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Introduction

– Si tu veux un ami, apprivoise-moi !
– Que faut-il faire ? dit le petit prince.

– Il faut être très patient, répondit le renard. Tu t’assoiras d’abord un peu loin de moi,
comme ça, dans l’herbe. Je te regarderai du coin de l’œil et tu ne diras rien. Le langage est

source de malentendus.
— Antoine de Saint-Exupéry, Le Petit Prince

Numerical analysis underlies a wide range of computational methods involving problems with
continuous data (time, space, etc.), with applications to, for instance, engineering simulations,
image processing or decision making procedures. A main achievement is the development of
highly optimized implementations for various numerical algorithms in linear algebra, functional
analysis or continuous optimization. These implementations greatly benefit from the increasing
efficiency of a standardized floating-point arithmetic (via the IEEE 754 standard) on modern
computing processors and architectures.

Nevertheless, numerical errors constitute an inherent and much studied problem which is
ubiquitous in scientific computing. Two classes of such errors are usually identified. First,
rounding errors are intrinsic to floating-point arithmetic, since the latter is only an approxi-
mation (more precisely, a discretization) of the real line. Second, the method errors arise when
infinite-dimensional problems are approximated by finite-dimensional ones, thanks to discretiza-
tion or projection methods. Typical examples include Runge-Kutta or spectral methods to solve
ordinary differential equations (ODEs). While usually small, these errors accumulate during
the program run and may lead to disastrous errors at the end. In most applications, this simply
leads the program to fail in providing an expected accurate answer. The main issue is that
often, one cannot directly estimate what is the returned accuracy, that is, how many (or if any)
digits of the returned result are correct. Thus, domains with stronger reliability requirements,
like safety-critical engineering or computer-assisted proofs in mathematics, cannot rely only on
traditional numerical analysis algorithms.

Main objectives. In regard of these shortcomings, this thesis addresses the following chal-
lenges. Not all of them will be equally treated in this manuscript – obviously, the first receives
the most attention – but each one brings its own light. We list them below and then provide
further details on how they are handled, insisting on several key concepts, relevant examples
and the outline of this document.
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A. Computing faster, more accurate, more reliable, safer. This is the primary goal of
this thesis. After a subjective survey of the existing techniques in numerical, symbolic and
rigorous computation (Chapters 1 and 2), we enhance rigorous polynomial approxima-
tions (RPAs) with new algorithms, where a posteriori fixed-point validation methods play
an important role (Chapter 3). This brings new efficient and accurate tools for function
space problems, notably linear differential equations (Chapters 4 and 5). Moreover, we
do not only target validated numerics, but also certified numerics with the use of formal
proof (Chapter 3).

B. Prove mathematical theorems in new computer-assisted ways. Drawing on an
ongoing work concerning limit cycles of a polynomial vector field (Chapter 6), we advo-
cate the use of RPAs, a posteriori validation and symbolic-numeric methods in the design
of efficient tools for computer-assisted proofs in mathematics. Taking advantage from our
a posteriori or certificate-based approach, formal proof methods are easier to introduce in
the computer-assisted proof process, thus offering the highest level of confidence.

C. Reliability, safety and efficiency for real-life applications. More reliable com-
putations are crucial in safety-critical engineering applications, yet efficiency cannot be
sacrificed (too much). By computing and using validated spacecraft trajectories in space
proximity operations (Chapter 7), we illustrate how our methods can be used in a
safety-critical context, like the rigorous space mission design.

D. Taking into account “lower-level” aspects is essential when designing efficient tools
and implementations for “real-life” applications. Although this is not the most widely
discussed point of this manuscript, this aspect was also investigated. A contribution in
that sense is a new exchange algorithm to design evaluation and approximation error
optimized polynomials (Chapter 8). This is crucial for the numerical implementation of
functions, since the underlying floating-point precision is finite.

E. New outlets for rigorous and symbolic-numeric methods. Exporting rigorous and
symbolic-numeric techniques to other fields of mathematics or engineering is an interesting
challenge, which also gives the opportunity to enhance our tools with new mathematical
concepts. For example, the support and density reconstruction for measures from mo-
ments presented in Chapter 9 makes use of Ore polynomials – a symbolic tool – in the
context of an inverse problem.

F. Designing open-source implementations. Last but not least, software implementa-
tions are an essential contribution to this thesis, since they concretely attest our claim to
design efficient algorithmic methods. Moreover, they were a valuable aid in the above-
mentioned applications.

A Computing faster, more accurate, more reliable, safer

The first five chapters of this manuscript are motivated by this goal. As a preliminary remark,
we identify the following three safety levels of computation:
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1. A first purely numerical level encompasses the traditional numerical algorithms, focus-
ing on efficiency and accuracy. Although usually provided with asymptotic convergence
estimates, these algorithms cannot rigorously guarantee the result’s accuracy in general.

2. A second level is dedicated to validated algorithms, in a broader sense, meaning that the
computed result comes with guarantees of some mathematical properties. This includes:

◦ symbolic computation (Goal A.1) for merely algebraic problems, with exact repre-
sentations of objects and sometimes also certificates making it possible to check the
result a posteriori;

◦ rigorous numerics (Goal A.2) based on numeric set-valued representations of ob-
jects, provide enclosures for the exact but maybe not machine-representable result.

Sometimes, both may even be combined into so-called symbolic-numeric methods.

3. A third certified level offers the highest safety, namely at implementation level. Formal
proof (Goal A.3) allows us to design certified implementations, whose correctness is
guaranteed by highly trusted interactive theorem provers.

Determining the adequate safety level is really an application-dependent choice: are we ready
to spend more time on a specific computation for a higher confidence in the result? However,
it is also limited to existing tools and software. In particular, certified implementations of
numerical methods are still rare and less efficient than their nonrigorous analogs.

Before addressing the contributions of this thesis, an overview of the necessary computa-
tional tools is given by the first two chapters. Chapter 1 discusses computer representations
of numbers: exact representations for symbolic computation; floating-point numbers, highly ef-
ficient but subject to rounding errors; and intervals to rigorously enclose a real number. Then,
Chapter 2 tackles representations of functions, focusing on two particular topics: the sym-
bolic framework of D-finite functions, that is, solutions of linear ordinary differential equations
(LODEs) with polynomial coefficients, and a condensed summary of polynomial approximation
theory, which is useful for the following chapters.

Rigorous polynomial approximations (RPAs), widely investigated throughout this thesis, are
presented in Chapter 3, together with a posteriori fixed-point validation methods, which we
use to define fixed-point based division and square root of RPAs. The resulting arithmetic
on RPAs is the foundation of more elaborate rigorous methods for function space problems.
A central contribution of this thesis is algorithms to compute RPAs in Chebyshev basis for
LODEs solutions, conceived with Nicolas Brisebarre and Mioara Joldes. They are presented in
Chapters 4 (for scalar LODEs) and 5 (for coupled systems of LODEs).

The following example, based on the Airy function Ai, will illustrate how the subgoals detailed
below also provide complementary viewpoints.

Example 1 : Airy function Ai

The Airy function Ai (see Figure I.4a) is a well-known special function in mathematics [2],
which can be defined by the following improper Riemann integral:

Ai(x) =
1

π

∫ +∞

0
cos

(
t3

3
+ xt

)
dt, (Ai-i)
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or by the following second order differential equation with initial conditions at 0, where Γ
denotes the Gamma function:

Ai′′(x)− xAi(x) = 0, Ai(0) =
1

3
2
3Γ
(
2
3

) , Ai′(0) = − 1

3
1
3Γ
(
1
3

) . (Ai-ii)

This function does not admit any simpler closed-form formula involving elementary functions,
such as exp, sin, cos or their reciprocals. One of the objectives of numerical analysis, computer
algebra and rigorous numerics is to develop methods to manipulate such a function: evaluation,
verification of identities, validated approximations, etc.

A.1 Symbolic tools

A straightforward solution to avoid numerical errors is using symbolic methods [257], which
reflect pen-and-paper mathematics, that is, computing with exact representations of numbers,
functions, etc. Decades of research in that area gave rise to efficient algorithms with thorough
complexity studies, implemented inside user-friendly computer algebra systems (CAS) such as
Maple or Mathematica. D-finite functions are a striking example of such exactly repre-
sentable objects. They are presented below since they will occur on many occasions in this
thesis.

D-finite functions are the solutions of linear ODEs with polynomial coefficients [234]. They
are ubiquitous in mathematics – they represent about 60% of the functions listed in [2], e.g.,
the Airy function Ai of Example 1. Thanks to the efforts of an active community in symbolic
computation, computer algebra systems like Maple or Mathematica make it possible to rep-
resent such functions as a data structure (a differential operator annihilating the function plus
sufficiently many initial conditions), and to operate on them with arithmetic and differential
operations.

Example 1 : Airy function Ai – Symbolic manipulation

We illustrate how the algorithmic treatment of D-finite functions can prove nontrivial state-
ments.

1 (a) Prove the following identity [2, Eq. (10.4.15)]:

Ai(−x) =
√
x

9

(
J 1

3

(
2

3
x

3
2

)
+ J− 1

3

(
2

3
x

3
2

))
, x > 0, (Ai-iii)

where the Bessel functions J± 1
3

form a basis of the solutions of:

9z2f ′′(z) + 9zf ′(z) + (9z2 − 1)f(z) = 0. (J 1
3
)

Using closures operations, implemented as algorithms, the Gfun1 package for Maple auto-
matically computes that the right-hand side of (Ai-iii) satisfies g′′(x)+xg(x) = 0. Indeed, this
expression is obtained from J± 1

3
by an algebraic substitution z 7→ 2

3x
3
2 , followed by a sum, and

1http://perso.ens-lyon.fr/bruno.salvy/software/the-gfun-package/
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finally multiplied by x 7→
√

x
9 . Now, from (Ai-ii), x 7→ Ai(−x) also satisfies the same LODE,

so that checking equality for initial conditions at 0 is sufficient to establish the identity (Ai-iii),
by the Picard-Lindelöf theorem.

Creative Telescoping refers to techniques [269, 59, 141] that were developed to automat-
ically compute differential equations or recurrence relations for integrals or sums of D-finite
quantities, thus allowing sometimes for non trivial closed forms. Moreover, these somehow
complex techniques also provide a certificate that allows for an a posteriori verification of the
result. More details will be provided in Chapter 2.

Example 2 : Exponential generating function of Chebyshev polynomials

2 (a) Prove the following identity:

+∞∑

n=0

Tn(x)
tn

n!
= etx cosh(t

√
x2 − 1), |x| < 1,

where the Tn are the Chebyshev polynomials defined in Chapter 2.

The integrand f(t, n) := Tn(x)
tn

n! satisfies the differential-difference equations:

t∂t · f − nf = 0,

(2 + 3n+ n2)S2
n · f + (−2tx− 2ntx)Sn · f + t2f = 0.

where ∂t · f(t, n) := ∂f
∂t (t, n) and Sn · f(t, n) := f(t, n+ 1).

Using, e.g., the CreativeTelescoping function from the Mathematica package Holonomic-

Functions2, one obtains the following differential equation for g(t) :=
+∞∑
n=0

f(t, n):

∂2t · g − 2x∂t · g + g = 0.

Finally, standard differential equation solving procedures of Maple or Mathematica recover
the closed-form expression etx cosh(t

√
x2 − 1) from this differential equation.

Shortcomings of symbolic methods. However, some problems are by essence intractable
with such tools, due to the following limitations:

◦ Computable exact representations are available only for restricted classes of numbers or
functions, like rational or algebraic numbers/functions. But consider for example the

Euler constant γ := lim
n→∞

(
n∑

k=1

1
k − log n

)
: how are algorithms supposed to compute with

it or decide properties on it? – it is not even known whether γ is rational or not.

◦ Some objects are carried out via exact but implicit representations. Hence, when concrete
properties have to be checked, a rigorous numerics step may be necessary to convert the
implicit representation into actual numerical values. This is for example the case for
D-finite functions, for which concrete rigorous approximations are given in Chapters 4
and 5 (see below).

2https://www3.risc.jku.at/research/combinat/software/ergosum/RISC/HolonomicFunctions.html
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◦ Even when exact representations are available, their intrinsic size may be a major obsta-
cle to the practical implementation on a computer. This is often the case for algorithms
iterating algebraic operations on exactly represented objects. We will illustrate this phe-
nomenon in Chapter 1, Example 1.3 with the inversion of matrices with rational coef-
ficients.

A.2 Rigorous numerics and validated methods

In this regard, rigorous numerics [247] overcome the limitations of symbolic computation by
replacing exact representations with validated ones, for solutions of various problems, notably
in functional analysis, e.g., differential equations or optimal control. The key idea is to design
computable set-valued representations, such as real intervals or balls in function spaces, with
the guarantee that the exact solution of the problem under consideration is contained in it.
This relaxation allows one to use floating-point arithmetic and numerical algorithms, and yet
to remain correct thanks to a careful use of, e.g., directed roundings or a posteriori bounds.

Interval arithmetic is an essential building block of rigorous numerics (cf. [173, 247,
221]), and will be presented in Chapter 1. The key idea consists in using real intervals with
representable endpoints (e.g., floating-point numbers) as rigorous enclosures of real numbers,
and providing operations preserving correctness. For example, from π ∈ [3.1415, 3.1416] and
e ∈ [2.7182, 2.7183], one obtains:

π + e ∈ [3.1415, 3.1416] � [2.7182, 2.7183] = [5.8597, 5.8599].

Therefore, in principle replacing all floating-point operations by interval ones resolves the issue
of rounding errors. However, as detailed in Chapter 1, several limitations should prevent us
from seeing interval arithmetic as the silver bullet of rigorous numerics:

◦ Overestimations are a well-known shortcoming of interval arithmetics [221], due to several
phenomena such as the dependency phenomenon or the wrapping effect : the resulting
interval is correct, but too large to provide relevant information.

◦ Although the resulting interval is correct with respect to rounding errors, method errors
are not taken into account, since they result from the discretization of the problem itself,
not from the approximation of real numbers by floating-point ones.

Rigorous polynomial approximations (RPAs) were conceived as a higher order counter-
part to interval arithmetic to tackle the dependency phenomenon. They consist in a polynomial
together with a bound for the total error between the polynomial and the function it represents,
with respect to a given norm (see Figure I.1). One of the first conceptualizations of these ideas
dates back from the 80s with ultra-arithmetic [79, 80]. Somehow later, the implementation of
Taylor models [164, 165] (which can be seen as rigorous truncated Taylor series expansions)
in the COSY Infinity software revived the interest for RPAs.

However, Chapter 2 highlights the limits of Taylor expansions in approximation theory,
while generalized Fourier series expansions – in particular Chebyshev expansions – are often
far more efficient. In view of this observation, the Chebyshev models, introduced in [44, 129],
were rapidly adopted by some computer-assisted proofs in dynamical systems (see, e.g., [153]).
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Moreover, the fully algorithmic approach proposed for Chebyshev models (e.g., [19] for D-finite
functions) is an important source of inspiration for this thesis.

Chapter 3 provides an arithmetic for Chebyshev models, with some differences with [129],
notably for division and square root that are now treated using an “interpolation – a posteri-
ori validation” approach. A C library ChebValid3 for Chebyshev models as well as a Coq
formalization4 of RPAs are also presented in this chapter (see Goal F below). Chapter 4
also relies on a posteriori fixed-point validation (see below) to automatically compute RPAs for
solutions of LODEs with coefficients represented by RPAs. Contrary to [19], which is limited
to D-finite functions, the proposed approach is closer in spirit to the Newton-like validation
methods, presented below.

Figure I.1: An RPA for the spacecraft rendezvous problem: polynomial approximation
+ rigorous error bound (in blue) form a tube containing the exact trajectory
(dashed magenta).

A posteriori fixed-point validation methods are a very powerful tool for rigorous numer-
ics when direct (or self-validating) techniques are not available or sufficiently accurate. The
problem is solved in two independent steps:

1. The approximation step computes an approximation x◦ of the exact solution x∗ of the
problem under consideration. Any numerical algorithm can be used – no hypothesis is
needed.

2. The validation step rephrases the initial problem to make x∗ the unique fixed point of a
well-chosen contracting operator, and a rigorous upper bound on the error of x◦ to x∗ is
afterwards reconstructed using the Banach fixed-point theorem.

This two-step approach, presented in more details in Chapter 3, is widely used in computer-
assisted proofs for function space problems and dynamical systems, notably via a posteriori
Newton-like validation methods (see, e.g., [137, 136, 178, 199, 189, 265, 9, 250, 153, 111],
or the survey [179] and references therein). Contrary to the mainstream case by case strategy

3available at https://gforge.inria.fr/projects/tchebyapprox/
4available at http://perso.ens-lyon.fr/florent.brehard/chebapprox/
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of these works, the validation procedure for LODE solutions presented in Chapter 4 provides a
fully algorithmic approach with detailed complexity estimates, that was moreover implemented
in the above-mentioned ChebValid C library.

Still on the topic of a posteriori validation, Chapter 5 gives a new generalization of the Ba-
nach fixed-point theorem, allowing us to provide a general framework for tight componentwise
validation of vector-valued problems. This is then applied to the validation of coupled systems
of LODEs, using the techniques of Chapter 4.

Example 1 : Airy function Ai – Rigorous approximation

1 (b) How to design efficient RPAs for Ai?

The Airy function Ai discussed above in the context of symbolic manipulation, can now
be rigorously approximated and evaluated using Chebyshev models. Section 4.5.1 gives a
detailed account of how the validation method for LODEs presented above computes and
validates approximations of Ai. Note that, instead of the Chebyshev approximations provided
by Chapter 4, one can also apply this validation method to any polynomial, in particular the
evaluation error optimized polynomials computed in Chapter 8 (see Goal D).

A.3 Formal proof and certified implementations

Formal proof may be used to offer the highest level of confidence for rigorous numerics,
that is, certified implementations. Proof assistants (also named interactive theorem provers)
are software in which the programmer edits proofs for algorithms or mathematical statements.
These proof scripts are then checked line by line by the kernel, i.e. a usually rather small
and highly trusted codebase on which all the correctness of this verification step relies. Ex-
amples of famous proof assistants are: Mizar, ACL2, HOL4, HOL-Light, Isabelle, Coq,
PVS, Lean, etc. Although many of them provide some automation tools (e.g., tactics in Coq
or the Sledgehammer toolbox for Isabelle), formal proof tends to be a time-consuming
task requiring a large workforce. In return, some formalizations of important theorems/conjec-
tures received a wide recognition and reinforced the place of computer-assisted proofs among
mathematicians (see Goal B below).

In the following, I will focus on the Coq proof assistant5 [22] developed at INRIA, which is
the one that we used for our formalization of RPAs (see Goal F). The type theory underlying
Coq’s logic is briefly presented below.

Type theory and proofs. Typed programming languages classify data into different pre-
defined or user-defined categories, called types; the notation a : A stands for “the term a has
type A”. For example, in Coq, nat stands for the nonnegative integers, bool for the Booleans,
A → B for the functions taking an argument of type A and returning a value of type B, etc. The
Curry-Howard correspondence [92, Chap. 3] makes it possible to see types as mathematical
propositions, and terms of that type as proofs of the corresponding proposition. For instance,
a proof of the mathematical implication A⇒ B is nothing more than a function of type A → B,
constructing a proof of B out of a proof of A.

5https://coq.inria.fr/

24



The Coq proof language enhances this correspondence using dependent types [169][22,
Chap. 4]. A dependent type is simply a type B(a) parametrized by inhabitants a of the type A,
that is a term B : A → Type. The dependent product ∀ (a : A), B a generalizes the usual arrow
type; it contains functions f that associate, to any argument a : A, a return value f a : B a.
Clearly, dependent products are the analog of the universal quantifier in mathematical logics
(and similarly, there are dependent sums for the existential quantifier). Finally, Coq also allows
the user to define inductive types [22, Chap. 6], whose elements are constructed out of a finite
set of constructors declared by the user. For instance, the standard definition of nonnegative
integers in Coq is the following inductive type, corresponding to a unary representation of
numbers (see Chapter 1):

Inductive nat : Set :=

| O : nat

| S : nat → nat.

Then Coq automatically associates an induction principle to it that roughly says: “All the
possible patterns with O and S, that is S (S (... (S O))), are distinct terms of nat, and all the
terms of nat have this shape”.

nat_rect : ∀ P : nat → Type, P 0 → (∀ n : nat, P n → P (S n)) → ∀ n : nat, P n.

We shall stop here this short introduction to type theory ad refer to [92, 22] for more
details. In fact, type theory can be used as logical foundations of mathematics, in replacement
of usual set theory. For example, the Univalent Foundations Program6 aims at redefining all
the mathematics using an extension called Homotopy Type Theory (HoTT) [204]. In the
following, we focus more specifically on formalization of mathematical analysis in the Coq
proof assistant.

Analysis in Coq is a widely debated topic in the formal proof community. A major rea-
son is that in Coq’s purely constructive logic, the different usual constructions of the field
of real numbers (e.g., Dedekind cuts or Cauchy sequences) are not equivalent. Moreover, a
purely constructive definition of real numbers necessarily lacks important properties, such as
the zero test ∀ (x : R), x = 0 \/ x <> 0. Therefore, the Coq standard library opted for an ax-
iomatized type R for real numbers, but constructive alternatives can still be used, such as the
C-CoRN/MathClasses library [63].

Based on the above-mentioned axiomatization of real numbers, the Coquelicot library [29]
provides a user-friendly framework for real and functional analysis. Our formalization of the
Banach fixed-point theorem, that we use for the fixed-point based operations on RPAs, strongly
relies on Coquelicot’s topological foundations via filters, as detailed in Chapter 3.

On the numerical analysis side, the Flocq library [30] formalizes floating-point arithmetic,
which in turn is used by interval arithmetic, formalized in the CoqInterval library [171]. This
allows for the automated solving of real inequalities using interval analysis. Closer to our work,
CoqApprox [168] formalizes Taylor models, thus enhancing the features of CoqInterval.

B Prove mathematical theorems in new computer-assisted ways

6https://homotopytypetheory.org/
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Computer-assisted proofs consist in delegating part of the proof of a mathematical theorem
to the computer. Several reasons may advocate this somewhat daring choice: too intricate
computations for pen-and-paper work, combinatorial explosion of cases to be analyzed, very
high level of abstraction making proofs doubtful, etc. The personal experience of V. Voevodsky,
extracted from his note “The Origins and Motivations of Univalent Foundations”7, particularly
highlights the limits of classical pen-and-paper mathematics:

“ I can see two factors that contributed to this outrageous situation: Simpson claimed to have con-
structed a counterexample, but he was not able to show where the mistake was in our paper. Because of
this, it was not clear whether we made a mistake somewhere in our paper or he made a mistake some-
where in his counterexample. Mathematical research currently relies on a complex system of mutual
trust based on reputations. By the time Simpson’s paper appeared, both Kapranov and I had strong rep-
utations. Simpson’s paper created doubts in our result, which led to it being unused by other researchers,

but no one came forward and challenged us on it. ”

Computer-assisted proofs in analysis make use of floating-point arithmetic and numerical
algorithms, yet they have to guarantee mathematical properties about the computed results –
a theorem cannot be true up to numerical errors! To this aim, an essential ingredient is the
rigorous, or set-valued numerics introduced in Goal A.2. They played a major role in several
iconic computer-assisted proofs, such as Landford’s proof of the Feigenbaum conjecture [147],
Tucker’s proof about the existence of the Lorenz attractor [246], or Hales’ proof of the Ke-
pler conjecture [102]. Dedicated libraries for rigorous numerics were also developed toward
computer-assisted proofs, such as the CAPD library8 for dynamical systems theory.

Of course, delegating some parts of the proof to a computer is absolutely not a minor decision,
and computer-assisted proofs are sometimes called into question by some mathematicians, who
may doubt the rigor of such approaches, or refuse to believe in a result they cannot check by
hand line by line. For the former point 9, the use of formal proof assistants should definitely
close down the debate, like the four color theorem [95] by Gonthier and colleagues in Coq,
the Flyspeck project [101] by Hales and colleagues in HOL-Light for the Kepler conjecture,
or the formalization by Immler [119] in Isabelle of Tucker’s computer-assisted proof for the
existence of the Lorenz attractor.

The joint work with Nicolas Brisebarre, Mioara Joldes and Warwick Tucker, described in
Chapter 6, is an example of computer-assisted proof in analysis, using first rigorous, and then
formally certified computations. Hence, we used both the ChebValid C library and Coq
development (detailed in Goal F) toward the objective summarized in the following example.

Example 3 : Computing limit cycles in Hilbert’s 16th problem

Chapter 6 of this manuscript consists in computing limit cycles in the framework of Hilbert’s
16th problem:

“ What is the maximum number H(n) of limit cycles a polynomial vector field of degree n

7https://www.ias.edu/ideas/2014/voevodsky-origins
8http://capd.ii.uj.edu.pl/
9For the latter, however, it is merely a question of personal preference – and, after all, you are not obliged to

like a proof to admit it.
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in the plane can have, that is:
{
ẋ = P (x, y)

ẏ = Q(x, y)

with P,Q ∈ ❘[x, y] of degree at most n? ”

More detailed definitions are provided in the dedicated chapter. Roughly speaking, a limit
cycle is an isolated periodic orbit, attracting sufficiently close trajectories (in positive or negative
time). A well-known example is given by the Van der Pol oscillator depicted in Figure I.2a.

We do not address Hilbert’s 16th problem itself, but instead constructs an example to com-
pute a new lower bound for H(4). In fact, our starting point was the article [126], in which T.
Johnson claims to rigorously isolate 26 limit cycles for a quartic system he built on purpose.
Based on the Poincaré-Pontryagin theorem, which relates the limit cycles to the zeros of so-
called Abelian integrals, the proof consists in rigorously evaluating these integrals to observe
sign alternations. Unfortunately, the rigorous software designed toward this goal was erroneous,
and the correct number of limit cycles was 18, instead of 26 (which is less than the previous
lower bound H(4) > 22 [56]).

Our motivation was to apply the rigorous techniques developed in this thesis to fix T. John-
son’s example and obtain as much zeros as possible – rigorously, of course!

3 (a) Find a concrete example of a quartic vector field and isolate limit cycles to obtain a new
and rigorous lower bound for H(4).

To do this, we reused the example of T. Johnson, depicted in Figure I.2b:

{
ẋ = −4y2(y2 − Y0) + εg1(x, y),

ẏ = 4xy(x2 −X0) + εg2(x, y),

with ε > 0 and tuned the coefficients of the polynomial perturbation (f, g) ∈ ❘4[x, y]
2 to

obtain 24 zeros, which therefore improves the previous record H(4) > 22. Evaluating the
Abelian integrals amounts to integrating algebraic functions over a compact segment, which
is possible thanks to RPAs, implemented in ChebValid. Figure I.2c depicts the rigorous
evaluation of the Abelian integral, whose sign alternations rigorously prove the existence of the
desired limit cycles.

3 (b) Can this approach be considered as a valid proof of H(4) > 24, in the mathematical sense?

As mentioned above, some mathematicians are certainly reluctant to computer-assisted
proofs, and the misadventure related to [126] partially justifies this disinclination. Fortu-
nately, we are pleased to announce that we are currently completing the certified computations
of Abelian integrals using our Coq library, which will give a definitive proof of H(4) > 24.
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(c) Rigorous computation of Abelian integrals shows the expected sign alternations
(in magenta: degree for the rigorous polynomial approximations and resulting
enclosure of the integral).

Figure I.2: A computer-assisted proof for H(4) > 24 in Hilbert’s 16th problem.
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C Reliability, safety and efficiency for real-life applications

Safety-critical engineering refers to industrial applications with potentially human lives at
stake or, at least, large amounts of money or serious environmental damages. Typical exam-
ples include aeronautics and aerospace industry, computer-aided medical procedures or nuclear
technologies. In such situations, intensive testing phases are usually necessary to increase and
validate the reliability of new software. Nevertheless, in addition to their far from negligible
cost and time, tests do not guarantee the absence of bugs – they may just detect their presence.
Therefore, the need for rigorous and formal tools rapidly emerged around those topics – as
evidenced by several collaborations between industrial and academic actors, such as the NASA
Langley Formal Methods Research Program10.

The methods developed in this thesis pave the way towards the systematic application of
rigorous, symbolic or formal tools to such “real-life” problems. In particular, I focused on
aerospace applications. This domain – maybe due to the important amount of funding and
public interest it receives, or to a somewhat less rigid legislation than for aeronautics – has been
subject to various interesting rigorous and/or symbolic-numeric experiments: Taylor models
for rigorous guidance in [158]; D-finite recurrences for rigorous evaluation of Taylor series
expansion of space debris collision probability in [227]; nonrigorous multivariate Chebyshev
approximations for the propagation of set of debris in [255].

Chapter 7, in collaboration with Paulo Ricardo Arantes Gilz and Clément Gazzino, makes
a contribution to this rigorous space mission design, by validating and using spacecraft tra-
jectories for proximity operations, that is, when relative distances are small compared to the
Earth’s radius. Example 4 below presents an application: the spacecraft rendezvous problem.

Example 4 : The spacecraft rendezvous problem

The spacecraft rendezvous problem consists, for an active spacecraft (e.g., a shuttle), called
the chaser, to reach a passive target (e.g., a satellite or the ISS11), within a given time interval.
To do so, the chaser is equipped with thrusters which can be fired to modify its current orbital
trajectory. However, the fuel (more precisely: hypergolic propellant) needed by these thrusts is
only available in limited quantity. When the tank is empty, the spacecraft cannot be controlled
anymore (it is “dead ”), whence the necessity to minimize the fuel consumption during orbital
maneuvers.

We consider a linearized model12 for the dynamics of the relative motion X = [x, y, z,
ẋ, ẏ, ż]T ∈ ❘6 of a chaser spacecraft to the passive target:

Ẋ(t) = A(t)X(t) +B(t)u(t), (RDV-i)

where A(t) ∈ ❘6×6, B(t) ∈ ❘p×6, and u(t) ∈ ❘p, which represents the control term for the
thrusts, lies in a suitable function space. The thrusts are usually modeled as impulsions, that
is an instantaneous velocity increment rather than an acceleration term. This leads to the
so-called linearized impulsive spacecraft rendezvous problem (see Figure I.3a).

10https://shemesh.larc.nasa.gov/fm/
11International Space Station
12This is a usual assumption for the final phase of a rendezvous.
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4 (a) Find the dates ti and velocity increments ∆Vi, defining the control law u(t), to bring
the chaser from its given initial state X(t0) = X0 ∈ ❘6 to the prescribed final state
X(tf ) = Xf ∈ ❘6 (for fixed t0 < tf ), while minimizing the total fuel consumption:

inf
u
‖u‖1 = inf

u

∫ tf

t0

‖u(t)‖dt,

s.t. Ẋ(t) = A(t)X(t) +B(t)u(t), t ∈ [t0, tf ],

X(t0) = X0, X(tf ) = Xf , t0, tf fixed.

(RDV-ii)

In the works [12, 226], which I contributed to, an exchange algorithm is proposed to nu-
merically compute the optimal impulsion dates and values. Roughly speaking, (RDV-ii) is
restated as a semi-infinite programming problem, that is, involving a finite number of variables
but an infinite number (i.e., a continuum) of constraints. Starting from an infeasible point, the
algorithm selects at each iteration the most violated constraint to reduce the infeasibility (see
Figure I.3b).

Once the control law has been numerically computed, the rigorous space mission design also
requires validated spacecraft trajectories, and in particular a validated final state.

4 (b) Given the initial state X0, the impulsion dates ti and the corresponding velocity incre-
ments ∆Vi, compute rigorous enclosures for the actual final state X̃f , and check that it
is reasonably close to the prescribed Xf .

Making use of the validation method of Chapter 5 for coupled systems of LODEs, validated
transition matrices using Chebyshev models can be computed for the dynamics (RDV-i), thus
allowing for the rigorous propagation of the state X(t) between two consecutive thrusts. In
particular, we get the desired enclosure of the final state. Table I.1 gives the parameters of
a concrete ATV mission13 and the obtained enclosures for the final state in the orbital plane.
Obviously, this does not take into account the nonlinearity of the Keplerian dynamics nor
the non Keplerian perturbations. However, most control applications related to the spacecraft
rendezvous problem consider the linearized dynamics, and being able to certify the numerically
computed result in that model is a key feature.

4 (c) Do I also need to validate the optimality of the control law found in Question 4 (a)?

Well, this particular point is probably not as critical as the final state – one easily imagines
the consequences of the ATV supply shuttle entering in collision with the ISS. However, just
for the point of being rigorous, one can mention that the algorithm presented in [12] provides
enclosures for the optimal fuel consumption at each iteration.

13Automated Transfer Vehicle is the European cargo spacecraft for the supply of the ISS.
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Semi-major axis: 6763 km
Eccentricity: 0.0052
Initial time: ν0 = 0 rad
Final time: νf = 8.1832 rad
Initial state: (x, z, ẋ, ż) =

(−30, 0.5, 8.514, 0) [km – m/s]
Final state: (x, z, ẋ, ż) =

(−100, 0, 0, 0) [m – m/s]

(a) Given parameters.

ν ∆ẋ [m/s] ∆ż [m/s]

0.0 -7.50230589 0.742372034
1.388128 -1.55579123 0.08834686
6.666595 0.62565013 0.03325936
8.183058 1.06509710 0.11440204

(b) Computed impulsion dates and velocity incre-
ments.

degree x(νf ) z(νf ) ẋ(νf ) ż(νf )

25 -100 + [-2.6861e1, 2.6861e1] [-7.4084e0, 7.4084e0] [-1.8133e-2, 1.8133e-2] [-5.3675e-3, 5.3675e-3]
30 -100 + [-1.0035e-1, 1.0035e-1] [-2.7676e-2, 2.7676e-2] [-6.7741e-5, 6.7741e-5] [-2.0051e-5, 2.0051e-5]
40 -100 + [-2.3194e-5, 2.3190e-5] [-6.3956e-6, 6.3956e-6] [-1.5655e-8, 1.5655e-8] [-4.6336e-9, 4.6336e-9]
50 -100 + [-2.0321e-8, 1.6320e-8] [-5.0437e-9, 5.0607e-9] [-1.2358e-11, 1.2376e-11] [-3.6651e-12, 3.6555e-12]

(c) Validated final state, in function of polynomial approximation degree.

Table I.1: A posteriori validation for an Automated Transfer Vehicle (ATV) mission in the
orbital plane (x, z).

D Taking into account “lower-level” aspects

The reminder of approximation theory in Chapter 2 mostly follows a purely mathematical
point of view: polynomials are supposed to be given with real coefficients, that is, with infinite
precision, and the evaluation x 7→ p(x) is considered exact. Certainly, Chapters 3, 4 and 5
rigorously bound floating-point errors using interval arithmetic, and they give some insight into
how to avoid related overapproximation effects. Nevertheless, no quantified analysis of rounding
errors is provided.

However, some specific topics require a precise analysis of rounding errors, such as floating-
point implementation of functions, where the result’s accuracy must be ensured to a given
precision (e.g., for correctly rounded functions [177], see Section 1.2). In this regard, Chap-
ter 8 presents a collaboration with Mioara Joldes and Denis Arzelier, in which we propose
an exchange algorithm for evaluation and approximation error optimized polynomials. As the
name suggests, this algorithm has strong connections with the Remez exchange algorithm for
best uniform polynomial approximations (see Section 2.2.2), and the above-mentioned ex-
change algorithm for the spacecraft rendezvous [12]. Let us take over the example of the Airy
function to illustrate our approach.

Example 1 : Airy function Ai – Floating-point implementation

Since Ai cannot be expressed using elementary functions, polynomial approximation is one
of the most natural tool to design floating-point implementations of it. It consists, for fixed
interval I = [a, b] and degree n, to find the coefficients of a polynomial p in a given basis, so
that Ai(x) will be approximately computed as p(x), for x ∈ I. In an idealistic world without
rounding errors, this is the minimax problem detailed in Section 2.2.2
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1 (c) Given a compact interval I = [a, b] and a degree n, find the best polynomial approximation
p ∈ ❘n[x] for Ai, that is the polynomial p minimizing the uniform approximation error:

argmin
p∈❘n[x]

‖Ai−p‖∞,I := argmin
p∈❘n[x]

max
x∈I

|Ai(x)− p(x)|.

This problem may be solved by the Remez algorithm [209, 208, 202]. In particular, the
equioscillating behavior of the resulting approximation error, depicted in Figure I.4b, charac-
terizes the optimality.

However, in floating-point (FP) arithmetic, the polynomial p, as a mathematical function
x 7→ p(x), is implemented by a sequence of FP operations, that is a program p̃, called evaluation
scheme, that computes a FP result p̃(x) on any FP input x ∈ I. In this setting, the coefficients
of p are FP numbers, and the result p̃(x) is affected by rounding errors. If p∗ denotes the
optimal polynomial of Question 1 (c), and p̃∗ an evaluation scheme where the coefficients of
p were rounded to FP numbers, then there is no reason for which p̃∗ would be the optimal
solution of the following question (cf. Figure I.4c).

1 (d) Given a compact interval I = [a, b], a degree n, a floating-point precision u and a fixed
evaluation scheme p 7→ p̃ for degree n polynomials, find a polynomial p ∈ ❘n[x] with
floating-point coefficients that minimizes the total error:

argmin
p∈❘n[x]

max
x FP in I

|Ai(x)− p̃(x)|.

This is an important issue in the domain of computer arithmetic [42, 43]. Our algorithm
makes progress on it by optimizing simultaneously the approximation and evaluation errors. It
consists in a generalization of the Remez algorithm in the framework of semi-infinite program-
ming. The total error of the optimal solution for this Airy example is depicted in Figure I.4d,
where we can see that the approximation error is “spread” over I, in such a way that the highest
peaks are located where the evaluation error is small.

On a final note, this “lower-level” setting is absolutely not incompatible with the rigorous
numerics framework discussed in this thesis:

1 (e) Given a polynomial approximation p ∈ ❘[x] for Ai, compute an upper bound over I = [a, b]
for the approximation error or the total error.

For the approximation error, this simply means rigorously bounding ‖Ai−p‖∞,I . Since Ai
satisfies a LODE (Ai-ii), a rigorous error bound can be computed using the validation method
of Chapter 4.

When considering the total error, one moreover needs to bound the evaluation error. This
can be done using already existing certified software, e.g. Gappa [67] which relies on the
previously mentioned Flocq library for Coq.
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E New outlets for rigorous and symbolic-numeric methods

Some domains of mathematics benefited early from the advantages of rigorous numerics,
e.g., validated solutions of differential equations, or rigorous/certified optimizers. In contrast,
some applications of validated and/or symbolic-numeric methods proposed in this manuscript
illustrate new interactions between traditional mathematics and rigorous numerics.

◦ In Chapter 9, we (Mioara Joldes, Jean-Bernard Lasserre and I) propose new algorithms
to solve inverse problems on measures, that is, reconstructing the support and the density of
a measure from its moments. To do so, we make use of the D-finite (and closely related holo-
nomic) setting mentioned above. Although not rigorous, these methods are symbolic-numeric:
the algebraic machinery of D-finite equations leads to linear systems that are finally solved
numerically, since the given moments are usually known to a finite accuracy. Let us exemplify
the method with the example below.

Example 5 : Moments of a Gaussian density over a semi-algebraic set

Let f(x, y) := exp(axxx
2 + ayyy

2 + axyxy + axx+ ayy + a1) be an (unnormalized) Gaussian
density in the plane, and G the full-dimensional semi-algebraic set of ❘2 depicted in Figure I.5
as the checkered region, whose boundary is given by the zero set of the polynomial:

g(x, y) := (x2 + y2 − 9)(x2 + y2 − 1)((x− 2)2 + y2 − 1)(x2 + (y − 2)2 − 1).

The moments mα,β of the measure µ := f✶G (Gaussian measure restricted to G) are defined
as:

mα,β :=

∫

G
xαyβf(x, y)dxdy.

Chapter 9 answers the following two questions. First, consider the direct problem.

5 (a) Given the density f and the polynomial boundary g, recover a “complete”14 set of re-
currences for the moments mα,β, allowing for computing all the moments from a finite
number of initial ones.

This question is partially answered in Section 9.3 using a heuristic, with more precise
statements in the case of exponential-of-polynomial density, in particular Gaussian density. It
can be seen as an alternative to usual Creative Telescoping techniques, e.g., [188] in the case
of semi-algebraic support.

Conversely, here is the inverse problem.

5 (b) Given a finite number of moments mα,β, try to recover the polynomial in the exponential
defining f , and a nontrivial polynomial whose zero set contains the boundary of G.

Algorithms to solve this problem are given in Section 9.4. They consist in “guessing” recur-
rences for the moments by solving linear systems involving sufficiently many known moments,
thus allowing for reconstructing the polynomial boundary and differential equations satisfied

14The technical word would be holonomic (see Section 2.1.2).
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F Designing open-source implementations

Besides the theoretical contributions mentioned all along this introduction, I also worked
on several implementations. Although not completely mature, they play an important role
as a proof of concept for the rigorous and algorithmic approach for function space problems
advocated in this thesis, using RPAs and symbolic-numeric tools.

◦ I developed an open-source C library, named ChebValid15, that implements the arith-
metic on Chebyshev models given in Chapter 3, and the validation algorithms for LODEs
solutions of Chapters 4 and 5. Besides illustrative examples given in these chapters,
this library was successfully used in Chapters 6 and 7 for the rigorous counting of limit
cycles (Example 3) and the validation of spacecraft trajectories (Example 4).

◦ Assia Mahboubi, Damien Pous and I developed a Coq formalization16 [40] of RPAs
with arithmetic operations, with a full implementation on Chebyshev models. More
details about it may be found in Chapter 3. The Abelian integrals of Example 3 (cf.
Chapter 6), that we first computed using ChebValid, have been recomputed with the
Chebyshev models of this Coq framework, thus offering the highest confidence level for
a computer-assisted proof.

◦ Mioara Joldes and I also prototyped several scripts in Maple and Mathematica for
the problems addressed in Chapters 8 and 9. For the former (design of evaluation-
error optimized polynomial approximations, see Example 1), a complete Mathematica
script is available here17. For the latter (see Example 5), Maple scripts for the different
examples in Chapter 9 may be found here18.

15available at https://gforge.inria.fr/projects/tchebyapprox/
16available at http://perso.ens-lyon.fr/florent.brehard/chebapprox/
17available at http://perso.ens-lyon.fr/fbrehard/EvalMinimax
18available at http://homepages.laas.fr/fbrehard/HolonomicMomentProblem
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Introduction (en français)

L’anglais, ce n’est jamais que du français mal prononcé.

— Georges Clemenceau

L’analyse numérique est à la base d’un large éventail d’algorithmes traitant des données conti-
nues (temps, espace, etc.), largement utilisés, par exemple, dans les simulations en ingénierie,
le traitement d’images or la prise de décision automatisée. Le développement d’implémenta-
tions extrêmement optimisées et performantes pour de nombreuses routines d’algèbre linéaire,
d’analyse fonctionnelle ou d’optimisation continue, est un facteur majeur de cette réussite. Ces
implémentations bénéficient grandement de l’efficacité sans cesse accrue des unités de calcul
en nombres flottants disponibles dans les processeurs ou autres architectures récentes, sous la
houlette du standard IEEE 754.

Néanmoins, un problème très étudié concerne les erreurs numériques inhérentes au calcul
scientifique. Habituellement, ces erreurs sont regroupées en deux catégories. La première, in-
trinsèque au calcul des nombres flottants, est constituée des erreurs d’arrondi, dues à la discréti-
sation de la droite des réels. La seconde regroupe les erreurs de méthode, lorsque des problèmes
de dimension infinie sont approximés en dimension finie, via des méthodes de discrétisation ou
de projection. À titre d’exemple, mentionnons les méthodes de Runge-Kutta ou les méthodes
spectrales pour résoudre des équations différentielles ordinaires (EDO). Bien que relativement
petites en général, ces erreurs s’accumulent au fil de l’exécution du programme et peuvent don-
ner lieu à d’importantes erreurs en fin de compte. Souvent, le problème réside dans le fait que
l’on ne peut pas estimer directement la précision du résultat, c’est-à-dire spécifier le nombre de
bits corrects, si tant est qu’il y en ait. Par conséquent, certains domaines avec des exigences de
sécurité accrues, comme l’ingénierie des systèmes critiques ou les preuves mathématiques assis-
tées par ordinateur, ne peuvent reposer uniquement sur des algorithmes purement numériques.

Objectifs principaux. Au regard de ces insuffisances, nous nous pencherons dans cette thèse
sur les défis suivants. Il est à noter que tous n’occuperont pas la même place – le premier recevant
en effet le plus d’attention – mais chacun apportera un éclairage propre. Listés ci-dessous, ils
seront abordés par la suite dans des sections dédiées, sous l’angle de concepts clés, d’exemples
illustratifs et avec pour objectif d’esquisser le plan du manuscrit.

A. Calculer plus rapidement, plus précisément et plus sûrement. Ainsi pourrait-on
énoncer l’objectif principal de cette thèse. Après un passage en revue, sans doute per-
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sonnel, des techniques existantes en calculs numérique, symbolique et rigoureux (Cha-
pitres 1 et 2), nous enrichirons les approximations polynomiales rigoureuses (rigorous
polynomial approximations en anglais, abbrégé en RPA) avec de nouveaux algorithmes,
où les méthodes de validation a posteriori à base de points fixes jouent un rôle important
(Chapitre 3). Cela donne lieu à de nouveaux outils efficaces et précis pour des problèmes
fonctionnels, notamment les équations différentielles linéaires (Chapitres 4 et 5). Qui
plus est, nous ne visons pas uniquement le calcul validé, mais aussi le calcul certifié en
recourant à la preuve formelle (Chapitre 3).

B. Prouver des théorèmes mathématiques par de nouvelles techniques informa-
tiques. En se basant sur notre travail en cours sur les cycles limites d’un champ de
vecteurs polynomial particulier, présenté dans le Chapitre 6, nous promouvons l’usage
des RPA, de la validation a posteriori et des méthodes symboliques-numériques dans
l’élaboration d’outils efficaces pour les preuves mathématiques assistées par ordinateur.
Tirant parti de notre approche a posteriori, ou à base de certificats, il devient plus facile
d’introduire la preuve formelle dans le processus de preuve par ordinateur, offrant ainsi
le plus haut niveau de confiance possible.

C. Sécurité et efficacité pour des applications réelles. Pouvoir calculer de manière
plus fiable est crucial pour des applications relevant de l’ingénierie critique. Pour autant,
nous ne pouvons pas (trop) sacrifier les exigences d’efficacité. En calculant et utilisant des
trajectoires de satellites validées lors d’opérations spatiales de proximité (Chapitre 7),
nous illustrons comment nos méthodes peuvent s’appliquer dans un contexte critique,
comme la conception rigoureuse de missions spatiales.

D. Intégrer les aspects « bas niveau » est essentiel lors l’élaboration d’outils et d’implé-
mentations efficaces pour des applications « dans la vraie vie ». Cet aspect est également
pris en compte dans cette thèse, bien que dans une moindre mesure. À titre d’exemple,
le Chapitre 8 présente une contributions dans ce sens, à savoir un nouvel algorithme
d’échange pour calculer des polynômes d’approximation avec erreur d’évaluation optimi-
sée. Cela se révèle utile pour l’implémentation numérique de fonctions mathématiques,
puisque la précision flottante sous-jacente est finie.

E. Nouveaux champs d’application des méthodes rigoureuses et symboliques-
numériques. Introduire des techniques symboliques-numériques et de calcul rigoureux
dans d’autres domaines des mathématiques constitue un défi particulièrement intéressant,
permettant en retour d’enrichir nos outils avec de nouveaux concepts mathématiques. Par
exemple, la reconstruction à partir des moments du support et de la densité d’une mesure,
présentée dans le Chapitre 9, utilise les polynômes de Ore – un outil symbolique – dans
le cadre d’un problème inverse.

F. Concevoir des implémentations open-source. Dernièrement mais non des moindres,
La production de code logiciel libre est une contribution essentielle de cette thèse, qui vient
corroborer notre manifesto : fournir des méthodes algorithmiques et efficaces. Par ailleurs,
ces implémentations furent d’une grande aide pour les applications sus-mentionnées.
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A Calculer plus rapidement, plus précisément et plus sûre-
ment

Les cinq premiers chapitres de ce manuscrit visent cet objectif. Pour commencer, voici les
trois niveaux de sécurité du calcul dont il sera question :

1. Une première couche purement numérique regroupe les algorithmes d’analyse numérique
classique, avec en ligne de mire la précision et l’efficacité. Bien que souvent accompagnés
de résultats de convergence asymptotique, ces algorithmes ne peuvent en général pas
garantir la précision du résultat sur une instance donnée.

2. Le deuxième niveau est celui des algorithmes validés au sens large, dans le sens où le
résultat calculé satisfait des propriétés mathématiques précises. Nous distinguerons no-
tamment :

◦ le calcul symbolique (Objectif A.1) pour des problèmes essentiellement de nature
algébrique, travaillant avec des représentations exactes des objets et parfois accom-
pagnés de certificats rendant possible une vérification a posteriori du résultat.

◦ le calcul rigoureux (Objectif A.2) reposant sur des représentations ensemblistes
numériques, et fournissant ainsi des encadrements rigoureux pour le résultat exact
du problème, qui peut ne pas être représentable exactement en machine.

Parfois, calculs symbolique et numérique (rigoureux) peuvent être combinés dans des
méthodes dites symboliques-numériques.

3. Une troisième couche, celle du calcul certifié, offre une sécurité maximale, à savoir au
niveau de l’implémentation. La preuve formelle (Objectif A.3) ouvre la voie à des im-
plémentations certifiées, dont la correction est garantie par un logiciel appelé assistant de
preuve.

Le choix du niveau de sécurité adéquat dépend fortement de l’application visée : sommes-nous
prêts à dédier plus de temps à un calcul donné pour augmenter la confiance que nous avons dans
le résultat ? Toutefois, ce choix est également limité par les outils et logiciels disponibles. En
particulier, les implémentations certifiées de méthodes numériques sont encore rares et restent
souvent bien moins efficaces que leurs analogues non rigoureux.

Avant d’aborder les contributions de cette thèse, un aperçu des outils de calculs nécessaires
est donné dans les deux premiers chapitres. Le Chapitre 1 s’intéresse aux représentations des
nombres : représentations exactes pour le calcul symbolique, les nombres flottants (très efficaces
mais sujets aux erreurs d’arrondis), et enfin les intervalles pour encadrer rigoureusement les
nombres réels. Ensuite, le Chapitre 2 aborde la représentation des fonctions en insistant sur
les deux sujets suivants : le cadre symbolique des fonctions D-finies, qui sont les solutions des
équations différentielles ordinaires linéaires (EDOL) à coefficients polynomiaux, ainsi qu’un
survol de certains résultats de théorie de l’approximation polynomiale qui se révélera précieux
pour les chapitres à suivre.

Les approximations polynomiales rigoureuses (RPA), qui occupent une place centrale dans
cette thèse, seront présentées dans le Chapitre 3, en même temps que seront introduites les
méthodes de validation a posteriori à base de point fixes qui seront utilisées pour définir la
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division et la racine carrée de RPA. Il en résulte une arithmétique des RPA qui sert de fonde-
ment à des méthodes rigoureuses plus élaborées pour des problèmes d’analyse fonctionnelle. En
particulier, une contribution centrale de cette thèse consiste en des algorithmes calculant des
RPA dans la base de Tchebychev pour les solutions d’EDOL, conçus avec Nicolas Brisebarre et
Mioara Joldes. Ils seront présentés dans les Chapitres 4 (pour les EDOL scalaires) et 5 (pour
les systèmes d’EDOL couplées).

L’exemple suivant autour de la fonction d’Airy Ai, servira à illustrer comment ces différents
outils détaillés dans ce qui suit apportent des points de vue complémentaires sur des mêmes
questions.

Example 1 : Fonction d’Airy Ai

La fonction d’Airy Ai (cf. Figure I.9a) est une fonction spéciale fréquemment rencontrée en
mathématiques [2], qui peut être définie via l’intégrale de Riemann impropre suivante :

Ai(x) =
1

π

∫ +∞

0
cos

(
t3

3
+ xt

)
dt, (Ai-i)

ou par l’équation différentielle du second ordre suivante avec conditions initiales en 0, où Γ
désigne la fonction Gamma :

Ai′′(x)− xAi(x) = 0, Ai(0) =
1

3
2
3Γ
(
2
3

) , Ai′(0) = − 1

3
1
3Γ
(
1
3

) . (Ai-ii)

Cette fonction n’admet pas de forme close plus simple à base de fonctions élémentaires,
comme exp, sin, cos ou leurs réciproques. Un des objectifs de l’analyse numérique, de calcul
formel et du calcul rigoureux consiste à développer des méthodes pour manipuler de telles
fonctions, notamment l’évaluer en un point, vérifier des égalités, produire des approximations
validées, etc.

A.1 Calcul symbolique

Les méthodes de calcul symbolique [257], qui reflètent notre manière usuelle de faire des
mathématiques en passant par des représentations exactes des nombres, fonctions, etc., consti-
tuent un moyen naturel de contourner les problèmes d’erreurs numériques. Plusieurs décennies
de recherche dans ce domaine ont abouti à toute une collection d’algorithmes efficaces, bien
étudiés en terme de complexité et implémentés dans des logiciels de calcul formel faciles à
prendre en main, tels Maple ou Mathematica. Les fonctions D-finies, présentées dans ce qui
suit en raison de leurs multiples apparitions tout au long de cette thèse, forment un exemple
remarquable d’objets avec représentations exactes en machine.

Fonctions D-finies. Ces fonctions, qui sont les solutions des EDO linéaires à coefficients
polynomiaux [234], sont omniprésentes en mathématiques – elles représentent environ 60%
des fonctions répertoriées dans [2], dont la fonction d’Airy Ai donnée dans l’Exemple 1.
Grâce aux nombreux efforts d’une communauté active autour de ce sujet, des logiciels de cal-
cul formel comme Maple ou Mathematica permettent aujourd’hui de manipuler de telles
fonctions comme des structures de données (une équation différentielle annulant la fonction,
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avec suffisamment de conditions initiales) et d’agir sur elles via des opérations arithmétiques
et différentielles.

Example 1 : Fonction d’Airy Ai – un peu de calcul formel

Nous illustrons ici comment l’algorithmique des fonctions D-finies permet de prouver des résul-
tats non triviaux.

1 (a) Prouvons l’identité suivante [2, Eq. (10.4.15)] :

Ai(−x) =
√
x

9

(
J 1

3

(
2

3
x

3
2

)
+ J− 1

3

(
2

3
x

3
2

))
, x > 0, (Ai-iii)

où les fonctions de Bessel J± 1
3

forment une base des solutions de :

9z2f ′′(z) + 9zf ′(z) + (9z2 − 1)f(z) = 0. (J 1
3
)

En utilisant les opérations de clôture implémentées sous forme l’algorithmes, le paquet Gfun19

pour Maple calcule automatiquement que le membre droit dans (Ai-iii) vérifie g′′(x)+xg(x) =
0. En effet, cette expression se déduit de J± 1

3
par une substitution algébrique z 7→ 2

3x
3
2 , suivie

d’une somme, et finalement multipliée par x 7→
√

x
9 . Or x 7→ Ai(−x), de par (Ai-ii), vérifie

la même EDOL, de sorte que vérifier l’égalité des conditions initiales en 0 suffit pour établir
l’identité (Ai-iii), par le théorème de Cauchy-Lipschitz.

Télescopage Créatif. Le Télescopage Créatif désigne un ensemble de techniques [269, 59,
141] développées dans le but de calculer automatiquement des équations différentielles ou de
récurrence pour des intégrales ou des sommes de quantités D-finies, permettant même parfois
de retrouver des formes closes non triviales. Qui plus est, ces techniques plutôt complexes pro-
duisent également un certificat permettant de revérifier le résultat a posteriori (voir Chapitre 2
pour plus de détails).

Example 2 : Fonction génératrice exponentielle des polynômes de Tchebychev

2 (a) Prouvons l’identité suivante :

+∞∑

n=0

Tn(x)
tn

n!
= etx cosh(t

√
x2 − 1), |x| < 1,

où Tn désigne le n-ième polynôme de Tchebychev, défini dans le Chapitre 2.

L’intégrande f(t, n) := Tn(x)
tn

n! vérifie les équations mixtes différentielles/aux différences :

t∂t · f − nf = 0,

(2 + 3n+ n2)S2
n · f + (−2tx− 2ntx)Sn · f + t2f = 0.

avec ∂t · f(t, n) := ∂f
∂t (t, n) et Sn · f(t, n) := f(t, n+ 1).

19http://perso.ens-lyon.fr/bruno.salvy/software/the-gfun-package/
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En utilisant par exemple la routine CreativeTelescoping du paquet HolonomicFunctions20

de Mathematica, on obtient l’équation différentielle suivante pour g(t) :=
+∞∑
n=0

f(t, n) :

∂2t · g − 2x∂t · g + g = 0.

Pour finir, les procédures usuelles de résolution d’équations différentielles de Maple ou Ma-
thematica permettent de retrouver l’expression en forme close etx cosh(t

√
x2 − 1) à partir de

cette équation différentielle.

Limites des méthodes symboliques. Cependant, certains problèmes sont par essence in-
solubles par des tels outils, notamment pour les raisons suivantes :

◦ Seules certaines classes restreintes de nombres ou fonctions admettent des représentations
exactes, par exemple les nombres ou fonctions rationnels, algébriques, etc. Considérons

cependant à titre d’exemple la constante d’Euler γ := lim
n→∞

(
n∑

k=1

1
k − log n

)
. Quel com-

portement calculatoire attendons-nous des algorithmes sur celui-ci ? – alors même que
savoir si γ est rationnel ou pas reste un problème ouvert.

◦ Certains objets ont des représentations exactes mais implicites. Ainsi, au moment de
tester des propriétés concrètes, une étape de calcul rigoureux peut s’avérer nécessaire pour
convertir la représentation implicite en des valeurs numériques. C’est par exemple le case
pour les fonctions D-finies, pour lesquelles des approximations polynomiales rigoureuses
seront construites dans les Chapitres 4 et 5 (voir ci-dessous).

◦ Même lorsqu’il est possible de travailler avec des représentations exactes, leur taille intrin-
sèque peut se révéler être un obstacle majeur pour une implémentation en machine. Cela
arrive souvent pour les algorithmes où l’on itère un grand nombre de fois des opérations
algébriques sur des objets représentés exactement. Dans le Chapitre 1, l’Exemple 1.3
illustrera ce phénomène avec l’inversion de matrices à coefficients rationnels.

A.2 Calcul rigoureux et méthodes de validation

Le calcul rigoureux [247] s’affranchit des limitations des méthodes symboliques en substi-
tuant aux représentations exactes des représentations validées dans divers problèmes, notam-
ment en analyse fonctionnelle, par exemple les équations différentielles ou le contrôle optimal.
L’idée principale est de calculer des représentations ensemblistes effectives, comme des inter-
valles réels ou des boules dans des espaces fonctionnels, avec la garantie que la solution exacte
du problème en question soit contenue dans cet ensemble de valeurs possibles. Cette définition,
plus souple que les représentations exactes, permet de recourir aux nombres flottants et aux
algorithmes numériques, tout en restant correct grâce à un usage attentif des modes d’arrondis
et des bornes d’erreur a posteriori.

Arithmétique des intervalles. C’est une composante de base essentielle du calcul rigou-
reux (cf. [173, 247, 221]), qui sera présentée dans le Chapitre 1. L’idée consiste à utiliser

20https://www3.risc.jku.at/research/combinat/software/ergosum/RISC/HolonomicFunctions.html
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des intervalles réels avec bornes représentables (en général, des nombres flottants) pour enca-
drer rigoureusement des réels, et à fournir des opérations qui préservent cette correction. Par
exemple, de π ∈ [3.1415, 3.1416] et e ∈ [2.7182, 2.7183], nous déduisons :

π + e ∈ [3.1415, 3.1416] � [2.7182, 2.7183] = [5.8597, 5.8599].

Par conséquent, le fait de remplacer toutes les opérations de nombres flottants par leurs ana-
logues en intervalles résout en principe le problème des erreurs d’arrondis. Néanmoins, certaines
limitations, détaillées dans le Chapitre 1, nous amènent à modérer ce point de vue faisant de
l’arithmétique des intervalles l’alpha et l’oméga du calcul rigoureux :

◦ Les surestimations constituent une faiblesse bien connue de l’arithmétique d’intervalles [221],
en raison de divers phénomènes celui de la dépendance ou du wrapping effect : l’intervalle
calculé est correct, mais trop grand pour donner quelque information utile.

◦ Bien que l’intervalle calculé soit correct par rapport aux erreurs d’arrondi, les erreurs de
méthodes ne sont pas prises en compte, étant donné qu’elles résultent de la discrétisation
du problème lui-même, et non simplement de l’approximation des réels par des nombres
flottants.

Approximations polynomiales rigoureuses (RPA). Les RPA ont été conçus comme
analogues en dimension supérieure à l’analyse d’intervalles. Ce sont simplement des polynômes
assortis d’une borne supérieure de l’erreur entre ce polynôme et la fonction représentée, selon
une norme donnée (cf. Figure I.6). Ces idées furent initialement conceptualisées dans les années
1980 avec l’ultra-arithmétique [79, 80]. Quelque temps plus tard, l’implémentation des modèles
de Taylor [164, 165] (que l’on peut voir comme des séries de Taylor tronquées rigoureusement)
dans la bibliothèque COSY Infinity raviva l’intérêt porté aux RPA.

Cependant, le Chapitre 2 souligne les limites des développements de Taylor en théorie
de l’approximation, là où les séries de Fourier généralisées – et en particulier les séries de
développements en séries de Tchebychev – sont souvent bien plus efficaces. Partant de ce constat,
les modèles de Tchebychev, conçus dans [44, 129], furent rapidement adoptés pour certaines
preuves assistées par ordinateur (voir par exemple [153]). Plus encore, l’approche pleinement
algorithmique des modèles de Tchebychev (par exemple dans [19]) a constitué une source
d’inspiration majeure pour cette thèse.

Le Chapitre 3 présente une arithmétique pour les modèles de Tchebychev, avec quelques
différences par rapport à [129], notamment pour la division et la racine carrée qui sont ici effec-
tuées selon une approche interpolation – validation a posteriori. Nous y présenterons également
une bibliothèque C nommée ChebValid21 pour les modèles de Tchebychev, ainsi qu’une forma-
lisation des RPA en Coq22 (cf. Objectif F). Le Chapitre 4 repose également sur les méthodes
de validation a posteriori par point fixe (voir ci-dessous) pour calculer de manière automatisée
des RPA pour des solutions d’EDOL, dont les coefficients sont eux-mêmes représentés par des
RPA. Contrairement à [19], qui se limite aux fonctions D-finies, notre approche se rapproche
davantage dans l’esprit des méthodes de validation de type Newton, présentées dans ce qui suit.

21disponible sur https://gforge.inria.fr/projects/tchebyapprox/
22disponible sur http://perso.ens-lyon.fr/florent.brehard/chebapprox/
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Figure I.6 : Un RPA pour le problème du rendez-vous spatial : une approximation poly-
nomiale + une borne d’erreur rigoureuse (en bleu) forment un tube contenant
la trajectoire exacte (en pointillés magenta).

Validation a posteriori par point fixe. Ces méthodes constituent un outil puissant pour
le calcul rigoureux lorsque des techniques directes (aussi appelées auto-validantes) ne sont pas
applicables ou insuffisamment précises. Le problème se résout alors en deux étapes totalement
indépendantes :

1. L’étape d’approximation calcule une approximation x◦ de la solution exacte x∗ du pro-
blème en question. N’importe quel algorithme numérique peut ici être utilisé – aucune
hypothèse n’est requise.

2. L’étape de validation reformule le problème initial de sorte à faire de x∗ l’unique point fixe
d’un opérateur contractant bien choisi, puis reconstruit a posteriori une borne rigoureuse
sur l’erreur de x◦ par rapport à x∗, en utilisant le théorème du point fixe de Banach.

Cette approche en deux étapes, que nous présenterons plus en détails dans le Chapitre 3,
est souvent utilisée dans les preuves assistées par ordinateur pour des problèmes d’analyse
fonctionnelle et de systèmes dynamiques, notamment via les méthodes de validation a posteriori
de type Newton (voir par exemple [137, 136, 178, 199, 189, 265, 9, 250, 153, 111], ainsi
que [179] et les références qui y sont citées). Allant à l’encontre de la stratégie dominante du
cas par cas de ces travaux, la méthode de validation pour les solutions d’EDOL présentée dans
le Chapitre 4 suit une approche totalement algorithmique avec une analyse de complexité
détaillée, et a de plus été implémentée dans la bibliothèque C ChebValid mentionnée plus
haut.

Toujours en rapport avec la validation a posteriori, le Chapitre 5 présente une nouvelle
généralisation du théorème du point fixe de Banach, donnant un cadre général pour la validation
fine composante par composante de problèmes vectoriels. Ceci s’applique à la validation de
systèmes d’EDOL couplées, en réutilisant les techniques du Chapitre 4.
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Example 1 : Fonction d’Airy Ai – approximation rigoureuse

1 (b) Comment calculer efficacement des RPA précis pour Ai ?

La fonction d’Airy Ai abordée précédemment dans le cadre du calcul symbolique, peut main-
tenant être rigoureusement approchée et évaluée à l’aide de modèles de Tchebychev. La Sec-
tion 4.5.1 explique en détails comment la méthode de validation pour EDOL calcule et valide
des approximations de Ai. Il est important de noter que cette méthode de validation peut s’appli-
quer sur n’importe quelle approximation polynomiale, pas uniquement les séries de Tchebychev
tronquées du Chapitre 4 : par exemple, les polynômes optimisés pour l’erreur d’évaluation
calculés dans le Chapitre 8 (cf. Objectif D).

A.3 Preuve formelle et implémentations certifiées

Un niveau de confiance encore plus élevé pour le calcul rigoureux peut-être souhaitable dans
certains cas, c’est-à-dire des implémentations certifiées grâce à l’utilisation de la preuve formelle.
Un assistant de preuve est un logiciel dans lequel le programmeur édite des scripts de preuves
à la fois pour des algorithmes ou des énoncés mathématiques. Ces scripts de preuves sont
ensuite vérifiés ligne par ligne par le noyau, qui consiste en un nombre relativement restreint de
lignes de code sur lequel repose toute la correction mathématique de ce procédé de vérification.
Voici les noms de quelques uns des plus célèbres assistants de preuve : Mizar, ACL2, HOL4,
HOL-Light, Isabelle, Coq, PVS, Lean, etc. Bien que plusieurs d’entre eux proposent des
outils d’automatisation (comme les tactiques en Coq ou l’outil Sledgehammer en Isabelle),
prouver formellement des programmes est une tâche qui requiert souvent beaucoup de temps et
de main d’œuvre. En retour, certaines formalisations d’importants théorèmes ou conjectures ont
suscité une reconnaissance bien mérités et ont ainsi contribué à renforcer la place des preuves
assistées par ordinateur au sein de la communauté mathématique (voir Objectif B plus bas).

Dans ce qui suit, je ciblerai plus particulièrement l’assistant de preuve Coq23 [22] développé
à l’INRIA, qui est celui utilisé dans notre formalisation des RPA (voir Objectif F). Voici
quelques notions élémentaires sur la théorie des types à la base de la logique de Coq.

Théorie des types et preuves. Les langages de programmation dits typés classent les
données dans différentes catégories (prédéfinies ou créées par l’utilisateur), que l’on appelle
types. La notation a : A signifie : « le terme a a pour type A ». Par exemple, en Coq, nat

représente les entiers naturels, bool les booléens, A → B les fonctions prenant un argument de
type A et renvoyant un résultat de type B, etc. La correspondance de Curry-Howard [92, Chap.
3] permet d’interpréter les types comme des propositions mathématiques, et les termes de
ce type comme des preuves de la proposition correspondante. Ainsi par exemple, une preuve
de l’implication mathématique A ⇒ B n’est rien d’autre qu’une fonction de type A → B, qui
construit une preuve de B à partir d’une preuve de A.

Le langage de preuve formelle Coq enrichit cette correspondance grâce aux types dépen-
dants [169][22, Chap. 4]. Un type dépendant est tout simplement un type B(a) paramétré par
des habitants a du type A, donc une terme B : A → Type. Le produit dépendant ∀ (a : A), B a

généralise le type flèche classique : il contient les fonctions f qui associent à chaque argument
a : A une valeur de retour f a : B a. Il est donc clair que le produit dépendant est l’analogue du

23https://coq.inria.fr/
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quantificateur universel en logique mathématique (et de manière similaire, il existe des sommes
dépendantes pour que quantificateur existentiel). Pour finir, Coq permet également à l’utili-
sateur de définir des types inductifs [22, Chap. 6], dont les éléments sont construits à partir
d’un nombre fini de constructeurs déclarés par le programmeur. Par exemple, les entiers naturels
standards de Coq sont donnés par le type inductif suivant, qui correspond à une représentation
unaire des entiers (cf. Chapitre 1) :

Inductive nat : Set :=

| O : nat

| S : nat → nat.

Coq associe automatiquement un principe d’induction à cette définition, qui en gros stipule :
« Tous les motifs possibles construit avec O et S, c’est-à-dire S (S (... (S O))), sont des termes
deux à deux distincts de nat, et tous les termes de nat sont de cette forme ».

nat_rect : ∀ P : nat → Type, P 0 → (∀ n : nat, P n → P (S n)) → ∀ n : nat, P n.

Nous terminons ici cette courte introduction à la théorie des types, et renvoyons le lecteur
intéressé à [92, 22] pour plus de détails. En somme, la théorie des types peut servir de fonda-
tions logiques aux mathématiques, à la place de la théorie des ensembles. Dans cette optique, le
programme Fondations univalentes24 entend redéfinir toutes les mathématiques via une exten-
sion nommé Théorie homotopique des types (Homotopy Type Theory en anglais, HoTT) [204].
À présent, nous nous intéressons plus particulièrement à la formalisation de l’analyse mathé-
matique dans Coq.

Analyse en Coq. Voilà un sujet largement largement discuté au sein de la communauté de
la preuve formelle. Une des raisons principales est que dans la logique purement constructive de
Coq, les différentes constructions usuelles du corps des nombres réels (coupures de Dedekind,
suites de Cauchy, etc.) ne sont pas équivalentes. Qui plus est, une définition purement construc-
tive des nombres réels implique forcément que certaines propriétés importantes ne seront pas
satisfaites, comme le test à zéro ∀ (x : R), x = 0 \/ x <> 0. Ainsi, la bibliothèque standard de
Coq fait le choix d’un type axiomatisé R pour les nombres réels, bien que des constructions alter-
natives puissent également être utilisées, comme la bibliothèque C-CoRN/MathClasses [63].

Basée sur l’axiomatisation des réels proposée dans la bibliothèque standard, la bibliothèque
Coquelicot [29] offre un cadre agréable pour l’analyse réelle et fonctionnelle. Notre forma-
lisation du théorème du point fixe de Banach, que nous utilisons pour les certaines opérations
sur les RPA, repose largement sur les filtres par lesquels Coquelicot définit les notions de
topologie (voir Chapitre 3).

