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Introduction

-Si tu veux un ami, apprivoise-moi ! -Que faut-il faire ? dit le petit prince.

-Il faut être très patient, répondit le renard. Tu t'assoiras d'abord un peu loin de moi, comme ça, dans l'herbe. Je te regarderai du coin de l'oeil et tu ne diras rien. Le langage est source de malentendus. -Antoine de Saint-Exupéry, Le Petit Prince Numerical analysis underlies a wide range of computational methods involving problems with continuous data (time, space, etc.), with applications to, for instance, engineering simulations, image processing or decision making procedures. A main achievement is the development of highly optimized implementations for various numerical algorithms in linear algebra, functional analysis or continuous optimization. These implementations greatly benefit from the increasing efficiency of a standardized floating-point arithmetic (via the IEEE 754 standard) on modern computing processors and architectures.

Nevertheless, numerical errors constitute an inherent and much studied problem which is ubiquitous in scientific computing. Two classes of such errors are usually identified. First, rounding errors are intrinsic to floating-point arithmetic, since the latter is only an approximation (more precisely, a discretization) of the real line. Second, the method errors arise when infinite-dimensional problems are approximated by finite-dimensional ones, thanks to discretization or projection methods. Typical examples include Runge-Kutta or spectral methods to solve ordinary differential equations (ODEs). While usually small, these errors accumulate during the program run and may lead to disastrous errors at the end. In most applications, this simply leads the program to fail in providing an expected accurate answer. The main issue is that often, one cannot directly estimate what is the returned accuracy, that is, how many (or if any) digits of the returned result are correct. Thus, domains with stronger reliability requirements, like safety-critical engineering or computer-assisted proofs in mathematics, cannot rely only on traditional numerical analysis algorithms.

Main objectives. In regard of these shortcomings, this thesis addresses the following challenges. Not all of them will be equally treated in this manuscript -obviously, the first receives the most attention -but each one brings its own light. We list them below and then provide further details on how they are handled, insisting on several key concepts, relevant examples and the outline of this document.

A. Computing faster, more accurate, more reliable, safer. This is the primary goal of this thesis. After a subjective survey of the existing techniques in numerical, symbolic and rigorous computation (Chapters 1 and 2), we enhance rigorous polynomial approximations (RPAs) with new algorithms, where a posteriori fixed-point validation methods play an important role (Chapter 3). This brings new efficient and accurate tools for function space problems, notably linear differential equations (Chapters 4 and 5). Moreover, we do not only target validated numerics, but also certified numerics with the use of formal proof (Chapter 3).

B. Prove mathematical theorems in new computer-assisted ways. Drawing on an ongoing work concerning limit cycles of a polynomial vector field (Chapter 6), we advocate the use of RPAs, a posteriori validation and symbolic-numeric methods in the design of efficient tools for computer-assisted proofs in mathematics. Taking advantage from our a posteriori or certificate-based approach, formal proof methods are easier to introduce in the computer-assisted proof process, thus offering the highest level of confidence.

C. Reliability, safety and efficiency for real-life applications. More reliable computations are crucial in safety-critical engineering applications, yet efficiency cannot be sacrificed (too much). By computing and using validated spacecraft trajectories in space proximity operations (Chapter 7), we illustrate how our methods can be used in a safety-critical context, like the rigorous space mission design.

D. Taking into account "lower-level" aspects is essential when designing efficient tools and implementations for "real-life" applications. Although this is not the most widely discussed point of this manuscript, this aspect was also investigated. A contribution in that sense is a new exchange algorithm to design evaluation and approximation error optimized polynomials (Chapter 8). This is crucial for the numerical implementation of functions, since the underlying floating-point precision is finite.

E. New outlets for rigorous and symbolic-numeric methods. Exporting rigorous and symbolic-numeric techniques to other fields of mathematics or engineering is an interesting challenge, which also gives the opportunity to enhance our tools with new mathematical concepts. For example, the support and density reconstruction for measures from moments presented in Chapter 9 makes use of Ore polynomials -a symbolic tool -in the context of an inverse problem.

F. Designing open-source implementations. Last but not least, software implementations are an essential contribution to this thesis, since they concretely attest our claim to design efficient algorithmic methods. Moreover, they were a valuable aid in the abovementioned applications.

A Computing faster, more accurate, more reliable, safer

The first five chapters of this manuscript are motivated by this goal. As a preliminary remark, we identify the following three safety levels of computation:

1. A first purely numerical level encompasses the traditional numerical algorithms, focusing on efficiency and accuracy. Although usually provided with asymptotic convergence estimates, these algorithms cannot rigorously guarantee the result's accuracy in general.

2.

A second level is dedicated to validated algorithms, in a broader sense, meaning that the computed result comes with guarantees of some mathematical properties. This includes:

• symbolic computation (Goal A.1) for merely algebraic problems, with exact representations of objects and sometimes also certificates making it possible to check the result a posteriori;

• rigorous numerics (Goal A.2) based on numeric set-valued representations of objects, provide enclosures for the exact but maybe not machine-representable result.

Sometimes, both may even be combined into so-called symbolic-numeric methods.

3.

A third certified level offers the highest safety, namely at implementation level. Formal proof (Goal A.3) allows us to design certified implementations, whose correctness is guaranteed by highly trusted interactive theorem provers.

Determining the adequate safety level is really an application-dependent choice: are we ready to spend more time on a specific computation for a higher confidence in the result? However, it is also limited to existing tools and software. In particular, certified implementations of numerical methods are still rare and less efficient than their nonrigorous analogs.

Before addressing the contributions of this thesis, an overview of the necessary computational tools is given by the first two chapters. Chapter 1 discusses computer representations of numbers: exact representations for symbolic computation; floating-point numbers, highly efficient but subject to rounding errors; and intervals to rigorously enclose a real number. Then, Chapter 2 tackles representations of functions, focusing on two particular topics: the symbolic framework of D-finite functions, that is, solutions of linear ordinary differential equations (LODEs) with polynomial coefficients, and a condensed summary of polynomial approximation theory, which is useful for the following chapters.

Rigorous polynomial approximations (RPAs), widely investigated throughout this thesis, are presented in Chapter 3, together with a posteriori fixed-point validation methods, which we use to define fixed-point based division and square root of RPAs. The resulting arithmetic on RPAs is the foundation of more elaborate rigorous methods for function space problems. A central contribution of this thesis is algorithms to compute RPAs in Chebyshev basis for LODEs solutions, conceived with Nicolas Brisebarre and Mioara Joldes. They are presented in Chapters 4 (for scalar LODEs) and 5 (for coupled systems of LODEs).

The following example, based on the Airy function Ai, will illustrate how the subgoals detailed below also provide complementary viewpoints.

Example 1 : Airy function Ai

The Airy function Ai (see Figure I.4a) is a well-known special function in mathematics [START_REF] Abramowitz | Handbook of mathematical functions with formulas, graphs, and mathematical tables[END_REF], which can be defined by the following improper Riemann integral:

Ai(x) = 1 π +∞ 0 cos t 3 3 + xt dt, (Ai-i)
or by the following second order differential equation with initial conditions at 0, where Γ denotes the Gamma function:

D-finite functions are the solutions of linear ODEs with polynomial coefficients [START_REF] Stanley | Differentiably finite power series[END_REF]. They are ubiquitous in mathematics -they represent about 60% of the functions listed in [START_REF] Abramowitz | Handbook of mathematical functions with formulas, graphs, and mathematical tables[END_REF], e.g., the Airy function Ai of Example 1. Thanks to the efforts of an active community in symbolic computation, computer algebra systems like Maple or Mathematica make it possible to represent such functions as a data structure (a differential operator annihilating the function plus sufficiently many initial conditions), and to operate on them with arithmetic and differential operations.

Example 1 : Airy function Ai -Symbolic manipulation

We illustrate how the algorithmic treatment of D-finite functions can prove nontrivial statements.

1 (a) Prove the following identity [2, Eq. (10.4.15)]:

Ai(-x) = x 9 J 1 3 2 3 x 3 2 + J -1 3 2 3 x 3 2 , x > 0, (Ai-iii)
where the Bessel functions J ± 1 3 form a basis of the solutions of:

9z 2 f ′′ (z) + 9zf ′ (z) + (9z 2 -1)f (z) = 0. (J 1 
3

)
Using closures operations, implemented as algorithms, the Gfun 1 package for Maple automatically computes that the right-hand side of (Ai-iii) satisfies g ′′ (x) + xg(x) = 0. Indeed, this expression is obtained from J ± 1 3 by an algebraic substitution z → 2 3 x finally multiplied by x → x 9 . Now, from (Ai-ii), x → Ai(-x) also satisfies the same LODE, so that checking equality for initial conditions at 0 is sufficient to establish the identity (Ai-iii), by the Picard-Lindelöf theorem.

Creative Telescoping refers to techniques [START_REF] Zeilberger | A holonomic systems approach to special functions identities[END_REF][START_REF] Chyzak | The ABC of Creative Telescoping: Algorithms, Bounds, Complexity. Memoir of accreditation to supervise research (HDR)[END_REF][START_REF] Koutschan | Advanced applications of the holonomic systems approach[END_REF] that were developed to automatically compute differential equations or recurrence relations for integrals or sums of D-finite quantities, thus allowing sometimes for non trivial closed forms. Moreover, these somehow complex techniques also provide a certificate that allows for an a posteriori verification of the result. More details will be provided in Chapter 2.

Example 2 : Exponential generating function of Chebyshev polynomials 2 (a) Prove the following identity:

+∞ n=0 T n (x) t n n! = e tx cosh(t x 2 -1), |x| < 1,
where the T n are the Chebyshev polynomials defined in Chapter 2.

The integrand f (t, n) := T n (x) t n n! satisfies the differential-difference equations:

t∂ t • f -nf = 0, (2 + 3n + n 2 )S 2 n • f + (-2tx -2ntx)S n • f + t 2 f = 0.
where ∂ t • f (t, n) := ∂f ∂t (t, n) and S n • f (t, n) := f (t, n + 1). Using, e.g., the CreativeTelescoping function from the Mathematica package Holonomic-Functions2 , one obtains the following differential equation for g(t) := +∞ n=0 f (t, n):

∂ 2 t • g -2x∂ t • g + g = 0.
Finally, standard differential equation solving procedures of Maple or Mathematica recover the closed-form expression e tx cosh(t √ x 2 -1) from this differential equation.

Shortcomings of symbolic methods. However, some problems are by essence intractable with such tools, due to the following limitations:

• Computable exact representations are available only for restricted classes of numbers or functions, like rational or algebraic numbers/functions. But consider for example the Euler constant γ := lim

n→∞ n k=1 1 
k -log n : how are algorithms supposed to compute with it or decide properties on it? -it is not even known whether γ is rational or not.

• Some objects are carried out via exact but implicit representations. Hence, when concrete properties have to be checked, a rigorous numerics step may be necessary to convert the implicit representation into actual numerical values. This is for example the case for D-finite functions, for which concrete rigorous approximations are given in Chapters 4 and 5 (see below).

• Even when exact representations are available, their intrinsic size may be a major obstacle to the practical implementation on a computer. This is often the case for algorithms iterating algebraic operations on exactly represented objects. We will illustrate this phenomenon in Chapter 1, Example 1.3 with the inversion of matrices with rational coefficients.

A.2 Rigorous numerics and validated methods

In this regard, rigorous numerics [START_REF] Tucker | Validated numerics: a short introduction to rigorous computations[END_REF] overcome the limitations of symbolic computation by replacing exact representations with validated ones, for solutions of various problems, notably in functional analysis, e.g., differential equations or optimal control. The key idea is to design computable set-valued representations, such as real intervals or balls in function spaces, with the guarantee that the exact solution of the problem under consideration is contained in it. This relaxation allows one to use floating-point arithmetic and numerical algorithms, and yet to remain correct thanks to a careful use of, e.g., directed roundings or a posteriori bounds.

Interval arithmetic is an essential building block of rigorous numerics (cf. [START_REF] Moore | Interval Analysis[END_REF][START_REF] Tucker | Validated numerics: a short introduction to rigorous computations[END_REF][START_REF] Rump | Verification methods: rigorous results using floating-point arithmetic[END_REF]), and will be presented in Chapter 1. The key idea consists in using real intervals with representable endpoints (e.g., floating-point numbers) as rigorous enclosures of real numbers, and providing operations preserving correctness. For example, from π ∈ [3.1415, 3.1416] and e ∈ [2.7182, 2.7183], one obtains:

π + e ∈ [3.1415, 3.1416] [2.7182, 2.7183] = [5.8597, 5.8599].

Therefore, in principle replacing all floating-point operations by interval ones resolves the issue of rounding errors. However, as detailed in Chapter 1, several limitations should prevent us from seeing interval arithmetic as the silver bullet of rigorous numerics:

• Overestimations are a well-known shortcoming of interval arithmetics [START_REF] Rump | Verification methods: rigorous results using floating-point arithmetic[END_REF], due to several phenomena such as the dependency phenomenon or the wrapping effect: the resulting interval is correct, but too large to provide relevant information.

• Although the resulting interval is correct with respect to rounding errors, method errors are not taken into account, since they result from the discretization of the problem itself, not from the approximation of real numbers by floating-point ones.

Rigorous polynomial approximations (RPAs) were conceived as a higher order counterpart to interval arithmetic to tackle the dependency phenomenon. They consist in a polynomial together with a bound for the total error between the polynomial and the function it represents, with respect to a given norm (see Figure I.1). One of the first conceptualizations of these ideas dates back from the 80s with ultra-arithmetic [START_REF] Epstein | Ultra-arithmetic. I. Function data types[END_REF][START_REF] Epstein | Ultra-arithmetic. II. Intervals of polynomials[END_REF]. Somehow later, the implementation of Taylor models [START_REF] Makino | Rigorous analysis of nonlinear motion in particle accelerators[END_REF][START_REF] Makino | Taylor models and other validated functional inclusion methods[END_REF] (which can be seen as rigorous truncated Taylor series expansions) in the COSY Infinity software revived the interest for RPAs.

However, Chapter 2 highlights the limits of Taylor expansions in approximation theory, while generalized Fourier series expansions -in particular Chebyshev expansions -are often far more efficient. In view of this observation, the Chebyshev models, introduced in [START_REF] Brisebarre | Chebyshev interpolation polynomial-based tools for rigorous computing[END_REF][START_REF] Joldes | Rigorous Polynomial Approximations and Applications[END_REF], were rapidly adopted by some computer-assisted proofs in dynamical systems (see, e.g., [START_REF] Lessard | Rigorous numerics for nonlinear differential equations using Chebyshev series[END_REF]).

Moreover, the fully algorithmic approach proposed for Chebyshev models (e.g., [START_REF] Benoit | Rigorous uniform approximation of D-finite functions using Chebyshev expansions[END_REF] for D-finite functions) is an important source of inspiration for this thesis.

Chapter 3 provides an arithmetic for Chebyshev models, with some differences with [START_REF] Joldes | Rigorous Polynomial Approximations and Applications[END_REF], notably for division and square root that are now treated using an "interpolation -a posteriori validation" approach. A C library ChebValid3 for Chebyshev models as well as a Coq formalization 4 of RPAs are also presented in this chapter (see Goal F below). Chapter 4 also relies on a posteriori fixed-point validation (see below) to automatically compute RPAs for solutions of LODEs with coefficients represented by RPAs. Contrary to [START_REF] Benoit | Rigorous uniform approximation of D-finite functions using Chebyshev expansions[END_REF], which is limited to D-finite functions, the proposed approach is closer in spirit to the Newton-like validation methods, presented below. A posteriori fixed-point validation methods are a very powerful tool for rigorous numerics when direct (or self-validating) techniques are not available or sufficiently accurate. The problem is solved in two independent steps:

1. The approximation step computes an approximation x • of the exact solution x * of the problem under consideration. Any numerical algorithm can be used -no hypothesis is needed.

2. The validation step rephrases the initial problem to make x * the unique fixed point of a well-chosen contracting operator, and a rigorous upper bound on the error of x • to x * is afterwards reconstructed using the Banach fixed-point theorem.

This two-step approach, presented in more details in Chapter 3, is widely used in computerassisted proofs for function space problems and dynamical systems, notably via a posteriori Newton-like validation methods (see, e.g., [START_REF] Kedem | A posteriori error bounds for two-point boundary value problems[END_REF][START_REF] Kaucher | Self-validating numerics for function space problems: Computation with guarantees for differential and integral equations[END_REF][START_REF] Mitsuhiro | A numerical approach to the proof of existence of solutions for elliptic problems[END_REF][START_REF] Plum | Computer-assisted existence proofs for two-point boundary value problems[END_REF][START_REF] Oishi | Numerical verification of existence and inclusion of solutions for nonlinear operator equations[END_REF][START_REF] Yamamoto | A numerical verification method for solutions of boundary value problems with local uniqueness by Banach's fixed-point theorem[END_REF][START_REF] Arioli | Integration of dissipative partial differential equations: a case study[END_REF]250,[START_REF] Lessard | Rigorous numerics for nonlinear differential equations using Chebyshev series[END_REF][START_REF] Hungria | Rigorous numerics for analytic solutions of differential equations: the radii polynomial approach[END_REF], or the survey [START_REF] Mitsuhiro | Numerical verification methods for solutions of ordinary and partial differential equations[END_REF] and references therein). Contrary to the mainstream case by case strategy of these works, the validation procedure for LODE solutions presented in Chapter 4 provides a fully algorithmic approach with detailed complexity estimates, that was moreover implemented in the above-mentioned ChebValid C library. Still on the topic of a posteriori validation, Chapter 5 gives a new generalization of the Banach fixed-point theorem, allowing us to provide a general framework for tight componentwise validation of vector-valued problems. This is then applied to the validation of coupled systems of LODEs, using the techniques of Chapter 4. The Airy function Ai discussed above in the context of symbolic manipulation, can now be rigorously approximated and evaluated using Chebyshev models. Section 4.5.1 gives a detailed account of how the validation method for LODEs presented above computes and validates approximations of Ai. Note that, instead of the Chebyshev approximations provided by Chapter 4, one can also apply this validation method to any polynomial, in particular the evaluation error optimized polynomials computed in Chapter 8 (see Goal D).

A.3 Formal proof and certified implementations

Formal proof may be used to offer the highest level of confidence for rigorous numerics, that is, certified implementations. Proof assistants (also named interactive theorem provers) are software in which the programmer edits proofs for algorithms or mathematical statements. These proof scripts are then checked line by line by the kernel, i.e. a usually rather small and highly trusted codebase on which all the correctness of this verification step relies. Examples of famous proof assistants are: Mizar, ACL2, HOL4, HOL-Light, Isabelle, Coq, PVS, Lean, etc. Although many of them provide some automation tools (e.g., tactics in Coq or the Sledgehammer toolbox for Isabelle), formal proof tends to be a time-consuming task requiring a large workforce. In return, some formalizations of important theorems/conjectures received a wide recognition and reinforced the place of computer-assisted proofs among mathematicians (see Goal B below).

In the following, I will focus on the Coq proof assistant5 [START_REF] Bertot | Interactive theorem proving and program development: Coq'Art: the calculus of inductive constructions[END_REF] developed at INRIA, which is the one that we used for our formalization of RPAs (see Goal F). The type theory underlying Coq's logic is briefly presented below.

Type theory and proofs. Typed programming languages classify data into different predefined or user-defined categories, called types; the notation a : A stands for "the term a has type A". For example, in Coq, nat stands for the nonnegative integers, bool for the Booleans, A → B for the functions taking an argument of type A and returning a value of type B, etc. The Curry-Howard correspondence [START_REF] Girard | of Cambridge Tracts in Theoretical Computer Science[END_REF]Chap. 3] makes it possible to see types as mathematical propositions, and terms of that type as proofs of the corresponding proposition. For instance, a proof of the mathematical implication A ⇒ B is nothing more than a function of type A → B, constructing a proof of B out of a proof of A.

The Coq proof language enhances this correspondence using dependent types [START_REF] Martin | Intuitionistic type theory[END_REF] [START_REF] Bertot | Interactive theorem proving and program development: Coq'Art: the calculus of inductive constructions[END_REF]Chap. 4]. A dependent type is simply a type B(a) parametrized by inhabitants a of the type A, that is a term B : A → Type. The dependent product ∀ (a : A), B a generalizes the usual arrow type; it contains functions f that associate, to any argument a : A, a return value f a : B a. Clearly, dependent products are the analog of the universal quantifier in mathematical logics (and similarly, there are dependent sums for the existential quantifier). Finally, Coq also allows the user to define inductive types [START_REF] Bertot | Interactive theorem proving and program development: Coq'Art: the calculus of inductive constructions[END_REF]Chap. 6], whose elements are constructed out of a finite set of constructors declared by the user. For instance, the standard definition of nonnegative integers in Coq is the following inductive type, corresponding to a unary representation of numbers (see Chapter 1):

Inductive nat : Set := | O : nat | S : nat → nat.
Then Coq automatically associates an induction principle to it that roughly says: "All the possible patterns with O and S, that is S (S (... (S O))), are distinct terms of nat, and all the terms of nat have this shape".

nat_rect : ∀ P : nat → Type, P 0 → (∀ n : nat, P n → P (S n)) → ∀ n : nat, P n.

We shall stop here this short introduction to type theory ad refer to [START_REF] Girard | of Cambridge Tracts in Theoretical Computer Science[END_REF][START_REF] Bertot | Interactive theorem proving and program development: Coq'Art: the calculus of inductive constructions[END_REF] for more details. In fact, type theory can be used as logical foundations of mathematics, in replacement of usual set theory. For example, the Univalent Foundations Program6 aims at redefining all the mathematics using an extension called Homotopy Type Theory (HoTT) [START_REF]Homotopy type theory: Univalent foundations of mathematics[END_REF]. In the following, we focus more specifically on formalization of mathematical analysis in the Coq proof assistant.

Analysis in Coq is a widely debated topic in the formal proof community. A major reason is that in Coq's purely constructive logic, the different usual constructions of the field of real numbers (e.g., Dedekind cuts or Cauchy sequences) are not equivalent. Moreover, a purely constructive definition of real numbers necessarily lacks important properties, such as the zero test ∀ (x : R), x = 0 \/ x <> 0. Therefore, the Coq standard library opted for an axiomatized type R for real numbers, but constructive alternatives can still be used, such as the C-CoRN/MathClasses library [START_REF] Cruz-Filipe | C-corn, the constructive coq repository at nijmegen[END_REF].

Based on the above-mentioned axiomatization of real numbers, the Coquelicot library [START_REF] Boldo | Coquelicot: a user-friendly library of real analysis for Coq[END_REF] provides a user-friendly framework for real and functional analysis. Our formalization of the Banach fixed-point theorem, that we use for the fixed-point based operations on RPAs, strongly relies on Coquelicot's topological foundations via filters, as detailed in Chapter 3.

On the numerical analysis side, the Flocq library [START_REF] Boldo | Flocq: A unified library for proving floatingpoint algorithms in Coq[END_REF] formalizes floating-point arithmetic, which in turn is used by interval arithmetic, formalized in the CoqInterval library [START_REF] Melquiond | Proving bounds on real-valued functions with computations[END_REF]. This allows for the automated solving of real inequalities using interval analysis. Closer to our work, CoqApprox [START_REF] Martin | Proving tight bounds on univariate expressions with elementary functions in coq[END_REF] formalizes Taylor models, thus enhancing the features of CoqInterval.

B Prove mathematical theorems in new computer-assisted ways

Computer-assisted proofs consist in delegating part of the proof of a mathematical theorem to the computer. Several reasons may advocate this somewhat daring choice: too intricate computations for pen-and-paper work, combinatorial explosion of cases to be analyzed, very high level of abstraction making proofs doubtful, etc. The personal experience of V. Voevodsky, extracted from his note "The Origins and Motivations of Univalent Foundations" 7 , particularly highlights the limits of classical pen-and-paper mathematics:

" I can see two factors that contributed to this outrageous situation: Simpson claimed to have con- structed a counterexample, but he was not able to show where the mistake was in our paper. Because of this, it was not clear whether we made a mistake somewhere in our paper or he made a mistake somewhere in his counterexample. Mathematical research currently relies on a complex system of mutual trust based on reputations. By the time Simpson's paper appeared, both Kapranov and I had strong reputations. Simpson's paper created doubts in our result, which led to it being unused by other researchers, but no one came forward and challenged us on it. "

Computer-assisted proofs in analysis make use of floating-point arithmetic and numerical algorithms, yet they have to guarantee mathematical properties about the computed resultsa theorem cannot be true up to numerical errors! To this aim, an essential ingredient is the rigorous, or set-valued numerics introduced in Goal A.2. They played a major role in several iconic computer-assisted proofs, such as Landford's proof of the Feigenbaum conjecture [START_REF] Lanford | A computer-assisted proof of the Feigenbaum conjectures[END_REF], Tucker's proof about the existence of the Lorenz attractor [START_REF] Tucker | A rigorous ODE solver and Smale's 14th problem[END_REF], or Hales' proof of the Kepler conjecture [START_REF] Thomas | A proof of the Kepler conjecture[END_REF]. Dedicated libraries for rigorous numerics were also developed toward computer-assisted proofs, such as the CAPD library 8 for dynamical systems theory.

Of course, delegating some parts of the proof to a computer is absolutely not a minor decision, and computer-assisted proofs are sometimes called into question by some mathematicians, who may doubt the rigor of such approaches, or refuse to believe in a result they cannot check by hand line by line. For the former point 9 , the use of formal proof assistants should definitely close down the debate, like the four color theorem [START_REF] Gonthier | Formal proof-the four-color theorem[END_REF] by Gonthier and colleagues in Coq, the Flyspeck project [START_REF] Hales | A formal proof of the kepler conjecture[END_REF] by Hales and colleagues in HOL-Light for the Kepler conjecture, or the formalization by Immler [119] in Isabelle of Tucker's computer-assisted proof for the existence of the Lorenz attractor.

The joint work with Nicolas Brisebarre, Mioara Joldes and Warwick Tucker, described in Chapter 6, is an example of computer-assisted proof in analysis, using first rigorous, and then formally certified computations. Hence, we used both the ChebValid C library and Coq development (detailed in Goal F) toward the objective summarized in the following example.

Example 3 : Computing limit cycles in Hilbert's 16th problem Chapter 6 of this manuscript consists in computing limit cycles in the framework of Hilbert's 16th problem:

" What is the maximum number H(n) of limit cycles a polynomial vector field of degree n 7 https://www.ias.edu/ideas/2014/voevodsky-origins 8 http://capd.ii.uj.edu.pl/ 9 For the latter, however, it is merely a question of personal preference -and, after all, you are not obliged to like a proof to admit it.

in the plane can have, that is:

ẋ = P (x, y) ẏ = Q(x, y)
with P, Q ∈ |[x,y] of degree at most n? "

More detailed definitions are provided in the dedicated chapter. Roughly speaking, a limit cycle is an isolated periodic orbit, attracting sufficiently close trajectories (in positive or negative time). A well-known example is given by the Van der Pol oscillator depicted in Figure I.2a.

We do not address Hilbert's 16th problem itself, but instead constructs an example to compute a new lower bound for H [START_REF] Anderson | LAPACK Users' guide[END_REF]. In fact, our starting point was the article [START_REF] Johnson | A quartic system with twenty-six limit cycles[END_REF], in which T. Johnson claims to rigorously isolate 26 limit cycles for a quartic system he built on purpose. Based on the Poincaré-Pontryagin theorem, which relates the limit cycles to the zeros of socalled Abelian integrals, the proof consists in rigorously evaluating these integrals to observe sign alternations. Unfortunately, the rigorous software designed toward this goal was erroneous, and the correct number of limit cycles was 18, instead of 26 (which is less than the previous lower bound H(4) 22 [START_REF] Christopher | Estimating limit cycle bifurcations from centers[END_REF]).

Our motivation was to apply the rigorous techniques developed in this thesis to fix T. Johnson's example and obtain as much zeros as possible -rigorously, of course! 3 (a) Find a concrete example of a quartic vector field and isolate limit cycles to obtain a new and rigorous lower bound for H(4).

To do this, we reused the example of T. Johnson, depicted in Figure I.2b: ẋ = -4y 2 (y 2 -Y 0 ) + εg 1 (x, y), ẏ = 4xy(x 2 -X 0 ) + εg 2 (x, y), with ε > 0 and tuned the coefficients of the polynomial perturbation (f, g) ∈ | 4 [x, y] 2 to obtain 24 zeros, which therefore improves the previous record H(4) 22. Evaluating the Abelian integrals amounts to integrating algebraic functions over a compact segment, which is possible thanks to RPAs, implemented in ChebValid. Figure I.2c depicts the rigorous evaluation of the Abelian integral, whose sign alternations rigorously prove the existence of the desired limit cycles.

(b)

Can this approach be considered as a valid proof of H(4) 24, in the mathematical sense?

As mentioned above, some mathematicians are certainly reluctant to computer-assisted proofs, and the misadventure related to [START_REF] Johnson | A quartic system with twenty-six limit cycles[END_REF] partially justifies this disinclination. Fortunately, we are pleased to announce that we are currently completing the certified computations of Abelian integrals using our Coq library, which will give a definitive proof of H(4) 24. C Reliability, safety and efficiency for real-life applications Safety-critical engineering refers to industrial applications with potentially human lives at stake or, at least, large amounts of money or serious environmental damages. Typical examples include aeronautics and aerospace industry, computer-aided medical procedures or nuclear technologies. In such situations, intensive testing phases are usually necessary to increase and validate the reliability of new software. Nevertheless, in addition to their far from negligible cost and time, tests do not guarantee the absence of bugs -they may just detect their presence. Therefore, the need for rigorous and formal tools rapidly emerged around those topics -as evidenced by several collaborations between industrial and academic actors, such as the NASA Langley Formal Methods Research Program 10 .

The methods developed in this thesis pave the way towards the systematic application of rigorous, symbolic or formal tools to such "real-life" problems. In particular, I focused on aerospace applications. This domain -maybe due to the important amount of funding and public interest it receives, or to a somewhat less rigid legislation than for aeronautics -has been subject to various interesting rigorous and/or symbolic-numeric experiments: Taylor models for rigorous guidance in [START_REF] Di Lizia | Application of high order expansions of twopoint boundary value problems to astrodynamics[END_REF]; D-finite recurrences for rigorous evaluation of Taylor series expansion of space debris collision probability in [START_REF] Serra | Fast and accurate computation of orbital collision probability for shortterm encounters[END_REF]; nonrigorous multivariate Chebyshev approximations for the propagation of set of debris in [START_REF] Vasile | Set propagation in dynamical systems with generalised polynomial algebra and its computational complexity[END_REF].

Chapter 7, in collaboration with Paulo Ricardo Arantes Gilz and Clément Gazzino, makes a contribution to this rigorous space mission design, by validating and using spacecraft trajectories for proximity operations, that is, when relative distances are small compared to the Earth's radius. Example 4 below presents an application: the spacecraft rendezvous problem.

Example 4 : The spacecraft rendezvous problem

The spacecraft rendezvous problem consists, for an active spacecraft (e.g., a shuttle), called the chaser, to reach a passive target (e.g., a satellite or the ISS 11 ), within a given time interval. To do so, the chaser is equipped with thrusters which can be fired to modify its current orbital trajectory. However, the fuel (more precisely: hypergolic propellant) needed by these thrusts is only available in limited quantity. When the tank is empty, the spacecraft cannot be controlled anymore (it is "dead "), whence the necessity to minimize the fuel consumption during orbital maneuvers.

We consider a linearized model 12 for the dynamics of the relative motion X = [x, y, z, ẋ, ẏ, ż] T ∈ | 6 of a chaser spacecraft to the passive target:

Ẋ(t) = A(t)X(t) + B(t)u(t), (RDV-i)
where A(t) ∈ | 6×6 , B(t) ∈ | p×6 , and u(t) ∈ | p , which represents the control term for the thrusts, lies in a suitable function space. The thrusts are usually modeled as impulsions, that is an instantaneous velocity increment rather than an acceleration term. This leads to the so-called linearized impulsive spacecraft rendezvous problem (see Figure I.3a).

(a) Find the dates t i and velocity increments ∆V i , defining the control law u(t), to bring the chaser from its given initial state X(t 0 ) = X 0 ∈ | 6 to the prescribed final state X(t f ) = X f ∈ | 6 (for fixed t 0 < t f ), while minimizing the total fuel consumption:

inf u u 1 = inf u t f t 0 u(t) dt, s.t. Ẋ(t) = A(t)X(t) + B(t)u(t), t ∈ [t 0 , t f ],
X(t 0 ) = X 0 , X(t f ) = X f , t 0 , t f fixed.

(RDV-ii)

In the works [START_REF] Arzelier | Linearized impulsive fixed-time fuel-optimal space rendezvous: A new numerical approach[END_REF][START_REF] Serra | Fuel-optimal impulsive fixed-time trajectories in the linearized circular restricted 3-body-problem[END_REF], which I contributed to, an exchange algorithm is proposed to numerically compute the optimal impulsion dates and values. Roughly speaking, (RDV-ii) is restated as a semi-infinite programming problem, that is, involving a finite number of variables but an infinite number (i.e., a continuum) of constraints. Starting from an infeasible point, the algorithm selects at each iteration the most violated constraint to reduce the infeasibility (see

Figure I.3b).
Once the control law has been numerically computed, the rigorous space mission design also requires validated spacecraft trajectories, and in particular a validated final state.

(b) Given the initial state X 0 , the impulsion dates t i and the corresponding velocity increments ∆V i , compute rigorous enclosures for the actual final state X f , and check that it is reasonably close to the prescribed X f .

Making use of the validation method of Chapter 5 for coupled systems of LODEs, validated transition matrices using Chebyshev models can be computed for the dynamics (RDV-i), thus allowing for the rigorous propagation of the state X(t) between two consecutive thrusts. In particular, we get the desired enclosure of the final state. Table I.1 gives the parameters of a concrete ATV mission 13 and the obtained enclosures for the final state in the orbital plane. Obviously, this does not take into account the nonlinearity of the Keplerian dynamics nor the non Keplerian perturbations. However, most control applications related to the spacecraft rendezvous problem consider the linearized dynamics, and being able to certify the numerically computed result in that model is a key feature.

(c) Do I also need to validate the optimality of the control law found in Question 4 (a)?

Well, this particular point is probably not as critical as the final state -one easily imagines the consequences of the ATV supply shuttle entering in collision with the ISS. However, just for the point of being rigorous, one can mention that the algorithm presented in [START_REF] Arzelier | Linearized impulsive fixed-time fuel-optimal space rendezvous: A new numerical approach[END_REF] provides enclosures for the optimal fuel consumption at each iteration.

Semi-major axis: 6763 km Eccentricity: 0.0052 Initial time: ν0 = 0 rad Final time:

ν f = 8.1832 rad Initial state:

(x, z, ẋ, ż) = (-30, 0.5, 8.514, 0) [km -m/s] Final state:

(x, z, ẋ, ż) = (-100, 0, 0, 0) [m -m/s] (a) Given parameters. (c) Validated final state, in function of polynomial approximation degree.

Table I.1: A posteriori validation for an Automated Transfer Vehicle (ATV) mission in the orbital plane (x, z).

D Taking into account "lower-level" aspects

The reminder of approximation theory in Chapter 2 mostly follows a purely mathematical point of view: polynomials are supposed to be given with real coefficients, that is, with infinite precision, and the evaluation x → p(x) is considered exact. Certainly, Chapters 3, 4 and 5 rigorously bound floating-point errors using interval arithmetic, and they give some insight into how to avoid related overapproximation effects. Nevertheless, no quantified analysis of rounding errors is provided.

However, some specific topics require a precise analysis of rounding errors, such as floatingpoint implementation of functions, where the result's accuracy must be ensured to a given precision (e.g., for correctly rounded functions [START_REF] Muller | Handbook of Floating-Point Arithmetic[END_REF], see Section 1.2). In this regard, Chapter 8 presents a collaboration with Mioara Joldes and Denis Arzelier, in which we propose an exchange algorithm for evaluation and approximation error optimized polynomials. As the name suggests, this algorithm has strong connections with the Remez exchange algorithm for best uniform polynomial approximations (see Section 2.2.2), and the above-mentioned exchange algorithm for the spacecraft rendezvous [START_REF] Arzelier | Linearized impulsive fixed-time fuel-optimal space rendezvous: A new numerical approach[END_REF]. Let us take over the example of the Airy function to illustrate our approach.

Example 1 : Airy function Ai -Floating-point implementation Since Ai cannot be expressed using elementary functions, polynomial approximation is one of the most natural tool to design floating-point implementations of it. It consists, for fixed interval I = [a, b] and degree n, to find the coefficients of a polynomial p in a given basis, so that Ai(x) will be approximately computed as p(x), for x ∈ I. In an idealistic world without rounding errors, this is the minimax problem detailed in Section 2.2.2 1 (c) Given a compact interval I = [a, b] and a degree n, find the best polynomial approximation

p ∈ | n [x]
for Ai, that is the polynomial p minimizing the uniform approximation error:

arg min p∈|n[x] Ai -p ∞,I := arg min p∈|n[x] max x∈I | Ai(x) -p(x)|.
This problem may be solved by the Remez algorithm [START_REF] Remes | Sur un procédé convergent d'approximations successives pour déterminer les polynômes d'approximation[END_REF][START_REF] Remes | Sur le calcul effectif des polynômes d'approximation de Tchebichef[END_REF][START_REF] Powell | On the maximum errors of polynomial approximations defined by interpolation and by least squares criteria[END_REF]. In particular, the equioscillating behavior of the resulting approximation error, depicted in Figure I.4b, characterizes the optimality.

However, in floating-point (FP) arithmetic, the polynomial p, as a mathematical function x → p(x), is implemented by a sequence of FP operations, that is a program p, called evaluation scheme, that computes a FP result p(x) on any FP input x ∈ I. In this setting, the coefficients of p are FP numbers, and the result p(x) is affected by rounding errors. If p * denotes the optimal polynomial of Question 1 (c), and p * an evaluation scheme where the coefficients of p were rounded to FP numbers, then there is no reason for which p * would be the optimal solution of the following question (cf. 

arg min p∈|n[x] max x FP in I | Ai(x) -p(x)|.
This is an important issue in the domain of computer arithmetic [START_REF] Brisebarre | Computing machine-efficient polynomial approximations[END_REF][START_REF] Brisebarre | Efficient polynomial L ∞ approximations[END_REF]. Our algorithm makes progress on it by optimizing simultaneously the approximation and evaluation errors. It consists in a generalization of the Remez algorithm in the framework of semi-infinite programming. The total error of the optimal solution for this Airy example is depicted in Figure I.4d, where we can see that the approximation error is "spread" over I, in such a way that the highest peaks are located where the evaluation error is small. On a final note, this "lower-level" setting is absolutely not incompatible with the rigorous numerics framework discussed in this thesis:

1 (e) Given a polynomial approximation p ∈ |[x] for Ai, compute an upper bound over I = [a, b]
for the approximation error or the total error.

For the approximation error, this simply means rigorously bounding Ai -p ∞,I . Since Ai satisfies a LODE (Ai-ii), a rigorous error bound can be computed using the validation method of Chapter 4.

When considering the total error, one moreover needs to bound the evaluation error. This can be done using already existing certified software, e.g. Gappa [START_REF] Florent De Dinechin | Certifying the floatingpoint implementation of an elementary function using Gappa[END_REF] which relies on the previously mentioned Flocq library for Coq.

E New outlets for rigorous and symbolic-numeric methods

Some domains of mathematics benefited early from the advantages of rigorous numerics, e.g., validated solutions of differential equations, or rigorous/certified optimizers. In contrast, some applications of validated and/or symbolic-numeric methods proposed in this manuscript illustrate new interactions between traditional mathematics and rigorous numerics.

• In Chapter 9, we (Mioara Joldes, Jean-Bernard Lasserre and I) propose new algorithms to solve inverse problems on measures, that is, reconstructing the support and the density of a measure from its moments. To do so, we make use of the D-finite (and closely related holonomic) setting mentioned above. Although not rigorous, these methods are symbolic-numeric: the algebraic machinery of D-finite equations leads to linear systems that are finally solved numerically, since the given moments are usually known to a finite accuracy. Let us exemplify the method with the example below. as the checkered region, whose boundary is given by the zero set of the polynomial:

g(x, y) := (x 2 + y 2 -9)(x 2 + y 2 -1)((x -2) 2 + y 2 -1)(x 2 + (y -2) 2 -1).
The moments m α,β of the measure µ := f ✶ G (Gaussian measure restricted to G) are defined as:

m α,β := G x α y β f (x, y)dxdy.
Chapter 9 answers the following two questions. First, consider the direct problem.

(a)

Given the density f and the polynomial boundary g, recover a "complete" 14 set of recurrences for the moments m α,β , allowing for computing all the moments from a finite number of initial ones.

This question is partially answered in Section 9.3 using a heuristic, with more precise statements in the case of exponential-of-polynomial density, in particular Gaussian density. It can be seen as an alternative to usual Creative Telescoping techniques, e.g., [START_REF] Oaku | Algorithms for integrals of holonomic functions over domains defined by polynomial inequalities[END_REF] in the case of semi-algebraic support.

Conversely, here is the inverse problem.

(b)

Given a finite number of moments m α,β , try to recover the polynomial in the exponential defining f , and a nontrivial polynomial whose zero set contains the boundary of G.

Algorithms to solve this problem are given in Section 9.4. They consist in "guessing" recurrences for the moments by solving linear systems involving sufficiently many known moments, thus allowing for reconstructing the polynomial boundary and differential equations satisfied 14 The technical word would be holonomic (see Section 2.1.2).

F Designing open-source implementations

Besides the theoretical contributions mentioned all along this introduction, I also worked on several implementations. Although not completely mature, they play an important role as a proof of concept for the rigorous and algorithmic approach for function space problems advocated in this thesis, using RPAs and symbolic-numeric tools.

• I developed an open-source C library, named ChebValid15 , that implements the arithmetic on Chebyshev models given in Chapter 3, and the validation algorithms for LODEs solutions of Chapters 4 and 5. Besides illustrative examples given in these chapters, this library was successfully used in Chapters 6 and 7 for the rigorous counting of limit cycles (Example 3) and the validation of spacecraft trajectories (Example 4).

• Assia Mahboubi, Damien Pous and I developed a Coq formalization16 [START_REF] Bréhard | A certificate-based approach to formally verified approximations[END_REF] of RPAs with arithmetic operations, with a full implementation on Chebyshev models. More details about it may be found in Chapter 3. The Abelian integrals of Example 3 (cf. Chapter 6), that we first computed using ChebValid, have been recomputed with the Chebyshev models of this Coq framework, thus offering the highest confidence level for a computer-assisted proof.

• Mioara Joldes and I also prototyped several scripts in Maple and Mathematica for the problems addressed in Chapters 8 and 9. For the former (design of evaluationerror optimized polynomial approximations, see Example 1), a complete Mathematica script is available here 17 . For the latter (see Example 5), Maple scripts for the different examples in Chapter 9 may be found here 18 .

Introduction (en français)

L'anglais, ce n'est jamais que du français mal prononcé.

-Georges Clemenceau L'analyse numérique est à la base d'un large éventail d'algorithmes traitant des données continues (temps, espace, etc.), largement utilisés, par exemple, dans les simulations en ingénierie, le traitement d'images or la prise de décision automatisée. Le développement d'implémentations extrêmement optimisées et performantes pour de nombreuses routines d'algèbre linéaire, d'analyse fonctionnelle ou d'optimisation continue, est un facteur majeur de cette réussite. Ces implémentations bénéficient grandement de l'efficacité sans cesse accrue des unités de calcul en nombres flottants disponibles dans les processeurs ou autres architectures récentes, sous la houlette du standard IEEE 754.

Néanmoins, un problème très étudié concerne les erreurs numériques inhérentes au calcul scientifique. Habituellement, ces erreurs sont regroupées en deux catégories. La première, intrinsèque au calcul des nombres flottants, est constituée des erreurs d'arrondi, dues à la discrétisation de la droite des réels. La seconde regroupe les erreurs de méthode, lorsque des problèmes de dimension infinie sont approximés en dimension finie, via des méthodes de discrétisation ou de projection. À titre d'exemple, mentionnons les méthodes de Runge-Kutta ou les méthodes spectrales pour résoudre des équations différentielles ordinaires (EDO). Bien que relativement petites en général, ces erreurs s'accumulent au fil de l'exécution du programme et peuvent donner lieu à d'importantes erreurs en fin de compte. Souvent, le problème réside dans le fait que l'on ne peut pas estimer directement la précision du résultat, c'est-à-dire spécifier le nombre de bits corrects, si tant est qu'il y en ait. Par conséquent, certains domaines avec des exigences de sécurité accrues, comme l'ingénierie des systèmes critiques ou les preuves mathématiques assistées par ordinateur, ne peuvent reposer uniquement sur des algorithmes purement numériques.

Objectifs principaux. Au regard de ces insuffisances, nous nous pencherons dans cette thèse sur les défis suivants. Il est à noter que tous n'occuperont pas la même place -le premier recevant en effet le plus d'attention -mais chacun apportera un éclairage propre. Listés ci-dessous, ils seront abordés par la suite dans des sections dédiées, sous l'angle de concepts clés, d'exemples illustratifs et avec pour objectif d'esquisser le plan du manuscrit.

A. Calculer plus rapidement, plus précisément et plus sûrement. Ainsi pourrait-on énoncer l'objectif principal de cette thèse. Après un passage en revue, sans doute per- • le calcul symbolique (Objectif A.1) pour des problèmes essentiellement de nature algébrique, travaillant avec des représentations exactes des objets et parfois accompagnés de certificats rendant possible une vérification a posteriori du résultat.

• le calcul rigoureux (Objectif A.2) reposant sur des représentations ensemblistes numériques, et fournissant ainsi des encadrements rigoureux pour le résultat exact du problème, qui peut ne pas être représentable exactement en machine.

Parfois, calculs symbolique et numérique (rigoureux) peuvent être combinés dans des méthodes dites symboliques-numériques.

3.

Une troisième couche, celle du calcul certifié, offre une sécurité maximale, à savoir au niveau de l'implémentation. La preuve formelle (Objectif A.3) ouvre la voie à des implémentations certifiées, dont la correction est garantie par un logiciel appelé assistant de preuve.

Le choix du niveau de sécurité adéquat dépend fortement de l'application visée : sommes-nous prêts à dédier plus de temps à un calcul donné pour augmenter la confiance que nous avons dans le résultat ? Toutefois, ce choix est également limité par les outils et logiciels disponibles. En particulier, les implémentations certifiées de méthodes numériques sont encore rares et restent souvent bien moins efficaces que leurs analogues non rigoureux.

Avant d'aborder les contributions de cette thèse, un aperçu des outils de calculs nécessaires est donné dans les deux premiers chapitres. Le Chapitre 1 s'intéresse aux représentations des nombres : représentations exactes pour le calcul symbolique, les nombres flottants (très efficaces mais sujets aux erreurs d'arrondis), et enfin les intervalles pour encadrer rigoureusement les nombres réels. Ensuite, le Chapitre 2 aborde la représentation des fonctions en insistant sur les deux sujets suivants : le cadre symbolique des fonctions D-finies, qui sont les solutions des équations différentielles ordinaires linéaires (EDOL) à coefficients polynomiaux, ainsi qu'un survol de certains résultats de théorie de l'approximation polynomiale qui se révélera précieux pour les chapitres à suivre.

Les approximations polynomiales rigoureuses (RPA), qui occupent une place centrale dans cette thèse, seront présentées dans le Chapitre 3, en même temps que seront introduites les méthodes de validation a posteriori à base de point fixes qui seront utilisées pour définir la division et la racine carrée de RPA. Il en résulte une arithmétique des RPA qui sert de fondement à des méthodes rigoureuses plus élaborées pour des problèmes d'analyse fonctionnelle. En particulier, une contribution centrale de cette thèse consiste en des algorithmes calculant des RPA dans la base de Tchebychev pour les solutions d'EDOL, conçus avec Nicolas Brisebarre et Mioara Joldes. Ils seront présentés dans les Chapitres 4 (pour les EDOL scalaires) et 5 (pour les systèmes d'EDOL couplées).

L'exemple suivant autour de la fonction d'Airy Ai, servira à illustrer comment ces différents outils détaillés dans ce qui suit apportent des points de vue complémentaires sur des mêmes questions.

Example 1 : Fonction d'Airy Ai

La fonction d'Airy Ai (cf. Figure I.9a) est une fonction spéciale fréquemment rencontrée en mathématiques [START_REF] Abramowitz | Handbook of mathematical functions with formulas, graphs, and mathematical tables[END_REF], qui peut être définie via l'intégrale de Riemann impropre suivante :

Ai(x) = 1 π +∞ 0 cos t 3 3 + xt dt, (Ai-i)
ou par l'équation différentielle du second ordre suivante avec conditions initiales en 0, où Γ désigne la fonction Gamma :

Ai ′′ (x) -x Ai(x) = 0, Ai(0) = 1 3 2 3 Γ 2 3 , Ai ′ (0) = - 1 3 1 3 Γ 1 3 . (Ai-ii)
Cette fonction n'admet pas de forme close plus simple à base de fonctions élémentaires, comme exp, sin, cos ou leurs réciproques. Un des objectifs de l'analyse numérique, de calcul formel et du calcul rigoureux consiste à développer des méthodes pour manipuler de telles fonctions, notamment l'évaluer en un point, vérifier des égalités, produire des approximations validées, etc.

A.1 Calcul symbolique

Les méthodes de calcul symbolique [START_REF] Von | Modern computer algebra[END_REF], qui reflètent notre manière usuelle de faire des mathématiques en passant par des représentations exactes des nombres, fonctions, etc., constituent un moyen naturel de contourner les problèmes d'erreurs numériques. Plusieurs décennies de recherche dans ce domaine ont abouti à toute une collection d'algorithmes efficaces, bien étudiés en terme de complexité et implémentés dans des logiciels de calcul formel faciles à prendre en main, tels Maple ou Mathematica. Les fonctions D-finies, présentées dans ce qui suit en raison de leurs multiples apparitions tout au long de cette thèse, forment un exemple remarquable d'objets avec représentations exactes en machine.

Fonctions D-finies. Ces fonctions, qui sont les solutions des EDO linéaires à coefficients polynomiaux [START_REF] Stanley | Differentiably finite power series[END_REF], sont omniprésentes en mathématiques -elles représentent environ 60% des fonctions répertoriées dans [START_REF] Abramowitz | Handbook of mathematical functions with formulas, graphs, and mathematical tables[END_REF], dont la fonction d'Airy Ai donnée dans l'Exemple 1. Grâce aux nombreux efforts d'une communauté active autour de ce sujet, des logiciels de calcul formel comme Maple ou Mathematica permettent aujourd'hui de manipuler de telles fonctions comme des structures de données (une équation différentielle annulant la fonction, avec suffisamment de conditions initiales) et d'agir sur elles via des opérations arithmétiques et différentielles. 

Ai(-x) = x 9 J 1 3 2 3 x 3 2 + J -1 3 2 3 x 3 2 , x > 0, (Ai-iii)
où les fonctions de Bessel J ± 1 3 forment une base des solutions de :

9z 2 f ′′ (z) + 9zf ′ (z) + (9z 2 -1)f (z) = 0. (J 1 
3

)
En utilisant les opérations de clôture implémentées sous forme l'algorithmes, le paquet Gfun19 pour Maple calcule automatiquement que le membre droit dans (Ai-iii) vérifie g ′′ (x)+xg(x) = 0. En effet, cette expression se déduit de J ± 1 3 par une substitution algébrique z → 2 3 x 3 2 , suivie d'une somme, et finalement multipliée par x → x 9 . Or x → Ai(-x), de par (Ai-ii), vérifie la même EDOL, de sorte que vérifier l'égalité des conditions initiales en 0 suffit pour établir l'identité (Ai-iii), par le théorème de Cauchy-Lipschitz.

Télescopage Créatif. Le Télescopage Créatif désigne un ensemble de techniques [START_REF] Zeilberger | A holonomic systems approach to special functions identities[END_REF][START_REF] Chyzak | The ABC of Creative Telescoping: Algorithms, Bounds, Complexity. Memoir of accreditation to supervise research (HDR)[END_REF][START_REF] Koutschan | Advanced applications of the holonomic systems approach[END_REF] développées dans le but de calculer automatiquement des équations différentielles ou de récurrence pour des intégrales ou des sommes de quantités D-finies, permettant même parfois de retrouver des formes closes non triviales. Qui plus est, ces techniques plutôt complexes produisent également un certificat permettant de revérifier le résultat a posteriori (voir Chapitre 2 pour plus de détails).

Example 2 : Fonction génératrice exponentielle des polynômes de Tchebychev 2 (a) Prouvons l'identité suivante :

+∞ n=0 T n (x) t n n! = e tx cosh(t x 2 -1), |x| < 1,
où T n désigne le n-ième polynôme de Tchebychev, défini dans le Chapitre 2.

L'intégrande f (t, n) := T n (x) t n n! vérifie les équations mixtes différentielles/aux différences :

t∂ t • f -nf = 0, (2 + 3n + n 2 )S 2 n • f + (-2tx -2ntx)S n • f + t 2 f = 0. avec ∂ t • f (t, n) := ∂f ∂t (t, n) et S n • f (t, n) := f (t, n + 1).
En utilisant par exemple la routine CreativeTelescoping du paquet HolonomicFunctions 20

de Mathematica, on obtient l'équation différentielle suivante pour g(t

) := +∞ n=0 f (t, n) : ∂ 2 t • g -2x∂ t • g + g = 0.
Pour finir, les procédures usuelles de résolution d'équations différentielles de Maple ou Mathematica permettent de retrouver l'expression en forme close e tx cosh(t √ x 2 -1) à partir de cette équation différentielle.

Limites des méthodes symboliques. Cependant, certains problèmes sont par essence insolubles par des tels outils, notamment pour les raisons suivantes :

• Seules certaines classes restreintes de nombres ou fonctions admettent des représentations exactes, par exemple les nombres ou fonctions rationnels, algébriques, etc. Considérons cependant à titre d'exemple la constante d'Euler γ := lim n→∞ n k=1 1 k -log n . Quel comportement calculatoire attendons-nous des algorithmes sur celui-ci ? -alors même que savoir si γ est rationnel ou pas reste un problème ouvert.

• Certains objets ont des représentations exactes mais implicites. Ainsi, au moment de tester des propriétés concrètes, une étape de calcul rigoureux peut s'avérer nécessaire pour convertir la représentation implicite en des valeurs numériques. C'est par exemple le case pour les fonctions D-finies, pour lesquelles des approximations polynomiales rigoureuses seront construites dans les Chapitres 4 et 5 (voir ci-dessous).

• Même lorsqu'il est possible de travailler avec des représentations exactes, leur taille intrinsèque peut se révéler être un obstacle majeur pour une implémentation en machine. Cela arrive souvent pour les algorithmes où l'on itère un grand nombre de fois des opérations algébriques sur des objets représentés exactement. Dans le Chapitre 1, l'Exemple 1.3 illustrera ce phénomène avec l'inversion de matrices à coefficients rationnels.

A.2 Calcul rigoureux et méthodes de validation

Le calcul rigoureux [START_REF] Tucker | Validated numerics: a short introduction to rigorous computations[END_REF] s'affranchit des limitations des méthodes symboliques en substituant aux représentations exactes des représentations validées dans divers problèmes, notamment en analyse fonctionnelle, par exemple les équations différentielles ou le contrôle optimal. L'idée principale est de calculer des représentations ensemblistes effectives, comme des intervalles réels ou des boules dans des espaces fonctionnels, avec la garantie que la solution exacte du problème en question soit contenue dans cet ensemble de valeurs possibles. Cette définition, plus souple que les représentations exactes, permet de recourir aux nombres flottants et aux algorithmes numériques, tout en restant correct grâce à un usage attentif des modes d'arrondis et des bornes d'erreur a posteriori.

Arithmétique des intervalles. C'est une composante de base essentielle du calcul rigoureux (cf. [START_REF] Moore | Interval Analysis[END_REF][START_REF] Tucker | Validated numerics: a short introduction to rigorous computations[END_REF][START_REF] Rump | Verification methods: rigorous results using floating-point arithmetic[END_REF]), qui sera présentée dans le Chapitre 1. L'idée consiste à utiliser Par conséquent, le fait de remplacer toutes les opérations de nombres flottants par leurs analogues en intervalles résout en principe le problème des erreurs d'arrondis. Néanmoins, certaines limitations, détaillées dans le Chapitre 1, nous amènent à modérer ce point de vue faisant de l'arithmétique des intervalles l'alpha et l'oméga du calcul rigoureux :

• Les surestimations constituent une faiblesse bien connue de l'arithmétique d'intervalles [START_REF] Rump | Verification methods: rigorous results using floating-point arithmetic[END_REF],

en raison de divers phénomènes celui de la dépendance ou du wrapping effect : l'intervalle calculé est correct, mais trop grand pour donner quelque information utile.

• Bien que l'intervalle calculé soit correct par rapport aux erreurs d'arrondi, les erreurs de méthodes ne sont pas prises en compte, étant donné qu'elles résultent de la discrétisation du problème lui-même, et non simplement de l'approximation des réels par des nombres flottants.

Approximations polynomiales rigoureuses (RPA). Les RPA ont été conçus comme analogues en dimension supérieure à l'analyse d'intervalles. Ce sont simplement des polynômes assortis d'une borne supérieure de l'erreur entre ce polynôme et la fonction représentée, selon une norme donnée (cf. Figure I.6). Ces idées furent initialement conceptualisées dans les années 1980 avec l'ultra-arithmétique [START_REF] Epstein | Ultra-arithmetic. I. Function data types[END_REF][START_REF] Epstein | Ultra-arithmetic. II. Intervals of polynomials[END_REF]. Quelque temps plus tard, l'implémentation des modèles de Taylor [START_REF] Makino | Rigorous analysis of nonlinear motion in particle accelerators[END_REF][START_REF] Makino | Taylor models and other validated functional inclusion methods[END_REF] (que l'on peut voir comme des séries de Taylor tronquées rigoureusement) dans la bibliothèque COSY Infinity raviva l'intérêt porté aux RPA.

Cependant, le Chapitre 2 souligne les limites des développements de Taylor en théorie de l'approximation, là où les séries de Fourier généralisées -et en particulier les séries de développements en séries de Tchebychev -sont souvent bien plus efficaces. Partant de ce constat, les modèles de Tchebychev, conçus dans [START_REF] Brisebarre | Chebyshev interpolation polynomial-based tools for rigorous computing[END_REF][START_REF] Joldes | Rigorous Polynomial Approximations and Applications[END_REF], furent rapidement adoptés pour certaines preuves assistées par ordinateur (voir par exemple [START_REF] Lessard | Rigorous numerics for nonlinear differential equations using Chebyshev series[END_REF]). Plus encore, l'approche pleinement algorithmique des modèles de Tchebychev (par exemple dans [START_REF] Benoit | Rigorous uniform approximation of D-finite functions using Chebyshev expansions[END_REF]) a constitué une source d'inspiration majeure pour cette thèse.

Le Chapitre 3 présente une arithmétique pour les modèles de Tchebychev, avec quelques différences par rapport à [START_REF] Joldes | Rigorous Polynomial Approximations and Applications[END_REF], notamment pour la division et la racine carrée qui sont ici effectuées selon une approche interpolation -validation a posteriori. Nous y présenterons également une bibliothèque C nommée ChebValid21 pour les modèles de Tchebychev, ainsi qu'une formalisation des RPA en Coq22 (cf. Objectif F). Le Chapitre 4 repose également sur les méthodes de validation a posteriori par point fixe (voir ci-dessous) pour calculer de manière automatisée des RPA pour des solutions d'EDOL, dont les coefficients sont eux-mêmes représentés par des RPA. Contrairement à [START_REF] Benoit | Rigorous uniform approximation of D-finite functions using Chebyshev expansions[END_REF], qui se limite aux fonctions D-finies, notre approche se rapproche davantage dans l'esprit des méthodes de validation de type Newton, présentées dans ce qui suit. Validation a posteriori par point fixe. Ces méthodes constituent un outil puissant pour le calcul rigoureux lorsque des techniques directes (aussi appelées auto-validantes) ne sont pas applicables ou insuffisamment précises. Le problème se résout alors en deux étapes totalement indépendantes :

1. L'étape d'approximation calcule une approximation x • de la solution exacte x * du problème en question. N'importe quel algorithme numérique peut ici être utilisé -aucune hypothèse n'est requise.

2. L'étape de validation reformule le problème initial de sorte à faire de x * l'unique point fixe d'un opérateur contractant bien choisi, puis reconstruit a posteriori une borne rigoureuse sur l'erreur de x • par rapport à x * , en utilisant le théorème du point fixe de Banach.

Cette approche en deux étapes, que nous présenterons plus en détails dans le Chapitre 3, est souvent utilisée dans les preuves assistées par ordinateur pour des problèmes d'analyse fonctionnelle et de systèmes dynamiques, notamment via les méthodes de validation a posteriori de type Newton (voir par exemple [START_REF] Kedem | A posteriori error bounds for two-point boundary value problems[END_REF][START_REF] Kaucher | Self-validating numerics for function space problems: Computation with guarantees for differential and integral equations[END_REF][START_REF] Mitsuhiro | A numerical approach to the proof of existence of solutions for elliptic problems[END_REF][START_REF] Plum | Computer-assisted existence proofs for two-point boundary value problems[END_REF][START_REF] Oishi | Numerical verification of existence and inclusion of solutions for nonlinear operator equations[END_REF][START_REF] Yamamoto | A numerical verification method for solutions of boundary value problems with local uniqueness by Banach's fixed-point theorem[END_REF][START_REF] Arioli | Integration of dissipative partial differential equations: a case study[END_REF]250,[START_REF] Lessard | Rigorous numerics for nonlinear differential equations using Chebyshev series[END_REF][START_REF] Hungria | Rigorous numerics for analytic solutions of differential equations: the radii polynomial approach[END_REF], ainsi que [START_REF] Mitsuhiro | Numerical verification methods for solutions of ordinary and partial differential equations[END_REF] et les références qui y sont citées). Allant à l'encontre de la stratégie dominante du cas par cas de ces travaux, la méthode de validation pour les solutions d'EDOL présentée dans le Chapitre 4 suit une approche totalement algorithmique avec une analyse de complexité détaillée, et a de plus été implémentée dans la bibliothèque C ChebValid mentionnée plus haut.

Toujours en rapport avec la validation a posteriori, le Chapitre 5 présente une nouvelle généralisation du théorème du point fixe de Banach, donnant un cadre général pour la validation fine composante par composante de problèmes vectoriels. Ceci s'applique à la validation de systèmes d'EDOL couplées, en réutilisant les techniques du Chapitre 4.

Example 1 : Fonction d'Airy Ai -approximation rigoureuse 1 (b) Comment calculer efficacement des RPA précis pour Ai ? La fonction d'Airy Ai abordée précédemment dans le cadre du calcul symbolique, peut maintenant être rigoureusement approchée et évaluée à l'aide de modèles de Tchebychev. La Section 4.5.1 explique en détails comment la méthode de validation pour EDOL calcule et valide des approximations de Ai. Il est important de noter que cette méthode de validation peut s'appliquer sur n'importe quelle approximation polynomiale, pas uniquement les séries de Tchebychev tronquées du Chapitre 4 : par exemple, les polynômes optimisés pour l'erreur d'évaluation calculés dans le Chapitre 8 (cf. Objectif D).

A.3 Preuve formelle et implémentations certifiées

Un niveau de confiance encore plus élevé pour le calcul rigoureux peut-être souhaitable dans certains cas, c'est-à-dire des implémentations certifiées grâce à l'utilisation de la preuve formelle. Un assistant de preuve est un logiciel dans lequel le programmeur édite des scripts de preuves à la fois pour des algorithmes ou des énoncés mathématiques. Ces scripts de preuves sont ensuite vérifiés ligne par ligne par le noyau, qui consiste en un nombre relativement restreint de lignes de code sur lequel repose toute la correction mathématique de ce procédé de vérification. Voici les noms de quelques uns des plus célèbres assistants de preuve : Mizar, ACL2, HOL4, HOL-Light, Isabelle, Coq, PVS, Lean, etc. Bien que plusieurs d'entre eux proposent des outils d'automatisation (comme les tactiques en Coq ou l'outil Sledgehammer en Isabelle), prouver formellement des programmes est une tâche qui requiert souvent beaucoup de temps et de main d'oeuvre. En retour, certaines formalisations d'importants théorèmes ou conjectures ont suscité une reconnaissance bien mérités et ont ainsi contribué à renforcer la place des preuves assistées par ordinateur au sein de la communauté mathématique (voir Objectif B plus bas).

Dans ce qui suit, je ciblerai plus particulièrement l'assistant de preuve Coq23 [START_REF] Bertot | Interactive theorem proving and program development: Coq'Art: the calculus of inductive constructions[END_REF] développé à l'INRIA, qui est celui utilisé dans notre formalisation des RPA (voir Objectif F). Voici quelques notions élémentaires sur la théorie des types à la base de la logique de Coq.

Théorie des types et preuves. Les langages de programmation dits typés classent les données dans différentes catégories (prédéfinies ou créées par l'utilisateur), que l'on appelle types. La notation a : A signifie : « le terme a a pour type A ». Par exemple, en Coq, nat représente les entiers naturels, bool les booléens, A → B les fonctions prenant un argument de type A et renvoyant un résultat de type B, etc. La correspondance de Curry-Howard [92, Chap. 3] permet d'interpréter les types comme des propositions mathématiques, et les termes de ce type comme des preuves de la proposition correspondante. Ainsi par exemple, une preuve de l'implication mathématique A ⇒ B n'est rien d'autre qu'une fonction de type A → B, qui construit une preuve de B à partir d'une preuve de A.

Le langage de preuve formelle Coq enrichit cette correspondance grâce aux types dépendants [169][22,Chap. 4]. Un type dépendant est tout simplement un type B(a) paramétré par des habitants a du type A, donc une terme B : A → Type. Le produit dépendant ∀ (a : A), B a généralise le type flèche classique : il contient les fonctions f qui associent à chaque argument a : A une valeur de retour f a : B a. Il est donc clair que le produit dépendant est l'analogue du quantificateur universel en logique mathématique (et de manière similaire, il existe des sommes dépendantes pour que quantificateur existentiel). Pour finir, Coq permet également à l'utilisateur de définir des types inductifs [START_REF] Bertot | Interactive theorem proving and program development: Coq'Art: the calculus of inductive constructions[END_REF]Chap. 6], dont les éléments sont construits à partir d'un nombre fini de constructeurs déclarés par le programmeur. Par exemple, les entiers naturels standards de Coq sont donnés par le type inductif suivant, qui correspond à une représentation unaire des entiers (cf. Chapitre 1) :

Inductive nat : Set := | O : nat | S : nat → nat.
Coq associe automatiquement un principe d'induction à cette définition, qui en gros stipule : « Tous les motifs possibles construit avec O et S, c'est-à-dire S (S (... (S O))), sont des termes deux à deux distincts de nat, et tous les termes de nat sont de cette forme ».

nat_rect : ∀ P : nat → Type, P 0 → (∀ n : nat, P n → P (S n)) → ∀ n : nat, P n.

Nous terminons ici cette courte introduction à la théorie des types, et renvoyons le lecteur intéressé à [START_REF] Girard | of Cambridge Tracts in Theoretical Computer Science[END_REF][START_REF] Bertot | Interactive theorem proving and program development: Coq'Art: the calculus of inductive constructions[END_REF] pour plus de détails. En somme, la théorie des types peut servir de fondations logiques aux mathématiques, à la place de la théorie des ensembles. Dans cette optique, le programme Fondations univalentes 24 entend redéfinir toutes les mathématiques via une extension nommé Théorie homotopique des types (Homotopy Type Theory en anglais, HoTT) [START_REF]Homotopy type theory: Univalent foundations of mathematics[END_REF]. À présent, nous nous intéressons plus particulièrement à la formalisation de l'analyse mathématique dans Coq.

Analyse en Coq. Voilà un sujet largement largement discuté au sein de la communauté de la preuve formelle. Une des raisons principales est que dans la logique purement constructive de Coq, les différentes constructions usuelles du corps des nombres réels (coupures de Dedekind, suites de Cauchy, etc.) ne sont pas équivalentes. Qui plus est, une définition purement constructive des nombres réels implique forcément que certaines propriétés importantes ne seront pas satisfaites, comme le test à zéro ∀ (x : R), x = 0 \/ x <> 0. Ainsi, la bibliothèque standard de Coq fait le choix d'un type axiomatisé R pour les nombres réels, bien que des constructions alternatives puissent également être utilisées, comme la bibliothèque C-CoRN/MathClasses [START_REF] Cruz-Filipe | C-corn, the constructive coq repository at nijmegen[END_REF].

Basée sur l'axiomatisation des réels proposée dans la bibliothèque standard, la bibliothèque Coquelicot [START_REF] Boldo | Coquelicot: a user-friendly library of real analysis for Coq[END_REF] offre un cadre agréable pour l'analyse réelle et fonctionnelle. Notre formalisation du théorème du point fixe de Banach, que nous utilisons pour les certaines opérations sur les RPA, repose largement sur les filtres par lesquels Coquelicot définit les notions de topologie (voir Chapitre 3).

Du côté de l'analyse numérique, la bibliothèque Flocq [START_REF] Boldo | Flocq: A unified library for proving floatingpoint algorithms in Coq[END_REF] formalise l'arithmétique des nombres flottants, qui à sont tour est utilisée par l'arithmétique d'intervalles, formalisée dans la bibliothèque CoqInterval [START_REF] Melquiond | Proving bounds on real-valued functions with computations[END_REF]. Cette dernière offre la possibilité de prouver automatiquement des inégalités réelles par le biais de l'arithmétique d'intervalles. Plus proche encore de nos travaux, la bibliothèque CoqApprox [START_REF] Martin | Proving tight bounds on univariate expressions with elementary functions in coq[END_REF] formalise les modèles de Taylor, augmentant ainsi les possibilités offertes par CoqInterval.

B Prouver des théorèmes mathématiques par de nouvelles techniques informatiques

Le principe de preuve assistée par ordinateur consiste à déléguer à la machine tout ou partie d'une preuve d'un théorème mathématique. Plusieurs raisons peuvent conduire à ce choix quelque peu audacieux : des calculs trop compliqués pour être faits à la main, une explosion combinatoire des cas à analyser, un très haut niveau d'abstraction pouvant rendre la preuve douteuse, etc. L'expérience personnelle de V. Voevodsky, qu'il relate dans sa note « The Origins and Motivations of Univalent Foundations » 25 , insiste sur les limites des mathématiques usuelles sur papier :

« I can see two factors that contributed to this outrageous situation : Simpson claimed to have constructed a counterexample, but he was not able to show where the mistake was in our paper. Because of this, it was not clear whether we made a mistake somewhere in our paper or he made a mistake somewhere in his counterexample. Mathematical research currently relies on a complex system of mutual trust based on reputations. By the time Simpson's paper appeared, both Kapranov and I had strong reputations. Simpson's paper created doubts in our result, which led to it being unused by other researchers, but no one came forward and challenged us on it. » Les preuves assistées par ordinateur en analyse mathématique font souvent appel aux nombres flottants et aux algorithmes numériques. Toutefois, elles doivent garantir des propriétés mathématiques sur les quantités calculées -un théorème ne peut pas être correct modulo des erreurs numériques ! Dans cette optique, le calcul rigoureux avec représentations ensemblistes décrit dans l'Objectif A.2 est un ingrédient essentiel qui a joué un rôle majeur dans plusieurs preuves célèbres, comme la preuve par Landford de la conjecture de Feigenbaum [START_REF] Lanford | A computer-assisted proof of the Feigenbaum conjectures[END_REF], la preuve par Tucker sur l'existence de l'attracteur de Lorenz [START_REF] Tucker | A rigorous ODE solver and Smale's 14th problem[END_REF], ou la preuve par Hales de la conjecture de Kepler [START_REF] Thomas | A proof of the Kepler conjecture[END_REF]. Des bibliothèques de calcul rigoureux ont également été développées spécialement pour les preuves assistées par ordinateur, comme la bibliothèque CAPD 26 pour la théorie des systèmes dynamiques.

