
HAL Id: tel-02337930
https://theses.hal.science/tel-02337930

Submitted on 29 Oct 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On ideal lattices and the GGH13 multilinear map
Alice Pellet–Mary

To cite this version:
Alice Pellet–Mary. On ideal lattices and the GGH13 multilinear map. Cryptography and Security
[cs.CR]. Université de Lyon, 2019. English. �NNT : 2019LYSEN048�. �tel-02337930�

https://theses.hal.science/tel-02337930
https://hal.archives-ouvertes.fr

Numéro National de Thèse : 2019LYSEN048

THÈSE DE DOCTORAT DE L'UNIVERSITÉ DE LYON
opérée par

l'École Normale Supérieure de Lyon

École Doctorale N◦512
École Doctorale en Informatique et Mathématiques de Lyon

Spécialité de doctorat : Informatique

Soutenue publiquement le 16/10/2019, par :

Alice Pellet--Mary

Réseaux idéaux et fonction

multilinéaire GGH13

On ideal lattices and the GGH13 multilinear
map

Devant le jury composé de :

Cheon Jung Hee, professeur, Université Nationale de Séoul (Corée) Rapporteur
Pointcheval David, directeur de recherche, CNRS et ENS Rapporteur
Vercauteren Frederik, professeur associé, KU Leuven (Belgique) Rapporteur
Agrawal Shweta, professeur assistant, IIT Madras (Inde) Examinatrice

Stehlé Damien, professeur, ENS de Lyon Directeur de thèse

Résumé

La cryptographie à base de réseaux euclidiens est un domaine prometteur pour la construction de prim-
itives cryptographiques post-quantiques. Un problème fondamental, lié aux réseaux, est le problème
du plus court vecteur (ou SVP, pour Shortest Vector Problem). Ce problème est supposé être diffi-
cile à résoudre même avec un ordinateur quantique. Afin d’améliorer l’efficacité des protocoles cryp-
tographiques, on peut utiliser des réseaux structurés, comme par exemple des réseaux idéaux ou des
réseaux modules (qui sont une généralisation des réseaux idéaux). La sécurité de la plupart des schémas
utilisant des réseaux structurés dépend de la difficulté du problème SVP dans des réseaux modules,
mais un petit nombre de schémas peuvent également être impactés par SVP dans des réseaux idéaux.
La principale construction pouvant être impactée par SVP dans des réseaux idéaux est la fonction
multilinéaire GGH13. Cette fonction multilinéaire est principalement utilisée aujourd’hui pour con-
struire des obfuscateurs de programmes, c’est-à-dire des fonctions qui prennent en entrée le code d’un
programme et renvoie le code d’un programme équivalent (calculant la même fonction), mais qui doit
cacher la façon dont le programme fonctionne.

Dans cette thèse, nous nous intéressons dans un premier temps au problème SVP dans les réseaux
idéaux et modules. Nous présentons un premier algorithme qui, après un pre-calcul exponentiel, permet
de trouver des vecteurs courts dans des réseaux idéaux plus rapidement que le meilleur algorithme
connu pour des réseaux arbitraires. Nous présentons ensuite un algorithme pour les réseaux modules
de rang 2, également plus efficace que le meilleur algorithme connu pour des réseaux arbitraires, à
condition d’avoir accès à un oracle résolvant le problème du plus proche vecteur dans un réseau fixé.
Ce deuxième algorithme peut ensuite être utilisé pour construire un algorithme LLL pour des modules
de rang arbitraire. Le pré-calcul exponentiel et l’oracle pour le problème du plus proche vecteurs
rendent ces algorithmes inutilisables en pratique.

Dans un second temps, nous nous intéressons à la fonction GGH13 ainsi qu’aux obfuscateurs qui
l’utilisent. Nous étudions d’abord l’impact des attaques statistiques sur la fonction GGH13 et ses
variantes. Nous nous intéressons ensuite à la sécurité des obfuscateurs utilisant la fonction GGH13 et
proposons une attaque quantique contre plusieurs de ces obfuscateurs. Cette attaque quantique utilise
entre autres un algorithme calculant un vecteur court dans un réseau idéal dépendant d’un paramètre
secret de la fonction GGH13.

1

Abstract

Lattice-based cryptography is a promising area for constructing cryptographic primitives that are plau-
sibly secure even in the presence of quantum computers. A fundamental problem related to lattices is
the shortest vector problem (or SVP), which asks to find a shortest non-zero vector in a lattice. This
problem is believed to be intractable, even quantumly. Structured lattices, for example ideal lattices or
module lattices (the latter being a generalization of the former), are often used to improve the efficiency
of lattice-based primitives. The security of most of the schemes based on structured lattices is related
to SVP in module lattices, and a very small number of schemes can also be impacted by SVP in ideal
lattices.

In this thesis, we first focus on the problem of finding short vectors in ideal and module lattices.
We propose an algorithm which, after some exponential pre-computation, performs better on ideal
lattices than the best known algorithm for arbitrary lattices. We also present an algorithm to find
short vectors in rank 2 modules, provided that we have access to some oracle solving the closest vector
problem in a fixed lattice. This second algorithm can then be used to construct an LLL algorithm for
module lattices of arbitrary rank. The exponential pre-processing time and the oracle call make these
algorithms unusable in practice.

The main scheme whose security might be impacted by SVP in ideal lattices is the GGH13 multi-
linear map. This protocol is mainly used today to construct program obfuscators, which should render
the code of a program unintelligible, while preserving its functionality. In a second part of this thesis,
we focus on the GGH13 map and its application to obfuscation. We first study the impact of statistical
attacks on the GGH13 map and on its variants. We then study the security of obfuscators based on the
GGH13 map and propose a quantum attack against multiple such obfuscators. This quantum attack
uses as a subroutine an algorithm to find a short vector in an ideal lattice related to a secret element
of the GGH13 map.

2

Remerciements/Acknowledgment

Je voudrais commencer de façon originale en remerciant mon directeur de thèse Damien Stehlé. Merci
pour tous les conseils que tu m’as donnés, pour le temps que tu as passé à relire tout ce que j’écrivais
(heureusement que tu fais ça sur tablette, sinon j’imagine que tu aurais une pile de stylos rouges morts
dans un coin de ton bureau), et pour m’avoir fait découvrir plein de questions intéressantes auxquelles
j’ai l’intention de continuer à réfléchir dans les années qui viennent.

I would also like to thank Jung Hee Cheon, David Pointcheval and Frederik Vercauteren for reviewing
this thesis and providing me with useful comments. Thank you Frederik for welcoming me in Leuven
for my post-doc, I am looking forward to it. Thank you also Shweta Agrawal for agreeing to come all
the way from India to be in my jury, and for inviting me to India during my PhD.

Merci également à tous les membres (et anciens membres) de l’équipe AriC pour leur bonne humeur,
les repas du midi sous pression et les longues pauses café : Bruno, Fabien, Paola, Guillaume, Vincent,
Nathalie, Gilles, Alain, Benôıt, Octavie, Fabrice, Chitchanok, Radu, Miruna, Ida, Huyen, Weiqiang,
Florent, Elena, Alexandre, Changmin, Dingding, Gottfried, Hervé, Nicolas L., Claude-Pierre, Alonso,
Junqing, Laurent, Anastasia, Jean-Michel, Nicolas B., Joris et Serge. A special thanks goes to my
office-mates who put up with me and discussed with me when I didn’t want to work: thank you Sanjay,
Jiangtao, Alexandre, Alonso, Gottfried and Hervé. Thank you also to all the “young in Aric” for the
occasional “gouter” with some food I never tried before (like a chili con carne without chili nor carne).
Thank you Miruna and Elena for your bad luck when traveling with me and the nice evening we spent
in Frankfurt “city center” on the way back from Bertinoro. Merci Ida de m’avoir tenu compagnie aux
conseils de labo, et plus généralement d’être la bonne poire de service dès qu’on a besoin de quelqu’un
pour faire quelque chose (par exemple relire ces remerciements). Comme je ne suis pas (trop) sectaire,
j’aimerais également remercier des doctorants d’autres équipes, avec lesquels j’ai pu échanger sur la vie
en thèse et partager des connaissances sur toutes les procédures administratives de réinscription ou de
soutenance : merci Alexandre, Aurore, Laureline et Pierre. Enfin, je voudrais remercier Marie, Chiraz,
Nelly, Kadiatou et Myriam pour avoir géré à ma place une bonne partie des désagréments administratifs
et avoir toujours été disponibles quand j’avais des questions.

On the other side of the border, I would like to thank all the cryptology group of CWI for welcoming
me during a very nice summer internship. Merci en particulier à Léo, Jessika et Benjamin pour les soirées
flim (et le marché aux fromages). I would also like to thank my office-mates from there: dankjewel
Koen, Wessel and Toon, it was gezellig to share an office with you.

Dans la catégorie “autres”, je voudrais remercier Laure d’être restée en contact et de m’avoir invité à
sa soutenance. Merci à Marc de m’avoir mis dans les remerciements de sa thèse. Merci à Alexandre Gélin
d’avoir répondu à mes questions sur sa thèse sans (trop) m’insulter. Merci à Bon Papa pour les mardis
gratins dauphinois et pour avoir toujours essayé de comprendre pourquoi je voulais m’o(b)fusquer.
Merci à Clara pour les soirées cinéma/mexicain. Merci à Carine de m’avoir fait découvrir plein de
restaurants sympas à Lyon. Et enfin, merci à mes parents et à mon frère, histoire de terminer ces
remerciements de façon aussi originale que je les ai commencés.

3

Contents

Résumé 1

Abstract 2

Remerciements/Acknowledgment 3

Contents 5

Résumé long en français 9

1 Introduction 17
1.1 Contributions . 22

1.1.1 Approx-SVP in ideal lattices . 22
1.1.2 An LLL algorithm for modules . 23
1.1.3 The GGH13 map and its applications . 24
1.1.4 A note on heuristic assumptions . 24

2 Preliminaries 25
2.1 Notations . 25
2.2 Lattices . 25

2.2.1 Algorithmic problems . 26
2.3 Number fields . 27

2.3.1 Embeddings . 27
2.3.2 Geometry . 27
2.3.3 The ring KR . 28
2.3.4 Power-of-two cyclotomic fields . 28
2.3.5 Discriminant . 29
2.3.6 Ideals . 29
2.3.7 Modules . 30
2.3.8 The class group . 31
2.3.9 The log-unit lattice . 33
2.3.10 Algorithmic problems related to class group computations 34

2.4 Representing elements and computing with them . 36
2.4.1 Computing over rings . 36
2.4.2 Computing Gram-Schmidt orthogonalizations . 36

2.5 Probabilities . 37
2.5.1 Statistics . 37
2.5.2 Discrete Gaussians . 38

2.6 Matrix branching programs . 39

3 SVP in Ideal Lattices with Pre-Processing 41
3.1 Introduction . 42
3.2 Contribution . 43

3.2.1 Technical overview . 44
3.2.2 Impact . 45

5

CONTENTS CONTENTS

3.3 From Ideal SVP to CVP in a Fixed Lattice . 46
3.3.1 Definition of the lattice L . 46
3.3.2 Computation of the lattice L . 47
3.3.3 From SVP in ideal lattices to CVP in L . 48

3.4 Solving CVP’ with Pre-processing . 50
3.4.1 Properties of the lattice L . 50
3.4.2 Using Laarhoven’s algorithm . 52

3.5 Instantiating Theorem 3.5 . 54
3.5.1 Using a CVP oracle in a fixed lattice . 55

3.6 Conclusion . 56

4 An LLL algorithm for module lattices 57
4.1 Introduction . 58
4.2 Contribution . 59

4.2.1 Technical overview . 60
4.2.2 Impact . 61

4.3 Divide-and-swap algorithm for rank-2 modules . 62
4.3.1 Extending the logarithm . 62
4.3.2 The lattice L . 63
4.3.3 On the distance of relevant vectors to the lattice 64
4.3.4 A “Euclidean division” over R . 69
4.3.5 The divide-and-swap algorithm . 73

4.4 LLL-reduction of module pseudo-bases . 76
4.4.1 An LLL algorithm for module lattices . 76
4.4.2 Handling bit-sizes . 78
4.4.3 Finding short vectors for the Euclidean norm . 80

4.5 Conclusion . 81

5 Graded Encoding Schemes 82
5.1 Definition and candidates . 83

5.1.1 Definitions . 83
5.1.2 Candidates . 86

5.2 The GGH13 multilinear map . 87
5.2.1 The GGH13 construction . 87
5.2.2 Size of the parameters and correctness . 88
5.2.3 Security of the GGH13 map . 89

5.3 Statistical attack on the GGH13 map . 91
5.3.1 Contribution . 91
5.3.2 Setting and hardness assumption . 91
5.3.3 Sampling methods . 93
5.3.4 Analysis of the leaked value . 97
5.3.5 The compensation method . 102

5.4 Conclusion . 104

6 Obfuscators 105
6.1 Introduction . 106

6.1.1 Definition . 106
6.1.2 Candidate obfuscators . 108
6.1.3 Obfuscation for restricted classes of functions . 114
6.1.4 Contribution . 114

6.2 An abstract matrix branching program obfuscator . 116
6.2.1 Heuristic assumption . 118

6.3 Quantum attack against the abstract obfuscator . 119
6.3.1 Creating a new zero-testing parameter . 120
6.3.2 Non-spherical Gaussian distributions . 121
6.3.3 The mixed-input attack . 123

6

CONTENTS CONTENTS

6.3.4 A concrete example of distinguishable branching programs 124
6.3.5 Other branching program obfuscators . 125

6.4 Conclusion . 126

7 Conclusion 129
7.1 Ideal and module lattices . 129
7.2 The GGH13 map and obfuscators . 130

List of publications 132

Bibligraphy 133

List of figures 141

List of tables 143

List of algorithms 144

A Security proof of our simple setting in the weak multilinear map model 145
A.1 The weak multilinear map model . 145
A.2 Mathematical tools . 146
A.3 Security proof . 147

B Adapting the quantum attack to circuit obfuscators 151
B.1 The simple circuit obfuscator . 151
B.2 The mixed-input attack . 153

7

Résumé long en français

L’un des principaux objectifs de la cryptographie est de garantir la confidentialité des messages, en les
chiffrant durant les phases de transmission. Historiquement, les méthodes de chiffrement utilisaient des
clés symétriques secrètes, partagées entre l’expéditeur et le destinataire. Ces schémas de chiffrement
sont appelés schémas de chiffrement symétriques, et nécessitent une rencontre entre l’expéditeur et le
destinataire (ou l’utilisation d’un tiers de confiance) avant de pouvoir communiquer en toute sécurité.
Cette nécessité d’une rencontre entre l’expéditeur et le destinataire n’est pas raisonnable pour les
applications actuelles de la cryptographie, par exemple sur Internet. Heureusement, Diffie et Hellman
ont décrit en 1976 le premier schéma cryptographique à clé publique [DH76]. Dans un schéma à clé
publique, chaque utilisateur possède sa propre clé secrète (qu’il ne doit partager avec personne), ainsi
qu’une clé publique, qu’il peut diffuser publiquement. Cette clé publique permet à n’importe qui de
chiffrer un message, cependant, seulement l’utilisateur possédant la clé secrète correspondante pourra
déchiffrer le message et retrouver le texte d’origine. En d’autres termes, le clé publique et le message
chiffré ne doivent révéler aucune information sur le message sous-jacent. Un schéma de chiffrement à clé
publique peut être utilisé pour garantir la confidentialité d’une communication, sans que les personnes
communiquant n’aient besoin de se rencontrer au préalable. En effet, le destinataire peut envoyer sa
clé publique à l’expéditeur. L’expéditeur utilise la clé publique pour chiffrer son message, et renvoie le
message chiffré au destinataire, qui pourra le déchiffrer grâce à sa clé secrète. Un attaquant écoutant
la conversation ne connâıtra que la clé publique et le message chiffré, qui par définition ne doivent rien
révéler du message transmis. Les protocoles cryptographiques de communication utilisés aujourd’hui
utilisent en général un schéma de chiffrement à clé publique pour échanger une clé secrète symétrique
entre les participants, puis un schéma de chiffrement symétrique utilisant cette clé secrète symétrique
pour le reste de la conversation. Cette procédure est plus efficace que l’utilisation d’un schéma de
chiffrement à clé publique pour toute la conversation, car les schémas symétriques sont en général plus
efficaces que ceux à clé publique.

La sécurité des schémas à clé publique repose en général sur des hypothèses “ simples”, c’est-à-
dire qui peuvent être décrites en quelques phrases. Plus précisément, sous l’hypothèse que certains
problèmes mathématiques sont difficiles à résoudre, il est possible de prouver qu’aucun attaquant (pour
un certain modèle d’attaquant) ne peut retrouver le message envoyé, s’il a seulement accès à la clé
publique et au message chiffré. Le protocole de Diffie-Hellman mentionné ci-dessus repose sur un
problème lié au logarithme discret. Étant donné un groupe G cyclique, un générateur de ce groupe g
et un élément h arbitraire dans le groupe, le problème du logarithme discret consiste à calculer le
logarithme de h en base g, c’est-à-dire l’entier α tel que h = gα. La difficulté supposée de ce problème
a depuis été utilisée pour la construction de nombreuses autres primitives cryptographiques. Un autre
problème de théorie des nombres très important en cryptographie est la factorisation. Étant donné un
produit pq de deux grands nombres premiers p et q, l’objectif est de retrouver p et q. Un problème lié
à la factorisation est utilisé pour évaluer la sécurité du chiffrement RSA [RSA78], qui est toujours très
utilisé aujourd’hui. Dans cette thèse, nous nous intéresserons à une troisième catégorie de problèmes
mathématiques pouvant servir de base à des protocoles cryptographiques, en lien avec les réseaux
euclidiens.

Réseaux euclidiens. Un réseau (euclidien) L est un sous-ensemble de Rm formé de toutes les com-
binaisons linéaires entières d’un ensemble de n vecteurs linéairement indépendants b1, . . . , bn ∈ Rm.
L’ensemble (b1, . . . , bn) est appelé une base du réseau L, et l’entier n est son rang (cf figure 0.1).

Le problème algorithmique essentiel lié aux réseaux euclidiens est, étant donnée une base arbitraire
d’un réseau arbitraire, de trouver un vecteur non nul le plus court du réseau (en norme euclidienne).

9

RÉSUMÉ LONG EN FRANÇAIS

• • • ••••
• • • ••••
• • •••••

• • • ••••
• • ••••• b1

b2

Figure 0.1: Un réseau de dimension 2, avec une base

Ce problème s’appelle le problème du plus court vecteur, abrégé en SVP, pour ‘shortest vector problem’
en anglais (cf figure 0.2). Asymptotiquement, les algorithmes les plus rapides connus pour résoudre le
problème du plus court vecteur sont des algorithmes de crible, dont le temps de calcul est exponentiel
en la dimension n du réseau [AKS01, AS18]. Il existe également des variantes de ce problème, qui
demandent de trouver un vecteur non nul du réseau dont la norme euclidienne est au plus γ fois la
norme d’un vecteur non nul le plus court. Le facteur d’approximation γ ≥ 1 est un paramètre de ce
nouveau problème, appelé γ-approx-SVP (cf figure 0.3).

• • • ••••
• • • ••••
• • •••••

• • • ••••
• • •••••

Figure 0.2: Un vecteur non nul le plus court

• • • ••••
• • • ••••
• • •••••

• • • ••••
• • •••••

Figure 0.3: Une solution au problème γ-approx-
SVP pour γ = 2

La difficulté de ce problème diminue lorsque γ augmente (le cas γ = 1 est le problème SVP). En 1987,
Schnorr introduisit une hiérarchie d’algorithmes pour résoudre le problème γ-approx-SVP [Sch87]. Les
compromis entre temps et facteur d’approximation atteints par les algorithmes de Schnorr sont donnés
sur la figure 0.4. En pratique, on utilise l’algorithme BKZ [SE94], qui est une variante heuristique des
algorithmes de Schnorr. Une analyse du temps de calcul de l’algorithme BKZ a été effectuée par Hanrot,
Pujol et Stehlé [HPS11], montrant que cet algorithme atteint également les compromis temps/facteur
d’approximation de la figure 0.4. Le plus petit facteur d’approximation γ pour lequel l’algorithme BKZ

termine en temps polynomial est 2O(n log logn
logn). Il n’existe actuellement pas d’algorithme polynomial

résolvant le problème approx-SVP pour des facteurs d’approximation plus petits.

Temps

Facteur
d’approximation

2Õ(n)2Õ(n0.5)poly

2Õ(n)

2Õ(n0.5)

poly

Figure 0.4: Compromis entre temps et facteur d’approximation pour l’algorithme BKZ

Un autre problème important lié aux réseaux euclidiens est le problème du plus proche vecteur
(ou CVP, pour ‘closest vector problem’ en anglais). Étant donnés une base arbitraire d’un réseau
arbitraire L, et un point t ∈ Rm, l’objectif de ce problème est de trouver un point de L le plus proche
de t. Encore une fois, il existe une variante de ce problème, appelée γ-approx-CVP, qui consiste à
trouver un point de L à distance au plus γ ·dist(L, t) de t, où dist(L, t) est la distance minimale entre t
et un point de L (cf figures 0.5 et 0.6). Les meilleurs algorithmes connus pour résoudre γ-approx-CVP
ont la même complexité asymptotique que les meilleurs algorithmes pour γ-approx-SVP. En particulier,
le meilleur algorithme résolvant CVP exactement a une complexité exponentielle en n et le plus petit

10

RÉSUMÉ LONG EN FRANÇAIS

facteur d’approximation qui peut être atteint par un algorithme polynomial est 2O(n log logn
logn).

• • • ••••
• • • ••••
• • •••••

• • • ••••
• • •••••
•
t

Figure 0.5: Une solution au problème CVP avec
cible t

• • • ••••
• • • ••••
• • •••••

• • • ••••
• • •••••
•
t

Figure 0.6: Une solution au problème γ-approx-
CVP avec cible t et γ = 2

Cryptographie basée sur les réseaux. Les problèmes SVP et CVP intéressent les cryptographes
car ils sont supposés être difficiles à résoudre, même en présence d’un ordinateur quantique. Ils diffèrent
en cela des deux autres problèmes de théorie des nombres mentionnés ci-dessus (la factorisation et le
logarithme discret), qui peuvent être résolus en temps polynomial quantique grâce à l’algorithme de
Shor [Sho97]. Les problèmes de réseaux sont donc de bons candidats pour construire des primitives
cryptographiques post-quantique.

La description des problèmes SVP et CVP n’est cependant pas très adaptée à la construction de
primitives cryptographiques. La principale raison à cela est la définition de ces problèmes en termes
de réseaux arbitraires, alors que les protocoles cryptographiques requièrent en général que le problème
soit difficile presque sûrement pour un choix de réseau aléatoire. Cette difficulté a été résolue par
l’introduction de nouveaux problèmes, appelés LWE et SIS [Reg05, Ajt96,MR07]. Ces problèmes sont
des problèmes cas-moyen, c’est-à-dire qu’il sont supposés être durs à résoudre pour une instance tirée au
hasard, ce qui les rend adaptés à la construction de primitives cryptographiques. De plus, il est prouvé
que ces problèmes sont au moins aussi difficiles à résoudre que des problèmes pire-cas sur des réseaux,
comme par exemple le problème d’approximation de vecteurs courts indépendants (ou approx-SIVP,
pour ‘approximate short independent vectors problem’ en anglais). Étant donnée une base arbitraire
d’un réseau arbitraire L, ce problème consiste à trouver n vecteurs de L linéairement indépendants et
de norme au plus γ ·λn, où λn est le plus petit réel tel qu’il existe n vecteurs linéairement indépendants
dans L plus petits que λn. Si l’on suppose qu’une telle variante du problème approx-SVP est difficile
à résoudre avec un ordinateur quantique, alors les problèmes LWE et SIS sont également difficiles à
résoudre, même avec un ordinateur quantique. On peut donc les utiliser pour construire des primitives
cryptographiques post-quantique. Mentionnons également le fait les problèmes LWE et SIS ne sont pas
strictement plus difficiles à résoudre que approx-SVP (ou approx-SIVP). En effet, il existe également
une réduction montrant que si approx-SVP ou approx-SIVP sont faciles à résoudre, alors SIS et LWE le
sont aussi. Les problèmes SIS et LWE sont d’une certaine façon une reformulation du problème SIVP,
qui le rend plus adapté à la construction de primitives cryptographiques.

Un exemple de primitive cryptographique pouvant être construite à partir du l’hypothèse LWE
est le schéma de chiffrement à clé publique de Regev [Reg05]. Ce schéma de chiffrement est prouvé
être sûr sous l’hypothèse que le problème LWE est difficile à résoudre. Depuis 2005, de nombreuses
autres primitives cryptographiques reposant sur la supposée difficulté des problèmes LWE et SIS ont
été construites. En particulier, les hypothèses à base de réseaux ont permis la construction de prim-
itives avancées, telles que le chiffrement totalement homomorphe.1 En effet, la première construction
de chiffrement totalement homomorphe fut proposée par Gentry en 2009 [Gen09] et utilisaient des hy-
pothèses liées à des réseaux (ainsi qu’une hypothèse de sécurité circulaire). Les hypothèses utilisées
pour cette constructions ne sont ni LWE ni SIS, mais une autre construction fut proposée plus tard
reposant sur le problème LWE [BV11] (et toujours une hypothèse de sécurité circulaire). Une autre
primitive construite en utilisant des techniques liées aux réseaux est l’obfuscation de programmes (qui
sera définie dans quelques paragraphes). Bien qu’utilisant des réseaux, les constructions d’obfuscateurs
que nous avons aujourd’hui ne sont cependant pas prouvées sûres sous des hypothèses de sécurité
standard. Nous reviendrons aux obfuscateurs à la fin de cette introduction.

1Un schéma de chiffrement totalement homomorphe est un schéma de chiffrement où l’ont peut effectuer un nombre
arbitraire de multiplications et d’additions sur les chiffrés. Cela doit produire un message chiffré qui se déchiffrera en
un message correspondant au résultat des même opérations (multiplications/additions), appliquées aux messages sous-
jacents.

11

RÉSUMÉ LONG EN FRANÇAIS

En conclusion, les problèmes de réseaux tels que LWE et SIS permettent à la fois de construire des
primitives (supposées) post-quantique, mais également de concevoir des primitives avancées.

Réseaux structurés. Les protocoles basés sur les réseaux sont généralement moins efficaces que leurs
équivalents basés sur la factorisation ou le logarithme discret. La principale raison à cela est qu’un réseau
est représenté par une matrice, dont la taille est quadratique en la dimension du réseau. De même, le
temps nécessaire pour calculer un produit matrice-vecteur (qui est l’opération de base sur les réseaux)
est quadratique en la dimension. Cependant, le temps nécessaire pour résoudre les problèmes SVP ou
CVP dans un réseau est seulement exponentiel en la dimension (et non en le carré de la dimension).
Ainsi, pour atteindre un niveau de sécurité de λ bits (i.e., la meilleure attaque doit prendre un temps
au moins 2λ), il est nécessaire de travailler avec des paramètres de taille Ω(λ2).

Afin d’améliorer l’efficacité des protocoles, il est possible de travailler avec des réseaux structurés,
comme par exemple des réseaux idéaux. Dans un réseau idéal, les vecteurs correspondent à des
polynômes, qui vivent modulo un polynôme P de degré n (de sorte que les polynômes ont tous un
représentant de degré n − 1, qui peut être vu comme un vecteur de dimension n en regardant ses
coefficients). Une base d’un réseau idéal correspond à la matrice de multiplication par un polynôme a
modulo P (ce qui est bien une opération linéaire).2 Grâce à cette correspondance avec les polynômes,
les matrices peuvent maintenant être représentées par un polynôme (de taille linéaire), et les multiplica-
tions matrice-vecteur peuvent être effectuées en temps quasi-linéaire en n (car la multiplication de deux
polynômes peut s’effectuer en temps quasi-linéaires en leur degré). De façon plus générale, dans les
réseaux idéaux, les vecteurs sont remplacés par des éléments d’un corps de nombre K de dimension n
(qui sera K = Q[X]/P (X) pour le polynôme P défini ci-dessus), et les réseaux sont des idéaux dans ce
corps de nombres (d’où la terminologie “réseaux idéaux”).

Comme précédemment, il existe des problèmes cas-moyen, appelés Ring-LWE et Ring-SIS [SSTX09,
LPR10] (ou RLWE et RSIS). Ces problèmes sont des variantes structurées des problèmes originaux LWE
et SIS où, encore une fois, les vecteurs sont remplacés par des polynômes et les matrices correspondent
à l’opération de multiplication par un polynôme. Il a été montré que ces problèmes ne sont pas plus
faciles à résoudre que le problème approx-SIVP, restreint aux réseaux idéaux. Puisque l’on se restreint
maintenant à des réseaux avec une structure algébrique supplémentaire, il est naturel de se demander

Le problème SVP est-il toujours difficile lorsqu’on se restreint à des réseaux idéaux ?

Cette question sera centrale dans cette thèse. Il est également possible d’obtenir des compromis
entre efficacité et sécurité, en utilisant des réseaux modules, et leurs problèmes cas-moyen associés
module-SIS et module-LWE [BGV14, LS15]. Un réseau module est un réseau dont une base peut être
représentée par une matrice par blocs, où chaque bloc est la base d’un réseau idéal.3 La figure 0.7
représente une base d’un réseau module avec m×m blocs. La notation Ba désigne une base de l’idéal
engendré par a, c’est-à-dire la matrice de multiplication par a modulo P . L’entier m est appelé le rang
du module. En variant la taille des blocs, on peut aller des réseaux idéaux (un seul bloc de la taille de
la matrice) aux réseaux généraux (n× n blocs de taille 1). Comme précédemment, il a été prouvé que
les problèmes module-SIS et module-LWE sont au moins aussi difficiles que le problème approx-SIVP
restreint aux réseaux modules.

Bam,1

Ba1,1

Bam,m

Ba1,m

· · ·

· · ·

...
...

. . .

n/m

n

Figure 0.7: Base d’un réseau module de rang m

Faisons quelques remarques sur les réductions inverses. Pour rappel, dans le cas des réseaux
généraux, on sait que les problèmes SIS et LWE sont équivalents au problème approx-SIVP. C’est

2Cela définit en fait la classe plus restreinte des réseaux idéaux principaux. Afin de simplifier les descriptions dans
cette introduction, nous supposerons que tous les idéaux sont principaux.

3Encore une fois, on suppose ici que tous les idéaux sont principaux.

12

RÉSUMÉ LONG EN FRANÇAIS

également vrai pour les réseaux modules : les problèmes module-LWE et module-SIS sont équivalents
au problème approx-SIVP restreint aux modules. En revanche, ce n’est pas le cas des réseaux idéaux.
Pour ces réseaux, nous savons simplement que RLWE et RSIS sont au moins aussi difficiles que approx-
SIVP dans des réseaux idéaux, mais il se pourrait qu’ils soient strictement plus difficiles. Le problème
RLWE est en fait équivalent à approx-SIVP dans des réseaux modules [AD17]. Il se pourrait donc que
le problème approx-SIVP pour les réseaux idéaux soit strictement plus facile que le problème RLWE,
lui même équivalent à module-LWE et approx-SIVP dans des réseaux modules, eux-mêmes strictement
plus faciles que LWE et approx-SIVP.

Concluons ce paragraphe en mentionnant un autre problème de réseau standard : le problème
NTRU [HPS98]. Étant donnés un polynôme P définissant un anneau R = Z[X]/(P), un module q ∈ Z
et un élément h = f/g mod q, avec f, g des éléments de R dont les coefficients sont beaucoup plus petits
que q, le problème NTRU consiste à retrouver f et g. Contrairement aux problèmes RLWE et RSIS,
on ne sais pas si le problème NTRU est plus difficile que certains problèmes pire-cas sur des réseaux
structurés. Cependant, ce problème a été étudié pendant plus de 20 ans et est maintenant considéré
comme un problème de réseaux standard.

La fonction GGH13. Un schéma de chiffrement par niveaux est une primitive cryptographique
permettant à une autorité d’encoder des éléments d’un anneau. Étant donné des éléments encodés,
n’importe qui doit ensuite pouvoir publiquement les multiplier ou les additionner, pour obtenir un
encodage de l’addition ou de la multiplication des éléments correspondants. Il doit également être
possible, après avoir effectué un nombre κ de multiplications (où κ est un paramètre du schéma de
chiffrement par niveaux), de tester publiquement si un élément ainsi créé encode zéro ou non. À part
cette procédure, appelée test de nullité, les encodages ne doivent rien révéler des éléments encodés. Les
schémas de chiffrement par niveaux, s’ils existent, auraient de nombreuses applications en cryptogra-
phie. La plus simple, mais que l’on ne sait actuellement pas réaliser à partir d’hypothèses standards,
et l’échange de clé en un tour entre κ+ 1 participants, pour un entier κ ≥ 3. Dans un tel protocole, les
utilisateurs commencent par générer une paire de clés publique et secrète. Ils diffusent ensuite publique-
ment leur clé publique à tous les autres utilisateurs. Chacun crée ensuite une clé secrète symétrique s
en combinant les clés publiques des autres utilisateurs avec sa propre clé secrète. Cette clé secrète
symétrique s doit être la même pour tous les utilisateurs, afin qu’ils puissent ensuite l’utiliser pour
communiquer via un protocole symétrique. À l’inverse, un attaquant qui aurait intercepté toutes les
clés publiques ne doit pas obtenir d’information sur la clé secrète symétrique s.

La fonction GGH13, proposée par Garg, Gentry et Halevi en 2013 [GGH13a] est le premier candidat
de schéma de chiffrement par niveaux. Cette construction utilise des polynômes modulo un polynôme P ,
et repose sur des techniques similaires à celles utilisées pour les problèmes de réseaux idéaux. Par
exemple, les encodages sont de la forme f/g mod q, pour des polynômes f et g avec de petits coefficients
(comme dans le problème NTRU). Ainsi, il est au moins aussi facile d’attaquer la fonction GGH13 que
le problème NTRU. De même, la fonction GGH13 utilise des réseaux idéaux, et trouver un vecteur
court dans ces réseaux idéaux peut permettre de l’attaquer.

Pour conclure, attaquer la fonction GGH13 est au moins aussi facile que de résoudre certains
problèmes standards de réseaux idéaux, mais nous ne connaissons pas de réduction inverse. C’est
pourquoi la fonction GGH13 est appelée un candidat : nous ne savons pas comment prouver sa sécurité
à partir d’hypothèses standards. En fait, depuis son introduction en 2013, de nombreuses attaques ont
été proposées contre la fonction GGH13 et ses applications [HJ16,MSZ16]. Ces attaques ne cassent pas
complètement la fonction GGH13, mais elles éliminent un nombre important d’applications possibles
du schéma de chiffrement par niveaux.

La principale application de la fonction GGH13 qui n’est pas encore complètement cassée est
l’obfuscation. Un obfuscateur est un algorithme qui prend en entrée le code d’un programme et le
rend inintelligible, tout en préservant la fonctionalité du programme. En d’autre termes, le nou-
veau programme doit se comporter comme une bôıte noire, il doit permettre à un utilisateur de
l’exécuter mais ne doit rien révéler d’autre que le comportement entrée/sortie du programme. Les
obfuscateurs sont très désirés en cryptographie et des candidats ont été proposés, utilisant la fonction
GGH13 [GGH+13b, GMM+16].4 Encore une fois, ces constructions sont des candidats, leur sécurité

4Tous les candidats obfuscateurs n’utilisent pas la fonction GGH13, mais certains l’utilisent, dont notamment le
premier candidat [GGH+13b].

13

RÉSUMÉ LONG EN FRANÇAIS

n’est pas prouvée sous des hypothèses de sécurité standards, et un certain nombre de constructions
sont sujettes à des attaques [MSZ16,CGH17,CHKL18,Pel18].

Contributions

Pendant ma thèse, je me suis intéressée à la difficulté des problèmes de réseaux structurés. Je me suis
concentrée à la fois sur des problèmes fondamentaux, tels que approx-SVP dans des réseaux idéaux ou
modules, ainsi qu’à des questions plus concrètes, comme la sécurité de la fonction GGH13 et de certains
obfuscateurs l’utilisant.

Approx-SVP dans les réseaux idéaux

Dans le premier chapitre de cette thèse, on s’intéresse à la question déjà mentionnée ci-dessus : le
problème (approx-)SVP est-il plus facile lorsque l’on se restreint à des réseaux idéaux ? Une première
réponse à cette question a été donnée par Cramer, Ducas et Wesolowski en 2017 [CDW17]. Ils
ont montré qu’avec un ordinateur quantique, un attaquant pouvait résoudre en temps polynomial le

problème γ-approx-SVP pour un facteur d’approximation γ aussi petit que γ = 2Õ(
√
n). Cet algorithme

ne peut s’utiliser que pour certains polynômes P , définissant des corps cyclotomiques de conducteur
une puissance d’un nombre premier. Ces polynômes P sont ceux qui sont les plus utilisés par les con-
structions cryptographiques. Pour rappel, dans le cas général, le plus petit facteur d’approximation
atteignable en temps polynomial (même avec un ordinateur quantique) est γ = 2Ω(n log logn/ logn). Ainsi,
l’algorithme CDW fournit une accélération quantique par rapport aux réseaux génériques (cf figure 0.8,

l’algorithme CDW est responsable du “saut” de la courbe quantique en γ = 2Õ(
√
n)).

Dans le chapitre 3, nous proposons une extension de l’algorithme CDW. Après un pré-calcul ex-
ponentiel, notre algorithme atteint tous les compromis intermédiaires entre l’algorithme CDW et
l’algorithme BKZ pour γ polynomial. Notre algorithme fournit également une amélioration dans le
cas classique, pour de petits facteurs d’approximation (cf figure 0.9). Notre algorithme fonctionne
pour n’importe quel polynôme de définition P , mais les compromis de la figure 0.9 dépendent du
polynôme P . Le principal inconvénient de notre algorithme est le pré-calcul exponentiel (qui s’effectue

en temps 2Õ(n) pour les corps cyclotomiques). Cela rend notre algorithme inutilisable en pratique. Il
convient d’observer cependant que ce pré-calcul ne dépend que du corps de nombres (c’est-à-dire du
polynôme P), et peut donc être réutilisé pour différents idéaux dans le même corps de nombre. Cette
contribution correspond à la publication suivante.

[PHS19] Alice Pellet-Mary, Guillaume Hanrot, et Damien Stehlé. Approx-SVP in ideal lattices with
pre-processing. Dans Advances in Cryptology – EUROCRYPT, pages 685–716. Springer, 2019.

Temps

Facteur
d’approximation

quantique

classique

2Õ(n)2Õ(n0.5)poly

2Õ(n)

2Õ(n0.5)

poly

Figure 0.8: Précédents compromis
temps/facteur d’approximation pour approx-
SVP dans des réseaux idéaux de corps cyclo-
tomiques puissance d’un nombre premier.

Temps

Facteur
d’approximation

quantique

classique

2Õ(n)2Õ(n0.5)poly

2Õ(n)

2Õ(n0.5)

poly

Figure 0.9: Nouveaux compromis pour approx-
SVP dans des réseaux idéaux dans les même
corps (avec un pré-calcul en temps exp(Õ(n))).

Une limitation importante de notre algorithme est qu’il résout le problème approx-SVP seulement
dans des réseaux idéaux. Cependant, comme on l’a vu précédemment, on sait que les problèmes

14

RÉSUMÉ LONG EN FRANÇAIS

RLWE et RSIS sont au moins aussi difficiles à résoudre que le problème approx-SVP dans des réseaux
idéaux, mais la réciproque n’est peut-être pas vraie. Rappelons aussi que la plupart des schéma cryp-
tographiques utilisent les problèmes RLWE et RSIS comme hypothèses de sécurité, et non le problème
approx-SVP dans des réseaux idéaux. Ainsi, même s’il existait un algorithme polynomial classique
résolvant le problème SVP dans des réseaux idéaux, cela n’aurait que peu d’impact sur la sécurité de
la plupart des schémas cryptographiques. Dans les chapitres qui suivent, nous nous intéressons à cette
limitation et explorons deux directions. La première direction consiste à essayer d’étendre notre algo-
rithme pour les réseaux idéaux aux réseaux modules. Rappelons que le problème RLWE est équivalent
au problème SIVP dans les réseaux modules. Ainsi, trouver des vecteurs courts dans des modules
(même de petit rangs 2 ou 3 par exemple), aurait un impact sur les schémas cryptographiques dont
la sécurité repose sur les problèmes NTRU et LWE. La seconde direction consiste à s’intéresser à la
sécurité de la fonction GGH13, qui est actuellement la principale construction cryptographique dont la
sécurité peut être impactée par des algorithmes trouvant des vecteurs courts dans des réseaux idéaux.

Un algorithme LLL pour les modules

Lorsque l’on veut trouver des vecteurs courts dans un réseau module, une idée naturelle est d’essayer
de généraliser l’algorithme LLL [LLL82] à l’anneau des entiers d’un corps de nombre. En effet, les
blocs dans la base d’un réseau module peuvent être vus comme des éléments d’un anneau R (qui est
l’anneau des entiers d’un corps de nombre), ce qui permet de voir la base du module comme une
matrice à coefficients dans R, de dimension m×m, où m est le rang du module. Si le rang du module
est petit, cette matrice à coefficients dans R aura une petite dimension. L’algorithme LLL (sur Z),
permet de trouver en temps polynomial une γ-approximation du plus court vecteur pour un facteur
d’approximation γ exponentiel en la dimension. Ainsi, si l’on pouvait utiliser l’algorithme LLL sur notre
matrice de petite dimension à coefficients dans R, cela nous permettrait d’obtenir un petit vecteur de
notre module en temps polynomial. Rappelons qu’on module avec un petit rang est proche d’un réseau
idéal, alors qu’un module avec un grand rang est proche d’un réseau générique. Dans ce dernier cas,
même un algorithme LLL dans R ne permettrait pas de résoudre approx-SVP avec un petit facteur
d’approximation (car la matrice à coefficients dans R a une grande dimension).

Notre objectif est donc d’essayer d’utiliser notre algorithme résolvant approx-SVP dans les réseaux
idéaux pour créer un algorithme LLL dans R. La principale difficulté rencontrée lorsque l’on essaye
d’étendre l’algorithme LLL à R est la généralisation de la division euclidienne. En effet, l’algorithme
LLL sur Z repose en grande partie sur le fait que, étant donnés deux entiers a et b, il est possible de
trouver r ∈ Z tel que |b + ar| < |a| (on peut même faire encore mieux et obtenir |b + ar| ≤ |a|/2).
Pour trouver l’entier r, on utilise la division euclidienne sur Z. Cependant, dans un corps de nombres
quelconque, il n’existe pas toujours de division euclidienne. Pire encore, dans la plupart des cas il
n’existe même pas d’élément r ∈ R tel que ‖b+ ar‖ ≤ ‖a‖.

Dans le chapitre 4, nous affaiblissons la condition de division euclidienne et autorisons l’élément b
a être multiplié par un petit élément. Plus formellement, notre objectif est, étant donnés a, b ∈ R, de
trouver u, v ∈ R tels que

‖ua+ vb‖ < ‖a‖
et ‖v‖ ≤ C,

pour une certaine constante C à définir (indépendante de ‖a‖ et ‖b‖). Nous proposons ensuite un
algorithme pour résoudre ce problème. Cet algorithme s’exécute en temps polynomial sur un ordina-
teur quantique, à condition d’avoir accès à un oracle résolvant le problème CVP dans un réseau fixé,
dépendant uniquement de l’anneau R. Malheureusement, la dimension de ce réseau est Õ(n2) (pour un
corps cyclotomique), où n est la dimension de l’anneau R. Cela rend l’algorithme inutilisable en pra-
tique. Nous prouvons également que notre affaiblissement de la division euclidienne est suffisante pour
étendre l’algorithme LLL aux modules de rang 2 sur R. Cela nous permet ainsi de calculer des vecteurs
courts dans des modules de rang 2. Finalement, nous expliquons comment l’algorithme LLL pour les
modules de rang 2 peut être étendu à des modules de rang arbitraire. Cela fournit un algorithme LLL
sur R, dont la complexité est polynomiale avec un ordinateur quantique, à condition d’avoir accès à
un oracle résolvant CVP dans un réseaux fixé, dépendant seulement de R (mais pas du module). Les
résultats présentés dans le chapitre 4 correspondent à l’article suivant.

15

RÉSUMÉ LONG EN FRANÇAIS

[LPSW19] Changmin Lee, Alice Pellet-Mary, Damien Stehlé et Alexandre Wallet. An LLL algorithm
for module lattices. Accepté à Asiacrypt 2019.

La fonction GGH13 et ses applications

Dans les deux derniers chapitres de cette thèse, nous nous intéressons à la sécurité de la fonction GGH13
et des obfuscateurs l’utilisant. Nous étudions l’impact des algorithmes résolvant approx-SVP dans des
réseaux idéaux sur la fonction GGH13, mais également l’impact d’autres approches, n’utilisant pas la
structure algébrique des réseaux apparaissant dans la fonction GGH13.

Fuite statistique. Dans le chapitre 5, nous étudions la sécurité de la fonction GGH13 face aux attaques
statistiques. Ces attaques utilisent les propriétés statistiques de la fonction GGH13 et non ses propriétés
algébriques, qui avaient été les seules étudiées jusque-là [HJ16,MSZ16]. Notre étude montre que toutes
les variantes de la fonction GGH13 sont sujettes à des fuites d’information en lien avec des paramètres
secrets de la fonction. La plupart du temps, ces fuites ne semblent pas être suffisantes pour permettre à
un attaquant de casser la fonction GGH13, mais pour l’une des variantes (que l’on suspectait déjà d’être
sujette à des fuites statistiques), nous avons été capables de transformer ces fuites en une attaque contre
la fonction GGH13. Après avoir étudié ces fuites, nous proposons une nouvelle variante de la fonction
GGH13, dont nous prouvons qu’elle n’est sujette à aucune fuite d’information dans le modèle considéré
dans cette étude. Notons cependant que ce modèle limite grandement les pouvoirs de l’attaquant, et il
pourrait exister des modèles moins contraignants où même notre nouvelle variante serait sujette à des
fuites statistiques. Ce chapitre correspond à la publication suivante.

[DP18] Léo Ducas et Alice Pellet-Mary. On the statistical leak of the GGH13 multilinear map and
some variants. Dans Advances in Cryptology – ASIACRYPT, pages 465–493. Springer, 2018.

Attaque quantique. Rappelons qu’un schéma de chiffrement par niveaux possède une procédure qui
permet à un utilisateur de tester si un encodage encode zéro, après avoir effectué κ multiplications. Les
auteurs de la fonction GGH13 [GGH13a] avaient déjà observé que s’il est possible de trouver des vecteurs
courts dans certains réseaux idéaux, alors il devient possible d’effectuer un test de nullité après 2κ
multiplications au lieu de κ. Pour cela, il n’est même pas nécessaire de savoir trouver des vecteurs courts
dans n’importe quel réseau idéal, mais simplement dans ceux possédant un petit générateur. Pour ces
réseaux idéaux, il existe un algorithme polynomial quantique permettant de trouver un vecteur le plus
court [CDPR16]. Cela signifie qu’il est possible, avec un ordinateur quantique, d’effectuer des tests de
nullité illégaux, après 2κ multiplications.

Il est important de remarquer cependant que même s’il est possible d’effectuer des tests de nullité
après 2κ multiplications, cela n’implique pas immédiatement qu’il existe des attaques contre les con-
structions utilisant la fonction GGH13. Dans le chapitre 6, nous nous intéressons à l’impact de ces tests
illégaux sur les constructions d’obfuscateurs utilisant la fonction GGH13. Nous montrons que pour un
grand nombre de constructions, ces tests illégaux peuvent être utilisés pour créer des attaques contre
les obfuscateurs. Cette attaque quantique correspond à la publication suivante.

[Pel18] Alice Pellet-Mary. Quantum attacks against indistinguishablility obfuscators proved secure
in the weak multilinear map model. Dans Advances in Cryptology – CRYPTO, pages 153–183.
Springer, 2018.

Une remarque sur les heuristiques

Tous les résultats présentés dans cette thèse reposent sur des heuristiques. Tout au long du manuscrit,
nous essayons d’identifier clairement les heuristiques, en les numérotant et les mettant dans des en-
vironnements particuliers. Nous précisons également, pour chaque théorème, s’il est heuristique et,
si oui, quelles heuristiques sont utilisées. Pour les heuristiques introduites dans cette thèse (par
opposition aux heuristiques déjà présentes dans des travaux antérieurs), nous proposons une justifi-
cation mathématique, ainsi que des expériences numériques les corroborant (lorsque c’est possible).
L’introduction de chaque chapitre précise l’adresse internet où est disponible le code utilisé pour ef-
fectuer les expériences présentées dans le chapitre.

16

Chapter 1

Introduction

One of the main objectives of cryptography is to guarantee the confidentiality of messages, by encrypting
them during the transmission phase. Historically, the encryption procedure relied on a secret symmetric
key, which was shared between the sender and the receiver and nobody else. Such a scheme was called
a symmetric key encryption scheme, and required the sender and the receiver to meet in person, or use
a trusted third party, before being able to communicate safely. For today’s use of cryptography, for
example for communications over the Internet, the requirement that the sender should physically meet
the receiver before any communication is not reasonable. Fortunately, Diffie and Hellman proposed in
1976 a first public key cryptographic scheme [DH76]. The principle of public key encryption schemes
is that each user now has its own secret key, which it shares with nobody else, but it also has a
public key, which it can make publicly available. This public key enables anyone to encrypt a message,
however, only the user with the corresponding secret key will be able to recover the original message.
In other words, given only the public key and an encrypted message, no information should be leaked
about the corresponding plaintext message. A public key encryption scheme can be used to preserve
confidentiality of messages without the need for a physical meeting beforehand. Indeed, the receiver can
send its public key to the sender. The sender then encrypts the message using the public key and sends
it back to the receiver. An eavesdropper listening to the conversation will only know the public key and
the encrypted message, which by construction should not reveal anything about the message. In today’s
cryptographic communication protocols, a public key scheme is typically used at the beginning of the
conversation to exchange a shared secret symmetric key between two users, and then a symmetric key
scheme is used with this shared secret symmetric key for the rest of the conversation. This procedure is
more efficient than relying on public key encryption schemes for the full conversation, as the symmetric
key schemes are usually more efficient than the public key ones.

The security of public key encryption schemes is typically based on “simple” assumptions, i.e.,
assumptions which can be described in a few sentences. Namely, under the assumption that some
mathematical problems are hard to solve, one can prove that no attacker (for a certain model of
attacker) can recover the underlying message by knowing only the encrypted message and the public key.
The Diffie-Hellman protocol mentioned above is based on a problem related to the discrete logarithm
problem. Given a cyclic group G, a generator of the group g and an arbitrary element h ∈ G, the
discrete logarithm problem consists in computing the logarithm of h in base g, i.e., finding an integer α
such that h = gα. The presumed intractability of this problem has since been used for many other
cryptographic constructions. Another very important number theoretic problem for cryptography is
factorization. Given as input the product pq of two large prime numbers p and q, this problem consists
in recovering the two primes p and q. A problem related to this one is used to assess the security of
the RSA protocol [RSA78], which is still widely used today. In this thesis, we will be interested in
a third category of mathematical problems serving as cryptographic hardness assumptions, related to
Euclidean lattices.

Lattices. A (Euclidean) lattice L is a subset of Rm consisting of all integer linear combinations of a
set of n linearly independent vectors b1, . . . , bn ∈ Rm. The set of vectors (b1, . . . , bn) is called a basis of
the lattice L, and the integer n is its rank (see Figure 1.1).

The fundamental algorithmic problem related to lattices is, given an arbitrary basis of an arbitrary
lattice, to find a shortest non-zero element of the lattice (with respect to its Euclidean norm). This
problem is referred to as the shortest vector problem, or SVP for short (see Figure 1.2). Asymptotically,

17

CHAPTER 1. INTRODUCTION

• • • ••••
• • • ••••
• • •••••

• • • ••••
• • ••••• b1

b2

Figure 1.1: A two-dimensional lattice with a basis

the fastest algorithms that are known to solve the shortest vector problem are sieving algorithms, whose
running time is exponential in the dimension n of the lattice [AKS01, AS18]. Approximation variants
of the shortest vector problem can also be considered, where the problem consists in finding a non-zero
vector of the lattice whose Euclidean norm is no more than γ times the norm of a shortest non-zero
vector. The approximation factor γ ≥ 1 is a parameter of this new problem, which is referred to as the
γ-approximate shortest vector problem, or γ-approx-SVP for short (see Figure 1.3).

• • • ••••
• • • ••••
• • •••••

• • • ••••
• • •••••

Figure 1.2: A shortest non-zero vector in a lattice

• • • ••••
• • • ••••
• • •••••

• • • ••••
• • •••••

Figure 1.3: A solution to γ-approx-SVP for γ = 2

The difficulty of this problem decreases when γ increases (observe that 1-approx-SVP is the regular
SVP). In 1987, Schnorr introduced a hierarchy of algorithms solving approx-SVP [Sch87], achieving the
trade-offs between time and approximation factor drawn in Figure 1.4. In practice, one uses the BKZ
algorithm [SE94], which is a heuristic variant of Schnorr’s algorithms. A proof of the running time of the
BKZ algorithm was provided in [HPS11], showing that the BKZ algorithm also achieves the trade-offs
of Figure 1.4. The smallest approximation factor γ for which the BKZ algorithm runs in polynomial

time is 2O(n log logn
logn). We do not know any other polynomial time algorithm solving approx-SVP for

asymptotically smaller approximation factors.

Time

Approximation
factor

2Õ(n)2Õ(n0.5)poly

2Õ(n)

2Õ(n0.5)

poly

Figure 1.4: Time/approximation trade-offs achieved by BKZ for arbitrary lattices

Another important problem related to lattices is the closest vector problem (or CVP for short),
which requires, given an arbitrary target point t in Rm and an arbitrary basis of an arbitrary lattice L,
to find a point of L closest to t. Again, we have a variant of this problem, called γ-approx-CVP, where
the requirement is to find a point of L at distance at most γ · dist(L, t) from t, where dist(L, t) is the
minimal distance between t and a point of L, and γ ≥ 1 (see Figures 1.5 and 1.6). The best algorithms
to solve γ-approx-CVP are asymptotically as efficient as for γ-approx-SVP. In other words, the best
algorithm to solve exact CVP has a complexity exponential in the dimension n of the lattice and the

smallest approximation factor for which we have a polynomial time algorithm is 2O(n log logn
logn).

Lattice-based cryptography. The shortest vector problem and closest vector problem mentioned
above are interesting for cryptographic purposes, as they are conjectured to be hard to solve even in

18

CHAPTER 1. INTRODUCTION

• • • ••••
• • • ••••
• • •••••

• • • ••••
• • •••••
•
t

Figure 1.5: A CVP instance with target t

• • • ••••
• • • ••••
• • •••••

• • • ••••
• • •••••
•
t

Figure 1.6: A γ-approx-CVP instance with target t
for γ = 2

the quantum setting. To our current knowledge, the existence of a quantum computer would only
decrease the constant in the exponent of the best algorithm solving these problems, but they would
remain exponentially hard. This is a major difference with the two other number theoretic problems
mentioned above (i.e., the discrete logarithm and the factorization problems). Indeed, Shor described
in 1994 a quantum algorithm which can be used to solve these two problems in polynomial quantum
time [Sho97]. Lattice problems are then good candidates to construct post-quantum cryptography.

The description of the problems as CVP or SVP is however not very suited for constructing cryp-
tographic primitives. The main reason is their definition in terms of arbitrary lattices, whereas cryp-
tographic design typically requires almost-always hardness for instances drawn randomly from specific
distributions. This difficulty was circumvented by the introduction of new lattice problems, namely
the LWE and SIS problems [Reg05,Ajt96,MR07]. These problems are average case problems, meaning
that they are supposed to be hard for a randomly chosen instance, which makes them more suitable for
building cryptographic primitives. Moreover, these problems have been shown to be no easier to solve
that some worst case lattices problems, such as the approximate short independent vectors problem
(or approx-SIVP for short). Given as input an arbitrary basis of an arbitrary lattice L, the γ-approx-
SIVP problem requires to find n linearly independent vectors of L shorter than γ · λn, where λn is
the smallest real number such that there exists n linearly independent vectors in L of norm bounded
by λn.1 Assuming that such a variant of the approximate shortest vector problem is quantumly in-
tractable implies that the LWE and SIS problems are also quantumly intractable and can be used to
build post-quantum cryptographic primitives. Let us also mention that the LWE and SIS problems are
not strictly harder than approx-SVP (or approx-SIVP). Indeed, there also exists a reduction showing
that if approx-SVP (or approx-SIVP) is easy to solve, then so are LWE and SIS. These problems are in
a sense only average-case reformulations of approx-SIVP, which makes it more suitable for constructing
cryptographic primitives.

One example of a cryptographic primitive which can be constructed from the LWE assumption is
Regev’s public key encryption scheme [Reg05]. This encryption scheme is proven to be secure, under the
assumption that the LWE problem is hard to solve. Since then, many other cryptographic primitives
have been constructed, based on the supposed hardness of LWE or SIS. In particular, lattice assumptions
enabled the construction of advanced cryptographic primitives, such as fully homomorphic encryption.2

Indeed, the first construction of a fully homomorphic encryption scheme was proposed by Gentry in
2009 [Gen09] and relied on lattice assumptions (as well as a circular security assumption). The lattice
assumptions used in this construction differ from the LWE or SIS assumptions, but another construction
was proposed [BV11], based on the plain LWE problem (and a similar circular security assumption).
Another primitive which has been constructed using lattice techniques is program obfuscation (which
will be defined in a few paragraphs). However, even if they use lattices, the constructions of obfuscators
we currently have are not proved secure under standard lattice assumptions. We will come back to
obfuscation at the end of this introduction.

To sum up, lattice problems such as LWE or SIS enable us to both construct (supposedly) post-
quantum primitives, and to design advanced primitives.

1Observe that while this problem might seem harder to solve than approx-SVP, it is in fact not the case. Indeed, even
if we can find n vectors smaller than γ · λn, it could be the case that none of them is shorter than γ · λ1, where λ1 is the
norm of a shortest non-zero vector of the lattice.

2A fully homomorphic encryption scheme is an encryption scheme which is additively and multiplicatively homo-
morphic for an arbitrary number of additions and multiplications. In other words, (an arbitrary number of) addi-
tions/multiplications of the encrypted messages should produce ciphertexts that decrypt to the additions/multiplications
of the underlying messages.

19

CHAPTER 1. INTRODUCTION

Structured lattices. Protocols based on lattice assumptions are usually less efficient (in terms of
public key size and ciphertexts size) than their counterparts based on the discrete logarithm problem
or on factorization. This is mainly due to the fact that a lattice is represented by a matrix, whose size
is quadratic in the dimension of the lattice. Similarly, the time needed to compute a matrix-vector
multiplication (which is the basic operation on lattices) is quadratic in the dimension. The difficulty
of solving SVP or CVP in a lattice however only increases exponentially in the dimension (and not in
the square of the dimension). This implies that to achieve a given level of security λ (meaning that the
best attack should run in time at least 2λ), one has to work with parameters of size Ω(λ2).

In order to improve efficiency, one may want to work with structured lattices. One such example
of structured lattices are ideal lattices. In an ideal lattice, the vectors correspond to polynomials,
which live modulo some fixed irreducible polynomial P of degree n (hence, each polynomial has n
coefficients and can be mapped to a vector of dimension n, by looking at its coefficients). An ideal
lattice then corresponds to multiplication by some polynomial a (multiplication by a polynomial a
modulo P is a linear operation which can be represented by a matrix).3 Thanks to this correspondence
with polynomials and polynomial multiplication, the matrices can now be stored with only n elements
and all operations are quasi-linear in n (the multiplication of two polynomials can be done in time quasi-
linear in their degree). A more algebraic way to say the same thing is that the vectors are replaced
by elements of a number field of dimension n (which will be K = Q[X]/P (X) for the polynomial P
defined above), and the lattices are ideals in this number field. This is where the terminology “ideal
lattice” comes from.

As previously, some average-case problems can be defined, called Ring-LWE [SSTX09,LPR10] and
Ring-SIS [LM06,PR06] (or RLWE and RSIS for short). These problems are structured variants of the
original LWE and SIS problems, where, again, the vectors are seen as polynomials and the matrices as
polynomial multiplication. These problems are known to be no easier to solve than solving approx-SIVP
restricted to ideal lattices (which, for the specific case of ideal lattices, is equivalent to approx-SVP).
Observe that we are now considering the shortest vector problem in a restricted class of lattices, with
an extra algebraic structure. One may then wonder

Is SVP still hard when restricted to ideal lattices?

This will be a central question of this thesis. One can also obtain trade-offs between efficiency
and security by using module-lattices, and their average case problems Module-SIS and Module-
LWE [BGV14, LS15]. A module lattice is a lattice whose basis is a block matrix, each block being
the basis of an ideal lattice.4 Figure 1.7 represents the basis of a module lattice, with m2 blocks of size
n/m × n/m each (the dimension n of the lattice has to be a multiple of m). The notation Ba refers
to a basis of the ideal generated by a, i.e., it is the matrix representing multiplication by a modulo P .
The integer m is called the rank of the module. By varying the size of these blocks, one can go from
ideal lattices (one big block of the size of the matrix) to general lattices (n by n blocks of dimension
1× 1). As in the previous cases, the Module-SIS and Module-LWE problems are proven to be no easier
to solve than the approx-SIVP problem restricted to module lattices.

Bam,1

Ba1,1

Bam,m

Ba1,m

· · ·

· · ·

...
...

. . .

n/m

n

Figure 1.7: Basis of a module lattice of rank m

Let us make some remarks on the converse reductions. Recall that in general lattices, the LWE and
SIS problems are equivalent to the approx-SIVP problem (i.e., we have reductions in both directions).

3This in fact defines the more restricted class of principal ideal lattices. For simplicity, in this introduction we are
going to pretend that all ideals are principal.

4Once again, we assume for simplicity in this introduction that all ideals are principal (see Section 2.3.7 for a definition
of module lattices and pseudo-bases in the general case).

20

CHAPTER 1. INTRODUCTION

The same holds also for Module-SIS/LWE and approx-SIVP in modules lattices. However, in the case
of ideal lattices, we only have one direction. It could be that approx-SVP in ideal lattices is in fact
strictly weaker than RLWE and RSIS. The RLWE problem is in fact known to be equivalent to approx-
SIVP in module lattices [AD17]. Hence, it could be that approx-SVP in ideal lattices is strictly weaker
than RLWE, which is equivalent to Module-LWE and Module-SIVP, which is itself strictly weaker than
LWE and approx-SIVP.

Finally, let us conclude this paragraph by mentioning another standard lattice assumption based
on structured lattices: the NTRU problem [HPS98]. Given as input a polynomial P defining the ring
R = Z[X]/(P), a modulus q ∈ Z and an element h = f · g−1 mod q, with f, g elements of R with
coefficients much smaller than q, the NTRU problem asks to recover the elements f and g. Unlike the
previous RLWE and RSIS problems, the NTRU problem is not known to be harder than some worst
case problem in structured lattices. However, it has been studied for more than 20 years and is now
considered as a standard lattice problem.

The GGH13 map. A graded encoding scheme is a primitive which allows an authority to encode
elements of a ring. Anyone should then be able to publicly add or multiply the produced encodings, to
obtain encodings of the addition or multiplication of the corresponding encoded elements. One should
also be able, after having performed a fixed number κ of multiplications (where κ is a parameter of the
scheme), to test whether the created encoding is an encoding of zero or not. Except for this zero-test,
no other information should be leaked about the elements being encoded. Graded encoding schemes, if
they exist, would have a lot of applications in cryptography. One of the simplest applications, but which
we currently do not know how to instantiate from standard assumptions, is one-round key exchange
between κ+ 1 users, for some integer κ ≥ 3. In a one-round key-exchange protocol, all the κ+ 1 users
first generate a pair of public and secret keys. In a second phase, they publicly broadcast their public
key to all other users. Finally, they recover the public keys of the other users and combine them with
their own secret key to create a secret string s. What is important is that all users should create the
same secret string s, which can then be used to communicate using a symmetric key encryption scheme.
On the other hand, an attacker which intercepts all the public keys should not be able to learn anything
about the secret s.

The GGH13 map, proposed by Garg, Gentry and Halevi in 2013 [GGH13a] was the first candidate
graded encoding scheme. The construction uses polynomials modulo some fixed polynomial P , and is
based on techniques similar to the structured lattices ones. For instance, the encodings are NTRU-like
elements (i.e., they are of the form f/g mod q for some polynomials f and g with small coefficients),
hence the GGH13 map is at most as hard as the NTRU problem. There are also ideals involved in the
construction of the GGH13 map, and one has to assume that finding short vectors of these ideals is a
hard problem for the security of the map.

Overall, one has to assume the difficulty of several standard lattice problems for the GGH13 map to
be secure, but we do not have any converse reduction. This is why the GGH13 map is called a candidate
graded encoding scheme: we do not know how to prove its security based on standard assumptions. In
fact, since its introduction in 2013, multiple attacks have been proposed against the GGH13 map and
its applications [HJ16, MSZ16]. These attacks do not fully break the GGH13 map, but they rule out
many possible applications of the graded encoding scheme.

The main application of the GGH13 map which is not fully broken yet is obfuscation. An obfuscator
is an algorithm which should take as input the code of a program, and output a new code, which
computes the same function as the original code, but should not reveal anything about it. In other
words, it should act as a black-box, enabling a user to evaluate the code, without revealing anything
about it, except its input/output behavior. Obfuscation is a much desired cryptographic primitive, and
some candidate obfuscators have been proposed, using the GGH13 map [GGH+13b,GMM+16].5 Again,
these constructions are only candidates, their security is not proved under standard assumptions, and
many constructions suffer from attacks [MSZ16,CGH17,CHKL18,Pel18].

5Since the description of the first candidate obfuscator [GGH+13b] which was based on the GGH13 map, other
candidate constructions have been proposed and some of them do not rely on the GGH13 map.

21

CHAPTER 1. INTRODUCTION

1.1 Contributions

During my PhD, I have been interested in the difficulty of problems related to structured lattices. I have
focused on both fundamental problems, such as approx-SVP in ideal lattices or in module lattices, as
well as more concrete questions, such as the security of the GGH13 map and some candidate obfuscators
using it.

1.1.1 Approx-SVP in ideal lattices

The first chapter of this thesis focuses on the question already mentioned above: is (approx-)SVP
easier when restricted to ideal lattices? A first answer to this question was provided by Cramer, Ducas
and Wesolowski in 2017 [CDW17]. They showed that in the quantum setting, an attacker can solve
in polynomial time the γ-approx-SVP problem in ideal lattices for approximation factors as small as

γ = 2Õ(
√
n). This algorithm only works for certain choices of polynomial P (recall that we are working

with polynomials modulo P), corresponding to prime power cyclotomic number fields. These choices
of P are the ones that are the most used for cryptographic constructions. Recall that in the case of
general lattices, the smallest approximation factors we can achieve in polynomial time (even in the
quantum setting) are γ = 2Ω(n log logn/ logn). Hence, the CDW algorithm provides a quantum speedup
for ideal lattices compared to general lattices (see Figure 1.8, the trade-offs in blue are the ones achieved
by the BKZ algorithm, and the CDW algorithm is responsible for the “jump” in the quantum setting

at γ = 2Õ(
√
n)).

In Chapter 3, we present an extension of the CDW algorithm. After an exponential pre-processing
phase, our algorithm achieves all the intermediate trade-offs in the quantum setting between the CDW
algorithm, and the exponential time algorithms for polynomial approximation factors. In addition, our
algorithm also improves upon the BKZ trade-offs in the classical setting, for small approximation factors
(see Figure 1.9). Finally, our algorithm works in any number field, i.e., for any defining polynomial P
(but the trade-offs shown on the figure change with the number fields). The major drawback of our

algorithm is the exponential pre-processing phase (which runs in time 2Õ(n) for prime power cyclotomic
fields). This makes our algorithm unusable in practice. We note however that this pre-processing phase
only depends on the number field (i.e., on the polynomial P), hence, once it is done, it can be reused
for any ideal lattice defined over this number field. This contribution corresponds to the following
publication.

[PHS19] Alice Pellet-Mary, Guillaume Hanrot, and Damien Stehlé. Approx-SVP in ideal lattices with
pre-processing. In Advances in Cryptology – EUROCRYPT, pages 685–716. Springer, 2019.

Time

Approximation
factor

quantum

classical

2Õ(n)2Õ(n0.5)poly

2Õ(n)

2Õ(n0.5)

poly

Figure 1.8: Prior time/approximation trade-offs
for ideal approx-SVP in prime power cyclotomic
fields.