Du côté de l’analyse numérique, la bibliothèque Flocq [30] formalise l’arithmétique des
nombres flottants, qui à sont tour est utilisée par l’arithmétique d’intervalles, formalisée dans
la bibliothèque CoqInterval [171]. Cette dernière offre la possibilité de prouver automati-
quement des inégalités réelles par le biais de l’arithmétique d’intervalles. Plus proche encore de
nos travaux, la bibliothèque CoqApprox [168] formalise les modèles de Taylor, augmentant
ainsi les possibilités offertes par CoqInterval.

B Prouver des théorèmes mathématiques par de nouvelles
techniques informatiques

24https://homotopytypetheory.org/
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Le principe de preuve assistée par ordinateur consiste à déléguer à la machine tout ou par-
tie d’une preuve d’un théorème mathématique. Plusieurs raisons peuvent conduire à ce choix
quelque peu audacieux : des calculs trop compliqués pour être faits à la main, une explosion
combinatoire des cas à analyser, un très haut niveau d’abstraction pouvant rendre la preuve
douteuse, etc. L’expérience personnelle de V. Voevodsky, qu’il relate dans sa note « The Ori-
gins and Motivations of Univalent Foundations »25, insiste sur les limites des mathématiques
usuelles sur papier :

« I can see two factors that contributed to this outrageous situation : Simpson claimed to have
constructed a counterexample, but he was not able to show where the mistake was in our paper. Because
of this, it was not clear whether we made a mistake somewhere in our paper or he made a mistake so-
mewhere in his counterexample. Mathematical research currently relies on a complex system of mutual
trust based on reputations. By the time Simpson’s paper appeared, both Kapranov and I had strong repu-
tations. Simpson’s paper created doubts in our result, which led to it being unused by other researchers,
but no one came forward and challenged us on it. »

Les preuves assistées par ordinateur en analyse mathématique font souvent appel aux nombres
flottants et aux algorithmes numériques. Toutefois, elles doivent garantir des propriétés mathé-
matiques sur les quantités calculées – un théorème ne peut pas être correct modulo des erreurs
numériques ! Dans cette optique, le calcul rigoureux avec représentations ensemblistes décrit
dans l’Objectif A.2 est un ingrédient essentiel qui a joué un rôle majeur dans plusieurs preuves
célèbres, comme la preuve par Landford de la conjecture de Feigenbaum [147], la preuve par
Tucker sur l’existence de l’attracteur de Lorenz [246], ou la preuve par Hales de la conjecture
de Kepler [102]. Des bibliothèques de calcul rigoureux ont également été développées spéciale-
ment pour les preuves assistées par ordinateur, comme la bibliothèque CAPD26 pour la théorie
des systèmes dynamiques.

Il est clair que déléguer certaines parties d’une preuve à la machine est une décision tout sauf
anodine, de sorte que les preuves assistées par ordinateurs peuvent être parfois mal reçues par
certains mathématiciens, qui pourraient douter de la rigueur de ces approches, ou simplement
refuser de croire en un résultat qu’ils ne pourraient pas vérifier à la main, ligne par ligne. Pour
cette première objection, 27, le recours aux assistants de preuve formelle devrait définitivement
clore ce débat, comme ce fut par exemple le cas pour le théorème des quatre couleurs [95] par
Gonthier et al. en Coq, le projet Flyspeck [101] par Hales et al. en HOL-Light pour la
conjecture de Kepler, ou encore la formalisation par Immler [119] en Isabelle de la preuve
assistée par ordinateur de Tucker sur l’existence de l’attracteur de Lorenz.

Le travail mené conjointement avec Nicolas Brisebarre, Mioara Joldes et Warwick Tucker,
et présenté dans le Chapitre 6, est un exemple de preuve assistée par ordinateur en analyse,
utilisant dans un premier temps des calculs rigoureux, puis certifiés par preuve formelle en
un second temps. Ainsi, nous avons utilisé à la fois la bibliothèque C ChebValid C et le
développement Coq (cf. Objectif F), dans le but de prouver ce qui suit.

Example 3 : Calculer des cycles limites dans le cadre du 16ème problème de
Hilbert

25https://www.ias.edu/ideas/2014/voevodsky-origins
26http://capd.ii.uj.edu.pl/
27Pour la seconde en revanche, c’est essentiellement une question de goût personnel – et, après tout, vous n’êtes

pas obligé d’aimer une preuve pour l’accepter.
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Dans le Chapitre 6 de ce manuscrit, nous nous intéressons au calcul des cycles limites dans
le cadre du 16ème problème de Hilbert, qui s’énonce ainsi :

« Quel est le nombre maximal H(n) de cycles limites qu’un champ de vecteurs polynomial
dans le plan de degré au plus n peut avoir, c’est-à-dire :

{
ẋ = P (x, y)

ẏ = Q(x, y)

où P,Q ∈ ❘[x, y] sont de degré au plus n ? »
Plus de précisions et définitions seront données dans le chapitre concerné. Rapidement, un

cycle limite est une orbite périodique isolée, attirant ainsi localement les trajectoires à proximité
(en temps positif ou négatif). L’oscillateur de Van der Pol, représenté sur la Figure I.7a,
constitue un exemple célèbre de cycle limite.

Nous n’attaquerons pas le 16ème problème de Hilbert en soi : nous nous contenterons de
construire un exemple afin de calculer une nouvelle borne inférieure pour H(4). En réalité,
notre point de départ fut l’article [126], dans lequel T. Johnson prétend isoler rigoureusement 26
cycles limites pour un système quartique construit à cet effet. La preuve, basée sur le théorème
de Poincaré-Pontryagin qui relie les cycles limites aux zéros d’intégrales abéliennes, consiste à
évaluer rigoureusement ces intégrales pour compter les changements de signe. Malheureusement,
le code rigoureux utilisé pour ces évaluations était erroné, et le vrai nombre de cycles limites
était en fait 18, au lieu des 26 annoncés – ce qui du coup est inférieur au résultat connu
antérieurement H(4) > 22 [56].

Notre motivation a été d’appliquer les méthodes rigoureuses développées dans cette thèse à
l’exemple de T. Johnson afin d’obtenir le plus de zéros possible, toujours rigoureusement !

3 (a) Trouvons un exemple concret de champ de vecteurs quartique et isolons les cycles limites
pour obtenir une nouvelle borne inférieure pour H(4).

Pour cela, nous réutilisons l’exemple de T. Johnson, représenté sur la Figure I.7b :
{
ẋ = −4y2(y2 − Y0) + εg1(x, y),

ẏ = 4xy(x2 −X0) + εg2(x, y),

avec ε > 0, et optimisons les coefficients de la perturbation polynomiale (f, g) ∈ ❘4[x, y]
2 afin

d’obtenir 24 zéros (ce qui améliore le précédent record H(4) > 22). Ici, évaluer les intégrales
abéliennes revient à intégrer des fonctions algébriques sur des segments compacts, ce qui et
possible avec les RPA implémentés dans ChebValid. La Figure I.7c montre l’évaluation
rigoureuse de l’intégrale abélienne, dont les changements de signe prouve l’existence des cycles
limites attendus.

3 (b) Cette approche peut-elle constituer une preuve valide de H(4) > 24, au sens mathéma-
tique ?

Comme évoqué plus haut, une partie de la communauté mathématique se montre réfrac-
taire aux preuves assistées par ordinateur, et la mésaventure de [126] justifie partiellement
ces réticences. Heureusement, nous travaillons actuellement au calcul certifié de ces intégrales,
grâce à notre développement en Coq pour les RPA. Cela permettra donc de donner une preuve
définitive de H(4) > 24.
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(c) L’évaluation rigoureuse des intégrales abéliennes met en évidence le nombre
attendu de changements de signe (en magenta : degré du RPA utilisé et enca-
drement obtenu pour l’intégrale).

Figure I.7 : Une preuve assistée par ordinateur pour H(4) > 24 dans le cadre du 16ème
problème de Hilbert.
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C Sécurité et efficacité pour des applications réelles

L’ingénierie des systèmes critiques renvoie aux applications mettant potentiellement en jeu
des vies humaines, ou du moins d’importantes sommes d’argent ou de sérieux risques environ-
nementaux. Sont entre autres concernés les industrie aéronautiques et aérospatiales, les actes
médicaux assistées par ordinateur ou les technologies nucléaires. Dans de telles situations, on
recourt généralement à d’intensives phases de test afin d’augmenter et de valider le niveau de
confiance d’un nouveau logiciel. Néanmoins, en plus de leur coût loin d’être négligeable en temps
et en argent, ces tests ne peuvent garantir l’absence de bugs – seulement leur présence peut-être
détectée. Par conséquent, le besoin de méthodes rigoureuses et formelles a rapidement émergé
dans ces domaines, comme en attestent un certain nombre de collaborations entre les mondes
industriels et académiques, comme le NASA Langley Formal Methods Research Program28.

Les méthodes développées dans cette thèse ouvrent la voient vers une utilisation systématique
des outils rigoureux, symboliques ou formels dans de telles applications de la « vraie vie ». En
particulier, je me suis intéressé aux applications aérospatiales. Ce domaine – peut-être en raison
des nombreux financements et de l’intérêt public dont il bénéficie, ou d’une législation dans une
certaine mesure moins rigide que dans le domaine de l’aéronautique – a déjà été l’objet d’expé-
rimentations intéressantes avec du calcul rigoureux et/ou symbolique-numérique : des modèles
de Taylor pour du guidage rigoureux dans [158] ; des récurrences D-finies pour l’évaluation
rigoureuse de séries de Taylor calculant la probabilité de collision avec des débris spatiaux
dans [227] ; des séries de Tchebychev multivariées (non rigoureuses) pour la propagation de
trajectoires d’un ensemble de débris dans [255], etc.

Le Chapitre 7, qui relate une collaboration avec Paulo Ricardo Arantes Gilz et Clément
Gazzino, contribue à cette conception de missions spatiales rigoureuses, en validant et utili-
sant des trajectoires d’engins spatiaux pour des opérations de proximité, c’est-à-dire quand les
distances relatives sont faibles en comparaison du rayon de la Terre. L’Exemple 4 qui suit
présente une de ces applications : le problème du rendez-vous spatial.

Example 4 : Le problème du rendez-vous spatial

Le problème du rendez-vous spatial consiste, pour un vaisseau actif (par exemple une navette),
appelé le chasseur, à atteindre une cible passive (par exemple un satellite ou la station spatiale
internationale (ISS)), dans un intervalle de temps donné. Pour cela, le chasseur est équipé de
propulseurs qui peuvent être activés pour modifier sa trajectoire orbitale actuelle. Cependant,
le carburant nécessaire à ces manœuvres n’est disponible qu’en quantité limitée. Lorsque le
réservoir est vide, le vaisseau ne peut plus être contrôlé (on le dit mort), d’où l’intérêt de
minimiser la consommation de carburant pendant les manœuvres orbitales.

Considérons le modèle linéarisé29 pour la dynamique du mouvement relatif X = [x, y, z,
ẋ, ẏ, ż]T ∈ ❘6 d’un chasseur par rapport à sa cible :

Ẋ(t) = A(t)X(t) +B(t)u(t), (RDV-i)

où A(t) ∈ ❘6×6, B(t) ∈ ❘p×6, et u(t) ∈ ❘p, qui représente le terme de contrôle pour les
poussées, vit dans un espace fonctionnel adéquat. Les poussées sont en général modélisées par
28https://shemesh.larc.nasa.gov/fm/
29Cette hypothèse est généralement admise lors de la phase finale d’un rendez-vous.
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des impulsions, c’est-à-dire un saut de vitesse instantané plutôt qu’un terme d’accélération.
Cela donne le problème du rendez-vous spatial impulsionnel linéarisé (voir Figure I.8a).

4 (a) Trouvons les instants ti et les sauts de vitesse ∆Vi, déterminant la loi de contrôle u(t),
pour amener le chasseur d’un état initial donné X(t0) = X0 ∈ ❘6 à un état final prescrit
X(tf ) = Xf ∈ ❘6 (pour t0 < tf fixés), le tout en minimisant la consommation totale de
carburant :

inf
u
‖u‖1 = inf

u

∫ tf

t0

‖u(t)‖dt,

t.q. Ẋ(t) = A(t)X(t) +B(t)u(t), t ∈ [t0, tf ],

X(t0) = X0, X(tf ) = Xf , t0, tf fixés.

(RDV-ii)

Dans les articles [12, 226], auxquels j’ai contribué, nous proposons un algorithme d’échange
pour calculer numériquement les instants et valeurs optimaux pour les impulsions. Grosso
modo, (RDV-ii) y est reformulé comme un problème de programmation semi-infinie, c’est-à-
dire un problème d’optimisation impliquant un nombre fini de variables réelles mais un nombre
infini de contraintes. Partant d’un point infaisable, l’algorithme sélectionne à chaque itération
la contrainte la plus violée de sorte à réduire le caractère infaisable du point courant (voir
Figure I.8b).

Une fois que la loi de contrôle a été calculée numériquement, le cadre rigoureux de la mission
spatiale impose de valider la trajectoire résultante du vaisseau, en particulier s’assurer de son
état final.

4 (b) Étant donnés l’état initial X0, les instants ti des impulsions et les sauts de vitesse ∆Vi,
calculons des encadrements rigoureux for l’état final effectif X̃f , et assurons-nous qu’il se
trouve suffisamment près de l’état final prescrit Xf .

En utilisant la méthode de validation du Chapitre 5 pour les systèmes couplés d’EDOL,
nous pouvons calculer des matrices de transition validées sous forme de modèles de Tchebychev
pour la dynamique (RDV-i), permettant ainsi de propager rigoureusement l’état X(t) entre
deux poussées consécutives. En particulier, cela donne l’encadrement désiré pour l’état final.
La Table I.2 donne les paramètres d’une mission ATV concrète30 ainsi que les encadrements
obtenus pour l’état final dans le plan orbital. Évidemment, cela ne tient pas compte des termes
non-linéaires de la dynamique képlérienne, ni des autres perturbations. Néanmoins, la plupart
des méthodes de contrôle pour le problème du rendez-vous spatial ne considèrent que des
dynamiques linéarisées, de sorte qu’être capable de certifier les résultats calculés numériquement
dans ce modèle est déjà un objectif intéressant en soi.

4 (c) Devons-nous également valider l’optimalité de la loi de contrôle calculée lors de la Ques-

tion 4 (a) ?

Ce point particulier n’est sans doute pas aussi critique que l’état final – on imagine bien les
conséquences d’une navette ATV entrant en collision avec l’ISS. Cependant, si l’on veut être
rigoureux jusqu’au bout, il suffit de savoir que l’algorithme présenté dans [12] donne à chaque
itération un encadrement de la consommation optimale.

30Automated Transfer Vehicle est le nom du cargo spatial européen utilisé pour le ravitaillement de l’ISS.
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Demi-axe majeur : 6763 km
Excentricité : 0.0052

Instant initial : ν0 = 0 rad
Instant final : νf = 8.1832 rad
État initial : (x, z, ẋ, ż) =

(−30, 0.5, 8.514, 0) [km – m/s]
État final : (x, z, ẋ, ż) =

(−100, 0, 0, 0) [m – m/s]

(a) Paramètres de la mission.

ν ∆ẋ [m/s] ∆ż [m/s]

0.0 -7.50230589 0.742372034
1.388128 -1.55579123 0.08834686
6.666595 0.62565013 0.03325936
8.183058 1.06509710 0.11440204

(b) Instants et valeurs des impulsions calculés.

degré x(νf ) z(νf ) ẋ(νf ) ż(νf )

25 -100 + [-2.6861e1, 2.6861e1] [-7.4084e0, 7.4084e0] [-1.8133e-2, 1.8133e-2] [-5.3675e-3, 5.3675e-3]
30 -100 + [-1.0035e-1, 1.0035e-1] [-2.7676e-2, 2.7676e-2] [-6.7741e-5, 6.7741e-5] [-2.0051e-5, 2.0051e-5]
40 -100 + [-2.3194e-5, 2.3190e-5] [-6.3956e-6, 6.3956e-6] [-1.5655e-8, 1.5655e-8] [-4.6336e-9, 4.6336e-9]
50 -100 + [-2.0321e-8, 1.6320e-8] [-5.0437e-9, 5.0607e-9] [-1.2358e-11, 1.2376e-11] [-3.6651e-12, 3.6555e-12]

(c) État final validé, en fonction du degré des polynômes d’approximation.

Table I.2 : Validation a posteriori pour une mission ATV dans le plan orbital (x, z).

D Intégrer les aspects « bas niveau »

Le rappel sur la théorie de l’approximation donné dans le Chapitre 2 suit essentiellement un
point de vue purement mathématique : les polynômes sont supposés donnés par des coefficients
réels exacts, c’est-à-dire en précision infinie, et l’évaluation x 7→ p(x) est considérée comme
exacte. Certes, les Chapitres 3, 4 et 5 bornent rigoureusement les erreurs d’arrondi grâce
à l’arithmétique d’intervalles, tout en expliquant dans une certaines mesure comment éviter
les phénomènes de surapproximation qui en découlent. Cependant, nous n’y donnons aucune
analyse quantifiée des erreurs d’arrondis.

Toutefois, certains domaines particuliers exigent une analyse précise des erreurs d’arrondi,
comme l’implémentation de fonction en flottants, où la précision du résultat doit être garantie
(par exemple pour l’arrondi correct de fonctions [177], voir Section 1.2). Dans cette optique, le
Chapitre 8 présente une collaboration avec Mioara Joldes et Denis Arzelier, dans laquelle nous
proposons un algorithme d’échange pour calculer des polynômes d’approximation optimisés en
tenant compte de l’erreur d’évaluation. Comme le nom le suggère, cet algorithme est très relié
avec l’algorithme d’échange de Remez qui calcule des approximations polynomiales uniformes
optimales (cf. Section 2.2.2), ainsi que l’algorithme d’échange pour les problème du rendez-
vous spatial [12] mentionné plus haut. Reprenons l’exemple de la fonction d’Airy pour illustrer
notre approche.

Example 1 : Fonction d’Airy Ai – Implémentation en flottants

Étant donné que Ai ne peut s’exprimer par des fonctions élémentaires, utiliser des polynômes
d’approximation est un des outils les plus naturels pour générer des implémentations en flot-
tants. Cela consiste, pour un intervalle I = [a, b] et un degré n fixés, à trouver les coefficients
d’un polynôme p dans une base donnée, de telle sorte que Ai(x) est approximativement calculé
comme p(x), pour x ∈ I. Dans un monde idéal sans erreur d’arrondi, ceci s’appelle le problème
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minimax, rappelé dans la Section 2.2.2

1 (c) Étant donnés un intervalle compact I = [a, b] et un degré n, trouvons la meilleure ap-
proximation polynomiale p ∈ ❘n[x] pour Ai, c’est-à-dire le polynôme p de degré au plus
n minimisant l’erreur d’approximation uniforme :

argmin
p∈❘n[x]

‖Ai−p‖∞,I := argmin
p∈❘n[x]

max
x∈I

|Ai(x)− p(x)|.

Ce problème peut être résolu par l’algorithme de Remez [209, 208, 202]. En particulier,
le caractère équioscillant de l’erreur d’approximation, représenté sur la figure Figure I.9b,
constitue un preuve d’optimalité.

Cependant, en arithmétique flottante, le polynôme p, en tant que fonction mathématique
x 7→ p(x), est implémentée par une suite d’opérations flottantes, c’est-à-dire un programme p̃,
appelé schéma d’évaluation, qui calcule un résultat flottant p̃(x) sur une entrée flottante x ∈ I.
Dans ce cadre, les coefficients de p sont des flottants, et le résultat p̃(x) est sujet à des erreurs
d’arrondi. Si p∗ désigné le polynôme optimal de la Question 1 (c), et p̃∗ un schéma d’évaluation
où les coefficients de p sont arrondis aux flottants les plus proches, alors il n’y a aucune raison
pour laquelle p̃∗ serait la solution optimale de la question suivante (cf. Figure I.9c).

1 (d) Étant donnés un intervalle compact I = [a, b], un degré n, une précision flottante u et
un schéma d’évaluation fixé p 7→ p̃ pour des polynômes de degré n, trouvons un polynôme
p ∈ ❘n[x] à coefficients flottants qui minimise l’erreur totale :

argmin
p∈❘n[x]

max
x FP in I

|Ai(x)− p̃(x)|.

Ceci est une question majeure dans le domaine de l’arithmétique des ordinateurs [42, 43].
Notre algorithme constitue une avancée sur la question en optimisant simultanément les erreurs
d’approximation et d’évaluation. C’est en fait une généralisation de l’algorithme de Remez
dans le cadre de la programmation semi-infinie. L’erreur totale de la solution optimale pour
cet exemple avec la fonction d’Airy est représentée sur la Figure I.9d, où nous pouvons voir
que l’erreur d’approximation est « répartie » sur I de telle sorte que les pics les plus élevés se
trouvent là où l’erreur d’évaluation est petite.

Pour finir, précisions que ce cadre « bas niveau » n’est en rien incompatible avec le calcul
rigoureux :

1 (e) Étant donnée une approximation polynomiale p ∈ ❘[x] pour Ai, calculons une borne
supérieure sur I = [a, b] pour l’erreur d’approximation ou l’erreur totale.

Pour l’erreur d’approximation, cela signifie simplement borner ‖Ai−p‖∞,I . Comme Ai sa-
tisfait l’EDOL (Ai-ii), une borne d’erreur rigoureuse peut être calculée en utilisant la méthode
de validation du Chapitre 4.

En ce qui concerne l’erreur totale, on doit en plus borner l’erreur d’évaluation. Pour cela, on
peut utiliser de logiciels certifiés existants, comme Gappa [67] qui s’appuie sur la bibliothèque
Flocq de Coq mentionnée plus haut.

E Nouveaux champs d’application des méthodes rigoureuses
et symboliques-numériques
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Certaines branches des mathématiques ont très tôt su tirer parti du calcul rigoureux, comme
les solveurs validés d’équations différentielles ou les optimiseurs rigoureux/certifiés. À l’inverse,
certaines applications des méthodes rigoureuses et/ou symboliques-numériques proposées dans
ce manuscrit mettent en lumière de nouvelles interactions entre les mathématiques tradition-
nelles et le calcul rigoureux.

◦ Dans leChapitre 9, nous (c’est-à-dire Mioara Joldes, Jean-Bernard Lasserre et moi-même)
proposons de nouveaux algorithmes pour résoudre des problèmes inverses sur les mesures, au-
trement dit pour reconstruire le support et la densité d’une mesure à partir d’un nombre fini
de ses moments. Pour ce faire, nous tirons profit de la notion de D-finitude (et de celle, étroite-
ment relié, d’holonomie) mentionnée plus haut. Bien que non rigoureux, ces méthodes peuvent
être qualifiées de symboliques-numériques : le cadre algébrique des équations D-finies produit
des systèmes linéaires résolus in fine numériquement, puisque les moments donnés ne sont en
général connus qu’en précision finie. Illustrons la méthode avec l’exemple suivant.

Example 5 : Moments d’une densité gaussienne sur un ensemble semi-algébrique

Soit f(x, y) := exp(axxx
2 + ayyy

2 + axyxy + axx + ayy + a1) une densité gaussienne (non
normalisée) dans le plan etG l’ensemble semi-algébrique de dimension pleine dans❘2 représenté
sur la Figure I.10 par la région hachurée, dont le bord est contenu dans l’ensemble des zéros
du polynôme :

g(x, y) := (x2 + y2 − 9)(x2 + y2 − 1)((x− 2)2 + y2 − 1)(x2 + (y − 2)2 − 1).

Les moments mα,β de la mesure µ := f✶G (mesure gaussienne restreinte à G) sont définis de
la manière suivante :

mα,β :=

∫

G
xαyβf(x, y)dxdy.

Le Chapitre 9 répond aux deux questions suivantes. Considérons d’abord le problème direct.

5 (a) Étant donnés la densité f et le polynôme g pour le bord, déduire un ensemble « complet »31

de récurrences pour les moments mα,β, permettant de calculer tous les moments à partir
d’un nombre fini d’entre eux.

Cette question est en partie résolue dans la Section 9.3 en se basant sur une heuristique, avec
des résultats plus précis dans le cas d’une densité de type exponentielle de polynôme, incluant
les densités gaussiennes. Cela peut-être vu comme une alternative aux techniques usuelles de
Télescopage Créatif (voir par exemple [188]) dans le cas d’un support semi-algébrique.

À l’inverse, voici le problème inverse.

5 (b) Étant donné un nombre fini de moments mα,β, essayons de retrouver le polynôme dans
l’exponentielle définissant f , ainsi qu’un polynôme non trivial dont l’ensemble des zéros
contient le bord de G.

Des algorithmes pour résoudre ce problème sont donnés dans la Section 9.4. Ils consistent
à « deviner » des récurrences pour les moments en résolvant des systèmes linéaires impliquant

31Le terme technique adéquat serait ici holonomique (voir la Section 2.1.2).
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suffisamment de moments connus, permettant ainsi de reconstruire le polynôme pour le bord
et des équations différentielles satisfaites par la densité D-finie f (voir la Figure I.10). Dans
cet exemple exponentielle de polynôme, le nombre de moments nécessaires peut être borné a
priori.

◦ Les modèles de Tchebychev, largement promus dans cette thèse, constituent un outil puis-
sant pour les fonctions analytiques sur des segments compacts. Cependant, de telles hypothèses
ne sont pas tout le temps satisfaites : l’intervalle considéré peut être ouvert en raison de singu-
larités, ou même non borné pour des problèmes à « horizon infini ». Par conséquent, c’est un
défi pertinent que d’étendre les approximations rigoureuses à des fonctions non polynomiales
(par exemple, Hermite ou Bessel), ou même des familles non linéaires (par exemple, les frac-
tions rationnelles). C’est à l’heure actuelle un problème insuffisamment traité dans la littérature
et constitue une de mes orientations de recherche dans un futur proche. La question suivante
traités dans le Chapitre 6 illustre parfaitement ce besoin de tels RPA généralisés.

Example 3 : Calculer des cycles limite dans le 16ème problème de Hilbert

3 (c) Est-il possible de prouver rigoureusement que l’exemple particulier de T. Johnson ne peut
donner plus de 24 cycles limite ?

Pour prouver qu’aucune combinaison linéaire des intégrales abéliennes considérées ne peut
produire plus de zéros, nous recourons à la notion de système de Tchebychev (définie dans
le Chapitre 2), dans la Section 6.4. Plus précisément, il nous faut calculer le wronskien
d’un système d’intégrales abéliennes. Malheureusement, ce wronskien possède l’asymptotique
suivante en 0, pour t > 0 :

W (t) =
∑

n>n1

ant
n + log(t)

∑

n>n2

bnt
n.

avec n1, n2 ∈ ❩. Les techniques D-finies et la transformée de Laplace symbolique vont par
chance nous aider à calculer (un nombre fini de) ces coefficients an, bn. Nous devons également
développer de nouveaux outils rigoureux pour borner le reste – les difficultés provenant des
termes en log(t) et des puissances négatives de t. Ainsi, cet exemple illustre une situation où
des RPA généralisés seraient utiles.

F Concevoir des implémentations open source

En plus des contributions théoriques mentionnées tout au long de cette introduction, mon
travail a également consisté à développer plusieurs implémentations. Bien qu’encore expérimen-
tales, ces implémentations jouent un rôle important dans l’approche rigoureuse et algorithmique
des problèmes fonctionnels défendue dans cette thèse, à base de RPA et d’outils symboliques-
numériques.

◦ J’ai développé une bibliothèque C open source, que l’on appellera ChebValid32, qui
implémente l’arithmétique des modèles de Tchebychev détaillée dans le Chapitre 3, ainsi

32disponible sur https://gforge.inria.fr/projects/tchebyapprox/
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Computing with Numbers 1

Les hommes sont comme les chiffres : ils n’acquièrent de valeur que par leur position.

— Napoléon Bonaparte

On gouverne mieux les hommes par leurs vices que par leurs vertus.

— idem

At the core of scientific computing is the calculation with numbers, where “numbers” usually
refer to elements of the real line ❘ or of the complex plane ❈. A wide range of works in applied
mathematics or numerical analysis, targeting problems from, for instance, linear algebra, func-
tional analysis or optimization, assume that a basic arithmetic on those “numbers” is available.
Yet, this point of view is not fully satisfactory when designing and implementing algorithms,
since the way numbers are represented and computed with, may have a major impact on the
result accuracy and time complexity.

Although this thesis mainly targets algorithms executed on computers, it is worth noting that
the problem of representing numbers has been raised since the earliest days of mathematics.
Indeed, at the time of by-hand computations, efficient arithmetic operations were certainly
not an unnecessary luxury. Conversely, the power of current computers may result in these
computations being taken for granted by some engineers or numerical analysts. Yet, this
question becomes central again for intensive computations or – closer to our considerations –
rigorous numerics.

After a brief overview of exact representation of numbers, we present the floating-point num-
bers, which are more or less ubiquitous in scientific computing, due to their ability to efficiently
approximate real numbers and operations. This finally leads us to interval arithmetic, which
is to rigorous numerics what floating-point numbers are to numerical analysis: an essential
low-level building block.
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1.1
About exact representations of
numbers

It seems rather natural to start with an exact representation of numbers, which means that
numbers are in a 1-1 correspondence with finite sequences of symbols (or bits, when working
on computers). Obviously, the whole real line ❘ cannot be represented that way, for it is
an uncountable set. However, a wide range of computations actually take place in specific
countable subsets for which exact representations are available. We here provide rather standard
examples.

1.1.1 ◮ Natural numbers

— Who wouldn’t start with them?

Integers are usually employed in a very intuitive and informal manner, even by most mathe-
maticians. This is perfectly sufficient in most cases. For our purpose, it is however relevant to
focus on some aspects of their definition and representation. The few historical remarks below
reflect my own limited knowledge in this fascinating epistemological topic. An extensive survey
is given in the wide-public book [115], supplemented by a second book [114] focusing more
specifically on automated computation.

Set theory

Let us first recall the construction of natural numbers as von Neumann ordinals inside set
theory, which constitutes the most classical foundations of mathematics [256], [109, Chap. 3].

Definition 1.1 (Von Neumann natural numbers) In set theory, natural numbers are induc-
tively constructed from the empty set using set theoretic operations:

0 := ∅, and n+ 1 := n ∪ {n} = {0, 1, . . . , n}, n > 0.

The standard comparison relation is defined by membership:

n < m ⇔ n ∈ m.

Table 1.1 lists the encodings of the first natural numbers following Definition 1.1. Clearly,
the set-theoretic encoding of n has exponential size with respect to n and will never be used in
practice on computers.

Unary system

Another possible encoding is the unary numeral system, in which a natural number n is rep-
resented by a sequence of n copies of a unique symbol. Bigger quantities, like powers of 10,
can be grouped using new symbols. This quite natural encoding is how children usually learn
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0 = ∅
1 = {∅}
2 = {∅, {∅}}
3 = {∅, {∅}, {∅, {∅}}}
4 = {∅, {∅}, {∅, {∅}}, {∅, {∅}, {∅, {∅}}}}
5 = {∅, {∅}, {∅, {∅}}, {∅, {∅}, {∅, {∅}}},

{∅, {∅}, {∅, {∅}}, {∅, {∅}, {∅, {∅}}}}}
6 = {∅, {∅}, {∅, {∅}}, {∅, {∅}, {∅, {∅}}},

{∅, {∅}, {∅, {∅}}, {∅, {∅}, {∅, {∅}}}},
{∅, {∅}, {∅, {∅}}, {∅, {∅}, {∅, {∅}}},
{∅, {∅}, {∅, {∅}}, {∅, {∅}, {∅, {∅}}}}}}

7 = {∅, {∅}, {∅, {∅}}, {∅, {∅}, {∅, {∅}}},
{∅, {∅}, {∅, {∅}}, {∅, {∅}, {∅, {∅}}}},
{∅, {∅}, {∅, {∅}}, {∅, {∅}, {∅, {∅}}},
{∅, {∅}, {∅, {∅}}, {∅, {∅}, {∅, {∅}}}}},
{∅, {∅}, {∅, {∅}}, {∅, {∅}, {∅, {∅}}},
{∅, {∅}, {∅, {∅}}, {∅, {∅}, {∅, {∅}}}},
{∅, {∅}, {∅, {∅}}, {∅, {∅}, {∅, {∅}}},
{∅, {∅}, {∅, {∅}}, {∅, {∅}, {∅, {∅}}}}}}}

Table 1.1: Set-theoretic encodings of the first eight natural numbers

to count. It is moreover a quite practical system to count things incrementally. The tally
sticks [263] [115, Chap. 5], which were animal bones on which notches were carved to count
objects, money or events during the Paleolithic, are one of the first examples of the use of
the unary numeral system. Also, the Moscow Mathematical Papyrus is an ancient Egyptian
papyrus adressing common problems in mathematics and uses the unary system [115, Chap.
14] (a short illustrated introduction to Egyptian numerals may be found at the following web-
page1 [31]).

This linear encoding reflects the axioms of Peano’s arithmetic [253, Peano (1989)]: there is
one 0 (the empty sequence) and the successor operation, obtained by adding one copy of the
symbol to the sequence, is injective and 0 does not belong to its image. The standard imple-
mentation of natural numbers in the Coq formal proof language closely follows this approach.
The inductive type nat is built from two constructors: a constant O : nat for 0 and a unary
S : nat → nat for the successor. The benefit of such a representation is that the induction
principle automatically associated to this inductive type matches the usual induction principle
on natural numbers [162]:

Inductive nat : Set :=

| O : nat

| S : nat → nat.

nat_rect : ∀ P : nat → Type,

P 0 → (∀ n : nat, P n → P (S n))

→ ∀ n : nat, P n

1http://arindambose.com/?p=737 “Did You Know : The History of Egyptian Mathematics (Part II) – Egyp-
tian Numerals.” by Arindam Bose.
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Positional systems

Throughout history, positional numeration systems [115, Chap. 2] have been adopted by more
and more civilizations under different forms, the decimal system being used almost everywhere
on Earth nowadays 2. The main idea consists in choosing a radix b > 2 and a set Σb of b distinct
symbols that is identified with {0, 1, . . . , b − 1}. Then, a sequence anan−1 . . . a1a0 of symbols

in Σb corresponds to the number N =
n∑

k=0

akb
k. Each nonzero natural number N admits a

unique representation with nonzero leftmost symbol, of length ⌊logbN⌋+ 1. This logarithmic-
size encoding and corresponding logarithmic-time arithmetic operations (addition, subtraction,
multiplication) account for the dominance of positional systems. While the decimal system
that we use in everyday life uses radix 10, most computer systems are based on radix 2.

It is important to note that the (signed or unsigned) integers available at the level of the
processor have fixed size (usually 8 bits for char, 16 for short, 32 for int, 64 for long...). In
fact, they implement modular arithmetic rather than Peano’s arithmetic. When working with
large numbers for which overflows (the memory capicity is exceeded) may occur, one should
use arbitrary-precision integer libraries, which implement numbers as finite bit sequences of
arbitrary size at software level. One of the most widely used such ones is the C GNU Multiple
Precision Arithmetic Library [97] (GNU MP or GMP for short, used for example in the com-
puter algebra systems Maple3 and Mathematica4), providing the mpz_t type for integers. An
example code to compute the factorial function using GMP is given in Table 1.2. The result
does not fit into a 64-bit machine integer.

1.1.2 ◮ Rational numbers

Built on integers, rational numbers also admit exact representations on computers. They are
implemented by the mpq_t type in the GMP library [97].

Definition 1.2 (Rational numbers) The set ◗ of rational numbers is the field of fractions
associated to the ring of integers. Two fractions n1

d1
and n2

d2
(with d1, d2 6= 0) represent the same

rational number if and only if n1d2 = n2d1. The canonical fraction for q ∈ ◗ is by convention
q = n

d with (n, d) coprime and d > 0 (in particular, the canonical representation of 0 is 0
1).

Arithmetic operations are defined as follows:

−n1
d1

:=
−n1
d1

,
n1
d1

+
n2
d2

:=
n1d2 + n2d1

d1d2
,

n1
d1
× n2
d2

:=
n1n2
d1d2

,
n1
d1
÷ n2
d2

:=
n1d2
d1n2

(n2 6= 0).

(1.1)

A wide range of computations in numerical analysis take place inside ◗, e.g. solving linear
systems, interpolating rational values at rational points, solving linear optimization problems

2This decimal dominance concerns not only numbers, but also most physical units. The French Revolution
played a decisive role in that domain, despite the significant failure of decimal time division – not to mention
the reluctance of the “perfide Albion” to adopt the metric system.

3“The GNU Multiple Precision (GMP) Library”, Maplesoft : https://fr.maplesoft.com/support/help/

AddOns/view.aspx?path=GMP
4“Some Notes on Internal Implementation”, Wolfram Mathematica: https://reference.wolfram.com/

language/tutorial/SomeNotesOnInternalImplementation.html
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#include <stdio.h>

#include <gmp.h>

void factorial(mpz_t rop , mpz_t op)

{

// init local variables

mpz_t fact , count;

mpz_init_set_ui(fact , 1);

mpz_init_set_ui(count , 2);

// compute the factorial

while (mpz_cmp(count , op) <= 0) {

mpz_mul(fact , fact , count);

mpz_add_ui(count , count , 1);

}

// assign result and clear variables

mpz_set(rop , fact);

mpz_clear(fact);

mpz_clear(count);

}

int main()

{

mpz_t n, fact_n;

mpz_init_set_si(n, 37);

mpz_init(fact_n);

// compute 37! and print result

factorial(fact_n , n);

mpz_out_str(stdout , 10, fact_n);

printf("\n");

mpz_clear(n);

mpz_clear(fact_n);

return 0;

}

Table 1.2: Example C code using GMP to implement the factorial. The output of this
program is: 13763753091226345046315979581580902400000000.
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field ◗ of algebraic numbers over ◗ [105, Chap. 4].

Definition 1.4 (Algebraic number) A real (or complex) number a is algebraic over ◗ if
there exists a nonzero polynomial P with rational coefficients such that P (a) = 0.

Theorem 1.5 (◗ is a subfield of ❈ [105, Thm. 50]) If a and b are algebraic, then so are
a+ b, a− b, ab and, if b 6= 0, a/b.

The fact that ◗ is closed under these operations directly follows from the observation that
a is algebraic if and only if {an, n ∈ ◆} spans a finite-dimensional ◗-vector space. More-
over, the corresponding annihilating polynomials are efficiently computed using the notion of
resultant [257, 236, Chap. 6].

These operations on polynomials allow for an algorithmic arithmetic for algebraic numbers.
An algebraic number a ∈ ◗ is represented by a polynomial P ∈ ◗[x] such that P (a) = 0
together with an interval a = [a, a] ⊆ ❘ (a, a ∈ ◗) such that a is the only root of P in a.
Arithmetic operations are performed by applying the above transforms on polynomials and the
corresponding operations on intervals (defined in Section 1.3). As explained in [236], the
interval enclosures a of a and b of b must sometimes be made tighter to ensure that the interval
enclosure a�b of a∗ b contains only one root of the resulting polynomial (see Example 1.29).
Such a representation of algebraic numbers is:

◦ exact because to one pair (P, i) can correspond only one value, i.e., the algebraic number
under consideration, and this property is maintained by the arithmetic operations;

◦ effective because arithmetic operations are given by algorithms, and (in)equalities are
decidable [236].

Beyond exact representations. In the above paragraphs, exact and effective representa-
tions for certain classes of real and complex numbers have been given. They offer the advantage
of performing exact computations (that is, without numerical error). However, as illustrated
by Example 1.3, the bit size of such representations tends to rapidly grow during the compu-
tation, inducing substantial space and time complexities.

The next section focuses on floating-point arithmetic, where exactness is sacrificed to practical
efficiency. Interval arithmetics will be presented in Section 1.3 as a compromise between
efficiency and reliability, where exact is replaced by rigorous or set-valued numerics, meaning
that a computed interval necessarily contains the correct mathematical value.

1.2 Floating-point arithmetic

The floating-point numbers are one of the most popular formats to approximately represent
real numbers, while avoiding the complexity issues discussed in the previous section. Roughly
speaking, they consist in keeping only a finite number of bits in the binary expansion of a num-
ber. In the early days of computers, each hardware implementation used its own specification
of floating-point arithmetic. This led to different results for the same computation performed
on different architectures, violating the principle of reproducibility.
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In response to this increasingly chaotic situation, the IEEE 754-1985 standard for floating-
point arithmetic [112] was born in 1985 out of a joint effort between industry actors and
academic research. Since then, a new version of the standard (IEEE 754-2008) was adopted in
2008 [113]. The interested reader can find a thorough introduction to floating-point arithmetic
as defined by this standard in [177]. This section focuses on the most basic definitions as well
as the notion of rounding errors, which are a direct consequence of the discretization of the real
line induced by floating-point numbers.

1.2.1 ◮ Floating-point numbers

A reference definition of floating-point numbers is given in [177, Sec. 2.1.1].

Definition 1.6 (Floating-Point Numbers) Given:

◦ an integer radix β > 2 (β = 2 in most implementations),

◦ an integer precision parameter p > 2,

◦ and extremal exponents emin, emax ∈ ❩∪ {−∞,+∞} such that −∞ 6 emin < 0 < emax 6

+∞,

a triple (s,m, e) represents the floating-point number x if:

x = (−1)s ·m · βe−p+1,

where:

◦ s ∈ {0, 1} is the sign bit,

◦ e is the (integer) exponent satisfying emin 6 e 6 emax,

◦ m is the integral significand belonging to the set M = J0, βp − 1K of nonnegative integers
representable in radix β using p “digits”. The normal significand m ·2−p+1 has one “digit”
before the point and p− 1 after:

m · 2−p+1 = m0.m1m2 . . .mp−1 6 β.

We denote by ❋emin,emax

β,p the set of floating-point numbers representable in this way:

❋
emin,emax

β,p = {x = (−1)s ·m · βe−p+1, s ∈ {0, 1}, e ∈ Jemin, emaxK,m ∈M}.

From Definition 1.6, it appears that two different triples may represent the same floating-
point number. By convention, the first “digit” of the integral significand m must be nonzero,
and normalizing a floating-point number in this way is always possible by reducing the exponent
e, unless we reach the minimal exponent emin. This results into the following two classes of
floating-point numbers [177, Sec. 2.1.2]:

◦ normal numbers with e ∈ Jemin, emaxK and m ∈ Jβp−1, βp − 1K;

◦ subnormal numbers with e = emin and m ∈ J0, βp−1 − 1K.

The presence of subnormal numbers allows for a uniform filling of the gap between 0 and the
smallest normal floating-point number 2emin .

For the sake of simplicity, we omit to explicitly mention the exponent range Jemin, emaxK as
well as the precision p. We therefore simply denote by ❋ a given binary floating-point system.
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50 bits, one can express the distance from the Earth to the Moon with an error less than
the thickness of a bacterium”. Nevertheless, some particularly ill-conditioned problems
(see Example 1.10) require a higher floating-point precision. In such cases and despite
their lower efficiency, resorting to multiple-precision floating-point libraries may be neces-
sary. One of the most popular is MPFR [83], which provides highly optimized correctly
rounded elementary functions to arbitrary user-defined precision.

◦ A more recent trend consists in taking advantage of the parallel architectures, such as
Graphics Processing Units (GPUs), for high performance computing (HPC). Several li-
braries were recently developed to port multiple-precision floating-point arithmetic to
GPUs. The particularly promising CAMPARY library5 [130, 201] implements arith-
metic operations using floating-point expansions, that is, unevaluated sums of floating-
point numbers, within arbitrary precision and with proved error bounds. This is a major
step toward efficient multi-precision computing, and, closer to our interest, efficient in-
terval arithmetic (Section 1.3).

1.2.2 ◮ Rounding modes and rounding errors

Replacing real numbers by floating-point numbers necessarily induces a discretization of the
real line (see Figure 1.3). Whereas each floating-point number can be seen as a real number
in a unique way, the converse is not true: most of the real numbers cannot be represented as
elements of ❋. Hence, numerical errors are an intrinsic limitation of floating-point computation,
even for the basic arithmetic operations such as addition or multiplication.

A relevant notion to estimate these numerical errors is the unit in the last place (ulp), defined
as follows [177, Def. 2.6]:

Definition 1.7 (Unit in the last place – Goldberg’s definition) For a nonzero real number
x, let e ∈ ❩ such that 2e 6 |x| < 2e+1. Then:

ulp(x) = 2max(e,emin)−p+1.

If x is a (normal or subnormal) floating-point number, then ulp(x) is the power of two repre-
sented by the right-most digit of its significand.

The unit in the last place corresponds to the distance between two consecutive floating-point
numbers in one binade, that is with the same exponent (See Figure 1.3). It is particularly
useful to bound the effect of rounding numbers, as it will appear below.

Rounding modes and errors

The operation of replacing a real number by an approximating floating-point number is called
rounding [177, Sec. 2.2]. The IEEE 754 standard defines four rounding modes:

◦ Round towards −∞: RD(x) is the largest floating-point number smaller or equal to x,
possibly equal to the exceptional value −∞:

RD(x) = max {y ∈ ❋, y 6 x}.
5available at http://homepages.laas.fr/mmjoldes/campary/
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approximate counterparts in ❋. At the beginning of floating-point arithmetic, the specifications
of hardware implementations were rather vague concerning those approximated operations. In
practice, the same computation performed on different machines could produce quite different
results. Since the adoption of the IEEE 754-1985 standard by most architectures, things have
improved considerably. A major requirement of the standard is for these basic operations
to be correctly rounded with respect to the four rounding modes of Proposition 1.8 [113]:
for any operation ∗ ∈ {+,−,×, /,√} and rounding mode ◦ ∈ {RU,RD,RZ,RN}, there is a
corresponding floating-point operation ∗̃◦ satisfying

x ∗̃◦y = ◦(x ∗ y), for all x, y ∈ ❋.

By default, standard processors use the round-to-nearest mode. The C file fenv.h defines
macros FE_DOWNWARD, FE_UPWARD, FE_TOWARDZERO, and FE_TONEAREST for, respectively, RD, RU, RZ,
and RN. Functions int fegetround(void) and int fesetround(int round) allow one to get the
current rounding mode and set it to another one. However, changing the rounding mode has a
non-negligible cost and should be used with caution.

In the MPFR software library [83], the rounding mode (MPFR_RNDD, MPFR_RNDU, MPFR_RNDZ, or
MPFR_RNDN) has to be specified for each elementary operation. The result is guaranteed to be
correctly rounded, whatever the precision p is.

Remark 1.9 The directed rounding modes RD and RU will be particularly useful for interval
arithmetics in Section 1.3. For convenience, they will be denoted by ⊲ (x) and ⊲(x), instead of
RD(x) and RU(x).

Example 1.10 (Hilbert matrix inversion using floating-point arithmetic) Pursuing Exam-

ple 1.3, we now address the inversion of Hn, the Hilbert matrix, using a standard Gaussian
elimination procedure (with pivots) with double-precision machine floating-point numbers. The
first remark concerns efficiency: the computation time is drastically reduced compared to the
same experiment with rational numbers, and the timings are now in accordance with a time
complexity in O(n3) (see Table 1.4a).

However, the Hilbert matrix is well-known to be particularly ill-conditioned (see [17] and ref-
erences therein), meaning that the propagation and accumulation of small elementary rounding
errors due to floating-point arithmetic may lead to significant errors in the end. Figure 1.4b

plots the maximum absolute value of the entries in the floating-point evaluation of the matrix
H−1

n Hn − 1.

Rounding error analysis is an important topic of numerical analysis. It consists in provid-
ing bounds on rounding errors in the final result of more or less complex algorithms, such as
dot products, polynomial evaluation schemes, linear algebra routines, etc. [106]. Although we
do not give details here, some insight will be provided in Chapter 8, regarding a method for
obtaining polynomials which minimize both approximation and evaluation errors.
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example in the rigorous polynomial approximations of Chapter 3.
This chapter is a rather compact, yet sufficient introduction to interval analysis for the

purpose of this manuscript. We refer to the following reference textbooks [174, 247, 221, 183]
for a more detailed account of this topic, as well as this dedicated webpage6.

1.3.1 ◮ Intervals: definitions, operations and properties

In the following, we define the set of intervals with endpoints in ❇ for some subset ❇ of ❘.
Usually, ❇ = ❘ when considering mathematical real intervals, whereas ❇ = ❋ (for some set ❋
of floating-point numbers defined in Section 1.2) will be used for intervals with floating-point
endpoints, which are concrete computational objects.

Definition 1.11 (Intervals) For ❇ ⊆ ❘, the set ■❇ of closed intervals of the real line with
endpoints in ❇ is

■❇ := {x = [x, x] = {x ∈ ❘ | x 6 x 6 x}, x ∈ ❇ ∪ {−∞} ∧ x ∈ ❇ ∪ { +∞}},

where, by convention, the endpoints x and x of x are excluded if equal to ±∞.
We call x (resp. x) the lower bound (resp. upper bound) of x, w(x) := x− x its width, and

mag(x) := max(x,−x) its magnitude (both equal to +∞ if x or x is ±∞). Note that [x, x] = ∅
if x < x.

Remark 1.12 It may be convenient to add an extra constant |= ❇ to the set ■❇ that corre-
sponds to a possible execution error during the computation. In that setting, |= ❇ is the largest
element of ■❇ (for the inclusion): it contains all the real numbers, plus possibly some error
symbols.

Definition 1.13 (Point intervals) For any x ∈ ❘, the singleton [x] := [x, x] = {x} is called
a point interval. This allows for injecting ❘ into ■❘.

Since ❋ is discrete in ❘, one can only define thin intervals mapping ❘ to ■❋:

[x]❋ :=

{
{x} if x ∈ ❋,
[ ⊲ (x), ⊲(x)] otherwise.

Note that two real numbers have the same corresponding thin interval if they both lie between
the same two consecutive floating-point numbers.

Definition 1.14 (Set-theoretic operations) The intersection of two intervals is an interval:

x 7 y :=





y if x = |= ❇,
x if y = |= ❇,

[max(x, y),min(x, y)], if x = [x, x] and y = [y, y].

6http://www.cs.utep.edu/interval-comp/
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The union of two intervals is not necessarily an interval, but it is always contained in an
interval called the convex hull:

x 6 y :=





|= ❇ if x = |= ❇ or y = |= ❇,
y if x = ∅,

x if y = ∅,

[min(x, y),max(x, y)], if x = [x, x] and y = [y, y].

Remark 1.15 (Ball arithmetic [252]) As an alternative to interval arithmetic, one can
also use a midpoint-radius representation, called ball arithmetic, to define intervals or real
numbers. Although completely equivalent from the mathematical point of view, this approach
has advantages and drawbacks over interval arithmetic when implemented with floating-point
numbers [252, 219, 125].

Interval extension: a fundamental requirement

The notion of interval extension, or inclusion principle, is central in interval arithmetic [221,
Sec. 5.5].

Definition 1.16 (Interval extension and range) Let k > 1, A ⊆ ❘k and f : A → ❘ be a
k-ary function. An interval function f : ■❇

k → ■❇ is called an (■❇-)interval extension of f if

∀x1, . . . , xk ∈ ■❇, ∀x1, . . . , xk ∈ ❘,
x1 × . . . xk ⊆ A ∧ ∀i ∈ J1, kK, (xi ∈ xi) ⇒ f(x1, . . . , xk) ∈ f(x1, . . . , xk).

If A is compact and f is continuous over A, then the range of f over x1 × · · · × xk ⊆ A,
defined as

f(x1, . . . , xk) := {f(x1, . . . , xk), xi ∈ xi for i ∈ J1, kK},

gives the tightest ■❘-interval extension of f . In the general case, the range may not be a closed
interval, but it is still contained in all ■❘-interval extensions of f .

Remark 1.17 When ■❇ is defined to contain an exceptional interval |= ❇, Definition 1.16

can be extended by requiring that f(x1, . . . , xk) = |= ❇ if x1 × · · · × xk * A, that is one of the
arguments of f potentially lies outside its domain of definition.

In addition, the isotonicity property requires that more precise input gives more precise
output, in terms of interval inclusion [174, Sec. 4.3].

Definition 1.18 (Inclusion isotonicity) An interval extension f of f is said inclusion isotonic
if

∀x1, . . . , xk, y1, . . . , yk ∈ ■❇, ∀i ∈ J1, kK, xi ⊆ yi ⇒ f(x1, . . . , xk) ⊆ f(y1, . . . , yk).

Interval arithmetic operations

The range of arithmetic operations on real numbers, explicitly given in the following definition,
yields a natural isotonic ■❘-interval extension � for each elementary operation ∗ [174, Sec.
2.3].
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Definition 1.19 (Arithmetic operations on real intervals) Arithmetic operations on ■❘ are
defined as the range of the corresponding operations in ❘. For any x = [x, x] and y = [y, y] in
■❘,

0 := [0], 1 := [1],

x � y := [x+ y, x+ y],

� y := [−y,−y],
x � y := [x− y, x− y],
x � y := [min(xy, xy, xy, xy),max(xy, xy, xy, xy)],

y−① :=

{

|= ❘ if 0 ∈ y,

[min(y−1, y−1),max(y−1, y−1)] otherwise,

x � y := x � y−①,

x② :=

{
[0,max(x2, x2)] if 0 ∈ x,

[min(x2, x2),max(x2, x2)] otherwise.

Note that, in the definition of �, 0 is absorbent over ±∞. Moreover, |= ❘ is absorbent for all
these operations.

It is important to notice that, if the operations given above are correct w.r.t. the inclusion
principle, they do not define a ring nor field structure over ■❘. Indeed, as is shown by the
proposition below (whose proof may be found in [129, Prop. 1.3.11]), only weaker properties
are satisfied.

Proposition 1.20 Interval arithmetic partially preserves the field structure of ❘:

◦ Associativity and commutativity of addition are preserved:

(x � y) � z = x � (y � z), x � y = y � x.

◦ 0 is neutral for addition: x � 0 = x.

◦ 0 ⊆ x � x, but equality does not hold in general.

◦ Associativity and commutativity of multiplication are preserved:

(x � y) � z = x � (y � z), x � y = y � x.

◦ 1 is neutral for multiplication: 1 � x = x.

◦ 0 is absorbent for multiplication: 0 � x = 0 whenever x 6= |= ❘.

◦ 1 ⊆ x � x, but equality does not hold in general.

◦ Multiplication is only sub-distributive over addition:

x � (y � z) ⊆ x � y � x � z.

◦ x② ⊆ x � x, but equality does not hold in general.
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Floating-point interval arithmetic

On the computational side, arithmetic operations on floating-point intervals are defined simi-
larly but with directed rounding, in order to maintain floating-point endpoints. Although those
operations do not coincide anymore with the exact range, they are still valid interval extensions
of the corresponding operations in ❘.

Definition 1.21 (Arithmetic operations on floating-point intervals) Arithmetic operations
on ■❋ are defined as follows. For any x = [x, x] and y = [y, y] in ■❋,

x �̃ y := [ ⊲ (x+ y), ⊲(x+ y)],

�̃ y := [−y,−y],
x �̃ y := [ ⊲ (x− y), ⊲(x− y)],
x �̃ y := [min( ⊲ (xy), ⊲ (xy), ⊲ (xy), ⊲ (xy)),max( ⊲(xy), ⊲(xy), ⊲(xy), ⊲(xy))],

y−①̃ :=

{

|= ❋ if 0 ∈ y,

[min( ⊲ (y−1), ⊲ (y−1)),max( ⊲(y−1), ⊲(y−1))] otherwise,

x �̃ y :=

{

|= ❋ if 0 ∈ y, otherwise:

[min( ⊲ (x/y), ⊲ (x/y), ⊲ (x/y), ⊲ (x/x)),max( ⊲(x/y), ⊲(x/y), ⊲(x/y), ⊲(x/y))],

x②̃ :=

{
[0,max( ⊲(x2), ⊲(x2))] if 0 ∈ x,

[min( ⊲ (x2), ⊲ (x2)),max( ⊲(x2), ⊲(x2))] otherwise.

Implementations of FP interval arithmetic are an essential component of rigorous nu-
merics software. Beyond their correctness, they are also optimized to reduce as much as possible
the efficiency gap between floating-point and interval arithmetics. It is therefore highly recom-
mended to resort to such implementations if possible, rather than writing ad-hoc code, which
is often error-prone and most of the time less competitive. Reference libraries include: MPFI
[210], in C and based on MPFR [83], with a C++ wrapper; C-XSC [139], in C++; INT-
LAB [220], an extension of MATLAB; ARB [125], a very efficient implementation of ball
arithmetic in C (see Remark 1.15). A detailed survey comparing these implementations may
be found in [100].

On the formal proof side, CoqInterval [171] provides a formalization of interval arithmetic
inside the Coq proof assistant, based on emulated floating-point numbers from the Flocq
library [30].

Natural interval extensions using interval arithmetic

Interval extensions for elementary functions are built based on their monotonicity properties.
We assume that computable isotonic interval extensions

√√
, exp, ln, cos, sin, tan, acos, asin

and atan are available for
√

, exp, ln, cos, sin, tan, acos, asin and atan. This is for example
the case in the MPFI library.

Given a k-ary function f : A → ❘ with A ⊆ ❘k, defined using elementary functions,
arithmetic operations and composition, one can construct a so-called natural interval extension
f of f by replacing all the symbols of functions and operators by the corresponding interval
ones. Such a f is a valid interval extension for f , as stated by the following theorem (see [247,
Thm. 3.8]).
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Theorem 1.22 (Fundamental theorem of interval arithmetic) The natural interval extension
f of a k-ary function f : A→ ❘ with A ⊆ ❘k is an isotonic interval extension of f , that is, f

satisfies the inclusion and isotonicity principles w.r.t. f .

Natural interval extensions are sometimes called non-intrusive methods, since a piece of
code written with floating-point operations can easily be transposed to interval arithmetic by
overloading the operators and elementary functions with intervals, thus not modifying the code
itself.

1.3.2 ◮ Interval subdivision techniques

Let f : i→ ❘ be a continuous function defined over a compact interval i, and f be an interval
extension of it. In general, f(i) only provides a rough overapproximation of the exact range
f(i) = [min

x∈i
f(x),max

x∈i
f(x)]. This may be quite inconvenient for various tasks, such as positivity

check or global optimization.
A common way to address such problems is to use interval subdivision, possibly combined

with branch and bound techniques (see [247, Chap. 5]. The idea is the following:

◦ The interval i is subdivided into smaller intervals jk ⊆ i.

◦ Each time f(jk) is considered not precise enough, jk is further subdivided into smaller
intervals.

◦ When f(jk) satisfies a pruning condition (meaning that it contains enough information
for the target problem), jk is not subdivided anymore.

◦ A maximum subdivision depth is fixed by the user, so that the process eventually termi-
nates.

Let us illustrate this process with two examples.

Example 1.23 (Checking positivity) Consider the function f : x 7→ 1
1+x −x+x2, and prove

that f(x) > 0 for x ∈ [0, 4] (see Figure 1.5a), using only interval analysis techniques – being
clear that classical analysis techniques easily handle this toy example.

Let f denote the natural interval extension of f : the first attempt consists in applying it to
[0, 4]:

f([0, 4]) = 1 � (1 � [0, 4]) � [0, 4] � [0, 4]②

= 1 � [1, 5] � [0, 4] � [0, 16] = [
1

5
, 1] � [0, 4] � [0, 16] = [−19

5
, 17].

Unfortunately, the range enclosure [−19
5 , 17] is not sufficient to assert the positivity of f over

[0, 4]. Therefore, [0, 4] is subdivided into (for example) [0, 2] and [2, 4], and f is evaluated on
both intervals. Since f([2, 4]) = [15 ,

43
3 ] guarantees the positivity over [2, 4], this interval does not

need subdividing anymore: this is the pruning condition. On the contrary, f([0, 2]) = [−5
3 , 5] is

not precise enough to complete the proof, thereby requiring further subdividing.
Finally, a subdivision depth at least equal to 4 is needed to prove the positivity of f over [0, 4].

The subdivision tree and the resulting plot are depicted in Figure 1.5.
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◦ At step k, the next interval xk+1 is computed as

xk+1 = xk 7N(xk), where N(x) = [mid(x)] � f([mid(x)]) � df(x).

Theorem 1.26 (Correctness of Interval Newton’s method [174, Thm. 8.1]) If x∗ ∈ x0 ⊆ i

is a root of f , then x∗ ∈ xk for all k > 0.

Proof. The assertion is proved by induction on k. The base case k = 0 is the assumption of
the theorem. For the inductive step, one just needs to prove that x∗ ∈ x implies x∗ ∈ N(x), for
any x ⊆ i. According to Equation (1.2), where x is instantiated with x̃ = mid(x), two cases
are possible:

◦ Either f(x̃) = 0, in which case x̃ ∈ N(x) because 0 ∈ f([x̃]). If x̃ = x∗, the proof is
completed. Otherwise, by the mean value theorem, 0 ∈ df(x), hence N(x) = |= .

◦ Or there exists a ξ ∈ [min(x̃, x∗),max(x̃, x∗)] ⊆ x such that x∗ = x̃− f(x̃)
f ′(ξ) . Then x̃ ∈ N(x)

follows from the correctness of interval operations.

Remark 1.27 If f ′ vanishes over x0, then xk = x0 for all k > 1 (since N(x0) = |= ).
Otherwise, f is strictly monotonic over x0 and therefore it changes sign once, with x∗ its unique
root. In that case, Interval Newton’s method can be combined with dichotomy by modifying
slightly its definition:

yk =





[xk,mid(xk)] if f([xk]) � f([mid(xk)]) ⊆ [−∞, 0],
[mid(xk), xk] if f([xk]) � f([mid(xk)]) ⊆ [0,+∞],

xk otherwise,

xk+1 := yk 7 ([mid(xk)] � f([mid(xk)]) � df(yk)) .

Analogously to the classical Newton’s method, one can prove a quadratic asymptotic con-
vergence rate for this interval version, at least for restricted classes of function f . This means
that asymptotically, each iteration doubles the number of correct digits.

Theorem 1.28 (Quadratic convergence rate of Interval Newton’s method [174, Lem. 8.1])
If:

◦ f is a rational function with a unique root and no pole in i;

◦ f and df are the natural interval extensions of f and f ′;

◦ f(i) 6= |= , df(i) 6= |= and 0 /∈ df(i);

then there exists an initial interval x0 ⊆ i and a constant C > 0 such that

w(xk+1) 6 Cw(xk)
2, k > 0.

The proof may be found in [173, Lem. 7.4].
The exact computation with algebraic numbers described in Section 1.1.3 emphasizes the

importance of Theorem 1.28, for the latter provides as tight as desired rigorous interval
enclosures required by the former. The example below illustrates the efficiency of Interval
Newton’s method for algebraic numbers.
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1.3.4 ◮ Limitations

In view of the foregoing, it might be tempting to use interval arithmetic everywhere, by replac-
ing all floating-point numbers and operations by the interval analogues. Besides computational
efficiency issues (clearly, interval arithmetic is at least twice slower than standard floating-point
arithmetic for the same precision), a main problem is the sometimes important overapproxi-
mations of interval analysis, even in situations where the floating-point computations are quite
reliable.

A major shortcoming of interval analysis is that the correlations between variables are lost,
since in the end all quantities are overapproximated by their range. This limitation appears
in the classical problematic cases given below. A more detailed survey of these shortcomings
of interval arithmetic can be found in [174, 247, 221]. This emphasizes the need for more
sophisticated higher order methods, which is addressed in the next chapters.

Range overapproximation. While natural interval extensions of functions have the advan-
tage of providing an easy way to compute rigorous enclosures of the range, they may return
extremely large and therefore useless approximations. Moreover, two different expressions for
the same real-valued function lead to two different natural interval extensions, because ■❘ does
not satisfy all the relations in ❘ (see Proposition 1.20), e.g. x− x = 0 holds for any x ∈ ❘,
but [−a, a] � [−a, a] = [−2a, 2a] 6= 0 for a > 0.

One significant consequence is that the computed enclosure of the range of a function strongly
depends on its syntax tree, that is, its concrete expression using mathematical symbols. Con-
sider for example three different evaluation schemes for the same degree-2 polynomial (the
standard form, the Horner form and the factorized form):

f1(x) = x2 − 2x+ 1, f2(x) = (x− 2)x+ 1, f3(x) = (x− 1)2.

Let i = [−1, 2], we get using the corresponding natural interval extensions:

f1(i) = [−3, 7], f2(i) = [−5, 4], f3(i) = [0, 4].

Only the last one gives the exact range. The second one gives the correct upper bound, but
both f1 and f2 fail to prove the nonnegativity of f over i.

Highly canceling functions are particularly subject to huge overapproximations, thereby forc-
ing the user to subdivide the input interval to obtain a reasonable enclosure. Let us illustrate
this phenomenon with the Taylor remainders for the cosine function,

fn(x) =

∣∣∣∣∣cos(x)−
2n∑

i=0

(−1)i x
2i

(2i)!

∣∣∣∣∣ , n > 0, (1.3)

for which we compute a rigorous uniform upper bound mn over i = [−1, 1] using the optimiza-
tion method of Section 1.3.2, with a 10% tolerance. Bounding f0 requires 20 subintervals,
192 are needed for f1, 5, 078 for f2, 259, 688 for f3...! This highlights the limitations of such an
approach to bound the error of accurate polynomial approximations.

Wrapping effect. The term wrapping effect [184] refers to all the overapproximation phe-
nomena appearing when rigorously enclosing a region of ❘n using intervals for the coordinates.
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Indeed, Cartesian products of intervals only model hyperboxes of ❘n. This is particularly
troublesome for problems involving iterations, like in dynamical systems theory.

We illustrate this phenomenon using a very elementary dynamical system in the plane,
namely a rotation of some angle t:

ft :

(
x
y

)
7→
(

cos(t)x− sin(t)y
sin(t)x+ cos(t)y

)
, (x, y) ∈ ❘2.

Let t be a thin interval around t. Both components of ft admit natural interval extensions
using cos and sin, yielding an interval extension ft : ■

2 → ■2.
Let B = [−1, 1]×[−1, 1] ⊆ ❘2. Then for all k > 0, Bk := fkt (B) is a rotated square contained

in the Euclidean centered ball of radius
√
2 (see Figure 1.8a). The interval version of this

iteration is:

x0 = y0 := [−1, 1], and

(
xk+1

yk+1

)
:= ft

(
xk
yk

)
, k > 0,

so that Bk ⊆ xk × yk for all k.
However, since a rotated square Bk can only be overapproximated by a box xk × yk, each

iteration increases the size of the box, as shown in Figure 1.8a for t = π
10 . While the Euclidean

norm of Bk always remains
√
2, Figure 1.8b shows the exponential grow of the magnitude of√√

xk② � yk②. This is the wrapping effect.

Matrix inversion. The inversion of matrices is a typical operation that requires a particular
care when implemented with intervals. In most cases, replacing all floating-point operations by
interval ones in a standard Gaussian elimination procedure is not a proficient solution. Indeed,
the intervals tend to rapidly grow and the algorithm fails to find a pivot not containing zero,
even if the initial matrix was far from singular. Of course, its is clear that ill-conditioned
matrices induce large intervals, since those ones contain both the exact mathematical value
and the floating-point evaluation. However, even well-conditioned matrices most of the time
lead to the same problems, as illustrated by the example below.

In fact, rigorous inversion of matrices is never performed like this in practice, except for
very small dimension. Instead, fixed-point based a posteriori methods are employed (see Sec-
tion 3.3.3).

Example 1.30 (Interval Gaussian elimination) The Lehmer matrix Ln =
(

min(i,j)
max(i,j)

)
16i,j,6n

is an example of a well-conditioned matrix, as illustrated by the error plot of Figure 1.9a.
However, we observe that using Gaussian elimination produces large intervals and the procedure
rapidly fails to find a pivot not containing 0. Figure 1.9b plots the minimal underlying floating-
point precision needed for intervals to ensure that Gaussian elimination terminates, that is one
pivot not containing zero was found at each iteration. Clearly, this method is inadequate for
intensive rigorous computations with large matrices. More details on this pitfall can be found
in [221, Sec. 10.1].
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Computing with Functions 2

– Mais encore faut-il croire quelque chose dans le monde : qu’est-ce donc que vous croyez ?
– Ce que je crois ?

– Oui.
– Je crois que deux et deux sont quatre, Sganarelle, et que quatre et quatre sont huit.

— Molière, Don Juan ou le Festin de pierre

To a certain extent, computing with functions follows the same guidelines as computing with
numbers, which was the subject of the preceding chapter. Indeed, elementary classes of func-
tions admit exact representations together with algorithms to manipulate them: polynomials,
rational functions, algebraic functions, etc. However, the algebraic theory of such functions
is more complicated, and algorithms are often more costly than for numbers. Section 2.1
is a short introduction to a particularly important – but maybe still not completely standard
– class of functions: the D-finite functions, which will play a central role on many occasions
throughout this thesis. These functions are defined as the solutions of linear ordinary differen-
tial equations (LODEs) with polynomial coefficients. Due to the efforts of an active community
in this domain, efficient implementations available notably in Maple and Mathematica make
it possible to manipulate them as data structures.

Yet, D-finite functions do not cover all the standard functions encountered in mathematics,
a simple counter-example being the tan function. Hence, in order to efficiently compute with
larger classes of functions, we resort to approximate representations of functions, in an analogy
with floating-point numbers being used to approximate real numbers. However, the picture
becomes more complex with functions: Which set of approximating functions do we choose?
Polynomials are one possibility among others. How do we represent these polynomials, in which
basis? Which norm do we use to quantify the quality of approximations? Some answers to these
questions are provided in a condensed summary of approximation theory given in Section 2.2.
This will be particularly helpful for Chapters 4 and 5, where Chebyshev expansions for D-
finite functions are computed and validated. In contrast with this mathematical point of view
about function approximation, Chapter 8 gives an application where computer-specific aspects
are taken into account, such as rounding errors due to the use of floating-point arithmetic.

By presenting both exact and approximate representations of functions, this chapter gives
the necessary preliminaries before getting to the heart of the matter in Chapter 3: the rigorous
polynomial approximations, that bring rigorous numerics to the level of functions, allowing for
validated computations in function spaces, as well as intervals were used at the level of numbers.
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2.1
D-finite functions: a successful
example of exact representations

D-finite functions are the solutions of linear ordinary differential equations (LODEs) with poly-
nomial coefficients (cf Definition 2.1). As mentioned in the introduction, a wide range of
usual mathematical functions fall into this category: rational functions, algebraic functions,
exp, cos, sin and their reciprocals, Bessel functions, etc. The fact that about 60% of functions
listed in the famous Handbook of mathematical functions [2] are D-finite [222] is often put
forward to advocate their central role in a wide range of applications.

D-finite functions (for differentially finite functions), were formally introduced in 1980 by
Stanley [234], although many of their properties had already been studied in the second half
of the nineteenth century by Cauchy, Fuchs and Frobenius, among others. The development of
modern and efficient computer algebra systems then increased the interest of mathematicians
for them, and an active community rapidly emerged to embrace different aspects, such as
connections with combinatorics, or summation/integration algorithms by Zeilberger’s Creative
Telescoping [269, 59], which makes it possible to compute closed forms for expressions involving
sums and integrals. This extended abstract [223] provides a broad overview of the fascinating
properties and applications offered by D-finite functions.