Il est clair que déléguer certaines parties d'une preuve à la machine est une décision tout sauf anodine, de sorte que les preuves assistées par ordinateurs peuvent être parfois mal reçues par certains mathématiciens, qui pourraient douter de la rigueur de ces approches, ou simplement refuser de croire en un résultat qu'ils ne pourraient pas vérifier à la main, ligne par ligne. Pour cette première objection, 27 , le recours aux assistants de preuve formelle devrait définitivement clore ce débat, comme ce fut par exemple le cas pour le théorème des quatre couleurs [START_REF] Gonthier | Formal proof-the four-color theorem[END_REF] « Quel est le nombre maximal H(n) de cycles limites qu'un champ de vecteurs polynomial dans le plan de degré au plus n peut avoir, c'est-à-dire :

ẋ = P (x, y) ẏ = Q(x, y) où P, Q ∈ |[x,
y] sont de degré au plus n ? » Plus de précisions et définitions seront données dans le chapitre concerné. Rapidement, un cycle limite est une orbite périodique isolée, attirant ainsi localement les trajectoires à proximité (en temps positif ou négatif). L'oscillateur de Van Nous n'attaquerons pas le 16ème problème de Hilbert en soi : nous nous contenterons de construire un exemple afin de calculer une nouvelle borne inférieure pour H(4). En réalité, notre point de départ fut l'article [START_REF] Johnson | A quartic system with twenty-six limit cycles[END_REF], dans lequel T. Johnson prétend isoler rigoureusement 26 cycles limites pour un système quartique construit à cet effet. La preuve, basée sur le théorème de Poincaré-Pontryagin qui relie les cycles limites aux zéros d'intégrales abéliennes, consiste à évaluer rigoureusement ces intégrales pour compter les changements de signe. Malheureusement, le code rigoureux utilisé pour ces évaluations était erroné, et le vrai nombre de cycles limites était en fait 18, au lieu des 26 annoncés -ce qui du coup est inférieur au résultat connu antérieurement H(4) 22 [START_REF] Christopher | Estimating limit cycle bifurcations from centers[END_REF].

Notre motivation a été d'appliquer les méthodes rigoureuses développées dans cette thèse à l'exemple de T. Johnson afin d'obtenir le plus de zéros possible, toujours rigoureusement ! 

(b)

Cette approche peut-elle constituer une preuve valide de H(4)

24, au sens mathématique ?

Comme évoqué plus haut, une partie de la communauté mathématique se montre réfractaire aux preuves assistées par ordinateur, et la mésaventure de [START_REF] Johnson | A quartic system with twenty-six limit cycles[END_REF] justifie partiellement ces réticences. Heureusement, nous travaillons actuellement au calcul certifié de ces intégrales, grâce à notre développement en Coq pour les RPA. Cela permettra donc de donner une preuve définitive de H(4) 24. 

Γ ++ Γ +- Γ -+ Γ -- Γ + Γ -

C Sécurité et efficacité pour des applications réelles

L'ingénierie des systèmes critiques renvoie aux applications mettant potentiellement en jeu des vies humaines, ou du moins d'importantes sommes d'argent ou de sérieux risques environnementaux. Sont entre autres concernés les industrie aéronautiques et aérospatiales, les actes médicaux assistées par ordinateur ou les technologies nucléaires. Dans de telles situations, on recourt généralement à d'intensives phases de test afin d'augmenter et de valider le niveau de confiance d'un nouveau logiciel. Néanmoins, en plus de leur coût loin d'être négligeable en temps et en argent, ces tests ne peuvent garantir l'absence de bugs -seulement leur présence peut-être détectée. Par conséquent, le besoin de méthodes rigoureuses et formelles a rapidement émergé dans ces domaines, comme en attestent un certain nombre de collaborations entre les mondes industriels et académiques, comme le NASA Langley Formal Methods Research Program 28 .

Les méthodes développées dans cette thèse ouvrent la voient vers une utilisation systématique des outils rigoureux, symboliques ou formels dans de telles applications de la « vraie vie ». En particulier, je me suis intéressé aux applications aérospatiales. Ce domaine -peut-être en raison des nombreux financements et de l'intérêt public dont il bénéficie, ou d'une législation dans une certaine mesure moins rigide que dans le domaine de l'aéronautique -a déjà été l'objet d'expérimentations intéressantes avec du calcul rigoureux et/ou symbolique-numérique : des modèles de Taylor pour du guidage rigoureux dans [START_REF] Di Lizia | Application of high order expansions of twopoint boundary value problems to astrodynamics[END_REF] ; des récurrences D-finies pour l'évaluation rigoureuse de séries de Taylor calculant la probabilité de collision avec des débris spatiaux dans [START_REF] Serra | Fast and accurate computation of orbital collision probability for shortterm encounters[END_REF] ; des séries de Tchebychev multivariées (non rigoureuses) pour la propagation de trajectoires d'un ensemble de débris dans [START_REF] Vasile | Set propagation in dynamical systems with generalised polynomial algebra and its computational complexity[END_REF], etc.

Le Chapitre 7, qui relate une collaboration avec Paulo Ricardo Arantes Gilz et Clément Gazzino, contribue à cette conception de missions spatiales rigoureuses, en validant et utilisant des trajectoires d'engins spatiaux pour des opérations de proximité, c'est-à-dire quand les distances relatives sont faibles en comparaison du rayon de la Terre. L'Exemple 4 qui suit présente une de ces applications : le problème du rendez-vous spatial.

Example 4 : Le problème du rendez-vous spatial

Le problème du rendez-vous spatial consiste, pour un vaisseau actif (par exemple une navette), appelé le chasseur, à atteindre une cible passive (par exemple un satellite ou la station spatiale internationale (ISS)), dans un intervalle de temps donné. Pour cela, le chasseur est équipé de propulseurs qui peuvent être activés pour modifier sa trajectoire orbitale actuelle. Cependant, le carburant nécessaire à ces manoeuvres n'est disponible qu'en quantité limitée. Lorsque le réservoir est vide, le vaisseau ne peut plus être contrôlé (on le dit mort), d'où l'intérêt de minimiser la consommation de carburant pendant les manoeuvres orbitales.

Considérons le modèle linéarisé29 pour la dynamique du mouvement relatif X = [x, y, z, ẋ, ẏ, ż] T ∈ | 6 d'un chasseur par rapport à sa cible : (a) Trouvons les instants t i et les sauts de vitesse ∆V i , déterminant la loi de contrôle u(t), pour amener le chasseur d'un état initial donné X(t 0 ) = X 0 ∈ | 6 à un état final prescrit X(t f ) = X f ∈ | 6 (pour t 0 < t f fixés), le tout en minimisant la consommation totale de carburant :

Ẋ(t) = A(t)X(t) + B(t)u(t), (RDV-i) où A(t) ∈ | 6×6 , B(t) ∈ | p×6 , et u(t) ∈ | p ,
inf u u 1 = inf u t f t 0 u(t) dt, t.q. Ẋ(t) = A(t)X(t) + B(t)u(t), t ∈ [t 0 , t f ], X(t 0 ) = X 0 , X(t f ) = X f , t 0 , t f fixés.
(RDV-ii)

Dans les articles [START_REF] Arzelier | Linearized impulsive fixed-time fuel-optimal space rendezvous: A new numerical approach[END_REF][START_REF] Serra | Fuel-optimal impulsive fixed-time trajectories in the linearized circular restricted 3-body-problem[END_REF], auxquels j'ai contribué, nous proposons un algorithme d'échange pour calculer numériquement les instants et valeurs optimaux pour les impulsions. Grosso modo, (RDV-ii) y est reformulé comme un problème de programmation semi-infinie, c'est-àdire un problème d'optimisation impliquant un nombre fini de variables réelles mais un nombre infini de contraintes. Partant d'un point infaisable, l'algorithme sélectionne à chaque itération la contrainte la plus violée de sorte à réduire le caractère infaisable du point courant (voir

Figure I.8b).
Une fois que la loi de contrôle a été calculée numériquement, le cadre rigoureux de la mission spatiale impose de valider la trajectoire résultante du vaisseau, en particulier s'assurer de son état final.

(b) Étant donnés l'état initial X 0 , les instants t i des impulsions et les sauts de vitesse ∆V i , calculons des encadrements rigoureux for l'état final effectif X f , et assurons-nous qu'il se trouve suffisamment près de l'état final prescrit X f .

En utilisant la méthode de validation du Chapitre 5 pour les systèmes couplés d'EDOL, nous pouvons calculer des matrices de transition validées sous forme de modèles de Tchebychev pour la dynamique (RDV-i), permettant ainsi de propager rigoureusement l'état X(t) entre deux poussées consécutives. En particulier, cela donne l'encadrement désiré pour l'état final. La Table I.2 donne les paramètres d'une mission ATV concrète30 ainsi que les encadrements obtenus pour l'état final dans le plan orbital. Évidemment, cela ne tient pas compte des termes non-linéaires de la dynamique képlérienne, ni des autres perturbations. Néanmoins, la plupart des méthodes de contrôle pour le problème du rendez-vous spatial ne considèrent que des dynamiques linéarisées, de sorte qu'être capable de certifier les résultats calculés numériquement dans ce modèle est déjà un objectif intéressant en soi.

(c) Devons-nous également valider l'optimalité de la loi de contrôle calculée lors de la Question 4 (a) ?

Ce point particulier n'est sans doute pas aussi critique que l'état final -on imagine bien les conséquences d'une navette ATV entrant en collision avec l'ISS. Cependant, si l'on veut être rigoureux jusqu'au bout, il suffit de savoir que l'algorithme présenté dans [START_REF] Arzelier | Linearized impulsive fixed-time fuel-optimal space rendezvous: A new numerical approach[END_REF] donne à chaque itération un encadrement de la consommation optimale. 

D Intégrer les aspects « bas niveau »

Le rappel sur la théorie de l'approximation donné dans le Chapitre 2 suit essentiellement un point de vue purement mathématique : les polynômes sont supposés donnés par des coefficients réels exacts, c'est-à-dire en précision infinie, et l'évaluation x → p(x) est considérée comme exacte. Certes, les Chapitres 3, 4 et 5 bornent rigoureusement les erreurs d'arrondi grâce à l'arithmétique d'intervalles, tout en expliquant dans une certaines mesure comment éviter les phénomènes de surapproximation qui en découlent. Cependant, nous n'y donnons aucune analyse quantifiée des erreurs d'arrondis.

Toutefois, certains domaines particuliers exigent une analyse précise des erreurs d'arrondi, comme l'implémentation de fonction en flottants, où la précision du résultat doit être garantie (par exemple pour l'arrondi correct de fonctions [START_REF] Muller | Handbook of Floating-Point Arithmetic[END_REF], voir Section 1.2). Dans cette optique, le Chapitre 8 présente une collaboration avec Mioara Joldes et Denis Arzelier, dans laquelle nous proposons un algorithme d'échange pour calculer des polynômes d'approximation optimisés en tenant compte de l'erreur d'évaluation. Comme le nom le suggère, cet algorithme est très relié avec l'algorithme d'échange de Remez qui calcule des approximations polynomiales uniformes optimales (cf. Section 2.2.2), ainsi que l'algorithme d'échange pour les problème du rendezvous spatial [START_REF] Arzelier | Linearized impulsive fixed-time fuel-optimal space rendezvous: A new numerical approach[END_REF] mentionné plus haut. Reprenons l'exemple de la fonction d'Airy pour illustrer notre approche. Ce problème peut être résolu par l'algorithme de Remez [START_REF] Remes | Sur un procédé convergent d'approximations successives pour déterminer les polynômes d'approximation[END_REF][START_REF] Remes | Sur le calcul effectif des polynômes d'approximation de Tchebichef[END_REF][START_REF] Powell | On the maximum errors of polynomial approximations defined by interpolation and by least squares criteria[END_REF]. En particulier, le caractère équioscillant de l'erreur d'approximation, représenté sur la figure 

arg min p∈|n[x] max x FP in I | Ai(x) -p(x)|.
Ceci est une question majeure dans le domaine de l'arithmétique des ordinateurs [START_REF] Brisebarre | Computing machine-efficient polynomial approximations[END_REF][START_REF] Brisebarre | Efficient polynomial L ∞ approximations[END_REF]. Notre algorithme constitue une avancée sur la question en optimisant simultanément les erreurs d'approximation et d'évaluation. C'est en fait une généralisation de l'algorithme de Remez dans le cadre de la programmation semi-infinie. L'erreur totale de la solution optimale pour cet exemple avec la fonction d'Airy est représentée sur la En ce qui concerne l'erreur totale, on doit en plus borner l'erreur d'évaluation. Pour cela, on peut utiliser de logiciels certifiés existants, comme Gappa [START_REF] Florent De Dinechin | Certifying the floatingpoint implementation of an elementary function using Gappa[END_REF] qui s'appuie sur la bibliothèque Flocq de Coq mentionnée plus haut.

E Nouveaux champs d'application des méthodes rigoureuses et symboliques-numériques

Certaines branches des mathématiques ont très tôt su tirer parti du calcul rigoureux, comme les solveurs validés d'équations différentielles ou les optimiseurs rigoureux/certifiés. À l'inverse, certaines applications des méthodes rigoureuses et/ou symboliques-numériques proposées dans ce manuscrit mettent en lumière de nouvelles interactions entre les mathématiques traditionnelles et le calcul rigoureux.

• Dans leChapitre 9, nous (c'est-à-dire Mioara Joldes, Jean-Bernard Lasserre et moi-même) proposons de nouveaux algorithmes pour résoudre des problèmes inverses sur les mesures, autrement dit pour reconstruire le support et la densité d'une mesure à partir d'un nombre fini de ses moments. Pour ce faire, nous tirons profit de la notion de D-finitude (et de celle, étroitement relié, d'holonomie) mentionnée plus haut. Bien que non rigoureux, ces méthodes peuvent être qualifiées de symboliques-numériques : le cadre algébrique des équations D-finies produit des systèmes linéaires résolus in fine numériquement, puisque les moments donnés ne sont en général connus qu'en précision finie. Illustrons la méthode avec l'exemple suivant. 

g(x, y) := (x 2 + y 2 -9)(x 2 + y 2 -1)((x -2) 2 + y 2 -1)(x 2 + (y -2) 2 -1).
Les moments m α,β de la mesure µ := f ✶ G (mesure gaussienne restreinte à G) sont définis de la manière suivante :

m α,β := G x α y β f (x, y)dxdy.
Le Chapitre 9 répond aux deux questions suivantes. Considérons d'abord le problème direct.

(a)

Étant donnés la densité f et le polynôme g pour le bord, déduire un ensemble « complet » 31 de récurrences pour les moments m α,β , permettant de calculer tous les moments à partir d'un nombre fini d'entre eux.

Cette question est en partie résolue dans la Section 9.3 en se basant sur une heuristique, avec des résultats plus précis dans le cas d'une densité de type exponentielle de polynôme, incluant les densités gaussiennes. Cela peut-être vu comme une alternative aux techniques usuelles de Télescopage Créatif (voir par exemple [START_REF] Oaku | Algorithms for integrals of holonomic functions over domains defined by polynomial inequalities[END_REF]) dans le cas d'un support semi-algébrique.

À l'inverse, voici le problème inverse. Pour prouver qu'aucune combinaison linéaire des intégrales abéliennes considérées ne peut produire plus de zéros, nous recourons à la notion de système de Tchebychev (définie dans le Chapitre 2), dans la Section 6.4. Plus précisément, il nous faut calculer le wronskien d'un système d'intégrales abéliennes. Malheureusement, ce wronskien possède l'asymptotique suivante en 0, pour t > 0 :

W (t) = n n 1 a n t n + log(t) n n 2 b n t n .
avec n 1 , n 2 ∈ ). Les techniques D-finies et la transformée de Laplace symbolique vont par chance nous aider à calculer (un nombre fini de) ces coefficients a n , b n . Nous devons également développer de nouveaux outils rigoureux pour borner le reste -les difficultés provenant des termes en log(t) et des puissances négatives de t. Ainsi, cet exemple illustre une situation où des RPA généralisés seraient utiles.

F Concevoir des implémentations open source

En plus des contributions théoriques mentionnées tout au long de cette introduction, mon travail a également consisté à développer plusieurs implémentations. Bien qu'encore expérimentales, ces implémentations jouent un rôle important dans l'approche rigoureuse et algorithmique des problèmes fonctionnels défendue dans cette thèse, à base de RPA et d'outils symboliquesnumériques. -Napoléon Bonaparte On gouverne mieux les hommes par leurs vices que par leurs vertus.

idem At the core of scientific computing is the calculation with numbers, where "numbers" usually refer to elements of the real line | or of the complex plane ❈. A wide range of works in applied mathematics or numerical analysis, targeting problems from, for instance, linear algebra, functional analysis or optimization, assume that a basic arithmetic on those "numbers" is available. Yet, this point of view is not fully satisfactory when designing and implementing algorithms, since the way numbers are represented and computed with, may have a major impact on the result accuracy and time complexity.

Although this thesis mainly targets algorithms executed on computers, it is worth noting that the problem of representing numbers has been raised since the earliest days of mathematics. Indeed, at the time of by-hand computations, efficient arithmetic operations were certainly not an unnecessary luxury. Conversely, the power of current computers may result in these computations being taken for granted by some engineers or numerical analysts. Yet, this question becomes central again for intensive computations or -closer to our considerationsrigorous numerics.

After a brief overview of exact representation of numbers, we present the floating-point numbers, which are more or less ubiquitous in scientific computing, due to their ability to efficiently approximate real numbers and operations. This finally leads us to interval arithmetic, which is to rigorous numerics what floating-point numbers are to numerical analysis: an essential low-level building block.

About exact representations of numbers

It seems rather natural to start with an exact representation of numbers, which means that numbers are in a 1-1 correspondence with finite sequences of symbols (or bits, when working on computers). Obviously, the whole real line | cannot be represented that way, for it is an uncountable set. However, a wide range of computations actually take place in specific countable subsets for which exact representations are available. We here provide rather standard examples.

◮ Natural numbers

-Who wouldn't start with them?

Integers are usually employed in a very intuitive and informal manner, even by most mathematicians. This is perfectly sufficient in most cases. For our purpose, it is however relevant to focus on some aspects of their definition and representation. The few historical remarks below reflect my own limited knowledge in this fascinating epistemological topic. An extensive survey is given in the wide-public book [START_REF] Ifrah | The Universal History of Numbers: From Prehistory to the Invention of the Computer[END_REF], supplemented by a second book [START_REF] Ifrah | The Universal History of Computing: From the Abacus to the Quantum Computer[END_REF] focusing more specifically on automated computation.

Set theory

Let us first recall the construction of natural numbers as von Neumann ordinals inside set theory, which constitutes the most classical foundations of mathematics [START_REF] Neumann | Zur Einführung der transfiniten Zahlen[END_REF], [START_REF] Hrbacek | Introduction to set theory[END_REF]Chap. 3]. The standard comparison relation is defined by membership:

n < m ⇔ n ∈ m.
Table 1.1 lists the encodings of the first natural numbers following Definition 1.1. Clearly, the set-theoretic encoding of n has exponential size with respect to n and will never be used in practice on computers.

Unary system

Another possible encoding is the unary numeral system, in which a natural number n is represented by a sequence of n copies of a unique symbol. Bigger quantities, like powers of 10, can be grouped using new symbols. This quite natural encoding is how children usually learn 14] (a short illustrated introduction to Egyptian numerals may be found at the following webpage1 [START_REF] Bose | Did You Know : The History of Egyptian Mathematics (Part II) -Egyptian Numerals[END_REF]).

0 = ∅ 1 = {∅} 2 = {∅, {∅}} 3 = {∅,
This linear encoding reflects the axioms of Peano's arithmetic [253, Peano (1989)]: there is one 0 (the empty sequence) and the successor operation, obtained by adding one copy of the symbol to the sequence, is injective and 0 does not belong to its image. The standard implementation of natural numbers in the Coq formal proof language closely follows this approach. The inductive type nat is built from two constructors: a constant O : nat for 0 and a unary S : nat → nat for the successor. The benefit of such a representation is that the induction principle automatically associated to this inductive type matches the usual induction principle on natural numbers [START_REF] Magaud | Changing data structures in type theory: A study of natural numbers[END_REF]: It is important to note that the (signed or unsigned) integers available at the level of the processor have fixed size (usually 8 bits for char, 16 for short, 32 for int, 64 for long...). In fact, they implement modular arithmetic rather than Peano's arithmetic. When working with large numbers for which overflows (the memory capicity is exceeded) may occur, one should use arbitrary-precision integer libraries, which implement numbers as finite bit sequences of arbitrary size at software level. One of the most widely used such ones is the C GNU Multiple Precision Arithmetic Library [START_REF] Granlund | The GNU multiple precision arithmetic library[END_REF] (GNU MP or GMP for short, used for example in the computer algebra systems Maple3 and Mathematica4 ), providing the mpz_t type for integers. An example code to compute the factorial function using GMP is given in Table 1.2. The result does not fit into a 64-bit machine integer.

◮ Rational numbers

Built on integers, rational numbers also admit exact representations on computers. They are implemented by the mpq_t type in the GMP library [START_REF] Granlund | The GNU multiple precision arithmetic library[END_REF]. The canonical fraction for q ∈ ◗ is by convention q = n d with (n, d) coprime and d > 0 (in particular, the canonical representation of 0 is 0 1 ). Arithmetic operations are defined as follows:

-

n 1 d 1 := -n 1 d 1 , n 1 d 1 + n 2 d 2 := n 1 d 2 + n 2 d 1 d 1 d 2 , n 1 d 1 × n 2 d 2 := n 1 n 2 d 1 d 2 , n 1 d 1 ÷ n 2 d 2 := n 1 d 2 d 1 n 2 (n 2 = 0). (1.1) 
A wide range of computations in numerical analysis take place inside ◗, e.g. solving linear systems, interpolating rational values at rational points, solving linear optimization problems The fact that ◗ is closed under these operations directly follows from the observation that a is algebraic if and only if {a n , n ∈ ◆} spans a finite-dimensional ◗-vector space. Moreover, the corresponding annihilating polynomials are efficiently computed using the notion of resultant [START_REF] Von | Modern computer algebra[END_REF][START_REF] Wojciech | Computing in the field of complex algebraic numbers[END_REF]Chap. 6].

These operations on polynomials allow for an algorithmic arithmetic for algebraic numbers.

An algebraic number a ∈ ◗ is represented by a polynomial P ∈ ◗[x] such that P (a) = 0 together with an interval a = [a, a] ⊆ | (a, a ∈ ◗) such that a is the only root of P in a.

Arithmetic operations are performed by applying the above transforms on polynomials and the corresponding operations on intervals (defined in Section 1.3). As explained in [START_REF] Wojciech | Computing in the field of complex algebraic numbers[END_REF], the interval enclosures a of a and b of b must sometimes be made tighter to ensure that the interval enclosure a b of a * b contains only one root of the resulting polynomial (see Example 1.29). Such a representation of algebraic numbers is:

• exact because to one pair (P, i) can correspond only one value, i.e., the algebraic number under consideration, and this property is maintained by the arithmetic operations;

• effective because arithmetic operations are given by algorithms, and (in)equalities are decidable [START_REF] Wojciech | Computing in the field of complex algebraic numbers[END_REF].

Beyond exact representations. In the above paragraphs, exact and effective representations for certain classes of real and complex numbers have been given. They offer the advantage of performing exact computations (that is, without numerical error). However, as illustrated by Example 1.3, the bit size of such representations tends to rapidly grow during the computation, inducing substantial space and time complexities. The next section focuses on floating-point arithmetic, where exactness is sacrificed to practical efficiency. Interval arithmetics will be presented in Section 1.3 as a compromise between efficiency and reliability, where exact is replaced by rigorous or set-valued numerics, meaning that a computed interval necessarily contains the correct mathematical value.

Floating-point arithmetic

In response to this increasingly chaotic situation, the IEEE 754-1985 standard for floatingpoint arithmetic [START_REF]IEEE Standard for Floating-Point Arithmetic. IEEE Standard[END_REF] was born in 1985 out of a joint effort between industry actors and academic research. Since then, a new version of the standard (IEEE 754-2008) was adopted in 2008 [START_REF]IEEE Standard for Floating-Point Arithmetic[END_REF]. The interested reader can find a thorough introduction to floating-point arithmetic as defined by this standard in [START_REF] Muller | Handbook of Floating-Point Arithmetic[END_REF]. This section focuses on the most basic definitions as well as the notion of rounding errors, which are a direct consequence of the discretization of the real line induced by floating-point numbers. • an integer radix β 2 (β = 2 in most implementations),

◮ Floating-point numbers

• an integer precision parameter p 2,

• and extremal exponents e min , e max ∈ ) ∪ { -∞, +∞} such that -∞ e min < 0 < e max +∞, a triple (s, m, e) represents the floating-point number x if:

x = (-1) s • m • β e-p+1
, where:

• s ∈ {0, 1} is the sign bit,
• e is the (integer) exponent satisfying e min e e max ,

• m is the integral significand belonging to the set M = 0, β p -1 of nonnegative integers representable in radix β using p "digits". The normal significand m • 2 -p+1 has one "digit" before the point and p -1 after:

m • 2 -p+1 = m 0 .m 1 m 2 . . . m p-1 β.
We denote by ❋ e min ,emax β,p the set of floating-point numbers representable in this way:

❋ e min ,emax β,p = {x = (-1) s • m • β e-p+1 , s ∈ {0, 1}, e ∈ e min , e max , m ∈ M }.
From Definition 1.6, it appears that two different triples may represent the same floatingpoint number. By convention, the first "digit" of the integral significand m must be nonzero, and normalizing a floating-point number in this way is always possible by reducing the exponent e, unless we reach the minimal exponent e min . This results into the following two classes of floating-point numbers [177, Sec. 2.1.2]:

• normal numbers with e ∈ e min , e max and m ∈ β p-1 , β p -1 ;

• subnormal numbers with e = e min and m ∈ 0, β p-1 -1 .

The presence of subnormal numbers allows for a uniform filling of the gap between 0 and the smallest normal floating-point number 2 e min .

For the sake of simplicity, we omit to explicitly mention the exponent range e min , e max as well as the precision p. We therefore simply denote by ❋ a given binary floating-point system.

50 bits, one can express the distance from the Earth to the Moon with an error less than the thickness of a bacterium". Nevertheless, some particularly ill-conditioned problems (see Example 1.10) require a higher floating-point precision. In such cases and despite their lower efficiency, resorting to multiple-precision floating-point libraries may be necessary. One of the most popular is MPFR [START_REF] Fousse | MPFR: A Multiple-Precision Binary Floating-Point Library with Correct Rounding[END_REF], which provides highly optimized correctly rounded elementary functions to arbitrary user-defined precision.

• A more recent trend consists in taking advantage of the parallel architectures, such as Graphics Processing Units (GPUs), for high performance computing (HPC). Several libraries were recently developed to port multiple-precision floating-point arithmetic to GPUs. The particularly promising CAMPARY library5 [START_REF] Joldes | Campary: cuda multiple precision arithmetic library and applications[END_REF][START_REF] Popescu | Towards fast and certified multiple-precision librairies[END_REF] implements arithmetic operations using floating-point expansions, that is, unevaluated sums of floatingpoint numbers, within arbitrary precision and with proved error bounds. This is a major step toward efficient multi-precision computing, and, closer to our interest, efficient interval arithmetic (Section 1.3).

◮ Rounding modes and rounding errors

Replacing real numbers by floating-point numbers necessarily induces a discretization of the real line (see Figure 1.3). Whereas each floating-point number can be seen as a real number in a unique way, the converse is not true: most of the real numbers cannot be represented as elements of ❋. Hence, numerical errors are an intrinsic limitation of floating-point computation, even for the basic arithmetic operations such as addition or multiplication.

A relevant notion to estimate these numerical errors is the unit in the last place (ulp), defined as follows [177, Def. 2.6]: Definition 1.7 (Unit in the last place -Goldberg's definition) For a nonzero real number x, let e ∈ ) such that 2 e |x| < 2 e+1 . Then: ulp(x) = 2 max(e,e min )-p+1 .

If x is a (normal or subnormal) floating-point number, then ulp(x) is the power of two represented by the right-most digit of its significand.

The unit in the last place corresponds to the distance between two consecutive floating-point numbers in one binade, that is with the same exponent (See Figure 1.3). It is particularly useful to bound the effect of rounding numbers, as it will appear below.

Rounding modes and errors

The operation of replacing a real number by an approximating floating-point number is called rounding [177, Sec. 2.2]. The IEEE 754 standard defines four rounding modes:

• Round towards -∞: RD(x) is the largest floating-point number smaller or equal to x, possibly equal to the exceptional value -∞:

RD(x) = max {y ∈ ❋, y x}.
approximate counterparts in ❋. At the beginning of floating-point arithmetic, the specifications of hardware implementations were rather vague concerning those approximated operations. In practice, the same computation performed on different machines could produce quite different results. Since the adoption of the IEEE 754-1985 standard by most architectures, things have improved considerably. A major requirement of the standard is for these basic operations to be correctly rounded with respect to the four rounding modes of Proposition 1.8 [START_REF]IEEE Standard for Floating-Point Arithmetic[END_REF]: for any operation * ∈ {+, -, ×, /, √ } and rounding mode • ∈ {RU, RD, RZ, RN}, there is a corresponding floating-point operation * • satisfying

x * • y = •(x * y),
for all x, y ∈ ❋.

By default, standard processors use the round-to-nearest mode. The C file fenv.h defines macros FE_DOWNWARD, FE_UPWARD, FE_TOWARDZERO, and FE_TONEAREST for, respectively, RD, RU, RZ, and RN. Functions int fegetround(void) and int fesetround(int round) allow one to get the current rounding mode and set it to another one. However, changing the rounding mode has a non-negligible cost and should be used with caution.

In the MPFR software library [START_REF] Fousse | MPFR: A Multiple-Precision Binary Floating-Point Library with Correct Rounding[END_REF], the rounding mode (MPFR_RNDD, MPFR_RNDU, MPFR_RNDZ, or MPFR_RNDN) has to be specified for each elementary operation. The result is guaranteed to be correctly rounded, whatever the precision p is.

Remark 1.9 The directed rounding modes RD and RU will be particularly useful for interval arithmetics in Section 1.3. For convenience, they will be denoted by ⊲ (x) and ⊲ (x), instead of RD(x) and RU(x).

Example 1.10 (Hilbert matrix inversion using floating-point arithmetic) Pursuing Example 1.3, we now address the inversion of H n , the Hilbert matrix, using a standard Gaussian elimination procedure (with pivots) with double-precision machine floating-point numbers. The first remark concerns efficiency: the computation time is drastically reduced compared to the same experiment with rational numbers, and the timings are now in accordance with a time complexity in O(n 3 ) (see Table 1.4a).

However, the Hilbert matrix is well-known to be particularly ill-conditioned (see [START_REF] Beckermann | The condition number of real Vandermonde, Krylov and positive definite Hankel matrices[END_REF] and references therein), meaning that the propagation and accumulation of small elementary rounding errors due to floating-point arithmetic may lead to significant errors in the end. Figure 1.4b plots the maximum absolute value of the entries in the floating-point evaluation of the matrix

H -1 n H n -1.
Rounding error analysis is an important topic of numerical analysis. It consists in providing bounds on rounding errors in the final result of more or less complex algorithms, such as dot products, polynomial evaluation schemes, linear algebra routines, etc.

[106]. Although we do not give details here, some insight will be provided in Chapter 8, regarding a method for obtaining polynomials which minimize both approximation and evaluation errors.

example in the rigorous polynomial approximations of Chapter 3. This chapter is a rather compact, yet sufficient introduction to interval analysis for the purpose of this manuscript. We refer to the following reference textbooks [START_REF] Moore | Introduction to interval analysis[END_REF][START_REF] Tucker | Validated numerics: a short introduction to rigorous computations[END_REF][START_REF] Rump | Verification methods: rigorous results using floating-point arithmetic[END_REF][START_REF] Neumaier | Interval methods for systems of equations[END_REF] for a more detailed account of this topic, as well as this dedicated webpage6 .

◮ Intervals: definitions, operations and properties

In the following, we define the set of intervals with endpoints in ❇ for some subset ❇ of |. Usually, ❇ = | when considering mathematical real intervals, whereas ❇ = ❋ (for some set ❋ of floating-point numbers defined in Section 1.2) will be used for intervals with floating-point endpoints, which are concrete computational objects.

Definition 1.11 (Intervals) For ❇ ⊆ |, the set ■ ❇ of closed intervals of the real line with endpoints in ❇ is ■ ❇ := {x = [x, x] = {x ∈ | | x x x}, x ∈ ❇ ∪ { -∞} ∧ x ∈ ❇ ∪ { + ∞}},
where, by convention, the endpoints x and x of x are excluded if equal to ±∞. We call x (resp. x) the lower bound (resp. upper bound) of x, w(x) := x -x its width, and mag(x) := max(x, -x) its magnitude (both equal to +∞ if Since ❋ is discrete in |, one can only define thin intervals mapping | to ■ ❋ :

x or x is ±∞). Note that [x, x] = ∅ if x < x.
[x] ❋ := {x} if x ∈ ❋, [ ⊲ (x), ⊲ (x) 
] otherwise.

Note that two real numbers have the same corresponding thin interval if they both lie between the same two consecutive floating-point numbers.

Definition 1.14 (Set-theoretic operations) The intersection of two intervals is an interval:

x y :=      y if x = |= ❇ , x if y = |= ❇ , [max(x, y), min(x, y)], if x = [x, x] and y = [y, y].
The union of two intervals is not necessarily an interval, but it is always contained in an interval called the convex hull:

x y :=            |= ❇ if x = |= ❇ or y = |= ❇ , y if x = ∅, x if y = ∅,
[min(x, y), max(x, y)], if x = [x, x] and y = [y, y].

Remark 1.15 (Ball arithmetic [START_REF] Van Der Hoeven | Ball arithmetic[END_REF]) As an alternative to interval arithmetic, one can also use a midpoint-radius representation, called ball arithmetic, to define intervals or real numbers. Although completely equivalent from the mathematical point of view, this approach has advantages and drawbacks over interval arithmetic when implemented with floating-point numbers [START_REF] Van Der Hoeven | Ball arithmetic[END_REF][START_REF] Rump | Fast and parallel interval arithmetic[END_REF][START_REF] Johansson | Arb: efficient arbitrary-precision midpoint-radius interval arithmetic[END_REF].

Interval extension: a fundamental requirement

The notion of interval extension, or inclusion principle, is central in interval arithmetic [START_REF] Rump | Verification methods: rigorous results using floating-point arithmetic[END_REF]Sec. 5.5]. 

❇ k → ■ ❇ is called an (■ ❇ -)interval extension of f if ∀x 1 , . . . , x k ∈ ■ ❇ , ∀x 1 , . . . , x k ∈ |, x 1 × . . . x k ⊆ A ∧ ∀i ∈ 1, k , (x i ∈ x i ) ⇒ f (x 1 , . . . , x k ) ∈ f(x 1 , . . . , x k ).
If A is compact and f is continuous over A, then the range of f over

x 1 × • • • × x k ⊆ A, defined as f (x 1 , . . . , x k ) := {f (x 1 , . . . , x k ), x i ∈ x i for i ∈ 1, k },
gives the tightest ■ | -interval extension of f . In the general case, the range may not be a closed interval, but it is still contained in all ■ | -interval extensions of f . Remark 1.17 When ■ ❇ is defined to contain an exceptional interval |= ❇ , Definition 1.16 can be extended by requiring that f(x 1 , . . . ,

x k ) = |= ❇ if x 1 × • • • × x k A
, that is one of the arguments of f potentially lies outside its domain of definition.

In addition, the isotonicity property requires that more precise input gives more precise output, in terms of interval inclusion [START_REF] Moore | Introduction to interval analysis[END_REF]Sec. 4.3].

Definition 1.18 (Inclusion isotonicity) An interval extension f of f is said inclusion isotonic if ∀x 1 , . . . , x k , y 1 , . . . , y k ∈ ■ ❇ , ∀i ∈ 1, k , x i ⊆ y i ⇒ f(x 1 , . . . , x k ) ⊆ f(y 1 , . . . , y k ).

Interval arithmetic operations

The range of arithmetic operations on real numbers, explicitly given in the following definition, yields a natural isotonic ■ | -interval extension for each elementary operation * [174, Sec. x y := [x + y, x + y],

y := [-y, -y],
x y := [x -y, x -y],

x y := [min(xy, xy, xy, xy), max(xy, xy, xy, xy)],

y -① := |= | if 0 ∈ y, [min(y -1 , y -1 ), max(y -1 , y -1 )] otherwise, x y := x y -① , x ② := [0, max(x 2 , x 2 )] if 0 ∈ x, [min(x 2 , x 2 ), max(x 2 , x 2 )] otherwise.
Note that, in the definition of , 0 is absorbent over ±∞. Moreover, |=

| is absorbent for all these operations.

It is important to notice that, if the operations given above are correct w.r.t. the inclusion principle, they do not define a ring nor field structure over ■ | . Indeed, as is shown by the proposition below (whose proof may be found in [START_REF] Joldes | Rigorous Polynomial Approximations and Applications[END_REF]Prop. 1.3.11]), only weaker properties are satisfied.

Proposition 1.20 Interval arithmetic partially preserves the field structure of |:

• Associativity and commutativity of addition are preserved:

(x y) z = x (y z), x y = y x.
• 0 is neutral for addition: x 0 = x.

• 0 ⊆ x x, but equality does not hold in general.

• Associativity and commutativity of multiplication are preserved:

(x y) z = x (y z), x y = y x.
• 1 is neutral for multiplication:

1 x = x.
• 0 is absorbent for multiplication:

0 x = 0 whenever x = |= | .
• 1 ⊆ x x, but equality does not hold in general.

• Multiplication is only sub-distributive over addition:

x (y z) ⊆ x y x z.

• x ② ⊆ x x, but equality does not hold in general.

Floating-point interval arithmetic

On the computational side, arithmetic operations on floating-point intervals are defined similarly but with directed rounding, in order to maintain floating-point endpoints. Although those operations do not coincide anymore with the exact range, they are still valid interval extensions of the corresponding operations in |.

Definition 1.21 (Arithmetic operations on floating-point intervals) Arithmetic operations on ■ ❋ are defined as follows. For any x = [x, x] and y = [y, y] in ■ ❋ ,

x y := [ ⊲ (x + y), ⊲ (x + y)], y := [-y, -y],
x y

:= [ ⊲ (x -y), ⊲ (x -y)],
x y

:= [min( ⊲ (xy), ⊲ (xy), ⊲ (xy), ⊲ (xy)), max( ⊲ (xy), ⊲ (xy), ⊲ (xy), ⊲ (xy) 
)],

y -① := |= ❋ if 0 ∈ y, [min( ⊲ (y -1 ), ⊲ (y -1 )), max( ⊲ (y -1 ), ⊲ (y -1 ))] otherwise, x y := |= ❋ if 0 ∈ y, otherwise: [min( ⊲ (x/y), ⊲ (x/y), ⊲ (x/y), ⊲ (x/x)), max( ⊲ (x/y), ⊲ (x/y), ⊲ (x/y), ⊲ (x/y))], x ② := [0, max( ⊲ (x 2 ), ⊲ (x 2 ))] if 0 ∈ x, [min( ⊲ (x 2 ), ⊲ (x 2 )), max( ⊲ (x 2 ), ⊲ (x 2 ))] otherwise.
Implementations of FP interval arithmetic are an essential component of rigorous numerics software. Beyond their correctness, they are also optimized to reduce as much as possible the efficiency gap between floating-point and interval arithmetics. It is therefore highly recommended to resort to such implementations if possible, rather than writing ad-hoc code, which is often error-prone and most of the time less competitive. Reference libraries include: MPFI [START_REF] Revol | Motivations for an arbitrary precision interval arithmetic and the MPFI library[END_REF], in C and based on MPFR [START_REF] Fousse | MPFR: A Multiple-Precision Binary Floating-Point Library with Correct Rounding[END_REF], with a C++ wrapper; C-XSC [START_REF] Klatte | C-XSC: A C++ class library for extended scientific computing[END_REF], in C++; INT-LAB [START_REF] Siegfried | Intlab-interval laboratory[END_REF], an extension of MATLAB; ARB [START_REF] Johansson | Arb: efficient arbitrary-precision midpoint-radius interval arithmetic[END_REF], a very efficient implementation of ball arithmetic in C (see Remark 1.15). A detailed survey comparing these implementations may be found in [START_REF] Grimmer | Multiple precision interval packages: Comparing different approaches[END_REF].

On the formal proof side, CoqInterval [START_REF] Melquiond | Proving bounds on real-valued functions with computations[END_REF] provides a formalization of interval arithmetic inside the Coq proof assistant, based on emulated floating-point numbers from the Flocq library [START_REF] Boldo | Flocq: A unified library for proving floatingpoint algorithms in Coq[END_REF].

Natural interval extensions using interval arithmetic

Interval extensions for elementary functions are built based on their monotonicity properties. We assume that computable isotonic interval extensions √ √ , exp, ln, cos, sin, tan, acos, asin and atan are available for √ , exp, ln, cos, sin, tan, acos, asin and atan. This is for example the case in the MPFI library. Given a k-ary function f : A → | with A ⊆ | k , defined using elementary functions, arithmetic operations and composition, one can construct a so-called natural interval extension f of f by replacing all the symbols of functions and operators by the corresponding interval ones. Such a f is a valid interval extension for f , as stated by the following theorem (see [START_REF] Tucker | Validated numerics: a short introduction to rigorous computations[END_REF]Thm. 3.8]).

Theorem 1.22 (Fundamental theorem of interval arithmetic) The natural interval extension

f of a k-ary function f : A → | with A ⊆ | k is an isotonic interval extension of f , that is, f
satisfies the inclusion and isotonicity principles w.r.t. f . Natural interval extensions are sometimes called non-intrusive methods, since a piece of code written with floating-point operations can easily be transposed to interval arithmetic by overloading the operators and elementary functions with intervals, thus not modifying the code itself.

◮ Interval subdivision techniques

Let f : i → | be a continuous function defined over a compact interval i, and f be an interval extension of it. In general, f(i) only provides a rough overapproximation of the exact range

f (i) = [min x∈i f (x), max x∈i f (x)].
This may be quite inconvenient for various tasks, such as positivity check or global optimization.

A common way to address such problems is to use interval subdivision, possibly combined with branch and bound techniques (see [START_REF] Tucker | Validated numerics: a short introduction to rigorous computations[END_REF]Chap. 5]. The idea is the following:

• The interval i is subdivided into smaller intervals j k ⊆ i.

• Each time f(j k ) is considered not precise enough, j k is further subdivided into smaller intervals.

• When f(j k ) satisfies a pruning condition (meaning that it contains enough information for the target problem), j k is not subdivided anymore.

• A maximum subdivision depth is fixed by the user, so that the process eventually terminates.

Let us illustrate this process with two examples.

Example 1.23 (Checking positivity) Consider the function f : x → 1 1+x -x + x 2 , and prove that f (x) > 0 for x ∈ [0, 4] (see Figure 1.5a), using only interval analysis techniques -being clear that classical analysis techniques easily handle this toy example.

Let f denote the natural interval extension of f : the first attempt consists in applying it to [0, 4]:

f([0, 4]) = 1 (1 [0, 4]) [0, 4] [0, 4] ② = 1 [1, 5] [0, 4] [0, 16] = [ 1 5 , 1] [0, 4] [0, 16] = [- 19 5 , 17].
Unfortunately, the range enclosure [- 19 5 , 17] is not sufficient to assert the positivity of f over [0, 4]. Therefore, [0, 4] is subdivided into (for example) [0, 2] and [START_REF] Abramowitz | Handbook of mathematical functions with formulas, graphs, and mathematical tables[END_REF][START_REF] Anderson | LAPACK Users' guide[END_REF], and f is evaluated on both intervals. Since f([2, 4]) = [ 1 5 , 43 3 ] guarantees the positivity over [START_REF] Abramowitz | Handbook of mathematical functions with formulas, graphs, and mathematical tables[END_REF][START_REF] Anderson | LAPACK Users' guide[END_REF], this interval does not need subdividing anymore: this is the pruning condition. On the contrary, f([0, 2]) = [- 5 3 , 5] is not precise enough to complete the proof, thereby requiring further subdividing.

Finally, a subdivision depth at least equal to 4 is needed to prove the positivity of f over [0, 4]. The subdivision tree and the resulting plot are depicted in Figure 1.5.

• At step k, the next interval x k+1 is computed as

x k+1 = x k N (x k ), where N (x) = [mid(x)] f([mid(x)]) df(x). Theorem 1.26 (Correctness of Interval Newton's method [174, Thm. 8.1]) If x * ∈ x 0 ⊆ i is a root of f , then x * ∈ x k for all k 0.
Proof. The assertion is proved by induction on k. The base case k = 0 is the assumption of the theorem. For the inductive step, one just needs to prove that x * ∈ x implies x * ∈ N (x), for any x ⊆ i. According to Equation (1.2), where x is instantiated with x = mid(x), two cases are possible:

• Either f (x) = 0, in which case x ∈ N (x) because 0 ∈ f([x]). If x = x * , the proof is completed. Otherwise, by the mean value theorem, 0 ∈ df(x), hence N (x) = |= . • Or there exists a ξ ∈ [min(x, x * ), max(x, x * )] ⊆ x such that x * = x-f (x) f ′ (ξ) . Then x ∈ N (x) follows from the correctness of interval operations. Remark 1.27 If f ′ vanishes over x 0 , then x k = x 0 for all k 1 (since N (x 0 ) = |= ).
Otherwise, f is strictly monotonic over x 0 and therefore it changes sign once, with x * its unique root. In that case, Interval Newton's method can be combined with dichotomy by modifying slightly its definition:

y k =      [x k , mid(x k )] if f([x k ]) f([mid(x k )]) ⊆ [-∞, 0], [mid(x k ), x k ] if f([x k ]) f([mid(x k )]) ⊆ [0, +∞],
x k otherwise,

x k+1 := y k ([mid(x k )] f([mid(x k )]) df(y k )) .
Analogously to the classical Newton's method, one can prove a quadratic asymptotic convergence rate for this interval version, at least for restricted classes of function f . This means that asymptotically, each iteration doubles the number of correct digits. • f is a rational function with a unique root and no pole in i;

• f and df are the natural interval extensions of f and f ′ ;

• f(i) = |= , df(i) = |= and 0 / ∈ df(i);
then there exists an initial interval x 0 ⊆ i and a constant C 0 such that

w(x k+1 ) Cw(x k ) 2 , k 0.
The proof may be found in [START_REF] Moore | Interval Analysis[END_REF]Lem. 7.4].

The exact computation with algebraic numbers described in Section 1.1.3 emphasizes the importance of Theorem 1.28, for the latter provides as tight as desired rigorous interval enclosures required by the former. The example below illustrates the efficiency of Interval Newton's method for algebraic numbers.

◮ Limitations

In view of the foregoing, it might be tempting to use interval arithmetic everywhere, by replacing all floating-point numbers and operations by the interval analogues. Besides computational efficiency issues (clearly, interval arithmetic is at least twice slower than standard floating-point arithmetic for the same precision), a main problem is the sometimes important overapproximations of interval analysis, even in situations where the floating-point computations are quite reliable.

A major shortcoming of interval analysis is that the correlations between variables are lost, since in the end all quantities are overapproximated by their range. This limitation appears in the classical problematic cases given below. A more detailed survey of these shortcomings of interval arithmetic can be found in [START_REF] Moore | Introduction to interval analysis[END_REF][START_REF] Tucker | Validated numerics: a short introduction to rigorous computations[END_REF][START_REF] Rump | Verification methods: rigorous results using floating-point arithmetic[END_REF]. This emphasizes the need for more sophisticated higher order methods, which is addressed in the next chapters.

Range overapproximation. While natural interval extensions of functions have the advantage of providing an easy way to compute rigorous enclosures of the range, they may return extremely large and therefore useless approximations. Moreover, two different expressions for the same real-valued function lead to two different natural interval extensions, because ■ | does not satisfy all the relations in | (see Proposition 1.20), e.g. x -x = 0 holds for any

x ∈ |, but [-a, a] [-a, a] = [-2a, 2a] = 0 for a > 0.
One significant consequence is that the computed enclosure of the range of a function strongly depends on its syntax tree, that is, its concrete expression using mathematical symbols. Consider for example three different evaluation schemes for the same degree-2 polynomial (the standard form, the Horner form and the factorized form):

f 1 (x) = x 2 -2x + 1, f 2 (x) = (x -2)x + 1, f 3 (x) = (x -1) 2 .
Let i = [-1, 2], we get using the corresponding natural interval extensions:

f 1 (i) = [-3, 7], f 2 (i) = [-5, 4], f 3 (i) = [0, 4].
Only the last one gives the exact range. The second one gives the correct upper bound, but both f 1 and f 2 fail to prove the nonnegativity of f over i.

Highly canceling functions are particularly subject to huge overapproximations, thereby forcing the user to subdivide the input interval to obtain a reasonable enclosure. Let us illustrate this phenomenon with the Taylor remainders for the cosine function,

f n (x) = cos(x) - 2n i=0 (-1) i x 2i (2i)! , n 0, (1.3) 
for which we compute a rigorous uniform upper bound m n over i = [-1, 1] using the optimization method of Section 1.3.2, with a 10% tolerance. Bounding f 0 requires 20 subintervals, 192 are needed for f 1 , 5, 078 for f 2 , 259, 688 for f 3 ...! This highlights the limitations of such an approach to bound the error of accurate polynomial approximations.

Wrapping effect. The term wrapping effect [START_REF] Neumaier | The Wrapping Effect, Ellipsoid Arithmetic, Stability and Confidence Regions[END_REF] refers to all the overapproximation phenomena appearing when rigorously enclosing a region of | n using intervals for the coordinates.

Indeed, Cartesian products of intervals only model hyperboxes of | n . This is particularly troublesome for problems involving iterations, like in dynamical systems theory. We illustrate this phenomenon using a very elementary dynamical system in the plane, namely a rotation of some angle t:

f t : x y → cos(t)x -sin(t)y sin(t)x + cos(t)y , (x, y) ∈ | 2 .
Let t be a thin interval around t. Both components of f t admit natural interval extensions using cos and sin, yielding an interval extension f t :

■ 2 → ■ 2 . Let B = [-1, 1]×[-1, 1] ⊆ | 2 . Then for all k 0, B k := f k t (B) is a rotated square contained in the Euclidean centered ball of radius √ 2 (see Figure 1.8a).
The interval version of this iteration is:

x 0 = y 0 := [-1, 1],
and

x k+1 y k+1 := f t x k y k , k 0, so that B k ⊆ x k × y k for all k.
However, since a rotated square B k can only be overapproximated by a box x k × y k , each iteration increases the size of the box, as shown in Figure 1.8a for t = π 10 . While the Euclidean norm of B k always remains √ 2, Figure 1.8b shows the exponential grow of the magnitude of x k ② y k ② . This is the wrapping effect.

Matrix inversion.

The inversion of matrices is a typical operation that requires a particular care when implemented with intervals. In most cases, replacing all floating-point operations by interval ones in a standard Gaussian elimination procedure is not a proficient solution. Indeed, the intervals tend to rapidly grow and the algorithm fails to find a pivot not containing zero, even if the initial matrix was far from singular. Of course, its is clear that ill-conditioned matrices induce large intervals, since those ones contain both the exact mathematical value and the floating-point evaluation. However, even well-conditioned matrices most of the time lead to the same problems, as illustrated by the example below.

In fact, rigorous inversion of matrices is never performed like this in practice, except for very small dimension. Instead, fixed-point based a posteriori methods are employed (see Section 3.3.3).

Example 1.30 (Interval Gaussian elimination) The Lehmer matrix L n = min(i,j) max(i,j) 1 i,j, n is an example of a well-conditioned matrix, as illustrated by the error plot of Figure 1.9a. However, we observe that using Gaussian elimination produces large intervals and the procedure rapidly fails to find a pivot not containing 0. Figure 1.9b plots the minimal underlying floatingpoint precision needed for intervals to ensure that Gaussian elimination terminates, that is one pivot not containing zero was found at each iteration. Clearly, this method is inadequate for intensive rigorous computations with large matrices. More details on this pitfall can be found in [START_REF] Rump | Verification methods: rigorous results using floating-point arithmetic[END_REF]Sec. 10.1].

Computing with Functions
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-Mais encore faut-il croire quelque chose dans le monde : qu'est-ce donc que vous croyez ?

-Ce que je crois ? -Oui. -Je crois que deux et deux sont quatre, Sganarelle, et que quatre et quatre sont huit.

-Molière, Don Juan ou le Festin de pierre

To a certain extent, computing with functions follows the same guidelines as computing with numbers, which was the subject of the preceding chapter. Indeed, elementary classes of functions admit exact representations together with algorithms to manipulate them: polynomials, rational functions, algebraic functions, etc. However, the algebraic theory of such functions is more complicated, and algorithms are often more costly than for numbers. Section 2.1 is a short introduction to a particularly important -but maybe still not completely standard -class of functions: the D-finite functions, which will play a central role on many occasions throughout this thesis. These functions are defined as the solutions of linear ordinary differential equations (LODEs) with polynomial coefficients. Due to the efforts of an active community in this domain, efficient implementations available notably in Maple and Mathematica make it possible to manipulate them as data structures.

Yet, D-finite functions do not cover all the standard functions encountered in mathematics, a simple counter-example being the tan function. Hence, in order to efficiently compute with larger classes of functions, we resort to approximate representations of functions, in an analogy with floating-point numbers being used to approximate real numbers. However, the picture becomes more complex with functions: Which set of approximating functions do we choose? Polynomials are one possibility among others. How do we represent these polynomials, in which basis? Which norm do we use to quantify the quality of approximations? Some answers to these questions are provided in a condensed summary of approximation theory given in Section 2.2. This will be particularly helpful for Chapters 4 and 5, where Chebyshev expansions for Dfinite functions are computed and validated. In contrast with this mathematical point of view about function approximation, Chapter 8 gives an application where computer-specific aspects are taken into account, such as rounding errors due to the use of floating-point arithmetic.

By presenting both exact and approximate representations of functions, this chapter gives the necessary preliminaries before getting to the heart of the matter in Chapter 3: the rigorous polynomial approximations, that bring rigorous numerics to the level of functions, allowing for validated computations in function spaces, as well as intervals were used at the level of numbers.

D-finite functions: a successful example of exact representations

D-finite functions are the solutions of linear ordinary differential equations (LODEs) with polynomial coefficients (cf Definition 2.1). As mentioned in the introduction, a wide range of usual mathematical functions fall into this category: rational functions, algebraic functions, exp, cos, sin and their reciprocals, Bessel functions, etc. The fact that about 60% of functions listed in the famous Handbook of mathematical functions [START_REF] Abramowitz | Handbook of mathematical functions with formulas, graphs, and mathematical tables[END_REF] are D-finite [START_REF] Salvy | D-finiteness: Algorithms and applications[END_REF] is often put forward to advocate their central role in a wide range of applications.

D-finite functions (for differentially finite functions), were formally introduced in 1980 by Stanley [START_REF] Stanley | Differentiably finite power series[END_REF], although many of their properties had already been studied in the second half of the nineteenth century by Cauchy, Fuchs and Frobenius, among others. The development of modern and efficient computer algebra systems then increased the interest of mathematicians for them, and an active community rapidly emerged to embrace different aspects, such as connections with combinatorics, or summation/integration algorithms by Zeilberger's Creative Telescoping [START_REF] Zeilberger | A holonomic systems approach to special functions identities[END_REF][START_REF] Chyzak | The ABC of Creative Telescoping: Algorithms, Bounds, Complexity. Memoir of accreditation to supervise research (HDR)[END_REF], which makes it possible to compute closed forms for expressions involving sums and integrals. This extended abstract [START_REF] Salvy | Linear differential equations as a data-structure[END_REF] provides a broad overview of the fascinating properties and applications offered by D-finite functions.

The key idea about D-finite functions is that they can really be represented and manipulated as a data structure [START_REF] Salvy | Linear differential equations as a data-structure[END_REF], that is, a LODE with polynomial coefficients together with sufficiently many initial conditions. Based on that, the Maple package Gfun1 [START_REF] Salvy | Gfun: a Maple package for the manipulation of generating and holonomic functions in one variable[END_REF] provides a useroriented framework to efficiently compute with (univariate) D-finite functions. Section 2.1.1 gives a brief overview of how this is possible, thanks to elementary definitions and properties about univariate D-finite functions. These notions will be useful in Chapter 4.

In a second time, Section 2.1.2 addresses the more complicated theory of multivariate Dfinite functions, which have also been implemented in Maple and Mathematica with the Mgfun2 [START_REF] Chyzak | The ABC of Creative Telescoping: Algorithms, Bounds, Complexity. Memoir of accreditation to supervise research (HDR)[END_REF] and HolonomicFunctions3 [START_REF] Koutschan | Holonomic functions (user's guide)[END_REF] packages, respectively. In particular, this is the starting point of a wide range of the aforementioned Creative Telescoping algorithms (Section 2.1.3). Multivariate D-finite functions and Creative Telescoping will be marginally used in Chapter 6, and they will "play the lead role" in Chapter 9.

◮ D-finite functions: the univariate case

Throughout this section, ❑ denotes a subfield of ❈, usually a computable one, so that the manipulations and operations described below can be implemented, for instance, in computer algebra systems. This short introduction to D-finite functions, although sufficient for our purpose, can be supplemented by the reading of more thorough references, e.g., [START_REF] Stanley | Differentiably finite power series[END_REF] or [START_REF] Mezzarobba | Autour de l'évaluation numérique des fonctions D-finies[END_REF]Chap. 5]. Note that our presentation directly considers functions instead of formal power series, since the global framework of this thesis is mainly analytic, rather than algebraic. Definition 2.1 (D-finite function) Let f : U → ❈ be an analytic function over a domain U of ❈ (i.e., U ⊆ ❈ is open and connected). Then f is said differentially finite (or, in short, D-finite) if there exist an order r 0 and polynomials p 0 (x), . . . , p r (x) ∈ ❑[x] with p r = 0 such that:

L • f (x) := p r (x)f (r) (x) + • • • + p 1 (x)f ′ (x) + p 0 (x)f (x) = 0.
Equivalently, its derivatives {f (i) , i 0} span a finite-dimensional space over ❑(x), the field of rational functions with coefficients in ❑.

Remark 2.2 The function f and its higher order derivatives are analytic, hence meromorphic, functions over the domain U . Therefore, seeing them as elements of a ❑(x)-vector field makes sense.

According to the Picard-Lindelöf theorem [62, Thm. I.3.1], the equation L • f = 0 with prescribed initial conditions f (i) (x 0 ) = v i for i ∈ 0, r-1 and some x 0 ∈ U , admits a unique solution. Therefore, a D-finite function is exactly represented by the data (L, U, x 0 , v 0 , . . . , v r-1 ). This is the basis of the "linear differential equations as data structure" approach advocated in [START_REF] Salvy | Linear differential equations as a data-structure[END_REF] and implemented in the Gfun package [START_REF] Salvy | Gfun: a Maple package for the manipulation of generating and holonomic functions in one variable[END_REF].

The following theorem gives crucial closure properties of D-finite functions under usual operations, allowing for defining an arithmetic on those functions.

Theorem 2.3 Let f, g be D-finite functions over a domain U of ❈. Then: • λf is D-finite, for any λ ∈ ❑; • f + g is D-finite; • f g is D-finite; • f ′ is D-finite; • any primitive F of f (i.e., F ′ = f ) is D-finite;
• f • h is D-finite for any algebraic function h over ❑.

Proofs of these properties may be found in [234, Thms. 2.3 and 2.7]. Roughly speaking, the key argument is that higher order derivatives of D-finite functions span a finite-dimensional linear subspace over ❑(x). For example, consider the addition of two D-finite functions f and g, of respective order r and s. First, {f (i) , i ∈ 0, r -1 } and {g (j) , j ∈ 0, s -1 } are generating families for the ❑(x)-linear subspaces spanned by the derivatives of f and g, respectively. Now, the derivatives of f + g are all contained in the subspace spanned by {f (i) g (j) , i, j 0}, and the previous remark implies that {f

(i) g (j) , i ∈ 0, r -1 , j ∈ 0, s -1 } is a generating family.
Therefore, the derivatives of f + g necessarily span a finite-dimensional subspace over ❑(x).

The proofs of these closure properties are translated into effective algorithms by the use of linear algebra to find ❑(x)-linear relations between the derivatives of f + g, f g, etc., thus reconstructing a differential equation with polynomial coefficients.

Example 2.4 (Gfun in action)

The functions exp and cos are D-finite, since they respectively satisfy:

exp ′ -exp = 0, exp(0) = 1, cos ′′ + cos = 0, cos(0) = 1, cos ′ (0) = 0.
The Gfun package for Maple represents these functions as a tuple containing the differential equation plus the associated initial conditions. Closure operations, implemented as algorithms, allows us to compute a differential equation for, e.g., exp(x 2 ) + cos(x):

(4x 2 +3)y ′′′ +(-8x 3 -14x)y ′′ +(4x 2 +3)y ′ +(-8x 3 -14x)y = 0, y(0) = 2, y ′ (0) = 0, y ′′ (0) = 0.
Moreover, given an arbitrary univariate expression, the routine holexprtodiffeq automatically tries to reconstruct such an equation by applying closure operations and recognizing known functions at the leaves of the expression.

D-finite functions and P -recursive sequences

Another very important feature of D-finite functions is their connection with linear recurrences with polynomial coefficients, via their Taylor expansion. Specifically, let f be a D-finite function over a domain U , and x 0 ∈ U . By a simple translation, we assume that x 0 = 0. Since f is analytic over U , it has a unique power series expansion around 0:

f (x) = +∞ n=0 a n x n .
Injecting this ansatz in the differential equation L • f = 0 and formally differentiating the power series, yields a recurrence relation with polynomial coefficients in n on the a n . Such a sequence (a n ) n 0 is called P -recursive [START_REF] Stanley | Differentiably finite power series[END_REF]. Definition 2.5 (P -recursive sequence) A sequence (a n ) n 0 of complex numbers is called polynomially recursive (or, in short, P -recursive) if there exist an order r 0 and polynomials

c 0 (n), . . . , c r (n) ∈ ❑[n] with c r = 0 such that: (R • a) n = c r (n)a n+r + • • • + c 1 (n)a n+1 + c 0 (n)a n = 0, for all n ∈ ◆.
The formal equivalence between D-finite functions (or their power series) and P -recursive sequences is established by the following theorem, stated and proved in [234, Thm. 1.5].

Theorem 2.6 An analytic function f over a domain U containing 0 is D-finite if and only if its power series expansion at 0 is given by a P -recursive sequence (a n ) n 0 .

Example 2.7 Consider the entire function f (x) = e -x 2 cos x. Since exp and cos are clearly D-finite, so is f , using Theorem 2.3 for the product and the algebraic composition. The Gfun package for Maple automatically computes a differential equation, thanks to the routine holexprtodiffeq:

f ′′ (x) + 4xf ′ (x) + (4x 2 + 3)f (x) = 0.
Injecting a power series ansatz f (x) = +∞ n=0 a n x n in this equation gives:

+∞ n=0 n(n -1)a n x n-2 + 4na n x n + 4a n x n+2 + 3a n x n = 0.
Identifying the powers of x in this sum yields the following recurrence relation for the P -recursive sequence (a n ):

(n + 3)(n + 4)a n+4 + (4n + 11)a n+2 + 4a n = 0,
for all n ∈ ◆.

Remark 2.8 (Expansions in other bases) Though the most classical, the power series expansion of a D-finite function is not the only expansion for which the differential equation automatically translates into a recurrence relation for the coefficients. For example, the Chebyshev series expansion also has this property. Explicit recurrences are given in [START_REF] Paszkowski | Zastosowania numeryczne wielomianów i szeregów Czebyszewa. Państwowe Wydawn[END_REF][START_REF] Rebillard | Étude théorique et algorithmique des séries de Chebyshev solutions d'équations différentielles holonomes[END_REF][START_REF] Benoit | Algorithmique semi-numérique rapide des séries de Tchebychev[END_REF][START_REF] Benoit | Rigorous uniform approximation of D-finite functions using Chebyshev expansions[END_REF], whereas the linear system solved in Chapter 4 implicitly encodes them.

◮ The multivariate case: D-finiteness vs holonomicity

When moving to the multivariate case, that is, functions f (x 1 , . . . , x n ) depending on n complex variables x = (x 1 , . . . , x n ) ∈ ❈ n , linear ODEs must be replaced by systems of PDEs (with polynomial coefficients). Contrary to the univariate case, two closely-related notions must be carefully distinguished: D-finiteness and holonomicity. Related technicalities go far beyond the scope of this manuscript. Detailed but still intuitive introductions are given in [START_REF] Chyzak | Fonctions holonomes en calcul formel[END_REF][START_REF] Koutschan | Advanced applications of the holonomic systems approach[END_REF].

First, we define formal differential operators.

Definition 2.9 (Weyl algebra or polynomial Ore algebra) The n-th Weyl algebra 

D n := ❑[x] ∂ x = ❑[x 1 , . . . , x n ] ∂ x 1 , . . . ,
∂ x i x j = x i ∂ x i + 1, i = j, x j ∂ x i , i = j, x i x j = x j x i , ∂ x i ∂ x j = ∂ x j ∂ x i .
We have that {x

β ∂ x α , α, β ∈ ◆ n } is a basis of D n as a ❑-vector space. If L = α,β c α,β x β ∂ x α ,
its order is the largest value of |α| such that there exists β with c α,β = 0. 

∂ x i q(x) = q(x)∂ x i + ∂q(x) ∂x i , q(x) ∈ ❑(x).
Differential operators in D n naturally act on smooth functions via

∂ x i • f = f x i := ∂f ∂x i . The annihilator Ann(f ) is a left ideal of D n : Ann(f ) := {L ∈ D n | L • f = 0}.
One can also see Ann(f ) as a left ideal of D * n , and the quotient D * n /Ann(f ) as a ❑(x)-vector space. Roughly speaking, a function f is D-finite if Ann(f ) contains enough equations so that f can be uniquely characterized by a finite set of initial conditions.

Definition 2.11 An analytic function f over a domain U of ❈ n is called D-finite if D * n /Ann(f ) has finite dimension. Equivalently, its higher order derivatives {∂ α x • f, α ∈ ◆ n } form a finite-dimensional vector space over the field ❑(x) of rational fractions.

In other cases, when f is a "generalized function", for instance a distribution, Ann(f ) can only be seen as a left ideal of D n and D n /Ann(f ) as a ❑-vector space. For example, the univariate Dirac distribution, defined by δ, f = f (0), is annihilated (as a distribution) by x, since xδ, f = δ, xf = 0. However, a left ideal of D * 1 containing x is necessarily D * 1 , but 1 annihilating δ would imply δ = 0. In that setting, the relevant notion is holonomicity, arising in Bernstein's D-module theory [START_REF] Bernšteȋn | Modules over a ring of differential operators. An investigation of the fundamental solutions of equations with constant coefficients[END_REF][START_REF] Galligo | Some algorithmic questions on ideals of differential operators[END_REF]. Definition 2.12 Let I be a left ideal of D n . For L ∈ D n , let [L] I denote the class of L in the quotient D n /I. For s 0, define

D n I s = Span ❑ [x β ∂ α x ] I , |α| + |β| s .
Then there exists a polynomial b(s

) ∈ ❑[s] such that dim ❑ (D n /I) s = b(s) for s large enough. The degree of b(s) is called the Bernstein dimension of D n /I. The left ideal I is called holonomic if the Bernstein dimension of D n /I is equal to n. An analytic function f over a domain U of ❈ n is said to be holonomic if the D n -left ideal Ann(f ) is holonomic.
The algorithmic treatment of multivariate D-finite functions is more complex than the univariate case. It requires the use of non-commutative Gröbner bases, which are a generalization of the classical Gröbner bases for polynomial systems (see for example [START_REF] Galligo | Some algorithmic questions on ideals of differential operators[END_REF][START_REF] Chyzak | The ABC of Creative Telescoping: Algorithms, Bounds, Complexity. Memoir of accreditation to supervise research (HDR)[END_REF][START_REF] Koutschan | Advanced applications of the holonomic systems approach[END_REF] and references therein). Roughly speaking, the idea consists in fixing an appropriate total order on the monomials {x β ∂ α x , α, β ∈ ◆ n } (in the polynomial case) or {∂ α

x , α ∈ ◆ n } (in the rational case). Then, given an input set of generators for an D n (or D * n )-left ideal I, the Buchberger algorithm computes a new generating set of the basis with the property that the reduction of any differential operator L modulo I using this basis and the monomial order is convergent. This can be seen as an extension of the Euclidean division to this multivariate non-commutative setting.

Similarly to the univariate case, closure properties for D-finite [START_REF] Chyzak | The ABC of Creative Telescoping: Algorithms, Bounds, Complexity. Memoir of accreditation to supervise research (HDR)[END_REF][START_REF] Koutschan | Advanced applications of the holonomic systems approach[END_REF] and holonomic functions [START_REF] Galligo | Some algorithmic questions on ideals of differential operators[END_REF][START_REF] Takayama | An algorithm of constructing the integral of a module -an infinite dimensional analog of gröbner basis[END_REF][START_REF] Oaku | Algorithms for integrals of holonomic functions over domains defined by polynomial inequalities[END_REF] under usual operations are available. Using variants of the FGLM algorithm [START_REF] Koutschan | Advanced applications of the holonomic systems approach[END_REF], which transforms a Gröbner basis for a given monomial ordering into a new one for another specified ordering, corresponding D-finite or holonomic annihilating ideals can moreover be automatically computed. Such manipulations are implemented for example in the Maple package Mgfun [START_REF] Chyzak | The ABC of Creative Telescoping: Algorithms, Bounds, Complexity. Memoir of accreditation to supervise research (HDR)[END_REF] and in the Mathematica package HolonomicFunctions [START_REF] Koutschan | Holonomic functions (user's guide)[END_REF].

In Chapter 9, we will also need multi-indexed sequences satisfying linear recurrences with polynomial coefficients. Such recurrence (or difference) operators are defined as follows.

Definition 2.13 R n := ❑[α] S α = ❑[α 1 , . . . , α n ] S α 1 , . . . , S αn is the set of difference operators with polynomial coefficients in α, acting on sequences u = (u(γ 1 , . . . , γ n )) γ∈◆ n via (α i • u)(γ 1 , . . . , γ n ) = γ i u(γ 1 , . . . , γ n ), (S α i • u)(γ 1 , . . . , γ n ) = u(γ 1 , . . . , γ i + 1, . . . , γ n ), γ ∈ ◆ n . The annihilator Ann(u) = {R ∈ R n | R • u = 0}
is the set of recurrence relations satisfied by u, which is holonomic when its generating series is holonomic [START_REF] Chyzak | The ABC of Creative Telescoping: Algorithms, Bounds, Complexity. Memoir of accreditation to supervise research (HDR)[END_REF].

Note that continuous and discrete variables can be used together, yielding functions f (x, α) = f (x 1 , . . . , x n , α 1 , . . . , α m ) with x i ∈ ❈ and α j ∈ ◆. In such a case, the associated Ore algebra:

❑(x, α) ∂ x , S α = ❑(x 1 , . . . , x n , α 1 , . . . , α m ) ∂ x 1 , . . . , ∂ xn , S α 1 , . . . , S αm ,
contains differential-difference operators, defined from ∂ x i and S α j , as in the toy example below.

Example 2.14 (Moments of the Gaussian distribution) Consider the function

f (x, n) := x n e -x 2 /2 √ 2π , for x ∈ ❈ and n ∈ ◆,
which is the integrand of the formula defining the moments of the centered and normalized Gaussian distribution, as it will be seen in Example 2.15.