Time

Approximation
factor

quantum

classical

2Õ(n)2Õ(n0.5)poly

2Õ(n)

2Õ(n0.5)

poly

Figure 1.9: New trade-offs for ideal approx-SVP
in the same fields (with a pre-processing of cost

exp(Õ(n))).

A fundamental limitation of this algorithm is that it focuses on finding short vectors in ideal lattices.
However, recall that we have seen that the RLWE and RSIS problems are proven to be no easier to
solve than approx-SVP in ideal lattices, but the reverse reduction is not known. Recall also that most of
the cryptographic schemes are based on the RLWE or RSIS problems, and not on approx-SVP in ideal
lattices. Hence, even a classical polynomial time algorithm for finding short vectors in ideal lattices

22

CHAPTER 1. INTRODUCTION

would have little impact on the security of most of the structured-lattice-based cryptographic schemes.
In the following chapters, we will focus on this limitation and explore two main directions. The first
direction consists in trying to extend our algorithm from ideal lattices to module lattices. As mentioned
above, the RLWE problem is equivalent to SIVP in module lattices. Hence, being able to find short
vectors in modules (even modules of very small rank,6 like for instance 2 or 3) would have a direct
effect on cryptographic schemes based on NTRU and RLWE. The second direction consists in focusing
on the security of the GGH13 map, which is currently the main construction whose security can be
impacted by approx-SVP solvers for ideal lattices.

1.1.2 An LLL algorithm for modules

When trying to extend the SVP solver to module lattices, a natural idea is to try to generalize the
LLL algorithm [LLL82] over the ring of integers of a number field. Indeed, the blocks of the basis of
a module lattice can been seen as ring elements (in the ring of integers R of a number field), which
provides a matrix with coefficient in R instead of Z. If the number of blocks of our module is small,
then this matrix has small dimension. The LLL algorithm (over Z) finds in polynomial time a γ-
approximation of the shortest vector of the lattice, for an approximation factor γ which is exponential
in the dimension. Hence, if we could apply the LLL algorithm to our matrices with coefficients in R and
small dimension, we would obtain in polynomial time a small approximation of the shortest non-zero
vector of the corresponding module lattices. Recall that modules with a small number of blocks are
close to being ideal lattices. On the contrary, if the number of blocks is large, then the modules are
close to general lattices, and even an LLL algorithm over R would not find small approximation factors
(because the dimension of the basis as a matrix over R would be large).

The question we focus on is then to try to use our approx-SVP solver in ideal lattices to extend the
LLL algorithm to R. The main difficulty one faces when trying to extend the LLL algorithm to a ring
of integers R, is to generalize the Euclidean division. Indeed, the LLL algorithm over Z crucially relies
on the fact that given two integers a, b ∈ Z, one can find an element r ∈ Z such that |b + ra| < |a|
(one can even achieve |b + ra| ≤ |a|/2). This means that we can always reduce b, with multiples of a,
to obtain a new element strictly smaller than a. This reduction is provided over Z by the Euclidean
division. The Euclidean division however does not generalize to all rings of integers. Even more, in
most cases, there will not even exist an element r ∈ R such that ‖b+ ar‖ ≤ ‖a‖.

In Chapter 4, we relax the condition on the Euclidean division by allowing b to be multiplied by a
small element. More formally, our objective is, given a, b ∈ R, to find u, v ∈ R such that

‖ua+ vb‖ < ‖a‖
and ‖v‖ ≤ C,

for some constant C not too large. We then describe an algorithm which solves this problem. This
algorithm runs in quantum polynomial time if it is given access to an oracle solving CVP in a fixed
lattice, depending only on the ring R. Unfortunately, this lattice has dimension Õ(n2),7 where n is the
dimension of the ring R, which makes the algorithm not implementable in practice. We also prove in
Chapter 4 that this relaxation of the Euclidean division is sufficient to extend the LLL algorithm to
rank-2 modules over R. Hence, we obtain an algorithm computing short vectors in modules of rank 2.
Finally, we explain how the LLL algorithm for rank-2 modules can be extended to modules of arbitrary
rank. This gives us an LLL algorithm over R, which runs in quantum polynomial time if given access
to an oracle solving CVP in a fixed lattice depending only on R (and not on the module). Chapter 4
corresponds to the following work.

[LPSW19] Changmin Lee, Alice Pellet-Mary, Damien Stehlé and Alexandre Wallet. An LLL algo-
rithm for module lattices. Accepted at Asiacrypt 2019.

6Recall that the rank of a module corresponds to its number of blocks: a module of rank m has a matrix basis formed
by m×m blocks of ideal lattices.

7In the case of cyclotomic number fields. For arbitrary number fields, the dimension could even be larger than Õ(n2).

23

CHAPTER 1. INTRODUCTION

1.1.3 The GGH13 map and its applications

In the last two chapters of this thesis, we focus on the security of the GGH13 map and its application
to obfuscation. We have seen that finding short vectors in ideal lattices has an impact on the security
of the GGH13 map. We study this impact, but also consider another approach, which does not rely on
the structured lattices appearing in the GGH13 map.

Statistical leakage. In Chapter 5, we first start by studying the security of the GGH13 map against
statistical attacks. These attacks focus on the statistical properties of the GGH13 map and not on its
algebraic properties, which had been the only ones studied so far [HJ16,MSZ16]. Our study shows that
all the variants of the GGH13 map leak some information related to some secret parameters of the map.
Most of the time, this leakage does not seem to provide a way to attack the GGH13 map, but for one of
the variants (which was already suspected to be subject to statistical attacks), we were able to transform
the leakage into an attack against the GGH13 map. After studying the leakage of all the variants, we
derive a new variant of the GGH13 map which provably does not leak any secret information in the
model considered in this study. We note however that the attacker we consider in this work is very
restricted and there might exist other statistical attacks which can recover secret information about
the GGH13 map, even with our new variant. This chapter corresponds to the following publication.

[DP18] Léo Ducas and Alice Pellet-Mary. On the statistical leak of the GGH13 multilinear map and
some variants. In Advances in Cryptology – ASIACRYPT, pages 465–493. Springer, 2018.

Quantum attack. Recall that a graded encoding scheme has a public procedure which allows a user
to zero-test an encoding (i.e., determine whether the encoding is an encoding of zero) after a fixed
number κ of multiplications. It was already observed by the authors of the GGH13 map [GGH13a]
that being able to find short vectors in ideal lattices enables an attacker to zero-test after an illegal
number of multiplications, namely 2κ multiplications. To do so, an attacker does not even need an
SVP solver for arbitrary ideal lattices, but only for principal ideals with a small a generator. For
this specific class of ideals, the short principal ideal problem solver of Cramer, Ducas, Peikert and
Regev [CDPR16] provides a polynomial time quantum algorithm solving SVP. Hence, the GGH13 map
was already known to be subject to these illegal zero-tests in the quantum setting.

One important remark however is that being able to zero-test after 2κ multiplications instead of κ
does not provide an immediate attack for all the constructions using the GGH13 map. In Chapter 6,
we focus on the impact of this illegal zero-test on obfuscators using the GGH13 map. We show that
for a large number of them, this illegal zero-test can be used to mount a concrete attack against the
obfuscators. This quantum attack corresponds to the following publication.

[Pel18] Alice Pellet-Mary. Quantum attacks against indistinguishablility obfuscators proved secure
in the weak multilinear map model. In Advances in Cryptology – CRYPTO, pages 153–183.
Springer, 2018.

1.1.4 A note on heuristic assumptions

All the results presented in this thesis rely on heuristic assumptions. Throughout the thesis, we try
to clearly identify all the heuristics which are used, by putting them in a specific environment and
numbering them. We also specify in each theorem whether the theorem is heuristic, and if so which
heuristics are used. For the heuristics which are introduced for this thesis (as opposed to the heuris-
tics that were already used in prior works), we try to provide a justification based on mathematical
arguments as well as numerical experiments (when it is possible). In every chapter, the introduction
provides a url where one can find the code used to perform the experiments related to the chapter.

24

Chapter 2

Preliminaries

In this chapter, we recall some preliminary results. In a first section, we focus on lattices and related
algorithmic problems. We then recall some properties and mathematical objects related to number
fields. In particular, we define ideals and modules, and explain how they can be seen as lattices. We
also define the class group and present some algorithmic problems related to its computation. Finally,
we give some definitions related to statistics and discrete Gaussians, and we conclude by recalling the
definition of matrix branching programs.

2.1 Notations

We let Z,Q,R, and C denote the sets of integers, rational, real, and complex numbers, respectively. We
write Z≥0 and R≥0 the sets of non-negative integers and non-negative real numbers. For any positive
integer n and prime power q, we let Z/nZ denote the set of integers modulo n and Fq denote the finite
field of cardinality q. For x ∈ C, we let x̄ denote its complex conjugate. For x ∈ R, we write bxe the
nearest integer to x.

For a positive real number x, we let log x denote its binary logarithm and lnx denote its natural
logarithm. For two functions f(n) and g(n), we write f(n) = Õ(g(n)) if there exists some constant

c > 0 such that f(n) = O(g(n) · | log g(n)|c). We abuse notations by defining Õ(nα) = O(nα poly(log n))
even if α = 0 (this will simplify some statements). We say that “ε is negligible in n” if ε = ε(n) is a
function of n which is asymptotically smaller than any inverse polynomial in n, i.e., ε(n) = 1

nω(1) .

For a vector v ∈ Rn, we let vi denote the i-th coordinate of v. We also let vT denote the transpose
of v. Given a finite set X, we let |X| denote the cardinality of X. For any ring R, we write R× the set
of invertible elements of R and R∗ := R \ {0}.

2.2 Lattices

We start by defining lattices and describing some of their properties. In this thesis, all the vectors are
column vectors.

Definition 2.1. A lattice L ⊂ Rs is the set of all linear integer combinations of a set (bi)1≤i≤n of n
linearly independent vectors of Rn. In other words,

L = {
n∑
i=1

aibi : a1, . . . , an ∈ Z}.

The set of vectors (bi)1≤i≤n is called a basis of the lattice. The integer n is called the rank of L. The
lattice L is said to be full-rank if n = s.

The inclusion of a lattice L in the Euclidean space Rs naturally equips L with different norms. For
an element x = (x1, . . . , xs)

T ∈ Rs, the Euclidean norm (or `2-norm) is defined by ‖x‖2 =
√∑

i x
2
i .

This is the norm that is used most of the time in this thesis, and when there is no ambiguity, we simply
write it ‖x‖. The infinity norm (or `∞-norm) is defined by ‖x‖∞ = maxi |xi| and the `1-norm is defined
by ‖x‖1 =

∑
i |xi|. Note that only the `2-norm is invariant under orthonormal transformations. For

x, y ∈ Rs, we let 〈x, y〉 =
∑
i xiyi denote the usual scalar product (inducing the Euclidean norm). For

25

CHAPTER 2. PRELIMINARIES

any x ∈ Rs and y ∈ Zs, the following properties holds

‖x‖∞ ≤ ‖x‖2 ≤
√
s · ‖x‖∞ (2.1)

‖x‖2 ≤ ‖x‖1 ≤
√
s · ‖x‖2 (2.2)

‖y‖1 ≤ ‖y‖22 (2.3)

For a lattice L and i ∈ {1, 2,∞}, we let λ
(i)
1 (L) denote the norm of a shortest non-zero vector of L

for the `i-norm. Similarly, for k ≥ 1, we let λ
(i)
k (L) denote the smallest real number such that there

exist k linearly independent vectors of L whose `i-norms are no greater than λ
(i)
k (L). We let Span(L)

denote the real vector space spanned by the vectors of L. For a point t ∈ Span(L), we let dist(i)(t, L) =
infv∈L ‖t − v‖i be the minimal distance between t and any point of L. We define the covering radius

of L as µ(i)(L) = supt∈Span(L) dist(i)(t, L). When there is no ambiguity, we write λk(L) and µ(L) for
the successive minima and the covering radius in `2-norm. The determinant (or volume) det(L) of a
full-rank lattice L is the absolute value of the determinant of any of its bases.

Lemma 2.2 (Minkowski’s inequality). For any full-rank lattice L of dimension n, we have λ
(∞)
1 (L) ≤

det(L)1/n. This implies that λ
(2)
1 (L) ≤

√
n · det(L)1/n.

2.2.1 Algorithmic problems

We will consider the following algorithmic problems involving lattices.

Definition 2.3 (Approximate Shortest Vector Problem (approx-SVP)). Given a lattice L and i ∈
{1, 2,∞}, the approximate Shortest Vector Problem in norm `i, with approximation factor γ ≥ 1, is to

find a vector v ∈ L \ {0} such that ‖v‖i ≤ γ · λ(i)
1 (L).

Definition 2.4 (Approximate Closest Vector Problem (approx-CVP)). Given a lattice L, i ∈ {1, 2,∞}
and a target t ∈ Span(L), the approximate Closest Vector Problem in norm `i, with approximation

factor γ ≥ 1, is to find a vector v ∈ L such that ‖v − t‖i ≤ γ · dist(i)(t, L).
In this thesis, we will be essentially interested in a variant of approx-CVP, in which we ask that
‖v− t‖i ≤ β for some β, independently of dist(i)(t, L) (i.e., the distance of the found vector is bounded
in absolute terms, independently of whether the target is close to the lattice or not). We call this
variant approx-CVP’. For i ∈ {1, 2,∞}, we let TCVP(i, L, β) denote the worst-case run-time of the best
known algorithm that solves approx-CVP’ for the `i-norm, in the lattice L, with a bound β.

Definition 2.5 (Approx-CVP with Pre-processing (approx-CVPP)). This problem is the same as
approx-CVP, except that the algorithm can perform some pre-processing on the lattice L before it gets
the target vector t. Approx-CVPP’ is defined analogously. We will then consider the pre-processing
time (performed when knowing only L) and the query time (performed once we get the target t). For
i ∈ {1, 2,∞}, we let T pre-proc

CVP (i, L, β) (resp. T query
CVP (i, L, β)) denote the worst-case run-time of the pre-

processing phase (resp. query phase) of the best algorithm that solves approx-CVPP’ for the `i-norm,
in the lattice L, with a bound β.

In the following, we will always be interested in the approximate versions of these problems, so we
will sometimes omit the ‘approx’ prefix.

In [Laa16], Laarhoven gives a heuristic algorithm for solving approx-CVPP. The following result is
not explicitly stated in [Laa16] (only the two extreme values are given), but the computations can be
readily adapted.

Theorem 2.6 (Corollaries 2 and 3 of [Laa16]). Let α ∈ [0, 1/2]. Then, under Heuristic 2.7 below,
there exists an algorithm that takes as pre-processing input an n-dimensional lattice L (given by a
basis whose bit-size is polynomial in n) and as query input any vector t ∈ Span(L) (with bit-size that

is polynomial in n) and outputs a vector v ∈ L such that ‖t − v‖2 ≤ O(nα) · dist(2)(t, L), with pre-

processing time 2O(n) and query time poly(n) · 2O(n1−2α) (the memory needed during the query phase is

also bounded by poly(n) · 2O(n1−2α)).

26

CHAPTER 2. PRELIMINARIES

The heuristic assumption used in Laarhoven’s algorithm states that the lattice L is somehow dense
and behaves randomly.

Heuristic 2.7. There exists a constant c > 0 such that the ball of radius c · λ(2)
1 (L) (in `2-norm)

contains at least 2n points of L. Moreover, once renormalized, these points ‘behave’ as uniformly and
independently distributed points on the unit sphere.

We can weaken this heuristic assumption by taking c = poly(log n), in which case the approximation

factor in Laarhoven’s algorithm becomes Õ(nα) (the pre-processing and query costs remain the same).
We will use this algorithm to heuristically solve approx-CVPP’ in Euclidean norm for α ∈ [0, 1/2],

achieving T pre-proc
CVP (2, L,O(nα) · µ(2)(L)) = 2O(n) and T query

CVP (2, L,O(nα) · µ(2)(L)) = 2Õ(n1−2α).

Babai’s roundoff algorithm [Bab86] can be used to solve approx-CVP’ with an approximation factor
depending on the quality of the basis we have. Assume that we are given a basis (b1, . . . , bn) of a
full-rank lattice L ⊂ Rn. Let t ∈ Rn be a target vector. Babai’s roundoff algorithm proceeds as follows.
Define B ∈ Rn×n the matrix whose columns are the bi’s and output s = BbB−1te, where the rounding
is performed coefficient-wise. One can see that such an algorithm outputs a solution s ∈ L satisfying
‖s− t‖ ≤

∑
i ‖bi‖. This algorithm is typically used, when we know a short basis of a lattice, to shorten

vectors modulo the lattice.

2.3 Number fields

A number field K is defined as K := Q[X]/(P (X)) for some irreducible polynomial P ∈ Q[X]. The
degree n of P is called the degree of the number field K. The ring of integers R of the number field K is
the set of all the elements of K which can be annihilated by a monic polynomial with integer coefficients.
In the rest of this thesis, all number fields K will have degree n.

If P is the m-th cyclotomic polynomial (i.e., its roots are primitive m-th roots of unity), then
Q[X]/(P (X)) is called a cyclotomic number field of conductor m. If m is a power of a prime number
then Q[X]/(P (X)) is called a prime power cyclotomic field. The number field K used in Chapters 3
and 4 is an arbitrary number field of degree n. In Chapters 5 and 6, the number field used is always
a cyclotomic field of conductor 2n, with n a power of two. In this case, the degree of K is again n.
Moreover, K and R can be defined as K = Q[X]/(Xn + 1) and R = Z[X]/(Xn + 1).

2.3.1 Embeddings

A number field K of degree n comes with n embeddings from K to C (i.e., n field morphisms from K
to C). We call them σ1, . . . , σn. Let r1 be the number of real embeddings (i.e., embeddings arriving
in R ⊂ C). The remaining n−r1 embeddings are called complex embeddings. There are an even number
of them, as they come in pairs of conjugates. Let r2 be the number of pairs of complex embeddings,
so that n = r1 + 2r2. We order the embeddings such that σ1, . . . , σr1 are the real embeddings and
σr1+i = σr1+r2+i for all 1 ≤ i ≤ r2.

Each embedding σi from K to C corresponds to evaluation in one of the roots αi of P . More
formally, let x ∈ K and Q ∈ Q[X] be any representative of x in Q[X]. Then σi(x) = Q(αi) (observe
that this does not depend on the choice of the representative Q because αi is a root of P). The real
embeddings correspond to the real roots of P whereas the pairs of complex embeddings correspond to
the pairs of complex roots of P .

The algebraic norm of an element x ∈ K is defined by N (x) =
∏
i≤n σi(x). Observe that the

algebraic norm is multiplicative, i.e., N (xy) = N (x)N (y) for any x, y ∈ K.

2.3.2 Geometry

A number field K of degree n can be embedded into Rn in two main ways. The canonical embedding
(or Minkowski embedding) is defined as

σ(x) = (σ1(x), . . . , σr1+r2(x)) ∈ Rr1 × Cr2 ,

27

CHAPTER 2. PRELIMINARIES

for any x ∈ K. The codomain Rr1 × Cr2 is itself often embedded into Rn by taking the real and
imaginary parts of the complex coefficients (note that this transformation preserves the `2-norm). The
coefficient embedding is defined by

σcoeff(x) = (q0, . . . , qn−1),

where Q =
∑
i qiX

i is the unique representative of x of degree less than n. In Chapters 3 and 4, the
elements of K are always considered with respect to their canonical embedding and in Chapters 5 and 6
they are always considered with respect to their coefficient embedding. We will often abuse notation
and let x ∈ K refer to both the element of K and its embedding Rn (which, again, is the canonical
embedding for Chapters 3 and 4 and the coefficient embedding for Chapters 5 and 6).

The embedding of K into Rn defines a geometry over K, induced by the geometry of Rn. The
embedding of R into Rn produces a lattice of rank n. The geometry of this lattice differs between the
canonical and the coefficients embedding. In the case of the canonical embedding, we have the following
bounds on the norm of a product.

‖σ(xy)‖∞ ≤ ‖σ(x)‖∞ · ‖σ(y)‖∞ (2.4)

‖σ(xy)‖ ≤ ‖σ(x)‖∞ · ‖σ(y)‖ ≤ ‖σ(x)‖ · ‖σ(y)‖. (2.5)

We do not have similar upper bounds when using the coefficient embedding because the norm of the
product depends on the reduction modulo P , which depends on the defining polynomial P .1

2.3.3 The ring KR

The ring KR is defined as the tensoring of K with the real numbers KR := K ⊗Q R. This ring is
isomorphic to R[X]/(P (X)). The canonical embedding also provides a ring isomorphism between KR
and Rr1 × Cr2 (where multiplication is performed coefficient-wise). Note that K is a field but KR is
only a (non-integral) ring. The algebraic norm extends to elements of KR with the same definition as
in K.

Observe that the group K×R of invertible elements of KR is the subset of vectors whose canonical
embedding only has non-zero coordinates. We let K+

R denote the subset of vectors in KR whose
canonical embedding has non-negative real coefficients (i.e., the subset (R≥0)r1+r2 ⊂ Rr1 × Cr2). For
x ∈ KR, we let x refer to the element of KR obtained by complex conjugation of every coordinate of its
canonical embedding. More formally, x = σ−1(σ(x)), where the conjugation is performed coefficient-
wise. Note that even if x ∈ K, then we could have x ∈ KR \K. We call xx̄ ∈ K+

R the autocorrelation
of x ∈ KR, and write it A(x). We can also define a square-root (resp. k-th root)

√
· : K+

R → K+
R by

taking coordinate-wise square roots (resp. k-th root) of the canonical embedding. For any x ∈ K+
R it

holds that A(
√
x) = x. Finally, we define equivalence over K+

R up to scaling by reals, and write x ∼ y
for invertible elements x, y ∈ K+

R if x = αy for some positive real number α > 0.

2.3.4 Power-of-two cyclotomic fields

In this section, we give some properties of the power-of-two cyclotomic field K = Q[X]/(Xn+1) and its
ring of integers R = Z[X]/(Xn+ 1) (for n a power of two). These properties will be used in Chapters 5
and 6. In this special case, the field K only has complex embeddings, hence we have r1 = 0 and
r2 = n/2. Further, the geometry induced by the coefficient embedding is the same, up to rotation and
scaling, as the one induced by the canonical embedding. More precisely, for any x, y ∈ K, we have

〈σ(x), σ(y)〉 = n/2 · 〈σcoeff(x), σcoeff(y)〉.

In particular, for all x ∈ K, we have

‖σ(x)‖ =
√
n/2 · ‖σcoeff(x)‖. (2.6)

This equation implies in particular that for any x ∈ K, we have ‖σcoeff(x)‖ ≤
√

2‖σ(x)‖∞. Recall
that in Chapters 5 and 6, we are going to consider a power-of-two cyclotomic ring with respect to the

1We note that the canonical embedding σ also depends on the polynomial P , but once we are given σ(x) and σ(y),
the product σ(xy) can be computed without knowing P , which is not the case for the coefficient embedding.

28

CHAPTER 2. PRELIMINARIES

coefficient embedding. With what we have just said, this is equivalent (up to scaling) to the canonical
embedding. Hence, we could also have used the canonical embedding. However, the literature on
multilinear maps and obfuscation almost exclusively uses the coefficient embedding, hence we kept it
for consistency.

In the case of a power-of-two cyclotomic ring, we can bound the norm of a product of elements in
coefficient embeddings. For any x, y ∈ K, we have

‖σcoeff(xy)‖ ≤
√
n · ‖σcoeff(x)‖ · ‖σcoeff(y)‖, (2.7)

‖σcoeff(xy)‖∞ ≤ ‖σcoeff(x)‖∞ · ‖σcoeff(y)‖1. (2.8)

The complex conjugation is an automorphism of R and K, sending X to X−1 (recall that in the
general case, complex conjugation is defined over KR and can send an element of K outside K). More
precisely, if x = x0+x1X+x2X

2+· · ·+xn−1X
n−1 ∈ KR, then x = x0−xn−1X−xn−2X

2−· · ·−x1X
n−1.

This gives us the following equations, in coefficient embedding (the first one is obtained by looking at
the constant coefficient of xx̄).

‖σcoeff(x)‖2 ≤ ‖σcoeff(xx̄)‖∞ (2.9)

‖σcoeff(x̄)‖ = ‖σcoeff(x)‖ and ‖σcoeff(x̄)‖∞ = ‖σcoeff(x)‖∞. (2.10)

Let q be a positive integer. We let Rq denote the quotient ring Rq := R/(qR) = (Z/qZ)[X]/(Xn+1).
For x ∈ R, we write [x]q (or [x] when there is no ambiguity) the coset of the element x in Rq. We
will often lift back elements from Rq to R, in which case we may implicitly mean that we choose
the representative with coefficients in the range [−q/2, q/2]. If q ≥ 3 is prime, then Xn + 1 factors
modulo q as a product of k coprime polynomials of the same degree n/k for some k|n. In this case, we
have Rq = Fq[X]/(P) ' (Fqn/k)k by the Chinese remainder theorem. If in addition q ≡ 1 mod 2n, then
we know that k = n and so Rq ' (Fq)n.

2.3.5 Discriminant

The discriminant ∆ of a number field K is defined by ∆ = [det(σi(rj))i,j]
2 for r1, . . . , rn any basis of

the Z-module R. When R is seen as a lattice of Rn via the canonical embedding, then the volume of R
as a lattice is related to the discriminant of K by the formula det(R) = 2−r2

√
|∆|. Minkowski’s bound

gives us the following inequality between the discriminant and the degree of the number field:

log |∆| ≥ Ω(n). (2.11)

We will repeatedly use this inequality to simplify cost estimates.

2.3.6 Ideals

A fractional ideal I of K is a subset of K which is stable by addition, and by multiplication with
any element of R, and such that dI ⊆ R for some d ∈ Z \ {0}. An ideal I is said to be integral if
it is contained in R. A non-zero fractional ideal I ⊆ R can be seen as a full-rank lattice in Rn, via
the canonical or the coefficients embedding (the geometry of the ideal will differ depending on the
choice of the embedding). For an element g ∈ K, we write 〈g〉 = gR the smallest fractional ideal
containing g. Such an ideal is said to be principal. An integral ideal I ⊆ R is said to be prime
if the ring R/I is an integral domain. The product of two fractional ideals I and J is defined by
I · J = {x1y1 + · · ·+ xryr | r ≥ 0, x1, . . . , xr ∈ I, y1, . . . , yr ∈ J}.

The algebraic norm N (I) of a non-zero fractional ideal I ⊆ R is the determinant of I when seen as
a lattice in Rn (via the canonical embedding), divided by det(R) = 2−r2

√
|∆| (and N (〈0〉) is defined

as 0). If I is integral, this is also equal to |R/I|. The algebraic norm of a prime ideal is a power
of a prime number. For two fractional ideals I and J , the algebraic norm of their product satisfies
N (I · J) = N (I) · N (J). For any element r ∈ R, we have that N (〈r〉) = |N (r)|.

Let I be a non-zero fractional ideal seen as a lattice via the canonical embedding. By definition of

the norm of I and Minkowski’s inequality, we know that λ
(∞)
1 (I) ≤ N (I)1/n · |∆|1/(2n). We also have

the following lower bound

λ
(∞)
1 (I) ≥ N (I)1/n. (2.12)

29

CHAPTER 2. PRELIMINARIES

This lower bound comes from the fact that if x ∈ I, then we have |N (x)| =
∏
i |σi(x)| ≥ N (I)

(because 〈x〉 is a sub-lattice of I). This implies that at least one of the |σi(x)|’s is no smaller than

N (I)1/n. The inequality is obtained by taking x such that ‖σ(x)‖∞ = λ
(∞)
1 (I). When log |∆| = Õ(n),

these two inequalities imply that λ
(∞)
1 (I) is essentially N (I)1/n, up to a 2poly(logn) factor. When |∆|

increases, so does the gap between the two bounds.

2.3.7 Modules

In this thesis, we call (R-)module any set of the form M = I1b1 + . . .+ Imbm, where the Ij ’s are non-
zero fractional ideals of R and the bj ’s are KR-linearly independent vectors in Ks

R, for some s > 0.2

The tuple of pairs ((I1,b1), . . . , (Im,bm)) is called a pseudo-basis of M , and m is its rank. Note that
the notion of rank of a module is usually only defined when the module has a basis (i.e., is of the form
M = Rb1 + . . .+Rbm, with all the ideals equal to R). In this thesis, we consider an extension of the
definition of rank, defined even if the module does not have a basis, as long as it has a pseudo-basis. In
particular, fractional ideals are rank-1 modules contained in K, and sets of the form α · I for α ∈ K×R
and a non-zero fractional ideal I are rank-1 modules in KR. We refer to [Hop98] for a thorough study
of R-modules, and concentrate here on the background necessary to Chapter 4. When dealing with
modules, we use bold letters to refer to vectors with coefficients in KR.

Two pseudo-bases ((I1,b1), . . . , (Im,bm)) and ((J1, c1), . . . , (Jm, cm)) represent the same module if
and only if there exists U = (uij)i,j ∈ Km×m invertible such that C = B ·U; we have uij ∈ IiJ

−1
j

and u′ij ∈ JiI
−1
j for all i, j and for U′ = (u′ij)i,j := U−1. Here, the matrix B is the concatenation of

the column vectors bi (and similarly for C). If m > 0, we define detKR M = det(B
>

B)1/2 ·
∏
i Ii. It is

an R-module in KR. Note that it is a module invariant, i.e., it is identical for all pseudo-bases of M .
We extend the canonical embedding to vectors v = (v1, . . . , vs)

T ∈ Ks
R by defining σ(v) as the

vector of Rns obtained by concatenating the canonical embeddings of the vi’s. This extension of the
canonical embedding maps any module M of rank m to a (nm)-dimensional lattice in Rns. We abuse
notation and use M to refer to both the module and the lattice obtained by applying the canonical

embedding. The determinant of a module M seen as a lattice is detM = 2−r2m∆
m/2
K · N (detKR M).

We consider the following inner product for a,b ∈ Ks
R:

〈a,b〉KR =
∑
i∈[s]

aibi ∈ KR

Note that we have 〈v,v〉KR ∈ K+
R , as all σi(〈v,v〉KR)’s are non-negative. For v ∈ Ks

R, we define

‖v‖KR =
√
〈v,v〉KR ∈ KR and ‖v‖ =

√∑
1≤j≤r1+r2

σj(〈v,v〉KR) ∈ R≥0. Observe that if we write

v = (v1, . . . , vs), then ‖v‖ =
√∑

1≤j≤r1+r2

∑
1≤i≤s |σj(vi)|2 = ‖σ(v)‖. Hence, this notation matches

the usual Euclidean norm when v is seen as a vector in Rns via the canonical embedding. We extend
the infinity norm to vectors v ∈ Ks

R by ‖v‖∞ = maxi∈[s] ‖vi‖∞, where v = (v1, . . . , vm). We also
extend the algebraic norm to vectors v ∈ Ks

R by setting N (v) := N (‖v‖KR). For s = 1, we see
that N (v) = |N (v)|. By applying the arithmetic-geometric inequality to σ1(〈a,a〉), · · · , σn(〈a,a〉) and
observing that

∑n
i=1 σi(〈a,a〉) ≤ 2

∑r1+r2
i=1 σi(〈a,a〉), we obtain that N (a)1/n ≤

√
2/n · ‖a‖ for a ∈ Ks

R.
We define the module minimum λ1(M) as the norm of a shortest non-zero element of M with respect

to ‖ · ‖. The module-LLL algorithm described in Chapter 4 will rely on the algebraic norm rather than
the Euclidean norm. For this reason, we will also be interested in the minimum λN1 (M) = min(N (v) :
v ∈M \ {0}). The following lemma provides relationships between λ1(M) and λN1 (M).

Lemma 2.8. For any rank-m module M , we have:

λ1(M)n∆
−1/2
K n−n/2 ≤ λN1 (M) ≤ 2n/2n−n/2λ1(M)n ≤ 2n/2mn/2∆

1/2
K N (detKRM)1/m.

Proof. Let s ∈ M \ {0} of minimal Euclidean norm. By the arithmetic-geometric inequality, we
have N (s) ≤ 2n/2n−n/2‖s‖n. By Minkowski’s theorem applied to the canonical embedding of M ,

2The vectors bj ’s are said to be KR-linearly independent if and only if there is no non-trivial way to write the zero
vector as a KR-linear combination of the bj ’s. Because KR is a ring and not a field, this definition is stronger than
requiring that none of the bj ’s is in the span of the others.

30

CHAPTER 2. PRELIMINARIES

we have ‖s‖ ≤
√
mn(detM)1/(mn). Using the inequality detM ≤ ∆

m/2
K N (detKR M) allows to obtain

the last two inequalities. The first inequality follows from taking s ∈ M \ {0} of minimal algebraic
norm and applying Minkowski’s theorem to the lattice σ(R · s).

2.3.7.1 Gram-Schmidt orthogonalization of module lattices

We extend Gram-Schmidt Orthogonalization from matrices over the real numbers to matrices over KR.
For (b1, . . . ,bm) ∈ Ks×m

R such that
∑
iRbi is a module of rank m, we define b∗1 = b1 and, for

1 < i ≤ m:

b∗i = bi −
∑
j<i

µijb
∗
j with ∀j < i : µij =

〈bi,b∗j 〉KR

〈b∗j ,b∗j 〉KR

.

It may be checked that 〈b∗i ,b∗j 〉KR = 0 for i 6= j, and that b∗i = argmin(‖bi−
∑
j<i yjbj‖|∀j : yj ∈ KR).

We also extend the QR-factorization to matrices over KR. We define rii = ‖b∗i ‖KR for i ≤ m,
rij = µjirii when i < j, and rij = 0 when i > j. We then have B = Q · R, where Q ∈ Ks×m

R is

the matrix whose columns are the b∗i /‖b∗i ‖KR ’s and R = (rij)ij . Note that Q
T
Q = Id and that R is

upper-triangular with diagonal coefficients in K+
R .

The following lemma provides relationships between some module invariants and the QR-factorization.

Lemma 2.9. Let M be a module with pseudo-basis ((Ii,bi))i≤m. Let R denote the R-factor of B.

We have detKR M =
∏
i riiIi and detM = 2−r2m∆

m/2
K

∏
iN (riiIi). Further, we have that λN1 (M) =

mins∈M\{0}N (s) ≥ miniN (riiIi).

Proof. Recall that we have detKR M = (det B
>

B)1/2 ·
∏
i Ii. Using the QR-decomposition (and in par-

ticular the facts that Q
T
Q = Id and that R is upper-triangular with diagonal coefficients in K+

R), this

rewrites as detKR M = (det R
>

R)1/2 ·
∏
i Ii =

∏
i riiIi. The equality detM = 2−r2m∆

m/2
K N (detKR M)

leads to the first statement.
For the second statement, note that for any v ∈ Km

R , we have ‖Bv‖KR = ‖QT
Bv‖KR = ‖Rv‖KR .

This implies that N (Bv) = N (Rv). Therefore, it suffices to prove the result for the module spanned
by the pseudo-basis ((Ii, ri))i≤m, where the ri’s are the columns of R. Take s =

∑
xiri ∈ M \ {0}

(with xi ∈ Ii for every i ≤ m), and consider i0 = max(i|∀j > i : xj = 0). Then, by using the
triangular shape of R, we obtain that N (s) ≥ N (xi0ri0i0). The proof can be completed by noting
that N (xi0) ≥ N (Ii0).

For lattices, if we have a basis and a full-rank family of short vectors, then we can efficiently obtain
a basis of the lattice whose Gram-Schmidt vectors are no longer than those of the full-rank family of
short vectors. This was generalized to modules in [FS10], relying on the extension to modules of the
Hermite Normal Form [BP91,Coh96,BFH17].

Lemma 2.10 (Theorem 4 of [FS10]). There exists an algorithm that takes as inputs a pseudo-basis
((Ii,bi))i≤m of a module M ⊂ Ks

R and a full-rank set of vectors (si)i≤m of M and outputs a pseudo-basis
((Ji, ci))i≤m such that ci ∈M and c∗i = s∗i for all i. If M ⊂ Ks, then it terminates in polynomial-time.

Note that the condition that ci ∈M implies that R ⊆ Ji, for all i.

2.3.8 The class group

We let IK denote the set of non-zero fractional ideals of K and PK ⊆ IK denote the subset of non-zero
principal fractional ideals. One can prove that for every non-zero fractional ideal I, there is a fractional
ideal I−1 such that I · I−1 = R. This gives IK a group structure, for which PK is a subgroup.

The class group of K is defined as the quotient ClK = IK/PK . For any non-zero ideal I of K, we
let [I] denote the equivalence class of I in the class group. In particular, we have PK = [R]. The class
group is a finite abelian group and its cardinality hK is called the class number. We have the following
bound:

log hK = Õ(log |∆|). (2.13)

31

CHAPTER 2. PRELIMINARIES

This can be derived from the proof of Equation (2.11), this proof being based on the fact that any class

of the class group contains an integral ideal whose norm is bounded as 2Õ(log |∆|). We also justify it
later using Equation (2.14) (which is significantly stronger).

We know, thanks to a result of Bach [Bac90] that the class group can be generated by ideals of
polynomially bounded norms.

Theorem 2.11 (Theorem 4 of [Bac90]). Under the GRH, the class group of a number field of discrim-
inant ∆ is generated by the prime ideals of algebraic norms ≤ 12 log2 |∆|.

Moreover, computing all prime ideals of norms ≤ 12 log2 |∆| can be done in time polynomial in
log |∆|. Indeed, these prime ideals can be obtained by factoring all ideals 〈p〉 where p ∈ Z is a
prime no greater than 12 log2 ∆. Further, factoring such an ideal can be done in polynomial time
(see [Coh13, Section 4.8.2 and 6.2]).

Lemma 2.12. Let B be any finite set of fractional ideals that generates the class group ClK . Then
we can extract a subset B′ of B, of cardinality at most log hK , which also generates the class group.
Moreover, this can be done efficiently if we are given the relations between the elements of B, in the
form of a basis of ker(fB) where fB : (e1, . . . er) ∈ Zr 7→

∏
i[p

ei
i] ∈ ClK , with B = {p1, . . . , pr}.

Proof. We know that ker(fB) is a lattice of volume hK contained in Zr (it is stable by addition and
subtraction, and |Zr/ ker(fB)| = |ClK | = hK). Let RB ∈ Zr×r be a basis of this lattice, with column
vectors. From this basis, we can efficiently compute the Hermite Normal Form (HNF) of the lattice,
which we will write HB. This basis matrix is triangular, and each column corresponds to a relation
between the elements of B (each row corresponds to an ideal of B). So we can remove from the set B
any ideal whose row in HB has a 1 on the diagonal. Indeed, if row i has a 1 on the diagonal, this
means that we have a relation of the form [pi ·

∏
j>i p

ej
j] = [R]. Hence the ideal class [pi] is in the

group generated by {[pj]}j>i, and so it is not needed to generate the class group. But we know that
det(HB) = det(ker(fB)) = hK is the product of the diagonal elements (which are integers). So we
have at most log hK ideals with diagonal entries different from 1. Hence, after removing from B all
ideals whose corresponding row in HB has a 1 on the diagonal, we obtain a set B′ of cardinality at
most log hK and which still generates the class group. This proof is an efficient algorithm if we are
given an initial basis RB, because we only need to compute an HNF basis, which can be done in time
polynomial in the size of the input matrix.

Theorem 2.11 states that the class group can be generated by integral ideals of polynomially bounded
norms, but this does not give us the existence of many small-norm integral ideals. For instance, if the
class group is trivial (i.e., all ideals are principal), then it is generated by [R]. More generally, the class
group could be generated by a very small number of ideals. In the following chapters, we will need the
existence of Ω̃(log |∆|) distinct integral ideals of polynomially bounded norms.

Theorem 2.13 (Theorem 8.7.4 of [BS96]). Assume the GRH. Let πK(x) be the number of prime
integral ideals of K of norm ≤ x. Then there exists an absolute constant C (independent of K and x)
such that

|πK(x)− li(x)| ≤ C ·
√
x (n log x+ log |∆|) ,

where li(x) =
∫ x

2
dt
ln t ∼

x
ln x (and ln refers to the natural logarithm).

Instantiating this theorem with x = (log |∆|)κ for some constant κ > 2+2ε, we obtain the following
corollary.

Corollary 2.14. Assume the GRH. Let ε > 0 and κ > 2 + 2ε. For log |∆| sufficiently large, there are
at least (log |∆|)κ−2ε distinct prime integral ideals of norm smaller than (log |∆|)κ.

Proof. We apply Theorem 2.13 with x = (log |∆|)κ. As li(x) ∼ x
ln x , we have that li(x) ≥ (log |∆|)κ−ε

holds for log |∆| sufficiently large. Recall that log |∆| > cn for some (explicit) constant c. Hence, the
right hand side of the inequality of Theorem 2.13 can be bounded as

C ·
√
x (n log x+ log |∆|) ≤ C(κ/c+ 1) · (log |∆|)κ/2+1 · log log |∆|.

32

CHAPTER 2. PRELIMINARIES

But, as we chose κ such that κ− ε > κ/2 + 1, we have, for log |∆| sufficiently large:

(log |∆|)κ−ε − C(κ/c+ 1) · (log |∆|)κ/2+1 · log log |∆| ≥ (log |∆|)κ−2ε,

hence proving the corollary.

We use Theorem 2.11, Corollary 2.14 and Lemma 2.12, to obtain the following.

Corollary 2.15. Assume the GRH. Then, for log |∆| sufficiently large and for any integer r ≥ log hK ,
there exists a set B = {p1, . . . , pr} of prime integral ideals generating the class group, with N (pi) =
poly(log |∆|, r) for all i.

Proof. Combining Theorem 2.11 and Lemma 2.12, we know that there exists a set B of cardinality
at most r, generating the class group and containing only prime ideals of norms ≤ 12 log2 |∆|. We
can then add prime ideals to this set B, until its cardinality reaches r. Thanks to Corollary 2.14, we
know that there are enough prime ideals of norm smaller than poly(log |∆|, r) (for some fixed poly) to
increase the cardinality of B up to r.

2.3.9 The log-unit lattice

We let R× denote the group of units of R, that is R× = {u ∈ R | ∃v ∈ R, uv = 1}. Dirichlet’s unit
theorem states that R× is isomorphic to the Cartesian product of a finite cyclic group (formed by the
roots of unity contained in K) with the additive group Zr1+r2−1.

We define Log x = (log |σ1(x)|, . . . , log |σn(x)|)T ∈ Rn, for any x ∈ K×R . Observe that this is
not the usual definition of the logarithmic embedding. The function Log is often defined either
as (log |σ1(x)|, . . . , log |σr1+r2(x)|)T ∈ Rr1+r2 [Sam13, Section 4.4] or as (log |σ1(x)|, . . . , log |σr1(x)|,
2 log |σr1+1(x)|, 2 log |σr1+r2(x)|)T ∈ Rr1+r2 [Coh13, Definition 4.9.6]. Indeed, for i > r1 + r2, the
log |σi(x)|’s are redundant because |σi(x)| = |σi−r2(x)|. However, in this thesis, it will be more conve-
nient to work with the logarithms of all the embeddings.

Let E = {x ∈ Rn : xi = xi+r2 ,∀r1 < i ≤ r2}. We have Log(K×R) ⊆ E. We let H be the hyperplane
of Rn defined by H = {x ∈ Rn :

∑n
i=1 xi = 0} and 1 be the vector, orthogonal to H, defined as

1 = (1, . . . , 1)T ∈ Rn. We write πH : Rn → H the orthogonal projection on H, parallel to 1. We
define Λ = {Log u, u ∈ R×}, which is a lattice of dimension r1 + r2 − 1 contained in H ∩ E (thanks
to Dirichlet’s unit theorem), called the log-unit lattice. Its minimum satisfies λ1(Λ) ≥ (lnn)/(6n2)
(see [FP06, Cor. 2]). Further, we have the following upper bound:

det(Λ) · hK ≤ 2O(log |∆|+n log log |∆|) = 2Õ(log |∆|). (2.14)

This upper bound comes from the relation between det(Λ), hK and the residue of the zeta-function
ζK at s = 1 (see [Lou00]). The latter is known considering Λ defined by the logarithmic embedding
(log |σ1(x)|, . . . , log |σr1(x)|, 2 log |σr1+1(x)|, 2 log |σr1+r2(x)|)T ∈ Rr1+r2 . However, it can be seen that if

one multiplies our lattice Λ by a matrix with blocks of the form

(
1 1
−1 1

)
(in order to add and subtract

log |σi(x)| and log |σi+r2(x)| for r1 < i ≤ r2), one obtains the log-unit lattice defined by the logarithmic
embedding considered in [Lou00]. As multiplying by such a matrix increases the determinant by a
factor 2r2 , Inequality (2.14) remains valid in our setup.

This bound, combined with a lower bound on det(Λ) also gives Equation (2.13). Indeed, using a
result of Zimmert [Zim80], we have that det(Λ) > 0.02 · 2−r2 (handling again our unusual definition
of Λ).

For any x ∈ K×R , there exists a unique vector h ∈ H ∩ E and a unique real number a such that
Log x = h + a1. In the following, we recall relationships between (h, a) and x. These results are
standard (e.g., they are used freely in [CDPR16, Section 6]).

Lemma 2.16. Let r ∈ K. Then we have Log r = h+ log |N (r)|
n 1, for some h ∈ H ∩ E.

For the sake of completeness, and because we are using an unusual definition of Log, we give a proof
of this result below.

33

CHAPTER 2. PRELIMINARIES

Proof. Write Log r = h + a1 for some h ∈ H ∩ E and a > 0. First, as 1 is orthogonal to H, we have
that 〈1,Log r〉 = 〈1, a1〉 = a · n. But using the definition of Log r, we also have that

〈1,Log r〉 =
∑
i

log |σi(r)| = log |N (r)|,

where we used the fact that N (r) =
∏
i σi(r). This completes the proof.

The following lemma gives a bound on the Euclidean norm of an element r ∈ R in terms of its
decomposition Log r = h+ a1.

Lemma 2.17. For any r ∈ K, if Log r = h + a1 with h ∈ H ∩ E and a ∈ R, then we have ‖r‖∞ ≤
2a · 2‖h‖∞ . In particular, this implies that

‖r‖2 ≤
√
n · 2a · 2‖h‖2 =

√
n · |N (r)|1/n · 2‖h‖2 .

Proof. The second inequality follows from the first one by using Equation (2.1) (and Lemma 2.16 for the
equality). For the first inequality, recall that by definition of Log, we have that (Log r)i = log |σi(r)| =
hi + a for all i. So, by definition of ‖r‖∞ = maxi |σi(r)|, we have ‖r‖∞ = maxi 2hi+a ≤ 2a · 2‖h‖∞ .

2.3.10 Algorithmic problems related to class group computations

Given a basis of a principal ideal I ⊆ R (seen as a sub-lattice of R), the problem of finding a generator
of I is known as the principal ideal problem. We let Tc-g(N) denote the best time complexity of an
algorithm solving the principal ideal problem for ideals of algebraic norm N .

Let B = {p1, . . . , pr} be a set of prime integral ideals generating the class group, obtained for
example using Corollary 2.15. We will be interested in computing the lattice of all the relations
between the ideals of B, i.e., the kernel of the map

fB : e = (e1, . . . , er) ∈ Zr 7→ [
∏
i

peii] ∈ ClK .

Recall that ker(fB) is a full-rank sub-lattice of Zr of volume |Zr/ ker(fB)| = |ClK | = hK . Let NB =
maxiN (pi). We let Trel(NB, r) denote the time needed to compute a basis of ker(fB), together with
generators of the corresponding principal ideals, given as input the set B. We write Tdecomp(N,NB, r)
for the time needed, given B and a fractional ideal I of norm N (I) = N , to find a vector e ∈ Zr and
an element g ∈ K such that I =

∏
i p
ei
i · 〈g〉. Note that this decomposition always exists but might

not be unique (we only require that B generates the class group). Finally, we let Tlog-unit be the time
needed to compute a basis of the log-unit lattice of K.

The four problems above are usually solved by computing S-units3 for a well-chosen set S. This is
why, in the following, the same cost bounds hold for the four of them.

In the quantum setting, Biasse and Song [BS16] showed that these four problems can be solved in
polynomial time for any number field (under GRH). More precisely, they showed that

• Tc-g(N) = poly(n, log |∆|, logNnum, logNdenom);

• Trel(NB, r) = poly(log |∆|, r, logNB);

• Tdecomp(N,NB, r) = poly(log |∆|, logNnum, logNdenom, r, logNB);

• Tlog-unit = poly(log |∆|);

where Nnum and Ndenom refer to the numerator and denominator of N (i.e., N = Nnum/Ndenom ∈ Q
with Nnum, Ndenom in Z>0 and coprime).

In the classical setting, these four problems can be solved heuristically in sub-exponential time
(under GRH). The first sub-exponential algorithm for all number fields (and which allows n to tend to
infinity with log |∆|) is due to Biasse and Fieker [BF14]:

3Given a set S = {p1, . . . , pr} of prime integral ideals, the S-units are the elements α ∈ K such that there exist
e1, . . . , er ∈ Z with

∏
i p

ei
i = 〈α〉.

34

CHAPTER 2. PRELIMINARIES

• Tc-g(N) = poly(n, logNnum, logNdenom) · 2Õ((log |∆|)2/3);

• Trel(NB, r) = poly(r, logNB) · 2Õ((log |∆|)2/3);

• Tdecomp(N,NB, r) = poly(logNnum, logNdenom, r, logNB) · 2Õ((log |∆|)2/3);

• Tlog-unit = 2Õ((log |∆|)2/3).

Biasse and Fieker actually claim 2O((log |∆|)2/3+ε) run-times. Tracing back the source of this ε leads
to Biasse’s [Bia17, Proposition 3.1]. A careful reading of the proof of the latter shows that the (log |∆|)ε
term is actually a power of log log |∆|, hence, in our notations, it is absorbed by the Õ notation. In
addition to the GRH, the algorithm of Biasse and Fieker requires two heuristic assumptions, referred to
as Heuristic 1 and Heuristic 3 in [BF14]. We recall these two heuristic assumptions below (see [BF14]
for more details).

Heuristic 2.18 (Heuristic 1 of [BF14]). The probability P (x, y) that an integral ideal of R produced by
the Biasse-Fieker [BF14] algorithm, of norm bounded by x, can be factored as a product of prime ideals
of norms bounded by y satisfies

P (x, y) ≥ e−(1+ox→∞(1))·u log u for u =
log x

log y
.

Heuristic 2.19 (Heuristic 3 of [BF14]). Given a set of r elements generating the class group, the
algorithm only needs to find rO(1) relations between these elements to generate the full lattice of relations,
with probability close to 1.

Smaller cost bounds are known for specific families of number fields. For prime-power cyclotomic

fields, the 2Õ((log |∆|)2/3) bounds can be replaced by 2Õ((log |∆|)1/2) [BEF+17]. This algorithm is again
heuristic and relies on the same assumptions as [BF14]. For real multiquadratic number fields, efficient
classical algorithms solve these four problems [BBV+17,BV18]. Finally, we note that the exponent 2/3
was recently lowered to 3/5 in [Gel17] and can even be decreased further in some cases.

The short Principal Ideal Problem. Let us conclude by mentioning a last computational problem,
which we are going to consider only in power-of-two cyclotomic fields. This problem is a variant of
the principal ideal problem, where one of the generators is one of the shortest element of the principal
ideal, and we want to recover exactly this generator.

Definition 2.20 (short Principal Ideal Problem (sPIP)). Let h ∈ R be sampled according to some
distribution D. The short Principal Ideal Problem is, given any basis of the ideal 〈h〉 (when seen as a
sub-lattice of R), to recover ±Xi · h for some i ∈ {1, . . . , n}.

For cyclotomic fields of order a power of two, when D is a discrete Gaussian distribution (see below
for a definition of Gaussian distributions), this problem can be solved in quantum polynomial time,
using the results of [BS16, CGS14a, CDPR16]. Recall that the principal ideal problem can be solved

in any number field in polynomial quantum time, hence we can recover a generator h̃ of 〈h〉 from its
basis. Then, the authors of [CDPR16], based on an observation of [CGS14a], proved that from any

generator h̃ of 〈h〉, if h has been sampled using a discrete Gaussian distribution, then one can recover
±Xi · h, for some i ∈ {1, . . . , n}, in (classical) polynomial time. This second part (recovering ±Xi · h
from h̃) relies on the conjecture that the set of cyclotomic units of R is equal to R× for power-of-two
cyclotomic fields. We summarize this in the following theorem.

Theorem 2.21 (Adapted from [BS16, CDPR16]). Let R be the ring of integers of a power-of-two
cyclotomic field. Let h ∈ R be sampled according to a discrete spherical Gaussian distribution of
parameter larger than 200 · n1.5 (see Section 2.5.2). Then, under Conjecture 2.22 and the Generalized
Riemann Hypothesis (GRH), there is a quantum polynomial time algorithm such that, given any basis
of the ideal 〈h〉, it recovers ±Xi · h for some i ∈ {1, . . . , n}, with constant probability close to 1 over
the choice of h.

Conjecture 2.22. The set of cyclotomic units of R is equal to R× (see [CDPR16] for a definition of
cyclotomic units and a discussion of this conjecture).

35

CHAPTER 2. PRELIMINARIES

2.4 Representing elements and computing with them

In this section we deal with questions like: how to represent an element of the ring R or of the field K?
What is the bit size needed? How do we efficiently compute the Gram-Schmidt orthogonalization of a
matrix in K and handle elements in KR?

2.4.1 Computing over rings

In this section and in all the thesis, we assume that we know a LLL-reduced Z-basis (r1, . . . , rn) of σ(R)
(i.e., R seen as a lattice via the canonical embedding), with respect to ‖ · ‖. Note that computing a Z-
basis of R is, in the worst-case, an expensive task (see, e.g., [Coh95, Se. 6.1]). Once such a basis is known,
applying the LLL algorithm to it has a bit-complexity that is polynomial in log ∆ and max log ‖ri‖.
Note that the spanned lattice and the positive definite quadratic form may not be integral, but LLL-
reduction can be performed by taking approximations to a polynomially bounded precision, because a
lower bound for λ1(R) is known (we have λ1(R) ≥ 1). We refer to [Buc94,SMSV14] for LLL-reduction
of non-integral lattices.

Representing elements and ideals. For computations, elements of R can be represented as integer
linear combinations of such a LLL-reduced Z-basis of R. The following lemma provides a bound for
the involved integer coefficients.

Lemma 2.23 ([FS10, Le. 2]). Let (ri)i≤n be a Z-basis of R that is LLL-reduced with respect to ‖ · ‖.
For all x =

∑
xiri ∈ K, we have maxi |xi| ≤ 23n/2‖x‖.

We will also use the fact that maxi ‖ri‖ ≤ (4n)n/2∆1/2, which is implied by the facts that maxi ‖ri‖
is no more than 2n times longer than the last minimum of R (by LLL-reducedness), by Minkowski’s
second theorem, and the lower bound λ1(R) ≥ 1.

An ideal can be represented by a Z-basis (bi)i≤n with the bi’s belonging to K. The following
lemma can be used in combination with Lemma 2.23 to bound the bit-size of a representation of an
ideal. The proof follows from the fact that detσ(I) =

√
∆ · N (I) and from standard LLL-reduction

inequalities [LLL82, p. 518].

Lemma 2.24. Let (bi)i≤n be a Z-basis of a fractional ideal I ⊂ K that is LLL-reduced with respect

to ‖ · ‖. Then
∏
i ‖bi‖ ≤ 2n

2√
∆ · N (I).

This lemma implies that an ideal can be represented in size polynomial in log ∆, logN (xI), and log x
where x is the smallest positive integer such that xI ⊆ R.

2.4.2 Computing Gram-Schmidt orthogonalizations

In the LLL algorithm for module lattices of Chapter 4, we will mostly rely on QR-factorization. It
carries the same information as Gram-Schmidt orthogonalization, but allows for simpler explanations.
However, from a computational perspective, the R-factor may be difficult to represent exactly even
for modules contained in Ks, because of the square roots appearing in its definition. This difficulty is
circumvented by computing the Gram-Schmidt orthogonalization instead, and using it as a means to
represent the R-factor. In this section, we explain how to efficiently compute Gram-Schmidt orthogo-
nalizations.

We first note that the Gram-Schmidt coefficients may not belong to K even if the pseudo-basis does.
To explain how to exactly represent the Gram-Schmidt orthogonalization, we need to backtrack a little
to operations in K. As seen before (in Lemma 2.23), an element x in R is represented by a vector in Zn
storing the coefficients of x with respect to a LLL-reduced basis (ri)i≤n of R (for ‖ · ‖). Multiplication
between x1, x2 ∈ R is performed thanks to a table (of O(n3) integers) storing the representations
of each term rirj for all i, j ≤ n. An element x in K is represented by a pair (xnum, xden) ∈ R2

such that x = xnum/xden (and both xnum and xden are themselves represented by vectors on Zm, as
explained above). All the above enables additions, multiplications and divisions in K. Now, when
computing the Gram-Schmidt orthogonalization, we will make use of complex conjugation in KR (as
we use a Hermitian inner product). Recall that for x ∈ KR, the element x̄ ∈ KR is obtained by complex
conjugation of its embedding vector. We define R and K as the subsets of KR obtained by applying this

36

CHAPTER 2. PRELIMINARIES

operator to the elements of R and K, respectively. These elements can be represented using the r̄i’s
rather than the ri’s. We also define RR = {yx : y ∈ R, x ∈ R}. Every element x ∈ RR can be

expressed as an integer combination of the n2 elements rirj (for i, j ≤ n), and this vector in Zn2

is used

to represent x. The bit-size of an element in RR is the bitsize of this vector in Zn2

. The multiplication
table for R allows to perform multiplication in RR.

Lemma 2.25. Let b1, . . . ,bm ∈ Ks be K-linearly independent. Then the coefficients of the b∗i ’s
and µij’s can be written as fractions of elements in RR whose bit-sizes are polynomially bounded with
respect to maxi(log x+ log ‖xbi‖), where x is the smallest positive integer such that xbi ∈ Rs for all i.

Proof. Without loss of generality, we assume that the bi’s belong to Rs. Let di = det(B
T

i Bi) with Bi =
(b1, . . . ,bi) for i ≤ m. Then, by a direct adaptation of [LLL82, p. 523], we have di ∈ RR, di−1b

∗
i ∈

(RR)s and djµij ∈ RR for all j < i. This implies, using Lemma 2.23, that the coefficients of the b∗i ’s and
the µij ’s can be written as fractions of elements in RR with di−1 and dj as denominator, respectively.
Going down to the expressions in terms of integer combinations in the ri’s, rj ’s and rjri’s, it may be
checked that these numerators and denominators are sums and products of a polynomial number of
terms xiri and xjrj , where each xi and xj is an integer. Further, by Lemma 2.23, each such integer is
polynomially bounded with respect to maxi log ‖bi‖. This allows to complete the proof.

2.5 Probabilities

We let Pr[E] denote the probability of an event E. For a random variable x ∈ R, we write E[x] its
expectation and V[x] its variance. If D is a probability distribution, the notation x← D means that x
is a random variable sampled according to the distribution D.

2.5.1 Statistics

In Chapter 5, we will do some statistics on random variables defined over the ring KR for a power-
of-two cyclotomic number field. Below, we start by defining the expectation and variance of such
variables, and we give some of their properties. In this subsection, the field K is always a power-of-
two cyclotomic field. Let x =

∑
1≤i<n xiX

i be a random variable over KR (i.e., the xi’s are random

variables over R). The expectation of x is defined by E[x] =
∑

1≤i<n E[xi]X
i ∈ KR, and its variance is

V[x] = E[xx̄] − E[x]E[x̄] ∈ KR. Note that V[x] ∈ K+
R for any random variable x over KR. A random

variable x is said centered if E[x] = 0, and isotropic if V[x] ∼ 1 (recall that for invertible elements
a, b ∈ KR, the equivalence a ∼ b means that there exists α ∈ R>0 such that a = αb). We recall
Hoeffding’s inequality.

Theorem 2.26 (Hoeffding’s inequality). Let Y1, · · · , Ym be independent random variables in R with
the same mean µ ∈ R and such that |Yi| ≤ B for all i’s. Then for all t > 0,

Pr

[∣∣∣∣∣ 1

m

m∑
i=1

Yi − µ

∣∣∣∣∣ ≥ t
]
< 2e−

mt2

2B2 .

Hoeffding’s inequality, as given above, applies to random variables in R. To use it for our ring
KR, we will view our elements as vectors in Rn via the coefficient embedding and apply Hoeffding’s
inequality coefficient-wise.

Corollary 2.27 (Hoeffding’s inequality in R). Let Y1, · · · , Ym be independent random variables in R
with the same mean µ ∈ KR and such that ‖Yi‖∞ ≤ B for all i’s. Let ε > 0, then

Pr

[∥∥∥∥∥ 1

m

m∑
i=1

Yi − µ

∥∥∥∥∥
∞

≥ B
√

2(lnn− ln ε)

m

]
< 2ε.

Proof. For 1 ≤ i ≤ m and 0 ≤ j ≤ n − 1, define Yi,j to be the j-th coefficient of the variable Yi ∈ R
and µj to be the j-th coefficient of µ. For a fixed j, the variables Yi,j (where only i varies) are

37

CHAPTER 2. PRELIMINARIES

independent random variables in R of mean µj . Moreover, as ‖Yi‖∞ ≤ B for all i’s, the coefficients Yi,j
are also bounded by B. We can then apply Hoeffding’s inequality (Theorem 2.26) to them. We obtain

Pr

[∥∥∥∥∥ 1

m

m∑
i=1

Yi − µ

∥∥∥∥∥
∞

≥ B
√

2(lnn− ln ε)

m

]

= Pr

[
∃j :

∣∣∣∣∣ 1

m

m∑
i=1

Yi,j − µj

∣∣∣∣∣ ≥ B
√

2(lnn− ln ε)

m

]

≤
n−1∑
j=0

Pr

[∣∣∣∣∣ 1

m

m∑
i=1

Yi,j − µj

∣∣∣∣∣ ≥ B
√

2(lnn− ln ε)

m

]

<

n−1∑
j=0

2e−
2mB2(lnn−ln ε)

2B2m =

n−1∑
j=0

2 · ε
n

= 2ε.

We used the union bound and Hoeffding’s inequality with t = B
√

2(lnn−ln ε)
m .

2.5.2 Discrete Gaussians

For any real σ > 0 and point c ∈ Rn, the (spherical) Gaussian weight function is defined over Rn by

ρσ,c(x) = exp

(
−‖x− c‖2

2σ2

)
.

For any lattice L ⊂ Rn, we define the discrete (spherical) Gaussian distribution over L of parameter σ
and centered in c by

∀x ∈ L, DL,σ,c(x) =
ρσ,c(x)

ρσ,c(L)
,

where ρσ,c(L) =
∑
x∈L ρσ,c(x). We simplify ρσ,0 and DL,σ,0 into ρσ and DL,σ, and say in that case that

the distribution is centered.
For any lattice L ⊂ Rn and ε > 0, the smoothing parameter of L is defined as

ηε(L) = min{s > 0 : ρ1/s(L
∗) ≤ ε},

where L∗ = {w : 〈x,w〉 ∈ Z, ∀x ∈ L} is the dual lattice of L. Lemma 3.3 of [MR07] states that for any
function ω(log n), there exists a negligible ε such that ηε(L) ≤

√
ω(log n) · λn(L). Further, Lemma 4.4

of [MR07] also states that for any parameter σ ≥ ηε (for some 0 < ε < 1), we have the following tail
bound

Pr
x←DL,σ,c

(‖x− c‖ > σ
√
n) ≤ 1 + ε

1− ε
2−n. (2.15)

Non-spherical Gaussian distributions. In Chapter 5, we will use non-spherical Gaussian distri-
butions over KR, with K a power-of-two cyclotomic field, and using the coefficient embedding. Com-
pared to the spherical Gaussian distributions described above, these non-spherical distributions are
parametrized by a parameter Σ ∈ K+

R , instead of σ2 ∈ R. If we choose Σ ∈ R>0 ⊂ K+
R , then we recover

the spherical Gaussian distribution defined above, hence, we keep the same notations as for spherical
Gaussians. We will consider these distributions on lattices of the form I + y for I a principal fractional
ideal of K and y ∈ KR. For Σ ∈ K+

R and c ∈ KR, we define the (non-spherical) Gaussian weight
function on KR as

ρ√Σ,c : x 7→ exp

(
−1

2

∥∥∥∥x− c√
Σ

∥∥∥∥2
)
.

For any shifted ideal I+y, I ⊂ K, y ∈ KR, we define the (non-spherical) discrete Gaussian distribution
over I + y of parameter

√
Σ, centered in c by:

∀x ∈ I + y, DI+y,
√

Σ,c(x) =
ρ√Σ,c(x)

ρ√Σ,c(I + y)
.

38

CHAPTER 2. PRELIMINARIES

For concision again, we write DI+y,
√

Σ instead of DI+y,
√

Σ,0 and ρ√Σ instead of ρ√Σ,0.

We know that for a principal ideal gR of KR, we have λn(gR) ≤ ‖g‖, because the Xig form a set
of n linearly independent vectors of gR of Euclidean norm ‖g‖. Hence, we obtain that for any function
ω(log n), there exists a negligible ε such that

ηε(gR) ≤
√
ω(log n)‖g‖.

Let g ∈ K. If
√

Σ = σ ∈ R (i.e.,
√

Σ ∈ R[X]/(Xn+ 1) has a representative of degree 0), is such that
‖g/
√

Σ‖ = o(1/
√

log n), then we have σ =
√

Σ =
√
ω(log n)‖g‖ and the tail bound inequality (2.15)

gives us

Pr
x←DgR,σ,c

(‖x− c‖ > σ
√
n) ≤ 2 · 2−n. (2.16)

For an arbitrary Σ ∈ K+
R , the distribution DI+y,

√
Σ,c is the same as (

√
Σ ·DI/

√
Σ,1,(c−y)/

√
Σ +y) (i.e.

sampling x← DI+y,
√

Σ,c is the same as sampling x′ ← DI/
√

Σ,1,(c−y)/
√

Σ and outputting x =
√

Σ·x′+y).

Hence, we can always transform a non-spherical Gaussian distribution into a spherical one (with a real
parameter

√
Σ), and a non shifted ideal. We can then apply the previous tail bound for spherical

Gaussian distributions. If I = gR is a principal ideal and ‖g/
√

Σ‖ = o(1/
√

log n), then we have

Pr
x←DgR+y,

√
Σ,c

(‖x− c‖ > n · ‖
√

Σ‖) ≤ 2 · 2−n. (2.17)

Indeed, let x′ ← DI/
√

Σ,1,(c−y)/
√

Σ and x =
√

Σ ·x′+ y (recall that the distribution of x is DgR+y,
√

Σ,c).
Then we have

‖x− c‖ = ‖
√

Σ · (x′ − (c− y)/
√

Σ)‖ ≤
√
n · ‖
√

Σ‖ · ‖(x′ − (c− y)/
√

Σ)‖.

We conclude by applying the tail bound inequality (2.16) to the distribution DI/
√

Σ,1,(c−y)/
√

Σ to obtain

‖(x′ − (c− y)/
√

Σ)‖ ≤
√
n with probability at least 1− 2 · 2−n.

The next lemma states that if the standard deviation is larger than the smoothing parameter (recall
that this is what the condition ‖g/

√
Σ‖ = o(1/

√
log n) ensures), then one can efficiently sample from a

distribution negligibly close to a non-spherical Gaussian distribution.

Theorem 2.28 (Reformulation of Theorem 4.1 of [GPV08]). There exists a probabilistic polynomial
time algorithm that given g ∈ R, y ∈ KR and a parameter Σ ∈ K+

R such that ‖g/
√

Σ‖ ≤ o(1/
√

log n),
outputs x from a distribution negligibly close to DgR+y,

√
Σ,c.

The following lemma states that, when the standard deviation is larger than the smoothing param-
eter, a discrete Gaussian resembles the continuous Gaussian, in particular it is almost centered at c,
and of variance almost Σ. In the following, because these properties, we sometimes abuse notation and
call Σ the variance parameter of the Gaussian distribution.

Lemma 2.29 (Adapted from Lemma 4.2 of [MR07]). For any g ∈ K, Σ ∈ K+
R and c, y ∈ KR such

that ‖g/
√

Σ‖ ≤ o(1/
√

log n), if x← DgR+y,
√

Σ,c, then ‖E[x]− c‖ ≤ ε · ‖
√

Σ‖ and ‖V[x]− Σ‖ ≤ ε · ‖Σ‖
for some negligible function ε(n).