The key idea about D-finite functions is that they can really be represented and manipulated
as a data structure [223], that is, a LODE with polynomial coefficients together with sufficiently
many initial conditions. Based on that, the Maple package Gfun1 [224] provides a user-
oriented framework to efficiently compute with (univariate) D-finite functions. Section 2.1.1
gives a brief overview of how this is possible, thanks to elementary definitions and properties
about univariate D-finite functions. These notions will be useful in Chapter 4.

In a second time, Section 2.1.2 addresses the more complicated theory of multivariate D-
finite functions, which have also been implemented in Maple and Mathematica with the
Mgfun2 [59] and HolonomicFunctions3 [142] packages, respectively. In particular, this
is the starting point of a wide range of the aforementioned Creative Telescoping algorithms
(Section 2.1.3). Multivariate D-finite functions and Creative Telescoping will be marginally
used in Chapter 6, and they will “play the lead role” in Chapter 9.

2.1.1 ◮ D-finite functions: the univariate case

Throughout this section, ❑ denotes a subfield of ❈, usually a computable one, so that the
manipulations and operations described below can be implemented, for instance, in computer
algebra systems. This short introduction to D-finite functions, although sufficient for our
purpose, can be supplemented by the reading of more thorough references, e.g., [234] or [172,
Chap. 5]. Note that our presentation directly considers functions instead of formal power
series, since the global framework of this thesis is mainly analytic, rather than algebraic.

1http://perso.ens-lyon.fr/bruno.salvy/software/the-gfun-package/
2https://specfun.inria.fr/chyzak/mgfun.html
3https://www3.risc.jku.at/research/combinat/software/ergosum/RISC/HolonomicFunctions.html
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Definition 2.1 (D-finite function) Let f : U → ❈ be an analytic function over a domain
U of ❈ (i.e., U ⊆ ❈ is open and connected). Then f is said differentially finite (or, in short,
D-finite) if there exist an order r > 0 and polynomials p0(x), . . . , pr(x) ∈ ❑[x] with pr 6= 0 such
that:

L · f(x) := pr(x)f
(r)(x) + · · ·+ p1(x)f

′(x) + p0(x)f(x) = 0.

Equivalently, its derivatives {f (i), i > 0} span a finite-dimensional space over ❑(x), the field
of rational functions with coefficients in ❑.

Remark 2.2 The function f and its higher order derivatives are analytic, hence meromor-
phic, functions over the domain U . Therefore, seeing them as elements of a ❑(x)-vector field
makes sense.

According to the Picard-Lindelöf theorem [62, Thm. I.3.1], the equation L · f = 0 with
prescribed initial conditions f (i)(x0) = vi for i ∈ J0, r−1K and some x0 ∈ U , admits a unique so-
lution. Therefore, a D-finite function is exactly represented by the data (L, U, x0, v0, . . . , vr−1).
This is the basis of the “ linear differential equations as data structure” approach advocated
in [223] and implemented in the Gfun package [224].

The following theorem gives crucial closure properties of D-finite functions under usual op-
erations, allowing for defining an arithmetic on those functions.

Theorem 2.3 Let f, g be D-finite functions over a domain U of ❈. Then:

◦ λf is D-finite, for any λ ∈ ❑;

◦ f + g is D-finite;

◦ fg is D-finite;

◦ f ′ is D-finite;

◦ any primitive F of f (i.e., F ′ = f) is D-finite;

◦ f ◦ h is D-finite for any algebraic function h over ❑.

Proofs of these properties may be found in [234, Thms. 2.3 and 2.7]. Roughly speaking,
the key argument is that higher order derivatives of D-finite functions span a finite-dimensional
linear subspace over ❑(x). For example, consider the addition of two D-finite functions f and
g, of respective order r and s. First, {f (i), i ∈ J0, r−1K} and {g(j), j ∈ J0, s−1K} are generating
families for the ❑(x)-linear subspaces spanned by the derivatives of f and g, respectively. Now,
the derivatives of f + g are all contained in the subspace spanned by {f (i)g(j), i, j > 0}, and
the previous remark implies that {f (i)g(j), i ∈ J0, r − 1K, j ∈ J0, s − 1K} is a generating family.
Therefore, the derivatives of f + g necessarily span a finite-dimensional subspace over ❑(x).

The proofs of these closure properties are translated into effective algorithms by the use of
linear algebra to find ❑(x)-linear relations between the derivatives of f + g, fg, etc., thus
reconstructing a differential equation with polynomial coefficients.

Example 2.4 (Gfun in action) The functions exp and cos are D-finite, since they respec-
tively satisfy:

exp′− exp = 0, exp(0) = 1,

cos′′+cos = 0, cos(0) = 1, cos′(0) = 0.
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The Gfun package for Maple represents these functions as a tuple containing the differential
equation plus the associated initial conditions. Closure operations, implemented as algorithms,
allows us to compute a differential equation for, e.g., exp(x2) + cos(x):

(4x2+3)y′′′+(−8x3−14x)y′′+(4x2+3)y′+(−8x3−14x)y = 0, y(0) = 2, y′(0) = 0, y′′(0) = 0.

Moreover, given an arbitrary univariate expression, the routine holexprtodiffeq automatically
tries to reconstruct such an equation by applying closure operations and recognizing known
functions at the leaves of the expression.

D-finite functions and P -recursive sequences

Another very important feature of D-finite functions is their connection with linear recurrences
with polynomial coefficients, via their Taylor expansion. Specifically, let f be a D-finite function
over a domain U , and x0 ∈ U . By a simple translation, we assume that x0 = 0. Since f is
analytic over U , it has a unique power series expansion around 0:

f(x) =
+∞∑

n=0

anx
n.

Injecting this ansatz in the differential equation L ·f = 0 and formally differentiating the power
series, yields a recurrence relation with polynomial coefficients in n on the an. Such a sequence
(an)n>0 is called P -recursive [234].

Definition 2.5 (P -recursive sequence) A sequence (an)n>0 of complex numbers is called
polynomially recursive (or, in short, P -recursive) if there exist an order r > 0 and polynomials
c0(n), . . . , cr(n) ∈ ❑[n] with cr 6= 0 such that:

(R · a)n = cr(n)an+r + · · ·+ c1(n)an+1 + c0(n)an = 0, for all n ∈ ◆.

The formal equivalence between D-finite functions (or their power series) and P -recursive
sequences is established by the following theorem, stated and proved in [234, Thm. 1.5].

Theorem 2.6 An analytic function f over a domain U containing 0 is D-finite if and only
if its power series expansion at 0 is given by a P -recursive sequence (an)n>0.

Example 2.7 Consider the entire function f(x) = e−x2
cosx. Since exp and cos are

clearly D-finite, so is f , using Theorem 2.3 for the product and the algebraic composition.
The Gfun package for Maple automatically computes a differential equation, thanks to the
routine holexprtodiffeq:

f ′′(x) + 4xf ′(x) + (4x2 + 3)f(x) = 0.

Injecting a power series ansatz f(x) =
+∞∑
n=0

anx
n in this equation gives:

+∞∑

n=0

(
n(n− 1)anx

n−2 + 4nanx
n + 4anx

n+2 + 3anx
n
)
= 0.

Identifying the powers of x in this sum yields the following recurrence relation for the P -recursive
sequence (an):

(n+ 3)(n+ 4)an+4 + (4n+ 11)an+2 + 4an = 0, for all n ∈ ◆.

92



Remark 2.8 (Expansions in other bases) Though the most classical, the power series ex-
pansion of a D-finite function is not the only expansion for which the differential equation auto-
matically translates into a recurrence relation for the coefficients. For example, the Chebyshev
series expansion also has this property. Explicit recurrences are given in [194, 206, 18, 19],
whereas the linear system solved in Chapter 4 implicitly encodes them.

2.1.2 ◮ The multivariate case: D-finiteness vs holonomic-

ity

When moving to the multivariate case, that is, functions f(x1, . . . , xn) depending on n complex
variables x = (x1, . . . , xn) ∈ ❈n, linear ODEs must be replaced by systems of PDEs (with
polynomial coefficients). Contrary to the univariate case, two closely-related notions must be
carefully distinguished: D-finiteness and holonomicity. Related technicalities go far beyond the
scope of this manuscript. Detailed but still intuitive introductions are given in [58, 141].

First, we define formal differential operators.

Definition 2.9 (Weyl algebra or polynomial Ore algebra) The n-th Weyl algebra Dn :=
❑[x]〈∂x〉 = ❑[x1, . . . , xn]〈∂x1 , . . . , ∂xn〉 is the ring of differential operators with polynomial
coefficients, generated by {x1, . . . , xn, ∂x1 , . . . , ∂xn} and quotiented by the relations:

∂xixj =

{
xi∂xi + 1, i = j,

xj∂xi , i 6= j,
xixj = xjxi, ∂xi∂xj = ∂xj∂xi .

We have that {xβ∂x
α,α,β ∈ ◆n} is a basis of Dn as a❑-vector space. If L =

∑
α,β

cα,βx
β∂x

α,

its order is the largest value of |α| such that there exists β with cα,β 6= 0.

Definition 2.10 (Rational Ore algebra) The rational Ore algebra D∗
n := ❑(x)〈∂x〉 =

❑(x1, . . . , xn)〈∂1, . . . , ∂n〉 is the ring of differential operators with rational fraction coefficients,
where the commutation rules of Dn are extended by

∂xiq(x) = q(x)∂xi +
∂q(x)

∂xi
, q(x) ∈ ❑(x).

Differential operators in Dn naturally act on smooth functions via ∂xi · f = fxi :=
∂f
∂xi

. The
annihilator Ann(f) is a left ideal of Dn:

Ann(f) := {L ∈ Dn | L · f = 0}.

One can also see Ann(f) as a left ideal of D∗
n, and the quotient D∗

n/Ann(f) as a ❑(x)-vector
space. Roughly speaking, a function f is D-finite if Ann(f) contains enough equations so that
f can be uniquely characterized by a finite set of initial conditions.

Definition 2.11 An analytic function f over a domain U of ❈n is called D-finite if
D∗

n/Ann(f) has finite dimension. Equivalently, its higher order derivatives {∂α
x · f,α ∈ ◆n}

form a finite-dimensional vector space over the field ❑(x) of rational fractions.
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In other cases, when f is a “generalized function”, for instance a distribution, Ann(f) can
only be seen as a left ideal of Dn and Dn/Ann(f) as a ❑-vector space. For example, the
univariate Dirac distribution, defined by 〈δ, f〉 = f(0), is annihilated (as a distribution) by x,
since 〈xδ, f〉 = 〈δ, xf〉 = 0. However, a left ideal of D∗

1 containing x is necessarily D∗
1, but 1

annihilating δ would imply δ = 0. In that setting, the relevant notion is holonomicity, arising
in Bernstein’s D-module theory [21, 85].

Definition 2.12 Let I be a left ideal of Dn. For L ∈ Dn, let [L]I denote the class of L in
the quotient Dn/I. For s > 0, define

(
Dn�I

)
s
= Span❑

{
[xβ∂α

x ]I, |α|+ |β| 6 s
}
.

Then there exists a polynomial b(s) ∈ ❑[s] such that dim❑(Dn/I)s = b(s) for s large enough.
The degree of b(s) is called the Bernstein dimension of Dn/I. The left ideal I is called holonomic
if the Bernstein dimension of Dn/I is equal to n.

An analytic function f over a domain U of ❈n is said to be holonomic if the Dn-left ideal
Ann(f) is holonomic.

The algorithmic treatment of multivariate D-finite functions is more complex than the uni-
variate case. It requires the use of non-commutative Gröbner bases, which are a generalization
of the classical Gröbner bases for polynomial systems (see for example [85, 59, 140] and ref-
erences therein). Roughly speaking, the idea consists in fixing an appropriate total order on
the monomials {xβ∂α

x ,α,β ∈ ◆n} (in the polynomial case) or {∂α
x ,α ∈ ◆n} (in the rational

case). Then, given an input set of generators for an Dn (or D∗
n)-left ideal I, the Buchberger

algorithm computes a new generating set of the basis with the property that the reduction of
any differential operator L modulo I using this basis and the monomial order is convergent.
This can be seen as an extension of the Euclidean division to this multivariate non-commutative
setting.

Similarly to the univariate case, closure properties for D-finite [59, 140] and holonomic func-
tions [85, 240, 188] under usual operations are available. Using variants of the FGLM algo-
rithm [140], which transforms a Gröbner basis for a given monomial ordering into a new one for
another specified ordering, corresponding D-finite or holonomic annihilating ideals can moreover
be automatically computed. Such manipulations are implemented for example in the Maple
package Mgfun [59] and in the Mathematica package HolonomicFunctions [142].

In Chapter 9, we will also need multi-indexed sequences satisfying linear recurrences with
polynomial coefficients. Such recurrence (or difference) operators are defined as follows.

Definition 2.13 Rn := ❑[α]〈Sα〉 = ❑[α1, . . . , αn]〈Sα1 , . . . , Sαn〉 is the set of difference
operators with polynomial coefficients in α, acting on sequences u = (u(γ1, . . . , γn))γ∈◆n via

(αi · u)(γ1, . . . , γn) = γiu(γ1, . . . , γn),

(Sαi · u)(γ1, . . . , γn) = u(γ1, . . . , γi + 1, . . . , γn), γ ∈ ◆n.

The annihilator Ann(u) = {R ∈ Rn | R · u = 0} is the set of recurrence relations satisfied by
u, which is holonomic when its generating series is holonomic [59].

Note that continuous and discrete variables can be used together, yielding functions f(x,α) =
f(x1, . . . , xn, α1, . . . , αm) with xi ∈ ❈ and αj ∈ ◆. In such a case, the associated Ore algebra:

❑(x,α)〈∂x,Sα〉 = ❑(x1, . . . , xn, α1, . . . , αm)〈∂x1 , . . . , ∂xn , Sα1 , . . . , Sαm〉,

contains differential-difference operators, defined from ∂xi and Sαj , as in the toy example below.
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Example 2.14 (Moments of the Gaussian distribution) Consider the function

f(x, n) := xn
e−x2/2

√
2π

, for x ∈ ❈ and n ∈ ◆,

which is the integrand of the formula defining the moments of the centered and normalized
Gaussian distribution, as it will be seen in Example 2.15.

Its annihilator Ann(f) is generated by these two differential-difference operators:

Sn − x, x∂x + (x2 − n).

Since ❑(x, n)〈∂x, Sn〉/Ann(f) is of dimension 1 (generated by the class of 1), f is D-finite.

2.1.3 ◮ Creative Telescoping

An interesting feature of the multivariate case is to integrate with respect to a continuous
variable, or to sum with respect to a discrete variable. For a function f(x1, . . . , xn, α1, . . . , αm),
one can define, provided that integration and summation operations are well-defined:

ϕi(x̂i,α) :=

∫ bi

ai

f(x,α)dxi, i ∈ J1, nK, ai, bi ∈ ❘ ∪ {±∞}, (2.1)

ψj(x, α̂j) :=

γj∑

αj=βj

f(x,α), j ∈ J1,mK, βj , γj ∈ ◆ ∪ { +∞}.

where x̂i := (x1, . . . , xi−1, xi+1, . . . , xn) ∈ ❈n−1 and α̂j := (α1, . . . , αj−1, αj+1, . . . , αm) ∈
◆m−1.

Originating from the seminal work of Zeilberger [269], several algorithms identified under the
name Creative Telescoping were developed to compute D-finite and/or holonomic annihilators
for such functions ϕi, ψj , provided the input function f is given by such an annihilator [240,
58, 141]. A historical survey on that topic may be found in [59].

We briefly sketch out the key idea. To construct elements of Ann(ϕi) with ϕi defined in
Equation (2.1), we look for operators T ∈ Ann(f) of the form:

T := P + ∂xiQ = 0 mod Ann(f), (2.2)

with the additional condition that P does not depend on xi nor ∂xi , so that it commutes with

the integration operation
bi∫
ai

. . . dxi, yielding the following equation for ϕi:

P · ϕi(x̂i,α) + [f(x,α)]xi=bi
xi=ai

= 0,

where the bracket expression above is to be considered with limits if ai or bi is ±∞. In many
situations, where ai and bi are called natural boundaries [240], this bracket vanishes, so that
P ∈ Ann(ϕi). Otherwise, one must find another operator R in the annihilator of this bracket,
so that RP ∈ Ann(ϕi).
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Example 2.15 (Moments of the Gaussian distribution – Creative Telescoping) Consider
again the function f of Example 2.14. By integrating it for x from −∞ to +∞, we obtain
the moments mn of the Gaussian distribution, with the following closed form expression [197,
Sec. 5.4]:

mn :=

∫ +∞

−∞
f(x, n)dx =

{
(2k)!
2kk!

if n = 2k,

0 if n = 2k + 1.
(2.3)

Creative Telescoping offers an elegant way to check or recover this expression. By permuting x
and ∂x in the second generator of Ann(f) found in Example 2.14, we have ∂xx+(S2

n−(n+1)) ∈
Ann(f). Using the first generator, we obtain an operator of the prescribed form (2.2):

(
S2
n − (n+ 1)

)
+ ∂xx ∈ Ann(f).

Integrating this relation for x over (−∞,+∞) and noticing that xf(x, n)→ 0 as x→ ±∞ for
any n, we obtain the following recurrence of order 2 for mn:

mn+2 − (n+ 1)mn = 0, for all n ∈ ◆.

This recurrence relation, together with m0 = 1 and m1 = 0, has the closed form of Equa-
tion (2.3) as unique solution.

2.2
A condensed summary of
approximation theory

Broadly speaking, approximation theory is the art of providing an accurate and reliable repre-
sentation of a given function using (combinations of) simpler functions, called approximating
functions. The input function may be given as a symbolic expression, a table of sample val-
ues or moments, a solution of a differential equation or other types of functional equations.
Approximating functions usually have strong properties and are convenient to compute with.
Polynomials are probably the simplest class of such approximating functions, and also one of
the most widely used. This thesis mainly focuses on them. Trigonometric functions also play
an important role, especially when the input function has a natural periodic behavior. Expo-
nential functions, Bessel functions, and others also appear in some specific domains like signal
processing, theoretical physics or probability theory.

What are the advantages of such approximate representations over the input data itself?
First, if the input function is supposed to be regular enough but only given through a limited
quantity of information (a few sample values, for example), the approximation constructed
out of it may faithfully represent the function everywhere. Then, even in the case where a
lot of sample values are known, approximations often have the advantage of being a smooth,
compact and easy-to-compute-with representation. In some sense, approximation theory makes
it possible to actually compute with functions, in analogy with floating-point arithmetic for real
number computations.
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A natural question is: How do we define a good approximation? After a presentation of the
general setting and a short reminder of Taylor approximations in Section 2.2.1, this question
is addressed in two different frameworks: first, uniform approximation and the minimax theory
in Section 2.2.2; second, least-squares (or L2) approximation in Section 2.2.3, leading to
orthogonal systems of polynomials. At this point, we introduce the well-known Chebyshev
polynomials, for they will repeatedly play a central role throughout the thesis. More specifically,
Section 2.2.4 is concerned with Chebyshev series expansion, while Section 2.2.5 deals with
Chebyshev interpolation, very useful in practical implementations.

2.2.1 ◮ General setting

We fix a normed linear space (F , ‖ · ‖) of real-valued input functions, defined over the (open
or closed) real interval I of left and right extremities a, b ∈ ❘ ∪ { − ∞,+∞}. Functions
in F are to be approximated by elements of the linear subspace A ⊆ F , called the set of
approximating functions. This sections tries to be as general as possible concerning the set
A of approximating functions, even if polynomial approximations will be mainly considered
throughout this manuscript, as indicated by the title.

In most settings, A is an infinite-dimensional subspace, defined as the monotone union A =⋃
n>0An of finite-dimensional subspaces An, where n may be seen as a precision parameter. A

typical example is the set of real-valued polynomials graduated by the degree:

A = ❘[x] =
⋃

n>0

An where An = ❘n[x] = {p ∈ ❘[x] | deg p 6 n}.

This raises the following crucial questions:

◦ If p∗n ∈ An denotes the best approximation of a given f ∈ F in An (if any), do we have
p∗n → f as n→ +∞ in F , that is ‖p∗n − f‖ → 0?

◦ If yes, what is the asymptotic rate of convergence?

Those questions, among others, will be treated in the following for two notions of convergence,
induced by two different norms:

◦ Section 2.2.2 is devoted to uniform approximation, where the objective is to minimize
the maximal approximation error encountered over the interval of interest I.

◦ Section 2.2.3 focuses on L2 approximation, where the quantity to minimize is the
quadratic error defined as the integral of the squared error function.

Before addressing these two topics, we provide a brief reminder on a very classical and natural
type of approximations, namely Taylor expansions. Despite their quite elegant properties, their
intrinsic limitations motivate the need of better approximation tools.
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A brief reminder on Taylor expansions

Let f : I → ❘ be a real-valued function defined over an interval I, such that f is n times
differentiable at a given point x0 ∈ I. Its Taylor series of order n at x0 is defined as:

Tn · f(x) :=
n∑

k=0

f (k)(x0)

k!
(x− x0)k.

Roughly speaking, Tn · f is the best order n approximation of f over an infinitely small
neighborhood of x0. The following theorem, called the Taylor-Lagrange estimation of the
remainder, is a central property of Taylor approximations:

Theorem 2.16 (Taylor-Lagrange) If f is a n + 1 times differentiable real-valued function
over an interval I containing x0, then for all x ∈ I \ {x0}, there exists ξ ∈ (x0, x) or (x, x0)
such that:

f(x)− Tn · f(x) =
f (n+1)(ξ)

(n+ 1)!
(x− x0)n+1.

In particular, if f is of class Cn+1 over a compact segment I = [a, b] with δ(I, x0) = max(|a−
x0|, |b− x0|):

‖f − Tn · f‖∞,I 6
‖f (n+1)‖∞,I

(n+ 1)!
δ(I, x0)

n+1.

When f can be extended to a holomorphic function over the complex plane, an explicit
geometric convergence rate of the Taylor series can be given:

Theorem 2.17 (Cauchy estimate [217, Thm. 10.15]) Let f be a holomorphic function over
an open disc of center z0 and radius R > 0 in the complex place, denoted by B(z0, R), and
bounded by M > 0 over ∂B(z0, r) = {z ∈ ❈, |z| = R}. Then:

∣∣∣∣∣
f (n)(z)

n!

∣∣∣∣∣ 6
M

Rn
, for all z ∈ B(z0, R), n > 0, and

|f(z)− Tn · f(z)| 6
M |z − z0|
R− |z − z0|

( |z − z0|
R

)n

.

This theorem also puts into evidence the intrinsic limitation of Taylor approximations: the
radius of convergence is given by the nearest singularity in the complex plane, even if our initial
problem only considered the function f over a segment of the real line.

Example 2.18 Consider the function fa : x 7→ 1
a2+x2 , for some a > 0. Although fa is

analytic over the whole real line, it has singularities in the complex plane: ia and −ia. Since
power series expansions are limited by the closest complex singularity, approximating fa over,
for instance, [−1, 1], requires subdividing the interval and computing several Taylor expansions
(see Figure 2.1).
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Example 2.21 The set {1, x, . . . , xm} or any set of m+1 polynomials spanning ❘m[x] is a
Chebyshev system. Other examples are the trigonometric polynomials {1, cos t, sin t, . . . , cosnt,
sinnt} over [0, 2π], {eα0x, . . . , eαmx} on ❘ for α0 < · · · < αm.

Theorem 2.22 (Alternation criterion [53, Secs. 3.4 and 3.5]) Let f ∈ C0([a, b]) and
n > 0. We assume that An is a Chebyshev system. Then f admits a unique best approximation
p∗n ∈ An, which is the unique element p ∈ An such that the approximation error f − p satisfies
the equioscillation property: there exist n+ 2 points a 6 x0 < · · · < xn+1 6 b such that:

f(xk)− p(xk) = (−1)k(f(x0)− p(x0)) = ±‖f − p‖∞,[a,b], k ∈ J0, n+ 1K.

p∗n is called the minimax approximation of f in An.

It is obvious that the use of floating-point arithmetic will not make it possible to achieve
the exact statement of Theorem 2.22. More generally and beyond numerical errors, the
approximation p to be certified may be only a near-best approximation (see below), and the
next theorem is useful to bound the approximation defect.

Theorem 2.23 (La Vallée Poussin [53, Sec. 3.4]) Let f ∈ C0([−1, 1]) and p ∈ An, assuming
that An is a Chebyshev system. If there exist n+ 2 points −1 6 x0 < · · · < xn+1 6 1 such that
the approximation error f − p alternates sign at the xi, that is:

(f(xk)− p(xk))(f(xk+1)− p(xk+1)) 6 0, k ∈ J0, nK,

then the following enclosure of the optimal approximation error holds, where p∗n is the minimax
approximation of f in An:

min
06k6n+1

|f(xk)− p(xk)| 6 ‖f − p∗n‖∞,[a,b] 6 ‖f − p‖∞,[a,b].

Remez algorithm

Although Theorems 2.22 and 2.23 provide explicit conditions to check the (near) optimality
of candidate approximations p, they do not explain how to construct such approximations. An
exchange algorithm published by Remez [209, 208] in 1934 allows for constructing degree n
approximations of f , as close as desired to the optimal one, by means similar to polynomial
interpolation (see Section 2.2.5). We only give the pseudo-code of this method (Algorithm
Remez), and we refer the reader to [202, Chaps. 8 and 9] or [53, Sec. 5.8] for more details, in
particular for its quadratic rate of convergence under some mild assumptions on f (the number
of bits of precision doubles at each iteration). This algorithm has been extensively used in
signal processing applications [193, 82], or, closer to our interest, for elementary function
implementation [43, 54, 176].

However, its theoretical efficiency must be balanced by its behavior in practice with floating-
point arithmetic. In particular, the choice of initial points has a major impact on the actual
convergence of the algorithm with floating-point numbers [82, Sec. 3.5]. Moreover, for el-
ementary function implementation using polynomials, the output of Remez algorithm is not
guaranteed to be a good approximation, once the coefficients have been truncated to the target
floating-point precision, nor to be accurately evaluated using the Horner scheme, due to the
rounding errors. The first problem was addressed, e.g., in [43], using integer programming and
lattice reduction. The latter is the object of Chapter 8, which proposes a generalization of
Algorithm Remez taking into account the (linearized) rounding error during evaluation.
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Algorithm 2.1 Remez(f, n,∆) – Remez second algorithm

Input: a function f ∈ C0([−1, 1]), a natural integer n, and a tolerance ∆.
Output: An approximation p of the degree n-minimax polynomial of f .
1: Choose n+ 2 points −1 6 x0 < x1 < · · · < xn+1 6 1, δ ← 1, ε← 0.
2: while δ > ∆|ε| do
3: Determine the solutions a0, . . . , an and ε of the linear system:

n∑

k=0

akx
k
j − f(xj) = (−1)jε, j ∈ J0, n+ 1K.

4: Choose xnew ∈ [−1, 1] such that:

‖p− f‖∞ = |p(xnew)− f(xnew)|, with p(x) =
n∑

k=0

akx
k.

5: Replace one of the xi with xnew, in such a way that the sign of p − f alternates at the
points of the resulting discretization x0, . . . , xn+1.

6: δ ← |p(xnew)− f(xnew)| − |ε|.
7: end while
8: Return p.

Near-optimal approximations

In a wide range of applications, approximations are not constructed to be optimal, but only
near-optimal. Relaxing this optimality condition allows for more eficient methods than the
Remez algorithm for instance. An important class of such methods are the linear projections,
that is, bounded linear operators Ln : C0(I) → An satisfying Ln ◦ Ln = Ln for all n > 0 (Ln

preserves all elements in An). Orthogonal truncated series (Sections 2.2.3 and 2.2.4) and
polynomial interpolation (Section 2.2.5) are typical examples.

If Ln is a linear projection, then we call Lebesgue constant its operator norm associated to
the ‖ · ‖∞ norm:

Λn := ‖Ln‖∞ = sup
f∈C0(I),

f 6=0

‖Ln · f‖∞,I

‖f‖∞,I
< +∞

The Lebesgue constant is used to bound the overapproximation of pn = Ln ·f to f compared
to the minimax approximation p∗n (see [243, Chap. 15] and [53, p. 147]). Indeed, since
Ln · (f − p∗n) = pn − p∗n, we have by the triangle inequality:

‖f − pn‖∞,I 6 (1 + Λn)‖f − p∗n‖∞,I

Moreover, combining this result with the general fact ‖f − p∗n‖∞ = O(1/n) for any Lipschitz
function f over [−1, 1] (see [53, Jackson’s Thm V (p. 147)]), we deduce that ‖f − pn‖∞ =
O((1+Λn)/n). Hence, the asymptotic of Λn determines whether pn = Ln·f uniformly converges
to f .
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2.2.3 ◮ L2 approximation and generalized Fourier series

In the context of L2 approximation, one is interested in minimizing the quadratic error. We
consider an interval I of ❘ and a function w : I → ❘ positive almost everywhere. The 2-norm
of a measurable function f defined on I, associated to the weight function w, is:

‖f‖2,w =

(∫

I
f(x)2w(x)dx

) 1
2

.

We define F = L2
w(I), the space of square integrable functions f against w(x)dx, that is

‖f‖2,w < +∞. L2
w(I) is complete with respect to ‖ · ‖2,w.

Then, for f ∈ L2
w(I), our objective is to find p ∈ An minimizing the quadratic error ‖f−p‖2,ω.

Contrary to uniform approximation which focuses on the maximal error, the ‖ · ‖2,w norm
measures in some way a “cumulated error” or an “energy level”. Applications are numerous,
e.g., in signal processing.

Contrary to the ‖ · ‖∞,I , the ‖ · ‖2,w is associated to an inner product:

〈f, g〉w =

∫

I
f(x)g(x)w(x)dx,

which makes (L2
w(I), 〈·, ·〉w) a Hilbert space.

Definition 2.24 A countable family {ϕ0, ϕ1, . . . , ϕm, . . . } of functions in L2
w(I) is orthogonal

if:
〈ϕm, ϕn〉w = 0 for m 6= n.

If moreover the linear subspace they span is dense in L2
w(I) for the ‖ · ‖2,w norm, we say that

this family is a Hilbert basis of L2
w(I).

Fourier approximation theory

From the historical perspective, the Fourier theory of trigonometric sums is the first and still
most popular example of L2 approximation [134]. Let us consider L2([0, 2π]) the space of mea-
surable and square-integrable real-valued functions over [0, 2π], or equivalently the 2π-periodic
measurable functions over ❘ with finite quadratic integral over one period (here, w(x) = 1).
The linear space L2([0, 2π]) equipped with the inner product 〈f, g〉F =

∫ 2π
0 f(t)g(t)dt and the

corresponding L2-norm ‖f‖2,F =
∫ 2π
0 f(t)2dt is a Hilbert space. The Fourier theory proposes

to approximate functions of L2([0, 2π]) with trigonometric functions in:

A =

∞⋃

n=0

An where An = Span❘ {1, cos t, sin t, . . . , cosnt, sinnt}.

One easily checks that the elements of A form an orthogonal family with respect to 〈·, ·〉F .
The Fourier coefficients of f ∈ L2([0, 2π]) are simply defined by orthogonal projection:

a0(f) =
〈f, 1〉F
‖1‖22,F

=
1

2π

∫ 2π

0
f(t)dt, an(f) =

〈f, cosnt〉F
‖ cosnt‖22,F

=
1

π

∫ 2π

0
f(t) cosntdt,

bn(f) =
〈f, sinnt〉F
‖ sinnt‖22,F

=
1

π

∫ 2π

0
f(t) sinntdt, for all n > 1.
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This allows for computing the best L2 by orthogonal projection. The very classical conver-
gence properties of Fourier series can be found in [134, Chaps. I and II]. We omit them in the
manuscript, since they do not play an important role in this thesis, contrary to the very related
Chebyshev polynomials and series, presented in Section 2.2.4.

Orthogonal polynomials

The Fourier series presented above are useful to approximate periodic functions on the real
line. However, for non-periodic functions, Fourier series are not well-behaved. According to the
Weierstrass approximation theorem (Theorem 2.19), polynomials are natural candidates for
the set A of approximating functions. We present here the notion of orthogonal polynomials,
which can be seen as a generalization of Fourier approximation theory. More details can be
found in [53, Chap. 4] or [239].

Again, consider the space L2
w(I) of measurable and square integrable functions over the

interval I (compact or not) with respect to the continuous and almost everywhere positive
weight w. We moreover assume that all moments of w are finite:

∫

I
xnw(x)dx < +∞ for all n > 0,

so that L2
w(I) contains all real-valued polynomials. We set A := ❘[x].

Remark 2.25 If I = [a, b] is compact, then clearly ❘[x] is dense in L2
w(I) by using the Weier-

strass approximation theorem and noticing that ‖f‖2,w 6 (
∫
I w(x)dx)

1/2‖f‖∞,I . Otherwise,
one needs to perform a change of variable with the monotone C1 function F (x) =

∫ x
−∞w(t)dt

of compact range, and use the Stone-Weierstrass theorem [53, Sec. 6.1] to deduce again the
completeness of ❘[x] in L2

w(I).

The completeness of ❘[x] in L2
w(I) raises the question of characterizing a graduated basis

of orthogonal polynomials, forming a Hilbert basis of L2
w(I). Starting from the monomial ba-

sis {1, x, x2, . . . , xn, . . . }, the Gram-Schmidt orthogonalization process [53, Sec. 1.4] iteratively
constructs such a graduated orthogonal family P0(x), P1(x), P2(x), . . . , Pn(x), . . . of monic poly-
nomials:

◦ The procedure is initialized with P0(x) = 1.

◦ Once P0(x), P1(x), . . . , Pn(x) are constructed, we consider xPn(x) ∈ ❘n+1[x]\❘n[x]. We
have:

〈xPn(x), Pk(x)〉w = 〈Pn(x), xPk(x)〉w = 0 for 0 6 k < n− 1,

since Pn(x) is orthogonal to ❘n−1[x]. We therefore define:

Pn+1(x) = xPn(x)−
〈xPn(x), Pn(x)〉w
‖Pn(x)‖22,w

Pn(x)−
〈xPn(x), Pn−1(x)〉w
‖Pn−1(x)‖22,w

Pn−1(x).

As required, Pn+1(x) is monic of degree n+ 1 and orthogonal to ❘n[x].

This leads to the following theorem [53, Sec 4.2, Thm. 2]:
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Theorem 2.26 Provided that the weight function w has finite moments on I, there exists a
unique Hilbert basis of L2

w(I) made of graduated monic polynomials P0(x), P1(x), . . . , Pn(x), . . . .
They satisfy a so-called three-term recurrence:

Pn+1(x) = (x− αn)Pn(x)− βnPn−1(x), n > 1,

where the coefficients αn, βn are given by:

αn =
〈xPn(x), Pn(x)〉w
‖Pn(x)‖22,w

, βn =
〈xPn(x), Pn−1(x)〉w
‖Pn−1(x)‖22,w

=
‖Pn(x)‖22,w
‖Pn−1(x)‖22,w

.

Remark 2.27 Clearly, the values of αn and βn depend on the weight function w. When
they happen to be polynomials (or rational functions) of n, the sequence (Pn(x)) are P-recursive
(see Definition 2.5). In particular, this is the case for Legendre and Chebyshev polynomials
defined below.

The orthogonal structure implies strong properties concerning the polynomials, like the lo-
cation of the roots, characterized by next proposition [53, Sec. 4.2 Cor. 1]. In particular, this
proves that the monomials 1, x, x2, . . . cannot be an orthogonal family over I, whatever the
weight w is.

Proposition 2.28 If {P0, P1, . . . , Pn, . . . } is a graduated and orthogonal family of polyno-
mials in L2

w(I), then Pn has exactly n distinct simple roots, distributed in the interior I̊ of
I.

Example 2.29 (Legendre polynomials) By taking the weight w(x) = 1 over I = [−1, 1], we
obtain the simplest example of orthogonal polynomials: Legendre polynomials.

Pn(x) =
1

2nn!

(
∂

∂x

)n

·
[
(x2 − 1)n

]
.

Moreover, the coefficients αn and βn of Theorem 2.26 can be explicitly computed, yielding the
so-called Bonnet’s recurrence:

(n+ 1)Pn+1(x) = (2n+ 1)xPn(x)− nPn−1(x).

2.2.4 ◮ Chebyshev polynomials and series

One of the most well-known family of orthogonal polynomials is the Chebyshev polynomials,
due to the excellent approximation properties of Chebyshev expansions for functions defined
over a compact interval. It is worth mentioning at this point that Chebyshev approximation
theory is no more than Fourier approximation theory, up to a particular change of variable.
Indeed, let f, g : [−1, 1]→ ❘ two measurable functions, and consider the 2π-periodic functions
f̃(t) = f(cos t), g̃(t) = g(cos t). We have:

〈f̃(t), g̃(t)〉F =

∫ 2π

0
f(cos t)g(cos t)dt = 2

∫ π

0
f(cos t)g(cos t)dt

= 2

∫ 1

−1

f(x)g(x)√
1− x2

dx with x = cos t

= 2〈f(x), g(x)〉w,
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where w(x) = 1√
1−x2

is the Chebyshev weight. In the following, we write L2
Ч

= L2
w([−1, 1]),

〈·, ·〉Ч = 〈·, ·〉w and ‖ · ‖2,Ч = ‖ · ‖2,w when w(x) is the Chebyshev weight defined on the interval
[−1, 1].

Due to the central role played by Chebyshev polynomials throughout this thesis, a short
summary of their properties is given in the following lines. For more details and proofs, I
recommend these reference textbooks [243, 34, 84, 170, 212].

Properties of Chebyshev polynomials

The image of ❘[x] under the change of variable x = cos t are the (pair) trigonometric polyno-
mials, for which we already know an orthogonal basis {1, cos t, cos 2t, . . . , cosnt, . . . }. We can
therefore define the Chebyshev polynomials:

Tn(x) = cos(n arccosx) n > 0, x ∈ [−1, 1].

They clearly satisfy:

Tn(cos t) = cosnt for n > 0, and 〈Tn, Tm〉Ч = 0 if n 6= m. (2.4)

The polynomial Tn is of degree n with leading coefficient 2n−1 (for n > 1). The n distinct

roots µ(n)k of Tn in [−1, 1], predicted by Proposition 2.28, are called the Chebyshev nodes
of the first kind are, whereas the Chebyshev nodes of the second kind denote the n + 1 local
extrema ν(n)k of Tn. They are respectively given, in decreasing order, by:

µ
(n)
k = cos

(
(k − 1/2)π

n

)
, k ∈ J1, nK,

ν
(n)
k = cos

(
kπ

n

)
, k ∈ J0, nK.

The 3-term recurrence relation for orthogonal polynomials is here explicitly given using the
trigonometric relation (2.4) (Note however that the Tn are not chosen monic by convention,
whence the small difference with the statement of Theorem 2.26):

T0(x) = 1, T1(x) = x,

Tn+1(x) = 2xTn(x)− Tn−1(x), n > 1.
(2.5)

Usual operations on Chebyshev polynomials also admit simple expressions:

Tn(x)Tm(x) =
1

2
(Tn+m(x) + Tn−m(x)) , n > m, (2.6)

∫
Tn(x)dx =

1

2

(
Tn+1(x)

n+ 1
− Tn−1(x)

n− 1

)
, n > 2, (2.7)

T ′
n(x) =

{
2n(Tn−1(x) + Tn−3(x) + · · ·+ T1(x)), n even,

2n(Tn−1(x) + Tn−3(x) + · · ·+ T2(x)) + nT0(x), n odd.
(2.8)
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Algorithm 2.2 Clenshaw(p, x) – Clenshaw evaluation algorithm

Input: Polynomial p =
n∑

i=0
aiTi in Chebyshev basis, and x ∈ ❘.

Output: Evaluation y = p(x) of p at x.

1: bn+1 ← 0 and bn ← an
2: for i = n− 1 downto 0 do
3: bk ← ak + 2xbk+1 − bk+2

4: end for
5: y ← b0 − xb1
6: return y

Clenshaw evaluation. A straightforward evaluation strategy for a polynomial p =
∑n

i=1 aiTi
at a point x ∈ ❘ relies on the forward computation of the sequence (Ti(x))06i6n, using the
recurrence relation (2.5). However, the backward evaluation scheme due to Clenshaw [60]
(Algorithm Clenshaw) should be preferred in the general case, similarly to the Horner scheme
in the monomial basis. Besides involving fewer arithmetic operations, it is more competitive
regarding numerical stability, as the error analysis carried out in [84, §3.13] shows.

Proposition 2.30 (Correctness of Clenshaw) Under the hypothesis of exact arithmetic
operations, Algorithm Clenshaw(p, x) computes the expected evaluation p(x) of p at x.

Proof. For fixed x ∈ ❘, we prove by decreasing induction from k = n down to 0 the following
equality:

(bk − 2xbk+1)Tk(x) + bk+1Tk+1(x) =
n∑

i=k

aiTi(x). (Pk)

(Pn) is trivially true since bn = an and bn+1 = 0 (line 1). Now let k ∈ J0, n− 1K and suppose
that (Pk+1) holds. Using the Chebyshev recurrence relation (2.5), we obtain:

n∑

i=k+1

aiTi(x) = (bk+1 − 2xbk+2)Tk+1(x) + bk+2Tk+2(x) = bk+1Tk+1 − bk+2Tk(x).

Equality (Pk) easily follows from bk = ak + 2xbk+1 − bk+2 (line 3):

(bk−2xbk+1)Tk(x)+ bk+1Tk+1(x) = (ak− bk+2)Tk(x)+ bk+1Tk+1(x) = akTk(x)+

n∑

i=k+1

aiTi(x).

This concludes the proof of (Pk) for k ∈ J0, nK.
Finally, the correctness of Algorithm Clenshaw follows from (P0) and line 5:

p(x) =
n∑

i=0

aiTi(x) = (b0 − 2xb1) + b1x = b0 − xb1 = y.
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Chebyshev series and convergence theorems

The Chebyshev coefficients cn(f) of f are defined by orthogonal projection:

c0(f) :=
〈f(x), 1〉Ч
‖1‖22,Ч

=
1

π

∫ π

0
f(cos t)dt,

cn(f) :=
〈f(x), Tn(x)〉Ч
‖Tn(x)‖22,Ч

=
2

π

∫ π

0
f(cos t) cosntdt, n > 1.

(2.9)

As expected, we have cn(f) = an(f ◦ cos). The truncated Chebyshev series of f of degree n is
defined by the orthogonal projection пn : L2

Ч
→ ❘n[x]:

пn · f(x) =
n∑

k=0

ck(f)Tk(x).

Again, (пn · f) ◦ cos = Fn · (f ◦ cos) for all n > 0.
The L2-convergence theorem for Chebyshev series directly follows from Parseval theorem in

the Fourier theory:

Theorem 2.31 (L2 convergence of Chebyshev series) For any f ∈ L2
Ч
, we have:

◦ пn · f → f in the L2 sense when n→∞:

‖f − пn · f‖22,Ч =

∫ 1

−1

(f(x)− пn · f(x))2√
1− x2

dx→n→∞ 0.

◦ Parseval identity:

‖f‖22,Ч = π

(
c0(f)

2 +
1

4

∑

n>1

cn(f)
2

)
.

Besides L2 convergence, uniform convergence happens under very mild assumptions, for
instance, Lipschitz continuity [243, Thm. 3.1].

Theorem 2.32 Let f ∈ C0 be Lipschitz-continuous, that is, there exists a λ > 0 such that
|f(x)−f(y)| 6 λ|x−y| for all x, y ∈ [−1, 1]. Then f has a unique representation as a Chebyshev
series, which is absolutely and uniformly convergent:

f(x) =

+∞∑

n=0

cn(f)Tn(x) for all x ∈ [−1, 1], and
+∞∑

n=0

|cn(f)| <∞.

Similarly to the Fourier case, the rate of convergence of Chebyshev coefficients for a function
f depends on the regularity of the latter. This allows for bounding the uniform approximation
error of Chebyshev series [243, Thms. 7.1 and 7.2].

Theorem 2.33 (Convergence of Chebyshev series for differentiable functions) Let p > 0 and
f be a p times differentiable function over [−1, 1], with

L(p) :=

∫ 1

−1
|f (p)(x)|dx < +∞.
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(i) The sequence of Chebyshev coefficients cn(f) converge to 0 in O(n−p), with the explicit
bound:

|cn(f)| 6
2L(p)

π(n− p+ 1)p
, for n > p.

(ii) If p > 1, the truncated Chebyshev series пn · f converges to f uniformly and absolutely in
O(n1−p):

‖f − пn · f‖∞ 6
2L(p)

π(p− 1)(n− p+ 1)p−1
, for n > p.

Hence, contrary to Taylor series, Chebyshev series can be defined even for non analytic
functions, and convergence happens as soon as f ∈ C1([−1, 1]). For the sake of completeness,
we also cite this Taylor-like theorem for Chebyshev series [78]. Notice the improvement of a
factor 2−n compared to the Taylor case.

Theorem 2.34 If f ∈ Cn+1([−1, 1]), then there exists ξ ∈ [−1, 1] such that:

‖f − пn · f‖∞ 6
|f (n+1)(ξ)|

2nn!
.

Domain of analytic convergence

When f happens to be analytic on some neighborhood of [−1, 1] in the complex plane, Cauchy-
like results for Chebyshev series provide a geometric convergence rate.

Remember that for Taylor series (at 0) for a function f analytic around 0, the convergence
domain is the largest open disc centered at 0 and avoiding all singularities of f . Hence, when
f has complex singularities of modulus less than 1, its Taylor series fails to converge on [−1, 1]
(see Figure 2.2a).

To investigate the Chebyshev case, we use the Joukowski transform [243, Chap. 8] x =
(z + z−1)/2 and the following identity, which generalizes the trigonometric relation (2.4) over
❈∗:

Tn

(
z + z−1

2

)
=
zn + z−n

2
, z ∈ ❈∗, n > 0.

The segment [−1, 1] is mapped to the unit circle U = {z ∈ ❈ | |z| = 1}, and a Chebyshev series∑
n>0 anTn(x) to a0 + 1

2

∑
n∈❩∗ a|n|z

n, called a Laurent series. The domain of convergence
for a Laurent series is an annulus CR,r = {z ∈ ❈ | r < |z| < R} of inner and outer radius
0 < r < R < +∞. Since the Laurent series obtained from real Chebyshev series are invariant
under z 7→ z−1, the domains of convergence we consider are the symmetric annuli Cρ,ρ−1 for
some ρ > 1 (see Figure 2.2c). The Joukowski transform maps the annulus Cρ,ρ−1 to the
Bernstein ellipse of “radius” ρ > 1 (see Figure 2.2b):

Eρ = {x ∈ ❈ | |x+
√
x2 − 1| < ρ}.

The key advantage of Chebyshev series over Taylor series is that, whatever close to [−1, 1] the
complex singularities of f are, there always exists a sufficiently small ρ > 1 such that Eρ avoids
them.

A generalization of the Cauchy formula for the coefficients of a Laurent series leads to the
following theorem establishing the geometric convergence rate of Chebyshev coefficients and
Chebyshev series [243, Thms. 8.1 and 8.2].
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The Banach space (Ч1, ‖ · ‖Ч1)

It turns out that working directly with the ‖·‖∞ norm may be cumbersome in effective validated
algorithms. In some situations, as in Chapters 3, 4 and 5, it is more convenient to use a
subspace of C0 and an appropriate norm in connection with Chebyshev coefficients, while not
loosing the link with ‖ · ‖∞. This leads to the Banach space (Ч1, ‖ · ‖Ч1), defined below with
relevant properties.

Definition 2.37 Ч
1 is the space of absolutely summable Chebyshev series, that is, functions

f ∈ L2
Ч

such that ‖f‖Ч1 < +∞, where:

‖f‖Ч1 :=
∞∑

n=0

|cn(f)| ∈ [0,+∞].

These functions exactly coincide with their Chebyshev series in the following sense:

Lemma 2.38 If f ∈ Ч
1, then пn · f converges absolutely and uniformly to f .

Proof. Since, for all i ∈ ◆, ‖ci(f)Ti‖∞ 6 |ci(f)| and
∞∑
i=0
|ci(f)| = ‖f‖Ч1 < ∞ by definition of

f ∈ Ч
1, пn · f :=

n∑
i=0

ci(f)Ti converges absolutely and uniformly to a continuous function f̂ ,

and therefore also in L2. But since пn · f → f in L2 (by Theorem 2.31), we have f = f̂
almost everywhere, and in fact everywhere, by continuity.

Note that Ч
1 is analogous to the Wiener algebra A(❚) of absolutely convergent Fourier

series [134, §I.6]: for f ∈ Ч
1, we have ‖f‖Ч1 = ‖f(cos)‖A(❚). More precisely we have:

Lemma 2.39 (Ч1, ‖·‖Ч1) is a Banach algebra, which means that it is a Banach space satis-
fying

‖fg‖Ч1 6 ‖f‖Ч1‖g‖Ч1 for all f, g ∈ Ч
1. (2.10)

Proof. It is identical to the proofs from [134, §I.6].

It follows from Lemma 2.38 and Theorem 2.32 that Ч
1 is included in C0 and contains

the set of Lipschitz functions over [−1, 1]. Actually, the inclusions are strict, see [271, §VIII.1]
and [271, §VI.3] respectively.

Moreover, the uniform and Ч
1 norms can be partially ordered:

‖g‖∞ 6

∞∑

n=0

‖cn(g)Tn‖∞ 6

∞∑

n=0

|cn(g)| =: ‖g‖Ч1 for all g ∈ Ч
1.

Conversely, we have from (2.9):

|c0(f)| 6 ‖f‖∞ and |cn(f)| 6 2‖f‖∞, for all n > 1, f ∈ Ч
1.

However, since f has in general an infinite number of non-zero coefficients, this fact cannot be
used directly to bound ‖f‖Ч1 by the uniform norm of f .

We now consider the action of a bounded linear operator F : Ч
1 → Ч

1. By definition, its
operator norm is ‖F‖Ч1 := sup‖f‖

Ч161 ‖F · f‖Ч1 . Such operators include multiplication by

f ∈ Ч
1 or integration (indefinite or from a specific point).
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Proposition 2.40 Let f =
+∞∑
n=0

anTn ∈ Ч
1. For indefinite integration operator

∫
and

respectively definite integration
∫ t
t0

from specific t0 ∈ [−1, 1], defined as:

∫
f :=

(
a0 +

a2
2

)
T1 +

+∞∑

n=2

an−1 − an+1

2n
Tn,

∫ t

t0

fdt :=
(
a0 +

a2
2

)
(t− t0) +

+∞∑

n=2

an−1 − an+1

2n
(Tn(t)− Tn(t0)),

(2.11)

we have the following Ч
1-operator norms:
∥∥∥∥
∫ ∥∥∥∥

Ч1

= 1, and

∥∥∥∥
∫ t

t0

∥∥∥∥
Ч1

6 2. (2.12)

Proof. The inequality ‖
∫
‖Ч1 6 1 directly follows from the definition, and equality is at-

tained with
∫
T0 = T1. For definite integration the operator bound is tight for t0 = −1

since ‖
∫ t
−1 T0dt‖Ч1 = ‖T1 + T0‖Ч1 = 2, but not for t0 = 0, where ‖

∫ t
0 ‖Ч1 = 1.

In general, computing the Ч
1-norm of an operator F reduces to evaluating F at all the

polynomials Ti for i ∈ ◆:

Lemma 2.41 For a bounded linear operator F : Ч
1 → Ч

1, its Ч
1-operator norm is given by:

‖F‖Ч1 = sup
i>0
‖F · Ti‖Ч1 .

Proof. Take f =
+∞∑
n=0

anTn ∈ Ч
1. We have:

‖F · f‖Ч1 =

∥∥∥∥∥

+∞∑

n=0

anF · Tn

∥∥∥∥∥
Ч1

6

+∞∑

n=0

|an|‖F · Tn‖Ч1

6

(
+∞∑

n=0

|an|
)
sup
i>0
‖F · Ti‖Ч1 = ‖f‖Ч1 sup

i>0
‖F · Ti‖Ч1

which shows that ‖F‖Ч1 6 supi>0 ‖F · Ti‖Ч1 . The converse inequality is clearly true since the
family of the Ti is a subset of {f ∈ Ч

1 | ‖f‖Ч1 6 1}.

By analogy with the Wiener algebra A(❚), more results about the space Ч
1 could be given.

For example, an interesting property is the closure under the reciprocal: if f ∈ Ч
1 does not

vanish over [−1, 1], then 1/f ∈ Ч
1 [134, Sec. VIII.6.1].

2.2.5 ◮ Chebyshev interpolation

Despite their excellent approximation properties, the Chebyshev series described above may
be difficult to obtain. Indeed, with no specific assumptions on the function to approximate,
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computing Chebyshev coefficients amounts to evaluating integrals, which is not particularly
convenient. An alternative consists in computing Chebyshev interpolants, whose properties of
near-best approximations will be given after a general introduction on polynomial interpolation.

Let I be an interval of the real line, and n + 1 points x0 < x1 < x2 < · · · < xn in I. For
given values y1, . . . , yn ∈ ❘, there exists a unique polynomial p ∈ ❘n[x] such that p(xi) = yi
for i ∈ J0, nK. For i ∈ J0, nK, let li(x) denote the degree n polynomial satisfying li(xi) = 1 and
li(xj) = 0 for j 6= i (see expression below). We define the linear projection In that interpolates
the continuous function f at the points xi:

In : C0(I) → ❘n[x]

f 7→
∑n

i=0 f(xi)li(x) with li(x) =
∏

06j6n
j 6=i

x− xj
xi − xj

.

Remark 2.42 Several methods are available to implement polynomial interpolation, refered
to as Lagrange, Newton interpolation formulas (see, e.g., [53, Sec. 3.2]).

The approximation error of polynomial interpolants can be expressed using a Taylor-Lagrange-
like formula, by a repeated use of the Rolle theorem [53, Sec. 3.2 p. 60].

Theorem 2.43 Let n > 0, f ∈ C(n+1)(I), In · f its degree n interpolant at points xi in I,
and W (x) =

∏n
i=0(x− xi). For any x ∈ I, there exists ξ ∈ I such that:

f(x)− In · f(x) =
f (n+1)(ξ)

(n+ 1)!
W (x).

This theorem motivates the need of minimizing ‖W‖∞,I when I = [a, b] is compact. Without
loss of generality, we may assume I = [−1, 1]. The polynomial W (x) is monic of degree n+ 1,
with n+ 1 simple roots in [−1, 1]. By writing W (x) = xn+1 −

∑n
i=0 anx

n, we can see it as the
approximation error of xn+1 by a degree n polynomial, and the best uniform bound is given
by the minimax polynomial. Now, 2−nTn+1(x) is a monic degree n + 1 polynomial with all

its roots in [−1, 1], and its local extrema ν(n+1)
k for k ∈ J0, n + 1K provide the equioscillation

condition of Theorem 2.22. Hence, 2−nTn+1(x) =
∏n+1

i=1 (x−µ
(n+1)
i ) is the optimal choice for

W (x). We therefore focus on Chebyshev interpolation of the first kind, at points xi = µ
(n+1)
i =

cos((i− 1/2)π/(n+1)), i ∈ J1, n+1K. We call п̃n the associated interpolation operator. In the
following, we set I = [−1, 1] and write ‖ · ‖∞ for ‖ · ‖∞,[−1,1].

Theorem 2.44 Let n > 0, and f ∈ C(n+1)([−1, 1]). The approximation error of f by its
degree n Chebyshev interpolant п̃n · f is bounded by:

‖f − п̃n · f‖∞ 6
‖f (n+1)‖∞
2n(n+ 1)!

.

Chebyshev interpolants are near-best approximations

Similarly to Chebyshev expansions, The Lebesgue constant Λп̃

n for Chebyshev interpolation
grows logarithmically with the degree n [243, Chap. 15], [264].
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Proposition 2.45 The Lebesgue constant Λп̃

n associated to the Chebyshev interpolation
operator п̃n is given by:

Λп̃

n =
1

π

n+1∑

k=1

∣∣∣∣cotan
(k − 1/2)π

2(n+ 1)

∣∣∣∣ ,

with the following bound and asymptotic:

Λп̃

n 6
2

π
log(n+ 1) + 1 and Λп̃

n ∼
2

π
log n, n→ +∞.

Convergence properties of Chebyshev interpolants

A key tool to investigate the convergence of Chebyshev interpolants is the aliasing formula
(see [243, Chap. 4]). Roughly speaking, this formula establishes a partition of all the Tk

by their contribution on the n + 1-points Chebyshev grid {µ(n+1)
i , 1 6 i 6 n + 1}. For a

function f admitting an absolutely summable Chebyshev series, this allows us to relate the
n+ 1 coefficients of the interpolant п̃n · f with the Chebyshev coefficients of f . The following
consequence will be useful to establish convergence properties of Chebyshev interpolants.

Proposition 2.46 ([243, Eq. (4.9)]) Let f ∈ C0([−1, 1]) of absolutely summable Chebyshev
series, and an interpolation degree n. Then:

‖f − п̃n · f‖∞ 6 2

+∞∑

k=n+1

|ck(f)|.

In particular, п̃n · f converges uniformly to f .

The bound given by this theorem implies that all convergence theorems for Chebyshev series
based on term-by-term bounds are true for Chebyshev interpolants, up to a factor of 2.

Theorem 2.47 Let f be continuous on [−1, 1] with an absolutely summable Chebyshev series.

(i) If f ∈ Cp([−1, 1]) for p > 1 with L(p) =
∫ 1
−1 |f (p)(x)|dx, then:

‖f − п̃n · f‖∞ 6
4L(p)

π(p− 1)(n− p+ 1)p−1
, n > p.

(ii) If f admits an analytic continuation on the Bernstein ellipse Eρ for some ρ > 1, such
that |f(x)| 6M for all x ∈ Eρ, for some M , then:

‖f − п̃n · f‖∞ 6
4Mρ−n

ρ− 1
, n > 0.

Discrete cosine transform (DCT)

Discrete cosine transform (DCT) designates the reciprocal of Chebyshev interpolation, that
is, the evaluation of a polynomial p =

∑n
i=0 aiTi over the Chebyshev grid of the first kind

(µ
(n+1)
k )n+1

k=1 or second kind (ν
(n)
k )nk=0. The naive method consists in applying the Clenshaw

evaluation scheme (Algorithm Clenshaw) on each of the n + 1 points, which requires a
quadratic number of arithmetic operations.
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Similarly to the Fast Fourier transform (FFT) in monomial basis, there exists a fast cosine
transform, sometimes abusively called discrete cosine transform (which formally refers to the
above mathematical operation, not how it is performed). More details can be found in [198,
235]. In particular, this allows for Chebyshev interpolation, multiplication of polynomials, and
Chebyshev-to-monomial or monomial-to-Chebyshev change of basis, in quasi-linear time.

However, as it will be mentioned in the following chapter, designing a rigorous DCT is still
ongoing research. Therefore, since we mainly focus on rigorous numerics in this manuscript,
quasi-linear time DCT will not be used in the algorithms presented in the following chapters.
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Rigorous Polynomial
Approximations 3

Les propositions mathématiques sont reçues comme vraies parce que personne n’a intérêt
qu’elles soient fausses.

— Montesquieu, Mes Pensées

In the light of the observations in Chapter 1 that interval arithmetic is intrinsically limited
by the loss of correlations between variables, the need for higher order methods became central
in rigorous numerics. It is beyond the scope of this thesis to present all of them, and we instead
refer the interested reader to more comprehensive references [174, 247, 221] to discover some
of them, such as affine arithmetic or automatic differentiation. This chapter focuses on rigorous
polynomial approximations, which are particularly relevant to tackle function space problems.

The key idea of rigorous polynomial approximations, often shortened as RPAs, is to use
(polynomial) approximation theory, whose basic notions have been given in Section 2.2, in
order to provide certified representations of functions. More specifically, let us remember that
interval arithmetic uses floating-point numbers to build sets of real numbers, and rigorous
operations guarantee that the exact mathematical result is always contained in the computed
interval. Similarly, RPAs use polynomial approximations and rigorous error bounds to denote
sets of functions, and operations on them must ensure that the resulting RPA always contains
the exact function.

After an introductory discussion on the genesis of RPAs and related definition issues in
Section 3.1, self-validating elementary operations on them are given in Section 3.2, meaning
that, for instance, RPAs for addition and multiplication are directly constructed from RPAs of
the operands, using mainly interval arithmetic operations. Although quite classical now in the
RPA literature (see, e.g., the reference document [129] for Chebyshev basis), they are recalled
in this chapter for the sake of completeness.

In contrast with the dominant trend in that topic, where more “complex” operations like
division or square root of RPAs are handled via composition, we advocate in this chapter
the use of a posteriori validation methods to provide more efficient algorithms. The general
framework for a posteriori validation, relying on the Banach fixed-point theorem, is presented in
Section 3.3. After that, the division and square root of RPAs are carried out in Section 3.4.

This chapter also gives me the opportunity to present two implementations, which are part
of my contribution:
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◦ An open source C library, named ChebValid, for RPAs in Chebyshev basis (a.k.a.
Chebyshev models), available at https://gforge.inria.fr/projects/tchebyapprox/,
implements all the elementary operations described in this chapter. The resulting collec-
tion of routines provides the necessary arithmetic on RPAs for the implementation of the
validation method for LODEs in Chapters 4 and 5.

◦ An open source formalization in the Coq proof assistant, resulting from a joint work
with Assia Mahboubi and Damien Pous, provides a framework for RPAs certified at the
implementation level. Besides implementing the elementary operations of Section 3.2, we
also give a formalization of the Banach fixed-point theorem in Section 3.3.2 and use it to
build certified implementations of the division and square root of RPAs, in Section 3.4.
The Coq development is available at http://perso.ens-lyon.fr/florent.brehard/

chebapprox/, and an article [40] – from which part of the material of this chapter comes
– has been recently submitted to the 2019 Interactive Theorem Proving conference.

Finally, examples illustrating these concepts and the two implementations are given in Sec-
tion 3.5.

3.1
History and definition(s) of rigorous
polynomial approximations

The idea of using sets of functions in computer programs to rigorously enclose the exact solution
of function space problems originally appeared in [79, 80], under the name of ultra-arithmetic,
thus extending interval arithmetic, previously formalized in 1966 [173]. An early example of
practical use of RPAs is the first computer-assisted proof of the Feigenbaum conjecture [147].
One decade later, the generic implementation of the so-called Taylor models [164, 165] in the
COSY Infinity software for beam physics [166] enhanced the popularity of RPAs. Since then,
Taylor models based methods have been used in various areas, such as rigorous integration of
ODEs [23, 163, 167, 181] or rigorous range enclosures of functions [24, 54]. Further historical
information and applications can be found in [185, Part 1].

The central idea of RPAs consists in representing a function f over a compact segment I
using a couple f := (p, δ), called a Taylor model, where the approximation p is a polynomial
expressed in the standard monomial basis, and the remainder δ is an interval, such that for
every t ∈ I, f(t) − p(t) ∈ δ. Despite its apparent simplicity, this definition requires some
important clarifications when targeting practical implementations.

Floating-point vs interval coefficients: Rigorous operations on RPAs must take into ac-
count the rounding errors occuring when manipulating the polynomial approximations.
One possible option [164, Chap. 5] is to use polynomials with floating-point coefficients,
bound all the rounding errors and add them to the remainder δ. An alternative is to
use interval polynomials, that is, polynomials p with interval coefficients, and use self-
validating operations on them [129, Chap. 2]. In the latter case, which will be mainly
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considered in this thesis, a precise semantic for the RPA f = (p, δ) must be given (see
Definition 3.1 below).

Base interval: Is the interval I = [a, b] fixed (we will often consider I = [−1, 1] for Chebyshev
models), or user-defined, e.g., given by a concrete interval i ∈ ■❋ or by two intervals a,b
for its endpoints?

Taylor coefficients: When using Taylor models with interval polynomials, we can impose that
the coefficients of p contain the corresponding exact Taylor coefficients of the function
to be represented. This can be useful when working with function with singularities,
but this condition is not desirable in general, since maintaining it may be a cumbersome
task [129, Chap. 2].

In view of this, a salutary effort toward clarification has been made in [129], leading for
instance to the following definition of Taylor models with absolute remainder [129, Def. 2.1.3].

Definition 3.1 Let f : I → ❘ be a function, t0 be a small interval around an expansion
point t0. Let f = ((a0, . . . , an), δ) be an RPA structure. We say that f is a Taylor model with
absolute remainder for f at t0 on I if:

t0 ⊆ I, 0 ∈ δ, and

∀ξ0 ∈ t0, ∃06i6nai ∈ ai, ∀t ∈ I, ∃δ ∈ δ, f(t)−
n∑

i=0

ai(t− ξ0)i = δ.

However, the notion of RPA can be made broader than that of Taylor models, as shown by
these two directions of generalization below.

Choice of the norm. Until now, we have only considered the space C0(I) of continuous
functions over a given compact segment I, equipped with the norm ‖·‖∞ of uniform convergence:

‖f‖∞ := sup
t∈I
|f(t)|.

However, as it has been addressed in Section 2.2, other norms, like L2 norms, can be used in
approximation theory, and can be more relevant, depending on the context. Another example
is the Ч

1-norm for absolutely convergent Chebyshev series (Definition 2.37). It will be useful
in Chapter 4 when computing RPAs for solutions of linear ODEs, and moreover this norm is
a safe overapproximation of ‖ · ‖∞ over [−1, 1], thus not losing the link with classical uniform
convergence.

Therefore, from the abstract point of view, a RPA in a Banach space (F , ‖ · ‖) is simply a
pair f := (f◦, ε) with f◦ an approximation lying in some suitable linear subspace A of F (most
of the time but not necessarily polynomials) and ε > 0 an error bound.

Just like an interval is a set of real numbers, f represents a set of functions, namely the ball
of center f◦ and radius ε. By a slight abuse of notation, we may use the membership symbol
to say that f is a RPA for the target function f∗ ∈ F :

f∗ ∈ f ⇔ ‖f∗ − f◦‖ 6 ε.
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Choice of the basis. The name “rigorous polynomial approximation” suggests that the ap-
proximation set A should be ❘[t]. This is the most common choice, but other choices are
possible, like Bessel or Hermite functions. Even for a fixed A, the choice of the basis in which
the approximations are computed is crucial. Taylor models are based on (shifted) monomial
basis. A major contribution of [44],[129, Chap. 4] is the use of Chebyshev series and inter-
polants, due to excellent convergent properties in general, summarized in Section 2.2. Such
RPAs (Chebyshev basis and uniform norm) are sometimes referred to as Chebyshev models.
They are the main target of this chapter, although a wide range of results and algorithms
apply to other bases and norms.

While choosing (rescaled) Chebyshev basis for a compact I = [a, b] is almost always a good
option, other bases are more attractive when working with unbounded intervals [34, Chap.
17], like for instance Laguerre for I = [0,+∞), or Hermite for I = (−∞,+∞). Obviously,
in such situations, appropriate norms must be considered, such as (weighted) L2 norms. Fur-
ther investigations are needed in that direction. In the following, we will mainly consider the
Chebyshev basis over a compact segment, say I = [−1, 1] to avoid rescaling details.

In view of the preceding discussion, we propose the following definition of rigorous polynomial
approximations for the rest of the thesis.

Definition 3.2 Let (F , ‖ · ‖) be a Banach space of functions, A ⊆ F be a linear subspace
of approximating functions, abusively called polynomials and generated by a countable basis
(ln)n>0. An RPA f is a pair ((a0, . . . , an), ε), where:

◦ (a0, . . . , an) is a finite sequence of (floating-point) intervals, representing an interval poly-

nomial p :=
n∑

i=0
aiℓi, for which p :=

n∑
i=0

aiℓi ∈ p means ai ∈ ai for all 0 6 i 6 n;

◦ ε > 0 is an error bound, given as a floating-point number.

An RPA f is said to represent a function f∗ ∈ F , which we write f∗ ∈ f, if and only if:

∃p ∈ p, ‖f∗ − p‖ 6 ε.

Implementation of RPAs in C

The ChebValid C library only implements Chebyshev models for now. They are defined
according to the polynomial with interval coefficients – error bound approach given above.

The C code follows the GMP/MPFR/MPFI naming convention for functions: all opera-
tions concerning Chebyshev models are prefixed with chebmodel_, and similarly mpfi_chebpoly_

for polynomials with MPFI interval coefficients, mpfr_chebpoly_ for polynomials with MPFR
floating-point coefficients, etc. To briefly cover the implementation aspect, we provide after
each following algorithm the corresponding C function name, together with implementation
related remarks, when appropriate.

Coq formalization of RPAs

We briefly sketch out the formalization of RPAs in our Coq development. It is totally para-
metric with respect to the choice of basis, but only concerns uniform approximations, that is
with the ‖ · ‖∞ norm.
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A basis is described by a family of functions, non necessarily polynomials, indexed by natural
numbers, that is a term T: nat→R→R. The structure BasisOps_on below describes the signature
required on a basis T. It is parameterized by the type C of coefficients; sequences of such coeffi-
cients (seq C) represent linear combinations of elements of T. Linear operations (Section 3.2.2)
need not be provided since they can be implemented independently from the basis. The range
operation (Section 3.2.1) is important: its role is to bound the range on the given domain; it
should be as accurate as possible since it is used at many places to compute error bounds in rig-
orous approximations (e.g., for multiplication and a posteriori validation). We define BasisOps

to be a polymorphic function so that we capture with a single object the idealized operations
on reals and their concrete implementation with intervals.

Record BasisOps_on (C: Type) := {

lo, hi: C; (* bounds for the domain *)

beval: seq C → C → C; (* (efficient) evaluation *)

bmul: seq C → seq C → seq C; (* multiplication *)

bone, bid: seq C; (* constant to 1, identity *)

bprim: seq C → seq C; }. (* primitive *)

brange: seq C → C*C; }. (* range *)

Definition BasisOps := ∀ C: Ops1, BasisOps_on C.

Note that the type C used for the coefficients has a signature of an Ops1, which may represent
any class of “numbers” with arithmetic operations, in particular intervals (cf. the complete
article [40, Sec. 2] for more details about the underlying data-structures).

Then we can define RPAs (called Models in this framework) as follows:

Record Model C := { pol: seq C; rem: C }.

Again, C has to be thought as an abstract type for intervals. Therefore, this definition follows
the polynomial – interval remainder approach rather than the polynomial – error bound one,
since this Coq framework only deals with uniform approximations right now.

3.2
Elementary self-validating
operations on rigorous polynomial
approximations

3.2.1 ◮ Evaluation and range

An elementary requirement of rigorous polynomial approximations is to provide an interval
extension for the function it represents, as defined in Section 1.3. Note however that not
all norms are suitable for this requirement. The norm ‖ · ‖∞ is natural for this purpose, and
‖ · ‖Ч1 is also compatible since its overapproximates ‖ · ‖∞. Other norms, like L2 norms, are
not compatible with this requirement. Instead of local evaluation, L2 RPAs could be used for
local integration.
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In this section, we therefore suppose that (F , ‖ · ‖) is either (C0(I), ‖ · ‖∞) or (Ч1, ‖ · ‖Ч1).
For a RPA f := (p, ε) and an interval t, the evaluation is simply defined as:

RpaEval(f, t) := p(t) � [−1, 1] � [ε], (3.1)

which we may write f(t) for short. This depends on an evaluation scheme for polynomials (in

the generalized sense) associated to the basis in which p =
n∑

i=0
aiℓi is considered. For the Cheby-

shev basis, we use the Clenshaw evaluation scheme (Algorithm Clenshaw in Chapter 2),
overloaded with interval arithmetic operations.

