronchiques ont conduit au développement de thérapies ciblées sélectives visant 

à améliorer le contrôle de la maladie et la survie des patients. ALK (anaplastic 

lymphoma kinase) est un récepteur tyrosine kinase de la famille des récepteurs 

de l'insuline. Des réarrangements chromosomiques impliquant le domaine kinase 

d’ALK sont présents dans environ 3 à 6% des patients atteints d'un 

adénocarcinome bronchique. La protéine de fusion provoque une activation du 

domaine kinase de manière constitutive et indépendante du ligand. 

Lorlatinib est un inhibiteur d’ALK de troisième génération avec une efficacité et 

une sélectivité optimale, ainsi qu’une pénétration élevée vers le système nerveux 

central. Lorlatinib peut vaincre la résistance induite par plus de 16 mutations 

secondaires dans le domaine kinase d’ALK acquises lors de la progression aux 

ALK TKI de première et deuxième générations. Le traitement par lorlatinib est 

donc efficace chez les patients préalablement traités par un ALK TKI de première 

ou deuxième génération, et est actuellement approuvé pour cette indication. 

Le spectre complet de mécanismes de résistance au lorlatinib chez les patients 

reste à élucider. Il a récemment été rapporté que l'acquisition séquentielle de 

deux mutations ou plus dans le domaine kinase, également appelées mutations 

composées, est responsable de la progression de la maladie chez environ 35% 

des patients traités par le lorlatinib, principalement en altérant sa liaison au 

domaine kinase d’ALK. Cependant, l’effet de ces mutations sur la sensibilité aux 

différents inhibiteurs d’ALK peut varier, et les autres mécanismes de résistance 

survenant chez la plupart des patients restent inconnus. 

Mon travail de thèse avait pour but d’explorer la résistance au lorlatinib chez des 

patients atteints d'un cancer du poumon ALK réarrangé par la mise en œuvre de 

biopsies spatiales et temporelles et le développement de modèles dérivés de 

patients. Dans le cadre de l’étude institutionnelle MATCH-R (NCT02517892), 

nous avons effectué un séquençage à haut débit de l’exome, de l’ARN et ciblé, 

ainsi qu’un séquençage des ctDNA afin d’identifier les mécanismes de 
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résistance. Nous avons établi des lignées cellulaires dérivées de patients et 

caractérisé de nouveaux mécanismes de résistance et identifiés de nouvelles 

stratégies thérapeutiques in vitro et in vivo. 

Nous avons identifié trois mécanismes de résistance chez cinq patients avec des 

biopsies appariées. Nous avons étudié l'induction de la transition épithélio-

mésenchymateuse (EMT) par l'activation de SRC dans une lignée cellulaire, 

dérivée de deux patients, exposée au lorlatinib. Les cellules mésenchymateuses 

étaient sensibles à l’inhibition combinée de SRC et d'ALK, montrant que même 

en présence d'un phénotype agressif, des stratégies de combinaison peuvent 

surmonter la résistance aux ALK TKI. Nous avons identifié deux nouvelles 

mutations composées du domaine kinase d’ALK, F1174L/G1202R, 

C1156Y/G1269A et L1196M/D1203N survenues chez trois patients traités par le 

lorlatinib. Nous avons développé des modèles de cellules Ba / F3 exprimant les 

mutations simples et composées pour étudier leur effet sur la résistance au 

lorlatinib. Enfin, nous avons caractérisé un nouveau mécanisme de résistance 

provoqué par la perte de fonction de NF2 au moment de la progression du 

lorlatinib par l’utilisation de PDX et de lignées cellulaires dérivées de patients, et 

par CRISPR / CAS9 knock-out de NF2. Nous avons constaté que l'activation de 

mTOR par la perte de fonction de NF2 provoquait la résistance au lorlatinib et 

qu'elle pouvait être surmontée par le traitement avec des inhibiteurs de mTOR. 

Cette étude montre que les mécanismes de résistance au lorlatinib sont plus 

divers et complexes que prévu. Nos résultats démontrent également comment 

les études longitudinales de la dynamique tumorale permettent de déchiffrer la 

résistance aux TKI et d'identifier des stratégies thérapeutiques. 
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Synthèse  

 

Au cours des dernières décennies, les progrès des tests moléculaires ont conduit 

à la découverte de multiples oncogènes du cancer du poumon non à petites 

cellules et au développement de thérapies ciblées efficaces offrant de nouvelles 

options de traitement aux patients. La kinase du lymphome anaplasique (ALK) 

est un récepteur tyrosine kinase qui joue un rôle clé dans la carcinogenèse 

d'environ 3 à 6% des adénocarcinomes du poumon par réarrangements du gène 

ALK. En plus du cancer du poumon, des réarrangements d’ALK ont également 

été rapportés dans d'autres cancers, tels que les lymphomes anaplasiques à 

grandes cellules, les lymphomes B diffus à grandes cellules, les tumeurs 

myofibroblastiques inflammatoires de l'enfant et d'autres types de tumeurs. Dans 

ce contexte, la protéine de fusion ALK se dimérise, conduisant à la 

transactivation du domaine kinase d’ALK de manière constitutive et 

indépendante du ligand, qui transmet des signaux à travers des effecteurs en 

aval tels que la voie PI3K-AKT-mTOR et la voie des MAP kinases. 

Le crizotinib, un inhibiteur d'ALK de première génération, et les inhibiteurs d'ALK 

de deuxième génération, le céritinib, l'alectinib et le brigatinib, sont des options 

de traitement pour les patients atteints d'un cancer du poumon métastatique ALK 

réarrangé. Les inhibiteurs d'ALK de deuxième génération ont été conçus pour 

surmonter les mécanismes de résistance qui se développent sous traitement par 

crizotinib. Toutefois, la résistance aux inhibiteurs d’ALK de deuxième génération 

se développe invariablement, la plus courante étant l'acquisition de la mutation 

G1202R, qui confère une résistance à tous les inhibiteurs d’ALK de première et 

de deuxième génération. 

Lorlatinib est un inhibiteur d’ALK de troisième génération. Il présente une 

puissance et une sélectivité élevées pour cette kinase in vitro et in vivo et une 

bonne pénétration dans le système nerveux central. Lorlatinib peut vaincre la 

résistance induite par toutes les mutations simples du domaine kinase se 

produisant dans 13 résidus lors de la progression à un ALK ITK (inhibiteur de 

tyrosine kinase) de première et de deuxième génération, y compris G1202R, et 

a récemment été approuvé pour le traitement des patients présentant une 
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progression de la maladie aux inhibiteurs d’ALK de deuxième génération. Ces 

éléments reposent sur des études précliniques et cliniques, montrant des niveaux 

d'activité élevés dans le cadre de la résistance aux générations antérieures 

d'inhibiteurs d'ALK, de la forte pénétration dans le système nerveux central et du 

manque de spécificité à la glycoprotéine p. 

Même lorsque le traitement par le lorlatinib est efficace, la résistance apparaît 

invariablement. À ce jour, le seul mécanisme connu de résistance au lorlatinib 

est l’acquisition séquentielle de deux mutations ou plus, présentes en cis, ce qui 

entraîne une liaison défectueuse du lorlatinib au domaine kinase d’ALK. 

Cependant, il reste à élucider le spectre complet des mécanismes biologiques à 

l'origine de la résistance au lorlatinib chez les patients. 

Dans la présente thèse, j'ai caractérisé plusieurs mécanismes de résistance 

apparus chez des patients au moment de la progression de la maladie sous 

lorlatinib par l'intégration d'un profil moléculaire profond et le développement de 

modèles dérivés de patients. Dans l’étude institutionnelle MATCH-R 

(NCT02517892), au moment de la résistance acquise au lorlatinib, un échantillon 

de tissu tumoral et de plasma a été prélevé. Nous avons effectué un séquençage 

complet des exomes et de l’ARN ainsi qu'un séquençage plasmatique afin 

d'identifier les altérations génomiques d'ALK et d’autres gènes pouvant causer la 

résistance au lorlatinib. Pour étudier de nouvelles mutations composées, nous 

avons développé des modèles de cellules Ba / F3 portant ces mutations d'intérêt. 

De plus, pour étudier de nouveaux mécanismes de résistance autres, nous avons 

développé des modèles dérivés de patients obtenus à la résistance au lorlatinib. 

Nous avons caractérisé trois mécanismes de résistance chez cinq patients 

présentant des biopsies appariées (avant/après lorlatinib). Nous avons étudié 

l'induction de la transition épithélio-mésenchymateuse (EMT) par l'activation de 

la kinase SRC dans des lignées cellulaires dérivées de deux patients, dont l'un 

présentait des signes d'EMT dans la biopsie tumorale. Dans les deux modèles, 

les cellules mésenchymateuses étaient sensibles à l’inhibition combinée de SRC 

et d'ALK, montrant un effet synergique et prouvant que l'activation de SRC 

conduisait à l’EMT et à la résistance au lorlatinib. Nous avons également montré 
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que le traitement avec des inhibiteurs de SRC seuls pourrait induire une inversion 

partielle de l’EMT dans les cellules mésenchymateuses. 

Nous avons identifié trois nouvelles mutations composées du domaine kinase 

d’ALK, F1174L / G1202R, C1156Y / G1269A, L1196M / D1203N, survenues chez 

trois patients traités avec le lorlatinib. Nous avons développé des modèles de 

cellules Ba / F3 contenant des mutations simples et composées pour étudier 

l'effet différentiel de ces mutations sur la résistance au lorlatinib. Nous avons 

montré que les mutations composées peuvent conférer des effets différents sur 

la liaison au lorlatinib et sur son efficacité dans ces modèles. La C1156Y / 

G1269A a conféré une sensibilité à la fois au lorlatinib et au brigatinib, la F1174L 

/ G1202R a conféré une résistance au lorlatinib en augmentant l'affinité de la 

kinase pour l'ATP et en renforçant la liaison du médicament au domaine kinase 

et la L1196M / D1203N a conféré des niveaux élevés de résistance au lorlatinib 

en empêchant la liaison du médicament au domaine kinase. 

Nous avons aussi caractérisé un nouveau mécanisme de résistance provoquée 

par la perte de fonction de NF2 en développant des lignées cellulaires et à partir 

de PDX d’un patient, à partir de sites métastatiques et de temporalité différents. 

Nous avons montré que la perte de NF2 conférait des niveaux élevés de 

résistance au lorlatinib en induisant une activation en aval dans le cadre d’une 

inhibition adéquate d’ALK. La double inhibition de mTOR et d’ALK induit la mort 

cellulaire par l'apoptose dans ces modèles dérivés de patients. Nous avons 

effectué une validation in vitro dans des cellules H3122 en inactivant NF2 par 

édition génique CRISPR / CAS9. En l'absence d'expression de merlin, les 

cellules H3122 présentaient des niveaux élevés d'activation de mTOR, même 

lorsqu'elles étaient exposées à des taux élevés de lorlatinib. 

En résumé, notre étude démontre que les mécanismes de résistance au lorlatinib 

sont divers et complexes, y compris avec un effet différentiel des mutations 

composées, la preuve de l’induction de l’EMT et de nouveaux mécanismes de 

résistance par activation de voies de contournement. Compte tenu de 

l'hétérogénéité de la résistance au lorlatinib, une évaluation longitudinale du 

génotype des tumeurs et du plasma ainsi que le développement de xénogreffes 

dérivées de patients sont nécessaires pour comprendre la biologie de la 
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résistance au lorlatinib et développer de nouvelles stratégies thérapeutiques pour 

la surmonter. 
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Part I: Introduction 

 

1. The evolution of lung cancer diagnosis and 

treatment: the road to personalized medicine 

 

1A. Epidemiology of non-small cell lung cancer 

 

 Lung cancer is the leading cause of cancer-related deaths worldwide. In 

2018, about 2 million new cases (11.6%) and 1.7 million deaths (18.4%) caused 

by lung cancer were estimated (1).  In France, lung cancer is also the first cause 

of cancer related deaths in men, and the second in women, constituting a major 

public health problem (2).  

 Lung cancer is most frequently detected at advanced stages, usually with 

clinical and symptomatic evidence of metastatic disease (3). This translates into 

dismal survival rates, ranging from a 5-year survival rate of 97% for stage IA1 

tumors (< 1cm in diameter and no lymph node involvement) to 10% for patients 

with stage IV (metastatic disease) (4).   

 Lung cancer is classified per histological features in non-small cell lung 

cancer (NSCLC) and small-cell lung cancer (SCLC). Both subtypes of cancer 

have distinct histology, biologic features and treatment strategies. For the 

purpose of this thesis, the focus is placed on the NSCLC subtype (5,6).  

 Tobacco exposure is the main risk factor for lung cancer (7,8). Tobacco 

combustion releases about 70 carcinogens including polycyclic aromatic 

hydrocarbons, and N-nitrosamines. These compounds inflict DNA damage, 

resulting in the onset of oncogenic mutations leading to lung carcinogenesis (9). 

In addition to active smoking, second-hand smoking is also an important factor 

related to lung carcinogenesis, and is responsible for about 7.330 deaths from 

lung cancer each year in the United States (10,11).  
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 Importantly, lung cancer is not restricted to patients with a history of 

tobacco smoking. Non-smokers, defined as individuals smoking less than 100 

cigarettes in a lifetime, are also at risk of lung cancer. Worldwide, about 25% of 

lung cancers occurs in non-smokers, and the incidence of lung cancer in never 

smokers is particularly higher among Asian population (12–14). These 

epidemiological differences between smoking status, geographic localization and 

race are also correlated with significant differences in the molecular profile of 

patients with NSCLC, particularly in the adenocarcinoma histology, as it will be 

addressed in detail in following chapters.  

 There are several environmental factors that have been linked to the 

development of lung cancer in never smoker population.  Residential radon gas 

exposure is the leading cause of lung cancer in never smokers and second cause 

of lung cancer after smoking, accounting for about 21.000 deaths annually in the 

United States (15,16). Other risk factors leading to NSCLC are exposure to 

asbestos, air pollution and, in lesser extent, germline mutations that result in 

hereditary lung cancer predisposition syndromes (17–19). However, it is not fully 

understood what is driving the increase prevalence of lung cancer in non-smoking 

patients around the world, and specially in Asia. This is an active research area, 

aiming to identify novel carcinogens and implement politics to avoid and prevent 

carcinogenic exposure.  
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1B. Histological classification of non-small cell lung 

cancer 

 

 The evolution of pathology and molecular biology has shed a light to the 

different subtypes of non-small cell lung cancer in the last decades (20). NSCLC 

accounts for about 85% of all lung cancers. Diverse histological subtypes of lung 

cancer convey in the group of tumors classified as NSCLC: lung 

adenocarcinoma, squamous cell carcinoma, large cell neuroendocrine 

carcinoma, and sarcomatoid carcinomas, amongst others (21). The classification 

of NSCLC in different histologic is also supported by the distinct molecular profiles 

of these tumors (22–24).  

 Lung adenocarcinoma is the most frequent histological subtype in smokers 

and non-smoking patients, whereas lung squamous cell carcinoma is the second 

most common histologic subtype of NSCLC but is rare in patients without history 

of tobacco exposure.  

Classifying NSCLC tumors in histologic subtypes was the first step 

towards a better distinction of the intrinsic molecular, phenotypical and prognostic 

features of NSCLC, and became the first approach to develop “personalized” 

treatment strategy based on the tumor characteristics. The development of 

molecular biology techniques applied to the study of cancer genomics revealed 

the complexity of genomic and epigenetic differences between these histologic 

subtypes, unravelling the existence of potent oncogenic drivers in lung 

adenocarcinomas and giving rise to the era of targeted therapies for this disease 

(25). 
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1C. Molecular classification of lung adenocarcinomas  

 

 Lung adenocarcinomas are classified in molecular subtypes according to 

the presence of well identified and characterized molecular alterations that drive 

cancer initiation and progression (23). This genomic classification relies on the 

detection of point mutations, copy number alterations, rearrangements, insertions 

and deletions in key oncogenes that have an initiating and perpetuating effect on 

cancer, and whose inhibition can induce cancer cell death.  

 Most of these oncogenic drivers are tyrosine kinase receptors (RTK) and 

protein kinases (PK) that regulate intracellular signaling pathways. The rational 

for this classification is based on the preclinical characterization of molecular 

alterations in the functionality of these RTK and phosphokinase proteins. In most 

cases, kinase inhibitors have been successfully developed to target these 

alterations. The most relevant driver oncogenes and the molecular alterations 

leading to classification of genomic subtypes of lung adenocarcinoma are the 

following: KRAS mutations, EGFR mutations and indels, ALK fusions, ROS1 

fusions, MET exon 14 skipping mutations and amplification, BRAF mutations, 

RET fusions and NTRK fusions (26). 

 The distribution of these alterations varies across geographical regions, 

race, sex, and the methods used to study tumor genomics. Multiple collaborative 

efforts have been done to identify these oncogenic drivers and provide evidence 

on the distribution and frequency of these alterations across patients with lung 

adenocarcinoma.  

 The first nationwide effort to characterize the prevalence of oncogenic 

alterations in advanced lung adenocarcinoma was led by  “L'Intergroupe 

Francophone de Cancérologie Thoracique” (IFCT) in France (27). This 

comprehensive characterization of lung tumors initially assessed mutations in 

KRAS, BRAF, EGFR, PIK3CA and HER2 together with rearrangement in ALK, 

across 28 testing centers in France. A total of 18.679 samples from 17.664 

patients were studied and included mostly lung adenocarcinoma histology (76%). 

In this subtype, the prevalence of KRAS mutations was 32%, EGFR mutations 
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12%, BRAF mutations 2%, HER2 exon 20 insertions 2% and the prevalence of 

ALK rearrangements was 5% (Figure 1A). Importantly in never smokers (1619 

patients), the proportion of EGFR mutations rose to 44% and ALK 

rearrangements to 14% and for KRAS mutations, it descended to 9% (Figure 1B) 

(27). This highlights the influence of smoking status on the genomic profile of lung 

adenocarcinomas.  

 

 

Figure 1. Distribution of molecular alterations in tumors from patients with 

diagnosis of lung adenocarcinomas (A) and in never-smokers (B) in France. Figure 

and legend adapted from Barlesi F et al. Lancet Oncology 2016 (27).    

   

 Similarly, the Lung Cancer Mutation Consortium (LCMC), pioneered in the 

molecular characterization of lung adenocarcinomas in 14 academic institutions 

in the United States (28). In 1.102 eligible patients, KRAS mutations were found 

in 25% of tumors, EGFR mutations in 17%, ALK rearrangement in 8%, HER2 

exon 20 insertions in 3% and BRAF mutations in 2% of cases.   

 The development of high-throughput next generation sequencing (NGS) 

platforms, has allowed to expand the testing for multiple genes by targeted 

sequencing using customized gene panels that require small quantities of tumor 

DNA (29). In addition, whole-exome and RNA sequencing provides a more 
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comprehensive view of the landscape of molecular alterations in coding regions 

and gene expression. The Cancer Genome Atlas (TCGA) Program is currently 

ongoing and has characterized over 20.000 tumor samples from 33 different 

types of cancer using whole-exome sequencing and RNA sequencing. In the first 

report on lung adenocarcinomas, mainly from early stage resected specimens, 

driver alterations were detected in 62% of the samples (23). KRAS mutations 

were found in 32.2% of samples, EGFR mutations in 11.3%, BRAF mutations in 

7%, ALK rearrangements in 1.3%, ROS1 fusions in 1.7%, RET fusions in 0.9%, 

and MET exon 14 alterations in 4.3%. The differences in the prevalence in ALK 

rearrangements in this data set, mostly from stage I/II resected tumors, suggests 

that the prevalence of molecular alterations might also be stage-dependent.   

 

 

Figure 2. Prevalence of molecular alterations in key oncogenic drivers in lung 

adenocarcinomas using whole exome sequencing from The Cancer Genome Atlas 

Project. Figure and legend adapted from The Cancer Genome Atlas Group, Nature 2014 

(23).    

 

 As previously mentioned, the prevalence of these oncogenic alterations in 

western countries, with high proportion of Caucasian populations, differ 
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significantly to those from Asia. Across Asia Pacific, the prevalence of EGFR 

mutations is significantly higher than in western countries, reaching 49% of lung 

adenocarcinomas and, inversely, the prevalence of KRAS mutations is low in 

Asia (30). However, the prevalence of ALK rearrangements in Chinese 

population is similar to the observed in Europe and United States (4.2%) (30,31). 

Currently, there is no scientific explanation for the differences observed among 

western and Asian populations in the distribution of molecular alterations, though 

the role of radon exposure and air pollution is being studied (32,33).   
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1D. Biology of oncogenic drivers and pathways in lung 

cancer  

 

 The well-established drivers of lung adenocarcinoma are either tyrosine 

kinase receptors (eg: EGFR, ALK, ROS1, MET, RET, NTRK), intracellular G-

protein and kinases (eg: BRAF) or GTP-ase proteins (eg: KRAS). There are about 

535 protein kinases encoded in the human exome, that compose the human 

kinome. Protein kinases mediate the activation of protein functionality by 

catalyzing the phosphorylation of multiple protein substrates in tyrosine, serine or 

a threonine residues (34). In this chapter, we will review the signaling pathways 

involved in the biology of oncogene addicted lung cancers, including tyrosine 

kinase receptors, the MAPK and the PI3K/AKT/mTOR pathways and their 

regulation, and other oncogenic mediators like SRC and regulation of apoptosis 

and cell death. This will contextualize the findings of our work on mechanisms of 

resistance to the ALK inhibitor lorlatinib.  

 

Tyrosine Kinase Receptors 

 

 Within the family of protein kinases, several tyrosine kinase receptors are 

frequently involved in lung adenocarcinoma carcinogenesis. Tyrosine kinase 

receptors are located in the cell membrane and are composed of an extracellular, 

a transmembrane and a cytoplasmic region and promote cell proliferation, 

migration and survival by the binding of different growth factors (Figure 3) (35).   

 The extracellular domain binds to a specific ligand, and this induces 

conformational changes promoting receptor homodimerization, and in some 

cases, heterodimerization with other RTK to form a receptor complex. These 

dimers are formed through different mechanisms: a bivalent ligand can bind to 

two molecules inducing a “ligand dependent” dimerization but, in most cases, it 

is not dependent on the ligand but mostly on receptor-receptor interactions 

(36,37).  
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 The juxtamembrane domain in the cytoplasm maintains the receptor in an 

autoinhibitory conformation in inactivating conditions (38). Receptor dimerization 

promotes transphosphorylation of key tyrosine residues in this domain, which 

disrupts the autoinhibitory conformation and promotes receptor activation. These 

residues differ among tyrosine kinase receptors. Within the intracellular 

compartment, the tyrosine kinase domain is the most relevant structure to initiate 

and sustain receptor signaling. The activation of the tyrosine kinase domain 

(TKD), in most tyrosine kinase receptors, is also induced by transphosphorylation 

of tyrosine residues within this stable dimer complex. The phosphorylation of the 

kinase domain leads to the recruitment of other protein kinases and docking 

proteins that bind specifically to phosphotyrosines and activate the downstream 

signaling cascades.  

 

Figure 3. Schematic representation of a tyrosine kinase receptor activation. Upon 

the growth factor binding to the extracellular domain, the tyrosine kinase receptor adopts 

a differential conformation leading to dimerization, and transphosphorylation of the 

tyrosine kinase domain, which in turns promotes the activation of adaptor proteins that 

lead to the phosphorylation of downstream signaling pathways like the RAS-MAPK, 

PI3K-AKT, PLCY-PKC and JAK-STAT that convey in promoting multiple biological 

hallmarks that lead to cell proliferation, differentiation, migration, metabolism, adhesion 

and survival. Figure and legend Adapted from Casaletto et al. Nature Reviews in Cancer 

2012 (39) 
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 Dysregulation of tyrosine kinase receptor function by oncogenic events like 

mutations, indels, amplification and rearrangements in the coding genes 

culminate in enhanced signaling and sustained downstream pathway activation. 

Relevant dysregulated RTK in lung adenocarcinoma are ALK, EGFR, RET, 

ROS1, HER2, MET and NTRK (40–45).  

 The focus of this work is on the anaplastic lymphoma kinase (ALK) tyrosine 

kinase receptor. For this thesis, the biology and oncogenicity of ALK, together 

with the development of ALK tyrosine kinase inhibitors, will be reviewed 

extensively (Chapter 2). To fully understand the implications of the molecular 

subtypes of lung cancer and the biological rational for targeting selective kinases, 

the most relevant oncogenic drivers and intracellular oncogenic signaling 

involved in lung cancer carcinogenesis are described.  

 

EGFR  

 

 The epidermal growth factor receptor (EGFR) is a member of the ErbB 

family of tyrosine kinase receptors. EGFR is a tyrosine kinase receptor and is 

activated by the binding of its ligand, the epidermal growth factor (EGF) to the 

receptor extracellular domain (46). Specific EGFR mutations in the tyrosine 

kinase domain (exons 18 to 21), clustering around the active site of the kinase, 

induce ligand independent kinase domain phosphorylation. The most frequent 

activating “classic” molecular alterations (~90%) are in-frame deletions in exon 

19 and the L858R point mutation in exon 21(36). Other less frequent activating 

molecular alterations are point mutations in exons 18 and 20 and exon 20 

insertions.  

 As previously mentioned, EGFR activating mutations occur in about 12-

15% of patients in western countries and ~50% in patients from east Asia (27,30). 

EGFR TKIs were initially developed for the treatment of lung cancer patients, 

irrespective of a molecular biomarker selection. The discovery of the predictive 

role of sensitizing mutations in EGFR on the activity of EGFR inhibitors became 
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a landmark in the development of potent drugs to treat molecularly selected 

patients with NSCLC (41,47). 

  Multiple phase III trials comparing the first-generation EGFR TKIs 

erlotinib, gefitinib, or icotinib, as well as the second-generation TKI afatinib, with 

platinum-based chemotherapy as frontline therapies showed a benefit in 

progression free survival (PFS) with these targeted agents (48–51). The third 

generation EGFR inhibitor osimertinib has shown significant activity in the 

treatment of patients that acquire the T790M mutations as a resistance 

mechanism to first and second-generation EGFR TKIs and in upfront in treatment 

naïve patients (52,53). EGFR exon 20 insertions confer, in general,  resistance 

to currently available EGFR inhibitors, though new compounds are being 

developed to target this alteration (54). Patients with EGFR mutant lung cancer 

can achieve significant benefit when treated with EGFR TKI (55).  

 

HER2 

 

 The Epidermal growth factor receptor 2 (HER2) is, as EGFR, a member of 

the ErbB family of tyrosine kinase receptors. Amplifications in HER2 occur in 

about 25% of breast cancers, and this has led to the development of multiple 

targeted treatments in this field like monoclonal antibodies, tyrosine kinase 

inhibitors and antibody-drug conjugates (56). In a clear difference with breast 

cancer, HER2 amplification is rarely observed in in lung cancer (~1.2%). 

However, insertions or duplications affecting the kinase domain in exon 20 occur 

in about 3-4% of patients with metastatic lung adenocarcinoma (57). HER2 exon 

20 insertions induce a rigid active conformation of this receptor together with 

structural modifications in the drug binding pocket that lead to steric hindrance 

and resistance to common tyrosine domain inhibitors (54). HER2 inhibitors like 

lapatinib, neratinib, afatinib and dacomitinib have limited activity in targeting 

HER2 exon 20 insertions in lung cancer. As with EGFR exon 20 insertions, there 

are currently covalent inhibitors like poziotinib and TAK-788 under development 

(54). Trastuzumab emtansine (TDM-1) is an antibody-drug conjugate directed 
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against HER2, with modest clinical activity in this setting. To date, there are no 

approved drugs for the treatment of patients with tumors that harbor HER2 exon 

20 insertions.   

 

ROS1 

 

 The ROS proto-oncogene 1 receptor tyrosine kinase (ROS1) is a tyrosine 

kinase receptor, found in 1-2% of patients with lung adenocarcinoma (43). The 

oncogenic effect of ROS1 in lung cancer is mediated by gene rearrangements 

involving the ROS1 tyrosine kinase domain in the 3´ with a variety of 5` fusion 

partners: CD74, SLC34A2, EZR, FIG, TPM3, CCDC6, among others. The most 

common reported fusion partner in lung cancer is with CD74 (58). The fusion 

partner in the aminoterminal portion of the protein contains dimerization domains 

that, consequently, lead to homodimerization of fusion proteins and tyrosine 

kinase domain activation. The tyrosine kinase domain of ROS1 shares significant 

homology to the ALK kinase domain in the ATP binding sites. ROS1 

rearrangements can be targeted with ROS1 TKIs like crizotinib, which is currently 

approved for this indication (59). Next generation  ROS1 inhibitors are also potent 

inhibitors like ceritinib, entrectinib, brigatinib, lorlatinib and repotrectinib, with 

promising preclinical and clinical activity in this scenario (60–64).  

 

MET  

 

 The Mesenchymal-Epithelial Transition (MET) proto-oncogene, encodes 

for the MET tyrosine kinase receptor.  The extracellular portion that binds to its 

ligand, the hepatocytic growth factor (HGF) (65). The intracellular portion of MET 

contains the juxtamembrane and kinase domain together with the 

carboxyterminal multifunctional docking site. The juxtamembrane domain is 

encoded in exon 14 and regulates MET degradation by the engagement of the 

tyrosine Y1003 with the casitas B-lineage lymphoma (c-CBL) E3 ubiquitin ligase 



40 

 

(66). Upon HGF binding to the SEMA domain, MET homodimerization results in 

the phosphorylation of key tyrosine residues within the kinase domain and in the 

docking site. Multiple biological alterations have been implied in MET 

oncogenesis across multiple tumor types. 

 In lung cancer, the two main mechanisms of MET oncogenicity involve 

molecular alterations in the splicing regulatory sites of exon 14 and/or MET 

amplification. Point mutations or deletions in the splicing regulatory sites of exon 

14, result in exon 14 skipping and loss of the juxtamembrane domain, impairing 

receptor ubiquitination and degradation, with extended receptor signaling (44). 

MET exon 14 mutations occur in ~3% of advanced NSCLC, and can be targeted 

with MET tyrosine kinase inhibitors like crizotinib, tepotinib, capmatinib, 

savolitinib or merestinib which are currently under clinical development (67). De 

novo MET amplification is less frequent in lung cancer. However MET 

amplification is frequently acquired during treatment with EGFR TKI in patients 

with EGFR mutant lung cancer, as a bypass mechanism of resistance (68–70). 

The combination of MET and EGFR TKIs can overcome resistance in this 

scenario (71).  

 

RET  

 

 The rearranged during transfection proto-oncogene gene (RET) codifies 

for a tyrosine kinase receptor, and its ligands belong to the glial-derived 

neurotrophic factor (GDNF) family. RET fusions and mutations were initially 

characterized in thyroid carcinomas and multiple RET tyrosine kinase inhibitors 

have been developed in this context (72,73). Oncogenic RET rearrangements 

occur in 1-2% of lung adenocarcinoma tumors (74,75). The most common fusion 

partner is the kinesin family member 5B gene (KIF5B), but many other fusion 

partner have been described (76). As with ROS1 rearrangements, RET fusions 

preserve the RET tyrosine kinase domain which homodimerizes by the 

interaction of the fusion partner coiled coil domains. Ligand independent RET 

phosphorylation leads to downstream activation of the JAK/STAT, PI3K and 
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MAPK pathways. RET fusions are mainly diagnosed in the clinical practice by 

FISH or NGS. To date, several multikinase inhibitors targeting RET like 

vandetanib, lenvatinib and cabozantinib have been studied in patients with lung 

cancer showing modest efficacy (76). Alectinib is an ALK inhibitor that is active 

against RET, and there is retrospective data showing signs of efficacy for this 

compound (77,78). Novel, selective and potent RET TKIs are currently under 

clinical development for the treatment of patients with RET-rearranged lung 

cancer (79,80) 

 

NTRK  

 

The neurotrophin kinase (NTRK) genes codifies the tropomyosin receptor 

tyrosine kinases (TRK). NTRK rearrangements are involved in a wide variety of 

tumor types, though it is a rare event in lung cancer, present in less than 1% 

(81,82). NTRK3 fusions are pathognomonic in mammary analog secretory 

carcinoma and infantile fibrosarcoma. NTRK-rearranged cancers are highly 

sensitive to NTRK tyrosine kinase inhibitors. A study of the first generation NTRK 

inhibitor larotrectinib lead to the first tissue agnostic approval for a tyrosine kinase 

inhibitors based solely on the molecular alteration (83). New generation NTRK 

inhibitors have been developed to overcome resistance to larotrectinib by 

secondary kinase domain mutations (84). Though infrequent (~0.2%), the 

detection of NTRK-rearrangements in patients with lung cancer can lead to 

substantial benefit with NTRK tyrosine kinase inhibitors.  
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MAPK signaling pathway  

 

 The downstream pathway signaling from tyrosine kinase receptor 

activation, is mainly catalyzed by multiple cascades of intracellular protein 

kinases and phosphatases, of which the most relevant are the mitogen-activated 

protein kinase (MAPK) and the PIK3CA/AKT/mTOR pathways (Figure 4).  

 The MAPK pathway regulates multiple critical cellular processes and is 

altered or activated in most cancers. Dysregulation of this pathway, mainly by 

uncontrolled activation, leads to the survival, propagation and dissemination of 

cancer cells (85). This pathway begins with the activation of RAS proteins (KRAS, 

NRAS or HRAS) secondary to the phosphorylation of RTKs in the cell membrane. 

Activated RAS proteins (in a GTP bound state), interact with various downstream 

effectors, mainly the RAF family of serine-threonine kinases (A-RAF, B-RAF and 

C-RAF). RAF protein kinases, mediate MEK1 and MEK2 phosphorylation, which 

in consequence, phosphorylate ERK1 and ER2K kinases. In its cytoplasmic 

location, ERK kinases phosphorylate proteins that participate in cell adhesion, 

mobility and metabolism (86). Phosphorylated ERK also migrates to the nucleus 

and induces the phosphorylation of transcription factors, mainly CPS II and p90 

ribosomal S6 kinase (RSK), which promote cell cycle and mitosis (87).  This 

pathway has several negative regulatory feedbacks, like ERK inhibitory loops 

directed against C-RAF and B-RAF activation and the induction of dual specific 

phosphatases (DUSPs) that block pathway overactivation (88).  

 

KRAS  

 

 KRAS is an intracellular guanine nucleotide binding protein from the RAS 

family of GTPases.  The active form of KRAS is bound to GTP (KRAS-GTP) (89). 

KRAS activation is regulated by its intrinsic GTPase activity and by GTPase 

activating proteins (eg: NF1). Most KRAS mutations affect exons 2 and 3, altering 

the GTPase activity of this protein leading to an active GTP binding state, and 
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intrinsic activation of its capacity to promote oncogenic signaling (90). KRAS is 

the most common oncogenic driver in lung cancer representing approximately 

25-30% of cases (23,26,27). The most common mutations are G12C and G12V. 

Except for KRAS G12D, KRAS mutations are more prevalent in patients with a 

history of smoking. KRAS mutations often co-occur with mutations in TP53 (40%) 

and STK11/LKB1 (32%), with relevant implications in the response of co-mutant 

tumors to immunotherapy (91). There are no clinically approved targeted 

therapies against KRAS in KRAS mutant lung cancer, though compounds 

directed against the KRAS G12C mutant protein are currently under development 

(90,92).  

 

BRAF 

 

 The RAF family of kinases is composed by ARAF, BRAF and CRAF and 

are activated by GTP- bound RAS proteins. The binding of  RAS proteins results 

in the development of RAF homodimers (BRAF-BRAF) or heterodimers (CRAF-

BRAF) leading to RAF activation (85). Once activated, RAF proteins bind and 

phosphorylate MEK. BRAF is the second most common mutated gene in the 

MAPK pathway after KRAS, driving its oncogenic potency by the occurrence of 

point mutations. BRAF mutations occur in about 3% of lung adenocarcinomas, 

being the most common mutation the substitution of a valine for a glutamic acid 

in codon 600 (V600E). This class I mutation confers constitutive activation of 

BRAF to signal as a monomer, leading to high levels of phosphorylated ERK (93). 

Class II (signaling through mutant dimer) and III BRAF mutations (signaling 

through mutant and wild type RAF heterodimers) include mutations in G469, 

G466, G596 and K601 residues. Current available BRAF inhibitor are only 

effective against BRAF V600X mutations by binding to activated BRAF 

monomers.  Dabrafenib (BRAF inhibitor) in combination with Trametinib (MEK 

inhibitor) is a currently approved regimen for patients with BRAF V600E mutant 

lung cancer (94).   
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PIK3/AKT/mTOR pathway 

 

 The PIK3/AKT/mTOR pathway is a relevant downstream signaling 

pathway in lung cancer activated by RTK, G-coupled receptors and activated 

RAS proteins (95) (Figure 4). Upon receptor phosphorylation, PI3K catalyzes the 

phosphorylation of cell membrane bound phosphatidylinositol-(4,5)-bisphosphate 

(PIP2) to phosphatidylinositol-(3,4,5)-trisphosphate (PIP3). PIP3 is a potent 

secondary messenger and activates phosphoinositide-dependent kinase-1 

(PDK1). Upon PIK3 phosphorylation, AKT translocates to the inner membrane 

and is phosphorylated by PDK1 in its activation loop. AKT, in turn, indirectly 

activates the mammalian target of rapamycin complex 1 (mTORC1) by 

phosphorylation of the proline-rich Akt substrate of 40 kDa (PRAS40) and 

inhibiting the tuberous sclerosis complex (TSC) (96).  The mTOR protein is a 

serine-threonine kinase that forms the catalytic subunit of the mTORC1 and 

mTORC2 complexes. The mTORC1 complex is composed by mTOR, Raptor 

(regulatory protein associated with mTOR), and mLST8. Instead of forming a 

complex with Raptor, mTORC2 binds to Rictor (rapamycin insensitive companion 

of mTOR). The rapamycin-FKBP12 complex can directly inhibit mTORC1 but not 

mTORC2. However, prolonged rapaymicin treatment eventually impairs 

mTORC2 binding to mTORC1.  

 Activated mTORC1 mediates its oncogenic role through the 

phosphorylation of its main effectors: p70 S6 Kinase 1 (S6K1) and eIF4E Binding 

Protein (4EBP) (97). S6K1 phosphorylates S6 which, in turn, stimulates the 

transcription of key genes in cancer survival by the activation of transcription 

factors. 4EBP, a key translation repressor protein, inhibits the eukaryotic 

translation initiation factor 4E (eIF4E) (98). mTOR phosphorylates 4EBP, which 

in turn liberates eIF4E which forms a complex that induces mRNA transcription 

of cyclin D1 and c-myc that promote cell proliferation.  
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Figure 4. MAPK and PIK3/AKT/mTOR patway activation by tyrosine kinase 

receptors. Activation of the growth factor receptor tyrosine kinases and G protein-

coupled receptors induces KRAS–RAF– MEK–ERK signaling. The MAPK pathway can 

also be activated constitutively by gain-of-function alterations in the component kinases 

(eg. KRAS, BRAF, MEK, ERK) (green circles). The class I PI3K proteins are recruited to 

the plasma membrane by adaptor proteins, leading to phosphorylation of 

phosphatidylinositol 4,5-bisphosphate (PIP2) to generate phosphatidylinositol 

3,4,5-trisphosphate (PIP3). PIP3 is a second messenger that activates the AKT kinases, 

which are able to phosphorylate tuberous sclerosis protein 1 (TSC1) and TSC2, and 

thereby dissociate the TSC1–TSC2 complex. resulting in the activation of mTOR 

complex 1 (mTORC1).  mTORC1 is involved in a negative feedback loop to prevent the 

overactivation of AKT (dashed red lines). The PI3K–AKT–mTOR pathway can be 

upregulated by activating molecular alterations in the PI3K, AKT, and mTOR (green 

circles), or by loss-of-function alterations in regulatory subunits, PTEN, TSC1, TSC2, 

and LKB1 (STK11) (orange circles). ERK phosphorylation can further contribute to 

mTORC1 activation through dissociation of the TSC1–TSC2 complex promoting 

crosstalk of these signaling pathways. Figure and legend adapted from Janku et al. 

Nature Reviews in Clinical Oncology 2018 (99) 

 

mTOR activation is negatively regulated by several proteins and 

complexes (100).  The major regulator of mTOR is the tuberous sclerosis 

complex (TSC1 and TSC2), that mediates mTOR activation through RHEB (101). 

The tuberous sclerosis complex functions as a GTPase activating protein for the 
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GTPase RHEB, that binds and activates mTOR. When the PIK3/AKT/mTOR 

pathway is activated, AKT mediates TSC phosphorylation, uncoupling it from 

RHEB, allowing RHEB to become activated and, in consequence, induce mTOR 

activation. LKB1/STK11 is another important regulator of mTOR activation and is 

frequently altered in lung adenocarcinoma (23). LKB1 negatively regulates 

mTOR by activation of the AMP-activated protein kinase (AMPK) and mTOR 

inhibition through TSC2 (102).  

 There are several points of cross-talk between the MAPK and the 

PIK3CA/AKT/mTOR pathways. Both pathways can negatively regulate or cross-

activate each other. For example, RAS-GTP can bind and activate PI3K, and 

ERK can activate mTOR through TSC phosphorylation. In addition, both 

pathways converge in the expression of common genes with antiapoptotic effects 

like MYC and FOXO genes (103). Both pathways also mediate survival by 

promoting the expression and functionality of anti-apoptotic proteins (from the 

Bcl-2 family) and the degradation of pro-apoptotic mediators.  

 

NF2 regulates mTOR signaling 

 

 Merlin is a membrane-cytoskeleton linker, encoded by the NF2 gene, that 

regulates adherent junctions and numerous pathways including Rho GTPases, 

(Rac1 and Cdc42), RTK, RAS, FAK-Src, PI3K and the Hippo pathway (104). 

Merlin has been identified to negatively regulate mTORC1, through the study of 

type II neurofibromatosis (Figure 5) (105). Mutations and deletions in NF2 cause 

the Neurofibromatosis type syndrome, characterized by the formation of nervous 

system tumors like vestibular schwannomas, peripheral schwannomas, 

meningiomas and ependymomas. These tumors can also form by sporadic 

mutations in NF2.  

 Merlin is a negative mTOR regulator by  mTORC1 inhibition (105). In NF2 

deficient tumors, mTOR has been shown to be constitutively active, and re-

expression of the wild-type NF2 gene represses mTOR signaling (106). 

Pharmacological mTOR inhibition affects NF2-shwannomas by inhibiting S6 and 
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4E-BP1 phosphorylation (107)  This has also been observed in mesothelioma 

cells with NF2 inactivation, where loss of merlin results in integrin-dependent 

mTOR activation, promoting cell cycle proliferation (108).  The oncogenic effect 

of NF2 loss can be also explained by its regulatory function as a regulator of the 

Rho GTPase Rac1 and Cdc42 (105). These effectors can signal through 

serine/threonine p21-activating kinases (PAKS) and the MAPK effectors JNK and 

c-Jun, enhancing both cyclin D1 expression and the transcriptional activity of E2F 

proteins. Merlin indirectly inhibits activation of RAC1 through the GDP-GTP 

exchange by Rac1-associated guanine exchange factors. Merlin can also prevent 

the interaction of Cdc42 with its downstream effectors. In addition, Merlin can 

also inhibit RAS and hence, also regulate cell signaling through the MAPK 

pathway.  

 

Figure 5. Role of NF2/Merlin in cell cycle regulation via its canonical pathway 

(Rac1, Cdc42) and via mTOR. In the cytoplasm, NF2 disrupts the downstream signaling 

of Rac1 and Cdc42 it can also inhibit activation of PAKs, and Ras. Through this, NF2 

prevents the activation of JNK and c Jun. Interestingly, NF2 has differential effects on 

mTORC1 (inhibition) and mTORC2 (activation). In the context of NF2 loss, mTORC1 

leads to the dissociation of transcription factors, 4E-BP1 and eIF4E, resulting in the 

transcriptional activation of cyclin D1. Figure and legend adapted from Beltrami et al. 

Anticancer Cancer 2013 (105) 
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SRC family of protein kinases 

 

 c-Src is a cytoplasmic tyrosine kinase, with well-known oncogenic 

properties, that interacts with multiple RTK and intracellular protein complexes by 

enhancing signal transduction (109). There are nine members of the Src-family 

kinases that have Src homology domains.  

 Activation of RTK like EGFR, VEGFR, PDGFR, IGFR-1 and ALK leads to 

the activation of c-Src via its SH2 domain. Src can directly activate the MAPK and 

the PI3K/AKT/mTOR pathways by direct cooperation with RTK activation. PI3K 

contains an SH2 domain in its regulatory domain (p85), where it can be activated 

by SRC and FAK. Src also regulate cell to cell adhesions by interacting with p130, 

paxillin and focal adhesion kinases (FAK) to induce cell migration through 

dissociation of cell-cell junctions and the activation of matrix metalloproteases. 

Activated Src also regulates angiogenesis through the expression of the vascular 

endothelial growth factor (VEGF).   

 

Apoptosis inhibition by oncogenic signaling  

 

 Oncogenic signaling pathways culminate in the transcription of multiple 

genes and the induction of mediators of cell proliferation, migration, invasion and 

survival. In this scenario, cell survival is also sustained by the inhibition of 

apoptosis (110).  

 The apoptotic process is mainly executed by caspases, a family of 

endoproteases that trigger signaling pathways that eventually lead to cell death. 

Caspases can by activated in apoptosis by two main pathways: the extrinsic and 

intrinsic pathways (111). The extrinsic pathway requires the activation of ¨death 

receptors¨ in the cell membrane like TRAIL, FAS or TNRF1. The intrinsic pathway 

is the most regulated in cancer and is activated by the result of intracellular stimuli 

including metabolic alterations, DNA damage and endoplasmic reticulum stress. 

In this pathway, BH3-only protein (PUMA, BID and BIM) activates the pro-
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apoptotic proteins BAX and BAK, which in turn mediate the permeabilization of 

the outer mitochondrial membrane. Consequently, cytochrome C and second 

mitochondrial-derived activator of caspases (SMACS) are released from the 

mitochondria to in the cytoplasm. Cytochrome C interacts with apoptotic protease 

activating factor 1 (APAF1) to form the apoptosome complex which activates 

caspase-9. This event leads to the activation of caspase-3 and caspase-7, and 

ultimately to apoptosis. The anti-apoptotic BCL-2 family of proteins inhibit the 

permeabilization of the mitochondria outer membrane by binding and inhibiting 

BH3-only proteins and by binding to activated BAK and BAX.  

 Oncogenic signaling through the MAPK and PI3K/AKT/mTOR pathways 

enhances antiapoptotic signaling. One of the mechanisms of cell survival is the 

induction of proteasome-mediated degradation of the proapoptotic BH3-only 

protein BIM by phosphorylated ERK (112). Another mechanisms involves Mcl-1, 

an antiapoptotic protein from the Bcl-2 family that binds and sequestrates 

proapoptotic proteins like BAX, BAK, NOXA and BIM and is positively regulated 

by mTOR activation (113).  The inhibition of RTKs and intracellular kinases in 

oncogene-addicted lung cancer induces BIM upregulation and apoptosis mainly 

through ERK inhibition (114). The dependency on BIM to induce apoptosis upon 

TKI treatment is reflected by the induction of treatment resistance by silencing 

BIM expression and by the lower levels of apoptosis observed with BIM deletion 

polymorphisms in  EGFR mutant lung cancer cells (115).  
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1E. Targeted therapies in lung adenocarcinoma 

 

 Genomic testing in lung adenocarcinoma tumors is key to guide the 

treatment strategy for patients with advanced disease. The landscape of 

targetable oncogenic alterations has led to the development of a large list of 

compounds directed to inhibit abnormal activated kinases in lung cancer. These 

targeted therapies are mostly tyrosine kinase inhibitors and serine-threonine 

kinase inhibitors.  

 Tyrosine kinase inhibitors are a group of small molecules designed to 

inhibit the transfer of the terminal phosphatase of ATP to a tyrosine residue in the 

tyrosine kinase domain by irrupting the kinase ATP binding site. TKIs can be 

classified according to their mechanisms of action. Type I inhibitors bind to the 

active conformation of the kinase in the ATP pocket at the catalytic site, type II 

inhibitors bind to the catalytic site in the inactive (unphosphorylated) confirmation 

of the kinase (DFG-out) and type III are non-ATP competitive inhibitor (allosteric 

inhibitors) (116). Allosteric inhibitors were further classified as class III if the 

binding of the molecule is within the cleft between the small and large lobes 

adjacent to the ATP binding pocket and type IV inhibitors if the drug binding 

occurs outside of the cleft. Allosteric inhibitors induce conformational changes 

that make the protein inactive. A recent classification has included type I ½ 

kinases which bind to protein kinases in a DFG-Asp in and C-helix out 

conformation (117).  TKIs inhibit the phosphorylation of the kinase domain and, 

in consequence, blocks the receptor downstream signaling pathways, removing 

the main growth and survival stimuli in abnormally activated kinases, resulting in 

apoptosis and cancer cell death.  

 Currently, there are multiple kinase inhibitors approved for the treatment 

of patients with ALK-rearranged, EGFR mutant, BRAF V600E mutant, ROS1 and 

NTRK-rearranged lung cancer based on enhanced response rates and disease 

control (Table 1). There are also several kinase inhibitors in development 

targeting RET, HER2/EGFR exon 20 insertions, KRAS, MET and a wide variety 

of drugs targeting DNA damage response elements, cell-cycle checkpoint 
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kinases and epigenetic modulators in lung cancer. In addition to selecting 

patients for targeted therapies based on the tumor biology, the identification of 

molecular actionable targets is necessary to select patients for treatment with 

novel compounds in the setting of clinical trials. 