2.6 Matrix branching programs

We recall in this section the definition of matrix branching programs, and we introduce some notation
that will be used in Chapter 6 of this thesis. A branching program is defined over a ring R.

Definition 2.30 (d-ary Matrix Branching Program). A d-ary matrix branching program A of length `
and width w over m-bit inputs is given by a sequence of square matrices

{Ai,b}i∈{1,...,`},b∈{0,1}d ∈ Rw×w,

two bookend vectors
A0 ∈ R1×w and A`+1 ∈ Rw×1,

39

CHAPTER 2. PRELIMINARIES

and an input function inp : {1, . . . , `} → {1, . . . ,m}d.
Let x ∈ {0, 1}m and let xi denote the i-th bit of x, for i in {1, . . . ,m}. We will use the no-

tation x[inp(i)] = (xinp(i)1
, xinp(i)2

, · · · , xinp(i)d) ∈ {0, 1}d, where inp(i) = (inp(i)1, · · · , inp(i)d) ∈
{1, . . . ,m}d.

The output of the matrix branching program on input x ∈ {0, 1}m is given by

A(x) =

{
0 if A0 ·

(∏
1≤i≤`Ai,x[inp(i)]

)
·A`+1 = 0

1 otherwise.

We will write the branching programs in capital bold letters, and their matrices in capital letters
(but not bold). In this thesis, we will only consider matrix branching programs (and no general
branching programs). For readability reason, we will often forget the term “matrix” and simply call
them branching programs (or BP for short). A branching program with d = 1 (respectively with d = 2)
is also called a single input (respectively dual input) branching program. In the following, we will not
distinguish between the single input and dual input cases, as the attack presented in Chapter 6 works
in the same way in both cases (and even for higher arity d).

We say that two branching programs are equivalent if they compute the same function. We also
introduce a notion of strong equivalence between branching programs.

Definition 2.31 (Strongly equivalent branching programs). We say that two d-ary matrix branching
programs A = (A0, {Ai,b}1≤i≤`,b∈{0,1}d , A`+1) and A′ = (A′0, {A′i,b}1≤i≤`,b∈{0,1}d , A′`+1), with the
same length ` and the same input function inp (but not necessarily defined over the same rings) are
strongly equivalent if, for all {bi}1≤i≤` ∈ ({0, 1}d)`, we have

A0 ·
∏

1≤i≤`

Ai,bi ·A`+1 = 0⇐⇒ A′0 ·
∏

1≤i≤`

A′i,bi ·A
′
`+1 = 0. (2.18)

This notion is stronger than simple equivalence between branching programs, because we ask
that (2.18) holds for all possible choices of {bi}1≤i≤`, and not only for the ones of the form {x[inp(i)]}i
for some input x (corresponding to an honest evaluation of the branching program on x). The pair of
branching programs described in Section 6.3.4 gives an example of two equivalent branching programs
that are not strongly equivalent.

40

Chapter 3

SVP in Ideal Lattices with
Pre-Processing

Finding short vectors in a lattice is a fundamental problem in lattice-based cryptography. In this
chapter, we are interested in finding somehow short vectors in ideal lattices. Our objective is not
to find the shortest non-zero vector of a given ideal, but rather to obtain better trade-offs between
time and approximation factor than what is currently known for arbitrary lattices (i.e., using the
BKZ algorithm [SE94]), by allowing some pre-computation. We will hence be interested in finding
approximations of the shortest non-zero vector of a given ideal, for approximation factors 2n

α

, where n
is the dimension of the lattice and α ∈ (0, 1].

In a first section, we explain how the problem of finding short vectors in ideal lattices can be
transformed into a closest vector problem instance in a fixed lattice, depending only on the number field.
This transformation is formalized in Theorem 3.5 and does not require any heuristic argument, except
for the generalized Riemann hypothesis. In Section 3.4, we explain how to solve the CVP instance in the
fixed lattice using Laarhoven’s algorithm (see Theorem 2.6), which has a pre-processing phase whose
run-time is exponential in the dimension of the lattice. In order to use Laarhoven’s algorithm, we have
to introduce some new heuristic assumptions. Finally, we conclude by instantiating Theorem 3.5 with
Laarhoven’s algorithm and the currently best known algorithms to solve class-group related problems in
arbitrary number fields. We also give an alternative instantiation of Theorem 3.5, replacing Laarhoven’s
algorithm by an oracle solving CVP in the fixed lattice. This alternative instantiation will be used in
Chapter 4.

This chapter corresponds to a joint work with Guillaume Hanrot and Damien Stehlé, which was
published in the proceedings of Eurocrypt 2019 [PHS19]. The code that was used to perform the
experiments described in this chapter is available at

http://perso.ens-lyon.fr/alice.pellet___mary/code/code-approx-ideal-svp.zip

Contents
3.1 Introduction . 42

3.2 Contribution . 43

3.2.1 Technical overview . 44

3.2.2 Impact . 45

3.3 From Ideal SVP to CVP in a Fixed Lattice 46

3.3.1 Definition of the lattice L . 46

3.3.2 Computation of the lattice L . 47

3.3.3 From SVP in ideal lattices to CVP in L . 48

3.4 Solving CVP’ with Pre-processing . 50

3.4.1 Properties of the lattice L . 50

3.4.2 Using Laarhoven’s algorithm . 52

3.5 Instantiating Theorem 3.5 . 54

3.5.1 Using a CVP oracle in a fixed lattice . 55

3.6 Conclusion . 56

41

http://perso.ens-lyon.fr/alice.pellet___mary/code/code-approx-ideal-svp.zip

CHAPTER 3. SVP IN IDEAL LATTICES WITH PRE-PROCESSING

3.1 Introduction

The Learning With Errors problem (LWE) introduced by Regev in [Reg05] has proved invaluable to-
wards designing cryptographic primitives. However, as its instance bit-sizes grow at least quadratically
with the security parameter to be well-defined, LWE often results in primitives that are not very effi-
cient. In order to improve the efficiency, Stehlé, Steinfeld, Tanaka and Xagawa [SSTX09] introduced the
search Ideal-LWE problem which involves polynomials modulo Xn+1 for n a power of two, and Lyuba-
shevsky, Peikert and Regev [LPR10] exhibited the relationship to power-of-two cyclotomic fields, gave
a reduction from the latter search problem to a decision variant, and tackled more general rings. This
is now referred to as Ring-LWE, and leads to more efficient cryptographic constructions. To support
the conjecture that Ring-LWE is computationally intractable, the authors of [SSTX09, LPR10] gave
polynomial-time quantum reductions from the approximate Shortest Vector Problem (approx-SVP)
restricted to ideal lattices to Ring-LWE. Approx-SVP consists in finding a non-zero vector of an input
lattice, whose norm is within a prescribed factor from the lattice minimum. Ideal lattices are lattices
corresponding to ideals of the ring of integers of a number field, for example a power-of-two cyclotomic
field in the situation above. When considering a lattice problem for such an ideal, the ideal is implicitly
viewed as a lattice via the canonical embedding. A third quantum reduction from approx-SVP for ideal
lattices to Ring-LWE was proposed by Peikert, Regev and Stephens-Davidowitz [PRS17]. It has the
advantage of working for all number fields.

As is always the case, the value of these reductions highly depends on the intractability of the
starting problem, i.e., approx-SVP for ideal lattices: approx-SVP for ideal lattices could even turn out
to be computationally easy to solve, hence making these reductions vacuous. We stress that even if this
were the case, that would not necessarily mean that there exists an efficient algorithm for Ring-LWE.
In this chapter, we investigate the intractability of ideal approx-SVP for arbitrary number fields.

For arbitrary lattices, the best known trade-off between the run-time and the approximation factor
is given by Schnorr’s hierarchy of reduction algorithms [Sch87], whose most popular variant is the BKZ
algorithm [SE94]. For any real number α ∈ [0, 1] and any lattice L of dimension n given by an arbitrary

basis, it allows one to compute a vector of L \ {0} which is no more than 2Õ(nα) times longer than

a shortest one, in time 2Õ(n1−α) (assuming the bit-size of the input basis is polynomial in n). This
trade-off is drawn in blue in Figure 3.1.1 In the case of ideal lattices in a cyclotomic ring of prime-power
conductor (i.e., the ring of integers of Q(ζm) where m is a prime power and ζm is a complex primitive
m-th root of unity), it has been shown that it is possible to obtain a better trade-off than the BKZ
algorithm, in the quantum computation setting. For principal ideal lattices, i.e., ideals that can be
generated by a single element, the algorithmic blueprint, described in [CGS14b,Ber14], consists in first
using class group computations to find a generator of the ideal, and then use the so-called log-unit
lattice to shorten the latter generator (we note that using the log-unit lattice for this purpose was
already suggested in [RBV04]). A quantum polynomial-time algorithm for the first step was provided
by Biasse and Song [BS16], building upon the work of [EHKS14]. The second step was carefully
analyzed by Cramer, Ducas, Peikert and Regev [CDPR16], resulting in a quantum polynomial-time

algorithm for approx-SVP restricted to principal ideal lattices, with a 2Õ(
√
n) approximation factor.

(See [HWB17] for a generalization to cyclotomics with degree of the form pαqβ , with p and q prime.)
This line of work was extended by Cramer, Ducas and Wesolowski [CDW17] to any (not necessarily
principal) ideal lattice of a cyclotomic ring of prime-power conductor. Put together, these results give
us the trade-off between approximation factor and run-time drawn in red dashes in Figure 3.1. This

is better than the BKZ algorithm when the approximation factor is larger than 2Õ(
√
n). However, for

smaller approximation factors, Schnorr’s hierarchy remains the record holder. One could also hope to
improve the trade-off for classical computing, by replacing the quantum principal ideal solver of [BS16]
by the classical one of Biasse, Espitau, Fouque, Gélin and Kirchner [BEF+17]. However, this classical

principal ideal solver runs in sub-exponential time 2Õ(
√
n), hence combining it with [CDPR16,CDW17]

results in a classical approx-SVP algorithm for a 2Õ(
√
n) approximation factor in time 2Õ(

√
n). Up to the

Õ(·) terms, this is exactly the trade-off obtained using Schnorr’s hierarchy. Recently, Ducas, Plançon

and Wesolowski [DPW19] experimentally analysed the Õ(·) term of the 2Õ(
√
n) approximation factor of

the [CDPR16,CDW17] algorithm. This allows them to determine for which dimension n this quantum

1This figure, like all similar ones in this chapter, is in (logn log2)-scale for both axes.

42

CHAPTER 3. SVP IN IDEAL LATTICES WITH PRE-PROCESSING

Time

Approximation
factor

quantum

classical

2Õ(n)2Õ(n0.5)poly

2Õ(n)

2Õ(n0.5)

poly

Figure 3.1: Prior time/approximation trade-
offs for ideal approx-SVP in cyclotomic fields of
prime-power conductor.

Time

Approximation
factor

quantum

classical

2Õ(n)2Õ(n0.5)poly

2Õ(n)

2Õ(n0.5)

poly

Figure 3.2: New trade-offs for ideal approx-SVP
in the same fields (with a pre-processing of cost

exp(Õ(n))).

algorithm outperforms BKZ.

3.2 Contribution

It is a classical fact due to Minkowski [Min67, pp. 261–264] that there exists an absolute constant c > 1
such that for all number fields K of degree n ≥ 2 and discriminant ∆, we have |∆| > cn. In the sequel,
we shall thus state all our upper bounds in terms of log |∆| ≥ Ω(n). Actually, to fix the ideas, one may

consider log |∆| = Õ(n), which is the case for cyclotomic fields.
Let us consider a number field K of degree n and discriminant ∆. We assume a basis of the

ring of integers R of K is given. Our algorithm performs some pre-processing on K, in exponential

time 2Õ(log |∆|). Once this pre-processing phase is completed and for any α ∈ [0, 1/2], the algorithm can,

given any ideal lattice I of R, output a 2Õ((log |∆|)α+1/n) approximation of a shortest non-zero vector

of I in time 2Õ((log |∆|)1−2α) + Tc-g(K). Here Tc-g(K) denotes the time needed to perform class group
related computations in K: computing relations between elements of the class group and computing
the units of R. Using the results of [BS16, BEF+17, BF14], we can replace Tc-g(K) by poly(log |∆|)
for a quantum computer, and, for a classical computer, by 2Õ((log |∆|)1/2) if K is a cyclotomic field of

prime-power conductor and by 2Õ((log |∆|)2/3) for an arbitrary field K. The three algorithms rely on the
Generalized Riemann Hypothesis (GRH) and the two sub-exponential algorithms in the classical setting
also require additional heuristic assumptions. The correctness and cost analyses of our algorithm rely
on these heuristic assumptions, and others. Our contribution is formalized in the theorem below, which
is the main result of this chapter.

Theorem 3.1 (Heuristic, see Theorems 3.5 and 3.10). Let α ∈ [0, 1/2] and K be a number field of
degree n and discriminant ∆. Assume that a basis of the ring of integers R of K is known. Under
some conjectures and heuristics, there exist two algorithms Apre-proc and Aquery such that

• Algorithm Apre-proc takes as input the ring R, runs in time 2Õ(log |∆|) and outputs a hint w of

bit-size 2Õ((log |∆|)1−2α);

• Algorithm Aquery takes as inputs any ideal I of R (whose algebraic norm has bit-size bounded

by 2poly(log |∆|)) and the hint w output by Apre-proc, runs in time 2Õ((log |∆|)1−2α) + Tc-g(K), and

outputs an element x ∈ I such that 0 < ‖x‖2 ≤ 2Õ((log |∆|)α+1/n) · λ1(I).

The hint output by the pre-processing phase has a bit-size that is bounded by the run-time of the
query phase. By considering larger hints, the run-time of the query phase could be drastically improved.
We give more details below, at the end of the high-level description of the algorithm.

Considering only the query cost, this result is of interest when log |∆| ≤ Õ(n4/3) for quantum

computations and log |∆| ≤ Õ(n12/11) for classical computations. Indeed, in the other cases, the
time/quality trade-offs obtained by our algorithm are worse than the ones obtained using Schnorr’s
hierarchy of algorithms. By letting α vary in [0, 1/2] and considering cyclotomic fields of prime-power

43

CHAPTER 3. SVP IN IDEAL LATTICES WITH PRE-PROCESSING

conductor, we obtain the trade-offs represented in Figure 3.2. For a discussion for more general values
of log |∆|, we refer to Section 3.5. Going back to cyclotomic fields of prime-power conductor, these
new trade-offs improve upon the prior ones, both for quantum and classical computers. Note that in
Figure 3.2, we only plot the time needed for the query phase of the algorithm, but there is a pre-
processing phase of exponential time performed before. Also, the new algorithm is no better than
Schnorr’s hierarchy in the classical setting when the run-time is sufficiently small. Hence, in Figure 3.2,
we plotted the trade-offs obtained using Schnorr’s hierarchy when they are better than the ones obtained
with the new algorithm. The query phase of the new algorithm gives a quantum acceleration for approx-

SVP for ideal lattices in cyclotomic fields of prime-power conductor, for all approximation factors 2Õ(nα)

with α ∈ (0, 1). This extends [CDW17], which obtained such a quantum acceleration for α ∈ [1/2, 1).
The query phase of the new algorithm also gives a classical acceleration for these fields, but only
for α ∈ (0, 1/2).

3.2.1 Technical overview

Our algorithm is inspired by the algorithms in [CDPR16, CDW17]. Given an ideal I as input, the
idea is to first find a principal ideal J contained in I (using [CDW17]), and then compute a short
generator of this ideal J (using [CDPR16]). This short generator is a somehow small element of I. This

approach provides a 2Õ(
√
n) approximation factor for approx-SVP in I. However, it can be shown that

we cannot improve this approximation factor using these techniques, even if we increase the run-time
of the algorithm. The reason is that, given an arbitrary principal ideal J , it may be that its shortest

generator is 2Õ(
√
n) times longer than its shortest non-zero vector.

We modify the strategy above, as follows. Given any ideal I, we try to find a ‘good’ principal
ideal J contained in I, where we say that a principal ideal is ‘good’ if its shortest generator is not
much larger than its shortest non-zero vector. The precise definition of ‘not much larger’ will depend
on the approximation factor we want to achieve for our approx-SVP instance. Because the Euclidean
norm of the shortest non-zero vector of J (broadly) increases with its algebraic norm, we also require
that the algebraic norm of J is not much larger than the one of I (note that this was already needed
in [CDPR16, CDW17]). To find this ‘good’ principal ideal J , the main idea of our algorithm is to
express the problem as a Closest Vector Problem (CVP) instance in a lattice L depending only on the
number field K.

This lattice L is similar to the one appearing in sub-exponential algorithms for computing the
class group (see for instance [HM89, Buc88]). More precisely, we first select a set B = {p1, . . . , pr} of
prime ideals of polynomially bounded algebraic norms, generating the class group. We then compute
a generating set of the B-units, i.e., the set of elements u ∈ K for which there exists (e1, . . . , er) ∈ Zr
such that 〈u〉 =

∏
i p
ei
i . The lattice L is obtained by considering the integer linear combinations of

vectors of the form (Log u, e1, . . . , er)
T , where 〈u〉 =

∏
i p
ei
i and Log is the map applying the logarithm

function to the canonical embedding, coefficient-wise. This lattice L only depends on the field K and
can then be pre-computed and pre-processed.

Given any ideal I, the query phase of our algorithm computes a target vector t from I, and then
solves a CVP instance in L with this target vector t. First, we decompose the ideal I in the class
group as a product of the ideals of B. Concretely, we compute g ∈ K and (v1, . . . , vr) ∈ Zr such that
I =

∏
i p
vi
i · 〈g〉. This principal ideal 〈g〉 is a candidate for our principal ideal J contained in I (assume

for the moment that the vi’s are non-positive, so that 〈g〉 is indeed contained in I). However, as is,
we have no guarantee that 〈g〉 has a short generator. We also have no guarantee that its algebraic
norm is not much larger than the one of I (i.e., that the vi’s are small). Hence, our objective is to
multiply the principal ideal 〈g〉 by other principal ideals, until we have a good candidate for J . To
do so, we define the vector t = (−Log g, v1, . . . , vr)

T . Observe that 〈g〉 would be a good candidate
for J if this vector was short (and with vi ≤ 0 for all i). Indeed, this would mean that g is a short
generator of 〈g〉 (because Log g is short), and that 〈g〉 = I ·

∏
i p
−vi
i is a small multiple of I (because

the pi’s have polynomially bounded norms, and the vi’s are small; the non-positivity of the vi’s is used
to ensure that the ideal

∏
i p
−vi
i is integral). Also, we can see that adding a vector of L to t amounts

to multiplying the principal ideal 〈g〉 by another principal ideal (corresponding to the vector of L we
are adding). Hence, we can find a good candidate J (together with a short generator of J) by solving
a CVP instance in L with target t.

44

CHAPTER 3. SVP IN IDEAL LATTICES WITH PRE-PROCESSING

Finally, we need to solve CVP in the lattice L. We do not know any basis for L which would enable
us to solve CVP in it efficiently (as opposed to the lattices considered in [CDPR16,CDW17]). However,
the lattice L is fixed for a given number field, hence we can pre-process it. For this, we use a CVP with
pre-processing (CVPP) algorithm due to Laarhoven [Laa16]. This leads to the time/approximation
trade-offs given in Theorem 3.1. In [Laa16], significant effort is spent towards minimizing the constant
factors in the exponents. These have recently been improved in [DLW19]. In this work, we neglect
these factors for the sake of simplicity, but these would clearly matter in practice.

Laarhoven’s CVPP algorithm is such that the bit-size of the output of the pre-processing phase is
no larger than the run-time of the query phase2 (hence, it is also the case for our algorithm). If we
do not require this, we could have the following very simple and efficient algorithm for CVPP. First, it
computes a short basis Bsh of the lattice. Then, it partitions the fundamental parallelepiped associated
to Bsh into exponentially many small boxes, such that given any point of the parallelepiped, it is easy
to determine to which box it belongs. Then, for each of these boxes, the pre-processing algorithm would
compute a closest point of the lattice. The output of the pre-processing phase would then be the small
basis Bsh and the set of all boxes together with their closest lattice point. Finally, given any vector
in the real span of the lattice, the query algorithm would reduce it modulo Bsh to obtain a vector in
the fundamental parallelepiped, and then determine the box of this reduced vector and its associated
lattice vector. All this can be done efficiently (assuming we can efficiently access the database) and
provides a small factor approximation for CVP, at the expense of a huge database.

Overall, the correctness and cost analyses of our algorithm rely on several heuristic assumptions.
Many of them come from previous works [Laa16, BEF+17, BF14] and were already analysed. We
introduce three new heuristic assumptions: Heuristics 3.6, 3.7 and 3.8 in Section 3.4. We discuss
them by providing some mathematical justifications and some experimental results corroborating them.
Concurrently to this work, Stephens-Davidowitz [SD19] obtained a provable variant of the CVPP trade-
offs from [Laa16, DLW19] that we use. Relying on it would allow us to make do with Heuristic 2.7,
which was inherited from [Laa16,DLW19], at the expense of replacing Heuristic 3.6 by a similar one on
the smoothing parameter of the lattice under scope (rather than its covering radius).

3.2.2 Impact

The query phase of the new algorithm can be interpreted as a non-uniform algorithm, as it solves
approx-SVP for ideals of K, using a hint depending on K only. As the time needed to compute
that hint (i.e., the run-time of Apre-proc) is exponential, the concrete impact is limited. Nevertheless,
our result should rather be interpreted as a strong indication that ideal approx-SVP is most likely a
weaker problem than approx-SVP for arbitrary lattices: for unstructured lattices, there is no known
non-uniform algorithm outperforming Schnorr’s hierarchy.

Few cryptographic constructions have their security impacted by faster ideal approx-SVP solvers.
An important example, related to the topic of this thesis, is the GGH13 cryptographic multilinear
map [GGH13a] and its extensions. We will see in Section 6.3.2 that being able to find a somehow short
vector in a principal ideal lattice can be used to mount an attack against several candidate obfuscators
based on the GGH13 map. Note however that even if the difficulty of ideal-SVP has an impact on the
security of the GGH13 map, our algorithm does not provide a concrete attack on this scheme, because
of the exponential pre-processing time.

More importantly, our result strongly suggests that approx-SVP for ideals of the ring of integers R
of a number field K may be weaker than Ring-LWE, for a vast family of number fields. Up to some
limited parameter losses, Ring-LWE and approx-SVP for R-modules over K (with ranks ≥ 2) reduce
to one another [LS15, AD17]. Therefore, a separation between approx-SVP for ideals and Ring-LWE
is essentially the same as a separation between approx-SVP for ideals and approx-SVP for R-modules
over K.

2Laarhoven also describes a variant of his algorithm in which he uses locality-sensitive hashing to reduce the run-time
of the query phase below the bit-size of the advice, but we are not considering this variant here.

45

CHAPTER 3. SVP IN IDEAL LATTICES WITH PRE-PROCESSING

3.3 From Ideal SVP to CVP in a Fixed Lattice

The main idea of our algorithm is, given an input ideal I, to find a principal ideal 〈g〉 ⊆ I with a
short generator g. This is very similar to [CDW17], where the authors find a 2O(

√
n) approximation

of a shortest non-zero vector of the ideal I by computing a principal ideal contained in I and then
finding a short generator of this principal ideal. The limitation of this approach is that, if we consider
any principal ideal contained in I, we cannot hope to find a better approximation than the 2O(

√
n)

approximation obtained above in the worst case. This is due to the fact that in some principal ideals
(including for prime-power cyclotomic fields), the shortest generator can be 2O(

√
n) times longer than

a shortest non-zero element of the ideal (see [CDPR16]). Instead of looking for any principal ideal
contained in I, we consider only those with a ‘good’ generator (i.e., a generator which is also a very
short element of the corresponding principal ideal).

In order to find such an ideal, we merge the two steps of [CDPR16, CDW17] (consisting in first
finding a principal multiple of I and then computing a small generator of the principal ideal), by
introducing a lattice L that is very similar to the one used for class group computations. This lattice
only depends on the number field (and not on the ideal I). We describe it in the next subsection. We
then show how to express the problem of finding a principal multiple of I with a small generator as a
CVP instance for this fixed lattice.

3.3.1 Definition of the lattice L

In this subsection, we define the lattice L which we will use in order to transform our ideal-SVP
instance into a CVPP’ instance. We also give an algorithm to compute a basis of L and analyze its
run-time. The lattice L we are considering is not new. It was already used in previous sub-exponential
algorithms computing the class group of a number field [HM89,Buc88,BF14,BEF+17,Gel17]. However,
these algorithms usually choose a sub-exponential set of ideals, hence resulting in a lattice L of sub-
exponential dimension. Our lattice L will have a dimension which is polynomial in log |∆|.

In the following, we fix some integer r such that log hK ≤ r and r ≤ poly(log |∆|) (looking forward,
the integer r will be related to the dimension of the lattice in which we will solve CVPP’, so it would
be undesirable to set it too large). Let us also fix a set of prime integral ideals B = {p1, . . . , pr} as
given by Corollary 2.15. We consider the lattice L of dimension ν := r + r1 + r2 − 1, generated by the
columns of the following matrix:

c ·BΛ

0

c · h̃g1 , . . . , c · h̃gr

v1 v2 · · · vr

BL :=

r

r

ν

r1 + r2 − 1

r1 + r2 − 1

where:

• the scaling parameter c > 0 is to be chosen later;

• the matrix BΛ = (fH∩E(b1), . . . , fH∩E(br1+r2−1)) is a basis of fH∩E(Λ), where Λ is the log-unit
lattice and fH∩E : H ∩ E ⊂ Rn → Rr1+r2−1 is an isometry;3

3As Λ is not full rank in Rn, we change the ambient space such that fH∩E(Λ) becomes full rank in H∩E = Rr1+r2−1.
Note however that the `2-norm is preserved by this transformation (this is not the case for the `1 and `∞ norms).

46

CHAPTER 3. SVP IN IDEAL LATTICES WITH PRE-PROCESSING

• the matrix consisting of the vectors vi = (v1i, . . . , vri)
T is a basis of ker(fB), where fB is defined

in Section 2.3.10 (in particular, the ideals
∏
j p

vji
j are principal for all i);

• the column vectors h̃gi are of the form fH∩E(πH(Log gi)) for gi ∈ K a generator of the fractional
principal ideal associated with the relation vi, i.e., we have

∏
j p

vji
j = 〈gi〉.

We will explain how to construct L below. This lattice enjoys the following property, which will be
used later.

Lemma 3.2. Let w be a vector of L and parse it as w = (h, v)T with h of dimension r1 +r2−1 and v =
(v1, . . . , vr) of dimension r. Then there exists an element g ∈ K \{0} such that h = c ·fH∩E(πH(Log g))
and

∏
j p

vj
j = 〈g〉.

Proof. We first observe that the result holds for the vectors of the basis BL. For the r vectors on
the right of BL, this holds by construction. For the r1 + r2 − 1 vectors on the left, we have that∏
j p

0
j = R = 〈u〉 for any unit u ∈ R. So by definition of BΛ, the property of Lemma 3.2 also holds for

the r1 + r2 − 1 first vectors of BL.
To complete the proof, it suffices to observe that the property of Lemma 3.2 is preserved by addition

(if g1 corresponds to a vector w1 and g2 corresponds to a vector w2, then g1g2 corresponds to the vector
v1 +v2) and by multiplication by −1 (if g corresponds to a vector w, then g−1 corresponds to the vector
−w). All these elements g are invertible as they are obtained by multiplying and inverting non-zero
elements of K.

3.3.2 Computation of the lattice L

The lattice L described above only depends on the number field we are working on. A basis of it can
then be computed in a pre-processing phase, before the knowledge of the ideal in which we want to
find a short non-zero vector. In this subsection, we give an algorithm to compute the lattice L and
we show that this algorithm can be performed in time at most exponential in log |∆|. As we shall see,
this will even be sub-exponential in log |∆|. The costly part of the pre-processing phase will be the
pre-processing used for the CVPP algorithm.

Algorithm 3.1 Computes a basis BL as described above

Input: A number field K and an integer r = poly(log |∆|) such that log hK ≤ r.
Output: The basis BL described in Section 3.3.1.

1: Compute the set B′ of all prime ideals of algebraic norm ≤ 12 log2 |∆|.
2: Compute all the relations between the elements of B′ and the log-unit lattice Λ.
3: Use the relations to extract a set B′′ ⊆ B′ generating the class group with |B′′| ≤ log hK .
4: Compute the set P of all prime ideals of norms smaller than some poly(log |∆|) (choose the bound

so that |P| > r).
5: Create a set B by adding to B′′ ideals taken uniformly in P, until the cardinality of B reaches r.
6: Compute a basis of ker(fB) and generators gi of the fractional principal ideals corresponding to

the relations computed.
7: Create the matrix BL from these r relations, the corresponding gi and the log-unit lattice Λ com-

puted at Step 2.
8: return BL.

Lemma 3.3. Assume GRH. Then Algorithm 3.1 outputs a matrix BL as described above, in time at
most

Tlog-unit + 2 · Trel(poly(log |∆|),poly(log |∆|)) + poly(log |∆|).

Proof. We analyze the cost of each step of the algorithm, and provide some details for the correctness
when needed.

Step 1. We have already seen in Section 2.3.8 that computing all prime ideals of norm ≤ 12 log2 |∆|
can be performed in time polynomial in log |∆|. There are poly(log |∆|) such ideals.

47

CHAPTER 3. SVP IN IDEAL LATTICES WITH PRE-PROCESSING

Step 2. Computing all the relations between the elements of B′ and the log-unit lattice Λ can be
performed in time at most Trel(poly(log |∆|),poly(log |∆|)) + Tlog-unit. The relations between the ele-
ments of B′ are represented as an invertible matrix (whose columns span the kernel of the function fB′

defined in Section 2.3.10).

Step 3. Extracting a generating set B′′ from B′ of cardinality at most log hK can be done using
Lemma 2.12. Because we already have the matrix of relations between the elements of B′ (and because
the size of this matrix is polynomial in log |∆|), this can be done in polynomial time (as stated in the
lemma).

Step 4. As in Step 1, this can be done in polynomial time, because the bound on the norms of the
ideals is polynomial. We obtain a set P whose cardinality is polynomial in log |∆|.

Step 5. Picking uniform elements in a set of polynomial size can be done efficiently, so this step can
be performed in polynomial time (recall that r = poly(log |∆|)). Note that in the previous step, we
had that the cardinality of B′ was at most log hK ≤ r, so we can indeed add ideals to it to reach a set
of cardinality r.

Step 6. As in Step 2, computing the kernel of fB can be done in time Trel(poly(log |∆|),poly(log |∆|).
Together with the relations, we also get generators of the corresponding principal ideals.

Step 7. Finally, to compute the matrix BL, we just need to compute the functions πH and fH∩E on
the gi’s computed in Step 6. We then put it together with the matrix of relations computed in Step 6
and the log-unit lattice computed in Step 2. This can be done in polynomial time.

3.3.3 From SVP in ideal lattices to CVP in L

We now explain how to transform the problem of finding a short non-zero vector in a fractional ideal I
of R, into solving a CVP instance with respect to the lattice L described in Section 3.3.1. As explained
above, the main idea is to multiply the ideal I by ideals of the set B, until we obtain a ‘good’ principal
ideal (i.e., with a short generator). In terms of lattice operations in L, our initial lattice I will give us
a target vector in the real vector space spanned by L. Multiplying it by ideals of B will be the same
as adding to the target a vector of the lattice L. Finally, checking whether the resulting ideal is a good
principal ideal can be done by checking whether the obtained vector is short. Overall, we are indeed
solving a CVP instance in L. We first describe the algorithm, and then prove its correctness and bound
its cost.

Algorithm 3.2 Solves ideal SVP using an oracle to solve CVP in L

Input: A non-zero fractional ideal I ⊆ R (given by some basis), the basis BL defined above and some
parameter β = β(n) > 0.

Output: A somehow short non-zero element in I.
1: Compute v1, . . . , vr ∈ Z and g ∈ K such that I =

∏
j p

vj
j · 〈g〉.

2: Let t = (−c · fH∩E(hg), v1 + β, . . . , vr + β)T , where hg = πH(Log g).
3: Compute w ∈ L such that ‖t− w‖∞ ≤ β (see Section 3.4).
4: Let g′ ∈ K be the element associated to w as in Lemma 3.2.
5: return g · g′.

Theorem 3.4. Let us fix c = n1.5/r. Let β = β(n) > 0. Then, for any non-zero fractional ideal I
of R, Algorithm 3.2 runs in time at most

Tdecomp(N (I),poly(log |∆|),poly(log |∆|)) + TCVP(∞, L, β) + poly(log |∆|)

and outputs a non-zero element x ∈ I such that ‖x‖2 ≤ 2O(
β·r·log log |∆|

n) · N (I)1/n.

Observe that in the statement of the run-time, the term TCVP(∞, L, β) will be infinite if β is smaller
than µ(∞)(L) (no algorithm can find a point of L at distance at most β given as input an arbitrary
target vector). In this case, the run-time of our algorithm might also be infinite (i.e. the algorithm
fails).

48

CHAPTER 3. SVP IN IDEAL LATTICES WITH PRE-PROCESSING

Proof. Correctness. Let us define the fractional ideal J = 〈g · g′〉. This will be our ‘good’ principal
ideal, i.e., a principal ideal with a small generator, and contained in I. Let us first prove that J is a

multiple of I. By Lemma 3.2, we have w = (c · fH∩E(πH(Log g′)), v′1, . . . , v
′
r)
T with 〈g′〉 =

∏
j p

v′j
j . We

can then write

J = I ·
∏
j

p
−vj
j · 〈g′〉 by definition of g and the vj ’s

= I ·
∏
j

p
−vj
j ·

∏
j

p
v′j
j by Lemma 3.2

= I ·
∏
j

p
v′j−vj
j .

Further, we know that ‖t−w‖∞ ≤ β, and hence we have vj ≤ v′j ≤ vj + 2β for all j. In particular, we

have that v′j − vj ≥ 0 and so the ideal
∏
j p

v′j−vj
j is an integral ideal. We conclude that J is contained

in I, and in particular g · g′ is indeed an element of I. Also, because g′ 6= 0 (see Lemma 3.2) and g 6= 0
(we chose I to be non-zero), then g · g′ is a non-zero element of I.

Let us now show that g · g′ is short. We will do so by using Lemma 2.17. Let Log g = hg + ag1 and
Log g′ = hg′ + ag′1 with hg and hg′ ∈ H ∩ E (note that because g, g′ ∈ K, we do not necessarily have
ag, ag′ > 0). We then have that Log(gg′) = (hg + hg′) + (ag + ag′)1. By Lemma 2.17, we know that
‖gg′‖2 ≤

√
n · |N (gg′)|1/n · 2‖hg+hg′‖2 . Therefore, it suffices to bound the two terms |N (gg′)|1/n and

‖hg + hg′‖2.
Let us start by |N (gg′)|1/n. By multiplicativity of the algebraic norm, we have that |N (gg′)|1/n =

N (J)1/n = N (I)1/n ·
∏
j N (pj)

v′j−vj
n . We have chosen the ideals pj with polynomially bounded algebraic

norms, and we have seen that 0 ≤ v′j − vj ≤ 2β. Thus, we obtain that N (pj)
v′j−vj
n = 2O(

β log log |∆|
n). By

taking the product of the r ideals pj , we obtain

|N (gg′)|1/n = N (I)1/n · 2O(
β·r·log log |∆|

n).

We now consider the term ‖hg + hg′‖2. Recall that ‖w − t‖∞ ≤ β, so in particular, if we consider
only the first r1 + r2 − 1 coefficients of the vectors, we have that ‖c · fH∩E(hg′) + c · fH∩E(hg)‖∞ ≤ β.
And if we consider the `2-norm, we obtain ‖fH∩E(hg′) + fH∩E(hg)‖2 ≤

√
nβ/c. Using the fact that

the `2-norm is invariant by fH∩E , we conclude that ‖hg′ + hg‖2 ≤
√
nβ/c.

Finally, combining the two upper bounds above and replacing c by n1.5/r, we obtain that

‖gg′‖2 ≤
√
n · 2O(

β·r·log log |∆|
n) · N (I)1/n.

Cost. Step 1 can be performed in time Tdecomp(N (I),poly(log |∆|),poly(log |∆|)). Step 2 can be
performed in polynomial time. Step 3 uses a CVP solver and can be done in time TCVP(∞, L, β).
Finally, Step 4 only consists in recovering g′ from the vector w, it can be done in polynomial time.
Note that for this last step, if we only have the vector w, then we know πH(Log g′), but it might not
be possible to recover g′ from it. On the other hand, the lower part of the vector w also gives us the
ideal 〈g′〉, but then computing g′ from it would be costly. In order to perform this step in polynomial
time, when creating the matrix BL we keep in memory the elements gi corresponding to the different
columns. Then, when we obtain w, we only have to write it as a linear combination of the vectors of
BL and we can recover g′ as a product of the gi’s. This can also be done in polynomial time.

Combining Algorithm 3.2 with the pre-processing phase (i.e., computing BL with Algorithm 3.1
and pre-processing it for approx-CVPP’), we obtain the following theorem.

Theorem 3.5. Let K be any number field of dimension n and discriminant ∆. Let α ∈ [0, 1], r =
poly(log |∆|) be such that log hK ≤ r, and ν := r + r1 + r2 − 1. Then, under GRH, there exist two
algorithms Apre-proc and Aquery such that

49

CHAPTER 3. SVP IN IDEAL LATTICES WITH PRE-PROCESSING

• Algorithm Apre-proc takes as inputs the field K and a basis of its ring of integers R, runs in time

T pre-proc
CVP (∞, L, να) + Tlog-unit + 2 · Trel(poly(log |∆|),poly(log |∆|)) + poly(log |∆|)

and outputs a hint w of bit-size at most T query
CVP (∞, L, να);

• Algorithm Aquery takes as inputs the hint w output by Apre-proc and any fractional ideal I of R
such that the numerator and denominator of N (I) have bit-sizes bounded by poly(log |∆|); it runs
in time

Tdecomp(N (I),poly(log |∆|),poly(log |∆|)) + T query
CVP (∞, L, να) + poly(log |∆|)

and outputs a non-zero element x ∈ I such that

‖x‖2 ≤ 2O(
να·r·log log |∆|

n) · λ(2)
1 (I).

The lattice L is as defined in Section 3.3.1 and only depends on the field K. The memory consumption
of both algorithms is bounded by their run-times.

Note that we used the fact that λ
(2)
1 (I) ≥ λ(∞)

1 (I) ≥ N (I)1/n (see Inequality (2.12)) to replace the

N (I)1/n term in Theorem 3.4 by λ
(2)
1 (I).

3.4 Solving CVP’ with Pre-processing

In this section, we describe a possible way of solving approx-CVP’ in the lattice L defined previously.
Even if our lattice L has some structure, it does not seem easy to solve approx-CVP’ in it (not necessarily
easier than solving the approx-SVP instance directly for the initial lattice I). However, the lattice L
only depends on the field K and not on the ideal I. Hence, in this section, we focus on solving approx-
CVP’ with pre-processing on the lattice (to which we refer as CVPP’). Combining it with the result of
Section 3.3, this will provide an algorithm to solve approx-SVP in ideals, with pre-processing on the
field K.

3.4.1 Properties of the lattice L

Recall that our lattice L is given by the basis matrix BL =

(
c ·BΛ AB

0 RB

)
∈ Rν×ν , where we

let AB denote the top-right block of BL consisting of the vectors c · h̃gi , and RB be the bottom-right
block of BL containing the relations of the elements of B. Recall that RB is a basis of the kernel of
fB : (e1, . . . , er) ∈ Zr 7→ [

∏
j p

ej
j] ∈ ClK . Hence we have det(RB) = |Zr/ ker(fB)| = hK .

Equation (2.14) gives us that det(Λ) · hK ≤ 2O(log |∆|+n log log |∆|). Hence, we have that det(L) =
cr1+r2−1 · 2O(log |∆|+n log log |∆|). We chose c = n1.5/r in Theorem 3.4. We then obtain the following
upper bound on det(L):

det(L) =

(
n1.5

r

)r1+r2−1

· 2O(log |∆|+n log log |∆|) = 2O(log |∆|+n log log |∆|).

We still have some freedom for the choice of the parameter r (and hence the dimension ν = r+r1+r2−1
of the lattice L), as long as log hK ≤ r. We will choose it sufficiently large to ensure that the root
determinant of L is at most constant. On the other hand, the dimension of L should be as small as
possible as it impacts the cost of the CVP computations. We fix

r = max(log hK , log |∆|+ n log log |∆|).

This choice of r satisfies r ≥ log hK and det(L)1/ν ≤ O(1). Note that as log hK = Õ(log |∆|) (see

Equation (2.13)), we have r ≤ Õ(log |∆|).
In the following, we view the lattice L as random, where the randomness comes from the choice of

the set B (the initial set B′′ in Algorithm 3.1 is fixed, but then we add to it random prime ideals of

50

CHAPTER 3. SVP IN IDEAL LATTICES WITH PRE-PROCESSING

polynomially bounded norms to create the set B). If the created lattice L does not satisfy the conditions
we want, we can try another lattice by sampling a new set B. As we chose r so that det(L)1/ν = O(1),

we know by Minkowski’s inequality that λ
(∞)
1 (L) = O(1). Then, because L is somehow random, we

also expect that all successive minima λ
(∞)
i (L) and the covering radius in infinity norm are constant.

Hence, we expect to be able to take β as small as O(1) in Algorithm 3.2. We summarize this assumption
below.

Heuristic 3.6. With good probability over the choice of B, the `∞-norm covering radius of L satisfies
µ(∞)(L) = O(1) (and hence µ(2)(L) = O(

√
ν)).

This heuristic assumption calls for a few comments. First, it is better analyzed as two separate
conjectures, one on the log-unit lattice, the other one on the class group lattice. Concerning the latter,
assume that the class number is a prime p. Then we can choose p1 to be a generator of the class group,
and the relation matrix is of the form

p a1 a2 . . . ar
0 1 0 . . . 0
0 0 1 0
...

...
. . .

...
0 0 0 . . . 1

 ,

where the ai’s in [0, p − 1] characterize the elements of the ideal class group. In our setting where
each pi (for i ≥ 2) is picked randomly among small prime ideals, we can thus reasonably assume that
the ai’s are uniformly distributed in [0, p − 1]. Hence, for (ei)2≤i≤r ∈ [−B,B]r−1 for some constant
B ≥ 1, we can expect that one among the (2B + 1)r−1 = pc (with c > 1) fractional ideals

∏
i≥2 p

ei
i is

in a class [p1]a for some a = O(1), which implies that the `∞-norm covering radius is O(1).
The general case is analogous to this first intuition. Let B = {p1, . . . , ps, ps+1, . . . , pr} with

{p1, . . . , ps} the prime ideals coming from the set B′′ (hence fixed) and {ps+1, . . . , pr} the ideals uni-
formly chosen among prime ideals of norm bounded by some polynomial. Because the set B′′ generates
the class group, we can find a basis of L of the following form, by taking the HNF matrix for the
bottom-right part of BL.

c ·BΛ

0

c · h̃g1 , . . . , c · h̃gr

vs+1 · · · vrB′L := RB′′

1
. . .

1

r

r

s

r1 + r2 − 1

r1 + r2 − 1

In this matrix, the block matrices BΛ and RB′′ are fixed, as well as the vectors h̃gi for i in {1, . . . , s}.
However, the vectors vi and h̃gi for s < i ≤ r depend on our choices of {ps+1, . . . , pr}. The vectors
of Zs/RB′′ are in bijection with the elements of the ideal class group (because B′′ generates the class
group). So if we assume that the class of a uniform prime ideal of norm polynomially bounded is
uniform in the class group, then we would have that the vectors vi of the matrix above are uniform in
Zs/RB′′ . In a similar way, we will assume that the vectors h̃gi are somehow uniform in Rr1+r2−1/Λ
(recall that they correspond to the projection over H of Log gi for gi a generator of the principal ideal
associated with the lower part of the vector).

Let us now explain why, given any target vector t ∈ Rν , we expect to find a vector v ∈ L at distance
O(1) from t. Write t = (c · h̃, v, w)T with h̃ of dimension r1 + r2 − 1, v of dimension s and w of

51

CHAPTER 3. SVP IN IDEAL LATTICES WITH PRE-PROCESSING

Conductor of K Dimension of L µ̃(2)(L) µ̃(∞)(L)
18 9 1.13 0.755
16 16 1.50 0.899
36 28 1.79 0.795
40 41 2.15 0.893
48 42 2.19 0.840
32 44 2.26 0.794
27 49 2.36 0.901
66 54 2.47 0.989
44 57 2.53 0.815
70 67 2.72 1.03
84 68 2.74 1.27
90 68 2.71 0.814
78 70 2.81 0.882
72 73 2.90 1.00

Table 3.1: Approximate covering radii in `2 and `∞ norms for the lattice L, for cyclotomic number
fields of different conductors.

dimension r − s. We can assume, without loss of generality, that |wi| < 1/2 for all i (using the last
r − s columns of B′L to reduce t if needed). By taking the subset sums of the last r − s columns of

B′L, we obtain 2r−s vectors of L of the form t′ = (c · h̃′, v′, w′)T , with w′ ∈ {0, 1}r−s. Because we

assumed that the vi and h̃gi for s < i ≤ r were somehow uniform modulo RB′′ and Λ respectively, we

also expect the vectors h̃′ and v′ created above to be somehow uniform modulo RB′′ and Λ. Recall
that we chose r so that (det(cΛ) · det(RB′′))

1/r = O(1), hence the volume of cΛ and RB′′ satisfies
det(cΛ) · det(RB′′) ≤ 2O(r). We can then assume that we have 2r−s > det(cΛ) · det(RB′′) (if needed,
we can multiply r by a constant factor, which will not change the asymptotics). This means that we

expect to find one of the 2r−s vector t′ = (c · h̃′, v′, w′)T satisfying ‖(c · h̃, v) − (c · h̃′, v′)‖∞ = O(1).
And because |wi| < 1/2 and w′i ∈ {0, 1} we also have ‖t− t′‖∞ = O(1).

We experimentally computed the lattice L for some cyclotomic fields (using Algorithm 3.1). For
each lattice L, we then computed an empirical covering radius. To do so, we picked 21 random target
vectors ti in the real span of the lattice. These vectors were sampled from a continuous Gaussian
distribution with standard deviation σ = 100.

We then solved the CVP instances in L for these target vectors ti and let vi be a closest vector in L
(for the `2-norm). We defined µ̃(2)(L) to be maxi ‖ti − vi‖2 and µ̃(∞)(L) to be maxi ‖ti − vi‖∞.4 The
approximated values of µ(2)(L) and µ(∞)(L) are given in Table 3.1.

We observe that, while µ̃(2)(L) increases with the dimension (we expect that it increases as
√
ν),

the approximate covering radius in `∞-norm µ̃(∞)(L) seems to remain constant around 1. These
experimental results are consistent with Heuristic 3.6.

3.4.2 Using Laarhoven’s algorithm

We now consider Laarhoven’s algorithm, which solves approx-CVPP in Euclidean norm. While we
would prefer an algorithm which solves approx-CVPP’ in infinity norm, we only found algorithms for
the Euclidean norm in the literature.

Recall from Section 2.2.1 that, for a ν-dimensional lattice L, Laarhoven’s (heuristic) algorithm gives,
for any α ∈ [0, 1/2]:

T pre-proc
CVP (2, L,O(να) · µ(2)(L)) = 2O(ν),

T query
CVP (2, L,O(να) · µ(2)(L)) = 2Õ(ν1−2α).

4As we solved CVP in L for the `2-norm, the quantity µ(∞)(L) may be over-estimated, but this should not be
over-estimated by too much. Further, as we want an upper bound on µ(∞)(L), this is not an issue.

52

CHAPTER 3. SVP IN IDEAL LATTICES WITH PRE-PROCESSING

As we have assumed (Heuristic 3.6) that µ(2)(L) = O(
√
ν) with good probability over the choice of L,

this implies that Laarhoven’s algorithm achieves

T pre-proc
CVP (2, L,O(ν1/2+α)) = 2O(ν) and T query

CVP (2, L,O(ν1/2+α)) = 2Õ(ν1−2α).

We now have an algorithm that, given any input t ∈ Span(L), outputs a vector v ∈ L such that
‖t−v‖2 ≤ O(ν1/2+α), while we would like to have ‖t−v‖∞ ≤ O(να). However, when we pick a random
vector of Euclidean norm bounded by O(ν1/2+α), we expect that with good probability, its coefficients
are somehow balanced. Hence we expect its infinity norm to be approximately

√
ν times smaller than

its Euclidean norm. This is the meaning of the following heuristic assumptions.
First, because we want the output of Laarhoven’s algorithm to be somehow random, we argue that

we can randomize the input vector of the CVPP algorithm.

Heuristic 3.7. We assume that in our algorithm, the target vector t given as input to Laarhoven’s
algorithm behaves as a random vector sampled uniformly in Span(L)/L.

This assumption that t is distributed uniformly in Span(L)/L may be justified by the fact that,
in Algorithm 3.2, we can somehow randomize our target vector t by multiplying our initial fractional
ideal I by an integral ideal of small algebraic norm (statistically independent of the pi’s chosen for B).

Heuristic 3.8. With non-negligible probability over the input target vector t, distributed uniformly in
Span(L)/L, the vector v output by Laarhoven’s algorithm satisfies ‖t− v‖∞ ≤ Õ(‖t− v‖2/

√
ν).

In order to motivate Heuristic 3.8, we recall that if a vector is drawn uniformly at random on a
sphere, then its `∞-norm is smaller than its `2-norm by a factor O(log n/

√
n), with good probability.

Lemma 3.9. Let x be sampled uniformly on the unit sphere Sn−1 in Rn. Then Pr(‖x‖∞ ≥
√

8 lnn√
n

) ≤
O(1√

lnn
).

Proof. Sampling x uniformly in Sn−1 is the same as sampling y from a centered spherical (continuous)
Gaussian distribution of parameter 1 and then normalizing it by setting x = y

‖y‖2 . So we have ‖x‖∞ =
‖y‖∞
‖y‖2 , and it is sufficient to find an upper bound on ‖y‖∞ and a lower bound on ‖y‖2. We know that for

a centered spherical Gaussian distribution of parameter 1, we have Pr(‖y‖∞ > 2 lnn) = Pr(∃i : |yi| >
2 lnn) ≤ 1

2
√

2π lnn
. Moreover, we also have that Pr(‖y‖2 <

√
n/2) ≤ e−n/8 (see for instance [LM00,

Lemma 1]). By the union bound, we finally obtain that Pr(‖y‖∞/‖y‖2 >
√

8 lnn√
n

) ≤ O(1√
lnn

).

Note that the proof also shows that for a vector y following a continuous Gaussian distribution of
dimension n, we have ‖y‖∞/‖y‖2 = O(log n/

√
n) with good probability. We also have experimental

results corroborating Heuristic 3.8. We implemented our algorithm in Magma, both the generation of
the lattice L and the CVPP phase using Laarhoven’s algorithm. We tested our implementation for
different cyclotomic fields. The maximum conductor achieved was 90. The maximum dimension of
the lattice L that we achieved was 73, for a cyclotomic field of conductor 72. For these cyclotomic
fields, we computed the lattice L. Then, we sampled target vectors t in the real span of L, using a
Gaussian distribution of parameter σ = 100, and we ran Laarhoven’s CVP algorithm to obtain a vector

v ∈ L. We then computed the ratios ‖t−v‖2
‖t−v‖∞ , which we expect to be around O(

√
ν/ log ν). Because

we are working in small dimensions, the log ν term has a non-negligible impact. So, instead of plotting

log(‖t−v‖2‖t−v‖∞) as a function of log ν, we compared our ratios with the ones we would have obtained if

the vectors were Gaussian vectors. On Figure 3.3, the blue dots represent the logarithms of the ratios
‖t−v‖2
‖t−v‖∞ obtained when choosing a random Gaussian vector t as input of our algorithm. For every

fixed conductor, we have several vertically aligned points, because we tried Laarhoven’s algorithm for
different approximation factors (i.e., different choices of α). The green ‘+’ are obtained by computing
log(‖x‖2/‖x‖∞) for some Gaussian vectors of dimension ν. The red crosses are obtained by taking the
median point of a large number of green ‘+’ (not all of them are plotted on the figure). We observe that
the ratios obtained with our algorithm are well aligned with the red crosses. Moreover, even if we have
some variance within the blue dots, it is comparable to the variance observed within the green ‘+’. So
Heuristic 3.8 seems consistent with our empirical experiments (recall that Gaussian vectors provably
satisfy Heuristic 3.8 with good probability).

53

CHAPTER 3. SVP IN IDEAL LATTICES WITH PRE-PROCESSING

Figure 3.3: Comparison of log(‖x‖2/‖x‖∞) as a function of log ν for x a Gaussian vector or x = t− v
with t a random target and v the approx-CVP solution output by Laarhoven’s algorithm (on our
lattice L, in selected cyclotomic fields).

We conclude that, under Heuristics 3.6, 3.7 and 3.8, and Heuristic 2.7 present in [Laa16], for any
α ∈ [0, 1/2], Laarhoven’s algorithm solves approx-CVPP’ with

T pre-proc
CVP (∞, L, να) = 2O(ν) and T query

CVP (∞, L, να) = 2Õ(ν1−2α). (3.1)

3.5 Instantiating Theorem 3.5

We now instantiate Theorem 3.5 with ν = Õ(log ∆) and the values given in Section 2.3.10 and in
Equation (3.1) for Tlog-unit, Tdecomp, Trel, T

pre-proc
CVP and T query

CVP .

Theorem 3.10. Let K be any number field of dimension n and discriminant ∆. Let α ∈ [0, 1/2].
Then, under GRH and Heuristics 2.7, 2.18, 2.19, 3.6, 3.7 and 3.8, there exist two algorithms Apre-proc

and Aquery such that

• Algorithm Apre-proc takes as inputs the field K and a basis of its integer ring R, runs in time

2Õ(log |∆|) and outputs a hint w of bit-size at most 2Õ((log |∆|)1−2α),

• Algorithm Aquery takes as inputs the hint w output by Apre-proc and any fractional ideal I of R
such that the numerator and denominator of N (I) have bit-sizes bounded by poly(log |∆|). It

runs in classical time 2Õ((log |∆|)max(2/3,1−2α)) or in quantum time 2Õ((log |∆|)1−2α) and outputs an

element x ∈ I such that 0 < ‖x‖2 ≤ 2Õ(
(log |∆|)α+1

n) · λ(2)
1 (I).

The memory consumption of both algorithms is bounded by their run-times.

In the case where log |∆| = Õ(n), we can replace log |∆| by n in all the equations of Theorem 3.10,

and we obtain an element x which is a 2Õ(nα) approximation of a shortest non-zero vector of I (see
Figure 3.4). On the other hand, if log |∆| becomes significantly larger than n, then both the run-time

54

CHAPTER 3. SVP IN IDEAL LATTICES WITH PRE-PROCESSING

and the approximation factor degrade. The cost of the pre-computation phase also becomes larger
than 2O(n). However, the query phase still improves upon the BKZ algorithm, for some choices of α,
as long as log |∆| = Õ(n12/11) in the classical setting or log |∆| = Õ(n4/3) in the quantum setting
(see Figure 3.5). In Figures 3.4 and 3.5, we plot the ratios between time and approximation factor for

the query phase of our algorithm, in the different regimes log |∆| = Õ(n) and log |∆| = Õ(n1+ε) for
some ε > 0.

Time

Approximation
factor

quantum

classical

2Õ(n)2Õ(n0.5)poly

2Õ(n)

2Õ(n2/3)

poly

Figure 3.4: New trade-offs for ideal lattices in
number fields satisfying log |∆| = Õ(n) (with a

pre-processing of cost exp(Õ(n))).

Time

Approximation
factor

quantum

classical

11+7ε
6

1+3ε
2

1 + 3ε

1

2(1+ε)
3

Figure 3.5: New trade-offs for ideal lattices
in number fields satisfying log |∆| = Õ(n1+ε)
for some ε > 0 (with a pre-processing of cost

exp(Õ(n1+ε))).

In the case of prime-power cyclotomic fields, we know that log |∆| = Õ(n). Moreover, there is a

heuristic algorithm of Biasse et al. [BEF+17] satisfying Trel, Tdecomp, Tlog-unit ≈ 2Õ(n1/2). Hence, we
obtain the trade-offs shown in Figure 3.2 (in the introduction) when applying our algorithm to prime-
power cyclotomic fields. Recall that in this special case, we already had an improvement upon the BKZ
algorithm in the quantum setting, using the results of [CDPR16] and [CDW17], see Figure 3.1.

3.5.1 Using a CVP oracle in a fixed lattice

In the next chapter, we will be interested in algorithms which are allowed to query an oracle solving
(exact) CVP in a fixed lattice depending only on the number field K. This means that we could replace
Laarhoven CVPP algorithm in the theorem above by a call to an oracle solving CVP in the lattice L.
We also extend slightly the statement of the theorem by considering lattices of the form αI for some
fractional ideal I and element α ∈ KR (note that if α was in K, this would be a fractional ideal).
Overall, we obtain the following lemma.

Lemma 3.11. For any number field K, there exists a lattice LK (that only depends on K and has

dimension Õ(log ∆K)) such that, given an oracle access to an algorithm that solves CVP for LK , the
following holds. Under GRH and Heuristics 3.6, 3.7 and 3.12, there exists a quantum polynomial-time
algorithm that takes as input an ideal I of K and any α ∈ K×R , and outputs x ∈ αI \ {0} such that

‖x‖∞ ≤ c · |N (α)|1/n · N (I)1/n,

where c = 2
Õ(log |∆|)

n . In particular, we have ‖x‖∞ ≤ c · |N (x)|1/n.

Recall that the quantum computations can be replaced by classical ones (e.g., [BF14,Gel17,BEF+17]),
at the expense of increased run-times and additional heuristic assumptions.

Because we are using an oracle to solve the closest vector problem in L (in Euclidean norm) instead
of Laarhoven’s algorithm, we need to modify Heuristic 3.8 in the following way.

Heuristic 3.12. With non-negligible probability over the input target vector t, distributed uniformly in
Span(L)/L, the vector v which is the closest to t in L satisfies ‖t− v‖∞ ≤ Õ(‖t− v‖2/

√
ν).

Proof. The lemma can be derived from Theorem 3.5 by taking LK = L, r = Õ(log |∆|) as in Sec-
tion 3.4.1, α = 0 and T pre-proc

CVP (∞, L, να) = T pre-proc
CVP (∞, L, να) = poly(n) (because we assumed that

we have an oracle solving CVP in LK = L).

55

CHAPTER 3. SVP IN IDEAL LATTICES WITH PRE-PROCESSING

In Algorithm 3.2, the target vector t of the CVP computation is derived from the decomposition
of [I] on the [pi]’s and the logarithm Log(g) of an element g ∈ K. To obtain the statement above, we
replace Log(g) by Log(g · α) = Log(g) + Log(α). The last lemma statement ‖x‖∞ ≤ c|N (x)|1/n comes
from the observation that |N (x)| ≥ N (α) · N (I) (which holds because x belongs to αI \ {0}).

3.6 Conclusion

We have described in this chapter an algorithm which, after some exponential pre-processing, enables
us to find somehow short vectors in ideal lattices more efficiently than the BKZ algorithm, for a large
range of approximation factors. One may then wonder whether this algorithm can be improved, either
in the pre-processing phase (can we obtain a pre-processing phase which is less than exponential?), or
in the query phase (can we further improve the trade-offs?).

In order to better understand how the algorithm could be improved, we kept track of all the different
sub-algorithms that compose our approx-SVP solver. The exact formulation of the total cost of the
algorithm, as a function of the costs of the sub-algorithms, is given in Theorem 3.5. This formulation
allows us to see whether an improvement of the run-time of one of them leads to an improvement of
the overall cost of the approx-SVP solver. In particular, we observe that:

• Improving the approx-CVP solver would lead to an improvement of the slope of the curves in

Figure 3.2, for approximation factors smaller than 2Õ(
√
n). In a different direction, removing the

pre-processing step needed for this approx-CVP solver would remove the pre-processing of the
overall approx-SVP algorithm.

• Designing a classical algorithm that performs class group related computations in time less than

2Õ(
√
n) would allow to further extend the (classical) segment of Figure 3.2 with slope −1/2,

until it reaches the cost needed to solve these class group related problems. For example, Biasse
described in [Bia17] an algorithm to solve the principal ideal problem in cyclotomic fields of prime-
power conductor, with pre-processing. After pre-computations depending on the field only, this

algorithm finds a generator of a principal ideal in time less than 2Õ(
√
n) if the ideal has algebraic

norm ≤ 2Õ(n1.5).

Finally, one could wonder whether it is possible to find significantly faster approx-SVP algorithms
for specific families of number fields and/or restricted families of ideals. For instance, the Bauch et al.
algorithm from [BBV+17] and the follow-up algorithm of Biasse and van Vredendaal [BV18] efficiently
solve class group related problems in real multiquadratic number fields in the classical setting. This
means that in these number fields, the classical version of our algorithm is as efficient as the quantum
one (there is no threshold for the query phase in the classical setting). However, the algorithm still
requires an exponential pre-processing phase for the approx-CVP solver.

56

Chapter 4

An LLL algorithm for module
lattices

As mentioned in the previous chapter, it is not clear whether being able to find short vectors in ideal
lattices has any impact on the difficulty of problems such as RingLWE or RingSIS, which are the
problems whose intractability is most often used to support the security of most efficient lattice-based
cryptographic schemes. However, it is known that these problems are equivalent to SIVP in module
lattices [LS15, AD17]. A module of rank one is (essentially) an ideal, hence SIVP in module lattices
includes SVP in ideal lattices.

In this chapter, we first focus on the simplest modules which are not ideals, i.e., modules of rank 2.
We propose an algorithm which mimics the LLL algorithm (or Gauss’s algorithm, as we are considering
2-dimensional matrices) for rank 2 modules over some ring of integers R instead of Z. If given access
to an oracle solving CVP in a fixed lattice depending only on the number field, our algorithm outputs
a small element of the module in quantum polynomial time. In the case of a power-of-two cyclotomic
number field of degree n, the fixed lattice in which we want to solve CVP has dimension roughly n2 and
the small element output by the algorithm is a quasi-polynomial approximation of the shortest vector
of the module. This algorithm uses in a black box way the one described in the previous chapter.
We will only use Lemma 3.11 from Chapter 3, hence this chapter can be read independently from
the previous one. In a second time, we describe a generalization of the LLL algorithm to modules of
arbitrary rank m, which uses as a black box the approx-SVP solver for rank-2 modules described above
(or any other approx-SVP solver for rank-2 modules).

This chapter is based on a joint work with Changmin Lee, Damien Stehlé and Alexandre Wallet,
which was accepted at Asiacrypt 2019 [LPSW19]. The code that was used to perform the experiments
described in this chapter is available at

http://perso.ens-lyon.fr/alice.pellet___mary/code/code-module-lll.zip

Contents
4.1 Introduction . 58

4.2 Contribution . 59

4.2.1 Technical overview . 60

4.2.2 Impact . 61

4.3 Divide-and-swap algorithm for rank-2 modules 62

4.3.1 Extending the logarithm . 62

4.3.2 The lattice L . 63

4.3.3 On the distance of relevant vectors to the lattice 64

4.3.4 A “Euclidean division” over R . 69

4.3.5 The divide-and-swap algorithm . 73

4.4 LLL-reduction of module pseudo-bases . 76

4.4.1 An LLL algorithm for module lattices . 76

4.4.2 Handling bit-sizes . 78

4.4.3 Finding short vectors for the Euclidean norm 80

4.5 Conclusion . 81

57

http://perso.ens-lyon.fr/alice.pellet___mary/code/code-module-lll.zip

CHAPTER 4. AN LLL ALGORITHM FOR MODULE LATTICES

4.1 Introduction

The NTRU [HPS98], RingSIS [LM06,PR06], RingLWE [SSTX09,LPR10], ModuleSIS and ModuleLWE
[BGV14, LS15] problems and their variants serve as security foundations of numerous cryptographic
protocols. Their main advantages are their presumed quantum hardness, their flexibility for realizing
advanced cryptographic functionalities, and their efficiency compared to their SIS and LWE counter-
parts [Ajt96, Reg05]. As an illustration of their popularity for cryptographic design, we note that 11
out of the 26 candidates at Round 2 of the NIST standardization process for post-quantum cryptog-
raphy rely on these problems or variants thereof.1 From a hardness perspective, these problems are
best viewed as standard problems on Euclidean lattices, restricted to random lattices corresponding
to modules over the rings of integers of number fields. Further, for some parametrizations, there exist
reductions from and to standard worst-case problems for such module lattices [LS15,AD17,RSW18].

Let K be a number field and R its ring of integers. In this introduction, we will use the power-of-2
cyclotomic fields K = Q[x]/(xn+ 1) and their rings of integers R = Z[x]/(xn+ 1) as a running example
(with n a power of 2). An R-module M ⊂ Km is a finitely generated subset of vectors in Km that is
stable under addition and multiplication by elements of R. As an example, if we consider h ∈ R/qR
for some integer q, the set {(f, g)T ∈ R2 : fh = g mod q} is a module. If h is an NTRU public key,
the corresponding secret key is a vector in that module, and its entries have coefficients that are small.
Note that for K = Q and R = Z, we recover Euclidean lattices in Qm. A first difficulty for handling
modules compared to lattices is that R may not be a Euclidean domain, and, as a result, a module M
may not be of the form M =

∑
iRbi for some linearly independent bi’s in M . However, as R is a

Dedekind domain, for every module M , there exist K-linearly independent bi’s and fractional ideals Ii
such that M =

∑
Iibi (see, e.g., [O’M63, Th. 81:3]). The set ((Ii,bi))i is called a pseudo-basis of M .

A module in Km can always be viewed as a lattice in Cmn by mapping elements of K to Cn via
the canonical embedding map (for our running example, it is equivalent to mapping a polynomial of
degree < n to the vector of its coefficients). Reminders about modules can be found in Section 2.3.7.

Standard lattice problems, such as finding a full-rank set of linearly independent short vectors in a
given lattice, are presumed difficult, even in the context of quantum computations. In order to assess
the security of cryptographic schemes based on NTRU/RingSIS/etc, an essential question is whether the
restriction to module lattices brings vulnerabilities. Putting aside small polynomial speed-ups relying
on the field automorphisms (multiplication by x in our running example), the cryptanalytic state of
the art is to view the modules as arbitrary lattices, i.e., forgetting the module structure.

LLL [LLL82] is the central algorithm to manipulate lattice bases. It takes as input a basis of a
given lattice, progressively updates it, and eventually outputs another basis of the same lattice that is
made of relatively short vectors. Its run-time is polynomial in the input bit-length. For cryptanalysis,
one typically relies on BKZ [SE94] which extends this principle to find shorter vectors at a higher cost.
Finding an analogue of LLL for module lattices has been an elusive goal for at least two decades, a
difficulty being to even define what that would be. Informally, it should:

• work at the field level (in particular, it should not forget the module structure and view the
module just as a lattice);

• it should find relatively short module pseudo-bases by progressively updating the input pseudo-
basis;

• it should run in polynomial-time with respect to the module rank n and the bit-lengths of the
norms of the input vectors and ideals.

The state of the art is far from these goals. Napias [Nap96] proposed such an algorithm for fields whose
rings of integers are norm-Euclidean, i.e., Euclidean for the algebraic norm (in our running example, this
restricts the applicability to n ≤ 4). Fieker and Pohst [FP96] proposed a general-purpose algorithm.
However, it was not proved to provide pseudo-bases consisting of short module vectors, and a cost
analysis was provided only for free modules over totally real fields. Fieker [Fie97, p. 47] suggested to
use rank-2 module reduction to achieve rank-m module reduction, but there was no follow-up on this
approach. Gan, Ling and Mow [GLM09] described and analyzed an LLL algorithm for Gauss integers

1See https://csrc.nist.gov/projects/post-quantum-cryptography

58

https://csrc.nist.gov/projects/post-quantum-cryptography

CHAPTER 4. AN LLL ALGORITHM FOR MODULE LATTICES

(i.e., our running example instantiated to n = 2). Fieker and Stehlé [FS10] proposed to apply the
LLL algorithm on the lattice corresponding to the module to find short vectors in polynomial time and
reconstruct a short pseudo-basis afterwards. More recently, Kim and Lee [KL17] described such an
LLL algorithm for biquadratic fields whose rings of integers are norm-Euclidean, and provided analyses
for the shortness of the output and the run-time. They also proposed an extension to arbitrary norm-
Euclidean rings, still with a run-time analysis but only conjecturing and experimentally supporting the
output quality.