Its annihilator Ann(f ) is generated by these two differential-difference operators:

S n -x, x∂ x + (x 2 -n). Since ❑(x, n) ∂ x , S n /Ann(f ) is of dimension 1 (generated by the class of 1), f is D-finite.

◮ Creative Telescoping

An interesting feature of the multivariate case is to integrate with respect to a continuous variable, or to sum with respect to a discrete variable. For a function f (x 1 , . . . , x n , α 1 , . . . , α m ), one can define, provided that integration and summation operations are well-defined:

ϕ i ( x i , α) := b i a i f (x, α)dx i , i ∈ 1, n , a i , b i ∈ | ∪ { ± ∞}, (2.1) 
ψ j (x, α j ) := γ j α j =β j f (x, α), j ∈ 1, m , β j , γ j ∈ ◆ ∪ { + ∞}.
where

x i := (x 1 , . . . , x i-1 , x i+1 , . . . , x n ) ∈ ❈ n-1 and α j := (α 1 , . . . , α j-1 , α j+1 , . . . , α m ) ∈ ◆ m-1 .
Originating from the seminal work of Zeilberger [START_REF] Zeilberger | A holonomic systems approach to special functions identities[END_REF], several algorithms identified under the name Creative Telescoping were developed to compute D-finite and/or holonomic annihilators for such functions ϕ i , ψ j , provided the input function f is given by such an annihilator [START_REF] Takayama | An algorithm of constructing the integral of a module -an infinite dimensional analog of gröbner basis[END_REF][START_REF] Chyzak | Fonctions holonomes en calcul formel[END_REF][START_REF] Koutschan | Advanced applications of the holonomic systems approach[END_REF]. A historical survey on that topic may be found in [START_REF] Chyzak | The ABC of Creative Telescoping: Algorithms, Bounds, Complexity. Memoir of accreditation to supervise research (HDR)[END_REF].

We briefly sketch out the key idea. To construct elements of Ann(ϕ i ) with ϕ i defined in Equation (2.1), we look for operators T ∈ Ann(f ) of the form:

T := P + ∂ x i Q = 0 mod Ann(f ), (2.2) 
with the additional condition that P does not depend on x i nor ∂ x i , so that it commutes with the integration operation b i a i . . . dx i , yielding the following equation for ϕ i :

P • ϕ i ( x i , α) + [f (x, α)] x i =b i x i =a i = 0,
where the bracket expression above is to be considered with limits if a i or b i is ±∞. In many situations, where a i and b i are called natural boundaries [START_REF] Takayama | An algorithm of constructing the integral of a module -an infinite dimensional analog of gröbner basis[END_REF], this bracket vanishes, so that P ∈ Ann(ϕ i ). Otherwise, one must find another operator R in the annihilator of this bracket, so that RP ∈ Ann(ϕ i ).

Example 2.15 (Moments of the Gaussian distribution -Creative Telescoping) Consider again the function f of Example 2.14. By integrating it for x from -∞ to +∞, we obtain the moments m n of the Gaussian distribution, with the following closed form expression [START_REF] Pillai | Probability, random variables, and stochastic processes[END_REF]Sec. 5.4]:

m n := +∞ -∞ f (x, n)dx = (2k)! 2 k k! if n = 2k, 0 if n = 2k + 1. (2.3)
Creative Telescoping offers an elegant way to check or recover this expression. By permuting x and ∂ x in the second generator of Ann(f ) found in Example 2.14, we have ∂ x x+(S 2 n -(n+1)) ∈ Ann(f ). Using the first generator, we obtain an operator of the prescribed form (2.2):

S 2 n -(n + 1) + ∂ x x ∈ Ann(f ).
Integrating this relation for x over (-∞, +∞) and noticing that xf (x, n) → 0 as x → ±∞ for any n, we obtain the following recurrence of order 2 for m n :

m n+2 -(n + 1)m n = 0, for all n ∈ ◆.
This recurrence relation, together with m 0 = 1 and m 1 = 0, has the closed form of Equation (2.3) as unique solution.

A condensed summary of approximation theory

Broadly speaking, approximation theory is the art of providing an accurate and reliable representation of a given function using (combinations of) simpler functions, called approximating functions. The input function may be given as a symbolic expression, a table of sample values or moments, a solution of a differential equation or other types of functional equations. Approximating functions usually have strong properties and are convenient to compute with. Polynomials are probably the simplest class of such approximating functions, and also one of the most widely used. This thesis mainly focuses on them. Trigonometric functions also play an important role, especially when the input function has a natural periodic behavior. Exponential functions, Bessel functions, and others also appear in some specific domains like signal processing, theoretical physics or probability theory. What are the advantages of such approximate representations over the input data itself? First, if the input function is supposed to be regular enough but only given through a limited quantity of information (a few sample values, for example), the approximation constructed out of it may faithfully represent the function everywhere. Then, even in the case where a lot of sample values are known, approximations often have the advantage of being a smooth, compact and easy-to-compute-with representation. In some sense, approximation theory makes it possible to actually compute with functions, in analogy with floating-point arithmetic for real number computations.

A natural question is: How do we define a good approximation? After a presentation of the general setting and a short reminder of Taylor approximations in Section 2.2.1, this question is addressed in two different frameworks: first, uniform approximation and the minimax theory in Section 2.2.2; second, least-squares (or L 2 ) approximation in Section 2.2.3, leading to orthogonal systems of polynomials. At this point, we introduce the well-known Chebyshev polynomials, for they will repeatedly play a central role throughout the thesis. More specifically, Section 2.2.4 is concerned with Chebyshev series expansion, while Section 2.2.5 deals with Chebyshev interpolation, very useful in practical implementations.

◮ General setting

We fix a normed linear space (F, • ) of real-valued input functions, defined over the (open or closed) real interval I of left and right extremities a, b ∈ | ∪ { -∞, +∞}. Functions in F are to be approximated by elements of the linear subspace A ⊆ F, called the set of approximating functions. This sections tries to be as general as possible concerning the set A of approximating functions, even if polynomial approximations will be mainly considered throughout this manuscript, as indicated by the title.

In most settings, A is an infinite-dimensional subspace, defined as the monotone union A = n 0 A n of finite-dimensional subspaces A n , where n may be seen as a precision parameter. A typical example is the set of real-valued polynomials graduated by the degree:

A = |[x] = n 0 A n where A n = | n [x] = {p ∈ |[x] | deg p n}.
This raises the following crucial questions:

• If p * n ∈ A n denotes the best approximation of a given f ∈ F in A n (if any), do we have p * n → f as n → +∞ in F, that is p * n -f → 0?
• If yes, what is the asymptotic rate of convergence? Those questions, among others, will be treated in the following for two notions of convergence, induced by two different norms:

• Section 2.2.2 is devoted to uniform approximation, where the objective is to minimize the maximal approximation error encountered over the interval of interest I.

• Section 2.2.3 focuses on L 2 approximation, where the quantity to minimize is the quadratic error defined as the integral of the squared error function.

Before addressing these two topics, we provide a brief reminder on a very classical and natural type of approximations, namely Taylor expansions. Despite their quite elegant properties, their intrinsic limitations motivate the need of better approximation tools.

A brief reminder on Taylor expansions

Let f : I → | be a real-valued function defined over an interval I, such that f is n times differentiable at a given point x 0 ∈ I. Its Taylor series of order n at x 0 is defined as:

T n • f (x) := n k=0 f (k) (x 0 ) k! (x -x 0 ) k .
Roughly speaking, T n • f is the best order n approximation of f over an infinitely small neighborhood of x 0 . The following theorem, called the Taylor-Lagrange estimation of the remainder, is a central property of Taylor approximations: Theorem 2.16 (Taylor-Lagrange) If f is a n + 1 times differentiable real-valued function over an interval I containing x 0 , then for all x ∈ I \ {x 0 }, there exists ξ ∈ (x 0 , x) or (x, x 0 ) such that:

f (x) -T n • f (x) = f (n+1) (ξ) (n + 1)! (x -x 0 ) n+1 . In particular, if f is of class C n+1 over a compact segment I = [a, b] with δ(I, x 0 ) = max(|a - x 0 |, |b -x 0 |): f -T n • f ∞,I f (n+1) ∞,I (n + 1)! δ(I, x 0 ) n+1 .
When f can be extended to a holomorphic function over the complex plane, an explicit geometric convergence rate of the Taylor series can be given: 

f (n) (z) n! M R n , for all z ∈ B(z 0 , R), n 0, and 
|f (z) -T n • f (z)| M |z -z 0 | R -|z -z 0 | |z -z 0 | R n .
This theorem also puts into evidence the intrinsic limitation of Taylor approximations: the radius of convergence is given by the nearest singularity in the complex plane, even if our initial problem only considered the function f over a segment of the real line.

Example 2.18 Consider the function f a : x → 1 a 2 +x 2 , for some a > 0. Although f a is analytic over the whole real line, it has singularities in the complex plane: ia and -ia. Since power series expansions are limited by the closest complex singularity, approximating f a over, for instance, [-1, 1], requires subdividing the interval and computing several Taylor expansions (see ) and n 0. We assume that A n is a Chebyshev system. Then f admits a unique best approximation p * n ∈ A n , which is the unique element p ∈ A n such that the approximation error f -p satisfies the equioscillation property: there exist n + 2 points a x 0 < • • • < x n+1 b such that:

f (x k ) -p(x k ) = (-1) k (f (x 0 ) -p(x 0 )) = ± f -p ∞,[a,b] , k ∈ 0, n + 1 . p * n is called the minimax approximation of f in A n .
It is obvious that the use of floating-point arithmetic will not make it possible to achieve the exact statement of Theorem 2.22. More generally and beyond numerical errors, the approximation p to be certified may be only a near-best approximation (see below), and the next theorem is useful to bound the approximation defect.

Theorem 2.23 (La Vallée Poussin [53, Sec. 3.4]) Let f ∈ C 0 ([-1, 1]
) and p ∈ A n , assuming that A n is a Chebyshev system. If there exist n + 2 points -1 x 0 < • • • < x n+1 1 such that the approximation error f -p alternates sign at the x i , that is:

(f (x k ) -p(x k ))(f (x k+1 ) -p(x k+1 )) 0, k ∈ 0, n ,
then the following enclosure of the optimal approximation error holds, where p * n is the minimax approximation of f in A n :

min 0 k n+1 |f (x k ) -p(x k )| f -p * n ∞,[a,b] f -p ∞,[a,b] .

Remez algorithm

Although Theorems 2.22 and 2.23 provide explicit conditions to check the (near) optimality of candidate approximations p, they do not explain how to construct such approximations. An exchange algorithm published by Remez [START_REF] Remes | Sur un procédé convergent d'approximations successives pour déterminer les polynômes d'approximation[END_REF][START_REF] Remes | Sur le calcul effectif des polynômes d'approximation de Tchebichef[END_REF] in 1934 allows for constructing degree n approximations of f , as close as desired to the optimal one, by means similar to polynomial interpolation (see Section 2.2.5). We only give the pseudo-code of this method (Algorithm Remez), and we refer the reader to [202, Chaps. 8 and 9] or [53, Sec. 5.8] for more details, in particular for its quadratic rate of convergence under some mild assumptions on f (the number of bits of precision doubles at each iteration). This algorithm has been extensively used in signal processing applications [START_REF] Parks | Chebyshev Approximation for Nonrecursive Digital Filters with Linear Phase[END_REF][START_REF] Filip | Robust tools for weighted Chebyshev approximation and applications to digital filter design[END_REF], or, closer to our interest, for elementary function implementation [START_REF] Brisebarre | Efficient polynomial L ∞ approximations[END_REF][START_REF] Chevillard | Efficient and accurate computation of upper bounds of approximation errors[END_REF][START_REF] Muller | Elementary Functions, Algorithms and Implementation[END_REF]. However, its theoretical efficiency must be balanced by its behavior in practice with floatingpoint arithmetic. In particular, the choice of initial points has a major impact on the actual convergence of the algorithm with floating-point numbers [START_REF] Filip | Robust tools for weighted Chebyshev approximation and applications to digital filter design[END_REF]Sec. 3.5]. Moreover, for elementary function implementation using polynomials, the output of Remez algorithm is not guaranteed to be a good approximation, once the coefficients have been truncated to the target floating-point precision, nor to be accurately evaluated using the Horner scheme, due to the rounding errors. The first problem was addressed, e.g., in [START_REF] Brisebarre | Efficient polynomial L ∞ approximations[END_REF], using integer programming and lattice reduction. The latter is the object of Chapter 8, which proposes a generalization of Algorithm Remez taking into account the (linearized) rounding error during evaluation.

Algorithm 2.1 Remez(f, n, ∆) -Remez second algorithm Input: a function f ∈ C 0 ([-1, 1]
), a natural integer n, and a tolerance ∆. Output: An approximation p of the degree n-minimax polynomial of f .

1: Choose n + 2 points -1 x 0 < x 1 < • • • < x n+1 1, δ ← 1, ε ← 0. 2: while δ ∆|ε| do 3:
Determine the solutions a 0 , . . . , a n and ε of the linear system:

n k=0 a k x k j -f (x j ) = (-1) j ε, j ∈ 0, n + 1 .

4:

Choose

x new ∈ [-1, 1] such that: p -f ∞ = |p(x new ) -f (x new )|, with p(x) = n k=0 a k x k . 5:
Replace one of the x i with x new , in such a way that the sign of p -f alternates at the points of the resulting discretization x 0 , . . . , x n+1 .

6:

δ ← |p(x new ) -f (x new )| -|ε|. 7: end while 8: Return p.

Near-optimal approximations

In a wide range of applications, approximations are not constructed to be optimal, but only near-optimal. Relaxing this optimality condition allows for more eficient methods than the Remez algorithm for instance. An important class of such methods are the linear projections, that is, bounded linear operators L n : C 0 (I) → A n satisfying L n • L n = L n for all n 0 (L n preserves all elements in A n ). Orthogonal truncated series (Sections 2.2.3 and 2.2.4) and polynomial interpolation (Section 2.2.5) are typical examples.

If L n is a linear projection, then we call Lebesgue constant its operator norm associated to the • ∞ norm:

Λ n := L n ∞ = sup f ∈C 0 (I), f =0 L n • f ∞,I f ∞,I < +∞
The Lebesgue constant is used to bound the overapproximation of p n = L n • f to f compared to the minimax approximation p * n (see [START_REF] Nicholas | Approximation Theory and Approximation Practice[END_REF]Chap. 15] and [53, p. 147]). Indeed, since

L n • (f -p * n ) = p n -p * n ,
we have by the triangle inequality:

f -p n ∞,I (1 + Λ n ) f -p * n ∞,I
Moreover, combining this result with the general fact

f -p * n ∞ = O(1/n) for any Lipschitz function f over [-1, 1] (see [53, Jackson's Thm V (p. 147)]), we deduce that f -p n ∞ = O((1+Λ n )/n).
Hence, the asymptotic of Λ n determines whether p n = L n •f uniformly converges to f .

◮ L 2 approximation and generalized Fourier series

In the context of L 2 approximation, one is interested in minimizing the quadratic error. We consider an interval I of | and a function w : I → | positive almost everywhere. The 2-norm of a measurable function f defined on I, associated to the weight function w, is:

f 2,w = I f (x) 2 w(x)dx 1 2
.

We define F = L 2 w (I), the space of square integrable functions f against w(x)dx, that is f 2,w < +∞. L 2 w (I) is complete with respect to • 2,w . Then, for f ∈ L 2 w (I), our objective is to find p ∈ A n minimizing the quadratic error f -p 2,ω . Contrary to uniform approximation which focuses on the maximal error, the • 2,w norm measures in some way a "cumulated error" or an "energy level". Applications are numerous, e.g., in signal processing.

Contrary to the • ∞,I , the • 2,w is associated to an inner product:

f, g w = I f (x)g(x)w(x)dx, which makes (L 2 w (I), •, • w ) a Hilbert space. Definition 2.24 A countable family {ϕ 0 , ϕ 1 , . . . , ϕ m , . . . } of functions in L 2 w (I) is orthogonal if: ϕ m , ϕ n w = 0 for m = n.
If moreover the linear subspace they span is dense in L 2 w (I) for the • 2,w norm, we say that this family is a Hilbert basis of L 2 w (I).

Fourier approximation theory

From the historical perspective, the Fourier theory of trigonometric sums is the first and still most popular example of L 2 approximation [START_REF] Katznelson | An introduction to harmonic analysis[END_REF]. Let us consider L 2 ([0, 2π]) the space of measurable and square-integrable real-valued functions over [0, 2π], or equivalently the 2π-periodic measurable functions over | with finite quadratic integral over one period (here, w(x) = 1).

The linear space L 2 ([0, 2π]) equipped with the inner product f, g 2 dt is a Hilbert space. The Fourier theory proposes to approximate functions of L 2 ([0, 2π]) with trigonometric functions in:

F = 2π 0 f (t)g(t)dt and the corresponding L 2 -norm f 2,F = 2π 0 f (t)
A = ∞ n=0
A n where A n = Span | {1, cos t, sin t, . . . , cos nt, sin nt}.

One easily checks that the elements of A form an orthogonal family with respect to •, • F . The Fourier coefficients of f ∈ L 2 ([0, 2π]) are simply defined by orthogonal projection:

a 0 (f ) = f, 1 F 1 2 2,F = 1 2π 2π 0 f (t)dt, a n (f ) = f, cos nt F cos nt 2 2,F = 1 π 2π 0 f (t) cos ntdt, b n (f ) = f, sin nt F sin nt 2 2,F = 1 π 2π 0 f (t) sin ntdt, for all n 1.
This allows for computing the best L 2 by orthogonal projection. The very classical convergence properties of Fourier series can be found in [134, Chaps. I and II]. We omit them in the manuscript, since they do not play an important role in this thesis, contrary to the very related Chebyshev polynomials and series, presented in Section 2.2.4.

Orthogonal polynomials

The Fourier series presented above are useful to approximate periodic functions on the real line. However, for non-periodic functions, Fourier series are not well-behaved. According to the Weierstrass approximation theorem (Theorem 2.19), polynomials are natural candidates for the set A of approximating functions. We present here the notion of orthogonal polynomials, which can be seen as a generalization of Fourier approximation theory. More details can be found in [START_REF] Cheney | Introduction to approximation theory[END_REF]Chap. 4] or [START_REF] Szegő | Orthogonal polynomials[END_REF].

Again, consider the space L 2 w (I) of measurable and square integrable functions over the interval I (compact or not) with respect to the continuous and almost everywhere positive weight w. We moreover assume that all moments of w are finite:

I x n w(x)dx < +∞
for all n 0, so that L 2 w (I) contains all real-valued polynomials. We set

A := |[x]. Remark 2.25 If I = [a, b] is compact, then clearly |[x] is dense in L 2
w (I) by using the Weierstrass approximation theorem and noticing that f 2,w ( I w(x)dx) 1/2 f ∞,I . Otherwise, one needs to perform a change of variable with the monotone C 1 function F (x) = w (I). Starting from the monomial basis {1, x, x 2 , . . . , x n , . . . }, the Gram-Schmidt orthogonalization process [53, Sec. 1.4] iteratively constructs such a graduated orthogonal family P 0 (x), P 1 (x), P 2 (x), . . . , P n (x), . . . of monic polynomials:

• The procedure is initialized with P 0 (x) = 1.

• Once P 0 (x), P 1 (x), . . . , P n (x) are constructed, we consider

xP n (x) ∈ | n+1 [x] \ | n [x]. We have: xP n (x), P k (x) w = P n (x), xP k (x) w = 0 for 0 k < n -1, since P n (x) is orthogonal to | n-1 [x].
We therefore define:

P n+1 (x) = xP n (x) - xP n (x), P n (x) w P n (x) 2 2,w P n (x) - xP n (x), P n-1 (x) w P n-1 (x) 2 2,w P n-1 (x).
As required, P n+1 (x) is monic of degree n + 1 and orthogonal to

| n [x].
This leads to the following theorem [53, Sec 4.2, Thm. 2]:

Theorem 2.26 Provided that the weight function w has finite moments on I, there exists a unique Hilbert basis of L 2 w (I) made of graduated monic polynomials P 0 (x), P 1 (x), . . . , P n (x), . . . . They satisfy a so-called three-term recurrence:

P n+1 (x) = (x -α n )P n (x) -β n P n-1 (x), n 1,
where the coefficients α n , β n are given by:

α n = xP n (x), P n (x) w P n (x) 2 2,w , β n = xP n (x), P n-1 (x) w P n-1 (x) 2 2,w = P n (x) 2 2,w P n-1 (x) 2 2,w
.

Remark 2.27 Clearly, the values of α n and β n depend on the weight function w. When they happen to be polynomials (or rational functions) of n, the sequence (P n (x)) are P-recursive (see Definition 2.5). In particular, this is the case for Legendre and Chebyshev polynomials defined below.

The orthogonal structure implies strong properties concerning the polynomials, like the location of the roots, characterized by next proposition [53, Sec. 4.2 Cor. 1]. In particular, this proves that the monomials 1, x, x 2 , . . . cannot be an orthogonal family over I, whatever the weight w is.

Proposition 2.28 If {P 0 , P 1 , . . . , P n , . . . } is a graduated and orthogonal family of polynomials in L 2 w (I), then P n has exactly n distinct simple roots, distributed in the interior I of I.

Example 2.29 (Legendre polynomials) By taking the weight w(x) = 1 over I = [-1, 1], we obtain the simplest example of orthogonal polynomials: Legendre polynomials.

P n (x) = 1 2 n n! ∂ ∂x n • (x 2 -1) n .
Moreover, the coefficients α n and β n of Theorem 2.26 can be explicitly computed, yielding the so-called Bonnet's recurrence:

(n + 1)P n+1 (x) = (2n + 1)xP n (x) -nP n-1 (x).

◮ Chebyshev polynomials and series

One of the most well-known family of orthogonal polynomials is the Chebyshev polynomials, due to the excellent approximation properties of Chebyshev expansions for functions defined over a compact interval. It is worth mentioning at this point that Chebyshev approximation theory is no more than Fourier approximation theory, up to a particular change of variable. Indeed, let f, g : [-1, 1] → | two measurable functions, and consider the 2π-periodic functions f (t) = f (cos t), g(t) = g(cos t). We have:

f (t), g(t) F = 2π 0 f (cos t)g(cos t)dt = 2 π 0 f (cos t)g(cos t)dt = 2 1 -1 f (x)g(x) √ 1 -x 2 dx with x = cos t = 2 f (x), g(x) w ,
where w(x) = 1 √ 1-x 2 is the Chebyshev weight. In the following, we write

L 2 Ч = L 2 w ([-1, 1]), •, • Ч = •, • w and • 2,Ч = • 2,w when w(x) is the Chebyshev weight defined on the interval [-1, 1].
Due to the central role played by Chebyshev polynomials throughout this thesis, a short summary of their properties is given in the following lines. For more details and proofs, I recommend these reference textbooks [START_REF] Nicholas | Approximation Theory and Approximation Practice[END_REF][START_REF] Boyd | Chebyshev and Fourier spectral methods[END_REF][START_REF] Fox | Chebyshev polynomials in numerical analysis[END_REF][START_REF] Mason | Chebyshev polynomials[END_REF][START_REF] Rivlin | The Chebyshev Polynomials[END_REF].

Properties of Chebyshev polynomials

The image of |[x] under the change of variable x = cos t are the (pair) trigonometric polynomials, for which we already know an orthogonal basis {1, cos t, cos 2t, . . . , cos nt, . . . }. We can therefore define the Chebyshev polynomials:

T n (x) = cos(n arccos x) n 0, x ∈ [-1, 1].
They clearly satisfy:

T n (cos t) = cos nt for n 0, and

T n , T m Ч = 0 if n = m. (2.4)
The polynomial T n is of degree n with leading coefficient 2 n-1 (for n 1). The n distinct roots µ

(n) k of T n in [-1, 1],
predicted by Proposition 2.28, are called the Chebyshev nodes of the first kind are, whereas the Chebyshev nodes of the second kind denote the n + 1 local extrema ν (n) k of T n . They are respectively given, in decreasing order, by:

µ (n) k = cos (k -1/2)π n , k ∈ 1, n , ν (n) k = cos kπ n , k ∈ 0, n .
The 3-term recurrence relation for orthogonal polynomials is here explicitly given using the trigonometric relation (2.4) (Note however that the T n are not chosen monic by convention, whence the small difference with the statement of Theorem 2.26):

T 0 (x) = 1, T 1 (x) = x, T n+1 (x) = 2xT n (x) -T n-1 (x), n 1. (2.5)
Usual operations on Chebyshev polynomials also admit simple expressions:

T n (x)T m (x) = 1 2 (T n+m (x) + T n-m (x)) , n m, (2.6) 
T n (x)dx = 1 2 ). However, the backward evaluation scheme due to Clenshaw [START_REF] Clenshaw | A note on the summation of Chebyshev series[END_REF] (Algorithm Clenshaw) should be preferred in the general case, similarly to the Horner scheme in the monomial basis. Besides involving fewer arithmetic operations, it is more competitive regarding numerical stability, as the error analysis carried out in [84, §3.13] shows.

T n+1 (x) n + 1 - T n-1 (x) n -1 , n 2, (2.7) 
T ′ n (x) = 2n(T n-1 (x) + T n-3 (x) + • • • + T 1 (x)), n even, 2n(T n-1 (x) + T n-3 (x) + • • • + T 2 (x)) + nT 0 (x), n odd. ( 2 
Proposition 2.30 (Correctness of Clenshaw) Under the hypothesis of exact arithmetic operations, Algorithm Clenshaw(p, x) computes the expected evaluation p(x) of p at x. Proof. For fixed x ∈ |, we prove by decreasing induction from k = n down to 0 the following equality:

(b k -2xb k+1 )T k (x) + b k+1 T k+1 (x) = n i=k a i T i (x).
(P k ) (P n ) is trivially true since b n = a n and b n+1 = 0 (line 1). Now let k ∈ 0, n -1 and suppose that (P k+1 ) holds. Using the Chebyshev recurrence relation (2.5), we obtain:

n i=k+1 a i T i (x) = (b k+1 -2xb k+2 )T k+1 (x) + b k+2 T k+2 (x) = b k+1 T k+1 -b k+2 T k (x). Equality (P k ) easily follows from b k = a k + 2xb k+1 -b k+2 (line 3): (b k -2xb k+1 )T k (x) + b k+1 T k+1 (x) = (a k -b k+2 )T k (x) + b k+1 T k+1 (x) = a k T k (x) + n i=k+1 a i T i (x).
This concludes the proof of (P k ) for k ∈ 0, n .

Finally, the correctness of Algorithm Clenshaw follows from (P 0 ) and line 5:

p(x) = n i=0 a i T i (x) = (b 0 -2xb 1 ) + b 1 x = b 0 -xb 1 = y.

Chebyshev series and convergence theorems

The Chebyshev coefficients c n (f ) of f are defined by orthogonal projection:

c 0 (f ) := f (x), 1 Ч 1 2 2,Ч = 1 π π 0 f (cos t)dt, c n (f ) := f (x), T n (x) Ч T n (x) 2 2,Ч = 2 π π 0 f (cos t) cos ntdt, n 1. 
(2.9)

As expected, we have c n (f ) = a n (f • cos). The truncated Chebyshev series of f of degree n is defined by the orthogonal projection

п n : L 2 Ч → | n [x]: п n • f (x) = n k=0 c k (f )T k (x). Again, (п n • f ) • cos = F n • (f • cos) for all n 0.
The L 2 -convergence theorem for Chebyshev series directly follows from Parseval theorem in the Fourier theory: Theorem 2.31 (L 2 convergence of Chebyshev series) For any f ∈ L 2 Ч , we have:

• п n • f → f in the L 2 sense when n → ∞: f -п n • f 2 2,Ч = 1 -1 (f (x) -п n • f (x)) 2 √ 1 -x 2 dx → n→∞ 0.
• Parseval identity:

f 2 2,Ч = π c 0 (f ) 2 + 1 4 n 1 c n (f ) 2 .
Besides L 2 convergence, uniform convergence happens under very mild assumptions, for instance, Lipschitz continuity [243, Thm. 3.1].

Theorem 2.32 Let f ∈ C 0 be Lipschitz-continuous, that is, there exists a λ 0 such that |f (x)-f (y)| λ|x-y| for all x, y ∈ [-1, 1]. Then f has a unique representation as a Chebyshev series, which is absolutely and uniformly convergent:

f (x) = +∞ n=0 c n (f )T n (x) for all x ∈ [-1, 1],
and

+∞ n=0 |c n (f )| < ∞.
Similarly to the Fourier case, the rate of convergence of Chebyshev coefficients for a function f depends on the regularity of the latter. This allows for bounding the uniform approximation error of Chebyshev series [243, Thms. 7.1 and 7.2].

Theorem 2.33 (Convergence of Chebyshev series for differentiable functions) Let p 0 and f be a p times differentiable function over [-1, 1], with

L (p) := 1 -1 |f (p) (x)|dx < +∞.
(i) The sequence of Chebyshev coefficients c n (f ) converge to 0 in O(n -p ), with the explicit bound:

|c n (f )| 2L (p) π(n -p + 1) p ,
for n p.

(ii) If p 1, the truncated Chebyshev series п n • f converges to f uniformly and absolutely in O(n 1-p ):

f -п n • f ∞ 2L (p) π(p -1)(n -p + 1) p-1 ,
for n p.

Hence, contrary to Taylor series, Chebyshev series can be defined even for non analytic functions, and convergence happens as soon as f ∈ C 1 ([-1, 1]). For the sake of completeness, we also cite this Taylor-like theorem for Chebyshev series [START_REF] Elliott | Error of truncated Chebyshev series and other near minimax polynomial approximations[END_REF]. Notice the improvement of a factor 2 -n compared to the Taylor case.

Theorem 2.34 If f ∈ C n+1 ([-1, 1]), then there exists ξ ∈ [-1, 1] such that: f -п n • f ∞ |f (n+1) (ξ)| 2 n n! .

Domain of analytic convergence

When f happens to be analytic on some neighborhood of [-1, 1] in the complex plane, Cauchylike results for Chebyshev series provide a geometric convergence rate. Remember that for Taylor series (at 0) for a function f analytic around 0, the convergence domain is the largest open disc centered at 0 and avoiding all singularities of f . Hence, when f has complex singularities of modulus less than 1, its Taylor series fails to converge on [-1, 1] (see Figure 2.2a).

To investigate the Chebyshev case, we use the Joukowski transform [243, Chap. 8] x = (z + z -1 )/2 and the following identity, which generalizes the trigonometric relation (2.4) over ❈ * :

T n z + z -1 2 = z n + z -n 2 , z ∈ ❈ * , n 0. The segment [-1, 1] is mapped to the unit circle U = {z ∈ ❈ | |z| = 1}
, and a Chebyshev series n 0 a n T n (x) to a 0 + 1 2 n∈) * a |n| z n , called a Laurent series. The domain of convergence for a Laurent series is an annulus C R,r = {z ∈ ❈ | r < |z| < R} of inner and outer radius 0 < r < R < +∞. Since the Laurent series obtained from real Chebyshev series are invariant under z → z -1 , the domains of convergence we consider are the symmetric annuli C ρ,ρ -1 for some ρ > 1 (see Figure 2.2c). The Joukowski transform maps the annulus C ρ,ρ -1 to the Bernstein ellipse of "radius" ρ > 1 (see Figure 2.2b):

E ρ = {x ∈ ❈ | |x + x 2 -1| < ρ}.
The key advantage of Chebyshev series over Taylor series is that, whatever close to [-1, 1] the complex singularities of f are, there always exists a sufficiently small ρ > 1 such that E ρ avoids them.

A generalization of the Cauchy formula for the coefficients of a Laurent series leads to the following theorem establishing the geometric convergence rate of Chebyshev coefficients and Chebyshev series [243, Thms. 8.1 and 8.2].

The Banach space (Ч 1 , • Ч 1 ) It turns out that working directly with the • ∞ norm may be cumbersome in effective validated algorithms. In some situations, as in Chapters 3, 4 and 5, it is more convenient to use a subspace of C 0 and an appropriate norm in connection with Chebyshev coefficients, while not loosing the link with • ∞ . This leads to the Banach space (Ч 1 , • Ч 1 ), defined below with relevant properties. Definition 2.37 Ч 1 is the space of absolutely summable Chebyshev series, that is, functions f ∈ L 2 Ч such that f Ч 1 < +∞, where:

f Ч 1 := ∞ n=0 |c n (f )| ∈ [0, +∞].
These functions exactly coincide with their Chebyshev series in the following sense: 

Lemma 2.38 If f ∈ Ч 1 , then п n • f converges absolutely and uniformly to f . Proof. Since, for all i ∈ ◆, c i (f )T i ∞ |c i (f )| and ∞ i=0 |c i (f )| = f Ч 1 < ∞ by definition of f ∈ Ч 1 , п n • f := n i=0 c i (f )T i converges
f ∈ Ч 1 , we have f Ч 1 = f (cos) A(❚)
. More precisely we have: Moreover, the uniform and Ч 1 norms can be partially ordered:

Lemma 2.39 (Ч 1 , • Ч 1 ) is a Banach algebra, which means that it is a Banach space satis- fying f g Ч 1 f Ч 1 g Ч 1 for all f, g ∈ Ч 1 . ( 2 
g ∞ ∞ n=0 c n (g)T n ∞ ∞ n=0 |c n (g)| =: g Ч 1 for all g ∈ Ч 1 .
Conversely, we have from (2.9):

|c 0 (f )| f ∞ and |c n (f )| 2 f ∞ , for all n 1, f ∈ Ч 1 .
However, since f has in general an infinite number of non-zero coefficients, this fact cannot be used directly to bound f Ч 1 by the uniform norm of f . We now consider the action of a bounded linear operator F :

Ч 1 → Ч 1 . By definition, its operator norm is F Ч 1 := sup f Ч 1 1 F • f Ч 1 . Such operators include multiplication by f ∈ Ч 1 or integration (indefinite or from a specific point). Proposition 2.40 Let f = +∞ n=0 a n T n ∈ Ч 1 .
For indefinite integration operator and respectively definite integration t t 0 from specific t 0 ∈ [-1, 1], defined as:

f := a 0 + a 2 2 T 1 + +∞ n=2 a n-1 -a n+1 2n T n , t t 0 f dt := a 0 + a 2 2 (t -t 0 ) + +∞ n=2 a n-1 -a n+1 2n (T n (t) -T n (t 0 )), (2.11) 
we have the following Ч 1 -operator norms:

Ч 1 = 1, and 
t t 0 Ч 1 2.
(2.12)

Proof. The inequality

Ч 1
1 directly follows from the definition, and equality is attained with T 0 = T 1 . For definite integration the operator bound is tight for

t 0 = -1 since t -1 T 0 dt Ч 1 = T 1 + T 0 Ч 1 = 2, but not for t 0 = 0, where t 0 Ч 1 = 1.
In general, computing the Ч 1 -norm of an operator F reduces to evaluating F at all the polynomials T i for i ∈ ◆: Lemma 2.41 For a bounded linear operator F : Ч 1 → Ч 1 , its Ч 1 -operator norm is given by:

F Ч 1 = sup i 0 F • T i Ч 1 . Proof. Take f = +∞ n=0 a n T n ∈ Ч 1 .
We have:

F • f Ч 1 = +∞ n=0 a n F • T n Ч 1 +∞ n=0 |a n | F • T n Ч 1 +∞ n=0 |a n | sup i 0 F • T i Ч 1 = f Ч 1 sup i 0 F • T i Ч 1 which shows that F Ч 1 sup i 0 F • T i Ч 1 . The converse inequality is clearly true since the family of the T i is a subset of {f ∈ Ч 1 | f Ч 1 1}.
By analogy with the Wiener algebra A(❚), more results about the space Ч 1 could be given. For example, an interesting property is the closure under the reciprocal:

if f ∈ Ч 1 does not vanish over [-1, 1], then 1/f ∈ Ч 1 [134, Sec. VIII.6.1].

◮ Chebyshev interpolation

Despite their excellent approximation properties, the Chebyshev series described above may be difficult to obtain. Indeed, with no specific assumptions on the function to approximate, computing Chebyshev coefficients amounts to evaluating integrals, which is not particularly convenient. An alternative consists in computing Chebyshev interpolants, whose properties of near-best approximations will be given after a general introduction on polynomial interpolation.

Let I be an interval of the real line, and n + 1 points

x 0 < x 1 < x 2 < • • • < x n in I.
For given values y 1 , . . . , y n ∈ |, there exists a unique polynomial p ∈ | n [x] such that p(x i ) = y i for i ∈ 0, n . For i ∈ 0, n , let l i (x) denote the degree n polynomial satisfying l i (x i ) = 1 and l i (x j ) = 0 for j = i (see expression below). We define the linear projection I n that interpolates the continuous function f at the points x i :

I n : C 0 (I) → | n [x] f → n i=0 f (x i )l i (x) with l i (x) = 0 j n j =i x -x j x i -x j .
Remark 2.42 Several methods are available to implement polynomial interpolation, refered to as Lagrange, Newton interpolation formulas (see, e.g., [START_REF] Cheney | Introduction to approximation theory[END_REF]Sec. 3.2]).

The approximation error of polynomial interpolants can be expressed using a Taylor-Lagrangelike formula, by a repeated use of the Rolle theorem [53, Sec. 3.2 p. 60].

Theorem 2.43 Let n 0, f ∈ C (n+1) (I), I n • f its degree n interpolant at points x i in I, and W (x) = n i=0 (x -x i ). For any x ∈ I, there exists ξ ∈ I such that:

f (x) -I n • f (x) = f (n+1) (ξ) (n + 1)! W (x).
This theorem motivates the need of minimizing W ∞,I when I = [a, b] is compact. Without loss of generality, we may assume I = [-1, 1]. The polynomial W (x) is monic of degree n + 1, with n + 1 simple roots in [-1 , 1]. By writing W (x) = x n+1 -n i=0 a n x n , we can see it as the approximation error of x n+1 by a degree n polynomial, and the best uniform bound is given by the minimax polynomial. Now, 2 -n T n+1 (x) is a monic degree n + 1 polynomial with all its roots in [-1, 1], and its local extrema ν

(n+1) k for k ∈ 0, n + 1 provide the equioscillation condition of Theorem 2.22. Hence, 2 -n T n+1 (x) = n+1 i=1 (x -µ (n+1) i
) is the optimal choice for W (x). We therefore focus on Chebyshev interpolation of the first kind, at points

x i = µ (n+1) i = cos((i -1/2)π/(n + 1)), i ∈ 1, n + 1 .
We call пn the associated interpolation operator. In the following, we set

I = [-1, 1] and write • ∞ for • ∞,[-1,1] . Theorem 2.44 Let n 0, and f ∈ C (n+1) ([-1, 1]).
The approximation error of f by its degree n Chebyshev interpolant пn • f is bounded by:

f -пn • f ∞ f (n+1) ∞ 2 n (n + 1)! .

Chebyshev interpolants are near-best approximations

Similarly to Chebyshev expansions, The Lebesgue constant Λ п n for Chebyshev interpolation grows logarithmically with the degree n [243, Chap. 15], [START_REF] Xu | The Chebyshev points of the first kind[END_REF].

Proposition 2. [START_REF] Brisebarre | Error analysis of some operations involved in the fast Fourier transform[END_REF] The Lebesgue constant Λ п n associated to the Chebyshev interpolation operator пn is given by:

Λ п n = 1 π n+1 k=1 cotan (k -1/2)π 2(n + 1) ,
with the following bound and asymptotic:

Λ п n 2 π log(n + 1) + 1 and Λ п n ∼ 2 π log n, n → +∞.

Convergence properties of Chebyshev interpolants

A key tool to investigate the convergence of Chebyshev interpolants is the aliasing formula (see [START_REF] Nicholas | Approximation Theory and Approximation Practice[END_REF]Chap. 4]). Roughly speaking, this formula establishes a partition of all the T k by their contribution on the n + 1-points Chebyshev grid {µ

(n+1) i , 1 i n + 1}.
For a function f admitting an absolutely summable Chebyshev series, this allows us to relate the n + 1 coefficients of the interpolant пn • f with the Chebyshev coefficients of f . The following consequence will be useful to establish convergence properties of Chebyshev interpolants. Proposition 2.46 ([243, Eq. (4.9)]) Let f ∈ C 0 ([-1, 1]) of absolutely summable Chebyshev series, and an interpolation degree n. Then:

f -пn • f ∞ 2 +∞ k=n+1 |c k (f )|.
In particular, пn • f converges uniformly to f . The bound given by this theorem implies that all convergence theorems for Chebyshev series based on term-by-term bounds are true for Chebyshev interpolants, up to a factor of 2.

Theorem 2.47 Let f be continuous on [-1, 1] with an absolutely summable Chebyshev series.

(i) If f ∈ C p ([-1, 1]) for p 1 with L (p) = 1 -1 |f (p) (x)|dx, then: f -пn • f ∞ 4L (p) π(p -1)(n -p + 1) p-1 , n p.
(ii) If f admits an analytic continuation on the Bernstein ellipse E ρ for some ρ > 1, such that |f (x)| M for all x ∈ E ρ , for some M , then:

f -пn • f ∞ 4M ρ -n ρ -1 , n 0.

Discrete cosine transform (DCT)

Discrete cosine transform (DCT) designates the reciprocal of Chebyshev interpolation, that is, the evaluation of a polynomial p = n i=0 a i T i over the Chebyshev grid of the first kind (µ

(n+1) k ) n+1 k=1 or second kind (ν (n) k ) n k=0 .
The naive method consists in applying the Clenshaw evaluation scheme (Algorithm Clenshaw) on each of the n + 1 points, which requires a quadratic number of arithmetic operations.

Similarly to the Fast Fourier transform (FFT) in monomial basis, there exists a fast cosine transform, sometimes abusively called discrete cosine transform (which formally refers to the above mathematical operation, not how it is performed). More details can be found in [START_REF] Plonka | Fast and numerically stable algorithms for discrete cosine transforms[END_REF][START_REF] Strang | The discrete cosine transform[END_REF]. In particular, this allows for Chebyshev interpolation, multiplication of polynomials, and Chebyshev-to-monomial or monomial-to-Chebyshev change of basis, in quasi-linear time.

However, as it will be mentioned in the following chapter, designing a rigorous DCT is still ongoing research. Therefore, since we mainly focus on rigorous numerics in this manuscript, quasi-linear time DCT will not be used in the algorithms presented in the following chapters.
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Les propositions mathématiques sont reçues comme vraies parce que personne n'a intérêt qu'elles soient fausses. -Montesquieu, Mes Pensées

In the light of the observations in Chapter 1 that interval arithmetic is intrinsically limited by the loss of correlations between variables, the need for higher order methods became central in rigorous numerics. It is beyond the scope of this thesis to present all of them, and we instead refer the interested reader to more comprehensive references [START_REF] Moore | Introduction to interval analysis[END_REF][START_REF] Tucker | Validated numerics: a short introduction to rigorous computations[END_REF][START_REF] Rump | Verification methods: rigorous results using floating-point arithmetic[END_REF] to discover some of them, such as affine arithmetic or automatic differentiation. This chapter focuses on rigorous polynomial approximations, which are particularly relevant to tackle function space problems.

The key idea of rigorous polynomial approximations, often shortened as RPAs, is to use (polynomial) approximation theory, whose basic notions have been given in Section 2.2, in order to provide certified representations of functions. More specifically, let us remember that interval arithmetic uses floating-point numbers to build sets of real numbers, and rigorous operations guarantee that the exact mathematical result is always contained in the computed interval. Similarly, RPAs use polynomial approximations and rigorous error bounds to denote sets of functions, and operations on them must ensure that the resulting RPA always contains the exact function.

After an introductory discussion on the genesis of RPAs and related definition issues in Section 3.1, self-validating elementary operations on them are given in Section 3.2, meaning that, for instance, RPAs for addition and multiplication are directly constructed from RPAs of the operands, using mainly interval arithmetic operations. Although quite classical now in the RPA literature (see, e.g., the reference document [START_REF] Joldes | Rigorous Polynomial Approximations and Applications[END_REF] for Chebyshev basis), they are recalled in this chapter for the sake of completeness.

In contrast with the dominant trend in that topic, where more "complex" operations like division or square root of RPAs are handled via composition, we advocate in this chapter the use of a posteriori validation methods to provide more efficient algorithms. The general framework for a posteriori validation, relying on the Banach fixed-point theorem, is presented in Section 3.3. After that, the division and square root of RPAs are carried out in Section 3.4.

This chapter also gives me the opportunity to present two implementations, which are part of my contribution:

• An open source C library, named ChebValid, for RPAs in Chebyshev basis (a.k.a. Chebyshev models), available at https://gforge.inria.fr/projects/tchebyapprox/, implements all the elementary operations described in this chapter. The resulting collection of routines provides the necessary arithmetic on RPAs for the implementation of the validation method for LODEs in Chapters 4 and 5.

• An open source formalization in the Coq proof assistant, resulting from a joint work with Assia Mahboubi and Damien Pous, provides a framework for RPAs certified at the implementation level. Besides implementing the elementary operations of Section 3.2, we also give a formalization of the Banach fixed-point theorem in Section 3.3.2 and use it to build certified implementations of the division and square root of RPAs, in Section 3.4. The Coq development is available at http://perso.ens-lyon.fr/florent.brehard/ chebapprox/, and an article [START_REF] Bréhard | A certificate-based approach to formally verified approximations[END_REF] -from which part of the material of this chapter comes -has been recently submitted to the 2019 Interactive Theorem Proving conference.

Finally, examples illustrating these concepts and the two implementations are given in Section 3.5.

History and definition(s) of rigorous polynomial approximations

The idea of using sets of functions in computer programs to rigorously enclose the exact solution of function space problems originally appeared in [START_REF] Epstein | Ultra-arithmetic. I. Function data types[END_REF][START_REF] Epstein | Ultra-arithmetic. II. Intervals of polynomials[END_REF], under the name of ultra-arithmetic, thus extending interval arithmetic, previously formalized in 1966 [START_REF] Moore | Interval Analysis[END_REF]. An early example of practical use of RPAs is the first computer-assisted proof of the Feigenbaum conjecture [START_REF] Lanford | A computer-assisted proof of the Feigenbaum conjectures[END_REF].

One decade later, the generic implementation of the so-called Taylor models [START_REF] Makino | Rigorous analysis of nonlinear motion in particle accelerators[END_REF][START_REF] Makino | Taylor models and other validated functional inclusion methods[END_REF] in the COSY Infinity software for beam physics [START_REF] Makino | Cosy infinity version 9[END_REF] enhanced the popularity of RPAs. Since then, Taylor models based methods have been used in various areas, such as rigorous integration of ODEs [START_REF] Berz | Suppression of the wrapping effect by Taylor model-based verified integrators: Long-term stabilization by shrink wrapping[END_REF][START_REF] Makino | Suppression of the wrapping effect by Taylor model-based verified integrators: Long-term stabilization by preconditioning[END_REF][START_REF] Makino | Suppression of the wrapping effect by Taylor modelbased verified integrators: the single step[END_REF][START_REF] Neher | On Taylor model based integration of ODEs[END_REF] or rigorous range enclosures of functions [START_REF] Berz | Rigorous global search using Taylor models[END_REF][START_REF] Chevillard | Efficient and accurate computation of upper bounds of approximation errors[END_REF]. Further historical information and applications can be found in [185, Part 1]. The central idea of RPAs consists in representing a function f over a compact segment I using a couple f := (p, δ), called a Taylor model, where the approximation p is a polynomial expressed in the standard monomial basis, and the remainder δ is an interval, such that for every t ∈ I, f (t) -p(t) ∈ δ. Despite its apparent simplicity, this definition requires some important clarifications when targeting practical implementations.

Floating-point vs interval coefficients: Rigorous operations on RPAs must take into account the rounding errors occuring when manipulating the polynomial approximations. One possible option [164, Chap. 5] is to use polynomials with floating-point coefficients, bound all the rounding errors and add them to the remainder δ. An alternative is to use interval polynomials, that is, polynomials p with interval coefficients, and use selfvalidating operations on them [129, Chap. 2]. In the latter case, which will be mainly considered in this thesis, a precise semantic for the RPA f = (p, δ) must be given (see Definition 3.1 below).

Base interval: Is the interval I = [a, b] fixed (we will often consider I = [-1, 1] for Chebyshev models), or user-defined, e.g., given by a concrete interval i ∈ ■ ❋ or by two intervals a, b for its endpoints?

Taylor coefficients: When using Taylor models with interval polynomials, we can impose that the coefficients of p contain the corresponding exact Taylor coefficients of the function to be represented. This can be useful when working with function with singularities, but this condition is not desirable in general, since maintaining it may be a cumbersome task [START_REF] Joldes | Rigorous Polynomial Approximations and Applications[END_REF]Chap. 2].

In view of this, a salutary effort toward clarification has been made in [START_REF] Joldes | Rigorous Polynomial Approximations and Applications[END_REF], leading for instance to the following definition of Taylor models with absolute remainder [129, Def. 2.1.3]. Definition 3.1 Let f : I → | be a function, t 0 be a small interval around an expansion point t 0 . Let f = ((a 0 , . . . , a n ), δ) be an RPA structure. We say that f is a Taylor model with absolute remainder for f at t 0 on I if:

t 0 ⊆ I, 0 ∈ δ, and 
∀ξ 0 ∈ t 0 , ∃ 0 i n a i ∈ a i , ∀t ∈ I, ∃δ ∈ δ, f (t) - n i=0 a i (t -ξ 0 ) i = δ.
However, the notion of RPA can be made broader than that of Taylor models, as shown by these two directions of generalization below.

Choice of the norm. Until now, we have only considered the space C 0 (I) of continuous functions over a given compact segment I, equipped with the norm • ∞ of uniform convergence:

f ∞ := sup t∈I |f (t)|.
However, as it has been addressed in Section 2.2, other norms, like L 2 norms, can be used in approximation theory, and can be more relevant, depending on the context. Another example is the Ч 1 -norm for absolutely convergent Chebyshev series (Definition 2.37). It will be useful in Chapter 4 when computing RPAs for solutions of linear ODEs, and moreover this norm is a safe overapproximation of • ∞ over [-1, 1], thus not losing the link with classical uniform convergence.

Therefore, from the abstract point of view, a RPA in a Banach space (F, • ) is simply a pair f := (f • , ε) with f • an approximation lying in some suitable linear subspace A of F (most of the time but not necessarily polynomials) and ε 0 an error bound.

Just like an interval is a set of real numbers, f represents a set of functions, namely the ball of center f • and radius ε. By a slight abuse of notation, we may use the membership symbol to say that f is a RPA for the target function f * ∈ F:

f * ∈ f ⇔ f * -f • ε.
Choice of the basis. The name "rigorous polynomial approximation" suggests that the ap-

proximation set A should be |[t]
. This is the most common choice, but other choices are possible, like Bessel or Hermite functions. Even for a fixed A, the choice of the basis in which the approximations are computed is crucial. Taylor models are based on (shifted) monomial basis. A major contribution of [START_REF] Brisebarre | Chebyshev interpolation polynomial-based tools for rigorous computing[END_REF], [START_REF] Joldes | Rigorous Polynomial Approximations and Applications[END_REF]Chap. 4] is the use of Chebyshev series and interpolants, due to excellent convergent properties in general, summarized in Section 2.2. Such RPAs (Chebyshev basis and uniform norm) are sometimes referred to as Chebyshev models.

They are the main target of this chapter, although a wide range of results and algorithms apply to other bases and norms. While choosing (rescaled) Chebyshev basis for a compact I = [a, b] is almost always a good option, other bases are more attractive when working with unbounded intervals [34, Chap. 17], like for instance Laguerre for I = [0, +∞), or Hermite for I = (-∞, +∞). Obviously, in such situations, appropriate norms must be considered, such as (weighted) L 2 norms. Further investigations are needed in that direction. In the following, we will mainly consider the Chebyshev basis over a compact segment, say I = [-1, 1] to avoid rescaling details.

In view of the preceding discussion, we propose the following definition of rigorous polynomial approximations for the rest of the thesis. Definition 3.2 Let (F, • ) be a Banach space of functions, A ⊆ F be a linear subspace of approximating functions, abusively called polynomials and generated by a countable basis (l n ) n 0 . An RPA f is a pair ((a 0 , . . . , a n ), ε), where:

• (a 0 , . . . , a n ) is a finite sequence of (floating-point) intervals, representing an interval poly-

nomial p := n i=0 a i ℓ i , for which p := n i=0 a i ℓ i ∈ p means a i ∈ a i for all 0 i n;
• ε 0 is an error bound, given as a floating-point number.

An RPA f is said to represent a function f * ∈ F, which we write f * ∈ f, if and only if:

∃p ∈ p, f * -p ε.

Implementation of RPAs in C

The ChebValid C library only implements Chebyshev models for now. They are defined according to the polynomial with interval coefficients -error bound approach given above. The C code follows the GMP/MPFR/MPFI naming convention for functions: all operations concerning Chebyshev models are prefixed with chebmodel_, and similarly mpfi_chebpoly_ for polynomials with MPFI interval coefficients, mpfr_chebpoly_ for polynomials with MPFR floating-point coefficients, etc. To briefly cover the implementation aspect, we provide after each following algorithm the corresponding C function name, together with implementation related remarks, when appropriate.

Coq formalization of RPAs

We briefly sketch out the formalization of RPAs in our Coq development. It is totally parametric with respect to the choice of basis, but only concerns uniform approximations, that is with the • ∞ norm.

A basis is described by a family of functions, non necessarily polynomials, indexed by natural numbers, that is a term T: nat→R→R. The structure BasisOps_on below describes the signature required on a basis T. It is parameterized by the type C of coefficients; sequences of such coefficients (seq C) represent linear combinations of elements of T. Linear operations (Section 3.2.2) need not be provided since they can be implemented independently from the basis. The range operation (Section 3.2.1) is important: its role is to bound the range on the given domain; it should be as accurate as possible since it is used at many places to compute error bounds in rigorous approximations (e.g., for multiplication and a posteriori validation). We define BasisOps to be a polymorphic function so that we capture with a single object the idealized operations on reals and their concrete implementation with intervals. Note that the type C used for the coefficients has a signature of an Ops1, which may represent any class of "numbers" with arithmetic operations, in particular intervals (cf. the complete article [40, Sec. 2] for more details about the underlying data-structures).

Then we can define RPAs (called Models in this framework) as follows:

Record Model C := { pol: seq C; rem: C }.

Again, C has to be thought as an abstract type for intervals. Therefore, this definition follows the polynomial -interval remainder approach rather than the polynomial -error bound one, since this Coq framework only deals with uniform approximations right now.

3.2

Elementary self-validating operations on rigorous polynomial approximations

◮ Evaluation and range

An elementary requirement of rigorous polynomial approximations is to provide an interval extension for the function it represents, as defined in Section 1.3. Note however that not all norms are suitable for this requirement. The norm • ∞ is natural for this purpose, and • Ч 1 is also compatible since its overapproximates • ∞ . Other norms, like L 2 norms, are not compatible with this requirement. Instead of local evaluation, L 2 RPAs could be used for local integration.

In this section, we therefore suppose that (F,

• ) is either (C 0 (I), • ∞ ) or (Ч 1 , • Ч 1 ).
For a RPA f := (p, ε) and an interval t, the evaluation is simply defined as:

RpaEval(f, t) := p(t) [-1, 1] [ε], (3.1) 
which we may write f(t) for short. This depends on an evaluation scheme for polynomials (in the generalized sense) associated to the basis in which p = n i=0 a i ℓ i is considered. For the Chebyshev basis, we use the Clenshaw evaluation scheme (Algorithm Clenshaw in Chapter 2), overloaded with interval arithmetic operations.

Proposition 3.3 For any RPA f and interval t contained in I, if f ∈ f and t ∈ t, then f (t) ∈ f(t), implying that f(•) : t → f(t) is an interval extension of f . Proof. Let f := (p, ε). Since f ∈ f, there exists p ∈ p and e ∈ F such that f (t) = p(t) + e(t) and e ε. By hypothesis, p(•) : t → p(t) is an interval extension over I for p. In particular, p(t) ∈ p(t).

Moreover, e ε (with

• = • ∞ or • Ч 1 ) implies that e(t) ∈ [-1, 1] [ε] = [-ε, ε]. This finally proves that f (t) = p(t) + e(t) ∈ f(t) := p(t) [-1, 1] [ε].
Algorithm RpaEval provides valid enclosure for any t ⊆ I. However, this may not be an appropriate strategy for large intervals, due to the overapproximation phenomena of interval arithmetic showcased in Section 1.3. In particular, one cannot hope in general to get reasonably tight enclosures of the total range over I, which will be necessary for several operations in the following sections. 

f := p [-1, 1] [ε],
where 

p := a 0 [-1, 1] a 1 • • • [-1, 1] a n .
Remark 3.5 Although • Ч 1 is not dominated by • ∞ (i.e., there is no constant C such that f Ч 1 C f ∞ for all f ∈ Ч 1 )
, the induced overapproximation is quite reasonable in practice.

Moreover, we also define the truncation of a RPA to a given degree N , which is useful when working with a globally fixed degree. For f := (p, ε) with p := N ′ i=0 a i ℓ i and N ′ N :

RpaTrunc(f, N ) := ( N i=0 a i ℓ i , ⊲ (ε + N ′ i=N +1 a i ℓ i )). (3.2) Clearly, if f ∈ f, then we still have f ∈ RpaTrunc(f, N ).
Implementation in C ChebValid provides several routines to evaluate Chebyshev models on different input types, e.g., for machine double: chebmodel_evaluate_d, for rationals (mpq):

chebmodel_evaluate_q, for mpfr: chebmodel_evaluate_fr or resp., for mpfi chebmodel_evaluate_fi.

Clenshaw evaluation scheme in Coq

The imperative-style for-loop of Algorithm Clenshaw in Chapter 2 is translated into the following polymorphic tail-recursive function with two accumulators: In the right-hand side, catrev is the function that reverses its first argument and catenate it with the second one. The proof is done by induction in just three lines, using the Coq tactic for ring equations.

◮ Linear space operations

Natural extensions of linear space operations are easy to define on rigorous polynomial approximations. This moreover does not depend on the choice of norm and basis. For RPAs f = (p, ε) and g = (q, η), with polynomials p = n i=0 a i ℓ i and q = m i=0 b i ℓ i , and an interval λ, we define:

f ⊞ g := (p ⊞ q, ⊲ (ε + η)) where p ⊞ q := max(n,m) i=0 (a i b i )T i , ⊟ f := (⊟ p, ε) where ⊟ p := n i=0 ( a i )T i , f ⊟ g := (p ⊟ q, ⊲ (ε + η)) where p ⊟ q := max(n,m) i=0 (a i b i )T i , λ f := (λ p, ⊲ (mag(λ)ε) where λ p := n i=0 (λ a i )T i .
These operations are implemented in ChebValid under the self-evident names chebmodel_add, chebmodel_neg, chebmodel_sub, chebmodel_scalar_mul_fi.

◮ Multiplication of RPAs

Besides linear operations on RPAs, we shall also define a multiplication operation (f, g) → f⊠g.

Here, we make the assumption that (F, • ) is a Banach algebra (see Lemma 2.39), that is, F is closed under multiplication and f g f g . Note that the classical setting for uniform approximation (C 0 (I), • ∞ ), where • ∞ is the supremum norm over a given compact segment I, is a Banach algebra. The Ч 1 space of absolutely convergent Chebyshev series is another example of Banach algebra.

Algorithm RpaMul(f, g, N ) computes a degree N RPA for the multiplication of two RPAs f and g, provided a multiplication scheme (p, q) → p × q is given for the underlying basis. Algorithm 3.1 RpaMul(f, g, N ) -Multiplication of RPAs Input: RPAs f = (p, ε) and g = (q, η), degree N . Output: A degree N RPA h for the multiplication of f and g.

1: r ← p × q 2: τ ← ⊲ ( p η + q ε + εη) 3: h ← RpaTrunc((r, τ ), N ) 4: return h Proposition 3.6 (Correctness of RpaMul) If f ∈ f and g ∈ g, then f g ∈ RpaMul(f, g, N ), for any N .
Proof. Let f = (p, ε), g = (q, η), r and τ be as in Algorithm RpaMul. Suppose that f ∈ f and g ∈ g, meaning that there exist polynomials p and q such that:

p ∈ p, q ∈ q, f -p ε, g -q η.
Then, by the supposed correctness of polynomial multiplication with interval coefficients, pq ∈ h := p × q, and:

f g -pq = p(g -q) + q(f -p) + (f -p)(g -q)
p g -q + q f -p + f -p g -q p η + q ε + εη τ by the correctness of • (Proposition 3.4). Therefore, f g ∈ (h, τ ). Finally, thanks to the correctness of RpaTrunc, f g ∈ h.

Note that in the current version of ChebValid, the function chebmodel_mul does not truncate the result, which corresponds to N = +∞ in RpaMul. However, future versions should give the possibility to fix a global degree N glob for RPAs (similarly to a global floating-point precision fixed by the user), so that multiplication would be defined by:

f ⊠ g := RpaMul(f, g, N glob ).

Multiplication in Chebyshev basis

In order to get a complete implementation of Chebyshev models, we must provide a multiplication scheme (p, q) → p × q for polynomials expressed in Chebyshev basis, in particular for Chebyshev polynomials with interval coefficients.

Following the discussion about fast multiplication in Chebyshev basis in the previous chapter, it might be tempting to instantiate fast DCT algorithms with intervals to obtain near-linear multiplication algorithms for the multiplication of Chebyshev models. Despite the rather good numerical conditioning of DCT with floating-point numbers [START_REF] Plonka | Fast and numerically stable algorithms for discrete cosine transforms[END_REF], the interval counterpart is subject to ongoing works, as it may be subject to potentially large overestimations, similarly to what is observed in FFT [START_REF] Liu | Fast convolution and fast Fourier transform under interval and fuzzy uncertainty[END_REF].

In a recent work [START_REF] Brisebarre | Error analysis of some operations involved in the fast Fourier transform[END_REF], the rounding errors occurring during a FFT are bounded a priori, thus opening the way to fast and rigorous polynomial multiplication in monomial basis. There is some hope for similar results for the DCT in the near future, which would lead to fast multiplication algorithms of Chebyshev models.

In the meantime, it is preferable to resort to traditional (quadratic-time) multiplication schemes. Algorithm ChebMul implements multiplication of Chebyshev polynomials as a straightforward application of the multiplication formula (2.6). It can be instantiated with rational numbers, floating-point numbers or intervals (the last case being used by Algorithm RpaMul for Chebyshev models). The ChebValid C library provides mpfr_chebpoly_mul and mpfi_chebpoly_mul.

Algorithm 3.2 ChebMul(p, q) -Multiplication in Chebyshev basis Input: polynomials p = r i=0 p i T i and q = s j=0 q j T j .

Output: polynomial h = r+s k=0 h k T k representing the multiplication of p and q.

1: for k = 0 to r + s do h k ← 0 2: for i = 0 to r do 3:

for j = 0 to s do 4: 

h i+j ← h i+j + p i * q j /2 5: h |i-j| ← h |i-j| + p i * q j /2

A note concerning the Coq implementation of Chebyshev multiplication

Algorithm ChebMul can be implemented as a polymorphic function parametrized by the type of coefficients: ∀ (C : Ops1), seq C → seq C → seq C. However, since lists in Coq do not allow for constant-time access to their elements, the resulting algorithm would run in cubic time.

To get around this issue, we propose two (quadratic-time) auxiliary functions mul_pls and mul_mns, implementing respectively the T i+j and T |i-j| component of the multiplication formula. Then, smul is defined as the half sum of them: Definition smul C (p q: seq C): seq C := sscal (1/2) (sadd (mul_mns p q) (mul_pls p q)).

The multiplication of RPAs (in any basis, provided a multiplication scheme is given) is implemented by: 

◮ Integration

For the two examples of norms we have considered so far, that is, • ∞ (uniform convergence over a compact segment I) and • Ч 1 , the (indefinite or definite) integration is a continuous linear operator. Hence, with these norms, integration of RPAs is possible:

• For the uniform convergence over I = [a, b], the indefinite integral (a.k.a. primitive) taken from any t 0 ∈ [a, b] is defined by:

RpaPrim ∞ ((p, ε), t 0 ) := t 0 p, max(t 0 -a, b -t 0 )ε . (3.3)
If a global degree N glob is fixed, the resulting RPA (of degree N glob +1) must be truncated.

The definite integral over [c, d] ⊆ [a, b] returns the following interval:

RpaInt((p, ε), c, d) := c p (d) [-1, 1] [(d -c)ε].
• Based on Proposition 2.40, the indefinite integration of RPAs from any

t 0 ∈ [-1, 1]
with the Ч 1 norm is:

RpaPrim Ч 1 ((p, ε), t 0 ) := t 0 p, 2ε .
The integration scheme of the polynomials with interval coefficients depends on the choice of the basis. For the Chebyshev basis, Algorithm ChebInt computes a primitive using Formula (2.11). Remark 3.8 (Derivation of RPAs) The fact that f n → f uniformly (resp. for the Ч 1 -norm) does not imply that f ′ n → f ′ . In fact, f ′ may even not exist and belong to C 0 (I) (resp. Ч 1 ). Hence, for the two norms considered in this section, differentiating RPAs is not possible. Output: polynomial q = r+1 i=0 q i T i representing t t 0 p(s)ds.

1: for i = 0 to r + 1 do q i ← 0 2: for i = 0 to r do 3:

if i = 0 then 4: q 1 ← q 1 + p 0 5: else if i = 1 then 6:
q 2 ← q 2 + p 1 /4 

q i+1 ← q i+1 + p i /2(i + 1) 9: q i-1 ← q i-1 -p i /2(i -1) 10:
end if 11: end for 12: q 0 ← q 0 -q(t 0 ) 13: return q

A posteriori fixed-point based validation methods

Let X denote an ambient space in which we look for the solution x * of a given problem. In this setting, X is usually (at least) a complete metric space with a metric d. Depending on the problem under consideration, there may be no obvious self-validating algorithm to compute certified representations of x * . Several obstructions may appear. For instance, Example 1.30 illustrated that merely replacing floating-point numbers by intervals in a standard Gaussian elimination is rarely a good option for rigorous matrix inversion -except for low dimension -because of rapidly increasing interval width, even for well-conditioned matrices. What is more, using intervals in approximation schemes does not even produce rigorous enclosures, because it cannot account for method errors. Consider, for example, polynomial interpolation or Runge-Kutta integration of ODEs.

In such cases, a possible approach consists in bounding separately rounding and method errors, and return their sum. Taking back the example of Runge-Kutta schemes, estimates for the method errors exist in the literature (see for example [START_REF] Iserles | A first course in the numerical analysis of differential equations[END_REF]Chap. 3]), and a priori rounding error bounds are automatically computed in [START_REF] Boldo | Round-off error analysis of explicit one-step numerical integration methods[END_REF]. However, this general process rapidly becomes cumbersome. Indeed, reasonably tight rounding error bounds may be hard to compute, whereas the method error estimates are often only asymptotically valid or may depend on unknown quantities (e.g., higher order derivatives).

A completely different approach concerns fixed-point based a posteriori validation methods. Dating back to the works of Kantorovich about Newton's method [START_REF] Kantorovich | Functional analysis[END_REF], they gained prominence with the rise of modern computers and were applied to numerous functional analysis problems. Early works include [START_REF] Kaucher | Self-validating numerics for function space problems: Computation with guarantees for differential and integral equations[END_REF][START_REF] Kedem | A posteriori error bounds for two-point boundary value problems[END_REF], in which the use of fixed-point theorems is advocated to numerically prove the existence of solutions in a certain region. Based on those ideas, a wide range of works proposed methods to rigorously solve various differential problems, such as ODEs with initial or boundary conditions [START_REF] Plum | Computer-assisted existence proofs for two-point boundary value problems[END_REF][START_REF] Oishi | Numerical verification of existence and inclusion of solutions for nonlinear operator equations[END_REF][START_REF] Lessard | Rigorous numerics for nonlinear differential equations using Chebyshev series[END_REF], or elliptic PDEs [START_REF] Plum | Numerical existence proofs and explicit bounds for solutions of nonlinear elliptic boundary value problems[END_REF][START_REF] Mitsuhiro | A numerical approach to the proof of existence of solutions for elliptic problems[END_REF][START_REF] Arioli | Integration of dissipative partial differential equations: a case study[END_REF]. The interested reader will find more details and references in the detailed survey [START_REF] Mitsuhiro | Numerical verification methods for solutions of ordinary and partial differential equations[END_REF] or in the short notice [START_REF] Bouwe Van Den | Rigorous numerics in dynamics[END_REF]. Even more recently, those methods were used to design algorithms computing RPAs for solutions of linear ODEs (see [START_REF] Benoit | Rigorous uniform approximation of D-finite functions using Chebyshev expansions[END_REF] and Chapter 4). In short, these methods compute a rigorous representation x for x * in two separate steps:

1. Approximation step. A numerical approximation x • ∈ X of x * is obtained by an oracle, which may resort to any approximation method and requires no mathematical assumption (convergence, error bounds...). This makes it possible to rely on external code and use (non-rigorous) libraries known for their highly efficient and optimized routines (e.g., matrix inversion with BLAS/LAPACK [START_REF] Anderson | LAPACK Users' guide[END_REF] or Chebyshev approximations with Chebfun [START_REF] Driscoll | Chebfun Guide[END_REF]). In the perspective of rigorous numerics formalized inside computer assistants, this is a major breakthrough: time-consuming computations are independently executed, and the trusted codebase remains small.

Validation step.

The initial problem is rephrased in such a way that x * is a fixed point of a (locally) contracting operator T : X → X. An a posteriori error bound ε on d(x • , x * ) is deduced from the Banach fixed-point theorem (several variants of this theorem are given in Section 3.3.1). Obtaining an appropriate fixed-point equation for x * is an essential part. To this aim, Newton-like methods have been widely used in the rigorous numerics literature [START_REF] Yamamoto | A numerical verification method for solutions of boundary value problems with local uniqueness by Banach's fixed-point theorem[END_REF][START_REF] Lessard | Rigorous numerics for nonlinear differential equations using Chebyshev series[END_REF].

◮ The Banach fixed-point theorem and a posteriori Newton-like validation methods

A wide range of a posteriori validation methods rely on topological fixed-point theorems, the most classical ones in this context being the Banach fixed-point theorem and the Schauder fixedpoint theorem. In this thesis, we focus on validation methods using the former. The interested reader will find examples involving the latter in, e.g., [136, Chap. 2, Thm. 4], [START_REF] Plum | Computer-assisted existence proofs for two-point boundary value problems[END_REF] or [START_REF] Neher | On Taylor model based integration of ODEs[END_REF].

After providing a statement of the Banach fixed-point theorem suitable for effective validation, we present the general ideas of a posteriori Newton-like validation methods that allow for turning general equations in Banach spaces into desired fixed-point equations.

Several statements of Banach fixed-point theorem Theorem 3.9 is the traditional formulation of the Banach fixed-point theorem. It is a global statement -the operator T is required to be contracting over the whole space X. The classical proof that may be found in numerous textbooks (see for example [20, Thm. 2.1]) involves Cauchy sequences. We reproduce it here for the sake of completeness. It is interesting to note that our formalized proof based on filters and given in Section 3.3.2 is somewhat different. Theorem 3.9 (Banach fixed-point -global version) Let (X, d) be a complete metric space and T : X → X be an operator. If T is contracting over X, that is, if there exists a µ ∈ [0, 1) such that T is µ-Lipschitz over X:

∀x 1 , x 2 ∈ X, d(T • x 1 , T • x 2 ) µd(x 1 , x 2 ),
then T admits a unique fixed point x * in X.