Proposition 3.3 For any RPA f and interval t contained in I, if f ∈ f and t ∈ t, then
f(t) ∈ f(t), implying that f(·) : t 7→ f(t) is an interval extension of f .

Proof. Let f := (p, ε). Since f ∈ f, there exists p ∈ p and e ∈ F such that f(t) = p(t) + e(t)
and ‖e‖ 6 ε.

By hypothesis, p(·) : t 7→ p(t) is an interval extension over I for p. In particular, p(t) ∈ p(t).
Moreover, ‖e‖ 6 ε (with ‖ · ‖ = ‖ · ‖∞ or ‖ · ‖Ч1) implies that e(t) ∈ [−1, 1] � [ε] = [−ε, ε].

This finally proves that f(t) = p(t) + e(t) ∈ f(t) := p(t) � [−1, 1] � [ε].

Algorithm RpaEval provides valid enclosure for any t ⊆ I. However, this may not be an
appropriate strategy for large intervals, due to the overapproximation phenomena of interval
arithmetic showcased in Section 1.3. In particular, one cannot hope in general to get reason-
ably tight enclosures of the total range over I, which will be necessary for several operations
in the following sections. For the Chebyshev basis, one can define the range over [−1, 1] of a

Chebyshev model f = (p, ε) with p =
n∑

i=0
aiTi as in [129, Chap. 4, Algo. 4.5.2]:

JfK := JpK � [−1, 1] � [ε], where

JpK := a0 � [−1, 1] � a1 � · · ·� [−1, 1] � an.

Proposition 3.4 Let f = (p, ε) be a Chebyshev model. Then,

(3.4 i) for all p ∈ p and t ∈ [−1, 1], p(t) ∈ JpK;

(3.4 ii) for all f ∈ f and t ∈ [−1, 1], f(t) ∈ JfK.

Proof. For (3.4 i), let p =
n∑

i=0
aiTi and p ∈ p, that is p =

n∑
i=0

aiTi with ai ∈ ai. Since T0(t) = 1

and Ti(t) ∈ [−1, 1] for all i > 1 and t ∈ [−1, 1], p(t) ∈ JpK follows from the correctness of
interval arithmetic operations.

Now, (3.4 ii) follows from (3.4 i) by a similar argument to the proof of Proposition 3.3.

Remark 3.5 Although ‖ · ‖Ч1 is not dominated by ‖ · ‖∞ (i.e., there is no constant C such
that ‖f‖Ч1 6 C‖f‖∞ for all f ∈ Ч

1), the induced overapproximation is quite reasonable in
practice.

Moreover, we also define the truncation of a RPA to a given degree N , which is useful when
working with a globally fixed degree. For f := (p, ε) with p :=

∑N ′

i=0 aiℓi and N ′ > N :

RpaTrunc(f, N) := (

N∑

i=0

aiℓi, ⊲(ε+ J

N ′∑

i=N+1

aiℓiK)). (3.2)

Clearly, if f ∈ f, then we still have f ∈ RpaTrunc(f, N).
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Implementation in C ChebValid provides several routines to evaluate Chebyshev models
on different input types, e.g., for machine double: chebmodel_evaluate_d, for rationals (mpq):
chebmodel_evaluate_q, for mpfr: chebmodel_evaluate_fr or resp., for mpfi chebmodel_evaluate_fi.

Clenshaw evaluation scheme in Coq

The imperative-style for-loop of Algorithm Clenshaw in Chapter 2 is translated into the
following polymorphic tail-recursive function with two accumulators:

Fixpoint Clenshaw (C: Ops1) b c (p: seq C) x :=

match p with

| [] => c - x*b

| a::q => Clenshaw c (a + 2*x*c - b) q x

end.

Definition beval (C: Ops1) (p: seq C) x := Clenshaw 0 0 (rev p) x.

This code might look mysterious. It is justified by the following invariant on real numbers:

Lemma ClenshawR b c p x: Clenshaw b c p x = eval T (catrev p [c - 2*x*b; b]) x.

In the right-hand side, catrev is the function that reverses its first argument and catenate it
with the second one. The proof is done by induction in just three lines, using the Coq tactic
for ring equations.

3.2.2 ◮ Linear space operations

Natural extensions of linear space operations are easy to define on rigorous polynomial approx-
imations. This moreover does not depend on the choice of norm and basis. For RPAs f = (p, ε)

and g = (q, η), with polynomials p =
n∑

i=0
aiℓi and q =

m∑
i=0

biℓi, and an interval λ, we define:

f ⊞ g := (p ⊞ q, ⊲(ε+ η)) where p ⊞ q :=

max(n,m)∑

i=0

(ai � bi)Ti,

⊟ f := (⊟p, ε) where ⊟p :=
n∑

i=0

(� ai)Ti,

f ⊟ g := (p ⊟ q, ⊲(ε+ η)) where p ⊟ q :=

max(n,m)∑

i=0

(ai � bi)Ti,

λ � f := (λ � p, ⊲(mag(λ)ε) where λ � p :=
n∑

i=0

(λ � ai)Ti.

These operations are implemented in ChebValid under the self-evident names chebmodel_add,
chebmodel_neg, chebmodel_sub, chebmodel_scalar_mul_fi.
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3.2.3 ◮ Multiplication of RPAs

Besides linear operations on RPAs, we shall also define a multiplication operation (f, g) 7→ f⊠g.
Here, we make the assumption that (F , ‖·‖) is a Banach algebra (see Lemma 2.39), that is, F
is closed under multiplication and ‖fg‖ 6 ‖f‖‖g‖. Note that the classical setting for uniform
approximation (C0(I), ‖·‖∞), where ‖·‖∞ is the supremum norm over a given compact segment
I, is a Banach algebra. The Ч

1 space of absolutely convergent Chebyshev series is another
example of Banach algebra.

Algorithm RpaMul(f, g, N) computes a degree N RPA for the multiplication of two RPAs
f and g, provided a multiplication scheme (p, q) 7→ p× q is given for the underlying basis.

Algorithm 3.1 RpaMul(f, g, N) – Multiplication of RPAs

Input: RPAs f = (p, ε) and g = (q, η), degree N .
Output: A degree N RPA h for the multiplication of f and g.

1: r← p× q

2: τ ← ⊲ (JpKη + JqKε+ εη)
3: h← RpaTrunc((r, τ), N)
4: return h

Proposition 3.6 (Correctness of RpaMul) If f ∈ f and g ∈ g, then fg ∈ RpaMul(f, g, N),
for any N .

Proof. Let f = (p, ε), g = (q, η), r and τ be as in Algorithm RpaMul. Suppose that f ∈ f

and g ∈ g, meaning that there exist polynomials p and q such that:

p ∈ p, q ∈ q, ‖f − p‖ 6 ε, ‖g − q‖ 6 η.

Then, by the supposed correctness of polynomial multiplication with interval coefficients, pq ∈
h := p× q, and:

‖fg − pq‖ = ‖p(g − q) + q(f − p) + (f − p)(g − q)‖ 6
‖p‖‖g − q‖+ ‖q‖‖f − p‖+ ‖f − p‖‖g − q‖ 6 JpKη + JqKε+ εη 6 τ

by the correctness of J·K (Proposition 3.4).
Therefore, fg ∈ (h, τ). Finally, thanks to the correctness of RpaTrunc, fg ∈ h.

Note that in the current version of ChebValid, the function chebmodel_mul does not truncate
the result, which corresponds to N = +∞ in RpaMul. However, future versions should give
the possibility to fix a global degree Nglob for RPAs (similarly to a global floating-point precision
fixed by the user), so that multiplication would be defined by:

f ⊠ g := RpaMul(f, g, Nglob).

Multiplication in Chebyshev basis

In order to get a complete implementation of Chebyshev models, we must provide a multipli-
cation scheme (p, q) 7→ p × q for polynomials expressed in Chebyshev basis, in particular for
Chebyshev polynomials with interval coefficients.

122



Following the discussion about fast multiplication in Chebyshev basis in the previous chapter,
it might be tempting to instantiate fast DCT algorithms with intervals to obtain near-linear
multiplication algorithms for the multiplication of Chebyshev models. Despite the rather good
numerical conditioning of DCT with floating-point numbers [198], the interval counterpart is
subject to ongoing works, as it may be subject to potentially large overestimations, similarly
to what is observed in FFT [157].

In a recent work [45], the rounding errors occurring during a FFT are bounded a priori,
thus opening the way to fast and rigorous polynomial multiplication in monomial basis. There
is some hope for similar results for the DCT in the near future, which would lead to fast
multiplication algorithms of Chebyshev models.

In the meantime, it is preferable to resort to traditional (quadratic-time) multiplication
schemes. Algorithm ChebMul implements multiplication of Chebyshev polynomials as a
straightforward application of the multiplication formula (2.6). It can be instantiated with
rational numbers, floating-point numbers or intervals (the last case being used by Algorithm
RpaMul for Chebyshev models). The ChebValid C library provides mpfr_chebpoly_mul and
mpfi_chebpoly_mul.

Algorithm 3.2 ChebMul(p, q) – Multiplication in Chebyshev basis

Input: polynomials p =
r∑

i=0
piTi and q =

s∑
j=0

qjTj .

Output: polynomial h =
r+s∑
k=0

hkTk representing the multiplication of p and q.

1: for k = 0 to r + s do hk ← 0
2: for i = 0 to r do
3: for j = 0 to s do
4: hi+j ← hi+j + pi ∗ qj/2
5: h|i−j| ← h|i−j| + pi ∗ qj/2
6: end for
7: end for
8: return h

Proposition 3.7 (Complexity of naive Chebyshev multiplication) Algorithm ChebMul(p, q)

computes the product of p :=
r∑

i=0
aiTi and q :=

s∑
j=0

bjTj in Chebyshev basis in O(rs) arithmetic

operations.

Therefore, the multiplication f ⊠ g of Chebyshev models f and g with fixed degree Nglob and
naive Chebyshev multiplication requires O(Nglob

2) interval arithmetic operations.

Proof. Clearly, the two nested for-loops in the code of ChebMul account for the claimed
complexity in O(rs). Concerning f ⊠ g, besides the multiplication in O(Nglob

2) operations,
the other routines involved in RpaMul (range J·K and truncation RpaTrunc) have a linear
complexity.
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A note concerning the Coq implementation of Chebyshev multiplica-
tion

Algorithm ChebMul can be implemented as a polymorphic function parametrized by the
type of coefficients: ∀ (C : Ops1), seq C → seq C → seq C. However, since lists in Coq do not
allow for constant-time access to their elements, the resulting algorithm would run in cubic
time.

To get around this issue, we propose two (quadratic-time) auxiliary functions mul_pls and
mul_mns, implementing respectively the Ti+j and T|i−j| component of the multiplication formula.
Then, smul is defined as the half sum of them:

Fixpoint mul_pls (C: Ops1) (p q: seq C): seq C :=

match p,q with

| [],_ | _,[] => []

| a::p’, b::q’ =>

sadd (a*b::(sadd (sscal a q’) (sscal b p’))) (0::0::mul_pls p’ q’)

end.

Fixpoint mul_mns (C: Ops1) (p q: seq C): seq C :=

match p,q with

| [],_ | _,[] => []

| a::p’, b::q’ =>

sadd (a*b::(sadd (sscal a q’) (sscal b p’))) (mul_mns p’ q’)

end.

Definition smul C (p q: seq C): seq C :=

sscal (1/2) (sadd (mul_mns p q) (mul_pls p q)).

The multiplication of RPAs (in any basis, provided a multiplication scheme is given) is
implemented by:

Definition mmul (M N: Model): Model :=

{| pol := pol M * pol N;

rem := srange (pol M) * rem N + srange (pol N) * rem M + rem M * rem N

|}.

3.2.4 ◮ Integration

For the two examples of norms we have considered so far, that is, ‖ · ‖∞ (uniform convergence
over a compact segment I) and ‖ · ‖Ч1 , the (indefinite or definite) integration is a continuous
linear operator. Hence, with these norms, integration of RPAs is possible:

◦ For the uniform convergence over I = [a, b], the indefinite integral (a.k.a. primitive) taken
from any t0 ∈ [a, b] is defined by:

RpaPrim∞((p, ε), t0) :=

(∫

t0

p,max(t0 − a, b− t0)ε
)
. (3.3)

If a global degree Nglob is fixed, the resulting RPA (of degree Nglob+1) must be truncated.

The definite integral over [c, d] ⊆ [a, b] returns the following interval:

RpaInt((p, ε), c, d) :=

(∫

c
p

)
(d) � [−1, 1] � [(d− c)ε].
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◦ Based on Proposition 2.40, the indefinite integration of RPAs from any t0 ∈ [−1, 1]
with the Ч

1 norm is:

RpaPrimЧ1((p, ε), t0) :=

(∫

t0

p, 2ε

)
.

The integration scheme of the polynomials with interval coefficients depends on the choice
of the basis. For the Chebyshev basis, Algorithm ChebInt computes a primitive using
Formula (2.11).

Remark 3.8 (Derivation of RPAs) The fact that fn → f uniformly (resp. for the Ч
1-norm)

does not imply that f ′n → f ′. In fact, f ′ may even not exist and belong to C0(I) (resp. Ч
1).

Hence, for the two norms considered in this section, differentiating RPAs is not possible.

Algorithm 3.3 ChebInt(p, t0) – Primitive in Chebyshev basis

Input: polynomial p =
r∑

i=0
piTi and t0 ∈ [−1, 1].

Output: polynomial q =
r+1∑
i=0

qiTi representing
∫ t
t0
p(s)ds.

1: for i = 0 to r + 1 do qi ← 0
2: for i = 0 to r do
3: if i = 0 then
4: q1 ← q1 + p0
5: else if i = 1 then
6: q2 ← q2 + p1/4
7: else
8: qi+1 ← qi+1 + pi/2(i+ 1)
9: qi−1 ← qi−1 − pi/2(i− 1)

10: end if
11: end for
12: q0 ← q0 − q(t0)
13: return q

3.3
A posteriori fixed-point based
validation methods

Let X denote an ambient space in which we look for the solution x∗ of a given problem. In
this setting, X is usually (at least) a complete metric space with a metric d. Depending on
the problem under consideration, there may be no obvious self-validating algorithm to compute
certified representations of x∗. Several obstructions may appear. For instance, Example 1.30
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illustrated that merely replacing floating-point numbers by intervals in a standard Gaussian
elimination is rarely a good option for rigorous matrix inversion – except for low dimension
– because of rapidly increasing interval width, even for well-conditioned matrices. What is
more, using intervals in approximation schemes does not even produce rigorous enclosures,
because it cannot account for method errors. Consider, for example, polynomial interpolation
or Runge-Kutta integration of ODEs.

In such cases, a possible approach consists in bounding separately rounding and method
errors, and return their sum. Taking back the example of Runge-Kutta schemes, estimates
for the method errors exist in the literature (see for example [124, Chap. 3]), and a priori
rounding error bounds are automatically computed in [28]. However, this general process
rapidly becomes cumbersome. Indeed, reasonably tight rounding error bounds may be hard
to compute, whereas the method error estimates are often only asymptotically valid or may
depend on unknown quantities (e.g., higher order derivatives).

A completely different approach concerns fixed-point based a posteriori validation methods.
Dating back to the works of Kantorovich about Newton’s method [131], they gained prominence
with the rise of modern computers and were applied to numerous functional analysis problems.
Early works include [136, 137], in which the use of fixed-point theorems is advocated to
numerically prove the existence of solutions in a certain region. Based on those ideas, a wide
range of works proposed methods to rigorously solve various differential problems, such as
ODEs with initial or boundary conditions [199, 189, 153], or elliptic PDEs [200, 178, 9].
The interested reader will find more details and references in the detailed survey [179] or in
the short notice [251]. Even more recently, those methods were used to design algorithms
computing RPAs for solutions of linear ODEs (see [19] and Chapter 4). In short, these
methods compute a rigorous representation x for x∗ in two separate steps:

1. Approximation step. A numerical approximation x◦ ∈ X of x∗ is obtained by an
oracle, which may resort to any approximation method and requires no mathematical
assumption (convergence, error bounds...). This makes it possible to rely on external
code and use (non-rigorous) libraries known for their highly efficient and optimized rou-
tines (e.g., matrix inversion with BLAS/LAPACK [4] or Chebyshev approximations with
Chebfun [72]). In the perspective of rigorous numerics formalized inside computer as-
sistants, this is a major breakthrough: time-consuming computations are independently
executed, and the trusted codebase remains small.

2. Validation step. The initial problem is rephrased in such a way that x∗ is a fixed point
of a (locally) contracting operator T : X → X. An a posteriori error bound ε on d(x◦, x∗)
is deduced from the Banach fixed-point theorem (several variants of this theorem are given
in Section 3.3.1). Obtaining an appropriate fixed-point equation for x∗ is an essential
part. To this aim, Newton-like methods have been widely used in the rigorous numerics
literature [265, 153].
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3.3.1 ◮ The Banach fixed-point theorem and a posteriori

Newton-like validation methods

A wide range of a posteriori validation methods rely on topological fixed-point theorems, the
most classical ones in this context being the Banach fixed-point theorem and the Schauder fixed-
point theorem. In this thesis, we focus on validation methods using the former. The interested
reader will find examples involving the latter in, e.g., [136, Chap. 2, Thm. 4], [199] or [181].

After providing a statement of the Banach fixed-point theorem suitable for effective valida-
tion, we present the general ideas of a posteriori Newton-like validation methods that allow for
turning general equations in Banach spaces into desired fixed-point equations.

Several statements of Banach fixed-point theorem

Theorem 3.9 is the traditional formulation of the Banach fixed-point theorem. It is a global
statement – the operator T is required to be contracting over the whole space X. The classical
proof that may be found in numerous textbooks (see for example [20, Thm. 2.1]) involves
Cauchy sequences. We reproduce it here for the sake of completeness. It is interesting to note
that our formalized proof based on filters and given in Section 3.3.2 is somewhat different.

Theorem 3.9 (Banach fixed-point – global version) Let (X, d) be a complete metric space
and T : X → X be an operator. If T is contracting over X, that is, if there exists a µ ∈ [0, 1)
such that T is µ-Lipschitz over X:

∀x1, x2 ∈ X, d(T · x1,T · x2) 6 µd(x1, x2),

then T admits a unique fixed point x∗ in X.
Moreover, for any x◦ ∈ X, the approximation error of x◦ to x∗ satisfies the following in-

equality:
d(x◦,T · x◦)

1 + µ
6 d(x◦, x∗) 6

d(x◦,T · x◦)
1− µ . (3.4)

Proof. Let xn := Tn · x◦ for n > 0 denote the iterates of x◦ under T, that is x0 := x◦ and
xn+1 := T · xn. Let moreover b := d(x◦,T · x◦).

By an easy induction, one gets d(xn, xn+1) 6 µnb. Since µ < 1, this yields for all n and
m > n:

d(xn, xm) 6

m−1∑

k=n

µkb 6

+∞∑

k=n

µkb =
µnb

1− µ → 0 as n→ +∞.

Therefore, (xn) is a Cauchy sequence, and hence converges to some x∗ ∈ X by completeness.
Moreover, T · x∗ = x∗ since T is Lipschitz, hence continuous.

Now, to prove the uniqueness, let x̄, x∗ ∈ X be two fixed points of T. Then we have:

d(x̄, x∗) = d(T · x̄,T · x∗) 6 µd(x̄, x∗),

from which follows d(x̄, x∗) = 0, hence x̄ = x∗ since µ < 1.
Finally, the enclosure (3.4) is proved by using the triangle inequality:

d(x◦, x∗) 6 d(x◦,T · x◦) + d(T · x◦, x∗) 6 d(x◦,T · x◦) + µd(x◦, x∗),

d(x◦,T · x◦) 6 d(x◦, x∗) + d(x∗,T · x◦) 6 d(x◦, x∗) + µd(x◦, x∗).
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It is quite often the case that the operator T is contracting only over some neighborhood of
the candidate approximation x◦. In fact, one can restrict the ambient metric space X to any
closed stable subset S ⊆ X, since S (with the induced metric d) is again a complete metric
space. However, for the purpose of effective validation, we give the following local statement. By
replacing the general – and difficult to check – notion of closed stable subset with that of strongly
stable ball (cf. the more detailed Definition 3.14), we obtain a formulation where rigorously
verifying the preconditions only requires bounding distances and checking real inequalities.

Theorem 3.10 (Banach fixed-point – local version) Let (X, d) be a complete metric space,
an operator T : X → X, x◦ ∈ X, and µ, b, r ∈ ❘+, satisfying the following conditions:

(3.10 i) d(x◦,T · x◦) 6 b;

(3.10 ii) T is µ-Lipschitz over the closed ball B̄(x◦, r) := {x ∈ X | d(x, x◦) 6 r}:

∀x1, x2 ∈ X, x1 ∈ B̄(x◦, r) ∧ x2 ∈ B̄(x◦, r) ⇒ d(T · x1,T · x2) 6 µd(x1, x2);

(3.10 iii) µ < 1 — T is contracting over B̄(x◦, r);

(3.10 iv) b+ µr 6 r — B̄(x◦, r) is called a µ-strongly stable ball with offset b.

Then T admits a unique fixed-point x∗ in B̄(x◦, r).

Proof. The ball B̄(x◦, r) is stable under T. Indeed, for any x ∈ B̄(x◦, r),

d(x◦,T · x) 6 d(x◦,T · x◦) + d(T · x◦,T · x) 6 b+ µr 6 r.

Since T is contracting over B̄(x◦, r), Theorem 3.9 – applied to the closed subspace B̄(x◦, r)
instead of X – guarantees the existence and uniqueness of a fixed point x∗ of T in B̄(x◦, r).

Remark 3.11 The reader may wonder why we do not provide an enclosure of d(x◦, x∗) in
Theorem 3.10, similarly to (3.4). In fact, the lower bound is not used in practice – it just tells
that the enclosure is sharp for small µ – and Condition (3.10 iv) is equivalent to r > b

1−µ , so

that one can directly choose r := b
1−µ without violating the four conditions of the theorem.

A posteriori Newton-like validation method

In order to use the Banach fixed-point theorem for validating a candidate approximation x◦

with respect to the exact solution x∗, one needs to find a contracting operator T of which x∗ is
a fixed point. To this end, one can resort to Newton-like validation methods, which transform
an equation F·x = 0 into an equivalent fixed-point equation T·x = x with T contracting [153].

More specifically, suppose that F : X → Y is differentiable; we use a Newton-like operator
T : X → X defined as:

T · x := x−A · F · x, for h ∈ X,
with A : Y → X an injective bounded linear operator, intended to be close to (DFx◦)−1. The
operator A may be given by an oracle and does not need to be this exact inverse (which anyway
might not be exactly representable on computers). The mean value theorem yields a Lipschitz
ratio µ for T over any convex subset S of X:

∀x1, x2 ∈ S, ‖T · x1 −T · x2‖ 6 µ‖x1 − x2‖, with µ = sup
x∈S
‖DTx‖ = sup

x∈S
‖1X −A · DFx‖,
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which is expected to be small over some neighborhood of x◦.
Concretely, in order to apply Theorem 3.10, one needs to compute the following quantities:

◦ a bound b > ‖A · F · x◦‖ = ‖x◦ −T · x◦‖;

◦ a bound µ0 > ‖1X −A · DFx◦‖ = ‖DTx◦‖;

◦ a bound µ̄(r) > ‖A · (DFx −DFx◦) ‖ = ‖DTx − DTx◦‖ valid for any x ∈ B̄(x◦, r), and
parameterized by a radius r ∈ ❘+.

If we are able to find a radius r ∈ ❘+ satisfying:

µ(r) := µ0 + µ̄(r) < 1, and b+ rµ(r) 6 r, (3.5)

then Theorem 3.10 guarantees the existence and uniqueness of a root x∗ of F in B̄(x◦, r).

Remark 3.12 Finding an r as small as possible while satisfying (3.5) may be a nontrivial
task for automated validation procedures. For many problems, µ̄(r) is polynomial, hence condi-
tions (3.5) are polynomial inequalities over r (see, e.g., [199], or the more recent work [111],
in which this approach is given the name radii polynomials). In our case, division (resp. square
root) induces an affine (resp. quadratic) equation, which admits closed form solutions.

Example 3.13 To illustrate this Newton-like validation procedure, in contrast with the inter-
val Newton method presented in Section 1.3.3, we consider the golden ratio of Example 1.29.
Here, the ambient Banach space is the standard real line (❘, | · |), and ϕ∗ = 1+

√
5

2 is the unique
positive root of the quadratic operator F : x 7→ x2 − x− 1. We propose to validate the approxi-
mation ϕ◦ = 55

34 .
Following the above approach, since DFx · h = (2x − 1)h, we define A = (DFϕ◦)−1 as the

multiplication by a := 1
2ϕ◦−1 , yielding the following Newton-like operator T:

T · x = x− a(x2 − x− 1), where a :=
1

2ϕ◦ − 1
=

17

38
.

Note that in this particular example, since we are working in ❘ with exact rational numbers,
A is the exact inverse of DFϕ◦ , implying µ0 = 0 in the above framework.

◦ First, consider a ball B̄(ϕ◦, r) of some radius r around ϕ◦. A Lipschitz ratio for T over
it can be explicitly computed. Indeed,

T · x1 −T · x2 = (x1 − x2)−
(x21 − x22)− (x1 − x2)

2ϕ◦ − 1

=

(
1− (x1 + x2)− 1

2ϕ◦ − 1

)
(x1 − x2) =

(
−(x1 − ϕ◦) + (x2 − ϕ◦)

2ϕ◦ − 1

)
(x1 − x2).

yields a valid Lipschitz ratio µ(r) := 2ar.

◦ We also compute the bound:

b := |ϕ◦ −T · ϕ◦| = |a(ϕ◦2 − ϕ◦ − 1)| = 1

2584
.

129



◦ Now, B̄(ϕ◦, r) contains a unique fixed point of T as soon as r satisfies the inequalities:

µ(r) :=
17

19
r < 1, and b+ rµ(r) :=

1

2584
+

17

19
r2 6 r.

Therefore, we can for example provide the a posteriori error bound r := 39
10000 . Since ϕ∗ is the

unique positive root of F and that B̄(ϕ◦, r) clearly contains only positive numbers, we claim the
following rigorous statement:

|ϕ◦ − ϕ∗| 6 39

100000
.

In comparison, Mathematica numerically computes |ϕ◦ − ϕ∗| ≈ 0.00038693.

3.3.2 ◮ A formal proof for the Banach fixed-point theo-

rem based on filters

The Banach fixed-point theorem has been formalized in various flavors of logic and proof assis-
tants. In particular, a formal proof of a version of this fixed-point theorem is provided in [27]
for the purpose of the formalization of the Lax-Milgram theorem, based on the Coquelicot
library [29]. Using the same backbone library, we provide a different formalization, in accor-
dance with the statement of Theorem 3.10, that is more suitable for our effective validation
purposes.

The Coquelicot library for functional analysis

The Coquelicot library [29] formalizes topological concepts using filters [33, 108], which we
briefly recall here. A filter on a type T is a collection of collections of inhabitants of T which
is non-empty, upward closed and stable under finite intersections:

Record Filter (T : Type) (F : (T → Prop) → Prop) := {

filter_true : F (fun _ => True) ;

filter_and : ∀ P Q : T → Prop, F P → F Q → F (fun x => P x /\ Q x) ;

filter_imp : ∀ P Q : T → Prop, (∀ x, P x → Q x) → F P → F Q }.

While filters are used to formalize neighborhoods, balls allow for expressing the relative closeness
of points in the space. Balls are formalized using a ternary relation between two points in the
carrier type, and a real number, with the following axioms:

ball : M → R → M → Prop ;

ax1 : ∀ x (e > 0), ball x e x ;

ax2 : ∀ x y e, ball x e y → ball y e x ;

ax3 : ∀ x y z e1 e2, ball x e1 y → ball y e2 z → ball x (e1 + e2) z

Two points are called close when they cannot be separated by balls:

Definition close (x y : M) : Prop := ∀ eps > 0, ball x eps y.

A filter is called a Cauchy filter when it contains balls of arbitrary (small) radius:

Definition cauchy (T : UniformSpace) (F : (T → Prop) → Prop) :=

∀ eps > 0, ∃ x, F (ball x eps).
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Theorem 3.17 The limit w of the filter F is in B̄0, and w is a fixed point of T. Moreover,
w is close to every other fixed point of T in B0.

Proof. In this statement “w is a fixed point of T” means “w is close to T · w”. First, w ∈ B̄n

for all n. Indeed, for any ε > 0, there is an m > n s.t. B̄m ⊆ B(w, ε), and since B̄m ⊆ B̄n,
um ∈ B̄n ∩B(w, ε). In particular, w ∈ B̄0.

It is also clear by stability that T · w ∈ B̄n for all n.
Moreover, w is close to any point v s.t. v ∈ B̄n for all n (for any ε > 0, choose n s.t.

2µrn < ε). Taking v := T · w proves that w is a fixed point of T.
Finally, if w′ ∈ B̄0 is another fixed point of T, then it follows from an easy induction that

w′ ∈ B̄n for all n. Hence, the foregoing shows that w is close to w′.

Strongly stable balls model the requirements set on the untrusted data to be formally verified.
They can also be seen as balls centered at the initial point, and large enough to include all its
successive iterates, i.e. as instances of the locus at stake in classical presentations of the proof.
The version proved in [27] has a slightly more technical wording, which seems to be made
necessary by its further usage in the verification of the Lax-Milgram theorem. Our proof script
is significantly shorter, partly because we automate proofs of positivity conditions (for radii
of balls) using canonical structures for manifestly positive expressions. But the key ingredient
for concision is to make most of the filter device in the proof, and to refrain from resorting to
low-level properties of geometric sequences. To the best of our knowledge, the other libraries of
formalized analysis featuring a proof of this result, notably Isabelle/HOL and HOL-Light,
are based on variants of proof strategy closer to the approach of Boldo et al. than to ours.

3.3.3 ◮ Application to the rigorous inversion of matrices

As illustrated by Example 1.30 in Chapter 1, inverting a square matrix with a standard
Gaussian elimination procedure overloaded with interval operations rarely offers a realistic
solution, due to excessive interval overapproximations. The Newton-like a posteriori validation
framework presented above yields a rather elementary method to compute tight error bounds
for numerical matrix inverses. Although it is really close to the well-known Krawczyk method
in the linear case, we give it here for the mere sake of illustration. An extensive literature is
dedicated to this problem, and we refer the interested reader to [174, Chap. 7] and [221, Sec.
10] for more details on these methods.

Fix n > 1 and consider the set Mn(❘) of order n square matrices with real entries. To
obtain a Banach space, one needs a suitable norm on it. For the sake of simplicity, we restrict
ourselves to the 1-norm ‖ · ‖1, since it is the operator norm associated to the 1-norm in ❘:
‖x‖1 := |x1|+ · · ·+ |xn|, whence a strong connection with the space Ч

1 of absolutely summable
Chebyshev series (Definition 2.37 in previous chapter).

Definition 3.18 For n > 1, the 1-norm ‖ · ‖1 over Mn(❘), defined as

‖M‖1 := max
16j6n

n∑

i=1

|mij |, M = (mij)16i,j6n ∈Mn(❘),

makes (Mn(❘), ‖ · ‖1) a Banach algebra, that is:

‖MN‖1 6 ‖M‖1‖N‖1, M,N ∈Mn(❘).
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Let P be an order n square matrix, expected to be invertible – but this remains to be proved
– and M◦ a numerically computed inverse. If P is invertible, then M∗ = P−1 is the unique
root of F :Mn(❘)→Mn(❘) defined as F ·M := PM − 1n, where 1n is the order n identity
matrix. This operator is affine, of linear part M 7→ PM . Hence A can be chosen as M 7→ AM
with some A ≈ P−1. We take A :=M◦.

Based on this choice, Algorithm ValidatedMatrixInverse(P ) computes, if possible, a
pair (M◦, ε) such that ‖M◦ − P−1‖1 6 ε. In particular, this means that all the entries of M◦

have an error at most ε, allowing to construct an interval matrix M such that P−1 ∈ M.

Algorithm 3.4 ValidatedMatrixInverse(P )

Input: an order n square matrix P ∈Mn(❘).
Output: a pair (M◦, ε) ∈Mn(❘)×❘ such that ‖M◦ − P−1‖1 6 1, or "Fail".

⊲ Approximation step
1: Compute M◦ as a floating-point numerical inverse of P

⊲ Validation step – use interval arithmetic
2: µ← ‖1n −M◦P‖1
3: b← ‖M◦(PM◦ − 1n)‖1
4: if µ < 1 then
5: r← b � (1 � µ)
6: return ε := r
7: else
8: return "Fail"
9: end if

Proposition 3.19 (Correctness of ValidatedMatrixInverse) For P ∈Mn(❘),
if ValidatedMatrixInverse(P ) returns a pair (M◦, ε), then P is invertible and
‖M◦ − P−1‖1 6 ε.

Proof. Suppose that ValidatedMatrixInverse(P ) returns such a pair (M◦, ε). First, we
have that µ := ‖1n −M◦P‖1 ∈ µ, hence µ < 1. But if P is not invertible, then there exists
x ∈ ❘n of 1-norm ‖x‖1 = 1 in the kernel of P , yielding ‖(1n −M◦P )x‖1 = ‖x‖1 = 1, which
contradicts µ < 1 (since the 1-norm of matrices is the operator norm corresponding to the
1-norm in ❘n). Therefore P is invertible.

Now we consider the Newton-like operator T :Mn(❘)→Mn(❘), defined by:

T ·M :=M −M◦(PM − 1n).

This operator is contracting over Mn(❘), since

‖T ·M1 −T ·M2‖ = ‖(1n −M◦P )(M1 −M2)‖1 6 ‖1n −M◦P‖1‖M1 −M2‖1 = µ‖M1 −M2‖1.

Moreover, b := ‖M◦ −T ·M◦‖1 = ‖M◦(PM◦ − 1n)‖1 ∈ b.
Thanks to the Banach fixed-point Theorem 3.9, we have that ‖M◦−P−1‖1 6 b

1−µ ∈ r.

Example 3.20 (A posteriori validation at the rescue for Lehmer matrix) Overloading
floating-point operations by interval ones in Gaussian elimination is a classical example il-
lustrating the limits of interval arithmetic, as shown by Example 1.30 with Lehmer matrices.
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Making use of the fundamentals of Banach fixed-point based a posteriori validation and
Newton-like methods explained in the previous section, we propose rigorous division and square
root procedures for RPAs with quadratic complexity (Propositions 3.23 and 3.25). For both
operations, the roadmap is the following. First, we give an “abstract” validation procedure
under the form of a proposition, whose proof relies on Theorem 3.10. After that, the “con-
crete” algorithm computing the RPA is given. Finally, we focus on some elements of the Coq
formalization.

3.4.1 ◮ Division of rigorous polynomial approximations

For f, g ∈ C(I) with g nonvanishing over I, the quotient f/g is the unique root of F : h 7→ gh−f .
Let h◦ be a candidate approximation given by the approximation step. Constructing the
Newton-like operator T requires an approximation A of (DFh◦)−1 : k 7→ k/g. For that purpose,
suppose w ≈ 1/g ∈ C(I) is also given by an oracle, and define:

T · h = h− w(gh− f). (3.6)

The next proposition gives an upper bound for ‖h◦ − f/g‖.
Proposition 3.21 Let f, g, h◦, w ∈ C(I), and µ, b ∈ ❘+ such that:

(3.21 i) ‖w(gh◦ − f)‖ 6 b, (3.21 ii) ‖1− wg‖ 6 µ, (3.21 iii) µ < 1.

Then g does not vanish over I and ‖h◦ − f/g‖ 6 b
1−µ .

Proof. Conditions (3.21 ii) and (3.21 iii) imply that T (Equation (3.6)) is contracting over
C(I) with ratio µ. The radius r := b

1−µ makes the ball B̄(h◦, r) strongly stable with offset
b (3.21 i), since b+ µr = r. Therefore, h∗ is the (global) unique root of F, and ‖h◦ − h∗‖ 6 r.

Finally, w and g do not vanish because ‖1− wg‖ 6 µ < 1. Hence, h∗ = f/g over I.

Algorithm RpaDiv(f, g, Napp, Nval) computing a RPA for the division of f by g requires
two extra parameters:

◦ a degree Napp for the degree of the approximation polynomial h◦ ≈ f/g;

◦ a degree Nval for the witness polynomial w ≈ 1/g, need by Proposition 3.21.

Choosing the validation degree Nval is a trade-off between accuracy (w must be accurate enough
to guarantee that µ is sufficiently small to yield a tight error bound) and efficiency (a large
Nval increases the computation time of the validation step). It is totally independent of the
approximation degree Napp.

Remark 3.22 In the case of Chebyshev models, one can choose to impose Napp = Nval and
save time by evaluating f and g over the Chebyshev grid only once during the computation of
h◦ and w. When using a global fixed degree Nglob, one can define a division operator on RPAs:

f � g := RpaDiv(f, g, Nglob, Nglob),

which may return an exceptional value (or an RPA with infinite remainder) if the validation
step fails.
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Proposition 3.23 (Complexity of division of RPAs) The overall complexity in interval
operations of f�g with fixed degree Nglob is determined by the 3 multiplications of RPAs involved
in RpaDiv. In the common case of quadratic multiplication (e.g., in monomial or Chebyshev
basis with naive multiplication), this requires O(Nglob

2) interval arithmetic operations.

In ChebValid, the division procedure chebmodel_div is implemented as the multiplication
of f by the inverse of g. The inverse (which is a particular case of division, with f = 1) is
implemented by chebmodel_inverse. The validation step (corresponding to Proposition 3.21)
is implemented by the auxiliary procedure mpfr_chebpoly_inverse_validate. In the future, the
code must be updated to perform the division of RPAs in a single step (as presented above),
to gain efficiency and accuracy.

Algorithm 3.5 RpaDiv(f, g, Napp, Nval) – Division of RPAs

Input: RPAs f, g, approximation degree Napp and validation degree Nval.
Output: RPA h of degree Napp for the division of f by g.

1: f ← mid(f) and g ← mid(g)
2: Compute a degree Napp approximation h◦ of f/g (e.g., using Chebyshev interpolation)
3: Compute a degree Nval approximation w of 1/g
4: h◦ ← (h◦, 0) and w← (w, 0)
5: µ← mag (J1 ⊟ w ⊠ gK)
6: if µ < 1 then
7: b← mag (Jw ⊠ (g ⊠ h◦ ⊟ f)K)
8: µ← [µ] and b← [b]
9: r← b � (1 � µ)

10: h← (h◦, r̄)
11: return h

12: else
13: return "Fail"
14: end if

Coq formalization of division

In our Coq development, the division of RPAs (a.k.a. Model) is implemented as follows:

Definition mdiv_aux (F G H W: Model): Model :=

let K1 := 1-W*G in

let K2 := W*(G*H - F) in

match mag (mrange K1), mag (mrange K2) with

| Some mu, Some b when is_lt mu 1 => {| pol := pol H; rem := rem H + sym (b/(1-mu)) |}

| _ => mbot

end.

Definition mdiv n (F G: Model): Model :=

let p, q := mcf F, mcf G in

mdiv_aux F G (mfc (interpolate n (fun x => beval p x / beval q x)))

(mfc (interpolate n (fun x => 1 / beval q x))).

Since this Coq framework defines Model with error intervals rather than error bounds, mdiv_aux
returns (rem H + sym (b/(1-mu))). The interval (sym (b/(1-mu))) is equal to [−r, r] with r = b

1−µ ,
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whereas (rem H) is zero, since H is instantiated by (mcf _) in mdiv.
Note that we use the trivial model mbot={|pol:=[];rem:=bot|} as a default value, when the

concrete computations fail to validate the guess of the oracle (either because this guess is just
wrong, or because of over-approximations in the computations).

The correctness lemmas associated to these functions are:

Lemma rmdiv_aux F f G g H h W w:

mcontains F f → mcontains G g → mcontains H h → mcontains W w →

mcontains (mdiv_aux F G H W) (f/g).

Lemma rmdiv n F f G g: mcontains F f → mcontains G g → mcontains (mdiv’ n F G) (f/g).

Lemma rmdiv_aux relies on the following formalization of Proposition 3.21. Since continuity
was not used in that proposition, no such hypothesis appears in the Coq statement.

Lemma div.newton (f g h w : R → R) mu b :

(∀ t, I t → Rabs (1 - w t * g t) 6 mu) →

(∀ t, I t → Rabs (w t * (g t * h t - f t)) 6 b) →

0 6 mu < 1 → 0 6 b →

∀ t, I t → Rabs (h t - f t / g t) 6 b / (1 - mu).

3.4.2 ◮ Square root of a rigorous polynomial approxima-

tion

Let f ∈ C(I) be strictly positive over I. The square root
√
f is one of the two roots of

the quadratic equation F · h := h2 − f = 0 (the other being −
√
f). Let h◦ be a candidate

approximation. Since DFh : k 7→ 2hk, one also needs an approximation w ≈ 1/(2h◦) ≈
1/(2
√
f) ∈ C(I) in order to define A : k 7→ wk, approximating (DFh◦)−1. Then:

T : h 7→ h− w(h2 − f).

The next proposition computes an upper bound for ‖h◦ −
√
f‖.

Proposition 3.24 Let f, h◦, w ∈ C(I), µ0, µ1, b ∈ ❘+ and t0 ∈ I such that:

(3.24 i)
∥∥∥w
(
h◦2 − f

)∥∥∥ 6 b, (3.24 ii) ‖1− 2wh◦‖ 6 µ0, (3.24 iii) ‖w‖ 6 µ1,

(3.24 iv) µ0 < 1, (3.24 v) (1− µ0)2 − 8bµ1 > 0, (3.24 vi) w(t0) > 0.

Then f > 0 over I and
∥∥h◦ −

√
f
∥∥ 6 r∗ where r∗ :=

1−µ0−
√

(1−µ0)2−8bµ1

4µ1
.

Proof. First, since ‖1− 2wh◦‖ 6 µ0 < 1 (by (3.24 ii) and (3.24 iv)) and w(t0) > 0 (3.24 vi),
w and h◦ are strictly positive over I, by continuity. Using (3.24 iii), µ1 > 0.

If b = 0, then r∗ = 0 and h◦ =
√
f over I, because w(h◦2 − f) = 0 (3.24 i) and w, h◦ > 0.

Hence the conclusion holds.
From now on, we assume b > 0. T is Lipschitz of ratio µ(r) := µ0 + 2µ1r over B̄(h◦, r) for

any r ∈ ❘+, because:

T · h1 −T · h2 = (h1 − h2)− w(h21 − h22) = [(1− 2wh◦) + w(h◦ − h1) + w(h◦ − h2)] (h1 − h2).
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Therefore, satisfying b+ µ(r)r 6 r is equivalent to the quadratic inequality:

2µ1r
2 + (µ0 − 1)r + b 6 0. (3.7)

Condition (3.24 v) implies that (3.7) admits solutions, and r∗ is the smallest one. Moreover,
since b, µ1 > 0, we get r∗ > 0, so that b+ µ(r∗)r∗ = r∗ also implies µ(r∗) < 1.

Now, all the assumptions of Theorem 3.10 are fulfilled. Hence, T has a unique fixed point
h∗ in B̄(h◦, r∗). To obtain h∗ =

√
f over I, it remains to show that h∗ > 0. This follows from

w > 0 and:

‖1− 2wh∗‖ 6 ‖1− 2wh◦‖+ ‖2w(h∗ − h◦)‖ 6 µ0 + 2µ1r
∗ = µ(r∗) < 1.

Similarly to Algorithm RpaDiv, RpaSqrt takes two degrees Napp and Nval, for the ap-
proximation and validation steps, respectively, and Remark 3.22 still applies in the case of
Chebyshev models. If the degree Nglob is globally fixed, one can define an operator for the
square root: √

�(f) := RpaSqrt(f, Nglob, Nglob).

Proposition 3.25 (Complexity of square root of RPA) The overall complexity in interval
operations of

√
�(f) with fixed degree Nglob is determined by the 3 multiplications of RPAs

involved in RpaSqrt. In the common case of quadratic multiplication (e.g., in monomial or
Chebyshev basis with naive multiplication), this requires O(Nglob

2) interval arithmetic opera-
tions.

In ChebValid, Algorithm RpaSqrt is implemented by chebmodel_sqrt, relying on the aux-
iliary procedure mpfr_chebpoly_sqrt_validate.

Algorithm 3.6 RpaSqrt(f, Napp, Nval) – Square root of a RPA

Input: RPA f, approximation degree Napp and validation degree Nval.
Output: RPA h of degree Napp for the square root of f.

1: f ← mid(f)
2: Compute a degree Napp approximation h◦ of

√
f (e.g., using Chebyshev interpolation)

3: Compute a degree Nval approximation w of 1/(2h◦)
4: h◦ ← (h◦, 0) and w← (w, 0)
5: µ0 ← mag (J1 ⊟ ✷� w ⊠ h◦K) and µ0 ← [µ0]
6: µ1 ← mag (JwK) and µ1 ← [µ1]
7: b← mag (Jw ⊠ (h◦ ⊠ h◦ ⊟ f)K) and b← [b]
8: δ← (1 � µ0)

② − [8] � b � µ1

9: Choose some t0 ∈ I and evaluate y← w([t0])
10: if µ0 < 1 and δ > 0 and y > 0 then

11: r← (1 � µ0 �
√√

δ) � ([4] � µ1)
12: h ← (h◦, r̄)
13: return h

14: else
15: return "Fail"
16: end if
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Coq formalization of square root

The Coq functions computing the square root of a RPA, together with the corresponding
correctness lemmas, are listed below.

Let msqrt_aux (F H W: Model) (x: II): Model :=

let Wx := meval W x in

if ~~ (is_lt lo x && is_lt x hi && is_lt 0 Wx) then mbot else

let K1 := 1 - 2*W*H in

let K2 := W*(H*H-F) in

match mag (mrange K1), mag (mrange W), mag (mrange K2) with

| Some mu0, Some mu1, Some b =>

let delta := (1 - mu0)^2 - 8*b*mu1 in

let rmin := (1 - mu0 - sqrt delta)/(4*mu1) in

let mu := mu0 + 2*mu1*rmin in

if is_lt mu0 1 && is_lt 0 delta && is_lt mu’ 1 then

{| pol := pol H; rem := rem H + sym rmin’ |}

else mbot

| _ => mbot

end.

Let msqrt n (F: Model): Model :=

let p: seq FF := mcf F in

let h: seq FF := interpolate n (fun x => sqrt (beval p x)) in

msqrt_aux M (mfc h) (mfc (interpolate n (fun x => 1/(2*beval h x)))) ((lo+hi)/2).

Lemma rmsqrt_aux (F H W: Model) (X: II) (f h w : R → R) (x: R):

mcontains F f → mcontains H h → mcontains W w → contains X x → lo6x6hi →

(∀ x, lo6x6hi → continuity_pt w x) →

mcontains (msqrt_aux F H W X) (sqrt f).

Lemma rmsqrt n F f: mcontains F f → mcontains (msqrt’ n F) (sqrt f).

Lemma rmsqrt_aux makes use of the following formalization of Proposition 3.24:

Lemma sqrt.newton (f h w : R → R) mu0 mu1 b :

(∀ t, I t → Rabs (1 - 2 * w t * h t) 6 mu0) →

(∀ t, I t → Rabs (w t) 6 mu1) →

(∀ t, I t → Rabs (w t * ((h t)^2 - f t)) 6 b) →

0 6 mu0 < 1 → 0 < mu1 → 0 6 b → 0 6 delta b mu0 mu1 → mu0 + 2 * mu1 * rmin b mu0 mu1 <

1 →

(∀ t1 t2 t3, t1 6 t2 6 t3 → I t1 → I t3 → I t2) →

(∀ t, I t → continuity_pt w t) → (∃ t0, I t0 /\ w t0 > 0) →

∀ t, I t → Rabs (h t - sqrt (f t)) 6 rmin b mu0 mu1.

Remark 3.26 Contrary to the case of division where continuity was not needed at all, it is
here used for w. Therefore, sqrt.newton requires w to be continuous over I.
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3.5
Examples using the arithmetic on
rigorous polynomial approximations

Checking positivity of functions using elementary RPAs operations

Rigorously checking positivity of univariate functions is a well-studied problem, with many
applications (e.g., close to our interest, bounding the approximation error for polynomial ap-
proximations [54]). Here, we present an elementary technique using arithmetic operations on
RPAs.

Consider f ∈ Ч
1. Recall from Section 2.2.4 that if f does not vanish over [−1, 1], then

g := 1/f ∈ Ч
1. Hence, one can compute a polynomial approximation g◦ of g, together with a

rigorous bound ε > ‖1− g◦f‖Ч1 . For any x ∈ [−1, 1], f(x) = 0 implies:

1 = |1− g◦(x)f(x)| 6 ‖1− g◦f‖∞ 6 ‖1− g◦f‖Ч1 6 ε.

Hence, if ε < 1, then f cannot vanish over [−1, 1]. By continuity of f , it is sufficient to check
in addition that f(x) > 0 for some x ∈ [−1, 1]. This sketch of proof is implemented with RPAs
by Algorithm RpaPositivityCheck, for which two examples are given below.

Algorithm 3.7 RpaPositivityCheck(f, Napp) – Rigorous positivity check

Input: an RPA f and an approximation degree Napp.
Output: true or false, with true asserting that f > 0 over [−1, 1] for any f ∈ f.

1: Choose an x ∈ [−1, 1] and compute y← f([x])
2: if y 6 0 then
3: return false
4: end if
5: Compute a degree Napp approximation g◦ of 1/f using Chebyshev interpolation
6: g← (g◦, 0)
7: ε← mag(J1 ⊟ g � fKЧ1)
8: if ε < 1 then
9: return true

10: else
11: return false
12: end if

Example 3.27 Consider again the function f : x 7→ 1
1+x − x + x2 from Example 1.23

in Chapter 1. An RPA f for f is easily computed using division defined in Section 3.4.1.
Now, Algorithm RpaPositivityCheck(f, 5) returns true, which means that a degree 5 ap-
proximation is sufficient to rigorously assert the positivity of f over [0, 4] (which was rescaled to
[−1, 1] by an affine change of variable). Figure 3.3a plots f and the computed g◦ ≈ 1/f . The
“error function” 1− g◦f has a Ч

1 norm bounded by 0.9261, and is depicted in Figure 3.3b.
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with precision p. Timings given in Table 3.4c reveal a significant advantage of our implemen-
tation (there we use ε = 2 to avoid convergence issues of Taylor models). Concerning accuracy,
our experiments tend to show that when ε 6 1, CoqApprox fails to compute converging
Taylor models. Indeed, even with large L, a goal like:

Goal Fail : ∀ x : R, -1 6 x 6 1 → sqrt (1/100+x*x) 6 L

is not solved when the degree N becomes too large, probably indicating that the Taylor models
diverge due to complex singularities inside the unit disk. Note that the interval tactic can solve
this goal, but only by resorting to subdivision techniques.

Error bounding. We want to bound |fε(x) − |x|| for x ∈ [−1, 1] without making use of
any symbolic manipulation like (3.8). At first glance, one can choose to use the rigorous
approximations over [−1, 1] obtained previously, and evaluate fε(x)− x (resp. fε(x) + x) over
[0, 1] (resp. [−1, 0]) using Clenshaw algorithm. However, even if the approximations are quite
good, this evaluation strategy gives huge overestimations because [0, 1] and [−1, 0] are not small
intervals.

Instead, we compute separately two approximations for fε: one over [0, 1] and one over [−1, 0],
and we evaluate fε(x) − x (resp. fε(x) + x) over [1, 0] (resp. [−1, 0]) using the Chebyshev
range function. This approach yields bounds that are rather close to the optimal

√
ε (see

Figure 3.4d). However, this does not allow for arbitrary accuracy: a subdivision procedure
would be necessary here.
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Part II

Chebyshev Models for D-finite functions (and more)
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Chebyshev Models for
Solutions of Linear
Ordinary Differential
Equations 4

Das Wesen der Mathematik liegt gerade in ihrer Freiheit.

— Georg Cantor

Aus dem Paradies, das Cantor uns geschaffen, soll uns niemand vertreiben können.

— David Hilbert, Über das Unendliche

Solutions of Linear Ordinary Differential Equations (LODEs) are ubiquitous in modeling
and solving common problems. Examples include elementary and special functions evaluation,
manipulation or plotting, numerical integration, or locally solving nonlinear problems using
linearizations.

This chapter takes over the journal article “Validated and numerically efficient Chebyshev
spectral methods for linear ordinary differential equations” [38] published in 2018 in ACM
Transactions on Mathematical Software. Therefore, the pronoun we stands for Nicolas Brise-
barre, Mioara Joldes and myself. Our contribution is an efficient algorithm for computing
rigorous polynomial approximations for solutions of LODEs. More specifically, we deal with
the following problem:

Problem 4.1 Let r be a positive integer, α0, α1, . . . , αr−1 and γ continuous functions over
[−1, 1]. Consider the LODE

f (r)(t) + αr−1(t)f
(r−1)(t) + · · ·+ α1(t)f

′(t) + α0(t)f(t) = γ(t), t ∈ [−1, 1], (4.1)

together with conditions uniquely characterizing the solution:

a) For an initial value problem (IVP), consider:

Λ · f := (f(t0), f
′(t0), . . . , f

(r−1)(t0)) = (v0, v1, . . . , vr−1) (1a)

for given t0 ∈ [−1, 1] and (v0, v1, . . . , vr−1) ∈ ❘r.
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b) For a generalized boundary value problem (BVP), conditions are given by r linearly
independent linear functionals λi : Cr−1 → ❘:

Λ · f := (λ0(f), . . . , λr−1(f)) = (ℓ0, . . . , ℓr−1) (1b)

for given (ℓ0, . . . , ℓr−1) ∈ ❘r.

Given an approximation degree Napp ∈ ◆, find the coefficients of a polynomial f◦(t) =
Napp∑
n=0

cnTn(t) written in Chebyshev basis (Tn), together with a tight and rigorous error bound η

such that ‖f◦ − f∗‖∞ := supt∈[−1,1] |f◦(t) − f∗(t)| 6 η, where f∗ is the exact solution of the
IVP/BVP.

Remark 4.2 On the practical side, the coefficients αi and the initial conditions vi appearing
in Problem 4.1 are represented by RPAs αi and intervals vi, supposed to be rather thin. Since
we only deal with the linear case here, working with large intervals vi for the initial conditions
does not make the problem much harder: one just needs to compute a basis of solutions fi for
canonical initial conditions, and return v0 � f0 ⊞ · · ·⊞ vr−1 � fr−1.

Related works. Integrating ODEs is a central topic for rigorous numerics, and many tools
were developed toward this end. Interval arithmetic [174] gave rise to numerous interval
methods for linear or nonlinear IVPs. Some formal proof implementations should also be
acknowledged, such as certified ODE solving procedures [120], leading to a formal proof [119]
of the already rigorously proved Lorenz attractor [246], or the work [28] providing certified
bounds for the rounding errors occurring during reference implementations of Runge-Kutta
schemes.

However, the so-called wrapping effect discussed in Section 1.3 (see [185]) led to the devel-
opment of higher-order methods, including the rigorous polynomial approximations (RPAs),
presented in the previous chapter, and already advocated in the 1980s for such problems
[136, 199]. Taylor models, introduced some years later in [164], were used in several dif-
ferential problems [23, 163, 167, 181]. Due to limited convergence properties of Taylor
expansions, focus was also put on alternative approximation tools, such as Chebyshev expan-
sions [135, 19, 153, 75].

More specifically, the framework developed in this chapter follows the spirit of [19], where
the authors proposed a fully automated algorithm using a posteriori validation method, based
on convergent Neumann series of linear operators in the Banach space of continuous functions
(C0, ‖ · ‖∞). This allows for efficient RPA solutions of LODEs with polynomial coefficients, also
called D-finite functions, presented in Section 2.1. While in the rigorous numerics field only
ad hoc methods are usually described, the authors of [19] initiated a computer algebra-like
approach by providing a fully documented algorithm with detailed complexity estimates. This
chapter extends this complexity study to the framework of Newton-like validation methods
(Section 3.3 for Problem 4.1.

Overview of our approach and main results. We develop an efficient algorithm for solving
Problem 4.1 when the coefficients αj and the right hand side γ are represented by Chebyshev
models, which can be done to an arbitrary accuracy under mild regularity assumptions, as
detailed in Chapters 2 and 3.
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We first give in Section 4.1 a classical integral reformulation of (4.1). This has the advantage
of directly producing a compact operator, yielding appropriate fast convergence results of the
solution of truncated linear systems to the exact one (see Theorem 4.11). Moreover, we
prove an important property from an algorithmic point of view: this compact operator has an
almost-banded matrix representation when Equation (4.1) has polynomial coefficients. This
leads to the formulation of the following subproblem, where for the sake of simplicity, we focus
on the case of an IVP. Note also that approximations over other real or complex segments (in
Chebyshev basis adapted to the segment) are reduced to approximations on [−1, 1] by means
of the affine change of variable t 7→ (1 − t)a/2 + (1 + t)b/2, mapping [−1, 1] to the segment
[a, b].

Problem 4.3 Let a0, a1, . . . , ar−1, g ∈ ❘[t]. Consider the LODE

f (r)(t) + ar−1(t)f
(r−1)(t) + · · ·+ a1(t)f

′(t) + a0(t)f(t) = g(t), t ∈ [−1, 1], (4.2)

over [−1, 1] together with initial conditions at t0 = −1:

f(t0) = v0, f ′(t0) = v1, . . . , f (r−1)(t0) = vr−1.

Given Napp ∈ ◆, find the coefficients of f◦(t) =
∑Napp

n=0 cnTn(t) and a tight and rigorous error
bound η such that ‖f◦ − f∗‖∞ 6 η.

Remark 4.4 Note that in this problem we focus on the case t0 = −1 for technical reasons
explained in Section 4.3.1, but our results remain valid for any t0 ∈ [−1, 1].

According to the general framework of a posteriori validation methods in Section 3.3, this
problem is solved with the following steps:

Step 1. An approximate solution is necessary. This can be provided by the user, that is,
computed by some numerical algorithm of choice (such as that of [191] or [19]). For complete-
ness of our implementation, we propose a linear (with respect to the approximation degree)
time approximation algorithm, which combines the classical integral reformulation mentioned
above and the algorithm for almost-banded linear systems from [191], recalled in Section 4.2.

Then, we develop a new variant of this algorithm, which is efficient (in many practical cases)
for obtaining the approximate inverse operator A involved in the definition of the Newton-like
operator, used in the next step.

Step 2. A new algorithm based on the Banach fixed-point theorem is proposed in Sec-
tion 4.3. It provides the rigorous approximation error bound required by Problem 4.3.

In particular, for a fixed given LODE, our validation algorithm runs in linear time, in terms
of basic arithmetic operations, with respect to the degree Napp of the approximation to be
validated.

Then, we generalize this method in Section 4.4 in two directions:

◦ when the coefficients αj are not polynomials anymore, but functions in Ч
1 represented

by Chebyshev models;

◦ and when the conditions are generalized boundary conditions (1b).

This allows us to construct Chebyshev models for a quite large class of functions, starting from
H0 = ❘[t] and defining Hi+1 as the solutions of Problem 4.1 where all the αj(t) and γ(t) are
in Hi, or some closure of it under other elementary operations like inversion, square root, etc.
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(see Section 3.4). In fact, if the αj(t) and γ(t) are rigorously approximated by Chebyshev
models, then the generalized method gives us a Chebyshev model for the solution. Thus, a
chain of recursive calls to the method can be used to approximate any function of H :=

⋃
iHi.

Finally, we illustrate our approach with four different examples in Section 4.5. Concluding
remarks and future directions are postponed at the end of Chapter 5. Note that all the
algorithms introduced in this chapter are implemented in the ChebValid C library1 presented
in the previous chapter, and the code of the examples in Section 4.5 is also available in this
repository.

4.1
Integral operator and its
truncations

Due to the differentiation formula for Chebyshev polynomials (2.8), the differentiation operator
on the Chebyshev coefficients is represented by a dense upper triangular matrix. It implies that
a direct translation of the differential equation (4.1) into a linear problem produces a dense
infinite-dimensional system of linear equations. Moreover it is ill-conditioned in the general
case [99]. Hence, numerical algorithms to solve (4.1) using this method are neither efficient nor
accurate. From the validation point of view, since the differentiation is not an endomorphism
of Ч

1 (some functions in Ч
1 are not even differentiable), designing a topological fixed-point

method directly from Equation (4.1) seems rather tedious.
One way to circumvent these limitations consists in transforming the differential equa-

tion (4.1) into an integral one. The indefinite integration operator has far better properties:
first, it is an endomorphism of Ч

1. Second, it has a sparse matrix representation in Ч
1, (due

to the integration formula (2.7)), and its conditioning is significantly better than that of the
differential one [99]. Thus, one can expect more efficient and accurate numerical algorithms
in this case. The following standard, but crucial proposition (see [145] or [260, Chap. 2] for
a proof) establishes this transformation, which was already used in purely numerical works for
LODEs (for example in [61]) as well as for validation purposes [19].

Proposition 4.5 Let f be a function of class Cr over [−1, 1]. Then f is a solution of
the linear IVP problem (1a) if and only if ϕ = f (r) ∈ C0 is solution of the Volterra integral
equation:

ϕ+K · ϕ = ψ with (K · ϕ)(t) =
∫ t

t0

k(t, s)ϕ(s)ds, t ∈ [−1, 1], (4.3)

where:

◦ the kernel k(t, s) is a bivariate continuous function given by:

k(t, s) =

r−1∑

j=0

αj(t)
(t− s)r−1−j

(r − 1− j)! , (t, s) ∈ [−1, 1]2,

1https://gforge.inria.fr/projects/tchebyapprox/
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◦ the right hand side ψ is given by:

ψ(t) = γ(t)−
r−1∑

j=0

αj(t)

r−1−j∑

k=0

vj+k
(t− t0)k

k!
, t ∈ [−1, 1].

By a slight abuse of terminology, we shall call r the order of the integral operator K.

Remark 4.6 Proposition 4.5 can be applied to the polynomial case of Problem 4.3 by
replacing αj and γ with polynomials aj and g. It produces an equivalent integral equation with
a bivariate polynomial kernel k(t, s) and a polynomial right hand side ψ(t). This will be of
first importance in Section 4.1.2 where we deal with the polynomial case.

Remark 4.7 Henceforth, as noted in Equation (4.3), the new unknown function is ϕ = f (r).
Although a similar integral formulation for the unknown f is possible, this choice allows for the
validation in Section 4.3 of numerical solutions for both f and its derivatives f (i), i = 1, . . . , r,
which is often required in validated dynamics cf. Example 4.5.4.

Solving Equation (4.3) with numerical algorithms on computers relies most of the time [93,
96] on a reduction of this infinite-dimensional problem to a finite-dimensional one. In fact,
usually, one approximately computes several coefficients of the Chebyshev expansion of the
exact solution. This is often done based on approximations of the inverse operator. The
question of which functional space the solution ϕ belongs to is of major importance both for
the numerical approximation and the computation of the validated uniform error bound. In
what follows we first recall the classical action of K on (C0([−1, 1]), ‖·‖∞), with a focus on
Picard iteration. Then, in Section 4.1.2, we prove analogous properties in the (Ч1, ‖·‖Ч1)
space, based on operator iterations and truncations. This Banach space proves to be the
natural framework to deal with Chebyshev coefficients without losing the link with the norm
‖ · ‖∞ (since ‖ · ‖∞ 6 ‖ · ‖Ч1).

4.1.1 ◮ Inverse of 1+K in (C0([−1, 1]), ‖·‖∞)

It is classical that in this Banach space the operators K and 1 +K are bounded linear endo-
morphisms. For n ∈ ◆, the operator Kn is a bounded linear operator with operator norm

‖Kn‖∞ 6
(2C)n

n!
, where C := sup

−16s,t61
|k(t, s)| < +∞. (4.4)

Picard iteration [145, 205] is a standard way to prove the invertibility of 1+K in (C0([−1, 1]),
‖·‖∞) and give an explicit form for (1+K)−1, by its Neumann series:

(1+K)−1 =
+∞∑

n=0

(−1)nKn = 1−K+K2 + · · ·+ (−1)nKn + · · · .

This yields an explicit approximation process for the solution of (4.3):

ϕ0 = ψ, ϕn+1 = ψ −K · ϕn =

(
n∑

k=0

(−1)kKk

)
· ψ, n ∈ ◆.
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Iterating the integral operator K can also be used for validation purposes, as presented for
example in [19]. However, in our quasi-Newton validation context, the Banach space (C0, ‖·‖∞)
seems difficult to work with when considering multiplication, integration and truncation of
Chebyshev series as operations on the coefficients.

4.1.2 ◮ Inverse of 1+K in (Ч1, ‖·‖Ч1)

In this section, we provide a concrete description of the action of the integral operator K on
the Chebyshev coefficients of a function.

Remark 4.8 Henceforth and until the end of Section 4.1, we exclusively consider the
polynomial case given by (4.2). The results presented below could to some extent be generalized
to the non-polynomial case (where all functions belong to Ч

1), but this would require a more
complicated two-variable approximation theory without being essential to the validation procedure
of the general Problem 1a, presented in Section 4.4.

Under this assumption, the kernel k(t, s) is polynomial and hence we can decompose it in
the Chebyshev basis according to the variable s:

k(t, s) =
r−1∑

j=0

bj(t)Tj(s), (4.5)

with b0, . . . , br−1 polynomials written in the Chebyshev basis. Such an elementary procedure
is described in Algorithm IntegralTransform. To implement it in a rigorous framework,
one can use interval arithmetics or even rational arithmetics when the coefficients of the aj(t)
are rationals.

If ϕ ∈ Ч
1, then K · ϕ is in Ч

1 since

‖K · ϕ‖Ч1 =

∥∥∥∥∥∥

r−1∑

j=0

bj(t)

∫ t

t0

Tjϕds

∥∥∥∥∥∥
Ч1

6 2B‖ϕ‖Ч1 ,

with B =

r−1∑

j=0

‖bj‖Ч1 > C,

where we used (2.10), (2.12) and C was defined in Equation (4.4). This shows that K, and
hence 1 + K, are bounded linear endomorphisms of Ч

1. However, we do not have for the
moment any information about the invertibility of 1 + K in Ч

1. So far, its injectivity in Ч
1

is established, because this operator was an isomorphism (hence injective) over the superspace
C0([−1, 1])).

Matrix representation of 1+K in Ч
1

The canonical matrix representation of a linear operator M : Ч
1 → Ч

1 is the infinite-dimensional
matrix M = (Mij)i,j∈◆, where Mij = ci(M · Tj) is the ith Chebyshev coefficient of the image
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Algorithm 4.1 IntegralTransform({aj}
r−1
j=0) – Computation of the kernel k(t, s)

Input: order r and polynomials aj(t) (j ∈ J0, r − 1K) written in the Chebyshev basis.
Output: polynomials bj(t) (j ∈ J0, r − 1K) defining the kernel k(t, s) as in (4.5).

⊲ Expand (t− s)k =
∑k

ℓ=0 ξkℓ(t)Tℓ(s) for k ∈ J0, r − 1K.
1: ξ00(t)← 1
2: for k = 1 to r − 1 do
3: for ℓ = 0 to k do ξkℓ(t) = 0 end for
4: for ℓ = 0 to k − 1 do
5: ξkℓ(t)← ξkℓ(t) + tξk−1,ℓ(t)
6: ξk,ℓ+1(t)← ξk,ℓ+1(t)− ξk−1,ℓ(t)/2
7: ξk,|ℓ−1|(t)← ξk,|ℓ−1|(t)− ξk−1,ℓ(t)/2
8: end for
9: end for

⊲ Compute the bj(t).
10: for j = 0 to r − 1 do
11: bj(t)← 0
12: for k = 0 to r − 1 do
13: bj(t)← bj(t) + ak(t)ξr−1−k,j(t)/(r − 1− k)!
14: end for
15: end for

of Tj under M. Lemma 2.41 implies that the Ч
1 operator norm of M is equal to the standard

matrix 1-norm of M :

‖M‖Ч1 = sup
j∈◆
‖M · Tj‖Ч1 = sup

j∈◆

∑

i∈◆
|ci(M · Tj)| = sup

j∈◆

∑

i∈◆
|Mij | =: ‖M‖1.

For ease of calculation, we use two-sided Chebyshev expansions in this section, by defining
T−n = Tn for n > 0. This makes it possible to remove the absolute values in the indices
appearing in the formulas for multiplication (2.6) and integration (2.7).

First, we express the polynomials bj of degree dj in the symmetric two-sided Chebyshev basis:

bj =
∑

−dj6k6dj

bj,kTk, with bj,k = bj,−k, 0 6 j < r.

For i, j ∈ ❩, we have TjTi = (Ti+j + Ti−j)/2. Now, for t ∈ [−1, 1], we have

∫ t

t0

Tj(s)Ti(s)ds = γiji(t)− γiji(t0),

with

γijk(t) = −
1

4(i− j − 1)
Tk−j−1(t) +

1

4(i− j + 1)
Tk−j+1(t)

− 1

4(i+ j − 1)
Tk+j−1(t) +

1

4(i+ j + 1)
Tk+j+1(t), (4.6)
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where by convention the terms for which the denominator vanishes are 0.
In particular, for t0 = −1 and using Tk(−1) = (−1)k one obtains:

γijk(−1) = −(−1)k+j

(
j + 1

2(i2 − (j + 1)2)
+

j − 1

2(i2 − (j − 1)2)

)
. (4.7)

Let j ∈ J0, r − 1K, multiplying by bj , we get, for t ∈ [−1, 1],

bj(t)

∫ t

t0

Tj(s)Ti(s)ds = −γiji(t0)
∑

−dj6k6dj

bj,kTk(t) +
∑

−dj6k6dj

bj,kγij(i+k)(t), (4.8)

where the second sum follows from γiji(t)Tk(t) = (γij(i+k)(t) + γij(i−k)(t))/2 and the fact that
bj,k = bj,−k.

This expression shows that the matrix representation (B̂j,ki)k,i∈◆ of the Ч
1-endomorphism

ϕ 7→ bj(t)
∫ t
t0
Tj(s)ϕ(s)ds is sparse and has a so-called almost-banded structure. More precisely,

it is made of a horizontal band of non-zero coefficients B̂j,ki, with 0 6 k 6 dj , i ∈ ◆, which we
call initial coefficients, together with a diagonal band of non-zero coefficients B̂j,ki, with i ∈ ◆
and i− j − 1− dj 6 k 6 i+ j + 1 + dj , which we call diagonal coefficients. A graphic view of
this structure is shown in Figure 4.1a.