The rank-2 restriction already captures a fundamental obstacle. The LLL algorithm for 2-dimensional
lattices (which is essentially Gauss’ algorithm) is a succession of divide-and-swap steps. Given two vec-
tors b1,b2 ∈ Q2, the ‘division’ consists in shortening b2 by an integer multiple of b1. This integer k is
the quotient of the Euclidean division of 〈b1,b2〉 by ‖b1‖2. This leads to a vector b′2. If the latter is
shorter than b1, then b1 and b′2 are swapped and a new iteration starts. Crucial to this procedure is
the fact that if the projection of b2 orthogonally to b1 is very small compared to ‖b1‖, then the division
will provide a vector b′2 that is shorter than b1. When a swap cannot be made, it means that the pro-
jection of b2 orthogonally to b1 is not too small, and hence the basis is of good quality, i.e., somewhat
orthogonal and hence made of somewhat short vectors. What provides the convergence to a short basis
is the Euclideanity of Z. This is why prior works focused on this setup. Put differently, the crucial
property is the fact that the covering radius of the Z lattice is smaller than 1: this makes it possible
to shorten a vector b2 whose projection is sufficiently small by an appropriate integer multiple such
that b′2 becomes smaller than b1. When we extend to modules, the corresponding lattice becomes R,
and its covering radius has no a priori reason to be smaller than 1 (for our running example, it is

√
n/2).

Even if we allow an infinite amount of time to find an optimal k ∈ R, the resulting b2 − kb1 may still
be longer than b1, even if b2 is in the K-span of b1. This leads us to the following question: does there
exist a lattice L depending only on K such that being able to solve the Closest Vector Problem (CVP)
with respect to L allows to find short bases of modules in K2?

4.2 Contribution

The LLL algorithm for Euclidean lattices can be viewed as a way to leverage the ability of Gauss’
algorithm to reduce 2-dimensional lattice bases, to reduce m-dimensional lattice bases for any m ≥ 2.
We propose extensions to modules of both Gauss’ algorithm and of its LLL leveraging from 2 to n
dimensions, hence providing a full-fledged framework for LLL-like reduction of module pseudo-bases.

Our first contribution in this chapter is to present a heuristic algorithm to find a very short non-zero
vector in an arbitrary module in K2, given access to a CVP oracle with respect to a lattice depending
only on K. We obtain the following result for our running example (see Corollary 4.13 for a statement
for arbitrary number fields).

Theorem 4.1 (Heuristic). There exists a sequence of lattices Ln and an algorithm A such that the
following holds. Algorithm A takes as input a pseudo-basis of a rank-2 module M ⊂ (Q/(xn + 1))2

(with n a power of two), and outputs a vector v ∈M \{0} that is no more than 2(logn)O(1)

longer than a
shortest non-zero vector of M . If given access to an oracle solving CVP in Ln, then it runs in quantum
polynomial time. Finally, for any η > 0, the lattice Ln can be chosen of dimension O(n2+η).

The quantum component of the algorithm is the decomposition of an ideal as the product of a subset
of fixed ideals and a principal ideal with a generator [BS16]. By relying on [BEF+17] instead, one can
obtain a dequantized variant of Theorem 4.1 relying on more heuristics and in which the algorithm

runs in 2Õ(
√
n) classical time.

We insist that the result relies on heuristics. It relies on GRH and Heuristics 3.6, 3.7 and 3.12
presented in the previous chapter, as well as a new Heuristic 4.5, defined in Section 4.3.3. The new
heuristic quantifies the distance to Ln of vectors in the real span of Ln that satisfy some properties. This
heuristic is difficult to prove as the lattice Ln involves other lattices that are not very well understood
(the log-unit lattice and the lattice of class group relations between ideals of small algebraic norms).
We justify this heuristic by informal counting arguments and by some experiments supporting parts of
these counting arguments.

Finally, we note that the dimension of Ln is essentially quadratic in the degree n of the field. This
is much more than the lattice dimension n of R, but we do not know how to use a CVP oracle for R to

59

CHAPTER 4. AN LLL ALGORITHM FOR MODULE LATTICES

obtain such an algorithm to find short vectors in rank-2 modules. An alternative approach to obtain
a similar reduction from finding short non-zero vectors in rank-2 modules to CVP with preprocessing
would be as follows: to reach the goal, it suffices to find a short non-zero vector in a (2n)-dimensional
lattice; by using the LLL algorithm and numerical approximations (see, e.g., [SMSV14]), it is possible
to further assume that the bit-size of the inputs is polynomial in n; by Kannan’s search-to-decision
reduction for the shortest vector problem [Kan87], it suffices to obtain an algorithm that decides
whether or not a lattice contains a non-zero vector of norm below 1; the latter task can be expressed
as an instance of 3SAT, as the corresponding language belongs to NP; finally, 3SAT reduces to CVP
with preprocessing [Mic01]. Overall, this gives an alternative to Theorem 4.1 without heuristics, but
lattices Ln of much higher dimensions (which still grow polynomially in n).

As a second contribution, we describe an oracle-based algorithm which takes as input a pseudo-
basis of a module M ⊂ Km over the ring of integers R of an arbitrary number field K, updates it
progressively in a fashion similar to the LLL algorithm, and outputs a pseudo-basis of M . The first
output vector is short, and the algorithm runs in time polynomial in m and the bit-lengths of the norms
of the input vectors and ideals. It makes a polynomial number of calls to an oracle that finds short
vectors in rank-2 modules. This oracle-based LLL-like algorithm for modules allows us to obtain the
following result for power-of-two cyclotomic fields (see Theorem 4.22 for a general statement).

Theorem 4.2. Let K = Q[x]/(xn + 1) and R = Z[x]/(xn + 1), for n a power of 2. There is a
polynomial-time reduction from finding a (2γ

√
n)2m−1-approximation to a shortest non-zero vector in

modules in Km (with respect to the Euclidean norm inherited from mapping an element of Km to the
concatenation of its m coefficient vectors) to finding a γ-approximation to a shortest non-zero vector
in modules in K2.

For example, if m is constant, then the reduction allows to obtain polynomial approximation factors
in modules in Km from polynomial approximation factors in modules in K2.

Combining this reduction with the heuristic algorithm described above gives us a heuristic LLL
algorithm for modules of rank m over R. This algorithm runs in quantum polynomial time, provided
that it has access to an oracle solving CVP in a fixed lattice of dimension Õ(n2+η), for some η > 0
(again, in the case of power-of-two cyclotomic field).

4.2.1 Technical overview

One of the technical difficulties of extending LLL to modules is the fact that the absolute value | · |
over Q has two canonical generalizations over K: the trace norm and the absolute value of the algebraic
norm. Let (σi)i≤n denote the embedding of K into C. The trace norm and the absolute value of the
algebraic norm of x ∈ K are respectively defined as (

∑
i |σi(x)|2)1/2 and

∏
i |σi(x)|. When K = Q, the

only embedding is the identity map, and both the trace norm and the absolute value of the algebraic
norm collapse to the absolute value. When the field degree is greater than 1, they do not collapse, and
are convenient for diverse properties. For instance, the trace norm is convenient to measure smallness
of a vector over Km. A nice property is that the bit-size of an element of R is polynomially bounded
in the bit-size of the trace norm (for a fixed field K). Oppositely, an element in R may have algebraic
norm 1, but can have arbitrarily large bit-size. On the other hand, the algebraic norm is multiplicative,
which interacts well with determinants. For example, the determinant of the lattice corresponding to
a diagonal matrix over K is simply the product of the algebraic norms of the diagonal entries (up to
a scalar depending only on the field K). When K = Q, LLL relies on all these properties, that are
conveniently satisfied by the absolute value.

Our algorithm for finding short non-zero vectors in rank-2 modules iterates divide-and-swap steps
like 2-dimensional LLL (or Gauss’ algorithm). The crucial component is the generalization of the
Euclidean division, from Z to R. We are given a ∈ K \ {0} and b ∈ K, and we would like to shorten b
using R-multiples of a. In the context of a ∈ Q \ {0} and b ∈ Q, a Euclidean division provides us with
u ∈ Z such that |b+ ua| ≤ |a|/2. We would like to have an analogous division in R. However, the ring
R may not be Euclidean. Moreover, the covering radius of the ring R (viewed as a lattice) can be larger
than 1, and hence, in most cases, there will not even exist an element u ∈ R such that ‖b+ au‖ ≤ ‖a‖
(here ‖ · ‖ refers to the trace norm). In order to shorten b using a, we also allow b to be multiplied by
some element v ∈ R. For this extension to be non-trivial (and useful), we require that v is not too large

60

CHAPTER 4. AN LLL ALGORITHM FOR MODULE LATTICES

(otherwise, one can always take u = b and v = −a for instance, if a, b ∈ R, and extend this approach for
general a, b ∈ K). Hence, we are interested in finding u, v such that ‖ua+ vb‖ ≤ ε‖a‖ and ‖v‖ ≤ C for
some ε < 1 and C to be determined later. Intuitively, if we allow for a large number of such multiples v
(proportional to 1/ε and to the determinant of the lattice corresponding to R, i.e., the square root of the
field discriminant), there should be one such v such that there exists u ∈ R with ‖vb+au‖ ≤ ε‖a‖. We
do not know how to achieve the result with this heuristically optimal number of v’s and use potentially
larger v’s. The astute reader will note that if we use such a v inside a divide-and-swap algorithm,
we may end up computing short vectors in sub-modules of the input modules. We prevent this from
happening by using the module Hermite Normal Form [BP91,Coh96,BFH17].

To find u, v such that ‖vb+au‖ is small, we use the logarithm map Log over K. For this discussion,
we do not need to explain how it is defined, but only that it “works” like the logarithm map log over R>0.
In particular if x ≈ y, then Log x ≈ Log y. We would actually prefer to have the converse property, but
it does not hold for the standard Log over K. In Subsection 4.3.1, we propose an extension Log such
that Log x ≈ Log y implies that x ≈ y. In our context, this means that we want to find u, v such that
Log v−Log u ≈ Log b−Log a. To achieve this, we will essentially look for such u and v that are product
combinations of fixed small elements in R. When applying the Log function, the product combinations
become integer combinations of the Log’s of the fixed elements. This gives us our CVP instance: the
lattice is defined using the Log’s of the fixed elements and the target is defined using Log(b)− Log(a).
This description is only to provide intuition, as reality is more technical: we use the log-unit lattice
and small-norm ideals rather than small-norm elements.

One advantage of using the Log map is that the multiplicative structure of K is mapped to an
additive structure, hence leading to a CVP instance. On the downside, one needs extreme closeness
in the Log space to obtain useful closeness in K (in this direction, we apply an exponential function).
Put differently, we need the lattice to be very dense so that there is a lattice vector that is very close
to the target vector. This is the fundamental reason why we end up with a large lattice dimension:
we add a large number of Log’s of small-norm ideals to densify the lattice. This makes the analysis
of the distance to the lattice quite cumbersome, as the Gaussian heuristic gives too crude estimates.
For our running example, we have a lattice of dimension ≈ n2 and determinant ≈ 1, hence we would
expect a ‘random’ target vector to be at distance ≈ n from the lattice. We argue for a distance of
at most ≈

√
n for ‘specific’ target vectors. Finally, we note that the lattice and its analysis share

similarities with the Schnorr-Adleman lattice that Ajtai used to prove NP-hardness of SVP under
randomized reductions [Ajt98,MG02] (but we do not know if there is a connection).

Recall that when extending the LLL algorithm to arbitrary number fields, one can choose between
two generalizations of the absolute value: the trace norm or the absolute value of the algebraic norm. In
our second contribution, i.e., the LLL algorithm for module lattices, we crucially rely on the algebraic
norm. Indeed, the progress made by the LLL algorithm is measured by the so-called potential function,
which is a product of determinants. As observed in prior works [FP96, KL17], using the algebraic
norm allows for a direct generalization of this potential function to module lattices. What allowed
us to go beyond norm-Euclidean number fields is the black-box handling of rank-2 modules. By not
considering this difficult component, we can make do with the algebraic norm for the most important
parts of the algorithm. The trace norm is still used to control the bit-sizes of the module pseudo-bases
occurring during the algorithm, allowing to extend the so-called size-reduction process within LLL,
but is not used to “make progress”. The black-boxing of the rank-2 modules requires the introduction
of a modified condition for deciding which 2-dimensional pseudo-basis to consider to “make progress”
on the m-dimensional pseudo-basis being reduced. This condition is expressed as the ratio between
2-determinants, which is compatible with the exclusive use of the algebraic norm to measure progress.
It involves the coefficient ideals, which was unnecessary in prior works handling norm-Euclidean fields,
as for such fields, all modules can be generated by a basis instead of a pseudo-basis.

4.2.2 Impact

Recent works have showed that lattice problems restricted to ideals of some cyclotomic number fields
can be quantumly solved faster than for arbitrary lattices, for some ranges of parameters [CDW17],
and for all number fields with not too large discriminant, if allowing preprocessing that depends only
on the field [PHS19] (see Chapter 3). Recall that ideal lattices are rank-1 module lattices. Our work

61

CHAPTER 4. AN LLL ALGORITHM FOR MODULE LATTICES

can be viewed as a step towards assessing the existence of such weaknesses for modules of larger rank,
which are those that appear when trying to cryptanalyze cryptosystems based on the NTRU, RingSIS,
RingLWE, ModuleSIS and ModuleLWE problems and their variants.

Similarly to [CDW17,PHS19], our results use CVP oracles for lattices defined in terms of the number
field only (i.e., defined independently of the input module). In [CDW17, PHS19], the weaknesses of
rank-1 modules stemmed from two properties of these CVP instances: the lattices had dimension quasi-
linear in the log-discriminant (quasi-linear in the field degree, for our running example), and either the
CVP instances were easy to solve [CDW17], or approximate solutions sufficed [PHS19] and one could
rely on Laarhoven’s CVP with preprocessing algorithm [Laa16]. In our case, we need (almost) exact
solutions to CVP instances for which we could not find any efficient algorithm, and the invariant lattice
has a dimension that is more than quadratic in the log-discriminant (in the field degree, for our running
example). It is not ruled out that there could be efficient CVP algorithms for such lattices, maybe for
some fields, but we do not have any lead to obtain them.

As explained earlier, CVP with preprocessing is known to be NP-complete, so there always exists
a fixed lattice allowing to solve the shortest vector problem in lattices of a target dimension. However,
the dimension of that fixed lattice grows as a high degree polynomial in the target dimension. The
fact that we only need near-quadratic dimensions (when the log-discriminant is quasi-linear in the field
degree) may be viewed as a hint that finding short non-zero vectors in rank-2 modules might be easier
than finding short non-zero vectors in arbitrary lattices of the same dimension.

Finally, our first result shows the generality of rank-2 modules towards finding short vectors in
rank-n modules for any n ≥ 2. The reduction allows to stay in the realm of polynomial approximation
factors (with respect to the field degree) for any constant n. This tends to back the conjecture that
there might be a hardness gap between rank-1 and rank-2 modules, and then a smoother transition for
higher rank modules.

4.3 Divide-and-swap algorithm for rank-2 modules

In this section, we describe a divide-and-swap algorithm for rank-2 modules, which mimic the 2-
dimensional LLL algorithm (or Gauss’ algorithm). In the first subsection below, we define a new
logarithm function, which will be well suited for our objective. We then describe a lattice L that
depends only on K and for which we will assume that we possess a CVP oracle. We also present our
new heuristic assumption and give some justification for it. Then, we propose an algorithm whose
objective is to act as a Euclidean algorithm, i.e., enabling us to shorten an element of KR using R-
multiples of another. Once we have this generalization of the Euclidean algorithm, we finally describe
a divide-and-swap algorithm for rank-2 modules.

4.3.1 Extending the logarithm

In this section, we introduce an extension of the Log function that we used in the previous chapter.
The difficulty with the usual Log function is that, for a, b ∈ K×R , the closeness between a and b is not
necessarily implied by the closeness of Log a and Log b. This is due to the fact that Log does not take
into account the complex arguments of the entries of the canonical embeddings of a and b. However, we
will need such a property to hold. For this purpose, we hence extend the Log function by also including
the argument of the embeddings. For x ∈ K×R , we define

Log x := (θ1, . . . , θr1+r2 , log |σ1(x)|, . . . , log |σn(x)|)T ,

where σi(x) = |σi(x)| · eIθi for all i ≤ r1 + r2. The Log function takes values in (πZ/2πZ)r1 ×
(R/(2πZ))r2 × Rn.

Lemma 4.3. For x, y ∈ K×R , we have:

‖x− y‖∞ ≤
(

e
√

2‖Log x−Log y‖∞ − 1
)
·min(‖x‖∞, ‖y‖∞).

Observe that for t ≤ (ln 2)/
√

2, we have e
√

2t − 1 ≤ 2
√

2t.

62

CHAPTER 4. AN LLL ALGORITHM FOR MODULE LATTICES

Proof. Let us write

Log x = (θ1, . . . , θr1+r2 , log |σ1(x)|, . . . , log |σr1+r2(x)|)T

and Log y = (θ′1, . . . , θ
′
r1+r2 , log |σ1(y)|, . . . , log |σr1+r2(y)|)T .

Let i ≤ r1 + r2 and define zx = log |σi(x)|+ Iθi and zy = log |σi(y)|+ Iθ′i. By definition of Log, we have
σi(x) = ezx and σi(y) = ezy . Therefore, we can write

|σi(x)− σi(y)|
|σi(x)|

= |1− ezy−zx | =
∣∣∑
k≥1

(zy − zx)k

k!

∣∣ ≤∑
k≥1

|zy − zx|k

k!
= e|zy−zx| − 1.

As |zx − zy| ≤
√

2‖Log x− Log y‖∞, we derive that

|σi(x)− σi(y)| ≤ ‖x‖∞ ·
(

e
√

2‖Log x−Log y‖∞ − 1
)
.

Note that this holds for all i ≤ r1 +r2 and that we could as well have used ‖y‖∞ rather than ‖x‖∞.

4.3.2 The lattice L

Let r = poly(n) and β > 0 be some parameter to be chosen later. Let Λ denote the log-unit lattice.
Let B0 = {p1, . . . , pr0} be a set of cardinality r0 ≤ log hK of prime ideals generating ClK , with
algebraic norms ≤ 2δ0 , with δ0 = O(log log |∆|). We will also consider another set B = {q1, . . . , qr} of
cardinality r, containing prime ideals (not in B0) of norms ≤ 2δ, for some parameters r and δ ≤ δ0 to be

chosen later. We also ask that among these ideals qj , at least half of them have an algebraic norm≥
√

2δ.
Because we want r such ideals, we should make sure that the number of prime ideals of norm bounded
by 2δ in R is larger than r. This is asymptotically satisfied if (log |∆|)2 ≤ r ≤ 2δ/(log |∆|)ε for some
ε > 0 (by Theorem 2.13 and Corollary 2.14). The constraint that at least r/2 ideals should have norm

larger than
√

2δ is not very limiting, as we expect that roughly 2δ −
√

2δ ≥ r −
√
r ideals should have

algebraic norm between
√

2δ and 2δ (forgetting about the poly(δ) terms).
We now define L as the lattice of dimension ν = 2(r1 + r2) + r0 + r − 1 spanned by the columns of

the following basis matrix:

β ·BΛ β · hg2(r1+r2) · · · β · hgν

BΛ0
wν−r+1

· · · wν

1

. . .

1

β · 2π
. . .
β · 2π

0

0

0

0

β · θgr1+r2+1 · · · β · θgν

β · ag2(r1+r2) · · · β · agν

BL :=

2(r1 + r2)− 1 r0 + r

r1 + r2

r1 + r2 − 1

r

r0

1

where

• BΛ is a basis of Λ, and we let (hi)r1+r2<i<2(r1+r2) denote its columns;

63

CHAPTER 4. AN LLL ALGORITHM FOR MODULE LATTICES

• BΛ0
is a basis of the lattice Λ0 := {(xj)j ∈ Zr0 :

∏
j p

xj
j is principal}, and we let (wi)2(r1+r2)≤i≤ν−r

denote its columns;

• for any g ∈ K, we have ag = (log |N (g)|)/
√
n ;

• for any g ∈ K, the vector θg consists of the first r1 + r2 entries of Log(g);

• for any g ∈ K, we have hg = iH∩E(ΠH(Log(g))), where ΠH is the orthogonal projection on H
and iH∩E is an isometry mapping H ∩ E to Rr1+r2−1;

• for any i > r1 + r2, if we parse the bottom r0 + r coordinates of the i-th column vector as

(wi,1, . . . , wi,r0 , w
′
i,1, . . . , w

′
i,r), then we have that 〈gi〉 =

∏
j p

wij
j ·

∏
j q

w′ij
j ;

• the gi’s for i > r1 + r2 are in K and, among them, gr1+r2+1, . . . g2(r1+r2)−1 are the units of R
corresponding to the columns of BΛ.

We now list a few properties satisfied by vectors in this lattice.

Lemma 4.4. For every vector (βa‖βθ‖βh‖w‖w′) ∈ L (with blocks of dimensions 1, r1+r2, r1+r2−1, r0

and r), there exists g ∈ K \ {0} with

• a = (log |N (g)|)/
√
n;

• Log(g) = (θ′‖Log(g)) with θ′ = θ mod 2π;

• h = iH∩E(ΠH(Log(g)));

• 〈g〉 =
∏
j p

wj
j

∏
j q

w′j
j .

Further, we have that ‖Log(g)‖2 = ‖(a,h)‖2.

Proof. Note that the first claim holds for the vectors of the input basis (with g = 1 for the first r1 + r2

vectors). The property is preserved by vector addition (resp. subtraction), as can be seen by multiplying
(resp. dividing) the corresponding g’s. Hence it holds for all vectors of the lattice.

For the last statement, observe that Log(g) = log |N (g)|
n 1 + ΠH(Log(g)). Hence, by orthogonality,

we have:

‖Log(g)‖22 =

(
log |N (g)|

n

)2

· n+ ‖ΠH(Log(g))‖22 = ‖(a,h)‖22.

This completes the proof.

4.3.3 On the distance of relevant vectors to the lattice

In this section, we make a heuristic assumption on the distance between target vectors of a specific form
and the lattice L defined in the previous section. This heuristic is backed with a counting argument.
As L is not full rank, we only consider target vectors t lying in the span of L. Also, as BL contains
the identity matrix in its bottom right corner, we cannot hope to have a covering radius that is much
smaller than

√
r. In our case, the lattice dimension ν will be of the order of r, but in our application

we will need a vector of L much closer to t than
√
r ≈
√
ν. In order to go below this value, we only

consider target vectors t whose last r coordinates are almost 0.

Heuristic 4.5. Assume that there exist some integer B ≤ r such that B ≥ 100 · (log hK) · δ0/δ and that

α0 :=
√

2π
((2B

r0.96

)B · δB(det Λ)hK

)1/n

≤ lnn

12n2
.

Assume that the scaling parameter β in BL is set to 1
α0

√
0.01·B

2n . Then for any t ∈ Span(L) with its r

last coordinates w′t satisfying ‖w′t‖2 ≤ 0.01 ·B/
√
r, we have dist(t, L) ≤

√
1.05 ·B.

64

CHAPTER 4. AN LLL ALGORITHM FOR MODULE LATTICES

Discussion about Heuristic 4.5. We provide below a counting argument to justify Heuristic 4.5. We
consider the following set of vectors of L, parametrized by B ≤ r, which we view as candidates for very
close vectors to such target vectors:

SB := {s = (βas‖βθs‖βhs‖ws‖w′s) ∈ L : w′s ∈ {−1, 0, 1}r ∧ ‖w′s‖1 = B}.

We argue that there is a vector in SB that is very close to t. We are going to examine the
vectors s ∈ SB such that s − t is reduced modulo L. Let us write t = (βat‖βθt‖βht‖wt‖w′t). We
define:

S
(1)
B,t := {(βas‖βθs‖βhs‖ws‖w′s) ∈ L : w′s ∈ {−1, 0, 1}r ∧ ‖w′s‖1 = B,

ws − bwte ∈ V(Λ0),

ht − hs ∈ V(Λ),

θt − θs is reduced mod 2π},

where the notation V refers to the Voronoi cell (i.e., the set of points which are closer to 0 than to

any other point of the lattice). The choice of w′s fully determines s ∈ S
(1)
B,t, which gives the bound

|S(1)
B,t| = 2B ·

(
r
B

)
≥ (2r/B)B .

We consider the following subset of S
(1)
B,t:

S
(2)
B,t = S

(1)
B,t ∩ {(βas‖βθs‖βhs‖ws‖w′s) ∈ L : ws = bwte}.

We heuristically assume that when we sample a uniform vector in S
(1)
B,t, the components ws of the

vectors s ∈ S(1)
B,t are uniformly distributed modulo Λ0. Then the proportion of those for which ws =

bwte mod Λ0 is 1/ det(Λ0) = 1/hK . Hence, we expect that |S(2)
B,t| ≈ |S

(1)
B,t|/hK .

We consider the following subset of S
(2)
B,t, parametrized by α < (lnn)/(12n2):

S
(3)
B,α,t = S

(2)
B,t ∩ {(βas‖βθs‖βhs‖ws‖w′s) ∈ L : ‖(θs‖hs)− (θt‖ht)‖∞ ≤ α}.

We heuristically assume that when we sample a uniform vector in S
(2)
B,t, the components (θs,hs) are

uniformly distributed modulo 2πZr1+r2 × Λ. Observe that the first r1 coordinates of θs (correspond-
ing to real embeddings) are either 0 or π. Hence, the probability that θs = θt on these coordi-
nates is 2−r1 . Once these first r1 coordinates are fixed, the remaining coordinates of (θs,hs) have
no a priori reason to be bound to a sublattice of 2πZr2 × Λ and we heuristically assume them to be

uniformly distributed in Rr1+2r2−1/(2πZr2 × Λ). Overall, the probability that a vector s ∈ S
(2)
B,t

satisfies ‖(θs,hs)− (θt,ht)‖∞ ≤ α is ≈ αr1+2r2−1

2r1 ·(2π)r2 ·det(Λ) . Here, we used the fact that α is smaller

than λ1(2πZr2 × Λ)/2 (recall from preliminaries that λ1(Λ) ≥ (lnn)/(6n)). We conclude that

|S(3)
B,α,t| ≈ |S

(2)
B,t|

αr1+2r2−1

2r1 · (2π)r2 · det(Λ)
≥ |S(2)

B,t|
αn−1

(2π)n/2 · det(Λ)
.

Finally, we consider the following subset of S
(3)
B,α,t:

S
(4)
B,α,t = S

(3)
B,α,t ∩ {(βas‖βθs‖βhs‖ws‖w′s) ∈ L : |as − at| ≤ α}.

We want a lower bound for |S(4)
B,α,t|/|S

(3)
B,α,t|. Take s ∈ S(3)

B,α,t. As t ∈ Span(L), we have:

√
n(at − as) =

∑
j

(wt,j − bwt,je) logN (pj) +
∑
j

w′t,j logN (qj)−
∑
j

w′s,j logN (qj),

where the wt,j (respectively w′t,j and w′s,j) are the coordinates of wt (respectively w′t and w′s). We
define bt =

∑
j(wt,j−bwt,je) logN (pj)+

∑
j w′t,j logN (qj), which depends only on t. We would like to

have a lower bound on the proportion of vectors s ∈ S(3)
B,α,t such that |

∑
j w′s,j logN (qj)− bt| ≤

√
nα.

65

CHAPTER 4. AN LLL ALGORITHM FOR MODULE LATTICES

In other words, we would like a lower bound on the probability that |
∑
j w′s,j logN (qj) − bt| ≤

√
nα,

when s is chosen uniformly at random in S
(3)
B,α,t. In order to simplify the estimation, we will assume

in the following that when s is chosen uniformly at random in S
(3)
B,α,t, then the vector w′s is sampled

uniformly in {−1, 0, 1}r, with B non-zero coefficients (this is an over-simplification, as we are already

restricted to S
(3)
B,α,t). Let us write Yj the random variables w′s,j logN (qj) for all 1 ≤ j ≤ r.

First, let us compute an upper bound on |bt| (the random variable |
∑
j Yj | being bounded by δB,

if |bt| > δB + α
√
n, then the event would be empty). We have

|bt| ≤
∑
j

|wt,j − bwt,je| · δ0 +
∑
j

|w′t,j | · δ ≤ δ0 · r0 + δ · ‖w′t‖1 ≤ 0.02 · δB,

using the assumptions on B and ‖w′t‖1 ≤
√
r · ‖w′t‖.

The element bt is hence small enough to be reached by the variable
∑
j Yj . However, it will be in

the tail of the distribution (the sum of B independent variables bounded by δ has standard deviation
at most

√
B · δ, which is asymptotically smaller than |bt|). This makes the probability very small and

difficult to estimate. In order to circumvent this difficulty, we will re-center our target bt. To do so, we
will condition our probability on the event that the first 0.04 · B variables Yj are such that their sum
is very close to bt.

More formally, recall that we chose our ideals so that at least B/2 of the ideals qj have norms at
least 2δ/2. Let us then sort the ideals qj by decreasing algebraic norm. By assumption, we know that
the first B/2 ideals satisfy δ/2 ≤ logN (qj) ≤ δ for j ≤ B/2. Now, because |bt| ≤ 0.02 · δB, we know
that there exists a choice of w′s,1, . . . ,w

′
s,d0.04·Be ∈ {−1, 1} such that |

∑
j≤0.04·B Yj − bt| ≤ δ. Indeed,

we can for instance choose the signs of the first w′s,j to be the same as the sign of bt, until we reach bt
(we will reach it because it is smaller that 0.02 · δB and we can sum up to 0.04 ·B elements of absolute
value at least δ/2). Once we have reached bt, we can choose the following signs to be negative if the
sum is larger than bt and positive if the sum is smaller than bt, this ensures that we will never be at
distance more than δ from bt. Let us define b′t := bt −

∑
j≤0.04·B Yj . We have seen that we can force

the values of the first w′s,j such that |b′t| ≤ δ. We are then left with 0.96 · B non-zero values ws,j to
choose among the r− 0.04 ·B remaining ideals, but our target vector is now b′t, which is much smaller
than bt (in particular, it is asymptotically smaller than the standard deviation). Overall, we obtain the
following equations, where the probabilities are taken over the choice of the w′s,j (chosen in {−1, 0, 1}r,
uniformly with B non-zero coefficients).

Pr(|
∑
j

Yj − bt| ≤
√
nα)

≥ Pr
(
|
∑
j

Yj − bt| ≤
√
nα and |bt −

∑
j≤0.04·B

Yj | ≤ δ and w′s,j = ±1 ∀j ≤ 0.04 ·B
)

= Pr
(
|
∑
j

Yj − bt| ≤
√
nα
∣∣ |bt − ∑

j≤0.04·B

Yj | ≤ δ and w′s,j = ±1 ∀j ≤ 0.04 ·B
)

· Pr
(
|bt −

∑
j≤0.04·B

Yj | ≤ δ and w′s,j = ±1 ∀j ≤ 0.04 ·B
)
.

We have seen that there exists at least one choice of the first 0.04 · B elements w′s,j such that
|bt −

∑
j≤0.04·B Yj | ≤ δ. Hence, by counting the number of possible choices for the remaining 0.96 · B

66

CHAPTER 4. AN LLL ALGORITHM FOR MODULE LATTICES

non-zero elements w′s,j , we obtain that

Pr
(
|bt −

∑
j≤0.04·B

Yj | ≤ δ and w′s,j = ±1 ∀j ≤ 0.04 ·B
)

≥
20.96·B ·

(
r−0.04·B

0.96·B
)

2B ·
(
r
B

)
≥ 2−0.04·B ·

(
r − 0.04 ·B

0.96 ·B

)0.96·B

·
(
B

e · r

)B
≥ (r − 0.04 ·B)0.96·B

eB · 20.04·B · rB

≥ (0.96 · r)0.96·B

eB · 20.04·B · rB
≥ 0.344B

r0.04·B ,

where we used the fact that for any B ≤ r, it holds that (r/B)B ≤
(
r
B

)
≤ (e · r/B)B .

It now remains to compute a lower bound on the probability that |
∑
j Yj − bt| ≤ α

√
n conditioned

on the fact that the first w′s,j are chosen so that |
∑
j≤0.04·B Yj − bt| ≤ δ. As mentioned above, this

probability is equal to Pr(|
∑
j>0.04·B Yj−b′t| ≤ α

√
n), where |b′t| ≤ δ and the w′s,j are chosen uniformly

at random in {−1, 0, 1}r−0.04·B , with 0.96 · B non-zero coefficients. Because our target is now close
to the center of the distribution, and

∑
j>0.04·B Yj has a bell shape with standard deviation roughly√

0.96 ·B · δ which is much larger than b′t, we will assume that

Pr(|
∑

j>0.04·B
Yj − b′t| ≤ α

√
n) ≥ α

√
n

Bδ
,

where the lower bound is the probability we would have obtained if the random variable
∑
j>0.04·B Yj

was uniformly distributed in [−Bδ,Bδ]. This assumption is justified by the fact that the random
variable

∑
j>0.04·B Yj has a bell shape, and b′t is close to the center of the bell, hence the probability to

be close to b′t should be larger in the bell-shape case than in the uniform case (over [−0.96·Bδ, 0.96·Bδ] ⊂
[−Bδ,Bδ]). This lower bound on the probability is backed with numerical experiments, described in
Section 4.3.3.1 below.

Overall, we obtain the following lower bound.

Pr(|
∑
j

Yj − bt| ≤
√
nα) ≥ 0.344B

r0.04·B ·
α
√
n

Bδ
.

We finally obtain that

|S(4)
B,α,t| ≥

0.344B · α
√
n

δB · r0.04·B · αn−1

(2π)n/2 · det(Λ)
· 1

hK
·
(

2r

B

)B
≥
(

α√
2π

)n
1

δB · det(Λ) · hK

(
0.344 · 2r
B · r0.04

)B
≥
(

α√
2π

)n
1

δB · det(Λ) · hK

(
r0.96

2B

)B
.

When the above is ≥ 1, we expect that there exists s ∈ S(4)
B,α,t. If that is the case, then we have

‖s− t‖2 ≤ (β ·
√

2n · α)2 + r0 + ‖w′t −w′s‖2.

By condition on B, we know that r0 ≤ 0.01 ·B. Also, by choice of w′t (and using the fact that r ≥ B),
we have that ‖w′t −w′s‖2 ≤ (

√
B + 0.01 ·

√
B)2 ≤ 1.03 · B. Finally, choosing α minimal provides the

result.

67

CHAPTER 4. AN LLL ALGORITHM FOR MODULE LATTICES

4.3.3.1 Numerical experiments

In this section, we provide some experimental results justifying the above assumption that

Pr(|
∑

j>0.04·B
w′s,j logN (qj)− b′t| ≤ α

√
n) ≥ α

√
n

Bδ
,

for any target b′t satisfying |b′t| ≤ δ. Let us write p` = Pr(|
∑
j>0.04·B w′s,j logN (qj)− b′t| ≤ `). We first

checked that for a fixed number field and choice of B and δ, this probability is proportional to ` (for
small `’s). To do so, we chose a random target b′t uniformly in [−δ, δ], and we computed the empirical
probability p` for different values of `. This empirical probability was computed by sampling 500 000
points according to the distribution

∑
j w′s,j logN (qj), and counting the number of them falling at

distance at most ` of b′t. We computed this empirical probability for different values of `, ranging in
[0.001, 0.01], [0.01, 0.1] and [0.1, 1] (to check that the proportionality was still valid for different orders
of magnitude of `). The empirical probabilities are plotted in Figures 4.1, 4.2 and 4.3 for a power of
two cyclotomic field, a cyclotomic field which is not a prime power, and a “random” number field (the
coefficients of the defining polynomial being chosen uniformly at random between −4 and 4). One
can observe that the probabilities are indeed proportional the length of the interval `, and that the
proportionality factor is roughly the same for the three different ranges of `.

0.002 0.004 0.006 0.008 0.01

2e-5

4e-5

6e-5

8e-5

1e-4

y = 0.012x+-6.3e-6

0.02 0.04 0.06 0.08 0.1

2e-4

4e-4

6e-4

8e-4

1e-3

y = 0.012x+-0.000010

0.2 0.4 0.6 0.8 1

0.002

0.004

0.006

0.008

0.01
y = 0.011x+0.00012

Figure 4.1: Empirical probability p` as a function of ` in a cyclotomic field of conductor 64 (degree 32)

0.002 0.004 0.006 0.008 0.01

2e-5

4e-5

6e-5

8e-5

1e-4
y = 0.010x+1.5e-6

0.02 0.04 0.06 0.08 0.1

2e-4

4e-4

6e-4

8e-4

1e-3
y = 0.010x+9.6e-6

0.2 0.4 0.6 0.8 1

0.002

0.004

0.006

0.008

0.01
y = 0.011x+5.3e-6

Figure 4.2: Empirical probability p` as a function of ` in a cyclotomic field of conductor 100 (degree 40)

Once we are convinced that the probability p` is indeed of the form p` = c · `, it remains to check
the asymptotic behavior of the proportionality factor c, when n tends to infinity (the choice of n
determines the choice of B and δ). We hence computed the proportionality factor c empirically for
different cyclotomic number fields of increasing degree. The value of B was set as B = n and δ was
set as δ = n2 log(n2) (these will roughly be the values we choose later in our algorithm). The number
of points used to compute the empirical probabilities p` was set to 10 000 and we chose ` ranging in
[0.1, 1] to compute the slope.

Instead of checking that c ≥ 1
Bδ , we checked that 1/c ≤ Bδ. The values of 1/c and Bδ are given in

Table 4.1. One can observe that 1/c is indeed smaller than Bδ. We also plotted the values of 1/c as a
function of Bδ in Figure 4.4. We observe that the value 1/c seems to increase linearly in Bδ, with a
slope smaller than 1, hence it seems that the inequality 1/c ≤ Bδ should still hold asymptotically.

68

CHAPTER 4. AN LLL ALGORITHM FOR MODULE LATTICES

0.002 0.004 0.006 0.008 0.01

2e-5

4e-5

6e-5

8e-5

1e-4

1.2e-4
y = 0.013x+-0.000013

0.02 0.04 0.06 0.08 0.1

2e-4

4e-4

6e-4

8e-4

1e-3

1.2e-3
y = 0.013x+0.000021

0.2 0.4 0.6 0.8 1

0.002

0.004

0.006

0.008

0.01

0.012
y = 0.012x+0.00010

Figure 4.3: Empirical probability p` as a function of ` in a “random” number field of degree 32

n 8 16 20 24 32 36 40 44 48 54 56 60 64 66 70
m 16 32 44 35 64 57 100 69 65 81 87 99 128 67 71
B · δ 64 168 225 284 409 475 541 609 678 783 819 891 964 1000 1074
1/c 33 87 39 93 67 124 97 116 99 113 142 142 162 159 189

Table 4.1: Empirical values of 1/c for different cyclotomic number fields of conductor m and degree n

0 200 400 600 800 1000

40

60

80

100

120

140

160

180

Figure 4.4: Evolution of 1/c (computed empirically) as a function of Bδ

4.3.4 A “Euclidean division” over R

We will need the following technical observation that, given a, b ∈ KR, it is possible to add a small
multiple ka of a to b to ensure that N (b+ ka) ≥ N (a).

Lemma 4.6. For any a ∈ K×R and b ∈ KR, there exists k ∈ [−n, n]∩Z such that |N (b+ka)| ≥ |N (a)|.

Proof. We know that |N (a)| =
∏
i |σi(a)| so it suffices to find k such that |σi(b + ak)| ≥ |σi(a)| holds

for all i ≤ n. Now, the condition |σi(b+ ak)| < |σi(a)| is equivalent to |σi(b/a) + k| < 1. As a complex
plane open circle of radius 1 contains at most two integers, we deduce that for each i ≤ n, there are
at most two integers k such that |σi(b + ak)| < |σi(a)|. Because the set [−n, n] ∩ Z contains 2n + 1
different values of k, then at least one of these should satisfy |σi(b+ ak)| ≥ |σi(a)| for all i.

Note that an integer k such as in Lemma 4.6 can be found efficiently by exhaustive search.
We can now describe our “Euclidean division” algorithm over R. Our algorithm takes as input

a fractional ideal a and two elements a, b ∈ KR, and outputs a pair (u, v) ∈ R × a. The first five
steps of this algorithm aim at obtaining, for any input (a, b), a replacement (a1, b1) that satisfies some
conditions. Namely, we would like a1 to be balanced, i.e., ‖a1‖ should not be significantly more than
N (a1)1/n. We also would like b1 to be not much larger that a1 and N (a1/b1) to be close to 1. These
conditions are obtained by multiplying the element a by an appropriate element of R, and removing a
multiple of a from b. Note that we require that the output element v should not be too large. As b is

69

CHAPTER 4. AN LLL ALGORITHM FOR MODULE LATTICES

not multiplied by anything, these normalization steps will not impact this output property. After these
first five steps, the core of the algorithm begins. It mainly consists in the creation of a good target
vector t in Rν+1, followed by a CVP computation in the lattice L.

Algorithm 4.1 A Euclidean division over R

Input: A fractional ideal a, and two elements a ∈ K×R and b ∈ KR.
Output: A pair (u, v) ∈ R× a.

Computing a better pair (a1, b1)
1: Find s ∈ a−1 \ {0} such that ‖s‖∞ ≤ c · N (a−1)1/n as in Lemma 3.11.
2: Find y ∈ R \ {0} such that ‖ya‖∞ ≤ c · |N (a)|1/n as in Lemma 3.11. Define a1 = ya.
3: Solve CVP in R to find x ∈ R such that ‖b/(s · a1)− x‖ ≤ µ(R).
4: Find k ∈ Z ∩ [−n, n] such that |N (b− xsa1 + ksa1)| ≥ |N (sa1)| (see Lemma 4.6).
5: Define b1 = b+ (k − x)s · a1.

Defining the target vector and solving CVP
6: Compute (wt,j)j≤r0 and gt such that a−1 =

∏
j p

wt,j
j 〈gt〉. Let wt = (wt,j)j≤r0 .

7: Let at = (logN|b1/(a1gt)|)/
√
n, θt be the first r1 + r2 coordinates of Log(b1/(a1gt)) and

ht = iE∩H(ΠH(Log(b1/(a1gt))).
8: Define t = (βat‖βθt‖βht‖wt‖0).
9: Solve CVP in L with target vector t, to obtain a vector s.

Using s to create a good ring element
10: Write s = (βas‖βθs‖βhs‖ws‖w′s) and let gs ∈ K∗ be the associated element as in Lemma 4.4.

11: Define the ideal I = a
∏
j:ws,j−wt,j<0 p

wt,j−ws,j
j

∏
j:w′s,j<0 q

−w′s,j
j .

12: Find v ∈ I \ 0 such that ‖v‖∞ ≤ c · N (I)1/n as in Lemma 3.11.
13: Define u′ = gs · gt · v.
14: return (u′y + (k − x)sy · v, v).

Theorem 4.7 (Heuristic). Assume that a satisfies c−n ≤ N (a) ≤ cn, with c as in Lemma 3.11. Assume
also that B and r are chosen so that

B ≥ max

(
100 · n · log[(µ(R) + n)c4], log hK · (103 · δ0

δ
)2

)
,

α0 :=
√

2π
((2B

r0.96

)B · δB(det Λ)hK

)1/n

≤ ε

43 ·
√
n · (µ(R) + n)c4 · 20.55·δ·B/n ,

for some ε > 0. Assume also that α0 ≤ (lnn)/(12n2), and set the scaling parameter β of BL as in
Heuristic 4.5. Then, under Heuristic 4.5 and the heuristics of Lemma 3.11, Algorithm 4.1 outputs a
pair (u, v) ∈ R× a with

‖ua+ vb‖∞ ≤ ε · ‖a‖∞,
‖v‖∞ ≤ c · 20.55·δ·B/n.

Apart from the CVP calls in R,LK and L, Algorithm 4.1 runs in quantum polynomial time.

Proof. Throughout the proof, we keep the notations of Algorithm 4.1.
We first prove that (u, v) ∈ R×a. As s ∈ a−1 and x, k, y ∈ R, it suffices to prove that (u′, v) ∈ R×a.

By definition of gt and gs, we have

〈gsgt〉 = a−1
∏
j

p
ws,j−wt,j
j

∏
j

q
w′s,j
j = J · I−1,

with J =
∏
j:ws,j−wt,j>0 p

ws,j−wt,j
j

∏
j:w′s,j>0 q

w′s,j
j . As the pj ’s and qj ’s are integral ideals, we see that

J ⊆ R and I ⊆ a. As v ∈ I, we obtain that v ∈ a. Since gs · gt ∈ JI−1 and v ∈ I, we also have
u′ = gsgtv ∈ JI−1I = J ⊆ R. This gives our first claim.

70

CHAPTER 4. AN LLL ALGORITHM FOR MODULE LATTICES

As a preliminary step towards bounding ‖ua + bv‖∞ = ‖u′a1 + vb1‖∞, we study the sizes of a1

and b1. Using the equality b1 = b− xsa1 + ksa1, we have

‖b1‖∞ ≤ (‖b/(sa1)− x‖∞ + |k|) · ‖sa1‖∞ ≤ (µ(R) + n) · ‖s‖∞ · ‖a1‖∞.

By definition of a1, we have ‖a1‖∞ ≤ c‖a‖∞. By assumption on a, we also have ‖s‖∞ ≤ c · N (a−1)1/n ≤ c2.
Hence, we obtain

‖b1‖∞ ≤ (µ(R) + n)c3‖a‖∞.

Now, by definition of a1, we know that ‖a1‖∞ ≤ c · |N (a1)|1/n. Hence, we obtain

c−1 ≤ |N (b1/a1)|1/n ≤ (µ(R) + n) · c3.

The left inequality is provided by the choice of k at Step 4 (and the fact that N (s) ≥ N (a−1)).

To bound ‖u′a1 + vb1‖∞, we estimate the closeness of t and s. If t was in Span(L), then we could
apply Heuristic 4.5. As this is not necessarily the case, in the proof of Lemma 4.8, we first compute
the distance between t and Span(L).

Lemma 4.8 (Heuristic). Under the assumptions of Theorem 4.7, we have ‖s− t‖2 ≤
√

1.06 ·B.

This lemma implies that

‖(as‖θs‖hs)− (at‖θt‖ht)‖2 ≤
√

1.06 ·B/β ≤ 15 ·
√
n · α0.

By definition of t and construction of L, this means that

‖Log(gtgs · a1/b1)‖2 = ‖(as‖θs‖hs)− (at‖θt‖ht)‖2 ≤ 15 ·
√
n · α0.

Recall that u′/v = gtgs. Hence we have ‖Log(u′a1) − Log(vb1)‖∞ ≤ 15 ·
√
n · α0. Using Lemma 4.3,

we deduce that

‖u′a1 − vb1‖∞ ≤ (e15·
√

2n·α0 − 1) · ‖b1‖∞ · ‖v‖∞
≤ 43 ·

√
n · α0 · ‖b1‖∞ · ‖v‖∞,

where we used the fact that α0 ≤ (lnn)/(12n2) and so the exponent should be smaller than (ln 2)/
√

2
for n large enough. We have already bounded ‖b1‖∞. Let us now bound ‖v‖∞. By definition of v,
we have ‖v‖∞ ≤ c · N (I)1/n. The task then amounts to giving an upper bound on N (I). As IJ =

a ·
∏
j p
|ws,j−wt,j |
j ·

∏
j q
|w′s,j |
j , we have:

logN (IJ) = logN (a) +
∑
j

|ws,j − wt,j | logN (pj) +
∑
j

|w′s,j | · logN (qj)

≤ logN (a) + ‖ws −wt‖1 · δ0 + ‖w′s‖1 · δ

Recall from Lemma 4.8 that we have ‖s − t‖2 ≤
√

1.06 ·B. This implies that ‖ws − wt‖2, ‖w′s‖2 ≤√
1.06 ·B. Note that

‖ws −wt‖1 ≤
√
r0‖ws −wt‖2 ≤ 1.03 ·

√
B · r0 ≤ 0.01 · δ

δ0
·B,

by assumption on B and the fact that r0 ≤ log hK . For w′s, we use the fact that it has integer
coordinates to obtain ‖w′s‖1 ≤ ‖w′s‖22 ≤ 1.06 ·B (see Equation 2.3). We thus obtain

logN (IJ) ≤ logN (a) + 1.07 · δ ·B.

As J is integral, this gives an upper bound on N (I). However this upper bound is not sufficient for our
purposes. We improve it by giving an upper bound on logN (IJ−1), using the fact that the ideal IJ−1

is designed to have an algebraic norm close to the one of a1/b1. More precisely, it is worth recalling
that I−1J = 〈gsgt〉, and that ‖Log(gtgs · a1/b1)‖2 ≤ 15 ·

√
n · α0. Looking at the first coordinate of

71

CHAPTER 4. AN LLL ALGORITHM FOR MODULE LATTICES

the Log vector and multiplying it by
√
n gives that | log |N (gsgt)|+ log |N (a1/b1)| | ≤ 15 · n · α0. This

gives us
logN (IJ−1) ≤ | log |N (a1/b1)||+ 15 · n · α0

Combining the bounds on logN (IJ) and logN (IJ−1), we finally obtain that

logN (I) ≤ 1

2
· | logN (a)|+ 0.535 · δ ·B +

1

2
· | log |N (a1/b1)||+ 7.5 · n · α0.

We have seen that 1 ≤ |N (b1/a1)|1/n ≤ (µ(R) + n) · c3. Finally, recall that c−n ≤ N (a) ≤ cn. Hence,
we conclude that | log |N (a1/b1)||+ | logN (a)| ≤ n · log((µ(R) +n) · c4) ≤ 0.01 ·B by assumption on B.
Recall that we assumed that α0 ≤ (lnn)/(12n2) ≤ 1/n. Hence, we have n · α0 ≤ 1. Using the fact
that B ≥ 750 (which is implied by the second term in the max), we obtain 7.5 · n · α0 ≤ 0.01 · B. We
conclude that

logN (I) ≤ 0.55 · δ ·B.

Collecting terms and using the assumptions, this allows us to write

‖u′a1 − vb1‖∞ ≤ 43 ·
√
n · α0 · ‖b1‖∞ · ‖v‖∞

≤ α0 · 43 ·
√
n · 20.55·δ·B/n · (µ(R) + n)c4‖a‖∞

≤ ε · ‖a‖∞.

Finally, the run-time bound follows by inspection.

Proof of Lemma 4.8. By the Pythagorean theorem, if tL is the orthogonal projection of t onto the span
of L, then we have

‖t− s‖22 = ‖t− tL‖2 + ‖tL − s‖2 = dist(t,Span(L))2 + ‖tL − s‖2.

This quantity is minimal when ‖tL− s‖ is minimal, and so the closest point to t in L is also the closest
point to tL.

First, observe that Span(L) (of dimension ν) is exactly

{
(βa‖βθ‖βh‖w‖w′) ∈ Rν+1 : a =

∑
j

wj
logN (pj)√

n
+
∑
j

w′j
logN (qj)√

n

}
.

Define v = (−
√
n/β, 0, . . . , 0, logN (p1), . . . , logN (qr))

T , where the block of zeros has dimension 2(r1 +
r2)− 1. It is orthogonal to Span(L) and satisfies ‖v‖ >

√
r, as each one of the last r coefficients is ≥ 1.

Hence

dist(t,Span(L)) =
|〈v, t〉|
‖v‖

<
| −
√
nat +

∑
j wt,j logN (pj)|√
r

=
| − log |N (b1/(a1gt))| − logN (a)− log |N (gt)||√

r

=
| log |N (a1/b1)| − logN (a)|√

r
.

We have seen in the proof of Theorem 4.7 that | log |N (a1/b1)|| ≤ n · log((µ(R)+n) ·c3). By assumption
on a, we have that | log |N (a1/b1)||+ | logN (a)| ≤ n · log((µ(R)+n) ·c4). The latter bound is ≤ 0.01 ·B.
So we obtain that dist(t,Span(L)) ≤ 0.01 ·B/

√
r ≤
√

0.01 ·B.
As ‖t − tL‖2 ≤ 0.01 · B/

√
r and the last r entries of t are zero, we have that the last r entries

of tL have euclidean norm ≤ 0.01 · B/
√
r. We can hence apply Heuristic 4.5 to tL, which gives us

‖t− s‖22 = ‖t− tL‖2 + ‖tL − s‖2 ≤ 0.01 ·B + 1.05 ·B.

We observe that the parameters r and B of Theorem 4.7 can be instantiated as B = Õ(log |∆| +
n logµ(R)) and r0.96 = Θ((1/ε)n/B ·B · 20.55δ). Thanks to the 0.55 in the exponent, this choice of r is
compatible with the condition r ≤ 2δ/(log |∆|)η′ for some η′ > 0 which was required for the construction
of the lattice L (recall that we want r prime ideals of norm smaller than 2δ). We note also that the

72

CHAPTER 4. AN LLL ALGORITHM FOR MODULE LATTICES

constants 0.96 and 0.55 appearing in the exponent can be chosen as close as we want to 1 and 0.5
respectively, by adapting the argument above. Hence, assuming (1/ε)n/B = O(1), we expect to be able
to choose 2δ as small as B2+η for any η > 0. Overall, the following corollary gives an instantiation of
Theorem 4.7 with parameters that are relevant to our upcoming divide-and-swap algorithm.

Corollary 4.9 (Heuristic). Let ε = 1/2Õ(log |∆|)/n. For any η > 0, there exists a lattice L′ of dimension

Õ((log |∆|+n logµ(R))2+η), an upper bound C = 2Õ(log |∆|+n log µ(R))/n and an algorithm A that achieve
the following. Under Heuristic 4.5 and the heuristics of Lemma 3.11, algorithm A takes as inputs
a ∈ K×R , b ∈ KR and an ideal a satisfying c−n ≤ N (a) ≤ cn, and outputs u, v ∈ R× a such that

‖ua+ bv‖∞ ≤ ε · ‖a‖∞
‖v‖∞ ≤ C.

If given access to an oracle solving the closest vector problem in L′ in polynomial time, and when
restricted to inputs a, b belonging to K, Algorithm 4.1 runs in quantum polynomial time.

Proof. Consider an instantiation of Theorem 4.7 with B = Θ̃(log |∆| + n logµ(R)), δ = 2.451 · log2B
and r = B2.45. This choice of parameters asymptotically satisfies (log |∆|)2 ≤ r ≤ 2δ/(log |∆|)η′ for
some η′ > 0, which was required for the generation of the lattice L. It also satisfies the constraints of
Theorem 4.7. It can be checked by proof inspection that the constant 2.45 can be adapted to 2 + η for
an arbitrary η > 0, which allows to obtain the asymptotic parametrization of the statement. Finally,
observe that the algorithm relies on oracles that solve CVP in R, LK and L. We can consider the direct
sum of these lattices, to obtain a single lattice L′.

4.3.5 The divide-and-swap algorithm

In this section, we describe a divide-and-swap algorithm, which takes as input a pseudo-basis of a rank-2
module and outputs a short non-zero vector of this module (for the algebraic norm). In order to do so,
we will need to link the Euclidean and algebraic norms of vectors appearing during the execution, and
limit the degree of freedom of the ideal coefficients. For this purpose we introduce the notion of scaled
pseudo-bases.

Definition 4.10. A pseudo-basis ((Ii,bi))i≤m, with Ii ⊂ K and bi ∈ Ks
R for all i ≤ m, is said strongly

scaled if, for all i ≤ m,

R ⊆ Ii, N (Ii) ≥ c−n and ‖rii‖∞ ≤ c · N (riiIi)
1/n,

where c is as in Lemma 3.11 and rii refers to the QR-factorization of the matrix formed by the bi
vectors (see Section 2.3.7.1).

We now describe an algorithm which takes as input a pseudo-basis of a module M and outputs a
strongly scaled pseudo-basis of the same module. We state it in dimension m but will only use it in
dimension 2 in this chapter (in the next section, we use a very similar algorithm in dimension m).

Algorithm 4.2 Strongly scaling the ideals.

Input: A pseudo-basis ((Ii,bi))i≤m of a module M .
Output: A strongly scaled pseudo-basis ((I ′i,b

′
i))i≤m of M .

1: for i = 1 to m do
2: Use Lemma 3.11 to find si ∈ rii · Ii \ {0} such that ‖si‖∞ ≤ c · N (riiIi)

1/n;
3: Write si = rii · xi, with xi ∈ Ii;
4: Define I ′i = Ii · 〈xi〉−1 and b′i = xibi.
5: end for
6: return ((I ′i,b

′
i))i≤m.

Lemma 4.11. Algorithm 4.2 outputs a strongly scaled pseudo-basis of the module M generated by the
input pseudo-basis and preserves the N (riiIi)’s. If given access to an oracle that solves CVP in the
lattice LK of Lemma 3.11, and if M ⊆ Rs, then it runs quantumly in time polynomial in the input
bit-length and in log |∆|.

73

CHAPTER 4. AN LLL ALGORITHM FOR MODULE LATTICES

Proof. The algorithm scales each column of the pseudo-matrix by some factor xi ∈ K and scales the
corresponding ideal accordingly. This operation preserves the spanned module. Further, the fact that xi
belongs to K implies that the ideal I ′i remains a fractional ideal of K.

Fix i ≤ m. By choice of si, we know thatN (si) ≤ cn·N (riiIi). We hence haveN (xi) ≤ cn·N (Ii) and
N (I ′i) = N (Ii)/N (xi) ≥ c−n. Further, as xi ∈ Ii, we have R ⊆ I ′i, which implies that N (I ′i) ≤ 1. This
proves the conditions on I ′i. Moreover, we have r′ii = xirii = si, hence ‖r′ii‖ = ‖si‖ ≤ c · N (riiIi)

1/n =
c · N (r′iiI

′
i)

1/n. This proves the bound on ‖r′ii‖.
Now, observe that b′i is KR-colinear to bi. Hence, replacing a vector bi by b′i does not impact rjj

for j 6= i. The quantities N (rjjIj) are therefore preserved through the execution of the algorithm.
The bound on the running time follows by inspection of the algorithm.

We can now describe Algorithm 4.3, our divide-and-swap algorithm. During the execution of the
algorithm, the R-factor of the current matrix (b1|b2) is always computed. The algorithm is very similar
to the LLL algorithm in dimension 2, except for Step 4, which is specific to this algorithm. This step
ensures that when we swap the vectors, we still obtain a pseudo-basis of the input module. This seems
necessary, as our Euclidean division over R involves a multiplication of the second vector by a ring
element, and hence the new vector and the second pseudo-basis vector may not span the whole module
anymore. At Step 4, note that the gcd is well-defined, as 〈u〉 and 〈v〉a−1 are integral ideals. As an
alternative to Step 4, we could use Lemma 2.10.

Algorithm 4.3 Divide-and-swap.

Input: A pseudo-basis

[
a1 a2

b1 b2

]
of a module M ⊂ K2

R.

Output: A vector v ∈M .
1: while (γ/c)nN (r22a2) < N (r11a1) do

2: Strongly scale the pseudo-basis

[
a1 a2

b1 b2

]
using Algorithm 4.2.

3: Apply Algorithm 4.1 to (a, b, a) = (r11, r12, a2 · a−1
1) and ε = 1/(4c

√
n). Let (u, v) be the output.

4: Let b = gcd(〈u〉, 〈v〉a−1), find x ∈ a−1b−1 and y ∈ b−1 such that uy − vx = 1.
5: Update (b1,b2)← (ub1 + vb2, xb1 + yb2) and (a1, a2)← (a1b

−1, a2b).
6: end while

7: Strongly scale the pseudo-basis

[
a1 a2

b1 b2

]
using Algorithm 4.2.

8: return b1

Lemma 4.12. Let γ ≥ 4·C ·
√
n·c2, where C is as in Corollary 4.9. Then, given as input a pseudo-basis

of a rank-2 module M ⊂ K2
R, Algorithm 4.3 outputs a vector v ∈M \{0} such that N (v) ≤ γnλN1 (M).

Further, if M ⊆ Rs and Algorithms 4.1 and 4.2 run in polynomial time, then Algorithm 4.3 runs in
time polynomial in the input bit-length and in log |∆|.

Proof. Let us first prove that the pseudo-basis

[
a1 a2

b1 b2

]
we have throughout the execution of the

algorithm remains a pseudo-basis of M . By Lemma 4.11, this property is preserved through Steps 2
and 7. It remains to prove it for Step 5. At this step, we multiply

(
b1 b2

)
on the right by U :=(

u x
v y

)
. Let a1, a2 (resp. a′1 = a1b

−1, a′2 = a2b) denote the coefficient ideals at the start (resp.

completion) of Step 5. We know from the preliminaries that this transformation outputs a pseudo-basis
of the same module if U is invertible over K and uij ∈ ai(a

′
j)
−1 and u′ij ∈ a′i(aj)

−1 for all i, j ∈ {1, 2},
with U′ = U−1. In our case, because we asked that uy − vx = 1, then U is indeed invertible and

we have U−1 =

(
y −x
−v u

)
. Observe that by definition of b = gcd(〈u〉, 〈v〉a−1), we have u ∈ b and

v ∈ a · b = a−1
1 a2b. Using these properties and the fact that x ∈ a1a

−1
2 b−1 and y ∈ b−1 by definition,

one can then check that all the conditions uij ∈ ai(a
′
j)
−1 and u′ij ∈ a′i(aj)

−1 are indeed satisfied.

74

CHAPTER 4. AN LLL ALGORITHM FOR MODULE LATTICES

We now prove that the output vector v belongs to M . As v = b1, it suffices that R ⊆ a1. This is
provided by the application of Algorithm 4.2 at Step 7.

Assume now that the algorithm terminates, and let us show that the output vector v satisfies
N (v) ≤ γnλN1 (M). Because of the application of Algorithm 4.2 at Step 7, we have N (a1) ≥ c−n. This,
and the inequality γ ≥ c, imply that N (b1) = N (r11) ≤ cn · N (r11a1) ≤ γn · N (r11a1). On the other
hand, because we exited the while loop, we have (γ/c)nN (r22a2) ≥ N (r11a1) (by Lemma 4.11, Step 7
does not change the values of N (r11a1) and N (r22a2)). We conclude that (using Lemma 2.9):

N (b1) ≤ γn ·min(N (r11a1),N (r22a2)) ≤ γnλN1 (M).

It remains to show that the algorithm is polynomial time (assuming that Algorithms 4.1 and 4.2 are
polynomial time). For this, we first prove that the number of loop iterations is polynomial. We do so by
proving thatN (r11a1) decreases by a factor ≥ 2n at each iteration. As the productN (r11a1)N (r22a2) =
det(M)/|∆| is constant and we stop whenever N (r11a1) becomes smaller than (γ/c)nN (r22a2), the
number of iterations is bounded by logN (r11a1)/n (for the r11 and a1 of the input).

Recall that at the end of Step 2, we have ‖rii‖∞ ≤ c · N (riiai)
1/n for i = 1, 2. Recall also that

Algorithm 4.1 outputs u, v such that ‖ur11 + vr12‖∞ ≤ ε‖r11‖∞ and ‖v‖∞ ≤ C. The new vector b1 at
the end of the loop iteration is ub1 + vb2. We compute an upper bound on its algebraic norm:

N (ub1 + vb2) ≤ ‖ub1 + vb2‖n =

∥∥∥∥(ur11 + vr12

vr22

)∥∥∥∥n
≤ (‖ur11 + vr12‖+ ‖vr22‖)n

≤ (
√
n)n · (‖ur11 + vr12‖∞ + ‖vr22‖∞)

n

≤ (
√
n)n · (ε‖r11‖∞ + ‖v‖∞ · ‖r22‖∞)

n
.

Using the facts that the basis is strongly scaled and that the condition of Step 1 is satisfied, we have:

N (ub1 + vb2) ≤ cn · (
√
n)n ·

(
εN (r11a1)1/n + C · N (r22a2)1/n

)n
≤ cn · (

√
n)n · (ε+ C · (c/γ))n · N (r11a1).

Now, by choice of ε and γ:

N (ub1 + vb2) ≤ cn ·
(

1

4c
+

1

4c

)n
· N (r11a1) = 2−n · N (r11a1).

Recall that a1 is also updated as a1b
−1. Hence, to conclude, we argue that N (a1b

−1) ≤ 1. Note that
N (a1) ≤ 1 holds due to scaling, and that N (b) ≥ 1 holds because b is integral. Overall, we obtain that
N (r11a1) decreases by a factor ≥ 2n during a loop iteration.

To complete the cost analysis, we observe that all the steps run in polynomial time, except maybe
Step 4. In this step, it is a priori not obvious that the elements x and y satisfying the stated conditions
even exist. The conditions can be re-stated as uy ∈ 〈u〉b−1, vx ∈ 〈v〉a−1b−1 and uy − vx = 1. Hence
such x, y exist if the ideals 〈u〉b−1 and 〈v〉a−1b−1 are coprime. This is indeed the case, by construction
of b. Further, we can compute x, y in polynomial time by computing a basis of the lattice spanned
by the two ideals (which is R, as they are coprime). Finally, note that by ideal scaling and the fact
that the quantity N (r11a1) decreases throughout the algorithm, all pseudo-bases occurring through the
execution have bit-sizes polynomial in the input bit-size.

Instantiating this lemma with the value of C obtained in Corollary 4.9, we obtain the following
corollary.

Corollary 4.13 (Heuristic). For any number field K and any η > 0, there exists a lattice L′ of

dimension Õ((log |∆| + n logµ(R))2+η), a choice of γ = 2Õ(log |∆|+n log µ(R))/n and an algorithm A
such that the following holds. Under Heuristic 4.5 and the heuristics of Lemma 3.11, algorithm A
takes as input a pseudo-basis of a rank-2 module M ⊂ K2

R, and outputs a vector v ∈ M such that
N (v) ≤ γnλN1 (M). If given access to an oracle solving the closest vector problem in L′ in polynomial
time, and when restricted to modules contained in K2, Algorithm A runs in quantum polynomial time.

75

CHAPTER 4. AN LLL ALGORITHM FOR MODULE LATTICES

Proof. The corollary is obtained by combining Lemma 4.12 with Corollary 4.9. To apply Corollary 4.9,

we need 1/ε = 2Õ(log |∆|)/n, which is indeed the case in Algorithm 4.3. Note that the choice of ε in
Algorithm 4.3 only depends on K.

4.4 LLL-reduction of module pseudo-bases

We now proceed to explain how the divide-and-swap algorithm described above can be used to extend
the LLL algorithm to any module of dimension m over some ring R. LLL-reduction of lattice bases is
defined in terms of Gram-Schmidt orthogonalization (or, equivalently, QR-factorization). A basis is said
LLL-reduced if two conditions are satisfied. The first one, often referred to as size-reduction condition,
states that any off-diagonal coefficients rij of the R-factor should have a small magnitude compared to
the diagonal coefficient rii on the same row. The second one, often referred to as Lovász’ condition,
states that the 2-dimensional vector (ri,i, 0)T is no more than 1/δ times longer than (ri,i+1, ri+1,i+1)T ,
for some parameter δ < 1. The size-reduction condition allows to ensure that the norms of the vectors
during the LLL execution and at its completion stay bounded. More importantly, in combination with
Lovász’ condition, it makes it impossible for ri+1,i+1/ri,i to be arbitrarily small (for an LLL-reduced
basis). The latter is the crux of both the LLL output quality and its fast termination.

4.4.1 An LLL algorithm for module lattices

When extending to rings, the purpose of the size-reduction condition is better expressed in terms of
the Euclidean norm ‖ · ‖, whereas the bounded decrease of the rii’s is better quantified in terms of the
algebraic norm N (·). This discrepancy makes the definition of a LLL-reduction algorithm for modules
difficult. In this section, we circumvent this difficulty by directly focusing on the decrease of the rii’s,
deferring to later the bounding of bit-sizes.

Definition 4.14 (LLL-reducedness of a pseudo-basis). A module pseudo-basis ((Ii,bi))i≤m is called
LLL-reduced with respect to a parameter αK if, for all i < m, we have:

N (ri+1,i+1Ii+1) ≥ 1

αK
· N (ri,iIi), (4.1)

where R = (ri,j)i,j refers to the R-factor of the matrix basis B.

We first explain that LLL-reduced pseudo-bases are of interest, and we will later discuss their
computation (for some value of αK).

Lemma 4.15. Assume that

[
I1 . . . Im
b1 . . . bm

]
is an LLL-reduced pseudo-basis of a module M . Then:

N (I1)N (b1) ≤ α
(m−1)/2
K · (N (detKRM))1/m,

N (I1)N (b1) ≤ αm−1
K · λN1 (M).