Moreover, for any x • ∈ X, the approximation error of x • to x * satisfies the following inequality:

d(x • , T • x • ) 1 + µ d(x • , x * ) d(x • , T • x • ) 1 -µ . (3.4) Proof. Let x n := T n • x • for n 0 denote the iterates of x • under T, that is x 0 := x • and x n+1 := T • x n . Let moreover b := d(x • , T • x • ).
By an easy induction, one gets d(x n , x n+1 ) µ n b. Since µ < 1, this yields for all n and m n:

d(x n , x m ) m-1 k=n µ k b +∞ k=n µ k b = µ n b 1 -µ → 0 as n → +∞.
Therefore, (x n ) is a Cauchy sequence, and hence converges to some x * ∈ X by completeness. Moreover, T • x * = x * since T is Lipschitz, hence continuous. Now, to prove the uniqueness, let x, x * ∈ X be two fixed points of T. Then we have:

d(x, x * ) = d(T • x, T • x * ) µd(x, x * ), from which follows d(x, x * ) = 0, hence x = x * since µ < 1.
Finally, the enclosure (3.4) is proved by using the triangle inequality:

d(x • , x * ) d(x • , T • x • ) + d(T • x • , x * ) d(x • , T • x • ) + µd(x • , x * ), d(x • , T • x • ) d(x • , x * ) + d(x * , T • x • ) d(x • , x * ) + µd(x • , x * ).
It is quite often the case that the operator T is contracting only over some neighborhood of the candidate approximation x • . In fact, one can restrict the ambient metric space X to any closed stable subset S ⊆ X, since S (with the induced metric d) is again a complete metric space. However, for the purpose of effective validation, we give the following local statement. By replacing the general -and difficult to check -notion of closed stable subset with that of strongly stable ball (cf. the more detailed Definition 3.14), we obtain a formulation where rigorously verifying the preconditions only requires bounding distances and checking real inequalities. Theorem 3.10 (Banach fixed-point -local version) Let (X, d) be a complete metric space, an operator T : X → X, x • ∈ X, and µ, b, r ∈ | + , satisfying the following conditions:

(3.10 i) d(x • , T • x • ) b; (3.10 ii) T is µ-Lipschitz over the closed ball B(x • , r) := {x ∈ X | d(x, x • ) r}: ∀x 1 , x 2 ∈ X, x 1 ∈ B(x • , r) ∧ x 2 ∈ B(x • , r) ⇒ d(T • x 1 , T • x 2 ) µd(x 1 , x 2 ); (3.10 iii) µ < 1 -T is contracting over B(x • , r); (3.10 iv) b + µr r -B(x • , r
) is called a µ-strongly stable ball with offset b.

Then T admits a unique fixed-point x * in B(x • , r).

Proof. The ball B(x • , r) is stable under T. Indeed, for any x ∈ B(x

• , r), d(x • , T • x) d(x • , T • x • ) + d(T • x • , T • x) b + µr r.
Since T is contracting over B(x • , r), Theorem 3.9 -applied to the closed subspace B(x • , r) instead of X -guarantees the existence and uniqueness of a fixed point x * of T in B(x • , r).

Remark 3.11

The reader may wonder why we do not provide an enclosure of d(x • , x * ) in Theorem 3.10, similarly to (3.4). In fact, the lower bound is not used in practice -it just tells that the enclosure is sharp for small µ -and Condition (3.10 iv) is equivalent to r b 1-µ , so that one can directly choose r := b 1-µ without violating the four conditions of the theorem.

A posteriori Newton-like validation method

In order to use the Banach fixed-point theorem for validating a candidate approximation x • with respect to the exact solution x * , one needs to find a contracting operator T of which x * is a fixed point. To this end, one can resort to Newton-like validation methods, which transform an equation F•x = 0 into an equivalent fixed-point equation T•x = x with T contracting [START_REF] Lessard | Rigorous numerics for nonlinear differential equations using Chebyshev series[END_REF].

More specifically, suppose that F : X → Y is differentiable; we use a Newton-like operator T : X → X defined as:

T • x := x -A • F • x, for h ∈ X,
with A : Y → X an injective bounded linear operator, intended to be close to (DF x • ) -1 . The operator A may be given by an oracle and does not need to be this exact inverse (which anyway might not be exactly representable on computers). The mean value theorem yields a Lipschitz ratio µ for T over any convex subset S of X:

∀x 1 , x 2 ∈ S, T • x 1 -T • x 2 µ x 1 -x 2 , with µ = sup x∈S DT x = sup x∈S 1 X -A • DF x , 128 
which is expected to be small over some neighborhood of x • . Concretely, in order to apply Theorem 3.10, one needs to compute the following quantities:

• a bound b A • F • x • = x • -T • x • ; • a bound µ 0 1 X -A • DF x • = DT x • ;
• a bound μ(r) Remark 3.12 Finding an r as small as possible while satisfying (3.5) may be a nontrivial task for automated validation procedures. For many problems, μ(r) is polynomial, hence conditions (3.5) are polynomial inequalities over r (see, e.g., [START_REF] Plum | Computer-assisted existence proofs for two-point boundary value problems[END_REF], or the more recent work [START_REF] Hungria | Rigorous numerics for analytic solutions of differential equations: the radii polynomial approach[END_REF], in which this approach is given the name radii polynomials). In our case, division (resp. square root) induces an affine (resp. quadratic) equation, which admits closed form solutions. is the unique positive root of the quadratic operator F : x → x 2 -x -1. We propose to validate the approximation ϕ • = 55 34 . Following the above approach, since DF x • h = (2x -1)h, we define A = (DF ϕ • ) -1 as the multiplication by a := 1 2ϕ • -1 , yielding the following Newton-like operator T:

A • (DF x -DF x • ) = DT x -DT x • valid for any x ∈ B(x • ,
T • x = x -a(x 2 -x -1), where a := 1 2ϕ • -1 = 17 38 .
Note that in this particular example, since we are working in | with exact rational numbers,

A is the exact inverse of DF ϕ • , implying µ 0 = 0 in the above framework.

• First, consider a ball B(ϕ • , r) of some radius r around ϕ • . A Lipschitz ratio for T over it can be explicitly computed. Indeed,

T • x 1 -T • x 2 = (x 1 -x 2 ) - (x 2 1 -x 2 2 ) -(x 1 -x 2 ) 2ϕ • -1 = 1 - (x 1 + x 2 ) -1 2ϕ • -1 (x 1 -x 2 ) = - (x 1 -ϕ • ) + (x 2 -ϕ • ) 2ϕ • -1 (x 1 -x 2 ).
yields a valid Lipschitz ratio µ(r) := 2ar.

• We also compute the bound:

b := |ϕ • -T • ϕ • | = |a(ϕ •2 -ϕ • -1)| = 1 2584
.

• Now, B(ϕ Therefore, we can for example provide the a posteriori error bound r := 39 10000 . Since ϕ * is the unique positive root of F and that B(ϕ • , r) clearly contains only positive numbers, we claim the following rigorous statement:

|ϕ • -ϕ * | 39 100000
.

In comparison, Mathematica numerically computes |ϕ • -ϕ * | ≈ 0.00038693.

◮ A formal proof for the Banach fixed-point theorem based on filters

The Banach fixed-point theorem has been formalized in various flavors of logic and proof assistants. In particular, a formal proof of a version of this fixed-point theorem is provided in [START_REF] Boldo | A Coq formal proof of the Lax-Milgram theorem[END_REF] for the purpose of the formalization of the Lax-Milgram theorem, based on the Coquelicot library [START_REF] Boldo | Coquelicot: a user-friendly library of real analysis for Coq[END_REF]. Using the same backbone library, we provide a different formalization, in accordance with the statement of Theorem 3.10, that is more suitable for our effective validation purposes.

The Coquelicot library for functional analysis

The Coquelicot library [START_REF] Boldo | Coquelicot: a user-friendly library of real analysis for Coq[END_REF] formalizes topological concepts using filters [START_REF] Bourbaki | General Topology[END_REF][START_REF] Hölzl | Type classes and filters for mathematical analysis in Isabelle/HOL[END_REF], which we briefly recall here. A filter on a type T is a collection of collections of inhabitants of T which is non-empty, upward closed and stable under finite intersections:

Record Filter (T : Type) (F : (T → Prop) → Prop) := { filter_true : F (fun _ => True) ; filter_and :

∀ P Q : T → Prop, F P → F Q → F (fun x => P x /\ Q x) ; filter_imp : ∀ P Q : T → Prop, (∀ x, P x → Q x) → F P → F Q }.
While filters are used to formalize neighborhoods, balls allow for expressing the relative closeness of points in the space. Balls are formalized using a ternary relation between two points in the carrier type, and a real number, with the following axioms: A filter is called a Cauchy filter when it contains balls of arbitrary (small) radius:

Definition cauchy (T : UniformSpace) (F : (T → Prop) → Prop) := ∀ eps > 0, ∃ x, F (ball x eps).

Theorem 3.17 The limit w of the filter F is in B0 , and w is a fixed point of T. Moreover, w is close to every other fixed point of T in B 0 . Proof. In this statement "w is a fixed point of T" means "w is close to T • w". First, w ∈ Bn for all n. Indeed, for any ε > 0, there is an m n s.t. Bm ⊆ B(w, ε), and since Bm ⊆ Bn , u m ∈ Bn ∩ B(w, ε). In particular, w ∈ B0 .

It is also clear by stability that T • w ∈ Bn for all n. Moreover, w is close to any point v s.t. v ∈ Bn for all n (for any ε > 0, choose n s.t. 2µr n < ε). Taking v := T • w proves that w is a fixed point of T.

Finally, if w ′ ∈ B0 is another fixed point of T, then it follows from an easy induction that w ′ ∈ Bn for all n. Hence, the foregoing shows that w is close to w ′ . Strongly stable balls model the requirements set on the untrusted data to be formally verified. They can also be seen as balls centered at the initial point, and large enough to include all its successive iterates, i.e. as instances of the locus at stake in classical presentations of the proof. The version proved in [START_REF] Boldo | A Coq formal proof of the Lax-Milgram theorem[END_REF] has a slightly more technical wording, which seems to be made necessary by its further usage in the verification of the Lax-Milgram theorem. Our proof script is significantly shorter, partly because we automate proofs of positivity conditions (for radii of balls) using canonical structures for manifestly positive expressions. But the key ingredient for concision is to make most of the filter device in the proof, and to refrain from resorting to low-level properties of geometric sequences. To the best of our knowledge, the other libraries of formalized analysis featuring a proof of this result, notably Isabelle/HOL and HOL-Light, are based on variants of proof strategy closer to the approach of Boldo et al. than to ours.

◮ Application to the rigorous inversion of matrices

As illustrated by Example 1.30 in Chapter 1, inverting a square matrix with a standard Gaussian elimination procedure overloaded with interval operations rarely offers a realistic solution, due to excessive interval overapproximations. The Newton-like a posteriori validation framework presented above yields a rather elementary method to compute tight error bounds for numerical matrix inverses. Although it is really close to the well-known Krawczyk method in the linear case, we give it here for the mere sake of illustration. An extensive literature is dedicated to this problem, and we refer the interested reader to [START_REF] Moore | Introduction to interval analysis[END_REF]Chap. 7] and [START_REF] Rump | Verification methods: rigorous results using floating-point arithmetic[END_REF]Sec. 10] for more details on these methods.

Fix n 1 and consider the set M n (|) of order n square matrices with real entries. To obtain a Banach space, one needs a suitable norm on it. For the sake of simplicity, we restrict ourselves to the 1-norm • 1 , since it is the operator norm associated to the 1-norm in |:

x 1 := |x 1 | + • • • + |x n |,
whence a strong connection with the space Ч 1 of absolutely summable Chebyshev series (Definition 2.37 in previous chapter). Definition 3.18 For n 1, the 1-norm • 1 over M n (|), defined as

M 1 := max 1 j n n i=1 |m ij |, M = (m ij ) 1 i,j n ∈ M n (|), makes (M n (|),
• 1 ) a Banach algebra, that is:

M N 1 M 1 N 1 , M, N ∈ M n (|).
Let P be an order n square matrix, expected to be invertible -but this remains to be proved -and M • a numerically computed inverse. If P is invertible, then M * = P -1 is the unique root of F : M n (|) → M n (|) defined as F • M := P M -1 n , where 1 n is the order n identity matrix. This operator is affine, of linear part M → P M . Hence A can be chosen as M → AM with some A ≈ P -1 . We take A := M • .

Based on this choice, Algorithm ValidatedMatrixInverse(P ) computes, if possible, a pair (M • , ε) such that M • -P -1 1 ε. In particular, this means that all the entries of M • have an error at most ε, allowing to construct an interval matrix M such that P -1 ∈ M.

Algorithm 3.4 ValidatedMatrixInverse(P )

Input: an order n square matrix P ∈ M n (|).

Output: a pair (M • , ε) ∈ M n (|) × | such that M • -P -1 1 1, or "Fail". ⊲ Approximation step 1: Compute M • as a floating-point numerical inverse of P ⊲ Validation step -use interval arithmetic 2: µ ← 1 n -M • P 1 3: b ← M • (P M • -1 n ) 1 4: if µ < 1 then 5: r ← b (1 µ) 6:
return ε := r 7: else Proof. Suppose that ValidatedMatrixInverse(P ) returns such a pair (M • , ε). First, we have that µ := 1 n -M • P 1 ∈ µ, hence µ < 1. But if P is not invertible, then there exists

x ∈ | n of 1-norm x 1 = 1 in the kernel of P , yielding (1 n -M • P )x 1 = x 1 = 1, which contradicts µ < 1 (since the 1-norm of matrices is the operator norm corresponding to the 1-norm in | n ). Therefore P is invertible. Now we consider the Newton-like operator T : M n (|) → M n (|), defined by:

T • M := M -M • (P M -1 n ).
This operator is contracting over M n (|), since

T • M 1 -T • M 2 = (1 n -M • P )(M 1 -M 2 ) 1 1 n -M • P 1 M 1 -M 2 1 = µ M 1 -M 2 1 . Moreover, b := M • -T • M • 1 = M • (P M • -1 n ) 1 ∈ b.
Thanks to the Banach fixed-point Theorem 3.9, we have that M • -P - Making use of the fundamentals of Banach fixed-point based a posteriori validation and Newton-like methods explained in the previous section, we propose rigorous division and square root procedures for RPAs with quadratic complexity (Propositions 3.23 and 3.25). For both operations, the roadmap is the following. First, we give an "abstract" validation procedure under the form of a proposition, whose proof relies on Theorem 3.10. After that, the "concrete" algorithm computing the RPA is given. Finally, we focus on some elements of the Coq formalization.

◮ Division of rigorous polynomial approximations

For f, g ∈ C(I) with g nonvanishing over I, the quotient f /g is the unique root of F : h → gh-f . Let h • be a candidate approximation given by the approximation step. Constructing the Newton-like operator T requires an approximation A of (DF h • ) -1 : k → k/g. For that purpose, suppose w ≈ 1/g ∈ C(I) is also given by an oracle, and define:

T • h = h -w(gh -f ).
(3.6)

The next proposition gives an upper bound for h • -f /g . Algorithm RpaDiv(f, g, N app , N val ) computing a RPA for the division of f by g requires two extra parameters:

(3.21 i) w(gh • -f ) b, (3.21 ii 
• a degree N app for the degree of the approximation polynomial h • ≈ f /g;

• a degree N val for the witness polynomial w ≈ 1/g, need by Proposition 3.21.

Choosing the validation degree N val is a trade-off between accuracy (w must be accurate enough to guarantee that µ is sufficiently small to yield a tight error bound) and efficiency (a large N val increases the computation time of the validation step). It is totally independent of the approximation degree N app .

Remark 3.22 In the case of Chebyshev models, one can choose to impose N app = N val and save time by evaluating f and g over the Chebyshev grid only once during the computation of h • and w. When using a global fixed degree N glob , one can define a division operator on RPAs:

f g := RpaDiv(f, g, N glob , N glob ),
which may return an exceptional value (or an RPA with infinite remainder) if the validation step fails.

Proposition 3.23 (Complexity of division of RPAs)

The overall complexity in interval operations of f g with fixed degree N glob is determined by the 3 multiplications of RPAs involved in RpaDiv. In the common case of quadratic multiplication (e.g., in monomial or Chebyshev basis with naive multiplication), this requires O(N glob 2 ) interval arithmetic operations.

In ChebValid, the division procedure chebmodel_div is implemented as the multiplication of f by the inverse of g. The inverse (which is a particular case of division, with f = 1) is implemented by chebmodel_inverse. The validation step (corresponding to Proposition 3.21) is implemented by the auxiliary procedure mpfr_chebpoly_inverse_validate. In the future, the code must be updated to perform the division of RPAs in a single step (as presented above), to gain efficiency and accuracy. Algorithm 3.5 RpaDiv(f, g, N app , N val ) -Division of RPAs Input: RPAs f, g, approximation degree N app and validation degree N val . Output: RPA h of degree N app for the division of f by g.

1: f ← mid(f) and g ← mid(g) 2:
Compute a degree N app approximation h • of f /g (e.g., using Chebyshev interpolation) 3: Compute a degree N val approximation w of 1/g 4: h • ← (h • , 0) and w ← (w, 0)

5: µ ← mag ( 1 ⊟ w ⊠ g ) 6: if µ < 1 then 7: b ← mag ( w ⊠ (g ⊠ h • ⊟ f) ) 8: µ ← [µ] and b ← [b] 9: r ← b (1 µ) 10: h ← (h • , r) 11:
return h 12: else 13:

return "Fail" 14: end if Definition mdiv n (F G: Model): Model := let p, q := mcf F, mcf G in mdiv_aux F G (mfc (interpolate n (fun x => beval p x / beval q x))) (mfc (interpolate n (fun x => 1 / beval q x))).

Coq formalization of division

Since this Coq framework defines Model with error intervals rather than error bounds, mdiv_aux returns

(rem H + sym (b/(1-mu))). The interval (sym (b/(1-mu))) is equal to [-r, r] with r = b 1-µ , whereas (rem H) is zero, since H is instantiated by (mcf _) in mdiv.
Note that we use the trivial model mbot={|pol:=[];rem:=bot|} as a default value, when the concrete computations fail to validate the guess of the oracle (either because this guess is just wrong, or because of over-approximations in the computations).

The correctness lemmas associated to these functions are:

Lemma rmdiv_aux F f G g H h W w: mcontains F f → mcontains G g → mcontains H h → mcontains W w → mcontains (mdiv_aux F G H W) (f/g). Lemma rmdiv n F f G g: mcontains F f → mcontains G g → mcontains (mdiv' n F G) (f/g).
Lemma rmdiv_aux relies on the following formalization of Proposition 3.21. Since continuity was not used in that proposition, no such hypothesis appears in the Coq statement.

Lemma div.newton (f g h w : R → R) mu b :

(∀ t, I t → Rabs (1 -w t * g t) mu) → (∀ t, I t → Rabs (w t * (g t * h t -f t)) b) → 0 mu < 1 → 0 b → ∀ t, I t → Rabs (h t -f t / g t) b / (1 -mu).

◮ Square root of a rigorous polynomial approximation

Let f ∈ C(I) be strictly positive over I. The square root √ f is one of the two roots of the quadratic equation

F • h := h 2 -f = 0 (the other being - √ f ). Let h • be a candidate approximation. Since DF h : k → 2hk, one also needs an approximation w ≈ 1/(2h • ) ≈ 1/(2 √ f ) ∈ C(I) in order to define A : k → wk, approximating (DF h • ) -1
. Then:

T : h → h -w(h 2 -f ).
The next proposition computes an upper bound for h • -√ f . Proposition 3.24 Let f, h • , w ∈ C(I), µ 0 , µ 1 , b ∈ | + and t 0 ∈ I such that:

(3.24 i) w h •2 -f b, (3.24 ii) 1 -2wh • µ 0 , (3.24 iii) w µ 1 , (3.24 iv) µ 0 < 1, (3.24 v) (1 -µ 0 ) 2 -8bµ 1 0, (3.24 vi) w(t 0 ) > 0.
Then f > 0 over I and h • -√ f r * where r * := From now on, we assume b > 0. T is Lipschitz of ratio µ(r) := µ 0 + 2µ 1 r over B(h • , r) for any r ∈ | + , because:

1-µ 0 - √ (1-µ 0 ) 2 -8bµ 1 4µ 1 . Proof. First, since 1 -2wh • µ 0 < 1 (by (3.
T • h 1 -T • h 2 = (h 1 -h 2 ) -w(h 2 1 -h 2 2 ) = [(1 -2wh • ) + w(h • -h 1 ) + w(h • -h 2 )] (h 1 -h 2 ).
Therefore, satisfying b + µ(r)r r is equivalent to the quadratic inequality:

2µ 1 r 2 + (µ 0 -1)r + b 0. (3.7)
Condition (3.24 v) implies that (3.7) admits solutions, and r * is the smallest one. Moreover, since b, µ 1 > 0, we get r * > 0, so that b + µ(r * )r * = r * also implies µ(r * ) < 1. Now, all the assumptions of Theorem 3.10 are fulfilled. Hence, T has a unique fixed point h * in B(h • , r * ). To obtain h * = √ f over I, it remains to show that h * > 0. This follows from w > 0 and:

1 -2wh * 1 -2wh • + 2w(h * -h • ) µ 0 + 2µ 1 r * = µ(r * ) < 1.
Similarly to Algorithm RpaDiv, RpaSqrt takes two degrees N app and N val , for the approximation and validation steps, respectively, and Remark 3.22 still applies in the case of Chebyshev models. If the degree N glob is globally fixed, one can define an operator for the square root:

√ (f) := RpaSqrt(f, N glob , N glob ).
Proposition 3.25 (Complexity of square root of RPA) The overall complexity in interval operations of √ (f) with fixed degree N glob is determined by the 3 multiplications of RPAs involved in RpaSqrt. In the common case of quadratic multiplication (e.g., in monomial or Chebyshev basis with naive multiplication), this requires O(N glob 2 ) interval arithmetic operations.

In ChebValid, Algorithm RpaSqrt is implemented by chebmodel_sqrt, relying on the auxiliary procedure mpfr_chebpoly_sqrt_validate.

Algorithm 3.6 RpaSqrt(f, N app , N val ) -Square root of a RPA Input: RPA f, approximation degree N app and validation degree N val . Output: RPA h of degree N app for the square root of f. 1: f ← mid(f) 2: Compute a degree N app approximation h • of √ f (e.g., using Chebyshev interpolation) 3: Compute a degree N val approximation w of 1/(2h • ) 4: h • ← (h • , 0) and w ← (w, 0)

5: µ 0 ← mag ( 1 ⊟ ✷ w ⊠ h • ) and µ 0 ← [µ 0 ] 6: µ 1 ← mag ( w ) and µ 1 ← [µ 1 ] 7: b ← mag ( w ⊠ (h • ⊠ h • ⊟ f) ) and b ← [b] 8: δ ← (1 µ 0 ) ② -[8] b µ 1 9:
Choose some t 0 ∈ I and evaluate y ← w([t 0 ]) 10: if µ 0 < 1 and δ 0 and y > 0 then

11: r ← (1 µ 0 √ √ δ) ([4] µ 1 ) 12: h ← (h • , r) 13:
return h 14: else 15:

return "Fail" 16: end if

Examples using the arithmetic on rigorous polynomial approximations

Checking positivity of functions using elementary RPAs operations

Rigorously checking positivity of univariate functions is a well-studied problem, with many applications (e.g., close to our interest, bounding the approximation error for polynomial approximations [START_REF] Chevillard | Efficient and accurate computation of upper bounds of approximation errors[END_REF]). Here, we present an elementary technique using arithmetic operations on RPAs.

Consider f ∈ Ч 1 . Recall from Section 2.2.4 that if f does not vanish over [-1, 1], then g := 1/f ∈ Ч 1 . Hence, one can compute a polynomial approximation g • of g, together with a rigorous bound ε An RPA f for f is easily computed using division defined in Section 3.4.1. Now, Algorithm RpaPositivityCheck(f, 5) returns true, which means that a degree 5 approximation is sufficient to rigorously assert the positivity of f over [0, 4] (which was rescaled to [-1, 1] by an affine change of variable). Figure 3.3a plots f and the computed g • ≈ 1/f . The "error function" 1 -g • f has a Ч 1 norm bounded by 0.9261, and is depicted in Figure 3.3b. with precision p. Timings given in Table 3.4c reveal a significant advantage of our implementation (there we use ε = 2 to avoid convergence issues of Taylor models). Concerning accuracy, our experiments tend to show that when ε 1, CoqApprox fails to compute converging Taylor models. Indeed, even with large L, a goal like:

1 -g • f Ч 1 . For any x ∈ [-1, 1], f (x) = 0 implies: 1 = |1 -g • (x)f (x)| 1 -g • f ∞ 1 -g • f Ч 1 ε. Hence, if ε < 1, then f cannot vanish over [-
Goal Fail : ∀ x : R, -1 x 1 → sqrt (1/100+x*x) L
is not solved when the degree N becomes too large, probably indicating that the Taylor models diverge due to complex singularities inside the unit disk. Note that the interval tactic can solve this goal, but only by resorting to subdivision techniques.

Error bounding. We want to bound |f ε (x) -|x|| for x ∈ [-1, 1] without making use of any symbolic manipulation like (3.8). At first glance, one can choose to use the rigorous approximations over [-1, 1] obtained previously, and evaluate f ε (x) -x (resp. f ε (x) + x) over [0, 1] (resp. [-1, 0]) using Clenshaw algorithm. However, even if the approximations are quite good, this evaluation strategy gives huge overestimations because [0, 1] and [-1, 0] are not small intervals. Instead, we compute separately two approximations for f ε : one over [0, 1] and one over [-1, 0], and we evaluate f ε (x) -x (resp. f ε (x) + x) over [1, 0] (resp. [-1, 0]) using the Chebyshev range function. This approach yields bounds that are rather close to the optimal √ ε (see Figure 3.4d). However, this does not allow for arbitrary accuracy: a subdivision procedure would be necessary here.

Part II Chebyshev Models for D-finite functions (and more)

Chebyshev Models for Solutions of Linear Ordinary Differential Equations

4

Das Wesen der Mathematik liegt gerade in ihrer Freiheit.

-Georg Cantor Aus dem Paradies, das Cantor uns geschaffen, soll uns niemand vertreiben können.

-David Hilbert, Über das Unendliche Solutions of Linear Ordinary Differential Equations (LODEs) are ubiquitous in modeling and solving common problems. Examples include elementary and special functions evaluation, manipulation or plotting, numerical integration, or locally solving nonlinear problems using linearizations.

This chapter takes over the journal article "Validated and numerically efficient Chebyshev spectral methods for linear ordinary differential equations" [START_REF] Bréhard | Validated and numerically efficient chebyshev spectral methods for linear ordinary differential equations[END_REF] published in 2018 in ACM Transactions on Mathematical Software. Therefore, the pronoun we stands for Nicolas Brisebarre, Mioara Joldes and myself. Our contribution is an efficient algorithm for computing rigorous polynomial approximations for solutions of LODEs. More specifically, we deal with the following problem: Problem 4.1 Let r be a positive integer, α 0 , α 1 , . . . , α r-1 and γ continuous functions over

[-1, 1]. Consider the LODE f (r) (t) + α r-1 (t)f (r-1) (t) + • • • + α 1 (t)f ′ (t) + α 0 (t)f (t) = γ(t), t ∈ [-1, 1], (4.1) 
together with conditions uniquely characterizing the solution: a) For an initial value problem (IVP), consider:

Λ • f := (f (t 0 ), f ′ (t 0 ), . . . , f (r-1) (t 0 )) = (v 0 , v 1 , . . . , v r-1 ) (1a) 
for given t 0 ∈ [-1, 1] and (v 0 , v 1 , . . . , v r-1 ) ∈ | r .
b) For a generalized boundary value problem (BVP), conditions are given by r linearly independent linear functionals λ i : C r-1 → |:

Λ • f := (λ 0 (f ), . . . , λ r-1 (f )) = (ℓ 0 , . . . , ℓ r-1 ) (1b) 
for given (ℓ 0 , . . . , ℓ r-1 ) ∈ | r . Given an approximation degree N app ∈ ◆, find the coefficients of a polynomial f • (t) = Napp n=0 c n T n (t) written in Chebyshev basis (T n ), together with a tight and rigorous error bound η

such that f • -f * ∞ := sup t∈[-1,1] |f • (t) -f * (t)|
η, where f * is the exact solution of the IVP/BVP. Remark 4.2 On the practical side, the coefficients α i and the initial conditions v i appearing in Problem 4.1 are represented by RPAs α i and intervals v i , supposed to be rather thin. Since we only deal with the linear case here, working with large intervals v i for the initial conditions does not make the problem much harder: one just needs to compute a basis of solutions f i for canonical initial conditions, and return

v 0 f 0 ⊞ • • • ⊞ v r-1 f r-1 .

Related works.

Integrating ODEs is a central topic for rigorous numerics, and many tools were developed toward this end. Interval arithmetic [START_REF] Moore | Introduction to interval analysis[END_REF] gave rise to numerous interval methods for linear or nonlinear IVPs. Some formal proof implementations should also be acknowledged, such as certified ODE solving procedures [START_REF] Immler | Numerical analysis of ordinary differential equations in Isabelle/HOL[END_REF], leading to a formal proof [119] of the already rigorously proved Lorenz attractor [START_REF] Tucker | A rigorous ODE solver and Smale's 14th problem[END_REF], or the work [START_REF] Boldo | Round-off error analysis of explicit one-step numerical integration methods[END_REF] providing certified bounds for the rounding errors occurring during reference implementations of Runge-Kutta schemes.

However, the so-called wrapping effect discussed in Section 1.3 (see [START_REF] Neumaier | Taylor forms-use and limits[END_REF]) led to the development of higher-order methods, including the rigorous polynomial approximations (RPAs), presented in the previous chapter, and already advocated in the 1980s for such problems [START_REF] Kaucher | Self-validating numerics for function space problems: Computation with guarantees for differential and integral equations[END_REF][START_REF] Plum | Computer-assisted existence proofs for two-point boundary value problems[END_REF]. Taylor models, introduced some years later in [START_REF] Makino | Rigorous analysis of nonlinear motion in particle accelerators[END_REF], were used in several differential problems [START_REF] Berz | Suppression of the wrapping effect by Taylor model-based verified integrators: Long-term stabilization by shrink wrapping[END_REF][START_REF] Makino | Suppression of the wrapping effect by Taylor model-based verified integrators: Long-term stabilization by preconditioning[END_REF][START_REF] Makino | Suppression of the wrapping effect by Taylor modelbased verified integrators: the single step[END_REF][START_REF] Neher | On Taylor model based integration of ODEs[END_REF]. Due to limited convergence properties of Taylor expansions, focus was also put on alternative approximation tools, such as Chebyshev expansions [START_REF] Kaucher | Solving function space problems with guaranteed close bounds[END_REF][START_REF] Benoit | Rigorous uniform approximation of D-finite functions using Chebyshev expansions[END_REF][START_REF] Lessard | Rigorous numerics for nonlinear differential equations using Chebyshev series[END_REF][START_REF] Dzetkulič | Rigorous integration of non-linear ordinary differential equations in Chebyshev basis[END_REF].

More specifically, the framework developed in this chapter follows the spirit of [START_REF] Benoit | Rigorous uniform approximation of D-finite functions using Chebyshev expansions[END_REF], where the authors proposed a fully automated algorithm using a posteriori validation method, based on convergent Neumann series of linear operators in the Banach space of continuous functions (C 0 , • ∞ ). This allows for efficient RPA solutions of LODEs with polynomial coefficients, also called D-finite functions, presented in Section 2.1. While in the rigorous numerics field only ad hoc methods are usually described, the authors of [START_REF] Benoit | Rigorous uniform approximation of D-finite functions using Chebyshev expansions[END_REF] initiated a computer algebra-like approach by providing a fully documented algorithm with detailed complexity estimates. This chapter extends this complexity study to the framework of Newton-like validation methods (Section 3.3 for Problem 4.1.

Overview of our approach and main results. We develop an efficient algorithm for solving Problem 4.1 when the coefficients α j and the right hand side γ are represented by Chebyshev models, which can be done to an arbitrary accuracy under mild regularity assumptions, as detailed in Chapters 2 and 3.

We first give in Section 4.1 a classical integral reformulation of (4.1). This has the advantage of directly producing a compact operator, yielding appropriate fast convergence results of the solution of truncated linear systems to the exact one (see Theorem 4.11). Moreover, we prove an important property from an algorithmic point of view: this compact operator has an almost-banded matrix representation when Equation (4.1) has polynomial coefficients. This leads to the formulation of the following subproblem, where for the sake of simplicity, we focus on the case of an IVP. Note also that approximations over other real or complex segments (in Chebyshev basis adapted to the segment) are reduced to approximations on [-1, 1] by means of the affine change of variable t → (1 -t)a/2

+ (1 + t)b/2, mapping [-1, 1] to the segment [a, b]. Problem 4.3 Let a 0 , a 1 , . . . , a r-1 , g ∈ |[t]. Consider the LODE f (r) (t) + a r-1 (t)f (r-1) (t) + • • • + a 1 (t)f ′ (t) + a 0 (t)f (t) = g(t), t ∈ [-1, 1], (4.2) 
over [-1, 1] together with initial conditions at t 0 = -1:

f (t 0 ) = v 0 , f ′ (t 0 ) = v 1 , . . . , f (r-1) (t 0 ) = v r-1 .
Given N app ∈ ◆, find the coefficients of f • (t) = Napp n=0 c n T n (t) and a tight and rigorous error bound η such that f • -f * ∞ η. According to the general framework of a posteriori validation methods in Section 3.3, this problem is solved with the following steps:

Step 1. An approximate solution is necessary. This can be provided by the user, that is, computed by some numerical algorithm of choice (such as that of [START_REF] Olver | A fast and well-conditioned spectral method[END_REF] or [START_REF] Benoit | Rigorous uniform approximation of D-finite functions using Chebyshev expansions[END_REF]). For completeness of our implementation, we propose a linear (with respect to the approximation degree) time approximation algorithm, which combines the classical integral reformulation mentioned above and the algorithm for almost-banded linear systems from [START_REF] Olver | A fast and well-conditioned spectral method[END_REF], recalled in Section 4.2.

Then, we develop a new variant of this algorithm, which is efficient (in many practical cases) for obtaining the approximate inverse operator A involved in the definition of the Newton-like operator, used in the next step.

Step 2. A new algorithm based on the Banach fixed-point theorem is proposed in Section 4.3. It provides the rigorous approximation error bound required by Problem 4.3.

In particular, for a fixed given LODE, our validation algorithm runs in linear time, in terms of basic arithmetic operations, with respect to the degree N app of the approximation to be validated.

Then, we generalize this method in Section 4.4 in two directions:

• when the coefficients α j are not polynomials anymore, but functions in Ч 1 represented by Chebyshev models;

• and when the conditions are generalized boundary conditions (1b).

This allows us to construct Chebyshev models for a quite large class of functions, starting from

H 0 = |[t]
and defining H i+1 as the solutions of Problem 4.1 where all the α j (t) and γ(t) are in H i , or some closure of it under other elementary operations like inversion, square root, etc.

(see Section 3.4). In fact, if the α j (t) and γ(t) are rigorously approximated by Chebyshev models, then the generalized method gives us a Chebyshev model for the solution. Thus, a chain of recursive calls to the method can be used to approximate any function of H := i H i . Finally, we illustrate our approach with four different examples in Section 4.5. Concluding remarks and future directions are postponed at the end of Chapter 5. Note that all the algorithms introduced in this chapter are implemented in the ChebValid C library1 presented in the previous chapter, and the code of the examples in Section 4.5 is also available in this repository.

Integral operator and its truncations

Due to the differentiation formula for Chebyshev polynomials (2.8), the differentiation operator on the Chebyshev coefficients is represented by a dense upper triangular matrix. It implies that a direct translation of the differential equation (4.1) into a linear problem produces a dense infinite-dimensional system of linear equations. Moreover it is ill-conditioned in the general case [START_REF] Greengard | Spectral integration and two-point boundary value problems[END_REF]. Hence, numerical algorithms to solve (4.1) using this method are neither efficient nor accurate. From the validation point of view, since the differentiation is not an endomorphism of Ч 1 (some functions in Ч 1 are not even differentiable), designing a topological fixed-point method directly from Equation (4.1) seems rather tedious. One way to circumvent these limitations consists in transforming the differential equation (4.1) into an integral one. The indefinite integration operator has far better properties: first, it is an endomorphism of Ч 1 . Second, it has a sparse matrix representation in Ч 1 , (due to the integration formula (2.7)), and its conditioning is significantly better than that of the differential one [START_REF] Greengard | Spectral integration and two-point boundary value problems[END_REF]. Thus, one can expect more efficient and accurate numerical algorithms in this case. The following standard, but crucial proposition (see [START_REF] Lalescu | Introduction à la théorie des équations intégrales (Introduction to the Theory of Integral Equations[END_REF] or [260, Chap. 2] for a proof) establishes this transformation, which was already used in purely numerical works for LODEs (for example in [START_REF] Clenshaw | The numerical solution of linear differential equations in Chebyshev series[END_REF]) as well as for validation purposes [START_REF] Benoit | Rigorous uniform approximation of D-finite functions using Chebyshev expansions[END_REF]. Proposition 4.5 Let f be a function of class C r over [-1, 1]. Then f is a solution of the linear IVP problem (1a) if and only if ϕ = f (r) ∈ C 0 is solution of the Volterra integral equation:

ϕ + K • ϕ = ψ with (K • ϕ)(t) = t t 0 k(t, s)ϕ(s)ds, t ∈ [-1, 1], (4.3) 
where:

• the kernel k(t, s) is a bivariate continuous function given by:

k(t, s) = r-1 j=0 α j (t) (t -s) r-1-j (r -1 -j)! , (t, s) ∈ [-1, 1] 2 ,
• the right hand side ψ is given by:

ψ(t) = γ(t) - r-1 j=0 α j (t) r-1-j k=0 v j+k (t -t 0 ) k k! , t ∈ [-1, 1].
By a slight abuse of terminology, we shall call r the order of the integral operator K.

Remark 4.6 Proposition 4.5 can be applied to the polynomial case of Problem 4.3 by replacing α j and γ with polynomials a j and g. It produces an equivalent integral equation with a bivariate polynomial kernel k(t, s) and a polynomial right hand side ψ(t). This will be of first importance in Section 4.1.2 where we deal with the polynomial case.

Remark 4.7 Henceforth, as noted in Equation (4.3), the new unknown function is ϕ = f (r) . Although a similar integral formulation for the unknown f is possible, this choice allows for the validation in Section 4.3 of numerical solutions for both f and its derivatives f (i) , i = 1, . . . , r, which is often required in validated dynamics cf. Example 4.5.4.

Solving Equation (4.3) with numerical algorithms on computers relies most of the time [START_REF] Gohberg | Basic classes of linear operators[END_REF][START_REF] Gottlieb | Numerical Analysis of Spectral Methods: Theory and Applications[END_REF] on a reduction of this infinite-dimensional problem to a finite-dimensional one. In fact, usually, one approximately computes several coefficients of the Chebyshev expansion of the exact solution. This is often done based on approximations of the inverse operator. The question of which functional space the solution ϕ belongs to is of major importance both for the numerical approximation and the computation of the validated uniform error bound. In what follows we first recall the classical action of K on (C 0 ([-1, 1]), • ∞ ), with a focus on Picard iteration. Then, in Section 4.1.2, we prove analogous properties in the (Ч 1 , • Ч 1 ) space, based on operator iterations and truncations. This Banach space proves to be the natural framework to deal with Chebyshev coefficients without losing the link with the norm

• ∞ (since • ∞ • Ч 1 ). 4.1.1 ◮ Inverse of 1 + K in (C 0 ([-1, 1]), • ∞ )
It is classical that in this Banach space the operators K and 1 + K are bounded linear endomorphisms. For n ∈ ◆, the operator K n is a bounded linear operator with operator norm

K n ∞ (2C) n n! , where C := sup -1 s,t 1 |k(t, s)| < +∞. (4.4) 
Picard iteration [START_REF] Lalescu | Introduction à la théorie des équations intégrales (Introduction to the Theory of Integral Equations[END_REF][START_REF] Rall | Computational solution of nonlinear operator equations[END_REF] is a standard way to prove the invertibility of 1+K in (C 0 ([-1, 1]), • ∞ ) and give an explicit form for (1 + K) -1 , by its Neumann series:

(1 + K) -1 = +∞ n=0 (-1) n K n = 1 -K + K 2 + • • • + (-1) n K n + • • • .
This yields an explicit approximation process for the solution of (4.3):

ϕ 0 = ψ, ϕ n+1 = ψ -K • ϕ n = n k=0 (-1) k K k • ψ, n ∈ ◆.
Iterating the integral operator K can also be used for validation purposes, as presented for example in [START_REF] Benoit | Rigorous uniform approximation of D-finite functions using Chebyshev expansions[END_REF]. However, in our quasi-Newton validation context, the Banach space (C 0 , • ∞ ) seems difficult to work with when considering multiplication, integration and truncation of Chebyshev series as operations on the coefficients.

4.1.2 ◮ Inverse of 1 + K in (Ч 1 , • Ч 1 )
In this section, we provide a concrete description of the action of the integral operator K on the Chebyshev coefficients of a function.

Remark 4.8 Henceforth and until the end of Section 4.1, we exclusively consider the polynomial case given by (4.2). The results presented below could to some extent be generalized to the non-polynomial case (where all functions belong to Ч 1 ), but this would require a more complicated two-variable approximation theory without being essential to the validation procedure of the general Problem 1a, presented in Section 4.4.

Under this assumption, the kernel k(t, s) is polynomial and hence we can decompose it in the Chebyshev basis according to the variable s:

k(t, s) = r-1 j=0 b j (t)T j (s), (4.5) 
with b 0 , . . . , b r-1 polynomials written in the Chebyshev basis. Such an elementary procedure is described in Algorithm IntegralTransform. To implement it in a rigorous framework, one can use interval arithmetics or even rational arithmetics when the coefficients of the a j (t) are rationals.

If ϕ ∈ Ч 1 , then K • ϕ is in Ч 1 since K • ϕ Ч 1 = r-1 j=0 b j (t) t t 0 T j ϕds Ч 1 2B ϕ Ч 1 , with B = r-1 j=0 b j Ч 1 C,
where we used (2.10), (2.12) and C was defined in Equation (4.4). This shows that K, and hence 1 + K, are bounded linear endomorphisms of Ч 1 . However, we do not have for the moment any information about the invertibility of 1 + K in Ч 1 . So far, its injectivity in Ч 1 is established, because this operator was an isomorphism (hence injective) over the superspace

C 0 ([-1, 1])). Matrix representation of 1 + K in Ч 1
The canonical matrix representation of a linear operator M :

Ч 1 → Ч 1 is the infinite-dimensional matrix M = (M ij ) i,j∈◆ , where M ij = c i (M • T j ) is the ith Chebyshev coefficient of the image Algorithm 4.1 IntegralTransform({a j } r-1 j=0
) -Computation of the kernel k(t, s) Input: order r and polynomials a j (t) (j ∈ 0, r -1 ) written in the Chebyshev basis. Output: polynomials b j (t) (j ∈ 0, r -1 ) defining the kernel k(t, s) as in (4.5).

⊲ Expand (t -s) k = k ℓ=0 ξ kℓ (t)T ℓ (s) for k ∈ 0, r -1 . 1: ξ 00 (t) ← 1 2: for k = 1 to r -1 do 3:
for ℓ = 0 to k do ξ kℓ (t) = 0 end for 4:

for ℓ = 0 to k -1 do 

ξ kℓ (t) ← ξ kℓ (t) + tξ k-1,ℓ (t) 6: ξ k,ℓ+1 (t) ← ξ k,ℓ+1 (t) -ξ k-1,ℓ (t)/2 7: ξ k,|ℓ-1| (t) ← ξ k,|ℓ-1| (t) -ξ k-1,ℓ (t)/2 8:
end for 9: end for ⊲ Compute the b j (t). 10: for j = 0 to r -1 do 

for k = 0 to r -1 do 13: b j (t) ← b j (t) + a k (t)ξ r-1-k,j (t)/(r -1 -k)! 14:
end for 15: end for of T j under M. Lemma 2.41 implies that the Ч 1 operator norm of M is equal to the standard matrix 1-norm of M :

M Ч 1 = sup j∈◆ M • T j Ч 1 = sup j∈◆ i∈◆ |c i (M • T j )| = sup j∈◆ i∈◆ |M ij | =: M 1 .
For ease of calculation, we use two-sided Chebyshev expansions in this section, by defining T -n = T n for n 0. This makes it possible to remove the absolute values in the indices appearing in the formulas for multiplication (2.6) and integration (2.7).

First, we express the polynomials b j of degree d j in the symmetric two-sided Chebyshev basis:

b j = -d j k d j b j,k T k , with b j,k = b j,-k , 0 j < r.
For i, j ∈ ), we have

T j T i = (T i+j + T i-j )/2. Now, for t ∈ [-1, 1], we have t t 0 T j (s)T i (s)ds = γ iji (t) -γ iji (t 0 ), with γ ijk (t) = - 1 4(i -j -1) T k-j-1 (t) + 1 4(i -j + 1) T k-j+1 (t) - 1 4(i + j -1) T k+j-1 (t) + 1 4(i + j + 1)
T k+j+1 (t), (4.6)

where by convention the terms for which the denominator vanishes are 0.

In particular, for t 0 = -1 and using T k (-1) = (-1) k one obtains:

γ ijk (-1) = -(-1) k+j j + 1 2(i 2 -(j + 1) 2 ) + j -1 2(i 2 -(j -1) 2 ) . (4.7) Let j ∈ 0, r -1 , multiplying by b j , we get, for t ∈ [-1, 1], b j (t) t t 0 T j (s)T i (s)ds = -γ iji (t 0 ) -d j k d j b j,k T k (t) + -d j k d j b j,k γ ij(i+k) (t), (4.8) 
where the second sum follows from γ iji (t)T k (t) = (γ ij(i+k) (t) + γ ij(i-k) (t))/2 and the fact that b j,k = b j,-k . This expression shows that the matrix representation ( Bj,ki ) k,i∈◆ of the Ч 1 -endomorphism ϕ → b j (t) t t 0 T j (s)ϕ(s)ds is sparse and has a so-called almost-banded structure. More precisely, it is made of a horizontal band of non-zero coefficients Bj,ki , with 0 k d j , i ∈ ◆, which we call initial coefficients, together with a diagonal band of non-zero coefficients Bj,ki , with i ∈ ◆ and i -j -1 -d j k i + j + 1 + d j , which we call diagonal coefficients. A graphic view of this structure is shown in Figure 4.1a.

The following definition formally establishes the notion of almost-banded matrix, in the finite as well as in the infinite case. It is robust in the sense that if an infinite matrix representing an endomorphism of Ч 1 is (h, d) almost-banded, then so are all its finite-dimensional truncations (defined in Section 4.1.3). Definition 4.9 Let I = ◆ or 0, n -1 (for some n > 0) be a set of indices, and h, d two nonnegative integers.

1. For i ∈ I, v ∈ | I is said to be (h, d) almost-banded around index i if for all j ∈ I, v j = 0 whenever j > h and |i -j| > d.

2. The square matrix A = (a ij ) i,j∈I ∈ | I×I is said to be (h, d) almost-banded if for all j ∈ I, the jth column v (j) = (a ij ) i∈I ∈ | I of A is almost-banded around index j.

It turns out that the matrix representation of K has an almost-banded structure: to obtain K • T i , it suffices to sum all the contributions from Equation (4.8) for 0 j < r. Hence K • T i is (h, d) almost-banded around index i, which shows that the integral operator K has an (h, d) almost-banded matrix representation, where:

h = max 0 j<r d j , d = max 0 j<r j + 1 + d j .
The width of the horizontal band is h + 1 and that of the diagonal band is 2d + 1. With a slight terminology abuse, such operators are directly called almost-banded operators in what follows.

Iterations of K in Ч 1 and almost-banded approximations of (1 + K) -1

We recalled in Section 4.1.1 the convergence of the Neumann series

1 -K + K 2 -. . . to (1 + K) -1 in (C 0 , • ∞ ).
The following lemma establishes an analogous result in Ч 1 :

Lemma 4.10 The operator 1+K is invertible in Ч 1 and its inverse is given by the Neumann series i 0 (-K) i which converges in o(ε n ) for all ε > 0. More precisely: • n i=0 (-1) i K i is a sequence of (dn, dn) almost-banded operators;

• i>n (-1) i K i Ч 1 i>n (6di + 1) (2C) i i!
(C defined in Equation (4.4)).

Proof.

In Ч 1 , since K is (h, d) almost-banded, with h < d, a straightforward induction shows that K n is (h n , d n ) almost-banded, with d n = nd and h n < d n .
Fix an index j ∈ ◆. Then the symmetric Chebyshev series of K n • T j has at most (2d n + 1) + (2h n + 1) + (2d n + 1) 6nd + 1 non-zero coefficients. Moreover, each of these (two-sided) coefficients is bounded by K n • T j ∞ (2C) n /n!. Hence, we get:

K n • T j Ч 1 (6dn + 1) (2C) n n! ,
from which we conclude using Lemma 2.41.

This shows that obtaining an approximate solution of (4.3) via iterations of K, is possible both in (C 0 ([-1, 1]), • ∞ ) and in (Ч 1 , • Ч 1 ). However, the action of K and its iterates involves handling an infinite dimensional space. In the sequel, we prove that suitable truncations of K allow for obtaining approximate solutions in finite dimensional subspaces of Ч 1 and these solutions converge in o(ε n ) for all ε > 0 to the exact solution of (4.3).

◮ Approximate solutions via truncations K [n] of K

The nth truncation (also called the nth section in [START_REF] Gohberg | Basic classes of linear operators[END_REF]) of the integral operator K is defined as follows:

K [n] := п n • K • п n . (4.9)
The truncation method (also called projection method in [START_REF] Gohberg | Basic classes of linear operators[END_REF]) to solve Equation (4.3) consists in replacing K by K [n] and solving the finite-dimensional linear problem:

ϕ + K [n] • ϕ = ψ.
(4.10)

Note that the order n + 1 square matrix M representing K [n] is the initial n + 1 square submatrix of the infinite dimensional matrix representation of K. Therefore, M has an (h, d) almost-banded structure (see Figure 4.1b). This implies that solving Equation (4.10) reduces to solving a linear system of equations with a specific almost-banded structure. We revisit in Section 4.2 efficient algorithms for solving such systems.

Moreover, we prove the following important fast convergence result: ) -1 • ψ be the solution of the truncated system (4.10). We have:

ϕ * -ϕ • n Ч 1 = o(ε n ) for all ε > 0.
In [START_REF] Benoit | Rigorous uniform approximation of D-finite functions using Chebyshev expansions[END_REF]Thm. 4.4] and [START_REF] Olver | A fast and well-conditioned spectral method[END_REF]Thm. 4.5], similar convergence rates were proven in the different context of the uniform norm and for rather different approximations schemes: either the considered operator is different (the differential operator is handled in [START_REF] Olver | A fast and well-conditioned spectral method[END_REF]) or the employed tools are more involved (main asymptotic existence theorem for linear recurrences is needed in [START_REF] Benoit | Rigorous uniform approximation of D-finite functions using Chebyshev expansions[END_REF]). The proof of Theorem 4.11 requires important theoretical properties concerning the truncated operator K [n] in relation with K in the space Ч 1 , which are given in the next two additional lemmas. They are also of first importance for the validation method developed in Section 4.3.

Firstly, let us prove that K [n] is a good approximation of K for the Ч 1 norm.

Lemma 4.12 Let K be the integral operator in (4.3), of order r and polynomial coefficients b j . Let (h, d) be the parameters of its almost-banded structure and n r + d be the truncation order, then:

(4.12 i) K [n] • T i = K • T i for all i n -d.
(4.12 ii) K [n] → K in Ч 1 as n → +∞. More precisely:

K -K [n] Ч 1 B max 1 n + 1 -r -d , 2 n -r with B = r-1 j=0 b j Ч 1 ,
which implies a convergence speed of O(1/n) as n → +∞.

Proof. For (4.12 i), if i n -d, then K • T i is of degree at most max(h, n -d + d) = n because n d h. Hence:

K [n] • T i := п n • K • п n • T i = п n • K • T i = K • T i .
For (4.12 ii), note first that from Lemmas 2.41 and (4.12 i), one has:

K -K [n] Ч 1 = sup i 0 K • T i -K [n] • T i Ч 1 = sup i>n-d K • T i -K [n] • T i Ч 1 .
Now, for ϕ ∈ Ч 1 one has the following decomposition:

(K -K [n] )ϕ = K • ϕ -п n • K • п n • ϕ = K • (1 -п n ) • ϕ + (1 -п n ) • K • п n • ϕ.
Hence, one can evaluate K -K [n] on all remaining T i 's for i > n -d:

• If n -d < i n, then (K -K [n] ) • T i = (1 -п n ) • K • T i .
Note that, since n h, only the diagonal coefficients of K • T i may bring a nonzero contribution. Moreover, we have i ± j ± 1 n + 1 -d -r. From that we deduce an upper bound of the approximation error:

(1 -п n ) • K • T i Ч 1 B n + 1 -r -d . • If i > n, then (K -K [n] ) • T i = K • T i .
We have that i ± j ± 1 n -r for 0 j < r.

Hence:

K • T i Ч 1 2B n -r
We conclude by taking the maximum of these two bounds.

The convergence of K [n] to K also implies that 1 + K [n] is invertible for n large enough: Lemma 4.13 For n large enough, we have:

(4.13 i) the endomorphism 1 + K [n] is invertible. (4.13 ii) (1 + K [n]
) -1 converges to (1 + K) -1 , with:

(1 + K [n] ) -1 -(1 + K) -1 Ч 1 (1 + K) -1 2 Ч 1 1 -(1 + K) -1 • (K -K [n] ) Ч 1 K -K [n] Ч 1 = O 1 n as n → +∞ (4.13 iii) (1 + K [n] ) -1 = i 0 (-K [n] ) i .
Proof. For (4.13 i) and (4.13 ii), using the bound in O(1/n) for K -K [n] Ч 1 obtained in Lemma 4.12, the invertibility of 1 + K [n] as well as the announced explicit upper bound for 

(1 + K [n] ) -1 -(1 + K) -1 Ч 1 directly
p > 0 such that K p Ч 1 < 1. Since K [n] → K as n → +∞, there is an n such that (K [n] ) p Ч 1 < 1.
Therefore, the Neumann series of (K [n] ) p is absolutely convergent, and the following factorization establishes the absolute convergence of the Neumann series of K [n] :

i 0 (-K [n] ) i =   i<p (-K [n] ) i   • i 0 (-K [n] ) pi
Note that from the previous lemma, one readily obtains that ϕ

• n := (1 + K [n] ) -1 • ψ converges to the exact solution ϕ * := (1 + K) -1 • ψ in O(1/n).
However, we can now prove the far better convergence result of the main Theorem 4.11.

Proof of Theorem 4.11. Take n > d large enough so that 1+K [n] is invertible by Lemma 4.13. Let ϕ n = ( i ⌊n/2d⌋ (-1) i K i ) • ψ denote the approximate solution obtained by computing the Neumann series of K at order ⌊n/2d⌋. Since this series is an (d⌊n/2d⌋, d⌊n/2d⌋) almost-banded operator, we get that ϕ n is a polynomial of degree at most deg(ψ) + d⌊n/2d⌋ deg(ψ) + n/2. Hence, for n large enough, the degree of ϕ n does not exceed n -d, so that we have the key equality K [n] • ϕ n = K • ϕ n , according to Lemma (4.12 i). From that we deduce:

ϕ * -ϕ • n = 1 -1 + K [n] -1 (1 + K) • (ϕ * -ϕ n ) .
From Lemma (4.13 ii) and Lemma 4.10, we finally get:

ϕ * -ϕ • n Ч 1 = O (2C) ⌊n/2d⌋ ⌊n/2d⌋! , which is an o(ε n ) for all ε > 0.
For completeness, we note the following alternative proof of Lemma 4.10. The convergence of the finite-dimensional truncations K [n] to K in Ч 1 implies that K is a compact endomorphism of the Banach space Ч 1 . The Fredholm alternative [START_REF] Brezis | Functional analysis, Sobolev spaces and partial differential equations[END_REF] says in that case that 1 + K : Ч 1 → Ч 1 is injective if and only if it is surjective. But, as mentioned at the beginning of Section 4.1.2, we already have the injectivity of this operator. Hence, we conclude that 1 + K is bijective, and moreover that it is a bicontinuous isomorphism of Ч 1 (using the Banach continuous inverse theorem).

We discuss in the next section algorithms concerning almost-banded matrices, since this structure is essential both for efficient algorithmic computation of ϕ • and its a posteriori validation step.

Algorithms involving almost-banded matrices

Let A and B be two order n square matrices, respectively (h A , d A ) and (h B , d B ) almost-banded. In Table 4.1 we recall several elementary operations which are straightforward, the result is an almost-banded matrix, and their complexity is in O(n) provided that the almost-banded parameters are supposed constant with respect to n.

Note that the product AB is computable in O(n(h

A + d A )(h B + d B ))
operations by applying the evaluation on a sparse vector (line 5 in the table) on all the columns of B. In the dense case, when h A + d A ≈ n and h B + d B ≈ n, this corresponds to the naive O(n 3 ) algorithm, hence a fast multiplication algorithm may become more appropriate.

In ChebValid, we provide a type mpfi_bandvec_t for almost-banded vectors, another type mpfi_bandmatrix_t for almost-banded matrices, and operations on the latter for addition, negation, subtraction, evaluation on an almost-banded vector, multiplication and 1-norm. Note that corresponding operations are also available for double and mpfr_t coefficient types. We now turn to efficient algorithms for solving almost-banded linear systems as well as matrix inversion. In Section 4.2.1, we recall Olver and Townsend's algorithm for solving order n almost-banded linear systems in linear complexity with respect to n. This directly leads to a Operation Result's a.-b. structure Complexity 

λA, with λ ∈ | (h A , d A ) O(n(h A + d A )) A + B or A -B (max(h A , h B ), max(d A , d B )) O(n(max(h A , h B ) + max(d A , d B ))) Av dense O(n(h A + d A )) dense v ∈ | n Av (max(h v + d A , h A ), d v + d A ) O((h A + d A )(h v + d v )) (h v , d v ) a.-b.v ∈ | n AB (max(h B + d A , h A ), d B + d A ) O(n(h A + d A )(h B + d B )) A 1 - O(n(h A + d A ))

◮ A reminder on Olver and Townsend's algorithm for almost-banded linear systems

Let M denote an (h, d) almost-banded order n square matrix with h d, and y ∈ | n . The goal is to solve an almost-banded linear system M x = y for unknown x ∈ | n . The procedure is split into two parts. First, a QR decomposition QM = R is computed, with Q orthogonal and R upper triangular. Then, the equivalent system Rx = Qy is solved by back-substitution. The key challenge is to maintain a linear complexity with respect to n in both steps.

First step: QR decomposition

This is computed in Algorithm OlverTownsendQR using Givens rotations' method which eliminates line after line the coefficients of M under the diagonal to finally obtain R, as shown in Figure 4.2.

More precisely, at step i, for each j ∈ i+1, min(i+d, n-1) , we apply a well-chosen rotation c ij -s ij s ij c ij on lines i and j in order to get R ji = 0. Note that at the end of each step i, R ii = 0 if and only if the matrix M is invertible. The direct application of this process would cause the progressive filling-in of the rows, which would give a dense upper triangular matrix R. In fact, this phenomenon can be controlled by noticing that for each i < n -2d -1, the "end of the row" i of R, (R i,i+2d+1 , . . . , R i,n-1 ), is a linear combination of the corresponding dense part of M : (M ℓ,i+2d+1 , . . . , M ℓ,n-1 ) for ℓ ∈ 0, h . Hence, it suffices to manipulate instead the coefficients λ iℓ of the linear combination: Based on this observation, Algorithm OlverTownsendQR(M ) returns the QR decomposition QM = R under the following representation:

M = i step(i) = R
• Q is completely determined by c ij , s ij : Q = n-1 i=0 min(i+d,n-1) j=i+1 Q (ij) ,
where the Q (ij) are rotation matrices defined by:

(Q (ij) ) kℓ =            1 if k = ℓ and k = i, j, c ij if k = ℓ = i or k = ℓ = j, s ij if k = j and ℓ = i, -s ij if k = i and ℓ = j, 0 otherwise. 
(4.12)

• R is upper triangular and represented by its 2d + 1 upper diagonals (entries R ij for i ∈ 0, n -1 and j ∈ i, min(i + 2d, n -1) are given explicitly) together with the coefficients λ iℓ (i ∈ 0, n -1 and ℓ ∈ 0, h ) defining the rest of R as in (4.11).

Formally, one has: Proposition 4.14 Algorithm OlverTownsendQR applied on an (h, d) almost-banded matrix of order n with h d is correct and runs in O(nd 2 ) operations.

Proof. Given in [START_REF] Olver | A fast and well-conditioned spectral method[END_REF].

In ChebValid, Algorithm OlverTownsendQR is only implemented on floating-point matrices, not interval ones, due to the remarks about interval matrix inversion in Section 1.3. We provide a type mpfr_bandmatrix_QRdecomp_t for the decomposition (Q, R) of an almost-banded matrix. It is computed by the function mpfr_bandmatrix_get_QRdecomp, which implements Algorithm OlverTownsendQR.

Algorithm 4.2 OlverTownsendQR(M ) -Step 1 of Olver and Townsend's algorithm

Input: an order n, (h, d) almost-banded matrix M with h d. Output: a QR factorization QM = R: Q defined by c ij , s ij as in (4.12); R defined by R ij (i ∈ 0, n -1 , j ∈ i, min(i + 2d, n -1) ) and λ iℓ as in (4.11).

1: R ← M 2: for i = 0 to n -1 and j = 0 to h do λ ij ← 0 3: for i = 0 to h do λ ii ← 1 4: for i = 0 to n -1 do 5:

for j = i + 1 to min(i + d, n -1) do 6:

if R ji = 0 then 7:

c ij ← 1 and s ij ← 0 8: else 9: r ← R 2 ii + R 2 ij 10: c ij ← R ii /r and s ij ← -R ji /r 11: for k = i to min(i + 2d, n -1) do R ik R jk ← c ij -s ij s ij c ij R ik R jk 12:
for ℓ = 0 to h do

λ iℓ λ jℓ ← c ij -s ij s ij c ij λ iℓ λ jℓ 13:
end if

14:
end for 15: end for

Second step: back-substitution

Once step 1 is performed and returns QM = R, we first apply the rotations Q (ij) on the right hand side y ∈ | n to obtain Qy in O(nd) operations. Now we have to solve Rx = Qy := y Q .

If R is regarded as a dense upper triangular matrix, the classical back-substitution algorithm requires O(n 2 ) operations. However, based on the sparse representation of R, the backsubstitution in Algorithm OlverTownsendBackSubs is more efficient. Its main idea to compute the solution x i (for i going backwards from n -1 to 0) is to use Equation (4.11) for expressing R ij as soon as i < n -2d -1, j > i:

x i =   y Qi - n-1 j=i+1 R ij x j   /R ii =   y Qi - i+2d j=i+1 R ij x j - h ℓ=0 λ iℓ z iℓ   /R ii ,
where

z iℓ = (M ℓ,i+2d+1 , . . . , M ℓ,n-1 )(x i+2d+1 , . . . , x n-1 ) T = n-1 j=i+2d+1 M ℓj x j .
Then, once z iℓ is computed, z i-1,ℓ is updated in constant time:

z i-1,ℓ = M ℓ,i+2d x i+2d + z iℓ .
This leads to the following proposition: Proof. Given in [START_REF] Olver | A fast and well-conditioned spectral method[END_REF].

In ChebValid, Algorithm OlverTownsendBackSubs is implemented by the function for j = i + 1 to min(i + d, n -1) do 3:

y i y j ← c ij -s ij s ij c ij y i y j 4:
end for 5: end for ⊲ Back-substitution 6: for ℓ = 0 to h do z ℓ ← 0 7: for i = n -1 down to 0 do ⊲⊲ Update z ℓ 8: 

if i + 2d + 1 < n then for ℓ = 0 to h do z ℓ ← z ℓ + M ℓ,i+2d+1 x i+2d+1 ⊲⊲ Compute x i 9: x i ← y i - min(i+2d,n-1) j=i+1 R ij x j - h ℓ=0 λ iℓ z ℓ /
= R. Then, each column v (i) of index i ∈ 0, n -1 of M -1 is computed by solving M v (i) = e (i)
, where e (i) denotes the ith vector of the canonical basis of | n . This is achieved by using n times step 2, resulting in a total of O(n 2 d) operations.

Unfortunately, this algorithm has quadratic running time and returns a dense inverse matrix representation. In some cases however, such as the validation process developed in Section 4.3, a sparse approximation of M -1 is sufficient. As proved in Lemma 4.13 (iii), the inverse of M = 1 + K [n] can be approximated with almost-banded matrices. This leads to adapting the full inversion procedure described above to compute only coefficients on diagonal and horizontal bands.

Let A ≃ M -1 be the required approximate inverse with an almost-banded structure given by the parameters (h ′ , d ′ ) (we do not require h ′ d ′ ). Firstly, one computes the QR decomposition QM = R in O(nd 2 ) operations using OlverTownsendQR(M ). Then, Step 2 of Olver and Townsend's algorithm is modified, resulting into Algorithm SparseBackSubs. For each i ∈ 0, n -1 , the ith column v (i) of A is computed as an approximate solution of Rx = Qe (i) , in the form of an (h ′ , d ′ ) almost-banded vector around index i:

1. Qe (j) ∈ | n is computed only partially, between entries i -d and i + d ′ . Note that in general Qe (j) has zero entries between indices 0 and i -d -1, and is dense from i -d to n -1.

The back-substitution only computes entries of the solution from indices

i + d ′ to i -d ′ ,
and from h ′ to 0. Since the other entries are implicitly set to 0, these computed coefficients are only approximations of the entries at the same position in the exact solution. But considering that the neglected entries were small enough, this approximation is expected to be convenient.

We provide a complexity analysis of Algorithm SparseBackSubs, but nothing is stated concerning the accuracy of the obtained approximation. This procedure should really be seen as a heuristic in general.

Proposition 4.16 Algorithm SparseBackSubs involves O((h + d)(h ′ + d ′ )) operations.
Proof. The first step (computing the diagonal coefficients of Qy) clearly requires O(dd ′ ) arithmetic operations. Now consider the second step (the partial back-substitution) and enter the main loop at line 11, where index j lives in a set of size O(h ′ + d ′ ). First, we need to update the values z ℓ . At first sight, each z ℓ seems to involve a sum of O(h ′ + d ′ ) terms. But in fact, the total amortized cost related to line 13 is O((h ′ + d ′ )h), since at the end of the algorithm, each z ℓ is equal to k∈ 2d+1,n-1 ∩(D∪H) M ℓk x k , which is a sum of O(h ′ + d ′ ) terms. As a matter of fact, j z j + 2d + 1 most of the time, except when h ′ < i -d ′ and the current index j falls from i -d ′ to h ′ . After that, the computation of x j involves two sums with a total of O(h + d) terms. We therefore obtain the claimed complexity.

Corollary 4.17 Algorithm AlmostBandedApproxInverse(M, (Q, R), h ′ , d ′ ) produces an (h ′ , d ′ ) almost-banded approximation of the inverse of an order n, (h, d) almost-banded matrix

M in O(n(h + d)(h ′ + d ′ )) operations.
In ChebValid, Algorithm AlmostBandedApproxInverse is implemented by the function mpfr_bandmatrix_QRdecomp_approx_band_inverse.

We now turn to the a posteriori validation step.

A quasi-Newton validation method

Given an approximate solution ϕ • of the integral equation (4.3), we propose an a posteriori validation method which computes a rigorous upper bound for the approximation error ϕ * -

Algorithm 4.4 SparseBackSubs(M, (Q, R), h ′ , d ′ , i) -A.-b.

approximate column inversion

Input: an order n, (h, d) almost-banded matrix M with the QR decomposition QM = R produced by OlverTownsendQR(M ) and parameters h

′ , d ′ , i with h ′ ∈ h, n -1 , d ′ ∈ d, n -1 and i ∈ 0, n -1 . Output: (h ′ , d ′ ) almost-banded vector x around index i such that M x ≈ e (i) . 1: D ← i -d ′ , i + d ′ ∩ 0, n -1 and H ← 0, h ′ -D ⊲ Compute diagonal coefficients of Qy 2: for j in D ∪ i + d ′ + 1, i + d ′ + d -{i} do y j ← 0 3: y i ← 1 4: for j in D going upwards do 5:
for k in j + 1, j + d ∩ 0, n -1 going upwards do 6:

y j y k ← c jk -s jk s jk c jk y j y k 7:
end for 8: end for ⊲ Partial back-substitution 9: for ℓ ∈ 0, h do z ℓ ← 0 10: j z ← n -1 11: for j in D ∪ H going downwards do ⊲⊲ Update z ℓ 12:

if j + 2d < j z then 13:

for ℓ ∈ 0, h do z ℓ ← z ℓ + k∈ j+2d+1,jz ∩(D∪H) M ℓk x k 14:

j z ← j + 2d 15:
end if ⊲⊲ Compute x j 16:

if j ∈ D then c ← y j else c ← 0 17: 

x j ← c - k∈ j+1,j+2d ∩(D∪H) R jk x k - h ℓ=0 λ jℓ z ℓ /R
′ , d ′ with h ′ ∈ h, n -1 and d ′ ∈ d, n -1 . Output: an (h ′ , d ′ ) almost-banded matrix A with A ≈ M -1 . for i = 0 to n -1 do W ← SparseBackSubs(M, (Q, R), h ′ , d ′ , i), approximating M -1 e (i)
Set ith column of A to W end for ϕ • Ч 1 , where ϕ * denotes the exact solution of (4.3). This is based on the general quasi-Newton framework explained in Section 3.3. In this case, F•ϕ := ϕ+K•ϕ-ψ is affine, with linear part 1+K. The quasi-Newton method requires an approximate inverse operator A ≈ (1+K) -1 such that 1 -A • (1 + K) Ч 1 < 1. Of course, computing an exact inverse would solve the problem but is out of reach. Instead of that, from Lemma 4.13, we know that for a truncation order N val chosen large enough, (1+K [N val ] ) -1 exists and is a good approximation of (1+K) -1 . Since (1 + K [N val ] ) -1 is defined by an (N val + 1)-order square matrix (its restriction over п N val • Ч 1 ) extended over the whole space Ч 1 by the identity, we define the operator A over Ч 1 as an (N val + 1)-order square matrix A approximating (1 + K [N val ] ) -1 over п N val • Ч 1 , extended by the identity over the whole space:

A • ϕ = A • п N val • ϕ + (1 -п N val ) • ϕ.
The first technical issue is to numerically compute (or represent) both very accurately and efficiently such a matrix A. Specifically, we aim both for a linear complexity computation with respect to N val and for minimizing 1 N val +1 -A • M 1 , where M is an order N val + 1 matrix representation for 1 + K [N val ] . Among several possibilities to achieve these two requirements, we found none optimal for both. Therefore, we propose two solutions: S1. As seen in Section 4.2, Olver and Tonwsend's Algorithm OlverTownsendBackSubs can be used to numerically compute M -1 . The main advantage is that the approximation error 1 N val +1 -A • M 1 is really close to 0 using standard precision in the underlying computations. Drawback is the quadratic complexity in O(N val 2 d).

S2.

Our new heuristic approach is based on Lemma (4.13 iii) which states that (1+K 

(h ′ , d ′ ) almost-banded approximation A of (1 + K [N val ] ) -1 in O(N val (h ′ + d ′ )(h + d))
arithmetic operations (Corollary 4.17). If the parameters (h ′ , d ′ ) of the almost-banded structure of A can be chosen small enough compared to N val , this alternative method should be substituted to the standard one. Deciding which of these two methods should be used in practice is non-trivial: while the second one is more appealing due to the resulting sparsity of A, unfortunately nothing is said about the order of magnitude of N val such that the conclusion of Lemma (4.13 iii) is valid, nor about the precise speed of convergence of the Neumann series of M , which would give a good intuition for the values of h ′ and d ′ to choose. In what follows, the complexity analysis is thus provided for both cases: a sparse vs. a dense structure of the matrix A. This will allow us to discuss in detail the choice of these parameters in Section 4.3.2.