Gene Molecular Alteration 
Clinical Approved 

Kinase inhibitors 

Kinase inhibitors in 

Development 

ALK Rearrangements 

Crizotinib,  

Ceritinib 

Alectinib 

Brigatinib 

Lorlatinib 

Ensartinib 

Entrectinib 

PLB1003 

EGFR 

L858R mutations and exon 19 

deletions. 

Erlotinib 

Gefitinib 

Afatinib 

Dacomitinib, 

Osimertinib 

- 

Exon 18 and 20 point mutations Afatinib Osimertinib 

Exon 20 insertions None 
Poziotinib,  

TAK-788 

T790M resistance  

(post 1st-2nd Generation EGFR TKI) 
Osimertinib 

Nazartinib 

Abivertinib 

ROS1 Rearrangement Crizotinib 

Ceritinib 

Brigatinib 

Lorlatinib 

Repotrectinib, 

Entrectinib 

BRAF V600E mutations Dabrafenib/Trametinib  

NTRK Rearrangements Larotrectinib 

LOXO-195 

Entrectinib 

Repotrectinib 

MET Exon 14 skipping, amplification None 

Crizotinib 

Capmatinib 

Tepotinib 

Savolitinib 

Merestinib 

KRAS G12C None 
AMG-510 

MRTX849 

RET Rearrangements None 

LOXO-292 

BLU-667 

Alectinib 

Lenvatinib 

HER2 Exon 20 insertions  None 
Poziotinib 

TAK-788 

Table 1. Targetable Oncogenic drivers in non-small cell lung cancer. Genes, 

molecular alterations that lead to oncogenic activation and targeted therapies with kinase 

inhibitor approved and in development.  
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 While the exploration of new oncogenic targets is far from ending, a new 

chapter in the treatment of lung cancer is being written with the development of 

immune-checkpoint inhibitors (ICIs) like PD-1 and PD-L1 monoclonal antibodies 

(118). These compounds have shown to be efficacious in the treatment of 

patients with NSCLC in the metastatic setting alone and in combination with 

chemotherapy, and as consolidation treatment for patients with stage III disease 

after concurrent chemoradiation therapy (119–121). However, clinical studies 

suggest that the role of immunotherapy on patients with EGFR mutant, ALK 

rearranged lung cancer is limited (122). In addition, early trials studying the 

combination of anti EGFR or ALK TKI with ICIs have shown significant toxicities 

without signs of added benefit (123–125). This further validates the role of 

targeted therapies as the standard and preferred treatment for patients with 

EGFR and ALK-driven tumors. 
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2. Targeting the Anaplastic Lymphoma Kinase (ALK) 

in lung cancer: from discovery to treatment with 

second-generation ALK inhibitors 

 

2A. The ALK tyrosine kinase receptor 

 

 The Anaplastic Lymphoma Kinase (ALK) gene is located in chromosome 

2p23.1 and encodes for the Anaplastic Lymphoma Kinase tyrosine kinase 

receptor. ALK was first discovered in the year 1994 through the study of 

t(2;5)(p23;q35) translocated anaplastic large cell lymphomas. Morris and 

colleague’s discovered that the product of this translocation was the fusion 

between ALK and nucleopasmin 1 (NPM1), and disclosed the high homology of 

ALK to other members of the insulin tyrosine kinase receptor family like the 

leukocyte tyrosine kinase (LTK)(126). Since then, the murine and human full ALK 

receptors have been cloned and  characterized (127,128). 

 ALK contains 29 exons that encode a protein of 1620 amino acids (Figure 

6). The ALK tyrosine kinase receptor is composed of an extracellular domain, a 

transmembrane domain and an intracellular kinase domain (129,130). The 

extracellular domain is constituted by 1038 amino acids and contains an external 

signal peptide, two MAM segments (meprin, A5 protein, PTPmu), and a LDLa 

(low density lipoprotein class a) domain between both MAM segments. The MAM 

segments are thought to participate in cell-cell adhesion and the role of the LDLa 

domain is unknown (131).  

 The extracellular domain is the binding site for the ALK receptor ligands 

(ALKALs). JEB (jelly belly) has been identified to activate ALK in Drosophila 

melanogaster, and Hen-1 (hesitation 1) is the ligand in Caenorhabditis elegans 

(132). FAM150A (AUGβ) and FAM150B (AUGα) have been recently discovered 

as ALK ligands in vertebrate organisms (133,134). These secretory proteins are 

potent ALK and LTK ligands capable of activating ALK in vitro in the picomolar 
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range (135). Conditioned medium containing FAM150A or FAM150B potently 

activated PC12 cells expressing full length ALK. In addition ligand-dependent 

ALK phosphorylation can be  potently inhibited with crizotinib, a first generation 

ALK TKI (136).  Furthermore, the role of these ALK ligand were confirmed in vivo 

in vertebrate models using the zebrafish Danio rerio. The Danio rerio LTK has 

high homology to the human ALK in sequence and domain structure. This RTK 

controls the development of the neural crest-derived pigment cells iridophores. 

Overexpression of the FAM150 proteins cause ectopic iridophore development 

and, loss of function mutations in these genes, result in lack of iridophore 

formation in these models.  

 

 

 

Figure 6. ALK mRNA and protein sequence with key domains. mRNA sequence 

depicts full reference sequence of ALK (NM_004304) with exon numbers marked. ALK 

protein sequence (0–1620 amino acids) shows different functional domains (MAM1, 

LDL, MAM2, Gly-rich, and kinase domain) with starting and ending amino acid numbers 

(UniProt). Figure and legend adapted from Holla et al. Cold Spring Harbor Molecular 

Case Studies 2017(137) 

 

 The ALK transmembrane domain connects the extracellular domain to the 

receptor juxtamembrane domain in the intracellular portion of the receptor 

(residues 1060-1620). The ALK kinase domain is encoded in exons 20 to 28 and 

is composed by an amino-terminal lobe and a carboxyterminal lobe linked to a 

hinge region that forms the binding pocket for ATP, where the catalytic action of 

the kinase takes part (138). The ALK kinase domain contains two hydrophobic 

motifs called the catalytic and regulatory spines (139). The catalytic spine 

contains the adenine ring of bound ATP that is conformed in an activated state.  



 

55 

In the kinase domain, the catalytic activity is regulated by several essential 

segments, including a catalytic loop, the activation loop, the αC-helix and glycine-

rich loop (129). The crucial residues in the kinase domain include E1167 in the 

αC-helix, the HRD residues H1247, R1248 and D1249 within the catalytic loop, 

the K1150 residue within the N-lobe, and the DFG residues D1270, F1271 and 

G1272 within the activation segment. The spatial structure promotes and 

regulates the activation state of the kinase.  

 ALK receptor dimerization results in transphosphorylation of residues 

Y1278, Y1282, and Y1283 in the activation loop (140). Following this, multiple 

tyrosine residues in the kinase domain become phosphorylated (1507, 1584, 

1586, 1604, 1139, 1358, 1385 and 1401). Most of these phosphorylated residues 

serve as docking sites for adaptor proteins that initiate signaling pathway: SHC 

(Src homology and collagen protein), FRS2 (fibroblastic growth factor substrate 

2), IRS2 (insulin receptor substrate 2), GRB2 (growth factor bond 2), amongst 

others (141). This triggers the activation of previously described oncogenic 

signaling pathways including the RAS/RAF/MEK/ERK, PI3K/AKT/mTOR, 

JAK/STAT, JNK, PLCγ (phospholipase Cγ) and SRC signaling. The  Src-

homology 2 domain (SH2)-containing protein tyrosine phosphatases, SHP1 and 

SHP2, also play a role in cell proliferation in ALK-driven cancers (142,143).  

The study of ALK downstream signaling pathway has been mainly 

performed on oncogenic NPM-ALK and EML4-ALK rearranged cancer cell 

models. These pathways ultimately culminate in the activation and expression of 

several oncogenic proteins that regulate cell proliferation (FOS, JUN, MYC, 

CDKN1B, cyclin D2, Cdc42), cell motility (p130CAS, MMP9) and inhibition of 

apoptosis (BIM inhibition) (Figure 7).  

 The physiological role of ALK in humans is not fully understood, but 

multiple in vivo studies in other species suggest that ALK participates in neural 

development and behavior. In mice, high levels of ALK expression were seen on 

neonatal brain and spinal cord. Interestingly, ALK knockout mice experience 

basal hippocampal progenitor proliferation, increase dopamine levels in the basal 

cortex and alterations in behavioral tests (144). In humans, ALK inhibition with 

the highly brain penetrant TKI lorlatinib can provoke psychiatric alterations 
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including cognitive function, mood, and speech as adverse events with this drug 

(145). Though the biological rational behind this unique adverse event has not 

been explored, it could provide new hypothesis to the role of ALK in the human 

brain and guide further research on this matter.  

 The involvement of ALK in a variety of human cancers has been well 

characterized over the past 25 years. The two main biological mechanisms 

involved in ALK carcinogenesis are gene rearrangements involving the ALK 

kinase domain in the 3’ end and point mutations in the ALK tyrosine kinase 

domain. ALK rearrangements are most commonly distributed among the different 

tumor types driven by ALK alterations.  

 

Figure 7 Molecular mechanisms of ALK oncogenic activation and downstream 

signaling. Wild type ALK signals by receptor dimerization after binding to its ligand. Gain 

of function kinase domain mutations (eg. F1174L and F1245C) and rearrangements 

involving the ALK kinase domain (eg. EML4-ALK) confer ligand independent activation. 

Signaling pathways implied in ALK oncogenicity are the RAS–MAPK, PI3K–mTOR, 

PLCγ, RAP1, Janus kinase (JAK)–signal transducer and activator of transcription (STAT) 

and JUN pathways. Adaptor proteins like IRS1, SHC, GRB2, SHP2, C3G, CBL, CRKL 

and FRS2 are activated in the kinase domain and mediate downstream signaling. This 

finally conveys in the regulation of the transcription of several genes that promote cancer 
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proliferation and survival. Figure and legend adapted from Hallberg et al. Nature Reviews 

in Clinical Oncology 2013 (141). 

 Since the discovery of the NPM-ALK rearrangement, over 30 ALK fusion 

partners have been identified in a wide variety of cancer including: lung cancer, 

inflammatory myofibroblastic tumors (IMT), anaplastic thyroid cancer (ATC), 

esophageal, breast, colon, leiomyomas/sarcomas, renal cell carcinomas, large 

B-cell lymphomas (LBCL), endometrial cancer, histiocytosis and gliomas (129).  

(Table 2). 

ALK rearrangements are transduced in fusion proteins composed by the 

amino-terminal portion of the fusion partner and the carboxi-terminal portion of 

ALK, containing the complete kinase domain. The most common ALK 

breakpoints occur between exons 19-20 or 20-21. When rearranged, the 

subcellular localization of ALK is determined by the unique characteristics of the 

partner proteins, which can reside in the nucleus, in the cytoplasm, and in 

intracellular organelles. In gene rearrangements, the transcription of the fusion 

gene is regulated by the promoter of the fusion partner. At the protein level, the 

fusion partner homodimerizes leading to trans-autophosphorylation of the 

tyrosine kinase domain and activation of downstream signaling pathways. It is 

unclear if the different fusion partners may confer differential oncogenic 

properties, but recent evidence suggests that the fusion partner protein may 

impact the potency of ALK tyrosine kinase inhibitors (146). 

 ALK rearrangements are common in inflammatory myofibroblastic tumors 

(IMT), the most common pediatric form of primary lung tumors in children. About 

50% of IMT harbor ALK rearrangements resulting in constitutive ALK activation 

(Table 2) (147). Less frequently, other oncogenic rearrangements are involved 

in the pathogenesis of this disease including ROS1, RET and NTRK3. ALK+ IMT 

cancers are susceptible to treatment with ALK TKIs, with about 80% of patients 

achieving responses with crizotinib. 

ALK-rearranged diffuse large B cell lymphomas (DLBCL) is a rare and 

aggressive form of cancer. Patients with ALK-driven DLCBC have a dismal 

prognosis compared to non-rearranged DLBCL. Anecdotal response to ALK TKIs 

have been reported in the context of chemotherapy refractory disease. ALK 
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rearrangements have been detected in other solid tumors, but the clinical 

relevance of these infrequent findings needs to be further explored (Table 2) 

Cancer Type ALK Rearrangements / Fusion partner 

ALCL 
NPM, ATIC, RNF213, TPM3, TPM4, TRAF1, MSN, TFG, MYH9, 

CLTC, ALO17 

NSCLC 
EML4, KIF5B, KLC1, PTPN3, STRN, SLC2A, CMTR1, VIT, 

GCC2, CUX1, BCL11A, KLC1. 

IMT 
TPM3, TPM4, CLTC, CARS, ATIC, SEC31, PPFIBP-1, RANBP2, 

NUMA1, THSBS1, IGFBP5, HNRNPA-1, A2M, 

Anaplastic Thyroid Cancer STRN, EML4, GFPT1, TFG 

Breast Cancer EML4 

Esophageal Cancer TPM4 

Renal Cell Carcinoma VCL, TPM3, EML4, STRN, HOOK1 

Colorectal CAD, EML4, CDorf44 

Leiomyosarcoma ACTG2 

Glioma PP1CB 

Endometrial cancer EML4 

Ovarian Cancer FN1-ALK 

LBCL CLTC, NPM, SQSTM1, SEC31A, GORASP2 

Epithelioid histiocytoma PRKAR2A, MLPH 

Cancer Type  ALK kinase domain mutations  

Neuroblastoma R1275Q/L (43%), F1174L/I/C/S/V (30%), F1245C/L/V (12%) 

Anaplastic Thyroid 

Carcinoma 
L1198F 

 

Table 2. Summary of the different ALK- dependent cancers and molecular 

alterations. ALK-rearrangements occur in a variety of tumor types, being the most 

frequently observed in inflammatory myofibroblastic tumors (IMT), non-small cell lung 

cancer (NSCLC) and anaplastic large cell lymphomas (ALCL). 
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  A less common mechanism of oncogenic ALK activation is by the point 

mutations in the ALK kinase domain, mainly described in neuroblastomas. 

Neuroblastoma is a pediatric cancer arising from the sympathetic nervous 

system, most commonly in the adrenal medulla. MYC amplification is observed 

in about 30% of cases and is associated with poor survival (148). Activating point 

mutations in the ALK kinase domain are present in about 7-8% of neuroblastoma 

tumors (139). Oncogenic ALK kinase domain mutations in the following residues 

F1174, F1245, F1275, G1128, M1166, I1170, I1171, R1192, L1196, L1240 and 

Y1278 confer constitutive activation of ALK kinase domain in neuroblastoma. The 

most common mutations detected in neuroblastomas are the F1174L and 

R1275Q and are usually somatic, but in rare occasion, germline ALK mutations 

are found in familial neuroblastoma (149). Interestingly, some of neuroblastoma 

activating mutations like F1174L and L1196M also confer resistance to the first 

generation ALK inhibitor crizotinib by increasing the ATP affinity of the kinase or 

by blocking the binding of the ALK TKI to the kinase domain (150,151). Preclinical 

models and case reports support the use of ALK inhibitors in the treatment of 

ALK mutant neuroblastomas, promoting the need for the clinical development of 

targeted therapies in this disease (152).  
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2B. The role of ALK in lung cancer 

 

 ALK rearrangements occur in about 3-6% of lung adenocarcinomas. The 

activation of ALK by the complex formation of fused proteins is the sole 

mechanism of ALK oncogenicity in lung cancer. Multiple fusion partners have 

been described in lung cancer including EML4, KIF5B, KLC1, PTPN3, STRN, 

SLC2A, CMTR1, VIT, GCC2, CUX1, BCL11A and KLC1. Nevertheless, EML4-

ALK rearrangements are the most common fusions in patients with ALK- 

rearranged lung cancer (153).  

 Soda and colleagues published the first report and characterization of an 

EML4-ALK rearrangement in lung cancer in 2007 (40). They identified a 3.926 

base-pair cDNA, for a 1.059 amino acid protein with an amino-terminal sequence 

identical to EML4 and a carboxi-terminal sequence identical to ALK. This fusion 

protein EML4-ALK (variant 1) was the product of a disrupted EML4 in exon 13 

with ALK in exon 20, including the full ALK kinase domain in the 3´extreme.  

 Echinoderm microtubule like proteins (EML) are family of proteins that 

participate in microtubule regulation. Humans express six different subtypes of 

EML proteins (154). EML4 is a member of this family and is composed of an 

amino-terminal coiled-coil domain and a carboxi-terminal domain that contains a 

hydrophobic EML protein (HELP) domain. The coiled-coil region of EML4 is 

necessary for oligomerization, this region is also called trimeric dimerization (TD). 

The carboxyterminal region also contains a tandem atypical β-propeller in EML 

protein (TAPE) domain that also participates in the hydrophobic core of this 

protein. The hydrophobic core of EML4 mediates the binding to tubulin in human 

cells.  

EML4-ALK proteins form homodimers through the coiled-coil domain in 

EML4, inducing transphosphorylation of the kinase domain and activation of 

oncogenic downstream pathway signaling, as previously mentioned. Both EML4 

and ALK are oriented in opposite directions within the short arm of chromosome 

2 and EML4-ALK fusions are produced by paracentric inversions [inv(2)(p21p23)] 
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in this locus. Different breaking points in EML4  give origin to a spectrum of EML4-

ALK fusion variants (155). At least 15 different EML4-ALK variants have been 

identified, and the most common EML4 break points occur in exon 13 (variant 1) 

in 43% of cases, exon 20 (variant 2) in 6%, and exon 6 (variant 3) in 40% (Figure 

8)  (156). The EML4-ALK variant 3 was identified in 2008 by Choi and colleagues, 

and is comprised by the isoforms 3a and 3b resulting from alternative splicing 

(157). All three EML4-ALK variants conferred transforming properties in vitro, and 

phosphorylated EML4-ALK can be successfully inhibited with ALK TKI inhibitors 

(158). The EML4-ALK variants 3a/b and 5a/b are the only variants that lack the 

EML4 TAPE domain. Expression of the EML4 TAPE domain confers instability to 

the fusion protein and might explain higher levels of sensitivity of TAPE 

containing variant to ALK and HSP90 inhibitors (159). Shorter variants that do 

not contain the TAPE domain like variant 3 are more stable.   

 

 

Figure 8. Schematic display of the most frequent EML4-ALK rearrangements. The 

variant number is followed by the breakpoint locus in EML4 and ALK. The representation 

of EML4 includes the coil coiled domain (CC), the hydrophobic EML protein (HELP) 

domain and the variable tryptophan-aspartic acid (WD) repeats. Variants 3a, 3b and 5 

do not contain the EML4 HELP and WD domains.  All the EML4-ALK variants include 

the entire ALK kinase domain. Figure and legend adapted from Wu et al. Cancers (Basel) 

2017 ((160) 
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 In addition the variant type also determines sub-cellular localization of the 

fusion protein, variant 1 is detected in the cell cytoplasm while variant 3 EML4-

ALK fusion proteins are localized in microtubules and nucleus (161). Clinical 

studies did not show a significant impact of the different variant types in the 

response to ALK TKI in patients with ALK rearranged lung cancer but this subject 

is currently being studied (156,162). However, in the setting of resistance to 

tyrosine kinase inhibitors, there is initial evidence showing associations between 

the type of variants and specific mechanisms of resistance (156).  

 Most ALK rearranged lung cancers are lung adenocarcinomas. 

Infrequently, ALK rearranged squamous cell carcinomas and large cell 

carcinomas have been reported, but these were found in non-smoker patients 

(163). Adenocarcinomas with ALK fusions may present signet cell features under 

pathology revision, and this might be associated with a poorer prognosis (164). 

ALK rearrangements can be diagnosed in pathologic specimens of lung cancers 

in different ways: by immunohistochemistry (IHC), fluorescence in situ 

hybridization (FISH) and next-generation sequencing (NGS) (165).  

  ALK-rearranged lung cancer tends to occur at younger age and can be 

detected in about 13% of patients with less than 50 years old with lung 

adenocarcinoma (166–168). There is a strong association between this 

molecular subtype and a history of light (<10 pack/years) or never smoking and 

its prevalence is higher in women. Most patients are diagnosed with ALK-

rearranged lung cancer at advanced stages, and this molecular subtype of lung 

cancer is characterized by a high tropism for the central nervous system (CNS). 

Brain metastasis occur in about 20% of patients at the time of diagnosis but the 

incidence of brain metastasis increases during the course of treatment with ALK 

tyrosine kinase inhibitors rising up to 60%, which conveys significant morbidity 

and mortality (169,170). For these reasons, effective and highly CNS penetrant 

tyrosine kinase inhibitors have been developed to achieve both intracranial and 

extracranial disease control.  

 Currently, there are five effective ALK targeted agents available for the 

treatment of patients with lung cancer, with proven efficacy and capable of 
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conferring prolonged disease control and survival when appropriately indicated 

and managed.  

 The implementation of rapid ALK testing with IHC and the biological and 

chemical development of ALK tyrosine kinase inhibitors, together with an 

effective clinical trial development, led to the approval of the first-generation ALK 

TKI crizotinib in 2011, just 4-years after the discovery of the EML4-ALK 

rearrangement in lung cancer. In the following 7-years, the arsenal of ALK TKIs 

expanded significantly to adapt drug design to deliver more potent and CNS 

penetrant ALK TKIs, capable of overcoming resistance to the first-generation ALK 

inhibitor crizotinib. 
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2C. ALK Tyrosine Kinase Inhibitors in the treatment of 

ALK+ NSCLC: first and second generation ALK TKI 

 

 Currently, there are five ALK tyrosine kinase inhibitors available for the 

treatment of patients with ALK-rearranged lung cancer: the first generation ALK 

TKI crizotinib, second generation ceritinib, alectinib and brigatinib and the third 

generation ALK TKI lorlatinib (Table 3). Treatment with ALK directed tyrosine 

kinase inhibitors has dramatically improved the survival and quality of life of 

patients with ALK rearranged lung cancer. This has been achieved by the 

sequential use of first-, second- and third-generation ALK inhibitors.  

 

Drug Generation Clinical Setting Approval 

Crizotinib First First Line EMA/FDA 

Ceritinib Second 
First Line 

Second after crizotinib 

EMA/FDA 

EMA/FDA 

Alectinib Second 
First Line 

Second after crizotinib 

EMA/FDA 

EMA/FDA 

Brigatinib Second 
First Line 

Second after crizotinib 

No 

EMA/FDA 

Lorlatinib Third 
After two lines of ALK TKIs including crizotinib or 2nd 

line after a second generation ALK TKI. 
EMA/FDA 

  

Table 3. Summary of available ALK tyrosine kinase inhibitors. The table 

summarizes the clinical setting in which the ALK tyrosine kinase inhibitors have been 

tested and the approval status by the European Medicines Agency (EMA) and the Food 

and Drug Administration of the United States (FDA).  

The original approach for the treatment of patients with ALK+ lung cancer 

consisted of providing first-line treatment with crizotinib and switching to second 

or third generation ALK TKIs after progression. Patients treated with crizotinib in 

the first line setting can achieve responses in about 74% of cases, with median 

progression-free survival (PFS) of 10.9 month (Figure 9) (171). Second 

generation ALK TKIs can overcome resistance by most of the on-target 
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resistance mutations developing with crizotinib. Treatment with ceritinib, alectinib 

or brigatinib in the second or further lines after disease progression with crizotinib 

conveys response rates ranging from 37 to 73% of patients and median 

progression-free survival durations between 5.4 and 12.9 months (172). The third 

generation ALK inhibitor, lorlatinib, was then develop to overcome resistance 

mechanisms to first and second-generation ALK inhibitors, in particular the 

development of highly resistant mutations like the solvent-front G1202R 

mutations (172). Recent reports from the phase I/II study of lorlatinib show that 

patients with treated with > 2 previous lines of ALK TKI, lorlatinib elicited 

responses in 39% of patients and median PFS duration in this group was 6.9 

months (173).  

 In the past years, this paradigm shifted to place more potent and selective 

second generation ALK TKI in the first line setting. This has been supported by 

improved PFS observed with ceritinib, alectinib and brigatinib in the first line 

(162,174–176).  

 

 

Figure 9. Treatment strategies with ALK inhibitors in NSCLC. Sum of progression- 

free survival (PFS) durations in different trials of frontline ALK tyrosine kinase inhibitors 

in a sequential strategy (top) with first line treatment with crizotinib and the strategy with 

first line second generation ALK TKIs ceritinib and alectinib. Abbreviations: mo, months; 

NR , not reported. 
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Crizotinib 

 

 Crizotinib (PF-2341066) is an orally available  ATP-competitive inhibitor of 

ALK, MET and ROS1 (177). The early preclinical studies showed that crizotinib 

is a potent ALK inhibitor in Karpas299 or SU-DHL-1 ALCL cells (IC50: 24 nmol/L). 

ALK inhibition by crizotinib results in G1-S–phase cell cycle arrest and induction 

of apoptosis in these cell lines (178). Crizotinib is also a potent inhibitor of ALK 

rearranged lung cancer, as seen by inhibitory properties the EML4-ALK 

rearranged H3122 cells in vitro (179). The H3122 cell line is composed of lung 

cancer cells that harbor an EML4-ALK variant 1 rearrangement and have been 

extensively used to characterize ALK inhibitors.  

 Four clinical trials were conducted showing the efficacy of crizotinib in the 

treatment of patients with ALK+ lung cancer (Table 4). The most relevant study 

in this context was the PROFILE 1014, a phase III trial that compared the efficacy 

of crizotinib to chemotherapy in the first line setting (171,180). Treatment with 

crizotinib resulted in increased response rate (74% vs 45%), prolonged PFS (10.9 

months vs. 7 months) and impressive survival in patients, reaching 4-year 

survival rates of 56.6% with crizotinib (180,181).   

 Crizotinib can penetrate the brain barrier, and can confer higher 

intracranial disease control compared to chemotherapy  (DCR 85% vs 45%) 

(182). However, in patients with baseline treated brain metastasis, about 43% of 

patients experienced intracranial disease progression and 22% of patients 

without baseline brain metastasis developed central nervous system (CNS) 

progression. This propelled the need for the development of enhanced brain 

penetrating ALK inhibitors to confer better CNS disease control. Based on this 

evidence, crizotinib was widely adopted and approved in 2011 for the treatment 

of patients with advanced ALK rearranged lung cancer as a first line or 

subsequent line of treatment. 
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Trial 

 

Trial design  

(phase, primary end 

point, and treatment 

arms, 

 

Median 

follow-up  

(months) 

 

Outcomes  

✱ ORR,  

✱ median PFS and ✱ median OS 

PROFILE 1001  

(REFS 

(183,184)) 

I 

ORR, DOR, TTR, PFS, 6–

12 mo OS, safety profile 

Crizotinib (n = 149) 

16.3 

✱ 60.8% 

9.7 ✱ 9.7 Mo 

✱ 1-year OS 74·8% 

PROFILE 1005  

(REF. (185)) 

II 

ORR 

Crizotinib (n = 1069) 

NA  

✱ 54% 

✱ 8.4 mo 

✱ 21.8 mo 

PROFILE 1007  

(REF. (186)) 

III 

PFS 

Crizotinib (n = 173) vs 

pemetrexed or docetaxel 

(n = 174) 

12.2 mo 

(crizotinib

) and 

12.1 mo 

(chemoth

erapy) 

✱ 65% vs 20% 

✱ 7.7 mo vs 3.0 mo  

(HR 0.49; P <0.001) 

✱ 20.3 mo vs 22.8 mo (HR 1.02; 

P = 0.54) 

PROFILE 1014  

(REF (171,187)) 

III 

PFS 

Crizotinib (n = 172) vs 

platinum + pemetrexed 

(n = 171) 

46 mo 

✱ 74% vs 45% 

✱ 10.9 mo vs 7.0 mo (HR 0.45; 

P<0.001) 

✱ NR (45.8 mo–NR) vs  

47.5 mo (32.2 mo–NR; HR 0.76; 

P = 0.048)  

Table 4. Summary of clinical trials with crizotinib. ORR: overall response rate; DOR: 

duration of response; TTR: time to treatment response; PFS: progression free survival; 

OS: overall survival. Adapted from Recondo et al. Nature Reviews Clinical Oncology 

2018 (172)  

 

Ceritinib 

 

 Ceritinib (LDK375) is a second generation, ATP competitive ALK inhibitor. 

Besides ALK, ceritinib can also inhibit the Insulin Growth Factor Receptor (IGFR) 

(188). Ceritinib was designed to overcome resistance to some of the most 

frequent resistance mutations occurring at disease progression with crizotinib, 

like the L1196M gatekeeper mutation (189).  

Ceritinib was the first second-generation ALK TKI tested in the context of 

resistance to crizotinib, showing response rates in about 40% of patients with 

median PFS durations of 6 months (190–193) (Table 5).  
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 In the first-line setting, ceritinib was superior to  chemotherapy, eliciting 

higher response rates (72.5% vs. 26.7%) and PFS (16.6 months vs. 8.1 months) 

(175). Hence, ceritinib is currently an upfront treatment option for patients with 

ALK-rearranged lung cancer. However, given the development of other potent 

and better tolerated second generation ALK inhibitors like alectinib and brigatinib, 

the current role of ceritinib in the second- or first-line treatment seems to be 

declining. 

 

Trial 

 

Trial design  

(phase, primary end point, and 

treatment arms,  

 

Median 

follow-up  

(months) 

 

Outcomes  

✱ ORR,  

✱ median PFS  

✱ median OS 

ASCEND-1  

(REFS 

(190,191)) 

I 

MTD 

Ceritinib (n = 246) 

First line (33%) or second line 

after crizotinib (66%) 

11.1 mo 

✱ 72% or 56% 

✱ 18.4 mo or 6.9 mo 

✱ NR or 16.7 mo 

ASCEND-2  

(REF. (192)) 

II 

ORR 

Ceritinib (n = 140) 

Second line after crizotinib 

11.3 mo 

✱ 38.6% 

✱ 5.7 mo 

✱ 14.9 mo 

ASCEND-3  

(REF. (194)) 

II 

ORR 

Ceritinib (n = 124) 

First line 

8.3 mo 

✱ 63.7% 

✱ 11.1 mo 

✱ NA 

ASCEND-4  

(REF. (175)) 

III 

PFS 

Ceritinib (n = 189) vs 

platinum + pemetrexed (n = 187) 

First line 

19.7 mo 

✱ 72.5% vs 26.7% 

✱ 16.6 mo vs 8.1 mo 

(HR 0.55; P <0.00001) 

✱ NE (29.3 mo–NE) vs 

26.2 mo (22.8 mo–NR ; 

HR 0.73; P = 0.056)  

ASCEND-5  

(REF. (193)) 

III 

PFS 

Ceritinib (n = 115) vs pemetrexed 

or docetaxel (n = 116) 

Second line after crizotinib 

16.5 mo 

✱ 39.1% vs 6.9%   

5✱ .4 mo vs 1.6 mo 

(HR 0.49; P <0.0001) 

✱ 18.1 mo vs 20.1 mo 

(HR 1.00; P = 0.5)  

Table 5. Summary of clinical trials with ceritinib. ORR: overall response rate; DOR: 

duration of response; TTR: time to treatment response; PFS: progression free survival; 

OS: overall survival. Adapted from Recondo et al. Nature Reviews in Clinical Oncology 

2018 (172)  
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Alectinib 

 

 Alectinib is a benzo[b]carbazole derivative developed to be highly potent, 

with an IC50 in cell-free assays of 1.9 nM and confers high levels of ALK inhibition 

in EML4-ALK rearranged cell lines in vitro and in vivo (195). Alectinib was firstly 

clinically developed as a second line regimen for patients previously treated with 

crizotinib (Table 6). The phase III study ALUR, compared alectinib to single agent 

docetaxel or pemetrexed in patients who had previously progressed on treatment 

with crizotinib, and like what was observed with ceritinib, treatment with alectinib 

conferred higher response rates than chemotherapy (37.5% vs 2.9%) and 

prolonged PFS (9.6 vs. 1.4 months) (196). Based on these results alectinib was 

granted approval for the treatment of patients who had experienced disease 

progression after treatment with crizotinib.  

 Differently to crizotinib and ceritinib, alectinib is not a substrate of the P-

glycoprotein (P-gp), also known as multidrug resistance protein 1 (MDR1) or 

ATP-binding cassette sub-family B member 1 (ABCB1) (197). P-gp is a key efflux 

transporter present in the capillary endothelial cells of the blood brain barrier, and 

by this mean, can reduce the bioavailability of drugs in different body 

compartments, like the brain.  As alectinib is not a substrate for this transporter 

and is a highly penetrant drug, it can achieve high concentrations in the CNS 

(198). A pooled analysis of phase II studies revealed that in patients with 

measurable brain metastasis, the intracranial ORR with alectinib was 64%, with 

a median intracranial duration of response of 10.8 months (199).  

 The phase III trial J-ALEX, conducted in Japan, and the international ALEX 

trial compared the efficacy of first-line treatment with alectinib to crizotinib 

(200,201). Alectinib was associated with a significant PFS benefit as well as a 

more favorable toxicity profile than crizotinib, achieving a median duration of PFS 

of 34.8 months. Intracranial response rates were superior with alectinib, (81% vs 

50%) together with improved duration of responses and lower incidence of brain 

metastases compared to crizotinib. Based on the results of the ALEX and J-ALEX 

trials, alectinib has become the standard choice for the first line treatment of 

patients with ALK rearranged lung cancer in many regions of the world.  



70 

 

 

Trial 

 

Trial design  

(phase, primary end 

point, and treatment 

arms) 

 

Median 

follow-up  

(months) 

 

Outcomes  

✱ ORR,  

✱ median PFS  

✱ median OS 

AF-001JP 

(REF 

(200,201)) 

I/II 

DLT and MTD (phase I) or 

ORR (phase II) 

Alectinib (n = 46) 

First line 

36 mob 

✱ 93.5% 

✱ NR; 3-year PFS: 62% 

✱ NE; 3-year OS: 78% 

AF-002JG 

(REF (202)) 

I/II 

Recommended phase II 

dose 

Alectinib (n = 47) 

Second line after crizotinib 

4.2 mo 

✱ 55% 

✱ NA 

✱ NA 

NP28761/ 

NP28673  

(REF. 

(203,204)) 

II 

ORR 

(n = 225; n = 189 evaluable 

for response) 

Second line after crizotinib 

92.3 weeks 

✱ 51.3% 

✱ 8.3 mo 

✱ 29.1 mo 

ALUR 

(REF (196)) 

III 

PFS 

Alectinib (n = 72) vs 

docetaxel or pemetrexed 

(n = 35) 

Second line after crizotinib 

6.5 mo 

✱ 37.5% vs 2.9% 

✱ 9.6 mo vs 1.4 mo 

(HR 0.15; P <0.001) 

✱ 12.6 mo (9.7 mo–NR) vs 

NR (NR–NR; HR 0.89)  

AF-001JP 

(REF 

(200,201)) 

I/II 

DLT and MTD (phase I) or 

ORR (phase II) 

Alectinib (n = 46) 

First line 

36 mob 

✱ 93.5% 

✱ NR; 3-year PFS: 62% 

✱ NE; 3-year OS: 78% 

J-ALEX 

(REF (205)) 

III 

IRC-assessed PFS 

Alectinib (n = 103; 300 mg 

BID) vs crizotinib (n = 104) 

12 mo 

(alectinib) 

and 12.2 mo 

(crizotinib) 

✱ 92% vs 79% 

✱ NR (95% CI 20.3 mo–NE) 

vs 10.2 mo (95% CI 8.2–

12.0 mo; HR 0.34; 

P <0.0001) 

✱ NA (immature data) 

 

ALEX 

(REF 

(162,174))    

III 

Investigator-assessed PFS 

Alectinib (n = 152; 600 mg 

BID) vs crizotinib (n = 151) 

22.8 

(alectinib) 

and 27.8 

(crizotinib) 

✱ 82.9% vs 75.5% 

✱34.8 mo vs 10.9 mo 

(HR 0.43) 

✱ 1-year OS 84.3% vs 

82.5% (HR 0.76; P = 0.24) 

 

Table 6. Summary of clinical trials with alectinib. ORR: overall response rate; DOR: 

duration of response; TTR: time to treatment response; PFS: progression free survival; 

OS: overall survival. Adapted from Recondo et al. Nat Rev Clin Onc 2018 (172) 
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Brigatinib 

 Brigatinib (AP26113) is a second generation ALK inhibitor. Brigatinib was 

originally developed as an ALK inhibitor that could potentially overcome 

resistance by the solvent front mutation G1202R which is a known mechanism of 

resistance to first and second generation ALK TKIs. Brigatinib inhibits the kinase 

activity of wild-type ALK with an IC50 0.6 nmol/L and is active in vitro against 

multiple ALK resistance mutations like C1156Y (0,6 nmol/L), F1174L (1.4 

nmol/L), L1196M (1.7 nmol/L), and G1202R (4.9 nmol/L).  However, the in vitro 

activity of this drug for the G1202R mutation was not replicated in vivo nor in 

patients. Importantly, brigatinib has modest activity against mutant EGFR, 

especially in presence of the T790M mutation (206). In addition to kinase 

inhibition, pre-clinical models of brigatinib also revealed that this drug has high 

CNS penetration, as proven by significant tumor reductions in orthotopic mouse 

brain tumor models. 

 In the clinical setting, three clinical trials support the efficacy of brigatinib 

given after crizotinib progression (Table 7). In this setting, the phase II study 

ALTA trial showed that treatment with brigatinib resulted in 56% response rate, 

with a median PFS of 15.6 months. Therefore, brigatinib was approved as a 

second line treatment option for patients previously treated with crizotinib.  

 In the similar context than the ALEX trial for alectinib, brigatinib was 

compared to crizotinib in the first line setting in a phase III randomized study, the 

ALTA1L trial (176). Treatment with brigatinib resulted in improved response rates 

( 71% vs 60%) and disease control (176). In concordance with the observations 

with alectinib in the first line, brigatinib conferred higher intracranial response 

rates, (78% vs. 29%) and lower incidence of brain metastasis during treatment.  
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Trial 

 

Trial design 

(phase, primary end point, and 

treatment arms) 

 

Median 

follow-up  

(months) 

 

Outcomes 

✱ ORR, 

✱ median PFS and ✱ 

median OS 

 

NCT01449461 

(REFS 

(207,208))  

Recommended phase II dose 

(phase I) or ORR (phase II) 

Brigatinib (n = 79) 

First line (10%, n = 8), second 

line after crizotinib (85%, n = 68), 

or third line after crizotinib and 

ceritinib (5%, n = 3) 

>31 mob 

First-line brigatinib (n = 
8) 

✱ 100% 

✱ 34.2 mo 

✱ NR (2-year OS 

100%) 
Brigatinib after crizotinib 
(n = 71) 

✱ 73% 

✱ 13.2 mo 

✱ 30.1 mo (2-year OS 

61%) 

ALTA 

(REFS 

(209,210)) 

II 

ORR 

Brigatinib 90 mg daily (n = 112) 

vs brigatinib 180mg with a 7-day 

lead in of 90mg/d. (n = 110) 

Second line after crizotinib 

19.6 mo (90 

mg daily) 

24.3 mo 

(standard 

dose) 

✱ 46% vs 56% 

✱ 9.2 mo vs 15.6 mo 

✱ 29.5 mo (18.2 mo–

NR) vs 34.1 mo (27.7 

mo–NR 

 

ALTA1L 

(REFS (176)) 

III 

PFS 

First Line: Brigatinib 180mg with 

a 7-day lead in of 90mg/d (137) 

or crizotinib 250mg BID. (138) 

11.0 months 

in the 

brigatinib 

group and 

9.3 

months in 

the crizotinib 

group 

✱ 71% vs 60% 

✱ 12-month PFS: 67% 

(95% CI, 56 to 75) vs. 

43% (95% CI, 32 to 53) 

✱ 12-month OS: 85% 

(95% CI, 76 to 91) vs. 

86% (95% CI, 77 to 91). 

 

Table 7. Summary of clinical trials with brigatinib. ORR: overall response rate; DOR: 

duration of response; TTR: time to treatment response; PFS: progression free survival; 

OS: overall survival. Adapted from Recondo et al. Nat Rev Clin Onc 2018 (172)  

 

  As previously mentioned, the rational for developing newer generation 

ALK inhibitors is to overcome acquired resistance by cancer cells. But the study 

of mechanisms of resistance to ALK inhibitors has not been fully integrated in the 

clinical practice and are not routinely used for clinical decision making. However, 

it is key to comprehend the different implications of the biology driving tumor 

resistance and progression to ALK targeted therapies. 
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3. Biologic Mechanisms of Resistance to first- 

and second-generation ALK TKI: rational for 

lorlatinib development.  

 

3A. Resistance mechanisms to first- and second-

generation ALK tyrosine kinase inhibitors in lung 

cancer 

  

 As we previously reviewed, tyrosine kinase inhibitors are effective for the 

treatment of patients with lung cancer. Nevertheless, even when high response 

rates and prolonged disease control can be achieved, cancer cells invariable 

adapt and develop complex biological mechanisms that drive resistance to 

tyrosine kinase inhibitors (Figure 10).    

The landscape of acquired or primary resistance mechanisms to tyrosine kinase 

inhibitors can be grouped into 4 main categories:  

1) On target mechanisms of resistance: when resistance occurs by acquired 

molecular alterations in the driver oncogene, mainly kinase domain 

mutations and gene amplification. In this context, there is sustained 

phosphorylation of the driver kinase domain, even in the presence of the 

tyrosine kinase inhibitor.  

2) Bypass track mechanisms of resistance: occurs in the context of 

successful inhibition of the targeted driver, by the activation of other 

tyrosine kinase receptors (parallel resistance) of intracellular effectors of 

key oncogenic signaling pathways (eg: MAPK pathway, PI3K/AKT/mTOR 

pathway, SRC, etc.) 

3) Histologic transformation: resistance is mediated by phenotypical changes 

that derive from genomic or epigenetic modifications of tumor cells like 

epithelial-mesenchymal transition, small cell transformation from a non-
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small cell lung cancer cell, or adenocarcinoma cells transforming into a 

squamous cell carcinoma type.  

4) Miscellaneous mechanisms of resistance including apoptotic defects and 

epigenetic modifications.  

 

 

Figure 10. Mechanisms of resistance to kinase inhibitors. The figure summarizes 

the causes of primary resistance (left) and acquired resistance (right). Figure and legend 

adapted from Lovely et al. Clinical Cancer Research 2014 (211) 

 

On Target Resistance: resistant kinase domain mutations and 

gene amplifications 

 

 On target mechanisms of resistance occur in ~30% of tumors upon 

progression with crizotinib, of which 20% are secondary resistance mutations and 

8-10% of cases, ALK amplification. ALK kinase domain mutations translate into 

aminoacidic substitutions in key residues that can affect drug binding, increase 

the affinity of the kinase for ATP and modify functional regulatory sites (212). 

Depending on the type of mutation and its effect on kinase-drug interactions, they 

can be divided into: gatekeeper mutations, solvent-front mutations, covalent 

binding site mutations and other types.  
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 Gatekeeper residues are located between the amino and carboxyterminal 

lobes, within the kinase domain. The aminoacidic change in gatekeeper mutation 

partially of fully block deep hydrophobic regions within the ATP binding pocket of 

the kinase domain (213). The gatekeeper residue is important for kinase 

selectivity. The most common gatekeeper residues are occupied by a glycine, 

valine, alanine, or threonine. Gatekeeper mutations are responsible for 

resistance to a variety of kinase inhibitors. In ALK, the gatekeeper residue is the 

L1196 amino acid. L1196M is the most common resistance mutation to crizotinib 

in patients with ALK-rearranged lung cancer.  

 Solvent front mutations most commonly involve glycine residues in the 

solvent exposed helix of the kinase and affect kinase inhibitor binding by steric 

hindrance. The most relevant solvent front mutation in ALK is the G1202R, and 

it confers resistance to all the first- and second-generation ALK TKI: crizotinib, 

ceritinib, alectinib and brigatinib (214). The sole available drug capable of 

overcoming resistance to this mutation is the third generation ALK inhibitor 

lorlatinib, that was specially designed for this purpose.  

 In vitro models are useful to study the effect of secondary kinase domain 

mutations on different kinase inhibitors. Patient-derived cell lines and the 

establishment of Ba/F3 cell models harboring the specific gene and mutations 

can be used to study the biological effect of this mutation on the kinase and to 

design and test novel compounds to overcome resistance (215). In addition, N-

ethyl-N-nitrosourea (ENU) mutagenesis screens using Ba/F3 cells harboring the 

gene of interest can help predict the occurrence of new resistance mutations that 

can be later validated in vitro (216).  

 Unlike resistance to other oncogenic drivers in lung cancer, the spectrum 

of acquired resistance mutations causing resistance to ALK TKIs is varied. 

Mutations that cause resistance to the first-generation ALK TKI crizotinib include: 

L1196M, G1269A, C1156Y, I1171T, L1152P, F1174L/C/V, E1210K and the 

solvent front mutations G1202R, D1203N and S1206Y/C (150,151,214,217–

219). The most common crizotinib resistant mutations are the gatekeeper 

L1196M, and the G1269A mutation. The G1269A mutation lies in the ATP binding 

pocket, and impedes crizotinib binding (220). Mutations in the N-terminal region 
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of the kinase domain like L1152P,  C1156Y, F1174C/L do not directly affect the 

crizotinib binding but might influence the αC-helix mobility, destabilizing this helix 

to promote the active conformation of the catalytic domain, enhancing the ATP 

affinity of the kinase (150,189). The solvent front mutations G1202R, G1202del, 

D1203N, and S1206Y/C confer high levels of resistance to crizotinib by inducing 

steric hindrance. Most of the secondary kinase domain mutations responsible for 

crizotinib resistance can be targeted with ceritinib, alectinib or brigatinib, except 

for the G1202R mutation, which confers resistance to all second-generation ALK 

inhibitors (Figure 11).  

 

Figure 11. Biomarker integration in the management of patients with NSCLC. The 

optimal sequencing strategies for the treatment sequence with tyrosine-kinase inhibitors 

(TKIs; either first generation or next generation), based on the type of acquired 

mechanisms of resistance in patients with NSCLC harboring ALK rearrangements. In 

first-line treatment with crizotinib, secondary kinase domain mutations can select for 

specific second generation ALK TKIs based on the differential sensitivity to these 

compounds. This is repeatedly the case in the second line setting, were for the exception 

of the G1202R mutation, other secondary kinase domain mutations could be overcome 

by switching to another second generation TKI. In the presence of the G1202R, the sole 

effective ALK directed treatment is lorlatinib. Off target mechanism in resistance to 

crizotinib can be overcome with second generation TKI. If resistance mutations are not 

identified at progression with a second generation TKI, lorlatinib is still an option, but in 

the presence of a known bypass mechanisms, a potential benefit could be obtained with 

clinical trials of combination therapies. KD: kinase domain. Figure and legend adapted 

from Recondo et al. Nature Reviews Clinical Oncology 2018 (172) 
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 Ceritinib, can effectively inhibit ALK in the presence of most acquired 

resistance mutations with the exception of E1151T, L1152P, C1156Y and 

F1174C, which confer resistance to ceritinib (189). However, cancer cells 

harboring these mutations remain sensitive to alectinib and brigatinib. Among the 

crizotinib resistant mutations, alectinib is effective against most mutations with 

the exception of the I1171T/N/S mutations, that confer resistance to this 

compound but can be targeted with ceritinib (189,221). Together with this 

mutation, the V1180L gatekeeper mutation also confers resistance to alectinib, 

but both I1171T and V1180L mutations remain highly sensitive to brigatinib 

(206,222).   

 Resistance mechanism to brigatinib have been less explored than for other 

second-generation ALK TKI, mainly due to the later development of this 

compound. Two compound mutations (when two kinase domain mutations are 

present in cis) were reported to cause resistance to brigatinib, E1210K + S1203N 

and E1210K + S1206C, in addition to the G1202R mutation. 

 In the context of disease progression to first- and second-generation ALK 

TKI, on-target mechanisms of resistance can be detected in about 50-70% of 

cases. In this scenario, the most common acquired resistance mutation is the 

solvent front G1202R mutations, which is detected in approximately in 30-40% of 

cases (214). This is significantly higher than the 2% detection rate of G1202R 

mutations at crizotinib resistance. 

 The EML4-ALK variant type seems to influence the acquisition of G1202R 

mutations, as this mutation seems to occur exclusively in variant 3 EML4-ALK 

rearrangements. In a recent study, the G1202R mutation was detected in 37% of 

variant 3 and none of the variant 1 EML4-ALK rearranged lung cancers (156). 

Other non-G1202R ALK mutations also occur more commonly in variant 3 EML4-

ALK rearrangements after progression to crizotinib and after progression to 

second-generation ALK TKI. For the moment it is unclear why the G1202R 

mutation occurs mainly in V3 EML4-ALK rearrangements, but it has been 

hypothesized that it could be related to the stability of this variant due to the 

absence of the TAPE domain, resulting in a shorter and more stable fusion 

protein.  
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 On-target gene amplifications constitutes another resistance mechanism 

to treatment with crizotinib, resulting in the overexpression of the target protein 

affecting the capacity of the kinase inhibitor to full target ALK. ALK amplification 

has been reported in ~8% of patients treated with crizotinib (214). ALK 

amplification does not overlap with secondary crizotinib resistance kinas domain 

mutations. It can be overcome with more potent and selective ALK TKI, and has 

not been detected at resistance with second-generation TKI (214).  

 

Bypass mechanisms of resistance  

 

 In this scenario, resistance is commanded by the parallel or downstream 

activation of an oncogenic protein different from the original driver. In the context 

of a bypass mechanisms of resistance, the targeted protein kinase is inhibited by 

the tyrosine kinase inhibitor. However, downstream oncogenic signaling 

pathways remain highly activated (Figure 12).  