Proof. From (4.1), we obtain N (I1)N (b1) ≤ αiKN (ri,iIi) for all i ≤ m. Taking the product over all i’s

gives (N (I1)N (b1))m ≤ α
m(m−1)/2
K N (detKR M), by Lemma 2.9. The proof of the first inequality can

be completed by taking the m-th root. The second inequality can be obtained by combining the last
claim of Lemma 2.9 with (4.1).

Our LLL algorithm for modules is very similar to the one over the integers.
The algorithm proceeds by finding an approximation to a shortest non-zero element in a rank-2

module, with respect to the algebraic norm. Using Lemma 2.8, we obtain a sufficient condition on αK
such that Algorithm 4.4 terminates. In particular, if αK is sufficiently large, then N (ri+1,i+1Ii+1) <

1
αK
N (ri,iIi) implies that there is a vector s in the local projected rank-2 module of norm significantly

less than N (ri,iIi).

Lemma 4.16. Take the notations of Algorithm 4.4, and consider an index i < m such that αK ·
N (ri+1,i+1Ii+1) < N (ri,iIi). We have N (si) ≤ γn

√
2n∆K

αK
N (ri,iIi).

76

CHAPTER 4. AN LLL ALGORITHM FOR MODULE LATTICES

Algorithm 4.4 LLL-reduction over K

Input: A pseudo-basis ((Ii,bi))i≤m of a module M ⊂ Ks.
Output: An LLL-reduced pseudo-basis of M .

1: while there exists i < m such that αK · N (ri+1,i+1Ii+1) < N (ri,iIi) do
2: Define Mi as the rank-2 module spanned by ((Ii,ai), (Ii+1,ai+1)), with ai = (rii, 0)T and ai+1 =

(ri,i+1, ri+1,i+1)T ;
3: Find si ∈Mi \ {0} such that N (si) ≤ γn · λN1 (Mi);
4: Set si+1 = ai if it is linearly independent with si, and si+1 = ai+1 otherwise;
5: Call the algorithm of Lemma 2.10 with ((Ii,ai), (Ii+1,ai+1)) and (si, si+1) as inputs, and let

((I ′i,a
′
i), (I

′
i+1,a

′
i+1)) denote the output;

6: Update Ii := I ′i, Ii+1 := I ′i+1 and [bi|bi+1] := [bi|bi+1] ·A−1 ·A′
(where A = [ai|ai+1] and A′ = [a′i|a′i+1]).

7: end while
8: return ((Ii,bi))i≤m.

Proof. Using Lemma 2.8 applied to the rank-2 module Mi, we have

N (si) ≤ γn2n/2∆
1/2
K

(
N (ri,iIi)N (ri+1,i+1Ii+1)

)1/2
.

Using the assumption allows to complete the proof.

We are now ready to prove the main result of this section.

Theorem 4.17. Assume that Step 3 of Algorithm 4.4 is implemented with some algorithm O for
some parameter γ. Assume that αK > γ2n2n∆K . Then Algorithm 4.4 terminates and outputs an
LLL-reduced pseudo-basis of M . Further, the number of loop iterations is bounded by

m(m+ 1)

log(αK/(γ2n2n∆K))
· log

maxN (riiIi)

minN (riiIi)
,

where the Ii’s and rii’s are those of the input pseudo-basis.

Proof. We first show that at every stage of the algorithm, the current pseudo-basis ((Ii,bi))i≤m is
a pseudo-basis of M . For this, it suffices to show that the operations performed on it at Step 6
preserves this property. For Step 6, it is provided by the fact that A−1 · A′ maps the pseudo-
basis ((Ii,ai), (Ii+1,ai+1)) into the pseudo-basis ((I ′i,a

′
i), (I

′
i+1,a

′
i+1)) of the same rank-2 module (by

Lemma 2.10). Applying the same transformation to ((Ii,bi), (Ii+1,bi+1)) preserves the spanned rank-2
module. The correctness of Algorithm 4.4 is implied by termination and the above.

We now prove a bound on the number of loop iterations, which will in particular imply termination.
Consider the quantity

Π :=
∏
i≤m

N (riiIi)
m−i+1.

This quantity if bounded from above by maxN (riiIi)
m(m+1)/2 and from below by minN (riiIi)

m(m+1)/2.
Below, we show that Π never increases during the execution of the algorithm, and that at every iteration
of the while loop, it decreases by a factor >

√
αK/(γ2n2n∆K). We also show that the value minN (riiIi)

can only increase during the execution of the algorithm, hence the lower bound above holds with respect
to the input rii and Ii at every step of the algorithm. Combining the decrease rate with the above
upper and lower bounds, this implies that the number of loop iterations is bounded by

m(m+ 1)

log(αK/(γ2n2n∆K))
· log

maxN (riiIi)

minN (riiIi)
,

where the Ii’s and rii’s are those of the input pseudo-basis.
Consider an iteration of the while loop, working at index i. We have αK ·N (ri+1,i+1Ii+1) < N (ri,iIi).

Step 6 is the only one that may change Π. Observe that we have

Π =
∏
j≤m

N
(
detKR

(
((Ii,bi))i≤j

))
.

77

CHAPTER 4. AN LLL ALGORITHM FOR MODULE LATTICES

During the loop iteration, none of the m modules in the expression above changes, except possibly the
i-th one. Now, note that

N
(
detKR

(
((Ik,bk))k≤i

))
=
∏
k≤i

N (rkkIk).

During the loop iteration under scope, only the i-th term in this product may change. At Step 6, it
is updated from N (riiIi) to N (I ′i)N (a′i). By Lemma 2.10, we have N (I ′i) ≤ 1 and a′i = si. Now, by

Lemma 4.16, we have that N (si) ≤ γn
√

2n∆K

αK
N (riiIi). Overall, this gives that N (riiIi) and hence Π

decrease by a factor >
√
αK/(γ2n2n∆K).

4.4.2 Handling bit-sizes

In terms of bit-sizes of the diverse quantities manipulated during the execution of the algorithm, there
can be several sources of bit-size growth. Like in the classical LLL-algorithm, the Euclidean norms of
off-diagonal coefficients rij for i < j could grow during the execution. We handle this using a generalized
size-reduction algorithm. Other annoyances are specific to the number field setup. There is too much
freedom in representing a rank-1 module Iv: scaling the ideal I by some x ∈ K and dividing v by the
same x preserves the module. In the extreme case, it could cost an arbitrarily large amount of space,
even to store a trivial rank-1 module such as R · (1, 0, . . . , 0)T , if such a bad scaling is used (e.g., using
such an x with large algebraic norm). Finally, even if the ideal I is “scaled”, we can still multiply v
by a unit: this preserves the rank-1 module, but makes its representation longer.2 We introduce the
notion of scaled pseudo-bases, which is very similar to (but weaker than) the notion of strongly scaled
pseudo-basis we defined in Section 4.3.5.

Definition 4.18. A pseudo-basis ((Ii,bi))i≤m, with Ii ⊂ K and bi ∈ Ks
R for all i ≤ m, is said scaled

if, for all i ≤ m,

R ⊆ Ii, N (Ii) ≥ 2−n
2

∆
−1/2
K and ‖rii‖ ≤ 2n∆

1/(2n)
K N (riiIi)

1/n.

It is said size-reduced if ‖rij/rii‖ ≤ (4n)n∆
1/2
K for all i < j ≤ m.

Note that if ((Ii,bi))i≤m is scaled, then N (Ii) ≤ 1 for all i ≤ m. Further, if the spanned module is
contained in Rs, then bi ∈ Rs for all i ≤ m. Algorithm 4.5 transforms any pseudo-basis into a scaled
pseudo-basis of the same module. It is a direct adaptation of Algorithm 4.2 in which the algorithm
from Lemma 3.11 is replaced by the LLL algorithm. Compared to Algorithm 4.2, this algorithm is not
heuristic and does not require an oracle solving CVP in a fixed lattice. It outputs a scaled pseudo-
basis, which is weaker than a strongly scaled pseudo-basis, but will be sufficient for our purposes in
this section.

Algorithm 4.5 Scaling the ideals.

Input: A pseudo-basis ((Ii,bi))i≤m of a module M .
Output: A scaled pseudo-basis ((I ′i,b

′
i))i≤m of M .

1: for i = 1 to m do
2: Use LLL to find si ∈ rii · Ii \ {0} such that ‖si‖ ≤ 2n∆

1/(2n)
K N (riiIi)

1/n;
3: Write si = rii · xi, with xi ∈ Ii;
4: Define I ′i = Ii · 〈xi〉−1 and b′i = xibi.
5: end for
6: return ((I ′i,b

′
i))i≤m.

Lemma 4.19. Algorithm 4.5 outputs a scaled pseudo-basis of the module M generated by the input
pseudo-basis and preserves the N (riiIi)’s. If M ⊆ Rs, then it runs in time polynomial in the input
bit-length and in log ∆K .

2Note that ideal scaling and size-reduction have been suggested in [FS10, Se. 4.1], but without a complexity analysis
(polynomial complexity was claimed but not proved).

78

CHAPTER 4. AN LLL ALGORITHM FOR MODULE LATTICES

Proof. The proof is a direct adaptation of the proof of Lemma 4.11, replacing c by 2n∆
1/(2n)
K . Observe

that the determinant of the canonical embedding of riiIi is ∆
1/2
K N (riiIi) and its dimension is n, so LLL

can indeed be used to find si ∈ rii · Ii \ {0} such that ‖si‖ ≤ 2n∆
1/(2n)
K N (riiIi)

1/n.
If M ⊆ Rs, by Lemmas 2.23, 2.24 and 2.25, all the operations performed in the algorithm can be

done in polynomial time. Hence the whole algorithm runs in polynomial time.

Algorithm 4.6 aims at size-reducing a scaled pseudo-basis. It relies on a b·eR operator which takes as
input a y ∈ KR and rounds it to some k ∈ R by writing y =

∑
yiri for some yi’s in R, and rounding each

yi to the nearest integer: k =
∑
kiri =

∑
byieri (remember that the ri’s form an LLL-reduced basis

of R). For computations, we will apply this operator numerically, so that we may not have maxi |ki −
yi| ≤ 1/2 but, with a bounded precision computation, we can ensure that maxi |ki − yi| ≤ 1

Algorithm 4.6 Size-reduction.

Input: A scaled pseudo-basis ((Ii,bi))i≤m of a module M .
Output: A size-reduced pseudo-basis of M .

1: for j = 1 to m do
2: for i = j − 1 to 1 do
3: Compute xi = brij/riieR;
4: bj := bj − xibi.
5: end for
6: end for
7: return ((Ii,bi))i≤m.

Lemma 4.20. Algorithm 4.6 outputs a scaled size-reduced pseudo-basis of the module M generated by
the input pseudo-basis and preserves the N (riiIi)’s. If M ⊆ Rs, then it runs in time polynomial in the
input bit-length and in log ∆K .

Proof. As the input basis is scaled, the operations performed on the pseudo-bases preserve the spanned
module. Further, note that the update of bj at Step 4 has no effect on ri′j′ for j′ 6= j or j′ = j
and i′ > i. It transforms rij into rij − xirii and ri′j into ri′j − xiri′i for i′ < i. In particular,
the new rij satisfies ‖rij/rii‖ ≤ nmaxk≤n ‖rk‖. As the rk’s are a LLL-reduced basis of R, we have

that maxk≤n ‖rk‖ ≤ (4n)n/2∆
1/2
K . This proves the correctness of Algorithm 4.6. The preservation of

the N (riiIi)’s is direct, as neither the rii’s nor the Ii’s are modified.
Now, assume that M ⊆ Rs. Assume that the outer loop is currently at index j. Consider the inner

loop iteration indexed by i. Let mold
j and mnew

j respectively denote the value of maxi′<j ‖ri′j/ri′i′‖ at
the start and end of this inner loop iteration. We have:

mnew
j ≤ mold

j + ‖xi‖ ·max
i′<j
‖ri′i/ri′i′‖.

We have maxi′<j ‖ri′i/ri′i′‖ ≤ (4n)n∆
1/2
K , because the first j − 1 columns are size-reduced. Also, we

have ‖xi‖ ≤ mold
j + (4n)n∆

1/2
K , as xi = brij/riieR. This gives

mnew
j ≤ (1 + (4n)n∆

1/2
K)mold

j + (4n)2n∆K .

Iterating over the j − 1 ≤ m values of i, we obtain that mj always stays bounded from above by

(1 + (4n)n∆
1/2
K)m(minit

j + (4n)n∆
1/2
K), where minit

j is the value of maxi′<j ‖ri′j/ri′i′‖ at the start of
the first inner loop iteration. This implies that log ‖bj‖ always remains below a polynomial in the
input size, m and log ∆K . If need be, we can recompute the R-factor at every step of the algorithm
(rather than updating it), and, by Lemma 2.25, the cost will still be polynomially bounded in the input
bit-length and in log ∆K .

We now consider Algorithm 4.7, which is a variant of Algorithm 4.4 that allows us to prove a bound
on the bit cost. The only difference (Step 7) is that we call Algorithms 4.5 and 4.6 at every loop
iteration of Algorithm 4.4, so that we are able to master the bit-lengths during the execution. Without

79

CHAPTER 4. AN LLL ALGORITHM FOR MODULE LATTICES

loss of generality, we can assume that the pseudo-basis given as input is scaled and size-reduced: if
it is not the case, we can call Algorithms 4.5 and 4.6, which will produce a pseudo-basis of the same
module, whose bit-length is polynomial in the input bit-length and in log ∆K .

Algorithm 4.7 LLL-reduction over K with controlled bit-lengths

Input: A scaled size-reduced pseudo-basis ((Ii,bi))i≤m of a module M ⊆ Rs.
Output: An LLL-reduced pseudo-basis of M .

1: while there exists i < m such that αK · N (ri+1,i+1Ii+1) < N (ri,iIi) do
2: Let Mi be the rank-2 module spanned by the pseudo-basis ((Ii,ai), (Ii+1,ai+1)), with ai =

(rii, 0)T and ai+1 = (ri,i+1, ri+1,i+1)T ;
3: Find si ∈Mi \ {0} such that N (si) ≤ γn · λN1 (Mi);
4: Set si+1 = ai if it is linearly independent with si, and si+1 = ai+1 otherwise;
5: Call the algorithm of Lemma 2.10 with ((Ii,ai), (Ii+1,ai+1)) and (si, si+1) as inputs, and let

((I ′i,a
′
i), (I

′
i+1,a

′
i+1)) denote the output;

6: Update Ii := I ′i, Ii+1 := I ′i+1 and [bi|bi+1] := [bi|bi+1] ·A−1 ·A′
(where A = [ai|ai+1] and A′ = [a′i|a′i+1]);

7: Update the current pseudo-basis by applying Algorithm 4.5 and then Algorithm 4.6 to it.
8: end while
9: return ((Ii,bi))i≤m.

Theorem 4.21. Assume that Step 3 of Algorithm 4.7 is implemented with some algorithm O for some
parameter γ. Assume that αK > γ2n2n∆K . Given as input a scaled and size-reduced pseudo-basis of a
module M ⊆ Rs, Algorithm 4.4 outputs an LLL-reduced pseudo-basis of M in time polynomial in the
bit-length of the input pseudo-basis, log ∆K and 1/ log(αK/(γ

2n2n∆K)).

Proof. The correctness proof of Theorem 4.17 still holds. The only adaptation needed is to observe
that during the execution of Step 7, none of the N (riiIi)’s changes. This is provided by Lemmas 4.19
and 4.20. Further, note that the bound on the number of loop iterations is polynomial in the bit-length
of the input pseudo-basis and 1/ log(αK/(γ

2n2n∆K)). It remains to prove that the bit-lengths of all
the quantities occurring during the execution of the algorithm remain sufficiently small.

For this, it suffices to show that the pseudo-bases keep bounded bit-lengths. As Algorithms 4.5,
4.6 and the algorithm from Lemma 2.10 run in polynomial time, the bit-lengths of all quantities
manipulated during a loop iteration are polynomially bounded in terms of the run-time of O, log ∆K

and the bit-length of the pseudo-basis at the start of the same loop iteration. It therefore suffices to
bound the bit-lengths of the pseudo-bases occurring at the start of each loop iteration. At that moment,
the pseudo-bases are scaled, so the bit-lengths of the coefficient ideals are polynomial in log ∆K . We
now focus on the vectors bj ∈ Rs.

Note that ‖bj‖2 =
∑
i≤j ‖rij‖2. By size-reducedness, we have that ‖bj‖ ≤

√
n(4n)n∆

1/2
K maxi ‖rii‖.

As the pseudo-basis is scaled, we have that ‖bj‖ ≤
√
n(8n)n∆K maxiN (riiIi)

1/n. Now, note that
maxiN (riiIi)

1/n never increases during the execution of the algorithm: this is implied by the part
of the proof of Theorem 4.17 involving Π. Initially, it is bounded by a polynomial in the input bit-
length. Overall, we obtain that at every start of an iteration of the while loop, the quantity log ‖bj‖
is bounded by a polynomial in the input bit-length and log ∆K . Using Lemma 2.23 allows to complete
the proof.

4.4.3 Finding short vectors for the Euclidean norm

By Lemma 4.15 and Theorem 4.21 with αk = (1 + c/m) · γ2n2n∆K for a well-chosen constant c,
Algorithm 4.7 may be interpreted as a reduction from finding a 2 · (γ2n2n∆K)m−1 approximation to
a vector reaching λN1 in rank-m modules, to finding a γn approximation to a vector reaching λN1 in
rank-2 modules.

By using Lemma 2.8, we can extend the above to the Euclidean norm instead of the algebraic norm.

80

CHAPTER 4. AN LLL ALGORITHM FOR MODULE LATTICES

Theorem 4.22. Let γ ≥ 1, assume that log ∆K is polynomially bounded, and assume that a Z-basis
of R is known. Then there exists a polynomial-time reduction from solving SVPγ′ in rank-m modules

(with respect to ‖ · ‖) to solving SVPγ in rank-2 modules, where γ′ = (2γ∆
1/(2n)
K)2m−1.

Proof. The reduction consists in first using Algorithm 4.7 with Step 3 implemented using the oracle
solving SVPγ in rank-2 modules. The parameter αK is set to (1 + 1/(100m)) · γ2n2n∆K . It does not
formally achieve the goal of Step 3, but it suffices for the proof of Lemma 4.16 to go through (in the
proof of that lemma, we bound λN1 (Mi) by using a relationship between λN1 (Mi) and λ1(Mi)).

By Theorem 4.21, the reduction runs in in polynomial time. Further, by Lemma 4.15, the output
pseudo-basis satisfies N (I1)N (b1) ≤ αm−1

K ·λN1 (M). By Lemma 2.8 and by definition of αK , this gives:

N (I1)N (b1) ≤ 2(γ2n2n∆K)m−1 · 2n/2n−n/2λ1(M)n.

Now, an SVPγ solver for rank-2 modules directly provides an SVPγ solver for rank-1 module. We
hence use our oracle again, on I1b1. This provides a non-zero vector s ∈ I1b1 ⊆ M such that ‖s‖ ≤
γ
√
n∆

1/(2n)
K · (N (I1)N (b1))1/n, by Minkowski’s theorem. Combining the latter with the above upper

bound on N (I1)N (b1) provides the result.

4.5 Conclusion

As in the previous chapter, the divide-and-swap algorithm for rank-2 modules presented in this chapter
should be seen as a theoretical result, showing that the structure of the module lattices might be used
to help finding short vectors. However, because it requires a CVP solver in a lattice of dimension at
least n2, this algorithm cannot be used in practice. The main impact of this algorithm is to show that
the LLL algorithm can be extended to any number field R, provided that we change the lattice in which
we want to solve CVP. More precisely, the LLL algorithm over Z requires to be able to solve CVP in
the lattice Z. When one wants to generalize LLL to a number field R, it then seems natural to require
to be able to solve CVP in the lattice R. As we have seen in the introduction of this chapter, this does
not seem to be sufficient, however, we have proposed an alternative lattice which can be used to replace
Z and provide an LLL algorithm over R.

This algorithm raises several open questions. First, the lattice L′ we introduce has dimension at
least n2, when the number field R has dimension n. One might hope that a lattice of dimension O(n) (or
rather O(log |∆|)) would be sufficient. However, in the current version of our algorithm, we do not see
how the dimension of the lattice L′ could be reduced further. Having a lattice L′ of smaller dimension
would help us implement our algorithm and check the validity of the heuristics (for the moment, a
number field of dimension n = 10 already implies a lattice L′ of dimension ≥ 100, which is close to the
maximum dimension we can currently handle when solving CVP). The same kind of open questions
as in the previous chapter also appear in this one. Can we prove our new Heuristic 4.5, or at least
part of it? Can we use the structure of the lattice L′ to speed up CVP computations in it? It would
be interesting to consider these questions even for restricted number fields, such as multiquadratic or
cyclotomic number fields.

81

Chapter 5

Graded Encoding Schemes

Since their introduction in cryptographic constructions by Joux in 2000 [Jou00], cryptographic bilinear
maps, as provided by pairings on elliptic curves, have enabled the construction of more and more
advanced cryptographic protocols, starting with the Identity-Based Encryption scheme of Boneh and
Franklin [BF01]. More abstractly, a group equipped with an efficient bilinear map, and on which
some discrete-logarithm-like problems are hard (such as the bilinear Diffie-Hellmann problem), provides
foundation for a whole branch of cryptography. A natural open question is whether cryptographic
bilinear maps can be generalized to degrees higher than 2 while enjoying hardness of generalizations of
the Diffie-Hellmann problem. Such hypothetical objects are referred to as cryptographic Multilinear
Maps (or, for short, MMaps) [BS03]. We still have no candidate constructions for cryptographic
multilinear maps, but a variant of it, called Graded Encoding Schemes (or, for short, GES) was defined
in [GGH13a], together with a candidate construction. From a functionality perspective, the difference
between cryptographic multilinear maps and graded encoding schemes is not a problem for many of
the applications.

In this chapter, we are going to focus on graded encoding schemes. In a first section, we will give
an overview of the main candidates. We will then focus on the GGH13 candidate. In the last section,
we will study the security of the GGH13 map against statistical attacks.

This last section corresponds to a joint work with Léo Ducas, which was published in the proceedings
of Asiacrypt 2018 [DP18]. The code which was used to perform the experiments described in this chapter
is available at

http://perso.ens-lyon.fr/alice.pellet___mary/code/statistical_leak.sage

Contents
5.1 Definition and candidates . 83

5.1.1 Definitions . 83

5.1.2 Candidates . 86

5.2 The GGH13 multilinear map . 87

5.2.1 The GGH13 construction . 87

5.2.2 Size of the parameters and correctness . 88

5.2.3 Security of the GGH13 map . 89

5.3 Statistical attack on the GGH13 map . 91

5.3.1 Contribution . 91

5.3.2 Setting and hardness assumption . 91

5.3.3 Sampling methods . 93

5.3.4 Analysis of the leaked value . 97

5.3.5 The compensation method . 102

5.4 Conclusion . 104

82

http://perso.ens-lyon.fr/alice.pellet___mary/code/statistical_leak.sage

CHAPTER 5. GRADED ENCODING SCHEMES

5.1 Definition and candidates

In this first section, we first formally define graded encoding schemes. We then describe the main
candidate GES, and the known attacks against them.

5.1.1 Definitions

A Graded Encoding Scheme (GES) is an encoding scheme over a ring, where the elements are encoded
relatively to ‘levels’. It is parametrized by a parameter κ > 0, called the degree of the GES (this param-
eter somehow represent the maximum degree of a polynomial that can be applied on the encodings).
In a symmetric GES, the levels of the encodings are integers, between 0 and κ. In an asymmetric GES,
the levels are vectors in Zκ, with non-negative coefficients. Given encodings of elements, it should be
possible to publicly perform some computations on them. It should be possible, given two encodings
at the same level, to compute an encoding of the sum, still at the same level. Also, given any two
encodings, it should be possible to obtain an encoding of the product, at a level which is the sum of the
two levels. Finally, there is some level, called maximum level, such that it is possible to publicly check
if an encoding at that level is an encoding of zero of not. We now give a formal definition of graded
encoding schemes. This definition differs a little from the original definition of [GGH13a], because the
usage of GES has changed since this first work. We define both symmetric and asymmetric GES, but
in the following, we will mainly consider the asymmetric ones.

Definition 5.1 (κ-Graded Encoding Scheme). An asymmetric (resp. a symmetric) κ-Graded Encoding
Scheme over a ring R consists in the following probabilistic polynomial-time algorithms:

• An algorithm Setup(1λ, 1κ) that takes as input the security parameter and the degree of the
graded encoding scheme. It outputs a secret key sk and a public key pk.

• An algorithm Enc(sk, a,v) that takes as input the secret key sk, a plaintext element a in the
plaintext space (included in the ring R), and a level v. The level v is a vector in Zκ with non-
negative coefficients (resp. v is a non-negative integer). It outputs an element u, called encoding
of a at level v.

• Two algorithm Add(pk, u1, u2) and Subtract(pk, u1, u2) that take as input the public key pk and
two encodings u1 and u2 of a1 and a2 respectively, at the same level v. They output a new
encoding at level v. For the Add algorithm, this encoding is called an encoding of a1 + a2 at level
v. For the Subtract algorithm, this encoding is called an encoding of a1 − a2 at level v.

• An algorithms Multiply(pk, u1, u2) that takes as input the public key pk and two encodings u1

and u2 of a1 and a2 at levels v1 and v2 respectively. It outputs a new encoding, called an encoding
of a1 · a2 at level v1 + v2, where the addition corresponds to the usual addition of κ-dimensional
vectors (resp. addition of integers).

• An algorithm Zero-test(pk, u) that takes as input the public key pk and an encoding u at the
maximum level v∗. This maximum level is defined by v∗ = (1, 1, . . . , 1) ∈ Zκ (resp. v∗ = κ). It
outputs a boolean value.

• (Optional) An algorithm Extract(pk, u) that takes as input the public key pk and an encoding
u at the maximum level v∗. It outputs a bit-string.

The encodings created by the Enc procedure are called fresh encodings, by opposition to the encodings
created by the Add, Subtract and Multiply procedures. We say that a level v is valid if all of its
coefficients are 0 or 1 (resp. if v ≤ κ). An encoding is said to be valid if it is output by the Enc

procedure, or by the Add, Subtract or Multiply procedures applied to valid encodings, and if its level
is valid.

The Extract procedure is optional. Some applications like multipartite key exchange need it,
whereas others such as obfuscation do not. In this manuscript, we will mainly be interested in obfus-
cation, hence we will soon forget about the Extract procedure.

83

CHAPTER 5. GRADED ENCODING SCHEMES

Functionality. In an ideal world, the algorithms of a κ-graded encoding scheme should satisfy the
following functionality conditions.

• Given the public key pk output by the Setup algorithm and a valid encoding u of some element
a at level v∗, algorithm Zero-test(pk, u) outputs 1 if a = 0 and 0 otherwise.

• Given the public key pk output by the Setup algorithm and two valid encodings u1, u2 of the same
element a at level v∗, then Extract(pk, u1) and Extract(pk, u2) produce the same bit-string.

In the real world, we do not have any candidate GES with κ ≥ 3 which satisfy these functionality
conditions (and which presumably satisfy some useful security definition). This is because the candidate
GES we have use noisy encodings, whose noise increases at each operation Add, Subtract or Multiply.
When the noise becomes too large, it becomes impossible to zero-test or extract correctly. To capture the
real-world graded encoding schemes in the definition above, we modify the conditions on the Zero-test
and Extract algorithms by requiring that they are correct only with overwhelming probability and if the
input encodings are obtained by adding a limited number of fresh encodings. Observe that the number
of multiplications is always bounded by the degree of the encodings, hence we just need to bound the
number of additions. Also, because of the noise in the encodings, we cannot ask for perfect correctness
of the Zero-test and Extract algorithms, but we still require that the probability of failure should be
negligible. We obtain the following conditions, for functionality of a κ-graded encoding scheme in the
real world (the parameter m is to be chosen depending on the applications). Let u1, u2 be any valid
encodings of the same element a at level v∗, such that we can develop u1 and u2 as a sum of at most m
monomials in the fresh encodings. Functionality of the κ-GES holds if

• given the public key pk output by the Setup algorithm and u1 as above, algorithm Zero-test(pk, u1)
outputs 1 with overwhelming probability if a = 0 and 0 with overwhelming probability otherwise
(where the probability is taken over the randomness used in the Enc algorithm, when generating
the fresh encodings that were used in u1).

• given the public key pk output by the Setup algorithm and u1, u2 as above, then Extract(pk, u1)
and Extract(pk, u2) output the same bit-string with overwhelming probability over the random-
ness used in the Enc algorithm.

Security. A GES is best viewed as a mathematical object, such that some computational problems
related to it are presumably intractable. The [GGH13a] article suggested such a problem called Multilin-
ear Decision Diffie Hellman (MDDH), which generalizes the bilinear decisional Diffie Hellman problem
for bilinear maps. In the case of symmetric graded encoding schemes, this problem can be stated as
follows.

Definition 5.2 (Multilinear Decision Diffie-Hellman (MDDH) for symmetric κ-GES). Given κ + 1
encodings {ui}0≤i≤κ of randomly chosen plaintext elements {ai}0≤i≤κ at level v = 1, it should be
computationally hard to distinguish between an encoding of

∏κ
i=0 ai at level κ and an encoding of a

uniformly chosen value b at level κ.

Observe that the requirement that there are (at least) κ+ 1 encodings is necessary. Indeed, thanks
to the properties of a graded encoding scheme, anyone can publicly multiply up to κ level-one elements,
and obtain an encoding at level κ. The conjectured hardness of this problem was used in [GGH13a] to
construct one-round multipartite key exchange between κ + 1 users in the following way. Each user i
chooses a random element ai. It then publishes an encoding ui of ai at level 1. It also creates an
encoding of ai at level 0 which it keeps secret. Given the other encodings uj of aj at level 1 for j 6= i,
user i then multiplies them all to create an encoding of

∏
j 6=i aj at level κ. It finally multiplies this

encoding by its secret level-0 encoding of ai to obtain an encoding of
∏
j aj at level κ, and extract a

secret key from it using the Extract procedure.
This protocol, however, requires each party i to be able to create an encoding at level 1. This cannot

be done by the Enc procedure, as it would require all users to know the secret key of the multilinear
map. Instead, some authority should publicly make available some encodings at level 1 together with
their plaintext value. For re-randomization reasons, the authority also provides multiple encodings
of 0 at level 1. Each user i can then create an encoding by secretly adding/subtracting some of these

84

CHAPTER 5. GRADED ENCODING SCHEMES

public encodings and re-randomizing it by adding a random subset of the encodings of zero. However,
this means that the MDDH problem should remain hard even in the presence of these public pairs of
plaintext/encodings of level 1.

As we shall see below, the three main candidate graded encoding schemes are known to be insecure
when encodings of zero at level 1 are known. Hence, the assumption that MDDH is hard is not used a
lot currently.

Another hardness assumption related graded encoding schemes could come from the constructions
of obfuscators, which are the main applications of GES today. There is no simple hardness assumptions
related to graded encoding schemes that would be known to imply obfuscation, but it is known that
in some ‘ideal multilinear map model’1 (first defined in [BR13]), obfuscation is possible. The ideal
multilinear map model is a model where the adversary only has some black box access to the multilinear
map. More precisely, it is given handles to the encodings, and some oracle maintains a table linking
these handles to the real encodings. The adversary can ask for addition, subtraction and multiplication
of encodings, and obtain new handles corresponding to the resulting encodings. It can also ask to
zero-test a handle, and receives the output of the zero-test procedure on the corresponding encoding.
It has been proven that obfuscation is possible in this ideal multilinear map model [BR14, BGK+14].
One can then wonder whether a graded encoding scheme can be used to instantiate this model. This
is however known to be impossible [BR14, BGK+14], because in the ideal multilinear map model, it
is possible to achieve virtual black box obfuscation, a primitive which is known to be impossible to
achieve [BGI+01].

The conclusion of this discussion is that there is currently no good one-fits-all hardness assumption
for graded encoding schemes. Their security should rather be considered for each construction using
them. For example, in Section 5.3.2, we define a specific framework using the GGH13 graded encoding
scheme, and we define what we consider is an attack in this framework.

Below, we list some security requirements that arise in most of the applications using graded en-
coding schemes (they are necessary, but usually not sufficient).

• The encodings at level different from 0 in the symmetric case and different from (0, 0, . . . , 0) in
the asymmetric case should hide the corresponding plaintexts.

• It should not be possible to zero-test encodings at a level which is not the maximum level.

• It should not be possible to meaningfully add/subtract encodings at different levels.

On the other hand, it is possible that the graded encoding scheme has more functionalities than the
ones given above. For instance, in the graded encoding schemes we are going to describe in the next
section, one can publicly multiply an encoding by a ring element, and obtain an encoding of the product
at the same level. This is not known to have any impact on the security of the graded encoding scheme,
for their current use in cryptographic constructions.

Multilinear maps. Graded encoding schemes are often called multilinear maps, however, these objects
are not exactly the same. We give here the definition of a κ-cryptographic multilinear map (or MMap
for short).

Definition 5.3 (κ-Cryptographic Multilinear Map [BS03]). For κ + 1 cyclic groups G1, . . . , Gκ, GT
(written multiplicatively) of the same order p, a κ-multilinear map e : G1 × · · · × Gκ → GT is a map
with the following properties:

• It is linear with respect to each variable, that is for any (g1, . . . , gκ) ∈ G1 × · · · × Gκ, for any
α ∈ Zp and for any 1 ≤ j ≤ κ, we have

e(g1, . . . , g
α
j , . . . , gκ) = e(g1, . . . , gj , . . . , gκ)α.

• It is non-degenerate, i.e., if for all 1 ≤ i ≤ κ we take gi a generator of Gi, then e(g1, g2, . . . , gκ)
is a generator of GT . This condition is there to avoid the trivial multilinear map that sends
everything to 1.

1The ideal multilinear map model is typically applied to graded encoding schemes instead of multilinear maps. This
is because the term multilinear map is commonly used to refer to graded encoding schemes.

85

CHAPTER 5. GRADED ENCODING SCHEMES

• It is efficiently computable.

If the groups G1, . . . , Gκ are the same, then the multilinear map is said to be symmetric. If the groups
are different, then the multilinear map is said to be asymmetric.

There is some analogy between asymmetric MMap and asymmetric GES. Indeed, if we define vi
to be the vector (0, . . . , 0, 1, 0, . . . , 0) ∈ Zκ with a 1 in the i-th position, then we can see the elements
gαi (of the MMap) as encodings of α at level vi (of the GES). We can add two encodings at the same
level vi, and multiply encodings at levels v1, . . . ,vκ. This analogy is not perfect, and there are two
main differences between multilinear maps and graded encoding schemes. The first one is that in a
multilinear map, we have to apply the pairing operation on all elements at once. On the contrary,
a graded encoding scheme allows to multiply two elements, then add this new element with another,
and then multiply it again. In a multilinear map, we can perform additions only in the groups Gi and
GT . With the language of graded encoding schemes, it means that we can add encodings only at levels
vi’s (containing only 0’s except for one 1), or at the maximum level v∗. Another difference is that the
encodings in a graded encoding scheme are not necessarily unique. Many encodings can correspond
to the same plaintext, whereas with a multilinear map the encoding function is bijective. This is why
we sometimes require an extraction procedure for graded encoding schemes. The extraction algorithm
makes it possible to extract a canonical bit string from different encodings of the same element.

In this thesis, we will consider only graded encoding schemes. As it is commonly done in obfuscation,
we will sometimes refer to graded encoding schemes as ‘multilinear maps’.

5.1.2 Candidates

There are three main candidate graded encodings schemes. The first one was proposed in 2013 by
Garg, Gentry and Halevi [GGH13a]. This graded encoding scheme relies on lattice techniques, and
uses elements that are polynomials (for both plaintexts and encodings). After this first candidate was
published, Coron, Lepoint and Tibouchi [CLT13] proposed new candidate graded encoding scheme,
using integers instead of polynomials, hence supposedly more efficient. The general ideas of the CLT13
scheme are very similar to the ones of [GGH13a]. Two years later, in 2015, Gentry, Gorbunov and
Halevi [GGH15] proposed a third candidate. This candidate is not truly a graded encoding scheme, in
that it does not allow a user to perform any addition/multiplication it wants on the encodings. Rather,
the encodings of the GGH15 scheme come with a graph, and one can only multiply encodings that
are adjacent in this graph. However, for most applications, this restricted graded encoding scheme is
sufficient. The main interest of this third candidate is that it comes closer to have a security proof
based on standard lattice assumptions. It is still only a candidate graded encoding scheme, meaning
that it has no security proof based on standard assumptions. However, slight variants of it can be used
to obtain cryptographic primitives with security based on the plain LWE problem [WZ17,GKW17].

A fourth graded encoding scheme was recently proposed by Ma and Zhandry [MZ18]. Their con-
struction builds upon the CLT13 graded encoding scheme, but adds more safeguards in order to prevent
known attacks against the CLT13 scheme. More precisely, under some assumption called ‘vector-input
branching program un-annihilatability assumption’, they show that their graded encoding scheme re-
sists a large class of attacks, including all known attacks against the CLT13 map.

Attacks. The first three candidates mentioned above are known to be subject to a quite large number
of attacks, depending on the context in which they are used. None of them is completely broken
for all uses, but many applications using these candidate graded encoding schemes have been broken.
First, when encodings of zero at a level strictly below the maximum level (i.e., an encoding that
can be multiplied by another encoding to obtain a top-level encoding) are known, then some part of
the secret key of the CLT13 and GGH13 schemes can be recovered [CHL+15, HJ16]. In both cases,
the part of the secret key recovered by the attacks leads to devastating attacks against constructions
using the multilinear map. These attacks impact all constructions using graded encoding schemes with
encodings of zero at a small level. One such example was the multipartite key exchange between κ+ 1
users described above, when using the GGH13 or CLT13 map. The GGH15 map was designed so that
it was possible to construct a multipartite key exchange from it, without revealing low-level encodings
of zero. However, this multipartite key exchange was also broken by Coron, Lee, Lepoint and Tibouchi
in 2016 [CLLT16].

86

CHAPTER 5. GRADED ENCODING SCHEMES

When considering all these attacks, the main remaining application of graded encoding schemes is
obfuscation. The candidate obfuscators use graded encoding schemes, but they do not need to provide
the attacker with encodings of zero, except at the maximum level. Hence, the attacks mentioned
above do not apply to these constructions. However, new attacks have been developed, and many
of the candidate obfuscators using these graded encoding schemes are now broken (see Chapter 6 for
more details). All these attacks rely on some weaknesses of the graded encoding scheme underlying
the obfuscator construction. The main weakness that is exploited in attacks is the fact that for all the
candidate graded encoding schemes, the zero-testing procedure reveals more than one bit of information
when the answer is positive (it usually also outputs a ring element, which leaks some information about
some secret parameters of the scheme). By zero-testing many top-level encodings of zero, an attacker
may then obtain enough information to break the scheme. These attacks against obfuscators use some
specificities of the constructions, and hence do not apply to all obfuscator constructions. In Chapter 6,
we discuss in more details the current status of candidate obfuscators.

As mentioned above, the MZ18 construction is designed to resist all known attacks against the
CLT13 map. In particular, we do not know of an attack against it even if low-level encodings of zero
are provided. This means that this GES can be used for instance to perform multipartite key exchange
between κ+ 1 users. However, as a compensation for increasing the security, the MZ18 scheme is much
less efficient than the CLT13 one. It somehow mimics an obfuscator built upon the CLT13 map, whose
functionality would be to compute a graded encoding scheme. The authors can then use techniques
developed in obfuscation to protect their GES against known attacks. The consequence of this is that
it would be counter-productive to use the MZ18 map for applications such as obfuscation, as the same
security guarantee can already be achieved more efficiently from the CLT13 map.

In this thesis, we will focus on the GGH13 construction. In this chapter, we will define it, and
describe some statistical leakage that can be obtained in some cases. In the next chapter, we will focus
on the main remaining application of the GGH13 multilinear map: obfuscation.

5.2 The GGH13 multilinear map

We describe in this section the asymetric variant of the GGH13 multilinear map construction [GGH13a].
We then explicit the size of the parameters that have to be used for functionality. Finally, we discuss
its security.

5.2.1 The GGH13 construction

Let us first describe the GGH13 construction, in its asymmetric setting. As mentioned earlier, the
GGH13 multilinear map is in fact a graded encoding scheme. It allows to encode elements of a ring.
Anybody can then homomorphically perform additions and multiplications on these elements, under
some constraints. It is also possible to publicly test if an encoding at the maximum level encodes zero.

Setup. In all this chapter, and whenever the GGH13 multilinear map is used, the ring R will be
instantiated as a power-of-two cyclotomic ring R = Z[X]/(Xn + 1), with n a power of two. The field
K is then instantiated as the fraction field of R, i.e., the cyclotomic field Q[X]/(Xn + 1). The GGH13
multilinear map encodes elements of the ring R, modulo a small secret element g ∈ R. The plaintext
space will be Rq := R/(qR) for some modulus q ∈ Z. Recall that for x ∈ R, we write [x] the class of
the element x in Rq. This notation will be very useful in this chapter, as we will need to make a clear
distinction between elements in Rq and their representatives in R.

On input (1λ, 1κ), where λ is the security parameter and κ is the degree of the multilinear map, the
Setup algorithm generates the following parameters:

• an integer n which is a power of 2, and hence the ring R = Z[X]/(Xn + 1);

• a (small) element g in R. We let I = gR denote the ideal generated by g in R;

• a (large) positive integer q (which defines Rq := R/(qR) and [x] as the class of x modulo q);

• invertible elements [zi] ∈ R×q , for 1 ≤ i ≤ κ, chosen uniformly at random in R×q ;

87

CHAPTER 5. GRADED ENCODING SCHEMES

• a zero-testing parameter [pzt] = [hz∗g−1] where [z∗] = [
∏

1≤i≤κ zi] and h is a random element in
R, generated according to a Gaussian distribution of standard deviation approximately

√
q.

We detail in Section 5.2.2 the size of the parameters described above (we will choose them to ensure
the correctness of the scheme). The public key is composed of (n, q, κ, pzt), while the parameters
(h, g, {zi}i) form the secret key.

Encoding of an element. The GGH13 multilinear map allows to encode cosets of the form a+ I for
some element a in R. Let v ∈ (Z≥0)κ be a vector of size κ. An encoding of the coset a + I at level v
is an element of Rq of the form

u =
[
(a+ rg) · z−1

v

]
where [zv] = [

∏
i,v[i]=1 zi] and a+ rg is a small element in the coset a+ I. We recall that v is called the

level of the encoding, and that v is said to be valid if and only if its coefficients are in {0, 1}. Honest
use of the GGH13 map should only produce encodings at a valid level. We abuse notation by saying
that u is an encoding of a (instead of an encoding of the coset a+ I).

On input a plaintext element a + I, a level v ∈ {0, 1}κ and the secret key (h, g, {zi}i), the Enc

algorithm does the following. It first samples an element a′ = a+rg according to a Gaussian distribution
over the coset a+I. Then it outputs u =

[
a′ · z−1

v

]
. The Gaussian distribution used to sample a′ should

be centered in 0 but is not necessarily spherical. We denote by Σv ∈ KR its squared parameter (which
will be almost equal to its variance, see Section 2.5.2) and we describe in Section 5.3.3 the different
choices of Σv we found in the literature.

Operations on encodings. If u1 and u2 are two encodings of elements a1 and a2 at the same level v
then u1 + u2 is an encoding of a1 + a2 at level v, and u1 + u2 is an encoding of a1 − a2 at level v.

If u1 and u2 are two encodings of elements a1 and a2 at levels v and w, then u1 · u2 is an encoding
of a1 · a2 at level v + w. These properties hold for any levels v,w, even non valid ones. Observe that
during an addition/subtraction operation, the euclidean norm of the numerator of the encodings is
multiplied by at most two, while it can be squared during a multiplication.

We also note that the GGH13 map allows to multiply an encoding by a known small plaintext
element. Indeed, if u is an encoding of a at level v and b is a (small) ring element, then b · u is an
encoding of ab at level v. The noise is multiplied by b, hence the requirement for b to be short.

Zero-testing. The zero-testing parameter allows us to test if an encoding u at level v∗ is an encoding
of zero. On input an encoding u and the zero-testing parameter pzt, the Zero-test algorithm computes

[w] = [u · pzt].

If w is small compared to q (the literature typically requires its coefficients to be less than q3/4), the
algorithm outputs 1 (meaning that u in an encoding of zero). Otherwise, it outputs 0.

To justify the correctness of this algorithm, let us consider u = [(a+rg)(z∗)−1] a top-level encoding.
When we multiply u by the zero-testing parameter, we obtain [u · pzt] = [(a+ rg)hg−1]. Now, if a = 0,
then we have [u · pzt] = [rh], with both r and h small compared to q.2 The parameters of the GGH13
map are chosen to ensure that ‖rh‖2 is smaller than q3/4. On the other hand, if a 6= 0, then we have
g−1 which appears in the product. It is large, so [u · pzt] is likely to be large too. It can be proven that
in this case, the smallest representative of [upzt] in R will never have an euclidean norm smaller than
q3/4 (see [GGH13a, Section 4.1] for more details).

5.2.2 Size of the parameters and correctness

The size of the parameters of the GGH13 multilinear map depends on the applications we want to use
it for. The main difference between the diverse instantiations of the GGH13 map will be the choice of
q. Below, we give the size recommended in the original article [GGH13a], and we discuss about the
choice of q, depending on the application.

2The modulus q will be chosen such that for any allowed top-level encoding of zero, the noise r of this encoding is
small compared to q.

88

CHAPTER 5. GRADED ENCODING SCHEMES

• The dimension n of R should be taken such that n = Ω(κλ2), where λ is the security parameter of
the scheme. Taking a lower bound in λ2 was the original choice of [GGH13a] to avoid some lattice
attacks. It was reduced to n = Ω(κλ log(λ)) in [LSS14]. However, considering the recent sub-
exponential algorithms to solve the principal ideal problem [BF14,BEF+17], it should be increased
back to Ω(κλ2). Also, to prevent recent attacks on the NTRU problem [ABD16, CJL16, KF17],
the parameter n should satisfy n = Ω(λ(log q)2). When q is set as log q = O(κ) (which is the case
in most constructions), the two conditions can be satisfied by taking n = Ω(κ2λ2).

• The secret element g is sampled using a Gaussian distribution, with rejection, such that ‖g‖ =
O(n) and ‖1/g‖ = O(n2).

• The secret element h is sampled using a centered Gaussian distribution of parameter
√
q, so that

‖h‖ = Θ(
√
n ·√q). In [GGH13a, Section 6.4], the authors suggest to sample h according to a non

spherical Gaussian distribution instead of a spherical one.

• In the original GGH13 scheme, the modulus q was chosen to be greater than 28κλ · nO(κ). This
bound came from the re-randomisation procedure used originally to publicly generate level-1
encodings. This setting was shown to be insecure (because it uses encodings of zero), and the
current constructions using the GGH13 map do not use this re-randomization technique anymore.
So, in the current applications, the modulus q is usually chosen to be as small as possible such that
the zero-test is correct. To determine this optimal value, we should compute an upper bound M
on the Euclidean norm of the numerator of encodings that are allowed to be zero-tested. Then q
can be set as q = M4n14 (or the smallest prime larger than M4n14 if one wants a prime modulus).
This way, for any allowed top-level encoding of zero u = [rg(z∗)−1], with ‖rg‖ ≤ M , we have
‖rh‖ ≤ n · ‖rg‖ · ‖h‖ · ‖g−1‖ ≤ n3.5 ·M · q1/2 ≤ q3/4 by choice of q. The value of M (and so the
choice of q), is highly dependent on the application for which the GGH13 map is used. It depends
in particular on the number of additions and multiplications that can be performed honestly on
fresh encodings. In Section 5.3.2, we will give explicit values for M and q in the setting we will
be considering.

In most applications of the GGH13 map, the setting requires a user to be able to perform Ω(κ)
multiplication of fresh encodings, where κ is usually polynomial in the security parameter λ. This
means that M = 2Ω(λ) and so q should be exponential in λ. This will be the case for most of the
candidate obfuscators we are going to describe in Chapter 6. In Section 5.3.2 however, we will be
interested in cases where M is polynomial in λ, and so q can be set as small as polynomial in λ.
Having a small value of q has two main interests. First, it gives more efficient protocols. Second, it
may be considered more secure, as some attacks against the GGH13 map [ABD16,CJL16,KF17]
require a large modulus. We will however see in Section 5.3 that the GGH13 map with a small
modulus seems more vulnerable to statistical attacks.

5.2.3 Security of the GGH13 map

As already discussed in Section 5.1, the GGH13 map suffers from different attacks, depending on the
context in which it is used. There are two main categories of attacks against the GGH13 map, the
zeroizing attacks, and the NTRU attacks.

NTRU attacks. The NTRU attacks rely on the fact that the quotient of two encodings of the GGH13
map at the same level has an NTRU structure, that is, it is of the form f/g mod q where both f and g
are small. It has been shown in [ABD16,CJL16] that if the modulus q is large enough compared to the
dimension n (roughly q = 2

√
n), then it is possible to recover f/g in K from f/g mod q in polynomial

time. This means that we can recover multiples of the numerator of encodings of the GGH13 map,
which usually breaks any application using the GGH13 map. The recent attack of Kirchner and
Fouque [KF17] improves these attacks by exploiting the fact that in the GGH13 map, we are given
a lot of NTRU samples fi/g mod q with the same denominator g. These NTRU attacks against the
GGH13 map however are not very devastating. The reason for this is that they require the parameter q
to be of the order of 2

√
n. Hence, by increasing n by a polynomial factor, we can prevent these attacks.

There is no circular dependencies here, as q depends on κ and not on n. So by choosing carefully the
parameters of the GGH13 map, these attacks can be avoided.

89

CHAPTER 5. GRADED ENCODING SCHEMES

Zeroizing attacks. A more devastating line of attacks against the GGH13 map are called zeroizing
attacks. These attacks use the fact that the GGH13 map leaks more information than the one bit ‘u
is an encoding of zero’ when zero-testing a top-level encoding of zero u. Indeed, recall that when we
zero-test a top-level encoding of zero u = [rg/z∗], we recover [rh]. Now, observe that the product rh is
small compared to q, hence, knowing it modulo q means that we know it exactly. So for each successful
zero-test, we recover a ring element rh ∈ R, where the noise r depends on the encodings that where
used to generate this top-level encoding. This is more than what an ideal graded encoding scheme
should reveal. Below, we describe different zeroizing attacks, that use this extra information to try to
recover secret informations of the GGH13 map.

A first observation, is that with enough successful zero-tests, we obtain many ring elements rih,
which are all multiples of h. Hence, we heuristically hope that, with a few of them, we can recover the
ideal 〈h〉 (this is true in practice). This can be done in all constructions using the GGH13 multilinear
map with top-level encodings of zero. We will use it in Chapter 6 to mount a quantum attack against
some obfuscators.

Recall that we mentioned in Section 5.1 that the GGH13 map was not secure if low-level encodings
of zero were provided. We can now give the idea of why this is the case. Assume we have two encodings
of zero that can be multiplied to obtain a top-level encoding. Because the numerators of the two
encodings were multiples of g, then the top-level encoding of zero we obtain is of the form [rg2/z∗].
Hence, if we zero-test it, we recover rgh. If we can create different righ, then, as previously, we can
heuristically recover the ideal 〈gh〉. By dividing by the ideal 〈h〉 we can then recover the ideal 〈g〉. All
this was already known by the authors of the GGH13 map (see [GGH13a, Section 6.3.1]), but they did
not know how to use it for an attack. Hu and Jia [HJ16] showed in 2015 that the knowledge of 〈g〉 can
in fact be used to break the security of the multipartite key exchange based on the GGH13 map: an
attacker that sees the transcript of the key exchange can reconstruct the secret key.

Observe that the attack above can be extended even if we do not have low-level encodings of zero, as
long as we have sufficiently many pairs of plaintext/low-level encodings. Indeed, assume that we have
two plaintexts a1, a2 and the corresponding encodings u1, u2 at the same level v. Then, the encoding
a1u2 − a2u1 is an encoding of zero at level v,3 and the previous attack using encodings of zero can be
applied. Since the attack of Hu and Jia, it is considered insecure to use the GGH13 map with low-level
encodings of zero, or with known pairs of plaintext/low-level encodings.

Even when the GGH13 map is used without low-level encodings of zero, as it is the case in obfus-
cation construction, other attacks have been derived. The first one was described by Miles, Sahai and
Zhandry in 2016 [MSZ16], and called annihilation attack. They used the fact that the ring elements
recovered after zero-testing have some structure that is known by the adversary. Using this structure,
they are able to recover the ideal 〈g〉, and can use it to break the security of the obfuscators. General-
isations of this attack were proposed by [CGH17,ADGM17], also recovering the ideal 〈g〉 to break the
scheme. It is now believed that recovering a non-zero multiple of g can be considered a break of the
GGH13 map, as recovering the ideal 〈g〉 seems to be quite devastating for all the constructions using
the GGH13 map.

All the zeroizing attacks described above are algebraic attacks. They use the algebraic structure
of the noise to derive polynomials that are multiples of g and then recover the ideal 〈g〉. These are
the main attacks that have been used against the GGH13 map. In the next section, we will focus on
a different kind of attacks, which use statistical properties of the noise to try to recover the ideal 〈g〉.
This kind of attacks has not been used before against the GGH13 map, except in the cryptanalytic
survey made by the authors of the GGH13 map (see [GGH13a, Section 6.3.2]). In this survey, the
authors conclude that their naive construction could be subject to statistical attacks, and propose a
counter-measure to try to prevent them.

These statistical attacks are also zeroizing attacks, in that they exploit the information leaked by
zero-testing encodings of zero. In order to distinguish them from the previous algebraic attacks we
described, we are going to call them statistical zeroizing attacks. We are also going to refer to the
other ones as algebraic zeroizing attacks. This terminology is specific to this thesis. Because statistical
zeroizing attacks are not common, the term zeroizing attacks is typically used in the literature to refer
to algebraic zeroizing attacks.

3The plaintexts a1 and a2 we know should be somehow small, otherwise the noise of this encoding will be too large.

90

CHAPTER 5. GRADED ENCODING SCHEMES

5.3 Statistical attack on the GGH13 map

This section presents a study of the impact of statistical zeroizing attacks against the GGH13 scheme
and some of its variants.

5.3.1 Contribution

As mentioned earlier, there is no simple hardness assumption related to the GGH13 map to study.
Hence, in Section 5.3.2, we first start by defining a simple setting using the GGH13 map. We say that
an attacker breaks the multilinear map in this setting if it is able to compute a non-zero multiple of g
(remember that this is currently considered as a break of the GGH13 map). Once this model is defined,
we can study the statistical leakage of the GGH13 map in this model. This leakage will depend on
the sampling procedure used in the Enc algorithm (i.e., the choice of the matrix Σv). Following the
nomenclature of [GGH13a,DGG+18], except for the second one that had no clear name, we consider:

1. The simplistic method: the GGH13 MMap without countermeasure [GGH13a, Sec. 4.1]. This
method was only given for simplicity of exposition and was already highly suspected to be insecure;

2. The exponential method:4 this is the countermeasure proposed in [GGH13a, Sec. 6.4] to try to
prevent statistical attacks;

3. The conservative method, proposed in [DGG+18] —which we partly revisit to tackle some of its
limitations;

4. The aggressive method, proposed in [DGG+18] —we note that this method is specific to the
obfuscator construction of [DGG+18], and is not applicable to all constructions over the GGH13
MMap.

These four variants were the only ones we found in the literature, they are described in Section 5.3.3.
After defining the framework and the sampling methods, we analyse in Section 5.3 the leakage that

can be obtained for each method. Our analysis shows that Method 3 leads to the same leakage as
Method 1. We also prove that with Method 1, a polynomial-time attack can be mounted using the
leakage. However, we did not manage to extend the attack to Method 3: while the same quantity is
statistically leaked, the number of samples remains too low for the attack to go through completely
(due to conditions on the parameters, Method 3 cannot be used to sample as many fresh encodings as
we want). On the other hand, we show that the statistical leakage of Method 4 is similar to the one of
Method 2: perhaps surprisingly the aggressive method seems more secure than the conservative one.

Finally, having built a better understanding of which information is leaked, we devise in Section 5.3.5
a countermeasure that we deem more adequate than all the above:

5. The compensation method.

This method is arguably simpler, and provides better parameters. More importantly, applying the same
leakage attack as above, one only obtains a distribution whose variance is independent of all secrets. We
wish to clarify that this is in no way a formal statement of security. The statistical attacks considered
in this work are set up in a minimalistic setting, and extensions could exist beyond this minimalistic
setting. For example, one could explore what can be done by varying the zero-tested polynomial, or by
keeping certain encodings fixed between several successful zero-tests.

5.3.2 Setting and hardness assumption

Simple setting. To study the leakage of the GGH13 multilinear map, we need to make reasonable
assumptions on what is given to the adversary. It has been shown in [HJ16] that knowing low-level
encodings of zero for the GGH13 multilinear map leads to zeroizing attacks that completely break
the scheme. So our setting should not provide any, yet we will provide enough information for some
zero-tests to pass.

4The naming reflects the fact that this method typically leads to an exponential modulus q.

91

CHAPTER 5. GRADED ENCODING SCHEMES

This setting is inspired by the use of multilinear maps in current candidate obfuscator constructions,
and more precisely by the low noise candidate obfuscator of [DGG+18]. Yet, for easier analysis, we
tailored this setting to the bare minimum. We will assume that the attacker is given elements that pass
zero-test under a known polynomial of degree ` = 2. The restriction ` = 2 can easily be lifted but it
would make the exposition of the model and the analysis of the leakage less readable.

More precisely, we fix a number m > 1 of monomials, and consider the homogeneous degree-2
polynomial:

H(x1, y1, . . . , xm, ym) =
∑

xiyi.

We choose a set of atoms A consisting in all levels v ∈ {0, 1}κ that have weight exactly 1 or κ − 1,
where the weight of v is the number of its non-zero coefficients (i.e., its `1 norm). For all v ∈ A, we
let ṽ = v∗ − v (we say that ṽ is the complement of v). We note that A is closed by complement.
We assume that for each v ∈ A of weight 1, the authority reveals encodings uv,1, . . . , uv,m at level v
of random values av,1, . . . , av,m modulo I, and encodings uṽ,1, . . . , uṽ,m at level ṽ of random values
aṽ,1, . . . , aṽ,m modulo I, under the only constraint that

H(av,1, aṽ,1, . . . , av,m, aṽ,m) = 0 mod I.

We remark that generating almost uniform values a·,· under the constraint above is easily done, by
choosing all but one of them at random, and setting the last one to

aṽ,m = −a−1
v,m

m−1∑
i=1

av,iaṽ,i mod I.

Definition 5.4 (Successful attack in the simple setting). We say that an attacker breaks this setting
if, given one tuple of encodings (uv,1, . . . , uv,m, uṽ,1, . . . , uṽ,m) as above for each v ∈ A of weight 1,
it can create a non-zero multiple of g with non negligible probability. The plaintext elements av,i are
arbitrary, conditioned on the fact that H(av,1, aṽ,1, . . . , av,m, aṽ,m) = 0 mod I for all v ∈ A.

In the weak multilinear map model (specific to the GGH13 map) [MSZ16,GMM+16,DGG+18], we
can prove that an attacker that has access to this simple setting of the GGH13 multilinear map cannot
recover a non-zero multiple of the secret element g, except with negligible probability. This proof is
rather technical and not very informative, hence, we postpone it to Appendix A. The appendix also
contains a formal definition of the weak multilinear map model as well as some mathematical tools used
in the proof. The proof in the weak multilinear map model means that our simple setting is immune
against certain types of algebraic zeroizing attacks. This weak multilinear map model was used to prove
security of candidate obfuscators in [GMM+16,DGG+18], as it captures all known algebraic zeroizing
attacks, such as the ones of [MSZ16,CGH17].

Choice of q. Now that we have defined our setting, we can specify the value of the modulus q.
Recall that we choose it as small as possible so that the zero-testing procedure is correct. In our
simple setting, the top-level encodings of zero we want to be able to zero-test are of the form umax =
H(uv,1, uṽ,1, . . . , uv,m, uṽ,m), for some level v ∈ A. Let us write cv,i the numerator of the fresh encoding
uv,i for every v ∈ A and i ∈ {1, . . . ,m}. Then, the numerator of the top-level encoding of zero umax is
cmax = H(cv,1, cṽ,1, . . . , cv,m, cṽ,m). In order to choose a modulus q, we need to have an upper bound
on the Euclidean norm of this numerator. We will obtain this upper bound from upper bounds on the
‖cv,i‖’s, i.e., the norms of the numerators of the fresh encodings.

Depending on the method we will consider in Section 5.3.3, the norm of the numerator of fresh
encodings can depend on the dimension κ of the vectors, as well as on the `1 norm ‖v‖1 of the level v
of the encoding. In order to unify notations, for a fresh encoding at level v with numerator c, we will
write

‖c‖ = Θ(nγ+η·‖v‖1+νK), (5.1)

where γ, η and ν are non-negative real numbers that will depend on the sampling method, and K is
a real number such that κ = nK . We give in the next section the values of γ, η and ν corresponding
to the different sampling methods we consider. When we do not need to focus on the dependence
on ‖v‖1 and K, we just call E := Θ(nγ+η·‖v‖1+νK) the bound above. For each sampling method

92

CHAPTER 5. GRADED ENCODING SCHEMES

described in Section 5.3.3, we choose this bound to be as small as possible under the specific constraints
that will arise with the sampling method. The original proposal was setting E and therefore q to
be super-polynomial even for bounded degree κ because of the re-randomization technique used for
publicly sampling encodings. Since then, attacks using encodings of zero [CGH+15,HJ16] have restricted
encodings to be private, allowing polynomially large E. In the following, we will then try to achieve
polynomial E when it is possible.

Given this upper bound on the numerator of fresh encodings, we can now compute an upper bound
on the numerator of a top-level encoding of zero. First, let us observe that, for any v ∈ A and
i ∈ {1, . . . ,m}, we have ‖cv,i · cṽ,i‖ ≤ O(

√
n · n2γ+η·κ+2νK), because the weight of the two levels v

and ṽ sum to κ. Hence, we obtain the following upper bound on the norm of the numerator of a
top-level encoding of zero

‖cmax‖ = ‖
m∑
i=1

cv,m · cṽ,m‖ ≤ O(m · n1/2+2γ+η·κ+2νK).

Finally, recall from Section 5.2.2 that a sufficient value for the modulus q is q = M4n14 +1, where M
is an upper bound on the norm of the numerators of the top-level encodings of zero. Hence, we can
take

q ≥ m4 · n16+8γ+4ηκ+8νK . (5.2)

5.3.3 Sampling methods

We describe in this section different sampling methods that can be used to generate the fresh encodings
of the GGH13 multilinear map. These are all the methods we found in the literature. The first two
methods (simplistic and exponential) were described in [GGH13a]. The conservative and aggressive
methods were described in [DGG+18], in order to achieve a polynomial modulus q.

In all the following sampling methods except the first one, one chooses a representative zv ∈ R of
[zv] ∈ Rq for all v ∈ A. This representative will not necessarily be the canonical one, with coefficients
in [−q/2, q/2]. Then, we will take Σv = σ2

vzvzv, with σv = Θ(n2‖1/zv‖). Using Inequalities (2.9)
and (2.10), we can see that ‖1/

√
Σv‖ ≤ (1/σv) · n1/4 · ‖1/zv‖. Hence, with our choice of σv and the

fact that ‖g‖ = O(n), we obtain∥∥∥∥ g√
Σv

∥∥∥∥ ≤ √n · ‖g‖ · ∥∥∥∥ 1√
Σv

∥∥∥∥ = O

(
1

n1/4

)
= o

(
1√

log n

)
.

We can therefore apply Theorem 2.28 to sample the numerators of fresh encodings at level v,
according to a distribution negligibly close to the Gaussian distribution of parameter Σv and support
a + gR (for any a ∈ R). Using tail-cut Gaussian distributions (see Section 2.5.2), we have that if c is
the numerator of a fresh encoding, then ‖c‖ ≤ n‖

√
Σv‖ ≤ n1.5σv‖zv‖ with overwhelming probability.

Replacing σv by its definition, this means that we can take

E = Θ(n3.5 · ‖1/zv‖ · ‖zv‖). (5.3)

We recall that E is an upper bound on the norm of the numerator of any allowed top-level encoding
of zero. Hence, in the following methods (except the simplistic one), we will focus on the size of
‖1/zv‖ · ‖zv‖ to get a bound on the value of E.

5.3.3.1 The simplistic method

The simplistic method consists in always choosing Σv ∼ 1, independently of v and zv. Using The-
orem 2.28, sampling an element according to a distribution negligibly close to Da+gR,

√
Σv

is possible

if Σv = σ2 for a scalar σ ≥ ‖g‖ · ω(
√

log n). So by taking σ = Θ(n1+ε) with ε > 0, we have
E = Θ(

√
nσ) = Θ(n1.5+ε), i.e., γ = 1.5 + ε and η = ν = 0.

This method was deemed subject to averaging attacks and hence less secure than the following one
in [GGH13a], but the authors claim that their attack attempts failed because all recovered elements
were larger that

√
q, and that averaging attacks would need super-polynomially many elements. We

explicit an attack, and show below that this attack is possible even for exponential q, as long as E`

93

CHAPTER 5. GRADED ENCODING SCHEMES

remains polynomial: in other words, the presence of the mildly large factor h (of size
√
q) can be

circumvented.

5.3.3.2 The exponential method

We present here the countermeasure of [GGH13a, Section 6.4], generalized to the asymetric setting
of the GGH13 map, as done in [DGG+18, Section 2.1]. For 1 ≤ i ≤ κ, set zi to be the canonical
representative of [zi] in R (with coefficients in the range [−q/2, q/2]). Using rejection sampling when
choosing zi, assume that ‖zi‖ · ‖1/zi‖ ≤ Z; this is efficient for Z as small as n5/2 using [DGG+18], and
can even be improved to Z = n3/2 using Lemma 5.6 below and its corollary.

For v in A, set zv =
∏
zvii over R. Recall that (5.3) gives us: E = Θ(n3.5‖1/zv‖ · ‖zv‖). We have

‖zv‖ ≤ n(‖v‖1−1)/2
∏
i∈v ‖zi‖ and ‖1/zv‖ ≤ n(‖v‖1−1)/2

∏
i∈v ‖1/zi‖. Hence we can take

E = Θ(n2.5+‖v‖1 · Z‖v‖1) = Θ(n2.5+2.5‖v‖1).

This means that we have γ = 2.5, η = 2.5 and ν = 0.
Correctness is guaranteed for q ≥ nΩ(κ) (because η 6= 0), and because κ is much larger than the

constant degree ` in [DGG+18], this is not a satisfying solution, as we aim at decreasing q to polynomial.
Two alternatives (conservative and aggressive) are therefore developed in [DGG+18].

5.3.3.3 The conservative method [DGG+18]

The first alternative suggested is to proceed as above, but reducing the zv modulo q, i.e., set zv as the
representative of [

∏
zvii] with coefficients in [−q/2, q/2]. One then ensures, by rejection across all the

zi’s together, that ‖zv‖ · ‖1/zv‖ ≤ n2.5 for all v ∈ A. This leads to E = Θ(n3.5 · n2.5) = Θ(n6) (i.e.,
γ = 6, η = ν = 0) and therefore allows correctness for q as small as nO(`), which is polynomial for
constant degree `.

Using [DGG+18, Lemma 8] restated as Lemma 5.5 below, the authors conclude that this method
is quite inefficient because for the above bound to hold simultaneously for all v ∈ A with good proba-
bility, n must increase together with κ. Indeed, using Lemma 5.5, we can bound the probability that
one of the zv does not satisfy ‖zv‖ · ‖1/zv‖ ≤ n2.5 by 2|A|/n = 4κ/n. So, if we want this probability
to be small (e.g., less than 1/2) in order for the sampling procedure to be efficient, we should increase
n with κ.

Lemma 5.5 (Lemma 8 from [DGG+18]). Let [z] be chosen uniformly at random in Rq and z be its
canonical representative in R (i.e., with coefficients in [−q/2, q/2]). Then it holds that

Pr
[
‖1/z‖ ≥ n2/q

]
≤ 2/n.

In the following section, we revisit the conservative method by generalizing this lemma.

5.3.3.4 The conservative method, revisited

In the following lemma, we introduce an extra degree of freedom c compared to the Lemma 5.5, but
also improve the upper bound from O(n1−c) to O(n1−2c).

Lemma 5.6. Let [z] be chosen uniformly at random in Rq and z be its representative with coefficients
between −q/2 and q/2. Then, for any c ≥ 1, it holds that

Pr [z = 0 ∨ ‖1/z‖ ≥ nc/q] ≤ 8/n2c−1.