Next, one has to provide a rigorous Lipschitz constant µ (required by Theorem 3.9) for the Newton-like operator. We have:

1 -A • (1 + K) Ч 1 1 -A • (1 + K [N val ] ) Ч 1 + A • (K -K [N val ] ) Ч 1 , (4.13) 
which can be interpreted as [START_REF] Hungria | Rigorous numerics for analytic solutions of differential equations: the radii polynomial approach[END_REF]:

• 1 -A • (1 + K [N val ]
) Ч 1 is the approximation error because A was (maybe) not the exact representation matrix of

(1 + K [N val ] ) -1 . • A • (K -K [N val ] ) Ч 1 is the truncation error because K [N val ] is not exactly K.
Section 4.3.1 focuses on the truncation error, which is tightly bounded by some rather technical inequalities, summarized in Algorithm IntopTruncError. The more straightforward computation of the approximation error is directly included in Algorithm IntopContract.

Once we have obtained a quasi-Newton operator T with a certified Lipschitz constant µ < 1, the validation of a candidate solution ϕ • is summarized in Section 4.3.2, together with its complexity analysis.

◮ Bounding the truncation error

The truncation error is computed by providing an upper bound for sup i 0 B(i) where B(i

) := A • (K -K [N val ] ) • T i Ч 1 .
The indices i are divided into four groups:

-For i ∈ 0, N val -d , K [N val ] • T i = K • T i (Lemma 4.12) and hence B(i) = 0. -For i ∈ N val -d + 1, N val , A • (K -K [N val ] ) • T i = (1 -п N val ) • K • T i are explicitly computed. -For i ∈ N val + 1, N val + d , B(i) = A • K • T i Ч 1 and
some of the diagonal coefficients of K • T i are of index less than N val and are therefore non-trivially affected by A. We choose to explicitly compute all these

A • K • T i . -For i > N val + d, (K -K [N val ] ) • T i = K • T i
and the diagonal coefficients of K • T i are all located at indices strictly greater than N val . We have B(i) = B I (i) + B D (i) with:

• B D (i) := (1 -п N val ) • K • T i Ч 1 due to diagonal coefficients, which decrease in O(1/i) from Equation (4.6). • B I (i) := A • п N val • K • T i Ч 1 due to initial coefficients multiplied by A, which decrease in O(1/i 2 ) from Equation (4.7).
The main difficulty is to bound B(i) for i > N val + d, since we deal with an infinite number of indices i. For that, a natural idea is to use the explicit expression (4.8), replace i by the interval [N val + d + 1, +∞) and evaluate A • K • T i in interval arithmetics. Since these evaluations often lead to overestimations, one needs to choose a large value for N val , such that the convergence in O(1/N val ) is sufficiently small to compensate. Usually, the chosen N val is far larger than the one needed for T to be contracting.

A better solution consists in computing A • K • T i 0 where i 0 > N val + d and bounding the difference between B(i) and B(i 0 ) for all the remaining indices i i 0 . Lemma 4.18 Let i i 0 > N val + d. Then (4.12 i) For the diagonal coefficients, we have

B D (i) B D (i 0 ) + r r-1 j=0 b j Ч 1 (i 0 -r) 2 .
(4.12 ii) For the initial coefficients, we have

B I (i) B I (i 0 ) + r 3 r-1 j=0 A • b j Ч 1 (i 2 0 -r 2 ) 2 .
Proof. For (4.12 i), from (4.8) we know that the diagonal coefficients of K•T i , and respectively K • T i 0 , are those of the polynomials

0 j<r -d j k d j b jk γ ij(i+k) and 0 j<r -d j k d j b jk γ i 0 j(i 0 +k) ,
respectively. All these coefficients are of positive index, so that we can shift them by i -i 0 positions to the right by replacing γ i 0 j(i 0 +k) with γ i 0 j(i+k) without changing the norm (modifying the third index of γ i 0 j(i 0 +k) has no influence on the four coefficients of (4.6)). This ruse allows us to compare polynomials of equal degree i.e., γ ij(i+k) and γ i 0 j(i+k) :

|iB D (i) -i 0 B D (i 0 )| = i r-1 j=0 d j k=-d j b jk γ ij(i+k) Ч 1 -i 0 r-1 j=0 d j k=-d j b jk γ i 0 j(i+k) Ч 1 r-1 j=0 d j k=-d j |b jk | iγ ij(i+k) -i 0 γ i 0 j(i+k) Ч 1 .
Using the fact that for all x such that |x| < i 0 i,

i i + x - i 0 i 0 + x i 0 (i 0 -|x|) 2 |x|,
we get that for any ℓ, iγ ijℓ -i 0 γ i 0 jℓ Ч 1 ri 0 /(i 0 -r) 2 . We conclude by noticing that

B D (i) i i 0 B D (i) B D (i 0 ) + 1 i 0 |iB D (i) -i 0 B D (i 0 )| B D (i 0 ) + r r-1 j=0 b j Ч 1 (i 0 -r) 2 .
For (4.12 ii), we have that

|i 2 B I (i) -i 2 0 B I (i 0 )| = i 2 A • r-1 j=0 γ iji (-1)b j Ч 1 -i 2 0 A • r-1 j=0 γ i 0 ji (-1)b j Ч 1 r-1 j=0 A • b j Ч 1 |i 2 γ iji (-1) -i 2 0 γ i 0 ji (-1)|.
We conclude using (4.7) and a similar inequality:

i 2 i 2 -x 2 - i 2 0 i 2 0 -x 2 i 2 0 (i 2 0 -x 2 ) 2 x 2 .
In practice, this method yields more accurate bounds when the parameters of the problem become somehow large. This is due to the fact that the part potentially affected by overestimations is divided by greater power of i 0 (i 2 0 and i 4 0 ) than in the previously mentioned method (i 0 and i 2 0 ). Note that the bounds announced by Lemma 4.18 can be sharpened if we don't replace |j ± 1| with r. The obtained formulas are essentially not more difficult to implement, but we omit these details for the sake of clarity.

Algorithm 4.6 IntopTruncError(K, N val , A) -Bounding the truncation error

Input: a polynomial integral operator K (given by its order r and the b j (t)), a truncation order N val and an approximate inverse A of 1 + K [N val ] . Output: an upper bound δ trunc for the truncation error A

• (K -K [N val ] ) Ч 1 .
⊲ All operations are to be performed in interval arithmetics

⊲ Compute δ (1) trunc sup i∈ N val -d+1,N val B(i) 1: δ (1) trunc ← 0 2: for i = N val -d + 1 to N val do 3: P ← (1 -п N val ) • K • T i 4: if P Ч 1 > δ (1) trunc then δ (1) trunc ← P Ч 1 5: end for ⊲ Compute δ (2) trunc sup i∈ N val +1,N val +d B(i) 6: δ (2) trunc ← 0 7: for i = N val + 1 to N val + d do 8: P ← A • K • T i 9: if P Ч 1 > δ (2) trunc then δ (2) trunc ← P Ч 1 10: end for ⊲ Compute δ (3) trunc sup i N val +d+1 B D (i) 11: i 0 ← N val + d + 1 and B ← r-1 j=0 b j Ч 1 12: P ← (1 -п N val ) • K • T i 0 and δ (3) trunc ← P Ч 1 13: δ (3) trunc ← δ (3) trunc + rB (i 0 -r) 2 ⊲ Compute δ (4) trunc sup i N val +d+1 B I (i) 14: B ← r-1 j=0 A • b j Ч 1 15: P ← A • п N val • K • T i 0 and δ (4) trunc ← P Ч 1 16: δ (4) trunc ← δ (4) trunc + r 3 B (i 2 0 -r 2 ) 2 17: δ trunc ← max(δ (1) trunc , δ (2) 
trunc , δ

trunc + δ 

((h ′ + d ′ )(h + d)d) operations when A is (h ′ , d ′ ) almost-banded, or O(N val (h + d)d) operations when A is dense.
Proof. The correctness is straightforward, using Lemma 4.18. To reach the claimed complexity, the polynomials K • T i involved in the algorithm must be sparsely computed as an (h, d) almost-banded vector around index i, using O(rh) arithmetic operations. Clearly, step 1 for

δ (1)
trunc (lines 1-5) costs O(drh) operations. For each i in step 2 for δ 

A • b j Ч 1 costs O((h ′ + d ′ )rh) or O(N val rh) operations, and computing A • п N val • K • T i 0 costs O(rh + (h ′ + d ′ )(h + d)) or O(rh + N val (h + d))
operations. We see that in both cases (A (h ′ , d ′ ) almost-banded or dense), the most expensive step is the second one, which gives the respective expected total complexities.

◮ Complete validation method and complexity

We now have all the ingredients for the complete validation process: Algorithm IntopContract obtains a contracting Newton-like operator T and Algorithm IntopVal validates a candidate solution ϕ • .

For Algorithm IntopContract, the parameters h, d and the b j Ч 1 directly come from LODE (4.2), while the other input parameters N val , h ′ and d ′ must either be known by the user or obtained from a decision procedure. For that, first, Proposition 4.20 analyses the complexity of IntopContract and Algorithm IntopVal when N val , h ′ and d ′ are given. Then, a more detailed study of the magnitude of these parameters and an intuition on how to choose them is proposed.

In ChebValid, the functions and auxiliary routines implementing Algorithms IntopContract and IntopVal are located in mpfi_chebpoly_intop_newton.h.

Complexity in function of the chosen parameters

Proposition 4.20 Let K be the integral operator associated to the polynomial LODE (4.2), N val be the truncation order chosen for the quasi-Newton method, M = 1 + K [N val ] and (h, d) the parameters of its almost-banded structure, A the approximation of M -1 used for T, either dense or (h ′ , d ′ ) almost-banded. We have the following complexity results: (4.20 i) The complexity of producing the Newton-like operator T and validating its Ч 1 -norm using Algorithm IntopContract is:

O(N val (h + d)(h ′ + d ′ )) (or O(N val 2 (h + d)) when A is dense).
Algorithm 4.7 IntopContract(K, N val , h ′ , d ′ ) -Creating and bounding a Newton-like op. T Input: a polynomial integral operator K (given by its order r and the b j (t)), a truncation order N val and optional parameters h ′ and d ′ . Output: an approximate inverse A of 1 + K [N val ] ((h ′ , d ′ ) almost-banded if h ′ and d ′ were specified, dense otherwise) and a certified Lipschitz constant µ.

1: M ← 1 + K [N val ] , computed as an (h, d) almost-banded matrix. 2: (Q, R) ← OlverTownsendQR(M ) ⊲ Compute the approximate inverse A of M 3: if h ′ and d ′ are specified with h h ′ < N val and d d ′ < N val then ⊲⊲ A is (h ′ , d ′ ) almost-banded 4: A ← AlmostBandedApproxInverse(M, (Q, R), h ′ , d ′ ) 5: else ⊲⊲ A is dense 6:
for i = 0 to N val -1 do 7:

for j = 0 to N val -1 do V [j] ← 0 and V [i] ← 1 8: W ← OlverTownsendBackSubs(M, (Q, R), V ) 9:
Set ith column of A to W 10:

end for 11: end if

⊲ Compute the approximation error δ approx 1 -A • (1 + K [N val ]
) Ч 1 12: δ approx ← 0 13: for i = 0 to N val -1 do

14:

Set V to the ith column of M , as an (h, d) almost-banded vector 15:

Compute W ← A • V and W [i] ← W [i] -1 with interval arithmetics 16: if W 1 > δ approx then δ approx ← W 1 17: end for ⊲ Compute the truncation error δ trunc A • (K -K [N val ] ) Ч 1 18: δ trunc ← IntopTruncError(K, N val , A) 19: µ ← δ approx + δ trunc 20: if µ < 1 then 21: return µ 22: else 23:
return "Fail" 24: end if Algorithm 4.8 IntopVal(K, ψ, N val , A, µ, ϕ • ) -Validating a solution of integral equation Input: a polynomial integral operator K (given by its order r and the b j (t)), a polynomial right-hand side ψ, a truncation order N val , (A, µ), with µ < 1, computed by IntopContract(K, N val , h ′ , d ′ ), and a candidate solution ϕ • of degree N app . Output: an error bound ε such that ϕ

• -ϕ * Ч 1 ε.
⊲ All operations are to be performed in interval arithmetics Proof. For (4.20 i), we consider the different steps to obtain T and bound its Ч 1 -norm: 

1: P ← ϕ • + K • ϕ • -ψ 2: for i = 0 to N val do V [i] ← [P ] i 3: W ← AV 4: for i = 0 to N val do [P ] i ← W [i] 5: ε ← P Ч 1 /(1 -
• Computing M = 1 + K [N val ] ( line 

• The truncation error (line 18) costs O((h

′ + d ′ )(h + d)d) operations when A is (h ′ , d ′ ) almost-banded, or O(N val (h + d)d) in the dense case, following Proposition 4.19. Hence, the total complexity is in O(N val (h + d)(h ′ + d ′ )) when A is (h ′ , d ′ ) almost-banded, or O(N val 2 (h + d)) when A is dense. For (4.20 ii), computing P (of degree max(N app + d, N rhs )) at line 1 costs O(N app rh + N rhs ) operations. Multiplying by A its n + 1 first coefficients (line 3) requires O((h ′ + d ′ ) min(N val , max(N app + d, N rhs )) operations (if A (h ′ , d ′ ) almost-banded) or O(N val min(N val , max(N app + d, N rhs ))) operations (if A dense)
. Note that at line 2, copying the N val + 1 first coefficients of P costs min(max(N app + d, N rhs ), N val ) (neglect the null coefficients), and in the almost-banded case when max(N app + d, N rhs ) < N val , lines 4 costs (max(N app + d, N rhs ) + h ′ + d ′ ) operations (again, neglect the final null coefficients). This yields the claimed total complexity.

Choosing and estimating parameters N val , h ′ and d ′

The complexity claimed by Proposition 4.20 depends on the parameters N val , h ′ and d ′ . Hence, the performance of the validation method is directly linked to the minimal values we can choose for these parameters.

In practice, one initializes N val = 2d (to avoid troubles with too small values of N val ) and then estimates (from below) the norm

(1 + K [N val ] ) -1 • (K -K [N val ]
) Ч 1 by numerically applying this operator on T N val +1 . This heuristic is similar to estimating the truncation error of a Chebyshev series by its first neglected term [53, §4.4, Thm. 6] 2 . Specifically, for intermediate or large values of N val , one has for i N val that (K -

K [N val ] ) • T i Ч 1 K • T i Ч 1 ,

and for

i N val + 1, one has a decrease of K • T i Ч 1 in O(1/i). Recall that for i N val , K [N val ] • T i = 0, from (4.9). So, max i 0 (1+K [N val ] ) -1 •(K-K [N val ] )•T i Ч 1 is heuristically achieved for i = N val +1. Concretely, computing (1+K [N val ] ) -1 •(K-K [N val ] )•T N val +1 Ч 1 reduces
to numerically solving the corresponding almost-banded system with input parameters M and п N val • K • T N val +1 using Algorithms OlverTownsendQR and OlverTownsendBackSubs.

If this estimate from below of the norm of T is greater than 1, we double the value of N val until the estimated norm falls below 1. Then we initialize h ′ = h and d ′ = d, compute an (h ′ , d ′ ) almost-banded approximation of (1 + K [N val ] ) -1 using Algorithm AlmostBandedApprox-Inverse and double their values each time the approximation error exceeds 0.25. After that, Algorithm IntopTruncError produces a certified upper bound for the truncation error. If it exceeds 0.25, then again we double the value of N val and restart the validation process.

In what follows, we give theoretical estimates for the order of magnitude of the above mentioned parameters. First a bound for N val is

N val = O(dB 2 exp(2B)), where B = r-1 j=0 b j Ч 1 .
This can be proved since N val must be chosen large enough so that the sum of the approximation and truncation errors falls below 1. For this, a sufficient condition is Ч 1 = O(B/N val ), from Lemma 4.12 and

(1 + K) -1 • (K - K [N val ] ) Ч 1 < 1,
(1 + K) -1 Ч 1 +∞ i=0 (6di + 1) 2C i! (12dB + 1) exp(2B),
using Lemma 4.10 and the fact that C (defined in (4.4)) is upper bounded by B. Now, for the almost-banded parameters h ′ , d ′ , we provide a practical estimate of

h ′ , d ′ = O(dB).
This is based on the observation that for sufficiently large N val , we can expect the ℓth iterated operator (K [N val ] ) ℓ to behave approximately like K ℓ . Since K ℓ Ч 1 (6dℓ + 1)(2B) ℓ /ℓ! (proof of Lemma 4.10), this quantity falls below 1 as soon as ℓ ≈ 2B exp [START_REF] Abramov | Apparent singularities of linear difference equations with polynomial coefficients[END_REF].

Then (1 + K [N val ] ) -1 = +∞ i=0 (-K [N val ] ) i , and A = ℓ-1 i=0 (-K [N val ] ) i is (d(ℓ -1), d(ℓ -1)
) almost-banded (again in proof 2 [34, §2.12] presents, as a rule-of-thumb, the estimate of the truncation error by the last term retained.

of Lemma 4.10). We therefore obtain an approximation error

1 -A(1 + K [N val ] ) Ч 1 = (K [N val ] ) ℓ Ч 1 < 1.
To conclude, although it provides a rigorous complexity estimate, the bound concerning N val is usually very pessimistic. This is because the above mentioned practical approach of doubling N val ends up with far smaller values in most cases. It often happens that (1+K) -1 Ч 1 does not follow an exponential growth when B = r-1 j=0 b j Ч 1 becomes large. For instance, when k(t, s) is nonnegative, then the Neumann series +∞ i=0 K i (equal to 1 + K) alternates signs and the Ч 1norm of (1+K) -1 is far smaller than the term-by-term exponential bound. Several examples in Section 4.5 illustrate this phenomenon. In the difficult cases involving an exponential growth of (1 + K) -1 Ч 1 , the examples in Section 4.5 also show how the almost-banded approach helps to keep the computation tractable up to some extent.

Extensions to non-polynomial LODEs

In this section, we show how to address the general case stated in Problem 4.1. In Section 4.4.1 we extend the previously described method to the non-polynomial case with Cauchy boundary conditions. Then we discuss the case of other boundary conditions in Section 4.4.2.

◮ Extension to non-polynomial IVP

We consider the IVP problem (1a) where the coefficients α j , j ∈ 0, r -1 , and the right-hand side γ belong to Ч 1 and are rigorously approximated by Chebyshev models α j = (a j , ε j ) and γ = (g, τ ). Using Proposition 4.5, we get an integral operator K with a kernel k(t, s) which is polynomial in the variable s only:

k(t, s) = r-1 j=0 β j (t)T j (s),
where the β j are non-polynomial functions in Ч 1 .

To obtain Chebyshev models β j = (b j , η j ) for β j it suffices to run Algorithm Integral-Transform where one replaces the polynomials a j by Chebyshev models α j and overloads corresponding arithmetic operations. Then, the polynomials b j define a polynomial kernel k P (t, s) as in Equation (4.5) and respectively the polynomial integral operator K P , such that:

K -K P Ч 1 2 r-1 j=0 η j . (4.14)
Moreover, since Algorithm IntegralTransform only performs linear operations on the Chebyshev models α j to produce the β j , the quantity 0 j<r η j is upper bounded by C 0 j<r ε j for some constant C depending only on r. This justifies the fact that K is well approximated by K P when the coefficients α j are well approximated by the a j . Let us prove that the truncated operators K [n] := п n • K • п n still converge to K and that 1 + K is an isomorphism of Ч 1 : Lemma 4.21 Let K be the integral operator obtained from Proposition 4.5. We have (4.21 i) K is a bounded linear operator of Ч 1 with:

K Ч 1 2 r-1 j=0 β j Ч 1 . (4.21 ii) K [n] → K for the Ч 1 -operator norm as n → +∞. Hence K is compact. (4.21 iii) 1 + K is a bicontinuous isomorphism of Ч 1 .
Proof. For (4.21 i), let ϕ ∈ Ч 1 . From (2.10) and (2.12), we have

K • ϕ Ч 1 r-1 j=0 β j Ч 1 (2 T j Ч 1 ϕ Ч 1 ) =   2 r-1 j=0 β j Ч 1   ϕ Ч 1 .
This shows that K • ϕ ∈ Ч 1 and that K is bounded as endomorphism of (Ч 1 , • Ч 1 ) with the bound claimed above.

For (4.21 ii), let ε > 0. Take Chebyshev models α j = (a j , ε j ) of α j sufficiently accurate to ensure K -K P Ч 1 ε/3, by (4.14). This is possible since the α j belong to Ч 1 , and hence the η j can be made as small as desired. We know from Lemma 4.12, since K P is polynomial, that for n large enough, K P -K

[n] P Ч 1 ε/3. We finally get:

K -K [n] Ч 1 K -K P Ч 1 + K P -K [n] P Ч 1 + K [n] P -K [n] Ч 1 K -K P Ч 1 + K P -K [n] P Ч 1 + K P -K Ч 1 ε 3 + ε 3 + ε 3 = ε,
where we used that K

[n]

P -K [n] Ч 1 = п n • (K P -K) • п n Ч 1 K P -K Ч 1 .
For (4.21 iii), the proof works exactly as in the polynomial case: we know that K is compact by 2) and that 1+K is injective because it is injective over the superspace C 0 , cf. Section 4.1.1, and we conclude thanks to the Fredholm alternative.

Using this result, we can again form the Newton-like operator T as in Section 4.3, with A ≈ (1 + K

[n] P ) -1 for some large enough value of n. The operator norm of the linear part of T can now be decomposed into three parts:

1 -A • (1 + K) Ч 1 1 -A • (1 + K [n] P ) Ч 1 + A • (K P -K [n] P ) Ч 1 + A • (K -K P ) Ч 1 .
The first two parts are exactly the ones of (4.13) (where the polynomial integral operator K is now called K P ) and can be rigorously upper bounded using the same techniques. The last part can be upper bounded thanks to (4.14):

A • (K -K P ) Ч 1 2 A Ч 1 r-1 j=0 η j . (4.15)
It is interesting to notice that the order of magnitude of n is largely determined by the second part (as in the polynomial case), whereas the third part forces the η j (and hence the ε j ) to be small, which mainly depends on the degree of the approximating polynomials a j (t) for α j (t).

Finally, let ϕ • be the numerical approximation for the solution of the IVP problem (1a), given as a polynomial in the Chebyshev basis. One upper bounds Proof. For computing a rigorous Lipschitz constant for T, the additional term A•(K-K P ) Ч 1 is bounded by (4.15). Clearly, this additional cost is dominated by the complexity obtained in Proposition 4.20 (i) for the polynomial case.

T • ϕ • -ϕ • Ч 1 = A • (ϕ • + K • ϕ • -ψ) Ч 1 A • z Ч 1 + τ A Ч 1 , where ζ = (z, τ ) is a Chebyshev model for ϕ • + K • ϕ • -ψ
Then, validating a candidate solution ϕ • has the same cost as in the polynomial case (Proposition 4.20 (ii)), since all polynomial operations are essentially replaced by their Chebyshev model extensions.

In conclusion, we observe that our validation method is easily adapted to the general case where the coefficients α j are non-polynomial functions rigorously approximated by polynomials a j . However, contrary to the polynomial case where the involved degrees are usually low, the degrees of the approximations a j can be rather large, resulting in a dense linear problem and poorer time efficiency. And yet, in practice, the method remains efficient on problems with reasonable coefficient magnitude and time interval under consideration, which will be exemplified in Section 4.5.

The corresponding C routines are gathered in chebmodel_intop_newton.h. In particular, function chebmodel_lode_intop_newton_solve_fr completely solves Problem 4.1.

◮ The case of other boundary conditions

Consider now the general boundary conditions operator Λ : Ч 1 → | r of Problem (1b). In [START_REF] Yamamoto | A numerical verification method for solutions of boundary value problems with local uniqueness by Banach's fixed-point theorem[END_REF] an ad-hoc integral reformulation is proposed to treat a specific case of such boundary conditions, while other works like [START_REF] Du | On well-conditioned spectral collocation and spectral methods by the integral reformulation[END_REF] propose a generic reformulation method. Our method consists in reducing a general BVP validation problem to r + 1 IVP validation problems. This is easily observed, since the initial values v j = f (j) (t 0 ) appearing in the integral reformulation of Proposition 4.5 are now unknown. At first sight, this may seem rather naive and timeconsuming. However, the most difficult part which consists in obtaining a contracting Newtonlike operator is performed only once, thus considerably reducing the total computation time.

Suppose we have a candidate polynomial approximation f • of the solution of BVP problem (1b), given in Chebyshev basis. Our method consists in rigorously computing a very accurate approximation f and then comparing it with f • .

The first step is to provide A and compute an upper bound µ for

1 -A • (1 + K) Ч 1 .
This depends neither on the initial conditions nor on the right hand side γ(t).

2.

Then, for each i ∈ 0, r -1 , we compute (with Algorithms OlverTownsendQR and OlverTownsendBackSubs for the underlying linear algebra) and validate with Algorithm IntopVal an approximation f • i for the solution f * i of the homogeneous LODE associated to (4.1) (that is, with right hand side g = 0) with initial conditions:

v j = f (j) i (t 0 ) = 1 if i = j, 0 otherwise, 0 j < r.
Similarly, we approximate and validate the solution f * r of Equation (4.1) with right hand side g and null initial conditions (f (j) r = 0 for 0 j < r). Since the validation kernel has been produced at the previous step, the numerical solving procedure (Algorithms OlverTownsendQR and OlverTownsendBackSubs) as well as the validation (Algorithm IntopVal) are linear in the degree of the approximation. Thus, we obtain Chebyshev models for f * i , and for their derivatives f * i (j) , 0 j r.

The original equation with boundary conditions

Λ•f = (λ 0 (f ), . . . , λ r-1 (f )) = (v 0 , . . . , v r-1 )
admits a unique solution f * if and only if there exist c 0 , c 1 , . . . , c r-1 uniquely determined such that

f * = c 0 f * 0 + c 1 f * 1 + • • • + c r-1 f * r-1 + f * r and λ 0 (f * 0 )c 0 + λ 0 (f * 1 )c 1 + • • • + λ 0 (f * r-1 )c r-1 = -λ 0 (f * r ), λ 1 (f * 0 )c 0 + λ 1 (f * 1 )c 1 + • • • + λ 1 (f * r-1 )c r-1 = -λ 1 (f * r ), . . . λ r-1 (f * 0 )c 0 + λ r-1 (f * 1 )c 1 + • • • + λ r-1 (f * r-1 )c r-1 = -λ r-1 (f * r ).
If the quantities λ j (f * i ) can be rigorously and accurately computed using the Chebyshev models of the f * i (j) obtained at the previous step, then one can solve this linear system in interval arithmetics [START_REF] Rump | Verification methods: rigorous results using floating-point arithmetic[END_REF] and obtain intervals c 0 , . . . , c r-1 .

4.

Using the (interval) coefficients c 0 , . . . , c r-1 and the Chebyshev models f 0 , . . . , f r-1 , f r , we get that

f := (f , ε) := c 0 f 0 + • • • + c r-1 f r-1 + f r is a Chebyshev model for the exact solution f * . Now, it suffices to compute η = f • -f Ч 1
(which is straightforward since both f • and f are polynomials in Chebyshev basis) and we deduce that the approximation error f • -f * Ч 1 is rigorously upper-bounded by η + ε. Note that the intermediate approximation f should be sharp enough (that is, the approximation degree has to be chosen large enough), so that ε ≪ η.

Experimental results

Four examples illustrate our validation method and investigate its limitations, two of which are already treated in [START_REF] Olver | A fast and well-conditioned spectral method[END_REF] from the numerical point of view. First, Airy differential equation exemplifies the polynomial IVP case. Second, the non-polynomial IVP case is illustrated by the mechanical study of the undamped pendulum with variable length. Third, a non-polynomial BVP problem is exemplified by a boundary layer problem. Finally, we apply our method to a practical space mission problem, namely, the trajectory validation in linearized Keplerian dynamics. More detailed applications to space mission problems are exposed in Chapter 7, which takes over the article [START_REF] Ricardo | Validated Semi-Analytical Transition Matrix for Linearized Relative Spacecraft Dynamics via Chebyshev Polynomials[END_REF]. Remark 4.23 As explained in Section 4.3.2, the magnitude of the validation parameters N val , h ′ and d ′ required by Algorithm IntopContract mainly determines the time complexity of the method. In the examples analyzed in this section, we particularly investigate their evolution in function of the parameters of the problems. Usually, they are automatically determined as proposed in Section 4.3.2 (doubling them until the operator T is proved to be contracting).

◮ Airy equation

The Airy function of the first kind is a special function defined by Ai(x) = 1/π +∞ 0 cos(s 3 /3 + xs)ds and solution of the Airy differential equation:

y ′′ (x) -xy(x) = 0, (4.16)
with the initial conditions at 0:

Ai(0) = 1 3 2/3 Γ(2/3) , Ai ′ (0) = - 1 3 1/3 Γ(1/3) .
Airy functions, Ai and Bi, depicted in Figure 4.3, form together the standard basis of the solutions space of (4.16) (see [START_REF] Abramowitz | Handbook of mathematical functions with formulas, graphs, and mathematical tables[END_REF], Chap. 10 Bessel Functions of Fractional Order ).

In what follows, we apply the validation method on intervals of the form [-a, 0] or [0, a] (for a > 0), and investigate its behavior in these two different cases.

Validation over the negative axis

We rigorously approximate Ai over [-a, 0] for some a > 0, or equivalently u(t) = Ai(-(1+t)a/2) over [-1, 1]. This appears for instance in quantum mechanics when considering a particle in a one-dimensional uniform electric field. The function u is the solution of the following IVP problem:

u ′′ (t) + a 3 8 (1 + t)u(t) = 0, u(-1) = 1 3 2/3 Γ(2/3) and u ′ (-1) = a/2 3 1/3 Γ(1/3)
.

The numerical solution of this BVP is plotted in Figure 4.6a for three different values of ε. Figure 4.6b shows the basis (u 1 , u 2 ) of the solution space of LODE (4.18) associated to the canonical initial conditions {u 1 (-1) = 1, u ′ 1 (-1) = 0} and {u 2 (-1) = 0, u ′ 2 (-1) = 1}, for ε = 0.001. Thus, the exact solution u of the BVP is given by:

u(x) = u 1 (x) + λu 2 (x), with λ = 1 -u 1 (1) u 2 (1) . ( 4 

.19)

Since u 1 (1) and u 2 (1) tend to be very large when ε gets close to zero, obtaining u from u 1 and u 2 is an ill-conditioned problem. With ε = 0.001, the obtained approximation using the binary64 (double) format is completely inaccurate (see Figure 4.6c). Note that a better solution (regarding the conditioning) is to directly compute the BVP solution with Algorithms OlverTownsendQR and OlverTownsendBackSubs as in [START_REF] Olver | A fast and well-conditioned spectral method[END_REF]. In any case, validating a candidate solution is useful to detect such numerical troubles. The first task consists in rigorously approximating the cosine function over [-1, 1]. This can be done by a recursive call to our validation method on the differential equation ξ ′′ + ξ = 0 with ξ(-1) = cos(-1) and ξ ′ (-1) = -sin(-1). For this application, a degree 10 Chebyshev model for cos is sufficient.

Then, we run IntopContract to get a contracting Newton-like operator. Figure 4.6d illustrates the growth of the validation parameters in function of ε. When ε > 0 gets small, the coefficient in front of u ′ takes large negative values, yielding an exponential growth of (1 + K) -1 Ч 1 and hence of the minimal truncation order N val we can choose. Since h ′ + d ′ remains small compared to N val , we get here a typical example where the exponential bound prevents us from validating a solution of LODE (4.18) with very small ε, but where however the choice of an almost-banded A allows us to treat intermediate cases: ε ∈ [0.005, 0.01].

Next, we compute high-degree Chebyshev models u 1 and u 2 for the basis (u 1 , u 2 ). This requires Algorithms OlverTownsendQR and OlverTownsendBackSubs to obtain a numerical approximation, and using the previously obtained Newton-like operator T to certify them with IntopVal. Hence, this step has a linear complexity with respect to the approximation degree we use. Computing the value of λ in Equation (4.19) in interval arithmetics gives a Chebyshev model u for the exact solution u using u 1 and u 2 . Finally, the error associated to the candidate numerical approximate solution u • is obtained by adding the certified error of u with the Ч 1 -distance between u • and the polynomial of u.

As an example, for ε = 0.01, the minimal degree for which we found an approximation of the solution of BVP (4.18) within a certified error of 2 -53 (corresponding to standard double precision) is 72.

◮ Spacecraft trajectories using linearized equations

for Keplerian motion application is further developed in Chapter 7, we give a simple example here for illustrative purpose.

Call e ∈ [0, 1) the eccentricity of the fixed orbit of the target, and let ν be the true anomaly (an angular parameter that defines the position of a body moving along a Keplerian orbit) associated to the target, which is the independent variable in our problem. The in-plane motion of the spacecraft relatively to the target (that is, the component of the motion inside the plane supported by the elliptic orbit of the chaser) is defined using two position variables x(ν) and z(ν), satisfying the following linearized system over the interval [ν 0 , ν f ]:

z ′′ (ν) + 4 - 3 1 + e cos ν z(ν) = c, x(ν) = x(ν 0 ) + (x ′ (ν 0 ) -2z(ν 0 ))(ν -ν 0 ) + 2 ν ν 0 z(s)ds, c = 4z(ν 0 ) -2x ′ (ν 0 ) and ν ∈ [ν 0 , ν f ].
As an example, fix the eccentricity e = 0.5, the interval [ν 0 , ν f ] = [0, 6π] (corresponding to 3 periods) and the initial conditions

(x(ν 0 ), z(ν 0 ), x ′ (ν 0 ), z ′ (ν 0 )) = (-3 • 10 4 m, 5 • 10 3 m, 9 • 10 3 m • rad -1 , 4 • 10 3 m • rad -1
). The corresponding functions x(ν) and z(ν) are plotted in Figure 4.7a. Figure 4.7c represents an approximation of degree N app = 18 of z ′′ (ν) (radial acceleration), together with the rigorous error bound obtained by our method. The dashed curve corresponds to the exact solution, which as expected lies inside the tube defined by our rigorous approximation. One notices that we obtain a quite tight error bound, even for the • ∞ norm. Figure 4.7b gives the minimal degree p corresponding to an approximation of z for which Algorithm IntopVal is able to certify an error below one meter, in function of the period length and the eccentricity of the target reference orbit.

Componentwise Chebyshev Models for Linear Ordinary Differential Systems
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In the fall of 1972, President Nixon announced that the rate increase of inflation was decreasing. This was the first time a president used the third derivative to advance his case for re-election.

-Hugo E. Rossi

The developments of previous chapters are extended by providing a new framework for a posteriori validation of vector-valued problems with componentwise tight error enclosures, which is applied to solutions of coupled systems of linear ordinary differential equations. More precisely, given a coupled differential system with polynomial or RPA coefficients over a compact interval, and componentwise polynomial approximate solutions in Chebyshev basis, the algorithm outputs componentwise rigorous upper bounds for the approximation errors, with respect to the uniform norm over the interval under consideration.

This work follows closely my conference article "A Newton-like Validation Method for Chebyshev Approximate Solutions of Linear Ordinary Differential Systems" [START_REF] Bréhard | A Newton-like validation method for chebyshev approximate solutions of linear ordinary differential systems[END_REF], published in 2018, in the proceedings of the 43rd International Symposium on Symbolic and Algebraic Computation (ISSAC).

Let us firstly introduce some additional notations.

Notations. Let p be a positive integer for the ambient space | p , whose canonical basis is denoted by (e 1 , . . . , e p ). For a ring ❆, M p (❆) denotes the set of order p square matrices, with 1 and 0 the identity and zero matrices. The order over | is componentwise extended to a (partial) order over | p and M p (|):

for all u, v ∈ | p (resp. A, B in M p (|)), u v if and only if u i v i for all i ∈ 1, p (resp. A B iff A ij B ij for all i, j ∈ 1, p ).
Problem statement and contributions. Similarly to the problem considered in Chapter 4, we present an a posteriori validation algorithm that provides componentwise and tight error enclosures for Chebyshev approximations to solutions of coupled linear ordinary differential equations (LODEs):

Y (r) + A r-1 (t) Y (r-1) + • • • + A 1 (t) Y ′ + A 0 (t) Y = G(t), (5.1) of unknown Y : [-1, 1] → | p .
Coefficients A i and G must be continuous (vector-valued) functions, given as polynomials with rigorous error bounds. However, for the sake of simplicity, we mainly focus on the polynomial case, and refer to the solutions as vector-valued D-finite functions -the general case being deduced as in Section 4.4.1. Although such functions can be seen as vectors of (scalar) D-finite functions, the decoupling of the system followed by a possible desingularization step may produce hard to validate scalar LODEs (see Section 5.3). Moreover, in the nonpolynomial case, such techniques do not apply. Using an appropriate integral transform of the linear differential system, we obtain (similarly to what presented in Proposition 4.5) a Volterra integral equation of the second kind with polynomial kernel, whence the following problem statement:

Problem 5.1 For a given integral equation of unknown Φ : [-1, 1] → | p : Φ(t) + t -1 K(t, s) Φ(s)ds = Ψ(t), with a p-dimensional polynomial kernel K(t, s) ∈ M p (|[t, s]) and Ψ ∈ |[t]
p , assuming we are given for each component Φ * i of the exact solution Φ * a polynomial approximation Φ • i in Chebyshev basis, compute componentwise error bounds ε i , as tight as desired:

Φ • i -Φ * i Ч 1 ε i , for all i ∈ 1, p .
We recall from Section 2.2 that • Ч 1 is a norm for absolutely summable Chebyshev series that upper-bounds the

• ∞ norm over [-1, 1].
Many a posteriori fixed-point validation methods use the Banach fixed-point theorem, following more or less the general framework described in Section 3.3. However, in the case we consider, the solution belongs to a product space, and the classical method consisting in endowing it with a global norm fails to produce componentwise tight error enclosures. This is particularly annoying when the components of the system are of different nature (e.g., position and speed) or magnitude.

To overcome this limitation, we consider the notion of vector-valued (or generalized ) metric spaces and generalized contractions (or P-contractions) [132, [START_REF] Robert | Étude et utilisation de normes vectorielles en analyse numérique linéaire[END_REF][START_REF] Ortega | Iterative solution of nonlinear equations in several variables[END_REF]. The Perov fixed-point theorem [132,[START_REF] Perov | On the Cauchy problem for a system of ordinary differential equations[END_REF] is a natural extension of the Banach fixed-point theorem and provides componentwise upper bounds for the approximation error. Several works applied this theorem in various settings, for example [START_REF] Yamamoto | A unified derivation of several error bounds for Newton's process[END_REF] for the Newton method or [START_REF] Ravi | Contraction and approximate contraction with an application to multipoint boundary value problems[END_REF][START_REF] Precup | The role of matrices that are convergent to zero in the study of semilinear operator systems[END_REF][START_REF] Maria Nica-Bolojan | Fixed point methods for nonlinear differential systems with nonlocal conditions[END_REF] for ODEs with nonlocal conditions. To the best of our knowledge, however, none of these works investigate the existence of lower bounds, nor address validation problems. Based on a new refinement with lower bounds for the Perov fixed-point theorem, we propose a validation algorithm to solve Problem 5.1.

Outline. Section 5.1 introduces a general framework for componentwise fixed-point validation in generalized metric spaces. In Section 5.2, we design a Newton-like validation algorithm for Chebyshev approximations of vector-valued D-finite functions. After that, Section 5.3 details the validation of a two-dimensional highly oscillating system. For completeness, we also provide a comparison with a decoupling technique that boils down to solving scalar LODEs. Finally, concluding remarks about the methods developed in Chapters 4 and 5 are proposed in Section 5.4, together with future directions that deserve further investigations.

A framework for vector-valued validation problems

We address the general problem of componentwise validating an approximation x • to the exact solution x * of a fixed-point equation x = T • x. Section 5.1.1 gives a rigorous definition of "several components and norms" with the notion of generalized metric spaces, leading to the Perov fixed-point theorem. Section 5.1.2 presents a new result that complements the Perov theorem with lower bounds on the componentwise approximation errors.

A toy example in the plane

Throughout this section, the following toy example will be used to illustrate the vector-valued validation framework. Consider the trigonometric equation sin 3 ϑ + cos 3ϑ = 0 for ϑ ∈ |. By introducing c = cos x and s = sin x, this is equivalent to finding the roots of the following polynomial system in the plane (c, s):

F • (c, s) = s 3 + 4c 3 -3c c 2 + s 2 -1 = 0.
Let x * = (c * , s * ) be an exact solution and x • := (c • , s • ) = (0.84, 0.55) an approximation of it.

In order to validate this solution with respect to a given norm • on | 2 , we define a Newton-like

operator T • (c, s) := (c, s) -A • F • (c, s) with A := 0.25 -0.20 -0.37 1.2 ≈ (DF x • ) -1 ∈ M 2 (|)
an approximate inverse of the Fréchet derivative DF x • of F at x • . Since A is injective, its fixed points are exactly the roots of F. In this example, F is nonlinear, so one must find a strongly stable ball over which T is contracting, for the Banach Theorem 3.10 to apply, that is, determine a radius r > 0 satisfying the following two conditions: (i) λ := sup

x-x • r 1 -A • DF x < 1; (ii) x • -T • x • + λr r.
If such a radius exists, then by the Banach fixed-point theorem, we have x

• -x * A•F•x (1-λ) .
However, such a bound captures a "global" error, which may not be what we expect, if, for example, the two components are of different nature (e.g., position and velocity), or differ by several orders of magnitude.

◮ Generalized Metric Spaces and Perov Fixed-Point Theorem

Definition 5.2 Let X be a set (resp. E a linear space). A function d : X × X → | p + (resp.

• : E → | p + ) is a vector-valued or generalized metric (resp. norm) if for all x, y, z in X or E and λ ∈ |:

• d(x, y) = 0 iff x = y, resp. x = 0 iff x = 0; • d(x, y) = d(y, x), resp. λx = |λ| x ; • d(x, y) d(x, z) + d(z, y),
resp.

x + y x + y .

Then (X, d) (resp. (E, • )) is a vector-valued or generalized metric space (resp. linear space).

A straightforward example is the product of p metric spaces (X i , d i ), i ∈ 1, p (resp. p normed linear spaces (E, • i )) and the vector-valued metric d(x, y) = (d 1 (x 1 , y 1 ), . . . , d p (x p , y p )) (resp. the vector-valued norm x = ( x 1 1 , . . . , x p p )).

Remark 5.3 A vector-valued metric space (respectively a vector-valued normed linear space) can be trivially seen as a metric space (respectively a normed linear space) by taking the maximum of all the components of the vector-valued metric (respectively norm). We therefore recover all the useful topological notions of convergence, limit, neighborhood, completeness, etc.

In the context of vector-valued metric spaces, the notion of contracting map needs to be generalized. Let M →0 p (|) ⊆ M p (|) denote the convergent to zero matrices, that is the matrices M such that M k → 0 as k → ∞. Equivalently, these are matrices M with spectral radius ρ(M ) < 1. Then,

M →0 p (| + ) = M →0 p (|) ∩ M p (| +
) denotes those among them with nonnegative coefficients. Definition 5.4 Let (X, d) be a vector-valued metric space and T : X → X an operator.

• T is Λ-Lipschitz for some Λ ∈ M p (| + ) if: d(T • x, T • y) Λ d(x, y),
for all x, y ∈ X.

• If moreover Λ is convergent to 0 (Λ ∈ M →0 p (| + )), then T is said to be a generalized contraction.

Using these definitions, the Perov fixed-point theorem1 is a generalization of the Banach fixed-point theorem.

Theorem 5.5 (Perov) Let (X, d) be a complete vector-valued metric space and T : X → X a generalized contraction with a Lipschitz matrix Λ ∈ M →0 p (| + ). Then:

(5.5 i) T admits a unique fixed-point x * ∈ X;

(5.5 ii) For every x • ∈ X, the iterated sequence defined by x 0 = x • and x n+1 = T • x n converges to x * with the following upper bound on the approximation error:

d(x n , x * ) Λ n (1 -Λ) -1 d(x • , T • x • ),
for all n ∈ ◆.

(

A reference proof may be found in [START_REF] Ortega | Iterative solution of nonlinear equations in several variables[END_REF], but we give below the main ideas, which are useful for what follows.

tends to 1 as λ → 0, justifying the principle: the more contracting the operator is, the tighter the obtained enclosure is.

This section aims at extending this study to the vectorial case, for the bounds obtained from Theorems 5.5 and 5.6. The following lemma quantifies how much the obtained enclosure

[ε - i , ε + i ] of ε i = d(x • , x *
) i may overapproximate it. Lemma 5.10 Let T be contracting of Lipschitz matrix Λ ∈ M →0 p (| + ), x * its unique fixedpoint, x • an approximation, ε = d(x • , x * ) the approximation error, and η = d(x • , T • x • ). Then for all i ∈ 1, p :

ε + i := e T i (1 -Λ) -1 η e T i (1 -Λ) -1 (1 + Λ) ε, ε - i := e T i (1 -D i Λ) -1 η e T i (1 -D i Λ) -1 (1 + D i Λ) ε.
(5.7)

The overapproximation ratio can be bounded as follows:

ε + i ε - i 1 + αν i 1 -αν i , with ν i = ε ∞ ε i and α = 2 Λ ∞ 1 -Λ ∞ , (5.8) 
provided that αν i < 1, where ε ∞ := max

1 i p |ε i | is the infinity norm over | p and Λ ∞ := max 1 i p p j=1 |Λ ij | the associated operator norm.
In particular, Lemma 5.10 shows that the ratio now depends not only on Λ, but also on

ε = d(x • , x * ).
Proof. For the first inequality, we have:

ε + i = e T i (1 -Λ) -1 η e T i (1 -Λ) -1 (1 + Λ) ε,
since η (1 + Λ) ε by Equation (5.4) and (1 -Λ) -1 has nonnegative coefficients. For the second inequality, consider η := (1 + D i Λ) ε, so that:

η i = e T i (1 -Λ) ε η i , η j = e T j (1 + Λ) ε η j , for j = i Since by Lemma 5.8, e T i (1 -D i Λ) -1 (the i-th line of (1 -D i Λ) -1
) has a positive entry on the i-th position and nonpositive entries on the other ones, we have:

ε - i = e T i (1 -D i Λ) -1 η e T i (1 -D i Λ) η.
In order to prove (5.8), we notice that:

e T i (1 -Λ) -1 (1 + Λ) ε = ε i + 2e T i n 1 Λ n ε ε i + 2 n 1 Λ ∞ ε ∞ = ε i + α ε ∞ ,
under the condition that Λ ∞ < 1, which is automatic from assumption αν i < 1. The inequality:

e T i (1 -D i Λ) -1 (1 + D i Λ) ε ε i -α ε ∞ , is proven similarly by considering D i Λ instead of Λ and D i Λ ∞ = Λ ∞ .
Taking the quotient of these two inequalities yields the bound (5.8).

with a bivariate polynomial kernel K = (k ij ) 1 i,j p ∈ M p (|[t, s]) and right-hand side Ψ = (Ψ 1 , . . . , Ψ p ) ∈ |[t] p . Depending on the integral transform, the unknown function Φ = (Φ 1 , . . . , Φ p ) : [-1, 1] → | p can be either Y or one of its derivatives. For example, [START_REF] Benoit | Rigorous uniform approximation of D-finite functions using Chebyshev expansions[END_REF] acts over Y , whereas the integral transform in previous chapter considers the last derivative Y (r) .

In any case, K : Φ → t -1 K(t, s) Φ(s)ds is a bounded linear operator from (Ч 1 ) p to itself. We may describe it by blocks K = (K ij ) 1 i,j p , where each K ij is a one-dimensional integral operator of kernel k ij (t, s), obtained for example as in Proposition 4.5. By decomposing k ij (t, s) in Chebyshev basis with respect to s, we obtain unique polynomials b ijk (t) such that

k ij (t, s) = κij k=0 b ijk (t)T k (s), K ij • ϕ(t) = κij k=0 b ijk (t) t -1 T k (s)ϕ(s)ds.
Recalling properties of integral operators from Section 4.1, the (infinite dimensional) matrix representation of [START_REF] Olver | A fast and well-conditioned spectral method[END_REF], meaning that the nonzero entries are located on the h ij first rows (horizontal band with initial entries) and the diagonal plus the first d ij upper and lower diagonals (diagonal band with diagonal entries), with h ij = max

K ij : Ч 1 → Ч 1 has a so-called (h ij , d ij ) almost-banded structure
0 k κ ij deg b ijk (t) and d ij = 1 + deg k ij (t, s) = 1 + max 0 k κ ij (k + deg b ijk (t)).

◮ Efficient numerical solving

The integral equation (5.10) is an infinite-dimensional linear system over the Chebyshev coefficients of the unknown function Φ. The projection method (also sometimes called Galerkin method [START_REF] Gottlieb | Numerical Analysis of Spectral Methods: Theory and Applications[END_REF]) consists in truncating for a given index N app and solving the obtained finitedimensional linear system. In our case, this can be efficiently done by taking advantage of its sparse structure.

Define the N app -th truncation of K as K [Napp] := (K Hence, solving the approximate problem:

[Napp] ij ) 1 i,j p , where K [Napp] ij := п Napp • K ij • п Napp . It
Φ + K [Napp] • Φ = Ψ requires O(p 3 N app d 2 )
operations, using the algorithm of [START_REF] Olver | A fast and well-conditioned spectral method[END_REF] for solving almost-banded linear systems (see Section 4.2).

◮ Validation procedure

We extend the validation procedure of Section 4.3 to the vectorial case. We prove the main Theorem 5.12 in order to solve Problem 5.1 in two steps: (1) a Newton-like validation (a) K [Napp] in B p,Napp , by blocks (p = 3) operator is created and bounded by Algorithm IntopVecContract. This first step is independent of the approximation degree N app . (2) The error enclosure of the given approximation is computed by Algorithm IntopVecVal, following Theorems 5.5 and 5.6. The goal of this section is to prove the following theorem.

(b) K [Napp] in B ′ p,N app is almost-banded
Theorem 5.12 Algorithms IntopVecContract and IntopVecVal solve together Problem 5.1 by providing componentwise error enclosures, as tight as desired.

(5.12 i) Algorithm IntopVecContract only depends on the integral equation (not on the provided approximation). It produces and rigorously bounds a Newton-like validation operator and requires O(p 3 N val2 d) arithmetic operations.

(5.12 ii) Algorithm IntopVecVal computes the error enclosures for the approximation and runs in linear time with respect to the maximum degree of the approximations Φ • i and the right-hand sides Ψ i . More precisely, its (arithmetic) complexity is O(p 2 d 2 N app + pN rhs + p 2 N val min(max(N app + d, N rhs ), N val )), where:

• N app := max i deg Φ • i and N rhs := max i deg Ψ i ; • d := 1 + max ij deg k ij (t, s);
• N val is the truncation index used to rigorously approximate the problem in finite dimension, as in Section 4.3.

The previous complexity estimates still involve a truncation index N val , which is directly related to how tight the desired error enclosures have to be. As detailed in Theorem 5.14, which extends the discussion led in Section 4.3.2 to this vectorial setting, complexity estimate of its minimal value ensuring a contracting Newton-like operator is potentially exponential with respect to the magnitude of the coefficients of the integral equation, in the case of stiff LODEs for example. In practice however, this method works efficiently and fully automatically.

Remark 5.13 The algorithms of Section 5.2 are also implemented in the ChebValid C library 2 presented in Chapter 3 (the keyword _vec in the include file names helps to locate them). The example of Section 5.3 is based on this implementation, as well as applications to space flight dynamics presented in [START_REF] Ricardo | Validated Semi-Analytical Transition Matrix for Linearized Relative Spacecraft Dynamics via Chebyshev Polynomials[END_REF] and taken over in Chapter 7.

Newton-like validation operator

Following the quasi-Newton a posteriori validation framework of Section 3.3, Equation (5.10) is transformed into the fixed-point equation:

T • Φ = Φ, T • Φ := Φ -A • (Φ + K • Φ -Ψ), (5.11) 
which is equivalent to (5.10) as soon as A : (Ч 1 ) p → (Ч 1 ) p is injective. Moreover, T is an affine operator of linear part DT = 1-A•(1+K). The main challenge is to efficiently compute A and bound DT (Ч 1 ) p . This is handled by Algorithm IntopVecContract. Similarly to numerical solving, A approximates

(1 + K [N val ] ) -1
, for some truncation order N val . As discussed in the previous chapter, choosing N val is a trade-off between proving T is contracting (N val must be large enough so that K -K [N val ] (Ч 1 ) p is rigorously proved to be sufficiently small) and efficiency requirements.

Once N val is fixed, Algorithm IntopVecContract first computes an approximate inverse A in floating-point (lines 1-4). Since

1 + K [N val ] is almost-banded in B ′
p,N val , its numerical inverse can be either computed with the numerically stable algorithm of [START_REF] Olver | A fast and well-conditioned spectral method[END_REF], or approximated by a (ph ′ , pd ′ ) almost-banded matrix using Algorithm AlmostBandedApproxInverse in Section 4.2, in O(p 3 N val (h ′ + d ′ )(h + d)) operations. The operator A is defined by extending A to the whole space (Ч 1 ) p by the identity.

Second, Algorithm IntopVecContract bounds a Lipschitz matrix for T, by DT (Ч 1 ) p := ( (DT) ij Ч 1 ) 1 i,j p , block by block, using the triangle inequality:

DT Ч 1 1 -A • (1 + K [N val ] ) Ч 1 + A • (K -K [N val ] ) Ч 1 . (5.12) 
The first part of (5.12) is the approximation error, measuring how far A is from the inverse of

1 + K [N val ]
. This is straightforwardly bounded as Λ A (lines 5-9) using O(p 3 N val (h ′ + d ′ )(h + d)) interval arithmetic operations, and the resulting bound takes into account all sources of errors: rounding errors, sparse approximation, etc. Since only additions and multiplications of matrices are involved, the use of interval arithmetic is not critical. However, if needed, the underlying floating-point precision can be increased.

The second part of (5.12) is the truncation error, because the truncated operator

K [N val ] only approximates K. Let E ij be the (i, j) block of E := A • (K -K [N val ] ): E ij = p k=1 A ik • (K kj -K [N val ] kj
).

(5.13)

Algorithm IntopVecContract (lines 10-16) computes Λ T E (Ч 1 ) p by blocks, with the triangle inequality: each subterm of (5.13) is rigorously bounded by Algorithm IntopVec-TruncError. This algorithm, detailed below, requires O((h

′ +d ′ )(h+d) 2 ) interval arithmetic operations. Hence the computation of Λ T is in O(p 3 (h ′ + d ′ )(h + d) 2 ).
Finally, Algorithm IntopVecContract computes Λ = Λ A + Λ T and checks that this Lipschitz matrix is convergent to zero, in which case the constructed Newton-like operator T is contracting. The eigenvalues of Λ can be safely computed with interval arithmetic, for the dimension p is usually small (typically, p 100).

Proof of Theorem (5.12 i). The detailed description of Algorithm IntopVecContract above proves its correctness, and the given complexity estimates for lines 1-4, 5-9 and 10-16 sum to a global complexity of O(p 3 N val (h ′ + d ′ )(h + d)) operations. In the worst case, when A is dense (h ′ + d ′ ≈ N val ), we recover the estimate of Theorem (5.12 i).

Truncation error bounding. From Equation (5.13), one needs to bound

A ik • (K kj - K [N val ] kj
) Ч 1 , where A ik is the extension to Ч 1 of the order N val + 1 matrix A ik by the identity if i = k, and zero otherwise. In fact, the case i = k is handled by Algorithm IntopTruncError in Section 4.3. Therefore, we just need to generalize it to off-diagonal blocks (i.e., i = k): this is Algorithm IntopVecTruncError.

Error enclosures

Finally, Algorithm IntopVecVal implements the validation procedure of Theorems 5.5 and 5.6 by applying the operator T to the candidate approximation Φ • , bounding the distance of the resulting polynomial to Φ • and producing componentwise error enclosures to Φ * with respect to the Ч 1 norm.

Proof of Theorem (5.12 ii). Algorithm

IntopVecVal computes Φ • -T • Φ • = A • (Φ • + K • Φ • -Ψ). Each P k (line 1
) is a polynomial of degree at most max(N app +d, N rhs ), and computing its Chebyshev coefficients is in O(pd 2 N app + N rhs ). Then, the computation of the coefficients of each

A ik • п N val • P k (line 3) is in O((h ′ + d ′ ) deg(п N val • P k )) = O((h ′ + d ′ ) min(max(N app + d, N rhs ), N val )).
Finally, the complexity of computing the enclosures (lines 6-7) only depends on p, and is therefore negligible. The overall complexity is:

O(p 2 d 2 N app + pN rhs + p 2 (h ′ + d ′ ) min(max(N app + d, N rhs ), N val )),
which gives the estimate of Theorem (5.12 ii) when h ′ , d ′ ≈ N val .

Estimating N val

The following theorem provides a worst-case estimate for the minimal value of N val . Although theoretically interesting, this exponential bound is over-pessimistic for a wide range of examples.

Theorem 5.14 Let B ij := κ ij k=0 b ijk Ч 1 and B := (B ij ) 1 i,j p .
(5.14 i) The following bound estimates the minimum possible value for N val making Algorithm IntopVecContract produce a contracting Newton-like operator:

N val = O dρ(B) 2 exp(2ρ(B)) ,
where ρ(B) denotes the spectral radius of B.

(5.14 ii) For a given approximation Φ • of Φ * and in order that Algorithm IntopVecVal computes error enclosures

[ε - i , ε + i ] for ε i = Φ • i -Φ * i Ч 1 with ε + i /ε - i
κ (for some κ > 1), N val for Algorithm IntopVecContract must be at least:

N val = O ν κ -1 d B 2 ∞ exp(2 B ∞ ) , 200 
Algorithm 5.1 IntopVecContract(K, N val , h ′ , d ′ ) -Create and bound a Newton-like op. T Input: a polynomial integral operator K = (K ij ) 1 i,j p given by the (b ijk ) 1 i,j p 0 k κ ij , a truncation order N val , and optional parameters h ′ , d ′ . Output: an approximate inverse A of 1 + K [N val ] and a certified Lipschitz matrix Λ for 1 -A • (1 + K), or "Fail" if N val not large enough.

⊲ Compute an approximate inverse matrix A. δ ← IntopVecTruncError(K jk , N val , A ik , i==k)

1: M = (M ij ) 1 i,j p ← 1 + K [N val ] , by blocks 2: M ′ ← M in basis B ′ p,N val 3: A ′ ← a numerical approximate inverse of M ′ , either dense or (h ′ , d ′ ) almost-banded. 4: A = (A ij ) 1 i,j p ← A ′ in basis B p,N val , by blocks ⊲ Compute the approx error Λ A = (λ A ij ) in interval arithmetic 5: for i = 1 to p and j = 1 to p do 6: C ← 1 k p A ik M kj 7: if i = j then C ← C -1 N val +1 8: λ A ij ← C
14:

λ T ij ← λ T ij + δ 15:
end for 16: end for

⊲ Compute Λ and check if T contracting. 17: Λ ← Λ A + Λ T 18: if ρ(Λ) < 1 then 19: return A, Λ 20: else 21:
return "Fail" 22: end if Algorithm 5.2 IntopVecTruncError(K, N val , A, diag) -Bound the truncation error Input: a polynomial (one-dimensional) integral operator K given by the (b k ) 0 k κ , a truncation order N val , a N val + 1 order square matrix A, and a Boolean diag. Output: an upper bound δ for A • (K -K [N val ] ) Ч 1 , where A is the extension of A to the whole space Ч 1 by the identity if diag = true, and by zero otherwise.

⊲ All operations are performed in interval arithmetic ⊲ Compute δ (1) sup

ℓ∈ N val -d+1,N val B(ℓ) 1: δ (1) ← 0 2: if diag then 3: for ℓ = N val -d + 1 to N val do 4: P ← (1 -п N val ) • K • T ℓ 5: if P Ч 1 > δ (1) then δ (1) ← P Ч 1 6:
end for 7: end if ⊲ Compute δ (2) sup

ℓ∈ N val +1,N val +d B(ℓ) 8: δ (2) ← 0 9: for ℓ = N val + 1 to N val + d do 10: P ← A • п N val • K • T ℓ 11: if diag then P ← P + (1 -п N val ) • K • T ℓ 12:
if P Ч 1 > δ (2) then δ (2) ← P Ч 1 13: end for ⊲ Compute δ (3) sup

ℓ N val +d+1 B D (ℓ) 14: ℓ 0 ← N val + d + 1 and B ← κ k=0 b k Ч 1 15: if diag then 16: P ← (1 -п N val ) • K • T ℓ 0 17: δ (3) ← P Ч 1 + (κ+1)B (ℓ 0 -(κ-1)) 2
18: else 19:

δ (3) ← 0 20: end if ⊲ Compute δ (4) sup ℓ N val +d+1 B I (ℓ) 21: B ′ ← κ k=0 A • b k Ч 1 22: P ← A • п N val • K • T ℓ 0 23: δ (4) ← P Ч 1 + (κ+1) 3 B ′ (ℓ 2 0 -(κ+1) 2 ) 2
24: δ ← max(δ (1) , δ (2) , δ (3) + δ (4) ) 25: return δ

Algorithm 5.3 IntopVecVal(K, Ψ, N val , A, Λ, Φ • ) -Validate a

solution of integral equation

Input: a polynomial integral operator K = (K ij ) 1 i,j p given by the (b ijk ) 1 i,j p 0 k κ ij , a polynomial right-hand side Ψ = (Ψ 1 , . . . , Ψ p ), a truncation order N val , (A, Λ) computed by In-topVecContract (with Λ convergent to 0), and a candidate solution Φ • = (Φ • 1 , . . . , Φ • p ). Output: two vectors of upper and lower bounds ε + and ε -such that Φ

• i -Φ * i Ч 1 ∈ [ε - i , ε + i ] for 1 i p.
⊲ All operations are performed in interval arithmetic

1: for k = 1 to p do P k ← Φ k + p j=1 K kj • Φ • j -Ψ k 2: for i = 1 to p do 3: Q i ← p k=1 A ik • п N val • P k + (1 -п n ) • P i 4: η i ← Q i Ч 1 5: end for 6: ε + ← (1 -Λ) -1 η 7: for i = 1 to p do ε - i ← (1 -D i Λ) -1 η i 8: return ε + and ε - with ν := max 1 i p ε ∞ /ε i , ε ∞ := max 1 i p ε i and B ∞ := max 1 i p p j=1 B ij the associated operator norm.
Proof. (5.14 i) The value of N val must be sufficiently large to ensure that the truncation error

(1 + K [N val ] ) -1 • (K -K [N val ] ) (Ч 1
) p is a convergent to zero matrix.

• We have as a direct consequence of the one-dimensional case (Lemma (4.12 ii)):

K -K [N val ] (Ч 1 ) p = O B N val .
• For i 0, the bound K i

(Ч 1 ) p (6di + 1) (2C) i i!
is generalized from the one-dimensional case contained in the proof of Lemma 4.10, where

C := (C ij ) 1 i,j p with C ij := sup -1 s,t 1 |k ij (t, s)| is bounded by B. Since K [N val ]
converges to K, we may approximate:

(1 + K [N val ] ) -1 (Ч 1 ) p ≈ (1 + K) -1 (Ч 1 ) p = O (dB exp(2B)) .
• We therefore have:

Λ = O dB 2 exp(2B) N val , where Λ = (1 + K [N val ] ) -1 • (K -K [N val ] ) (Ч 1
) p , and by taking the spectral radius (note that B and exp(2B) commute):

ρ(Λ) = O dρ(B) 2 exp(2ρ(B)) N val ,
which gives the estimate for N val to obtain a matrix with spectral radius less than 1.

(5.14 ii) When a maximal overapproximation ratio κ > 1 is fixed, Lemma 5.11 provides a condition on the infinite norm Λ ∞ with Λ = DT (Ч 1 ) p :

Λ ∞ β 2 + β = O κ -1 ν , with β := 1 ν κ -1 κ + 1 .
Again, we focus on the truncation error (since the approximation error can be made as small as desired for a given N val ) and we have Λ = (1 -

K [N val ] ) -1 • (K -K [N val ] ) (Ч 1 ) p .
Similarly than for the spectral radius, we have:

Λ ∞ = O d B 2 ∞ exp(2 B ∞ ) N val .
We therefore obtain the desired estimate.

Example and discussion

Consider the following order 1, two-dimensional system, for x ∈ [0, a] with a > 0, whose solutions (depicted in Figure 5.4) are highly oscillating functions. Rescale it over

[-1, 1] with the change of variable x = a 2 (1 + t):    y ′ 1 = -x n y 2 y ′ 2 = x m y 1 y 1 (0) = 1, y 2 (0) = 0 ⇒      Y ′ 1 = -a 2 n+1 (1 + t) n Y 2 Y ′ 2 = a 2 m+1 (1 + t) m Y 1 Y 1 (-1) = 1, Y 2 (-1) = 0 .
(5.14) We give two different integral transforms associated to this equation. The integral transform described in [START_REF] Benoit | Rigorous uniform approximation of D-finite functions using Chebyshev expansions[END_REF] consists in integrating Equation (5.14) once, resulting into an integral equation for Y with polynomial kernel and right-hand side given by: 

0 1 2 3 -1 0 1 x y 1 (x) y 2 (x)
K(t, s) = 0 a 2 n+1 (1 + s) n -a 2 m+1 (1 + s) m 0 , Ψ(t) = 1 0 . K(t,
K(t, s) = 0 a 2 n+1 (1 + t) n -a 2 m+1 (1 + t) m 0 , Ψ(t) = a 2 n+1 (1 + t) n 0 .
Now, K(t, s) is of degree 0 with respect to s, giving two polynomials b 001 and b 010 of respective degrees n and m.

Let's now focus on the first integral transform, with n = 5, m = 4, a = 3. Using the spectral method explained in Section 5.2.2 and implemented in ChebValid, we fix an approximation degree N app = 100 and obtain numerical approximations Y • 1 and Y • 2 , that must now be validated. The whole implemented procedure automatically computes and bounds for increasing values of N val the Newton-like operator T associated to the truncated operator

K [N val ] .
The approximate inverse is computed as an (2h ′ , 2d ′ ) almost-banded order 2(N val + 1) matrix. This process stops as soon as the total Lipschitz matrix returned by Algorithm IntopVec-Contract has a spectral radius less than 1. In case of failure of IntopVecContract, the procedure is relaunched with N val ← 2N val . For this example, we obtain N val = 1664, h ′ = 48 and d ′ = 304, giving the following Lipschitz matrix:

Λ = 9.73 • 10 -4 9.89 • 10 -2 3.60 • 10 -2 9.92 • 10 -2 , ρ(Λ) = 6.06 • 10 -2 .
The last step is performed by Algorithm IntopVecVal. Given the numerical approximations

Y • 1 and Y • 2 , it computes η = Y • -T • Y • (Ч 1 )
2 (the example gives η 1 = 3.20 • 10 -3 and η 2 = 1.91 • 10 -3 ) and outputs the error enclosures given by Theorems 5.5 and 5.6:

ε - 1 = 2.99 • 10 -3 , ε + 1 = 3.41 • 10 -3 , ε - 2 = 1.78 • 10 -3 , ε + 2 = 2.04 • 10 -3 .
This whole process for this example takes about 30 seconds on a modern computer.

Comparison with decoupling/desingularization

In the case of polynomial coefficients, an alternative consists in decoupling the system to obtain p scalar LODEs of order p, at the cost of introducing singularities in the equations. As an example, the first component y 1 in (5.14) satisfies the following differential equation:

xy ′′ 1 -ny ′ 1 + x n+m+1 y 1 = 0. (5.15)
This equation is singular (its leading coefficient vanishes at 0), so our validation method cannot be used. However, with desingularization techniques [START_REF] Abramov | Apparent singularities of linear difference equations with polynomial coefficients[END_REF], one obtains a higher order but nonsingular equation, whose set of solutions (strictly) contains the ones of the singular equation.
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In our example, by differentiating Equation (5.15) n times and dividing the result by x:

y (n+2) 1 + 1 x d n dx n (x n+m+1 y 1 ) = 0. (5.16)
By inverting the roles of n and m, one obtains a similar equation for y 2 . Hence, validating the approximation y of (5.14) can be done with the validation algorithm IntopVal for the scalar case. Several caveats must therefore be raised. Applying the integral operator of Proposition 4.5 results into a totally intractable problem, since the minimal value for proving that T is contracting is far too large (in practice, we stopped at N val ≃ 10 6 ). This is due to the fact that this transform is used to validate the last derivative y (n+2) 1

, which increases very rapidly due to the highly oscillating behavior of y 1 . On the other hand, the integral transform of [START_REF] Benoit | Rigorous uniform approximation of D-finite functions using Chebyshev expansions[END_REF] yields a far more tractable problem: a truncation order N val = 750 is sufficient for our example. However, Equation (5.16) is very ill-conditioned because of the factorial terms created by the n differentiations. For instance, with classical double precision (53 bits), the scalar validation procedure is able to produce and bound a contracting Newton-like operator T (Algorithm IntopContract), but Algorithm IntopVal outputs an upper bound ε + 1 = 2.57, which is 3 orders of magnitude larger than what was found with the vector-valued validation Algorithm IntopVecVal.

The non D-finite case. In the case of nonpolynomial coefficients, there is no general method to decouple and desingularize the system. Moreover, these coefficients may not be known exactly, but only given as polynomial approximations together with rigorous error bounds. We believe that in such a general case, the vector-valued approach presented in this article is essential to approximate and validate the solution.

An example of a successful application of this validation to a "real life" linear system of LODEs with non-polynomial coefficients is given in Chapter 7.

Conclusion and future directions

In Chapters 4 and 5, we proposed a generic efficient algorithm for computing rigorous polynomial approximations for LODEs (or coupled systems of LODEs). We focused on both its theoretical and practical complexity analysis. For this, firstly, we studied theoretical properties like compactness, convergence, invertibility of associated linear integral operators and their truncations over Ч 1 , the coefficient space of Chebyshev series. Then, we focused on the almost-banded matrix structure of these operators, which allowed for very efficient numerical algorithms for both the numerical solutions of LODEs and the rigorous computation of the approximation error. More specifically, the proposed a posteriori validation algorithm is based on a quasi-Newton method, which benefits from the almost-banded structure of intervening operators. In the vector-valued case, the extension of Banach fixed-point theorem in Section 5.1 moreover yields componentwise tight error bounds, instead of a global one. Finally, several representative examples showed the advantages of our algorithms as well as their theoretical and practical limits. Computations were carried out using the ChebValid C library for RPAs3 presented in Chapter 3.

Several extensions of this work really deserve being investigated:

• A work in progress is to rewrite the Picard iterations based validation method presented in [START_REF] Benoit | Rigorous uniform approximation of D-finite functions using Chebyshev expansions[END_REF] as a quasi-Newton validation technique. Then, using our current almost-banded operator based algorithms, we will be able to generalize the method in [START_REF] Benoit | Rigorous uniform approximation of D-finite functions using Chebyshev expansions[END_REF] to nonhomogeneous and non-polynomial LODEs with a better complexity bound, relying on a more involved analysis of the iterated kernels.

• We also consider the generalization to other families of orthogonal polynomials, such as Legendre polynomials, or Hermite and Laguerre polynomials over unbounded intervals. In fact, orthogonal polynomials always satisfy a three-term-recurrence (see Section 2.2.3), so that the multiplication and integration formulas remain similar, which should produce similar almost-banded integral operators. However, the operator theoretical aspects (compactness, convergence of truncations, etc.) are more challenging for unbounded intervals. Further investigations are needed.

• The propagation of uncertain initial conditions via LODEs may also be explored based on our current techniques.