 There are multiple tyrosine kinase receptors and phosphokinases that 

have been implied in resistance through this mechanism. To overcome bypass 

mechanisms of resistance, effective drug combinations targeting the original 

driver and the acquired activated effector are required. Some bypass resistance 

mechanisms like gene amplifications, mutations or copy loss can be identified in 

patients using NGS and other molecular diagnostic methods. In many cases, 

however, bypass mechanisms of resistance are due to aberrant oncogenic 

activation of a non-mutated or amplified driver (eg: SRC, AXL) (223,224).  

 To study genomic and non-genomic bypass mechanisms of resistance, 

patient-derived models, like patient-derived xenografts (PDX) or patient-derived 

cell lines, are necessary to identify the biological processes driving resistance 

and to screen for new combination strategies to overcome it (223). Drug screens 

using multiple compounds alone and in combination with the drug to which the 

tumor acquired resistance, can identify “hits” in cell viability assays that can 

provide useful information on combinatorial treatment strategies but also on the 

underlying mechanism of resistance. Another way to identify aberrant protein 
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kinase activation is with “protein kinase arrays”, including tyrosine kinase receptor 

arrays and phosphokinase arrays. These immunoblotting screens, have been 

specifically designed to profile the level of protein kinase phosphorylation of 

multiple proteins in one experiment using cell lysates (225). CRISPR/Cas9 gene 

editing is also used to study resistance, mainly by the introduction of activating 

molecular alterations in gene (knock-in) or by modifying gene integrity that results 

in gene loss of function (knock-out). This is of particular interest to study the role 

of deleterious events in tumor suppressor genes in resistance to tyrosine kinase 

inhibitors (226). Given the high biologic diversity of off-target mechanisms of 

resistance, it is important to develop patient derived cell models and establish 

effective screening strategies to identify and target these alterations.  

 

 

Figure 12. Bypass mechanisms of resistance to kinase inhibitors. In sensitive cells 

(left), effective tyrosine kinase inhibitors bind and inhibit the receptor, and consequently 

downstream signaling cascades. In receptor bypass resistance, other activated RTK o 

phosphokinase maintains downstream signaling even in the context of effective inhibition 

of the original driver. RTK: tyrosine kinase receptor. Figure and legend adapted from 

Niederst et al. Science Signaling 2013 (227) 
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 Several bypass mechanisms have been shown to drive resistance to ALK 

TKIs in lung cancer involving the insulin growth factor receptor 1 (IGFR1), SRC, 

PI3K, MEK, EGFR, HER2, HER3 and MET. It is unclear which proportion of 

tumors develop bypass mechanisms of resistance because most of the described 

biological mechanisms are not due to mutations in genes that can be detected by 

NGS. These are mainly mediated by overactivation, and overexpression of these 

tyrosine kinase receptors and intracellular phosphokinases.  

 Through the development of patient-derived cell lines and by performing 

drug screen assays, Crystal and colleagues reported that an acquired MEK K57N 

mutation conveyed resistance to the ALK inhibitor ceritinib and that combination 

treatment of ceritinib with the MEK inhibitor selumetinib (AZD6244) could 

overcome resistance in vitro and in vivo (223). The cytotoxic effect was only 

observed with the combination of the ALK and MEK inhibitor, and though MEK is 

downstream of ALK, full suppression of oncogenic signaling through the 

PI3K/AKT/mTOR pathway by ALK inhibition is also required to induce high levels 

of apoptosis. The same group also reported a second bypass mechanism by 

induction of SRC activation through ALK inhibition. In several patient derived 

models, ALK inhibition with crizotinib induced upregulation of SRC signaling. In 

this context, the combination of an ALK TKI with the SRC inhibitor saracatinib 

(AZD0530) was effective in reverting SRC mediated resistance. This was also 

observed in vitro mediating ceritinib resistance with the H3122 cell line (228).  

 Activation of the ErbB family of receptors including EGFR, HER2 and 

HER3 has also been implied in resistance to ALK inhibitors through receptor 

bypass signaling (217,229,230). EGFR activation is frequently observed at low 

levels in ALK rearranged NSCLC cell lines, contributing to the maintenance of 

downstream signaling (217). It has been proposed that EGFR can amplify 

downstream signaling by the fusion kinase, transactivate fusion kinases, and 

mediate signaling through adaptor proteins like GRB (229). In the setting of 

resistance, EGFR signaling can be enhanced and treatment with EGFR and ALK 

inhibitors can restore sensitivity and induce apoptosis in vitro (231). Neuregulin 

1, the endogenous ligand for HER3, can be induced by ALK inhibition. HER3 can 

form heterodimers with HER2 and induce activation of this latter receptor, and 
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promoting oncogenic bypass signaling. ALK dependent cell lines become 

resistance by exposure to NRG1 and this can be reverted by the combination of 

ALK TKI with lapatinib, a HER2 tyrosine kinase inhibitor (232).  

 MET amplification is one of the most common mechanisms of resistance 

to EGFR inhibitors in lung cancer. However, in ALK rearranged lung cancer, there 

is scarce information regarding this resistance mechanism, possible because 

crizotinib is a dual ALK and MET inhibitors. However this has been reported in a 

patient treated with ALK inhibitor that do not target MET like alectinib (233). In 

addition to MET amplification, activation of MET by paracrine secretion of HGF 

has been reported to reduce sensitivity in vitro to ALK TKI (234).  

 The KIT proto-oncogene receptor tyrosine kinase (KIT, CD117) is involved 

in the development of gastrointestinal stromal tumors (GIST) and it´s 

pathogenicity is mediated by activating mutations in the KIT kinase domain. It´s 

ligand is the stem cell factor (SCF) cytokine. KIT amplification and SCF 

overexpression were detected in a tumor from a patient with acquired resistance 

to crizotinib (235). H3122 cells overexpressing KIT were sensitive to crizotinib 

treatment in the absence of SCF. However, these cells showed high levels of 

resistance in the presence of SCF, which was reversed by treatment with the KIT 

inhibitor imatinib.  

 The potency and efficacy of second generation ALK TKIs has been 

observed in the clinical setting and by inducing cell death in crizotinib resistance 

models that do not harbor secondary kinase domain mutations nor gene 

amplification (189). This suggests that in the setting of modest bypass signaling 

activation, where oncogenic dependency is still influenced by ALK activation, full 

and potent inhibition of ALK can abolish the role of the bypass mechanism. 

However, bypass mechanisms driving resistance to second generation ALK TKIs, 

in the absence of secondary resistance mutation, lorlatinib does not revert 

resistance in vitro (214).  

 As mentioned, the activation of different phosphokinases can mediate off-

target resistance, and identification of common activated pathways is necessary. 

It has been recently reported the activation of the SHP2 (PTPN11), can serve as 

a common signaling activator of the RAS/MAPK pathway in ALK bypass resistant 



82 

 

models (143). In addition, combined SHP2 and ALK inhibition conveyed an 

antiproliferative effect in ceritinib resistant cell lines, by greater suppression of 

ERK phosphorylation and KRAS-GTP loading in these models. SHP2 inhibitors 

are currently undergoing clinical developed, and might have a broad spectrum of 

activity to include KRAS mutant cancer among others (236).  

 Identifying putative bypass mechanisms of resistance can be challenging, 

and often requires the development of patient-derived models, but as treatment 

options for patients with tumors that acquire bypass mechanisms of resistance 

are scant, this can further guide the development of drug combinations or the 

inhibition of common activation pathways to tackle this problematic. 

 

Histologic Transformation:  

 

 One of the less understood mechanisms of resistance is the shift in 

histologic phenotype that tumors can experience upon exposure to tyrosine 

kinase inhibitors in lung cancer. The main types of histologic transformation are:  

epithelial-mesenchymal transition (EMT), small-cell lung cancer (SCLC) 

transformation, and squamous cell carcinoma (SCC) transformation from 

originally lung adenocarcinoma tumors. 

 

Epithelial-Mesenchymal Transition 

 Epithelial-Mesenchymal transition is a dynamic and usually reversible 

process that consists in the transient acquisition of mesenchymal features from 

epithelial cells (237). Cells can shift from an epithelial to a partial mesenchymal 

or full mesenchymal state and backwards. In physiological conditions, this 

process is key during embryogenesis and in wound healing in adulthood. 

However, in cancer, EMT is involved early in the course of the disease, favorizing 

cell migration and metastasis and can also be induced by treatment exposure 

and trigger resistance to chemotherapy and tyrosine kinase inhibitors. Epithelial 

cells usually display apico-basal polarity and are in contact with each other 
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through lateral cell-cell junctions like adherent and tight junctions by multiple 

proteins including cadherin molecules like E-cadherin. In EMT the expression of 

E-cadherin in epithelial cells is repressed by transcription factors like SNAIL, 

SLUG, ZEB1, TWIST1/2, while N-cadherin, vimentin and fibronectin expression 

is induced. By this mean, tumor cells lose this apico-basal polarity and polygonal 

shape and induce the degradation of the basal cell membrane. In result, tumor 

cells acquire a mesenchymal phenotype, as they become more elongated and 

spread in tissue 2D cell culture, shifting their polarity to rear-front conformation 

acquiring higher capacity to invade and metastasize (Figure 13).  

 Transcription factors that initiate and propagate EMT are activated through 

several signaling pathways including the TGFB, WNT, NOTCH, SRC, AXL and 

MET (238–243). The Transforming growth factor beta (TGFB) pathway is 

frequently involved in the development of EMT. Upon binding of soluble TGFB to 

the TGFB receptor, its activation triggers the downstream phosphorylation of 

SMAD proteins that form SMAD complexes and induce the transcription of EMT 

related genes like SNAIL, SLUG, TWIST, ZEB1 that finally inhibit the expression 

of E-cadherin and induce the differentiation to a mesenchymal phenotype. SRC 

is also a key determinant of EMT by localizing to peripheral cell-substrate 

adhesions, regulating its disassembly through phosphorylation of focal adhesion 

kinase (FAK) and promoting the degradation of cell-adhesion components (244). 

In addition it can also suppress the function of e-cadherin (241).   

 EMT is an epigenetic driven process and it is not detected by DNA-based 

NGS. In addition, it is not diagnosed nor studied in routine clinical care, as there 

are no robust therapeutic strategies developed to overcome EMT-mediated 

resistance mechanisms. EMT can be inferred in fixed tissue biopsies by studying 

the expression of vimentin, n-cadherin by IHC,  and by the lack of expression of 

E-cadherin (214). In addition, RNA sequencing can also provide significant 

insight on the transcriptomic level, by studying the expression of genes 

associated with an EMT phenotype (245). Furthermore, the disposition of actin 

filaments in cells in culture can be studied to infer this phenomenon. In epithelial 

cells, actin filaments adopt a ring structure in relationship with other cytoskeletal 

proteins like myosin (246). In mesenchymal cells, the presence of actin stress 
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fibers is characteristic and plays a role in the invasiveness and migration of these 

cells (247).  

 

Figure 13. Morphological changes associated with epithelial-mesenchymal 

transition (EMT). A Morphology of epithelial cells with apico-basal polarity, E-cadherin 

expression and cell to cell adhesion, and intact basal membrane. B Activation of the EMT 

program induces loss of cell-cell junctions, loss of E-cadherin and induction of vimentin 

expression, actin stress fibers, front-rear polarity and disruption of the extracellular matrix 

(ECM), and cell polarity. Figure and legend adapted from Shibue et al. Nature Reviews 

Clinical Oncology (248) 

   

 However, even after identifying which patients experience disease 

progression by EMT, targeting this complex biologic process is difficult. 

Depending on the mechanism of induction of EMT, resistance to TKIs can be 

potentially reversed in vitro by combining the TKI targeting the primary oncogenic 

driver and a second drug targeting the EMT pathway activation. This has been 

reported in cell lines harboring EGFR activating mutations, resistant to EGFR TKI 

by SRC activation, where dual inhibition using EGFR TKI and dasatinib (a SRC 

inhibitor) could overcome resistance (249). HDAC inhibitors have also shown to 
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restore E-cadherin expression in vitro and to revert resistance in ALK-rearranged 

models resistant to crizotinib (250,251). In addition, the induction of EMT through 

TGFBR in EGFR mutant cells can be prevented in vitro by MEK inhibition (252). 

Nevertheless, this has not translated into clinical development, and there is an 

unmet need to design effective strategies to diagnose and target EMT as a 

resistance mechanism to targeted therapies in lung cancer.  

 In ALK-rearranges lung cancer, the onset of EMT seems to be frequently 

involved ALK TKI resistance. Phenotypical characteristic of mesenchymal 

differentiation have been reported in about 40% of tissue samples from twelve 

ceritinib resistant tumors with IHC staining showing loss of E-cadherin and gain 

of vimentin expression (214). In addition, EMT has been reported to mediate 

resistance to crizotinib in H3122 cells. In this study, the induction of miR-200c 

expression by HDAC inhibitors restored sensitivity to crizotinib by EMT reversion 

(251). This was validated in mouse models, were pretreatment with the HDAC 

inhibitor quisinostat resensitized EMT tumors to ALK inhibition with crizotinib and 

alectinib. This shows that EMT is a potential targetable resistance mechanism in 

ALK-driven lung cancers. 

   

Small-Cell Lung Cancer and Squamous Cell Carcinoma transformation  

Histological transformation from non-small cell lung cancer, most 

commonly lung adenocarcinoma, to the high grade neuroendocrine small-cell 

lung cancer  (SCLC) phenotype has been extensively reported at resistance to 

TKIs in lung cancer, mainly in resistance to EGFR targeted therapies 

(70,253,254). Next-generation sequencing in samples from EGFR-mutant tumors 

that underwent SCLC reveal that tumors show biallelic inactivation of RB1 and 

TP53, and it might be a predisposing factor to develop SCLC transformation 

when detected previous to TKI treatment (255). Clonal evolution studies revealed 

that SCLC transformed cells are present at early phases of the disease and can 

emerge as a consequence of selective pressure of the TKI over NSCLC cells 

sensitive to the inhibitor. In a SCLC phenotype, cancer cells loose EGFR 

dependency and the treatment of patients is the same than for primary SCLC 

patients, with platinum and etoposide combined regimens.  



86 

 

 The prognosis of patients in this scenario is dismal, with median overall 

survival durations from the time of SCLC transformation were reported to be 

about 11 months (255,256). It is unclear in these cases, whether maintaining the 

treatment with a TKI in addition to chemotherapy may confer greater benefit for 

patients and is mainly driven by the lack of effective SCLC transformation 

preclinical models.  

SCLC transformation has been scantly reported in the setting of resistance 

to ALK inhibitors in lung cancer, and it seems to be a rare event. Single cases of 

histologic transformation to ALK inhibitors have been reported including small cell 

lung cancer transformation in the context of treatment with crizotinib, ceritinib, 

alectinib and lorlatinib (257–260) 

 Transformation from lung adenocarcinoma to squamous cell carcinoma 

histology has been recently reported as a mechanisms of resistance to EGFR 

and ALK TKIs in lung cancer (257,260,261). Squamous cell differentiation has 

been reported at resistance to alectinib in a single case (257). The biological 

bases of resistance to TKI in this context is still unknown and together with the 

incidence of SCLC transformation in ALK TKI resistant tumors. 

 

Other mechanisms of resistance 

 

 There are miscellaneous mechanisms of resistance to TKIs that include 

apoptotic defects, epigenetic, metabolic o tumor microenvironment alterations. 

Genomic polymorphisms in the pro-apoptotic effector BIM, specifically by an 

intronic deletion that confers alternative splicing and skipping of the pro-apoptotic 

BCL2-homology domain 3 (BH3), confers intrinsic resistance in vitro to EGFR TKI 

by impairing apoptosis, but could be reverted with BH3 mimetic drugs (262). 

However, in a retrospective study of patients treated with first generation EGFR 

TKIs, carriers of BIM polymorphisms (15% of the population) had similar 

response rates and clinical outcomes than controls, suggesting that the clinical 

impact of this polymorphism needs further validation (263).  
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 A common denominator of acquired resistance to TKI is the fact that it is 

driven by a group of cancer cells that persist in the presence of drug, even when 

impressive clinical responses can be achieved with these agents. Several 

research groups have been focused on studying the adaptive mechanisms of 

“persister” cells, a small subpopulation of tumor cells (<5%) that remain alive and 

are reprogrammed into a drug-tolerant state in the presence of a TKI in cell 

culture (264–268). Initial studies have suggested that epigenetic reprogramming 

of TKI-persister cells involves the histone demethylase KDM5A and thus could 

be selectively targeted by histone deacetylase inhibitors (264). Persister cells can 

later proliferate by the acquisition of resistance mechanisms, such as secondary 

mutations or activation of bypass signaling (265,267). Persister cells display a 

defective apoptotic response to TKI, and treatment with inhibitors of the BCL-2 

family anti-apoptotic proteins is a potentially effective therapeutic strategy. In 

addition, recent evidence suggests that persister cells have specific dependency 

on the lipid hydroperoxidase GPX4 (268,269). These epigenetic, apoptotic and 

metabolic mechanisms involved in drug tolerant persister states contribute to 

maintain this quiescent state that later can result in the acquisition of secondary 

mutations and the emergence of bypass mechanisms of resistance and EMT.  

 The interaction between tumor cells and other cell types that conform the 

tumor microenvironment can condition the response to TKI therapy and trigger 

biological mechanisms of resistance (234,270,271). Co-culture of EGFR-mutant 

cells with cancer-associated fibroblasts (CAFs) can induce EMT by the secretion 

of multiple paracrine-acting factors including HGF and AXL. Similarly, the 

secretion of EGF, TGFα, other factors by endothelial cell induce EGFR bypass 

track activation and resistance to ALK inhibitors. 

 In addition to intrinsic mechanisms involving cancer cells, drug 

pharmacokinetic properties may also influence response and progression to 

treatment and should be considered. As previously mentioned, the ABC family of 

transporter proteins, including the MDR1 transporter (p-glycoprotein), can confer 

resistance to chemotherapy drugs and kinase inhibitors, mainly by affecting the 

bioavailability of the drug by efflux. This is especially relevant in the blood-brain 

barrier, where high levels of p-glycoprotein can affect drug concentrations in the 

CNS. In addition, overexpression of p-glycoprotein was reported to confer 
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resistance to ceritinib and crizotinib in ALK-rearranged lung cancer patients, but 

could be overcome in vivo by combining ALK TKIs with p-glycoprotein inhibitors 

(197). Novel ALK inhibitors like alectinib and lorlatinib are not substrates of this 

transporters.  

 In summary, there are distinct biologic mechanisms that drive resistance 

to first- and second-generation ALK inhibitors in tumors harboring ALK 

rearrangements. Most importantly, the high incidence of kinase domain mutations 

causing resistance to second generation ALK TKIs, including the solvent front 

G1202R mutation has prompted the development of the third-generation ALK 

inhibitor lorlatinib. This inhibitor can target all single kinase domain mutations 

including G1202R and is the last effective ALK inhibitory strategy available in 

patients with ALK rearranged lung cancer.  
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4. Lorlatinib, drug development and current 

evidence on resistance mechanism to the third 

generation ALK TKI.  

 

4A. Lorlatinib is a potent ALK TKI designed to overcome 

resistance to first- and second-generation inhibitors.  

 

 Lorlatinib (PF-06463922, Pfizer) is the most novel and the sole third 

generation ALK inhibitor currently available in the clinical setting for the treatment 

of patients. Lorlatinib is a potent, reversible and ATP competitive ALK and ROS1 

inhibitor, designed to inhibit ALK in the presence of all known single resistant 

kinase domain mutations (272). In biochemical assays, lorlatinib inhibits the 

catalytic activity of ALK with mean Ki of <0.07 nM. In addition to the potency of 

lorlatinib, its macrocyclic structure, which is unique compared to all other ALK 

inhibitors, confers different conformational binding properties to the ALK kinase 

domain, remaining unaffected by aminoacidic changes that occur due to single 

known secondary resistance mutations (Figure 14) (273). In addition, the 

lipophilic properties of lorlatinib and its low susceptibility to P-glycoprotein efflux, 

confers high levels of CNS penetration and intracranial activity.  

 In preclinical studies, lorlatinib showed elevated potency in ALK 

suppression and cell death in Ba/F3 cells expressing wild-type ALK and mutant 

forms. This included the wide spectrum of resistance mutations that occur with 

first- and second-generation ALK inhibitors: L1196M, I1171T, L1152R, 1151Tins, 

C1156Y, G1269A, F1174L, S1206Y and the solvent front mutation G1202R 

(272). Compared to other first and second-generation ALK TKI, lorlatinib was also 

a more potent ALK inhibitor in its non-mutant form. In addition, lorlatinib showed 

significant activity in G1202R mutant H3122 cells in vivo. The IC50 of lorlatinib in 

Ba/F3 cells expressing the EML4-ALK rearrangement with the G1202R mutation 

is about 50 nanomol/L, and the IC50 values for all other single mutations range 

from this value down to 4.6 nanomol/L. Lorlatinib also yielded important tumor 



90 

 

responses in brain orthotopic mice models and prolonged survival of mice 

bearing patient-derived tumors (272). In these models, pharmacokinetic analysis 

showed that the free fraction of lorlatinib in the brain in reference to plasma was 

4-fold higher with lorlatinib compared to crizotinib. 

 

 

  

Figure 14, Structure of crizotinib (acyclic) and lorlatinib (macrocyclic). Lorlatinib 

was developed from crizotinib using a structure-based drug design approach to 

overcome ALK mutant resistance and high P-gp efflux Figure and legend adapted from 

Akamine et al. OncoTarget and Therapy 2018 (274) 

 

 Lorlatinib is orally bioavailable and the established dose is 100mg/ daily 

based on the safety and the estimated plasma concentration needed to target the 

G1202R mutation. The time to maximum plasma concentration is between 1-2 

hours and its half-life extends from 19 to 28.8 hours (63). The phase I trial enrolled 

41 patients with heavily pretreated ALK-rearranged NSCLC, among which 72% 

of patients had brain metastasis at the time of enrollment, 12 of whom had not 

been treated with radiation therapy. The mean lorlatinib cerebral-spinal fluid 

(CSF) concentrations to plasma was 0.75, correspond to 75% of unbound plasma 

concentrations, proving high levels of blood brain barrier penetration.  

 In this study, the response rate with lorlatinib was 46%, 57% among 

patients treated with one previous line of ALK TKI and 42% amongst patients 

Lorlatinib Crizotinib 
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treated with two or more lines of ALK TKIs. In patients with measurable and non-

measurable brain metastasis, a partial or complete response was observed in 

31% of cases, of whom 50% had been previously treated with two or more lines 

of ALK inhibitors, including second-generation ALK TKIs. The efficacy of lorlatinib 

in the treatment of brain metastasis is relevant in the context of elevated levels of 

CNS progression with first- and second-generation ALT TKI.   

 The multicohort phase II study of lorlatinib included patients with treatment 

naïve disease (EXP1, N = 30), patients that had receive crizotinib without a 

second generation ALK TKI (EXP2, N = 27) or with previous chemotherapy 

(EXP3A, N = 32), patients who had received one non-crizotinib ALK TKI with or 

without chemotherapy (EXP3B, N = 28), and patients that had previously 

received two (EXP4, N = 66) or three (EXP5, N = 46) lines of ALK TKI. About 60-

70% of patients previously treated with an ALK TKI had baseline brain 

metastasis. The response, progression free survival and CNS activity for all 

cohorts are depicted in Table 8. In only crizotinib pre-treated patients, the ORR 

was 69% and the median PFS was not reached with the lower limit of the 

confidence interval reaching almost one year, and intracranial responses were 

observed in 87% of cases. In patient treated with second generation ALK TKI 

alone and in patient previously treated with two or three ALK TKIs, response rates 

ranged between 32-39% with median PFS durations were 5.5 months and 6.9 

months. Enhanced intracranial activity was observed in heavily pretreated 

patients, with ~55% of intracranial responses and a median duration of response 

reaching 14∙5 months (95% CI, 6∙9–14∙5). In addition, the phase II study also 

provided a hint on the activity of this drug in treatment naïve patients, with 90% 

response rates and long progression free survival durations. In accordance with 

the shift in the treatment paradigm for ALK positive patients of moving second 

generation ALK TKIs in the first line setting, there is an ongoing phase III study 

comparing first line treatment with lorlatinib to crizotinib (CROWN trial, 

NCT03052608). In preclinical models, first line treatment with lorlatinib was highly 

efficacious.  
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Table 8. Expansion (EXP) cohorts from the phase I/II study of lorlatinib. ORR: 

overall response rate; PFS: progression free survival; IC: intracranial. (173)   

  

 Lorlatinib was highly active in patients with detectable ALK resistant 

mutations to earlier generation ALK inhibitors but was also active in patients with 

undetectable kinase domain mutations. Among patient previously treated with 

crizotinib there were no differences in response rates among patients with 

detectable ALK resistance mutations compared to patients without detectable 

resistance mutations (ORR: 73% versus 75%) and median PFS was similar 

between groups [HR, 1.03 (95% CI, 0.39 to 2.69)] (275).  This is concordant with 

responses observed with second generation ALK TKI after progression to 

crizotinib, showing that crizotinib resistant tumors still may have high ALK 

dependency in the absence of resistance mutations, probably due to weak 

bypass activation (214). In contrast, after progression to second generation ALK 

TKI, the response rate with lorlatinib in patients with detectable ALK resistance 

mutations was 62% compared to 32% for patients with undetectable ALK 

resistance mutations in plasma NGS. Similar results were observed when NGS 

was performed in tissue samples (69% versus 27%). In addition, median PFS 

was significantly longer in patient with detectable ALK mutations in tissue (11 

versus 5.3 months), as was median duration of response (24.4 versus 4.3 

Cohort Previous ALK TKI N ORR 
Median PFS 

months( 95% CI) 

IC 

ORR 

EXP 1 None 30 90% 
NR  

(11·4–NR) 
66.7% 

EXP 2 
Crizotinib no 

chemotherapy 
27 

69.5% 
NR  

(12·5–NR) 
87% 

EXP 3A 
Crizotinib and 

chemotherapy 
32 

EXP 3B 
Second-generation ALK 

TKI +/- chemotherapy 
28 32.1% 

5·5  

(2·7–9·0) 
55.6% 

EXP 4 Two lines of ALK TKI 66 
38.7% 

6·9  

(5·4–9·5) 
53.1% 

EXP 5 Three lines ALK TKI 46 
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months), reflecting that patients with undetectable on-target resistance to 

previous ALK TKI have a lesser benefit with lorlatinib than patients whose tumors 

develop on-target resistance mechanisms. Importantly, in the clinical setting, 

lorlatinib was highly effective in patients with detectable solvent front ALK 

G1202R/del mutations, with response rates of 57% and median duration of PFS 

of 8.2 months (275). 

 Based on the clinical efficacy and safety, lorlatinib received approval from 

the United States Food and Drug administration (FDA) in November 2018 and 

the European Medicine Agency (EMA) in May 2019 for the treatment of patients 

who have experienced disease progression with crizotinib and a second-

generation ALK TKI, or to first-line treatment with alectinib or ceritinib. However, 

like with other targeted agents, resistance to lorlatinib invariably leads to disease 

progression in patients. In the frontier of ALK targeted treatments, the 

understanding of the biologic mechanisms driving lorlatinib resistance are crucial 

to develop strategies to prevent and overcome resistance to lorlatinib, and to 

provide patients with new effective treatment options.  
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4B. Current preclinical and clinical evidence on 

resistance mechanisms to lorlatinib treatment  

  

 Unlike crizotinib and the second-generation ALK TKI, mechanisms of 

resistance to lorlatinib still need to be intensively explored. The first report on 

resistance to lorlatinib was derived from the molecular study of a patient´s tumor 

at the time of lorlatinib progression in the context of the phase I study by Shaw 

AT, Friboulet L. and colleagues at the Mass General Hospital (276). The patient 

had been treated with crizotinib in the first line setting, and upon progression to 

this drug a resistant ALK C1156Y mutation was detected. The C1156Y mutation 

confers resistance to crizotinib and ceritinib. The patient was treated sequentially 

with ceritinib and a HSP90 inhibitor without benefit and fourth line chemotherapy 

with a total duration of response of 6 months. The patient then received lorlatinib 

and achieved a partial response lasting for 8 months. At the time of disease 

progression, a liver biopsy was performed and NGS analysis of the tumor sample 

revealed two ALK mutations, the previously crizotinib resistant C1156Y and a 

new L1198F mutation. The two mutations were present in the same allele 

(compound mutation), and clonal analysis using whole exome sequencing data 

showed that the cancer cells containing the compound mutation at lorlatinib 

resistance were subclones derived from tumor cells that had acquired the 

C1156Y mutation with crizotinib. In crystallography modelling of ALK, the 

substitution of a leucine for a phenylalanine in position 1198 leads to a steric 

clash with lorlatinib, affecting the resulting in unfavorable binding. The binding 

affinity, the ALK L1198F and L1198F+C1156Y mutant ALK was lower with 

lorlatinib and most second generation ALK inhibitors. Interestingly, the L1198F 

mutation does not clash with crizotinib, and in fact improves crizotinib binding, 

leading to increased affinity for ALK. The patient was treated with crizotinib, 

experiencing a significant response and proving that this compound mutation 

resensitized this cancer to crizotinib. 

  In the context of this compound mutation, the increase affinity for crizotinib 

binding, induced by the presence of the phenylalanine counteracted the negative 
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effect of C1156Y. The induction of resistance to lorlatinib and the resensitization 

to crizotinib by the sequential acquisition of the C1156Y and the L1198F mutation 

was also demonstrated in vitro in Ba/F3 models. This study was highly relevant 

because it revealed for the first time that compound mutations in ALK could drive 

resistance to lorlatinib, and that the presence of the L1198F mutation in this 

context could be targeted with crizotinib. Compound mutations acquired 

sequentially with first and second generation ALK TKI had also been reported to 

drive resistance to brigatinib, like the D1203N + E1210K, but these compound 

mutations remain sensitive to lorlatinib inhibition (214). These initial observations 

suggested that compound mutations had differential activity on resistance to ALK 

TKI.  

 The same research group further explored the role of compound mutations 

in lorlatinib resistance by performing an ENU mutagenesis screen in Ba/F3 cells 

expressing non-mutant EML4-ALK rearrangements and Ba/F3 harboring EML4-

ALK rearrangement with known single resistance mutations to first- or second 

generation ALK TKIs. After exposure to ENU, Ba/F3 cells were treated with 

crizotinib and lorlatinib. In EML4-ALK non-mutant cells, there was a lack of 

resistant clones arising to lorlatinib treatment, but as expected, multiple clones 

emerged with crizotinib. This suggested that no single ALK mutation conferred 

resistance to lorlatinib at physiological doses achieved in patients. This was 

further proved in vivo, by implanting H3122 cells in mice and treating them with 

lorlatinib. After tumor regrowth, none of the resistance cancer cells harbored a 

single ALK mutation.  

 To study the effect of the sequential acquisition of resistance mutations, 

Ba/F3 harboring the common resistance mutations to first- and second-

generation TKIs (C1156Y, F1174C, L1196M, G1202R, and G1269A) underwent 

ENU mutagenesis screen with lorlatinib. Multiple compound mutations were 

identified in lorlatinib resistant clones. A functional validation was done by 

developing Ba/F3 cell models harboring EML4-ALK and the following compound 

mutations G1202R+L1196M, G1202R+L1198F and L1196M+L1198F. In 

concordance, these cells and were highly resistant to lorlatinib. In hand with 

previous findings, compound mutations containing the L1198F mutation were 

sensitive to crizotinib. In patients, the following compound mutations were 
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identified at lorlatinib resistance: I1171N + L1198F, I1171N + D1203N, G1202R 

+ G1269A, G1202R + L1196M; including to “triple mutant” G1202R + L1204V + 

G1269A and E1210K + D1203N + G1269A. This study further demonstrates that 

the consecutive acquisition of kinase domain mutations after exposure to 

crizotinib and/or second generation ALK TKI and lorlatinib can induce 

conformational changes in the kinase domain that hinder lorlatinib binding and 

can also result in increased kinase ATP affinity in about 35% of cases.  

 In a subsequent study by Okada and colleagues, the authors again 

performed an  ENU mutagenesis screen on G1202R and I1171N mutant EML4-

ALK Ba/F3 cells, and showed similar findings (216). In total, 13 ALK compound 

mutations involving G1202R and I1171N were identified including a novel 

compound mutation that caused lorlatinib resistance but remained targetable with 

alectinib (L1256F). This group also identified a G1202R + G1269A compound 

mutation in patient derived cell line resistant to lorlatinib. It is clear with both 

studies, that ENU mutagenesis screen is a useful tool to predict potential 

mutations to lorlatinib, but even when most compound mutations will cause 

resistance to all available ALK inhibitors, in few selected cases, resistance can 

be overcome with an earlier generation ALK TKI.  

 Off-target mechanisms of resistance in ALK rearranged NSCLC cell lines 

have been characterized in vitro by exposing commercially available H3122 and 

H2228 cell to increasing lorlatinib concentrations. The lorlatinib resistant cell 

lines, showed overactivation of EGFR as a bypass mechanism to ALK inhibition 

in vitro (277). This has been previously shown for crizotinib in H3122 cell lines, 

suggesting that EGFR activation might be a recurring mechanism of resistance 

in this cell line (278). In neuroblastoma cell lines harboring full length ALK with 

R1275Q mutation (CLB-GA) exposed to lorlatinib, resistant clones harbored a 

truncating mutation in NF1 emerged. Combined treatment with trametinib and 

lorlatinib could overcome resistance in this in vitro model. To date, there is lack 

of information regarding the type of bypass mechanisms of resistance with 

lorlatinib treatment from patients. From the largest reported series of patients with 

lorlatinib resistance, 65% of tumor samples did not harbor compound mutations 

that could explain resistance, suggesting that bypass mechanisms or histologic 
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transformation could cause resistance in a significant proportion of patients.  

(279). A recent case report of neuroendocrine transformation at the time of 

resistance to lorlatinib with a concomitant L1196M mutation, demonstrates that 

histologic transformation, like in EGFR mutant lung cancer, can occur 

independently of acquired resistance mutations, and that relying solely on liquid 

biopsies without tissue analysis can lead to underdiagnoses of histological 

transformations. 

 In summary, molecular targeted therapies in lung cancer are consider a 

standard and prioritized treatment option for patients with tumors harboring 

sensitizing molecular alterations. ALK-rearrangements confer constitutive 

activation of the ALK kinase domain, leading to cancer initiation and propagation. 

Effective ALK tyrosine kinase inhibitors have been developed to target ALK-

rearranged lung cancer cells and constitute the main treatment for these patients. 

Mechanisms of resistance arise during the treatment with ALK TKI, mainly by the 

acquisition of secondary kinase domain mutations or ALK amplification, the 

emergence of bypass mechanisms and histologic transformation. Lorlatinib, is a 

third generation ALK TKI, capable of overcoming resistance mediated by single 

kinase domain mutations including the G1202R mutation. Lorlatinib is currently 

approved for the treatment of patients with ALK-rearranged lung cancer who have 

previously progressed on treatment with crizotinib and a second generation ALK 

TKI or a second generation ALK TKI given upfront. There is scarce scientific 

evidence on the biological mechanisms of resistance to this compound in the 

clinical setting. To date, only the sequential acquisition of specific compound 

mutations has been shown to confer resistance to lorlatinib. During my PhD 

thesis, we studied novel biological mechanisms of resistance to lorlatinib 

occurring in patients treated at the Institut Gustave Roussy



   Part II. Results 

 

1. Resistance mechanisms to the third-generation ALK inhibitor 

lorlatinib in ALK-rearranged lung cancer 

 

1A. Presentation and objectives 

 

 Treatment with lorlatinib after disease progression with first- and second-generation 

ALK tyrosine kinase inhibitors for patients with ALK rearranged NSCL is effective. 

Nevertheless, even when clinical benefit can be observed with this drug, cancer cells 

invariably develop resistance to lorlatinib, leading to cancer proliferation and disease 

progression. Besides the emergence of compound mutations causing resistance to lorlatinib, 

the spectrum of biologic mechanisms that drive resistance to lorlatinib in patients with ALK 

rearranged lung cancer remains unknown. In this scenario, through longitudinal tumor and 

plasma sampling from patients experiencing disease progression to lorlatinib and other ALK 

inhibitors, we aimed to study and elucidate the biologic mechanisms of resistance to lorlatinib. 

In the context of the multidisciplinary and institutional MATCH-R study at Institut Gustave 

Roussy, we developed patient derived models from patient tumor samples at the time of 

resistance to lorlatinib.  Simultaneously, targeted next-generation sequencing, whole exome 

sequencing and RNA sequencing were performed on lorlatinib resistant biopsies, and the 

results of the genomic and transcriptomic analysis were integrated with the study and 

development of in vitro and in vivo patient-derived tumor models. The primary objective of 

our work was to unravel the mechanism of resistance to lorlatinib using this translational 

approach, including the acquisition of novel ALK genomic alterations, the emergence of 

unknown bypass mechanisms of resistance and the role of histologic transformation; and to 

develop novel therapeutic strategies to overcome resistance to lorlatinib.  
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1B. The MATCH-R trial: systematic and integrated study of 

resistance to targeted therapies and immunotherapy 

 

 The MATCH-R trial (NCT02517892) is a prospective, single institution study held at 

Gustave Roussy Cancer Campus. The study aim is to characterize molecular mechanisms 

of resistance to targeted therapies and immunotherapies across different tumor types. 

Patients who experienced a partial or complete response or stable disease as best response 

for at least 6 months with a targeted therapy or immunotherapy and are candidates to 

undergo a tumor biopsy are eligible to participate in the study. A tumor biopsy of the most 

representative and accessible progressive lesion is performed. Targeted, whole exome and 

RNA sequencing are performed in the tumor samples upon resistance and, if available, on 

pre-treatment biopsies. In addition to providing tissue for NGS, selected tumor samples are 

processed to establish patient-derived xenografts (PDX) and cell lines.  

 Between January 1st 2015 and as of June 15th 2018, a total of 333 patients were 

included and 303 patients underwent a tumor biopsy. In total, 163 tumors from patients were 

engrafted into immune-deficient mice, and 54 patient-derived models were established, with 

a global success rate of 33%. In total, 18 PDX models derive from lung cancer specimens. 

The complete feasibility study of the MATCH-R trial is displayed in Annex #1.  

  Among the 303 patients who underwent a successful tumor biopsy, 14 patients had 

diagnosis of an ALK rearranged cancer and had experienced disease progression with an 

ALK TKI. Among the 14 biopsies obtained, 10 underwent complete molecular testing, and 8 

corresponded to ALK-rearranged lung cancers. Four patients in this group had disease 

progression while on treatment with lorlatinib. Four patient-derived cell lines were established 

from 3 patients treated with lorlatinib. At the time of thesis submission, the biological 

mechanisms of resistance to lorlatinib were identified in three out of the four cases.  
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1C. Epithelial-mesenchymal transition mediates lorlatinib 

resistance through SRC activation 

 

 A patient-derived xenograft and cell line was developed from a patient (MR57) with 

ALK rearranged lung cancer, who had been with lorlatinib for 7 months. Tumor NGS 

confirmed the presence of an EML4-ALK variant 3 rearrangement and reported two ALK 

kinase domain mutations in cis: ALK C1156Y and G1269A. The derived cell line was initially 

sensitive to lorlatinib. After treatment with incremental lorlatinib concentrations, a resistant 

cell line was established, acquiring a mesenchymal phenotype.  

 We developed Ba/F3 cells harboring the compound C1156Y+G1269A, validating that 

this compound mutation did not confer resistance to lorlatinib. We hypothesized that MR57 

resistant (MR57-R) cells had undergone epithelial-mesenchymal transition in the presence 

of lorlatinib, conveying high levels of resistance. MR57-R cells lacked E-cadherin expression 

and expressed vimentin, N-cadherin and the EMT-promoting transcription factor SNAIL, while 

MR57 sensitive (MR57-S) cells maintained an epithelial phenotype. MR57-R cells had 

sustained AKT/S6 and ERK phosphorylation at high lorlatinib concentrations. We also 

derived a second cell line from another patient (MR210), that was resistant to lorlatinib, and 

with evidence of EMT features in the tumor biopsy.  

 We identified the SRC inhibitor saracatinib (AZD0530) as a potent hit by multi-drug 

screen in both cell lines. We further confirmed that MR57-R mesenchymal cells showed high 

levels of SRC activation, and that dual ALK and SRC inhibition induced cell death in 

mesenchymal cells, inhibiting downstream effectors dependent on SRC signaling and 

resulting in enhanced apoptosis. In addition to a direct cytotoxic effect by kinase inhibition, 

we further hypothesized that this lethal effect could be due to EMT reversal from a 

mesenchymal to an epithelial “sensitive” state. Long-term exposure of mesenchymal cells to 

saracatinib, resulted in a mild re-expression of E-cadherin and partial EMT reversal. 

 In summary, resistance to lorlatinib mediated by SRC-driven EMT can be overcome 

by SRC inhibitors with lorlatinib in vitro.  

 

 



 

 101 

1D. Characterization of novel ALK compound mutations at 

lorlatinib resistance 

 

 We characterized a novel ALK compound mutation (G1202R + F1174L) observed in 

a tumor biopsy of a patient at the time of lorlatinib resistance. The patient had received 

treatment with crizotinib in the first line, and after disease progression, she underwent a tumor 

biopsy showing the presence of an ALK G1202R mutation and a novel ALK E1154K variant 

(MR144). The patient continued to receive treatment with the second generation ALK TKIs 

ceritinib and brigatinib, and after a rapid progression, the G1202R mutation was solely 

detected at higher allelic fractions. The treatment was switched to lorlatinib, and the patient 

experienced a rapid response followed by a short interval of response, with disease 

progression at 4 months.  

 Tumor and plasma samples at the time of resistance evidenced an ALK 

G1202R+F1174L compound mutation, and several polyclonal ALK mutations were detected 

with plasma NGS. Using TOPO-TA cloning from the patient´s tumor RNA/DNA, we noticed 

that the G1202R and E1154K mutations observed at crizotinib resistance occurred in 

separate alleles and the G1202R and F11174L observed at lorlatinib resistance were present 

in the same allele. This was further supported by clonal evolution analysis using whole exome 

sequencing. Ba/F3 cells harboring F1174L+G1202R mutations showed a mild shift towards 

resistance to lorlatinib compared to G1202R mutant cells. Comparative immunoblotting 

analysis showed that G1202R+F1174L mutant Ba/F3 cells had higher baseline ALK 

phosphorylation levels compared to single mutant or non-mutant EML4-ALK cells, suggesting 

that this compound mutation could increase the kinase ATP affinity, impacting the efficacy of 

lorlatinib.  

 In a second case (MR347), the ALK compound mutations L1196M/D1203N emerged 

after treatment with crizotinib and ceritinib, and Ba/F3 cell models of these mutations showed 

high levels of lorlatinib resistance, in concordance with previous reports of compound 

mutations that impede drug binding to the kinase domain (216,279). Altogether, the 

differential effect of the compound mutations on lorlatinib resistance shows that the biologic 

implications of these mutations can be heterogeneous, while some retain sensitivity to 

lorlatinib (like C1156Y/G1269A), other can confer resistance by different mechanisms.  
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1E. NF2 loss of function mediates resistance to lorlatinib and can 

be overcome with mTOR inhibition  

 

 In a third case, a patient with ALK-rearranged lung cancer treated with lorlatinib 

experienced disease progression in a single lung metastasis after an initial clinical response 

with lorlatinib. A tumor biopsy was performed, and a lorlatinib-resistant patient derived cell 

line was developed (MR135-R1). NGS of the tumor sample showed two deleterious events 

in NF2, a non-sense mutation (S288*) and a pathogenic 9 base pair exon 10 skipping, 

secondary to an intronic splicing site mutation (NM_000268,3:c.886-1G>A). The patient 

derived cell line only harbored the splicing site mutation, with no evidence of the wild-type 

allele in cDNA sequencing, suggesting loss of heterozygosity. The patient underwent 

treatment with stereotactic radiation therapy to the oligoprogressive site and continued 

treatment with lorlatinib and, after 8 months on treatment, systemic disease progression 

occurred. A second tumor biopsy from the adrenal gland was done, and a second lorlatinib 

resistance cell line was established (MR135-R2). NGS from the tumor sample again showed 

the inframe 9 base pair NF2 exon 10 skipping and a new pathogenic NF2 K543N mutation. 

Both mutations were detected in MR135-R2 cells, again in a pattern compatible with loss of 

heterozygosity. Both cell lines harbored an EML4-ALK variant 3 rearrangement and no ALK 

resistance mutations were detected. In a 66-compound drug screen, the dual mTORC1 and 

mTORC2 inhibitor vistusertib (AZD2014) showed potent inhibition alone and a mild additive 

effect when combined with lorlatinib. This effect was further validated with the rapamycin 

analogue everolimus. The cytotoxic effect of vistusertib was reproduced in MR135-R2 cell. 

mTOR inhibition alone and in combination with lorlatinib induced cell death, enhancing 

apoptosis in MR135-R1 cells, confirming the downstream activation of mTOR as the 

mechanisms of lorlatinib resistance. We validated this by treating immunodeficient mice 

engrafted with MR135-R2 resistant cells, showing a synergistic effect of the mTOR and ALK 

combination in tumor growth suppression.  We hypothesized that NF2 loss of function 

mutations impaired mTOR inhibition by merlin. To validate this, we performed NF2 knockout 

using CRISPR-CAS9 gene editing in H3122 cells (EML4-ALK variant 1 cell line). NF2 

knockout resulted in lack of merlin expression and resistance to lorlatinib in vitro. We 

demonstrated that NF2 knock out cells maintained high levels of S6 phosphorylation even in 

the presence of high concentrations of lorlatinib and effective ALK inhibition. Hence, we 

demonstrated that deleterious NF2 mutations can drive lorlatinib resistance through mTOR 
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overactivation, constituting a novel bypass mechanism of resistance to lorlatinib. In addition, 

our results suggest that mTOR inhibition can resensitize NF2 deficient cells to ALK inhibition.    

 

1D. Conclusions 

 

 The study of mechanisms of resistance to lorlatinib is central in the current context of 

ALK treatment strategies, in which lorlatinib has become the last line of available ALK kinase 

inhibition for patients with ALK-rearranged lung cancer. Through the longitudinal study of 

lorlatinib resistance within the MATCH-R trial, by developing patient derived models and 

performing next-generation sequencing, we have studied the biological process driving 

resistance to lorlatinib and designed novel treatment strategies to overcome it.  

 In our study, we characterized the role of SRC-mediated EMT in lorlatinib resistance 

in vitro and we showed that combined SRC and ALK inhibition can induce cell death in 

mesenchymal cells. By this mean, we provided new treatment strategies to target EMT. This 

is highly relevant in current context, as EMT features have been found in about 40% of tumors 

at resistance to second generation ALK TKI in a small cohort (214). EMT is difficult to target 

as it can involve the activation of multiple and various oncogenic pathways. In addition to 

targeted therapies, EMT can drive resistance to different anticancer agents like 

chemotherapy and immunotherapy (280,281). However, in this study, the identification of 

SRC as the main kinase driving EMT mediated resistance to lorlatinib, led to successful 

targeting of EMT cells by SRC and ALK inhibition.  

 Secondly, we studied the functional role of two novel compound mutations observed 

at the time of lorlatinib resistance. In the case of MR57, EML4-ALK Ba/F3 cells harboring the 

C1156Y+G1269A compound mutation remained sensitive to lorlatinib and brigatinib 

inhibition, proving that not all ALK compound mutations mediate resistance to lorlatinib, 

emphasizing the need of in vitro characterization of these mutations. In addition, we studied 

the biologic effect of the G1202R+F1174L compound mutations, confirming the effect on 

lorlatinib resistance, but also showing that higher concentrations of lorlatinib can convey 

effective ALK inhibition. In addition, we characterized a novel highly resistant compound 

mutation L1196M+D1203N mutation.  
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 To date there are no next-generation inhibitors to overcome resistance to lorlatinib in 

the presence of compound mutations. The sole exceptions where earlier generation ALK TKI 

can overcome resistance to lorlatinib is in the context of compound mutations harboring the 

F1198L mutation, sensitive to crizotinib, or the L1256F, sensitive to alectinib.  

 Thirdly, in our study, we reported the acquisition of NF2 deleterious mutations as a 

novel bypass mechanism of resistance to lorlatinib occurring in a patient. This is the first 

report of a bypass mechanism causing resistance to lorlatinib. We demonstrated that NF2 

loss of function resulted in overactivation of mTOR and that dual inhibition of mTOR and ALK 

could overcome resistance in vivo. Identifying and characterizing novel mechanisms of 

resistance to lorlatinib is necessary to develop combinatorial strategies. Our work provides 

additional evidence of the role of mTOR inhibition in tumors with NF2 alterations.   

 In conclusion, in the cohort of patients with ALK-rearranged lung cancer experiencing 

disease progression with lorlatinib in the MATCH-R study, the mechanisms of resistance are 

diverse and varied. Combination strategies can overcome resistance in vitro in the context of 

bypass mechanisms of resistance and SRC activation and EMT induction. With this study we 

hope to provide further preclinical evidence to support the design of new treatment strategies.  
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Abstract  

Purpose: Lorlatinib is a third-generation ALK tyrosine kinase inhibitor with proven efficacy in 

patients with ALK-rearranged lung cancer previously treated with first and second-generation 

ALK inhibitors. Beside compound mutations in the ALK kinase domain, other resistance 

mechanisms driving lorlatinib resistance remain unknown. We aimed to characterize 

mechanisms of resistance to lorlatinib occurring in patients with ALK-rearranged lung cancer 

and design new therapeutic strategies in this setting. 