Corollary 5.7. Assume that q is prime and q ≥ 2n. Let [z] be chosen uniformly at random in R×q
and z be its representative with coefficients between −q/2 and q/2. Then, for any c ≥ 1, it holds that

Pr [‖1/z‖ ≥ nc/q] ≤ 16/n2c−1.

The conditions on q (i.e, q prime and q ≥ 2n) are used in the proof to ensure that at least half
of the elements of the ring Rq are invertible. These conditions could be replaced by the condition
“|R×q | ≥ |Rq|/2”.

94

CHAPTER 5. GRADED ENCODING SCHEMES

We can use this corollary to compute the probability that one of the zv does not satisfy ‖1/zv‖ ≤
nc/q when the [zi]’s are independent and chosen uniformly at random in R×q (assuming that q is prime
and q ≥ 2n). Indeed, the [zv]’s are uniform in R×q because they are a product of uniform invertible
elements, and, by the union bound, we have

Pr [∃v ∈ A s.t. ‖1/zv‖ > nc/q] ≤
∑
v∈A

Pr [‖1/zv‖ > nc/q]

≤ 16|A|
n2c−1

.

If we want this probability to be less than 1/2, in order to re-sample all the zi’s only twice on average,
we should take

|A| ≤ n2c−1

32
. (5.4)

But we also have ‖zv‖ ≤
√
n‖zv‖∞ ≤

√
nq, hence ‖1/zv‖ · ‖zv‖ ≤ nc+0.5. In order to minimize E,

we wish to minimize c, under (5.4). By taking the minimal value of c that satisfies this constraint, and
recalling that |A| = 2κ, we obtain

E = Θ(n4.5+K/2).

This means that γ = 4.5, ν = 0.5 and η = 0. This revisited conservative method is identical to the
original one, except that we improve the encodings size bound E. We also change a little the point of
view by fixing n first and then obtaining an upper bound on κ (which will appear because ν 6= 0 in E
and we want q to be polynomial in n), while the authors of [DGG+18] first fix κ and then increase n
consequently. In the following, we will only focus on the revisited conservative method and not on the
original one.

Proof of Lemma 5.6. The proof of this lemma relies on the same ideas as the one of [SS13, Lemma 4.1],
but here, the element z is sampled uniformly modulo q instead of according to a Gaussian distribution.
Let [z] be chosen uniformly at random in Rq and z be its representative with coefficients between −q/2
and q/2. Recall that we denote σj : K → C the real/complex embeddings of K in C, with 1 ≤ j ≤ n (we
see the real embeddings as complex numbers with the naive inclusion R ⊂ C). Because we are working
in a power-of-two cyclotomic field, we know that the size of z is related to the size of its embeddings
(see Section 2.3.4). Hence, if we have an upper bound on the |σj(1/z)|, we also have an upper bound on
‖1/z‖. Moreover, the σj ’s are morphisms, so σj(1/z) = 1/σj(z), and it suffices to have a lower bound
on |σj(z)|.

Let j ∈ {1, · · · , n}, there exists a primitive 2n-th root of unity ζ such that

σj(z) =

n−1∑
i=0

aiζ
i,

where the ai’s are the coefficients of z, and so are sampled uniformly and independently between −q/2
and q/2. As ζ is a primitive 2k-th root of unity for some k, there exists i0 such that ζi0 = I, where I
is a complex square root of −1. So we can write

σj(z) = a0 + Iai0 + z̃,

for some z̃ ∈ C that is independent of a0 and ai0 . Now, we have that

Pr

[
|σj(z)| <

√
2q

nc

]
= Pr

[
a0 + Iai0 ∈ B(−z̃,

√
2q

nc
)

]

≤
Vol(B(−z̃,

√
2q
nc))

q2

≤ 8

n2c
,

95

CHAPTER 5. GRADED ENCODING SCHEMES

where B(−z̃,
√

2q/nc) is the ball centered in −z̃ of radius
√

2q/nc. A union bound yields that

Pr

[
∃j, |σj(z)| <

√
2q

nc

]
≤ n · 8

n2c
=

8

n2c−1
,

which in turns implies

Pr

[
∀j,

∣∣∣∣σj (1

z

)∣∣∣∣ ≤ nc√
2q

]
≥ 1− 8

n2c−1
.

To complete the proof, recall that for cyclotomic fields of power-of-two order, Equation 2.6 gives us
‖1/z‖ =

√
2/n · ‖σ(1/z)‖ ≤

√
2 ·maxj(|σj(1/z)|). This gives the desired result.

Proof of Corollary 5.7. First, note that sampling [z] uniformly over R×q is the same as sampling [z]
uniformly in Rq and re-sampling it until [z] is invertible. We let U(Rq) (resp. U(R×q)) denote the
uniform distribution in Rq (resp. R×q). We then have that

Pr
[z]←U(R×q)

[‖1/z‖ ≥ nc/q] = Pr
[z]←U(Rq)

[‖1/z‖ ≥ nc/q | [z] ∈ R×q].

Using the definition of conditional probabilities, we can rewrite

Pr
[z]←U(Rq)

[‖1/z‖ ≥ nc/q | [z] ∈ R×q] =
Pr[z]←U(Rq)[[z] ∈ R×q and ‖1/z‖ ≥ nc/q]

Pr[z]←U(Rq)[[z] ∈ R
×
q]

.

The numerator of this fraction is less than Pr[z]←U(Rq)[‖1/z‖ ≥ nc/q], which is less than 8
n2c−1 using

Lemma 5.6. Further, at least half of the elements of Rq are invertible. Indeed, because q is prime,
then we know that Rq is isomorphic to (Fqn/k)k, where k is the number of prime factors of Xn + 1
modulo q. The number of invertible elements of Rq is then equal to the number of invertible elements
of (Fqn/k)k, which is (qn/k − 1)k (an elements is invertible in (Fqn/k)k if and only if all its components

are invertible). We conclude that the proportion of invertible elements in Rq is (1− 1
qn/k

)k ≥ 1− k
qn/k

.

Because q ≥ 2n ≥ 2k, we finally obtain 1 − k
qn/k

≥ 1/2. Hence Pr[z]←U(Rq)[[z] ∈ R×q] ≥ 1/2 and we

obtain the desired result

Pr
[z]←U(R×q)

[‖1/z‖ ≥ nc/q] ≤ 16

n2c−1
.

5.3.3.5 The aggressive method

This method was proposed by Döttling, Garg, Gupta, Miao and Mukherjee in [DGG+18] in order to
instantiate the GGH13 multilinear map for their obfuscator. This method cannot be used for any set
of atoms A, as it relies on the fact that the levels at which we encode fresh encodings have a specific
structure. Indeed, for each v ∈ A, we have either [zv] = [zi] for some i ∈ {1, · · · , κ} or [zv] = [z∗ · z−1

i].
Using this remark, the secret elements [zi] are generated in the following way.

For i from 1 to κ do:
• sample a uniformly random invertible element [zi] in Rq. Let zi be the representative of [zi] in R

with coefficients between −q/2 and q/2, and z̃i be the representative of [z−1
i] in R with coefficients

between −q/2 and q/2.

• until both following conditions are satisfied, re-sample [zi]:

‖1/zi‖ ≤ n3/q (5.5)

‖1/z̃i‖ ≤ n/q. (5.6)

• if i = κ, we also re-sample [zi] until this third condition is also met

‖1/z∗‖ ≤ n/q, (5.7)

where z∗ is the representative of [
∏

1≤i≤κ zi] with its coefficients between −q/2 and q/2.

96

CHAPTER 5. GRADED ENCODING SCHEMES

Because we sample the [zi]’s from i = 1 to κ, when we generate [zκ] all the other [zi]’s are already
fixed, so we can define [z∗].

Note that with this method, we re-sample each zi an expected constant number of times, indepen-
dently of κ. Indeed, all [zi]’s for i ≤ κ − 1 are sampled independently. Moreover, the two conditions
we want are satisfied except with probability at most 16

n for each condition (using Corollary 5.7 with

[zi] and [z−1
i] that are uniform in R×q and with c = 3 or c = 1). So, applying a union bound, the

probability that we have to re-sample [zi] is at most 32
n , which is less than 1/2 if n ≥ 64. The idea is

the same for [zκ] except that we also want ‖1/z∗‖ to be small. Observe that in this case, all the [zi]’s
for i < κ are already fixed, so [z∗] only depends on [zκ] and is uniform in R×q . Hence this last condition

is also satisfied except with probability 16
n from Corollary 5.7. Therefore, the probability that the three

conditions are met for [zκ] is at least 1/2 as long as n ≥ 96.
To conclude, if n ≥ 96, the procedure described above will sample each [zi] at most twice on average,

independently of the choice of κ. So we can choose κ arbitrarily large and the sampling procedure will
take time O(κ) · poly(n).

It remains to choose our representative zv ∈ R of [zv] ∈ Rq and to get a bound on ‖1/zv‖ · ‖zv‖ for
all v ∈ A, in order to get the value of E. We will show that ‖zv‖ · ‖1/zv‖ ≤ n4 for some choice of the
representative zv we detail below.

First case. If v has weight 1, that is [zv] = [zi] for some i, then we take zv = zi. With our choice of
[zi], we have that ‖1/zv‖ ≤ n3/q. Also, as ‖zv‖ has its coefficients between −q/2 and q/2 we have that
‖zv‖ ≤

√
nq and hence ‖zv‖ · ‖1/zv‖ ≤ n3.5 ≤ n4.

Second case. If v has weight κ − 1, then there exists i ∈ {1, · · · , κ} such that [zv] = [z∗ · z−1
i]. We

choose as a representative of [zv] the element zv = z∗ · z̃i ∈ R, with z∗ and z̃i as above (with coefficients
between −q/2 and q/2). We then have

‖1/zv‖ = ‖1/z∗ · 1/z̃i‖ ≤
√
n · ‖1/z∗‖ · ‖1/z̃i‖ ≤ n2.5/q2.

Further, we have that ‖zv‖ = ‖z∗ · z̃i‖ ≤
√
n ·
√
nq ·
√
nq = n1.5q2. This finally gives us

‖zv‖ · ‖1/zv‖ ≤ n4.

To conclude, this method gives us
E = Θ(n7.5).

This means that γ = 7.5 and both η and ν are zero.
A summary of the different values of γ, η and ν for the different sampling methods can be found in

Table 5.1, page 102.

5.3.4 Analysis of the leaked value

We describe in this section the information we can recover using averaging attacks, for each of the
sampling methods. We will see that depending on the sampling method, we can recover an approx-
imation of A(z∗h/g), or an approximation of A(h/g) or even the exact value of A(h/g). In order to
unify notation, we introduce the leakage L, which will refer to A(z∗h/g) or A(h/g) depending the
method. We explain below what is the value of L for the different methods, and how we can recover
an approximation of it. In the case of the simplistic method, we also explain how we can recover the
exact value of L from its approximation and how to use it to mount an attack in our simple setting.

5.3.4.1 Statistical leakage

Let v ∈ A be of weight 1. We denote by [uv] the encoding [H(uv,1, uṽ,1, . . . , uv,m, uṽ,m)]. Recall that
we have [ui,v] = [ci,vz

−1
v], where ci,v = ai,v + ri,vg for some ri,v ∈ R. So, using the definition of H and

the fact that [uv] passes the zero-test, we can rewrite

[uvpzt] = [H(cv,1, cṽ,1, . . . , cv,m, cṽ,m)(zvzṽ)−1 · z∗hg−1]

= [H(cv,1, cṽ,1, . . . , cv,m, cṽ,m) · hg−1]

= H(cv,1, cṽ,1, . . . , cv,m, cṽ,m) · h/g.

97

CHAPTER 5. GRADED ENCODING SCHEMES

Note that the product of the last line is in R, as it is a product of small elements compared to q.
Also, the first term is a small multiple of g so we can indeed divide by g. The division by g here is
purely formal, because the first term is equal to g times the noise of the encoding, but it will become
important later, when we will average over the zero-tested values. We denote by wv ∈ R the value
above (i.e., the representative of [uvpzt] with coefficients in [−q/2, q/2]). The term h/g of the product
is fixed, but the first factor H(cv,1, cṽ,1, . . . , cv,m, cṽ,m) depends on v: we can average over it. We now
analyze this first factor, depending on the method we choose for generating the fresh encodings of the
GGH13 map. We will denote by Yv the random variable H(cv,1, cṽ,1, . . . , cv,m, cṽ,m).

By definition of the polynomial H, we know that Yv =
∑
ci,vci,ṽ. Moreover, all the ci,v are

independent when i or v vary, and their variance is negligibly close to Σv (because the conditions of
Theorem 2.28 are satisfied). The ci,vci,ṽ are thus centered random variables of variance ΣvΣṽ (observe
that the variance of a product of independent centered variables is the product of their variances)
and Yv is a centered random variable of variance mΣvΣṽ (recall that H is a sum of m monomials).
Because Yv is centered, then E[wv] = 0 does not leak any information about secret parameters of the
GGH13 map. However, the variance V[wv] = E[A(wv)] = mΣvΣṽ ·A(h/g) may leak some information
about the secret elements h and g of the GGH13 map. One technicality here is that we are given
only one variable wv for each choice of v, and its variance depends on ΣvΣṽ, which might depend
on v. The main idea to solve this difficulty is to observe that the Σv are also random variables (they
depend on the zv’s, which are generated according to some probability distribution). Hence, we can
compute our empirical variance over the randomness used in the Enc algorithm, and on the choice of
the denominators {zv}v∈A.

The value
E[A(wv)] = m ·A(h/g) · E[ΣvΣṽ],

where the randomness is taken over the Enc algorithm and the choice of the {zv}v∈A, is the leak we
are going to study below (up to multiplication by a scalar). We will first explicit it, i.e., we will explicit
the value of E[ΣvΣṽ] for all the different sampling methods. Then, we will use Hoeffding’s bound to
estimate the relative error we can obtain, given the number of samples that are available.

Case 1 (the simplistic method). In this case, we have Σv = σ2 for all v ∈ A, for some σ ∈ R. So
E[ΣvΣṽ] = σ4. Let us call µ := mσ4 ∈ R+, then we have E[A(wv)] = µ ·A(h/g).

Before going to the other sampling methods, let us make the following remark. For all the methods
except the simplistic one, we have ΣvΣṽ = σ2

vσ
2
ṽA(zvzṽ). Moreover, one can observe that in all these

methods, there exists a real σ such that σvσṽ = σ for all v ∈ A (in fact, σv only depends on the weight
of v). Hence, we have that E[ΣvΣṽ] = σ2E[A(zvzṽ)] for some σ ∈ R+, and so it is sufficient to consider
E[A(zvzṽ)] in the following methods.

Case 2 (the conservative method). For this method, we will see that E[A(zvzṽ)] is a scalar. Indeed,
even if all the zv satisfy [zvzṽ] = [z∗] in Rq, this is not the case in R. Individually each zv is essentially5

uniform in the hypercube [−q/2, q/2]n, in particular it is isotropic (see Section 2.5.1 for the definition
of isotropic variables). For our analysis, let us treat the zv and zṽ as random variables in R, that
are independent when v varies. The independence assumption is technically incorrect, yet as the only
dependences are of arithmetic nature over Rq and that the elements in question are large, one does
not expect the correlation to be geometrically visible. This independence assumption is also consistent
with numerical experiments (see below). Now, because each of the zv is isotropic (and centered), and
by independence of zv and zṽ, we have that zvzṽ is also isotropic. Let us call µz := E [A(zvzṽ)] its
variance. Recall that as zvzṽ is isotropic, we have that µz is in R+. We let µ = mσ2µz ∈ R+, so that
we finally obtain that

E[A(wv)] = µ ·A(h/g).

Thanks to the isotropy of the zvzṽ, all the variables related to Σv have disappeared, and we are in the
same situation as in the simplistic method.

Case 3 (the exponential and aggressive methods). In these methods, unlike the conservative
method, the variables zvzṽ are not isotropic variables anymore and therefore the z’s do not “average
out”.

5Up to the invertibility condition in Rq

98

CHAPTER 5. GRADED ENCODING SCHEMES

In the exponential method, the identity zvzṽ = z∗ holds over R (where z∗ =
∏
i zi ∈ R is a

representative of [z∗]), hence, zvzṽ is constant when v varies, and we have

E [A(wv)] = µ ·A(hz∗/g),

for some scalar µ ∈ R+.
In the aggressive method, we have zvzṽ = z∗ · z̃i · zi for some 1 ≤ i ≤ κ, with z∗ the representative

of [z∗], zi the representative of [zi] and z̃i the representative of [z−1
i] with coefficients in [−q/2, q/2].

The element z∗ is fixed, but, as in the conservative case, we can view the z̃i · zi as isotropic variables.
Moreover, the zi’s are independent when i varies, and because z̃i only depends on zi, this implies that
the z̃i · zi are independent. We then have E [A(zvzṽ)] = µzA(z∗) for some scalar µz ∈ R+. Hence, we
have again

E [A(wv)] = µ ·A(hz∗/g),

for some scalar µ ∈ R+.

Conclusion on the variance. To conclude, we have argued that in all methods,

E [A(wv)] = µ · L

for some scalar µ ∈ R+, where the probabilities are taken over the randomness of the Enc algorithm
and the random choice of the GGH13 parameters zi. The leaked variable L depends on the sampling
method in the following way:

• L = A(h/g) for the simplistic and the conservative methods.

• L = A(hz∗/g) for the exponential and the aggressive methods.

Observe that in the expectation above, we do not need to use the randomness over the choice of the
plaintexts av,i. This is because the choice of the plaintext elements has no impact on the expectation
and variance of the encodings. It only impacts the support of the distributions. Because here we are
not interested in algebraic properties (such as the support of the distribution) but only in statistical
properties (such as the expectation and variance of the distribution), the choice of the plaintexts has
no impact on our attack.

Now, using the fact that the random variables A(wv) are independent for different v ∈ A of weight 1,
we can compute their empirical mean and Hoeffding’s inequality will allow us to bound the distance to
the theoretical mean. In the following we assume that we know µ.6

Speed of convergence. The attacker computes

W =
2

|A|
∑
v∈A

v of weight 1

A(wv),

the empirical mean of the random variables A(wv). This is an approximation of µ · L. We know that
the coefficients of the random variable wv are less than q, so the coefficients of A(wv) are less that nq2.
By applying Hoeffding’s inequality in R (Corollary 2.27) with ε = 1/n, B = nq2 and m = |A|/2, we

have that ‖W −µ ·L‖∞ < nq2
√

8 lnn√
|A|

(except with probability at most 2/n). As the coefficients of µL are

of the order of nq2, we have a relative error δ <
√

8 lnn/|A| for each coefficient of µL. As µ is known,

this means that we know L with a relative error at most
√

8 lnn/|A|. Recall that to apply Hoeffding’s
inequality, the variables A(wv) should be independent. The randomness used by the Enc algorithm
satisfies the independence condition (each encoding is generated with a fresh randomness independent
from the previous ones), but for the conservative and aggressive methods, we also need independence of
the zv variables. These variables are not independent, but we report in the next paragraph numerical
experiments that show that, for our needs, they behave as independent random variables (with the
same speed of convergence as provided by Hoeffding’s bound).

6The value of the scalar µ can be obtained from the parameters of the multilinear maps. If we do not want to analyze
the multilinear map, we can guess an approximation of µ with a sufficiently small relative error by an exhaustive search.

99

CHAPTER 5. GRADED ENCODING SCHEMES

n = 64, q = 12289 n = 64, q = 1437697

n = 256, q = 12289 n = 256, q = 1437697

n = 1024, q = 12289 n = 1024, q = 1437697

Figure 5.1: Relative precision ‖ε‖∞ of the empirical mean 1
|A|
∑
v∈AA(zvzṽ) = µz(1+ε) (vertical axis)

as a function of |A| (horizontal axis).

Numerical experiments. We provide here experimental data confirming the heuristic analysis of our
attack against the conservative method. More precisely, we study the empirical mean of A(zvzṽ), and
the rate of convergence. We computed 1

|A|
∑
v∈AA(zvzṽ) for several values of n, q and |A| and wrote

it as µz(1 + ε), with µz ∈ R+ and ε ∈ KR. We plotted ‖ε‖∞ as a function of |A| in log-log scale, see
Figure 5.1.

We observe that 1
|A|
∑
v∈AA(zvzṽ) indeed converges to a constant µz in R+. Furthermore, we

observe a slope of about −1/2 in log-log scale, confirming that the convergence is as fast as what would
be given by the Hoeffding bound if the variables were indeed independent: ‖ε‖∞ = f(n)/

√
|A|, for

some function f . In fact, it even seems that the function f is decreasing rather than slowly increasing
(Hoeffding bound gives f(n) ≤ O(

√
log n)). The modulus q seems to have no effect on the relative

precision.

100

CHAPTER 5. GRADED ENCODING SCHEMES

5.3.4.2 From the leakage to a complete attack against the GGH13 map

We have seen so far that we can compute an approximation of the leak L, with relative error δ <√
8 lnn/|A|. Unfortunately, we cannot directly recover the exact value of L from this approximation,

because its coefficients are not integers. When L = A(hz∗/g), i.e., for the exponential and aggressive
methods, we do not know how to use this approximation of L to recover the exact value of L. When
L = A(h/g), i.e., for the simplistic and conservatives methods, we can circumvent this difficulty. The
idea is to transform our approximation of L into an approximation of an element r ∈ R, with coefficients
that are integers of bit-size logarithmic in the security parameter. Indeed, if we have an approximation
of r with error less that 1/2, we can round its coefficients and recover the exact value of r. Further,
we can get such an approximation using a polynomial number of samples because the coefficients we
want to recover have logarithmic bit-size. This is what we explain in next subsection. Unfortunately,
we will see that for the conservative method, the number of samples we need, in order to be able to
round this r to its exact value, is not compatible with the constraint we had on |A| for being able to
generate the zv.

We now explain how we can recover the exact value of A(h/g), when L = A(h/g) and we have
sufficiently many samples. Recovering A(h/g) exactly is a successful attack in our simple setting.
Indeed, any denominator of A(h/g) = (hh)/(gg) is a non-zero multiple of g.

In the following, we assume that we have an approximation of A(h/g) with relative error δ <√
8 lnn/|A| and we want to recover the exact value of A(h/g). Let u be any encoding at level v∗ that

passes the zero-test (we can take u to be one of the [uv] = [H(uv,1, uṽ,1, . . . , uv,m, uṽ,m)]). We have
that [u ·pzt] = c ·h/g ∈ R for some small multiple c of g. In particular, the coefficients of c are somehow
small and are integers. Using our approximation W of µ ·A(h/g) with relative error δ and the fact that
we know µ and c · h/g, we can recover an approximation of A(c) with relative error at most δ · n2 by
computing A(c · h/g) · µ ·W−1.

The coefficients of A(c) are integers and their magnitudes are less than m2n2E4. Indeed, we have
c = H(cv,1, cṽ,1, . . . , cv,m, cṽ,m) for some v and we have ‖cv,i‖ ≤ E for all v’s and i’s. So we know that
‖c‖ ≤ mn1/2E2 and we get the desired bound on ‖A(c)‖∞. Hence, if we have an approximation of
the coefficients of A(c) with relative error at most 1

2m2n2E4 , the absolute error is less that 1/2 and we
can round the coefficients to recover A(c) exactly. We can then recover A(h/g) exactly by computing
A(c · h/g)/A(c).

Putting together the conditions on the parameters, we have δ <
√

8 lnn
|A| and we want δ·n2 < 1

2m2n2E4

to be able to recover A(c). A sufficient condition for this to be satisfied is
√

8 lnn
|A| < 1

2m2n4E4 , i.e.,

|A| > 32E8m4n8 lnn.
To conclude, if |A| > 32E8m4n8 lnn and L = A(h/g), we obtain an attack against the GGH13 map

in our simple setting. In the next sub-section, we compare this constraint to the ones we had for the
samplings methods. We will see that for the simplistic method, our constraints are compatible, so we
can perform the attack. On the contrary, this will not be the case for the conservative method.

5.3.4.3 Summary of the constraints and conclusion

We summarize in this section the leakage we can obtain and with which precision, depending on the
sampling methods presented in Section 5.3.3.

The simplistic method. In this method, we have L = A(h/g). Recall that in this case, we can
recover the exact value of L if κ > 16E8m4n8 lnn (using the fact that |A| = 2κ). Also, in this method
we had E = O(n1.5+ε), for any ε > 0. Hence, taking κ = Θ(n20+8εm4 lnn) satisfies the conditions
for generating the parameters plus our condition κ > 16E8m4n8 lnn. To conclude, when using the
simplistic method with some choice of the parameters, we can recover the exact value A(h/g), which
means that we have a successful attack against the GGH13 map in our simple setting.

The exponential method. In this method, we have L = A(z∗h/g). We can recover an approximation

of L with relative error at most
√

8 lnn
|A| . We do not know if it is possible to recover L exactly, or break

the GGH13 map in this setting.

101

CHAPTER 5. GRADED ENCODING SCHEMES

The revisited conservative method. In this method, we have L = A(h/g). We can recover an

approximation of L with relative error at most
√

8 lnn
|A| according to our heuristic analysis. While the

independence condition between the A(zvzṽ) for applying Hoeffding’s bound may not be satisfied, we
have seen that this rate of convergence seems correct in practice.

Recall that if κ > 16E8m4n8 lnn, then we can recover A(h/g) exactly. Also, for the sampling
method to work, we need to take E = Θ(n4.5

√
κ). Hence, the condition κ > 16E8m4n8 lnn can be

rewritten
κ > Θ(n44κ4m4 lnn).

This condition cannot be satisfied, so we cannot have sufficiently many samples to complete the
attack when using this sampling method. All we get is an approximation of A(h/g). Nevertheless, the
only thing that prevents the full attack is the size of the parameters we have to choose in order to be
able to generate the fresh encodings.

The aggressive method. In this method, we have L = A(z∗h/g). We can recover an approximation

of L with relative error at most
√

8 lnn
|A| . We do not know if it is possible to recover L exactly.

Conclusion. We give in Table 5.1 a summary of the parameters used for the different sampling meth-
ods, and of the resulting leakage. The column ‘constraints’ specifies possible constraints on the pa-
rameters or on the atom set A, that arise when using this sampling method. Recall that due to the
correctness bound (5.2), there is always a constraint on the modulus q, so we do not mention it in the
column ‘constraints’. This constraint on q can be obtained from the columns γ, η and ν, using the
formula log q ≥ 4 log(n)(4 + 2γ + 2νK + ηκ) + 4 log(m).

Sampling method γ η ν leakage L full attack? constraints
Simplistic [GGH13a] 1.5 + ε 0 0 A(h/g) yes none
Exponential [GGH13a] 2.5 2.5 0 A(z∗h/g) no none
Conservative [DGG+18] 6 0 0 A(h/g) no n ≥ 4κ
Conservative (revisited) 4.5 0 0.5 A(h/g) no none
Aggressive [DGG+18] 7.5 0 0 A(z∗h/g) no structure of A
Compensation (Sec. 5.3.5) 2 + ε 0 0 1 no none

Table 5.1: Summary of the leakage analysis, depending on the sampling method. This includes our new
method, sketched in Section 5.3.5. We recall that, according to correctness bound (5.2), the modulus q
must satisfy log q ≥ 4 log(n)(4 + 2γ + 2νK + ηκ) + 4 log(m).

Even if we can only mount a full attack for the simplistic method, we have seen that for every
method described above, the leakage is related to some parameters of the GGH13 map that are meant
to be kept secret. We would find it more comforting to make the leakage unrelated to secret parameters.
In the following section, we propose such a design, which is simple, and leads to smaller parameters.

5.3.5 The compensation method

In this section, we propose a new sampling method which is designed so that the leakage L that an
attacker can recover, by using the averaging attack described above, reveals no information about secret
parameters of the GGH13 map. Nevertheless, we note that even if the attack described above does
not apply directly to this method, other averaging attacks may be able to gather information that is
supposed to stay secret. An idea could be to fix some encodings and average over the others.

Discussion on design. We have seen that choosing different variance parameters Σv at different
levels v can in fact make the leak worse, as the attacker can choose to average them out. We also
remark that the parameters [zv] can be publicly re-randomized without affecting anything else, in
particular without affecting the variance Σv of the numerator of the encodings. Indeed, we can choose
random invertible elements [ẑi] ∈ R×q , and apply the following transformation to all encodings ev at
level v, as well as to the zero-testing parameter [pzt]:

102

CHAPTER 5. GRADED ENCODING SCHEMES

[ev] 7→

 ∏
i :v[i]=1

ẑ−1
i

 · [ev], [pzt] 7→

 ∏
1≤i≤κ

ẑi

 [pzt].

This means that the relation between the variance Σv and the denominators zv can be publicly undone
while maintaining functionality.

The compensation method. We therefore proceed to set Σv = Σ for all levels v, and to choose Σ
independently of the zv. Recall that the leakage we considered was V(wv) = mΣvΣṽ ·A(h/g). Hence,
with our choice of Σv this gives us

L ∼ Σ2 ·A(h/g). (5.8)

We then choose Σ ∼ A(g/h)
1/2

, ensuring L ∼ 1: the leakage is made constant, unrelated to any secret.
We insist nevertheless that, as the previous methods, this method comes with no formal security
argument. We also warn that we have not thoroughly explored more general leakage attacks, varying
the zero-tested polynomials or keeping some encodings fixed.

It remains to see how one can efficiently sample encodings following this choice. To get tighter

bounds, we look at the conditioning number (or distortion) δ(
√

Σ) = max(σi(
√

Σ))

min(σi(
√

Σ))
, where σi runs over

all embeddings. One easily verifies that, for any x, y ∈ KR, we have

δ(A(x)) = δ(x)2 (5.9)

δ(xk) = δ(x)|k| for any k ∈ R, (5.10)

δ(xy) ≤ δ(x)δ(y). (5.11)

If a variable x ∈ KR has independent continuous Gaussian coefficients of parameter 1, then its em-
beddings are (complex) Gaussian variables of parameter Θ(

√
n), and it holds with constant probability

that
∀i, Ω(1) ≤ |σi(x)| ≤ O(

√
n log n). (5.12)

Indeed, the right inequality follows from classic tail bounds on Gaussian distribution. For the left in-
equality, note that |σi(x)| ≥ max(|Re(σi(x))|, |Im(σi(x))|), where both the real and imaginary parts are
independent Gaussian samples of parameter Θ(

√
n): either will be smaller than Θ(1) with probability

at most 1/
√

2n. By independence, the inequality |σi(x)| ≤ Θ(1) holds with probability at most 1/(2n)
for each i, and one may conclude by the union bound.

This implies that if x is sampled according to a Gaussian distribution of parameter 1, then δ(x) =
O(
√
n log n) with constant probability. Moreover, scaling x by a real factor σ > 0 does not change

its conditioning number. Hence, by rejection sampling over h and g, we can ensure that δ(g), δ(h) ≤
O(
√
n log n) (the rejection probability is constant). We will also scale g to ensure that maxi(σi(g)) =

Θ(n). This will imply that

‖g‖ = O(n) (see Section 2.3.4),

and ‖1/g‖ = O(max
i

(σi(1/g)) = O(1/min
i

(σi(g))) = O(
√

log n/n).

Hence, it satisfies the desired conditions for g (recall from Section 5.2.2 that we want ‖g‖ = O(n) and
‖1/g‖ = O(n2)). Thanks to the conditions on δ(h) and δ(g), we have

δ(
√

Σ) = δ(A(g/h))1/4 ≤ (δ(g)δ(h))1/2 ≤ O(n log n)1/2.

We now define Σ by
√

Σ = σ · A(h/g)1/2, where the scaling factor σ ∈ R>0 is chosen such that
min(σi(

√
Σ)) = n · (log n)2. This condition ensures that

‖g/
√

Σ‖ ≤
√

2 ·max
i

(σi(g/
√

Σ)) (see Section 2.3.4)

≤
√

2 ·max
i

(σi(g))/min(σi(
√

Σ))

= Θ(n)/min(σi(
√

Σ))

= 1/ω(log n) by choice of Σ.

103

CHAPTER 5. GRADED ENCODING SCHEMES

Hence, we can efficiently sample fresh encodings thanks to Theorem 2.28. Moreover, because δ(
√

Σ) =
O(
√
n log n), we know that ‖

√
Σ‖ = O(max(σi(

√
Σ))) = O(n1.5+ε) for any ε > 0. We conclude that

the numerator of a fresh encoding can be sampled as short as E =
√
n · ‖
√

Σ‖ = O(n2+ε), for any
ε > 0: the sizes of the numerators of the encodings are barely worse than in the simplistic method, and
significantly better than in all other methods.

5.4 Conclusion

In this chapter, we have seen the definition of graded encoding schemes and the example of the GGH13
candidate. We have also presented the first extensive analysis of the statistical leakage that can be
obtained from different variants of the GGH13 map, and proposed a variant which seems to leak less
information than the ones studied. In the next chapter, we will focus on the security of the GGH13
map when used to construct candidate obfuscators.

Two main open problems are raised by this chapter. The first one is about the leakage obtained
for the exponential and aggressive methods. We did not manage to use it to mount any attack against
the GGH13 map, but this might still be possible. One way to use the leakage for an attack would
be to recover it exactly, as in the simplistic case. However, recovering A(z∗h/g) exactly from an
approximation does not seem easy to do, because of the division by g. If the elements were integers, we
could recover the fraction from its approximation using continued fractions, but we are working with
elements in a number field, and the continued fractions techniques do not seem to translate to this
setting. Another direction for attacks could be to try to use the approximation of the leakage without
recovering it exactly, but we did not manage to do it either.

Finally, the study of the statistical attack described in this chapter has been done in a specific model,
where the attacker can create top-level encodings of zero in a very restricted way. One may wonder
whether more complex models can be developed, and with them new statistical attacks. In particular, it
would be interesting to know if our compensation method resists more sophisticated statistical attacks.

104

Chapter 6

Obfuscators

Intuitively, an obfuscator is an algorithm which should render the code of a program unintelligible,
while preserving the functionality of the program. On a practical side, companies selling programs
are already developing some obfuscation, in order to prevent a user to understand the program and
develop a concurrent version of it [XZKL17]. However, practical obfuscation techniques do not come
with any formal guarantee that the program is indeed hidden. In this chapter, we will be focusing
on the theoretical side of obfuscation. One can define a mathematical object, called an obfuscator,
whose specifications should hopefully match the intuition. This object is very desired in theoretical
cryptography, as it can then be used to create a lot of cryptographic primitives, with some of them
that are not known to be possible otherwise.

In this chapter, we will first define what is an obfuscator, and then present some candidates for
general purpose obfuscation. None of the candidate obfuscators that have been proposed so far rely on
standard cryptographic hardness assumptions, and we will see that many of these candidate obfuscators
suffer from attacks. In particular, we will present a quantum attack which applies to many obfuscators
based on the GGH13 multilinear map, some of which were not broken yet. In order to describe this
quantum attack, we first describe an abstract obfuscator, capturing many candidates obfuscators. We
then present the attack on this abstract obfuscator.

The description of the abstract obfuscator and the quantum attack presented in the last two sections
of this chapter correspond to a work which was published in the proceedings of Crypto 2018 [Pel18].
The code used to perform the experiments described in this chapter is available at

http://perso.ens-lyon.fr/alice.pellet___mary/code/quantum_attack.sage

Contents
6.1 Introduction . 106

6.1.1 Definition . 106

6.1.2 Candidate obfuscators . 108

6.1.3 Obfuscation for restricted classes of functions 114

6.1.4 Contribution . 114

6.2 An abstract matrix branching program obfuscator 116

6.2.1 Heuristic assumption . 118

6.3 Quantum attack against the abstract obfuscator 119

6.3.1 Creating a new zero-testing parameter . 120

6.3.2 Non-spherical Gaussian distributions . 121

6.3.3 The mixed-input attack . 123

6.3.4 A concrete example of distinguishable branching programs 124

6.3.5 Other branching program obfuscators . 125

6.4 Conclusion . 126

105

http://perso.ens-lyon.fr/alice.pellet___mary/code/quantum_attack.sage

CHAPTER 6. OBFUSCATORS

6.1 Introduction

We first start by formally defining obfuscators. We then give a brief overview of the different techniques
that have been used to construct candidate obfuscators, and of the attacks that are known against the
candidates.

6.1.1 Definition

From the intuitive notion of obfuscation, we would like an obfuscated program to act as a black-box:
it should only reveal the input/output behaviour of the program. In other words, we would like that
anything that can be learned from the obfuscated program can also be learned by having only a black-
box access to the program. This can be formalized by the notion of virtual black-box obfuscation (or
VBB obfuscation). In order to formally define the obfuscator, we also need to say how we represent
the program to be obfuscated. This is typically done by using circuits. In this thesis, we will consider
obfuscators which are defined over a class C of boolean circuits. The main goal of program obfuscation is
to achieve obfuscation for the class C of all polynomial size circuits (i.e., circuits containing a polynomial
number of gates). In this thesis, we will mainly focus of such obfuscators. However, one can also be
interested in obfuscators for restricted classes of circuits, for example the class of logarithmic depth
circuits, or the class of conjunctions. In the following, we will say that two circuits C1 and C2 are
equivalent (and we will write C1 ≡ C2), if the sets of inputs of the two circuits are the same, and for
any such input x we have C1(x) = C2(x) (i.e., C1 and C2 compute the same function).

Definition 6.1 (Virtual Black-Box (VBB) obfuscation [BGI+01]). A virtual black-box obfuscator O
for the class of circuits C is a function which takes as input a circuit C ∈ C and outputs a circuit O(C)
(not necessarily in C). It should satisfy the following requirements.

• (functionality) For every circuit C ∈ C, the circuits C and O(C) are equivalent.

• (efficiency) The obfuscator O runs in polynomial time in |C|, the number of gates of its input
circuit C. In particular, this implies that |O(C)| (the number of gates of O(C)) is polynomially
bounded by |C|.

• (virtual black-box security) For any probabilistic polynomial time algorithm A, there exists a
probabilistic polynomial time algorithm Sim and a negligible function α such that for all circuits
C ∈ C ∣∣∣P [A(O(C)) = 1]− P

[
SimC(1|C|) = 1

]∣∣∣ ≤ α(|C|),

where SimC means that the algorithm Sim can make black-box queries to the circuit C.

The virtual black-box security requirement means that anything that an adversary can compute
from the obfuscated program can also be computed given only a black-box access to the program and
the size of the program. This is what we wanted intuitively. However, it has been shown in 2001
by Barak, Goldreich, Impagliazzo, Rudich, Sahai, Vadhan and Yang that such a security requirement
was not possible to achieve for the class C of all polynomial size circuits. This does not rule out
VBB obfuscation for all classes of circuits, but it still impacts a large number of classes (intuitively,
any class containing circuits that can be evaluated on their own descriptions). The main idea of this
impossibility result is that any obfuscated circuit O(C) reveals the code of a circuit computing the
same function as C, whereas a black-box access does not. So if for instance the definition of virtual
black-box security allowed the attacker to produce a string of bits instead of a single bit, it could
output the description of a circuit computing C (by outputting O(C)). On the contrary, the simulator
cannot output the description of a circuit computing C, except by making an exponential number of
black-box queries to C. This idea can be generalized to an attacker outputting a single bit (as in
our definition) by considering circuits that take as input a description of themselves. More formally,
the authors of [BGI+01] consider pairs of circuits (C1, C2), where C1(x) is constant (either 0 or 1)
for all inputs x describing circuits that compute the same function (i.e., if x and y describe circuits
Cx ≡ Cy, then C1(x) = C1(y)). A non-trivial such circuit C1 can be constructed for instance by
choosing two parameters α, β and defining C1(x) = 1 if and only if Cx(α) = β (where Cx is the circuit
described by x). One can then wonder whether C1(C2) = 1. An adversary which is given access to

106

CHAPTER 6. OBFUSCATORS

(O(C1),O(C2)) can determine whether C1(C2) = 1 by computing O(C1)(O(C2)). But a simulator
that can only access C1 and C2 in a black-box way cannot make such a request, because it does not
know any circuit representation of C2. Finally, to embed the two circuits C1 and C2 into a unique
circuit C (to match the definition of VBB security), the authors simply consider the circuit C which
takes as input bit-strings of size m+ 1 (where C1 and C2 take as input bit-string of size m) defined by
C(0‖x) = C1(x) and C(1‖x) = C2(x).

Virtual black-box security being impossible to achieve for all polynomial size circuit, the authors
of [BGI+01] proposed a new security definition for obfuscation, called indistinguishability Obfuscation
(or iO for short). An indistinguishability obfuscator satisfies the same functionality and efficiency
requirements as before, but its security definition is modified as follows.

Definition 6.2 (Indistinguishability Obfuscation (iO) [BGI+01]). An indistinguishability obfuscator O
for the class of circuits C is a function which takes as input a circuit C ∈ C and outputs a circuit O(C)
(not necessarily in C). It should satisfy the following requirements.

• (functionality) For every circuit C ∈ C, the circuits C and O(C) are equivalent.

• (efficiency) The obfuscator O runs in polynomial time in |C|, the number of gates of its input
circuit C. In particular, this implies that |O(C)| (the number of gates of O(C)) is polynomially
bounded by |C|.

• (indistinguishability) For any probabilistic polynomial time algorithm A, there is a negligible
function α such that for all equivalent circuits C1, C2 ∈ C of the same size k we have

|P [A(O(C1)) = 1]− P [A(O(C2)) = 1]| ≤ α(k).

The definition of indistinguishability obfuscation calls for a few comments. First, as observed by
the authors of [BGI+01], if we forget about the efficiency requirement, then iO exists. Indeed, given a
circuit C, an obfuscator can output the truth table of the circuit, or even the smallest circuit computing
this function (choosing the first one in lexicographic order if there are multiple circuits of the same
size). Then, the output of the obfuscator on two equivalent circuits C1 and C2 will be the same, and
so an attacker cannot distinguish between the two obfuscated circuits. This observation makes the
authors of [BGI+01] suggest that there is “some (very slight) hope that this definition is a achievable”.

On the other side, one may wonder at first whether, even if they exist, indistinguishability obfusca-
tors are useful. Indeed, it does not correspond anymore to the intuitive notion of obfuscation, where the
obfuscated circuit should hide the input circuit. An indistinguishability obfuscator could reveal parts of
the circuit we would like to keep secret (for instance a secret key), as long as the obfuscations of equiva-
lent circuits are computationally indistinguishable. It turns out that indistinguishability obfuscation is
indeed useful, as was showed by many following works, in constructing many cryptographic primitives
from iO. For example, it has been shown that iO could be used to build witness encryption [GGSW13],
functional encryption [GGH+13b], deniable encryption [SW14], oblivious transfer [SW14], traitor trac-
ing [BZ17], graded encoding schemes [FHHL18], and so on.

Another way to argue that iO might be useful is to observe that, if we consider the class C of
all polynomial size circuits, then an indistinguishability obfuscator O achieves best possible obfusca-
tion [GR07]. Assume that we have another obfuscator O′ satisfying the functionality and efficiency
conditions of iO, but another security definition that we would prefer. We can show that O reveals less
information about the obfuscated circuits than O′. Let C ∈ C be a polynomial size circuit. We observe
than revealing O(O′(C)) reveals less information that revealing O′(C). Indeed, anything an attacker
can do with O(O′(C)), can also be done with O′(C), by first applying O to O′(C). Here, we use the
fact that O is an obfuscator for the class of all polynomial size circuits, and so we can apply it to O′(C)
(because of the efficiency requirement, it is of polynomial size). Now, by the indistinguishability prop-
erty of O, we know that O(O′(C)) is indistinguishable from O(C) (by functionality of O′). Hence, we
conclude that anything an adversary can do by knowing O(C) can also be done given as input O′(C).
This means that O achieves what we call best possible obfuscation. Notice here that this proof only
works because we considered an iO for all polynomial size circuits, so that we can apply O to the circuit
O′(C). There are examples of classes of circuits for which iO does not achieve best possible obfusca-
tion. One such example is the class of point functions. A point function is described by some bit-string

107

CHAPTER 6. OBFUSCATORS

y ∈ {0, 1}m. On input x ∈ {0, 1}m, the function outputs 1 if and only if x = y and 0 otherwise. An
indistinguishability obfuscator, given as input a bit-string y describing a point function could simply
return y. This satisfies the indistinguishability property because each function is uniquely represented,
and hence an attacker cannot distinguish between the obfuscation of two circuits computing the same
function. On the other hand, we will see in Section 6.1.3 that there exists a VBB obfuscator for point
functions under standard assumptions. This obfuscator provably hides the point y, which is not the
case of the simple iO described above.

The definition of iO might also be annoying to deal with, because the attacker should choose two
circuits C1 and C2 which are equivalent. This requirement cannot be checked by the challenger, because
being able to determine whether two circuits compute the same function is an NP-hard problem. One
can however give an equivalent definition of iO which circumvents this difficulty (the functionality and
efficiency requirement of the definition are the same as in Definition 6.2, only the security requirement
changes).

Definition 6.3 (Indistinguishability Obfuscation, alternative definition (iO2) [BR14]). An iO2 obfus-
cator O for the class of circuits C is a function which takes as input a circuit C ∈ C and outputs a
circuit O(C) (not necessarily in C). It should satisfy the following requirements.

• (functionality) For every circuit C ∈ C, the circuits C and O(C) are equivalent.

• (efficiency) The obfuscator O runs in polynomial time in |C|, the number of gates of its input
circuit C. In particular, this implies that |O(C)| (the number of gates of O(C)) is polynomially
bounded by |C|.

• (unbounded simulation) For any probabilistic polynomial time algorithm A, there exists a com-
putationally unbounded algorithm Sim and a negligible function α such that for all circuits C ∈ C∣∣∣P [A(O(C)) = 1]− P

[
SimC(1|C|) = 1

]∣∣∣ ≤ α(|C|),

where SimC means that the algorithm Sim can make black-box queries to the circuit C.

Lemma 6.4 (Lemma 2.9 in [BR14]). Definitions 6.2 and 6.3 are equivalent, i.e., an obfuscator O is
an iO if and only if it is an iO2.

This lemma in particular implies that a VBB obfuscator (when it exists) is also an indistinguisha-
bility obfuscator.

6.1.2 Candidate obfuscators

In this section, we will be interested in candidate indistinguishability obfuscators for all polynomial
size circuits. The first such candidate was proposed in 2013 by Garg, Gentry, Halevi, Raykova, Sahai
and Waters [GGH+13b], and was since followed by many other candidates. These candidates can be
sorted into three main categories: branching program obfuscators, circuit obfuscators and obfuscators
built from functional encryption. The first two categories are somehow similar. They both construct
candidate obfuscators directly, relying on candidate multilinear maps. The third category is somehow
different: the guiding principle of these constructions is to try to reduce the construction of iO to the
simplest possible primitives, and then propose candidate instantiations of these simple primitives. We
give in this section a brief overview of these three categories. In the rest of the chapter we will mainly
focus on branching program obfuscators, and, more specifically, on the ones relying on the GGH13 map
(hence, their description is a little more detailed). More details can be found in a survey written in
January 2018 by Horváth and Buttyán [HB18].

6.1.2.1 Branching program obfuscators

The first candidate iO proposed by Garg et al. in 2013 [GGH+13b] was a branching program obfuscator
(we later refer to it as the GGHRSW construction). This means that it takes as input a matrix branching
program (see Section 2.6) instead of a circuit. Like circuits or Turing machines, branching programs
are a way to represent and compute a function, and this representation of functions was more suited for

108

CHAPTER 6. OBFUSCATORS

the GGHRSW construction than others. Barrington’s theorem states that any circuit with logarithmic
depth can be efficiently transformed into a branching program with polynomially many matrices that
are 5 by 5 permutation matrices. Hence, an iO for the class of all polynomial size branching programs
implies an iO for the class NC1 of logarithmic depth circuits. The authors of [GGH+13b] then proved
that any iO for NC1 can be bootstrapped to an iO for all polynomial size circuits using levelled fully
homomorphic encryption, which can be achieved using standard hardness assumptions.

The work of Garg at al. [GGH+13b] hence implies that building iO for branching programs is
sufficient to obtain iO for all circuits. The authors also provide the first candidate construction of
iO for branching programs. Since then, many other iO candidates for branching programs have been
proposed.

Almost all branching program obfuscators rely on graded encoded schemes. Recall that we have
three main candidates GES which can be used to build obfuscators: the GGH13 map, the CLT13 map
and the GGH15 map. Most of the obfuscators using the GGH13 map can also be instantiated with
the CLT13 map and vice versa. However, because of its different structure, the GGH15 map cannot be
used in obfuscators built to work with the GGH13 or the CLT13 map. From a security point of view,
the known attacks against the candidate branching program obfuscators all rely on weaknesses of the
underlying multilinear map, and so differ depending on the chosen multilinear map.

Below, we give a non-exhaustive list of iO candidates for branching programs and attacks. For
readability, we draw three separate figures (Figures 6.1, 6.2 and 6.3), one for each underlying multilinear
map. As mentioned above, some constructions appear in both Figures 6.1 and 6.2, because they can
be instantiated with the GGH13 map and the CLT13 map. In these figures, the references above the
axis refer to constructions whereas the ones below the axis refer to attacks.

BP obfuscators using the GGH13 map

2013 2014 2015 2016 2017 2018

[GGH+13b]

[BR14,BGK+14]
[PST14,AGIS14]

[MSW14] [GMM+16]

[MSZ16]

[FRS17]

[CGH17]
[ADGM17]

[CHKL18]
[Pel18]

Figure 6.1: History of GGH13-based branching program obfuscators (non-exhaustive)

As mentioned above, the first candidate branching program obfuscator was proposed in 2013 by
Garg, Gentry, Halevi, Raykova and Waters [GGH+13b], and was instantiated using the GGH13 map.
This construction came with no reduction to standard cryptographic hardness assumptions. This
construction was soon followed by many variants, trying to improve both security and efficiency of
the GGHRSW construction. First, in 2014, Brakerski and Rothblum [BR14] and Barak, Garg, Kalai,
Paneth and Sahai [BGK+14] proposed candidate obbuscators which they proved secure in the ideal
multilinear map model (the BR14 candidate also requires an extra assumption called Exponential Time
Hypothesis). Recall from Section 5.1 that the ideal multilinear map model is a model where the
adversary does not get the encoded elements, but can only access them via “handles”, maintained by the
challenger. Pass, Seth and Telang [PST14] then proposed a hardness assumption for graded encoding
schemes which they proved implies iO. They also showed that this hardness assumption holds in the
ideal multilinear map model. Miles, Sahai and Weiss [MSW14] then proposed a candidate obfuscator
proved secure in a model which gives a bit more power to an attacker than the ideal multilinear map
model (the main difference being that the attacker can add two encodings at different levels). Finally,
Ananth, Gupta, Ishai and Sahai [AGIS14] focused on efficiency and proposed an obfuscator that can
obfuscate any matrix branching program (previous candidates took as input branching programs made
of permutation matrices). They also showed how this can be used to remove the bootstrapping part
of [GGH+13b], and improve efficiency of the obfuscator.

109

CHAPTER 6. OBFUSCATORS

Most of these constructions with proofs in ideal models in fact prove VBB security of the obfuscator
(stronger than iO but impossible to achieve), and then use the fact that VBB implies iO to conclude
on the iO security of the obfuscators. One of the consequences of these proofs is then that the ideal
models considered above cannot be instantiated (as they imply something false). Let us also mention
that the ideal multilinear map model (and its variants) used in the above obfuscators is independent
of the choice of the multilinear map. The obfuscators can then be instantiated with any candidate
multilinear map (i.e., GGH13 of CLT13). This won’t be the case anymore for the weak multilinear map
models discussed below.

After this first line of works, the first attack against candidate iOs was described by Miles, Sahai and
Zhandry in 2016 [MSZ16]. This attack relies on some weakness of the underlying GGH13 multilinear
map. More specifically, the authors observed that the elements obtained after zero-testing are of the
form `i(x1, . . . , xr) mod g, where the `i are linear forms that are known by the attacker (and depend
on the obfuscated circuit), the xj are noise terms that are unknown to the attacker (the number r of
noise terms is polynomial), and g is the secret parameter of the GGH13 map as defined in Section 5.2.
The attack then consists in gathering r+ 1 such zero-tested elements, in order to be able to compute a
linear combination of them which annihilates the linear forms `i (whatever the choices of the xj ’s are).
Once the `i are annihilated, we are left with a multiple of g, and we can use it to mount a distinguishing
attack. This attack impacts all the previous GGH13-based candidate obfuscators, except the GGHRSW
one (i.e., it impacts [BR14,BGK+14,PST14,AGIS14,MSW14]).

A new candidate obfuscator was then proposed by Garg, Miles, Mukherjee, Sahai, Srinivasan, and
Zhandry [GMM+16], designed to prevent the MSZ attack. More formally, the authors defined a new
idealized model, called the weak GGH13 multilinear map model,1 and proved the security of their
candidate iO in this model. This model is designed to capture the MSZ attack, hence the security proof
ensures that this attack (or variants of it) cannot be applied to this obfuscator. Again, the authors
proved VBB security of their obfuscator, which implies iO security, but also implies that this model
cannot be instantiated. Another observation is that this obfuscator can be instantiated with the GGH13
map or the CLT13 map, but its security is only analyzed when instantiated with the GGH13 map. In
particular, the weak GGH13 multilinear map model is not a generic model like the ideal multilinear
map model: it is defined only when the underlying multilinear map is the GGH13 map.

In 2017, Apon, Döttling, Garg and Mukherjee [ADGM17] extended the MSZ attack. More specifi-
cally, the MSZ attack broke iO security of the BP obfuscators by distinguishing between the obfuscation
of two equivalent BP. Apon et al. broke the iO security of the full circuit obfuscators by exhibiting two
circuits that, once transformed into branching programs and obfuscated, could be distinguished. This
attack applies to the same candidate obfuscators as the MSZ one. The same year, Chen, Gentry and
Halevi [CGH17] described an attack against the original GGHRSW obfuscator. This attack combines
techniques from both the MSZ attack and from attacks that were previously used against the CLT13
map [CLLT17]. Both attacks [CGH17, ADGM17] only work when the corresponding iOs are instanti-
ated with the GGH13 map. A few months later, Fernando, Rasmussen and Sahai [FRS17] proposed a
fix for the GGHRSW obfuscator, which prevents the [CGH17] attack (this fix was originally intended
for CLT13-based obfuscators).

Finally, in 2018, two “partial” attacks were proposed against GGH13-based BP obfuscation. The
first one was proposed by Cheon, Hhan, Kim and Lee [CHKL18]. It impacts the security of the [GGH+13b]
and [GMM+16] candidates for specific choices of parameters. This attack can be prevented by increas-
ing the parameters of the iO candidates. The second one is a quantum attack, which I proposed and
was published in the proceedings of Crypto 2018. A description of this attack is provided in Section 6.3.
It provides an attack against the [GMM+16] obfuscator, but only in the quantum setting.

Table 6.1 summarizes the current state of the art (May 2019) of the candidate branching program
obfuscators based on GGH13. In the quantum setting, the only candidate which is still standing is the
GGHRSW obfuscator, when fixed by [FRS17]. In the classical setting, the [GMM+16] obfuscator is
also standing. The parameters of both of these obfuscators should be chosen large enough to prevent
the [CHKL18] attack.

1In the literature, this model is typically called “weak multilinear map model” without reference to the GGH13 map.
However, it is specific to the GGH13 map, and, as we shall see, similar models have been developed for the CLT13 and
GGH15 map. Hence, in this section, to avoid ambiguity, we shall call it “weak GGH13 multilinear map model”. A
description of this model can be found in Appendix A.

110

CHAPTER 6. OBFUSCATORS

Attacks
iOs

[GGH+13b]
[BR14,BGK+14,PST14]

[AGIS14,MSW14]
[GMM+16]

[MSZ16] completely broken

[CGH17]
broken but fixed

in [FRS17]

[CHKL18]
broken for specific

choices of
parameters

broken for specific
choices of parameters

broken for specific
choices of

parameters
[Pel18] quantumly broken

Table 6.1: Status of candidate branching program iO based on GGH13 (May 2019)

BP obfuscators using the CLT13 map

2013 2014 2015 2016 2017 2018

[GGH+13b]

[BR14,BGK+14]
[PST14,AGIS14]

[MSW14]

[CLLT17]

[FRS17] [MZ18]

Figure 6.2: History of CLT13-based branching program obfuscators (non-exhaustive)

The first candidate obfuscators we have seen in the GGH13 case [GGH+13b,BR14,BGK+14,PST14,
AGIS14,MSW14] can also be instantiated by the CLT13 map. Moreover, recall that these obfuscators
(expect for the [GGH+13b] one) are proved secure in the ideal multilinear map model (or one of its
variants), which is independent from the choice of the underlying multilinear map. On the contrary,
the candidate iO from [GMM+16] can be instantiated with the CLT13 map but its security analysis is
performed only when instantiated with the GGH13 map, hence we chose not to represent it here.

The first attacks against CLT13-based candidate obfuscators was presented by Coron, Lee, Lepoint
and Tibouchi in 2017 [CLLT17]. It impacted all previous candidate obfuscators based on the CLT13
map (i.e., all [GGH+13b, BR14, BGK+14, PST14, AGIS14, MSW14]), when using single input matrix
branching programs. Recall from Section 2.6 that a branching program is said to be single-input if
the choices of the matrices in the execution of the program only depend on one bit of input at each
step. The notion of single input branching program is in fact not the best notion to describe the CLLT
attack. What the authors really need is input partitionability of the branching program. Recall that
the function computed by a branching program A is zero on input x if and only if

A0 ·

∏
i∈[`]

Ai,x[inp(i)]

 ·A`+1 = 0.

This branching program is said to be input partitionable if this product of matrices can be split into a
product of two terms, which depend on different bits of the input. More formally, we would like that

A0 ·

∏
i∈[`]

Ai,x[inp(i)]

 ·A`+1 = Ax[σ(1),...,σ(r)] ·Bx[σ(r+1),...,σ(m)],

where σ is a permutation over {1, . . . ,m}, the integer r is arbitrary between 1 and m − 1, matrix
Ax[σ(1),...,σ(r)] only depends on the bits σ(1), . . . , σ(r) of the input x and matrix Bx[σ(r+1),...,σ(m)] only
depends on the bits σ(r + 1), . . . , σ(m) of the input x. For a program to be input partitionable, we
will also require that there are two “large” sets2 Y ⊂ {0, 1}r and Z ⊂ {0, 1}m−r such that for all

2See the definition of input partitionability in [FRS17] for a definition of “large”.

111

CHAPTER 6. OBFUSCATORS

(y, z) ∈ Y × Z, we have Ay · Bz = 0. The definition of input partitionability ensures that we will
be able to create many top-level encodings of zero of the form Ay · Bz, where we can vary y and z
independently. This is the crucial property which is used in the CLLT attack.

Going back to single input/dual input branching programs, one can observe that the dual input
BP obfuscators described in [BR14, BGK+14, PST14, AGIS14, MSW14] were not input partitionable,
whereas the single-input ones were. Hence, the CLLT attack was applicable only to the single input
variants of these iO. One could however imagine dual input BP obfuscators which would be input par-
titionable, and so vulnerable to the CLLT attack. On the other hand, Fernando, Rasmussen and Sahai
developed in [FRS17] a technique to transform any single input branching program into an equivalent
single input branching program which is provably not input partitionable. This transformation uses
what they call a “tag”, which they add to the function to ensure that whenever one tries to modify
independently parts of the bits of the input (i.e., varying y and z independently), then the output of
the function should not remain equal to 0. This technique hence thwarts the CLLT attack on all the
single input obfuscators which were previously broken.3

Finally, in 2018, Ma and Zhandry [MZ18] proved that the dual input variant of the [BMSZ16]
obfuscator was secure in a weak multilinear map model for the CLT13 map that they defined. This
weak CLT13 model is designed to capture the [CLLT17] attack, as well as the other known attacks
against the CLT13 map [CHL+15,CGH+15] (not necessarily related to iO). The [BMSZ16] obfuscator
was originally designed to obfuscate evasive functions (i.e., functions for which it is hard to find an
input which evaluates to zero). However, it can also be used to obfuscate non evasive functions, and
the security proof in the weak CLT13 model done in [MZ18] holds for all functions.

To summarize, none the candidate obfuscators above is known to be classically broken when instan-
tiated with the CLT13 map. This holds for both the single input variants of the dual input variants of
the obfuscators (using the fix of [FRS17] in the single input case). Additionally, we even have a candi-
date obfuscator [BMSZ16] which is proven secure in a weak CLT13 multilinear map model [MZ18], a
model which captures all known attacks against the CLT13 map. However, the security of these obfus-
cators only holds in the classical setting. Indeed, the CLT13 map is known to be broken if factorisation
can be done efficiently, and so cannot be used in a quantum setting.

BP obfuscators using the GGH15 map

2013 2014 2015 2016 2017 2018

[GGH15]

[CGH17]

[CVW18]
[BGMZ18]

[CCH+18]

Figure 6.3: History of GGH15-based branching program obfuscators (non-exhaustive)

The GGH15 map was described in 2015 by Gentry, Gorbunov and Halevi [GGH15]. As mentioned
earlier, this is a “graph induced” graded encoding scheme, meaning that it comes with a directed
acyclic graph, and the levels of the encodings correspond to paths in this graph. One can then add two
encodings associated with the same path, or multiply two encodings whose paths come one after the
other (i.e. the first one ends where the second one starts). Together with this candidate graded encoding
scheme, the authors of [GGH15] also proposed a candidate obfuscator using it. It was quantumly broken
in 2017 by Chen, Gentry and Halevi [CGH17]. This quantum attack can also be transformed into a sub-
exponential time classical attack, which can be prevented by a polynomial increase of the parameters
of the obfuscator. In 2018, two new candidate obfuscators using the GGH15 map were proposed.
Chen, Vaikuntanathan and Wee [CVW18] did an extensive study of the attacks against the GGH15
map (by considering previous attacks and developing new ones) and then proposed a candidate iO
accordingly. In a similar direction, Bartusek, Guan, Ma and Zhandry [BGMZ18] introduced a weak

3Recall from the GGH13 section that the [FRS17] article also prevents the [CGH17] attack. This is because this attack
also exploited input partitionability.

112

CHAPTER 6. OBFUSCATORS

multilinear model for the GGH15 map, which captures all known attacks against the GGH15 map.
They then proposed a candidate obfuscator which they proved is secure in this weak GGH15 model. A
few months later, Cheon, Cho, Hhan, Kim and Lee [CCH+18] presented a statistical zeroizing attack
against these candidats obfuscators. This attack was not studied in [CVW18] and is not captured by the
weak GGH15 model of [BGMZ18]. However, this attack only applies to specific choice of parameters,
and it can be avoided by carefully choosing the parameters of the obfuscators (note that the original
choice of parameters of the [BGMZ18] obfuscator already prevented the attack).

To summarize, none of the three candidate obfuscators based in the GGH15 map is known to be
broken by a classical computer if the parameters are chosen carefully. In addition, the two recent
obfuscators [CVW18, BGMZ18] are also not known to be broken by a quantum computer, and the
latter can be proven secure in a weak GGH15 multilinear map model, which captures many but not all
known attacks against the GGH15 map.

6.1.2.2 Circuit obfuscators

Circuits obfuscators are similar to branching program obfuscators, except that they obfuscate a circuit
directly, without first transforming it into a branching program. As for branching program obfuscators,
the circuit obfuscators rely on graded encoding schemes. All the candidates below can be instantiated
using either the CLT13 map or the GGH13 map (there is currently no circuit obfuscator using the
GGH15 map).

2013 2014 2015 2016 2017 2018

[Zim15]
[AB15]

[CGH+15]

[BD16] [DGG+18]

[Pel18]

Figure 6.4: History of circuit obfuscators (non-exhaustive)

The first three candidate obfuscators of Figure 6.4 share a very similar structure. Each of these
candidate obfuscators is a variant of the same simple obfuscator, with some extra structure designed
to achieve different security guarantees. Zimmerman proved virtual black-box security for his obfusca-
tor [Zim15] in the ideal multilinear map model. The obfuscator of Applebaum and Brakerski [AB15]
is proved to be iO in a slightly weaker model but at the expense of a loss of efficiency. Finally, the
obfuscator of Brakerski and Dagmi [BD16] avoids this loss in efficiency, but assumes sub-exponential
hardness of factoring (i.e., it assumes that there exists some δ > 0 such that any algorithm running in

time 2λ
δ

cannot factor a product of two random primes of λ bits, except with negligible probability).
These obfuscators can be instantiated with both the CLT13 map and the GGH13 map. In case of
instantiation with the CLT13 map, Coron, Gentry, Halevi, Lepoint, Maji, Miles, Raykova, Sahai and
Tibouchi [CGH+15] exhibited an attack against the simple obfuscator common to all the candidates.
This attack is not known to extend to the full constructions of these obfuscators.

The last circuit obfuscator candidate, proposed by Döttling, Garg, Gupta, Miao and Mukher-
jee [DGG+18], also shares the same structure, but is designed to use the GGH13 map with a small
modulus (see Section 5.2). This candidate is proved to achieve VBB security in the weak GGH13 mul-
tilinear map model. The quantum attack which is described below against GGH13-based branching
program obfuscators can be adapted to also impact all the circuits obfuscators above. This provides a
quantum attack against all the circuit obfuscator above when instantiated with the GGH13 map (more
details on this extension can be found in Appendix B).

To summarize, the four circuit obfuscators above are quantumly broken when instantiated with the
GGH13 or the CLT13 map (recall that the CLT13 map is not post quantum). On the contrary, they
are not known to be classically broken, neither for the GGH13 map nor for the CLT13 one.

113

CHAPTER 6. OBFUSCATORS

6.1.2.3 Obfuscation from functional encryption

A functional encryption scheme is an encryption scheme where secret keys are associated to functions.
A user who is given an encryption of some message m and a secret key skf associated to some function f
can use its secret key to recover f(m), but should not learn anything more about the message m.

Obfuscation from functional encryption is a different approach to build obfuscation, which was
initiated by Lin in 2016 [Lin16]. The objective of this line of works is to reduce the construction of iO
to the construction of (hopefully) simpler primitives. The main path followed by all these works is to
first reduce iO to functional encryption for circuits of logarithmic depth, and then reduce functional
encryption for logarithmic depth circuits to functional encryption for constant degree polynomials,
hence the name “obfuscation from functional encryption”.

The recent line of works [AJS18, Agr19, LM18] has managed to reduce the construction of iO to
the construction of some weak variants of pseudo-random generators (whose name and exact definition
differ depending on the articles), computable by a polynomial of degree 2. This research area has been
very active recently but is a little outside the subject of this thesis, as it does not involve the GGH13
map or any candidate graded encoding scheme.

6.1.3 Obfuscation for restricted classes of functions

In the previous section, we have seen candidate iOs for the class of all polynomial size circuits. Other
approaches have investigated the construction iO for restricted classes of circuits under more standard
assumptions. In 2016, Brakerski, Vaikuntanathan, Wee and Wichs [BVWW16] described an obfuscator
for conjunction functions, under some variant of RLWE which they called “entropic RLWE”. More
recently, Wichs and Zirdelis [WZ17] and Goyal, Koppula and Waters [GKW17] concurrently proposed
an obfuscator for obfuscating compute-and-compare functions, based on the plain LWE problem. A
compute-and-compare function is parametrized by a function f and an element y. On input x, it
outputs 1 if and only if f(x) = y, and 0 otherwise. This notion includes in particular the classes of
conjunctions and of point functions. Let us make a few remarks about these constructions. The first
observation is that these constructions use the GGH15 map, but in a way that enables them to obtain a
security proof from LWE. One of the key ingredients for this security proof to carry on is that an attacker
should not be able to construct top-level encodings of zero. Hence, the obfuscators of [WZ17,GKW17]
can only obfuscate compute-and-compare functions with enough min-entropy, so that it is very unlikely
that an attacker finds a point where the function outputs 1. The second observation is that while this
obfuscator is proven to be VBB secure,4 this does not contradict the impossibility result of [BGI+01].
This is because we are considering a restricted class of functions, whereas the impossibility result holds
for the class of all polynomial size circuits.

6.1.4 Contribution

The objective of the rest of this chapter is to present a quantum attack against candidate obfuscators.
This quantum attack impacts the [GMM+16] obfuscator, when instantiated with the GGH13 multilin-
ear map. This candidate obfuscator was not broken yet, and was proven secure in the weak GGH13
multilinear map model (the currently strongest ideal model for GGH13-based obfuscators). As a sec-
ondary contribution, our attack also applies to the obfuscators of [BGK+14,PST14,AGIS14,MSW14],
which were already broken in classical polynomial time by [MSZ16]. Our attack is still interesting for
these obfuscators, as it uses different techniques than those of [MSZ16], and in particular, techniques
that are not captured by the weak GGH13 multilinear map model. We note that our attack does not
work against the obfuscator of [BR14], while [MSZ16] does.