• Another challenging direction is non-linear ODEs and (linear) PDEs. In both cases however, we have to rely on a multivariate approximation theory with orthogonal polynomials (such theories exist but are not unique and depend on the domain of approximation) and the theory for such differential equations are far less structured than the easy linear univariate case. In particular, the time complexity of such extensions may be huge compared to the present case.

• On the formal proof side, we intend to formalize these algorithms in the Coq development4 presented in Chapter 3, to guarantee both the theoretical correctness of that method and the soundness of its current C implementation.

Part III An Eclectic Mix of Related Problems and Applications

A New Lower Bound on the Hilbert Number for Quartic Systems

6

Si la logique est l'hygiène du mathématicien, ce n'est pas elle qui lui fournit sa nourriture ; le pain quotidien dont il vit, ce sont les grands problèmes.

-André Weil

This chapter takes over the main lines of an ongoing work with Nicolas Brisebarre, Mioara Joldes and Warwick Tucker. Therefore, in this chapter, we refers to the four of us. It consists in an interesting application of symbolic-numeric methods introduced in the previous chapters to a computer-assisted proof for the existence of limit cycles in the setting of Hilbert's 16th problem. More specifically, we prove that there exists a planar, polynomial vector field of degree four exhibiting (at least) 24 limit cycles, which improves the previously best lower bound of 22.

Introduction and global setting

In 1900, at the International Congress of Mathematics held in Paris, David Hilbert presented ten open problems in mathematics, and later published a more comprehensive list of 23 problems [START_REF] Hilbert | Mathematische Probleme. Vortrag, gehalten auf dem internationalen Mathematiker-Congress zu Paris[END_REF] aimed at challenging the mathematical community. Today, most of the Hilbert problems have been resolved (two of them were deemed to be unresolvable), but a few ones still remain open: one of these is Hilbert's 16th problem. Hilbert's 16th problem has two distinct parts: one in real algebraic geometry, and one in dynamical systems. We will address the latter which asks for H(n) -the maximal number of limit cycles (i.e., isolated periodic orbits) the family of two-dimensional polynomial vector fields of (total) degree at most n can display:

Consider the differential equation in | 2 : ẋ = P n (x, y), ẏ = Q n (x, y), (6.1) 
where P n and Q n are polynomials of degree at most n. Is there a minimal upper bound H(n) on the number of limit cycles the system (6.1) can have, that only depends on the degree n? Note that the bound H(n) should be uniform, that is, it should not depend on the particular polynomial vector field, only on its degree n. As of today, this question is not resolved even in the simplest case n = 2. Even finding realistic lower bounds for H(n) appears to be very hard.

The main result of this paper is the following lower bound on H(n) in the quartic setting.

Theorem 6.1 There exist bivariate, quartic polynomials H, P and Q such that, for sufficiently small values of ε > 0, the system ẋ = -yH y (x, y) + εP (x, y), ẏ = yH x (x, y) + εQ(x, y), (

exhibits 24 limit cycles. Hence H(4) 24.

Here we are using the notation H x = ∂H ∂x and H y = ∂H ∂y for brevity. The three polynomials H, P , and Q appearing in the theorem are explicit, see Section 6.2 for details. Note that the previously known best lower bound was H(4) 22 [START_REF] Christopher | Estimating limit cycle bifurcations from centers[END_REF].

Moreover, the ongoing work presented in Section 6.4 aims at proving that 24 is a local upper bound on the number of limit cycles. For now, we can only state the following conjecture. Conjecture 6.2 For the same polynomial H as used in Theorem 6.1, there is no quartic perturbation such that the differential system (6.2) gives rise to more than 24 limit cycles.

This conjecture being proved would imply that we have obtained the maximal number of limit cycles that can arise when perturbing the integrable system under study. Of course, there might very well exist other quartic polynomials H that produce more limit cycles under perturbations of the same degree.

Before describing the details of our set of tools and proof techniques used for establishing Theorem 6.1, we take a step back and provide a short historical perspective of Hilbert's 16th problem together with a summary of known results.

It is worth mentioning that the proofs of these results are very technical and long. Furthermore, it is not known whether any of the obtained lower bounds are sharp.

In light of the lack of progress regarding bounds for H(n), in the mid-seventies, V.I. Arnold [START_REF] Arnol | Loss of stability of self-induced oscillations near resonance, and versal deformations of equivariant vector fields[END_REF][START_REF] Arnol | Ten problems[END_REF] proposed to study a restricted version of the original problem, now known as the infinitesimal (or weak, or tangential ) Hilbert's 16th problem. Rather than considering the class of all polynomial vector fields of a certain degree, Arnold suggested that only small perturbations of Hamiltonian polynomial vector fields be considered. Thus, the corresponding question can be asked:

Consider the differential equation in | 2 : ẋ = -H y (x, y) + εP n (x, y), ẏ = H x (x, y) + εQ n (x, y), (6.3) 
where H(x, y) is a polynomial of degree at most m, P n and Q n are polynomials of degree at most n, and ε = 0 is small. Is there a bound Z(m, n) on the number of limit cycles the system (6.3) can have (for small ε), that only depends on the degrees m and n? Note that we immediately have the lower bound Z(n

) def = Z(n + 1, n) H(n).
For the infinitesimal problem, significant progress has been made, and we have a partial understanding of how polynomial Hamiltonian systems behave under small perturbations.

Some historical landmarks for the infinitesimal problem

1984 Varchenko [START_REF] Varchenko | Estimation of the number of zeros of an abelian integral depending on a parameter, and limit cycles[END_REF] and Khovanskii [START_REF] Khovanskiȋ | Real analytic manifolds with the property of finiteness, and complex abelian integrals[END_REF] (independently) proved that Z(n, m) < ∞.

2006 A uniform proof for Z(2) = 2 appeared in 2006 by Chen, Li, Llibre, and Zhang [START_REF] Chen | A unified proof on the weak Hilbert 16th problem for n = 2[END_REF].

This result was based on special cases established during the period 1994-2002.

2010 Binyamini, Novikov, and Yakovenko [START_REF] Binyamini | On the number of zeros of Abelian integrals[END_REF] proved an upper bound: Z(n) 2 2 p(n) , where p is an "explicit" polynomial of degree no greater than 61.

Some other results are: Z(3) 13 [START_REF] Li | A cubic system with thirteen limit cycles[END_REF], Z(5) 27 [START_REF] Johnson | An improved lower bound on the number of limit cycles bifurcating from a quintic Hamiltonian planar vector field under quintic perturbation[END_REF], Z(7) 53 [START_REF] Johnson | An improved lower bound on the number of limit cycles bifurcating from a Hamiltonian planar vector field of degree 7[END_REF], and Z(11) 121 [START_REF] Wang | Existence of 121 limit cycles in a perturbed planar polynomial Hamiltonian vector field of degree 11[END_REF].

◮ Abelian integrals

The study of perturbed Hamiltonian systems depends heavily on a theorem by Poincaré and Pontryagin, that makes a strong connection between the existence of a limit cycle and a zero of a certain Abelian integral.

The Poincaré return map is the key tool to understand this connection. Consider the unperturbed Hamiltonian system and take a transversal Σ, that is a portion of a curve crossing non-tangentially a foliation of periodic orbits of this unperturbed system. This transversal may be parameterized by the parameter h (the energy level) of the unperturbed system for some domain h 1 h h 2 . By continuity, for a sufficiently small ε, every trajectory originating from a point Σ(h) of the transversal in the perturbed Hamiltonian system will cross Σ again. The Poincaré return map Π associates to h and ε the parameter Π(h, ε) corresponding to the point of return to Σ, and d(h, ε) = Π(h, ε) -h is called the displacement function. Clearly, the point Σ(h) belongs to a periodic orbit of the perturbed system if and only if d(h, ε) = 0, and this is a limit cycle if and only if it is isolated. Zeros of Abelian integrals are related to limit cycles in the following way: given a Hamiltonian system and a perturbation (6.3) the Abelian integral over the oval Γ(h) is defined as

0.9 1 1.1 1.2 1.3 0.9 1 1.1 1.2 h P (h) P 2 (h) P 3 (h) d(h) x y
I(h) = Γ(h) P n (x, y) dy -Q n (x, y) dx.
Here Γ(h) is a closed curve (perhaps one of several) making up the level set H -1 (h) of the Hamiltonian. The Poincaré-Pontryagin theorem roughly states that d(h, ε) ≈ εI(h) for small values of ε (see Theorem 6.3 for more details). Hence, the number of isolated zeros of I(h) where a change of sign occurs (in particular, simple zeros of I(h)) provides a lower bound for the number of limit cycles of (6.3) that exist for small ε > 0. Considering zeros of I(h) of higher multiplicity it is possible to get an upper bound on the number of limit cycles that can bifurcate from the unperturbed periodic orbit(s) Γ(h), see [START_REF] Christopher | Limit cycles of differential equations[END_REF].

The function I(h) can be decomposed into a linear combination

I(h) = α 0 I 0 (h) + α 1 I 1 (h) + • • • + α m-1 I m-1 (h), (6.4) 
where each α k depends on the coefficients of P n and Q n , which are considered as parameters, and each I k is an Abelian integral with the 1-form ω = x i y j dx or ω = x i y j dy. Therefore the problem of bounding the number of limit cycles of (6.3) is equivalent to bounding the number of zeros of any function in the linear span of I 0 , I 1 . . . ,I m-1 .

◮ Our approach

In [START_REF] Johnson | A quartic system with twenty-six limit cycles[END_REF], T. Johnson constructs a quartic pseudo-Hamiltonian vector field together with a perturbation (defined by appropriate coefficients α i as in Equation (6.4)). Using a rigorous validation integration routine, he claims to prove the existence of 26 limit cycles, thus surpassing the previously known record H(4) 22 [START_REF] Christopher | Limit cycles of differential equations[END_REF]. Unfortunately, a bug in his implementation led him to observe more zeros in the Abelian integral than what actually exists.

In the present work, we take over the quartic vector field of [START_REF] Johnson | A quartic system with twenty-six limit cycles[END_REF], which is introduced in details in Section 6.2, and give new values for the coefficients of the perturbation to recover as many limit cycles as possible. We found 24 such ones, which, although less than 26, is larger than the record 22. We stress out the fact that the evaluation of Abelian integrals, which guarantees the existence of 24 limit cycles, is not only carried out using our ChebValid C library 1 , but also certified by the Coq development2 [START_REF] Bréhard | A certificate-based approach to formally verified approximations[END_REF] presented in Chapter 3. The goal is to provide a proof of Section 6.1 with the highest confidence level. The whole approach, from the computation of the coefficients of the perturbation to the rigorous and certified evaluation of the Abelian integrals, is summarized in Section 6.3.

Finally, we address in Section 6.4 the following natural question: is it possible to find even more limit cycles for the same vector field, by finding other values for the coefficients of the perturbation? For this end, we will need the notion of Wronskian to investigate the maximal possible number of zeros of linear combinations of Abelian integrals. Consequently, continuous rigorous representations of the Abelian integrals are necessary.

Construction of a perturbed system

In order to provide a lower bound for H(4), we investigate the limit cycles of a degree 4 perturbed pseudo-Hamiltonian system, presented in Section 6.2.2 and based on the potential function H defined in Section 6.2.1. Since this system is not Hamiltonian, this does not result into a lower bound for Z(4). However, this system is still integrable, and the generalized Poincaré-Pontryagin theorem (Theorem 6.3) allows us to use similar techniques based on Abelian integrals to determine a perturbation maximizing the number of limit cycles. In Section 6.2.3, we give the explicit parameterizations of the resulting ovals, which will be used in the rigorous evaluation of the Abelian integrals in Section 6.3.

◮ The potential function H

The potential function used throughout this article is defined as in [START_REF] Johnson | A quartic system with twenty-six limit cycles[END_REF], up to a constant:

H(x, y) = (x 2 -X 0 ) 2 + (y 2 -Y 0 ) 2 , (6.5) 
where X 0 and Y 0 are constants satisfying 0 < X 0 < Y 0 (the choice X 0 < Y 0 will be explained below).

The level set associated to the parameter h 0, represented in the (x 2 , y 2 ) plane, is the portion of the circle of center (X 0 , Y 0 ) and radius r = √ h located in the positive quadrant (see Figure 6.2a). In the (x, y) plane, this results into the ovals depicted in Figure 6.2b. In particular, it is symmetric with respect to both the x and y axes. More specifically, three cases for h > 0 are to be distinguished:

• When h ∈ (0, X 2 0 ) (i.e., r ∈ (0, X 0 )), the circle defined by (x 2 , y 2 ) entirely lies in the positive quadrant. In the (x, y) plane, this results into four symmetric ovals that we call small ovals:

Γ ++ (h) = H -1 (h) ∩ | 0 × | 0 , Γ +-(h) = H -1 (h) ∩ | 0 × | 0 , Γ -+ (h) = H -1 (h) ∩ | 0 × | 0 , Γ --(h) = H -1 (h) ∩ | 0 × | 0 . (6.6)
• When h ∈ (X 2 0 , Y 2 0 ) (i.e., r ∈ (X 0 , Y 0 )), a portion of this circle crosses the y-axis. The four small ovals merge into two symmetric big ovals:

Γ + (h) = H -1 (h) ∩ | × | 0 , Γ -(h) = H -1 (h) ∩ | × | 0 . (6.7) 
• For h > Y 2 0 (i.e., r > Y 0 ), the resulting ovals (one external and one internal for Y 0 < r < X 2 0 + Y 2 0 , and only one external for r > X 2 0 + Y 2 0 ) all cross the x-axis. Because of the rescaling by y used in the pseudo-Hamiltonian system given in next section, these ovals do not correspond to periodic orbits but to heteroclinic orbits. Notice moreover that for the limit case r = X 0 (resp. Y 0 ), the small (resp. big) ovals meet at a singular point, which will be an equilibrium point in the pseudo-Hamiltonian system, resulting into a homoclinic (resp. heteroclinic) orbit. In the rest of the article, we will therefore focus on the first two cases, corresponding to the four small ovals and the two big ovals.

Note that if we assume Y 0 X 0 , we would only have one useful case (the four small ovals), instead of two, to exploit. For an oval of H of level h over which σ does not vanish, define the Abelian integral

I(h) = Γ(h)
g 1 (x, y)dy -g 2 (x, y)dx σ(x, y) .

Then the displacement function d(h, ε) (as described in Section 6.1.2) is approximated as

d(h, ε) = εI(h) + O(ε 2 ), as ε → 0.
In particular, when I(h) = 0, d(h, ε) and I(h) have the same (strict) sign for small ε > 0.

In our case, this allows us to have integrands of the form x i y j /y dx and x i y j /y dy with i + j 4, which are not polynomials for j = 0. We therefore have more flexibility than the pure Hamiltonian setting. To each such perturbation g = (g 1 , g 2 ), we can associate Abelian integrals on small and big ovals, where the line integral is taken in the usual trigonometric orientation:

I ⋄ (h) = Γ ⋄ (h) g 1 (x, y)dy -g 2 (x, y)dx y , ( , 
⋄) ∈ {+, -} 2 , h ∈ (0, X 2 0 ), I ⋄ (h) = Γ ⋄ (h) g 1 (x, y)dy -g 2 (x, y)dx y , ⋄ ∈ {+, -}, h ∈ (X 2 0 , Y 2 0 ).
As in [START_REF] Johnson | A quartic system with twenty-six limit cycles[END_REF], we only consider the following restricted perturbation: g 1 (x, y) = 0, g 2 (x, y) = α 00 + α 20 x 2 + α 22 x 2 y 2 + α 40 x 4 + α 04 y 4 , α ij ∈ |.

This choice is guided by the following requirements:

• Symmetry: We decide to keep only symmetric perturbations, meaning that the four Abelian integrals I ⋄ (h) must be equal, up to the sign. Moreover, I +⋄ (h) and I -⋄ (h) must have the same sign, otherwise I ⋄ (h) = 0 for h ∈ (X 2 0 , Y 2 0 ) on big ovals:

I ++ (h) = I -+ (h) = (-1) e I --(h) = (-1) e I +-(h), e ∈ {0, 1}. (6.9) 
With these conditions, one just needs to investigate the sign alternations of I ++ (h) on the small ovals Γ ++ (h) for h ∈ (0, X 2 0 ), and I + (h) on the big ovals Γ + (h) for h ∈ (X 2 0 , Y 2 0 ). We simply write I(h) and Γ(h) in that case.

• Linear independence: The Abelian integrals corresponding to the monomials appearing in g 1 and g 2 must form an independent family. Proposition 6. [START_REF] Anderson | LAPACK Users' guide[END_REF] The five Abelian integrals corresponding to the five monomials of (6.2.2) are linearly independent and satisfy the symmetry requirements (6.9). Moreover, this family is maximal in the sense that adding another monomial in g 1 or g 2 gives rise to an extra Abelian integral that violates the symmetry requirements or the linear independence.

In the end, we have to consider linear combinations of five Abelian integrals, investigate the resulting sign alternations and apply a factor 4 (respectively 2) to every sign change detected on the small ovals (respectively big ovals).

I(h) = α 00 I 00 (h) + α 20 I 20 (h) + α 22 I 22 (h) + α 40 I 40 (h) + α 04 I 04 (h), with I ij (h) = - Γ(h)
x i y j y dx. (6.10)

◮ Formulas for the Abelian integrals I ij

In order to evaluate the Abelian integrals I ij (h) for a given parameter h, we use explicit expressions using an appropriate parameterization of Γ(h). For the small and big ovals, our parameterization consists in subdividing Γ(h) into four parts, two of them being expressed under the form y(x), and the two others under the form x(y). Sections 6.2.3 and 6.2.3 give the desired explicit integrals obtained with this parameterization, that will be used in Section 6.3 for the rigorous computation of the I ij (h).

Note that the small ovals also admit a simple trigonometric parameterization (since Γ(h) is a circle in the (x 2 , y 2 ) plane) that we do not present here, as it can hardly be transposed to the rigorous evaluation on the big ovals.

In all this section, we assume 0 < X 0 < Y 0 .

Abelian integrals on the small ovals

We fix an energy level h = r 2 ∈ (0, X 2 0 ), defining four symmetric small ovals as described in Section 6.2.1. Let Γ(h) denote the one in the positive quadrant. By dividing the corresponding circle of center (X 0 , Y 0 ) and radius r in the (x 2 , y 2 ) plane into four parts (see Figure 6.3a), we get a parameterization of Γ(h) as γ The parametric expressions y up (x), y down (x), x left (y) and x right (y), as well as the corresponding path extremities x min , x max , y min and y max , admit explicit expressions:

• 1,h ∪ γ • 2,h ∪ γ 3,h ∪ γ 4,
x min = X 0 - r √ 2 , x max = X 0 + r √ 2 , y min = Y 0 - r √ 2 , y max = Y 0 + r √ 2 , δ y (x) = r 2 -(x 2 -X 0 ) 2 , δ x (y) = r 2 -(y 2 -Y 0 ) 2 , y down (x) = Y 0 -δ y (x), y up (x) = Y 0 + δ y (x),
x left (y) = X 0 -δ x (y),

x right (y) = X 0 + δ x (y),

x left ′ (y) = y(y 2 -Y 0 ) δ x (y)x left (y) , x right ′ (y) = - y(y 2 -Y 0 ) δ x (y)x right (y) . (6.11)
We can therefore express I ij (h) using integrals over segments of the real line:

I ij (h) = - γ • 1,h x i y j y dx - γ • 2,h
x i y j y dxγ 3,h

x i y j y dxγ 4,h

x i y j y dx = xmax x min

x i (y up j-1 (x) -y down j-1 (x)) dx + ymax y min (x left i-1 (y) + x right i-1 (y))y j y 2 -Y 0 δ x (y) dy.

(6.12) 

0 1 2 0 1 2 Y 0 + r √ 2 Y 0 -r √ 2 X 0 -r √ 2 X 0 + r √ 2 π 4 X = x 2 Y = y 2 (a)
x min x max < γ • 1,h < γ • 2,h > γ 3,h > γ 4,h x y (b) Parameterization of Γ(h) as γ • 1,h ∪ γ • 2,h ∪ γ 3,h ∪ γ 4,h

Abelian integrals on the big ovals

We now fix h = r 2 ∈ (X 2 0 , Y 2 0 ). Let Γ(h) denote, among the two symmetric big ovals described in Section 6.2.1, the upper one located in the half plane {y > 0}. In the (x 2 , y 2 ) plane, it is associated to the portion of the circle of center (X 0 , Y 0 ) and radius r located in the positive quadrant. This arc is partitioned as in Figure 6.4a, giving the parameterization of Γ(h) as γ

• 1,h ∪ γ • 2,h ∪ γ 3,h ∪ γ 4,h (see Figure 6.4b): γ 1,h : x ∈ [-x max , x max ] → (x, y up (x)), γ 2,h : y ∈ [y min , y max ] → (-x right (y), y), γ 3,h : x ∈ [-x max , x max ] → (x, y down (x)), γ 4,h : y ∈ [y min , y max ] → (x right (y), y),
where the parametric expressions y up (x), y down (x), x left (y), x right (y), and the path extremities x max , y min , y max are still given by (6.11). This allows us to give the following explicit expressions for I ij (h) on the big ovals:

I ij (h) = 2 xmax 0 x i (y up j-1 (x) -y down j-1 (x)) dx + 2 ymax y min
x right i-1 (y)y j y 2 -Y 0 δ x (y) dy. (6.13)

0 1 2 0 1 2 Y 0 + r √ 2 Y 0 -r √ 2 X 0 + r √ 2 π 4 X = x 2 Y = y 2
(a) Division of the portion of the circle in the positive quadrant 

-1 0 1 0 1 y max y min -x max x max < γ • 1,h < γ • 2,h > γ 3,h > γ 4,h x y (b) Parameterization of Γ(h) as γ • 1,h ∪ γ • 2,h ∪ γ 3,h ∪ γ 4,h

Computer-assisted proof of the main theorem

The purpose of this section is to provide a rigorous computer-assisted proof of Theorem 6.1 by choosing appropriate coefficients α ij in Equation (6.10), computing rigorous interval enclosures for the evaluation of the Abelian integral I(h), and counting the number of sign changes.

◮ Computing the coefficients α ij

Our strategy to determine these coefficients is the following. We first try to maximize the number of zeros on the small ovals domain h ∈ (0, X 2 0 ), since by symmetry each sign change gives rise to four limit cycles. We uniformly discretize the interval (0, X 2 0 ) with M points and evaluate the I ij (h) on that grid. At that point and due to efficiency reasons, we only perform numerical evaluations without error bounds. It is clear that for every subset of four points from the grid, there exists a non-trivial linear combination I(h) = α ij I ij (h) of the five Abelian integrals I ij (h) that vanishes on these points. Hence, we repeat the process for all subsets of four points and count the resulting number of sign changes, hoping for an extra fifth one. We also count the number of sign changes obtained on the big ovals domain h ∈ (X 2 0 , Y 2 0 ), each of them inducing two limit cycles by symmetry. We finally consider the combination that maximizes the number of sign changes, counted with multiplicity induced by the symmetries. This is how coefficients of Table 6.1 were obtained, using a grid of size M = 200. The corresponding Abelian integral I(h) shows 5 sign changes on the small ovals domain and 2 on the big ovals one, yielding the announced result of 5 × 4 + 2 × 2 = 24 limit cycles. Note that these values should not be truncated, otherwise the expected sign alternations may not happen. α 00 = -0.78622148667854837664 α 20 = 0.87723523612653436051 α 22 = 1 α 40 = 0.23742713894293038223 α 04 = -0.21823846173078863753 Table 6.1: Reference values for the coefficients α ij , using a grid of size M = 200.

◮ Rigorous pointwise evaluation of the Abelian integrals

We compute rigorous interval enclosures I I(h) of the values of Abelian integrals I(h) for specific values of the energy level h, using Chebyshev models for the parameterizations and formulas established in Section 6.2.3. The existence of sufficiently many simple zeros needed to prove Theorem 6.1 is guaranteed by the sign alternation of these rigorous pointwise evaluations. More specifically, for a fixed r = √ h ∈ (0, X 0 ), Chebyshev models are computed for the integrands appearing in Equation (6.12). All the needed operations are covered by Chapter 3. After that, those Chebyshev models are integrated over [x min , x max ] and [y min , y max ], and the results are summed to provide a rigorous enclosure of I ij (h). This operation is performed for each of the five Abelian integrals, yielding the expected enclosure I I(h) of I(h), using Equation (6.10) and coefficients α ij from Table 6.1.

We proceed similarly for r = √ h ∈ (X 0 , Y 0 ), but using the parametric formulas for the big ovals (Equation (6.13)). Table 6.2 gives interval enclosures I I(h) of I(h) for 9 values of h using this rigorous pointwise evaluation method and the coefficients of Table 6.1. Figure 6.5 provides a graphical representation of the sign alternations on small and big ovals. All the computations were performed using the ChebValid C library3 for rigorous numerics with Chebyshev models presented in Chapter 3.

Proof of Theorem 6.1. Let h i (1 i 9) denote the 9 values of h in Table 6.2, taken in increasing order. The intervals I I(h i ) given in this table are rigorous enclosures of the I(h i ), by the correctness of the operations on Chebyshev models detailed in Chapter 3.

According to Theorem 6.3, there exists for each h i , an ε i > 0 such that d(h i , ε) and I(h i ) share the same (strict) sign whenever 0 < ε ε i . Hence, with ε * = min 0 i 9 ε i > 0, we have that h → d(h, ε) alternates sign at least 5 times on (0, X 2 0 ) and at least 2 times on (X 2 0 , Y 2 0 ), for each fixed 0 < ε ε * , giving respectively at least 5 and 2 isolated zeros in these intervals.

Finally, using the symmetries on the four small ovals and the two big ovals, we deduce the existence of at least 5 × 4 + 2 × 2 = 24 limit cycles in the quartic system (6.8) whenever 0 < ε ε * .

Certified results

The results presented above were obtained using the C library ChebValid. However, as exemplified by the bug in the code used in [START_REF] Johnson | A quartic system with twenty-six limit cycles[END_REF], a higher level of confidence is not unnecessary. 6.2: Rigorous evaluation of I(h) and sign alternations on the small and big ovals. The approximation degree N used in Chebyshev models is chosen to ensure that the resulting interval enclosure I I(h) [N ] guarantees the sign of I(h). For comparison, precise enclosures I I(h) [N ref ] with N ref = 300 are also given.

To this aim, we also provide certified evaluations using the Coq library presented in Chapter 3.

Only the computations for the small ovals, summarized in Table 6 

Related ongoing works

When it comes to upper bounds for Conjecture 6.2, a relevant technique is that of verifying Chebyshev properties of certain families of Abelian integrals. Given a Hamiltonian H and (a family of) perturbations P and Q, we want to know when the associated collection of Abelian integrals form an extended complete Chebyshev system [START_REF] Karlin | Tchebycheff systems: With applications in analysis and statistics[END_REF] (ECT-system for short). An ordered set of functions (f 0 , f 1 , . . . , f n ) forms an ECT-system on an interval J (the range of energies h in our case) if, for all k = 1, 2, . . . , n, any nontrivial linear combination α 0 f 0 (h) + α 1 f 1 (h) + . . . + α k f k (h) has at most k zeros on J counted with multiplicity.

For convenience, we state the precise definitions below, extending the Haar condition and the definition of Chebyshev systems (cf. Definition 2.20). Here J is a closed, non-empty interval of the real line. Definition 6.5 Let f 0 , f 1 , . . . , f n-1 ∈ C n-1 (J).

1. The ordered set of functions (f 0 , f 1 , . . . , f n-1 ) is a complete Chebyshev system (in short, CT-system) on J if, for all k = 1, 2, . . . , n, any nontrivial linear combination

α 0 f 0 (x) + α 1 f 1 (x) + . . . + α k-1 f k-1 (x)
has at most k -1 zeros on J.

2. The ordered set of functions (f 0 , f 1 , . . . , f n-1 ) is an extended complete Chebyshev system (in short, ECT-system) on J if, for all k = 1, 2, . . . , n, any nontrivial linear combination

α 0 f 0 (x) + α 1 f 1 (x) + . . . + α k-1 f k-1 (x)
has at most k -1 zeros on J counted with multiplicity.

It is clear that if (f 0 , f 1 , . . . , f n-1 ) is an ECT-system on J, then it is a CT-system on J.

Definition 6.6 Let f 0 , f 1 , . . . , f k-1 ∈ C k-1 (J). The Wronskian of (f 0 , f 1 , . . . , f k-1 ) at x ∈ J is W [f 0 , f 1 , . . . , f k-1 ](x) = det f (i) j (x) 0 i,j k-1 = f 0 (x) f 1 (x) . . . f k-1 (x) f ′ 0 (x) f ′ 1 (x) . . . f ′ k-1 (x) . . . . . . • • • . . . f (k-1) 0 (x) f (k-1) 1 (x) . . . f (k-1) k-1 (x) 
. Lemma 6.7 Let f 0 , f 1 , . . . , f n-1 ∈ C n-1 (J). The ordered set (f 0 , f 1 , . . . , f n-1 ) is an ECTsystem on J if and only if for each k = 1, 2, . . . n, W [f 0 , f 1 , . . . , f k-1 ](x) = 0 for all x ∈ J.

Clearly, there is no hope that our five Abelian integrals are an ECT system, even on h ∈ (0, X 2 0 ), since a combination with 5 zeros on that interval was given in the previous section. Instead, we consider the notion of Chebyshev system with positive accuracy [START_REF] Novaes | On extended Chebyshev systems with positive accuracy[END_REF]. Definition 6.8 Let f 0 , f 1 , . . . , f n-1 ∈ C n-1 (J), and r ∈ ◆.

1. The ordered set of functions (f 0 , f 1 , . . . , f n-1 ) is a complete Chebyshev system with accuracy r on J if, for all k ∈ 1, n , any nontrivial linear combination

α 0 f 0 (x) + α 1 f 1 (x) + . . . + α k-1 f k-1 (x)
has at most k -1 + r zeros on J.

2. The ordered set of functions (f 0 , f 1 , . . . , f n-1 ) is an extended complete Chebyshev system with accuracy r on J if, for all k ∈ 1, n , any nontrivial linear combination

α 0 f 0 (x) + α 1 f 1 (x) + . . . + α k-1 f k-1 (x)
has at most k -1 + r zeros on J counted with multiplicity.

Hence, if we prove that the five Abelian integrals are an ECT-system with accuracy 1, then we cannot hope to obtain more than five zeros on the small ovals domain h ∈ (0, X 2 0 ). The theory of ECT systems is by far more complex than standard ECT systems [START_REF] Novaes | On extended Chebyshev systems with positive accuracy[END_REF]. Fortunately, for accuracy 1, we have the following simple characterization [START_REF] Novaes | On extended Chebyshev systems with positive accuracy[END_REF]Cor. 1.4]. Lemma 6.9 Let f 0 , f 1 , . . . , f n-1 ∈ C n-1 (J). If the Wronskians W [f 0 , . . . , f k-1 ] are nonvanishing over J for k ∈ 1, n -1 , and the last Wronskian W [f 0 , . . . , f n-1 ] has a single simple zero over J, then (f 0 , . . . , f n-1 ) is an ECT system with accuracy 1. More precisely:

• (f 0 , . . . , f n-2 ) is an ECT system;

• any nontrivial linear combination of (f 0 , . . . , f n-1 ) has at most n zeros (counted with multiplicity), and at least one reaches this bound.

To be able to prove this property on the Wronskians, we cannot rely on the pointwise evaluation of Abelian integrals anymore. Instead, we need continuous rigorous representations for the Abelian integrals and their derivatives. Here is the road-map of our ongoing work:

1. Using Creative Telescoping techniques briefly presented in Chapter 2, we obtain LODEs with polynomial coefficients for the five Abelian integrals, as discussed in the next section.

2.

Unfortunately, these equations are singular for h = 0 and h = X 2 0 . For the left endpoint h = 0, one can however prove using the Laplace transform that the Abelian integrals are analytic around 0, and explicit truncated Taylor series can be computed. Although this is still ongoing work, this theoretically gives the possibility to compute rigorous Taylor models for the Abelian integrals (and their derivative) over some small interval [0, ε].

3.

By evaluating these Taylor modes at h = ε, one gets new initial conditions at ε. Hence, using the validation technique of Chapter 4, one can compute Chebyshev models for the Abelian integrals and their derivatives on the interval [ε, X 2 0 -ε].

4. Finally, one would need rigorous representations over the last remaining part [X 2 0 -ε, X 2 0 ). Unfortunately, the Abelian integrals are not analytic at X 2 0 . However, computer algebra techniques show that they admit series expansions of the form:

a 0 + +∞ n=1 a n + b n log(X 2 0 -h) (X 2 0 -h) n .
Hence, this example highly motivates the development of new validation techniques for rigorous approximations in non-polynomial bases.

A Creative Telescoping based approach

As mentioned above, one needs RPAs for the Abelian integrals and their derivatives in order to compute a RPA for the Wronskians and therefore bounding the number of zeros. One possibility is to represent the integrand of the Abelian integral with a bivariate rigorous polynomial approximation and afterwards to integrate it with respect to the integration variable. However, generic bivariate polynomial representations of degree N have size O(N 2 ). Instead, we propose to obtain LODEs for the Abelian integrals, so that we can apply the validation technique of Chapter 4. To this aim, we use Creative Telescoping techniques (see Section 2.1.2) over semi-algebraic sets. As a preliminary remark, Green's theorem is used to rewrite the Abelian integral (6.10) as a two-dimensional integral over the interior of the oval:

I ij (h) = Int(Γ(h)) (j -1)x i y j-2 dxdy.
The integrand is a D-finite function of (x, y, h), with the following annihilator:

Ann ij = {∂ h , x∂ x -i, y∂ y -(j -2)}.
In order to be able to apply Creative Telescoping methods over the semi-algebraic set Int(Γ(h)) which is not a Cartesian product, we consider the following approach, advocated in [START_REF] Oaku | Algorithms for integrals of holonomic functions over domains defined by polynomial inequalities[END_REF]. First, we rewrite the Abelian integral as:

I ij (h) = +∞ -∞ +∞ -∞ (j -1)x i y j-2 1 Int(Γ(h)) (x, y)dxdy, (6.14) 
where 1 Int(Γ(h) (x, y) = 1 iff (x, y) ∈ Int(Γ(h)), 0 otherwise. We thus recover a regular Cartesian product with natural boundaries, since the integrand (j -1)x i y j-2 1 Int(Γ(h)) (x, y)dxdy is zero outside the compact set Int(Γ(h)). This integrand is no longer a smooth function, but can be seen as a generalized function or distribution, satisfying the following relations, obtained by multiplying those of Ann ij by H(x, y)h to "regularize" what happens at the border Γ(h):

Ann ij = {(H(x, y) -h)∂ h , (H(x, y) -h)(x∂ x -i), (H(x, y) -h)(y∂ y -(j -2))}
The ideal Ann ij must be first rewritten in a "canonical basis" (namely, as a non-commutative Gröbner basis). Afterwards, a Creative Telescoping algorithm, Takayama's algorithm [START_REF] Takayama | An algorithm of constructing the integral of a module -an infinite dimensional analog of gröbner basis[END_REF], produces an annihilator for I ij (h), that is a LODE with polynomial coefficients in h. The main characteristics of the LODEs obtained for the five Abelian integrals are summarized in Table 6.4. The roots of the leading coefficient are the singular points of the differential equation, where the Picard-Lindelöf theorem does not apply. The points h = 0, X 2 0 , Y 2 0 , X 2 0 +Y 2 0 are simple zeros: they are called regular singular points. Their presence was predictible due to the geometry of the problem. We also notice other factors in the leading coefficients, but desingularization techniques show that they are apparent singularities that can be removed. Table 6.5 gives the main characteristics of the desingularized differential equations obtained for X 0 = 9/10 and Y 0 = 11/10. Remark 6.10 For the sake of simplicity, the presentation given here is rather intuitive. The rigorous framework for holonomic distributions and Creative Telescoping over semi-algebraic sets will be given in Chapter 9.

Beside the explicit form of these LODEs, one also needs corresponding initial conditions in order to be able to compute RPAs. As explained in Step 2 of the road-map given before, we propose an approach based on Laplace transform.

Exponents

Characteristics of LODE i j order leading coefficient Taylor expansions around 0 using the Laplace transform

0 0 3 16h(h -X 0 ) 2 (h -Y 0 ) 2 (h -X 2 0 -Y 2 0 )(-X 4 0 + 4hY 2 0 -2X 2 0 Y 2 0 -Y 4 0 ) 2 0 3 -16h(h -X 0 ) 2 (h -Y 0 ) 2 (h -X 2 0 -Y 2 0 )(2h -X 2 0 -Y 2 0 ) 4 0 4 -16h(h -X 0 ) 2 (h -Y 0 ) 2 (h -X 2 0 -Y 2 0 )(8hX 2 0 -5X 4 0 + 4hY 2 0 -6X 2 0 Y 2 0 -Y 4 0 ) 2 2 4 -16h(h -X 0 ) 2 (h -Y 0 ) 2 (h -X 2 0 -Y 2 0 )(4hX 2 0 -3X 4 0 -2X 2 0 Y 2 0 + Y 4 0 ) 0 4 4 16h(h -X 0 ) 2 (h -Y 0 ) 2 (h -X 2 0 -Y 2 0 )(X 4 0 + 4hY 2 0 -2X 2 0 Y 2 0 -3Y 4 0 )
Consider the Laplace transform of the integral (6.14):

L(I ij )(s) = ∞ 0 I ij (h)e -sh dh.
When L(I ij )(s) is well-defined, one has

L(I ij )(s) = j -1 s ∞ -∞
x i e -s(x 2 -x 0 ) 2 dx ∞ -∞ y j-2 e -s(y 2 -y 0 ) 2 dy.

From this expression, one can prove that L(I ij )(s) has a closed-form in terms of Bessel functions and their derivatives. Specifically, let I ν (x) (and K ν (x)) denote the modified Bessel function of first (and respectively second) kind. The following proposition holds.

Proposition 6.11 Let L α (s) = ∞ -∞
x α e -s(x 2 -x 0 ) 2 dx, (6.15) which is defined for α > -1. Then

L 0 (s) = e -sx 0 2 (4s) -1/4 L0 ( √ sx 0 ), L 2 (s) = e -sx 0 2 (4s) -3/4 ∂ a L0 ( √ sx 0 ), L 4 (s) = e -sx 0 2 (4s) -5/4 ∂ 2 a L0 ( √ sx 0 ),
where L0 (a) = e a 2 /2 √ a √ 2πI 1/4 a 2 /2 + K 1/4 a 2 /2 . (6.16)

Proof. Equation (6.15) becomes, with the change of variable (4s) 1/4 x = z:

L α (s) = e -sx 0 2 (4s) -(α+1)/4 ∞ -∞
z α e -z 4 /4+s 1/2 x 0 z 2 dz.

Consider now, for a 0 and α > -1, the parametric integral:

Lα (a) = ∞ -∞
z α e -z 4 /4+az 2 dz, which satisfies:

∂ 2 a Lα -2a∂ a Lα -(α + 1) Lα = 0. (6.17)
This can be easily seen by by-parts integration:

∂ 2 a Lα = ∞ -∞ z α+4 e -z 4 /4+az 2 dz = ∞ -∞ -z α+1 (-z 3 + 2az)e -z 4 /4+az 2 dz + ∞ -∞
2az α+2 e -z 4 /4+az 2 dz.

Moreover for α = 0, one has that L0 (0) = π γ(3/4) and ∂ a L0 (0) = √ 2γ(3/4), where we denote the Gamma function by γ. One can check that the solution of Equation (6.17) is given by (6.16).

We also need this crucial lemma, sometimes refered to as converse Watson's lemma [262, Chap. I.5]. Lemma 6.12 (Converse Watson's lemma) Let f be continuous over [0, +∞], such that its Laplace transform F is well-defined for Re(s) > s 0 ∈ |:

F (s) := L(f )(s) = +∞ 0 f (t)e -st dt, Re(s) > s 0 .
If F admits the following asymptotic series expansion for s → +∞:

F (s) ∼ +∞ n=0 a n n! s n+1 , s → +∞,
then f admits the following asymptotic expansion at 0

f (t) ∼ +∞ n=0 a n t n , t → 0 + .
This lemma therefore shows that the Abelian integrals have a power series asymptotics around 0. Combining this result with the above section, stating that 0 is a regular singularity, we get that the Abelian integrals are analytic at 0. Remark 6.13 Note however that for Abelian integrals involving negative powers of y, i.e., I 00 , I 20 and I 40 , cannot be directly proved to be analytic with Lemma 6.12. Instead, we proceed by analytic continuation with respect to the exponent of y in the integral. Now, the first terms of the Taylor series can be explicited computed from the expressions of the Laplace transform (Proposition 6.11), using Lemma 6.12. The differential equations obtained in the previous section, translated into recurrences on the Taylor coefficients, can be used to efficiently compute the truncated Taylor series to very high degree. Finally, we plan to use elementary bounding techniques for recurrences to bound the remainder. In the end, we will obtain Taylor models for the Abelian integrals and their derivatives.

Validated Trajectories for Spacecraft Proximity Operations

7

-Cum, n-ai auzit că s-au lansat?

-În orbită sau ce câcat? -Grasu XXL, Turbofin

As mentioned in the introduction of this manuscript, a wide range of applications in the domain of safety-critical engineering may benefit from rigorous numerics and other validated techniques. This is particularly true for many aerospace problems involving long-term integration of ODEs. Conversely, these applications provide interesting "real-life" problems for the rigorous numerics community. This chapter relates a joint work with two other PhD students in my research group at the LAAS laboratory, Paulo Ricardo Arantes Gilz [START_REF] Ricardo | Embedded and validated control algorithms for the spacecraft rendezvous[END_REF] and Clément Gazzino [START_REF] Gazzino | Stratégies de maintien à poste pour un satellite géostationnaire à propulsion tout électrique[END_REF]. Their works target the design of control laws for aerospace problems, more specifically spacecraft rendezvous for the former, and satellite station keeping for the latter. The purpose of this collaboration is to apply the validated techniques for ODEs using RPAs of Chapters 4 and 5, to design rigorous tools for the above mentioned aerospace problems. This work gave rise to an article "Validated Semi-Analytical Transition Matrix for Linearized Relative Spacecraft Dynamics via Chebyshev Polynomials", published in the proceedings of the 2018 Space Flight Mechanics Meeting, organized by the American Institute of Aeronautics and Astronautics (AIAA).

Introduction and related works

During guidance and control procedures of orbiting spacecraft, the respect of positioning and space constraints is decisive for successful missions achievement. The development of algorithms capable of fulfilling these constraints is directly related to how precisely the spacecraft trajectories are known. Since accuracy is essential for these procedures, the prevention and estimation of errors arising from approximations and numerical computations become critical. For spacecraft proximity operations (spacecraft rendezvous, station keeping, collision avoidance), the relative dynamics are often linearized for both propagation or control purposes. More specifically, when the magnitude of the relative motion of the spacecraft is small compared to its distance to the Earth, one linearizes the equations of motion, which implies solving simpler linear differential equations (LODEs), that is, computing the state transition matrix (STM) representing the basis of solutions for the LODE. Seminal works proposed closed-form solutions (in a broader sense to be specified) for simple models, e.g. [START_REF] Yamanaka | New state transition matrix for relative motion on an arbitrary elliptical orbit[END_REF] for linearized Keplerian relative motion [START_REF] Tschauner | Optimale Beschleunigungsprogramme fur das Rendezvous-Manover[END_REF]. Nowadays, such "closed-form" STM solutions are known for a wider range of linearized models, including relevant perturbations in eccentric orbits about Earth and other bodies (see [START_REF] Sullivan | Comprehensive survey and assessment of spacecraft relative motion dynamics models[END_REF] for a detailed survey on that topic). However, most of these solutions are not "closed forms" in the strong meaning used throughout this thesis, requiring for example to solve implicit equations, such as the Kepler equation. This therefore does not provide a concrete continuous representation of the solution.

Alternatively, and in some cases where the perturbating forces are given by measurements or ephemerides, propagation can be performed with numerical iterative schemes (like Euler or Runge-Kutta). The main drawback of this discretization approach is that the number of needed evaluation points can be prohibitive and the discretization error is difficult to estimate precisely. Moreover, for control laws design purposes, analytical solutions are preferable, since various constraints (such as saturation, restricted space regions, etc.) need to be satisfied on continuous time domains and not only on discretization grids.

In this context, we consider solving linear ordinary differential equations via rigorous polynomial approximations in Chebyshev series (cf. Chapters 4 and 5), to get validated transition matrices describing the evolution of spacecraft trajectories.

This approach is applied to the study of two heterogeneous examples, thus highlighting its generality:

• First, we consider the linearized impulsive rendezvous framework, demonstrating how to use RPAs to provide a validated propagation of the relative dynamics between spacecraft. This is then exploited for the hovering phases of the spacecraft rendezvous, where we conceive a validated model predictive control based on semi-definite programs.

• Second, we propose a semi-analytical transition matrix, for a simplified model of geostationary orbits. Specifically, the dynamics, expressed in terms of the relative equinoctial orbital elements, are linearized taking into account the J2 Earth oblateness effect, that is, the perturbation of the Keplerian dynamics due to the Earth's non-sphericity at its poles.

For completeness, we provide in what follows a very brief general context for each of these examples.

◮ Linearized impulsive rendezvous and model predictive control

Since the first space missions involving more than one vehicle, space rendezvous between two spacecraft has become a key technology raising relevant control issues. These missions consist in the execution of a sequence of maneuvers aiming to bring a spacecraft (referred to as chaser) to the vicinity of a passive target (e.g. International Space Station), whose trajectory evolves around a central body. Since the '60s, many ideas have been developed, and today, we are interested in successful RdV which minimizes fuel consumption, with increased autonomy (no human operator). This implies that validation of computations and solutions is at stake. Impulsive RdV problems concern in practice a large number of satellites, which are equipped with ergol thrusters. The impulsive approximation for the thrust means that an instantaneous velocity increment is applied to the chaser for each impulse. This is relevant because the chaser's chemical engines provide high level of thrust during a short time with respect to the target orbital period, which leads to an extremely rapid change of velocity, which can thus be modeled as a jump at firing time.

Many model predictive control (MPC) algorithms have been developed since the 90's for spacecraft rendezvous (see for instance [START_REF] Hartley | A tutorial on model predictive control for spacecraft rendezvous[END_REF][START_REF] Capello | Flyable" Guidance and Control Algorithms for Orbital Rendezvous Maneuver[END_REF]), since they provide fuel-efficient and flyable control solutions. The MPC uses a priori knowledge about the dynamics of the relative motion between spacecraft to iteratively compute the control corrections that fulfill fuel-optimality and various and uncertainties. These are directly accounted for in the trajectory design by formulating and solving a constrained optimal control problem which is repeatedly solved. Either dynamics discretization [START_REF] Robertson | Formation control strategies for a separated spacecraft interferometer[END_REF][START_REF] Tillerson | Co-ordination and control of distributed spacecraft systems using convex optimization techniques[END_REF] or analytic transitions matrices [START_REF] Inalhan | Relative dynamics and control of spacecraft formations in eccentric orbits[END_REF][START_REF] Ricardo | Predictive control algorithm for spacecraft rendezvous hovering phases[END_REF][START_REF] Ricardo | Model predictive control for rendezvous hovering phases based on a novel description of constrained trajectories[END_REF] were used for solving this problem. As previously mentioned, in this work we consider transition matrices approximated by RPAs. This is very pertinent, since so far, several recent works took advantage of non-rigorous polynomial approximations -sometimes qualified as semi-analytical methods in the control theory community -in the context of model predictive control (MPC) and optimal impulsive constrained control [START_REF] Deaconu | Constrained periodic spacecraft relative motion using non-negative polynomials[END_REF][START_REF] Ricardo | Model predictive control for rendezvous hovering phases based on a novel description of constrained trajectories[END_REF]. Their works follow the general framework of semidefinite programming (SDP) based on nonnegative polynomials written as sums of squares (SOS) [START_REF] Nesterov | Squared functional systems and optimization problems[END_REF]. From the numerical point of view, the efficiency of spectral methods with Chebyshev expansions was highlighted by recent works in the context of orbital mechanics [START_REF] Riccardi | An intrusive approach to uncertainty propagation in orbital mechanics based on Tchebycheff polynomial algebra[END_REF]. They started to successfully replace the classical Taylor series-based algebra for intrusive approaches, which has already many applications to astrodynamics and optimal control for proximity operations [START_REF] Di Lizia | Application of high order expansions of twopoint boundary value problems to astrodynamics[END_REF][START_REF] Di Lizia | High order optimal feedback control of space trajectories with bounded control[END_REF][START_REF] Di | Nonlinear control for proximity operations based on differential algebra[END_REF].

However, the scope of our work is not limited to numerical efficiency, since we also provide rigorous error bounds for the entries of the transition matrix, which are given as Chebyshev truncated series. This is particularly useful in optimization algorithms for optimal control where a trade-off must be done between low-degree polynomials for efficiency and accurate results, as it will be further shown in Section 7.2.

◮ Station keeping on Geostationary Earth Orbits

Telecommunication satellites on a Geostationary Earth Orbit (GEO) have to stay above a fixed point of the Earth, at a position called station keeping position at zero latitude and at a given longitude. However, the geostationary orbit is computed assuming that the Earth produces a central gravitational attraction force. Other forces act on the satellite, such as the zonal and tesseral terms of gravitational potential of the Earth, the Sun and the Moon attractions and the Sun radiation pressure. It is therefore mandatory to control the spacecraft trajectory so that it remains in the vicinity of the station keeping point. Some semi-analytical nonlinear models like the CNES Orange model [START_REF] Campan | ORANGE: Orbital analytical model for geosynchronous satellite[END_REF] may be used to describe precisely the evolution of a geostationary Earth orbit affected by these orbital perturbations. However, when dealing with station keeping objectives, in most cases, a simpler linearized model, describing the spacecraft relative motion dynamics, has to be derived for the design of the station keeping strategy. In this linear, possibly time-varying setting, and after the seminal works of Hill-Clohessy-Wiltshire and Tschauner-Hempel [START_REF] Tschauner | Optimale Beschleunigungsprogramme fur das Rendezvous-Manover[END_REF], a very large number of contributions are have been proposed towards new allegedly closed-form state transition matrix (STM), depending on the orbital perturbations included in the linearized model, on the state representation used and on the linearizing assumptions (see [START_REF] Sullivan | Comprehensive survey and assessment of spacecraft relative motion dynamics models[END_REF] for a recent extensive survey on this topic).

Among the orbital perturbations relevant in a geostationary context, even if the J2 disturbing effect of the oblateness of the Earth is not the dominant one, it has a nonnegligible effect on the direction of the inclination vector drift [START_REF] Soop | Handbook of Geostationary Orbits[END_REF]Sec. 4.4], and on the value of the true geostationary radius [START_REF] Shrivastava | Orbital Perturbations and Stationkeeping of Communication Satellites[END_REF]. Hence, the study of solutions of the equation of the orbital motion perturbed by J2 remains of great interest. In this setting, closed form (in a broader sense) STM solutions are proposed in [START_REF] Gim | Satellite relative motion using differential equinoctial elements[END_REF] using equinoctial elements. Our approach is complementary and consists in using the tools developed and implemented in Chapters 4 and 5 to compute polynomial approximate STM together with rigorous error bounds. The fact that polynomials can be very efficiently evaluated using floating-point arithmetic makes such an approach competitive against closed-form but possibly complicated solutions.

The work presented in Section 7.3 is still experimental, and focuses on the validation of polynomial approximate STMs with respect to the linearized model. This is a first step towards further use of rigorous numerics in the station keeping problem: validation of these STMs with respect to the nonlinear equations of motion, efficient design of a station keeping strategy using these polynomial STMs, etc.

7.2

Validated linearized impulsive rendezvous and model predictive control

As a first example of an aerospace application of the validation method for LODEs presented in Chapters 4 and 5, we consider the impulsive spacecraft rendezvous problem previously described. The capacity of developing algorithms to address this problem is directly related to how precisely the trajectories developed by each spacecraft involved in the mission are known and, given that precision is a must for these procedures, the prevention and estimation of errors arising from approximations and numerical computations become a critical subject in this context.

Hereafter we describe the mathematical frameworks adopted to model the rendezvous problem. In First, the validation method for LODEs, presented in Chapter 4 and implemented in our ChebValid C library2 , is applied on the Tschauner-Hempel equations in Section 7.2.1. This provides RPAs for the spacecraft trajectory, that is, approximating polynomials in Chebyshev basis with validated error bounds. Then, in Section 7.2.2, we develop a model predictive control algorithm for spacecraft rendezvous hovering phases [START_REF] Ricardo | Model predictive control for rendezvous hovering phases based on a novel description of constrained trajectories[END_REF]. The underlying polynomial optimization problem justifies the need for low-degree but still accurate polynomial approximations of the transition matrix. Finally, we use the power of the validation method to perform an a posteriori verification of an instance of rendezvous by providing a rigorous enclosure of the chaser's final position. This is particularly important for safety critical missions.

◮ Rigorous and semi-analytical transition matrix for Tschauner-Hempel equations

Before running the method on LODE (7.3), we first rescale the interval

[ν 0 , ν f ] to [-1, 1] by introducing the independent variable τ ∈ [-1, 1] and letting ν(τ ) = ν 0 (1 -τ )/2 + ν f (1 + τ )/2 = ωτ + θ with ω = (ν f -ν 0 )/2, θ = (ν 0 + ν f )/2
, and Z(τ ) = z(ν(τ )). We obtain:

Z ′′ (τ ) + ω 2 4 - 3 1 + e cos ν(τ ) Z(τ ) = ω 2 c, (7.4) 
together with rescaled initial conditions:

Z(-1) = z(ν 0 ), Z ′ (-1) = ωz ′ (ν 0 ).
In particular, we observe that the magnitude of the coefficients in Equation (7.4) grows quadratically with the length of the interval [ν 0 , ν f ] over which we want to approximate the trajectory. Since the coefficient α(τ ) of Equation (7.4):

α(τ ) := 4 - 3 1 + e cos ν(τ ) ,
is not polynomial, we must provide a rigorous polynomial approximation for it. The cosine function τ → cos ν(τ ) is approximated by applying our validation method to the harmonic oscillator differential equation:

y ′′ (τ ) + ω 2 y(τ ) = 0, y(-1) = cos ν 0 , y ′ (-1) = -ω sin ν 0 . (7.5) 
Now, using the elementary operations defined in Chapter 3, we get a RPA for α(τ ). 

Integral transform and numerical solving

Following the integral transform technique described in Chapter 4, we let ϕ(τ ) = Z ′′ (τ ), so that Z(τ ) now becomes:

Z(τ ) = Z(-1) + (τ + 1)Z ′ (-1) + τ -1 s -1 ϕ(u)du = Z(-1) + (τ + 1)Z ′ (-1) + τ -1 (τ -s)ϕ(s)ds.

Long-term validated integration techniques

Since Equation (7.3) is linear and 2π-periodic, validating a transition matrix over [ν 0 , ν 0 + 2π] is a good starting point for most applications. Let

Φ(ν, ν 0 ) =     x (i) (ν) x (ii) (ν) x (iii) (ν) x (iv) (ν) z (i) (ν) z (ii) (ν) z (iii) (ν) z (iv) (ν) x ′ (i) (ν) x ′ (ii) (ν) x ′ (iii) (ν) x ′ (iv) (ν) z ′ (i) (ν) z ′ (ii) (ν) z ′ (iii) (ν) z ′ (iv) (ν)     ,
where the column of index (i), (resp. (ii), (iii) and (iv)) is a validated approximation of the inplane trajectory corresponding to the initial conditions x(ν 0 ) = 1 (resp. z(ν 0 ) = 1, x′ (ν 0 ) = 1 and z′ (ν 0 ) = 1), all the other initial values being set to 0. Each entry is given as a Chebyshev model computed by ChebValid.

To ensure a validated propagation over several periods, the trajectory can be approximated by rigorous piecewise polynomial approximations over each period [ν 0 + 2kπ, ν 0 + 2(k + 1)π]:

    x(ν) z(ν) x′ (ν) z′ (ν)     ∈ Φ(ν -2kπ, ν 0 )J k     x(ν 0 ) z(ν 0 ) x′ (ν 0 ) z′ (ν 0 )     , (7.6) 
where J = Φ(ν 0 + 2π, ν 0 ) is the interval matrix of rigorous enclosures of the final states after one period. Let us remark that this method does not provide a uniform rigorous polynomial approximation over the whole time interval under consideration. Moreover, if the entries of J are rather loose intervals, which occurs when Φ(•, ν 0 ) is made of low-degree polynomial approximations, then the intervals in J k will rapidly become very large and all precision is lost after a certain number of periods. In a second step, one can obtain a certified uniform polynomial approximation over the whole time interval if the entries of J k are sufficiently tight over the required k periods. For that, one uses a numerical polynomial approximation for the trajectory Xxz (ν) = (x(ν), z(ν), x′ (ν), z′ (ν)), over the whole interval [ν 0 , ν f ], where ν f = ν 0 + 2κπ. This is validated a posteriori by bounding the difference between (7.6) and the candidate approximation Xxz (ν), both considered over each period [ν 0 + 2kπ, ν 0 + 2(k + 1)π] (0 k < κ). To restrict Xxz (ν) to a period [ν 0 + 2kπ, ν 0 + 2(k + 1)π] (0 k < κ), note that initially, our method provides a truncated Chebyshev series which is rescaled such that its definition interval is [-1, 1]. Hence, for each period, Xxz must be composed on the right by an affine time rescaling as to extract the desired time subinterval and compare the resulting Chebyshev truncated series with the corresponding precise piecewise approximation. Finally, the sum between the bound of this difference in the Ч 1 -norm and the rigorous error bound of the precise solution gives a safe overestimation of the uniform error.

◮ Model predictive control for the rendezvous hovering phases using RPA-based transition matrices

Hereafter we focus on the study of the hovering phases of the orbital spacecraft rendezvous missions. The hovering phases are the stages at which the follower satellite is required to remain in the interior of a delimited zone of the space with respect to the target spacecraft [START_REF] Irvin | Fuel-optimal maneuvers for constrained relative satellite orbits[END_REF]. The idea is to provide a validated model predictive control (MPC) algorithm to steer the follower satellite in a fuel-optimal way to the hovering region. The MPC uses a priori knowledge about the dynamics of the relative motion between spacecraft to iteratively compute the control corrections that fulfill fuel-optimality and constraints [START_REF] Ricardo | Predictive control algorithm for spacecraft rendezvous hovering phases[END_REF][START_REF] Ricardo | Model predictive control for rendezvous hovering phases based on a novel description of constrained trajectories[END_REF].

Following the derivation process described in the technical report [START_REF] Gazzino | Dynamics of a Geostationary Satellite[END_REF], the disturbing potential is expressed in terms of the Cartesian position in the geocentric inertial reference frame, and then transformed into the equinoctial orbital elements. The differential equation of motion is derived using the Lagrange perturbation theory (see for instance the reference [START_REF] Battin | An introduction to the mathematics and methods of astrodynamics[END_REF]), and then linearized. In Section 7.3.1 we give more details on these dynamics for the station keeping of a geostationary satellite with a low-thrust propulsion system, and the linearization we consider. In Section 7.3.2, we describe a new linearized model for the dynamics expressed with the relative equinoctial orbital elements. Then, in Section 7.3.3, we provide numerical examples for the validated polynomial transition matrices for the linearized dynamics occurring in this perturbed model.

◮ Description of the model

The state vector of a satellite orbiting the Earth on a geostationary orbit is described with the equinoctial orbital elements as defined in [START_REF] Battin | An introduction to the mathematics and methods of astrodynamics[END_REF]:

x eoe = a e x e y i x i y ℓ M Θ T ∈ | 6 ,
where a is the semi-major axis, (e x , e y ) the eccentricity vector components, (i x , i y ) the inclination vector components, ℓ M Θ = ω + Ω + M -Θ is the mean longitude where Ω is the right ascension of the ascending node, ω is the perigee's argument, M is the mean anomaly and Θ(t) is the right ascension of the Greenwich meridian.

On top of the Keplerian gravitational attraction produced by the central body supposed to be spherical and homogeneous, spacecraft orbiting the Earth on a GEO orbit undergo orbital disturbing forces. In [START_REF] Shrivastava | Orbital Perturbations and Stationkeeping of Communication Satellites[END_REF], [START_REF] Soop | Handbook of Geostationary Orbits[END_REF], [START_REF] Sidi | Spacecraft Dynamics and Control[END_REF], the potential function of these orbital perturbations is expressed by means of the geographical positions, i.e. radius, latitude and longitude of the spacecraft and the disturbing bodies. As the chosen state vector for the GEO spacecraft is composed of the equinoctial orbital elements, it is mandatory to transform the expression of these potential function in terms of variables of the state vector. In the technical report [START_REF] Gazzino | Dynamics of a Geostationary Satellite[END_REF] the geographical position is first transformed in the Cartesian position in the geocentric inertial reference frame referred as the ECI reference frame in [START_REF] Vallado | Fundamentals of astrodynamics and applications[END_REF], and then transformed in the equinoctial orbital elements thanks to conversion formulas derived in the Appendix C of [START_REF] Gazzino | Dynamics of a Geostationary Satellite[END_REF].

The disturbing effects described before make the satellite drift away from its nominal position. It is therefore mandatory to equip the satellite with thrusters in order to correct the satellite orbit. These thrusters also create a disturbing acceleration.

With the equinoctial orbital elements as state variables, the dynamic equation to handle the orbital perturbation is given by the Lagrange perturbation technique and the dynamic equation for the effect of the thrusters by the Gauss variation technique (see for instance the references [START_REF] Zarrouati | Trajectoires spatiales[END_REF] or [START_REF] Losa | High vs low thrust station keeping maneuver planning for geostationary satellites[END_REF]). By superposition principle, the two effects can be added, leading to the following dynamic equation: 

dx eoe dt = f L (x eoe , t) + f G (x eoe , t)u. ( 7 

◮ Linearization

For operational purposes, the satellite has to stay on an operating position called station keeping point. As the orbital disturbances induce a drift of the spacecraft position, the thrusters are fired in order to make the spacecraft stay in the vicinity of its operating position in a so-called station keeping window, whose size is very small with respect to the distance to the Earth. It is therefore possible to linearize the nonlinear Equation (7.8) with respect to the orbital elements of the station keeping point:

x sk = [a sk 0 0 0 0 ℓ M Θ sk ] T , (7.9) 
where a sk is the synchronous semi-major axis and ℓ M Θ sk is the station mean longitude. This station keeping state is a fictitious point evolving on a Keplerian (unperturbed) GEO orbit.

It is defined such that the spacecraft mean motion equals the Earth rotation rate. It is then straightforward that:

dx sk dt = 0 0 0 0 0 µ a 3 sk -ω T T = 0,
where ω T is the Earth rotation rate. Therefore, a sk = 42164 km. Moreover, for the simulations, we choose ℓ M Θ sk = 118 where the matrices A ∈ | 6×6 , B ∈ | 6×3 and D ∈ | 6 are defined as follows:

A(t) = ∂ (f L (x eoe (t), t)) ∂x eoe xeoe=x sk , B(t) = f G (x sk , t), D(t) = f L (x sk , t).
As the dynamics of the relative equinoctial elements given by the Equation (7.11) is now linear, the effects of each perturbation can be added together, such that:

A(t) = A Keplerian (t) + A J2 (t), D(t) = D Keplerian (t) + D J2 (t), (7.12) 
with the exact expression of these matrices available in [START_REF] Gazzino | Dynamics of a Geostationary Satellite[END_REF]. From Equations (7.12) and (7.11), the (uncontrolled) state transition matrix is computed with our method. In what follows, a numerical integration example is given to show its effectiveness. Note that this state transition matrix can then be used in the framework of the linear GEO station keeping control problem, which is expressed as an optimal control problem whose objective is to minimize the fuel consumption while ensuring that the (linearized) relative dynamic is respected and that the spacecraft does not fly out its station keeping window [START_REF] Losa | High vs low thrust station keeping maneuver planning for geostationary satellites[END_REF], [START_REF] Gazzino | Integer Programming for Optimal Control of Geostationary Station Keeping of Low-Thrust Satellites[END_REF][START_REF] Gazzino | Long-term electric-propulsion geostationary station-keeping via integer programming[END_REF] and [START_REF] Gazzino | Solving the Minimum-Fuel Low-Thrust Geostationary Station Keeping Problem via the Switching Systems Theory[END_REF].

◮ Numerical example of integration

In this example, the integration has been performed for an initial relative equinoctial orbital elements state: X 0 = 0 10 -4 0 10 -4 0 0 T .

In Figure 7.9 the difference between the relative equinoctial elements integrated with the non-linear equation of motion and the linearized equation of motion with the ode45 function of MATLAB is presented on a time interval [t 0 , t f ] with t 0 = 0 and t f = 7 days. One observes that for the semi-major axis, the two trajectories diverge one from the other up to 0.015 m after seven days. This is due to the fact that the spacecraft moves away from the station keeping point. As for station keeping purposes, a control law will enforce the spacecraft to stay in the vicinity of the station keeping point, the approximation error between the linear and the nonlinear model should remain small. The error between the linear and nonlinear integration after 7 days is representative of the error that will occur during the station keeping control process because the uncontrolled trajectory flies out the station keeping window after 7 days of free motion. Based on this, the magnitude of the maximum error obtained between the integrated nonlinear equation of motion and the linearized one are heuristically estimated and used as benchmarks in Table 7.2 in order to compute the minimal degree of the rigorous polynomial approximations (obtained with our method) which achieve them. Specifically, associated with equation (7.11), consider the solution x(t) = Φ(t, t 0 )x 0 + t t 0 Φ(t, s)D(s)ds, for t ∈ [t 0 , t f ], where Φ(t, t 0 ) is the transition matrix and t t 0 Φ(t, s)D(s)ds is a particular solution. The first 6 columns in Table 7.2 deal with RPAs approximating the transition matrix Φ(t, t 0 ). For instance, for the first entry of the transition matrix, a maximum error upper-bound of 10 -10 requires a degree-26 RPA. Similarly, the last column of Table 7.2 shows respectively the maximum error upper-bounds and the required degree for RPAs for the particular solution. 7.2: Maximum error bounds required for each entry of the transition matrix (columns j = 1, . . . , 6) and particular solution (column j = ⋆), and minimal degrees of the rigorous polynomial approximations achieving them, obtained with our method. Remark: a null degree indicates a constant entry.

Figure 7.10 depicts the difference between the relative equinoctial orbital elements computed on one hand by integration of the linearized dynamic given by Equation (7.11) with the ode45 function of MATLAB and on the other hand by the semi-analytical state transition matrix computed by RPAs. The i y and ℓ M Θ components undergo a secular error whereas the other ones present small periodic errors. Nevertheless, the relative error between these two trajectories is smaller than the error between the linear and the non-linear integration of the trajectory, justifying the use of these state transition matrices as a way to compute the relative trajectory.

Conclusion and future developments

A validated MPC algorithm for the rendezvous hovering phases has been conceived using the proposed approximation method. Future experiments would assess the tractability of problem (P.SDP) on devices dedicated to space applications, focusing on the analysis of the relation between the computational burden and the precision of the polynomial approximations. The study of the performances of problems similar to Section 7.2.2 has already been carried out using an AEROFLEX GAISLER GR-XC6S board containing a synthesized LEON3 microprocessor in [START_REF] Deaconu | Constrained periodic spacecraft relative motion using non-negative polynomials[END_REF][START_REF] Ricardo | Model predictive control for rendezvous hovering phases based on a novel description of constrained trajectories[END_REF].

The proposed approximation technique has then been applied on a more complicated case where orbital disturbances arise. Although only the most prominent perturbation has been handled, the proposed state transition matrices computation method could also been applied to other orbital disturbances, as for instance the Sun and Moon gravitation attractions or the Sun radiation pressure. These effects leave room for improvement to our method because it would be necessary to take into account the Sun and Moon positions that are known as tabulated functions. The references [START_REF] David | Conversion of optimal control problems into parameter optimization problems[END_REF] or [START_REF] Betts | Survey of numerical methods for trajectory optimization[END_REF] describe how direct collocation methods can be used in order to solve the GEO station keeping optimal control problem. These methods rely on a discretization of the state and control vectors over the time interval [t 0 , t f ]. The optimal control problem is therefore transformed into a nonlinear programming problem. The dimension of the unknown vector for the nonlinear programming problem can be reduced while eliminating the state vector, meaning that the state differential equation of the system must be integrated explicitly. The proposed technique for the computation of the state transition matrix will therefore be used for the integration of the dynamic equation, making the resolution of the GEO station keeping optimal control problem easier.

Another possible extension for this work would be the propagation of uncertain initial conditions via semi-analytical polynomial transition matrices. When the uncertainties in the initial conditions are not uniformly distributed, we plan consider the generalization to other classes of orthogonal polynomials.

Exchange Algorithm for Evaluation & Approximation Error-Optimized Polynomials 8

Comment voulez-vous gouverner un pays où il existe 258 variétés de fromage ? -Charles de Gaulle Machine implementation of mathematical functions often relies on polynomial approximations, discussed in Chapter 2. The particularity is that rounding errors occur both when representing the polynomial coefficients on a finite number of bits, and when evaluating it in finite precision. Hence, for finding the best polynomial (for a given fixed degree, norm and interval), one has to consider both types of errors: approximation and evaluation. While efficient algorithms were already developed for taking into account the approximation error, the evaluation part is usually a posteriori handled, in an ad-hoc manner.

In this chapter, which is a joint work with Denis Arzelier and Mioara Joldes, we formulate a semi-infinite linear optimization problem whose solution is the best polynomial with respect to the supremum norm of the sum of both errors. This problem is then solved with an iterative exchange algorithm, which can be seen as an extension of Remez algorithm, recalled in Section 2.2.2. A discussion and comparison of the obtained results on various examples are finally presented. This work gave rise to an article entitled "Exchange algorithm for evaluation and approximation error-optimized polynomials" [START_REF] Arzelier | Exchange algorithm for evaluation and approximation error-optimized polynomials[END_REF], to be published in the proceedings of the 26th IEEE Symposium on Computer Arithmetic (ARITH).

General setting and contributions

Polynomials are often used for approximating functions on computers [START_REF] Abramowitz | Handbook of mathematical functions with formulas, graphs, and mathematical tables[END_REF][START_REF] Muller | Elementary Functions, Algorithms and Implementation[END_REF]. Their evaluation only requires additions and multiplications, which are efficiently implemented in hardware floating-point (FP) arithmetic units.

As mentioned in Chapter 1, FP operations are specified by the IEEE 754-2008 [START_REF]IEEE Standard for Floating-Point Arithmetic[END_REF] standard, which requires, among others, correctly rounded basic arithmetic operations +, -, * , /, √ for several precision formats, and recommends correctly rounded elementary functions like exp, sin, cos. Very efficient fixed FP precision implementations exist [START_REF] Florent De Dinechin | Fast and correctly rounded logarithms in double-precision[END_REF][START_REF] Lauter | Arrondi Correct de Fonctions Mathématiques[END_REF] for such functions and are collected in mathematical libraries (libms), which can be nowadays almost automatically generated and tuned [START_REF] Daramy-Loirat | A library of correctly-rounded elementary functions in doubleprecision[END_REF][START_REF] Kupriianova | Metalibm: A mathematical functions code generator[END_REF]. Recently, in [START_REF] Lauter | Semi-automatic floating-point implementation of special functions[END_REF], such code generating techniques were extended to larger classes of special functions, which are widely used in scientific and technical applications (like Bessel, Airy, Erf, etc.). The problem of evaluating a function for the whole FP input range is firstly reduced to the evaluation of an approximation valid in a rather small compact domain I. This can be done for instance, by argument reduction techniques, which are available only for specific elementary functions, and/or by piecewise polynomial approximations [START_REF] Muller | Handbook of Floating-Point Arithmetic[END_REF]. Then, the implementation task becomes: given a description of a function f , an input interval I, and a target accuracy ε > 0, one is requested a source code which provides a function f , such that: (f -f )/f Typically, this is handled in two main steps:

Approximation. An approximation polynomial p is searched for, such that two main requirements are met: its coefficients are representable with a specified fixed precision format (usually, binary32, binary64, or an unevaluated sum of such formats) and the approximation error is less than a target ε approx , whether absolute f -p I ε approx or relative (f -p)/f I ε approx .