The following definition formally establishes the notion of almost-banded matrix, in the finite
as well as in the infinite case. It is robust in the sense that if an infinite matrix representing an
endomorphism of Ч

1 is (h, d) almost-banded, then so are all its finite-dimensional truncations
(defined in Section 4.1.3).

Definition 4.9 Let I = ◆ or J0, n − 1K (for some n > 0) be a set of indices, and h, d two
nonnegative integers.

1. For i ∈ I, v ∈ ❘I is said to be (h, d) almost-banded around index i if for all j ∈ I, vj = 0
whenever j > h and |i− j| > d.

2. The square matrix A = (aij)i,j∈I ∈ ❘I×I is said to be (h, d) almost-banded if for all
j ∈ I, the jth column v(j) = (aij)i∈I ∈ ❘I of A is almost-banded around index j.

It turns out that the matrix representation of K has an almost-banded structure: to obtain
K · Ti, it suffices to sum all the contributions from Equation (4.8) for 0 6 j < r. Hence K · Ti
is (h, d) almost-banded around index i, which shows that the integral operator K has an (h, d)
almost-banded matrix representation, where:

h = max
06j<r

dj , d = max
06j<r

j + 1 + dj .

The width of the horizontal band is h+1 and that of the diagonal band is 2d+1. With a slight
terminology abuse, such operators are directly called almost-banded operators in what follows.

Iterations of K in Ч
1 and almost-banded approximations of (1+K)−1

We recalled in Section 4.1.1 the convergence of the Neumann series 1 − K + K2 − . . . to
(1+K)−1 in (C0, ‖·‖∞). The following lemma establishes an analogous result in Ч

1:

Lemma 4.10 The operator 1+K is invertible in Ч
1 and its inverse is given by the Neumann

series
∑
i>0

(−K)i which converges in o(εn) for all ε > 0. More precisely:
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(a) Almost-banded structure of operator K. (b) Truncated operator K[n].

Figure 4.1: Almost-banded structure of operator K and its truncations K[n].

◦
n∑

i=0
(−1)iKi is a sequence of (dn, dn) almost-banded operators;

◦ ‖
∑
i>n

(−1)iKi‖Ч1 6
∑
i>n

(6di+ 1) (2C)i

i! (C defined in Equation (4.4)).

Proof. In Ч
1, since K is (h, d) almost-banded, with h < d, a straightforward induction shows

that Kn is (hn, dn) almost-banded, with dn = nd and hn < dn.
Fix an index j ∈ ◆. Then the symmetric Chebyshev series of Kn · Tj has at most (2dn +

1)+ (2hn +1)+ (2dn +1) 6 6nd+1 non-zero coefficients. Moreover, each of these (two-sided)
coefficients is bounded by ‖Kn · Tj‖∞ 6 (2C)n/n!. Hence, we get:

‖Kn · Tj‖Ч1 6 (6dn+ 1)
(2C)n

n!
,

from which we conclude using Lemma 2.41.

This shows that obtaining an approximate solution of (4.3) via iterations of K, is possible
both in (C0([−1, 1]), ‖·‖∞) and in (Ч1, ‖·‖Ч1). However, the action of K and its iterates involves
handling an infinite dimensional space. In the sequel, we prove that suitable truncations of
K allow for obtaining approximate solutions in finite dimensional subspaces of Ч

1 and these
solutions converge in o(εn) for all ε > 0 to the exact solution of (4.3).

4.1.3 ◮ Approximate solutions via truncations K
[n] of K

The nth truncation (also called the nth section in [93]) of the integral operator K is defined
as follows:

K[n] := пn ·K · пn. (4.9)

The truncation method (also called projection method in [93]) to solve Equation (4.3)
consists in replacing K by K[n] and solving the finite-dimensional linear problem:

ϕ+K[n] · ϕ = ψ. (4.10)
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Note that the order n + 1 square matrix M representing K[n] is the initial n + 1 square
submatrix of the infinite dimensional matrix representation of K. Therefore, M has an (h, d)
almost-banded structure (see Figure 4.1b). This implies that solving Equation (4.10) reduces
to solving a linear system of equations with a specific almost-banded structure. We revisit in
Section 4.2 efficient algorithms for solving such systems.

Moreover, we prove the following important fast convergence result:

Theorem 4.11 Let ϕ∗ := (I+K)−1 · ψ be the exact solution of integral equation (4.3) and
ϕ◦
n := (I+K[n])−1 · ψ be the solution of the truncated system (4.10). We have:

‖ϕ∗ − ϕ◦
n‖Ч1 = o(εn) for all ε > 0.

In [19, Thm. 4.4] and [191, Thm. 4.5], similar convergence rates were proven in the differ-
ent context of the uniform norm and for rather different approximations schemes: either the
considered operator is different (the differential operator is handled in [191]) or the employed
tools are more involved (main asymptotic existence theorem for linear recurrences is needed
in [19]). The proof of Theorem 4.11 requires important theoretical properties concerning the
truncated operator K[n] in relation with K in the space Ч

1, which are given in the next two
additional lemmas. They are also of first importance for the validation method developed in
Section 4.3.

Firstly, let us prove that K[n] is a good approximation of K for the Ч
1 norm.

Lemma 4.12 Let K be the integral operator in (4.3), of order r and polynomial coefficients
bj. Let (h, d) be the parameters of its almost-banded structure and n > r + d be the truncation
order, then:

(4.12 i) K[n] · Ti = K · Ti for all i 6 n− d.

(4.12 ii) K[n] → K in Ч
1 as n→ +∞. More precisely:

‖K−K[n]‖Ч1 6 Bmax

(
1

n+ 1− r − d,
2

n− r

)
with B =

r−1∑

j=0

‖bj‖Ч1 ,

which implies a convergence speed of O(1/n) as n→ +∞.

Proof. For (4.12 i), if i 6 n− d, then K ·Ti is of degree at most max(h, n− d+ d) = n because
n > d > h. Hence:

K[n] · Ti := пn ·K · пn · Ti = пn ·K · Ti = K · Ti.

For (4.12 ii), note first that from Lemmas 2.41 and (4.12 i), one has:

‖K−K[n]‖Ч1 = sup
i>0
‖K · Ti −K[n] · Ti‖Ч1 = sup

i>n−d
‖K · Ti −K[n] · Ti‖Ч1 .

Now, for ϕ ∈ Ч
1 one has the following decomposition:

(K−K[n])ϕ = K · ϕ− пn ·K · пn · ϕ = K · (1− пn) · ϕ+ (1− пn) ·K · пn · ϕ.

Hence, one can evaluate K−K[n] on all remaining Ti’s for i > n− d:
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◦ If n − d < i 6 n, then (K −K[n]) · Ti = (1 − пn) ·K · Ti. Note that, since n > h, only
the diagonal coefficients of K · Ti may bring a nonzero contribution. Moreover, we have
i ± j ± 1 > n + 1 − d − r. From that we deduce an upper bound of the approximation
error:

‖(1− пn) ·K · Ti‖Ч1 6
B

n+ 1− r − d.

◦ If i > n, then (K −K[n]) · Ti = K · Ti. We have that i ± j ± 1 > n − r for 0 6 j < r.
Hence:

‖K · Ti‖Ч1 6
2B

n− r

We conclude by taking the maximum of these two bounds.

The convergence of K[n] to K also implies that 1+K[n] is invertible for n large enough:

Lemma 4.13 For n large enough, we have:

(4.13 i) the endomorphism 1+K[n] is invertible.

(4.13 ii) (1+K[n])−1 converges to (1+K)−1, with:

‖(1+K[n])−1 − (1+K)−1‖Ч1 6
‖(1+K)−1‖2

Ч1

1− ‖(1+K)−1 · (K−K[n])‖Ч1

‖K−K[n]‖Ч1

= O
(
1

n

)
as n→ +∞

(4.13 iii) (1+K[n])−1 =
∑
i>0

(−K[n])i.

Proof. For (4.13 i) and (4.13 ii), using the bound in O(1/n) for ‖K − K[n]‖Ч1 obtained in
Lemma 4.12, the invertibility of 1 +K[n] as well as the announced explicit upper bound for
‖(1+K[n])−1 − (1+K)−1‖Ч1 directly follow from [93, Chap. 2, Cor. 8.2].

For (4.13 iii), since by Lemma 4.10 the Neumann series of K absolutely converges, there
is a p > 0 such that ‖Kp‖Ч1 < 1. Since K[n] → K as n → +∞, there is an n such that
‖(K[n])p‖Ч1 < 1. Therefore, the Neumann series of (K[n])p is absolutely convergent, and the
following factorization establishes the absolute convergence of the Neumann series of K[n]:

∑

i>0

(−K[n])i =


∑

i<p

(−K[n])i


 ·

(
∑

i>0

(−K[n])pi

)

Note that from the previous lemma, one readily obtains that ϕ◦
n := (1+K[n])−1 ·ψ converges

to the exact solution ϕ∗ := (1+K)−1 ·ψ in O(1/n). However, we can now prove the far better
convergence result of the main Theorem 4.11.

Proof of Theorem 4.11. Take n > d large enough so that 1+K[n] is invertible by Lemma 4.13.
Let ϕn = (

∑
i6⌊n/2d⌋(−1)iKi) · ψ denote the approximate solution obtained by computing the

Neumann series of K at order ⌊n/2d⌋. Since this series is an (d⌊n/2d⌋, d⌊n/2d⌋) almost-banded
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operator, we get that ϕn is a polynomial of degree at most deg(ψ) + d⌊n/2d⌋ 6 deg(ψ) + n/2.
Hence, for n large enough, the degree of ϕn does not exceed n − d, so that we have the key
equality K[n] · ϕn = K · ϕn, according to Lemma (4.12 i). From that we deduce:

ϕ∗ − ϕ◦
n =

(
1−

(
1+K[n]

)−1
(1+K)

)
· (ϕ∗ − ϕn) .

From Lemma (4.13 ii) and Lemma 4.10, we finally get:

‖ϕ∗ − ϕ◦
n‖Ч1 = O

(
(2C)⌊n/2d⌋

⌊n/2d⌋!

)
,

which is an o(εn) for all ε > 0.

For completeness, we note the following alternative proof of Lemma 4.10. The convergence
of the finite-dimensional truncations K[n] to K in Ч

1 implies that K is a compact endomorphism
of the Banach space Ч

1. The Fredholm alternative [41] says in that case that 1+K : Ч
1 → Ч

1

is injective if and only if it is surjective. But, as mentioned at the beginning of Section 4.1.2,
we already have the injectivity of this operator. Hence, we conclude that 1 + K is bijective,
and moreover that it is a bicontinuous isomorphism of Ч

1 (using the Banach continuous inverse
theorem).

We discuss in the next section algorithms concerning almost-banded matrices, since this struc-
ture is essential both for efficient algorithmic computation of ϕ◦ and its a posteriori validation
step.

4.2
Algorithms involving almost-banded
matrices

Let A and B be two order n square matrices, respectively (hA, dA) and (hB, dB) almost-banded.
In Table 4.1 we recall several elementary operations which are straightforward, the result is
an almost-banded matrix, and their complexity is in O(n) provided that the almost-banded
parameters are supposed constant with respect to n.

Note that the product AB is computable in O(n(hA+dA)(hB +dB)) operations by applying
the evaluation on a sparse vector (line 5 in the table) on all the columns of B. In the dense
case, when hA + dA ≈ n and hB + dB ≈ n, this corresponds to the naive O(n3) algorithm,
hence a fast multiplication algorithm may become more appropriate.

In ChebValid, we provide a type mpfi_bandvec_t for almost-banded vectors, another type
mpfi_bandmatrix_t for almost-banded matrices, and operations on the latter for addition, nega-
tion, subtraction, evaluation on an almost-banded vector, multiplication and 1-norm. Note
that corresponding operations are also available for double and mpfr_t coefficient types.

We now turn to efficient algorithms for solving almost-banded linear systems as well as matrix
inversion. In Section 4.2.1, we recall Olver and Townsend’s algorithm for solving order n
almost-banded linear systems in linear complexity with respect to n. This directly leads to a
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Operation Result’s a.-b. structure Complexity

λA, with λ ∈ ❘ (hA, dA) O(n(hA + dA))

A+B or A−B (max(hA, hB),max(dA, dB))
O(n(max(hA, hB)
+max(dA, dB)))

Av
dense O(n(hA + dA))dense v ∈ ❘n

Av
(max(hv + dA, hA), dv + dA) O((hA + dA)(hv + dv))(hv, dv) a.-b.v ∈ ❘n

AB (max(hB + dA, hA), dB + dA) O(n(hA + dA)(hB + dB))
‖A‖1 - O(n(hA + dA))

Table 4.1: Elementary operations on almost-banded (a.-b.) matrices or vectors: A and B
are order n square matrices, respectively (hA, dA) and (hB, dB) almost-banded,
and v ∈ ❘n is either dense or almost-banded around some index i ∈ J0, n− 1K.

quadratic algorithm for inverting an almost-banded matrix. To achieve linear complexity for
inversion, we give in Section 4.2.2 a modified version of this algorithm.

4.2.1 ◮ A reminder on Olver and Townsend’s algorithm

for almost-banded linear systems

Let M denote an (h, d) almost-banded order n square matrix with h 6 d, and y ∈ ❘n. The
goal is to solve an almost-banded linear system Mx = y for unknown x ∈ ❘n. The procedure
is split into two parts. First, a QR decomposition QM = R is computed, with Q orthogonal
and R upper triangular. Then, the equivalent system Rx = Qy is solved by back-substitution.
The key challenge is to maintain a linear complexity with respect to n in both steps.

First step: QR decomposition

This is computed in Algorithm OlverTownsendQR using Givens rotations’ method which
eliminates line after line the coefficients of M under the diagonal to finally obtain R, as shown
in Figure 4.2.

More precisely, at step i, for each j ∈ Ji+1,min(i+d, n−1)K, we apply a well-chosen rotation(
cij −sij
sij cij

)
on lines i and j in order to get Rji = 0. Note that at the end of each step i,

Rii 6= 0 if and only if the matrix M is invertible.
The direct application of this process would cause the progressive filling-in of the rows, which

would give a dense upper triangular matrix R. In fact, this phenomenon can be controlled by
noticing that for each i < n− 2d− 1, the “end of the row” i of R, (Ri,i+2d+1, . . . , Ri,n−1), is a
linear combination of the corresponding dense part of M : (Mℓ,i+2d+1, . . . ,Mℓ,n−1) for ℓ ∈ J0, hK.
Hence, it suffices to manipulate instead the coefficients λiℓ of the linear combination:
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M = 99K

i

step(i)

99K = R

Figure 4.2: Step 1 (OlverTownsendQR) of Olver and Townsend’s algorithm.

(Ri,i+2d+1, . . . , Ri,n−1) =

h∑

ℓ=0

λiℓ(Mℓ,i+2d+1, . . . ,Mℓ,n−1). (4.11)

Based on this observation, Algorithm OlverTownsendQR(M) returns the QR decom-
position QM = R under the following representation:

◦ Q is completely determined by cij , sij :

Q =

n−1∏

i=0

min(i+d,n−1)∏

j=i+1

Q(ij),

where the Q(ij) are rotation matrices defined by:

(Q(ij))kℓ =





1 if k = ℓ and k 6= i, j,
cij if k = ℓ = i or k = ℓ = j,
sij if k = j and ℓ = i,
−sij if k = i and ℓ = j,
0 otherwise.

(4.12)

◦ R is upper triangular and represented by its 2d + 1 upper diagonals (entries Rij for
i ∈ J0, n − 1K and j ∈ Ji,min(i + 2d, n − 1)K are given explicitly) together with the
coefficients λiℓ (i ∈ J0, n− 1K and ℓ ∈ J0, hK) defining the rest of R as in (4.11).

Formally, one has:

Proposition 4.14 Algorithm OlverTownsendQR applied on an (h, d) almost-banded
matrix of order n with h 6 d is correct and runs in O(nd2) operations.

Proof. Given in [191].

In ChebValid, Algorithm OlverTownsendQR is only implemented on floating-point
matrices, not interval ones, due to the remarks about interval matrix inversion in Section 1.3.
We provide a type mpfr_bandmatrix_QRdecomp_t for the decomposition (Q,R) of an almost-banded
matrix. It is computed by the function mpfr_bandmatrix_get_QRdecomp, which implements Algo-
rithm OlverTownsendQR.
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Algorithm 4.2 OlverTownsendQR(M) – Step 1 of Olver and Townsend’s algorithm

Input: an order n, (h, d) almost-banded matrix M with h 6 d.
Output: a QR factorization QM = R: Q defined by cij , sij as in (4.12); R defined by Rij

(i ∈ J0, n− 1K, j ∈ Ji,min(i+ 2d, n− 1)K) and λiℓ as in (4.11).

1: R←M
2: for i = 0 to n− 1 and j = 0 to h do λij ← 0
3: for i = 0 to h do λii ← 1
4: for i = 0 to n− 1 do
5: for j = i+ 1 to min(i+ d, n− 1) do
6: if Rji = 0 then
7: cij ← 1 and sij ← 0
8: else
9: r ←

√
R2

ii +R2
ij

10: cij ← Rii/r and sij ← −Rji/r

11: for k = i to min(i+ 2d, n− 1) do

(
Rik

Rjk

)
←
(
cij −sij
sij cij

)(
Rik

Rjk

)

12: for ℓ = 0 to h do

(
λiℓ
λjℓ

)
←
(
cij −sij
sij cij

)(
λiℓ
λjℓ

)

13: end if
14: end for
15: end for

Second step: back-substitution

Once step 1 is performed and returns QM = R, we first apply the rotations Q(ij) on the right
hand side y ∈ ❘n to obtain Qy in O(nd) operations. Now we have to solve Rx = Qy := yQ.

If R is regarded as a dense upper triangular matrix, the classical back-substitution algo-
rithm requires O(n2) operations. However, based on the sparse representation of R, the back-
substitution in Algorithm OlverTownsendBackSubs is more efficient. Its main idea to
compute the solution xi (for i going backwards from n− 1 to 0) is to use Equation (4.11) for
expressing Rij as soon as i < n− 2d− 1, j > i:

xi =


yQi −

n−1∑

j=i+1

Rijxj


 /Rii =


yQi −

i+2d∑

j=i+1

Rijxj −
h∑

ℓ=0

λiℓziℓ


 /Rii,

where

ziℓ = (Mℓ,i+2d+1, . . . ,Mℓ,n−1)(xi+2d+1, . . . , xn−1)
T =

n−1∑

j=i+2d+1

Mℓjxj .

Then, once ziℓ is computed, zi−1,ℓ is updated in constant time:

zi−1,ℓ =Mℓ,i+2dxi+2d + ziℓ.

This leads to the following proposition:

Proposition 4.15 Algorithm OlverTownsendBackSubs is correct and requires O(nd)
operations.
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Proof. Given in [191].

In ChebValid, Algorithm OlverTownsendBackSubs is implemented by the function
mpfr_bandmatrix_QRdecomp_solve_fr

Algorithm 4.3 OlverTownsendBackSubs(M, (Q,R), y) – Step 2 of O. & T.’s algorithm

Input: an order n invertible (h, d) almost-banded M with h 6 d, its QR decomposition (Q,R)
produced by OlverTownsendQR(M) and a vector y ∈ ❘n.

Output: the solution vector x of Mx = y.

⊲ Compute Qy
1: for i = 0 to n− 1 do
2: for j = i+ 1 to min(i+ d, n− 1) do

3:

(
yi
yj

)
←
(
cij −sij
sij cij

)(
yi
yj

)

4: end for
5: end for

⊲ Back-substitution
6: for ℓ = 0 to h do zℓ ← 0
7: for i = n− 1 down to 0 do

⊲⊲ Update zℓ
8: if i+ 2d+ 1 < n then for ℓ = 0 to h do zℓ ← zℓ +Mℓ,i+2d+1xi+2d+1

⊲⊲ Compute xi

9: xi ←
(
yi −

min(i+2d,n−1)∑
j=i+1

Rijxj −
h∑

ℓ=0

λiℓzℓ

)
/Rii

10: end for

4.2.2 ◮ An algorithm for almost-banded approximation of

inverse of almost-banded matrix

Based on Olver and Townsend’s algorithm, the inverse of an (h, d) almost-banded order nmatrix
M (with h 6 d) can be computed in quadratic timeO(n2d). First, OlverTownsendQR(M) is
performed in O(nd2) operations (Proposition 4.14) to obtain a QR decomposition QM = R.
Then, each column v(i) of index i ∈ J0, n − 1K of M−1 is computed by solving Mv(i) = e(i),
where e(i) denotes the ith vector of the canonical basis of ❘n. This is achieved by using n times
step 2, resulting in a total of O(n2d) operations.

Unfortunately, this algorithm has quadratic running time and returns a dense inverse matrix
representation. In some cases however, such as the validation process developed in Section 4.3,
a sparse approximation of M−1 is sufficient. As proved in Lemma 4.13 (iii), the inverse of
M = 1+K[n] can be approximated with almost-banded matrices. This leads to adapting the
full inversion procedure described above to compute only coefficients on diagonal and horizontal
bands.
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Let A ≃M−1 be the required approximate inverse with an almost-banded structure given by
the parameters (h′, d′) (we do not require h′ 6 d′). Firstly, one computes the QR decomposition
QM = R in O(nd2) operations using OlverTownsendQR(M). Then, Step 2 of Olver and
Townsend’s algorithm is modified, resulting into Algorithm SparseBackSubs. For each
i ∈ J0, n− 1K, the ith column v(i) of A is computed as an approximate solution of Rx = Qe(i),
in the form of an (h′, d′) almost-banded vector around index i:

1. Qe(j) ∈ ❘n is computed only partially, between entries i − d and i + d′. Note that in
general Qe(j) has zero entries between indices 0 and i− d− 1, and is dense from i− d to
n− 1.

2. The back-substitution only computes entries of the solution from indices i+ d′ to i− d′,
and from h′ to 0. Since the other entries are implicitly set to 0, these computed coefficients
are only approximations of the entries at the same position in the exact solution. But
considering that the neglected entries were small enough, this approximation is expected
to be convenient.

We provide a complexity analysis of Algorithm SparseBackSubs, but nothing is stated
concerning the accuracy of the obtained approximation. This procedure should really be seen
as a heuristic in general.

Proposition 4.16 Algorithm SparseBackSubs involves O((h+ d)(h′ + d′)) operations.

Proof. The first step (computing the diagonal coefficients of Qy) clearly requires O(dd′) arith-
metic operations. Now consider the second step (the partial back-substitution) and enter the
main loop at line 11, where index j lives in a set of size O(h′ + d′). First, we need to update
the values zℓ. At first sight, each zℓ seems to involve a sum of O(h′+d′) terms. But in fact, the
total amortized cost related to line 13 is O((h′ + d′)h), since at the end of the algorithm, each
zℓ is equal to

∑
k∈J2d+1,n−1K∩(D∪H)Mℓkxk, which is a sum of O(h′ + d′) terms. As a matter of

fact, jz 6 j + 2d + 1 most of the time, except when h′ < i − d′ and the current index j falls
from i− d′ to h′. After that, the computation of xj involves two sums with a total of O(h+ d)
terms. We therefore obtain the claimed complexity.

Corollary 4.17 Algorithm AlmostBandedApproxInverse(M, (Q,R), h′, d′) produces
an (h′, d′) almost-banded approximation of the inverse of an order n, (h, d) almost-banded matrix
M in O(n(h+ d)(h′ + d′)) operations.

In ChebValid, Algorithm AlmostBandedApproxInverse is implemented by the func-
tion mpfr_bandmatrix_QRdecomp_approx_band_inverse.

We now turn to the a posteriori validation step.

4.3 A quasi-Newton validation method

Given an approximate solution ϕ◦ of the integral equation (4.3), we propose an a posteriori
validation method which computes a rigorous upper bound for the approximation error ‖ϕ∗ −
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Algorithm 4.4 SparseBackSubs(M, (Q,R), h′, d′, i) – A.-b. approximate column inversion

Input: an order n, (h, d) almost-banded matrix M with the QR decomposition QM = R
produced by OlverTownsendQR(M) and parameters h′, d′, i with h′ ∈ Jh, n − 1K,
d′ ∈ Jd, n− 1K and i ∈ J0, n− 1K.

Output: (h′, d′) almost-banded vector x around index i such that Mx ≈ e(i).

1: D← Ji− d′, i+ d′K ∩ J0, n− 1K and H← J0, h′K−D

⊲ Compute diagonal coefficients of Qy
2: for j in D ∪ Ji+ d′ + 1, i+ d′ + dK− {i} do yj ← 0
3: yi ← 1
4: for j in D going upwards do
5: for k in Jj + 1, j + dK ∩ J0, n− 1K going upwards do

6:

(
yj
yk

)
←
(
cjk −sjk
sjk cjk

)(
yj
yk

)

7: end for
8: end for

⊲ Partial back-substitution
9: for ℓ ∈ J0, hK do zℓ ← 0

10: jz ← n− 1
11: for j in D ∪ H going downwards do

⊲⊲ Update zℓ
12: if j + 2d < jz then
13: for ℓ ∈ J0, hK do zℓ ← zℓ +

∑
k∈Jj+2d+1,jzK∩(D∪H)Mℓkxk

14: jz ← j + 2d
15: end if

⊲⊲ Compute xj
16: if j ∈ D then c← yj else c← 0

17: xj ←
(
c−

∑
k∈Jj+1,j+2dK∩(D∪H)

Rjkxk −
h∑

ℓ=0

λjℓzℓ

)
/Rjj

18: end for

Algorithm 4.5 AlmostBandedApproxInverse(M, (Q,R), h′, d′) – A.-b. approximate in-
verse
Input: an order n, (h, d) almost-banded matrix M with the QR decomposition QM = R

produced by OlverTownsendQR(M) and parameters h′, d′ with h′ ∈ Jh, n − 1K and
d′ ∈ Jd, n− 1K.

Output: an (h′, d′) almost-banded matrix A with A ≈M−1.

for i = 0 to n− 1 do
W ← SparseBackSubs(M, (Q,R), h′, d′, i), approximating M−1e(i)

Set ith column of A to W
end for
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ϕ◦‖Ч1 , where ϕ∗ denotes the exact solution of (4.3). This is based on the general quasi-Newton
framework explained in Section 3.3. In this case, F·ϕ := ϕ+K·ϕ−ψ is affine, with linear part
1+K. The quasi-Newton method requires an approximate inverse operator A ≈ (1+K)−1 such
that ‖1−A · (1+K)‖Ч1 < 1. Of course, computing an exact inverse would solve the problem
but is out of reach. Instead of that, from Lemma 4.13, we know that for a truncation order
Nval chosen large enough, (1+K[Nval])−1 exists and is a good approximation of (1+K)−1. Since
(1+K[Nval])−1 is defined by an (Nval + 1)-order square matrix (its restriction over пNval

· Ч1)
extended over the whole space Ч

1 by the identity, we define the operator A over Ч
1 as an

(Nval + 1)-order square matrix A approximating (1 + K[Nval])−1 over пNval
· Ч1, extended by

the identity over the whole space:

A · ϕ = A · пNval
· ϕ+ (1− пNval

) · ϕ.

The first technical issue is to numerically compute (or represent) both very accurately and
efficiently such a matrix A. Specifically, we aim both for a linear complexity computation with
respect to Nval and for minimizing ‖1Nval+1 − A ·M‖1, where M is an order Nval + 1 matrix
representation for 1 +K[Nval]. Among several possibilities to achieve these two requirements,
we found none optimal for both. Therefore, we propose two solutions:

S1. As seen in Section 4.2, Olver and Tonwsend’s Algorithm OlverTownsendBackSubs
can be used to numerically compute M−1. The main advantage is that the approximation error
‖1Nval+1−A ·M‖1 is really close to 0 using standard precision in the underlying computations.
Drawback is the quadratic complexity in O(Nval

2d).

S2. Our new heuristic approach is based on Lemma (4.13 iii) which states that (1+K[Nval])−1

is well approximated by almost-banded matrices. So it is natural to look for a matrix A with
a (h′, d′) almost-banded structure. Given h′ and d′, Algorithm AlmostBandedApprox-
Inverse, detailed in Section 4.2, produces an (h′, d′) almost-banded approximation A of
(1+K[Nval])−1 in O(Nval(h

′ + d′)(h+ d)) arithmetic operations (Corollary 4.17). If the pa-
rameters (h′, d′) of the almost-banded structure of A can be chosen small enough compared to
Nval, this alternative method should be substituted to the standard one.

Deciding which of these two methods should be used in practice is non-trivial: while the
second one is more appealing due to the resulting sparsity of A, unfortunately nothing is said
about the order of magnitude of Nval such that the conclusion of Lemma (4.13 iii) is valid,
nor about the precise speed of convergence of the Neumann series of M , which would give a
good intuition for the values of h′ and d′ to choose. In what follows, the complexity analysis is
thus provided for both cases: a sparse vs. a dense structure of the matrix A. This will allow
us to discuss in detail the choice of these parameters in Section 4.3.2.

Next, one has to provide a rigorous Lipschitz constant µ (required by Theorem 3.9) for the
Newton-like operator. We have:

‖1−A · (1+K)‖Ч1 6 ‖1−A · (1+K[Nval])‖Ч1 + ‖A · (K−K[Nval])‖Ч1 , (4.13)

which can be interpreted as [111]:

◦ ‖1−A · (1+K[Nval])‖Ч1 is the approximation error because A was (maybe) not the exact
representation matrix of (1+K[Nval])−1.

◦ ‖A · (K−K[Nval])‖Ч1 is the truncation error because K[Nval] is not exactly K.
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Section 4.3.1 focuses on the truncation error, which is tightly bounded by some rather tech-
nical inequalities, summarized in Algorithm IntopTruncError. The more straightforward
computation of the approximation error is directly included in Algorithm IntopContract.

Once we have obtained a quasi-Newton operator T with a certified Lipschitz constant µ < 1,
the validation of a candidate solution ϕ◦ is summarized in Section 4.3.2, together with its
complexity analysis.

4.3.1 ◮ Bounding the truncation error

The truncation error is computed by providing an upper bound for supi>0B(i) where B(i) :=

‖A · (K−K[Nval]) · Ti‖Ч1 . The indices i are divided into four groups:
– For i ∈ J0, Nval − dK, K[Nval] · Ti = K · Ti (Lemma 4.12) and hence B(i) = 0.
– For i ∈ JNval−d+1, NvalK, A · (K−K[Nval]) ·Ti = (1−пNval

) ·K ·Ti are explicitly computed.
– For i ∈ JNval + 1, Nval + dK, B(i) = ‖A ·K · Ti‖Ч1 and some of the diagonal coefficients of
K · Ti are of index less than Nval and are therefore non-trivially affected by A. We choose to
explicitly compute all these A ·K · Ti.
– For i > Nval + d, (K −K[Nval]) · Ti = K · Ti and the diagonal coefficients of K · Ti are all
located at indices strictly greater than Nval. We have B(i) = BI(i) +BD(i) with:

◦ BD(i) := ‖(1 − пNval
) ·K · Ti‖Ч1 due to diagonal coefficients, which decrease in O(1/i)

from Equation (4.6).

◦ BI(i) := ‖A · пNval
·K · Ti‖Ч1 due to initial coefficients multiplied by A, which decrease

in O(1/i2) from Equation (4.7).

The main difficulty is to bound B(i) for i > Nval+d, since we deal with an infinite number of
indices i. For that, a natural idea is to use the explicit expression (4.8), replace i by the interval
[Nval+ d+1,+∞) and evaluate A ·K ·Ti in interval arithmetics. Since these evaluations often
lead to overestimations, one needs to choose a large value for Nval, such that the convergence
in O(1/Nval) is sufficiently small to compensate. Usually, the chosen Nval is far larger than the
one needed for T to be contracting.

A better solution consists in computing A ·K · Ti0 where i0 > Nval + d and bounding the
difference between B(i) and B(i0) for all the remaining indices i > i0.

Lemma 4.18 Let i > i0 > Nval + d. Then

(4.12 i) For the diagonal coefficients, we have

BD(i) 6 BD(i0) +

r
r−1∑
j=0
‖bj‖Ч1

(i0 − r)2
.

(4.12 ii) For the initial coefficients, we have

BI(i) 6 BI(i0) +

r3
r−1∑
j=0
‖A · bj‖Ч1

(i20 − r2)2
.
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Proof. For (4.12 i), from (4.8) we know that the diagonal coefficients of K·Ti, and respectively
K · Ti0 , are those of the polynomials

∑
06j<r

∑
−dj6k6dj

bjkγij(i+k) and
∑

06j<r

∑
−dj6k6dj

bjkγi0j(i0+k),

respectively. All these coefficients are of positive index, so that we can shift them by i − i0
positions to the right by replacing γi0j(i0+k) with γi0j(i+k) without changing the norm (modifying
the third index of γi0j(i0+k) has no influence on the four coefficients of (4.6)). This ruse allows
us to compare polynomials of equal degree i.e., γij(i+k) and γi0j(i+k):

|iBD(i)− i0BD(i0)| =

∣∣∣∣∣∣
i

∥∥∥∥∥∥

r−1∑

j=0

dj∑

k=−dj

bjkγij(i+k)

∥∥∥∥∥∥
Ч1

− i0

∥∥∥∥∥∥

r−1∑

j=0

dj∑

k=−dj

bjkγi0j(i+k)

∥∥∥∥∥∥
Ч1

∣∣∣∣∣∣

6

r−1∑

j=0

dj∑

k=−dj

|bjk|‖iγij(i+k) − i0γi0j(i+k)‖Ч1 .

Using the fact that for all x such that |x| < i0 6 i,

∣∣∣∣
i

i+ x
− i0
i0 + x

∣∣∣∣ 6
i0

(i0 − |x|)2
|x|,

we get that for any ℓ, ‖iγijℓ − i0γi0jℓ‖Ч1 6 ri0/(i0 − r)2. We conclude by noticing that

BD(i) 6
i

i0
BD(i) 6 BD(i0) +

1

i0
|iBD(i)− i0BD(i0)| 6 BD(i0) +

r
r−1∑
j=0
‖bj‖Ч1

(i0 − r)2
.

For (4.12 ii), we have that

|i2BI(i)− i20BI(i0)| =

∣∣∣∣∣∣
i2

∥∥∥∥∥∥
A ·

r−1∑

j=0

γiji(−1)bj

∥∥∥∥∥∥
Ч1

− i20

∥∥∥∥∥∥
A ·

r−1∑

j=0

γi0ji(−1)bj

∥∥∥∥∥∥
Ч1

∣∣∣∣∣∣

6

r−1∑

j=0

‖A · bj‖Ч1 |i2γiji(−1)− i20γi0ji(−1)|.

We conclude using (4.7) and a similar inequality:

∣∣∣∣
i2

i2 − x2 −
i20

i20 − x2
∣∣∣∣ 6

i20
(i20 − x2)2

x2.

In practice, this method yields more accurate bounds when the parameters of the problem
become somehow large. This is due to the fact that the part potentially affected by overesti-
mations is divided by greater power of i0 (i20 and i40) than in the previously mentioned method
(i0 and i20).

Note that the bounds announced by Lemma 4.18 can be sharpened if we don’t replace
|j ± 1| with r. The obtained formulas are essentially not more difficult to implement, but we
omit these details for the sake of clarity.
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Algorithm 4.6 IntopTruncError(K, Nval, A) – Bounding the truncation error

Input: a polynomial integral operator K (given by its order r and the bj(t)), a truncation
order Nval and an approximate inverse A of 1+K[Nval].

Output: an upper bound δtrunc for the truncation error ‖A · (K−K[Nval])‖Ч1 .

⊲ All operations are to be performed in interval arithmetics

⊲ Compute δ(1)trunc > sup
i∈JNval−d+1,NvalK

B(i)

1: δ
(1)
trunc ← 0

2: for i = Nval − d+ 1 to Nval do
3: P ← (1− пNval

) ·K · Ti
4: if ‖P‖Ч1 > δ

(1)
trunc then δ

(1)
trunc ← ‖P‖Ч1

5: end for

⊲ Compute δ(2)trunc > sup
i∈JNval+1,Nval+dK

B(i)

6: δ
(2)
trunc ← 0

7: for i = Nval + 1 to Nval + d do
8: P ← A ·K · Ti
9: if ‖P‖Ч1 > δ

(2)
trunc then δ

(2)
trunc ← ‖P‖Ч1

10: end for

⊲ Compute δ(3)trunc > sup
i>Nval+d+1

BD(i)

11: i0 ← Nval + d+ 1 and B ←
r−1∑
j=0
‖bj‖Ч1

12: P ← (1− пNval
) ·K · Ti0 and δ

(3)
trunc ← ‖P‖Ч1

13: δ
(3)
trunc ← δ

(3)
trunc +

rB
(i0−r)2

⊲ Compute δ(4)trunc > sup
i>Nval+d+1

BI(i)

14: B ←
r−1∑
j=0
‖A · bj‖Ч1

15: P ← A · пNval
·K · Ti0 and δ

(4)
trunc ← ‖P‖Ч1

16: δ
(4)
trunc ← δ

(4)
trunc +

r3B
(i20−r2)2

17: δtrunc ← max(δ
(1)
trunc, δ

(2)
trunc, δ

(3)
trunc + δ

(4)
trunc)

18: return δtrunc
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Proposition 4.19 Algorithm IntopTruncError is correct and requires O((h′+ d′)(h+
d)d) operations when A is (h′, d′) almost-banded, or O(Nval(h + d)d) operations when A is
dense.

Proof. The correctness is straightforward, using Lemma 4.18. To reach the claimed complex-
ity, the polynomials K · Ti involved in the algorithm must be sparsely computed as an (h, d)
almost-banded vector around index i, using O(rh) arithmetic operations. Clearly, step 1 for

δ
(1)
trunc (lines 1-5) costs O(drh) operations. For each i in step 2 for δ(2)trunc (lines 6-10), com-

puting K · Ti costs O(rh) operations to obtain an (h, d) almost-banded vector, and applying
A costs O((h′ + d′)(h + d)) or O(Nval(h + d)) operations, depending on whether A is (h′, d′)
almost-banded or dense (see Table 4.1 in Section 4.2). Hence we get O((h′ + d′)(h+ d)d) or

O(Nval(h + d)d) operations. After that, step 3 for δ(3)trunc (lines 11-13) costs O(rh) operations

both to compute (1−пNval
) ·K ·Ti0 and

r−1∑
j=0
‖bj‖Ч1 . Finally, at step 4 (lines 14-16), computing

r−1∑
j=0
‖A · bj‖Ч1 costs O((h′ + d′)rh) or O(Nvalrh) operations, and computing A · пNval

·K · Ti0
costs O(rh + (h′ + d′)(h + d)) or O(rh + Nval(h + d)) operations. We see that in both cases
(A (h′, d′) almost-banded or dense), the most expensive step is the second one, which gives the
respective expected total complexities.

4.3.2 ◮ Complete validation method and complexity

We now have all the ingredients for the complete validation process: Algorithm IntopCon-
tract obtains a contracting Newton-like operator T and Algorithm IntopVal validates a
candidate solution ϕ◦.

For Algorithm IntopContract, the parameters h, d and the ‖bj‖Ч1 directly come from
LODE (4.2), while the other input parameters Nval, h′ and d′ must either be known by the
user or obtained from a decision procedure. For that, first, Proposition 4.20 analyses the
complexity of IntopContract and Algorithm IntopVal when Nval, h′ and d′ are given.
Then, a more detailed study of the magnitude of these parameters and an intuition on how to
choose them is proposed.

In ChebValid, the functions and auxiliary routines implementing Algorithms IntopCon-
tract and IntopVal are located in mpfi_chebpoly_intop_newton.h.

Complexity in function of the chosen parameters

Proposition 4.20 Let K be the integral operator associated to the polynomial LODE (4.2),
Nval be the truncation order chosen for the quasi-Newton method, M = 1 +K[Nval] and (h, d)
the parameters of its almost-banded structure, A the approximation of M−1 used for T, either
dense or (h′, d′) almost-banded. We have the following complexity results:

(4.20 i) The complexity of producing the Newton-like operator T and validating its Ч
1-norm using

Algorithm IntopContract is:

O(Nval(h+ d)(h′ + d′)) (or O(Nval
2(h+ d)) when A is dense).
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Algorithm 4.7 IntopContract(K, Nval, h
′, d′) – Creating and bounding a Newton-like op. T

Input: a polynomial integral operator K (given by its order r and the bj(t)), a truncation
order Nval and optional parameters h′ and d′.

Output: an approximate inverse A of 1 + K[Nval] ((h′, d′) almost-banded if h′ and d′ were
specified, dense otherwise) and a certified Lipschitz constant µ.

1: M ← 1+K[Nval], computed as an (h, d) almost-banded matrix.
2: (Q,R)← OlverTownsendQR(M)

⊲ Compute the approximate inverse A of M
3: if h′ and d′ are specified with h 6 h′ < Nval and d 6 d′ < Nval then

⊲⊲ A is (h′, d′) almost-banded
4: A← AlmostBandedApproxInverse(M, (Q,R), h′, d′)
5: else

⊲⊲ A is dense
6: for i = 0 to Nval − 1 do
7: for j = 0 to Nval − 1 do V [j]← 0 and V [i]← 1
8: W ← OlverTownsendBackSubs(M, (Q,R), V )
9: Set ith column of A to W

10: end for
11: end if

⊲ Compute the approximation error δapprox > ‖1−A · (1+K[Nval])‖Ч1

12: δapprox ← 0
13: for i = 0 to Nval − 1 do
14: Set V to the ith column of M , as an (h, d) almost-banded vector
15: Compute W ← A · V and W [i]←W [i]− 1 with interval arithmetics
16: if ‖W‖1 > δapprox then δapprox ← ‖W‖1
17: end for

⊲ Compute the truncation error δtrunc > ‖A · (K−K[Nval])‖Ч1

18: δtrunc ← IntopTruncError(K, Nval, A)

19: µ← δapprox + δtrunc
20: if µ < 1 then
21: return µ
22: else
23: return "Fail"
24: end if
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Algorithm 4.8 IntopVal(K, ψ,Nval, A, µ, ϕ
◦) – Validating a solution of integral equation

Input: a polynomial integral operator K (given by its order r and the bj(t)), a polyno-
mial right-hand side ψ, a truncation order Nval, (A, µ), with µ < 1, computed by
IntopContract(K, Nval, h

′, d′), and a candidate solution ϕ◦ of degree Napp.
Output: an error bound ε such that ‖ϕ◦ − ϕ∗‖Ч1 6 ε.

⊲ All operations are to be performed in interval arithmetics

1: P ← ϕ◦ +K · ϕ◦ − ψ
2: for i = 0 to Nval do V [i]← [P ]i
3: W ← AV
4: for i = 0 to Nval do [P ]i ←W [i]
5: ε← ‖P‖Ч1/(1− µ)
6: return ε

(4.20 ii) Having this validated Newton-like operator, a degree Napp approximate solution ϕ◦ of (4.2)
(with Nrhs = degψ) is validated using Algorithm IntopVal in:

O(Napprh+Nrhs + (h′ + d′)min(Nval,max(Napp + d,Nrhs)))

(or O(Napprh+Nrhs +Nvalmin(Nval,max(Napp + d,Nrhs))) when A is dense).

Proof. For (4.20 i), we consider the different steps to obtain T and bound its Ч
1-norm:

◦ Computing M = 1 + K[Nval] (line 1) costs O(Nvalrh) operations, using the defining
formula (4.5) of K, and O(Nvald

2) operations are needed for the QR decomposition (line
2) according to Proposition 4.14.

◦ Computing A (lines 3-11) needs O(Nval(h+ d)(h′ + d′)) operations in the almost-banded
case (Corollary 4.17), or O(Nval

2(h+ d)) in the dense case.

◦ Using Table 4.1, line 15 costs O((h′ + d′)(h + d)) operations when A is (h′, d′) almost-
banded, or O(Nval(h+d)) when it is dense. Hence the computation of the approximation
error is performed in O(Nval(h

′ + d′)(h + d)) (almost-banded case) or O(Nval
2(h + d))

(dense case) operations.

◦ The truncation error (line 18) costs O((h′ + d′)(h + d)d) operations when A is (h′, d′)
almost-banded, or O(Nval(h+ d)d) in the dense case, following Proposition 4.19.

Hence, the total complexity is in O(Nval(h+ d)(h′ + d′)) when A is (h′, d′) almost-banded, or
O(Nval

2(h+ d)) when A is dense.
For (4.20 ii), computing P (of degree max(Napp+ d,Nrhs)) at line 1 costs O(Napprh+Nrhs)

operations. Multiplying by A its n + 1 first coefficients (line 3) requires O((h′ + d′)min(Nval,
max(Napp + d,Nrhs)) operations (if A (h′, d′) almost-banded) or O(Nvalmin(Nval,max(Napp +
d,Nrhs))) operations (if A dense). Note that at line 2, copying the Nval + 1 first coefficients of
P costs min(max(Napp+d,Nrhs), Nval) (neglect the null coefficients), and in the almost-banded
case when max(Napp + d,Nrhs) < Nval, lines 4 costs (max(Napp + d,Nrhs) + h′ + d′) operations
(again, neglect the final null coefficients). This yields the claimed total complexity.
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Choosing and estimating parameters Nval, h
′ and d′

The complexity claimed by Proposition 4.20 depends on the parameters Nval, h′ and d′.
Hence, the performance of the validation method is directly linked to the minimal values we
can choose for these parameters.

In practice, one initializes Nval = 2d (to avoid troubles with too small values of Nval) and then
estimates (from below) the norm ‖(1 + K[Nval])−1 · (K −K[Nval])‖Ч1 by numerically applying
this operator on TNval+1. This heuristic is similar to estimating the truncation error of a
Chebyshev series by its first neglected term [53, §4.4, Thm. 6]2. Specifically, for intermediate
or large values of Nval, one has for i 6 Nval that ‖(K −K[Nval]) · Ti‖Ч1 6 ‖K · Ti‖Ч1 , and for
i > Nval+1, one has a decrease of ‖K ·Ti‖Ч1 in O(1/i). Recall that for i > Nval, K

[Nval] ·Ti = 0,
from (4.9). So, max

i>0
‖(1+K[Nval])−1·(K−K[Nval])·Ti‖Ч1 is heuristically achieved for i = Nval+1.

Concretely, computing ‖(1+K[Nval])−1 ·(K−K[Nval]) ·TNval+1‖Ч1 reduces to numerically solving
the corresponding almost-banded system with input parameters M and пNval

·K ·TNval+1 using
Algorithms OlverTownsendQR and OlverTownsendBackSubs.

If this estimate from below of the norm of T is greater than 1, we double the value of Nval

until the estimated norm falls below 1. Then we initialize h′ = h and d′ = d, compute an (h′, d′)
almost-banded approximation of (1+K[Nval])−1 using Algorithm AlmostBandedApprox-
Inverse and double their values each time the approximation error exceeds 0.25. After that,
Algorithm IntopTruncError produces a certified upper bound for the truncation error. If
it exceeds 0.25, then again we double the value of Nval and restart the validation process.

In what follows, we give theoretical estimates for the order of magnitude of the above men-
tioned parameters. First a bound for Nval is

Nval = O(dB2 exp(2B)), where B =
r−1∑

j=0

‖bj‖Ч1 .

This can be proved since Nval must be chosen large enough so that the sum of the approximation
and truncation errors falls below 1. For this, a sufficient condition is ‖(1 + K)−1 · (K −
K[Nval])‖Ч1 < 1, using the proof of Lemma (4.13 i), (4.13 ii) and [93, Chap. 2, Cor. 8.2].
The estimate follows since ‖K−K[Nval]‖Ч1 = O(B/Nval), from Lemma 4.12 and

‖(1+K)−1‖Ч1 6

+∞∑

i=0

(6di+ 1)
2C

i!
6 (12dB + 1) exp(2B),

using Lemma 4.10 and the fact that C (defined in (4.4)) is upper bounded by B.
Now, for the almost-banded parameters h′, d′, we provide a practical estimate of

h′, d′ = O(dB).

This is based on the observation that for sufficiently large Nval, we can expect the ℓth iterated
operator (K[Nval])ℓ to behave approximately like Kℓ. Since ‖Kℓ‖Ч1 6 (6dℓ+ 1)(2B)ℓ/ℓ! (proof
of Lemma 4.10), this quantity falls below 1 as soon as ℓ ≈ 2B exp(1). Then (1+K[Nval])−1 =
+∞∑
i=0

(−K[Nval])i, and A =
ℓ−1∑
i=0

(−K[Nval])i is (d(ℓ − 1), d(ℓ − 1)) almost-banded (again in proof

2[34, §2.12] presents, as a rule-of-thumb, the estimate of the truncation error by the last term retained.
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of Lemma 4.10). We therefore obtain an approximation error ‖1 − A(1 + K[Nval])‖Ч1 =
‖(K[Nval])ℓ‖Ч1 < 1.

To conclude, although it provides a rigorous complexity estimate, the bound concerning Nval

is usually very pessimistic. This is because the above mentioned practical approach of doubling
Nval ends up with far smaller values in most cases. It often happens that ‖(1+K)−1‖Ч1 does not

follow an exponential growth when B =
r−1∑
j=0
‖bj‖Ч1 becomes large. For instance, when k(t, s)

is nonnegative, then the Neumann series
+∞∑
i=0

Ki (equal to 1+K) alternates signs and the Ч
1-

norm of (1+K)−1 is far smaller than the term-by-term exponential bound. Several examples in
Section 4.5 illustrate this phenomenon. In the difficult cases involving an exponential growth
of ‖(1 + K)−1‖Ч1 , the examples in Section 4.5 also show how the almost-banded approach
helps to keep the computation tractable up to some extent.

4.4
Extensions to non-polynomial
LODEs

In this section, we show how to address the general case stated in Problem 4.1. In Sec-
tion 4.4.1 we extend the previously described method to the non-polynomial case with Cauchy
boundary conditions. Then we discuss the case of other boundary conditions in Section 4.4.2.

4.4.1 ◮ Extension to non-polynomial IVP

We consider the IVP problem (1a) where the coefficients αj , j ∈ J0, r− 1K, and the right-hand
side γ belong to Ч

1 and are rigorously approximated by Chebyshev models αj = (aj , εj) and
γ = (g, τ). Using Proposition 4.5, we get an integral operator K with a kernel k(t, s) which
is polynomial in the variable s only:

k(t, s) =
r−1∑

j=0

βj(t)Tj(s),

where the βj are non-polynomial functions in Ч
1.

To obtain Chebyshev models βj = (bj , ηj) for βj it suffices to run Algorithm Integral-
Transform where one replaces the polynomials aj by Chebyshev models αj and overloads
corresponding arithmetic operations. Then, the polynomials bj define a polynomial kernel
kP (t, s) as in Equation (4.5) and respectively the polynomial integral operator KP , such that:

‖K−KP ‖Ч1 6 2
r−1∑

j=0

ηj . (4.14)
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Moreover, since Algorithm IntegralTransform only performs linear operations on the
Chebyshev models αj to produce the βj , the quantity

∑
06j<r

ηj is upper bounded by C
∑

06j<r
εj

for some constant C depending only on r. This justifies the fact that K is well approximated
by KP when the coefficients αj are well approximated by the aj .

Let us prove that the truncated operators K[n] := пn ·K · пn still converge to K and that
1+K is an isomorphism of Ч

1:

Lemma 4.21 Let K be the integral operator obtained from Proposition 4.5. We have

(4.21 i) K is a bounded linear operator of Ч
1 with:

‖K‖Ч1 6 2
r−1∑

j=0

‖βj‖Ч1 .

(4.21 ii) K[n] → K for the Ч
1-operator norm as n→ +∞. Hence K is compact.

(4.21 iii) 1+K is a bicontinuous isomorphism of Ч
1.

Proof. For (4.21 i), let ϕ ∈ Ч
1. From (2.10) and (2.12), we have

‖K · ϕ‖Ч1 6

r−1∑

j=0

‖βj‖Ч1(2‖Tj‖Ч1‖ϕ‖Ч1) =


2

r−1∑

j=0

‖βj‖Ч1


 ‖ϕ‖Ч1 .

This shows that K · ϕ ∈ Ч
1 and that K is bounded as endomorphism of (Ч1, ‖ · ‖Ч1) with the

bound claimed above.
For (4.21 ii), let ε > 0. Take Chebyshev models αj = (aj , εj) of αj sufficiently accurate to

ensure ‖K −KP ‖Ч1 6 ε/3, by (4.14). This is possible since the αj belong to Ч
1, and hence

the ηj can be made as small as desired. We know from Lemma 4.12, since KP is polynomial,

that for n large enough, ‖KP −K
[n]
P ‖Ч1 6 ε/3. We finally get:

‖K−K[n]‖Ч1 6 ‖K−KP ‖Ч1 + ‖KP −K
[n]
P ‖Ч1 + ‖K[n]

P −K[n]‖Ч1

6 ‖K−KP ‖Ч1 + ‖KP −K
[n]
P ‖Ч1 + ‖KP −K‖Ч1

6
ε

3
+
ε

3
+
ε

3
= ε,

where we used that ‖K[n]
P −K[n]‖Ч1 = ‖пn · (KP −K) · пn‖Ч1 6 ‖KP −K‖Ч1 .

For (4.21 iii), the proof works exactly as in the polynomial case: we know that K is compact
by 2) and that 1+K is injective because it is injective over the superspace C0, cf. Section 4.1.1,
and we conclude thanks to the Fredholm alternative.

Using this result, we can again form the Newton-like operator T as in Section 4.3, with
A ≈ (1+K

[n]
P )−1 for some large enough value of n.

The operator norm of the linear part of T can now be decomposed into three parts:

‖1−A · (1+K)‖Ч1 6 ‖1−A · (1+K
[n]
P )‖Ч1 + ‖A · (KP −K

[n]
P )‖Ч1 + ‖A · (K−KP )‖Ч1 .
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The first two parts are exactly the ones of (4.13) (where the polynomial integral operator K
is now called KP ) and can be rigorously upper bounded using the same techniques. The last
part can be upper bounded thanks to (4.14):

‖A · (K−KP )‖Ч1 6 2‖A‖Ч1

r−1∑

j=0

ηj . (4.15)

It is interesting to notice that the order of magnitude of n is largely determined by the second
part (as in the polynomial case), whereas the third part forces the ηj (and hence the εj) to be
small, which mainly depends on the degree of the approximating polynomials aj(t) for αj(t).

Finally, let ϕ◦ be the numerical approximation for the solution of the IVP problem (1a),
given as a polynomial in the Chebyshev basis. One upper bounds ‖T ·ϕ◦−ϕ◦‖Ч1 = ‖A · (ϕ◦+
K ·ϕ◦−ψ)‖Ч1 6 ‖A ·z‖Ч1 +τ‖A‖Ч1 , where ζ = (z, τ) is a Chebyshev model for ϕ◦+K ·ϕ◦−ψ
obtained by arithmetic operations on RPAs.

Proposition 4.22 The results of Proposition 4.20 remain valid for the IVP validation in
the non-polynomial case (1a).

Proof. For computing a rigorous Lipschitz constant for T, the additional term ‖A·(K−KP )‖Ч1

is bounded by (4.15). Clearly, this additional cost is dominated by the complexity obtained
in Proposition 4.20 (i) for the polynomial case.

Then, validating a candidate solution ϕ◦ has the same cost as in the polynomial case (Propo-
sition 4.20 (ii)), since all polynomial operations are essentially replaced by their Chebyshev
model extensions.

In conclusion, we observe that our validation method is easily adapted to the general case
where the coefficients αj are non-polynomial functions rigorously approximated by polynomials
aj . However, contrary to the polynomial case where the involved degrees are usually low, the
degrees of the approximations aj can be rather large, resulting in a dense linear problem
and poorer time efficiency. And yet, in practice, the method remains efficient on problems
with reasonable coefficient magnitude and time interval under consideration, which will be
exemplified in Section 4.5.

The corresponding C routines are gathered in chebmodel_intop_newton.h. In particular, func-
tion chebmodel_lode_intop_newton_solve_fr completely solves Problem 4.1.

4.4.2 ◮ The case of other boundary conditions

Consider now the general boundary conditions operator Λ : Ч
1 → ❘r of Problem (1b). In [265]

an ad-hoc integral reformulation is proposed to treat a specific case of such boundary conditions,
while other works like [73] propose a generic reformulation method. Our method consists
in reducing a general BVP validation problem to r + 1 IVP validation problems. This is
easily observed, since the initial values vj = f (j)(t0) appearing in the integral reformulation
of Proposition 4.5 are now unknown. At first sight, this may seem rather naive and time-
consuming. However, the most difficult part which consists in obtaining a contracting Newton-
like operator is performed only once, thus considerably reducing the total computation time.
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Suppose we have a candidate polynomial approximation f◦ of the solution of BVP prob-
lem (1b), given in Chebyshev basis. Our method consists in rigorously computing a very
accurate approximation f and then comparing it with f◦.

1. The first step is to provide A and compute an upper bound µ for ‖1 −A · (1 +K)‖Ч1 .
This depends neither on the initial conditions nor on the right hand side γ(t).

2. Then, for each i ∈ J0, r − 1K, we compute (with Algorithms OlverTownsendQR
and OlverTownsendBackSubs for the underlying linear algebra) and validate with
Algorithm IntopVal an approximation f◦i for the solution f∗i of the homogeneous
LODE associated to (4.1) (that is, with right hand side g = 0) with initial conditions:

vj = f
(j)
i (t0) =

{
1 if i = j,
0 otherwise,

0 6 j < r.

Similarly, we approximate and validate the solution f∗r of Equation (4.1) with right hand

side g and null initial conditions (f (j)r = 0 for 0 6 j < r). Since the validation kernel
has been produced at the previous step, the numerical solving procedure (Algorithms
OlverTownsendQR and OlverTownsendBackSubs) as well as the validation (Al-
gorithm IntopVal) are linear in the degree of the approximation. Thus, we obtain
Chebyshev models for f∗i , and for their derivatives f∗i

(j), 0 6 j 6 r.

3. The original equation with boundary conditions Λ·f = (λ0(f), . . . , λr−1(f)) = (v0, . . . , vr−1)
admits a unique solution f∗ if and only if there exist c0, c1, . . . , cr−1 uniquely determined
such that

f∗ = c0f
∗
0 + c1f

∗
1 + · · ·+ cr−1f

∗
r−1 + f∗r

and

λ0(f
∗
0 )c0 + λ0(f

∗
1 )c1 + · · ·+ λ0(f

∗
r−1)cr−1 = −λ0(f∗r ),

λ1(f
∗
0 )c0 + λ1(f

∗
1 )c1 + · · ·+ λ1(f

∗
r−1)cr−1 = −λ1(f∗r ),

...

λr−1(f
∗
0 )c0 + λr−1(f

∗
1 )c1 + · · ·+ λr−1(f

∗
r−1)cr−1 = −λr−1(f

∗
r ).

If the quantities λj(f∗i ) can be rigorously and accurately computed using the Chebyshev
models of the f∗i

(j) obtained at the previous step, then one can solve this linear system
in interval arithmetics [221] and obtain intervals c0, . . . , cr−1.

4. Using the (interval) coefficients c0, . . . , cr−1 and the Chebyshev models
f0, . . . , fr−1, fr, we get that

f := (f, ε) := c0f0 + · · ·+ cr−1fr−1 + fr

is a Chebyshev model for the exact solution f∗. Now, it suffices to compute η = ‖f◦−f‖Ч1

(which is straightforward since both f◦ and f are polynomials in Chebyshev basis) and
we deduce that the approximation error ‖f◦ − f∗‖Ч1 is rigorously upper-bounded by
η + ε. Note that the intermediate approximation f should be sharp enough (that is, the
approximation degree has to be chosen large enough), so that ε≪ η.
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4.5 Experimental results

Four examples illustrate our validation method and investigate its limitations, two of which
are already treated in [191] from the numerical point of view. First, Airy differential equation
exemplifies the polynomial IVP case. Second, the non-polynomial IVP case is illustrated by the
mechanical study of the undamped pendulum with variable length. Third, a non-polynomial
BVP problem is exemplified by a boundary layer problem. Finally, we apply our method to
a practical space mission problem, namely, the trajectory validation in linearized Keplerian
dynamics. More detailed applications to space mission problems are exposed in Chapter 7,
which takes over the article [6].

Remark 4.23 As explained in Section 4.3.2, the magnitude of the validation parameters
Nval, h′ and d′ required by Algorithm IntopContract mainly determines the time complex-
ity of the method. In the examples analyzed in this section, we particularly investigate their
evolution in function of the parameters of the problems. Usually, they are automatically de-
termined as proposed in Section 4.3.2 (doubling them until the operator T is proved to be
contracting).

4.5.1 ◮ Airy equation

The Airy function of the first kind is a special function defined by Ai(x) = 1/π
∫ +∞
0 cos(s3/3+

xs)ds and solution of the Airy differential equation:

y′′(x)− xy(x) = 0, (4.16)

with the initial conditions at 0:

Ai(0) =
1

32/3Γ(2/3)
, Ai′(0) = − 1

31/3Γ(1/3)
.

Airy functions, Ai and Bi, depicted in Figure 4.3, form together the standard basis of the
solutions space of (4.16) (see [2], Chap. 10 Bessel Functions of Fractional Order).

In what follows, we apply the validation method on intervals of the form [−a, 0] or [0, a] (for
a > 0), and investigate its behavior in these two different cases.

Validation over the negative axis

We rigorously approximate Ai over [−a, 0] for some a > 0, or equivalently u(t) = Ai(−(1+t)a/2)
over [−1, 1]. This appears for instance in quantum mechanics when considering a particle in
a one-dimensional uniform electric field. The function u is the solution of the following IVP
problem:

u′′(t) +
a3

8
(1 + t)u(t) = 0,

u(−1) = 1

32/3Γ(2/3)
and u′(−1) = a/2

31/3Γ(1/3)
.
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4.5.2 ◮ Undamped pendulum with variable length

Consider the motion of an undamped pendulum with variable length ℓ(t), which is modeled by
the equation:

θ′′(t) + 2
ℓ′(t)
ℓ(t)

θ′(t) +
g

ℓ(t)
sin θ(t) = 0, (4.17)

where θ(t) is the angle at time t between the pendulum and its equilibrium position, and
g = 9.81 the gravitational acceleration. On the time interval [−1, 1] and for a constant variation
of the length ℓ(t) = ℓ0(1 + ζt) (with |ζ| < 1), we analyze the evolution of θ(t) in a small
neighborhood of 0 such that sin θ can be linearized into θ. Equation (4.17) becomes:

θ′′(t) +
2ζ

1 + ζt
θ′(t) +

g

ℓ0(1 + ζt)
θ(t) = 0, θ(−1) = θ0 ≪ 1 and θ′(−1) = 0.

The coefficients of this equation are not polynomials. Hence, we first provide a Chebyshev
model for ξ(t) = 1/(1 + ζt) with |ζ| < 1 using the arithmetic operations on RPAs given
in Chapter 3. Figure 4.5a summarizes the obtained error bound ε (for the Ч

1-norm) in
function of the approximation degree p for different values of ζ, with ℓ0 = 1 fixed.

Next, we create and bound the contracting Newton-like operator T. Figure 4.5b shows the
corresponding values of p (degree of the approximation of t 7→ 1/(1+ ζt)) and Nval (truncation
order for the integral operator) we use for Algorithm IntopContract, and the values of
h′ + d′, expressing the advantage of taking an almost-banded A instead of a dense one.

We first observe that Nval grows when |ζ| gets close to 1, which is due to the growth of the
Ч

1-norm of t 7→ 1/(1+ ζt). However, the situation is very different depending on the sign of ζ.
When ζ gets close to −1, Nval grows exponentially fast. The quantity h′+d′ grows more slowly,
so that the almost-banded approach helps a little. As for the Airy function, this exponential
behavior is due to the large negative coefficient in front of θ′ in Equation (4.17). This difficult
case corresponds to a decrease in the rope’s length, resulting in increasing oscillations of the
pendulum (see Figure 4.5d). On the contrary, the case ζ → 1 is easier to treat, since it
corresponds to an increase of the rope’s length, producing damped oscillations of the pendulum
(see Figure 4.5c).

The two numerical solutions plotted on Figures 4.5c and 4.5d were certified using Algo-
rithm IntopVal. For the damped case (ℓ0 = 0.1 and ζ = 0.9), we obtained a Chebyshev
model of degree 50 with a Ч

1-error equal to 1.40 · 10−4. The diverging case (ℓ0 = 0.1 and
ζ = −0.9) used a Chebyshev model of degree 65 with an error of 1.15 · 10−4.

4.5.3 ◮ Boundary layer problem

We take from [191] the example of the boundary layer problem, modeled by the following BVP
problem, with ε > 0:

u′′(x)− 2x

ε

(
cosx− 8

10

)
u′(x) +

1

ε

(
cosx− 8

10

)
u(x) = 0,

x ∈ [−1, 1], u(−1) = 1, u(1) = 1.

(4.18)
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The numerical solution of this BVP is plotted in Figure 4.6a for three different values of
ε. Figure 4.6b shows the basis (u1, u2) of the solution space of LODE (4.18) associated to
the canonical initial conditions {u1(−1) = 1, u′1(−1) = 0} and {u2(−1) = 0, u′2(−1) = 1}, for
ε = 0.001. Thus, the exact solution u of the BVP is given by:

u(x) = u1(x) + λu2(x), with λ =
1− u1(1)
u2(1)

. (4.19)

Since u1(1) and u2(1) tend to be very large when ε gets close to zero, obtaining u from u1
and u2 is an ill-conditioned problem. With ε = 0.001, the obtained approximation using
the binary64 (double) format is completely inaccurate (see Figure 4.6c). Note that a better
solution (regarding the conditioning) is to directly compute the BVP solution with Algorithms
OlverTownsendQR and OlverTownsendBackSubs as in [191]. In any case, validating
a candidate solution is useful to detect such numerical troubles.

The first task consists in rigorously approximating the cosine function over [−1, 1]. This can
be done by a recursive call to our validation method on the differential equation ξ′′ + ξ = 0
with ξ(−1) = cos(−1) and ξ′(−1) = − sin(−1). For this application, a degree 10 Chebyshev
model for cos is sufficient.

Then, we run IntopContract to get a contracting Newton-like operator. Figure 4.6d
illustrates the growth of the validation parameters in function of ε. When ε > 0 gets small,
the coefficient in front of u′ takes large negative values, yielding an exponential growth of
‖(1 + K)−1‖Ч1 and hence of the minimal truncation order Nval we can choose. Since h′ + d′

remains small compared to Nval, we get here a typical example where the exponential bound
prevents us from validating a solution of LODE (4.18) with very small ε, but where however
the choice of an almost-banded A allows us to treat intermediate cases: ε ∈ [0.005, 0.01].

Next, we compute high-degree Chebyshev models u1 and u2 for the basis (u1, u2). This
requires Algorithms OlverTownsendQR and OlverTownsendBackSubs to obtain a
numerical approximation, and using the previously obtained Newton-like operator T to certify
them with IntopVal. Hence, this step has a linear complexity with respect to the approxima-
tion degree we use. Computing the value of λ in Equation (4.19) in interval arithmetics gives
a Chebyshev model u for the exact solution u using u1 and u2. Finally, the error associated to
the candidate numerical approximate solution u◦ is obtained by adding the certified error of u

with the Ч
1-distance between u◦ and the polynomial of u.

As an example, for ε = 0.01, the minimal degree for which we found an approximation of
the solution of BVP (4.18) within a certified error of 2−53 (corresponding to standard double
precision) is 72.

4.5.4 ◮ Spacecraft trajectories using linearized equations

for Keplerian motion

We consider the case of Tschauner-Hempel equations, which model the linearized relative mo-
tion of an active spacecraft around a passive target (such as the International Space Station
for instance) in elliptic orbit around the Earth, provided that their relative distance is small
with respect to their distance to the Earth. These equations are very used in robust rendezvous
space missions [245], where the accuracy of their computed solutions is at stake. Altough this
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application is further developed in Chapter 7, we give a simple example here for illustrative
purpose.

Call e ∈ [0, 1) the eccentricity of the fixed orbit of the target, and let ν be the true anomaly
(an angular parameter that defines the position of a body moving along a Keplerian orbit)
associated to the target, which is the independent variable in our problem. The in-plane
motion of the spacecraft relatively to the target (that is, the component of the motion inside
the plane supported by the elliptic orbit of the chaser) is defined using two position variables
x(ν) and z(ν), satisfying the following linearized system over the interval [ν0, νf ]:

z′′(ν) +

(
4− 3

1 + e cos ν

)
z(ν) = c,

x(ν) = x(ν0) + (x′(ν0)− 2z(ν0))(ν − ν0) + 2

∫ ν

ν0

z(s)ds,

c = 4z(ν0)− 2x′(ν0) and ν ∈ [ν0, νf ].

As an example, fix the eccentricity e = 0.5, the interval [ν0, νf ] = [0, 6π] (corresponding to
3 periods) and the initial conditions (x(ν0), z(ν0), x

′(ν0), z′(ν0)) = (−3 · 104 m, 5 · 103 m, 9 ·
103 m · rad−1, 4 · 103 m · rad−1). The corresponding functions x(ν) and z(ν) are plotted in
Figure 4.7a. Figure 4.7c represents an approximation of degree Napp = 18 of z′′(ν) (radial
acceleration), together with the rigorous error bound obtained by our method. The dashed
curve corresponds to the exact solution, which as expected lies inside the tube defined by our
rigorous approximation. One notices that we obtain a quite tight error bound, even for the
‖ · ‖∞ norm.

Figure 4.7b gives the minimal degree p corresponding to an approximation of z for which
Algorithm IntopVal is able to certify an error below one meter, in function of the period
length and the eccentricity of the target reference orbit.
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Componentwise Chebyshev
Models for Linear Ordinary
Differential Systems 5

In the fall of 1972, President Nixon announced that the rate increase of inflation was
decreasing. This was the first time a president used the third derivative to advance his case

for re-election.

— Hugo E. Rossi

The developments of previous chapters are extended by providing a new framework for a pos-
teriori validation of vector-valued problems with componentwise tight error enclosures, which is
applied to solutions of coupled systems of linear ordinary differential equations. More precisely,
given a coupled differential system with polynomial or RPA coefficients over a compact inter-
val, and componentwise polynomial approximate solutions in Chebyshev basis, the algorithm
outputs componentwise rigorous upper bounds for the approximation errors, with respect to
the uniform norm over the interval under consideration.

This work follows closely my conference article “A Newton-like Validation Method for Cheby-
shev Approximate Solutions of Linear Ordinary Differential Systems” [37], published in 2018, in
the proceedings of the 43rd International Symposium on Symbolic and Algebraic Computation
(ISSAC).

Let us firstly introduce some additional notations.

Notations. Let p be a positive integer for the ambient space ❘p, whose canonical basis is
denoted by (e1, . . . , ep). For a ring ❆,Mp(❆) denotes the set of order p square matrices, with
1 and 0 the identity and zero matrices. The order 6 over ❘ is componentwise extended to a
(partial) order over ❘p and Mp(❘): for all u, v ∈ ❘p (resp. A,B in Mp(❘)), u 6 v if and
only if ui 6 vi for all i ∈ J1, pK (resp. A 6 B iff Aij 6 Bij for all i, j ∈ J1, pK).