Overall, we prove the following theorem (informally stated for the moment, see Theorem 6.7 for a
formal statement).

Theorem 6.5 (Informal, heuristic). Let O be any of the branching program obfuscators in [BGK+14,
PST14,AGIS14,MSW14,GMM+16], on single or dual input branching programs, instantiated with the
GGH13 multilinear map [GGH13a]. There exist two explicit equivalent branching programs A and A′

4It is in fact distributional VBB secure, which is weaker than VBB. However, the impossibility result of [BGI+01] also
holds for distributional VBB security.

114

CHAPTER 6. OBFUSCATORS

such that O(A) and O(A′) can be distinguished in quantum polynomial time, under some conjecture
and heuristic.

We note that the only part of our attack which is quantum is the principal ideal solver of Biasse and
Song [BS16]. All the other steps of our attack are classical. Hence, our attack can also be viewed as a
(classical) reduction from the iO security of the candidate obfuscators mentioned in Theorem 6.5 to the
principal ideal problem. One might then want to use the classical sub-exponential time principal ideal
solver of Biasse, Espitau, Fouque, Gélin and Kirchner [BEF+17] to obtain a classical sub-exponential
time attack against the above obfuscators. However, the dimension of the cyclotomic ring used in
current instantiations on the GGH13 multilinear map is chosen to be at least λ2 where λ is the security
parameter (see Section 5.2.2). This is done to thwart the attacks of [ABD16, CJL16, KF17] over the
GGH13 multilinear map, but it also means that the classical variant of the attack described in this
chapter is exponential in the security parameter, even when using the sub-exponential time principal
ideal solver of [BEF+17]. It is still interesting to note that any future improvement for solving the
principal ideal problem will directly imply an improvement for the attack described in this chapter.

Technical overview. The attack described below belongs to the class of mixed-input attacks. A
mixed-input attack is an attack in which the attacker does not evaluate honestly the obfuscated circuit,
but changes the value of one bit along the computation: for example, if the same bit of the entry
is used twice during the computation, the attacker puts it to 1 the first time and to 0 the second
time. Recent branching program obfuscators, starting with the one of [BGK+14], prevent mixed-
input attacks by relying on the underlying multilinear map and using so-called straddling set systems.
The idea of straddling set systems techniques is to choose specific levels for the encodings, to ensure
that an attacker who tries to mix the bits of the input will obtain a final encoding which does not
have the good level to be zero-tested and provide a useful output. Following this idea, the obfuscators
of [PST14,AGIS14,MSW14,GMM+16] also used straddling set systems to prevent mixed-input attacks.

However, straddling set systems only ensure that an attacker cannot mix the inputs of the obfuscated
program to obtain a dishonest top-level encoding of zero: it does not prevent an attacker to create a
dishonest encoding of zero at a level higher than the top level. In the case where the multilinear
map is ideal, this is not a security threat, because the attacker should not be able to test at a level
higher than the top level whether it has created an encoding of zero or not. However, this is not
the case of the GGH13 multilinear map. Indeed, using recent improvements on the short Principal
Ideal Problem [BS16,CGS14a,CDPR16] (abbreviated as sPIP), it has been shown that it is possible to
recover in quantum polynomial time the secret element h of the zero-testing parameter of the GGH13
map (see Section 5.2 for more details on the GGH13 map). Recovering this secret element will then
allow us to zero-test at a higher level than the one initially authorised.5 This is the starting point of
our mixed-input attack.

As mentioned above, all these candidate obfuscators use straddling set systems, meaning that per-
forming a dishonest evaluation of the branching program outputs an encoding at a forbidden level.
However, if we perform two well-chosen dishonest evaluations and take the product of the resulting
encodings, we can obtain an encoding whose level is twice the maximal level of the multilinear map.
The idea to construct well-chosen dishonest evaluations is to take complementary ones. For instance,
assume the first bit of the input is used three times during the evaluation of the branching program.
A first illegal computation could be to take this first bit to be equal to 0 the first time it is used, and
then to 1 for the other two times. The complementary illegal computation will then be to take the first
bit to be equal to 1 the first time, and to 0 the other two times. These two illegal computations will
result in encodings that are not at the top level, but their levels will be complementary in the sense
that taking their product gives an encoding whose level is twice the top level. We can then use the
new zero-test parameter obtained above to determine whether this product of illegal encodings is an
encoding of zero or not. It then remains to find a pair of equivalent branching programs such that the
illegal encoding obtained above is an encoding of zero for one of the two branching programs only. We
exhibit such a pair of branching programs in Section 6.3.4. While we just exhibit one pair, it should
be possible to find many other pairs that can also be distinguished. We do not pursue this, as finding
one such pair suffices to violate the iO property.

5To be correct, we cannot really test whether we have an encoding of 0, but rather whether we have an encoding which
is a product of two encodings of 0. More details can be found in Section 6.3.

115

CHAPTER 6. OBFUSCATORS

All the branching program obfuscators mentioned above have a similar structure. In order to simplify
the description of the attack, and to highlight which characteristics of these obfuscators are needed for
the attack, we first describe in Section 6.2 an abstract obfuscator which captures the obfuscators of
[PST14,AGIS14,MSW14,GMM+16]. This abstract obfuscator is elementary, and it suffices to describe
our attack against it, in order to attack all the obfuscators of [PST14,AGIS14,MSW14,GMM+16]. The
obfuscator of [BGK+14] does not completely fit in this abstract obfuscator and is discussed later.

Discussion and extension. We observe that the mixed-input attack described below crucially relies
on the use of straddling set systems. This may seem paradoxical, as straddling set systems were
introduced to build obfuscators secure in idealized models, hence supposedly more secure than the first
candidates. The first candidate obfuscators [GGH+13b,BR14] tried to prevent mixed-input attacks by
using so-called bundling scalars, but it was heuristic and came with no proof. On the contrary, the use
of straddling set systems allows us to prove that the schemes are resistant to mixed-input attacks if the
underlying multilinear map is somehow ideal, hence giving us a security proof in some idealized model.
However, this comes at the cost of relying more on the security of the underlying multilinear map. So
when the obfuscators are instantiated with the GGH13 multilinear map, which is known to have some
weaknesses, this gives more possibilities to an attacker to transform these weaknesses of the multilinear
map into weaknesses of the obfuscators. This is what we do here, by transforming a weakness of the
GGH13 map into a concrete attack against obfuscators using straddling set systems. It also explains
why our attack does not apply to the obfuscators of [GGH+13b, BR14], which did not use straddling
set systems.

The mixed-input attack described below can be adapted to quantumly attack all the candidate
circuits obfuscators [AB15, Zim15, BD16, DGG+18], when instantiated with the GGH13 multilinear
map. While the techniques of the attack against the circuit obfuscators are very similar to the one
presented below (they also use straddling set systems), the description of the circuit obfuscators is
rather cumbersome. For this reason, the extension to circuit obfuscators is postponed to Appendix B.

6.2 An abstract matrix branching program obfuscator

Following an idea of Miles, Sahai and Zhandry in [MSZ16], we define here an abstract obfuscation
scheme. This abstract obfuscator is inspired by the one of [MSZ16] but is a little simpler and more
general. In particular, it captures all the obfuscators of Theorem 6.5, except the one of [BGK+14]. We
will then show in Section 6.3 how to apply our quantum attack to this abstract obfuscator, resulting
in an attack against the obfuscators of [PST14, AGIS14, MSW14, GMM+16] and we will explain how
to adapt the attack to the branching program obfuscator of [BGK+14] (which is just slightly different
from the abstract obfuscator defined in this section).

The abstract obfuscator takes as input a polynomial size d-ary matrix branching program A of
width w and length ` (for some fixed integers d,w, ` > 0), over the ring of integers Z,6 with a fixed
input function inp and whose matrices have coefficients in {0, 1}. Typically, the obfuscators pad the
branching program with identity matrices, to ensure that the input function has the desired structure.
Here, to simplify the obfuscator, we will assume that the obfuscator only accepts branching programs
with the desired inp function (the user has to pad the branching program itself before giving it to the
obfuscator). For the attack to work, we ask that there exist two different integers j1 and j2 such that
inp(j1)∩ inp(j2) 6= ∅ (meaning that there is a bit of the input which is inspected at least twice during
the evaluation of the branching program). This can be assumed for all the obfuscators of Theorem 6.5.7

Let A0, A`+1 be the bookend vectors of A and {Ai,b}i∈[`],b∈{0,1}d be its square matrices. Recall that
the function computed by the branching program A is defined by

x 7→ A(x) =

{
0 if A0 ·

(∏
i∈[`]Ai,x[inp(i)]

)
·A`+1 = 0

1 otherwise.

The abstract obfuscator then proceeds as follows.

6Most of the time, the matrices of the branching program will be permutation matrices, and the underlying ring will
have no importance.

7This is even mandatory for the dual input versions of the obfuscators, as they require that all pairs (s, t) (or (t, s))
appear in the inp function, for any s, t ∈ [m] with s 6= t.

116

CHAPTER 6. OBFUSCATORS

• It instantiates the GGH13 multilinear map and retains its secret key (g, h, {zi}i∈[κ]) and its public
key (n, q, κ, pzt). The choice of the parameters of the GGH13 map depends on the parameters
`, w and d of the branching program A.

• It transforms the matrices of branching program A to obtain a new branching program Â,
with the same parameters d, `, the same input function inp, a potentially different width ŵ
and which is strongly equivalent to A. We denote by {Âi,b}i∈[`],b∈{0,1}d ∈ (R/gR)ŵ×ŵ and

Â0 ∈ (R/gR)1×ŵ, Â`+1 ∈ (R/gR)ŵ×1 the matrices and bookend vectors of Â. Note that this new
matrix branching programs has its coefficients in the ring R/gR and not in {0, 1}. Recall that
strong equivalence means that

A0 ·
∏
i∈[`]

Ai,bi ·A`+1 = 0⇐⇒ Â0 ·
∏
i∈[`]

Âi,bi · Â`+1 = 0 (in R/gR) (6.1)

for all choices of bi ∈ {0, 1}d, with i ∈ [`]. This condition is required for our attack to work, and
is satisfied by all the obfuscators of [PST14,AGIS14,MSW14,GMM+16]. To transform the initial

branching program A into this new branching program Â, the obfuscators of [PST14, AGIS14,
MSW14, GMM+16] first embed the matrices of A into the ring R/gR (this is possible since the
coefficients of the matrices are binary). Then, they use various tools, taken among the following.8

1. Transform the matrices Ai,b into block-diagonal matrices

(
Ai,b

Bi,b

)
, were Bi,b are square

w′ × w′ matrices in R/gR, chosen arbitrarily (they can be fixed, or chosen at random, this
will have no importance for us), with w′ polynomial in the security parameter λ. In order
to cancel the extra diagonal block, the vector A0 is transformed into

(
A0 0

)
, with a block

of zeros of size 1×w′. The vector A`+1 is transformed into

(
A`+1

B`+1

)
, with B`+1 an arbitrary

w′ × 1 vector.

2. Use Killian randomisation, that is, choose `+1 non singular matrices {Ri}i∈[`+1] ∈ (R/gR)w×w

and transform Ai,b into Ri · Ai,b · Radj
i+1, where Radj

i+1 is the adjugate matrix of Ri+1, i.e.,

Ri+1 ·Radj
i+1 = det(Ri+1) · Iw. Transform also A0 into A0 ·Radj

1 and A`+1 into R`+1 ·A`+1.

3. Multiply by random scalars, i.e., multiply each matrix Ai,b by some random scalar αi,b ∈
(R/gR)×. Also multiply A0 and A`+1 by α0 and α`+1 respectively.

One can check that all the transformations described above output a branching program which is
strongly equivalent to the one given as input, so the final branching program Â is also strongly
equivalent to A (as in (6.1)). In the following, we will only be interested in (6.1), not in the
details of the transformation.

• Finally, the obfuscator encodes the matrices {Âi,b}i,b, Â0 and Â`+1 coefficient-wise, at some
levels {vi,b}i,b, v0 and v`+1 respectively, using the GGH13 multilinear map. The choice of these
levels (called a straddling set system) depends on the obfuscators, but will have no importance
in the following. The only property that we need, and that is fulfilled by the above obfuscators,
is that for any entry x, the sets v0,v`+1 and vi,x[inp(i)] for i ∈ [l] are disjoint and we have

v0 +

∑
i∈[l]

vi,x[inp(i)]

+ v`+1 = v∗. (6.2)

Recall that v∗ is the maximum level of the GGH13 map. This means that every honest evaluation
of the encoded branching program outputs an element at level v∗, which can be zero-tested. This
condition is necessary for the above obfuscators to be correct (otherwise we cannot evaluate
the obfuscated branching program). In the following, we will write [A]v the matrix (or vector)
obtained by encoding each coefficient of A individually at level v, using the GGH13 map. We
will call such a matrix (or vector) an encoding of A at level v.

8The obfuscators of [PST14,GMM+16] use the three tools while the ones of [AGIS14,MSW14] use Tools 2 and 3 only.

117

CHAPTER 6. OBFUSCATORS

• The obfuscator then outputs the elements [Â0]v0
, {[Âi,b]vi,b}i∈[l],b∈{0,1}d , [Â`+1]v`+1

and the
public parameters of the GGH13 map (n, q, κ, pzt).

To evaluate the obfuscated branching program on input x, compute

ux = [Â0]v0 ×
∏
i∈[`]

[Âi,x[inp(i)]]vi,x[inp(i)]
× [Â`+1]v`+1

.

By Property (6.1), this is an encoding of zero if and only if the output of the original branching program
was zero, and by Property (6.2), this encoding is at level v∗. So using pzt, we can perform a zero-test
and output 0 if this is an encoding of 0 and 1 otherwise. In the following, we will sometimes simplify
notations and forget about the subscripts vi,b, as the levels of the encodings are entirely determined
by the encoded matrices Ai,b.

6.2.1 Heuristic assumption

For our attack to work, we will need to assume that if we evaluate the obfuscated branching program
on sufficiently many inputs for which the output is zero, then we can recover a basis of the ideal 〈h〉
(where h is a secret element of the GGH13 map, as described in Section 5.2). More formally, we make
the following heuristic assumption.

Heuristic 6.6. Let X0 be the set of inputs on which the branching program evaluates to 0. If we
evaluate the obfuscated branching program on an input x ∈ X0 and zero-test the final encoding, we
obtain a ring element of the form rx · h ∈ R. We assume that if we choose polynomially many x’s
independently and uniformly at random in X0, then, with overwhelming probability, the obtained rx · h
span the ideal 〈h〉 (and not a smaller ideal contained in 〈h〉).

Experimental results. In order to strengthen our confidence in Heuristic 6.6, we ran some computa-
tional experiments in Sage, which were consistent with the assumption. We let n be the dimension of
the cyclotomic ring R, ` be the number of matrices in the branching programs and m be the dimension
of the matrices of the branching programs. In our experiments, we only considered branching programs
that consist of identity matrices and we took as bookend vectors the vectors A0 =

(
1 0 · · · 0

)
and A`+1 =

(
0 · · · 0 1

)T
. We then randomized these branching programs by multiplying them

by random bundling scalars and by the random matrices of Killian randomisation (this corresponds to
the transformations 2 and 3 of the abstract obfuscator defined in Section 6.2). Finally, the coefficients
of these matrices were reduced modulo g using Babai’s round-off algorithm. We then evaluated this
branching program on a random input (as we took only identity matrices, any combination of these
matrices will result in a zero) and divided the resulting element by g. The element obtained this way is
called a post-zero-test element. For a fixed g and randomized branching program, we computed many
different post-zero-test elements and checked whether they generated the whole ring or not (note that
our construction corresponds to the case where we took h = 1, hence 〈h〉 = R). For a fixed g, we then
computed different randomized branching programs (the underlying branching program always consists
of identity matrices, but the bundling scalars and the random matrices are different), and computed
the empirical probability, over these randomized branching programs, that the post-zero-test values
generate the full ring R.

We then computed this probability of success for many g’s, for two sets of parameters:

n = 10, ` = 10 and m = 5

or n = 32, ` = 20 and m = 5.

The elements g are randomly chosen (using the random element procedure of Sage), with rejection to
ensure that their algebraic norm is a prime number. The results of these experiments are shown in
Tables 6.2 and 6.3. The value ‘number of BP’ represents the number of different randomizations of
branching programs we used to compute the empirical mean and the value ‘number of post-zero-test
values’ represents the number of post-zero-test values we considered to check whether the resulting
ideal was equal to 〈h〉 or not.

118

CHAPTER 6. OBFUSCATORS

Empirical probability to recover 〈h〉 [0, 0.1) [0.1, 0.6) [0.6, 0.7) [0.7, 0.8) [0.8, 0.9) [0.9, 1]
Number of g’s 2 0 1 0 9 28

Table 6.2: Experimental results obtained for n = 10, ` = 10, m = 5, number of BP = 100, number of
post-zero-test values = 30 and total number of g = 40.

Empirical probability to recover 〈h〉 < 0.8 0.8 0.85 0.90 0.95 1
Number of g’s 0 1 2 5 7 5

Table 6.3: Experimental results obtained for n = 32, ` = 20, m = 5, number of BP = 20, number of
post-zero-test values = 30 and total number of g = 20.

We observe that for the first choice of parameters, there are some values of g for which we almost
never recover a basis of 〈h〉. This corresponds to choices of g with small algebraic norm (for instance 2
or 13). These exceptional cases disappear when n increases (for the second choice of parameters). As
the parameter n should be larger than the security parameter (see Section 5.2.2), these exceptional cases
should not impact our attack. Note that in the case where n = 32, for every tested g, the probability
to recover the ideal 〈h〉 is empirically at least 0.8. Moreover, we observed that in the cases where we
did not recover the ideal 〈h〉, we recovered a very small multiple of it.

Handling more general cases. Let us also observe that, even if we do not recover the ideal 〈h〉
exactly, we can still create our new zero-testing parameter in some cases. Let J ⊆ 〈h〉 be the ideal
obtained by zero-testing many encodings of zero. We can factor J into prime ideals in quantum
polynomial time, and we know that 〈h〉 is a product of some of these prime ideals. Assume now that J
has a polynomial number of prime factors and that 〈h〉 has a constant number of prime factors (there
is a non negligible probability that this is the case). We can then guess 〈h〉, by trying exhaustively
all possible products of a constant number of prime factors of J . Once we have a candidate ideal J ′

for 〈h〉, we apply Theorem 2.21 to recover a generator h′ of the ideal. If the algorithm fails, for example
because the ideal is not principal or does not have a short generator, we know that J ′ 6= 〈h〉. Let then
x ∈ X0 (using the notations of Heuristic 6.6) and rx · h be the ring element obtained after zero-testing
the evaluation of the obfuscated branching program on x. If rxh/h

′ is not in R for one of the tested x’s,
we know that h′ is not the good element. We also know that ‖rx‖ ≤ q1/4, because ‖rx · h‖ should
be less than q3/4 and ‖h‖ is of the order of q1/2. Hence, if ‖rx · h/h′‖ > q1/4, we know that h′ 6= h
and we try another ideal. On the contrary, if ‖rx · h/h′‖ ≤ q1/4, we may have h′ = h, but we have
no guarantee that this is indeed the case. To improve our confidence, we perform the test above with
many inputs x ∈ X0. Looking forward, even if we recover an element h′ which is different from h, as
long as rx ·h/h′ ∈ R and ‖rx ·h/h′‖ ≤ q1/4 with good probability over the choice of x ∈ X0 (which will
be the case if h′ passes the tests above for many random inputs x), then we will be able to perform
our attack using h′ instead of h. To sum up, if we recover an ideal J 6= 〈h〉 which has a polynomial
number of prime factors and if 〈h〉 has a constant number of prime factors, then we can still perform
our attack, even if Heuristic 6.6 does not hold.

This completes the definition of our abstract obfuscator, which captures the obfuscators of [PST14,
AGIS14,MSW14,GMM+16]. In the next section, we describe a mixed-input attack against this abstract
obfuscator, where all we use is that it satisfies Properties (6.1) and (6.2).

6.3 Quantum attack against the abstract obfuscator

We will now prove our main theorem.

Theorem 6.7. Let O be any of the obfuscators in [BGK+14, PST14, AGIS14, MSW14, GMM+16],
on single or dual input branching programs, instantiated with the GGH13 multilinear map [GGH13a].
Assume the secret parameter h of the GGH13 multilinear map is sampled using a spherical Gaussian
distribution. Then, there exist two explicit equivalent branching programs A and A′ such that O(A) and
O(A′) can be distinguished in quantum polynomial time, under GRH, Conjecture 2.22 and Heuristic 6.6.

119

CHAPTER 6. OBFUSCATORS

The necessity for h being sampled according to a spherical Gaussian distribution appears in Theo-
rem 2.21, to solve the short Principal Ideal Problem and recover the secret element h. It is not used
anywhere else in the attack, in particular, it is not used in the mixed-input part of the attack (see
Section 6.3.3). We discuss this limitation to spherical Gaussian distribution in Section 6.3.2. We will
see that the general case is related to the problem of finding small elements in a given ideal, which we
discussed in Chapter 3.

To prove Theorem 6.7, we present a quantum polynomial time distinguishing attack against the
abstract obfuscator described in Section 6.2. This results into an attack against the iO security of
the branching program obfuscators of [PST14, AGIS14, MSW14, GMM+16]. We then explain how to
slightly modify this attack to use it against the obfuscator of [BGK+14], whose structure is very close
to the one of the abstract obfuscator.

The attack works in two steps. We first recover the secret element h of the GGH13 multilinear map.
Using the results of [BS16,CGS14a,CDPR16], recalled in Section 2.3.10, this can be done in quantum
polynomial time. Knowing this secret element h, we are able to construct a zero-testing parameter p′zt
at a higher level than v∗. We can then use this new parameter p′zt to mount a (classical) polynomial
time mixed-input attack against the abstract obfuscator.

6.3.1 Creating a new zero-testing parameter

We first explain in this section how we can recover the secret parameter h of the multilinear map in
quantum polynomial time. We then describe how to construct a new zero-testing parameter at a level
higher than v∗, using h. Note that the following is folklore, we recall it for the sake of completeness.

The first step is to recover sufficiently many multiples of h, to obtain a basis of the ideal 〈h〉
(when seen as a sub-lattice of R). This part of the attack was already described in the original
article [GGH13a], and can be done in classical polynomial time, under Heuristic 6.6. Observe that for
each top-level encoding that passes the zero-test, we obtain a multiple of h. We rely on Heuristic 6.6
to ensure that we indeed recover a basis of the ideal 〈h〉, by zero-testing sufficiently many top-level
encodings of zero. For this step to work, we need that the branching program evaluates sufficiently
often to 0, to obtain sufficiently many encodings of 0. In the following, we will choose branching
programs that compute the always zero function, hence the condition on the number of encodings that
pass the zero-test will be satisfied.

We then recover ±Xih from a basis of the ideal 〈h〉 in polynomial quantum time, under Conjec-
ture 2.22 and GRH (see Theorem 2.21). Observe that we can indeed apply the theorem as h is sampled
according to a spherical Gaussian distribution of parameter larger than 200 · n1.5. The fact that we
recover ±Xjh instead of h will have no importance for our attack,9 so in the following we will assume
that we recovered h exactly.

We now explain how to use h to create a new zero-testing parameter p′zt at a higher level than v∗. A
close variant of this step was already mentioned in [GGH13a, Section 6.3.3]. The authors explained how
to use a small multiple of 1/h and a low level encoding of zero to create a new zero-testing parameter
that enables them to test at a higher level whether the numerator of an encoding is a multiple of g or
not (i.e., if the encoding is an encoding of zero or not). In our case, the situation is a little different,
as we do not know any low level encoding of zero. Hence, we only manage to create a new zero-testing
parameter that enables us to determine whether the numerator of an encoding is a multiple of g2 or
not, at level 2v∗. Remember that this is an invalid level, but we can still create encodings at this level
(for instance by multiplying two level v∗ encodings). We use the secret h to compute a new zero-testing
parameter p′zt at level 2v∗. Recall that pzt = hz∗g−1 mod q. We then define

p′zt = p2
zth
−2 mod q = (z∗)2 · g−2 mod q.

Again, note that even if we call it a new zero-testing parameter, p′zt only enables us to test whether
the numerator of a level 2v∗ encoding is a multiple of g2, and not g, as our original zero-test parameter
pzt did. Still, being able to test at a level higher than v∗ if the numerator is a multiple of g2 will
enable us to mount a mixed-input attack against the abstract obfuscator of Section 6.2. We describe
this mixed-input attack in the next subsection.

9This is because both Xj and its inverse −Xn−j have euclidean norm 1.

120

CHAPTER 6. OBFUSCATORS

6.3.2 Non-spherical Gaussian distributions

Recall that to use Theorem 2.21 to recover the element h from the ideal 〈h〉, we have to assume that h
is sampled according to a spherical Gaussian distribution. In this section, we explain how being able to
solve approx-SVP in ideal lattices can help us create a new zero-testing parameter for any distribution
of h. This shows that being able to find short vectors in ideal lattices indeed has some impact on the
security of the GGH13 map.

First, let us observe that in order to create our new zero-testing parameter p′zt, it is not necessary to
recover h exactly. Indeed, assume we can recover a small multiple of 1/h, namely an element w/h where
w ∈ R and ‖w‖ ≤ q1/4−ε for some ε > 0. Then, we can define p′zt = p2

zt ·(w/h)2 = w2 ·(z∗)2 ·g−2 mod q.
Now, recall that a top-level encoding of zero rg/z∗ mod q should satisfy ‖r‖ ≤ q1/4 because we want
‖rh‖ ≤ q3/4 and ‖h‖ is of the order of

√
q. Hence, if we multiply two top-level encodings of zero

u1 = r1g/z
∗ mod q and u2 = r2g/z

∗ mod q by our new zero-testing parameter, we obtain

u1 · u2 · p′zt = r1 · r2 · w2 mod q.

Thanks to our upper bound on ‖r1‖, ‖r2‖ and ‖w‖ we conclude that ‖r1 · r2 ·w2‖ ≤ q1−2ε � q. Hence,
we can zero-test at level 2v∗ by multiplying an encoding at level 2v∗ by p′zt and checking whether the
resulting product is smaller than q1−2ε or not.

Our objective is then to recover a small multiple of 1/h given a basis of the ideal 〈h〉 and some small
multiples rih of h, obtained by zero-testing some top-level encodings of zero. This problem is related
to the approx-SVP problem in ideal lattices (see Chapter 3).

We will decompose our algorithm to recover a small multiple of 1/h into two steps. The first one
consists in finding an element α ∈ KR which is not too far from h. In this chapter, because the
elements we consider are in coefficient embeddings, we view KR as R[X]/(Xn + 1). This element α
has no algebraic relation with h, the condition is purely geometric. More formally, assume we have
computed polynomially many multiples rih of h, by zero-testing top-level encodings of zero. We would
like that for all i, the elements rih/α have small infinity norm (significantly smaller than q1/2). Then,
if we could divide p2

zt by α2, we would obtain our zero-test at level 2v∗ (because a product of two such
rih/α would have infinity norm significantly smaller than q). However, we cannot divide pzt by α,
because this is not a multiple of h. Hence, if we try to divide the zero-testing parameter by α modulo q,
we would just obtain rih/α mod q, where the division is performed modulo q and might be large (and
is not even well-defined when α 6∈ K). The second step of the algorithm is then to obtain a multiple of
1/h relatively close to 1/α, and use it to create our new zero-testing parameter.

Step 1. In order to recover an element α ∈ KR close to h, we assume that we are given a polynomial
number of rih, obtained by zero-testing top-level encodings of zero. We know that ‖ri‖∞ ≤ q1/4

for all i, hence, taking the logarithm we obtain that Log(rih)j ≤ Log(h)j + 1
4 log q + O(log n) for

all j-th coordinates, with 1 ≤ j ≤ n (the O(log n) term comes from the transformation between
coefficient embeddings and canonical embeddings). Let us assume in the following that log n is negligible
compared to log q. We solve the following optimization problem over R (see Figure 6.5 for an example
in dimension 2).

Minimize
∑
j

xj

Subject to Log(rih)j ≤ xj +
1

4
log q for all i, j.

This optimization problem can be solved in polynomial time (with xj ∈ R) using linear programming.
Recall that the Log of an element α ∈ R[X]/(Xn+1) is defined as Log(α) = (log |α(ζ1)|, . . . , log |α(ζn)|),
where ζ1, . . . , ζn are the roots of Xn+1 ordered such that ζi = ζi+n/2 for all 1 ≤ i ≤ n/2. Now, observe
that our optimization problem above has symmetries (we have Log(rih)j = Log(rih)j+n/2 for all i and
1 ≤ j ≤ n/2), hence we can find a solution x such that xj = xj+n/2 for all 1 ≤ j ≤ n/2 (given any
solution, we can take its symmetric because the constraints of the problem are symmetric, and then
take the middle point of the two solutions because the set of solutions is convex).

Using this remark about the symmetries of x, we will be able to compute α ∈ KR = R[X]/(Xn + 1)
such that Logα = x, by polynomial interpolation. More precisely, we are looking for a polynomial

121

CHAPTER 6. OBFUSCATORS

α ∈ R[X] of degree at most n − 1 such that |α(ζi)| = exi for all i’s. Observe that we only have a
constraint on the modules of the α(ζi), and so we can arbitrarily set their arguments. However, if we
want to find α with real coefficients, we have to choose the arguments such that the evaluations of α
at conjugate roots give conjugate evaluations. A simple choice satisfying these constraints is to choose
all the arguments to be 0 (we already know that the modules of the evaluation at conjugate roots
are the same thanks to the previous remark), and look for α such that α(ζi) = exi . By polynomial
interpolation, we can find in polynomial time the unique α ∈ C[X] of degree < n such that α(ζi) = exi

for all 1 ≤ i ≤ n. Let us conclude by proving that α has real coefficients. Because the exi ’s are real
and the roots of Xn + 1 are closed under conjugation, we know that

α(ζi) = α(ζi+n/2) = exi+n/2 = exi+n/2 = exi = α(ζi).

This means that α and α coincide at n distinct points, and so should be equal. Hence, we conclude
that α ∈ R[X] and satisfies Logα = x.

This element α is a good candidate for h. Indeed, because Log(rih)j ≤ Log(α)j + 1
4 log q for all i, j,

then we have that

‖Log(
rih

α
)‖∞ ≤

1

4
log q,

which can be rewritten as ‖rih/α‖∞ ≤ q1/4 for all i. Observe that this does not necessarily imply
that ‖rh/α‖∞ ≤ q1/4 for all zero-tested top-level encodings of zero. However, if we randomly chose the
top-level encodings of zero used to create the rih, then, by ensuring that ‖rih/α‖∞ ≤ q1/4 for all i,
we expect that with good probability we will also have ‖rh/α‖∞ ≤ q1/4 for a new top-level encoding
of zero.

Figure 6.5: Illustration of the choice of α

Step 2. Observe that h satisfies the linear constraints of our optimization problem, hence, by choice
of α, we know that

∑
j Log(α)j ≤

∑
j Log(h)j . This implies that |N (α)| ≤ |N (h)|. We now solve

approx-SVP in α · 〈 1
h 〉, for some approximation factor γ, and obtain a solution x = αw

h , with w ∈ R.

We know that ‖x‖ ≤ γ ·
√
n · |N (α)|1/d · |N (h)|−1/d ≤ γ ·

√
n.

Let us now show that w/h can be used to create our level-2v∗ zero-testing parameter, by setting
p′zt = p2

zt · (w/h)2 mod q = (z∗w/g)2 mod q. When we multiply it by two top-level encodings of zero
u1 = r1g/z

∗ and u2 = r2g/z
∗, we obtain r1r2w

2 mod q, which we can recover exactly if ‖r1r2w
2‖∞ < q

(because r1, r2 and w are in R). By definition of w, we know that for i = 1, 2 we have

‖riw‖∞ = ‖rih
α
· x‖∞

≤ ‖rih
α
‖∞ · ‖x‖1 (see Equation (2.8))

≤ q1/4 · n · γ,

122

CHAPTER 6. OBFUSCATORS

where we used the fact that α is chosen so that ‖ rihα ‖∞ ≤ q1/4 with good probability. Taking the

product, we obtain that ‖r1r2w
2‖∞ ≤ q1/2 · n3 · γ2. Hence, as long as γ ≤ q1/4−ε

n1.5 for some ε > 0, then
we have ‖r1r2w

2‖∞ < q1−2ε � q, and we can test whether a level-2v∗ encoding is a product of two
encodings of zero.

We conclude that if we can solve approx-SVP in principal ideal lattices (multiplied by an element

α ∈ KR) with approximation factor γ ≤ q1/4−ε

n1.5 for some ε > 0, then we can create a zero-testing
parameter p′zt at level 2v∗ for any distribution of the parameter h.

6.3.3 The mixed-input attack

We now assume that we have built a new pseudo-zero-test parameter p′zt, as in Section 6.3.1 (in quantum
polynomial time), and that we are given an obfuscated branching program ([Â0]v0

, {[Âi,b]vi,b}i∈[l],b∈{0,1}d ,

[Â`+1]v`+1
), obtained by using our abstract obfuscator defined in Section 6.2.

Let x and y be two different inputs of the branching program. A mixed-input attack consists in
changing the value of some bits of the input during the evaluation of the obfuscated branching pro-
gram. For instance, the way we will do it is by taking some matrix [Âi,y[inp(i)]]vi,y[inp(i)]

, instead of

[Âi,x[inp(i)]]vi,x[inp(i)]
, while evaluating the program on x. Such mixed-input attack can leak informa-

tion on the program being obfuscated (see the specific choice of branching programs described in the
next subsection). In order to prevent mixed-input attack, the abstract obfuscator uses a straddling
set system. The intuition is that if the attacker tries to mix the matrices [Âi,x[inp(i)]]vi,x[inp(i)]

and

[Âi,y[inp(i)]]vi,y[inp(i)]
, it will not get an encoding at level v∗ at the end of the computation and hence

it cannot zero-test it. However, we can use our new zero-testing parameter p′zt to circumvent this
difficulty.

Let j ∈ [`] and compute

ũx,j = [Â0] ·

∏
i<j

[Âi,x[inp(i)]]

 · [Âj,y[inp(j)]] ·

 ∏
j<i≤`

[Âi,x[inp(i)]]

 · [Â`+1]

ũy,j = [Â0] ·

∏
i<j

[Âi,y[inp(i)]]

 · [Âj,x[inp(j)]] ·

 ∏
j<i≤`

[Âi,y[inp(i)]]

 · [Â`+1],

that is, we exchange [Âj,x[inp(j)]]vj,x[inp(j)]
and [Âj,y[inp(j)]]vj,y[inp(j)]

in the honest evaluations of the ob-
fuscated branching program on inputs x and y.

The encodings ũx,j and ũy,j will have illegal levels vx and vy that are different from v∗. However,
as we only exchange two matrices between correct evaluations, we know that ũx,j · ũy,j will be encoded
at the same level as ux · uy where ux and uy are the correct evaluations of the obfuscated branching
program on x and y. As ux and uy are correct evaluations, using Property (6.2), we know that they are
encoded at level v∗. Hence ũx,j · ũy,j is encoded at level 2v∗, and we can zero-test ũx,j · ũy,j using p′zt.

Remember that an encoding will pass this zero-test only if its numerator is a multiple of g2 and not
only g. A simple way to ensure that ũx,j · ũy,j has a numerator which is a multiple of g2 is to choose x
and y such that ũx,j and ũy,j are both encodings of 0 (i.e., their numerator are both multiples of g, and
hence their product has a numerator which is a multiple of g2). Using Property (6.1) of our abstract
obfuscator, we know that ũx,j is an encoding of 0 if and only if

A0 ·

∏
i<j

Ai,x[inp(i)]

 ·Aj,y[inp(j)] ·

 ∏
j<i≤`

Ai,x[inp(i)]

 ·A`+1 = 0.

We let ãx,j denote the left hand side of this equation. In the same way, we define

ãy,j = A0 ·

∏
i<j

Ai,y[inp(i)]

 ·Aj,x[inp(j)] ·

 ∏
j<i≤`

Ai,y[inp(i)]

 ·A`+1,

and we know that ũy,j is an encoding of 0 if and only if ãy,j = 0.

123

CHAPTER 6. OBFUSCATORS

To conclude, if we manage to find two equivalent branching programs A and A′, two inputs x and y
and an integer j ∈ [`] such that ãx,j = ãy,j = 0 for A but ã′x,j 6= 0 and ã′y,j 6= 0 for A′, then we can

distinguish between the obfuscation of A and the one of A′. Indeed, the numerator of ũx,j · ũy,j will
be a multiple of g2 in the case of A but the numerator of ũ′x,j · ũ′y,j will not be a multiple of g in the

case of A′ (and therefore not a multiple of g2 either). Hence, using p′zt, we can determine which of the
branching program A or A′ has been obfuscated.

In the next subsection, we present two possible branching programs A and A′ and inputs x and y
that satisfy the condition above. We note that this condition is easily satisfied and it should be possible
to find a lot of other branching programs satisfying it. We just propose here a simple example of such
branching programs, in order to complete the proof of Theorem 6.5.

6.3.4 A concrete example of distinguishable branching programs

In this section, we present an example of two branching programs A and A′ that are equivalent, but
such that their obfuscated versions, obtained using the abstract obfuscator, can be distinguished using
the framework described above, hence breaking the iO security of the obfuscator.

Remember that for the first step of our attack (recovering h and creating p′zt, see Section 6.3.1), we
need to have sufficiently many inputs x which evaluate to zero. Here, we choose branching programs
that compute the always zero function. We now show how to satisfy the conditions for the second part
of the attack (Section 6.3.3).

Let I = Iw ∈ {0, 1}w×w be the identity matrix and J ∈ {0, 1}w×w be a matrix of order two (i.e.,
J 6= I and J2 = I). One could for example take

J =

0 1
1 0

Iw−2

 . (6.3)

Our first branching program will consist in identity matrices only. We will build our second branching
program such that when evaluating it on input x, we have a product of ` matrices I (when we forget
about the bookend vectors), but on input y we have a product of `− 2 matrices I and 2 matrices J .10

We will then exchange one of these J matrices with an I matrix in the evaluation on x. The resulting
products will then be equal to the matrix J instead of the matrix I (as it is the case for the first
branching program). We describe the two branching programs more precisely below.

Input selection function. Recall that the input selection function inp is fixed and is such that
there are at least two distinct integers j1 and j2 such that inp(j1) ∩ inp(j2) 6= ∅. Let s be such that
s ∈ inp(j1) ∩ inp(j2). This means that when evaluating the branching program on some input, the
j1-th and the j2-th matrices of the product both depend on the s-th bit of the input. Without loss of
generality, we assume that inp(j1) = (s, s2, · · · , sd) and inp(j2) = (s, t2, · · · , td) for some integers si
and ti in [m].

Matrices. Our first branching program A consists in identity matrices only, i.e., Ai,b = I for all i ∈ [`]
and b ∈ {0, 1}d. For our second branching program A′, we take

A′i,b =

{
I if i 6∈ {j1, j2} or b1 = 0
J if i ∈ {j1, j2} and b1 = 1,

where b = (b1, · · · , bd). This means that when evaluating the branching program A′ on some input x,
if xs = 0, then all the matrices of the product are identity matrices. On the contrary, if xs = 1, then
the j1-th and j2-th matrices of the product are J matrices and the others are I matrices. As J has
order two, the product will always be the identity.

Bookend vectors. We take A0 and A`+1 to be two vectors such that A0IA`+1 = 0 but A0JA`+1 6= 0.

For instance, with J as in (6.3), we can take A0 =
(
1 0 . . . 0

)
and A`+1 =

(
0 1 0 . . . 0

)T
.

These bookend vectors are the same for both branching programs, i.e., A′0 = A0 and A′`+1 = A`+1.

10As J has order 2, the resulting product will still be the identity matrix.

124

CHAPTER 6. OBFUSCATORS

These two branching programs A and A′ are equivalent as they both compute the always zero
function. Now, take x = 0 . . . 0 and y = 0 . . . 010 . . . 0 where the 1 is at the s-th position, and let j = j1.
Let us compute (ãx,j , ãy,j) for branching program A and (ã′x,j , ã

′
y,j) for branching program A′.

Branching program A. As all matrices are identity matrices in A, exchanging two matrices does
not change the product and we have

ãx,j = A0 ·

∏
i<j

Ai,x[inp(i)]

 ·Aj,y[inp(j)] ·

 ∏
j<i≤`

Ai,x[inp(i)]

 ·A`+1 = A0 · I ·A`+1 = 0,

ãy,j = A0 ·

∏
i<j

Ai,y[inp(i)]

 ·Aj,x[inp(j)] ·

 ∏
j<i≤`

Ai,y[inp(i)]

 ·A`+1 = A0 · I ·A`+1 = 0.

Branching program A′. Here, we chose our parameters so that a honest evaluation of A′ on x leads
to a product of only I matrices and a honest evaluation of A′ on y leads to a product of `−2 matrices I
and 2 matrices J . We also chose j so that we exchange a J matrix with an I matrix. Hence, we have

ã′x,j = A′0 ·

∏
i<j

A′i,x[inp(i)]

 ·A′j,y[inp(j)] ·

 ∏
j<i≤`

A′i,x[inp(i)]

 ·A′`+1 = A0 · J ·A`+1 6= 0,

ã′y,j = A′0 ·

∏
i<j

A′i,y[inp(i)]

 ·A′j,x[inp(j)] ·

 ∏
j<i≤`

A′i,y[inp(i)]

 ·A′`+1 = A0 · J ·A`+1 6= 0.

To conclude, this gives us the desired condition of Section 6.3.3. Indeed, for the branching pro-
gram A, the numerator of ũx,j · ũy,j is a multiple of g2, hence zero-testing it with the parameter p′zt
gives a positive result. Oppositely, for the branching program A′, the numerator of ũx,j ·ũy,j is non-zero
modulo g, hence zero-testing it with the parameter p′zt gives a negative result. We can then distinguish
between the obfuscations of A and A′. This completes the proof of Theorem 6.5 for the obfuscators
of [PST14,AGIS14,MSW14,GMM+16].

6.3.5 Other branching program obfuscators

We now discuss the possible extension of this attack to other branching program obfuscators that are
not captured by the abstract obfuscator of Section 6.2.

6.3.5.1 Obfuscator of [BGK+14].

This obfuscator is close to the one described in the abstract model, except that it obfuscates a slightly
different definition of branching programs. In [BGK+14], a branching program A comes with an
additional ring element qacc, and we have A(x) = 0 if and only if A0 ·

∏
i∈[l]Ai,x[inp(i)] · A`+1 = qacc.

The only difference with the definition of branching programs given in Section 2.6 is that qacc may be
non-zero. Hence, when multiplying by the scalars αi,b in the obfuscator (see Tool 3), we may change
the output of the function. To enable correct evaluation of the obfuscated branching program, the
obfuscator of [BGK+14] also publishes encodings of the scalars αi,b at level vi,b.

More formally, the obfuscator of [BGK+14] uses Tools 2 and 3 of Section 6.2. In Tool 2, the authors

choose matrices Ri which are invertible modulo g and use R−1
i+1 mod g instead of Radj

i+1, in order to keep
the same product (otherwise the product would be multiplied by the determinants of the Ri matrices).
Let Âi,b = αi,bRiAi,bR

−1
i+1 be the matrices obtained after re-randomization (using Tools 2 and 3). Let

Â0 = A0R
−1
1 and Â`+1 = R`+1A`+1. The obfuscator provides encodings of the matrices Â0, {Âi,b}i,b

and Â`+1 at levels v0, {vi,b}i,b and v`+1, respectively. It also provides encodings of the {αi,b}i,b at
levels {vi,b}i,b and an encoding of qacc at level v0 + v`+1. Then, to evaluate the obfuscated branching
program on input x, one computes

[Â0]v0
·
∏
i∈[`]

[Âi,x[inp(i)]]vi,x[inp(i)]
· [Â`+1]v`+1

− [qacc]v0+v`+1
·
∏
i∈[`]

[αi,x[inp(i)]]vi,x[inp(i)]
,

125

CHAPTER 6. OBFUSCATORS

and tests whether this is an encoding of 0 or not. By construction, this will be an encoding of 0 at
level v∗ if and only if A(x) = 0.

The first part of our attack (recovering h and p′zt) still goes through. We slightly modify the mixed-
input part. Instead of exchanging only the j-th matrix between the evaluations of x and y, we also
exchange the corresponding αj,b in the second product. Doing so, we ensure that the product of the
αi,b’s remains the same in both sides of the difference. This also ensures that the level of both sides is
the same after the exchange, and hence we can still subtract them. The same example as in Section 6.3.4
then also works for this obfuscator. This gives us a way to distinguish in quantum polynomial time
between the obfuscated versions of two equivalent branching programs, hence attacking the iO security
of the obfuscator of [BGK+14].

6.3.5.2 Obfuscators of [GGH+13b,BR14].

Our attack does not seem to extend to the obfuscators of [GGH+13b,BR14]. The obstacle is that the
security of these obfuscators against mixed-input attacks does not rely on the GGH13 map but on
the scalars αi,b, which are chosen with a specific structure to ensure that the branching program is
correctly evaluated.

More precisely, these obfuscators use (single input) branching programs with a slightly different
definition, where the product of matrices (with the bookend vectors) is never 0. For instance, the
branching programs are chosen such that the product of the matrices (on honest evaluations) is either 1
or 2, in which cases we say that the output of the branching program is respectively 0 or 1. Hence,
when evaluating the obfuscated branching program on input x, the user obtains a top-level encoding of
either

∏
i αi,xi or 2

∏
i αi,xi depending on the output of the branching program. In order for the user

to determine which one of the two encodings it has obtained, the obfuscated branching program also
provides him (via a so-called dummy branching program) with a top-level encoding

∏
i αi,xi . The user

then only has to subtract the two top-level encodings and zero-test to determine whether A(x) = 0
or 1. Now, if the user tries to mix the inputs when evaluating the obfuscated branching program, it can
obtain a top-level encoding of (αj,yj ·

∏
i 6=j αi,xi) · ax,j for instance (where ax,j ∈ {1, 2} is the product

of the corresponding matrices). However, as it is not a honest evaluation, it will not have a top-level
encoding of αj,yj ·

∏
i 6=j αi,xi to compare it with.

Following the same idea as for the mixed-input attack described above, the attacker could compute
two top-level encodings of (αj,yj ·

∏
i 6=j αi,xi) · ax,j and (αj,xj ·

∏
i 6=j αi,yi) · ay,j and then multiply them

to obtain an encoding of (
∏
i αi,xi ·

∏
i αi,yi) · ax,j · ay,j at level 2v∗. Now, using the top-level encodings

of
∏
i αi,xi and

∏
i αi,yi that are provided by the obfuscated branching program, one can also obtain

an encoding of (
∏
i αi,xi ·

∏
i αi,yi) at level 2v∗. So if we could zero-test at level 2v∗, then we could

distinguish between a branching program where ax,j ·ay,j = 1 and one where ax,j ·ay,j 6= 1. However, we
cannot zero-test at level 2v∗: our new zero-testing parameter p′zt only enables us to determine whether
the numerator of an encoding is a multiple of g2 or not. Here, we subtract two level-2v∗ encodings of
the same value, so the numerator of the result will be a multiple of g, but it is very unlikely to be a
multiple of g2. Hence, this is not clear whether we learn anything by using p′zt. Because of the final
subtraction, we did not manage to obtain an encoding at level 2v∗ whose numerator was a multiple
of g2, and so we did not manage to adapt the mixed-input attack described above to the obfuscators
of [GGH+13b,BR14].

6.4 Conclusion

In this chapter, we have defined indistinguishability obfuscators and given a brief overview of the
different techniques which have been used to construct candidate iOs. We have then described an
abstract obfuscator, capturing the main techniques used in branching program obfuscation. Finally,
we have presented a quantum attack against some candidate branching program obfuscators using the
GGH13 map. This quantum attack only applies to the recent candidates, which use straddling set
systems to prevent mixed-input attacks. Interestingly, these candidates have stronger security proofs
in idealized models, but it makes them rely more on the underlying multilinear map and so makes them
more vulnerable to weaknesses of this multilinear map.

A natural question raised by this quantum attack is about the quantum security of the GGHRSW

126

CHAPTER 6. OBFUSCATORS

obfuscator. As mentioned above, the simple mixed-input attack described in this chapter does not seem
to extend to the GGHRSW obfuscator, because of the final subtraction before the zero-test. However,
being able to (double) zero-test at level 2v∗ gives the attacker a serious advantage, and a different attack
using the double-zero-test could be possible against the GGHRSW obfuscator. Another question arises
about the quantum aspect of this attack. We have seen that what is really required for the attack is the
ability to efficiently find a somehow small element of a principal ideal. For the usual parameters of the
GGH13 map, this can be done in polynomial quantum time, because the ideal has a short generator.
If one wants to replace the quantum component by a classical one, then the run time would be 2O(

√
n),

because one needs to first compute a generator of the principal ideal. By choice of the parameters of
the GGH13 map, this gives a 2O(λ) classical attack, which is not interesting. However, improvements
for solving ideal-SVP classically with a somehow small approximation factor could translate into a
classical attack against the obfuscators mentioned above, if the approximation factor is small enough
(see Section 6.3.2).

127

Chapter 7

Conclusion

The contributions presented in this thesis can be sorted into two main categories: the ones related to
fundamental problems over structured lattices (Chapters 3 and 4) and the ones related to the security
of the GGH13 map and the obfuscators based on it (Chapters 5 and 6). In this conclusion, we come
back to these two aspects of the thesis. We summarize what has been done and present some future
directions that could be explored.

7.1 Ideal and module lattices

In Chapters 3 and 4, we have presented two algorithms finding short vectors in ideal and module
lattices. These algorithms are theoretical results and show that the shortest vector problem might be
easier to solve in structured lattices than in general ones. However, both algorithms suffer from a very
strong limitation: the need for a CVP solver in a lattice L depending only on the number field. Recall
that in the ideal lattice case, we can solve these CVP queries quite efficiently after an exponential
pre-processing. In the module case however, we require much smaller solutions for the CVP problem
and hence had to assume the existence of an oracle solving CVP in L. Recall also that in this case, the
lattice has a dimension roughly n2 (for prime power cyclotomic fields), which makes the situation even
worse. These pre-processing/oracle requirements make our algorithm unusable in practice: if we want
to run the pre-processing phase or implement the oracle, our algorithms become much slower than a
BKZ call to solve approx-SVP in the original ideal/module lattice. Because the running time needed
to run our algorithms in practice is so long, it also makes it very difficult to test the heuristics used in
the algorithms. In the case of ideal lattices, we were able to test our heuristics up to number fields of
degree roughly 35. In the module case, we were not even able to run a CVP solver on the lattice L for
interesting number fields. Moreover, even if the experiments were consistent with the heuristics for the
small dimensions we tested, it could be that this is only due to the smallness of the lattices involved.

One obvious interesting question related to these algorithms would be to remove these pre-processing
and oracle requirements. To do so, one would need to analyze the lattices L involved in the algorithms
and try to design a good CVP solver for these lattices. When trying to do so, it might be worth
noticing that the lattices appearing in both algorithms can be randomly generated. Hence, instead of
generating the lattice first and then trying to find an efficient CVP solver for it, one may try to sample
the basis vectors of the lattice one by one to design a good lattice in which CVP can be solved easily.
Finding an efficient CVP solver for the lattices involved in the algorithms, however, seems a difficult
question. One of the reasons for that is that these lattices involve the log unit lattice and the lattice
of relations of the class group, which seem difficult to analyze for an arbitrary number field. Moreover,
the CVP solver we want to achieve should have a very small approximation factor (constant in the case
of module lattices and smaller than

√
n for ideal lattices). Hence, a solution to this question may be

out of reach for the moment. Below, we describe simpler objectives, which should hopefully be easier
to achieve, and which might help us solve the previous question.

Removing the heuristics. Removing the heuristics present in the two algorithms would be an inter-
esting target. Recall that the algorithms rely on many heuristics, some of them are present in previous
works and some of them are new. The ones present in previous works have already been studied and do
not seem very problematic. The ones introduced for these algorithms however are more unsatisfactory.
In particular, the fact that we cannot test them except for very small dimensions does not allow to

129

CHAPTER 7. CONCLUSION

increase our confidence in them. Both chapters include a heuristic related to the covering radius of the
lattice L introduced for the algorithm (or the distance of specific target points to the lattice in the case
of modules). These heuristics are hard to check in practice (especially in the module case where the
lattice has dimension roughly n2) and are also difficult to justify mathematically. The justification we
currently provide assumes that when one picks a randomly chosen ideal I of small algebraic norm and
decomposes it in the class group as I =

∏
j p

αj
j · 〈g〉, for some pj generating the class group, then the

elements αj and g are somehow randomly distributed. This assumption is quite plausible but remains
heuristic. In an on-going work, de Boer, Ducas and Wesolowski [BDW19] are able to prove a similar
statement, using Arakelov’s divisors. This result could be a promising way to remove the more annoying
heuristics of our algorithms (or at least give us more confidence in them).

Switching the defining polynomial. If we cannot get rid of the pre-processing phase or the oracle,
we may then wonder whether it would be possible to reuse it for different number fields. If we managed
to have a unique lattice for multiple number fields, then the pre-computations of the ideal-SVP solver
would have to be done only once. Also, recall that finding a fast CVP solver in the general case seemed
hard, but there may be some number fields for which the lattice L has a much nicer structure, which
allows to efficiently solve CVP in it. One could for instance think about multiquadratics fields, which
have a very strong algebraic structure, and which have already proven to be better than other number
fields for solving some computational problems (recall that finding a generator of a principal ideal in
multiquadratic fields can be done efficiently with a classical computer [BBV+17], whereas we do not
know how do to that for general number fields). With the current version of the algorithms, being
able to find one good lattice L in which we can efficiently solve CVP only enables us to solve SVP in
ideal/modules of the corresponding number field. Can we reuse the same lattice for different number
fields?

One direction to try to link ideal (or module)-SVP between different number fields could be as fol-
lows. Recall that a number field is defined as Q[X]/P (X) for some irreducible polynomial P . Changing
slightly some coefficients of P could drastically change the algebraic properties of the field. For instance,
the NTRUPrime polynomial P (X) = Xp−X−1 (where p is prime) only differs by one coefficient from
the multiple Xp− 1 of the cyclotomic polynomial (Xp− 1)/(X − 1), but its algebraic properties (auto-
morphisms, sub-fields...) differ a lot [BCLV17]. On the other hand, changing just a few coefficients of
the defining polynomial might move only slightly the roots of the polynomial, and the geometric prop-
erties of the number field only depends on these roots. Hence, by changing carefully some coefficients
of the defining polynomial, one may end up with a new number field with completely different algebraic
properties but similar geometric properties. Hence, when working in a number field K1 whose algebraic
properties are not nice, one may try to find a new number field K2 with better algebraic properties and
similar geometry. Assume that for the number field K2, the algebraic properties of the field enable us
to have a fast CVP solver for our lattice L. Then we could efficiently solve ideal-SVP in K2 and then
come back to K1. Because “being small” is a geometric property, one may hope that we still have a
short vector when we come back to K1. Note that this idea of switching polynomials could have more
applications than simply reusing the lattice L between different number fields.

7.2 The GGH13 map and obfuscators

We have presented in this thesis two attacks against the GGH13 map and its applications. One of the
attacks uses the statistical properties of the GGH13 map (see Chapter 5), while the other relies on the
algebraic properties of the GGH13 map, and the ideal lattices used in it (see Chapter 6). Looking at the
current status of candidate obfuscators, one may observe that there still remain unbroken obfuscators
based on the GGH13 map (see Section 6.1.2). However, few constructions based on the GGH13 map
have been proposed recently (the last one was the GMMSSZ obfuscator in 2016 [GMM+16]).1 Even
if the GGH13 map is not completely broken, the high number of attacks against obfuscators using it
seems to have decreased the confidence of the community in its security. The recent constructions of
obfuscators have mostly used the GGH15 map, or have gone via functional encryption, for which fewer
attacks are known. It seems that in the upcoming years, the interest of cryptographers for the GGH13

1This may not seem a very long time ago, but it should be kept in mind that the first candidate obfuscator was
proposed in 2013 [GGH+13b], and that between 2013 and 2016, more than 7 candidates based on the GGH13 map were
proposed.

130

CHAPTER 7. CONCLUSION

map and CLT13 map may be replaced by the GGH15 map and obfuscation via functional encryption.
From a cryptanalytic point of view, the GGH13 map has been widely studied and we know many
weaknesses which can potentially be used for attacks. Hence, even if the GGH13 map falls out of favor
for constructing obfuscators, the attacks we know against it can give us some insight on the security of
the other constructions.

Extending the known attacks against the GGH13 map. The two candidate multilinear maps
CLT13 and GGH13 share a similar structure. However, the main categories of attacks known against
these maps use different techniques. The GGH13 map is subject to annihilation attacks, which re-
cover a secret principal ideal of the map [MSZ16], whereas the CLT13 map is subject to input-
partitionable attacks, whose aim is to recover some secret elements by computing the eigenvalues
of a matrix [CHL+15, CLLT17]. Techniques related to input-partitionable attacks have been used by
Chen et al. [CGH17], combined with annihilation techniques, to attack the GGHRSW obfuscator based
on the GGH13 map. Hence, it seems that the techniques used to attack CLT13-based constructions
can also be used against the GGH13 map. However, the converse is not known. It would be interest-
ing to try to adapt the annihilation attacks of the GGH13 map to the CLT13 one, especially because
these attacks are more devastating than the one usually applied in the CLT13 context. Indeed, the
input-partitionable attacks can be prevented by the FRS technique [FRS17], whereas we do not have
any patch for the annihilation attacks. One may also want to try to adapt the study of the statistical
attacks presented in this thesis to the CLT13 setting. In the case of the CLT13 map, we are working
with integers instead of polynomials, hence it might be easier to exploit the leakage and mount an
attack against the map.

Because of the current interest in the GGH15 map, one might also be interested in trying to adapt
the GGH13 attacks against the GGH15 map. The GGH13 and GGH15 maps are less similar than the
GGH13 and CLT13 maps. However, the recent work of Cheon et al. [CCH+18] shows that statistical
attacks are possible against the GGH15 map. Maybe the annihilation attacks could be adapted too.

New assumptions. The line of work trying to construct obfuscation from functional encryption has
received a lot of attention in the past year, and it is now known that obfuscation can be constructed
from some variants of the RLWE problem, where information about the noise of the RLWE instances is
leaked. These new variants of RLWE have been introduced very recently and so assessing their security
is still a challenge. Can we show that these variants are harder to solve than the plain RLWE problem?
If we cannot, can we show that they are harder to solve than module-SIVP or ideal-SVP? Or, on the
contrary, can we attack them? These RLWE variants imply obfuscation, hence, proving or disproving
their difficulty would be an interesting question.

Post-quantum obfuscation. The current status of candidate obfuscators is quite complicated, with
constructions, attacks, partial attacks and patches. However, when one is interested in post-quantum
obfuscation, the number of remaining candidates is drastically reduced. It would be interesting to try
to assess the quantum security of the remaining candidate obfuscators. Because many candidates use
lattices techniques, the presence of a quantum attack against these candidates is a bad sign for the
security of the obfuscator. Indeed, it implies in particular that the construction cannot be proved secure
under standard lattice assumptions (which are believed to be post-quantum). Hence, the search for
post-quantum obfuscators would provide both obfuscators resistant to quantum computers, but also
obfuscators which are more likely to be secure under standard assumptions.