For that, efficient algorithms were developed, e.g., [START_REF] Brisebarre | Computing machine-efficient polynomial approximations[END_REF] for low degree and [START_REF] Brisebarre | Efficient polynomial L ∞ approximations[END_REF] for larger degrees. In the simpler case of polynomials p with real coefficients and given degree n, p = n i=0 a i t i , this boils down to the so-called minimax problem, addressed in Chapter 2:

min a i ∈|, i∈ 0,n max t∈I |f (t) -p(t)|, (P minimax )
which can be solved by the Remez algorithm (see Section 2.2.2, [START_REF] Brisebarre | Efficient polynomial L ∞ approximations[END_REF][START_REF] Chevillard | Efficient and accurate computation of upper bounds of approximation errors[END_REF] and references therein). This iterative algorithm has quadratic convergence and rather low complexity, since it involves solving a linear system of size n+2 at each step, together with numerically computing the extrema of f -p over I.

Evaluation. An efficient evaluation scheme p for p is searched for; since after each addition or multiplication, rounding errors occur, one must ensure that the computed value satisfies p -p I ε eval (or (p -p)/p I ε eval ) for a given threshold ε eval . Heuristics presented in [START_REF] Lauter | Arrondi Correct de Fonctions Mathématiques[END_REF] extend the precision of the important coefficients, such that the evaluation error remains below ε eval . For instance, Sollya command implementpoly uses a Horner-based evaluation scheme, which behaves rather well when the evaluation interval is sufficiently small and contains zero. Otherwise, consider step i of Horner evaluation a i + tp i (t), where pi is the already computed partial polynomial evaluation: when the argument |t| ≫ 1, the accumulated evaluation error is much amplified when multiplying by t. Another heuristic is a ratio test between a i and tp i (t), to check for cancellation issues which appear when both terms have the same order of magnitude and opposite signs.

Once the coefficients have been chosen, the approximation and the evaluation error can a posteriori be certified by several existing algorithms and tools, like Sollya [START_REF] Sylvain Chevillard | Sollya: An environment for the development of numerical codes[END_REF], Gappa [START_REF] Daumas | Certification of bounds on expressions involving rounded operators[END_REF], Rosa [START_REF] Darulova | Towards a compiler for reals[END_REF] or Real2Float [START_REF] Rocca | Certified Roundoff Error Bounds using Bernstein Expansions and Sparse Krivine-Stengle Representations[END_REF].

It is important to note that these two steps are usually independently considered. An exception occurs for the case of very small precisions or polynomial degrees, where an exhaustive search on the rounded coefficients is possible [START_REF] Tisserand | High-performance hardware operators for polynomial evaluation[END_REF].

However, as explicitly mentioned in [START_REF] Brisebarre | Computing machine-efficient polynomial approximations[END_REF], "one would like to take into account the roundoff error that occurs during polynomial evaluation: getting the polynomial, with constraints on the size of the coefficients, that minimizes the total (approximation plus roundoff ) error would be extremely useful ".

The purpose of this article is to make progress on this open question: we search for the coefficients of a polynomial p(t) = n i=0 a i t i , of given degree n, which minimizes the maximum of the sum of both approximation and evaluation errors over an input interval I, with respect to f . We consider a black-box description of f i.e., one can ask for the value f (t) for any desired t, up to any required accuracy [START_REF] Lauter | Arrondi Correct de Fonctions Mathématiques[END_REF]. This allows for handling very general functions (elementary, special, etc.), but also implies that no argument reduction step is possible in general. For simplicity we state the problem for the absolute error case (The relative error can be similarly handled from a theoretical standpoint, cf. The formulation of Problem (P general ) seems to ignore the constraints that the coefficients of the approximating polynomial must be floatingpoint representable. In fact, even if we optimize over real coefficients, the effect of rounding them can be incorporated in the evaluation error term |p(t)-p(t)|. Hence, the objective function of this optimization problem takes into account the constraint of floating-point coefficients.

In Section 8.2, we give a linearized bound for the evaluation error |p(t) -p(t)|. Based on [START_REF] Oliver | Rounding error propagation in polynomial evaluation schemes[END_REF], the performance of a given arbitrary evaluation scheme is recursively assessed by bounding the rounding error of each elementary operation. This leads to the formulation in Section 8.3 of Problem (P general ) as a linear semi-infinite programming (SIP) problem [START_REF] Reemtsen | Semi-Infinite Programming[END_REF][START_REF] Shapiro | Semi-infinite programming, duality, discretization and optimality conditions[END_REF].

In this context, we show two results: on the theoretical side, based on the duality theory, we revisit, explain and extend an exchange algorithm [START_REF] Watson | The calculation of best restricted approximations[END_REF][START_REF] Chalmers | The Remez exchange algorithm for approximation with linear restrictions[END_REF][START_REF] Carasso | Un algorithme général pour l'approximation au sens de Tchebycheff de fonctions bornées sur un ensemble quelconque[END_REF][START_REF] Carasso | L'algorithme d'échange en optimisation convexe[END_REF], which solves this problem in Section 8.4. On the practical side, the solution of this problem provides a first attempt on simultaneously optimizing over both errors: we show that in some cases the evaluation error can be improved. We also show that in some other cases, the minimax polynomial solution of Problem (P minimax ) is very close to the solution of P general . Numerical examples and a discussion are provided in Section 8.5.

Evaluation error

Throughout this chapter, we make use of the definitions and notations from Chapter 1 about floating-point arithmetic. We assume radix-2, precision-p, floating-point arithmetic with unbounded exponent range i.e, provided that overflows and underflows do not occur. Recall in particular that for any t ∈ |, we have

|t -RN(t)| |t| u 1 + u < u,
where u = 2 -p is called the rounding unit. Moreover, for each ⊤ ∈ {+, -, ×, /, √ }, there exists a real number ǫ such that

RN(a⊤b) = (a⊤b)(1 + ǫ), |ǫ| u.
Based on the previous property, the error of any arithmetic expression can be recursively bounded. This leads to computable evaluation errors associated to any evaluation scheme p for a polynomial p. Firstly, for specific evaluation schemes, like Horner, bounds date back to the work of Oliver [START_REF] Oliver | Rounding error propagation in polynomial evaluation schemes[END_REF], which is detailed below as an example. More recently, several works insisted on the automatic algorithmic approach via operator overloading similar to automatic differentiation [START_REF] Braconnier | From rounding error estimation to automatic correction with automatic differentiation[END_REF][START_REF] Solovyev | Rigorous estimation of floating-point round-off errors with symbolic Taylor expansions[END_REF]. Based on this, we propose, for completeness1 , Algorithm LinEvalError, which automatically computes linearized expressions for the evaluation error (like in (8.3)), for any given symbolic expression tree e, provided with symbolic rounding errors for each tree node. Let us exemplify on the evaluation of the polynomial p(t) = a n t n + a n-1 t n-1 + • • • + a 0 Algorithm 8.1 Horner(p, t) -Classical Horner scheme 1: r n ← a n 2: for k = n -1 downto 0 do 3:

r k ← RN RN(r k+1 × t) + a k 4: end for 5: return r 0 using Horner's rule, assuming that a Fused Multiply Add (FMA) instruction is not employed. The actual machine operations are recalled in Algorithm Horner. We have:

r n = a n , r n-1 = tr n (1 + ǫ × n-1 ) + a n-1 (1 + ǫ + n-1 ),
where ǫ × n-1 and ǫ + n-1 model the rounding errors for multiplication and addition at step n -1. By induction, one obtains:

r k = n i=k   (1 + ǫ + i ) i-1 j=k (1 + ǫ + j )(1 + ǫ × j )   a i t i-k , (8.2) 
where we define ǫ + n := 0 and k-1 j=k

(1 + ǫ + j )(1 + ǫ × j ) := 1. This implies that the total evaluation error is:

r 0 - n i=0 a i t i = n i=0   (1 + ǫ + i ) i-1 j=k (1 + ǫ + j )(1 + ǫ × j ) -1   a i t i .
Here, we consider only a linear approximation θ lin of the evaluation error, function of ǫ + i and ǫ × i , in what follows. This gives, for our Horner example:

θ (Horner) lin := n-1 j=0   n i=j+1 a i t i   ǫ × j + n-1 j=0   n i=j a i t i   ǫ + j . (8.3) 
Moreover, provided bounds are specified for each rounding error, depending on the precision employed, one obtains upper bounds for the linearized absolute evaluation error. For instance, if binary64 is used for all the computations in Algorithm Horner, with u = 2 -53 , one has:

θ (Horner) lin 2u n ′′ j=0 n i=j a i t i , (8.4) 
where the double superscript indicates that the first and last terms in the summation are to be halved.

As exemplified in Table 8.1, to automate the evaluation error analysis, we firstly associate to a mathematical expression e * , a given symbolic evaluation scheme with roundings e, composed of terms RN(e ′ , u). This means that e ′ is rounded with a relative error bounded by u. This formulation models both possible rounding errors on an input variable (e ′ ∈ V, where V denotes the set of input variables) and the rounding errors of arithmetic operations (if e ′ = a 1 ⊤e 2 ). Then, we build an expression ẽ, as in (8.2), by recursively replacing terms RN(e ′ , u) in e, with ẽ′ (1 + ǫ

[u] e ′ ) where |ǫ [u] e ′ | u. e 1 = RN(a + RN(b × c, u), u) e * 1 = a + bc ẽ1 = (a + bc(1 + ǫ [u] b×c ))(1 + ǫ [u] a+RN(b×c,u) ) θ (e 1 ) lin = bcǫ [u]
b×c + (a + bc)ǫ 

2 = RN(RN(a, u ′ ) + b × RN(a, u ′ ), u) e * 2 = a + ba ẽ2 = (a(1 + ǫ [u ′ ] a ) + ba(1 + ǫ [u ′ ] a ))(1 + ǫ [u] RN(a,u ′ )+b×RN(a,u ′ ) ) θ (e 2 ) lin = (a + ba)ǫ [u ′ ] a + (a + ba)ǫ [u] RN(a,u ′ )+b×RN(a,u ′ ) |θ (e 2 ) lin | |a + ba|(u + u ′ ) ⊲ Fused multiply-add (FMA) in double precision,
with input a rounded to single precision. Finally, automatic linearized evaluation error expressions θ lin , such as in (8.3), are obtained using Algorithm LinEvalError. Specifically, for an arithmetic expression with roundings e, this algorithm recursively computes an expression of the form

θ lin = k i=1 θ lin,i ǫ [u i ] e i , with symbolic ǫ [u i ]
e i (i ∈ 1, k ) for each term RN(e i , u i ) in e. The coefficients θ lin,i are arithmetic expressions depending only on the input variables in e. Note that RN(e i , u i ) may occur several times in e, but the error variable ǫ Usually, for polynomial evaluation schemes, the functions θ lin,i are linear with respect to the coefficients a of p(t), that is u i θ lin,i = π i (t) T a, with a ∈ | n+1 , t ∈ | and for some π i (t) ∈ | n+1 . Hence we obtain a linearized bound of the evaluation error of the form: Problem (P ′ general ) is a convex Semi-Infinite Programming (SIP) problem (see [START_REF] Reemtsen | Semi-Infinite Programming[END_REF] which provides a comprehensive overview of SIP) that can be reformulated as a linear SIP problem, at the expense of a different index set Ω replacing the previous index set I. Here, the set of constraints of (P ′ general ) involving absolute values is replaced by as many linear constraints as required to represent all possible sign combinations. The evaluation error is as in Equation (8.5), and define:

|θ lin (a, t)| k i=1 |π i (t) T a| := θ(a, t). ( 8 
x := (a, a) ∈ | n+2 , z := (1, 0, . . . , 0) ∈ | n+2 , α(t, σ 0 , . . . , σ k ) := (1, σ 0 π 0 T (t) + k i=1 σ i π i T (t)) T ∈ | n+2 , S := { -1, 0, 1} k+1 , ω := (t, σ 0 , . . . , σ k ) ∈ Ω := I × S.
Then, Problem (P ′ general ) is exactly the following linear SIP: (1, σ 0 1, σ 0 t, . . . , σ 0 t 5 )(a, a 0 , a 1 , . . . , a 5 ) T σ 0 f (t), σ 0 = ∓1, t ∈ I.

min x∈| d z T x s.t. α(ω) T x c(ω), ω ∈ Ω, ( 
(Example 3 (a))

while Problem (P ′ general ), assuming Horner evaluation is:

min (a,a)∈| 7 a s.t. (1, σ 0 + σ 1 u, (σ 0 + σ 1 u + σ 2 2u)t, . . . , (σ 0 + σ 1 u + . . . + σ 5 u)t 5 )(a, a 0 , a 1 , . . . , a 5 ) T σ 0 f (t), σ 0 = ∓1, σ 1 = ∓1, . . . , σ 5 = ∓1, t ∈ I. (Example 3 (b))
In Section 8.4 an exchange algorithm which solves Problem (P ′ general ) is presented. It can be seen as a generalization, in the above framework, of the Remez algorithm, which solves Problem (P minimax ). To prove its correctness, important discretization properties of linear SIP problems are recalled, closely following the survey [START_REF] Shapiro | Semi-infinite programming, duality, discretization and optimality conditions[END_REF].

◮ Duality and discretization for SIP

For a Problem (P ), we denote respectively by val(P ) and Sol(P ), its optimal value and the set of its optimal solutions.

A discretization (P m ) of (P ) for a set ω = {ω 1 , . . . , ω m } ⊆ Ω is the following linear program:

min x∈| d z T x s.t. α(ω j ) T x c(ω j ), j = 1, • • • m. (P m )
Since the feasible set of (P ) is included in the feasible set of (P m ), we have that val(P m ) val(P ). The existence of a discretization (P m ) such that the equality holds is a particularly appealing feature of some linear SIPs since the solution of (P ) may be obtained by the solution of (P m ) if we are able to find the corresponding set ω. Definition 8.6 [START_REF] Shapiro | Semi-infinite programming, duality, discretization and optimality conditions[END_REF] (P ) is said to be reducible if there exists a discretization (P m ) defined by the subset {ω 1 , . . . , ω m } ⊆ Ω such that val(P m ) = val(P ).

The characterization of reducible SIP problems relies on the central notion of duality that rules the interplay between two optimization problems. This notion has its roots in the interrelations between a normed linear space and its topological dual. Let us define the continuous mapping g : x → g(x, •) from | d to the Banach space of continuous functions C(Ω), equipped with the uniform norm h Ω = sup ω∈Ω |h(ω)|, then the topological dual of C(Ω) is the space C(Ω) * of signed Borel measures µ over (Ω, B(R k+2 )) [103, Section 21.5]. For a measure µ ∈ C(Ω) * , its support is the smallest closed subset Γ of Ω such that |µ|(Ω \ Γ) = 0. A positive measure µ is denoted by µ 0. A classical example of a positive measure with discrete support is the Dirac measure of support {ω j }:

δ ω j (A) = 0 if ω j ∈ A, 1 if ω j ∈ A. A ⊆ Ω.
Defining the bilinear form pairing C(Ω) and C(Ω) * by the duality bracket:

h, µ = Ω h(ω)dµ(ω),
the dual problem (D) related to the primal problem (P ) is:

max µ 0 Ω c(ω)dµ(ω) s.t. Ω α(ω)dµ(ω) = z. (D)
The weak duality, that is val(D) val(P ) always holds. Problem (D) is an LP problem defined in the space of positive measures which is hard to solve. By restricting the support of µ 0 to {ω 1 , . . . , ω m }, that is µ = m j=1 y j δ ω j with y j 0, a discretized counterpart (D m ) of (D) is obtained:

max y j 0 j∈ 1,m m j=1 c(ω j )y j s.t. m j=1 y j α(ω j ) = z, (D m )
with val(D m ) val(D). It is important to note that the LP dual of the discretized problem (P m ) is exactly (D m ) which implies that val(D m ) = val(P m ) (strong duality holds) provided that none of (P m ) or (D m ) is infeasible.

So far, under these mild assumptions, we have that val(D m ) = val(P m ) val(D) val(P ) and conditions for having only equalities (respectively reducibility and strong duality properties) may be obtained by using conjugate duality theory as developed in [228, Theorems 2.2, 2. The fact that both (P ) and (D) are reducible to a discretization of size at most d, allows for recasting the problem (P ′ general ) as the problem of finding the right discretization {ω 1 , . . . , ω d } such that item (iv) of Theorem 8.7 applies and to solve the associated (P m ) and/or (D m ). This goal may be reached by tailoring the general exchange algorithm for semi-infinite linear programs presented in [START_REF] Carasso | L'algorithme d'échange en optimisation convexe[END_REF] to our specific case.

This algorithm can be seen as a generalization of the dual simplex algorithm for Problem (D). The main idea consists first in finding at each iteration ℓ, the solution y (ℓ) of (D (ℓ) n+2 ), with ω (ℓ) = {ω j (ℓ) } n+2 j=1 . Such a solution is a feasible (but not necessarily optimal) point of the dual Problem (D). Moreover, the objective value z T x (ℓ) of (P (ℓ) m ) and (P ) for the instance x (ℓ) := (a (ℓ) , a (ℓ) ) is equal to the objective value of (D) for the instance y (ℓ)2 . Hence, either x (ℓ) is a feasible solution of Problem (P ) by Theorem 8.7, or it is an infeasible point of Problem (P ). In the latter case, one of these constraints is replaced by a new one, indexed by ω * (ℓ) , in an exchange step in order to increase the objective value of the dual and works towards primal feasibility.

Iterative exchange algorithm

Now that the essential notions and properties of linear SIP have been given in the previous section, we give the exchange algorithm EvalApproxOptimize to solve Problem (P ′ general ) in Section 8.4.1. The correctness proofs are postponed in Section 8.4.2. After that, some insight into how to transpose this algorithm to the framework of relative error is given in Section 8.4.3.

◮ The algorithms

Algorithm EvalApproxOptimize computes the degree-n best polynomial approximation with respect to both evaluation and approximation errors, i.e. it solves (P ′ general ) based on developments from Section 8.3.2. Regarding the main steps of the new algorithm, an analogy with Remez is as follows:

-Init provides a good set of initial points.

-At each step, SolvePrimal solves a linear system of equations (built w.r.t. the current set of points), where the variables are the polynomial coefficients.

-Then, FindNewIndex finds a new point where the total error is maximal.

-Finally, Exchange replaces one point from the current set with this new point. However, when considering both errors, one can not only rely on the primal problem (coefficients reconstruction), but also needs the dual problem. This implies: -Besides classical points, a combination of signs (signatures) is required at each step.

-Init and Exchange need the solution of the dual problem.

A running example for this algorithm is given in Section 8.5. Algorithm 8.3 EvalApproxOptimize(f, n, I, θ, τ ) Input: function f , n 0, I, θ(a, t) as in (8.5), τ > 0. Output: (a, a) solution of Problem (P ) within accuracy τ .

⊲ Initialization

1: (ω (0) , y (0) ) ← Init(n, I) 2: (a (0) , a (0) ) ← SolvePrimal(f, n, θ, ω (0) ) 3: (ω * (0) , a (0) * ) ← FindNewIndex(f, n, I, θ, a (0) ) 4: ℓ ← 0 ⊲ Iterate while accuracy τ not reached 5: while a (ℓ) * /a (ℓ) > 1 + τ do 6: (ω (ℓ+1) , y (ℓ+1) ) ← Exchange(n, θ, ω (ℓ) , y (ℓ) , ω (ℓ) * ) 7: (a (ℓ+1) , a (ℓ+1) ) ← SolvePrimal(f, n, θ, ω (ℓ+1) ) 8: (ω * (ℓ+1) , a (ℓ+1) * 
) ← FindNewIndex(f, n, I, θ, a (ℓ+1) )

9:

ℓ ← ℓ + 1 10: end while 11: return (a (ℓ) , a (ℓ) ) Algorithm 8.4 Init(n, I)

Input: n 0, I = [t l , t r ].
Output: ω ∈ Ω n+2 and solution y of Problem (D m ).

⊲ Initialize with Chebyshev nodes and Remez constraints 1: for j in 1, n + 2 do 2:

t j ← t l +tr 2 + cos (j-1)π n+1 t l -tr 2 
3:

σ j ← ((-1) j , 0, . . . , 0)

4:

ω j ← (t j , σ j ) 5: end for ⊲ Compute dual solution ⊲ Exiting index 2: j 0 ← arg min y j γ j γ j > 0 ⊲ Update dual solution 3: ỹ * ← y j 0 γ j 0 4: ỹj ← y j -γ j ỹ * , j ∈ 1, n + 2 5: {(ω ′ j , y ′ j )} ← {(ω j , ỹj ), j ∈ 1, n + 2 -{j 0 } ∪ { * }, 6: return (ω ′ , y ′ ) Remark 8.9 Although the formulation of FindNewIndex theoretically requires the values of f over the whole interval [t l , t r ], which would contradict a black-box approach, in practice FindNewIndex is implemented via a discretization of [t l , t r ], evaluating f on it, and then picking t * among these grid points.

1: t * ← arg max t l t tr |a T π 0 (t) -f (t)| + k i=1 |a T π i (t)| 2: a * ← max t l t tr

◮ Correctness proof

We focus now on the correctness of Algorithm EvalApproxOptimize, which is stated in Theorem 8. [START_REF] Battin | An introduction to the mathematics and methods of astrodynamics[END_REF]. For this, one needs an assumption on the dual solution, which always holds in the Remez algorithm. It is not proven in our setting, but it never failed in practice. • {α(ω j )} n+2 j=1 is a basis of | n+2 ;

• y is the optimal solution of Problem (D m ) for ω;

• y j > 0 for all j ∈ 1, n + 2 .

Note that Algorithm Init essentially initializes the problem with Chebyshev nodes for heuristic efficiency and signatures corresponding to the classical Remez algorithm, without the evaluation error term.

Proof. Let A(ω) denote the (n + 2) square matrix whose columns are the α(ω j ). Since σ j = (-1) j , 0, . . . , 0 , we have .

A(ω) =           1 . . . .
First, we prove the existence of a feasible point y in Problem (D m ) for ω, that is A(ω)y = z and y 0. From Farkas' lemma [START_REF] Binyamini | On the number of zeros of Abelian integrals[END_REF], if such a y does not exist, then there exists x = (a, a) ∈ | n+2 s.t. z T x = a < 0 and A(ω) T x 0, that is a + (-1) j a T π 0 (t j ) 0, j ∈ 1, n + 2 .

Since a < 0, this implies that sign(a T π 0 (t j )) = (-1) j . But a T π 0 (t) is a polynomial of degree at most n, hence it cannot strictly change signs n + 2 times. Consequently, Problem (D m ) has a feasible point y.

• {α(ω j )} n+2 j=1 is a basis of | n+2 ;

• y ′ is the optimal solution of Problem (D m ) for ω ′ .

Proof. In order to increase the objective value in the dual Problem (D), a measure supported on ω ∪ {ω * } is looked for, requiring nonnegative coefficients ỹj for j ∈ 1, n + 2 ∪ { * } s.t. The nonnegativity constraints on the ỹj induces the choice of the exiting index ω j 0 (line 2) and the values of the ỹj (lines 3-4). Note that the first line of the linear system in line 1 says that the coefficients γ j sum to 1. Hence, at least one of them is strictly positive, so that j 0 exists (line 2), though it is not necessarily unique.

Finally, {α(ω j )} j∈ 1,n+2 -{j 0 }∪{ * } remains a basis of | n+2 since γ j 0 = 0, that is α(ω * ) is not in the linear subspace spanned by {α(ω j )} j∈ 1,n+2 -{j 0 } .

In addition, the following lemma proves that the discretized error increases at each iteration.

Lemma 8.15 The total error a (ℓ) computed over the discrete set ω (ℓ) increases at each iteration.

Proof. Let ỹ(ℓ) * and γ (ℓ) j denote the variables ỹ * and γ j for j ∈ 1, n + 2 in Algorithm Exchange(n, θ, ω (ℓ) , y (ℓ) , ω (ℓ) * ). By strong duality in linear programming, a (ℓ) is also the objective value of the optimal solution y (ℓ) in the discretized dual problem (D n+2 ) for ω (ℓ) . Hence, by writing This finally leads us to the central theorem of this section. Theorem 8.16 Let f be a continuous function over an interval I = [t l , t r ], a degree n 0, a linearized evaluation error bound θ and a tolerance parameter τ > 0. Under Assumption 8.10, EvalApproxOptimize(f, n, I, θ, τ ) terminates and returns a degree-n polynomial approximation for f with a total error ε (approximation and evaluation) satisfying:

ε * ε (1 + τ )ε * , (8.6) 
where ε * is the total error of the best degree-n polynomial approximation of f .

Proof. • It is proven by induction that the following properties hold at each iteration ℓ 0:

(i) {α(ω

(ℓ) j )} n+2
j=1 is a basis of | n+2 ;

(ii) y (ℓ) is the optimal solution of Problem (D m ) for ω (ℓ) ;

(iii) x (ℓ) is the optimal solution of Problem (P m ) for ω (ℓ) ;

(iv) ω (ℓ) * = arg max ω∈Ω c(ω)α(ω) T x (ℓ) ; For ℓ = 0, Init(n, I) returns ω (0) , y (0) satisfying (i) and (ii). Then SolvePrimal(f, n, θ, ω (0) ) computes x (0) = (a (0) , a (0) ) satisfying (iii). Finally, FindNewIndex(f, n, I, θ, a (0) ) gives ω (0) * , a (0) * satisfying (iv). For the inductive step, Exchange(n, θ, ω (ℓ) , y (ℓ) , ω (ℓ) * ) computes ω (ℓ+1) , y (ℓ+1) satisfying (i) and (ii), by induction hypothesis on ω (ℓ) , y (ℓ) , ω (ℓ) * . Then, SolvePrimal(f, n, θ, ω (ℓ+1) ) and FindNewIndex(f, n, I, θ, a (ℓ+1) ) compute x (ℓ+1) , ω satisfying (iii) and (iv).

• Moreover, at each iteration ℓ, we have a (ℓ) ε * a (ℓ) * . Indeed, x (ℓ) is the optimal solution of the discretized Problem (P m ) for ω (ℓ) , whose objective value a (ℓ) is less or equal to the optimal value ε * of Problem (P ). On the other side, a (ℓ) * is the total error of degree-n polynomial a (ℓ)T π 0 (t) and therefore, it is greater or equal to the optimal error ε * . In addition, Lemma 8.15 proves a (ℓ) a (ℓ+1) .

• Finally, the convergence of this iterative process is proved by [49, Theorem 2.1], relying on Assumption 8.10. Hence, Algorithm EvalApproxOptimize terminates at some iteration ℓ, with a (ℓ) *

(1 + τ )a (ℓ) , yielding the enclosure (8.6). 

◮ Optimizing with the relative error

◮ Some comments

Finally, we mention that when other argument reduction techniques exist, and when the evaluation error is not an issue (very small intervals around zero), the FPMinimax method still provides better tuned FP coefficients. So this opens the question for several future extensions. A mixed-integer linear programming problem could be formulated in the provided optimization framework. However, a similar exchange procedure in this case is not obvious. Concerning precisions of the coefficients and operations, they can be variable, as mentioned in Section 8.2, but a more detailed study is needed to eventually take into account higher order error terms for the error estimation formula. The polynomial coefficients stay linear in such a formula, so the algorithm presented can be straightforwardly used in such a case. In addition, this formula directly allows for the estimation of evaluation errors for other numerical schemes and eventually polynomial bases [START_REF] Barrio | A general condition number for polynomials[END_REF] for which a practical study is necessary.

Overview of algebraic techniques for reconstruction from moments

The structure of moments of algebraic data is a central question in various reconstruction algorithms, appearing as part of a broad field of inverse problems [START_REF] Karlin | Tchebycheff systems: With applications in analysis and statistics[END_REF]. We refer to [START_REF] Bernard | Algebraic-exponential data recovery from moments[END_REF] and references therein for various shape reconstruction from their moments of polyhedra [START_REF] Gravin | The inverse moment problem for convex polytopes[END_REF][START_REF] Golub | A stable numerical method for inverting shape from moments[END_REF], planar quadrature domains [START_REF] Ebenfelt | of Operator Theory: Advances and Applications[END_REF], sublevel sets of homogeneous polynomials [START_REF] Bernard | Recovering an homogeneous polynomial from moments of its level set[END_REF], together with more applied studies of computerized tomography [START_REF] Natterer | The mathematics of computerized tomography[END_REF].

In this chapter, we focus on the structure of moments of holonomic distributions, together with associated inverse problems. It can be seen as a computer algebra-based extension of [START_REF] Bernard | Algebraic-exponential data recovery from moments[END_REF], where the approach was mainly based on techniques recently developed in polynomial optimization [START_REF] Bernard | Moments, positive polynomials and their applications[END_REF], which are at the interface between real algebraic geometry, moment problems and polynomial optimization.

Notations. Let n be a positive integer for the ambient space | n , whose canonical basis is denoted by (e 1 , . . . , e n ). Let ❑[x] be the ring of polynomials in the variables x = (x 1 , . . . , x n ) over a real finite computable extension of ◗, and let ❑[x] d be the vector space of polynomials of total degree at most d. Consider also the power moments of µ f :

m α := G x α dµ f (x), α ∈ ◆ n . (9.1)
In [START_REF] Bernard | Algebraic-exponential data recovery from moments[END_REF], the following property is proved, for such an exponential-polynomial weight: knowing a priori the coefficients of p, its degree s and the degree d of the variety containing ∂G, a threshold N is identified (which depends only on d and s), such that the moments m α up to degree N (i.e. α ∈ ◆ n N ) determine in a constructive and robust manner the coefficients of a polynomial vanishing on ∂G.

A natural question is whether this result can be generalized, as mentioned in [START_REF] Bernard | Algebraic-exponential data recovery from moments[END_REF]: the analogy to the well understood moment rigidity of the Gaussian distribution is striking, although the constructive aspects of this finite determinateness remain too theoretical in general. Motivated by this remark, in this chapter we revisit and extend this study to related problems, by exploiting holonomicity. In this framework, a first generalization of [START_REF] Bernard | Algebraic-exponential data recovery from moments[END_REF] is to recover the coefficients of both g and p in the exponential-polynomial case: More generally, the inverse problem for holonomic weights is: Problem 9.2 (General Inverse Problem) Let µ f = f ✶ G dx be a measure supported on a compact semi-algebraic set G, with holonomic f . Given a finite number of moments m α , |α| N , recover a polynomial g ∈ ❑[x] vanishing on the algebraic boundary of G and the coefficients of a holonomic system satisfied by f . Finally, we note the closely related direct problem: Problem 9.3 (General Direct Problem) Let µ f = f ✶ G dx be a measure supported on a compact semi-algebraic set, with given holonomic f . Find a holonomic system of recurrences for the sequence of moments (m α ).

Contributions. We address the above problems in the framework of holonomic distributions, employing well-known algorithmic properties of non-commutative polynomial representation of linear differential operators (see Section 9.2), as well as a generalized Stokes formula [START_REF] Bernard | Algebraic-exponential data recovery from moments[END_REF]. Firstly, this allows us to solve Problem 9.1 in Section 9.4.1: we prove that this reconstruction problem boils down to solving a linear system of 3d + s -1 equations, involving moments up to degree |α| 4d + 2(s -1).

Secondly, as a by-product, an alternate method to creative telescoping is proposed for computing linear recurrences for the moments in Section 9.3. The advantage is that when the coefficients of g are given as parameters, the obtained recurrences stay linear with respect to them. However, there is no guarantee that this method provides a holonomic ideal. We could only prove that it solves Problem 9.3 (i.e. it provides a holonomic ideal) in the restricted case of exponential-polynomial density and g nonsingular in ❈ n . Finally, Problem 9.2 is solved in Section 9.4.2: we prove that a holonomic system for f can be found by solving a finite system of linear equations, but their number cannot be a priori bounded. Once the density is known, the support is reconstructed as solution of a similar linear system, but in this case we provide an explicit uniform bound on the number of required moments.

◮ Related works

Moment problem. Concerning the moment problem, let µ be a Borel measure on | n with all its moments finite. When µ is atomic with finitely many atoms (i.e., when µ = d k=1 γ k δ ξ k , where δ ξ k is the Dirac measure, for some (ξ k ) ⊂ | n and some positive weights (γ k )), a first classical problem is to retrieve the atoms and the weights of µ from some finite truncation of its moment vector (m α ) α∈◆ n . In [START_REF] Mourrain | Polynomial-exponential decomposition from moments[END_REF] a thorough overview of algebraic methods for this problem is given. An important idea consists in computing a sparse polynomial-exponential representation of a multivariate series from its truncated Taylor series, whose coefficients correspond to moments. For instance, for pairwise distinct ξ 1 , . . . , ξ d , the moment generating series is:

σ δ ξ (y) = m α y α α! = d k=1 γ k exp(ξ k T y).
Such generating functions are also the solutions of systems of partial differential equations with constant coefficients. Hence, the sparse representation of the polynomial-exponential (also known as Prony method) is related to the inverse system of the isolated points of the characteristic variety of this system. Methods to obtain such representation are given in [START_REF] Mourrain | Polynomial-exponential decomposition from moments[END_REF]. Also, flat extension criteria, like for instance [START_REF] Bernard | Moments, positive polynomials and their applications[END_REF]Theorem 3.7], provide purely algebraic methods to reconstruct both the number of atoms, their values and weights function of the rank of the moment matrix. All in all, moments of atomic measures satisfy multi-index linear recurrences with constant coefficients [START_REF] Mourrain | Polynomial-exponential decomposition from moments[END_REF], which provide another incentive to consider the more general holonomic case. In this sense, these recurrences can be computed by creative telescoping.

Creative telescoping. These methods, briefly presented in Chapter 2, perform integration of functions (with free parameters), in the framework of non-commutative polynomial representation of linear differential operators (see [START_REF] Chyzak | The ABC of Creative Telescoping: Algorithms, Bounds, Complexity. Memoir of accreditation to supervise research (HDR)[END_REF][START_REF] Koutschan | Advanced applications of the holonomic systems approach[END_REF][START_REF] Bostan | Generalized Hermite reduction, creative telescoping and definite integration of D-finite functions[END_REF] and references therein). In particular, the direct Problem 9.3 can be solved for instance by the algorithms of Oaku [START_REF] Oaku | Algorithms for integrals of holonomic functions over domains defined by polynomial inequalities[END_REF]. Based on the D-module theory (see also [START_REF] Galligo | Some algorithmic questions on ideals of differential operators[END_REF][START_REF] Takayama | An algorithm of constructing the integral of a module -an infinite dimensional analog of gröbner basis[END_REF]), one computes a holonomic system for the definite integral of a holonomic function with parameters over a domain defined by polynomial inequalities. In the algorithms, holonomic distributions are involved, so, a subtle distinction has to be made between the ideal of operators with polynomial coefficients, which correspond to holonomicity, and those with rational coefficients which correspond to so-called D-finiteness (see Section 2.1.2).

Also, the Lagrange identity [START_REF] Ince | Ordinary Differential Equations[END_REF] (see also Equation (9.9) and Proposition 9.13), related to integration by parts, will play an important role in our approach. In the one variable case, for a linear differential operator with polynomial coefficients, L = c r ∂ r x + . . . + c 0 , its adjoint is defined as L * = (-1) r ∂ r x c r + . . . + c 0 and the following holds:

ϕL(f ) -L * (ϕ)f = ∂ x (L L (f, ϕ)), (9.2) 
for any function ϕ and f , with an explicit L L .

Inverse problem in the univariate case. In [START_REF] Batenkov | Moment inversion problem for piecewise D-finite functions[END_REF], the inverse Problem 9.2 is solved in the univariate case, for piecewise D-finite densities. Specifically, and the operator L of order r satisfies L • f i = 0.

µ f = d-1 i=1 ✶ [ξ i ,ξ i+1 ] f i dx,
Remark 9.4 As noted in [START_REF] Batenkov | Moment inversion problem for piecewise D-finite functions[END_REF], for general holonomic operators L with r > 1, to correctly recover the parameters, the number N of required moments depends also on specific coefficients of L. An example is the nth Legendre polynomial, whose first n moments (taken over [-1, 1]) vanish, while L n = ∂ x ((1 -x 2 )∂ x ) + n(n + 1), hence the reconstruction of µ f depends also on n, which enters the definition of L n . On the contrary, for the exponential-polynomial case, we show that N depends only on the degrees of the polynomials involved.

As discussed above, in the univariate case, the above problems are well tackled in literature, so this chapter deals with the multivariate case. However, to illustrate the basic ideas, we give two elementary univariate examples of our approach, omitting the technical proofs. x i e -x 2 dx. The idea is to include ✶ [-1,1] in the integral, and consider the distribution u corresponding to ✶ [-1,1] (x)e -x 2 . Although not differentiable as a function, u satisfies (see Section 9.2.1 for details):

◮ Introductory examples

(1 -x 2 )(∂ x + 2x)u = 0.

Integrating for the test function x i , using (9.2) and noticing that its right hand side vanishes after integration, one has: The extension of this method to the multivariate case is given in Section 9.3.

Example 9.6 (Univariate support and density reconstruction) Consider the problem of reconstructing the parameters ξ 1 , ξ 2 and p 2 , p 1 , p 0 , provided the first N moments {m i , 0 i N } are known:

m i = ξ 2 ξ 1
x i e p 2 x 2 +p 1 x+p 0 dx.

(9.3) Like in the previous example, u = ✶ [ξ 1 ,ξ 2 ] e p 2 x 2 +p 1 x+p 0 satisfies:

(x -ξ 1 )(x -ξ 2 )(∂ x -2p 2 x -p 1 )u = 0.
Denote by L := g(x)∂ x + h(x) the operator to be reconstructed such that L • f = 0, with g(x) = x 2 + g 1 x + g 0 and h(x) = 3 i=0 h i x i . Integrating and using the Lagrange identity, one has:

∞ -∞ g(x)∂ x -h(x))(x i ) udx = 0.
This gives for each i 0:

im i+1 + ig 1 m i + ig 0 m i-1 -h 3 m i+3 -h 2 m i+2 -h 1 m i+1 -h 0 m i = 0. (9.4)
Hence, the coefficients of g and h are solutions of the above infinite linear system. If g is recovered, p (except for the coefficient p 0 ) could also be recovered from the division h/g. Finally p 0 can also be recovered from the equation (9.3), with i = 0.

The main question is whether a truncated system (9.4), which considers only moments up to degree N , can provide the correct solution for g and h. We will address this in Section 9.4. Specifically, in Theorem 9.18 we prove a sufficient bound for the case of an nvariable exponential-polynomial density, together with Algorithm ReconstructExpPoly which reconstructs the coefficients. It needs in our case the first N = 10 moments.

Holonomic distributions and their moments

This section introduces the notion of holonomic distributions, which generalizes the notion of holonomicity defined in Chapter 2 to distributions, seen as generalized functions. In this particular setting, distinguishing D-finiteness and holonomicity is crucial. We refer to [START_REF] Chyzak | The ABC of Creative Telescoping: Algorithms, Bounds, Complexity. Memoir of accreditation to supervise research (HDR)[END_REF][START_REF] Koutschan | Advanced applications of the holonomic systems approach[END_REF][START_REF] Oaku | Algorithms for integrals of holonomic functions over domains defined by polynomial inequalities[END_REF] for a more comprehensive presentation.

◮ Holonomic distributions

Introduced by Schwartz [START_REF] Schwartz | Théorie des distributions[END_REF], distributions generalize functions and measures. A minimal introduction to this topic is provided below. • There exists a minimal compact set K ⊆ | n (the support of T ) such that T, ϕ = 0 whenever ϕ vanishes over K.

• T, ϕ k → 0 whenever ϕ k → 0 in E.

E ′ has a canonical D n -module structure:

L • T, ϕ := T, L * • ϕ , L ∈ D n , T ∈ E ′ , ϕ ∈ E,
where the adjoint operator L * is defined by A measure supported on a set G, with density f ∈ E, is represented by the distribution f ✶ G , with f ✶ G , ϕ = G ϕ(x)f (x)dx.

x * i = x i , ∂ * x i = -∂ x i
We make the following assumption on G ⊆ | n : Assumption 9.9 G is a compact n-dimensional semi-algebraic set. In particular, the following holds:

(1) G is an n-dimensional compact manifold such that its boundary can be decomposed as ∂G = Z ∪ Z ′ , with Z a finite union of (n -1)-dimensional manifolds and Z ′ a negligible set w.r.t. the (n -1)-dimensional Hausdorff measure.

(2) the ideal of polynomials vanishing over ∂G is radical and principal i.e., generated by a single square-free polynomial g. In particular, the family {g, g x 1 , . . . , g xn } is coprime, implying that the set of singular points {x | g(x) = 0 and ∇g(x) = 0} is negligible in ∂G. (i) The Fourier transform of L • T is related to that of T by

◮ Moments of a distribution

F {L • T } = L F • F {T }, with L F := L x i → i ∂ z i ∂ x i → i z i = β q β (i ∂ z )(i z) β , (9.6) 
where i denotes the complex number of positive imaginary part satisfying i 2 = -1.

(ii) The moments of L • T are related to those of T by

(m α (L • T )) = L M • (m α (T )), with 
L M := L x i → S α i ∂ x i → -α i S -1 α i = β (-1) |β| q β (S α ) n i=1 α i S -1 α i β i . (9.7)
The proof is very similar to [START_REF] Mourrain | Polynomial-exponential decomposition from moments[END_REF]Sec. 5.1.]. We give it here for the sake of completeness.

Proof of Proposition 9.12. To prove (i), we use ∂ x i e -ix T z = -i z i e -i x T z and ∂ z i e -ix T z = -i x i e -i x T z :

F {L • T } = T, L * • (e -i x T z ) = T, β (-1) |β| ∂ β x (q β (x) • e -i x T z ) by definition, = T, β (-1) |β| q β (i ∂ z )∂ β x • (e -i x T z ) = T, β (-1) |β| q β (i ∂ z )(-i z) β • e -i x T z = T, L F • e -i x T z = L F • F {T }.
The last equality holds since for any C ∞ function f (x, z),

T, z i • f (x, z) = z i • T, f (x, z) , and 
T, ∂ z i • f (x, z) = T, lim h→0 f (x, z + he i ) -f (x, z) h = lim h→0 1 h ( T, f (x, z + he i ) -T, f (x, z) ) = ∂ z i • T, f (x, z) ,
where the commutation of the limit symbol comes from the fact that f z,h : x → f (x,z+he i )-f (x,z) h converges to f z : x → f (x, z) for the compact-open topology of E.

To prove (ii), one just need to notice that L M is obtained from L F using z i → i α i S -1 α i , and ∂ z i → -i S α i . Proof. By the injectivity of the Fourier transform on compactly supported distributions [START_REF] Schwartz | Théorie des distributions[END_REF].

Direct problem for moments

As mentioned in the introduction, the direct Problem 9.3 can be solved using an algorithm presented in [START_REF] Oaku | Algorithms for integrals of holonomic functions over domains defined by polynomial inequalities[END_REF]. However, one may ask whether the simple roadmap of Example 9.5 can be generalized to the multivariate case and provide a more efficient method. For that, firstly, Lagrange identity in the multivariate setting is needed: 

L • (f ✶ G ), ϕ = G ϕ (L • f )dx - ∂G L L (f, ϕ) • n dS,
where n and dS respectively denote the normal vector and the (n -1)-dimensional Hausdorff measure on ∂G.

Proof. Integrating Lagrange's identity (9.9) with g = ϕ and using the divergence theorem, we have:

G ϕ (L • f )dx - G (L * • ϕ) f dx = ∂G L L (f, ϕ) • n dS.
Following [START_REF] Bernard | Algebraic-exponential data recovery from moments[END_REF], the divergence theorem is a consequence of Stokes' theorem when ∂G is smooth, or of a generalization by Whitney [261, Theorem 14A] when G satisfies Assumption 9.9.(1).

Finally, the following proposition provides differential equations for measures supported on semi-algebraic sets. Proposition 9.16 Let G and g be as in Assumption 9.9, f ∈ E, L ∈ Ann(f ) of order r.

Then g r L ∈ Ann(f ✶ G ).

Proof. Using Proposition 9.15, one needs to prove that G g r ϕ(L • f )dx and ∂G L L (f, g r ϕ) • n dS are zero. The first one is trivial since L ∈ Ann(f ). For the second, L L (f, g r ϕ) involves derivatives ∂ α x (g r ϕ) with |α| < r (Lemma 9.14), so it vanishes over ∂G.

Hence, Proposition 9.16 gives an easy way to construct operators in Ann(f ✶ G ) from operators in Ann(f ). Indeed, given a Gröbner basis {L 1 , . . . , L k } of Ann(f ), and g ∈ |[x] vanishing over ∂G, each operator g r i L i (with r i the order of L i ) annihilates f ✶ G as a distribution. Therefore, each operator R i := (g r i L i ) M gives a valid recurrence for the sequence of moments (m α ) (see equation (9.7)).

However, from the fact that f is holonomic one can not directly guarantee that the ideal generated by {g r 1 L 1 , . . . , g r k L k } is holonomic. Similarly, we are not able to prove (or refute) that {R 1 , . . . , R k } is holonomic in general. Nevertheless, one can apply a Gröbner basis algorithm, which will possibly return a basis of a holonomic ideal. This heuristic is given in Algorithm RecurrencesMoments. We prove that this algorithm actually returns such a basis in the particular case of an exponential-polynomial density (including the Lebesgue measure), and a smooth boundary, extending [START_REF] Oaku | Algorithms for integrals of holonomic functions over domains defined by polynomial inequalities[END_REF]Prop. 4]. Algorithm 9.1 RecurrencesMoments(n, g, {L 1 , . . . , L k }) Input: Gröbner basis {L 1 , . . . , L k } for Ann(f ), g. Output: Gröbner basis for Ann(m α ).

1: R i ← (g r i L i ) M , as in (9.7), with r i the order of L i , for i ∈ 1, k 2: return GröbnerBasis({R 1 , . . . , R k },R n ) Proposition 9.17 Let f (x) = e p(x) with p ∈ |[x] s , and g ∈ |[x] d vanishing over ∂G. Suppose moreover that g is nonsingular in ❈ n , that is, there exists no x ∈ ❈ n such that g(x) = 0 and ∇g(x) = 0.

(i) The operators

L i = g(∂ x i -p x i ), i ∈ 1, n ,
are generators of a holonomic ideal I contained in Ann(f ✶ G ).

(ii) The operators L F i (i ∈ 1, n ) span a holonomic ideal I F contained in Ann(F {f ✶ G }).

Proof. For (i), first note that the operators L i also generate

L ij := (∂ x j -p x j )L i -(∂ x i -p x i )L j = g x j (∂ x i -p x i ) -g x i (∂ x j -p x j ), 1 i < j n. (9.10) 
Holonomicity is proved via the characteristic variety, as for instance in [START_REF] Oaku | Algorithms for integrals of holonomic functions over domains defined by polynomial inequalities[END_REF]. For L = σ(L i )(x, ξ) = g(x)ξ i , and σ(L ij )(x, ξ) = g x j (x)ξ i -g x i (x)ξ j .

Hence, if (x, ξ) ∈ Char(I), then either g(x) = 0, implying ξ = 0, or g(x) = 0. In the latter case, ∇g(x) = 0 (since g is nonsingular) and hence there exists λ ∈ ❈ s.t. ξ = λ∇g(x). In both cases, the corresponding components of Char(I) have dimension n. For (ii), since the Fourier transform maps x i to i ∂ z i and ∂ x i to i z i , it is clear that I is holonomic if and only if I F is holonomic.

Interestingly enough, for the examples we tried for an exponential-polynomial density, Algorithm RecurrencesMoments always terminated, even when the boundary was not smooth (see Example 9.24). Also, it was faster than "classical" creative telescoping, which firstly constructs a Gröbner basis for f ✶ G and then applies Takayama's algorithm [START_REF] Oaku | Algorithms for integrals of holonomic functions over domains defined by polynomial inequalities[END_REF]. Further investigation is needed to provide a comparison in this case.

However, having a Gröbner basis is not mandatory for the reconstruction problem addressed in the next section. The recurrences obtained as above turn out to be sufficient and constitute the basic brick of our reconstruction method. returns g = λg with λ ∈ ❑ * , and p = p-p(0). This requires moments up to degree 4d+2(s-1).

Moreover, if g 0 over G, N can be only 2d + s -1, requiring moments up to degree 3d + 2(s -1).

Remark 9.19 This method cannot reconstruct the constant coefficient of p, which is the scaling factor of the density. In case of a probability measure over | n , this coefficient is uniquely recovered by imposing | n exp(p(x))dx = 1. Otherwise, one can compute p(0) = log(m 0 / G exp(p(x))dx), for example.

Proof. First, {h 0 ← g, h i ← gp x i , i ∈ 1, n } is a solution of the linear system in line 3. Hence, one can always get a solution with h 0 = 0. Then L ′ i (f ✶ G ), ϕ = 0 for all i ∈ 1, n and ϕ ∈ ❑[x] N . Using Proposition 9.15, this expands to: G (h 0 p x i -h i )ϕf dx + ∂G h 0 ϕf e i • n dS = 0.

(9.12)

With ϕ = (h 0 p x i -h i )g 2 of degree at most d + (s -1) + 2d N , the second integral is zero since g vanishes over ∂G. Hence the first integral is zero too. Therefore, its integrand (h 0 p x i -h i ) 2 g 2 is zero almost everywhere over G. Since G has nonempty interior and f > 0, g = 0, this necessarily implies h i = h 0 p x i for all i ∈ 1, n . Now, the first integral in (9.12) being always zero for all polynomials ϕ with deg ϕ N , so is the second. Noticing that e i • n = g x i / ∇g when ∇g = 0, and by taking ϕ = h 0 g x i of degree at most 2d -1 N , we have ∂G (h 0 g x i ) 2 f ∇g dS = 0. The coefficients {q 0 , . . . , qr } of the returned operator L = qj ∂ j x i form a coprime family (line 4). This is also true for {q 0 , . . . , q r } by minimality of deg(q r ). By minimality of r, we have qr L -q r L = 0, that is qr q j = q r qj for all j. Since ❑[x] has the unique factorization property, there exists λ ∈ ❑ s.t. qr = λq r , yielding L = λL.

Reconstructing the support

From now on, we assume that a rectangular system {L 1 , . . . , L n } for the density f is known, and that L i have the same order r. 1 Let:

L i = r j=0 q i,j (x)∂ j x i ∈ Ann(f ) ∩ ❑[x] ∂ x i , i ∈ 1, n .
The next assumption is crucial for support reconstruction. Roughly speaking, the differential system must not be singular over the Zariski closure of ∂G, except for a zero-measure set. Assumption 9.22 The pair {g, q i,r } is coprime for each i ∈ 1, n . this proves that when the density is known, the support can be reconstructed using moments up to degree (3r -1)d + (d -1)b + s + max ij { deg(q i,j ) -j}.

Algorithm 9.4 ReconstructSupport(n, d, r, {L i } n i=1 , N, (m α )) Input: n 2, degree d, order r, rectangular system {L 1 , . . . , L n } of order r, moments m α for |α| N + dr + max ij { deg(q i,j ) -j}.

Output: polynomial g(x) ∈ ❑[x] d vanishing over ∂G. Since L i involves derivatives only in x i , we have L L i (f, hϕ) = L L i ,i (f, hϕ)e i , with the Lagrange bilinear concomitant [START_REF] Ince | Ordinary Differential Equations[END_REF]:

L L i ,i (f, hϕ) = f q i,1 hϕ -∂ x i (q i,2 hϕ) + • • • + (-1) r-1 ∂ r-1
x i (q i,r hϕ) +∂ x i (f ) q i,2 hϕ -∂ x i (q i,3 hϕ) + • • • + (-1) r-2 ∂ r-2

x i (q i,r hϕ) + . . . +∂ r-1

x i (f ) q i,r hϕ. Since hϕ is a multiple of g r-1 , all the terms in (9.13) are multiples of g (hence they vanish over ∂G), except for the derivative of order r -1, which we can write as ∂ r-1 x i (q i,r hϕ) = (r -1)!g r-1+b

x i

q 2 i,r h 2 k + ℓ(x)g(x), ℓ(x) ∈ ❑[x].
Therefore, integrating L L i ,i (f, hϕ) e i • n dS over ∂G gives ∂G g r+b 2

x i q i,r h k 2 f ∇g dS = 0, implying that the squared polynomial in the integrand vanishes over ∂G, hence is a multiple of g. But g and q i,r are coprime by Assumption 9.22, so that g divides h k g x i , for all i ∈ 1, n . Finally, since {g, g x 1 , . . . , g xn } is a coprime family, g divides h k , so h k = gh k+1 . Now that h = λg r , GCD(h, h x 1 , . . . , h xn ) = g r-1 (again since {g, g x 1 , . . . , g xn } is coprime), so g = λg.

Examples and Conclusion

Our methods are exemplified in the two dimensional case, with respect to Lebesgue and restricted Gaussian measures2 . The implementation uses OreAlgebra and OreGroebnerBasis routines from the HolonomicFunctions library [START_REF] Koutschan | Advanced applications of the holonomic systems approach[END_REF]. The exactly computed moments m ij (obtained from the recurrences given by Algorithm RecurrencesMoments together with closed-form initial conditions, when possible) are truncated to mij , s.t. ⌊-log 10 m i,j -mij m ij ⌋ = ε i.e., ε represents the number of correct digits of mij . Then, given mij , Algorithm Reconstruct-ExpPoly solves the inverse problem. The resulting overdetermined linear systems are solved numerically by a Least Mean Squares method of Mathematica. (i) Direct problem: Given g = (x 2 + y 2 -1)(x 2 + y 2 -9)(x 2 + (y -2) 2 -1)((x -2) 2 + y 2 -1), which vanishes on ∂G, and Ann{1} = {∂ x , ∂ y }, Algorithm RecurrencesMoments returns a Gröbner basis with 9 generators and with 36 monomials under the staircase: {S k i S l j , k, l ∈ ◆,k + l 7}.

(ii) Inverse problem: Given a finite number of numerically computed moments mij of the Lebesgue measure with unknown support G, the goal is to reconstruct g = (i) Direct problem: Given g = x 2 -9/10 2 + x 2 -11/10 2 -1, which vanishes on ∂G, and f = exp (-x 2 + xy -y 2 /2), with Ann{f } = {∂ x + 2x -1, ∂ y + y -1}, apply Algorithm RecurrencesMoments to compute a Gröbner basis for the sequence of moments m ij . In the same setting as above, a Gröbner basis with 5 generators and with 28 monomials under the staircase is obtained.

(ii) Inverse problem: Suppose now given a finite number of numerically computed moments mij , with unknown support G and unknown Gaussian weight. The goal is to reconstruct g = i+j 4

g ij x i y j which vanishes on ∂G, as well as p = i+j 2 p ij x i y j . Algorithm Recon-structExpPoly called with parameters (2, 4, 2, 14, ( mij ) |i+j| 18 ) provides the reconstructed g, as depicted in The proposed method is very robust on the above academic examples, but a further study is needed for an efficient implementation in practical higher-dimensional cases. On the theoretical side, this chapter provides further insight on the question raised in [START_REF] Bernard | Algebraic-exponential data recovery from moments[END_REF] regarding the finite determinateness of a measure. To sum up, provided Assumptions 9.9 and 9.22 hold, for a measure with compact algebraic support G, with g ∈ |[x] d vanishing on ∂G and known holonomic density f , the moments up to degree N (which only depends on d and the order of a rectangular differential system which annihilates f ) determine in a constructive and robust manner the coefficients of g. Thus, this determines in turn all the other moments. When both the density and the support are unknown, a uniform bound N does not exist in general. We provided the solution for the special case of unknown exponential-polynomial density.

Figure I. 1 :

 1 Figure I.1: An RPA for the spacecraft rendezvous problem: polynomial approximation + rigorous error bound (in blue) form a tube containing the exact trajectory (dashed magenta).

Example 1 :

 1 Airy function Ai -Rigorous approximation 1 (b) How to design efficient RPAs for Ai?

  Example of a limit cycle with the Van der Pol oscillator. Unperturbed quartic system of T. Johnson. Rigorous computation of Abelian integrals shows the expected sign alternations (in magenta: degree for the rigorous polynomial approximations and resulting enclosure of the integral).

Figure I. 2 :

 2 Figure I.2: A computer-assisted proof for H(4) 24 in Hilbert's 16th problem.

  Figure I.4c). 1 (d) Given a compact interval I = [a, b], a degree n, a floating-point precision u and a fixed evaluation scheme p → p for degree n polynomials, find a polynomial p ∈ | n [x] with floating-point coefficients that minimizes the total error:

Example 5 :

 5 Moments of a Gaussian density over a semi-algebraic set Let f (x, y) := exp(a xx x 2 + a yy y 2 + a xy xy + a x x + a y y + a 1 ) be an (unnormalized) Gaussian density in the plane, and G the full-dimensional semi-algebraic set of | 2 depicted in Figure I.5

Example 1 :

 1 Fonction d'Airy Ai -un peu de calcul formel Nous illustrons ici comment l'algorithmique des fonctions D-finies permet de prouver des résultats non triviaux. 1 (a) Prouvons l'identité suivante [2, Eq. (10.4.15)] :

Figure I. 6 :

 6 Figure I.6 : Un RPA pour le problème du rendez-vous spatial : une approximation polynomiale + une borne d'erreur rigoureuse (en bleu) forment un tube contenant la trajectoire exacte (en pointillés magenta).

  der Pol, représenté sur la Figure I.7a, constitue un exemple célèbre de cycle limite.

3

  (a) Trouvons un exemple concret de champ de vecteurs quartique et isolons les cycles limites pour obtenir une nouvelle borne inférieure pour H(4). Pour cela, nous réutilisons l'exemple de T. Johnson, représenté sur la Figure I.7b : ẋ = -4y 2 (y 2 -Y 0 ) + εg 1 (x, y), ẏ = 4xy(x 2 -X 0 ) + εg 2 (x, y), avec ε > 0, et optimisons les coefficients de la perturbation polynomiale (f, g) ∈ | 4 [x, y] 2 afin d'obtenir 24 zéros (ce qui améliore le précédent record H(4) 22). Ici, évaluer les intégrales abéliennes revient à intégrer des fonctions algébriques sur des segments compacts, ce qui et possible avec les RPA implémentés dans ChebValid. La Figure I.7c montre l'évaluation rigoureuse de l'intégrale abélienne, dont les changements de signe prouve l'existence des cycles limites attendus.

  Exemple de cycle limite avec l'oscillateur deVan der Pol. 

  Système quartique non perturbé de T. Johnson. L'évaluation rigoureuse des intégrales abéliennes met en évidence le nombre attendu de changements de signe (en magenta : degré du RPA utilisé et encadrement obtenu pour l'intégrale).

Figure I. 7 :

 7 Figure I.7 : Une preuve assistée par ordinateur pour H(4) 24 dans le cadre du 16ème problème de Hilbert.

Example 1 :

 1 Fonction d'Airy Ai -Implémentation en flottants Étant donné que Ai ne peut s'exprimer par des fonctions élémentaires, utiliser des polynômes d'approximation est un des outils les plus naturels pour générer des implémentations en flottants. Cela consiste, pour un intervalle I = [a, b] et un degré n fixés, à trouver les coefficients d'un polynôme p dans une base donnée, de telle sorte que Ai(x) est approximativement calculé comme p(x), pour x ∈ I. Dans un monde idéal sans erreur d'arrondi, ceci s'appelle le problème minimax, rappelé dans la Section 2.2.2 1 (c) Étant donnés un intervalle compact I = [a, b] et un degré n, trouvons la meilleure approximation polynomiale p ∈ | n [x] pour Ai, c'est-à-dire le polynôme p de degré au plus n minimisant l'erreur d'approximation uniforme : arg min p∈|n[x] Ai -p ∞,I := arg min p∈|n[x] max x∈I | Ai(x) -p(x)|.

  Figure I.9b, constitue un preuve d'optimalité. Cependant, en arithmétique flottante, le polynôme p, en tant que fonction mathématique x → p(x), est implémentée par une suite d'opérations flottantes, c'est-à-dire un programme p, appelé schéma d'évaluation, qui calcule un résultat flottant p(x) sur une entrée flottante x ∈ I. Dans ce cadre, les coefficients de p sont des flottants, et le résultat p(x) est sujet à des erreurs d'arrondi. Si p * désigné le polynôme optimal de la Question 1 (c), et p * un schéma d'évaluation où les coefficients de p sont arrondis aux flottants les plus proches, alors il n'y a aucune raison pour laquelle p * serait la solution optimale de la question suivante (cf. Figure I.9c). 1 (d) Étant donnés un intervalle compact I = [a, b], un degré n, une précision flottante u et un schéma d'évaluation fixé p → p pour des polynômes de degré n, trouvons un polynôme p ∈ | n [x] à coefficients flottants qui minimise l'erreur totale :

  Figure I.9d, où nous pouvons voir que l'erreur d'approximation est « répartie » sur I de telle sorte que les pics les plus élevés se trouvent là où l'erreur d'évaluation est petite. Pour finir, précisions que ce cadre « bas niveau » n'est en rien incompatible avec le calcul rigoureux : 1 (e) Étant donnée une approximation polynomiale p ∈ |[x] pour Ai, calculons une borne supérieure sur I = [a, b] pour l'erreur d'approximation ou l'erreur totale. Pour l'erreur d'approximation, cela signifie simplement borner Ai -p ∞,I . Comme Ai satisfait l'EDOL (Ai-ii), une borne d'erreur rigoureuse peut être calculée en utilisant la méthode de validation du Chapitre 4.

Example 5 :

 5 Moments d'une densité gaussienne sur un ensemble semi-algébrique Soit f (x, y) := exp(a xx x 2 + a yy y 2 + a xy xy + a x x + a y y + a 1 ) une densité gaussienne (non normalisée) dans le plan et G l'ensemble semi-algébrique de dimension pleine dans | 2 représenté sur la Figure I.10 par la région hachurée, dont le bord est contenu dans l'ensemble des zéros du polynôme :

•

  J'ai développé une bibliothèque C open source, que l'on appellera ChebValid 32 , qui implémente l'arithmétique des modèles de Tchebychev détaillée dans le Chapitre 3, ainsi Part I Rigorous Polynomial Approximations from Scratch: Selected Topics and Personal Contributions Computing with Numbers 1 Les hommes sont comme les chiffres : ils n'acquièrent de valeur que par leur position.

Definition 1 . 1 (

 11 Von Neumann natural numbers) In set theory, natural numbers are inductively constructed from the empty set using set theoretic operations: 0 := ∅, and n + 1 := n ∪ {n} = {0, 1, . . . , n}, n 0.

Definition 1 . 2 (

 12 Rational numbers) The set ◗ of rational numbers is the field of fractions associated to the ring of integers. Two fractions n 1 d 1 and n 2 d 2 (with d 1 , d 2 = 0) represent the same rational number if and only if n 1 d 2 = n 2 d 1 .

Theorem 1 . 5 (

 15 ◗ is a subfield of ❈ [105, Thm. 50]) If a and b are algebraic, then so are a + b, a -b, ab and, if b = 0, a/b.

A

  reference definition of floating-point numbers is given in [177, Sec. 2.1.1]. Definition 1.6 (Floating-Point Numbers) Given:

Remark 1 . 12 Definition 1 . 13 (

 112113 It may be convenient to add an extra constant |= ❇ to the set ■ ❇ that corresponds to a possible execution error during the computation. In that setting, |= ❇ is the largest element of ■ ❇ (for the inclusion): it contains all the real numbers, plus possibly some error symbols. Point intervals) For any x ∈ |, the singleton [x] := [x, x] = {x} is called a point interval. This allows for injecting | into ■ | .

Definition 1 . 16 (

 116 Interval extension and range) Let k 1, A ⊆ | k and f : A → | be a k-ary function. An interval function f : ■

Definition 1 . 19 (

 119 Arithmetic operations on real intervals) Arithmetic operations on ■ | are defined as the range of the corresponding operations in |. For any x = [x, x] and y = [y, y] in ■ | , 0 := [0], 1 := [1],

Theorem 1 . 28 (

 128 Quadratic convergence rate of Interval Newton's method [174, Lem. 8.1]) If:

Definition 2 . 10 (

 210 Rational Ore algebra) The rational Ore algebra D * n := ❑(x) ∂ x = ❑(x 1 , . . . , x n ) ∂ 1 , . . . , ∂ n is the ring of differential operators with rational fraction coefficients, where the commutation rules of D n are extended by

Theorem 2 . 17 (

 217 Cauchy estimate [217, Thm. 10.15]) Let f be a holomorphic function over an open disc of center z 0 and radius R > 0 in the complex place, denoted by B(z 0 , R), and bounded by M 0 over ∂B(z 0 , r) = {z ∈ ❈, |z| = R}. Then:

  Figure 2.1). Example 2.21 The set {1, x, . . . , x m } or any set of m + 1 polynomials spanning | m [x] is a Chebyshev system. Other examples are the trigonometric polynomials {1, cos t, sin t, . . . , cos nt, sin nt} over [0, 2π], {e α 0 x , . . . , e αmx } on | for α 0 < • • • < α m . Theorem 2.22 (Alternation criterion [53, Secs. 3.4 and 3.5]) Let f ∈ C 0 ([a, b]

  x -∞ w(t)dt of compact range, and use the Stone-Weierstrass theorem [53, Sec. 6.1] to deduce again the completeness of |[x] in L 2 w (I). The completeness of |[x] in L 2 w (I) raises the question of characterizing a graduated basis of orthogonal polynomials, forming a Hilbert basis of L 2

. 8 )

 8 Algorithm 2.2 Clenshaw(p, x) -Clenshaw evaluation algorithm Input: Polynomial p = n i=0 a i T i in Chebyshev basis, and x ∈ |. Output: Evaluation y = p(x) of p at x. 1: b n+1 ← 0 and b n ← a n 2: for i = n -1 downto 0 do 3: b k ← a k + 2xb k+1 -b k+2 4: end for 5: y ← b 0 -xb 1 6: return y Clenshaw evaluation. A straightforward evaluation strategy for a polynomial p = n i=1 a i T i at a point x ∈ | relies on the forward computation of the sequence (T i (x)) 0 i n , using the recurrence relation (2.5

  Record BasisOps_on (C: Type) := { lo, hi: C; (* bounds for the domain *) beval: seq C → C → C; (* (efficient) evaluation *) bmul: seq C → seq C → seq C; (* multiplication *) bone, bid: seq C; (* constant to 1, identity *) bprim: seq C → seq C; }. (* primitive *) brange: seq C → C*C; }. (* range *) Definition BasisOps := ∀ C: Ops1, BasisOps_on C.

  For the Chebyshev basis, one can define the range over [-1, 1] of a Chebyshev model f = (p, ε) with p = n i=0 a i T i as in [129, Chap. 4, Algo. 4.5.2]:

Proposition 3 . 4

 34 Let f = (p, ε) be a Chebyshev model. Then, (3.4 i) for all p ∈ p and t ∈ [-1, 1], p(t) ∈ p ; (3.4 ii) for all f ∈ f and t∈ [-1, 1], f (t) ∈ f . Proof. For (3.4 i), let p = n i=0 a i T i and p ∈ p, that is p = n i=0 a i T i with a i ∈ a i . Since T 0 (t) = 1 and T i (t) ∈ [-1, 1]for all i 1 and t ∈ [-1, 1], p(t) ∈ p follows from the correctness of interval arithmetic operations. Now, (3.4 ii) follows from (3.4 i) by a similar argument to the proof of Proposition 3.3.

Fixpoint

  Clenshaw (C: Ops1) b c (p: seq C) x := match p with | [] => c -x*b | a::q => Clenshaw c (a + 2*x*c -b) q x end. Definition beval (C: Ops1) (p: seq C) x := Clenshaw 0 0 (rev p) x. This code might look mysterious. It is justified by the following invariant on real numbers: Lemma ClenshawR b c p x: Clenshaw b c p x = eval T (catrev p [c -2*x*b; b]) x.

  end for 8: return h Proposition 3.7 (Complexity of naive Chebyshev multiplication) Algorithm ChebMul(p, q) computes the product of p := r i=0 a i T i and q := s j=0 b j T j in Chebyshev basis in O(rs) arithmetic operations. Therefore, the multiplication f ⊠ g of Chebyshev models f and g with fixed degree N glob and naive Chebyshev multiplication requires O(N glob 2 ) interval arithmetic operations. Proof. Clearly, the two nested for-loops in the code of ChebMul account for the claimed complexity in O(rs). Concerning f ⊠ g, besides the multiplication in O(N glob 2 ) operations, the other routines involved in RpaMul (range • and truncation RpaTrunc) have a linear complexity.

Fixpoint

  mul_pls (C: Ops1) (p q: seq C): seq C := match p,q with | [],_ | _,[] => [] | a::p', b::q' => sadd (a*b::(sadd (sscal a q') (sscal b p'))) (0::0::mul_pls p' q') end. Fixpoint mul_mns (C: Ops1) (p q: seq C): seq C := match p,q with | [],_ | _,[] => [] | a::p', b::q' => sadd (a*b::(sadd (sscal a q') (sscal b p'))) (mul_mns p' q') end.

  Definition mmul (M N: Model): Model := {| pol := pol M * pol N; rem := srange (pol M) * rem N + srange (pol N) * rem M + rem M * rem N |}.

Algorithm 3 . 3

 33 ChebInt(p, t 0 ) -Primitive in Chebyshev basis Input: polynomial p = r i=0 p i T i and t 0 ∈ [-1, 1].

  r), and parameterized by a radius r ∈ | + . If we are able to find a radius r ∈ | + satisfying: µ(r) := µ 0 + μ(r) < 1, and b + rµ(r) r, (3.5) then Theorem 3.10 guarantees the existence and uniqueness of a root x * of F in B(x • , r).

Example 3 . 13

 313 To illustrate this Newton-like validation procedure, in contrast with the interval Newton method presented in Section 1.3.3, we consider the golden ratio of Example 1.29. Here, the ambient Banach space is the standard real line (|, | • |), and ϕ * = 1+ √ 5 2

  ball : M → R → M → Prop ; ax1 : ∀ x (e > 0), ball x e x ; ax2 : ∀ x y e, ball x e y → ball y e x ; ax3 : ∀ x y z e1 e2, ball x e1 y → ball y e2 z → ball x (e1 + e2) z Two points are called close when they cannot be separated by balls: Definition close (x y : M) : Prop := ∀ eps > 0, ball x eps y.

19 (

 19 Correctness of ValidatedMatrixInverse) For P ∈ M n (|), if ValidatedMatrixInverse(P ) returns a pair (M • , ε), then P is invertible and M • -P -1 1 ε.

1 1 b 1 -

 11 µ ∈ r. Example 3.20 (A posteriori validation at the rescue for Lehmer matrix) Overloading floating-point operations by interval ones in Gaussian elimination is a classical example illustrating the limits of interval arithmetic, as shown by Example 1.30 with Lehmer matrices.

Proposition 3 . 21

 321 Let f, g, h • , w ∈ C(I), and µ, b ∈ | + such that:

) 1 -wg µ, ( 3 .

 3 21 iii) µ < 1. Then g does not vanish over I and h • -f /g b 1-µ . Proof. Conditions (3.21 ii) and (3.21 iii) imply that T (Equation (3.6)) is contracting over C(I) with ratio µ. The radius r := b 1-µ makes the ball B(h • , r) strongly stable with offset b (3.21 i), since b + µr = r. Therefore, h * is the (global) unique root of F, and h • -h * r. Finally, w and g do not vanish because 1 -wg µ < 1. Hence, h * = f /g over I.

  In our Coq development, the division of RPAs (a.k.a. Model) is implemented as follows: Definition mdiv_aux (F G H W: Model): Model := let K1 := 1-W*G in let K2 := W*(G*H -F) in match mag (mrange K1), mag (mrange K2) with | Some mu, Some b when is_lt mu 1 => {| pol := pol H; rem := rem H + sym (b/(1-mu)) |} | _ => mbot end.