Problem statement and contributions. Similarly to the problem considered in Chap-
ter 4, we present an a posteriori validation algorithm that provides componentwise and tight
error enclosures for Chebyshev approximations to solutions of coupled linear ordinary differen-
tial equations (LODEs):

Y (r) +Ar−1(t)Y
(r−1) + · · ·+A1(t)Y

′ +A0(t)Y = G(t), (5.1)
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of unknown Y : [−1, 1] → ❘p. Coefficients Ai and G must be continuous (vector-valued)
functions, given as polynomials with rigorous error bounds. However, for the sake of simplicity,
we mainly focus on the polynomial case, and refer to the solutions as vector-valued D-finite
functions – the general case being deduced as in Section 4.4.1. Although such functions can
be seen as vectors of (scalar) D-finite functions, the decoupling of the system followed by a
possible desingularization step may produce hard to validate scalar LODEs (see Section 5.3).
Moreover, in the nonpolynomial case, such techniques do not apply.

Using an appropriate integral transform of the linear differential system, we obtain (similarly
to what presented in Proposition 4.5) a Volterra integral equation of the second kind with
polynomial kernel, whence the following problem statement:

Problem 5.1 For a given integral equation of unknown Φ : [−1, 1]→ ❘p:

Φ(t) +

∫ t

−1
K(t, s) Φ(s)ds = Ψ(t),

with a p-dimensional polynomial kernel K(t, s) ∈ Mp(❘[t, s]) and Ψ ∈ ❘[t]p, assuming we
are given for each component Φ∗

i of the exact solution Φ∗ a polynomial approximation Φ◦
i in

Chebyshev basis, compute componentwise error bounds εi, as tight as desired:

‖Φ◦
i − Φ∗

i ‖Ч1 6 εi, for all i ∈ J1, pK.

We recall from Section 2.2 that ‖ · ‖Ч1 is a norm for absolutely summable Chebyshev series
that upper-bounds the ‖ · ‖∞ norm over [−1, 1].

Many a posteriori fixed-point validation methods use the Banach fixed-point theorem, fol-
lowing more or less the general framework described in Section 3.3. However, in the case
we consider, the solution belongs to a product space, and the classical method consisting in
endowing it with a global norm fails to produce componentwise tight error enclosures. This is
particularly annoying when the components of the system are of different nature (e.g., position
and speed) or magnitude.

To overcome this limitation, we consider the notion of vector-valued (or generalized) metric
spaces and generalized contractions (or P-contractions) [132, 213, 192]. The Perov fixed-point
theorem [132, 195] is a natural extension of the Banach fixed-point theorem and provides
componentwise upper bounds for the approximation error. Several works applied this theorem
in various settings, for example [266] for the Newton method or [3, 203, 186] for ODEs with
nonlocal conditions. To the best of our knowledge, however, none of these works investigate the
existence of lower bounds, nor address validation problems. Based on a new refinement with
lower bounds for the Perov fixed-point theorem, we propose a validation algorithm to solve
Problem 5.1.

Outline. Section 5.1 introduces a general framework for componentwise fixed-point valida-
tion in generalized metric spaces. In Section 5.2, we design a Newton-like validation algorithm
for Chebyshev approximations of vector-valued D-finite functions. After that, Section 5.3 de-
tails the validation of a two-dimensional highly oscillating system. For completeness, we also
provide a comparison with a decoupling technique that boils down to solving scalar LODEs.
Finally, concluding remarks about the methods developed in Chapters 4 and 5 are proposed
in Section 5.4, together with future directions that deserve further investigations.
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5.1
A framework for vector-valued
validation problems

We address the general problem of componentwise validating an approximation x◦ to the exact
solution x∗ of a fixed-point equation x = T · x. Section 5.1.1 gives a rigorous definition of
“several components and norms” with the notion of generalized metric spaces, leading to the
Perov fixed-point theorem. Section 5.1.2 presents a new result that complements the Perov
theorem with lower bounds on the componentwise approximation errors.

A toy example in the plane

Throughout this section, the following toy example will be used to illustrate the vector-valued
validation framework. Consider the trigonometric equation sin3 ϑ + cos 3ϑ = 0 for ϑ ∈ ❘. By
introducing c = cosx and s = sinx, this is equivalent to finding the roots of the following
polynomial system in the plane (c, s):

F · (c, s) =
(
s3 + 4c3 − 3c
c2 + s2 − 1

)
= 0.

Let x∗ = (c∗, s∗) be an exact solution and x◦ := (c◦, s◦) = (0.84, 0.55) an approximation of it.
In order to validate this solution with respect to a given norm ‖·‖ on❘2, we define a Newton-like

operator T · (c, s) := (c, s)−A ·F · (c, s) with A :=

(
0.25 −0.20
−0.37 1.2

)
≈ (DFx◦)−1 ∈M2(❘)

an approximate inverse of the Fréchet derivative DFx◦ of F at x◦. Since A is injective, its
fixed points are exactly the roots of F. In this example, F is nonlinear, so one must find a
strongly stable ball over which T is contracting, for the Banach Theorem 3.10 to apply, that
is, determine a radius r > 0 satisfying the following two conditions:

(i) λ := sup
‖x−x◦‖6r

‖1−A · DFx‖ < 1;

(ii) ‖x◦ −T · x◦‖+ λr 6 r.
If such a radius exists, then by the Banach fixed-point theorem, we have ‖x◦ − x∗‖ 6 ‖A·F·x‖

(1−λ) .
However, such a bound captures a “global” error, which may not be what we expect, if, for
example, the two components are of different nature (e.g., position and velocity), or differ by
several orders of magnitude.

5.1.1 ◮ Generalized Metric Spaces and Perov Fixed-Point

Theorem

Definition 5.2 Let X be a set (resp. E a linear space). A function d : X ×X → ❘p
+ (resp.

‖ · ‖ : E → ❘p
+) is a vector-valued or generalized metric (resp. norm) if for all x, y, z in X or

E and λ ∈ ❘:
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◦ d(x, y) = 0 iff x = y, resp. ‖x‖ = 0 iff x = 0;
◦ d(x, y) = d(y, x), resp. ‖λx‖ = |λ|‖x‖;
◦ d(x, y) 6 d(x, z) + d(z, y), resp. ‖x+ y‖ 6 ‖x‖+ ‖y‖.

Then (X, d) (resp. (E, ‖·‖)) is a vector-valued or generalized metric space (resp. linear space).

A straightforward example is the product of p metric spaces (Xi, di), i ∈ J1, pK (resp. p
normed linear spaces (E, ‖·‖i)) and the vector-valued metric d(x, y) = (d1(x1, y1), . . . , dp(xp, yp))
(resp. the vector-valued norm ‖x‖ = (‖x1‖1, . . . , ‖xp‖p)).

Remark 5.3 A vector-valued metric space (respectively a vector-valued normed linear space)
can be trivially seen as a metric space (respectively a normed linear space) by taking the maxi-
mum of all the components of the vector-valued metric (respectively norm). We therefore recover
all the useful topological notions of convergence, limit, neighborhood, completeness, etc.

In the context of vector-valued metric spaces, the notion of contracting map needs to be
generalized. Let M→0

p (❘) ⊆ Mp(❘) denote the convergent to zero matrices, that is the ma-
trices M such that Mk → 0 as k → ∞. Equivalently, these are matrices M with spectral
radius ρ(M) < 1. Then, M→0

p (❘+) =M→0
p (❘) ∩Mp(❘+) denotes those among them with

nonnegative coefficients.

Definition 5.4 Let (X, d) be a vector-valued metric space and T : X → X an operator.

◦ T is Λ-Lipschitz for some Λ ∈Mp(❘+) if:

d(T · x,T · y) 6 Λ d(x, y), for all x, y ∈ X.

◦ If moreover Λ is convergent to 0 (Λ ∈ M→0
p (❘+)), then T is said to be a generalized

contraction.

Using these definitions, the Perov fixed-point theorem1 is a generalization of the Banach
fixed-point theorem.

Theorem 5.5 (Perov) Let (X, d) be a complete vector-valued metric space and T : X → X
a generalized contraction with a Lipschitz matrix Λ ∈M→0

p (❘+). Then:

(5.5 i) T admits a unique fixed-point x∗ ∈ X;

(5.5 ii) For every x◦ ∈ X, the iterated sequence defined by x0 = x◦ and xn+1 = T · xn converges
to x∗ with the following upper bound on the approximation error:

d(xn, x
∗) 6 Λn (1− Λ)−1 d(x◦,T · x◦), for all n ∈ ◆. (5.2)

A reference proof may be found in [192], but we give below the main ideas, which are useful
for what follows.

1Although commonly attributed to Perov [195] (in Russian), the idea of generalizing the Banach fixed-point
theorem to generalized norms for investigating the componentwise errors in an iterative process first appeared
in Kantorovich’s work [132] (in Russian).
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Proof. (5.5 i) Endow X with the metric d∞(x, y) = ‖d(x, y)‖∞ = max
16i6p

di(x), so that (X, d∞)

is a complete metric space. For an order p square matrix A, define:

‖A‖∞ := max
16i6p

∑

16j6p

|Aij | = sup
‖x‖∞61

‖Ax‖∞.

Since Λk → 0, there is a k such that µ = ‖Λk‖∞ < 1. Then Tk is a µ-contraction for the
d∞ metric, so that the Banach theorem applies and gives x∗ as the unique fixed-point of Tk.
Hence T can have at most one fixed point. From the following inequality:

d∞(x∗,T · x∗) = d∞(Tk · x∗,Tk+1 · x∗) 6 ‖Λk‖∞d∞(x∗,T · x∗) < d∞(x∗,T · x∗),
we get that x∗ = T · x∗ is the unique fixed point of T.

(5.5 ii) Let x◦ ∈ X. Since d(x◦, x∗) 6 d(x◦,T ·x◦)+d(T ·x◦, x∗) 6 d(x◦,T ·x◦)+Λ d(x◦, x∗),
we get:

(1− Λ) d(x◦, x∗) 6 d(x◦,T · x◦). (5.3)

Since Λk → 0 as k → ∞, it is easy to prove that 1 − Λ is nonsingular, with nonnegative
inverse (1 − Λ)−1 =

∑
k>0

Λk > 0. Therefore, multiplying both members of Inequality (5.3) by

(1 − Λ)−1 is licit, so as to obtain the upper bound (5.2) for n = 0. The general bound for
n > 0 follows from the fact that T is Λ-Lipschitz.

Perov theorem applied to the toy example

Endowing ❘2 with the vector-valued norm ‖(c, s)‖ := (|c|, |s|) does not change the definition
of T. The two conditions needed to apply the Banach fixed-point theorem are adapted to the
Perov theorem as follows. Choose a multi-radius r = (r1, r2) such that

(i) Λ :=
(
sup‖x−x◦‖6r |(DTx)ij |

)
16i,j62

satisfies ρ(Λ) < 1;

(ii) ‖x◦ −T · x◦‖+ Λ r 6 r.

For r = (0.005, 0.005), one obtains:

Λ =

(
5.81 1.31
5.63 3.40

)
· 10−2, ρ(Λ) = 7.57 · 10−2,

which satisfies (i) and (ii). Hence, Theorem 5.5 gives:

|c◦ − c∗| 6 2.90 · 10−3, |s◦ − s∗| 6 3.65 · 10−3.

To assess the tightness of these bounds, the lower bounds given in next section will be useful.

5.1.2 ◮ Lower Bounds and Error Enclosures

Let ε = d(x◦, x∗) ∈ ❘p
+ be the vector of unknown errors and η = d(x◦,T · x◦) ∈ ❘p

+. By the
triangle inequality, ε is circumscribed into a polytope of ❘p

+:

(1− Λ) ε 6 η,

(1+ Λ) ε > η,

ε > 0.

(5.4)
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The first inequality gives the upper bounds ε+ = (1 − Λ)−1 η, as stated by Theorem 5.5
(with n = 0). However, the second one does not directly give the desired lower bounds, say
ε−, because the inverse (1+Λ)−1 =

∑
k>0(−Λ)k is not nonnegative in general. It is clear that

each ε−i is given by the i-th coordinate of some vertex of this polytope. Instead of testing its
2p vertices, Theorem 5.6 identifies the correct one.

Theorem 5.6 (Lower bounds for the Perov theorem) With the above notations, for each
i ∈ J1, pK, the lower bound ε−i on the i-th component εi of the approximation error of x◦ to x∗

is given by the i-th component of the vertex defined by the intersection of the i-th lower-bound
constraint together with all the j-th upper-bound constraints with j 6= i from (5.4). Formally:

εi > ε−i with ε−i = eTi (1−Di Λ)
−1 η,

where Di is the order p diagonal matrix defined by (Di)ii = −1 and (Di)jj = 1 for j 6= i.

Before proving this theorem, we give two technical lemmas.

Lemma 5.7 Let A ∈M→0
p (❘+) be a convergent to zero nonnegative matrix and B ∈Mp(❘)

be a matrix whose entries are dominated by those of A:

|Bij | 6 Aij , for all i, j ∈ J1, pK.

Then B is convergent to zero.

Proof. Since A has nonnegative entries which bound those of B, it can be easily shown by the
triangle inequality that for any exponent k > 0, |Bk

ij | 6 Ak
ij for all i, j ∈ J1, pK. This directly

implies the conclusion of Lemma 5.7.

Lemma 5.8 Let Λ ∈M→0
p (❘+) be a convergent to zero nonnegative matrix. Then, for every

i ∈ J1, pK, Λ−Di is nonsingular and the entries on the i-th row of its inverse are nonnegative.

Proof of Lemma 5.8. First, 1−Di Λ is nonsingular because Di Λ is convergent to zero by use
of Lemma 5.7, since its entries are clearly dominated by those of Λ ∈M→0

p (❘+). Hence so is
Λ−Di.

Then we prove that 1 − Λ and 1 − Di Λ both have positive determinant. The segment
1 − τΛ (τ ∈ [0, 1]) connects 1 to 1 − Λ, and all these matrices are nonsingular, because τΛ
converges to zero according to Lemma 5.7. Since det(1) = 1 > 0, we get by connectedness that
det(1−Λ) > 0. A similar argument proves that det(1−Di Λ) > 0, and hence det(Di−Λ) < 0.

Remember that for a nonsinglular matrix M , we have M−1 = (detM)−1Cof(M)T , where
Cof(M) is the cofactor matrix of M , whose entries are the minors of M . Noticing that
Cof(Di − Λ)ji = Cof(1 − Λ)ji for j ∈ J1, pK and using the fact that det(Di − Λ) < 0,
det(1−Λ) > 0 and all entries in (1−Λ)−1 are nonnegative, we conclude that all entries on the
i-th row of (Di − Λ)−1 are non-positive.

Proof of Theorem 5.6. Among the Inequalities (5.4), take the p upper-bound constraints and
replace the i-th one by the corresponding lower-bound constraint. Multiply these p− 1 upper-
bound constraints by −1 to obtain the following system of inequalities:

(Λ−Di) ε > −Di η. (5.5)
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tends to 1 as λ→ 0, justifying the principle: the more contracting the operator is, the tighter
the obtained enclosure is.

This section aims at extending this study to the vectorial case, for the bounds obtained from
Theorems 5.5 and 5.6. The following lemma quantifies how much the obtained enclosure
[ε−i , ε

+
i ] of εi = d(x◦, x∗)i may overapproximate it.

Lemma 5.10 Let T be contracting of Lipschitz matrix Λ ∈ M→0
p (❘+), x∗ its unique fixed-

point, x◦ an approximation, ε = d(x◦, x∗) the approximation error, and η = d(x◦,T ·x◦). Then
for all i ∈ J1, pK:

ε+i := eTi (1− Λ)−1 η 6 eTi (1− Λ)−1 (1 + Λ) ε,

ε−i := eTi (1−Di Λ)
−1 η > eTi (1−Di Λ)

−1 (1 +Di Λ) ε.
(5.7)

The overapproximation ratio can be bounded as follows:

ε+i
ε−i

6
1 + ανi
1− ανi

, with νi =
‖ε‖∞
εi

and α =
2‖Λ‖∞

1− ‖Λ‖∞
, (5.8)

provided that ανi < 1, where ‖ε‖∞ := max
16i6p

|εi| is the infinity norm over ❘p and ‖Λ‖∞ :=

max
16i6p

∑p
j=1 |Λij | the associated operator norm.

In particular, Lemma 5.10 shows that the ratio now depends not only on Λ, but also on
ε = d(x◦, x∗).

Proof. For the first inequality, we have:

ε+i = eTi (1− Λ)−1 η 6 eTi (1− Λ)−1 (1 + Λ) ε,

since η 6 (1 + Λ) ε by Equation (5.4) and (1− Λ)−1 has nonnegative coefficients.
For the second inequality, consider η := (1 +Di Λ) ε, so that:

ηi = eTi (1− Λ) ε 6 ηi,

ηj = eTj (1 + Λ) ε > ηj , for j 6= i

Since by Lemma 5.8, eTi (1 −Di Λ)
−1 (the i-th line of (1 −Di Λ)

−1) has a positive entry on
the i-th position and nonpositive entries on the other ones, we have:

ε−i = eTi (1−Di Λ)
−1 η > eTi (1−Di Λ) η.

In order to prove (5.8), we notice that:

eTi (1− Λ)−1 (1 + Λ) ε = εi + 2eTi
∑

n>1

Λn ε > εi + 2
∑

n>1

‖Λ‖∞‖ε‖∞ = εi + α‖ε‖∞,

under the condition that ‖Λ‖∞ < 1, which is automatic from assumption ανi < 1. The
inequality:

eTi (1−Di Λ)
−1 (1 +Di Λ) ε > εi − α‖ε‖∞,

is proven similarly by considering Di Λ instead of Λ and ‖Di Λ‖∞ = ‖Λ‖∞. Taking the quotient
of these two inequalities yields the bound (5.8).
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Tightness cones

For a fixed Λ, the overapproximation ratio depends on the error distribution of the εi. More
specifically, using Inequality (5.7) of Lemma 5.10, the constraint ε+i /ε

−
i 6 κ for some ratio

κ > 1 is fulfilled when:

eTi (1− Λ)−1 (1 + Λ) ε 6 κ eTi (1−Di Λ)
−1 (1 +Di Λ) ε.

The intersection of these constraints for i ∈ J1, pK defines a cone Cκ in ❘p
+ of points ε for

which the computed overapproximation ratio does not exceed κ. Under a certain value for
κ, Cκ is empty, meaning that T is not contracting enough to achieve this ratio, whatever ε
is. The cone Cκ grows to a limit cone C∞ as κ → +∞ : a point outside C∞ means that the
componentwise error distribution is so unbalanced that some lower bound ε−i is negative (hence
rounded to zero). Figure 5.2 illustrates the cones Cκ for different values of κ and the limit
cone C∞ arising in our toy example.

Validation up to a given ratio

When the problem consists in finding an error enclosure [ε−i , ε
+
i ] for a given approximation x◦

of x∗ such that ε+i /ε
−
i 6 κ, the fixed-point validation operator T must be chosen sufficiently

contracting. The following lemma characterizes how small the Lipschitz matrix Λ must be in
that case.

Lemma 5.11 Let T be contracting of Lipschitz matrix Λ ∈M→0
p (❘+), x◦ an approximation

of its unique fixed point x∗, ε = d(x◦, x∗) the approximation error, and κ > 1. If

‖Λ‖∞ 6
β

2 + β
with β =

1

νi

κ− 1

κ+ 1
and νi =

‖ε‖∞
εi

,

then the upper and lower bounds computed using Theorems 5.5 and 5.6 satisfy ε+i /ε
−
i 6 κ.

Proof. By Lemma 5.10, having:

1 + ανi
1− ανi

6 κ, with α =
2‖Λ‖∞

1− ‖Λ‖∞
,

is sufficient to ensure ε+i /ε
−
i 6 κ (note that the assumption ‖Λ‖∞ 6 β/(2+β) implies ανi < 1).

This in turn is equivalent to α 6 β and finally ‖Λ‖∞ 6 β/(2 + β).

5.2
Componentwise validation of
Chebyshev approximations

The validation procedure for vector-valued D-finite functions closely follows the scalar case
described in Chapter 4. After a short reminder on integral transforms for systems of LODEs
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with a bivariate polynomial kernel K = (kij)16i,j6p ∈ Mp(❘[t, s]) and right-hand side Ψ =
(Ψ1, . . . ,Ψp) ∈ ❘[t]p. Depending on the integral transform, the unknown function Φ =
(Φ1, . . . ,Φp) : [−1, 1] → ❘p can be either Y or one of its derivatives. For example, [19] acts
over Y , whereas the integral transform in previous chapter considers the last derivative Y (r).

In any case, K : Φ 7→
∫ t
−1K(t, s) Φ(s)ds is a bounded linear operator from (Ч1)p to itself.

We may describe it by blocks K = (Kij)16i,j6p, where each Kij is a one-dimensional integral
operator of kernel kij(t, s), obtained for example as in Proposition 4.5. By decomposing
kij(t, s) in Chebyshev basis with respect to s, we obtain unique polynomials bijk(t) such that

kij(t, s) =

κij∑

k=0

bijk(t)Tk(s), Kij · ϕ(t) =
κij∑

k=0

bijk(t)

∫ t

−1

Tk(s)ϕ(s)ds.

Recalling properties of integral operators from Section 4.1, the (infinite dimensional) matrix
representation of Kij : Ч

1 → Ч
1 has a so-called (hij , dij) almost-banded structure [191], mean-

ing that the nonzero entries are located on the hij first rows (horizontal band with initial en-
tries) and the diagonal plus the first dij upper and lower diagonals (diagonal band with diagonal
entries), with hij = max

06k6κij

deg bijk(t) and dij = 1 + deg kij(t, s) = 1 + max
06k6κij

(k + deg bijk(t)).

5.2.2 ◮ Efficient numerical solving

The integral equation (5.10) is an infinite-dimensional linear system over the Chebyshev co-
efficients of the unknown function Φ. The projection method (also sometimes called Galerkin
method [96]) consists in truncating for a given index Napp and solving the obtained finite-
dimensional linear system. In our case, this can be efficiently done by taking advantage of its
sparse structure.

Define the Napp-th truncation of K as K[Napp] := (K
[Napp]
ij )16i,j6p, where K

[Napp]
ij := пNapp ·

Kij · пNapp . It is represented by the order p(Napp + 1) square matrix depicted by blocks in
Figure 5.3a. By permuting the natural basis Bp,Napp of (пNapp ·Ч1)p into B′p,Napp

:

Bp,Napp = (T0e1, . . . , TNappe1, . . . . . . , T0ep, . . . , TNappep),

B′p,Napp
= (T0e1, . . . , T0ep, . . . . . . , TNappe1, . . . , TNappep),

K[Napp] recovers a (ph, pd) almost-banded structure, where h = maxij hij and d = maxij dij
(see Figure 5.3b).

Hence, solving the approximate problem:

Φ+K[Napp] · Φ = Ψ

requires O(p3Nappd
2) operations, using the algorithm of [191] for solving almost-banded linear

systems (see Section 4.2).

5.2.3 ◮ Validation procedure

We extend the validation procedure of Section 4.3 to the vectorial case. We prove the main
Theorem 5.12 in order to solve Problem 5.1 in two steps: (1) a Newton-like validation
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(a) K[Napp] in Bp,Napp
, by blocks (p = 3) (b) K[Napp] in B′p,Napp is almost-banded

Figure 5.3: Almost-banded structure of vector-valued integral operators

operator is created and bounded by Algorithm IntopVecContract. This first step is inde-
pendent of the approximation degree Napp. (2) The error enclosure of the given approximation
is computed by Algorithm IntopVecVal, following Theorems 5.5 and 5.6.

The goal of this section is to prove the following theorem.

Theorem 5.12 Algorithms IntopVecContract and IntopVecVal solve together Prob-

lem 5.1 by providing componentwise error enclosures, as tight as desired.

(5.12 i) Algorithm IntopVecContract only depends on the integral equation (not on the pro-
vided approximation). It produces and rigorously bounds a Newton-like validation operator
and requires O(p3Nval

2d) arithmetic operations.

(5.12 ii) Algorithm IntopVecVal computes the error enclosures for the approximation and runs
in linear time with respect to the maximum degree of the approximations Φ◦

i and the
right-hand sides Ψi. More precisely, its (arithmetic) complexity is O(p2d2Napp + pNrhs +
p2Nvalmin(max(Napp + d,Nrhs), Nval)), where:

◦ Napp := maxi degΦ
◦
i and Nrhs := maxi degΨi;

◦ d := 1 + maxij deg kij(t, s);

◦ Nval is the truncation index used to rigorously approximate the problem in finite dimen-
sion, as in Section 4.3.

The previous complexity estimates still involve a truncation index Nval, which is directly
related to how tight the desired error enclosures have to be. As detailed in Theorem 5.14,
which extends the discussion led in Section 4.3.2 to this vectorial setting, complexity estimate
of its minimal value ensuring a contracting Newton-like operator is potentially exponential with
respect to the magnitude of the coefficients of the integral equation, in the case of stiff LODEs
for example. In practice however, this method works efficiently and fully automatically.

Remark 5.13 The algorithms of Section 5.2 are also implemented in the ChebValid C
library2 presented in Chapter 3 (the keyword _vec in the include file names helps to locate

2https://gforge.inria.fr/projects/tchebyapprox/
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them). The example of Section 5.3 is based on this implementation, as well as applications to
space flight dynamics presented in [6] and taken over in Chapter 7.

Newton-like validation operator

Following the quasi-Newton a posteriori validation framework of Section 3.3, Equation (5.10)
is transformed into the fixed-point equation:

T · Φ = Φ, T · Φ := Φ−A · (Φ +K · Φ−Ψ), (5.11)

which is equivalent to (5.10) as soon as A : (Ч1)p → (Ч1)p is injective. Moreover, T is an
affine operator of linear part DT = 1−A ·(1+K). The main challenge is to efficiently compute
A and bound ‖DT‖(Ч1)p . This is handled by Algorithm IntopVecContract. Similarly

to numerical solving, A approximates (1 + K[Nval])−1, for some truncation order Nval. As
discussed in the previous chapter, choosing Nval is a trade-off between proving T is contracting
(Nval must be large enough so that ‖K −K[Nval]‖(Ч1)p is rigorously proved to be sufficiently
small) and efficiency requirements.

Once Nval is fixed, Algorithm IntopVecContract first computes an approximate inverse
A in floating-point (lines 1-4). Since 1 + K[Nval] is almost-banded in B′p,Nval

, its numerical
inverse can be either computed with the numerically stable algorithm of [191], or approximated
by a (ph′, pd′) almost-banded matrix using Algorithm AlmostBandedApproxInverse in
Section 4.2, in O(p3Nval(h

′ + d′)(h+ d)) operations. The operator A is defined by extending
A to the whole space (Ч1)p by the identity.

Second, Algorithm IntopVecContract bounds a Lipschitz matrix for T, by ‖DT‖(Ч1)p :=
(‖(DT)ij‖Ч1)16i,j6p, block by block, using the triangle inequality:

‖DT‖Ч1 6 ‖1−A · (1+K[Nval])‖Ч1 + ‖A · (K−K[Nval])‖Ч1 . (5.12)

The first part of (5.12) is the approximation error, measuring how far A is from the inverse of
1+K[Nval]. This is straightforwardly bounded as ΛA (lines 5-9) using O(p3Nval(h

′+d′)(h+d))
interval arithmetic operations, and the resulting bound takes into account all sources of errors:
rounding errors, sparse approximation, etc. Since only additions and multiplications of matrices
are involved, the use of interval arithmetic is not critical. However, if needed, the underlying
floating-point precision can be increased.

The second part of (5.12) is the truncation error, because the truncated operator K[Nval]

only approximates K. Let Eij be the (i, j) block of E := A · (K−K[Nval]):

Eij =

p∑

k=1

Aik · (Kkj −K
[Nval]
kj ). (5.13)

Algorithm IntopVecContract (lines 10-16) computes ΛT > ‖E‖(Ч1)p by blocks, with the
triangle inequality: each subterm of (5.13) is rigorously bounded by Algorithm IntopVec-
TruncError. This algorithm, detailed below, requires O((h′+d′)(h+d)2) interval arithmetic
operations. Hence the computation of ΛT is in O(p3(h′ + d′)(h+ d)2).

Finally, Algorithm IntopVecContract computes Λ = ΛA + ΛT and checks that this
Lipschitz matrix is convergent to zero, in which case the constructed Newton-like operator T

is contracting. The eigenvalues of Λ can be safely computed with interval arithmetic, for the
dimension p is usually small (typically, p 6 100).
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Proof of Theorem (5.12 i). The detailed description of Algorithm IntopVecContract
above proves its correctness, and the given complexity estimates for lines 1-4, 5-9 and 10-
16 sum to a global complexity of O(p3Nval(h

′+ d′)(h+ d)) operations. In the worst case, when
A is dense (h′ + d′ ≈ Nval), we recover the estimate of Theorem (5.12 i).

Truncation error bounding. From Equation (5.13), one needs to bound ‖Aik · (Kkj −
K

[Nval]
kj )‖Ч1 , where Aik is the extension to Ч

1 of the order Nval+1 matrix Aik by the identity if
i = k, and zero otherwise. In fact, the case i = k is handled by Algorithm IntopTruncEr-
ror in Section 4.3. Therefore, we just need to generalize it to off-diagonal blocks (i.e., i 6= k):
this is Algorithm IntopVecTruncError.

Error enclosures

Finally, Algorithm IntopVecVal implements the validation procedure of Theorems 5.5
and 5.6 by applying the operator T to the candidate approximation Φ◦, bounding the distance
of the resulting polynomial to Φ◦ and producing componentwise error enclosures to Φ∗ with
respect to the Ч

1 norm.

Proof of Theorem (5.12 ii). Algorithm IntopVecVal computes Φ◦−T ·Φ◦ = A ·(Φ◦+K ·
Φ◦−Ψ). Each Pk (line 1) is a polynomial of degree at most max(Napp+d,Nrhs), and computing
its Chebyshev coefficients is in O(pd2Napp + Nrhs). Then, the computation of the coefficients
of each Aik · пNval

· Pk (line 3) is in O((h′ + d′) deg(пNval
· Pk)) = O((h′ + d′)min(max(Napp +

d,Nrhs), Nval)).
Finally, the complexity of computing the enclosures (lines 6-7) only depends on p, and is

therefore negligible. The overall complexity is:

O(p2d2Napp + pNrhs + p2(h′ + d′)min(max(Napp + d,Nrhs), Nval)),

which gives the estimate of Theorem (5.12 ii) when h′, d′ ≈ Nval.

Estimating Nval

The following theorem provides a worst-case estimate for the minimal value of Nval. Although
theoretically interesting, this exponential bound is over-pessimistic for a wide range of examples.

Theorem 5.14 Let Bij :=
κij∑
k=0

‖bijk‖Ч1 and B := (Bij)16i,j6p.

(5.14 i) The following bound estimates the minimum possible value for Nval making Algorithm

IntopVecContract produce a contracting Newton-like operator:

Nval = O
(
dρ(B)2 exp(2ρ(B))

)
,

where ρ(B) denotes the spectral radius of B.

(5.14 ii) For a given approximation Φ◦ of Φ∗ and in order that Algorithm IntopVecVal com-
putes error enclosures [ε−i , ε

+
i ] for εi = ‖Φ◦

i − Φ∗
i ‖Ч1 with ε+i /ε

−
i 6 κ (for some κ > 1),

Nval for Algorithm IntopVecContract must be at least:

Nval = O
(

ν

κ− 1
d‖B‖2∞ exp(2‖B‖∞)

)
,
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Algorithm 5.1 IntopVecContract(K, Nval, h
′, d′) – Create and bound a Newton-like op.

T

Input: a polynomial integral operator K = (Kij)16i,j6p given by the (bijk)
16i,j6p
06k6κij

, a truncation

order Nval, and optional parameters h′, d′.
Output: an approximate inverse A of 1 +K[Nval] and a certified Lipschitz matrix Λ for 1 −

A · (1+K), or "Fail" if Nval not large enough.

⊲ Compute an approximate inverse matrix A.
1: M = (Mij)16i,j6p ← 1+K[Nval], by blocks
2: M ′ ←M in basis B′p,Nval

3: A′ ← a numerical approximate inverse of M ′, either dense or (h′, d′) almost-banded.
4: A = (Aij)16i,j6p ← A′ in basis Bp,Nval

, by blocks

⊲ Compute the approx error ΛA = (λAij) in interval arithmetic
5: for i = 1 to p and j = 1 to p do
6: C ←

∑
16k6p

AikMkj

7: if i = j then C ← C − 1Nval+1

8: λAij ← ‖C‖1
9: end for

⊲ Compute the truncation error ΛT = (λTij) in interval arithmetic
10: for i = 1 to p and j = 1 to p do
11: λTij ← 0
12: for k = 1 to p do
13: δ ← IntopVecTruncError(Kjk, Nval, Aik, i==k)
14: λTij ← λTij + δ
15: end for
16: end for

⊲ Compute Λ and check if T contracting.
17: Λ← ΛA + ΛT

18: if ρ(Λ) < 1 then
19: return A, Λ
20: else
21: return "Fail"
22: end if
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Algorithm 5.2 IntopVecTruncError(K, Nval, A, diag) – Bound the truncation error

Input: a polynomial (one-dimensional) integral operator K given by the (bk)06k6κ, a trunca-
tion order Nval, a Nval + 1 order square matrix A, and a Boolean diag.

Output: an upper bound δ for ‖A · (K −K[Nval])‖Ч1 , where A is the extension of A to the
whole space Ч

1 by the identity if diag = true, and by zero otherwise.

⊲ All operations are performed in interval arithmetic

⊲ Compute δ(1) > sup
ℓ∈JNval−d+1,NvalK

B(ℓ)

1: δ(1) ← 0
2: if diag then
3: for ℓ = Nval − d+ 1 to Nval do
4: P ← (1− пNval

) ·K · Tℓ
5: if ‖P‖Ч1 > δ(1) then δ(1) ← ‖P‖Ч1

6: end for
7: end if

⊲ Compute δ(2) > sup
ℓ∈JNval+1,Nval+dK

B(ℓ)

8: δ(2) ← 0
9: for ℓ = Nval + 1 to Nval + d do

10: P ← A · пNval
·K · Tℓ

11: if diag then P ← P + (1− пNval
) ·K · Tℓ

12: if ‖P‖Ч1 > δ(2) then δ(2) ← ‖P‖Ч1

13: end for

⊲ Compute δ(3) > sup
ℓ>Nval+d+1

BD(ℓ)

14: ℓ0 ← Nval + d+ 1 and B ←
κ∑

k=0

‖bk‖Ч1

15: if diag then
16: P ← (1− пNval

) ·K · Tℓ0
17: δ(3) ← ‖P‖Ч1 +

(κ+1)B
(ℓ0−(κ−1))2

18: else
19: δ(3) ← 0
20: end if

⊲ Compute δ(4) > sup
ℓ>Nval+d+1

BI(ℓ)

21: B′ ←
κ∑

k=0

‖A · bk‖Ч1

22: P ← A · пNval
·K · Tℓ0

23: δ(4) ← ‖P‖Ч1 +
(κ+1)3B′

(ℓ20−(κ+1)2)2

24: δ ← max(δ(1), δ(2), δ(3) + δ(4))
25: return δ
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Algorithm 5.3 IntopVecVal(K,Ψ, Nval, A,Λ,Φ
◦) – Validate a solution of integral equation

Input: a polynomial integral operator K = (Kij)16i,j6p given by the (bijk)
16i,j6p
06k6κij

, a polyno-
mial right-hand side Ψ = (Ψ1, . . . ,Ψp), a truncation order Nval, (A,Λ) computed by In-
topVecContract (with Λ convergent to 0), and a candidate solution Φ◦ = (Φ◦

1, . . . ,Φ
◦
p).

Output: two vectors of upper and lower bounds ε+ and ε− such that ‖Φ◦
i − Φ∗

i ‖Ч1 ∈ [ε−i , ε
+
i ]

for 1 6 i 6 p.

⊲ All operations are performed in interval arithmetic

1: for k = 1 to p do Pk ← Φk +
p∑

j=1
Kkj · Φ◦

j −Ψk

2: for i = 1 to p do

3: Qi ←
p∑

k=1

Aik · пNval
· Pk + (1− пn) · Pi

4: ηi ← ‖Qi‖Ч1

5: end for
6: ε+ ← (1− Λ)−1 η
7: for i = 1 to p do ε−i ←

(
(1−Di Λ)

−1 η
)
i

8: return ε+ and ε−

with ν := max
16i6p

‖ε‖∞/εi, ‖ε‖∞ := max
16i6p

εi and ‖B‖∞ := max
16i6p

∑p
j=1Bij the associated

operator norm.

Proof. (5.14 i) The value of Nval must be sufficiently large to ensure that the truncation error
‖(1+K[Nval])−1 · (K−K[Nval])‖(Ч1)p is a convergent to zero matrix.

◦ We have as a direct consequence of the one-dimensional case (Lemma (4.12 ii)):

‖K−K[Nval]‖(Ч1)p = O
(

B

Nval

)
.

◦ For i > 0, the bound ‖Ki‖(Ч1)p 6 (6di+ 1) (2C)i

i! is generalized from the one-dimensional
case contained in the proof of Lemma 4.10, where C := (Cij)16i,j6p with Cij :=
sup

−16s,t61
|kij(t, s)| is bounded by B. Since K[Nval] converges to K, we may approximate:

‖(1+K[Nval])−1‖(Ч1)p ≈ ‖(1+K)−1‖(Ч1)p = O (dB exp(2B)) .

◦ We therefore have:

Λ = O
(
dB2 exp(2B)

Nval

)
,

where Λ = ‖(1+K[Nval])−1 · (K−K[Nval])‖(Ч1)p , and by taking the spectral radius (note
that B and exp(2B) commute):

ρ(Λ) = O
(
dρ(B)2 exp(2ρ(B))

Nval

)
,

which gives the estimate for Nval to obtain a matrix with spectral radius less than 1.
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(5.14 ii) When a maximal overapproximation ratio κ > 1 is fixed, Lemma 5.11 provides a
condition on the infinite norm ‖Λ‖∞ with Λ = ‖DT‖(Ч1)p :

‖Λ‖∞ 6
β

2 + β
= O

(
κ− 1

ν

)
, with β :=

1

ν

κ− 1

κ+ 1
.

Again, we focus on the truncation error (since the approximation error can be made as small
as desired for a given Nval) and we have Λ = ‖(1 −K[Nval])−1 · (K −K[Nval])‖(Ч1)p . Similarly
than for the spectral radius, we have:

‖Λ‖∞ = O
(
d‖B‖2∞ exp(2‖B‖∞)

Nval

)
.

We therefore obtain the desired estimate.

5.3 Example and discussion

Consider the following order 1, two-dimensional system, for x ∈ [0, a] with a > 0, whose
solutions (depicted in Figure 5.4) are highly oscillating functions. Rescale it over [−1, 1] with
the change of variable x = a

2 (1 + t):





y′1 = −xny2
y′2 = xmy1
y1(0) = 1, y2(0) = 0

⇒





Y ′
1 = −

(
a
2

)n+1
(1 + t)nY2

Y ′
2 =

(
a
2

)m+1
(1 + t)mY1

Y1(−1) = 1, Y2(−1) = 0

. (5.14)

0 1 2 3

−1

0

1

x

y1(x)

y2(x)

Figure 5.4: Solution of (5.14) with n = 5, m = 4 and a = 3

We give two different integral transforms associated to this equation. The integral trans-
form described in [19] consists in integrating Equation (5.14) once, resulting into an integral
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equation for Y with polynomial kernel and right-hand side given by:

K(t, s) =

(
0

(
a
2

)n+1
(1 + s)n

−
(
a
2

)m+1
(1 + s)m 0

)
, Ψ(t) =

(
1
0

)
.

K(t, s), which is of degree 0 in t, is decomposed over the Chebyshev basis with respect to s
into constant polynomials b001, b101, . . . , bn01 and b010, b110, . . . , bm10.

On the other side, the integral transform of Proposition 4.5 allows us to validate the
derivative Φ = Y ′. The polynomial kernel and right-hand side are:

K(t, s) =

(
0

(
a
2

)n+1
(1 + t)n

−
(
a
2

)m+1
(1 + t)m 0

)
, Ψ(t) =

( (
a
2

)n+1
(1 + t)n

0

)
.

Now, K(t, s) is of degree 0 with respect to s, giving two polynomials b001 and b010 of respective
degrees n and m.

Let’s now focus on the first integral transform, with n = 5, m = 4, a = 3. Using the spectral
method explained in Section 5.2.2 and implemented in ChebValid, we fix an approxima-
tion degree Napp = 100 and obtain numerical approximations Y ◦

1 and Y ◦
2 , that must now be

validated. The whole implemented procedure automatically computes and bounds for increas-
ing values of Nval the Newton-like operator T associated to the truncated operator K[Nval].
The approximate inverse is computed as an (2h′, 2d′) almost-banded order 2(Nval + 1) matrix.
This process stops as soon as the total Lipschitz matrix returned by Algorithm IntopVec-
Contract has a spectral radius less than 1. In case of failure of IntopVecContract, the
procedure is relaunched with Nval ← 2Nval. For this example, we obtain Nval = 1664, h′ = 48
and d′ = 304, giving the following Lipschitz matrix:

Λ =

(
9.73 · 10−4 9.89 · 10−2

3.60 · 10−2 9.92 · 10−2

)
, ρ(Λ) = 6.06 · 10−2.

The last step is performed by Algorithm IntopVecVal. Given the numerical approxima-
tions Y ◦

1 and Y ◦
2 , it computes η = ‖Y ◦ −T · Y ◦‖(Ч1)2 (the example gives η1 = 3.20 · 10−3 and

η2 = 1.91 · 10−3) and outputs the error enclosures given by Theorems 5.5 and 5.6:

ε−1 = 2.99 · 10−3, ε+1 = 3.41 · 10−3,

ε−2 = 1.78 · 10−3, ε+2 = 2.04 · 10−3.

This whole process for this example takes about 30 seconds on a modern computer.

Comparison with decoupling/desingularization

In the case of polynomial coefficients, an alternative consists in decoupling the system to obtain
p scalar LODEs of order p, at the cost of introducing singularities in the equations. As an
example, the first component y1 in (5.14) satisfies the following differential equation:

xy′′1 − ny′1 + xn+m+1y1 = 0. (5.15)

This equation is singular (its leading coefficient vanishes at 0), so our validation method cannot
be used. However, with desingularization techniques [1], one obtains a higher order but non-
singular equation, whose set of solutions (strictly) contains the ones of the singular equation.
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In our example, by differentiating Equation (5.15) n times and dividing the result by x:

y
(n+2)
1 +

1

x

dn

dxn
(xn+m+1y1) = 0. (5.16)

By inverting the roles of n and m, one obtains a similar equation for y2. Hence, validating
the approximation y of (5.14) can be done with the validation algorithm IntopVal for the
scalar case. Several caveats must therefore be raised. Applying the integral operator of Propo-
sition 4.5 results into a totally intractable problem, since the minimal value for proving that
T is contracting is far too large (in practice, we stopped at Nval ≃ 106). This is due to the fact

that this transform is used to validate the last derivative y(n+2)
1 , which increases very rapidly

due to the highly oscillating behavior of y1. On the other hand, the integral transform of [19]
yields a far more tractable problem: a truncation order Nval = 750 is sufficient for our example.
However, Equation (5.16) is very ill-conditioned because of the factorial terms created by the
n differentiations. For instance, with classical double precision (53 bits), the scalar validation
procedure is able to produce and bound a contracting Newton-like operator T (Algorithm
IntopContract), but Algorithm IntopVal outputs an upper bound ε+1 = 2.57, which is 3
orders of magnitude larger than what was found with the vector-valued validation Algorithm
IntopVecVal.

The non D-finite case. In the case of nonpolynomial coefficients, there is no general method
to decouple and desingularize the system. Moreover, these coefficients may not be known
exactly, but only given as polynomial approximations together with rigorous error bounds.
We believe that in such a general case, the vector-valued approach presented in this article is
essential to approximate and validate the solution.

An example of a successful application of this validation to a “real life” linear system of
LODEs with non-polynomial coefficients is given in Chapter 7.

5.4 Conclusion and future directions

In Chapters 4 and 5, we proposed a generic efficient algorithm for computing rigorous poly-
nomial approximations for LODEs (or coupled systems of LODEs). We focused on both its
theoretical and practical complexity analysis. For this, firstly, we studied theoretical prop-
erties like compactness, convergence, invertibility of associated linear integral operators and
their truncations over Ч

1, the coefficient space of Chebyshev series. Then, we focused on the
almost-banded matrix structure of these operators, which allowed for very efficient numerical
algorithms for both the numerical solutions of LODEs and the rigorous computation of the
approximation error. More specifically, the proposed a posteriori validation algorithm is based
on a quasi-Newton method, which benefits from the almost-banded structure of intervening op-
erators. In the vector-valued case, the extension of Banach fixed-point theorem in Section 5.1
moreover yields componentwise tight error bounds, instead of a global one. Finally, several
representative examples showed the advantages of our algorithms as well as their theoretical
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and practical limits. Computations were carried out using the ChebValid C library for RPAs3

presented in Chapter 3.
Several extensions of this work really deserve being investigated:

◦ A work in progress is to rewrite the Picard iterations based validation method presented
in [19] as a quasi-Newton validation technique. Then, using our current almost-banded
operator based algorithms, we will be able to generalize the method in [19] to non-
homogeneous and non-polynomial LODEs with a better complexity bound, relying on a
more involved analysis of the iterated kernels.

◦ We also consider the generalization to other families of orthogonal polynomials, such as
Legendre polynomials, or Hermite and Laguerre polynomials over unbounded intervals. In
fact, orthogonal polynomials always satisfy a three-term-recurrence (see Section 2.2.3),
so that the multiplication and integration formulas remain similar, which should produce
similar almost-banded integral operators. However, the operator theoretical aspects (com-
pactness, convergence of truncations, etc.) are more challenging for unbounded intervals.
Further investigations are needed.

◦ The propagation of uncertain initial conditions via LODEs may also be explored based
on our current techniques.

◦ Another challenging direction is non-linear ODEs and (linear) PDEs. In both cases how-
ever, we have to rely on a multivariate approximation theory with orthogonal polynomials
(such theories exist but are not unique and depend on the domain of approximation) and
the theory for such differential equations are far less structured than the easy linear uni-
variate case. In particular, the time complexity of such extensions may be huge compared
to the present case.

◦ On the formal proof side, we intend to formalize these algorithms in the Coq develop-
ment4 presented in Chapter 3, to guarantee both the theoretical correctness of that
method and the soundness of its current C implementation.

3https://gforge.inria.fr/projects/tchebyapprox/
4http://perso.ens-lyon.fr/florent.brehard/chebapprox/
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Part III

An Eclectic Mix of Related Problems and
Applications
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A New Lower Bound on the
Hilbert Number for Quartic
Systems 6

Si la logique est l’hygiène du mathématicien, ce n’est pas elle qui lui fournit sa nourriture ;
le pain quotidien dont il vit, ce sont les grands problèmes.

— André Weil

This chapter takes over the main lines of an ongoing work with Nicolas Brisebarre, Mioara
Joldes and Warwick Tucker. Therefore, in this chapter, we refers to the four of us. It consists
in an interesting application of symbolic-numeric methods introduced in the previous chapters
to a computer-assisted proof for the existence of limit cycles in the setting of Hilbert’s 16th
problem. More specifically, we prove that there exists a planar, polynomial vector field of degree
four exhibiting (at least) 24 limit cycles, which improves the previously best lower bound of 22.

6.1 Introduction and global setting

In 1900, at the International Congress of Mathematics held in Paris, David Hilbert presented
ten open problems in mathematics, and later published a more comprehensive list of 23 prob-
lems [107] aimed at challenging the mathematical community. Today, most of the Hilbert
problems have been resolved (two of them were deemed to be unresolvable), but a few ones still
remain open: one of these is Hilbert’s 16th problem.

Hilbert’s 16th problem has two distinct parts: one in real algebraic geometry, and one in
dynamical systems. We will address the latter which asks for H(n) – the maximal number
of limit cycles (i.e., isolated periodic orbits) the family of two-dimensional polynomial vector
fields of (total) degree at most n can display:

Consider the differential equation in ❘2:
{
ẋ = Pn(x, y),

ẏ = Qn(x, y),
(6.1)
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where Pn and Qn are polynomials of degree at most n. Is there a minimal upper bound H(n)
on the number of limit cycles the system (6.1) can have, that only depends on the degree n?

Note that the bound H(n) should be uniform, that is, it should not depend on the particular
polynomial vector field, only on its degree n. As of today, this question is not resolved even in
the simplest case n = 2. Even finding realistic lower bounds for H(n) appears to be very hard.

The main result of this paper is the following lower bound on H(n) in the quartic setting.

Theorem 6.1 There exist bivariate, quartic polynomials H,P and Q such that, for suffi-
ciently small values of ε > 0, the system

{
ẋ = −yHy(x, y) + εP (x, y),

ẏ = yHx(x, y) + εQ(x, y),
(6.2)

exhibits 24 limit cycles. Hence H(4) > 24.

Here we are using the notation Hx = ∂H
∂x and Hy = ∂H

∂y for brevity. The three polynomials
H,P , and Q appearing in the theorem are explicit, see Section 6.2 for details. Note that the
previously known best lower bound was H(4) > 22 [56].

Moreover, the ongoing work presented in Section 6.4 aims at proving that 24 is a local upper
bound on the number of limit cycles. For now, we can only state the following conjecture.

Conjecture 6.2 For the same polynomial H as used in Theorem 6.1, there is no quartic
perturbation such that the differential system (6.2) gives rise to more than 24 limit cycles.

This conjecture being proved would imply that we have obtained the maximal number of
limit cycles that can arise when perturbing the integrable system under study. Of course,
there might very well exist other quartic polynomials H that produce more limit cycles under
perturbations of the same degree.

Before describing the details of our set of tools and proof techniques used for establishing
Theorem 6.1, we take a step back and provide a short historical perspective of Hilbert’s 16th
problem together with a summary of known results.

6.1.1 ◮ Historical remarks

Hilbert’s 16th problem has a remarkable history; when it comes to finding upper bounds for
H(n), very little progress has been made since Hilbert’s seminal talk in 1900.

Some historical landmarks for Hilbert’s problem

1923 Dulac [74] published a very important piece of work, stating that a single polynomial
vector field has only finitely many limit cycles.

1955 Petrovskii and Landis [196] stated that H(2) = 3 and H(n) grows cubically in n.

1962 The claims by Petrovskii and Landis were disproved by Novikov and Ilyashenko [146].

1981 A serious gap was found in Dulac’s proof [117].
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1991 Dulac’s result was given new (extremely complicated) proofs by Ilyashenko [118] and
Écalle [77].

In a survey article [116], Ilyashenko commented: Thus, after eighty years of development,
our knowledge on Hilbert’s 16th problem was almost the same as at the time when the problem
was stated.

When it comes to establishing lower bounds for H(n), there has been some progress:

1979 Both S. Shi [229], and L. Chen and M. Wang [52] found examples for H(2) > 4.

1987 L. Li and Q. Huang [155] constructed a cubic system with 11 limit cycles: H(3) > 11.

1988 R. Roussarie [216] reduced the question of uniform finiteness in the quadratic case to
proving finite cyclicity of 121 graphics. Today ca 85 of these have been successfully dealt
with.

2003 J. Li [156] proved that H(n) > 1
4(n+ 1)2(1.442695 ln (n+ 1)− 1

6) + n− 2
3 .

2005 C. Christopher [56] gave an example for H(4) > 22. (This bound was believed to have
been improved in [126] which later turned out to be erroneous)

2009 C. Li, C. Liu and J. Yang gave an example for H(3) > 13.

It is worth mentioning that the proofs of these results are very technical and long. Further-
more, it is not known whether any of the obtained lower bounds are sharp.

In light of the lack of progress regarding bounds forH(n), in the mid-seventies, V.I. Arnold [10,
11] proposed to study a restricted version of the original problem, now known as the infinites-
imal (or weak, or tangential) Hilbert’s 16th problem. Rather than considering the class of all
polynomial vector fields of a certain degree, Arnold suggested that only small perturbations of
Hamiltonian polynomial vector fields be considered. Thus, the corresponding question can be
asked:

Consider the differential equation in ❘2:
{
ẋ = −Hy(x, y) + εPn(x, y),

ẏ = Hx(x, y) + εQn(x, y),
(6.3)

where H(x, y) is a polynomial of degree at most m, Pn and Qn are polynomials of degree at
most n, and ε 6= 0 is small. Is there a bound Z(m,n) on the number of limit cycles the system
(6.3) can have (for small ε), that only depends on the degrees m and n?

Note that we immediately have the lower bound Z(n) def
= Z(n+ 1, n) 6 H(n).

For the infinitesimal problem, significant progress has been made, and we have a partial
understanding of how polynomial Hamiltonian systems behave under small perturbations.

Some historical landmarks for the infinitesimal problem

1984 Varchenko [254] and Khovanskii [138] (independently) proved that Z(n,m) <∞.

2006 A uniform proof for Z(2) = 2 appeared in 2006 by Chen, Li, Llibre, and Zhang [51].
This result was based on special cases established during the period 1994–2002.
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2010 Binyamini, Novikov, and Yakovenko [26] proved an upper bound: Z(n) 6 22
p(n)

, where
p is an "explicit" polynomial of degree no greater than 61.

Some other results are: Z(3) > 13 [154], Z(5) > 27 [128], Z(7) > 53 [127], and Z(11) >

121 [258].

6.1.2 ◮ Abelian integrals

The study of perturbed Hamiltonian systems depends heavily on a theorem by Poincaré and
Pontryagin, that makes a strong connection between the existence of a limit cycle and a zero
of a certain Abelian integral.

The Poincaré return map is the key tool to understand this connection. Consider the un-
perturbed Hamiltonian system and take a transversal Σ, that is a portion of a curve crossing
non-tangentially a foliation of periodic orbits of this unperturbed system. This transversal may
be parameterized by the parameter h (the energy level) of the unperturbed system for some
domain h1 6 h 6 h2. By continuity, for a sufficiently small ε, every trajectory originating from
a point Σ(h) of the transversal in the perturbed Hamiltonian system will cross Σ again. The
Poincaré return map Π associates to h and ε the parameter Π(h, ε) corresponding to the point
of return to Σ, and d(h, ε) = Π(h, ε)− h is called the displacement function. Clearly, the point
Σ(h) belongs to a periodic orbit of the perturbed system if and only if d(h, ε) = 0, and this is
a limit cycle if and only if it is isolated.

0.9 1 1.1 1.2 1.3
0.9

1

1.1

1.2

hP (h)P 2(h)P 3(h)

d(h)

x

y

Figure 6.1: Poincaré return map Π (=: P ) and displacement function d.

Zeros of Abelian integrals are related to limit cycles in the following way: given a Hamiltonian
system and a perturbation (6.3) the Abelian integral over the oval Γ(h) is defined as

I(h) =

∫

Γ(h)
Pn(x, y) dy −Qn(x, y) dx.

Here Γ(h) is a closed curve (perhaps one of several) making up the level set H−1(h) of the
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Hamiltonian. The Poincaré-Pontryagin theorem roughly states that d(h, ε) ≈ εI(h) for small
values of ε (see Theorem 6.3 for more details). Hence, the number of isolated zeros of I(h)
where a change of sign occurs (in particular, simple zeros of I(h)) provides a lower bound for
the number of limit cycles of (6.3) that exist for small ε > 0. Considering zeros of I(h) of
higher multiplicity it is possible to get an upper bound on the number of limit cycles that can
bifurcate from the unperturbed periodic orbit(s) Γ(h), see [57].

The function I(h) can be decomposed into a linear combination

I(h) = α0I0(h) + α1I1(h) + · · ·+ αm−1Im−1(h), (6.4)

where each αk depends on the coefficients of Pn and Qn, which are considered as parameters,
and each Ik is an Abelian integral with the 1-form ω = xiyjdx or ω = xiyjdy. Therefore the
problem of bounding the number of limit cycles of (6.3) is equivalent to bounding the number
of zeros of any function in the linear span of I0, I1. . . ,Im−1.

6.1.3 ◮ Our approach

In [126], T. Johnson constructs a quartic pseudo-Hamiltonian vector field together with a
perturbation (defined by appropriate coefficients αi as in Equation (6.4)). Using a rigorous
validation integration routine, he claims to prove the existence of 26 limit cycles, thus surpassing
the previously known record H(4) > 22 [57]. Unfortunately, a bug in his implementation led
him to observe more zeros in the Abelian integral than what actually exists.

In the present work, we take over the quartic vector field of [126], which is introduced in
details in Section 6.2, and give new values for the coefficients of the perturbation to recover
as many limit cycles as possible. We found 24 such ones, which, although less than 26, is larger
than the record 22. We stress out the fact that the evaluation of Abelian integrals, which
guarantees the existence of 24 limit cycles, is not only carried out using our ChebValid C
library1, but also certified by the Coq development2 [40] presented in Chapter 3. The goal is
to provide a proof of Section 6.1 with the highest confidence level. The whole approach, from
the computation of the coefficients of the perturbation to the rigorous and certified evaluation
of the Abelian integrals, is summarized in Section 6.3.

Finally, we address in Section 6.4 the following natural question: is it possible to find even
more limit cycles for the same vector field, by finding other values for the coefficients of the
perturbation? For this end, we will need the notion of Wronskian to investigate the maximal
possible number of zeros of linear combinations of Abelian integrals. Consequently, continuous
rigorous representations of the Abelian integrals are necessary.

1https://gforge.inria.fr/projects/tchebyapprox/
2http://perso.ens-lyon.fr/florent.brehard/chebapprox/
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6.2 Construction of a perturbed system

In order to provide a lower bound forH(4), we investigate the limit cycles of a degree 4 perturbed
pseudo-Hamiltonian system, presented in Section 6.2.2 and based on the potential function
H defined in Section 6.2.1. Since this system is not Hamiltonian, this does not result into a
lower bound for Z(4). However, this system is still integrable, and the generalized Poincaré-
Pontryagin theorem (Theorem 6.3) allows us to use similar techniques based on Abelian
integrals to determine a perturbation maximizing the number of limit cycles. In Section 6.2.3,
we give the explicit parameterizations of the resulting ovals, which will be used in the rigorous
evaluation of the Abelian integrals in Section 6.3.

6.2.1 ◮ The potential function H

The potential function used throughout this article is defined as in [126], up to a constant:

H(x, y) = (x2 −X0)
2 + (y2 − Y0)2, (6.5)

where X0 and Y0 are constants satisfying 0 < X0 < Y0 (the choice X0 < Y0 will be explained
below).

The level set associated to the parameter h > 0, represented in the (x2, y2) plane, is the
portion of the circle of center (X0, Y0) and radius r =

√
h located in the positive quadrant

(see Figure 6.2a). In the (x, y) plane, this results into the ovals depicted in Figure 6.2b. In
particular, it is symmetric with respect to both the x and y axes. More specifically, three cases
for h > 0 are to be distinguished:

◦ When h ∈ (0, X2
0 ) (i.e., r ∈ (0, X0)), the circle defined by (x2, y2) entirely lies in the

positive quadrant. In the (x, y) plane, this results into four symmetric ovals that we call
small ovals:

Γ++(h) = H−1(h) ∩❘>0 ×❘>0, Γ+−(h) = H−1(h) ∩❘>0 ×❘60,

Γ−+(h) = H−1(h) ∩❘60 ×❘>0, Γ−−(h) = H−1(h) ∩❘60 ×❘60.
(6.6)

◦ When h ∈ (X2
0 , Y

2
0 ) (i.e., r ∈ (X0, Y0)), a portion of this circle crosses the y-axis. The

four small ovals merge into two symmetric big ovals :

Γ+(h) = H−1(h) ∩❘×❘>0, Γ−(h) = H−1(h) ∩❘×❘60. (6.7)

◦ For h > Y 2
0 (i.e., r > Y0), the resulting ovals (one external and one internal for Y0 <

r <
√
X2

0 + Y 2
0 , and only one external for r >

√
X2

0 + Y 2
0 ) all cross the x-axis. Because

of the rescaling by y used in the pseudo-Hamiltonian system given in next section, these
ovals do not correspond to periodic orbits but to heteroclinic orbits.

Notice moreover that for the limit case r = X0 (resp. Y0), the small (resp. big) ovals meet at
a singular point, which will be an equilibrium point in the pseudo-Hamiltonian system, resulting
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into a homoclinic (resp. heteroclinic) orbit. In the rest of the article, we will therefore focus on
the first two cases, corresponding to the four small ovals and the two big ovals.

Note that if we assume Y0 6 X0, we would only have one useful case (the four small ovals),
instead of two, to exploit.

0 1 2

0

1

2

X0, Y0

X = x2

Y
=
y
2

(a) Circles in the (x2, y2) plane

−1 0 1

−1

0

1 √
X0,
√
Y0

Γ++

Γ+−

Γ−+

Γ−−

Γ+

Γ−

x

y

(b) Ovals in the (x, y) plane

−− h = 0 −− 0 < h < X2
0 −− h = X2

0 −− X2
0 < h < Y 2

0

−− h = Y 2
0 −− Y 2

0 < h < X2
0 + Y 2

0 −− h = X2
0 + Y 2

0 −− h > X2
0 + Y 2

0

Figure 6.2: Level curves of the potential function H

6.2.2 ◮ A pseudo-Hamiltonian system

We define from the potential function (6.5) the following perturbed pseudo-Hamiltonian sys-
tem:

{
ẋ = −y∂yH(x, y) + εg1(x, y) = −4y2(y2 − Y0) + εg1(x, y),

ẏ = y∂xH(x, y) + εg2(x, y) = 4xy(x2 −X0) + εg2(x, y),
(6.8)

where g1 and g2 are polynomials of degree 4. The unperturbed system is obtained from the
usual Hamiltonian system by a rescaling by the second variable y, whence the denomination
pseudo-Hamiltonian. The trajectories still follow the level curves of H, but now the vector field
vanishes over the whole horizontal line y = 0 (all the points on this line are equilibrium points).

At first sight, one might get the impression that this rescaling by y just reduces the number
of periodic orbits, since a periodic orbit crossing the line y = 0 is transformed into two hetero-
clinic orbits. However, when regarding the perturbed system, the following adaptation of the
Poincaré-Pontryagin Theorem (see [57] for a proof) to this pseudo-Hamiltonian setting offers
more possibilities than the Hamiltonian case:
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Theorem 6.3 (Generalized Poincaré-Pontryagin Theorem) Let H : ❘2 → ❘ be a real
analytic potential function, g1, g2 : ❘2 → ❘ real analytic functions, ε > 0, and σ : ❘2 → ❘ a
rescaling factor. Consider the perturbed pseudo-Hamiltonian system:

{
ẋ = −σ(x, y)∂yH(x, y) + εg1(x, y),

ẏ = σ(x, y)∂xH(x, y) + εg2(x, y).

For an oval of H of level h over which σ does not vanish, define the Abelian integral

I(h) =

∫

Γ(h)

g1(x, y)dy − g2(x, y)dx
σ(x, y)

.

Then the displacement function d(h, ε) (as described in Section 6.1.2) is approximated as

d(h, ε) = εI(h) +O(ε2), as ε→ 0.

In particular, when I(h) 6= 0, d(h, ε) and I(h) have the same (strict) sign for small ε > 0.

In our case, this allows us to have integrands of the form xiyj/y dx and xiyj/y dy with
i + j 6 4, which are not polynomials for j = 0. We therefore have more flexibility than the
pure Hamiltonian setting. To each such perturbation g = (g1, g2), we can associate Abelian
integrals on small and big ovals, where the line integral is taken in the usual trigonometric
orientation:

I�⋄(h) =
∫

Γ�⋄(h)

g1(x, y)dy − g2(x, y)dx
y

, (�, ⋄) ∈ {+,−}2, h ∈ (0, X2
0 ),

I⋄(h) =
∫

Γ⋄(h)

g1(x, y)dy − g2(x, y)dx
y

, ⋄ ∈ {+,−}, h ∈ (X2
0 , Y

2
0 ).

As in [126], we only consider the following restricted perturbation:

g1(x, y) = 0, g2(x, y) = α00 + α20x
2 + α22x

2y2 + α40x
4 + α04y

4, αij ∈ ❘.

This choice is guided by the following requirements:

◦ Symmetry : We decide to keep only symmetric perturbations, meaning that the four
Abelian integrals I�⋄(h) must be equal, up to the sign. Moreover, I+⋄(h) and I−⋄(h)
must have the same sign, otherwise I⋄(h) = 0 for h ∈ (X2

0 , Y
2
0 ) on big ovals:

I++(h) = I−+(h) = (−1)eI−−(h) = (−1)eI+−(h), e ∈ {0, 1}. (6.9)

With these conditions, one just needs to investigate the sign alternations of I++(h) on the
small ovals Γ++(h) for h ∈ (0, X2

0 ), and I+(h) on the big ovals Γ+(h) for h ∈ (X2
0 , Y

2
0 ).

We simply write I(h) and Γ(h) in that case.

◦ Linear independence: The Abelian integrals corresponding to the monomials appearing
in g1 and g2 must form an independent family.

Proposition 6.4 The five Abelian integrals corresponding to the five monomials of (6.2.2)
are linearly independent and satisfy the symmetry requirements (6.9). Moreover, this family is
maximal in the sense that adding another monomial in g1 or g2 gives rise to an extra Abelian
integral that violates the symmetry requirements or the linear independence.
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Proof. Consider g = (g1, g2) a generic polynomial perturbation of total degree at most 4.

◦ The symmetry requirements (6.9), are satisfied whenever:

x 7→ −x :
g1(x, y)dy − g2(x, y)dx

y
=

−g1(−x, y)dy − g2(−x, y)dx
y

,

y 7→ −y :
g1(x, y)dy − g2(x, y)dx

y
= (−1)e−g1(x,−y)dy − g2(x,−y)dx

y
.

This means that g1 (respectively g2) only contain monomials of the form xi1yj1 (re-
spectively xi2yj2), with i1 ≡ 1 mod 2, i2 ≡ 0 mod 2, j1 = 1 − e mod 2 and j2 = e
mod 2. The perturbation (6.2.2) clearly satisfies these requirements, with the choice
e = 0. Moreover, adding a new monomial in g1 or g2 is inconsistent with the symmetry
requirements if the parities of its exponents do not follow the same rule (with e = 0).

◦ A straightforward application of Green’s theorem shows that the Abelian integral asso-
ciated to (g1/y)dy and (g2/y)dx are linearly dependent if ∂x · (g1/y) and ∂y · (g2/y) are
equal up to a multiplicative constant. But if i1 and j1 are odd with i1 + j1 6 4, then we
can easily check that there exists i2 and j2 even with i2 + j2 6 4 such that g1 = xi1yj1/y
and g2 = xi2yj2/y satisfy the above condition. Hence, we can without loss of generality
set g1 = 0, and only consider a perturbation g2 along the y-axis.

◦ Following the previous remarks, the only candidate monomial we could add to the five
ones 1, x2, x2y2, x4, y4 of g2 is y2. However, the linear independence is violated:

∫

Γ(h)

3x4 − 3X0x
2 − y4 + 3Y0y

2

y
dx = 0, h ∈ (X2

0 , Y
2
0 ).

Indeed, Green’s theorem allows us to rewrite the left-hand side as:

∫

Int(Γ(h))

3

y2
(
x2(x2 −X0) + y2(y2 − Y0)

)
dxdy

=

∫

D((X0,Y0),r)

3

4Y
√
XY

(X(X −X0) + Y (Y − Y0)) dXdY, with r =
√
h

=
3

2

∫

D((X0,Y0),r)
(−∂YG (X −X0) + ∂XG (Y − Y0)) dXdY, with G =

√
X/Y

=
3

2

∫ r

0
F (ρ)ρdρ,

where

F (ρ) =

∫ 2π

0
∇G(X0 + ρ cos θ, Y0 + ρ sin θ) ·

(
ρ sin θ
−ρ cos θ

)
dθ

= −
∫

C((X0,Y0),ρ)
∂XG dX + ∂YG dY = 0 by Green’s theorem.

Finally, anticipating Section 6.4, the fact that the Wronskian of the five Abelian integrals
is not uniformly 0 proves the desired linear independence.
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In the end, we have to consider linear combinations of five Abelian integrals, investigate the
resulting sign alternations and apply a factor 4 (respectively 2) to every sign change detected
on the small ovals (respectively big ovals).

I(h) = α00I00(h) + α20I20(h) + α22I22(h) + α40I40(h) + α04I04(h),

with Iij(h) = −
∫

Γ(h)

xiyj

y
dx. (6.10)

6.2.3 ◮ Formulas for the Abelian integrals Iij

In order to evaluate the Abelian integrals Iij(h) for a given parameter h, we use explicit
expressions using an appropriate parameterization of Γ(h). For the small and big ovals, our
parameterization consists in subdividing Γ(h) into four parts, two of them being expressed
under the form y(x), and the two others under the form x(y). Sections 6.2.3 and 6.2.3
give the desired explicit integrals obtained with this parameterization, that will be used in
Section 6.3 for the rigorous computation of the Iij(h).

Note that the small ovals also admit a simple trigonometric parameterization (since Γ(h) is
a circle in the (x2, y2) plane) that we do not present here, as it can hardly be transposed to the
rigorous evaluation on the big ovals.

In all this section, we assume 0 < X0 < Y0.

Abelian integrals on the small ovals

We fix an energy level h = r2 ∈ (0, X2
0 ), defining four symmetric small ovals as described in

Section 6.2.1. Let Γ(h) denote the one in the positive quadrant. By dividing the corresponding
circle of center (X0, Y0) and radius r in the (x2, y2) plane into four parts (see Figure 6.3a), we
get a parameterization of Γ(h) as γ◦1,h ∪ γ◦2,h ∪ γ3,h ∪ γ4,h (see Figure 6.3b), where for a path
γ : [a, b]→ ❘2, γ◦ : t ∈ [a, b] 7→ γ(a+ b− t) ∈ ❘2 denotes the opposite path:

γ1,h : x ∈ [xmin, xmax] 7→ (x, yup(x)), γ2,h : y ∈ [ymin, ymax] 7→ (xleft(y), y),

γ3,h : x ∈ [xmin, xmax] 7→ (x, ydown(x)), γ4,h : y ∈ [ymin, ymax] 7→ (xright(y), y).

The parametric expressions yup(x), ydown(x), xleft(y) and xright(y), as well as the corresponding
path extremities xmin, xmax, ymin and ymax, admit explicit expressions:

xmin =

√
X0 −

r√
2
, xmax =

√
X0 +

r√
2
,

ymin =

√
Y0 −

r√
2
, ymax =

√
Y0 +

r√
2
,

δy(x) =
√
r2 − (x2 −X0)2, δx(y) =

√
r2 − (y2 − Y0)2,

ydown(x) =
√
Y0 − δy(x), yup(x) =

√
Y0 + δy(x),

xleft(y) =
√
X0 − δx(y), xright(y) =

√
X0 + δx(y),

xleft
′(y) =

y(y2 − Y0)
δx(y)xleft(y)

, xright
′(y) = − y(y2 − Y0)

δx(y)xright(y)
.