Experimental Design: Resistance mechanisms were investigated in five patients resistant 

to lorlatinib. Longitudinal tumor biopsies were studied using high-throughput next-generation 

sequencing. Patient-derived models were developed to characterize the acquired resistance 

mechanisms and Ba/F3 cell mutants were generated to study the effect of novel ALK 

compound mutations. Drug combinatory strategies were evaluated in vitro and in vivo to 

overcome lorlatinib resistance. 

Results: Divers biological mechanism leading to lorlatinib resistance were identified. 

Epithelial-mesenchymal transition (EMT) mediated resistance in two patient-derived cell lines 

and was susceptible to dual SRC and ALK inhibition. We characterized three ALK kinase 

domain compound mutations occurring in patients, L1196M/D1203N, F1174L/G1202R and 

C1156Y/G1269A, with differential susceptibility to ALK inhibition by lorlatinib. We identified a 

novel by-pass mechanism of resistance caused by NF2 loss of function mutations, conferring 

sensitivity to treatment with mTOR inhibitors. 

Conclusion: This study shows that mechanisms of resistance to lorlatinib are diverse and 

complex, requiring new therapeutic strategies to tailor treatment upon disease progression. 
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Introduction 

The anaplastic lymphoma kinase (ALK) is a member of the family of insulin-like 

tyrosine kinase receptors involved in the oncogenesis of several tumor types (1). ALK gene 

rearrangements occur in 3-6% of lung adenocarcinoma (2,3). Patients diagnosed with ALK-

rearranged lung cancer benefit from treatment with ALK tyrosine kinase inhibitors (TKI) (4).  

Lorlatinib is a potent third-generation ALK inhibitor able to overcome resistance to first 

and second generation ALK inhibitors, including those mediated by the G1202R mutation 

and has marked activity on brain metastasis (5). Clinical responses with lorlatinib were 

observed in 39% of patients previously treated with two or more ALK inhibitors and median 

PFS was 6.9 months (6,7). Nevertheless, as with first and second generation ALK inhibitors, 

resistance to lorlatinib treatment invariably occurs.  

The spectrum of biological mechanisms driving lorlatinib resistance in patients remains 

to be elucidated. It has been recently reported that the sequential acquisition of two or more 

mutations in the ALK kinase domain (KD), also referred as compound mutations, is 

responsible for disease progression in about 35% of patients treated with lorlatinib, mainly by 

impairing its binding to the ALK kinase domain (8).  

Herein we report the in vitro characterization of three resistance mechanisms detected 

in patients with ALK-rearranged lung cancer on lorlatinib, included in the prospective MATCH-

R study (NCT02517892). These mechanisms include the occurrence of epithelial-

mesenchymal transition (EMT) susceptible to combined ALK/SRC inhibition (patient MR57 

and MR210), the acquisition of a novel compound mutation (G1202R/F1174L in MR144) and 

the pre-existing L1196M/D1203N (MR347) as well as NF2-loss of function mediated 

resistance overcome by mTOR inhibitors (MR135) 
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Materials and Methods 

 

MATCH-R clinical trial 

The MATCH-R study is a prospective single-institution trial running at Gustave Roussy 

Cancer Campus (Villejuif, France), aiming to identify mechanisms of resistance to targeted 

therapies in patients with advanced cancer (NCT02517892). Patients that achieved a partial 

or complete response, or stability of disease for at least six months with selected targeted 

agents were included in the study and underwent serial tumor biopsies. Extensive molecular 

tumor profiling was performed by panel targeted next-generation sequencing (NGS) (Ion 

torrent), whole exome sequencing (WES) and RNA sequencing (Illumina; Integragen) as 

previously described (9). For WES, mean coverage was 140X.  

 

Development of patient-derived xenografts (PDX) in mice and in vivo pharmacological studies 

All animal procedures and studies were performed in accordance with the approved 

guidelines for animal experimentation by the ethics committee at University Paris Sud (CEEA 

26, Project 2014_055_2790) following EU regulation. Fresh tumor fragments from the 

patients MR57, MR135, MR144, MR210 and MR347 were implanted in the subrenal capsule 

of 6-week-old female NOD scid gamma (NSG) or nude mice obtained from Charles River 

Laboratories.  

Cell lines  

Patient-derived cell lines (MR57-S, MR57-R, MR135-R1, MR135-R2, MR210) were 

developed from PDX samples by enzymatic digestion with a tumor dissociation kit (Ref.130-

095-929, Miltenyi Biotec) and mechanic degradation with the gentleMACsTM dissociator. 
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Cells were cultured with DMEM/F-12+GlutamMAXTM 10% FBS and 10% enriched with 

hydrocortisone 0.4 µg/ml, cholera toxin 8,4 ng/ml, adenine 24 µg/ml and ROCK inhibitor 5 µM 

(Y-27632, S1049 Selleckchem) until a stable proliferation of tumor cells was observed, as 

previously described (10). Culture media was then transitioned to DMEM and cultured in the 

presence of lorlatinib from 300 nM to 1 µM. The H3122 cell line harboring EML4-ALK 

rearrangement was cultured in RPMI 10% FBS. Parental Ba/F3 cells were purchased from 

DSMZ and cultured in DMEM 10% FBS in the presence of IL-3 (0.5 ng/ml). Ba/F3 cells were 

infected with lentiviral constructs as previously reported to express the EML4-ALK variant 3 

fusion with or without ALK kinase domain mutations (11). Ba/F3 cells harboring the EML4-

ALK fusion were selected in the presence of blasticidine (21 µg/ml) and IL-3 (0.5 ng/ml) until 

recovery, and a second selection by culturing the cells in the absence of IL-3. EML4-ALK 

rearrangement and ALK kinase domain mutations or NF2 mutations were confirmed on the 

established cell lines by Sanger sequencing. 

 

CRISPR-based NF2 knocking out  

NF2 gene knock-out was performed with the CRISPR/Cas9 KO Plasmid (h) from Santa Cruz 

Biotechnology (sc-400504). CRISPR/Cas9 KO Plasmid (h) was transfected using 

Lipofectamine 3000 according to manufacturer’s protocol. Green fluorescent protein-based 

cell sorting was performed for clonal selection. Single clones were screened for NF2 gene 

disruption by RT-PCR followed by sequencing and Western Blot. 

Site directed mutagenesis  

Lentiviral vectors expressing the EML4-ALK variant 3 were created using the pLenti6/V5 

directional TOPO cloning kit (#K495510, Thermofisher) according to manufacturer’s 
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instructions. Point mutations were introduced using the QuickChange XL Site-Directed 

mutagenesis kit (#200516, Agilent) according to manufacturer’s protocol using the following 

primers:  

G1269A F- GAGTGGCCAAGATTGCAGACTTCGGGATGGCC  

G1269A R- GGCCATCCCGAAGTCTGCAATCTTGGCCACTC,  

C1156Y-F GACGCTGCCTGAAGTGTACTCTGAACAGGACGAAC,  

C1156Y R- GTTCGTCCTGTTCAGAGTACACTTCAGGCAGCGTC,  

E1154K F- CTGTGAAGACGCTGCCTAAAGTGTGCTCTGAACAG,  

E1154K R- CTGTTCAGAGCACACTTTAGGCAGCGTCTTCACAG,  

F1174L F- TGTTCTGGTGGTTTAATTTGCTGATGATCAGGGCTTCC,  

F1174L R- GGAAGCCCTGATCATCAGCAAATTAAACCACCAGAACA,  

G1202R F- GCTCATGGCGGGGAGAGACCTCAAGTCC,  

G1202R R-GCTCATGGCGGGGAGAGACCTCAAGTCC.  

D1203N F- ATGGCGGGGGGAAACCTCAAGTCCTTCC 

D1203N R- GGAAGGACTTGAGGTTTCCCCCCGCCAT 

L1196M F- GCCCCGGTTCATCCTGATGGAGCTCATGGCGGG 

L1196M R- CCCGCCATGAGCTCCATCAGGATGAACCGGGGC 
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Reagents 

Saracatinib (AZD0530) and vistusertib (AZD2014) were provided by AstraZeneca. Crizotinib 

(S1068), alectinib (S2762), brigatinib (S8229), dasatinib (S1021), erdafitinib (S8401), debio-

1347 (S7665), lorlatinib (S7536) and entrectinib (S7998) were purchased from Selleck 

Chemicals.  

For Western Blot assays the antibodies used were: pALK Y1282/1283 (9687S), pALK Y1604 

(3341S), ALK (#3333S), pAKT (#4060S), AKT (#4961S), pERK (9101S), ERK (9102S), pS6 

(4858S), S6 (2217S), cleaved Parp (9541S), BIM (2933S), Merlin (1288S), pPaxillin (2541S), 

Paxillin (2542S), Snail (3879S) and Vimentin (5741S) purchased from Cell Signaling 

Technology.  

For IHC assays the antibodies used were ALK (#6679072001), E-Cadh (#790-4497) and 

CD31 (#760-4378) purchased from Ventana; N-Cadh (#M3613), Ki-67 (#M7240), beta 

catenin (#M3539), podoplanin (#M3619) and CD68 (#M0814) purchased from DAKO; 

Vimentin (#790-2917) purchased from Roche; pSRC (#6943S) and pMAPK (#4376) 

purchased from Cell Signaling Technology; Glut1 (#RP128-05) purchased from 

Clinisciences; CA-IX (#NB100-417SS) purchased from NovusBio, NF2/Merlin purchased 

from Sigma-aldrich (#HPA003097) and CD47 (#M5792) purchased from Spring. 

 

Cell Viability and Apoptosis Assays  

Cell viability assays were performed in 96-well plates using the Cell-Titer Glo Luminescent 

Cell Viability Assay (G7570, Promega). Apoptosis was measured using the caspase-Glo 3/7 

Assay (G8091, Promega).   
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In vivo pharmacological studies 

MR135-R2 PDX bearing athymic nude mice were treated with vistusertib (qdx1 then bidx1 

then qdx1);4d off, Lorlatinib (qdx5/2d off) or their combination by oral gavage. Vistusertib was 

resuspended in 1% Tween80 in sterile deionized water and lorlatinib in sterile deionized water 

pH 3.0. 

 

Circulating tumor DNA (ctDNA) analysis from patient’s blood samples  

A total of 20 ml of blood were collected in Streck BCT (Streck) or EDTA tubes and processed 

for DNA extraction. Molecular analysis from ctDNA was performed by Inivata (Cambridge, 

UK and Research Triangle Park, USA) using amplicon-based NGS (InVisionFirstTM-Lung) as 

previously reported (12) .  

 

Actin microfilament staining with phalloidin 

MR210, MR57-S and MR57-R cells were fixed in formaldehyde and permeabilized with PBS 

Triton X-100 (0.05%). Blocking solution with FBS 2% and BSA 1% was used. Alexa Fluor 

488 Phalloidin (8878S, Cell Signaling) solution was diluted 1/200 in blocking buffer. Cells 

were incubated for one hour at room temperature, then washed with PBS and later incubated 

with DAPI 1/10.000 dilution for five minutes. Cells were imaged with an inverted IX73 

microscope (Olympus).  
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Allelic distribution of ALK mutations 

The ALK kinase domain was amplified by PCR and amplicons were subcloned into pCR2.1-

TOPO vector (Invitrogen) according to manufacturer’s protocol. Individual cDNA was 

sequenced by Sanger sequencing to determine the cis/trans status of mutations. 

 

Modeling Tumor Clonal Evolution 

Paired-end RNA sequencing (RNA-seq) data for MR144 sequential biopsies was mapped 

against the human genome version "hg19" through Burrows-Wheeler Aligner (BWA-MEM) 

(13). The resulting Sequence Alignment Map (SAM) was converted into binary version BAM 

files. PCR duplicates identified in BAM files were removed with "samtools fixmate". Realign 

Target Creator, and realigner of GATK were used to check and realign the sorted BAM files 

with predefined BED files for indels. The GATK-Base Recalibrator was used to generate 

tables for user-specified covariates and GATK-MuTect2 was used to calculate Variant Allelic 

Frequency (VAF). Computed VAFs of different time-points were adjusted according to tumor 

cell percentages and subjected to R-SciClone clustering analysis (14).  The phylogeny of 

subclonal tumor evolution was determined using R-clonevol (15) and visualised with R-

fishplot (16). 

 

Computational modelling of ALK  

All molecules for reconstruction and analysis of human ALK-kinases were taken from RCSB 

Protein Data Bank (PDB) and information obtained from UniProtKB database (17, 18). Full 

3D-models of ALK-domains were built using I-TASSER server(19). Structure and assembling 

of polypeptide chains were analyzed using data of SCOP database (20). The secondary 



 

 119 

structure of ALK-domain was verified based on self-optimized prediction method with 

alignment (SOPMA). Also, BioLuminate (Schrödinger) was used as a method for evaluating 

the role of amino acid mutations (21, 22). Geometry optimization and stability of reconstructed 

models were predicted based on results of molecular dynamics (MD) simulations. MD 

simulations were performed in an aqueous environment, using CHARMM force field and 

GROMACS 5.1.4 program package (23, 24). Each protein was solvated, optimized (10,000 

steps steepest descent/conjugant gradient algorithms), equilibrated (30,000 steps) and 

relaxed during a free MD in water environment (50 ns). Lorlatinib topology was generated 

with online SwissParam tool(25). MD results were evaluated by RMSD, values of 

conformational energies and radius of gyration. Assessment of the amino acid composition, 

visualization and structure analysis were performed in PyMOL and BIOVIA DS Visualizer. 

CCDC GOLD 5.2.2 suite (www.ccdc.cam.ac.uk) was used for final exhaustive docking of hit 

compounds. The major part of docking options was turned on by default, however 

ChemScore function, which relies on the internal energy calculation, was altered to ASP 

algorithm(26). We kept GoldScore function as a primary function, as it provides best 

conformational search analysis. https://www.lifechemicals.com 
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Results  

 

Resistance mechanisms to ALK TKI from MATCH-R clinical trial  

From January 2015 to January 2019, 14 patients with ALK-rearranged tumors 

progressing on ALK TKI were included in the MATCH-R study. Four patients were excluded 

from the analysis due to inadequate biopsies for molecular profiling (Figure 1).  

Among the eight patients with ALK-rearranged lung adenocarcinoma, tumor biopsies 

were obtained upon progression to crizotinib (n=1), ceritinib (n=3) and lorlatinib (n=4) (Table 

1). NGS analysis of tumor biopsies from patients treated with crizotinib and ceritinib revealed 

the presence of secondary ALK kinase domain mutations in three cases (G1269A, 

L1196M/D1203N, and F1174L) and a NOTCH1 variant of unknown significance in one 

additional case (Table 1). The ceritinib resistant patient with the compound mutation 

L1196M/D1203N (MR347) experienced primary resistance to lorlatinib and is therefore 

characterized here as an additional lorlatinib resistance mechanism. Among the four patients 

with ALK-rearranged lung cancer with acquired resistance to lorlatinib, ALK compound 

mutations were observed in two cases (C1156Y/G1269A for patient MR57 and 

G1202R/F1174L for patient MR144). Off-target mutations in NF2 were encountered in two 

different temporo-spatial biopsies from patient MR135 obtained while on treatment with 

lorlatinib. The first biopsy was from an oligo-progressive lung lesion after 7 months of lorlatinib 

treatment that was treated with stereotactic radiation, and the second biopsy was obtained 

at the time of systemic progression from an adrenal metastasis after additional 8 months of 

treatment with lorlatinib. A single ALK C1156Y kinase domain mutation was found in one 

patient (MR210) after progression to lorlatinib, without evidence of additional genetic 

alterations. The ALK C1156Y mutation is known to confer resistance to crizotinib and 
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ceritinib, but remains sensitive to lorlatinib, as previously reported in preclinical studies (5). 

Thus, the C1156Y mutation is not likely to be responsible for lorlatinib resistance in this case.  

Patient-derived cell lines were developed from patients MR57, MR135 and MR210. Biological 

processes driving tumor resistance to lorlatinib were further explored using patient-derived 

cell lines.  

 

Figure 1. Summary of ALK-rearranged patient included in the MATCH-R study. NSCLC: non-

small cell lung cancer, EMT: epithelial mesenchymal transition 
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Table 1. Clinical and molecular features of patients with tumor molecular profiling on biopsies 

obtained upon resistance to ALK inhibitors in the MATCH-R study. TKI: tyrosine kinase 

inhibitor, PFS: progression-free survival, LUAD: lung adenocarcinoma, ATC: anaplastic 

thyroid carcinoma, MIT: myofibroblastic inflammatory tumor 

 

Epithelial-mesenchymal transition mediates lorlatinib resistance 

A 59-year-old male was diagnosed with a metastatic ALK rearranged lung 

adenocarcinoma (Figure 2A). The patient received first-line treatment crizotinib achieving a 

partial response and a progression-free survival (PFS) of 4.2 months. At the time of disease 

progression to crizotinib, no tumor nor plasma was available. The patient received sequential 

second line treatment with lorlatinib at 75 mg daily achieving a partial response (-78% per 

RECIST criteria). After 6.9 months, disease progression was observed, the patient was 

ID Diagnosis Previous 
ALK TKI 

NGS at 
progression 
to previous 
line of ALK 

TKI 

Line of 
ALK TKI  
inclusion 

ALK TKI 
MATCH-R 
inclusion 

Response 
(RECIST) 

PFS 
 

Targeted 
sequencing 

Whole exome 
sequencing 

/ RNA sequencing 

Putative 
Resistance 
Mechanism 

MR 39 LUAD Crizotinib No 2 Ceritinib 
PR 

14 months 
No detectable 

alterations 
NOTCH1:p.Q2503P Unknown 

MR 57 LUAD Crizotinib No 2 Lorlatinib 
PR 

7 months 
ALK: 

p.C1156Y+p.G1269A 
ALK: 

p.C1156Y+p.G1269A 
EMT 

MR 135 LUAD Crizotinib 
NF2 

c.8861G>A 
NF2 S288X 

2 Lorlatinib 
PR 

15 months 
PTPN11: p.S502L 

TP53 p.R273P 
NF2: p.K543N  

NF2 c.886-1G>A 
NF2 bypass 

MR 143 ATC No NAP 1 Crizotinib 
SD 

5 months 
TP53: p.E285* TNIK: p.Q674* Unknown 

MR 144 LUAD 

Crizotinib 
ALK E1154K 

/ G1202R 
4 Lorlatinib 

PR 
4 months 

ALK: 
p.G1202R+p.F1174L 

ALK: 
p.G1202R+p.F1174L 

ALK: 
p.G1202R+p.F1174L Ceritinib N/A 

Brigatinib G1202R 

MR 154 MIT Crizotinib  No 2 Ceritinib 
SD 

26 months 
No detectable 

alterations 
NF2: p.G151fs NF2 bypass 

MR 176 LUAD No N/A 1 Crizotinib 
PR 

30 months 
No detectable 

alterations 
ALK: p.G1269A ALK: p.G1269A 

MR 210 LUAD 
Crizotinib 
Ceritinib 

No 3 Lorlatinib 
PR 

16 months 
ALK: p.C1156Y ALK: p.C1156Y EMT 

MR 344 LUAD Crizotinib No 2 Ceritinib 
PR 

4 months 
ALK: p.F1174L 

ALK: p.F1174L; 
PIK3CB: p.E1051K 

ALK: p.F1174L 

MR 347 LUAD Crizotinib 
ALK: 

p.L1196M 

2 Ceritinib  
PR 

5 months 
ctDNA  ALK:  

p.L1196M/D1203N 
ALK: p.L1196M 

ALK:  
p.L1196M/D1203N 

3 Lorlatinib PD N/A N/A N/A 
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included in the MATCH-R trial (MR57) and a lung biopsy on the progressing primary site was 

performed.  

Targeted NGS, WES and RNA sequencing showed the presence of both C1156Y and 

G1269A ALK mutations and the EML4-ALK variant 3 rearrangement (V3). cDNA Topo-TA 

cloning and sequencing of the ALK kinase domain, evidenced that both mutations were 

present in the same allele (compound mutation).  

 A PDX model was established directly from a biopsy and a cell line (MR57-S) was 

derived from the PDX, with a total elapsed time from the tumor biopsy to cell line 

establishment of 6 months. Cell survival assays showed that the patient derived cell line was 

sensitive to lorlatinib treatment (MR57-S), with an IC50 of 50 nM, suggesting that the 

C1156Y/G1269A compound mutation was not likely responsible for lorlatinib resistance 

(Supplementary Figure 1A). It remains to be elucidated if lorlatinib withdrawal during the time 

of PDX development and cell line establishment could have influenced the observed 

sensitivity of the MR57-S cell line. To further study the effect of this ALK compound mutation 

on ALK inhibitors sensitivity, we developed Ba/F3 engineered cells to express the EML4-ALK 

V3 with G1269A, C1156Y or compound C1156Y/G1269A mutations. Ba/F3 cells expressing 

EML4-ALK with the compound mutations were less sensitive to lorlatinib (IC50: 53 nM) than 

Ba/F3 cell expressing the C1156Y (IC50: 2.5 nM) or G1269A (IC50: 18 nM) single mutations 

(Supplementary Figure 1B). However, the doses required to induce cell death in these 

models were within the range of lorlatinib sensitivity, being lower than those required to target 

the G1202R mutation, known to be susceptible to lorlatinib inhibition in patients (5,6). The 

C1156Y/G1269A compound mutation conferred resistance to crizotinib, alectinib and 

entrectinib but not to brigatinib when tested in vitro (Supplementary Figure 1C). 
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 The MR57-S cell line was exposed to incremental concentrations of lorlatinib until the 

tumor cells developed resistance, achieving stable growth at a dose of 300 nM. The MR57 

resistant (MR57-R) cell line showed high levels of resistance to lorlatinib (IC50: 7.8 µM) 

(Supplementary Figure 1A). Sequencing of the ALK kinase domain in both MR57-S and 

MR57-R cells showed the presence of the C1156Y and G1269A mutations. MR57-R cells did 

not acquire any additional ALK kinase domain mutations during exposure to lorlatinib.  

 Immunoblot analysis of MR57 sensitive (MR57-S) and resistant (MR57-R) cells treated 

with incremental doses of lorlatinib showed that ALK inhibition resulted in inhibition of ERK, 

AKT and S6 phosphorylation and induction of apoptosis in MR57-S cells (Figure 2B). In 

contrast, MR57-R cells maintained high levels of ERK, AKT and S6 phosphorylation, with 

lower levels of apoptosis. This is in line with the occurrence of an off-target mechanism of 

resistance (i.e. the activation of a bypass track).   

Because MR57-S and MR57-R cells had markedly different morphologies, we 

assessed the differential expression of EMT markers. Immunoblot analysis revealed that 

MR57-S cells expressed high levels of E-cadherin and lacked N-cadherin and vimentin, 

characteristic of an epithelial phenotype. In contrast, MR57-R cells lacked E-cadherin 

expression and had high levels of N-cadherin, Snail and vimentin expression, characteristic 

features of a mesenchymal phenotype (Figure 2B). RNA sequencing of the two cell lines 

confirmed the differential expression of EMT related genes at the mRNA level 

(Supplementary Figure 1D). Comparably, MR57-R cells had higher levels of vimentin, CDH-

2 (N-cadherin), SNAIL, ZEB1, FGFR1 and TGFB1/2 mRNA expression and lower levels of 

EPCAM, CDH-1 (E-cadherin), and ICAM1 expression compared to MR57-S cells. In addition, 

we performed phalloidin staining of actin microfilaments on MR57-S and MR57-R cells. 

Lorlatinib sensitive cells manifested the formation of actin rings and proliferation in clusters, 
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distinctive of an epithelial phenotype (Supplementary Figure 1E). In contrast, MR57-R 

contained actin stress fibers, which is characteristic of a mesenchymal phenotype.  

To assess whether EMT features were present in the patient’s tumor upon progression to 

lorlatinib, we compared the expression of EMT markers by immunohistochemistry (IHC) on 

pre-crizotinib and at the time of disease progression with lorlatinib using FFPE specimens 

(Supplementary Figure 1F). EMT features were not observed in the patient´s tumor specimen 

upon lorlatinib progression, evidenced by the expression of E-cadherin and the absence of 

vimentin and N-cadherin expression. Cancer cells were spatially relocated in lymphatic 

vessels (CD31+, Podoplanin+), in a hypoxic (Carbonic Anhydrase 9 [CAIX+], Glucose 

Transporter 1 [Glut1+]) and immune evading microenvironment (CD47+ and CD68 low) with 

sustained MAPK phosphorylation. In the absence of EMT features in the tumor biopsy, these 

other factors could have contributed to disease progression by limiting drug availability. 

Nevertheless, the onset of an EMT program upon lorlatinib exposure in patient-derived cell 

line supports the role of EMT in lorlatinib resistance in this model in vitro. 

A second patient became resistance to lorlatinib without evidence of any mutation 

causing TKI resistance (MR210). This 58-year-old never smoker female patient with 

metastatic ALK-rearranged NSCLC had a benefit over four years from crizotinib treatment 

(Figure 2C). The treatment was switched to ceritinib due to progressing bone metastasis, but 

ceritinib was suspended after one cycle due to toxicity. Treatment was switched to lorlatinib, 

achieving a response that lasted for 16 months, when oligoprogression in a bone lesion 

occurred. The patient was included in the MATCH-R trial (MR210) and a tumor biopsy was 

performed. The patient received treatment with cryoablation to the bone metastasis and 

currently continues to benefit from treatment with lorlatinib, ongoing for 35 months. The 

MR210 cell line was directly resistant to lorlatinib and similarly to MR57 displayed EMT 
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features. Phalloidin staining confirmed the presence of actin stress fibers and the 

mesenchymal phenotype (Figure 2D). 

We evaluated the expression of EMT markers by IHC on pre-crizotinib and post-

lorlatinib FFPE specimens. While E-cadherin and N-cadherin expression were of similar 

intensity and percent positive cells among both samples, we observed an increase in vimentin 

expression in the post-lorlatinib specimen. This would suggest a partial EMT in the tumor at 

the time of resistance consistent with the observed EMT in the patient derived cell line 

(Supplementary Figure 1G). 

 

Combined SRC and ALK inhibition overcome EMT mediated lorlatinib resistance  

 To overcome the resistance in these models, we tested 66 pharmacological 

compounds on MR57-R and MR210 cell lines in the presence or absence of lorlatinib. The 

SRC inhibitor saracatinib in combination with lorlatinib showed a potent synergistic effect on 

both mesenchymal cell lines (Figure 2E and F). No cytotoxic effect was observed with 

saracatinib on MR57-S cells with epithelial features (Supplementary Figure 1H). In 

concordance, a synergistic cytotoxic effect was observed in mesenchymal cells treated with 

dasatinib (another SRC inhibitor) and lorlatinib (Supplementary Figure 1I) and not in the 

epithelial cells (Supplementary Figure 1J). Interestingly, FGFR inhibitors also sensitized 

MR210 cells to lorlatinib treatment (and to a lower extent in MR57 - data not shown) as it has 

recently been shown for EGFR mutant NSCLC (Figure 2F) (17). 

 Immunoblot analysis showed that MR57-R mesenchymal cells had higher levels of 

paxillin phosphorylation (a surrogate for SRC activation), compared to the epithelial MR57-S 

cells, suggesting that SRC was driving EMT in this model, as previously reported (18) (Figure 



 

 127 

2B and G). Consistently, treatment with saracatinib and lorlatinib inhibited ERK, AKT and S6 

phosphorylation in MR57-R cells which translated in a mild increase in the expression of 

apoptosis markers such as cleaved PARP and BIM (Figure 2G).  

To study if the cytotoxic effect of combining SRC and ALK inhibition could be due to a 

reversion of the mesenchymal state to an epithelial phenotype, we exposed MR57-R cells to 

30 days of treatment with lorlatinib, saracatinib or their combination. We observed a partial 

reversion in E-cadherin expression in MR57-R cells treated with saracatinib (Supplementary 

Figure 1K). This effect was not observed when saracatinib was combined with lorlatinib. This 

suggests that continued exposure of MR57-R cells to lorlatinib can induce death in cells 

undergoing partial EMT reversal. Accordingly, we performed actin microfilament staining and 

observed that cells treated with saracatinib alone exhibited lower levels of actin stress fibers 

and increased formation of actin rings (Figure 2H), suggesting that SRC inhibition can 

promote a partial EMT reversal in the long-term. 
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Figure 2. SRC and ALK inhibition overcomes lorlatinib resistance mediated by EMT. A, 

Treatment course of patient MR57 (PR, partial response). B, MR57-S and MR57-R cells were 

treated with increasing concentrations of lorlatinib for 24hs. Cell lysates were immunoblotted 

to detect the selected proteins. C, Treatment course of patient MR210 (PD, progressive 

disease). D, Phenotype of MR210 epithelial and mesenchymal cells labelled with Cy3 

Phalloidin and DAPI. E, MR57-R cells were treated with the indicated doses of lorlatinib and 

saracatinib alone or in combination, for 7 days. Cell viability was assessed with Cell Titer Glo. 

F, MR210 cells were treated with single agents lorlatinib, saracatinib, erdafitinib and debio-

1347 or in combination for 7 days. Cell viability was assessed with Cell Titer Glo. G, MR57 

lorlatinib sensitive (epithelial) and resistant (mesenchymal) cells were treated with the 

specified concentrations of lorlatinib and saracatinib for 24hs. Cell lysates were probed with 

antibodies against the indicated proteins. H, Phenotypes of MR57 epithelial and 

mesenchymal cells labelled with Alexa Fluor 488 Phalloidin and DAPI after treatment with 

lorlatinib and saracatinib for 30 days.  

 

Novel lorlatinib resistant ALK compound mutations 

A 58-year-old non-smoker female was diagnosed with a metastatic ALK rearranged 

lung adenocarcinoma. The patient achieved a partial response with a 9.2 months PFS on first 

line treatment with crizotinib (Figure 3A). At disease progression, the patient was enrolled in 

the MATCH-R study (MR144). RNA sequencing confirmed the EML4-ALK V3 fusion and 

showed the presence of the ALK kinase domain resistant mutation G1202R (VAF: 7%) and 

an unreported E1154K variant (VAF: 29%) on different alleles (Supplementary Figure 2A). 

Amplicon-based NGS analysis of ctDNA also detected the G1202R and a I1268V mutation, 
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but not the E1154K variant (Supplementary Figure 2B). Because lorlatinib was not available 

at that time, the patient received a short course of ceritinib treatment with rapid disease 

progression, and treatment was switched to brigatinib. A mixed response was observed with 

the occurrence of new lesions after 2.5 months of treatment. A second biopsy was performed 

and only the G1202R mutation was detected at a higher allelic frequency (VAF: 67%). The 

patient started lorlatinib treatment but the benefit lasted only 3.7 months. A third biopsy was 

performed, and RNA sequencing showed the presence of both, a G1202R mutation (VAF: 

100%) and a F1174L mutation (VAF: 56%) confirmed to be in cis by TOPO-TA cloning and 

sequencing of ALK kinase domain (Supplementary Figure 2C). This was consistent with 

ctDNA sequencing which showed a rise in G1202R detection and the appearance of the 

F1174L mutation. Interestingly, ctDNA analysis detected four additional co-occurring ALK 

kinase mutations, not detected in the biopsy: C1156Y, G1269A, S1206F and T1151M 

(Supplementary Figure 2B). Solely, the G1202R/S1206F mutations were confirmed to be in 

the same read (cis) with amplicon-based NGS. C1156Y and T1151M were confirmed to be 

in trans, but due to the size of the amplicons covering the ALK kinase domain, the allelic 

distribution of the other mutations could not be assessed by this method. These other ALK 

KD mutations detected with ctDNA were not found in the sequencing analysis of the tumor 

biopsy, reflecting that these mutations could arise from polyclonal tumor cell sub-populations 

absent in the tumor biopsy. 

To further characterize the clonal evolution on sequential ALK inhibitors, a FishPlot 

model was generated from WES compiling the three sequential patient biopsies (Figure 3B). 

While no ALK resistant mutation was detected prior to ALK TKI, multiple clones emerged at 

crizotinib resistance including a G1202R carrying cell population and an E1154K mutated 

population. Subsequent treatments with second generation ALK TKIs led to the 

disappearance of the E1154K population and the persistence of the G1202R carrying cells. 
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Finally, at disease progression on lorlatinib, we observed an enrichment of the G1202R 

mutated tumor cell population and the appearance of the F1174L mutation within this 

population. This case illustrates the tumor cell population dynamics when exposed to different 

generations of ALK TKI, in accordance with the previously described sequential acquisition 

of ALK kinase domain mutations in cis (8). 

A 40-year-old male patient with metastatic ALK-rearranged lung cancer received 

crizotinib for four months (Figure 3C). The patient was included in the MATCH-R trial 

(MR347), and tissue and ctDNA NGS detected the ALK gatekeeper L1196M mutation, 

previously known to confer resistance to crizotinib(19). The patient received ceritinib for 5 

months and a second tumor biopsy was obtained from a progressive lung lesion. Targeted 

NGS, WES and RNA sequencing from the tissue detected only the ALK L1196M mutation. 

ctDNA NGS further detected the presence of a solvent front D1203N mutation, present in cis 

with the L1196M, revealing a sequential development of L1196M/D1203N compound 

mutation. The treatment was then switched to lorlatinib but disease progression was 

immediately documented, proving primary resistance to lorlatinib.  

Lorlatinib activity against ALK compound mutations  

We generated Ba/F3 cells expressing the EML4-ALK fusion with single mutations 

E1154K, F1174L, G1202R, L1196M, D1203N and the G1202R/F1174L, L1196M/D1203N 

compound mutations. Ba/F3 cells were treated with crizotinib, alectinib, brigatinib, entrectinib 

and lorlatinib to test the differential effect of these mutations on the sensitivity to ALK 

inhibitors. The E1154K mutation did not confer resistance to any ALK TKI (Supplementary 

Figure 2D). Its selection on crizotinib treatment remains, therefore, to be elucidated. While 

F1174L mutation did not confer resistance to lorlatinib, high concentrations of lorlatinib were 

required to induce a cytotoxic effect on EML4-ALKG1202R and EML4-ALKG1202R/F1174L 
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expressing cells (5). Slightly higher concentrations of lorlatinib were required to induce cell 

death in Ba/F3 cells expressing EML4-ALKG1202R/F1174L (IC50: 123 nM) compared to cells 

expressing EML4-ALKG1202R (IC50: 83 nM) (Figure 3D) which could be sufficient to confer 

resistance in the patient. L1196M and D1203N single mutations conferred a 10-fold shift in 

IC50 compared to non-mutated cells but the L1196M/D1203N compound mutation induced 

a more than 300-fold higher IC50 confirming the highly lorlatinib resistant feature of this novel 

compound mutation (Figure 3E and Supplementary Figure 2E). 

To better characterize the direct impact of those compound mutations on lorlatinib 

efficacy, we assessed ALK phosphorylation across these models exposed to incremental 

concentrations of lorlatinib. In concordance with the cell viability assay, ALK phosphorylation 

with the compound mutation L1196M/D1203N was maintained at high doses of lorlatinib (1 

µM) (Figure 3F). Interestingly, Ba/F3 cells expressing the other compound mutation 

G1202R/F1174L displayed higher basal levels of ALK phosphorylation compared with Ba/F3 

cells expressing the single mutations or no secondary mutation (Figure 3G and 

Supplementary Figure 2F). Computational modelling of ALK further supports our finding. The 

F1174L mutation does not affect lorlatinib binding. However, in the context of the 

G1202R/F1174L compound mutation, a greater kinase stability is achieved, which could 

explain higher basal levels of ALK phosphorylation, and possibly contribute to resistance in 

this case (Figure 3H). 
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Figure 3. Resistance to lorlatinib mediated by ALK kinase domain compound mutations. A, 

Clinical course of patient MR144 and allelic frequencies of ALK resistant mutations (from 

RNA sequencing) with sequential treatments. B, Fish Plot illustrating the tumor clonal 

evolution obtained by WES analysis during treatment with ALK inhibitors. The ALK E1154K 

and G1202R subclones emerged independently upon resistance to crizotinib. After disease 

progression with brigatinib, the ALK G1202R clone predominated and the E1154K clone 

became undetectable. At lorlatinib resistance, a subclone emerged from the ALK G1202R 

clone acquiring an additional F1174L mutation. C, Clinical course of patient MR347. D, Cell 

survival assay of Ba/F3 models with the indicated ALK single and the F1174L/G1202R 

compound mutations treated with lorlatinib for 48hs. E, Cell survival assay of Ba/F3 models 

with the indicated ALK single and the L1196M/D1203N compound mutations treated with 

lorlatinib for 48hs. F, ALK and downstream kinases phosphorylation in Ba/F3 mutated cells 

treated with the indicated concentrations of lorlatinib for 3hs. G, Direct comparison of ALK 

phosphorylation in the same Ba/F3 models by immunoblotting of cell lysates after 3hs 

treatment with lorlatinib showing higher levels of ALK phosphorylation with the 

F1174L/G1202R compound mutation. H, Visual representation of aligned wild-type (green) 

and F1174L/G1202R mutated (brown) ALK structures in complex with lorlatinib.  
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NF2 loss of function mediates resistance to lorlatinib  

A 44-year-old male was diagnosed with ALK-rearranged metastatic lung 

adenocarcinoma (Figure 4A). The patient experienced disease progression after 11 months 

on crizotinib. The treatment was switched to lorlatinib achieving a rapid partial response. 

Oligo-progressive disease occurred after 7 months of treatment with a new single lesion in 

the left lower lobe. The patient was included in the MATCH-R study (MR135), a biopsy of the 

lesion was performed and stereotactic radiotherapy (50 Gy) treatment was applied. Targeted 

NGS and WES of the biopsy revealed both, a NF2 S288X non-sense mutation and a NF2 

splicing site mutation (NM_000268.3:c.886-1G>A). A PDX model was developed from this 

first site of progression (R1) and a patient derived cell line was established (MR135-R1).  

After 8 months of lorlatinib treatment, multiple new lesions appeared, achieving a total 

benefit of lorlatinib treatment for 15 months. A biopsy of the right adrenal gland was performed 

confirming the presence of ALK-rearranged lung adenocarcinoma. Interestingly, WES and 

RNA sequencing of this biopsy showed the same splicing site mutation (NM_000268.3:c.886-

1G>A), coexisting with a new NF2 K543N mutation. A second PDX model was developed 

and a second lorlatinib resistant patient derived cell line was established (MR135-R2). 

Sequencing of NF2 mRNA from both cell lines revealed a 9-base pair (bp) skipping in exon 

10 as a consequence of the splicing site mutation (Supplementary Figure 3A) but the absence 

of the S288 non-sense mutation and no secondary ALK KD mutations. The K543N NF2 

mutation was only present in MR135-R2 in concordance with tumor biopsy sequencing 

results. Both the 9 bp skipping (20) and the K543N mutation were predicted to be pathogenic 

(cancergenomeinterpreter.org). Merlin expression was detected by WB in the MR135-R1 cell 

line as well as in the pre- and post-biopsies by IHC staining, suggesting a loss of function but 

not a loss of expression mechanism of resistance (Supplementary Figure 3B). NF2 mutations 
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are rare events (1.5%) in lung adenocarcinoma, and do not seem to overlap with ALK 

rearrangements (according to cBioportal) (21).  

NF2 mutations K543N and S288* were not detected in the tumor biopsy prior to 

lorlatinib treatment. Importantly, the NF2 splicing site mutation was present prior to lorlatinib 

treatment. The acquisition of two different second NF2 events attests for the temporo-spatial 

convergence between metastatic sites. This preexisting NF2 splicing site mutation 

predisposed cancer cells to resist to lorlatinib by an NF2 loss of function mechanism. 

 

Targeting lorlatinib resistance mediated by NF2 loss with mTOR inhibitors 

 NF2 encodes the merlin protein, a key tumor suppressor implied in the regulation of 

the PI3K-AKT-mTOR pathway through mTOR inhibition (22). We performed a drug screen in 

the MR135-R1 identifying the selective dual mTOR1-2 inhibitor, vistusertib (AZD2014, 

AstraZeneca), and the multi-kinase inhibitor, ponatinib, as hits in this cell line.  

Both MR135-R1 and MR135-R2 cell lines were highly sensitive to vistusertib and the 

combination of vistusertib and lorlatinib (Figure 4B, MR135-R1) (Supplementary Figure 3C, 

MR135-R2). The activity of an mTOR inhibitor was confirmed by using the clinically available 

rapamycin analogue everolimus (Supplementary Figure 3D). Ponatinib, a multikinase 

inhibitor targeting ABL, VEGR, FGFR3, PDGFRA and RET, showed an important synergistic 

effect with lorlatinib in this cell line with a 57- to 80-fold IC50 reduction with the combination 

compared to lorlatinib single agent (Supplementary Figure 3E). However, we did not identify 

a by-pass mechanism related to the activation of tyrosine kinase receptors (RTK) targeted by 

ponatinib by phospho-receptor tyrosine kinase (p-RTK) arrays (data not shown). 
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Western blot analysis in MR135-R1 showed that ALK inhibition with lorlatinib alone 

had no inhibitory effect on the phosphorylation of the downstream signaling pathways (Figure 

4C). Treatment of this cell line with vistusertib alone or in combination with lorlatinib inhibited 

S6 phosphorylation and increased the level of the pro-apoptotic BH3-only protein BIM and 

the proteolytic cleavage of PARP. This effect was more potent with the combination of 

vistusertib and lorlatinib. Similarly, the combination of lorlatinib and ponatinib reduced AKT, 

ERK and S6 phosphorylation, and increased apoptosis as compared to either treatment alone 

(Figure 4C).  

To further assess the activity of the combined treatment against lorlatinib resistant ALK-

positive tumors in vivo, we examined the efficacy of lorlatinib and vistusertib against the 

corresponding MR135-R2 PDX. As shown in Figure 4D, treatment of MR135-R2 PDX tumor-

bearing mice with the combination was significantly more effective than with single agents in 

controlling tumor growth.   

 

Independent validation of NF2 loss-mediated lorlatinib resistance 

 We performed NF2 knock-out (KO) by CRISPR-CAS9 gene editing in ALK-rearranged 

H3122 cell line to further validate the implication of NF2 loss of function in lorlatinib resistance. 

The resulting H3122-NF2KO cell line harbored a genomic 22,803 bp deletion causing a 

434 bp frameshift deletion at the mRNA level (Exon 4-12). Immunoblot analysis confirmed 

the lack of merlin expression in H3122-NF2KO cells (Figure 4E).  

 Consistent with the MR135 cell lines, H3122-NF2KO cells were less sensitive to 

lorlatinib treatment than the parental cell line with an IC50 of 41.8 nM compared to 1.3 nM, 

respectively (Figure 4F). The shift in the IC50 value was also observed for other ALK TKI 
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(Supplementary Figure 3F). We next assessed the magnitude of this effect in a time-course 

cell proliferation assay simultaneously with a caspase activity assay. H3122-NF2KO cells 

continued to proliferate in the presence of high doses of lorlatinib and exhibited low caspase 

activity compared to the parental cell line at each time point (Figure 4G-4H). Western blot 

analysis revealed that merlin deficient cells maintained higher levels of S6 phosphorylation 

compared to merlin proficient cells (Figure 4I). Consistently with the caspase-3/7 activity 

assay, H3122-NF2KO cells had decreased levels of cleaved PARP after 48 hours of 

treatment with lorlatinib. Importantly, vistusertib alone or in combination with lorlatinib potently 

inhibited S6 phosphorylation and induced PARP cleavage in H3122-NF2KO cells 

(Supplementary Figure 3G). This further supports the importance of merlin integrity in the 

regulation of mTOR signaling, evidenced by the  overactivation of mTOR secondary to NF2 

knock out in this model (Supplementary Figure 4.). 
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Figure 4. NF2 loss of function mediates resistance to lorlatinib. A, Clinical course of patient 

MR135 and mutational profile of samples obtained on lorlatinib progression (PD, progressive 

Disease). B, Cell survival assay assessed with Cell Titer Glo of MR135 lorlatinib resistant 

cells from biopsy 1 (MR135-R1) treated for 7 days with the indicated concentrations of 

lorlatinib and vistusertib (AZD2014) alone or in combination. C, Immunoblot analysis from 

cell lysates of MR135-R1 treated for 24hs with the specified doses of lorlatinib, vistusertib 

(AZD2014) and ponatinib alone or in combination using indicated antibodies. D, Athymic 

nude mice bearing MR135-R2 PDX were administered lorlatinib or vistusertib 20 mg/kg orally. 

Tumor volumes, mean ±SD (n =8); (*** p < 0.001). E, Cell lysates from H3122 parental and 

H3122 cells with NF2 heterozygous deletions or homozygous deletions, generated by 

CRISPR-CAS9 gene editing, were immunoblotted to detect merlin expression. H3122 cells 

with bi-allelic NF2 knock-out lacked merlin expression. F, Cell survival assay of H3122 

parental and H3122 NF2 knock-out (NF2 KO) cells treated with lorlatinib for 7 days. Cell 

survival was assessed by Cell Titer Glo. G, Cell proliferation assay of H3122 parental and 

H3122 NF2 KO cells untreated and treated with lorlatinib measured at baseline, day 2, day 5 

and day 7. Cell viability was assessed with Cell Titer Glo. H, Caspase 3/7 activation (Caspase 

3/7-Glo assay) relative to the number of live cells simultaneously assessed in the cell 

proliferation assay previously described. I, H3122 parental and NF2 KO cells were treated 

with the indicated doses of lorlatinib for 24hs. Cell lysates were immunoblotted to detect the 

selected proteins.  
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Discussion  

Lorlatinib, which has been recently granted FDA approval, is the new standard 

treatment for patients progressing after crizotinib and a second generation ALK inhibitor or 

after upfront treatment with ceritinib or alectinib, and the last remaining available line of ALK-

targeted therapy (6,7,23). With this study, we contributed to understand the adaptive 

mechanisms driving resistance to this targeted agent trough the longitudinal assessment of 

tumor biopsies and ctDNA by deep molecular profiling and the development of PDX and cell 

lines. 

 The sequential accumulation of mutations on a single allele of the ALK kinase domain 

has been recently described by Yoda and colleagues to mediate resistance in about 35% of 

patients previously exposed to first- and second-generation TKI (8). In addition to these 

pivotal findings, we identified and characterized three novel compound mutations from patient 

tumor biopsies (F1174L/G1202R, L1196M/D1203N and C1156Y/G1269A). The 

C1156Y/G1269A compound mutation retained sensitivity to lorlatinib both in Ba/F3 cells and 

the patient-derived cell line suggesting that co-occurring off-target mechanisms of resistance 

can drive disease progression even in the presence of compound mutations. Similarly to the 

previously described L1196M/G1202R mutation, the L1196M/D1203N mutation conferred 

high level of lorlatinib resistance. On the other hand, the G1202R/F1174L compound 

mutation resulted in a mild increase in resistance to lorlatinib compared to the single G1202R 

mutation, and is potentially targetable by increasing lorlatinib doses in vitro. However, this 

approach would not be feasible in patients, limited by the risk of increased toxicities. This is 

further supported by a recent study reporting the acquisition in vitro of the F1174L mutation 

arising from G1202R mutant Ba/F3 cells, exposed to low doses of lorlatinib using ENU 

mutagenesis screening, conveying low levels of resistance to this drug (24). In this patient, 



 142 

the detection in ctDNA of multiple secondary ALK mutations, of which G1202R and S1206F 

were confirmed to be in cis, shows that compound mutations can be polyclonal events.  

Our studies on patient derived cell lines allowed to further explore off-target mechanisms 

of resistance to lorlatinib, contributing to past efforts in the design of novel therapeutic 

strategies (25). We developed two patient-derived cell lines that underwent EMT in vitro on 

treatment with lorlatinib involving SRC activation. EMT had previously been implied in 

resistance to ALK inhibitors and other targeted therapies in lung cancer (26–29). In addition, 

it is also known that SRC activation plays a key role in the development of EMT throughout 

different cancer types (30). Crystal and colleagues had previously reported that several ALK 

resistant patient-derived cell lines were susceptible to combined ALK and SRC inhibition. In 

the present study, we further demonstrated that this association is highly effective in lorlatinib 

resistant patient derived cell lines undergoing EMT, and showed that SRC inhibition could 

partially restore E-cadherin expression in mesenchymal cells without completely reverting 

them to an epithelial phenotype. Interestingly, as recently shown for EGFR mutant NSCLC, 

FGFR inhibitors sensitized ALK-rearranged EMT cell lines to lorlatinib in vitro (17). There are 

no effective therapies against lung cancer undergoing EMT, our work further supports the 

exploration of combination strategies in clinical trials for patients with off-target resistant 

mechanisms.  

Finally, we identified NF2 loss of function as a novel bypass mechanism of resistance 

to lorlatinib (MR-135) and subsequently confirmed these findings in vitro by NF2 knock-out in 

the H3122 cell line. In this case, the NF2 splicing site mutation was present at the time of 

progression to crizotinib, and in this context, the patient experienced initial response to 

lorlatinib treatment. At the time of resistance, additional deleterious events in NF2 occurred 

and led to a potent bypass mechanism. We hypothesize that NF2 loss of function was a 

functional convergence among multiple metastatic sites where sequential genomic events 
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led to biallelic NF2 deleterious mutations. The patient-derived cell lines were resistant to 

lorlatinib and sensitized by mTOR inhibition in vitro and in vivo, constituting a novel potential 

treatment approach in this context.  