131

List of publications

[DP18] Léo Ducas and Alice Pellet-Mary. On the statistical leak of the GGH13 multilinear map
and some variants. In Advances in Cryptology – ASIACRYPT, pages 465–493. Springer,
2018. 16, 24, 82

[Pel18] Alice Pellet-Mary. Quantum attacks against indistinguishablility obfuscators proved secure
in the weak multilinear map model. In Advances in Cryptology – CRYPTO, pages 153–183.
Springer, 2018. 14, 16, 21, 24, 105, 109, 111, 113

[PHS19] Alice Pellet-Mary, Guillaume Hanrot, and Damien Stehlé. Approx-SVP in ideal lattices
with pre-processing. In Advances in Cryptology – EUROCRYPT, pages 685–716. Springer,
2019. 14, 22, 41, 61, 62

[LPSW19] Changmin Lee, Alice Pellet-Mary, Damien Stehlé, and Alexandre Wallet. An LLL algorithm
for module lattices. Accepted at Asiacrypt 2019. 16, 23, 57

132

Bibliography

[AB15] Benny Applebaum and Zvika Brakerski. Obfuscating circuits via composite-order graded
encoding. In Theory of Cryptography Conference – TCC, pages 528–556. Springer, 2015.
113, 116, 151, 153, 155

[ABD16] Martin Albrecht, Shi Bai, and Léo Ducas. A subfield lattice attack on overstretched ntru
assumptions. In Advances in Cryptology – CRYPTO, pages 153–178. Springer, 2016. 89,
115

[AD17] Martin R. Albrecht and Amit Deo. Large modulus ring-LWE ≥ module-LWE. In Advances
in Cryptology – ASIACRYPT, volume 10624 of Lecture Notes in Computer Science, pages
267–296. Springer, 2017. 13, 21, 45, 57, 58

[ADGM17] Daniel Apon, Nico Döttling, Sanjam Garg, and Pratyay Mukherjee. Cryptanalysis of
indistinguishability obfuscations of circuits over ggh13. In 44th International Colloquium
on Automata, Languages, and Programming – ICALP. Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik, 2017. 90, 109, 110

[AGIS14] Prabhanjan Ananth, Divya Gupta, Yuval Ishai, and Amit Sahai. Optimizing obfuscation:
Avoiding barrington’s theorem. In Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security, pages 646–658. ACM, 2014. 109, 110, 111, 112,
114, 115, 116, 117, 119, 120, 125

[Agr19] Shweta Agrawal. Indistinguishability obfuscation without multilinear maps: New methods
for bootstrapping and instantiation. In Advances in Cryptology – EUROCRYPT. Springer,
2019. 114

[AJS18] Prabhanjan Ananth, Aayush Jain, and Amit Sahai. Indistinguishability obfuscation with-
out multilinear maps: io from lwe, bilinear maps, and weak pseudorandomness. Cryptology
ePrint Archive, Report 2018/615, 2018. http://eprint.iacr.org/2018/615. 114

[Ajt96] Miklós Ajtai. Generating hard instances of lattice problems. In STOC, pages 99–108.
ACM, 1996. 11, 19, 58

[Ajt98] Miklós Ajtai. The shortest vector problem in l2 is NP-hard for randomized reductions. In
STOC, 1998. 61

[AKS01] Miklós Ajtai, Ravi Kumar, and Dandapani Sivakumar. A sieve algorithm for the shortest
lattice vector problem. In STOC, pages 601–610. ACM, 2001. 10, 18

[AS18] Divesh Aggarwal and Noah Stephens-Davidowitz. Just take the average! an embarrassingly
simple 2n-time algorithm for svp (and cvp). In Symposium on Simplicity in Algorithms –
SOSA, 2018. 10, 18

[Bab86] László Babai. On Lovász’ lattice reduction and the nearest lattice point problem. Combi-
natorica, 6(1):1–13, 1986. 27

[Bac90] Eric Bach. Explicit bounds for primality testing and related problems. Mathematics of
Computation, 55(191):355–380, 1990. 32

133

http://eprint.iacr.org/2018/615

BIBLIOGRAPHY BIBLIOGRAPHY

[BBV+17] Jens Bauch, Daniel J. Bernstein, Henry de Valence, Tanja Lange, and Christine van Vre-
dendaal. Short generators without quantum computers: the case of multiquadratics. In
Advances in Cryptology – EUROCRYPT, pages 27–59. Springer, 2017. 35, 56, 130

[BCLV17] Daniel J Bernstein, Chitchanok Chuengsatiansup, Tanja Lange, and Christine van Vre-
dendaal. Ntru prime: reducing attack surface at low cost. In International Conference on
Selected Areas in Cryptography – SAC, pages 235–260. Springer, 2017. 130

[BD16] Zvika Brakerski and Or Dagmi. Shorter circuit obfuscation in challenging security models.
In International Conference on Security and Cryptography for Networks, pages 551–570.
Springer, 2016. 113, 116, 151, 153, 155

[BDW19] Koen de Boer, Léo Ducas, and Benjamin Wesolowski, 2019. Personal communication. 130

[BEF+17] Jean-François Biasse, Thomas Espitau, Pierre-Alain Fouque, Alexandre Gélin, and Paul
Kirchner. Computing generator in cyclotomic integer rings. In Advances in Cryptology –
EUROCRYPT, pages 60–88. Springer, 2017. 35, 42, 43, 45, 46, 55, 59, 89, 115

[Ber14] Daniel J. Bernstein. A subfield-logarithm attack against ideal lattices: Computational
algebraic number theory tackles lattice-based cryptography. The cr.yp.to blog, 2014.
https://blog.cr.yp.to/20140213-ideal.html. 42

[BF01] Dan Boneh and Matt Franklin. Identity-based encryption from the weil pairing. In Ad-
vances in Cryptology – CRYPTO, pages 213–229. Springer, 2001. 82

[BF14] Jean-François Biasse and Claus Fieker. Subexponential class group and unit group com-
putation in large degree number fields. LMS Journal of Computation and Mathematics,
17(A):385–403, 2014. 34, 35, 43, 45, 46, 55, 89

[BFH17] Jean-François Biasse, Claus Fieker, and Tommy Hofmann. On the computation of the hnf
of a module over the ring of integers of a number field. Journal of Symbolic Computation,
80:581–615, 2017. 31, 61

[BGI+01] Boaz Barak, Oded Goldreich, Rusell Impagliazzo, Steven Rudich, Amit Sahai, Salil Vad-
han, and Ke Yang. On the (im) possibility of obfuscating programs. In Advances in
Cryptology – CRYPTO, pages 1–18. Springer, 2001. 85, 106, 107, 114

[BGK+14] Boaz Barak, Sanjam Garg, Yael Tauman Kalai, Omer Paneth, and Amit Sahai. Protecting
obfuscation against algebraic attacks. In Advances in Cryptology – EUROCRYPT, pages
221–238. Springer, 2014. 85, 109, 110, 111, 112, 114, 115, 116, 119, 120, 125, 126

[BGMZ18] James Bartusek, Jiaxin Guan, Fermi Ma, and Mark Zhandry. Return of ggh15: Provable
security against zeroizing attacks. In Theory of Cryptography Conference – TCC, pages
544–574. Springer, 2018. 112, 113

[BGV14] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled) fully homomorphic
encryption without bootstrapping. ACM Transactions on Computation Theory – TOCT,
6(3):13, 2014. 12, 20, 58

[Bia17] Jean-François Biasse. Approximate short vectors in ideal lattices of Q(ζpe) with precom-
putation of Cl(Ok). In International Conference on Selected Areas in Cryptography – SAC,
pages 374–393. Springer, 2017. 35, 56

[BMSZ16] Saikrishna Badrinarayanan, Eric Miles, Amit Sahai, and Mark Zhandry. Post-zeroizing
obfuscation: New mathematical tools, and the case of evasive circuits. In Advances in
Cryptology – EUROCRYPT, pages 764–791. Springer, 2016. 112

[BP91] Wieb Bosma and Michael Pohst. Computations with finitely generated modules over
dedekind rings. In International symposium on Symbolic and algebraic computation –
ISSAC, pages 151–156. ACM, 1991. 31, 61

134

https://blog.cr.yp.to/20140213-ideal.html

BIBLIOGRAPHY BIBLIOGRAPHY

[BR13] Zvika Brakerski and Guy N. Rothblum. Obfuscating conjunctions. pages 416–434, 2013.
85

[BR14] Zvika Brakerski and Guy N. Rothblum. Virtual black-box obfuscation for all circuits
via generic graded encoding. In Theory of Cryptography Conference – TCC, pages 1–25.
Springer, 2014. 85, 108, 109, 110, 111, 112, 114, 116, 126

[BS96] Eric Bach and Jeffrey Outlaw Shallit. Algorithmic Number Theory: Efficient Algorithms,
volume 1. MIT press, 1996. 32

[BS03] Dan Boneh and Alice Silverberg. Applications of multilinear forms to cryptography. Con-
temporary Mathematics, 324(1):71–90, 2003. 82, 85

[BS16] Jean-François Biasse and Fang Song. Efficient quantum algorithms for computing class
groups and solving the principal ideal problem in arbitrary degree number fields. In
Proceedings of the Twenty-Seventh Annual ACM-SIAM symposium on Discrete algorithms
– SODA, pages 893–902. Society for Industrial and Applied Mathematics, 2016. 34, 35,
42, 43, 59, 115, 120

[Buc88] Johannes Buchmann. A subexponential algorithm for the determination of class groups
and regulators of algebraic number fields. Séminaire de théorie des nombres, Paris,
1989(1990):27–41, 1988. 44, 46

[Buc94] Johannes Buchmann. Reducing Lattice Bases by Means of Approximations. In Interna-
tional Algorithmic Number Theory Symposium – ANTS, 1994. 36

[BV11] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic encryption from
(standard) LWE. In FOCS, pages 97–106. IEEE Computer Society, 2011. 11, 19

[BV18] Jean-François Biasse and Christine van Vredendaal. Fast multiquatratic S-unit compu-
tation and application to the calculation of class groups. In International Algorithmic
Number Theory Symposium – ANTS. Springer, 2018. 35, 56

[BVWW16] Zvika Brakerski, Vinod Vaikuntanathan, Hoeteck Wee, and Daniel Wichs. Obfuscating
conjunctions under entropic ring lwe. In Proceedings of the 2016 ACM Conference on
Innovations in Theoretical Computer Science, pages 147–156. ACM, 2016. 114

[BZ17] Dan Boneh and Mark Zhandry. Multiparty key exchange, efficient traitor tracing, and
more from indistinguishability obfuscation. Algorithmica, 79(4):1233–1285, 2017. 107

[CCH+18] Jung Hee Cheon, Wonhee Cho, Minki Hhan, Jiseung Kim, and Changmin Lee. Statistical
zeroizing attack: Cryptanalysis of candidates of bp obfuscation over ggh15 multilinear
map. Cryptology ePrint Archive, Report 2018/1081, 2018. http://eprint.iacr.org/

2018/1081. 112, 113, 131

[CDPR16] Ronald Cramer, Léo Ducas, Chris Peikert, and Oded Regev. Recovering short generators
of principal ideals in cyclotomic rings. In Advances in Cryptology – EUROCRYPT, pages
559–585. Springer, 2016. 16, 24, 33, 35, 42, 44, 45, 46, 55, 115, 120

[CDW17] Ronald Cramer, Léo Ducas, and Benjamin Wesolowski. Short stickelberger class relations
and application to ideal-svp. In Advances in Cryptology – EUROCRYPT, pages 324–348.
Springer, 2017. 14, 22, 42, 44, 45, 46, 55, 61, 62

[CGH+15] Jean-Sébastien Coron, Craig Gentry, Shai Halevi, Tancrede Lepoint, Hemanta K Maji, Eric
Miles, Mariana Raykova, Amit Sahai, and Mehdi Tibouchi. Zeroizing without low-level
zeroes: New mmap attacks and their limitations. In Advances in Cryptology – CRYPTO,
pages 247–266. Springer, 2015. 93, 112, 113

[CGH17] Yilei Chen, Craig Gentry, and Shai Halevi. Cryptanalyses of candidate branching program
obfuscators. In Advances in Cryptology – EUROCRYPT, pages 278–307. Springer, 2017.
14, 21, 90, 92, 109, 110, 111, 112, 131

135

http://eprint.iacr.org/2018/1081
http://eprint.iacr.org/2018/1081

BIBLIOGRAPHY BIBLIOGRAPHY

[CGS14a] Peter Campbell, Michael Groves, and Dan Shepherd. Soliloquy: A cautionary tale. In
ETSI 2nd Quantum-Safe Crypto Workshop, pages 1–9, 2014. 35, 115, 120

[CGS14b] Peter Campbell, Michael Groves, and Dan Shepherd. Soliloquy: A cautionary tale, 2014.
Available at http://docbox.etsi.org/Workshop/2014/201410_CRYPTO/S07_Systems_

and_Attacks/S07_Groves_Annex.pdf. 42

[CHKL18] Jung Hee Cheon, Minki Hhan, Jiseung Kim, and Changmin Lee. Cryptanalyses of branch-
ing program obfuscations over ggh13 multilinear map from the ntru problem. In Advances
in Cryptology – CRYPTO, pages 184–210. Springer, 2018. 14, 21, 109, 110, 111

[CHL+15] Jung Hee Cheon, Kyoohyung Han, Changmin Lee, Hansol Ryu, and Damien Stehlé. Crypt-
analysis of the multilinear map over the integers. In Advances in Cryptology – EURO-
CRYPT, pages 3–12. Springer, 2015. 86, 112, 131

[CJL16] Jung Hee Cheon, Jinhyuck Jeong, and Changmin Lee. An algorithm for NTRU problems
and cryptanalysis of the GGH multilinear map without a low-level encoding of zero. LMS
Journal of Computation and Mathematics, 19(A):255–266, 2016. 89, 115

[CLLT16] Jean-Sébastien Coron, Moon Sung Lee, Tancrede Lepoint, and Mehdi Tibouchi. Crypt-
analysis of ggh15 multilinear maps. In Advances in Cryptology – CRYPTO, pages 607–628.
Springer, 2016. 86

[CLLT17] Jean-Sébastien Coron, Moon Sung Lee, Tancrède Lepoint, and Mehdi Tibouchi. Zeroizing
attacks on indistinguishability obfuscation over clt13. In IACR International Workshop
on Public Key Cryptography – PKC, pages 41–58. Springer, 2017. 110, 111, 112, 131

[CLT13] Jean-Sébastien Coron, Tancrede Lepoint, and Mehdi Tibouchi. Practical multilinear maps
over the integers. In Advances in Cryptology – CRYPTO, pages 476–493. Springer, 2013.
86

[Coh95] Henri Cohen. A Course in Computational Algebraic Number Theory. 1995. 36

[Coh96] Henri Cohen. Hermite and Smith normal form algorithms over Dedekind domains. 1996.
31, 61

[Coh13] Henri Cohen. A course in computational algebraic number theory, volume 138. Springer
Science & Business Media, 2013. 32, 33

[CVW18] Yilei Chen, Vinod Vaikuntanathan, and Hoeteck Wee. Ggh15 beyond permutation branch-
ing programs: Proofs, attacks, and candidates. In Advances in Cryptology – CRYPTO,
pages 577–607. Springer, 2018. 112, 113

[DGG+18] Nico Döttling, Sanjam Garg, Divya Gupta, Peihan Miao, and Pratyay Mukherjee. Ob-
fuscation from low noise multilinear maps. In International Conference in Cryptology in
India – Indocrypt, pages 329–352. Springer, 2018. 91, 92, 93, 94, 95, 96, 102, 113, 116,
145, 147, 151, 153, 155

[DH76] Whitfield Diffie and Martin Hellman. New directions in cryptography. IEEE transactions
on Information Theory, 22(6):644–654, 1976. 9, 17

[DLW19] Emmanouil Doulgerakis, Thijs Laarhoven, and Benne de Weger. Finding closest lattice
vectors using approximate Voronoi cells. In PQCRYPTO. Springer, 2019. To appear. 45

[DPW19] Léo Ducas, Maxime Plançon, and Benjamin Wesolowski. On the shortness of vectors to
be found by the ideal-svp quantum algorithm. In Advances in Cryptology – CRYPTO.
Springer, 2019. 42

[EHKS14] Kirsten Eisenträger, Sean Hallgren, Alexei Kitaev, and Fang Song. A quantum algorithm
for computing the unit group of an arbitrary degree number field. In STOC, pages 293–302.
ACM, 2014. 42

136

http://docbox.etsi.org/Workshop/2014/201410_CRYPTO/S07_Systems_and_Attacks/S07_Groves_Annex.pdf
http://docbox.etsi.org/Workshop/2014/201410_CRYPTO/S07_Systems_and_Attacks/S07_Groves_Annex.pdf

BIBLIOGRAPHY BIBLIOGRAPHY

[FHHL18] Pooya Farshim, Julia Hesse, Dennis Hofheinz, and Enrique Larraia. Graded encoding
schemes from obfuscation. In IACR International Workshop on Public Key Cryptography
– PKC, pages 371–400. Springer, 2018. 107

[Fie97] Claus Fieker. Über relative Normgleichungen in älgebraischen Zahlkörpern. PhD thesis,
TU Berlin, 1997. 58

[FP96] Claus Fieker and ME Pohst. On lattices over number fields. In International Algorithmic
Number Theory Symposium – ANTS, pages 133–139. Springer, 1996. 58, 61

[FP06] Claus Fieker and Michael Pohst. Dependency of units in number fields. Mathematics of
Computation, 75(255):1507–1518, 2006. 33

[FRS17] Rex Fernando, Peter MR Rasmussen, and Amit Sahai. Preventing clt attacks on obfus-
cation with linear overhead. In Advances in Cryptology – ASIACRYPT, pages 242–271.
Springer, 2017. 109, 110, 111, 112, 131

[FS10] Claus Fieker and Damien Stehlé. Short bases of lattices over number fields. In International
Algorithmic Number Theory Symposium – ANTS, pages 157–173. Springer, 2010. 31, 36,
59, 78

[Gel17] Alexandre Gelin. Calcul de groupes de classes d’un corps de nombres et applications à la
cryptologie. PhD thesis, Paris 6, 2017. 35, 46, 55

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In STOC, volume 9,
pages 169–178, 2009. 11, 19

[GGH13a] Sanjam Garg, Craig Gentry, and Shai Halevi. Candidate multilinear maps from ideal
lattices. In Advances in Cryptology – EUROCRYPT, pages 1–17. Springer, 2013. 13, 16,
21, 24, 45, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 102, 114, 119, 120, 151

[GGH+13b] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent Waters.
Candidate indistinguishability obfuscation and functional encryption for all circuits. pages
40–49, 2013. 13, 21, 107, 108, 109, 110, 111, 116, 126, 130

[GGH15] Craig Gentry, Sergey Gorbunov, and Shai Halevi. Graph-induced multilinear maps from
lattices. In Theory of Cryptography Conference – TCC, pages 498–527. Springer, 2015. 86,
112

[GGSW13] Sanjam Garg, Craig Gentry, Amit Sahai, and Brent Waters. Witness encryption and its
applications. In STOC, pages 467–476. ACM, 2013. 107

[GKW17] Rishab Goyal, Venkata Koppula, and Brent Waters. Lockable obfuscation. In 2017 IEEE
58th Annual Symposium on Foundations of Computer Science – FOCS, pages 612–621.
IEEE, 2017. 86, 114

[GLM09] Ying Hung Gan, Cong Ling, and Wai Ho Mow. Complex lattice reduction algorithm
for low-complexity full-diversity mimo detection. Transactions on Signal Processing,
57(7):2701–2710, 2009. 58

[GMM+16] Sanjam Garg, Eric Miles, Pratyay Mukherjee, Amit Sahai, Akshayaram Srinivasan, and
Mark Zhandry. Secure obfuscation in a weak multilinear map model. In Theory of Cryp-
tography Conference – TCC, pages 241–268. Springer, 2016. 13, 21, 92, 109, 110, 111, 114,
115, 116, 117, 119, 120, 125, 130, 145, 147

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices and
new cryptographic constructions. In STOC, pages 197–206. ACM, 2008. 39

[GR07] Shafi Goldwasser and Guy N Rothblum. On best-possible obfuscation. In Theory of
Cryptography Conference – TCC, pages 194–213. Springer, 2007. 107

137

BIBLIOGRAPHY BIBLIOGRAPHY

[HB18] Máté Horváth and Levente Buttyán. The birth of cryptographic obfuscation–a survey.
Technical report, 2018. http://eprint.iacr.org/2015/412. 108

[HJ16] Yupu Hu and Huiwen Jia. Cryptanalysis of ggh map. In Advances in Cryptology – EU-
ROCRYPT, pages 537–565. Springer, 2016. 13, 16, 21, 24, 86, 90, 91, 93

[HM89] James L. Hafner and Kevin S. McCurley. A rigorous subexponential algorithm for compu-
tation of class groups. Journal of the American mathematical society, 2(4):837–850, 1989.
44, 46

[Hop98] Andreas Hoppe. Normal forms over Dedekind domains, efficient implementation in the
computer algebra system KANT. PhD thesis, TU Berlin, 1998. 30

[HPS98] Jeffrey Hoffstein, Jill Pipher, and Joseph H Silverman. Ntru: A ring-based public key
cryptosystem. In International Algorithmic Number Theory Symposium – ANTS, pages
267–288. Springer, 1998. 13, 21, 58

[HPS11] Guillaume Hanrot, Xavier Pujol, and Damien Stehlé. Analyzing blockwise lattice algo-
rithms using dynamical systems. In Advances in Cryptology – CRYPTO, pages 447–464.
Springer, 2011. 10, 18

[HWB17] Patrick Holzer, Thomas Wunderer, and Johannes A. Buchmann. Recovering short gener-
ators of principal fractional ideals in cyclotomic fields of conductor pαqβ . In International
Conference in Cryptology in India – Indocrypt, pages 346–368. Springer, 2017. 42

[Jou00] Antoine Joux. A one round protocol for tripartite diffie–hellman. In International Algo-
rithmic Number Theory Symposium – ANTS, pages 385–393. Springer, 2000. 82

[Kan87] Ravi Kannan. Minkowski’s convex body theorem and integer programming. Mathematics
of operations research, 12(3):415–440, 1987. 60

[KF17] Paul Kirchner and Pierre-Alain Fouque. Revisiting lattice attacks on overstretched ntru
parameters. In Advances in Cryptology – EUROCRYPT, pages 3–26. Springer, 2017. 89,
115

[KL17] Taechan Kim and Changmin Lee. Lattice reductions over euclidean rings with applications
to cryptanalysis. In IMA International Conference on Cryptography and Coding, pages
371–391. Springer, 2017. 59, 61

[Laa16] Thijs Laarhoven. Sieving for closest lattice vectors (with preprocessing). In International
Conference on Selected Areas in Cryptography – SAC, pages 523–542. Springer, 2016. 26,
45, 54, 62

[Lin16] Huijia Lin. Indistinguishability obfuscation from constant-degree graded encoding schemes.
In Advances in Cryptology – EUROCRYPT, pages 28–57. Springer, 2016. 114

[LLL82] Arjen Klaas Lenstra, Hendrik Willem Lenstra, and László Lovász. Factoring polynomials
with rational coefficients. Mathematische Annalen, 261(4):515–534, 1982. 15, 23, 36, 37,
58

[LM00] Beatrice Laurent and Pascal Massart. Adaptive estimation of a quadratic functional by
model selection. Annals of Statistics, pages 1302–1338, 2000. 53

[LM06] Vadim Lyubashevsky and Daniele Micciancio. Generalized compact knapsacks are colli-
sion resistant. In International Colloquium on Automata, Languages, and Programming –
ICALP, pages 144–155. Springer, 2006. 20, 58

[LM18] Huijia Lin and Christian Matt. Pseudo flawed-smudging generators and their application
to indistinguishability obfuscation. Cryptology ePrint Archive, Report 2018/646, 2018.
http://eprint.iacr.org/2018/646. 114

138

http://eprint.iacr.org/2015/412
http://eprint.iacr.org/2018/646

BIBLIOGRAPHY BIBLIOGRAPHY

[Lou00] Stéphane Louboutin. Explicit bounds for residues of dedekind zeta functions, values of l-
functions at s = 1, and relative class numbers. Journal of Number Theory, 85(2):263–282,
2000. 33

[LPR10] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learning with
errors over rings. In Advances in Cryptology – EUROCRYPT, pages 1–23. Springer, 2010.
12, 20, 42, 58

[LS15] Adeline Langlois and Damien Stehlé. Worst-case to average-case reductions for module
lattices. Designs, Codes and Cryptography, 75(3):565–599, 2015. 12, 20, 45, 57, 58

[LSS14] Adeline Langlois, Damien Stehlé, and Ron Steinfeld. Gghlite: More efficient multilinear
maps from ideal lattices. In Advances in Cryptology – EUROCRYPT, pages 239–256.
Springer, 2014. 89

[MG02] Daniele Micciancio and Shafi Goldwasser. Complexity of lattice problems: a cryptographic
perspective. 2002. 61

[Mic01] Daniele Micciancio. The hardness of the closest vector problem with preprocessing. Trans-
actions on Information Theory, 47(3):1212–1215, 2001. 60

[Min67] Hermann Minkowski. Gesammelte Abhandlungen. Chelsea, New York, 1967. 43

[MR07] Daniele Micciancio and Oded Regev. Worst-case to average-case reductions based on
gaussian measures. SIAM Journal on Computing, 37(1):267–302, 2007. 11, 19, 38, 39

[MSW14] Eric Miles, Amit Sahai, and Mor Weiss. Protecting obfuscation against arithmetic attacks.
IACR Cryptology ePrint Archive, 2014:878, 2014. 109, 110, 111, 112, 114, 115, 116, 117,
119, 120, 125

[MSZ16] Eric Miles, Amit Sahai, and Mark Zhandry. Annihilation attacks for multilinear maps:
Cryptanalysis of indistinguishability obfuscation over ggh13. In Advances in Cryptology –
CRYPTO, pages 629–658. Springer, 2016. 13, 14, 16, 21, 24, 90, 92, 109, 110, 111, 114,
116, 131, 145, 146, 148

[MZ18] Fermi Ma and Mark Zhandry. The mmap strikes back: Obfuscation and new multilinear
maps immune to clt13 zeroizing attacks. In Theory of Cryptography Conference – TCC,
pages 513–543. Springer, 2018. 86, 111, 112

[Nap96] Huguette Napias. A generalization of the lll-algorithm over euclidean rings or orders.
Journal de théorie des nombres de Bordeaux, 8(2):387–396, 1996. 58

[O’M63] Onorato Timothy O’Meara. Introduction to Quadratic Forms. Springer, 1963. 58

[PR06] Chris Peikert and Alon Rosen. Efficient collision-resistant hashing from worst-case as-
sumptions on cyclic lattices. In Theory of Cryptography Conference – TCC, pages 145–166.
Springer, 2006. 20, 58

[PRS17] Chris Peikert, Oded Regev, and Noah Stephens-Davidowitz. Pseudorandomness of ring-
LWE for any ring and modulus. In STOC, pages 461–473. ACM, 2017. 42

[PST14] Rafael Pass, Karn Seth, and Sidharth Telang. Indistinguishability obfuscation from
semantically-secure multilinear encodings. In Advances in Cryptology – CRYPTO, pages
500–517. Springer, 2014. 109, 110, 111, 112, 114, 115, 116, 117, 119, 120, 125

[RBV04] Ghaya Rekaya, Jean-Claude Belfiore, and Emanuele Viterbo. A very efficient lattice re-
duction tool on fast fading channels. In ISITA, 2004. 42

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. In
STOC, pages 84–93. ACM, 2005. 11, 19, 42, 58

139

BIBLIOGRAPHY BIBLIOGRAPHY

[RSA78] Ronald L Rivest, Adi Shamir, and Leonard Adleman. A method for obtaining digital
signatures and public-key cryptosystems. Communications of the ACM, 21(2):120–126,
1978. 9, 17

[RSW18] Miruna Rosca, Damien Stehlé, and Alexandre Wallet. On the ring-LWE and polynomial-
LWE problems. In Advances in Cryptology – EUROCRYPT, pages 146–173. Springer,
2018. 58

[Sam13] Pierre Samuel. Algebraic Theory of Numbers: Translated from the French by Allan J.
Silberger. Courier Corporation, 2013. 33

[Sch87] Claus-Peter Schnorr. A hierarchy of polynomial time lattice basis reduction algorithms.
Theoretical computer science, 53:201–224, 1987. 10, 18, 42

[SD19] Noah Stephens-Davidowitz. A time-distance trade-off for gdd with preprocessing—
instantiating the dlw heuristic. arXiv preprint arXiv:1902.08340, 2019. 45

[SE94] Claus-Peter Schnorr and Martin Euchner. Lattice basis reduction: Improved practical
algorithms and solving subset sum problems. Mathematical programming, 66:181–199,
1994. 10, 18, 41, 42, 58

[Sho97] Peter W Shor. Polynomial-time algorithms for prime factorization and discrete logarithms
on a quantum computer. SIAM Journal on Computing, 26(5):1484–1509, 1997. 11, 19

[SMSV14] Saruchi, Ivan Morel, Damien Stehlé, and Gilles Villard. LLL reducing with the most
significant bits. In International Symposium on Symbolic and Algebraic Computation –
ISSAC, pages 367–374. ACM, 2014. 36, 60

[SS13] Damien Stehle and Ron Steinfeld. Making ntruenrypt and ntrusign as secure as standard
worst-case problems over ideal lattices, 2013. http://eprint.iacr.org/2013/004. 95

[SSTX09] Damien Stehlé, Ron Steinfeld, Keisuke Tanaka, and Keita Xagawa. Efficient public key
encryption based on ideal lattices. In Advances in Cryptology – ASIACRYPT, pages 617–
635. Springer, 2009. 12, 20, 42, 58

[SW14] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: deniable
encryption, and more. In STOC, pages 475–484. ACM, 2014. 107

[WZ17] Daniel Wichs and Giorgos Zirdelis. Obfuscating compute-and-compare programs under
lwe. In 2017 IEEE 58th Annual Symposium on Foundations of Computer Science – FOCS,
pages 600–611. IEEE, 2017. 86, 114

[XZKL17] Hui Xu, Yangfan Zhou, Yu Kang, and Michael R Lyu. On secure and usable program
obfuscation: A survey. arXiv preprint arXiv:1710.01139, 2017. 105

[Zim80] Rainer Zimmert. Ideale kleiner Norm in Idealklassen und eine Regulatorabschätzung.
Inventiones mathematicae, 62(3):367–380, 1980. 33

[Zim15] Joe Zimmerman. How to obfuscate programs directly. In Advances in Cryptology – EU-
ROCRYPT, pages 439–467. Springer, 2015. 113, 116, 151, 153, 155

140

http://eprint.iacr.org/2013/004

List of Figures

0.1 Un réseau de dimension 2, avec une base . 10
0.2 Un vecteur non nul le plus court . 10
0.3 Une solution au problème γ-approx-SVP pour γ = 2 . 10
0.4 Compromis entre temps et facteur d’approximation pour l’algorithme BKZ 10
0.5 Une solution au problème CVP avec cible t . 11
0.6 Une solution au problème γ-approx-CVP avec cible t et γ = 2 11
0.7 Base d’un réseau module de rang m . 12
0.8 Précédents compromis temps/facteur d’approximation pour approx-SVP dans des réseaux

idéaux de corps cyclotomiques puissance d’un nombre premier. 14
0.9 Nouveaux compromis pour approx-SVP dans des réseaux idéaux dans les même corps

(avec un pré-calcul en temps exp(Õ(n))). 14

1.1 A two-dimensional lattice with a basis . 18
1.2 A shortest non-zero vector in a lattice . 18
1.3 A solution to γ-approx-SVP for γ = 2 . 18
1.4 Time/approximation trade-offs achieved by BKZ for arbitrary lattices 18
1.5 A CVP instance with target t . 19
1.6 A γ-approx-CVP instance with target t for γ = 2 . 19
1.7 Basis of a module lattice of rank m . 20
1.8 Prior time/approximation trade-offs for ideal approx-SVP in prime power cyclotomic fields. 22
1.9 New trade-offs for ideal approx-SVP in the same fields (with a pre-processing of cost

exp(Õ(n))). 22

3.1 Prior time/approximation trade-offs for ideal approx-SVP in cyclotomic fields of prime-
power conductor. 43

3.2 New trade-offs for ideal approx-SVP in the same fields (with a pre-processing of cost

exp(Õ(n))). 43
3.3 Comparison of log(‖x‖2/‖x‖∞) as a function of log ν for x a Gaussian vector or x = t−v

with t a random target and v the approx-CVP solution output by Laarhoven’s algorithm
(on our lattice L, in selected cyclotomic fields). 54

3.4 New trade-offs for ideal lattices in number fields satisfying log |∆| = Õ(n) (with a pre-

processing of cost exp(Õ(n))). 55

3.5 New trade-offs for ideal lattices in number fields satisfying log |∆| = Õ(n1+ε) for some

ε > 0 (with a pre-processing of cost exp(Õ(n1+ε))). 55

4.1 Empirical probability p` as a function of ` in a cyclotomic field of conductor 64 (degree 32) 68
4.2 Empirical probability p` as a function of ` in a cyclotomic field of conductor 100 (degree 40) 68
4.3 Empirical probability p` as a function of ` in a “random” number field of degree 32 . . . 69
4.4 Evolution of 1/c (computed empirically) as a function of Bδ 69

5.1 Relative precision ‖ε‖∞ of the empirical mean 1
|A|
∑
v∈AA(zvzṽ) = µz(1 + ε) (vertical

axis) as a function of |A| (horizontal axis). 100

6.1 History of GGH13-based branching program obfuscators (non-exhaustive) 109
6.2 History of CLT13-based branching program obfuscators (non-exhaustive) 111

141

LIST OF FIGURES LIST OF FIGURES

6.3 History of GGH15-based branching program obfuscators (non-exhaustive) 112
6.4 History of circuit obfuscators (non-exhaustive) . 113
6.5 Illustration of the choice of α . 122

142

List of Tables

3.1 Approximate covering radii in `2 and `∞ norms for the lattice L, for cyclotomic number
fields of different conductors. 52

4.1 Empirical values of 1/c for different cyclotomic number fields of conductor m and degree n 69

5.1 Summary of the leakage analysis, depending on the sampling method. This includes
our new method, sketched in Section 5.3.5. We recall that, according to correctness
bound (5.2), the modulus q must satisfy log q ≥ 4 log(n)(4 + 2γ + 2νK + ηκ) + 4 log(m). 102

6.1 Status of candidate branching program iO based on GGH13 (May 2019) 111
6.2 Experimental results obtained for n = 10, ` = 10, m = 5, number of BP = 100, number

of post-zero-test values = 30 and total number of g = 40. 119
6.3 Experimental results obtained for n = 32, ` = 20, m = 5, number of BP = 20, number

of post-zero-test values = 30 and total number of g = 20. 119

143

List of Algorithms

3.1 Computes a basis BL as described above . 47
3.2 Solves ideal SVP using an oracle to solve CVP in L . 48
4.1 A Euclidean division over R . 70
4.2 Strongly scaling the ideals. 73
4.3 Divide-and-swap. 74
4.4 LLL-reduction over K . 77
4.5 Scaling the ideals. 78
4.6 Size-reduction. 79
4.7 LLL-reduction over K with controlled bit-lengths . 80

144

Appendix A

Security proof of our simple
setting in the weak multilinear
map model

In this section, we first recall the weak multilinear map model for the GGH13 map (mentioned first
in [MSZ16] and then used in [GMM+16] and in [DGG+18]). Then we prove that the setting we
described in Section 5.3.2 is secure in the weak multilinear map model, where security is defined as in
Definition 5.4.

A.1 The weak multilinear map model

The idea of the weak multilinear map model [MSZ16,GMM+16,DGG+18] is to limit the power of the
attacker by not giving it the encoded values directly. Instead, an oracle M keeps a table with the
encoded values and allows the attacker to perform only some operations on these encoded values. More
formally, an encoded element is a couple (a,v), with a ∈ R/gR and v ∈ {0, 1}κ. Recall that we denote
by v∗ the vector (1, 1, · · · , 1). We can perform the following arithmetic operations on the encoded
elements:

• Addition/subtraction. For any v, we have (a,v)± (b,v) = (a± b,v).

• Multiplication. If v and w are such that v[i]w[i] = 0 for all i ∈ {1, · · · , κ}, then we have
(a,v) · (b,w) = (a · b,v + w).

• Scalar multiplication. For any v ∈ {0, 1}κ, a ∈ R/gR and α ∈ R, we have α · (a,v) = (α ·a,v).

The oracle M implements the following interfaces.

Initialization. The oracle first initializes the parameters. It sets n to be a power of 2, defines R =
Z[X]/(Xn + 1) and samples g an element of R. The size of the parameters is the same as the one we
described in Section 5.2.2. The oracle M then receives a set of r pairs (a,v) to encode. It creates a
table T in which it stores the pairs (a,v) together with a handle hi it generates, which is independent
of the encoded value a but reveals the level of the encoding v. Finally, the oracle outputs the handles
hi, for 1 ≤ i ≤ r. The oracle M also creates a table T ′ for post-zero-test values, that is empty for the
moment. This interface has to be called before the other ones, and any attempt to call this procedure
more than once will fail.

Operations on encodings. Given two handles h1, h2 and an operation ◦ ∈ {+,−,×}, the oracle
first checks whether the handles h1 and h2 are in its table. If one of them is not in the table, then in
returns ⊥. Otherwise, let (a1,v1) and (a2,v2) be the encoded elements associated to these handles. If
◦ ∈ {+,−}, M checks whether v1 = v2. If this is not the case, M outputs ⊥. Otherwise, it creates
a new entry in its table, with the encoded value (a1 ◦ a2,v1) and a new handle h and it outputs h. If
◦ = ×, thenM checks whether v1[i]v2[i] = 0 for all i ∈ {1, · · · , κ}. If this is not the case, it outputs ⊥,
otherwise it creates a new entry in its table with the encoded value (a1 · a2,v1 + v2) and a new handle
h and it outputs h.

145

CHAPTER A. SECURITY PROOF OF OUR SIMPLE SETTING IN THE WEAK MULTILINEAR
MAP MODEL

Multiplication by an element of R. Given a handle h and an element α ∈ R, the oracle M first
checks whether h is in its table T . If it is not,M outputs ⊥. Otherwise, let (a,v) be the corresponding
encoded value. The oracle creates a new entry in its table, with encoded value (αa,v) and a new
handle h′. Then it outputs h′.

Zero-test query. Given a handle h, the oracleM checks whether h is in its table. If notM outputs ⊥.
Otherwise let (a,v) be the associated encoded value. If v 6= v∗, then M outputs ⊥. Otherwise, the
oracle checks whether a is a multiple of g. If it is, then M creates a new entry in its post-zero-test
table T ′, with value a/g ∈ R and with a new handle h′, then it outputs h′. If a is not a multiple of g,
then M outputs ⊥.

Post-zero-test query. Given a polynomial p of degree polynomial in n,1 and a bunch of handles
h1, · · · , ht, the oracle checks whether all handles hi are in its post-zero-test table T ′. If it is not the
case, or if p is the identically zero polynomial, it outputs ⊥. Otherwise, let ri be the value corresponding
to the handle hi in T ′. The oracle computes p(r1, · · · , rt). If this is a non zero multiple of g, then the
adversary outputs “WIN”, otherwise it outputs ⊥.

The adversary wins the game if it manages to have the oracle output “WIN” after a post-zero-test
query. We recall here the security definition given in Definition 5.4, adapted to the weak multilinear
map model.

Definition A.1 (Security of our setting). We say that our setting of the GGH multilinear map is secure
in the weak multilinear map model if any polynomial time adversary has negligible probability to make
the oracle output “WIN”, when the oracle is initialized with the elements av,i defined in Section 5.3.2.

We will now prove that our simple setting defined in Section 5.3.2 is secure in the weak multilinear
map model, for the definition of security given above. This proof does not depend on the sampling
method chosen, as long as it has enough min-entropy. As all the sampling methods described in
Chapter 5 have enough min-entropy, our setting will be secure in the weak multilinear map model,
independently of the sampling method chosen.

A.2 Mathematical tools

Definition A.2. Let Y be a random variable with values in a set S, the guessing probability of the
variable Y is

max
s∈S

Pr(Y = s)

and the min-entropy of Y is defined by

H∞(Y) = − log(max
s∈S

Pr(Y = s)).

For multiple random variables Y1, · · · , Yk, we let pi(s1, · · · , si−1) be the guessing probability of Yi
conditioned on Yj = sj for j < i. Then, define pi = EY1,··· ,Yi−1

[pi(Y1, · · · , Yi−1)] to be the expectation
of the pi(Y1, · · · , Yi−1). Finally, we denote by pmax(Y1, · · · , Yk) = maxi pi the maximum of the pi’s.

For the proof of our theorem, we will use the improved Schwartz-Zippel lemma of [MSZ16, Section
5.1]. The classical Schwartz-Zippel lemma needs independent and uniform random variables, while this
version allows us to use random variables that might be correlated and non uniform, as long as they
have enough min-entropy. The statement of the lemma is the following:

Lemma A.3 (Improved Schwartz-Zippel lemma from [MSZ16]). Let F be a field, k > 0 be an integer
and P ∈ F[X1, · · · , Xk] be a polynomial of degree at most d. Let Y1, · · · , Yk be random variables in F
(that might be correlated and non uniform). Then we have

Pr
Y1,··· ,Yk

[P (Y1, · · · , Yk) = 0] ≤ d · pmax(Y1, · · · , Yk).

1This restriction on the degree of p may seem a bit unnatural, but this is needed for the proof, and it was already
used (and discussed) in [MSZ16].

146

CHAPTER A. SECURITY PROOF OF OUR SIMPLE SETTING IN THE WEAK MULTILINEAR
MAP MODEL

A.3 Security proof

The main idea of the security proof is to use the Schwartz-Zippel lemma to show that, except with
negligible probability, the adversary will never be able to create encodings that pass the zero-test,
except for linear combinations of the ones that are made public in the setting. Then, it is easy to show
that the adversary cannot use these encodings to create a multiple of g. This kind of proof was already
used to prove security of obfuscators in the weak multilinear map model [GMM+16,DGG+18]. As our
setting is simpler than a candidate obfuscator, the proof will also be easier.

First, we recall and precise how we generate the encodings in our simple setting of the GGH map.
Let Da be a distribution over the elements of R that are invertible modulo g, with min-entropy at
least n when reduced modulo g (i.e., for all x ∈ (R/gR)×, we have Pry←Da(y = x mod g) ≤ 2−n). Let
also Dr be a distribution over R with min-entropy at least n.2

For all v ∈ A of weight 1, sample m elements av,i ← Da independently (with 1 ≤ i ≤ m) and m− 1
elements aṽ,1, · · · , aṽ,m−1 ← Da independently. Then, sample rv ← Dr and let

aṽ,m = −âv,m
m−1∑
i=1

av,iaṽ,i + rvg

where âv,m is an element in R such that âv,mav,m = 1 mod g, i.e. âv,m is a representative of the
inverse of av,m modulo g (chosen arbitrarily). We will initialize the oracle M with these elements
(av,i,v), for v ∈ A.

With the notations above, we have that for all v ∈ A of weight 1,

H(av,1, aṽ,1, . . . , av,m, aṽ,m) =

m∑
i=0

av,iaṽ,i = (r′v + av,mrv)g

for some r′v that depends on the av,i’s and aṽ,j ’s (with i ≤ m and j ≤ m − 1) but not on rv. Hence,
as rv has min-entropy at least n and R is an integral domain, we have

H(av,1, aṽ,1, . . . , av,m, aṽ,m) = r̃vg (A.1)

for some r̃v with min-entropy at least n. Moreover, knowing the r̃w for w 6= v (w of weight 1) does
not decrease this min-entropy (because rv is independent of the r̃w). Hence, we have that

pmax({r̃v}v∈A of weight 1) ≤ 2−n. (A.2)

Theorem A.4. Assume we initialize the oracle M with the pairs (av,i,v) defined above, for v ∈ A
and 1 ≤ i ≤ m. Then, for any probabilistic polynomial time adversary A interacting with the oracleM,
the probability that A manages to make M output “WIN” is negligible in n. In other words, our simple
setting of the GGH multilinear map is secure in the weak multilinear map model (see Definition A.1).

We remark that the conditions on the distributions Da and Dr are satisfied by all the sampling
methods described in Chapter 5. Hence, the theorem proves that our simple setting of the GGH
multilinear map is secure in the weak multilinear map model, independently of the sampling method
chosen (among the ones described in this article).

Proof. For simplicity of notation, we will sometimes index the elements of A by v1, · · · ,v2κ.
In this proof, we will merge the arithmetic queries on the encodings and the zero-testing queries

by saying that the adversary A directly sends a polynomial p to the oracle. Then M performs the
arithmetic operations on the encodings that correspond to the polynomial p (if they are relevant) and
applies the zero-testing procedure on the result.

The idea of the proof is to show that the only encodings that A can query that will pass the
zero-testing procedure are linear combinations of elements of the form H(av,1, aṽ,1, . . . , av,m, aṽ,m)
(all other polynomials in the av,i’s will fail to pass the zero test with high probability). Then, each
zero-test on a H(av,1, aṽ,1, . . . , av,m, aṽ,m) will result in a handle of a random element (because of the
randomness contained in rv), and all these elements will be independent. Hence the adversary has
negligible probability of finding a polynomial that annihilates them.

2In the GGH multilinear map, the distribution Da should be a Gaussian distribution (whose shape depends on the
sampling method). This has no importance for our proof, so we make no assumption about it here.

147

CHAPTER A. SECURITY PROOF OF OUR SIMPLE SETTING IN THE WEAK MULTILINEAR
MAP MODEL

Lemma A.5. Let P be a polynomial in the variables (Xv,i){v∈A,1≤i≤m} generated by the attacker A
such that P (av1,1, · · · , av1,m, av2,1, · · · , aa2κ,m) = 0 mod g. Then, with overwhelming probability, we
have

P (Xv1,1, · · · , Xv1,m, Xv2,1, · · · , Xv2κ,m) =
∑
v∈A
‖v‖1=1

αvH(Xv,1, Xṽ,1, · · · , Xv,m, Xṽ,m)

for some scalars αv ∈ R.

This lemma means that the only encodings that will pass the zero test that the attacker can create are
the H(uv,1, uṽ,1, · · · , uv,m, uṽ,m) and linear combination of them. As zero-testing linear combinations
of encodings that pass the zero test does not provide more information that what was revealed by zero-
testing the original encodings, we will assume in the following that the adversary makes zero testing
queries for H(uv,1, uṽ,1, · · · , uv,m, uṽ,m) for all v ∈ A of weight 1, and that they are the only queries
that pass the zero test.

Recall that the numerator ofH(uv,1, uṽ,1, · · · , uv,m, uṽ,m) is of the formH(av,1, aṽ,1, · · · , av,m, aṽ,m) =
r̃vg (see Equality A.1). Hence, after all its zero-test queries, the attacker A gets handles to the values
r̃v for all v ∈ A of weight 1. These are the only post-zero-test handles that the attacker obtains. These
handles map to random elements r̃v that may not be independent, but that have a lot of (conditioned)
min-entropy. Hence, it is very unlikely that the attacker creates a non zero polynomial that annihi-
lates these random values. More formally, let P be a polynomial of degree d = poly(n) queried by
the attacker in the post-zero-test phase. Then, using the improved Schwartz-Zippel lemma of [MSZ16]
(Lemma A.3) in K, we have that

Pr[P ({r̃v}v∈A of weight 1) = 0] ≤ d · 2−n = negl(n)

using the fact that pmax({r̃v}v∈A of weight 1) ≤ 2−n (see Inequality (A.2)).
Hence, the attacker has negligible probability of creating a non zero polynomial P , of degree poly-

nomial in n, that annihilates the post-zero-test handles. This concludes the proof of our theorem.

Proof of Lemma A.5. Step 1. First, let v ∈ A be of weight 1 and let P be a polynomial in the variables
{Xv,1, Xṽ,1, · · · , Xv,m, Xṽ,m} (and not in all Xw,i for w ∈ A and i ≤ m) such that

P (av,1, aṽ,1, · · · , av,m, aṽ,m) = 0 mod g.

We will show that P = αH mod g for some α ∈ R/gR. Note that as we are only interested (for the
moment) in equalities modulo g, we will assume that our polynomial P has coefficients in R/gR (which
is a field as gR is a prime ideal). We will also see the av,i as elements of R/gR.

Using the fact that the polynomial P (uv,1, uṽ,1, · · · , uv,m, uṽ,m) is a valid encoding at level v∗, we
know that

P = P1(Xv,1, Xṽ,1, · · · , Xv,m) +Xṽ,mP2(Xv,1, Xv,2, · · · , Xv,m)

for some polynomials P1 of degree 2 and P2 of degree 1. We cannot apply the Schwartz-Zippel lemma
to P because the variable aṽ,m mod g is completely determined by the other variables that appears in
the polynomial. So we first introduce a new polynomial that does not depend on Xṽ,m before applying
the Schwartz-Zippel lemma.

We define the polynomial Q ∈ (R/gR)[Xv,1, Xṽ,1, · · · , Xv,m] (note that Xṽ,m does not appear
in Q) by

Q(Xv,1, Xṽ,1, · · · , Xv,m) =Xv,mP1(Xv,1, Xṽ,1, · · · , Xv,m)

−

(
m−1∑
i=1

Xv,iXṽ,i

)
P2(Xv,1, Xv,2, · · · , Xv,m).

Using the fact that aṽ,m = −a−1
v,m

∑m−1
i=1 av,iaṽ,i mod g, we have that

Q(av,1, aṽ,1, · · · , av,m) = av,mP (av,1, aṽ,1, · · · , av,m, aṽ,m) = 0 mod g.

But the variables av,1, aṽ,1, · · · , av,m are drawn from Da independently with guessing probability at
most 2−n (even when reduced modulo g), and the degree of Q is at most 3. So using Schwartz-Zippel

148

CHAPTER A. SECURITY PROOF OF OUR SIMPLE SETTING IN THE WEAK MULTILINEAR
MAP MODEL

lemma (Lemma A.3) in R/gR, we have that Q should be the zero polynomial, except with negligible
probability. In the following, we will then assume that Q = 0. This means that we have the equality

between polynomials P1 = X−1
v,m

(∑m−1
i=1 Xv,iXṽ,i

)
P2. Hence, we can re-write

P = P2

(
X−1
v,m

(
m−1∑
i=1

Xv,iXṽ,i

)
+Xṽ,m

)
= P2X

−1
v,m ·H(Xv,1, Xṽ,1, · · · , Xv,m, Xṽ,m).

As we know that P is a polynomial and Xv,m does not divide H, this means that it divides P2. However,
P2 is of degree 1, hence we conclude that P = αH mod g for some scalar α ∈ R.

Step 2. Now, let P be a polynomial in all the variables Xv,i for v ∈ A and i ≤ m such that
P ((av,i)v∈A,i≤m) = 0 mod g. We will prove by induction on κ (recall that κ is the number of v ∈ A
of weight 1) that

P (Xv1,1, · · · , Xv1,m, Xv2,1, · · · , Xv2κ,m) =
∑
v∈A

of weight 1

αvH(Xv,1, Xṽ,1, · · · , Xv,m, Xṽ,m) mod g.

The case κ = 1 was already done above (this is exactly step 1). Assume then that κ > 1. Let
v1 ∈ A be of weight 1 and assume without loss of generality that v2 = ṽ1. We define the polynomial
P̃ in the variables {Xv1,i, Xv2,j}i,j≤m to be the polynomial P where Xvj ,i is evaluated at avj ,i for all
j ≥ 3 and i ≤ m, i.e.,

P̃ (Xv1,1, Xv1,2, · · · , Xv2,m) = P (Xv1,1, · · · , Xv2,m, av3,1, · · · , av2κ,m).

By hypothesis, we have that P̃ (av1,1, av1,1, · · · , av2,m) = 0 mod g. Now, by step 1, this means that

P̃ = αH mod g for some α ∈ R. Using the structure of the levels of the encodings, we then know that

P (Xv1,1, · · · , Xv2κ,m
) =αH(Xv1,1, · · · , Xv2,m) +

m∑
i=1

Pi(Xv3,1, · · · , Xv2κ,m)Xv1,i

+T (Xv3,1, · · · , Xv2κ,m)

for some polynomials Pi and T inR/gR such that Pi(av3,1, · · · , av2κ,m) = 0 and T (av3,1, · · · , av2κ,m) = 0.
By induction hypothesis, we then know that the polynomials Pi and T are linear combinations of the
polynomialH evaluated at differentXv,i. This implies that if Pi is non zero, then Pi(uv3,1, · · · , uv2κ,m)uv1,i

is an encoding at level v∗ + v1 which is not an admissible level. Hence, we have that Pi = 0 for all i
and, by induction hypothesis on T , we obtain the desired result.
Step 3. We have proven that for all polynomial P that the adversary can query, which passes the zero
test, then with overwhelming probability we have

P (Xv1,1, · · · , Xv2κ,m) =
∑
v∈A
‖v‖1=1

αvH(Xv,1, Xṽ,1, · · · , Xv,m, Xṽ,m) + gT

for some polynomial T in R. It remains to show that T = 0, except with negligible probability. We
observe that if the attacker knows a polynomial of the above form with T 6= 0, then it can recover a mul-
tiple of g. Indeed, in

∑
v∈A
‖v‖1=1

αvH(Xv,1, Xṽ,1, · · · , Xv,m, Xṽ,m), all monomials Xv,iXṽ,i have the same

coefficient αv when i varies and v is fixed. This means that we can recover a multiple of g by computing
the difference of two such coefficients in our polynomial

∑
v∈A
‖v‖1=1

αvH(Xv,1, Xṽ,1, · · · , Xv,m, Xṽ,m)+gT

(at least one should be non zero if T 6= 0). Hence, if the adversary queries such a polynomial, it knows
a multiple of g. However, the handles output by the oracle reveal nothing about g and g is chosen
with sufficiently high min-entropy, hence we will show that the adversary cannot create a multiple of g
except with negligible probability.

The idea is that if the attacker only performs zero-test queries that do not pass the zero-test or
queries for polynomials of the form

∑
v∈A
‖v‖1=1

αvH(Xv,1, Xṽ,1, · · · , Xv,m, Xṽ,m) (without the term gT),

149

CHAPTER A. SECURITY PROOF OF OUR SIMPLE SETTING IN THE WEAK MULTILINEAR
MAP MODEL

then it does not learn enough information to obtain a multiple of g with non negligible probabil-
ity. Hence, it cannot ask for a polynomial of the form

∑
v∈A
‖v‖1=1

αvH(Xv,1, Xṽ,1, · · · , Xv,m, Xṽ,m) + gT

with T 6= 0. Assume then that the attacker only queries polynomials of the form∑
v∈A
‖v‖1=1

αvH(Xv,1, Xṽ,1, · · · , Xv,m, Xṽ,m) and polynomials that do not pass the zero test. We prove

that all other possible choices of g, except a negligible fraction of them, would have led to the same
answers of the oracle. Hence, the adversary cannot guess the value of g except with negligible proba-
bility.

The queries on polynomials of the form
∑

v∈A
‖v‖1=1

αvH(Xv,1, Xṽ,1, · · · , Xṽ,m) do not leak any in-

formation because for all values of g, we know that they should pass the zero test (and the handle
that is generated when a query passes the zero test is independent of the choice of g). The queries on
polynomials that do not pass the zero test may leak some information, but this leakage will be negligible
compared to the entropy of g. Let c1, · · · , ck be the numerators of all encodings that the adversary
queried and that did not pass the zero test. Then, any g that is not a divisor of c1c2 · · · ck would have
given the same answers. So the number of “bad” choices of g is at most the number of divisors of
c1c2 · · · ck. Denoting by N the algebraic norm of elements in K, we have that N (x) > 2 if x ∈ R is
non invertible, and if x|y, then N (x)|N (y). Hence, the number of non invertible divisors of c1c2 · · · ck
is at most log2(N (c1c2 · · · ck)). This is polynomial in n. Indeed, the element c1c2 · · · ck was computed
by a polynomial-time attacker, so its coefficients are bounded by 2n

c

for some constant c (the attacker
has to write this element with a polynomial number of bits). To conclude, there are only a polynomial
number of “bad” g (i.e., a polynomial number of non invertible elements that divide c1c2 · · · ck). On
the contrary, there is an exponential number of possible g when we generate the parameters of our
multilinear map. Hence, the attacker has negligible chance to be able to guess a multiple of g if it
knows nothing about it. This achieves the proof of our Lemma A.5.

150

Appendix B

Adapting the quantum attack to
circuit obfuscators

In this section, we explain how the quantum attack of Section 6.2 can be extended to the circuit
obfuscators of [AB15,Zim15,BD16,DGG+18], when instantiated with the GGH13 map. The structure
of these obfuscators is very different from the abstract obfuscator described in Section 6.2 and so
the attack described in Section 6.3 cannot be directly applied to it. However, similarly to the other
obfuscators described above, the circuit obfuscators also use the levels of the GGH13 multilinear map
to prevent mixed-input attacks. This is the weakness we exploited to mount a mixed-input attack
against the abstract obfuscator, and here again, this will enable us to attack these circuit obfuscators.
In this section, we first describe a simplified circuit obfuscator, which captures the obfuscators of
[AB15,Zim15,BD16,DGG+18]. We then show how to adapt our attack to mount a quantum polynomial-
time mixed-input attack against this simple circuit obfuscator.

B.1 The simple circuit obfuscator

The circuit obfuscators can be instantiated with the GGH13 multilinear map [GGH13a] in its asym-
metric version, but with a composite g. More concretely, we sample three elements g1, g2, g3 ∈ R as
for the original g in the GGH13 map, that is ‖gi‖ = O(n), ‖1/gi‖ = O(n2) and such that N (gi) is
a prime integer, for all i ∈ [3]. Then, we let g = g1g2g3. If we denote by Ri = R/giR the quotient
rings for i ∈ [3], then using the Chinese remainder theorem we know that the encoding space R/gR is
isomorphic to R1 ×R2 ×R3. In the following, it will be useful to choose this point of view, as we will
encode triplets of elements (a1, a2, a3) ∈ R1 ×R2 ×R3, using the GGH13 map.

Let Σ be some subset of {0, 1}l with both l and |Σ| that are polynomial in the security parameter λ.
We will be interested in arithmetic circuits C : Σ → {0, 1}. By arithmetic circuits, we mean that C
performs addition, multiplication and subtraction over the bits of the elements of Σ (i.e., C is an
arithmetic circuit from {0, 1}l to {0, 1}, but we are only interested in its restriction to Σ ⊆ {0, 1}l).
The operations over the bits are performed over Z but we only consider circuits whose output is in
{0, 1}. Let C be a class of such circuits, whose size is bounded by some polynomial (the properties of
this class of circuit will not be interesting for our attack) and let U be a universal circuit for the class C.
The size of U is also bounded by some polynomial in the security parameter. We abuse notation by
denoting by C both a circuit of C and its bit representation, that is we have U(σ,C) = C(σ) for any
σ ∈ Σ (the first C denotes the bit representation of the circuit while the second one represents the
function computed by the circuit).

To obfuscate a circuit C of the class C, the main idea of the circuit obfuscator is to produce GGH13
encodings of the bits of C and of the bits of all the possible inputs σ ∈ Σ. Then, to evaluate the
obfuscated circuit, it suffices to homomorphically evaluate the universal circuit U on these encodings
and to test whether the result is 0 or not. In order to prove the security of their obfuscators, the authors
of [AB15,Zim15,BD16,DGG+18] added other gadgets to their obfuscators. The first idea is to encode
the useful information only in the second slot of the GGH13 map (in the ring R2) and to use the two
other slots to prevent some mixed-input attack (where we mix the bits of two circuits). They also use
straddling set systems, like the abstract obfuscator defined in Section 6.2, to prevent other kinds of
mixed input attacks (where we mix the bits of two inputs). We describe below in more detail how the

151

CHAPTER B. ADAPTING THE QUANTUM ATTACK TO CIRCUIT OBFUSCATORS

circuit obfuscators proceed, given as input a circuit C ∈ C. In order to help understanding what is
happening, we also describe in parallel how to evaluate the obfuscated circuit.

1. First, we encode each bit of all the possible inputs σ ∈ Σ (recall that we chose |Σ| to be polynomial
in the security parameter, so it is possible to enumerate all the elements of Σ). For each symbol

σ ∈ Σ and each bit position i ∈ [l], define W
(1)
i,σ = [r

(1)
σ · w(1)

i,σ]
v

(1)
σ

and R
(1)
σ = [r

(1)
σ]

v
(1)
σ

, where r
(1)
σ

is sampled uniformly in R/gR× (and only depends on σ) and

w
(1)
i,σ = (y

(1)
i , σi, ρ

(1)
i,σ) ∈ R1 ×R2 ×R3,

for σi the i-th bit of σ and y
(1)
i and ρ

(1)
i,σ sampled uniformly in R1 and R3 respectively. The level

v
(1)
σ of the encoding will be chosen to prevent mixed-input attacks. We will go into more details

about the levels of the encodings later. These encodings W
(1)
i,σ and R

(1)
σ are made public, for i ∈ [l]

and σ ∈ Σ. Note that y
(1)
i is the same for all symbols σ, this will be necessary for correctness.

2. Second, we encode the bits of the representation of the circuit C ∈ C. We denote by |C| the size

of the bit representation of C. For each 1 ≤ j ≤ |C|, define W
(2)
j = [r(2) · w(2)

j]v(2) and R(2) =

[r(2)]v(2) , where r(2) is sampled uniformly in R/gR× and

w
(2)
j = (y

(2)
j , Cj , ρ

(2)
j) ∈ R1 ×R2 ×R3,

for Cj the j-th bit of the representation of C and y
(2)
j and ρ

(2)
j sampled uniformly in R1 and R3

respectively. Again, the level v(2) of the encoding will be described later. These encodings W
(2)
j

and R(2) are made public, for 1 ≤ j ≤ |C|.

Once we have encodings for the bits of C and for all the possible input values σ ∈ Σ, as the universal
circuit U only performs additions, subtractions and multiplications, we can homomorphically evaluate
it on the encodings. We can always perform multiplications of encodings, it will only increase the
level of the encodings. However, there is a subtlety for addition and subtraction, as we can only add
and subtract encodings at the same level. To circumvent this difficulty, one can use the encodings

R(2) and R
(1)
σ . During the evaluation of the universal circuit U on the encodings, we will perform

computations so that for all intermediate encodings we compute, we always have encodings of the
form [r · w]v and [r]v, with the same level v. At the beginning, all the encodings described above
have the desired form [r · w]v and [r]v. If we want to multiply [r1 · w1]v1 and [r2 · w2]v2 , we just
compute the product of the encodings to get [r1r2 · w1w2]v1+v2 and we also compute the product of
the r part to obtain [r1r2]v1+v2

. Note that here, the levels v1 + v2 might have coefficients that are
larger than 1. If we want to add [r1 · w1]v1

and [r2 · w2]v2
, then two cases appear. If r1 = r2 and

v1 = v2, then we add both encodings to get [r1 · (w1 + w2)]v1
and keep [r1]v1

. Otherwise, we compute
[r1]v1 · [r2 ·w2]v2 + [r2]v2 · [r1 ·w1]v1 = [r1r2 · (w1 +w2)]v1+v2 and compute the product [r1r2]v1+v2 . We
proceed similarly for subtraction.

With this technique, we can evaluate the circuit U on the encodings provided by the obfuscator,
independently of the levels used to encode them. Assume we evaluate it honestly on the encodings of C
and of some input σ ∈ Σ, we then obtain encodings Wσ = [rσ ·wσ]vσ and Rσ = [rσ]vσ at some level vσ,
for some rσ ∈ R/gR, where

wσ = (y∗, C(σ), ρσ) ∈ R1 ×R2 ×R3,

for some y∗ ∈ R1 and ρσ ∈ R3. Note that, as the y
(1)
i ’s do not depend on the input σ, the value y∗ is

the same for all σ’s. We then want to annihilate the values in the extra slots (that is y∗ and ρσ) to
recover the value of C(σ) by zero-testing. To do that, the obfuscator provides two more encodings.

3. To annihilate the value in the third slot, the obfuscator output encodings Ŵσ = [r̂σ · ŵ]v̂σ and

R̂σ = [r̂σ]v̂σ , for all σ ∈ Σ, where r̂σ is sampled uniformly in R/gR× and

ŵ = (ŷ, α̂, 0),

for ŷ and α̂ uniformly chosen in R1 and R×2 , respectively.

152

CHAPTER B. ADAPTING THE QUANTUM ATTACK TO CIRCUIT OBFUSCATORS

Multiplying the encoding of wσ = (y∗, C(σ), ρσ) obtained above, by this encoding of ŵ = (ŷ, α̂, 0)
enables us to cancel the last slot and to obtain an encoding of ŵσ := (ŷ · y∗, α̂ · C(σ), 0). We also
multiply the r parts, as described above. Note that to cancel this third slot, the obfuscator outputs one
pair of encodings for each symbol σ ∈ Σ. While this may seem useless because each encoding encodes
the same ŵ, this is in fact required to standardise the levels of the encodings. Indeed, after evaluating
the universal circuit on the encodings of C and σ, we obtain an encoding whose level depends on σ.
By multiplying with an encoding at a complementary level at this step, we can then ensure that the
level of the product is independent of σ. This property will be important, because to zero-test the final
encoding, we need it to be at the maximal level v∗, independently of the input σ.

4. Finally, to cancel the first slot, the obfuscator provides two encodings W = [r ·w]v and R = [r]v,
where r is sampled uniformly in R/gR× and

w = (ŷ · y∗, 0, 0).

Note that ŵσ − w = 0 if and only if C(σ) = 0. Hence, it suffices to subtract the corresponding
encodings (using the r part, because the levels of the encodings will not match) and to zero-test the
obtained encoding to determine whether C(σ) = 0 or 1.

This completes the description of the simple circuit obfuscator, together with the correctness proof
of the evaluation of the obfuscated program. Before describing the mixed-input attack, we would like
to insist on some properties of the obfuscator described above.

• The levels of the encodings output by the obfuscator are chosen such that all honest evaluations
of the obfuscated circuit on some input σ ∈ Σ produce encodings with the same level. This level
is then chosen to be the maximal level of the GGH13 map, and will be denoted by v∗. The
obfuscator also provides a zero-test parameter pzt to enable zero-test at level v∗. In the following,
the only thing that will be interesting for our attack is that a honest evaluation of the obfuscated
circuit on any input σ ∈ Σ outputs an encoding at level v∗, so we do not go into more details
about the levels of the encodings.

• As we already noted, the value y∗ obtained in the first slot after evaluating the universal circuit
on the encodings of C and σ does not depend on σ. This is needed for the last step, where we
subtract ŷ · y∗. As we want this to output 0 for any input (to cancel out the first slot), the value
y∗ has to be independent of σ. This first slot prevents us from mixing the bits of the circuit C,
but does not prevent us from mixing the bits of the input σ (i.e., changing the value of some bit
during the evaluation). Mixing the bits of the input is only prevented by the GGH13 map and
the straddling set system (recall that the levels of the encodings depend on the input σ). This is
the kind on mixed-input attack we will be able to perform after recovering the secret element h
of the GGH13 map.

We observe that the circuit obfuscator described above is a simplification of the circuit obfuscators
of [AB15,Zim15,BD16,DGG+18]. However, it captures the main techniques used by these constructions,
and the attack we describe below is not impacted by the small changes between this simple obfuscator
and the actual constructions.

B.2 The mixed-input attack

As mentioned above, the attack will consist in modifying a bit of the input σ during the computation.
The idea is the same as for the attack of Section 6.3. As previously, we start by constructing a new
zero-testing parameter p′zt at level 2v∗ (testing whether the numerator of an encoding is a multiple
of g2, and not only g). This step can be performed exactly as in Section 6.3.1 and we do not re-explain
it here. Recall that to perform this step, we need to be able to evaluate the obfuscated circuit on inputs
for which the output is zero.

The second part of the attack (using p′zt to mount a mixed input attack) will differ from the one
for the abstract branching program obfuscator. The first difference is that in the abstract branching
program obfuscator, we only computed products of matrices. So by changing a matrix, we just changed

153

CHAPTER B. ADAPTING THE QUANTUM ATTACK TO CIRCUIT OBFUSCATORS

the final level of the encodings but all the operations remained possible (products of encodings are always
possible, whatever their levels are). Here, as we evaluate a circuit with additions and multiplications,
we must be careful. Indeed, if we change the level of one encoding of a sum but not the other one,
we will not be able to perform the sum anymore. To circumvent this difficulty, we will use a specific
universal circuit, which terminates with a multiplication. Let U be a universal circuit for the class of
circuit C. We define a new circuit Ũ , which takes as input a concatenation of the description of two
circuits in C and an input σ ∈ Σ and computes the product of the evaluations of the two circuits on
input σ. More formally, we define

Ũ(σ,C1 · C2) = U(σ,C1) · U(σ,C2).

The circuit Ũ is a universal circuit for the class C · C. Note that when evaluating the circuit Ũ ,
we finish the evaluation with a multiplication. To perform our mixed input attack, we will evaluate
U(·, C1) and U(·, C2) honestly on different inputs σ1 and σ2. As each partial evaluation is honest, we
can perform all the required operations on the encodings. The dishonest computation will be the last
multiplication only.

Let σ1 and σ2 be two distinct elements of Σ. Let C00 be a circuit that evaluates always to 0 on Σ.
We also let C10 be a circuit that evaluates to 1 on σ1 and to 0 otherwise and C01 be a circuit that
evaluates to 1 on σ2 and to 0 otherwise. The functions computed by C00 ·C00 and by C01 ·C10 are the
same, so these circuits are equivalent. We will now show how to distinguish the obfuscated versions of
C00 · C00 and C01 · C10, when using the universal circuit Ũ . As both circuits are equivalent, this will
result into an attack against the iO security of the obfuscator.

Objective: The obfuscator obfuscates the circuit C1 · C2 ∈ {C00 · C00, C01 · C10}, and we want to
distinguish whether C1 · C2 = C00 · C00 or C1 · C2 = C01 · C10.

1. The obfuscator encodes the bits of C1 and C2 under the GGH13 map, as well as the bits of all
possible inputs σ ∈ Σ. In particular, we have encodings for σ1 and σ2. We homomorphically
evaluate U on the encodings of C1 and σ1, C1 and σ2, C2 and σ1 and C2 and σ2.1 These are
honest partial evaluations of the circuit Ũ on input σ1 and σ2, so we can perform these evaluations
(in particular, there will not be incompatibilities of encodings levels). We obtain four pairs of
encodings (Rb1b2 = [rb1b2]vb1b2 ,Wb1b2 = [rb1b2 · wb1b2]vb1b2), for b1, b2 ∈ {1, 2}2, where

wb1b2 = (yb1 , Cb1(σb2), ρb1b2).

Recall that the y part of the encoding does not depend on the input σ, so this is independent of
b2 for our notations.

2. A honest evaluator of the obfuscated program would then multiply the encodings W11 and W21 (of
C1(σ1) and C2(σ1)) and the encodings W12 and W22 (of C1(σ2) and C2(σ2)). However, in order
to distinguish which circuit has been obfuscated, we do not perform these honest computations.
Instead, following the idea of the mixed input attack described in Section 6.3.3, we compute
W11 ·W22 and W12 ·W21 (and we do the same for the r part). We then obtain two encodings W̃1

and W̃2 of

w̃1 := (y∗, C1(σ1) · C2(σ2), ρ11ρ22)

and w̃2 := (y∗, C1(σ2) · C2(σ1), ρ12ρ21)

at levels v11 +v22 and v12 +v21 respectively. Note that the first slot of the encodings contains y∗,
as it would for a honest evaluation.

3. We then complete the computation as if W̃1 was an honest evaluation on σ1 and W̃2 was an honest
evaluation on σ2. That is, we first multiply W̃1 by Ŵσ1

and W̃2 by Ŵσ2
to cancel the third slot.

We obtain two encodings Ŵ1 and Ŵ2 of

ŵ1 := (y∗ · ŷ, α̂ · C1(σ1) · C2(σ2), 0)

and ŵ2 := (y∗ · ŷ, α̂ · C1(σ2) · C2(σ1), 0)

at levels v11 + v22 + v̂σ1
and v12 + v21 + v̂σ2

, respectively.

1Recall that U(σ,C) = C(σ) and the universal circuit we chose is Ũ(σ,C1 · C2) = U(σ,C1) · U(σ,C2).

154

CHAPTER B. ADAPTING THE QUANTUM ATTACK TO CIRCUIT OBFUSCATORS

4. Finally, we cancel the first slot by subtracting W of the encodings Ŵ1 and Ŵ2 obtained above.
Note that this subtraction is between encodings that are not at the same level (for both honest
and dishonest evaluations), so the resulting level is the union of the levels of both parts of the
subtraction. We obtain two encodings W 1 and W 2 of

w1 := (0, α̂ · C1(σ1) · C2(σ2), 0)

and w2 := (0, α̂ · C1(σ2) · C2(σ1), 0)

at levels v11 + v22 + v̂σ1
+ v and v12 + v21 + v̂σ2

+ v, respectively.

5. Now, we would like to zero-test the encodings W 1 and W 2 obtained above, but because we
mixed the inputs, the levels of the encodings are unlikely to be v∗ and we are not able to zero-
test. However, we know that v11 + v21 + v̂σ1 + v = v∗, because the encoding obtained by
honestly evaluating the obfuscated program on σ1 has this level. In the same way, we know that
v12 +v22 + v̂σ2

+v = v∗. Hence, the level of the product W 1 ·W 2 is 2v∗. Using our p′zt parameter,
we can then test whether its numerator is a multiple of g2 or not.

– In the case where C1 · C2 = C00 · C00, we have w1 = 0 mod g and w2 = 0 mod g. Hence,
their product is a multiple of g2. So the numerator of W 1 ·W 2 is a multiple of g2, and the
zero-test using p′zt answers positively.

– In the case where C1 · C2 = C01 · C10, we have w1 = 0 mod g and w2 6= 0 mod g. So the
product is a multiple of g2 if and only if w1 is a multiple of g2, which is very unlikely (w1

is obtained by subtracting two values that are equal modulo g1, so this is a multiple of g1

but this is unlikely to be a multiple of g2
1).2 Hence, the numerator of W 1 ·W 2 will not be a

multiple of g2 (with high probability), and the zero-test using p′zt will fail.

We can then distinguish between the obfuscated versions of C00 · C00 and C01 · C10 in (classical)
polynomial time, using our new zero-testing parameter p′zt obtained in quantum polynomial time.

This completes our quantum attack against the circuit obfuscators of [AB15,Zim15,BD16,DGG+18].

2Note that even if w1 were a multiple of g2, then, by taking p′zt = (z∗ · g−1)3 mod q, we could mount the same kind
of attack, at level 3v∗ instead of 2v∗.

155

	Résumé
	Abstract
	Remerciements/Acknowledgment
	Contents
	Résumé long en français
	Introduction
	Contributions
	Approx-SVP in ideal lattices
	An LLL algorithm for modules
	The GGH13 map and its applications
	A note on heuristic assumptions

	Preliminaries
	Notations
	Lattices
	Algorithmic problems

	Number fields
	Embeddings
	Geometry
	The ring KR
	Power-of-two cyclotomic fields
	Discriminant
	Ideals
	Modules
	The class group
	The log-unit lattice
	Algorithmic problems related to class group computations

	Representing elements and computing with them
	Computing over rings
	Computing Gram-Schmidt orthogonalizations

	Probabilities
	Statistics
	Discrete Gaussians

	Matrix branching programs

	SVP in Ideal Lattices with Pre-Processing
	Introduction
	Contribution
	Technical overview
	Impact

	From Ideal SVP to CVP in a Fixed Lattice
	Definition of the lattice L
	Computation of the lattice L
	From SVP in ideal lattices to CVP in L

	Solving CVP' with Pre-processing
	Properties of the lattice L
	Using Laarhoven's algorithm

	Instantiating Theorem 3.3
	Using a CVP oracle in a fixed lattice

	Conclusion

	An LLL algorithm for module lattices
	Introduction
	Contribution
	Technical overview
	Impact

	Divide-and-swap algorithm for rank-2 modules
	Extending the logarithm
	The lattice L
	On the distance of relevant vectors to the lattice
	A ``Euclidean division'' over R
	The divide-and-swap algorithm

	LLL-reduction of module pseudo-bases
	An LLL algorithm for module lattices
	Handling bit-sizes
	Finding short vectors for the Euclidean norm

	Conclusion

	Graded Encoding Schemes
	Definition and candidates
	Definitions
	Candidates

	The GGH13 multilinear map
	The GGH13 construction
	Size of the parameters and correctness
	Security of the GGH13 map

	Statistical attack on the GGH13 map
	Contribution
	Setting and hardness assumption
	Sampling methods
	Analysis of the leaked value
	The compensation method

	Conclusion

	Obfuscators
	Introduction
	Definition
	Candidate obfuscators
	Obfuscation for restricted classes of functions
	Contribution

	An abstract matrix branching program obfuscator
	Heuristic assumption

	Quantum attack against the abstract obfuscator
	Creating a new zero-testing parameter
	Non-spherical Gaussian distributions
	The mixed-input attack
	A concrete example of distinguishable branching programs
	Other branching program obfuscators

	Conclusion

	Conclusion
	Ideal and module lattices
	The GGH13 map and obfuscators

	List of publications
	Bibligraphy
	List of figures
	List of tables
	List of algorithms
	Security proof of our simple setting in the weak multilinear map model
	The weak multilinear map model
	Mathematical tools
	Security proof

	Adapting the quantum attack to circuit obfuscators
	The simple circuit obfuscator
	The mixed-input attack