(6.11)
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We can therefore express Iij(h) using integrals over segments of the real line:

Iij(h) = −
∫

γ◦

1,h

xiyj

y
dx−

∫

γ◦

2,h

xiyj

y
dx−

∫

γ3,h

xiyj

y
dx−

∫

γ4,h

xiyj

y
dx

=

∫ xmax

xmin

xi(yup
j−1(x)− ydown

j−1(x)) dx+

∫ ymax

ymin

(xleft
i−1(y) + xright

i−1(y))yj
y2 − Y0
δx(y)

dy.

(6.12)
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(b) Parameterization of Γ(h) as γ◦1,h ∪ γ◦2,h ∪ γ3,h ∪
γ4,h

Figure 6.3: Parameterization of small ovals (0 < h < X2
0 )

Abelian integrals on the big ovals

We now fix h = r2 ∈ (X2
0 , Y

2
0 ). Let Γ(h) denote, among the two symmetric big ovals described

in Section 6.2.1, the upper one located in the half plane {y > 0}. In the (x2, y2) plane, it is
associated to the portion of the circle of center (X0, Y0) and radius r located in the positive
quadrant. This arc is partitioned as in Figure 6.4a, giving the parameterization of Γ(h) as
γ◦1,h ∪ γ◦2,h ∪ γ3,h ∪ γ4,h (see Figure 6.4b):

γ1,h : x ∈ [−xmax, xmax] 7→ (x, yup(x)), γ2,h : y ∈ [ymin, ymax] 7→ (−xright(y), y),
γ3,h : x ∈ [−xmax, xmax] 7→ (x, ydown(x)), γ4,h : y ∈ [ymin, ymax] 7→ (xright(y), y),

where the parametric expressions yup(x), ydown(x), xleft(y), xright(y), and the path extremi-
ties xmax, ymin, ymax are still given by (6.11). This allows us to give the following explicit
expressions for Iij(h) on the big ovals:

Iij(h) = 2

∫ xmax

0
xi(yup

j−1(x)− ydown
j−1(x)) dx+2

∫ ymax

ymin

xright
i−1(y)yj

y2 − Y0
δx(y)

dy. (6.13)
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Figure 6.4: Parameterization of big ovals (X2
0 < h < Y 2

0 )

6.3
Computer-assisted proof of the
main theorem

The purpose of this section is to provide a rigorous computer-assisted proof of Theorem 6.1 by
choosing appropriate coefficients αij in Equation (6.10), computing rigorous interval enclosures
for the evaluation of the Abelian integral I(h), and counting the number of sign changes.

6.3.1 ◮ Computing the coefficients αij

Our strategy to determine these coefficients is the following. We first try to maximize the
number of zeros on the small ovals domain h ∈ (0, X2

0 ), since by symmetry each sign change
gives rise to four limit cycles. We uniformly discretize the interval (0, X2

0 ) with M points and
evaluate the Iij(h) on that grid. At that point and due to efficiency reasons, we only perform
numerical evaluations without error bounds. It is clear that for every subset of four points from
the grid, there exists a non-trivial linear combination I(h) =

∑
αijIij(h) of the five Abelian

integrals Iij(h) that vanishes on these points. Hence, we repeat the process for all subsets
of four points and count the resulting number of sign changes, hoping for an extra fifth one.
We also count the number of sign changes obtained on the big ovals domain h ∈ (X2

0 , Y
2
0 ),

each of them inducing two limit cycles by symmetry. We finally consider the combination that
maximizes the number of sign changes, counted with multiplicity induced by the symmetries.

This is how coefficients of Table 6.1 were obtained, using a grid of size M = 200. The
corresponding Abelian integral I(h) shows 5 sign changes on the small ovals domain and 2 on
the big ovals one, yielding the announced result of 5 × 4 + 2 × 2 = 24 limit cycles. Note that
these values should not be truncated, otherwise the expected sign alternations may not happen.
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α00 = -0.78622148667854837664
α20 = 0.87723523612653436051
α22 = 1
α40 = 0.23742713894293038223
α04 = -0.21823846173078863753

Table 6.1: Reference values for the coefficients αij , using a grid of size M = 200.

6.3.2 ◮ Rigorous pointwise evaluation of the Abelian in-

tegrals

We compute rigorous interval enclosures II(h) of the values of Abelian integrals I(h) for specific
values of the energy level h, using Chebyshev models for the parameterizations and formulas
established in Section 6.2.3. The existence of sufficiently many simple zeros needed to prove
Theorem 6.1 is guaranteed by the sign alternation of these rigorous pointwise evaluations.

More specifically, for a fixed r =
√
h ∈ (0, X0), Chebyshev models are computed for the

integrands appearing in Equation (6.12). All the needed operations are covered by Chapter 3.
After that, those Chebyshev models are integrated over [xmin, xmax] and [ymin, ymax], and the
results are summed to provide a rigorous enclosure of Iij(h). This operation is performed
for each of the five Abelian integrals, yielding the expected enclosure II(h) of I(h), using
Equation (6.10) and coefficients αij from Table 6.1.

We proceed similarly for r =
√
h ∈ (X0, Y0), but using the parametric formulas for the big

ovals (Equation (6.13)).
Table 6.2 gives interval enclosures II(h) of I(h) for 9 values of h using this rigorous pointwise

evaluation method and the coefficients of Table 6.1. Figure 6.5 provides a graphical repre-
sentation of the sign alternations on small and big ovals. All the computations were performed
using the ChebValid C library3 for rigorous numerics with Chebyshev models presented in
Chapter 3.

Proof of Theorem 6.1. Let hi (1 6 i 6 9) denote the 9 values of h in Table 6.2, taken in
increasing order. The intervals II(hi) given in this table are rigorous enclosures of the I(hi),
by the correctness of the operations on Chebyshev models detailed in Chapter 3.

According to Theorem 6.3, there exists for each hi, an εi > 0 such that d(hi, ε) and I(hi)
share the same (strict) sign whenever 0 < ε 6 εi. Hence, with ε∗ = min06i69 εi > 0, we have
that h 7→ d(h, ε) alternates sign at least 5 times on (0, X2

0 ) and at least 2 times on (X2
0 , Y

2
0 ),

for each fixed 0 < ε 6 ε∗, giving respectively at least 5 and 2 isolated zeros in these intervals.
Finally, using the symmetries on the four small ovals and the two big ovals, we deduce the

existence of at least 5 × 4 + 2 × 2 = 24 limit cycles in the quartic system (6.8) whenever
0 < ε 6 ε∗.

Certified results

The results presented above were obtained using the C library ChebValid. However, as
exemplified by the bug in the code used in [126], a higher level of confidence is not unnecessary.

3https://gforge.inria.fr/projects/tchebyapprox/
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ovals r h N II(h)[N ] II(h)[Nref ] sign(I(h))

small 0.5 0.25 15 [6.2827e-5,7.0092e-5] [6.6457e-5,6.6458e-5] +

0.78 0.6084 15 [-1.1558e-4,-3.8299e-5] [-7.6939e-5,-7.6938e-5] −

0.88 0.7744 70 [1.0236e-8,2.3226e-8] [1.6730e-8,1.6731e-8] +

0.89 0.7921 100 [-2.8087e-8,-1.1346e-8] [-1.9717e-8,-1.9716e-8] −

0.895 0.801025 135 [2.5476e-8,8.8149e-8] [5.6812e-8,5.6813e-8] +

0.8987 0.80766169 250 [-4.8007e-7,-9.1649e-8] [-2.9067e-7,-2.8104e-7] −

big 0.901 0.811801 50 [-9.5281e-6,-3.4314e-6] [-6.4798e-6,-6.4797e-6] −

0.93 0.8649 20 [1.0503e-4,5.3684e-4] [3.2088e-4,3.2089e-4] +

0.95 0.9025 25 [-1.3308e-4,-7.0634e-5] [-1.0186e-4,-1.0185e-4] −

Table 6.2: Rigorous evaluation of I(h) and sign alternations on the small and big ovals. The
approximation degree N used in Chebyshev models is chosen to ensure that the
resulting interval enclosure II(h)[N ] guarantees the sign of I(h). For comparison,
precise enclosures II(h)[Nref ] with Nref = 300 are also given.

To this aim, we also provide certified evaluations using the Coq library presented in Chapter 3.
Only the computations for the small ovals, summarized in Table 6.3 have been carried out at
the moment of writing this manuscript, and the remaining ones are to be carried out in the
near future.

r N p time (s) enclosure sign

0.5 13 32 0.38 [1.56e-5,1.18e-4] +

0.78 15 32 0.47 [-1.32e-4,-2.28e-5] −

0.88 65 128 17.34 [1.83e-10,3.33e-8] +

0.89 95 128 35.13 [-3.31e-8,-6.42e-9] −

0.895 135 300 173.23 [3.94e-8,7.42e-8] +

0.8987 250 350 596.66 [-3.86e-7,-1.86e-7] −

Table 6.3: Certified enclosures of I(r) for different values of r, computed with degree-N
Chebyshev models and floating-point precision p.

6.4 Related ongoing works

When it comes to upper bounds for Conjecture 6.2, a relevant technique is that of verifying
Chebyshev properties of certain families of Abelian integrals. Given a Hamiltonian H and (a
family of) perturbations P and Q, we want to know when the associated collection of Abelian
integrals form an extended complete Chebyshev system [133] (ECT-system for short). An
ordered set of functions (f0, f1, . . . , fn) forms an ECT-system on an interval J (the range of
energies h in our case) if, for all k = 1, 2, . . . , n, any nontrivial linear combination α0f0(h) +
α1f1(h) + . . .+ αkfk(h) has at most k zeros on J counted with multiplicity.
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For convenience, we state the precise definitions below, extending the Haar condition and the
definition of Chebyshev systems (cf. Definition 2.20). Here J is a closed, non-empty interval
of the real line.

Definition 6.5 Let f0, f1, . . . , fn−1 ∈ Cn−1(J).

1. The ordered set of functions (f0, f1, . . . , fn−1) is a complete Chebyshev system (in short,
CT-system) on J if, for all k = 1, 2, . . . , n, any nontrivial linear combination

α0f0(x) + α1f1(x) + . . .+ αk−1fk−1(x)

has at most k − 1 zeros on J .

2. The ordered set of functions (f0, f1, . . . , fn−1) is an extended complete Chebyshev system
(in short, ECT-system) on J if, for all k = 1, 2, . . . , n, any nontrivial linear combination

α0f0(x) + α1f1(x) + . . .+ αk−1fk−1(x)

has at most k − 1 zeros on J counted with multiplicity.

It is clear that if (f0, f1, . . . , fn−1) is an ECT-system on J , then it is a CT-system on J .

Definition 6.6 Let f0, f1, . . . , fk−1 ∈ Ck−1(J). The Wronskian of (f0, f1, . . . , fk−1) at x ∈ J
is

W [f0, f1, . . . , fk−1](x) = det
(
f
(i)
j (x)

)
06i,j6k−1

=

∣∣∣∣∣∣∣∣∣

f0(x) f1(x) . . . fk−1(x)
f ′0(x) f ′1(x) . . . f ′k−1(x)

...
... · · · ...

f
(k−1)
0 (x) f

(k−1)
1 (x) . . . f

(k−1)
k−1 (x)

∣∣∣∣∣∣∣∣∣
.

Lemma 6.7 Let f0, f1, . . . , fn−1 ∈ Cn−1(J). The ordered set (f0, f1, . . . , fn−1) is an ECT-
system on J if and only if for each k = 1, 2, . . . n,

W [f0, f1, . . . , fk−1](x) 6= 0 for all x ∈ J.

Clearly, there is no hope that our five Abelian integrals are an ECT system, even on h ∈
(0, X2

0 ), since a combination with 5 zeros on that interval was given in the previous section.
Instead, we consider the notion of Chebyshev system with positive accuracy [187].

Definition 6.8 Let f0, f1, . . . , fn−1 ∈ Cn−1(J), and r ∈ ◆.

1. The ordered set of functions (f0, f1, . . . , fn−1) is a complete Chebyshev system with ac-
curacy r on J if, for all k ∈ J1, nK, any nontrivial linear combination

α0f0(x) + α1f1(x) + . . .+ αk−1fk−1(x)

has at most k − 1 + r zeros on J .

2. The ordered set of functions (f0, f1, . . . , fn−1) is an extended complete Chebyshev system
with accuracy r on J if, for all k ∈ J1, nK, any nontrivial linear combination

α0f0(x) + α1f1(x) + . . .+ αk−1fk−1(x)

has at most k − 1 + r zeros on J counted with multiplicity.
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Hence, if we prove that the five Abelian integrals are an ECT-system with accuracy 1, then
we cannot hope to obtain more than five zeros on the small ovals domain h ∈ (0, X2

0 ). The
theory of ECT systems is by far more complex than standard ECT systems [187]. Fortunately,
for accuracy 1, we have the following simple characterization [187, Cor. 1.4].

Lemma 6.9 Let f0, f1, . . . , fn−1 ∈ Cn−1(J). If the Wronskians W [f0, . . . , fk−1] are non-
vanishing over J for k ∈ J1, n− 1K, and the last Wronskian W [f0, . . . , fn−1] has a single simple
zero over J , then (f0, . . . , fn−1) is an ECT system with accuracy 1. More precisely:

◦ (f0, . . . , fn−2) is an ECT system;

◦ any nontrivial linear combination of (f0, . . . , fn−1) has at most n zeros (counted with
multiplicity), and at least one reaches this bound.

To be able to prove this property on the Wronskians, we cannot rely on the pointwise eval-
uation of Abelian integrals anymore. Instead, we need continuous rigorous representations for
the Abelian integrals and their derivatives. Here is the road-map of our ongoing work:

1. Using Creative Telescoping techniques briefly presented in Chapter 2, we obtain LODEs
with polynomial coefficients for the five Abelian integrals, as discussed in the next section.

2. Unfortunately, these equations are singular for h = 0 and h = X2
0 . For the left endpoint

h = 0, one can however prove using the Laplace transform that the Abelian integrals are
analytic around 0, and explicit truncated Taylor series can be computed. Although this
is still ongoing work, this theoretically gives the possibility to compute rigorous Taylor
models for the Abelian integrals (and their derivative) over some small interval [0, ε].

3. By evaluating these Taylor modes at h = ε, one gets new initial conditions at ε. Hence,
using the validation technique of Chapter 4, one can compute Chebyshev models for the
Abelian integrals and their derivatives on the interval [ε,X2

0 − ε].

4. Finally, one would need rigorous representations over the last remaining part [X2
0−ε,X2

0 ).
Unfortunately, the Abelian integrals are not analytic at X2

0 . However, computer algebra
techniques show that they admit series expansions of the form:

a0 +

+∞∑

n=1

(
an + bn log(X

2
0 − h)

)
(X2

0 − h)n.

Hence, this example highly motivates the development of new validation techniques for
rigorous approximations in non-polynomial bases.

A Creative Telescoping based approach

As mentioned above, one needs RPAs for the Abelian integrals and their derivatives in order
to compute a RPA for the Wronskians and therefore bounding the number of zeros. One possi-
bility is to represent the integrand of the Abelian integral with a bivariate rigorous polynomial
approximation and afterwards to integrate it with respect to the integration variable. However,
generic bivariate polynomial representations of degree N have size O(N2). Instead, we propose
to obtain LODEs for the Abelian integrals, so that we can apply the validation technique of
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Chapter 4. To this aim, we use Creative Telescoping techniques (see Section 2.1.2) over
semi-algebraic sets.

As a preliminary remark, Green’s theorem is used to rewrite the Abelian integral (6.10) as
a two-dimensional integral over the interior of the oval:

Iij(h) =

∫∫

Int(Γ(h))
(j − 1)xiyj−2dxdy.

The integrand is a D-finite function of (x, y, h), with the following annihilator:

Annij = {∂h, x∂x − i, y∂y − (j − 2)}.

In order to be able to apply Creative Telescoping methods over the semi-algebraic set
Int(Γ(h)) which is not a Cartesian product, we consider the following approach, advocated
in [188]. First, we rewrite the Abelian integral as:

Iij(h) =

∫ +∞

−∞

∫ +∞

−∞
(j − 1)xiyj−21Int(Γ(h))(x, y)dxdy, (6.14)

where 1Int(Γ(h)(x, y) = 1 iff (x, y) ∈ Int(Γ(h)), 0 otherwise. We thus recover a regular Cartesian
product with natural boundaries, since the integrand (j − 1)xiyj−21Int(Γ(h))(x, y)dxdy is zero
outside the compact set Int(Γ(h)). This integrand is no longer a smooth function, but can be
seen as a generalized function or distribution, satisfying the following relations, obtained by
multiplying those of Annij by H(x,y)− h to “regularize” what happens at the border Γ(h):

Ãnnij = {(H(x, y)− h)∂h, (H(x, y)− h)(x∂x − i), (H(x, y)− h)(y∂y − (j − 2))}

The ideal Ãnnij must be first rewritten in a “canonical basis” (namely, as a non-commutative
Gröbner basis). Afterwards, a Creative Telescoping algorithm, Takayama’s algorithm [240],
produces an annihilator for Iij(h), that is a LODE with polynomial coefficients in h. The
main characteristics of the LODEs obtained for the five Abelian integrals are summarized
in Table 6.4. The roots of the leading coefficient are the singular points of the differential
equation, where the Picard-Lindelöf theorem does not apply. The points h = 0, X2

0 , Y
2
0 , X

2
0+Y

2
0

are simple zeros: they are called regular singular points. Their presence was predictible due
to the geometry of the problem. We also notice other factors in the leading coefficients, but
desingularization techniques show that they are apparent singularities that can be removed.
Table 6.5 gives the main characteristics of the desingularized differential equations obtained
for X0 = 9/10 and Y0 = 11/10.

Remark 6.10 For the sake of simplicity, the presentation given here is rather intuitive. The
rigorous framework for holonomic distributions and Creative Telescoping over semi-algebraic
sets will be given in Chapter 9.

Beside the explicit form of these LODEs, one also needs corresponding initial conditions in
order to be able to compute RPAs. As explained in Step 2 of the road-map given before, we
propose an approach based on Laplace transform.
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Exponents Characteristics of LODE

i j order leading coefficient

0 0 3 16h(h−X0)
2(h− Y0)2(h−X2

0 − Y 2
0 )(−X4

0 + 4hY 2
0 − 2X2

0Y
2
0 − Y 4

0 )

2 0 3 −16h(h−X0)
2(h− Y0)2(h−X2

0 − Y 2
0 )(2h−X2

0 − Y 2
0 )

4 0 4 −16h(h−X0)
2(h− Y0)2(h−X2

0 − Y 2
0 )(8hX

2
0 − 5X4

0 + 4hY 2
0 − 6X2

0Y
2
0 − Y 4

0 )

2 2 4 −16h(h−X0)
2(h− Y0)2(h−X2

0 − Y 2
0 )(4hX

2
0 − 3X4

0 − 2X2
0Y

2
0 + Y 4

0 )

0 4 4 16h(h−X0)
2(h− Y0)2(h−X2

0 − Y 2
0 )(X

4
0 + 4hY 2

0 − 2X2
0Y

2
0 − 3Y 4

0 )

Table 6.4: Characteristics of LODEs obtained by Creative Telescoping.

Exponents Characteristics of LODE

i j order leading coefficient

0 0 4 404h(100h− 81)(100h− 121)(50h− 101)

2 0 4 2h(100h− 81)(100h− 121)(50h− 101)

4 0 5 404h(100h− 81)(100h− 121)(50h− 101)

2 2 5 404h(100h− 81)(100h− 121)(50h− 101)

0 4 5 404h(100h− 81)(100h− 121)(50h− 101)

Table 6.5: Characteristics of the desingularized LODEs with X0 = 9/10 and Y0 = 11/10.

Taylor expansions around 0 using the Laplace transform

Consider the Laplace transform of the integral (6.14):

L(Iij)(s) =
∞∫

0

Iij(h)e
−shdh.

When L(Iij)(s) is well-defined, one has

L(Iij)(s) =
j − 1

s

∞∫

−∞

xie−s(x2−x0)2dx

∞∫

−∞

yj−2e−s(y2−y0)2dy.

From this expression, one can prove that L(Iij)(s) has a closed-form in terms of Bessel
functions and their derivatives. Specifically, let Iν (x) (and Kν (x)) denote the modified Bessel
function of first (and respectively second) kind. The following proposition holds.

Proposition 6.11 Let

Lα(s) =

∞∫

−∞

xαe−s(x2−x0)2dx, (6.15)
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which is defined for α > −1. Then

L0(s) = e−sx0
2
(4s)−1/4L̃0(

√
sx0),

L2(s) = e−sx0
2
(4s)−3/4

(
∂aL̃0

)
(
√
sx0),

L4(s) = e−sx0
2
(4s)−5/4

(
∂2aL̃0

)
(
√
sx0),

where
L̃0(a) = ea

2/2√a
(√

2πI1/4
(
a2/2

)
+K1/4

(
a2/2

))
. (6.16)

Proof. Equation (6.15) becomes, with the change of variable (4s)1/4x = z:

Lα(s) = e−sx0
2
(4s)−(α+1)/4

∞∫

−∞

zαe−z4/4+s1/2x0z2dz.

Consider now, for a > 0 and α > −1, the parametric integral:

L̃α(a) =

∞∫

−∞

zαe−z4/4+az2dz,

which satisfies:
∂2aL̃α − 2a∂aL̃α − (α+ 1)L̃α = 0. (6.17)

This can be easily seen by by-parts integration:

∂2aL̃α =

∞∫

−∞

zα+4e−z4/4+az2dz =

∞∫

−∞

−zα+1(−z3 + 2az)e−z4/4+az2dz +

∞∫

−∞

2azα+2e−z4/4+az2dz.

Moreover for α = 0, one has that L̃0(0) =
π

γ(3/4) and ∂aL̃0(0) =
√
2γ(3/4), where we denote

the Gamma function by γ. One can check that the solution of Equation (6.17) is given
by (6.16).

We also need this crucial lemma, sometimes refered to as converse Watson’s lemma [262,
Chap. I.5].

Lemma 6.12 (Converse Watson’s lemma) Let f be continuous over [0,+∞], such that its
Laplace transform F is well-defined for Re(s) > s0 ∈ ❘:

F (s) := L(f)(s) =
∫ +∞

0
f(t)e−stdt, Re(s) > s0.

If F admits the following asymptotic series expansion for s→ +∞:

F (s) ∼
+∞∑

n=0

an
n! sn+1

, s→ +∞,

then f admits the following asymptotic expansion at 0

f(t) ∼
+∞∑

n=0

ant
n, t→ 0+.
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This lemma therefore shows that the Abelian integrals have a power series asymptotics around
0. Combining this result with the above section, stating that 0 is a regular singularity, we get
that the Abelian integrals are analytic at 0.

Remark 6.13 Note however that for Abelian integrals involving negative powers of y, i.e.,
I00, I20 and I40, cannot be directly proved to be analytic with Lemma 6.12. Instead, we
proceed by analytic continuation with respect to the exponent of y in the integral.

Now, the first terms of the Taylor series can be explicited computed from the expressions
of the Laplace transform (Proposition 6.11), using Lemma 6.12. The differential equations
obtained in the previous section, translated into recurrences on the Taylor coefficients, can be
used to efficiently compute the truncated Taylor series to very high degree. Finally, we plan to
use elementary bounding techniques for recurrences to bound the remainder. In the end, we
will obtain Taylor models for the Abelian integrals and their derivatives.
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Validated Trajectories for
Spacecraft Proximity
Operations 7

– Cum, n-ai auzit că s-au lansat?
– În orbită sau ce câcat?

— Grasu XXL, Turbofin

As mentioned in the introduction of this manuscript, a wide range of applications in the
domain of safety-critical engineering may benefit from rigorous numerics and other validated
techniques. This is particularly true for many aerospace problems involving long-term inte-
gration of ODEs. Conversely, these applications provide interesting “real-life” problems for the
rigorous numerics community. This chapter relates a joint work with two other PhD students
in my research group at the LAAS laboratory, Paulo Ricardo Arantes Gilz [5] and Clément
Gazzino [89]. Their works target the design of control laws for aerospace problems, more
specifically spacecraft rendezvous for the former, and satellite station keeping for the latter.
The purpose of this collaboration is to apply the validated techniques for ODEs using RPAs
of Chapters 4 and 5, to design rigorous tools for the above mentioned aerospace problems.
This work gave rise to an article “Validated Semi-Analytical Transition Matrix for Linearized
Relative Spacecraft Dynamics via Chebyshev Polynomials”, published in the proceedings of the
2018 Space Flight Mechanics Meeting, organized by the American Institute of Aeronautics and
Astronautics (AIAA).

7.1 Introduction and related works

During guidance and control procedures of orbiting spacecraft, the respect of positioning and
space constraints is decisive for successful missions achievement. The development of algo-
rithms capable of fulfilling these constraints is directly related to how precisely the spacecraft
trajectories are known. Since accuracy is essential for these procedures, the prevention and
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estimation of errors arising from approximations and numerical computations become critical.
For spacecraft proximity operations (spacecraft rendezvous, station keeping, collision avoid-

ance), the relative dynamics are often linearized for both propagation or control purposes. More
specifically, when the magnitude of the relative motion of the spacecraft is small compared to
its distance to the Earth, one linearizes the equations of motion, which implies solving simpler
linear differential equations (LODEs), that is, computing the state transition matrix (STM)
representing the basis of solutions for the LODE. Seminal works proposed closed-form solutions
(in a broader sense to be specified) for simple models, e.g. [267] for linearized Keplerian rela-
tive motion [245]. Nowadays, such “closed-form” STM solutions are known for a wider range
of linearized models, including relevant perturbations in eccentric orbits about Earth and other
bodies (see [237] for a detailed survey on that topic). However, most of these solutions are
not “closed forms” in the strong meaning used throughout this thesis, requiring for example
to solve implicit equations, such as the Kepler equation. This therefore does not provide a
concrete continuous representation of the solution.

Alternatively, and in some cases where the perturbating forces are given by measurements
or ephemerides, propagation can be performed with numerical iterative schemes (like Euler
or Runge-Kutta). The main drawback of this discretization approach is that the number of
needed evaluation points can be prohibitive and the discretization error is difficult to estimate
precisely. Moreover, for control laws design purposes, analytical solutions are preferable, since
various constraints (such as saturation, restricted space regions, etc.) need to be satisfied on
continuous time domains and not only on discretization grids.

In this context, we consider solving linear ordinary differential equations via rigorous polyno-
mial approximations in Chebyshev series (cf. Chapters 4 and 5), to get validated transition
matrices describing the evolution of spacecraft trajectories.

This approach is applied to the study of two heterogeneous examples, thus highlighting its
generality:

◦ First, we consider the linearized impulsive rendezvous framework, demonstrating how to
use RPAs to provide a validated propagation of the relative dynamics between spacecraft.
This is then exploited for the hovering phases of the spacecraft rendezvous, where we
conceive a validated model predictive control based on semi-definite programs.

◦ Second, we propose a semi-analytical transition matrix, for a simplified model of geosta-
tionary orbits. Specifically, the dynamics, expressed in terms of the relative equinoctial
orbital elements, are linearized taking into account the J2 Earth oblateness effect, that
is, the perturbation of the Keplerian dynamics due to the Earth’s non-sphericity at its
poles.

For completeness, we provide in what follows a very brief general context for each of these
examples.

7.1.1 ◮ Linearized impulsive rendezvous and model pre-

dictive control

Since the first space missions involving more than one vehicle, space rendezvous between two
spacecraft has become a key technology raising relevant control issues. These missions consist
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in the execution of a sequence of maneuvers aiming to bring a spacecraft (referred to as chaser)
to the vicinity of a passive target (e.g. International Space Station), whose trajectory evolves
around a central body. Since the ’60s, many ideas have been developed, and today, we are
interested in successful RdV which minimizes fuel consumption, with increased autonomy (no
human operator). This implies that validation of computations and solutions is at stake.
Impulsive RdV problems concern in practice a large number of satellites, which are equipped
with ergol thrusters. The impulsive approximation for the thrust means that an instantaneous
velocity increment is applied to the chaser for each impulse. This is relevant because the
chaser’s chemical engines provide high level of thrust during a short time with respect to the
target orbital period, which leads to an extremely rapid change of velocity, which can thus be
modeled as a jump at firing time.

Many model predictive control (MPC) algorithms have been developed since the 90’s for
spacecraft rendezvous (see for instance [104, 47]), since they provide fuel-efficient and flyable
control solutions. The MPC uses a priori knowledge about the dynamics of the relative motion
between spacecraft to iteratively compute the control corrections that fulfill fuel-optimality
and various and uncertainties. These are directly accounted for in the trajectory design by
formulating and solving a constrained optimal control problem which is repeatedly solved.
Either dynamics discretization [214, 241] or analytic transitions matrices [121, 8, 7] were
used for solving this problem. As previously mentioned, in this work we consider transition
matrices approximated by RPAs.

This is very pertinent, since so far, several recent works took advantage of non-rigorous
polynomial approximations – sometimes qualified as semi-analytical methods in the control
theory community – in the context of model predictive control (MPC) and optimal impulsive
constrained control [70, 7]. Their works follow the general framework of semidefinite program-
ming (SDP) based on nonnegative polynomials written as sums of squares (SOS) [182]. From
the numerical point of view, the efficiency of spectral methods with Chebyshev expansions
was highlighted by recent works in the context of orbital mechanics [211]. They started to
successfully replace the classical Taylor series-based algebra for intrusive approaches, which
has already many applications to astrodynamics and optimal control for proximity opera-
tions [158, 159, 71].

However, the scope of our work is not limited to numerical efficiency, since we also provide
rigorous error bounds for the entries of the transition matrix, which are given as Chebyshev
truncated series. This is particularly useful in optimization algorithms for optimal control where
a trade-off must be done between low-degree polynomials for efficiency and accurate results, as
it will be further shown in Section 7.2.

7.1.2 ◮ Station keeping on Geostationary Earth Orbits

Telecommunication satellites on a Geostationary Earth Orbit (GEO) have to stay above a fixed
point of the Earth, at a position called station keeping position at zero latitude and at a given
longitude. However, the geostationary orbit is computed assuming that the Earth produces a
central gravitational attraction force. Other forces act on the satellite, such as the zonal and
tesseral terms of gravitational potential of the Earth, the Sun and the Moon attractions and
the Sun radiation pressure. It is therefore mandatory to control the spacecraft trajectory so
that it remains in the vicinity of the station keeping point.
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Some semi-analytical nonlinear models like the CNES Orange model [46] may be used to
describe precisely the evolution of a geostationary Earth orbit affected by these orbital per-
turbations. However, when dealing with station keeping objectives, in most cases, a simpler
linearized model, describing the spacecraft relative motion dynamics, has to be derived for the
design of the station keeping strategy. In this linear, possibly time-varying setting, and after
the seminal works of Hill-Clohessy-Wiltshire and Tschauner-Hempel [245], a very large num-
ber of contributions are have been proposed towards new allegedly closed-form state transition
matrix (STM), depending on the orbital perturbations included in the linearized model, on the
state representation used and on the linearizing assumptions (see [237] for a recent extensive
survey on this topic).

Among the orbital perturbations relevant in a geostationary context, even if the J2 disturbing
effect of the oblateness of the Earth is not the dominant one, it has a nonnegligible effect on the
direction of the inclination vector drift [233, Sec. 4.4], and on the value of the true geostationary
radius [230]. Hence, the study of solutions of the equation of the orbital motion perturbed by
J2 remains of great interest. In this setting, closed form (in a broader sense) STM solutions
are proposed in [91] using equinoctial elements. Our approach is complementary and consists
in using the tools developed and implemented in Chapters 4 and 5 to compute polynomial
approximate STM together with rigorous error bounds. The fact that polynomials can be
very efficiently evaluated using floating-point arithmetic makes such an approach competitive
against closed-form but possibly complicated solutions.

The work presented in Section 7.3 is still experimental, and focuses on the validation of
polynomial approximate STMs with respect to the linearized model. This is a first step towards
further use of rigorous numerics in the station keeping problem: validation of these STMs with
respect to the nonlinear equations of motion, efficient design of a station keeping strategy using
these polynomial STMs, etc.

7.2
Validated linearized impulsive
rendezvous and model predictive
control

As a first example of an aerospace application of the validation method for LODEs presented
in Chapters 4 and 5, we consider the impulsive spacecraft rendezvous problem previously
described. The capacity of developing algorithms to address this problem is directly related to
how precisely the trajectories developed by each spacecraft involved in the mission are known
and, given that precision is a must for these procedures, the prevention and estimation of
errors arising from approximations and numerical computations become a critical subject in
this context.

Hereafter we describe the mathematical frameworks adopted to model the rendezvous prob-
lem. In Figure 7.1, the frames used to model the relative motion between the leader Sl and
the follower Sf spacecraft are depicted. The Earth-Centered Inertial (ECI) frame is given by{
O,
−→
I ,
−→
J ,
−→
K
}

. The moving Local Vertical / Local Horizontal (LVLH) frame is centered on
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First, the validation method for LODEs, presented in Chapter 4 and implemented in our
ChebValid C library2, is applied on the Tschauner-Hempel equations in Section 7.2.1. This
provides RPAs for the spacecraft trajectory, that is, approximating polynomials in Chebyshev
basis with validated error bounds. Then, in Section 7.2.2, we develop a model predictive
control algorithm for spacecraft rendezvous hovering phases [7]. The underlying polynomial
optimization problem justifies the need for low-degree but still accurate polynomial approxima-
tions of the transition matrix. Finally, we use the power of the validation method to perform
an a posteriori verification of an instance of rendezvous by providing a rigorous enclosure of
the chaser’s final position. This is particularly important for safety critical missions.

7.2.1 ◮ Rigorous and semi-analytical transition matrix for

Tschauner-Hempel equations

Before running the method on LODE (7.3), we first rescale the interval [ν0, νf ] to [−1, 1] by
introducing the independent variable τ ∈ [−1, 1] and letting ν(τ) = ν0(1−τ)/2+νf (1+τ)/2 =
ωτ + θ with ω = (νf − ν0)/2, θ = (ν0 + νf )/2, and Z(τ) = z(ν(τ)). We obtain:

Z ′′(τ) + ω2

(
4− 3

1 + e cos ν(τ)

)
Z(τ) = ω2c, (7.4)

together with rescaled initial conditions:

Z(−1) = z(ν0), Z ′(−1) = ωz′(ν0).

In particular, we observe that the magnitude of the coefficients in Equation (7.4) grows quadrat-
ically with the length of the interval [ν0, νf ] over which we want to approximate the trajectory.

Since the coefficient α(τ) of Equation (7.4):

α(τ) := 4− 3

1 + e cos ν(τ)
,

is not polynomial, we must provide a rigorous polynomial approximation for it. The cosine
function τ 7→ cos ν(τ) is approximated by applying our validation method to the harmonic
oscillator differential equation:

y′′(τ) + ω2y(τ) = 0, y(−1) = cos ν0, y′(−1) = −ω sin ν0. (7.5)

Now, using the elementary operations defined in Chapter 3, we get a RPA for α(τ). Fig-
ure 7.2a shows the evolution of the minimal degree p needed to approximate the coefficient
τ 7→ ω2(4 − 3/(1 + e cos ν(τ))) within a Ч

1-error less than 1, in function of the eccentricity e
and the total time interval [ν0, νf ].

Integral transform and numerical solving

Following the integral transform technique described in Chapter 4, we let ϕ(τ) = Z ′′(τ), so
that Z(τ) now becomes:

Z(τ) = Z(−1)+ (τ +1)Z ′(−1)+
∫ τ

−1

∫ s

−1
ϕ(u)du = Z(−1)+ (τ +1)Z ′(−1)+

∫ τ

−1
(τ − s)ϕ(s)ds.

2available at https://gforge.inria.fr/projects/tchebyapprox/
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Long-term validated integration techniques

Since Equation (7.3) is linear and 2π-periodic, validating a transition matrix over [ν0, ν0 +2π]
is a good starting point for most applications. Let

Φ(ν, ν0) =




x(i)(ν) x(ii)(ν) x(iii)(ν) x(iv)(ν)

z(i)(ν) z(ii)(ν) z(iii)(ν) z(iv)(ν)

x′(i)(ν) x′(ii)(ν) x′(iii)(ν) x′(iv)(ν)
z′(i)(ν) z′(ii)(ν) z′(iii)(ν) z′(iv)(ν)


 ,

where the column of index (i), (resp. (ii), (iii) and (iv)) is a validated approximation of the in-
plane trajectory corresponding to the initial conditions x̄(ν0) = 1 (resp. z̄(ν0) = 1, x̄′(ν0) = 1
and z̄′(ν0) = 1), all the other initial values being set to 0. Each entry is given as a Chebyshev
model computed by ChebValid.

To ensure a validated propagation over several periods, the trajectory can be approximated
by rigorous piecewise polynomial approximations over each period [ν0 + 2kπ, ν0 + 2(k + 1)π]:




x̄(ν)
z̄(ν)
x̄′(ν)
z̄′(ν)


 ∈ Φ(ν − 2kπ, ν0)J

k




x̄(ν0)
z̄(ν0)
x̄′(ν0)
z̄′(ν0)


 , (7.6)

where J = Φ(ν0 + 2π, ν0) is the interval matrix of rigorous enclosures of the final states after
one period. Let us remark that this method does not provide a uniform rigorous polynomial
approximation over the whole time interval under consideration. Moreover, if the entries of
J are rather loose intervals, which occurs when Φ(·, ν0) is made of low-degree polynomial
approximations, then the intervals in Jk will rapidly become very large and all precision is lost
after a certain number of periods.

In a second step, one can obtain a certified uniform polynomial approximation over the whole
time interval if the entries of Jk are sufficiently tight over the required k periods. For that, one
uses a numerical polynomial approximation for the trajectory X̄xz(ν) = (x̄(ν), z̄(ν), x̄′(ν), z̄′(ν)),
over the whole interval [ν0, νf ], where νf = ν0 + 2κπ. This is validated a posteriori by bound-
ing the difference between (7.6) and the candidate approximation X̄xz(ν), both considered
over each period [ν0 + 2kπ, ν0 + 2(k + 1)π] (0 6 k < κ). To restrict X̄xz(ν) to a period
[ν0 + 2kπ, ν0 + 2(k + 1)π] (0 6 k < κ), note that initially, our method provides a truncated
Chebyshev series which is rescaled such that its definition interval is [−1, 1]. Hence, for each
period, X̄xz must be composed on the right by an affine time rescaling as to extract the desired
time subinterval and compare the resulting Chebyshev truncated series with the corresponding
precise piecewise approximation. Finally, the sum between the bound of this difference in the
Ч

1-norm and the rigorous error bound of the precise solution gives a safe overestimation of the
uniform error.

7.2.2 ◮ Model predictive control for the rendezvous hov-

ering phases using RPA-based transition matrices

Hereafter we focus on the study of the hovering phases of the orbital spacecraft rendezvous
missions. The hovering phases are the stages at which the follower satellite is required to remain
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in the interior of a delimited zone of the space with respect to the target spacecraft [123]. The
idea is to provide a validated model predictive control (MPC) algorithm to steer the follower
satellite in a fuel-optimal way to the hovering region. The MPC uses a priori knowledge about
the dynamics of the relative motion between spacecraft to iteratively compute the control
corrections that fulfill fuel-optimality and constraints [8, 7].

Validated relative dynamics

We consider the previously described states X(t), X̄(ν) and the relative dynamics given by
the simplified linearized Tschauner-Hempel equations in (7.2). For a given time t (con-
versely, a true anomaly value ν), the state right after an impulsive velocity correction ∆V =
[∆Vx,∆Vy,∆Vz]

T ∈ ❘3 is defined as X+(t) and can be computed by:

X+(t) = X(t) +B∆V (t), B = [03 13]
T .

Performing the variable changes X(t)
(7.1)→ X̄(ν), the state after the impulse is given by:

X̄+(ν) = X̄(ν) + B̄(ν)∆V (ν), B̄(ν) = T (ν)B.

Let Φ̄(νf , ν0) be the exact transition matrix of the system of equations (7.2), from an initial
ν0 to a final νf . By considering N impulsive velocities corrections applied at ν1 < . . . < νN ,
the propagation of the state can be formulated as:

X̄+(νN ) = Φ̄(νN , ν1)X̄(ν1) +
∑N

k=1 Φ̄(νN , νk)B̄(νk)∆Vk.

By applying the Chebyshev series approximation method previously presented, one can ob-
tain rigorous polynomial approximations Φ(ν, ν0) on an interval [ν0, νf ], that is approximations
Φ◦
ij and error bounds εij satisfying:

|Φ◦
ij(ν0, ν)− Φ̄ij(ν0, ν)| 6 εij , ∀ν ∈ [ν0, νf ].

Then, the propagation of the relative dynamics for ν ∈ [νN ,+∞) can be represented by the
state X(ν), which provides a rigorous approximation of X̄(ν):

X(ν) = Φ(ν, ν1)X̄(ν1) +
N∑

k=1

Φ(νN , νk)B̄(νk)∆Vk.

Propellers, fuel-consumption and saturation

We assume that the follower spacecraft has six identical propellers, one pair symmetrically and
oppositely disposed by axis. The fuel consumption is then modeled by the sum of the absolute
value of the thrusts applied in each direction:

J (∆V ) =

N∑

i=1

‖∆V (νi)‖1 =
N∑

i=1

|∆Vx(νi)|+ |∆Vy(νi)|+ |∆Vz(νi)|.

Assuming that the saturation threshold for each propeller is ∆V > 0, this constraint is written
as:

|∆Vx(νi)| 6 ∆V , |∆Vy(νi)| 6 ∆V , |∆Vz(νi)| 6 ∆V .
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Following the derivation process described in the technical report [86], the disturbing poten-
tial is expressed in terms of the Cartesian position in the geocentric inertial reference frame,
and then transformed into the equinoctial orbital elements. The differential equation of mo-
tion is derived using the Lagrange perturbation theory (see for instance the reference [16]),
and then linearized. In Section 7.3.1 we give more details on these dynamics for the station
keeping of a geostationary satellite with a low-thrust propulsion system, and the linearization
we consider. In Section 7.3.2, we describe a new linearized model for the dynamics expressed
with the relative equinoctial orbital elements. Then, in Section 7.3.3, we provide numerical
examples for the validated polynomial transition matrices for the linearized dynamics occurring
in this perturbed model.

7.3.1 ◮ Description of the model

The state vector of a satellite orbiting the Earth on a geostationary orbit is described with the
equinoctial orbital elements as defined in [16]:

xeoe =
[
a ex ey ix iy ℓMΘ

]T ∈ ❘6,

where a is the semi-major axis, (ex, ey) the eccentricity vector components, (ix, iy) the incli-
nation vector components, ℓMΘ = ω + Ω +M −Θ is the mean longitude where Ω is the right
ascension of the ascending node, ω is the perigee’s argument, M is the mean anomaly and Θ(t)
is the right ascension of the Greenwich meridian.

On top of the Keplerian gravitational attraction produced by the central body supposed to
be spherical and homogeneous, spacecraft orbiting the Earth on a GEO orbit undergo orbital
disturbing forces. In [230], [233], [231], the potential function of these orbital perturbations
is expressed by means of the geographical positions, i.e. radius, latitude and longitude of
the spacecraft and the disturbing bodies. As the chosen state vector for the GEO spacecraft
is composed of the equinoctial orbital elements, it is mandatory to transform the expression
of these potential function in terms of variables of the state vector. In the technical report
[86] the geographical position is first transformed in the Cartesian position in the geocentric
inertial reference frame referred as the ECI reference frame in [249], and then transformed in
the equinoctial orbital elements thanks to conversion formulas derived in the Appendix C of
[86].

The disturbing effects described before make the satellite drift away from its nominal position.
It is therefore mandatory to equip the satellite with thrusters in order to correct the satellite
orbit. These thrusters also create a disturbing acceleration.

With the equinoctial orbital elements as state variables, the dynamic equation to handle
the orbital perturbation is given by the Lagrange perturbation technique and the dynamic
equation for the effect of the thrusters by the Gauss variation technique (see for instance the
references [268] or [161]). By superposition principle, the two effects can be added, leading to
the following dynamic equation:

dxeoe
dt

= fL(xeoe, t) + fG(xeoe, t)u. (7.8)

where fL ∈ ❘6 is the Lagrange contribution part of the external forces and fG ∈ ❘6×3 is the
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Gauss contribution part. u = [uR uT uN ]t ∈ ❘3 is the control vector expressed in the local
orbital frame.

7.3.2 ◮ Linearization

For operational purposes, the satellite has to stay on an operating position called station keeping
point. As the orbital disturbances induce a drift of the spacecraft position, the thrusters are
fired in order to make the spacecraft stay in the vicinity of its operating position in a so-called
station keeping window, whose size is very small with respect to the distance to the Earth. It is
therefore possible to linearize the nonlinear Equation (7.8) with respect to the orbital elements
of the station keeping point:

xsk = [ask 0 0 0 0 ℓMΘsk
]T , (7.9)

where ask is the synchronous semi-major axis and ℓMΘsk
is the station mean longitude. This

station keeping state is a fictitious point evolving on a Keplerian (unperturbed) GEO orbit.
It is defined such that the spacecraft mean motion equals the Earth rotation rate. It is then
straightforward that:

dxsk
dt

=

[
0 0 0 0 0

√
µ

a3sk
− ωT

]T
= 0,

where ωT is the Earth rotation rate. Therefore, ask = 42164 km. Moreover, for the simulations,
we choose ℓMΘsk

= 118◦.
The relative dynamics equations are derived by a new linearization of Equation (7.8) about

the station keeping point (7.9). Denoting x = xeoe − xsk, the relative state model for the SK
problem is computed as follows:

dx
dt

=
dxeoe

dt
− dxsk

dt
= fL(xeoe, t) + fG(xeoe, t)u− 0

≈ fL(xsk, t) +
∂fL(xeoe, t)

∂xeoe

∣∣∣∣
xeoe=xsk

x+ fG(xsk, t)u. (7.10)

From Equation (7.10) the dynamical model reads:

dx
dt

= A(t)x+D(t) +B(t)u, (7.11)

where the matrices A ∈ ❘6×6 , B ∈ ❘6×3 and D ∈ ❘6 are defined as follows:

A(t) =
∂ (fL(xeoe(t), t))

∂xeoe

∣∣∣∣
xeoe=xsk

, B(t) = fG(xsk, t), D(t) = fL(xsk, t).

As the dynamics of the relative equinoctial elements given by the Equation (7.11) is now
linear, the effects of each perturbation can be added together, such that:

A(t) = AKeplerian(t) +AJ2(t),

D(t) = DKeplerian(t) +DJ2(t),
(7.12)
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with the exact expression of these matrices available in [86]. From Equations (7.12) and (7.11),
the (uncontrolled) state transition matrix is computed with our method. In what follows, a
numerical integration example is given to show its effectiveness. Note that this state transition
matrix can then be used in the framework of the linear GEO station keeping control prob-
lem, which is expressed as an optimal control problem whose objective is to minimize the fuel
consumption while ensuring that the (linearized) relative dynamic is respected and that the
spacecraft does not fly out its station keeping window [161], [88, 90] and [87].

7.3.3 ◮ Numerical example of integration

In this example, the integration has been performed for an initial relative equinoctial orbital
elements state:

X0 =
[
0 10−4 0 10−4 0 0

]T
.

In Figure 7.9 the difference between the relative equinoctial elements integrated with the
non-linear equation of motion and the linearized equation of motion with the ode45 function of
MATLAB is presented on a time interval [t0, tf ] with t0 = 0 and tf = 7 days. One observes
that for the semi-major axis, the two trajectories diverge one from the other up to 0.015 m after
seven days. This is due to the fact that the spacecraft moves away from the station keeping
point. As for station keeping purposes, a control law will enforce the spacecraft to stay in
the vicinity of the station keeping point, the approximation error between the linear and the
nonlinear model should remain small. The error between the linear and nonlinear integration
after 7 days is representative of the error that will occur during the station keeping control
process because the uncontrolled trajectory flies out the station keeping window after 7 days
of free motion.

Figure 7.9: Error between the integration of the relative equinoctial orbital elements with
the nonlinear and the linearized model.
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Based on this, the magnitude of the maximum error obtained between the integrated non-
linear equation of motion and the linearized one are heuristically estimated and used as bench-
marks in Table 7.2 in order to compute the minimal degree of the rigorous polynomial ap-
proximations (obtained with our method) which achieve them. Specifically, associated with
equation (7.11), consider the solution x(t) = Φ(t, t0)x0 +

∫ t
t0
Φ(t, s)D(s)ds, for t ∈ [t0, tf ],

where Φ(t, t0) is the transition matrix and
∫ t
t0
Φ(t, s)D(s)ds is a particular solution. The first

6 columns in Table 7.2 deal with RPAs approximating the transition matrix Φ(t, t0). For
instance, for the first entry of the transition matrix, a maximum error upper-bound of 10−10

requires a degree-26 RPA. Similarly, the last column of Table 7.2 shows respectively the max-
imum error upper-bounds and the required degree for RPAs for the particular solution.

j

i 1 2 3 4 5 6 ⋆

1 10−10 : 26 10−7 : 30 10−10 : 37 10−10 : 0 10−10 : 0 10−7 : 0 10−11 : 28
2 10−7 : 33 10−7 : 52 10−7 : 52 10−7 : 0 10−7 : 0 10−7 : 29 10−11 : 51
3 10−10 : 48 10−7 : 52 10−10 : 61 10−10 : 0 10−10 : 0 10−7 : 29 10−11 : 51
4 10−10 : 0 10−7 : 0 10−10 : 0 10−11 : 63 10−11 : 64 10−7 : 0 10−11 : 0
5 10−10 : 0 10−7 : 0 10−10 : 0 10−11 : 64 10−11 : 63 10−7 : 0 10−11 : 0
6 10−10 : 0 10−7 : 0 10−10 : 0 10−11 : 64 10−11 : 63 10−7 : 0 10−11 : 0

Table 7.2: Maximum error bounds required for each entry of the transition matrix (columns
j = 1, . . . , 6) and particular solution (column j = ⋆), and minimal degrees of the
rigorous polynomial approximations achieving them, obtained with our method.
Remark: a null degree indicates a constant entry.

Figure 7.10 depicts the difference between the relative equinoctial orbital elements com-
puted on one hand by integration of the linearized dynamic given by Equation (7.11) with
the ode45 function of MATLAB and on the other hand by the semi-analytical state transition
matrix computed by RPAs. The iy and ℓMΘ components undergo a secular error whereas the
other ones present small periodic errors. Nevertheless, the relative error between these two
trajectories is smaller than the error between the linear and the non-linear integration of the
trajectory, justifying the use of these state transition matrices as a way to compute the relative
trajectory.

7.4 Conclusion and future developments

A validated MPC algorithm for the rendezvous hovering phases has been conceived using the
proposed approximation method. Future experiments would assess the tractability of problem
(P.SDP) on devices dedicated to space applications, focusing on the analysis of the relation
between the computational burden and the precision of the polynomial approximations. The
study of the performances of problems similar to Section 7.2.2 has already been carried out
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Figure 7.10: Error between the integration of the relative equinoctial orbital elements with
the ode45 function of MATLAB and the proposed semi-analytical state tran-
sition matrix computation method.

using an AEROFLEX GAISLER GR-XC6S board containing a synthesized LEON3 micropro-
cessor in [70, 7].

The proposed approximation technique has then been applied on a more complicated case
where orbital disturbances arise. Although only the most prominent perturbation has been
handled, the proposed state transition matrices computation method could also been applied
to other orbital disturbances, as for instance the Sun and Moon gravitation attractions or
the Sun radiation pressure. These effects leave room for improvement to our method because
it would be necessary to take into account the Sun and Moon positions that are known as
tabulated functions. The references [110] or [25] describe how direct collocation methods can
be used in order to solve the GEO station keeping optimal control problem. These methods
rely on a discretization of the state and control vectors over the time interval [t0, tf ]. The
optimal control problem is therefore transformed into a nonlinear programming problem. The
dimension of the unknown vector for the nonlinear programming problem can be reduced while
eliminating the state vector, meaning that the state differential equation of the system must
be integrated explicitly. The proposed technique for the computation of the state transition
matrix will therefore be used for the integration of the dynamic equation, making the resolution
of the GEO station keeping optimal control problem easier.

Another possible extension for this work would be the propagation of uncertain initial condi-
tions via semi-analytical polynomial transition matrices. When the uncertainties in the initial
conditions are not uniformly distributed, we plan consider the generalization to other classes
of orthogonal polynomials.
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Exchange Algorithm for
Evaluation & Approximation
Error-Optimized
Polynomials 8

Comment voulez-vous gouverner un pays où il existe 258 variétés de fromage ?

— Charles de Gaulle

Machine implementation of mathematical functions often relies on polynomial approxima-
tions, discussed in Chapter 2. The particularity is that rounding errors occur both when
representing the polynomial coefficients on a finite number of bits, and when evaluating it in
finite precision. Hence, for finding the best polynomial (for a given fixed degree, norm and
interval), one has to consider both types of errors: approximation and evaluation. While effi-
cient algorithms were already developed for taking into account the approximation error, the
evaluation part is usually a posteriori handled, in an ad-hoc manner.

In this chapter, which is a joint work with Denis Arzelier and Mioara Joldes, we formulate
a semi-infinite linear optimization problem whose solution is the best polynomial with respect
to the supremum norm of the sum of both errors. This problem is then solved with an iter-
ative exchange algorithm, which can be seen as an extension of Remez algorithm, recalled in
Section 2.2.2. A discussion and comparison of the obtained results on various examples are
finally presented.

This work gave rise to an article entitled “Exchange algorithm for evaluation and approxi-
mation error-optimized polynomials” [13], to be published in the proceedings of the 26th IEEE
Symposium on Computer Arithmetic (ARITH).
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8.1 General setting and contributions

Polynomials are often used for approximating functions on computers [2, 176]. Their evaluation
only requires additions and multiplications, which are efficiently implemented in hardware
floating-point (FP) arithmetic units.

As mentioned in Chapter 1, FP operations are specified by the IEEE 754-2008 [113] stan-
dard, which requires, among others, correctly rounded basic arithmetic operations +,−, ∗, /,√
for several precision formats, and recommends correctly rounded elementary functions like
exp, sin, cos. Very efficient fixed FP precision implementations exist [68, 151] for such func-
tions and are collected in mathematical libraries (libms), which can be nowadays almost auto-
matically generated and tuned [64, 144]. Recently, in [152], such code generating techniques
were extended to larger classes of special functions, which are widely used in scientific and
technical applications (like Bessel, Airy, Erf, etc.).

The problem of evaluating a function for the whole FP input range is firstly reduced to the
evaluation of an approximation valid in a rather small compact domain I. This can be done
for instance, by argument reduction techniques, which are available only for specific elementary
functions, and/or by piecewise polynomial approximations [177]. Then, the implementation
task becomes: given a description of a function f , an input interval I, and a target accuracy

ε > 0, one is requested a source code which provides a function f̃ , such that:
∥∥∥(f − f̃)/f

∥∥∥
I
6 ε,

where we denote by ‖g‖I := sup
t∈I
|g(t)| the supremum norm of g on I.

Typically, this is handled in two main steps:

Approximation. An approximation polynomial p is searched for, such that two main require-
ments are met: its coefficients are representable with a specified fixed precision format (usually,
binary32, binary64, or an unevaluated sum of such formats) and the approximation error is less
than a target εapprox, whether absolute ‖f − p‖I 6 εapprox or relative ‖(f − p)/f‖I 6 εapprox.

For that, efficient algorithms were developed, e.g., [42] for low degree and [43] for larger
degrees. In the simpler case of polynomials p with real coefficients and given degree n, p =
n∑

i=0
ait

i, this boils down to the so-called minimax problem, addressed in Chapter 2:

min
ai∈❘,
i∈J0,nK

max
t∈I
|f(t)− p(t)|,

(Pminimax)

which can be solved by the Remez algorithm (see Section 2.2.2, [43, 54] and references
therein). This iterative algorithm has quadratic convergence and rather low complexity, since
it involves solving a linear system of size n+2 at each step, together with numerically computing
the extrema of f − p over I.

Evaluation. An efficient evaluation scheme p̃ for p is searched for; since after each addition
or multiplication, rounding errors occur, one must ensure that the computed value satisfies
‖p− p̃‖I 6 εeval (or ‖(p− p̃)/p‖I 6 εeval) for a given threshold εeval.

Heuristics presented in [151] extend the precision of the important coefficients, such that
the evaluation error remains below εeval. For instance, Sollya command implementpoly uses
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a Horner-based evaluation scheme, which behaves rather well when the evaluation interval is
sufficiently small and contains zero. Otherwise, consider step i of Horner evaluation ai+ tp̃i(t),
where p̃i is the already computed partial polynomial evaluation: when the argument |t| ≫ 1,
the accumulated evaluation error is much amplified when multiplying by t. Another heuristic
is a ratio test between ai and tp̃i(t), to check for cancellation issues which appear when both
terms have the same order of magnitude and opposite signs.

Once the coefficients have been chosen, the approximation and the evaluation error can a
posteriori be certified by several existing algorithms and tools, like Sollya [55], Gappa [66],
Rosa [65] or Real2Float [215].

It is important to note that these two steps are usually independently considered. An ex-
ception occurs for the case of very small precisions or polynomial degrees, where an exhaustive
search on the rounded coefficients is possible [242].

However, as explicitly mentioned in [42], “one would like to take into account the roundoff
error that occurs during polynomial evaluation: getting the polynomial, with constraints on the
size of the coefficients, that minimizes the total (approximation plus roundoff) error would be
extremely useful ”.

The purpose of this article is to make progress on this open question: we search for the

coefficients of a polynomial p(t) =
n∑

i=0
ait

i, of given degree n, which minimizes the maximum of

the sum of both approximation and evaluation errors over an input interval I, with respect to f .
We consider a black-box description of f i.e., one can ask for the value f(t) for any desired t, up
to any required accuracy [151]. This allows for handling very general functions (elementary,
special, etc.), but also implies that no argument reduction step is possible in general. For
simplicity we state the problem for the absolute error case (The relative error can be similarly
handled from a theoretical standpoint, cf. Section 8.4.3):

min
ai∈❘,
i∈J0,nK

max
t∈I

(|f(t)− p(t)|+ |p̃(t)− p(t)|)
(Pgeneral)

Remark 8.1 (Floating-point coefficients) The formulation of Problem (Pgeneral) seems
to ignore the constraints that the coefficients of the approximating polynomial must be floating-
point representable. In fact, even if we optimize over real coefficients, the effect of rounding
them can be incorporated in the evaluation error term |p̃(t)−p(t)|. Hence, the objective function
of this optimization problem takes into account the constraint of floating-point coefficients.

In Section 8.2, we give a linearized bound for the evaluation error |p̃(t) − p(t)|. Based
on [190], the performance of a given arbitrary evaluation scheme is recursively assessed by
bounding the rounding error of each elementary operation. This leads to the formulation in
Section 8.3 of Problem (Pgeneral) as a linear semi-infinite programming (SIP) problem [207,
228].

In this context, we show two results: on the theoretical side, based on the duality theory, we
revisit, explain and extend an exchange algorithm [259, 50, 48, 49], which solves this problem
in Section 8.4. On the practical side, the solution of this problem provides a first attempt on
simultaneously optimizing over both errors: we show that in some cases the evaluation error
can be improved. We also show that in some other cases, the minimax polynomial solution
of Problem (Pminimax) is very close to the solution of Pgeneral. Numerical examples and a
discussion are provided in Section 8.5.
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8.2 Evaluation error

Throughout this chapter, we make use of the definitions and notations from Chapter 1 about
floating-point arithmetic. We assume radix-2, precision-p, floating-point arithmetic with un-
bounded exponent range i.e, provided that overflows and underflows do not occur. Recall in
particular that for any t ∈ ❘, we have

|t− RN(t)|
|t| 6

u

1 + u
< u,

where u = 2−p is called the rounding unit. Moreover, for each ⊤ ∈ {+,−,×, /,√}, there exists
a real number ǫ such that

RN(a⊤b) = (a⊤b)(1 + ǫ), |ǫ| 6 u.

Based on the previous property, the error of any arithmetic expression can be recursively
bounded. This leads to computable evaluation errors associated to any evaluation scheme p̃ for a
polynomial p. Firstly, for specific evaluation schemes, like Horner, bounds date back to the work
of Oliver [190], which is detailed below as an example. More recently, several works insisted
on the automatic algorithmic approach via operator overloading similar to automatic differen-
tiation [36, 232]. Based on this, we propose, for completeness1, Algorithm LinEvalError,
which automatically computes linearized expressions for the evaluation error (like in (8.3)),
for any given symbolic expression tree e, provided with symbolic rounding errors for each tree
node. Let us exemplify on the evaluation of the polynomial p(t) = ant

n + an−1t
n−1 + · · ·+ a0

Algorithm 8.1 Horner(p, t) – Classical Horner scheme
1: rn ← an
2: for k = n− 1 downto 0 do
3: rk ← RN

(
RN(rk+1 × t) + ak

)

4: end for
5: return r0

using Horner’s rule, assuming that a Fused Multiply Add (FMA) instruction is not employed.
The actual machine operations are recalled in Algorithm Horner. We have:

rn = an,

rn−1 =
(
trn(1 + ǫ×n−1) + an−1

)
(1 + ǫ+n−1),

where ǫ×n−1 and ǫ+n−1 model the rounding errors for multiplication and addition at step n − 1.
By induction, one obtains:

rk =

n∑

i=k


(1 + ǫ+i )

i−1∏

j=k

(1 + ǫ+j )(1 + ǫ×j )


 ait

i−k, (8.2)

1While the general ideas are the same as in [36, 232] and references therein, we could not find the exact pseudo-
code in literature, so it is stated in order to provide a complete algorithmic solution for Problem (Pgeneral).
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where we define ǫ+n := 0 and
k−1∏
j=k

(1 + ǫ+j )(1 + ǫ×j ) := 1. This implies that the total evaluation

error is:

r0 −
n∑

i=0

ait
i =

n∑

i=0


(1 + ǫ+i )

i−1∏

j=k

(1 + ǫ+j )(1 + ǫ×j )− 1


 ait

i.

Here, we consider only a linear approximation θlin of the evaluation error, function of ǫ+i and
ǫ×i , in what follows. This gives, for our Horner example:

θ
(Horner)
lin :=

n−1∑

j=0




n∑

i=j+1

ait
i


 ǫ×j +

n−1∑

j=0




n∑

i=j

ait
i


 ǫ+j . (8.3)

Moreover, provided bounds are specified for each rounding error, depending on the precision
employed, one obtains upper bounds for the linearized absolute evaluation error. For instance,
if binary64 is used for all the computations in Algorithm Horner, with u = 2−53, one has:

∣∣∣θ(Horner)
lin

∣∣∣ 6 2u

n∑′′

j=0

∣∣∣∣∣∣

n∑

i=j

ait
i

∣∣∣∣∣∣
, (8.4)

where the double superscript indicates that the first and last terms in the summation are to be
halved.

As exemplified in Table 8.1, to automate the evaluation error analysis, we firstly associate to
a mathematical expression e∗, a given symbolic evaluation scheme with roundings e, composed
of terms RN(e′, u). This means that e′ is rounded with a relative error bounded by u. This
formulation models both possible rounding errors on an input variable (e′ ∈ V, where V denotes
the set of input variables) and the rounding errors of arithmetic operations (if e′ = a1⊤e2).
Then, we build an expression ẽ, as in (8.2), by recursively replacing terms RN(e′, u) in e, with

ẽ′(1 + ǫ
[u]
e′ ) where |ǫ[u]e′ | 6 u.
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e1 = RN(a+ RN(b× c, u), u) e∗1 = a+ bc

ẽ1 = (a+ bc(1 + ǫ
[u]
b×c))(1 + ǫ

[u]
a+RN(b×c,u))

θ
(e1)
lin = bcǫ

[u]
b×c + (a+ bc)ǫ

[u]
a+RN(b×c,u)

|θ(e1)lin | 6 (|bc|+ |a+ bc|)u
⊲ Arithmetic operations in double precision.

e2 = RN(a+ b× c, u) e∗2 = a+ bc

ẽ2 = (a+ bc)(1 + ǫ
[u]
a+b×c)

θ
(e2)
lin = (a+ bc)ǫ

[u]
a+b×c

|θ(e2)lin | 6 |a+ bc|u
⊲ Fused multiply-add (FMA) in double precision.

e2 = RN(RN(a, u′) + b× RN(a, u′), u) e∗2 = a+ ba

ẽ2 = (a(1 + ǫ
[u′]
a ) + ba(1 + ǫ

[u′]
a ))(1 + ǫ

[u]
RN(a,u′)+b×RN(a,u′))

θ
(e2)
lin = (a+ ba)ǫ

[u′]
a + (a+ ba)ǫ

[u]
RN(a,u′)+b×RN(a,u′)

|θ(e2)lin | 6 |a+ ba|(u+ u′)
⊲ Fused multiply-add (FMA) in double precision,

with input a rounded to single precision.

Table 8.1: Evaluation error examples (u = 2−53, u′ = 2−24).

Finally, automatic linearized evaluation error expressions θlin, such as in (8.3), are obtained
using Algorithm LinEvalError. Specifically, for an arithmetic expression with roundings e,

this algorithm recursively computes an expression of the form θlin =
k∑

i=1
θlin,iǫ

[ui]
ei , with symbolic

ǫ
[ui]
ei (i ∈ J1, kK) for each term RN(ei, ui) in e. The coefficients θlin,i are arithmetic expressions

depending only on the input variables in e. Note that RN(ei, ui) may occur several times in e,

but the error variable ǫ[ui]
ei is unique since the rounding operation is deterministic. This allows

us to bound the (linearized) evaluation error as in (8.4).

Proposition 8.2 (Correctness of Algorithm LinEvalError) Let e be an arithmetic

expression with roundings, and θlin =
k∑

i=1
θlin,iǫ

[ui]
ei the linearized expression for the evaluation

error returned by Algorithm LinEvalError. If ui 6 u for all i ∈ J1, kK, then:

|ẽ− e∗| 6
k∑

i=1

|θlin,i|ui +O
(
u2
)
, as u→ 0.

Usually, for polynomial evaluation schemes, the functions θlin,i are linear with respect to
the coefficients a of p(t), that is uiθlin,i = πi(t)

Ta, with a ∈ ❘n+1, t ∈ ❘ and for some
πi(t) ∈ ❘n+1. Hence we obtain a linearized bound of the evaluation error of the form:

|θlin(a, t)| 6
k∑

i=1

|πi(t)
Ta| := θ(a, t). (8.5)
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Example 8.3 For Horner evaluation, Equation (8.4) gives:

π1(t)
T = (u, ut, . . . , utn−1, utn),

π2(t)
T = (0, 2ut, . . . , 2utn−1, 2utn), . . . ,

πn(t)
T = (0, 0, . . . , 2utn−1, 2utn),

πn+1(t)
T = (0, 0, . . . , 0, utn).

Remark 8.4 The use of Algorithm LinEvalError is flexible and allows for the treatment
of various situations, e.g., evaluation schemes with several floating-point precisions or compen-
sated schemes. The user just needs to specify the accuracy of each floating-point operation.

Algorithm 8.2 LinEvalError(e) – Linearized absolute rounding error

Input: e an arithmetic expression with explicit roundings.
Output: θlin the linearized evaluation error of e.

if e ∈ V then
return 0

else if e = RN(f, u) then
θ′lin ← LinEvalError(f)

return θ′lin + f∗ǫ[u]f

else if e = −f then
θ′lin ← LinEvalError(f)
return −θ′lin

else if e = f + g then
θ′lin ← LinEvalError(f)
θ′′lin ← LinEvalError(g)
return θ′lin + θ′′lin

else if e = f × g then
θ′lin ← LinEvalError(f)
θ′′lin ← LinEvalError(g)
return g∗θ′lin + f∗θ′′lin

end if

8.3
Semi-Infinite Programming
formulation

Problem (Pgeneral) is rephrased in the framework of semi-infinite programming (SIP) in Sec-
tion 8.3.1. Then, some duality and discretization properties are summarized in Section 8.3.2,
leading to the exchange algorithm presented in Section 8.4.
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8.3.1 ◮ Formulation as a linear SIP

Noting that Problem (Pgeneral) is a piecewise-linear optimization problem and using the
convex evaluation error formula θ(a, t) at point t ∈ [tl, tr] obtained in Section 8.2, Prob-
lem (Pgeneral) becomes Problem (P ′

general) (see [35, Section 4.3.1] for instance), with the
compact index set I = [tl, tr] and the monomial basis π0(t) = (1, . . . , tn)T .

min
(a,a)∈Rn+2

a

s.t. |f(t)− π0(t)
Ta|+ θ(a, t)− a 6 0, t ∈ I.

(P ′
general)

Problem (P ′
general) is a convex Semi-Infinite Programming (SIP) problem (see [207] which

provides a comprehensive overview of SIP) that can be reformulated as a linear SIP problem,
at the expense of a different index set Ω replacing the previous index set I. Here, the set of
constraints of (P ′

general) involving absolute values is replaced by as many linear constraints
as required to represent all possible sign combinations. The evaluation error is as in Equa-
tion (8.5), and define:

x := (a,a) ∈ ❘n+2, z := (1, 0, . . . , 0) ∈ ❘n+2,

α(t, σ0, . . . , σk) := (1, σ0π0
T (t) +

k∑

i=1

σiπi
T (t))T ∈ ❘n+2,

S := {− 1, 0, 1}k+1, ω := (t, σ0, . . . , σk) ∈ Ω := I ×S.

Then, Problem (P ′
general) is exactly the following linear SIP:

min
x∈❘d

zTx

s.t. α(ω)Tx > c(ω), ω ∈ Ω,
(P )

where d = n + 2, c(ω) = σ0f(t), Ω is a compact metric space and the function g(x, ω) =
c(ω) − α(ω)Tx 6 0 defining the feasible set is a continuous function from Rn+2 × Ω into R.
Note that for S′ := {− 1, 1}× {0}k and Ω′ := I ×S′ ⊆ Ω, (Pminimax) is exactly retrieved as
shown in the next example.

Example 8.5 For n = 5, Problem (Pminimax) is:

min
(a,a)∈❘7

a

s.t. (1, σ01, σ0t, . . . , σ0t
5)(a, a0, a1, . . . , a5)

T > σ0f(t),
σ0 = ∓1, t ∈ I.

(Example 3 (a))

while Problem (P ′
general), assuming Horner evaluation is:

min
(a,a)∈❘7

a

s.t. (1, σ0 + σ1u, (σ0 + σ1u+ σ22u)t, . . . ,
(σ0 + σ1u+ . . .+ σ5u)t

5)(a, a0, a1, . . . , a5)
T > σ0f(t),

σ0 = ∓1, σ1 = ∓1, . . . , σ5 = ∓1, t ∈ I.

(Example 3 (b))

In Section 8.4 an exchange algorithm which solves Problem (P ′
general) is presented. It

can be seen as a generalization, in the above framework, of the Remez algorithm, which solves
Problem (Pminimax). To prove its correctness, important discretization properties of linear
SIP problems are recalled, closely following the survey [228].

260



8.3.2 ◮ Duality and discretization for SIP

For a Problem (P ), we denote respectively by val(P ) and Sol(P ), its optimal value and the set
of its optimal solutions.