This study has several limitations, the first being the number of patients evaluable for 

resistance mechanisms and reported in this study. Among the four patients who achieved a 

partial response with lorlatinib, the PFS ranged from 3.7 (MR144) to 16 months (MR210) 

which seems shorter than reported in the phase II study of lorlatinib (7). Further studies are 

needed to disclose the full spectrum of resistance mechanisms to lorlatinib including from 

patients with prolonged benefit. Secondly, pre-lorlatinib tumor biopsies and plasma samples 

were not available in all cases, limiting the analysis of the impact of baseline genomic 

alterations in lorlatinib resistance. Thirdly, during the development of patient-derived cell 

lines, the selective pressure introduced by passages in vitro and treatment exposure, may 

result in the outgrowth of more aggressive tumor cells and force the acquisition of EMT 

features. 

In summary, the mechanisms of resistance to lorlatinib in patients with ALK-

rearranged lung cancer can be diverse and complex. We have shown here that longitudinal 

tumor samplings combined with patient derived models can provide new insights on tumor 

dynamics and biological processes underlying disease progression, thereby, contributing to 

the design of novel therapeutic strategies.   
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Supplementary Files 

 

Supplementary Figure 1: EMT mediated lorlatinib resistance (corresponding to 

main Figure 2). A, Cell survival assay of MR57 lorlatinib sensitive (MR57-S) and 

resistant (MR57-R) cell lines treated with the indicated doses of lorlatinib for 7 

days. Cell survival was assessed with Cell Titer Glo. B, Cell survival assay of 

Ba/F3 models of single and compound ALK mutations treated with the indicated 

doses of lorlatinib for 48hs. Cell survival was assessed with Cell Titer Glo. C, Cell 

survival assay assessed with Cell Titer Glo of Ba/F3 models harboring the 

compound C1156Y/G1269A mutation treated with the indicated ALK inhibitors for 

48hs. D, Log2 fold change in the expression of key genes implied in EMT from 

RNA sequencing of MR57 lorlatinib resistant (MR57-R) and sensitive (MR57-S). 

The differential expression of E-Cadherin, N-cadherin, vimentin and SNAI1 

supports the characterization of the mesenchymal phenotype in MR57-R cells. E, 
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MR57 lorlatinib sensitive and resistant cells labelled with Alexa Fluor 488 

Phalloidin. MR57 sensitive cells exhibit epithelial features by forming compact 

clusters with extensive intercellular contacts associated with subcortical actin 

microfilaments. MR57 resistant cells display significant formation of actin stress 

fibers, characteristic of a mesenchymal phenotype. F, Pre-crizotinib and post-

lorlatinib lung biopsies from MR57 underwent hematoxylin and eosin staining 

(HES) and immunohistochemical staining for ALK, E-cadherin (E-Cad), N-

Cadherin (N-Cadh), Vimentin, pSRC, pMAPK, Ki-67, Podoplanin, Glucose 

transporter 1 (Glut1), Carbonic anhydrase 9 (CA-IX), beta catenin (B catenin), 

CD47 and CD68. There was no evidence of EMT in the tumor tissue upon 

lorlatinib progression as evidenced by high levels of E-cadherin expression and 

the absence of N-cadherin or vimentin expression. Beta-catenin retained its 

membrane localization and no nuclear staining was detected. Interestingly, 

hematoxylin and eosin (H&E) staining revealed spatial tumor relocation to 

lymphatic vessels (expressing CD31 and podoplanin). This carcinomatous 

lymphangitis allowed a sustained tumor cell growth (with high Ki-67 index) and 

MAPK pathway phosphorylation while on lorlatinib. This relocation was 

associated with a hypoxic environment [expression of carbonic anhydrase 9 (CA-

IX) and Glut1] and innate immunity escape [expression of CD47 and low content 

in CD68 macrophages]. Overall, the study of patient tumor histology did not 

confirm EMT-related resistance, but a tumor relocation that could have impacted 

the drug accessibility to tumor cells. G, Pre-crizotinib and post-lorlatinib FFPE 

biopsies from MR210 underwent HES and immunohistochemical staining for E-

cadherin (E-Cad), N-Cadherin (N-Cadh) and Vimentin. The increase in vimentin 

expression in the post-lorlatinib specimen would suggest a partial EMT in the 

tumor at the time of resistance. H, Cell survival assay assessed with Cell Titer 

Glo of MR57-S cell line treated with the indicated doses of saracatinib or lorlatinib 

or their combination for 7 days. I, Cell survival assay assessed with Cell Titer Glo 

of MR57 lorlatinib resistant (MR57-R) cell line treated with the indicated doses of 

dasatinib or lorlatinib or their combination for 7 days. J, Cell survival assay 

assessed with Cell Titer Glo of MR57-S cell line treated with the indicated doses 

of dasatinib or lorlatinib or their combination for 7 days. K, MR57-S and MR57-R 

cells were treated for 30 days with the indicated concentrations of lorlatinib, 

saracatinib or the combination. Immunoblotting of the cell lysates for the selected 
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EMT markers showed partial restoration in E-Cadherin expression in MR57-R 

cells exposed to saracatinib. 

 

Supplementary Figure 2: ALK secondary mutations (corresponding to main 

Figure 3). A, Proportion of sequenced colonies with the G1202R and E154K 

mutations in different alleles from TOPO-TA cloning of the ALK kinase domain 

from RNA (cDNA) extracted from the tumor biopsy of MR144 obtained after 

progression to crizotinib. B, Allelic frequencies of ALK mutations detected in 

circulating tumor DNA sequencing from MR144 during treatment with ALK 

inhibitors (PD, progressive disease; PR, partial response). C, Proportion of 

sequenced colonies with the G1202R and F1174L mutations in cis from TOPO-

TA cloning of the ALK kinase domain from DNA extracted from the tumor biopsy 

of MR144 obtained after progression to lorlatinib. D, Cell survival assay of Ba/F3 

models of EML4-ALK, non-mutant and with the novel E1154K variant, treated 

with the indicated doses of different ALK inhibitors for 48hs. E, Mean IC50 values 

from three replicates for Ba/F3 cells harboring EML4-ALK rearrangements with 

single and compound mutations treated with ALK inhibitors. F, ALK 

phosphorylation of Ba/F3 cells treated with the indicated concentrations of 

lorlatinib for 3hs. 

 

Supplementary Figure 3: NF2 deleterious mutations and sensitivity to lorlatinib 

(corresponding to main Figure 4). A, Sanger sequencing of NF2 (cDNA) from 

MR135-R1 cells showing NF2 exon 10 skipping of 9bp secondary to the indicated 

intron 9 splicing acceptor site mutation, also present in MR135-R2 cell line. B, 

Pre- and post-lorlatinib FFPE biopsies from MR135 underwent Merlin 

immunohistochemical staining. Merlin protein expression was detected in the pre- 

and post-biopsies. C, Cell survival assay of MR135 lorlatinib resistant cells from 

biopsy 2 (MR135-R2) treated with the indicated doses of vistusertib (AZD2014) 

and lorlatinib single agents and in combination for 7 days. D, Cell survival assay 

of MR135-R1 cells treated with everolimus and lorlatinib as indicated for 7 days. 

E, Cell survival assay of MR135-R1 cells treated with the indicated doses of 

ponatinib and lorlatinib as monotherapy or in combination for 7 days. F, Cell 



 152 

survival assay of H3122 parental and H3122 NF2 KO cells treated with the 

indicated concentrations of crizotinib, alectinib, brigatinib and entrectinib for 7 

days. H3122 NF2 KO cells were less sensitive across different ALK inhibitors 

compared to parental H3122 cells. Cell survival was assayed with Cell Titer Glo 

in all experiments. G, H3122 parental and NF2 KO cells were treated with the 

specified doses of lorlatinib and vistusertib (AZD2014) for 24hs. Cell lysates were 

immunoblotted to detect the specific proteins. The combination of vistusertib and 

lorlatinib enhanced apoptosis induction in H3122 NF2 KO cells.  

 

Supplementary Figure 4: NF2 inhibition of mTORC1 and its canonical pathway. 

A, NF2 functions as a tumor suppressor gene. By its canonical pathway NF2 

indirectly inhibits the Rho GTPase Rac1 and Cdc42. Therefore RAC1 does not 

activate the serine/threonine p21-activating kinases (PAKS) and the MAPK 

effectors JNK and c-Jun.  Merlin also inhibits mTORC1, and therefore the 

phosphorylation of p70 S6 Kinase 1 (S6K1) and eIF4E Binding Protein (4EBP). 

In this context, S6K1 does not phosphorylate S6. 4EBP, is a repressor protein 

and inhibits the eukaryotic translation initiation factor 4E (eIF4E) (98). In the 

context of mTOR inhibition by merlin, 4EBP inhibits eIF4E, and by the canonical 

pathway and mTORC1 inhibition, merlin negatively regulates cell proliferation. B, 

Lorlatinib inhibits the EML4-ALK fusion protein and thus, inhibits the 

phosphorylation of ALK downstream signaling pathways including the 

PI3K/AKT/mTOR pathway. In cells with proficient merlin function, in addition 

merlin mediates mTORC1 inhibition. In merlin deficient cells, mTORC1 even in 

the setting of adequate ALK inhibition, loses the negative regulation of mTOR 

and in turns is activated, phosphorylating S6K1 and S6 promoting ALK 

independent downstream oncogenic signaling. Figure A was adapted from  

Beltrami et al. Anticancer Cancer 2013.  
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Part III. Discussion and perspectives 

 

1. Implementing strategies to study resistance to 

lorlatinib in patients with lung cancer  

 

 The evolution of science, technology and drug development has propelled 

the oncology field into the era of targeted therapies, improving outcomes for 

patients with advanced-stage lung cancer. In parallel with the development of 

kinase inhibitors, the study of resistance to kinase inhibitors has contributed 

thoroughly to the comprehension of cancer adaptation and evolution, as well as 

the development of new generation kinase inhibitors (212). This has been 

possible by optimizing the development of patient-derived cell lines and 

xenografts together with the recent advances in molecular diagnosis (223). 

However, in few academic institutions around the world, the study of resistance 

to kinase inhibitors has been implemented in a systematic and prospective 

fashion.  

This study is the first to report on mechanisms of resistance to targeted 

therapies within the scope of the institutional MATCH-R trial held at Gustave 

Roussy Campus. In our study, we have shown that the prospective inclusion of 

patients in the MATCH-R trial allowed to interrogate the tumor biology at different 

time-points during treatment and at the time of progression to the third generation 

ALK inhibitor lorlatinib. By this mean, we were able to fully characterize novel 

mechanisms of resistance to this compound by generating patient-derived tumors 

and integrating genomic and RNA sequencing in the process.  

 As part of the strategy implemented to study resistance mechanisms 

occurring in patients treated with lorlatinib, we developed a research workflow 

based on the development of patient derived cell lines and xenograft models. 

Establishing representative patient-derived cell lines constituted one of the major 
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challenges we had to sort throughout the course of this project. Tumor processing 

and logistic variables together with the intrinsic properties of cancer cells 

determines the success rate of cell line development. The success rate is 

influenced by the size of tumor biopsies and the proportion of cancer cells, time 

from biopsy to tumor processing and engraftment in mice, careful selection and 

identification of cancer cells growing in culture, adapting culture media 

requirements, selecting lorlatinib resistant cells and validating the genomic 

features of the cell line with those observed in tissue NGS.  

 From the 13 biopsies with adequate tumor sampling obtained from 10 

patients experiencing resistance to ALK TKIs, we successfully developed 4 

patient derived cell lines (MR57-S, MR135-R1, MR135-R2 and MR210), with a 

success rate of 31%. In addition, we derived a fifth cell line, the MR57 resistant 

cell line by exposing MR57-S cells to lorlatinib in vitro. This was the cornerstone 

to pursue the characterization of novel mechanisms of resistance to lorlatinib, by 

allowing to test multiple compounds to identify potential hits through drug screen 

assays and activated phosphokinases by immunoblotting assays.  

 Validating the role of compound mutations emerging at the time of lorlatinib 

resistance required the development of reliable models of on-target resistance. 

After confirmation of the allelic distribution of ALK mutations, we cloned the full 

EML4-ALK variant 3 cDNA into lentiviral vectors, introduced multiple single and 

compound ALK mutations and developed Ba/F3 models by successfully infecting 

and selecting ALK-dependent cells. This allowed to test the effect of these 

mutations against most available ALK TKIs with a high degree of reproducibility 

and certainty.  

 Finally, to confirm that NF2 deleterious mutations can induce resistance to 

lorlatinib, we developed a second ALK cell line model to reproduce this effect by 

inducing complete NF2 knock out on H3122 cells using CRISPR-Cas9 gene 

editing. It was challenging to obtain an NF2 knock out cell line by this method, as 

most cell clones did not survive the simultaneous biallelic loss of this tumor 

suppressor gene. However, in the established NF2 knockout H3122 clone, we 

could reproduce the findings observed in the lorlatinib resistant patient-derived 
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cell line, and further validate the role of mTOR overactivation in a clean model of 

resistance.    

2. Novel mechanisms of resistance to lorlatinib 

 

  The discovery of compound ALK mutations and the negative effect of most 

mutation combinations on lorlatinib binding was the sole described mechanism 

of resistance to lorlatinib reported to date. In our study, we contributed to the 

existing evidence by characterizing novel off-target mechanisms of resistance to 

lorlatinib: the role of SRC- mediated resistance by the induction of EMT and the 

downstream overactivation of mTOR, induced by NF2 loss of function mutations. 

We also studied the effect on lorlatinib of new compound mutations found in 

tumors, the C1156Y + G1269A and G1202R + F1174L mutations. 

 

EMT induced by SRC activation prompts lorlatinib resistance and can be 

targeted with SRC inhibitors 

 In our study, we found that SRC activation mediates resistance to lorlatinib 

by promoting EMT in vitro and showed that dual combination of SRC and ALK 

inhibition induces cell death in SRC-dependent cell undergoing EMT. The role of 

SRC activation in resistance to first and second-generation ALK inhibitors was 

previously reported by Crystal and colleagues (223). In hand with their findings, 

we further linked the role of SRC-dependent resistance to the induction of EMT 

in ALK positive lung cancer cells in vitro. A recent study by Fukuda and 

colleagues show that, in the context of ALK resistance mediated by EMT, 

reversing the EMT state in vitro by using HDAC inhibitors was necessary to 

resensitized cancer cells to ALK inhibition (251). Differently, in our study, we 

prove that direct targeting of SRC and ALK, results in high levels of apoptosis in 

overtly mesenchymal cells, but SRC inhibition alone does not provoke this effect, 

even when partially reverting the EMT state. This proves that cancer cells 

undergoing SRC mediated EMT can still be co-dependent on ALK and SRC 

signaling for survival in vitro (297).  
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 One of the pitfalls of our study, is the lack of evidence of EMT features in the 

biopsy specimen from the patient, and the fact that the original cell line developed 

(MR57-S) was sensitive to lorlatinib. We don´t know if lorlatinib withdrawal during the 

time of PDX development and cell line establishment could have influenced the 

observed sensitivity of the MR57-S cell line, and if epigenetic modifications could 

have mediated this phenomenon. In this cell line, the induction of a mesenchymal 

resistant phenotype by lorlatinib treatment in vitro, led us to hypothesis that a pre-

programmed EMT state may have been present in lorlatinib tolerant persister cells, 

and this is currently being studied in our team.    

 

Compound mutations can have differential impact on lorlatinib resistance 

 Previous reports on compound mutations have shown to confer high levels 

of resistance to lorlatinib treatment, mainly by partnering G1202R mutations with 

a second ALK kinase domain mutation (216,279,298). Previous studies from 

Shaw and colleagues, showed that compound mutation C1156Y+L1198F, even 

in the absence of a G1202R mutation, conferred resistance to lorlatinib but 

resensitized cells to crizotinib treatment (298). In our study we showed that the 

C1156Y+G1269A did not cause resistance to lorlatinib and could also be targeted 

with brigatinib. Because of this, the differential effect of compound mutations 

should be incorporated in the treatment decision process. In case of detecting 

this compound mutations after progression to first- or second- generation ALK 

TKI, our findings support pursuing treatment with brigatinib or lorlatinib.  

 Furthermore, we also characterized a novel compound mutation that 

confers resistance to lorlatinib, the G1202R + F1174L. In contrast with the high 

levels of resistance reported with G1202R compound mutations, this compound 

mutation does not seem to fully abrogate lorlatinib binding, as full ALK 

phosphorylation can be suppressed with higher lorlatinib doses. Interestingly, we 

found that baseline ALK phosphorylation was significantly higher in ALK G1202R 

+ F1174L mutant Ba/F3 cells, compared to single mutant cells. This suggests that 

the kinase affinity for ATP is enhance in this context, potentially contributing to 

the lower ALK inhibitory potency observed. However, we did not validate this 

hypothesis in the current study, as we did not perform kinase affinity assays for 
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this compound mutation. Okada and colleagues also reported this compound 

mutation while performing an ENU mutagenesis screen do identify resistance 

mechanisms to lorlatinib, further confirming our findings (216).  

 In addition, we characterized a highly resistant L1196M/D1203N 

compound mutation emerging after treatment with crizotinib and ceritinib and 

conferring primary resistance to lorlatinib. This also suggests that compound 

conferring primary resistance to lorlatinib can emerge during treatment with 

earlier generation ALK TKIs and that assessment of ALK kinase domain 

mutations prior to lorlatinib treatment can help in the treatment selection of these 

patients.  

NF2 loss induces resistance to lorlatinib by mTOR overactivation and can 

be reversed with mTOR inhibitors 

 The identification and characterization of NF2 loss of function mutations 

resulting in mTOR overactivation is the most relevant contribution of our study to 

the existing evidence on resistance to lorlatinib. Based on our results, ALK 

resistance driven by NF2 loss of function alterations can be overcome by 

combined ALK and mTOR inhibition in vitro and in vivo  

 The role of NF2/merlin in mTOR regulation has been extensively studied 

in NF2 mutant schwannomas, meningiomas and mesotheliomas in the context of 

type II neurofibromatosis disease (106,108). This has encouraged the 

development of clinical trials assessing the efficacy of mTOR inhibitors in this 

setting (NCT02831257, NCT03433183).  However, in lung cancer, de novo NF2 

mutations are a rare event, and are mutually exclusive with ALK rearrangements 

(299,300). Redaelli and colleagues have previously reported that combined ALK 

and mTOR inhibition had a synergistic effect in NPM-ALK lymphoma cells (301). 

In our study, we did not observe this in other cell line models of lorlatinib 

resistance or other models of TKI resistance, suggesting that this combination 

was selectively potent in the setting of NF2 loss. An ongoing phase I trial is 

studying the safety and efficacy of ceritinib in combination with everolimus in the 

first line treatment for patients with ALK-driven lung cancers. This study will 

provide some clinical perspective on the feasibility of this combination.  
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 One of the limitations of our study is that we did not deepen into the basic 

processes involved in mTOR overactivation by merlin loss, in the context of ALK 

resistance, and whether it resembles those observed in neurofibromatosis-

associated cancers needs to be further explored.  

   

3. Challenges and future perspectives in the 

treatment of patients with ALK-rearranged lung 

cancer 

 

 The findings of the present work support the notion that mechanisms of 

resistance to lorlatinib are diverse and complex and, even when challenging, 

pursuing new ways of optimizing and developing effective ALK targeted 

treatments is crucial  

One of the most important challenges moving forward, is to find novel ways 

to target compound mutations, reported in about 35% of patients experiencing 

resistance to lorlatinib (279). As the list of defined compound mutations continues 

to grow, it is less likely that an ATP-competitive ALK TKI will be able to inhibit 

ALK in the context of all the published compound mutation combinations 

(216,279). In my opinion, future strategies should aim to target ALK without 

depending on binding properties of kinase inhibitors to the kinase domain.  By 

sparing the need to bind to the catalytic pocket, developing allosteric ALK 

inhibitors could be an innovative treatment strategy in the setting of intricate 

compound mutations.  

Another novel way to target ALK in this context is being explored with the 

development of protein degraders, a group of drugs that induce protein 

ubiquitination and proteasomal degradation by the cereblon E3 ligase complex. 

Protein degraders are called bifunctional proteolysis targeting chimeras 

(PROTACs). Nathanael Gray’s group has recently published the chemical 

structure and development of ALK degraders. These degraders are composed of 

an ALK inhibitor (ceritinib or TAE684) bound by a linker to the cereblon ligand 
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pomalidomide (302). Pomalidomide recruits the E3 ubiquitin ligase complex, 

ultimately resulting in ALK selective ubiquitination and proteasomal degradation. 

ALK degradation results in lower levels of total ALK in cancer cells and, in 

consequence, decreased ALK phosphorylation and enhanced apoptosis.  

  Today, in the clinical setting of resistance to lorlatinib, there are few 

available treatment options for patients experiencing disease progression with 

lorlatinib. Thus, the development of clinical trials for patients progressing on this 

treatment is urgently needed.  In the presence of well characterized resistant 

compound mutations, treatment with chemotherapy is the sole clinically available 

option. Only two mutations have been reported to resensitize ALK-rearranged 

cancer cells to earlier generation ALK TKIs, the L1198F mutation to crizotinib and 

the ALK L1256F mutation to alectinib and, if detected at progression, treatment 

with the earlier generation ALK TKIs should be considered (216,298).  

  Combination strategies targeting ALK and off-target mechanisms of 

resistance like we showed for SRC and mTOR activation in vitro should be 

explored. Given that this is the first study to date reporting on bypass mechanisms 

of resistance to lorlatinib, it remains to be elucidated if SRC activation and NF2 

mutations or other alterations in the PI3K/AKT/mTOR axis will occur frequently. 

Our findings in vitro and in vivo support the development of SRC/ALK and 

mTOR/ALK combinations in the setting of resistance. However, this is limited by 

the lack of clinical biomarkers to detect SRC or mTOR overactivation in tumor 

samples. Case reports and small studies have shown that combining MET or 

RET inhibitors with the third generation EGFR TKI osimertinib is effective when 

MET amplification or RET-fusions emerge as bypass resistance (71,254,303). 

Hopefully, these combinatorial strategies with osimertinib can be adopted to 

overcome lorlatinib resistance. 

Other future strategy to tackle of-target resistance to lorlatinib is to 

modulate effectors that regulate common oncogenic signaling pathways. Dardaei 

and colleagues identified SHP2 as a potent activator of MAPK signaling in the 

setting of resistance to different ALK TKI (143). In the absence of detectable on-

target resistance to lorlatinib, combining lorlatinib with SHP2 inhibition could be a 

rational strategy to pursue in clinical trials. Early trials assessing the safety of 
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SHP2 inhibitors are currently ongoing for patients with tumors harboring 

molecular alterations in the EGFR and MAPK pathway (NCT03114319).   

 With the current evidence, showing that compound mutations are 

developed by the sequential acquisition of single ALK mutations to different ALK 

TKI, developing strategies to prevent the onset of resistance is necessary. 

Lorlatinib is the most potent ALK inhibitor developed, and preclinical data in PDX 

models supports the efficacy of upfront treatment with this drug (272). This was 

also observed in the clinical setting, where first line treatment with lorlatinib in the 

phase I/II study yielded a 90% response rate among 30 patients with prolonged 

progression-free survival durations. The efficacy of lorlatinib compare to crizotinib 

I the first line setting is currently being studied in a phase III randomized trial 

(NCT03052608).  

In the current scenario, the development of robust biomarkers to tailor the 

treatment with ALK TKIs is necessary. In EML4-ALK rearranged cancers, the 

rearrangement variant might play a role in this setting. Lin and colleagues have 

reported that on target resistance mutations are more commonly detected in 

tumor with EML4-ALK variant 3 rearrangements compared to variant 1 

rearrangement (57% vs 30%), and this difference is more striking with the 

G1202R mutation (32% vs 0%). Previously reported preclinical studies showed 

that in non-mutant EML4-ALK cells, treatment with lorlatinib upfront did not induce 

resistance by single ALK mutations (272,279). Based on this, treating patients 

harboring variant 3 EML4-ALK rearranged cancers with lorlatinib in the first line 

setting could prevent the emergence of single ALK resistance mutations, 

including the G1202R mutation, and thus, block the future acquisition of 

compound mutations. This might not be as relevant for EML4-ALK variant 1 

tumors, in which the incidence of acquired secondary mutations is lower and 

following a sequential treatment strategy with crizotinib, ceritinib or alectinib in the 

first line could be a suitable option (162). Though the variant type doesn’t seem 

to influence progression free survival outcomes with alectinib or lorlatinib, it could 

be considered in future trial designs due to the differential predisposition in the 

type of resistance mechanisms observed.  
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Moving forward with this research field, it’s important to continue to study 

resistance mechanisms to lorlatinib occurring in patients. In addition to 

characterizing individual cases, like in our study, our research group will continue 

to develop a biobank of patient derived models that will allow us to explore more 

common and shared biological mechanisms of resistance across patient’s 

tumors. For this, we need to study beyond the genomic alterations in ALK, or the 

modulation of well characterized signaling pathways. Exploring other hallmarks 

of cancer survival like epigenetic modulation of gene expression, cell cycle 

effectors and antiapoptotic mechanisms together with the unique features of drug 

tolerant (or persister) cells may derive in new ways of understanding resistance 

to ALK TKIs. This could be coupled to study the effect of new epigenetic 

modifiers, like next generation HDAC inhibitors, or cyclin-dependent kinases in 

this setting.  

Furthermore, the influence of the tumor microenvironment in resistance to 

ALK TKIs is not well understood and needs to be studied. Paracrine signaling by 

multiple cell populations like immune cells, fibroblasts and endothelial cells have 

been previously reported to induce EMT and bypass mechanisms in EGFR and 

ALK rearranged lung cancer cells in vitro (234). In this line, the study of circulating 

exosomes may provide novel insights in the influence signaling from distant 

metastatic sites on systemic progression. Exosomes contain growth factors, EMT 

inducers, miRNAs and long-non-coding RNAs, amongst many other molecules 

that may influence the tumor microenvironment and also directly impact lung 

cancer cells. (304).  

Finally, we hope that with our study we have proven that conjoint research 

efforts of basic, translational and clinical investigators, in partnership with drug 

development units can shed a light on mechanisms of resistance to novel 

compounds, like lorlatinib in ALK-dependent lung cancer patients. Most 

importantly, we hope that our findings could contribute to the development of 

novel treatment strategies to improve patients care.  
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Conclusions 

 

 In the translational science field, our research provides novel insights on 

biological mechanisms of resistance to lorlatinib in patients with ALK-rearranged 

non-small cell lung cancer. We revealed that these mechanisms can be diverse 

and complex constituting the first report integrating on- and off-target 

mechanisms of resistance to lorlatinib. We showed that SRC activation can 

mediate resistance to lorlatinib in vitro by inducing epithelial mesenchymal 

transformation. We also demonstrated that SRC and ALK inhibition can induce 

cell death in highly mesenchymal cells. In addition, we characterized the 

biological effect of novel compound mutations occurring at lorlatinib progression 

in patients, proving that compound mutations found in patients can confer 

differential sensitivity/resistance to lorlatinib, and can also emerge as polyclonal 

effects. Lastly, we demonstrated that NF2 loss of function mutations result in 

lorlatinib resistance by mTOR overactivation and can be reverted by combining 

ALK and mTOR inhibition.  

 In the clinical field, our findings support the development of combination 

treatment strategies to tackle off-target resistance mechanisms in patients 

progressing on lorlatinib. In addition, with our work we show that the prospective 

and systematic assessment of tumor biology through molecular profiling and the 

development of cell line models from patients treated with targeted therapies is 

feasible and useful to study and develop new strategies to improve patient’s 

outcomes.  

 

 

 

 



 

 167 

References  

 

1.  Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global 

cancer statistics 2018: GLOBOCAN estimates of incidence and mortality 

worldwide for 36 cancers in 185 countries. CA Cancer J Clin. United States; 

2018.  

2.  Ferlay J, Colombet M, Soerjomataram I, Dyba T, Randi G, Bettio M, et al. 

Cancer incidence and mortality patterns in Europe: Estimates for 40 

countries and 25 major cancers in 2018. Eur J Cancer. England; 

2018;103:356–87.  

3.  Morgensztern D, Ng SH, Gao F, Govindan R. Trends in Stage Distribution 

for Patients with Non-small Cell Lung Cancer: A National Cancer Database 

Survey. J Thorac Oncol. 2010;5:29–33.  

4.  Goldstraw P, Chansky K, Crowley J, Rami-Porta R, Asamura H, Eberhardt 

WEE, et al. The IASLC Lung Cancer Staging Project: Proposals for 

Revision of the TNM Stage Groupings in the Forthcoming (Eighth) Edition 

of the TNM Classification for Lung Cancer. J Thorac Oncol. United States; 

2016;11:39–51.  

5.  Gazdar AF, Bunn PA, Minna JD. Small-cell lung cancer: what we know, 

what we need to know and the path forward. Nat Rev Cancer. England; 

2017;17:725–37.  

6.  Herbst RS, Morgensztern D, Boshoff C. The biology and management of 

non-small cell lung cancer. Nature. England; 2018;553:446–54.  

7.  Wyner EL, Graham EA. Tobacco smoking as a possible etiologic factor in 

bronchiogenic carcinoma; a study of 684 proved cases. J Am Med Assoc. 

United States; 1950;143:329–36.  

8.  de Groot PM, Wu CC, Carter BW, Munden RF. The epidemiology of lung 

cancer. Transl lung cancer Res. AME Publishing Company; 2018;7:220–

33.  

9.  Hecht SS. Tobacco smoke carcinogens and lung cancer. J Natl Cancer 

Inst. United States; 1999;91:1194–210.  

10.  Health. NC for CDP and HP (US) O. The Health Consequences of 



 168 

Smoking—50 Years of Progress: A Report of the Surgeon General. Atlanta 

(GA); 2014.  

11.  Asomaning K, Miller DP, Liu G, Wain JC, Lynch TJ, Su L, et al. Second 

hand smoke, age of exposure and lung cancer risk. Lung Cancer. Ireland; 

2008;61:13–20.  

12.  Wakelee HA, Chang ET, Gomez SL, Keegan TH, Feskanich D, Clarke CA, 

et al. Lung cancer incidence in never smokers. J Clin Oncol. United States; 

2007;25:472–8.  

13.  Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA 

Cancer J Clin. United States; 2005;55:74–108.  

14.  Sun S, Schiller JH, Gazdar AF. Lung cancer in never smokers--a different 

disease. Nat Rev Cancer. England; 2007;7:778–90.  

15.  Samet JM. Radiation and cancer risk: a continuing challenge for 

epidemiologists. Environ Health. England; 2011;10 Suppl 1:S4.  

16.  Lubin JH, Boice JDJ, Edling C, Hornung RW, Howe GR, Kunz E, et al. Lung 

cancer in radon-exposed miners and estimation of risk from indoor 

exposure. J Natl Cancer Inst. United States; 1995;87:817–27.  

17.  Mossman BT, Bignon J, Corn M, Seaton A, Gee JB. Asbestos: scientific 

developments and implications for public policy. Science. United States; 

1990;247:294–301.  

18.  Pope CA 3rd, Burnett RT, Thun MJ, Calle EE, Krewski D, Ito K, et al. Lung 

cancer, cardiopulmonary mortality, and long-term exposure to fine 

particulate air pollution. JAMA. United States; 2002;287:1132–41.  

19.  Caron O, Frebourg T, Benusiglio PR, Foulon S, Brugieres L. Lung 

Adenocarcinoma as Part of the Li-Fraumeni Syndrome Spectrum: 

Preliminary Data of the LIFSCREEN Randomized Clinical Trial. JAMA 

Oncol. United States; 2017;3:1736–7.  

20.  Goodwin S, McPherson JD, McCombie WR. Coming of age: ten years of 

next-generation sequencing technologies. Nat Rev Genet. England; 

2016;17:333–51.  

21.  Travis WD, Brambilla E, Nicholson AG, Yatabe Y, Austin JHM, Beasley 

MB, et al. The 2015 World Health Organization Classification of Lung 

Tumors: Impact of Genetic, Clinical and Radiologic Advances Since the 

2004 Classification. J. Thorac. Oncol. United States; 2015. page 1243–60.  



 

 169 

22.  Comprehensive genomic characterization of squamous cell lung cancers. 

Nature. England; 2012;489:519–25.  

23.  Network TCGAR. Comprehensive molecular profiling of lung 

adenocarcinoma. Nature. England; 2014;511:543–50.  

24.  Liu X, Jia Y, Stoopler MB, Shen Y, Cheng H, Chen J, et al. Next-Generation 

Sequencing of Pulmonary Sarcomatoid Carcinoma Reveals High 

Frequency of Actionable MET Gene Mutations. J Clin Oncol. United States; 

2016;34:794–802.  

25.  Shames DS, Wistuba II. The evolving genomic classification of lung cancer. 

J Pathol. England; 2014;232:121–33.  

26.  Jordan EJ, Kim HR, Arcila ME, Barron D, Chakravarty D, Gao J, et al. 

Prospective Comprehensive Molecular Characterization of Lung 

Adenocarcinomas for  Efficient Patient Matching to Approved and 

Emerging Therapies. Cancer Discov. United States; 2017;7:596–609.  

27.  Barlesi F, Mazieres J, Merlio J-P, Debieuvre D, Mosser J, Lena H, et al. 

Routine molecular profiling of patients with advanced non-small-cell lung 

cancer: results of a 1-year nationwide programme of the French 

Cooperative Thoracic Intergroup (IFCT). Lancet (London, England) 2016.  

28.  Kris MG, Johnson BE, Berry LD, Kwiatkowski DJ, Iafrate  a J, Wistuba II, 

et al. Using multiplexed assays of oncogenic drivers in lung cancers to 

select targeted drugs. JAMA. 2014;311:1998–2006.  

29.  Koboldt DC, Steinberg KM, Larson DE, Wilson RK, Mardis ER. The next-

generation sequencing revolution and its impact on genomics. Cell. United 

States; 2013;155:27–38.  

30.  Han B, Tjulandin S, Hagiwara K, Normanno N, Wulandari L, Laktionov K, 

et al. EGFR mutation prevalence in Asia-Pacific and Russian patients with 

advanced NSCLC of adenocarcinoma and non-adenocarcinoma histology: 

The IGNITE study. Lung Cancer. Ireland; 2017;113:37–44.  

31.  Li S, Li L, Zhu Y, Huang C, Qin Y, Liu H, et al. Coexistence of EGFR with 

KRAS, or BRAF, or PIK3CA somatic mutations in lung cancer: a 

comprehensive mutation profiling from 5125 Chinese cohorts. Br J Cancer. 

2014;110:2812–20. 

32.  Tseng C-H, Tsuang B-J, Chiang C-J, Ku K-C, Tseng J-S, Yang T-Y, et al. 

The Relationship Between Air Pollution and Lung Cancer in Nonsmokers 



 170 

in Taiwan. J Thorac Oncol. United States; 2019;14:784–92.  

33.  Melloni BBM. Lung cancer in never-smokers: radon exposure and 

environmental tobacco smoke. Eur. Respir. J. England; 2014. page 850–

2.  

34.  Wilson LJ, Linley A, Hammond DE, Hood FE, Coulson JM, MacEwan DJ, 

et al. New Perspectives, Opportunities, and Challenges in Exploring the 

Human Protein Kinome. Cancer Res. United States; 2018;78:15–29.  

35.  Lemmon MA, Schlessinger J. Cell signaling by receptor tyrosine kinases. 

Cell. United States; 2010;141:1117–34.  

36.  Zhang X, Gureasko J, Shen K, Cole PA, Kuriyan J. An allosteric 

mechanism for activation of the kinase domain of epidermal growth factor 

receptor. Cell. United States; 2006;125:1137–49.  

37.  Singh DR, Kanvinde P, King C, Pasquale EB, Hristova K. The EphA2 

receptor is activated through induction of distinct, ligand-dependent 

oligomeric structures. Commun Biol. England; 2018;1:15.  

38.  Nolen B, Taylor S, Ghosh G. Regulation of protein kinases; controlling 

activity through activation segment conformation. Mol Cell. United States; 

2004;15:661–75.  

39.  Casaletto JB, McClatchey AI. Spatial regulation of receptor tyrosine 

kinases in development and cancer. Nat Rev Cancer. England; 

2012;12:387–400.  

40.  Soda M, Choi YL, Enomoto M, Takada S, Yamashita Y, Ishikawa S, et al. 

Identification of the transforming EML4-ALK fusion gene in non-small-cell 

lung cancer. Nature. England; 2007;448:561–6.  

41.  Paez JG, Janne PA, Lee JC, Tracy S, Greulich H, Gabriel S, et al. EGFR 

mutations in lung cancer: correlation with clinical response to gefitinib 

therapy. Science. United States; 2004;304:1497–500.  

42.  Das TK, Cagan RL. KIF5B-RET Oncoprotein Signals through a Multi-

kinase Signaling Hub. Cell Rep. United States; 2017;20:2368–83.  

43.  Bergethon K, Shaw AT, Ou S-HI, Katayama R, Lovly CM, McDonald NT, 

et al. ROS1 rearrangements define a unique molecular class of lung 

cancers. J Clin Oncol. United States; 2012;30:863–70.  

44.  Awad MM, Oxnard GR, Jackman DM, Savukoski DO, Hall D, Shivdasani 

P, et al. MET Exon 14 Mutations in Non-Small-Cell Lung Cancer Are 



 

 171 

Associated With Advanced  Age and Stage-Dependent MET Genomic 

Amplification and c-Met Overexpression. J Clin Oncol. United States; 

2016;34:721–30.  

45.  Martin-Zanca D, Hughes SH, Barbacid M. A human oncogene formed by 

the fusion of truncated tropomyosin and protein tyrosine kinase sequences. 

Nature. England; 1986;319:743–8.  

46.  Gazdar AF. Activating and resistance mutations of EGFR in non-small-cell 

lung cancer: role in clinical response to EGFR tyrosine kinase inhibitors. 

Oncogene. England; 2009;28 Suppl 1:S24-31.  

47.  Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA, 

Brannigan BW, et al. Activating mutations in the epidermal growth factor 

receptor underlying responsiveness of non-small-cell lung cancer to 

gefitinib. N Engl J Med. United States; 2004;350:2129–39.  

48.  Rosell R, Carcereny E, Gervais R, Vergnenegre A, Massuti B, Felip E, et 

al. Erlotinib versus standard chemotherapy as first-line treatment for 

European patients with advanced EGFR mutation-positive non-small-cell 

lung cancer (EURTAC): a multicentre, open-label, randomised phase 3 

trial. Lancet Oncol. England; 2012;13:239–46.  

49.  Fukuoka M, Wu Y-L, Thongprasert S, Sunpaweravong P, Leong S-S, 

Sriuranpong V, et al. Biomarker Analyses and Final Overall Survival 

Results From a Phase III, Randomized, Open-Label, First-Line Study of 

Gefitinib Versus Carboplatin/Paclitaxel in Clinically Selected Patients With 

Advanced Non–Small-Cell Lung Cancer in Asia (IPASS). J Clin Oncol. 

American Society of Clinical Oncology; 2011;29:2866–74.  

50.  Shi YK, Wang L, Han BH, Li W, Yu P, Liu YP, et al. First-line icotinib versus 

cisplatin/pemetrexed plus pemetrexed maintenance therapy for patients 

with advanced EGFR mutation-positive lung adenocarcinoma 

(CONVINCE): a phase 3, open-label, randomized study. Ann Oncol  Off J 

Eur Soc Med Oncol. England; 2017;28:2443–50.  

51.  Sequist L V, Yang JC-H, Yamamoto N, O’Byrne K, Hirsh V, Mok T, et al. 

Phase III study of afatinib or cisplatin plus pemetrexed in patients with 

metastatic lung adenocarcinoma with EGFR mutations. J Clin Oncol. 

United States; 2013;31:3327–34.  

52.  Mok TS, Wu Y-L, Ahn M-J, Garassino MC, Kim HR, Ramalingam SS, et al. 



 172 

Osimertinib or Platinum-Pemetrexed in EGFR T790M-Positive Lung 

Cancer. N Engl J Med. United States; 2017;376:629–40.  

53.  Soria J-C, Ohe Y, Vansteenkiste J, Reungwetwattana T, Chewaskulyong 

B, Lee KH, et al. Osimertinib in Untreated EGFR-Mutated Advanced Non–

Small-Cell Lung Cancer. N Engl J Med. Massachusetts Medical Society; 

2017. 

54.  Robichaux JP, Elamin YY, Tan Z, Carter BW, Zhang S, Liu S, et al. 

Mechanisms and clinical activity of an EGFR and HER2 exon 20-selective 

kinase inhibitor in non-small cell lung cancer. Nat Med. United States; 

2018;24:638–46.  

55.  Planchard D, Boyer MJ, Lee J-S, Dechaphunkul A, Cheema PK, Takahashi 

T, et al. Postprogression Outcomes for Osimertinib versus Standard-of-

Care EGFR-TKI in Patients with Previously Untreated EGFR-mutated 

Advanced Non-Small Cell Lung Cancer. Clin Cancer Res. United States; 

2019;25:2058–63.  

56.  Ponde N, Brandao M, El-Hachem G, Werbrouck E, Piccart M. Treatment 

of advanced HER2-positive breast cancer: 2018 and beyond. Cancer Treat 

Rev. Netherlands; 2018;67:10–20.  

57.  Arcila ME, Chaft JE, Nafa K, Roy-Chowdhuri S, Lau C, Zaidinski M, et al. 

Prevalence, clinicopathologic associations, and molecular spectrum of 

ERBB2 (HER2) tyrosine kinase mutations in lung adenocarcinomas. Clin 

Cancer Res. United States; 2012;18:4910–8.  

58.  Sehgal K, Patell R, Rangachari D, Costa DB. Targeting ROS1 

rearrangements in non-small cell lung cancer with crizotinib and other 

kinase inhibitors. Transl Cancer Res. China; 2018;7:S779–86.  

59.  Shaw AT, Ou S-HI, Bang Y-J, Camidge DR, Solomon BJ, Salgia R, et al. 

Crizotinib in ROS1-rearranged non-small-cell lung cancer. N Engl J Med. 

United States; 2014;371:1963–71.  

60.  Lim SM, Kim HR, Lee J-S, Lee KH, Lee Y-G, Min YJ, et al. Open-Label, 

Multicenter, Phase II Study of Ceritinib in Patients With Non–Small-Cell 

Lung Cancer Harboring ROS1 Rearrangement. J Clin Oncol. American 

Society of Clinical Oncology; 2017;35:2613–8.  

61.  Drilon A, Siena S, Ou S-HI, Patel M, Ahn MJ, Lee J, et al. Safety and 

Antitumor Activity of the Multitargeted Pan-TRK, ROS1, and ALK Inhibitor 



 

 173 

Entrectinib: Combined Results from Two Phase I Trials (ALKA-372-001 

and STARTRK-1). Cancer Discov. United States; 2017;7:400–9.  

62.  Hegde A, Hong DS, Behrang A, Ali SM, Juckett L, Meric-Bernstam F, et al. 

Activity of Brigatinib in Crizotinib and Ceritinib-Resistant ROS1- 

Rearranged Non–Small-Cell Lung Cancer. JCO Precis Oncol. American 

Society of Clinical Oncology; 2019;1–6.  

63.  Shaw AT, Felip E, Bauer TM, Besse B, Navarro A, Postel-Vinay S, et al. 

Lorlatinib in non-small-cell lung cancer with ALK or ROS1 rearrangement: 

an international, multicentre, open-label, single-arm first-in-man phase 1 

trial. Lancet Oncol. England; 2017;18:1590–9.  

64.  Drilon A, Ou S-HI, Cho BC, Kim D-W, Lee J, Lin JJ, et al. Repotrectinib 

(TPX-0005) Is a Next-Generation ROS1/TRK/ALK Inhibitor That Potently 

Inhibits ROS1/TRK/ALK Solvent- Front Mutations. Cancer Discov. United 

States; 2018;8:1227–36.  

65.  Organ SL, Tsao M-S. An overview of the c-MET signaling pathway. Ther 

Adv Med Oncol. England; 2011;3:S7–19.  

66.  Petrelli A, Gilestro GF, Lanzardo S, Comoglio PM, Migone N, Giordano S. 

The endophilin-CIN85-Cbl complex mediates ligand-dependent 

downregulation of c-Met. Nature. England; 2002;416:187–90.  

67.  Drilon A, Cappuzzo F, Ou S-HI, Camidge DR. Targeting MET in Lung 

Cancer: Will Expectations Finally Be MET? J Thorac Oncol. United States; 

2017;12:15–26.  

68.  Engelman JA, Zejnullahu K, Mitsudomi T, Song Y, Hyland C, Park JO, et 

al. MET amplification leads to gefitinib resistance in lung cancer by 

activating ERBB3 signaling. Science. United States; 2007;316:1039–43.  

69.  Sequist L V, Waltman B a, Dias-Santagata D, Digumarthy S, Turke AB, 

Fidias P, et al. Genotypic and histological evolution of lung cancers 

acquiring resistance to EGFR inhibitors. Sci Transl Med. 2011;3:75ra26.  

70.  Oxnard GR, Hu Y, Mileham KF, Husain H, Costa DB, Tracy P, et al. 

Assessment of Resistance Mechanisms and Clinical Implications in 

Patients With EGFR T790M-Positive Lung Cancer and Acquired 

Resistance to Osimertinib. JAMA Oncol. United States; 2018;4:1527–34.  

71.  Bahcall M, Sim T, Paweletz CP, Patel JD, Alden RS, Kuang Y, et al. 

Acquired METD1228V Mutation and Resistance to MET Inhibition in Lung 



 174 

Cancer. Cancer Discov. United States; 2016;6:1334–41.  

72.  Jhiang SM. The RET proto-oncogene in human cancers. Oncogene. 

England; 2000;19:5590–7.  

73.  Priya SR, Dravid CS, Digumarti R, Dandekar M. Targeted Therapy for 

Medullary Thyroid Cancer: A Review. Front Oncol. Switzerland; 

2017;7:238.  

74.  Wang R, Hu H, Pan Y, Li Y, Ye T, Li C, et al. RET fusions define a unique 

molecular and clinicopathologic subtype of non-small-cell lung cancer. J 

Clin Oncol. United States; 2012;30:4352–9.  

75.  Kohno T, Ichikawa H, Totoki Y, Yasuda K, Hiramoto M, Nammo T, et al. 

KIF5B-RET fusions in lung adenocarcinoma. Nat Med. United States; 

2012;18:375–7.  

76.  Ferrara R, Auger N, Auclin E, Besse B. Clinical and Translational 

Implications of RET Rearrangements in Non-Small Cell Lung Cancer. J 

Thorac Oncol. United States; 2018;13:27–45.  

77.  Kodama T, Tsukaguchi T, Satoh Y, Yoshida M, Watanabe Y, Kondoh O, et 

al. Alectinib shows potent antitumor activity against RET-rearranged non-

small cell lung cancer. Mol Cancer Ther. United States; 2014;13:2910–8.  

78.  Lin JJ, Kennedy E, Sequist L V, Brastianos PK, Goodwin KE, Stevens S, 

et al. Clinical Activity of Alectinib in Advanced RET-Rearranged Non-Small 

Cell Lung Cancer. J Thorac Oncol. United States; 2016;11:2027–32.  

79.  Subbiah V, Gainor JF, Rahal R, Brubaker JD, Kim JL, Maynard M, et al. 

Precision Targeted Therapy with BLU-667 for RET-Driven Cancers. 

Cancer Discov. United States; 2018;8:836–49.  

80.  Subbiah V, Velcheti V, Tuch BB, Ebata K, Busaidy NL, Cabanillas ME, et 

al. Selective RET kinase inhibition for patients with RET-altered cancers. 

Ann Oncol  Off J Eur Soc Med Oncol. England; 2018;29:1869–76.  

81.  Gatalica Z, Xiu J, Swensen J, Vranic S. Molecular characterization of 

cancers with NTRK gene fusions. Mod Pathol  an Off J United States Can 

Acad  Pathol Inc. United States; 2019;32:147–53.  

82.  Farago AF, Taylor MS, Doebele RC, Zhu VW, Kummar S, Spira AI, et al. 

Clinicopathologic Features of Non-Small-Cell Lung Cancer Harboring an 

NTRK Gene Fusion. JCO Precis Oncol. United States; 2018;2018.  

83.  Drilon A, Laetsch TW, Kummar S, DuBois SG, Lassen UN, Demetri GD, et 



 

 175 

al. Efficacy of Larotrectinib in TRK Fusion-Positive Cancers in Adults and 

Children. N Engl J Med. United States; 2018;378:731–9.  

84.  Drilon A, Nagasubramanian R, Blake JF, Ku N, Tuch BB, Ebata K, et al. A 

Next-Generation TRK Kinase Inhibitor Overcomes Acquired Resistance to 

Prior TRK Kinase Inhibition in Patients with TRK Fusion-Positive Solid 

Tumors. Cancer Discov. United States; 2017;7:963–72.  

85.  Yaeger R, Corcoran RB. Targeting Alterations in the RAF-MEK Pathway. 

Cancer Discov. United States; 2019;9:329–41.  

86.  Tanimura S, Takeda K. ERK signalling as a regulator of cell motility. J 

Biochem. 2017;162:145–54. 

87.  Zassadowski F, Rochette-Egly C, Chomienne C, Cassinat B. Regulation of 

the transcriptional activity of nuclear receptors by the MEK/ERK1/2 

pathway. Cell Signal. 2012;24:2369–77.  

88.  Ahmad MK, Abdollah NA, Shafie NH, Yusof NM, Razak SRA. Dual-

specificity phosphatase 6 (DUSP6): a review of its molecular 

characteristics and clinical relevance in cancer. Cancer Biol Med. China; 

2018;15:14–28.  

89.  Tetlow AL, Tamanoi F. The Ras superfamily G-proteins. Enzym. United 

States; 2013;33 Pt A:1–14.  

90.  Roman M, Baraibar I, Lopez I, Nadal E, Rolfo C, Vicent S, et al. KRAS 

oncogene in non-small cell lung cancer: clinical perspectives on the 

treatment of an old target. Mol Cancer. England; 2018;17:33.  