  [START_REF] Berz | Rigorous global search using Taylor models[END_REF] ii) and (3.24 iv)) and w(t 0 ) > 0 (3.24 vi), w and h • are strictly positive over I, by continuity. Using (3.24 iii), µ 1 > 0.If b = 0, then r * = 0 and h• = √ f over I, because w(h •2 -f ) = 0 (3.24 i) and w, h • > 0. Hence the conclusion holds.

Remark 4 . 4

 44 Note that in this problem we focus on the case t 0 = -1 for technical reasons explained in Section 4.3.1, but our results remain valid for any t 0 ∈ [-1, 1].

  (a) Almost-banded structure of operator K. (b) Truncated operator K [n] .

Figure 4 . 1 :

 41 Figure 4.1: Almost-banded structure of operator K and its truncations K [n] .

Theorem 4 . 11

 411 Let ϕ * := (I + K) -1 • ψ be the exact solution of integral equation (4.3) and ϕ • n := (I + K[n] 

Figure 4 . 2 :

 42 Figure 4.2: Step 1 (OlverTownsendQR) of Olver and Townsend's algorithm.

Proposition 4 .

 4 [START_REF] Batenkov | Moment inversion problem for piecewise D-finite functions[END_REF] Algorithm OlverTownsendBackSubs is correct and requires O(nd) operations.

mpfr_bandmatrix_QRdecomp_solve_fr Algorithm 4 . 3

 43 OlverTownsendBackSubs(M, (Q, R), y) -Step 2 of O. & T.'s algorithm Input: an order n invertible (h, d) almost-banded M with h d, its QR decomposition (Q, R) produced by OlverTownsendQR(M ) and a vector y ∈ | n . Output: the solution vector x of M x = y. ⊲ Compute Qy 1: for i = 0 to n -1 do 2:

jj 18 :

 18 end for Algorithm 4.5 AlmostBandedApproxInverse(M, (Q, R), h ′ , d ′ ) -A.-b. approximate inverse Input: an order n, (h, d) almost-banded matrix M with the QR decomposition QM = R produced by OlverTownsendQR(M ) and parameters h

18 :

 18 return δ trunc Proposition 4.19 Algorithm IntopTruncError is correct and requires O

( 2 )

 2 trunc (lines 6-10), computing K • T i costs O(rh) operations to obtain an (h, d) almost-banded vector, and applyingA costs O((h ′ + d ′ )(h + d)) or O(N val (h + d)) operations, depending on whether A is (h ′ , d ′ ) almost-banded or dense (seeTable 4.1 in Section 4.2). Hence we get O((h ′ + d ′ )(h + d)d) or O(N val (h + d)d) operations. After that, step 3 for δ(3) trunc (lines 11-13) costs O(rh) operations both to compute (1п N val ) • K • T i 0 and r-1 j=0 b j Ч 1 . Finally, at step 4 (lines 14-16), computing r-1 j=0

  1) costs O(N val rh) operations, using the defining formula (4.5) of K, and O(N val d 2 ) operations are needed for the QR decomposition (line 2) according to Proposition 4.14. • Computing A (lines 3-11) needs O(N val (h + d)(h ′ + d ′ )) operations in the almost-banded case (Corollary 4.17), or O(N val 2 (h + d)) in the dense case.

  using the proof of Lemma (4.13 i), (4.13 ii) and [93, Chap. 2, Cor. 8.2]. The estimate follows since K -K [N val ]

  obtained by arithmetic operations on RPAs. Proposition 4.22 The results of Proposition 4.20 remain valid for the IVP validation in the non-polynomial case (1a).

  is represented by the order p(N app + 1) square matrix depicted by blocks in Figure 5.3a. By permuting the natural basis B p,Napp of (п Napp • Ч 1 ) p into B ′ p,Napp : B p,Napp = (T 0 e 1 , . . . , T Napp e 1 , . . . . . . , T 0 e p , . . . , T Napp e p ), B ′ p,Napp = (T 0 e 1 , . . . , T 0 e p , . . . . . . , T Napp e 1 , . . . , T Napp e p ), K [Napp] recovers a (ph, pd) almost-banded structure, where h = max ij h ij and d = max ij d ij (see Figure 5.3b).

Figure 5 . 3 :

 53 Figure 5.3: Almost-banded structure of vector-valued integral operators

1 9 :

 9 end for ⊲ Compute the truncation error Λ T = (λ T ij ) in interval arithmetic 10: for i = 1 to p and j = 1 to p do 11:

Figure 5 . 4 :

 54 Figure 5.4: Solution of (5.14) with n = 5, m = 4 and a = 3

  s), which is of degree 0 in t, is decomposed over the Chebyshev basis with respect to s into constant polynomials b 001 , b 101 , . . . , b n01 and b 010 , b 110 , . . . , b m10 . On the other side, the integral transform of Proposition 4.5 allows us to validate the derivative Φ = Y ′ . The polynomial kernel and right-hand side are:

Figure 6 . 1 :

 61 Figure 6.1: Poincaré return map Π (=: P ) and displacement function d.

X = x 2 Y = y 2 (0 1 - 1 0 6 . 3 (

 221163 a) Circles in the (x 2 , y 2 ) plane -1 Theorem Generalized Poincaré-Pontryagin Theorem) Let H : | 2 → | be a real analytic potential function, g 1 , g 2 : | 2 → | real analytic functions, ε > 0, and σ : | 2 → | a rescaling factor. Consider the perturbed pseudo-Hamiltonian system: ẋ = -σ(x, y)∂ y H(x, y) + εg 1 (x, y), ẏ = σ(x, y)∂ x H(x, y) + εg 2 (x, y).

  h (see Figure6.3b), where for a pathγ : [a, b] → | 2 , γ • : t ∈ [a, b] → γ(a + b -t) ∈ | 2 denotes the opposite path: γ 1,h : x ∈ [x min , x max ] → (x, y up (x)), γ2,h : y ∈ [y min , y max ] → (x left (y), y), γ 3,h : x ∈ [x min , x max ] → (x, y down (x)), γ 4,h : y ∈ [y min , y max ] → (x right (y), y).

Figure 6 . 3 :

 63 Figure 6.3: Parameterization of small ovals (0 < h < X 2 0 )

Figure 6 . 4 :

 64 Figure 6.4: Parameterization of big ovals (X 2 0 < h < Y 2 0 )

Figure 7 . 1 ,

 71 the frames used to model the relative motion between the leader S l and the follower S f spacecraft are depicted. The Earth-Centered Inertial (ECI) frame is given by moving Local Vertical / Local Horizontal (LVLH) frame is centered on

  Figure 7.2a shows the evolution of the minimal degree p needed to approximate the coefficient τ → ω 2 (4 -3/(1 + e cos ν(τ ))) within a Ч 1 -error less than 1, in function of the eccentricity e and the total time interval [ν 0 , ν f ].

. 8 )

 8 where f L ∈ | 6 is the Lagrange contribution part of the external forces and f G ∈ | 6×3 is the Gauss contribution part. u = [u R u T u N ] t ∈ | 3 is the control vector expressed in the local orbital frame.

Figure 7 . 9 :

 79 Figure 7.9: Error between the integration of the relative equinoctial orbital elements with the nonlinear and the linearized model.
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Figure 7 . 10 :

 710 Figure 7.10: Error between the integration of the relative equinoctial orbital elements with the ode45 function of MATLAB and the proposed semi-analytical state transition matrix computation method.

  where we denote by g I := sup t∈I |g(t)| the supremum norm of g on I.

1 )

 1 lin | (|bc| + |a + bc|)u ⊲ Arithmetic operations in double precision.

e 2 = 2 )

 22 RN(a + b × c, u) e * 2 = a + bc ẽ2 = (a + bc)(1 + ǫ lin | |a + bc|u ⊲ Fused multiply-add (FMA) in double precision.

  e

[

  u i ]e i is unique since the rounding operation is deterministic. This allows us to bound the (linearized) evaluation error as in (8.4). Proposition 8.2 (Correctness of Algorithm LinEvalError) Let e be an arithmetic expression with roundings, and θ lin = k i=1 θ lin,i ǫ [u i ] e i the linearized expression for the evaluation error returned by Algorithm LinEvalError. If u i u for all i ∈ 1, k , then: |ẽ -e * | k i=1 |θ lin,i |u i + O u 2 , as u → 0.

  P ) where d = n + 2, c(ω) = σ 0 f (t), Ω is a compact metric space and the function g(x, ω) = c(ω)α(ω) T x 0 defining the feasible set is a continuous function from R n+2 × Ω into R. Note that for S ′ := { -1, 1} × {0} k and Ω ′ := I × S ′ ⊆ Ω, (P minimax ) is exactly retrieved as shown in the next example. Example 8.5 For n = 5, Problem (P minimax ) is: min (a,a)∈| 7 a s.t.

228 ,

 228 Thm. 2.2, 2.3, 3.2] Under the assumptions:A1 Ω is a compact metric space, α : Ω → R d and c : Ω → R are continuous functions; A2 val(P ) is finite; A3 (Slater's condition): there exists x • such that:α(ω) T x • > c(ω), for all ω ∈ Ω; A4 There exist ω 1 , . . . , ω d ∈ Ω with (α(ω 1 ), • • • , α(ω d )) linearly independent such that: ∃ y 1 , . . . , y d > 0, z = d j=1 y j α(ω j ),the following statements are true: (i) Sol(P ) = ∅ and bounded; (ii) Sol(D) = ∅ and bounded; (iii) Problem (P ) is reducible to a Problem (P m ) with m d; (iv) val(P ) = val(D) = val(P m ) = val(D m ). Proposition 8.8 Assumptions A1-A4 are satisfied for our Problem (P ′ general ) and therefore results (i)-(iv) of Theorem 8.7 apply. Proof.A1 By construction, our set Ω is a compact metric space and α and c are polynomials and therefore continuous on Ω;A2 val(P ) = +∞ means that the primal problem (P ′ general ) is not feasible but x = (maxt∈I |f (t)|, 0 • • • , 0) is a feasible point for (P ′ general ), therefore val(P ) < +∞. In addition, val(P ) > -∞ since a 0 by construction and for all feasible points of (P ′ general );A3 It may be easily deduced from the proof of A2 that x• = (max t∈I |f (t)| + ς, 0 • • • , 0) is astrictly feasible point for (P ′ general ) for any ς > 0;A4 An instance for {ω 1 , . . . , ω n+2 } is provided by Algorithm Init in Section 8.4.

6 :

 6 Solve for y the linear system n+2 j=1 y j α(ω j ) = z 7: return (ω, y) Algorithm 8.5 SolvePrimal(f, n, θ, ω) Input: function f , n 0, θ the evaluation error, ω ∈ Ω n+2 . Output: (a, a) solution of Problem (P m ) for ω.

1 :

 1 Solve for (a, a) ∈ | n+2 the linear system:α(ω j ) T (a, a) = c(ω j ), j ∈ 1, n +22: return (a, a) Algorithm 8.6 FindNewIndex(f, n, I, θ, a) Input: function f , n 0, I = [t l , t r ], θ the evaluation error as in (8.5), coefficients a ∈ | n+1 . Output: (ω * , a * ) with ω * = (t * , σ * ) ∈ Ω ⊲ Compute maximal error in absolute value

1 :

 1 |a T π 0 (t) -f (t)| + k i=1 |a T π i (t)| ⊲ Reconstruct signature 3: σ * 0 ← -sign(a T π 0 (t * ) -f (t * )) 4: σ * i ← -sign(a T π i (t * )), i ∈ 1, k 5: ω * ← (t * , σ *) 6: return (ω * , a * ) Algorithm 8.7 Exchange(n, θ, ω, y, ω * ) Input: n 0, θ the evaluation error, ω ∈ Ω n+2 , dual solution y ∈ | n+2 , new index ω * ∈ Ω. Output: new set ω ′ ∈ Ω n+2 and dual solution y ′ ∈ | n+2 . Solve for γ ∈ | n+2 the linear system: n+2 j=1 γ j α(ω j ) = α(ω * )

Assumption 8 . 10

 810 At each iteration ℓ, the solution y (ℓ) of the dual discretized Problem (D(ℓ) n+2 ) is an interior point, that is y (ℓ) j > 0 for all j ∈ 1, n + 2 .Moreover, one needs preliminary correctness proofs of Algorithms Init, SolvePrimal, FindNewIndex, and Exchange. Lemma 8.11 (Correctness of Init) Init(n, I) computes ω = {ω j } n+2 j=1 ∈ Ω n+2 and y ∈ | n+2 satisfying:

  ω j ) + ỹ * α(ω * ) = n+2 j=1 (ỹ j + γ j ỹ * ) α(ω j ),while maximizing ỹ * . But {α(ω j )} n+2 j=1 being a basis of | n+2 implies ỹj + γ j ỹ * = y j , j ∈ 1, n + 2 .

  * )α(ω (ℓ) * ) T x (ℓ) ) 0, because ỹ(ℓ) * 0 and the constraint α(ω (ℓ) * ) T x (ℓ) c(ω (ℓ) *) is violated at the beginning of iteration ℓ.

Figure 8 . 5 :

 85 Figure 8.5: Error plots for different approximation polynomials of degree 20 for f = arcsin over I = [0.75, 1].

Figure 8 . 6 :

 86 Figure 8.6: Error plots for different approximation polynomials of degree 20 for f = arcsin(x + c) over I c = [-0.125, 0.125].

  For every d, let ◆ n d := {α ∈ ◆ n : |α| d}, where |α| = i α i . In a multivariate setting, we denotex β = x β 1 1 . . . x βn n and ∂ α x = ∂ α 1 x 1 . . . ∂ αn xn for α, β ∈ ◆ n . The derivative ∂p ∂x i is denoted p x i .The indicator function of a set G is denoted by ✶ G .9.1.1 ◮ Selected problemsLet G ⊂ | n be a bounded open set, whose boundary ∂G is algebraic (∂G is contained in the real zero set of finitely many polynomials), and let µ f = f ✶ G dx be a measure supported on G, with a so-called holonomic weight f against Lebesgue volume measure dx on | n . This means that it satisfies a holonomic system (as defined in Section 2.1.2) as a generalized function if needed, see Definition 9.8. For instance, the weight f (x) = exp(p(x)), with p ∈ |[x] s is holonomic i.e., it satisfies: ∂f ∂x i -∂p ∂x i f = 0, i ∈ 1, n .

Problem 9 . 1 (

 91 Exp-Poly Inverse Problem) Let µ f = f ✶ G dx be a measure supported on a compact semi-algebraic set G, whose algebraic boundary is included in the zero set of a polynomial g ∈ ❑[x] d . Let f = exp(p), with p ∈ ❑[x] s . Given s, d, and a finite number of moments m α , |α| N , recover the coefficients of both g and p.

1 i=1✶

 1 for a set of d unknown points, a = ξ 1 < . . . < ξ d = b, with [a, b] ⊂ |, and unknown smooth D-finite functions f i . An important observation [15, Thm 2.12] is that the associated distribution d-[ξ i ,ξ i+1 ] f i is annihilated by some holonomic operator L = g(x) r L, where g(x) = d i=1 (x -ξ i )

Example 9 . 5 (

 95 Direct problem for erf-like function) We are interested in computing a recurrence for the moments m i = 1 -1

1 - 1 e

 11 -x 2 (∂ x + 2x) * ((1 -x 2 )x i ) = 0,which directly provides the recurrence im i-1 -(i + 4)m i+1 + 2m i+3 = 0.

Definition 9 . 7 (

 97 Test functions and distributions) Let E = C ∞ (| n ) be the set of smooth functions over | n , equipped with the compact-open topology:ϕ k → ϕ in E if ∂ α x • ϕ k converges uniformly to ∂ α x • ϕ over every compact set, for each α ∈ ◆ n .Its topological dual E ′ is the set of compactly supported distributions (or simply distributions in this chapter) i.e. linear forms T : E → | such that:

* 1 . 9 . 8 (

 198 , and(L 1 L 2 ) * = L * 2 L Definition Holonomic distribution) A distribution T ∈ E ′ is holonomic if its annihilator is a holonomic ideal of D n : Ann(T ) := {L ∈ D n | L • T = 0 as a distribution}.

Definition 9 . 10 (( 9 . 5 )F

 91095 Moments of a compactly supported distribution) The moments of a distribution T ∈ E ′ are:m α (T ) := T, x α , α ∈ ◆ n . Note that if T = f ✶ G with G compact and f ∈ E, then m α (f ✶ G )coincides with the moments defined in Equation (9.1). A convenient way to deal with moments of a distribution is the Fourier transform (also called characteristic function).Definition 9.11The Fourier transform of a distribution T ∈ E ′ is the analytic functionF {T } of z = (z 1 , . . . , z n ) ∈ | n defined by: {T }(z) = α∈◆ n m α (T ) (-i z) α α! = T, e -i x T z , z ∈ | n .Proposition 9.12 Let T ∈ E ′ and L = β q β (x)∂ β x ∈ D n .

Proposition 9 .( 9 . 8 )

 998 13 Let T ∈ E ′ . An operator L ∈ D n satisfies T, L * • x α = 0, for all α ∈ ◆ n , if and only if L ∈ Ann(T ).

Lemma 9 . 14 (. 9 )

 9149 Lagrange identity) For f, g ∈ E and L ∈ D n of order r, there exists a vector field L L (f, g) : | n → | n , called bilinear concomitant, depending on L and linear in f and g, such that:(L • f ) g -f (L * • g) = ∇ • L L (f, g). (9Each component of L L (f, g) can be writtenL L,i (f, g) = |α|+|β| r-1 c L,i,α,β (x)(∂ α x • f )(∂ β x • g), i ∈ 1, n . with coefficients c L,i,α,β (x) ∈ ❑[x] depending on L.Secondly, the action of differential operators on compactly supported distributions of the form f ✶ G is provided:Proposition 9.15 Let G be as in Assumption 9.9, f ∈ E and L ∈ D n . Then the distribution L • (f ✶ G ) admits the following expression:

  |α| r q α (x)∂ α x of order r, define its principal symbol σ(L)(x, ξ) = |α|=r q α (x)ξ α for (x, ξ) ∈ ❈ 2n . Then for a left ideal I, Char(I) = {(x, ξ) ∈ ❈ 2n | σ(L)(x, ξ) = 0 ∀L ∈ I \ {0}}. With these notations, I is holonomic if and only if all the components of Char(I) are of dimension at most n. In our case,

Algorithm 9 . 2 3 :

 923 ReconstructExpPoly(n, d, s, N, (m α ) |α| N +d+s-1 )Input: n 2, degrees d, s 0, moments m α for |α| N + d + s -1. Output: g, p ∈ ❑[x] with deg(g) d and deg(p) s. ⊲ Find L ′ i ∈ Ann(f ✶ G ) 1: h 0 ← |γ| d h 0γ x γ and h i ← |γ| d+s-1 h iγ x γ for i ∈ 1, n , with symbolic coefficients h iγ 2: L ′ i ← h 0 ∂ x i -h i for i ∈ 1, n Find a nontrivial solution {h iγ } of the linear system:(L ′ M i m) α = 0, i ∈ 1, n , |α| N ⊲ Reconstruct g and p 4: g ← h 0 and pi ← h i /g for i ∈ 1, n . . . , 0, t i , x i+1 , . . . , x n )dti 6: return (g, p) Theorem 9.18 Let f (x) = exp(p(x)) with deg p = s, and G, g with deg g = d be as in Assumption 9.9. If N N = 3d + s -1, then ReconstructExpPoly(n, d, s, N, (m α ))

Algorithm 9 . 3 2 : 3 :⊲

 9323 ReconstructDensity(n, i, r, s, N, (m α ) |α| N +s ) Input: n 2, i ∈ 1, n , order r, maximum degree s, moments m α for |α| N + s.Output: L = r j=0 qj (x)∂ j x j with deg(q j ) s. ⊲ Find L ′ ∈ Ann(f ✶ G ) ∩ ❑[x] ∂ x i 1: h j ← |γ| sh jγ x γ for j ∈ 0, r with symbolic coefficients h jγ Find a nontrivial solution {h jγ } of the linear system:(L ′M • m) α = 0, |α| N Extract minimal L ∈ Ann(f ) ∩ ❑[x] ∂ x i 4:ℓ ← GCD(h 0 , . . . , h r ) and qj ← h j /ℓ for j ∈ 1, n .

Theorem 9 .

 9 [START_REF] Berz | Suppression of the wrapping effect by Taylor model-based verified integrators: Long-term stabilization by shrink wrapping[END_REF] proves that Algorithm ReconstructSupport is correct. Theorem 9.23 Let analytic f be annihilated by the order r rectangular system {L 1 , . . . , L n }, and G be as in Assumption 9.9 with g ∈ ❑[x] of degree d. Assume also Assumption 9.22. Then, for N N := (2r -1)d + (d -1)b + s, with b = r mod 2 and s = max {q i,r }, ReconstructSupport(n, d, r, {L i }, N, (m α )) returns g = λg with λ ∈ ❑ * . In particular,

1: h ← |γ| dr h γ x γ with symbolic coefficients h γ 2 : 3 :

 23 Find a nontrivial solution {h γ } of the linear system:(hL i ) M • m α = 0, |α| N, i ∈ 1, n return g = h/ GCD(h, h x 1 , . . . , h xn )Proof. First h = g r satisfies the linear system in line 2 since g r L i ∈ Ann(f ✶ G ) by Proposition 9.16. Let h be any nontrivial solution, thenhL i • (f ✶ G ), ϕ = 0 for all i ∈ 1, n and ϕ ∈ ❑[x] N . Using Proposition 9.15 combined with L i • f = 0, we get ∂G L L i (f, hϕ) • n dS = 0, i ∈ 1, n , ϕ ∈ ❑[x] N .

(9. 13 )

 13 We prove h = λg r for some λ ∈ ❑ * by induction for k from 0 to r,showing h = g k h k with h k ∈ |[x] (r-k)d .Of course this is true for k = 0 with h 0 = h. Now suppose that h = g k h k for some k < r. Then letϕ = q i,r h k g r-1-k g b x i ∈ ❑[x] (2r-2k-1)d+(d-1)b+s ⊆ ❑[x] N ,

Example 9 . 24 (

 924 Algebraic support, Lebesgue measure) Consider the moments m ij = G x i y j dxdy, with respect to the Lebesgue measure, with G depicted with the checkered pattern in Figure 9.1.

i+j 8 g 4 ,

 84 ij x i y j which vanishes on ∂G. The results of Algorithm ReconstructExpPoly(2, 8, 0, 22, ( mij ) |i+j| 29 ) are depicted in Figure 9.1: the reconstructed boundary cannot be distinguished from the exact at the drawing scale, when the moments mij are given with more than 4 correct digits. When 2 ε the actual geometric boundary of G, can still be very well reconstructed, although the algebraic boundary is degraded. Example 9.25 (Algebraic Support, Gaussian measure) Consider the moments m ij = G x i y j exp(p(x, y))dxdy. In Figure 9.2(a), G is checkered and the level curves of exp(p(x, y)) are in dashed.

Figure 9 .

 9 2(b): the reconstructed boundary cannot be distinguished from the exact at the drawing scale, when ε > 8. When 4 ε 8, the actual geometric boundary of G, can still be very well reconstructed. Concerning the Gaussian weight, the situation is similar, cf.

Figure 9 .

 9 2(c).
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  sonnel, des techniques existantes en calculs numérique, symbolique et rigoureux (Chapitres 1 et 2), nous enrichirons les approximations polynomiales rigoureuses (rigorous polynomial approximations en anglais, abbrégé en RPA) avec de nouveaux algorithmes, où les méthodes de validation a posteriori à base de points fixes jouent un rôle important (Chapitre 3). Cela donne lieu à de nouveaux outils efficaces et précis pour des problèmes fonctionnels, notamment les équations différentielles linéaires (Chapitres 4 et 5). Qui plus est, nous ne visons pas uniquement le calcul validé, mais aussi le calcul certifié en recourant à la preuve formelle (Chapitre 3). B. Prouver des théorèmes mathématiques par de nouvelles techniques informatiques. En se basant sur notre travail en cours sur les cycles limites d'un champ de vecteurs polynomial particulier, présenté dans le Chapitre 6, nous promouvons l'usage des RPA, de la validation a posteriori et des méthodes symboliques-numériques dans l'élaboration d'outils efficaces pour les preuves mathématiques assistées par ordinateur. Tirant parti de notre approche a posteriori, ou à base de certificats, il devient plus facile d'introduire la preuve formelle dans le processus de preuve par ordinateur, offrant ainsi le plus haut niveau de confiance possible. Dernièrement mais non des moindres, La production de code logiciel libre est une contribution essentielle de cette thèse, qui vient corroborer notre manifesto : fournir des méthodes algorithmiques et efficaces. Par ailleurs, ces implémentations furent d'une grande aide pour les applications sus-mentionnées.Les cinq premiers chapitres de ce manuscrit visent cet objectif. Pour commencer, voici les trois niveaux de sécurité du calcul dont il sera question :1. Une première couche purement numérique regroupe les algorithmes d'analyse numérique classique, avec en ligne de mire la précision et l'efficacité. Bien que souvent accompagnés de résultats de convergence asymptotique, ces algorithmes ne peuvent en général pas garantir la précision du résultat sur une instance donnée.2. Le deuxième niveau est celui des algorithmes validés au sens large, dans le sens où le résultat calculé satisfait des propriétés mathématiques précises. Nous distinguerons notamment :

C. Sécurité et efficacité pour des applications réelles. Pouvoir calculer de manière plus fiable est crucial pour des applications relevant de l'ingénierie critique. Pour autant, nous ne pouvons pas (trop) sacrifier les exigences d'efficacité. En calculant et utilisant des trajectoires de satellites validées lors d'opérations spatiales de proximité (Chapitre 7), nous illustrons comment nos méthodes peuvent s'appliquer dans un contexte critique, comme la conception rigoureuse de missions spatiales. D. Intégrer les aspects « bas niveau » est essentiel lors l'élaboration d'outils et d'implémentations efficaces pour des applications « dans la vraie vie ». Cet aspect est également pris en compte dans cette thèse, bien que dans une moindre mesure. À titre d'exemple, le Chapitre 8 présente une contributions dans ce sens, à savoir un nouvel algorithme d'échange pour calculer des polynômes d'approximation avec erreur d'évaluation optimisée. Cela se révèle utile pour l'implémentation numérique de fonctions mathématiques, puisque la précision flottante sous-jacente est finie. E. Nouveaux champs d'application des méthodes rigoureuses et symboliquesnumériques. Introduire des techniques symboliques-numériques et de calcul rigoureux dans d'autres domaines des mathématiques constitue un défi particulièrement intéressant, permettant en retour d'enrichir nos outils avec de nouveaux concepts mathématiques. Par exemple, la reconstruction à partir des moments du support et de la densité d'une mesure, présentée dans le Chapitre 9, utilise les polynômes de Ore -un outil symbolique -dans le cadre d'un problème inverse. F. Concevoir des implémentations open-source. A Calculer plus rapidement, plus précisément et plus sûrement

  20 https://www3.risc.jku.at/research/combinat/software/ergosum/RISC/HolonomicFunctions.html des intervalles réels avec bornes représentables (en général, des nombres flottants) pour encadrer rigoureusement des réels, et à fournir des opérations qui préservent cette correction. Par exemple, de π ∈ [3.1415, 3.1416] et e ∈ [2.7182, 2.7183], nous déduisons : π + e ∈ [3.1415, 3.1416] [2.7182, 2.7183] = [5.8597, 5.8599].

  par Gonthier et al. en Coq, le projet Flyspeck [101] par Hales et al. en HOL-Light pour la conjecture de Kepler, ou encore la formalisation par Immler [119] en Isabelle de la preuve assistée par ordinateur de Tucker sur l'existence de l'attracteur de Lorenz.Le travail mené conjointement avec Nicolas Brisebarre, Mioara Joldes et Warwick Tucker, et présenté dans le Chapitre 6, est un exemple de preuve assistée par ordinateur en analyse, utilisant dans un premier temps des calculs rigoureux, puis certifiés par preuve formelle en un second temps. Ainsi, nous avons utilisé à la fois la bibliothèque C ChebValid C et le développement Coq (cf. Objectif F), dans le but de prouver ce qui suit.Example 3 : Calculer des cycles limites dans le cadre du 16ème problèmede Hilbert Dans le Chapitre 6 de ce manuscrit, nous nous intéressons au calcul des cycles limites dans le cadre du 16ème problème de Hilbert, qui s'énonce ainsi :

Table I .

 I 2 : Validation a posteriori pour une mission ATV dans le plan orbital (x, z).

  suffisamment de moments connus, permettant ainsi de reconstruire le polynôme pour le bord et des équations différentielles satisfaites par la densité D-finie f (voir la Figure I.10). Dans cet exemple exponentielle de polynôme, le nombre de moments nécessaires peut être borné a priori.

	• Les modèles de Tchebychev, largement promus dans cette thèse, constituent un outil puis-
	sant pour les fonctions analytiques sur des segments compacts. Cependant, de telles hypothèses
	ne sont pas tout le temps satisfaites : l'intervalle considéré peut être ouvert en raison de singu-
	larités, ou même non borné pour des problèmes à « horizon infini ». Par conséquent, c'est un
	défi pertinent que d'étendre les approximations rigoureuses à des fonctions non polynomiales
	(par exemple, Hermite ou Bessel), ou même des familles non linéaires (par exemple, les frac-
	tions rationnelles). C'est à l'heure actuelle un problème insuffisamment traité dans la littérature
	et constitue une de mes orientations de recherche dans un futur proche. La question suivante
	traités dans le Chapitre 6 illustre parfaitement ce besoin de tels RPA généralisés.
	Example 3 : Calculer des cycles limite dans le 16ème problème de Hilbert
	3 (c) Est-il possible de prouver rigoureusement que l'exemple particulier de T. Johnson ne peut
	donner plus de 24 cycles limite ?

Table 1 . 1 :

 11 Set-theoretic encodings of the first eight natural numbers to count. It is moreover a quite practical system to count things incrementally. The tally sticks[START_REF] Woodruff | The evolution of modern numerals from ancient tally marks[END_REF] [115, Chap. 5], which were animal bones on which notches were carved to count objects, money or events during the Paleolithic, are one of the first examples of the use of the unary numeral system. Also, the Moscow Mathematical Papyrus is an ancient Egyptian papyrus adressing common problems in mathematics and uses the unary system[START_REF] Ifrah | The Universal History of Numbers: From Prehistory to the Invention of the Computer[END_REF] Chap. 

	{∅}, {∅, {∅}}}
	4 = {∅, {∅}, {∅, {∅}}, {∅, {∅}, {∅, {∅}}}}
	5 = {∅, {∅}, {∅, {∅}}, {∅, {∅}, {∅, {∅}}},
	{∅, {∅}, {∅, {∅}}, {∅, {∅}, {∅, {∅}}}}}
	6 = {∅, {∅}, {∅, {∅}}, {∅, {∅}, {∅, {∅}}},
	{∅, {∅}, {∅, {∅}}, {∅, {∅}, {∅, {∅}}}},
	{∅, {∅}, {∅, {∅}}, {∅, {∅}, {∅, {∅}}},
	{∅, {∅}, {∅, {∅}}, {∅, {∅}, {∅, {∅}}}}}}
	7 = {∅, {∅}, {∅, {∅}}, {∅, {∅}, {∅, {∅}}},
	{∅, {∅}, {∅, {∅}}, {∅, {∅}, {∅, {∅}}}},
	{∅, {∅}, {∅, {∅}}, {∅, {∅}, {∅, {∅}}},
	{∅, {∅}, {∅, {∅}}, {∅, {∅}, {∅, {∅}}}}},
	{∅, {∅}, {∅, {∅}}, {∅, {∅}, {∅, {∅}}},
	{∅, {∅}, {∅, {∅}}, {∅, {∅}, {∅, {∅}}}},
	{∅, {∅}, {∅, {∅}}, {∅, {∅}, {∅, {∅}}},
	{∅, {∅}, {∅, {∅}}, {∅, {∅}, {∅, {∅}}}}}}}

  Throughout history, positional numeration systems[START_REF] Ifrah | The Universal History of Numbers: From Prehistory to the Invention of the Computer[END_REF] Chap. 2] have been adopted by more and more civilizations under different forms, the decimal system being used almost everywhere on Earth nowadays 2 . The main idea consists in choosing a radix b 2 and a set Σ b of b distinct symbols that is identified with {0, 1, . . . , b -1}. Then, a sequence a n a n-1 . . . a 1 a 0 of symbols in Σ b corresponds to the number N =

	Positional systems	
	n	a k b k . Each nonzero natural number N admits a
	k=0 unique representation with nonzero leftmost symbol, of length ⌊log b N ⌋ + 1. This logarithmic-size encoding and corresponding logarithmic-time arithmetic operations (addition, subtraction,
	multiplication) account for the dominance of positional systems. While the decimal system
	that we use in everyday life uses radix 10, most computer systems are based on radix 2.
	Inductive nat : Set :=	
	| O : nat	
	| S : nat → nat.	
	nat_rect : ∀ P : nat → Type,	
	P 0 → (∀ n : nat, P n → P (S n))	
	→ ∀ n : nat, P n	

Table 1 . 2 :

 12 Example C code using GMP to implement the factorial. The output of this program is: 13763753091226345046315979581580902400000000. field ◗ of algebraic numbers over ◗ [105, Chap. 4].Definition 1.4 (Algebraic number) A real (or complex) number a is algebraic over ◗ if there exists a nonzero polynomial P with rational coefficients such that P (a) = 0.

	# include < stdio .h >
	# include < gmp .h >
	void factorial ( mpz_t rop , mpz_t op )
	{
	// init local variables
	mpz_t fact , count ;
	mpz_init_set_ui ( fact , 1) ;
	mpz_init_set_ui ( count , 2) ;
	// compute the factorial
	while ( mpz_cmp ( count , op ) <= 0) {
	mpz_mul ( fact , fact , count ) ;
	mpz_add_ui ( count , count , 1) ;
	}
	// assign result and clear variables
	mpz_set ( rop , fact ) ;
	mpz_clear ( fact ) ;
	mpz_clear ( count ) ;
	}
	int main ()
	{
	mpz_t n , fact_n ;
	mpz_init_set_si (n , 37) ;
	mpz_init ( fact_n ) ;
	// compute 37! and print result
	factorial ( fact_n , n ) ;
	mpz_out_str ( stdout , 10 , fact_n ) ;
	printf ( " \ n " ) ;
	mpz_clear ( n ) ;
	mpz_clear ( fact_n ) ;
	return 0;
	}

  Actually, the inclusions are strict, see [271, §VIII.1] and [271, §VI.3] respectively.

.10) Proof. It is identical to the proofs from [134, §I.6]. It follows from Lemma 2.38 and Theorem 2.32 that Ч 1 is included in C 0 and contains the set of Lipschitz functions over [-1, 1].

  • , r) contains a unique fixed point of T as soon as r satisfies the inequalities:

	µ(r) :=	17 19	r < 1,	and	b + rµ(r) :=	1 2584	+	17 19	r 2 r.

  Compute a degree N app approximation g • of 1/f using Chebyshev interpolation Consider again the function f : x → 1 1+x -x + x 2 from Example 1.23 in Chapter 1.

	3:	return false
	4: end if
	5: 9:	return true
	10: else
	11:	return false
	12: end if
		Example 3.27

1, 1]. By continuity of f , it is sufficient to check in addition that f (x) 0 for some x ∈ [-1, 1]. This sketch of proof is implemented with RPAs by Algorithm RpaPositivityCheck, for which two examples are given below.

Algorithm 3.7 RpaPositivityCheck(f, N app ) -Rigorous positivity check Input: an RPA f and an approximation degree N app . Output: true or false, with true asserting that f > 0 over [-1, 1] for any f ∈ f. 1: Choose an x ∈ [-1, 1] and compute y ← f([x]) 2: if y 0 then 6: g ← (g • , 0) 7: ε ← mag( 1 ⊟ g f Ч 1 ) 8: if ε < 1 then

  follow from [93, Chap. 2, Cor. 8.2]. For (4.13 iii), since by Lemma 4.10 the Neumann series of K absolutely converges, there is a

Table 4 . 1 :

 41 Elementary operations on almost-banded (a.-b.) matrices or vectors: A and B are order n square matrices, respectively (h A , d A ) and (h B , d B ) almost-banded, and v ∈ | n is either dense or almost-banded around some index i ∈ 0, n -1 .

quadratic algorithm for inverting an almost-banded matrix. To achieve linear complexity for inversion, we give in Section 4.2.2 a modified version of this algorithm.

  µ) 6: return ε (4.20 ii) Having this validated Newton-like operator, a degree N app approximate solution ϕ • of (4.2) (with N rhs = deg ψ) is validated using Algorithm IntopVal in:

O(N app rh + N rhs + (h ′ + d ′ ) min(N val , max(N app + d, N rhs ))) (or O(N app rh + N rhs + N val min(N val , max(N app + d, N rhs ))) when A is dense).

  Symmetric division of the circle

	1.4				
		y max			
	1.2				
	1				
	0.8	y min			
	0.6				
		0.4	0.6	0.8	1	1.2

Table

  

	ovals r	h	N	I I(h) [N ]	I I(h) [N ref ]	sign(I(h))
	small 0.5	0.25	15	[6.2827e-5,7.0092e-5]	[6.6457e-5,6.6458e-5]	+
	0.78	0.6084	15 [-1.1558e-4,-3.8299e-5] [-7.6939e-5,-7.6938e-5]	-
	0.88	0.7744	70	[1.0236e-8,2.3226e-8]	[1.6730e-8,1.6731e-8]	+
	0.89	0.7921	100 [-2.8087e-8,-1.1346e-8] [-1.9717e-8,-1.9716e-8]	-
	0.895	0.801025	135	[2.5476e-8,8.8149e-8]	[5.6812e-8,5.6813e-8]	+
	0.8987 0.80766169 250 [-4.8007e-7,-9.1649e-8] [-2.9067e-7,-2.8104e-7]	-
	big 0.901	0.811801	50 [-9.5281e-6,-3.4314e-6] [-6.4798e-6,-6.4797e-6]	-
	0.93	0.8649	20	[1.0503e-4,5.3684e-4]	[3.2088e-4,3.2089e-4]	+
	0.95	0.9025	25 [-1.3308e-4,-7.0634e-5] [-1.0186e-4,-1.0185e-4]	-

Table 6 . 3 :

 63 .3 have been carried out at the moment of writing this manuscript, and the remaining ones are to be carried out in the near future. Certified enclosures of I(r) for different values of r, computed with degree-N Chebyshev models and floating-point precision p.

	r	N	p	time (s)	enclosure	sign
	0.5	13	32	0.38 [1.56e-5,1.18e-4]	+
	0.78	15	32	0.47 [-1.32e-4,-2.28e-5]	-
	0.88	65 128	17.34 [1.83e-10,3.33e-8]	+
	0.89	95 128	35.13 [-3.31e-8,-6.42e-9]	-
	0.895	135 300	173.23 [3.94e-8,7.42e-8]	+
	0.8987	250 350	596.66 [-3.86e-7,-1.86e-7]	-

Table 6 . 4 :

 64 Characteristics of LODEs obtained by Creative Telescoping.

	Exponents		Characteristics of LODE
	i	j	order	leading coefficient
	0 2 4 2 0	0 0 0 2 4	4 4 5 5 5	404h(100h -81)(100h -121)(50h -101) 2h(100h -81)(100h -121)(50h -101) 404h(100h -81)(100h -121)(50h -101) 404h(100h -81)(100h -121)(50h -101) 404h(100h -81)(100h -121)(50h -101)

Table 6 . 5 :

 65 Characteristics of the desingularized LODEs with X 0 = 9/10 and Y 0 = 11/10.

  • . The relative dynamics equations are derived by a new linearization of Equation (7.8) about the station keeping point (7.9). Denoting x = x eoe -x sk , the relative state model for the SK problem is computed as follows:

	dx dt = f From Equation (7.10) the dynamical model reads: = dx eoe dt -dx sk dt	
	dx dt	= A(t)x + D(t) + B(t)u,	(7.11)

L (x eoe , t) + f G (x eoe , t)u -0 ≈ f L (x sk , t) + ∂f L (x eoe , t) ∂x eoe xeoe=x sk

x + f G (x sk , t)u.

(7.10) 

  Section 8.4.3):

	min i∈ 0,n a i ∈|,	max

t∈I (|f (t) -p(t)| + |p(t) -p(t)|) (P general ) Remark 8.1 (Floating-point coefficients)

Table 8 . 1 :

 81 Evaluation error examples (u = 2 -53 , u ′ = 2 -24 ).

  .5)8.3.1 ◮ Formulation as a linear SIPNoting that Problem (P general ) is a piecewise-linear optimization problem and using the convex evaluation error formula θ(a, t) at point t ∈ [t l , t r ] obtained in Section 8.2, Problem (P general ) becomes Problem (P ′ general ) (see[START_REF] Boyd | Convex Optimization[END_REF] Section 4.3.1] for instance), with the compact index set I = [t l , t r ] and the monomial basis π 0 (t) = (1, . . . , t n ) T .

	min (a,a)∈R n+2 s.t.	a |f (t) -π 0 (t) T a| + θ(a, t) -a 0, t ∈ I.	(P ′ general )

  . . 1 -1 . . . . . . (-1) n+2 -t 1 . . . . . . (-1) n+2 t n+2

					
	. . . . . .	. . .	. . .	. . . . . .	        
	-t n 1 . . . . . . (-1) n+2 t n n+2	

  When considering the relative error in place of the absolute error, Problem (P general ) is replaced by where f is assumed to be strictly positive over I. This is equivalent to multiplying the error variable a by f in Problem (P ), yielding the following new linear SIP formulation (b) f -roundCoeff(p Remez ).
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						0.004						
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	-0.4											
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				min a i ∈|, i∈ 0,n	max t∈I	|f (t) -p(t)| + |p(t) -p(t)| |f |			(P rel general )
				min x∈| d s.t. α(ω) T x c(ω), ω ∈ Ω, z T x				(P rel )

(c) f -p FPMinimax . (d) EvalApproxOpt absolute error.

[START_REF] Abramowitz | Handbook of mathematical functions with formulas, graphs, and mathematical tables[END_REF] , followed by a sum, and 1 http://perso.ens-lyon.fr/bruno.salvy/software/the-gfun-package/

https://www3.risc.jku.at/research/combinat/software/ergosum/RISC/HolonomicFunctions.html

available at https://gforge.inria.fr/projects/tchebyapprox/

available at http://perso.ens-lyon.fr/florent.brehard/chebapprox/

https://coq.inria.fr/

https://homotopytypetheory.org/

√X0, √ Y0

https://shemesh.larc.nasa.gov/fm/

International Space Station

This is a usual assumption for the final phase of a rendezvous.

Automated Transfer Vehicle is the European cargo spacecraft for the supply of the ISS.

available at https://gforge.inria.fr/projects/tchebyapprox/

available at http://perso.ens-lyon.fr/florent.brehard/chebapprox/

available at http://perso.ens-lyon.fr/fbrehard/EvalMinimax

available at http://homepages.laas.fr/fbrehard/HolonomicMomentProblem

http://perso.ens-lyon.fr/bruno.salvy/software/the-gfun-package/

disponible sur https://gforge.inria.fr/projects/tchebyapprox/

disponible sur http://perso.ens-lyon.fr/florent.brehard/chebapprox/

https://coq.inria.fr/

https://homotopytypetheory.org/

https://www.ias.edu/ideas/2014/voevodsky-origins

http://capd.ii.uj.edu.pl/

Pour la seconde en revanche, c'est essentiellement une question de goût personnel -et, après tout, vous n'êtes pas obligé d'aimer une preuve pour l'accepter.

-1 0 1 -1 0 1 √ X0, √Y0

https://shemesh.larc.nasa.gov/fm/

Cette hypothèse est généralement admise lors de la phase finale d'un rendez-vous.

Automated Transfer Vehicle est le nom du cargo spatial européen utilisé pour le ravitaillement de l'ISS.

(b) Étant donné un nombre fini de moments m α,β , essayons de retrouver le polynôme dans l'exponentielle définissant f , ainsi qu'un polynôme non trivial dont l'ensemble des zéros contient le bord de G.Des algorithmes pour résoudre ce problème sont donnés dans la Section 9.4. Ils consistent à « deviner » des récurrences pour les moments en résolvant des systèmes linéaires impliquant[START_REF] Bose | Did You Know : The History of Egyptian Mathematics (Part II) -Egyptian Numerals[END_REF] Le terme technique adéquat serait ici holonomique (voir la Section 2.1.2).

disponible sur https://gforge.inria.fr/projects/tchebyapprox/

http://arindambose.com/?p=737 "Did You Know : The History of Egyptian Mathematics (Part II) -Egyptian Numerals." by Arindam Bose.

This decimal dominance concerns not only numbers, but also most physical units. The French Revolution played a decisive role in that domain, despite the significant failure of decimal time division -not to mention the reluctance of the "perfide Albion" to adopt the metric system.

"The GNU Multiple Precision (GMP) Library", Maplesoft: https://fr.maplesoft.com/support/help/ AddOns/view.aspx?path=GMP

"Some Notes on Internal Implementation", Wolfram Mathematica: https://reference.wolfram.com/ language/tutorial/SomeNotesOnInternalImplementation.html

The floating-point numbers are one of the most popular formats to approximately represent real numbers, while avoiding the complexity issues discussed in the previous section. Roughly speaking, they consist in keeping only a finite number of bits in the binary expansion of a number. In the early days of computers, each hardware implementation used its own specification of floating-point arithmetic. This led to different results for the same computation performed on different architectures, violating the principle of reproducibility.

available at http://homepages.laas.fr/mmjoldes/campary/

http://www.cs.utep.edu/interval-comp/

http://perso.ens-lyon.fr/bruno.salvy/software/the-gfun-package/

https://specfun.inria.fr/chyzak/mgfun.html

https://www3.risc.jku.at/research/combinat/software/ergosum/RISC/HolonomicFunctions.html

https://gforge.inria.fr/projects/tchebyapprox/

We consider the case of Tschauner-Hempel equations, which model the linearized relative motion of an active spacecraft around a passive target (such as the International Space Station for instance) in elliptic orbit around the Earth, provided that their relative distance is small with respect to their distance to the Earth. These equations are very used in robust rendezvous space missions[START_REF] Tschauner | Optimale Beschleunigungsprogramme fur das Rendezvous-Manover[END_REF], where the accuracy of their computed solutions is at stake. Altough this

Although commonly attributed to Perov[START_REF] Perov | On the Cauchy problem for a system of ordinary differential equations[END_REF] (in Russian), the idea of generalizing the Banach fixed-point theorem to generalized norms for investigating the componentwise errors in an iterative process first appeared in Kantorovich's work [132] (in Russian).

https://gforge.inria.fr/projects/tchebyapprox/

https://gforge.inria.fr/projects/tchebyapprox/

http://perso.ens-lyon.fr/florent.brehard/chebapprox/

https://gforge.inria.fr/projects/tchebyapprox/

http://perso.ens-lyon.fr/florent.brehard/chebapprox/

√ X 0 , √ Y 0 Γ ++ Γ +-

https://gforge.inria.fr/projects/tchebyapprox/

available at https://gforge.inria.fr/projects/tchebyapprox/

While the general ideas are the same as in[36, 

232] and references therein, we could not find the exact pseudocode in literature, so it is stated in order to provide a complete algorithmic solution for Problem (P general ).

The feasible set of (P ) is included in the feasible set of (P (ℓ) m ), for all ℓ.

Indeed, if Li has order ri < r, then it is replaced by ∂ r-r i x iLi, which has order r and the same leading polynomial coefficient.

The code is available at http://homepages.laas.fr/fbrehard/HolonomicMomentProblem

Remerciements

Coq formalization of square root

The Coq functions computing the square root of a RPA, together with the corresponding correctness lemmas, are listed below. Lemma rmsqrt_aux (F H W: Model) (X: II) (f h w : R → R) (x: R): mcontains F f → mcontains H h → mcontains W w → contains X x → lo x hi → (∀ x, lo x hi → continuity_pt w x) → mcontains (msqrt_aux F H W X) (sqrt f).

Lemma rmsqrt n F f: mcontains F f → mcontains (msqrt' n F) (sqrt f).

Lemma rmsqrt_aux makes use of the following formalization of Proposition 3.24:

Lemma sqrt.newton (f h w : R → R) mu0 mu1 b : (∀ t, I t → Rabs (1 -2 * w t * h t) mu0) → (∀ t, I t → Rabs (w t) mu1) → (∀ t, I t → Rabs (w t * ((h t)^2 -f t)) b) → 0 mu0 < 1 → 0 < mu1 → 0 b → 0 delta b mu0 mu1 → mu0 + 2 * mu1 * rmin b mu0 mu1 < 1 → (∀ t1 t2 t3, t1 t2 t3 → I t1 → I t3 → I t2) → (∀ t, I t → continuity_pt w t) → (∃ t0, I t0 /\ w t0 > 0) → ∀ t, I t → Rabs (h t -sqrt (f t)) rmin b mu0 mu1.

Remark 3.26 Contrary to the case of division where continuity was not needed at all, it is here used for w. Therefore, sqrt.newton requires w to be continuous over I.

◮ Undamped pendulum with variable length

Consider the motion of an undamped pendulum with variable length ℓ(t), which is modeled by the equation:

sin θ(t) = 0, (4.17)

where θ(t) is the angle at time t between the pendulum and its equilibrium position, and g = 9.81 the gravitational acceleration. On the time interval [-1, 1] and for a constant variation of the length ℓ(t) = ℓ 0 (1 + ζt) (with |ζ| < 1), we analyze the evolution of θ(t) in a small neighborhood of 0 such that sin θ can be linearized into θ. Equation (4.17) becomes:

θ ′′ (t) + 2ζ 1 + ζt θ ′ (t) + g ℓ 0 (1 + ζt) θ(t) = 0, θ(-1) = θ 0 ≪ 1 and θ ′ (-1) = 0.

The coefficients of this equation are not polynomials. Hence, we first provide a Chebyshev model for ξ(t) = 1/(1 + ζt) with |ζ| < 1 using the arithmetic operations on RPAs given in Chapter 3. Figure 4.5a summarizes the obtained error bound ε (for the Ч 1 -norm) in function of the approximation degree p for different values of ζ, with ℓ 0 = 1 fixed.

Next, we create and bound the contracting Newton-like operator T. Figure 4.5b shows the corresponding values of p (degree of the approximation of t → 1/(1 + ζt)) and N val (truncation order for the integral operator) we use for Algorithm IntopContract, and the values of h ′ + d ′ , expressing the advantage of taking an almost-banded A instead of a dense one.

We first observe that N val grows when |ζ| gets close to 1, which is due to the growth of the Ч 1 -norm of t → 1/(1 + ζt). However, the situation is very different depending on the sign of ζ. When ζ gets close to -1, N val grows exponentially fast. The quantity h ′ + d ′ grows more slowly, so that the almost-banded approach helps a little. As for the Airy function, this exponential behavior is due to the large negative coefficient in front of θ ′ in Equation (4.17). This difficult case corresponds to a decrease in the rope's length, resulting in increasing oscillations of the pendulum (see Figure 4.5d). On the contrary, the case ζ → 1 is easier to treat, since it corresponds to an increase of the rope's length, producing damped oscillations of the pendulum (see Figure 4.5c).

The two numerical solutions plotted on Figures 4.5c and 4.5d were certified using Algorithm IntopVal. For the damped case (ℓ 0 = 0.1 and ζ = 0.9), we obtained a Chebyshev model of degree 50 with a Ч 1 -error equal to 1.40 • 10 -4 . The diverging case (ℓ 0 = 0.1 and ζ = -0.9) used a Chebyshev model of degree 65 with an error of 1.15 • 10 -4 .

◮ Boundary layer problem

We take from [START_REF] Olver | A fast and well-conditioned spectral method[END_REF] the example of the boundary layer problem, modeled by the following BVP problem, with ε > 0:

is a complete metric space. For an order p square matrix A, define:

Then T k is a µ-contraction for the d ∞ metric, so that the Banach theorem applies and gives x * as the unique fixed-point of T k . Hence T can have at most one fixed point. From the following inequality:

Therefore, multiplying both members of Inequality (5.3) by (1 -Λ) -1 is licit, so as to obtain the upper bound (5.2) for n = 0. The general bound for n 0 follows from the fact that T is Λ-Lipschitz.

Perov theorem applied to the toy example

Endowing | 2 with the vector-valued norm (c, s) := (|c|, |s|) does not change the definition of T. The two conditions needed to apply the Banach fixed-point theorem are adapted to the Perov theorem as follows. Choose a multi-radius r = (r 1 , r 2 ) such that

For r = (0.005, 0.005), one obtains: which satisfies (i) and (ii). Hence, Theorem 5.5 gives:

To assess the tightness of these bounds, the lower bounds given in next section will be useful.

◮ Lower Bounds and Error Enclosures

Let ε = d(x • , x * ) ∈ | p + be the vector of unknown errors and

The first inequality gives the upper bounds ε + = (1 -Λ) -1 η, as stated by Theorem 5.5 (with n = 0). However, the second one does not directly give the desired lower bounds, say ε -, because the inverse (1 + Λ) -1 = k 0 (-Λ) k is not nonnegative in general. It is clear that each ε - i is given by the i-th coordinate of some vertex of this polytope. Instead of testing its 2 p vertices, Theorem 5.6 identifies the correct one.

Theorem 5.6 (Lower bounds for the Perov theorem) With the above notations, for each i ∈ 1, p , the lower bound ε - i on the i-th component ε i of the approximation error of x • to x * is given by the i-th component of the vertex defined by the intersection of the i-th lower-bound constraint together with all the j-th upper-bound constraints with j = i from (5.4). Formally:

where D i is the order p diagonal matrix defined by

Before proving this theorem, we give two technical lemmas.

Lemma 5.7 Let A ∈ M →0 p (| + ) be a convergent to zero nonnegative matrix and B ∈ M p (|) be a matrix whose entries are dominated by those of A:

Then B is convergent to zero.

Proof. Since A has nonnegative entries which bound those of B, it can be easily shown by the triangle inequality that for any exponent k 0, |B k ij | A k ij for all i, j ∈ 1, p . This directly implies the conclusion of Lemma 5.7.

Lemma 5.8 Let Λ ∈ M →0

p (| + ) be a convergent to zero nonnegative matrix. Then, for every i ∈ 1, p , Λ -D i is nonsingular and the entries on the i-th row of its inverse are nonnegative.

Proof of Lemma 5.8. First, 1 -D i Λ is nonsingular because D i Λ is convergent to zero by use of Lemma 5.7, since its entries are clearly dominated by those of Λ ∈ M →0 p (| + ). Hence so is Λ -D i .

Then we prove that 1 -Λ and 1 -D i Λ both have positive determinant. The segment 1 -τ Λ (τ ∈ [0, 1]) connects 1 to 1 -Λ, and all these matrices are nonsingular, because τ Λ converges to zero according to Lemma 5.7. Since det(1) = 1 > 0, we get by connectedness that det(1 -Λ) > 0. A similar argument proves that det(1 -D i Λ) > 0, and hence det(D i -Λ) < 0.

Remember that for a nonsinglular matrix M , we have

, where Cof (M ) is the cofactor matrix of M , whose entries are the minors of M . Noticing that Cof (D i -Λ) ji = Cof (1 -Λ) ji for j ∈ 1, p and using the fact that det(D i -Λ) < 0, det(1 -Λ) > 0 and all entries in (1 -Λ) -1 are nonnegative, we conclude that all entries on the i-th row of (D i -Λ) -1 are non-positive.

Proof of Theorem 5.6. Among the Inequalities (5.4), take the p upper-bound constraints and replace the i-th one by the corresponding lower-bound constraint. Multiply these p -1 upperbound constraints by -1 to obtain the following system of inequalities:

(5.5)

Tightness cones

For a fixed Λ, the overapproximation ratio depends on the error distribution of the ε i . More specifically, using Inequality (5.7) of Lemma 5.10, the constraint ε + i /ε - i κ for some ratio κ > 1 is fulfilled when:

The intersection of these constraints for i ∈ 1, p defines a cone C κ in | p + of points ε for which the computed overapproximation ratio does not exceed κ. Under a certain value for κ, C κ is empty, meaning that T is not contracting enough to achieve this ratio, whatever ε is. The cone C κ grows to a limit cone C ∞ as κ → +∞ : a point outside C ∞ means that the componentwise error distribution is so unbalanced that some lower bound ε - i is negative (hence rounded to zero). Figure 5.2 illustrates the cones C κ for different values of κ and the limit cone C ∞ arising in our toy example.

Validation up to a given ratio

When the problem consists in finding an error enclosure

κ, the fixed-point validation operator T must be chosen sufficiently contracting. The following lemma characterizes how small the Lipschitz matrix Λ must be in that case.

then the upper and lower bounds computed using Theorems 5.5 and 5.6 satisfy

Proof. By Lemma 5.10, having:

. This in turn is equivalent to α β and finally Λ ∞ β/(2 + β).

Componentwise validation of Chebyshev approximations

The validation procedure for vector-valued D-finite functions closely follows the scalar case described in Chapter 4. After a short reminder on integral transforms for systems of LODEs

Level curves of the potential function H

◮ A pseudo-Hamiltonian system

We define from the potential function (6.5) the following perturbed pseudo-Hamiltonian system:

where g 1 and g 2 are polynomials of degree 4. The unperturbed system is obtained from the usual Hamiltonian system by a rescaling by the second variable y, whence the denomination pseudo-Hamiltonian. The trajectories still follow the level curves of H, but now the vector field vanishes over the whole horizontal line y = 0 (all the points on this line are equilibrium points).

At first sight, one might get the impression that this rescaling by y just reduces the number of periodic orbits, since a periodic orbit crossing the line y = 0 is transformed into two heteroclinic orbits. However, when regarding the perturbed system, the following adaptation of the Poincaré-Pontryagin Theorem (see [START_REF] Christopher | Limit cycles of differential equations[END_REF] for a proof) to this pseudo-Hamiltonian setting offers more possibilities than the Hamiltonian case:

Proof. Consider g = (g 1 , g 2 ) a generic polynomial perturbation of total degree at most 4.

• The symmetry requirements (6.9), are satisfied whenever:

x → -x : g 1 (x, y)dy -g 2 (x, y)dx y = -g 1 (-x, y)dy -g 2 (-x, y)dx y , y → -y : g 1 (x, y)dy -g 2 (x, y)dx y = (-1) e -g 1 (x, -y)dy -g 2 (x, -y)dx y .

This means that g 1 (respectively g 2 ) only contain monomials of the form x i 1 y j 1 (respectively x i 2 y j 2 ), with i 1 ≡ 1 mod 2, i 2 ≡ 0 mod 2, j 1 = 1 -e mod 2 and j 2 = e mod 2. The perturbation (6.2.2) clearly satisfies these requirements, with the choice e = 0. Moreover, adding a new monomial in g 1 or g 2 is inconsistent with the symmetry requirements if the parities of its exponents do not follow the same rule (with e = 0).

• A straightforward application of Green's theorem shows that the Abelian integral associated to (g 1 /y)dy and (g 2 /y)dx are linearly dependent if ∂ x • (g 1 /y) and ∂ y • (g 2 /y) are equal up to a multiplicative constant. But if i 1 and j 1 are odd with i 1 + j 1 4, then we can easily check that there exists i 2 and j 2 even with i 2 + j 2 4 such that g 1 = x i 1 y j 1 /y and g 2 = x i 2 y j 2 /y satisfy the above condition. Hence, we can without loss of generality set g 1 = 0, and only consider a perturbation g 2 along the y-axis.

• Following the previous remarks, the only candidate monomial we could add to the five ones 1, x 2 , x 2 y 2 , x 4 , y 4 of g 2 is y 2 . However, the linear independence is violated:

Indeed, Green's theorem allows us to rewrite the left-hand side as:

where

Finally, anticipating Section 6.4, the fact that the Wronskian of the five Abelian integrals is not uniformly 0 proves the desired linear independence.

Validated relative dynamics

We consider the previously described states X(t), X(ν) and the relative dynamics given by the simplified linearized Tschauner-Hempel equations in (7.2). For a given time t (conversely, a true anomaly value ν), the state right after an impulsive velocity correction ∆V = [∆V x , ∆V y , ∆V z ] T ∈ | 3 is defined as X + (t) and can be computed by:

Performing the variable changes X(t)

→ X(ν), the state after the impulse is given by:

Let Φ(ν f , ν 0 ) be the exact transition matrix of the system of equations (7.2), from an initial ν 0 to a final ν f . By considering N impulsive velocities corrections applied at ν 1 < . . . < ν N , the propagation of the state can be formulated as:

By applying the Chebyshev series approximation method previously presented, one can obtain rigorous polynomial approximations Φ(ν, ν 0 ) on an interval [ν 0 , ν f ], that is approximations Φ • ij and error bounds ε ij satisfying:

Then, the propagation of the relative dynamics for ν ∈ [ν N , +∞) can be represented by the state X(ν), which provides a rigorous approximation of X(ν):

Propellers, fuel-consumption and saturation

We assume that the follower spacecraft has six identical propellers, one pair symmetrically and oppositely disposed by axis. The fuel consumption is then modeled by the sum of the absolute value of the thrusts applied in each direction:

Assuming that the saturation threshold for each propeller is ∆V > 0, this constraint is written as:

Example 8.3 For Horner evaluation, Equation (8.4) gives:

π n (t) T = (0, 0, . . . , 2ut n-1 , 2ut n ), π n+1 (t) T = (0, 0, . . . , 0, ut n ).

Remark 8.4 The use of Algorithm LinEvalError is flexible and allows for the treatment of various situations, e.g., evaluation schemes with several floating-point precisions or compensated schemes. The user just needs to specify the accuracy of each floating-point operation.

Algorithm 8.2 LinEvalError(e) -Linearized absolute rounding error

Input: e an arithmetic expression with explicit roundings. Output: θ lin the linearized evaluation error of e.

Semi-Infinite Programming formulation

Problem (P general ) is rephrased in the framework of semi-infinite programming (SIP) in Section 8.3.1. Then, some duality and discretization properties are summarized in Section 8.3.2, leading to the exchange algorithm presented in Section 8.4.

Now, suppose that the columns of A(ω) are not linearly independent, or that y j = 0 for some j. Both cases imply that there exists J ⊂ 1, n + 2 of size n + 1, and ỹ ∈ | n+1 s.t.

j∈J ỹj α(ω j ) = z. In particular, by canceling the first component, the family {π 0 (t j )} j∈J is linearly dependent. But the Vandermonde determinant of this system cannot vanish since the t j are pairwise distinct. Therefore, {α(ω j )} n+2 j=1 is a basis of | n+2 , and y j > 0 for all j.

Finally, since A(ω) is invertible, y is the unique optimal feasible point of (D m ). Proof. Algorithm SolvePrimal computes the solution x ∈ | n+2 of α(ω j ) T x = c(ω j ) for j ∈ 1, n + 2 . We show that x is the optimal solution of Problem (P m ) for ω.

Let x be any feasible point in (P m ). Since the dual Problem (D m ) for ω is feasible, there exists y 0 s.t. z = n+2 j=1 y j α(ω j ). Then

thereby establishing optimality of x.

Lemma 8.13 (Correctness of FindNewIndex) Given x = (a, a), FindNewIndex(f, n, I, θ, a) computes ω * and a * corresponding to the most violated constraint:

Proof. We have

Therefore, by computing t * (line 1) and σ * (lines 3-4), Algorithm FindNewIndex ensures that ω * := (t * , σ * ) is the index of the most violated constraint, with

j=1 is a basis of | n+2 and y the optimal solution of Problem (D m ) for ω, then Exchange(n, θ, ω, y, ω * ) computes new ω ′ ∈ Ω n+2 and y ′ ∈ | n+2 such that:

Therefore, replacing α(ω) by α(ω) in EvalApproxOptimize and its subroutines provides an algorithm to compute the best degree-n polynomial w.r.t. both approximation and evaluation errors in relative setting.

Examples and conclusion

Algorithm EvalApproxOptimize is firstly illustrated by a tutorial example for Airy special function. Then approximations with binary64 coefficients of arcsin are presented.

◮ Airy function

The Airy function Ai is a special function frequently used in theoretical physics. In particular, some applications require to compute Ai(t) for possibly large negative values of t, where the function exhibits a highly oscillatory behavior (see Figure 8.4a). However, contrary to elementary functions, there exists no simple argument reduction for Ai. Therefore, one polynomial approximation is needed for each interval of the domain subdivision, and these intervals cannot be assumed to be small. Hence, controlling the evaluation error is essential. We consider the function Ai over I = [-2, 2], approximated by a polynomial of degree n = 6 and evaluated using the Horner scheme with u = 2 -12 . The terms {π 1 , . . . , π 7 } defining the evaluation error θ are given in Example 8.3. We fix a tolerance τ = 0.01.

At iteration 0 (Figure 8.1), the points t (0) j are initialized with the Chebyshev nodes and the signatures σ j (0) define a Remez-like system of linear equations on the coefficients of the polynomial (Figure 8.1d). Its solution x (0) = (a (0) , a (0) ) defines a polynomial p (0) (t) = a (0)T π 0 (t), whose approximation error is depicted in Figure 8.1a. It exhibits quasi-equioscillations indicating that p (0) is rather close to the degree-6 minimax approximation of Ai over I. However, the total error is more important near -2 and 2 (Figure 8.1b), due to the evaluation depicted in green. In particular, the algorithm detects the maximum error at t (0) * = -2 (in orange). Note that t Moving forward to iteration 6 (Figure 8.2), the total error is more balanced, though still not optimal. Both the signatures and the approximation error are now completely different from the Remez solution.

On a Moment Problem with Holonomic Functions
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Quand on voit ce qu'on voit, que l'on entend ce qu'on entend et que l'on sait ce que qu'on sait, on a raison de penser ce qu'on pense.

-Pierre Dac, L'Os à moelle

Reconstructing algebraic data, such as polytope or more complex volume boundaries, from moment measurements is an essential requirement for computer tomography and shape recognition, with applications to, e.g., medical imaging or geophysics. Many algorithms resorting to optimization, numerical analysis or statistics, for instance, were developed toward this aim, as discussed in Section 9.1. In particular, Lasserre and Putinar [START_REF] Bernard | Algebraic-exponential data recovery from moments[END_REF] proposed an exact reconstruction algorithm for the algebraic support of the Lebesgue measure, or of measures with density equal to the exponential of a known polynomial. Their approach relies on linear recurrences for the moments obtained using Stokes theorem, whence a strong, yet not fully exploited connection with the D-finite setting presented in Chapter 2.

Guided by the intuition that holonomicity could shed a new light on that work, Mioara Joldes, Jean-Bernard Lasserre and I worked together toward extending this method to measures with unknown holonomic densities and unknown support with real algebraic boundary. The article that we wrote, "On Moment Problem with Holonomic Functions" [START_REF] Bréhard | On a moment problem with holonomic functions[END_REF], will be published in the proceedings of the 44th International Symposium on Symbolic and Algebraic Computation (ISSAC 2019).

More specifically, our work, summarized in this chapter, consists in two contributions. First, in the framework of holonomic distributions (i.e. they satisfy a holonomic system in the sense of distributions, see Sections 2.1.2 and 9.2), an alternate method to creative telescoping is proposed in Section 9.3 for computing linear recurrences for the moments. When the coefficients of a polynomial vanishing on the support boundary are given as parameters, the obtained recurrences have the advantage of remaining linear with respect to them. Second, and based on this property, an efficient reconstruction method is explained in Section 9.4. Given a finite number of numerically computed moments for a measure with holonomic density, and assuming a real algebraic boundary for the support, we propose an algorithm for solving the inverse problem of obtaining both the coefficients of a polynomial vanishing on the boundary and those of the polynomials involved in the holonomic operators which annihilate the density.

Reconstruction methods

Given some moments m α (f ✶ G ) associated to a measure of unknown D-finite density f ∈ E and unknown compact algebraic support G, our goal is to reconstruct a polynomial g vanishing on the boundary ∂G of G and operators L ∈ Ann(f ).

The general approach is the following:

• Take an ansatz L ′ = β∈A q β (x)∂ β

x , for a specified finite set A ⊂ ◆ n and polynomials q β (x) with specified degrees d β .

• Let R = L ′ M . Solve a finite-dimensional linear system in the unknown coefficients of the polynomials q β : • From the solution L ′ of (9.11), extract a polynomial g vanishing on ∂G and an operator

Note that the solution of (9.11) corresponds to a truncation of the infinite system (9.8), since f ✶ G , L ′ * • x α = 0, for |α| N . Hence one is interested in obtaining bounds N on N , such that any solution of (9.11) is also solution of (9.8). Such an a priori uniform bound depending only on A and d β does not exist in general, cf. Remark 9.4.

Another issue is that L ′ may not be factorized as g(x) r L with g vanishing on ∂G and L•f = 0. See for instance the operator in (9.10).

In Section 9.4.1, we solve both issues when f is exponential-polynomial and give the associated algorithm. Then, in Section 9.4.2, we address the general holonomic case in two steps: firstly, for recovering the density, we prove that N is finite, but no a priori bound for it is known; secondly, once the density is known, a stronger result is proved for the support reconstruction, since an explicit uniform bound on the number of required moments is given.

In what follows, "exact computations" are assumed, that is, both the polynomial coefficients and the given moments m α lie in a computable finite extension of ◗. The practical case of approximately known numerical moments is briefly analyzed in Section 9.5.

◮ Exponential-polynomial densities

Let f (x) = exp(p(x)) with deg p = s, together with G and g be as in Assumption 9.9, deg g = d. Then f is annihilated by L i = ∂ x i -p x i for i ∈ 1, n . Algorithm ReconstructExpPoly follows the general approach above, with ansatz L ′ i = h 0 ∂ x i -h i (i ∈ 1, n ) for unknown polynomials h 0 , . . . , h n where deg h 0 d and deg h i d + s -1 for i ∈ 1, n . Theorem 9.18 establishes its correctness, with an explicit bound N .

◮ Holonomic densities

For higher order holonomic operators, the proof of Theorem 9.18 cannot be generalized: the key argument for deducing a uniform bound N was to write in (9.12), G ϕ(L ′ f )dx as

Instead, we proceed in two steps. Firstly in Section 9.4.2, a holonomic system for f is reconstructed, but it requires a finite number N of linear equations, which cannot be a priori bounded. Secondly, the support is reconstructed in Section 9.4.2.

Reconstructing the density

Algorithm ReconstructDensity produces a holonomic ideal I ⊆ Ann(f ) spanned by a rectangular system {L 1 , . . . , L n }, that is L i ∈ Ann(f ) ∩ ❑[x] ∂ x i only involves derivatives w.r.t. x i . For that, it is sufficient to find operators annihilating f ✶ G . Proposition 9.20 Let f be analytic over G satisfying Assumption 9.9. Then Ann(f ✶ G ) ⊆ Ann(f ).

Proof. Let L ′ ∈ Ann(f ✶ G ) be of order r. Proposition 9.15 with ϕ = g 2r (L ′ • f ) gives:

This implies that the analytic function g r (L ′ • f ) vanishes over G of nonempty interior, hence is 0. Since g = 0, L ′ • f = 0. Theorem 9.21 guarantees that Algorithm ReconstructDensity always returns an L ∈ Ann(f ) for N large enough. Theorem 9.21 Let i ∈ 1, n , f be analytic, G, g ∈ ❑[x] d satisfying Assumption 9.9, and let L = r j=0 q j (x)∂ j

x i ∈ Ann(f ) ∩ ❑[x] ∂ x i be of minimal order r, with q r of minimal degree. Then, Algorithm ReconstructDensity(n, i, r, s, N, (m α )) returns L = λL with λ ∈ ❑ * for s dr + max { deg(q j )} and N large enough.

Proof. The linear system in line 3 always has g r L as solution, by Proposition 9.16. Now let K N denote the kernel of this system, that is L ′ ∈ K N if and only if L ′ (f ✶ G ),