A discretization (Pm) of (P ) for a set ω = {ω1, . . . , ωm} ⊆ Ω is the following linear program:

min
x∈❘d

zTx

s.t. α(ωj)
Tx > c(ωj), j = 1, · · ·m.

(Pm)

Since the feasible set of (P ) is included in the feasible set of (Pm), we have that val(Pm) 6
val(P ). The existence of a discretization (Pm) such that the equality holds is a particularly
appealing feature of some linear SIPs since the solution of (P ) may be obtained by the solution
of (Pm) if we are able to find the corresponding set ω.

Definition 8.6 [228] (P ) is said to be reducible if there exists a discretization (Pm) defined
by the subset {ω1, . . . , ωm} ⊆ Ω such that val(Pm) = val(P ).

The characterization of reducible SIP problems relies on the central notion of duality that
rules the interplay between two optimization problems. This notion has its roots in the in-
terrelations between a normed linear space and its topological dual. Let us define the con-
tinuous mapping g : x 7→ g(x, ·) from ❘d to the Banach space of continuous functions C(Ω),
equipped with the uniform norm ‖h‖Ω = supω∈Ω |h(ω)|, then the topological dual of C(Ω) is the
space C(Ω)∗ of signed Borel measures µ over (Ω,B(Rk+2)) [103, Section 21.5]. For a measure
µ ∈ C(Ω)∗, its support is the smallest closed subset Γ of Ω such that |µ|(Ω \Γ) = 0. A positive
measure µ is denoted by µ � 0. A classical example of a positive measure with discrete support
is the Dirac measure of support {ωj}:

δωj (A) =

{
0 if ωj 6∈ A,
1 if ωj ∈ A.

A ⊆ Ω.

Defining the bilinear form pairing C(Ω) and C(Ω)∗ by the duality bracket:

〈h, µ〉 =
∫

Ω
h(ω)dµ(ω),

the dual problem (D) related to the primal problem (P ) is:

max
µ�0

∫

Ω
c(ω)dµ(ω)

s.t.
∫

Ω
α(ω)dµ(ω) = z.

(D)

The weak duality, that is val(D) 6 val(P ) always holds. Problem (D) is an LP problem
defined in the space of positive measures which is hard to solve. By restricting the support of
µ � 0 to {ω1, . . . , ωm}, that is µ =

∑m
j=1 yjδωj with yj > 0, a discretized counterpart (Dm) of

(D) is obtained:

max
yj>0

j∈J1,mK

m∑

j=1

c(ωj)yj

s.t.
m∑

j=1

yjα(ωj) = z,

(Dm)
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with val(Dm) 6 val(D). It is important to note that the LP dual of the discretized problem
(Pm) is exactly (Dm) which implies that val(Dm) = val(Pm) (strong duality holds) provided
that none of (Pm) or (Dm) is infeasible.

So far, under these mild assumptions, we have that val(Dm) = val(Pm) 6 val(D) 6 val(P )
and conditions for having only equalities (respectively reducibility and strong duality properties)
may be obtained by using conjugate duality theory as developed in [228, Theorems 2.2, 2.3
and 3.2].

Theorem 8.7 [228, Thm. 2.2, 2.3, 3.2] Under the assumptions:

A1 Ω is a compact metric space, α : Ω→ Rd and c : Ω→ R are continuous functions;

A2 val(P ) is finite;

A3 (Slater’s condition): there exists x◦ such that:

α(ω)Tx◦ > c(ω), for all ω ∈ Ω;

A4 There exist ω1, . . . , ωd ∈ Ω with (α(ω1), · · · ,α(ωd)) linearly independent such that:

∃ y1, . . . , yd > 0, z =

d∑

j=1

yjα(ωj),

the following statements are true:

(i) Sol(P ) 6= ∅ and bounded;

(ii) Sol(D) 6= ∅ and bounded;

(iii) Problem (P ) is reducible to a Problem (Pm) with m 6 d;

(iv) val(P ) = val(D) = val(Pm) = val(Dm).

Proposition 8.8 Assumptions A1-A4 are satisfied for our Problem (P ′
general) and there-

fore results (i)-(iv) of Theorem 8.7 apply.

Proof.

A1 By construction, our set Ω is a compact metric space and α and c are polynomials and
therefore continuous on Ω;

A2 val(P ) = +∞ means that the primal problem (P ′
general) is not feasible but x =

(max
t∈I
|f(t)|, 0 · · · , 0) is a feasible point for (P ′

general), therefore val(P ) < +∞. In addi-

tion, val(P ) > −∞ since a > 0 by construction and for all feasible points of (P ′
general);

A3 It may be easily deduced from the proof of A2 that x◦ = (max
t∈I
|f(t)| + ς, 0 · · · , 0) is a

strictly feasible point for (P ′
general) for any ς > 0;

A4 An instance for {ω1, . . . , ωn+2} is provided by Algorithm Init in Section 8.4.
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The fact that both (P ) and (D) are reducible to a discretization of size at most d, allows for
recasting the problem (P ′

general) as the problem of finding the right discretization {ω1, . . . , ωd}
such that item (iv) of Theorem 8.7 applies and to solve the associated (Pm) and/or (Dm).
This goal may be reached by tailoring the general exchange algorithm for semi-infinite linear
programs presented in [49] to our specific case.

This algorithm can be seen as a generalization of the dual simplex algorithm for Prob-

lem (D). The main idea consists first in finding at each iteration ℓ, the solution y(ℓ) of (D(ℓ)
n+2),

with ω(ℓ) = {ωj
(ℓ)}n+2

j=1 . Such a solution is a feasible (but not necessarily optimal) point of the

dual Problem (D). Moreover, the objective value zTx(ℓ) of (P (ℓ)
m ) and (P ) for the instance

x(ℓ) := (a(ℓ),a(ℓ)) is equal to the objective value of (D) for the instance y(ℓ)2. Hence, either
x(ℓ) is a feasible solution of Problem (P ) by Theorem 8.7, or it is an infeasible point of
Problem (P ). In the latter case, one of these constraints is replaced by a new one, indexed
by ω∗(ℓ), in an exchange step in order to increase the objective value of the dual and works
towards primal feasibility.

8.4 Iterative exchange algorithm

Now that the essential notions and properties of linear SIP have been given in the previous
section, we give the exchange algorithm EvalApproxOptimize to solve Problem (P ′

general)
in Section 8.4.1. The correctness proofs are postponed in Section 8.4.2. After that, some
insight into how to transpose this algorithm to the framework of relative error is given in
Section 8.4.3.

8.4.1 ◮ The algorithms

Algorithm EvalApproxOptimize computes the degree-n best polynomial approximation
with respect to both evaluation and approximation errors, i.e. it solves (P ′

general) based on
developments from Section 8.3.2. Regarding the main steps of the new algorithm, an analogy
with Remez is as follows:
- Init provides a good set of initial points.
- At each step, SolvePrimal solves a linear system of equations (built w.r.t. the current set
of points), where the variables are the polynomial coefficients.
- Then, FindNewIndex finds a new point where the total error is maximal.
- Finally, Exchange replaces one point from the current set with this new point.

However, when considering both errors, one can not only rely on the primal problem (coeffi-
cients reconstruction), but also needs the dual problem. This implies:
- Besides classical points, a combination of signs (signatures) is required at each step.
- Init and Exchange need the solution of the dual problem.

2The feasible set of (P ) is included in the feasible set of (P (ℓ)
m ), for all ℓ.
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A running example for this algorithm is given in Section 8.5.

Algorithm 8.3 EvalApproxOptimize(f, n, I, θ, τ)

Input: function f , n > 0, I, θ(a, t) as in (8.5), τ > 0.
Output: (a,a) solution of Problem (P ) within accuracy τ .

⊲ Initialization
1: (ω(0),y(0))← Init(n, I)
2: (a(0),a(0))← SolvePrimal(f, n, θ,ω(0))

3: (ω∗(0), a
(0)
∗ )← FindNewIndex(f, n, I, θ,a(0))

4: ℓ← 0
⊲ Iterate while accuracy τ not reached
5: while a

(ℓ)
∗ /a(ℓ) > 1 + τ do

6: (ω(ℓ+1),y(ℓ+1))← Exchange(n, θ,ω(ℓ),y(ℓ), ω
(ℓ)
∗ )

7: (a(ℓ+1),a(ℓ+1))← SolvePrimal(f, n, θ,ω(ℓ+1))

8: (ω∗(ℓ+1), a
(ℓ+1)
∗ )← FindNewIndex(f, n, I, θ,a(ℓ+1))

9: ℓ← ℓ+ 1
10: end while
11: return (a(ℓ),a(ℓ))

Algorithm 8.4 Init(n, I)

Input: n > 0, I = [tl, tr].
Output: ω ∈ Ωn+2 and solution y of Problem (Dm).

⊲ Initialize with Chebyshev nodes and Remez constraints
1: for j in J1, n+ 2K do

2: tj ← tl+tr
2 + cos

(
(j−1)π
n+1

)
tl−tr
2

3: σj ← ((−1)j , 0, . . . , 0)
4: ωj ← (tj ,σj)
5: end for
⊲ Compute dual solution

6: Solve for y the linear system
n+2∑
j=1

yjα(ωj) = z

7: return (ω,y)
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Algorithm 8.5 SolvePrimal(f, n, θ,ω)

Input: function f , n > 0, θ the evaluation error, ω ∈ Ωn+2.
Output: (a,a) solution of Problem (Pm) for ω.

1: Solve for (a,a) ∈ ❘n+2 the linear system:

α(ωj)
T (a,a) = c(ωj), j ∈ J1, n+ 2K

2: return (a,a)

Algorithm 8.6 FindNewIndex(f, n, I, θ,a)

Input: function f , n > 0, I = [tl, tr], θ the evaluation error as in (8.5), coefficients a ∈ ❘n+1.
Output: (ω∗, a∗) with ω∗ = (t∗,σ∗) ∈ Ω

⊲ Compute maximal error in absolute value

1: t∗ ← argmax
tl6t6tr

|aTπ0(t)− f(t)|+
k∑

i=1

|aTπi(t)|

2: a∗ ← max
tl6t6tr

|aTπ0(t)− f(t)|+
k∑

i=1

|aTπi(t)|

⊲ Reconstruct signature
3: σ∗0 ← − sign(aTπ0(t∗)− f(t∗))
4: σ∗i ← − sign(aTπi(t∗)), i ∈ J1, kK
5: ω∗ ← (t∗,σ∗)
6: return (ω∗, a∗)

Algorithm 8.7 Exchange(n, θ,ω,y, ω∗)

Input: n > 0, θ the evaluation error, ω ∈ Ωn+2, dual solution y ∈ ❘n+2, new index ω∗ ∈ Ω.
Output: new set ω′ ∈ Ωn+2 and dual solution y′ ∈ ❘n+2.

1: Solve for γ ∈ ❘n+2 the linear system:

n+2∑

j=1

γjα(ωj) = α(ω∗)

⊲ Exiting index

2: j0 ← argmin
{

yj
γj

∣∣∣ γj > 0
}

⊲ Update dual solution
3: ỹ∗ ← yj0

γj0
4: ỹj ← yj − γj ỹ∗, j ∈ J1, n+ 2K
5: {(ω′

j , y
′
j)}← {(ωj , ỹj), j ∈ J1, n+ 2K− {j0} ∪ { ∗ },

6: return (ω′,y′)
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Remark 8.9 Although the formulation of FindNewIndex theoretically requires the values
of f over the whole interval [tl, tr], which would contradict a black-box approach, in practice
FindNewIndex is implemented via a discretization of [tl, tr], evaluating f on it, and then
picking t∗ among these grid points.

8.4.2 ◮ Correctness proof

We focus now on the correctness of Algorithm EvalApproxOptimize, which is stated in
Theorem 8.16. For this, one needs an assumption on the dual solution, which always holds
in the Remez algorithm. It is not proven in our setting, but it never failed in practice.

Assumption 8.10 At each iteration ℓ, the solution y(ℓ) of the dual discretized Problem

(D
(ℓ)
n+2) is an interior point, that is y(ℓ)j > 0 for all j ∈ J1, n+ 2K.

Moreover, one needs preliminary correctness proofs of Algorithms Init, SolvePrimal,
FindNewIndex, and Exchange.

Lemma 8.11 (Correctness of Init) Init(n, I) computes ω = {ωj}
n+2
j=1 ∈ Ωn+2 and y ∈ ❘n+2

satisfying:

◦ {α(ωj)}
n+2
j=1 is a basis of ❘n+2;

◦ y is the optimal solution of Problem (Dm) for ω;

◦ yj > 0 for all j ∈ J1, n+ 2K.

Note that Algorithm Init essentially initializes the problem with Chebyshev nodes for
heuristic efficiency and signatures corresponding to the classical Remez algorithm, without the
evaluation error term.

Proof. Let A(ω) denote the (n + 2) square matrix whose columns are the α(ωj). Since σj =(
(−1)j , 0, . . . , 0

)
, we have

A(ω) =




1 . . . . . . 1
−1 . . . . . . (−1)n+2

−t1 . . . . . . (−1)n+2tn+2
...

. . .
...

...
. . .

...
−tn1 . . . . . . (−1)n+2tnn+2




.

First, we prove the existence of a feasible point y in Problem (Dm) for ω, that is A(ω)y = z

and y > 0. From Farkas’ lemma [26], if such a y does not exist, then there exists x = (a,a) ∈
❘n+2 s.t. zTx = a < 0 and A(ω)Tx > 0, that is

a+ (−1)jaTπ0(tj) > 0, j ∈ J1, n+ 2K.

Since a < 0, this implies that sign(aTπ0(tj)) = (−1)j . But aTπ0(t) is a polynomial of degree
at most n, hence it cannot strictly change signs n + 2 times. Consequently, Problem (Dm)
has a feasible point y.
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Now, suppose that the columns of A(ω) are not linearly independent, or that yj = 0 for
some j. Both cases imply that there exists J ⊂ J1, n + 2K of size n + 1, and ỹ ∈ ❘n+1 s.t.∑
j∈J

ỹjα(ωj) = z. In particular, by canceling the first component, the family {π0(tj)}j∈J is

linearly dependent. But the Vandermonde determinant of this system cannot vanish since the
tj are pairwise distinct. Therefore, {α(ωj)}

n+2
j=1 is a basis of ❘n+2, and yj > 0 for all j.

Finally, since A(ω) is invertible, y is the unique optimal feasible point of (Dm).

Lemma 8.12 (Correctness of SolvePrimal) If {α(ωj)}
n+2
j=1 is a basis of ❘n+2 and Prob-

lem (Dm) for ω is feasible, then SolvePrimal(f, n, θ,ω) computes the optimal solution
x = (a,a) of Problem (Pm).

Proof. Algorithm SolvePrimal computes the solution x ∈ ❘n+2 of α(ωj)
Tx = c(ωj) for

j ∈ J1, n+ 2K. We show that x is the optimal solution of Problem (Pm) for ω.
Let x̃ be any feasible point in (Pm). Since the dual Problem (Dm) for ω is feasible, there

exists y > 0 s.t. z =
n+2∑
j=1

yjα(ωj). Then

zT x̃ =

n+2∑

j=1

yjα(ωj)
T x̃ >

n+2∑

j=1

yjc(ωj) =

n+2∑

j=1

yjα(ωj)
Tx = zTx,

thereby establishing optimality of x.

Lemma 8.13 (Correctness of FindNewIndex) Given x = (a,a), FindNewIndex(f, n, I, θ,a)
computes ω∗ and a∗ corresponding to the most violated constraint:

ω∗ = argmax
ω∈Ω

(
c(ω)−α(ω)Tx

)
,

a∗ − a = max
ω∈Ω

(
c(ω)−α(ω)Tx

)
.

Proof. We have

max
ω∈Ω

(
c(ω)−α(ω)Tx

)
= max
ω=(t,σ)∈Ω

(
σ0
(
f(t)− aTπ0(t)

)
−

k∑

i=1

σia
Tπi(t)

)
− a

= max
tl6t6tr

(
|aTπ0(t)− f(t)|+

k∑

i=1

|aTπi(t)|
)
− a.

Therefore, by computing t∗ (line 1) and σ∗ (lines 3-4), Algorithm FindNewIndex ensures
that ω∗ := (t∗,σ∗) is the index of the most violated constraint, with

c(ω∗)−α(ω∗)
Tx = a∗ − a > 0.

Lemma 8.14 (Correctness of Exchange) If {α(ωj)}
n+2
j=1 is a basis of ❘n+2 and y the

optimal solution of Problem (Dm) for ω, then Exchange(n, θ,ω,y, ω∗) computes new ω′ ∈
Ωn+2 and y′ ∈ ❘n+2 such that:

◦ ω′ = {ωj}j∈J ∪ {ω∗} for a subset J ⊂ J1, n+ 2K of size n+ 1;
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◦ {α(ωj)}
n+2
j=1 is a basis of ❘n+2;

◦ y′ is the optimal solution of Problem (Dm) for ω′.

Proof. In order to increase the objective value in the dual Problem (D), a measure supported
on ω ∪ {ω∗} is looked for, requiring nonnegative coefficients ỹj for j ∈ J1, n+ 2K ∪ { ∗ } s.t.

z =

n+2∑

j=1

ỹjα(ωj) + ỹ∗α(ω∗) =
n+2∑

j=1

(ỹj + γj ỹ∗)α(ωj),

while maximizing ỹ∗. But {α(ωj)}
n+2
j=1 being a basis of ❘n+2 implies

ỹj + γj ỹ∗ = yj , j ∈ J1, n+ 2K.

The nonnegativity constraints on the ỹj induces the choice of the exiting index ωj0 (line 2) and
the values of the ỹj (lines 3-4). Note that the first line of the linear system in line 1 says that
the coefficients γj sum to 1. Hence, at least one of them is strictly positive, so that j0 exists
(line 2), though it is not necessarily unique.

Finally, {α(ωj)}j∈J1,n+2K−{j0}∪{∗} remains a basis of ❘n+2 since γj0 6= 0, that is α(ω∗) is not
in the linear subspace spanned by {α(ωj)}j∈J1,n+2K−{j0}

.

In addition, the following lemma proves that the discretized error increases at each iteration.

Lemma 8.15 The total error a(ℓ) computed over the discrete set ω(ℓ) increases at each
iteration.

Proof. Let ỹ(ℓ)∗ and γ
(ℓ)
j denote the variables ỹ∗ and γj for j ∈ J1, n + 2K in Algorithm Ex-

change(n, θ,ω(ℓ),y(ℓ), ω
(ℓ)
∗ ). By strong duality in linear programming, a(ℓ) is also the objective

value of the optimal solution y(ℓ) in the discretized dual problem (Dn+2) for ω(ℓ). Hence, by
writing

a(ℓ) =

n+2∑

j=1

y
(ℓ)
j c(ω

(ℓ)
j ), and

a(ℓ+1) =
n+2∑

j=1

y
(ℓ+1)
j c(ω

(ℓ+1)
j )

=

n=2∑

j=1

(
y
(ℓ)
j − γ

(ℓ)
j ỹ

(ℓ)
∗
)
c(ω

(ℓ)
j ) + ỹ

(ℓ)
∗ c(ω

(ℓ)
∗ ),

we have

a(ℓ+1) − a(ℓ) = ỹ
(ℓ)
∗


c(ω(ℓ)

∗ )−
n+2∑

j=1

γ
(ℓ)
j c(ω

(ℓ)
j )




= ỹ
(ℓ)
∗


c(ω(ℓ)

∗ )−
n+2∑

j=1

γ
(ℓ)
j α(ω

(ℓ)
j )Tx(ℓ)




= ỹ
(ℓ)
∗ (c(ω

(ℓ)
∗ )−α(ω

(ℓ)
∗ )Tx(ℓ)) > 0,

because ỹ
(ℓ)
∗ > 0 and the constraint α(ω

(ℓ)
∗ )Tx(ℓ) > c(ω

(ℓ)
∗ ) is violated at the beginning of

iteration ℓ.
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This finally leads us to the central theorem of this section.

Theorem 8.16 Let f be a continuous function over an interval I = [tl, tr], a degree n > 0,
a linearized evaluation error bound θ and a tolerance parameter τ > 0. Under Assump-

tion 8.10, EvalApproxOptimize(f, n, I, θ, τ) terminates and returns a degree-n polynomial
approximation for f with a total error ε (approximation and evaluation) satisfying:

ε∗ 6 ε 6 (1 + τ)ε∗, (8.6)

where ε∗ is the total error of the best degree-n polynomial approximation of f .

Proof. • It is proven by induction that the following properties hold at each iteration ℓ > 0:

(i) {α(ω
(ℓ)
j )}n+2

j=1 is a basis of ❘n+2;

(ii) y(ℓ) is the optimal solution of Problem (Dm) for ω(ℓ);

(iii) x(ℓ) is the optimal solution of Problem (Pm) for ω(ℓ);

(iv) ω
(ℓ)
∗ = argmaxω∈Ω

(
c(ω)−α(ω)Tx(ℓ)

)
;

For ℓ = 0, Init(n, I) returns ω(0), y(0) satisfying (i) and (ii). Then SolvePrimal(f, n, θ,ω(0))

computes x(0) = (a(0),a(0)) satisfying (iii). Finally, FindNewIndex(f, n, I, θ,a(0)) gives ω(0)
∗ ,

a
(0)
∗ satisfying (iv).

For the inductive step, Exchange(n, θ,ω(ℓ),y(ℓ), ω
(ℓ)
∗ ) computes ω(ℓ+1), y(ℓ+1) satisfying (i)

and (ii), by induction hypothesis on ω(ℓ), y(ℓ), ω(ℓ)
∗ . Then, SolvePrimal(f, n, θ,ω(ℓ+1)) and

FindNewIndex(f, n, I, θ,a(ℓ+1)) compute x(ℓ+1), ω(ℓ+1)
∗ , a(ℓ+1)

∗ satisfying (iii) and (iv).

• Moreover, at each iteration ℓ, we have a(ℓ) 6 ε∗ 6 a
(ℓ)
∗ . Indeed, x(ℓ) is the optimal solution of

the discretized Problem (Pm) for ω(ℓ), whose objective value a(ℓ) is less or equal to the optimal

value ε∗ of Problem (P ). On the other side, a(ℓ)∗ is the total error of degree-n polynomial
a(ℓ)Tπ0(t) and therefore, it is greater or equal to the optimal error ε∗. In addition, Lemma 8.15
proves a(ℓ) 6 a(ℓ+1).
• Finally, the convergence of this iterative process is proved by [49, Theorem 2.1], relying on
Assumption 8.10. Hence, Algorithm EvalApproxOptimize terminates at some iteration
ℓ, with a(ℓ)∗ 6 (1 + τ)a(ℓ), yielding the enclosure (8.6).

8.4.3 ◮ Optimizing with the relative error

When considering the relative error in place of the absolute error, Problem (Pgeneral) is
replaced by

min
ai∈❘,
i∈J0,nK

max
t∈I

( |f(t)− p(t)|+ |p̃(t)− p(t)|
|f |

)
(P rel

general)

where f is assumed to be strictly positive over I. This is equivalent to multiplying the error
variable a by f in Problem (P ), yielding the following new linear SIP formulation

min
x∈❘d

zTx

s.t. α̃(ω)Tx > c(ω), ω ∈ Ω,
(P rel)
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with
x = (a,a) ∈ ❘n+2, z = (1, 0, . . . , 0) ∈ ❘n+2,

α̃(t, σ0, . . . , σk) = (f(t), σ0π0
T (t) +

k∑

i=1

σiπi
T (t))T ∈ ❘n+2,

S = {− 1, 0, 1}k+1, ω = (t, σ0, . . . , σk) ∈ Ω := I ×S.

Therefore, replacing α(ω) by α̃(ω) in EvalApproxOptimize and its subroutines provides
an algorithm to compute the best degree-n polynomial w.r.t. both approximation and evalua-
tion errors in relative setting.

8.5 Examples and conclusion

Algorithm EvalApproxOptimize is firstly illustrated by a tutorial example for Airy special
function. Then approximations with binary64 coefficients of arcsin are presented.

8.5.1 ◮ Airy function

The Airy function Ai is a special function frequently used in theoretical physics. In particular,
some applications require to compute Ai(t) for possibly large negative values of t, where the
function exhibits a highly oscillatory behavior (see Figure 8.4a). However, contrary to elemen-
tary functions, there exists no simple argument reduction for Ai. Therefore, one polynomial
approximation is needed for each interval of the domain subdivision, and these intervals cannot
be assumed to be small. Hence, controlling the evaluation error is essential.

We consider the function Ai over I = [−2, 2], approximated by a polynomial of degree n = 6
and evaluated using the Horner scheme with u = 2−12. The terms {π1, . . . ,π7} defining the
evaluation error θ are given in Example 8.3. We fix a tolerance τ = 0.01.

At iteration 0 (Figure 8.1), the points t(0)j are initialized with the Chebyshev nodes and the

signatures σj
(0) define a Remez-like system of linear equations on the coefficients of the polyno-

mial (Figure 8.1d). Its solution x(0) = (a(0),a(0)) defines a polynomial p(0)(t) = a(0)Tπ0(t),
whose approximation error is depicted in Figure 8.1a. It exhibits quasi-equioscillations indi-
cating that p(0) is rather close to the degree-6 minimax approximation of Ai over I. However,
the total error is more important near −2 and 2 (Figure 8.1b), due to the evaluation depicted

in green. In particular, the algorithm detects the maximum error at t(0)∗ = −2 (in orange).

Note that t(0)1 was already equal to −2, but ω(0)
1 6= ω

(0)
∗ since the signatures are different. To

perform the exchange, the dual solution is needed (Figure 8.1c). It is a positive combination
of Dirac measures supported on the finite set ω(0).

Moving forward to iteration 6 (Figure 8.2), the total error is more balanced, though still
not optimal. Both the signatures and the approximation error are now completely different
from the Remez solution.
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Figure 8.5: Error plots for different approximation polynomials of degree 20 for f = arcsin
over I = [0.75, 1].
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8.5.3 ◮ Some comments

Finally, we mention that when other argument reduction techniques exist, and when the eval-
uation error is not an issue (very small intervals around zero), the FPMinimax method still
provides better tuned FP coefficients. So this opens the question for several future extensions.
A mixed-integer linear programming problem could be formulated in the provided optimization
framework. However, a similar exchange procedure in this case is not obvious. Concerning pre-
cisions of the coefficients and operations, they can be variable, as mentioned in Section 8.2,
but a more detailed study is needed to eventually take into account higher order error terms for
the error estimation formula. The polynomial coefficients stay linear in such a formula, so the
algorithm presented can be straightforwardly used in such a case. In addition, this formula di-
rectly allows for the estimation of evaluation errors for other numerical schemes and eventually
polynomial bases [14] for which a practical study is necessary.
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On a Moment Problem with
Holonomic Functions 9

Quand on voit ce qu’on voit, que l’on entend ce qu’on entend et que l’on sait ce que qu’on
sait, on a raison de penser ce qu’on pense.

— Pierre Dac, L’Os à moelle

Reconstructing algebraic data, such as polytope or more complex volume boundaries, from
moment measurements is an essential requirement for computer tomography and shape recog-
nition, with applications to, e.g., medical imaging or geophysics. Many algorithms resorting
to optimization, numerical analysis or statistics, for instance, were developed toward this aim,
as discussed in Section 9.1. In particular, Lasserre and Putinar [150] proposed an exact
reconstruction algorithm for the algebraic support of the Lebesgue measure, or of measures
with density equal to the exponential of a known polynomial. Their approach relies on linear
recurrences for the moments obtained using Stokes theorem, whence a strong, yet not fully
exploited connection with the D-finite setting presented in Chapter 2.

Guided by the intuition that holonomicity could shed a new light on that work, Mioara Joldes,
Jean-Bernard Lasserre and I worked together toward extending this method to measures with
unknown holonomic densities and unknown support with real algebraic boundary. The article
that we wrote, “On Moment Problem with Holonomic Functions” [39], will be published in
the proceedings of the 44th International Symposium on Symbolic and Algebraic Computation
(ISSAC 2019).

More specifically, our work, summarized in this chapter, consists in two contributions. First,
in the framework of holonomic distributions (i.e. they satisfy a holonomic system in the sense
of distributions, see Sections 2.1.2 and 9.2), an alternate method to creative telescoping
is proposed in Section 9.3 for computing linear recurrences for the moments. When the
coefficients of a polynomial vanishing on the support boundary are given as parameters, the
obtained recurrences have the advantage of remaining linear with respect to them. Second, and
based on this property, an efficient reconstruction method is explained in Section 9.4. Given
a finite number of numerically computed moments for a measure with holonomic density, and
assuming a real algebraic boundary for the support, we propose an algorithm for solving the
inverse problem of obtaining both the coefficients of a polynomial vanishing on the boundary
and those of the polynomials involved in the holonomic operators which annihilate the density.
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9.1
Overview of algebraic techniques for
reconstruction from moments

The structure of moments of algebraic data is a central question in various reconstruction
algorithms, appearing as part of a broad field of inverse problems [133]. We refer to [150] and
references therein for various shape reconstruction from their moments of polyhedra [98, 94],
planar quadrature domains [76], sublevel sets of homogeneous polynomials [149], together with
more applied studies of computerized tomography [180].

In this chapter, we focus on the structure of moments of holonomic distributions, together
with associated inverse problems. It can be seen as a computer algebra-based extension of [150],
where the approach was mainly based on techniques recently developed in polynomial optimiza-
tion [148], which are at the interface between real algebraic geometry, moment problems and
polynomial optimization.

Notations. Let n be a positive integer for the ambient space ❘n, whose canonical basis is
denoted by (e1, . . . , en). Let ❑[x] be the ring of polynomials in the variables x = (x1, . . . , xn)
over a real finite computable extension of ◗, and let ❑[x]d be the vector space of polynomials
of total degree at most d. For every d, let ◆n

d := {α ∈ ◆n : |α| 6 d}, where |α| =
∑

i αi. In
a multivariate setting, we denote xβ = xβ1

1 . . . xβn
n and ∂α

x = ∂α1
x1
. . . ∂αn

xn
for α,β ∈ ◆n. The

derivative ∂p
∂xi

is denoted pxi . The indicator function of a set G is denoted by ✶G.

9.1.1 ◮ Selected problems

Let G ⊂ ❘n be a bounded open set, whose boundary ∂G is algebraic (∂G is contained in the
real zero set of finitely many polynomials), and let µf = f✶Gdx be a measure supported on G,
with a so-called holonomic weight f against Lebesgue volume measure dx on ❘n. This means
that it satisfies a holonomic system (as defined in Section 2.1.2) as a generalized function if
needed, see Definition 9.8. For instance, the weight f(x) = exp(p(x)), with p ∈ ❘[x]s is
holonomic i.e., it satisfies: {

∂f

∂xi
− ∂p

∂xi
f = 0, i ∈ J1, nK.

Consider also the power moments of µf :

mα :=

∫

G

xαdµf (x), α ∈ ◆n. (9.1)

In [150], the following property is proved, for such an exponential-polynomial weight: know-
ing a priori the coefficients of p, its degree s and the degree d of the variety containing ∂G, a
threshold N is identified (which depends only on d and s), such that the moments mα up to
degree N (i.e. α ∈ ◆n

N ) determine in a constructive and robust manner the coefficients of a
polynomial vanishing on ∂G.
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A natural question is whether this result can be generalized, as mentioned in [150]: the anal-
ogy to the well understood moment rigidity of the Gaussian distribution is striking, although the
constructive aspects of this finite determinateness remain too theoretical in general. Motivated
by this remark, in this chapter we revisit and extend this study to related problems, by exploit-
ing holonomicity. In this framework, a first generalization of [150] is to recover the coefficients
of both g and p in the exponential-polynomial case:

Problem 9.1 (Exp-Poly Inverse Problem) Let µf = f✶Gdx be a measure supported on a
compact semi-algebraic set G, whose algebraic boundary is included in the zero set of a polyno-
mial g ∈ ❑[x]d. Let f = exp(p), with p ∈ ❑[x]s. Given s, d, and a finite number of moments
mα, |α| 6 N , recover the coefficients of both g and p.

More generally, the inverse problem for holonomic weights is:

Problem 9.2 (General Inverse Problem) Let µf = f✶Gdx be a measure supported on
a compact semi-algebraic set G, with holonomic f . Given a finite number of moments mα,
|α| 6 N , recover a polynomial g ∈ ❑[x] vanishing on the algebraic boundary of G and the
coefficients of a holonomic system satisfied by f .

Finally, we note the closely related direct problem:

Problem 9.3 (General Direct Problem) Let µf = f✶Gdx be a measure supported on a
compact semi-algebraic set, with given holonomic f . Find a holonomic system of recurrences
for the sequence of moments (mα).

Contributions. We address the above problems in the framework of holonomic distributions,
employing well-known algorithmic properties of non-commutative polynomial representation of
linear differential operators (see Section 9.2), as well as a generalized Stokes formula [150].
Firstly, this allows us to solve Problem 9.1 in Section 9.4.1: we prove that this reconstruction
problem boils down to solving a linear system of 3d + s − 1 equations, involving moments up
to degree |α| 6 4d+ 2(s− 1).

Secondly, as a by-product, an alternate method to creative telescoping is proposed for com-
puting linear recurrences for the moments in Section 9.3. The advantage is that when the
coefficients of g are given as parameters, the obtained recurrences stay linear with respect to
them. However, there is no guarantee that this method provides a holonomic ideal. We could
only prove that it solves Problem 9.3 (i.e. it provides a holonomic ideal) in the restricted case
of exponential-polynomial density and g nonsingular in ❈n.

Finally, Problem 9.2 is solved in Section 9.4.2: we prove that a holonomic system for
f can be found by solving a finite system of linear equations, but their number cannot be a
priori bounded. Once the density is known, the support is reconstructed as solution of a similar
linear system, but in this case we provide an explicit uniform bound on the number of required
moments.

9.1.2 ◮ Related works

Moment problem. Concerning the moment problem, let µ be a Borel measure on ❘n with
all its moments finite. When µ is atomic with finitely many atoms (i.e., when µ =

∑d
k=1 γk δξk ,
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where δξk is the Dirac measure, for some (ξk) ⊂ ❘n and some positive weights (γk)), a first
classical problem is to retrieve the atoms and the weights of µ from some finite truncation of its
moment vector (mα)α∈◆n . In [175] a thorough overview of algebraic methods for this problem
is given. An important idea consists in computing a sparse polynomial-exponential representa-
tion of a multivariate series from its truncated Taylor series, whose coefficients correspond to
moments. For instance, for pairwise distinct ξ1, . . . , ξd, the moment generating series is:

σδξ(y) =
∑

mα
yα

α!
=

d∑

k=1

γk exp(ξk
Ty).

Such generating functions are also the solutions of systems of partial differential equations
with constant coefficients. Hence, the sparse representation of the polynomial-exponential
(also known as Prony method) is related to the inverse system of the isolated points of the
characteristic variety of this system. Methods to obtain such representation are given in [175].
Also, flat extension criteria, like for instance [148, Theorem 3.7], provide purely algebraic
methods to reconstruct both the number of atoms, their values and weights function of the
rank of the moment matrix.

All in all, moments of atomic measures satisfy multi-index linear recurrences with constant
coefficients [175], which provide another incentive to consider the more general holonomic case.
In this sense, these recurrences can be computed by creative telescoping.

Creative telescoping. These methods, briefly presented in Chapter 2, perform integration
of functions (with free parameters), in the framework of non-commutative polynomial represen-
tation of linear differential operators (see [59, 141, 32] and references therein). In particular,
the direct Problem 9.3 can be solved for instance by the algorithms of Oaku [188]. Based
on the D-module theory (see also [85, 240]), one computes a holonomic system for the def-
inite integral of a holonomic function with parameters over a domain defined by polynomial
inequalities. In the algorithms, holonomic distributions are involved, so, a subtle distinction
has to be made between the ideal of operators with polynomial coefficients, which correspond
to holonomicity, and those with rational coefficients which correspond to so-called D-finiteness
(see Section 2.1.2).

Also, the Lagrange identity [122] (see also Equation (9.9) and Proposition 9.13), related
to integration by parts, will play an important role in our approach. In the one variable case,
for a linear differential operator with polynomial coefficients, L = cr∂

r
x + . . .+ c0, its adjoint is

defined as L∗ = (−1)r∂rxcr + . . .+ c0 and the following holds:

ϕL(f)− L∗(ϕ)f = ∂x(LL(f, ϕ)), (9.2)

for any function ϕ and f , with an explicit LL.

Inverse problem in the univariate case. In [15], the inverse Problem 9.2 is solved in

the univariate case, for piecewise D-finite densities. Specifically, µf =
d−1∑
i=1

✶[ξi,ξi+1]fidx, for a

set of d unknown points, a = ξ1 < . . . < ξd = b, with [a, b] ⊂ ❘, and unknown smooth D-finite
functions fi. An important observation [15, Thm 2.12] is that the associated distribution
d−1∑
i=1

✶[ξi,ξi+1]fi is annihilated by some holonomic operator L̂ = g(x)rL, where g(x) =
d∏

i=1
(x− ξi)

and the operator L of order r satisfies L · fi = 0.
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Remark 9.4 As noted in [15], for general holonomic operators L with r > 1, to correctly
recover the parameters, the number N of required moments depends also on specific coefficients
of L. An example is the nth Legendre polynomial, whose first n moments (taken over [−1, 1])
vanish, while Ln = ∂x((1 − x2)∂x) + n(n + 1), hence the reconstruction of µf depends also on
n, which enters the definition of Ln. On the contrary, for the exponential-polynomial case, we
show that N depends only on the degrees of the polynomials involved.

As discussed above, in the univariate case, the above problems are well tackled in literature,
so this chapter deals with the multivariate case. However, to illustrate the basic ideas, we give
two elementary univariate examples of our approach, omitting the technical proofs.

9.1.3 ◮ Introductory examples

Example 9.5 (Direct problem for erf-like function) We are interested in computing a re-

currence for the moments mi =
1∫

−1

xie−x2
dx. The idea is to include ✶[−1,1] in the integral,

and consider the distribution u corresponding to ✶[−1,1](x)e
−x2

. Although not differentiable as
a function, u satisfies (see Section 9.2.1 for details):

(1− x2)(∂x + 2x)u = 0.

Integrating for the test function xi, using (9.2) and noticing that its right hand side vanishes
after integration, one has:

1∫

−1

e−x2
(∂x + 2x)∗((1− x2)xi) = 0,

which directly provides the recurrence

imi−1 − (i+ 4)mi+1 + 2mi+3 = 0.

The extension of this method to the multivariate case is given in Section 9.3.

Example 9.6 (Univariate support and density reconstruction) Consider the problem of
reconstructing the parameters ξ1, ξ2 and p2, p1, p0, provided the first N moments {mi, 0 6 i 6
N} are known:

mi =

ξ2∫

ξ1

xiep2x
2+p1x+p0dx. (9.3)

Like in the previous example, u = ✶[ξ1,ξ2]e
p2x2+p1x+p0 satisfies:

(x− ξ1)(x− ξ2)(∂x − 2p2x− p1)u = 0.

Denote by L̂ := g(x)∂x + h(x) the operator to be reconstructed such that L̂ · f = 0, with

g(x) = x2+ g1x+ g0 and h(x) =
3∑

i=0
hix

i. Integrating and using the Lagrange identity, one has:

∞∫

−∞

(
g(x)∂x − h(x))(xi)

)
udx = 0.
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This gives for each i > 0:

imi+1 + ig1mi + ig0mi−1 − h3mi+3 − h2mi+2 − h1mi+1 − h0mi = 0. (9.4)

Hence, the coefficients of g and h are solutions of the above infinite linear system. If g is
recovered, p (except for the coefficient p0) could also be recovered from the division h/g. Finally
p0 can also be recovered from the equation (9.3), with i = 0.

The main question is whether a truncated system (9.4), which considers only moments up
to degree N , can provide the correct solution for g and h. We will address this in Sec-

tion 9.4. Specifically, in Theorem 9.18 we prove a sufficient bound for the case of an n-
variable exponential-polynomial density, together with Algorithm ReconstructExpPoly
which reconstructs the coefficients. It needs in our case the first N = 10 moments.

9.2
Holonomic distributions and their
moments

This section introduces the notion of holonomic distributions, which generalizes the notion of
holonomicity defined in Chapter 2 to distributions, seen as generalized functions. In this
particular setting, distinguishing D-finiteness and holonomicity is crucial. We refer to [59,
141, 188] for a more comprehensive presentation.

9.2.1 ◮ Holonomic distributions

Introduced by Schwartz [225], distributions generalize functions and measures. A minimal
introduction to this topic is provided below.

Definition 9.7 (Test functions and distributions) Let E = C∞(❘n) be the set of smooth
functions over ❘n, equipped with the compact-open topology: ϕk → ϕ in E if ∂α

x ·ϕk converges
uniformly to ∂α

x · ϕ over every compact set, for each α ∈ ◆n.
Its topological dual E ′ is the set of compactly supported distributions (or simply distributions

in this chapter) i.e. linear forms T : E → ❘ such that:

◦ There exists a minimal compact set K ⊆ ❘n (the support of T ) such that 〈T, ϕ〉 = 0
whenever ϕ vanishes over K.

◦ 〈T, ϕk〉 → 0 whenever ϕk → 0 in E.

E ′ has a canonical Dn-module structure:

〈L · T, ϕ〉 := 〈T, L∗ · ϕ〉, L ∈ Dn, T ∈ E ′, ϕ ∈ E ,

where the adjoint operator L∗ is defined by

x∗i = xi, ∂∗xi
= −∂xi , and (L1L2)

∗ = L∗
2L

∗
1.
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Definition 9.8 (Holonomic distribution) A distribution T ∈ E ′ is holonomic if its annihilator
is a holonomic ideal of Dn:

Ann(T ) := {L ∈ Dn | L · T = 0 as a distribution}.

A measure supported on a set G, with density f ∈ E , is represented by the distribution f✶G,
with 〈f✶G, ϕ〉 =

∫
G ϕ(x)f(x)dx.

We make the following assumption on G ⊆ ❘n:

Assumption 9.9 G is a compact n-dimensional semi-algebraic set. In particular, the fol-
lowing holds:
(1) G is an n-dimensional compact manifold such that its boundary can be decomposed as

∂G = Z ∪ Z ′, with Z a finite union of (n − 1)-dimensional manifolds and Z ′ a negligible set
w.r.t. the (n− 1)-dimensional Hausdorff measure.
(2) the ideal of polynomials vanishing over ∂G is radical and principal i.e., generated by a

single square-free polynomial g. In particular, the family {g, gx1 , . . . , gxn} is coprime, implying
that the set of singular points {x | g(x) = 0 and ∇g(x) = 0} is negligible in ∂G.

9.2.2 ◮ Moments of a distribution

Definition 9.10 (Moments of a compactly supported distribution) The moments of a dis-
tribution T ∈ E ′ are:

mα(T ) := 〈T,xα〉, α ∈ ◆n. (9.5)

Note that if T = f✶G with G compact and f ∈ E , then mα(f✶G) coincides with the moments
defined in Equation (9.1). A convenient way to deal with moments of a distribution is the
Fourier transform (also called characteristic function).

Definition 9.11 The Fourier transform of a distribution T ∈ E ′ is the analytic function
F{T} of z = (z1, . . . , zn) ∈ ❘n defined by:

F{T}(z) =
∑

α∈◆n

mα(T )
(−i z)α

α!
= 〈T, e−ixT z〉, z ∈ ❘n.

Proposition 9.12 Let T ∈ E ′ and L =
∑
β

qβ(x)∂
β
x ∈ Dn.

(i) The Fourier transform of L · T is related to that of T by

F{L · T} = LF ·F{T}, with LF := L

[
xi 7→ i ∂zi
∂xi 7→ i zi

]
=
∑

β

qβ(i∂z)(i z)
β, (9.6)

where i denotes the complex number of positive imaginary part satisfying i2 = −1.

(ii) The moments of L · T are related to those of T by

(mα(L · T )) = LM · (mα(T )), with

LM := L

[
xi 7→ Sαi

∂xi 7→ −αiS
−1
αi

]
=
∑

β

(−1)|β|qβ(Sα)

(
n∏

i=1

(
αiS

−1
αi

)βi

)
. (9.7)

283



The proof is very similar to [175, Sec. 5.1.]. We give it here for the sake of completeness.

Proof of Proposition 9.12. To prove (i), we use ∂xie
−ixT z = −i zie−ixT z

and ∂zie
−ixT z = −ixie−ixT z:

F{L · T} = 〈T, L∗ · (e−ixT z)〉
= 〈T,

∑

β

(−1)|β|∂β
x (qβ(x) · e−ixT z)〉 by definition,

= 〈T,
∑

β

(−1)|β|qβ(i∂z)∂
β
x · (e−ixT z)〉

= 〈T,
∑

β

(−1)|β|qβ(i∂z)(−i z)β · e−ixT z〉

= 〈T, LF · e−ixT z〉 = LF ·F{T}.

The last equality holds since for any C∞ function f(x, z),

〈T, zi · f(x, z)〉 = zi · 〈T, f(x, z)〉, and

〈T, ∂zi · f(x, z)〉 =
〈
T, lim

h→0

f(x, z + hei)− f(x, z)
h

〉

= lim
h→0

1

h
(〈T, f(x, z + hei)〉 − 〈T, f(x, z)〉)

= ∂zi · 〈T, f(x, z)〉,

where the commutation of the limit symbol comes from the fact that fz,h : x 7→ f(x,z+hei)−f(x,z)
h

converges to fz : x 7→ f(x, z) for the compact-open topology of E .
To prove (ii), one just need to notice that LM is obtained from LF using

zi 7→ iαiS
−1
αi
, and ∂zi 7→ −iSαi .

Proposition 9.13 Let T ∈ E ′. An operator L ∈ Dn satisfies

〈T, L∗ · xα〉 = 0, for all α ∈ ◆n, (9.8)

if and only if L ∈ Ann(T ).

Proof. By the injectivity of the Fourier transform on compactly supported distributions [225].

9.3 Direct problem for moments

As mentioned in the introduction, the direct Problem 9.3 can be solved using an algorithm
presented in [188]. However, one may ask whether the simple roadmap of Example 9.5 can
be generalized to the multivariate case and provide a more efficient method. For that, firstly,
Lagrange identity in the multivariate setting is needed:
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Lemma 9.14 (Lagrange identity) For f, g ∈ E and L ∈ Dn of order r, there exists a vector
field LL(f, g) : ❘n → ❘n, called bilinear concomitant, depending on L and linear in f and g,
such that:

(L · f) g − f (L∗ · g) = ∇ · LL(f, g). (9.9)

Each component of LL(f, g) can be written

LL,i(f, g) =
∑

|α|+|β|6r−1

cL,i,α,β(x)(∂
α
x · f)(∂β

x · g), i ∈ J1, nK.

with coefficients cL,i,α,β(x) ∈ ❑[x] depending on L.

Secondly, the action of differential operators on compactly supported distributions of the
form f✶G is provided:

Proposition 9.15 Let G be as in Assumption 9.9, f ∈ E and L ∈ Dn. Then the
distribution L · (f✶G) admits the following expression:

〈L · (f✶G), ϕ〉 =
∫

G
ϕ (L · f)dx−

∫

∂G
LL(f, ϕ) · n dS,

where n and dS respectively denote the normal vector and the (n − 1)-dimensional Hausdorff
measure on ∂G.

Proof. Integrating Lagrange’s identity (9.9) with g = ϕ and using the divergence theorem, we
have: ∫

G
ϕ (L · f)dx−

∫

G
(L∗ · ϕ) fdx =

∫

∂G
LL(f, ϕ) · n dS.

Following [150], the divergence theorem is a consequence of Stokes’ theorem when ∂G is
smooth, or of a generalization by Whitney [261, Theorem 14A] when G satisfies Assump-
tion 9.9.(1).

Finally, the following proposition provides differential equations for measures supported on
semi-algebraic sets.

Proposition 9.16 Let G and g be as in Assumption 9.9, f ∈ E, L ∈ Ann(f) of order r.
Then grL ∈ Ann(f✶G).

Proof. Using Proposition 9.15, one needs to prove that
∫
G g

rϕ(L · f)dx and
∫
∂G LL(f, grϕ) ·

n dS are zero. The first one is trivial since L ∈ Ann(f). For the second, LL(f, grϕ) involves
derivatives ∂α

x (g
rϕ) with |α| < r (Lemma 9.14), so it vanishes over ∂G.

Hence, Proposition 9.16 gives an easy way to construct operators in Ann(f✶G) from opera-
tors in Ann(f). Indeed, given a Gröbner basis {L1, . . . , Lk} of Ann(f), and g ∈ ❘[x] vanishing
over ∂G, each operator griLi (with ri the order of Li) annihilates f✶G as a distribution. There-
fore, each operator Ri := (griLi)

M gives a valid recurrence for the sequence of moments (mα)
(see equation (9.7)).

However, from the fact that f is holonomic one can not directly guarantee that the ideal gen-
erated by {gr1L1, . . . , g

rkLk} is holonomic. Similarly, we are not able to prove (or refute) that
{R1, . . . , Rk} is holonomic in general. Nevertheless, one can apply a Gröbner basis algorithm,
which will possibly return a basis of a holonomic ideal. This heuristic is given in Algorithm
RecurrencesMoments. We prove that this algorithm actually returns such a basis in the
particular case of an exponential-polynomial density (including the Lebesgue measure), and a
smooth boundary, extending [188, Prop. 4].
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Algorithm 9.1 RecurrencesMoments(n, g, {L1, . . . , Lk})

Input: Gröbner basis {L1, . . . , Lk} for Ann(f), g.
Output: Gröbner basis for Ann(mα).

1: Ri ← (griLi)
M , as in (9.7), with ri the order of Li, for i ∈ J1, kK

2: return GröbnerBasis({R1, . . . , Rk},Rn)

Proposition 9.17 Let f(x) = ep(x) with p ∈ ❘[x]s, and g ∈ ❘[x]d vanishing over ∂G.
Suppose moreover that g is nonsingular in ❈n, that is, there exists no x ∈ ❈n such that
g(x) = 0 and ∇g(x) = 0.

(i) The operators

Li = g(∂xi − pxi), i ∈ J1, nK,

are generators of a holonomic ideal I contained in Ann(f✶G).

(ii) The operators LF
i (i ∈ J1, nK) span a holonomic ideal IF contained in Ann(F{f✶G}).

Proof. For (i), first note that the operators Li also generate

Lij := (∂xj − pxj )Li − (∂xi − pxi)Lj

= gxj (∂xi − pxi)− gxi(∂xj − pxj ), 1 6 i < j 6 n.
(9.10)

Holonomicity is proved via the characteristic variety, as for instance in [188]. For L =∑
|α|6r

qα(x)∂
α
x of order r, define its principal symbol σ(L)(x, ξ) =

∑
|α|=r

qα(x)ξ
α for (x, ξ) ∈

❈2n. Then for a left ideal I, Char(I) = {(x, ξ) ∈ ❈2n | σ(L)(x, ξ) = 0 ∀L ∈ I \ {0}}. With
these notations, I is holonomic if and only if all the components of Char(I) are of dimension
at most n. In our case,

σ(Li)(x, ξ) = g(x)ξi, and σ(Lij)(x, ξ) = gxj (x)ξi − gxi(x)ξj .

Hence, if (x, ξ) ∈ Char(I), then either g(x) 6= 0, implying ξ = 0, or g(x) = 0. In the latter
case, ∇g(x) 6= 0 (since g is nonsingular) and hence there exists λ ∈ ❈ s.t. ξ = λ∇g(x). In
both cases, the corresponding components of Char(I) have dimension n.

For (ii), since the Fourier transform maps xi to i ∂zi and ∂xi to i zi, it is clear that I is
holonomic if and only if IF is holonomic.

Interestingly enough, for the examples we tried for an exponential-polynomial density, Algo-
rithm RecurrencesMoments always terminated, even when the boundary was not smooth
(see Example 9.24). Also, it was faster than "classical" creative telescoping, which firstly
constructs a Gröbner basis for f✶G and then applies Takayama’s algorithm [188]. Further
investigation is needed to provide a comparison in this case.

However, having a Gröbner basis is not mandatory for the reconstruction problem addressed
in the next section. The recurrences obtained as above turn out to be sufficient and constitute
the basic brick of our reconstruction method.
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9.4 Reconstruction methods

Given some moments mα(f✶G) associated to a measure of unknown D-finite density f ∈ E and
unknown compact algebraic support G, our goal is to reconstruct a polynomial g̃ vanishing on
the boundary ∂G of G and operators L̃ ∈ Ann(f).

The general approach is the following:

◦ Take an ansatz L′ =
∑
β∈A

qβ(x)∂
β
x , for a specified finite set A ⊂ ◆n and polynomials

qβ(x) with specified degrees dβ.

◦ Let R = L′M . Solve a finite-dimensional linear system in the unknown coefficients of the
polynomials qβ:

(R ·m(f✶G))α = 0, |α| 6 N. (9.11)

This requires the knowledge of moments mα(f✶G) with |α| 6 N + max
β∈A

{dβ − |β|} (see

eq. (9.7)).

◦ From the solution L′ of (9.11), extract a polynomial g̃ vanishing on ∂G and an operator
L̃ ∈ Ann(f).

Note that the solution of (9.11) corresponds to a truncation of the infinite system (9.8), since
〈f✶G, L′∗ · xα〉 = 0, for |α| 6 N . Hence one is interested in obtaining bounds N̂ on N , such
that any solution of (9.11) is also solution of (9.8). Such an a priori uniform bound depending
only on A and dβ does not exist in general, cf. Remark 9.4.

Another issue is that L′ may not be factorized as g̃(x)rL̃ with g̃ vanishing on ∂G and L̃·f = 0.
See for instance the operator in (9.10).

In Section 9.4.1, we solve both issues when f is exponential-polynomial and give the as-
sociated algorithm. Then, in Section 9.4.2, we address the general holonomic case in two
steps: firstly, for recovering the density, we prove that N is finite, but no a priori bound for
it is known; secondly, once the density is known, a stronger result is proved for the support
reconstruction, since an explicit uniform bound on the number of required moments is given.

In what follows, “exact computations” are assumed, that is, both the polynomial coefficients
and the given moments mα lie in a computable finite extension of ◗. The practical case of
approximately known numerical moments is briefly analyzed in Section 9.5.

9.4.1 ◮ Exponential-polynomial densities

Let f(x) = exp(p(x)) with deg p = s, together with G and g be as in Assumption 9.9, deg g =
d. Then f is annihilated by Li = ∂xi−pxi for i ∈ J1, nK. Algorithm ReconstructExpPoly
follows the general approach above, with ansatz L′

i = h0∂xi − hi (i ∈ J1, nK) for unknown
polynomials h0, . . . , hn where deg h0 6 d and deg hi 6 d+ s− 1 for i ∈ J1, nK. Theorem 9.18
establishes its correctness, with an explicit bound N̂ .
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Algorithm 9.2 ReconstructExpPoly(n, d, s,N, (mα)|α|6N+d+s−1)

Input: n > 2, degrees d, s > 0, moments mα for |α| 6 N + d+ s− 1.
Output: g̃, p̃ ∈ ❑[x] with deg(g̃) 6 d and deg(p̃) 6 s.

⊲ Find L′
i ∈ Ann(f✶G)

1: h0 ←
∑

|γ|6d

h0γx
γ and hi ←

∑
|γ|6d+s−1

hiγx
γ for i ∈ J1, nK,

with symbolic coefficients hiγ
2: L′

i ← h0∂xi − hi for i ∈ J1, nK
3: Find a nontrivial solution {hiγ} of the linear system:

(L′M
i m)α = 0, i ∈ J1, nK, |α| 6 N

⊲ Reconstruct g̃ and p̃
4: g̃ ← h0 and p̃i ← hi/g̃ for i ∈ J1, nK

5: p̃←
n∑

i=1

xi∫
0

p̃i(0, . . . , 0, ti, xi+1, . . . , xn)dti

6: return (g̃, p̃)

Theorem 9.18 Let f(x) = exp(p(x)) with deg p = s, and G, g with deg g = d be as in
Assumption 9.9. If N > N̂ = 3d + s − 1, then ReconstructExpPoly(n, d, s,N, (mα))
returns g̃ = λg with λ ∈ ❑∗, and p̃ = p−p(0). This requires moments up to degree 4d+2(s−1).

Moreover, if g > 0 over G, N̂ can be only 2d + s − 1, requiring moments up to degree
3d+ 2(s− 1).

Remark 9.19 This method cannot reconstruct the constant coefficient of p, which is the
scaling factor of the density. In case of a probability measure over ❘n, this coefficient is
uniquely recovered by imposing

∫
❘n exp(p̃(x))dx = 1. Otherwise, one can compute p(0) =

log(m0/
∫
G exp(p̃(x))dx), for example.

Proof. First, {h0 ← g, hi ← gpxi , i ∈ J1, nK} is a solution of the linear system in line 3. Hence,
one can always get a solution with h0 6= 0. Then 〈L′

i(f✶G), ϕ〉 = 0 for all i ∈ J1, nK and
ϕ ∈ ❑[x]N . Using Proposition 9.15, this expands to:

∫

G
(h0pxi − hi)ϕfdx+

∫

∂G
h0ϕf ei · n dS = 0. (9.12)

With ϕ = (h0pxi − hi)g2 of degree at most d + (s − 1) + 2d 6 N , the second integral is
zero since g vanishes over ∂G. Hence the first integral is zero too. Therefore, its integrand
(h0pxi − hi)2g2 is zero almost everywhere over G. Since G has nonempty interior and f > 0,
g 6= 0, this necessarily implies hi = h0pxi for all i ∈ J1, nK.

Now, the first integral in (9.12) being always zero for all polynomials ϕ with degϕ 6 N ,
so is the second. Noticing that ei · n = gxi/‖∇g‖ when ∇g 6= 0, and by taking ϕ = h0gxi of
degree at most 2d− 1 6 N , we have

∫

∂G
(h0gxi)

2 f

‖∇g‖dS = 0.
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By summing this equality for i ∈ J1, nK, we get that h0‖∇g‖ vanishes over ∂G. Since by
Assumption 9.9.(2), {x ∈ ∂G | ∇g(x) = 0} is negligible in ∂G, we have that h0 (of degree
at most d) vanishes over ∂G, whence h0 = λg since g is square-free.

Finally, p̃ = p− p(0) is reconstructed from pxi = p̃i in line 5.
For the case where g > 0 over ∂G, the first step of the proof still holds with ϕ = (h0pxi−hi)g,

of degree 2d+ s− 1, in (9.12).

9.4.2 ◮ Holonomic densities

For higher order holonomic operators, the proof of Theorem 9.18 cannot be generalized:
the key argument for deducing a uniform bound N̂ was to write in (9.12),

∫
G ϕ(L

′f)dx as∫
G hϕfdx, with h ∈ ❑[x].
Instead, we proceed in two steps. Firstly in Section 9.4.2, a holonomic system for f is

reconstructed, but it requires a finite number N of linear equations, which cannot be a priori
bounded. Secondly, the support is reconstructed in Section 9.4.2.

Reconstructing the density

Algorithm ReconstructDensity produces a holonomic ideal I ⊆ Ann(f) spanned by a
rectangular system {L1, . . . , Ln}, that is Li ∈ Ann(f) ∩ ❑[x]〈∂xi〉 only involves derivatives
w.r.t. xi. For that, it is sufficient to find operators annihilating f✶G.

Proposition 9.20 Let f be analytic over G satisfying Assumption 9.9. Then Ann(f✶G) ⊆
Ann(f).

Proof. Let L′ ∈ Ann(f✶G) be of order r. Proposition 9.15 with ϕ = g2r(L′ · f) gives:
∫

G
g2r(L′ · f)2dx = 0.

This implies that the analytic function gr(L′ · f) vanishes over G of nonempty interior, hence
is 0. Since g 6= 0, L′ · f = 0.

Theorem 9.21 guarantees that Algorithm ReconstructDensity always returns an L ∈
Ann(f) for N large enough.

Theorem 9.21 Let i ∈ J1, nK, f be analytic, G, g ∈ ❑[x]d satisfying Assumption 9.9, and
let L =

∑r
j=0 qj(x)∂

j
xi ∈ Ann(f) ∩❑[x]〈∂xi〉 be of minimal order r, with qr of minimal degree.

Then, Algorithm ReconstructDensity(n, i, r, s,N, (mα)) returns L̃ = λL with λ ∈ ❑∗ for
s > dr +max { deg(qj)} and N large enough.

Proof. The linear system in line 3 always has grL as solution, by Proposition 9.16. Now
let KN denote the kernel of this system, that is L′ ∈ KN if and only if 〈L′(f✶G),xα〉 = 0
for all |α| 6 N . The infinite inclusion chain of finite-dimensional linear subspaces · · · ⊇
KN ⊇ KN+1 ⊇ . . . is necessarily stationary. So for N large enough, L′ ∈ KN implies 〈L′ ·
(f✶G),x

α〉 = 0 for all α and hence L′ ∈ Ann(f✶G) by Proposition 9.13. Finally, L′ ∈ Ann(f)
by Proposition 9.20
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Algorithm 9.3 ReconstructDensity(n, i, r, s,N, (mα)|α|6N+s)

Input: n > 2, i ∈ J1, nK, order r, maximum degree s, moments mα for |α| 6 N + s.

Output: L̃ =
r∑

j=0
q̃j(x)∂

j
xj with deg(q̃j) 6 s.

⊲ Find L′ ∈ Ann(f✶G) ∩❑[x]〈∂xi〉
1: hj ←

∑
|γ|6s

hjγx
γ for j ∈ J0, rK with symbolic coefficients hjγ

2: L′ ←
r∑

j=0
hj(x)∂

j
xi

3: Find a nontrivial solution {hjγ} of the linear system:

(L′M ·m)α = 0, |α| 6 N

⊲ Extract minimal L ∈ Ann(f) ∩❑[x]〈∂xi〉
4: ℓ← GCD(h0, . . . , hr) and q̃j ← hj/ℓ for j ∈ J1, nK.

5: return L̃ =
r∑

j=0
q̃j(x)∂

j
xj

The coefficients {q̃0, . . . , q̃r} of the returned operator L̃ =
∑
q̃j∂

j
xi form a coprime family

(line 4). This is also true for {q0, . . . , qr} by minimality of deg(qr). By minimality of r, we have
q̃rL − qrL̃ = 0, that is q̃rqj = qr q̃j for all j. Since ❑[x] has the unique factorization property,
there exists λ ∈ ❑ s.t. q̃r = λqr, yielding L̃ = λL.

Reconstructing the support

From now on, we assume that a rectangular system {L1, . . . , Ln} for the density f is known,
and that Li have the same order r.1 Let:

Li =

r∑

j=0

qi,j(x)∂
j
xi
∈ Ann(f) ∩❑[x]〈∂xi〉, i ∈ J1, nK.

The next assumption is crucial for support reconstruction. Roughly speaking, the differential
system must not be singular over the Zariski closure of ∂G, except for a zero-measure set.

Assumption 9.22 The pair {g, qi,r} is coprime for each i ∈ J1, nK.

Theorem 9.23 proves that Algorithm ReconstructSupport is correct.

Theorem 9.23 Let analytic f be annihilated by the order r rectangular system {L1, . . . , Ln},
and G be as in Assumption 9.9 with g ∈ ❑[x] of degree d. Assume also Assumption 9.22.
Then, for N > N̂ := (2r − 1)d + (d − 1)b + s, with b = r mod 2 and s = max {qi,r},
ReconstructSupport(n, d, r, {Li}, N, (mα)) returns g̃ = λg with λ ∈ ❑∗. In particular,
this proves that when the density is known, the support can be reconstructed using moments up
to degree (3r − 1)d+ (d− 1)b+ s+maxij { deg(qi,j)− j}.

1Indeed, if Li has order ri < r, then it is replaced by ∂r−ri
xi

Li, which has order r and the same leading
polynomial coefficient.
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Algorithm 9.4 ReconstructSupport(n, d, r, {Li}
n
i=1, N, (mα))

Input: n > 2, degree d, order r, rectangular system {L1, . . . , Ln} of order r, moments mα for
|α| 6 N + dr +maxij { deg(qi,j)− j}.

Output: polynomial g̃(x) ∈ ❑[x]d vanishing over ∂G.

1: h← ∑
|γ|6dr

hγx
γ with symbolic coefficients hγ

2: Find a nontrivial solution {hγ} of the linear system:

(
(hLi)

M ·m
)
α
= 0, |α| 6 N, i ∈ J1, nK

3: return g̃ = h/GCD(h, hx1 , . . . , hxn)

Proof. First h = gr satisfies the linear system in line 2 since grLi ∈ Ann(f✶G) by Proposi-
tion 9.16. Let h be any nontrivial solution, then 〈hLi · (f✶G), ϕ〉 = 0 for all i ∈ J1, nK and
ϕ ∈ ❑[x]N . Using Proposition 9.15 combined with Li · f = 0, we get

∫

∂G
LLi(f, hϕ) · n dS = 0, i ∈ J1, nK, ϕ ∈ ❑[x]N .

Since Li involves derivatives only in xi, we have LLi(f, hϕ) = LLi,i(f, hϕ)ei, with the La-
grange bilinear concomitant [122]:

LLi,i(f, hϕ) = f
[
qi,1hϕ− ∂xi(qi,2hϕ) + · · ·+ (−1)r−1∂r−1

xi
(qi,rhϕ)

]

+∂xi(f)
[
qi,2hϕ− ∂xi(qi,3hϕ) + · · ·+ (−1)r−2∂r−2

xi
(qi,rhϕ)

]

+ . . .

+∂r−1
xi

(f) qi,rhϕ.

(9.13)

We prove h = λgr for some λ ∈ ❑∗ by induction for k from 0 to r, showing h = gkhk with
hk ∈ ❘[x](r−k)d. Of course this is true for k = 0 with h0 = h. Now suppose that h = gkhk for
some k < r. Then let

ϕ = qi,rhkg
r−1−kgbxi

∈ ❑[x](2r−2k−1)d+(d−1)b+s ⊆ ❑[x]N ,

Since hϕ is a multiple of gr−1, all the terms in (9.13) are multiples of g (hence they vanish
over ∂G), except for the derivative of order r − 1, which we can write as

∂r−1
xi

(qi,rhϕ) = (r − 1)!gr−1+b
xi

q2i,rh
2
k + ℓ(x)g(x), ℓ(x) ∈ ❑[x].

Therefore, integrating LLi,i(f, hϕ) ei · n dS over ∂G gives

∫

∂G

(
g

r+b
2

xi qi,rhk

)2 f

‖∇g‖dS = 0,

implying that the squared polynomial in the integrand vanishes over ∂G, hence is a multiple of
g. But g and qi,r are coprime by Assumption 9.22, so that g divides hkgxi , for all i ∈ J1, nK.
Finally, since {g, gx1 , . . . , gxn} is a coprime family, g divides hk, so hk = ghk+1. Now that
h = λgr, GCD(h, hx1 , . . . , hxn) = gr−1 (again since {g, gx1 , . . . , gxn} is coprime), so g̃ = λg.
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9.5 Examples and Conclusion

Our methods are exemplified in the two dimensional case, with respect to Lebesgue and re-
stricted Gaussian measures2. The implementation uses OreAlgebra and OreGroebnerBasis routines
from the HolonomicFunctions library [140]. The exactly computed moments mij (obtained
from the recurrences given by Algorithm RecurrencesMoments together with closed-form
initial conditions, when possible) are truncated to m̃ij , s.t. ⌊− log10

mi,j−m̃ij

mij
⌋ = ε i.e., ε

represents the number of correct digits of m̃ij . Then, given m̃ij , Algorithm Reconstruct-
ExpPoly solves the inverse problem. The resulting overdetermined linear systems are solved
numerically by a Least Mean Squares method of Mathematica.

Example 9.24 (Algebraic support, Lebesgue measure) Consider the moments mij =∫
G

xiyjdxdy, with respect to the Lebesgue measure, with G depicted with the checkered pattern

in Figure 9.1.
(i) Direct problem: Given g = (x2+y2−1)(x2+y2−9)(x2+(y−2)2−1)((x−2)2+y2−1),

which vanishes on ∂G, and Ann{1} = {∂x, ∂y}, Algorithm RecurrencesMoments returns
a Gröbner basis with 9 generators and with 36 monomials under the staircase: {Sk

i S
l
j , k, l ∈

◆, k + l 6 7}.
(ii) Inverse problem: Given a finite number of numerically computed moments m̃ij of the

Lebesgue measure with unknown support G, the goal is to reconstruct g =
∑

i+j68
gijx

iyj which

vanishes on ∂G. The results of Algorithm ReconstructExpPoly(2, 8, 0, 22, (m̃ij)|i+j|629)
are depicted in Figure 9.1: the reconstructed boundary cannot be distinguished from the exact
at the drawing scale, when the moments m̃ij are given with more than 4 correct digits. When
2 6 ε 6 4, the actual geometric boundary of G, can still be very well reconstructed, although
the algebraic boundary is degraded.

Example 9.25 (Algebraic Support, Gaussian measure) Consider the moments mij =∫
G

xiyj exp(p(x, y))dxdy. In Figure 9.2(a), G is checkered and the level curves of exp(p(x, y))

are in dashed.
(i) Direct problem: Given g =

(
x2 − 9/10

)2
+
(
x2 − 11/10

)2 − 1, which vanishes on ∂G,
and f = exp (−x2 + xy − y2/2), with Ann{f} = {∂x + 2x − 1, ∂y + y − 1}, apply Algorithm

RecurrencesMoments to compute a Gröbner basis for the sequence of moments mij. In
the same setting as above, a Gröbner basis with 5 generators and with 28 monomials under the
staircase is obtained.

(ii) Inverse problem: Suppose now given a finite number of numerically computed moments
m̃ij, with unknown support G and unknown Gaussian weight. The goal is to reconstruct
g =

∑
i+j64

gijx
iyj which vanishes on ∂G, as well as p =

∑
i+j62

pijx
iyj. Algorithm Recon-

structExpPoly called with parameters (2, 4, 2, 14, (m̃ij)|i+j|618) provides the reconstructed g,
as depicted in Figure 9.2(b): the reconstructed boundary cannot be distinguished from the exact
at the drawing scale, when ε > 8. When 4 6 ε 6 8, the actual geometric boundary of G, can
still be very well reconstructed. Concerning the Gaussian weight, the situation is similar, cf.
Figure 9.2(c).

2The code is available at http://homepages.laas.fr/fbrehard/HolonomicMomentProblem
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The proposed method is very robust on the above academic examples, but a further study is
needed for an efficient implementation in practical higher-dimensional cases. On the theoretical
side, this chapter provides further insight on the question raised in [150] regarding the finite
determinateness of a measure. To sum up, provided Assumptions 9.9 and 9.22 hold, for
a measure with compact algebraic support G, with g ∈ ❘[x]d vanishing on ∂G and known
holonomic density f , the moments up to degree N (which only depends on d and the order of
a rectangular differential system which annihilates f) determine in a constructive and robust
manner the coefficients of g. Thus, this determines in turn all the other moments. When both
the density and the support are unknown, a uniform bound N does not exist in general. We
provided the solution for the special case of unknown exponential-polynomial density.
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