91.  Skoulidis F, Goldberg ME, Greenawalt DM, Hellmann MD, Awad MM, 

Gainor JF, et al. STK11/LKB1 Mutations and PD-1 Inhibitor Resistance in 

KRAS-Mutant Lung Adenocarcinoma. Cancer Discov. United States; 

2018;8:822–35.  

92.  Patricelli MP, Janes MR, Li L-S, Hansen R, Peters U, Kessler L V, et al. 

Selective Inhibition of Oncogenic KRAS Output with Small Molecules 

Targeting the  Inactive State. Cancer Discov. United States; 2016;6:316–

29.  

93.  Pratilas CA, Taylor BS, Ye Q, Viale A, Sander C, Solit DB, et al. 

(V600E)BRAF is associated with disabled feedback inhibition of RAF-MEK 

signaling  and elevated transcriptional output of the pathway. Proc Natl 

Acad Sci U S A. United States; 2009;106:4519–24.  



 176 

94.  Planchard D, Besse B, Groen HJM, Souquet P-J, Quoix E, Baik CS, et al. 

Dabrafenib plus trametinib in patients with previously treated 

BRAF(V600E)-mutant metastatic non-small cell lung cancer: an open-

label, multicentre phase 2 trial. Lancet Oncol. England; 2016;17:984–93.  

95.  Zhao L, Vogt PK. Class I PI3K in oncogenic cellular transformation. 

Oncogene. England; 2008;27:5486–96.  

96.  Martini M, De Santis MC, Braccini L, Gulluni F, Hirsch E. PI3K/AKT 

signaling pathway and cancer: an updated review. Ann Med. England; 

2014;46:372–83.  

97.  Saxton RA, Sabatini DM. mTOR Signaling in Growth, Metabolism, and 

Disease. Cell. United States; 2017;168:960–76.  

98.  Populo H, Lopes JM, Soares P. The mTOR signalling pathway in human 

cancer. Int J Mol Sci. Switzerland; 2012;13:1886–918.  

99.  Janku F, Yap TA, Meric-Bernstam F. Targeting the PI3K pathway in cancer: 

are we making headway? Nat Rev Clin Oncol. England; 2018;15:273–91.  

100.  Ilagan E, Manning BD. Emerging role of mTOR in the response to cancer 

therapeutics. Trends in cancer. United States; 2016;2:241–51.  

101.  Sancak Y, Bar-Peled L, Zoncu R, Markhard AL, Nada S, Sabatini DM. 

Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is 

necessary for its activation by amino acids. Cell. United States; 

2010;141:290–303.  

102.  Shaw RJ, Bardeesy N, Manning BD, Lopez L, Kosmatka M, DePinho RA, 

et al. The LKB1 tumor suppressor negatively regulates mTOR signaling. 

Cancer Cell. United States; 2004;6:91–9.  

103.  Mendoza MC, Er EE, Blenis J. The Ras-ERK and PI3K-mTOR pathways: 

cross-talk and compensation. Trends Biochem Sci. England; 2011;36:320–

8.  

104.  Li W, Cooper J, Zhou L, Yang C, Erdjument-Bromage H, Zagzag D, et al. 

Merlin/NF2 loss-driven tumorigenesis linked to CRL4(DCAF1)-mediated 

inhibition of the hippo pathway kinases Lats1 and 2 in the nucleus. Cancer 

Cell. United States; 2014;26:48–60.  

105.  Beltrami S, Kim R, Gordon J. Neurofibromatosis type 2 protein, NF2: an 

uncoventional cell cycle regulator. Anticancer Res. Greece; 2013;33:1–11.  

106.  James MF, Han S, Polizzano C, Plotkin SR, Manning BD, Stemmer-



 

 177 

Rachamimov AO, et al. NF2/merlin is a novel negative regulator of mTOR 

complex 1, and activation of mTORC1 is associated with meningioma and 

schwannoma growth. Mol Cell Biol. United States; 2009;29:4250–61.  

107.  Giovannini M, Bonne N-X, Vitte J, Chareyre F, Tanaka K, Adams R, et al. 

mTORC1 inhibition delays growth of neurofibromatosis type 2 

schwannoma. Neuro Oncol. England; 2014;16:493–504.  

108.  Lopez-Lago MA, Okada T, Murillo MM, Socci N, Giancotti FG. Loss of the 

tumor suppressor gene NF2, encoding merlin, constitutively activates  

integrin-dependent mTORC1 signaling. Mol Cell Biol. United States; 

2009;29:4235–49.  

109.  Kim LC, Song L, Haura EB. Src kinases as therapeutic targets for cancer. 

Nat Rev Clin Oncol. England; 2009;6:587–95.  

110.  Hanahan D, Weinberg RA. Hallmarks of cancer: The next generation. Cell. 

2011. page 646–74.  

111.  Ichim G, Tait SWG. A fate worse than death: apoptosis as an oncogenic 

process. Nat Rev Cancer. England; 2016;16:539–48.  

112.  Luciano F, Jacquel A, Colosetti P, Herrant M, Cagnol S, Pages G, et al. 

Phosphorylation of Bim-EL by Erk1/2 on serine 69 promotes its degradation 

via the proteasome pathway and regulates its proapoptotic function. 

Oncogene. England; 2003;22:6785–93.  

113.  Tong J, Zheng X, Tan X, Fletcher R, Nikolovska-Coleska Z, Yu J, et al. Mcl-

1 Phosphorylation without Degradation Mediates Sensitivity to HDAC 

Inhibitors by Liberating BH3-Only Proteins. Cancer Res. United States; 

2018;78:4704–15.  

114.  Faber AC, Ebi H, Costa C, Engelman JA. Apoptosis in targeted therapy 

responses: the role of BIM. Adv Pharmacol. United States; 2012;65:519–

42.  

115.  Tanimoto A, Takeuchi S, Arai S, Fukuda K, Yamada T, Roca X, et al. 

Histone Deacetylase 3 Inhibition Overcomes BIM Deletion Polymorphism-

Mediated Osimertinib Resistance in EGFR-Mutant Lung Cancer. Clin 

Cancer Res. United States; 2017;23:3139–49.  

116.  Bhullar KS, Lagaron NO, McGowan EM, Parmar I, Jha A, Hubbard BP, et 

al. Kinase-targeted cancer therapies: progress, challenges and future 

directions. Mol Cancer. England; 2018;17:48.  



 178 

117.  Zuccotto F, Ardini E, Casale E, Angiolini M. Through the “gatekeeper door”: 

exploiting the active kinase conformation. J Med Chem. United States; 

2010;53:2681–94.  

118.  Zimmermann S, Peters S, Owinokoko T, Gadgeel SM. Immune Checkpoint 

Inhibitors in the Management of Lung Cancer. Am Soc Clin Oncol Educ B 

[Internet]. American Society of Clinical Oncology; 2018;682–95. Available 

from: https://doi.org/10.1200/EDBK_201319 

119.  Gandhi L, Rodriguez-Abreu D, Gadgeel S, Esteban E, Felip E, De Angelis 

F, et al. Pembrolizumab plus Chemotherapy in Metastatic Non-Small-Cell 

Lung Cancer. N Engl J Med. United States; 2018;378:2078–92.  

120.  Brahmer J, Reckamp KL, Baas P, Crinò L, Eberhardt WEE, Poddubskaya 

E, et al. Nivolumab versus Docetaxel in Advanced Squamous-Cell Non-

Small-Cell Lung Cancer. N Engl J Med. 2015;1–13.  

121.  Antonia SJ, Villegas A, Daniel D, Vicente D, Murakami S, Hui R, et al. 

Overall Survival with Durvalumab after Chemoradiotherapy in Stage III 

NSCLC. N Engl J Med. United States; 2018;379:2342–50.  

122.  Gainor JF, Shaw AT, Sequist L V, Fu X, Azzoli CG, Piotrowska Z, et al. 

EGFR Mutations and ALK Rearrangements Are Associated with Low 

Response Rates to PD-1 Pathway Blockade in Non-Small Cell Lung 

Cancer: A Retrospective Analysis. Clin Cancer Res. United States; 

2016;22:4585–93.  

123.  Chih-Hsin Yang J, Shepherd FA, Kim D-W, Lee G-W, Lee JS, Chang G-C, 

et al. Osimertinib Plus Durvalumab versus Osimertinib Monotherapy in 

EGFR T790M-Positive NSCLC following Previous EGFR TKI Therapy: 

CAURAL Brief Report. J Thorac Oncol. United States; 2019;14:933–9.  

124.  Spigel DR, Reynolds C, Waterhouse D, Garon EB, Chandler J, Babu S, et 

al. Phase 1/2 Study of the Safety and Tolerability of Nivolumab Plus 

Crizotinib for the First-line Treatment of ALK Translocation-Positive 

Advanced Non-Small Cell Lung Cancer (CheckMate 370). J Thorac Oncol. 

United States; 2018;  

125.  Mazieres J, Drilon A, Lusque A, Mhanna L, Cortot AB, Mezquita L, et al. 

Immune checkpoint inhibitors for patients with advanced lung cancer and 

oncogenic driver alterations: results from the IMMUNOTARGET registry. 

Ann Oncol  Off J Eur Soc Med Oncol. England; 2019;  



 

 179 

126.  Morris SW, Kirstein MN, Valentine MB, Dittmer KG, Shapiro DN, Saltman 

DL, et al. Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, 

in non-Hodgkin&#039;s lymphoma. Science. 1994;263:1281 LP – 1284.  

127.  Iwahara T, Fujimoto J, Wen D, Cupples R, Bucay N, Arakawa T, et al. 

Molecular characterization of ALK, a receptor tyrosine kinase expressed 

specifically in the nervous system. Oncogene. England; 1997;14:439–49.  

128.  Morris SW, Naeve C, Mathew P, James PL, Kirstein MN, Cui X, et al. ALK, 

the chromosome 2 gene locus altered by the t(2;5) in non-Hodgkin’s 

lymphoma, encodes a novel neural receptor tyrosine kinase that is highly 

related to leukocyte tyrosine kinase (LTK). Oncogene. England; 

1997;14:2175–88.  

129.  Huang H. Anaplastic Lymphoma Kinase (ALK) Receptor Tyrosine Kinase: 

A Catalytic Receptor with Many Faces. Int J Mol Sci. Switzerland; 2018;19.  

130.  Roskoski R. Anaplastic lymphoma kinase (ALK): Structure, oncogenic 

activation, and pharmacological inhibition. Pharmacol Res. 2013;68:68–94.  

131.  Cismasiu VB, Denes SA, Reilander H, Michel H, Szedlacsek SE. The MAM 

(meprin/A5-protein/PTPmu) domain is a homophilic binding site promoting 

the lateral dimerization of receptor-like protein-tyrosine phosphatase mu. J 

Biol Chem. United States; 2004;279:26922–31.  

132.  Bazigou E, Apitz H, Johansson J, Loren CE, Hirst EMA, Chen P-L, et al. 

Anterograde Jelly belly and Alk receptor tyrosine kinase signaling mediates 

retinal axon targeting in Drosophila. Cell. United States; 2007;128:961–75.  

133.  Fadeev A, Mendoza-Garcia P, Irion U, Guan J, Pfeifer K, Wiessner S, et 

al. ALKALs are in vivo ligands for ALK family receptor tyrosine kinases in 

the neural crest and derived cells. Proc Natl Acad Sci U S A. United States; 

2018;115:E630–8.  

134.  Zhang H, Pao LI, Zhou A, Brace AD, Halenbeck R, Hsu AW, et al. 

Deorphanization of the human leukocyte tyrosine kinase (LTK) receptor by 

a signaling screen of the extracellular proteome. Proc Natl Acad Sci U S A. 

United States; 2014;111:15741–5.  

135.  Reshetnyak A V, Murray PB, Shi X, Mo ES, Mohanty J, Tome F, et al. 

Augmentor alpha and beta (FAM150) are ligands of the receptor tyrosine 

kinases ALK and LTK: Hierarchy and specificity of ligand-receptor 

interactions. Proc Natl Acad Sci U S A. United States; 2015;112:15862–7.  



 180 

136.  Guan J, Umapathy G, Yamazaki Y, Wolfstetter G, Mendoza P, Pfeifer K, et 

al. FAM150A and FAM150B are activating ligands for anaplastic lymphoma 

kinase. Elife. England; 2015;4:e09811.  

137.  Holla VR, Elamin YY, Bailey AM, Johnson AM, Litzenburger BC, Khotskaya 

YB, et al. ALK: a tyrosine kinase target for cancer therapy. Cold Spring 

Harb Mol case Stud. United States; 2017;3:a001115.  

138.  Hallberg B, Palmer RH. The role of the ALK receptor in cancer biology. Ann 

Oncol  Off J Eur Soc Med Oncol. England; 2016;27 Suppl 3:iii4–15.  

139.  Lee CC, Jia Y, Li N, Sun X, Ng K, Ambing E, et al. Crystal structure of the 

ALK (anaplastic lymphoma kinase) catalytic domain. Biochem J. England; 

2010;430:425–37.  

140.  Tartari CJ, Gunby RH, Coluccia AML, Sottocornola R, Cimbro B, Scapozza 

L, et al. Characterization of some molecular mechanisms governing 

autoactivation of the catalytic domain of the anaplastic lymphoma kinase. 

J Biol Chem. United States; 2008;283:3743–50.  

141.  Hallberg B, Palmer RH. Mechanistic insight into ALK receptor tyrosine 

kinase in human cancer biology. Nat Rev Cancer. 2013;13:685–700.  

142.  Voena C, Conte C, Ambrogio C, Boeri Erba E, Boccalatte F, Mohammed 

S, et al. The tyrosine phosphatase Shp2 interacts with NPM-ALK and 

regulates anaplastic lymphoma cell growth and migration. Cancer Res. 

United States; 2007;67:4278–86.  

143.  Dardaei L, Wang HQ, Singh M, Fordjour P, Shaw KX, Yoda S, et al. SHP2 

inhibition restores sensitivity in ALK-rearranged non-small-cell lung cancer 

resistant to ALK inhibitors. Nat Med. United States; 2018;24:512–7.  

144.  Bilsland JG, Wheeldon A, Mead A, Znamenskiy P, Almond S, Waters KA, 

et al. Behavioral and neurochemical alterations in mice deficient in 

anaplastic lymphoma kinase suggest therapeutic potential for psychiatric 

indications. Neuropsychopharmacology. England; 2008;33:685–700.  

145.  Bauer TM, Felip E, Solomon BJ, Thurm H, Peltz G, Chioda MD, et al. 

Clinical Management of Adverse Events Associated with Lorlatinib. 

Oncologist. United States; 2019;  

146.  Childress MA, Himmelberg SM, Chen H, Deng W, Davies MA, Lovly CM. 

ALK Fusion Partners Impact Response to ALK Inhibition: Differential 

Effects on Sensitivity, Cellular Phenotypes, and Biochemical Properties. 



 

 181 

Mol Cancer Res. United States; 2018;16:1724–36.  

147.  Chang JC, Zhang L, Drilon AE, Chi P, Alaggio R, Borsu L, et al. Expanding 

the Molecular Characterization of Thoracic Inflammatory Myofibroblastic 

Tumors beyond ALK Gene Rearrangements. J Thorac Oncol. United 

States; 2019;14:825–34.  

148.  Umapathy G, Mendoza-Garcia P, Hallberg B, Palmer RH. Targeting 

anaplastic lymphoma kinase in neuroblastoma. APMIS. Denmark; 

2019;127:288–302.  

149.  Janoueix-Lerosey I, Lequin D, Brugieres L, Ribeiro A, de Pontual L, 

Combaret V, et al. Somatic and germline activating mutations of the ALK 

kinase receptor in neuroblastoma. Nature. England; 2008;455:967–70.  

150.  Sasaki T, Okuda K, Zheng W, Butrynski J, Capelletti M, Wang L, et al. The 

neuroblastoma-associated F1174L ALK mutation causes resistance to an 

ALK kinase inhibitor in ALK-translocated cancers. Cancer Res. United 

States; 2010;70:10038–43.  

151.  Choi YL, Soda M, Yamashita Y, Ueno T, Takashima J, Nakajima T, et al. 

EML4-ALK mutations in lung cancer that confer resistance to ALK 

inhibitors. N Engl J Med. United States; 2010;363:1734–9.  

152.  Wass M, Behlendorf T, Schadlich B, Mottok A, Rosenwald A, Schmoll H-J, 

et al. Crizotinib in refractory ALK-positive diffuse large B-cell lymphoma: a 

case report with a short-term response. Eur. J. Haematol. England; 2014. 

page 268–70.  

153.  Shinmura K, Kageyama S, Tao H, Bunai T, Suzuki M, Kamo T, et al. EML4-

ALK fusion transcripts, but no NPM-, TPM3-, CLTC-, ATIC-, or TFG-ALK 

fusion  transcripts, in non-small cell lung carcinomas. Lung Cancer. Ireland; 

2008;61:163–9.  

154.  Sabir SR, Yeoh S, Jackson G, Bayliss R. EML4-ALK Variants: Biological 

and Molecular Properties, and the Implications for  Patients. Cancers 

(Basel). Switzerland; 2017;9.  

155.  Bayliss R, Choi J, Fennell DA, Fry AM, Richards MW. Molecular 

mechanisms that underpin EML4-ALK driven cancers and their response 

to  targeted drugs. Cell Mol Life Sci. Switzerland; 2016;73:1209–24.  

156.  Lin JJ, Zhu VW, Yoda S, Yeap BY, Schrock AB, Dagogo-Jack I, et al. 

Impact of EML4-ALK Variant on Resistance Mechanisms and Clinical 



 182 

Outcomes in ALK-Positive Lung Cancer. J Clin Oncol. United States; 

2018;JCO2017762294.  

157.  Choi YL, Takeuchi K, Soda M, Inamura K, Togashi Y, Hatano S, et al. 

Identification of novel isoforms of the EML4-ALK transforming gene in non-

small cell lung cancer. Cancer Res. United States; 2008;68:4971–6.  

158.  Koivunen JP, Mermel C, Zejnullahu K, Murphy C, Lifshits E, Holmes AJ, et 

al. EML4-ALK fusion gene and efficacy of an ALK kinase inhibitor in lung 

cancer. Clin Cancer Res. United States; 2008;14:4275–83.  

159.  Heuckmann JM, Balke-Want H, Malchers F, Peifer M, Sos ML, Koker M, et 

al. Differential protein stability and ALK inhibitor sensitivity of EML4-ALK 

fusion variants. Clin Cancer Res. United States; 2012;18:4682–90.  

160.  Wu W, Haderk F, Bivona TG. Non-Canonical Thinking for Targeting ALK-

Fusion Onco-Proteins in Lung Cancer. Cancers (Basel). Switzerland; 

2017;9.  

161.  Richards MW, O’Regan L, Roth D, Montgomery JM, Straube A, Fry AM, et 

al. Microtubule association of EML proteins and the EML4-ALK variant 3 

oncoprotein require an N-terminal trimerization domain. Biochem J. 

England; 2015;467:529–36.  

162.  Camidge DR, Dziadziuszko R, Peters S, Mok T, Noe J, Nowicka M, et al. 

Updated Efficacy and Safety Data and Impact of the EML4-ALK Fusion 

Variant on the Efficacy of Alectinib in Untreated ALK-Positive Advanced 

Non-Small Cell Lung Cancer in the Global Phase III ALEX Study. J Thorac 

Oncol. United States; 2019;  

163.  Sagawa R, Ohba T, Ito E, Isogai S. ALK-Positive Squamous Cell 

Carcinoma Dramatically Responded to Alectinib. Case Rep. Oncol. Med. 

United States; 2018. page 4172721.  

164.  Boland JM, Wampfler JA, Jang JS, Wang X, Erickson-Johnson MR, 

Oliveira AM, et al. Pulmonary adenocarcinoma with signet ring cell 

features: a comprehensive study from 3 distinct patient cohorts. Am J Surg 

Pathol. United States; 2014;38:1681–8.  

165.  Kerr KM, Lopez-Rios F. Precision medicine in NSCLC and pathology: how 

does ALK fit in the pathway? Ann Oncol  Off J Eur Soc Med Oncol. England; 

2016;27 Suppl 3:iii16–24.  

166.  Shaw AT, Yeap BY, Mino-Kenudson M, Digumarthy SR, Costa DB, Heist 



 

 183 

RS, et al. Clinical features and outcome of patients with non-small-cell lung 

cancer who harbor EML4-ALK. J Clin Oncol. United States; 2009;27:4247–

53.  

167.  Pan X, Lv T, Zhang F, Fan H, Liu H, Song Y. Frequent genomic alterations 

and better prognosis among young patients with non-small-cell lung cancer 

aged 40 years or younger. Clin Transl Oncol. Italy; 2018;20:1168–74.  

168.  Suidan AM, Roisman L, Belilovski Rozenblum A, Ilouze M, Dudnik E, Zer 

A, et al. Lung Cancer in Young Patients: Higher Rate of Driver Mutations 

and Brain Involvement, but Better Survival. J Glob Oncol. United States; 

2019;5:1–8.  

169.  Costa DB, Shaw AT, Ou S-HI, Solomon BJ, Riely GJ, Ahn M-J, et al. 

Clinical Experience With Crizotinib in Patients With Advanced ALK-

Rearranged Non–Small-Cell Lung Cancer and Brain Metastases. J Clin 

Oncol. American Society of Clinical Oncology; 2015;33:1881–8.  

170.  Rangachari D, Yamaguchi N, VanderLaan PA, Folch E, Mahadevan A, 

Floyd SR, et al. Brain metastases in patients with EGFR-mutated or ALK-

rearranged non-small-cell lung cancers. Lung Cancer. Ireland; 

2015;88:108–11.  

171.  Solomon BJ, Mok T, Kim D-W, Wu Y-L, Nakagawa K, Mekhail T, et al. First-

Line Crizotinib versus Chemotherapy in ALK -Positive Lung Cancer. N Engl 

J Med. 2014;371:2167–77. 

172.  Recondo G, Facchinetti F, Olaussen KA, Besse B, Friboulet L. Making the 

first move in EGFR-driven or ALK-driven NSCLC: first-generation or next-

generation TKI? Nat Rev Clin Oncol. England; 2018;  

173.  Solomon BJ, Besse B, Bauer TM, Felip E, Soo RA, Camidge DR, et al. 

Lorlatinib in patients with ALK-positive non-small-cell lung cancer: results 

from a global phase 2 study. Lancet Oncol. England; 2018;  

174.  Peters S, Camidge DR, Shaw AT, Gadgeel S, Ahn JS, Kim D-W, et al. 

Alectinib versus Crizotinib in Untreated ALK-Positive Non-Small-Cell Lung 

Cancer. N Engl J Med. United States; 2017;377:829–38.  

175.  Soria J-C, Tan DSW, Chiari R, Wu Y-L, Paz-Ares L, Wolf J, et al. First-line 

ceritinib versus platinum-based chemotherapy in advanced ALK-

rearranged non-small-cell lung cancer (ASCEND-4): a randomised, open-

label, phase 3 study. Lancet (London, England). England; 2017;389:917–



 184 

29.  

176.  Camidge DR, Kim HR, Ahn M-J, Yang JC-H, Han J-Y, Lee J-S, et al. 

Brigatinib versus Crizotinib in ALK-Positive Non-Small-Cell Lung Cancer. 

N Engl J Med. United States; 2018;  

177.  Cui JJ, Tran-Dube M, Shen H, Nambu M, Kung P-P, Pairish M, et al. 

Structure based drug design of crizotinib (PF-02341066), a potent and 

selective dual inhibitor of mesenchymal-epithelial transition factor (c-MET) 

kinase and anaplastic lymphoma kinase (ALK). J Med Chem. United 

States; 2011;54:6342–63.  

178.  Christensen JG, Zou HY, Arango ME, Li Q, Lee JH, McDonnell SR, et al. 

Cytoreductive antitumor activity of PF-2341066, a novel inhibitor of 

anaplastic lymphoma kinase and c-Met, in experimental models of 

anaplastic large-cell lymphoma. Mol Cancer Ther. United States; 

2007;6:3314–22.  

179.  Sun Y, Nowak KA, Zaorsky NG, Winchester C-L, Dalal K, Giacalone NJ, et 

al. ALK inhibitor PF02341066 (crizotinib) increases sensitivity to radiation 

in non-small cell lung cancer expressing EML4-ALK. Mol Cancer Ther. 

United States; 2013;12:696–704.  

180.  Solomon BJ, Kim D-W, Wu Y-L, Nakagawa K, Mekhail T, Felip E, et al. 

Final Overall Survival Analysis From a Study Comparing First-Line 

Crizotinib Versus Chemotherapy in ALK-Mutation-Positive Non-Small-Cell 

Lung Cancer. J Clin Oncol. United States; 2018;JCO2017774794.  

181.  Solomon BJ, Mok T, Kim D-W, Wu Y-L, Nakagawa K, Mekhail T, et al. First-

Line Crizotinib versus Chemotherapy in ALK-Positive Lung Cancer. N Engl 

J Med. Massachusetts Medical Society; 2014;371:2167–77.  

182.  Solomon BJ, Cappuzzo F, Felip E, Blackhall FH, Costa DB, Kim D-W, et 

al. Intracranial Efficacy of Crizotinib Versus Chemotherapy in Patients With 

Advanced ALK-Positive Non-Small-Cell Lung Cancer: Results From 

PROFILE 1014. J Clin Oncol. United States; 2016;34:2858–65.  

183.  Camidge DR, Bang Y-J, Kwak EL, Iafrate AJ, Varella-Garcia M, Fox SB, et 

al. Activity and safety of crizotinib in patients with ALK-positive non-small-

cell lung cancer: updated results from a phase 1 study. Lancet Oncol. 

England; 2012;13:1011–9.  

184.  Kwak EL, Bang Y-J, Camidge DR, Shaw AT, Solomon B, Maki RG, et al. 



 

 185 

Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. N 

Engl J Med. United States; 2010;363:1693–703.  

185.  Blackhall F, Ross Camidge D, Shaw AT, Soria J-C, Solomon BJ, Mok T, et 

al. Final results of the large-scale multinational trial PROFILE 1005: 

efficacy and safety of crizotinib in previously treated patients with 

advanced/metastatic ALK-positive non-small-cell lung cancer. ESMO 

Open. 2017;2.  

186.  Shaw AT, Kim DW, Nakagawa K, Seto T, Crino L, Ahn MJ, et al. Crizotinib 

versus chemotherapy in advanced ALK-positive lung cancer. N Engl J Med. 

2013;368:2385–94.  

187.  Solomon BJ, Kim D-W, Wu Y-L, Nakagawa K, Mekhail T, Felip E, et al. 

Final Overall Survival Analysis From a Study Comparing First-Line 

Crizotinib With Chemotherapy: Results From PROFILE 1014. J Clin Oncol. 

United States; 2018;JCO2017774794.  

188.  Marsilje TH, Pei W, Chen B, Lu W, Uno T, Jin Y, et al. Synthesis, structure-

activity relationships, and in vivo efficacy of the novel potent and selective 

anaplastic lymphoma kinase (ALK) inhibitor 5-chloro-N2-(2-isopropoxy-5-

methyl-4-(piperidin-4-yl)phenyl)-N4-(2-(isopropylsulf 

onyl)phenyl)pyrimidine-2,4-dia. J Med Chem. United States; 

2013;56:5675–90.  

189.  Friboulet L, Li N, Katayama R, Lee CC, Gainor JF, Crystal AS, et al. The 

ALK inhibitor ceritinib overcomes crizotinib resistance in non-small cell lung 

cancer. Cancer Discov. United States; 2014;4:662–73.  

190.  Shaw AT, Kim D-W, Mehra R, Tan DSW, Felip E, Chow LQM, et al. 

Ceritinib in ALK -Rearranged Non–Small-Cell Lung Cancer. N Engl J Med. 

2014;370:1189–97.  

191.  Kim D-W, Mehra R, Tan DSW, Felip E, Chow LQM, Camidge DR, et al. 

Activity and safety of ceritinib in patients with ALK-rearranged non-small-

cell lung cancer (ASCEND-1): updated results from the multicentre, open-

label, phase 1 trial. Lancet Oncol. England; 2016;17:452–63.  

192.  Crinò L, Ahn M-J, De Marinis F, Groen HJM, Wakelee H, Hida T, et al. 

Multicenter Phase II Study of Whole-Body and Intracranial Activity With 

Ceritinib in Patients With ALK-Rearranged Non–Small-Cell Lung Cancer 

Previously Treated With Chemotherapy and Crizotinib: Results From 



 186 

ASCEND-2. J Clin Oncol. American Society of Clinical Oncology; 

2016;34:2866–73. 

193.  Shaw AT, Kim TM, Crino L, Gridelli C, Kiura K, Liu G, et al. Ceritinib versus 

chemotherapy in patients with ALK-rearranged non-small-cell lung cancer 

previously given chemotherapy and crizotinib (ASCEND-5): a randomised, 

controlled, open-label, phase 3 trial. Lancet Oncol. England; 2017;18:874–

86.  

194.  Felip E, Orlov S, Park K, Yu C-J, Tsai C-M, Nishio M, et al. ASCEND-3: A 

single-arm, open-label, multicenter phase II study of ceritinib in ALKi-naïve 

adult patients (pts) with ALK-rearranged (ALK+) non-small cell lung cancer 

(NSCLC). J Clin Oncol. American Society of Clinical Oncology; 

2015;33:8060. 

195.  Sakamoto H, Tsukaguchi T, Hiroshima S, Kodama T, Kobayashi T, Fukami 

TA, et al. CH5424802, a selective ALK inhibitor capable of blocking the 

resistant gatekeeper mutant. Cancer Cell. United States; 2011;19:679–90.  

196.  Novello S, Mazieres J, Oh I-J, de Castro J, Migliorino MR, Helland A, et al. 

Alectinib versus chemotherapy in crizotinib-pretreated anaplastic 

lymphoma kinase (ALK)-positive non-small-cell lung cancer: results from 

the phase III ALUR study. Ann Oncol  Off J Eur Soc Med Oncol. England; 

2018;  

197.  Katayama R, Sakashita T, Yanagitani N, Ninomiya H, Horiike A, Friboulet 

L, et al. P-glycoprotein Mediates Ceritinib Resistance in Anaplastic 

Lymphoma Kinase-rearranged Non-small Cell Lung Cancer. 

EBioMedicine. Netherlands; 2016;3:54–66.  

198.  Gainor JF, Sherman CA, Willoughby K, Logan J, Kennedy E, Brastianos 

PK, et al. Alectinib salvages CNS relapses in ALK-positive lung cancer 

patients previously treated with crizotinib and ceritinib. J Thorac Oncol. 

United States; 2015;10:232–6.  

199.  Gadgeel SM, Shaw AT, Govindan R, Gandhi L, Socinski MA, Camidge DR, 

et al. Pooled Analysis of CNS Response to Alectinib in Two Studies of 

Pretreated Patients With ALK-Positive Non-Small-Cell Lung Cancer. J Clin 

Oncol. United States; 2016;34:4079–85.  

200.  Seto T, Kiura K, Nishio M, Nakagawa K, Maemondo M, Inoue A, et al. 

CH5424802 (RO5424802) for patients with ALK-rearranged advanced 



 

 187 

non-small-cell lung cancer (AF-001JP study): a single-arm, open-label, 

phase 1-2 study. Lancet Oncol. England; 2013;14:590–8.  

201.  Tamura T, Kiura K, Seto T, Nakagawa K, Maemondo M, Inoue A, et al. 

Three-Year Follow-Up of an Alectinib Phase I/II Study in ALK-Positive Non-

Small-Cell Lung Cancer: AF-001JP. J Clin Oncol. United States; 

2017;35:1515–21.  

202.  Gadgeel SM, Gandhi L, Riely GJ, Chiappori AA, West HL, Azada MC, et 

al. Safety and activity of alectinib against systemic disease and brain 

metastases in patients with crizotinib-resistant ALK-rearranged non-small-

cell lung cancer (AF-002JG): results from the dose-finding portion of a 

phase 1/2 study. Lancet Oncol. England; 2014;15:1119–28.  

203.  Yang JC-H, Ou S-HI, De Petris L, Gadgeel S, Gandhi L, Kim D-W, et al. 

Pooled Systemic Efficacy and Safety Data from the Pivotal Phase II Studies 

(NP28673 and NP28761) of Alectinib in ALK-positive Non-Small Cell Lung 

Cancer. J Thorac Oncol. United States; 2017;12:1552–60.  

204.  Ou S-H. I.  et al. Pooled overall survival and safety data from the pivotal 

phase II studies (NP28673 and NP28761) of alectinib in ALK-positive non-

small cell lung cancer (NSCLC). J Clin Oncol 36, suppl, abstr 9072 (2018).  

205.  Hida T, Nokihara H, Kondo M, Kim YH, Azuma K, Seto T, et al. Alectinib 

versus crizotinib in patients with ALK-positive non-small-cell lung cancer 

(J-ALEX): an open-label, randomised phase 3 trial. Lancet (London, 

England). England; 2017;390:29–39.  

206.  Zhang S, Anjum R, Squillace R, Nadworny S, Zhou T, Keats J, et al. The 

Potent ALK Inhibitor Brigatinib (AP26113) Overcomes Mechanisms of 

Resistance  to First- and Second-Generation ALK Inhibitors in Preclinical 

Models. Clin Cancer Res. United States; 2016;22:5527–38.  

207.  Bazhenova LA, Gettinger SN, Langer CJ, Salgia R, Gold KA, Rosell R, et 

al. Brigatinib (BRG) in anaplastic lymphoma kinase (ALK)-positive non-

small cell lung cancer (NSCLC): Long-term efficacy and safety results from 

a phase 1/2 trial. Ann Oncol. 2017;28. 

208.  Gettinger SN, Bazhenova LA, Langer CJ, Salgia R, Gold KA, Rosell R, et 

al. Activity and safety of brigatinib in <em>ALK</em>-rearranged non-

small-cell lung cancer and other malignancies: a single-arm, open-label, 

phase 1/2 trial. Lancet Oncol. Elsevier; 2017;17:1683–96.  



 188 

209.  Kim D-W, Tiseo M, Ahn M-J, Reckamp KL, Hansen KH, Kim S-W, et al. 

Brigatinib in Patients With Crizotinib-Refractory Anaplastic Lymphoma 

Kinase-Positive Non-Small-Cell Lung Cancer: A Randomized, Multicenter 

Phase II Trial. J Clin Oncol. United States; 2017;35:2490–8.  

210.  Huber M  et al. Brigatinib (BRG) in crizotinib (CRZ)-refractory ALK+ non–

small cell lung cancer (NSCLC): Efficacy updates and exploratory analysis 

of CNS ORR and overall ORR by baseline (BL) brain lesion status. J Clin 

Oncol 36, suppl, abstr 9061 (2018).  

211.  Lovly CM, Shaw AT. Molecular pathways: resistance to kinase inhibitors 

and implications for therapeutic strategies. Clin Cancer Res. United States; 

2014;20:2249–56.  

212.  Rotow J, Bivona TG. Understanding and targeting resistance mechanisms 

in NSCLC. Nat Rev Cancer. England; 2017;17:637–58.  

213.  Azam M, Seeliger MA, Gray NS, Kuriyan J, Daley GQ. Activation of tyrosine 

kinases by mutation of the gatekeeper threonine. Nat Struct Mol Biol. 

United States; 2008;15:1109–18.  

214.  Gainor JF, Dardaei L, Yoda S, Friboulet L, Leshchiner I, Katayama R, et al. 

Molecular Mechanisms of Resistance to First- and Second-Generation ALK 

Inhibitors in ALK-Rearranged Lung Cancer. Cancer Discov. United States; 

2016;6:1118–33.  

215.  Warmuth M, Kim S, Gu X, Xia G, Adrian F. Ba/F3 cells and their use in 

kinase drug discovery. Curr Opin Oncol. United States; 2007;19:55–60.  

216.  Okada K, Araki M, Sakashita T, Ma B, Kanada R, Yanagitani N, et al. 

Prediction of ALK mutations mediating ALK-TKIs resistance and drug re-

purposing to overcome the resistance. EBioMedicine. Netherlands; 2019;  

217.  Katayama R, Shaw AT, Khan TM, Mino-Kenudson M, Solomon BJ, Halmos 

B, et al. Mechanisms of acquired crizotinib resistance in ALK-rearranged 

lung Cancers. Sci Transl Med. United States; 2012;4:120ra17.  

218.  Lovly CM, Pao W. Escaping ALK inhibition: mechanisms of and strategies 

to overcome resistance. Sci Transl Med. United States; 2012;4:120ps2.  

219.  Heuckmann JM, Holzel M, Sos ML, Heynck S, Balke-Want H, Koker M, et 

al. ALK mutations conferring differential resistance to structurally diverse 

ALK inhibitors. Clin Cancer Res. United States; 2011;17:7394–401.  

220.  Doebele RC, Pilling AB, Aisner DL, Kutateladze TG, Le AT, Weickhardt AJ, 



 

 189 

et al. Mechanisms of resistance to crizotinib in patients with ALK gene 

rearranged non-small cell lung cancer. Clin Cancer Res. United States; 

2012;18:1472–82.  

221.  Toyokawa G, Hirai F, Inamasu E, Yoshida T, Nosaki K, Takenaka T, et al. 

Secondary mutations at I1171 in the ALK gene confer resistance to both 

Crizotinib and Alectinib. J Thorac Oncol. United States; 2014;9:e86-7.  

222.  Katayama R, Friboulet L, Koike S, Lockerman EL, Khan TM, Gainor JF, et 

al. Two novel ALK mutations mediate acquired resistance to the next-

generation ALK inhibitor alectinib. Clin Cancer Res. United States; 

2014;20:5686–96.  

223.  Crystal AS, Shaw AT, Sequist L V, Friboulet L, Niederst MJ, Lockerman 

EL, et al. Patient-derived models of acquired resistance can identify 

effective drug combinations for cancer. Science. United States; 

2014;346:1480–6.  

224.  Taniguchi H, Yamada T, Wang R, Tanimura K, Adachi Y, Nishiyama A, et 

al. AXL confers intrinsic resistance to osimertinib and advances the 

emergence of tolerant cells. Nat Commun. England; 2019;10:259.  

225.  Rani S, O’Driscoll L. Analysis of changes in phosphorylation of receptor 

tyrosine kinases: antibody arrays. Methods Mol Biol. United States; 

2015;1233:15–23.  

226.  Krall EB, Wang B, Munoz DM, Ilic N, Raghavan S, Niederst MJ, et al. 

KEAP1 loss modulates sensitivity to kinase targeted therapy in lung cancer. 

Elife. England; 2017;6.  

227.  Niederst MJ, Engelman JA. Bypass mechanisms of resistance to receptor 

tyrosine kinase inhibition in lung cancer. Sci Signal. United States; 

2013;6:re6.  

228.  Zhao Y, Yang Y, Xu Y, Lu S, Jian H. AZD0530 sensitizes drug-resistant 

ALK-positive lung cancer cells by inhibiting SRC signaling. FEBS Open Bio. 

England; 2017;7:472–6.  

229.  Vaishnavi A, Schubert L, Rix U, Marek LA, Le AT, Keysar SB, et al. EGFR 

Mediates Responses to Small-Molecule Drugs Targeting Oncogenic 

Fusion Kinases. Cancer Res. United States; 2017;77:3551–63.  

230.  Dong X, Fernandez-Salas E, Li E, Wang S. Elucidation of Resistance 

Mechanisms to Second-Generation ALK Inhibitors Alectinib and Ceritinib 



 190 

in Non-Small Cell Lung Cancer Cells. Neoplasia. United States; 

2016;18:162–71.  

231.  Tanizaki J, Okamoto I, Okabe T, Sakai K, Tanaka K, Hayashi H, et al. 

Activation of HER family signaling as a mechanism of acquired resistance 

to ALK inhibitors in EML4-ALK-positive non-small cell lung cancer. Clin 

Cancer Res. United States; 2012;18:6219–26.  

232.  Wilson FH, Johannessen CM, Piccioni F, Tamayo P, Kim JW, Van Allen 

EM, et al. A functional landscape of resistance to ALK inhibition in lung 

cancer. Cancer Cell. United States; 2015;27:397–408.  

233.  Gouji T, Takashi S, Mitsuhiro T, Yukito I. Crizotinib can overcome acquired 

resistance to CH5424802: is amplification of the MET gene a key factor? 

J. Thorac. Oncol. United States; 2014. page e27-8.  

234.  Yamada T, Takeuchi S, Nakade J, Kita K, Nakagawa T, Nanjo S, et al. 

Paracrine receptor activation by microenvironment triggers bypass survival 

signals and ALK inhibitor resistance in EML4-ALK lung cancer cells. Clin 

Cancer Res. United States; 2012;18:3592–602.  

235.  Katayama R, Shaw AT, Khan TM, Mino-Kenudson M, Solomon BJ, Halmos 

B, et al. Mechanisms of Acquired Crizotinib Resistance in ALK- Rearranged 

Lung Cancers. Sci Transl Med. 2012;8:120–17.  

236.  Mainardi S, Mulero-Sanchez A, Prahallad A, Germano G, Bosma A, 

Krimpenfort P, et al. SHP2 is required for growth of KRAS-mutant non-

small-cell lung cancer in vivo. Nat Med. United States; 2018;24:961–7.  

237.  Dongre A, Weinberg RA. New insights into the mechanisms of epithelial-

mesenchymal transition and implications for cancer. Nat Rev Mol Cell Biol. 

England; 2019;20:69–84.  

238.  Xu J, Lamouille S, Derynck R. TGF-beta-induced epithelial to 

mesenchymal transition. Cell Res. England; 2009;19:156–72.  

239.  Wu Y, Ginther C, Kim J, Mosher N, Chung S, Slamon D, et al. Expression 

of Wnt3 activates Wnt/beta-catenin pathway and promotes EMT-like 

phenotype in trastuzumab-resistant HER2-overexpressing breast cancer 

cells. Mol Cancer Res. United States; 2012;10:1597–606.  

240.  Natsuizaka M, Whelan KA, Kagawa S, Tanaka K, Giroux V, 

Chandramouleeswaran PM, et al. Interplay between Notch1 and Notch3 

promotes EMT and tumor initiation in squamous cell carcinoma. Nat 



 

 191 

Commun. England; 2017;8:1758.  

241.  Avizienyte E, Wyke AW, Jones RJ, McLean GW, Westhoff MA, Brunton 

VG, et al. Src-induced de-regulation of E-cadherin in colon cancer cells 

requires integrin signalling. Nat Cell Biol. England; 2002;4:632–8.  

242.  Ponzo MG, Lesurf R, Petkiewicz S, O’Malley FP, Pinnaduwage D, Andrulis 

IL, et al. Met induces mammary tumors with diverse histologies and is 

associated with poor outcome and human basal breast cancer. Proc Natl 

Acad Sci U S A. United States; 2009;106:12903–8.  

243.  Zhang Z, Lee JC, Lin L, Olivas V, Au V, LaFramboise T, et al. Activation of 

the AXL kinase causes resistance to EGFR-targeted therapy in lung 

cancer. Nat Genet. United States; 2012;44:852–60.  

244.  Webb DJ, Donais K, Whitmore LA, Thomas SM, Turner CE, Parsons JT, 

et al. FAK-Src signalling through paxillin, ERK and MLCK regulates 

adhesion disassembly. Nat Cell Biol. England; 2004;6:154–61.  

245.  Puram S V, Tirosh I, Parikh AS, Patel AP, Yizhak K, Gillespie S, et al. 

Single-Cell Transcriptomic Analysis of Primary and Metastatic Tumor 

Ecosystems in Head and Neck Cancer. Cell. United States; 

2017;171:1611-1624.e24.  

246.  Schwayer C, Sikora M, Slovakova J, Kardos R, Heisenberg C-P. Actin 

Rings of Power. Dev Cell. United States; 2016;37:493–506.  

247.  Vallenius T. Actin stress fibre subtypes in mesenchymal-migrating cells. 

Open Biol. England; 2013;3:130001.  

248.  Shibue T, Weinberg RA. EMT, CSCs, and drug resistance: the mechanistic 

link and clinical implications. Nat Rev Clin Oncol. England; 2017;14:611–

29.  

249.  Wilson C, Nicholes K, Bustos D, Lin E, Song Q, Stephan J-P, et al. 

Overcoming EMT-associated resistance to anti-cancer drugs via Src/FAK 

pathway inhibition. Oncotarget. United States; 2014;5:7328–41.  

250.  Witta SE, Gemmill RM, Hirsch FR, Coldren CD, Hedman K, Ravdel L, et 

al. Restoring E-cadherin expression increases sensitivity to epidermal 

growth factor  receptor inhibitors in lung cancer cell lines. Cancer Res. 

United States; 2006;66:944–50.  

251.  Fukuda K, Takeuchi S, Arai S, Katayama R, Nanjo S, Tanimoto A, et al. 

Epithelial-to-Mesenchymal Transition Is a Mechanism of ALK Inhibitor 



 192 

Resistance in Lung Cancer Independent of ALK Mutation Status. Cancer 

Res. United States; 2019;79:1658–70.  

252.  Buonato JM, Lazzara MJ. ERK1/2 blockade prevents epithelial-

mesenchymal transition in lung cancer cells and promotes their sensitivity 

to EGFR inhibition. Cancer Res. United States; 2014;74:309–19.  

253.  Sequist L V, Waltman BA, Dias-santagata D, Digumarthy S, Turke AB, 

Fidias P, et al. Genotypic and Histological Evolution of Lung Cancers 

Acquiring Resistance to EGFR Inhibitors. 2011;3.  

254.  Piotrowska Z, Isozaki H, Lennerz JK, Gainor JF, Lennes IT, Zhu VW, et al. 

Landscape of Acquired Resistance to Osimertinib in EGFR-Mutant NSCLC 

and Clinical Validation of Combined EGFR and RET Inhibition with 

Osimertinib and BLU-667 for Acquired RET Fusion. Cancer Discov. United 

States; 2018;8:1529–39.  

255.  Marcoux N, Gettinger SN, O’Kane G, Arbour KC, Neal JW, Husain H, et al. 

EGFR-Mutant Adenocarcinomas That Transform to Small-Cell Lung 

Cancer and Other Neuroendocrine Carcinomas: Clinical Outcomes. J Clin 

Oncol. United States; 2019;37:278–85.  

256.  Ferrer L, Giaj Levra M, Brevet M, Antoine M, Mazieres J, Rossi G, et al. A 

Brief Report of Transformation From NSCLC to SCLC: Molecular and 

Therapeutic Characteristics. J Thorac Oncol. United States; 2019;14:130–

4.  

257.  Park S, Han J, Sun J-M. Histologic transformation of ALK-rearranged 

adenocarcinoma to squamous cell carcinoma after treatment with ALK 

inhibitor. Lung Cancer. Ireland; 2019;127:66–8.  

258.  Hobeika C, Rached G, Eid R, Haddad F, Chucri S, Kourie HR, et al. ALK-

rearranged adenocarcinoma transformed to small-cell lung cancer: a new 

entity with specific prognosis and treatment? Per Med. England; 

2018;15:111–5.  

259.  Cha YJ, Cho BC, Kim HR, Lee H-J, Shim HS. A Case of ALK-Rearranged 

Adenocarcinoma with Small Cell Carcinoma-Like Transformation and 

Resistance to Crizotinib. J Thorac Oncol. United States; 2016;11:e55–8.  

260.  Takegawa N, Hayashi H, Iizuka N, Takahama T, Ueda H, Tanaka K, et al. 

Transformation of ALK rearrangement-positive adenocarcinoma to small-

cell lung cancer in association with acquired resistance to alectinib. Ann. 



 

 193 

Oncol.  Off. J. Eur. Soc. Med. Oncol. England; 2016. page 953–5.  

261.  Fujita S, Masago K, Katakami N, Yatabe Y. Transformation to SCLC after 

Treatment with the ALK Inhibitor Alectinib. J Thorac Oncol. United States; 

2016;11:e67-72.  

262.  Ng KP, Hillmer AM, Chuah CTH, Juan WC, Ko TK, Teo ASM, et al. A 

common BIM deletion polymorphism mediates intrinsic resistance and 

inferior responses to tyrosine kinase inhibitors in cancer. Nat Med. United 

States; 2012;18:521–8.  

263.  Lee JY, Ku BM, Lim SH, Lee M-Y, Kim H, Kim M, et al. The BIM Deletion 

Polymorphism and its Clinical Implication in Patients with EGFR-Mutant 

Non-Small-Cell Lung Cancer Treated with EGFR Tyrosine Kinase 

Inhibitors. J Thorac Oncol. United States; 2015;10:903–9.  

264.  Sharma S V, Lee DY, Li B, Quinlan MP, Takahashi F, Maheswaran S, et 

al. A chromatin-mediated reversible drug-tolerant state in cancer cell 

subpopulations. Cell. United States; 2010;141:69–80.  

265.  Ramirez M, Rajaram S, Steininger RJ, Osipchuk D, Roth MA, Morinishi LS, 

et al. Diverse drug-resistance mechanisms can emerge from drug-tolerant 

cancer persister cells. Nat Commun. England; 2016;7:10690.  

266.  Blakely CM, Pazarentzos E, Olivas V, Asthana S, Yan JJ, Tan I, et al. NF-

kappaB-activating complex engaged in response to EGFR oncogene 

inhibition drives tumor cell survival and residual disease in lung cancer. Cell 

Rep. United States; 2015;11:98–110.  

267.  Hata AN, Niederst MJ, Archibald HL, Gomez-Caraballo M, Siddiqui FM, 

Mulvey HE, et al. Tumor cells can follow distinct evolutionary paths to 

become resistant to epidermal growth factor receptor inhibition. Nat Med. 

2016;22:262–9.  

268.  Viswanathan VS, Ryan MJ, Dhruv HD, Gill S, Eichhoff OM, Seashore-

Ludlow B, et al. Dependency of a therapy-resistant state of cancer cells on 

a lipid peroxidase pathway. Nature. England; 2017;547:453–7.  

269.  Hangauer MJ, Viswanathan VS, Ryan MJ, Bole D, Eaton JK, Matov A, et 

al. Drug-tolerant persister cancer cells are vulnerable to GPX4 inhibition. 

Nature. England; 2017;551:247–50.  

270.  Choe C, Shin Y-S, Kim C, Choi S-J, Lee J, Kim SY, et al. Crosstalk with 

cancer-associated fibroblasts induces resistance of non-small cell lung 



 194 

cancer cells to epidermal growth factor receptor tyrosine kinase inhibition. 

Onco Targets Ther. New Zealand; 2015;8:3665–78.  

271.  Yoshida T, Ishii G, Goto K, Neri S, Hashimoto H, Yoh K, et al. Podoplanin-

positive cancer-associated fibroblasts in the tumor microenvironment 

induce primary resistance to EGFR-TKIs in lung adenocarcinoma with 

EGFR mutation. Clin Cancer Res. United States; 2015;21:642–51.  

272.  Zou HY, Friboulet L, Kodack DP, Engstrom LD, Li Q, West M, et al. PF-

06463922, an ALK/ROS1 Inhibitor, Overcomes Resistance to First and 

Second Generation ALK Inhibitors in Preclinical Models. Cancer Cell. 

United States; 2015;28:70–81.  

273.  Johnson TW, Richardson PF, Bailey S, Brooun A, Burke BJ, Collins MR, et 

al. Discovery of (10R)-7-amino-12-fluoro-2,10,16-trimethyl-15-oxo-

10,15,16,17-tetrahydro-2H-8,4-(m etheno)pyrazolo[4,3-h][2,5,11]-

benzoxadiazacyclotetradecine-3-carbonitrile (PF-06463922), a 

macrocyclic inhibitor of anaplastic lymphoma kinase (ALK) and c-ros . J 

Med Chem. United States; 2014;57:4720–44.  

274.  Akamine T, Toyokawa G, Tagawa T, Seto T. Spotlight on lorlatinib and its 

potential in the treatment of NSCLC: the evidence to date. Onco Targets 

Ther. New Zealand; 2018;11:5093–101.  

275.  Shaw AT, Solomon BJ, Besse B, Bauer TM, Lin C-C, Soo RA, et al. ALK 

Resistance Mutations and Efficacy of Lorlatinib in Advanced Anaplastic 

Lymphoma Kinase-Positive Non-Small-Cell Lung Cancer. J Clin Oncol. 

United States; 2019;37:1370–9.  

276.  Shaw AT, Friboulet L, Leshchiner I, Gainor JF, Bergqvist S, Brooun A, et 

al. Resensitization to Crizotinib by the Lorlatinib ALK Resistance Mutation 

L1198F. N Engl J Med. United States; 2016;374:54–61.  

277.  Redaelli S, Ceccon M, Zappa M, Sharma GG, Mastini C, Mauri M, et al. 

Lorlatinib Treatment Elicits Multiple On- and Off-Target Mechanisms of 

Resistance in ALK-Driven Cancer. Cancer Res. United States; 

2018;78:6866–80.  

278.  Sasaki T, Koivunen J, Ogino A, Yanagita M, Nikiforow S, Zheng W, et al. A 

novel ALK secondary mutation and EGFR signaling cause resistance to 

ALK kinase  inhibitors. Cancer Res. United States; 2011;71:6051–60.  

279.  Yoda S, Lin JJ, Lawrence MS, Burke BJ, Friboulet L, Langenbucher A, et 



 

 195 

al. Sequential ALK Inhibitors Can Select for Lorlatinib-Resistant Compound 

ALK Mutations in ALK-Positive Lung Cancer. Cancer Discov. United 

States; 2018;  

280.  Marchini S, Fruscio R, Clivio L, Beltrame L, Porcu L, Fuso Nerini I, et al. 

Resistance to platinum-based chemotherapy is associated with epithelial 

to mesenchymal transition in epithelial ovarian cancer. Eur J Cancer. 

England; 2013;49:520–30.  

281.  Bu X, Mahoney KM, Freeman GJ. Learning from PD-1 Resistance: New 

Combination Strategies. Trends Mol Med. England; 2016;22:448–51.  

282.  Dearden S, Stevens J, Wu Y-L, Blowers D. Mutation incidence and 

coincidence in non small-cell lung cancer: meta-analyses by ethnicity and 

histology (mutMap). Ann Oncol  Off J Eur Soc Med Oncol. England; 

2013;24:2371–6.  

283.  Massard C, Michiels S, Ferte C, Le Deley M-C, Lacroix L, Hollebecque A, 

et al. High-Throughput Genomics and Clinical Outcome in Hard-to-Treat 

Advanced Cancers:  Results of the MOSCATO 01 Trial. Cancer Discov. 

United States; 2017;7:586–95.  

284.  Kodack DP, Farago AF, Dastur A, Held MA, Dardaei L, Friboulet L, et al. 

Primary Patient-Derived Cancer Cells and Their Potential for Personalized 

Cancer  Patient Care. Cell Rep. United States; 2017;21:3298–309.  

285.  Plagnol V, Woodhouse S, Howarth K, Lensing S, Smith M, Epstein M, et 

al. Analytical validation of a next generation sequencing liquid biopsy assay 

for high sensitivity broad molecular profiling. PLoS One. United States; 

2018;13:e0193802.  

286.  Li H, Durbin R. Fast and accurate short read alignment with Burrows-

Wheeler transform. Bioinformatics. England; 2009;25:1754–60.  

287.  Miller CA, White BS, Dees ND, Griffith M, Welch JS, Griffith OL, et al. 

SciClone: inferring clonal architecture and tracking the spatial and temporal 

patterns of tumor evolution. PLoS Comput Biol. United States; 

2014;10:e1003665.  

288.  Dang HX, White BS, Foltz SM, Miller CA, Luo J, Fields RC, et al. ClonEvol: 

clonal ordering and visualization in cancer sequencing. Ann Oncol  Off J 

Eur Soc Med Oncol. England; 2017;28:3076–82.  

289.  Miller CA, McMichael J, Dang HX, Maher CA, Ding L, Ley TJ, et al. 



 196 

Visualizing tumor evolution with the fishplot package for R. BMC Genomics. 

England; 2016;17:880.  

290.  Avizienyte E, Frame MC. Src and FAK signalling controls adhesion fate 

and the epithelial-to-mesenchymal transition. Curr Opin Cell Biol. England; 

2005;17:542–7.  

291.  Baser ME, Kuramoto L, Joe H, Friedman JM, Wallace AJ, Gillespie JE, et 

al. Genotype-phenotype correlations for nervous system tumors in 

neurofibromatosis 2: a population-based study. Am J Hum Genet. United 

States; 2004;75:231–9.  

292.  Petrilli AM, Fernandez-Valle C. Role of Merlin/NF2 inactivation in tumor 

biology. Oncogene. England; 2016;35:537–48.  

293.  Shaw AT, Martini J-F, Besse B, Bauer TM, Lin C-C, Soo RA, et al. Abstract 

CT044: Efficacy of lorlatinib in patients (pts) with advanced ALK-positive 

non-small cell lung cancer (NSCLC) and ALK kinase domain mutations. 

Cancer Res. 2018;78.  

294.  Guo F, Liu X, Qing Q, Sang Y, Feng C, Li X, et al. EML4-ALK induces 

epithelial-mesenchymal transition consistent with cancer stem cell 

properties in H1299 non-small cell lung cancer cells. Biochem Biophys Res 

Commun. United States; 2015;459:398–404.  

295.  Kim HR, Kim WS, Choi YJ, Choi CM, Rho JK, Lee JC. Epithelial-

mesenchymal transition leads to crizotinib resistance in H2228 lung cancer 

cells with EML4-ALK translocation. Mol Oncol. United States; 

2013;7:1093–102.  

296.  Song K-A, Niederst MJ, Lochmann TL, Hata AN, Kitai H, Ham J, et al. 

Epithelial-to-Mesenchymal Transition Antagonizes Response to Targeted 

Therapies in Lung Cancer by Suppressing BIM. Clin Cancer Res. United 

States; 2018;24:197–208.  

297.  Patel A, Sabbineni H, Clarke A, Somanath PR. Novel roles of Src in cancer 

cell epithelial-to-mesenchymal transition, vascular permeability, 

microinvasion and metastasis. Life Sci. 2016;157:52–61.  

298.  Shaw AT, Friboulet L, Leshchiner I, Gainor JF, Bergqvist S, Brooun A, et 

al. Resensitization to Crizotinib by the Lorlatinib ALK Resistance Mutation 

L1198F. N Engl J Med. 2015;374:54–61.  

299.  cBioportal [Internet]. [cited 2019 Jul 9]. Available from: 



 

 197 

https://www.cbioportal.org/results/oncoprint?session_id=5ccb55c1e4b046

111fee52f3 

300.  Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, et al. The 

cBio cancer genomics portal: an open platform for exploring 

multidimensional cancer genomics data. Cancer Discov. United States; 

2012;2:401–4.  

301.  Redaelli S, Ceccon M, Antolini L, Rigolio R, Pirola A, Peronaci M, et al. 

Synergistic activity of ALK and mTOR inhibitors for the treatment of NPM-

ALK positive lymphoma. Oncotarget. United States; 2016;7:72886–97.  

302.  Powell CE, Gao Y, Tan L, Donovan KA, Nowak RP, Loehr A, et al. 

Chemically Induced Degradation of Anaplastic Lymphoma Kinase (ALK). J 

Med Chem. United States; 2018;61:4249–55.  

303.  Sequist L V, Lee JS, Han J-Y, Su W-C, Yang JC-H, Yu H, et al. Abstract 

CT033: TATTON Phase Ib expansion cohort: Osimertinib plus savolitinib 

for patients (pts) with EGFR-mutant, and MET-amplified NSCLC after 

progression on prior third-generation epidermal growth factor receptor . 

Cancer Res. 2019;79:CT033 LP-CT033. Available from: 

http://cancerres.aacrjournals.org/content/79/13_Supplement/CT033.abstr

act 

304.  Reclusa P, Sirera R, Araujo A, Giallombardo M, Valentino A, Sorber L, et 

al. Exosomes genetic cargo in lung cancer: a truly Pandora’s box. Transl 

lung cancer Res. China; 2016;5:483–91.  

305.  DeVita VTJ, Eggermont AMM, Hellman S, Kerr DJ. Clinical cancer 

research: the past, present and the future. Nat Rev Clin Oncol. England; 

2014;11:663–9.  

306.  Ferguson FM, Gray NS. Kinase inhibitors: the road ahead. Nat Rev Drug 

Discov. England; 2018;17:353–77.  

307.  Tang J, Pearce L, O’Donnell-Tormey J, Hubbard-Lucey VM. Trends in the 

global immuno-oncology landscape. Nat Rev Drug Discov. 

Nov;17(11):783-784. 

308.  Verma S, Miles D, Gianni L, Krop IE, Welslau M, Baselga J, et al. 

Trastuzumab emtansine for HER2-positive advanced breast cancer. N 

Engl J Med. United States; 2012;367:1783–91.  

309.  Verma S, Miles D, Gianni L, Krop IE, Welslau M, Baselga J, et al. 



 198 

Trastuzumab emtansine for HER2-positive advanced breast cancer. N 

Engl J Med. 2012;367:1783–91. 

310.  Heinemann V, von Weikersthal LF, Decker T, Kiani A, Vehling-Kaiser U, 

Al-Batran S-E, et al. FOLFIRI plus cetuximab versus FOLFIRI plus 

bevacizumab as first-line treatment for patients with metastatic colorectal 

cancer (FIRE-3): a randomised, open-label, phase 3 trial. Lancet Oncol. 

England; 2014;15:1065–75.  

311.  Finn RS, Martin M, Rugo HS, Jones S, Im S-A, Gelmon K, et al. Palbociclib 

and Letrozole in Advanced Breast Cancer. N Engl J Med. United States; 

2016;375:1925–36.  

312.  Beer TM, Armstrong AJ, Rathkopf DE, Loriot Y, Sternberg CN, Higano CS, 

et al. Enzalutamide in metastatic prostate cancer before chemotherapy. N 

Engl J Med. United States; 2014;371:424–33.  

313.  Moore K, Colombo N, Scambia G, Kim B-G, Oaknin A, Friedlander M, et 

al. Maintenance Olaparib in Patients with Newly Diagnosed Advanced 

Ovarian Cancer. N Engl J Med. United States; 2018;  

314.  Planchard D, Smit EF, Groen HJM, Mazieres J, Besse B, Helland A, et al. 

Dabrafenib plus trametinib in patients with previously untreated 

BRAF(V600E)-mutant metastatic non-small-cell lung cancer: an open-

label, phase 2 trial. Lancet Oncol. England; 2017;18:1307–16.  

315.  Drilon AE, Camidge DR, Ou S-HI, Clark JW, Socinski MA, Weiss J, et al. 

Efficacy and safety of crizotinib in patients (pts) with advanced MET exon 

14-altered non-small cell lung cancer (NSCLC). J Clin Oncol [Internet]. 

American Society of Clinical Oncology; 2016;34:108. Available from: 

https://doi.org/10.1200/JCO.2016.34.15_suppl.108 

316.  Geyer CE, Forster J, Lindquist D, Chan S, Romieu CG, Pienkowski T, et 

al. Lapatinib plus capecitabine for HER2-positive advanced breast cancer. 

N Engl J Med. United States; 2006;355:2733–43.  

317.  Blanke CD, Rankin C, Demetri GD, Ryan CW, von Mehren M, Benjamin 

RS, et al. Phase III randomized, intergroup trial assessing imatinib 

mesylate at two dose levels in patients with unresectable or metastatic 

gastrointestinal stromal tumors expressing the kit receptor tyrosine kinase: 

S0033. J Clin Oncol. United States; 2008;26:626–32.  

318.  Laetsch TW, DuBois SG, Mascarenhas L, Turpin B, Federman N, Albert 



 

 199 

CM, et al. Larotrectinib for paediatric solid tumours harbouring NTRK gene 

fusions: phase 1  results from a multicentre, open-label, phase 1/2 study. 

Lancet Oncol. England; 2018;19:705–14.  

319.  Nishino M, Ramaiya NH, Hatabu H, Hodi FS. Monitoring immune-

checkpoint blockade: response evaluation and biomarker development. 

Nat Rev Clin Oncol. England; 2017;14:655–68.  

320.  Dagogo-Jack I, Shaw AT. Tumour heterogeneity and resistance to cancer 

therapies. Nat Rev Clin Oncol. England; 2018;15:81–94.  

321.  Goss G, Tsai C-M, Shepherd FA, Bazhenova L, Lee JS, Chang G-C, et al. 

Osimertinib for pretreated EGFR Thr790Met-positive advanced non-small-

cell lung cancer (AURA2): a multicentre, open-label, single-arm, phase 2 

study. Lancet Oncol. England; 2016;17:1643–52.  

322.  McGranahan N, Swanton C. Clonal Heterogeneity and Tumor Evolution: 

Past, Present, and the Future. Cell. United States; 2017;168:613–28.  

323.  Koeppel F, Blanchard S, Jovelet C, Genin B, Marcaillou C, Martin E, et al. 

Whole exome sequencing for determination of tumor mutation load in liquid 

biopsy  from advanced cancer patients. PLoS One. United States; 

2017;12:e0188174.  

324.  Le Tourneau C, Delord J-P, Goncalves A, Gavoille C, Dubot C, Isambert 

N, et al. Molecularly targeted therapy based on tumour molecular profiling 

versus conventional therapy for advanced cancer (SHIVA): a multicentre, 

open-label, proof-of-concept, randomised, controlled phase 2 trial. Lancet 

Oncol. England; 2015;16:1324–34.  

325.  Papadimitrakopoulou V, Lee JJ, Wistuba II, Tsao AS, Fossella F V, Kalhor 

N, et al. The BATTLE-2 Study: A Biomarker-Integrated Targeted Therapy 

Study in Previously Treated Patients With Advanced Non-Small-Cell Lung 

Cancer. J Clin Oncol. United States; 2016;34:3638–47.  

 

 

 

 

 



 200 

 

 

 



 

 201 

Annexes 

 

1. Article II: “Harnessing resistance to targeted and 

immunotherapy at Gustave Roussy: design and 

feasibility of the MATCH-R clinical trial”.  

 

Harnessing resistance to targeted and immunotherapy at Gustave 

Roussy: design and feasibility of the MATCH-R clinical trial 

 

Gonzalo Recondo1$, Linda Mahjoubi2$, Aline Maillard3, Yohann Loriot1,4, Ludovic 

Bigot1, Francesco Facchinetti1, Jean-Yves Scoazec5,6, Aurelie Abou Lovergne7, 

Anas Gazzah2, Gilles Vassal7, Stefan Michiels3, Antoine Hollebecque2, Rastislav 

Bahleda2, Laura Mezquita4, David Planchard4, Charles Naltet4, Pernelle Lavaud4, 

Rosa L Frias1, Ludovic Lacroix1,5,6, Catherine Richon5, Thierry De Baere8, 

Lambros Tselikas8, Olivier Deas9, Claudio Nicotra2, Maud Ngo-Camus2, Eric 

Solary10, Eric Angevin2, Alexander Eggermont4, Ken A Olaussen1, Fabrice 

Andre1,4, Christophe Massard1,2, Jean-Charles Soria1,2,4, Benjamin Besse1,4*, Luc 

Friboulet1* 

 

AFFILIATIONS 

1 INSERM U981, Gustave Roussy Cancer Campus, Université Paris Saclay, 

France. 

2 Drug Development Department (DITEP), Gustave Roussy Cancer Campus, 

France 

3 Department of biostatistics and epidemiology, Gustave Roussy Cancer 

Campus, France 

4 Department of Medical Oncology, Gustave Roussy Cancer Campus, France. 

5 Experimental and Translational Pathology Platform (PETRA), Genomic 

Platform - Molecular Biopathology unit  (BMO) and Biological Resource Center, 

AMMICA, INSERM US23/CNRS UMS3655, Gustave Roussy Cancer Campus, 

Université Paris Saclay, France. 



 202 

6 Department of Medical Biology and Pathology, Gustave Roussy Cancer 

Campus, France. 

7 Department of Clinical Research, Gustave Roussy Cancer Campus, Université 

Paris Saclay, France. 

8 Department of Interventional Radiology, Gustave Roussy Cancer Campus, 

France. 

9 XenTech, Evry, France. 

10 Department of Hematology, Gustave Roussy Cancer Campus, France. 

$,* shared authorship 

Submitted 15th August 2019. Status: Under review 

European Journal of Cancer 

 

ABSTRACT 

The recent advances in the development of molecular targeted agents and 

immunotherapy provide substantial benefits in patients with advanced cancer, 

allowing improvements in disease control, survival outcomes and quality of life. 

Due to their malignant nature, some tumor cells invariably acquire the capacity to 

adapt and evade the lethal effect of these novel agents. Unraveling the biological 

processes driving tumor resistance is necessary to support the development of 

innovative treatment strategies. The MATCH-R trial is a single institution study 

aiming to characterize the molecular mechanisms of resistance to a wide-range 

of novel anticancer agents in patients with advanced cancer, regardless of tumor 

type. For this purpose, deep molecular profiling of tumors biopsies from patients 

progressing on treatment with selected therapies is performed. In parallel, 

patient-derived xenografts and cell line models are developed for translational 

research purposes. Herein, we present the study design and feasibility of the 

ongoing MATCH-R study at Gustave Roussy Cancer Campus. Amongst 333 

included patients, adequate tumor biopsies were performed in 303 cases (91%). 

From these biopsies, 278 (83%) were contributive for NGS analyses and 54 

patient-derived xenograft (PDX) models were established. 

Keywords: Resistance; biopsies; models; targeted therapy; immunotherapy, 

personalized medicine.  
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INTRODUCTION 

 

 Cancer research has led to significant advances in the understanding of 

tumor biology and immunology, providing rational for the development of novel 

treatment strategies (305). In part, this has been possible due to the accessibility 

of high throughput molecular biology techniques, the improvements in developing 

patient-derived models and the collaborative efforts of the research community 

to deeply study cancer biology (29,223).  

 In recent years, the breakthrough of highly effective treatments such as 

immune checkpoint inhibitors and molecular targeted therapies has improved 

outcomes for patients affected by different types of cancer and radically changed 

their management (306,307). Many innovative approaches, using antibody-drug 

conjugates, monoclonal antibodies, cell-cycle inhibitors, endocrine therapies, 

DNA repair and epigenetic modulators have become standard therapeutic 

options for selected cancer patients (308). This vast landscape of drugs in 

development, used either as monotherapy or in combination, will continue to 

improve cancer care in the near future (309–313).  

 In this context, the development of reliable biomarkers is key to predict 

patients benefit from therapies and avoid unnecessary toxicities. Targetable 

molecular alterations in EGFR, BRAF, MET, RET, ROS1, ALK, NTRK, KIT 

predict responses to selective kinase inhibitors (53,59,174,314–318). PD-L1 

staining, tumor mutational burden, T-effector signatures and mutational 

signatures are currently being studied as predictive biomarkers of treatment with 

immune checkpoint inhibitors (319). 

 However, when prolonged disease control can be achieved, disease 

progression, secondary to acquired resistance to antineoplastic treatments, 

eventually occur. Multiple resistance mechanisms to targeted therapies have 

been characterized, shedding a light on the evolution of cancer cells under 

treatment pressure (320). This has subsequently guided the development of 

novel compounds capable of overcoming these barriers to provide patients with 

new therapeutic alternatives (173,321). 
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 As new treatments are developed, cancer cells will consequently adapt to 

sustain tumor proliferation and dissemination (322). Hence, it is necessary to 

design research strategies intended to systematically study resistance 

mechanisms to cancer therapies.  

 Herein, we report the study design and feasibility of the MATCH-R study, 

a prospective single institution trial, designed to identify novel mechanisms of 

acquired resistance in patients with advanced cancer treated with molecular 

targeted agents and immunotherapy. 

 

METHODS 

 

Study Design and eligibility criteria.  

 

 The MATCH-R trial (NCT02517892) is a prospective, single institution 

study held at Gustave Roussy Cancer Campus. The primary objective of this 

study is to characterize molecular mechanisms of acquired resistance to targeted 

therapies and immunotherapy in patients with advanced cancer by high-

throughput next generation sequencing (NGS) and the development of patient 

derived xenografts (PDX) and cell lines. Patients must have achieved either an 

initial response, defined as partial response (PR) or complete response (CR) by 

RECIST 1.1, or stable disease (SD) of at least 24 weeks, and develop disease 

progression while actively receiving molecular targeted therapy or 

immunotherapy. Key eligibility criteria for study inclusion are summarized in Table 

1.  

All patients participating in the study are fully informed and sign an informed 

consent. The study was approved by an institutional review committee and was 

conducted in accordance with the Declaration of Helsinki. Demographic and 

clinical data are prospectively collected together with pathology records and 

integrated with molecular analysis and translational research studies. 
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Inclusion Criteria 

Unresectable or metastatic cancer diagnosis  

Treatment with selected targeted agents or immunotherapy. 

Disease progression while actively on treatment after achieving an initial 

response to treatment (defined as a partial or complete response by 

RECIST 1.1 or stable disease lasting longer than 24 weeks).  

Progressing tumor lesion accessible to core biopsies, including 

malignant pleural effusion and ascites.  

The interval of time between the last dose of the selected therapy and 

the tumor biopsy should be less or equal to one month 

Available tumor tissue, acquired before the initiation of the selected 

therapy.   

Exclusion Criteria 

Clinical contraindications to biopsy procedure (coagulation 

abnormalities). 

Table 1. Key inclusion and exclusion criteria 

  

 Baseline or pre-treatment samples are obtained either from diagnostic 

formalin fixed paraffin embedded (FFPE) pathology blocks or from fresh biopsies 

if available. Post-progression tumor samples are obtained by core biopsies stored 

as frozen samples and embedded in paraffin (Figure 1), as well as from serosal 

effusions. If considered safe, concomitant target lesions with stable disease are 

biopsied and analyzed to compare genetic alterations driving disease 

progression in subclonal populations. The target lesions undergo several 

biopsies to provide adequate material for pathological diagnosis, complete 

molecular profiling and to develop patient-derived models. Importantly, blood 

sampled are collected longitudinally throughout the treatment and at progression 

in selected patients for circulating tumor DNA (ctDNA) sequencing.  

The expected events for the primary objective are the apparition of new molecular 

alterations, the disappearance of existing alterations, the change in the proportion 

of cells with the alteration or significant change in the allele frequency.  
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The molecular events are grouped by gene at the patient level. The 

objective is to identify genes that are altered in more than 10% of the patients 

who develop resistance. Genes for which an event is found in at least 2 patients 

will be selected. We plan to study 52 patients per molecular targeted agent or 

molecular family of agents. 

 The study was amended from its original design that required only a post-

treatment biopsy (cohort 1) to include specific cohorts of patients with paired pre- 

and post-treatment biopsies (cohorts 2-4). This aimed to increase the precision 

of this study in the assessment of truly acquired mechanisms of resistance of 

anti-cancer drugs. These cohorts include: patients treated with EGFR/ALK 

inhibitors in oncogene driven non-small cell lung cancer (NSCLC EGFR+/ALK+) 

(cohort 2), patients treated with immunotherapy for lung cancer and bladder 

cancer (cohort 3) and patients with prostate cancer resistant to androgen 

deprivation therapy (ADT) (cohort 4).  

 

Figure 1. MATCH-R study design. Tumor biopsies are obtained at treatment 

resistance and at baseline. Tumor samples undergo deep molecular analysis, 

and some are selected for the development of patient derived xenografts.  
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Molecular analyses  

 

 Tumor biopsies are evaluated by senior pathologists to estimate the 

percentage of tumor cells, using a threshold of 10% tumor cells to perform 

molecular analysis. Targeted NGS is performed with the Ion Torrent PGM 

(ThermoFisher Scientific) sequencer using a customized panel (Mosc4) covering 

82 cancer genes developed with Ion AmpliSeq custom design, as previously 

reported (283). The bioinformatic analysis is performed using TorrentSuite 

software, variantCaller (ThermoFisher Scientific). Filtering and annotations of 

variants are completed, and pathogenicity is defined by molecular geneticists and 

biologists. If the proportion of tumor cells is higher than 30%, whole exome 

sequencing (WES), and RNA sequencing (RNAseq) are also performed as 

previously reported (283,323). Of notice, the amount of molecular data from the 

MATCH-R study is subsequently integrated with results provided by further 

translational research efforts using MATCH-R patient derived models. 

 

Establishment of patient derived models  

All animal procedures and studies are performed in accordance with the 

approved guidelines for animal experimentation by the ethics committee at 

University Paris Sud (CEEA 26, Project 2014_055_2790). Fresh tumor fragments 

are implanted in the subrenal capsule of NOD scid gamma (NSG) or nude mice 

obtained from Charles River Laboratories. Xenografts are then serially 

propagated subcutaneously from mice to mice. From passage 3, selective 

pressure with the inhibitor for which the patient acquired resistance is applied, to 

avoid expansion of sensitive tumor cell populations. This is performed through a 

collaboration with the PDX-dedicated CRO (XenTech). 

Patient-derived cell lines are developed from (a) patient biopsies or (b) 

PDX samples. (a) Patient biopsies are cut in petri dishes and incubated with 

Liberase™ DH Research Grade (Ref 5401054001, Sigma Aldrich) at 37°c for 1h; 

(b) PDX samples are processed by enzymatic digestion with the tumor 

dissociation kit (Ref.130-095-929, Miltenyi Biotec) and mechanic degradation 
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with the gentleMACsTM dissociator. Cells are cultured with DMEM/F-

12+GlutamMAXTM 10% FBS and 10% enriched with hydrocortisone 0.4 µg/ml, 

cholera toxin 8,4 ng/ml, adenine 24 µg/ml and ROCK inhibitor 5 µM (Y-27632, 

S1049 Selleckchem) until a stable proliferation of tumor cells is observed, as 

previously described (284). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 209 

RESULTS 

 

Study population  

 

 From January 1st 2015 and as of June 15th 2018, a total of 333 patients 

were included in the study (Figure 2). Thirty patients (9%) were later excluded 

from the analysis due to screen failure (n=5), withdrawal of consent (n=2), 

absence of tumor biopsy (n=12) and inadequate tumor content in the biopsy for 

molecular analysis (n=11) (Figure 2). From the 303 patients with adequate tumor 

biopsies (tumor cellularity ≥ 10%), 159 (52.5%) were included in cohort 1 (Global 

Match-R), 12 (4%) in cohort 2 (NSCLC EGFR+/ALK+), 57 (18.8%) in cohort 3 

(Immunotherapy) and 75 (24.8%) in cohort 4 (Prostate cancer). The study is 

currently open to enrolment.  

 

Figure 2. Study flowchart.  
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 At the interim cut-off for feasibility assessment, median age (interquartile 

range) for the study population was 65 years (55-71), with a higher proportion of 

men (60.1%). The most common cancer types were non-small cell lung cancer 

(NSCLC) (n=142) followed by prostate (n=75), urothelial (n=30), gastrointestinal 

(n=17), gynecological (n=13) and breast cancer (n=8). Patients with less frequent 

tumor types were also included (Figure 3A).  

 Regarding the last cancer therapy received at the time of inclusion, 127 

patients (42%) experienced disease progression with targeted therapies, 101 

(33%) with immunotherapy and 75 (25%) with anti-androgen therapy (Figure 3B). 

 

 

Figure 3. A, Proportion of histological sub-types and B, Distribution of molecular 

drivers and anticancer treatments of patients included in MATCH-R. 

 

Feasibility of tumor biopsies 

Among the 314 biopsies performed at the time of resistance, only 11 

(3.6%) contained less than 10% tumor cells and were not inadequate for 

molecular profiling. Overall, the mean tumor content of all 303 biopsies that 

underwent NGS was 49%. In most cases, the procedure was safe and well 
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tolerated, and procedure-related adverse events were reported in 24 patients 

(7.6%), of which the most common was the development of pneumothorax (Table 

2). In 12 patients that did not undergo tumor biopsy, this was due to technical or 

clinical factors including lack of accessible tumor sites, renal insufficiency, 

previous pneumothorax and anxiety, among others.  

 

Adverse events n 

Total 24 

Bleeding 2 

Pneumothorax 

All grades 14 

 Grade 1 5 

Grade 2 1 

Grade 3 7 

Other  10 

 

Table 2. Adverse events related to biopsy procedure 

 

Feasibility of molecular analysis 

From the 303 biopsies with ≥ 10% tumor cell that underwent next 

generation sequencing, 278 (92%) were evaluable for analysis (Figure 2). Of 

these, all underwent successful targeted NGS, 222 samples (73%) were 

analyzed with whole exome and 215 (71%) with RNA sequencing. Importantly, 

197 samples (65%) were fully characterized by targeted NGS, WES and RNA 

sequencing. These preliminary feasibility results show that systematic and 

complete molecular profiling of tumors that acquire resistance to different anti-

cancer therapies is achievable.  
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Establishment of patient-derived models of resistance  

Up to this interim cut-off, 163 patient tumor biopsies have been grafted in 

immune-deficient mice (Table 3). The success rate for the development of PDX 

models reached 33%, being the highest for bladder urothelial carcinomas 

(72.7%). The most frequently engrafted tumors were from patients with NSCLC 

(n=59) and castration-resistant prostate cancer (n=60) with success rates of 30% 

and 27%, respectively. Among the 54 established PDX models, 12 were 

developed from FGFR-driven tumors resistant to erdafitinib, 9 from osimertinib 

resistant EGFR mutant lung cancers, and 4 ALK-rearranged lung cancer after 

progression to lorlatinib treatment (Figure 4). In prostate PDX models, 10 grafted 

biopsies were obtained before hormone therapy and 6 were from anti-androgen 

resistant tumors, and in one case, paired pre and post-treatment PDX models 

were developed. The remaining established PDX models derived from patients 

treated with ATR, NOTCH, MEK or BRAF inhibitors.  

Importantly, upon treatment with the same drugs that the patient had 

experience disease progression, 11/12 (91%) PDX models tested recapitulated 

the pharmacological response observed in patients, both from progression and 

stable sites (data not shown). This suggests that a timely application of selective 

pressure of treatment in vivo allows to reproduce, in preclinical models, the 

resistance mechanisms that were acquired in patients. 
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Figure 4. A, PDX and/or cell lines models developed according to histological 

sub-types and B, initial driver from patients included in MATCH-R. 

Cancer Type Tumor grafted (n) 
PDX models 

developed (n) 
Success 
rate (%) 

Lung 59 18 30.5 

Prostate 60 16 26.7 

Cholangiocarcinoma 15 3 20 

Bladder 11 8 72.7 

Bellini Tumor 3 2 66.7 

Endometrial 4 2 50 

Ovarian 3 2 66.7 

Head and Neck 3 2 66.7 

Colon 3 1 33.3 

Adenoid Cystic 
Carcinoma 

1 0 0 

Total 163 54 33.1 

 

Table 3. Feasibility of the development of Patient-derived xenograft models per 

cancer type.   
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DISCUSSION 

 

Systematic molecular profiling of tumors has been proposed as a 

diagnostic tool to tailor treatment according to the patient’s cancer genotype and 

phenotype. Multiple clinical trials have been conducted to assess the clinical 

benefit of this approach (26,283,324,325). In the MOSCATO-01 trial, led by 

Gustave Roussy Cancer Campus, 33% of heavily pre-treated patients, allocated 

to a specific therapy based on molecular findings, achieved clinical benefit (283). 

The MATCH-R trial will provide new insights on acquired resistance mechanisms 

to a variety of antineoplastic treatments, in a wide range of cancer types. The 

preliminary feasibility results show that, in our platform, 92% of tumor samples 

with ≥ 10% tumor cells are suitable for molecular analysis, with complete 

molecular profiling achievable in 65% of cases. The information obtained from 

this study is integrated in the clinical context of the patient and discussed in 

molecular tumor boards to design tailored therapeutic options in the setting of 

resistance. When feasible, patient-derived in vivo and in vitro models of 

resistance are developed to further characterize mechanisms of resistance. This 

study uses a systematic approach to tackle this issue by optimizing logistics and 

standard operative procedures to provide high-throughput molecular profiling in 

the context of the clinical evolution of the patient. This collection of PDX/cell line 

models will be a useful preclinical tool to identify pivotal mechanisms underlying 

acquired resistance to current therapies and develop novel treatment strategies. 
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2. Article III: “Making the first move in EGFR-driven 

or ALK-driven NSCLC: first-generation or next-

generation TKI?” Nature Reviews Clinical 

Oncology; Volume 15, pages 694–708 (2018) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



The treatment of patients with lung cancer is rapidly 
evolving. In the past 20 years, the clinical management 
of these patients has shifted from a histology- based 
approach towards a molecularly driven approach, owing 
to the development of targeted therapies against the 
driver mutations of this disease, which affect a number 
of kinases1–3; this strategy has improved the outcomes 
for patients, which is important considering the high 
incidence and mortality of this disease4.

Approximately 50% of Asian patients with non- small-
cell lung carcinoma (NSCLC) and 11–16% of patients in 
Western countries harbour mutations in EGFR, which 
affect the kinase domain of EGFR5–7. The majority of 
these alterations (>90%) are deletions within exon 19 
or L858R point mutation8. Genomic rearrangements 
involving the ALK gene occur in 3–6% of patients with 
NSCLC9,10. Other genomic alterations (in MET, ROS1, 
HER2, BRAF, or RET) are less frequent.

In the past decade, the first- generation EGFR 
tyrosine- kinase inhibitors (TKIs) gefitinib, erlotinib, and 
icotinib, and the second- generation TKI afatinib were 
established as standard- of-care first- line therapies for 
patients with NSCLC harbouring activating mutations 
in EGFR11. Despite high initial response and disease 
control rates, virtually all the patients receiving these 
TKIs eventually experience tumour progression owing 
to the emergence of therapeutic resistance12. Resistance 

to TKIs is most commonly acquired de novo during 
treatment, but can also occur owing to the outgrowth of 
pre- existing resistant subclones13. In approximately 50% 
of patients, resistance was mediated by the acquisition of 
the ‘gatekeeper’ mutation T790M, which results in steri-
cal blockade of first- generation or second- generation 
TKI binding and also increases the kinase affinity for 
ATP14–17. Osimertinib is an irreversible third- generation 
EGFR TKI that is active against exon 19 deletions and 
L858R mutation, regardless of the presence of T790M 
mutation18. This TKI forms a covalent bond to the 
cysteine residue at position 797 and has lower activ-
ity than the aforementioned TKIs against wild- type 
EGFR protein. Osimertinib was initially approved by  
the FDA and European Medicines Agency (EMA) as the 
standard- of-care treatment for patients with tumours 
harbouring the EGFRT790M mutation after progression 
upon treatment with a first- line EGFR TKI19–21.

Since 2011, the first- generation TKI crizotinib has 
been the frontline treatment for NSCLC harbouring 
translocations involving ALK22. As with EGFR TKIs, 
all patients ultimately develop resistance to this agent, 
and secondary point mutations in the kinase domain are 
responsible for drug resistance in approximately 20% of 
patients23. Unlike mutations causing EGFR resistance, 
a diverse range of mutations in ALK affect the kinase 
domain, and their incidence increases to 56% with 
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sequential exposure to ALK TKIs23. Ceritinib, alectinib, 
and brigatinib are second- generation ALK inhibitors 
with activity against a wide spectrum of secondary resist-
ance mutations affecting the ALK kinase domain24–26. 
These TKIs were first developed in the setting of cri-
zotinib resistance, in which they had shown potent 
activity in preclinical studies24–26. Similarly, lorlatinib, 
a third- generation ALK inhibitor, has been developed 
to be administered after progression following treat-
ment with first- generation and/or second- generation 
TKIs27. In this Review, ‘next- generation TKI’ refers to 
the third- generation EGFR TKI osimertinib, the second- 
generation ALK TKIs ceritinib, alectinib, and brigatinib, 
and the third- generation ALK TKI lorlatinib.

In the ‘historical’ sequential treatment approach, 
patients with NSCLC receive frontline therapy with a 
first- generation TKI and ‘switch’ to next- generation TKIs 
and/or chemotherapy upon disease progression. In 2017, 
however, next- generation inhibitors have emerged as 
treatment options in the first- line setting, on the basis of 
the increased efficacy observed when directly compared 
with historical first- line TKIs28–30. The lack of compara-
tive survival outcomes has hampered the elucidation of 
the most beneficial strategy for patients in the long term. 
Herein, we present the evidence currently available on 
the antitumour activity of EGFR and ALK TKIs, reported 
in both preclinical and clinical studies, and discuss the 
advantages and drawbacks of both strategies for patients 
with EGFR- driven or ALK- driven NSCLC.

Historical approach: sequential treatment
EGFR TKIs. The publication of two studies in 2004 
(REFS31,32) describing the predictive value of sensitizing 
mutations in EGFR on the activity of EGFR inhibitors 
is a key landmark in the development of potent drugs 
to treat molecularly selected patients with NSCLC31,32. 
Multiple phase III trials comparing the first- generation 
EGFR TKIs erlotinib, gefitinib, or icotinib, as well as 
the second- generation TKI afatinib, with platinum- 
based chemotherapy as frontline therapies for patients 
with advanced- stage disease have been reported33–50 
(TABLE 1). A consistent benefit in favour of EGFR TKIs 
is observed across studies in terms of progression- free 
survival (PFS), response rates, and disease control rates. 
The median PFS with these compounds ranged from 
8.0–13.1 months, compared with 4.6–6.9 months with 
chemotherapy (range of HRs 0.16–0.48). Given this 

impressive PFS benefit, an important overall survival 
benefit was expected51. Nevertheless, median overall 
survival durations were equivalent for both trial arms 
across studies (19.3–34.8 months), predominantly owing 
to the high rates of treatment crossover (54−95%). The 
findings of these studies also provided the first demon-
stration that, in the context of oncogene addiction, 
the clinical benefit derived from treatment with TKIs 
is independent of whether the patients were treated 
upfront or after first- line chemotherapy.

For the treatment of patients with the most frequent 
EGFR mutations (L858R and exon 19 deletions), the 
choice of a first- generation or second- generation EGFR 
inhibitor depends on the physician’s preference, the 
toxicity profile, and the local availability of each agent. 
No differences in the efficacy of erlotinib, gefitinib, or 
afatinib in terms of PFS and overall survival have been 
detected in comparative studies (CTONG 0901 (REF.52) 
and LUX- Lung 7 (REFS53,54)). Icotinib has been demon-
strated to be non- inferior to gefitinib, leading to its 
approval in 2014 in China as a frontline treatment for 
patients with advanced- stage EGFR- mutant NSCLC but 
its development in Western countries was not pursued45. 
In the ARCHER 1050 trial, dacomitinib, another second- 
generation irreversible EGFR TKI, was associated with 
longer PFS and overall survival durations than gefitinib 
(34.1 months versus 26.8 months, HR 0.76; P = 0.044)55,56  
(TABLE 1). This improvement was achieved at the cost 
of higher toxicity (frequency of grade 3 adverse events 
63% versus 41%) and a detrimental effect on quality 
of life (QOL)55. Similarly, the addition of erlotinib to 
bevacizumab extended PFS duration for an average 
of 6 months compared with erlotinib monotherapy47, 
although again at the expense of increased toxicity  
(frequency of grade 3 adverse events 91% versus 53%); 
the combination regimen was approved by the EMA in 
2016 as a first- line treatment option46.

For patients treated with first- line EGFR TKIs, 
blood- based and/or tumour sampling analysis upon 
disease progression is mandatory to study the T790M 
mutational status, owing to the clinical benefits shown 
for patients in this subgroup who received sequential 
treatment with osimertinib in multiple studies18,21,57–59 
(TABLE 1). In the AURA 3 randomized phase III trial21, 
for example, osimertinib was associated with better 
median PFS durations and overall response rates (ORRs) 
than cisplatin plus pemetrexed in the second- line set-
ting (TABLE 1). In comparison with the chemotherapy 
regimen, patients receiving osimertinib also had an 
improved QOL, with better scores for lung cancer symp-
toms and a lower incidence of grade ≥3 adverse events 
(23% versus 47%). At a median follow- up duration of 
8.3 months, 71% of patients receiving chemotherapy had 
crossed over to receive osimertinib after disease pro-
gression, and the median overall survival had not been 
reached in either treatment arm. The extended benefit of 
the sequential administration of a first- generation EGFR 
TKI followed by osimertinib observed in this study21 
drove the approval of this compound for patients with 
NSCLC harbouring the T790M mutation and disease 
progression after treatment with first- generation or 
second- generation EGFR TKIs.

Key points

•	Patients	with	EGFR-	driven	or	ALK-	driven	non-	small-cell	lung	carcinoma	(NSCLC)	
benefit	from	therapies	targeting	those	alterations,	but	relapse	occurs	systematically.

•	Several	generations	of	tyrosine	kinase	inhibitors	(TKIs)	have	been	developed	to	
address	the	acquisition	of	therapeutic	resistance.

•	The	historical	treatment	approach	involving	sequential	administration	of	TKIs	is	
associated	with	long	overall	survival	durations.

•	Clinical	evidence	from	the	past	few	years	indicates	that	the	use	of	next-	generation	
TKIs	in	the	frontline	setting	is	associated	with	major	improvements	in	progression-	free	
survival,	control	of	intracranial	disease	and	tolerability.

•	For	most	patients	with	EGFR-	driven	or	ALK-	driven	NSCLC,	the	choice	of	first-	line	
of treatment	should	favour	next-	generation	TKIs.
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Table 1 | Clinical trials testing EGFR TKIs in sequential strategy

Trial Trial design (phase, primary end point and 
treatment arms, including number of patients 
harbouring EGFR mutations)a

Median follow- up 
duration (months)

Outcomes (ORR, median PFS and  
median OS)

Refs

First generation
IPASS • III

• PFS
• Gefitinib (n = 132) versus carboplatin + paclitaxel 

(n = 129)

17 • 71.2% versus 47.3%
• 9.5 mo versus 6.3 mo (HR 0.48; P < 0.001)
• 21.6 mo versus 21.9 mo (HR 1.00; P = 0.99)

33,34

First- SIGNAL • III
• OS
• Gefitinib (n = 26) versus cisplatin + gemcitabine 

(n = 16)

35 • 84.6% versus 37.5%
• 8 mo versus 6.3 mo (HR 0.54; P = 0.086)
• 27.2 mo versus 25.6 mo (HR 1.04)

35

WJTOG3405 • III
• PFS
• Gefitinib (n = 86) versus cisplatin + docetaxel (n = 86)

34 (59.1 for OS 
analysis)

• 62.1% versus 32.2%
• 9.2 mo versus 6.3 mo (HR 0.49; P < 0.0001)
• 34.8 mo versus 37.3 mo (HR 1.25)

36,37

NEJ002 • III
• PFS
• Gefitinib (n = 114) versus carboplatin + paclitaxel 

(n = 114)

23.4 • 73.7% versus 30.7%
• 10.8 mo versus 5.4 mo (HR 0.30; P < 0.001)
• 27.7 mo versus 26.6 mo (HR 0.89; P = 0.48)

38,39

OPTIMAL 
(CTONG-0802)

• III
• PFS
• Erlotinib (n = 82) versus carboplatin + gemcitabine 

(n = 72)

25.9 • 83% versus 36%
• 13.1 mo versus 4.6 mo (HR 0.16; P < 0.0001)
• 22.8 mo versus 27.2 mo (HR 1.19; P = 0.27)

40,41

ENSURE • III
• PFS
• Erlotinib (n = 110) versus cisplatin + gemcitabine 

(n = 107)

28.9 (erlotinib 
arm) and 27.1 
(chemotherapy 
arm)

• 62.7% versus 33.6%
• 11 mo versus 5.5 mo (HR 0.34; P < 0.0001)
• 26.3 mo versus 25.5 mo (HR 0.91; P = 0.61)

42

EURTAC • III
• PFS
• Erlotinib (n = 86) versus platinum + gemcitabine or 

paclitaxel (n = 87)

18.9 (erlotinib 
arm) and 14.4 
(chemotherapy 
arm)

• 63.6% versus 17.8%
• 9.7 mo versus 5.2 mo (HR 0.37; P < 0.0001)
• 19.3 mo versus 19.5 mo (HR 1.04; P = 0.87)

43

BELIEF • II
• PFS
• Erlotinib + bevacizumab (n = 109)

21.4 • 77%
• 13.2 mo whole cohort; 16.0 mo T790M+

• 28.2 months

46

JO25567 • II
• PFS
• Erlotinib + bevacizumab (n = 75) versus erlotinib 

(n = 77)

20.4 • 69% versus 64%
• 16 mo versus 9.7 mo (HR 0.54; P = 0.0015)
• NA

47

CTONG 0901 • III
• PFS
• Erlotinib (n = 128) versus gefitinib (n = 128)

22.1 • 56.3% versus 53.3%
• 13.0 mo versus 10.4 mo (HR 0.81, P = 0.11)
• 22.9 mo versus 20.1 mo (HR 0.84; P = 0.25)

52

CONVINCE • III
• PFS
• Icotinib (n = 148) versus cisplatin + pemetrexed 

(up to four cycles) eventually followed by 
pemetrexed maintenance (n = 137)

18 (icotinib 
arm) and 15.7 
(chemotherapy 
arm)

• NR
• 11.2 mo versus 7.9 mo (HR 0.61; P = 0.006)
• 30.5 mo versus 32.1 mo (P = 0.89)

44

ICOGEN • III
• PFS (non- inferiority in full data set)
• Icotinib (n = 29) versus gefitinib (n = 39)

NA • 62.1% versus 53.8%
• 7.8 mo versus 5.3 mo (HR 0.78; P = 0.32)
• 20.9 mo versus 20.2 mo (HR 1.1; P = 0.76)

45

Second generation
LUX- Lung 3 • III

• PFS
• Afatinib (n = 230) versus cisplatin + pemetrexed 

(n = 115)

41 • 56% versus 23%
• 11.1 mo versus 6.9 mo (HR 0.58: P = 0.001)
• Whole cohort: 28.2 mo versus 28.2 mo (HR 

0.88; P = 0.39)
• Exon 19 deletion: 33.3 mo versus 21.1 mo  

(HR 0.54; P = 0.002)

48,50

LUX- Lung 6 • III
• PFS
• Afatinib (n = 242) versus cisplatin + gemcitabine 

(n = 122)

33 • 66.9% versus 23%
• 11.0 mo versus 5.6 mo (HR 0.28; P < 0.0001)
• 23.1 mo versus 23.5 mo (HR 0.93; P = 0.61)

49,50

LUX- Lung 7 • IIB
• PFS, TTF and OS
• Afatinib (n = 160) versus gefitinib (n = 159)

42.6 • 70% versus 56%
• 11.0 mo versus 10.9 mo (HR 0.73; P = 0.017)
• 27.9 mo versus 24.5 mo (HR 0.86; P = 0.26)

53,54

ARCHER-1050 • III
• IRC- assessed PFS
• Dacomitinib (n = 227) versus gefitinib (n = 225)

31.3 • 75% versus 70%
• 14.7 mo versus 9.2 mo (HR 0.59; P < 0.0001)
• 34.1 mo versus 26.8 mo (HR 0.76; P = 0.0438)

55,56
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ALK TKIs. Crizotinib is a first- generation TKI of ALK, 
MET, and ROS1, and was the first agent to be approved 
for the treatment of patients with NSCLC harbouring 
ALK translocations60–63. Two randomized phase III tri-
als established the superiority of crizotinib over chemo-
therapy in patients with advanced- stage NSCLC, either 
as a first- line therapy22 or in patients with disease pro-
gression after receiving a platinum- based regimen64. In 
the PROFILE 1014 study22, greater response rates and 
median PFS durations were achieved with crizotinib than 
with platinum- based therapy (TABLE 2). Again, no signifi-
cant differences in overall survival were observed, with a 
4-year survival of 56.6% with crizotinib and 49.1% with 
chemotherapy65. This effect was mostly due to the high 
crossover rates (84.2%) from crizotinib to the experimen-
tal arm. In an exploratory analysis, after adjusting for 
crossover, the median overall survival was 59.8 months 
with crizotinib and 19.2 months with chemotherapy.

Sequential treatment strategies with ALK inhibitors 
have been developed with the aim of extending overall 
survival durations61–63,66–81 (TABLE 2). Unlike EGFR inhibi-
tors, a wide repertoire of ALK TKIs is available for patients 
with disease progression after treatment with crizotinib; 
the second-generation ALK TKIs ceritinib, alectinib, 
and brigatinib have been developed to overcome most 
resistance mechanisms24–26. Treatment with ceritinib 
was associated with improved outcomes compared with 
second-line chemotherapy (ORR 39.1% versus 6.9%, and 
a median PFS gain of ~4 months) in patients with dis-
ease relapse after receiving crizotinib and platinum-based 
chemotherapy72 (TABLE 2). In the same disease setting, the 
results of the phase III ALUR trial77 and the phase II ALTA 

trial76 demonstrated beneficial outcomes with alectinib 
and brigatinib, respectively (TABLE 2). The third-generation 
ALK TKI lorlatinib has activity against resistance muta-
tions arising after treatment with first-generation and/or 
second-generation TKIs, including the G1202R muta-
tion27. Lorlatinib has been tested in a dose-escalation 
phase I study66 and in a phase II trial81 (TABLE 2).

One of the major concerns in the management 
of patients with ALK-translocated tumours is the 
high risk of developing brain metastases; 22–33% of 
patients present with central nervous system (CNS) 
involvement at diagnosis, and the prevalence of brain 
metastases increases to 45–70% upon progression on 
crizotinib treatment68,69,73,75,82. The improved CNS activ-
ity of second-generation and third-generation ALK 
TKIs results from both their higher CNS penetration 
and increased potency compared with crizotinib27. 
Intracranial responses have been observed in 45% of 
patients receiving ceritinib69, 64% of those receiving 
alectinib83, and 67% treated with brigatinib84. Brigatinib 
was associated with an intracranial PFS of 18.4 months 
with the standard dose84. Importantly, even 42% of 
patients in a heavily pretreated cohort (≥2 lines of ALK 
TKIs) had intracranial disease control with lorlatinib, 
and the cerebrospinal fluid concentration documented 
for lorlatinib was 75% of the plasma concentration66.

Translational studies of resistance
A number of ‘back-to-benchside’ studies have been 
conducted with the aim of characterizing the mecha-
nisms underlying clinical resistance to EGFR or ALK 
TKIs. The results from these studies can provide a 

Trial Trial design (phase, primary end point and 
treatment arms, including number of patients 
harbouring EGFR mutations)a

Median follow- up 
duration (months)

Outcomes (ORR, median PFS and  
median OS)

Refs

Third generation
AURA (dose- 
escalation and 
expansion 
cohorts)

• I
• Safety and efficacy
• Osimertinib
• First line (n = 60 patients), second line or beyond 

(n = 193)

19.1 and NA • 77% and 61%
• 20.5 mo and 9.6 mo
• NA

18,120

AURA 
(extension 
cohort)

• Phase II
• ORR
• Osimertinib (n = 201)
• Second line or beyond, prior treatment  

with erlotinib (58%), gefitinib (58%) and/or 
second- generation EGFR TKI (24%)

13.2 • 62%
• 12.3 mo
• Pooled analysis OS: 26.8 mo
• Median treatment exposure: 16.4 mo

57,59

AURA 2 • Phase II
• ORR
• Osimertinib (n = 210)
• Second line or beyond, prior treatment  

with erlotinib (57%), gefitinib (58%) and/or 
second- generation EGFR TKI (20%)

13.0 • 70%
• 9.9 mo
• Pooled analysis OS: 26.8 mo
• Median treatment exposure: 16.4 mo

58,59

AURA 3 • Phase III
• ORR
• Osimertinib (n = 279) versus  

platinum + pemetrexed (n = 140)
• Second line, prior treatment with gefitinib (59%), 

erlotinib (34%) or afatinib (7%)

8.3 • 71% versus 31%
• 10.1 mo versus 4.4 mo (HR 0.30; P < 0.001)
• NA

21

IRC, independent review committee; mo, months; NA , not available; NR , not reported; ORR , overall response rate; OS, overall survival; PFS, progression- free 
survival; T790M+, patients with NSCLC harbouring T790M mutation in EGFR; TKI, tyrosine- kinase inhibitor ; TTF, time to treatment failure. aLine of treatment only 
stated for third- generation inhibitors; all the first- generation and second- generation inhibitors were tested in the first- line setting.

Table 1 (cont.) | Clinical trials testing EGFR TKIs in sequential strategy
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Table 2 | Clinical trials testing ALK TKIs in sequential strategy

Trial Trial design (phase, primary end point and treatment 
arms, including number of patients and dosing 
schedule when relevant)a

Median 
follow- up 
duration

Outcomes (ORR, median PFS and OS) Refs

First generation

PROFILE 
1001

• I
• ORR , DOR , TTR , PFS, 6–12 mo OS, and safety profile
• Crizotinib (n = 149)

16.3 • 60.8%
• 9.7 mo
• 1-year OS 74.8%

61,62

PROFILE 
1005

• II
• ORR
• Crizotinib (n = 1069)

NA • 54%
• 8.4 mo
• 21.8 mo

63

PROFILE 
1007

• III
• PFS
• Crizotinib (n = 173) versus pemetrexed or docetaxel  

(n = 174)

12.2 mo 
(crizotinib) 
and 12.1 mo 
(chemotherapy)

• 65% versus 20%
• 7.7 mo versus 3.0 mo (HR 0.49; P < 0.001)
• 20.3 mo versus 22.8 mo (HR 1.02; P = 0.54)

64

PROFILE 
1014

• III
• PFS
• Crizotinib (n = 172) versus platinum + pemetrexed (n = 171)

46 mo • 74% versus 45%
• 10.9 mo versus 7.0 mo (HR 0.45; P < 0.001)
• NR (45.8 mo–NR) versus 47.5 mo (32.2 mo–NR;  

HR 0.76; P = 0.048)

22,65

Second generation

ASCEND-1 • I
• MTD
• Ceritinib (n = 246)
• First line (33%) or second line after crizotinib (66%)

11.1 mo • 72% or 56%
• 18.4 mo or 6.9 mo
• NR or 16.7 mo

67,68

ASCEND-2 • II
• ORR
• Ceritinib (n = 140)
• Second line after crizotinib

11.3 mo • 38.6%
• 5.7 mo
• 14.9 mo

69

ASCEND-3 • II
• ORR
• Ceritinib (n = 124)
• First line

8.3 mo • 63.7%
• 11.1 mo
• NA

70

ASCEND-4 • III
• PFS
• Ceritinib (n = 189) versus platinum + pemetrexed (n = 187)
• First line

19.7 mo • 72.5% versus 26.7%
• 16.6 mo versus 8.1 mo (HR 0.55; P < 0.00001)
• NE (29.3 mo–NE) versus 26.2 mo (22.8 mo–NR;  

HR 0.73; P = 0.056)

71

ASCEND-5 • III
• PFS
• Ceritinib (n = 115) versus pemetrexed or docetaxel (n = 116)
• Second line after crizotinib

16.5 mo • 39.1% versus 6.9%
• 5.4 mo versus 1.6 mo (HR 0.49; P < 0.0001)
• 18.1 mo versus 20.1 mo (HR 1.00; P = 0.5)

72

AF-001JP • I/II
• DLT and MTD (phase I) or ORR (phase II)
• Alectinib (n = 46)
• First line

36 mob • 93.5%
• NR; 3-year PFS: 62%
• NE; 3-year OS: 78%

73,74

AF-002JG • I/II
• Recommended phase II dose
• Alectinib (n = 47)
• Second line after crizotinib

4.2 mo • 55%
• NA
• NA

75

NP28761/
NP28673

• II
• ORR
• Alectinib (n = 225; n = 189 evaluable for response)
• Second line after crizotinib

92.3 weeks • 51.3%
• 8.3 mo
• 29.1 mo

76,146

ALUR • III
• PFS
• Alectinib (n = 72) versus docetaxel or pemetrexed (n = 35)
• Second line after crizotinib

6.5 mo • 37.5% versus 2.9%
• 9.6 mo versus 1.4 mo (HR 0.15; P < 0.001)
• 12.6 mo (9.7 mo–NR) versus NR (NR–NR; 

HR 0.89)

77

NCT01449461 • Recommended phase II dose (phase I) or ORR (phase II)
• Brigatinib (n = 79)
• First line (10%, n = 8), second line after crizotinib  

(85%, n = 68) or third line after crizotinib and ceritinib 
(5%, n = 3)

>31 mob First- line brigatinib (n = 8):
• 100%
• 34.2 mo
• NR (2-year OS 100%)

Brigatinib after crizotinib (n = 71):
• 73%
• 13.2 mo
• 30.1 mo (2-year OS 61%)

78,79
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rationale for optimizing sequential treatment strate-
gies, because a better understanding of the biological 
implications of therapeutic resistance can guide clini-
cians to provide the most adequate treatment upon 
disease progression (FIG. 1).

As discussed, the acquisition of the gatekeeper T790M 
mutation in EGFR is the most common mechanism of 
resistance to first-generation EGFR TKIs (detected in 
50–60% of patients)12,14,85,86. The activation of ‘bypass’ 
signalling mechanisms is also relevant in this scenario, 
and involves potential therapeutic targets, such as MET, 
AXL, IGF1R, and other members of the EGFR family87–90. 
Resistance to third-generation EGFR TKIs has also been 
described91: the most common tertiary mutation in EGFR 
is C797S in 24–40% of patients, which affects the covalent 
binding site of osimertinib92–94. This tertiary mutation 
can be present in cis or trans with the T790M mutation95. 
The results of preclinical studies suggest that combina-
tions of brigatinib or other novel EGFR inhibitors with 
anti-EGFR monoclonal antibodies are an effective treat-
ment option when C797S is present in cis96,97. Resistance 
dependent on the presence of the tertiary mutation in 
trans can be overcome by combining first-generation and 
third-generation EGFR TKIs98,99.

A range of secondary mutations affecting the kinase 
domain of ALK confer resistance to different ALK TKIs. 
The following mutations have been implicated in resist-
ance to crizotinib: G1269A, C1156Y, E1210K, I1171T, 
L1152R, S1206C/Y, I1151T/N/S, F1174C/L/V, V1180L, 
and L1196M23,100–104. F1174C/L/V, 1151Tins, L1152P, and 
C1156Y mutations are associated with resistance to 
ceritinib24. Both V1180L and I1171T/N/S alterations 
confer resistance to alectinib, and double mutations in 
E1210K and S1206C or D1203N have been reported 
in patients with resistance to brigatinib23,105. G1202R 

is the most common resistance mutation emerging on 
treatment with second-generation ALK inhibitors and is 
only targetable with lorlatinib23,27,106,107. Interestingly, the 
acquisition of both the C1156Y and L1198F mutations 
upon lorlatinib treatment has been reported to resensi-
tize the tumour to crizotinib108. After the description of 
this initial case report, the results of the first extensive 
preclinical and clinical study of mutations causing resist-
ance to lorlatinib were published in 2018 by Yoda and 
colleagues109. Using N-ethyl-N-nitrosourea-generated 
mutagenesis screening to determine the secondary 
mutations in ALK that can arise upon lorlatinib treat-
ment, these investigators found that single mutations in 
ALK cannot cause resistance to lorlatinib. Indeed, only 
double ALK mutations in cis were detected upon resist-
ance to lorlatinib, both in preclinical experiments and 
in patient-derived samples. Thus, observations of the 
stepwise accumulation of resistance mutations in ALK 
suggest that upfront treatment with lorlatinib could 
markedly delay the onset of on-target resistance, lead-
ing to a more durable clinical benefit than the current 
sequential treatment approach.

Off-target resistance mechanisms, such as bypass 
pathway activation, have also been reported in patients 
with resistance to first-generation and second-generation 
ALK TKIs23,102,110. The results of preclinical studies 
revealed that treatment with second-generation ALK 
TKIs could overcome resistance to crizotinib that devel-
ops without the acquisition of secondary mutations in 
ALK24. This observation mainly suggests that crizo-
tinib has lower inhibitory potency against ALK than 
do second-generation ALK TKIs, facilitating tumour 
growth upon modest activation of bypass signalling 
mechanisms. By contrast, treatment with lorlatinib 
does not overcome resistance to second-generation 

Trial Trial design (phase, primary end point and treatment 
arms, including number of patients and dosing 
schedule when relevant)a

Median 
follow- up 
duration

Outcomes (ORR, median PFS and OS) Refs

Second generation (cont.)

ALTA • II
• ORR
• Brigatinib 90 mg daily (n = 112) versus brigatinib 

standard dosec (n = 110)
• Second line after crizotinib

19.6 mo (90 mg 
daily) or 24.3 
mo (standard 
dose)

• 46% versus 56%
• 9.2 mo versus 15.6 mo
• 29.5 mo (18.2 mo–NR) versus 34.1 mo  

(27.7 mo–NR)

80,147

Third generation

NCT01970865 • I
• MTD
• Lorlatinib (n = 41)
• First line (2.4%), second line (34.2%), third line (56.1%) or 

fourth line (7.3%)

17.4 mo • 46%
• 9.6 mo (whole cohort), 13.5 mo (second line), 

and 9.2 mo (third line and beyond)
• NA

66,81

• II
• ORR
• Lorlatinib (n = 228)
• First line (13.1%), second line or beyond, prior treatment 

with crizotinib only (11.8%), crizotinib + chemotherapy 
(14.1%), non- crizotinib ALK TKI (12.3%), any two ALK TKIs 
(28.5%), or any three ALK TKIs (20.2%)

NA • 90%, 69%, 33% or 39%
• NR , NR , 5.5 mo after treatment with ALK 

inhibitor other than crizotinib, and 6.9 mo 
after ≥2 lines of ALK TKIs

• NA

66,81

DLT, dose- limiting toxicity ; DOR , duration of response; mo, months; MTD, maximum tolerated dose; NA , not available; NE, not estimable; NR , not reported; ORR , 
overall response rate; OS, overall survival; PFS, progression- free survival; TKI, tyrosine- kinase inhibitor ; TTR , time to treatment recurrence. aLine of treatment stated 
for second- generation and third- generation inhibitors; all the first- generation inhibitors were tested in the first- line setting. bUpdated presented data from the 
original publication. c90 mg daily for 7 days and then 180 mg daily.

Table 2 (cont.) | Clinical trials testing ALK TKIs in sequential strategy
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TKIs mediated by off-target mechanisms23,27. On the 
basis of these observations, bypass mechanisms involv-
ing robust oncogenic pathways, such as MAP2K1, SRC, 
EGFR, or PI3K, that are activated upon treatment with 

second-generation ALK TKIs have been proposed to 
also drive resistance to third-generation ALK TKIs23.

A series of laboratory studies have focused on 
the brain penetration of both EGFR and ALK TKIs. 

Erlotinib Dacomitinib  Osimertinib  

Osimertinib  

Gefitinib Icotinib  

First-line treatment for ALK-rearranged NSCLC  

L1196M
S1206C/Y
E1210K
G1269A

 

I1151Tins
L1152P
C1156Y
F1174L/C/V

 
I1171T/N/S 

 
G1202R

 

Brigatinib  

 

Resistant mutations in ALK KD with crizotinib 

Resistance mutations in ALK KD with next-generation ALK TKIs

 

Lorlatinib 
 

Off-target
mechanisms  

Unknown or
not studied

 
 

Off-target
mechanisms  

Unknown or
not studied

  Second-generation 
ALK inhibitors

 
 

Local
treatment  

b

Oligoprogressive
disease 

Oligoprogressive
disease 

Afatinib  

Crizotinib 

Crizotinib 

EGFR T790M status 

Loss of EGFR 
T790M mutation

Local treatment

PositiveNegative

Activation of 
bypass resistance
mechanism  

= Clinical trial
= Chemotherapy 

= Clinical trial
= Chemotherapy 

Small-cell 
transformation

Platinum +
etoposide 

Tertiary kinase
mutations Yes

No

Unknown
resistance
mechanism 

= Clinical trial
= Chemotherapy 

= Clinical trial
= Chemotherapy 

Off-target mechanism
of resistance?  

First-line treatment for EGFR-mutant NSCLC  a

EGFR C797S
allelic distribution  

TransCis

Erlotinib or 
gefitinib
+ osimertinib 

Alectinib 

Alectinib 

Alectinib 

Alectinib 

V1180L
I1171T/N/S

F1174L/C/V
C1156Y

C1156Y + 
L1198F

E1210K + S1203N
E1210K + S1206C G1202R

Ceritinib 

Ceritinib 

Ceritinib 

Ceritinib 

Brigatinib 

Brigatinib Brigatinib 

Any second-
generation 

Lorlatinib 

Lorlatinib 

Lorlatinib Lorlatinib 

Lorlatinib Lorlatinib 

Clinical trial 

Molecular biology
and hypothesis

First-generation
TKI

Second-generation
TKI

Third-generation
TKI

Treatments

Fig. 1 | Biomarker integration in the management of patients with NSCLC. This chart depicts the optimal sequencing 
strategies for the selection of frontline tyrosine- kinase inhibitors (TKIs; either first generation or next generation), adapted 
to the occurrence of secondary mechanisms of resistance in patients with non- small-cell lung carcinoma (NSCLC) 
harbouring EGFR mutations (part a) or ALK rearrangements (part b). KD, kinase domain.
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In studies using mouse models, alectinib was superior to 
crizotinib in controlling metastatic disease in the CNS111; 
moreover, responses to lorlatinib were observed even in 
mice with disease progression after alectinib treatment27. 
Importantly, evidence from several of these preclinical 
studies suggests that next-generation TKIs provide 
optimal long-term outcomes when used as frontline 
treatments19,26,27.

Other preclinical studies were aimed at provid-
ing a biological rationale to explain systematic relapse 
in patients treated with TKIs despite major initial 
responses. Several studies have shown that a small sub-
population of tumour cells (<5%) cultured in the pres-
ence of a TKI remain alive and are reprogrammed into 
a drug-tolerant state112–117. These cells, with limited or no 
growth during months of TKI treatment, are referred to 
as ‘persister’ cells and provide a reservoir of cells from 
which drug-resistance mechanisms could emerge. Initial 
studies have suggested that epigenetic reprogramming 
of TKI-persister cells involves the histone demethylase 
KDM5A and thus could be selectively targeted by his-
tone deacetylase inhibitors112. The results of preclinical 
studies indicate that persister cells can later cause tumour 
regrowth through the de novo acquisition of diverse 
genetically driven resistance mechanisms, such as sec-
ondary mutations or activation of bypass signalling113,115. 
Eradicating persister cancer cells early during the course 
of treatment might therefore block or drastically post-
pone the onset of resistance. Persister cells display an 
impaired apoptotic response to TKI (as assessed by 
annexin V staining)115, and, thus, treatment with inhib-
itors of the BCL-2 family anti-apoptotic proteins has 
been proposed to be a potentially effective therapeutic 
strategy; the combination of osimertinib and navitoclax 
is currently being tested in patients with NSCLC har-
bouring the EGFR T790M mutation (NCT02520778)115. 
Two studies with results published in 2017 revealed a 
common persister-cell-specific dependency on the lipid 
hydroperoxidase GPX4, targeting of which prevented 
tumour relapse in mice116,117.

Finally, tumour heterogeneity occurs early in the 
course of cancer progression: in patients with resect-
able NSCLC, a median of 30% of the somatic muta-
tions detected are subclonal118. Tumour heterogeneity 
is an important factor contributing to the develop-
ment of therapeutic resistance because it contributes 
to both the selective expansion of pre-existing resist-
ant clones and the adaptive resistance of persister 
tumour cells115. In patients with NSCLC harbouring 
EGFR mutations and with disease progression after a 
first-generation or second-generation TKI, the allelic 
fraction of T790M mutations can, for instance, affect 
the therapeutic response to third-generation EGFR 
TKIs119. Observations in patients treated with osim-
ertinib95 or lorlatinib109 indicate that clones resistant 
to third-generation TKIs can emerge upon sequential 
treatment with first-generation and second-generation 
EGFR or ALK TKIs, affecting the choice of the next 
optimal treatment strategy. In line with these observa-
tions, preclinical and clinical studies performed dur-
ing first-line treatment with third-generation ALK and 
EGFR TKIs revealed that the emergence of resistance 

driven by on-target mutations can be delayed19,27,120. 
Mice bearing EGFR19 and ALK27 TKI-sensitive tumours 
treated with first-generation and third-generation 
inhibitors showed prolonged tumour responses and 
delay of resistance with third-generation TKIs. In two 
cohorts of patients with EGFR-mutated NSCLC treated 
with upfront osimertinib in the phase I AURA study, 
none of the evaluable patients had disease progression 
owing to T790M mutation120. Overall, in addition to 
enabling the interpretation of the outcomes of clini-
cal studies, the studies discussed herein highlight the 
importance of characterizing the molecular mecha-
nisms of resistance to TKIs during or after each line 
of treatment using blood or tissue sampling to inform 
clinical decision-making.

Paradigm shift for first-line therapy
The historical trend in the management of patients with 
cancer has been to move more-potent, more-specific, and 
possibly less-toxic drugs to the first-line treatment setting. 
Similarly to chemotherapy, the magnitude of efficacy of 
next-generation TKIs generally increases in accordance 
with an earlier administration during the course of treat-
ment with targeted therapies21,28,29,71,72,77. Indeed, several 
single-arm early phase trials in patients with NSCLC who 
had not received any previous TKI showed prolonged dis-
ease control upon first-line treatment with osimertinib120, 
ceritinib70, or alectinib74 (in comparison with data avail-
able for first-generation and second-generation TKIs).  
In 2017, additional evidence of major PFS benefits 
emerged from three phase III trials, supporting the 
upfront use of next-generation TKIs over the standard 
first-line EGFR TKIs and crizotinib (TABLE 3).

EGFR TKIs. In the randomized phase III FLAURA 
study28, osimertinib was compared as a frontline ther-
apy with the standard choice of gefitinib or erlotinib 
in patients with NSCLC harbouring EGFR exon 19 
deletions or L858R point mutation28. As expected, 
the median PFS was significantly prolonged by 
almost 9 months with osimertinib compared with 
first-generation TKIs (HR 0.46; P < 0.001), although 
the ORRs were similar between trial arms (TABLE 3). 
The median time to second-line treatment or death was 
23.5 months with osimertinib and 13.8 months with 
first-line EGFR TKI, and the median time to third-line 
treatment was not reached and 25.9 months, respec-
tively. Brain imaging was mandatory at study entry, as 
well as during the course of the study for patients with 
brain metastases; at study entry, 19% of patients in the 
osimertinib arm and 23% in the control arm had brain 
metastases. Fewer patients treated with osimertinib 
had disease progression in the CNS (6% versus 15%) 
or extracranial disease progression (38% versus 54%), 
compared with the control arm28. The benefit in PFS 
was maintained for patients with brain metastases 
(15.2 months with osimertinib versus 9.6 months  
with first-generation TKIs; HR 0.47; P < 0.001). 
Osimertinib was better tolerated than first-line TKIs 
(34% versus 45% of patients had grade 3 adverse 
events). Accordingly, the rate of treatment discontinu-
ation was 13% in the osimertinib arm compared with 
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18% in the control arm. Of note, QT interval prolon-
gations were more frequent with osimertinib than with 
first-line TKIs (10% versus 4%). In this trial, crosso-
ver to subsequent treatment with osimertinib was 
permitted in patients in whom the T790M mutation 
was detected after progression upon treatment with 
first-generation EGFR TKIs. Among the 129 patients 
who received treatment after disease progression in the 
control arm, 48 patients (37%) crossed over to receive 
treatment with osimertinib; data on the overall sur-
vival of patients who received treatment after disease  
progression are eagerly awaited.

ALK TKIs. Ceritinib was the first second-generation 
TKI approved as a first-line treatment option for 
patients with ALK-rearranged NSCLC on the basis of 
the superior efficacy over platinum-based chemother-
apy observed in the ASCEND-4 study71 (TABLE 2). In 
this study, the incidence of grade 3–4 adverse events 
was higher with ceritinib than with chemotherapy 
(65% versus 40%), but treatment discontinuations 
owing to toxicity occurred in 5% of patients treated with 
ceritinib versus 11% in the control arm. This study was 
designed before crizotinib was established as standard 
first-line therapy in this disease setting; taking toxicities 
into consideration, ceritinib remains a valid option for 
first-line treatment. Encouraging results from a phase 
I/II trial of brigatinib (NCT01970865) include a median 
PFS of 34.2 months in 8 patients treated upfront with 
this agent78. In another phase II trial, the ORR was 90% 
in a cohort of 30 patients receiving frontline lorlatinib 
and the median PFS had not been reached at the time of 
reporting; mature results of this ongoing study will pro-
vide further insight into the clinical outcomes derived 
from lorlatinib treatment81.

Alectinib is the first ALK inhibitor that was com-
pared against crizotinib in the first-line setting in two 
randomized studies: the phase III trials J-ALEX30, con-
ducted in Japan, and the international ALEX trial29 
(TABLE 3). None of the patients enrolled in J-ALEX had 
been previously treated with an ALK TKI, but 36% of 
them had received chemotherapy. Alectinib was associ-
ated with a significant PFS benefit (TABLE 3), as well as a 
more favourable toxicity profile than crizotinib: grade 3 
adverse events were reported in 26% of patients receiv-
ing alectinib versus 52% of those receiving crizotinib, 
and fewer patients required dose interruptions (29% 
versus 74%) or toxicity-related treatment suspensions 
(9% versus 20%).

All the patients enrolled in the ALEX trial29 received 
alectinib in the frontline setting. The median PFS dura-
tion and ORR were higher with alectinib than with cri-
zotinib; according to the last update121, median PFS was 
34.8 months with alectinib and 10.9 months with crizo-
tinib (HR 0.43; 95% CI 0.32–0.58 months). Crossover 
was not permitted in the study protocol, hampering the 
direct comparison of outcomes obtained by administer-
ing alectinib using sequential or upfront strategies. One 
strength of this study29, however, was the evaluation of 
CNS activity through mandatory brain MRI at study 
entry and every 8 weeks during treatment. Baseline brain 
metastases were detected in 42% of patients allocated to 
receive alectinib and in 38% of patients in the crizotinib 
group. Patients with measurable CNS metastases had an 
intracranial response rate of 81% (45% of them being 
complete responses) with alectinib and 50% (9% com-
plete responses) with crizotinib. The median duration 
of CNS responses was 17.3 months with alectinib and 
5.5 months with crizotinib, and the 12-month cumu-
lative incidence of brain metastases was significantly 

Table 3 | Clinical trials comparing first- generation and next- generation TKIs in the frontline setting

Trial Trial design (phase, primary 
end point and treatment arms, 
including number of patients and 
dosing schedule when relevant)

Median follow- up 
duration

Outcomes (ORR, median investigator- assessed PFS, 
median IRC- assessed PFS, OS and grade ≥3 AEs)

Refs

ALK TKIs

ALEX • III
• Investigator- assessed PFS
• Alectinib (n = 152; 600 mg b.i.d.) 

versus crizotinib (n = 151)

22.8 mo (alectinib arm) 
and 27.8 mo (crizotinib 
arm)a

• 82.9%a versus 75.5%
• 25.7 mo (95% CI 19.9 mo–NE) versus 10.4 mo (95% CI 7.7–14.6 

mo; HR 0.50; P < 0.001); 34.8 moa versus 10.9 mo (HR 0.43; 95% 
CI 0.32–0.58)

• 1-year OS 84.3% versus 82.5% (HR 0.76; P = 0.24)
• 44.7%a versus 51%

29,121

J- ALEX • III
• IRC- assessed PFS
• Alectinib (n = 103; 300 mg b.i.d.) 

versus crizotinib (n = 104)

12 mo (alectinib arm) 
and 12.2 mo (crizotinib 
arm)

• 92% versus 79%
• NA ; HR 0.34 (95% CI 0.21–0.55)
• Not reached (95% CI 20.3 mo–NE) versus 10.2 mo (95% CI 

8.2–12.0 mo; HR 0.34; P < 0.0001)
• NA (immature data)
• 26% versus 52%

30

EGFR TKIs

FL AURA • III
• Investigator- assessed PFS
• Osimertinib (n = 279) versus 

gefitinib or erlotinib (n = 277)

15 mo (osimertinib 
arm) and 9.7 mo (first- 
generation TKI arm)

• 80% versus 76%
• 18.9 mo versus 10.2 mo (HR 0.46; P < 0.001)
• 17.7 mo versus 9.7 mo (HR 0.45; P < 0.001)
• 18 mo OS 83% versus 71% (HR 0.63; P = 0.007 , nonsignificant 

owing to immature data)
• 34% versus 45%

28

AE, adverse event; b.i.d., twice daily ; mo, months; IRC, independent review committee; NA , not available; NE, not estimable; ORR , overall response rate;  
OS, overall survival; PFS, progression- free survival; TKI, tyrosine- kinase inhibitor.a Updated data.
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lower with alectinib than with crizotinib (9.4% versus 
41.4%), showing that alectinib provides superior con-
trol against the development of brain metastases com-
pared with crizotinib. Interestingly, the difference in PFS 
between arms can be mainly attributed to the higher 
rates of CNS-related disease progression with crizotinib, 
because no significant differences in extra-CNS progres-
sion rates were observed between arms (24% and 22% 
with alectinib and crizotinib, respectively). Comparative 
trials of crizotinib with brigatinib (NCT02737501),  
lorlatinib (NCT03052608), or ensartinib (NCT02767804) 
will provide further information on the efficacy of all 
next-generation ALK TKIs in the first-line setting.

Choice of upfront treatment strategy
With the management of patients with advanced-stage 
EGFR-driven and ALK-driven NSCLC on the verge of 
a paradigm change, the risk–benefit balance of choos-
ing between sequential treatment or next-generation 
upfront strategies needs to be taken into consideration 
when optimizing treatment strategies. Several argu-
ments favour each strategy, and, thus, the choice remains  
complex (BOX 1).

Traditional sequential approach. This approach has 
been in place for a longer time than the next-generation 
upfront strategy, and, thus, sufficient data support an 
impressive long-term survival with therapies involv-
ing sequencing TKIs. The long-term benefit of pro-
viding sequential therapies is based on the response 
rates and the duration of PFS that can be achieved 
with next-generation inhibitors upon resistance to 
first-generation TKIs. In patients with NSCLC harbour-
ing mutations in EGFRT790M, a pooled analysis update 
of the AURA 2 and AURA extension studies59 revealed 
a median global overall survival of 26.8 months. The 
2-year overall survival was 56% for the entire cohort. 
The mature survival outcomes of the AURA 3 study21 and 
data on treatment outcomes from the ASTRIS study122 
have not yet been published; these results should provide 
insight into the clinical benefits derived from osimertinib 
treatment in patients with EGFRT790M-mutated NSCLC.

In patients with ALK-rearranged NSCLC, results 
from the PROFILE 1014 trial showed, at a median 
follow-up duration of 46 months, that median survival 

was not reached (95% CI 45.8 months–not reached) and 
that 4-year overall survival was 56.6% in patients treated 
with crizotinib, of whom 33% received subsequent 
next-generation TKIs65. The French national IFCT-1302 
retrospective study123 analysed the survival outcomes of 
318 patients with ALK-rearranged NSCLC involved in 
an expanded crizotinib access programme123. In this 
study, 31.9% of patients received the second-generation 
ALK inhibitors ceritinib or alectinib after disease pro-
gression on frontline crizotinib. The median over-
all survival duration from the first dose of crizotinib 
was not reached for patients who received sequential 
treatment, and 3-year survival was 59.2% (both cer-
itinib and alectinib analysed together). Impressively, 
the median overall survival from the time of diagnosis 
of metastatic NSCLC was 89.6 months. This duration 
is highly superior to that observed in patients with 
NSCLC not driven by alterations in EGFR or ALK and  
treated with chemotherapy in ‘real-world’ settings 
(~10 months)124.

The studies discussed support the notion that effec-
tive sequential strategies with upfront first-generation 
inhibitors can lead to impressive overall survival in some 
patients with NSCLC in which the driver alterations have 
been characterized; whether upfront next-generation 
inhibitors could provide a similar long-term bene-
fit remains to be established. The available preclinical 
and clinical evidence suggests that no clinical benefit is 
derived from treatment with first-generation TKIs after 
disease progression on next-generation TKI treatment, 
with the exception of ALK L1198F108, MET amplifica-
tion125, and EGFR C797S mutation in trans95, thus limit-
ing the availability of targeted therapeutic options when 
next-generation inhibitors are used upfront.

Next-generation ALK and EGFR TKIs upfront. This 
therapeutic option is associated with prolonged PFS 
durations, improved disease control in the CNS, and 
a more favourable toxicity profile than treatment with 
first-generation TKIs — providing a major argument 
in favour of upfront treatment with next-generation 
TKIs. In the ALEX29 and FLAURA28 studies, the dif-
ference in the incidence of grade 3 adverse events with 
first-generation versus next-generation TKIs was ~10%, 
favouring the latter. With the upfront administration of 
next-generation TKIs, T790M or secondary ALK muta-
tional screening does not need to be performed on a 
continuous basis, an approach that is convenient in cen-
tres where repeated molecular diagnosis is not available. 
Indeed, the medical practice environment needs to be 
considered in decisions of the best therapeutic strat-
egy for patients. Close monitoring and timely access 
to molecular diagnostics and treatment options are  
essential to providing optimal care.

In the ALEX29 and FLAURA28 studies, alectinib and 
osimertinib showed greater efficacy in the treatment of 
brain metastases than first-generation TKIs; thus, these 
agents should be considered for patients in this set-
ting126–128. The prevention or delay of the onset of brain 
metastases is key to controlling morbidity and reduc-
ing the needs and costs for localized CNS therapies129. 
In this context, the results of the ongoing evaluation of 

Box 1 | Arguments supporting different frontline treatment strategies

Arguments in favour of using first- generation tyrosine- kinase inhibitors  
(TKIs) upfront
•	Mature	follow-	up	data	available	supporting	long	survival	for	patients	treated	
with sequential	TKIs

•	Multiple	subsequent	treatment	options	available	in	the	event	of	resistance

Arguments in favour of using next- generation TKIs upfront derived from 
studies comparing with first- generation TKIs
•	In	preclinical	studies:	longer	disease	control	in	mice

•	Reduced	toxicity	in	most	cases

•	Enhanced	therapeutic	activity	in	the	central	nervous	system

•	Prolonged	progression-	free	survival

•	Reduced	need	for	subsequent	molecular	diagnostic
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responses to frontline lorlatinib are awaited81. Indeed, 
results from studies in mouse models suggest that front-
line lorlatinib could dramatically delay the emergence 
of resistance, including those with brain metastases27. 
Despite having superior potency and the widest spec-
trum of activity against secondary mutations, lorlatinib 
might not replace alectinib as the standard-of-care ALK 
TKI in the first-line setting because of its association 
with an increased incidence of neurological adverse 
effects; lorlatinib, however, might represent the ideal 
second-line treatment option after disease progression 
on alectinib.

An important argument in favour of using 
next-generation upfront originates from the emerging 
evidence from studies of persister cells. An intuitive 
hypothesis is that a ‘hitting hard first’ strategy would 
help to limit the number of drug-tolerant cells that 
would later lead to disease progression; however, to 
our knowledge, direct comparisons of the persistence 
capacities of cancer cells treated with first-generation 
or next-generation TKIs have not been performed. 
Understanding the molecular mechanisms supporting 
the viability of these cells and how they can be targeted 
therapeutically are key questions that have not yet 
been solved.

Another key aspect that remains to be elucidated 
is whether frontline treatment with next-generation 
TKIs can decrease the emergence of subclonal hetero-
geneity involving TKI resistance mechanisms, either 
with a mutational or non-mutational component. 
Importantly, the existence of intratumour hetero-
geneity is evidenced by simultaneous oncogenic alter-
ations that can mediate resistance to EGFR or ALK 
TKIs, including the co-occurrence of EGFR with 
ALK alterations or ALK with KRAS alterations, which 
present a challenge for treatment selection23,130–134. 
To address this issue, multiple combinations of ALK 
or EGFR TKIs with other kinase inhibitors target-
ing MET (NCT02143466), MEK (NCT03392246, 
NCT03087448, NCT03202940, and NCT02143466), 
JAK (NCT02917993 and  NCT03450330), mTOR 
( N C T 0 2 5 0 3 7 2 2  a n d  N C T 0 2 3 2 1 5 0 1 ) ,  S R C 
(NCT02954523), AXL (NCT03255083) or CDK4/6 
inhibitors (NCT03455829 and NCT02292550), or apop-
totic modulators, such as navitoclax (NCT02520778), 
are ongoing. The aim of these strategies is to revert, delay 
or prevent the onset of off-target resistance. In addition, 
several studies have intended to modulate the antitu-
mour immune response by combining an EGFR or ALK 
TKI with anti-programmed cell death 1 (PD-1) and/or 
anti-programmed cell death 1 ligand 1 (PD-L1) mono-
clonal antibodies, which generally lack efficacy as single 
agents in patients with oncogene-addicted NSCLC135. 
Nevertheless, toxicity issues have already hampered the 
development of combinations of osimertinib with dur-
valumab and of crizotinib with nivolumab. In the phase 
Ib TATTON study, recruitment into the combination 
arm (osimertinib plus durvalumab) was closed owing 
to the occurrence of interstitial lung disease in 38% of 
patients136. In the multicohort phase I/II CheckMate 370 
trial, the combination of nivolumab and crizotinib was 
associated with severe hepatic toxicity in 38% of patients, 

with two adverse-event-related deaths137. By contrast, 
preliminary data of the combination of crizotinib or lor-
latinib with avelumab and of alectinib with atezolizumab 
have shown an acceptable safety profile138,139.

Integrative strategy. In the absence of survival data after 
disease progression from head-to-head comparative tri-
als, investigators rely on the sum of PFS from studies 
held in different therapy lines to establish comparisons. 
This provocative approach is not supported statisti-
cally140 but can provide an estimation, in the absence 
of valid surrogates, of the theoretical benefit of sequen-
tial targeted therapies in patients with advanced-stage 
NSCLC (FIG. 2).

Relying on the results from clinical trials22,69,72,77,80, 
patients with ALK-translocated NSCLC would derive a 
median PFS of 16–25 months from frontline crizotinib 
followed by a next-generation ALK TKI, compared with  
34.8 months with alectinib121. Likewise, patients  
with EGFR-mutated NSCLC would derive a PFS bene-
fit ranging from 21–27 months21,36,41,47,53 with sequential 
treatment, a value close to the 18.9 months reported for 
frontline osimertinib in the FLAURA study28. Of note, 
chemotherapy is the standard treatment for patients 
with T790M-negative NSCLC with disease progression 
after receiving first-generation EGFR TKIs. For these 
patients, the median PFS with cisplatin-based chemo-
therapy after progression upon treatment with first-line 
EGFR TKIs was reported to be 5.4 months141; thus, 
frontline treatment with a first-generation TKI would 
provide a slightly inferior sum of PFS than frontline 
osimertinib.

In addition, a subset of patients treated with TKIs 
can develop oligoprogressive disease. In this scenario, 
and especially in the setting of brain metastasis, patients 
can benefit from a 6-month gain in PFS when local 
ablative treatments (such as surgery or radiotherapy) 
are applied142. These local ablative treatments are cru-
cial because they enable the continuation of previously 
administered systemic therapies, delaying the switch 
to the next treatment line and prolonging systemic 
disease control.

The economic burden of novel drugs can also influ-
ence the choice of upfront TKIs — for example, osime-
rtinib is more expensive than afatinib143. In the absence 
of definitive evidence of meaningful overall survival 
benefits, the prolonged administration of costly thera-
peutic agents might not be easily accepted by regulatory 
authorities.

In this new era, a growing need exists for the develop-
ment of clinical trials to enable further understand-
ing of the best sequential therapeutic strategy in the 
setting of advanced-stage NSCLC. Monitoring resist-
ance onset using sequencing of circulating cell-free 
DNA can provide new insights into the effect of early 
treatment of subclinical resistance144. In the setting of 
EGFR-mutated NSCLC, the ongoing phase II APPLE 
trial145 will shed light on this matter, evaluating the 
overall survival outcomes of patients treated sequen-
tially with a first-line EGFR TKI and switching to osi-
mertinib upon progression, compared with treatment 
with osimertinib upfront.
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Conclusions
At present, the optimal approach for the selection 
of a frontline EGFR or ALK TKI for patients with 
advanced-stage NSCLC remains a matter of debate, 
while results and post-progression survival analysis at 

longer follow-up durations from ongoing comparative 
trials are awaited. Both strategies have advantages and 
disadvantages that need to be carefully weighed (BOX 1). 
The currently available evidence suggests that patients 
with EGFR-mutated NSCLC could benefit from frontline 
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osimertinib over first-generation EGFR TKIs in terms 
of tolerability and efficacy, especially patients without 
targetable T790M mutations. Similarly, patients with 
ALK-rearranged NSCLC would derive a greater benefit 
from frontline alectinib than with first-line ALK TKIs 
in terms of tolerability, activity in the CNS, and PFS. For 
these patients, lorlatinib might be a favourable option 
for second-line treatment upon regulatory approval. 

Nonetheless, analysis of long-term survival outcomes 
of ongoing and future randomized trials, including the 
effect of post-progression treatments, will be key to settle 
what the most beneficial treatment strategy for patients 
with NSCLC according to the molecular profile of their 
tumours in order to adapt therapies to tumour dynamics.
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Abstract:  

 

The molecular study and classification of lung adenocarcinomas has led to the 

development of selective targeted therapies aiming to improve disease control 

and survival in patients. The anaplastic lymphoma kinase (ALK) is a tyrosine 

kinase receptor from the insulin tyrosine kinase receptor family, with a 

physiologic role in neural development. Gene rearrangements involving the 

ALK kinase domain occur in ~3-6% of patients with lung adenocarcinoma. The 

fusion protein dimerizes leading to transactivation of the ALK kinase domain in 

a ligand-independent and constitutive manner.   

Lorlatinib is a third generation ALK inhibitor with high potency and selectivity for 

this kinase in vitro and in vivo, and elevated penetrance in the central nervous 

system. Lorlatinib can overcome resistance mediated by over 16 secondary 

kinase domain mutations occurring in 13 residues upon progression to first- and 

second- generation ALK TKI. In addition, treatment with lorlatinib is effective for 

patients who have been previously treated with a first and a second generation 

or a second generation ALK TKI upfront and is currently approved for this 

indication. 

The full spectrum of biological mechanisms driving lorlatinib resistance in 

patients remains to be elucidated. It has been recently reported that the 

sequential acquisition of two or more mutations in the kinase domain, also 

referred as compound mutations, is responsible for disease progression in 

about 35% of patients treated with lorlatinib, mainly by impairing its binding to 

the ALK kinase domain. However, the effect of these compound mutations on 

the sensitivity to the repertoire of ALK inhibitors can vary, and other resistance 

mechanisms occurring in most patients are unknown.  

My PhD thesis aimed at exploring resistance to lorlatinib in patients with ALK-

rearranged lung cancer through spatial and temporal tumor biopsies and 

development of patient-derived models. Within the institutional MATCH-R study 

(NCT02517892), we performed high-throughput whole exome, RNA and 

targeted next-generation sequencing, together with plasma sequencing to 

identify putative genomic and bypass mechanisms of resistance. We developed 

patient-derived cell lines and characterized novel mechanisms of resistance 

and personalized treatment strategies in vitro and in vivo.  

We characterized three mechanisms of resistance in five patients with paired 

biopsies. We studied the induction of epithelial-mesenchymal transition (EMT) 

by SRC activation in two patient-derived cell lines exposed to lorlatinib. 

Mesenchymal cells were sensitive to combined SRC and ALK co-inhibition, 

showing that even in the presence of an aggressive and challenging 

phenotype, combination strategies can overcome ALK resistance. We identified 

three novel ALK kinase domain compound mutations, F1174L/G1202R, 

C1156Y/G1269A, L1196M/D1203N occurring in three patients treated with 

lorlatinib. We developed Ba/F3 cell models harboring single and compound 

mutations to study the differential effect of these mutations on lorlatinib 

resistance. Finally, we characterized a novel mechanism of resistance caused 

by NF2 loss of function at the time of lorlatinib progression through the 

development of patients derived PDX and cell lines, and in vitro validation of 

NF2 knock-out with CRISPR/CAS9 gene editing. Downstream activation of 

mTOR was found to drive lorlatinib resistance by NF2 loss of function and was 

overcome by providing treatment with mTOR inhibitors.  

This study shows that mechanisms of resistance to lorlatinib are more diverse 

and complex than anticipated. Our findings also emphasize how longitudinal 

studies of tumor dynamics allow deciphering TKI resistance and identifying 

reversing strategies. 

 

Titre 

Mécanismes de résistance aux inhibiteurs de tyrosine kinase 

ALK dans le cancer bronchique non à petites cellules. 

 

Mots-clés: 

 Resistance a therapies ciblées, ALK, Cancer du poumon 

 

Résumé:  
 

Les analyses moléculaires et la classification des adénocarcinomes bronchiques 

ont conduit au développement de thérapies ciblées sélectives visant à améliorer 

le contrôle de la maladie et la survie des patients. ALK (anaplastic lymphoma 

kinase) est un récepteur tyrosine kinase de la famille des récepteurs de l'insuline. 

Des réarrangements chromosomiques impliquant le domaine kinase d’ALK sont 

présents dans environ 3 à 6% des patients atteints d'un adénocarcinome 

bronchique. La protéine de fusion provoque une activation du domaine kinase 

de manière constitutive et indépendante du ligand. 

Lorlatinib est un inhibiteur d’ALK de troisième génération avec une efficacité et 

une sélectivité optimale, ainsi qu’une pénétration élevée vers le système nerveux 

central. Lorlatinib peut vaincre la résistance induite par plus de 16 mutations 

secondaires dans le domaine kinase d’ALK acquises lors de la progression aux 

ALK TKI de première et deuxième générations. Le traitement par lorlatinib est 

donc efficace chez les patients préalablement traités par un ALK TKI de première 

ou deuxième génération, et est actuellement approuvé pour cette indication. 

Le spectre complet de mécanismes de résistance au lorlatinib chez les patients 

reste à élucider. Il a récemment été rapporté que l'acquisition séquentielle de 

deux mutations ou plus dans le domaine kinase, également appelées mutations 

composées, est responsable de la progression de la maladie chez environ 35% 

des patients traités par le lorlatinib, principalement en altérant sa liaison au 

domaine kinase d’ALK. Cependant, l’effet de ces mutations sur la sensibilité aux 

différents inhibiteurs d’ALK peut varier, et les autres mécanismes de résistance 

survenant chez la plupart des patients restent inconnus. 

Mon travail de thèse avait pour but d’explorer la résistance au lorlatinib chez des 

patients atteints d'un cancer du poumon ALK réarrangé par la mise en œuvre de 

biopsies spatiales et temporelles et le développement de modèles dérivés de 

patients. Dans le cadre de l’étude institutionnelle MATCH-R (NCT02517892), 

nous avons effectué un séquençage à haut débit de l’exome, de l’ARN et ciblé, 

ainsi qu’un séquençage des ctDNA afin d’identifier les mécanismes de 

résistance. Nous avons établi des lignées cellulaires dérivées de patients et 

caractérisé de nouveaux mécanismes de résistance et identifiés de nouvelles 

stratégies thérapeutiques in vitro et in vivo. 

Nous avons identifié trois mécanismes de résistance chez cinq patients avec des 

biopsies appariées. Nous avons étudié l'induction de la transition épithélio-

mésenchymateuse (EMT) par l'activation de SRC dans une lignée cellulaire, 

dérivée de deux patients, exposée au lorlatinib. Les cellules mésenchymateuses 

étaient sensibles à l’inhibition combinée de SRC et d'ALK, montrant que même 

en présence d'un phénotype agressif, des stratégies de combinaison peuvent 

surmonter la résistance aux ALK TKI. Nous avons identifié deux nouvelles 

mutations composées du domaine kinase d’ALK, F1174L/G1202R, 

C1156Y/G1269A et L1196M/D1203N survenues chez trois patients traités par le 

lorlatinib. Nous avons développé des modèles de cellules Ba / F3 exprimant les 

mutations simples et composées pour étudier leur effet sur la résistance au 

lorlatinib. Enfin, nous avons caractérisé un nouveau mécanisme de résistance 

provoqué par la perte de fonction de NF2 au moment de la progression du 

lorlatinib par l’utilisation de PDX et de lignées cellulaires dérivées de patients, et 

par CRISPR / CAS9 knock-out de NF2. Nous avons constaté que l'activation de 

mTOR par la perte de fonction de NF2 provoquait la résistance au lorlatinib et 

qu'elle pouvait être surmontée par le traitement avec des inhibiteurs de mTOR. 

Cette étude montre que les mécanismes de résistance au lorlatinib sont plus 

divers et complexes que prévu. Nos résultats démontrent également comment 

les études longitudinales de la dynamique tumorale permettent de déchiffrer la 

résistance aux TKI et d'identifier des stratégies thérapeutiques. 
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